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Preface

Eurocrypt 2018, the 37th Annual International Conference on the Theory and Appli-
cations of Cryptographic Techniques, was held in Tel Aviv, Israel, from April 29 to
May 3, 2018. The conference was sponsored by the International Association for
Cryptologic Research (IACR). Orr Dunkelman (University of Haifa, Israel) was
responsible for the local organization. He was supported by a local organizing team
consisting of Technion’s Hiroshi Fujiwara Cyber Security Research Center headed by
Eli Biham, and most notably by Suzie Eid. We are deeply indebted to them for their
support and smooth collaboration.

The conference program followed the now established parallel track system where
the works of the authors were presented in two concurrently running tracks. Only the
invited talks spanned over both tracks.

We received a total of 294 submissions. Each submission was anonymized for the
reviewing process and was assigned to at least three of the 54 Program Committee
members. Committee members were allowed to submit at most one paper, or two if
both were co-authored. Submissions by committee members were held to a higher
standard than normal submissions. The reviewing process included a rebuttal round for
all submissions. After extensive deliberations, the Program Committee accepted 69
papers. The revised versions of these papers are included in these three-volume pro-
ceedings, organized topically within their respective track.

The committee decided to give the Best Paper Award to the papers “Simple Proofs
of Sequential Work” by Bram Cohen and Krzysztof Pietrzak, “Two-Round Multiparty
Secure Computation from Minimal Assumptions” by Sanjam Garg and Akshayaram
Srinivasan, and “Two-Round MPC from Two-Round OT” by Fabrice Benhamouda
and Huijia Lin. All three papers received invitations for the Journal of Cryptology.

The program also included invited talks by Anne Canteaut, titled “Desperately
Seeking Sboxes”, and Matthew Green, titled “Thirty Years of Digital Currency: From
DigiCash to the Blockchain”.

We would like to thank all the authors who submitted papers. We know that the
Program Committee’s decisions can be very disappointing, especially rejections of very
good papers that did not find a slot in the sparse number of accepted papers. We
sincerely hope that these works eventually get the attention they deserve.

We are also indebted to the members of the Program Committee and all external
reviewers for their voluntary work. The Program Committee work is quite a workload.
It has been an honor to work with everyone. The committee’s work was tremendously
simplified by Shai Halevi’s submission software and his support, including running the
service on IACR servers.



VI Preface

Finally, we thank everyone else — speakers, session chairs, and rump-session
chairs — for their contribution to the program of Eurocrypt 2018. We would also like
to thank the many sponsors for their generous support, including the Cryptography
Research Fund that supported student speakers.

May 2018 Jesper Buus Nielsen
Vincent Rijmen
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Desperately Seeking Sboxes

Anne Canteaut

Inria, Paris, France
anne. canteaut@inria. fr

Abstract. Twenty-five years ago, the definition of security criteria associated to
the resistance to linear and differential cryptanalysis has initiated a long line of
research in the quest for Sboxes with optimal nonlinearity and differential
uniformity. Although these optimal Sboxes have been studied by many cryp-
tographers and mathematicians, many questions remain open. The most
prominent open problem is probably the determination of the optimal values
of the nonlinearity and of the differential uniformity for a permutation depending
on an even number of variables.

Besides those classical properties, various attacks have motivated several
other criteria. Higher-order differential attacks, cube distinguishers and the more
recent division property exploit some specific properties of the representation
of the whole cipher as a collection of multivariate polynomials, typically the fact
that some given monomials do not appear in these polynomials. This type of
property is often inherited from some algebraic property of the Sbox. Similarly,
the invariant subspace attack and its nonlinear counterpart also originate from
specific algebraic structure in the Sbox.



Thirty Years of Digital Currency:
From DigiCash to the Blockchain

Matthew Green

Johns Hopkins University
mgreen@cs. jhu. edu

Abstract. More than thirty years ago a researcher named David Chaum pre-
sented his vision for a cryptographic financial system. In the past ten years this
vision has been realized. Yet despite a vast amount of popular excitement, it
remains to be seen whether the development of cryptocurrencies (and their
associated consensus technologies) will have a lasting positive impact—both on
society and on our research community. In this talk I will examine that question.
Specifically, I will review several important contributions that research cryp-
tography has made to this field; survey the most promising deployed
(or developing) technologies; and discuss the many challenges ahead.
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Abstract. We introduce a formal quantitative notion of “bit security”
for a general type of cryptographic games (capturing both decision and
search problems), aimed at capturing the intuition that a cryptographic
primitive with k-bit security is as hard to break as an ideal cryptographic
function requiring a brute force attack on a k-bit key space. Our new
definition matches the notion of bit security commonly used by cryp-
tographers and cryptanalysts when studying search (e.g., key recovery)
problems, where the use of the traditional definition is well established.
However, it produces a quantitatively different metric in the case of deci-
sion (indistinguishability) problems, where the use of (a straightforward
generalization of) the traditional definition is more problematic and leads
to a number of paradoxical situations or mismatches between theoreti-
cal/provable security and practical/common sense intuition. Key to our
new definition is to consider adversaries that may explicitly declare fail-
ure of the attack. We support and justify the new definition by proving
a number of technical results, including tight reductions between several
standard cryptographic problems, a new hybrid theorem that preserves
bit security, and an application to the security analysis of indistinguisha-
bility primitives making use of (approximate) floating point numbers.
This is the first result showing that (standard precision) 53-bit floating
point numbers can be used to achieve 100-bit security in the context of
cryptographic primitives with general indistinguishability-based security
definitions. Previous results of this type applied only to search problems,
or special types of decision problems.

1 Introduction

It is common in cryptography to describe the level of security offered by a (con-
crete instantiation of a) cryptographic primitive P by saying that P provides a
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certain number of bits of security. E.g., one may say that AES offers 110-bits
of security as a pseudorandom permutation [6], or that a certain lattice based
digital signature scheme offers at least 160-bits of security for a given setting of
the parameters. While there is no universally accepted, general, formal defini-
tion of bit security, in many cases cryptographers seem to have an intuitive (at
least approximate) common understanding of what “n bits of security” means:
any attacker that successfully breaks the cryptographic primitive must incur a
cost! of at least T > 27, or, alternatively, any efficient attack achieves at most
€ < 27" success probability, or, perhaps, a combination of these two conditions,
i.e., for any attack with cost T and success probability €, it must be T'/e > 2.
The intuition is that 2™ is the cost of running a brute force attack to retrieve
an n-bit key, or the inverse success probability of a trivial attack that guesses
the key at random. In other words, n bits of security means “as secure as an
idealized perfect cryptographic primitive with an n-bit key”.

The appeal and popularity of the notion of bit security (both in theory and in
practice) rests on the fact that it nicely sits in between two extreme approaches:

— The foundations of cryptography asymptotic approach (e.g., see [9,10]) which
identifies feasible adversaries with polynomial time computation, and success-
ful attacks with breaking a system with non-negligible probability.

— The concrete security approach [3,5], which breaks the adversarial cost into
a number of different components (running time, oracle queries, etc.), and
expresses, precisely, how the adversary’s advantage in breaking a crypto-
graphic primitive depends on all of them.

The foundational/asymptotic approach has the indubious advantage of simplic-
ity, but it only offers a qualitative classification of cryptographic functions into
secure and insecure ones. In particular, it does not provide any guidance on
choosing appropriate parameters and key sizes to achieve a desired level of secu-
rity in practice. On the other hand, the concrete security treatment delivers (pre-
cise, but) substantially more complex security statements, and requires carefully
tracking a number of different parameters through security reductions. In this
respect, bit security offers a quantitative, yet simple, security metric, in the form
of a single number: the bit security or security level of a primitive, typically
understood as the logarithm (to the base 2) of the ratio T'/e between the cost T
and advantage € of the attack, minimized over all possible adversaries.
Capturing security level with a single number is certainly convenient and use-
ful: it allows for direct comparison of the security level of different instances of
the same primitive (or even between different primitives altogether), and it pro-
vides a basis for the study of tight reductions, i.e., constructions and reductions
that approximately preserve the security level. Not surprisingly, bit security is

! For concreteness, the reader may think of the cost as the running time of the attack,
but other cost measures are possible, and everything we say applies to any cost
measure satisfying certain general closure properties, like the fact that the cost of
repeating an attack k times is at most k times as large as the cost of a single
execution.
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widely used. However, there is no formal definition of this term at this point, but
rather just an intuitive common understanding of what this quantity should cap-
ture. This understanding has led to some paradoxical situations that suggest that
the current “definitions” might not capture exactly what they are meant to.

