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Abstract We consider the volume of a Boolean expression of some congruent balls
about a given system of centers in the d-dimensional Euclidean space. When the
radius r of the balls is large, this volume can be approximated by a polynomial
of r , which will be computed up to an O(rd−3) error term. We study how the top
coefficients of this polynomial depend on the set of the centers. It is known that in
the case of the union of the balls, the top coefficients are some constant multiples
of the intrinsic volumes of the convex hull of the centers. Thus, the coefficients in
the general case lead to generalizations of the intrinsic volumes, in particular, to a
generalization of the mean width of a set. Some known results on the mean width,
along with the theorem on its monotonicity under contractions are extended to the
“Boolean analogues” of the mean width.

Keywords Volume · Intrinsic volume · Quermassintegral · Unions and
intersections of balls

1 Introduction

The long-standing conjecture of Kneser [10] and Poulsen [11] claims that if the
points p1, . . . , pN and q1, . . . , qN of the d-dimensional Euclidean space R

d satisfy
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the inequalities d(pi , p j ) ≥ d(qi , q j ) for all 0 ≤ i, j ≤ N , then

vold

(
N⋃

i=1

Bd(pi , r)

)
≥ vold

(
N⋃

i=1

Bd(qi , r)

)

for any r > 0, where Bd(p, r) denotes the closed d-dimensional ball of radius r
about the point p and vold is the d-dimensional volume. K. Bezdek and Connelly [2]
proved the conjecture in the plane, but it is still open in dimensions d ≥ 3.

Results of Gromov [9], Gordon and Meyer [8] and the author [4, 5] suggest that
the Kneser–Poulsen conjecture could be true in a more general form, which we
formulate below.

Let BN be the free Boolean algebra generated by N ≥ 1 symbols x1, . . . , xN . We
denote the greatest element ofBN by X , and the least element ofBN by∅. Elements of
BN are equivalence classes of formal expressions built from the symbols x1, . . . , xN ,
X and ∅, the binary operations∪,∩, and the unary operator f �→ f̄ . Two expressions
are called equivalent if and only if we can prove their equality assuming that the
operations satisfy the axioms of a Boolean algebra. We shall refer to an element of
BN by choosing a Boolean expression from its equivalence class, and we write “=”
between twoBoolean expressions if they are equivalent.We shall also use the derived

operator f \ g = f ∩ ḡ and the partial ordering f ⊆ g
def⇐⇒ f ∪ g = g. We refer

to [6] for more details on Boolean algebras.
Take a Boolean expression f ∈ BN which can be represented by a formula built

exclusively from the variables x1, . . . , xN and the operations ∪, ∩, \ in such a way
that each of the variables occurs in the formula exactly once. For any pair of indices
i = j , 1 ≤ i, j ≤ N , evaluate f replacing the variables xk , k /∈ {i, j} by X or ∅ in all
possible ways. It can be seen that the results of those evaluations that are not equal
to X or ∅, are all equal to one another and to one of the expressions xi ∩ x j , xi \ x j ,
x j \ xi , xi ∪ x j . Let the sign ε

f
i j be−1 if the evaluations not equal to X or ∅ are equal

to xi ∩ x j , and set ε f
i j = 1 in the remaining three cases.

The generalization of the Kneser–Poulsen conjecture for Boolean expressions
of balls claims that if the Boolean expression f ∈ BN obeys the conditions of the
previous paragraph, and the points p1, . . . , pN and q1, . . . , qN in R

d satisfy the
inequalities ε

f
i j (d(pi , p j ) − d(qi , q j )) ≥ 0 for all 0 ≤ i, j ≤ N , then

vold
(

f (Bd(p1, r1), . . . , Bd(pN , rN ))
) ≥ vold

(
f (Bd(q1, r1), . . . , Bd(qN , rN ))

)
(1)

for any choice of the radii r1, . . . , rN .
A suitable modification of the arguments of Bezdek and Connelly [2] shows that

this generalization of the Kneser–Poulsen conjecture is also true in the Euclidean
plane (see [5]).

As it was pointed out by Capoyleas, Pach [3], and Gorbovickis [7], the original
Kneser–Poulsen conjecture for large congruent balls is closely related to the mono-
tonicity of the mean width of a set under contractions. The relation is based on the
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formula

vold

(
N⋃

i=1

Bd(pi , r)

)
= κdrd + dκd

2
ωd({p1, . . . , pN })rd−1 + O(rd−2), (2)

where κd is the volume of the unit ball in R
d , ωd(S) denotes the mean width of the

bounded set S ⊂ R
d . We remark that the mean width function ωd depends on the

dimension d of the ambient space, but only up to a constant factor. More explicitly, if

