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1 Introduction

Euclidean regular polytopes are in the center of scientific studies since the Antiquity
(see [18] or [9]). Packings of equal balls in spaces of constant curvature have been
investigated rather intensively since the middle of the 20th century (see [3], [7], [12]
and [21]). In this paper, we focus on packings of equal spherical balls (see [8], [11]
and [19]) that are related to some Euclidean simplicial regular polytope P with its
f0(P) vertices being on Sd−1, d ≥ 3.WewriteϕP to denote the acute angle satisfying
that edge length of P is 2 sin ϕP . We note that the simplicial regular polytopes inRd ,
d ≥ 3, are the regular simplex and crosspolytope in all dimensions, and in addition
the icosahedron inR3 and the 600-cell inR4 (the latter has Schläfli symbol (3, 3, 5)).
The corresponding data is summarized in the following table.

Regular Polytope P f0(P) ϕP

Simplex in Rd d + 1 1
2 arccos

−1
d

Crosspolytope in R
d 2d π

4
Icosahedron in R3 12 1

2 arccos
1√
5

600-cell in R4 120 π
10

Theorem A If P is a simplicial regular polytope in Rd having its vertices on Sd−1,
d ≥ 3, then the vertices are centers of an optimal packing of equal spherical balls
of radius ϕP on Sd−1.

Theorem A is due to Jung [17] if P is a regular simplex. For the case of a regular
crosspolytope, the statement of TheoremAwas proposed as a problem by Davenport
and Hajós [10]. Numerous solutions arrived in a relatively short time; namely, the
ones by Aczél [1] and by Szele [22] and the unpublished ones due to M. Bognár,
Á. Császár, T. Kővári and I. Vincze. Independently, Rankin [20] solved the case
of crosspolytopes. There are two more simplical regular polytopes. The case of
icosahedron was handled by Fejes Tóth [13] (see, say, [15] or [16]), and the case of
the 600-cell is due to Böröczky [4]. All these arguments yield (explicitly or hidden)
also the uniqueness of the optimal configuration up to orthogonal transformations.
For the case of the 600-cell, Andreev [2] provided an argument for optimality based
on the linear programming bound in coding theory. The proof of uniqueness via the
linear programming bound was given by Boyvalenkov and Danev [6].

In this paper, we provide a stability version of Theorem A of optimal order. For
u, v ∈ Sd−1, we write δ(u, v) ∈ [0, π ] to denote the spherical (geodesic) distance of
u and v, which is just their angle as vectors in Rd .

Theorem 1.1 Let P be a simplicial regular polytope in R
d having its vertices

on Sd−1, d ≥ 3. For suitable εP , cP > 0, if x1, . . . ,xk ∈ Sd−1 are centers of non-
overlapping spherical balls of radius at least ϕP − ε for ε ∈ [0, εP) and k ≥ f0(P),
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then k = f0(P), and there exists a � ∈ O(d), such that for any xi one finds a vertex
v of P satisfying δ(xi ,�v) ≤ cPε.

We even provide explicit expressions for εP and cP . If P is a d-simplex or a d-
crosspolytope, then cP is of polynomial growth in d (cP = 9d3.5 if P is a d-simplex,
and cP = 96d3 if P is a d-crosspolytope).

Concerning notation, if p ∈ Sd−1 and ϕ ∈ (0, π/2), then we write B(p, ϕ) for
the spherical ball of center p and radius ϕ. When working in R

d , we write either
|X | or Hd−1(X) to denote the (d − 1)-dimensional Hausdorff-measure of X . For
x1, . . . ,xk ∈ R

d , their convex hull, linear hull and affine hull in R
d are denoted by

[x1, . . . ,xk], lin{x1, . . . ,xk} and aff{x1, . . . ,xk}, respectively. For x, y ∈ R
d , we

write 〈x, y〉 to denote the scalar product, and ‖x‖ to denote the Euclidean norm. As
usual, int K stands for the interior of K ⊂ R

d .
The paper uses various tools to establish Theorem 1.1. Only elementary linear

algebra is needed for the case of a simplex, the linear programming bound is used
for the case of a crosspolytope, and the simplex bound is applied to the icosahedron
and the 600-cell.

Concerning the structure of the paper, Sects. 3 and 5 handle the cases of the
simplex and the crosspolytope, respectively, and Sect. 4 in between reviews the
linear programming bound used for the case of crosspolytopes. Results in these
sections will be used also to handle the cases of the icosahedron in Sect. 8 and the
600-cell in Sect. 9, as well. After reviewing the Delone and Dirichlet-Voronoi cell
decompositions and the corresponding simplex bound in Sect. 6, and verifying some
volume estimates in Sect. 7, Theorem 1.1 is proved in Sects. 8 and 9 in the cases of
the icosahedron and the 600-cell, respectively.

2 Some Simple Preparatory Statements

The following statement will play a key role in the arguments for the cases of sim-
plices and crosspolytopes of Theorem 1.1.

Lemma 2.1 Let n ≥ 2 and 0 ≤ η < 1
n−1 . If u1, . . . , un ∈ Sn−1 satisfy that |〈ui , u j 〉|

≤ η for i 
= j , then there exists an orthonormal basis v1, . . . , vn of Rn such that
lin{ui , . . . , un} = lin{vi , . . . , vn} and 〈ui , vi 〉 > 0 for i = 1, . . . , n, and

|〈ui , v j 〉| ≤ η

1 − (n − 2)η
for i 
= j. (1)

Moreover, δ(ui , vi ) ≤ 2nη holds for i = 1, . . . , n provided that η < 1
2n .

Proof We prove the lemma by induction on n where the case n = 2 readily holds.
Therefore, we assume that n ≥ 3, and the lemma holds in Rn−1.

Let vn = un . For i = 1, . . . , n − 1, let ui = wi + ti vn for wi ∈ v⊥
n and ti ∈ R. It

follows that |ti | ≤ η and ‖wi‖ = (1 − t2i )
1
2 ≥ (1 − η2)

1
2 for i = 1, . . . , n − 1, and
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we define w̄i = wi/‖wi‖ ∈ Sn−1. We observe that if 1 ≤ i < j ≤ n − 1, then

|〈w̄i , w̄ j 〉| = |〈wi , w j 〉|
(1 − t2i )

1
2 (1 − t2j )

1
2

≤ |〈ui , u j 〉| + |ti t j |
1 − η2

≤ η + η2

1 − η2
= η

1 − η
.

As η̄ = η

1−η
< 1

n−2 follows from η < 1
n−1 , we may apply the induction hypothesis to

w̄1, . . . , w̄n−1 and η̄. We obtain an orthonormal basis v1, . . . , vd−1 for v⊥
n such that

lin{w̄i , . . . , w̄n−1} = lin{vi , . . . , vn−1} and 〈w̄i , vi 〉 > 0 for i = 1, . . . , n − 1, and

|〈w̄i , v j 〉| ≤ η̄

1 − (n − 3)η̄
= η

1 − (n − 2)η
for i 
= j.

If 1 ≤ i ≤ n − 1 then 〈un, vi 〉 = 〈vn, vi 〉 = 0 and |〈ui , vn〉| = |ti | ≤ η. However
if i 
= j for i, j ∈ {1, . . . , n − 1}, then

|〈ui , v j 〉| = |〈(1 − t2i )
1
2 w̄i + ti vn, v j 〉| ≤ |〈w̄i , v j 〉| ≤ η

1 − (n − 2)η
.

Therefore,we have verified (1), andwe readily have lin{ui , . . . , un} = lin{vi , . . . , vn}
for i = 1, . . . , n by construction.

Finally, for the estimate δ(ui , vi ) if η < 1
2n and i = 1, . . . , n, we observe that

|〈ui , v j 〉| < 2η provided j 
= i . It follows from ‖ui‖ = 1 and 〈ui , vi 〉 > 0 that

0 ≤ 〈vi − ui , vi 〉 = 1 −
√
1 −

∑
j 
=i

〈ui , v j 〉2 ≤
∑
j 
=i

〈ui , v j 〉2 ≤ (n − 1)4η2 < 2η.

In particular,

‖vi − ui‖ =
√√√√ n∑

j=1

〈vi − ui , v j 〉2 <
√
n4η2 = 2

√
n η,

and hence δ(ui , vi ) < 2nη. Q.E.D.

The following Lemma 2.2 and its consequence Corollary 2.3 are due to Rankin
[20], and will be used, say, for simplices.

Lemma 2.2 If u1, . . . , ud+1 ∈ Sd−1, d ≥ 2, are contained in a closed hemisphere,
then there exist i and j , 1 ≤ i < j ≤ d + 1, such that 〈ui , u j 〉 ≥ 0.

Proof We prove the statement by induction on d where the case d = 2 readily
holds. If d ≥ 3, then we may assume that 〈ui , u j 〉 ≤ 0 if 1 ≤ i < j ≤ d + 1. Let
v ∈ Sn−1 such that 〈v, ui 〉 ≥ 0 for i = 1, . . . , d + 1, and hence ui = wi + λi v for
i = 1, . . . , d + 1 where wi ∈ v⊥ and λi ≥ 0. If ui = v for some i ∈ {1, . . . , d + 1},
then 〈u j , ui 〉 = 0 for j 
= i , thusweare done.Otherwisewi 
= o for i = 1, . . . , d + 1.
If i = 1, . . . , d, then
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0 ≥ 〈ud+1, ui 〉 = 〈wd+1, wi 〉 + λd+1 · λi ≥ 〈wd+1, wi 〉,

therefore, the induction hypothesis applied to w1
‖w1‖ , . . . ,

wd
‖wd‖ ∈ v⊥ ∩ Sd−1 yields

〈wi , w j 〉 ≥ 0 for some 1 ≤ i < j ≤ d, and hence 〈ui , u j 〉 ≥ 0. Q.E.D.

