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Abstract It is surprising, but an established fact that thefield of elementary geometry
referring to normed spaces (= Minkowski spaces) is not a systematically developed
discipline. There are many natural notions and problems of elementary and classical
geometry that were never investigated in this more general framework, although their
Euclidean subcases are well known and this extended viewpoint is promising. An
example is the geometry of simplices in non-Euclidean normed spaces; not many
papers in this direction exist. Inspired by this lack of natural results on Minkowskian
simplices, we present a collection of new results as non-Euclidean generalizations
of well-known fundamental properties of Euclidean simplices. These results refer
to Minkowskian analogues of notions like Euler line, Monge point, and Feuerbach
sphere of a simplex in a normed space. In addition, we derive some related results
on polygons (instead of triangles) in normed planes.
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1 Introduction

Looking at basic literature on the geometry of finite dimensional real Banach spaces
(see, e.g., the monograph [52] and the surveys [34, 42]), the reader will observe
that there is no systematic representation of results in the spirit of elementary and
classical geometry in such spaces (in other words, the field of elementary geometry
is not really developed in normed spaces, also called Minkowski spaces). This is
not only meant in the sense that a classifying, hierarchical structure of theorems is
missing. Also, it is already appealing to find the way of correctly defining analogous
notions.An example of such a non-developedpartial field is the geometry of simplices
in non-EuclideanMinkowski spaces. Inspired by this indicated lack of natural results
on Minkowskian simplices, we derive a collection of new results which reflect non-
Euclidean analogues and extensions ofwell knownproperties of Euclidean simplices.
These results are based on, or refer to, generalizations of notions like Euler lines,
Monge points, and Feuerbach spheres of simplices in Minkowski spaces. It should
be noticed that some of these topics are not even established for Minkowski planes;
most of our results are derived immediately for simplices in Minkowski spaces of
arbitrary finite dimension.

In plane Euclidean geometry, the Euler line of a given triangle is a well-studied
objectwhich containsmany interesting points besides the circumcenter and the vertex
centroid of this triangle. Other special points on the Euler line include the orthocenter
and the center of the so-called nine-point- or Feuerbach circle. Notions like this can
be extended to simplices in higher dimensional Euclidean space, and the respective
results can sometimes be sharpened for important subfamilies of general simplices,
like, for example, the family of orthocentric simplices. Using new methods devel-
oped by Grassmann for studying the d -dimensional Euclidean space, this was done
already in the 19th century. Two early related references are [45, 47]. Deeper results
were obtained later; the concept of Euler line and some related notions have been
generalized to Euclidean higher dimensional space in [10, 16–19, 23, 24, 28, 30,
46] for orthocentric simplices, and in [11, 15, 20, 33, 46, 49] for general simplices.
Other interesting generalizations in Euclidean geometry refer to Euler lines of cyclic
polygons, see [25]. For a few results in Minkowski planes and spaces we refer to
[6, 8, 12, 37, 43]. The Feuerbach circle of a triangle in the Euclidean plane passes
through the feet of the three altitudes, the midpoints of the three sides, and the mid-
points of the segments from the three vertices to the orthocenter of that triangle.
Beautiful generalizations of the Feuerbach circle to d -dimensional Euclidean space
for orthocentric simplices have been obtained in [10, 19, 24, 28], and for general
simplices in [11, 20, 46]. Minkowskian analogues have so far only been discussed in
normed planes, see [8, 37, 48]. One should also mention that the concepts discussed
here are certainly interesting for other non-Euclidean geometries; see, e.g., [26, 27].

A d -dimensional (normed or) Minkowski space (Rd , ‖ · ‖) is the vector space Rd

equipped with a norm ‖ · ‖. A norm can be given implicitly by its unit ball B(O, 1),
which is a convex body centered at the origin O; its boundary S(O, 1) is the unit
sphere of the normed space. Any homothet of the unit ball is called a Minkowskian
ball and denoted byB(X , r), whereX is its center and r > 0 its radius; its boundary is
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theMinkowskian sphere S(X , r). Two-dimensionalMinkowski spaces areMinkowski
planes, and for an overview on what has been done in the geometry of normed planes
and spaces we refer to the book [52], and to the surveys [34, 42].

The fundamental difference between non-Euclidean Minkowski spaces and the
Euclidean space is the absence of an inner product, and thus the notions of angles and
orthogonality do not exist in the usual sense. Nevertheless, several types of orthog-
onality can be defined (see [1, 2, 5] for an overview), with isosceles and Birkhoff
orthogonalities being themost prominent examples.We say that y is isosceles orthog-
onal to x, denoted x ⊥I y, when ‖x + y‖ = ‖x − y‖. Isosceles orthogonality is thus
the orthogonality of diagonals in a parallelogram with equal side lengths (a rhombus
in Euclidean space). It is also the orthogonality of chords over a diameter. By con-
trast, y is Birkhoff orthogonal to x, denoted x ⊥B y, when ‖x‖ ≤ ‖x + αy‖ for any
α ∈ R. Thus Birkhoff orthogonality is the (unsymmetric) orthogonality of a radius x
and corresponding tangent vector y of some ball centered at the origin O. For hyper-
planes and lines, there is the notion of normality. A direction (vector) v is normal to
a hyperplane E if there exists a radius r > 0, such that E supports the ball B(O, r) at
a multiple of v. Equivalently, v is normal to E if any vector parallel to E is Birkhoff
orthogonal to v.

For any two distinct points P, Q, we denote by [PQ] the closed segment, by 〈PQ〉
the spanned line (affine hull), and by [PQ〉 the ray {P + λ(Q − P) | λ ≥ 0}; we write
‖[PQ]‖ for the length of [PQ].Wewill use the usual abbreviation conv for the convex
hull of a set.

