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Preface

This volume contains a number of articles on the topics of symmetry and discrete
geometry. Most of them were papers presented during the conference ‘Geometry
and Symmetry’, held at the University of Pannonia in Veszprém, Hungary, the
week 29 June to 3 July 2015. This conference was arranged in honour of Károly
Bezdek and Egon Schulte, on the occasion of the year in which they both turned 60.
Many of the papers reflect the remarkable contributions they made to geometry.

The revival of interest in discrete geometry over the past few decades has been
influenced by Bezdek and Schulte to a large degree. Although their research
interests are somewhat different, one could say that they have complemented each
other, and this has resulted in a lively interaction across a wide variety of different
fields. Accordingly, the volume includes a range of topics and provides a snapshot
of a rapidly evolving area of research. The contributions demonstrate profound
interplays between different approaches to discrete geometry.

Kepler was the first to raise the discrete geometry problem of sphere packing.
Associated tiling problems were considered at the turn of the century by many
researchers, including Minkowski, Voronoi, and Delone. The Hungarian school
pioneered by Fejes Tóth in the 1940s initiated the systematic study of packing and
covering problems, while numerous other mathematicians contributed to the field,
including Coxeter, Rogers, Penrose, and Conway. While the classical problems of
discrete geometry have a strong connection to geometric analysis, coding theory,
symmetry groups, and number theory, their connection to combinatorics and
optimisation has become of particular importance. These areas of research, at the
heart of Bezdek’s work, play a central role in many of the contributions to this
volume.

Kepler, with his discovery of regular non-convex polyhedra, could also be
credited with founding of modern polytope theory. The subject went into decline
before it was taken up again by Coxeter almost a century ago and later by
Grünbaum. Based on their impressive and seminal contributions, the search for
deeper understanding of symmetric structures has over the past few decades pro-
duced a revival of interest in discrete geometric objects and their symmetries. The
rapid development of abstract polytope theory, popularised by McMullen’s and
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Schulte’s research monograph with the same name, has resulted in a rich theory,
featuring an attractive interplay of methods and tools from discrete geometry (such
as classical polytope theory), combinatorial group theory, and incidence geometry
(generators and relations, and Coxeter groups), graph theory, hyperbolic geometry,
and topology.

We note with sadness that during the work on this volume, our good friend and
colleague Norman W. Johnson (a contributor to this volume) passed away. Since
receiving his Ph.D. with Coxeter in 1966, Norman held a position at the Wheaton
College in Massachusetts, where he taught until his retirement in 1998.

It is our hope that this volume not only exhibits the recent advances in various
areas of discrete geometry, but also fosters new interactions between several dif-
ferent research groups whose contributions are contained within this collection of
papers.

Auckland, New Zealand Marston D. E. Conder
Hamilton, Canada Antoine Deza
Toronto, Canada Asia Ivić Weiss
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The Geometry of Homothetic Covering
and Illumination

Károly Bezdek and Muhammad A. Khan

Abstract At a first glance, the problem of illuminating the boundary of a convex
body by external light sources and the problem of covering a convex body by its
smaller positive homothetic copies appear to be quite different. They are in fact
two sides of the same coin and give rise to one of the important longstanding open
problems in discrete geometry, namely, the Illumination Conjecture. In this paper,
we survey the activity in the areas of discrete geometry, computational geometry and
geometric analysis motivated by this conjecture. Special care is taken to include the
recent advances that are not covered by the existing surveys.We also include some of
our recent results related to these problems and describe two new approaches – one
conventional and the other computer-assisted – to make progress on the illumination
problem. Some open problems and conjectures are also presented.

Keywords Illumination number · Illumination conjecture · Covering conjecture ·
Separation conjecture · X-ray number · X-ray conjecture · Illumination
parameter · Covering parameter · Covering index · Cylindrical covering
parameters · ε-net of convex bodies

MSC (2010): 52A37 · 52A40 · 52C15 · 52C17

1 Shedding Some ‘Light’

. . . Nk bezeichne die kleinste natürliche Zahl, für welche die nachfolgende Aussage richtig
ist: Ist A ein eigentlicher konvexer Körper des k-dimensionalen euklidischen Raumes, so
gibt es n mit A translations-gleiche Körper Ai mit n ≤ Nk derart, dass jeder Punkt von A ein
innerer Punkt der Vereinigungsmenge

⋃
i Ai ist,. . . Welchen Wert hat Nk für k ≥ 3? [51]
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The above statement roughly translates to “Let Nk denote the smallest natural number
such that any k-dimensional convex body can be covered by the interior of a union
of at the most Nk of its translates. What is Nk for k ≥ 3?” When Hadwiger raised
this question in 1957 he probably did not imagine that it would remain unresolved
half a century later and become a central problem in discrete geometry. Apparently,
Hadwiger had a knack of coming up with such questions1. However, he was not the
first one to study this particular problem. In fact, its earliest occurrence can be traced
back to Levi’s 1955 paper [62], who formulated and settled the 2-dimensional case of
the problem. Later in 1960, the question was restated by Gohberg and Markus2 [49]
in terms of covering by homothetic copies. The equivalence of both formulations is
relatively easy to check and details appear in Sect. 34 of [35].

Conjecture 1.1 (Covering Conjecture) We can cover any d-dimensional convex
body by 2d or fewer of its smaller positive homothetic copies in Euclidean d-space,
d ≥ 3. Furthermore, 2d homothetic copies are required only if the body is an affine
d-cube.

The same conjecture has also been referred to in the literature as the Levi–
Hadwiger Conjecture, Gohberg–Markus Covering Conjecture and Hadwiger Cover-
ing Conjecture. The condition d ≥ 3 has been added as the statement is known to be
true in the plane [52, 62].

Let us make things formal. A d-dimensional convex body K is a compact con-
vex subset of the Euclidean d-space, Ed with nonempty interior. Let o denote the
origin of Ed . Then K is said to be o-symmetric if K = −K and centrally symmetric
if some translate of K is o-symmetric. Since the quantities studied in this paper are
invariant under affine transformations, we use the terms o-symmetric and centrally
symmetric interchangeably. A homothety is an affine transformation of Ed of the
form x �→ t + λx, where t ∈ E

d and λ is a non-zero real number. The image t + λK
of a convex body K under a homothety is said to be its homothetic copy (or simply
a homothet). A homothetic copy is positive if λ > 0 and negative otherwise. Fur-
thermore, a homothetic copy with 0 < λ < 1 is called a smaller positive homothet.
In terms of the notations just introduced the Covering Conjecture states that for any
K ⊆ E

d , there exist ti ∈ E
d and 0 < λi < 1, for i = 1, . . . , 2d , such that

K ⊆
2d⋃

i=1

(ti + λiK). (1)

1The Hadwiger conjecture in graph theory is, in the words of Bollobás et al. [28], “one of the
deepest unsolved problems in graph theory”. Hadwiger even edited a column on unsolved problems
in the journal Elemente der Mathematik. On the occasion of Hadwiger’s 60th birthday, Victor Klee
dedicated the first article in the Research Problems section of the American Mathematical Monthly
to Hadwiger’s work on promoting research problems [47, pp. 389–390].
2Apparently, Gohberg and Markus worked on the problem independently without knowing about
the work of Levi and Hadwiger [32].
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Fig. 1 A cube can be covered by 8 smaller positive homothets and no fewer

A light source at a point p outside a convex body K ⊂ E
d , illuminates a point

x on the boundary of K if the halfline originating from p and passing through x
intersects the interior of K at a point not lying between p and x. The set of points
{pi : i = 1, . . . , n} in the exterior ofK is said to illuminateK if every boundary point
of K is illuminated by some pi . The illumination number I (K) of K is the smallest
n for which K can be illuminated by n point light sources (Fig. 1).

One can also consider illumination ofK ⊂ E
d by parallel beams of light. Let Sd−1

be the unit sphere centered at the origin o ofEd .We say that a point x on the boundary
of K is illuminated in the direction v ∈ S

d−1 if the halfline originating from x and
with direction vector v intersects the interior of K.

The former notion of illumination was introduced by Hadwiger [52], while the
latter notion is due to Boltyanski3 [29]. It may not come as a surprise that the two
concepts are equivalent in the sense that a convex body K can be illuminated by
n point sources if and only if it can be illuminated by n directions. However, it
is less obvious that any covering of K by n smaller positive homothetic copies
corresponds to illuminating K by n points (or directions) and vice versa (see [35] for
details). Therefore, the following Illumination Conjecture [29, 35, 52] of Hadwiger
and Boltyanski is equivalent to the Covering Conjecture (Figs. 2, 3 and 4).

Conjecture 1.2 (Illumination Conjecture) The illumination number I (K) of any d-
dimensional convex body K, d ≥ 3, is at most 2d and I (K ) = 2d only if K is an
affine d-cube.

The conjecture also asserts that affine images of d-cubes are the only extremal
bodies. The conjectured bound of 2d results from the 2d vertices of an affine cube,
each requiring a different light source to be illuminated. In the sequel, we use the titles
Covering Conjecture and Illumination Conjecture interchangeably, shifting between
the covering and illumination paradigms as convenient.

3Vladimir Boltyanski (also written Boltyansky, Boltyanskii and Boltjansky) is a prolific mathemati-
cian and recepient of Lenin Prize in science. He has authored more than 220 mathematical works
including, remarkably, more than 50 books!
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p

x

(a) p1

p2

p3

(b)

Fig. 2 a Illuminating a boundary point x of K ⊂ E
d by the point light source p ∈ E

d \ K, b
I (K ) = 3

x

v
(a) (b)

Fig. 3 a Illuminating a boundary point x of K ⊂ E
d by a direction v ∈ S

d−1, b I (K ) = 3

Fig. 4 Vladimir Boltyanski (left, courtesy Annals of the Moscow University) and Hugo Hadwiger
(right, courtesy Oberwolfach Photo Collection), two of the main proponents of the illumination
problem
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We have so far seen three equivalent formulations of the Illumination Conjecture.
But there are more. In fact, it is perhaps an indication of the richness of this problem
that renders it to be studied frommany angles, eachwith its own intuitive significance.
We state one more equivalent form found independently by P. Soltan and V. Soltan
[75], who formulated it for the o-symmetric case only and the first author [9, 10].

Conjecture 1.3 (Separation Conjecture) Let K be an arbitrary convex body in E
d ,

d ≥ 3, and o be an arbitrary interior point of K. Then there exist 2d hyperplanes of
E
d such that each intersection of K with a supporting hyperplane, called a face of K,

can be strictly separated from o by at least one of the 2d hyperplanes. Furthermore,
2d hyperplanes are needed only if K is the convex hull of d linearly independent line
segments which intersect at the common relative interior point o.

Over the years, the illumination conjecture has inspired a vast body of research
in convex and discrete geometry, computational geometry and geometric analysis.
There exist some nice surveys on the topic such as the papers [16, 64] and the
corresponding chapters of the books [22, 35]. However, most of these are a bit dated.
Moreover,we feel that the last fewyears have seen some interesting new ideas, such as
the possibility of a computer-assisted proof, that are not covered by any of the above-
mentioned surveys. The aim of this paper is to provide an accessible introduction to
the geometry surrounding the Illumination Conjecture and a snapshot of the research
motivated by it, with special emphasis on some of the recent developments. At the
same time we describe some of our new results in this area.

We organize the material as follows. Section 2 gives a brief overview on the
progress of the Illumination Conjecture. In Sect. 3, we mention some important
relatives of the illumination problem, while Sect. 4 explores the known important
quantitative versions of the problem including anewapproach tomakeprogress on the
Illumination Conjecture based on the covering index of convex bodies (see Problem
3 and the discussion following it in Sect. 4.2). Finally, in Sect. 5 we present Zong’s
computer-assisted approach [85] for possibly resolving the Illumination Conjecture
in low dimensions.

2 Progress on the Illumination Conjecture

2.1 Results in E
3 and E4

Despite its intuitive richness, the illumination conjecture has been notoriously diffi-
cult to crack even in the first nontrivial case of d = 3. The closest anything has come
is the proof announced by Boltyanski [36] for the 3-dimensional case. Unfortunately,
the proof turned out to have gaps that remain to date. Later, Boltyanski [37] modified
his claim to the following.

Theorem 2.1 Let K be a convex body of E3 with md K = 2. Then I (K) ≤ 6.
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Here md is a functional introduced by Boltyanski in [30] and defined as follows
for any d-dimensional convex body: Let K ⊆ E

d be a convex body. Then md(K)

is the greatest integer m for which there exist m + 1 regular boundary points of K
such that the outward unit normals v0, . . . , vm of K at these points are minimally
dependent, i.e., they are the vertices of an m-dimensional simplex that contains the
origin in its relative interior.4

So far the best upper bound on illumination number in three dimensions is due to
Papadoperakis [68].

Theorem 2.2 The illumination number of any convex body in E
3 is at most 16.

However, there are partial results that establish the validity of the conjecture for
some large classes of convex bodies. Often these classes of convex bodies have some
underlying symmetry. Here we list some such results. A convex polyhedron P is said
to have affine symmetry if the affine symmetry group of P consists of the identity
and at least one other affinity of E3. The first author obtained the following result
[9].

Theorem 2.3 If P is a convex polyhedron of E3 with affine symmetry, then the illu-
mination number of P is at most 8.

Recall that a convex body K is said to be centrally symmetric if it has a point
of symmetry. Furthermore, a body K is symmetric about a plane p if a reflection
across that plane leaves K unchanged. Lassak [57] proved that under the assumption
of central symmetry, the illumination conjecture holds in three dimensions.

Theorem 2.4 If K is a centrally symmetric convex body in E3, then I (K) ≤ 8.

Dekster [43] extended Theorem 2.3 from polyhedra to convex bodies with plane
symmetry.

Theorem 2.5 If K is a convex body symmetric about a plane in E3, then I (K) ≤ 8.

It turns out that for 3-dimensional bodies of constant width – that is bodies whose
width, measured by the distance between two opposite parallel hyperplanes touching
its boundary, is the same regardless of the direction of those two parallel planes – we
get an even better bound.

Theorem 2.6 The illumination number of any convex body of constant width in E
3

is at most 6.

Proofs of the above theorem have appeared in several papers [18, 60, 79]. It is,
in fact, reasonable to conjecture the following even stronger result.

Conjecture 2.7 The illumination number of any convex body of constant width in
E
3 is exactly 4.

4In fact, it is proved in [30] that md(K) = him(K) holds for any convex body K ofEd and therefore
one can regard Theorem 2.1 as an immediate corollary of Theorem 2.16 for d = 3 in Sect. 2.2.
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The above conjecture, if true, would provide a new proof of Borsuk’s conjecture
[41] in dimension three, which states that any set of unit diameter in E

3 can be
partitioned into at most four subsets of diameter less than one. We remark that
although it is false in general [54], Borsuk’s conjecture has a long and interesting
history of its own and the reader can look up [31, 35, 50] for detailed discussions.

Now let us consider the state of the Illumination Conjecture in E
4. It is well

known that neighbourly d-polytopes have the maximum number of facets among d-
polytopes with a fixed number of vertices (for more details on this see for example,
[27]). Thus, it is natural to investigate the Separation Conjecture for neighbourly
d-polytopes (see also Theorem 2.18). Since interesting neighbourly d-polytopes
exist only in E

d for d ≥ 4, it is particularly natural to first restrict our attention to
neighbourly 4-polytopes. Starting from a cyclic 4-polytope, the sewing procedure of
Shemer (for details see [27]) produces an infinite family of neighbourly 4-polytopes
each ofwhich is obtained from the previous one by adding one newvertex in a suitable
way. Neighbourly 4-polytopes obtained from a cyclic 4-polytope by a sequence
of sewings are called totally-sewn. The main result of the very recent paper [27]
of Bisztriczky and Fodor is a proof of the Separation Conjecture for totally-sewn
neighbourly 4-polytopes.

Theorem 2.8 Let P be an arbitrary totally-sewn neighbourly 4-polytope in E4, and
o be an arbitrary interior point of P. Then there exist 16 hyperplanes of E4 such that
each face of P, can be strictly separated from o by at least one of the 16 hyperplanes.

However, Bisztriczky [26] conjectures the following stronger result.

Conjecture 2.9 Let P be an arbitrary totally-sewn neighbourly 4-polytope in E
4,

and o be an arbitrary interior point of P. Then there exist 9 hyperplanes of E4

such that each face of P, can be strictly separated from o by at least one of the 9
hyperplanes.

2.2 General Results

Before we state results on the illumination number of convex bodies in E
d , we take

a little detour. We need Rogers’ estimate [69] of the infimum θ(K) of the covering
density of Ed by translates of the convex body K, namely, for d ≥ 2,5

θ(K) ≤ d(ln d + ln ln d + 5)

and the Rogers–Shephard inequality [70]

vold(K − K) ≤
(
2d

d

)

vold(K)

5The bound on θ(K) has been improved to θ(K) ≤ d ln d + d ln ln d + d + o(d) by Fejes Tóth
[46].



8 K. Bezdek and M. A. Khan

on the d-dimensional volume vold(·) of the difference body K − K of K.
It was rather a coincidence, at least from the point of view of the Illumination

Conjecture, when in 1964 Erdős and Rogers [45] proved the following theorem. In
order to state their theorem in a proper form we need to introduce the following
notion. If we are given a covering of a space by a system of sets, the star number of
the covering is the supremum, over sets of the system, of the cardinals of the numbers
of sets of the system meeting a set of the system (see [45]). On the one hand, the
standard Lebesgue brick-laying construction provides an example, for each positive
integer d, of a lattice covering of Ed by closed cubes with star number 2d+1 − 1. On
the other hand, Theorem 1 of [45] states that the star number of a lattice covering of
E
d by translates of a centrally symmetric convex body is always at least 2d+1 − 1.

However, from our point of view, the main result of [45] is the one under Theorem
2 which (combined with some observations from [44] and the Rogers–Shephard
inequality [69]) reads as follows.

Theorem 2.10 Let K be a convex body in the d-dimensional Euclidean space Ed ,
d ≥ 2. Then there exists a covering ofEd by translates of K with star number at most

vold(K − K)

vold(K)
(d ln d + d ln ln d + 5d + 1) ≤

(
2d

d

)

(d ln d + d ln ln d + 5d + 1).

Moreover, for sufficiently large d, 5d can be replaced by 4d.

The periodic and probabilistic construction on which Theorem 2.10 is based gives
also the following.

Corollary 2.11 If K is an arbitrary convex body in Ed , d ≥ 2, then

I (K) ≤ vold(K − K)

vold(K)
d(ln d + ln ln d + 5) ≤

(
2d

d

)

d(ln d + ln ln d + 5)

= O(4d
√
d ln d). (2)

Moreover, for sufficiently large d, 5d can be replaced by 4d.

Note that the bound given in Corollary 2.11 can also be obtained from the more
general result of Rogers and Zong [71], which states that for d-dimensional convex
bodies K and L, d ≥ 2, one can cover K by N (K, L) translates6 of L such that

N (K, L) ≤ vold(K − L)

vold(L)
θ(L).

For the sake of completeness we also mention the inequality

I (K) ≤ (d + 1)dd−1 − (d − 1)(d − 2)d−1

6N (K, L) is called the covering number of K by L.
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due to Lassak [59], which is valid for an arbitrary convex body K in Ed , d ≥ 2, and
is (somewhat) better than the estimate of Corollary 2.11 for some small values of d.

Since, for a centrally symmetric convex body K, vol(K−K)

vold (K)
= 2d , we have the

following improved upper bound on the illumination number of such convex bodies.

Corollary 2.12 If K is a centrally symmetric convex body in Ed , d ≥ 2, then

I (K) ≤ vold(K − K)

vold(K)
d(ln d + ln ln d + 5) = 2dd(ln d + ln ln d + 5) = O(2dd ln d).

(3)

The above upper bound is fairly close to the conjectured value of 2d . However,
most convex bodies are far from being symmetric and so, in general, onemaywonder
whether the Illumination Conjecture is true at all, especially for large d. Thus, it
was important progress when Schramm [73] managed to prove the Illumination
Conjecture for all convex bodies of constant width in all dimensions at least 16. In
fact, he proved the following inequality.

Theorem 2.13 If W is an arbitrary convex body of constant width in E
d , d ≥ 3,

then

I (W) ≤ 5d
√
d(4 + ln d)

(
3

2

) d
2

.

By taking a closer look of Schramm’s elegant paper [73] and making the nec-
essary modifications, the first author [23] somewhat improved the upper bound of
Theorem 2.13, but more importantly he succeeded in extending that estimate to the
following family of convex bodies (called the family of fat spindle convex bodies)
that is much larger than the family of convex bodies of constant width. Thus, we
have the following generalization of Theorem 2.13 proved in [23].

Theorem 2.14 Let X ⊂ E
d , d ≥ 3 be an arbitrary compact set with diam(X) ≤ 1

and let B[X ] be the intersection of the closed d-dimensional unit balls centered at
the points of X. Then

I (B[X ]) < 4
(π

3

) 1
2
d

3
2 (3 + ln d)

(
3

2

) d
2

< 5d
3
2 (4 + ln d)

(
3

2

) d
2

.

On the one hand, 4
(

π
3

) 1
2 d

3
2 (3 + ln d)

(
3
2

) d
2 < 2d for all d ≥ 15. (Moreover, for

every ε > 0 if d is sufficiently large, then I (B[X ]) <
(√

1.5 + ε
)d = (1.224 · · · +

ε)d .) On the other hand, based on the elegant construction of Kahn and Kalai [54], it
is known (see [1]), that if d is sufficiently large, then there exists a finite subset X ′′
of {0, 1}d in Ed such that any partition of X ′′ into parts of smaller diameter requires
more than (1.2)

√
d parts. Let X ′ be the (positive) homothetic copy of X ′′ having unit

diameter and let X be the (not necessarily unique) convex body of constant width
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one containing X ′. Then it follows via standard arguments that I (B[X ]) > (1.2)
√
d

with X = B[X ].
Recall that a convex polytope is called a belt polytope if to each side of any of

its 2-faces there exists a parallel (opposite) side on the same 2-face. This class of
polytopes is wider than the class of zonotopes. Moreover, it is easy to see that any
convex body of Ed can be represented as a limit of a covergent sequence of belt
polytopes with respect to the Hausdorff metric in Ed . The following theorem on belt
polytopes was proved by Martini in [63]. The result that it extends to the class of
convex bodies, called belt bodies (including zonoids), is due to Boltyanski [33–35].
(See also [38] for a somewhat sharper result on the illumination numbers of belt
bodies.)

Theorem 2.15 Let P be an arbitrary d-dimensional belt polytope (resp., belt body)
different from a parallelotope in E

d , d ≥ 2. Then

I (P) ≤ 3 · 2d−2.

Now, let K be an arbitrary convex body in E
d and let T (K) be the family of all

translates of K in Ed . The Helly dimension him(K) of K [74] is the smallest integer
h such that for any finite family F ⊆ T (K) with cardinality greater than h + 1 the
following assertion holds: if every h + 1members ofF have a point in common, then
all the members of F have a point in common. As is well known 1 ≤ him(K) ≤ d.
Using this notion Boltyanski [37] gave a proof of the following theorem.

Theorem 2.16 Let K be a convex body with him(K) = 2 in Ed , d ≥ 3. Then

I (K) ≤ 2d − 2d−2.

In fact, in [37] Boltyanski conjectures the following more general inequality.

Conjecture 2.17 Let K be a convex body with him(K) = h > 2 in Ed , d ≥ 3. Then

I (K) ≤ 2d − 2d−h .

The first author and Bisztriczky gave a proof of the Illumination Conjecture for
the class of dual cyclic polytopes in [14]. Their upper bound for the illumination
numbers of dual cyclic polytopes has been improved by Talata in [77]. So, we have
the following statement.

Theorem 2.18 The illumination number of any d-dimensional dual cyclic polytope
is at most (d+1)2

2 , for all d ≥ 2.
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3 On Some Relatives of the Illumination Number

3.1 Illumination by Affine Subspaces

Let K be a convex body in Ed , d ≥ 2. The following definitions were introduced by
the first named author in [13] (see also [9] that introduced the concept of the first
definition below).

Let L ⊂ E
d \ K be an affine subspace of dimension l, 0 ≤ l ≤ d − 1. Then L

illuminates the boundary point q of K if there exists a point p of L that illuminates
q on the boundary of K. Moreover, we say that the affine subspaces L1, L2, . . . , Ln

of dimension l with Li ⊂ E
d \ K, 1 ≤ i ≤ n illuminate K if every boundary point

of K is illuminated by at least one of the affine subspaces L1, L2, . . . , Ln . Finally,
let Il(K) be the smallest positive integer n for which there exist n affine subspaces
of dimension l say, L1, L2, . . . , Ln such that Li ⊂ E

d \ K for all 1 ≤ i ≤ n and
L1, L2, . . . , Ln illuminate K. Then Il(K) is called the l-dimensional illumination
number of K and the sequence I0(K), I1(K), . . . , Id−2(K), Id−1(K) is called the
successive illumination numbers of K. Obviously, I (K) = I0(K) ≥ I1(K) ≥ · · · ≥
Id−2(K) ≥ Id−1(K) = 2.

Recall that Sd−1 denotes the unit sphere centered at the origin of Ed . Let HSl ⊂
S
d−1 be an l-dimensional open great-hemisphere ofSd−1, where 0 ≤ l ≤ d − 1. Then
HSl illuminates the boundary point q of K if there exists a unit vector v ∈ HSl that
illuminates q, in other words, for which it is true that the halfline emanating from
q and having direction vector v intersects the interior of K. Moreover, we say that
the l-dimensional open great-hemispheres HSl1, HSl2, . . . , HSln of S

d−1 illuminate
K if each boundary point of K is illuminated by at least one of the open great-
hemispheres HSl1, HSl2, . . . , HSln . Finally, let I

′
l (K) be the smallest number of l-

dimensional open great-hemispheres of Sd−1 that illuminate K. Obviously, I ′
0(K) ≥

I ′
1(K) ≥ · · · ≥ I ′

d−2(K) ≥ I ′
d−1(K) = 2.

Let L ⊂ E
d be a linear subspace of dimension l, 0 ≤ l ≤ d − 1 in E

d . The l-
codimensional circumscribed cylinder of K generated by L is the union of translates
of L that have a nonempty intersectionwithK. Then letCl(K) be the smallest number
of translates of the interiors of some l-codimensional circumscribed cylinders of K
the union of which contains K. Obviously, C0(K) ≥ C1(K) ≥ · · · ≥ Cd−2(K) ≥
Cd−1(K) = 2.

The following theorem, which was proved in [13], collects the basic information
known about the quantities just introduced.

Theorem 3.1 Let K be an arbitrary convex body of Ed . Then

(i) Il(K) = I ′
l (K) = Cl(K), for all 0 ≤ l ≤ d − 1.

(ii) � d+1
l+1 � ≤ Il(K), for all 0 ≤ l ≤ d − 1, with equality for any smooth K.

(iii) Id−2(K) = 2, for all d ≥ 3.

The Generalized Illumination Conjecture was phrased by the first named author
in [13] as follows.
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Conjecture 3.2 (Generalized IlluminationConjecture)LetK be an arbitrary convex
body and Cd be a d-dimensional affine cube in Ed . Then

Il(K) ≤ Il(Cd)

holds for all 0 ≤ l ≤ d − 1.

The above conjecture was proved for zonotopes and zonoids in [13]. The results
of parts (i) and (ii) of the next theorem are taken from [13], where they were proved
for zonotopes (resp., zonoids). However, in the light of the more recent works in [34]
and [38] these results extend to the class of belt polytopes (resp., belt bodies) in a
rather straightforward way so we present them in that form. The lower bound of part
(iii) was proved in [13] and the upper bound of part (iii) is the major result of [55].
Finally, part (iv) was proved in [12].

Theorem 3.3 Let M be a belt polytope (resp., belt body) and Cd be a d-dimensional
affine cube in Ed . Then

(i) Il(M) ≤ Il(Cd) holds for all 0 ≤ l ≤ d − 1.
(ii) I d

2 �(M) = · · · = Id−1(M) = 2.

(iii) 2d
∑l

i=0 (
d
i)

≤ Il(Cd) ≤ K (d, l), where K (d, l) denotes the minimum cardinality of

binary codes of length d with covering radius l, 0 ≤ l ≤ d − 1.
(iv) I1(Cd) = 2d

d+1 , provided that d + 1 = 2m.

3.2 ‘X-raying’ the Problem

In 1972, the X-ray number of convex bodies was introduced by P. Soltan as follows
(see [64]). Let K be a convex body of Ed , d ≥ 2, and L ⊂ E

d be a line through
the origin of Ed . We say that the boundary point x ∈ K is X-rayed along L if the
line parallel to L passing through x intersects the interior of K. The X-ray number
X (K) of K is the smallest number of lines such that every boundary point of K is
X-rayed along at least one of these lines. Clearly, X (K) ≥ d. Moreover, it is easy to
see that this bound is attained by any smooth convex body. On the other hand, if Cd

is a d-dimensional (affine) cube and F is one of its (d − 2)-dimensional faces, then
the X-ray number of Cd \ F , the convex hull of the set of vertices of Cd that do not
belong to F , is 3 · 2d−2.

In 1994, the first author and Zamfirescu [17] published the following conjecture.

Conjecture 3.4 (X-ray Conjecture) The X-ray number of any convex body in E
d is

at most 3 · 2d−2.
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Fig. 5 a X-raying a
boundary point x of K along
a line L , b X (K) = 2

x

L
(a) (b)

The X-ray Conjecture is proved only in the plane and it is open in higher dimen-
sions. Here we note that the inequalities

X (K) ≤ I (K) ≤ 2X (K)

hold for any convex body K ⊂ E
d . In other words, any proper progress on the X-ray

Conjecture would imply progress on the Illumination Conjecture and vice versa. We
also note that a natural way to prove the X-ray Conjecture would be to show that
any convex body K ⊂ E

d can be illuminated by 3 · 2d−2 pairs of pairwise opposite
directions (Fig. 5).

The main results of [21] on the X-ray number can be summarized as follows. In
order to state them properly we need to recall two basic notions. Let K be a convex
body in Ed and let F be a face of K. The Gauss image ν(F) of the face F is the set
of all points (i.e., unit vectors) u of the (d − 1)-dimensional unit sphere Sd−1 ⊂ E

d

centered at the origin o of Ed for which the supporting hyperplane of K with outer
normal vector u contains F . It is easy to see that the Gauss images of distinct faces of
K have disjoint relative interiors in Sd−1 and ν(F) is compact and spherically convex
for any face F . Let C ⊂ S

d−1 be a set of finitely many points. Then the covering
radius of C is the smallest positive real number r with the property that the family
of spherical balls of radii r centered at the points of C covers Sd−1.

Theorem 3.5 Let K ⊂ E
d , d ≥ 3, be a convex body and let r be a positive real

number with the property that the Gauss image ν(F) of any face F of K can be
covered by a spherical ball of radius r in Sd−1. Moreover, assume that there exist 2m
pairwise antipodal points of Sd−1 with covering radius R satisfying the inequality
r + R ≤ π

2 . Then X (K) ≤ m. In particular, if there are 2m pairwise antipodal points
on S

d−1 with covering radius R satisfying the inequality R ≤ π/2 − rd−1, where

rd−1 = arccos
√

d+1
2d is the circumradius of a regular (d − 1)-dimensional spherical

simplex of edge lengthπ/3, then X (W) ≤ m holds for any convex bodyW of constant
width in Ed .

Theorem 3.6 IfW is an arbitrary convex bodyof constantwidth inE3, then X (W) =
3. If W is any convex body of constant width inE4, then 4 ≤ X (W) ≤ 6. Moreover, if
W is a convex body of constant width in Ed with d = 5, 6, then d ≤ X (W) ≤ 2d−1.

Corollary 3.7 If W is an arbitrary convex body of constant width in E
3, then 4 ≤

I (W) ≤ 6. If W is any convex body of constant width in E
4, then 5 ≤ I (W) ≤ 12.
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Moreover, if W is a convex body of constant width in Ed with d = 5, 6, then d + 1 ≤
I (W) ≤ 2d .

It would be interesting to extend themethod described in the paper [21] for the next
few dimensions (more exactly, for the dimensions 7 ≤ d ≤ 14) in particular, because
in these dimensions neither the X-ray Conjecture nor the Illumination Conjecture is
known to hold for convex bodies of constant width.

From the proof of Theorem 2.4 it follows in a straightforward way that if K is
a centrally symmetric convex body in E

3, then X (K) ≤ 4. On the other hand, very
recently Trelford [78] proved the following related result.

Theorem 3.8 If K is a convex body symmetric about a plane in E3, then X (K) ≤ 6.

3.3 Other Relatives

3.3.1 t-covering and t-illumination Numbers

In Sect. 1, we found that the least number of smaller positive homothets of a convex
body K required to cover it equals the minimum number of translates of the interior
of K needed to cover K. Is this number also equal to the the minimum number t (K)

of translates of K that are different from K and are needed to cover K?
Despite being a very natural question, the problem of economical translative

coverings have not attracted much attention. To our knowledge, the first systematic
study of these was carried out quite recently by Lassak et al. [61] who called them
t-coverings and also introduced the corresponding illumination concept, called t-
illumination, as follows:Aboundary pointx of a convex bodyK ofEd is t-illuminated
by a direction v ∈ S

d−1 if there exists a different point y ∈ K such that the vector
y − x has the same direction as v (i.e., y − x = λv, for some λ > 0). The minimum
number i(K) of directions needed to t-illuminate the entire boundary of K is called
its t-illumination number. The connection between t-covering and t-illumination is
summarized in the next result [61]. Note that a convex body K is said to be strictly
convex if for any two points of K the open line segment connecting them belongs to
the interior of K.

Theorem 3.9

(i) If K is a planar convex body, then i(K) = t (K).
(ii) If K is a d-dimensional strictly convex body, d ≥ 3, then i(K) = t (K).
(iii) IfK is a d-dimensional convex body, d ≥ 3, then i(K) ≤ t (K), where the equal-

ity does not hold in general.

Clearly, t (K) ≤ I (K). In the same paper [61], the following results were obtained
about the relationship between I (·) and t (·).
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Theorem 3.10

(i) If K is a planar convex body, then t (K) = I (K) if and only if K contains no
parallel boundary segments.

(i) If K is a strictly convex body of Ed , d ≥ 3, then t (K) = I (K).
(iii) If K is a convex body of Ed , d ≥ 3 that does not have parallel boundary seg-

ments, then t (K) = I (K).

However, in general the following remains unanswered [61].

Problem 1 Characterize the convex bodies K for which t (K) = I (K).

In [65], the notion of t-illumination was refined into t-central illumination and
strict t-illumination and the corresponding illumination numbers were defined.
The paper also introduced metric versions of the classical, t-central and strict t-
illumination numbers and investigated their properties at length. The interested reader
is referred to [65] for details.

3.3.2 Blocking Numbers

The blocking number β(K) [84] of a convex body K is defined as the minimum
number of nonoverlapping translates of K that can be brought into contact with
the boundary of K so as to block any other translate of K from touching K. Since
β(K) = β(K − K) and K − K is o-symmetric, it suffices to consider the blocking
numbers of o-symmetric convex bodies only.

For any o-symmetric convex body K, the relation I (K) ≤ β(K) holds [84], while
no such relationship exists for general convex bodies. Zong [84] conjectured the
following.

Conjecture 3.11 For any d-dimensional convex body K,

2d ≤ β(K) ≤ 2d ,

and β(K) = 2d if and only if K is a d-dimensional cube.

If true, Zong’s Conjecture would imply the Illumination Conjecture for o-
symmetric convex bodies. Some of the known values of the blocking number include
β(K) = 2d , if K is a d-dimensional cube; β(K) = 6, if K is a 3-dimensional ball;
and β(K) = 9, if K is a 4-dimensional ball [42]. Some other values and estimates
are obtained in [83].

Several generalizations of the blocking number have been proposed. The smallest
number of non-overlapping translates of K such that the interior of K is disjoint from
the interiors of the translates and they can block any other translate from touching
K is denoted by β1(K); the smallest number of translates all of which touch K
at its boundary such that they can block any other translate from touching K is
denoted by β2(K); whereas, β3(K) denotes the smallest number of translates all
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of which are non-overlapping with K such that they can block any other translate
from touching K [82]. If in the original definition of blocking number, translates are
replaced by homothets with homothety ratio α > 0 we get the generalized blocking
number βα(K) [39], and if we allow the homothets to overlap, we get the generalized
α-blocking number βα

2 (K) [81].
Recently, Wu [81] showed that if K and L are o-symmetric convex bodies that are

sufficiently close to each other in the Banach–Mazur sense7 then there exists α > 0
(depending on K) such that

I (K) ≤ βα
2 (L).

This gives a series of upper bounds on the illumination number of symmetric
convex bodies and a possible way to circumvent the lack of lower semicontinuity of
I (·) (see Sect. 4.1 for a discussion of the continuity of the illumination number).

3.3.3 Fractional Covering and Illumination

Naszódi [66] introduced the fractional illumination number and Arstein-Avidan with
Raz [3] andwithSlomka [4] introducedweighted coveringnumbers.Both formalisms
can be used to study a fractional analogue of the illumination problem. In fact, the
Fractional Illumination Conjecture for o-symmetric convex bodies was proved in
[66], while the case of equality was characterized in [4]. We omit the details as it
would lead to a lengthy diversion from the main subject matter.

4 Quantifying Illumination and Covering

4.1 The Illumination and Covering Parameters

It can be seen that in the definition of illumination number I (K), the distance of light
sources from K plays no role whatsoever. Starting with a relatively small number of
light sources, it makes sense to quantify how far they need to be from K in order to
illuminate it. This is the idea behind the illumination parameter as defined by the
first author [11].

Let K be an o-symmetric convex body. Then the norm of x ∈ E
d generated by K

is defined as
‖x‖K = inf{λ > 0 : x ∈ λK}

and provides a good estimate of how far a point x is from K.

7 See relation (6) and the discussion preceding it in Sect. 4.1 for an introduction to the Banach–
Mazur distance of convex bodies. Note that Wu uses the Hausdorff distance between convex bodies
to state his result. However, it can be shown that K and L are close to each other in the Banach–
Mazur sense if and only if there exist affine images of them that are close in the Hausdorff sense.
Since the illumination and blocking numbers are affine invariants, we can restate Wu’s results in
the language of Banach–Mazur distance.
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The illumination parameter ill(K) of an o-symmetric convex body K estimates
how well K can be illuminated by relatively few point sources lying as close to K
on average as possible.

ill(K) = inf

{
∑

i

‖pi‖K : {pi} illuminates K, pi ∈ E
d

}

,

Clearly, I (K) ≤ ill(K) holds for any o-symmetric convex body K. In the papers
[15, 56], the illumination parameters of o-symmetric Platonic solids have been deter-
mined. In [11] a tight upper bound was obtained for the illumination parameter of
planar o-symmetric convex bodies.

Theorem 4.1 IfK is ano-symmetric planar convexbody, then ill(K) ≤ 6with equal-
ity for any affine regular convex hexagon.

The corresponding problem in dimension 3 and higher iswide open. The following
conjecture is due to Kiss and de Wet [56].

Conjecture 4.2 The illumination parameter of any o-symmetric 3-dimensional con-
vex body is at most 12.

However, for smooth o-symmetric convex bodies in any dimension d ≥ 2, the
first named author and Litvak [19] found an upper bound, which was later improved
to the following asymptotically sharp bound by Gluskin and Litvak [48].

Theorem 4.3 For any smooth o-symmetric d-dimensional convex body K,

ill(K) ≤ 24d3/2.

Translating the above quantification ideas from illumination into the setting of
covering, Swanepoel [76] introduced the covering parameter of a convex body as
follows.

C(K) = inf

{
∑

i

(1 − λi )
−1 : K ⊆

⋃

i

(λiK + ti), 0 < λi < 1, ti ∈ E
d

}

.

Thus large homothets are penalized in the same way as the far off light sources
are penalized in the definition of illumination parameter. Note that here K need not
be o-symmetric. In the same paper, Swanepoel obtained the following Rogers-type
upper bounds on C(K) when d ≥ 2.

Theorem 4.4

C(K) <

{
e2dd(d + 1)(ln d + ln ln d + 5) = O(2dd2 ln d), if K is o-symmetric,

e
(2d
d

)
d(d + 1)(ln d + ln ln d + 5) = O(4dd3/2 ln d), otherwise.

(4)
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He further showed that if K is o-symmetric, then

ill(K) ≤ 2C(K), (5)

and therefore, ill(K) = O(2dd2 ln d).
Basedon the above results, it is natural to study the followingquantitative analogue

of the illumination conjecture that was proposed by Swanepoel [76].

Conjecture 4.5 (Quantitative Illumination Conjecture) For any o-symmetric d-
dimensional convex body K, ill(K) = O(2d).

Before proceeding further, we introduce some terminology and notations. Let us
useKd and Cd respectively to denote the set of all d-dimensional convex bodies and
the set of all such bodies that are o-symmetric. In this section, we consider some of
the important properties of the illumination number and the covering parameter as
functionals defined onKd and the illumination parameter as a functional on Cd . The
first observation is that the three quantities are affine invariants (as are several other
quantities dealing with the covering and illumination of convex bodies). That is, if
A : Ed → E

d is an affine transformation and K is any d-dimensional convex body,
then I (K) = I (A(K)), ill(K) = ill(A(K)) and C(K) = C(A(K)).

Due to this affine invariance, whenever we refer to a convex body K, whatever
we say about the covering and illumination of K is true for all affine images of K.
In the sequel, Bd denotes a d-dimensional unit ball8, Cd a d-dimensional cube and
� a line segment (which is a convex body in K1) up to an affine transformation.

The Banach–Mazur distance dBM provides a multiplicative metric9 on Kd and
is used to study the continuity properties of affine invariant functionals on Kd . For
K, L ∈ Kd , it is given by

dBM(K, L) = inf {δ ≥ 1 : L − b ⊆ T (K − a) ⊆ δ(L − b), a ∈ K, b ∈ L} , (6)

where the infimum is taken over all invertible linear operators T : Ed → E
d [72, p.

589].
In the remainder of this paper,Kd (resp., Cd ) is considered as a metric space under

the Banach–Mazur distance. Since continuity of a functional can provide valuable
insight into its behaviour, it is of considerable interest to check the continuity of I (·),
ill(·) and C(·). Unfortunately, by Example 4.6, the first two quantities are known to
be discontinuous, while nothing is known about the continuity of the third.

Example 4.6 (Smoothed cubes and spiky balls) InKd , consider a sequence (Cn)n∈N
of ‘smoothed’ d-dimensional cubes that approaches Cd in the Banach–Mazur sense.

8Without loss of generality, we can assume Bd to be a unit ball centred at the origin. In what
follows, we use the symbol Bd to denote a d-dimensional unit ball as well as its affine images called
ellipsoids.
9One can turn the Banach–Mazur distance into an additive metric by applying ln(·). However, we
make no attempt to do that.
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Since the smoothed cubes are smooth convex bodies, all the terms of the sequence
have illumination number d + 1. However, I (Cd) = 2d , which shows that I (·) is not
continuous.

Recently, Naszódi [67] constructed a class of d-dimensional o-symmetric bod-
ies, that he refers to as ‘spiky balls’. Pick N points x1, . . . , xN independently and
uniformly with respect to the Haar probability measure on the (d − 1)-dimensional
unit sphere Sd−1 centered at the origin o. Then a spiky ball corresponding to a real
number D > 1 is defined as

K = conv

(

{±xi : i = 1, . . . , N } ∪ 1

D
Bd

)

.

Straightaway we observe that K is o-symmetric and satisfies dBM(K, Bd) < D.
Naszódi showed that I (K) ≥ cd , where c > 1 is a constant depending on d and D.
Thus we have a sequence of spiky balls approaching Bd in Banach–Mazur distance
such that each spiky ball has an exponential illumination number. Since by Theorem
4.3, ill(Bd) = O(d3/2) and ill(K) ≥ I (K) we see that ill(·) is not continuous.

We can state the following about the continuity of I (·) [35].
Theorem 4.7 The functional I (·) is upper semicontinuous10 on E

d , for all d ≥ 2.

Despite the usefulness of the covering parameter, not much is known about it. For
instance, we do not know whether C(·) is lower or upper semicontinuous onKd and
the only known exact value is C(Cd) = 2d+1. Thus there is a need to propose a more
refined quantitative version of homothetic covering for convex bodies. Section 4.2
describes how we address this need.

4.2 The Covering Index

The concepts and results presented in this section appear in our recent paper
[24]. As stated at the end of Sect. 4.1, the aim here is to come up with a more
refined quantification of covering in terms of the covering index with the Cover-
ing Conjecture as the eventual goal. The covering index of a convex body K in E

d

combines the notions of the covering parameter C(K) and the m-covering num-
ber γm(K) under the unusual, but highly useful, constraint γm(K) ≤ 1/2, where
γm(K) = inf

{
λ > 0 : K ⊆ ⋃m

i=1(λK + ti), ti ∈ E
d , i = 1, . . . ,m

}
is the smallest

positive homothety ratio needed to cover K by m positive homothets. (See Sect. 5
for a detailed discussion of γm(·).)

10Again, the original statement of this result is in terms of Hausdorff distance. However, based on
the discussion in footnote 7, we can use the Banach–Mazur distance instead.
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Definition 1 (Covering index) Let K be a d-dimensional convex body. We write
Nλ(K) to denote the covering number N (K,λK), for any 0 < λ ≤ 1. We define the
covering index of K as

coin(K) = inf

{
m

1 − γm(K)
: γm(K) ≤ 1/2,m ∈ N

}

= inf

{
Nλ(K)

1 − λ
: 0 < λ ≤ 1/2

}

.

Intuitively, coin(K)measures how K can be covered by a relatively small number
of positive homothets all corresponding to the same relatively small homothety ratio.
The reader may be a bit surprised to see the restriction γm(K) ≤ 1/2. In [24], it was
observed that if we start with γm(K) ≤ λ < 1, for some λ close to 1 in the definition
of coin(K) and then decrease λ, the properties of the resulting quantity significantly
change when λ = 1/2, at which point we can say a lot about the continuity and
maximum and minimum values of the quantity. It was also observed that decreasing
λ further does not change these characteristics. Thus 1/2 can be thought of as a
threshold at which the characteristics of the covering problem change.

Note11 that for K ∈ Cd ,

I (K) ≤ ill(K) ≤ 2C(K) ≤ 2 coin(K),

and in general for K ∈ Kd ,

I (K) ≤ C(K) ≤ coin(K).

The following result shows that a lot can be said about the Banach–Mazur conti-
nuity of coin(·). Based on this, coin(·) seems to be the ‘nicest’ of all the functionals
of covering and illumination of convex bodies discussed here.

Theorem 4.8 Let d be any positive integer.

(i) Define IK = {i : γi (K) ≤ 1/2} = {i : K ∈ Kd
i }, for any d-dimensional convex

bodyK. If IL ⊆ IK, for someK, L ∈ Kd , then coin(K) ≤ 2dBM (K,L)−1
dBM (K,L)

coin(L) ≤
dBM(K, L) coin(L).

(ii) The functional coin : Kd → R is lower semicontinuous for all d.
(iii) Define Kd∗ := {

K ∈ Kd : γm(K) �= 1/2,m ∈ N
}
. Then the functional coin :

Kd∗ → R is continuous for all d.

We now present some results showing that coin(·) behaves very nicely with form-
ing direct sums, Minkowski sums and cylinders of convex bodies, making it possible
to compute the exact values and estimates of coin(·) for higher dimensional convex
bodies from the covering indices of lower dimensional convex bodies.

11In fact, one can obtain ill(K) ≤ 3
2 coin(K) by suitably modifying the proof of (5) which appears

in [76].
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Theorem 4.9

(i) Let Ed = L1 ⊕ · · · ⊕ Ln be a decomposition of Ed into the direct vector sum
of its linear subspaces Li and let Ki ⊆ Li be convex bodies such that � =
max{γmi (Ki) : 1 ≤ i ≤ n}. Then

max
1≤i≤n

{coin(Ki)} ≤ coin(K1 ⊕ · · · ⊕ Kn) ≤ inf
λ≤ 1

2

∏n
i=1 Nλ(Ki)

1 − λ
≤

∏n
i=1 N�(Ki)

1 − �

<

n∏

i=1

coin(Ki).

(7)
(ii) The first two upper bounds in (7) are tight. Moreover, the second inequality in

(7) becomes an equality if any n − 1 of the Ki’s are tightly covered
(iii) Recall that � ∈ K1 denotes a line segment. If K is any convex body, then

coin(K ⊕ �) = 4N1/2(K).
(iv) Let the convex body K be theMinkowski sumof the convex bodiesK1, . . . , Kn ∈

Kd and � be as in part (i). Then

coin(K) ≤ inf
λ≤ 1

2

∏n
i=1 Nλ(Ki)

1 − λ
≤

∏n
i=1 N�(Ki)

1 − �
<

n∏

i=1

coin(Ki). (8)

The notion of tightly covered convex bodies introduced in [24] plays a critical role
in Theorem 4.9(ii)–(iii).

Definition 2 We say that a convex body K ∈ Kd is tightly covered if for any 0 <

λ < 1, K contains Nλ(K) points no two of which belong to the same homothet of K
with homothety ratio λ.

In [24], it was noted that not all convex bodies are tightly covered (e.g., B2 is not),
� ∈ K1 is tightly covered and so is the d-dimensional cube Cd , for any d ≥ 2. Do
other examples exist?

Problem 2 For some d ≥ 2, find a tightly covered convex body K ∈ Kd other than
Cd or show that no such convex body exists.

Since coin is a lower semicontinuous functional defined on the compact space
Kd , it is guaranteed to achieve its infimum over Kd . It turns out that in addition to
determining minimizers in all dimensions, we can also find amaximizer in the planar
case.

Theorem 4.10

(i) Let d be any positive integer and K ∈ Kd . Then coin(Cd) = 2d+1 ≤ coin(K)

and thus d-cubes minimize the covering index in all dimensions.
(ii) If K is a planar convex body then coin(K) ≤ coin(B2) = 14.
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Since B2 maximizes the covering index in the plane, it can be asked if the same
is true for Bd in higher dimensions.

Problem 3 For any d-dimensional convex bodyK, prove or disprove that coin(K) ≤
coin(Bd) holds.

Since coin(Bd) = O(2dd3/2 ln d) [24], a positive answer to Problem 3 would
considerably improve the best known upper bound on the illumination number
I (K) = O(4d

√
d ln d) when K is a general d-dimensional convex body to within a

factor
√
d of the bound I (K) = O(2dd ln d) when K is o-symmetric. This gives us

a way to closing in on the Illumination Conjecture for general convex bodies.
If we replace the restriction γm(K) ≤ 1/2 from the definition of the covering index

with the more usual γm(K) < 1, the resulting quantity is called the weak covering
index, denoted by coinw(K). As the name suggests, the weak covering index loses
some of themost important properties of the covering index. For instance, no suitable
analogue of Theorem 4.9 (iii) exists for coinw(·). As a result, we can only estimate
the weak covering index of cylinders. Also the discussed aspects of continuity of
the covering index seem to be lost for the weak covering index. Last, but not the
least, unlike the covering index we cannot say much at all about the maximizers and
minimizers of the weak covering index.

In the end,wewould like tomention that fractional analogues of the covering index
and the weak covering index were introduced in [25]. Just like fractional illumination
number, we do not discuss these here due to limitation of space.

4.3 Cylindrical Covering Parameters

So far in Sects. 4.1 and 4.2, we have discussed some quantitative versions of the
illumination number. The aim of this section is to introduce a quantification of the
X-ray number. This quantification has the added advantage of connecting the X-ray
problem with the Tarski’s plank problem and its relatives (see [22, Chap. 4]).

Given a linear subspace E ⊆ E
d we denote the orthogonal projection on E by

PE and the orthogonal complement of E by E⊥. Given 0 < k < d, define a k-
codimensional cylinder C as a set, which can be presented in the form C = B + H ,
where H is a k-dimensional linear subspace of Ed and B is a measurable set in
E := H⊥. Given a convex body K and a k-codimensional cylinder C = B + H
denote the cross-sectional volume of C with respect to K by

crvK(C) := vold−k(C ∩ E)

vold−k(PEK)
= vold−k(PEC)

vold−k(PEK)
= vold−k(B)

vold−k(PEK)
.

We note that if T : Ed → E
d is an invertible affine map, then crvK(C) =

crvT (K)(T (C)). Now we introduce the following.
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Definition 3 (k-th Cylindrical Covering Parameter). Let 0 < k < d and K be a
convex body in Ed . Then the k-th cylindrical covering parameter of K is labelled by
cylk(K) and it is defined as follows:

cylk(K) = inf⋃n
i=1 Ci

{ n∑

i=1

crvK(Ci ) : K ⊆
n⋃

i=1

Ci , Ci is a k

− codimensional cylinder, i = 1, . . . , n

}

.

We observe that if T : Ed → E
d is an invertible affine map, then cylk(K) =

cylk(T (K)). Furthermore, it is clear that cylk(K) ≤ 1 holds for any convex body
K inEd and for any 0 < k < d. In terms of X-raying, one can think of cylk(K) as the
minimum of the ‘sum of sizes’ of (d − k)-dimensional X-raying windows needed to
X-ray K.

Recall that a (d − 1)-codimensional cylinder of Ed is also called a plank for the
reason that it is the set of points lying between two parallel hyperplanes in E

d . The
width of a plank is simply the distance between the two parallel hyperplanes. In a
remarkable paper [6], Bang has given an elegant proof of the Plank Conjecture of
Tarski showing that if a convex body is covered by finitely many planks in E

d , then
the sum of the widths of the planks is at least as large as the minimal width of the
body, which is the smallest distance between two parallel supporting hyperplanes of
the given convex body. A celebrated extension of Bang’s theorem to d-dimensional
normed spaces has been given by Ball in [5]. In his paper [6], Bang raises his so-
called Affine Plank Conjecture, which in terms of our notation can be phrased as
follows.

Conjecture 4.11 (Affine Plank Conjecture) If K is a convex body in E
d , then

cyld−1(K) = 1.

Now, Ball’s celebrated Plank theorem [5] can be stated as follows.

Theorem 4.12 If K is an o-symmetric convex body in Ed , then cyld−1(K) = 1.

Bang [6] also raised the important related question of whether the sum of the base
areas of finitely many (1-codimensional) cylinders covering a 3-dimensional convex
body is at least half of the minimum area of a 2-dimensional projection of the body.
This, in terms of our terminology, reads as follows.

Conjecture 4.13 1-(Codimensional Cylinder Covering Conjecture) IfK is a convex
body in E3, then cyl1(K) ≥ 1

2 .

If true, then Bang’s estimate is sharp due to a covering of a regular tetrahedron by
two cylinders described in [6]. In connection with Conjecture 4.13 the first named
author and Litvak have proved the following general estimates in [20].

Theorem 4.14 Let 0 < k < d and K be a convex body in Ed . Then cylk(K) ≥ 1
(dk)

.
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Furthermore, it is proved in [20] that if K is an ellipsoid in E
d , then

cyl1(K) = 1. Akopyan et al. [2] have recently proved that if K is an ellipsoid in
E
d , then cyl2(K) = 1. They have put forward:

Conjecture 4.15 (Ellipsoid Conjecture) IfK is an ellipsoid inEd , then cylk(K) = 1
for all 2 < k < d.

5 A Computer-Based Approach

Given a positive integer m, Lassak [58] introduced the m-covering number of a
convex body K as the minimal positive homothety ratio needed to cover K by m
positive homothets. That is,

γm(K) = inf

{

λ > 0 : K ⊆
m⋃

i=1

(λK + ti), ti ∈ E
d , i = 1, . . . ,m

}

.

Lassak showed that the m-covering number is well-defined and studied the special
case m = 4 for planar convex bodies. It should be noted that special values of this
quantity had been considered by several authors in the past. For instance, in the 70’s
and 80’s the first named author showed that γ5(B2) = 0.609382 . . .12 and γ6(B2) =
0.555905 . . . [7, 8].

Zong [85] studied γm : Kd → R as a functional and proved it to be uniformly
continuous for all m and d. He did not use the term m-covering number for γm(K)

and simply referred to it as the smallest positive homothety ratio. In [24], we proved
the following stronger result.

Theorem 5.1 For any K , L ∈ Kd , γm(K ) ≤ dBM(K , L)γm(L) holds and so γm is
Lipschitz continuous on Kd with d2−1

2 ln d as a Lipschitz constant and

|γm(K ) − γm(L)| ≤ dBM(K , L) − 1 ≤ d2 − 1

2 ln d
ln (dBM(K , L)) ,

for all K , L ∈ Kd .

Further properties and some variants of γm(·) are discussed in the recent papers
[53, 80]. For instance, it has been shown in [80] that for any d-dimensional convex
polytope P with m vertices, we have

γm(K) ≤ d − 1

d
.

12Cover the Spot is a popular carnival game in the United States. The objective is to cover a given
circular spot by 5 circular disks of smaller radius. It seems that by determining γ5(B2), the first
named author was unwittingly providing the optimal solution for Cover the Spot!
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Fig. 6 Optimal configurations that demonstrateγ5(B2) = 0.609382 . . . andγ6(B2) = 0.555905 . . .

Obviously, any K ∈ Kd can be covered by 2d smaller positive homothets if and
only if γ2d (K) < 1. Zong used these ideas to propose a possible computer-based
approach to attack the Covering Conjecture [85] (Fig. 6).

Recall that in a metric space, such as Kd , an ε-net ξ is a finite or infinite subset
ofKd such that the union of closed balls of radius ε centered at elements of ξ covers
the whole space. Thus if an ε-net exists, any element ofKd is within Banach–Mazur
distance ε of some element of the cover. The key idea of the procedure proposed
by Zong is the construction of a finite ε-net of Kd whose elements are convex poly-
topes, for every real number13 ε > 1 and positive integer d. Here we describe the
construction briefly.

We first take an affine image of a d-dimensional convex bodyK that is sandwiched
between the unit ball Bd centered at the origin and the ball dBd with radius d.
Such an image always exists by John’s ellipsoid theorem. Then we take a covering
{C1, . . . ,Cm} of the boundary of dBd with spherical caps Ci as shown in Fig. 7.
The centers of the caps Ci are joined to the origin by lines {L1, . . . , Lm} and a large
number of equidistant points are taken on the lines Li . We denote by pi the point
lying in K ∩ Li that is farthest from the origin. Then the convex hull P = conv{pi} is
the required element of our ε-net. Zong [85] showed that by taking m large enough
and increasing the number of points on Li we can ensure dBM(K, P) ≤ ε.

He then notes that if we manage to construct a finite ε-net ξ = {Pi : i = 1, . . . , j}
ofKd , satisfyingγ2d (Pi) ≤ cd for some cd < 1and sufficiently small ε, thenγ2d (K) <

1 would hold for every K ∈ Kd . This would imply that the Covering Conjecture is
true in dimension d.

The following is a four step approach suggested by Zong [85].
Zong’s Program:

1. For a given dimension such as d = 3, investigate (with the assistance of a com-
puter) γ2d (K) for some particular convex bodies K and choose a candidate con-
stant cd .

2. Choose a suitable ε.

13Recall that the Banach–Mazur distance is a multiplicative metric and so the condition ε > 0 is
replaced by the equivalent ε > 1 condition.
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Fig. 7 Construction of an ε-net of Kd

3. Construct an ε-net ξ of sufficiently small cardinality.
4. Check (with the assistance of a computer) that the minimal γ2d -value over all

elements of ξ is bounded above by cd .

Indeed this approach appears to be promising and, to the authors’ knowledge, is a first
attempt at a computer-based resolution of the Covering Conjecture. However, Zong’s
program is not without its pitfalls. For one, it would take an extensive computational
experiment to come up with a good candidate constant cd . Secondly, Zong’s ε-net
construction leads to a net with exponentially large number of elements. In fact,
using Böröczky and Wintsche’s estimate [40] on the number of caps in a spherical
cap covering, Zong [85] showed that

|ξ| ≤
⌊
7d

ln ε

⌋α14dd2d+3(ln ε)−d

, (9)

where c is an absolute constant. Since Zong’s construction does not provide much
room for improving the above estimate, better constructions are needed to reduce the
size of ξ, while at the same time keeping ε sufficiently small.

Problem 4 Develop a computationally efficient procedure for constructing ε-nets
of Kd of small cardinality.
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Addressing the aboveproblemwouldbe a critical first step in implementingZong’s
program. Wu [80] (also see [53]) has recently proposed two variants of γm(·) that
can be used in Zong’s program instead. However, the challenges and implementation
issues remain the same.
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1 Introduction

Euclidean regular polytopes are in the center of scientific studies since the Antiquity
(see [18] or [9]). Packings of equal balls in spaces of constant curvature have been
investigated rather intensively since the middle of the 20th century (see [3], [7], [12]
and [21]). In this paper, we focus on packings of equal spherical balls (see [8], [11]
and [19]) that are related to some Euclidean simplicial regular polytope P with its
f0(P) vertices being on Sd−1, d ≥ 3.WewriteϕP to denote the acute angle satisfying
that edge length of P is 2 sin ϕP . We note that the simplicial regular polytopes inRd ,
d ≥ 3, are the regular simplex and crosspolytope in all dimensions, and in addition
the icosahedron inR3 and the 600-cell inR4 (the latter has Schläfli symbol (3, 3, 5)).
The corresponding data is summarized in the following table.

Regular Polytope P f0(P) ϕP

Simplex in Rd d + 1 1
2 arccos

−1
d

Crosspolytope in R
d 2d π

4
Icosahedron in R3 12 1

2 arccos
1√
5

600-cell in R4 120 π
10

Theorem A If P is a simplicial regular polytope in Rd having its vertices on Sd−1,
d ≥ 3, then the vertices are centers of an optimal packing of equal spherical balls
of radius ϕP on Sd−1.

Theorem A is due to Jung [17] if P is a regular simplex. For the case of a regular
crosspolytope, the statement of TheoremAwas proposed as a problem by Davenport
and Hajós [10]. Numerous solutions arrived in a relatively short time; namely, the
ones by Aczél [1] and by Szele [22] and the unpublished ones due to M. Bognár,
Á. Császár, T. Kővári and I. Vincze. Independently, Rankin [20] solved the case
of crosspolytopes. There are two more simplical regular polytopes. The case of
icosahedron was handled by Fejes Tóth [13] (see, say, [15] or [16]), and the case of
the 600-cell is due to Böröczky [4]. All these arguments yield (explicitly or hidden)
also the uniqueness of the optimal configuration up to orthogonal transformations.
For the case of the 600-cell, Andreev [2] provided an argument for optimality based
on the linear programming bound in coding theory. The proof of uniqueness via the
linear programming bound was given by Boyvalenkov and Danev [6].

In this paper, we provide a stability version of Theorem A of optimal order. For
u, v ∈ Sd−1, we write δ(u, v) ∈ [0, π ] to denote the spherical (geodesic) distance of
u and v, which is just their angle as vectors in Rd .

Theorem 1.1 Let P be a simplicial regular polytope in R
d having its vertices

on Sd−1, d ≥ 3. For suitable εP , cP > 0, if x1, . . . ,xk ∈ Sd−1 are centers of non-
overlapping spherical balls of radius at least ϕP − ε for ε ∈ [0, εP) and k ≥ f0(P),
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then k = f0(P), and there exists a � ∈ O(d), such that for any xi one finds a vertex
v of P satisfying δ(xi ,�v) ≤ cPε.

We even provide explicit expressions for εP and cP . If P is a d-simplex or a d-
crosspolytope, then cP is of polynomial growth in d (cP = 9d3.5 if P is a d-simplex,
and cP = 96d3 if P is a d-crosspolytope).

Concerning notation, if p ∈ Sd−1 and ϕ ∈ (0, π/2), then we write B(p, ϕ) for
the spherical ball of center p and radius ϕ. When working in R

d , we write either
|X | or Hd−1(X) to denote the (d − 1)-dimensional Hausdorff-measure of X . For
x1, . . . ,xk ∈ R

d , their convex hull, linear hull and affine hull in R
d are denoted by

[x1, . . . ,xk], lin{x1, . . . ,xk} and aff{x1, . . . ,xk}, respectively. For x, y ∈ R
d , we

write 〈x, y〉 to denote the scalar product, and ‖x‖ to denote the Euclidean norm. As
usual, int K stands for the interior of K ⊂ R

d .
The paper uses various tools to establish Theorem 1.1. Only elementary linear

algebra is needed for the case of a simplex, the linear programming bound is used
for the case of a crosspolytope, and the simplex bound is applied to the icosahedron
and the 600-cell.

Concerning the structure of the paper, Sects. 3 and 5 handle the cases of the
simplex and the crosspolytope, respectively, and Sect. 4 in between reviews the
linear programming bound used for the case of crosspolytopes. Results in these
sections will be used also to handle the cases of the icosahedron in Sect. 8 and the
600-cell in Sect. 9, as well. After reviewing the Delone and Dirichlet-Voronoi cell
decompositions and the corresponding simplex bound in Sect. 6, and verifying some
volume estimates in Sect. 7, Theorem 1.1 is proved in Sects. 8 and 9 in the cases of
the icosahedron and the 600-cell, respectively.

2 Some Simple Preparatory Statements

The following statement will play a key role in the arguments for the cases of sim-
plices and crosspolytopes of Theorem 1.1.

Lemma 2.1 Let n ≥ 2 and 0 ≤ η < 1
n−1 . If u1, . . . , un ∈ Sn−1 satisfy that |〈ui , u j 〉|

≤ η for i 
= j , then there exists an orthonormal basis v1, . . . , vn of Rn such that
lin{ui , . . . , un} = lin{vi , . . . , vn} and 〈ui , vi 〉 > 0 for i = 1, . . . , n, and

|〈ui , v j 〉| ≤ η

1 − (n − 2)η
for i 
= j. (1)

Moreover, δ(ui , vi ) ≤ 2nη holds for i = 1, . . . , n provided that η < 1
2n .

Proof We prove the lemma by induction on n where the case n = 2 readily holds.
Therefore, we assume that n ≥ 3, and the lemma holds in Rn−1.

Let vn = un . For i = 1, . . . , n − 1, let ui = wi + ti vn for wi ∈ v⊥
n and ti ∈ R. It

follows that |ti | ≤ η and ‖wi‖ = (1 − t2i )
1
2 ≥ (1 − η2)

1
2 for i = 1, . . . , n − 1, and
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we define w̄i = wi/‖wi‖ ∈ Sn−1. We observe that if 1 ≤ i < j ≤ n − 1, then

|〈w̄i , w̄ j 〉| = |〈wi , w j 〉|
(1 − t2i )

1
2 (1 − t2j )

1
2

≤ |〈ui , u j 〉| + |ti t j |
1 − η2

≤ η + η2

1 − η2
= η

1 − η
.

As η̄ = η

1−η
< 1

n−2 follows from η < 1
n−1 , we may apply the induction hypothesis to

w̄1, . . . , w̄n−1 and η̄. We obtain an orthonormal basis v1, . . . , vd−1 for v⊥
n such that

lin{w̄i , . . . , w̄n−1} = lin{vi , . . . , vn−1} and 〈w̄i , vi 〉 > 0 for i = 1, . . . , n − 1, and

|〈w̄i , v j 〉| ≤ η̄

1 − (n − 3)η̄
= η

1 − (n − 2)η
for i 
= j.

If 1 ≤ i ≤ n − 1 then 〈un, vi 〉 = 〈vn, vi 〉 = 0 and |〈ui , vn〉| = |ti | ≤ η. However
if i 
= j for i, j ∈ {1, . . . , n − 1}, then

|〈ui , v j 〉| = |〈(1 − t2i )
1
2 w̄i + ti vn, v j 〉| ≤ |〈w̄i , v j 〉| ≤ η

1 − (n − 2)η
.

Therefore,we have verified (1), andwe readily have lin{ui , . . . , un} = lin{vi , . . . , vn}
for i = 1, . . . , n by construction.

Finally, for the estimate δ(ui , vi ) if η < 1
2n and i = 1, . . . , n, we observe that

|〈ui , v j 〉| < 2η provided j 
= i . It follows from ‖ui‖ = 1 and 〈ui , vi 〉 > 0 that

0 ≤ 〈vi − ui , vi 〉 = 1 −
√
1 −

∑
j 
=i

〈ui , v j 〉2 ≤
∑
j 
=i

〈ui , v j 〉2 ≤ (n − 1)4η2 < 2η.

In particular,

‖vi − ui‖ =
√√√√ n∑

j=1

〈vi − ui , v j 〉2 <
√
n4η2 = 2

√
n η,

and hence δ(ui , vi ) < 2nη. Q.E.D.

The following Lemma 2.2 and its consequence Corollary 2.3 are due to Rankin
[20], and will be used, say, for simplices.

Lemma 2.2 If u1, . . . , ud+1 ∈ Sd−1, d ≥ 2, are contained in a closed hemisphere,
then there exist i and j , 1 ≤ i < j ≤ d + 1, such that 〈ui , u j 〉 ≥ 0.

Proof We prove the statement by induction on d where the case d = 2 readily
holds. If d ≥ 3, then we may assume that 〈ui , u j 〉 ≤ 0 if 1 ≤ i < j ≤ d + 1. Let
v ∈ Sn−1 such that 〈v, ui 〉 ≥ 0 for i = 1, . . . , d + 1, and hence ui = wi + λi v for
i = 1, . . . , d + 1 where wi ∈ v⊥ and λi ≥ 0. If ui = v for some i ∈ {1, . . . , d + 1},
then 〈u j , ui 〉 = 0 for j 
= i , thusweare done.Otherwisewi 
= o for i = 1, . . . , d + 1.
If i = 1, . . . , d, then
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0 ≥ 〈ud+1, ui 〉 = 〈wd+1, wi 〉 + λd+1 · λi ≥ 〈wd+1, wi 〉,

therefore, the induction hypothesis applied to w1
‖w1‖ , . . . ,

wd
‖wd‖ ∈ v⊥ ∩ Sd−1 yields

〈wi , w j 〉 ≥ 0 for some 1 ≤ i < j ≤ d, and hence 〈ui , u j 〉 ≥ 0. Q.E.D.

Corollary 2.3 If k ≥ d + 2, d ≥ 2, and u1, . . . , uk ∈ Sd−1, then there exist i and j ,
1 ≤ i < j ≤ d + 1, such that 〈ui , u j 〉 ≥ 0.

3 The Proof of Theorem 1.1 in the Case of Simplices

Theorem 3.1 covers the case of regular simplex of Theorem 1.1.

Theorem 3.1 If u0, . . . , ud ∈ Sd−1 satisfy δ(ui , u j ) ≥ arccos −1
d − 2ε for ε ∈

[0, εd) and 0 ≤ i < j ≤ d, d ≥ 2, then there exists a regular simplex [v0, . . . , vd ]
with v0, . . . , vd ∈ Sd−1 such that δ(ui , vi ) ≤ cdε for i = 0, . . . , d where cd = 9d3.5

and εd = 1/cd .

Remark If d = 2, then one may even choose c2 = 3 and ε2 = π
12 .

Proof We first handle the case d = 2, because this case is much more elementary.
We define ε2 to be π

12 = 1
2 (

2π
3 − π

2 ). Thus arccos −1
2 = 2π

3 and ε < ε2 yield that no
closed semicircle contains u0, u1, u2, and hence the sum of the three angles of type
δ(ui , u j ) is 2π . We may assume that δ(u0, u1) ≤ δ(u0, u2) ≤ δ(u1, u2), and hence

2π

3
− 2ε ≤ δ(u0, u1) ≤ 2π

3
≤ δ(u1, u2) ≤ 2π

3
+ 4ε. (2)

We choose v1, v2, v3 ∈ S1 that are vertices of a regular triangle, and

δ(u0, v0) = δ(u1, v1) ≤ ε.

We deduce from (2) that δ(u2, v2) ≤ 3ε, thus we may choose c2 to be 3.
Turning to the case d ≥ 3, let

0 < ε <
1

9d3.5
.

If 0 ≤ i < j ≤ d, then we have

‖ui − u j‖2 = 2 − 2 cos δ(ui , u j ) ≥ 2 + 2

(
cos 2ε

d
−

√
d2 − 1

d
· sin 2ε

)

> 2 + 2

(
1 − 2ε

d
− 2ε

)
>

2(d + 1)

d
− 6ε. (3)
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Using (3) and the estimate

(d + 1)2 =
∥∥∥∥∥

d∑
i=0

ui

∥∥∥∥∥
2

+
∑

0≤i< j≤d

‖ui − u j‖2 ≥
∑

0≤i< j≤d

‖ui − u j‖2,

we deduce for any i < j the upper bound

‖ui − u j‖2 <
2(d + 1)

d
+ 3d(d + 1)ε.

In particular, if i < j , then

−1

d
− 3

2
d(d + 1)ε ≤ 〈ui , u j 〉 ≤ −1

d
+ 2ε. (4)

WeembedRd intoRd+1 asRd = e⊥ for suitable e ∈ Sd ⊂ R
d+1. For i = 0, . . . , d,

we define

wi =
√

1

d + 1
e +

√
d

d + 1
ui ∈ Sd ,

and hence (4) yields that if i 
= j , then

|〈wi , w j 〉| =
∣∣∣∣ 1

d + 1
+ d

d + 1
〈ui , u j 〉

∣∣∣∣ = d

d + 1

∣∣∣∣ 1d + 〈ui , u j 〉
∣∣∣∣ ≤ 3

2
d2ε.

Since 3
2 d

2ε < 1
2(d+1) , Lemma 2.1 can be applied, and hence there exists an orthonor-

mal basis q0, . . . , qd of R
d+1 such that δ(wi , qi ) ≤ 3(d + 1)d2ε holds for i =

0, . . . , d. We define q = ∑d
i=0

1√
d+1

qi and deduce that q ∈ Sd .

Since for any i = 0, . . . , d, we have 〈e, wi 〉 = 1√
d+1

and δ(wi , qi ) ≤ 3(d +
1)d2ε, it follows from | cos(α + β) − cosα| ≤ |β| forα, β ∈ R that

∣∣∣〈e, qi 〉 − 1√
d+1

∣∣∣
≤ 3(d + 1)d2ε, and hence |〈e − q, qi 〉| ≤ 3(d + 1)d2ε. We deduce that

‖e − q‖ ≤ 3(d + 1)
3
2 d2ε.

Let A ∈ O(d + 1) be the identity if e = q, and be the rotation around the linear
(d − 1)-space of R

d+1 orthogonal to lin{e, q} with Aq = e if e 
= q. It follows
that ‖Au − u‖ ≤ ‖e − q‖ for u ∈ Sd . For each i = 0, . . . , q, q̄i = Aqi ∈ Sd sat-
isfies ‖q̄i − qi‖ ≤ ‖e − q‖ ≤ 3(d + 1)

3
2 d2ε and combining the last estimate with

δ(wi , qi ) ≤ 3(d + 1)d2ε ≤ 3
2 (d + 1)

3
2 d2ε yields

‖wi − q̄i‖ ≤ 9

2
(d + 1)

3
2 d2ε. (5)
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As Aq = e, we also have that 〈q̄i , e〉 =
√

1
d+1 = 〈wi , e〉 for i = 0, . . . , q. Therefore,

vi =
√
d + 1

d

(
q̄i −

√
1

d + 1
e

)
∈ e⊥ ∩ Sd = Sd−1

for i = 0, . . . , q, [v0, . . . , vd ] is a regular d-simplex, and

‖vi − ui‖ =
√
d + 1

d
· ‖q̄i − wi‖ ≤ 9

2
(d + 1)2d

3
2 ε ≤ 8d3.5ε ≤ 8

9

for i = 0, . . . , q where we used d ≥ 3 at the last estimate. Using that
2 arcsin t

2 ≤ 9
8 t for any t ∈ [0, 8

9 ], we conclude that δ(vi , ui ) = 2 arcsin ‖vi−ui‖
2 ≤

9
8‖vi − ui‖ ≤ 9d3.5ε for i = 0, . . . , q. Q.E.D.

4 The Linear Programming Bound

Let d ≥ 2. The presentation about the linear programming bound for sphere packings
on Sd−1 in this section is based on Ericson and Zinoviev [11, Chap. 2]. A central
role in the theory is played by certain real Gegenbauer polynomials Qi , i ∈ N, in
one variable where each Qi is of degree i , and satisfies the following recursion:

Q0(t) = 1

Q1(t) = t

Q2(t) = dt2 − 1

d − 1
(i + d − 2)Qi+1(t) = (2i + d − 2)t Qi (t) − i Qi−1(t) for i ≥ 2.

We do not signal the dependence of Qi on d because the original notation for the
Gegenbaur polynomial is Qi = Q(α)

i for α = d−2
2 as

∫ 1

−1
Qi (t)Q j (t)(1 − t2)

d−3
2 dt = 0 if i 
= j.

Actually, Qi is normalized in a way such that Qi (1) = 1 for i ∈ N.
The basis of our considerations is the following version of the linear programming

bound, which is contained in the proof of Theorem 2.3.1 in [11]. We write |X | to
denote the cardinality of a finite set X .

Theorem 4.1 For d ≥ 2, if f = f0Q0 + f1Q1 + . . . + fk Qk for k ≥ 1, f0 > 0 and
f1, . . . , fk ≥ 0, then any finite X ⊂ Sd−1 satisfies
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|X | f (1) +
∑
x,y∈X
x
=y

f (〈x, y〉) ≥ |X |2 f0. (6)

Remark The classical linear programming bound is a consequence; namely, if in
addition, f (t) ≤ 0 for fixed s ∈ (−1, 1) and variable t ∈ [−1, s], then

|X | ≤ f (1)/ f0. (7)

If we have equality in (7), then (6) shows that all values 〈x, y〉 for x 
= y, x, y ∈ X
are roots of f .

As an example, let X ⊂ Sd−1 be the centers for a packing of spherical balls of
radius π

4 , and hence 〈x, y〉 ≤ 0 for x, y ∈ X with x 
= y. The polynomial

f (t) = t (t + 1) = f0Q0 + f1Q1 + f2Q2

satisfies f (t) ≤ 0 for t ∈ [−1, 0] and

f0 = 1

d
, f1 = 1, f2 = 1 − 1

d
, f (1) = 2,

therefore, (7) yields |X | ≤ 2d.
Next we quantify the obvious statement that for any packing of m spherical balls

of radius r on Sn−1, if r is close to π
4 then m ≤ 2n.

Lemma 4.2 If Y ⊂ Sn−1, n ≥ 2, satisfies that 〈x, y〉 < 1
2n2−n for x, y ∈ Y with x 
=

y, then |Y | ≤ 2n.

Proof Let s = max{〈x, y〉 : x, y ∈ Y and x 
= y} < 1
2n2−n . We consider the polyno-

mial
f (t) = (t + 1)(t − s) = f0Q0 + f1Q1 + f2Q2

where f (t) ≤ 0 for t ∈ [−1, s] and

f0 = 1

n
− s, f1 = 1 − s, f2 = 1 − 1

n
, f (1) = 2(1 − s).

We deduce from the linear programming bound (7) and s < 1
2n2−n that

|Y | ≤ 2n(1 − s)

1 − ns
= 2n + 2n(n − 1)s

1 − ns
< 2n + 1. Q.E.D.

The linear programming bound could have been used in the case of simplex to
prove (4). However, this could be proved easily by elementary arguments, as well.
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The linear programming bound can be also used to prove the optimality of the
icosahedron and the 600-cell however the corresponding polynomials are more com-
plicated. Say, in the case of 600-cell, the polynomial is of degree 17 and f12 = f13 = 0
according to Andreev [2]. Therefore we use volume estimates to handle the cases of
the icosahedron and the 600-cell.

5 The Proof of Theorem 1.1 in the Case of Crosspolytopes

Let X ⊂ Sd−1 be the centers for a packing of at least 2d spherical balls of radius
π
4 − ε, 0 < ε < 1

64d4 , and hence 〈x, y〉 ≤ s for x, y ∈ X with x 
= y and

s = sin 2ε < 2ε <
1

32d4
.

We deduce from Lemma 4.2 that

|X | = 2d.

We consider the polynomial

f (t) = (t + 1)(t − s) = f0Q0 + f1Q1 + f2Q2

where f (t) ≤ 0 for t ∈ [−1, s] and

f0 = 1

d
− s, f1 = 1 − s, f2 = 1 − 1

d
, f (1) = 2(1 − s).

It follows from (6) and f (t) ≤ 0 for t ∈ [−1, s] that if x, y ∈ X with x 
= y, then

f (〈x, y〉) ≥ |X |2 f0 − |X | f (1) = 4d2

(
1

d
− s

)
− 4d(1 − s) = −4d(d − 1)s.

(8)
Since t − s ≤ −1

2 if t ≤ −1
2 and t + 1 ≥ 1

2 if t ≥ −1
2 , we have

f (t) ≤ −1

2
min {|t + 1|, |t − s|} for t ∈ [−1, s].

We deduce from (8) that if x, y ∈ X with x 
= y, then

min{〈x, y〉 + 1, s − 〈x, y〉} ≤ 8d(d − 1)s,

or in other words,
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either −1 ≤ 〈x, y〉 ≤ −1 + 1
4d2 < −3

4
or −8d(d − 1)s ≤ 〈x, y〉 ≤ s < 1

32 .
(9)

We define

η = 8d(d − 1)s <
1

4d2
. (10)

We claim that for every x ∈ X

there exists a unique y ∈ X such that 〈x, y〉 ≤ −3

4
, (11)

which we call the element of X opposite to x. For any y ∈ X , we write ȳ to denote
its projection into x⊥, and if y 
= ±x, then we set y∗ = ȳ/‖ȳ‖.

The first step towards (11) is to show that if y, z ∈ X , then

〈x, y〉 ≤ −3

4
and 〈x, z〉 ≤ −3

4
yield y = z. (12)

Since ‖ȳ‖ = √
1 − 〈x, y〉2 <

√
1
2 and similarly ‖z̄‖ <

√
1
2 , we have

〈y, z〉 = 〈x, y〉〈x, z〉 + 〈ȳ, z̄〉 >
9

16
− 1

2
= 1

16
,

which proves 〈y, z〉 = 1 by (9), and in turn verifies (12).
Next, set X̃ = {y ∈ X : |〈x, y〉| ≤ η}. For (11), it is sufficient to verify that

|X̃ | ≤ 2(d − 1). (13)

For y1, y2 ∈ X̃ , we have yi = ȳi + pix for i = 1, 2where pi ∈ [−η, η]. In particular,
‖ȳi‖ = (1 − p2i )

1
2 ≥ (1 − η2)

1
2 , and hence

〈y∗
1 , y

∗
2〉 = 〈ȳ1, ȳ2〉

(1 − p21)
1
2 (1 − p22)

1
2

= 〈y1, y2〉 − p1 p2

(1 − p21)
1
2 (1 − p22)

1
2

≤ η + η2

1 − η2
= η

1 − η
< 2η.

Since 2η < 1
2d2 , Lemma 4.2 with n = d − 1 yields (13), and in turn (11).

We deduce from (11) that X can be divided into d pairs of opposite vec-
tors. Choosing one unit vector from each pair, we obtain x1, . . . ,xd ∈ X such
that |〈xi ,x j 〉| ≤ η for i 
= j . It follows from Lemma 2.1 that for every such d-
tuple x1, . . . ,xd ∈ X there exists an orthonormal basis v1, . . . , vd of Rd such that
lin{xi , . . . ,xd} = lin{vi , . . . , vd} and δ(xi , vi ) ≤ 2dη for i = 1, . . . , d.

We claim that if x, y ∈ X are opposite vectors, then

δ(y,−x) ≤ 4dη. (14)
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We choose x2, . . . ,xd ∈ X representatives from the other d − 1 opposite pairs, and
let v be the unit vector orthogonal to lin{x2, . . . ,xd} with 〈x, v〉 > 0. Taking x = x1

and considering the approximating orthonormal basis v1, . . . , vd for this x1, . . . ,xd ,
we deduce that v = v1, and hence δ(x, v) ≤ 2dη. Similarly, taking y = x1, we have
v1 = −v for the approximating orthonormal basis, thus δ(y,−v) ≤ 2dη. In turn, we
conclude (14) by the triangle inequality.

Finally, we fix representatives u1, . . . , ud from each of the d pairs of opposite
vectors, and hence there exists an orthonormal basis w1, . . . , wd of Rd such that
δ(ui , wi ) ≤ 2dη for i = 1, . . . , d. We write ui+d to denote the vector of X opposite
to ui , i = 1, . . . , d, and hence δ(ui+d ,−ui ) ≤ 4dη according to (14). Therefore,

δ(ui+d ,−wi ) ≤ δ(ui+d , −ui ) + δ(−ui , −wi ) ≤ 4dη + 2dη = 6dη ≤ 48d3s ≤ 96d3ε.

Therefore, cd = 96d3 can be chosen for Theorem 1.1 in the case of crosspolytopes.

6 Spherical Dirichlet-Voronoi and Delone Cell
Decomposition

For v ∈ Sd−1 and acute angle θ , wewrite B(v, θ) to denote the spherical ball of center
v and radius θ . For u, v ∈ Sd−1, u 
= −v, we write uv to denote the smaller geodesic
arc connecting u and v. We will frequently use the Spherical Law of Cosines: If
a, b, c are side lengths of a spherical triangle contained in an open hemisphere, and
the opposite angles are α, β, γ , respectively, then

cos c = cos a · cos b + sin a · sin b · cos γ. (15)

A set C ⊂ R
d is a convex cone if it is closed and αx + βy ∈ C for α, β ≥ 0

and x, y ∈ C . If C contains a half-line, then M = C ∩ Sd−1 is called a spherically
convex set whose dimension is one less than the Euclidean dimension of C . The
relative interior of M is the intersection of Sd−1 and the relative interior of C with
respect to linC . If the origin is a face ofC andC is a polyhedron (namely, intersection
of finitely many half-spaces) then M is called a spherical polytope. In this case, the
faces of M are intersections of Sd−1 with the faces of C different from the origin.

Let x1, . . . ,xk ∈ Sd−1 satisfy that each open hemisphere contains some of
x1, . . . ,xk , and hence o ∈ int P for P = [x1, . . . ,xk]. The radial projections of the
facets of P onto Sd−1 form the Delone (or Delaunay) cell decomposition of Sd−1.
We observe that if the distance of o from aff F is  for a facet F , then arccos  is the
spherical radius of the spherical cap cut off by aff F . We call arccos  the spherical
circumradius of the corresponding Delone cell.

To define the other classical decomposition of Sd−1 corresponding to x1, . . . ,xk ,
let

Di = {u ∈ Sd−1 : δ(u,xi ) ≤ δ(u,x j ) for j = 1, . . . , k}
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for i = 1, . . . , k, which is the Dirichlet-Voronoi cell of xi . The Dirichlet-Voronoi
cells also form a cell decomposition of Sn−1 that is dual to the Delone cell decom-
position by providing the following bijective correspondence between vertices of
Dirichlet cells andDelone cells. If v is a vertex of Di , i ∈ {1, . . . , k}, and δ(v,xi ) = θ ,
then δ(v,x j ) ≥ θ for all j = 1, . . . , k, and points x j with δ(v,x j ) = θ form the ver-
tex set of a Delone cell (see, say, Böröczky [5]). In addition, if F is anm-dimensional
face of some Di , and p is the closest point of them-dimensional great sphere� of F ,
then there exists a (d − 1 − m)-dimensional face G of the Delone cell complex con-
tained in the (d − 1 − m)-dimensional great sphere �′ orthogonal to � at p whose
vertices are all of distance δ(p,xi ) from p.

A simplex with ordered vertices p0, . . . , pd−1 on Sd−1 is called an orthoscheme
if for i = 1, . . . , d − 2, the i-dimensional great sphere through p0, . . . , pi is orthog-
onal to the (d − 1 − i)-dimensional great sphere through pi , . . . , pd−1.

For any face F of a Dirichlet-Voronoi cell Di , we write qi (F) to denote the point
of F closest to xi . It follows from the convexity of F and the Spherical Law of
Cosines that if x ∈ F\qi (F), then

(a) the angle between the arcs qi (F),xi and qi (F),x is at least π
2 ,

(b) and is actually exactly π
2 if qi (F) lies in the relative interior of F .

For aDirichlet-Voronoi cell Di ,we say that a sequence (F0, . . . , Fd−2) is a tower, if Fj

is a j-face of Di , j = 0, . . . , d − 2, and Fj ⊂ Fl if j < l. In addition, (F0, . . . , Fd−2)

is a proper tower, if qi (Fj ) 
= qi (Fl) for j < l, and, in this case, we call the simplex
� with ordered vertices xi , qi (Fd−2), . . . , qi (F0), a quasi-orthoscheme. We observe
that according to (b), a quasi-orthoscheme is an orthoscheme if each qi (Fj ), j =
1, . . . , d − 2, lies in the relative interior of Fj . Moreover, (a) yields that quasi-
orthoschemes provide a triangulation of Sd−1 refining the Dirichlet-Voronoi cell
decomposition.

For any ϕ ∈ (0, π
2 ) and i ≥ 1, we write ri (ϕ) ∈ (0, π

2 ) to denote the circumradius
of the i-dimensional spherical regular simplex of edge length 2ϕ. In particular, there
exists a spherical triangle with equal sides ri (ϕ) enclosing the angle arccos −1

i where
the third side of the triangle is 2ϕ. In addition, we define r∞(ϕ) ∈ (0, π

2 ) in a way
such that there exists a spherical triangle with equal sides r∞(ϕ) enclosing the right
angle where the third side of the triangle is 2ϕ. We have

ϕ = r1(ϕ) < · · · < rd−1(ϕ) < r∞(ϕ).

