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1 Introduction

The purpose of this paper is to draw attention to some curious properties of certain
families of regular hyperbolic honeycombs with ideal vertices. The existence of
similarities in euclidean spaces enables some regular honeycombs to be inscribed
in smaller copies of themselves, by which we mean that the vertices of one form a
subset of the vertices of the other. The d-dimensional cubic tilings exemplify this
property, in infinitely many different ways.We shall see here that the same behaviour
is exhibited in four families of regular hyperbolic honeycombs, one inH2, two inH3

and one in H5.
At the instigation of one of the referees of an earlier version of the paper, we

have shown that certain subgroups of Coxeter groups that we employ are them-
selves Coxeter groups; these connexions are closely related to simplex dissections
of Debrunner [1] which formalized two folkloristic results. At the suggestion of the
other, we have added twomore families of honeycombs. As a consequence, the paper
has been substantially rewritten.
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We have been told by Asia Weiss that Donald Coxeter had come up with similar
ideas to those in this note, although nothing was ever published.

2 Regular Polytopes and Automorphism Groups

In this section, we briefly set the scene. As shown in, for example, [3, Chap. 2], a
regularn-polytopeP and its automorphismgroupG can be identified in a naturalway.
The group G of P has distinguished generators r0, . . . , rn−1 satisfying – possibly
among others – the relations (r j rk)p jk = e for 0 � j � k � n − 1, where

p jk =

⎧
⎪⎨

⎪⎩

1, if j = k,

pk if j = k − 1,

2, if j � k − 2.

(2.1)

We always assume here that pk � 3 for each k, and that pk = ∞ is allowed. In
addition, the r i also have the intersection property:

〈r i | i ∈ J〉 ∩ 〈r i | i ∈ K〉 = 〈r i | i ∈ J ∩ K〉 (2.2)

for J,K ⊆ {0, . . . , n − 1}. Conversely, such a group G is the automorphism group
of a regular polytope P , in which case {p1, . . . , pn−1} is called the Schläfli type of
P . Combinatorially, for 0 � k � n − 1 a k-face of P is identified with a right coset
of the distinguished subgroup Gk := 〈r i | i �= k 〉, with the incidence relation given
by

G j a � Gkb ⇐⇒ j � k and G j a ∩ Gkb �= ∅

for a, b ∈ G turning P into a poset.
IfG is specified solely by the relations implied by (2.1), then it is a (string) Coxeter

group, and is denoted [p1. . . . , pn−1]. The corresponding polytope P is universal,
by which we mean that any regular polytope of Schläfli type {p1, . . . , pn−1} is a
quotient of P . It is this situation that prevails throughout the paper; {p1, . . . , pn−1}
will henceforth mean the universal polytope.

Associated with the Coxeter group G is its contragredient representation G, say.
We need little from this, except to know that G acts faithfully on a certain convex
cone – the Tits cone – in R

n . Its generators Rk corresponding to the involutions rk
are linear reflexions in hyperplane mirrors, which bound a fundamental chamber C ;
copies of C under G fit together face-to-face to form the chamber complex, and
their union is the Tits cone. The fact that G is a Coxeter group means that the local
relations – how chambers fit together around their (n − 2)-faces – determine the
whole structure of the chamber complex. See [3, Sect. 3A] for a brief exposition, as
well as further references.

Remark 2.3 We adopt the convention that heavy braces denote an abstract regu-
lar polytope, as in the Schläfli type {p1, . . . , pn−1} of P . Light braces indicate a
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geometric regular polytope in euclidean or hyperbolic space. Thus {4, 3} is an abstract
3-cube; {4, 3} is the ordinary 3-cube inE4.We similarly use Rk to denote a geometric
reflexion corresponding to the involutory automorphism rk .

3 The Coxeter Group [3n−2, 2r]

This section treats the first of the subgroup relationships among Coxeter groups. We
begin with something that should be obvious to which we shall appeal twice.

Lemma 3.1 For k = 0, . . . , n − 2 and r � 3, the mapping rn−1 �→ e and r j �→ r j

for j = 0, . . . , n − 2 induces a homomorphism on [3n−2, 2r ] with quotient [3n−2] ∼=
Sn, the symmetric group.