In this article, we focus on the geometry of simplices in d -dimensionalMinkowski
spaces. A nice contribution to this topic, but with different aims, is the paper [9]. As
usual, a d-simplex is the convex hull of d + 1 points in general linear position, or the
bounded, non-empty intersection of d + 1 closed half-spaces in general position.We
underline that by circumcenters of simplices we mean the centers of circumspheres
(or -balls) of simplices, i.e., ofMinkowskian spheres containing all the vertices of the
respective simplex (see, e.g., [3]). A related, but different notion is that of minimal
enclosing spheres of simplices, sometimes also called circumspheres (cf., e.g., [4]);
this notion is not discussed here. In the two-dimensional situation, circumspheres
and -balls are called circumcircles and -discs. In Minkowski spaces, simplices may
have several, precisely one, or no circumcenter at all, depending on the shape of the
unit ball, see Fig. 1. Examples without circumcenters may only be constructed for

Fig. 1 A triangle with several circumcenters (left), and a triangle without a circumcenter (right),
as illustrated by suitable homothets of the unit ball
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non-smooth norms, as all smooth norms allow inscription into a ball [21, 31]. We
focus on the case where there is at least one circumcenter.

2 Orthocentric Simplices and the Monge Point
in Euclidean Space

We begin with a short survey on results related to orthocentricity in Euclidean space.
In Euclidean geometry, not every simplex in dimension d ≥ 3 possesses an ortho-
center, i.e., a point common to all the altitudes. However, if such a point H exists, the
simplex is called orthocentric and possesses a number of special properties (com-
pare the survey contained in [16, 23]). The following proposition is well known (see
again [16]).

Proposition 2.1 A d-simplex T in Euclidean space is orthocentric if and only if
the direction of every edge is perpendicular to the affine hull of the vertices not
in that edge (i.e., the affine hull of the opposite (d − 2)-face). Equivalently, a d-
simplex in Euclidean space is orthocentric if and only if any two disjoint edges are
perpendicular.

The (d − 2)-faces of a d -polytope are sometimes called ridges, see [44]. The
following fact (see also the survey in [16]) can be proved in many ways, and has
been posed as a problem in the American Mathematical Monthly [29]. Note that
orthocenters are not defined for an edge or a point.

Proposition 2.2 In an orthocentric Euclidean d-simplex (d ≥ 3), the foot of every
altitude is the orthocenter of the opposite facet.

In absence of a guaranteed orthocenter, the literature on Euclidean geometry (e.g.
[7, 14] for three dimensions, [11, 16, 23] for the general case) defines the Monge
point of a tetrahedron or higher dimensional simplex as the intersection of so-called
Monge (hyper-)planes. The Monge point coincides with the Euclidean orthocenter if
the latter exists [7, 11, 14]. From this, theorems about the Euler line, the Feuerbach
circle, etc. can be generalized to higher dimensional simplices, see all the references
given in the Introduction, and see Sect. 4 for Minkowskian analogues. We recall the
definition and the following theorems from [11].

Definition 2.1 Let T be a d -simplex in Euclidean d -space. A Monge hyperplane
is a hyperplane which is perpendicular to an edge of the simplex and which passes
through the vertex centroid of the opposite (d − 2)-face (ridge).

Theorem 2.1 (Monge Theorem) The Monge hyperplanes of a Euclidean d-simplex
have precisely one point in common, which is called the Monge point N of the
simplex.

Theorem 2.2 (Orthocenter Theorem) In an orthocentric Euclidean d-simplex, the
Monge point N coincides with the orthocenter H.
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Theorem 2.3 (Mannheim Theorem, see [7, 14] for d = 3, and [11] for arbitrary d )
For any d-simplex, the d + 1 planes, each determined by an altitude of a d-simplex
and the Monge point (for d = 3, the orthocenter) of the corresponding facet, pass
through the Monge point of the d-simplex.

Regular simplices are orthocentric. Regular simplices are also equilateral, i.e.,
all their edges have equal length, as well as equifacetal, which means that all their
facets are isometric (congruent). Furthermore, the circumcenter M , vertex centroid
G, orthocenter H , and incenter I, i.e., the center of the unique inscribed sphere
touching all facets, coincide. Conversely, we have the following statement, see [16].

Theorem 2.4 A Euclidean d-simplex T is regular, if and only if any of the following
conditions are fulfilled:

1. T is equilateral.
2. T is orthocentric and any two of the centers M , G, I , H coincide.
3. T is orthocentric and equifacetal.

As we will see in the next Section, the concept of Monge point generalizes to
arbitrary Minkowski spaces, at least for simplices with a circumcenter.

3 The Monge Point of Simplices in Minkowski Spaces

In this section, we generalize the definition of Monge point and its construction by
Monge hyperplanes to Minkowski spaces of arbitrary (finite) dimension d ≥ 2.

Definition 3.1 Let (Rd , ‖ · ‖) be a d -dimensional Minkowski space, and let T be a
d -simplex with a circumcenter M . For each pair (F, EF ) of a ridge F and opposite
edge EF , and if M is not the midpoint of EF , define the associated Monge line as the
line through the vertex centroid of F which is parallel to the line through M and the
midpoint of EF .

Theorem 3.1 Let (Rd , ‖ · ‖) be a d-dimensional Minkowski space, and let T be a
d-simplex with a circumcenter M . Then the Monge lines of T are concurrent in a
single point NM , called the Monge point of T .