It has been noted that only considering the adversary’s running time is a
poor measure of the cost of an attack [7,8]. This is especially true if moving to
the non-uniform setting, where an adversary may receive additional advice, and
the question of identifying an appropriate cost measure has been studied before
[6]. However, the paradoxical situations have not, to this day, been resolved
to satisfaction, and it seems that considering only the adversary’s resources is
insufficient to address this issue.

In order to explain the problems with the current situation, we first distin-
guish between two types of primitives with respect to the type of game that
defines their security (see Sect. 3 for a more formal definition): search primitives
and decision primitives. Intuitively, the former are primitives where an adversary
is trying to recover some secret information from a large search space, as in a key
recovery attack. The latter are games where the adversary is trying to decide if
a secret bit is 0 or 1, as in the indistinguishability games underlying the defini-
tion of pseudorandom generators or semantically secure encryption. For search
games, the advantage of an adversary is usually understood to be the probability
of finding said secret information, while for decision games it is usually consid-
ered to be the distinguishing advantage (which is equal to the probability that
the output of the adversary is correct, over the trivial probability % of a random
guess).

The Peculiar Case of PRGs. Informally, a PRG is a function f : {0,1}" —
{0,1}™, where m > n, such that its output under uniform input is indistinguish-
able from the uniform distribution over {0,1}™. In the complexity community
it is common knowledge according to [8] that a PRG with seed length n cannot
provide more than n/2 bits of security under the current definition of security
level. This is because there are non-uniform attacks that achieve distinguishing
advantage 2~"/2 in very little time against any such function. Such attacks were
generalized to yield other time-space-advantage trade-offs in [7]. This is very
counter-intuitive, as the best generic seed recovery attacks do not prevent n-bit
security (for appropriate cost measure), and thus one would expect n bits of
security in such a case to be possible.

The Peculiar Case of Approximate Samplers. Many cryptographic schemes,
in particular lattice based schemes, involve specific distributions that need to
be sampled from during their execution. Furthermore, security reductions may
assume that these distributions are sampled exactly. During the transition of
such a cryptographic scheme from a theoretical construction to a practical imple-
mentation, the question arises as to how such a sampling algorithm should be
implemented. In many cases, it is much more efficient or secure (against e.g.
side channel attacks) or even only possible to approximate the corresponding
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distribution rather than generating it exactly. In such a case it is crucial to
analyze how this approximation impacts the security of the scheme. Tradition-
ally, statistical distance has been employed to quantify this trade-off between
approximation and security guarantee, but it leads to the unfortunate situation
where the 53-bit precision provided by floating point numbers (as implemented
in hardware in commodity microprocessors) only puts a 27°% bound on statisti-
cal distance, and results in a rather weak 53-bit security guarantee on the final
application. Proving better security using statistical distance methods seems
to require higher precision floating point numbers implemented in (substantially
slower) software libraries. In recent years a number of generic results have shown
improved analysis methods based on different divergences [2,15-17] and using
the conventional definition of bit security. Surprisingly, all of them apply exclu-
sively to search primitives (with the only exception of [2], which also considers
decision primitives with a specific property). This has led to the unnatural sit-
uation where it seems that decision primitives, like encryption, require higher
precision sampling than search primitives. This is counter-intuitive, because in
search primitives, like signature schemes, the distribution is often used to hide
a specific secret and a bad approximation may leak information about it. On
the other hand, it is commonly believed within the research community that
for encryption schemes the distribution does not necessarily have to be followed
exactly, as long as it has sufficient entropy, since none of the cryptanalytic attacks
seem to be able to take advantage of a bad approximation in this case [1]. How-
ever, a corresponding proof for generic decision primitives (e.g., supporting the
use of hardware floating point numbers, while still targeting 100-bit or higher
levels of security) has so far eluded the attempts of the research community.

1.1 Contribution and Techniques

We present a new notion of bit security associated to a general cryptographic
game. Informally, we consider a game in which an adversary has to guess an n-bit
secret string? z. This captures, in a unified setting, both decision/indistinguish-
ability properties, when n = 1, and arbitrary search/unpredictability properties,
for larger n. The definition of bit security is quite natural and intuitive, building
on concepts from information theory, but we postpone its description to the end
of this section. For now, what matters is that a distinguishing feature of our
framework is to explicitly allow the adversary to output a special “don’t know”
symbol L, rather than a random guess. So, we can talk about the probability
a that the adversary outputs something (other than 1), and the (conditional)
probability 8 that the output correctly identifies the secret. This makes little
difference for search problems, but for decision problems it allows the adversary
to express different degrees of confidence in its guess: admitting failure is more
informative than a random guess. We proceed by specializing our notion of bit

2 More generally, the adversary has to output a value satisfying a relation R(z,a)
which defines successful attacks. For simplicity, in this introduction, we assume R is
the identity function. See Definition 5 for the actual definition.
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security to the two important settings of search and decision problems and show
that:

— For the case of search primitives (large secret size n = |z|), this yields the
traditional notion of bit security, as the logarithm of the ratio T'/e between
the attack cost T, and the success probability € = «f. The fact that our
definition is consistent with the current one in the case of search primitives
gives us confidence in its validity, since in this case the traditional definition
is very intuitive and there are no paradoxes casting doubts about it.

— Surprisingly, for decision primitives (i.e., for n = 1), our definition yields a
different formula, which, instead of being linear the distinguishing advantage
0 = 2[ —1, is quadratic in §. In other words, the bit security is the logarithm
of T/(ad?). This is not entirely new, as a similar proposal was already put
forward in [11,14] in a more specific context, but has so far received very little
attention.

One of the implications of our new definition is that it seemingly resolves
the paradoxical situation about the bit security of pseudorandom generators
(PRGs) described in [7]. (The significance of the nonuniform attacks to one-way
functions described in [7] can already be addressed by an appropriate choice of
cost measure.) For the PRG case, an attack achieving distinguishing advantage
§ = 27"/2 even in constant time does not necessarily contradict n-bit security. In
fact, [7] shows that for any algorithm distinguishing the output of any function
f:4{0,1}" — {0,1}"*! from uniform with distinguishing advantage § must use
at least T = §2(5%2") resources (for a suitable definition of resources, similar
to the one-way function case). So, this shows that by our definition, there exist
PRGs with bit security log,(7'/6%) = n, as one would expect.

Of course, as definitions are arbitrary, it is not clear if changing a definition
is really solving any real problem, and our definition of bit security needs to be
properly supported and justified. Notice that a reduction A < B showing that if
A is n-bit secure, then B is n/2-bit secure, may be interpreted in different ways:

— Either the construction of B from A is not optimal/tight, i.e., it incurs an
actual security degradation

— Or the construction is tight, but the reduction (i.e., the security proof) is not

— Or the definition of bit security is incorrect.

The last possibility is most delicate when reducing between different types of
cryptographic primitives (e.g., from search to decision) where the definition of bit
security may take different (and somehow arbitrary) forms. All these comments
apply equally well to tight reductions, mapping n-bit security to n-bit security.
We support and justify our definition by providing a collection of results (typi-
cally in the form of tight reductions® between different cryptographic primitives),
which are the main technical contribution of this paper. For example,

3 In the context of this work, “tight” means that bit security is (approximately) pre-
served, up to small additive logarithmic terms corresponding to the polynomial
running time of an attack. More specifically, a reduction is tight if it maps a primitive
providing n-bit security, to another with security level n — O(logn). For simplicity,
we omit all the O(logn) in this introduction.
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— We observe that the Goldreich-Levin hard-core predicate is tight according
to our definition, i.e., if f(x) is an n-bit secure one-way permutation,* then
G(r,x) = (r, f(z), (r,z)) is an n-bit secure PRG.

— There is a simple reduction showing that if G is an n-bit secure PRG, then
the same G (and also f) is an n-bit secure one-way function. (Interestingly,
the reduction is not completely trivial, and makes critical use of the special
symbol L in our definition. See Theorem4.)