The notation pm stands for p, . . . , p, with m occurrences of p.
We then have

Theorem 3.2 For k = 0, . . . , n − 2 and r � 3, the Coxeter group [3k−1, 2r, r, 2r,
3n−k−3] is a subgroup of [3n−2, 2r ] of index ( n

k+1

)
.

Proof The conventions for extreme values of r should be obvious; just think of the
block 2r, r, 2r as migrating through a sequence of 3s. The generators s0, . . . , sn−1

of the subgroup Gk (say) are given by

s j :=

⎧
⎪⎨

⎪⎩

r j , if j = 0, . . . , k − 1,

rk rk+1 · · · rn−2rn−1rn−2 · · · rk+1rk, if j = k,

rn+k− j , if j = k + 1, . . . , n − 1.

(3.3)

In the language of [3, Chap. 7], this defines amixing operation νk : (r0, . . . , rn−1) �→
(s0, . . . , sn−1). The indexing of νk is chosen to indicate that rk is the only generator
which changes, although the order of rk+1, . . . , rn−1 is reversed. We can extend
the range of k in a natural way by νn−1 = ι (the identity), and ν−1 = δ (the duality
operation – which reverses the order of all the r j ).

It is a routine matter (which we leave to the reader) to verify that s0, . . . , sn−1 do
generate a group satisfying the relations of [3k−1, 2r, r, 2r, 3n−k−3]. Bear inmind that,
if a2 = b2 = (ab)3 = e, then aba = bab; then appeal to conjugacy. For example,

sk−1sk = rk−1 · rk rk+1 · · · rn−2rn−1rn−2 · · · rk+1rk
∼ rk rk−1rk · rk+1 · · · rn−2rn−1rn−2 · · · rk+1

= rk−1rk rk−1 · rk+1 · · · rn−2rn−1rn−2 · · · rk+1

∼ rk · rk+1 · · · rn−2rn−1rn−2 · · · rk+1

· · ·
∼ rn−2rn−1,
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and so on. We must therefore check that no additional relations are acquired.
To see what νk does geometrically, we look at the contragredient representation

G of G. The fundamental chamber C is a cone over a simplex. If, as in Sect. 2, we let
Rk be the linear reflexion corresponding to rk , then a consequence of Lemma 3.1 is
that the conjugates of Rn−1 under 〈R0, . . . , Rn−2 〉 generate a subgroup of G whose
fundamental region is the cone F corresponding to the initial simplex facet of P :=
{3n−2, 2r}.

There are n! copies of C in F , which are the images of C under the subgroup
H := 〈R0, . . . , Rn−2〉 (this is a symmetric group). Regarding R j interchangeably as
a linear reflexion and its mirror, the hyperplane R j slices F into two halves, which the
reflexion R j swaps. The fundamental cone Ck of the representation Gk correspond-
ing to Gk is similarly cut out of F by the hyperplanes Sj with j �= k, n − 1. The
images of Ck in F are those under the subgroup 〈S0, . . . , Sk−1〉〈Sk+2, . . . , Sn−1〉 =
〈R0, . . . , Rk−1〉〈Rk+1, . . . , Rn−2 〉, of order (k + 1)!(n − k − 1)!.

It should now be clear that the local geometric structure around Ck is inherited
from that around C , and thus that this suffices to determine Gk , and hence Gk . In
other words, the latter is also a Coxeter group. �

As we have just pointed out, Lemma 3.1 says that P = {3n−2, 2r} collapses onto
its initial facet, which is an (n − 1)-simplex. Consequently, lifting this collapse back
into P implies the first part of

Theorem 3.4 The vertices of the universal regular polytope P = {3n−2, 2r} can be
n-coloured. Moreover, the polytope Pk := {3k−1, 2r, r, 2r, 3n−k−3} can be inscribed
in P , using (any) k + 1 of the colour-classes of its vertices.

Proof If P,Q are regular polytopes, we write Q ≺ P to mean that Q is inscribed
in P; that is, vertQ ⊂ vertP , with vertP the vertex-set of P . The crucial fact is
the subgroup relationship between the groups of the vertex-figures: in the previous
notation, 〈s1, . . . , sn−1〉 � 〈r1, . . . , rn−1〉. This means that Pk has the same initial
vertex v (say) as P; indeed, it has the same initial j-face for j = 0, . . . , k.