Remark 3.1 Before we proceed with the proof of Theorem 3.1, we remind the reader
of the following well-know fact: the centroid G of d + 1 points is the weighted
average

(d − k)G ′ + (k + 1)G ′′

d + 1

of the centroid G ′ of k + 1 of the points and the centroid G ′′ of the remaining d − k
points. Thus, it is possible to obtain G as the intersection of all k-medians (where
k = 0, . . . , 
 d+1

2 � − 1) between the centroid of a subset of k + 1 points and the
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centroid of the remaining d − k points. For d + 1 points in general linear position
and k = 0 we obtain the usual medians.

Proof (Proof of the theorem) The proof is similar to, but more general than, the
one in [11] for Euclidean space. First, for each (d − 2)-face F denote its vertex
centroid G(F), and let G(EF) be the midpoint or vertex centroid of the oppo-
site edge EF . Since a d -simplex possesses

(d+1
2

)
edges (ridges) and M can be

located at the midpoint of at most one of them, the auxiliary lines 〈M G(EF )〉 are
well-defined for at least

(d+1
2

) − 1 pairs (F, EF ). The auxiliary line 〈M G(EF )〉,
if well-defined, is parallel to the associated Monge line 〈G(F)L(F)〉 of (F, EF ),
where we define L(F) := G(F) + G(EF) − M . Second, if M = G, then G and
G(F) both lie on 〈M G(EF )〉, i.e., each auxiliary line coincides with the asso-
ciated Monge line, and all these lines intersect in NM := M = G (and this is
the only point, since different edge midpoints define different lines 〈M G(EF )〉).
If M �= G, then auxiliary line and Monge line are distinct. Observe that each
1-median [G(F)G(EF )] connects a Monge line and the corresponding auxiliary
line. The vertex centroid G of the simplex T divides each 1-median in the ratio
2 : (d − 1), so the same division ratio holds true for the segment [MN (F)] which
passes through the given circumcenter M , the vertex centroid G of T , and ends
at the point N (F) on [G(F)L(F)〉, see Fig. 2. As a consequence of this common
ratio, all points N (F) are indeed the same point NM , solely dependent on the chosen
circumcenter (and the given simplex), and all rays [G(F)L(F)〉 meet at NM . �

In keeping with the tradition in Euclidean space, we want to reformulate the
theorem in terms of hyperplanes.

Definition 3.2 Let (Rd , ‖ · ‖) be a d -dimensional Minkowski space, and let T be
a d -simplex with a circumcenter M . Suppose M is not the midpoint of an edge EF

opposite a (d − 2)-face F of the simplex. For the pair (F, EF ) define the auxiliary
pencil of hyperplanes through M and the midpoint of EF . Furthermore, define the
associated Monge hyperplane pencil for the pair (F, EF ) as the translate of the
auxiliary pencil such that all hyperplanes go through the vertex centroid of F .

Corollary 3.2 Let (Rd , ‖ · ‖) be a d-dimensional Minkowski space, and let T be a
d-simplex with a circumcenter M . Then the hyperplanes of all (well-defined) Monge
hyperplane pencils of T intersect in a single point, namely the Monge point of T .

MG(EF )

G

G(F )L(F )N(F )

Fig. 2 Location of the Monge point
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The following corollary tells us the precise location of the Monge point with respect
to the vertices of the simplex and the given circumcenter.

Corollary 3.3 Let T = conv{A0, . . . , Ad } be a d-simplex in d-dimensional
Minkowski space, possessing a circumcenter M . Then the associated Monge point
is determined as

NM = M +
∑d

i=0(Ai − M )

d − 1
.

Proof Let F be a ridge of the simplex, opposite the edge EF , such that G(EF) �= M
(i.e., the edge midpoint is distinct from M ; such an edge must exist). From the proof
of Theorem 3.1 we deduce for M �= G that

‖[M G(EF)]‖ : ‖[G(F)NM ]‖ = ‖[M G]‖ : ‖[GNM ]‖ = (d − 1) : 2.

Thus

NM = M + (d + 1)
G − M

d − 1
= M + (d + 1)

∑d
i=0(Ai−M )

d+1

d − 1
= M +

∑d
i=0(Ai − M )

d − 1
.

For M = G we obtain NM = M = G. �
Remark 3.4 In Euclidean context, each Monge hyperplane passes through the ver-
tex centroid of a (d − 2)-face F and is perpendicular to the opposite edge EF (here
opposite edge means the edge between the two vertices not in the ridge F). However,
we see that perpendicularity is not necessary for the construction, and any hyperplane
containing the associated Monge line as per our definition is suitable (provided the
Monge line is well-defined). Therefore, while our Minkowskian Monge pencils con-
tain the correct Monge hyperplanes in Euclidean context, we have the confirmation
that orthogonality of lines and hyperplanes need not necessarily play a role when
finding the Monge point. The concept of Monge point is even an affine concept,
as the circumcenter property of M is used nowhere (i.e., any point M can be used
to construct “Monge lines” intersecting at NM with the analytical expression given
above).

In particular, we obtain the following corollary, which appears to give a new kind
of construction also for the Euclidean case.

Corollary 3.5 Let (Rd , ‖ · ‖) be a d-dimensional Minkowski space, and let T be a
d-simplex with a circumcenter M . For each ridge F and the opposite edge EF with
midpoint G(EF), if M �= G(EF) and 〈M G(EF )〉 is not parallel to F, define an M -
hyperplane as the hyperplane containing F and being parallel to 〈M G(EF )〉. Then
all defined M -hyperplanes intersect in the Monge point NM .