Corollary 2.3 If k ≥ d + 2, d ≥ 2, and u1, . . . , uk ∈ Sd−1, then there exist i and j ,
1 ≤ i < j ≤ d + 1, such that 〈ui , u j 〉 ≥ 0.

3 The Proof of Theorem 1.1 in the Case of Simplices

Theorem 3.1 covers the case of regular simplex of Theorem 1.1.

Theorem 3.1 If u0, . . . , ud ∈ Sd−1 satisfy δ(ui , u j ) ≥ arccos −1
d − 2ε for ε ∈

[0, εd) and 0 ≤ i < j ≤ d, d ≥ 2, then there exists a regular simplex [v0, . . . , vd ]
with v0, . . . , vd ∈ Sd−1 such that δ(ui , vi ) ≤ cdε for i = 0, . . . , d where cd = 9d3.5

and εd = 1/cd .

Remark If d = 2, then one may even choose c2 = 3 and ε2 = π
12 .

Proof We first handle the case d = 2, because this case is much more elementary.
We define ε2 to be π

12 = 1
2 (

2π
3 − π

2 ). Thus arccos −1
2 = 2π

3 and ε < ε2 yield that no
closed semicircle contains u0, u1, u2, and hence the sum of the three angles of type
δ(ui , u j ) is 2π . We may assume that δ(u0, u1) ≤ δ(u0, u2) ≤ δ(u1, u2), and hence

2π

3
− 2ε ≤ δ(u0, u1) ≤ 2π

3
≤ δ(u1, u2) ≤ 2π

3
+ 4ε. (2)

We choose v1, v2, v3 ∈ S1 that are vertices of a regular triangle, and

δ(u0, v0) = δ(u1, v1) ≤ ε.

We deduce from (2) that δ(u2, v2) ≤ 3ε, thus we may choose c2 to be 3.
Turning to the case d ≥ 3, let

0 < ε <
1

9d3.5
.

If 0 ≤ i < j ≤ d, then we have

‖ui − u j‖2 = 2 − 2 cos δ(ui , u j ) ≥ 2 + 2

(
cos 2ε

d
−

√
d2 − 1

d
· sin 2ε

)

> 2 + 2

(
1 − 2ε

d
− 2ε

)
>

2(d + 1)

d
− 6ε. (3)
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Using (3) and the estimate

(d + 1)2 =
∥∥∥∥∥

d∑
i=0

ui

∥∥∥∥∥
2

+
∑

0≤i< j≤d

‖ui − u j‖2 ≥
∑

0≤i< j≤d

‖ui − u j‖2,

we deduce for any i < j the upper bound

‖ui − u j‖2 <
2(d + 1)

d
+ 3d(d + 1)ε.

In particular, if i < j , then

−1

d
− 3

2
d(d + 1)ε ≤ 〈ui , u j 〉 ≤ −1

d
+ 2ε. (4)

WeembedRd intoRd+1 asRd = e⊥ for suitable e ∈ Sd ⊂ R
d+1. For i = 0, . . . , d,

we define

wi =
√

1

d + 1
e +

√
d

d + 1
ui ∈ Sd ,

and hence (4) yields that if i 
= j , then

|〈wi , w j 〉| =
∣∣∣∣ 1

d + 1
+ d

d + 1
〈ui , u j 〉

∣∣∣∣ = d

d + 1

∣∣∣∣ 1d + 〈ui , u j 〉
∣∣∣∣ ≤ 3

2
d2ε.

Since 3
2 d

2ε < 1
2(d+1) , Lemma 2.1 can be applied, and hence there exists an orthonor-

mal basis q0, . . . , qd of R
d+1 such that δ(wi , qi ) ≤ 3(d + 1)d2ε holds for i =

0, . . . , d. We define q = ∑d
i=0

1√
d+1

qi and deduce that q ∈ Sd .

Since for any i = 0, . . . , d, we have 〈e, wi 〉 = 1√
d+1

and δ(wi , qi ) ≤ 3(d +
1)d2ε, it follows from | cos(α + β) − cosα| ≤ |β| forα, β ∈ R that

∣∣∣〈e, qi 〉 − 1√
d+1

∣∣∣
≤ 3(d + 1)d2ε, and hence |〈e − q, qi 〉| ≤ 3(d + 1)d2ε. We deduce that

‖e − q‖ ≤ 3(d + 1)
3
2 d2ε.

Let A ∈ O(d + 1) be the identity if e = q, and be the rotation around the linear
(d − 1)-space of R

d+1 orthogonal to lin{e, q} with Aq = e if e 
= q. It follows
that ‖Au − u‖ ≤ ‖e − q‖ for u ∈ Sd . For each i = 0, . . . , q, q̄i = Aqi ∈ Sd sat-
isfies ‖q̄i − qi‖ ≤ ‖e − q‖ ≤ 3(d + 1)

3
2 d2ε and combining the last estimate with

δ(wi , qi ) ≤ 3(d + 1)d2ε ≤ 3
2 (d + 1)

3
2 d2ε yields

‖wi − q̄i‖ ≤ 9

2
(d + 1)

3
2 d2ε. (5)
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As Aq = e, we also have that 〈q̄i , e〉 =
√

1
d+1 = 〈wi , e〉 for i = 0, . . . , q. Therefore,

vi =
√
d + 1

d

(
q̄i −

√
1

d + 1
e

)
∈ e⊥ ∩ Sd = Sd−1

for i = 0, . . . , q, [v0, . . . , vd ] is a regular d-simplex, and

‖vi − ui‖ =
√
d + 1

d
· ‖q̄i − wi‖ ≤ 9

2
(d + 1)2d

3
2 ε ≤ 8d3.5ε ≤ 8

9

for i = 0, . . . , q where we used d ≥ 3 at the last estimate. Using that
2 arcsin t

2 ≤ 9
8 t for any t ∈ [0, 8

9 ], we conclude that δ(vi , ui ) = 2 arcsin ‖vi−ui‖
2 ≤

9
8‖vi − ui‖ ≤ 9d3.5ε for i = 0, . . . , q. Q.E.D.

4 The Linear Programming Bound

Let d ≥ 2. The presentation about the linear programming bound for sphere packings
on Sd−1 in this section is based on Ericson and Zinoviev [11, Chap. 2]. A central
role in the theory is played by certain real Gegenbauer polynomials Qi , i ∈ N, in
one variable where each Qi is of degree i , and satisfies the following recursion:

Q0(t) = 1

Q1(t) = t

Q2(t) = dt2 − 1

d − 1
(i + d − 2)Qi+1(t) = (2i + d − 2)t Qi (t) − i Qi−1(t) for i ≥ 2.

We do not signal the dependence of Qi on d because the original notation for the
Gegenbaur polynomial is Qi = Q(α)

i for α = d−2
2 as

∫ 1

−1
Qi (t)Q j (t)(1 − t2)

d−3
2 dt = 0 if i 
= j.

Actually, Qi is normalized in a way such that Qi (1) = 1 for i ∈ N.
The basis of our considerations is the following version of the linear programming

bound, which is contained in the proof of Theorem 2.3.1 in [11]. We write |X | to
denote the cardinality of a finite set X .

Theorem 4.1 For d ≥ 2, if f = f0Q0 + f1Q1 + . . . + fk Qk for k ≥ 1, f0 > 0 and
f1, . . . , fk ≥ 0, then any finite X ⊂ Sd−1 satisfies
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|X | f (1) +
∑
x,y∈X
x
=y

f (〈x, y〉) ≥ |X |2 f0. (6)

Remark The classical linear programming bound is a consequence; namely, if in
addition, f (t) ≤ 0 for fixed s ∈ (−1, 1) and variable t ∈ [−1, s], then

|X | ≤ f (1)/ f0. (7)

If we have equality in (7), then (6) shows that all values 〈x, y〉 for x 
= y, x, y ∈ X
are roots of f .

As an example, let X ⊂ Sd−1 be the centers for a packing of spherical balls of
radius π

4 , and hence 〈x, y〉 ≤ 0 for x, y ∈ X with x 
= y. The polynomial

f (t) = t (t + 1) = f0Q0 + f1Q1 + f2Q2

satisfies f (t) ≤ 0 for t ∈ [−1, 0] and

f0 = 1

d
, f1 = 1, f2 = 1 − 1

d
, f (1) = 2,

therefore, (7) yields |X | ≤ 2d.
Next we quantify the obvious statement that for any packing of m spherical balls

of radius r on Sn−1, if r is close to π
4 then m ≤ 2n.

Lemma 4.2 If Y ⊂ Sn−1, n ≥ 2, satisfies that 〈x, y〉 < 1
2n2−n for x, y ∈ Y with x 
=

y, then |Y | ≤ 2n.

Proof Let s = max{〈x, y〉 : x, y ∈ Y and x 
= y} < 1
2n2−n . We consider the polyno-

mial
f (t) = (t + 1)(t − s) = f0Q0 + f1Q1 + f2Q2

where f (t) ≤ 0 for t ∈ [−1, s] and

f0 = 1

n
− s, f1 = 1 − s, f2 = 1 − 1

n
, f (1) = 2(1 − s).

We deduce from the linear programming bound (7) and s < 1
2n2−n that

|Y | ≤ 2n(1 − s)

1 − ns
= 2n + 2n(n − 1)s

1 − ns
< 2n + 1. Q.E.D.

The linear programming bound could have been used in the case of simplex to
prove (4). However, this could be proved easily by elementary arguments, as well.
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The linear programming bound can be also used to prove the optimality of the
icosahedron and the 600-cell however the corresponding polynomials are more com-
plicated. Say, in the case of 600-cell, the polynomial is of degree 17 and f12 = f13 = 0
according to Andreev [2]. Therefore we use volume estimates to handle the cases of
the icosahedron and the 600-cell.