� : R
d → R

d̃ is an isometric embedding, then we have dκd
κd−1

ωd(S) = d̃κd̃
κd̃−1

ωd̃(�(S))

for any bounded set S ⊂ R
d . Applying Formula (2) and the fact that the Kneser–

Poulsen conjecture is true if the dimension of the space is at least N − 1 (see [9]),
Capoyleas and Pach [3] proved that the mean width of a set cannot increase when
the set is contracted. Using rigidity theory, Gorbovickis [7] sharpened this result by
proving that if the d-dimensional configurations (p1, . . . , pN ) and (q1, . . . , qN ) are
not congruent and satisfy the inequalities d(pi , p j ) ≥ d(qi , q j ) for all 0 ≤ i, j ≤ N ,
then the strict inequality

ωd({p1, . . . , pN }) > ωd({q1, . . . , qN })

holds. This strict inequality, in return, implies that the Kneser–Poulsen conjecture is
true if the radius of the balls is bigger than a constant depending on the configurations
of the centers.

Gorbovickis [7] proved also that for the volume of the intersection of large con-
gruent balls we have

vold

(
N⋂

i=1

Bd(pi , r)

)
= κdrd − dκd

2
ωd({p1, . . . , pN })rd−1 + O(rd−2), (3)

thus, as a consequence of the strict monotonicity of the mean width, the above men-
tioned generalization of the Kneser–Poulsen conjecture is true also for the intersec-
tions of congruent balls if the radius of the balls is greater than a constant depending
on the configurations of the centers.

In 2013 K. Bezdek [1] posed the problem of finding a suitable generalization of
Eqs. (2) and (3) for the volume of an arbitrary Boolean expression of large congruent
balls, and suggested to explore the interplay between the generalizedKneser–Poulsen
conjecture and the monotonicity properties of the coefficient of rd−1 in the general
formula. In the present paper, we summarize the results of the research initiated by
these questions.

The outline of the paper is the following. In Sect. 2, we sharpen Eq. (2), expressing
the volume of the union of some large congruent balls with an error term of order
O(rd−3). The coefficients appearing in the formula are some constant multiples of
the intrinsic volumes V0, V1, V2 of the convex hull of the centers. In Sect. 3, we show
that if a Boolean expression f (B1, . . . , Bn) of some balls is bounded, then its volume
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can be obtained as a linear combination of the volumes of the unions of some of the
balls. The coefficients of this inclusion-exclusion type formula, given in Proposition
5, depend purely on the Boolean expression f . These coefficients are used to define
the Boolean analogues of the intrinsic volumes of the convex hull of a point set in
Sect. 4. Theorem 1 gives a generalization of Eq. (2) for Boolean expressions of large
balls using Boolean intrinsic volumes. In Sect. 5, some classical facts on intrinsic
volumes are generalized for Boolean intrinsic volumes. For example, it is known
that the kth intrinsic volume of a polytope can be expressed in terms of the volumes
of the k-dimensional faces and the angular measures of the normal cones of these
faces. This formula is generalized for Boolean intrinsic volumes in Theorem 2.
As an application of Theorem 2, we prove that the kth Boolean intrinsic volumes
corresponding to dual Boolean expressions differ only in a sign (−1)k . This explains
why the coefficients of rd−1 in the Eqs. (2) and (3) are opposite to one another.
Theorem 3 provides a Boolean extension of the fact that the first intrinsic volume of
a convex set is a constant multiple of the integral of its support function. Section 6
is devoted to the proof of Theorem 4 on the monotonicity of the Boolean analogue
of the first intrinsic volume.

2 Comparison of the Volume of a Union of Balls and the
Volume of Its Convex Hull

Every convex polytope K ⊂ R
d defines a decomposition of the space as follows.

Denote by F(K ) the set of all faces of K , including K , and by Fk(K ) the set of its
k-dimensional faces. Let π : R

d → K be the map assigning to a point x ∈ R
d the

unique point of K that is closest to x. For a face L ∈ F(K ), denote by V (L , K ) the
preimage π−1(relint L) of the relative interior of L . As K is the disjoint union of
the relative interiors of its faces, Rd is the disjoint union of the sets V (L , K ), where
L is running over F(K ). If L ∈ Fk(K ), then V (L , K ) is the Minkowski sum of the
relative interior of L and the normal cone

N (L , K ) = {u ∈ R
d | u ⊥ [L] and max

x∈K
〈u, x〉 is attained at a point x ∈ L} (4)

of K at L , where [L] denotes the affine subspace spanned by L . Set n(L , K ) =
N (L , K ) ∩ Bd(0, 1) and ν(L , K ) = vold−k(n(L , K ))/κd−k . Division by κd−k in the
definition of ν(L , K ) is advantageous because it makes the angle measure ν(L , K )

of the normal cone N (L , K ) independent of the dimension d of the ambient space
R

d , though the normal cone itself changes if we embed K into a higher dimensional
space.