Remark 3.6 We summarize that the Monge point can be constructed in at least two
concrete ways, once by Monge lines (Theorem 3.1), and once by M -hyperplanes
(Corollary 3.5). Additionally, in Euclidean space, we have the usual construction via
hyperplanes and orthogonality, which is a different specialization of Corollary 3.2.
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Proof (Proof of the corollary) Let A0, . . . , Ad denote the vertices of T . Observe
that, since the medial hyperplanes of T are in general position, M lies in at most d
of the d + 1 medial hyperplanes. Without loss of generality, M does not lie in the
medial hyperplane between A0 and its opposite facet. Since G([A0Ai]) lies in that
medial hyperplane for i = 1, . . . , d , and the ridge F0,i opposite [A0Ai] is parallel to
that medial hyperplane, we conclude that [M G([A0Ai])] is not parallel to F0,i, and
the M -hyperplanes are defined at least for the d pairs (F0,i, [A0Ai]). Consider the
(d − 1)-simplex

T0 := conv{G([A0Ai]), i = 1, . . . , d},

which is a homothet of the facet F0 of T opposite A0 with homothety center A0

and factor 1
2 . The related (d − 1)-simplex T ′

0 is obtained by homothety of T0 in
G(T0) = A0+G(F0)

2 and with homothety factor −(d − 1). Observe that the (d − 2)-
dimensional facets of T ′

0 pass through the vertices of T0 and are parallel to the
(d − 2)-dimensional facets of T0.

Now, the d M -hyperplanes previously considered are parallel to the hyperplanes
defined by the facets of the d -simplex

conv{M ∪ T ′
0}

through the vertex M . Therefore, these M -hyperplanes are in general position, inter-
secting only in the Monge point NM which, by definition, is contained in every
defined M -hyperplane. �

Another theorem concerning theMonge point in Euclidean space is theMannheim
theorem, see [14] for the three-dimensional case and [11] for generalizations. It is
stated in Theorem 2.3 above, and it presents an example of a statement that cannot
be extended to Minkowski spaces. The simple reason is that hyperplane sections
of Minkowskian balls need not be centrally symmetric. Therefore, in general the
concept of Monge point of a d -simplex cannot be transferred to its facets.

4 Euler Lines and Generalized Feuerbach Spheres of
Minkowskian Simplices

We define as Euler line associated to a circumcenter M the straight line connecting
M with the vertex centroid G. Thus, in the case of the vertex centroid being a
circumcenter, the associated Euler line is not well-defined (see also Corollary 4.6).
We now consider the situation in d -dimensional Minkowski space for d ≥ 2.

Definition 4.1 For a d -simplexT := conv{A0, . . . , Ad }with circumcenterM , define
the complementary line of a facet with respect to M as the translate of the line between
the circumcenter M of the simplex and the vertex centroid of the facet, passing
through the opposite vertex. If A1, . . . , Ad are the vertices of the chosen facet with
vertex centroid G0, then the complementary line is A0 + t · (G0 − M ), t ∈ R.
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Remark 4.1 As in the planar case, for smooth norms such a circumcenter always
exists (see [32], and [42, §7.1]). For a non-smooth norm, simplices without a cir-
cumcenter may exist (see again Fig. 1 (right) for the planar situation, and it is easy
to construct examples also for general d ).

The following theorem is an easy consequence of the definition of the vertex
centroid.

Theorem 4.1 The complementary lines of the facets of a d-simplex T with respect to
a fixed circumcenter M connect all the vertices to the same point, the complementary
point PM associated to M .

Proof Let T = conv{A0, . . . , Ad }, and let Gj denote the vertex centroid of the facet
opposite vertex Aj. Then the point

PM = M +
d∑

i=0

(Ai − M ) = Aj + d

⎛

⎜⎜⎜⎜⎜⎜
⎜
⎝

d∑

i=0
i �=j

Ai

d
− M

⎞

⎟⎟⎟⎟⎟⎟
⎟
⎠

= Aj + d(Gj − M ) for each j = 0, . . . d ,

lies on each complementary line. For each j = 0, . . . , d , we have ‖[PM Aj]‖ =
d‖[M Gj]‖. �

Various useful types of orthogonalities have been defined in Minkowski spaces
for pairs of vectors, all coinciding with the usual orthogonality in Euclidean space,
yet we only have normality as a concept for vectors and (hyper-)planes. We call
each segment [PM Aj] on a complementary line the complementary segment associ-
ated to the opposite facet. As such, a complementary segment is not orthogonal to a
hyperplane in any known sense. However, in dimension two we obtain the familiar
isosceles orthogonality between an edge of a simplex (triangle side) and the corre-
sponding complementary segment (orthogonality if we are in the Euclidean plane!),
and the complementary point is the C-orthocenter [8, 37]. Unlike the C-orthocenter,
the notion of complementary point generalizes to any higher dimension.

Remark 4.2 The complementary point is even an affine notion (and so is the Monge
point, see Remark 3.4), as we only used division ratios of segments on a line. In
addition, the point PM can be constructed for any point M (circumcenter or not) in
the followingway: take the line connectingM to the vertex centroid of a simplex facet
(if distinct from M ), and then consider the translated line passing through the vertex
opposite the chosen facet. All lines of the latter kind intersect in a point (denoted PM

in the present article), which has already been observed by Snapper [49].

The complementary point and Monge point associated to a simplex with circum-
center M possess the following properties.
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Theorem 4.2 Let T be a d-simplex (d ≥ 2) in Minkowskian space (Rd , ‖ · ‖), with
a circumcenter M distinct from its vertex centroid G.

(a) The associated complementary point PM and the Monge point NM lie on the
Euler line 〈M G〉.

(b) The vertex centroid G divides the segment [MPM ] internally in the ratio 1 : d.
(c) The associated Monge point NM divides the segment [MPM ] internally in the

ratio 1 : (d − 2).
(d) The vertex centroid G divides the segment [MNM ] internally in the ratio

(d − 1) : 2.