5 The Proof of Theorem 1.1 in the Case of Crosspolytopes

Let X ⊂ Sd−1 be the centers for a packing of at least 2d spherical balls of radius
π
4 − ε, 0 < ε < 1

64d4 , and hence 〈x, y〉 ≤ s for x, y ∈ X with x 
= y and

s = sin 2ε < 2ε <
1

32d4
.

We deduce from Lemma 4.2 that

|X | = 2d.

We consider the polynomial

f (t) = (t + 1)(t − s) = f0Q0 + f1Q1 + f2Q2

where f (t) ≤ 0 for t ∈ [−1, s] and

f0 = 1

d
− s, f1 = 1 − s, f2 = 1 − 1

d
, f (1) = 2(1 − s).

It follows from (6) and f (t) ≤ 0 for t ∈ [−1, s] that if x, y ∈ X with x 
= y, then

f (〈x, y〉) ≥ |X |2 f0 − |X | f (1) = 4d2

(
1

d
− s

)
− 4d(1 − s) = −4d(d − 1)s.

(8)
Since t − s ≤ −1

2 if t ≤ −1
2 and t + 1 ≥ 1

2 if t ≥ −1
2 , we have

f (t) ≤ −1

2
min {|t + 1|, |t − s|} for t ∈ [−1, s].

We deduce from (8) that if x, y ∈ X with x 
= y, then

min{〈x, y〉 + 1, s − 〈x, y〉} ≤ 8d(d − 1)s,

or in other words,
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either −1 ≤ 〈x, y〉 ≤ −1 + 1
4d2 < −3

4
or −8d(d − 1)s ≤ 〈x, y〉 ≤ s < 1

32 .
(9)

We define

η = 8d(d − 1)s <
1

4d2
. (10)

We claim that for every x ∈ X

there exists a unique y ∈ X such that 〈x, y〉 ≤ −3

4
, (11)

which we call the element of X opposite to x. For any y ∈ X , we write ȳ to denote
its projection into x⊥, and if y 
= ±x, then we set y∗ = ȳ/‖ȳ‖.

The first step towards (11) is to show that if y, z ∈ X , then

〈x, y〉 ≤ −3

4
and 〈x, z〉 ≤ −3

4
yield y = z. (12)

Since ‖ȳ‖ = √
1 − 〈x, y〉2 <

√
1
2 and similarly ‖z̄‖ <

√
1
2 , we have

〈y, z〉 = 〈x, y〉〈x, z〉 + 〈ȳ, z̄〉 >
9

16
− 1

2
= 1

16
,

which proves 〈y, z〉 = 1 by (9), and in turn verifies (12).
Next, set X̃ = {y ∈ X : |〈x, y〉| ≤ η}. For (11), it is sufficient to verify that

|X̃ | ≤ 2(d − 1). (13)

For y1, y2 ∈ X̃ , we have yi = ȳi + pix for i = 1, 2where pi ∈ [−η, η]. In particular,
‖ȳi‖ = (1 − p2i )

1
2 ≥ (1 − η2)

1
2 , and hence

〈y∗
1 , y

∗
2〉 = 〈ȳ1, ȳ2〉

(1 − p21)
1
2 (1 − p22)

1
2

= 〈y1, y2〉 − p1 p2

(1 − p21)
1
2 (1 − p22)

1
2

≤ η + η2

1 − η2
= η

1 − η
< 2η.

Since 2η < 1
2d2 , Lemma 4.2 with n = d − 1 yields (13), and in turn (11).

We deduce from (11) that X can be divided into d pairs of opposite vec-
tors. Choosing one unit vector from each pair, we obtain x1, . . . ,xd ∈ X such
that |〈xi ,x j 〉| ≤ η for i 
= j . It follows from Lemma 2.1 that for every such d-
tuple x1, . . . ,xd ∈ X there exists an orthonormal basis v1, . . . , vd of Rd such that
lin{xi , . . . ,xd} = lin{vi , . . . , vd} and δ(xi , vi ) ≤ 2dη for i = 1, . . . , d.

We claim that if x, y ∈ X are opposite vectors, then

δ(y,−x) ≤ 4dη. (14)
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We choose x2, . . . ,xd ∈ X representatives from the other d − 1 opposite pairs, and
let v be the unit vector orthogonal to lin{x2, . . . ,xd} with 〈x, v〉 > 0. Taking x = x1

and considering the approximating orthonormal basis v1, . . . , vd for this x1, . . . ,xd ,
we deduce that v = v1, and hence δ(x, v) ≤ 2dη. Similarly, taking y = x1, we have
v1 = −v for the approximating orthonormal basis, thus δ(y,−v) ≤ 2dη. In turn, we
conclude (14) by the triangle inequality.

Finally, we fix representatives u1, . . . , ud from each of the d pairs of opposite
vectors, and hence there exists an orthonormal basis w1, . . . , wd of Rd such that
δ(ui , wi ) ≤ 2dη for i = 1, . . . , d. We write ui+d to denote the vector of X opposite
to ui , i = 1, . . . , d, and hence δ(ui+d ,−ui ) ≤ 4dη according to (14). Therefore,

δ(ui+d ,−wi ) ≤ δ(ui+d , −ui ) + δ(−ui , −wi ) ≤ 4dη + 2dη = 6dη ≤ 48d3s ≤ 96d3ε.

Therefore, cd = 96d3 can be chosen for Theorem 1.1 in the case of crosspolytopes.

6 Spherical Dirichlet-Voronoi and Delone Cell
Decomposition

For v ∈ Sd−1 and acute angle θ , wewrite B(v, θ) to denote the spherical ball of center
v and radius θ . For u, v ∈ Sd−1, u 
= −v, we write uv to denote the smaller geodesic
arc connecting u and v. We will frequently use the Spherical Law of Cosines: If
a, b, c are side lengths of a spherical triangle contained in an open hemisphere, and
the opposite angles are α, β, γ , respectively, then

cos c = cos a · cos b + sin a · sin b · cos γ. (15)

A set C ⊂ R
d is a convex cone if it is closed and αx + βy ∈ C for α, β ≥ 0

and x, y ∈ C . If C contains a half-line, then M = C ∩ Sd−1 is called a spherically
convex set whose dimension is one less than the Euclidean dimension of C . The
relative interior of M is the intersection of Sd−1 and the relative interior of C with
respect to linC . If the origin is a face ofC andC is a polyhedron (namely, intersection
of finitely many half-spaces) then M is called a spherical polytope. In this case, the
faces of M are intersections of Sd−1 with the faces of C different from the origin.

Let x1, . . . ,xk ∈ Sd−1 satisfy that each open hemisphere contains some of
x1, . . . ,xk , and hence o ∈ int P for P = [x1, . . . ,xk]. The radial projections of the
facets of P onto Sd−1 form the Delone (or Delaunay) cell decomposition of Sd−1.
We observe that if the distance of o from aff F is 
 for a facet F , then arccos 
 is the
spherical radius of the spherical cap cut off by aff F . We call arccos 
 the spherical
circumradius of the corresponding Delone cell.

To define the other classical decomposition of Sd−1 corresponding to x1, . . . ,xk ,
let

Di = {u ∈ Sd−1 : δ(u,xi ) ≤ δ(u,x j ) for j = 1, . . . , k}
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for i = 1, . . . , k, which is the Dirichlet-Voronoi cell of xi . The Dirichlet-Voronoi
cells also form a cell decomposition of Sn−1 that is dual to the Delone cell decom-
position by providing the following bijective correspondence between vertices of
Dirichlet cells andDelone cells. If v is a vertex of Di , i ∈ {1, . . . , k}, and δ(v,xi ) = θ ,
then δ(v,x j ) ≥ θ for all j = 1, . . . , k, and points x j with δ(v,x j ) = θ form the ver-
tex set of a Delone cell (see, say, Böröczky [5]). In addition, if F is anm-dimensional
face of some Di , and p is the closest point of them-dimensional great sphere� of F ,
then there exists a (d − 1 − m)-dimensional face G of the Delone cell complex con-
tained in the (d − 1 − m)-dimensional great sphere �′ orthogonal to � at p whose
vertices are all of distance δ(p,xi ) from p.

A simplex with ordered vertices p0, . . . , pd−1 on Sd−1 is called an orthoscheme
if for i = 1, . . . , d − 2, the i-dimensional great sphere through p0, . . . , pi is orthog-
onal to the (d − 1 − i)-dimensional great sphere through pi , . . . , pd−1.

For any face F of a Dirichlet-Voronoi cell Di , we write qi (F) to denote the point
of F closest to xi . It follows from the convexity of F and the Spherical Law of
Cosines that if x ∈ F\qi (F), then

(a) the angle between the arcs qi (F),xi and qi (F),x is at least π
2 ,

(b) and is actually exactly π
2 if qi (F) lies in the relative interior of F .

For aDirichlet-Voronoi cell Di ,we say that a sequence (F0, . . . , Fd−2) is a tower, if Fj

is a j-face of Di , j = 0, . . . , d − 2, and Fj ⊂ Fl if j < l. In addition, (F0, . . . , Fd−2)

is a proper tower, if qi (Fj ) 
= qi (Fl) for j < l, and, in this case, we call the simplex
� with ordered vertices xi , qi (Fd−2), . . . , qi (F0), a quasi-orthoscheme. We observe
that according to (b), a quasi-orthoscheme is an orthoscheme if each qi (Fj ), j =
1, . . . , d − 2, lies in the relative interior of Fj . Moreover, (a) yields that quasi-
orthoschemes provide a triangulation of Sd−1 refining the Dirichlet-Voronoi cell
decomposition.