Denote by Kr = K + Bd(0, r) the distance r parallel body of K . The decompo-
sition

R
d =

⋃
L∈F(K )

N (L , K ) (5)
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induces a decomposition of the parallel body Kr , which enables us to write the
volume of Kr as a polynomial of r

vold(Kr ) =
∑

L∈F(K )

vold(Kr ∩ N (L , K )) =
∑

L∈F(K )

vold(L + r (n(L , K ))

=
d∑

k=0

κd−k

⎛
⎝ ∑

L∈Fk (K )

volk(L)ν(L , K )

⎞
⎠ rd−k .

(6)

Equation (6) is a special case of Steiner’s classical formula (see, e.g., [12, Eq.
(4.2.27)])

vold(K + B(0, r)) =
d∑

k=0

(
d

k

)
W d

k (K )rk =
d∑

k=0

κd−k Vk(K )rd−k, (7)

expressing the volume of the distance r parallel body of an arbitrary compact convex
set K as a polynomial of r , in which the normalized coefficients W d

k (K ) and Vk(K )

are the quermassintegrals and intrinsic volumes of K respectively. It is known that
the intrinsic volumes are continuous functions on the space of compact convex sets
endowed with the Hausdorff metric (see [12, Sect. 4.2]), and V0(K ) ≡ 1. Comparing
(6) and (7) we obtain the formula

Vk(K ) =
∑

L∈Fk (K )

volk(L)ν(L , K ) (8)

expressing the intrinsic volumes of a polytope K .

Proposition 1 Let p1, . . . , pN be a fixed set of points in R
d , K = conv({p1, . . . , pN })

be the convex hull of the points. Denote by Bi = Bd(pi , r) the ball of radius r centered
at pi . Then we have

∣∣∣∣∣vold(Kr ) − vold
( N⋃

i=1

Bi

)∣∣∣∣∣ = O(rd−3) (9)

for large values of r .

Proof Denote by� the diameter of K , and set r ′ = r − �2/r . It is easy to see that if
r ≥ �, then Kr ′ ⊆ ⋃N

i=1 Bi ⊆ Kr , (see [3]). Intersecting the decomposition (5) with
the union of the balls, we get

N⋃
i=1

Bi =
⋃

L∈F(K )

(
N (L , K ) ∩

( N⋃
i=1

Bi

))
.
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When L ∈ F0(K ) is a vertex, we have N (L , K ) ∩
(⋃N

i=1 Bi

)
= N (L , K ) ∩ Kr .

Thus,

Kr \
( N⋃

i=1

Bi

)
⊆

d⋃
k=1

⋃
L∈Fk (K )

N (L , K ) ∩ (Kr \ Kr ′),

and

∣∣∣∣∣vold (Kr ) − vold
( N⋃

i=1

Bi

)∣∣∣∣∣ ≤
d∑

k=1

volk(L)κd−kν(L , K )

(
rd−k −

(
r − �2

r

)d−k
)

= O(rd−3),

(10)
as claimed.

Corollary 1 Using the notations of Proposition 1, we have

vold
( N⋃

i=1

Bi

)
= κdrd + κd−1V1(K )rd−1 + κd−2V2(K )rd−2 + O(rd−3). (11)

3 Combinatorics of Boolean Expressions

For a subset I of the set [N ] = {1, . . . , N }, define aI ∈ BN by aI = (
⋂

j /∈I x j ) \
(
⋃

i∈I xi ). The elements aI , (I ⊆ [N ]) are the atomic elements of BN . Any f ∈ BN

can be decomposed uniquely as f = ⋃
aI ⊆ f aI . In particular, BN has 22

N
elements.

Definition 1 The reduced Euler characteristic χ̃N ( f ) of f ∈ BN is the integer
χ̃N ( f ) = ∑

aI ⊆ f (−1)|I |+1.

Obviously, the reduced Euler characteristic of a Boolean expression is an integer
number in the interval [−2N−1, 2N−1].
Proposition 2 If f ∈ BN can be represented by a formal expression which does not
contain all the variables x1, . . . , xN , then χ̃N ( f ) = 0.

Proof Wemay assume without loss of generality that f can be written as an expres-
sion not using the variable xN . This means that if ι : BN−1 → BN is the natural
embedding, then f = ι(g) for some g ∈ BN−1. If I ⊆ [N − 1], and aI ∈ BN−1 is the
corresponding atomic expression inBN−1, then ι(aI ) ∩ xN and ι(aI ) ∩ x̄N are atomic
expressions in BN corresponding to the index sets I ⊆ [N ] and I ∪ {N } ⊆ [N ]
respectively, furthermore,

aI ⊆ g ⇐⇒ ι(aI ) ∩ xN ⊆ f ⇐⇒ ι(aI ) ∩ x̄N ⊆ f.

Thus,
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χ̃N ( f ) =
∑
aI ⊆g

((−1)|I | + (−1)|I∪{N }|) = 0.

�

Proposition 3 If f̄ is the complement of f ∈ BN , then χ̃N ( f̄ ) = −χ̃N ( f ).