Proof Let T = conv{A0, . . . , Ad }. That the Euler line 〈GM 〉 associated to M passes
through NM and PM can be seen from the following equations:

G =
∑d

i=0 Ai

d + 1
= M +

∑d
i=0(Ai − M )

d + 1
,

NM = M +
∑d

i=0(Ai − M )

d − 1
,

PM = M +
d∑

i=0

(Ai − M ).

Thus (a) is proved. The above equations also immediately prove (b) and (c). Proving
(d) is an easy exercise in arithmetic:

‖G − M ‖: ‖NM − G‖ =
∥
∥∥
∥
∥

∑d
i=0(Ai − M )

d + 1

∥
∥∥
∥
∥

:
∥
∥∥
∥
∥

∑d
i=0(Ai − M )

d − 1
−

∑d
i=0(Ai − M )

d + 1

∥
∥∥
∥
∥

=
∥∥
∥
∥
∥

∑d
i=0(Ai − M )

d + 1

∥∥
∥
∥
∥

:
∥∥
∥
∥
∥
2

∑d
i=0(Ai − M )

(d − 1)(d + 1)

∥∥
∥
∥
∥

= (d − 1) : 2.

�
Remark 4.3 We see thatNM can be obtained fromM by homothety in G, with homo-
thety ratio − 2

d−1 . Moreover, recall the M -hyperplanes from Corollary 3.5 which
intersect in NM . The above homothety takes each M -hyperplane to a certain parallel
hyperplane through M . It turns out that these central planes (through the circumcen-
ter M ) encompass the supporting hyperplanes through M of the auxiliary simplex
conv{M ∪ T ′

0} in the proof of Corollary 3.5.

Considering the points of interest in Theorem 4.2, one may ask whether the point

M +
∑d

i=0(Ai−M )

d on the Euler line, dividing [MPM ] internally in the ratio 1 : (d − 1),
holds any special meaning. It turns out that it is the center of a sphere analogous to
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the well-known Feuerbach circle of a triangle in the Euclidean plane. The extension
to higher dimensional normed spaces for the case M �= G is as follows (for the
“degenerate” case M = G we refer to Corollary 4.6).

Theorem 4.3 (The 2(d + 1)- or Feuerbach sphere of a d-simplex) In an arbitrary
Minkowski d-space, let T = conv{A0, . . . , Ad } be a d-simplex with a circumcenter
M and circumradius R, and let G( �= M ) be its vertex centroid. The sphere with center

FM := M +
∑

(Ai−M )d
i=0

d on the Euler line and of radius r := R
d passes through the

following 2(d + 1) points:

(a) the vertex centroids Gi, i = 0, . . . , d, of the facets Fi of T (Fi is opposite vertex
Ai), and

(b) the points LM
i dividing the segments connecting the Monge point NM to the

vertices Ai of T , i = 0, . . . , d, in the ratio 1 : (d − 1). Moreover, S(FM , r) is a
homothet of the circumsphere S(M , R) with respect to the vertex centroid G and
homothety ratio −1

d , i.e., G divides the segment [FM M ] internally in the ratio
1 : d, and FM divides the segment [NM M ] internally in the ratio 1 : (d − 1).

Remark 4.4 In analogy to the Feuerbach circle in the plane centered at the nine-
point-center, we call FM the 2(d + 1)-center of the simplex with respect to the
circumcenter M , and S(FM , R

d ) its Feuerbach or 2(d + 1)-point-sphere.

Proof (Proof of the theorem) The vertex centroid of a facet opposite vertex Aj is

Gj =

d∑

i=0
i �=j

Ai

d . We have R = ‖Aj − M ‖ for any j = 0, . . . , d , and thus

‖Gj − FM ‖ =

∥
∥∥∥∥∥
∥

∑d
i=0
i �=j

Ai

d
− M −

∑d
i=0(Ai − M )

d

∥
∥∥∥∥∥
∥

=
∥∥∥∥

M − Aj

d

∥∥∥∥ = R

d
,

which proves that S(FM , R
d ) passes through the points in (a).

The Monge point is NM = M +
∑d

i=0(Ai−M )

d−1 , thus

LM
j := M +

∑d
i=0(Ai − M )

d − 1
+ Aj − M −

∑d
i=0(Ai−M )

d−1

d

= M + (d − 1)
∑d

i=0(Ai − M )

d(d − 1)
− M − Aj

d

= M +
∑d

i=0(Ai − M )

d
− M − Aj

d
.
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Therefore,

‖LM
j − FM ‖ =

∥∥
∥∥∥

M +
∑d

i=0(Ai − M )

d
− M − Aj

d
− M −

∑d
i=0(Ai − M )

d

∥∥
∥∥∥

=
∥∥∥∥−M − Aj

d

∥∥∥∥ = R

d
,

which proves that S(FM , R
d ) passes through the points in (b). We also have

‖FM − G‖: ‖G − M ‖ =
∥∥∥M +

∑d
i=0(Ai−M )

d − M −
∑d

i=0(Ai−M )

d+1

∥∥∥
∥∥∥M +

∑d
i=0(Ai−M )

d+1 − M
∥∥∥

=
∥∥∥
∥∥

∑d
i=0(Ai − M )

d(d + 1)

∥∥∥
∥∥

:
∥∥∥
∥∥

∑d
i=0(Ai − M )

d + 1

∥∥∥
∥∥

= 1 : d

and

‖NM − FM ‖: ‖FM − M ‖ =
∥∥∥M +

∑d
i=0(Ai−M )

d−1 − M −
∑d

i=0(Ai−M )

d

∥∥∥
∥∥∥M +

∑d
i=0(Ai−M )

d − M
∥∥∥

=
∥∥
∥∥∥

∑d
i=0(Ai − M )

d(d − 1)

∥∥
∥∥∥

:
∥∥
∥∥∥

∑d
i=0(Ai − M )

d

∥∥
∥∥∥

= 1 : (d − 1),

proving the remaining statements. �
Remark 4.5 As noted in the Introduction, the sphere construction has been done
for the Euclidean case in several earlier works, giving a 3(d + 1)-point-sphere. In
Minkowski space, we ”lose” the (d + 1) points which are orthogonal projections of
the LM

i onto the facets Fi. In the planar case, this has already been pointed out in
[8, 37].