For any ϕ ∈ (0, π
2 ) and i ≥ 1, we write ri (ϕ) ∈ (0, π

2 ) to denote the circumradius
of the i-dimensional spherical regular simplex of edge length 2ϕ. In particular, there
exists a spherical triangle with equal sides ri (ϕ) enclosing the angle arccos −1

i where
the third side of the triangle is 2ϕ. In addition, we define r∞(ϕ) ∈ (0, π

2 ) in a way
such that there exists a spherical triangle with equal sides r∞(ϕ) enclosing the right
angle where the third side of the triangle is 2ϕ. We have

ϕ = r1(ϕ) < · · · < rd−1(ϕ) < r∞(ϕ).

It follows from (15) that if j = 1, . . . , d − 1, then

cos 2ϕ = cos2 r j (ε) − sin2 r j (ε)

j
and cos 2ϕ = cos2 r∞(ε), (16)

which in turn yields that

sin r j (ϕ) =
√

2 j

j + 1
sin ϕ and sin r∞(ϕ) = √

2 sin ϕ. (17)
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The following lemma is due to Boroczky [4]. We include the argument because
the second statement is only implicit in [4].

Lemma 6.1 Let ϕ ∈ (0, π
2 ), and let x1, . . . ,xk ∈ Sd−1 satisfy that each open hemi-

sphere contains some of x1, . . . ,xk , and δ(xi ,x j ) ≥ 2ϕ for i 
= j , and let D j be the
Dirichlet-Voronoi cell of x j . If F is an m-dimensional face of certain Di , then

(i) δ(xi , qi (F)) ≥ rd−1−m(ϕ);
(ii) and even δ(xi , qi (F)) ≥ r∞(ϕ) if qi (F) is not contained in the relative interior

of F.

Proof Let p be the closest to xi point of the m-dimensional great subsphere �

containing F , and let I be the set of all indices j such that F is a face of Dj . In
particular, all x j with j ∈ I span the (d − 1 − m)-dimensional great subsphere �′
passing through p and perpendicular to �, and hence the cardinality of I is at least
d − m. It follows that for θ = δ(xi , p) ≤ δ(xi , qi (F)), we have θ = δ(x j , p) for
j ∈ I . For j ∈ I , let u j be a unit vector tangent to the arc p,x j at p, and hence
all u j , j ∈ I , span the (d − 1 − m)-dimensional linear subspace L ′ tangent to �′ at
p. According to Jung’s theorem (see also Lemma 3.1), there exist different l, j ∈ I
such that δ(ul , u j ) ≤ arccos −1

d−1−m . Since δ(xl, p) = δ(x j , p) = θ , we deduce (i)
from the Spherical Law of Cosines (15).

Turning to (ii), we assume that p is not contained in the relative interior of F . In
this case, there exists an xg ∈ Sd−1\�′ such that 0 < δ(xg, p) ≤ θ . Let ug ∈ Sd−1

be a unit vector tangent to the arc p,xg at p. We claim that there exist different
j, l ∈ I ∪ {g} such that

〈u j , ul〉 ≥ 0. (18)

Let L be the m-dimensional linear subspace L tangent to � at p, which is the
orthogonal complement of L ′ inside the tangent space to Sd−1 at p. Therefore, there
exist unit vectors v ∈ L and v′ ∈ L ′ and a real number t ∈ [0, π

2 ] such that ug =
v cos t + v′ sin t . If 〈v′, u j 〉 < 0 for all j ∈ I , then Lemma 2.2 yields different j, l ∈ I
such that 〈u j , ul〉 ≥ 0. Otherwise there exists j ∈ I such that 〈v′, u j 〉 ≥ 0, and hence
〈ug, u j 〉 ≥ 0, as well.

Using these u j and ul in (18), we apply the Spherical Law of Cosines (15) to the
triangle with vertices p,x j ,xl to obtain

cos 2ϕ ≥ cos δ(x j ,xl) ≥ cos δ(p,x j ) · cos δ(p,xl) ≥ cos2 θ.

Therefore, θ ≥ r∞(ϕ) by (16). Q.E.D.

We fix a point z0 ∈ Sd−1, and for 0 < t1 < · · · < td−1 < π
2 , we write �(t1, . . . ,

td−1) to denote an orthoscheme with ordered vertices z0, z1, . . . , zd−1 such that
δ(z0, zi ) = ti for i = 1, . . . , d − 1. We observe that the (spherical) diameter of
�(t1, . . . , td−1) is td−1. For any ϕ ∈ (0, t1], we define

�(t1, . . . , td−1) = |�(t1, . . . , td−1) ∩ B(z0, ϕ)|
|�(t1, . . . , td−1)| · |B(z0, ϕ)| ,
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whose value does not depend on the choice of ϕ ∈ (0, t1]. If� ⊂ z⊥
0 is the Euclidean

convex polyhedral cone generated by the rays tangent to the arcs z0, zi at z0, i =
1, . . . , d − 1, then

�(t1, . . . , td−1) = Hd−2(� ∩ Sd−1)

|�(t1, . . . , td−1)| · Hd−2(Sd−2)
.

According to one of the core results of Boroczky [4], if s1 < · · · sd−1 < π
2 , and ti ≤ si

for i = 1, . . . , d − 1, then

�(t1, . . . , td−1) ≥ �(s1, . . . , sd−1). (19)

We deduce from Lemma 6.1 and (19) the following estimate.

Lemma 6.2 Letσ ∈ (0, π
2 ), and letx1, . . . ,xk ∈ Sd−1, d ≥ 3, satisfy that each open

hemisphere contains some of x1, . . . ,xk , and δ(xi ,x j ) ≥ 2σ for i 
= j , and let Di

be the Dirichlet-Voronoi cell of xi . If � is a quasi-orthoscheme associated to some
Di and it is known that � is an orthoscheme, and the diameter of � is R, then

|� ∩ B(xi , σ )|
|�| · |B(xi , σ )| ≤ �(r1(σ ), . . . , rd−2(σ ), R) (20)

≤ �(r1(σ ), . . . , rd−2(σ ), rd−1(σ )). (21)

We note that the ideas in Boroczky [4] yield (21) even if the quasi-orthoscheme
� is not an orthoscheme, but they actually even imply the following stronger bound
in the low dimensions we are interested in.

Lemma 6.3 Let σ ∈ (0, π
2 ), and let x1, . . . ,xk ∈ Sd−1, d = 3, 4, satisfy that each

open hemisphere contains some of x1, . . . ,xk , and δ(xi ,x j ) ≥ 2σ for i 
= j , and
let Di be the Dirichlet-Voronoi cell of xi . If � is a quasi-orthoscheme associated to
some Di and it is known that � is not an orthoscheme, then

|� ∩ B(xi , σ )|
|�| · |B(xi , σ )| ≤ �(r1(σ ), . . . , rd−2(σ ), r∞(σ )).

Proof Let F0 ⊂ · · · ⊂ Fd−2 be the proper tower of faces of Di associated to �. If
δ(xi , qi (Fd−2)) ≥ r∞(σ ), then Fd−2 does not intersect the interior of B(xi , r∞(σ )),
and hence Lemma 6.1 yields

|� ∩ B(xi , σ )|
|�| ≤ |� ∩ B(xi , σ )|

|� ∩ B(xi , r∞(σ ))| = |B(xi , σ )|
|B(xi , r∞(σ ))| .

Since �(r1(σ ), . . . , rd−2(σ ), r∞(σ )) ⊂ B(z0, r∞(σ )), we have

|�(r1(σ ), . . . , rd−2(σ ), r∞(σ )) ∩ B(z0, σ )|
|�(r1(σ ), . . . , rd−2(σ ), r∞(σ ))| ≥ |B(z0, σ ))

|B(z0, r∞(σ ))| .
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we conclude the lemma in this case.
This covers the case d = 3 completely because the condition δ(xi , qi (F1)) <

r∞(σ ) implies by Lemma 6.1 that � is an orthoscheme. The only case left open is
when d = 4, δ(xi , qi (F2)) < r∞(σ ), and hence qi (F2) is contained in the relative
interior of F2, but qi (F1) is not contained in the relative interior of F1 because
otherwise � is an orthoscheme. Then there exists p ∈ qi (F2), qi (F1) such that
δ(xi , p) = r∞(ϕ). We consider the spherical cone C obtained by rotating the tri-
angle with vertices xi , q2(F2), p around xi , q2(F2). Since F2\C does not intersect
B(xi , r∞(ϕ)), the argument as above leads to

|(�\C) ∩ B(xi , σ )|
|(�\C)| · |B(xi , σ )| ≤ �(r1(σ ), r2(σ ), r∞(σ )). (22)

In addition, (19) and the argument of K. Boroczky [4] yield

|C ∩ B(xi , σ )|
|C | · |B(xi , σ )| = lim

s→0+
�(r1(σ ), r∞(σ ) − s, r∞(σ ))

≤ �(r1(σ ), r2(σ ), r∞(σ )). (23)

Combining (22) and (23) proves Lemma 6.3. Q.E.D.

Actually, the argument in Boroczky [4] shows that Lemma 6.3 holds in any dimen-
sion. More precisely, [4] proved the so-called simplex bound; namely, if σ ∈ (0, π

2 ),
and there exist k non-overlapping spherical balls of radius σ on Sd−1, then

k ≤ �(r1(σ ), . . . , rd−1(σ )) · Hd−1(Sd−1), (24)

and equality holds in the simplex bound if and only if the centers are vertices of a
regular simplicial polytope P with edge length 2 sin σ .

The following statement shows in a qualitative way that if for an acute angle ϕ,
all simplices in a Delone triangulation of Sd−1 are close to be regular with spherical
edge length 2ϕ, then the whole Delone triangulation is close to a one induced by a
simplicial regular polytope.