Proof It is clear from the definition of the reducedEuler characteristic that if f ∩ g =
∅, then χ̃N ( f ∪ g) = χ̃N ( f ) + χ̃N (g). We also have

χ̃N (X) =
N∑

i=0

(−1)i+1

(
N

i

)
= 0,

so χ̃N ( f ) + χ̃N ( f̄ ) = χ̃N ( f ∪ f̄ ) = χ̃N (X) = 0.

Recall that the contradual f ∗̄ of f ∈ BN is formed by replacing each variable xi by
its complement x̄i , while the dual f ∗ = f ∗̄ of f is the complement of the contradual
of f .

Proposition 4 For any f ∈ BN , we have

−χ̃N ( f ∗) = χ̃N ( f ∗̄) = (−1)N χ̃N ( f ).

Proof The first equation is a corollary of Proposition 3, so it is enough to show the
second one. The contradual operation preserves the ordering and maps the atom aI

to a[N ]\I . Consequently,

χ̃N ( f ∗̄) =
∑

aI ⊆ f ∗̄
(−1)|I |+1 = (−1)N

∑
a[N ]\I ⊆ f

(−1)|[N ]\I |+1 = (−1)N χ̃N ( f ).

�

Let LN be the sublattice of BN generated by the elements x1, . . . , xN and the oper-
ations ∪ and ∩. An element f ∈ Bn belongs to Ln if and only if f = ∅ and when-
ever aI ⊆ f and J ⊆ I we also have aJ ⊆ f . This means that we can associate
to any element f ∈ LN an abstract simplicial complex Pf = {I ⊂ [N ] | aI ⊆ f }.
This assignment gives a bijection between Ln and abstract simplicial complexes on
the vertex set [N ] different from the abstract (N − 1)-dimensional simplex. In this
special case, the reduced Euler characteristic of f is one less than the ordinary Euler
characteristic of Pf . The difference is due to the fact that ∅ is not counted as a
−1-dimensional face when we compute the Euler characteristic, but it is taken into
account in the computation of χ̃N ( f ). The number of elements of LN is MN − 2,
where MN is the N th Dedekind number.

There is a sublattice CN ⊃ LN of BN consisting of expressions that can be built
from the variables x1, . . . , xN using only the operations ∪, ∩, and \. The lattice CN
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contains exactly those elements ofBN that do not contain the atomic expression a[N ].
This way, CN has 22

N −1 elements.
Denote by MN the linear space of real valued functions μ : CN → R such that

μ( f ∪ g) = μ( f ) + μ(g) if f ∩ g = ∅. As μ ∈ CN is uniquely determined by its
values on the atomic expressions aI , (I � [N ]), dimMN = 2N − 1.

For ∅ = I ⊆ [N ], let uI ∈ LN be the union uI = ⋃
i∈I xi .

Proposition 5 For any f ∈ CN , there is a unique collection of integers m f,I ∈ Z for
(∅ = I ⊆ [N ]) such that for any μ ∈ MN , we have

μ( f ) =
∑

∅=I⊆[N ]
m f,I μ(uI ). (12)

Proof There is a natural embedding ev : CN → M∗
N of CN into the dual space ofMN

given by the evaluation map ev : f �→ ev f , where ev f (μ) = μ( f ) for anyμ ∈ MN .
The proposition claims that for any f ∈ CN , ev f can be decomposed uniquely as an
integer coefficient linear combination of the evaluations evuI , (∅ = I ⊆ [N ]).
Any f ∈ CN has an atomic decomposition f = ⋃

aI ⊆ f aI , showing that

ev f =
∑
aI ⊆ f

evaI . (13)

Applying the inclusion–exclusion formula

μ

(⋂
k∈K

Ak

)
=

∑
∅=J⊆K

(−1)|J |+1μ

⎛
⎝⋃

j∈J

A j

⎞
⎠

for the Boolean expressions Ak = xk \ uI , k ∈ K = [N ] \ I , we obtain

μ(aI ) =
∑

∅=J⊆([N ]\I )

(−1)|J |+1μ(u J \ uI ) =
∑

∅=J⊆([N ]\I )

(−1)|J |+1(μ(uI∪J ) − μ(uI ))

=
∑

I⊆K⊆[N ]
(−1)|K\I |+1μ(uK ),

(14)
for any μ ∈ MN and I = [N ].

Equations (13) and (14) show that ev f can be written as a linear combination of
the evaluations evuI , (∅ = I ⊆ [N ])) with integer coefficients.

To show uniqueness of the coefficients m f,I , observe that the evaluations evaI ,
(∅ = I ⊆ [N ]) form a basis of M∗

N , and as the linear space spanned by the 2N − 1
evaluations evuI , (∅ = I ⊆ [N ]) contains this basis, it is the whole spaceM∗

N . Since
dimM∗

N = 2N − 1, the evaluations evuI , (∅ = I ⊆ [N ]) are linearly independent.
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Proposition 6 The sum
∑

∅=I⊆[N ] m f,I of the coefficients is 1 if a∅ ⊆ f and 0 oth-
erwise.