Notice that, while both reductions are between different types of cryptographic
primitives (search and decision, with different bit security formulas), combining
them together gives a search-to-search reduction which uses the same security
definition on both sides. Since it would be quite counterintuitive for such a
simple reduction (from PRG to OWF) to increase the level of security from n/2
to n bits, this provides some confidence that our definition is on target, and the
Goldreich-Levin PRG is indeed as secure as the underlying one-way function.
Other technical results presented in this paper include:

— Approximate samplers: we give a proof in Sect.5.3 that shows for the first
time that the sampling precision requirement is essentially the same for search
and decision primitives to maintain security. We do this by extending a result
from [15] for search primitives to decision primitives using our definition of
bit security.

— Hybrid argument: since our new definition of advantage no longer matches the
simple notion of statistical distance, the standard proof of the hybrid argu-
ment [12] (so ubiquitously used in cryptography and complexity) is no longer
valid. While the proof in our setting becomes considerably more involved, we
show (Theorem 7) that hybrid arguments are still valid.

— Additional examples about non-verifiable search problems (Theorem 5), and
tight reductions for message-hiding encryption (Theorem6), and multi-
message security (Corollary 1).

Beside increasing our confidence in the validity of our new bit security notion,
these reductions also start building a toolbox of techniques that can be used to
fruitfully employ the new definition in the analysis of both old and new cryp-
tographic primitives, and improve our theoretical understanding of the relation
between different cryptographic primitives by means of tight reductions. Finally,
they allow us to expand the use of divergence techniques [2,15-17] to bound the
floating point precision required to secure cryptographic primitives with indis-
tinguishability security properties.

We conclude this section with an informal overview of the new bit security
definition. As already mentioned, our definition is based on concepts from infor-
mation theory. In a purely information theoretic setting, the advantage of an
adversary A in discovering a secret X could be modeled by the mutual informa-
tion e = I(A, X)/H(X), normalized by the entropy of the secret H(X) to ensure

4 The actual reduction holds for any one-way functions. Here we focus on permutations
just to emphasize the connection with PRGs. See Theorem 3.



On the Bit Security of Cryptographic Primitives 9

e < 1. Of course, this approach completely fails in the computational setting,
where the output of a one-way permutation f(X) is perfectly correlated with the
input X, but still we do not want to consider a trivial algorithm A(f(X)) = f(X)
as a successful attack (with advantage e = I(A, X)/H(X) = 1) to the one-way
permutation input recovery problem: what the adversary knows (f(X)) identifies
the input X information theoretically, but it does not provide knowledge of it.
We adapt this definition to the computational setting by replacing A with a dif-
ferent random variable Y which equals (1) the secret X when A is successful (i.e.,
A = X), and (2) an independent copy X’ of the secret (conditioned on X’ # X)
when A failed to output X. We find this definition intuitively appealing, and
we consider it the main conceptual contribution of this paper. But words are of
limited value when arguing about the validity of a new definition. We view the
technical results described above the most important evidence to support our
definition, and the main technical contribution of this work.

1.2 Related Work

While the informal concept of bit security is widely used in cryptography, not
many papers directly address the problem of its formal definition. Some of the
works that are perhaps most directly related to our are [6-8], which pinpoint
the shortcoming of the traditional definition. The work of Bernstein and Lange
[6] provides an extensive survey of relevant literature, and attempts to provide
a better definition. In [6, Appendix B] the authors analyze different measures
to address the underlying problems, and show how each of them can be used
to make partial progress towards a more sound definition of bit security, while
pointing out that none of them seem to solve the problem entirely. In contrast,
the definitions and results in this paper concern the definition of adversarial
advantage, which we consider to be orthogonal to any of the ideas presented in
[6]. So, we see our work as complementary to [6-8].

To the best of our knowledge there are only two works proposing an alterna-
tive definition of adversarial advantage for decision problems: the aforementioned
works of Goldreich and Levin [11,14] and the infamous HILL paper [13]. The lat-
ter primarily works with the traditional definition of adversarial advantage, but
presents the advantage function §? (note the lack of «) as an alternative, observ-
ing that many of their reductions are much tighter in this case. Our work can be
considered as a generalization of them, and supporting the definitional choices
made in [11,14]. In the last years, bit security has been the focus on a body of
work [2,15-17] aimed at optimizing the parameters and floating point precision
requirements of lattice cryptography. Our work resolves the main problem left
open in [15,17] of extending definitions and techniques from search to decision
problems, and support the secure use of standard precision floating point num-
bers in the implementation of cryptographic primitives (like encryption) with
indistinguishability security properties.
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2 Preliminaries

Notation. We denote the integers by Z and the reals by R. Roman and Greek
letters can denote elements from either set, while bold letters denote vectors over
them. Occasionally, we construct vectors on the fly using the notation (-);cs for
some set S (or in short (-); if the set S is clear from context), where - is a function
of i. For a set S, we denote its complement by S. We denote the logarithm to
the base 2 by log and the one to the base e by In.

Calligraphic letters are reserved for probability distributions and x «— P
means that x is sampled from the distribution P. For any x in the support of
P, we denote its probability under P by P(z). All distributions in this work are
discrete, and U(S) is the uniform distribution over the support S. If S is clear
from context, we simply write U instead of U(S). A probability ensemble {Py}g
is a family of distributions indexed by a parameter § (which may be a string
or a vector). We extend any divergence § between distributions to probability
ensembles by d({Po}e,{Qo}e) = maxg d(Pp, Q). For notational simplicity, we
do not make a distinction between random variables, probability distributions,
and probabilistic algorithms generating them.

Definition 1. The statistical distance between two distributions P and Q over

S is defined as Asp(P,Q) = 1> cs|P(z) — Q()|.

2.1 Information Theory
For our definition, we need a few concepts from information theory.

Definition 2. The Shannon entropy of a random variable X is given by

H(X)=TEx [logp {X}} ZPr 2] log Pr[X = z].

Definition 3. For two random wvariables X and Y, the conditional entropy of
X given'Y is

H(X|Y)=Ey[H(X|Y)] Pr| =yl .
(XIY) V)= Epel s e

Definition 4. The mutual information between two random variables X andY is

I(X;Y)=H(X) - HX|Y).

3 Security Games

In this section we formally define the bit security of cryptographic primitives
in a way that captures practical intuition and is theoretically sound. As the
security of cryptographic primitives is commonly defined using games, we start
by defining a general class of security games.
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Definition 5. An n-bit security game is played by an adversary A interacting
with a challenger X. At the beginning of the game, the challenger chooses a secret
x, represented by the random variable X € {0,1}", from some distribution Dx.
At the end of the game, A outputs some value, which is represented by the random
variable A. The goal of the adversary is to output a value a such that R(x,a),
where R is some relation. A may output a special symbol L such that R(x, L)
and R(x, L) are both false.

This definition is very general and covers a lot of standard games from the
literature. Some illustrative examples are given in Table 1. But for the crypto-
graphic primitives explicitly studied in this paper, it will be enough to consider
the simplest version of the definition where R = {(z,z)|r € X} is the identity
relation, i.e., the goal of the adversary is to guess the secret x. We formally
define the indistinguishability game for two distributions because we refer to it
extensively throughout this work.

Table 1. Typical instantiations of security games covered by Definition 5. The security
parameter is denoted by k. In the definition of digital signatures, the list @} of the
adversary’s queries are regarded as part of its output.

Game R n Dx
Uninvertibility of one-way permutations {(z,y) | z =y} O(k) |U
Uninvertibility of one-way functions f {(z,y) | f(z) = f(y)} O(k) | U
2nd pre-image resistance for hash functions h | {(z,y) |  # y, h(z) = h(y)} O(k) | U
Indistinguishability of two distributions {(z,y) | z =y} 1 u
Unforgeability of signature scheme (K,S,V) | {(z, (m,0,Q)) | (pk, sk) «— O(k) | KU)
K(z),V(pk,m,o)=1,m ¢ Q}

Definition 6. Let {D}e, {D}}o be two distribution ensembles. The indistin-
guishability game is defined as follows: the challenger C' chooses b — U({0,1}).
At any time after that the adversary A may (adaptively) request samples by send-
ing 0; to C, upon which C draws samples ¢; «— Dgi and sends ¢; to A. The goal
of the adversary is to output b’ = b.