Lemma 6.4 Let ϕ ∈ (0, π/4], let u0, . . . , ud ∈ Sd−1, d ≥ 3 be such that u1, . . . ,
ud−1 determines a unique (d − 2)-dimensional great subsphere that separates u0 and
ud , and let ε ∈ (0, ε0) for ε0 = sin ϕ

16
√
d−1

. If there exist two spherical regular simplices
of edge length ϕ with vertices v0, . . . , vd−1 and w1, . . . , wd such that δ(ui , vi ) ≤ ε

for i = 0, . . . , d − 1, and δ(ui , wi ) ≤ ε for i = 1, . . . , d, then δ(ud , vd) ≤ cε, where
v1, . . . , vd are vertices of a regular simplex, vd 
= v0 and c = 16

√
d−1

sin ϕ
.

Proof It is sufficient to prove that δ(vd , wd) ≤ (c − 1)ε. Using δ(vd , wd) = 2 arcsin
‖vd−wd‖

2 ≤ 2‖vd − wd‖ given ‖vd − wd‖ ≤ 1, it is sufficient to show

‖vd − wd‖ ≤ c − 1

2
· ε. (25)
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Wewill use that ifx1, . . . ,xk, y1, . . . , yk ∈ R
k ,‖xi − yi‖ ≤ η for all i = 1, . . . , k,

and λ1, , . . . , λk ≥ 0, then the triangle inequality yields

‖(λ1x1 + . . . + λkxk) − (λ1y1 + . . . + λkyk)‖ ≤ (λ1 + . . . + λk)η. (26)

We have δ(vi , wi ) ≤ 2ε for i = 1, . . . , d − 1, thus ‖vi − wi‖ ≤ 2ε for i = 1, . . . ,
d − 1. We deduce from (26) that ‖p − p′‖ ≤ 2ε holds for the centroids

p = 1

d − 1
(v1 + · · · + vd−1) and p′ = 1

d − 1
(w1 + · · · + wd−1)

of the (d − 2)-dimensional regular Euclidean simplices [v1, . . . , vd−1] and [w1, . . . ,

wd−1]. We consider α > β > 0, and an orthonormal basis ṽ1, . . . , ṽd such that vd , ṽd
lie in the same half-space with respect to lin{v1, . . . , vd−1} = lin{ṽ1, . . . , ṽd−1} and
satisfy

vi = αṽi +
∑
j 
=i

j∈{1,...,d−1}

β ṽ j for i = 1, . . . , d − 1 (27)

Then α, β satisfy

1 = 〈v1, v1〉 = α2 + (d − 2)β2

cos 2ϕ = 〈v1, v2〉 = 2αβ + (d − 3)β2,

therefore taking the difference leads to

(α − β)2

2
= 1 − cos 2ϕ

2
= sin2 ϕ. (28)

Similarly, we define an orthonormal basis w̃1, . . . , w̃d of Rd such that wd , w̃d lie
in the same half-space with respect to lin{w1, . . . , wd−1} = lin{w̃1, . . . , w̃d−1} and
satisfy

wi = αw̃i +
∑
j 
=i

j∈{1,...,d−1}

βw̃ j for i = 1, . . . , d − 1.

This basis exists when α, β satisfy the conditions derived above.
According to (27), the (d − 1) × (d − 1) symmetric matrix M whose main diag-

onals are α, and the rest of the entries are β, satisfies that Mṽi = vi i = 1, . . . , d − 1.
One of the eigenvectors of M in ṽ⊥

d is v∗ = ∑d−1
j=1 ṽ j with eigenvalue α + (d − 2)β.

Any vector in ṽ⊥
d orthogonal to v∗ is an eigenvector with eigenvalue α − β. We

deduce with help of (28) that if v ∈ ṽ⊥
d , then

‖M−1v‖ ≤ (α − β)−1‖v‖ = ‖v‖√
2 sin ϕ

. (29)
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For i = 1, . . . , d − 1, we have 〈w̃d , wi 〉 = 0 and ‖vi − wi‖ ≤ 2ε, therefore,

2ε ≥ |〈w̃d , vi 〉| =

∥∥∥∥∥∥∥α〈w̃d , ṽi 〉 +
∑
j 
=i

j∈{1,...,d−1}

β〈w̃d , ṽ j 〉

∥∥∥∥∥∥∥ .

In particular, the length of the vector v = 〈w̃d , v1〉ṽ1 + · · · + 〈w̃d , vd−1〉ṽd−1 is at
most 2ε

√
d − 1, thus (29) implies that

‖M−1v‖ =
√√√√d−1∑

j=1

〈w̃d , ṽ j 〉2 ≤ 2ε
√
d − 1√

2 sin ϕ
.

In other words, the projection of the unit vector w̃d into ṽ⊥
d is of length at most

2ε
√
d−1√

2 sin ϕ
, therefore, possibly after exchanging w̃d by −w̃d , we have

‖ṽd − w̃d‖ ≤ 2ε
√
d − 1√

2 sin ϕ

√
2 = 2ε

√
d − 1

sin ϕ
.

Now the orthogonal projection of the origin o into aff{v1, . . . , vd} lies inside [p, vd ],
thus the angle of the triangle [o, p, vd ] at p is acute. In addition, the angle of p and vd
is also acute by ϕ ≤ π

4 . Therefore, there exist t, s ∈ (0, 1) such that vd = tp + sṽd ,

and hence alsowd = tp′ + sw̃d . We deduce from ‖p − p′‖ ≤ 2ε ≤ 2ε
√
d−1

sin ϕ
and (26)

that

‖vd − wd‖ ≤ (t + s)
2ε

√
d − 1

sin ϕ
≤ 4ε

√
d − 1

sin ϕ
.

According to (25), we may choose c = 16
√
d−1

sin ϕ
. Q.E.D.

We note that the lengthy calculations in the rest of paper (say, Sect. 7) are mostly
aiming at providing upper estimates for the derivatives of�(ϕI − ε, r2(ϕI − ε)) (see
(34)), �(ϕI − ε, r2(ϕI ) + γ2ε) (see Lemma 8.1), �(ϕQ − ε, r2(ϕQ − ε), r3(ϕQ −
ε)) [see (43)] and �(ϕQ − ε, r2(ϕQ − ε), r3(ϕQ) + γ3ε) (see Lemma 9.1) as a func-
tion of small ε > 0 where γ2 and γ3 are suitable large constants. These estimates can
be obtained by some math computer packages based on formulas in Fejes Tóth [14,
15] and . However, we preferred a more theoretical approach, because the ideas can
be used in any dimension for similar problems.

7 Volume Estimates Related to the Simplex Bound

To calculate or estimate (d − 1)-volume of a compact X ⊂ Sd−1, we use Lemmas 7.1
and 7.2.
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Lemma 7.1 If t ∈ (0, 1), and X ⊂ Sd−1, d ≥ 3, is spherically convex that for some
v ∈ X satisfies 〈u, v〉 ≥ t for all u ∈ X, then Hd−1(X) ≥ Hd−1(X ′) holds for the
radial projection X ′ of X into tv + v⊥.

Proof The statement follows from the fact that the orthogonal projection of X into
tv + v⊥ covers X ′. Q.E.D.

Lemma 7.2 If v ∈ Sd−1, d ≥ 3, and X ⊂ Sd−1 is compact and satisfies δ(u, v) ≤ �,
� < π

2 , for all u ∈ X, and X̃ is the radial projection of X into the tangent hyperplane
to Sd−1 at v, then

Hd−1(X) =
∫
X̃
(1 + ‖y − v‖2)−d/2 dHd−1(y) ≥ cosd � · Hd−1(X̃).

Proof The statement follows from the facts that if y ∈ X̃ , then ‖y‖ = (1 +
‖y − v‖2)1/2 and u = y/‖y‖ satisfies 〈u, v〉 = (1 + ‖y − v‖2)−1/2 ≥ cos�.Q.E.D.

The main results of this section are Lemma 7.3, its Corollary 7.4, and Lemma 7.5,
which provide estimates when we slightly deform the “regular” orthoscheme
�(r1(ϕ), . . . , rd−1(ϕ)).

Lemma 7.3 For ϕ ∈
(
0, arcsin

√
d

4(d−1)

)
, if ε ∈ (0, ϕ), then

|�(r1(ϕ − ε), . . . , rd−1(ϕ − ε))| > |�(r1(ϕ), . . . , rd−1(ϕ))|(1 − ℵ · ε),

where ℵ = d 2(d+3)/2/ sin rd−1(ϕ).

Proof Wededuce from (17) that rd−1(ϕ) < π/4. Let v ∈ Sd−1, let H = v + v⊥ be the
hyperplane tangent to Sd−1 at v, and letσ be a spherical arc of lengthπ/4 starting from
v. For ε ∈ (0, ϕ), we consider the spherical regular simplex T (ε) whose spherical
circumscribed ball is of center v and radius rd−1(ϕ − ε), and one vertex of T (ε) is
contained in σ . In particular,

|�(r1(ϕ − ε), . . . , rd−1(ϕ − ε))| = |T (ε)|/d!.

Wewrite T̃ (ε) to denote the radial projection of T (ε) into H ,which is aEuclidean reg-
ular simplex of circumradius R(ε) = tan rd−1(ϕ − ε) < 1. BoundingHd−1(T̃ (0)) ≤
2

d
2 |T (0)| by Lemma 7.2 we deduce that

|T (0)| − |T (ε)| ≤ |T̃ (0)\T̃ (ε)|
=

(
1 − R(ε)d−1

R(0)d−1

)
Hd−1(T̃ (0))

≤
(
1 −

(
1 − R(0) − R(ε)

R(0)

)d−1
)
2d/2|T (0)|

≤ R(0) − R(ε)

R(0)
· d 2d/2|T (0)|. (30)
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For r(ε) = rd−1(ϕ − ε), we deduce from (17) that r ′(ε) = − cos(ϕ−ε)

cos r(ε)

√
2(d−1)

d , there-
fore,

R′(ε) = (1 + R(ε)2)r ′(ε) ≥ −
√
2(1 + R(ε)2)

cos r(0)
≥ − 23/2

cos r(0)
.