Proof Let μ ∈ MN be the additive function the values of which on atoms are given
by

μ(aI ) =
{
0 if I = ∅
1 if I = ∅.

Then μ(uI ) = 1, for all ∅ = I ⊆ [N ]. Applying (12) to μ, we obtain

∑
∅=I⊆[N ]

m f,I =
∑

∅=I⊆[N ]
m f,I μ(uI ) = μ( f ) =

∑
aI ⊆ f

μ(aI ) =
{
0 if a∅ � f

1 if a∅ ⊆ f.

�

Proposition 7 For any ∅ = I ⊆ [N ], muI ,J = δI,J holds, where δI,J is the Kro-
necker delta symbol.

Proof It is clear that μ(uI ) = ∑
∅=J⊆[N ] δI,J μ(u J ). By the uniqueness of the coef-

ficients muI ,J , this equation implies muI ,J = δI,J .

Proposition 8 If f, g ∈ CN and f ∩ g = ∅, then m f ∪g,I = m f,I + mg,I for every
∅ = I ⊆ [N ].
Proof Since for any μ ∈ MN , equation∑
∅=I⊆[N ]

m f ∪g,I μ(uI ) = μ( f ∪ g) = μ( f ) + μ(g) =
∑

∅=I⊆[N ]
(m f,I + mg,I )μ(uI )

holds, uniqueness of the coefficients m f ∪g,I implies the statement.

If μ ∈ MN , then there are infinitely many ways to extend μ to a map μ : BN →
R preserving the additivity property μ( f ∪ g) = μ( f ) + μ(g) − μ( f ∩ g). Since
such a map is uniquely defined by its values on the atomic expressions aI , and μ(aI )

is already given for I = [N ], the extension of μ is uniquely given if we prescribe the
value μ(a[N ]) ∈ R. This value is uniquely determined if we require that μ(X) = 0,
since this equation holds if and only μ(a[N ]) = −∑

I�[N ] μ(aI ).

Definition 2 The unique extension of μ ∈ MN to a map μ : BN satisfying the con-
ditions μ( f ∪ g) = μ( f ) + μ(g) − μ( f ∩ g) and μ(X) = 0 will be called the 0-
weight extension of μ.
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4 Asymptotics for the Volume of Boolean Expressions of
Large Balls

Let f ∈ CN be a Boolean expression built from the variables x1, . . . , xN and the
operations ∪, ∩ and \. For a system of N points p = (p1, . . . , pN ) ∈ (Rd)N and a
given radius r > 0, consider the body

Bd
f (p, r) = f (Bd(p1, r), . . . , Bd(pN , r))

obtained by evaluating f on the balls xi = Bd(pi , r). We are interested in the asymp-
totic behaviour of the volume Vd

f (p, r) = vold(Bd
f (p, r)) of this body.

For a system of points p = (p1, . . . , pN ) ∈ (Rd)N and a set I ⊆ [N ], denote by
KI (p) the convex hull of the points {pi | i ∈ I }.
Definition 3 For f ∈ CN and a system of points p ∈ (Rd)N , define the Boolean
quermassintegrals W d

f,k(p) and Boolean intrinsic volumes V f,k(p) by the equations

W d
f,k(p) =

∑
∅=I⊆[N ]

m f,I W d
k (K I (p)) and V f,k(p) =

∑
∅=I⊆[N ]

m f,I Vk(K I (p)).

By Proposition 8, for any k and p ∈ (Rd)N , the maps CN � f �→ W d
f,k(p) and CN �

f �→ V f,k(p) are in MN . We define W d
f,k(p) and V f,k(p) for arbitrary f ∈ BN as

the 0-weight extension of these maps, respectively.

Theorem 1 For any Boolean expression f ∈ CN , and any fixed system of centers
p ∈ (Rd)N we have

Vd
f (p, r) =

d∑
k=d−2

(
d

k

)
W d

f,k(p)rk + O(rd−3) =
2∑

k=0

κd−k V f,k(p)rd−k + O(rd−3).

Proof Letμ : CN → R be the additive function defined byμ(g) = Vd
g (p, r). Apply-

ing Eq. (12) for μ, we obtain

Vd
f (p, r) = μ( f ) =

∑
∅=I⊆[N ]

m f,I μ(uI ) =
∑

∅=I⊆[N ]
m f,IVd

uI
(p, r).

For each I , Vd
uI

is the volume of the union of some balls, to which we can apply
Corollary 1. This gives

Vd
uI

= κdrd + κd−1V1(K I )r
d−1 + κd−2V2(K I )r

d−2 + O(rd−3). (15)

The last two equations together with the definition of the Boolean quermassintegrals
and Boolean intrisic volumes imply the theorem.
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Remark One of the main goals set in the introduction was to extend Eqs. (2), (3), and
(11) for the volumes of Boolean expressions of large congruent balls, finding suitable
generalizations of the intrinsic volumesV0,V1,V2, appearing in (11). Theorem1gives
the desired extension and justifies our definition of the Boolean intrinsic volumes.