We now appeal to induction on n. Replacing n by n − 1 implies replacing k by
k − 1, which means that we first have to establish the case k = 0. In this case, s0
swaps the initial facet {3n−2} of P with the one that shares the ridge opposite v; then
vs0 has the same colour 1 as v. Moreover, since 〈s1, . . . , sn−1〉 = 〈r1, . . . , rn−1〉,
all such antipodal vertices in facets through the initial vertex are vertices of P0, and
this quickly leads to vertP0 consisting of the whole of colour-class 1 of P .

IfQ is a regular polytope (or honeycomb), then we denote byQv its broad vertex-
figure; that is, the vertices of Qv consist of those vertices of Q that are joined to
its initial vertex by an edge. For k > 0, we may now assume that Pv

k consists of
all vertices of Pv in colour-classes 2, . . . , k + 1, that is, those adjacent to the initial
vertex coloured 1. The claim of the theorem quickly follows from the action of Gk

and the symmetry of the colour-classes. �

We next observe that the polytopesPk occur in dual pairs. More specifically, since
we can freely permute colour-classes, we deduce
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Theorem 3.5 For each n � 4, r � 3 and k = 0, . . . , n − 2, Pk and Pn−k−2 are
dual polytopes. Moreover, they can be inscribed in P so that their vertex-sets are
complementary colour-classes.

The following illustrates Theorems 3.2 and 3.4.

Example 3.6 The first theorem yields subgroups [6, 3] and [3, 6] of index 3 in the
Coxeter group [3, 6]. By Theorem 3.4, the vertices of the planar tessellation {3, 6} of
E
3 by triangles can be 3-coloured; we do not need the general theory to see this. Two

out of the three colour classes form the vertices of an inscribed copy of a tessellation
{6, 3}, while the third then forms the vertex-set of the dual copy of {3, 6}, now scaled
up from the original by

√
3, we have

{3, 6} � {6, 3} � {3, 6};

we can iterate the process and extend it to

· · · � {3, 6} � {3, 6} � {3, 6} � · · ·

with each copy having a third of the vertices of the one before; there is a similar
infinite sequence with {6, 3} replacing {3, 6}.

4 The Tessellation {3,∞}

The vertices of the tessellation {3,∞} in the hyperbolic plane H2 can be 3-coloured
(again, we do not really need the general discussion to see this). Either two out of
three, or one out of three of the colour classes yields a tessellation {∞,∞}, and so
we can strictly inscribe one copy in another using half the vertices. This process can
be repeated to inscribe a copy using a quarter of the vertices, and then an eighth, so
on. We can clearly treat this easy case by hand.

5 Honeycombs Inscribed in {3, 3, 6}

We now apply the resuts of Sect. 3 to {3n−2, 6}. We looked at the first case {3, 6}
in Example 3.6, and so here we concentrate on the honeycomb {3, 3, 6} with ideal
vertices inH3.We can take its symmetry group to have generators R j for j = 0, . . . , 3
given by

x R j :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(η, ζ2, ζ1, ζ3), if j = 0,

(η, ζ1, ζ3, ζ2), if j = 1,

(η,−ζ2,−ζ1, ζ3), if j = 2,
1
4 (5η − √

3〈z, u〉,√3ηu + 4z − 3〈z, u〉u), if j = 3,

(5.1)
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where u := (1, 1, 1). The initial vertex is (
√
3,−1, 1, 1), and – after rationalization –

the vertices in general can be written in the form x = (
√
3η, z), with η, ζ1, ζ2, ζ3 ∈ Z

having no common factor, and η > 0 such that 3η2 = ζ 2
1 + ζ 2

2 + ζ 2
3 . In fact, consid-

ering congruences modulo 8, it is easy to see that η, ζ1, ζ2, ζ3 must all be odd, if the
expression for x is in lowest terms. Note that R3 does not preserve such expressions,
because of the factor 1

4 .
If we successively apply R0, R1, R2, R3, R2, R1, R0 to (

√
3,−1, 1, 1), then we

obtain all (
√
3, z) with

z = (1,−1, 1), (1, 1,−1), (−1,−1,−1), (1, 1, 1),

(−1,−1, 1), (−1, 1,−1), (1,−1,−1);

in other words, we have all vertices of the form (
√
3,±1,±1,±1). This reflects the

following fact.