The following corollary is an immediate consequence of the affine nature of
both the points mentioned in Theorem 4.2 and the 2(d + 1)-center introduced in
Theorem 4.3.

Corollary 4.6 In a d-simplex in Minkowskian d-space, the points M , G, FM , NM ,
PM are either collinear (on the Euler line), or they all coincide. In the latter case,
instead of speaking of the Euler line not being well-defined, sometimes the term
collapsing Euler line is used.

Remark 4.7 Based on the affine underpinning of our setting, we may consider the
(d + 1)-dimensional spatial representation of this configuration where the segments
betweenM and the vertices of our simplex are projections of some segments spanning



Monge Points, Euler Lines, and Feuerbach Spheres in Minkowski Spaces 247

a (d + 1)-dimensional parallelepiped. Then, the segment [MPM ] on the Euler line
corresponds to the projection of the main diagonal of the parallelepiped, and the
points dividing the main diagonal in the ratio 1 : d , 1 : (d − 1), and 1 : (d − 2)
project to the vertex centroid, the center of the Feuerbach-2(d + 1)-point-sphere,
and the Monge point, respectively.

Since it can be shown that NM divides the segment [FM M ] externally in the ratio
1 : d , i.e., [FM M ] is divided harmonically by G and NM , we obtain the following
corollary, the second statement of which has been noted in [10] for Euclidean ortho-
centric simplices and the orthocenter. For a strictly convex normed plane (d = 2),
the second statement can be found in [37, Theorem 4.6].

Corollary 4.8 The Monge point NM associated to a circumcenter M of a d-simplex
T is the center of homothety between the Feuerbach-2(d + 1)-point-sphere centered
at FM and the circumsphere centered at M , with homothety ratio 1 : d. For any line
from NM meeting the associated circumsphere of T in Q, the point P dividing [NM Q]
internally in the ratio 1 : (d − 1) is located on the Feuerbach sphere; conversely, for
any line from NM meeting the associated Feuerbach sphere in P, the point Q dividing
the segment [NM P] externally in the ratio d : (d − 1) is located on the circumsphere
of T .

5 Generalizations for Polygons in the Plane

Generalizations of the concept ofEuler line andFeuerbach circle havenot just focused
on raising the dimension of the space; there have also been attempts to generalize to
polygons. We will now see that easy generalizations arise if we consider such poly-
gons as projections of higher dimensional simplices or sections of parallelepipeds.
This relates to descriptive geometry (see also Remark 4.7).

Herrera Gómez [25] and Collings [13] have written about remarkable circles in
connection with cyclic polygons in the Euclidean plane. Their definition of cyclic
polygon as a polygon possessing a circumcircle is directly extendable to any normed
plane. Necessarily, cyclic polygons are convex.

Let P = conv{A0, . . . , Ad }, d ≥ 3, be a cyclic polygon with circumcenter M in
the normed plane (R2, ‖ · ‖). We may view the vertices of P as the images under
projection of certain vertices of a (d + 1)-dimensional parallelepiped Q in (d + 1)-
dimensional space to an affine plane (which we then endow with the norm ‖ · ‖),
namely the vertices adjacent to M ′ where M ′ projects to M (compare Remark 4.7).
This makes P the projection of that hyperplane section P′ of Q which is defined
by all the vertices adjacent to M ′. Alternatively, we may view P as the shadow of
a d -simplex T , which itself is a projection of the hyperplane section P′ of Q to an
affine d -subspace.

We now define the points PM (complementary point), NM (Monge point), G
(vertex centroid), FM (2(d + 1)-center) of the polygon to be the respective parallel
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projections of the following distinguished points on the main diagonal of the paral-
lelepiped, which would have the corresponding meaning for the d -simplex T when
M ′ projects to a circumcenter of T , see Sect. 4. That is,

G =
∑d

i=0 Ai

d + 1
= M +

∑d
i=0(Ai − M )

d + 1
is called the vertex centroid of the polygon P,

FM = M +
∑d

i=0(Ai − M )

d
is called the 2(d + 1) − center of the polygon P,

NM = M +
∑d

i=0(Ai − M )

d − 1
is called the Monge point of the polygon P,

PM = M +
d∑

i=0

(Ai − M ) is called the complementary point of the polygon P.

These points either coincide or are collinear on the Euler line of the polygon P
(compare Corollary 4.6), with the division ratios given in Theorem 4.2. We can then
easily deduce the following relationships.

Theorem 5.1 Let P = conv{A0, . . . , Ad }, d ≥ 3 be a cyclic polygon with circum-
center M and circumradius R in the normed plane (R2, ‖ · ‖). Then:

(a) The complementary point PM is common to all the circles S(Pi
M , R), i =

0, . . . , d, where Pi
M is the complementary point of the subpolygon Pi =

conv ({A0, . . . , Ad } \ {Ai}) with respect to the circumcenter M .

(b) The lines 〈AiPi
M 〉 are concurrent in CM , where CM := M + 1

2

∑d
i=0(Ai − M ) is

the midpoint of [MPM ] and called the spatial center of P with respect to M .

(c) The midpoints Ei of the segments joining the vertices Ai, i = 0, . . . , d, with the
complementary point PM are concyclic in the circle S(CM , R

2 ).