We loosely classify primitives into two categories according to their associated
security games: we call primitives, where the associated security game is a 1-bit
game (O(k)-bit game), decision primitives (search primitive, respectively).

Note that we allow the adversary to always output L, which roughly means
“I don’t know”, even for decision primitives. This is a crucial difference from
previous definitions that force the distinguisher to always output a bit. The
reason this is important is that in games, where the distinguisher is not able to
check if it produced the correct result, it is more informative to admit defeat
rather than guessing at random. In many cases this will allow for much tighter
reductions (cf. Sect. 5.2). Such a definition in the context of indistinguishability
games is not entirely new, as Goldreich and Levin [11,14] also allowed this type
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of flexibility for the distinguisher. To the best of our knowledge, this is the only
place this has previously appeared in the cryptographic literature.

Now we are ready to define the advantage. The definition is trying to cap-
ture the amount of information that the adversary is able to learn about the
secret. The reasoning is that the inverse of this advantage provides a lower
bound on the number of times this adversary needs to be run in order to extract
the entire secret. We use tools from information theory to quantify exactly this
information, in particular the Shannon entropy. Other notions of entropy might
be worth considering, but we focus on Shannon entropy as the most natural
definition that captures information. A straight-forward definition could try to
measure the mutual information between the random variables X (modeling the
secret) and A (modeling the adversary output, cf. Definition 5). Unfortunately,
the variable A might reveal X completely in an information theoretical sense,
yet not anything in a computational sense. To break any computationally hid-
den connection between X and A, we introduce another random variable Y,
which indicates, when A actually achieves its goal and otherwise does not reveal
anything about the secret.

Definition 7. For any security game with corresponding random variable X
and A(X), the adversary’s advantage is
I(X;Y) H(X|Y)

= = TR

where I(+;+) is the mutual information, H(-) is the Shannon entropy, and
Y (X, A) is the random variable with marginal distributions Yy, = {Y | X =
x, A =a} defined as

1. Y, =1, forall z.

2. Yy o=u, forall (z,a) € R.

3. Yyo={a2' — Dx |2’ #x}, for all (z,a) € R.

At first glance, the definition of Y might not be obviously intuitive, except
for case 1. For case 2, note that = completely determines the set R(z,-) and
if the adversary finds an element in it, then it wins the game. Therefore, one
can think of R(x,-) as a secret set, and finding any element in it as completely
breaking the scheme. Finally, the third case defines Y to follow the distribution
of the secret, but is conditioned on the event that it is incorrect. The intuition
here is that if an adversary outputs something, then his goal is to bias the secret
distribution towards the correct one, i.e. it will allow us to quantify how much
better A performs than random guessing,.

With the definition of the advantage in place, the definition of bit security
follows quite naturally.

Definition 8. Let T : {A | A is any algorithm} — Z. be a measure of resources
that is linear under repetition, i.e. T(kA) = kT(A), where kA is the k time

repetition of A. For any primitive, we define its bit security as miny4 log Zd(fj .
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For convenience we will often write 7'(A) as T or simply T if A is clear from
context. Note that we leave out a concrete definition of the resources on purpose,
since we focus on the advantage. Our definition can be used with many different
measures, for example running time, space, advice, etc., or combinations of them.

4 The Adversary’s Advantage

While the advantage as defined in the previous section captures the intuition
about how well an adversary performs, it seems too complex to be handled in
actual proofs or to be used in practice. A simple definition in terms of simple
quantities related to the adversary would be much more desirable. We begin by
defining the quantities of an adversary that we are interested in.

Definition 9. For any adversary A playing a security game, we define its out-
put probability as a?* = Pr[A # 1] and its conditional success probability as
B4 = Pr[R(X, A)|A # L], where the probabilities are taken over the randomness
of the entire security game (including the internal randomness of A). Finally, in
the context of decision primitives, we also define A’s conditional distinguishing
advantage as 64 = 264 — 1. With all of these quantities, when the adversary A
1s clear from context, we drop the corresponding superscript.

The goal of this section is to distill a simple definition of advantage in terms
of auy and 34 by considering a broad and natural class of adversaries and games.

Theorem 1. For any n-bit security game with uniform secret distribution, let A
be an adversary that for any secret x € {0,1}™ outputs L with probability 1 — «,
some value a such that R(x,a) with probability Sa, and some value a such that

R(z,a) with probability (1 — B)a.. Then

vt — o (1 - LBl — 1)+ HE))

n

(1)
where Bz denotes the Bernoulli distribution with parameter 3.

We defer the proof to Appendix A. Note that for large n we get adv? ~ a4,
which is exactly A’s success probability. Plugging this into Definition 8 matches
the well-known definition of bit security for search primitives. On the other hand,
for n = 1 this yields adv® = a(1 — H(Bga)) = a(64)2/(21n2) + O(a” (64)*)
by Taylor approximation, which, for our purposes, can be approximated by
a?(64)2. This matches the definition of Levin [14], who proposed this defini-
tion since it yields the inverse sample complexity of noticing the correlation
between the adversary output and the secret. The fact that it can be derived
from Definition 7 suggests that this is the “right” definition of the adversary’s
advantage.

We now redefine the adversary’s advantage according to above observations,
which, combined with Definition 8 yields the definition of bit security we actually
put forward and will use throughout the rest of this work.
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Definition 10. For a search game, the advantage of the adversary A is

adv? = atpd

and for a decision game, it is
adv? = o (04)2.

Note that assuming that Definition 10 is equivalent to 7 for all adversaries is
quite a leap as we only proved it for a subclass of them, and in fact, it is not true at
least for decision games. However, the following theorem shows that when used in
the context of bit security (Definition 8) for decision games, Definitions 10 and 7
are in fact equivalent, since we are quantifying over all adversaries.

Theorem 2. For any distinguisher D playing a decision game with advP = ¢
according to Definition 7, there is a distinguisher D' such that TP = T and
aP (6P°)2 > (/9 for the same game.

Before we prove Theorem 2, we observe that the distinguisher D’ that we
construct from D will run D and decide on its output depending on the result. As
such, D' is essentially a distinguisher for the indistinguishability game (restricted
to one query) against the two distributions induced by the secret on D. We start
with a simple lemma that analyzes how well such a simple distinguisher does in
this game.

Lemma 1. Let D, for xz € {0,1} be two distributions over the same support
{a,b,c} and denote their probabilities by z, = Dy(z) for z € {a,b,c}. Let D,
be a distinguisher for the indistinguishability game instantiated with D, that on
input z returns arg max,(z,) and L otherwise. Then,

oP- (5Dz)2 1 (21 — 20)2.

_2 21+ZO

We now prove Theorem 2 by showing that for any distinguisher D there is
an event z € {1,0,1} such that o= ()2 ~ adv®.

Proof (of Theorem 2). Since adv” is independent of the support/domain of D
(as long as it has size exactly 3), we identify {L1,0,1} with a,b, ¢ to highlight
this genericity.

With the same notation as in Lemma 1, we note that the conditional entropy
of the secret X given Y is

H(X]Y) = % (Hi(ag,a1) + Hy(bg,b1) + Hi(co,c1))

where

20 + 21 20 + 21

Hi(z0,21) = 20 log + 21 log

21
= ((z0 + 21)log((20 + z1) — z0log zo — 21 log 2.
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Setting z = z; — 29, H1 can be rewritten as
Hi(z20,2) = (220 + ) log(220 + Z) + 201og 20 + (20 + Z) log(z0 + 2).
We use the following bound on Hi:

Hi(z0,2) > 22 forz >0 (2)
=2

Hi (20, %) 2220—1—2—2— for |z| < 2o (3)
20

where (2) follows from monotonicity in Z and (3) from Taylor approximation of
order 2 in Z at Z = 0. Since Z > zp implies that (2) is larger than (3), these
bounds imply

52
Hi(20,2) > max <2zo,2zo+2 Z> (@)
20

for all Z € [—2p,1 — zp]. In the following, we will apply the bound (3) for z €
[—20,0] and (4) for z € [0,1 — 2].
W.lo.g. assume @ > 0, b < 0 and ¢ < 0 (note that }-_ ¢, ., Z = 0). Using

(3) and (4)

1 _a? b? c?
H(X|Y) > = |max ( 2a9,2a0 +a@— — | +2bg +b— — +2co +¢— —
2 ao bo Co

1Jr1 _a? b &
lmax [ —g -2 ) -2 &
2 & @ ap bo Co
which shows that
a’ b &
(a2)-E o
bo  co
a® b2 &
i (@ 55) 5
by co
i (55 ) )
max min(a, — |,—,—|.
() bo Co

Note that if the maximum is attained by one of the latter two terms, since b
and ¢ are negative, we have o (67%)% > b ~ by Lemmal (and similarly for c).