It follows from (15) that if j = 1, . . . , d − 1, then

cos 2ϕ = cos2 r j (ε) − sin2 r j (ε)

j
and cos 2ϕ = cos2 r∞(ε), (16)

which in turn yields that

sin r j (ϕ) =
√

2 j

j + 1
sin ϕ and sin r∞(ϕ) = √

2 sin ϕ. (17)
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The following lemma is due to Boroczky [4]. We include the argument because
the second statement is only implicit in [4].

Lemma 6.1 Let ϕ ∈ (0, π
2 ), and let x1, . . . ,xk ∈ Sd−1 satisfy that each open hemi-

sphere contains some of x1, . . . ,xk , and δ(xi ,x j ) ≥ 2ϕ for i 
= j , and let D j be the
Dirichlet-Voronoi cell of x j . If F is an m-dimensional face of certain Di , then

(i) δ(xi , qi (F)) ≥ rd−1−m(ϕ);
(ii) and even δ(xi , qi (F)) ≥ r∞(ϕ) if qi (F) is not contained in the relative interior

of F.

Proof Let p be the closest to xi point of the m-dimensional great subsphere �

containing F , and let I be the set of all indices j such that F is a face of Dj . In
particular, all x j with j ∈ I span the (d − 1 − m)-dimensional great subsphere �′
passing through p and perpendicular to �, and hence the cardinality of I is at least
d − m. It follows that for θ = δ(xi , p) ≤ δ(xi , qi (F)), we have θ = δ(x j , p) for
j ∈ I . For j ∈ I , let u j be a unit vector tangent to the arc p,x j at p, and hence
all u j , j ∈ I , span the (d − 1 − m)-dimensional linear subspace L ′ tangent to �′ at
p. According to Jung’s theorem (see also Lemma 3.1), there exist different l, j ∈ I
such that δ(ul , u j ) ≤ arccos −1

d−1−m . Since δ(xl, p) = δ(x j , p) = θ , we deduce (i)
from the Spherical Law of Cosines (15).

Turning to (ii), we assume that p is not contained in the relative interior of F . In
this case, there exists an xg ∈ Sd−1\�′ such that 0 < δ(xg, p) ≤ θ . Let ug ∈ Sd−1

be a unit vector tangent to the arc p,xg at p. We claim that there exist different
j, l ∈ I ∪ {g} such that

〈u j , ul〉 ≥ 0. (18)

Let L be the m-dimensional linear subspace L tangent to � at p, which is the
orthogonal complement of L ′ inside the tangent space to Sd−1 at p. Therefore, there
exist unit vectors v ∈ L and v′ ∈ L ′ and a real number t ∈ [0, π

2 ] such that ug =
v cos t + v′ sin t . If 〈v′, u j 〉 < 0 for all j ∈ I , then Lemma 2.2 yields different j, l ∈ I
such that 〈u j , ul〉 ≥ 0. Otherwise there exists j ∈ I such that 〈v′, u j 〉 ≥ 0, and hence
〈ug, u j 〉 ≥ 0, as well.

Using these u j and ul in (18), we apply the Spherical Law of Cosines (15) to the
triangle with vertices p,x j ,xl to obtain

cos 2ϕ ≥ cos δ(x j ,xl) ≥ cos δ(p,x j ) · cos δ(p,xl) ≥ cos2 θ.

Therefore, θ ≥ r∞(ϕ) by (16). Q.E.D.

We fix a point z0 ∈ Sd−1, and for 0 < t1 < · · · < td−1 < π
2 , we write �(t1, . . . ,

td−1) to denote an orthoscheme with ordered vertices z0, z1, . . . , zd−1 such that
δ(z0, zi ) = ti for i = 1, . . . , d − 1. We observe that the (spherical) diameter of
�(t1, . . . , td−1) is td−1. For any ϕ ∈ (0, t1], we define

�(t1, . . . , td−1) = |�(t1, . . . , td−1) ∩ B(z0, ϕ)|
|�(t1, . . . , td−1)| · |B(z0, ϕ)| ,
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whose value does not depend on the choice of ϕ ∈ (0, t1]. If� ⊂ z⊥
0 is the Euclidean

convex polyhedral cone generated by the rays tangent to the arcs z0, zi at z0, i =
1, . . . , d − 1, then

�(t1, . . . , td−1) = Hd−2(� ∩ Sd−1)

|�(t1, . . . , td−1)| · Hd−2(Sd−2)
.

According to one of the core results of Boroczky [4], if s1 < · · · sd−1 < π
2 , and ti ≤ si

for i = 1, . . . , d − 1, then

�(t1, . . . , td−1) ≥ �(s1, . . . , sd−1). (19)

We deduce from Lemma 6.1 and (19) the following estimate.

Lemma 6.2 Letσ ∈ (0, π
2 ), and letx1, . . . ,xk ∈ Sd−1, d ≥ 3, satisfy that each open

hemisphere contains some of x1, . . . ,xk , and δ(xi ,x j ) ≥ 2σ for i 
= j , and let Di

be the Dirichlet-Voronoi cell of xi . If � is a quasi-orthoscheme associated to some
Di and it is known that � is an orthoscheme, and the diameter of � is R, then

|� ∩ B(xi , σ )|
|�| · |B(xi , σ )| ≤ �(r1(σ ), . . . , rd−2(σ ), R) (20)

≤ �(r1(σ ), . . . , rd−2(σ ), rd−1(σ )). (21)

We note that the ideas in Boroczky [4] yield (21) even if the quasi-orthoscheme
� is not an orthoscheme, but they actually even imply the following stronger bound
in the low dimensions we are interested in.

Lemma 6.3 Let σ ∈ (0, π
2 ), and let x1, . . . ,xk ∈ Sd−1, d = 3, 4, satisfy that each

open hemisphere contains some of x1, . . . ,xk , and δ(xi ,x j ) ≥ 2σ for i 
= j , and
let Di be the Dirichlet-Voronoi cell of xi . If � is a quasi-orthoscheme associated to
some Di and it is known that � is not an orthoscheme, then

|� ∩ B(xi , σ )|
|�| · |B(xi , σ )| ≤ �(r1(σ ), . . . , rd−2(σ ), r∞(σ )).

Proof Let F0 ⊂ · · · ⊂ Fd−2 be the proper tower of faces of Di associated to �. If
δ(xi , qi (Fd−2)) ≥ r∞(σ ), then Fd−2 does not intersect the interior of B(xi , r∞(σ )),
and hence Lemma 6.1 yields

|� ∩ B(xi , σ )|
|�| ≤ |� ∩ B(xi , σ )|

|� ∩ B(xi , r∞(σ ))| = |B(xi , σ )|
|B(xi , r∞(σ ))| .

Since �(r1(σ ), . . . , rd−2(σ ), r∞(σ )) ⊂ B(z0, r∞(σ )), we have

|�(r1(σ ), . . . , rd−2(σ ), r∞(σ )) ∩ B(z0, σ )|
|�(r1(σ ), . . . , rd−2(σ ), r∞(σ ))| ≥ |B(z0, σ ))

|B(z0, r∞(σ ))| .
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we conclude the lemma in this case.
This covers the case d = 3 completely because the condition δ(xi , qi (F1)) <

r∞(σ ) implies by Lemma 6.1 that � is an orthoscheme. The only case left open is
when d = 4, δ(xi , qi (F2)) < r∞(σ ), and hence qi (F2) is contained in the relative
interior of F2, but qi (F1) is not contained in the relative interior of F1 because
otherwise � is an orthoscheme. Then there exists p ∈ qi (F2), qi (F1) such that
δ(xi , p) = r∞(ϕ). We consider the spherical cone C obtained by rotating the tri-
angle with vertices xi , q2(F2), p around xi , q2(F2). Since F2\C does not intersect
B(xi , r∞(ϕ)), the argument as above leads to

|(�\C) ∩ B(xi , σ )|
|(�\C)| · |B(xi , σ )| ≤ �(r1(σ ), r2(σ ), r∞(σ )). (22)

In addition, (19) and the argument of K. Boroczky [4] yield

|C ∩ B(xi , σ )|
|C | · |B(xi , σ )| = lim

s→0+
�(r1(σ ), r∞(σ ) − s, r∞(σ ))

≤ �(r1(σ ), r2(σ ), r∞(σ )). (23)

Combining (22) and (23) proves Lemma 6.3. Q.E.D.

Actually, the argument in Boroczky [4] shows that Lemma 6.3 holds in any dimen-
sion. More precisely, [4] proved the so-called simplex bound; namely, if σ ∈ (0, π

2 ),
and there exist k non-overlapping spherical balls of radius σ on Sd−1, then

k ≤ �(r1(σ ), . . . , rd−1(σ )) · Hd−1(Sd−1), (24)

and equality holds in the simplex bound if and only if the centers are vertices of a
regular simplicial polytope P with edge length 2 sin σ .

The following statement shows in a qualitative way that if for an acute angle ϕ,
all simplices in a Delone triangulation of Sd−1 are close to be regular with spherical
edge length 2ϕ, then the whole Delone triangulation is close to a one induced by a
simplicial regular polytope.

Lemma 6.4 Let ϕ ∈ (0, π/4], let u0, . . . , ud ∈ Sd−1, d ≥ 3 be such that u1, . . . ,
ud−1 determines a unique (d − 2)-dimensional great subsphere that separates u0 and
ud , and let ε ∈ (0, ε0) for ε0 = sin ϕ

16
√
d−1

. If there exist two spherical regular simplices
of edge length ϕ with vertices v0, . . . , vd−1 and w1, . . . , wd such that δ(ui , vi ) ≤ ε

for i = 0, . . . , d − 1, and δ(ui , wi ) ≤ ε for i = 1, . . . , d, then δ(ud , vd) ≤ cε, where
v1, . . . , vd are vertices of a regular simplex, vd 
= v0 and c = 16

√
d−1

sin ϕ
.

Proof It is sufficient to prove that δ(vd , wd) ≤ (c − 1)ε. Using δ(vd , wd) = 2 arcsin
‖vd−wd‖

2 ≤ 2‖vd − wd‖ given ‖vd − wd‖ ≤ 1, it is sufficient to show

‖vd − wd‖ ≤ c − 1

2
· ε. (25)
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Wewill use that ifx1, . . . ,xk, y1, . . . , yk ∈ R
k ,‖xi − yi‖ ≤ η for all i = 1, . . . , k,

and λ1, , . . . , λk ≥ 0, then the triangle inequality yields

‖(λ1x1 + . . . + λkxk) − (λ1y1 + . . . + λkyk)‖ ≤ (λ1 + . . . + λk)η. (26)

We have δ(vi , wi ) ≤ 2ε for i = 1, . . . , d − 1, thus ‖vi − wi‖ ≤ 2ε for i = 1, . . . ,
d − 1. We deduce from (26) that ‖p − p′‖ ≤ 2ε holds for the centroids

p = 1

d − 1
(v1 + · · · + vd−1) and p′ = 1

d − 1
(w1 + · · · + wd−1)

of the (d − 2)-dimensional regular Euclidean simplices [v1, . . . , vd−1] and [w1, . . . ,

wd−1]. We consider α > β > 0, and an orthonormal basis ṽ1, . . . , ṽd such that vd , ṽd
lie in the same half-space with respect to lin{v1, . . . , vd−1} = lin{ṽ1, . . . , ṽd−1} and
satisfy

vi = αṽi +
∑
j 
=i

j∈{1,...,d−1}

β ṽ j for i = 1, . . . , d − 1 (27)

Then α, β satisfy

1 = 〈v1, v1〉 = α2 + (d − 2)β2

cos 2ϕ = 〈v1, v2〉 = 2αβ + (d − 3)β2,

therefore taking the difference leads to

(α − β)2

2
= 1 − cos 2ϕ

2
= sin2 ϕ. (28)

Similarly, we define an orthonormal basis w̃1, . . . , w̃d of Rd such that wd , w̃d lie
in the same half-space with respect to lin{w1, . . . , wd−1} = lin{w̃1, . . . , w̃d−1} and
satisfy

wi = αw̃i +
∑
j 
=i

j∈{1,...,d−1}

βw̃ j for i = 1, . . . , d − 1.

This basis exists when α, β satisfy the conditions derived above.
According to (27), the (d − 1) × (d − 1) symmetric matrix M whose main diag-

onals are α, and the rest of the entries are β, satisfies that Mṽi = vi i = 1, . . . , d − 1.
One of the eigenvectors of M in ṽ⊥

d is v∗ = ∑d−1
j=1 ṽ j with eigenvalue α + (d − 2)β.

Any vector in ṽ⊥
d orthogonal to v∗ is an eigenvector with eigenvalue α − β. We

deduce with help of (28) that if v ∈ ṽ⊥
d , then

‖M−1v‖ ≤ (α − β)−1‖v‖ = ‖v‖√
2 sin ϕ

. (29)
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For i = 1, . . . , d − 1, we have 〈w̃d , wi 〉 = 0 and ‖vi − wi‖ ≤ 2ε, therefore,

2ε ≥ |〈w̃d , vi 〉| =

∥∥∥∥∥∥∥α〈w̃d , ṽi 〉 +
∑
j 
=i

j∈{1,...,d−1}

β〈w̃d , ṽ j 〉

∥∥∥∥∥∥∥ .

In particular, the length of the vector v = 〈w̃d , v1〉ṽ1 + · · · + 〈w̃d , vd−1〉ṽd−1 is at
most 2ε

√
d − 1, thus (29) implies that

‖M−1v‖ =
√√√√d−1∑

j=1

〈w̃d , ṽ j 〉2 ≤ 2ε
√
d − 1√

2 sin ϕ
.

In other words, the projection of the unit vector w̃d into ṽ⊥
d is of length at most

2ε
√
d−1√

2 sin ϕ
, therefore, possibly after exchanging w̃d by −w̃d , we have

‖ṽd − w̃d‖ ≤ 2ε
√
d − 1√

2 sin ϕ

√
2 = 2ε

√
d − 1

sin ϕ
.

Now the orthogonal projection of the origin o into aff{v1, . . . , vd} lies inside [p, vd ],
thus the angle of the triangle [o, p, vd ] at p is acute. In addition, the angle of p and vd
is also acute by ϕ ≤ π

4 . Therefore, there exist t, s ∈ (0, 1) such that vd = tp + sṽd ,

and hence alsowd = tp′ + sw̃d . We deduce from ‖p − p′‖ ≤ 2ε ≤ 2ε
√
d−1

sin ϕ
and (26)

that

‖vd − wd‖ ≤ (t + s)
2ε

√
d − 1

sin ϕ
≤ 4ε

√
d − 1

sin ϕ
.

According to (25), we may choose c = 16
√
d−1

sin ϕ
. Q.E.D.

We note that the lengthy calculations in the rest of paper (say, Sect. 7) are mostly
aiming at providing upper estimates for the derivatives of�(ϕI − ε, r2(ϕI − ε)) (see
(34)), �(ϕI − ε, r2(ϕI ) + γ2ε) (see Lemma 8.1), �(ϕQ − ε, r2(ϕQ − ε), r3(ϕQ −
ε)) [see (43)] and �(ϕQ − ε, r2(ϕQ − ε), r3(ϕQ) + γ3ε) (see Lemma 9.1) as a func-
tion of small ε > 0 where γ2 and γ3 are suitable large constants. These estimates can
be obtained by some math computer packages based on formulas in Fejes Tóth [14,
15] and . However, we preferred a more theoretical approach, because the ideas can
be used in any dimension for similar problems.

7 Volume Estimates Related to the Simplex Bound

To calculate or estimate (d − 1)-volume of a compact X ⊂ Sd−1, we use Lemmas 7.1
and 7.2.
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Lemma 7.1 If t ∈ (0, 1), and X ⊂ Sd−1, d ≥ 3, is spherically convex that for some
v ∈ X satisfies 〈u, v〉 ≥ t for all u ∈ X, then Hd−1(X) ≥ Hd−1(X ′) holds for the
radial projection X ′ of X into tv + v⊥.

Proof The statement follows from the fact that the orthogonal projection of X into
tv + v⊥ covers X ′. Q.E.D.

Lemma 7.2 If v ∈ Sd−1, d ≥ 3, and X ⊂ Sd−1 is compact and satisfies δ(u, v) ≤ �,
� < π

2 , for all u ∈ X, and X̃ is the radial projection of X into the tangent hyperplane
to Sd−1 at v, then

Hd−1(X) =
∫
X̃
(1 + ‖y − v‖2)−d/2 dHd−1(y) ≥ cosd � · Hd−1(X̃).

Proof The statement follows from the facts that if y ∈ X̃ , then ‖y‖ = (1 +
‖y − v‖2)1/2 and u = y/‖y‖ satisfies 〈u, v〉 = (1 + ‖y − v‖2)−1/2 ≥ cos�.Q.E.D.

The main results of this section are Lemma 7.3, its Corollary 7.4, and Lemma 7.5,
which provide estimates when we slightly deform the “regular” orthoscheme
�(r1(ϕ), . . . , rd−1(ϕ)).

Lemma 7.3 For ϕ ∈
(
0, arcsin

√
d

4(d−1)

)
, if ε ∈ (0, ϕ), then

|�(r1(ϕ − ε), . . . , rd−1(ϕ − ε))| > |�(r1(ϕ), . . . , rd−1(ϕ))|(1 − ℵ · ε),

where ℵ = d 2(d+3)/2/ sin rd−1(ϕ).

Proof Wededuce from (17) that rd−1(ϕ) < π/4. Let v ∈ Sd−1, let H = v + v⊥ be the
hyperplane tangent to Sd−1 at v, and letσ be a spherical arc of lengthπ/4 starting from
v. For ε ∈ (0, ϕ), we consider the spherical regular simplex T (ε) whose spherical
circumscribed ball is of center v and radius rd−1(ϕ − ε), and one vertex of T (ε) is
contained in σ . In particular,

|�(r1(ϕ − ε), . . . , rd−1(ϕ − ε))| = |T (ε)|/d!.

Wewrite T̃ (ε) to denote the radial projection of T (ε) into H ,which is aEuclidean reg-
ular simplex of circumradius R(ε) = tan rd−1(ϕ − ε) < 1. BoundingHd−1(T̃ (0)) ≤
2

d
2 |T (0)| by Lemma 7.2 we deduce that

|T (0)| − |T (ε)| ≤ |T̃ (0)\T̃ (ε)|
=

(
1 − R(ε)d−1

R(0)d−1

)
Hd−1(T̃ (0))

≤
(
1 −

(
1 − R(0) − R(ε)

R(0)

)d−1
)
2d/2|T (0)|

≤ R(0) − R(ε)

R(0)
· d 2d/2|T (0)|. (30)
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For r(ε) = rd−1(ϕ − ε), we deduce from (17) that r ′(ε) = − cos(ϕ−ε)

cos r(ε)

√
2(d−1)

d , there-
fore,

R′(ε) = (1 + R(ε)2)r ′(ε) ≥ −
√
2(1 + R(ε)2)

cos r(0)
≥ − 23/2

cos r(0)
.

Using (30) and R(0) · cos r(0) = sin rd−1(ϕ),

|T (0)| − |T (ε)|
|T (0)| ≤ 23/2ε

R(0) · cos r(0) · d 2d/2 = d 2(d+3)/2

sin rd−1(ϕ)
ε.

Q.E.D.

Corollary 7.4 For ϕ ∈
(
0, arcsin

√
d

4(d−1)

)
, if ε ∈ (0, 1

2ℵ ) for the ℵ of Lemma 7.3,

then

�(r1(ϕ − ε), . . . , rd−1(ϕ − ε)) ≤ �(r1(ϕ), . . . , rd−1(ϕ))(1 + 2ℵ · ε).

Proof 1 + 2ℵε ≥ 1/(1 − ℵε) so, according to Lemma 7.3, it is sufficient to prove
that if 0 < s < ϕ, then, for any τ < r1(s),

|B(z0, τ ) ∩ �(r1(s), . . . , rd−1(s))| ≤ |B(z0, τ ) ∩ �(r1(ϕ), . . . , rd−1(ϕ))|. (31)

Essentially, this statement means that the angle measure at a vertex of a regular
spherical simplex increases when the side length of the simplex increases. For the
sake of completeness we give an argument for this statement.

Consider two regular spherical simplices T ′ and T with side lengths 2s and 2ϕ
respectively such that they share a common center v and each vertex z′

i of T
′ belongs

to the arc zi , v. Triangle [z′
1, z

′
2, v] is inside [z1, z2, v] so the area of [z′

1, z
′
2, v] is less

than the area of [z1, z2, v]. Since the area of a spherical triangle is the sum of its
angles minus π , the angle between z′

1, z
′
2 and z′

1, z
′
v is less than the angle between

z1, z2 and z1, v.
Now we consider two regular simplices T ′ of side length 2s with vertices

z0, z′
1, . . . , z

′
d−1 and T of side length 2ϕ with vertices z0, z1, . . . , zd−1 such that

the center v′ of T ′ belongs to the arc v, z0, where v is the center of T , and all triangles
[z0, v, zi ] and [z0, v′, z′

i ] overlap. Then all arcs z0, zi belong to the cone formed by
T at z0 because all corresponding 2-dimensional angles in T ′ are smaller than those
in T . Therefore, the angle measure for T ′ is smaller than the one for T . Q.E.D.

We set up a notation for Lemma 7.5. For ϕ ∈ (0, π
4 ), let z0 = z0(ϕ), z1(ϕ), . . .,

zd−1(ϕ) be the vertices of �(r1(ϕ), . . . , rd−1(ϕ)). For t ∈ [rd−1(ϕ), π
2 ), we set

�̃(ϕ, t) = �(r1(ϕ), . . . , rd−2(ϕ), t),

and we may assume that z0(ϕ), . . . , zd−2(ϕ) are vertices of �̃(ϕ, t), and its d-th
vertex zd−1(ϕ, t) satisfies zd−1(ϕ) ∈ zd−2(ϕ), zd−1(ϕ, t).
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Lemma 7.5 If ϕ ∈
(
0, arcsin

√
d

4(d−1)

)
and t ∈ (ϕ, π

3 ), then

∣∣�̃(ϕ, t)\�̃(ϕ, rd−1(ϕ))
∣∣ ≥ t − rd−1(ϕ)

2d
· ∣∣�̃(ϕ, rd−1(ϕ))

∣∣ .
Proof For brevity, we set zi = zi (ϕ) for i = 0, . . . , d − 1, and rd−1 = rd−1(ϕ). The
condition on ϕ yields that rd−1 ≤ π

4 .
Let s be the length of the arc zd−1, zd−1(ϕ, t). Since the length of the arc zd−1, z0

is rd−1, and the angle of these two arcs is arccos −1
d , the Law of Cosines (15) yields

cos t = cos rd−1 cos s − (sin rd−1 sin s)/d,

we deduce from sin t ≥ sin rd−1 that

dt

ds
= cos rd−1 sin s + (sin rd−1 cos s)/d

sin t
≤ 1

sin rd−1
,

therefore,
s ≥ (t − rd−1) sin rd−1. (32)

We set �̃ = �̃(ϕ, rd−1(ϕ)), and observe that the closure of �̃(ϕ, t)\�̃ is the spher-
ical simplex T with vertices z0, . . . , zd−3, zd−1, zd−1(ϕ, t). Let H be the hyperplane
tangent to Sd−1 at zd−1, and we write X ′ to denote the radial projection of some
X ⊂ Sd−1 in H . It follows that �̃′ is the Euclidean orthoscheme such that d! of its
copies tile the Euclidean regular simplex of circumradius tan rd−1 ≤ 1, and hence
‖z′

d−2 − z′
d−1‖ = (tan rd−1)/(d − 1). We deduce from Lemma 7.2 and (32) that

|T | ≥ |T ′|
2d

= |�̃′| tan s
2d‖z′

d−2 − z′
d−1‖

≥ |�̃′|(t − rd−1) sin rd−1

2d(tan rd−1)/(d − 1)

≥ |�̃′|(t − rd−1)

2d
≥ |�̃|(t − rd−1)

2d
. Q.E.D.

8 The Case of the Icosahedron

In this section, we write I to denote the regular icosahedron with vertices on S2. In
particular,

ϕI = 1

2
arccos

1√
5

< arcsin

√
3

8
, (33)

thus Corollary 7.4 and Lemma 7.5 can be applied with ϕ = ϕI . Since S2 can be
dissected into 120 congruent copies of �(ϕI , r2(ϕI )), we have
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|�(ϕI , r2(ϕI ))| = π

30
,

and it follows from (24) that

�(ϕI , r2(ϕI )) = 3

π
.

According to (17), we have sin r2(ϕI ) = 2√
3
sin ϕI , thus the constant ℵ of

Lemma 7.3 satisfies ℵ = 3·23
sin r2(ϕI )

< 40. In particular, Corollary 7.4 yields that if
ε ∈ (0, 0.01), then

�(ϕI − ε, r2(ϕI − ε)) <
3

π
(1 + 80ε) <

3

π
+ 80ε. (34)

We also note that if v ∈ S2 and η ∈ (0, π
2 ), then

|B(v, η)| = 2π(1 − cos η). (35)

Lemma 8.1 For γ ≥ 104 and ε ∈ (0, 1
100γ ), we have

�(ϕI − ε, r2(ϕI ) + γ ε) ≤ �(ϕI , r2(ϕI )) − γ ε

200
.

Proof To simplify the notation, we write ϕ = ϕI and r2 = r2(ϕ) = arcsin 2 sin ϕ√
3
,

which satisfy r2 + γ ε < π
3 (in order to apply Lemma 7.5). We may assume that

�(ϕ − ε, r2(ϕ − ε)) and �(ϕ − ε, r2 + γ ε) share a side of length ϕ − ε.
We deduce from r2(ϕ − ε) ≤ r2 that (r2 + γ ε) − r2(ϕ − ε) ≥ γ ε.
We set T to be the closure of

�(ϕ − ε, r2 + γ ε)\�(ϕ − ε, r2(ϕ − ε)),

thus Lemma 7.5 yields

|T | ≥ γ ε

8
· |�(ϕ − ε, r2(ϕ − ε))|. (36)

In addition, if σ ∈ (0, ϕ − ε), then we deduce from ε < 10−6, that

|T ∩ B(z0, σ )|
|B(z0, σ )| · |T | <

|T ∩ B(z0, σ )|
|B(z0, σ )| · |T ∩ B(z0, r2(ϕ − ε))| = |B(z0, σ )|

|B(z0, σ )| · |B(z0, r2(ϕ − ε))|
≤ 1

|B(z0, r2(ϕ − 10−6))| = �0 <
3

π
− 0.175,

because �0 ≈ 0.7751 and 3
π

− 0.175 ≈ 0.7799.
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Therefore γ ≥ 104 yields

�(ϕ − ε, r2 + γ ε) ≤ ( 3
π

+ 80ε)|�(ϕ − ε, r2(ϕ − ε))| + �0|T |
|�(ϕ − ε, r2(ϕ − ε))| + |T |

≤ 3

π
+ 80ε −

(
3

π
+ 80ε − �0

)
γ ε/8

1 + γ ε

8

= 3

π
+ γ ε

(
80

γ
−

3
π

+ 80ε − �0

8 + γ ε

)

≤ 3

π
+ γ ε

(
10−2 −

3
π

− �0

10

)
≤ 3

π
− γ ε

200
.

Q.E.D.

The following two simple statements are useful tools in the case of the 600-cell
as well.

Lemma 8.2 If T ⊂ R
2 is a triangle such that all sides are of length at least a, and

the center of the circle passing through the vertices lies in T , then |T | ≥
√
3
4 a2.

Proof The largest angle α of T satisfies π
3 ≤ α ≤ π

2 . Q.E.D.

Lemma 8.3 For x, y, v ∈ S2, let δ(x, y) ≥ 2ψ , and let δ(x, v) = δ(y, v) = R for
0 < ψ < R < π

2 . If the angle between v,x and v, y is ω, then

(i) cosω ≤ 1 − 2 sin2 ψ

sin2 R
;

(ii) If ψ = ϕ − ε and R ≤ r + γ ε where ψ < ϕ < r < π
2 − γ ε and γ > 1, then

cosω ≤ 1 − 2 sin2 ϕ

sin2 r
+ 4γ ε

sin2 r
.

Proof For (i), the Spherical Law of Cosines (15) yields

1 − 2 sin2 ψ = cos 2ψ ≥ cos2 R + (sin2 R) cosω = 1 − (1 − cosω) sin2 R.

Turning to (ii), we deduce from d
dt sin

2 t = sin 2t ≤ 1 that

2 sin2(ϕ − ε)

sin2(r + γ ε)
≥ 2(sin2 ϕ − ε)

sin2 r + γ ε
=

(1 − ε

sin2 ϕ
)2 sin2 ϕ

(1 + γ ε

sin2 ϕ
) sin2 r

≥
(
1 − (γ+1)ε

sin2 ϕ

)
2 sin2 ϕ

sin2 r
,

and hence (i) implies (ii). Q.E.D.

Proof of Theorem 1.1 in the case of the icosahedron Let I be the icosahedron
with vertices on S2, therefore, the vertices determine the optimal packing of 12
spherical circular discs of radius ϕI = 1

2 arccos
1√
5
. We set ϕ = ϕI , r2 = r2(ϕ) and

r∞ = r∞(ϕ). For ε0 = 10−9 and η = 0.11, we observe that
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r2 + 107ε0 < r2 + η < r∞ − η. (37)

Let ε ∈ (0, ε0), and letx1, . . . ,xk ∈ S2 satisfy that k ≥ 12, and δ(xi ,x j ) ≥ 2(ϕ − ε)

for i 
= j . We may assume that for any x ∈ S2 there exists xi such that δ(xi ,x) <

2(ϕ − ε). Let P = [x1, . . . ,xk], and hence o ∈ int P . We prove Theorem 1.1 for the
icosahedron in two steps.
Step 1 Proving that all Delone cells are of circumradius at most r2 + 107ε

We suppose that there exists a Delone cell of spherical circumradius at least r2 +
107ε, and seek a contradiction. Let us consider the triangulation of S2 by all quasi-
orthoschemes associated to the Dirichlet cell decomposition induced by x1, . . . ,xk .
Among them, let O and Q denote the family of the ones with diameter less than
r2 + 107ε, and with diameter at least r2 + 107ε, respectively. We claim that

∑
�∈Q

|�| ≥ 2π(1 − cos η) > 0.03. (38)

Let  > 0 be the largest number such that B3 ⊂ P , and let R = arccos . Then
B3 touches ∂P at a point y ∈ ∂P in the relative interior of a two-dimensional
face F of P , R is the spherical circumradius of the corresponding Delone cell, and
R ≥ r2 + 107ε. By construction, R is the maximal circumradius among all Delone
cells.

We may assume that x1,x2,x3 are vertices of F such that y ∈ [x1,x2,x3] = T .
Let v = y/‖y‖, and let T̃ be the radial projection of T into S2, that is the asso-
ciated spherical “Delone triangle”, and satisfies v ∈ T̃ . If R < r∞, then all quasi-
orthoschemes having vertex v are actual orthoschemes by Lemma 6.1, and hence
their union is T̃ . In particular, Lemmas 7.1 and 8.2 yield that

∑
�∈Q

|�| ≥ |T̃ | ≥ |T | ≥
√
3

4
(2 sin(ϕ − ε0))

2 > 0.4.

However, if R ≥ r∞ and x ∈ B(v, η), then δ(x,xi ) ≥ r2 + η for all i = 1, . . . , k,
thus any quasi-orthoscheme � containing x has a diameter at least r2 + 107ε by
(37). Therefore, ∑

�∈Q
|�| ≥ |B(v, η)| = 2π(1 − cos η)

in this case, proving (38).
We note that 12 = 3

π
· |S2| according to the equality case of the simplex bound

(24). We deduce from (34), Lemma 8.1 with γ = 107 and (38) that

k ≤
∑
�∈O

|�| 3
π

· (1 + 80ε) +
∑
�∈Q

|�|
(
3

π
− 50,000ε

)

≤ 12 + 3

π
[4π · 80ε − 0.03 · 50,000 · ε] < 12.
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This contradiction completes the proof of Step 1.
Step 2 Assuming all Delone cells are of circumradius at most r2 + 107ε

It follows from (24) and (34) that k = 12.
We set γ = 107. Let� be a Delone cell, and let v be the center of the circumcircle

of radius R. We claim that� is a triangle, and there exists a regular spherical triangle
�0 of side length 2ϕ, such that for any vertex xi of � there exists a vertex w of �0

with
δ(xi , w) ≤ 25γ ε. (39)

If xi 
= x j are the vertices of �, and the angle between v,xi and v,x j is ωi j , then
Lemma 8.3, sin ϕ/ sin r2 = √

3/2 and γ ε < 10−2 yield

cosωi j ≤ 1 − 2 sin2 ϕ

sin2 r2
+ 4γ ε

sin2 r2
≤ −1

2
+ 12γ ε < 0.

In particular, � is a triangle by Corollary 2.3. Since (cos t)′ = − sin t is at most −3
4

if t ∈ [π
2 , 2π

3 ], we have
ωi j ≥ 2π

3
− 16γ ε. (40)

We deduce from the Remark after Theorem 3.1 that one may find a regular spherical
triangle �′ with vertices on the spherical circle with center v and radius R such that
for any vertex xi of � there exists a vertex w′ of �′ such that the angle between
xi , v and w′, v is at most 24γ ε, and hence δ(xi , w

′) ≤ 24γ ε. We take �0 with
the circumcenter v so that for any vertex w of �0 there exists a vertex w′ of �′
such that w ∈ w′, v or w′ ∈ w, v. As R ≤ r2 + γ ε by the condition of Step 2, and
R ≥ r2(ϕ − ε) ≥ r2 − γ ε, we conclude (39) by the triangle inequality.

Now we fix a Delone cell � and let �0 be the spherical regular triangle provided
by (39). We observe that c < 44 for the constant of Lemma 6.4 in our case. We
may assume that the vertices of �0 are vertices of the face F0 of the icosahedron I .
There exist nine more faces F1, . . . , F9 of I , such that Fi ∩ Fi−1 is a common edge
for i = 1, . . . , 9, and any vertex of I is a vertex of some Fi , i ≤ 9. Attaching the
corresponding nine more Delone cells to �, we conclude from Lemma 6.4 that we
may choose cI = 449 · 25γ . Q.E.D.

9 The Case of the 600-Cell

In this section, by Q we denote the regular 600-cell with vertices on S2. In particular,

ϕQ = π

10
< arcsin

√
1

3
(41)
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thus Corollary 7.4 and Lemma 7.5 can be applied with ϕ = ϕQ . Since S3 can be
dissected into 14400 congruent copies of �(ϕQ, r2(ϕQ), r3(ϕQ)), we have

|�(ϕQ, r2(ϕQ), r3(ϕQ))| = |S3|
14400

= π2

7200
,

and it follows from (24) that

�(ϕQ, r2(ϕQ), r3(ϕQ)) = 60

π2
. (42)

The main idea of the argument in the case of the 600-cell will be similar to the one

for the icosahedron. According to (17), we have sin r3(ϕQ) =
√

3
2 sin ϕQ , thus the

constant ℵ of Lemma 7.3 satisfies ℵ = 4·27/2
sin r3(ϕQ)

< 120. In particular, Corollary 7.4
yields that if ε ∈ (0, 0.004), then

�(ϕQ − ε, r2(ϕQ − ε), r3(ϕQ − ε)) <
60

π2
(1 + 240ε) <

60

π2
+ 1500ε. (43)

Next Lemma 9.1 estimates �(ϕQ − ε, r2(ϕQ − ε), r3(ϕQ) + γ ε) for large γ and
small ε > 0, and Lemma 9.2 estimates the volume of a tetrahedron.

Lemma 9.1 For γ ≥ 106 and ε ∈ (0, 1
100γ ), we have

�(ϕQ − ε, r2(ϕQ − ε), r3(ϕQ) + γ ε) ≤ �(ϕQ, r2(ϕQ), r3(ϕQ)) − γ ε

100
.

Proof To simplify notation, wewrite ϕ = ϕQ and r3 = r3(ϕ) = arcsin 3 sin ϕ

2 , and use
the notation set up before Lemma 7.5.

We deduce from r3(ϕ − ε) ≤ r3 that (r3 + γ ε) − r3(ϕ − ε) ≥ γ ε.
For the closure T of

�̃(ϕ − ε, r3 + γ ε)\�̃(ϕ − ε, r3(ϕ − ε)),

Lemma 7.5 yields

|T | ≥ γ ε

16
· |�̃(ϕ − ε, r3(ϕ − ε))|. (44)

Let σ ∈ (0, ϕ − ε0). We consider two spherical cones C and C0, where C
is obtained by rotating the triangle with vertices z0, z1(ϕ − ε), z3(ϕ − ε) around
z0, z1(ϕ − ε), and C0 is obtained by rotating the triangle with vertices z0, z1(ϕ −
ε0), z3(ϕ − ε0) around z0, z1(ϕ − ε0). For the two-face F of T opposite to z0, F\C
is disjoint from B(z0, r3(ϕ − ε)), which in turn contains C , and hence we have the
density estimates
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|(T \C) ∩ B(z0, σ )|
|T \C | · |B(z0, σ )| ≤ |B(z0, σ )|

|B(z0, r3(ϕ − ε))| · |B(z0, σ )| ≤ |C ∩ B(z0, σ )|
|C | · |B(z0, σ )| .

Since the density of B(z0, σ ) in C ∩ T is |C∩B(z0,σ )|
|C | , and in T \C the density is at

most |C∩B(z0,σ )|
|C | , we deduce using (19) and the argument of Boroczky [4] that

|T ∩ B(z0, σ )|
|T | · |B(z0, σ )| ≤ |C ∩ B(z0, σ )|

|C | · |B(z0, σ )| = lim
s→0+

�(ϕ − ε, r3(ϕ − ε) − s, r3(ϕ − ε))

≤ lim
s→0+

�(ϕ − ε0, r3(ϕ − ε0) − s, r3(ϕ − ε0))

≤ |C0 ∩ B(z0, σ )|
|C0| · |B(z0, σ )| = �0. (45)

Now C0 is a spherical cone whose base is a circular disc of radius ξ =
arccos cos r3(ϕ−ε0)

cos(ϕ−ε0)
, center z1(ϕ − ε0) and height ϕ − ε0. Let H ⊂ R

4 be the hyper-

plane tangent to S3 at z1(ϕ − ε0), letC ′
0 be the radial projection ofC0 into H , which is

a Euclidean cone whose base is a circular disc of radius  = tan ξ , center z1(ϕ − ε0)

and height h = tan(ϕ − ε0). Therefore, Lemma 7.2 yields

|C0| =
∫
C ′
0

(1 + ‖x − z1(ϕ − ε0)‖2)−2 dx

=
∫ h

0

∫ − t
h

0
(1 + t2 + r2)−2 · 2πr drdt.

In addition, if the angle between the arcs z0, z1(ϕ − ε0) and z0, z3(ϕ − ε0) is α, then
cosα = tan(ϕ−ε0)

tan r3(ϕ−ε0)
. Therefore, (35) yields

�0 = 1 − cosα

2|C0| <
60

π2
− 0.3.

For � = �(ϕ − ε, r2(ϕ − ε), r3 + γ ε), γ ≥ 106 yields

� ≤ ( 60
π2 + 1500ε)�̃(ϕ − ε, r3(ϕ − ε))| + �0|T |

|�̃(ϕ − ε, r2(ϕ − ε))| + |T |
≤ 60

π2
+ 1500ε −

(
60

π2
+ 1500ε − �0

)
γ ε/16

1 + γ ε

16

= 60

π2
+ γ ε

(
1500

γ
−

60
π2 + 1500ε − �0

16 + γ ε

)

≤ 60

π2
+ γ ε

(
2 · 10−3 −

60
π2 − �0

20

)
≤ 60

π2
− γ ε

100
.

Q.E.D.
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Lemma 9.2 If θ ∈ (0, 1
3 ), and u1, u2, u3, u4 ∈ S2 satisfy that 〈ui , u j 〉 ≤ −θ for i 
=

j , then
H3([u1, u2, u3, u4]) ≥ √

θ/4.

Proof For T = [u1, u2, u3, u4], we have o ∈ int T by Lemma 2.2. Let r > 0 be
the maximal number such that r B3 ⊂ T , and hence r ≤ 1

3 (see, say, Boroczky
[5], Section 6.5). We may assume that r B3 touches ∂T in a point y of F =
[u1, u2, u3], which lies in the relative interior of F . We set u = y/r ∈ S2, and vi =
(ui − y)/

√
1 − r2 ∈ S2 for i = 1, 2, 3. We have α ∈ [arccos 1

3 ,
π
2 ) and β ∈ ( π

2 , π ]
such that δ(ui , u) = α for i = 1, 2, 3, δ(u4, u) = β. Thus ui = u cosα + vi sin α for
i = 1, 2, 3, and u4 = −u| cosβ| + w sin β for some w ∈ u⊥ ∩ S2.

Since 〈ui , u j 〉 < 0 for 1 ≤ i < j ≤ 3, we have 〈vi , v j 〉 = 〈ui , u j 〉 − cosα cos
α < 0 for 1 ≤ i < j ≤ 3. We deduce that ‖ui − u j‖ ≥ √

2(1 − r2) for 1 ≤ i < j ≤
3, and there exists l ∈ {1, 2, 3} such that 〈vl , w〉 > 0. In particular, we have

−θ ≥ 〈u4, ul〉 ≥ −| cosβ| · cosα.

It follows from Lemma 8.2 and 1 − r2 ≥ 8
9 that

H3(T ) = | cosβ| + cosα

4
· H2(F) ≥

√| cosβ| · cosα

2
·
√
3(1 − r2)

2
>

√
θ

4
.

Q.E.D.

It is not hard to see that the lower bound
√

θ/4 in Lemma 9.2 can’t be replaced
by, say, 2

√
θ .

Proof of Theorem 1.1 in the case of the 600 -cell Let Q be an 600-cell with vertices
on S3, therefore, its vertices determine the optimal packing of 120 spherical circular
discs of radius ϕQ = π

10 . We set ϕ = ϕQ , r2 = r2(ϕ), r3 = r3(ϕ) and r∞ = r∞(ϕ).
For γ = 1012, ε0 = 10−14 and η = 0.02, we observe that

r3 + γ ε0 < r3 + η < r∞ − 2η. (46)

Let ε ∈ (0, ε0), and let x1, . . . ,xk ∈ S2 satisfy that k ≥ 120, and δ(xi ,x j ) ≥
2(ϕ − ε) for i 
= j . We may assume that for any x ∈ S3, there exists xi such that
δ(xi ,x) < 2(ϕ − ε). Let P = [x1, . . . ,xk], and hence o ∈ int P . We prove Theo-
rem 1.1 for the 600-cell in two steps.
Step 1 Proving that all Delone cells are of circumradius at most r3 + γ ε

We suppose that there exists a Delone cell of spherical circumradius at least
r3 + γ ε and seek a contradiction. Let us consider the triangulation of S3 by all quasi-
orthoschemes associated to the Dirichlet cell decomposition induced by x1, . . . ,xk .
Among them, let O and Q denote the family of the ones with diameter less than
r3 + γ ε, and with diameter at least r3 + γ ε, respectively. We claim that
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∑
�∈Q

|�| > (4π/3) sin3 η > 10−5. (47)

Let  > 0 be the largest number such that B4 ⊂ P and let R = arccos . Then
B4 touches ∂P at a point y ∈ ∂P in the relative interior of a three-dimensional
face F of P , R is the spherical circumradius of the corresponding Delone cell, and
R ≥ r3 + γ ε.

We may assume that x1,x2,x3,x4 are vertices of F in a way such that y ∈
[x1,x2,x3,x4] = T . Let v = y/‖y‖, and let T̃ be the radial projection of T into S3,
that is the associated spherical “Delone simplex”, and satisfies v ∈ T̃ . If R < r3 + 2η,
then all quasi-orthoschemes having vertex v are actual orthoschemes by Lemma 6.1,
and hence their union is T̃ . If for some {i, j} ⊂ {1, 2, 3, 4}, the angle between v,xi

and v,x j is ωi j , then Lemma 8.3 yields

cosωi j ≤ 1 − 2 sin2(ϕ − ε)

sin2 R
< 1 − 2 sin2(ϕ − ε0)

sin2(r3 + 2η)
< −0.1.

In particular, Lemmas 7.1 and 9.2 yield that

∑
�∈Q

|�| ≥ |T̃ | ≥ |T | ≥ √
0.1/4 > 0.07.

However, if R ≥ r3 + 2η andx ∈ B(v, η), then δ(x,xi ) ≥ r3 + η for all i = 1, . . . , k,
thus any quasi-orthoscheme � containing x has diameter at least r3 + γ ε by (46).
We deduce from Lemma 7.1 that∑

�∈Q
|�| ≥ |B(v, η)| = (4π/3) sin3 η

in this case, proving (47).
We note that 120 = 60

π2 · |S3| according to the equality case of the simplex bound
(24). We deduce from (34), Lemma 8.1 with γ = 1012 and (38) that

k ≤
∑
�∈O

|�| 60
π2

· (1 + 1500ε) +
∑
�∈Q

|�| 60
π2

· (1 − 1010 · ε)

≤ 12 + 60

π2
[2π2 · 1500ε − 10−5 × 1010 · ε] < 12.

This contradiction completes the proof of Step 1.
Step 2 Assuming all Delone cells are of circumradius at most r3 + γ ε

It follows from (24) and (43) that k = 120.
Let � be a Delone cell, and let v be the center of the circumscribed spherical ball

of radius R. We claim that � is a spherical tetrahedron and there exists a regular
spherical tetrahedron �0 of side length 2ϕ such that for any vertex xi of � there
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exists a vertex w of �0 with

δ(xi , w) ≤ 10,000γ ε. (48)

If xi 
= x j are the vertices of �, and the angle between v,xi and v,x j is ωi j , then
Lemma 8.3, sin ϕ/ sin r3 = √

2/3 and γ ε < 10−2 yield

cosωi j ≤ 1 − 2 sin2 ϕ

sin2 r2
+ 4γ ε

sin2 r3
≤ −1

3
+ 30γ ε < 0.

In particular, � is a tetrahedron by Corollary 2.3. Since (cos t)′ = − sin t is at most
−3
4 if t ∈ [π

2 , 2π
3 ], we have

ωi j ≥ arccos
−1

3
− 40γ ε. (49)

We deduce from Theorem 3.1 that one may find a regular spherical tetrahedron �′
with vertices on the subspherewith center v and radius R such that for any vertexxi of
� there exists a vertex w′ of �′ such that the angle between xi , v and w′, v is at most
9000γ ε and hence δ(xi , w

′) ≤ 9000γ ε. We take �0 with circumcenter v so that for
any vertexw of�0 there exists a vertexw′ of�′ such thatw ∈ w′, v orw′ ∈ w, v. As
R ≤ r3 + γ ε by the condition of Step 2, and R ≥ r3(ϕ − ε) ≥ r3 − γ ε, we conclude
(48) by the triangle inequality.

Now we fix a Delone cell � and let �0 be the spherical regular tetrahedron
provided by (48). We observe that c < 90 for the constant of Lemma 6.4 in our case.
We may assume that the vertices of �0 are vertices of the face F0 of the 600-cell Q.
There exist 116 more faces F1, . . . , F116 of Q, such that Fi ∩ Fi−1 is a common edge
for i = 1, . . . , 116, and any vertex of Q is a vertex of some Fi , i ≤ 116. Attaching
the corresponding 116 more Delone cells to �, we conclude from Lemma 6.4 that
we may choose cQ = 90116 · 10,000 γ . Q.E.D.
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Abstract In a recent paper in Electron. J. Combin. 23 (2016), Estélyi and Pisanski
raised a questionwhether there exist vertex-transitive Haar graphs that are not Cayley
graphs. In this note we construct an infinite family of trivalent Haar graphs that are
vertex-transitive but non-Cayley. The smallest example has 40 vertices and is the
well-known Kronecker cover over the dodecahedron graph G(10, 2), occurring as
the graph ‘40’ in the Foster census of connected symmetric trivalent graphs.
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1 Introduction

Let G be a group, and let S be a subset of G with 1G /∈ S. Then the Cayley graph
Cay(G, S) is the graph with vertex-set G and with edges of the form {g, sg} for all
g ∈ G and s ∈ S. Equivalently, since all edges can be written in the form {1, s}g,
this is a covering graph over a single-vertex graph having loops and semi-edges, with
voltages taken from S : the order of a voltage over a semi-edge is 2 (corresponding
to an involution in S), while the order of a voltage over a loop is greater than 2
(corresponding to a non-involution in S). Note that we may assume S = S−1.

A natural generalisation of Cayley graphs are the so called Haar graphs, intro-
duced in [16] by Hladnik et al., as follows. A dipole is a graph with two vertices,
say black and white, and parallel edges (each from the white vertex to the black
vertex), but no loops. Given a group G and an arbitrary subset S of G, the Haar
graph H(G, S) is the regular G-cover of a dipole with |S| parallel edges, labeled
by elements of S. In other words, the vertex-set of H(G, S) is G × {0, 1}, and the
edges are of the form {(g, 0), (sg, 1)} for all g ∈ G and s ∈ S. If it is not ambiguous,
we use the notation (x, 0) ∼ (y, 1) to indicate an edge {(x, 0), (y, 1)} of H(G, S).
The name ‘Haar graph’ comes from the fact that when G is an abelian group, the
Schur norm of the corresponding adjacency matrix can be easily evaluated via the
so-called Haar integral on G (see [15]).

Note that the group G acts on H(G, S) as a group of automorphisms, by right
multiplication, and moreover, G acts regularly on each of the two parts of H(G, S),
namely {(g, 0) : g ∈ G} and {(g, 1) : g ∈ G}. Conversely, if � is any bipartite graph
and its automorphism group Aut � has a subgroup G that acts regularly on each
part of �, then � is a Haar graph — indeed � is isomorphic to H(G, S) where S is
determined by the edges incident with a given vertex of �.

Haar graphs form a special subclass of themore general class of bi-Cayley graphs,
which are graphs that admit a semiregular group of automorphisms with two orbits
of equal size. Every bi-Cayley graph can be realised as follows. Let L and R be
subsets of a group G such that L = L−1, R = R−1 and 1 /∈ L ∪ R, and let S be any
subset of G. Now take a dipole with edges labelled by elements of S, and add |L|
loops to the white (or ‘left’) vertex and label these by elements of L , and similarly
add |R| loops to the black (or ‘right’) vertex and label these by elements of R. This
is a voltage graph, and the bi-Cayley graph BCay(G, L , R, S) is its regular G-cover.
The vertex-set of BCay(G, L , R, S) is G × {0, 1}, and the edges are of three forms:
{(g, 0), (lg, 0)} for l ∈ L , {(g, 1), (rg, 1)} for r ∈ R, and {(g, 0), (sg, 1)} for s ∈ S,

for all g ∈ G. Note that the Haar graph H(G, S) is exactly the same as the bi-Cayley
graph BCay(G,∅,∅, S).
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Recently bi-Cayley graphs (and Haar graphs in particular) have been investigated
by several authors — see [8–10, 16–21, 23–25, 28, 30], for example.

It is known that every Haar graph over an abelian group is a Cayley graph
(see [23]). More precisely, if A is an abelian group, then a Haar graph over A is
a Cayley graph over the corresponding generalised dihedral group D(A), which is
the group generated by A and the automorphism of A that inverts every element of
A (see [26]). The authors of [16] considered only cyclic Haar graphs — that is, Haar
graphs H(G, S) where G is a cyclic group. In [9], the second and third authors of
this paper extended the study of Haar graphs to those over non-abelian groups, and
found some that are not vertex-transitive, and some others that are Cayley graphs.
The existence of Haar graphs that are vertex-transitive but non-Cayley remained
open, and led to the following question.

Problem 1 Is there a non-abelian group G and a subset S of G such that the Haar
graph H(G, S) is vertex-transitive but non-Cayley?

In this note we give a positive answer to the above question, by exhibiting an
infinite family of trivalent examples, coming from a family of double covers of gen-
eralised Petersen graphs. These graphs, which we denote by D(n, r) for any integers
n and r with n ≥ 3 and 0<r <n, are described in Sect. 2. They have been consid-
ered previously by other authors (see later); in particular, by a theorem of Feng and
Zhou [30], it is known exactly which of the graphs D(n, r) are vertex-transitive, and
which are Cayley. Then in Sect. 3 we determine necessary and sufficient conditions
for D(n, r) to be a Haar graph, and this provides the answer to Problem 1 in Sect. 4.

2 The Graphs D(n, r) and Their Properties

Let G(n, r) be the generalised Petersen graph on 2n vertices with span r . By D(n, r)

we denote a double cover of G(n, r), in which the edges get non-trivial voltage if
and only if they belong to the ‘inner rim’ (see below). This gives a class of graphs
that was introduced by Zhou and Feng [29] under the name of double generalised
Petersen graphs, and studied recently also by Kutnar and Petecki [22]. In both [29]
and [22], the notation D P(n, r) was used for the graph D(n, r).

It is easy to define the vertices and edges of the graph D(n, r) explicitly. There
are four types of vertices, called ui , vi , wi and zi (for i ∈ Zn), and three types of
edges, given by the sets

� = {{ui , ui+1}, {zi , zi+1} : i ∈ Zn} (the ‘outer’ edges),

� = {{ui , vi }, {zi , wi } : i ∈ Zn} (the ‘spokes’), and

I = {{vi , wi+r }, {vi , wi−r } : i ∈ Zn} (the ‘inner’ edges).
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Fig. 1 Voltage graph
defining the tetracirculant
�0(n, a, k, b) Zn

a 0
0
k

0 b

This definitionmakes it easy to see that each D(n, r) is a special tetracirculant [13],
which is a cyclic cover �0(n, a, k, b) over the voltage graph given in Fig. 1. To see
this, simply take a = b = 1 and k = 2r , and then D(n, r) ∼= �0(n, 1, 2r, 1).

We now describe some other properties of the graphs D(n, r) which are helpful.
Many of these properties are already known, but we explain them here in detail for
completeness.

Proposition 1 Every D(n, r) is connected.

Proof Clearly all of the ui lie in the same component as each other, as do all the z j .
Next, all the vi lie in the same component as the ui , and similarly, all the w j lie in
the same component as the z j . Finally, there are edges between the vertices vi and
some of the w j , and this makes the whole graph connected. ��
Proposition 2 The graph D(n, r) is bipartite if and only if n is even.

Proof If n is odd, then the vertices ui lie in a cycle of odd length, and so the graph
is not bipartite. On the other hand, if n is even, then the graph is bipartite, with one
part containing the vertices ui and wi±r for even i and the vertices v j and z j±r for
odd j . ��

We now consider automorphisms of the graphs D(n, r). Some automorphisms
are apparent from the definition, such as these, which were noted in [22]:

α : ui 	→ ui+1, vi 	→ vi+1, wi 	→ wi+1, zi 	→ zi+1 (rotation),
β : ui 	→ zi , vi 	→ wi , wi 	→ vi , zi 	→ ui (flip symmetry),
γ : ui 	→ u−i , vi 	→ v−i , wi 	→ w−i , zi 	→ z−i (reflection).

Immediately we obtain the following:

Proposition 3 The automorphism group of the graph D(n, r) has at most two orbits
on vertices, namely the set of all ui and all z j , and the set of all vi and all w j .

Note also that α and β commute with each other. In fact, Zhou and Feng [29]
proved that D(n, r) is isomorphic to the bi-Cayley graph BCay(G, R, L , {1}) over
the abelian group G = 〈α, β〉 ∼= Zn × Z2, and R = {α, α−1} and L = {αrβ, α−rβ}.

Next, we consider isomorphisms among the graphs G(n, r) and D(n, r).

Proposition 4 For every n and r, the graph D(n, r) is isomorphic to D(n, n−r),
and D(2n, r) is isomorphic to D(2n, n−r).



Vertex-Transitive Haar Graphs That Are Not Cayley Graphs 65

Proof First, D(n, r) ∼= D(n, n−r) because G(n, r) is identical to G(n, n−r). For
the second part, consider a 180 degree rotation of the two ‘inner’ layers, namely
wi 	→ wi+n and zi 	→ zi+n for all i . This shows that D(2n, r) is isomorphic to
D(2n, n + r), and then applying the first part gives D(2n, r) ∼= D(2n, 2n − (n+
r)) = D(2n, n−r). ��

Here we note that it can happen that the graphs D(n, r) and D(n, s) are different
whenG(n, r) is isomorphic toG(n, s). For instance,G(7, 2) is isomorphic toG(7, 3)
but D(7, 2) is not isomorphic to D(7, 3), since D(7, 3) is planar but D(7, 2) is not.

Also we have the following:

Proposition 5 For every r , the graph D(2r +1, r) is planar, and isomorphic to the
generalised Petersen graph G(4r +2, 2).

Proof To see that D(2r +1, r) is planar, first note that since r is coprime to 2r +1,
the edges between the vertices vi and w j give a cycle of length 2(2r +1), namely
(v0, w−r , v1, w1−r , v2, w2−r , . . . , v−2, wr−1, v−1, wr ). Now draw three concentric
circles, with the middle one for this 2(2r +1)-cycle, the inside one for the (2r + 1)-
cycle (u0, u1, . . . , u2r ), and the outside one for the (2r + 1)-cycle (z0, z1, . . . , z2r ),
in a consistent order, and then add the spoke edges {ui , vi } and {wi , zi } in the natural
way. In the resulting planar drawing of D(2r +1, r), there is an inner face of length
2r +1 (with the ui as vertices), then two layers of pentagonal faces (bounded by
cycles of the form (ui , vi , wi−r , vi+1, ui+1) and (v j , w j+r , z j+r , z j−r , w j−r )), and
an outer face of length 2r +1 (with the z j as vertices). After doing this, it is also
easy to see that D(2r +1, r) is isomorphic to the generalised Petersen graph G(4r +
2, 2), with the spoke edges joining vertices of the large 2(2r + 1)-cycle (on the
vertices vi and w j ) to the two (2r + 1)-cycles (on the vertices ui and vertices z j

respectively). ��
In particular, the graph D(5, 2) is isomorphic to the dodecahedral graph G(10, 2),

and hence D(5, 2) is vertex-transitive. But as we will see, it is not a Haar graph.
Finally in this section,we consider the questions ofwhich of the graphs D(n, r) are

vertex-transitive, and which are Cayley (or equivalently, which have the property that
Aut(D(n, r)) has a subgroup that acts regularly on vertices). Recall thatAut(D(n, r))

has at most two orbits on vertices, and just one when (n, r) = (5, 2). The complete
picture was determined by Feng and Zhou in [30, Theorem 1.3], as follows:

Theorem 6 The graph D(n, r) is vertex-transitive if and only if n = 5 and r = ±2,
or n is even and r2 ≡ ±1 mod n

2 . In the first case, D(n, r) is isomorphic to the
dodecahedral graph G(10, 2), which is non-Cayley, and in the second case, if r2 ≡ 1
mod n

2 then D(n, r) is a Cayley graph, while if r2 ≡ −1 mod n
2 then D(n, r) is non-

Cayley.

3 The Graphs D(n, r) as Haar Graphs

Recall that a Haar graph is a regular cover of a dipole, and also a bi-Cayley graph.
Also we have the following, proved in a different way in [9, Proposition 5]:
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Proposition 7 A Cayley graph is a Haar graph if and only if it is bipartite.

Proof Let � be a Cayley graph, say for a group K . Then K acts on � as a group of
automorphisms, and acts regularly on the vertices of�. Now if� is a Haar graph, then
by definition � is bipartite. Conversely, suppose � is bipartite. Then the subgroup G
of K preserving each of the two parts of � has index 2 in K , and acts regularly on
each part, so � is a Haar graph (by the argument given in the third paragraph of the
Introduction). ��

We can now prove our main theorem:

Theorem 8 D(n, r) is a Haar graph if and only if it is vertex-transitive and n is
even.

Proof First, we note that D(n, r) is bipartite if and only if n is even, by Proposition 2,
and hence we may suppose that n is even, and then show that under that assumption,
D(n, r) is a Haar graph if and only if it is vertex-transitive.

One direction is easy. Suppose � = D(n, r) is a Haar graph, say H(G, S). Then
by the definition of a Haar graph given in the Introduction, the subgroup G R of Aut �
induced by G has two orbits on vertices, namely the two parts of the bipartition of �.
On the other hand, by Proposition 3, all the vertices ui lie in the same orbit of Aut �;
and then since these vertices lie in both parts of �, it follows that Aut � has a single
orbit on vertices. Thus � is vertex-transitive.

For the converse, suppose that � = D(n, r) is vertex-transitive, and let m = n
2 .

Then by Theorem 6, we know that r2 ≡ ±1 mod m. Also by Proposition 4 we may
suppose that 0 < r < m, and further, we may suppose that r is odd, because if r is
even then m is odd, and then by Proposition 4 we can replace r by m − r . We now
proceed by considering separately the two cases r2 ≡ ±1 mod m.

Case (a): Suppose that r2 ≡ 1 mod m. Then by Theorem 6, we know that D(n, r)

is a Cayley graph, and also since it is bipartite, it follows from Proposition 7 that it
is a Haar graph as well.

Case (b): Suppose that r2 ≡ −1 mod m. In this case we construct a group of
automorphisms of D(n, r) that acts regularly on each part of D(n, r). To do this, we
take the automorphism α from the previous section, given by

α : ui 	→ ui+1, vi 	→ vi+1, wi 	→ wi+1, zi 	→ zi+1,

and then take an additional automorphism δ, given by

δ : ui 	→ vri+1, vi 	→ uri+1, wi 	→ zri+1, zi 	→ wri+1 ifm is odd and i is even,
δ : ui 	→ wri+1, vi 	→ zri+1, wi 	→ uri+1, zi 	→ vri+1 ifm is odd and i is odd,
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or

δ : ui 	→ vri+1, vi 	→ uri+1, wi 	→ zri+m+1, zi 	→ wri+m+1 ifm is even and i is even,
δ : ui 	→ wri+1, vi 	→ zri+1, wi 	→ uri+m+1, zi 	→ vri+m+1 ifm is even and i is odd.

It is a straightforward exercise to verify that δ preserves the edge-set � ∪ � ∪
I of D(n, r), and also preserves the two parts of D(n, r), given in the proof of
Proposition 2. To do the former, it is important to note that r2 ≡ 1 mod 4 (because r
is odd), and hence that r2 ≡ −1mod n when m is odd, while r2 ≡ m−1mod n when
m is even. For example, ifm and i are even then {vi , wi+r }δ = {uri+1, ur(i+r)+m+1} =
{uri+1, uri }.

It is also easy to see that conjugation by δ takes α2 to α2r , and so the subgroup
G of Aut(D(n, r)) generated by α2 and δ is isomorphic to the semi-direct product
Zm �r Z4. In particular, G has order 4m = 2n. Also G acts transitively and hence
regularly on each of the two parts of D(n, r), and therefore D(n, r) is a Haar graph.

��

4 Vertex-Transitive Haar Graphs That Are Not Cayley
Graphs

Combining Theorems 6 and 8, we have the following, in answer to Problem 1:

Theorem 9

(a) If n is odd, or if n is even and r2 �≡ ±1 mod n
2 , then D(n, r) is not a Haar graph,

and is vertex-transitive only when (n, r) = (5,±2);

(b) If n is even and r2 ≡ 1mod n
2 , then D(n, r) is a Haar graph and a Cayley graph;

(c) If n is even and r2 ≡ −1 mod n
2 , then D(n, r) is a Haar graph and is vertex-

transitive but not a Cayley graph.

Corollary 10 If m > 2 and r2 ≡ −1 mod m, then D(2m, r) is a Haar graph that is
vertex-transitive but non-Cayley. In particular, there are infinitely many such graphs.

Proof The first part follows immediately from Theorem 9, and the second part fol-
lows from a well known fact in number theory, namely that −1 is a square mod m if
and only if m or m/2 is a product of primes p ≡ 1 mod 4 (see [14, Chapter 6]), or
simply by taking m = r2 + 1 for each integer r ≥ 2. ��

We discovered the first few of these examples during the week of the conference
Geometry and Symmetry, held in 2015 at Veszprém, Hungary, to celebrate the 60th
birthdays of Károly Bezdek and Egon Schulte.
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Z10

1 0 2
Z10

1 0 3
Z10

1 0 −2
+2

0 1

Fig. 2 The dodecahedral graph G(10, 2), the Desargues graph G(10, 3), and the Haar graph
D(10, 2) ∼= D(10, 3) ∼= F40

The smallest of our examples is D(10, 2), of order 40, occurring when m = 5 and
r ≡ ±2 or ±3 mod 10 (noting that m − r = 3 when (m, r) = (5, 2)). We will show
that this is also the smallest Haar graph that is vertex-transitive and non-Cayley. It is
a Kronecker cover over the dodecahedral graph G(10, 2), and is also a double cover
over the Desargues graph G(10, 3). These graphs are illustrated in Fig. 2.

The graph D(10, 2) was known by R.M. Foster as early as the late 1930s, and
appears as the graph ‘40’ (alternatively known as ‘F40’) in the Foster Census of
connected symmetric trivalent graphs [7]. It was also studied in [27] by Asia Ivić
Weiss (the chair of the Veszprém conference), and by Betten, Brinkmann and Pisan-
ski in [1], and Boben, Grünbaum, Pisanski and Žitnik in [2]. It has girth 8, and
automorphism group of order 480, and it is not just vertex-transitive, but is also arc-
transitive. Moreover, by a very recent theorem of Kutnar and Petecki [22], the graph
D(n, r) is arc-transitive only when (n, r) = (5, 2) or (10, 2) or (10, 3). This implies
that F40 is the only example from the family of graphs D(n, r) that is arc-transitive
but non-Cayley.

In fact, F40 is the smallest vertex-transitive non-Cayley Haar graph, in terms of
both the graph order and the number of edges. We found this by running a Magma
[3] computation to construct all Haar graphs with at most 40 vertices or at most 60
edges, with a check for which of the graphs are vertex-transitive but non-Cayley.
Incidentally, this computation shows that there are 60 different examples of order
40, with valencies running between 3 and 17, but just one of valency 3, namely F40.

Finally, there are many other examples of vertex-transitive non-Cayley Haar
graphs that are not of the form D(n, r), including 3-valent examples of orders 80,
112, 120 and 128, and higher-valent examples of orders 48, 64, 72, 78 and 80. Among
the 3-valent examples, many are arc-transitive, including the graphs F80 and F640 in
the Foster census [7] and its extended version in [5, 6], and others in the first author’s
complete set of all arc-transitive trivalent graphs of order up to 10000 described on
his website [4]. Most of these ‘small’ examples are abelian regular covers of F40, of
orders 1280, 2560, 3240, 5000, 5120, 6480, 6720, 9720 and 10000, and are 3-arc-
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regular, but two others are 2-arc-regular of type 22, with orders 6174 and 8064, and
these are abelian regular covers of the Pappus graph (F18) and the Coxeter graph
(F28) respectively.

In particular, the graph of order 6174 is a member of an infinite family of 2-arc-
regular covers of the Pappus graph, investigated in [11, 12]. Each graph in this family
is a 2-arc-regular 3-valent graph of type 22 and order 18n3 for some n ≥ 7 for which
Zn contains a root of the polynomial x2 + x + 1. Also each member of this family is
Haar but not Cayley, since the 2-arc-regular subgroup of type 22 in the automorphism
group of the Pappus graph contains a subgroup of order 9 acting regularly on each of
the two parts of the graph, but contains no subgroup of order 18 acting transitively on
the vertices. Hence we have another infinite family of examples of vertex-transitive
non-Cayley Haar graphs, but of considerably larger orders.
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On the Volume of Boolean Expressions
of Large Congruent Balls

Balázs Csikós

Dedicated to Károly Bezdek and Egon Schulte on the occasion
of their 60th birthdays.

Abstract We consider the volume of a Boolean expression of some congruent balls
about a given system of centers in the d-dimensional Euclidean space. When the
radius r of the balls is large, this volume can be approximated by a polynomial
of r , which will be computed up to an O(rd−3) error term. We study how the top
coefficients of this polynomial depend on the set of the centers. It is known that in
the case of the union of the balls, the top coefficients are some constant multiples
of the intrinsic volumes of the convex hull of the centers. Thus, the coefficients in
the general case lead to generalizations of the intrinsic volumes, in particular, to a
generalization of the mean width of a set. Some known results on the mean width,
along with the theorem on its monotonicity under contractions are extended to the
“Boolean analogues” of the mean width.

Keywords Volume · Intrinsic volume · Quermassintegral · Unions and
intersections of balls

1 Introduction

The long-standing conjecture of Kneser [10] and Poulsen [11] claims that if the
points p1, . . . , pN and q1, . . . , qN of the d-dimensional Euclidean space R

d satisfy
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the inequalities d(pi , p j ) ≥ d(qi , q j ) for all 0 ≤ i, j ≤ N , then

vold

(
N⋃

i=1

Bd(pi , r)

)
≥ vold

(
N⋃

i=1

Bd(qi , r)

)

for any r > 0, where Bd(p, r) denotes the closed d-dimensional ball of radius r
about the point p and vold is the d-dimensional volume. K. Bezdek and Connelly [2]
proved the conjecture in the plane, but it is still open in dimensions d ≥ 3.

Results of Gromov [9], Gordon and Meyer [8] and the author [4, 5] suggest that
the Kneser–Poulsen conjecture could be true in a more general form, which we
formulate below.

Let BN be the free Boolean algebra generated by N ≥ 1 symbols x1, . . . , xN . We
denote the greatest element ofBN by X , and the least element ofBN by∅. Elements of
BN are equivalence classes of formal expressions built from the symbols x1, . . . , xN ,
X and ∅, the binary operations∪,∩, and the unary operator f �→ f̄ . Two expressions
are called equivalent if and only if we can prove their equality assuming that the
operations satisfy the axioms of a Boolean algebra. We shall refer to an element of
BN by choosing a Boolean expression from its equivalence class, and we write “=”
between twoBoolean expressions if they are equivalent.We shall also use the derived

operator f \ g = f ∩ ḡ and the partial ordering f ⊆ g
def⇐⇒ f ∪ g = g. We refer

to [6] for more details on Boolean algebras.
Take a Boolean expression f ∈ BN which can be represented by a formula built

exclusively from the variables x1, . . . , xN and the operations ∪, ∩, \ in such a way
that each of the variables occurs in the formula exactly once. For any pair of indices
i = j , 1 ≤ i, j ≤ N , evaluate f replacing the variables xk , k /∈ {i, j} by X or ∅ in all
possible ways. It can be seen that the results of those evaluations that are not equal
to X or ∅, are all equal to one another and to one of the expressions xi ∩ x j , xi \ x j ,
x j \ xi , xi ∪ x j . Let the sign ε

f
i j be−1 if the evaluations not equal to X or ∅ are equal

to xi ∩ x j , and set ε f
i j = 1 in the remaining three cases.

The generalization of the Kneser–Poulsen conjecture for Boolean expressions
of balls claims that if the Boolean expression f ∈ BN obeys the conditions of the
previous paragraph, and the points p1, . . . , pN and q1, . . . , qN in R

d satisfy the
inequalities ε

f
i j (d(pi , p j ) − d(qi , q j )) ≥ 0 for all 0 ≤ i, j ≤ N , then

vold
(

f (Bd(p1, r1), . . . , Bd(pN , rN ))
) ≥ vold

(
f (Bd(q1, r1), . . . , Bd(qN , rN ))

)
(1)

for any choice of the radii r1, . . . , rN .
A suitable modification of the arguments of Bezdek and Connelly [2] shows that

this generalization of the Kneser–Poulsen conjecture is also true in the Euclidean
plane (see [5]).

As it was pointed out by Capoyleas, Pach [3], and Gorbovickis [7], the original
Kneser–Poulsen conjecture for large congruent balls is closely related to the mono-
tonicity of the mean width of a set under contractions. The relation is based on the
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formula

vold

(
N⋃

i=1

Bd(pi , r)

)
= κdrd + dκd

2
ωd({p1, . . . , pN })rd−1 + O(rd−2), (2)

where κd is the volume of the unit ball in R
d , ωd(S) denotes the mean width of the

bounded set S ⊂ R
d . We remark that the mean width function ωd depends on the

dimension d of the ambient space, but only up to a constant factor. More explicitly, if

� : R
d → R

d̃ is an isometric embedding, then we have dκd
κd−1

ωd(S) = d̃κd̃
κd̃−1

ωd̃(�(S))

for any bounded set S ⊂ R
d . Applying Formula (2) and the fact that the Kneser–

Poulsen conjecture is true if the dimension of the space is at least N − 1 (see [9]),
Capoyleas and Pach [3] proved that the mean width of a set cannot increase when
the set is contracted. Using rigidity theory, Gorbovickis [7] sharpened this result by
proving that if the d-dimensional configurations (p1, . . . , pN ) and (q1, . . . , qN ) are
not congruent and satisfy the inequalities d(pi , p j ) ≥ d(qi , q j ) for all 0 ≤ i, j ≤ N ,
then the strict inequality

ωd({p1, . . . , pN }) > ωd({q1, . . . , qN })

holds. This strict inequality, in return, implies that the Kneser–Poulsen conjecture is
true if the radius of the balls is bigger than a constant depending on the configurations
of the centers.

Gorbovickis [7] proved also that for the volume of the intersection of large con-
gruent balls we have

vold

(
N⋂

i=1

Bd(pi , r)

)
= κdrd − dκd

2
ωd({p1, . . . , pN })rd−1 + O(rd−2), (3)

thus, as a consequence of the strict monotonicity of the mean width, the above men-
tioned generalization of the Kneser–Poulsen conjecture is true also for the intersec-
tions of congruent balls if the radius of the balls is greater than a constant depending
on the configurations of the centers.

In 2013 K. Bezdek [1] posed the problem of finding a suitable generalization of
Eqs. (2) and (3) for the volume of an arbitrary Boolean expression of large congruent
balls, and suggested to explore the interplay between the generalizedKneser–Poulsen
conjecture and the monotonicity properties of the coefficient of rd−1 in the general
formula. In the present paper, we summarize the results of the research initiated by
these questions.

The outline of the paper is the following. In Sect. 2, we sharpen Eq. (2), expressing
the volume of the union of some large congruent balls with an error term of order
O(rd−3). The coefficients appearing in the formula are some constant multiples of
the intrinsic volumes V0, V1, V2 of the convex hull of the centers. In Sect. 3, we show
that if a Boolean expression f (B1, . . . , Bn) of some balls is bounded, then its volume
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can be obtained as a linear combination of the volumes of the unions of some of the
balls. The coefficients of this inclusion-exclusion type formula, given in Proposition
5, depend purely on the Boolean expression f . These coefficients are used to define
the Boolean analogues of the intrinsic volumes of the convex hull of a point set in
Sect. 4. Theorem 1 gives a generalization of Eq. (2) for Boolean expressions of large
balls using Boolean intrinsic volumes. In Sect. 5, some classical facts on intrinsic
volumes are generalized for Boolean intrinsic volumes. For example, it is known
that the kth intrinsic volume of a polytope can be expressed in terms of the volumes
of the k-dimensional faces and the angular measures of the normal cones of these
faces. This formula is generalized for Boolean intrinsic volumes in Theorem 2.
As an application of Theorem 2, we prove that the kth Boolean intrinsic volumes
corresponding to dual Boolean expressions differ only in a sign (−1)k . This explains
why the coefficients of rd−1 in the Eqs. (2) and (3) are opposite to one another.
Theorem 3 provides a Boolean extension of the fact that the first intrinsic volume of
a convex set is a constant multiple of the integral of its support function. Section 6
is devoted to the proof of Theorem 4 on the monotonicity of the Boolean analogue
of the first intrinsic volume.

2 Comparison of the Volume of a Union of Balls and the
Volume of Its Convex Hull

Every convex polytope K ⊂ R
d defines a decomposition of the space as follows.

Denote by F(K ) the set of all faces of K , including K , and by Fk(K ) the set of its
k-dimensional faces. Let π : R

d → K be the map assigning to a point x ∈ R
d the

unique point of K that is closest to x. For a face L ∈ F(K ), denote by V (L , K ) the
preimage π−1(relint L) of the relative interior of L . As K is the disjoint union of
the relative interiors of its faces, Rd is the disjoint union of the sets V (L , K ), where
L is running over F(K ). If L ∈ Fk(K ), then V (L , K ) is the Minkowski sum of the
relative interior of L and the normal cone

N (L , K ) = {u ∈ R
d | u ⊥ [L] and max

x∈K
〈u, x〉 is attained at a point x ∈ L} (4)

of K at L , where [L] denotes the affine subspace spanned by L . Set n(L , K ) =
N (L , K ) ∩ Bd(0, 1) and ν(L , K ) = vold−k(n(L , K ))/κd−k . Division by κd−k in the
definition of ν(L , K ) is advantageous because it makes the angle measure ν(L , K )

of the normal cone N (L , K ) independent of the dimension d of the ambient space
R

d , though the normal cone itself changes if we embed K into a higher dimensional
space.

Denote by Kr = K + Bd(0, r) the distance r parallel body of K . The decompo-
sition

R
d =

⋃
L∈F(K )

N (L , K ) (5)
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induces a decomposition of the parallel body Kr , which enables us to write the
volume of Kr as a polynomial of r

vold(Kr ) =
∑

L∈F(K )

vold(Kr ∩ N (L , K )) =
∑

L∈F(K )

vold(L + r (n(L , K ))

=
d∑

k=0

κd−k

⎛
⎝ ∑

L∈Fk (K )

volk(L)ν(L , K )

⎞
⎠ rd−k .

(6)

Equation (6) is a special case of Steiner’s classical formula (see, e.g., [12, Eq.
(4.2.27)])

vold(K + B(0, r)) =
d∑

k=0

(
d

k

)
W d

k (K )rk =
d∑

k=0

κd−k Vk(K )rd−k, (7)

expressing the volume of the distance r parallel body of an arbitrary compact convex
set K as a polynomial of r , in which the normalized coefficients W d

k (K ) and Vk(K )

are the quermassintegrals and intrinsic volumes of K respectively. It is known that
the intrinsic volumes are continuous functions on the space of compact convex sets
endowed with the Hausdorff metric (see [12, Sect. 4.2]), and V0(K ) ≡ 1. Comparing
(6) and (7) we obtain the formula

Vk(K ) =
∑

L∈Fk (K )

volk(L)ν(L , K ) (8)

expressing the intrinsic volumes of a polytope K .

Proposition 1 Let p1, . . . , pN be a fixed set of points in R
d , K = conv({p1, . . . , pN })

be the convex hull of the points. Denote by Bi = Bd(pi , r) the ball of radius r centered
at pi . Then we have

∣∣∣∣∣vold(Kr ) − vold
( N⋃

i=1

Bi

)∣∣∣∣∣ = O(rd−3) (9)

for large values of r .

Proof Denote by� the diameter of K , and set r ′ = r − �2/r . It is easy to see that if
r ≥ �, then Kr ′ ⊆ ⋃N

i=1 Bi ⊆ Kr , (see [3]). Intersecting the decomposition (5) with
the union of the balls, we get

N⋃
i=1

Bi =
⋃

L∈F(K )

(
N (L , K ) ∩

( N⋃
i=1

Bi

))
.
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When L ∈ F0(K ) is a vertex, we have N (L , K ) ∩
(⋃N

i=1 Bi

)
= N (L , K ) ∩ Kr .

Thus,

Kr \
( N⋃

i=1

Bi

)
⊆

d⋃
k=1

⋃
L∈Fk (K )

N (L , K ) ∩ (Kr \ Kr ′),

and

∣∣∣∣∣vold (Kr ) − vold
( N⋃

i=1

Bi

)∣∣∣∣∣ ≤
d∑

k=1

volk(L)κd−kν(L , K )

(
rd−k −

(
r − �2

r

)d−k
)

= O(rd−3),

(10)
as claimed.

Corollary 1 Using the notations of Proposition 1, we have

vold
( N⋃

i=1

Bi

)
= κdrd + κd−1V1(K )rd−1 + κd−2V2(K )rd−2 + O(rd−3). (11)

3 Combinatorics of Boolean Expressions

For a subset I of the set [N ] = {1, . . . , N }, define aI ∈ BN by aI = (
⋂

j /∈I x j ) \
(
⋃

i∈I xi ). The elements aI , (I ⊆ [N ]) are the atomic elements of BN . Any f ∈ BN

can be decomposed uniquely as f = ⋃
aI ⊆ f aI . In particular, BN has 22

N
elements.

Definition 1 The reduced Euler characteristic χ̃N ( f ) of f ∈ BN is the integer
χ̃N ( f ) = ∑

aI ⊆ f (−1)|I |+1.

Obviously, the reduced Euler characteristic of a Boolean expression is an integer
number in the interval [−2N−1, 2N−1].
Proposition 2 If f ∈ BN can be represented by a formal expression which does not
contain all the variables x1, . . . , xN , then χ̃N ( f ) = 0.

Proof Wemay assume without loss of generality that f can be written as an expres-
sion not using the variable xN . This means that if ι : BN−1 → BN is the natural
embedding, then f = ι(g) for some g ∈ BN−1. If I ⊆ [N − 1], and aI ∈ BN−1 is the
corresponding atomic expression inBN−1, then ι(aI ) ∩ xN and ι(aI ) ∩ x̄N are atomic
expressions in BN corresponding to the index sets I ⊆ [N ] and I ∪ {N } ⊆ [N ]
respectively, furthermore,

aI ⊆ g ⇐⇒ ι(aI ) ∩ xN ⊆ f ⇐⇒ ι(aI ) ∩ x̄N ⊆ f.

Thus,
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χ̃N ( f ) =
∑
aI ⊆g

((−1)|I | + (−1)|I∪{N }|) = 0.

�

Proposition 3 If f̄ is the complement of f ∈ BN , then χ̃N ( f̄ ) = −χ̃N ( f ).

Proof It is clear from the definition of the reducedEuler characteristic that if f ∩ g =
∅, then χ̃N ( f ∪ g) = χ̃N ( f ) + χ̃N (g). We also have

χ̃N (X) =
N∑

i=0

(−1)i+1

(
N

i

)
= 0,

so χ̃N ( f ) + χ̃N ( f̄ ) = χ̃N ( f ∪ f̄ ) = χ̃N (X) = 0.

Recall that the contradual f ∗̄ of f ∈ BN is formed by replacing each variable xi by
its complement x̄i , while the dual f ∗ = f ∗̄ of f is the complement of the contradual
of f .

Proposition 4 For any f ∈ BN , we have

−χ̃N ( f ∗) = χ̃N ( f ∗̄) = (−1)N χ̃N ( f ).

Proof The first equation is a corollary of Proposition 3, so it is enough to show the
second one. The contradual operation preserves the ordering and maps the atom aI

to a[N ]\I . Consequently,

χ̃N ( f ∗̄) =
∑

aI ⊆ f ∗̄
(−1)|I |+1 = (−1)N

∑
a[N ]\I ⊆ f

(−1)|[N ]\I |+1 = (−1)N χ̃N ( f ).

�

Let LN be the sublattice of BN generated by the elements x1, . . . , xN and the oper-
ations ∪ and ∩. An element f ∈ Bn belongs to Ln if and only if f = ∅ and when-
ever aI ⊆ f and J ⊆ I we also have aJ ⊆ f . This means that we can associate
to any element f ∈ LN an abstract simplicial complex Pf = {I ⊂ [N ] | aI ⊆ f }.
This assignment gives a bijection between Ln and abstract simplicial complexes on
the vertex set [N ] different from the abstract (N − 1)-dimensional simplex. In this
special case, the reduced Euler characteristic of f is one less than the ordinary Euler
characteristic of Pf . The difference is due to the fact that ∅ is not counted as a
−1-dimensional face when we compute the Euler characteristic, but it is taken into
account in the computation of χ̃N ( f ). The number of elements of LN is MN − 2,
where MN is the N th Dedekind number.

There is a sublattice CN ⊃ LN of BN consisting of expressions that can be built
from the variables x1, . . . , xN using only the operations ∪, ∩, and \. The lattice CN
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contains exactly those elements ofBN that do not contain the atomic expression a[N ].
This way, CN has 22

N −1 elements.
Denote by MN the linear space of real valued functions μ : CN → R such that

μ( f ∪ g) = μ( f ) + μ(g) if f ∩ g = ∅. As μ ∈ CN is uniquely determined by its
values on the atomic expressions aI , (I � [N ]), dimMN = 2N − 1.

For ∅ = I ⊆ [N ], let uI ∈ LN be the union uI = ⋃
i∈I xi .

Proposition 5 For any f ∈ CN , there is a unique collection of integers m f,I ∈ Z for
(∅ = I ⊆ [N ]) such that for any μ ∈ MN , we have

μ( f ) =
∑

∅=I⊆[N ]
m f,I μ(uI ). (12)

Proof There is a natural embedding ev : CN → M∗
N of CN into the dual space ofMN

given by the evaluation map ev : f �→ ev f , where ev f (μ) = μ( f ) for anyμ ∈ MN .
The proposition claims that for any f ∈ CN , ev f can be decomposed uniquely as an
integer coefficient linear combination of the evaluations evuI , (∅ = I ⊆ [N ]).
Any f ∈ CN has an atomic decomposition f = ⋃

aI ⊆ f aI , showing that

ev f =
∑
aI ⊆ f

evaI . (13)

Applying the inclusion–exclusion formula

μ

(⋂
k∈K

Ak

)
=

∑
∅=J⊆K

(−1)|J |+1μ

⎛
⎝⋃

j∈J

A j

⎞
⎠

for the Boolean expressions Ak = xk \ uI , k ∈ K = [N ] \ I , we obtain

μ(aI ) =
∑

∅=J⊆([N ]\I )

(−1)|J |+1μ(u J \ uI ) =
∑

∅=J⊆([N ]\I )

(−1)|J |+1(μ(uI∪J ) − μ(uI ))

=
∑

I⊆K⊆[N ]
(−1)|K\I |+1μ(uK ),

(14)
for any μ ∈ MN and I = [N ].

Equations (13) and (14) show that ev f can be written as a linear combination of
the evaluations evuI , (∅ = I ⊆ [N ])) with integer coefficients.

To show uniqueness of the coefficients m f,I , observe that the evaluations evaI ,
(∅ = I ⊆ [N ]) form a basis of M∗

N , and as the linear space spanned by the 2N − 1
evaluations evuI , (∅ = I ⊆ [N ]) contains this basis, it is the whole spaceM∗

N . Since
dimM∗

N = 2N − 1, the evaluations evuI , (∅ = I ⊆ [N ]) are linearly independent.
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Proposition 6 The sum
∑

∅=I⊆[N ] m f,I of the coefficients is 1 if a∅ ⊆ f and 0 oth-
erwise.

Proof Let μ ∈ MN be the additive function the values of which on atoms are given
by

μ(aI ) =
{
0 if I = ∅
1 if I = ∅.

Then μ(uI ) = 1, for all ∅ = I ⊆ [N ]. Applying (12) to μ, we obtain

∑
∅=I⊆[N ]

m f,I =
∑

∅=I⊆[N ]
m f,I μ(uI ) = μ( f ) =

∑
aI ⊆ f

μ(aI ) =
{
0 if a∅ � f

1 if a∅ ⊆ f.

�

Proposition 7 For any ∅ = I ⊆ [N ], muI ,J = δI,J holds, where δI,J is the Kro-
necker delta symbol.

Proof It is clear that μ(uI ) = ∑
∅=J⊆[N ] δI,J μ(u J ). By the uniqueness of the coef-

ficients muI ,J , this equation implies muI ,J = δI,J .

Proposition 8 If f, g ∈ CN and f ∩ g = ∅, then m f ∪g,I = m f,I + mg,I for every
∅ = I ⊆ [N ].
Proof Since for any μ ∈ MN , equation∑
∅=I⊆[N ]

m f ∪g,I μ(uI ) = μ( f ∪ g) = μ( f ) + μ(g) =
∑

∅=I⊆[N ]
(m f,I + mg,I )μ(uI )

holds, uniqueness of the coefficients m f ∪g,I implies the statement.

If μ ∈ MN , then there are infinitely many ways to extend μ to a map μ : BN →
R preserving the additivity property μ( f ∪ g) = μ( f ) + μ(g) − μ( f ∩ g). Since
such a map is uniquely defined by its values on the atomic expressions aI , and μ(aI )

is already given for I = [N ], the extension of μ is uniquely given if we prescribe the
value μ(a[N ]) ∈ R. This value is uniquely determined if we require that μ(X) = 0,
since this equation holds if and only μ(a[N ]) = −∑

I�[N ] μ(aI ).

Definition 2 The unique extension of μ ∈ MN to a map μ : BN satisfying the con-
ditions μ( f ∪ g) = μ( f ) + μ(g) − μ( f ∩ g) and μ(X) = 0 will be called the 0-
weight extension of μ.
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4 Asymptotics for the Volume of Boolean Expressions of
Large Balls

Let f ∈ CN be a Boolean expression built from the variables x1, . . . , xN and the
operations ∪, ∩ and \. For a system of N points p = (p1, . . . , pN ) ∈ (Rd)N and a
given radius r > 0, consider the body

Bd
f (p, r) = f (Bd(p1, r), . . . , Bd(pN , r))

obtained by evaluating f on the balls xi = Bd(pi , r). We are interested in the asymp-
totic behaviour of the volume Vd

f (p, r) = vold(Bd
f (p, r)) of this body.