(d) The point CM is common to all the circles S(Ci
M , R

2 ), where Ci
M is the spatial

center of the subpolygon Pi with respect to the circumcenter M , i = 0, . . . , d,
and the points Ci

M also lie on the circle S(CM , R
2 ).

Proof We have

PM = M +
d∑

j=0

(Aj − M ) = M +
d∑

j=0
j �=i

(Aj − M ) + (Ai − M ) = Pi
M + (Ai − M ).

Since (Ai − M ) is a radius of any translate of the circle S(M , R), we obtain the
statement in (a). In the spatial representation in (d + 1)-dimensional space, the vertex
projecting to the complementary point PM is the endpoint opposite M ′ of the main
diagonal of the parallelepiped Q (i.e., the line which projects to the Euler line),
whereas the pre-images of the pointsPi

M are vertices adjacent to the pre-image ofPM .
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Thus the pre-images of each point Pi
M and Ai, i = 0, . . . , d , together span another

main diagonal of the parallelepiped Q. The main diagonals of the parallelepiped
intersect in one point C ′ (the vertex centroid of the parallelepiped), and this point
halves each main diagonal. The projection of this point is the point CM by definition,
which proves part (b). Note that at most d − 1 of the lines 〈AiPi

M 〉 may not be well-
defined, and precisely when their pre-images are parallel to the null space of the
projection, but at least 2 lines remain to determine the point CM . Part (d) is similar
to part (a), in that

CM = M + 1

2

d∑

j=0

(Aj − M ) = M + 1

2

d∑

j=0
j �=i

(Aj − M )

+1

2
(Ai − M ) = Ci

M + 1

2
(Ai − M ).

The second statement in (d) follows trivially. Finally, for part (c), consider Fig. 3 and
observe that the line 〈CM Ei〉 is parallel to 〈MAi〉 for each i = 0, . . . , d . �

Remark 5.1 For the Euclidean plane and d = 3, part (d) is well known [53, pp.
22–23]. For all d ≥ 3, the statements (a)–(c) have been established in [25] where
PM is called the orthocenter, and S(CM , R

2 ) the Feuerbach circle of the polygon.
For strictly convex normed planes part (d) has been shown in [37, Theorem 4.18],
calling the point CM the center of the Feuerbach circle S(CM , R

2 ), and the circles
S(Ci

M , R
2 ) the Feuerbach circles of the subpolygons. The motivation in either case

was to observe a radius half as long as the radius of the original circumcircle. We see
that the statements extend in some way to all Minkowski planes, though one has to

M G FM NM PM

Ai

LM
i

Gi

d 1
d+1
d−1

a

da
R

(d+1)d(d−2)
d−1

R
d

R
d b

b(d− 1)

Fig. 3 Points on the Euler line and Feuerbach sphere, and ratios of line segments
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be careful in their formulation; recall that in planes which are not strictly convex, we
cannot necessarily speak of the (unique) circumcircle, or the (unique) intersection
of several circles.

Remark 5.2 Note that M is a circumcenter of P, and also a circumcenter for each
of its sub-polygons with d ≥ 3 vertices. The analogous statement for a d -simplex
in d -space is wrong, i.e., a circumcenter of a d -simplex T is not a circumcenter for
each of its facets, which is the reason for the lack of analogous higher dimensional
statements involving the complementary points of facets of T in Sect. 4.

An alternative, equally plausible definition of (orthocenter and) Feuerbach circle
of a polygon in the Euclidean plane was given by Collings [13]. This, too, generalizes
to normed (Minkowski) planes, and is easily provable using the spatial representation
given above. Both concepts of Feuerbach circles are illustrated in Fig. 4, for cyclic
pentagons in the �1-norm.

Theorem 5.2 Let P = conv{A0, . . . , Ad }, d ≥ 3, be a cyclic polygon with circum-
center M and circumradius R in the normed plane (R2, ‖ · ‖).
(a) The Monge point NM is the point of intersection of the lines 〈AiN i

M 〉,
i = 0, . . . , d, where N i

M is the Monge point of the subpolygon Pi =
conv ({A0, . . . , Ad } \ {Ai}).

(b) The vertex centroids Gi of the subpolygons Pi = conv ({A0, . . . , Ad } \ {Ai}), i =
0, . . . , d, are concyclic on S(FM , R

d ), where FM is the 2(d + 1)-center of the
polygon. Furthermore, the circle S(FM , R

d ) passes through the (d + 1) points
LM

i dividing the segments [NM Ai] in the ratio 1 : (d − 1).
(c) The Monge points N i

M of the subpolygons are concyclic on the circle

S

⎛

⎝M + 1

d − 2

d∑

j=0

(Aj − M ),
R

d − 2

⎞

⎠

with its center on the Euler line.

Proof We have

NM = M + 1

d − 1

d∑

j=0

(Aj − M )

= Ai + d − 2

d − 1

⎛

⎜⎜
⎝

⎛

⎜⎜
⎝M + 1

d − 2

d∑

j=0
j �=i

(Aj − M )

⎞

⎟⎟
⎠ − Ai

⎞

⎟⎟
⎠

= Ai + d − 2

d − 1

(
N i

M − Ai
)
,
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Fig. 4 Comparison of
different definitions of the
Feuerbach circle for a
pentagon in the �1-norm. For
a see Remark 5.1, and for b
see Remark 5.4. Respective
radii are marked by dotted
line segments, and the
relevant part of the Euler line
[MPM ] is marked in bold.
One pair of special points on
the Feuerbach circle is
constructed in each case
(with thin solid auxiliary
lines)

M

CM

PM

A0

P 0
M

C0
M

E0

(a) The Feuerbach circle of half size.