Lemma 5.2 The two honeycombs {3, 3, 6} and {4, 3, 6} have the same vertices.
Indeed, [3, 3, 6] and [4, 3, 6] have a common subgroup, of index 5 in the first

and 2 in the second; see [3, Sect. 11G] for the details. This further implies that all
changes of sign of the coordinates of z are allowed, as well as all permutations, and
so leads us to

Theorem 5.3 The vertices of {3, 3, 6} can be taken to be all points of the form
(
√
3η, z) just described.

Proof It is clear that vertices of {3, 3, 6} are all of the required form. The form of
R3 gets in the way of showing the converse immediately. However, let (

√
3η, z) be

of the given form in its lowest terms; permuting the coordinates and changing signs
allows us to assume that ζ1 � ζ2 � ζ3 > 0, with at least one more strict inequality if
η > 1; in particular, ζ1 > η and 〈z, u〉 − η > 0. If 〈z, u〉 − η ≡ 0 mod 4, then we
see at once that (

√
3η′, z′) = (

√
3η, z)R3 has integer entries η′, . . . , ζ ′

3 with η′ < η.
Otherwise, observe that ζ1 + ζ2 − ζ3 − η ≡ 0 mod 4, since 2ζ3 ≡ 2 mod 4. We
thus change the sign of ζ3; since η remains the same, while the new 〈z, u〉 − η is still
positive, we can apply R3 as before, yielding a new integral η′ < η. This completes
the argument. �

Remark 5.4 Something that we cannot explain is that every odd positive η seems
to occur in such a reduced expression 3η2 = ‖z‖2 (we have only checked this for
η � 19)

As we have seen, the vertices of {3, 3, 6} can be 4-coloured; its facets are tetra-
hedra. Inscribed in {3, 3, 6}, using 3, 2 and 1 of its colour classes in turn, we find

{3, 3, 6} � {3, 6, 3} � {6, 3, 6} � {3, 6, 3}.

From this, it follows that {3, 6, 3} can be inscribed in itself, using just a third of its
vertices. Of course, we have the same pattern as before; the two copies of {3, 6, 3},
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and the two copies of {6, 3, 6}, can be inscribed in {3, 3, 6} using complementary
colour classes.

This leads to families of compounds. For example, iterating {3, 6, 3}[3{3, 6, 3}]
leads to {3, 6, 3}[3k{3, 6, 3}] for each k � 1. But we actually have more: Lemma 5.2
and duality show that we have compounds like

{4, 3, 6}[2{6, 3, 6}]{6, 3, 4},
3{4, 3, 6}[4{3, 6, 3}]{6, 3, 4},
{4, 3, 6}[4{3, 6, 3}]3{6, 3, 4}.

Once again, we leave further details to the interested reader.

6 The Coxeter Group [3n−3, 4, q]

.
For the other families, we again begin with a subsidiary remark; compare

Lemma 3.1.

Lemma 6.1 For k = 0, . . . , n − 2 and q � 3, the mapping rn−2, rn−1 �→ e and
r j �→ r j for j = 0, . . . , n − 3 induces a homomorphism on [3n−3, 4, q] with quo-
tient [3n−3] ∼= Sn−1, the symmetric group.

The main result of the section is

Theorem 6.2 For k = 0, . . . , n − 2 and q � 3, the Coxeter group [3k−1, 4, q, q, 4,
3n−k−4] is a subgroup of [3n−3, 4, q] of index (n−1

k+1

)
.

Proof Let r0, . . . , rn−1 be the distinguished generators of G = [3n−3, 4, q]. For k =
0, . . . , n − 3, we define the mixing operation μk : (r0, . . . , rn−1) �→ (t0, . . . , tn−1)

by

t j :=

⎧
⎪⎨

⎪⎩

r j , if j = 0, . . . , k − 1,

rk rk+1 · · · rn−3rn−2rn−3 · · · rk+1rk, if j = k,

rn+k− j , if j = k + 1, . . . , n − 1.

(6.3)

Again, the indexing of μk is chosen to indicate that rk is the only generator which
changes, although the order of rk+1, . . . , rn−1 is reversed. As before, we can extend
the range of k in a natural way by μn−2 = ι (the identity), and μ−1 = δ (the duality
operation).