For a system of points p = (p1, . . . , pN ) ∈ (Rd)N and a set I ⊆ [N ], denote by
KI (p) the convex hull of the points {pi | i ∈ I }.
Definition 3 For f ∈ CN and a system of points p ∈ (Rd)N , define the Boolean
quermassintegrals W d

f,k(p) and Boolean intrinsic volumes V f,k(p) by the equations

W d
f,k(p) =

∑
∅=I⊆[N ]

m f,I W d
k (K I (p)) and V f,k(p) =

∑
∅=I⊆[N ]

m f,I Vk(K I (p)).

By Proposition 8, for any k and p ∈ (Rd)N , the maps CN � f �→ W d
f,k(p) and CN �

f �→ V f,k(p) are in MN . We define W d
f,k(p) and V f,k(p) for arbitrary f ∈ BN as

the 0-weight extension of these maps, respectively.

Theorem 1 For any Boolean expression f ∈ CN , and any fixed system of centers
p ∈ (Rd)N we have

Vd
f (p, r) =

d∑
k=d−2

(
d

k

)
W d

f,k(p)rk + O(rd−3) =
2∑

k=0

κd−k V f,k(p)rd−k + O(rd−3).

Proof Letμ : CN → R be the additive function defined byμ(g) = Vd
g (p, r). Apply-

ing Eq. (12) for μ, we obtain

Vd
f (p, r) = μ( f ) =

∑
∅=I⊆[N ]

m f,I μ(uI ) =
∑

∅=I⊆[N ]
m f,IVd

uI
(p, r).

For each I , Vd
uI

is the volume of the union of some balls, to which we can apply
Corollary 1. This gives

Vd
uI

= κdrd + κd−1V1(K I )r
d−1 + κd−2V2(K I )r

d−2 + O(rd−3). (15)

The last two equations together with the definition of the Boolean quermassintegrals
and Boolean intrisic volumes imply the theorem.



On the Volume of Boolean Expressions of Large Congruent Balls 81

Remark One of the main goals set in the introduction was to extend Eqs. (2), (3), and
(11) for the volumes of Boolean expressions of large congruent balls, finding suitable
generalizations of the intrinsic volumesV0,V1,V2, appearing in (11). Theorem1gives
the desired extension and justifies our definition of the Boolean intrinsic volumes.

5 Properties of Boolean Intrinsic Volumes

The following properties are straightforward corollaries of the analogous properties
of intrinsic volumes of convex bodies and the definitions.

Proposition 9

(a) V f,0(p) does not depend on p. Its value V f,0 ≡ ∑
∅=I⊂[N ] m f,I is 1 if a∅ ⊆ f ,

and 0 otherwise.
(b) The Boolean intrinsic volume V f,k(p) does not depend on the dimension d. In

particular,

W d
f,k = κk(d

k
) V f,d−k = κk(d

k
) V f,(d+s)−(k+s) =

(d+s
k+s

)
κk(d

k
)
κk+s

W d+s
f,k+s = (d + 1) · · · (d + s)κk

(k + 1) · · · (k + s)κk+s
W d+s

f,k+s

for any s ∈ N.
(c) V f,k is a continuous function on (Rd)N for every d > 0.
(d) If f, g ∈ BN and f ∩ g = ∅, then W d

f ∪g,k = W d
f,k + W d

g,k and V f ∪g,k = V f,k +
Vg,k .

(e) W d
f̄ ,k

= −W d
f,k and V f̄ ,k = −V f,k for any f ∈ BN .

We are going to find a formula for the Boolean intrinsic volumes that generalizes
Eq. (8). Assume that any k + 2 points of the system p = (p1, . . . , pN ) ∈ (Rd)N are
affinely independent. This can always be achieved by a small perturbation of the
points if d ≥ k + 1. Choose a k + 1 element index set S = {i1, . . . , ik+1} ⊂ [N ]
and denote by σS the convex hull of the points pi1 , . . . , pik+1 . By the general position
assumption on p, σS is a k-dimensional simplex and the affine subspace [σS] spanned
by it does not contain any of the points p j for j /∈ S.

Define an integer valued functionn f,S,p : S
d−k−1
S → Zon theunit sphereS

d−k−1
S =

{u ∈ S
d−1 | u ⊥ [σS]} as follows. Choose a vectoru ∈ S

d−k−1
S . Split the index set [N ]

into three parts depending on the position of the point pi relative to the hyperplane
orthogonal to u, containing the simplex σS by setting

�+ = { j ∈ [N ] | 〈p j − pi1 , u〉 > 0},
�0 = { j ∈ [N ] | 〈p j − pi1 , u〉 = 0},
�− = { j ∈ [N ] | 〈p j − pi1 , u〉 < 0}.

It is clear that S ⊆ �0 and S = �0 for almost all u. Define the elements y1, . . . , yN ∈
BN by the rule
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y j =

⎧⎪⎨
⎪⎩

X if j ∈ �+ ∪ (�0 \ S),

x j if j ∈ S,

∅ if j ∈ �−.

Evaluating the Boolean expression f on the y j ’s we obtain an element f (y1, . . . , yN )

∈ Bk+1(xi1 , . . . , xik+1) in the free Boolean algebra generated by the elements xi1 , . . . ,

xik+1 . Set n f,S,p(u) = (−1)k+1χ̃k+1( f (y1, . . . , yN )).
The values of n f,S,p are integers in the interval [−2k, 2k]. Let

ν f,S,p = 1

(d − k)κd−k

∫
Sd−k−1

S

n f,S,p(u)du

be the average value of n f,S,p.

Theorem 2 If f ∈ BN and p ∈ (Rd)N satisfies that any k + 2 points of p are affinely
independent, then we have

V f,k(p) =
∑
S⊆[N ]

|S|=k+1

ν f,S,pvolk(σS). (16)

Proof If f, g ∈ BN are disjoint, that is f ∩ g = ∅, then V f ∪g,k = V f,k + Vg,k , fur-
thermore, f (y1, . . . , yN ) ∩ g(y1, . . . , yN ) = ∅ for any choice of the variables yi , and
since the reduced Euler characteristic is an additive function, ν f ∪g,k = ν f,k + νg,k .
Thus, both sides of Eq. (16) are additive functions of the Boolean expression f . Since
both sides vanish for f = X , the two sides are equal for any f ∈ BN if they are equal
for any f ∈ CN . As it was shown in the proof of Proposition 5, the evaluations evuI ,
for ∅ = I ⊆ [N ], form a basis of M∗

N , so it is enough to check the proposition for
the unions uI .

Assume f = uI . Then V f,k(p) = Vk(K I (p)) by Proposition 7. Let S = {i1, . . . ,
ik+1} ⊆ [N ] be a set of k + 1 indices. To understand the geometrical meaning of
n f,S,p(u), consider first the value of f (y1, . . . , yN ) = ⋃

j∈I y j .
If y j = X for an index j ∈ I , then f (y1, . . . , yN ) = X and ν f,S(u) = χ̃k+1(X) =

0. Hence n f,S,p(u) vanishes if I � �− ∪ �0. By Proposition 2, n f,S,p(u) van-
ishes also in the case when one of the variables xi1 , . . . , xik+1 does not appear in
f (y1, . . . , yN ). These variables appear in f (y1, . . . , yN ) if and only if S ⊆ I ∩ �0.
This means that if n f,S,p(u) = 0, then KI (p) is contained in the halfspace {x ∈ R

d |
〈u, x − pi1〉 ≤ 0} and the boundary hyperplane of this halfspace intersects the poly-
tope KI (p) in a face that contains the k-dimensional simplex σS . What is the value
of n f,S,p(u) in this case? If I ⊆ �− ∪ �0 and S ⊆ I ∩ �0, then

n f,S,p(u) = (−1)k+1χ̃k+1(xi1 ∪ · · · ∪ xik+1) = −χ̃k+1(xi1 ∩ · · · ∩ xik+1) = 1.

If the simplex σS is not a face of K I (p), then the smallest face of KI (p) that contains
σS has dimension bigger than k because of the general position assumption on p.
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In this case, the support of the function n f,S,p is contained in a great subsphere of
S

d−k−1
S , and ν f,S,p = 0.
If σS is a face of K I (p), then n f,S,p is the indicator function of the intersection of

the cone N (σS, K I (p)) and the sphere S
d−k−1
S , therefore

ν f,S,p = 1

(d − k)κd−k

∫
Sd−k−1

S

n f,S,p(u)du = vold−k(n(σS, K I (p)))

κd−k
= ν(σS, K I (p)).

As all the k-dimensional faces of KI (p) are simplicies, we conclude that for f = uI ,
we have∑

S⊆[N ]
|S|=k+1

ν f,S,pvolk(σS) =
∑

σ∈Fk (K I (p))

ν(σ, KI (p))volk(L) = Vk(K I (p)) = V f,k(p),

as desired.

Proposition 10 If f ∈ BN , f ∗ and f ∗̄ are the dual and contradual of f respectively,
then

V f ∗,k = −V f ∗̄,k = (−1)k V f,k and W d
f ∗,k = −W d

f ∗̄,k = (−1)d−k W d
f,k .

Proof Due to Proposition 9 (e) and (b), it is enough to show the equality V f ∗,k =
(−1)k V f,k . As V f,k(p) does not depend on the dimension of the ambient spaceR

d , we
may assume that d > k. Then the set of configurations p = (p1, . . . , pN ) ∈ (Rd)N

satisfying that any k + 2 of the points p1, . . . , pN are affinely independent is dense
in (Rd)N . Since V f,k is continuous on (Rd)N for all f ∈ BN , it suffices to prove the
equation V f ∗,k(p) = (−1)k V f,k(p) for configurations satisfying this general position
condition. Under this assumption, Theorem 2 implies the statement if we show the
equations ν f ∗,S,p = (−1)kν f,S,p.

Consider the function n f,S,p(u) = (−1)k+1χ̃k+1( f (y1, . . . , yN )) in the defini-
tion of ν f,S,p. It is not difficult to see that f ∗̄(y1, . . . , yN ) is the contradual of
f (y1, . . . , yN ) and f ∗(y1, . . . , yN ) is the dual of it, so applying Proposition 4, we
obtain n f ∗,S,p = (−1)kn f,S,p. Taking themean value of both sides over the unit sphere
S

d−k−1
S we get the desired equation ν f ∗,S,p = (−1)kν f,S,p.

Denote by lu : R
d → R the linear function lu : x �→ 〈u, x〉. If u is a unit vector,

and K is a bounded convex set, then the length of the interval lu(K ) is the width
wK (u) of K in the direction of u. It is known that V1(K ) is proportional to the mean
width of K , namely,

V1(K ) = 1

2κd−1

∫
Sd−1

wK (u)du = dκd

2κd−1
ωd(K ).

The width and the mean width can be expressed with the help of the support function
of K . Recall that the support function of a bounded set X ⊂ R

d is defined as the
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function hX : S
d−1 → R, hX (u) = supx∈X 〈x, u〉. It is clear that wK (u) = hK (u) +

hK (−u), and

V1(K ) = 1

2κd−1

∫
Sd−1

(hK (u) + hK (−u))du = 1

κd−1

∫
Sd−1

hK (u)du.

We can extend this formula for the case when f ∈ LN . Then f can be evaluated on
real numbers by setting a ∪ b = max{a, b} and a ∩ b = min{a, b} for a, b ∈ R.

Theorem 3 If f ∈ LN , then for any p ∈ (Rd)N , we have

V f,1(p) = 1

κd−1

∫
Sd−1

f (〈u, p1〉, . . . , 〈u, pN 〉)du.

Proof Suppose that the points pi are all contained in the interior of the ball BR =
Bd(0, R). Since f ∈ LN , a∅ ⊆ f , therefore

∑
∅=I⊆[N ] m f,I = 1, and

V f,1(p) =
∑

∅=I⊆[N ]
m f,I V1(K I (p)) =

⎛
⎝ ∑

∅=I⊆[N ]
m f,I V1(K I (p) + BR)

⎞
⎠ − V1(BR).

Denote by Si (u) the interval lu({pi } + BR) = [〈u, pi 〉 − R, 〈u, pi 〉 + R]. Then

V1(K I (p) + BR) = 1

2κd−1

∫
Sd−1

vol1(lu(K I + BR)du = 1

2κd−1

∫
Sd−1

vol1

(⋃
i∈I

Si (u)

)
du,

and

V f,1(p) = 1

2κd−1

∫
Sd−1

( ∑
∅=I⊆[N ]

m f,Ivol1
(⋃

i∈I

Si (u)
))

du − dκd R

κd−1
.

For any fixed u ∈ S
d−1, the function μ : CN → R defined by μ( f ) = vol1( f (S1(u),

. . . , SN (u))) is inMN , therefore Proposition 5 yields

∑
∅=I⊆[N ]

m f,I vol1
(⋃

i∈I

Si (u)
)

=
∑

∅=I⊆[N ]
m f,I μ(uI ) = μ( f ) = vol1( f (S1(u), . . . , SN (u))).

By the choice of R, 0 is a common interior point of all the intervals Si (u). For this
reason, all the sets that can be obtained from these intervals using the operations ∪
and ∩ are also intervals. In particular,

f (S1(u), . . . , SN (u)) = [− f (−〈u, p1〉, . . . ,−〈u, pN 〉) − R, f (〈u, p1〉, . . . , 〈u, pN 〉) + R],

and

vol1( f (S1(u), . . . , SN (u)) = f (〈u, p1〉, . . . , 〈u, pN 〉) + f (〈−u, p1〉, . . . , 〈−u, pN 〉) + 2R.
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Using the fact that for any integrable function h : S
d−1 → R, we have

∫
Sd−1 h(u)du =∫

Sd−1 h(−u)du, these equations give

V f,1(p) = 1

2κd−1

∫
Sd−1

( f (〈u, p1〉, . . . , 〈u, pN 〉) + f (〈−u, p1〉, . . . , 〈−u, pN 〉) + 2R)du − dκd R

κd−1

= 1

κd−1

∫
Sd−1

f (〈u, p1〉, . . . , 〈u, pN 〉)du,

as we wanted to show.

6 Monotonocity of the Boolean Intrinsic Volume Vf,1

In this section, we prove the following result.

Theorem 4 Assume that the Boolean expression f ∈ CN can be represented by a
formula in which each of the variables occurs exactly once. Define the signs ε

f
i j , for

1 ≤ i < j ≤ N, as in the introduction. If the configurations p = (p1, . . . , pN ) and
q = (q1, . . . , qN ) ∈ (Rd)N satisfy the inequalities ε

f
i j (d(pi , p j ) − d(qi , q j )) ≥ 0 for

all 0 ≤ i < j ≤ N, then we have

V f,1(p) ≥ V f,1(q). (17)

Proof It is proved in [5], that if there exist piecewise analytic continuous maps
zi : [0, 1] → R

d for 1 ≤ i ≤ N , such that zi (0) = pi , zi (1) = qi , and the distances
d(zi (t), z j (t)) are weakly monotonous functions of t for all i and j , then ineqality
(1) is true for any choice of the radii. It is not difficult to see that the analytic curves
zi : [0, 1] → R

d × R
d defined by zi (t) = (cos(tπ/2)pi , sin(tπ/2)qi ) connect the

points (pi , 0) to the points (0, qi ) in the required way, but jumping into R
2d . Thus,

embedding the centers into R
2d , our assumptions imply the inequality

V2d
f (p, r) = vol2d

(
B2d

j (p, r)
) ≥ vol2d

(
f (B2d

f (q, r)
) = V2d

f (q, r) (18)

for any choice of the radius r . By Proposition 9 (a), V f,0(p) = V f,0(q), therefore
Theorem 1 gives

0 ≤ V2d
f (p, r) − V2d

f (q, r) = κ2d−1(V f,1(p) − V f,1(q))r2d−1 + O(r2d−2).

This inequality can hold for large r only if the coefficient of the dominant term is
nonnegative, i.e., V f,1(p) ≥ V f,1(q).

It seems to be an interesting question whether we can write strict inequality in
(17) if, in addition to the assumptions of Theorem 4, we know that the configurations
p and q are not congruent. An affirmative answer would imply that the generalized
Kneser–Poulsen conjecture holds for Boolean expression of congruent balls if the
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radius of the balls is greater than a certain number depending on the system of the
centers.
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Small Primitive Zonotopes

Antoine Deza, George Manoussakis and Shmuel Onn

Abstract Westudy a family of lattice polytopes, calledprimitive zonotopes, describe
instances with small parameters, and discuss connections to the largest diameter
of lattice polytopes and to the computational complexity of multicriteria matroid
optimization. Complexity results and open questions are also presented.

Keywords Lattice polytopes · Primitive integer vectors · Matroid optimization ·
Diameter

1 Introduction

Recent results dealing with the combinatorial, geometric, and algorithmic aspects of
linear optimization include Santos’ counterexample [27] to the Hirsch conjecture,
and Allamigeon, Benchimol, Gaubert, and Joswig’s counterexample [2] to a con-
tinuous analogue of the polynomial Hirsch conjecture. Borgwardt, De Loera, and
Finhold [4] showed that the Hirsch bound holds for transportation polytopes. Kalai
and Kleitman’s upper bound [18] for the diameter of polytopes was strengthened by
Todd [32] and by Sukegawa [30].
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Focusing on lattice polytopes; that is bounded polytopes whose vertices are
integer-valued, Del Pia and Michini [7] strengthened Kleinschmidt and Onn’s upper
bound [19] for the diameter of lattice polytopes. Multicriteria matroid optimization
is a generalization of standard linear matroid optimization introduced by Onn and
Rothblum [26] where each basis is evaluated according to several, rather than one,
criteria, and these values are traded-in by a convex function.

The article pursues the study of the primitive zonotopes initiated in [10] and is
organized as follows. After recalling their definition and providing some of their
combinatorial properties, we highlight in Sect. 2 connections to convex multicrite-
ria matroid optimization, and to the diameter of lattice polytopes. In particular, we
strengthen the bounds on the maximum number m(d, 1) of greedily solvable lin-
ear single criterion counterparts needed to solve any d-criteria 1-bounded instance.
Section 3 focuses on primitive zonotopes of small dimension d, norm q, and order
p. The diameter, grid embedding size, and number of vertices are given for values of
(d, q, p) yielding computationally tractable primitive zonotopes. Complexity results
and open questions are discussed in Sect. 4. In particular, we show that linear opti-
mization and separation over primitive zonotopes can be done in polynomial time,
as well as deciding whether a given point, respectively a pair of points, is a vertex,
respectively an edge. Proofs for Sects. 2.2 and 3 are given in Sect. 5.

2 Primitive Zonotopes

2.1 Zonotopes Generated by Short Primitive Vectors

The convex hull of integer-valued points is called a lattice polytope and, if all the
vertices are drawn from {0, 1, . . . , k}d , is refereed to as a lattice (d, k)-polytope. For
simplicity, we only consider full dimensional lattice (d, k)-polytopes. Given a finite
set G of vectors, also called the generators, the zonotope generated by G is the con-
vex hull of all signed sums of the elements of G. We consider zonotopes generated
by short integer vectors in order to keep the grid embedding size relatively small.
In addition, we restrict to integer vectors which are pairwise linearly independent in
order to maximize the diameter. Thus, for q = ∞ or a positive integer, and d, p pos-
itive integers, we consider the primitive zonotope Zq(d, p) defined as the zonotope
generated by the primitive integer vectors of q-norm at most p:

Zq (d, p) =
∑

[−1, 1]{v ∈ Z
d : ‖v‖q ≤ p , gcd(v) = 1 , v � 0}

= conv
(∑

{λvv : v ∈ Z
d , ‖v‖q ≤ p , gcd(v) = 1 , v � 0} : λv = ±1

)

where gcd(v) is the largest integer dividing all entries of v, and � the lexicographic
order on R

d , i.e. v � 0 if the first nonzero coordinate of v is positive. Similarly, we
consider the Minkowski sum Hq(d, p) of the generators of Zq(d, p):



Small Primitive Zonotopes 89

Hq(d, p) =
∑

[0, 1]{v ∈ Z
d : ‖v‖q ≤ p , gcd(v) = 1 , v � 0}.

In other words, Hq(d, p) is, up to translation, the image of Zq(d, p) by a homothety
of factor 1/2. We also consider the positive primitive zonotope Z+

q (d, p) defined as
the zonotope generated by the primitive integer vectors of q-norm at most p with
nonnegative coordinates:

Z+
q (d, p) =

∑
[−1, 1]{v ∈ Z

d
+ : ‖v‖q ≤ p , gcd(v) = 1}

whereZ+ = {0, 1, . . . }. Similarly, we consider theMinkowski sum of the generators
of Z+

q (d, p):

H+
q (d, p) =

∑
[0, 1]{v ∈ Z

d
+ : ‖v‖q ≤ p , gcd(v) = 1}.

We illustrate the primitive zonotopes with a few examples:

(i) For finite q, Zq(d, 1) is generated by the d unit vectors and forms the {−1, 1}d -
cube. Hq(d, 1) is the {0, 1}d -cube.

(ii) Z1(d, 2) is the permutahedron of type Bd and thus, H1(d, 2) is, up to translation,
a lattice (d, 2d − 1)-polytope with 2dd! vertices and diameter d2. For example,
Z1(2, 2) is generated by {(0, 1), (1, 0), (1, 1), (1,−1)} and forms the octagon
whose vertices are {(−3,−1), (−3, 1), (−1, 3), (1, 3), (3, 1), (3,−1), (1,−3),
(−1,−3)}. H1(2, 2) is, up to translation, a lattice (2, 3)-polygon, see Fig. 1.
Z1(3, 2) is congruent to the truncated cuboctahedron, see Fig. 2 for an illustra-
tion, which is also called the great rhombicuboctahedron and is the Minkowski
sum of an octahedron and a cuboctahedron, see for instance Eppstein [12].
H1(3, 2) is, up to translation, a lattice (3, 5)-polytope with diameter 9 and 48
vertices.

(iii) H+
1 (d, 2) is the Minkowski sum of the permutahedron with the {0, 1}d -cube.

Thus, H+
1 (d, 2) is a lattice (d, d)-polytope with diameter

(d+1
2

)
.

(iv) Z∞(3, 1) is congruent to the truncated small rhombicuboctahedron, see Fig. 3 for
an illustration, which is the Minkowski sum of a cube, a truncated octahedron,

Fig. 1 H1(2, 2)
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Fig. 2 Z1(3, 2) is congruent
to the truncated
cuboctahedron

Fig. 3 Z∞(3, 1) is
congruent to the truncated
small rhombicuboctahedron

Fig. 4 H+∞(2, 2)

and a rhombic dodecahedron, see for instance Eppstein [12]. H∞(3, 1) is, up to
translation, a lattice (3, 9)-polytope with diameter 13 and 96 vertices.

(v) Z+∞(2, 2) is generated by {(0, 1), (1, 0), (1, 1), (1, 2), (2, 1)} and forms the
decagon whose vertices are {(−5,−5), (−5,−3), (−3,−5), (−3, 1), (−1, 3),
(1,−3), (3,−1), (3, 5), (5, 3), (5, 5)}. H+∞(2, 2) is a lattice (2, 5)-polygon, see
Fig. 4.
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2.2 Combinatorial Properties of the Primitive Zonotopes

We recall properties concerning Zq(d, p) and Z+
q (d, p), and in particular their sym-

metry group, diameter, and vertices. Z1(d, 2) is the permutahedron of type Bd as its
generators form the root system of type Bd , see [17]. Thus, Z1(d, 2) has 2dd! vertices
and its symmetry group is Bd . The properties listed in this section are extensions to
Zq(d, p) of known properties of Z1(d, 2) whose proofs are given in Sect. 5.1. We
refer to Fukuda [14],Grünbaum [16], andZiegler [33] for polytopes and, in particular,
zonotopes.

Property 2.1

(i) Zq(d, p) is invariant under the symmetries induced by coordinate permutations
and the reflections induced by sign flips.

(ii) The sum σq(d, p) of all the generators of Zq(d, p) is a vertex of both Zq(d, p)
and Hq(d, p). The origin is a vertex of Hq(d, p), and −σq(d, p) is a vertex of
Zq(d, p).

(iii) The coordinates of the vertices of Zq(d, p) are odd. Thus, the number of vertices
of Zq(d, p) is a multiple of 2d .

(iv) Hq(d, p) is, up to translation, a lattice (d, k)-polytope where k is the sum of the
first coordinates of all generators of Zq(d, p)

(v) The diameter of Zq(d, p), respectively Z+
q (d, p), is equal to the number of its

generators.

Property 2.2

(i) Z+
q (d, p) is centrally symmetric and invariant under the symmetries induced by

coordinate permutations.
(ii) The sum σ+

q (d, p) of all the generators of Z+
q (d, p) is a vertex of both Z+

q (d, p)
and H+

q (d, p). The origin is a vertex of H+
q (d, p), and −σ+

q (d, p) is a vertex
of Z+

q (d, p).

A vertex v of Zq(d, p) is called canonical if v1 ≥ · · · ≥ vd > 0. Property 2.1 item
(i) implies that the vertices of Zq(d, p) are all the coordinate permutations and sign
flips of its canonical vertices.

Property 2.3

(i) A canonical vertex v of Zq(d, p) is the unique maximizer of {max cT x : x ∈
Zq(d, p)} for some vector c satisfying c1 > c2 > · · · > cd > 0.

(ii) Z1(d, 2) has 2dd! vertices corresponding to all coordinate permutations and
sign flips of the unique canonical vertex σ1(d, 2) = (2d − 1, 2d − 3, . . . , 1).

(iii) For q = ∞ or p �= 1, Zq(d, p) has at least 2dd! vertices including all coordinate
permutations and sign flips of the canonical vertex σq(d, p).

(iv) Z+∞(d, 1) has at least 2 + 2d! vertices including the 2d! permutations of ±σ(d)

where σ(d) is a vertex with pairwise distinct coordinates, and the 2 vertices
±σ+∞(d, 1).
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2.3 Primitive Zonotopes as Lattice Polytopes with Large
Diameter

Let δ(d, k) be the maximum possible edge-diameter over all lattice (d, k)-polytopes.
Finding lattice polygons with the largest diameter; that is, to determine δ(2, k), was
investigated independently in the early nineties by Thiele [31], Balog and Bárány [3],
and Acketa and Žunić [1]. This question can be found in Ziegler’s book [33] as
Exercise 4.15. The answer is summarized in Proposition 2.4,with the role of primitive
zonotopes highlighted.

Proposition 2.4 δ(2, k) is achieved, up to translation, by the Minkowski sum of a
subset of the generators of H1(2, p) for a proper p. In particular, for k = ∑

1≤ j≤p
jφ( j)

for some p, δ(2, k) is uniquely achieved, up to translation, by H1(2, p).

In general dimension, Naddef [24] showed in 1989 that δ(d, 1) = d, Kleinschmidt
and Onn [19] generalized this result in 1992 showing that δ(d, k) ≤ kd, before Del
Pia and Michini [7] strengthened the upper bound to δ(d, k) ≤ kd − 	d/2
 for k ≥
2, and showed that δ(d, 2) = �3d/2�. Deza and Pournin [11] further strengthened
the upper bound to kd − 	2d/3
 − (k − 3) for k ≥ 3 and showed that δ(4, 3) = 8.
The quantities δ(3, 4) = 7 and δ(3, 5) = 9, respectively δ(3, 6) = 10 and δ(5, 3) =
10, were computationally determined in [5], respectively [8]. Concerning the lower
bound, Deza, Manoussakis, and Onn [10] showed that δ(d, k) ≥ �(k + 1)d/2� for
k < 2d. These bounds are summarized in Proposition 2.5, and Conjecture 2.6 given
in [10] is recalled.

Proposition 2.5

(i) δ(d, k) = �(k + 1)d/2� for (d, k) = (d, 1), (d, 2), (2, 3), (3, 3), (4, 3), (5, 3),
(3, 4), (3, 5), and (3, 6).

(ii) 2d ≤ δ(d, 3) ≤ �7d/3� − 1 for d �≡ 2 mod 3, and δ(d, 3) ≤ �7d/3� other-
wise,

(iii) δ(d, k) ≥ �(k + 1)d/2� for k < 2d,
(iv) δ(d, k) ≤ kd − 	2d/3
 − (k − 2) for k ≥ 4

Conjecture 2.6 δ(d, k) is achieved, up to translation, by a Minkowski sum of lattice
vectors. In particular, δ(d, k) ≤ �(k + 1)d/2� for any d and k, and δ(d, k) = �(k +
1)d/2� when k < 2d.

Note that Conjecture 2.6 holds for all known values of δ(d, k) given in Table 1, and
hypothesizes, in particular, that δ(d, 3) = 2d.

Soprunov and Soprunova [29] considered the Minkowski length of a lattice polytope
P; that is, the largest number of lattice segments whose Minkowski sum is contained
in P . For example, the Minkowski length of the {0, k}d -cube is kd. We consider a
variant of the Minkowski length and the special case when P is the {0, k}d -cube. Let
L(d, k) denote the largest number of pairwise linearly independent lattice segments
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Table 1 Largest diameter δ(d, k) over all lattice (d, k)-polytopes

k

δ(d, k) 1 2 3 4 5 6 7 8 9 10

d 1 1 1 1 1 1 1 1 1 1 1

2 2 3 4 4 5 6 6 7 8 8

3 3 4 6 7 9 10

4 4 6 8

5 5 7 10
.
.
.

.

.

.
.
.
.

d d �3d/2�

whose Minkowski sum is contained in the {0, k}d -cube. One can check that the
generators of H1(d, 2) form the largest, and unique, set of primitive lattice vectors
whichMinkowski sum fits within the {0, k}d -cube for k = 2d − 1; that is, for k being
the sum of the first coordinates of the d2 generators of H1(d, 2). Thus, L(d, 2d −
1) = δ(H1(d, 2)) = d2. Similarly, L(2, k) = δ(2, k) for all k, and L(d, k) = �(k +
1)d/2� for k ≤ 2d − 1.

2.4 Primitive Zonotopes and Convex Matroid Optimization

We consider the convex multicriteria matroid optimization framework of Melamed,
Onn and Rothblum, see [22, 25, 26]. Call S ⊂ {0, 1}n a matroid if it is the set of
the indicators of bases of a matroid over {1, . . . , n}. For instance, S can be the
set of indicators of spanning trees in a connected graph with n edges. For a d × n
matrixW , letWS = {Wx : x ∈ S}, and let conv(WS) = Wconv(S)be the projection
to R

d of conv(S) by W . Given a convex function f : Rd → R, convex matroid
optimization deals with maximizing the composite function f (Wx) over S; that is,
max { f (Wx) : x ∈ S}, and is concerned with conv(WS); that is, the projection of
the set of the feasible points. The maximization problem can be interpreted as a
problem of multicriteria optimization, where each row of W gives a linear criterion
Wi x and f compromises these criteria. Thus, W is called the criteria matrix or
weightmatrix. The projection polytope conv(WS) and its vertices play a key role in
solving the maximization problem as, for any convex function f , there is an optimal
solution x whose projection y = Wx is a vertex of conv(WS). In particular, the
enumeration of all vertices of conv(WS) enables to compute the optimal objective
value by picking a vertex attaining the optimal value f (y) = f (Wx). Thus, it suffices
that f is presented by a comparison oracle that, queried on vectors y, z ∈ R

d , asserts
whether or not f (y) < f (z). Coarse criteria matrices; that is, W whose entries are
small or in {0, 1, . . . , p}, are of particular interest. In multicriteria combinatorial
optimization, this case corresponds to the weight Wi, j attributed to element j of the
ground set {1, . . . , n} under criterion i being small or in {0, 1, . . . , p} for all i, j . In
the remainder, we only consider {0, 1, . . . , p}-valued W .
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Let m(d, p) denote the number of vertices of H∞(d, p). Theorem 2.7, given
in [10], settles the computational complexity of the multicriteria optimization prob-
lem by showing that the maximum number of vertices of the projection polytope
conv(WS) of any matroid S on n elements and any d-criteria p-bounded utility
matrix; that is, W ∈ {0, 1, . . . , p}d×n , is equal to m(d, p), and hence is in particular
independent of n, S, and W .

Theorem 2.7 Let d, p be any positive integers. Then, for any positive integer n,
any matroid S ⊂ {0, 1}n, and any d-criteria p-bounded utility matrix W, the primi-
tive zonotope H∞(d, p) refines conv(WS). Moreover, H∞(d, p) is a translation of
conv(WS) for some matroid S and d-criteria p-bounded utility matrix W. Thus, the
maximum number of vertices of conv(WS) for any n, any matroid S ⊂ {0, 1}n, and
any d-criteria p-bounded utility matrix W, equals the number m(d, p) of vertices of
H∞(d, p), and hence is independent of n, S, and W. Also, for any fixed d and convex
f : Rd → R, the multicriteria matroid optimization problem can be solved using
a number of arithmetic operations and queries to the oracles of S and f which is
polynomial in n and p using m(d, p) greedily solvable linear matroid optimization
counterparts.

Theorem 2.8 The number m(d, 1) of vertices of H∞(d, 1) satisfies

2dd! ≤ m(d, 1) ≤ 2
∑

0≤i≤d−1

(
(3d − 3)/2

i

)
− 2

(
(3d−1 − 3)/2

d − 1

)
.

Proof The first inequality restates item (i i i) of Property 2.3 where (q, d, p) is set
to (∞, d, 1). The second inequality is obtained by exploiting the structure of the
generators of H∞(d, 1). One can check that H∞(d, 1) has (3d − 1)/2 generators
and that removing the first zero of the generators of H∞(d, 1) starting with zero
yields exactly the (3d−1 − 1)/2 generators of H∞(d − 1, 1). We recall that the num-
ber of vertices f0(Z) of a d-dimensional zonotope Z generated by m generators is
bounded by f̄ (d,m) = 2

∑
0≤i≤d−1

(m−1
i

)
. By duality, the number f0(Z) of vertices

of a zonotope Z is equal to the number fd−1(A) of cells of the associate hyper-
plane arrangement A where each generator m j of Z corresponds to an hyperplane
h j of A. The inequality f0(Z) ≤ f̄ (d,m) is based on the inequality fd−1(A) ≤
fd−1(A \ h j ) + fd−1(A ∩ h j ) for any hyperplane h j ofAwhereA \ h j denotes the
arrangement obtained by removing h j fromA, andA ∩ h j denotes the arrangement
obtained by intersecting A with h j . This last inequality and the duality between
zonotopes and hyperplane arrangements are detailed, for example, in [14]. Recur-
sively applying this inequality to the arrangementA∞(d, 1) associated to H∞(d, 1)
till the remaining (3d−1 − 1)/2 hyperplanes form a (d − 1)-dimensional arrange-
ment equivalent to A∞(d − 1, 1) yields: fd−1(A∞(d, 1)) ≤ f̄ (d, (3d − 1)/2) −(
f̄ (d, (3d−1 − 1)/2) − f̄ (d − 1, (3d−1 − 1)/2)

)
which completes the proof since

fd−1(A∞(d, 1)) = f0(H∞(d, 1)) and f̄ (d,m) − f̄ (d − 1,m) = 2
(m−1

d

)
. In other

words, the inequality is based on the inductive build-up of H∞(d, 1) starting with
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the (3d−1 − 3)/2 generators with zero as first coordinate, and noticing that these
(3d−1 − 3)/2 generators belong to a lower dimensional space. ��

3 Small Primitive Zonotopes Hq(d, p) and H+
q (d, p)

In this section we provide the number of vertices, the diameter; that is, the number
of generators, and the grid embedding size for Hq(d, p) and H+

q (d, p) for small
d and p, and q = 1, 2, and ∞. We recall that, up to translation, Zq(d, p), respec-
tively Z+

q (d, p), is the image of Hq(d, p), respectively H+
q (d, p), by a homothety

of factor 2. Thus Zq(d, p) and Hq(d, p), respectively Z+
q (d, p) and H+

q (d, p), have
the same number of vertices and the same diameter, while the grid embedding size
of the Zq(d, p), respectively Z+

q (d, p), is twice the one of Hq(d, p), respectively
H+
q (d, p). Since both Hq(d, 1) and H+

q (d, 1) are equal to the {0, 1}d -cube for finite
q, both are omitted from the tables provided in this section. The vertex enumeration
was performed using standard algorithms described, for instance, in [14]. The Euler
totient function counting positive integers less than or equal to j and relatively prime
with j is denoted by φ( j). Note that φ(1) is set to 1.

Enumerative questions concerning Hq(d, p) and H+
q (d, p) have been studied in

various settings. We list a few instances, and the associated OEI sequences, see [28]
for details and references therein.

(i) f0(H+∞(d, 1)) corresponds to the OEI sequence A034997 giving the num-
ber of generalized retarded functions in quantum field theory. The value of
f0(H+∞(d, 1)) was determined till d = 8.

(ii) f0(H∞(d, 1)), which is the number of regions of hyperplane arrangements with
{−1, 0.1}-valued normals in dimension d, corresponds to the OEI sequence
A009997 giving f0(H∞(d, 1))/(2dd!). The value of f0(H∞(d, 1)) was deter-
mined till d = 7.

(iii) δ(H+∞(d, p)) corresponds to the OEI sequence A090030 with further cross-
referenced sequences for d ≤ 7 and p ≤ 8.

(iv) δ(H+
1 (3, p)), respectively δ(H+

2 (2, p)), δ(H∞(d, 2)), δ(H∞(2, p))/4,
δ(H2(2, p))/2, δ(H

+
1 (d, 3)), and δ(H+

2 (d, 2)), corresponds to theOEI sequence
A048134, respectively A049715, A005059, A002088, A175341, A008778, and
A055795.

(v) the grid embedding size of H2(d, 2), respectively H∞(d, 2) and H+
1 (d, 3), cor-

responds to the OEI sequence A161712, respectively A080961 and A052905.

3.1 Small Primitive Zonotopes Hq(d, p)

In Tables 2, 3, and 4, the number of vertices f0(Hq(d, p)) is divided by 2dd! and
followed by its diameter δ(Hq(d, p)) and grid embedding size. For instance, the entry
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Table 2 Small primitive zonotopes H1(d, p)

p

H1(d, p) 2 3 4 5 6

d 2 1 (4, 3) 2 (8, 9) 3 (12, 17) 5 (20, 37) 6 (24, 49)

3 1 (9, 5) 7 (25, 21) 26 (49, 53) 102 (97, 133) 227 (145, 229)

4 1 (16, 7) 40 (56, 37) 531 (136, 117) 6741 (312, 337) ? (560, 709)

5 1 (25, 9) 339 (105, 57) ? (305, 217) ? (801, 713) ? (1681, 1769)

Table 3 Small primitive zonotopes H2(d, p)

p

H2(d, p) 2 3 4 5

d 2 1 (4, 3) 2 (8, 9) 4 (16, 27) 6 (24, 51)

3 2 (13, 9) 26 (49, 57) 126 (109, 161) 443 (205, 377)

4 14 (40, 27) 1427 (192, 193) ? (592, 795) ? (1424, 2411)

5 273 (105, 65) ? (641, 577)

Table 4 Small primitive zonotopes H∞(d, p)

p

H∞(d, p) 1 2 3 4

d 2 1 (4, 3) 2 (8, 9) 4 (16, 27) 6 (24, 51)

3 2 (13, 9) 26 (49, 57) 228 (145, 249) 910 (289, 633)

4 14 (40, 27) 4333 (272, 321) ? (1120, 1923) ? (2928, 6459)

5 516 (121, 81)

6 124,187 (364, 243)

7 214,580,603 (1093, 729)

26(49, 53) for (q, d, p) = (1, 3, 4) in Table 2 indicates that H1(3, 4) has 26 × 233! =
1248 vertices, diameter 49, and is, up to translation, a lattice (3, 53)-polytope. The
rather straightforward proofs are given in Sect. 5.2.

3.1.1 Small Primitive Zonotopes H1(d, p)

Property 3.1

(i) H1(d, 1) is the {0, 1}d -cube,
(ii) H1(d, 2) is, up to translation, a lattice (d, k)-polytope with k = 2d − 1, and

diameter d2, and 2dd! vertices,
(iii) H1(d, 3) is, up to translation, a lattice (d, k)-polytope with k = 2d2 + 2d − 3,

and diameter d(d + 2)(2d − 1)/3,
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(iv) H1(d, 4) is, up to translation, a lattice (d, k)-polytope with k = (d−1
0

) + 16
(d−1

1

)

+ 20
(d−1

2

) + 8
(d−1

3

)
, and diameter d(d3 + 2d2 + 2d − 2)/3,

(v) H1(2, p) is, up to translation, a lattice (2, k)-polygon with k = ∑
1≤ j≤p

jφ( j),

and diameter 2
∑

1≤ j≤p
φ( j).

3.1.2 Small Primitive Zonotopes H2(d, p)

Property 3.2

(i) H2(d, 1) is the {0, 1}d -cube,
(ii) H2(d, 2) is, up to translation, a lattice (d, k)-polytope with k = ∑

0≤ j≤3
2 j

(d−1
j

)
,

and diameter
∑

0≤ j≤3
2 j

( d
j+1

)
.

3.1.3 Small Primitive Zonotopes H∞(d, p)

Property 3.3

(i) H∞(d, 1) is, up to translation, a lattice (d, k)-polytopewith k = 3d−1, and diam-
eter (3d − 1)/2,

(ii) H∞(d, 2) is, up to translation, a lattice (d, k)-polytope with k = 3 × 5d−1 −
2 × 3d−1, and diameter (5d − 3d)/2,

(iii) H∞(2, p) is, up to translation, a lattice (2, k)-polygon with diameter
4

∑
1≤ j≤p

φ( j).

3.2 Small Positive Primitive Zonotopes H+
q (d, p)

In Tables 5, 6, and 7, the number of vertices f0(H+
q (d, p)) is followed by its diam-

eter δ(H+
q (d, p)) and grid embedding size. For instance, the entry 1082(15, 5) for

(q, d, p) = (1, 5, 2) in Table 5 indicates that H+
1 (5, 1) has 1082 vertices, diameter

15, and is a lattice (5, 5)-polytope.

3.2.1 Small Positive Primitive Zonotopes H+
1 (d, p)

Property 3.4

(i) H+
1 (d, 1) is the {0, 1}d -cube,

(ii) H+
1 (d, 2) is a lattice (d, k)-polytope with k = d, and diameter

(d+1
2

)
,
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Table 5 Small positive primitive zonotopes H+
1 (d, p)

p

H+
1 (d, p) 2 3 4 5 6

d 2 6 (3, 2) 10 (5, 5) 14 (7, 9) 22 (11, 19) 26 (13, 25)

3 26 (6, 3) 110 (13, 10) 314 (22, 22) 1022 (40, 52) 1970 (55, 82)

4 150 (10, 4) 2194 (26, 16) 17,534 (51, 41) 145,198 (103, 106) 593,402 (161, 193)

5 1082 (15, 5) 71,582 (45, 23) 2,062,682 (100, 67) ? (221, 188) ? (386, 386)

6 9366 (21, 6) ? (71, 31) ?(176, 106)

Table 6 Small positive primitive zonotopes H+
2 (d, p)

p

H+
2 (d, p) 2 3 4 5

d 2 6 (3, 2) 10 (5, 5) 18 (9, 14) 26 (13, 26)

3 32 (7, 4) 212 (19, 19) 1010 (40, 54) 3074 (70, 120)

4 370 (15, 8) 19,438 (55, 49) 362,962 (141, 170) 3,497,862 (299, 462)

5 10,922 (30, 15) ? (136, 108) ? (441, 487)

Table 7 Small positive primitive zonotopes H+∞(d, p)

p

H+∞(d, p) 1 2 3 4

d 2 6 (3, 2) 10 (5, 5) 18 (9, 14) 26 (13, 26)

3 32 (7, 4) 212 (19, 19) 1418 (49, 76) 4916 (91, 184)

4 370 (15, 8) 27,778 (65, 65) 1,275,842 (225, 344) ? (529, 1064)

5 11,292 (31, 16) ? (211, 211) ? (961, 1456) ? (2851, 5716)

6 1,066,044 (63, 32)

7 347,326,352 (127, 64)

8 419,172,756,930 (255, 128)

(iii) H+
1 (d, 3) is a lattice (d, k)-polytope with k = (d2 + 5d − 4)/2 and diameter

d(d2 + 6d − 1)/6.
(iv) H+

1 (2, p) is a lattice (2, k)-polygon with k = 1 + ∑
2≤ j≤p

jφ( j)/2, and diameter

1 + ∑
1≤ j≤p

φ( j).

3.2.2 Small Positive Primitive Zonotopes H+
2 (d, p)

Property 3.5

(i) H+
2 (d, 1) is the {0, 1}d -cube,

(ii) H+
2 (d, 2) is a (d, k) polytope with k = (d

1

) + (d
3

)
, and diameter

(d+1
2

) + (d+1
4

)
.
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3.2.3 Small Positive Primitive Zonotopes H+∞(d, p)

Property 3.6

(i) H+∞(d, 1) is, a lattice (d, k)-polytope with k = 2d−1, and diameter 2d − 1,
(ii) H+∞(d, 2) is a lattice (d, k)-polytope with k = 3d − 2d , and diameter 3d − 2d ,
(iii) H+∞(2, p) is a lattice (2, k)-polygon with diameter 1 + 2

∑
1≤ j≤p

φ( j).

4 Complexity Issues

We discuss a few complexity issues related to primitive zonotopes. While we mainly
focus on Zq(d, p), the discussion and results, such as Propositions 4.1 and 4.2, can
be adapted to Z+

q (d, p). As Hq(d, p), respectively H+
q (d, p), is the translation of

the image by a homothety of Zq(d, p), respectively Z+
q (d, p), the complexity results

are the same.

4.1 Complexity Properties

Proposition 4.1 For fixed positive integers p and q, linear optimization over
Zq(d, p) is polynomial-time solvable, even in variable dimension d.

Proof Since the q-norm of a generator of Zq(d, p) is bounded by p, it has at most pq

nonzero entries – which is attained for the vector of all ones and d = pq . Thus, the
number of generators of Zq(d, p) is bounded by

( d
pq

)
(2p)p

q = O
(
d pq

)
. Hence, one

can explicitly write all the generators of Zq(d, p) in polynomial time. Consequently,
one can compute in polynomial time the following signed sum of generators of
Zq(d, p) for any given rational c ∈ R

d : v∗ = ∑
v∈Gq (d,p)

sign(cT v)v where Gq(d, p)

denotes the set of generators of Zq(d, p). Note that sign(0) is set to 0. Then, one can
show that v∗ is a maximizer of {max cT x : x ∈ Zq(d, p)}. ��
The algorithmic theory developed by Grötschel, Lovász, and Schrijver [15] shows
that polynomial-time solvability for linear optimization over a polytope implies
polynomial-time solvability for other questions. In particular, Proposition 4.1 implies
Proposition 4.2.

Proposition 4.2 For fixed positive integers p and q, the following problems are
polynomial-time solvable.

(i) Extremality: Given v ∈ Z
d , decide if v is a vertex of Zq(d, p),

(ii) Adjacency: Given v1, v2 ∈ Z
d , decide if [v1, v2] is an edge of Zq(d, p);

(iii) Separation: Given rational y ∈ R
d , either assert y ∈ Zq(d, p), or find h ∈ Z

d

separating y from Zq(d, p); that is, satisfying hT y > hT x for all x ∈ Zq(d, p).
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4.2 Open Problems

A natural open problem is to find direct algorithms to solve, over both Zq(d, p)
and Z+

q (d, p), the extremality, adjacency, and separation questions given in Propo-
sition 4.2.

Note that the case q = ∞, even for p = 1, seems to be significantly harder as the
number of nonzero entries in a generator of Z∞(d, p) can not bounded by a constant
independent of d. Thus, the number of generators of Z∞(d, p) is exponential in d.
Hence, the complexity of linear optimization, extremality, adjacency, and separation
over both Z∞(d, p) and Z+∞(d, p), is open. In particular, it is not clear if deciding if
a given point is a vertex of Z∞(d, 1), or of Z+∞(d, p), is in NP or in coNP.

The remaining open questions deal with a reformulation in term of degree sequence
of hypergraphs. The question is presented within the context of H+

q (d, p) but could
be adapted to Hq(d, p). Each subset H ⊆ {0, 1}d can be associated to a hypergraph
with ground set [d]. The vector

∑
h∈H

h is called the degree sequence of H , and the

convex hull of the degree sequences of all hypergraphs with ground set [d] is called
the hypergraph polytope Dd ; and thus Dd = H+∞(d, 1). Considering only k-uniform
hypergraphs; that is, subsets H ⊆ {0, 1}d where all vectors in H have k nonzero
entries, one obtains the k-uniform hypergraph polytope Dd(k) as the convex hull
of the degree sequences of all k-uniform hypergraphs. The k-uniform hypergraph
polytope, in particular Dd(2) and Dd(3), havebeen extensively studied, see [6, 13, 20,
23] and references therein. A natural question raised in the literature asks for suitable
necessary and sufficient conditions to check whether a vector h ∈ Dd(k) ∩ Z

d is the
degree sequence of some k-uniform hypergraph. A trivial necessary condition is that
the sum of the coordinates of h is a multiple of k. For k = 2; that is for graphs, the
celebrated Erdős-Gallai Theorem [13] shows that the trivial necessary condition is
also sufficient. For k = 3; that is for 3-uniform hypergraphs, the question was raised
byKlivans andReiner [20]. Liu [21] exhibited counterexamples by constructingholes
for d ≥ 16; that is, vectors h in Dd(3) ∩ Z

d such that the sum of the coordinates of h
is a multiple of 3, but h is not the degree sequence of a 3-uniform hypergraph. Deza
et al. [9] answered a question raised in 1986 by Colbourn, Kocay, and Stinson [6]
by showing that deciding whether a given sequence is the degree sequence of a 3-
uniform hypergraph is NP-complete.

As there is no trivial congruence necessary condition, we call a vector in H+
q (d, p) ∩

Z
d a hole if it cannot be written as the sum of a subset of the generators of H+

q (d, p).
While the answer to the question “Does H+

q (d, p) have holes?’’ is likely yes for
most p, q, d, it would be interesting to explicitly find such holes and better under-
stand them. A natural follow-up question, provided there are holes, is “For given
fixed positive integers p and q, what is the complexity of deciding if a given vector
h ∈ H+

q (d, p) ∩ Z
d is a hole, and if not, of writing h as the sum of a subset of gen-

erators of H+
q (d, p)?".
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As noted in the proof of Proposition 4.1, there are polynomially many generators for
fixed integer p and q. Thus, the above follow-up question is in coNP as, if h is not a
hole, it is possible to write h as a sum of a subset of generators H+

q (d, p). The last
question is thus “Is this problem coNP-complete?".

As for the linear optimization related questions, the hole related questions seem to be
significantly harder for q = ∞. In particular, for (q, d, p) = (∞, d, 1), the questions
investigate the holes of Dd .

5 Proofs for Sections 2.2 and 3

Let Gq(d, p), respectively G+
q (d, p), denote the generators of Zq(d, p), respec-

tively Z+
q (d, p). Recall that σq(d, p), respectively σ+

q (d, p), denotes the sum of the
generators of Zq(d, p), respectively Z+

q (d, p).

5.1 Proof for Section 2.2

5.1.1 Proof of Item (i) of Property 2.1

Proof Note that if the set G of generators of a zonotope Z is invariant under coordi-
nate permutation or sign flip, then the same holds for Z . Let π denote a permutation
or a sign flip, and consider a signed sum

∑
g∈G

εgg. Then, π(
∑
g∈G

εgg) = ∑
g∈G

εgπ(g) is

also a signed sumof generators sinceG is permutation and sign flip invariant. In other
words, the set of all signed sums is invariant under permutations and sign flips, and
thus the same holds for the convex hull Z of all signed sums. Let Jq(d, p) be the set of
all −g for g ∈ Gq(d, p). The zonotope Z̃q(d, p) generated by Gq(d, p) ∪ Jq(d, p)
is the image of Zq(d, p) by a homothety of factor 2, and thus shares the same
symmetry group. One can check that the set of generators of Z̃q(d, p) is invariant
under coordinate permutation or sign flip, thus the same holds for Z̃q(d, p), and
consequently holds for Zq(d, p). ��

5.1.2 Proof of Item (i i) of Property 2.1

Proof Consider the minimization problem {min cT x : x ∈ Hq(d, p)} or, equiva-
lently, min cT x over all integer valued points of Hq(d, p). Set c = (d!x̄ d , (d −
1)!x̄ d−1, . . . , x̄) where x̄ = (2p + 1)d+1. Assuming that x is not the origin, let xi0
denotes the first nonzero coordinate of x . Note that xi0 ≥ 1 by definition ofGq(d, p),
and |xi | ≤ x̄ . Thus, cT x ≥ (d + 1 − i0)!x̄ d+1−i0 − x̄

∑
i0<i≤d

(d + 1 − i)!x̄ d+1−i > 0.
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In other words, the origin is the unique minimizer of a linear optimization instance
over Hq(d, p); that is, the origin is a vertex of Hq(d, p). As Zq(d, p) = 2Hq(d, p) −
σq(d, p), the point−σq(d, p) is a vertex of Zq(d, p). By item (i) of Proposition 2.1,
the point σq(d, p) is a vertex of Zq(d, p), and thus (σq(d, p) + σq(d, p))/2 is a
vertex of Hq(d, p). ��

5.1.3 Proof of Item (i i i) of Property 2.1

Proof We first show that the coordinates of the vertex σq(d, p) are odd. As noted
in the proof of item (i i i) of Property 2.3, the i-th coordinate of σq(d, p) is equal
to the first coordinate of σq(d − i + 1, p). Thus, it is enough to show that the first
coordinate of σq(d, p) is odd. Except for the first unit vector (1, 0, . . . , 0), any
generator g of Zq(d, p)with nonzero first coordinate can be pairedwith the generator
ḡ where ḡ1 = g1 and ḡi = −gi for i �= 1. Thus, the sum of the first coordinates of
the generators of Zq(d, p), excluding the first unit vector, is even. Hence, the first
coordinate of σq(d, p) is odd, and thus all the coordinates of σq(d, p) are odd.
Consider a vertex v = ∑

g∈Gq (d,p)
ε(g)g of Zq(d, p). Since flipping the sign of an ε(g)

does not change the parity of a coordinate of v, the coordinates of v have the same
parity as the ones of σq(d, p); i.e. are odd. In particular, the coordinates of a vertex
of Zq(d, p) are nonzero and item (i) of Proposition 2.1 implies that the number of
vertices of Zq(d, p) is a multiple of 2d . ��

5.1.4 Proof of Items (iv) and (v) of Property 2.1

Proof Let Z be a zonotope generated by integer-valued generators m j : j = 1, . . . ,
m(Z). Then, Z is, up to translation, a lattice (d, k)-polytopewith k ≤ max

i=1,...,d

∑
1≤ j≤m(Z)

|m j
i |. Item (i) of Property 2.1 implies that the integer range of its coordinates is

independent of the chosen coordinate. The same holds for Hq(d, p), and, thus to
determine the integer range of Hq(d, p), it is enough to consider the first coordinates
of its generators. Since the origin is a vertex of Hq(d, p) and the first coordinate
of its generator is nonnegative, the integer range of Hq(d, p) is the sum of the first
coordinates of its generators. For item (v), recall that the diameter of a zonotope is
at most the number of its generators, and this inequality is satisfied with equality if
no pair of generators are linearly dependent – which is the case for Zq(d, p) and
Z+
q (d, p). ��

5.1.5 Proof of Property 2.2

Proof Consider a generator g ∈ G+
q (d, p) and a coordinate permutation π .

Since π(g) ∈ G+
q (d, p), π(Z+

q (d, p)) = π(
∑[−1, 1]G+

q (d, p)) = ∑[−1, 1]
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π(G+
q (d, p)) = ∑[−1, 1]G+

q (d, p) = Z+
q (d, p). As in the proof of item (i i) of

Property 2.1, one can check that the origin is the unique minimizer of {min cT x :
x ∈ Hq(d, p)} with c = (1, 1, . . . , 1). Thus, the origin is a vertex of H+

q (d, p). As
Z+
q (d, p) = 2H+

q (d, p) − σq(d, p), the point −σq(d, p) is a vertex of Z+
q (d, p).

Since Z+
q (d, p) is invariant under the symmetries induced by coordinate permuta-

tions, σq(d, p) is a vertex of Z+
q (d, p), and thus (σq(d, p) + σq(d, p))/2 is a vertex

of H+
q (d, p). ��

5.1.6 Proof of Items (i) and (i i) of Property 2.3

Proof Given a canonical vertex v of Zq(d, p), let c be a vector such that v is the
unique maximizer of {max cT x : x ∈ Zq(d, p)}. Up to infinitesimal perturbations,
we can assume that the coordinates of c are pairwise distinct and nonzero. Note that
each coordinate ci of c is positive as otherwise flipping the sign of vi > 0 would
yield a point in Zq(d, p) with higher objective value than v. Assume that ci < c j
for some i < j . Then, vi = v j as otherwise permuting vi and v j would yield a point
in Zq(d, p) with higher objective value than v. Let πi j (c) be obtained by permuting
ci and c j . Then, one can check that v is the unique maximizer of {maxπi j (c)T x :
x ∈ Zq(d, p)}. Assume, by contradiction, that v′ ∈ Zq(d, p) satisfies πi j (c)T v′ ≥
πi j (c)T v. Then, cTπi j (v

′) = πi j (c)T v′ ≥ πi j (c)T v = cT v which implies πi j (v
′) =

v, and hence v′ = v, since v is the unique maximizer of {max cT x : x ∈ Zq(d, p)}.
Thus, successive appropriate permutations yield a vector π(c) with π(c)1 > · · · >

π(c)d > 0 such that v is the uniquemaximizer of {max cT x : x ∈ Zq(d, p)}. For item
(i i), one can check that σ1(d, 2) = (2d − 1, 2d − 3, . . . , 1) is the unique maximizer
of {max cT x : x ∈ Z1(2, p)} for any c satisfying c1 > · · · > cd > 0. Thus, by item
(i) of Property 2.3,σ1(d, 2) is the unique canonical vertex of Z1(d, 2) and the vertices
of Z1(d, 2) are the 2dd! coordinate permutations and sign flips of σ1(d, 2). ��

5.1.7 Proof of Item (i i i) of Property 2.3

Proof We first note that the i-th coordinate of σq(d, p) is equal to the first coordinate
of σq(d − i + 1, p). The statement trivially holds for i = 1. For i > 1, consider a
generator g of Zq(d, p) with gi �= 0 and gi0 > 0 for some i0 < i , then g can be
paired with the generator ḡ where gi = −ḡi and gi0 = ḡi0 . Thus, the sum of all the
i-th coordinates of the generators of Zq(d, p) is equal to the sum of the generators
of Zq(d, p) such that the first i − 1 coordinates are zero. In other words, the i-
th coordinate of σq(d, p) is equal to the first coordinate of σq(d − i + 1, p). For
example, for finite q, σq(d, 1) = (1, . . . , 1) and Zq(d, 1) is the {−1, 1}d -cube. Then,
note that for q = ∞ or p �= 1 the first coordinate of σq(d − i + 1, p), which is the
grid embedding size of Hq(d − i + 1, p), is strictly decreasing with i increasing.
Thus, the action of the symmetry group of Zq(d, p) on σq(d, p) generates 2dd!
distinct vertices of Zq(d, p). For instance, one can check the i-th coordinate of
σ∞(d, 1) is 3d−i . ��
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5.1.8 Proof of Item (iv) of Property 2.3

Proof The statement trivially holds for d = 1. For d ≥ 2, we show by induction that
the vertices of Z+∞(d, 1) include σ(d) satisfying 0 = σ1(d) < · · · < σd(d) = 2d−1.
The base case holds for d = 2 as σ(2) = (0, 2) is a vertex of Z+∞(2, 1). Assume
such a vertex σ(d) exists, and thus σ(d) = ∑

g∈G+∞(d,1)

ε(g)g for some ε(g) and σ(d)

is the unique maximizer of {max c(d)T x : x ∈ Z+∞(d, 1)} for some c(d). The gen-
erators of Z+∞(d + 1, 1) consist of the 2d − 1 vectors (g, 0) obtained by append-
ing 0 to a generator of Z+∞(d, 1), the 2d − 1 vectors (g, 1) obtained by appending
1, and the unit vector ed+1. Consider the point s(d + 1) = ed+1 + ∑

g∈G+∞(d,1)

(g, 1) −
∑

g∈G+∞(d,1)

ε(g)(g, 0) = (2d−1, . . . , 2d−1, 2d) − (σ (d), 0); that is, s(d + 1) = (2d−1 −
σ1(d), . . . , 2d−1 − σd−1(d), 0, 2d). Thus, the coordinates of s(d + 1) are pairwise
distinct and a suitable permutation of s(d + 1) yields a point σ(d + 1) satisfy-
ing 0 = σ1(d + 1) < · · · < σd+1(d + 1) = 2d . To show that σ(d + 1) is a ver-
tex of Z+∞(d + 1, 1), one can check that σ(d + 1) is the unique maximizer of
{max c(d + 1)T x : x ∈ Z+∞(d + 1, 1)} where c(d + 1) = (−c(d), cd+1) for suffi-
ciently large cd+1. Thus, for d ≥ 2, a point σ(d) satisfying 0 = σ1(d) < · · · <

σd(d) = 2d−1 is a vertex of Z+
q (d, p). Zonotopes being centrally symmetric, −σ(d)

is a vertex of Z+
q (d, p) and the same holds for the distinct 2d! permutations of±σ(d).

��

5.2 Proof for Section 3

5.2.1 Proof of Property 3.1

Proof One can check that the generators of H1(d, 2) consist of
(d
1

)
unity vectors and

2
(d
2

)
vectors {. . . , 1, . . . ,±1, . . . }. Thus, the diameter of H1(d, 2) is

(d
1

) + 2
(d
2

) = d2.
Similarly, one can check that the sum of the first coordinates of the generators of
H1(d, 2) is 2d − 1. Note that H1(d, 2) is the permutahedron of type Bd . Then, one
can check that, in addition to the previously determined generators of H1(d, 2),
the generators of H1(d, 3) consist of 2

(d
2

)
vectors {. . . , 1, . . . ,±2, . . . }, 2(d2

)
vec-

tors {. . . , 2, . . . ,±1, . . . }, and 4
(d
3

)
vectors {. . . , 1, . . . ,±1, . . . ,±1, . . . }. Thus,

the diameter of H1(d, 3) is
(d
1

) + 6
(d
2

) + 4
(d
3

) = d(d + 2)(2d − 1)/3. Similarly, one
can check that the sum of the first coordinates of the generators of H1(d, 3) is(d−1

0

) + 8
(d−1

1

) + 4
(d−1

2

) = 2d2 + 2d − 3. Furthermore, one can check that, in addi-
tion to the previously determined generators of H1(d, 3), the generators of H1(d, 4)
consist of 2

(d
2

)
vectors {. . . , 1, . . . ,±3, . . . }, 2(d2

)
vectors {. . . , 3, . . . ,±1, . . . }, 4(d3

)

vectors {. . . , 1, . . . ,±1, . . . ,±2, . . . }, 4(d3
)
vectors {. . . , 1, . . . ,±2, . . . ,±1, . . . },

4
(d
3

)
vectors {. . . , 2, . . . ,±1, . . . ,±1, . . . }, and 8

(d
4

)
vectors {. . . , 1, . . . ,±1, . . . ,



Small Primitive Zonotopes 105

±1, . . . ,±1, . . . }. Thus, the diameter of H1(d, 4) is
(d
1

) + 10
(d
2

) + 16
(d
3

) + 8
(d
4

) =
d(d3 + 2d2 + 2d − 2)/3. Similarly, one can check that the sum of the first coordi-
nates of the generators of H1(d, 4) is

(d−1
0

) + 16
(d−1

1

) + 20
(d−1

2

) + 8
(d−1

3

)
. Finally,

item (v) corresponds to Proposition 2.4. ��

5.2.2 Proof of Property 3.2

Proof One can check that the generators of H2(d, 2) consist of
(d
1

)
unity vectors,

2
(d
2

)
vectors {. . . , 1, . . . ,±1, . . . }, 4(d3

)
vectors {. . . , 1, . . . ,±1, . . . ,±1, . . . }, and

8
(d
4

)
vectors {. . . , 1, . . . ,±1, . . . ,±1, . . . ,±1, . . . }. Thus, the diameter of H2(d, 2)

is
∑

0≤ j≤3
2 j

( d
j+1

)
. Similarly, one can check that the sum of the first coordinates of the

generators of H2(d, 2) is
∑

0≤ j≤3
2 j

(d−1
j

)
. ��

5.2.3 Proof of Property 3.3

Proof One can check that H∞(d, 1) has (3d − 1)/2 generators consisting of all
{−1, 0, 1}-valued vectors which first nonzero coordinate is positive. Out of the
5d {−2,−1, 0, 1, 2}-valued vectors, 3d are {−2, 0, 2}-valued. Thus, keeping the
ones which first nonzero coordinate is positive, H∞(d, 2) has (5d − 3d)/2 gener-
ators. Similarly, one can check that the sum of the first coordinates of the gener-
ators of H∞(d, 2) is 3 × 5d − 5 × 3d . The generators (i, j) of H∞(2, p) such that
||(i, j)||∞ ≤ 1 are (1, 0), (0, 1), (1, 1) and (1,−1). For a given i > 1, there are 2φ(i)
generators (i, j) such that ||(i, j)||∞ > 1 and j < i . Thus, there are 4

∑
2≤ j≤p

φ( j)

generators (i, j) such that ||(i, j)||∞ > 1. Thus, the diameter of H∞(2, p) is
4

∑
1≤ j≤p

φ( j). ��

5.2.4 Proof of Property 3.4

Proof One can check that the generators of H+
1 (d, 2) consist of

(d
1

)
unity vectors and(d

2

)
vectors {. . . , 1, . . . , 1, . . . }. Thus, the diameter of H+

1 (d, 2) is
(d
1

) + (d
2

) = (d+1
2

)
.

Similarly, one can check that the sum of the first coordinates of the generators of
H+

1 (d, 2) is d. Note that H+
1 (2, p) is the Minkowski sum of the permutahedron

with the {0, 1}d -cube. One can check that, in addition to the previously deter-
mined generators of H+

1 (2, p), the generators of H+
1 (d, 3) consist of

(d
3

)
vec-

tors {. . . , 1, . . . , 1, . . . , 1, . . . , }, (d
2

)
vectors {. . . , 1, . . . , 2, . . . }, and (d

2

)
vectors

{. . . , 2, . . . , 1, . . . }. Thus H+
1 (d, 3) has

(d
3

) + 3
(d
2

) + (d
1

)
generators. Similarly, one

can check that the sum of the first coordinates of the generators of H+
1 (d, 3) is
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(d−1
2

) + 4
(d−1

1

) + (d
0

)
. Out of the generators of H1(2, p),

∑
2≤ j≤p

φ( j) have a nega-

tive coordinate. Thus, the diameter of H+
1 (2, p) is 1 + ∑

1≤ j≤p
φ( j). Similarly, one

can check that the sum of the first coordinates of the generators of H+
1 (2, p) is

1 + ∑
2≤ j≤p

jφ( j)/2. ��

5.2.5 Proof of Property 3.5

Proof One can check that the generators of H+
2 (d, 2) consist of

(d
i

)
vectors with

exactly i ones for i = 1, 2, 3, and 4. Thus, the diameter of H+
2 (d, 2) is

(d+1
2

) + (d+1
4

)
.

Similarly, one can check that the sum of the first coordinates of the generators of
H+

2 (d, 2) is
(d
1

) + (d
3

)
. ��

5.2.6 Proof of Property 3.6

Proof One can check that H+∞(d, 1) has 2d − 1 generators consisting of all {0, 1}-
valued vectors except the origin. Thus, the diameter of H+∞(d, 1) is 2d − 1. Similarly,
one can check that the sum of the first coordinates of the generators of H+∞(d, 1) is
2d−1. Out of the 3d {0, 1, 2}-valued vectors, 2d are {0, 2}-valued. Thus, the diameter
of H+∞(d, 2) is 3d − 2d . Similarly, one can check that the sum of the first coordinates
of the generators of H+∞(d, 2) is 3d − 2d . The generators (i, j) of H+∞(2, p) such
that ||(i, j)||∞ ≤ 1 are (1, 0), (0, 1), and (1, 1). For a given i > 1, there are φ(i)
generators (i, j) such that ||(i, j)||∞ > 1 and j < i . Thus, there are 2

∑
2≤ j≤p

φ( j)

generators (i, j) such that ||(i, j)||∞ > 1. Thus, the diameter of H+∞(2, p) is 1 +
2

∑
1≤ j≤p

φ( j). ��
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Delone Sets: Local Identity and Global
Symmetry

Nikolay Dolbilin

To Friends who love and do Geometry

Abstract In the paper we present a proof of the local criterion for crystalline
structures which generalizes the local criterion for regular systems. A Delone set
is called a crystal if it is invariant with respect to a crystallographic group. Locally
antipodal Delone sets, i.e. those in which all 2R-clusters are centrally symmetrical,
are considered and we prove that they have crystalline structure. Moreover, if in a
locally antipodal set all 2R-clusters are the same, then the set is a regular system,
i.e. a Delone set whose symmetry group operates transitively on the set.

Keywords Delone (Delaunay) set · Regular system · Crystal · Locally antipodal
set · Crystallographic group · Symmetry group · Cluster · Local criterion for
crystals · Cluster counting function

1 Introduction

This paper continues the investigative line started in the pioneering work [1] on local
conditions for a Delone set X to be either a regular system, i.e. a crystallographic
orbit of a single point, or a crystal, i.e. the orbit of a few points. In Fig. 1 one can
see the set X1 of points that are nodes of the square grid and the set X2 of point
quadruples. Each of these sets is a regular system because each of them is an orbit of
a 2D-crystallographic group p4m (the full group of the standard square grid on the
plane). The union X = X1 ∪ X2 of the sets X1 and X2 is a crystallographic orbit of
two points, i.e. it is an example of a crystal.
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Fig. 1 Regular systems,
crystals, and clusters

x
x ′

After Fedorov [2], a mathematical model of a mono-crystalline matter is defined
as a discrete set which is invariant with respect to some crystallographic group. One
should emphasize that under this definition the well-known periodicity of a crystal
in all 3 dimensions is not an additional requirement. By the famous Schönflies-
Bieberbach theorem [3, 4], any crystallographic group contains a translational sub-
group with a finite index.

Since crystallization results frommutual interaction of nearby atoms, it is believed
(R. Feynman, N.V. Belov, et al., see, for instance, [5]) that the long-range order of
atomic structures of crystals (and quasicrystals too) results from local rules restricting
the arrangement of nearby atoms.

Before 1970s there were no rigorous arguments explaining the link between prop-
erties of local patterns and the global order in the internal structure of crystals. How-
ever, in 1976 Delone and his students initiated the local theory of crystals [1]. One of
two main aims of the local theory was (and is) the rigorous derivation of space group
symmetry of a crystalline structure from the pairwise identity of local arrangements
around each atom. At that time this appeared to be a purely abstract goal that would
be of interest only to mathematicians.

However, the subsequent discovery of Penrose patterns (1977) and the discovery
by D. Shechtman of real quasicrystals (1982, Nobel Prize in 2011) showed that
there are also non-periodic Delone sets in which several different local patterns are
repeated over and over again. On the other hand, periodic1 crystals (which are either

1The concept of a ‘periodic’ crystal as the union of several crystallographic point orbits goes back
to Fedorov. After Shechtman’s discovery of ‘aperiodic’ quasicrystals, the International Union for
Crystallography has extended the concept of crystal by including periodic (in Fedorov’s sense) as
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regular or multi-regular systems) are built also of a few species of local patterns. This
circumstance suggests that the connection between the recurrence in a Delone set of
a few different local patterns and the global order of the set is not so obvious. One
of the goals of the local theory for periodic crystals was to look for right wordings
of theorems and then prove them.

The local theory has been developed for Delone sets as well as for polyhedral
tilings (see e.g. [6–8]).

The paper is organized as follows. In the next section we give definitions of all
necessary concepts and a short survey of some of the earlier results. Then we give
formulations of the local criterion for a crystal and of several new ‘local’ theorems on
locally antipodal Delone sets (Theorems 1–5), which will be proved in concluding
sections of the paper.

2 Basic Definitions and Results

Definition 2.1 A point set X ⊂ R
d is called a Delone set with parameters r and R,

where r and R > 0, (or an (r, R)-system, see [9, 10] ), if two conditions hold:

(1) an open d-ball Bo
y (r) = {z ∈ R

d : |yz| < r} of radius r centered at an arbitrary
point y ∈ R

d contains at most one point from X :

|Bo
y (r) ∩ X | ≤ 1; (r)

(2) a closed d-ball By(R) = {z ∈ R
d : |yz| ≤ R} of radius R centered at an arbitrary

point y contains at least one point of X :

|By(R) ∩ X | ≥ 1. (R)

We note that by condition (r) the distance between any two points x and x′ ∈ X
is not less than 2r .

For x ∈ X we call Cx(ρ) := X ∩ Bx(ρ) a ρ-cluster of point x. Thus, a ρ-cluster
Cx(ρ) consists of all points of X whose distance from x is at most ρ. It is easy to
see that for ρ < 2r Cx(ρ) = {x}. It is known that for ρ ≥ 2R, the ρ-cluster Cx(ρ)

of any point x ∈ X has the full rank: the dimension of conv(Cx(ρ)) = d, e.g. [1].
We emphasize that we distinguish between ρ-clusters Cx(ρ) and Cx′(ρ) of dif-

ferent points x and x′, even if the two sets coincide (see Fig. 1).

Definition 2.2 Two ρ-clusters Cx(ρ) and Cx′(ρ) are called equivalent, if there is an
isometry g ∈ O(d) such that

g(x) = x′ and g(Cx(ρ)) = Cx′(ρ).

well as aperiodic (in Shechtman’s sense) crystals. Though a search for local conditions for aperiodic
crystals remains extremely interesting and unsolved problem, throughout the paper we will mean
under ‘crystal’ periodic crystals only.



112 N. Dolbilin

We emphasize that the equivalence of two clusters is stronger than congruence of
sets of points they contain. The two clusters depicted in Fig. 1 around two points x
and x′ coincide as subsets of X . However, since this subset of X surrounds the points
x and x′ in different ways it is natural to distinguish between the ρ-clusters Cx(ρ)

and Cx′(ρ). Indeed, the clusters Cx(ρ) and Cx′(ρ) are non-equivalent because there
is no isometry that moves both x and Cx(ρ) onto x′ and Cx′(ρ), respectively.

In a Delone set for any ρ > 0 the set of all ρ-clusters is partitioned into classes of
equivalent ρ-clusters. For any given ρ < 2r , the ρ-cluster at any point of X consists
of a single point: Cx(ρ) = {x}, i.e. all “small” ρ-clusters in X are equivalent. We
denote by N (ρ) the cardinality of a set of equivalence classes of ρ-clusters in X .

For any Delone set X N (ρ) = 1 for ρ < 2r . However, for ρ > 2r , N (ρ) is (in
the general case) infinite.

Definition 2.3 ADelone set X is said to be of finite type if for each ρ > 0 the number
N (ρ) of classes of ρ-clusters is finite.

From now on, we will consider Delone sets of finite type only. We note that in
this case the number N (ρ) of ρ-clusters is a positive, integer-valued, non-decreasing,
piece-wise constant function.

Very important examples of Delone sets include the regular systems and crystals.
Here is an equivalent definition in terms of a Delone set.

Definition 2.4 A regular system is a Delone set X ⊂ R
d whose symmetry group

acts transitively, i.e. for any two points x and x′ ∈ X there is an isometry g ∈ I so(d)

such that
g(x) = x′ i g(X) = X .

Recall that a group G ⊂ I so(d) is called a crystallographic group if

(1) G operates discontinuously at each point y ∈ R
d , i.e. if for any point y ∈ R

d the
orbit G · y is a discrete set;

(2) G has a compact fundamental domain.

Now we are going to formulate two known statements on point sets with a crys-
tallographic symmetry group.

Statement 2.1 A point set X ⊂ R
d is a regular system if and only if the set X is an

orbit of a point x ∈ R
d with respect to a crystallographic group G ⊂ I so(d).

A regular set is an important particular case of the more general concept of a
crystal.

Definition 2.5 A (periodic) crystal is a Delone set X such that X is a finite collection
of orbits with respect to its symmetry group Sym (X): X = Sym(X) · X0, where X0

is a finite point set.
It is not hard to prove that the symmetry group of a periodic crystal is a crystal-

lographic group. Thus we have the following statement.

Statement 2.2 A set X ⊂ R
d is a crystal if and only if it is an orbit of a finite point

set X0 with respect to a crystallographic group G, i.e. X = G · X0.
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Thus, crystals can be described as Delone sets of finite type in terms of the cluster
counting function N (ρ) as follows. A Delone set of finite type is a regular system
if and only if N (ρ) ≡ 1 on R+. A Delone set is a crystal if and only if its cluster
counting function is bounded:

N (ρ) ≤ m < ∞, where m ≤ |X0|.
Earlier, before Fedorov’s work, a crystal had been considered as the finite union of

pairwise congruent and parallel lattices. The definition of a crystal in terms of regular
systems seemed to generalize the Haüi-Bravais concept of crystal as a periodic set.
But due to the Schönflies-Bieberbach theorem, themore general structure of a regular
system in fact is also the union of lattices.

Indeed, let h be the index of the translational subgroup T of a crystallographic
group G ⊂ I so(d), and X0 ⊂ R

d a finite point set. Then a crystal G · X0 splits into
m pairwise congruent and parallel lattices of rank d, where m ≤ h · |X0|. In fact, we
have:

G · X0 = ∪m
i (T · xi ∪ T · g2(xi ) ∪ . . . ∪ T · gh(xi )), xi ∈ X0.

We note that m is strictly smaller than h · |X0| if, for instance, some xi ∈ X0 is a
fixed point for g ∈ G or points xi and x j in X0 belong to the same G-orbit.

Now we define the group Sx(ρ) of the ρ-cluster Cx(ρ) as a subgroup of Iso(d) to
consist of isometries s such that

s(x) = x and s(Cx(ρ)) = Cx(ρ).

Let us denote by Mx(ρ) the order of the group Sx(ρ). Since the rank of Cx(2R)

equals d, the order 1 ≤ Mx(ρ) < ∞ for all ρ ≥ 2R.
The function Mx(ρ) for all ρ ≥ 2R takes positive integer values and is non-

increasing. Moreover, the ratio Mx(ρ) : Mx(ρ
′) is integer for ρ ′ > ρ. In fact the

group Sx(ρ ′) of a bigger cluster Cx(ρ
′) either coincides with Sx(ρ), or it is a proper

subgroup of Sx(ρ).
Let X be a Delone set of finite type. Then for a given positive ρ the set X splits

into a finite number N (ρ) of subsets X1, X2, . . . , XN (ρ), such that points x and x′
from every subset Xi have equivalent ρ-clusters Cx(ρ) and Cx′(ρ). But if the points
x and x′ are from different subsets Xi and X j the ρ-clusters Cx(ρ) and Cx′(ρ) are
not equivalent. The groups of equivalent ρ-clusters are conjugate in I so(d) and
consequently have the same order Mi (ρ), where i ∈ [1, N (ρ)].

One ofmain goals of the local theory for regular systems is to determine a radius ρ̂

such that for a Delone set X (with given parameters r and R) the condition N (ρ̂) = 1
implies X to be a regular system. Certainly, the answermay depend on the dimension.
It is easy to see that a Delone set on a line is a regular system if N (2R) = 1. The
value 2R cannot be improved: in fact, for any ε > 0 there are Delone sets with
N (2R − ε) = 1 that are not regular systems. The first important result in the local
theory of regular systems was obtained in [1].

Theorem 2.1 (Local criterion for regular systems)ADelone set X ⊂ R
d is a regular

system if and only if for some ρ0 > 0 the following conditions hold:
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(I) N (ρ0 + 2R) = 1;
(II) M(ρ0) = M(ρ0 + 2R).

Condition (I) says that (ρ0 + 2R)-clusters at all points x ∈ X are equivalent.
Therefore the groups Sx(ρ0 + 2R) of the clusters are pairwise conjugate. Condition
(II) ensures that for each point x ∈ X the groups Sx(ρ0) and Sx(ρ0 + 2R) coincide.

Let us select among Delone sets with N (2R) = 1 the locally asymmetric sets, i.e.
those for which the group Sx(2R) is trivial. Then Theorem 2.1 immediately implies

Theorem 2.2 (Locally asymmetric sets)Let aDelone set X ⊂ R
d be a locally asym-

metric set and N (4R) = 1. Then X is a regular system, i.e. N (ρ) ≡ 1,∀ρ > 2R.

We now show that the condition N (4R) = 1 can not be reduced.

Theorem 2.3 ((4R − ε)-theorem )Foranygiven ε > 0 there is aDelone set X ⊂ R
2

such that N (4R − ε) = 1, but X is not a regular system.

Below we present an explicit construction.2

We begin with a rectangular lattice � (Fig. 2, on the left) whose fundamental
rectangle has side lengths a and b where, by assumption, a << b. It is clear that the
parameter R =

√
b2+a2
2 .

Since a << b we have
2R ∼ b + a

2
.

The horizontal rows of � form a bi-infinite sequence with indices i ∈ Z. The
set of the rows splits into pairs Pj = (i, i + 1), j = 2i of rows with sequel indices
(i, i + 1) where i is even. We choose c so that 0 < c < a/2 and shift each pair Pj+1

relatively to Pj by c to the left or to the right.
The sequence of shifted rows can be encoded by a bi-infinite sequence l =

. . . RLLRL . . .. There are uncountably many different bi-infinite binary sequences
{l} and corresponding pairwise non-congruent Delone sets {Xl}. The Delone sets
Xl have the same parameters r and R. Among the sequences {l} there are exactly 3
whose corresponding Delone sets are regular systems. Two sequences . . . LLLL . . .

and . . . RRRR . . . generate congruent regular systems. The third bi-infinite sequence
. . . RLRLRL . . . encodes the third regular system which is mirror symmetrical. No
other Delone sets from the family are regular systems, though they all have the same
b-clusters Cx(b). Since b ∼ 2R − a/2 and a > 0 can be chosen arbitrarily small,
we have the theorem.

Estimates for ρ0 in Theorem 2.1 have been determined in dimensions d = 2
and 3.

2In September 2016 the author presented this construction in his talk at the American Institute
of Mathematics on a workshop “Soft Packings, Nested Clusters, and Condensed Matter”. The
construction raised in frames of the workshop a fruitful discussion on possible extending this
example for any dimension. The discussion led a group of the workshop’s participants to the
following result: For any dimension d and ε > 0 there is a non-regular Delone set with N (d2R −
ε) = 1.
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Fig. 2 Regular and non-regular systems with N (4R − ε) = 1

Theorem 2.5 (Regular systems, d = 2, 3)

(1) Let X ⊂ R
2 be a Delone set in the plane, if N (4R) = 1, then X is a regular

system.
(2) Let X ⊂ R

3 be a Delone set. If N (10R) = 1, then X is a regular system.

This result was obtained by M. Stogrin and by N. Dolbilin independently many
years ago. However, a detailed proof was published recently [11]. As for point (1)
of Theorem 2.5, the case d = 2 can be derived from the following theorem:

Theorem 2.6 ([12]) A tiling of Euclidean plane by convex polygons is regular, i.e.
a tiling with a transitive symmetry group, if all first coronas are equivalent.

Emphasize that, due to the (4R − ε)-theorem, the estimate 4R for plane is the
best estimate. As for the estimate 10R for 3D-space, it seems to be bigger than the
actual one. The difficulty lies in the fact that we can not deal effectively with the
2R-cluster group.

In contrast, if the 2R-cluster group contains the central symmetry, an extremely
simple condition holds in every dimension.

Definition 2.6 A Delone set X is said to be a locally antipodal if the 2R-cluster
Cx(2R) for each point x ∈ X is centrally symmetric about the cluster center x. In
the next sections we will prove:

Theorem 1 If X is a locally antipodal set and N (2R) = 1, then X is a regular
system.

Theorem 2 A locally antipodal Delone set X is centrally symmetrical about each
point x ∈ X globally.
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Notice that no condition is imposed on the cluster counting function N (ρ). We
do not even require X to be of finite type.

Theorem 3 A locally antipodal Delone set X ⊂ R
d is a crystal. Moreover, X is the

disjoint union of at most 2d − 1 congruent and parallel lattices:

X =
n⊔

i=1

(x + λi/2 + �),

where x ∈ R
d , � is a lattice of the rank d, and λ1, . . . λn are representatives of some

n of 2d cosets of the factor �/(2�), 1 ≤ n ≤ 2d − 1.

Theorems 1–3 have been published in part in [13, 14]. In the present paper The-
orems 1 and 2 are easily derived from the following theorem.

Theorem 4 (Uniqueness theorem) Let X and Y be Delone locally antipodal sets.
Suppose that they have a point x in common and the 2R-clusters of X and Y centered
at this point x coincide, i.e. Cx(2R) = C ′

x(2R), where Cx(ρ) stands for a cluster in
X and C ′

y(ρ) for a cluster in Y . Then X = Y .

To conclude this section we present a local criterion for a crystal that generalizes
the local criterion for regular systems. It was announced [15] and proved a while
ago, a full proof was published recently [13] (in Russian). The proof in this paper is
a slight improvement of that proof.

Theorem 5 (Local criterion for a crystal) A Delone set X of finite type is a crystal
which consists of m regular systems if and only if there is some ρ0 > 0 such that two
conditions hold:

(1) N (ρ0) = N (ρ0 + 2R) = m;
(2) Sx(ρ0) = Sx(ρ0 + 2R),∀x ∈ X.

It is obvious that the local criterion for regular systems (Theorem2.1) is a particular
case of Theorem 5.

3 Proof of the Local Criterion for Crystal

We note that crystals are meant here to be only ‘periodic’ crystals (see a comment
in Sect. 2).

First of all we comment on Conditions (1) and (2) of Theorem 5. Condition (1)
means that when radius ρ increases from ρ0 to ρ0 + 2R, the number of cluster classes
on segment [ρ0, ρ0 + 2R] remains unchanged N (ρ0) = N (ρ0 + 2R).

Due toCondition (2), the cluster group Sx(ρ0),∀x ∈ X , does not get smaller on the
segment [ρ0, ρ0 + 2R]: Sx(ρ0) = Sx(ρ0 + 2R). The key point of Theorem 5 is that
stabilization of the cluster counting function and the cluster groups on the segment
[ρ0, ρ0 + 2R] implies the stabilization of these parameters on the ray [ρ0,∞).
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Lemma 3.1 (on 2R-chain)For any pair of points x and x′ ∈ X, where X is aDelone
set, in X there is a finite sequence x1 = x,x2, . . . ,xk = x′, such that |xixi+1| < 2R
for i ∈ [1, k − 1].

A proof of Lemma 3.1 can be found in [1]. Now recall that Xi ⊂ X is a subset of
all points of X whose ρ0-clusters are equivalent and belong to the i-th class.

Lemma 3.2 (on 2R-extension) Let a Delone set X fulfil Conditions (1) and (2) of
Theorem 5 and x, x′ ∈ Xi . Let f ∈ I so(d) be an isometry such that

f (x) = x′ and f (Cx(ρ0)) = Cx′(ρ0). (1)

Then the same isometry f superposes the bigger cluster Cx(ρ0 + 2R) onto cluster
Cx′(ρ0 + 2R):

f (Cx(ρ0 + 2R)) = Cx′(ρ0 + 2R).

Proof If the ρ0-clusters Cx(ρ0) and Cx′(ρ0) are equivalent, then, by Condition (1)
of Theorem 5, the corresponding (ρ0 + 2R)-clusters are equivalent too. Therefore
there is an isometry g such that

g(Cx(ρ0 + 2R)) = Cx′(ρ0 + 2R).

If g = f there is nothing to prove. Assume f �= g and consider the superposition
of isometries f −1 ◦ g. The order here is from the right to the left:

( f −1◦)(Cx(ρ0)) = f −1(g(Cx(ρ0))) = f −1(Cx′(ρ0)) = Cx(ρ0).

So, we have:

( f −1 ◦ g)(x) = x and ( f −1 ◦ g)(Cx(ρ0)) = Cx(ρ0). (2)

By (2) f −1 ◦ g = s, where s ∈ Sx(ρ0). By Condition (2) of Theorem 5 we have
s ∈ Sx(ρ0 + 2R). Since f = g ◦ s−1, we have

f (Cx(ρ0 + 2R)) = (g ◦ s−1)(Cx(ρ0 + 2R)) =

= g(s−1(Cx(ρ0 + 2R))) = g(Cx(ρ0 + 2R)) = Cx′(ρ0 + 2R).

�

Lemma 3.3 Let X fulfil Conditions (1) and (2) of Theorem 5 and Xi a subset of X
of all the points whose ρ0-clusters belong to the i-th class, i ∈ [1,m]. Let a group
Gi be generated by all isometries f that superpose ρ0-clusters from the i-th class:

Gi =< { f | f (Cx(ρ0)) = Cx′(ρ0), where x,x′ ∈ Xi } > . (3)
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Then Gi is a group of symmetries of X and operates transitively on each subset X j ,
∀ j ∈ [1,m]. Moreover, the group Gi does not depend on i and Gi = Sym(X) for
∀i ∈ [1,m].
Proof First of all we will prove that any isometry f from (3) is a symmetry of X .
Since for x and x′ ∈ Xi the ρ0-clusters Cx(ρ0) and Cx′(ρ0) are equivalent and their
groups Sx(ρ0) and Sx′(ρ0) are conjugate. Therefore, there are as many isometries
superposing these clusters as the order |Sx(ρ0)| of the cluster group.