M
FM

PM

NM
G0

A0

LM
0

(b) The Feuerbach circle of Collings.
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which proves part (a). Part (b) is clear with Theorem 4.3 and the fact that the segments
[FM Gi] and [FM LM

i ] have equal length and are homothets of [MAi] for each i =
0, . . . , d (with factor 1

d and homothety center NM ). For part (c), observe that for each
i = 0, . . . , d , N i

M is the intersection of the lines 〈M Gi〉 and 〈AiNM 〉, see also Fig. 3.
Since the above equation shows that NM divides the segment [AiN i

M ] in the ratio
(d − 2) : 1, the homothet of the circumsphere with respect to homothety center NM

and homothety ratio − 1
d−2 passes through the N i

M . Thus the corresponding center

can be calculated as M + 1
d−2

∑d
j=0(Aj − M ) (on the Euler line), and the radius

is R
d−2 . �

Remark 5.3 Collings [13] proved a variant of part (a) for the Euclidean plane and
called the point NM differently, namely the orthocenter of the polygon. In fact,
Collings’ orthocenter (per our definition, the Monge point NM ) was defined induc-
tively, using the base case d = 2, i.e., starting at sub-triangles of P, whose Monge
point, complementary point, and C-orthocenter coincide. Note that an inductive def-
inition of the Monge point as such necessitates that M is the circumcenter at each
stage of the recursion (otherwise the resulting points at each stage would not cor-
respond to our definition of Monge point), and thus only works in the plane. In the
context of d -simplices, we did not consider this recursion for precisely this reason
(although of course, the respective lines exist in higher dimensional space, and they
are concurrent at the corresponding points!).

Remark 5.4 Part (b) was also proved for the Euclidean plane in [13], and in analogy
with the nine-point-circle of a triangle, the circle S(FM , R

d ) was named the (gener-
alized) nine-point-circle, although it was only observed to pass through the (d + 1)
vertex centroids Gi. B. Herrera Gómez [25] extended the statements, for example by
proving (c) for the Euclidean plane, and by investigating related infinite families of
circles.

6 Concluding Remarks and Open Problems

Solutions to questions from elementary geometry in normed spaces often yield an
interesting tool and form the first step for attacking problems in the spirit of Discrete
and Computational Geometry in such spaces (see, e.g., [3, 4] for the concepts of
circumballs and minimal enclosing balls, or [34, Section 4] referring to bisectors
as basis of an approach to Minkowskian Voronoi diagrams). And of course it is an
interesting task for geometers to generalize notions like orthogonality (see [1, 2, 5]),
orthocentricity (cf. [8, 37, 43, 48]), isometries (see [39, 41]), and regularity (see
[40]) in absence of an inner product. In case of regularity, we may ask which fig-
ures are special, and what are useful concepts to describe their degree of symmetry
in normed planes and spaces? For Minkowski spaces nothing really satisfactory is
done in this direction, and it is clear that a corresponding hierarchical classification
of types of simplices would yield the first step here. Thus, it would be an interesting
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research program to extend the generalizable parts of the concepts investigated in
[15–17] to normed spaces: what particular types of simplices are obtained if special
points of them, called "centers" (like circum- and incenters, vertex centroids, Monge
points, Fermat-Torricelli points etc.), coincide or lie, in cases where this is not typical
(e.g., in case of the incenter), on the Euler line? In view of [39, 41], a related inter-
esting task might be the development of symmetry concepts based on Minkowskian
isometries.

Another interesting point of view comes in with the field of geometric config-
urations which is summarized by the recent monograph [22]. Namely, the Three-
Circles-Theorem and Miquel’s Theorem can be successfully extended to normed
planes (see [8, 37, 50] and thus have acquired some recent popularity. Clifford’s cir-
cle configuration, for circles of equal radii also called Clifford’s Chain of Theorems
(see [36, 54]), is a direct generalization of the Three-Circles-Theorem and also part
of the collection of theorems which nicely ties to visualizations of the Euler line and
the Feuerbach circle in the spirit of descriptive geometry (see our discussion at the
beginning of Sect. 5 above). Based on [8, 37], Martini and Spirova extend in [38] the
Clifford configuration for circles of equal radii to strictly convex normed planes, and
prove properties of the configuration as well as characterizations of the Euclidean
plane amongMinkowski planes. Using our terminology from Sect. 5 above, one may
easily color the vertices of the parallelepiped Q alternatingly red and blue, with M ′
being blue. Then the projected blue vertices are centers of circles of the Clifford con-
figuration, whereas the projected red vertices are in the intersection of certain subsets
of the circles. Due to the successful extension of these topics to normed planes and
spaces one might hope that further configuration concepts can be generalized this
way. E.g., one can check whether the comprehensive geometry of n-lines (which are
the natural extensions of complete quadrilaterals; see Section 4 of the survey [35])
and systems of circles correspondingwith them contain parts which are generalizable
this way.

As basic notions like isoperimetrix (see [52, §4.4 and §5.4]) demonstrate, duality
(of norms) plays an essential role in the geometry of normed spaces. This concept
should also be used in that part of Minkowski Geometry discussed here. It should
be checked how far this important concept can be applied to get, in correspondence
with already obtained results, also “dual results”, such that, for example, results on
notions like “circumball” and “inball” might be dual to each other.

Finallywemention that even for the Euclidean plane there are new generalizations
of notions, such as generalized Euler lines in view of so-called circumcenters of
mass etc. (see [51]), which could, a fortiori, also be studied for normed planes and
spaces.and minimal enclosing balls

Acknowledgements The authors are grateful to Emil Molnár for several hints and remarks which
helped to improve the presentation in the final version of this paper.
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