The proof follows the lines of that of Theorem 3.2 quite closely, in particular in
verifying that the required relations are satisfied. In the present case, 2k−1(k−1)!
copies of the fundamental cone of G in the contragredient representation fit together
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to form the cone over an (n−1)-cross-polytope.We perform the same construction as
before, but in a facet of this cross-polytope; Lemma 6.1 ensures that the construction
is compatible with the whole group. We leave it to the reader to fill in the details. �

Remark 6.4 The operation μn−3 coincides with the halving operation η applied to
the 3-coface {4, q}; compare [3, (10E2)].

Corresponding to the group Gk of Theorem 6.2 is the (universal) abstract regular
polytope

Pk := {3k−1, 4, q, q, 4, 3n−k−4},

with the same conventions as in the proposition; in particular, P := Pn−2 = {3n−3,

4, q}. Exactly analogous to Theorem 3.4, we have

Theorem 6.5 The vertices of the universal regular polytope P = {3n−3, 4, q} can
be (n−1)-coloured. Moreover, the polytope Pk := {3k−1, 4, q, q, 4, 3n−k−4} can be
inscribed in P using (any) k+1 of the colour-classes of its vertices.

Proof As before, we appeal to induction on n, noting that the initial vertex always
stays the same. Replacing n by n − 1 implies replacing k by k − 1, which means
that we first have to establish the case k = 0. In this case, t0 takes the initial vertex
into the opposite vertex of the initial cross-polytopal facet of P; this vertex has the
same colour 1 as the initial one. Moreover, since 〈 t1, . . . , tn−1〉 = 〈r1, . . . , rn−1〉,
all such antipodal vertices in facets through the initial vertex are vertices of P0, and
this quickly leads to vertP0 consisting of the whole colour-class 1 of P .

For k > 0, we may now assume that Pv
k consists of all vertices of Pv in colour-

classes 2, . . . , k + 1, that is, those adjacent to the initial vertex coloured 1. The
claim of the theorem quickly follows from the action of Gk and the symmetry of the
colour-classes. �

Again as before, the polytopes Pk occur in dual pairs, and we deduce

Theorem 6.6 For each n � 4, q � 3 and k = 0, . . . , n − 3, Pk and Pn−k−3 are
dual polytopes. Moreover, they can be inscribed in P so that their vertex-sets are
complementary colour-classes.

For the moment, we just illustrate Theorems 6.2 and 6.5 by two familiar cases.We
have expressed them in terms of abstract polytopes, but of course they are isomorphic
to the geometric ones in E4.

Example 6.7 When n = 4 and q = 3, we have

{3, 4, 3} � {4, 3, 3} � {3, 3, 4}.

Example 6.7 tells us that the vertices of the 24-cell {3, 4, 3} are 3-colourable, and
that the vertices of the 4-cross-polytope {3, 3, 4} and 4-cube {4, 3, 3} comprise one
and two of the colour-classes, respectively. Moreover, they can be re-arranged so that
{3, 3, 4} and {4, 3, 3} have complementary vertex-sets in vert {3, 4, 3}; they are then
in dual position.
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Example 6.8 When n = 5 and q = 3, we have

{3, 3, 4, 3} � {3, 4, 3, 3} � {4, 3, 3, 4} � {3, 3, 4, 3}.

We have the same pattern in Example 6.8. The vertices of the last copy of
{3, 3, 4, 3} form one out of four colour-classes of the first; the complementary
three colour-classes make up the vertex-set of the dual {3, 4, 3, 3}. Similarly, we
can inscribe two dual copies of the cubic tiling {4, 3, 3, 4} in {3, 3, 4, 3} with com-
plementary vertex-sets (or colour-classes).

Familiar coordinates for the vertices of the geometric honeycombs graphically
illustrate all this. For the original copy, we have

vert{3, 3, 4, 3} = {(ξ1, . . . , ξ4) ∈ 1
2Z

4 | ξ1 ≡ · · · ≡ ξ4 mod 1}.

This actually identifies vert{3, 3, 4, 3} with the integer quaternions ξ1 + ξ2i + ξ3j +
ξ4k.