We will prove that if f is any of those isometries, then f is a symmetry of the
whole X . Take an arbitrary point y ∈ X and prove that its image f (y) belongs to X .
Let us connect points x and y with a 2R-chain L (see Fig. 3):

L = {x1 = x,x2, . . . ,xn = y : |xixi+1| < 2R,∀i ∈ [1, n − 1]|}.

Since f (Cx1(ρ0)) = Cx′
1
(ρ0), by Lemma 3.2

f (Cx1(ρ0 + 2R)) = Cx′
1
(ρ0 + 2R). (4)

Since |x1x2| < 2R, we have that Cx2(ρ0) as a point set belongs to Cx1(ρ0 + 2R).
Therefore relation (4) implies:

f (Cx2(ρ0)) = Cx′
2
(ρ0).

By Lemma 3.2 we have

f (Cx2(ρ0 + 2R)) = Cx′
2
(ρ0 + 2R).

Therefore, since inequality |x2x3| < 2R implies that

Cx3(ρ0) ⊂ Cx2(ρ0 + 2R),

we have:
f (Cx3(ρ0)) = Cx′

3
(ρ0).

By Lemma 3.2 we have again:

f (Cx3(ρ0 + 2R)) = Cx′
3
(ρ0 + 2R).

Moving along the 2R-chain L and repeating the same argument as many times as
the length of L, we get that the isometry f moves L into a 2R-chain L′ ⊂ X . The
endpoint y of the chain L moves into the endpoint y′ of L ′. Thus, we have proved
that the isometry f maps X into X : f (X) ⊆ X .

To prove that the isometry f maps X onto itself, we notice that the inverse
isometry f −1 also maps X onto itself. It is the case because f −1 maps x′ onto x and
f −1(Cx′(ρ0)) = Cx(ρ0). Therefore f −1 also maps X into itself and, consequently,
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Fig. 3 Extention of a
mapping along a 2R-chain
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for f and any point y ∈ X f −1(y) ∈ X , i.e. f maps X onto itself. So, any isometry
f in (3) is a symmetry of X .
Take the group Gi described in (3). We proved that Gi ⊆Sym (X) and Gi oper-

ates on Xi transitively. Now we will see that Gi ⊇Sym (X). Indeed, if g ∈Sym (X),
then, in particular, g moves any point x ∈ Xi and its ρ0-cluster Cx(ρ0) into the
point g(x) ∈ Xi and the cluster Cg(y)(ρ0), respectively. In other words, the sym-
metry g ∈ Gi and therefore Gi ⊇ G. So, we proved that Gi = Sym(X) for any
i ∈ [1,m]. �

So, as we proved above, a Delone set X with conditions (1) and (2) of Theorem
5 is the disjoint union of m subsets sets Xi which are Sym (X)-orbits of points xi ,
i ∈ [1,m]:

X =
m⊔

i=1

Sym (X) · xi (5)

To prove Theorem 5 we will see that Sym (X) is a crystallographic group. This
fact will follow from Lemmas3.4 and 3.5.

Lemma 3.4 Assume for a group G ⊂ I so(d) and for some point x ∈ R
d the orbit

G · x is a Delone set, then G is a crystallographic group.

Lemma 3.5 In partition X = ⊔m
i=1 Xi each Xi is a Delone set.
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In fact, from these two lemmas it follows that X is a crystallographic orbit of finite
set of m points. Let us take a Delone subset Xi (by Lemma 3.5) and a group G :=
Gi = Sym(X) generated by isometries f in (3). Since G · xi = Xi , where xi ∈ Xi ,
by Lemma 2.4G is a crystallographic group. Let a finite point set X0 = {x1, . . . ,xm}
consist of m representatives of subsets Xi , then X = G · X0, We get that that X is a
G-orbit of X0, i.e. X is a crystal. This completes the proof of the local criterion.

It remains to prove the last two lemmas.

Proof of Lemma 3.4 Assume that a set Y := G · x is a Delone set. Note that we do
not assume that G is the full symmetry group Sym (Y ) of Y , i.e. G ⊆ Sym (Y ). Let
V denote the Voronoi tiling of space Rd for Y . A Voronoi domain Vy for the point
y ∈ Y is a convex d-polytope with a finite number of facets. The number of facets
of Vy as well as the order of the symmetry group Sym (Vy) are bounded from above
depending on the parameters r and R of the Delone set Y .

Any symmetry of Y leaves the Voronoi tiling V invariant. Therefore, since the
group G operates on Y transitively, G also operates transitively on the set of all cells
of V . The following inclusions are also true: G ⊆Sym (Y ) ⊆Sym (V).

The orbit Sym (V) · z for any point z of space R
d is a discrete set because the

intersection of Sym (V) · z and Vy is a finite point set:

|Sym(V) · z ∩ Vy| ≤ |Sym(Vy)| < c = c(r, R, d).

Therefore SymV and its subgroups Sym (Y ) and G are discrete groups.
Now we will see that the fundamental domain F(G) is compact. Indeed, the

domain can be chosen as Vy/stab(y) where stab(y) is the stabilizer of y in G.
In particular, if stab(y) is a trivial group then the fundamental domain F(G) is
Vy . Thus, the fundamental domain F(G) is compact. So, G is a crystallographic
group. �

Proof of Lemma 3.5 First of all, we note that since X is a Delone set any its subset
Xi fulfils Condition (1) from Definition 2.1 with some parameter r ′, where r ′ ≥ r .

As for Condition (2) from Definition 2.1, assume that it does not hold for at least
one subset Xi , i.e. we suppose that Xi does not satisfy Condition (2) for an arbitrary
finite value R′. In this case there is an infinite sequence of balls B1, B2, . . . , Bk, . . .

empty of points of Xi with infinitely increasing radii: R1 < R2 < · · · < Rk < . . . ,
where Rk → ∞ as k → ∞.

Since Xi is discrete, without loss of generality, one can suppose that each ball Bk ,
free from points of Xi , contains on its boundary a point xk ∈ Xi . Since the set Xi is
a G-orbit, each point xk along with the ball Bk can be moved by a suitable symmetry
gk ∈ G to some chosen point y ∈ Xi . The symmetry gk also takes an empty ball
Bk to an empty ball B ′

k with a point y on its boundary. Thus, the point y is on the
boundary of an empty ball B ′

k of radius Rk for all k = 1, 2, . . . centered at ok . Let nk
denote a unit vector

nk := 1

|−→yok |
−→yok .

http://dx.doi.org/10.1007/978-3-319-78434-2_2
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Select from a sequence {nk} a convergent subsequence nk j → n, where n = −→yo is a
limit unit vector.

Let � be a hyperplane through the point y orthogonal to n and �+ denotes the
half-space which the normal vector n looks in. The open half-space �+ contains
no points of Xi . In fact, given a point z ∈ �+, in the subsequence of balls Bk j with
infinitely increasing radii one can find a ball which contains z in the interior. Since
all balls Bk j are free from points of Xi , z /∈ Xi .

Thus, all points of Xi are in the opposite closed half-space �−. In particular, we
do not exclude the case when all points of Xi lay on the hyperplane � itself.

Now we prove that the open half-space �+ cannot be free from points of Xi .
In fact, since X is a Delone set, the open half-space �+ contains points of X . So,
we have y ∈ Xi ∩ �. For j ∈ [1,m], j �= i , we choose in X j a point z closest to y.
Since X j is a discrete set, the closest point z does exist. Generally, there are finitely
many points closest to y. Let us denote δ(y, X j ) := minz′∈Y j |yz′|. Since G operates
transitively on both sets Xi and X j , the minimum δ(y, X j ) does not depend on the
choice of point y ∈ Yi , i.e. for any point y′ ∈ Xi there is a point z′ ∈ X j with condition
|y′, z′| = |y, z|. Therefore, δ(y, X j ) = δ(y′, X j ). One can denote δ(y, X j ) := δi j . It
is obvious that δi j = δ j i . Now one can denote

δi := max
j∈[1,m] δi j .

It is clear that for every j ∈ [1,m], j �= i , and ∀y ∈ X j there is a point x of Xi at
distance from y of no bigger than δi .

Therefore, since Xi is supposed to be located in the closedhalf-space�− thewhole
set X is located in the half-space (� + δin)− determined by hyperplane � + δin.
The obtained contradiction to the R-condition of the Delone set X completes a Proof
of Lemma 3.5. �

4 Proof of Theorem 4

We note that in Theorem 4 the locally antipodal Delone sets X and Y are not required
to be sets of finite type a priori.

In the beginning let X be an arbitrary Delone set and x ∈ X . We will call the set
of distances between x and all the other points of X

�x := {ρ > 0 | ∃x′ ∈ X, x′ �= x, |xx′| = ρ}

the distance spectrum of X at the point x.
By Condition (r) of Definition 2.1 for X the spectrum �x is discrete and has no

limit points (with the exception of ∞) for any given x ∈ X . Now we consider the
union ∪x∈X�x over all x ∈ X . It is easy to see that the union ∪x∈X�x is a discrete
set with no proper limit point if and only if X is of finite type.
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Recall conditions of Theorem 4 for the Delone locally antipodal sets X and Y :
x ∈ X ∩ Y and Cx(2R) = C ′

x(2R). C ′
y(ρ) stands for the ρ-cluster in the set Y for

y ∈ Y . We take the point x and the two distance spectra �x = {ρ1 < ρ2 < . . .} in X
and �′

x = {ρ ′
1, ρ

′
2, . . .} in Y and prove the coincidence of the spectra �x and �′

x and
the sets X and Y .

Due to Condition Cx(2R) = C ′
x(2R), some initial segments of the sequences �x

and �′
x at the given point x coincide . Assume that we have already established

the equality of the first k distances ρ1 = ρ ′
1, . . . , ρk = ρ ′

k in the spectra and the
coincidence of the corresponding clusters Cx(ρk) = C ′

x(ρk). This is our inductive
assumption. We emphasize that we assume these clusters to coincide as point sets.

Now we prove that ρk+1 = ρ ′
k+1 and Cx(ρk+1) = C ′

x(ρk+1). Without loss of gen-
erality we can assume that ρk+1 ≤ ρ ′

k+1. The ball Bx(ρk+1) has on its boundary at
least one point x1 ∈ X , |xx1| = ρk+1 (see Fig. 4). We will show that x1 ∈ Y , and,
consequently, ρ ′

k+1 = ρk+1.
Let z ∈ R

d be such that z is on the segment [xx1] at distance R from x1, i.e.
|zx1| = R. We note that z, generally, does not belong to X . The ball Bz(R) centered
at z of radius R touches the sphere ∂Bx(ρk+1) at point x1. Nowwe apply a homothety
with the center x1 and a coefficient 2 to the ball Bz(R). Bz(R) is mapped onto the
ball Bz′(2R) centered at z′, where |z′x1| = 2R (Fig. 4). It is obvious that we have

Bz(R) ⊂ Bz′(2R) ⊂ Bo
x(ρk+1) ∪ {x1}.

Here Bo
x(ρk+1) means an open ball.

Fig. 4 Proof of Theorem 4

z

z ′

x

x1

x2

x3
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By Condition (R) in Definition 2.1 of a Delone set, in Bz(R) there is at least one
point x2 ∈ X , x2 �= x1. Since x1 is the only point of the ball Bz(R) which is located
on the boundary ∂Bx(ρk+1), all other points of Bz(R), including the point x2, lay
in the interior of Bx(ρk+1). Therefore |xx2| < |xx1| = ρk+1, i.e. |xx2| ≤ ρk . By the
induction assumption, Cx(ρk) = C ′

x(ρk), hence x2 ∈ X ∩ Y .
Since |x1x2| ≤ 2R the point x1 belongs to the clusterCx2(2R).Cx2(2R) is antipo-

dal about x2. Therefore in Cx2(2R) there is a point x3 ∈ X which is antipodal to x1.
Recall that the coefficient of the homothety equals 2, hence we have

x3 ∈ Bz′(2R) ⊂ Bo
x(ρk+1) ∪ {x1}.

Therefore we have two inequalities |xx3| ≤ ρk and |xx2| ≤ ρk . By the inductive
assumption, x2,x3 ∈ Y . Since |x2x3| ≤ 2R , we have that x3 ∈ C ′

x2
(2R). Now, the

cluster C ′
x2

(2R) in Y is also antipodal about x2, therefore, the point x1 as antipodal
to x3 about x2, also belongs to C ′

x2
(2R). Hence we have also x1 ∈ Y . This inclusion

is true for any x′
1 ∈ X with |xx′

1| = ρk+1. Thus, it has been proved that if ρk+1 ≤
ρ ′
k+1 we actually have ρk+1 = ρ ′

k+1 and Cx(ρk+1) ⊆ C ′
x(ρk+1). However, in the case

ρk+1 = ρ ′
k+1 one can also take any point y1 ∈ Y with |xy1| = ρk+1 and, by the same

argument, prove that y1 ∈ X . Thus, the inductive step is established: one has proved
that Cx(ρk+1) = C ′

x(ρk+1). �

5 Proofs of Theorems 1, 2 and 3

Theorems 1 and 2 immediately follow from Theorem 4.

Proof of Theorem 1 Since N (2R) = 1, for any x′ and x ∈ X there is an isometry
g such that g(x′) = x and g(Cx′(2R)) = Cx(2R). Let us denote Y := g(X). We
have two local antipodal sets X and Y such that X ∩ Y ⊇ Cx(2R). By Theorem 4,
the relationship Cx(2R) = C ′

x(2R) implies X = Y , i.e. g is a symmetry of X . Thus
Sym (X) possesses a transitive symmetry group, i.e. X is a regular system. �

Proof of Theorem 2 Let σx be the inversion about a point x ∈ X . Since X is assumed
to be a locally antipodal Delone set. σx(Cx(2R)) = Cx(2R). Let us denote Y :=
σ(X). Then we have again two sets X and Y with the 2R-clusterCx(2R) in common.
By Theorem 4 we have X = Y , i.e. the inversion σx maps the set X onto itself.

Proof of Theorem 3 Given a locally antipodal set X ⊂ R
d , let � be a set of vectors

λ such that X + λ = X . Since X is a discrete set, the vector set � is a lattice.
Now we show that the lattice � has rank d. Indeed, let σx and σx′ be inversions

of clusters Cx(2R) and Cx′(2R) at points x and x′, respectively. By Theorem 2, the
inversions are both symmetries of X . On the other hand, the superposition σx ◦ σx′

is a translation by the vector 2(x − x′). Since the set X is a Delone set in R
d , the

translational group � containing all possible 2(x − x′), x,x′ ∈ X , has rank d. � is
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the maximum lattice such that X + � = X . Therefore the Delone set X is the union
of finitely many lattices which are congruent and parallel to �, i.e.

X =
n⊔

i=1

(xi + �).

As said above, for i = 1, 2, . . . , n we have xi − x1 ∈ �/2. By putting x := x1,
λi/2 = xi − x1 (i = 1, 2, . . . , n) we come to:

X =
n⊔

i=1

(x + λi/2 + �), where λi ∈ �. (6)

Now, if λi ≡ λ j mod 2�, i.e. if λi − λ j = 2�, then subsets x + λi/2 + � and
x + λ j/2 + � obviously coincide. Therefore in (6) n ≤ 2d . Moreover, the value n
of different subsets x + λi/2 + X in (6) cannot be equal to 2d because in this case
X = x + �/2 and hence X + �/2 = X . This contradicts the assumption that � is
the maximum lattice with the condition X + � = X . So, n ≤ 2d − 1. �
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The Twist Operator on Maniplexes

Ian Douglas, Isabel Hubard, Daniel Pellicer and Steve Wilson

Abstract Maniplexes are combinatorial objects that generalize, simultaneously,
maps on surfaces and abstract polytopes. We are interested on studying highly sym-
metric maniplexes, particularly those having maximal ‘rotational’ symmetry. This
paper introduces an operation on polytopes and maniplexes which, in its simplest
form, can be interpreted as twisting the connection between facets. This is first
described in detail in dimension 4 and then generalized to higher dimensions. Since
the twist on a maniplex preserves all the orientation preserving symmetries of the
original maniplex, we apply the operation to reflexible maniplexes, to attack the
problem of finding chiral polytopes in higher dimensions.
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1 Introduction

We have been struck by the beauty of the Platonic solids for thousands of years.
We saw them first when we asked this question: How can we make a polyhedron

in such a way that the faces are identical regular polygons and there are the same
number of them meeting at every vertex? In answer, a simple argument that the sum
of the angles around a vertex must be less than 360◦ shows that there are exactly 5
possibilities:

(1) triangles meeting three around a vertex (the tetrahedron);
(2) triangles meeting four around a vertex (the octahedron);
(3) triangles meeting five around a vertex (the icosahedron);
(4) squares meeting three around a vertex (the cube);
(5) pentagons meeting three around a vertex (the dodecahedron).

These are oftengiven thenameof their Schläfli symbol: {3, 3}, {3, 4}, {3, 5}, {4, 3},
and {5, 3}, respectively.

It is worth noting that these five objects, besides having the requested local nice-
ness, also have a global niceness, symmetry. They have rotational symmetry; we can
rotate any of these objects about any of their faces and about any of their vertices.
Moreover, they have reflectional symmetry; we can reflect about planes through
face-centers, through vertices, across edges and along edges.

The discovery and proof that there are five and only five regular convex polyhedra
was an interesting bit of reasoning. But it was over so soon, we hardly had a chance
to enjoy it. How can we work in a more general but similar field?

There are at least three viable generalizations:

1. by regarding the cube, for instance, not as a solid hewn from stone, but as an
assemblage of squares connected by hinges;

2. by regarding the cube as the convex hull of a finite set of points in 3-space;
3. by regarding the cube as having faces of many kinds: 2-faces (the squares),

1-faces (the edges) and 0-faces(the vertices);

The first of these viewpoints generalizes to maps on a surface and the second
generalizes to convex polytopes in higher dimensions. The third generalizes to the
idea of an abstract polytope. The first and third have maniplexes as their common
generalization. All of these we define in the next section.

Then in Sect. 3 we discuss symmetry of maniplexes, with emphasis on chirality,
meaning the property of having maximal rotational symmetry but no reflections. The
aim we pursue is to devise a technique to construct higher rank chiral maniplexes, a
task that has proved very difficult (see [15]).

2 Polyhedra, Maps, Maniplexes and Polytopes

A map is often defined as an embedding of a graph on a (compact, connected)
surface so that components of the complement of the embedding (called faces) are
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topologically open discs. In some contexts graphs are allowed to havemultiple edges,
loops and semi-edges. We can, for example, regard the cube as an embedding of the
graph Q3 on the sphere.

To look more closely at the structure of a map, we find the following subdivision
useful: choose a point in the interior of each face to be its center and a point in the
relative interior of each edge to be its midpoint. Draw dotted lines to connect each
face-center with each incidence of the surrounding vertices and edge-midpoints. The
original edges and these dotted lines divide the surface into triangles called flags.
Figure 1 shows the subdivision of the cube into flags.

Each flag corresponds to a mutual incidence of face, edge, and vertex, though
several different flags may correspond to the same triple. For instance, consider the
map shown in Fig. 2.

The map has one face A, an octagon, with opposite edges identified orientably.
As a result, it has exactly one vertex v as well. The dotted lines divide it into its 16
flags. Each of the four flags marked with a dot correspond to the same triple (vertex,
edge, face), namely, their vertex is v, their edge is 1 and their face is A.

Let � be the set of flags of a map M. Then let r0, r1, r2 be the permutations on
� which match each flag f with its three immediate neighbors, as in Fig. 3. Define
C to be the connection group, i.e., the group 〈r0, r1, r2〉.

In this paper, we will write elements of the connection group on the left: the image
of the flag f under the connection r2 is written r2 f .

Fig. 1 The cube divided into flags

Fig. 2 A map with one face
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Fig. 3 Flags in a map

In Fig. 3, we see that f and r0 f are adjacent along a face-center-to-edge-midpoint
line. Thus f and r0 f are incident to the same face and edge; they differ, if at all,
in their incidences to a vertex, a 0-dimensional face of M. We say these two flags
are r0-adjacent, or just 0-adjacent. Similarly, f and r1 f meet the same 2-face and
0-face, while f and r2 f meet the same 0-face and 1-face. Notice from Fig. 3 that the
flag r2-adjacent to r0 f is also r0-adjacent to r2 f . In other words, as permutations on
�, r0 and r2 commute.

We next take a slightly more abstract point of view by defining a mapM to be a
pair (�, [r0, r1, r2]) where � is a set of things called flags, the ri ’s are permutations
of order 2 on �, the connection group C(M) = 〈r0, r1, r2〉 is transitive on �, and r0
and r2 commute. This C(M) is often called the monodromy group of the map (see
for example [9], and for higher ranks see also [13]). We can then think of vertices
in M as orbits of 〈r1, r2〉 in �. Similarly, edges correspond to orbits of 〈r0, r2〉 and
faces to orbits of 〈r0, r1〉.

2.1 Maniplexes

This leads to the notion, introduced in [19], of a maniplex. An (n+1)-dimensional
maniplex M is a pair (�, [r0, r1, . . . , rn]), where � is a set of things called flags
and each ri is an involutory permutation on � such that (1) the connection group
C = 〈r0, r1, . . . , rn〉 acts transitively on �, and (2) for all 0 ≤ i < j − 1 < n − 1,
we have that (rir j )2 = I , where I is the identity in C . One can easily verify that
every map on a surface is a 3-maniplex with � being its set of (triangular) flags.
Furthermore, every 3-maniplex can be realised as amap on a surface.Whenwe desire
to avoid degeneracies, such as semi-edges or maps on a surface with boundary, we
often also require that (3) each ri and rir j are fixed-point-free, whenever i �= j .

The type of amaniplex is the sequence {p1, p2, . . . , pn}, where each pi is the order
of ri−1ri in C . The cube, then, is of type {4, 3}, the simplex is of type {3, 3, . . . , 3},
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and the 600-cell is of type {3, 3, 5} (see [1, Chap.VII]). Type is well-defined even
if not all faces have the same size. For example, the cuboctahedron, which is also
the medial map of the cube, has triangles and squares, two of each meeting at each
vertex. We say, then, that this map is of type {12, 4}.

Let Ci be the subgroup of C generated by all of the r j ’s except ri . Then an orbit
of flags under Ci is called an i-face. A 0-face is a vertex, a 1-face is an edge, a
2-face is a face, an n-face is a facet. A facet of a facet is a subfacet; this is an orbit
under 〈r0, r1, . . . , rn−2〉. The restriction to a subfacet of the permutation rn acts as
an isomorphism from that subfacet to some subfacet.

We wish to assign colors, red and white, to flags so that for any given two i-
adjacent flags, either one is colored red (and not white) and one is colored white (and
not red), or both flags are colored both red and white. Choose a root flag (sometimes
called also base flag) and call it I . Let R0 = {I }. Recursively let Wi be the set of
all flags adjacent to flags in Ri , and let Ri+1 be the set of all flags adjacent to flags
inWi . Finally, letR be the union of allRi ’s and similarly letW be the union of all
Wi ’s. We often say this another way: let C+ be the subgroup of C generated by all
products of the form rir j . ThenR is the orbit of I underC+ andW is the orbit of r0 I
under C+. Consider these as assignments of the colors red and white, respectively
to the flags. There are two possibilities for the result:

1. it could happen that R and W are disjoint; in this case we say that M is ori-
entable;

2. otherwise it must happen that R = W = �, and in this case we say that M is
non-orientable.

See [10] for more information about bi-colorings of flags.
The idea of having one flag designated as a ‘root’ flag helps us in several con-

structions and theorems. Henceforward, we will assume that any maniplex does have
a root flag chosen, and that isomorphisms and projections are required to send root
flag to root flag. Notice that the choice of root affects the colors of flags. In particular,
letM′ be the maniplex identical toM except that I ′ = r0 I is chosen as its root. We
will refer to M′ as the mirror-image of M. The red flags of M are the white flags
of M′ and vice versa.

If M = (�, [r0, r1, . . . , rn−1]) is any n-maniplex, we can make an (n + 1)-
maniplex, called the trivialmaniplex overM, by using � × Z2 as a flag set (though
we will write fi instead of ( f, i)), and connections [s0, s1, . . . , sn−1, sn], where
s j fi = (r j f )i for all j = 0, 1, 2, . . . , n − 1, f ∈ �, i ∈ Z2, and sn fi = f1−i . For
example, the trivial maniplex over an n-gon has only two n-gonal faces over the same
vertices and edges, and can be realised as a map on the sphere in such a way that the
n vertices and the n edges lie on the equator. Note that if a maniplex M has type
{p1, p2, . . . , pn−1}, then the trivial maniplex overM has type {p1, p2, . . . , pn−1, 2}.
In particular, the trivial maniplex over an n-gon has type {n, 2}.
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2.2 Polytopes

A convex polytope P is the convex hull of a finite set S of points in some Euclidean
space. A face in P is the intersection of P with some hyperplane which does not
separate S; it is an i-face if its affine hull has dimension i . The set of faces of
P (of all dimensions) is partially ordered by inclusion. This partial ordering has
certain properties, and these form the axiomatics for abstract polytopes. An abstract
polytope is a partially ordered set (P,≤) (whose elements are called faces) satisfying
the following axioms:

(1) P contains a unique maximal and a unique minimal element.
(2) All maximal chains (these are called f lags) have the same length. This allows

us to assign a “rank” or “dimension” to each face. The unique minimal face (usually
called “∅”) is given rank −1.

(3) If f < g < h are consecutive in some flag, then there exists exactly one g′ �= g
such that f < g′ < h. This axiom is usually called the diamond condition.

(4) For any f ≤ h, the section [ f, h] is the sub-poset consisting of all faces g such
that f ≤ g ≤ h. We require it to be true in any section that if Φ1 and Φ2 are any two
flags of the section, then there is a sequence of flags of the section, beginning at Φ1

and ending atΦ2, such that any two consecutive flags differ in exactly one rank. This
condition is called strong flag-connectivity.

See [2, 12, 16, 17] for illuminating work on polytopes and their symmetry.
In particular, if the rank of the maximal element is n, we call P an n-polytope.

If f is any flag, let fi be its face of rank i , let f ′
i be the unique face of rank i other

than fi such that fi−1 ≤ f ′
i ≤ fi+1, and let f i be the flag identical to f except that

the face of rank i is f ′
i . From a given n-polytope, we can form its flag graph in the

following way: the vertex set is �, the set of all flags (maximal chains) in P . It has
edges of colors 0, 1, 2, . . . , n − 1. The edges of color i are all { f, f i } for f ∈ �.
Thus, two vertices of the flag graph are joined (by an edge colored i) if they are flags
which are identical except at rank i . Let ri be the set of all edges colored i . Because
all flags have the same entry at rank −1 and at rank n, ri will be defined only for
i = 0, 1, . . . , n − 1.

Thus, for every abstract polytope P , the flag graph of P is a maniplex. The
converse does not hold. Briefly, and very loosely, the flag graphs of polytopes are
thosemaniplexes in which no contact between a facet and itself is permitted.We refer
the reader to [7] for examples of non-polytopal maniplexes, as well as for necessary
and sufficient conditions on a maniplex to be polytopal.

3 Symmetry

We define a symmetry of a maniplexM as a permutation of the flags which preserves
the connections. We write symmetries on the right, so that the image of the flag f
under the symmetry α is f α. We denote the group of symmetries ofM by Aut(M),
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and the notation gives the nice statement that for all i ∈ {0, 1, 2, . . . , n} and all
α ∈ Aut(M), we have that

(ri f )α = ri ( f α).

There are two levels of symmetry that are particularly interesting in maps and
maniplexes. First, we say thatM is rotary provided that Aut(M) acts transitively on
R, the set of red flags. Also,M is reflexible provided that Aut(M) acts transitively
on �. It follows trivially, then, that if M is rotary and non-orientable, then it is
reflexible. IfM is rotary but not reflexible, we say it is chiral. IfM is orientable, it
is often useful to consider Aut+(M); this is the group of all symmetries which send
R (the set of red flags) to itself (and so send W to itself).

A reflexible maniplex is nice in several ways. First, C = C(M) is isomorphic to
Aut(M) [19]. Further, each of these groups acts regularly on � and so has the same
cardinality as �. These correspondences allow us to label each flag with the element
g of C which sends the root flag I there. In short, “g” is the label of the flag gI .
Then, we claim, elements of C can act on the right as symmetries. For each h ∈ C ,
and for each pair of i-adjacent flags g and ri g, the element h sends them to gh and
ri gh, respectively, and these two are also i-adjacent. Thus h, acting on the right, acts
as a symmetry of M.

Consider, for instance, Fig. 4, and observe how multiplication on the right by r2
acts as a reflection about the horizontal edge, while multiplication on the right by r0
acts as a reflection about the vertical axis.

Thus when the maniplex is reflexible, we can use the same names for the elements
of C(M),� and Aut(M). We must, though, be aware that multiplication by, say,
r0 on the left is a different permutation of the group elements than multiplication on
the right.

When we have a reflexible maniplex M with C(M) and Aut(M) expressed as
permutations of some neutral set�, we can still talk about the symmetry correspond-
ing to an element of the connection set by referring to the root flag; specifically, we

Fig. 4 Connections as symmetries
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say that α is the symmetry corresponding to the connection x when x I is the same
as Iα. This is a one-to-one correspondance and is operation preserving, and this is
an isomorphism from C(M) to Aut(M).

A note on language: Map theorists, starting with Brahana, have used the word
regular to describe maps with rotational symmetries. Polytope theorists, though, use
the word ‘regular’ to describe polytopes that we would call reflexible. In this paper,
we remove the perhaps overusedword ‘regular’ and instead usewords thatmeanwhat
they say. Also, we recognize that the English word ‘chiral’ simply means ‘without
reflections’. In our context, where generally only rotary maniplexes and polytopes
are of interest, we will permit ourselves to use it to mean ‘rotary but not reflexible’.
And yes, we do recognize the contradictory flavors of these two preferences.

4 The Twist

We begin this section by presenting a very interesting maniplex which has only two
facets, but is chiral.

4.1 The Krughoff Cubes

Consider the cube shown on the left in Fig. 5. The edges have been colored in such a
way that each of the six possible circular orderings of the four colors appears exactly
once clockwise about some face. Notice that this coloring is chiral; i.e., every rotation
of the cube permutes the colors, while any reflection sends edges of any one fixed
color to edges of different colors.

It is not obvious but a careful examination of the cube on the right shows that,
ignoring the letter face-labels, the arrangement of colors is the same as on the left.
Then each face of the left cube matches a face of the right with orientation reversed;
these matching faces have the same letter. For instance face A-left has colors blue-
yellow-red-green in order clockwise, while face A-right has colors blue-yellow-red-
green in order counterclockwise. Thus, when we identify matching faces and colors,
the result is a chiral 4-maniplex K with two cubical facets and four edges, one for
each color. It was first discovered by Krughoff [11].

We introduce K in this paper because it can be formed from the trivial maniplex
over the cube in a simple but very interesting way: separate each pair of attached
squares and re-attach them after making a twist (locally) clockwise. The purpose of
this paper is to generalize and re-generalize this operation, investigating the resulting
chiral maniplexes.
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4.2 The Twist in 4 dimensions

LetM be any orientable 4-maniplex. Recall that this means that C = 〈r0, r1, r2, r3〉
is its connection group, that its facets are maps, that r3 connects a face of each facet
to some face (of the same size) in some facet, and that R and W are disjoint.

We construct the maniplex Tj (M) to be (�, [s0, s1, s2, s3]), where s0 = r0, s1 =
r1, s2 = r2 and

s3 f =
{

(r0r1) j r3 f if f ∈ R
(r1r0) j r3 f if f ∈ W

for all f ∈ �. The index j indicates how much twist is performed to the faces of
M, after being separated, before gluing them back. This construction first appeared
in [4].

Theorem 4.1 For any orientable 4-maniplex M and any integer j , Tj (M) is a
maniplex.

Proof We need to show that s3 is an involution and that it commutes with r0 and r1.
Suppose that f ∈ R. Then s23 f = s3(s3 f ) = s3((r0r1) j r3 f ). Since (r0r1) j r3 f ∈ W ,
this is equal to (r1r0) j r3(r0r1) j r3 f . Since r3 commutes with r0 and r1, and r0r1 is
the inverse of r1r0, this evaluates to f . Also, since f ∈ R, r0 f ∈ W and s3r0 f =
(r1r0) j r3r0 f = (r1r0) j−1r1r3 f = r0(r0r1) j r3 f = r0s3 f . Similar computations for
r1 and for f ∈ W show that the result holds. �

Theorem 4.2 If M is an orientable 4-maniplex and j is any integer, then every α

in Aut+(M) is also in Aut+(Tj (M)).

Fig. 5 Krughoff’s two-cube maniplex
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Proof Since the 0, 1, and 2-connections are the same in both maps, we only need
to show that α preserves the 3-connections. Consider any red flag f and its neigh-
bor s3 f = (r0r1) j r3 f . Then f α is also red, and its s3-neighbor is (r0r1) j r3( f α) =
((r0r1) j r3 f )α = (s3 f )α. Thus α preserves all connections, and so is a symmetry of
Tj (M). �

Because r0r1 is color-preserving, the bicoloring of flags which results from the
orientability of M shows that each Tj (M) is orientable as well. Thus we have:

Corollary 4.3 If a 4-maniplexM is orientable and rotary, then so is every Tj (M).

Corollary 4.4 If a 4-maniplexM is reflexible, then T− j (M) is the mirror image of
Tj (M).

There are examples of reflexible maniplexes for which some, all or none of the
Tj ’s result in chiralmaniplexes. It ismost common, though, that the result of the Twist
operation on a reflexible maniplex is chiral. For example, T1 of the 4-dimensional
cube is a chiral maniplex of type {4, 3, 8}, while the 4-cube itself has type {4, 3, 3}.
There are also examples of chiral maniplexes for which every Tj (M) is chiral.

Wewill address the question of the chirality or reflexibility of aTwist of a reflexible
maniplex after we have introduced a more general form of the definition.

4.3 The General Twist

Let M = (�, [r0, r1, . . . , rn]) be an orientable (n + 1)-maniplex of dimension at
least 4. Let B = 〈r0, r1, . . . , rn−2〉; this is the connection group of the root sub-
facet. Further, let B+ = 〈r0r1, r1r2, . . . , rn−3rn−2〉; this is the subgroup of B which
preservesR. Letw be an element of B+, such that for i = 0, 1, 2, . . . , n − 2we have
(wri )2 = I ; i.e., that the conjugate of w by ri is w−1. Call such a w sub-invertible
because it is invertible within the sub-facet group B. Define the twist Tw(M) ofM
to be (�, [s0, s1, . . . , sn]), where si = ri for i < n and

sn f =
{

wrn f if f ∈ R,

w−1rn f if f ∈ W,

for all f ∈ �. Note that, since rn commutes with all ri with i ≤ n − 2, rnw = wrn .
Imitating the proofs of Theorems 4.1 and 4.2 yields these results:

Theorem 4.5 For any orientable maniplexM and any sub-invertible w, Tw(M) is
a maniplex.

Note that if w ∈ B+ is not sub-invertible, then Tw(M) is not a maniplex, but is a
complex in the sense of [19] (or a combinatorial map in the sense of [18]). Moreover,
in this case, some Tw(M) could be a chiral hypertope, in the sense of [6].
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Theorem 4.6 IfM is an orientable maniplex and w is sub-invertible, then every α

in Aut+(M) is also in Aut+(Tw(M)).

Corollary 4.7 IfM is orientable and rotary, then so is every Tw(M)).

For a 4-maniplex, the subfacets are polygons, and so the only candidates for sub-
invertible elements are the powers of r0r1, and these are sub-invertible. For higher
dimensions, there are no obvious non-trivial candidates for w, and indeed, some
sub-facets have no such elements. We claim that the simplex is one such maniplex.
To see that, first notice that if w is sub-invertible, then w is central in B+. Thus if the
sub-facet of some maniplex M is a simplex of dimension n − 2 for n greater than
4, then B+ is An−1. This has a trivial center, and hence no viable w.

Contrast this with the cube of dimension n − 2. Here, when n is even, the central
inversion is orientation-preserving and is central and thus sub-invertible.

In a maniplex M of any rank, if its symmetry group has k orbits on flags, then:

1. If Aut(M) contains an orientation-reversing element then Tw(M) has either k
or 2k orbits on flags.

2. If Aut(M) does not contain an orientation-reversing element then Tw(M) has
either k or k

2 orbits on flags.

5 Chirality

In the paper [14], the third author demonstrated the existence of a series of chiral
polytopes of all dimensions. By using the twist operator, we hope to produce such
maniples in a simplerway. In this sectionwe address the following question:What are
the conditions on an orientable reflexible maniplex M and a sub-invertible element
w that would force Tw(M) to be reflexible?

So, suppose that M is an orientable and reflexible (n + 1)-maniplex; suppose
that w is sub-invertible in M; finally suppose that Tw(M) is reflexible. Since M
is reflexible, its set of flags is (or can be considered as) the group C(M), which
we will call G for convenience. Remember how nice this is: elements of G are the
flags, elements of G are the connections (acting by multiplication on the left), and
elements of G are symmetries (acting by multiplication on the right). Hence “r0r1”
is the name of a flag. It is 0-adjacent to the flag r1. It is the image of r0 under the
symmetry sending each flag g to the flag gr1.

Because M is orientable, its flags come in two colors, red and white, and the
identification gives us that R = C+, the subgroup consisting of products of even
lengths in the generators.

In Tw(M) = (G, [s0, s1, . . . , sn]), all of the connections are in G except perhaps
sn . Since Tw(M) is reflexible, it must have a symmetry α0 which sends the flag I to
the flag s0. This α0 is probably not in G. Let H = 〈r0, r1, . . . , rn−1〉. This group is
the stabilizer (in M and in Tw(M)) of the ‘central’ facet; i.e., the facet containing
the root flag I . Hence, on one hand, we can regard the elements of H as the flags of



138 I. Douglas et al.

the central facet. On the other hand, we can think of the elements in H as paths of
the graph with colours in {0, 1, . . . , n − 1}. This means that if we have h ∈ H , for
every flag f , the flags f and h f are in the same facet (of both M and Tw(M)).

We will deduce the action of α0 first in the central facet and then in facets farther
and farther away.

Remembering that the identity I of G is assigned to the root flag I of �, we have
that for h ∈ H , i.e. for flags in the central facet, the action of α0 must be the same as
inM: thus, hα0 = (hI )α0 = h(Iα0) = h(r0 I ) = hr0.

Given h ∈ H, rnh is a flag in one of the facets adjacent to the central facet inM.
Since the twist operator preserves facets, and facet-adjacency, each flag rnh is in a
facet adjacent to the central facet in Tw(M) as well.

Let g = rnh be such a flag, for some h ∈ H , and suppose that g is red. Then it
is n-adjacent in Tw(M) to snrnh = wrnrnh = wh, which is a white flag in H since
Tw(M) is orientable, and so its image under α0 is whr0, a red flag. Thus the flag gα0

must be n-adjacent to that red flag and so must be wrnwhr0 = w2rnhr0. Similarly,
if g is white then gα0 = w−2rnhr0.

Now, every flag in a facet adjacent to the central facet is of the form g = h1rnh0,
where thehi ’s are from H . Then gα0 = (h1rnh0)α0 = h1(rnh0α0) = h1(w±2rnh0r0),
where the exponent is+2 if rnh0 is red (i.e., if a product of generators equalling rnh0
has even length) and −2 otherwise.

Thus, we know the effect of α0 on the central facet and on each facet adjacent to it.
Next, consider a flag g in the layer of facets two steps away from the central facet, but
n-adjacent to a flag in a facet adjacent to the central facet. Then g = rnh1rnh0, where
the hi ’s are from H . If g is red, then g is n-adjacent to wrnrnh1rnh0 = wh1rnh0, a
white flag. Then the image of this white flag under α0 is the red flag wh1w±2rnh0r0;
again, the exponent depends on the color of rnh0. Then gα0 is the flag n-adjacent to
this one, which is wrnwh1w±2rnh0r0 = w2rnh1w±2rnh0r0; similarly, if g is white,
then gα0 = w−2rnh1w±2rnh0r0.

In general, then, if g = hk+1(rnhk)(rnhk−1)(rnhk−2) . . . (rnh0), define

P(g) = hk+1(tkrnhk)(tk−1rnhk−1)(tk−2rnhk−2) . . . (t0rnh0),

where each t j is w2 if (rnh j ) . . . (rnh0) is red and w−2 if it is white. Then it must be
that gα0 = P(g)r0, and a similar argument shows that, if αi is the symmetry which
sends I to si , then

gαi =
{
P(g)ri if i = 0, 1, . . . , n − 1;
P(g)wri if i = n.

(1)

To recap: ifM is reflexible and orientable and ifweknow that Tw(M) is reflexible,
then we have that for i = 0, 1, . . . , n − 1, gαi = P(g)ri , and gαn = P(g)wrn . This
implies that P is well-defined. Well-definedness is an issue, for we see that P(g)
is defined in terms of a product p of generators which evaluates to g. The well-
definedness of P means that if p1, p2 are two products of generators which both
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equal g then P(p1) = P(p2). Moreover, this must hold even if the generator rn
appears in the words p1 and p2 with different multiplicity.

We claim that this is equivalent to saying that if some product p evaluates to I ,
then P(p) must also evaluate to I . To see that, one uses the following Lemma:

Lemma 5.1 For any word p let Q(p) be obtained from P(p) by replacing each ti
by t−1

i . Then:

1. If p2 is white, then P(p1 p2) = Q(p1)P(p2), while if p2 is red, P(p1 p2) =
P(p1)P(p2).

2. (P(p−1))−1 = P(p) if p is red and (P(p−1))−1 = Q(p) if p is white.

On the other hand, if P is well-defined, it is clear that the equations in (1) serve
as definitions for reflective symmetries, making Tw(M) reflexible.

At first glance, the process of checking, for a given M and w, that the set of
words which evaluate to I is closed under P may seem to be a daunting task. Our
hearts need not seize up in fear, however. When we consider a reflexible maniplex,
we are quite often given the generator-and-relator form of G. In this case, the only
products we need to check are the relators, since every other word evaluating to I is
a consequence of those.

Theorem 5.2 Suppose that M is an orientable reflexible n-maniplex for n at least
4, and C(M) has presentation C = 〈r0, r2, . . . , rn−1|I = W1,W2,W3, . . . ,Wk〉,
where each Wj is a word in the ri ’s. If w is a sub-invertible element then Tw(M) is
reflexible if and only if P(Wj ) evaluates to the identity in C for all j .

For example, consider the trivialmaniplex over the cube. Its generator-relator form
(abbreviating ‘ri ’ by just ‘i’) is G = 〈0, 1, 2, 3|I = 02 = 12 = 22 = 32 = (02)2 =
(30)2 = (31)2 = (01)4 = (12)3 = (32)2〉. We will use w = 01. Because w2 com-
mutes with 0 and 1, it is clear that P(3030) = I and P(3131) = I , and any g which
includes no 3 has P(g) = g. Thus the only word we need to check is (32)2.

Consider P(3232) = 0101 32 0101 32 = 0101 323 0101 2 = 0101 2
0101 2. This is a motion of the cube Q, and it can be seen as a 2-step rotation
about a face. It is certainly not the identity and so T01(Q) is not reflexible. Therefore
the Krughoff maniplex K = T01(Q) is chiral, as claimed.

Remark 5.3 Ifw is its own inverse, so thatw2 = I , then for all g we have P(g) = g,
and so P is well-defined and Tw(M) is reflexible.

6 The Maniplex 2̂M

In this section, we describe a construction of an (n + 1)-maniplex whose facets are
all isomorphic to a given n-maniplex. Our motivation is this: we will show that
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if M is an orientable n-maniplex such that C(M) contains an element w such
that (wri )2 = I for i = 0, 1, . . . , n − 1, then, applying this construction twice, the
constructedmaniplex is oneonwhichwecanperforma twist andget a chiralmaniplex
as a result.

Definition 6.1 Let M = (�, [r0, r1, . . . , rn−1]) be an n-maniplex which has
m ≥ 2 facets named F1, . . . , Fm . Define 2̂M to be the (n + 1)-maniplex (� × Z

m
2 ,

[s0, s1, . . . , sn−1, sn]), where, for f ∈ Fj , x ∈ Z
m
2 , we have

si ( f, x) =
{

(ri f, x) if i = 0, 1, . . . , n − 1;
( f, x j ) if i = n.

Here, x j stands for the bitstring which differs from x in the j-th place and there only.
If I is the root flag for M, let Î = (I, 000 . . . 0) be the root flag for 2̂M.

Notice that if M has only one facet, then the above construction only yields the
trivial maniplex over M. In general 2̂M is a 2m−1 fold cover of the trivial maniplex
overM. In what follows we are mainly interested in maniplexes with more than one
facet.

This construction very slightly generalizes one of Danzer (see [5]) and sets it in
maniplex form. Here 2̂M is the same as Danzer’s D(2D(M)), where D stands for the
usual dual of a polytope or maniplex.

Proposition 6.2 Let M be any n-maniplex with at least two facets. Then

1. 2̂M is an (n + 1)-maniplex,
2. all facets of 2̂M are isomorphic to M;
3. ifM has type {p1, . . . , pn−1} then 2̂M has type {p1, . . . , pn−1, 4}.
Proof For i = 0, 1, . . . , n − 1, si is an involution because ri is, and sn is an invo-
lution because (x j ) j = x . For i = 0, 1, . . . , n − 2, each f and ri f are in the
same Fj , and so si snsi sn( f, x) = si snsi ( f, x j ) = si sn(ri f, x j ) = si (ri f, (x j ) j ) =
si (ri f, x) = (riri f, x) = ( f, x). Thus, si and sn commute, and so 2̂M is a mani-
plex.

For a fixed x , the set of flags of the form ( f, x) for f ∈ � is a facet of 2̂M,
and every facet of 2̂M is of this kind. Then the function sending f to ( f, x) is an
isomorphism of M to that facet of 2̂M.

Finally, suppose that some flag f of M is in Fj and that rn−1 f is in Fk . Then
repeatedly applying sn and then sn−1 to ( f, x) yields:

( f, x) → ( f, x j ) → (rn−1 f, x
j ) → (rn−1 f, (x

j )k) → ( f, (x j )k)

= ( f, (xk) j ) → ( f, xk) → (rn−1 f, x
k) → (rn−1 f, x) → ( f, x).

This shows that (sn−1sn) has order 4, as claimed. �
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Let us now consider symmetries of 2̂M. First, suppose that σ is a symmetry of
M and that it acts on the facets ofM as a permutation also called σ ; i.e., that for all
i , we define σ(i) to be the index of Fiσ . Thus Fiσ = Fσ(i). And denote by σ(x) the
vector (xσ−1(1), xσ−1(2), . . . , xσ−1(m)). Then define σ̂ acting on 2̂M by

( f, x)σ̂ = ( f σ, σ (x)).

Noting thatσ(x j ) = [σ(x)]σ( j), it is easy to check that this is a symmetry of 2̂M fixing
the facet consisting of all flags of the form ( f, (0, 0, . . . , 0)). Thus, all of Aut(M)

appears in Aut(2̂M), with α̂i playing the role of αi for i = 0, 1, 2, . . . , n − 1.
For any y ∈ Z

m
2 , the function τy defined by ( f, x)τy = ( f, x + y) is clearly a

symmetry of 2̂M. Assuming the root flag is in F1, then the symmetry τ(1,0,0,...,0)

sends the root flag Î to sn Î , its n-adjacent flag.
This shows that

Proposition 6.3 Let M be a reflexible n-maniplex with at least two facets. Then
2̂M is reflexible. The stabilizer of the central facet is isomorphic to Aut(M), by an
isomorphism sending αi to α̂i .

Notice that even if M has no particular symmetry, the maniplex 2̂M has the
symmetry τ(1,0,0,...,0) = α̂n , which is a reflection. Hence, 2̂M can never be a chiral
maniplex. Moreover, since Aut(M) can be regarded as a subgroup of Aut(2̂M)

and for all y ∈ Z
m
2 , τy ∈ Aut(2̂M), if M is a k-orbit maniplex, then so is 2̂M. In

particular, if M is a 2-orbit maniplex in class 2J , J ⊂ {0, 1, 2, . . . , n − 1} (in the
sense of [3]), then 2̂M is a 2-orbit maniplex in class 2J∪{n}.

6.1 Color-Coded Extensions

Suppose that M = (�, [r0, r1, . . . , rn−1]) is an n-maniplex, and let C be a parti-
tion of its facets into k classes called ‘colors’. Define a new (n + 1)-maniplex called
2(M,C) = (� × Z

k
2, [s0, s1, . . . , sn]), where for i = 0, 1, . . . , n − 1, si ( f, x) =

(ri f, x), and sn( f, x) = ( f, x j ), where f is in a facet of color j and x j is the bitstring
which differs from x in place j and there only. This generalizes previous notions:

1. If each class in C contains just one facet, then 2(M,C) is exactly 2̂M.
2. If C consists of just one class containing all facets, then 2(M,C) is the trivial

maniplex over M.

Moreover, proofs similar to those about 2̂M show that ifM is an n-maniplex with
at least two facets then:

1. 2(M,C) is an (n + 1)-maniplex,
2. all facets of 2(M,C) are isomorphic toM;
3. ifM has type {p1, . . . , pn−1} then 2(M,C) has type {p1, . . . , pn−1, 4}.
4. IfM is reflexible and C is Aut(M)−invariant, then 2(M,C) is also reflexible.
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7 Example of Twist on Rank 5

7.1 The Map nM

We first give a general construction for covering of maps:

Definition 7.1 Let M = (�, [r0, r1, r2]) be a map, a 3-maniplex, which is ori-
entable, and let n be any integer greater than 2. Define nM to be the map
(� × Zn, [t0, t1, t2]), where for each flag ( f, i) of nM,

t0( f, i) = (r0 f, i),

t2( f, i) = (r2 f, i),

and

t1( f, i) =
{

(r1 f, i + 1) if f is red,

(r1 f, i − 1) if f is white.

It is easy to see that each ti is an involution and that t0 commutes with t2, so nM
is a map, whenever it is connected. Observe that nM is an n-fold cover of M, and
if M is of type {p, q}, then nM is of type {LCM(p, n), LCM(q, n)} whenever it
is a map.

The second entry i of a flag ( f, i) of nM is preserved by r0 and r2, but changed
by r1, according of the color of the flag f . We next define a function h that counts,
for a given word W on the elements r0, r1, r2, the difference between the number
of appearances of a factor r1 in odd and even places of W . If W is any word in
r0, r1, r2, and Ŵ is the corresponding word in t0, t1, t2, define h(W ) recursively by
using h(I ) = 0 and

h(riW ) =

⎧⎪⎨
⎪⎩
h(W ) + 1 if i = 1 and W has even length

h(W ) − 1 if i = 1 and W has odd length

h(W ) otherwise.

Then, for all f , Ŵ ( f, i) = (W f, j), where j =
{
i + h(W ) if f is red,

i − h(W ) if f is white
.

Note that this fact holds because W and Ŵ are considered as words in their
respective sets of generators.

If D is the greatest common divisor of n and all values of h(W ) for which W
evaluates to the identity in M, then nM has exactly D connected components.

If M is reflexible, and, as before, we denote by αi the symmetry exchanging
the root flag I with ri I , and by α̂i the symmetry exchanging Î with ti Î , then these
functions are the corresponding symmetries in nM:

( f, i)α̂0 = ( f α0,−i)
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( f, i)α̂1 = ( f α1, 1 − i)

( f, i)α̂2 = ( f α2,−i).

Thus, nM is reflexible as well. Among the symmetries of nM is the function
β, whichs sends each ( f, i) to ( f, i + 1); direct computation verifies that β is a
symmetry. Further, a simple computation will show that for each i = 0, 1, 2, the
relation (βα̂i )

2 = I holds.

7.2 A Series of 5-Maniplex Examples

We use this construction to produce a series of examples. Each starts with an ori-
entable map M of type {p, p}, with p odd, having a word W such that h(W ) is
relatively prime to p. We study the effect of the twist operation on the 5-maniplex
M′ = 2̂2̂

pM
.

Consider an orientable 3-maniplexMwith type {p, p} and some n ≥ 5. We then
construct the n-fold cover nM of M.

As long as the greatest common divisor D of p and all h(W ) for words evaluating
to the identity, is 1, the map is connected.

As an example, consider the great dodecahedronM = P0, a polyhedron and ori-
entable map of type {5, 5} with 12 vertices and 12 pentagonal faces, where every
vertex is surrounded by 5 faces. It can be constructed from the icosahedron by disre-
garding the triangles and considering as faces the 2-holes, that is, the convex polygons
(pentagons in this case) determined by the neighbours of some vertex. The triangles
of the icosahedron can be recovered as the 2-holes of the great dodecahedron (see
[1, Chap.VI]). The great dodecahedron is reflexible, and as before, we consider its
symmetry group, its connection group and its flag set to all be the same group G. Its
connection group satisfies the relation (r0r1r2r1)3 = I , since this indicates that the 2-
holes are triangles. Then h((r0r1r2r1)3) = 6 ≡ 1 modulo 5, and hence h((r0r1r2r1)3)
is relatively prime to 5. The polyhedral map 5P0 = (� × Z5, [t0, t1, t2]) is then con-
nected, has type {5, 5}, 60 vertices and 60 facets. This polyhedron is denoted by
{5, 5} ∗ 600 in the atlas of Hartley [8].

Naturally, the element w of C(5P0) corresponding to β ∈ Aut(5P0) has order 5.
Furthermore, because (βα̂i )

2 = I we have that (wti )2 = I for i ∈ {0, 1, 2}.
Now, the element (r0r1r2r1)3 acts trivially on �. Therefore (t0t1t2t1)3 sends (I, 0)

to (I, 1), and so it must be equal to w.
Let M′ be the 5-maniplex (5-polytope) 2̂2̂

5P0 of type {5, 5, 4, 4}. The subfacets
ofM′ are isomorphic to 5P0 and w satisfies the desired properties in Sect. 4, so we
can construct Tw(M′). In what follows we prove that Tw(M′) is chiral.

In C(M′) = 〈s0, s1, s2, s3, s4〉, the relation (s3s4)4 = I holds. Assuming that
Tw(M′) is reflexible we have that P((s3s4)4) also equals I . But P((s3s4)4) =
(s3w2s4)4, since all flags (s3s4)k are red. Conjugating by s4 we get
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I = s4(s3w
2s4)

4s4 = (s4s3w
2)4.

Now, every flag in M′ is of the form ((( f, i), x), y), where f is a flag of P0,
i ∈ Z5, and x and y are bitstrings of the appropriate lengths. The connection s4
changes only y, and s3 changes only x .

Thus the image of (((I, 0), x), y) under s4s3w2 is (((I, 2), x ′), y′) for some x ′, y′.
Thus (((I, 0), x), y)(s4s3w2)4 = (((I, 8), x ′′), y′′) for some x ′′, y′′. Since 5 is odd,
P((s3s4)4) is not the identity and so Tw(M′) is chiral.

This example generalizes: IfM is any map of type {p, p} for some p ≥ 5 and has
a defining word W such that h(W ) is relatively prime to p, then it must have some
defining wordw such that h(w) = 1 and corresponds to β in pM. If, in addition, p is
odd, then inM′ = 2̂2̂

pM
, theword (s3s4)4 evaluates to the identity, and a computation

similar to the previous paragraph shows that P((s3s4)4) = (s3w2s4)4 sends any flag
((( f, i), x), y) to ((( f, i + 8), x ′′), y′′) for some x ′′, y′′ and since p is odd, this is not
the identity and so Tw(M′) is chiral.

Remark Now, the maniplex 2̂2̂
5P0 is huge: 5P0 is 5 times as large as the Great

Dodecahedron and so has 5 ∗ 120 = 600 flags in 60 facets of 10 flags each. The 4-
maniplex 2̂5P0 has 260 such facets. Then 2̂2̂

5P0 has 22
60
facets. Then 260 is an 19-digit

number and thus 22
60
is simply too large to contemplate.

We can reduce the scale of our constructions by using the color-coded extensions:
P0, the great dodecahedron, has a coloring in 6 colors, opposite faces having the
same colors. Then 5P0, as a covering of P0, inherits this same 6-coloring. Call that
coloring S. Then the 4-maniplex P1 = 2(5P0,S) has only 26 = 64 facets and has a
2-coloring B, and so the 5-maniplex P2 = 2(P1,B) has only 4 facets, for a total of
600 ∗ 64 ∗ 4 = 153,600 flags.

8 Open Questions

There are many interesting open questions regarding the twist operator on mani-
plexes. Here are just a few of them:

1. In general, if M is polytopal, what are the conditions on w for the maniplex
Tw(M) to be polytopal? Are there even any special cases in which this question
can be answered?

2. Our original intent was to use the twist construction to produce chiral maniplexes
and hopefully polytopes of all possible dimensions in an elegant way. Our main
difficulty is that we seem to have no examples of maniplexes of any rank above
fivewith sub-invertible elements that are not involutions, and thuswe can display
no k-maniplexes for k ≥ 6 for which the twist operator is defined. We are trying
not to conjecture that there are none.
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3. Is there a way to generalize the construction of the map nM from the map M
to apply to any maniplex P? If there were, then we could have examples of
maniplexes 2̂2̂

P
of all dimensions to which we could apply the Twist operation.

4. Given a chiral maniplex M, what are the criteria for M to be a twist of some
reflexible maniplex?

5. If Tw(M) is isomorphic to the mirror image ofM, is some Tw′(M) reflexible?
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1 Introduction

Aconcept of a homogeneous honeycomb in Euclidean spacewas introduced by Som-
merville in 1929 in his book “An Introduction to the Geometry of n Dimensions” [33]
as an object consisting of polyhedral cells, all alike, such that each rotation that is a
symmetry operation of a cell is also a symmetry operation of the whole configura-
tion. This definition inspired Coxeter to name a map regular whenever its group of
automorphisms contains, for each of its faces, elements that cyclically permute edges
of that face, and also contains automorphisms that, for each of its vertices, cyclically
permute the edges meeting at the vertex. Coxeter distinguished two kinds of regular
maps: reflexible and irreflexible [9]; nowadays commonly referred to respectively
as regular and chiral maps (he called a regular map reflexible when the group of
automorphisms of the map contains an element that fixes an edge and the two faces
that contain that edge, but interchanges the two vertices of the edge, otherwise he
called the map irreflexible).

Earliest known examples of chiral maps were produced by Heffter in 1898 [18]
as a family of maps of Schläfli type {2k − 1, 2k − 1} for k > 2 (the first number
describes the size of the faces and the second the degrees of the vertices of the
map). In the 1940s Coxeter classified regular and chiral maps on the torus [7]. In
1966, Sherk [32], a Ph.D. student of Coxeter, looked for chiral maps of small genus
and constructed an infinite family of chiral maps of type {6, 6} (with the smallest
member of that family embeddable on a surface of genus 7). About the same time
Edmonds – a well-known and controversial Canadian combinatorist – re-discovered,
but never published, Heffter’s map of type {7, 7} (also on a surface of genus 7). In
1969, Garbe [15] enumerated all regular maps on orientable surfaces of genus 2, 3,
4, 5 and 6, and proved that there are no chiral maps among them. A number of papers
appeared thereafter dealing with chiral maps. A first systematic search for regular
and chiral maps of higher genus was conducted by Conder and Dobcsányi [3] and
resulted in the complete list of regular and chiral maps on surfaces of genus 2 to
15 in the orientable case and regular maps on surfaces of genus 3 to 30 in the non-
orientable case. Subsequently, Conder expanded this list several times to include
maps of increasingly higher genus. It now contains maps up to genus 301 in the
orientable case and up to genus 602 in the non-orientable case [5].

In 1970 [8], Coxeter extended the notion of a chiralmapby introducing the concept
of a twisted honeycomb, a finite abstract object or rank 4 derived from a honeycomb,
which is chiral in a sense that it inherits all the rotations of its cells but not its
reflections. Two similar examples of such structures, both with only one polyhedral
cell, were described earlier by Weber and Seifert in 1933 [36]. Coxeter produced a
number of non-trivial examples, which he constructed from3-dimensional euclidean,
spherical and hyperbolic tessellations with spherical facets and vertex-figures, by
looking at their Petrie polygons which naturally occur, in left- and right-handed
varieties (each such polygon has three, but not four, consecutive edges belonging
to a cell). Identifying vertices of each such, say left-handed Petrie polygon, that are
separated by a fixed number of edges he observed that the resulting object may be
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regular (or as he called it reflexible) or may have the vertices on its right-handed
Petrie polygons separated by a different number of edges in which case he called
such a rank 4 object twisted. Twisted honeycomb is not symmetrical by a “reflection”
in a sense that its automorphism group contains no involution that fixes, for example,
a rank 2 face of the object but interchanges the two cells sharing this rank 2 face. The
concept of twisted honeycomb inspired the modern definition of a chiral polytope,
an abstract object of any rank that is maximally symmetric by abstract rotations but
never by an abstract reflection (see Sect. 2).

The twisted honeycombs are finite structures resembling classical polytopes com-
binatorially in the sense that their facets and vertex-figures are spherical. In 1977
Coxeter suggested to the last author to derive finite twisted honeycombs from 3-
dimensional hyperbolic tessellations with horospherical facets and/or vertex-figures
producing therefore rank 4 objects with toroidal facets and/or vertex-figures. About
the same time Grünbaum [16] suggested to study abstract objects, which he called
polystroma, whose faces and vertex-figures are not necessarily spherical. Inspired by
the ideas of Coxeter and Grünbaum, in 1982 Schulte and Danzer [11] formalised and
began developing the theory of regular abstract polytopes (which they named inci-
dence polytopes). In 1984, Colbourn and Weiss [2] unaware of the work of Schulte
and Danzer, published a census of regular and chiral finite rank 4 polystroma derived
from hyperbolic tessellations by applying the “twisted honeycomb” method of Cox-
eter. Not all such objects satisfied amore restrictive condition of abstract polytopality
of [11].

By late 1980s a number of sporadic examples of chiral abstract polytopes in rank
3 and 4 were found. In 1991 Schulte and the last author of this paper developed
the basic structure theory of abstract chiral polytopes of any rank [29] and in par-
ticular characterised their automorphism groups. These objects are now quite well
understood and have been studied extensively over the past 30 years. Schulte, Mon-
son and Weiss developed various methods of constructing such polytopes in rank 4.
However, the classical approach to constructing higher rank polytopes inductively
from the lower rank ones proved to be impossible for chiral polytopes. Although
in 1995 [31] there was a universal extension method found leading to rank 5 chiral
polytopes with regular facets, no chiral finite polytopes were known to exist in rank
5 or higher. It was only in 2008 that Conder, Hubard and Pisanski produced the first
examples of finite higher rank chiral polytopes [4] and in 2010 Pellicer [28] gave a
construction for arbitrary rank.

In [17], Hartley, Hubard and Leemans constructed two atlases of chiral polytopes.
Firstly they sought them as quotients of regular polytopes arising from the Atlas of
Small Regular Polytopes (http://www.abstract-polytopes.com/atlas/); secondly, for
each almost simple group � such that S ≤ � ≤ Aut (S) where S is a simple group
of order less than 900,000 listed in the Atlas of Finite Groups, they gave, up to
isomorphism, the abstract chiral polytopes on which � acts regularly. Such an atlas
existed already in the regular case [21]. These atlases turned out to be very inspiring
to find patterns and get classification results (see [13, 19, 20] for instance).

An abstract regular or chiral polytope is an incidence geometry with a string
diagram. Recently, the authors have defined the notion of hypertope in [14] with the

http://www.abstract-polytopes.com/atlas/
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idea to allow more general diagrams than string diagrams. The present paper can be
viewed as the beginning of an ambitious project to construct rank 4 hypertopes from
their rank 3 residues. Among all hypertopes having some prescribed residues of rank
3, that are either spherical or toroidal maps or hypermaps, we consider whenever
possible, the universal one (that is the one covering all hypertopes of this kind). The
possible (non-string) diagrams for such hypertopes are listed in Fig. 1. In this paper
we only consider the first three diagrams (hence the “hexagonal extensions” in the
title) leaving other diagrams for future work.

The paper is organised as follows. In Sect. 2, we give the definitions and notation
needed to understand this paper. In Sect. 3, we explain what are rank four universal
locally toroidal hypertopes. In Sect. 4, we study locally toroidal regular and chiral
polytopes of type {6, 3, 6}. In Sect. 5, we study locally toroidal regular and chiral
polytopes of type {3, 6, 3}. In Sect. 6, we give examples of hexagonal extensions
of toroidal hypermaps of type (3, 3, 3). In Sect. 7, we give examples of nonlinear
hexagonal extensions of the tetrahedron and, among these examples, a new infinite
family of finite regular hypertopes arises. In Sect. 8, we give examples of 4-circuits
with hexagonal residues. Finally, we conclude the paper in Sect. 9 by stating some
conjectures and open problems.

As to notation for groups, we follow the Atlas of Finite Groups [6].

2 Preliminaries

2.1 Hypertopes

As in [1], an incidence system � := (X, ∗, t, I ) is a 4-tuple such that

• X is a set whose elements are called the elements of �;
• I is a set whose elements are called the types of �;
• t : X → I is a type function, associating to each element x ∈ X of � a type t (x) ∈

I ;
• ∗ is a binary relation on X called incidence, that is reflexive, symmetric and such
that for all x, y ∈ X , if x ∗ y and t (x) = t (y) then x = y.

The incidence graph of � is the graph whose vertex set is X and where two vertices
are joined provided the corresponding elements of � are incident. A flag is a set of
pairwise incident elements of �, i.e. a clique of its incidence graph. The type of a
flag F is {t (x) : x ∈ F}. A chamber is a flag of type I . An element x is incident
to a flag F , and we write x ∗ F for that, provided x is incident to all elements of
F . An incidence system � is a geometry or incidence geometry provided that every
flag of � is contained in a chamber (or in other words, every maximal clique of the
incidence graph is a chamber). The rank of � is the number of types of �, namely
the cardinality of I .
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Let � := (X, ∗, t, I ) be an incidence geometry and F a flag of �. The residue of
F in � is the incidence system �F := (XF , ∗F , tF , IF ) where

• XF := {x ∈ X : x ∗ F, x /∈ F};
• IF := I \ t (F);
• tF and ∗F are the restrictions of t and ∗ to XF and IF .

An incidence system � is connected if its incidence graph is connected. It is
residually connected when each residue of rank at least two of � has a connected
incidence graph. It is called thin (resp. firm) when every residue of rank one of �

contains exactly two (resp. at least two) elements.
An incidence system � := (X, ∗, t, I ) is chamber-connected when for each

pair of chambers C and C ′, there exists a sequence of successive chambers C =:
C0, C1, . . . ,Cn := C ′ such that |Ci ∩ Ci+1| = |I | − 1. An incidence system � :=
(X, ∗, t, I ) is strongly chamber-connected when all its residues of rank at least 2 of
� (including � itself) are chamber-connected.

Proposition 2.1 ([14, Proposition 2.1]) Let � be a firm incidence geometry. Then �

is residually connected if and only if � is strongly chamber-connected.

A hypertope is a thin incidence geometry which is strongly chamber connected or
equivalently residually connected.

2.2 Regular and Chiral Hypertopes as C+-Groups

Let � := (X, ∗, t, I ) be an incidence system. An automorphism of � is a mapping
α : (X, I ) → (X, I ) where

• α is a bijection on X ;
• for each x , y ∈ X , x ∗ y if and only if α(x) ∗ α(y);
• for each x , y ∈ X , t (x) = t (y) if and only if t (α(x)) = t (α(y)).

An automorphism α of � is called type preserving when for each x ∈ X , t (α(x)) =
t (x) (i.e. α maps each element on an element of the same type).

The set of type-preserving automorphisms of � is a group denoted by AutI (�).
The set of automorphisms of � is a group denoted by Aut (�). Elements of Aut (�) \
AutI (�) are called correlations.

An incidence system � is flag-transitive if AutI (�) is transitive on all flags of
a given type J for each type J ⊆ I . An incidence system � is chamber-transitive
if AutI (�) is transitive on all chambers of �. Observe that if � is a firm incidence
geometry, flag-transivity and chamber-transitivity are equivalent. Finally, an inci-
dence system � is regular if AutI (�) acts regularly on the chambers (i.e. the action
is semi-regular and transitive). A regular hypertope is a flag-transitive hypertope
(note that thinness implies that the action of AutI (�) is free).

Given an incidence system � and a chamber C of �, we may associate to the
pair (�,C) the pair consisting of the automorphism group G := AutI (�) and the set
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{Gi : i ∈ I } of subgroups of G where Gi is the stabiliser in G of the element of type
i in C .

In the case of a regular hypertope �, the subgroups ∩ j∈I\{i}G j are cyclic groups
of order 2 and we denote their generators ρi ’s. The set {ρi : i ∈ I } generates AutI (�)

(see [12]) and for that reason is called the set of distinguished generators of AutI (�).
The following proposition shows how to start from a group and some of its sub-

groups and construct an incidence system.

Proposition 2.2 ([34]) Let n be a positive integer and I := {1, . . . , n}. Let G be
a group together with a family of subgroups (Gi )i∈I , X the set consisting of all
cosets Gi g, g ∈ G, i ∈ I and t : X → I defined by t (Gig) = i . Define an incidence
relation ∗ on X × X by :

Gi g1 ∗ G jg2 iff Gi g1 ∩ G jg2 is non-empty in G.

Then the 4-tuple � := (X, ∗, t, I ) is an incidence system having a chamber. More-
over, the group G acts by right multiplication on � as a group of type preserving
automorphisms. Finally, the group G is transitive on the flags of rank less than 3.

When a geometry � is constructed using the proposition above, we denote it by
�(G; (Gi )i∈I ).

Consider a pair (G+, R) with G+ being a group and R := {α1, . . . , αr−1} a set
of generators of G+. Define α0 := 1G+ and αi j := α−1

i α j for all 0 ≤ i, j ≤ r − 1.
Observe that α j i = α−1

i j . Let G
+
J := 〈αi j | i, j ∈ J 〉 for J ⊆ {0, . . . , r − 1}. If the

pair (G+, R) satisfies condition (2.1) below called the intersection condition IC+,
we say that (G+, R) is a C+-group.

∀J, K ⊆ {0, . . . , r − 1}, wi th |J |, |K | ≥ 2,G+
J ∩ G+

K = G+
J∩K . (2.1)

Two chambers C and C ′ of an incidence geometry of rank r are called i -adjacent
if C and C ′ differ only in their i-elements. When the geometry is thin we denote
C ′ by Ci . Let �(X, ∗, t, I ) be a thin incidence geometry. We say that � is chiral if
AutI (�) has two orbits on the chambers of � such that any two adjacent chambers
lie in distinct orbits.

Given a chiral hypertope�(X, ∗, t, I ) (with I := {0, . . . , r − 1}) and its automor-
phism group G+ := AutI (�), pick a chamberC . For any pair i = j ∈ I , there exists
a unique automorphism αi j ∈ G+ that maps C to (Ci ) j . Also, Cαi i = (Ci )i = C
and α−1

i j = α j i . We define the distinguished generators of G+ with respect to a base
chamber C as follows:

α0 := 1G+ , αi := α0i (i = 1 . . . , r − 1). (2.2)

Define αi j := α−1
i α j for all 0 ≤ i, j ≤ r − 1. Let G+

J := 〈αi j | i, j ∈ J 〉 for J ⊆
{0, . . . , r − 1}.
Theorem 2.3 [14, Theorem7.1]Let I := {0, . . . , r − 1} and let� be a chiral hyper-
tope of rank r . Let C be a chamber of �. The pair (G+, R), where G+ = AutI (�)

and R is the set of distinguished generators of � with respect to C, is a C+-group.
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Regular and chiral hypertopes can be constructed from someC+-groups.We recall
how to construct a coset geometry from a group and an independent generating set
of this group.

Construction 2.1 [14,Construction8.1]LetG+ beagroupand R := {α1, . . . , αr−1}
be an independent generating set of G+. Define Gi := 〈α j | j = i〉 for i = 1, . . . ,
r − 1 and G0 := 〈α−1

1 α j | j ≥ 2〉. The coset geometry �(G+, R) := �(G+;
(Gi )i∈{0,...,r−1}) constructed using Proposition 2.2 is the geometry associated to the
pair (G+, R).

The coset geometry �(G+, R) gives an incidence system using Proposition 2.2.
This incidence system is not necessarily a thin geometry, nor is it necessarily resid-
ually connected. But if it is, then it is a hypertope and if its automorphism group has
at most two orbits on its flags, the following theorem gives a way to check whether
this geometry is chiral or regular.

Theorem 2.4 [14, Theorem8.2]Let (G+, R) be aC+-group. Let� := �(G+, R) be
the coset geometry associated to (G+, R) using Construction 2.1. If � is a hypertope
and G+ has two orbits on the set of chambers of�, then� is chiral if and only if there
is no automorphism of G+ that inverts all the elements of R. Otherwise, there exists
an automorphism σ ∈ Aut (G+) that inverts all the elements of R and the group G+
extended by σ is regular on �.

Later in the paper, when we will build hypertopes from their C+-groups given as
finitely presented groups, we will indeed check that the corresponding incidence sys-
tem is thin and residually connected. This check is most of the time easily performed
with Magma. We will list the hypertopes obtained in tables, not mentioning those
presentations giving a C+-group that does not yield a hypertope.

2.3 B-Diagrams

Let R := {α1, . . . , αr−1} and G+ = 〈R〉 be such that (G+, R) is a C+-group. It is
convenient to represent (G+, R) by the following complete graph with r vertices
which we will call the B-diagram (short for Buekenhout) of (G+, R) and denote by
B(G+, R). The vertex set of B is the set {α0, . . . , αr−1}. The edges {αi , α j } of this
graph are labelled by o(α−1

i α j ) = o(α−1
j αi ) = o(αiα

−1
j ). We take the convention of

dropping an edge if its label is 2 and of not writing the label if it is 3. Vertices of B
are represented by small circles in order to distinguish from the vertices of a Coxeter
diagram, which represent involutions. A regular or chiral polytope can be defined
as a regular or chiral hypertope with linear Coxeter diagram, or equivalently, with
linear B-diagram.

Rank four extensions of rank three toroidal polytopes of type {6, 3}(a,b) have
been studied by Schulte and Weiss [30], Nostrand and Schulte [26] and Monson and
Weiss [25]. The rotation subgroup of the automorphism group of a rank three toroidal
polytope P := {6, 3}(a,b) is the group G+ := Aut (P)+ defined as follows.
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G+ := 〈x, y|x6, y3, (x−1y)2, (y−1x−2)a(yx2)b〉. (2.3)

The B-diagram of (G+, {x, y}) is the following.

� � �

6

α1 := x α0 := 1G+ α2 := y

Recall that the polytope above is obtained by identifying opposite sides of a
parallelogram in the tessellation of the Euclidean plane by hexagons to obtain the
map {6, 3}(a,b).

The dual of P will be the polytope P∗ := {3, 6}(a,b) with rotation group H+ :=
Aut (P∗)+ defined as follows.

H+ := 〈x, y|x3, y6, (x−1y)2, (x−1y−2)a(xy2)b〉. (2.4)

Observe that presentation (2.4) is obtained by interchanging x and y in presenta-
tion (2.3). The B-diagram of (H+, {x, y}) is the following.

� � �

6

α1 := x α0 := 1H+ α2 := y

Indeed there is no distinction between the C+-groups of a polytope and its dual.
We make the distinction when we write the B-diagram (ranking the generators).

The rotation subgroup of the automorphismgroup of a rank three toroidal polytope
P := {4, 4}(a,b) is the group G+ := Aut (P)+ defined as follows.

G+ := 〈x, y|x4, y4, (x−1y)2, (xy)a(x−1y−1)b〉. (2.5)

The B-diagram of (G+, {x, y}) is the following.

� � �

4 4

α1 := x α0 := 1G+ α2 := y

Observe that the dualP∗ ofP is {4, 4}(a,−b) = {4, 4}(b,a) as the vectors (a,−b) and
(b, a) are orthogonal (the characterisation of dual polytopes it terms of the rotational
groups can be found for instance in [29]). The rotational group for P∗ is obtained by
interchanging x with y.

The rotation subgroup of the automorphism group of a rank three toroidal hyper-
map P := (3, 3, 3)(a,b) is the group G+ := Aut (P)+ defined as follows.

G+ := 〈x, y|x3, y3, (x−1y)3, (xy−1x)a(xy)b〉. (2.6)

The B-diagram of (G+, {x, y}) is the following.
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�

�

�

����

����y

x
1W

The elements corresponding to the three possible types in a hypermap are called
hypervertices, hyperedges and hyperfaces. The dual of a hypermap is obtained inter-
changing hypervertices with hyperfaces. The dual P∗ of P is (3, 3, 3)(b,a).

3 Rank 4 Universal Locally Toroidal Hypertopes

Spherical hypertopes (in the sense of Coxeter) of rank 3 are maps (polyhedra) on
the sphere while toroidal hypertopes of rank 3 are either maps or hypermaps on
the torus. The toroidal (regular or chiral) hypertopes of rank 3 are divided into
the following families: the toroidal maps {3, 6}(b,c), {6, 3}(b,c), {4, 4}(b,c), and the
hypermaps (3, 3, 3)(b,c) with (b, c) = (1, 1). Note that the hypermap (3, 3, 3)(b,c) is
obtained from the toroidalmap {6, 3}(b,c) by doubling the fundamental region. Indeed
as {6, 3}(b,c) is bipartite it is possible to take one monochromatic set of vertices to be
the hyperedges of the hypermap (3, 3, 3)(b,c) (see [35]). But in the case (b, c) = (1, 1)
the corresponding incidence graph is a complete tripartite graph and, therefore, the
geometry is not thin (see [14]). Indeed that is the unique highly symmetric (regular
or chiral) toroidal hypermap that is not an hypertope.

Similarly to the theory of abstract regular polytopes it is possible to construct
hypertopes inductively from hypertopes of lower rank. In the case of polytopes
{P1, P2} denotes a polytope having facets isomorphic to P1 and vertex-figures iso-
morphic to P2 (see [23]). More precisely, if the set of regular polytopes having facets
P1 and vertex-figures P2, denoted by 〈P1, P2〉, is nonempty, there exists a regular
polytope that covers every other element of the set 〈P1, P2〉, that is the universal
regular polytope {P1, P2}. In addition if the automorphism group of the universal
polytope {P1, P2} is the group 〈ρ0, . . . , ρn〉, the automorphism groups of P1 and P2
are 〈ρ0, . . . , ρn−1〉 and 〈ρ1, . . . , ρn〉, respectively.

In a similarway here,we construct rank 4 regular and chiral hypertopes thatwe call
universal when the relations corresponding to each rank 3 residue of the resulting
hypertope together with the relations implicit in the B-diagram of the hypertope
determine the group.

Here we consider universal locally toroidal hypertopes of rank 4, meaning that
all residues of rank 3 are either spherical or toroidal, with at least one being toroidal.
These hypertopes are finite whenever their automorphism group is finite.

The existence of regular universal locally toroidal polytopes of rank 4 is inves-
tigated in [23], (see also [22] and [24]), moreover the authors give an enumer-
ation of finite locally toroidal universal polytopes. For the universal polytopes
{{4, 4}(b,c), {4, 4}(e, f )} a nearly complete finiteness characterisation is given, for
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{{4, 4}(b,c), {4, 3}}, {{6, 3}(b,c), {3, p}} with p ∈ {3, 4, 5} and {{6, 3}(b,c), {3, 6}(e, f )}
the enumeration is complete, and for the polytopes {{3, 6}(b,c), {6, 3}(e, f )} partial
results are known.

In [14] we also list the known finite universal chiral polytopes {{6, 3}(b,c), {3, p}}
for p ∈ {3, 4, 5} and we conjecture that the list is complete. We give this list in
Table 1.

In Fig. 1, we list the diagrams of all possible finite universal locally toroidal
hypertopes of rank 4 having nonlinear diagram (where p ∈ {3, 4, 5, 6}).

The finite universal locally toroidal hypertopes with diagram (1), when p = 6,
have only one toroidal residue that is the hypermap (3, 3, 3)(b,c), all the remaining
residues are spherical. We denote this hypertope by (3, 3, 3; p)(b,c).

In [14] we proved that when p ∈ {3, 4, 5} and (b, c) = (1, 1), the regular hyper-
tope (3, 3, 3; p)(b,c) exists (is finite) if and only if the universal regular polytope
{{6, 3}(b,c), {3, p}} exists (is finite).

In Sect. 6we consider the diagram (1)with p = 6, thatwe callhexagonal extension
of the toroidal hypermaps (3, 3, 3)(b,c). In this case there are three toroidal residues,
that explains why the case p = 6 is substantially more complex than the cases p ∈
{3, 4, 5} studied in [14].

Table 1 Known finite polytopes of type {{6, 3}s, {3, p}} with p ∈ {3, 4, 5} (having g flags)

p s g Group Chiral/Regular

3 (2, 0) 240 S5 × C2 Regular

(3, 0) 1296 [1 1 2]3 � C2 Regular

(4, 0) 15,360 [1 1 2]4 � C2 Regular

(1, 2) 336 PGL2(7) Chiral

(1, 3) 2184 L2(13) × C2 Chiral

(1, 4) 8064 SL2(7) � A4 � C2 Chiral

(2, 2) 2880 S5 × S4 Regular

(2, 3) 6840 PGL2(19) Chiral

4 (1, 1) 288 S3 � [3, 4] Regular

(2, 0) 768 [3, 3, 4] × C2 Regular

(1, 2) 2016 PGL2(7) × S3 Chiral

5 (2, 0) 28,800 [3, 3, 5] × C2 Regular

Fig. 1 Possible nonlinear
diagrams of rank 4 universal
locally toroidal hypertopes,
where p ∈ {3, 4, 5, 6}
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In Sect. 7 we deal with the finite universal polytopes with diagram (2) and in
Sect. 8 with the universal hypertopes of diagram (3). The universal locally toroidal
regular hypertopes with diagram (4) can be obtaining from the regular universal
locally toroidal polytope of type {4, 4, 3}. Indeed each of them admits a correlation
τ as shown in the following figure.

◦ 4��
�

τ � ◦ ◦ ◦ 4 ◦ 4 ◦ ◦
◦ 4

���

In the case that the toroidal residue is the map {4, 4}(s,0) satisfying a relation
(ρ0ρ1ρ2ρ1)

s = 1 (the central vertex of the B-diagram being ρ1), adding the auto-
morphism τ , such that ρτ

2 = ρ0 (and fixing the remaining generators), we get the
automorphism group of {{4, 4}(s,s), {4, 3}} (generated by ρ0, ρ1 and τ ). Indeed apart
from the relations corresponding to the type {4, 4, 3} we get (ρ0ρ1ρ

τ
0ρ1)

s = 1. If
the toroidal residue is {4, 4}(s,s) satisfying a relation (ρ0ρ1ρ2)

2s = 1 then adding the
automorphism τ we obtain the group of {{4, 4}(2s,0), {4, 3}}. Thus all regular uni-
versal locally toroidal hypertopes of this type are determined by the correspondent
universal locally toroidal regular polytope of type {4, 4, 3}.

The universal locally toroidal regular hypertopes with diagram (5) also admit a
correlation.

◦
��

� ◦ 4��
�

τ � ◦
4 ���

4
��

� ◦ ◦ ◦
◦

��� ◦ 4
���

Computer experiments suggest that using this correlation, we get hypertopes. The
hypertopes with this diagram and toroidal residue {4, 4}(s,0) can be derived from the
universal locally toroidal hypertopes with diagram (4) and toroidal residue {4, 4}(s,s)
(indeed if ρ1 corresponds to the middle vertex of the toroidal residue, (ρ0ρ1ρ2ρ1)

s =
1, ρτ

0 = ρ2 and ρτ
1 = ρ1, conjugating (ρ0ρ1ρ2ρ1)

s = 1 by τ we get (ρ2ρ1τ)2s =
1). The hypertopes with diagram (5) and toroidal residue {4, 4}(s,s) can be derived
from the universal locally toroidal hypertopes with diagram (4) and toroidal residue
{4, 4}(2s,0). Again the regular universal locally toroidal hypertopes of these types are
determined.

The universal locally toroidal regular hypertopes with diagram being a tetrahe-
dron, as in (6), have four toroidal residues (hypermapsof type (3, 3, 3)) corresponding
to the four faces of the tetrahedron. The case with all toroidal residues being regular
hypermaps of type (3, 3, 3) is completely studied in [23], where this diagrams are
denoted by T4(q1, q2, q3, q4) with reflexion group G(q1, q2, q3, q4). The results are
summarised in the following theorems.

Theorem 3.1 [23, Theorem 9E14] G(s, s, q, q) is finite if and only if s = 2 and
q ∈ {2, 3, 4} (up to an interchange of s and q).
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Theorem 3.2 [23, Theorem 9E15] G(q1, q2, q3, q4) is infinite in at least the follow-
ing cases:

(1) p|q1, . . . , q4 for some p ≥ 3;
(2) p|q1 and 3p|q2, q3, q4 for some p ≥ 2.

Theorem 3.3 [23, Theorem 9E17] The group G(q1, q2, q3, q4) with (q1, q2) ∈
{(q1, 3), (3, q2), (4, 4), (4, 5), (5, 4)} and (q3, q4) ∈ {(q3, 3), (3, q4), (4, 4), (4, 5),
(5, 4)} is infinite except when (q1, q2, q3, q4) = (q1, 3, 3, 2) (up to an interchange of
the pairs (q1, q2) and (q3, q4)).

The remaining possibilities for a universal locally toroidal hypertopewith diagram
being a tetrahedron will be studied in future work, as well as the locally toroidal
polytopes with diagrams (7), (8), (9) and (10).

4 Locally Toroidal Regular and Chiral Polytopes of Type
{6, 3, 6}

Branko Grünbaum first posed the question of classifying regular locally toroidal
polystromas in 1977 (see [16]). About the same time Coxeter and Shephard inde-
pendently constructed in [10] such an object. Several attempts have been made at the
classification, including Colbourn and Weiss who produced a computer-generated
list of regular and chiral examples of all possible types (see [2]). In 2002 McMullen
and Schulte in [24] succeeded in classifying all finite regular locally toroidal univer-
sal polytopes with Schläfli symbol {6, 3, p} for p = 3, 4, 5 and 6 (see [22, 24], and
also Chap.11 of [23]). In [14], we present their classification and in addition provide
a list of chiral polytopes with p ≤ 5, for which we conjecture to be complete. Each
such regular polytope is associated with a honeycomb of the hyperbolic 3-space.
Since the horosphere is isomorphic to the euclidean plane, one can tesselate it by
regular hexagons, three meeting at a vertex, to obtain a regular polytope embedded in
a horosphere. The vertex figures of {6, 3, p} for p = 3, 4, 5 are spherical polyhedra
isomorphic to the tetrahedron, octahedron and icosahedron respectively. The size of
each of these polyhedra is determined by the dihedral angle which has to be 2π

p in
order that p facets fit around an edge without overlap. The facets of the hyperbolic
honeycombs are therefore horospherical honeycombs {6, 3} centered at the absolute.
All the vertices of the honeycomb are (finite) points of the hyperbolic space. When
p = 6, the vertices of the honeycomb {6, 3, 6} also belong to the absolute. Hence
there are no vertices of this honeycomb that belong to the hyperbolic space (but all
the edges are there).

McMullen and Schulte used twisting operations on quotients of certain Coxeter
groups that are associated with complex hermitian forms. Their results [23, Chap.11]
on existence of finite universal polytopes of type {6, 3, 6} are summarised in Table 2.
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Table 2 Finite regular polytopes of type {{6, 3}s, {3, 6}t}
s t g Group

(2, 0) (2, 0) 480 S5 × 22

(2, 0) (3, 0) 2592 D12 × S3 × S3 : S3
(2, 0) (4, 0) 30,720 21+6 : (S5 × 2)

(2, 0) (2, 2) 5760 S5 × 23 : S3
(s, 0) with s ≡ 0 mod 3 (1, 1) 72s2 S3 : [3, 6](s,0)
(s, s) with s ≥ 1 (1, 1) 216s2 S3 : [3, 6](s,s)

UsingMagma, we construct several new finite universal chiral polytopes of this
type and we present our results in Table 3. In fact, only the first two polytopes
appearing in this table were previously known.We conjecture this list to be complete.

Consider the Coxeter diagram with usual generators ρi (i = 0, . . . , 3) as follows.

� � � �

6 6

ρ0 ρ1 ρ2 ρ3

It gives the Coxeter group W := [3, 6, 6]. Its rotational subgroup W+ =
〈α1, α2, α3〉 with distinguished generators

α0 = 1W ; α1 = ρ1ρ0; α2 = ρ1ρ2; α3 = ρ1ρ3.

is a C+-group. We now write the B-diagram associated to (W+, {α1, α2, α3}) as
follows.

� � � �

6 6

α1 α0 = 1W α2 α3

Given the base flag C of the universal polytope {6, 3, 6} such that ρi (C) = Ci ,
(i = 0, . . . , 3), it follows that α1(C) = (C1)0, α2(C) = (C1)2 and α3(C) = (C1)3.

The automorphismgroups of the polytopes of Tables 2 and 3 are obtained using the
following presentation where x := α1, y := α2, z := α3, s = (a, b) and t = (c, d).