So adv” < 6aP=(6P=)2 for one of z € {b, c}

adv?” <

N|W N~ N

<

Now assume the maximum is min(a, —) If £ < g, then @ < ap and so
aop + a; < 3ap. Again by Lemmal, aPa(§P«)? Fmally, ifa < % then
ag < a, which means ag + a; < 3a and so by Lemmal aPae(§Pa)? > %. In both

cases we have adv? < 9aP=(§P+)2, O
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5 Security Reductions

To argue that our definition is useful in a theoretical sense, we apply it to several
natural reductions, which arise when constructing cryptographic primitives from
other ones. As the novelty of our definition lies mostly with decision games,
we will focus on decision primitives that are built from search primitives (cf.
Sect. 5.1), search primitives that are built from decision primitives (cf. Sect. 5.2),
and finally decision primitives that are built from other decision primitives (cf.
Sect. 5.3).

Throughout this section we will refer to two distribution ensembles {DJ }4 and
{D}}¢ as r-bit indistinguishable, if the indistinguishability game from Definition 6
instantiated with {DJ}g and {D} }¢ is x-bit secure.

5.1 Search to Decision

A classical way to turn a search primitive into a decision primitive is the
Goldreich-Levin hardcore bit [11].

Definition 11. Let f : X — Y be a function and b : X — {0,1} be a pred-
icate. The predicate b is a k-bit secure hardcore bit for f, if the distributions
(f(x),b(x)) and (f(x),U({0,1})), where x — U(X), are k-bit indistinguishable.

Goldreich and Levin showed a way to construct a function with a hardcore
bit from any one-way function. In this setting, one would hope that if the one-
way function is k-bit secure then also the hardcore bit is close to x bit secure.
The next theorem due to Levin [14] establishes exactly such a connection.

Theorem 3 (adapted from [14]). Let f : {0,1}" + {0,1}* be a r-bit secure
one-way function. Then b(x,r) = (z,r) mod 2 is a (k — O(logn))-bit secure
hardcore bit for g(xz,r) = (f(z),r).

This theorem was proven in [14], and all we did was to adapt the statement
from [14] to our notation/framework. So, we refer the reader to [14] for the
proof details, and move on to make some general observations. The proof for this
theorem assumes a distinguisher D for b and constructs from it an inverter A
for f, where adv” = adv? (and the running time is polynomially related). Such
security preserving reductions are information theoretically only possible with a
definition of advantage that is proportional to (§°)? for decision primitives, if it is
proportional to a4 34 for search primitives. This is because any inverter querying
a distinguisher with advantage 6° and attempting to learn an (a*34)-fraction
of a uniformly chosen n-bit secret, must make at least £2(na*34/(67)?) queries.
Denote the resources of D by T and note that T4 > 2(a84/(6P)?)TP is a
lower bound on the resources of A. The goal of the proof is to find an upper bound
on T4 /adv? = T4 /a4 > (TP /(6P)?). This is only possible by assuming
an upper bound on TP /(§P)2. If only a bound on TP /5% is assumed, then the
upper bound on 74 / adv® must contain a linear factor in 1 / 6P, which may be
as large as O(2") and thus result in a dramatic loss in (nominal) security.
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5.2 Decision to Search

In the following subsections we show constructions and the corresponding reduc-
tions in the other direction. The first is just a straightforward converse to the
Goldreich-Levin theorem, showing that any PRG is also a OWF for the same
bit security. The second construction is presented as a very natural and straight-
forward way of turning a decision primitive into a search primitive. The third
reduction is one that naturally arises in cryptographic applications, for example
identification protocols.

PRGs Are One-Way Functions. While the following theorem is intuitively
trivial (and technically simple), as explained in the introduction it serves to jus-
tify our definition of bit security. The proof also illustrates the subtle difference
between an adversary that outputs L and one that outputs a random guess.

Theorem 4. If g is a PRG with k-bit security, then it is also a (k—4)-bit secure
one-way function.

Proof. Assume A is an attack to g as a one-way function with cost T', output
probability a4, and conditional success probability 34. We turn A into an adver-
sary D to g as a PRG by letting D(y) output 1 if G(A(y)) = y and L otherwise.
Assume that A has conditional success probability 44 = 1. This is without loss
of generality because one-way function inversion is a verifiable search problem,
and A can be modified (without affecting its advantage) to output L when its
answer is incorrect. So, A has advantage o, equal to its output probability.
Notice that D is successful only when the indistinguishability game chooses the
secret bit 1, and then A correctly inverts the PRG. So, the success probability of
D is precisely a” 3P = o /2. The output probability of D can be a bit higher,
to take into account the possibility that on secret bit 0, the challenger picks a
random string that belongs (by chance) to the image of the PRG, and A correctly
inverts it. But, in any case, it always belongs to the interval a” € [1/2,3/4] - a4.
It follows that a” > a?/2 and P = (a?/2)/a” > 2/3. So, D has advantage
at least o (6P)% = aP (28 —1)? > a?/9. Since the two algorithms have essen-
tially the same cost, they achieve the same level of bit security, up to a small
constant additive term log9 < 4. O

We remark that our proof differs from the standard text-book reduction
that pseudorandom generators are one-way functions in a simple, but crucial
way: when A(y) fails to invert G, instead of outputting 0 as a “best guess” at
the decision problem, it outputs L to explicitly declare failure. The reader can
easily check that the standard reduction has output probability o” = 1 and
(conditional) success probability 4” < (a® + 1)/2. So, the advantage of the
distinguisher in the standard proof is a?(23P — 1)2 = (a?)?, resulting in a
substantial drop (loga?) in the bit security proved by the reduction.
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Secret Recovery. We proceed by giving a construction of a search primitive
from two distributions. We are not aware of any immediate applications, but this
simple example is supposed to serve as evidence that our definitions for search
and decision primitives behave nicely under composition. It also provides an
example of “non verifiable” search problem, i.e., a cryptographic problem with
exponentially large secret space defined by a game at the end of which A cannot
efficiently determine if the secret has been found. Differently from Theorem 4,
this time one cannot assume without loss of generality that the (hypothetical)
attacker to the search problem has conditional success probability 5 = 1.

Definition 12. Let Dy, D; be two distributions. We define the n-bit secret
recovery game as the following n-bit security game: the challenger X chooses
an n-bit secret x — U({0,1}™) and sends the vector ¢ = (¢; — Dy, )i<pn to A.

The adversary A attempts to guess x, i.e. R is the equality relation.

The next theorem shows that when instantiating the game with two indis-
tinguishable distributions, the secret recovery game enjoys essentially the same
bit security.

Theorem 5. If the k-bit secret recovery game is instantiated with two k-bit
secure indistinguishable distributions Dy and Dy, and Dy is publicly sampleable,
then it is (k — 1)-bit secure.

Proof. Let A be an adversary against the secret recovery game that recovers x
from the vector ¢ with advantage adv? = a4, We build a distinguisher D
against the indistinguishability of Dy and D, with essentially the same resources
and advantage: D chooses a secret x € {0,1}" uniformly at random, which is
non-zero with high probability (otherwise output L) and constructs the vector
c by sampling Dy itself for every zero bit in x and querying its oracle for every
1 bit in 2 (which will return either samples from Dy or from D;). It sends ¢ to
A and returns 1 iff A returns z, otherwise it outputs L.