Using (30) and R(0) · cos r(0) = sin rd−1(ϕ),

|T (0)| − |T (ε)|
|T (0)| ≤ 23/2ε

R(0) · cos r(0) · d 2d/2 = d 2(d+3)/2

sin rd−1(ϕ)
ε.

Q.E.D.

Corollary 7.4 For ϕ ∈
(
0, arcsin

√
d

4(d−1)

)
, if ε ∈ (0, 1

2ℵ ) for the ℵ of Lemma 7.3,

then

�(r1(ϕ − ε), . . . , rd−1(ϕ − ε)) ≤ �(r1(ϕ), . . . , rd−1(ϕ))(1 + 2ℵ · ε).

Proof 1 + 2ℵε ≥ 1/(1 − ℵε) so, according to Lemma 7.3, it is sufficient to prove
that if 0 < s < ϕ, then, for any τ < r1(s),

|B(z0, τ ) ∩ �(r1(s), . . . , rd−1(s))| ≤ |B(z0, τ ) ∩ �(r1(ϕ), . . . , rd−1(ϕ))|. (31)

Essentially, this statement means that the angle measure at a vertex of a regular
spherical simplex increases when the side length of the simplex increases. For the
sake of completeness we give an argument for this statement.

Consider two regular spherical simplices T ′ and T with side lengths 2s and 2ϕ
respectively such that they share a common center v and each vertex z′

i of T
′ belongs

to the arc zi , v. Triangle [z′
1, z

′
2, v] is inside [z1, z2, v] so the area of [z′

1, z
′
2, v] is less

than the area of [z1, z2, v]. Since the area of a spherical triangle is the sum of its
angles minus π , the angle between z′

1, z
′
2 and z′

1, z
′
v is less than the angle between

z1, z2 and z1, v.
Now we consider two regular simplices T ′ of side length 2s with vertices

z0, z′
1, . . . , z

′
d−1 and T of side length 2ϕ with vertices z0, z1, . . . , zd−1 such that

the center v′ of T ′ belongs to the arc v, z0, where v is the center of T , and all triangles
[z0, v, zi ] and [z0, v′, z′

i ] overlap. Then all arcs z0, zi belong to the cone formed by
T at z0 because all corresponding 2-dimensional angles in T ′ are smaller than those
in T . Therefore, the angle measure for T ′ is smaller than the one for T . Q.E.D.

We set up a notation for Lemma 7.5. For ϕ ∈ (0, π
4 ), let z0 = z0(ϕ), z1(ϕ), . . .,

zd−1(ϕ) be the vertices of �(r1(ϕ), . . . , rd−1(ϕ)). For t ∈ [rd−1(ϕ), π
2 ), we set

�̃(ϕ, t) = �(r1(ϕ), . . . , rd−2(ϕ), t),

and we may assume that z0(ϕ), . . . , zd−2(ϕ) are vertices of �̃(ϕ, t), and its d-th
vertex zd−1(ϕ, t) satisfies zd−1(ϕ) ∈ zd−2(ϕ), zd−1(ϕ, t).
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Lemma 7.5 If ϕ ∈
(
0, arcsin

√
d

4(d−1)

)
and t ∈ (ϕ, π

3 ), then

∣∣�̃(ϕ, t)\�̃(ϕ, rd−1(ϕ))
∣∣ ≥ t − rd−1(ϕ)

2d
· ∣∣�̃(ϕ, rd−1(ϕ))

∣∣ .
Proof For brevity, we set zi = zi (ϕ) for i = 0, . . . , d − 1, and rd−1 = rd−1(ϕ). The
condition on ϕ yields that rd−1 ≤ π

4 .
Let s be the length of the arc zd−1, zd−1(ϕ, t). Since the length of the arc zd−1, z0

is rd−1, and the angle of these two arcs is arccos −1
d , the Law of Cosines (15) yields

cos t = cos rd−1 cos s − (sin rd−1 sin s)/d,

we deduce from sin t ≥ sin rd−1 that

dt

ds
= cos rd−1 sin s + (sin rd−1 cos s)/d

sin t
≤ 1

sin rd−1
,

therefore,
s ≥ (t − rd−1) sin rd−1. (32)

We set �̃ = �̃(ϕ, rd−1(ϕ)), and observe that the closure of �̃(ϕ, t)\�̃ is the spher-
ical simplex T with vertices z0, . . . , zd−3, zd−1, zd−1(ϕ, t). Let H be the hyperplane
tangent to Sd−1 at zd−1, and we write X ′ to denote the radial projection of some
X ⊂ Sd−1 in H . It follows that �̃′ is the Euclidean orthoscheme such that d! of its
copies tile the Euclidean regular simplex of circumradius tan rd−1 ≤ 1, and hence
‖z′

d−2 − z′
d−1‖ = (tan rd−1)/(d − 1). We deduce from Lemma 7.2 and (32) that

|T | ≥ |T ′|
2d

= |�̃′| tan s
2d‖z′

d−2 − z′
d−1‖

≥ |�̃′|(t − rd−1) sin rd−1

2d(tan rd−1)/(d − 1)

≥ |�̃′|(t − rd−1)

2d
≥ |�̃|(t − rd−1)

2d
. Q.E.D.

8 The Case of the Icosahedron

In this section, we write I to denote the regular icosahedron with vertices on S2. In
particular,

ϕI = 1

2
arccos

1√
5

< arcsin

√
3

8
, (33)

thus Corollary 7.4 and Lemma 7.5 can be applied with ϕ = ϕI . Since S2 can be
dissected into 120 congruent copies of �(ϕI , r2(ϕI )), we have



Stability of the Simplex Bound for Packings by Equal Spherical Caps Determined … 51

|�(ϕI , r2(ϕI ))| = π

30
,

and it follows from (24) that

�(ϕI , r2(ϕI )) = 3

π
.

According to (17), we have sin r2(ϕI ) = 2√
3
sin ϕI , thus the constant ℵ of

Lemma 7.3 satisfies ℵ = 3·23
sin r2(ϕI )

< 40. In particular, Corollary 7.4 yields that if
ε ∈ (0, 0.01), then

�(ϕI − ε, r2(ϕI − ε)) <
3

π
(1 + 80ε) <

3

π
+ 80ε. (34)

We also note that if v ∈ S2 and η ∈ (0, π
2 ), then

|B(v, η)| = 2π(1 − cos η). (35)

Lemma 8.1 For γ ≥ 104 and ε ∈ (0, 1
100γ ), we have

�(ϕI − ε, r2(ϕI ) + γ ε) ≤ �(ϕI , r2(ϕI )) − γ ε

200
.

Proof To simplify the notation, we write ϕ = ϕI and r2 = r2(ϕ) = arcsin 2 sin ϕ√
3
,

which satisfy r2 + γ ε < π
3 (in order to apply Lemma 7.5). We may assume that

�(ϕ − ε, r2(ϕ − ε)) and �(ϕ − ε, r2 + γ ε) share a side of length ϕ − ε.
We deduce from r2(ϕ − ε) ≤ r2 that (r2 + γ ε) − r2(ϕ − ε) ≥ γ ε.
We set T to be the closure of

�(ϕ − ε, r2 + γ ε)\�(ϕ − ε, r2(ϕ − ε)),

thus Lemma 7.5 yields

|T | ≥ γ ε

8
· |�(ϕ − ε, r2(ϕ − ε))|. (36)

In addition, if σ ∈ (0, ϕ − ε), then we deduce from ε < 10−6, that

|T ∩ B(z0, σ )|
|B(z0, σ )| · |T | <

|T ∩ B(z0, σ )|
|B(z0, σ )| · |T ∩ B(z0, r2(ϕ − ε))| = |B(z0, σ )|

|B(z0, σ )| · |B(z0, r2(ϕ − ε))|
≤ 1

|B(z0, r2(ϕ − 10−6))| = �0 <
3

π
− 0.175,

because �0 ≈ 0.7751 and 3
π

− 0.175 ≈ 0.7799.
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Therefore γ ≥ 104 yields

�(ϕ − ε, r2 + γ ε) ≤ ( 3
π

+ 80ε)|�(ϕ − ε, r2(ϕ − ε))| + �0|T |
|�(ϕ − ε, r2(ϕ − ε))| + |T |

≤ 3

π
+ 80ε −

(
3

π
+ 80ε − �0

)
γ ε/8

1 + γ ε

8

= 3

π
+ γ ε

(
80

γ
−

3
π

+ 80ε − �0

8 + γ ε

)

≤ 3

π
+ γ ε

(
10−2 −

3
π

− �0

10

)
≤ 3

π
− γ ε

200
.

Q.E.D.

The following two simple statements are useful tools in the case of the 600-cell
as well.

Lemma 8.2 If T ⊂ R
2 is a triangle such that all sides are of length at least a, and

the center of the circle passing through the vertices lies in T , then |T | ≥
√
3
4 a2.

Proof The largest angle α of T satisfies π
3 ≤ α ≤ π

2 . Q.E.D.

Lemma 8.3 For x, y, v ∈ S2, let δ(x, y) ≥ 2ψ , and let δ(x, v) = δ(y, v) = R for
0 < ψ < R < π

2 . If the angle between v,x and v, y is ω, then

(i) cosω ≤ 1 − 2 sin2 ψ

sin2 R
;

(ii) If ψ = ϕ − ε and R ≤ r + γ ε where ψ < ϕ < r < π
2 − γ ε and γ > 1, then

cosω ≤ 1 − 2 sin2 ϕ

sin2 r
+ 4γ ε

sin2 r
.

Proof For (i), the Spherical Law of Cosines (15) yields

1 − 2 sin2 ψ = cos 2ψ ≥ cos2 R + (sin2 R) cosω = 1 − (1 − cosω) sin2 R.