G+ := 〈x, y, z|x6, y3, z2, (x−1y)2, (y−1z)6, (zx)2, (y−1x−2)a(yx2)b, (y(zy)2)c(yzy−1z)d 〉

Note that, when the polytope is regular, the presentation above gives the rotational
subgroup of the full automorphism group.

Extending the methods that were developed in [14], in Sect. 6 we will look at
hypertopes with a nonlinear diagram, arising from these groups.



160 M. E. Fernandes et al.

Table 3 Known finite chiral polytopes of type {{6, 3}s, {3, 6}t}
s t g Group

(1, 2) (1, 2) 1344 2 · L2(7) : 2 : 2
(1, 2) (2, 1) 2060 2 · A7 : 2 : 2
(2, 0) (1, 2) 672 L2(7) : 2 × 2

(2, 0) (1, 3) 368 L2(13) × 2 × 2

(2, 0) (1, 4) 1628 Q8 · (L2(7) × 2) : S3
(2, 0) (2, 3) 1380 L2(19) : 2 × 2

5 Polytopes of Type {3, 6, 3}

As for the polytopes of the previous section, the polytopes of type {3, 6, 3} have also
been studied is several articles and in [23].We refer to [23, Sect. 11E] formore details.
We now consider the polytopes of type {{3, 6}(a,b), {6, 3}(c,d)}. We use the following
B-diagram, where x , y and y−1z are rotations generating the infinite Coxeter group
[3,6,3].

� � � �

6

zx 1W y

The type {3, 6} residues, given by the facets and vertex-figures, may be noniso-
morphic. Thus we need four parameters a, b, c, d giving two additional relations
in the following presentation for the rotation subgroup of the automorphism group
G. The automorphism groups of the polytopes of Table 4 are obtained using the
following presentation where s = (a, b) and t = (c, d).

G+(a, b, c, d) := 〈x, y, z|x3, y6, z2, (x−1z)2, (y−1z)3, (x−1y)2,

(x−1y−2)a(xy2)b, (zy3)c(y−1zy−2)d〉

We found several new universal hypertopes compared to Table1 of [2]. In the
regular case, lines 5 and 7 are not in [2], but they can be found in Table 11E1 of [23],
line 8 of Table 4 is new. In the chiral case, all but the last two are new.

6 Hexagonal Extensions of Toroidal Hypermap (3, 3, 3)

In this section, aswe did in [14], startingwith theCoxeter group [3, 6, 6]with diagram

� � � �

6 6

ρ0 ρ1 ρ2 ρ3
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Table 4 Known finite regular and chiral universal polytopes of type {{3, 6}s, {6, 3}t}
s t g Group

(2, 0) (2, 0) 240 A5 : 2 × 2 Regular

(2, 0) (6, 0) 720 S5 × S3 Regular

(3, 0) (3, 0) 2916 31+2 × 3 : S3 : S3 Regular

(3, 0) (4, 0) 241,920 Aut (L3(4)) Regular

(3, 0) (1, 1) 324 31+2 : 2 : S3 Regular

(3, 0) (2, 2) 41,472 21+6 : 32 : S3 : S3 Regular

(1, 1) (1, 1) 108 31+2 : 22 Regular

(2, 2) (2, 2) 13,271,040 25+6 : A5 × 3 : S3 : S3 Regular

(3, 0) (1, 3) 33,696 L3(3) : S3 Chiral

(4, 0) (1, 2) 12,096 U3(3) : 2 Chiral

(6, 0) (1, 2) 756,000 U3(5) : S3 Chiral

(1, 2) (3, 6) 2016 2 · L2(7) : S3 Chiral

(1, 2) (4, 4) 36,288 U3(3) : S3 Chiral

(1, 2) (6, 6) 2,268,000 3 ·U3(5) : S3 Chiral

(3, 5) (2, 1) 672 2 · L2(7) : 2 Chiral

(1, 4) (2, 1) 2016 2 · L2(7) : S3 Chiral

(1, 2) (1, 2) 672 2 · L2(7) : 2 Chiral

we double the fundamental region so that the resulting involutory generators give
us the following Coxeter group that is of index two in [3, 6, 6].

�

� �

�����

����

ρ
ρ0
1

ρ1

ρ2 ρ3

6

In the geometry constructed from this group, all rank three residues with con-
nected diagrams are either Euclidean tessellations of horospheres of type {3, 6} (up
to duality) or hypermaps of type (3, 3, 3). We denote by [(3, 3, 3), 6] the Coxeter
group having this diagram.

In order to construct a finite hypertopeHwhose residues could be chiral, we con-
sider the rotation subgroup W+ := [(3, 3, 3), 6]+ of the group W := [(3, 3, 3), 6].
The B-diagram of W+ is as follows, where x , y and z are rotations generating this
infinite group.

�

� �

�

����

����
6

y

x
1W z
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In H the two type {3, 6} residues may be nonisomorphic, and in that case they
cannot be obtained from the polytopes of type {{6, 3}s, {3, 6}t } as described before.
To describe all regular and chiral hypertopes with the B-diagram above we need six
parameters a, b, c, d, e, f giving three additional relations in the following presen-
tation for the rotation subgroup of G := Aut(H).

G+(a, b, c, d, e, f ) := 〈x, y, z|x3, y3, z6, (x−1z)2, (y−1z)2, (x−1y)3,

(yx−1y)a(yx)b, (y−1z−2)c(yz2)d , (x−1z−2)e(xz2) f 〉

where the subgroup 〈x, z〉 acts on a polytope of type {3, 6}(e, f ), 〈y, z〉 acts on a poly-
tope of type {3, 6}(c,d), and 〈x, y〉 acts of a hypermap of type (3, 3, 3)(a,b). We say
thatH has type {(3, 3, 3)s, 6}where s = (a, b). If there exists a correlation δ of order
two fixing z and interchanging x and y, the residues {3, 6}(e, f ) and {3, 6}(c,d) are iso-
morphic and therefore (c, d) = (e, f ). The automorphism groups of the hypertopes
of Table 5 are obtained using the presentation above.

Table 5 Known finite universal hypertopes of type {(3, 3, 3)s , 6}
(a, b) (c, d) (e, f ) g G Regular/Chiral

(2, 0) (2, 0) (2, 0) 240 S5 × 2 Regular

(2, 0) (3, 0) (3, 0) 1296 S3 × S3 × S3 : S3 Regular

(2, 0) (4, 0) (4, 0) 15,360 21+6 : (A5 : 2) Regular

(2, 0) (6, 0) (2, 2) 2880 S5 × 22 : S3 Regular

(3, 0) (2, 0) (2, 0) 1296 6 : S3 : S3 : S3 Regular

(3, 0) (2, 0) (3, 0) 13,824 21+6 : 3 : S3 : S3 Regular

(3, 0) (2, 0) (4, 0) 165,888 21+6 : 6 : S3 : S3 : S3 Regular

(3, 0) (2, 0) (5, 0) 2,592,000 2 · (A5 × (A5 × A5)) : 3 : 2 Regular

(3, 0) (2, 0) (2, 2) 3888 S3 × 3 : S3 : S3 : S3 Regular

(3, 0) (2, 0) (4, 4) 248,832 21+6 : (3 : S3 : S3 : 3) : S3 Regular

(3, 0) (3, 0) (1, 1) 972 31+2 : 6 : S3 Regular

(3, 0) (1, 1) (1, 1) 324 32 × S3 : S3 Regular

(3, 0) (1, 1) (3, 3) 2916 31+2 × 3 : S3 : S3 Regular

(3, 0) (2, 2) (2, 0) 3888 S3 × 3 : S3 : S3 : S3 Regular

(4, 0) (2, 0) (2, 0) 15,360 4 · (24 : A5) : 2 × 2 Regular

(2, 0) (1, 2) (2, 1) 336 L2(7) : 2 Chiral

(2, 0) (1, 3) (2, 5) 2184 L2(13) × 2 Chiral

(2, 0) (1, 4) (1, 2) 336 L2(7) : 2 Chiral

(2, 0) (1, 4) (3, 6) 8064 Q8 · L2(7) : S3 Chiral

(2, 0) (2, 3) (3, 2) 6840 L2(19) : 2 Chiral

(3, 0) (1, 2) (1, 2) 275,562 32+6 : 7 : 3 : 2 Chiral
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7 Nonlinear Hexagonal Extensions of the Tetrahedron

We now consider a hypertopeH with the following B-diagram, where x , y and z are
rotations generating the corresponding C+-group.

�

� �

�

����

����
6

y

x
1W z

In H the two type {3, 6} residues may be nonisomorphic. Thus we need four
parameters a, b, c, d giving two additional relations in the following presentation
for the the rotation subgroup of G := Aut(H).

G+(a, b, c, d) := 〈x, y, z|x3, y3, z6, (x−1z)2, (y−1z)2, (x−1y)2,

(y−1z−2)a(yz2)b, (x−1z−2)c(xz2)d〉.

The automorphism groups of the hypertopes of Table 6 are obtained using this pre-
sentation where s = (a, b) and t = (c, d).

There is an infinite family of regular locally toroidal hypertopeswith the following
Coxeter diagram having toroidal rank 3 residues {3, 6}(2,0) and {3, 6}(s,0) with s ≥ 3.

• •
6

•

•

Table 6 Known finite universal hypertopes of type (2) in Fig. 1, with s = (a, b) and t = (c, d)

s t g G

(2, 0) (2, 0) 384 21+4 × 2 : S3 Regular

(2, 0) (3, 0) 1296 S3 × S3 × S3 : S3 Regular

(2, 0) (4, 0) 3072 21+6 : 22 : S3 Regular

(2, 0) (5, 0) 6000 53 : 2 : 2 : 2 : S3 Regular

(2, 0) (6, 0) 10,368 23 : S3 : S3 : S3 : S3 Regular

(3, 0) (1, 1) 144 S3 × 22 : S3 Regular

(6, 0) (1, 1) 576 24 : S3 : S3 Regular

(3, 0) (1, 3) 58,968 L2(27) : 3 : 2 Chiral

(1, 2) (1, 2) 2688 26 : 7 : 3 : 2 Chiral

(1, 2) (2, 1) 1008 L2(7) × 3 : 2 Chiral

(1, 2) (3, 1) 58,968 L2(27) : 3 × 2 Chiral
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This family of hypertopes can be obtained from the cubic toroids {4, 3, 4}(s,s,0)
whose automorphism group G is the Coxeter group [4, 3, 4] = 〈ρ0, ρ1, ρ2, ρ3〉 fac-
torized by the single extra relation (ρ0ρ1ρ2ρ3ρ2)

2s (see p.168 of [23]). First consider
the hypertope that is obtain from {4, 3, 4}(s,s,0) using the Petrie operation defined
by the correspondence α0 �→ ρ0, α1 �→ ρ1, α2 �→ ρ2 and α3 �→ ρ1ρ3. We obtain a
C-group with the following diagram and the extra relations (α0α1α2α1α3α2)

2s and
(α1α2α3)

4 = 1.

◦ 6

4

◦

◦
4

◦

Now if we take the index 2 subgroup ofG, 〈αα0
1 , α1, α2, α3〉, we obtain a nonlinear

hexagonal extention of the tetrahedron, with residues {3, 6}(2,0) and {3, 6}(s,0) and
order 48s3. In summary, these hypertopes are constructed from {4, 3, 4}(s,s,0) using
a Petrie operation and then doubling the fundamental region of the Petrial.

It is interesting to see how we can obtain a permutation representation of the
group of these locally toroidal hypertopes combining the permutation representation
graphs of {3, 6}(2,0) and {3, 6}(s,0). For a better understanding about permutation
representation graphs of polytopes, called CPR graphs see [27]. Let us first consider
the case s even. We claim that the permutation representation graph of {3, 6}(s,0) is

• 2 •
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when s is even and s ≥ 4, where the number of alternating squares of the permutation
representation graph is s/2. Letα = ρ0ρ1ρ2ρ1ρ2ρ1. To show thatαs = 1 observe that
α acts as a translation on the vertices of the permutation representation graph such
that αs fixes all vertices of the permutation representation graph (see the following
figure where s = 6).

•
α

��

2
��

��0
��
��

•0
��
��

α��
2
��

��0
��
��

• 2
��

��0
��
��

α��

•
α

��
1

•

α

��•

α

��
1

•
α

��
2

•
α

��
1

•

α

��•

α

��
1

•
α

��
2

•
α

��
1

•

α

		•

α

��
1

•
α





• 0

����2

����

α

��• 0

����2

����

α

��•
α

��

0

����2

����



Hexagonal Extensions of Toroidal Maps and Hypermaps 165

The size of the automorphism group of {3, 6}(s,0) is 12s2. Let us prove that 12s2 is
also the size of 〈ρ0, ρ1, ρ2〉. Consider the first point x on the left of the permutation
representation graph above. The group generated by α, ρ0 and ρ2 is in the stabiliser
of x and has order 4s (as αρ0 = α−1, αρ2 = α and α0 commute with α2). The per-
mutation representation graph has 3s vertices and 〈ρ0, ρ1, ρ2〉 acts transitively on
it. Hence |〈ρ0, ρ1, ρ2〉| ≥ 4s · 3s = 12s2. Hence the graph above is a permutation
representation graph of the automorphism group of {3, 6}(s,0).

When s is odd it can be shown that the permutation representation graph of
{3, 6}(s,0) is as follows.
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The number of alternating squares of the permutation representation graph is s−1
2 .

The proof that this graph is a permutation representation graph of the automorphism
group of {3, 6}(s,0) when s is odd is similar to the proof in the case s even.

To obtain the permutation representation graph of the infinite family of locally
toroidal hypertopes with residues {3, 6}(2,0) and {3, 6}(s,0) we combine the respective
permutation representation graphs and we obtain the following graphs when s ≥ 3
accordingly as if s is even or odd.
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To prove that this is the group G generated by the permutations ρ0, ρ1, ρ2 and ρ3

and that this group has order 48s3, consider the vertex x on the left in each of the
permutation representation graphs. The stabilizer of x contains the group generated
by ρ0, ρ1 and ρ2, of size 12s2, and G is transitive on the 4s vertices of the graph.
Thus |G| ≥ 48s3.

Observe that lines 6 and 7 of Table 6 might suggest there could be a similar
infinite family of regular locally toroidal hypertopes with diagram having toroidal
rank 3 residues {3, 6}(1,1) and {3, 6}(s,0) with s ≡ 0 mod 3. A check with Magma
shows that the same groups appear in that case for s ≡ 0 mod 6 and for s ≡ 3
mod 6 with s < 100.
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8 4-Circuits with Hexagonal Residues

We now consider a hypertopeH with the following B-diagram, where x , y and z are
rotations generating the corresponding C+-group and p = 3, 4, 5, 6.

�

� �

�

6 p

x

y1W

z

InH the two type {3, 6} residues may be nonisomorphic. Thus when p = 3, 4 or
5, we need four parameters a, b, c, d giving two additional relations in the follow-
ing presentation for the the rotation subgroup of G := Aut(H). The automorphism
groups of the hypertopes of Table 7 are obtained using the following presentation
where s = (a, b) and t = (c, d).

G+(a, b, c, d) := 〈x, y, z|x6, y3, z2, (zx)3, (zy)p, (x−1y)2,

(y−1x−2)a(yx2)b, (zx3)c(x−1zx−2)d〉.

Observe that no chiral universal hypertope was found for p = 4 with s, t ∈
{{s, 0}, {s, s}, {s, t}|s, t ∈ {1, . . . , 6}}. Observe also that no universal hypertope
(either regular or chiral) was found for p = 5 with s, t ∈ {{s, 0}, {s, s}, {s, t}|s, t ∈
{1, . . . , 6}}.

When p = 6, we need eight parameters a, b, c, d, e, f, g, h giving four additional
relations in the following presentation for the the rotation subgroup ofG := Aut(H).
The automorphism groups of the hypertopes of Table 8 are obtained using the fol-
lowing presentation where s = (a, b), t = (c, d), u = (e, f ) and v = (g, h).

G+(a, b, c, d, e, f, g, h) := 〈x, y, z|x6, y3, z2, (zx)3, (zy)6, (x−1y)2,

(y−1x−2)a(yx2)b, (zx3)c(x−1zx−2)d , (x−1z(y−1z)2)e(zx(zy)2) f , (y(zy)2)g(y−1(yz)2)h〉.

Table 7 Knownfinite universal hypertopes of type (3) in Fig. 1with p = 3, 4, s = (a, b), t = (c, d)

p s t #G G

3 (3, 0) (1, 1) 360 A5 : S3 Regular

(6, 0) (1, 1) 23040 24 : A5 : 2 : 2 : S3 Regular

(1, 2) (1, 1) 1512 L2(8) : 3 Chiral

(1, 4) (1, 1) 90720 L2(8) × A5 : 3 Chiral

(2, 4) (1, 1) 774144 29 · L2(8) : 3 Chiral

4 (2, 0) (1, 1) 4320 A6 : 2 × S3 Regular

(1, 1) (1, 1) 3456 21+4 : 3 : S3 : S3 Regular



Hexagonal Extensions of Toroidal Maps and Hypermaps 167

Table 8 Known finite universal hypertopes of type (3) in Fig. 1 with p = 6, s = (a, b), t = (c, d),
u = (e, f ), v = (g, h)

s t u v #G G

(2, 0) (1, 1) (s, s) (2, 0) 1152s4 s4 : 21+4 : S3 : S3 Regular

(2, 0) (2, 0) (1, 1) (3, 0) 720 A5 × 2 : S3 Regular

(2, 0) (2, 0) (1, 1) (6, 0) 46,080 24 : A5 : 2 × 2 : 2 : S3 Regular

(2, 0) (1, 1) (4, 0) (3, 0) 165,888 21+6 : S3 : S3 : S3 : S3 Regular

(3, 0) (2, 0) (1, 1) (2, 0) 1296 S3 × S3 × S3 : S3 Regular

(3, 0) (2, 0) (1, 1) (3, 0) 13,824 21+6 : 3 : S3 : S3 Regular

(3, 0) (2, 0) (1, 1) (4, 0) 165,888 21+6 : S3 : S3 : S3 : S3 Regular

(3, 0) (2, 0) (1, 1) (5, 0) 5,184,000 2 · (A5 × (A5 × A5)) : 2 : S3 Regular

(2, 0) (1, 2) (1, 1) (6, 0) 15,120 3 × S7 Chiral

(2, 0) (1, 2) (1, 2) (2, 0) 352,800 L2(49) × 3 : 2 Chiral

(2, 0) (1, 2) (1, 1) (0, 3) 7,620,480 S7 × (L2(8) : 3) Chiral

We give several universal hypertopes with the help ofMagma. These let us conjec-
ture that two infinite families of finite locally toroidal hypertopes arise.

For each integer s ≥ 1, the quotient Ts of the Coxeter group [3, 3, 4, 3] with
diagram

� � � � �

4

ρ0 ρ1 ρ2 ρ3 ρ4

and additional relations
(ρ0ρ1(ρ2ρ3ρ4)

3)2s = 1W

is the automorphism group of the rank 5 toroid {3, 3, 4, 3}(s,0,0,0) (see [23, Sect. 6E]).
The subgroup of Ts generated by

τ0 := ρ1, τ1 := ρ2, τ2 := ρ1ρ3, τ3 := ρ0ρ4

is the automorphism group of the regular hypertope with diagram

�

� �

�

6 6

τ3

τ1τ0

τ2

In fact, ρ4 = (τ0τ3)
3 and therefore ρ0 = (τ0τ3)

2τ0 yielding that Ts = 〈τ0, τ1,
τ2, τ3〉. This suggests a correspondence between {3, 3, 4, 3}(s,0,0,0) and the infinite
family of finite hypertopes mentioned in the first line of Table 8.
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Lines 5 to 8 of Table 8 also suggest the existence of an infinite family of finite
hypertopes but we are unable to conjecture what will be the size of the automorphism
group and what will be its structure. This is Problem 9.2 included in the next section.

9 Future Work and Open Problems

The basic theory of highly symmetric hypertopes was recently established in [14]
but very few universal hypertopes were given. This paper, in a way, supplements it
with numerous particularly interesting universal hypertopes. In each case, given a
B-diagram and preassigned residues we establish the existence of the corresponding
universal hypertope by checking the conditions established in [14]. Extensions of
regular or chiral maps {4, 4}(b,c) will give a hypertope whose residues are not all
either spherical or toroidal. For instance, {{4, 4}(4,0), {4, 6}3} gives a finite group of
order 768. The {4, 6}3 is non-orientable of genus 4. We decide not to study this case
here but this case is definitely interesting for future research. Other similar hexagonal
extensions include [3, 6, 6] and a star diagram with labels (4, 4, 6).

We conclude this paper with some open problems and conjectures.

Problem 9.1 Can Theorem 2E17 of [23] be generalised to regular and chiral hyper-
topes?

Problem 9.2 Determine whether or not lines 5 to 8 of Table 8 are part of an infinite
family of hypertopes with (s, t,u, v) = ((3, 0), (2, 0), (1, 1), (s, 0)) with s ≥ 2 an
integer.

Conjecture 9.1 Table 3 gives a complete list of finite universal chiral polytopes of
type {6, 3, 6}.
Conjecture 9.2 There are no finite universal chiral hypertopes with the following
diagram.

�

� �

�

6 4

Conjecture 9.3 There is no finite universal regular or chiral hypertope with the
following diagram.

�

� �

�

6 5
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Noncongruent Equidissections
of the Plane

D. Frettlöh

Abstract Nandakumar asked whether there is a tiling of the plane by pairwise
non-congruent triangles of equal area and equal perimeter. Here a weaker result is
obtained: there is a tiling of the plane by pairwise non-congruent triangles of equal
area such that their perimeter is bounded by some common constant. Several variants
of the problem are stated, some of them are answered.

Keywords Tilings · Equipartitions

1 Introduction

There are several problems in Discrete Geometry, old and new, that can be stated
easily but are hard to solve. Tilings and dissections provide a large number of such
problems, see for instance [1, Chapter C]. On his blog [3], R. Nandakumar asked in
2014:

Question 1 “Can the plane be filled by triangles of same area and perimeter with
no two triangles congruent to each other?”

His webpage [3] contains several further interesting problems of this flavour. The
main result of this paper, Theorem 2, answers a weaker form of the question above
affirmatively. Section 4 is dedicated to the statement and the proof of this result,
together with its analogues for quadrangles, pentagons and hexagons. Section 3
formulates several variants of this problem and gives a systematic overview. Section 2
contains some basic observations and a first result on a similar result for quadrangles.
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1.1 Notation

A tiling of R2 is a collection {T1, T2, . . .} of compact sets Ti (the tiles) that is a
packing ofR2 (i.e., the interiors of distinct tiles are disjoint) aswell as a covering ofR2

(i.e. the unionof the tiles equalsR2). In general, tile shapesmaybepretty complicated,
but for the purpose of this paper tiles are always simple convex polygons. A tiling is
called vertex-to-vertex, if the intersection of any two tiles is either an entire edge of
both tiles, or a point, or empty. A tiling T is locally finite if any compact set in R

2

intersects only finitely many tiles of T . A tiling T is normal if there are R > r > 0
such that (1) each tile inT contains some ball of radius r , and (2) each tile is contained
in some ball of radius R. By [2, 3.2.1] we have that each normal tiling is locally finite.

2 Basic Observations

In Question 1 above, “filled” is to be understood in the sense that the plane is covered
without overlaps. In other words: is there a tiling of the plane by pairwise noncon-
gruent triangles all having the same area and the same perimeter? If one tries to find
a solution one realises that the problem seems to be highly overdetermined. One
possibility to relax the problem is to drop the requirement on the perimeter. So one
may ask “Is there a tiling of the plane by pairwise noncongruent triangles all having
the same area?” It is not too hard to find examples. One possibility is to partition the
plane into half-strips and divide these half-strips into triangles, as shown in Fig. 1.

The image indicates how to fill the right half-plane by half-stripsmade of triangles.
By choosing the widths of the half-strips appropriately all triangles can be made
distinct. In particular, the first half-strip contains countably many distinct triangles,
as well as the second one. For the width of the second half-strip one has uncountably
many possibilities to choose from. Hence there is a width of the second half-strip that

Fig. 1 Tiling of the plane by
pairwise non-congruent
triangles of unit area. The
perimeters of the triangles
are unbounded. Moreover,
the tiling is not locally finite
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Fig. 2 Tiling of the plane by pairwise non-congruent triangles of area 1
2

avoids that among the countably many triangles of the first and the second half-strip
two triangles are congruent. In the same manner one can choose the width of the
third, fourth, …n-th …half-strip avoiding that two congruent triangles occur.

The left half-plane can be filled in an analogous manner. Anyway, this tiling is
not locally finite: the upper vertex of any half-strip is contained in infinitely many
triangles. So one may ask “Is there a locally finite tiling of the plane by pairwise
noncongruent triangles of unit area?” Even in this stronger form the question was
already answered by R. Nandakumar. The image in Fig. 2 shows a solution, see
also [4]. The idea is to dissect the upper right quadrant into triangles of area 1

2 by
zigzagging between the horizontal axis and the vertical axis. (Here we prefer to use
area 1

2 rather than one, because the particular coordinates given in Fig. 2 become
nicer. For “area 1” just multiply everything with

√
2) The triangles become very

long and thin soon. Nevertheless they are filling the quadrant. For the remaining three
quadrants one uses an analogous construction, perturbing the coordinates slightly.
(For instance, stretch a copy of the first quadrant by some irrational factor q > 1 in
the horizontal direction and shrink it by 1

q in the vertical direction. See [4] for an
alternative, more detailed explanation.) This tiling is locally finite. Nevertheless, this
example is not really satisfying. More precisely, this tiling is not normal, since in this
solution the perimeters of the triangles become arbitrary large. (Hence the inradii
become arbitrary small). So it seems natural to ask:

Question 2 “Is there a normal tiling of the plane by pairwise noncongruent triangles
of unit area?”

This question was already asked by Nandakumar, in the formwhether there is a tiling
of the plane by pairwise noncongruent triangles all having unit area such that the
perimeter of the triangles is bounded by some common constant. Theorem 2 below
answers this question affirmatively.

One possible approach to find a solution is the following. If one can partition a set
S ⊂ R

2 into triangles of unit area such that (1) S tiles the plane, and (2) all triangles
in S can be distorted continuously, in a way such that any two triangles in S are
distinct (but still having unit area), this solves the problem. We will illustrate this
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Fig. 3 Partitioning a square
into 4 distinct quadrangles of
equal area. There are
uncountably many
possibilities for such a
dissection

x

y
1

2

3

4

y

y

y

concept (where “triangle” is replaced by “quadrangle”) in the proof of the following
result.

Theorem 1 There is a normal tiling of the plane by pairwise non-congruent convex
quadrangles of unit area.

Proof Consider a square Q of edge length 2. Let x ∈ Q be a point such that (1) for
the distance d of x to the centre of Q holds 0 < d < 1

10 , and (2) x is neither contained
in the diagonals of Q nor in the line segments connecting mid-points of opposite
edges of Q. Let y1 be a point on the boundary of Q such that for the distance d ′ of
y to the mid-point of the edge containing y1 holds 0 < d ′ < 1

10 .
The choice of x and y1 determines three further unique points y2, y3, y4 on the

boundary of Q such that the line segments xyi (1 ≤ i ≤ 4) partition Q into four
quadrangles of unit area. By the choice of x , avoiding the mirror axes of Q, it can
always be achieved that all quadrangles in a single partition of Q are distinct. (In
fact the author believes that no two congruent quadrangles can occur in a partition
where x is not contained in the mirror axes of Q, but this might be tedious to prove.
Here we prefer rather to use the free parameters to achieve that all quadrangles are
distinct.) Fig. 3 indicates such a partition.

The two coordinates determining x can be changed continuously within a small
range independently, yielding two free parameters. One coordinate of y1 can be
changed continuously, too, within some small range. Hence we obtain the desired
tiling as follows: Tile the plane R2 with copies of the square Q. Dissect each copy
of Q into four quadrangles of area 1, in some order. In each dissection, choose x and
y1 such that the resulting quadrangles have not shown up earlier in the construction.
This is always possible since, in each step, there are only finitely many quadrangles
constructed already, whereas there are uncountably many choices for x and y1.

At this point it becomes obvious thatQuestions 1 and 2 lead to several variants. The
example in the proof above yields a normal tiling, but in general not one that is vertex-
to-vertex. One may ask the questions for triangles, for quadrangles, for pentagons,
and in each casewith orwithout requiring “equal perimeter”, or “normal”, or “vertex-
to-vertex”. The next section aims to give a systematic overview of the questions.
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3 Variants of the Problem

The general property we will require throughout the paper is that a tiling consists of
convex tiles of unit area such that all tiles are pairwise non-congruent. The tiles can be
triangles (as in the original question), but also quadrangles, rectangles, pentagons or
hexagons.Wemay or may not require additionally that all tiles have equal perimeter,
or that the perimeter is bounded by some common constant, or that the tilings are
normal, or just locally finite. Furthermore, it may be possible to construct a tiling
analogous to the proof of Theorem 1, that is, by tiling a tile S in infinitely many
ways, where S in turn can tile the plane. The connections between these properties
is shown in the following diagram.

equal perimeter ⇒
tiling a tile ⇒

}
perimeter is bounded ⇔ normal ⇒ locally finite (1)

For instance, Eq. (1) tells that if there is tiling obtained by tiling a tile S in infinitely
manyways, then the perimeters of the tiles in this tiling are bounded by some common
constant. In turn, the latter is equivalent to the tiling being normal (since all tiles are
convex and have unit area), which in turn implies (by [2, 3.2.1]) that the tiling is
locally finite.

These implications help to give anoverviewof the several variants of the questions.
The following tables list, for each of the cases of triangles, convex quadrangles,
convexpentagons, and convexhexagons,whether there is some tiling known fulfilling
the properties in Eq. (1), and whether there is such a tiling that is even vertex-to-
vertex. Because of the implications in Eq. (1), if there is “yes” in some column, then
the entries above in the same column contain also a “yes”.

Note that “not vtv” is usually a weaker condition than “vtv”, but a tiling by convex
hexagons that is not vtv is much harder to find than one that is vtv.

Table 1 Several variants of the problem of noncongruent equidissections. Entries with “yes” or
“no” are proven in the text, entries with “?” are still open

Triangles vtv Not vtv Quadrangles vtv Not vtv

Locally finite ? Yes Locally finite Yes Yes

Bounded perimeter ? Yes Bounded perimeter Yes Yes

Tiling a tile ? ? Tiling a tile Yes Yes

Equal perimeter No ? Equal perimeter ? ?

Pentagons vtv Not vtv Hexagons vtv Not vtv

Locally finite ? Yes Locally finite Yes ?

Bounded perimeter ? Yes Bounded perimeter Yes ?

Tiling a tile ? Yes Tiling a tile Yes ?

Equal perimeter ? ? Tiling a tile Yes ?
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Theorem 1 proves the case “quadrangles: tiling a tile, not vtv” (thus also the two
cases above it in the same column in the corresponding table). Theorem 2 proves
“triangles: bounded perimeter, not vtv”, Theorem 3 proves “quadrangles: tiling a
tile, vtv”, Theorem 4 proves “hexagons: tiling a tile, vtv”, and Theorem 5 proves
“hexagons: tiling a tile, vtv”.

The “no” in the table is due to the following observation: Given a fixed area and
perimeter, then for each possible edge length there is at most one congruence class
of triangle with that area, perimeter, and edge-length. In a vtv tiling two adjacent
triangles share a common edge, hence have the same edge-length. Thus these two
triangles are already congruent to each other. Even if we distinguish triangles if they
are not directly congruent, but are mirror images of each other, two out of three
triangles in the tiling need to be directly congruent.

4 Main Results

Theorem 2 There is anormal tilingof the planebypairwise non-congruent triangles
of unit area.

Proof The idea of the proof is a refinement of the construction in Fig. 2. Basically
we add additional fault lines in each quadrant. Moreover, we make use of some free
parameter in some range, allowing for uncountably many choices, where in each step
of the construction only finitely many triangle shapes must be avoided.

Choose some constant c big enough. This serves as the upper bound on the perime-
ter of the triangles. For our purposes c = 100 will do. Consider the upper right quad-
rant Q1. Pick a point x0 on the positive horizontal axis with |x0| < c

3 . Let T1 be the
unique triangle in Q1 with unit area, vertices 0, x0 and the third vertex y1 being on
the y-axis. (For this and what follows compare Fig. 4.) Denote the third vertex of T1
by y1. Choose y2 on the horizontal axis such that the triangle T2 with vertices x0, y1
and y2 has area 1. Continue zigzagging in this way between horizontal and vertical
axis. i.e., choose yi+1 on the axis not containing yi such that the triangle Ti+1 with
vertices yi−1, yi , yi+1 has area 1. Repeat this until the next triangle Ti+2 would have

Fig. 4 Tiling the upper right
quadrant Q1 by pairwise
non-congruent triangles of
unit area and bounded
perimeter l
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y1
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perimeter larger than c. Omit Ti+2. Pick x1 such that the triangle yi , yi+1, x1 has
area 1.

There are uncountably many choices for x1. For the sake of symmetry let x1 be
close to the bisector {(x, x) | x ∈ R} of Q1. Choose a half-line �1 proceeding from
x1. There are uncountably many choices for �1. Again, for the sake of symmetry, let
�1 be close to the bisector of Q1. Continue by zigzagging in two regions, between
the horizontal axis and �1, and between the vertical axis and �1. i.e., if y2k is the
last point on the horizontal axis, pick t1 on the horizontal axis such that the triangle
y2k, x1, t1 has area 1. Continue by choosing t2 on �1 such that the triangle x1, t1, t2
has area 1 and so on, until the perimeter of the next triangle ti , ti+1, ti+2 would be
larger than c. Omit this triangle. Choose x2 such that the new triangle ti , ti+1, x2 has
area 1. Choose a half-line �2 proceeding from x2. Again there are uncountably many
choices for x2 and �2.

Do the analogous construction in the upper region between �1 and the vertical
axis. Continue in this manner. Whenever a triangle occurs with perimeter larger than
c choose a new point xk and a new line �k dividing the old region into two.

The uncountability of choices for xk and �k ensures that we can always avoid
adding a triangle that is congruent to some triangle added earlier. Indeed, whenever
we are in the situation of choosing xk and �k there are at most countably many
triangles constructed already. Hence xk can be chosen such that no triangle with
vertex xk is congruent to an already constructed one, and �k can be chosen such that
no triangle occurring in the two new regions defined by �k is congruent to an already
constructed one. Hence the quadrant Q1 can be tiled by pairwise non-congruent
triangles with area 1 and perimeter less than c.

The other quadrants can be tiled accordingly. Whenever a choice of a new point
and a new half-line happens there are uncountably many possibilities, hence all (at
most countably many) already constructed triangles can be avoided.

Theorem 3 There is a normal vtv tiling of the plane by pairwise non-congruent
quadrangles of unit area. The tiling consists of squares that are dissected into four
distinct quadrangles of equal area.

Proof The idea is to use the construction in the proof ofTheorem1, adding (dissected)
squares consecutively, using the degrees of freedom to achieve vertex-to-vertex in
neighbouring squares. Fig. 5 indicates the order in which squares are added, and the
degrees of freedom in the dissection of each square.

Start with some square S, dissected as in the proof of Theorem 1. There are
three degrees of freedom how to dissect S into four quadrangles, two for placing
the centre of dissection, one for a point on the boundary. This square is indicated
by a circled 1 in Fig. 5. Add four more dissected squares adjacent to S, such that
the quadrangles are vertex-to-vertex. These squares are numbers 2–5 in the figure. In
each of these squares there are still two degrees of freedom for placing the centre. The
third parameter is determined uniquely by the vertex-to-vertex condition. Still one
may use the two degrees of freedom to avoid adding a quadrangles that is congruent
to one added already.
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Fig. 5 Tiling a square with distinct quadrangles of unit area (compare Fig. 3) can be done in a way
such that partitions of adjacent squares are vertex-to-vertex. Circled numbers indicate the order in
which squares are added consecutively, ordinary numbers indicate the degrees of freedom in each
square. A 2 means that the centre can be wiggled within a small ball. A 1 means that the centre
can be shifted along some line by a small amount. The (approximate) directions of these lines are
indicated by dashed line segments

Now add four more squares (6–9), each one adjacent to two edges of squares
2–5, respectively. Now the position of two points of the dissection are determined
for each of the squares 6–9. Hence, by the area condition, the centre of the square is
restricted to some line. Anyway, it can be shifted along a small segment of this line
continuously. Hence there is still one free parameter that we can use to avoid adding
a quadrangle that is congruent to some quadrangle added earlier.

In this way we continue filling the plane: add four squares along the horizontal
and vertical axes (the next step would be adding squares 10–13 in the figure), add
more squares to the pattern to complete a square pattern. Proceeding in this way
ensures that in each step there is at least one free parameter that can be used to avoid
adding a square congruent to one added earlier.

One last problem to solve is to ensure that the dependencies between the choices
of points do not force us to destroy the desired properties, i.e. by pushing the vertices
of the small quadrangles out of the squares they belong to. This can be achieved by
limiting the choices of coordinates to small enough deviations from the centres of
the squares respectively from the midpoints of the edges. The author suspects that it
suffices to choose all deviations less than some common small constant. But to be
on the safe side one may choose the deviations according to some rapidly decreasing
series like 100−n , such that all deviations can add up only to some number much less
than one.
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x
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Fig. 6 A regular hexagon can be divided into three distinct pentagons of equal area in uncountably
many ways (left). A non-convex 14-gon can be divided into four distinct hexagons of equal area in
uncountably many ways

Theorem 4 There is a normal tiling of the plane by pairwise non-congruent pen-
tagons of unit area. The tiling consists of hexagons that are dissected into three
distinct pentagons of equal area.

Proof A regular hexagon of area three can be divided into three pentagons of unit
area in uncountably many ways, compare the left part of Fig. 6.

Theorem 5 There is a normal vtv tiling of the plane by pairwise non-congruent
hexagons of unit area. The tiling consists of non-convex 14-gons that are dissected
into four distinct hexagons of equal area.

Proof Consider a non-convex 14-gon assembled from three regular hexagons and
a fourth hexagon that is obtained from a regular hexagon by stretching it slightly
in the direction of one of the edges, see Fig. 6 right. The longer edges are labelled
with a in the figure. This 14-gon can be dissected into four hexagons of equal area.
There is still one parameter of freedom: one vertex of the dissection can be shifted
continuously along a line segment, the other interior vertex of the dissection is then
determined uniquely by the area condition.

The 14-gons yield a tiling of the plane: gluing 14-gons together at their edges of
length a yields biinfinite strips. These strips in turn can be assembled into a tiling.

During working on the problem the author tried several approaches. Based on this
experience we want to highlight the following problems for further study.

(1) Is there a compact convex region in the plane that can be tiled by non-congruent
triangles of unit area in infinitely many (uncountably many) ways?

(2) Is there a compact region in the plane that (a) can be tiled by non-congruent
triangles of unit area in infinitely many (uncountably many) ways, and (b) tiles
the plane?

(3) Is there a vertex-to-vertex tiling of the plane by pairwise non-congruent triangles
of unit area?

(4) Is there a vertex-to-vertex tiling of the plane by pairwise non-congruent triangles
of unit area such that the perimeter of the triangles is bounded by some common
constant?
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(5) Is there a tiling of the plane by pairwise non-congruent rectangles of unit area
such that the perimeter of the rectangles is bounded by some common constant?
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Pascal’s Triangle of Configurations

Gábor Gévay

Abstract We introduce an infinite class of configurations which we call Desargues–
Cayley–Danzer configurations. The term is motivated by the fact that they generalize
the classical (103) Desargues configuration and Danzer’s (354) configuration; more-
over, their construction goes back to Cayley. We show that these configurations can
be arranged in a triangular array which resembles the classical Pascal triangle also in
the sense that it can be recursively generated. As an interesting consequence,we show
that all these configurations are connected to incidence theorems, like in the classical
case of Desargues. We also show that these configurations can be represented not
only by points and lines, but points and circles, too.

Keywords Combinatorial configuration · Desargues–Cayley–Danzer
configuration · Geometric configuration · Incidence sum · Incidence theorem
Point-circle configuration

1 Introduction

A combinatorial (or abstract) configuration of type (pq , nk) is an incidence structure
with sets P and B of objects, called points and blocks, such that the following
conditions hold:

(C1) |P| = p;
(C2) |B| = n;
(C3) each point is incident with q blocks;
(C4) each block is incident with k points;
(C5) two distinct points are incident with at most one block.

A point-line configuration is a geometric incidence structure consisting of points
and (straight) lines, in the simplest case inEuclidean or real projective plane, such that
the Conditions (C1)–(C4) hold. Note that in this case (C5) is fulfilled automatically.
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Instead of plane, the ambient space can be some higher-dimensional (Euclidean, or
projective) space as well [5, 9]. Also, the set of lines can be replaced by a set of
circles; in this case we speak of a point-circle configuration.1 In the simplest case this
latter is also defined in Euclidean plane; however, a more natural context is inversive
(or Möbius) geometry [10]). We note that for a point-circle configuration Condition
(C5) does not necessarily hold; in case it still holds, we say that the configuration is
lineal [10, 17].

Given two configurations,C1 andC2 with pairs (P1,B1) and (P2,B2), respectively,
we say that they are isomorphic if there is a bijection which sendsP1 toP2 and B1 to
B2 such that incidences are preserved. For geometric configurations this is equivalent
to saying that the underlying combinatorial configuration is essentially the same; we
also say in this case that C1 and C2 are different geometric realizations of the same
abstract configuration. Interesting examples are point-circle realizations of (in some
cases, well-known) point-line configurations (see Sect. 6).

If in a configuration of type (pq , nk) we have p = n, then the equality q = k also
holds; in this case the more concise notation (nk) is used. Formerly, such a config-
uration was called symmetric; however, it is appropriate to reserve this term for a
configurationwhich has non-trivial automorphism, hence, followingGrünbaum [12],
we use the term balanced configuration instead.

Two configurations, C and C∗ are said to be dual to each other if there is an
incidence-preserving bijection which sends the set of points of C to the set of blocks
of C∗ and vice versa. A configuration dual to itself is called self-dual.

For further definitions and backgroundmaterial concerning configurations in gen-
eral, the reader is referred to the recent monographs [12, 17].

Consider now seven 3-spaces in general position in the 4-dimensional real projec-
tive space. (General position means that no more than four of the 3-spaces meet in a
point.) They meet by fours and by threes in 35 points and 35 lines, respectively; thus
we obtain a (354) configuration in 4-space. By suitable projection, this configuration
can be carried over to an isomorphic planar configuration. This construction has been
given by Danzer, with the aim of answering a question of Grünbaum [11]; Danzer
himself never published it. In fact, it appears in the literature first in the work of
Grünbaum and Rigby [13], and later, in Grünbaum’s “Musings” [11].

A recent paper by Boben, Gévay and Pisanski [2] is devoted again to Danzer’s
configuration, as well as to a class of configurations generalizing it. In that paper
the authors point out that this (354) configuration occurs as early as more than 100
years ago, in the work of the Hungarian mathematician Klug, although in a different
context [15]. On the other hand, the construction itself goes back to an earlier period,
as it is related to some construction principles due to Cayley. The different context is
rooted in Pascal’s Hexagrammum Mysticum, which, just in the time of Cayley, was
a subject of intense study (this topic experienced a revival of interest quite recently,
see the papers by Conway and Ryba [3, 4]).

1 We note that in a geometric configuration the blocks can also be other geometric elements, like
planes, hyperplanes, spheres, etc. [5, 7, 8]; we shall not consider such examples here.
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In the present paper (in Sect. 2) we further generalize the Desargues–Cayley–
Danzer configurations introduced in [2]. In Sect. 3 we show that these more general
configurations can be arranged in an array like Pascal’s triangle. This scheme follows
the pattern of Pascal’s triangle also in the sense that each (non-terminal) entry is a
certain “sum"of the two entries above it (Sect. 4). We also present some applications
(Sects. 5 and 6).

2 The Configurations DCD(n, d) and Their Geometric
Realization

Denote the n-set {1, . . . , n} by [n], and for any non-negative integer k ≤ n, denote
the set of all k-subsets of [n] by ([n]

k

)
. Let n ≥ 1 be an integer, and let d be an integer

with 1 ≤ d ≤ n. We form the incidence structure

(([n]
d

)
,

( [n]
d − 1

)
,⊃

)
, (1)

whose set of points is
([n]
d

)
, the set of blocks is

( [n]
d−1

)
, and incidences are defined by

containment. It is easily seen that this structure is a combinatorial configuration of
type ((

n

d

)

d,

(
n

d − 1

)

n−d+1

)

. (2)

We denote this configuration by DCD(n, d).

Proposition 2.1 The configurations DCD(n, d) and DCD(n, n − d + 1) are dual
to each other.

Proof The type of DCD(n, n − d + 1) is

((
n

n − d + 1

)

n−d+1,

(
n

n − d

)

n−(n−d+1)+1

)

=
((

n

d − 1

)

n−d+1,

(
n

d

)

d

)

,

as required for the dual of DCD(n, d). Nowwe define the following correspondence
δ. For each point P in DCD(n, d), i.e. a d-subset of [n], let δ(P) be precisely
the line of DCD(n, n − d + 1) which is an (n − d)-subset complementary to P
in [n]. Likewise, for each line l in DCD(n, d), i.e. a (d − 1)-subset of [n], let
δ(l) be precisely the point of DCD(n, n − d + 1) which is an (n − d + 1)-subset
complementary to l in [n]. Furthermore, clearly P ⊃ l if and only if δ(l) ⊃ δ(P).
Thus we see that δ is an incidence-preserving bijection between DCD(n, d) and
DCD(n, n − d + 1) which interchanges the set of points and the set of blocks. �

Now we construct a geometric realization of DCD(n, d).
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Construction 2.2

(a) For d = 1 and for all n ≥ 1, DCD(n, d) is realized in the real projective plane
P
2 by a configuration consisting of a single line and of n points incident with

this line. Dually, for all n ≥ 1, DCD(n, n) is realized in P
2 by a pencil with n

lines, i.e. by a configuration consisting of a single point and of n lines passing
through this point.

(b) Letn ≥ 3be an integer, and consider thed-dimensional (real) projective spacePd

with 2 ≤ d ≤ n − 1. Choose n hyperplanes inPd in general position. (By general
position we mean that no more than d hyperplanes meet in a common point.)
Now every d hyperplanes of this arrangement meet in a point, and every d − 1
hyperplanes meet in a line. Thus we have altogether

(n
d

)
points and

( n
d−1

)
lines.

These points and lines can be considered as labelled with the corresponding d-
element and (d − 1)-element subsets, respectively, of the set with n elements we
started from.Moreover, the incidence between the points and lines is determined
by containment between the corresponding subsets. Hence it is clear that each
point is incident with d of the

( n
d−1

)
lines, and each line is incident with n − d + 1

of the
(n
d

)
points. Thus, by a suitable projection, we obtain a planar point-line

configuration of type ((
n

d

)

d,

(
n

d − 1

)

n−d+1

)

,

(cf. formula (2) above). Note that the same type is valid for d = 1 and for
all n ≥ 1. Hence we have constructed a geometric point-line realization of
DCD(n, d) for all integer n ≥ 1 and for all integer d with 1 ≤ d ≤ n.We denote
this realization by DCD[n, d]

Definition 2.3 We call the configuration obtained by Construction 2.2(b) a
Desargues–Cayley–Danzer configuration.

Remark 2.4 Clearly, DCD[n, d] is balanced if and only if n = 2d − 1.

We note that in [2] the termDesargues–Cayley–Danzer configuration was applied
to a less general notion; namely, for balanced DCD[n, d]. In that paper the aim was
to find a common generalization of the Desargues’ (103) and the Danzer’s (354)
configuration, as close as possible to them. Since both of these configurations are
balanced, it was natural to choose the generalization balanced as well.

Observe that the only condition imposed on the arrangement of hyperplanes Con-
struction 2.2(b) starts from is that they are in general position. A consequence is that
for any arbitrary pair (n, d) with n > 4 and d > 2, there are infinitely many projec-
tively inequivalent copies of configuration DCD[n, d]. Furthermore, note that the
same statement is valid for all configurations DCD[n, 1] (and dually, DCD[n, n])
with n > 4.

We formulate this property in the following definition (cf. Grünbaum [12],
Sect. 5.7). We emphasize that this definition refers to point-line configurations real-
ized in the (real) projective plane.
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Definition 2.5 We say that a configuration is rigid if its geometric realizations form
a single class under projective transformations. A configuration that is not rigid is
called movable.

Hence our observation above can be formulated as follows.

Proposition 2.6 For all n > 4, the configuration DCD[n, d] is movable. �
Note thatmovability of a configuration impliesmovability of its dual. For an example,
we recall that the Desargues configuration DCD[5, 3] is well known to be movable.

We mention a further important property of DCD[n, d]. First, recall that an
automorphism of a combinatorial configuration is an isomorphism to itself [5, 12].
Clearly, the set of all automorphisms of a configuration forms a group. By the auto-
morphism group of a geometric configuration we mean the automorphism group of
the underlying combinatorial configuration. We say that a configuration is point-
transitive (resp. line-transitive) if its automorphism group is transitive on its points
(resp. lines). A point-line pair of a configuration is called a flag. Similarly as before,
we can speak of the flag-transitivity of a configuration.

Theorem 2.7 The automorphism group of DCD[n, d] is point-, line- and flag-
transitive. Its automorphism group is isomorphic to Sn (the symmetric group of
degree n).

Proof Construction 2.2(b) starts from an arrangement of hyperplanes in general
position. This implies that none of the hyperplanes is distinguished, i.e. all of them are
equivalent under permutation. The same follows for the subsets of this arrangement
defining the points (respectively, those defining either the lines or the flags) of the
configuration. For DCD[n, 1], and for its dual, the statements are trivial. �

3 Pascal’s Triangle of Configurations DCD[n, d]

Since the number of points and lines of configurations DCD[n, d] are given by the
binomial coefficients, it is obvious that these configurations can be arranged in a
triangular array resembling Pascal’s triangle. In this array, DCD[n, d] is precisely
the d-th entry in row number n. In Fig. 1 we show the first 7 lines of this scheme. In
general, row number n is of the form

DCD[n, 1] DCD[n, 2] . . . DCD[n, n]; (3)

the corresponding types in the same row are as follows:

((
n

1

)

1,

(
n

0

)

n

) ((
n

2

)

2,

(
n

1

)

n−1

)

. . .

((
n

n

)

n,

(
n

n − 1

)

1

)

. (4)

We call this array Pascal’s triangle of configurations.
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Fig. 1 The first 7 rows of Pascal’s triangle of configurations DCD[n, d]

Fig. 2 Types in the part of Pascal’s triangle of configurations DCD[n, d] with 3 ≤ n ≤ 7 and
2 ≤ d ≤ n − 1

For convenience, and for later reference, we also show in Fig. 2 the corresponding
types in the part of the array with 3 ≤ n ≤ 7 and 2 ≤ d ≤ n − 1. In Fig. 1 one easily
recognizes some known examples of configurations (see also Fig. 2). DCD[3, 2] is
obviously the triangle. In the second row the second and the third entry is the complete
quadrilateral and its dual, the complete quadrangle, respectively (the former is also
known as the Pasch configuration).

More generally, the second and (i − 1)th entry in the i th row is the complete
i-lateral and the complete i-point, respectively. Here we recall that a complete
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k-lateral (k ≥ 3) is defined in the real projective plane as a configuration consist-
ing, on the one hand, of k lines in general position, i.e. such that no more than two of
them intersect in a point and, on the other hand, of all the lines pairwise connecting
these points [9, 16]; a complete k-point is defined dually. (For the complete k-lateral,
the term complete k-line is also used [21]).

The middle entry in the fifth row is nothing else than the Desargues configuration.
The third and fourth entry in the 6th row are closely related to it: they are the Steiner–
Plücker configuration and theCayley–Salmon configuration, respectively. They arise
e.g. from the following incidence theorems, which are extensions of Desargues’
theorem (these theorems occur in Exercise II.16.6 in [21]; see also Exercise 2.3.2
in [6]).

Theorem 3.1 (Veblen, Young) If three triangles are perspective from the same
point, the three axes of perspectivity of the three pairs of triangles are concurrent.

Theorem 3.2 (Veblen, Young) If three triangles are perspective from the same line,
the three centres of perspectivity of the three pairs of triangles are collinear.

Observe that these two theorems are dual to each other; accordingly, so are the
corresponding configurations (cf. Proposition 3.3 below). Both these theorems and
the configurations go back to the 19th century; in two recent papers, Conway and
Ryba discuss interesting new aspects of them [3, 4] (for further details, historical and
other, see also [2]; in particular, a most recent result concerning the Steiner–Plücker
configuration is that it can be interpreted as a generalized Reye configuration (see
B. Servatius and H. Servatius [19]) (Figs. 3, 4).

The middle entry in the fifth row is Danzer’s configuration DCD[7, 4], of type
(354). For drawings, as well as other details about it, see [2]. Recall that it is balanced
(like Desargues’ configuration). More generally, for each natural number k, the mid-

dle entry in the (2k − 1)th row is a balanced configuration of type
((2k+1

k+1

)
k+1

)
(cf.

Remark 2.4).
We conclude this section with a property of our triangular scheme, which is a

direct consequence of Proposition 2.1.

Proposition 3.3 The configurations DCD[n, d] and DCD[n, n − d + 1] are dual
to each other. Hence, reflection in the vertical mirror line of Pascal’s triangle of
configurations DCD[n, d] takes its entries into their dual. �

In particular, themiddle entries are self-dual. This particular case has been established
in [2] (in fact, they have a stronger property, being self-polar; but we do not need
this property here).

4 Generating the Entries as Incidence Sums

The following notion has been introduced recently [2, 9].



188 G. Gévay

Definition 4.1 By the incidence sum of configurations C1 and C2 we mean the con-
figuration C which is the disjoint union of C1 and C2, together with a specified set
I ⊆ P1 × L2 ∪ P2 × L1 of incident point-line pairs, where Pi denotes the point set
and Li denotes the line set of Ci , for i = 1, 2. We denote it by C1 ⊕I C2.
If the set I is clear from the context, it can be omitted from the operation symbol.

A simple example is provided by the (103) Desargues configuration, which is
the incidence sum of a complete quadrilateral (62, 43) and a complete quadrangle
(43, 62) (see [2], where this is also illustrated by a figure).We note that only the notion
is new, the construction itself is not; for example, Grünbaum and Rigby point out
in [13] that the (124, 163) Reye configuration and its dual (163, 124) form together
a (284) configuration.

A much older example is due to Klug, who points out that, essentially, Danzer’s
(354) configuration is the incidence sum of the Steiner–Plücker (203, 154) configu-
ration and the Cayley–Salmon (154, 203) configuration (in our notation, DCD[6, 3]
and DCD[6, 4], respectively) [2, 15].
Theorem 4.2 (Klug) The (203, 154)Steiner-Plücker configurationand the (154, 203)
Cayley-Salmon configuration together form a (354) configuration. The 35 points and
the 35 lines of this configuration are the 20 Steiner points and 15 Salmon points, and
the 15 Plücker lines and 20 Cayley lines, respectively. On each Plücker line there
are four Steiner points, and on each Cayley line there are three Salmon points and
one Steiner point; moreover, three Plücker lines and one Cayley line pass through
each Steiner point, and four Cayley lines pass through each Salmon point.

Fig. 3 The Steiner–Plücker configuration (203, 154) (or DCD[6, 3], in our notation). The shaded
triangles are perspective from the same point (labelled by 123); the point of concurrency of the
three axes of perspectivity is labelled by 456
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Fig. 4 The Cayley–Salmon configuration (154, 203) (or DCD[6, 4], in our notation). The points
are labelled by quadruples of the hyperplanes which determine them in accordance with our Def-
inition 2.3. The shaded triangles are perspective from the same line (this is the horizontal line on
the top of the figure)

Remark 4.3 The following property holds in both of these examples. In the incidence
sum C of configurations C1 and C2 the corresponding decomposition is determined
by the partition of the set of points of C into two disjoint classes. In the one class the
points are incident precisely with lines belonging to C2, while the other class consists
of points which are incident with lines such that some of them belong to C1, and the
rest belong to C2. (The lines of C obey a similar rule, with C1 and C2 interchanged.)

We emphasize that the notion of an incidence sum can be considered from two
different aspects. On the one hand, we consider it as a configuration which is decom-
posed into two smaller configurations; on the other hand, it may mean that we have
two distinct configurations (both existing in themselves), and we put them together
in a suitable way to obtain a new configuration (in which I is the set of new inci-
dences). In other words, in this latter sense, we consider it as a kind of operation
(not total operation, but partial operation, in terms of abstract algebra; see [9] for
some details of this particular context). The two aspects have some resemblance to
the twofold meaning of the direct product of groups (recall that in group theory there
is a distinction between internal and external direct product; see e.g. [18]).

One of the main results in [2] is that each balanced DCD[n, d] can be decom-
posed into an incidence sum of two smaller (non-balanced) configurations (loc. cit.,
Theorem 4.1). Here we generalize this result showing that a similar decomposition
is possible for each DCD[n, d] (provided it is a non-terminal entry in the Pascal
triangle introduced in the previous section).
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Theorem 4.4 For all integers n ≥ 3 and d (2 < d < n − 1), the configuration
DCD[n, d] is the incidence sum of the form C1 ⊕I C2 such that

(1) C1 = DCD[n − 1, d − 1], C2 = DCD[n − 1, d];
(2) the set I of new incidences can be given as follows: for each line in C2, the

number of points incident with it increases by one; the new points on these lines
are precisely the points of C1; hence |I | = (n−1

d−1

)
.

Proof The three cases corresponding to n = 3, 4 are straightforward. For n ≥ 5, first
recall that C1 is a configuration of type

((
n − 1

d − 1

)

d−1

,

(
n − 1

d − 2

)

n−d+1

)
, (5)

and C2 is a configuration of type

((
n − 1

d

)

d

,

(
n − 1

d − 1

)

n−d

)
. (6)

Apply twice Pascal’s rule:

(
n

d

)
=

(
n − 1

d

)
+

(
n − 1

d − 1

)
;

(
n

d − 1

)
=

(
n − 1

d − 1

)
+

(
n − 1

d − 2

)
. (7)

The first sum corresponds to the decomposition of the set of the d-tuples of hyper-
planes determining the points ofDCD[n, d], and the second one to the decomposition
of the set of (d − 1)-tuples determining the lines (cf. Construction 2.2). Let H an
arbitrary but fixed hyperplane. We associate the first term in both sums to the d-
tuples, respectively to the d − 1-tuples, not containing H . Their number, and hence
the number of the points and lines they determine is indeed

(n−1
d

)
and

(n−1
d−1

)
, respec-

tively.Moreover, one easily sees that each point is incident with precisely d lines, and
each line is incident with precisely n − d points. Hence they form the configuration
C2 (cf. 6).

Consider now the d-tuples and (d − 1)-tuples of hyperplanes which contain H .
Their number is clearly

(n−1
d−1

)
, respectively

(n−1
d−2

)
, in accordance with the second

term in the sums (7) above. Thus the number of the points, respectively the lines
determined by them, and required in (5), is obtained.On the other hand, for finding the
incidence numbers, one observes that from a d-tuple of hyperplanes one can remove
d − 1 distinct hyperplanes different from H , to obtain a corresponding (d − 1)-tuple;
hence a point determined by such a d-tuple is incident with precisely d − 1 lines. The
incidence number n − d + 1 in (5) is obtained similarly. Thus we have configuration
C1, indeed.

To see Condition (2), consider the d-tuples of hyperplanes containing H , which
determine the points of C1, as we have seen above. Recall that their number is

(n−1
d−1

)
.

We assign to each of these d-tuples a (d − 1)-tuple obtained by removing H . The
number of these (d − 1)-tuples is still

(n−1
d−1

)
, and, as established above, they determine
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Fig. 5 Decomposition of the (203, 154) Steiner–Plücker configuration into the incidence sum of
a complete pentalateral (102, 54) and a Desargues (103) configuration. The former is indicated
by red; its lines are labelled with the pairs of hyperplanes determining them (cf. the labels of the
corresponding points in Fig. 3)

precisely the lines of C2. Thus we have a bijective correspondence between the
set of points of C1 and the set of lines of C2. The point-line pairs defined by this
correspondence form precisely the set I . �

We note that when applying this decomposition theorem, the property considered
in Remark 4.3 remains valid in each case. Figure5 illustrates the example of the
incidence sum in a non-balanced case.

With this result, the analogy with the classical Pascal triangle becomes complete:
our triangular array is not merely an arrangement of objects, but it can also be
recursively generated.

Corollary 4.5 The Desargues–Cayley–Danzer configurations, i.e. the non-terminal
entries of Pascal’s triangle of configurations DCD[n, d], whose general row is of
the form (3) given at the begininning of Sect.3, can be recursively generated: each
of them is an incidence sum of the two entries directly above it.

Proof Consider an arbitrarily chosen non-terminal entry DCD[n, d]), and the entries
DCD[n − 1, d − 1] and DCD[n − 1, d) directly above it. These configurations are
realized independently of each other (see Construction 2.2), hence it my happen that
neither DCD[n − 1, d − 1], nor DCD[n − 1, d) is projectively equivalent with the
summands occurring in the incidence sum of DCD[n, d]) given by Theorem 4.4.
However, Proposition 2.6 guarantees that an isomorphism is still valid, and this is
sufficient. �

We mention an additional consequence of Theorem 4.4. First, we define the fol-
lowing special subset of our triangle.



192 G. Gévay

Q(n, d) = {DCD[m, e] | 1 ≤ m ≤ n, d − n + m ≤ e ≤ d}. (8)

It is easy to check that this subset forms a quadrangle such that its two sides con-
sist of configurations lying on the left and the right boundary of Pascal’s triangle,
respectively, and the other two sides are parallel with these boundary lines. We call
this set the quadrangle of subconfigurations belonging to DCD[n, d]. The name is
justified by the following observation.

Corollary 4.6 For a chosen entry DCD[n, d] of Pascal’s triangle of configurations,
the set Q(n, d) consists precisely of the configurations which are subconfigurations
of DCD[n, d].
Proof This is straightforward by repeated application of Theorem 4.4, taking into
account Proposition 2.6. �
Remark 4.7 In the particular case of a middle entry DCD[2k + 1, k + 1], the set
Q(2k + 1, k + 1) of subconfigurations belonging to it is contained in a quadrangle
which is a rhombus such that its vertical symmetry axis coincides with the symmetry
axis of the Pascal triangle. We shall need this property in Sect. 6.

Similarly to Q(n, d), we define the triangle of superconfigurations belonging to
DCD[n, d], as follows.

T (n, d) = {DCD[m, e] |m ≥ n, d − n + m ≥ e ≥ d}. (9)

It is easy to see that this set consists of configurations which are superconfigurations
of DCD[n, d], in the sense that each of them contains DCD[n, d] as a subconfigu-
ration.

Remark 4.8 Having established the presence of subconfigurations and superconfig-
urations in our Pascal triangle, we see that thewhole set of DCD[n, d] configurations
forms a partially ordered set, where the order is defined by the substructure relation.
In fact, it is a lattice; the lattice operations can be defined by the sets Q and T .

5 Incidence Theorems

Consider a (movable) configurationCwhich expresses an incidence theorem (like e.g.
Desargues’ (103) configuration [14]). Such a theorem essentially states that, when
taking any particular realization, if all but one of the incidences in C are satisfied,
then the “last” incidence is also satisfied2 This intuitive description can be made
more precise as follows.

2Not every incidence statement involves merely a single incidence in this sense. For example, the
author presented a conjecture in [9] which is connected with a (1004) configuration; the conjec-
ture essentially states that if 350 (suitable) incidences in this configuration are satisfied, then the
remaining 50 are also satisfied. (We note that the same (1004) configuration also occurs in [17], in
two different versions.).
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Definition 5.1 Suppose we are given a geometric configuration or more generally,
an incidence structure of points and lines C = (P,B, I ) which is movable in the
sense of Definition 2.5. We say that C expresses an incidence theorem if there exists
a pair (P Ib) such that any geometric realization of (P,B, I ) \ (P, b) is impossible
unless the incidence (P Ib) is present.

The following observation is straightforward.

Lemma 5.2 Let C be a configuration of points and lines, and let C1 be one of its
subconfigurations. If C1 expresses an incidence theorem then C is also expresses an
incidence theorem. �

The next theorem is the main result of this section.

Theorem 5.3 EveryDesargues–Cayley–Danzer configuration DCD[n, d]withn ≥
5 and 2 < d < n − 2 expresses an incidence theorem.

Proof Such a configuration falls into the triangle of superconfigurations belonging
to DCD[5, 3] (cf. Fig. 1 and the definition given by equality (9) in the previous
section). DCD[5, 3] is the Desargues configuration, and since it expresses an inci-
dence theorem, Lemma 5.2 implies the statement. �

It is worth emphasizing that one and the same configuration may express more
than one distinct incidence theorems (in this respect, we do not consider a theorem
and its converse as essentially distinct statements; cf. our Theorem 5.6 below). For
example, in addition toTheorem3.2, the following incidence statement (whichoccurs
in the classical work of Veblen and Young, see [21], §17, Theorem 2; but was already
known to Felix Klein, too [2]) also gives rise to the Cayley–Salmon configuration.

Theorem 5.4 (Veblen, Young) If two tetrahedra are perspective from a point, the
six pairs of lines of the corresponding edges intersect in coplanar points, and the
planes of the four pairs of faces intersect in coplanar lines; i.e. the tetrahedra are
perspective from a plane.

Hence the dual of this theorem, like the double Desargues theorem as well, gives
rise to the Steiner–Plücker configuration; moreover, a recently published incidence
theorem, different from both, also yields the Steiner–Plücker configuration ([1], The-
orem 4).

Note that the plane in the conclusion of Theorem 5.4 is the “axis” of perspectivity
(being an analogue of the axis in the classical Desargues theorem). Conway and
Ryba [3] use the term perspector for the center of perspectivity, and perspectrix for
the (classical) axis of perspectivity. We adopt these terms and, in particular, use the
latter in more general case as well (whatever is the dimension of the axis).

With this terminology, we present a further classical incidence theorem, which
gives rise to the (354) Danzer configuration ([15], p. 34; for some further details, see
[2]).

Theorem 5.5 (Klug) If three tetrahedra have a common perspector, the three per-
spectrices belonging to the pairs of these tetrahedra have a point in common.
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Beyond the classical examples, what kind of incidence theorems can be associated
to the Desargues–Cayley–Danzer configurations, in the light of our Theorem 5.3?
We present some examples here, without proof (and with the hope that they have
some novelty).

Consider the configuration DCD[8, 4]; its type is
((

8

4

)

4,

(
8

3

)

5

)

= (704, 565).

It can be shown that the first two of the following four incidence statements give rise
alike to this configuration; the other two are associated to the dual configuration.

Theorem 5.6 The following implications hold for four distinct tetrahedra in the real
projective 3-space.

(A) If four tetrahedra have a common perspector, the six perspectrices of the
(4
2

)

pairs of tetrahedra have a point in common.
(B) Assume that each pair of the tetrahedra has a perspectrix. If these

(4
2

)
perspec-

trices have a point in common, the four tetrahedra have a common perspector.
(C) If the four tetrahedra have a common perspectrix, the six perspectors of the

(4
2

)

pairs of the tetrahedra lie in a common plane.
(D) Assume that each pair of the tetrahedra has a perspector. If these

(4
2

)
perspectors

lie in a common plane, the four tetrahedra have a common perspectrix.

Clearly, (A) and (B), respectively (C) and (D), are the converse of each other.
As a preparation for our last theorem in this section, we recall the following

common generalization of Desargues’ theorem and Theorem 5.4 (see Veblen and
Young [21], p. 54, Exercise 26).

Theorem 5.7 (Veblen, Young) Let d ≥ 2 be an integer. If two (d + 1)-points in a
d-space are perspective from a point, their corresponding r-spaces meet in (r − 1)-
spaces which lie in the same (d − 1)-space (r = 1, 2, . . . d − 1) and form a complete
configuration of (d + 1) (d − 2)-spaces in (d − 1)-space.

Here the term (d + 1)-point refers to the projective analogue of a Euclidean simplex
of dimension d. This figure consists of a set of d + 1 points in general position as
well as of all the (2d+1 − 2) proper projective subspaces which are spanned by the
subsets of this set. In addition, we say that d + 1 points in a projective d-space are
in general position if they do not lie within the same (projective) hyperplane. (Here
we adopted the term used by Veblen and Young [21].)

We note that we disregard the structure formed within the perspectrix and only
use the fact that that the dimension of the perspectrix is (d − 1).

Theorem 5.8 Let d ≥ 2 be an integer. If d + 1 (d + 1)-points in a d-space have a
common perspector, the

(d+1
2

)
perspectrices belonging to the pairs of these (d + 1)-

points have a point in common.
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This theorem is a common generalization of Theorems 3.1 and 5.6(A). It gives
rise to a DCD[2d + 2, d + 1] configuration, whose type is

((
2d + 2

d + 1

)

d+1,

(
2d + 2

d

)

d+2

)

.

6 Point-Circle Realizations

In this section we show that every configuration DCD[n, d] can also be realized
geometrically as a configuration of points and circles. Moreover, all the circles in
such a configuration are of equal size; we call a point-circle configuration with this
particular property isometric.

This is an extension of a former result (see Theorem 7.1 in [2]), by which the
same holds in the restricted case of the middle entries of our Pascal triangle. Recall
that such a configuration is of the form DCD[2k + 1, k + 1] if it takes place in the
(2k + 1)th row (k = 1, 2, . . .).

Theorem 6.1 Every configuration DCD(n, d) admits an isometric point-circle
realization.

Proof Start from the fact that for a configuration DCD[n, d], we have the following
three distinct cases: (L) n > 2d − 1; (R) n < 2d − 1; (B) n = 2d − 1. Now observe
that

• in case (L), DCD[n, d] lies in a diagonal line of Pascal’s triangle determined
by a constant c = n − d such that this line bounds from the left the quadrangle
Q(2c + 1, c + 1);

• in case (R), DCD[n, d] lies in a diagonal line determined by the condition d =
const.; this line bounds from the right the quadrangle Q(2d − 1, d);

• in case (B), DCD[n, d] lies in both lines considered above, which means that it
coincides with the configuration defining the quadrangle Q(2d − 1, d); in other
words, it is a middle term of Pascal’s triangle.

We see that in all the three cases DCD[n, d] is within a quadrangle of subconfigura-
tions which is in fact a rhombus (cf. Remark 4.7); in other words, the configuration
defining this quadrangle is a middle term. On the other hand, we know (by Theorem
7.1 in [2]; see also Theorem 5.2 in [10]) that each of these middle terms admits an
isometric point-circle realization. Clearly, the same is true for any of their subcon-
figurations, and hence, for DCD[n, d], too. �

We note that in [10] it is shown that the point-circle representation of the config-
uration DCD[2k + 1, k + 1] occurs as a subconfiguration of the point-circle repre-
sentation of a Clifford configuration of type (22k2k+1). Now we see that in fact all the
point-circle representations considered in Theorem 6.1 have this property. In [10]
this is illustrated through the example of the Desargues configuration. In papers [2,
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Fig. 6 A point-circle representation of the (354) Danzer configuration embedded in the (647)
Clifford configuration. (The Danzer configuration is shown by yellow points and blue circles.)

10] various point-circle versions of the Danzer configuration are also presented. Here
we show (in Fig. 6) an embedding of this latter in the (647) Clifford configuration.3

Figure7 shows another example. It also illustrates the fact that a decomposition
given in Theorem 4.4 is possible in the case of point-circle representations as well.

Symmetry is another interesting aspect of these representations (observe the D7

symmetry of Fig. 6, and the C5 symmetry of Fig. 7). Few is known about the possi-
bility of symmetric representation of the Desargues–Cayley–Danzer configurations.
In particular, we have the following conjecture ([2], Conjecture 5.2).

Conjecture 6.2 There is no realization of Danzer’s (354) point-line configuration
with five- or seven-fold rotational symmetry.

We note that even less is known about the symmetric realizability of the point-line
DCD[n, d] configurations in general.

3The drawing in Fig. 6 has been prepared by Ákos Varga (University of Szeged) [20].
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Fig. 7 A point-circle representation of the (203, 154) Steiner–Plücker configuration (a) together
with its decomposition into the incidence sum of a copy of the Desargues configuration (b) and
of the complete pentalateral (c) (cf. Fig. 5). Observe the 5-fold rotational symmetry. (For better
visibility, we used arcs instead of full circles.)
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On the other hand, it seems that a symmetric realization can be more easily
achieved in the case of point-circle representations. In particular, here we formulate
the following conjecture.

Conjecture 6.3 For each natural number k, DCD[2k + 1, k + 1] has a point-circle
realization with (2k + 1)-fold rotational symmetry.

The validity of this conjecture depends on the possibility of a symmetric representa-
tion of the so-called odd graphs (for the graph-theoretical background of constructing
point-circle configurations, see [10]).

We expect that if there will be some progress on the graph-theoretical side of
this problem, our Theorem 4.4 could be a suitable tool in applying the results to the
DCD[n, d] configurations.
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Volume of Convex Hull of Two Bodies
and Related Problems

Ákos G. Horváth

Abstract In this paper we deal with problems concerning the volume of the convex
hull of two “connecting” bodies. After a historical background we collect some
results, methods and open problems, respectively.

Keywords Isoperimetric problem · Volume inequality · Polytope · Simplex

2010 Mathematics Subject Classification. 52B60 · 52A40 · 52A38

1 Introduction

To find the convex polyhedra in Euclidean 3-space R
3, with a given number of

faces and with minimal isoperimetric quotient, is a centuries old question of geom-
etry: research in this direction perhaps started with the work of Lhuilier in the 18th
century. A famous result of Lindelöf [1], published in the 19th century, yields a
necessary condition for such a polyhedron: it states that any optimal polyhedron
is circumscribed about a Euclidean ball, and this ball touches each face at its cen-
troid. In particular, it follows from his result that, instead of fixing surface area while
looking for minimal volume, we may fix the inradius of the polyhedron. Since the
publication of this result, the same condition for polytopes in n-dimensional space
R

n has been established (cf. [2]), and many variants of this problem have been inves-
tigated (cf., e.g. [3]). For references and open problems of this kind, the interested
reader is referred to [4, 5] or [6]. For polytopes with (n + 2) vertices this question
was answered by Kind and Kleinschmidt [7]. The solution for polytopes with n + 3
vertices was published in [8], which later turned out to be incomplete (cf. [9]), and
thus, this case is still open. We mention two problems in more detail:
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• The dual of the original problem: to find, among d-polytopes with a given number
of vertices and inscribed in the unit sphere, the ones with maximal volume, and

• to find the extremity of the volume of the convex hull of two “connecting” bodies.

The first problem that to find the maximal volume polyhedra in R
3 with a given

number of vertices and inscribed in the unit sphere, was first mentioned in [10] in
1964. A systematic investigation of this question was started with the paper [11] of
Berman and Hanes in 1970, who found a necessary condition for optimal polyhe-
dra, and determined those with n ≤ 8 vertices. The same problem was examined in
[12], where the author presented the results of a computer-aided search for optimal
polyhedra with 4 ≤ n ≤ 30 vertices. Nevertheless, according to our knowledge, this
question, which is listed in both research problem books [4, 6], is still open for
polyhedra with n > 8 vertices.

The second problem connectedwith the first one on the followingway: If the given
points form the respective vertex sets of two polyhedra (inscribed in the unit sphere)
then the volume of the convex hull of these points is the volume of the convex hull of
two “connecting” bodies, too. It is interesting that the case of two regular simplices
with common center gives another maximum as the global isodiametric problem on
eight points inscribed in the unit sphere.

The examination of the volume of the convex hull of two congruent copies of a
convex body inEuclideand-space (for special subgroups) investigated systematically
first by Rogers, Shepard and Macbeath in 1950s (see in [13–15]). Fifty years later
a problem similar to that of the simplices arose that lead to new investigations by
new methods which obtained fresh results (see in [16–18]). In particular, a related
conjecture of Rogers and Shephard has been proved in [17].

Finally we review some important consequences of the icosahedron inequality
of L. Fejes-Tóth. In particular, it is needed for the proof of the statement that the
maximal volume polyhedron spanned by the vertices of two regular simplices with
common centroid is the cube. It is also used in the proof of that the maximal volume
polyhedron with eight vertices and inscribed in the unit sphere is a triangular one
distinct from the cube.

2 Maximal Volume Polytopes Inscribed in the Unit Sphere

The aim of this section is to review the results on the first problem mentioned in the
introduction.

Let for any p, q ∈ R
d , |p| and [p, q] denote the standard Euclidean normof p, and

the closed segment with endpoints p and q, respectively. The origin of the standard
coordinate system of Rd is denoted by o. If v1, v2, . . . , vd ∈ R

d , then the d × d
determinant with columns v1, v2, . . . , vd , in this order, is denoted by |v1, . . . , vd |.
The unit ball of Rd , with o as its center, is denoted by Bd , and we set Sd−1 = bd Bd .

Throughout this section, by a polytope we mean a convex polytope. The vertex
set of a polytope P is denoted by V (P). We denote the family of d-dimensional
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polytopes, with n vertices and inscribed in the unit sphere Sd−1, by Pd(n). The d-
dimensional volume denotes by vold , and set vd(n) = max{vold(P) : P ∈ Pd(n)}.
Note that by compactness, vd(n) exists for any value of d and n.

Let P be a d-polytope inscribed in the unit sphere S
d−1, and let V (P) =

{p1, p2, . . . , pn}.
Let C(P) be a simplicial complex with the property that |C(P)| = bd P , and that

the vertices ofC(P) are exactly the points ofV (P). Observe that such a complex exist.
Indeed, for any positive integer k, and for i = 1, 2, . . . , n, consider a point pk

i such
that |pk

i − pi | < 1
k , and the polytope Pk = conv{qk

i : i = 1, 2, . . . , n} is simplicial.
Define C(Pk) as the family of the faces of Pk . We may choose a subsequence of
the sequence {C(Pk)} with the property that the facets of the complexes belong to
vertices with the same indices. Then the limit of this subsequence yields a complex
with the required properties. Note that if P is simplicial, then C(P) is the family of
the faces of P .

NowweorientC(P) in such away that for each (d − 1)-simplex (pi1 , pi2 , . . . , pid )

(where i1 ≤ i2 ≤ · · · ≤ id ) in C(P), the determinant |pi1, . . . , pid | is positive; and
call the d-simplex conv{o, pi1 , . . . , pid } a facial simplex of P . We call the (d − 1)-
dimensional simplices of C(P) the facets of C(P).

2.1 3-Dimensional Results

The problem investigated in this section was raised by Fejes-Tóth in [10]. His famous
inequality (called by icosahedron inequality) can be formulated as follows.

Theorem 2.1 ([10] on p.263) If V denotes the volume, r the inradius and R the
circumradius of a convex polyhedron having f faces, v vertices and e edges, then

e

3
sin

π f

e

(
tan2

π f

2e
tan2

πv

2e

)
r3 ≤ V ≤ 2e

3
cos2

π f

2e
cot

πv

2e

(
1 − cot2

π f

2e
cot2

πv

2e

)
R3.

(1)
Equality holds in both inequalities only for regular polyhedra.

He noted that “a polyhedron with a given number of faces f is always a limiting
figure of a trihedral polyhedron with f faces. Similarly, a polyhedron with a given
number v of vertices is always the limiting figure of a trigonal polyhedron with v

vertices. Hence introducing the notation

ωn = n

n − 2

π

6

we have the following inequalities

( f − 2) sin 2ω f
(
3 tan2 ω f − 1

)
r3 ≤ V ≤ 2

√
3

9
( f − 2) cos2 ω f

(
3 − cot2 ω f

)
R3,

(2)
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√
3

2
(v − 2)

(
3 tan2 ωv − 1

)
r3 ≤ V ≤ 1

6
(v − 2) cot ωv

(
3 − cot2 ωv

)
R3. (3)

Equality holds in the first two inequalities only for regular tetrahedron, hexahedron
and dodecahedron (f=4, 6, 12) and in the last two inequalities only for the regular
tetrahedron, octahedron and icosahedron (v=4, 6, 12).”

The right hand side of inequality (1) immediately solves our first problem in the
cases when the number of vertices is v = 4, 6, 12; the maximal volume polyhedra
with 4, 6 and 12 vertices inscribed in the unit sphere are the regular tetrahedron,
octahedron and icosahedron, respectively.

The second milestone in the investigation of this problem is the paper of Berman
and Hanes ([11]) written in 1970. They solved the problem for v = 5, 7, 8 vertices,
respectively. Their methods are based on a combinatorial classification of the pos-
sible spherical tilings due to Bowen and Fisk ([19]) and a geometric result which
gives a condition for the local optimal positions. They characterized these positions
by a property called Property Z. We now give the definitions with respect to the
d-dimensional space.

Definition 2.1 Let P ∈ Pd(n) be a d-polytope with V (P) = {p1, p2, . . . , pn}. If
for each i , there is an open set Ui ⊂ S

d−1 such that pi ∈ Ui , and for any q ∈ Ui , we
have

vold (conv ((V (P) \ {pi }) ∪ {q})) ≤ vold (P) ,

then we say that P satisfies Property Z.

Returning to the three-dimensional case if pi and p j are vertices of P , denote the
line segment whose endpoints are pi and p j by si j and its length by |si j |. Also, let
ni j = 1/6

(
pi × p j

)
where × denotes the vector product in E3.

Lemma 2.1 (Lemma 1 in [11]) Let P with vertices p1, . . . , pn have property Z. Let
C(P) be any oriented complex associated with P such that vol(C(P)) ≥ 0. Suppose
s12, . . . , s1r are all the edges of C(P) incident with p1 and that p2, p3, p1; p3, p4, p1;
…;pr , p2, p1 are orders for faces consistent with the orientation of C(P).

i. Then p1 = m/|m| where m = n23 + n34 + · · · + nr2.
ii. Furthermore, each face of P is triangular.

Let the valence of a vertex ofC(P) be the number of edges ofC(P) incident with that
vertex. By Euler’s formula the average of the valences is 6 − 12/n. If n is such that
6 − 12/n is an integer then C(P) is medial if the valence of each vertex is 6 − 12/n.
If 6 − 12/n is not an integer thenC(P) is medial provided the valence of each vertex
is either m or m + 1 where m < 6 − 12/n < m + 1. P is said to be medial provided
all faces of P are triangular and C(P) is medial. Goldberg in [20] made a conjecture
whose dual was formulated by Grace in [21]: The polyhedron with n vertices in the
unit sphere whose volume is a maximum is a medial polyhedron provided a medial
polyhedron exists for that n. Connecting to this conjecture Berman andHanes proved
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that if n = 4, 5, 6, 7, 8 then the polyhedra with maximal volume inscribed in the unit
sphere are medial polyhedra with Property Z, respectively.

Note that in the proofs of the above results (on n ≥ 5) is an important step to show
that the valences of the vertices of a polyhedron with maximal volume are at least 4.
This follows from inequality (2).

The maximal volume polyhedron for n = 4 is the regular simplex. For n = 5, 6, 7
they are the so-called double n-pyramids, with n = 5, 6, 7, respectively. (By a dou-
ble n-pyramid (for n ≥ 5), is meant a complex of n vertices with two vertices of
valence n − 2 each of which is connected by an edge to each of the remaining n − 2
vertices, all of which have valence 4. The 2(n − 2) faces of a double n-pyramid are
all triangular. A polyhedron P is a double n-pyramid provided each of its faces is
triangular and some C(P) is a double n-pyramid.) An interesting observation (see
Lemma 2 in [11]) is that if P is a double n-pyramid with property Z then P is unique
up to congruence and its volume is [(n − 2)/3] sin 2π/(n − 2).

For n = 8 there exists only two non-isomorphic complexeswhich have no vertices
of valence 3 (see in [19]). One of them the double 8-pyramid and the other one has
four valence 4 vertices and four valence 5 vertices, and therefore it is the medial
complex (see on Fig. 1). It has been shown that if this latter has Property Z then P is

uniquely determined up to congruence and its volume is

√[
475+29

√
145

250

]
giving the

maximal volume polyhedron with eight vertices.
As concluding remarks Berman and Hanes raised the following questions:

Problem 2.1 For which types of polyhedra does Property Z determine a unique
polyhedron. More generally, for each isomorphism class of polyhedra is there one
and only one polyhedron (up to congruence) which gives a relative maximum for the
volume?

Problem 2.2 For n = 4, . . . , 7 the duals of the polyhedra of maximum volume are
just those polyhedra with n faces circumscribed about the unit sphere of minimum
volume. For n = 8 the dual of the maximal volume polyhedron (described above) is

Fig. 1 The medial complex with 8 vertices and its two polyhedra, the maximal volume polyhedron
and the cube
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the best known solution to the isoperimetric problem for polyhedra with 8 faces. Is
this true in general?

Recently there is no answer for these questions.
We have to mention a theorem of A. Florian ([22]) which immediately implies the

inequalities in (3). Let P be a convex polyhedron with v vertices and volume vol(P).
We consider an orthoscheme T = O ABC (where O A orthogonal to the plane ABC ,
and AB orthogonal to BC) with the properties:

(i) the radial projection of ABC onto the unit sphere with centre O is the spherical
triangle T ′ = A′ B ′C ′ given by

C ′ A′ B ′� = π

3
, A′ B ′C ′� = π

2
, area(T ′) = 4π

12(v − 2)

(ii) vol(T ) = 1
12(v−2) vol(P).

Then we have:

Theorem 2.2 ([22]) Let K (ρ) be a ball with centre O and radius ρ. Let P be a
convex polyhedron with v vertices and volume vol(P), and let the tetrahedron T be
defined as above. Then

vol(P ∩ K (ρ)) ≤ 12(v − 2) vol(T ∩ K (ρ)) (4)

with equality if v = 4, 6 or 12 and P is a regular tetrahedron, octahedron or icosa-
hedron with centre O. When |O A| ≤ ρ ≤ |OC |, these are the only cases of equality.

We recall the paper of Mutoh [12] who presented the results of a computer-
aided search for optimal polyhedra with 4 ≤ n ≤ 30 vertices. The solutions of the
computation probably solved the mentioned cases, respectively, however there is no
information in the paper either on the source code of the program or the algorithm
which based the computation. Table 1 describes some of those polyhedra which
suggested by Mutoh as the maximal volume one inscribed in the unit sphere. We
refer here only a part of the complete table of Mutoh, for more information see the
original paper [12].

Mutoh notes that it seems to be that the conjecture of Grace on medial polyhedron
is false because the polyhedra found by computer in the cases n = 11 and n = 13
are not medial ones, respectively. Mutoh also listed the polyhedra circumscribed to
the unit sphere with minimal volume and examined the dual conjecture of Gold-
berg (see also Problem 2.2). He said: “Goldberg conjectured that the polyhedron of
maximal volume inscribed to the unit sphere and the polyhedron of minimal volume
circumscribed about the unit sphere are dual. A comparison of Table 1 and 3 shows
that the number of vertices and the number of faces of the two class of polyhedra
correspond with each other. The degrees of vertices of the polyhedra of maximal
volume inscribed in the unit sphere correspond to the numbers of vertices of faces of
the polyhedra of minimal volume circumscribed about the unit sphere. Indeed, the
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Table 1 Computer search results of polyhedra of maximal volume inscribed in the unit sphere

Number of vertices Maximal volume Number of facets Valences of vertices

4 0.51320010 4 3 × 4

5 0.86602375 6 3 × 2, 4 × 3

6 1.33333036 8 4 × 6

7 1.58508910 10 4 × 5, 5 × 2

8 1.81571182 12 4 × 4, 5 × 4

9 2.04374046 14 4 × 3, 5 × 6

10 2.21872888 16 4 × 2, 5 × 8

11 2.35462915 18 4 × 2, 5 × 8, 6 × 1

12 2.53614471 20 5 × 12
.
.
.

.

.

.
.
.
.

.

.

.

30 3.45322727 56 5 × 12, 6 × 18

volume of polyhedra whose vertices are the contact points of the unit sphere and the
polyhedra circumscribed about the unit sphere differs only by 0.07299% from the
volume of the polyhedra inscribed in the unit sphere.”

We turn to a recent result that generalizes the triangle case of the inequality (1)
of L. Fejes-Tóth. If A, B, C are three points on the unit sphere we can consider
two triangles, one of the corresponding spherical triangle and the second one the
rectilineal triangle with these vertices, respectively. Both of them are denoted by
ABC . The angles of the rectilineal triangle are the half of the angles between those
radius of the circumscribed circle which connect the center K of the rectilineal
triangle ABC to the vertices A, B, C . Since K is also the foot of the altitude of the
tetrahedron with base ABC and apex O , hence the angles αA, αB and αC of the
rectilineal triangle ABC , play an important role in our investigations, we refer to
them as the central angles of the spherical edges BC , AC and AB, respectively.
We call again the tetrahedron ABC O the facial tetrahedron with base ABC and
apex O .

Lemma 2.2 ( See in [23]) Let ABC be a triangle inscribed in the unit sphere. Then
there is an isosceles triangle A′ B ′C ′ inscribed in the unit sphere with the following
properties:

• the greatest central angles and also the spherical areas of the two triangles are
equal to each other, respectively;

• the volume of the facial tetrahedron with base A′ B ′C ′ is greater than or equal to
the volume of the facial tetrahedron with base ABC.