The resources of D are essentially the same as those of A, so we analyze its
advantage adv” = P (6P)2. The output probability of D, conditioned on z # 0,
is almost exactly A’s success probability, but note that A is only presented with
the correct input distribution if D’s challenger returns samples from D;, which is
the case with probability % So o > %_NQA,BA. Furthermore, D’s conditional
distinguishing advantage is ” > 1—27%T1, because it only outputs the incorrect
value if A returned x even though c consisted of samples only from Dy. Note
that in this case A has no information about z, which was chosen uniformly
at random and thus the probability of this event is at most 27*. Accordingly,

adv? = ap(6P)? > ﬂa“‘ﬂ“‘ ~ adva/2. 0

Indistinguishability Implies Message-Hiding. In our last example for this
section we show that IND-CCA secure encryption schemes enjoy a message hid-
ing property, which we first formally define.
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Definition 13. A private or public key encryption scheme is k-bit message
hiding, if the following security game is k-bit secure: the challenger chooses a
message m € {0,1}™ uniformly at random and sends its encryption to A. The
adversary A attempts to guess m, while C provides it with encryption (in case
of private key schemes) and decryption oracles.

This property naturally arises in the context of constructions of identification
protocols from encryption schemes (see e.g. [4]), where a random message is
encrypted and identification relies on the fact that only the correct entity can
decrypt it. While it seems intuitively obvious that breaking message hiding is
no easier than distinguishing encrypted messages, showing that this is true in a
quantifiable sense for specific definitions of bit security is not as obvious. The
next theorem establishes this connection.

Theorem 6. If a scheme with message space larger than 2% is k-bit IND-CCA
secure, it s k-bit message hiding.

Proof. Let A be an adversary that is able to extract a random message from
an encryption scheme with advantage adv? = a’B4. We construct a IND-
CCA distinguisher D against the scheme with essentially the same resources and
advantage: D generates two messages mg,m; < {0,1}™ uniformly at random,
which are distinct with overwhelming probability (if not, output L). It sends
them to the challenger, which encrypts one of them. Upon receiving the challenge
cipher text ¢, D forwards it to A. Any queries to the encryption (in case of
private key encryption) or decryption oracle are simply forwarded to D’s own
oracles. If A returns a message in {mg,m1}, D returns the corresponding bit.
Otherwise, it outputs L.

The resources of D are essentially the same as for A, so we focus on its advan-
tage. Note that conditioned on the event that mg # mq, D’s output probability
aP is at least as large as the success probability of A, so a” > (1 —27%)a? 4.
The conditional distinguishing advantage of D is 6” > 1 — 27%%! since the
only way D will guess incorrectly is when A somehow outputs the wrong mes-
sage myp. Since A has no information about this message (which was chosen
uniformly at random), the probability of this happening is at most 27%. This
shows that D’s advantage in the indistinguishability game is advP = o (6P)? >
(1—2"")a?BA(1 — 27112 & o434 = adv”, where the latter is A’s advantage
in the message hiding game. O

5.3 Decision to Decision

Finally, we turn to reductions between decision primitives. The results in this
section are very generic. The first establishes the validity of hybrid arguments
when using our definition of advantage for decision primitives. Our second result
extends a previous result for approximate sampling to any decision primitive
fitting our definition.
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The Hybrid Argument. This section is devoted to proving a general hybrid
argument for indistinguishability games using our definition of advantage. For-
mally, we prove the following lemma.

Lemma 2. Let ‘H; be k distributions and G, ; be the indistinguishability game
instantiated with H; and H;. Further, let €; ; = maxy adv? over all T-bounded
adversaries A against G; ;. Then €1, < 3k Zf;ll €iit1-

Applying the lemma to our definition of bit security, we immediately get the
following theorem.

Theorem 7. Let H; be k distributions. If H; and H;y1 are k-bit indistinguish-
able for all i, then Hy and Hy are (k — 2(logk + 1))-bit indistinguishable.

Proof. Let A be any adversary with resources T4 (when attacking H; and Hy).
By assumption, €; ;11 < T4/2% (where €;,; is defined as in Lemma 2) for all
T4-bounded adversaries against H; and H,,;. By Lemma 2, €k < 3k2TA/2"
for all T4-bounded adversaries, in particular A. O

As a simple application, we get the following corollary.

Corollary 1. If a public key encryption scheme is k-bit IND-CCA secure, then
it is (k — 2(log k + 1))-bit IND-CCA secure in the k message setting.

In contrast to the standard hybrid argument, which simply exploits the tri-
angle inequality of statistical distance, we lose an additional factor of 3k in
the advantage in Lemma?2. In particular, consider the case where the bounds
€,i+1 = € are the same for all ¢. This means that € ; < 3k2e. Note that this
additional factor has only a minor impact on bit security. (See below for details.)
Still, one may wonder if this additional factor is an artifact of a non-tight proof
or if it is indeed necessary. Consider a distinguisher D that never outputs L
(i.e. oP = 1). Its distinguishing advantage 51-1?]- in game G, ; is exactly the sta-
tistical distance between D(H;) and D(H;). Assume 6., = € for all i, so D’s
advantage in the game G, ; according to Definition 10 is 2. The standard hybrid
argument, or equivalently triangle inequality for statistical distance, implies that
51L,)k cannot be larger than — but may be as large as — ke. So, D’s advantage in
G4 ; may be as large as k?¢2, which is k? times as large as D’s advantage against
the individual hybrids. This seems to suggest that our argument is tight (up to
the constant factor 3). Either way, as Theorem 7 and Corollary 1 demonstrate,
this additional factor only affects the constant in front of the log term in the
number of hybrids, so, we believe, it is only of secondary importance and we
leave it as an open problem.

The rest of the subsection proves Lemma 2, where we make use of the follow-
ing notation. For some distinguisher D, let 047137Q be its output probability, ﬁgg
its conditional success probability, 5739 its conditional distinguishing advan-

tage, and advg’g = ag’g(égygf its advantage against the distributions P, Q.
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Furthermore, let a8 = Pr[D(P) # L] and 45 = Pr[D(P) = 1] for any distri-

bution P. We can express the advantage of D against P and Q in terms of a5,
D D .D.

&g, TPy Vg*

D D
ap g = 5(ap +ag)
D D D
5729:’777_79—"_0[@
, D D
ap—l—ozg

212 ~B) + a8 — B
ozg +o¢3

(2008 —78) +ag —op)®

2(aB +ab)

Spo=20pg—1=

advg7g = (5)

We begin with the observation that for computationally indistuingishable
distributions the output probabilities of any bounded distinguisher D cannot
vary too much under the two distributions.

Lemma 3. Let P, Q be two distributions. If advg o < € for all T-bounded dis-
tinguishers, then we have ap < 2aQ +3e and ag < QaP + 3¢ for any T bounded
distinguisher.

Proof. We prove the first claim. (The proof of the second claim is symmetri-
cal.) Fix any distinguisher D. Assume ap > 2aQ, since otherwise we are done.
Consider an alternative distinguisher D', which runs D and in the event that
D # J_ outputb 1 and othervvlbe 1. Obv1oubly, D’ is also T-bounded, and (set-
ting 'yp =ak, *yQ = a8 in (5)) we get
(B —ad)?
2(047[,) + ag)
_ (0B a8y

3047’2

(2g)”
<a£ - 2048 + oD
P

adeP’Q =

v I
Wl Wl

(ozg — 2043) .
The first claim now follows from e > advgjg. O

Proof (of Lemma 2). We fix any distinguisher D and drop the superfix of «, 7,
¢ and adv for the rest of the proof. Furthermore, we will abbreviate H; by 7 in
the subfixes of «, v, §, and adv.

Using induction, one can prove

k
(6] —|—a
E advm-_‘_l > ! k advl,k
i aq +2Z’L 2 al+ak
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The proof proceeds by substituting in the definition of adv; ;41 from (5), applying
the induction hypothesis to the first £ —1 terms of the sum, and then minimizing
over Y,_1. Details can be found in Appendix B.