Turning to (ii), we deduce from d
dt sin

2 t = sin 2t ≤ 1 that

2 sin2(ϕ − ε)

sin2(r + γ ε)
≥ 2(sin2 ϕ − ε)

sin2 r + γ ε
=

(1 − ε

sin2 ϕ
)2 sin2 ϕ

(1 + γ ε

sin2 ϕ
) sin2 r

≥
(
1 − (γ+1)ε

sin2 ϕ

)
2 sin2 ϕ

sin2 r
,

and hence (i) implies (ii). Q.E.D.

Proof of Theorem 1.1 in the case of the icosahedron Let I be the icosahedron
with vertices on S2, therefore, the vertices determine the optimal packing of 12
spherical circular discs of radius ϕI = 1

2 arccos
1√
5
. We set ϕ = ϕI , r2 = r2(ϕ) and

r∞ = r∞(ϕ). For ε0 = 10−9 and η = 0.11, we observe that
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r2 + 107ε0 < r2 + η < r∞ − η. (37)

Let ε ∈ (0, ε0), and letx1, . . . ,xk ∈ S2 satisfy that k ≥ 12, and δ(xi ,x j ) ≥ 2(ϕ − ε)

for i 
= j . We may assume that for any x ∈ S2 there exists xi such that δ(xi ,x) <

2(ϕ − ε). Let P = [x1, . . . ,xk], and hence o ∈ int P . We prove Theorem 1.1 for the
icosahedron in two steps.
Step 1 Proving that all Delone cells are of circumradius at most r2 + 107ε

We suppose that there exists a Delone cell of spherical circumradius at least r2 +
107ε, and seek a contradiction. Let us consider the triangulation of S2 by all quasi-
orthoschemes associated to the Dirichlet cell decomposition induced by x1, . . . ,xk .
Among them, let O and Q denote the family of the ones with diameter less than
r2 + 107ε, and with diameter at least r2 + 107ε, respectively. We claim that

∑
�∈Q

|�| ≥ 2π(1 − cos η) > 0.03. (38)

Let 
 > 0 be the largest number such that 
B3 ⊂ P , and let R = arccos 
. Then

B3 touches ∂P at a point y ∈ ∂P in the relative interior of a two-dimensional
face F of P , R is the spherical circumradius of the corresponding Delone cell, and
R ≥ r2 + 107ε. By construction, R is the maximal circumradius among all Delone
cells.

We may assume that x1,x2,x3 are vertices of F such that y ∈ [x1,x2,x3] = T .
Let v = y/‖y‖, and let T̃ be the radial projection of T into S2, that is the asso-
ciated spherical “Delone triangle”, and satisfies v ∈ T̃ . If R < r∞, then all quasi-
orthoschemes having vertex v are actual orthoschemes by Lemma 6.1, and hence
their union is T̃ . In particular, Lemmas 7.1 and 8.2 yield that

∑
�∈Q

|�| ≥ |T̃ | ≥ |T | ≥
√
3

4
(2 sin(ϕ − ε0))

2 > 0.4.

However, if R ≥ r∞ and x ∈ B(v, η), then δ(x,xi ) ≥ r2 + η for all i = 1, . . . , k,
thus any quasi-orthoscheme � containing x has a diameter at least r2 + 107ε by
(37). Therefore, ∑

�∈Q
|�| ≥ |B(v, η)| = 2π(1 − cos η)

in this case, proving (38).
We note that 12 = 3

π
· |S2| according to the equality case of the simplex bound

(24). We deduce from (34), Lemma 8.1 with γ = 107 and (38) that

k ≤
∑
�∈O

|�| 3
π

· (1 + 80ε) +
∑
�∈Q

|�|
(
3

π
− 50,000ε

)

≤ 12 + 3

π
[4π · 80ε − 0.03 · 50,000 · ε] < 12.
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This contradiction completes the proof of Step 1.
Step 2 Assuming all Delone cells are of circumradius at most r2 + 107ε

It follows from (24) and (34) that k = 12.
We set γ = 107. Let� be a Delone cell, and let v be the center of the circumcircle

of radius R. We claim that� is a triangle, and there exists a regular spherical triangle
�0 of side length 2ϕ, such that for any vertex xi of � there exists a vertex w of �0

with
δ(xi , w) ≤ 25γ ε. (39)

If xi 
= x j are the vertices of �, and the angle between v,xi and v,x j is ωi j , then
Lemma 8.3, sin ϕ/ sin r2 = √

3/2 and γ ε < 10−2 yield

cosωi j ≤ 1 − 2 sin2 ϕ

sin2 r2
+ 4γ ε

sin2 r2
≤ −1

2
+ 12γ ε < 0.

In particular, � is a triangle by Corollary 2.3. Since (cos t)′ = − sin t is at most −3
4

if t ∈ [π
2 , 2π

3 ], we have
ωi j ≥ 2π

3
− 16γ ε. (40)

We deduce from the Remark after Theorem 3.1 that one may find a regular spherical
triangle �′ with vertices on the spherical circle with center v and radius R such that
for any vertex xi of � there exists a vertex w′ of �′ such that the angle between
xi , v and w′, v is at most 24γ ε, and hence δ(xi , w

′) ≤ 24γ ε. We take �0 with
the circumcenter v so that for any vertex w of �0 there exists a vertex w′ of �′
such that w ∈ w′, v or w′ ∈ w, v. As R ≤ r2 + γ ε by the condition of Step 2, and
R ≥ r2(ϕ − ε) ≥ r2 − γ ε, we conclude (39) by the triangle inequality.

Now we fix a Delone cell � and let �0 be the spherical regular triangle provided
by (39). We observe that c < 44 for the constant of Lemma 6.4 in our case. We
may assume that the vertices of �0 are vertices of the face F0 of the icosahedron I .
There exist nine more faces F1, . . . , F9 of I , such that Fi ∩ Fi−1 is a common edge
for i = 1, . . . , 9, and any vertex of I is a vertex of some Fi , i ≤ 9. Attaching the
corresponding nine more Delone cells to �, we conclude from Lemma 6.4 that we
may choose cI = 449 · 25γ . Q.E.D.

9 The Case of the 600-Cell

In this section, by Q we denote the regular 600-cell with vertices on S2. In particular,

ϕQ = π

10
< arcsin

√
1

3
(41)
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thus Corollary 7.4 and Lemma 7.5 can be applied with ϕ = ϕQ . Since S3 can be
dissected into 14400 congruent copies of �(ϕQ, r2(ϕQ), r3(ϕQ)), we have

|�(ϕQ, r2(ϕQ), r3(ϕQ))| = |S3|
14400

= π2

7200
,

and it follows from (24) that

�(ϕQ, r2(ϕQ), r3(ϕQ)) = 60

π2
. (42)

The main idea of the argument in the case of the 600-cell will be similar to the one

for the icosahedron. According to (17), we have sin r3(ϕQ) =
√

3
2 sin ϕQ , thus the

constant ℵ of Lemma 7.3 satisfies ℵ = 4·27/2
sin r3(ϕQ)

< 120. In particular, Corollary 7.4
yields that if ε ∈ (0, 0.004), then

�(ϕQ − ε, r2(ϕQ − ε), r3(ϕQ − ε)) <
60

π2
(1 + 240ε) <

60

π2
+ 1500ε. (43)

Next Lemma 9.1 estimates �(ϕQ − ε, r2(ϕQ − ε), r3(ϕQ) + γ ε) for large γ and
small ε > 0, and Lemma 9.2 estimates the volume of a tetrahedron.

Lemma 9.1 For γ ≥ 106 and ε ∈ (0, 1
100γ ), we have

�(ϕQ − ε, r2(ϕQ − ε), r3(ϕQ) + γ ε) ≤ �(ϕQ, r2(ϕQ), r3(ϕQ)) − γ ε

100
.

Proof To simplify notation, wewrite ϕ = ϕQ and r3 = r3(ϕ) = arcsin 3 sin ϕ

2 , and use
the notation set up before Lemma 7.5.

We deduce from r3(ϕ − ε) ≤ r3 that (r3 + γ ε) − r3(ϕ − ε) ≥ γ ε.
For the closure T of

�̃(ϕ − ε, r3 + γ ε)\�̃(ϕ − ε, r3(ϕ − ε)),

Lemma 7.5 yields

|T | ≥ γ ε

16
· |�̃(ϕ − ε, r3(ϕ − ε))|. (44)

Let σ ∈ (0, ϕ − ε0). We consider two spherical cones C and C0, where C
is obtained by rotating the triangle with vertices z0, z1(ϕ − ε), z3(ϕ − ε) around
z0, z1(ϕ − ε), and C0 is obtained by rotating the triangle with vertices z0, z1(ϕ −
ε0), z3(ϕ − ε0) around z0, z1(ϕ − ε0). For the two-face F of T opposite to z0, F\C
is disjoint from B(z0, r3(ϕ − ε)), which in turn contains C , and hence we have the
density estimates
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|(T \C) ∩ B(z0, σ )|
|T \C | · |B(z0, σ )| ≤ |B(z0, σ )|

|B(z0, r3(ϕ − ε))| · |B(z0, σ )| ≤ |C ∩ B(z0, σ )|
|C | · |B(z0, σ )| .