The obvious splitting

vert{3, 3, 4, 3} = Z
4 ∪ (

Z
4 + 1

2 (1, 1, 1, 1)
)

into two congruence classes modulo 1 gives the vertices of two dual copies of
{4, 3, 3, 4}. Finally, the other copy of {3, 3, 4, 3} has vertex-set

{(ξ1, . . . , ξ4) ∈ Z
4 | ξ1 + · · · + ξ4 ≡ 0 mod 2}.

7 Honeycombs Inscribed in {3, 4, 4}

We now have two applications of the results of Sect. 6 which yield information that
we do not recall having seen before. For n = q = 4, our pattern is

{3, 4, 4} � {4, 4, 4} � {4, 4, 4}; (7.1)

the vertex-sets of the two copies of {4, 4, 4} form two or one of the three colour-
classes of vertices of {3, 4, 4}, respectively. Indeed, the two copies can be regarded
as duals, and so re-arranged to have complementary vertex-sets. However, a striking
consequence is that one copy of {4, 4, 4} can be inscribed in another using half its
vertices; this leads to a doubly-infinite sequence

· · · � {4, 4, 4} � {4, 4, 4} � {4, 4, 4} � · · · ,

with each copy having half the vertices of the one before.
The universal polytopes are realizable as regular honeycombs in hyperbolic space

H
3. For the latter, we adopt the standard model
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H
n = {(ξ0, . . . , ξn) ∈ R

n+1 | ξ0 > 0, ξ 2
0 = ξ 2

1 + · · · + ξ 2
n + 1}.

The symmetry group of {3, 4, 4} can be taken to have generators R j (corresponding
to r j ) as follows. With x = (η, z), where z = (ζ1, ζ2, ζ3) ∈ E

3, we have

x R j :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(η, ζ2, ζ1, ζ3), if j = 0,

(η, ζ1, ζ3, ζ2), if j = 1,

(η, ζ1, ζ2,−ζ3), if j = 2,
(
2η − 〈z, u〉, z + (η − 〈z, u〉)u)

, if j = 3,

(7.2)

where u = (1, 1, 1). Thus R0, R1, R2 generate the symmetry group of the octahedron
in a natural way. We write R3 and points of H3 in this way for future computational
convenience. Observe as well that each R j preserves the set Z4 of integer vectors.

The vertices of {3, 4, 4} are ideal, and so are to be thought of as rays {λ(η, z) | λ >

0}, with η > 0 and η2 = ‖z‖2. We can normalize these in two ways, either by taking
η = 1 and thus z ∈ S

2 (the unit sphere), or (η, z) ∈ Z
4 with gcd(η, ζ1, ζ2, ζ3) = 1.

With the latter representation, we have

Theorem 7.3 The vertex-set of {3, 4, 4} is

vert{3, 4, 4} = {(η, z) ∈ Z
4 | η > 0, η2 = ‖z‖2}.

Proof We first note that the assumed condition gcd(η, ζ1, ζ2, ζ3) = 1 implies that η
is odd since, if ζ ∈ Z, then ζ 2 ≡ 0 or 1 mod 4; thus we cannot have η even and at
least one of ζ1, ζ2, ζ3 odd. It follows that exactly one of ζ1, ζ2, ζ3 is odd; hence 〈z, u〉
must also be odd, and it is then easy to see that each R j takes one vector of the given
form into another.

To see that every vector of that form occurs, we begin by noting that the initial
vertex of {3, 4, 4} is (1, 1, 0, 0). We next observe that R0, R1, R2 allow us freedom
to permute the coordinates of z and change their signs. If η > 1, then we change
signs so that z is a non-negative vector. From gcd(η, ζ1, ζ2, ζ3) = 1 we infer that
η < 〈z, u〉 = ζ1 + ζ2 + ζ3 (just compare η2 and 〈z, u〉2); if (η, z)R3 =: (η′, z′), then
we deduce that η′ < η. Induction on η leads at once to the claim of the theorem. �

Remark 7.4 In the alternative normalization, we can identify vert{3, 4, 4} with S2 ∩
Q

3.