It remains to show that

a1 + ag 1
k—1 Z o
a1 +2) 0+ ag 3k

We again proceed by induction and can thus assume that adv;; <

3i Z;;ll €;j+1 for all ¢ < k and symmetrically adv;, < 3(k — 1) Z?;il €541

for all ¢ > 1. By Lemma 3, this means that o; < 2a1 + 97 Z;;ll €jj+1 for all

i < k and again o; < 20, + 9(k — i) S.F "1 e, 41 for all i > 1. We note that

j=i
k—1 [(k—1)/2] k—1
a1+22ai+ak:a1+2 Z o; + 2 Z o; + o
i=2 i=2 [(k—1)/2]+1

and using the above inequalities, the two sums are bounded by

L(k—1)/2] L(k=1)/2]
2 Z (67 < 2(l€ — 3)041 + 3]€2 Z €i,i+1
1=2 1=1
and
k—1 k—1
2 Z (67 < 2(l€ — 3)Oék- + 3]€2 Z €i,i+1
l[(k—1)/2]+1 [(k—=1)/2]+1

respectively. This bounds the entire sum:

k—1 k—1
al +2 Z a; + ap < 2k(aq + o) + 3k2 Z €iit1
i=2 i=1

This in turn leads to the lower bound

g + o S 1
k—1 - k=1 _ .
a1 +23 7 aitap ok 4 3 %ﬁrla;lﬁl

The last step is noticing that we can assume that (o; + o) > 6k Z;:ll €iit1,

because (a1 +ax)/2 > €1 and otherwise we would be done. Using this assump-

tion we have
o+ ap 1 S

1
a1+22f:_21ai+o¢k N 2k+% — 3k

as desired. O
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Approximate Samplers. In this section we bridge the gap between search
and decision primitives making use of approximate samplers, for the first time by
extending a result from [15] to arbitrary decision primitives. It might be possible
to extend other results from the literature [2,16,17] to decision primitives using
our definition, but we leave that for future work. Our main result is given in
Theorem 8. Combining it with results from [15] it implies that approximating a
distribution with relative error bounded by 2=%/2 (e.g., as provided by floating
point numbers with x/2-bit mantissa) allows to preserve almost all of x bits of
security.

Before introducing the result formally, we first need to cover some prelimi-
naries from [15].

Background. Using the same terminology as [15], let (P, Q) be some divergence
on probability distributions. A A-efficient divergence satisfies three properties:

1. Sub-additivity for joint distributions: if (X;); and (Y;); are two lists of discrete
random variables over the support [], S;, then

B((X0)iy (V) < Y maxd([X; | Xei = al, Vi | Yei = al),

where Xo; = (X1,...,X;-1) (and similarly for Y.;), and the maximum is
taken over a € [];_; S;.

2. Data processing inequality: 6(f(P), f(Q)) < §(P, Q) for any two distributions
P and Q and (possibly randomized) algorithm f(-), i.e., the measure does not
increase under function application.

3. Pythagorean probability preservation with parameter A € R: if (X;); and (Y;);
are two lists of discrete random variables over the support ], S; and

O((Xi | Xci=0ai), (Vi | Yi = ai)) <A

for all ¢ and a; € [[._; S;, then

j<i

Asp () (199 < | (3106, | X = 00, (0 Yes = ) )

ill2

As an example, the max-log distance Apsr, (P, Q) = max|log P(z) — log Q(z)| is
M-efficient for any A < £ [15].

Main Result for Approzimate Samplers. The next theorem states the main result
of this section. It shows that it suffices to approximate a distribution P up to
distance §(P, Q) < 27%/2 for an efficient divergence 4 in order to maintain almost
K bits of security.

Theorem 8. Let ST be a 1-bit secrecy game with black-boz access to a probabil-
ity ensemble (Pg)g, and 0 be a A-efficient measure for any A < %. If ST is k-bit
secure and 6(Pp, Qp) < 272 then S is (k — 8)-bit secure.
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The remainder of this section is devoted to proving Theorem 8. We first
rewrite a lemma from [15], which we will use in our proof.

Lemma 4 (adapted from [15]). Let ST be any security game with black-
box access to a probability distribution ensemble Py. For any adversary A with
resources T that plays ST and event E over its output, denote yp = Pr[A € E.
For the same event, denote by o the probability of E when A is playing S<. If
% > 2% and §(Py, Qp) < 2=K/2 for any 27%/?-efficient §, then % > 2k—3,

From Lemma4 we can derive a bound on the output probability of an adver-
sary when switching the distribution of the scheme.

Corollary 2. For any adversary A with resources T attacking ST and any event
E over A’s output, denote the probability of E by vp. Denote the probability of
E over A’s output when attacking S by vo. If § is \/vo/16T -efficient and

3(Po, Qo) < \/vo/16T, then 16vp > vo.
Proof. We use Lemma4 and set k such that 2F=4 = % This implies that

% > 2k=3 ig false. Assuming towards a contradiction that 16yp < 7o, we see
that
g4 _ LT T
7o ~ 16vp

contradicting Lemma 4. O
With this bound in place, we are ready for the main proof.

Proof (of Theorem 8). Fix any T4-bounded adversary A against S”, output
probability aé and conditional success probability ﬁé. By assumption we have
(284 —1)2 < T4 /2%, Denote the output and conditional success probability of
?f}gg&rﬁt S< by ag and ﬁé. Assume towards contradiction that 043(253 -1)2 >
First we apply Corollary 2 to obtain 047@ > 2_40/3. Note that by assumption
\/ @8 /16T > 2(=5+0/2 5 97K/2 > §(Py, Qy) and that trivially \/ad /16T < 1.
We now consider the hypothetical modified games SP and S € which are
the same as S” and S with the only difference that the adversary has the
ability to restart the game with fresh randomness at any time. Consider the
adversary B against S that simply runs A until A # L (restarting the game if
A = 1) and outputs whatever A returns. Let a = min(af,ag) and note that
B’s resources are T2 < T4 /a, its output probability is 1 and the (conditional)
success probability is 35 = Bé (or BS = ﬁS) if playing S7 (or S<, respectively).
By the properties of § and Agp, we have 8 > 88 — VTB(Py, Qp) and so
255 —-1> 255 —1-—2,/TB /2%, By assumption we also have that 2ﬁ7§ —-1<

\/T4/a2%, which yields

TA TA TA
\ = > /——>288-1-2
a2F T aéQ"f* BQ a2k
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because ﬁg = ﬁé, and so

TA
a2k’

288 —1=285-1<3

If oz‘é < aé, then a = ag and the above inequality immediately yields the

contradiction. Otherwise, we can derive an upper bound on aé from it:
A A

aA < L < Oéig

P=on2pg—1)2 " 28

where the latter inequality follows from the assumption. This contradicts our
lower bound above. O
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A Proof of Theorem 1

Proof (of Theorem 1). From the definition of Y in Definition 7 we get for any
x,y € {0,1}" with y # «

-PrlY=1|X=z]=1-«

- PrlY =z|X =z]|=af

~ Pr[Y = y|X = o] = 244

From this we compute

~Pry=1]=1-a
- PrlY = y] = Pr[Y = y[X = y|Pr[X = y] + Pr[Y = y[X # y|Pr[X # y] =

of + 2"—1a(=8) _ a
2n on 2n_1 ~ 2n°

Now we calculate the conditional entropy

Prly =y]
Pr[Y = y|X = z]Pr[X = z]

H(X|Y) =) Pr[Y =y|X = z]Pr[X = z]log

z,y
_ _ _ _ Pr[Y = 1]
,XZ:Pr[Y = 1|X = z]Pr[X = z]log Y = LIX = 2]Pr[X = 7]
+ Pr[Y = z|X = z]|Pr[X = z]log ey = ;‘);{[Y::x]ﬂr[X —
Pr[y =y

+ Z Pr[Y = y|X = z]Pr[X = z]log
yFrAy#L
11—« 1—-a)2™  ap a2™
= Z lo, — log
2n 11—« 2n afB2m

Pr[Y = y|X = z]Pr[X = z]

x

a(1=F) | a2"(2" 1)
(2n —1)27  © 2na(1 — fB)
2" —1
-5
= (1-a)n +a((1 - B)log(2" — 1) + H(Bg))

+(2"-1)

= (1—a)n+aﬁlog%+a(1*/3’)10g
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Finally, we compute the advantage

adv? = 1—w
(e oL Blos( 1)+ H(By)
o (1 (D 1) £ HE))

B Missing Details of Proof for Lemma 2

With the notation of Sect. 5.3, the goal of this section is to prove

k

Z o1 + o
advmurl Z n—1 advlyk.
=1 o123, ai+ag

By Eq. (5)

k k

2(vi — v i1 — aq)?
g adv;;y1 = g (00 = viwr) + i1 — ) .
i—1 i=1 2(qi + ait1)