Since the density of B(z0, σ ) in C ∩ T is |C∩B(z0,σ )|
|C | , and in T \C the density is at

most |C∩B(z0,σ )|
|C | , we deduce using (19) and the argument of Boroczky [4] that

|T ∩ B(z0, σ )|
|T | · |B(z0, σ )| ≤ |C ∩ B(z0, σ )|

|C | · |B(z0, σ )| = lim
s→0+

�(ϕ − ε, r3(ϕ − ε) − s, r3(ϕ − ε))

≤ lim
s→0+

�(ϕ − ε0, r3(ϕ − ε0) − s, r3(ϕ − ε0))

≤ |C0 ∩ B(z0, σ )|
|C0| · |B(z0, σ )| = �0. (45)

Now C0 is a spherical cone whose base is a circular disc of radius ξ =
arccos cos r3(ϕ−ε0)

cos(ϕ−ε0)
, center z1(ϕ − ε0) and height ϕ − ε0. Let H ⊂ R

4 be the hyper-

plane tangent to S3 at z1(ϕ − ε0), letC ′
0 be the radial projection ofC0 into H , which is

a Euclidean cone whose base is a circular disc of radius 
 = tan ξ , center z1(ϕ − ε0)

and height h = tan(ϕ − ε0). Therefore, Lemma 7.2 yields

|C0| =
∫
C ′
0

(1 + ‖x − z1(ϕ − ε0)‖2)−2 dx

=
∫ h

0

∫ 
− 
t
h

0
(1 + t2 + r2)−2 · 2πr drdt.

In addition, if the angle between the arcs z0, z1(ϕ − ε0) and z0, z3(ϕ − ε0) is α, then
cosα = tan(ϕ−ε0)

tan r3(ϕ−ε0)
. Therefore, (35) yields

�0 = 1 − cosα

2|C0| <
60

π2
− 0.3.

For � = �(ϕ − ε, r2(ϕ − ε), r3 + γ ε), γ ≥ 106 yields

� ≤ ( 60
π2 + 1500ε)�̃(ϕ − ε, r3(ϕ − ε))| + �0|T |

|�̃(ϕ − ε, r2(ϕ − ε))| + |T |
≤ 60

π2
+ 1500ε −

(
60

π2
+ 1500ε − �0

)
γ ε/16

1 + γ ε

16

= 60

π2
+ γ ε

(
1500

γ
−

60
π2 + 1500ε − �0

16 + γ ε

)

≤ 60

π2
+ γ ε

(
2 · 10−3 −

60
π2 − �0

20

)
≤ 60

π2
− γ ε

100
.

Q.E.D.
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Lemma 9.2 If θ ∈ (0, 1
3 ), and u1, u2, u3, u4 ∈ S2 satisfy that 〈ui , u j 〉 ≤ −θ for i 
=

j , then
H3([u1, u2, u3, u4]) ≥ √

θ/4.

Proof For T = [u1, u2, u3, u4], we have o ∈ int T by Lemma 2.2. Let r > 0 be
the maximal number such that r B3 ⊂ T , and hence r ≤ 1

3 (see, say, Boroczky
[5], Section 6.5). We may assume that r B3 touches ∂T in a point y of F =
[u1, u2, u3], which lies in the relative interior of F . We set u = y/r ∈ S2, and vi =
(ui − y)/

√
1 − r2 ∈ S2 for i = 1, 2, 3. We have α ∈ [arccos 1

3 ,
π
2 ) and β ∈ ( π

2 , π ]
such that δ(ui , u) = α for i = 1, 2, 3, δ(u4, u) = β. Thus ui = u cosα + vi sin α for
i = 1, 2, 3, and u4 = −u| cosβ| + w sin β for some w ∈ u⊥ ∩ S2.

Since 〈ui , u j 〉 < 0 for 1 ≤ i < j ≤ 3, we have 〈vi , v j 〉 = 〈ui , u j 〉 − cosα cos
α < 0 for 1 ≤ i < j ≤ 3. We deduce that ‖ui − u j‖ ≥ √

2(1 − r2) for 1 ≤ i < j ≤
3, and there exists l ∈ {1, 2, 3} such that 〈vl , w〉 > 0. In particular, we have

−θ ≥ 〈u4, ul〉 ≥ −| cosβ| · cosα.

It follows from Lemma 8.2 and 1 − r2 ≥ 8
9 that

H3(T ) = | cosβ| + cosα

4
· H2(F) ≥

√| cosβ| · cosα

2
·
√
3(1 − r2)

2
>

√
θ

4
.

Q.E.D.

It is not hard to see that the lower bound
√

θ/4 in Lemma 9.2 can’t be replaced
by, say, 2

√
θ .

Proof of Theorem 1.1 in the case of the 600 -cell Let Q be an 600-cell with vertices
on S3, therefore, its vertices determine the optimal packing of 120 spherical circular
discs of radius ϕQ = π

10 . We set ϕ = ϕQ , r2 = r2(ϕ), r3 = r3(ϕ) and r∞ = r∞(ϕ).
For γ = 1012, ε0 = 10−14 and η = 0.02, we observe that

r3 + γ ε0 < r3 + η < r∞ − 2η. (46)

Let ε ∈ (0, ε0), and let x1, . . . ,xk ∈ S2 satisfy that k ≥ 120, and δ(xi ,x j ) ≥
2(ϕ − ε) for i 
= j . We may assume that for any x ∈ S3, there exists xi such that
δ(xi ,x) < 2(ϕ − ε). Let P = [x1, . . . ,xk], and hence o ∈ int P . We prove Theo-
rem 1.1 for the 600-cell in two steps.
Step 1 Proving that all Delone cells are of circumradius at most r3 + γ ε

We suppose that there exists a Delone cell of spherical circumradius at least
r3 + γ ε and seek a contradiction. Let us consider the triangulation of S3 by all quasi-
orthoschemes associated to the Dirichlet cell decomposition induced by x1, . . . ,xk .
Among them, let O and Q denote the family of the ones with diameter less than
r3 + γ ε, and with diameter at least r3 + γ ε, respectively. We claim that
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∑
�∈Q

|�| > (4π/3) sin3 η > 10−5. (47)

Let 
 > 0 be the largest number such that 
B4 ⊂ P and let R = arccos 
. Then

B4 touches ∂P at a point y ∈ ∂P in the relative interior of a three-dimensional
face F of P , R is the spherical circumradius of the corresponding Delone cell, and
R ≥ r3 + γ ε.

We may assume that x1,x2,x3,x4 are vertices of F in a way such that y ∈
[x1,x2,x3,x4] = T . Let v = y/‖y‖, and let T̃ be the radial projection of T into S3,
that is the associated spherical “Delone simplex”, and satisfies v ∈ T̃ . If R < r3 + 2η,
then all quasi-orthoschemes having vertex v are actual orthoschemes by Lemma 6.1,
and hence their union is T̃ . If for some {i, j} ⊂ {1, 2, 3, 4}, the angle between v,xi

and v,x j is ωi j , then Lemma 8.3 yields

cosωi j ≤ 1 − 2 sin2(ϕ − ε)

sin2 R
< 1 − 2 sin2(ϕ − ε0)

sin2(r3 + 2η)
< −0.1.

In particular, Lemmas 7.1 and 9.2 yield that

∑
�∈Q

|�| ≥ |T̃ | ≥ |T | ≥ √
0.1/4 > 0.07.

However, if R ≥ r3 + 2η andx ∈ B(v, η), then δ(x,xi ) ≥ r3 + η for all i = 1, . . . , k,
thus any quasi-orthoscheme � containing x has diameter at least r3 + γ ε by (46).
We deduce from Lemma 7.1 that∑

�∈Q
|�| ≥ |B(v, η)| = (4π/3) sin3 η

in this case, proving (47).
We note that 120 = 60

π2 · |S3| according to the equality case of the simplex bound
(24). We deduce from (34), Lemma 8.1 with γ = 1012 and (38) that

k ≤
∑
�∈O

|�| 60
π2

· (1 + 1500ε) +
∑
�∈Q

|�| 60
π2

· (1 − 1010 · ε)

≤ 12 + 60

π2
[2π2 · 1500ε − 10−5 × 1010 · ε] < 12.

This contradiction completes the proof of Step 1.
Step 2 Assuming all Delone cells are of circumradius at most r3 + γ ε

It follows from (24) and (43) that k = 120.
Let � be a Delone cell, and let v be the center of the circumscribed spherical ball

of radius R. We claim that � is a spherical tetrahedron and there exists a regular
spherical tetrahedron �0 of side length 2ϕ such that for any vertex xi of � there
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exists a vertex w of �0 with

δ(xi , w) ≤ 10,000γ ε. (48)

If xi 
= x j are the vertices of �, and the angle between v,xi and v,x j is ωi j , then
Lemma 8.3, sin ϕ/ sin r3 = √

2/3 and γ ε < 10−2 yield

cosωi j ≤ 1 − 2 sin2 ϕ

sin2 r2
+ 4γ ε

sin2 r3
≤ −1

3
+ 30γ ε < 0.

In particular, � is a tetrahedron by Corollary 2.3. Since (cos t)′ = − sin t is at most
−3
4 if t ∈ [π

2 , 2π
3 ], we have

ωi j ≥ arccos
−1

3
− 40γ ε. (49)

We deduce from Theorem 3.1 that one may find a regular spherical tetrahedron �′
with vertices on the subspherewith center v and radius R such that for any vertexxi of
� there exists a vertex w′ of �′ such that the angle between xi , v and w′, v is at most
9000γ ε and hence δ(xi , w

′) ≤ 9000γ ε. We take �0 with circumcenter v so that for
any vertexw of�0 there exists a vertexw′ of�′ such thatw ∈ w′, v orw′ ∈ w, v. As
R ≤ r3 + γ ε by the condition of Step 2, and R ≥ r3(ϕ − ε) ≥ r3 − γ ε, we conclude
(48) by the triangle inequality.

Now we fix a Delone cell � and let �0 be the spherical regular tetrahedron
provided by (48). We observe that c < 90 for the constant of Lemma 6.4 in our case.
We may assume that the vertices of �0 are vertices of the face F0 of the 600-cell Q.
There exist 116 more faces F1, . . . , F116 of Q, such that Fi ∩ Fi−1 is a common edge
for i = 1, . . . , 116, and any vertex of Q is a vertex of some Fi , i ≤ 116. Attaching
the corresponding 116 more Delone cells to �, we conclude from Lemma 6.4 that
we may choose cQ = 90116 · 10,000 γ . Q.E.D.
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