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Abstract Weshow that any k-th closed sphere-of-influencegraph in ad-dimensional
normed space has a vertex of degree less than 5dk, thus obtaining a common gener-
alization of results of Füredi and Loeb (Proc AmMath Soc 121(4):1063–1073, 1994
[1]) and Guibas et al. (Sphere-of-influence graphs in higher dimensions, Intuitive
geometry [Szeged, 1991], 1994, pp. 131–137 [2]).

Toussaint [8] introduced the sphere-of-influence graph of a finite set of points in
Euclidean space for applications in pattern analysis and image processing (see [7]
for a recent survey). This notion was later generalized to so-called closed sphere-of-
influence graphs [3] and to k-th closed sphere-of-influence graphs [4]. Our setting
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will be a d-dimensional normed space N with norm ‖·‖. We denote the ball with
center c ∈ N and radius r by B(c, r).

Definition 1 Let k ∈ N and let V = {ci : i = 1, . . . , m} be a set of points in the
d-dimensional normed space N . For each i ∈ {1, . . . , m}, let r (k)

i be the smallest r
such that

{ j ∈ N : j �= i,
∥
∥ci − c j

∥
∥ ≤ r}

has at least k elements. Define the k-th closed sphere-of-influence graph on V by
setting {ci , c j } an edge whenever B(ci , r (k)

i ) ∩ B(c j , r (k)
j ) �= ∅.

Füredi and Loeb [1] gave an upper bound for the minimum degree of any closed
sphere-of-influence graph in N in terms of a certain packing quantity of the space
(see also [5, 6].)

Definition 2 Letϑ(N ) denote the largest cardinality of a subset A of the ball B(o, 2)
of the normed space N such that any two points of A are at distance at least 1, and
the origin o is in A.

Füredi and Loeb [1] showed that any closed sphere-of-influence graph (that is, in
our terminology, a first closed sphere-of-influence graph) inN has a vertex of degree
smaller than ϑ(N ) ≤ 5d . (It is clear that ϑ(N ) is bounded above by the number of
balls of radius 1/2 that can be packed into a ball of radius 5/2, which is at most 5d

by volume considerations.)
Guibas, Pach and Sharir [2] showed that any k-th closed sphere-of-influence graph

in d-dimensional Euclidean space has a vertex of degree at most cdk, for some
universal constant c > 1. In this note we show the following more precise result,
valid for all norms, and generalizing the result of Füredi and Loeb [1] mentioned
above.

Theorem 3 Every k-th sphere-of-influence graph on at least two points in a normed
space N has at least two vertices of degree smaller than ϑ(N )k ≤ 5dk.

We note that the theorem still holds when there are repeated elements.

Corollary 4 A k-th sphere-of-influence graph on n points in N has at most
(ϑ(N )k − 1)n ≤ (5dk − 1)n edges.

Proof of Theorem 3 Let V = {c1, c2, . . . , cm}. Relabel the vertices c1, c2, . . . , cm

such that r (k)
1 ≤ r (k)

2 ≤ · · · ≤ r (k)
m . We define an auxiliary graph H on V by joining ci

and c j whenever
∥
∥ci − c j

∥
∥ < max{r (k)

i , r (k)
j }. Thus, if {ci : i ∈ I } is an independent

set in H , then no ball in {B(ci , r (k)
i ) : i ∈ I } contains the center of another in its

interior. We next bound the chromatic number of H .

Lemma 5 The chromatic number of H does not exceed k.

Proof Note that for each i ∈ {1, . . . , m}, the set

{ j < i : ci c j ∈ E(H)} = { j < i : ∥
∥ci − c j

∥
∥ < r (k)

i }
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has less than k elements. Therefore,we cangreedily color H in the order c1, c2, . . . , cm

by k colors. �

We next show that the degrees of c1 and c2 (corresponding to the two smallest
values of r (k)

i ) are both at most ϑ(N )k, which will complete the proof of Theorem 3.
We first need the so-called “bow-and-arrow” inequality of [1]. For completeness, we
include the proof from [1].