From Lemma 2.2 it can be proved upper bound functions for the volume of the facial
tetrahedron.
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Proposition 2.1 Let the spherical area of the spherical triangle ABC be τ . Let αC

be the greatest central angle of ABC corresponding to AB. Then the volume V of
the facial tetrahedron ABC O holds the inequality

V ≤ 1

3
tan

τ

2

(
2 − |AB|2

4

(
1 + 1

(1 + cosαC)

))
. (5)

In terms of τ and c := AB we have

V ≤ v(τ, c) := 1

6
sin c

cos τ−c
2 − cos τ

2 cos
c
2

1 − cos c
2 cos

τ
2

. (6)

Equality holds if and only if |AC | = |C B|.
Observe that the function v(τ, c) is concave in the parameter domain D := {0 <

τ < π/2, τ ≤ c < min{ f (τ ), 2 sin−1 √
2/3}} with certain concave (in τ ) function

f (τ ) defined by the zeros of the Hessian; and non-concave in the domain D′ =
{0 < τ ≤ ω, f (τ ) ≤ c ≤ 2 sin−1 √

2/3} = {0 < τ ≤ c ≤ π/2} \ D, where f (ω) =
2 sin−1 √

2/3.
Assume now that the triangular star-shaped polyhedron P with f face inscribed in

the unit sphere. Let c1, . . . , c f be the arc-lengths of the edges of the faces F1, . . . , Ff

corresponding to their maximal central angles, respectively. Denote by τi the spheri-
cal area of the spherical triangle corresponding to the face Fi for all i .We note that for
a spherical triangle which edges a, b, c hold the inequalities 0 < a ≤ b ≤ c < π/2,
also holds the inequality τ ≤ c. In fact, for fixed τ the least value of the maximal
edge length attend at the case of regular triangle. If c < π/2 then we have

tan
τ

4
=

(
tan

c

4

√
tan

3c

4
tan

c

4

)
=

⎛
⎝tan

c

4

√
1 − tan 3c

4 + tan c
4

tan c

⎞
⎠ < tan

c

4
,

and if c = π/2 then τ = 8π/4 = π/2 proving our observation.
The following theorem gives an upper bound on the volume of the star-shaped

polyhedron corresponding to the given spherical tiling in question.

Theorem 2.3 (See in [23]) Assume that 0 < τi < π/2 holds for all i . For i =
1, . . . , f ′ we require the inequalities 0 < τi ≤ ci ≤ min{ f (τi ), 2 sin−1 √

2/3} and
for all j with j ≥ f ′ the inequalities 0 < f (τ j ) ≤ c j ≤ 2 sin−1 √

2/3, respectively.

Let denote c′ := 1
f ′

f ′∑
i=1

ci , c� := 1
f − f ′

f∑
i= f ′+1

f (τi ) and τ ′ :=
f∑

i= f ′+1
τi , respectively.

Then we have

v(P) ≤ f

6
sin

(
f ′c′ + ( f − f ′)c�

f

) cos
(
4π− f ′c′−( f − f ′)c�

2 f

)
− cos 2π

f cos
(

f ′c′+( f − f ′)c�

2 f

)

1 − cos 4π
2 f cos

(
f ′c′+( f − f ′)c�

2 f

) .

(7)
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2.2 The Cases of Higher Dimensions

As we saw in the previous subsection, even the 3-dimensional case is completely
proved only when the number of vertices less or equal to eight. This shows that in
higher dimensions we cannot expect such complete results as was published by L.
Fejes-Tóth, A. Flórian or Berman and Hanes in the second half on the last century,
respectively. As Flórian said in [22]: “Several extremum properties of the regular
triangle and the regular tetrahedron may be generalized to regular simplices in all
dimensions…. Little is known in this respect about the general cross polytope, the
hypercube and the nontrivial regular convex polytopes in 4-space”. “Some extremum
properties of these polytopes were established by comparing them with the topolog-
ically isomorphic convex polytopes…. But no methods are available for proving
inequalities analogous to (3).” We now extract the method of Berman and Hanes to
higher dimensions and using a combinatorial concept, the idea of Gale’s transform
solve some cases of few vertices. In this subsection we collect the results of the paper
[24].

The first step is the generalization of Lemma 2.1 for arbitrary dimensions.

Lemma 2.3 Consider a polytope P ∈ Pd(n) satisfying Property Z. For any p ∈
V (P), let Fp denote the family of the facets of C(P) containing p. For any F ∈ Fp,
set

A(F, p) = vold−1 (conv ((V (F) ∪ {o}) \ {p})) ,

and let m(F, p)be the unit normal vector of the hyperplane, spanned by (V (F) ∪ {o})
\ {p}, pointing in the direction of the half space containing p.

(2.3.1) Then we have p = m/|m|, where m = ∑
F∈Fp

A(F, p)m(F, p).

(2.3.2) Furthermore P is simplicial.

Remark 2.1 Assume that P ∈ Pd(n) satisfies Property Z, and for some p ∈ V (P),
all the vertices of P adjacent to p are contained in a hyperplane H . Then the sup-
porting hyperplane of Sd−1 at p is parallel to H , or in other words, p is a normal
vector to H . Thus, in this case all the edges of P , starting at p, are of equal length.

Lemma 2.4 Let P ∈ Pd(n) satisfy Property Z, and let p ∈ V (P). Let q1, q2 ∈ V (P)

be adjacent to p. Assume that any facet of P containing p contains at least one of q1

and q2, and for any S ⊂ V (P) of cardinality d − 2, conv(S ∪ {p, q1}) is a facet of
P not containing q2 if, and only if conv(S ∪ {p, q2}) is a facet of P not containing
q1. Then |q1 − p| = |q2 − p|.

Corollary 2.1 is a straightforward consequence of Lemma 2.4 or, equivalently,
Remark 2.1.

Corollary 2.1 If P ∈ Pd(d + 1) and vold(P) = vd(d + 1), then P is a regular sim-
plex inscribed in S

d−1.
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We note that this statement can be considered as a folklore. The analogous state-
ment in d-dimensional spherical geometry (for simplices inscribed in a sphere of Sd

with radius less than π/2) was proved by Böröczky in [25]. The method of Böröczky
is based on the fact that Steiner’s symmetrization is a volume-increasing transfor-
mation of the spherical space and so it can not be transformed immediately to the
hyperbolic case. In hyperbolic spaces the investigations concentrated only to the sim-
plices with ideal vertices. In dimension two every two triangles with ideal vertices
are congruent to each other implying that they have the same area which value is
maximal one among the triangles. On the other hand it was proved by Milnor (see
in [26] or in [27]) that in hyperbolic 3-space, a simplex is of maximal volume if and
only if it is ideal and regular. The same d-dimensional statement has been proved by
Haagerup and Munkholm in [28]. This motivates the following:

Problem 2.3 Prove or disprove that in hyperbolic d-space a simplex is of maximal
volume inscribed in the unit sphere if and only if it is a regular one.

Before the next corollary recall that if K is a (d − 1)-polytope inRd , and [p1, p2]
is a segment intersecting the relative interior of K at a singleton different from p1

and p2, then conv(K ∪ [p1, p2]) is a d-bipyramid with base K and apexes p1, p2

(cf. [29]). In the literature the terminology “bipyramid” is more prevalent as of the
nomenclature “double-pyramid” of Berman and Hanes. In the rest of this paper we
use bipyramid.

Corollary 2.2 Let P ∈ Pd(n) be combinatorially equivalent to a d-bipyramid.
Assume that P satisfies Property Z. Then P is a d-bipyramid, its apexes p1, p2

are antipodal points, its base K and [p1, p2] lie in orthogonal linear subspaces of
R

d , and K satisfies Property Z in the hyperplane aff K .

Corollary 2.2 implies the following one:

Corollary 2.3 If P ∈ Pd(2d) has maximal volume in the combinatorial class of
cross-polytopes inscribed in S

d−1, then it is a regular cross-polytope.

The first non-trivial case is when the number of points is equal to n = d + 2. It
has been proved:

Theorem 2.4 ([24]) Let P ∈ Pd(d + 2) have maximal volume over Pd(d + 2).
Then P = conv(P1 ∪ P2), where P1 and P2 are regular simplices of dimensions

 d
2 � and � d

2 , respectively, inscribed in S
d−1, and contained in orthogonal linear

subspaces of Rd . Furthermore,

vd(d + 2) = 1

d! · (
d/2� + 1)

d/2�+1

2 · (�d/2 + 1)
�d/2+1

2


d/2� 
d/2�
2 · �d/2 �d/2

2

In the proof of the results on d-polytopes with d + 2 or d + 3 vertices, we
use extensively the properties of the so-called Gale transform of a polytope
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(cf. [29, 30]). Since the application of this combinatorial theory leads to a new
method in the investigation of our problem we review it.

Consider a d-polytope P with vertex set V (P) = {pi : i = 1, 2, . . . , n}. Regard-
ingRd as the hyperplane {xd+1 = 1} ofRd+1,we can representV (P) as a (d + 1) × n
matrix M , in which each column lists the coordinates of a corresponding vertex in
the standard basis of Rd+1. Clearly, this matrix has rank d + 1, and thus, it defines
a linear mapping L : Rn → R

d+1, with dim ker L = n − d − 1. Consider a basis
{w1, w2, . . . , wn−d−1} of ker L , and let L̄ : Rn−d−1 → R

n be the linear map map-
ping the i th vector of the standard basis of Rn−d−1 into wi . Then the matrix M̄ of L̄
is an n × (n − d − 1) matrix of (maximal) rank n − d − 1, satisfying the equation
M M̄ = O , where O is the matrix with all entries equal to zero. Note that the rows of
M̄ can be represented as points ofRn−d−1. For any vertex pi ∈ V (P), we call the i th
row of M̄ the Gale transform of pi , and denote it by p̄i . Furthermore, the n-element
multiset { p̄i : i = 1, 2, . . . , n} ⊂ R

n−d−1 is called the Gale transform of P , and is
denoted by P̄ . If conv S is a face of P for some S ⊂ V (P), then the (multi)set of the
Gale transform of the points of S is called a face of P̄ . If S̄ is a face of P̄ , then P̄ \ S̄
is called a coface of P̄ .

Let V = {qi : i = 1, 2, . . . , n} ⊂ R
n−d−1 be a (multi)set. We say that V is a Gale

diagram of P , if for some Gale transform P ′ the conditions o ∈ relint conv{q j : j ∈
I } and o ∈ relint conv{ p̄ j : j ∈ I } are satisfied for the same subsets of {1, 2, . . . , n}.
If V ⊂ S

n−d−2, then V is a normalized Gale diagram (cf. [31]). A standard Gale dia-
gram is a normalized Gale diagram in which the consecutive diameters are equidis-
tant. A contracted Gale diagram is a standard Gale diagram which has the least
possible number of diameters among all isomorphic diagrams. We note that each
d-polytope with at most d + 3 vertices may be represented by a contracted Gale
diagram (cf. [29] or [30]). An important tool of the proofs the following theorem
from [29] or also from [30].

Theorem 2.5 ([29, 30])

(i) A multiset P̄ of n points in R
n−d−1 is a Gale diagram of a d-polytope P with n

vertices if and only if every open half-space in R
n−d−1 bounded by a hyperplane

through o contains at least two points of V̄ (or, alternatively, all the points of P̄
coincide with o and then n = d + 1 and P is a d-simplex).

(ii) If F is a facet of P, and Z is the corresponding coface, then in any Gale diagram
V̄ of P, Z̄ is the set of vertices of a (non-degenerate) set with o in its relative
interior.

(iii) A polytope P is simplicial if and only if, for every hyperplane H containing
o ∈ R

n−d−1, we have o /∈ relint conv(V̄ ∩ H).
(iv) A polytope P is a pyramid if and only if at least one point of V̄ coincides with

the origin o ∈ R
n−d−1.

We note that (ii) can be stated in a more general form: F is a face of P if, and
only if, for the corresponding co-face F̄ of P , we have o ∈ int conv Z̄ .

Before stating the result on n = d + 3 vertices, recall that a d-polytope with n
vertices is cyclic, if it is combinatorially equivalent to the convex hull of n points on
the moment curve γ (t) = (t, t2, . . . , td), t ∈ R.
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Theorem 2.6 ([24]) Let P ∈ Pd(d + 3) satisfy Property Z. If P is even, assume
that P is not cyclic. Then P = conv{P1 ∪ P2 ∪ P3}, where P1, P2 and P3 are reg-
ular simplices inscribed in S

d−1 and contained in three mutually orthogonal linear
subspaces of Rd . Furthermore:

• If d is odd and P has maximal volume over Pd(d + 3), then the dimensions of P1,
P2 and P3 are 
d/3� or �d/3. In particular, in this case we have

(vd(d + 3) =) vold(P) = 1

d! ·
3∏

i=1

(ki + 1)
ki +1
2

k
ki
2

i

,

where k1 + k2 + k3 = d and for every i , we have ki ∈ {
 d
3 �, � d

3 
}
.

• The same holds if d is even and P has maximal volume over the family of not
cyclic elements of Pd(d + 3).

Remark 2.2 Let d = 2m be even and P ∈ Pd(d + 3) be a cyclic polytope satisfying
Property Z. Then we need to examine the case that P̄ is the vertex set of a regular
(2m + 3)-gon. Let the vertices of P̄ be p̄i , i = 1, 2, . . . , 2m + 3 in counterclockwise
order. Applying the method of the proof of Theorem 2.6, one can deduce that for
every i , we have that |pi−m−1 − pi | = |pi+m+1 − pi |. On the other hand, for any
other pair of vertices the conditions of Lemma 2.4 are not satisfied.

In the light of Theorem 2.6, it seems interesting to find the maximum volume
cyclic polytopes in Pd(d + 3), with d even. With regard to Remark 2.2, it is not
unreasonable to consider the possibility that the answer for this question is a polytope
P = conv{pi : i = 1, 2, . . . , d + 3} having a certain cyclic symmetry (if at all it is
possible), namely that for any integer k, the value of |pi+k − pi | is independent
from i .

The following observation can be found both in [32], or, as an exercise, in [30].

Remark 2.3 Let d ≥ 2 be even, and n ≥ d + 3. Let

Cd (n) =
√

2

d
conv

{(
cos

iπ

n
, sin

iπ

n
, cos

2iπ

n
, . . . , cos

diπ

2n
, sin

diπ

2n

)
: i = 0, 1, . . . , n − 1

}
.

Then C(n, d) is a cyclic d-polytope inscribed in Sd−1, and Sym(Cd(n)) = Dn .

It can be shown that for d = 4, 6 the only “symmetric” representations of a cyclic
d-polytope with d even and n = d + 3 are those congruent to Cd(d + 3). Using the
concepts of Löwner ellipsoid it can be proved the following theorem:

Theorem 2.7 ([24]) Let P ∈ Cd(d + 3) be a cyclic polytope, where d = 4 or d = 6,
and let V (P) = {pi : i = 1, 2, . . . , d + 3}. If, for every value of k, |pi+k − pi | is
independent of the value of i , then P is congruent to Cd(d + 3).

The above investigations raised a lot of questions and problems without answers.
We collect some of them in the rest of this section.



Volume of Convex Hull of Two Bodies and Related Problems 213

Problem 2.4 Prove or disprove that inPd(d + 3), the cyclic polytopes with maximal
volume are the congruent copies of Cd(d + 3). In particular, is it true for C4(7)? Is
it true that any cyclic polytope in Pd(d + 3) satisfying Property Z is congruent to
Cd(d + 3)?

A straightforward computation shows that C4(7) satisfies Property Z. We note
that inPd(d + 2), polytopes with maximal volume are cyclic, whereas inPd(d + 3),
where d is odd, they are not. This leads to the following:

Problem 2.5 Is it true that if P ∈ Pd(d + 3), where d is even, has volume vd(d + 3),
then P is not cyclic?

Remark 2.4 Let P4 ∈ P4(7) be the convex hull of a regular triangle and two diame-
ters of S3, in mutually orthogonal linear subspaces. Furthermore, let P6 ∈ P6(9) be
the convex hull of three regular triangles, in mutually orthogonal linear subspaces.
One can check that

vol4(P4) = 3

4
= 0.43301 . . . > vol4(C4(7)) = 49

192

(
cos

π

7
+ cos

2π

7

)
= 0.38905 . . . .

In addition,

vol6(C6(9)) = 7

576
sin

π

9
− 7

2880
sin

4π

9
+ 7

1152
sin

2π

9
= 0.01697 . . .

and

vol6(P6) = 9
√
3

640
= 0.02435 . . . > vol6(C6(9)).

This suggests that the answer for Problem 2.5 is yes.

Remark 2.5 Using the idea of the proof of Theorem 2.7, for any small value of n,
it may identify the polytopes having Dn as a subgroup of their symmetry groups.
Nevertheless, it were unable to apply this method for general n, due to computa-
tional complexity. The authors [24] carried out the computations for 5 ≤ n ≤ 9, and
obtained the following polytopes, up to homothety:

• regular (n − 1)-dimensional simplex in Rn−1 for every n,
• regular n-gon in R2 for every n,
• C4(n) with n = 6, 7, 8, 9 and C6(n) with n = 8, 9,
• regular cross-polytope in R

3 and R
4,

• the polytope P6 in R6, defined in Remark 2.4,
• the 3-polytope P with

V (P) =
{
(1, 0, 0) ,

(
−2

3
,−2

3
,
1

3

)
, (0, 1, 0) ,

(
1

3
,−2

3
,−2

3

)
, (0, 0, 1) ,

(
−2

3
,
1

3
,−2

3

)}
.

Wenote that, for d odd, the symmetry group of a cyclic d-polytopewith n ≥ d + 3
vertices is Z2 × Z2 (cf. [32]). Thus, the only cyclic polytopes in the above list are
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Fig. 2 The change of the
convex hull

simplices and those homothetic to Cd(n) for some values of n and d. This leads to
the following question.

Problem 2.6 Is it true that if, for some n ≥ d + 3 ≥ 5, a cyclic polytope P ∈ Pd(n)

satisfies Sym(P) = Dn, then P is congruent to Cd(n)?

3 Volume of the Convex Hull of Two Connecting Bodies

3.1 On the Volume Function of the Convex Hull of Two
Convex Body

Following the chronology, we have to start here with a result of Fáry and Rédei from
1950 ([33]). They investigated the volume function defined on the convex hull of
two convex bodies (Fig. 2). He proved that if one of the bodies moves on a line with
constant velocity then the volume of the convex hull is a convex function of the time
(see Satz.4 in [33]). It was also proved later in [15], and for convex polyhedra of
dimension three in [34].

Theorem 3.1 ([15, 33, 34]) The real valued function g of the real variable x defined
by the fixed vector t and the formula

g(x) := Vol(conv(K ∪ (K ′ + t (x))), where t (x) := xt,

is convex.

The nice proof in [34] is based on the observation that the volume change function
(by a translation in the direction of a line) can be calculated and it is an increasing
function. Since it is also the derivative of g we get that g is convex. This calcu-
lation for the volume change can be done in the general case, too. Consider the
shadow boundary of the convex hull conv(K ∪ (K ′ + t)) with respect to the line
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of translation t . This is an (d − 2)-dimensional topological manifold separating the
boundary of conv(K ∪ (K ′ + t)) into two domains, the front and back sides of it,
respectively. (The translation t can be considered as a motion, hence the respective
concepts of front and back sides can be regarded with respect to the direction of it.)
Regarding a hyperplane H orthogonal to t the front side and back side are graphs of
functions over the orthogonal projection X of conv(K ∪ (K ′ + t)) onto H . Thus the
volume change in t can be calculated by the formula

g′(t) = lim
ε→0

∫
X
( f t+ε(X) − f t (X)) +

∫
X
(bt+ε(X) − bt (X)),

where, at the moment t , f t and bt are the graphs of the front ad back sides, respec-
tively. Since X is independent from t and for fixed X the functions

f t+ε(x) − f t (x) and bt+ε(x) − bt (x)

in t are increasing and decreasing, respectively, we get that g′ is also increasing in t
implying that g is convex.

As a corollary we get the following:

Corollary 3.1 (see in [18]) If we have two convex, compact bodies K and K ′ of the
Euclidean space of dimension n and they are moving uniformly on two given straight
lines then the volume of their convex hull is a convex function of the time.

Remark 3.1 Weemphasize that the statement ofTheorem3.1 is not true in hyperbolic
space: Let K be a segment and K ′ be a point which goes on a line in the pencil of the
rays ultraparallel to the line of the segment. Since the area function of the triangle
defined by the least convex hull of K and K ′ is bounded (from below and also from
above) it cannot be a convex function.

Note that if the “bodies” are points the statement simplified to a proposition of
absolute geometry which implies e.g. the existence of the normal transversal of two
skew lines in the hyperbolic space.

There are several applications of Theorem 3.1. In the paper of Hee-Kap Ahn,
Peter Brass and Chan-Su Shin (see [34]) the following result, based on Lemma 3.1
appears.

Theorem 3.2 (See Theorem 3 in [34]) Given two convex polyhedra P and Q in
three-dimensional space, we can compute the translation vector t of Q that minimizes
vol(conv(P ∪ (Q + t))) in expected time O(n3 log4 n). The d-dimensional problem
can be solved in expected time O(nd+1−3/d(logn)d+1).

In [33], Fáry and Rédey introduced the concepts of inner symmetricity (or outer
symmetricity) of a convex body with the ratio (or inverse ratio) of the maximal (or
minimal) volumes of the centrally symmetric bodies inscribed in (or circumscribed
about) the given body. Using the mentioned Theorem 3.1 (and also its counterpart
on the concavity of the volume function of the intersection of two bodies one of
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them fromwhich moving on a line with constant velocity), they determined the inner
symmetricity (and also the outer symmetricity) of a simplex (see Satz 5., resp. Satz
6. in [33]). It has been proved that if S is a simplex of dimension n then its inner
symmetricity c�(S) is equal to

c�(S) = 1

(n + 1)n

∑
0≤ν≤ n+1

2

(−1)ν
(

n + 1

ν

)
(n + 1 − 2ν)n. (8)

On outer symmetricity c�(S) of a simplex they proved that it is equal to

c�(S) = 1( n
n0

) , (9)

where n0 = n/2 if n is even and n0 = (n − 1)/2 if n is an odd number. The above
values attain when we consider the volume of the intersection (or the convex hull
of the union) of S with its centrally reflected copy SO (taking the reflection at the
centroid O of S).

Horváth and Lángi in [17] introduced the following quantity.

Definition 3.1 For two convex bodies K and L in Rd , let

c(K , L) = max
{
vold(conv(K ′ ∪ L ′)) : K ′ ∼= K , L ′ ∼= L and K ′ ∩ L ′ �= ∅}

.

Furthermore, if S is a set of isometries of Rd , we set

c(K |S) = 1

vol(K )
max

{
vold (conv(K ∪ K ′)) : K ∩ K ′ �= ∅, K ′ = σ(K ) for some σ ∈ S}

.

A quantity similar to c(K , L)was defined by Rogers and Shephard [15], in which
congruent copies were replaced by translates. It has been shown that the minimum of
c(K |S), taken over the family of convex bodies inRd , is its value for a d-dimensional
Euclidean ball, if S is the set of translations or that of reflections about a point.
Nevertheless, their method, approaching a Euclidean ball by suitable Steiner sym-
metrizations and showing that during this process the examined quantities do not
increase, does not characterize the convex bodies for which the minimum is attained;
they conjectured that, in both cases, the minimum is attained only for ellipsoids (cf.
p. 94 of [15]). We note that the method of Rogers and Shephard [15] was used also
in [13]. The results of the mentioned work based on the concept of linear parameter
system of convex sets and such a generalization of Theorem 3.1 which has interest
on its own-right, too.

Definition 3.2 ([15]) Let I be an arbitrary index set, with each member i of which
is associated a point ai in d-dimensional space, and a real number λi , where the sets
{ai }i∈I and {λi }i∈I are each bounded. If e is a fixed point and t is any real number,
A(t) denotes the set of points
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{ai + tλi e}i∈I ,

and C(t) is the least convex cover of this set of points, then the system of convex
sets C(t) is called a linear parameter system.

The authors proved (see Lemma 1 in [15]) that the volume V (t) of the set C(t) of a
linear parameter system is a convex function of t . They noted that this result should
be contrasted with that for a linear system of convex bodies as defined byMinkowski,
where the d-th root of the volume of the body with parameter t is a concave function
of t in its interval of definition.

In this paper we prove the following results:

Theorem 3.3 Let H and K be two bodies and denote by C(H, K ) the least convex
cover of the union of H and K . Furthermore let V �(H, K ) denote the maximum, taken
over all point x for which the intersection H ∩ (K + x) is not empty, of the volume
vold(C(H, K + x)) of the set C(H, K + x). Then V �(H, K ) ≥ V �(SH, SK ), where
SH denotes the closed d-dimensional sphere with centre at the origin and with
volume equal to that of H.

Theorem 3.4 If K is a convex body in d-dimensional space, then

1 + 2Jd−1

Jd
≤ vold(R�K )

vold(K )
≤ 2d ,

where Jd is the volume of the unit sphere in d-dimensional space, R�K is the number
to maximize with respect to a point a of K the volumes of the least centrally symmetric
convex body with centre a and containing K . Equality holds on the left, if K is an
ellipsoid; and on the right, if, and only if, K is a simplex.

Theorem 3.5 If K is centrally symmetric body in d-dimensional space, then

1 + 2Jd−1

Jd
≤ vold(R�K )

vold(K )
≤ 1 + d

Equality holds on the left if K is an ellipsoid, and on the right if K is any centrally
symmetric double-pyramid on a convex base.

Theorem 3.6 If K is a convex body in d-dimensional space, then

1 + 2Jd−1

Jd
≤ vold(T �K )

vold(K )
≤ 1 + d,

where T �K denotes the so-called translation body of K . This is the body for which the
volume of K ∩ (K + x) �= and the volume of C(K , K + x) is maximal one. Equality
holds on the left if K is an ellipsoid, and on the right if K is a simplex.
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Theorem 3.7 Let K be a convex body in d-dimensional space. Then there is a
direction such that the volume of each cylinder Z, circumscribed to K , with its
generators in the given direction, satisfies

vold(Z)

vold(K )
≥ 2Jd−1

Jd
.

It can be seen that these statements connect with the problem to determine the
number c(K |S) defined in Definition 3.1. In fact, Horváth and Lángi (in [17]) treated
these problems in a more general setting. Let ci (K ) be the value of c(K |S), where
S is the set of reflections about the i-flats of Rd , and i = 0, 1, . . . , d − 1. Similarly,
let ctr (K ) and cco(K ) be the value of c(K |S) if S is the set of translations and that
of all the isometries, respectively. In [17] the authors examined the minima of these
quantities. In particular, in Theorem 3.8, was given another proof that the minimum
of ctr (K ), over the family of convex bodies in Ren , is its value for Euclidean balls,
and it was shown also that the minimum is attained if, and only if, K is an ellipsoid.
This verifies the conjecture in [15] for translates.

Presented similar results about the minima of c1(K ) and cd−1(K ), respectively.
In particular, the authors proved that, over the family of convex bodies, c1(K ) is
minimal for ellipsoids, and cn−1(K ) is minimal for Euclidean balls. The first result
proves the conjecture of Rogers and Shephard for copies reflected about a point.

During the investigation, Kd denotes the family of d-dimensional convex bodies.
For any K ∈ Kd and u ∈ S

n−1, K |u⊥ denotes the orthogonal projection of K into
the hyperplane passing through the origin o and perpendicular to u. The polar of
a convex body K is denoted by K ◦. The denotation Jd of the paper [15] we are
changing to the more convenient one vd .)

The propositions are the followings:

Theorem 3.8 For any K ∈ Kd with d ≥ 2, we have ctr (K ) ≥ 1 + 2vd−1

vd
with equal-

ity if, and only if, K is an ellipsoid.

Weremark that a theorem related toTheorem3.8 canbe found in [35].More specif-
ically, Theorem11 of [35] states that for any convex body K ∈ Kd , there is a direction
u ∈ S

d−1 such that, using the notations ofTheorem3.8,dK (u) vold−1(K |u⊥) ≥ 2vd−1

vd
,

and if for any direction u the two sides are equal, then K is an ellipsoid.
If, for a convex body K ∈ Kd , we have that vold(conv((v + K ) ∪ (w + K )))

has the same value for any touching pair of translates, let us say that K satisfies
the translative constant volume property. The characterization of the plane convex
bodies with this property can be found also in this paper. Before formulating the
result, we recall that a 2-dimensional o-symmetric convex curve is a Radon curve,
if, for the convex hull K of a suitable affine image of the curve, it holds that K ◦ is a
rotated copy of K by π

2 (cf. [36]).

Theorem 3.9 For any plane convex body K ∈ K2 the following are equivalent.

(1) K satisfies the translative constant volume property.
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(2) The boundary of 1
2 (K − K ) is a Radon curve.

(3) K is a body of constant width in a Radon norm.

In two situations we have more precise results, respectively. The first case is
when the examined body is a centrally symmetric one, and the other one when it
is symmetric with respect to a hyperplane. The authors proved the following two
theorems:

Theorem 3.10 For any K ∈ Kd with d ≥ 2, c1(K ) ≥ 1 + 2vd−1

vd
, with equality if,

and only if, K is an ellipsoid.

Theorem 3.11 For any K ∈ Kd with d ≥ 2, cd−1(K ) ≥ 1 + 2vd−1

vd
, with equality if,

and only if, K is a Euclidean ball.

Finally, let Pm denote the family of convex m-gons in the plane R2. It is a natural
question to ask about the minima of the quantities defined in the introduction over
Pm . More specifically, we set

tm = min{ctr (P) : P ∈ Pm};
pm = min{c0(P) : P ∈ Pm};
lm = min{c1(P) : P ∈ Pm}.

On these numbers the following results were shown:

Theorem 3.12 (1) t3 = t4 = 3 and t5 = 25+√
5

10 . Furthermore, ctr (P) = 3 holds for
any triangle and quadrangle, and if ctr (P) = t5 for some P ∈ P5, then P is
affine regular pentagon.

(2) p3 = 4, p4 = 3 and p5 = 2 + 4sin π
5

5 . Furthermore, in each case, the minimum
is attained only for affine regular polygons.

(3) l3 = 4 and l4 = 3. Furthermore, among triangles, the minimum is attained only
for regular ones, and among quadrangles for rhombi.

Conjecture 3.1 Let d ≥ 2 and 0 < i < d − 1. Prove that, for any K ∈ Kd , ci (K ) ≥
1 + 2vd−1

vd
. Is it true that equality holds only for Euclidean balls?

The maximal values of ctr (K ) and c0(K ), for K ∈ Kd , and the convex bodies
for which these values are attained, are determined in [15]. Using a suitable simplex
as K , it is easy to see that the set {ci (K ) : K ∈ Kn} is not bounded from above for
i = 1, . . . , n − 1. This readily yields the same statement for cco(K ) as well. On the
other hand, from Theorem 3.11 we obtain the following.

Remark 3.2 For any K ∈ Kn with n ≥ 2, we have cco(K ) ≥ 1 + 2vn−1

vn
, with equality

if, and only if, K is a Euclidean ball.

In Theorem 3.9 it was proved that in the plane, a convex body satisfies the transla-
tive equal volume property if, and only if, it is of constant width in a Radon plane. It
is known (cf. [37] or [36]) that for d ≥ 3, if every planar section of a normed space is
Radon, then the space is Euclidean; that is, its unit ball is an ellipsoid. This motivates
the conjecture:
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Conjecture 3.2 Let d ≥ 3. If some K ∈ Kd satisfies the translative equal volume
property, then K is a convex body of constant width in a Euclidean space.

Furthermore, we remark that the proof of Theorem 3.9 can be extended, using the
Blaschke-Santaló inequality, to prove Theorems 3.8 and 3.10 in the plane. Similarly,
Theorem 3.11 can be proved by a modification of the proof of Theorem 3.8, in which
we estimate the volume of the polar body using the width function of the original
one, and apply the Blaschke-Santaló inequality.

Like in [15], Theorems 3.8 and 3.11 yield information about circumscribed cylin-
ders. Note that the second corollary is a strengthened version of Theorem 5 in [15].

Corollary 3.2 For any convex body K ∈ Kd , there is a direction u ∈ S
d−1 such that

the right cylinder HK (u), circumscribed about K and with generators parallel to u
has volume

vol(HK (u)) ≥
(
1 + 2vd−1

vd

)
vold(K ). (10)

Furthermore, if K is not a Euclidean ball, then the inequality sign in (10) is a strict
inequality.

Corollary 3.3 For any convex body K ∈ Kd , there is a direction u ∈ S
d−1 such that

any cylinder HK (u), circumscribed about K and with generators parallel to u, has
volume

vol(HK (u)) ≥
(
1 + 2vd−1

vd

)
vold(K ). (11)

Furthermore, if K is not an ellipsoid, then the inequality sign in (11) is a strict
inequality.

Let Pm be a regular m-gon in R2.

Problem 3.1 Prove or disprove that for any m ≥ 3,

tm = ctr (Pm), pm = c0(Pm), and lm = c1(Pm).

Is it true that for tm and pm, equality is attained only for affine regular m-gons, and
for lm, where m �= 4, only for regular m-gons?

3.2 Simplices in the 3-Space

Horváth in [16] examined c(K , K ) in the special case that K is a regular tetrahedron
and the two congruent copies have the same centre. It has been proved the following
theorem.

Theorem 3.13 The volume of the convex hull of two congruent regular triangles
with a common center is maximal if and only if their planes are orthogonal to each
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other and one of their vertices are opposite position with respect to the common
center O.

The proof is based on some exact formulas, which can be extended to the non-
regular case of triangles, too.

On regular tetrahedra was proved a theorem in that case when all of the spherical
triangles contain exactly one from the vertices of the other tetrahedron and changing
the role of the tetrahedra we also get it (so when the two tetrahedra are in dual
position). We remark that in a dual position the corresponding spherical edges of the
two tetrahedra are crossing to each other, respectively. In this case it has been proved
that

Theorem 3.14 The value v = 8
3
√
3
r3 is an upper bound for the volume of the convex

hull of two regular tetrahedra are in dual position. It is attained if and only if the
eight vertices of the two tetrahedra are the vertices of a cube inscribed in the common
circumscribed sphere.

This paper considered the proof of that combinatorial case when two domains
contain two vertices, respectively. The following statement were proved:

Statement 3.1 Assume that the closed regular spherical simplices S(1, 2, 3) and
S(4, 2, 3) contains the vertices 2′, 4′ and 1′, 3′, respectively. Then the two tetrahedra
are the same.

In the paper [23] the author closed this problem using a generalization of the
icosahedron inequality of L. Fejes-Tóth. It has been shown the general statement:

Theorem 3.15 Consider two regular tetrahedra inscribed in the unit sphere. The
maximal volume of the convex hull P of the eight vertices is the volume of the cube
C inscribed in the unit sphere, so

vol3(P) ≤ vol3(C) = 8

3
√
3
.

The paper [18] investigates also connecting simplices. It is assumed that the used
set of isometries S consists only reflections at such hyperplanes H which intersect
the given simplex S. (Hence the convex hull function is considered only on the pairs
of the simplex and its copy at a hyperplane intersecting it.) They gave an explicit
expression the relative volume of the convex hull of the simplices and gave upper
bounds on it. The number c(S, SH ) for the regular simplex is determined explicitly.
The following lemma plays a fundamental role in the investigations.

Lemma 3.1 If K and K ′ give a maximal value for cK ,K ′ then the intersection K ∩ K ′
is an extremal point of each of the bodies.

To formulate the results we introduce some new notation. Assume that the inter-
secting simplices S and SH are reflected copies of each other at the hyperplane H .
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Then H intersects each of them in the same set. By the Lemma 3.1 we have that the
intersection of the simplices in an optimal case is a common vertex. Let s0 ∈ H and
si ∈ H+ for i ≥ 1. We imagine that H is horizontal and H+ is the upper half-space.
Define the upper side of S as the union of those facets in which a ray orthogonal
to H and terminated in a far point of H+ is first intersecting with S. The volume
of the convex hull is the union of those prisms which are based on the orthogonal
projection of a facet of the simplex of the upper side. Let denote Fi1 , . . . , Fik the
facet-simplex of the upper side, F ′

i1
, . . . , F ′

ik
its orthogonal projections on H and

ui1 , . . . , uik its respective unit normals, directed outwardly. We also introduce the

notation s =
d∑

i=0
si =

d∑
i=1

si . Now we have

Statement 3.2

1

vold(S)
vold(conv(S, SH )) = 2d

k∑
l=1

〈uil , u〉〈u, s − sil 〉
|〈uil , (d + 1)sil − s〉| .

It can be solved the original problem in the case of the regular simplex. Denote
the Euclidean norm of a vector x by ‖x‖.
Theorem 3.16 If S is the regular simplex of dimension n, then

c(S, SH ) := 1

vold(S)
vold(conv(S, SH )) = 2d,

attained only in the case when u = u0 = s
‖s‖ .

We note that the result of the case of reflection at a hyperplane gives an inter-
mediate value between the results corresponding to translates and point reflections.
The part of the previous proof corresponding to the case of a single upper facet can
be extended to a general simplex, too. Let G denote the Gram matrix of the vector
system {s1, . . . , sn}, defined by the product MT M , where M = [s1, . . . , sn] is the
matrix with columns si . In the following theorem we use the notation ‖ · ‖1 for the
l1 norm of a vector or a matrix, respectively.

Theorem 3.17 If the only upper facet is F0 with unit normal vector u0, then we have
the inequality

1

vold(S)
vold(conv(S, SH )) ≤ d

(
1 + ‖s‖

〈u0, s〉
)

=

=
(

d +
√∥∥(1, . . . , 1)G−1

∥∥
1
‖M(1, . . . , 1)‖

)
.

Equality is attained if and only if the normal vector u of H is equal to u0+s ′
‖u0+s ′‖ , where

s ′ = s
‖s‖ is the unit vector of the direction of s.
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We remark that for a regular simplex we get back the previous theorem [38–43],
since

G =

⎛
⎜⎜⎜⎝
1 1

2 · · · 1
2

1
2 1 · · · 1

2
...

...
...

...
1
2 · · · 1

2 1

⎞
⎟⎟⎟⎠ and G−1 =

⎛
⎜⎜⎜⎝

2d
d+1 − 2

d+1 · · · − 2d
d+1

− 2
d+1

2d
d+1 · · · − 2

d+1
...

...
...

...

− 2
d+1 · · · − 2

d+1
2d

d+1

⎞
⎟⎟⎟⎠ ,

implying that

d +
√∥∥(1, . . . , 1)G−1

∥∥
1
‖M(1, . . . , 1)‖ = d +

√
2d

d + 1

√
d(d + 1)

2
= 2d.
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Integers, Modular Groups,
and Hyperbolic Space

Norman W. Johnson

Abstract In each of the normed division algebras over the real field R—namely,
R itself, the complex numbers C, the quaternions IH, and the octonions O—certain
elements can be characterized as integers. An integer of norm 1 is a unit. In a basic
system of integers the units span a 1-, 2-, 4-, or 8-dimensional lattice, the points of
which are the vertices of a regular or uniform Euclidean honeycomb. A modular
group is a group of linear fractional transformations whose coefficients are integers
in some basic system. In the case of the octonions, which have a nonassociative
multiplication, such transformations form a modular loop. Each real, complex, or
quaternionic modular group can be identified with a subgroup of a Coxeter group
operating in hyperbolic space of 2, 3, or 5 dimensions.

The relationship between the modular group PSL2(Z) of linear fractional transfor-
mations over the ring of rational integers and the regular hyperbolic tessellation {3,
∞} has been known since the nineteenth century. When Z is replaced by the ring G
= Z[i] of Gaussian integers, the analogous Picard group is similarly related to the
regular honeycomb {3, 4, 4} of hyperbolic 3-space. Recent results of Egon Schulte,
Barry Monson, Asia Ivić Weiss, and the author have extended these connections to
modular groups over other systems of complex and quaternionic integers and other
regular or uniform honeycombs of hyperbolic space.

1 Linear Fractional Transformations

When each point of a projective line FP1 over a field F is identified uniquely either
with an element x ∈F orwith the extended value∞, a projectivity (i.e., a permutation
of the points of FP1 that preserves cross ratios) can be expressed as a linear fractional
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transformation of the extended field F ∪{∞}, defined for four given field elements
a, b, c, d(ad − bc �= 0) by

x �→ ax + c

bx + d
,

with −d/b �→ ∞ and ∞ �→ a/b if b �= 0 and with ∞ �→ ∞ if b = 0. Such map-
pings can also be represented by 2 × 2 invertible matrices over F, modulo scalars,
constituting the projective general linear group PGL2(F).

The complex projective line CP1 with one point fixed, represented in R
2 by the

familiar Argand diagram, provides a conformal model for the hyperbolic plane H2.
Points in the “upper half-plane” Im z > 0 are the ordinary points of H2, and the real
axis, together with {∞}, represents the absolute circle. The isometry group of H2

is the projective pseudo-orthogonal group PO2,1, isomorphic to the group of linear
fractional transformations

·〈A〉 : C ∪ {∞} → C ∪ {∞}

with A real and det A �= 0, i.e., the (real) projective general linear group PGL2. The
subgroup P+O2,1 of direct isometries is isomorphic to the (real) projective special
linear group PSL2 (with det A > 0).

A convex polytope P of finite content in Hn whose dihedral angles are all submul-
tiples of π (or zero if two adjacent facets are parallel) is the fundamental region for
a hyperbolic Coxeter group, generated by reflections in the facets of P. The group is
compact if P is an ordinary simplex, with n + 1 ordinary vertices;paracompact if P
is an asymptotic simplex, with one or more vertices at infinity; or hypercompact if P
is not a simplex. When P is a right triangle with acute (or zero) angles π/p and π/q,
the group is the symmetry group [p, q] of a regular tessellation {p, q} of p-gons, q
at a vertex.

The set of 2× 2matrices A over the rational integersZwith det A = ±1 forms the
unit linear group S̄L2(Z). The subgroup of matrices A with det A = 1 is the special
linear group SL2(Z). The corresponding group PSL2Z of linear fractional trans-
formations ·〈A〉 is the (rational) modular group, with PS̄L2(Z) being the extended
modular group.

Felix Klein showed in 1879 (cf. [20]) that the modular group is isomorphic to
the rotation group of the regular hyperbolic tessellation {3,∞}. This is the direct
subgroup of the paracompact Coxeter group [3, ∞]:

PSL2(Z) ∼= [3,∞]+.

The absolute (n − 1)-sphere (“hypersphere at infinity”) of hyperbolic n-space Hn

has the geometry of inversive (n − 1)-space In−1, i.e., theMöbius (n − 1)-sphere. For
n > 1 the group POn,1 of isometries of Hn is isomorphic to the group of circularities
(homographies and antihomographies) of In−1.When n = 2, this is the group PGL2

∼=
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PGL2(R) of linear fractional transformations ·〈A〉 with A real. When n = 3, it is the
group PGL2(C) of linear fractional transformations

·〈A〉 : C ∪ {∞} → C ∪ {∞}

with A complex, i.e., the group of projectivities of the complex projective line CP1.

2 Complex Modular Groups

For any square-free integer d �= 1, the quadratic fieldQ(
√
d) has elements r + s

√
d,

where r and s belong to the rational field Q. The conjugate of a = r + s
√
d is

ã = r − s
√
d its trace tr a is a + ã = 2r , and its norm N (a) is aã = r2 − s2d. The

elements a with both tr a and N (a) in Z are quadratic integers and constitute an
integral domain, a two-dimensional algebraZ2(d) overZ, whose invertible elements,
or units, have norm ±1.

For d > 0 the elements ofZ2(d) are real and there are infinitely many units.When
d < 0,Z2(d) has both real and imaginary elements, the conjugate of z is its complex
conjugate z̄, tr z = 2 Re z, N (z) = |z|2, and (with two exceptions) the only units are
±1.

Complex numbers of the form g = g0 + g1i, where (g0, g1) ∈ Z
2 and i = √−1,

belong to the ringG = Z[i] = Z
2(−1) of Gaussian integers. There are four units in

all: ±1 and ±i. When the complex field C is regarded as a two-dimensional vector
space over R, the Gaussian integers constitute a two-dimensional lattice C2 spanned
by the units 1 and i, as shown in Fig. 1. The points of C2 are the vertices of a regular
tessellation {4, 4} of the Euclidean plane.

Just as restricting the coefficients of linear fractional transformations ·〈A〉 to
rational integers defines the rational modular group PSL2(Z), so restricting them to
Gaussian integers defines theGaussianmodular groupPSL2(G). This groupwas first
described by Émile Picard in 1884 and is commonly known as the “Picard group.”

In 1897 Fricke andKlein identified PSL2(G)with a subgroup of the rotation group
of the regular hyperbolic honeycomb {3, 4, 4} (cf. [17], pp. 60, 196). Schulte and
Weiss [21] showed that it is a subgroup of index 2 in [3, 4, 4]+, and Monson and
Weiss [18] exhibited it as a subgroup of index 2 in the hypercompact Coxeter group
[∞, 3, 3, ∞]. The five mirrors for the latter group are the bounding planes of a
quadrangular pyramid whose apex lies on the absolute sphere of H3.

Complex numbers of the form e = e0 + e1ω, where e0 and e1 are rational integers
and ω = −1/2 + 1/2

√−3, belong to the ring E = Z[ω] = Z
2(−3) of Eisenstein

integers. There are six units: ±1,±ω,±ω2. When the complex field C is regarded
as a two-dimensional vector space over R, the Eisenstein integers constitute a two-
dimensional lattice A2 spanned by the units 1 and ω, as shown in Fig. 2. The points
of A2 are the vertices of a regular tessellation {3, 6} of the Euclidean plane.

Bianchi [2, 3] showed that if D is an imaginary quadratic integral domain, the
group PSL2(D) acts discontinuously on hyperbolic 3-space. Though Fricke andKlein
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Fig. 1 The Gaussian integers

applied this to theGaussian integersG = Z[i], theEisenstein integersE = Z[ω]were
generally ignored. It was not until 1994 that Schulte and Weiss cf. [18], Monson and
Weiss [19] related the Eisenstein modular group PSL2(E) to the regular hyperbolic
honeycomb {3, 3, 6}, showing that PSL2(E) is isomorphic to a subgroup of the
rotation group [3, 3, 6]+.

The ring Z of rational integers can be identified with the points of a lattice C1

spanned by the units ±1, the vertices of a regular partition {∞}. The modular group
PSL2(Z) is isomorphic to the rotation group [3,∞]+ of the regular hyperbolic tes-
sellation {3, ∞}. Similarly, the rings G and E of Gaussian and Eisenstein integers
correspond to lattices C2 and A2, whose points are the vertices of the regular tessella-
tions {4, 4} and {3, 6}. As shown by Johnson andWeiss [14], the respective modular
groups are isomorphic to “ionic” subgroups of the paracompact Coxeter groups [3,
4, 4] and [3, 3, 6], the symmetry groups of the regular hyperbolic honeycombs {3, 4,
4} and {3, 3, 6}:
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Fig. 2 The Eisenstein integers

PSL2(G) ∼= [3, 4, 1+, 4]+,

PSL2(E) ∼= [(3, 3)+, 6, 1+].

Such subgroups of a Coxeter group are obtained by replacing certain of the gen-
erating reflections by their pairwise products or by conjugates of other generators
(cf. [7, §4.4]). If there are k superscript plus signs, the subgroup is of index 2k .

3 Quaternionic Modular Groups

The division ring H of quaternions is a four-dimensional vector space over R with
basis 1, i, j, k having an associative multiplication of vectors satisfying Hamilton’s
famous equations
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i2 = j2 = k2 = ijk = −1.

The multiplication so defined is noncommutative; e.g., ij = k = −ji. Each quater-
nion Q = t + xi + y j + zk has a conjugate Q̃ = t − x i − yj − zk, a trace tr Q = Q +
Q̃ = 2t , and a norm N (Q) = QQ̃ = t2 + x2 + y2 + z2.

Vahlen [22] showed that homographies of inversive (n − 1)-space In−1 can be
represented by linear fractional transformations over a Clifford algebra of dimension
2n−2 (cf. [1]). The cases n = 2, 3, and 4 correspond to the real field R, the complex
field C, and the division ring H.

Wilker [23] showed how a homography of I4, or a direct isometry of H5, is repre-
sented by a linear fractional transformation ·〈A〉, determined by nonzero real scalar
multiples of a 2 × 2 invertible matrix over H. Thus the special projective pseudo-
orthogonal group P+O5,1 is isomorphic to the quaternionic projective general linear
group PGL2(H).

William Rowan Hamilton, who discovered the quaternions in 1843, later investi-
gated the ring Z[i, j] of quaternionic integers

G = g0 + g1i + g2j + g3k,

where the g′s are rational integers. Lipschitz [16] devoted a whole book to this
system, which I denote by Ham and call the Hamilton integers. The ring Ham has
eight invertible elements, or units:

±1,±i,±j,±k.

As points of Euclidean 4-space, these are the vertices of a regular 16-cell {3, 3, 4}.
In 1896 Adolf Hurwitz described the ring Z[u, v] of quaternionic integers

H = h0 + h1u + h2v + h3w,

where the h′s are rational integers and where

u = 1

2
− 1

2
i − 1

2
j + 1

2
k and v = 1

2
+ 1

2
i − 1

2
j − 1

2
k,

withw = 1
2 − 1

2 i + 1
2 j − 1

2k = (uv−1). This system will be denoted byHur and called
the Hurwitz integers. The ring Hur has 24 units, consisting of the eight Hamilton
units and 16 others of the type

±1

2
± 1

2
i ± 1

2
j ± 1

2
k.

As points of Euclidean 4-space, these are the vertices of a regular 24-cell {3, 4, 3}.
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Still another system of quaternionic integers is the ring Z[ω, j] of quaternions

E = e0 + e1ω + e2j + e3ωj,

where the e′s are rational integers and where

ω = −1

2
+ 1

2

√
3i and ωj = −1

2
j + 1

2

√
3k.

This system will be denoted by Hyb and called the hybrid integers. The ring Hyb
has 12 units:

±1,±ω,±ω2,±j,±ωj,±ω2j.

As points of Euclidean 4-space, these are the vertices of a hexagonal double fusil
{6} + {6}, the dual of a hexagonal double prism {6} × {6}.

When H is taken as a four-dimensional vector space over R, each of the rings of
integral quaternions constitutes a four-dimensional lattice spanned by the units. For
the Hamilton integers, points of the lattice C4 are vertices of a regular honeycomb
{4, 3, 3, 4} of E4. For the Hurwitz integers, points of the lattice D4, which contains
C4 as a sublattice, are vertices of a regular honeycomb {3, 3, 4, 3} of E4. For the
hybrid integers, points of the lattice A2 ⊕ A2 are vertices of a prismatic honeycomb
{3, 6} × {3, 6} of E4, the rectangular product of two regular tessellations of E2.

When the coefficients of a linear fractional transformation ·〈A〉 are restricted to
elements of a ring of integral quaternions, we have one of the quaternionic modular
groups PSL2(Ham), PSL2(Hur), or PSL2(Hyb). These groups were investigated by
Johnson and Weiss [15]. Each of them is a subgroup (or an extension of a subgroup)
of a Coxeter group operating in H5:

PSL2(Ham) ∼= [3, 4, (3, 3)�, 4]+,

PSL2(Hur) ∼= [(3, 3, 3)+, 4, 3+],
PSL2(Hyb) ∼= 4[1+, 6, (3, 3, 3, 3)+, 6, 1+].

These are, respectively, a subgroup of index 3 in the ionic subgroup [3, 4, (3, 3)+, 4]+
of the paracompact group [3, 4, 3, 3, 4], the commutator subgroup of the paracompact
group [3, 3, 3, 4, 3], and an extension of the commutator subgroup of the hypercom-
pact group [6, 3, 3, 3, 3, 6].

4 Integral Octonions

The division algebra O of octonions was discovered by John Graves in 1843 and
rediscovered by Arthur Cayley in 1845. It constitutes an eight-dimensional vector
space overR, and (likeR,C, andH) has a multiplicative norm. Whereas bothR and
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C are fields and H is a skew-field, multiplication in O is neither commutative nor
associative. The nonzero octonions form a multiplicativeMoufang loop GM(O).

The notion of integercan be applied to any normed division algebra. Dickson
[9, pp. 141–142] proposed criteria for a set of complex, quaternionic, or octonionic
integers. Some of Dickson’s requirements seem too strict, others not strict enough.
In our theory a basic system of integers is a set with the following properties:

(1) the trace and the norm of each element are rational integers;
(2) the elements form a subring ofC,H, orOwith a set of invertible units (elements

of norm 1) closed under multiplication;
(3) when C, H, or O is taken as a vector space over R, the elements are the points

of a two, four, or eight-dimensional lattice spanned by the units.

The only basic system of real integers is the ring Z of rational integers, with two
units. The rings G and E of Gaussian and Eisenstein integers, the only domains of
quadratic integers with both real and imaginary units (four for G, six for E), are the
two basic systems of complex integers. Using results of Du Val [11], Johnson and
Weiss [15] showed that the units of a basic system of integral quaternions must form
a binary dihedral group 2D2 or 2D3 or the binary tetrahedral group 2A4 and hence
that the only basic systems are the rings Ham (8 units),Hyb (12 units), and Hur (24
units).

Conway and Smith [5] investigated rings of real, complex, quaternionic, and
octonionic integers, which fall into four distinct families, labeled G, E , H, and D.
There are just four basic systems of integral octonions, one in each family ([12, pp.
58–59]; cf. [4, 8]).

To the systems G1 = Z (2 units), G2 = G (4 units), and G4 = Ham (8 units) we
can add the system G8 = Ocg of Cayley–Graves integers (or “Gravesian octaves”)
with 16 units spanning a lattice C8, the points of which are the vertices of a regular
honeycomb {4, 36, 4} of E8.

Along with systems E2 = E (6 units) and E4 =Hyb (12 units) we have the system
E8 = Oce of compound Eisenstein integers (or “Eisenstein octaves”) with 24 units
that span a lattice 4A2 = A2 ⊕ A2 ⊕ A2 ⊕ A2, the points of which are the vertices of
a prismatic honeycomb {3, 6}4, the rectangular product of four regular tessellations
of E2.

Two systems H4 = Hur (24 units) can be combined to produce the system H8 =
Och of coupled Hurwitz integers (or “Hurwitzian octaves”) with 48 units that span a
lattice 2D4 = D4 ⊕ D4, the points of which are the vertices of a prismatic honeycomb
{3, 3, 4, 3}2, the rectangular product of two regular honeycombs of E4.

Dickson [9, pp. 319–325] showed that certain sets of octonions having coordinates
in Z or Z + 1/2 form a system of octonionic integers. In fact, he obtained three
such systems. Coxeter [6] found that there are in all seven of these systems, one
corresponding to each of the unit octonions that, together with 1, span O. Each
system D8 = Ocd of Coxeter–Dickson integers (or “Dicksonian octaves”) has 240
units that span a lattice E8, the points of which are the vertices of Thorold Gosset’s
uniform honeycomb 521. The lattice E8 containsC8, 4A2, and 2D4 as sublattices, and
the ring Ocd contains Ocg, Oce, and Och as subrings.
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Rings of octonionic integers cannot be used to definemodular groups. First, the di-
vision algebraO is nonassociative, satisfying only the weaker alternative laws (aa)b
= a(ab) and (ab)b = a(bb). Second, the connection between linear fractional trans-
formations and hyperbolic geometry runs through the family of Clifford algebras,
including R, C, and H but not O.

Though not associative, invertible 2× 2 matrices over one of the basic systems of
octonionic integers form a special Moufang loop SM2(Ocg), SM2(Oce), SM2(Och),
or SM2(Ocd). Identifying the matrices ±A, we obtain an octonionic modular loop
PSM2(Ocg), PSM2(Oce), PSM2(Och), or PSM2(Ocd).

5 Summary

The ten basic systems of real, complex, quaternionic, or octonionic integers fall into
four families:

G1 = Z, G2 = G G4 = Ham, G8 = Ocg,
E2 = E, E4 = Hyb, E8 = Oce,

H4 = Hur, H8 = Och,
D8 = Ocd,

The elements of each basic system are the points of a lattice in E1, E2, E4, or E8. The
real, complex, and quaternionic systems define modular groups related to Coxeter
groups operating inH2, H3, or H5. The four octonionic systems definemodular loops.
Further details may be found in the author’s forthcoming book ([13, Chaps. 14–15]).
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1 Introduction

Looking at basic literature on the geometry of finite dimensional real Banach spaces
(see, e.g., the monograph [52] and the surveys [34, 42]), the reader will observe
that there is no systematic representation of results in the spirit of elementary and
classical geometry in such spaces (in other words, the field of elementary geometry
is not really developed in normed spaces, also called Minkowski spaces). This is
not only meant in the sense that a classifying, hierarchical structure of theorems is
missing. Also, it is already appealing to find the way of correctly defining analogous
notions.An example of such a non-developedpartial field is the geometry of simplices
in non-EuclideanMinkowski spaces. Inspired by this indicated lack of natural results
on Minkowskian simplices, we derive a collection of new results which reflect non-
Euclidean analogues and extensions ofwell knownproperties of Euclidean simplices.
These results are based on, or refer to, generalizations of notions like Euler lines,
Monge points, and Feuerbach spheres of simplices in Minkowski spaces. It should
be noticed that some of these topics are not even established for Minkowski planes;
most of our results are derived immediately for simplices in Minkowski spaces of
arbitrary finite dimension.

In plane Euclidean geometry, the Euler line of a given triangle is a well-studied
objectwhich containsmany interesting points besides the circumcenter and the vertex
centroid of this triangle. Other special points on the Euler line include the orthocenter
and the center of the so-called nine-point- or Feuerbach circle. Notions like this can
be extended to simplices in higher dimensional Euclidean space, and the respective
results can sometimes be sharpened for important subfamilies of general simplices,
like, for example, the family of orthocentric simplices. Using new methods devel-
oped by Grassmann for studying the d -dimensional Euclidean space, this was done
already in the 19th century. Two early related references are [45, 47]. Deeper results
were obtained later; the concept of Euler line and some related notions have been
generalized to Euclidean higher dimensional space in [10, 16–19, 23, 24, 28, 30,
46] for orthocentric simplices, and in [11, 15, 20, 33, 46, 49] for general simplices.
Other interesting generalizations in Euclidean geometry refer to Euler lines of cyclic
polygons, see [25]. For a few results in Minkowski planes and spaces we refer to
[6, 8, 12, 37, 43]. The Feuerbach circle of a triangle in the Euclidean plane passes
through the feet of the three altitudes, the midpoints of the three sides, and the mid-
points of the segments from the three vertices to the orthocenter of that triangle.
Beautiful generalizations of the Feuerbach circle to d -dimensional Euclidean space
for orthocentric simplices have been obtained in [10, 19, 24, 28], and for general
simplices in [11, 20, 46]. Minkowskian analogues have so far only been discussed in
normed planes, see [8, 37, 48]. One should also mention that the concepts discussed
here are certainly interesting for other non-Euclidean geometries; see, e.g., [26, 27].

A d -dimensional (normed or) Minkowski space (Rd , ‖ · ‖) is the vector space Rd

equipped with a norm ‖ · ‖. A norm can be given implicitly by its unit ball B(O, 1),
which is a convex body centered at the origin O; its boundary S(O, 1) is the unit
sphere of the normed space. Any homothet of the unit ball is called a Minkowskian
ball and denoted byB(X , r), whereX is its center and r > 0 its radius; its boundary is
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theMinkowskian sphere S(X , r). Two-dimensionalMinkowski spaces areMinkowski
planes, and for an overview on what has been done in the geometry of normed planes
and spaces we refer to the book [52], and to the surveys [34, 42].

The fundamental difference between non-Euclidean Minkowski spaces and the
Euclidean space is the absence of an inner product, and thus the notions of angles and
orthogonality do not exist in the usual sense. Nevertheless, several types of orthog-
onality can be defined (see [1, 2, 5] for an overview), with isosceles and Birkhoff
orthogonalities being themost prominent examples.We say that y is isosceles orthog-
onal to x, denoted x ⊥I y, when ‖x + y‖ = ‖x − y‖. Isosceles orthogonality is thus
the orthogonality of diagonals in a parallelogram with equal side lengths (a rhombus
in Euclidean space). It is also the orthogonality of chords over a diameter. By con-
trast, y is Birkhoff orthogonal to x, denoted x ⊥B y, when ‖x‖ ≤ ‖x + αy‖ for any
α ∈ R. Thus Birkhoff orthogonality is the (unsymmetric) orthogonality of a radius x
and corresponding tangent vector y of some ball centered at the origin O. For hyper-
planes and lines, there is the notion of normality. A direction (vector) v is normal to
a hyperplane E if there exists a radius r > 0, such that E supports the ball B(O, r) at
a multiple of v. Equivalently, v is normal to E if any vector parallel to E is Birkhoff
orthogonal to v.

For any two distinct points P, Q, we denote by [PQ] the closed segment, by 〈PQ〉
the spanned line (affine hull), and by [PQ〉 the ray {P + λ(Q − P) | λ ≥ 0}; we write
‖[PQ]‖ for the length of [PQ].Wewill use the usual abbreviation conv for the convex
hull of a set.

In this article, we focus on the geometry of simplices in d -dimensionalMinkowski
spaces. A nice contribution to this topic, but with different aims, is the paper [9]. As
usual, a d-simplex is the convex hull of d + 1 points in general linear position, or the
bounded, non-empty intersection of d + 1 closed half-spaces in general position.We
underline that by circumcenters of simplices we mean the centers of circumspheres
(or -balls) of simplices, i.e., ofMinkowskian spheres containing all the vertices of the
respective simplex (see, e.g., [3]). A related, but different notion is that of minimal
enclosing spheres of simplices, sometimes also called circumspheres (cf., e.g., [4]);
this notion is not discussed here. In the two-dimensional situation, circumspheres
and -balls are called circumcircles and -discs. In Minkowski spaces, simplices may
have several, precisely one, or no circumcenter at all, depending on the shape of the
unit ball, see Fig. 1. Examples without circumcenters may only be constructed for

Fig. 1 A triangle with several circumcenters (left), and a triangle without a circumcenter (right),
as illustrated by suitable homothets of the unit ball
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non-smooth norms, as all smooth norms allow inscription into a ball [21, 31]. We
focus on the case where there is at least one circumcenter.

2 Orthocentric Simplices and the Monge Point
in Euclidean Space

We begin with a short survey on results related to orthocentricity in Euclidean space.
In Euclidean geometry, not every simplex in dimension d ≥ 3 possesses an ortho-
center, i.e., a point common to all the altitudes. However, if such a point H exists, the
simplex is called orthocentric and possesses a number of special properties (com-
pare the survey contained in [16, 23]). The following proposition is well known (see
again [16]).

Proposition 2.1 A d-simplex T in Euclidean space is orthocentric if and only if
the direction of every edge is perpendicular to the affine hull of the vertices not
in that edge (i.e., the affine hull of the opposite (d − 2)-face). Equivalently, a d-
simplex in Euclidean space is orthocentric if and only if any two disjoint edges are
perpendicular.

The (d − 2)-faces of a d -polytope are sometimes called ridges, see [44]. The
following fact (see also the survey in [16]) can be proved in many ways, and has
been posed as a problem in the American Mathematical Monthly [29]. Note that
orthocenters are not defined for an edge or a point.

Proposition 2.2 In an orthocentric Euclidean d-simplex (d ≥ 3), the foot of every
altitude is the orthocenter of the opposite facet.

In absence of a guaranteed orthocenter, the literature on Euclidean geometry (e.g.
[7, 14] for three dimensions, [11, 16, 23] for the general case) defines the Monge
point of a tetrahedron or higher dimensional simplex as the intersection of so-called
Monge (hyper-)planes. The Monge point coincides with the Euclidean orthocenter if
the latter exists [7, 11, 14]. From this, theorems about the Euler line, the Feuerbach
circle, etc. can be generalized to higher dimensional simplices, see all the references
given in the Introduction, and see Sect. 4 for Minkowskian analogues. We recall the
definition and the following theorems from [11].

Definition 2.1 Let T be a d -simplex in Euclidean d -space. A Monge hyperplane
is a hyperplane which is perpendicular to an edge of the simplex and which passes
through the vertex centroid of the opposite (d − 2)-face (ridge).

Theorem 2.1 (Monge Theorem) The Monge hyperplanes of a Euclidean d-simplex
have precisely one point in common, which is called the Monge point N of the
simplex.

Theorem 2.2 (Orthocenter Theorem) In an orthocentric Euclidean d-simplex, the
Monge point N coincides with the orthocenter H.
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Theorem 2.3 (Mannheim Theorem, see [7, 14] for d = 3, and [11] for arbitrary d )
For any d-simplex, the d + 1 planes, each determined by an altitude of a d-simplex
and the Monge point (for d = 3, the orthocenter) of the corresponding facet, pass
through the Monge point of the d-simplex.

Regular simplices are orthocentric. Regular simplices are also equilateral, i.e.,
all their edges have equal length, as well as equifacetal, which means that all their
facets are isometric (congruent). Furthermore, the circumcenter M , vertex centroid
G, orthocenter H , and incenter I, i.e., the center of the unique inscribed sphere
touching all facets, coincide. Conversely, we have the following statement, see [16].

Theorem 2.4 A Euclidean d-simplex T is regular, if and only if any of the following
conditions are fulfilled:

1. T is equilateral.
2. T is orthocentric and any two of the centers M , G, I , H coincide.
3. T is orthocentric and equifacetal.

As we will see in the next Section, the concept of Monge point generalizes to
arbitrary Minkowski spaces, at least for simplices with a circumcenter.

3 The Monge Point of Simplices in Minkowski Spaces

In this section, we generalize the definition of Monge point and its construction by
Monge hyperplanes to Minkowski spaces of arbitrary (finite) dimension d ≥ 2.

Definition 3.1 Let (Rd , ‖ · ‖) be a d -dimensional Minkowski space, and let T be a
d -simplex with a circumcenter M . For each pair (F, EF ) of a ridge F and opposite
edge EF , and if M is not the midpoint of EF , define the associated Monge line as the
line through the vertex centroid of F which is parallel to the line through M and the
midpoint of EF .

Theorem 3.1 Let (Rd , ‖ · ‖) be a d-dimensional Minkowski space, and let T be a
d-simplex with a circumcenter M . Then the Monge lines of T are concurrent in a
single point NM , called the Monge point of T .

Remark 3.1 Before we proceed with the proof of Theorem 3.1, we remind the reader
of the following well-know fact: the centroid G of d + 1 points is the weighted
average

(d − k)G ′ + (k + 1)G ′′

d + 1

of the centroid G ′ of k + 1 of the points and the centroid G ′′ of the remaining d − k
points. Thus, it is possible to obtain G as the intersection of all k-medians (where
k = 0, . . . , 
 d+1

2 � − 1) between the centroid of a subset of k + 1 points and the



240 U. Leopold and H. Martini

centroid of the remaining d − k points. For d + 1 points in general linear position
and k = 0 we obtain the usual medians.

Proof (Proof of the theorem) The proof is similar to, but more general than, the
one in [11] for Euclidean space. First, for each (d − 2)-face F denote its vertex
centroid G(F), and let G(EF) be the midpoint or vertex centroid of the oppo-
site edge EF . Since a d -simplex possesses

(d+1
2

)
edges (ridges) and M can be

located at the midpoint of at most one of them, the auxiliary lines 〈M G(EF )〉 are
well-defined for at least

(d+1
2

) − 1 pairs (F, EF ). The auxiliary line 〈M G(EF )〉,
if well-defined, is parallel to the associated Monge line 〈G(F)L(F)〉 of (F, EF ),
where we define L(F) := G(F) + G(EF) − M . Second, if M = G, then G and
G(F) both lie on 〈M G(EF )〉, i.e., each auxiliary line coincides with the asso-
ciated Monge line, and all these lines intersect in NM := M = G (and this is
the only point, since different edge midpoints define different lines 〈M G(EF )〉).
If M �= G, then auxiliary line and Monge line are distinct. Observe that each
1-median [G(F)G(EF )] connects a Monge line and the corresponding auxiliary
line. The vertex centroid G of the simplex T divides each 1-median in the ratio
2 : (d − 1), so the same division ratio holds true for the segment [MN (F)] which
passes through the given circumcenter M , the vertex centroid G of T , and ends
at the point N (F) on [G(F)L(F)〉, see Fig. 2. As a consequence of this common
ratio, all points N (F) are indeed the same point NM , solely dependent on the chosen
circumcenter (and the given simplex), and all rays [G(F)L(F)〉 meet at NM . �

In keeping with the tradition in Euclidean space, we want to reformulate the
theorem in terms of hyperplanes.

Definition 3.2 Let (Rd , ‖ · ‖) be a d -dimensional Minkowski space, and let T be
a d -simplex with a circumcenter M . Suppose M is not the midpoint of an edge EF

opposite a (d − 2)-face F of the simplex. For the pair (F, EF ) define the auxiliary
pencil of hyperplanes through M and the midpoint of EF . Furthermore, define the
associated Monge hyperplane pencil for the pair (F, EF ) as the translate of the
auxiliary pencil such that all hyperplanes go through the vertex centroid of F .

Corollary 3.2 Let (Rd , ‖ · ‖) be a d-dimensional Minkowski space, and let T be a
d-simplex with a circumcenter M . Then the hyperplanes of all (well-defined) Monge
hyperplane pencils of T intersect in a single point, namely the Monge point of T .

MG(EF )

G

G(F )L(F )N(F )

Fig. 2 Location of the Monge point
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The following corollary tells us the precise location of the Monge point with respect
to the vertices of the simplex and the given circumcenter.

Corollary 3.3 Let T = conv{A0, . . . , Ad } be a d-simplex in d-dimensional
Minkowski space, possessing a circumcenter M . Then the associated Monge point
is determined as

NM = M +
∑d

i=0(Ai − M )

d − 1
.

Proof Let F be a ridge of the simplex, opposite the edge EF , such that G(EF) �= M
(i.e., the edge midpoint is distinct from M ; such an edge must exist). From the proof
of Theorem 3.1 we deduce for M �= G that

‖[M G(EF)]‖ : ‖[G(F)NM ]‖ = ‖[M G]‖ : ‖[GNM ]‖ = (d − 1) : 2.

Thus

NM = M + (d + 1)
G − M

d − 1
= M + (d + 1)

∑d
i=0(Ai−M )

d+1

d − 1
= M +

∑d
i=0(Ai − M )

d − 1
.

For M = G we obtain NM = M = G. �
Remark 3.4 In Euclidean context, each Monge hyperplane passes through the ver-
tex centroid of a (d − 2)-face F and is perpendicular to the opposite edge EF (here
opposite edge means the edge between the two vertices not in the ridge F). However,
we see that perpendicularity is not necessary for the construction, and any hyperplane
containing the associated Monge line as per our definition is suitable (provided the
Monge line is well-defined). Therefore, while our Minkowskian Monge pencils con-
tain the correct Monge hyperplanes in Euclidean context, we have the confirmation
that orthogonality of lines and hyperplanes need not necessarily play a role when
finding the Monge point. The concept of Monge point is even an affine concept,
as the circumcenter property of M is used nowhere (i.e., any point M can be used
to construct “Monge lines” intersecting at NM with the analytical expression given
above).

In particular, we obtain the following corollary, which appears to give a new kind
of construction also for the Euclidean case.

Corollary 3.5 Let (Rd , ‖ · ‖) be a d-dimensional Minkowski space, and let T be a
d-simplex with a circumcenter M . For each ridge F and the opposite edge EF with
midpoint G(EF), if M �= G(EF) and 〈M G(EF )〉 is not parallel to F, define an M -
hyperplane as the hyperplane containing F and being parallel to 〈M G(EF )〉. Then
all defined M -hyperplanes intersect in the Monge point NM .

Remark 3.6 We summarize that the Monge point can be constructed in at least two
concrete ways, once by Monge lines (Theorem 3.1), and once by M -hyperplanes
(Corollary 3.5). Additionally, in Euclidean space, we have the usual construction via
hyperplanes and orthogonality, which is a different specialization of Corollary 3.2.
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Proof (Proof of the corollary) Let A0, . . . , Ad denote the vertices of T . Observe
that, since the medial hyperplanes of T are in general position, M lies in at most d
of the d + 1 medial hyperplanes. Without loss of generality, M does not lie in the
medial hyperplane between A0 and its opposite facet. Since G([A0Ai]) lies in that
medial hyperplane for i = 1, . . . , d , and the ridge F0,i opposite [A0Ai] is parallel to
that medial hyperplane, we conclude that [M G([A0Ai])] is not parallel to F0,i, and
the M -hyperplanes are defined at least for the d pairs (F0,i, [A0Ai]). Consider the
(d − 1)-simplex

T0 := conv{G([A0Ai]), i = 1, . . . , d},

which is a homothet of the facet F0 of T opposite A0 with homothety center A0

and factor 1
2 . The related (d − 1)-simplex T ′

0 is obtained by homothety of T0 in
G(T0) = A0+G(F0)

2 and with homothety factor −(d − 1). Observe that the (d − 2)-
dimensional facets of T ′

0 pass through the vertices of T0 and are parallel to the
(d − 2)-dimensional facets of T0.

Now, the d M -hyperplanes previously considered are parallel to the hyperplanes
defined by the facets of the d -simplex

conv{M ∪ T ′
0}

through the vertex M . Therefore, these M -hyperplanes are in general position, inter-
secting only in the Monge point NM which, by definition, is contained in every
defined M -hyperplane. �

Another theorem concerning theMonge point in Euclidean space is theMannheim
theorem, see [14] for the three-dimensional case and [11] for generalizations. It is
stated in Theorem 2.3 above, and it presents an example of a statement that cannot
be extended to Minkowski spaces. The simple reason is that hyperplane sections
of Minkowskian balls need not be centrally symmetric. Therefore, in general the
concept of Monge point of a d -simplex cannot be transferred to its facets.

4 Euler Lines and Generalized Feuerbach Spheres of
Minkowskian Simplices

We define as Euler line associated to a circumcenter M the straight line connecting
M with the vertex centroid G. Thus, in the case of the vertex centroid being a
circumcenter, the associated Euler line is not well-defined (see also Corollary 4.6).
We now consider the situation in d -dimensional Minkowski space for d ≥ 2.

Definition 4.1 For a d -simplexT := conv{A0, . . . , Ad }with circumcenterM , define
the complementary line of a facet with respect to M as the translate of the line between
the circumcenter M of the simplex and the vertex centroid of the facet, passing
through the opposite vertex. If A1, . . . , Ad are the vertices of the chosen facet with
vertex centroid G0, then the complementary line is A0 + t · (G0 − M ), t ∈ R.
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Remark 4.1 As in the planar case, for smooth norms such a circumcenter always
exists (see [32], and [42, §7.1]). For a non-smooth norm, simplices without a cir-
cumcenter may exist (see again Fig. 1 (right) for the planar situation, and it is easy
to construct examples also for general d ).

The following theorem is an easy consequence of the definition of the vertex
centroid.

Theorem 4.1 The complementary lines of the facets of a d-simplex T with respect to
a fixed circumcenter M connect all the vertices to the same point, the complementary
point PM associated to M .

Proof Let T = conv{A0, . . . , Ad }, and let Gj denote the vertex centroid of the facet
opposite vertex Aj. Then the point

PM = M +
d∑

i=0

(Ai − M ) = Aj + d

⎛

⎜⎜⎜⎜⎜⎜
⎜
⎝

d∑

i=0
i �=j

Ai

d
− M

⎞

⎟⎟⎟⎟⎟⎟
⎟
⎠

= Aj + d(Gj − M ) for each j = 0, . . . d ,

lies on each complementary line. For each j = 0, . . . , d , we have ‖[PM Aj]‖ =
d‖[M Gj]‖. �

Various useful types of orthogonalities have been defined in Minkowski spaces
for pairs of vectors, all coinciding with the usual orthogonality in Euclidean space,
yet we only have normality as a concept for vectors and (hyper-)planes. We call
each segment [PM Aj] on a complementary line the complementary segment associ-
ated to the opposite facet. As such, a complementary segment is not orthogonal to a
hyperplane in any known sense. However, in dimension two we obtain the familiar
isosceles orthogonality between an edge of a simplex (triangle side) and the corre-
sponding complementary segment (orthogonality if we are in the Euclidean plane!),
and the complementary point is the C-orthocenter [8, 37]. Unlike the C-orthocenter,
the notion of complementary point generalizes to any higher dimension.

Remark 4.2 The complementary point is even an affine notion (and so is the Monge
point, see Remark 3.4), as we only used division ratios of segments on a line. In
addition, the point PM can be constructed for any point M (circumcenter or not) in
the followingway: take the line connectingM to the vertex centroid of a simplex facet
(if distinct from M ), and then consider the translated line passing through the vertex
opposite the chosen facet. All lines of the latter kind intersect in a point (denoted PM

in the present article), which has already been observed by Snapper [49].

The complementary point and Monge point associated to a simplex with circum-
center M possess the following properties.
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Theorem 4.2 Let T be a d-simplex (d ≥ 2) in Minkowskian space (Rd , ‖ · ‖), with
a circumcenter M distinct from its vertex centroid G.

(a) The associated complementary point PM and the Monge point NM lie on the
Euler line 〈M G〉.

(b) The vertex centroid G divides the segment [MPM ] internally in the ratio 1 : d.
(c) The associated Monge point NM divides the segment [MPM ] internally in the

ratio 1 : (d − 2).
(d) The vertex centroid G divides the segment [MNM ] internally in the ratio

(d − 1) : 2.

Proof Let T = conv{A0, . . . , Ad }. That the Euler line 〈GM 〉 associated to M passes
through NM and PM can be seen from the following equations:

G =
∑d

i=0 Ai

d + 1
= M +

∑d
i=0(Ai − M )

d + 1
,

NM = M +
∑d

i=0(Ai − M )

d − 1
,

PM = M +
d∑

i=0

(Ai − M ).

Thus (a) is proved. The above equations also immediately prove (b) and (c). Proving
(d) is an easy exercise in arithmetic:

‖G − M ‖: ‖NM − G‖ =
∥
∥∥
∥
∥

∑d
i=0(Ai − M )

d + 1

∥
∥∥
∥
∥

:
∥
∥∥
∥
∥

∑d
i=0(Ai − M )

d − 1
−

∑d
i=0(Ai − M )

d + 1

∥
∥∥
∥
∥

=
∥∥
∥
∥
∥

∑d
i=0(Ai − M )

d + 1

∥∥
∥
∥
∥

:
∥∥
∥
∥
∥
2

∑d
i=0(Ai − M )

(d − 1)(d + 1)

∥∥
∥
∥
∥

= (d − 1) : 2.

�
Remark 4.3 We see thatNM can be obtained fromM by homothety in G, with homo-
thety ratio − 2

d−1 . Moreover, recall the M -hyperplanes from Corollary 3.5 which
intersect in NM . The above homothety takes each M -hyperplane to a certain parallel
hyperplane through M . It turns out that these central planes (through the circumcen-
ter M ) encompass the supporting hyperplanes through M of the auxiliary simplex
conv{M ∪ T ′

0} in the proof of Corollary 3.5.

Considering the points of interest in Theorem 4.2, one may ask whether the point

M +
∑d

i=0(Ai−M )

d on the Euler line, dividing [MPM ] internally in the ratio 1 : (d − 1),
holds any special meaning. It turns out that it is the center of a sphere analogous to
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the well-known Feuerbach circle of a triangle in the Euclidean plane. The extension
to higher dimensional normed spaces for the case M �= G is as follows (for the
“degenerate” case M = G we refer to Corollary 4.6).

Theorem 4.3 (The 2(d + 1)- or Feuerbach sphere of a d-simplex) In an arbitrary
Minkowski d-space, let T = conv{A0, . . . , Ad } be a d-simplex with a circumcenter
M and circumradius R, and let G( �= M ) be its vertex centroid. The sphere with center

FM := M +
∑

(Ai−M )d
i=0

d on the Euler line and of radius r := R
d passes through the

following 2(d + 1) points:

(a) the vertex centroids Gi, i = 0, . . . , d, of the facets Fi of T (Fi is opposite vertex
Ai), and

(b) the points LM
i dividing the segments connecting the Monge point NM to the

vertices Ai of T , i = 0, . . . , d, in the ratio 1 : (d − 1). Moreover, S(FM , r) is a
homothet of the circumsphere S(M , R) with respect to the vertex centroid G and
homothety ratio −1

d , i.e., G divides the segment [FM M ] internally in the ratio
1 : d, and FM divides the segment [NM M ] internally in the ratio 1 : (d − 1).

Remark 4.4 In analogy to the Feuerbach circle in the plane centered at the nine-
point-center, we call FM the 2(d + 1)-center of the simplex with respect to the
circumcenter M , and S(FM , R

d ) its Feuerbach or 2(d + 1)-point-sphere.

Proof (Proof of the theorem) The vertex centroid of a facet opposite vertex Aj is

Gj =

d∑

i=0
i �=j

Ai

d . We have R = ‖Aj − M ‖ for any j = 0, . . . , d , and thus

‖Gj − FM ‖ =

∥
∥∥∥∥∥
∥

∑d
i=0
i �=j

Ai

d
− M −

∑d
i=0(Ai − M )

d

∥
∥∥∥∥∥
∥

=
∥∥∥∥

M − Aj

d

∥∥∥∥ = R

d
,

which proves that S(FM , R
d ) passes through the points in (a).

The Monge point is NM = M +
∑d

i=0(Ai−M )

d−1 , thus

LM
j := M +

∑d
i=0(Ai − M )

d − 1
+ Aj − M −

∑d
i=0(Ai−M )

d−1

d

= M + (d − 1)
∑d

i=0(Ai − M )

d(d − 1)
− M − Aj

d

= M +
∑d

i=0(Ai − M )

d
− M − Aj

d
.
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Therefore,

‖LM
j − FM ‖ =

∥∥
∥∥∥

M +
∑d

i=0(Ai − M )

d
− M − Aj

d
− M −

∑d
i=0(Ai − M )

d

∥∥
∥∥∥

=
∥∥∥∥−M − Aj

d

∥∥∥∥ = R

d
,

which proves that S(FM , R
d ) passes through the points in (b). We also have

‖FM − G‖: ‖G − M ‖ =
∥∥∥M +

∑d
i=0(Ai−M )

d − M −
∑d

i=0(Ai−M )

d+1

∥∥∥
∥∥∥M +

∑d
i=0(Ai−M )

d+1 − M
∥∥∥

=
∥∥∥
∥∥

∑d
i=0(Ai − M )

d(d + 1)

∥∥∥
∥∥

:
∥∥∥
∥∥

∑d
i=0(Ai − M )

d + 1

∥∥∥
∥∥

= 1 : d

and

‖NM − FM ‖: ‖FM − M ‖ =
∥∥∥M +

∑d
i=0(Ai−M )

d−1 − M −
∑d

i=0(Ai−M )

d

∥∥∥
∥∥∥M +

∑d
i=0(Ai−M )

d − M
∥∥∥

=
∥∥
∥∥∥

∑d
i=0(Ai − M )

d(d − 1)

∥∥
∥∥∥

:
∥∥
∥∥∥

∑d
i=0(Ai − M )

d

∥∥
∥∥∥

= 1 : (d − 1),

proving the remaining statements. �
Remark 4.5 As noted in the Introduction, the sphere construction has been done
for the Euclidean case in several earlier works, giving a 3(d + 1)-point-sphere. In
Minkowski space, we ”lose” the (d + 1) points which are orthogonal projections of
the LM

i onto the facets Fi. In the planar case, this has already been pointed out in
[8, 37].

The following corollary is an immediate consequence of the affine nature of
both the points mentioned in Theorem 4.2 and the 2(d + 1)-center introduced in
Theorem 4.3.

Corollary 4.6 In a d-simplex in Minkowskian d-space, the points M , G, FM , NM ,
PM are either collinear (on the Euler line), or they all coincide. In the latter case,
instead of speaking of the Euler line not being well-defined, sometimes the term
collapsing Euler line is used.

Remark 4.7 Based on the affine underpinning of our setting, we may consider the
(d + 1)-dimensional spatial representation of this configuration where the segments
betweenM and the vertices of our simplex are projections of some segments spanning
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a (d + 1)-dimensional parallelepiped. Then, the segment [MPM ] on the Euler line
corresponds to the projection of the main diagonal of the parallelepiped, and the
points dividing the main diagonal in the ratio 1 : d , 1 : (d − 1), and 1 : (d − 2)
project to the vertex centroid, the center of the Feuerbach-2(d + 1)-point-sphere,
and the Monge point, respectively.

Since it can be shown that NM divides the segment [FM M ] externally in the ratio
1 : d , i.e., [FM M ] is divided harmonically by G and NM , we obtain the following
corollary, the second statement of which has been noted in [10] for Euclidean ortho-
centric simplices and the orthocenter. For a strictly convex normed plane (d = 2),
the second statement can be found in [37, Theorem 4.6].

Corollary 4.8 The Monge point NM associated to a circumcenter M of a d-simplex
T is the center of homothety between the Feuerbach-2(d + 1)-point-sphere centered
at FM and the circumsphere centered at M , with homothety ratio 1 : d. For any line
from NM meeting the associated circumsphere of T in Q, the point P dividing [NM Q]
internally in the ratio 1 : (d − 1) is located on the Feuerbach sphere; conversely, for
any line from NM meeting the associated Feuerbach sphere in P, the point Q dividing
the segment [NM P] externally in the ratio d : (d − 1) is located on the circumsphere
of T .

5 Generalizations for Polygons in the Plane

Generalizations of the concept ofEuler line andFeuerbach circle havenot just focused
on raising the dimension of the space; there have also been attempts to generalize to
polygons. We will now see that easy generalizations arise if we consider such poly-
gons as projections of higher dimensional simplices or sections of parallelepipeds.
This relates to descriptive geometry (see also Remark 4.7).

Herrera Gómez [25] and Collings [13] have written about remarkable circles in
connection with cyclic polygons in the Euclidean plane. Their definition of cyclic
polygon as a polygon possessing a circumcircle is directly extendable to any normed
plane. Necessarily, cyclic polygons are convex.

Let P = conv{A0, . . . , Ad }, d ≥ 3, be a cyclic polygon with circumcenter M in
the normed plane (R2, ‖ · ‖). We may view the vertices of P as the images under
projection of certain vertices of a (d + 1)-dimensional parallelepiped Q in (d + 1)-
dimensional space to an affine plane (which we then endow with the norm ‖ · ‖),
namely the vertices adjacent to M ′ where M ′ projects to M (compare Remark 4.7).
This makes P the projection of that hyperplane section P′ of Q which is defined
by all the vertices adjacent to M ′. Alternatively, we may view P as the shadow of
a d -simplex T , which itself is a projection of the hyperplane section P′ of Q to an
affine d -subspace.

We now define the points PM (complementary point), NM (Monge point), G
(vertex centroid), FM (2(d + 1)-center) of the polygon to be the respective parallel
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projections of the following distinguished points on the main diagonal of the paral-
lelepiped, which would have the corresponding meaning for the d -simplex T when
M ′ projects to a circumcenter of T , see Sect. 4. That is,

G =
∑d

i=0 Ai

d + 1
= M +

∑d
i=0(Ai − M )

d + 1
is called the vertex centroid of the polygon P,

FM = M +
∑d

i=0(Ai − M )

d
is called the 2(d + 1) − center of the polygon P,

NM = M +
∑d

i=0(Ai − M )

d − 1
is called the Monge point of the polygon P,

PM = M +
d∑

i=0

(Ai − M ) is called the complementary point of the polygon P.

These points either coincide or are collinear on the Euler line of the polygon P
(compare Corollary 4.6), with the division ratios given in Theorem 4.2. We can then
easily deduce the following relationships.

Theorem 5.1 Let P = conv{A0, . . . , Ad }, d ≥ 3 be a cyclic polygon with circum-
center M and circumradius R in the normed plane (R2, ‖ · ‖). Then:

(a) The complementary point PM is common to all the circles S(Pi
M , R), i =

0, . . . , d, where Pi
M is the complementary point of the subpolygon Pi =

conv ({A0, . . . , Ad } \ {Ai}) with respect to the circumcenter M .

(b) The lines 〈AiPi
M 〉 are concurrent in CM , where CM := M + 1

2

∑d
i=0(Ai − M ) is

the midpoint of [MPM ] and called the spatial center of P with respect to M .

(c) The midpoints Ei of the segments joining the vertices Ai, i = 0, . . . , d, with the
complementary point PM are concyclic in the circle S(CM , R

2 ).

(d) The point CM is common to all the circles S(Ci
M , R

2 ), where Ci
M is the spatial

center of the subpolygon Pi with respect to the circumcenter M , i = 0, . . . , d,
and the points Ci

M also lie on the circle S(CM , R
2 ).

Proof We have

PM = M +
d∑

j=0

(Aj − M ) = M +
d∑

j=0
j �=i

(Aj − M ) + (Ai − M ) = Pi
M + (Ai − M ).