In fact, we can say rather more. We have seen that exactly one of ζ1, ζ2, ζ3 is
odd; moreover, which coordinate is odd is preserved by R2 and R3 (for the latter,
note that η − 〈z, u〉 is even – of course, R0 and R1 permute the colour classes). As
a consequence, we have

Proposition 7.5 With the previous notation, the vertex (η, z) of {3, 4, 4} is coloured
j just when the j th coordinate of z is odd.
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Remark 7.6 As a matter of interest, in the given coordinate system the isometry Φ

of H3 with matrix

Φ = 1√
2

⎡

⎢
⎢
⎢
⎣

2 1 1 0

0 1 −1 0

−1 −1 −1 1

−1 −1 −1 −1

⎤

⎥
⎥
⎥
⎦

is such thatP0 ≺ P0Φ = P1, with the indexing introduced in Sect. 6; we do not give
the details of the calculation. Thus the powers of Φ (positive and negative) induce
the sequence of copies of {4, 4, 4}, each properly inscribed in the next.

As we have seen, we can inscribe {4, 4, 4} in {3, 4, 4}, using either two or one of
its three colour-classes. As a result, we obtain two, dual, regular compounds (on the
abstract level as well)

2{3, 4, 4}[3{4, 4, 4}]{4, 4, 3}, {3, 4, 4}[3{4, 4, 4}]2{4, 4, 3}.

(The fact that the copies P0 and P1 of {4, 4, 4} can be arranged to have complementary
vertex-sets in vert{3, 4, 4} accounts for the numbers 2 and 3.) Thus, even though
{4, 4, 4} is self-dual, perhaps surprisingly its compounds in {3, 4, 4} are not.

8 Honeycombs Inscribed in {3, 3, 3, 4, 3}

For n = 6 and q = 3, our pattern is

{3, 3, 3, 4, 3} � {3, 3, 4, 3, 3} � {3, 4, 3, 3, 4} � {4, 3, 3, 4, 3} � {3, 3, 4, 3, 3}.
(8.1)

There are five colour-classes of vertices of {3, 3, 3, 4, 3}, and the inscribed polytopes
use four, three, two or one of these, respectively. The two copies of {3, 3, 4, 3, 3} can
be regarded as duals, with complementary vertex-sets in those of {3, 3, 3, 4, 3}; the
dual polytopes {3, 4, 3, 3, 4} and {4, 3, 3, 4, 3} can be viewed similarly.

Remark 8.2 Note that we have an alternative picture of {3, 3, 4, 3, 3} ≺ {4, 3,
3, 4, 3}, in the form

{3, 3, 4, 3, 3} =
{

3,
3, 4, 3
3

}

with vertices alternate vertices of {4, 3, 3, 4, 3} (of course, as in the pattern here).
As in Sect. 7, we obtain a doubly-infinite sequence

· · · � {3, 3, 4, 3, 3} � {3, 3, 4, 3, 3} � {3, 3, 4, 3, 3} � · · · ;
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in this case, each copy has a quarter of the vertices of its predecessor. Here, though,
we can interpolate copies of {4, 3, 3, 4, 3} and {3, 4, 3, 3, 4} between successive ones
of {3, 3, 4, 3, 3}, as in the first pattern.

Geometrically, we have a realization {3, 3, 3, 4, 3} as a regular honeycomb inH5.
Of its symmetry group 〈R0, . . . , R5〉 acting on vectors (η, z), R0, . . . , R4 fix η and
act on z = (ζ1, . . . , ζ5) in the standard way as symmetries of the 5-cross-polytope
(that is, R j interchanges ζ j+1 and ζ j+2 for j = 0, . . . , 3, while R4 changes the sign
of ζ5 – compare (7.2)). Further,

(η, z)R5 = 1
2

(
3η − 〈z, u〉, 2z + (η − 〈z, u〉)u)

, (8.3)

where u = (1, 1, 1, 1, 1). In analogy to the case {3, 4, 4}, we can represent a vertex of
{3, 3, 3, 4, 3} by a vector (η, z) ∈ Z

6 with η > 0 and gcd(η, ζ1, . . . , ζ5) = 1. Exactly
the same arguments as deployed in Sect. 7 lead to

Theorem 8.4 The vertex-set of {3, 3, 3, 4, 3} is

vert{3, 3, 3, 4, 3} = {(η, z) ∈ Z
6 | η > 0, η2 = ‖z‖2}.

Remark 8.5 In the alternative normalization, we can identify vert{3, 3, 3, 4, 3} with
S
4 ∩ Q

5.

In a similar way, we have

Proposition 8.6 With the sameconventionas before, the vertex (η, z)of {3, 3, 3, 4, 3}
is coloured j just when the j th coordinate ζ j of z has the same parity as η.