Lemma 6 (Füredi–Loeb [1]) For any two non-zero elements a and b of a normed
space, ∥

∥
∥
∥

1

‖a‖a − 1

‖b‖b

∥
∥
∥
∥

≥ ‖a − b‖ − |‖a‖ − ‖b‖|
‖b‖ .

Proof Without loss of generality, we may assume that ‖a‖ ≥ ‖b‖ > 0. Then

‖a − b‖ =
∥
∥
∥
∥
‖a‖ 1

‖a‖a − ‖b‖ 1

‖b‖b

∥
∥
∥
∥

=
∥
∥
∥
∥
‖b‖ (

1

‖a‖a − 1

‖b‖b) + (‖a‖ − ‖b‖) 1

‖a‖a

∥
∥
∥
∥

≤ ‖b‖
∥
∥
∥
∥

1

‖a‖a − 1

‖b‖b

∥
∥
∥
∥

+ ‖a‖ − ‖b‖ . �

The next lemma is abstracted with minimal hypotheses from [5, Proof of Theo-
rem 6] (see also [1, Proof of Theorem 2.1]).

Lemma 7 Consider the balls B(v1, λ1) and B(v2, λ2) in the normed space N ,
such that max{λ1, λ2} ≥ 1, v1 /∈ int(B(v2, λ2)), v2 /∈ int(B(v1, λ1)) and B(vi , λi ) ∩
B(o, 1) �= ∅ (i = 1, 2). Define π : N → B(o, 2) by

π(x) =
{

x if ‖x‖ ≤ 2,
2

‖x‖ x if ‖x‖ ≥ 2.

Then ‖π(v1) − π(v2)‖ ≥ 1.

Proof In terms of the norm, we are given that ‖v1 − v2‖ ≥ max{λ1, λ2} ≥ 1, ‖v1‖ ≤
λ1 + 1, and ‖v2‖ ≤ λ2 + 1. Without loss of generality, we may assume that ‖v2‖ ≤
‖v1‖.

If v1, v2 ∈ B(o, 2) then ‖π(v1) − π(v2)‖ = ‖v1 − v2‖ ≥ 1.
If v1 /∈ B(o, 2) and v2 ∈ B(o, 2), then

‖π(v1) − π(v2)‖ =
∥
∥
∥
∥
2

1

‖v1‖v1 − v2

∥
∥
∥
∥

≥ ‖v1 − v2‖ −
∥
∥
∥
∥
v1 − 2

1

‖v1‖v1

∥
∥
∥
∥

= ‖v1 − v2‖ − (‖v1‖ − 2) ≥ λ1 − (λ1 + 1) + 2 = 1.
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If v1, v2 /∈ B(o, 2), then

‖π(v1) − π(v2)‖ =
∥
∥
∥
∥
2

1

‖v1‖v1 − 2
1

‖v2‖v2

∥
∥
∥
∥

≥ 2
‖v1 − v2‖ − ‖v1‖ + ‖v2‖

‖v2‖ by Lemma 6

≥ 2

(
λ1 − (λ1 + 1)

‖v2‖ + 1

)

= −2

‖v2‖ + 2 ≥ −1 + 2 = 1. �

We can now finish the proof of Theorem 3. Let i ∈ {1, 2}, and let c := ci , that
is, the radius corresponding to c is the smallest, or second smallest. By Lemma 5
we can partition the set of neighbors of c in the k-th closed sphere-of-influence
graph on V into k classes N1, . . . , Nk so that each Nt is an independent set in
H . We may assume that the radius r (k)

i corresponding to c is 1. Then for any t ∈
{1, . . . , k}, each ball in {B(c j , r (k)

j ) : c j ∈ Nt } intersects B(c, 1), and the center of
no ball is in the interior of another ball. By Lemma 7, {π(p − c) : p ∈ Nt } is a
set of points contained in B(o, 2) with a distance of at least 1 between any two.
That is, |Nt \ int(B(c, 1))| ≤ ϑ(N ) − 1 for each t = 1, . . . , k. Since there are at
most k − 1 points in V ∩ int(B(c, 1)) \ {c}, it follows that the degree of c is at most
∑k

t=1 |Nt \ int(B(c, 1))| + k − 1 ≤ (ϑ(N ) − 1)k + k − 1 = ϑ(N )k − 1.
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