5 Properties of Boolean Intrinsic Volumes

The following properties are straightforward corollaries of the analogous properties
of intrinsic volumes of convex bodies and the definitions.

Proposition 9

(a) V f,0(p) does not depend on p. Its value V f,0 ≡ ∑
∅=I⊂[N ] m f,I is 1 if a∅ ⊆ f ,

and 0 otherwise.
(b) The Boolean intrinsic volume V f,k(p) does not depend on the dimension d. In

particular,

W d
f,k = κk(d

k
) V f,d−k = κk(d

k
) V f,(d+s)−(k+s) =

(d+s
k+s

)
κk(d

k
)
κk+s

W d+s
f,k+s = (d + 1) · · · (d + s)κk

(k + 1) · · · (k + s)κk+s
W d+s

f,k+s

for any s ∈ N.
(c) V f,k is a continuous function on (Rd)N for every d > 0.
(d) If f, g ∈ BN and f ∩ g = ∅, then W d

f ∪g,k = W d
f,k + W d

g,k and V f ∪g,k = V f,k +
Vg,k .

(e) W d
f̄ ,k

= −W d
f,k and V f̄ ,k = −V f,k for any f ∈ BN .

We are going to find a formula for the Boolean intrinsic volumes that generalizes
Eq. (8). Assume that any k + 2 points of the system p = (p1, . . . , pN ) ∈ (Rd)N are
affinely independent. This can always be achieved by a small perturbation of the
points if d ≥ k + 1. Choose a k + 1 element index set S = {i1, . . . , ik+1} ⊂ [N ]
and denote by σS the convex hull of the points pi1 , . . . , pik+1 . By the general position
assumption on p, σS is a k-dimensional simplex and the affine subspace [σS] spanned
by it does not contain any of the points p j for j /∈ S.

Define an integer valued functionn f,S,p : S
d−k−1
S → Zon theunit sphereS

d−k−1
S =

{u ∈ S
d−1 | u ⊥ [σS]} as follows. Choose a vectoru ∈ S

d−k−1
S . Split the index set [N ]

into three parts depending on the position of the point pi relative to the hyperplane
orthogonal to u, containing the simplex σS by setting

�+ = { j ∈ [N ] | 〈p j − pi1 , u〉 > 0},
�0 = { j ∈ [N ] | 〈p j − pi1 , u〉 = 0},
�− = { j ∈ [N ] | 〈p j − pi1 , u〉 < 0}.

It is clear that S ⊆ �0 and S = �0 for almost all u. Define the elements y1, . . . , yN ∈
BN by the rule
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y j =

⎧⎪⎨
⎪⎩

X if j ∈ �+ ∪ (�0 \ S),

x j if j ∈ S,

∅ if j ∈ �−.

Evaluating the Boolean expression f on the y j ’s we obtain an element f (y1, . . . , yN )

∈ Bk+1(xi1 , . . . , xik+1) in the free Boolean algebra generated by the elements xi1 , . . . ,

xik+1 . Set n f,S,p(u) = (−1)k+1χ̃k+1( f (y1, . . . , yN )).
The values of n f,S,p are integers in the interval [−2k, 2k]. Let

ν f,S,p = 1

(d − k)κd−k

∫
Sd−k−1

S

n f,S,p(u)du

be the average value of n f,S,p.

Theorem 2 If f ∈ BN and p ∈ (Rd)N satisfies that any k + 2 points of p are affinely
independent, then we have

V f,k(p) =
∑
S⊆[N ]

|S|=k+1

ν f,S,pvolk(σS). (16)

Proof If f, g ∈ BN are disjoint, that is f ∩ g = ∅, then V f ∪g,k = V f,k + Vg,k , fur-
thermore, f (y1, . . . , yN ) ∩ g(y1, . . . , yN ) = ∅ for any choice of the variables yi , and
since the reduced Euler characteristic is an additive function, ν f ∪g,k = ν f,k + νg,k .
Thus, both sides of Eq. (16) are additive functions of the Boolean expression f . Since
both sides vanish for f = X , the two sides are equal for any f ∈ BN if they are equal
for any f ∈ CN . As it was shown in the proof of Proposition 5, the evaluations evuI ,
for ∅ = I ⊆ [N ], form a basis of M∗

N , so it is enough to check the proposition for
the unions uI .