Proof If η is even, then the assumed condition that gcd(η, ζ1, . . . , ζ5) = 1 implies
that at least one of ζ1, . . . , ζ5 must be odd; since η2 ≡ 0 mod 4 and ζ 2 ≡ 1 mod 4
if ζ ∈ Z is odd, we see that exactly four of them are odd. If η is odd, then η2, ζ 2 ≡ 1
mod 8 (for odd ζ ) similarly implies that exactly one of ζ1, . . . , ζ5 is odd. A final
observation that R4 and R5 preserve the parity condition completes the proof; once
again, the fact that η − 〈z, u〉 is even is the key for R5. �

The discussion shows that, for example, we can inscribe four copies of {3, 3, 4,
3, 3} in itself (with disjoint vertex-sets); this leads to geometric vertex-regular com-
pounds of the form

{3, 3, 4, 3, 3}[4k{3, 3, 4, 3, 3}]

for each k. Since, as remarked earlier, we can interpolate copies of {4, 3, 3, 4, 3}
and {3, 4, 3, 3, 4} between successive ones of {3, 3, 4, 3, 3}, a consequence is that
completely classifying possible regular compounds of hyperbolic honeycombs may
be far from straightforward. So, what we shall do is point out that even some simple
compounds do not behave as one might expect.

As in the [3, 4, 4]-family, we have a pair of compounds
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4{3, 3, 3, 4, 3}[5{3, 3, 4, 3, 3}]{3, 4, 3, 3, 3},
{3, 3, 3, 4, 3}[5{3, 3, 4, 3, 3}]4{3, 4, 3, 3, 3}

where a self-dual honeycomb is inscribed in non-self-dual compounds. Of course,
we also have the dual pair

3{3, 3, 3, 4, 3}[5{3, 4, 3, 3, 4}]2{3, 4, 3, 3, 3},
2{3, 3, 3, 4, 3}[5{4, 3, 3, 4, 3}]3{3, 4, 3, 3, 3};

once again, the numbers are explained by the fact that {3, 4, 3, 3, 4} and {4, 3, 3, 4, 3}
can be taken to have complementary subsets of vertices of {3, 3, 3, 4, 3} (that is,
counting colour-classes). Last, though, note that we have further compounds such
as

3{3, 3, 4, 3, 3}[4{3, 4, 3, 3, 4}], {3, 3, 4, 3, 3}[2{4, 3, 3, 4, 3}],
2{3, 4, 3, 3, 4}[3{4, 3, 3, 4, 3}],

which are only vertex-regular; the interested reader will easily be able to derive many
others.

9 Quotients

The regular hyperbolic honeycombs with ideal vertices have quotients which are
locally toroidal, in that their facets and vertex-figures are either spherical or toroidal;
these are discussed in considerable detail in [3, Chaps. 10–12]; we also mention [4].
But on passing to the quotients, it is usually the case that subgroup relationships are
not preserved.

However, among the locally toroidal regular polytopes described in [3, Chap. 10]
are

{{3, 4}, {4, 4 : 2s}} � {{4, 4 : 2s}, {4, 4 | s}} � {{4, 4 | s}, {4, 4 : 2s}},

for each s � 2; recall that the torus components{4, 4 : 2s} = {4, 4}(s,s) and {4, 4 |
s} = {4, 4}(s,0) (in the notation of the monograph) are determined by their Petrie
polygons {2s} and holes {s}, respectively. Exactly the same pattern of colour-classes
of vertices carries over to the quotients. Only s = 2 gives a finite case; for s = 3 the
polytopes are naturally realizable in E5.

In [3, Chap. 11] other polytopes than those arising from quotients of [3, 3, 6] and
its subgroups are considered. In that family, the quotients do not preserve indices of
subgroups; indeed, the same group may occur. In no case do the inscriptions carry
over.

Though there are far from degenerate finite quotients of {3, 3, 3, 4, 3}, the dis-
cussion of [3, Chap. 12] shows that these do not induce nice inscriptions of locally
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toroidal regular polytopes like those in the previous family. However, the operation
μk (with different indices) was employed in a different context in [2] (see also [3,
Sect. 14A]) to produce a family of locally projective regular polytopes.
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