Since (Ai − M ) is a radius of any translate of the circle S(M , R), we obtain the
statement in (a). In the spatial representation in (d + 1)-dimensional space, the vertex
projecting to the complementary point PM is the endpoint opposite M ′ of the main
diagonal of the parallelepiped Q (i.e., the line which projects to the Euler line),
whereas the pre-images of the pointsPi

M are vertices adjacent to the pre-image ofPM .
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Thus the pre-images of each point Pi
M and Ai, i = 0, . . . , d , together span another

main diagonal of the parallelepiped Q. The main diagonals of the parallelepiped
intersect in one point C ′ (the vertex centroid of the parallelepiped), and this point
halves each main diagonal. The projection of this point is the point CM by definition,
which proves part (b). Note that at most d − 1 of the lines 〈AiPi

M 〉 may not be well-
defined, and precisely when their pre-images are parallel to the null space of the
projection, but at least 2 lines remain to determine the point CM . Part (d) is similar
to part (a), in that

CM = M + 1

2

d∑

j=0

(Aj − M ) = M + 1

2

d∑

j=0
j �=i

(Aj − M )

+1

2
(Ai − M ) = Ci

M + 1

2
(Ai − M ).

The second statement in (d) follows trivially. Finally, for part (c), consider Fig. 3 and
observe that the line 〈CM Ei〉 is parallel to 〈MAi〉 for each i = 0, . . . , d . �

Remark 5.1 For the Euclidean plane and d = 3, part (d) is well known [53, pp.
22–23]. For all d ≥ 3, the statements (a)–(c) have been established in [25] where
PM is called the orthocenter, and S(CM , R

2 ) the Feuerbach circle of the polygon.
For strictly convex normed planes part (d) has been shown in [37, Theorem 4.18],
calling the point CM the center of the Feuerbach circle S(CM , R

2 ), and the circles
S(Ci

M , R
2 ) the Feuerbach circles of the subpolygons. The motivation in either case

was to observe a radius half as long as the radius of the original circumcircle. We see
that the statements extend in some way to all Minkowski planes, though one has to

M G FM NM PM

Ai

LM
i

Gi

d 1
d+1
d−1

a

da
R

(d+1)d(d−2)
d−1

R
d

R
d b

b(d− 1)

Fig. 3 Points on the Euler line and Feuerbach sphere, and ratios of line segments
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be careful in their formulation; recall that in planes which are not strictly convex, we
cannot necessarily speak of the (unique) circumcircle, or the (unique) intersection
of several circles.

Remark 5.2 Note that M is a circumcenter of P, and also a circumcenter for each
of its sub-polygons with d ≥ 3 vertices. The analogous statement for a d -simplex
in d -space is wrong, i.e., a circumcenter of a d -simplex T is not a circumcenter for
each of its facets, which is the reason for the lack of analogous higher dimensional
statements involving the complementary points of facets of T in Sect. 4.

An alternative, equally plausible definition of (orthocenter and) Feuerbach circle
of a polygon in the Euclidean plane was given by Collings [13]. This, too, generalizes
to normed (Minkowski) planes, and is easily provable using the spatial representation
given above. Both concepts of Feuerbach circles are illustrated in Fig. 4, for cyclic
pentagons in the �1-norm.

Theorem 5.2 Let P = conv{A0, . . . , Ad }, d ≥ 3, be a cyclic polygon with circum-
center M and circumradius R in the normed plane (R2, ‖ · ‖).
(a) The Monge point NM is the point of intersection of the lines 〈AiN i

M 〉,
i = 0, . . . , d, where N i

M is the Monge point of the subpolygon Pi =
conv ({A0, . . . , Ad } \ {Ai}).

(b) The vertex centroids Gi of the subpolygons Pi = conv ({A0, . . . , Ad } \ {Ai}), i =
0, . . . , d, are concyclic on S(FM , R

d ), where FM is the 2(d + 1)-center of the
polygon. Furthermore, the circle S(FM , R

d ) passes through the (d + 1) points
LM

i dividing the segments [NM Ai] in the ratio 1 : (d − 1).
(c) The Monge points N i

M of the subpolygons are concyclic on the circle

S

⎛

⎝M + 1

d − 2

d∑

j=0

(Aj − M ),
R

d − 2

⎞

⎠

with its center on the Euler line.

Proof We have

NM = M + 1

d − 1

d∑

j=0

(Aj − M )

= Ai + d − 2

d − 1

⎛

⎜⎜
⎝

⎛

⎜⎜
⎝M + 1

d − 2

d∑

j=0
j �=i

(Aj − M )

⎞

⎟⎟
⎠ − Ai

⎞

⎟⎟
⎠

= Ai + d − 2

d − 1

(
N i

M − Ai
)
,
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Fig. 4 Comparison of
different definitions of the
Feuerbach circle for a
pentagon in the �1-norm. For
a see Remark 5.1, and for b
see Remark 5.4. Respective
radii are marked by dotted
line segments, and the
relevant part of the Euler line
[MPM ] is marked in bold.
One pair of special points on
the Feuerbach circle is
constructed in each case
(with thin solid auxiliary
lines)

M

CM

PM

A0

P 0
M

C0
M

E0

(a) The Feuerbach circle of half size.

M
FM

PM

NM
G0

A0

LM
0

(b) The Feuerbach circle of Collings.
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which proves part (a). Part (b) is clear with Theorem 4.3 and the fact that the segments
[FM Gi] and [FM LM

i ] have equal length and are homothets of [MAi] for each i =
0, . . . , d (with factor 1

d and homothety center NM ). For part (c), observe that for each
i = 0, . . . , d , N i

M is the intersection of the lines 〈M Gi〉 and 〈AiNM 〉, see also Fig. 3.
Since the above equation shows that NM divides the segment [AiN i

M ] in the ratio
(d − 2) : 1, the homothet of the circumsphere with respect to homothety center NM

and homothety ratio − 1
d−2 passes through the N i

M . Thus the corresponding center

can be calculated as M + 1
d−2

∑d
j=0(Aj − M ) (on the Euler line), and the radius

is R
d−2 . �

Remark 5.3 Collings [13] proved a variant of part (a) for the Euclidean plane and
called the point NM differently, namely the orthocenter of the polygon. In fact,
Collings’ orthocenter (per our definition, the Monge point NM ) was defined induc-
tively, using the base case d = 2, i.e., starting at sub-triangles of P, whose Monge
point, complementary point, and C-orthocenter coincide. Note that an inductive def-
inition of the Monge point as such necessitates that M is the circumcenter at each
stage of the recursion (otherwise the resulting points at each stage would not cor-
respond to our definition of Monge point), and thus only works in the plane. In the
context of d -simplices, we did not consider this recursion for precisely this reason
(although of course, the respective lines exist in higher dimensional space, and they
are concurrent at the corresponding points!).

Remark 5.4 Part (b) was also proved for the Euclidean plane in [13], and in analogy
with the nine-point-circle of a triangle, the circle S(FM , R

d ) was named the (gener-
alized) nine-point-circle, although it was only observed to pass through the (d + 1)
vertex centroids Gi. B. Herrera Gómez [25] extended the statements, for example by
proving (c) for the Euclidean plane, and by investigating related infinite families of
circles.

6 Concluding Remarks and Open Problems

Solutions to questions from elementary geometry in normed spaces often yield an
interesting tool and form the first step for attacking problems in the spirit of Discrete
and Computational Geometry in such spaces (see, e.g., [3, 4] for the concepts of
circumballs and minimal enclosing balls, or [34, Section 4] referring to bisectors
as basis of an approach to Minkowskian Voronoi diagrams). And of course it is an
interesting task for geometers to generalize notions like orthogonality (see [1, 2, 5]),
orthocentricity (cf. [8, 37, 43, 48]), isometries (see [39, 41]), and regularity (see
[40]) in absence of an inner product. In case of regularity, we may ask which fig-
ures are special, and what are useful concepts to describe their degree of symmetry
in normed planes and spaces? For Minkowski spaces nothing really satisfactory is
done in this direction, and it is clear that a corresponding hierarchical classification
of types of simplices would yield the first step here. Thus, it would be an interesting
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research program to extend the generalizable parts of the concepts investigated in
[15–17] to normed spaces: what particular types of simplices are obtained if special
points of them, called "centers" (like circum- and incenters, vertex centroids, Monge
points, Fermat-Torricelli points etc.), coincide or lie, in cases where this is not typical
(e.g., in case of the incenter), on the Euler line? In view of [39, 41], a related inter-
esting task might be the development of symmetry concepts based on Minkowskian
isometries.

Another interesting point of view comes in with the field of geometric config-
urations which is summarized by the recent monograph [22]. Namely, the Three-
Circles-Theorem and Miquel’s Theorem can be successfully extended to normed
planes (see [8, 37, 50] and thus have acquired some recent popularity. Clifford’s cir-
cle configuration, for circles of equal radii also called Clifford’s Chain of Theorems
(see [36, 54]), is a direct generalization of the Three-Circles-Theorem and also part
of the collection of theorems which nicely ties to visualizations of the Euler line and
the Feuerbach circle in the spirit of descriptive geometry (see our discussion at the
beginning of Sect. 5 above). Based on [8, 37], Martini and Spirova extend in [38] the
Clifford configuration for circles of equal radii to strictly convex normed planes, and
prove properties of the configuration as well as characterizations of the Euclidean
plane amongMinkowski planes. Using our terminology from Sect. 5 above, one may
easily color the vertices of the parallelepiped Q alternatingly red and blue, with M ′
being blue. Then the projected blue vertices are centers of circles of the Clifford con-
figuration, whereas the projected red vertices are in the intersection of certain subsets
of the circles. Due to the successful extension of these topics to normed planes and
spaces one might hope that further configuration concepts can be generalized this
way. E.g., one can check whether the comprehensive geometry of n-lines (which are
the natural extensions of complete quadrilaterals; see Section 4 of the survey [35])
and systems of circles correspondingwith them contain parts which are generalizable
this way.

As basic notions like isoperimetrix (see [52, §4.4 and §5.4]) demonstrate, duality
(of norms) plays an essential role in the geometry of normed spaces. This concept
should also be used in that part of Minkowski Geometry discussed here. It should
be checked how far this important concept can be applied to get, in correspondence
with already obtained results, also “dual results”, such that, for example, results on
notions like “circumball” and “inball” might be dual to each other.

Finallywemention that even for the Euclidean plane there are new generalizations
of notions, such as generalized Euler lines in view of so-called circumcenters of
mass etc. (see [51]), which could, a fortiori, also be studied for normed planes and
spaces.and minimal enclosing balls

Acknowledgements The authors are grateful to Emil Molnár for several hints and remarks which
helped to improve the presentation in the final version of this paper.
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Abstract Based on the procedure given in [15] we describe an algorithm, imple-
mented in a computer program, for complete enumeration of combinatorial equiva-
lence classes of fundamental polygons for any fixed plane discontinuous group given
by its signature. This is a solution of a long standing problem, we call it Poincaré-
Delone problem to honour of Henry Poincaré and Boris Nikolaevich Delone (Delau-
nay). We give examples and computations together with some complete lists of com-
binatorially different polygons which serve as fundamental domains for the groups
with the Macbeath signatures, e.g. (2,+, [ ]; { }),(3,−, [ ]; { }) and (3,+, [ ]; { }).
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1 Introduction

Suppose that ˜M is a 2-dimensional, closed, compact manifold, with possible singular
points and boundaries, i.e. that ˜M = �/G is a good orbifold that serves as a compact
fundamental domain F of an isometry group G acting discontinuously on a classical
plane � of constant curvature. For omitting the too long introduction, we refer to
[11] and Sect. 4, where the 46 fundamental domains of the well-known 17 Euclidean
plane crystallographic groups are displayed.Hence,we consider ˜M = F as a polygon
with side pairing identifications, i.e. with piecewise linear (PL) presentation on the
affine plane A2 (see [34]).

By the Macbeath signature (see [17, 20, 33] or [34])

(g,±; [h1, . . . , hl]; {(h11, . . . , h1l1), . . . , (hq1, . . . , hqlq)}),

where ± is + or −, and where g, hi (1 ≤ i ≤ l) and hij (1 ≤ i ≤ q, 1 ≤ j ≤ li) are
integers such that g ≥ 0, hi ≥ 2 and hij ≥ 2, we express the following features of ˜M :

(i) If ± = + and g > 0, then ˜M is an orientable surface of genus g, which means
that ˜M is a connected sum of g tori (Fig. 1a); if g = 0, then ˜M is homeomorphic
to a sphere; if ± = − and g > 0, then ˜M is non-orientable surface of genus g,
which means that ˜M is a connected sum of g projective planes.

(ii) There are l singular points on ˜M , with periods h1, h2, . . . , hl . If the set of periods
is empty, i.e. if empty square brackets appear in a signature, then ˜M has no
singular points.

(iii) There are q disjoint closed (Jordan) curves γ1, γ2, . . . , γq (called boundary com-
ponents) on ˜M and li (1 ≤ i ≤ q) dihedral points on the curve γi, of periods hij
(1 ≤ i ≤ q, 1 ≤ j ≤ li). If q = 0 then empty curly brackets denote that there are
no boundary components.

Equivalent to the Macbeath signature is Conway’s orbifold notation (see [5] or
[1]):

◦ ◦ . . . ◦ h1, . . . , hl ∗ h11, . . . , h1l1 . . . ∗ hq1, . . . , hqlq × × . . . ×,

either with g initial circles which represent tori (for orientable case) or g final crosses
which represent projective planes (for non-orientable case). The absence of circles
and crosses indicates that the base manifold M of the orbifold ˜M is a sphere.

IfG is a finitely generated isometry group,with fundamental domainF = �/G =
˜M , which acts discontinuously on a complete, simply connected 2-dimensional man-
ifold � of constant curvature 0, +1 or −1 (i. e. � is the Euclidean plane E2, or the
2-sphere S2, or the Bolyai-Lobachevskian hyperbolic plane H2), then a Macbeath
signature may serve as a signature of G in order to indicate the orientability (±) of
�/G, its genus (g), the orders h1, . . . , hl of the rotation centers and the stabilizers
of the orders 2hij (1 ≤ i ≤ q, 1 ≤ j ≤ li) associated with the dihedral centers on the
i-th boundary component.
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Fig. 1 a, b Scheme of an orientable surface. Graph c for a maximal, d for a minimal fundamental
domain, respectively
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Identifying points X from the orbit X G of G, by a covering map

κ : � → �/G, X �→ X := X G,

we obtain a surface ˜M = �/G which is a good orbifold [26, p. 87] (compact surface)
if all the rotation and dihedral centers of G are of finite order.

The map κ is a local homeomorphism almost everywhere on � except at points
with non-trivial stabilizers, hence, at the rotation centers and the points mapped onto
the boundary of ˜M .

We give the well known necessary and sufficient conditions for topological
(homeomorphically equivariant) or geometrical isomorphism of plane discontinu-
ous groups, where a topological mapping φ of � induces the group isomorphism
ϒ : G → G ′, g �→ g′ = φ−1gφ (for the proof see [17] or [34, th. 4.6.3-4]).

Two plane discontinuous groups G and G ′ are topologically isomorphic (equiv-
ariant) if and only if:

(a) The surfaces ˜M = �/G and ˜M ′ = �/G ′ are homeomorphic.
(b) The numbers of the non-equivalent rotation centers are the same and the orders

of the rotations are the same, i.e. up to their permutation.
(c) On each boundary curve γi of ˜M , and γ ′

i of ˜M ′, respectively, there is a cycle
of dihedral centers with corresponding orders 2hi1, . . . , 2hili . If ˜M and ˜M ′ are
orientable, then either both have the same cycles or all those of ˜M ′ are inverse
to those of ˜M . If ˜M and ˜M ′ are non-orientable, then the cycles of ˜M may be put
in bijective correspondence with those of ˜M ′, where image and pre-image may
have the same or opposite orientation.

By a formal contraction of the q boundary disks into q singular points of the
compact surface ˜M , we obtain a compact surface M ∗ without boundary, with q
additional singular points and with the same rotation centers, the same genus and
orientability as the starting ˜M .

If GX is a stabilizer of a point X ∈ �, we define the indicator function

S(GX ) =
{

h+, if X is rotation center of order h;
h, ifX is dihedral center of order 2h,

where h ∈ {1, 2, . . .}. If h+ = 1+, stabilizerGX is trivial (h = 1 will not be indicated
at the polygon symbol later on, + can also be omitted).

For the above plane discontinuous group G there is a simply connected bounded
closed set F , called a fundamental domain of G, whose G-images cover � without
any interior point in common (see [34, p. 115]). Moreover, as a fundamental domain
of G may serve a generalized polygon, i.e. a topological disk F whose boundary is
divided by a finite set of vertices into piecewise linear sides. The polygon F is called
fundamental polygon. The sides of F are identified (or κ-paired) by isometries of �

which generate G. Generalized polygon F which serves as a fundamental domain
of G, together with the set of identifications defined by G, is said to be κ-paired
polygon of G. The vertices of F (where at least three G-images of F meet) fall into
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G-equivalence classes with G-conjugate stabilizers such that the indicator function
takes the same value on them.

If Y is the midpoint of an edge such that S(GY ) = 2+, this point is (exceptionally)
considered as a vertex of F , although only two G-images of F meets around Y . This
is the point where our method differs from the D-symbol method given in [1, 12].

If a line reflection appears as a generator in G, a side on that line is identified with
itself and this side appears on a boundary cycle of ˜M .

In order to characterize polygons which serve as fundamental domains for
a given discontinuous group, we provide the following theorem proved in [15]
(see Fig. 1a–d).

Theorem 1 A κ-paired polygon F serves as a fundamental domain for a plane
discontinuous group G given by a Macbeath signature above, if and only if the
κ-images of its sides form a graph C on a surface ˜M = �/G with the following
properties:

1. ˜M \C is an open disk.
2. The graph C can be contracted on the surface ˜M with genus g into a graph˜C with

one vertex of valency ν = 2αg, and αg loops (α = 2 if M is orientable, α = 1
otherwise).

3. A singular point Ri, that is a κ-image of a rotation center Ri, is a vertex of C with
valency ν(Ri) ≥ 1.

4. A subgraphCi ofC which belongs to the boundary component bi can be contracted
(as ˜M → M ∗ is a formal contraction indicated above) into a pointQi with valency
ν(Qi) ≥ 1.

5. A vertex P of C, that is a κ-image of a vertex P of F with trivial stabilizer, has a
valency of at least 3.

��
Two fundamental (or κ-paired) polygons are said to be combinatorially equivalent

if there is a bijection mapping one onto the other which preserves the relation of
incidence of vertices and edges, their cyclic order, and the G-equivalence of vertices
and the directed edges together with their stabilizers (see [14, p. 511]).

To determine all combinatorially different polygons which serve as fundamental
domains for a given plane discontinuous group we describe the following procedure
given in [14, 15].

Theorem 2 Suppose that G is a finitely generated discontinuous isometry group
acting on � with a compact fundamental domain. Suppose further that G is given
with a fixed good Macbeath signature, different from 4 types of bad orbifolds [26,
p. 87]

(0,+; [u]; { }), (0,+; [ ]; {(u)}), 2 ≤ u,

(0,+; [u, v]; { }), (0,+; [ ]; {(u, v)}, 2 ≤ u < v,

for which such a group G does not exist, and different from three further types of
orbifolds
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S1 = (0,+; [ ]; { }), S1 = (1,−; [ ]; { }),

R = (0,+; [ ]; {(h11, . . . , h1l1)}), 0 < l1,

with combinatorially unique fundamental domains. The set of all combinatorially
different polygons, that are fundamental domains for G, is obtained by the following
procedure:

(a) On ˜M we determine a finite set (up to combinatorial equivalence) of all possible
non-contractible graphs with one vertex and αg loops (α = 2 if ˜M is orientable,
α = 1 otherwise), such that for any ˜C from that set, ˜M \˜C is a disk.

(b) We associate the graph ˜C with a disconnected graph ˜C ′ which consists of αg
disjoint paths belonging to the loops of˜C (˜C ′ can be obtained by cutting a (small)
disk D on ˜M around an added vertex, Fig.1b).

(c) We determine a finite set of all possible trees on ˜M (in D), each of them meets
˜C ′ only at the set of its 2αg vertices (on the boundary of D), such that the set of
vertices of each of these trees consists of:

(i) 2αg vertices of ˜C ′, each is of valency one.
(ii) l rotation centers R1, . . . ,Rl.
(iii) Points Q1, . . . ,Qq obtained by contractions of the boundary components of

˜M → M ∗.
(iv) Some additional points P1,P2, . . . ,Px on ˜M , each is of valency at least three,

whence x ≤ 2αg + l + q − 2.

(d) We join each of these trees with ˜C ′ and replace Q1, . . . ,Qq by the boundary

components b1, . . . , bq of M ∗ with dihedral centers on them as new vertices, to
obtain a new graph C on ˜M.

(e) To every disk ˜M \C we correspond a polygon F which serves as a fundamental
domain for G.

(f) Among all the polygons F we select the combinatorially different ones.

��
The inequality x ≤ 2αg + l + q − 2 (that was omitted in [15] but already mentioned
in [14]) is justified by a well known property of a tree, that the number of its vertices
that are of a degree at least 3, is equal to the number of vertices of degree 1, subtracted
by 2. In our case the number of vertices of degree 1 is equal to the sum of 2αg, and
of the number of vertices of a degree 1 among R1, . . . ,Rl , and Q1, . . . ,Qq, which is
at most l + q.

By comparing the angle sum of the polygon that is a fundamental domain of the
plane discontinuous groupG, given by its Macbeath signature, with the angle sum of
the corresponding Euclidean polygon, we conclude that G is realizable as isometry
group, acting discontinuously on S2(<), in E2(=) or H2(>), if and only if



An Algorithm for Classification of Fundamental Polygons … 263

0 � 4 − 2αg − 2
l

∑

i=1

(1 − 1/hi) − 2q −
q

∑

j=1

lj
∑

k=1

(1 − 1/hjk),

where α = 2 if ˜M is orientable, or α = 1 otherwise.
We give sharp estimates for the number n of sides of fundamental polygon F

obtained by the procedure described in Theorem 2 (see [14]):

Theorem 3 If n is the number of edges (and vertices) of a fundamental polygon of
finite area for our group G given by its Macbeath signature, different from the groups
S1, S1 and R with combinatorially unique fundamental domains, then

nmin ≤ n ≤ nmax,

where
nmin = 2αg if l = q = 0,

or

nmin = q0 +
q

∑

k=1

lk + 2αg + 2l + 2q − 2

otherwise, and

nmax =
q

∑

k=1

lk + 6αg + 4l + 5q − 6,

where α = 2 if ˜M is orientable, or α = 1 otherwise, and q0 is the number of the
boundary components of M containing no dihedral centers. Moreover, for a given
G there exist fundamental domains with nmin and nmax edges. ��
For the group with signature

(1,+, [3, 4, 4, 6]; {(2, 3, 2, 4), (4), ( ), ( )}),

we illustrate these facts in Fig. 1c, d (see [14, p. 516]).

Theorem 4 For each plane discontinuous group G, given by its signature and
described in Theorems 2 and 3, there are finitely many combinatorially different
fundamental polygons. There exists an algorithm that enumerates all fundamental
polygons of G. ��
Remark The above procedure is based on the enumeration of trees with 2αg + l + q
fixed vertices and x additional vertices each of valency at least 3, where x ≤ 2αg +
l + q − 2. This procedure can be applied even in the case when extended rotations
or dihedral centers of infinite order exist.
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Namely, within the Macbeath signature we allow that hi = ∞ (1 ≤ i ≤ l) for
extended rotation center, which is an end inH2 determined by a horocyclic rotation,
or the ideal point of two parallel lines in E2 determined by an Euclidean translation.
Furthermore, we allow that hij = ∞ (1 ≤ i ≤ q, 1 ≤ j ≤ li) for extended dihedral
center defined by parallel reflection lines inH2, or an ideal point defined by two par-
allel reflection lines in the Euclidean plane E2. Moreover, at a boundary component
could be more than one extended dihedral centers.

As we see these extended centers cause some differences in the above procedure
of determining fundamental polygons for the above group G. Difficulties appear
also in the metric realization of the corresponding fundamental domain with ideal
vertices.

Fortunately our existence Theorem 5, based on [15, Prop. 3.2], allows unified
formulation, but this will not be discussed here.

Theorem 5 [15, Prop. 3.2] Among all convex polygons in S2 or in H2 (resp. in
E2) with given angles α1, α2, . . . , αm,m ≥ 3, there exists exactly one up to isometry
(resp. similarity) polygon, respecting the order of angles, circumscribed around a
circle. ��

In Sect. 3 we will describe a particular algorithm whose existence is explained in
Theorem 4. It is based on the procedure from Theorem 2 and facts from Theorem 3.

The computer implementation of that algorithmwas developed by the third author
in his B.Sc. thesis [32]. The product of this implementation is program COMCLASS
(see Sect. 4). The complexity of the procedure, which is clearly super-exponential
(note that the number of labeled treeswith nvertices is nn−2, see [3]),will be discussed
elsewhere (see e.g. [30]).

Particular problems have independently been solved in [1, 12, 20, 30], partially
by different methods. This gives us an opportunity to illustrate some of the steps in
the procedure only by examples and figures.

Thus, the long standing Poincaré-Delone problem has been completely solved in
dimensions 2 by Theorems 1, 2, 3, 4 and 5, and the algorithm described in Sect. 3.
Our procedure also completes the classification of plane discontinuous groups with
fundamental domains of finite area, finalized in [17, 33, 34]. The corresponding
2-orbifolds have also been completely described (see [26]).

Poincaré’s classification of compact 2-dimensional surfaces is obviously related
to our topic. This is based in principle also on an algorithm of super-exponential
complexity (by the genus). Poincaré [28] initiated finding orientation preserving
hyperbolic plane groups (so-called Fuchsian groups) via finding their possible fun-
damental domains (at least one domain for each group), and he characterized these
domains (see e.g. [18, 19]). Delone (see e.g. [7, 8]) classified all Euclidean planigons
(onto 93 combinatorial “marked” classes, among them 46 fundamental domains, see
Sect. 4), and asked for the general stereohedron problem, i.e. for finding “all” combi-
natorial polyhedra (polytopes) which can be fundamental domains of groups acting
discontinuously on a space of constant curvature (only particular cases are solved
for dimensions greater than 2).
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Our program is available in a source code for on-line execution (see Sect. 4). Its
output is a list of all combinatorially different fundamental domains (represented by
canonized polygon descriptors list) for a group given by its Macbeath signature.

2 Paired Polygon

A κ-paired polygon F = V0V1 . . . Vn−1 of a group G given by a (good) Macbeath’s
signature, whose edges are

a0 = V0V1, a1 = V1V2, . . . , an−1 = Vn−1V0

is well described by the relations ↑↑ and ↑↓ among edges, and the relation↔ among
vertices (induced by the previous two relations), defined on the set {0, 1, . . . , n − 1},
n ∈ N, and by the finite sequence

m = (m0,m1, . . . ,mn−1), mi ∈ N

such that i ↑↑ j if edges ai and aj are κ-paired by a direct isometry from G different
from identity,

i ↑↓ j if edges ai and aj are κ-paired by an indirect isometry from G (if i = j that
isometry is a reflection in a line which contains ai),

i ↔ j if vertices Vi and Vj are κ-paired by an isometry from G, such that mi =
S(GVi ).
Let �↑↑ mean not ↑↑, and �↑↓ not ↑↓. We define a paired polygon as a finite sequence

(n,↑↑,↑↓,↔,m), n ∈ N, m = (m0,m1, . . . ,mn−1) ∈ Nn

where ↑↑, ↑↓ and ↔ are binary relations defined on the set {0, 1, . . . , n − 1} that
1. ↑↑ and ↑↓ are symmetric,
2. if i ↑↑ j then i �↑↓ k, for every k, if i ↑↓ j then i �↑↑ k, for every k,
3. if i ↑↑ j and i ↑↑ k then j = k, if i ↑↓ j and i ↑↓ k then j = k,
4. ↔ is a minimal equivalence relation such that if i ↑↑ j then i ↔ j +n 1 and i +n

1 ↔ j (Fig. 2a), if i ↑↓ j then i ↔ j and i +n 1 ↔ j +n 1 (Fig. 2b, wiht+n as mod
n operation),

5. if i ↔ j then mi = mj,
6. if mi = 1+ then |i/↔| > 2, i.e. the equivalence class of Vi consists of more than

2 vertices.

We see that a paired polygon (n,↑↑,↑↓,↔,m) serves as a combinatorial descrip-
tionof a givenκ-paired polygonF = V0V1 . . . Vn−1 of a plane discontinuous groupG.

If F = V0V1 . . . Vn−1 and F ′ = V ′
0V

′
1 . . . V ′

n−1 are two κ-paired polygons and
(n,↑↑1,↑↓1,↔1,m1) and (n,↑↑2,↑↓2,↔2,m2) their combinatorial descriptions,
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respectively, then F and F ′ are combinatorially equivalent if and only if there is a
permutation δ ∈ Dn (Dn is the dihedral group defined on the set {0, 1, . . . , n − 1}),
induced by

Vi �→ V ′
δ(i), i = 0, 1, . . . , n − 1,

such that
i ↑↑1 j ⇔ δ(i) ↑↑2 δ(j), i ↑↓1 j ⇔ δ(i) ↑↓2 δ(j)

and m1
i = m2

δ(i)

where δ denotes the edge permutation, naturally derived from the vertex
permutation δ.

3 Discrete Structures and the Algorithm

In this section, we will describe discrete structures and the algorithm implemented
in the computer program COMCLASS (see Sect. 4).

3.1 Descriptor of Paired Polygon

Suppose that A is an order alphabet which consists of lower and upper case letters
(say, of English alphabet), of ten digits, and of the hyphen (–). On the set of lower
and upper case letters we define operation −1 of case changing: If α is a letter, α−1

is the opposite case letter. By A∗ we denote a set of sequences (words) of elements
from A.

To a paired polygon p = (n,↑↑,↑↓,↔,m) we associate the word

v0e0v1e1 · · · vn−1en−1

from A∗ called a polygon descriptor, such that

Fig. 2 For side pairing a
polygon

(a)

Ai

Ai+1 Aj

Aj+1

ai−1

ai

ai+1 aj−1

aj

aj+1

(b)

Ai

Ai+1 Aj

Aj+1

ai−1

ai

ai+1 aj−1

aj

aj+1
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vi =
{

ε if mi = 1 or mi = 1+,

δh otherwise, where mi = h+ or mi = h,
(1)

ei = e−1
j if i ↑↑ j (2)

ei = ej if i ↑↓ j and i �= j (3)

ei is – (hyphen) if i ↑↓ i (4)

where ε is the empty word and δh is a sequence of digits which serves as a decimal
notation of number h ∈ N.

A paired polygon may have many different polygon descriptors. We introduce a
normal form of a polygon descriptor by a rule of “choosing next lower case letter”:

if (i ↑↑ j or i ↑↓ j) and i < j then ei = λmax{k|λk∈{e0,...,ei−1}}+1

where λk denotes k-th lower case letter of the alphabet. By the rule of “choosing next
lower case letter”, to every polygon descriptor we correspond its normal form. This
procedure is called normalization. We introduce two more operations on the set of
polygon descriptors:

rot(p) = vn−1en−1v0e0v1e1 · · · vn−2en−2 (5)

inv(p) = v0en−1vn−1en−2vn−2 · · · e1v1e0 (6)

where p = v0e0v1e1 · · · vn−1en−1.
Two normalized polygon descriptors are said to be equivalent if one can be pro-

duced from the other by applying rot, inv and normalization. Two polygon descrip-
tors are said to be equivalent if their normalized polygon descriptors are equivalent.
Clearly, all descriptors of a given κ-paired polygon are equivalent, and two combi-
natorially equivalent κ-paired polygons have the same set of descriptors.

Let us introduce an order in our alphabet: digits are lesser then letters, hyphen is
lesser then any lower case letter, a lower case letter is lesser then the corresponding
capital letter. This order implies lexicographic order of words. In the class of equiv-
alent descriptors there is finitely many normalized descriptors (at most 2n). Among
normalized descriptors there is the minimal one, which is said to be the canonical
form. We obtain canonical form of a given normalized descriptor by the following
canonization procedure (see also [20]):

1. Starting with a given descriptor and applying composition of rot and normaliza-
tion, and composition of inv and normalization as many times as we are getting
new values, we obtain a set of all normalized descriptors in an equivalence class.

2. The minimal descriptor in this set is the canonical form.

Hence, canonical form of polygon descriptor represents a class of equivalent
descriptors as well as a class of equivalent κ-paired polygons.
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If v0e0v1e1 · · · vn−1en−1 is a polygon descriptor then

vieivi+n1ei+n1 · · · vi+n(k−1)ei+n(k−1)vi+nk where i, k ∈ {0 . . . n − 1}

is said to be a descriptor segment.

3.2 Starting Descriptor

Suppose that the Macbeath signature of our group G is of the form

(g,±; [ ]; { }).

By step (a) of the procedure described in Theorem 2 we will get a fundamental
polygon with minimal number (2αg) of edges. If

e0e1 · · · e2αg−1

is a descriptor of that polygon (vi = ε because its vertices have trivial stabilizers)
we consider it as a starting descriptor in determining a descriptor for a fundamental
polygon of G with the Macbeath signature

(g,±; [h1, . . . , hl]; { }).

In order to decide if e0e1 · · · en serves as a starting descriptor, we use the following
procedure:

1. Check if n = 2αg.
2. Check that ↑↓ is empty if and only if orientability is positive.
3. Check if ↑↑ and ↑↓ fulfils the rules in the definition of a paired polygon.
4. Check if ↔ is defined according to the rules in the definition of a paired polygon.
5. Check if ↔ is a full relation (this means that all vertices of the polygon are

identified).

3.3 Tree Decomposition

Suppose that G is of Macbeath signature

(g,±; [h1, . . . , hl]; { }),

and T is a tree in the disk D, described by step (c) of Theorem 2. Let

n = 2αg.
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We denote by L0,L1, . . . Ln−1 ordered vertices on the boundary of D (see Fig. 3a,
notice that Li’s are not vertices of the fundamental polygon), and associate letters
to edges of T where we avoid first αg letters from the alphabet. We denote by
a0, a1, . . . , an the edges that contain L0,L1, . . . Ln−1, respectively, and those edges
need not to have associated letters.We chose one of two possible directions of every
edge, to be positive.

Let
li = LiaiVi,0ti,0 · · · Vi,ki−2ti,ki−2Vi,ki−1ai+n1Li+n1

be a directed path on T connecting Li to Li+n1, which divides disk D into two parts
such that the whole T belongs to the closure of one of these two parts.Suppose that

vi,j =
{

ε if S(Vi,j) = 1+,

δh otherwise, where S(Vi,j) = h+.
(7)

(δh is a sequence of digits which serves as a decimal notation of number h ∈ N) and
let ei,j be a letter λ associated to ti,j, if the oriented path passes the edge ti,j in the
positive direction, or λ−1 otherwise. If

si := vi,0ei,0 . . . vi,ki−2ei,ki−2vi,ki−1,

(the descriptor segment determined by the oriented path li), then the sequence

(s0, s1, . . . sn−1)

is said to be a decomposition of tree T . We illustrate this procedure in Fig. 3a where
the decomposition of the given tree is

(s0, s1, s2, s3, s4, s5) = (x4,4y2,2,2,2Y4X, ε).

So, by the process of discretization of the algorithm given in Theorem 2, graphs
from the step (a) are represented by starting descriptors and trees from (c) are repre-
sented by tree decompositions.

We are now ready to give rules for calculation of the polygon descriptor in a form

s0e0s1e1 · · · s2αg−1e2αg−1 (8)

where e0e1 · · · e2αg−1 is starting descriptor and s0, . . . , s2αg−1 are descriptor seg-
ments.
If (s0, s1, . . . sn−1) is a tree decomposition then si = sziqi , i.e. the polygon descriptor
is

sz0q0e0s
z1
q1e1 · · · szn−1

qn−1
eqn−1 ,

where zi ∈ {−1, 1} and
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L4

L5

1+

2+

4+
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y

s0 = x4
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s3 = 2

s2 = 2

s1 = 4y2

(b)

Lqj−1

sqj−1 sqi

eiej
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sqi+1 sqj+1

ejei
zj+1 = −1
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Fig. 3 For tree decomposition, blank derivation and qualifier
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1. if ei = e−1
j (i ↑↑ j) then qj+1 = qi + zi and zj+1 = zi (Fig. 3b, c),

1’. if ei = e−1
j (i ↑↑ j) then qj = qi+1 − zi+1 and zj = zi+1 (derived from (2) in def-

inition of the polygon descriptor),
2. if ei = ej (i ↑↓ j) then qj = qi + zi and zj = −zi (Fig. 3d, d with swaped i and j),
2’. if ei = ej (i ↑↓ j) then qj+1 = qi+1 − zi and zj = −zi (Fig. 3e, e with swaped i

and j).

Additions and subtractions in rules are modulo n (see also Fig. 3b–e). In order
to determine unique polygon descriptor by our rules, it is necessary to determine q0
and z0. If we compare our rules with the property 2 in Theorem 1, we see that the set
of all k which define qk and zk (if q0 and z0 are known) is 0/↔ defined by the class
of 2αg vertices of the starting polygon descriptor. Procedure in Sect. 2 gives us that
↔ has to be full relation. We choose q0 and z0 arbitrary since we always obtain the
same polygon.

If we choose starting descriptor to be abcBac and q0 = 0 and z0 = 1, our rules
applied to the illustration given in Fig. 3a determine q1 = 2, z1 = −1, q2 = 4, z2 =
−1, q3 = 5, z3 = −1, q4 = 1, z4 = −1, q5 = 3, z5 = 1.Hence, the polygondescrip-
tor is

s0as
−1
2 bs−1

4 cs−1
5 Bs−1

1 as3c = x4a2bx4y2cB2Y4a2c.

3.4 Blank Derivation and Qualifier

On the tree given in Fig. 3a we denote by A a vertex with trivial stabilizer, by B a
rotation center of order 4, by C a rotation center of order 2. Let us consider the tree
as a rooted tree where

1. Root of the tree is: L0,
2. L0 has 1 child: A,
3. A has 2 children: B and L5,
4. B has 2 children: L1 and C,
5. C has 3 children: L2, L3 and L4,
6. Each L1, L2, L3, L4, L5 has no children and it is on the border of the disk D.

We used the following listing rule for simple description of a tree: among the vertices
with new defined children we always chose first the left one. If we neglect the
type of stabilizer, the tree rooted at L0 in Fig. 3a we describe by a finite sequence
(1, 2, 2, 0′, 0′, 3, 0′, 0′, 0′), where we express only the number of children in a row.
Notice that there can exist a vertex with no children, not on a border of the disk D
(in that case necessarily with nontrivial stabilizer), so we use denotation 0′ to make
difference with 0. An n-tuple above is called the blank derivation of a tree.

If (b0, b1, . . . , bk−1) is blank derivation then each element of a k-tuple is cor-
responded to a vertex. Suppose that V0, V1, . . . , Vk−1 are corresponding vertices.
In our example we have that V0 = L0, V1 = A, etc. Notice that b0 = 1, and for
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0 < i < k valency of Vi is bi + 1. Types of stabilizers we describe‘ by a k-tuple
(S(V0), S(V1), . . . , S(Vk−1)) which we call a qualifier. Hence

bi = 0′ ⇒ S(Vi) = 1+ (9)

bi �= 0′ ∧ bi < 2 ⇒ S(Vi) > 1+ (10)

Blank derivation describes a tree with possible vertices not on the border of D,
such that their valencies are less then 3, i.e. bi �= 0′ and bi < 2. The number of such
vertices is said to be the defect of a blank derivation.

Blank derivation together with its qualifier has all relevant information about our
tree.

3.5 Algorithm

Suppose that G is our above group with a given (good) Macbeath signature:

(g,±; [h1, . . . , hl]; {}), g > 0.

The set of all canonized descriptors of fundamental polygons for G are obtained by
the following algorithm:

1. Using the procedure given in Sect. 3.2, determine all possible starting descriptors
of genus g and orientability ±.

2. Determine all blank derivations with 2αg − 1 0′’s in the descriptor and of a defect
less or equal l.

3. For each blank derivation determine a set of all qualifiers which are permutations
of

(h+
1 , . . . , h+

l , 1+, . . . , 1+
︸ ︷︷ ︸

k−l

) (11)

(where k is the size of a blank derivation) and fulfils (9) and (10).
4. For every blank derivation and qualifier of this descriptor, determine a tree decom-

position. This procedure is in a domain of routine computer science problems.
5. For each tree decomposition and each starting descriptor, using the rules given in

Sect. 3.3, with q0 = 0 and z0 = 1, determine a polygon descriptor. It is enough
to use only one pair of values for q0 and z0 (not necessarily 0 and 1).

6. We canonize each determined polygon descriptor in the previous step, by the
given canonization procedure.
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3.6 Boundaries and Genus 0

If our group G admits reflections, i.e. if its Macbeath signature is of the form

(g,±; [h1, . . . , hl]; {(h1,1, . . . , h1,l1), . . . , (hq,1 . . . , hq,lq)}),

the procedure given in Sect. 3.5 is essentially the same but more bulky.
At the beginning we suppose that g > 0.
Contracted boundary components Q1, . . . ,Qq in a graph C (Theorem 2) gives us

new vertices, hence in a tree qualifier there are new elements which we denote by
1∗, . . . , q∗, and because of that instead of (11) we have

(h+
1 , . . . , h+

l , 1∗, . . . , q∗, 1+, . . . , 1+
︸ ︷︷ ︸

k−l−q

)

((9) and (10) are fulfilled).
We extend our alphabet with asterisk and in (7) we add a possibility for a vertex

to be a contracted component of a boundary component, hence

vi,j = δx*δy if Vi,j = Qx, x = 1, 2, . . . q, and vi,j represents y-th

occurrence of boundary component Qx

where δx and δy are decimal notations of x and y, respectively. Step 5 of the procedure
given in Sect. 3.5 is essentially the same. Obtained words, which are not necessarily
polygon descriptors, may have subwords from the previous formula.

Between steps 5 and 6 we add step 5’: word obtained in step 5 is changed by
adding q boundary components together with the valencies of vertices obtained by
their contractions, since we have to replace δx*δy by y-th segment of x-th boundary
decomposition analogous to a tree decomposition.

If g = 0 we use simplified procedure to obtain all possible trees on a sphere
with the given properties, and to cut a sphere along each of these trees. For this
procedure we established all necessary techniques: cutting a sphere along a tree is a
decomposition in one segment, and the tree generation is as usual.

4 Program COMCLASS

Based on the given algorithm computer program COMCLASS, written in the pro-
gramming language C, for a given group signature determine all canonized polygon
descriptors. Closely related to COMCLASS is computer program FUNDAMENTAL
developed by Daniel Huson [12].

COMCLASS is available at http://comclass.math.rs in source code and for online
execution.

http://comclass.math.rs
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At the end we give some group examples.

Discrete groups of Euclidean plane

p1 (1,+, [ ]; { }) abAB
abcABC

p2 (0,+, [2, 2, 2, 2]; { }) 2a2b2B2c2C2A
2a2b2c2C2B2A
2ab2Bc2Cd2DA
2a2bc2Cd2DB2A
2abc2Cd2DBe2EA

pm (0,+, [ ]; {( ), ( )}) a-A-

pg (2,−, [ ]; { }) abaB
abba
abcbaC
abccBa

cm (1,−, [ ]; {( )}) a-a
a-a-
ab-Ba

pmm (0,+, [ ]; {(2, 2, 2, 2)}) 2-2-2-2-

pmg (0,+, [2, 2]; {( )}) 2ab2B-A
2a-b2B-A
2a2b-B2A
2ab-Bc2CA

pgg (1,−, [2, 2]; { }) 2a2b2B2a
2a2b2a2b
ab2Bac2C
ab2Bc2Ca
2ab2Bc2ac
ab2c2C2Ba
ab2Bcd2Dac
abc2Cd2DBa

cmm (0,+, [2]; {(2, 2)}) 2a-2-2-A
2a2-2-2A

p4 (0,+, [2, 4, 4]; { }) 4a2b4B2A
4a4b2B4A
4ab4Bc2CA

p4m (0,+, [ ]; {(2, 4, 4)}) 4-4-2-
p4g (0,+, [4]; {(2)}) 4a-2-A

4a2-2A
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p3 (0,+, [3, 3, 3]; { }) 3a3b3B3A
3ab3Bc3CA

p3m1 (0,+, [ ]; {(3, 3, 3)}) 3-3-3-

p31m (0,+, [3]; {(3)}) 3a-3-A
3a3-3A

p6 (0,+, [2, 3, 6]; { }) 3a6b2B6A
6a2b3B2A
6a3b2B3A
6ab3Bc2CA

p6m (0,+, [ ]; {(2, 3, 6)}) 6-3-2-

(see also [7, 12, pp. 518–519]).

If
(g,±, [ ]; { })

is the Macbeath signature of our group then the result is purely topological. As an
example, for the Macbeath signature

(2,−, [ ]; { })

(of our pg), there are four topological gluings of a disk which all give Klein bottle:

abaB, abba, abcbaC, abccBa

(see e.g. [1, p. 310]).

Combinatorially different polygons of group with the Macbeath signature

(2, +, [ ]; { })

are:

1 abcdABCD 2 abcdBCAD 3 abcdBDAC
4 abcdCDAB 5 abcdBeCEAD 6 abcdBeDAEC
7 abcdBeDEAC 8 abcdCeBDAE 9 abcdCeBEAD

10 abcdCeDEAB 11 abcdeABCDE 12 abcdeBCADE
13 abcdeBCDAE 14 abcdeBCEAD 15 abcdeBDACE
16 abcdeBDAEC 17 abcdeBDEAC 18 abcdeCDABE
19 abcdeCDEAB 20 abcdeDBCAE 21 abcdeDBEAC
22 abcdeDECAB 23 abcBdeDfCFAE 24 abcBdeDfEFAC
25 abcdBCDefEAF 26 abcdBeDfEAFC 27 abcdBefCDFAE
28 abcdBefCEADF 29 abcdBefDEACF 30 abcdCefBEFAD
31 abcdCefEBDAF 32 abcdCefEBFAD 33 abcdeBDfEACF
34 abcdeBDfEAFC 35 abcdeBfCDFAE 36 abcdeBfCEADF
37 abcdeBfCEAFD 38 abcdeBfCEFAD 39 abcdeBfDEFAC
40 abcdeBfECFAD 41 abcdeCfBDEAF 42 abcdeCfDEFAB
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43 abcdeDfBCFAE 44 abcdeDfEFCAB 45 abcdefBCDAEF
46 abcdefBCFADE 47 abcdefBDAECF 48 abcdefBDEACF
49 abcdefBDEAFC 50 abcdefBECFAD 51 abcdefCDFABE
52 abcdefDBCAEF 53 abcdefDBEFAC 54 abcdefDEFABC
55 abcdefDEFCAB 56 abcdefEBCDAF 57 abcdBeCDEfgFAG
58 abcdBefEgCDGAF 59 abcdCeDEBfgFAG 60 abcdCefEBgDGAF
61 abcdCefEBgFGAD 62 abcdCefgEBFGAD 63 abcdeBfDgEFACG
64 abcdeBfDgEFAGC 65 abcdeBfEgCFAGD 66 abcdeBfgCEFADG
67 abcdeBfgCEFAGD 68 abcdeCDEBfgFAG 69 abcdeCfBgDEGAF
70 abcdeCfgBDEAFG 71 abcdeCfgDEGABF 72 abcdeCfgFBDEAG
73 abcdeDfBgFCGAE 74 abcdeDfgBFCGAE 75 abcdefBDgEACFG
76 abcdefBEgCFADG 77 abcdefBEgCFAGD 78 abcdefBgCDGAEF
79 abcdefBgCFADGE 80 abcdefBgCFDGAE 81 abcdefBgDEGACF
82 abcdefBgECFGAD 83 abcdefBgEFGACD 84 abcdefCgDFABEG
85 abcdefDBgEFGAC 86 abcdefDgBCGAEF 87 abcdefDgBEFACG
88 abcdefDgBEFAGC 89 abcdefDgEFGABC 90 abcdefDgEFGCAB
91 abcdefgBDEAFCG 92 abcdefgEBCDAFG 93 abcdefgEBFGACD
94 abcdefgEFGDABC 95 abcdBefgEhCDHAFG 96 abcdBefgEhFGHACD
97 abcdCefgEBhFGHAD 98 abcdeCfDEFBghGAH 99 abcdeCfgFBhDEHAG

100 abcdeCfghFBDEAGH 101 abcdeCfghFBGHADE 102 abcdeDfgBhFCGHAE
103 abcdefBgChDGAEHF 104 abcdefBgDhEGACFH 105 abcdefBgDhEGAHCF
106 abcdefBgEhCFGADH 107 abcdefBgEhCFGAHD 108 abcdefBgEhFGACHD
109 abcdefDgBhEFHAGC 110 abcdefDghBGCHAEF 111 abcdefEgBhCGDHAF
112 abcdefgBhCGDHAEF 113 abcdefgBhFCGHADE 114 abcdefgEhFGHDABC
115 abcdeCfDEFBghiGAHI 116 abcdeCfghFBiDEIAGH 117 abcdeCfghFBiGHIADE
118 abcdefBgDhiEGAHCFI 119 abcdefDghBiGCHIAEF 120 abcdefgBhCGiDHAEIF
121 abcdefgBhFiCGHADIE 122 abcdefgEhBiCHDIAFG

We found 65 combinatorially different polygons for group with Macbeath signa-
ture

(3,−, [ ]; { }),

see also [24].
There are 82 polygons with minimal number (12) of edges for the group

(3,+, [ ]; { }).

Program has an option to limit the number of edges for fundamental polygons.
It is also possible to obtain only the number of fundamental polygons (see also
[24, 30]). Thus for group with the Macbeath signature (4,−, [ ]; { }) there are 2.498
combinatorially different fundamental polygons, and for group with the Macbeath
signature (4,+, [ ]; { }) there are 7.258 fundamental polygonswith aminimal number
(16) of edges. For group (5,−, [ ]; { }) there are 473, and for group (6,−, [ ]; { })
there are 7.190 fundamental polygons with a minimal number (10 for first one and
12 for the last one) of edges.
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5 Closing Remarks

We hope that this conference paper will conclude our research which looks back to
a long history. The GEOSYM 2015 Conference organized in Veszprém, Hungary
(http://geosym.mik.uni-pannon.hu/) gave us further insights into the development
of the subject of this meeting. The second named author presented the results and
its relevance became immediately apparent during numerous other talks. Thus, we
extend our references to include additional publications (with no pretending of com-
pleteness): [2, 4, 6, 9, 10, 13, 16, 21–23, 25, 27, 29, 31].

An Oberwolfach seminar “Kombinatorische Geometrie” organized by Andreas
W. M. Dress and Jörg M. Wills in 1984, 23–29. September, brought to the attention
of the participants, which had opened new directions which had been settled during
this conference.

Wewould like to remember our charismatic teachers, recently passed away, among
them Professor Stanko Bilinski, the “Father” of Yugoslavian and Hungarian geome-
ters in addition to the authors; Professor Ludwig Danzer, who was the supervisor of
Egon Schulte, and an enthusiastic master photographer in his free time.

We would like to thank the excellent initiators and our colleagues at the Univer-
sity of Pannonia for organizing this wonderful Geometry Festival. Together with all
participants we offer our best wishes to our celebrated colleagues and friends, Károly
Bezdek and Egon Schulte.
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Self-inscribed Regular Hyperbolic
Honeycombs

Peter McMullen

Abstract This paper describes ways that certain regular honeycombs of non-finite
type in d-dimensional hyperbolic space H

d for d = 2, 3 and 5 can be inscribed
in others, in particular showing that some can be inscribed properly in copies of
themselves.

Keywords Coxeter group · Simplex dissection · Hyperbolic space · Regular
honeycomb · Self-inscribed · Compound
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1 Introduction

The purpose of this paper is to draw attention to some curious properties of certain
families of regular hyperbolic honeycombs with ideal vertices. The existence of
similarities in euclidean spaces enables some regular honeycombs to be inscribed
in smaller copies of themselves, by which we mean that the vertices of one form a
subset of the vertices of the other. The d-dimensional cubic tilings exemplify this
property, in infinitely many different ways.We shall see here that the same behaviour
is exhibited in four families of regular hyperbolic honeycombs, one inH2, two inH3

and one in H5.
At the instigation of one of the referees of an earlier version of the paper, we

have shown that certain subgroups of Coxeter groups that we employ are them-
selves Coxeter groups; these connexions are closely related to simplex dissections
of Debrunner [1] which formalized two folkloristic results. At the suggestion of the
other, we have added twomore families of honeycombs. As a consequence, the paper
has been substantially rewritten.
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We have been told by Asia Weiss that Donald Coxeter had come up with similar
ideas to those in this note, although nothing was ever published.

2 Regular Polytopes and Automorphism Groups

In this section, we briefly set the scene. As shown in, for example, [3, Chap. 2], a
regularn-polytopeP and its automorphismgroupG can be identified in a naturalway.
The group G of P has distinguished generators r0, . . . , rn−1 satisfying – possibly
among others – the relations (r j rk)p jk = e for 0 � j � k � n − 1, where

p jk =

⎧
⎪⎨

⎪⎩

1, if j = k,

pk if j = k − 1,

2, if j � k − 2.

(2.1)

We always assume here that pk � 3 for each k, and that pk = ∞ is allowed. In
addition, the r i also have the intersection property:

〈r i | i ∈ J〉 ∩ 〈r i | i ∈ K〉 = 〈r i | i ∈ J ∩ K〉 (2.2)

for J,K ⊆ {0, . . . , n − 1}. Conversely, such a group G is the automorphism group
of a regular polytope P , in which case {p1, . . . , pn−1} is called the Schläfli type of
P . Combinatorially, for 0 � k � n − 1 a k-face of P is identified with a right coset
of the distinguished subgroup Gk := 〈r i | i �= k 〉, with the incidence relation given
by

G j a � Gkb ⇐⇒ j � k and G j a ∩ Gkb �= ∅

for a, b ∈ G turning P into a poset.
IfG is specified solely by the relations implied by (2.1), then it is a (string) Coxeter

group, and is denoted [p1. . . . , pn−1]. The corresponding polytope P is universal,
by which we mean that any regular polytope of Schläfli type {p1, . . . , pn−1} is a
quotient of P . It is this situation that prevails throughout the paper; {p1, . . . , pn−1}
will henceforth mean the universal polytope.

Associated with the Coxeter group G is its contragredient representation G, say.
We need little from this, except to know that G acts faithfully on a certain convex
cone – the Tits cone – in R

n . Its generators Rk corresponding to the involutions rk
are linear reflexions in hyperplane mirrors, which bound a fundamental chamber C ;
copies of C under G fit together face-to-face to form the chamber complex, and
their union is the Tits cone. The fact that G is a Coxeter group means that the local
relations – how chambers fit together around their (n − 2)-faces – determine the
whole structure of the chamber complex. See [3, Sect. 3A] for a brief exposition, as
well as further references.

Remark 2.3 We adopt the convention that heavy braces denote an abstract regu-
lar polytope, as in the Schläfli type {p1, . . . , pn−1} of P . Light braces indicate a
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geometric regular polytope in euclidean or hyperbolic space. Thus {4, 3} is an abstract
3-cube; {4, 3} is the ordinary 3-cube inE4.We similarly use Rk to denote a geometric
reflexion corresponding to the involutory automorphism rk .

3 The Coxeter Group [3n−2, 2r]

This section treats the first of the subgroup relationships among Coxeter groups. We
begin with something that should be obvious to which we shall appeal twice.

Lemma 3.1 For k = 0, . . . , n − 2 and r � 3, the mapping rn−1 �→ e and r j �→ r j

for j = 0, . . . , n − 2 induces a homomorphism on [3n−2, 2r ] with quotient [3n−2] ∼=
Sn, the symmetric group.

The notation pm stands for p, . . . , p, with m occurrences of p.
We then have

Theorem 3.2 For k = 0, . . . , n − 2 and r � 3, the Coxeter group [3k−1, 2r, r, 2r,
3n−k−3] is a subgroup of [3n−2, 2r ] of index ( n

k+1

)
.

Proof The conventions for extreme values of r should be obvious; just think of the
block 2r, r, 2r as migrating through a sequence of 3s. The generators s0, . . . , sn−1

of the subgroup Gk (say) are given by

s j :=

⎧
⎪⎨

⎪⎩

r j , if j = 0, . . . , k − 1,

rk rk+1 · · · rn−2rn−1rn−2 · · · rk+1rk, if j = k,

rn+k− j , if j = k + 1, . . . , n − 1.

(3.3)

In the language of [3, Chap. 7], this defines amixing operation νk : (r0, . . . , rn−1) �→
(s0, . . . , sn−1). The indexing of νk is chosen to indicate that rk is the only generator
which changes, although the order of rk+1, . . . , rn−1 is reversed. We can extend
the range of k in a natural way by νn−1 = ι (the identity), and ν−1 = δ (the duality
operation – which reverses the order of all the r j ).

It is a routine matter (which we leave to the reader) to verify that s0, . . . , sn−1 do
generate a group satisfying the relations of [3k−1, 2r, r, 2r, 3n−k−3]. Bear inmind that,
if a2 = b2 = (ab)3 = e, then aba = bab; then appeal to conjugacy. For example,

sk−1sk = rk−1 · rk rk+1 · · · rn−2rn−1rn−2 · · · rk+1rk
∼ rk rk−1rk · rk+1 · · · rn−2rn−1rn−2 · · · rk+1

= rk−1rk rk−1 · rk+1 · · · rn−2rn−1rn−2 · · · rk+1

∼ rk · rk+1 · · · rn−2rn−1rn−2 · · · rk+1

· · ·
∼ rn−2rn−1,
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and so on. We must therefore check that no additional relations are acquired.
To see what νk does geometrically, we look at the contragredient representation

G of G. The fundamental chamber C is a cone over a simplex. If, as in Sect. 2, we let
Rk be the linear reflexion corresponding to rk , then a consequence of Lemma 3.1 is
that the conjugates of Rn−1 under 〈R0, . . . , Rn−2 〉 generate a subgroup of G whose
fundamental region is the cone F corresponding to the initial simplex facet of P :=
{3n−2, 2r}.

There are n! copies of C in F , which are the images of C under the subgroup
H := 〈R0, . . . , Rn−2〉 (this is a symmetric group). Regarding R j interchangeably as
a linear reflexion and its mirror, the hyperplane R j slices F into two halves, which the
reflexion R j swaps. The fundamental cone Ck of the representation Gk correspond-
ing to Gk is similarly cut out of F by the hyperplanes Sj with j �= k, n − 1. The
images of Ck in F are those under the subgroup 〈S0, . . . , Sk−1〉〈Sk+2, . . . , Sn−1〉 =
〈R0, . . . , Rk−1〉〈Rk+1, . . . , Rn−2 〉, of order (k + 1)!(n − k − 1)!.

It should now be clear that the local geometric structure around Ck is inherited
from that around C , and thus that this suffices to determine Gk , and hence Gk . In
other words, the latter is also a Coxeter group. �

As we have just pointed out, Lemma 3.1 says that P = {3n−2, 2r} collapses onto
its initial facet, which is an (n − 1)-simplex. Consequently, lifting this collapse back
into P implies the first part of

Theorem 3.4 The vertices of the universal regular polytope P = {3n−2, 2r} can be
n-coloured. Moreover, the polytope Pk := {3k−1, 2r, r, 2r, 3n−k−3} can be inscribed
in P , using (any) k + 1 of the colour-classes of its vertices.

Proof If P,Q are regular polytopes, we write Q ≺ P to mean that Q is inscribed
in P; that is, vertQ ⊂ vertP , with vertP the vertex-set of P . The crucial fact is
the subgroup relationship between the groups of the vertex-figures: in the previous
notation, 〈s1, . . . , sn−1〉 � 〈r1, . . . , rn−1〉. This means that Pk has the same initial
vertex v (say) as P; indeed, it has the same initial j-face for j = 0, . . . , k.

We now appeal to induction on n. Replacing n by n − 1 implies replacing k by
k − 1, which means that we first have to establish the case k = 0. In this case, s0
swaps the initial facet {3n−2} of P with the one that shares the ridge opposite v; then
vs0 has the same colour 1 as v. Moreover, since 〈s1, . . . , sn−1〉 = 〈r1, . . . , rn−1〉,
all such antipodal vertices in facets through the initial vertex are vertices of P0, and
this quickly leads to vertP0 consisting of the whole of colour-class 1 of P .

IfQ is a regular polytope (or honeycomb), then we denote byQv its broad vertex-
figure; that is, the vertices of Qv consist of those vertices of Q that are joined to
its initial vertex by an edge. For k > 0, we may now assume that Pv

k consists of
all vertices of Pv in colour-classes 2, . . . , k + 1, that is, those adjacent to the initial
vertex coloured 1. The claim of the theorem quickly follows from the action of Gk

and the symmetry of the colour-classes. �

We next observe that the polytopesPk occur in dual pairs. More specifically, since
we can freely permute colour-classes, we deduce
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Theorem 3.5 For each n � 4, r � 3 and k = 0, . . . , n − 2, Pk and Pn−k−2 are
dual polytopes. Moreover, they can be inscribed in P so that their vertex-sets are
complementary colour-classes.

The following illustrates Theorems 3.2 and 3.4.

Example 3.6 The first theorem yields subgroups [6, 3] and [3, 6] of index 3 in the
Coxeter group [3, 6]. By Theorem 3.4, the vertices of the planar tessellation {3, 6} of
E
3 by triangles can be 3-coloured; we do not need the general theory to see this. Two

out of the three colour classes form the vertices of an inscribed copy of a tessellation
{6, 3}, while the third then forms the vertex-set of the dual copy of {3, 6}, now scaled
up from the original by

√
3, we have

{3, 6} � {6, 3} � {3, 6};

we can iterate the process and extend it to

· · · � {3, 6} � {3, 6} � {3, 6} � · · ·

with each copy having a third of the vertices of the one before; there is a similar
infinite sequence with {6, 3} replacing {3, 6}.

4 The Tessellation {3,∞}

The vertices of the tessellation {3,∞} in the hyperbolic plane H2 can be 3-coloured
(again, we do not really need the general discussion to see this). Either two out of
three, or one out of three of the colour classes yields a tessellation {∞,∞}, and so
we can strictly inscribe one copy in another using half the vertices. This process can
be repeated to inscribe a copy using a quarter of the vertices, and then an eighth, so
on. We can clearly treat this easy case by hand.

5 Honeycombs Inscribed in {3, 3, 6}

We now apply the resuts of Sect. 3 to {3n−2, 6}. We looked at the first case {3, 6}
in Example 3.6, and so here we concentrate on the honeycomb {3, 3, 6} with ideal
vertices inH3.We can take its symmetry group to have generators R j for j = 0, . . . , 3
given by

x R j :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(η, ζ2, ζ1, ζ3), if j = 0,

(η, ζ1, ζ3, ζ2), if j = 1,

(η,−ζ2,−ζ1, ζ3), if j = 2,
1
4 (5η − √

3〈z, u〉,√3ηu + 4z − 3〈z, u〉u), if j = 3,

(5.1)
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where u := (1, 1, 1). The initial vertex is (
√
3,−1, 1, 1), and – after rationalization –

the vertices in general can be written in the form x = (
√
3η, z), with η, ζ1, ζ2, ζ3 ∈ Z

having no common factor, and η > 0 such that 3η2 = ζ 2
1 + ζ 2

2 + ζ 2
3 . In fact, consid-

ering congruences modulo 8, it is easy to see that η, ζ1, ζ2, ζ3 must all be odd, if the
expression for x is in lowest terms. Note that R3 does not preserve such expressions,
because of the factor 1

4 .
If we successively apply R0, R1, R2, R3, R2, R1, R0 to (

√
3,−1, 1, 1), then we

obtain all (
√
3, z) with

z = (1,−1, 1), (1, 1,−1), (−1,−1,−1), (1, 1, 1),

(−1,−1, 1), (−1, 1,−1), (1,−1,−1);

in other words, we have all vertices of the form (
√
3,±1,±1,±1). This reflects the

following fact.

Lemma 5.2 The two honeycombs {3, 3, 6} and {4, 3, 6} have the same vertices.
Indeed, [3, 3, 6] and [4, 3, 6] have a common subgroup, of index 5 in the first

and 2 in the second; see [3, Sect. 11G] for the details. This further implies that all
changes of sign of the coordinates of z are allowed, as well as all permutations, and
so leads us to

Theorem 5.3 The vertices of {3, 3, 6} can be taken to be all points of the form
(
√
3η, z) just described.

Proof It is clear that vertices of {3, 3, 6} are all of the required form. The form of
R3 gets in the way of showing the converse immediately. However, let (

√
3η, z) be

of the given form in its lowest terms; permuting the coordinates and changing signs
allows us to assume that ζ1 � ζ2 � ζ3 > 0, with at least one more strict inequality if
η > 1; in particular, ζ1 > η and 〈z, u〉 − η > 0. If 〈z, u〉 − η ≡ 0 mod 4, then we
see at once that (

√
3η′, z′) = (

√
3η, z)R3 has integer entries η′, . . . , ζ ′

3 with η′ < η.
Otherwise, observe that ζ1 + ζ2 − ζ3 − η ≡ 0 mod 4, since 2ζ3 ≡ 2 mod 4. We
thus change the sign of ζ3; since η remains the same, while the new 〈z, u〉 − η is still
positive, we can apply R3 as before, yielding a new integral η′ < η. This completes
the argument. �

Remark 5.4 Something that we cannot explain is that every odd positive η seems
to occur in such a reduced expression 3η2 = ‖z‖2 (we have only checked this for
η � 19)

As we have seen, the vertices of {3, 3, 6} can be 4-coloured; its facets are tetra-
hedra. Inscribed in {3, 3, 6}, using 3, 2 and 1 of its colour classes in turn, we find

{3, 3, 6} � {3, 6, 3} � {6, 3, 6} � {3, 6, 3}.

From this, it follows that {3, 6, 3} can be inscribed in itself, using just a third of its
vertices. Of course, we have the same pattern as before; the two copies of {3, 6, 3},
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and the two copies of {6, 3, 6}, can be inscribed in {3, 3, 6} using complementary
colour classes.

This leads to families of compounds. For example, iterating {3, 6, 3}[3{3, 6, 3}]
leads to {3, 6, 3}[3k{3, 6, 3}] for each k � 1. But we actually have more: Lemma 5.2
and duality show that we have compounds like

{4, 3, 6}[2{6, 3, 6}]{6, 3, 4},
3{4, 3, 6}[4{3, 6, 3}]{6, 3, 4},
{4, 3, 6}[4{3, 6, 3}]3{6, 3, 4}.

Once again, we leave further details to the interested reader.

6 The Coxeter Group [3n−3, 4, q]

.
For the other families, we again begin with a subsidiary remark; compare

Lemma 3.1.

Lemma 6.1 For k = 0, . . . , n − 2 and q � 3, the mapping rn−2, rn−1 �→ e and
r j �→ r j for j = 0, . . . , n − 3 induces a homomorphism on [3n−3, 4, q] with quo-
tient [3n−3] ∼= Sn−1, the symmetric group.

The main result of the section is

Theorem 6.2 For k = 0, . . . , n − 2 and q � 3, the Coxeter group [3k−1, 4, q, q, 4,
3n−k−4] is a subgroup of [3n−3, 4, q] of index (n−1

k+1

)
.

Proof Let r0, . . . , rn−1 be the distinguished generators of G = [3n−3, 4, q]. For k =
0, . . . , n − 3, we define the mixing operation μk : (r0, . . . , rn−1) �→ (t0, . . . , tn−1)

by

t j :=

⎧
⎪⎨

⎪⎩

r j , if j = 0, . . . , k − 1,

rk rk+1 · · · rn−3rn−2rn−3 · · · rk+1rk, if j = k,

rn+k− j , if j = k + 1, . . . , n − 1.

(6.3)

Again, the indexing of μk is chosen to indicate that rk is the only generator which
changes, although the order of rk+1, . . . , rn−1 is reversed. As before, we can extend
the range of k in a natural way by μn−2 = ι (the identity), and μ−1 = δ (the duality
operation).

The proof follows the lines of that of Theorem 3.2 quite closely, in particular in
verifying that the required relations are satisfied. In the present case, 2k−1(k−1)!
copies of the fundamental cone of G in the contragredient representation fit together
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to form the cone over an (n−1)-cross-polytope.We perform the same construction as
before, but in a facet of this cross-polytope; Lemma 6.1 ensures that the construction
is compatible with the whole group. We leave it to the reader to fill in the details. �

Remark 6.4 The operation μn−3 coincides with the halving operation η applied to
the 3-coface {4, q}; compare [3, (10E2)].

Corresponding to the group Gk of Theorem 6.2 is the (universal) abstract regular
polytope

Pk := {3k−1, 4, q, q, 4, 3n−k−4},

with the same conventions as in the proposition; in particular, P := Pn−2 = {3n−3,

4, q}. Exactly analogous to Theorem 3.4, we have

Theorem 6.5 The vertices of the universal regular polytope P = {3n−3, 4, q} can
be (n−1)-coloured. Moreover, the polytope Pk := {3k−1, 4, q, q, 4, 3n−k−4} can be
inscribed in P using (any) k+1 of the colour-classes of its vertices.

Proof As before, we appeal to induction on n, noting that the initial vertex always
stays the same. Replacing n by n − 1 implies replacing k by k − 1, which means
that we first have to establish the case k = 0. In this case, t0 takes the initial vertex
into the opposite vertex of the initial cross-polytopal facet of P; this vertex has the
same colour 1 as the initial one. Moreover, since 〈 t1, . . . , tn−1〉 = 〈r1, . . . , rn−1〉,
all such antipodal vertices in facets through the initial vertex are vertices of P0, and
this quickly leads to vertP0 consisting of the whole colour-class 1 of P .

For k > 0, we may now assume that Pv
k consists of all vertices of Pv in colour-

classes 2, . . . , k + 1, that is, those adjacent to the initial vertex coloured 1. The
claim of the theorem quickly follows from the action of Gk and the symmetry of the
colour-classes. �

Again as before, the polytopes Pk occur in dual pairs, and we deduce

Theorem 6.6 For each n � 4, q � 3 and k = 0, . . . , n − 3, Pk and Pn−k−3 are
dual polytopes. Moreover, they can be inscribed in P so that their vertex-sets are
complementary colour-classes.

For the moment, we just illustrate Theorems 6.2 and 6.5 by two familiar cases.We
have expressed them in terms of abstract polytopes, but of course they are isomorphic
to the geometric ones in E4.

Example 6.7 When n = 4 and q = 3, we have

{3, 4, 3} � {4, 3, 3} � {3, 3, 4}.

Example 6.7 tells us that the vertices of the 24-cell {3, 4, 3} are 3-colourable, and
that the vertices of the 4-cross-polytope {3, 3, 4} and 4-cube {4, 3, 3} comprise one
and two of the colour-classes, respectively. Moreover, they can be re-arranged so that
{3, 3, 4} and {4, 3, 3} have complementary vertex-sets in vert {3, 4, 3}; they are then
in dual position.
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Example 6.8 When n = 5 and q = 3, we have

{3, 3, 4, 3} � {3, 4, 3, 3} � {4, 3, 3, 4} � {3, 3, 4, 3}.

We have the same pattern in Example 6.8. The vertices of the last copy of
{3, 3, 4, 3} form one out of four colour-classes of the first; the complementary
three colour-classes make up the vertex-set of the dual {3, 4, 3, 3}. Similarly, we
can inscribe two dual copies of the cubic tiling {4, 3, 3, 4} in {3, 3, 4, 3} with com-
plementary vertex-sets (or colour-classes).

Familiar coordinates for the vertices of the geometric honeycombs graphically
illustrate all this. For the original copy, we have

vert{3, 3, 4, 3} = {(ξ1, . . . , ξ4) ∈ 1
2Z

4 | ξ1 ≡ · · · ≡ ξ4 mod 1}.

This actually identifies vert{3, 3, 4, 3} with the integer quaternions ξ1 + ξ2i + ξ3j +
ξ4k.

The obvious splitting

vert{3, 3, 4, 3} = Z
4 ∪ (

Z
4 + 1

2 (1, 1, 1, 1)
)

into two congruence classes modulo 1 gives the vertices of two dual copies of
{4, 3, 3, 4}. Finally, the other copy of {3, 3, 4, 3} has vertex-set

{(ξ1, . . . , ξ4) ∈ Z
4 | ξ1 + · · · + ξ4 ≡ 0 mod 2}.

7 Honeycombs Inscribed in {3, 4, 4}

We now have two applications of the results of Sect. 6 which yield information that
we do not recall having seen before. For n = q = 4, our pattern is

{3, 4, 4} � {4, 4, 4} � {4, 4, 4}; (7.1)

the vertex-sets of the two copies of {4, 4, 4} form two or one of the three colour-
classes of vertices of {3, 4, 4}, respectively. Indeed, the two copies can be regarded
as duals, and so re-arranged to have complementary vertex-sets. However, a striking
consequence is that one copy of {4, 4, 4} can be inscribed in another using half its
vertices; this leads to a doubly-infinite sequence

· · · � {4, 4, 4} � {4, 4, 4} � {4, 4, 4} � · · · ,

with each copy having half the vertices of the one before.
The universal polytopes are realizable as regular honeycombs in hyperbolic space

H
3. For the latter, we adopt the standard model
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H
n = {(ξ0, . . . , ξn) ∈ R

n+1 | ξ0 > 0, ξ 2
0 = ξ 2

1 + · · · + ξ 2
n + 1}.

The symmetry group of {3, 4, 4} can be taken to have generators R j (corresponding
to r j ) as follows. With x = (η, z), where z = (ζ1, ζ2, ζ3) ∈ E

3, we have

x R j :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(η, ζ2, ζ1, ζ3), if j = 0,

(η, ζ1, ζ3, ζ2), if j = 1,

(η, ζ1, ζ2,−ζ3), if j = 2,
(
2η − 〈z, u〉, z + (η − 〈z, u〉)u)

, if j = 3,

(7.2)

where u = (1, 1, 1). Thus R0, R1, R2 generate the symmetry group of the octahedron
in a natural way. We write R3 and points of H3 in this way for future computational
convenience. Observe as well that each R j preserves the set Z4 of integer vectors.

The vertices of {3, 4, 4} are ideal, and so are to be thought of as rays {λ(η, z) | λ >

0}, with η > 0 and η2 = ‖z‖2. We can normalize these in two ways, either by taking
η = 1 and thus z ∈ S

2 (the unit sphere), or (η, z) ∈ Z
4 with gcd(η, ζ1, ζ2, ζ3) = 1.

With the latter representation, we have

Theorem 7.3 The vertex-set of {3, 4, 4} is

vert{3, 4, 4} = {(η, z) ∈ Z
4 | η > 0, η2 = ‖z‖2}.

Proof We first note that the assumed condition gcd(η, ζ1, ζ2, ζ3) = 1 implies that η
is odd since, if ζ ∈ Z, then ζ 2 ≡ 0 or 1 mod 4; thus we cannot have η even and at
least one of ζ1, ζ2, ζ3 odd. It follows that exactly one of ζ1, ζ2, ζ3 is odd; hence 〈z, u〉
must also be odd, and it is then easy to see that each R j takes one vector of the given
form into another.

To see that every vector of that form occurs, we begin by noting that the initial
vertex of {3, 4, 4} is (1, 1, 0, 0). We next observe that R0, R1, R2 allow us freedom
to permute the coordinates of z and change their signs. If η > 1, then we change
signs so that z is a non-negative vector. From gcd(η, ζ1, ζ2, ζ3) = 1 we infer that
η < 〈z, u〉 = ζ1 + ζ2 + ζ3 (just compare η2 and 〈z, u〉2); if (η, z)R3 =: (η′, z′), then
we deduce that η′ < η. Induction on η leads at once to the claim of the theorem. �

Remark 7.4 In the alternative normalization, we can identify vert{3, 4, 4} with S2 ∩
Q

3.

In fact, we can say rather more. We have seen that exactly one of ζ1, ζ2, ζ3 is
odd; moreover, which coordinate is odd is preserved by R2 and R3 (for the latter,
note that η − 〈z, u〉 is even – of course, R0 and R1 permute the colour classes). As
a consequence, we have

Proposition 7.5 With the previous notation, the vertex (η, z) of {3, 4, 4} is coloured
j just when the j th coordinate of z is odd.
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Remark 7.6 As a matter of interest, in the given coordinate system the isometry Φ

of H3 with matrix

Φ = 1√
2

⎡

⎢
⎢
⎢
⎣

2 1 1 0

0 1 −1 0

−1 −1 −1 1

−1 −1 −1 −1

⎤

⎥
⎥
⎥
⎦

is such thatP0 ≺ P0Φ = P1, with the indexing introduced in Sect. 6; we do not give
the details of the calculation. Thus the powers of Φ (positive and negative) induce
the sequence of copies of {4, 4, 4}, each properly inscribed in the next.

As we have seen, we can inscribe {4, 4, 4} in {3, 4, 4}, using either two or one of
its three colour-classes. As a result, we obtain two, dual, regular compounds (on the
abstract level as well)

2{3, 4, 4}[3{4, 4, 4}]{4, 4, 3}, {3, 4, 4}[3{4, 4, 4}]2{4, 4, 3}.

(The fact that the copies P0 and P1 of {4, 4, 4} can be arranged to have complementary
vertex-sets in vert{3, 4, 4} accounts for the numbers 2 and 3.) Thus, even though
{4, 4, 4} is self-dual, perhaps surprisingly its compounds in {3, 4, 4} are not.

8 Honeycombs Inscribed in {3, 3, 3, 4, 3}

For n = 6 and q = 3, our pattern is

{3, 3, 3, 4, 3} � {3, 3, 4, 3, 3} � {3, 4, 3, 3, 4} � {4, 3, 3, 4, 3} � {3, 3, 4, 3, 3}.
(8.1)

There are five colour-classes of vertices of {3, 3, 3, 4, 3}, and the inscribed polytopes
use four, three, two or one of these, respectively. The two copies of {3, 3, 4, 3, 3} can
be regarded as duals, with complementary vertex-sets in those of {3, 3, 3, 4, 3}; the
dual polytopes {3, 4, 3, 3, 4} and {4, 3, 3, 4, 3} can be viewed similarly.

Remark 8.2 Note that we have an alternative picture of {3, 3, 4, 3, 3} ≺ {4, 3,
3, 4, 3}, in the form

{3, 3, 4, 3, 3} =
{

3,
3, 4, 3
3

}

with vertices alternate vertices of {4, 3, 3, 4, 3} (of course, as in the pattern here).
As in Sect. 7, we obtain a doubly-infinite sequence

· · · � {3, 3, 4, 3, 3} � {3, 3, 4, 3, 3} � {3, 3, 4, 3, 3} � · · · ;
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in this case, each copy has a quarter of the vertices of its predecessor. Here, though,
we can interpolate copies of {4, 3, 3, 4, 3} and {3, 4, 3, 3, 4} between successive ones
of {3, 3, 4, 3, 3}, as in the first pattern.

Geometrically, we have a realization {3, 3, 3, 4, 3} as a regular honeycomb inH5.
Of its symmetry group 〈R0, . . . , R5〉 acting on vectors (η, z), R0, . . . , R4 fix η and
act on z = (ζ1, . . . , ζ5) in the standard way as symmetries of the 5-cross-polytope
(that is, R j interchanges ζ j+1 and ζ j+2 for j = 0, . . . , 3, while R4 changes the sign
of ζ5 – compare (7.2)). Further,

(η, z)R5 = 1
2

(
3η − 〈z, u〉, 2z + (η − 〈z, u〉)u)

, (8.3)

where u = (1, 1, 1, 1, 1). In analogy to the case {3, 4, 4}, we can represent a vertex of
{3, 3, 3, 4, 3} by a vector (η, z) ∈ Z

6 with η > 0 and gcd(η, ζ1, . . . , ζ5) = 1. Exactly
the same arguments as deployed in Sect. 7 lead to

Theorem 8.4 The vertex-set of {3, 3, 3, 4, 3} is

vert{3, 3, 3, 4, 3} = {(η, z) ∈ Z
6 | η > 0, η2 = ‖z‖2}.

Remark 8.5 In the alternative normalization, we can identify vert{3, 3, 3, 4, 3} with
S
4 ∩ Q

5.

In a similar way, we have

Proposition 8.6 With the sameconventionas before, the vertex (η, z)of {3, 3, 3, 4, 3}
is coloured j just when the j th coordinate ζ j of z has the same parity as η.

Proof If η is even, then the assumed condition that gcd(η, ζ1, . . . , ζ5) = 1 implies
that at least one of ζ1, . . . , ζ5 must be odd; since η2 ≡ 0 mod 4 and ζ 2 ≡ 1 mod 4
if ζ ∈ Z is odd, we see that exactly four of them are odd. If η is odd, then η2, ζ 2 ≡ 1
mod 8 (for odd ζ ) similarly implies that exactly one of ζ1, . . . , ζ5 is odd. A final
observation that R4 and R5 preserve the parity condition completes the proof; once
again, the fact that η − 〈z, u〉 is even is the key for R5. �

The discussion shows that, for example, we can inscribe four copies of {3, 3, 4,
3, 3} in itself (with disjoint vertex-sets); this leads to geometric vertex-regular com-
pounds of the form

{3, 3, 4, 3, 3}[4k{3, 3, 4, 3, 3}]

for each k. Since, as remarked earlier, we can interpolate copies of {4, 3, 3, 4, 3}
and {3, 4, 3, 3, 4} between successive ones of {3, 3, 4, 3, 3}, a consequence is that
completely classifying possible regular compounds of hyperbolic honeycombs may
be far from straightforward. So, what we shall do is point out that even some simple
compounds do not behave as one might expect.

As in the [3, 4, 4]-family, we have a pair of compounds
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4{3, 3, 3, 4, 3}[5{3, 3, 4, 3, 3}]{3, 4, 3, 3, 3},
{3, 3, 3, 4, 3}[5{3, 3, 4, 3, 3}]4{3, 4, 3, 3, 3}

where a self-dual honeycomb is inscribed in non-self-dual compounds. Of course,
we also have the dual pair

3{3, 3, 3, 4, 3}[5{3, 4, 3, 3, 4}]2{3, 4, 3, 3, 3},
2{3, 3, 3, 4, 3}[5{4, 3, 3, 4, 3}]3{3, 4, 3, 3, 3};

once again, the numbers are explained by the fact that {3, 4, 3, 3, 4} and {4, 3, 3, 4, 3}
can be taken to have complementary subsets of vertices of {3, 3, 3, 4, 3} (that is,
counting colour-classes). Last, though, note that we have further compounds such
as

3{3, 3, 4, 3, 3}[4{3, 4, 3, 3, 4}], {3, 3, 4, 3, 3}[2{4, 3, 3, 4, 3}],
2{3, 4, 3, 3, 4}[3{4, 3, 3, 4, 3}],

which are only vertex-regular; the interested reader will easily be able to derive many
others.

9 Quotients

The regular hyperbolic honeycombs with ideal vertices have quotients which are
locally toroidal, in that their facets and vertex-figures are either spherical or toroidal;
these are discussed in considerable detail in [3, Chaps. 10–12]; we also mention [4].
But on passing to the quotients, it is usually the case that subgroup relationships are
not preserved.

However, among the locally toroidal regular polytopes described in [3, Chap. 10]
are

{{3, 4}, {4, 4 : 2s}} � {{4, 4 : 2s}, {4, 4 | s}} � {{4, 4 | s}, {4, 4 : 2s}},

for each s � 2; recall that the torus components{4, 4 : 2s} = {4, 4}(s,s) and {4, 4 |
s} = {4, 4}(s,0) (in the notation of the monograph) are determined by their Petrie
polygons {2s} and holes {s}, respectively. Exactly the same pattern of colour-classes
of vertices carries over to the quotients. Only s = 2 gives a finite case; for s = 3 the
polytopes are naturally realizable in E5.

In [3, Chap. 11] other polytopes than those arising from quotients of [3, 3, 6] and
its subgroups are considered. In that family, the quotients do not preserve indices of
subgroups; indeed, the same group may occur. In no case do the inscriptions carry
over.

Though there are far from degenerate finite quotients of {3, 3, 3, 4, 3}, the dis-
cussion of [3, Chap. 12] shows that these do not induce nice inscriptions of locally
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toroidal regular polytopes like those in the previous family. However, the operation
μk (with different indices) was employed in a different context in [2] (see also [3,
Sect. 14A]) to produce a family of locally projective regular polytopes.
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will be a d-dimensional normed space N with norm ‖·‖. We denote the ball with
center c ∈ N and radius r by B(c, r).

Definition 1 Let k ∈ N and let V = {ci : i = 1, . . . , m} be a set of points in the
d-dimensional normed space N . For each i ∈ {1, . . . , m}, let r (k)

i be the smallest r
such that

{ j ∈ N : j �= i,
∥
∥ci − c j

∥
∥ ≤ r}

has at least k elements. Define the k-th closed sphere-of-influence graph on V by
setting {ci , c j } an edge whenever B(ci , r (k)

i ) ∩ B(c j , r (k)
j ) �= ∅.

Füredi and Loeb [1] gave an upper bound for the minimum degree of any closed
sphere-of-influence graph in N in terms of a certain packing quantity of the space
(see also [5, 6].)

Definition 2 Letϑ(N ) denote the largest cardinality of a subset A of the ball B(o, 2)
of the normed space N such that any two points of A are at distance at least 1, and
the origin o is in A.

Füredi and Loeb [1] showed that any closed sphere-of-influence graph (that is, in
our terminology, a first closed sphere-of-influence graph) inN has a vertex of degree
smaller than ϑ(N ) ≤ 5d . (It is clear that ϑ(N ) is bounded above by the number of
balls of radius 1/2 that can be packed into a ball of radius 5/2, which is at most 5d

by volume considerations.)
Guibas, Pach and Sharir [2] showed that any k-th closed sphere-of-influence graph

in d-dimensional Euclidean space has a vertex of degree at most cdk, for some
universal constant c > 1. In this note we show the following more precise result,
valid for all norms, and generalizing the result of Füredi and Loeb [1] mentioned
above.

Theorem 3 Every k-th sphere-of-influence graph on at least two points in a normed
space N has at least two vertices of degree smaller than ϑ(N )k ≤ 5dk.

We note that the theorem still holds when there are repeated elements.

Corollary 4 A k-th sphere-of-influence graph on n points in N has at most
(ϑ(N )k − 1)n ≤ (5dk − 1)n edges.

Proof of Theorem 3 Let V = {c1, c2, . . . , cm}. Relabel the vertices c1, c2, . . . , cm

such that r (k)
1 ≤ r (k)

2 ≤ · · · ≤ r (k)
m . We define an auxiliary graph H on V by joining ci

and c j whenever
∥
∥ci − c j

∥
∥ < max{r (k)

i , r (k)
j }. Thus, if {ci : i ∈ I } is an independent

set in H , then no ball in {B(ci , r (k)
i ) : i ∈ I } contains the center of another in its

interior. We next bound the chromatic number of H .

Lemma 5 The chromatic number of H does not exceed k.

Proof Note that for each i ∈ {1, . . . , m}, the set

{ j < i : ci c j ∈ E(H)} = { j < i : ∥
∥ci − c j

∥
∥ < r (k)

i }
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has less than k elements. Therefore,we cangreedily color H in the order c1, c2, . . . , cm

by k colors. �

We next show that the degrees of c1 and c2 (corresponding to the two smallest
values of r (k)

i ) are both at most ϑ(N )k, which will complete the proof of Theorem 3.
We first need the so-called “bow-and-arrow” inequality of [1]. For completeness, we
include the proof from [1].

Lemma 6 (Füredi–Loeb [1]) For any two non-zero elements a and b of a normed
space, ∥

∥
∥
∥

1

‖a‖a − 1

‖b‖b

∥
∥
∥
∥

≥ ‖a − b‖ − |‖a‖ − ‖b‖|
‖b‖ .

Proof Without loss of generality, we may assume that ‖a‖ ≥ ‖b‖ > 0. Then

‖a − b‖ =
∥
∥
∥
∥
‖a‖ 1

‖a‖a − ‖b‖ 1

‖b‖b

∥
∥
∥
∥

=
∥
∥
∥
∥
‖b‖ (

1

‖a‖a − 1

‖b‖b) + (‖a‖ − ‖b‖) 1

‖a‖a

∥
∥
∥
∥

≤ ‖b‖
∥
∥
∥
∥

1

‖a‖a − 1

‖b‖b

∥
∥
∥
∥

+ ‖a‖ − ‖b‖ . �

The next lemma is abstracted with minimal hypotheses from [5, Proof of Theo-
rem 6] (see also [1, Proof of Theorem 2.1]).

Lemma 7 Consider the balls B(v1, λ1) and B(v2, λ2) in the normed space N ,
such that max{λ1, λ2} ≥ 1, v1 /∈ int(B(v2, λ2)), v2 /∈ int(B(v1, λ1)) and B(vi , λi ) ∩
B(o, 1) �= ∅ (i = 1, 2). Define π : N → B(o, 2) by

π(x) =
{

x if ‖x‖ ≤ 2,
2

‖x‖ x if ‖x‖ ≥ 2.

Then ‖π(v1) − π(v2)‖ ≥ 1.

Proof In terms of the norm, we are given that ‖v1 − v2‖ ≥ max{λ1, λ2} ≥ 1, ‖v1‖ ≤
λ1 + 1, and ‖v2‖ ≤ λ2 + 1. Without loss of generality, we may assume that ‖v2‖ ≤
‖v1‖.