Assume f = uI . Then V f,k(p) = Vk(K I (p)) by Proposition 7. Let S = {i1, . . . ,
ik+1} ⊆ [N ] be a set of k + 1 indices. To understand the geometrical meaning of
n f,S,p(u), consider first the value of f (y1, . . . , yN ) = ⋃

j∈I y j .
If y j = X for an index j ∈ I , then f (y1, . . . , yN ) = X and ν f,S(u) = χ̃k+1(X) =

0. Hence n f,S,p(u) vanishes if I � �− ∪ �0. By Proposition 2, n f,S,p(u) van-
ishes also in the case when one of the variables xi1 , . . . , xik+1 does not appear in
f (y1, . . . , yN ). These variables appear in f (y1, . . . , yN ) if and only if S ⊆ I ∩ �0.
This means that if n f,S,p(u) = 0, then KI (p) is contained in the halfspace {x ∈ R

d |
〈u, x − pi1〉 ≤ 0} and the boundary hyperplane of this halfspace intersects the poly-
tope KI (p) in a face that contains the k-dimensional simplex σS . What is the value
of n f,S,p(u) in this case? If I ⊆ �− ∪ �0 and S ⊆ I ∩ �0, then

n f,S,p(u) = (−1)k+1χ̃k+1(xi1 ∪ · · · ∪ xik+1) = −χ̃k+1(xi1 ∩ · · · ∩ xik+1) = 1.

If the simplex σS is not a face of K I (p), then the smallest face of KI (p) that contains
σS has dimension bigger than k because of the general position assumption on p.
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In this case, the support of the function n f,S,p is contained in a great subsphere of
S

d−k−1
S , and ν f,S,p = 0.
If σS is a face of K I (p), then n f,S,p is the indicator function of the intersection of

the cone N (σS, K I (p)) and the sphere S
d−k−1
S , therefore

ν f,S,p = 1

(d − k)κd−k

∫
Sd−k−1

S

n f,S,p(u)du = vold−k(n(σS, K I (p)))

κd−k
= ν(σS, K I (p)).

As all the k-dimensional faces of KI (p) are simplicies, we conclude that for f = uI ,
we have∑

S⊆[N ]
|S|=k+1

ν f,S,pvolk(σS) =
∑

σ∈Fk (K I (p))

ν(σ, KI (p))volk(L) = Vk(K I (p)) = V f,k(p),

as desired.

Proposition 10 If f ∈ BN , f ∗ and f ∗̄ are the dual and contradual of f respectively,
then

V f ∗,k = −V f ∗̄,k = (−1)k V f,k and W d
f ∗,k = −W d

f ∗̄,k = (−1)d−k W d
f,k .

Proof Due to Proposition 9 (e) and (b), it is enough to show the equality V f ∗,k =
(−1)k V f,k . As V f,k(p) does not depend on the dimension of the ambient spaceR

d , we
may assume that d > k. Then the set of configurations p = (p1, . . . , pN ) ∈ (Rd)N

satisfying that any k + 2 of the points p1, . . . , pN are affinely independent is dense
in (Rd)N . Since V f,k is continuous on (Rd)N for all f ∈ BN , it suffices to prove the
equation V f ∗,k(p) = (−1)k V f,k(p) for configurations satisfying this general position
condition. Under this assumption, Theorem 2 implies the statement if we show the
equations ν f ∗,S,p = (−1)kν f,S,p.

Consider the function n f,S,p(u) = (−1)k+1χ̃k+1( f (y1, . . . , yN )) in the defini-
tion of ν f,S,p. It is not difficult to see that f ∗̄(y1, . . . , yN ) is the contradual of
f (y1, . . . , yN ) and f ∗(y1, . . . , yN ) is the dual of it, so applying Proposition 4, we
obtain n f ∗,S,p = (−1)kn f,S,p. Taking themean value of both sides over the unit sphere
S

d−k−1
S we get the desired equation ν f ∗,S,p = (−1)kν f,S,p.

Denote by lu : R
d → R the linear function lu : x �→ 〈u, x〉. If u is a unit vector,

and K is a bounded convex set, then the length of the interval lu(K ) is the width
wK (u) of K in the direction of u. It is known that V1(K ) is proportional to the mean
width of K , namely,

V1(K ) = 1

2κd−1

∫
Sd−1

wK (u)du = dκd

2κd−1
ωd(K ).

The width and the mean width can be expressed with the help of the support function
of K . Recall that the support function of a bounded set X ⊂ R

d is defined as the
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function hX : S
d−1 → R, hX (u) = supx∈X 〈x, u〉. It is clear that wK (u) = hK (u) +

hK (−u), and

V1(K ) = 1

2κd−1

∫
Sd−1

(hK (u) + hK (−u))du = 1

κd−1

∫
Sd−1

hK (u)du.

We can extend this formula for the case when f ∈ LN . Then f can be evaluated on
real numbers by setting a ∪ b = max{a, b} and a ∩ b = min{a, b} for a, b ∈ R.

Theorem 3 If f ∈ LN , then for any p ∈ (Rd)N , we have

V f,1(p) = 1

κd−1

∫
Sd−1

f (〈u, p1〉, . . . , 〈u, pN 〉)du.

Proof Suppose that the points pi are all contained in the interior of the ball BR =
Bd(0, R). Since f ∈ LN , a∅ ⊆ f , therefore

∑
∅=I⊆[N ] m f,I = 1, and

V f,1(p) =
∑

∅=I⊆[N ]
m f,I V1(K I (p)) =

⎛
⎝ ∑

∅=I⊆[N ]
m f,I V1(K I (p) + BR)

⎞
⎠ − V1(BR).

Denote by Si (u) the interval lu({pi } + BR) = [〈u, pi 〉 − R, 〈u, pi 〉 + R]. Then

V1(K I (p) + BR) = 1

2κd−1

∫
Sd−1

vol1(lu(K I + BR)du = 1

2κd−1

∫
Sd−1

vol1

(⋃
i∈I

Si (u)

)
du,

and

V f,1(p) = 1

2κd−1

∫
Sd−1

( ∑
∅=I⊆[N ]

m f,Ivol1
(⋃

i∈I

Si (u)
))

du − dκd R

κd−1
.

For any fixed u ∈ S
d−1, the function μ : CN → R defined by μ( f ) = vol1( f (S1(u),

. . . , SN (u))) is inMN , therefore Proposition 5 yields

∑
∅=I⊆[N ]

m f,I vol1
(⋃

i∈I

Si (u)
)

=
∑

∅=I⊆[N ]
m f,I μ(uI ) = μ( f ) = vol1( f (S1(u), . . . , SN (u))).

By the choice of R, 0 is a common interior point of all the intervals Si (u). For this
reason, all the sets that can be obtained from these intervals using the operations ∪
and ∩ are also intervals. In particular,

f (S1(u), . . . , SN (u)) = [− f (−〈u, p1〉, . . . ,−〈u, pN 〉) − R, f (〈u, p1〉, . . . , 〈u, pN 〉) + R],

and

vol1( f (S1(u), . . . , SN (u)) = f (〈u, p1〉, . . . , 〈u, pN 〉) + f (〈−u, p1〉, . . . , 〈−u, pN 〉) + 2R.
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Using the fact that for any integrable function h : S
d−1 → R, we have

∫
Sd−1 h(u)du =∫

Sd−1 h(−u)du, these equations give

V f,1(p) = 1

2κd−1

∫
Sd−1

( f (〈u, p1〉, . . . , 〈u, pN 〉) + f (〈−u, p1〉, . . . , 〈−u, pN 〉) + 2R)du − dκd R

κd−1

= 1

κd−1

∫
Sd−1

f (〈u, p1〉, . . . , 〈u, pN 〉)du,

as we wanted to show.

6 Monotonocity of the Boolean Intrinsic Volume Vf,1

In this section, we prove the following result.

Theorem 4 Assume that the Boolean expression f ∈ CN can be represented by a
formula in which each of the variables occurs exactly once. Define the signs ε

f
i j , for

1 ≤ i < j ≤ N, as in the introduction. If the configurations p = (p1, . . . , pN ) and
q = (q1, . . . , qN ) ∈ (Rd)N satisfy the inequalities ε

f
i j (d(pi , p j ) − d(qi , q j )) ≥ 0 for

all 0 ≤ i < j ≤ N, then we have

V f,1(p) ≥ V f,1(q). (17)

Proof It is proved in [5], that if there exist piecewise analytic continuous maps
zi : [0, 1] → R

d for 1 ≤ i ≤ N , such that zi (0) = pi , zi (1) = qi , and the distances
d(zi (t), z j (t)) are weakly monotonous functions of t for all i and j , then ineqality
(1) is true for any choice of the radii. It is not difficult to see that the analytic curves
zi : [0, 1] → R

d × R
d defined by zi (t) = (cos(tπ/2)pi , sin(tπ/2)qi ) connect the

points (pi , 0) to the points (0, qi ) in the required way, but jumping into R
2d . Thus,

embedding the centers into R
2d , our assumptions imply the inequality

V2d
f (p, r) = vol2d

(
B2d

j (p, r)
) ≥ vol2d

(
f (B2d

f (q, r)
) = V2d

f (q, r) (18)

for any choice of the radius r . By Proposition 9 (a), V f,0(p) = V f,0(q), therefore
Theorem 1 gives

0 ≤ V2d
f (p, r) − V2d

f (q, r) = κ2d−1(V f,1(p) − V f,1(q))r2d−1 + O(r2d−2).

This inequality can hold for large r only if the coefficient of the dominant term is
nonnegative, i.e., V f,1(p) ≥ V f,1(q).

It seems to be an interesting question whether we can write strict inequality in
(17) if, in addition to the assumptions of Theorem 4, we know that the configurations
p and q are not congruent. An affirmative answer would imply that the generalized
Kneser–Poulsen conjecture holds for Boolean expression of congruent balls if the
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radius of the balls is greater than a certain number depending on the system of the
centers.
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