If v1, v2 ∈ B(o, 2) then ‖π(v1) − π(v2)‖ = ‖v1 − v2‖ ≥ 1.
If v1 /∈ B(o, 2) and v2 ∈ B(o, 2), then

‖π(v1) − π(v2)‖ =
∥
∥
∥
∥
2

1

‖v1‖v1 − v2

∥
∥
∥
∥

≥ ‖v1 − v2‖ −
∥
∥
∥
∥
v1 − 2

1

‖v1‖v1

∥
∥
∥
∥

= ‖v1 − v2‖ − (‖v1‖ − 2) ≥ λ1 − (λ1 + 1) + 2 = 1.
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If v1, v2 /∈ B(o, 2), then

‖π(v1) − π(v2)‖ =
∥
∥
∥
∥
2

1

‖v1‖v1 − 2
1

‖v2‖v2

∥
∥
∥
∥

≥ 2
‖v1 − v2‖ − ‖v1‖ + ‖v2‖

‖v2‖ by Lemma 6

≥ 2

(
λ1 − (λ1 + 1)

‖v2‖ + 1

)

= −2

‖v2‖ + 2 ≥ −1 + 2 = 1. �

We can now finish the proof of Theorem 3. Let i ∈ {1, 2}, and let c := ci , that
is, the radius corresponding to c is the smallest, or second smallest. By Lemma 5
we can partition the set of neighbors of c in the k-th closed sphere-of-influence
graph on V into k classes N1, . . . , Nk so that each Nt is an independent set in
H . We may assume that the radius r (k)

i corresponding to c is 1. Then for any t ∈
{1, . . . , k}, each ball in {B(c j , r (k)

j ) : c j ∈ Nt } intersects B(c, 1), and the center of
no ball is in the interior of another ball. By Lemma 7, {π(p − c) : p ∈ Nt } is a
set of points contained in B(o, 2) with a distance of at least 1 between any two.
That is, |Nt \ int(B(c, 1))| ≤ ϑ(N ) − 1 for each t = 1, . . . , k. Since there are at
most k − 1 points in V ∩ int(B(c, 1)) \ {c}, it follows that the degree of c is at most
∑k

t=1 |Nt \ int(B(c, 1))| + k − 1 ≤ (ϑ(N ) − 1)k + k − 1 = ϑ(N )k − 1.
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References

1. Z. Füredi, P.A. Loeb, On the Best Constant for the Besicovitch Covering Theorem. Proc. Am.
Math. Soc. 121(4), 1063–1073 (1994). MR1249875 (95b:28003)

2. L. Guibas, J. Pach, M. Sharir, Sphere-of-influence graphs in higher dimensions, in Intuitive
Geometry (Szeged, 1991) 1994, pp. 131–137. MR1383618 (97a:05183)

3. F. Harary, M.S. Jacobson, M.J. Lipman, F.R. McMorris, Abstract sphere-of-influence graphs.
Math. Comput.Modelling 17(11), 77–83 (1993).Graph-Theoretic Models in Computer Science,
II (Las Cruces, NM, 1988–1990), p. 1236512

4. J. Klein, G. Zachmann, Point cloud surfaces using geometric proximity graphs. Comput. Graph.
28(6), 839–850 (2004)

5. T.S. Michael, T. Quint, Sphere of influence graphs: edge density and clique size. Math. Comput.
Model. 20(7), 19–24 (1994). MR1299482

6. J.M. Sullivan, Sphere packings give an explicit bound for the Besicovitch covering theorem. J.
Geom. Anal. 4(2), 219–231 (1994). MR1277507

7. G.T. Toussaint, The sphere of influence graph: theory and applications. Int. J. Inf. Technol.
Comput. Sci. 14(2), 37–42 (2014)

8. G.T. Toussaint, A graph-theoretical primal sketch. Mach. Intell. Pattern Recognit. 6, 229–260
(1988). A Computational Geometric Approach to the Analysis of Form, MR993994



On Symmetries of Projections
and Sections of Convex Bodies

Dmitry Ryabogin

Abstract In this paper we discuss several questions of unique determination of con-
vex (or star-shaped) bodies with projections (sections) satisfying a certain symmetry
property.

Keywords Sections and projections of convex bodies

1 Introduction: Questions on Bodies with Congruent
Projections and Sections

In 1932 Nakajima [1] and Süss [2] proved that two convex bodies inR3 are translates
of each other, provided that their orthogonal projections onto every plane passing
through the origin are translates of each other.

It is very natural to ask what happens if the group of translations is replaced by
the group of isometries. The following problem is probably one of the oldest open
problems of uniqueness in classical convexity (see, [3], p. 125, Problem 3.2).

Problem 1 Let K and L be twoconvexbodies inRn , n ≥ 2, such that the correspond-
ing orthogonal projections K |H, L|H, onto all subspaces H of a fixed dimension k,
2 ≤ k ≤ n − 1, are congruent. Does it follow that K and L coincide up to translation
and reflection in the origin?

Here we say that two sets A and B in R
k , k ≥ 2, are congruent if there exists an

orthogonal transformation ϕ ∈ O(k) such that the sets ϕ(A) and B are translates of
each other.
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It is natural to consider an analogue of Problem 1 for sections (cf. [3], p. 289,
Problem 7.3).

Problem 2 Let K and L be star bodies in R
n, n ≥ 2, such that the section K ∩ H

is congruent to L ∩ H for all subspaces H of a fixed dimension k, 2 ≤ k ≤ n − 1.
Is K a translate of ±L?

Why do we expect the bodies in the ambient space to be different up to translation
and reflection only, and not to be, say, congruent? Is it possible to simply describe
a fairly large class of bodies for which the answer is affirmative? In this article we
will attempt to give partial answers to some of these questions. On the way we
will formulate several related problems of uniqueness, which, in our opinion, are
interesting in their own right.

All necessary definitions and notions that will be used in the sequel may be found
in the books of Gardner [3] and Schneider [4].

1.1 Notation

We will denote by Sn−1 = {x ∈ R
n : |x | = 1} the unit sphere in R

n , n ≥ 2, and by
ξ⊥ = {x ∈ R

n : x · ξ = 0} the subspace orthogonal to a direction ξ ∈ Sn−1. Here

the “dot” stands for the usual inner product inRn , |x | =
√
x21 + · · · + x2n is the usual

Euclidean norm. Given a spherical cap U = Uε(ξ) = {θ ∈ Sn−1 : θ · ξ ≥ 1 − ε},
ε ∈ (0, 1), we denote by U⊥ = U⊥

ε (ξ) the equatorial neighborhood of ξ⊥ ∩ Sn−1,
i.e., U⊥ = {θ ∈ Sn−1 : |θ · ξ | < ε}. The notation SO(n) and O(n) for the special
orthogonal and orthogonal groups, acting on R

n , is standard. We will say that a
rotation ϕ = ϕξ in the subspace ξ⊥ is in SO(n − 1, ξ⊥) if there exists a rotation
�ξ ∈ SO(n) bringing ξ⊥ into e⊥

n and such that ϕξ = �−1
ξ ϕen�ξ with ϕen ∈ SO(n −

1) = SO(n − 1, e⊥
n ). Here the (n − 1)dimensional subspace e⊥

n being identifiedwith
R

n−1, and en = (0, . . . , 0, 1). A similar notation is used for O(n − 1, H), where H
is a k−dimensional subspace of Rn , 2 ≤ k ≤ n − 1. Let G be a fixed subgroup of
O(n − 1, e⊥

n ). We will denote by Gξ = oξG, the corresponding subgroup acting in
ξ⊥, where oξ ∈ SO(n) such that oξ (e⊥

n ) = ξ⊥. The reflection in the origin is the
group consisting of the identity map and the map x → −x . We remark that this
group is a subgroup of SO(n − 1) only for odd n. A rigid motion is an orthogonal
transformation followed by a translation. A direct rigid motion is a rotation followed
by a translation.We say that a subset A ofRn , n ≥ 2, has an O(n)-symmetry or a rigid
motion symmetry if there exists a non-trivial orthogonal transformation ϕ ∈ O(n)

such that the sets ϕ(A) and A are translates of each other.
We denote by hK (x) the support function of a convex body K ⊂ R

n . For x ∈ R
n

it is defined as hK (x) = sup
y∈K

x · y, ([5], p. 37), and it is a homogeneous function of

degree 1. The width of a set A ⊂ R
n in the direction x ∈ R

n , is defined as wA(x) =
hA(x) + hA(−x). We will repeatedly use the following well-known properties of the
support function. For every convex body K ,
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hK |ξ⊥(x) = hK (x) and hϕξ (K |ξ⊥)(x) = hK |ξ⊥(ϕ−1
ξ (x)), ∀x ∈ ξ⊥, (1)

(see, for example, [3], (0.21), (0.26), pp. 17–18); here ϕ−1
ξ stands for the inverse of

ϕξ ∈ SO(n − 1, ξ⊥).
The notation ρK (x) = sup

λ>0
{λx ∈ K }, x ∈ R

n \ {0}, is used for the radial function
of a star-shaped body with respect to the origin ([3], p. 18). It is a homogeneous
function of degree −1.

We will write fe and fo for the even and odd parts of the function f ,

fe(x) = f (x) + f (−x)

2
, fo(x) = f (x) − f (−x)

2
.

2 Translations Only

2.1 Projections

In the two-dimensional case, Problem 1 has a negative answer even in the particular
case in which the projections are translates of each other. Indeed, considering the
Reuleaux triangle R ([3], p. 108) and the disc D of the same width wR(x) = wD(x),
∀x ∈ R

2, we see that the corresponding projections (segments) have the same length
(equal to the corresponding width in the direction orthogonal to the direction of the
projection), hence these projections are translates of each other.

As we mentioned above, in the three-dimensional case the problem was formu-
lated and solved independently byNakajima [1] and Süss [2] in 1932. Their proof can
be generalized to higher dimensions (see [6], Lemma I) for another proof obtained
by I. Lieberman; an elementary proof can be also found in [7]. Besides, for Problem
1, with k = n − 1, H. Hadwiger established a more general result and showed that it
is not necessary to consider projections onto all (n − 1)-dimensional subspaces; the
hypotheses need only be true for one fixed subspace H , together with all subspaces
containing a line orthogonal to H . In other words, one requires only a “ground” pro-
jection on H and all corresponding “side” projections; see Fig. 1 in Sect. 3.Moreover,
Hadwiger noted that in R

n , n ≥ 4, the ground projection might be dispensed with
(see [8], and [3], pp. 126–127).

2.2 Sections

As in the case of projections, Problem2on the plane has a negative answer. This could
be seen by considering the disc and the plane equichordal convex set. Herewe say that
a convex set containing the origin in its interior is equichordal if ρK (θ) + ρK (−θ) =
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const for all θ ∈ S1. For the existence of these bodies we refer the reader to ([3],
p. 255, Theorem 6.3.2).

In the three-dimensional case the problem was solved by C. A. Rogers, who
showed that it has an affirmative answer, see ([3], p. 270, Theorem 7.1.1). We are
not aware of an analogue of Hadwiger’s result for sections.

3 Directly Congruent Projections

Since on the plane the answers to Problems 1 and 2 are negative, from now on we
will assume that n ≥ 3. We say that two sets A and B in Rn−1 are directly congruent
if there exists a rotation ϕ ∈ SO(n − 1) such that the sets ϕ(A) and B are translates
of each other.

If codim(H) = 1, in the case of direct congruence Problem 1 can be reformulated
in terms of support functions as follows.

Problem 3 Assume that for every ξ ∈ Sn−1 we have a non-trivial rotation ϕξ ∈
SO(n − 1, ξ⊥) such that

hK |ξ⊥(ϕ−1
ξ (θ)) + aξ · θ = hL|ξ⊥(θ) ∀θ ∈ (ξ⊥ ∩ Sn−1). (2)

Does it follow that there exists b ∈ R
n such that hK (θ) + b · θ = hL(θ) or hK (θ) +

b · θ = hL(−θ) for all θ ∈ Sn−1?

3.1 Symmetric Bodies

We recall that a set E ⊂ R
n , n ≥ 2, is centrally symmetric, ([3], p. 3), if there exists

a vector c such that the translate E − c is centered, i.e., x ∈ E − c if and only if
−x ∈ E − c.

The class of symmetric bodies is a fairly large class for which the answer to Prob-
lem 1 is affirmative. We remark that, taking into account the aforementioned result
of Nakajima and Süss, it is enough to consider the case of subspaces of codimension
1 (cf., for example, [9], proof of Theorem 2).

To answer Problems 1 and 2 in the centrally-symmetric case, the idea is to use the
Funk transform F f , which is defined on continuous functions f on the unit sphere
as

F f (ξ) =
∫

ξ⊥∩Sn−1

f (σ )dσ.

It is well-known ([10], Chap. III, Sect. 1) that F f = Fg implies f = g for even
continuous functions on Sn−1.
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Without loss of generality we may assume that the centers of bodies are located
at the origin. Integrating the “even part” of Eq. (2) over ξ⊥ ∩ Sn−1, i.e., the equation

hK (ϕ−1
ξ (θ)) = (hK )e(ϕ

−1
ξ (θ)) = (hL)e(θ) = hL(θ) ∀θ ∈ (ξ⊥ ∩ Sn−1),

and using the fact that the Lebesgue measure is invariant under isometries, we get

(FhK )(ξ) =
∫

ξ⊥∩Sn−1

hK (σ )dσ =
∫

ξ⊥∩Sn−1

hK (ϕ−1
ξ (σ ))dσ =

∫

ξ⊥∩Sn−1

hL(σ )dσ = (FhL)(ξ) ∀ξ ∈ Sn−1.

We conclude that hK = hL . A similar argument related to Problem 2 can be applied
to the corresponding equation in terms of the radial functions, see [11]; we also refer
the reader to [12].

We remark that if we assume that only one of the bodies in Problem1 is symmetric,
then the other body must be symmetric as well. Indeed, if K is symmetric, then, all
its projections are symmetric. Hence, all the projections of L are symmetric, and
using the result from ([13], p. 132), we conclude that L is symmetric.

Since for symmetric bodies the answers to Problems 1 and 2 are affirmative, it is
natural to conjecture the same result in the general case of non-symmetric bodies.

3.2 Golubyatnikov’s Approach

The heuristic idea is that rotations in Problem 1 are trivial. To be more precise, let
θ ∈ Sn−1 and define its “orbit” under the action of the family of rigid motions as


(θ) =
⋃

{ξ∈(θ⊥∩Sn−1)}
(ϕξ (θ) + aξ ),

where ϕξ and aξ are as in Problem 3. Observe that if we use (1) and change ξ ∈
(θ⊥ ∩ Sn−1) in (2), the right-hand side hL(θ) does not change. This means that the
value of hK on 
(θ) is constant. Therefore, if we manage to show that for close
points σ, θ ∈ Sn−1, their orbits intersect, 
(σ) ∩ 
(θ) 
= ∅, then we would have
hL(σ ) = hL(θ). If the above equality is true for all σ and θ , then L must be an
Euclidean ball and one can assume that the projections of K and L are translates of
each other.

Thus, if this line of thought was possible, the group of rigid motions in Problem 1
could be reduced to a group of translations. In reality, for arbitrary bodies it is hard
to prove (if it is true at all) that for close points on the sphere the orbits intersect. One
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obstacle stems from the fact that the orbit map Oσ : σ⊥ ∩ Sn−1 → Sn−1, Oσ (ξ) =
ϕξ (σ ) is not well-defined (we could have several rotations and translations in one
subspace ξ⊥, ξ ∈ (σ⊥ ∩ Sn−1)). The second obstacle is that even if Oσ is well-
defined, it is not, in general, continuous.

On the other hand, one can gain additional information about projections on
subspaces ξ⊥ for which Oσ (ξ) is not well-defined or is discontinuous. Indeed, by
simple considerations (see [14], Lemma 2.1.1, p. 15) one can show that in both cases
we have two conditions on projections onto ξ⊥, i.e., ∀θ ∈ (Sn−1 ∩ ξ⊥) we have

hK |ξ⊥(ϕ−1
ξ (θ)) + aξ · θ = hL|ξ⊥(θ), hK |ξ⊥(ψ−1

ξ (θ)) + bξ · θ = hL|ξ⊥(θ)

for ψξ 
= ϕξ . In other words,

hK |ξ⊥(χ−1
ξ (θ)) + cξ · θ = hK |ξ⊥(θ), ∀θ ∈ (Sn−1 ∩ ξ⊥),

with χξ = ψξ ◦ ϕ−1
ξ , cξ = aξ − ψ(bξ ). This means that K |ξ⊥ (and L|ξ⊥) have

an SO(n − 1)-symmetry (here we say that a set A ⊂ R
n , n ≥ 2, has an SO(n)-

symmetry if there exists a non-trivial rotation ϕ ∈ SO(n) such that ϕ(A) is a translate
of A).

A general hope is that if the projections K |ξ⊥ have a symmetry for all ξ

belonging to an open set in Sn−1, then K |ξ⊥ must degenerate into Euclidean (n − 1)-
dimensional balls. This will eliminate the rotations, reducing the problem to trans-
lations only.

Using these ideas one can get, in particular, an affirmative answer to Problem 1 for
polytopes [15].We refer the reader to the book of Vladimir Golubaytnkov for several
results related toProblem1, obtained using thismethod, [14]; see alsoSect. 3.5 below.

To use the orbit approach in order to attack Problem 2 is harder, for the radial
function does not behave well under translations (see [9] for some results, obtained
by the above approach).

3.3 One Body, A Rotational Symmetry

To simplify the orbit motion, one can look at the symmetrals of K and L . This helps
to “separate” translations and rotations. Using (2) for K and −K we have

h(K−K )|ξ⊥(ϕ−1
ξ (θ)) = h(L−L)|ξ⊥(θ) ∀θ ∈ ξ⊥ ∀ξ ∈ Sn−1. (3)

Applying the Funk transform on the sphere to hK−K and hL−L , and repeating the
argument used in Sect. 3.1, we see that K − K = L − L . This shows that any time
we have a non-trivial rotation in the case of congruence of projections of bodies onto
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ξ⊥, the projections of their symmetrals should have the corresponding rotational
symmetry. In other words,

h(K−K )|ξ⊥(ϕ−1
ξ (θ)) = h(K−K )|ξ⊥(θ) ∀θ ∈ ξ⊥, (4)

and a similar equality is valid for L − L . Thus, Problem 1 about two bodies leads
naturally to a problem about one origin-symmetric body.

Problem 4 Let K be an origin-symmetric convex body in R
n, n ≥ 3, such that

for every ξ ∈ Sn−1, the projection K |ξ⊥ has the symmetry of a subgroup Gξ ⊂
SO(n − 1, ξ⊥), where for n odd Gξ is not a reflection in the origin. Does it follow
that K is an Euclidean ball?

In the three-dimensional case the problem has an affirmative answer. This could
be proved by the methods that are similar to those in [11]. It is open for n ≥ 4.

To simplify Problem 4 one can fix the symmetry in every subspace. Consider, for
example, a case of symmetries of the cube. We say that a set A ⊂ R

n , n ≥ 3, has
a symmetry of a cube, if there are n pairwise orthogonal axes in R

n such that A is
invariant under any rotation by the angle π/2 around any of these axes, i.e., if A is
invariant under the finite subgroup of SO(n) of the symmetries of a cube.

Problem 5 Let K be an origin-symmetric convex body in R
n, n ≥ 4, such that for

every ξ ∈ Sn−1, the projection K |ξ⊥ has the symmetry of a cube. Does it follow that
K is an Euclidean ball?

If the body K is in R
3, the analogus question is not difficult. Indeed, let K have

plane projections with square symmetries (here we say that a plane centered set A
has a square symmetry if ϕπ/2(A) = A with ϕπ/2 being a rotation by π/2). Fix any
point σ ∈ S2. Then the orbit of σ satisfies


(σ) =
⋃

{ξ∈(σ⊥∩S2)}
ϕ

π/2
ξ (σ ) = (σ⊥ ∩ S2). (5)

Since any twogreat circles of S2 intersect,we see that hK must be identically constant,
and we are done.

The situation is much more complicated for K ⊂ R
n , n ≥ 4, since we do not

have any information about invariant subspaces of a rotation in the corresponding
subspace ξ⊥. If, say, n = 4, to follow the orbit of a fixed point one has, probably, to
consider all locally-continuous vector fields on S3, generated by the axes of rotations,
and the problem becomes quite hard.

There is nothing special about the cubic symmetry, and one can ask questions
about any fixed symmetry related to a subgroup of SO(n − 1). One can also ask
similar questions about sections of origin-symmetric star-bodies. Here the situation
is the same as for projections: using the ideas from [11], in the three-dimensional
case the problem can be answered affirmatively; it is open for n ≥ 4.
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3.4 One Body, A Direct Rigid Motion Symmetry

It is interesting to know what happens if the body is not symmetric, and projections
have a direct rigid motion symmetry.

Problem 6 Let K be a convex body in Rn, n ≥ 3, such that for every ξ ∈ Sn−1, the
projection K |ξ⊥ has a fixed direct rigid motion symmetry, which is different from
reflection in the origin for n odd. Does it follow that K is an Euclidean ball?

Here we say that a set D ⊂ ξ⊥ has a direct rigid motion symmetry if ϕ(D) =
D + a for some vector a ∈ ξ⊥ and some non-trivial rotation ϕ ∈ SO(n − 1, ξ⊥).

It seems that convexity plays no role in Problem 6, and we could reformulate it
for an arbitrary continuous function on Sn−1.

Problem 7 Let G be a fixed subgroup of SO(n − 1), which is different from the
subgroup of reflections in the origin for odd n, and let f be a continuous function on
Sn−1. Assume that ∀ξ ∈ Sn−1 and ∀ϕξ ∈ Gξ ⊂ SO(n − 1, ξ⊥) there exist aξ ∈ ξ⊥
such that

f (ϕ−1
ξ (θ)) + aξ · θ = f (θ), ∀θ ∈ (Sn−1 ∩ ξ⊥). (6)

Does it follow that f (θ) = const + b · θ for some b ∈ R
n?

The idea of Fedor Nazarov is to use Harmonic Analysis to separate translations
from rotations. We will show how this idea works in the three-dimensional case,
with f restricted to ξ⊥ having the direct rigid motion symmetry of the square for all
ξ ∈ S2, i.e., with f satisfying (6) for n = 3 and ϕ−1

ξ being a rotation by π/2 for all
ξ ∈ S2.

Without loss of generality, we can assume that f is odd. Indeed, looking at the
“even” part of (6), we have fe(ϕ

−1
ξ (θ)) = fe(θ), ∀θ ∈ (S2 ∩ ξ⊥) ∀ξ ∈ S2. Using

(5) we see that fe is identically constant.
Parametrizing a large circle ξ⊥ ∩ S2 as (cos s, sin s, 0), we rewrite (6) as

fo(s + π

2
) + (a1, a2) · (cos s, sin s) = fo(s), ∀s ∈ [0, 2π ]. (7)

It is enough to show that if the odd part of f satisfies (6) (or (7)), then it must be
linear. To “separate” translations from rotations we look at the Fourier coefficients
of both parts of (7). The point is that the linear term a1 cos s + a2 sin s has only two
non-trivial Fourier coefficients. Hence, taking the Fourier coefficients of both parts
of (7) we have

(1 − e
π
2 in) f̂o(n) = 0 ∀n 
= ±1,

where

f̂ (n) = 1

2π

2π∫

0

f (s)e−insds, n ∈ Z.
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In other words, f̂o(n) = 0 for all odd n ∈ Z, n 
= ±1. On the other hand, in our
parametrization the oddness of fo on ξ⊥ ∩ S2 is expressed as fo(s + π) = − fo(s)
∀s ∈ [0, 2π ], and we have

(1 + eπ in) f̂o(n) = 0 ∀n 
= ±1.

Hence, f̂o(n) = 0 for all even n ∈ Z. We see that the Fourier coefficients of the
restriction of fo onto every ξ⊥ vanish, except n = ±1. In other words, the restrictions
fo|ξ⊥ are linear for all ξ ∈ S2. If the restriction of a continuous function onto every
subspace is linear, then the function must be linear, [7]. Thus, there exists b ∈ R

3

such that fo(θ) = b · θ ∀θ ∈ S2. Finally, we obtain

f (θ) = fe(θ) + fo(θ) = const + b · θ ∀θ ∈ S2,

which gives the desired result in the particular case of the square direct rigid motion
symmetry.

The above problem is open for n ≥ 4 for any fixed direct rigid motion symmetry.
We conclude this section with

Problem 8 Let K be a star-shaped body with respect to the origin in R
n, and let

n ≥ 3. Assume that for every ξ ∈ Sn−1, the section K ∩ ξ⊥ has a fixed direct rigid
motion symmetry, which is different from the reflection in the origin for n odd. Does
it follow that K is an Euclidean ball?

3.5 Main Results

Vladimir Golubyatnikov proved the following theorem (see Theorem 2.1.1, [14],
p. 13).

Theorem 1 Let K and L be two convex bodies in R
3 such that their projections

K |ξ⊥, L|ξ⊥ onto every subspace ξ⊥ are directly congruent, and have no SO(2)-
symmetries. Then K is a translate of ±L.

The assumption on bodies having no projections with SO(2)-symmetries yields the
continuity of the map ϕ : S2 → S1, defined as ϕ(ξ) = ϕξ , where ϕξ is the smallest
(in absolute value) angle of rotation such that (2) holds with n = 2, (cf. [14], Lemma
2.1.1, p. 15).

Recently, Myroshnychenko [16] observed that the convexity assumption in Gol-
ubyatnikov’s proof could be dispensed with, and it can be generalized to the case
of hedgehogs, [17]. If we “separate” translations from rotations, it looks like the
convexity assumption could also be dispensed with; the next question of Richard
Gardner and Vladimir Golubyatnikov [14] is very interesting.

Problem 9 Let f and g be two continuous functions on Sn−1 such that for every
ξ ∈ Sn−1 there exists a rotation ϕξ ∈ SO(n − 1, ξ⊥) verifying
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f (ϕ−1
ξ (θ)) = g(θ), ∀θ ∈ (Sn−1 ∩ ξ⊥). (8)

Does it follow that f = g or f (θ) = g(−θ) ∀θ ∈ Sn−1?

If n = 3 one can answer this question [11] using ideas of Golubyatnikov [14],
and of Schneider [4]. The case n ≥ 4 are open. One can show that Problem 9 can be
reduced to a “local question” about one function.

Problem 10 Let G be a fixed subgroup of SO(n − 1), n ≥ 4, which is different from
reflection in the origin for n odd, and let f be a continuous function on U⊥ for some
spherical cap U ⊂ Sn−1. Assume that ∀ξ ∈ U and ∀ϕξ ∈ Gξ ⊂ SO(n − 1, ξ⊥) we
have f (ϕ−1

ξ (θ)) = f (θ) ∀θ ∈ (Sn−1 ∩ ξ⊥). Does it follow that f ≡ const on U⊥?

Golubyatnikov [14] also obtained several interesting results related to Problem 1
in the case k = 3 ([14], Theorem 2.1.1, p. 13; Theorem 3.2.1, p. 48). Following the
ideas from [14] and [11] one can obtain several Hadwiger-type results related to both
Problems 1 and 2 in the case k = 3 [9]. In order to formulate one of these results we
introduce some notation and definitions.

We denote by dK (ζ ) the diameter of a convex body K , which is parallel to the di-
rection ζ ∈ Sn−1. We also denote byO = Oζ ∈ O(n) the orthogonal transformation
satisfying O|ζ⊥ = −I |ζ⊥ , and O(ζ ) = ζ .

In the case when D is a subset of a 3−dimensional subspace H , and ξ ∈
(H ∩ Sn−1), n ≥ 4, we say that D has a (ξ, απ)-symmetry if ϕ(D) = D + a for
some vector a ∈ H and some rotation ϕ ∈ SO(3, H) by the angle απ , α ∈ (0, 2),
satisfying ϕ(ξ) = ξ . If, in particular, the angle of rotation is π , we say that D
has a (ξ, π)-symmetry. We say that a set D ⊂ H has a rigid motion symmetry if
ϕ(D) = D + a for some vector a ∈ ξ⊥ and some non-identical orthogonal transfor-
mation ϕ ∈ O(3, H).

Theorem 2 Let K and L be two convex bodies in R
4 having countably many di-

ameters. Assume that there exists a diameter dK (ζ ), such that the “side” projec-
tions K |w⊥, L|w⊥ onto all subspaces w⊥ containing ζ are directly congruent, see
Fig. 1. Assume also that these projections have no (ζ, π)-symmetries and no (u, π)-
symmetries for any u ∈ (ζ⊥ ∩ w⊥ ∩ S3). Then K = L + b or K = OL + b for some
b ∈ R

4.
If, in addition, the “ground” projections K |ζ⊥, L|ζ⊥, are directly congruent and

do not have rigid motion symmetries, then K = L + b for some b ∈ R
4.

One can obtain a similar result for sections of star-shaped bodies [9]. We are not
aware of any results for k ≥ 4.

It is interesting to note that the proof of the above statement is based on a cer-
tain analytic result with no convexity assumption (see Proposition 1, [9]). Taking
into account some of the results mentioned above, it makes sense to reformulate
Problem 1 in terms of continuous functions, satisfying no convexity conditions.
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Fig. 1 Diameter dK (ζ ), side
projection K |w⊥ and ground
projection K |ζ⊥

Problem 11 Let f and g be two continuous functions on R
n, n ≥ 2, homogeneous

of degree 1. Assume that for every subspace H of dimension k, 1 ≤ k ≤ n − 1, there
exists an orthogonal transformation ψH ∈ O(n, H) and a vector aH ∈ H such that

f (ψH (x)) + aH · x = g(x) ∀x ∈ H. (9)

Does it follow that f (x) + b · x = g(x) or f (x) + b · x = g(−x) for some b ∈ R
n

and all x ∈ R
n?

It is not clear how to formulate a functional analogue of Problem 2. The point is
that the sections of a star body are usually described using the radial function, which
does not behave well under translations.

4 Other Groups of Symmetries

4.1 Adding Reflections, Symmetries of O(n)

The plausible analogues of Problems 4, 6, 7, and 10 with O(n − 1) instead of
SO(n − 1) seem to be more difficult. The most reasonable conjectures related to
these analogues would be that the resulting bodies are bodies of revolution or ellip-
soids. This is due to the fact that (unlike in the case of SO(n − 1), where an Euclidean
ball seems to be the only body with projections/sections having a fixed rotational
symmetry) there are many bodies (for example, ellipsoids or bodies of revolution)
whose projections/sections have an axis of symmetry.

The next question of Karoly Bezdek seems to be open for a long time.
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Problem 12 Let K be a convex body inR3 such that every section of K has an axis of
symmetry, i.e., for every (t, ξ) ∈ R × S2 satisfying (int(K ) ∩ (ξ⊥ + tξ)) 
= ∅ there
exists a reflection ψt,ξ ∈ O(2, ξ⊥ + tξ) with respect to a line l(t, ξ) ∈ (ξ⊥ + tξ)

such that
ψt,ξ (K ∩ (ξ⊥ + tξ)) = K ∩ (ξ⊥ + tξ).

Does it follow that K is an ellipsoid or a body of revolution?

L. Montejano obtained some partial results related to Problem 12 [18]; in this
connection see also [19].

4.2 Groups of Symmetries Containing O(n)

The next beautiful statement by Petty and MacKenney [20] shows that for pairs of
bodies the results are, in general, negative.

Theorem 3 There exist two different origin-symmetric bodies of revolution K and
L in R

3 such that for every ξ ∈ S2 there exists a rotation ϕξ by π/2 and a dilation
λξ > 0 such that

λξ (ϕ
π/2
ξ (K |ξ⊥)) = L|ξ⊥.

The corresponding result for sections can be obtained by duality.
However, the situation is different for one body.

Problem 13 Let K be a convex origin-symmetric body in R
n, n ≥ 3, such that for

any pair of k−dimensional subspaces H and G, 2 ≤ k ≤ n − 1, there exists a linear
transformation AH,G ∈ GL(n) such that

AH,G(K ∩ H) = K ∩ G.

Does it follow that K is an ellipsoid?

This question of Banach goes back to 1930s and is not yet completely solved, one of
the simplest open cases is n = 4, k = 3. An interested reader should consult the paper
of Pelczyński [21] for information about this problem, see also ([3], pp. 128, 290).
One has also to mention the results of R. Schneider, who proved that an Euclidean
ball is the only convex body such that all its sections are congruent to each other [4].

5 Concluding Remarks

Most of the problems considered in this article could be formulated over the field
of complex numbers. As far as we know, all of them are open except the results of
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Gromov [22] related to Problem 13, and some partial results of V. Golubyatnikov
related to Problem 1 ([14], Theorem 3.3.1, p. 53).

It would be interesting to formulate and solve analogous problems in spherical
or hyperbolic geometry. Our list of references is very incomplete and we strongly
recommend the reader, interested in these problems, to consult the books of Gardner
[3] and Schneider [4].
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Regular Incidence Complexes, Polytopes,
and C-Groups

Egon Schulte

Abstract Regular incidence complexes are combinatorial incidence structures gen-
eralizing regular convex polytopes, regular complex polytopes, various types of inci-
dence geometries, and many other highly symmetric objects. The special case of
abstract regular polytopes has been well-studied. The paper describes the combina-
torial structure of a regular incidence complex in terms of a system of distinguished
generating subgroups of its automorphism group or a flag-transitive subgroup. Then
the groups admitting a flag-transitive action on an incidence complex are character-
ized as generalized string C-groups. Further, extensions of regular incidence com-
plexes are studied, and certain incidence complexes particularly close to abstract
polytopes, called abstract polytope complexes, are investigated.
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1 Introduction

Regular incidence complexes are combinatorial incidence structures with very high
combinatorial symmetry. The concept was introduced by Danzer [12, 13] building
onGrünbaum’s [17] notion of a polystroma. Regular incidence complexes generalize
regular convex polytopes [7], regular complex polytopes [8, 42], various types of
incidence geometries [4, 5, 21, 44], and many other highly symmetric objects. The
terminology and notation is patterned after convex polytopes [16] and was ultimately
inspired by Coxeter’s work on regular figures [7, 8]. The first systematic study of
incidence complexes from the discrete geometry perspective occurred in [33] and
the related publications [13, 34–36].
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The special case of abstract polytopes has recently attracted a lot of attention (see
[23]). Abstract polytopes (or incidence polytopes, as they were called originally) are
incidence complexes close to ordinary polytopes and are in a sense topologically
real.

Incidence complexes can also be viewed as incidence geometries or diagram
geometries with a linear diagram (see [4, 5, 21, 44]), although here we study these
structures from the somewhat different discrete geometric and combinatorial per-
spective of polytopes and ranked partially ordered sets.

The present paper is organized as follows. In Sect. 2, we introduce incidence
complexes following the original definition of [13] with minor amendments. Then
in Sects. 3 and 4 we derive structure results for flag-transitive subgroups of regular
incidence complexes and characterize these groups as what we will call here gen-
eralized C-groups, basically following [33, 34] (apart from minor changes inspired
by [23]). Section 5 explains how abstract regular polytopes fit into the more gen-
eral framework of regular incidence complexes. In Sect. 6 we discuss extensions of
regular incidence complexes. Section 7 is devoted to the study of abstract polytope
complexes, a particularly interesting class of regular incidence complexes which are
not abstract polytopes but still relatively close to abstract polytopes. This section
also describes a number of open research problems. Finally, Sect. 8 collects histor-
ical notes on incidence complexes and some personal notes related to the author’s
work.

2 Incidence Complexes

Following [13, 33], an incidence complex K of rank n, or simply an n-complex, is
a partially ordered set (poset), with elements called faces, which has the properties
(I1), …, (I4) described below.

(I1) K has a least face F−1 and a greatest face Fn , called the improper faces. All
other faces of K are proper faces of K.

(I2) Every totally ordered subset, or chain, of K is contained in a (maximal) totally
ordered subset of K with exactly n + 2 elements, called a flag of K.

The conditions (I1) and (I2) make K into a ranked partially ordered set with a
strictly monotone rank function with range {−1, 0, . . . , n}. A face of rank i is called
an i-face. A face of rank 0, 1 or n − 1 is also called a vertex, an edge or a facet,
respectively. The faces of K of ranks −1 and n are F−1 and Fn , respectively. The
type of a chain of K is the set of ranks of faces in the chain. Thus each flag has type
{−1, 0, . . . , n}; that is, each flag � of K contains a face of K of each rank i with
i = −1, 0, . . . , n.

For an i-face F and a j-face G of K with F ≤ G we call

G/F := {H ∈ K | F ≤ H ≤ G}
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a section ofK. This will be an incidence complex in its own right, of rank j − i − 1.
Usually we identify a j-face G of K with the j-complex G/F−1. Likewise, if F
is an i-face, the (n − i − 1)-complex Fn/F is called the co-face of F in K, or the
vertex-figure at F if F is a vertex.

A partially ordered set K with properties (I1) and (I2) is said to be connected if
either n ≤ 1, or n ≥ 2 and for any two proper faces F and G ofK there exists a finite
sequence of proper faces F = H0, H1, . . . , Hk−1, Hk = G of K such that Hj−1 and
Hj are incident for j = 1, . . . , k. We say thatK is strongly connected if each section
of K (including K itself) is connected.
(I3) K is strongly connected.
(I4) For each i = 0, 1, . . . , n − 1, if F and G are incident faces of K, of ranks
i − 1 and i + 1 respectively, then there are at least two i-faces H of K such that
F < H < G.

Thus, an n-complex K is a partially ordered set with properties (I1),…,(I4).
An abstract n-polytope, or briefly n-polytope, is an incidence complex of rank n

satisfying the following condition (I4P), which is stronger than (I4):
(I4P) For each i = 0, 1, . . . , n − 1, if F and G are incident faces of K, of ranks
i − 1 and i + 1 respectively, then there are exactly two i-faces H of K such that
F < H < G.

We call two flags of K adjacent if one differs from the other in exactly one face;
if this face has rank i , with i = 0, . . . , n − 1, the two flags are i -adjacent. Then the
conditions (I4) and (I4P) are saying that each flag has at least one or exactly one
i-adjacent flag for each i , respectively. We refer to (I4P) as the diamond condition
(for polytopes).

Though the above definitions of connectedness and strong connectedness are
satisfactory from an intuitive point of view, in practice the following equivalent
definitions in terms of flags are more useful.

A partially ordered set K with properties (I1) and (I2) is called flag-connected if
any two flags � and � of K can be joined by a sequence of flags
� = �0,�1, . . . , �k−1,�k = � such that successive flags are adjacent. Further,
K is said to be strongly flag-connected if each section of K (including K itself) is
flag-connected. It canbe shown thatK is stronglyflag-connected if andonly if any two
flags � and � of K can be joined by a sequence of flags
� = �0,�1, . . . , �k−1,�k = �, all containing � ∩ �, such that successive flags
are adjacent.

It turns out that a partially ordered set K with properties (I1) and (I2) is strongly
flag-connected if and only ifK is strongly connected. Thus in place of (I3) we could
have required the following equivalent condition
(I3′) K is strongly flag-connected.

Abijectionϕ : K → L froma complexK to a complexL is called an isomorphism
if ϕ is order-preserving (in both directions); that is, F ≤ G in K if and only if
Fϕ ≤ Gϕ inL. An automorphism of a complexK is an isomorphism fromK to itself.
The group of all automorphisms �(K) of a complex K is called the automorphism
group of K.
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A complex K is said to be regular if �(K) is transitive on the flags of K. The
automorphism group of a regular complex may or may not be simply transitive on
the flags. However, if K is a polytope then �(K) is simply transitive on the flags.

Lemma 2.1 Let K be a regular n-complex. Then all sections of K are regular com-
plexes, and any two sections which are defined by faces of the same ranks are iso-
morphic. In particular, K has isomorphic facets and isomorphic vertex-figures.

Proof Let F be an i-face andG a j-face ofKwith F < G. Let� denote a chain ofK
of type {−1, 0, . . . , i − 1, i, j, j + 1, . . . , n} containing F and G. Now consider the
action of the stabilizer of � in �(K) induced on the section G/F of K. Since K is a
regular complex and theflags ofG/F are just the restrictions of flags ofK toG/F , this
stabilizer is a group that acts flag-transitively onG/F (but not necessarily faithfully).
Thus the ( j − i − 1)-complex G/F is regular and its automorphism group �(G/F)

contains, as a flag-transitive subgroup, a quotient of the stabilizer of � in �(K).
(Unlike for regular polytopes this quotient may be proper.)

Let F ′ and G ′ be another pair of i-face and j-face with F ′ < G ′, and let � ′ be
a flag of K containing F ′ and G ′. Then each automorphism of K mapping � to � ′
induces an isomorphism from G/F to G ′/F ′. Thus G ′/F ′ is isomorphic to G/F . �

3 Flag-Transitive Subgroups of the Automorphism Group

In this section we establish structure results for flag-transitive subgroups � of the
automorphism group �(K) of a regular complex K. We follow [34, Sect. 2] (and
[33]) and show that any such group (including �(K) itself) has a distinguished
system of generating subgroups obtained as follows. For corresponding results for
regular polytopes see [23, Chap. 2B].

Throughout this section let K be a regular n-complex, with n ≥ 1, and let �

be a flag-transitive subgroup of �(K). Define N := {−1, 0, . . . , n} and for J ⊆ N
set J := N \ J . Let � := {F−1, F0, . . . , Fn} be a fixed, or base flag, of K, where Fi
designates the i-face in� for each i ∈ N . For each� ⊆ � let�� denote the stabilizer
of� in�. In particular,�� is the stabilizer of the base flag�, and�∅ = �. For i ∈ N
define the subgroup Ri of � as

Ri := ��\{Fi } = 〈ϕ ∈ � | Fjϕ = Fj for all j �= i〉. (1)

Then each Ri contains �� as a subgroup, and R−1 = �� = Rn .
For i = 0, . . . , n − 1 let ki denote the number of i-faces of K in a section G/F ,

where F is an (i − 1)-face and G an (i + 1)-face with F < G; since K is regular,
this number is independent of the choice of F and G. Then

ki = |Ri : R−1| (i = 0, . . . , n − 1). (2)

Note that each flag of K has exactly ki − 1 flags i-adjacent to it for each i .
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If K is a regular polytope then Ri is generated by an involution
ρi for i = 0, . . . , n − 1, and the subgroups R−1 and Rn are trivial. In this case
ki = 2 for each i .

Our first goal is to describe the stabilizers of the subchains of the base flag �. For
J ⊆ N set �J := {Fj ∈ � | j ∈ J }.
Lemma 3.1 For J ⊆ N we have ��J = 〈R j | j ∈ J 〉.
Proof Let � := 〈R j | j ∈ J 〉. It is clear that � is a subgroup of ��J , since each
subgroup R j with j ∈ J stabilizes �J . To prove equality of the two groups, note
first that ��J acts transitively on the set of all flags � of K with �J ⊆ �. Hence,
since the base flag stabilizer �� lies in ��J , it suffices to show that � also acts
transitively on these flags.

Let � be a flag with �J ⊆ �. We show that � lies in the orbit of � under �.
Choose a sequence of flags

� = �0,�1, . . . , �k−1,�k = �,

all containing �J , such that successive flags are adjacent. We proceed by induction
on k, the case k = 0 being trivial. By the inductive hypothesis, there exists ψ ∈ �

such that �ψ = �k−1. We know that �k−1 and � = �k are j-adjacent flags for
some j , so � = �k−1ψ

−1 and �kψ
−1 are also j-adjacent. By the flag-transitivity of

� there exists an element τ ∈ R j such that �kψ
−1 = �τ and hence � = �τψ. But

j /∈ J , since �J ⊆ �i for each i , so τ ,ψ ∈ � and hence τψ ∈ �. Thus � lies in the
orbit of � under �. �

As the subgroups R−1 and Rn lie in R j for each j , the previous lemmawith J = ∅
immediately implies

Lemma 3.2 � = 〈R−1, R0, . . . , Rn〉 = 〈R0, . . . , Rn−1〉.
The subgroups R−1, R0, . . . , Rn of � are called the distinguished generating sub-

groups of � (with respect to �).
For each I ⊆ N , I �= ∅, define the subgroup �I := 〈Ri | i ∈ I 〉. For I = ∅ we

set �∅ := R−1. Then by Lemma 3.1,

�I = �{Fi | i∈I } = �� I
(I ⊆ N ); (3)

or equivalently,
�� = �{i |Fi /∈�} (� ⊆ �). (4)

The subgroups �I , with I ⊆ N , are called the distinguished subgroups of � (with
respect to �). Note that the notation �∅ can have two meanings, namely as �I with
I = ∅, and as�� with� = ∅. The intendedmeaning should be clear from the context.

The distinguished subgroups satisfy the following important intersection property
(with respect to the distinguished generating subgroups):
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Lemma 3.3 For I, J ⊆ N we have �I ∩ �J = �I∩J .

Proof This follows from the fact that the subgroups involved are stabilizers of sub-
chains of �, as expressed in Eq. (3). In fact,

�I ∩ �J = �� I
∩ �� J

= �� I ∪ � J
= �� I∩J

= �I∩J .

Thus the lemma follows. �

When n ≥ 2 we often omit R−1 and Rn from the system of generating subgroups
and also refer to R0, . . . , Rn−1 as the distinguished generating subgroups. In fact, in
this case Lemma 3.3 shows that

R−1 = Rn = R0 ∩ . . . ∩ Rn−1,

so R−1 and Rn are completely determined by R0, . . . , Rn−1. However, for the sys-
tem of generating subgroups to also permit a characterization of the combinatorial
structure of K when n = 1, the two subgroups R−1 and Rn = R1 (with R−1 = R1)
must be included in the system; that is, R−1 and R1 are not determined by R0 alone.

Thedistinguishedgenerating subgroups have the following commutingproperties,
which hold at the level of groups, but not generally at the level of elements.

Lemma 3.4 For −1 ≤ i < j − 1 ≤ n − 1 we have Ri R j = 〈Ri , R j 〉 = R j Ri .

Proof This is trivial when i = −1 or j = n. Now suppose−1 < i < j − 1 < n − 1.
Clearly, it suffices to show that 〈Ri , R j 〉 = Ri R j . Here the inclusion ⊇ is trivial.

To establish the opposite inclusion let ϕ ∈ 〈Ri , R j 〉. Then ϕ fixes Fk for each
k �= i, j , since both Ri and R j fix Fk . Hence, since i < j − 1, there exists an element
ψ ∈ Ri such that Fiψ = Fiϕ. Then Fkϕψ−1 = Fk for each k �= j . But then there
also exists an element τ ∈ R j such that Fjτ = Fjϕψ−1. Hence Fkϕψ−1τ−1 = Fk

for each k, and therefore ϕψ−1τ−1 ∈ ��. But �� is a subgroup of R j , so we have

ϕ ∈ ��τψ ⊆ ��R j Ri = R j Ri ,

as required. This completes the proof. �

The commuting properties of Lemma 3.4 do not generally extend to the case when
j = i + 1. It can be shown that if K is a lattice, then

Ri Ri+1 ∩ Ri+1Ri = Ri ∪ Ri+1 (i = 0, . . . , n − 2). (5)

Recall that a lattice is a partially ordered set in which every two elements have a
supremum (a least upper bound) and an infimum (a greatest lower bound) [43].

We introduce some further notation. For each i ∈ N we write

�i := �N\{i} = 〈R j | j �= i〉
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and
�−
i := �{−1,0,...,i}= 〈R j | j ≤ i〉,

�+
i := �{i,...,n} = 〈R j | j ≥ i〉.

Note that �−1 = �n = �. As an immediate consequence of the commutation rules
of Lemma 3.4 we have

�−
i �+

j = �+
j �−

i (−1 ≤ i < j − 1 ≤ n − 1). (6)

Further, for each i ∈ N ,

�i = �−
i−1�

+
i+1 = �+

i+1�
−
i−1. (7)

Observe that when−1 ≤ i ≤ j ≤ n the distinguished subgroup 〈Ri+1, . . . , R j−1〉
of � acts flag-transitively (but generally not faithfully) on the section Fj/Fi of
K between the base i-face and the base j-face. The quotient of 〈Ri+1, . . . , R j−1〉
defined by the kernel of this action is a (generally proper) flag-transitive subgroup
of �(Fj/Fi ). In particular, �−

i−1 acts flag-transitively on the base i-face Fi/F−1 of
K, and �+

i+1 acts flag-transitively on the co-face Fn/Fi of the base i-face of K.
Our next goal is the characterization of the structure of a regular complex K in

terms of the distinguished generating subgroups R−1, R0, . . . , Rn of the chosen flag-
transitive subgroup � of �(K). By the transitivity properties of � we can write each
i-face of K in the form Fiϕ with ϕ ∈ �. We begin with a lemma.

Lemma 3.5 Let 0 ≤ i ≤ j ≤ n − 1, and let Gi be an i-face of K. Then Gi ≤ Fj if
and only if Gi = Fiγ for some γ ∈ � j .

Proof If Gi = Fiγ with γ ∈ � j , then Gi ≤ Fjγ = Fj , as claimed. For the converse,
let � be any flag of K such that {Gi , Fj } ⊆ �. Then, by Lemma 3.1, Fj ∈ � ∩ �

implies that � = �γ for some γ ∈ �{Fj } = � j . Thus G j = Fjγ, as required. �

We now have the following characterization of the partial order in K.

Lemma 3.6 Let 0 ≤ i ≤ j ≤ n − 1, and let ϕ, ψ ∈ �. Then the following three
conditions are equivalent:

(a) Fiϕ ≤ Fjψ;

(b) ϕψ−1 ∈ �+
i+1�

−
j−1;

(c) �iϕ ∩ � jψ �= ∅.
Proof We shall prove the equivalence in the form (a) ⇒ (c) ⇒ (b) ⇒ (a).

Assume that (a) holds. Then Fiϕψ−1 ≤ Fj , and thus Fiϕψ−1 = Fiγ for some
γ ∈ � j by Lemma 3.5. In turn, this says that �iγ ∩ � j �= ∅, since γ lies in this
intersection. But (ϕψ−1)γ−1 ∈ �{Fi } = �i , so �iϕψ−1 = �iγ. Hence �iϕ ∩ � jψ �=
∅. Thus (c) holds.

If (c) holds, the commuting properties of Lemma 3.4 show that
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ϕψ−1 ∈ �i� j = �+
i+1�

−
i−1�

−
j−1�

+
j+1

= �+
i+1�

−
j−1�

+
j+1

= �+
i+1�

+
j+1�

−
j−1

= �+
i+1�

−
j−1,

(8)

as required for (b).
Finally, suppose (b) holds. Then ϕψ−1 = αβ for some α ∈ �+

i+1 and β ∈ �−
j−1.

We deduce that
Fiϕψ−1 = Fiαβ = Fiβ ≤ Fjβ = Fj ,

so that Fiϕ ≤ Fjψ, which is (a). This completes the proof. �

The previous lemma has important consequences. In effect, it says that we may
identify a face Fiϕ of a regular complex K with the right coset �iϕ of the stabilizer
�i = �{Fi } = 〈Rk | k �= i〉 of the base i-face Fi in �.

We conclude this section with a remark about the flag stabilizers of arbitrary
regular complexes. A priori only little can be said about their structure. However,
there are bounds on the prime divisors of the group order. For a regular complex with
a finite flag stabilizer R−1 = ��, the prime divisors of the order of R−1 are bounded
by

max(ki −1 | 0 ≤ i ≤ n − 1).

In fact, an element of R−1 of prime order exceeding this number would necessarily
have to fix all adjacent flags of a flag that it fixes. But a simple flag connectivity
argument shows that in a regular complex only the trivial automorphism can have
this property.

4 Regular Complexes from Groups

In the previous section we derived various properties of flag-transitive subgroups
of the automorphism groups of regular complexes. In particular, in Lemma 3.6, we
proved that the combinatorial structure of a regular n-complex K can be completely
described in terms of the distinguished generating subgroups R−1, R0, . . . , Rn of any
flag-transitive subgroup � of �(K).

If K is a regular n-polytope, then �(K) is simply flag-transitive and hence has
no proper flag-transitive subgroup. In this case � = �(K), the base flag stabilizer
R−1 = Rn = �� is trivial, and each subgroup Ri (with i = 0, . . . , n − 1) is generated
by an involutory automorphism ρi whichmaps the base flag� to its unique i-adjacent
flag. The group ofK is then what is called a string C-group (see [23, Chap. 2E]), that
is, the distinguished generators ρ0, . . . , ρn−1 satisfy both the commutativity relations
typical of a Coxeter group with a string diagram, and the intersection property of
Lemma 3.3, which now takes the form
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〈ρi | i ∈ I 〉 ∩ 〈ρi | i ∈ J 〉 = 〈ρi | i ∈ I ∩ J 〉 (I, J ⊆ {0, . . . , n − 1}). (9)

In this section we characterize the groups that can occur as flag-transitive sub-
groups of the automorphism group of a regular complex as what we will call here
generalized string C-groups (with trivial core). As one of the most important con-
sequences of this approach, we may think of regular complexes and corresponding
generalized string C-groups as being essentially the same objects. We follow [34,
Sect. 3] (and [33]).

Let � be a group generated by subgroups R−1, R0, . . . , Rn , where R−1 and Rn

are proper subgroups of Ri for each i = 0, . . . , n − 1, and Rn = R−1; we usually
assume that n ≥ 1. These subgroups are the distinguished generating subgroups of
�, and along with � will be kept fixed during this section. As before we set N :=
{−1, 0, . . . , n}. Further, the subgroups �I := 〈Ri | i ∈ I 〉 with I ⊆ N are called the
distinguished subgroups of �; here �∅ = R−1. Then � is called a generalized C-
group if � has the following intersection property (with respect to its distinguished
generating subgroups):

�I ∩ �J = �I∩J (I, J ⊆ N ). (10)

It is immediate from the definition that the distinguished subgroups�I are themselves
generalized C-groups, with distinguished generating subgroups those Ri with i ∈
I ∪ {−1, n}.

It also follows from the definition that, in a generalized C-group �, the sub-
groups �I with I ⊆ {0, . . . , n − 1} are pairwise distinct. To see this, first observe
that by (10) and our assumption that R−1 (= �∅) be a proper subgroup of Ri for each
i = 0, . . . , n − 1, a group Ri cannot be a subgroup of a group �I when i /∈ I ∪
{−1, n}. Consequently, if I, J ⊆ {0, . . . , n − 1} and �I = �J , then (10) implies that
�I = �I∩J = �J ; hence it follows from what was said before that I = I ∩ J = J ,
as required.

A generalized C-group� is called a generalized string C-group (strictly speaking,
a string generalized C-group) if its generating subgroups satisfy

Ri R j = R j Ri (−1 ≤ i < j − 1 ≤ n − 1). (11)

Thus, for the remainder of this section we assume that � = 〈R−1, R0, . . . , Rn〉,
with n ≥ 1, is a generalized string C-group.

As in the previous section, for each i ∈ N we write

�i := 〈R j | j �= i〉,
�−
i := 〈R j | j ≤ i〉,

�+
i := 〈R j | j ≥ i〉,

(12)

so in particular,�−1 = �n = �. Then (6) and (7) carry over, as before by the commut-
ing properties (11). Observe that the subgroups �0, . . . , �n−1 are mutually distinct,
and distinct from �.
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We now construct a regular n-incidence complex K from �. For i ∈ N , we take
as the set of i-faces of K (that is, its faces of rank i) the set of all right cosets �iϕ in
�, with ϕ ∈ �. As improper faces of K, we choose two copies of �, one denoted by
�−1, and the other by �n; in this context, they are regarded as distinct. Then, for the
right cosets of �−1 and �n , we have �−1ϕ = �−1 and �nϕ = �n for all ϕ ∈ �. On
(the set of all proper and improper faces of)K, we define the following partial order:

�iϕ ≤ � jψ :⇐⇒ −1 ≤ i ≤ j ≤ n, ϕψ−1 ∈ �+
i+1�

−
j−1. (13)

Then � acts on K in an obvious way as a group of order preserving automorphisms.
Alternatively the partial order on K can be defined by

�iϕ ≤ � jψ :⇐⇒ −1 ≤ i ≤ j ≤ n, �iϕ ∩ � jψ �= ∅. (14)

The equivalence of the two definitions is based on the commutation rules of (11). In
fact, it follows as in Eq. (8) that �+

i+1�
−
j−1 = �i� j , so ϕψ−1 ∈ �+

i+1�
−
j−1 = �i� j if

and only of �iϕ ∩ � jψ �= ∅.
If the dependence of K on � and R−1, R0, . . . , Rn is to be emphasized, we write

K(�) or K(�; R−1, R0, . . . , Rn) for K.
We first show that the condition (13) induces a partial order on K. For reflexivity

and antisymmetry of ≤ we can appeal to (14). Certainly, a coset �iϕ is incident
with itself, which is reflexivity. If �iϕ and � jψ are two cosets with �iϕ ≤ � jψ and
� jψ ≤ �iϕ, then i = j and the cosets (for the same subgroup) must coincide as they
intersect; this implies antisymmetry. Finally, if −1 ≤ i ≤ j ≤ k ≤ n, we have

�+
j+1�

−
i−1 · �+

i+1�
−
k−1 = �+

j+1�
+
i+1�

−
i−1�

−
k−1 = �+

i+1�
−
k−1. (15)

Transitivity of ≤ then is an immediate consequence if we appeal to the original
definition of ≤ in (13). Thus ≤ is a partial order.

Clearly, � := {�−1, �0, . . . , �n−1, �n} is a flag of K, which we naturally call the
base flag; its faces are also called the base faces of K. Since � is a flag, so is its
image �ϕ = {�−1ϕ, �0ϕ, . . . , �n−1ϕ, �nϕ} for each ϕ ∈ �.

We next establish that � acts transitively on all chains of K of each given type
I ⊆ N . When I = N this shows that � acts transitively on the flags of K. Now
let I ⊆ N , and let {�iϕi | i ∈ I } be a chain of type I . We proceed by induction.
Suppose that, for some k ∈ I , we have already shown that there exists an element
ψ ∈ � such that �iϕi = �iψ for each i ∈ I with i ≥ k. Let j ∈ I be the next smaller
number than k (assuming that there is one). Then � jϕ j ≤ �kψ implies by (13) that
ϕ jψ

−1 ∈ �+
k+1�

−
j−1, say ϕ jψ

−1 = αβ, with α ∈ �+
k+1 and β ∈ �−

j−1. It follows that
α−1ϕ j = βψ =: χ, say, and hence that

�iχ = �iβψ = �iψ, for i ∈ I, i ≥ k,
� jχ = � jα

−1ϕ j = � jϕ j ,
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giving the same property with j instead of k (and ψ replaced by χ). This is the
inductive step, and the transitivity follows.

If I ⊆ N and �I denotes the subchain of � of type I (consisting of the faces in
� with ranks in I ), then the stabilizer of �I in � is the subgroup � Ī . In particular,
the stabilizer of the base flag � itself is R−1. In fact, an element ϕ ∈ � stabilizes �I

if and only if �iϕ = �i for each i ∈ I . Equivalently, �Iϕ = �I if and only if

ϕ ∈
⋂

i∈I
�i =

⋂

i∈I
〈R j | j �= i〉 = � Ī ,

by the intersection property (10) for �. Thus the stabilizer of �I is � Ī .
We can now state the following theorem.

Theorem 4.1 Let n ≥ 1, and let � = 〈R−1, R0, . . . , Rn〉 be a generalized string
C-group andK := K(�) the corresponding partially ordered set. ThenK is a regular
n-complex on which � acts flag-transitively. In particular, K is finite, if � is finite.

Proof For K we need to check the defining properties (I1), …, (I4) of incidence
complexes. The property (I1) is trivially satisfied with �−1 and �n as the least and
greatest face, respectively. In fact, by (13), �−1 ≤ �iϕ ≤ �n for all ϕ and all i .

Next, we exploit the fact that every chain� inK of type I can be expressed in the
form � = �Iϕ, for some ϕ ∈ �. In particular, � is contained in the flag �ϕ, which
gives (I2).

We then prove (I4). Now if we take I = N \ {i} for any i ∈ {0, . . . , n − 1}, we
see that the stabilizer of �N\{i} = {�−1, �0, . . . , �i−1, �i+1, . . . , �n} is �{i} = Ri .
On the other hand, the stabilizer of � itself is �∅ = R−1, which by assumption is a
proper subgroup of Ri . Hence the number of flags of K containing �N\{i}, which is
given by |Ri : R−1|, is at least 2. The transitivity of � on chains of type N \ {i} then
gives (I4). Thus, for each flag, the number of i-adjacent flags is at least 1 and is given
by (|Ri : R−1| − 1) for each i = 0, . . . , n − 1.

Finally, we demonstrate (I3), in the alternative form (I3′) of strong flag-
connectedness. As � acts flag-transitively on K, to prove (I3′), it suffices to con-
sider the special case where one flag is the base flag �. If � is another flag of K, let
J ⊆ N be such that � ∩ � = �J . Since �J ⊆ � and the stabilizer of �J is � J̄ , the
flag-transitivity of � shows that � = �ϕ for some ϕ ∈ � J̄ . Suppose ϕ = ϕ1 . . . ϕk

such that ϕl ∈ R jl , for some jl ∈ J , for l = 1, . . . , k. Define ψl := ϕl . . . ϕk for
l = 1, . . . , k. Then

�,�ψk,�ψk−1, . . . , �ψ2,�ψ1 = �ϕ = �,

is a sequence of successively adjacent flags, all containing �J , which connects �

and �. Note here that �ψl+1 and �ψl are jl -adjacent for each l = 1, . . . , k − 1,
since � and �ϕl are jl-adjacent and so are �ψl+1 and �ϕlψl+1 = �ψl . Thus K is
strongly connected, and the proof of the theorem is complete. �

Note that the action of� onK := K(�) need not be faithful in general. The kernel
of the action consists of the elements of � which act trivially on K, or equivalently,
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on the set of flags of K. The stabilizer of the base flag � in � is R−1, and hence the
stabilizer of a flag �ϕ with ϕ ∈ � is ϕ−1R−1ϕ. Hence the kernel of the action of �

of K is given by its subgroup

core(R−1) =
⋂

ϕ∈�

(ϕ−1R−1ϕ). (16)

Recall that in a group B, the core of a subgroup A, denoted core(A), is the largest
normal subgroup of B contained in A; that is, core(A) = ∩b∈Bb−1Ab (see [2]).
Clearly,� itself can be identifiedwith a flag-transitive subgroup of the automorphism
group of K(�) if and only if core(R−1) is trivial.

Our next theorem describes the structure of the sections of the regular complex
K(�). For the proofwe require the following consequence of the intersection property
(10):

�+
k+1�

−
l−1 ∩ �{i+1,..., j−1} = �{k+1,..., j−1}�{i+1,...,l−1} (i ≤ k ≤ l ≤ j) (17)

To prove this property, supposeϕ is an element in the set on the left hand side,ϕ = αβ
(say), with α ∈ �+

k+1 and β ∈ �−
l−1. Now apply (10) twice, bearing in mind that

i ≤ k ≤ l ≤ j : first, with I = {−1, 0, . . . , l − 1} and J = {i + 1, . . . , n} to obtain

β = α−1ϕ ∈ �−
l−1 ∩ �+

i+1 = �{i+1,...,l−1},

and second, with I = {k + 1, . . . , n} and J = {−1, 0, . . . , j − 1} to obtain

α = ϕβ−1 ∈ �+
k+1 ∩ �−

j−1 = �{k+1,..., j−1}.

Thus ϕ ∈ �{k+1,..., j−1}�{i+1,...,l−1}, as required. The opposite inclusion is clear, since
the two groups�{k+1,..., j−1} and�{i+1,...,l−1} both lie in�{i+1,..., j−1}, and are subgroups
of �+

k+1 and �−
l−1 respectively.

Theorem 4.2 Let K := K(�) be the regular n-complex associated with the gener-
alized string C-group � = 〈R−1, R0, . . . , Rn〉.
(a) Let −1 ≤ i < j − 1 ≤ n − 1, and let F be an i-face and G a j-face of K with
F ≤ G. Then the section G/F of K is isomorphic to

K(�{i+1,..., j−1}) = K(�{i+1,..., j−1}; R−1, Ri+1, . . . , R j−1, Rn).

(b) The facets and vertex-figures of K are isomorphic to the regular (n − 1)-
complexes K(�n−1) and K(�0), respectively.

(c) Let −1 ≤ i ≤ n − 1, and let F be an (i − 1)-face and G an (i + 1)-face of K
with F ≤ G. Then the number of i-faces of K in G/F is |Ri : R−1|.
Proof We already established part (c). Part (b) is a special case of part (a). Now
for part (a) assume that −1 ≤ i < j − 1 ≤ n − 1. The transitivity of � on chains
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of type {i, j} implies that it suffices to prove the result for the section
K(i, j) := � j/�i of K. Let I := {0, . . . , i, j, . . . , n − 1}. There is a one-to-one
correspondence between chains of K(i, j) and chains of K which contain �I . In
particular, appealing again to the transitivity of � on chains of a given type, we
deduce that each face �kϕ ∈ K(i, j) (with i ≤ k ≤ j) admits a representation with
ϕ in the stabilizer of �I , namely � Ī = �{i+1,..., j−1}. It now follows from (17) that
K(i, j) is isomorphic to K(�{i+1,..., j−1}). Set � := �{i+1,..., j−1}. In fact, by (17), if
ϕ,ψ ∈ �{i+1,..., j−1} = � and i ≤ k ≤ l ≤ j , then ϕψ−1 ∈ �+

k+1�
−
l−1 if and only if

ϕψ−1 ∈ �{k+1,..., j−1}�{i+1,...,l−1} = �+
k+1 �−

l−1,

or equivalently, �kϕ ≤ �lψ in K(i, j) (that is, in K) if and only if

�k ϕ ≤ �l ψ

in K(�) = K(�{i+1,..., j−1}). Thus K(i, j) and K(�{i+1,..., j−1}) are isomorphic com-
plexes, and the proof of the theorem is complete. �

There are two immediate consequences of the earlier results and the construction
of K(�).

Corollary 4.1 The generalized string C-groups � = 〈R−1, R0, . . . , Rn〉 with a
trivial group core (R−1) are precisely the flag-transitive subgroups of the
automorphism groups of regular complexes.

Proof Clearly, the flag stabilizer in a flag-transitive subgroup of the automorphism
group of a regular complex must have trivial core since only the identity automor-
phismfixes every face. This shows one direction. The conversewas already addressed
above. �
Theorem 4.3 Let n ≥ 1, letK be a regular n-complex, let� be a flag-transitive sub-
group of �(K), and let R−1, R0, . . . , Rn be the distinguished generating subgroups
of � associated with the base flag � = {F−1, F0, . . . , Fn} of K. Then the regular
complexes K and K(�) (or more exactly, K(�; R−1, R0, . . . , Rn)) are isomorphic.
In particular, the mapping K → K(�) given by

Fiϕ → �iϕ (−1 ≤ i ≤ n; ϕ ∈ �)

is an isomorphism.

5 Regular Polytopes and C-groups

The basic structure results for abstract regular polytopes and their automorphism
groups can be derived from the results of Sects. 3 and 4 (see [23, 33, 34]). Abstract
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polytopes are incidence complexes inwhich every flag has exactly one i-adjacent flag
for each i = 0, . . . , n − 1; that is, polytopes satisfy the diamond condition. Regular
polytopes have a simply flag-transitive automorphism group, so all flag stabilizers
are trivial and there are no proper flag-transitive subgroups.

Let K be a regular n-polytope, � = {F−1, F0, . . . , Fn} be a base flag of K, and
let � := �(K). Then Ri = 〈ρi 〉 for each i = 0, . . . , n − 1, where ρi is the unique
automorphism ofKmapping � to its i-adjacent flag. The subgroups R−1 and Rn are
trivial. Thus � = 〈ρ0, . . . , ρn−1〉. The involutions ρ0, . . . , ρn−1 are called the distin-
guished generators of �. Then the structure results of Sect. 3 for the distinguished
generating subgroups of � translate directly into corresponding statements for the
distinguished generators.

Conversely, let � be a group generated by involutions ρ0, . . . , ρn−1, called the
distinguished generators of �. Then � is a group of the type discussed at the
beginning of Sect. 4, with Ri := 〈ρi 〉 for i = 0, . . . , n − 1, and R−1 = Rn = {1}.
In this case it suffices to consider the distinguished subgroups �I := 〈ρi | i ∈ I 〉
with I ⊆ {0, . . . , n − 1}. We call � a C-group if � has the intersection property
(10), that is,

〈ρi | i ∈ I 〉 ∩ 〈ρi | i ∈ J 〉 = 〈ρi | i ∈ I ∩ J 〉 (I, J ⊆ {0, . . . , n − 1}). (18)

A C-group � is called a string C-group if the distinguished generators also satisfy
the relations

(ρiρ j )
2 = 1 (−1 ≤ i < j − 1 ≤ n − 1), (19)

which is equivalent to requiring (11). The number of generators n is called the C-
rank, or simply the rank, of �. Clearly, C-groups are generalized C-groups, and
string C-groups are generalized string C-groups.

The regular n-complex K = K(�) of Theorem 4.1 associated with a string C-
group � = 〈ρ0, . . . , ρn−1〉 is a polytope, by Theorem 4.2(c). Thus K is a regu-
lar n-polytope, with partial order given by (13), or equivalently, (14). The rel-
evant subgroups involved in describing the partial order are �i = 〈ρ j | j �= i〉,
�−
i = 〈ρ j | j ≤ i〉, and �+

i = 〈ρ j | j ≥ i〉. The i-faces of K are the right cosets
of �i for each i .

Thus the string C-groups are precisely the groups of regular polytopes.
Abstract polytopes of rank 3 are also called (abstract) polyhedra. Regular poly-

hedra are regular maps on surfaces, and most regular maps on surfaces are regular
polyhedra (see [6, 10]).

A regular n-polytopeK is of (Schläfli) type {p1, . . . , pn−1} if its sections G/F of
rank 2 defined by an (i − 2)-face F and an (i + 1)-faceGwith F < G are isomorphic
to pi -gons (possibly pi = ∞) for i = 1, . . . , n − 1; then pi is the order of ρi−1ρi in
�(K).

Coxeter groups are a particularly important class of C-groups (see [23, Chap. 3]
and [20, 33, 34]). Let p1, . . . , pn−1 ≥ 2, and let � = 〈ρ0, . . . , ρn−1〉 be the (string)
Coxeter group defined by the relations
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ρ2i = 1 for 0 ≤ i ≤ n − 1;
(ρiρ j )

2 = 1 for 0 ≤ i < j − 1 ≤ n − 2;
(ρi−1ρi )

pi = 1 for 1 ≤ i ≤ n − 1.
(20)

Then � is a string C-group. The corresponding regular n-polytope is called the uni-
versal regular polytope of type {p1, . . . , pn−1} and is denoted by the Schläfli symbol
{p1, . . . , pn−1}. This polytope covers every regular polytope of type {p1, . . . , pn−1}.
For combinatorial and geometric constructions of the universal regular polytopes
from the Coxeter complexes of the underlying Coxeter groups � see [23, Sect. 3D]
(or [33, 34]).

The regular convex polytopes and regular tessellations (or honeycombs) of spher-
ical, Euclidean or hyperbolic spaces are particular instances of universal regular
polytopes, with the type determined by the standard Schläfli symbol.

6 Extensions of Regular Complexes

A central problem in the classical theory of regular polytopes is the construction
of polytopes with prescribed facets. In this section, we briefly investigate the corre-
sponding problem for regular incidence complexes. We say that a regular complex
L is an extension of a regular complex K if the facets of L are isomorphic to K and
if all automorphisms of K are extended to automorphisms of L. In conjunction with
the former condition the latter condition means that the stabilizer of a facet of L in
�(L) contains �(K) as a subgroup; or, less formally, �(K) ≤ �(L).

LetK be a regular n-complexwith n ≥ 1, let� = {F−1, F0, . . . , Fn} be a base flag
ofK, let � be a flag-transitive subgroup of �(K), and let R−1, R0, . . . , Rn be the dis-
tinguished generating subgroups of � associated with �. In constructing extensions
of K we consider certain groups � with distinguished systems of generating sub-
groups R′−1, R

′
0, . . . , R

′
n+1. We use similar notation for the distinguished subgroups

of � as for �. The following theorem was proved in [33, 35] (see also [36]).

Theorem 6.1 LetK be a regular n-complex with n ≥ 1, and let � = 〈R−1, R0, . . . ,

Rn〉 be a flag-transitive subgroup of �(K), as above. Let � be a group generated by
a system of subgroups R′−1, R

′
0, . . . , R

′
n+1 satisfying the following conditions (a), (b)

and (c).
(a) R′−1 = R′

n+1 ⊂ R′
n, � �= �−

n−1;
(b) R′

i R
′
j = R′

j R
′
i for 0 ≤ i < j − 1 ≤ n − 1;

(c) There exists a surjective homomorphism π : �−
n−1 → � such that

(c1) π−1(Ri ) = R′
i for i = −1, 0, . . . , n − 1;

(c2) �+
i ∩ �−

n−1 = π−1(�+
i ) for i = −1, 0, . . . , n.

Then there exists a regular (n + 1)-complexLwith facets isomorphic toK. In partic-
ular,� acts flag-transitively onL, andL is finite if� is finite. If π is an isomorphism,
then� is isomorphic to a flag-transitive subgroup of�(L), the group� is a subgroup
of �, and L is finite if and only if � is finite. Further, L is a lattice, if K is a lattice
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and � satisfies the following condition:

(d) Let 0 ≤ i ≤ j < k ≤ n and τ ∈ �−
k−1. If τ /∈ �+

i+1�
−
j−1 and if further

τ /∈ �+
i+1�

−
l−1�{ j+1,...,k−1} for each l with j < l < k, then �+

j+1 ∩ �−
n−1�

+
i+1τ ⊆

�−
n−1�

+
k+1.

Note that condition (d) of Theorem 6.1 can be reformulated as follows: if 0 ≤
i ≤ j < k ≤ n, τ ∈ �−

n−1, and Fk is the supremum of Fj and Fi (τπ) in K, then
�+

j+1 ∩ �−
n−1�

+
i+1τ ⊆ �−

n−1�
+
k+1.

Theorem 6.1 translates the problem of finding an extension of a regular complexK
into an embedding problem for its automorphismgroup�(K) into a suitable group �.
A regular complex has many possible extensions. However, it is much harder to find
an extension which is a lattice, if K is a lattice.

The following result was proved in [33, 35] (see also [38]).

Theorem 6.2 Let K be a finite regular n-complex, and let f denote the number
of facets of K. Then K admits an extension L whose automorphism group �(L)

contains a flag-transitive subgroup isomorphic to the symmetric group S f +1. If K is
a polytope, then L is a polytope and �(L) = S f +1.

In the extension L of Theorem 6.2 the (n − 1)-faces always lie in exactly two
facets, regardless of whether or not L is a polytope. For lattices K, this complex L
is almost always again a lattice. A slightly modified construction for the group �,
with S f +1 replaced by the larger group S f +1 × �(K), always guarantees that the
corresponding extension of K is again a lattice if K is a lattice (see [37, 38]). For
an extension of a regular complex K it usually is the lattice property which is the
hardest to verify.

For regular polytopes, further extension results have been obtained in recent years
(for example, see [30]). For these results, bothK and L are regular polytopes. There
are also good extension results for chiral polytopes (see [11, 40, 41]) and for hyper-
topes (see [15]).

There are also interesting infinite extensions L of regular n-complexes K, which
in the case of polytopes have certain universality properties. Let k ≥ 2 be an inte-
ger, and let Ck denote the cyclic group of order k. Let � be the amalgamated
free product of � := �(K) = 〈R−1, R0, . . . , Rn〉 and the direct product �−

n−2 × Ck ,
with amalgamation of the subgroups �−

n−2 and �−
n−2 × {1} under the isomorphism

κ : �−
n−2 → �−

n−2 × {1} defined byϕ → (ϕ, 1). (For amalgamated free products see
[22].) Then � is the quotient of the free product of the two groups � and �−

n−2 × Ck

obtained by imposing on the free product the set of new relations

(ϕ)κ = ϕ (ϕ ∈ �−
n−2),

which in effect identify ϕ and (ϕ, 1) for each ϕ ∈ �−
n−2. Thus, in standard notation

for amalgamated free products,

�=� ∗(�−
n−2 × Ck).

�−
n−2
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We use slightly simpler notation and write

� = � ∗κ (�−
n−2 × Ck). (21)

Then, with the distinguished generating system R′−1, R
′
0, . . . , R

′
n+1 given by

R′
i := Ri for i ≤ n − 1, R′

n := R−1 × Ck , and R′
n+1 := R−1, this group � turns out

to be a generalized C-group. More explicitly, we have the following result (see [36]).

Theorem 6.3 LetK be a regular n-complex, and let k ≥ 2. ThenK admits an infinite
extension L whose automorphism group �(L) contains a flag-transitive subgroup
isomorphic to � ∗κ (�−

n−2 × Ck). In L, each (n − 1)-face lies in exactly k facets
(the k facets containing the base (n − 1)-face of L are cyclically permuted by the
subgroup Ck of R′

n). Moreover, L is a lattice if K is a lattice.

If K is a regular n-polytope and k = 2, then L has the following universality
property: if P is any regular (n + 1)-polytope with facets isomorphic to K, then P
is covered by L. The polytope L was called the universal extension of K in [23,
Chap. 4D]. For example, if K is the triangle {3}, then L is the regular hyperbolic
tessellation {3,∞} by ideal triangles, whose automorphism group is the projective
general linear group PGL2(Z).

Recently there has been a lot of progress in the study of combinatorial coverings
of arbitrary abstract polytopes (see [19, 27, 28]). For example, in the paper [27], with
Monson, it was shown that every finite abstract polytope is a quotient of a regular
polytope of the same rank; that is, every finite abstract polytope has a finite regular
cover.

For open questions related to extensions of regular complexes see Problem 7.2 in
the next section.

7 Abstract Polytope Complexes

An incidence complexK of rank n is called an (n − 1)-polytope complex, or simply
a polytope complex, if all facets of K are abstract polytopes. If the rank n is 3 or 4
respectively, we also use the term polygon complex or polyhedron complex.

LetK be a regular polytope complex of rank n, and let� := {F−1, F0, . . . , Fn} be
a base flag of K. Let � = 〈R−1, R0, . . . , Rn〉 be a flag-transitive subgroup of �(K),
where as before R−1, R0, . . . , Rn are the distinguished generating subgroups of �.
Recall that R−1 = Rn = ��, which is the stabilizer of � in �. Each subgroup Ri

with i = 0, . . . , n − 1 acts transitively on the ki =: ki (K) faces of K of rank i in
Fi+1/Fi−1, and by (2) we know that |Ri : R−1| = ki . As K is a polytope complex,
ki = 2 for i ≤ n − 2 and k := kn−1 ≥ 2. Thus |Ri : R−1| = 2 if i ≤ n − 2, so R−1

is a normal subgroup of Ri in this case, and |Rn−1 : R−1| = k. It follows that R−1 is
also a normal subgroup of �n−1 = 〈R−1, R0, . . . , Rn−2〉, the stabilizer of Fn−1 in �.

Moreover, �n−1 acts flag-transitively on the base facet Fn−1/F−1 of K, and its
subgroup R−1 is the stabilizer of the base flag {F−1, F0, . . . , Fn−1} of Fn−1/F−1 in
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�n−1. Now Fn−1/F−1 is a polytope since K is a polytope complex, so R−1 must be
the kernel of the action of �n−1 on Fn−1/F−1; in fact, in a flag-transitive action on a
polytope, if a group element stabilizes a flag then it stabilizes every flag and thus also
every face. Also, again because the facet is a polytope, the flag-transitive subgroup
of the automorphism group �(Fn−1/F−1) of the facet Fn−1/F−1 induced by �n−1

must be �(Fn−1/F−1) itself. Thus �n−1/R−1 is a string C-group and

�n−1/R−1
∼= �(Fn−1/F−1). (22)

The skeletons of abstract polytopes provide interesting examples of polytope
complexes. Let L be an abstractm-polytope, and let n ≤ m. The (n − 1)-skeleton of
L, denoted skeln−1(L), is the n-complex with faces those of L of rank at most n − 1
or of rankm (them-face ofL becomes the n-face of skeln−1(L)). Then skeln−1(L) is
an (n − 1)-polytope complex whose facets are the (n − 1)-faces of L. For example,
the 2-complex skel1(L) can be viewed as a graph often called the edge-graph of L.

Now suppose L is a regular m-polytope and �(L) = 〈ρ0, . . . , ρm−1〉, where
ρ0, . . . , ρm−1 are the distinguished involutory generators (with respect to a base flag
of L). Then the (n − 1)-skeleton K := skeln−1(L) is a regular polytope complex of
rank n admitting a flag-transitive (but not necessarily faithful) action by � := �(L).
This action of � onK is faithful if L is a lattice (but weaker assumptions suffice); in
fact, in this case�(L) acts faithfully on the vertex set ofL and hence also on the set of
faces ofL of rank smaller than n. In any case, the distinguished generating subgroups
R−1, R0, . . . , Rn of � for its action onK are given by R−1 = Rn := 〈ρn, . . . , ρm−1〉,

Ri := 〈ρi , ρn, . . . , ρm−1〉 (∼= 〈ρi 〉 × 〈ρn, . . . , ρm−1〉) (i ≤ n − 2),

and Rn−1 := 〈ρn−1, ρn, . . . , ρm−1〉. (Here we are in a slightly more general situation
than discussed in Sect. 3, in that � may act on K with nontrivial kernel, that is,
� may not be a subgroup of �(K). However, the corresponding results of Sect. 3
carry over to this situation as well.) In particular, Rn−1 must be a string C-group of
rank m − n + 1. Note that the parameter k = kn−1 for K is given by the number of
(n − 1)-faces of L that contain a given (n − 2)-face of L (or equivalently, by the
number of vertices of the co-face of L at an (n − 2)-face of L). For example, if
m = n + 1 and L is a regular polytope of Schläfli type {p1, . . . , pn}, then k = pn
and Rn−1 is the dihedral group Dpn .

There are a number of interesting open problems concerning the characterization
of regular polytope complexes which are skeletons of regular polytopes of higher
rank.

Problem 7.1 Let K be a regular polytope complex of rank n with automorphism
group �(K) = 〈R−1, R0, . . . , Rn〉 and base flag {F−1, F0, . . . , Fn}, and let
k := kn−1(K) > 2. Suppose Rn−1 is isomorphic to a string C-group.
(a) Is K always the (n − 1)-skeleton of a regular polytope?
(b) IsK the (n − 1)-skeleton of a regular (n + l − 1)-polytope if Rn−1 is isomorphic
to a string C-group of rank l?
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(c) Suppose K is a lattice. Is K always the (n − 1)-skeleton of a regular polytope
which is also a lattice?
(d) LetL denote a regular polytope with (n − 1)-skeletonK. What can be said about
the structure of L in the interesting special cases when Rn−1 acts on Fn/Fn−2 as a
dihedral group Dk, alternating group Ak, or symmetric group Sk?
(e) Under which conditions on K is there a unique regular polytope with K as its
(n − 1)-skeleton?

Similar questions can be asked when �(K) is replaced by a flag-transitive sub-
group �.

There are also a number of open problems for regular polytope complexes with
preassigned type of (polytope) facets.

Problem 7.2 Let F be a regular (n − 1)-polytope, and let k > 2.
(a) Among the regular polytope complexes K of rank n with facets isomorphic to F
and kn−1(K) = k, when is there a “universal” polytope complex covering all these
polytope complexes?
(b) Among the regular polytope complexes K of rank n with facets isomorphic to F ,
with kn−1(K) = k, and with Rn−1 acting on Fn/Fn−2 as a cyclic group Ck, dihedral
group Dk, alternating group Ak, or symmetric group Sk, is there a “universal” poly-
tope complex covering all these polytope complexes?
(c) Among the regular polytope complexes K of rank n with facets isomorphic to F
and kn−1(K) = k, to what extent can one preassign the transitive permutation action
of Rn−1 on Fn/Fn−2? In other words, which permutation groups on k elements arise
as Rn−1?

Note thatwhenTheorem6.3 is applied to a regular (n − 1)-polytopeF , interesting
examples of regular polytope complexes K of rank n arise in which Rn−1 acts on
Fn/Fn−2 as a cyclic group Ck . The underlying construction of these complexes from
group amalgamations has a somewhat “universal flavor”; however, it is not known if
these polytope complexes actually are universal among all polytope complexes with
Rn−1 acting as Ck , unless k = 2. When k = 2 the corresponding complex is indeed
universal and is known as the universal (polytope) extension of F (see [23, Chap.
4D]).

Another interesting problem concerns the existence of simply flag-transitive sub-
groups.

Problem 7.3 Describe conditions on a regular polytope complex K that guarantee
that �(K) contains a simply flag-transitive subgroup.

The final set of problems we describe here concerns geometric realizations of
regular polytope complexes or more general incidence complexes in real Euclidean
spaces or unitary complex spaces. It is known that the set of all Euclidean realizations
of a given finite abstract regular polytope, if not empty, has the structure of a convex
cone called the realization cone of the given polytope (see [23, Chap. 5] or [24, 25]).
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Problem 7.4 LetK beafinite regular polytope complex of rankn with automorphism
group�(K) = 〈R−1, R0, . . . , Rn〉 and facets isomorphic toF , and let k := kn−1(K).
Describe the realization space of K (that is, the set of all realizations of K in a
Euclidean space) in terms of the realization cone of F and the permutation action
of Rn−1 on the k facets of K containing the base (n − 2)-face (that is, the action of
Rn−1 on Fn/Fn−2).

Our next problem deals with geometric realizations in a Euclidean space of a
given dimension d.

Problem 7.5 Classify all geometrically regular polytope complexes in a Euclidean
space of dimension d ≥ 4.

The case d = 3 was solved in [31, 32], where all geometrically regular polygon
complexes (of rank 3) in ordinary Euclidean 3-space were classified. The classifica-
tion is quite involved.

There may be a nice theory of unitary complex realizations for certain types of
incidence complexes (including perhaps the duals of regular polytope complexes).
The well-known regular complex n-polytopes in unitary complex n-space C

n are
examples of incidence complexes which are realized as affine complex subspace con-
figurations on which the (unitary) geometric symmetry group acts flag-transitively
(see [8]). These structures could serve as a guide to develop a complex realization
theory for more general kinds of incidence complexes.

8 Notes

(1) Regular incidence complexes were introduced around 1977 by Ludwig Danzer
as combinatorial generalizations of regular polytopes [7], regular complex poly-
topes [8], and other highly “regular” incidence structures. The notion built on
Branko Grünbaum’s work on regular polystromata (see [17]). The first sys-
tematic study of incidence complexes from the discrete geometry perspective
occurred in my doctoral dissertation [33] (and the related publications [13, 34–
36]), at about the same time when the concept of diagram geometries was intro-
duced byBuekenhout [3] to find geometric interpretations for the sporadic simple
groups. At the time of the writing of my dissertation, I was not aware of Grün-
baum’s paper [17], nor did I know about Buekenhout’s work [3]. (These were
times before Google!) I learnt about both papers in 1981. Starting with [38, 39],
my own work focussed on the class of incidence complexes now called abstract
polytopes.

(2) Incidence complexes satisfying the diamond condition (I4P) were originally
called incidence polytopes (see [13, 34]). During the writing of [23] the new
name abstract polytopes was adopted in place of incidence polytopes, and the
name (string) C-groups (‘C’ standing for ‘Coxeter’) was coined for the type of
groups that are automorphism groups of abstract regular polytopes. Also, some
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of the original terminology of [13]was changed; for example, the term ‘rank’was
used in place of ‘dimension’ (the term ‘dimension’ was reserved for geometric
realizations of abstract regular polytopes [23, Chap. 5] and [24, 25]).

(3) Incidence complexes which are lattices were originally called non-degenerate
complexes, indicating a main focus on lattices consistent with ordinary poly-
tope theory. As abstract polytope theory developed, this distinction played less
of a role, in part also because the lattice property did not translate into an ele-
gant property for the automorphism group (see, for example, condition (d) in
Theorem 6.1).

(4) Danzer’s original definition of an incidence complex used the original connectiv-
ity condition (I3). The equivalent condition (I3′) for strong flag-connectedness
was first introduced in [33].

(5) Our current condition (I4) is weaker than Danzer’s original defining condi-
tion, which required that there be numbers k0, . . . , kn−1 such that, for any
i = 0, . . . , n − 1 and for any (i − 1)-face F and (i + 1)-face G with F < G,
there are exactly ki i-faces H with F < H < G. For regular (and many other
kinds of highly symmetric) incidence complexes the two conditions are equiva-
lent (see Eq. (2)).

(6) In [34], the faces of the regular n-complex K(�) of Sect. 4 for a given group
� were denoted by formal symbols of the form [ϕ, Fi ], where ϕ ∈ � and Fi
is from a fixed (n + 2)-set (in a way, the base flag). This description of the
faces is equivalent to the coset description of faces adopted above, with [ϕ, Fi ]
corresponding to �iϕ (see the footnote on p. 40 of [34]). In [34], there were no
explicit analogues of the conditions of Lemma 3.6(c) and (14) both of which
describe the partial order in terms of intersections of cosets (and make these
structures into coset geometries as defined by Tits [1, 4, 5, 29, 44–46]). The
analysis in [33, 34] was carried out in terms of the conditions of Lemma 3.6(b)
and (13).

Acknowledgements I amgrateful to the referees for their careful reading of the originalmanuscript
and their helpful suggestions that have improved this article.
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