Applying the induction hypothesis, this is lower bounded by

f(yre1) = (2071 = Yr—1) + ar_1 — ay)? N (2(Yr—1 — V) + ar — ag_1)?
_ 2(aq + 22?;22 a; + ag_1) 2(a_1 + o)

Taking f’s derivative

, 221 =) Fak —ap—1)  2(2(y1 — Yk—1) +ar—1 — Q1)
fm-1) = - p—
a1 + (677 a1 + 2 Zi:2 (073 —+ Af—1

Note that the second derivative is a positive constant, so if f has an extremum it
must be a minimum, and since it is a quadratic function, it is a global minimum.
Setting f’'(yx—1) = 0 and solving for 2v,_1, we get:

k—1
21 (Oél + 2 Zai + ak) =2(y1 +ar1 —a1)(oap—1 +on)
i—2

k-2
+2(y + ak — ag—1) (al +2 Z o + ak)

i=2

Plugging this into the terms of f:

2(v1 — k) — a1 + ag) (al + 225;22 o; + Oék>
a; +2 21:21 Q; + Qg

(2(71 = Y—1) F g1 —an) =
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and
(2(y1 — ) — a1 + o) (ag—1 + o)
oy + 2 Zf:_; a; + g

(2(Vk—1 — ) t g —ag-1) =
which yields that
2
2(m — ) — a1+ a)? (Oq +2 0 o+ ak)
3
(041 +22 2 o +Oék) (a1 +22£:22ai +ak)
(2(y1 — ) — o1 + ag)*(o—1 + oy)?
2
(a1 + 22;-:21 a; + Oék) (og—1 + o)
2 —aq + a)? kol
(( ) 1 k)2 <a1+22ai+ak
<a1+22 y al—&—ak) =2
@) — 041 + ay)?
(al +2Zz 2 Q; + o

a1 + oy

(041+2Zl 5 @ + Qg

fve—1) >

_|_

)
) advy k

as desired.
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Abstract. While symmetric-key steganography is quite well understood
both in the information-theoretic and in the computational setting,
many fundamental questions about its public-key counterpart resist per-
sistent attempts to solve them. The computational model for public-
key steganography was proposed by von Ahn and Hopper in EURO-
CRYPT 2004. At TCC 2005, Backes and Cachin gave the first universal
public-key stegosystem — i.e. one that works on all channels — achiev-
ing security against replayable chosen-covertext attacks (ss-rcca) and
asked whether security against non-replayable chosen-covertext attacks
(ss-cca) is achievable. Later, Hopper (ICALP 2005) provided such a
stegosystem for every efficiently sampleable channel, but did not achieve
universality. He posed the question whether universality and ss-cca-
security can be achieved simultaneously. No progress on this question has
been achieved since more than a decade. In our work we solve Hopper’s
problem in a somehow complete manner: As our main positive result
we design an Ss-CCA-secure stegosystem that works for every memory-
less channel. On the other hand, we prove that this result is the best
possible in the context of universal steganography. We provide a fam-
ily of 0-memoryless channels — where the already sent documents have
only marginal influence on the current distribution — and prove that no
Ss-ccA-secure steganography for this family exists in the standard non-
look-ahead model.

1 Introduction

Steganography is the art of hiding the transmission of information to achieve
secret communication without revealing its presence. In the basic setting, the
aim of the steganographic encoder (often called Alice or the stegoencoder) is to
hide a secret message in a document and to send it to the stegodecoder (Bob)
via a public channel which is completely monitored by an adversary (Warden or
steganalyst). The channel is modeled as a probability distribution of legal doc-
uments, called covertexts, and the adversary’s task is to distinguish those from
altered ones, called stegotexrts. Although strongly connected with cryptographic
encryption, steganography is not encryption: While encryption only tries to hide
© International Association for Cryptologic Research 2018
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the content of the transmitted message, steganography aims to hide both the
message and the fact that a message was transmitted at all.

As in the cryptographic setting, the security of the stegosystems should only
rely on the secrecy of the keys used by the system. Symmetric-key steganography,
which assumes that Alice and Bob share a secret-key, has been a subject of
intensive study both in an information-theoretic [7,36,40] and in a computational
setting [13,22,23,25,26,30]. A drawback of such an approach is that the encoder
and the decoder must have shared a key in a secure way. This may be unhandy,
e.g. if the encoder communicates with several parties.

In order to avoid this problem in cryptography, Diffie and Hellman provided
the notion of a public-key scenario in their groundbreaking work [15]. This idea
has proved to be very useful and is currently used in nearly every cryptographic
application. Over time, the notion of security against so-called chosen ciphertext
attacks (chosen-ciphertext attack (CCA)-security) has established itself as the
“gold standard” for security in the public-key scenario [20,27]. In this setting, an
attacker has also access to a decoding oracle that decodes every ciphertext differ-
ent from the challenge-text. Dolev et al. [16] proved that the simplest assumption
for public-key cryptography — the existence of trapdoor permutations — is suffi-
cient to construct a CCA-secure public key cryptosystem.

Somewhat in contrast to the research in cryptographic encryption, only very
little studies in steganography have been concerned so far within the public-key
setting. Von Ahn and Hopper [38,39] were the first to give a formal framework
and to prove that secure public-key steganography exists. They formalized secu-
rity against a passive adversary in which Warden is allowed to provide challenge-
hiddentexts to Alice in hopes of distinguishing covertexts from stegotexts encod-
ing the hiddentext of his choice. For a restricted model, they also defined security
against an active adversary; It is assumed, however, that Bob must know the
identity of Alice, which deviates from the common bare public-key scenario.

Importantly, the schemes provided in [38,39] are universal (called also black-
boz in the literature). This property guarantees that the systems are secure with
respect not only to a concrete channel C but to a broad range of channels. The
importance of universality is based on the fact that typically no good description
of the distribution of a channel is known.

In [3], Backes and Cachin provided a notion of security for public-key stegano-
graphy with active attacks, called steganographic chosen-covertext attacks (SS-
CCAs). In this scenario the warden may provide a challenge-hiddentext to Alice
and enforce the stegoencoder to send stegotexts encoding the hiddentext of his
choice. The warden may then insert documents into the channel between Alice
and Bob and observe Bob’s responses in hope of detecting the steganographic
communication. This is the steganographic equivalent of a chosen ciphertext
attack against encryption and it seems to be the most general type of secu-
rity for public-key steganography with active attacks similar to CCA-security
in encryption. Backes and Cachin also gave a universal public-key stegosystem
which, although not secure in the general SS-CCA-setting, satisfies a relaxed
notion called steganographic security against publicly-detectable replayable
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adaptive chosen-covertext attacks (steganographic replayable chosen-covertext
attack (SS-RCCA)) inspired by the work of Canetti et al. [8]. In this relaxed
setting, the warden may still provide a hiddentext to Alice and is allowed to
insert documents into the channel between Alice and Bob but with the restric-
tion that the warden’s document does not encode the chosen hiddentext. Backes
and Cachin left as an open problem if secure public-key steganography exists at
all in the SS-CCA-framework.

This question was answered by Hopper [21] in the affirmative in case Alice and
Bob communicate via an efficiently sampleable channel C. He proved (under the
assumption of a CCA-secure cryptosystem) that for every such channel C there
is an SS-CCA-secure stegosystem PKStSe on C. The system cleverly “derandom-
izes” sampling documents by using the sampling-algorithm of the channel and
using a pseudorandom generator to deterministically embed the encrypted mes-
sage. Hence, PKStS¢ is only secure on the single channel C and is thus not univer-
sal. Hopper [21] posed as a challenging open problem to show the (non)existence
of a universal SS-CCA-secure stegosystem. Since more than a decade, public
key steganography has been used as a tool in different contexts (e.g. broad-
cast steganography [17] and private computation [9,11]), but this fundamental
question remained open.

We solve Hopper’s problem in a complete manner by proving (under the
assumption of the existence of doubly-enhanced trapdoor permutations and
collision-resistant hash functions) the existence of an SS-CCA-secure public key
stegosystem that works for every memoryless channel, i.e. such that the docu-
ments are independently distributed (for a formal definition see next section). On
the other hand, we also prove that the influence of the history — the already sent
documents — dramatically limits the security of stegosystems in the realistic non-
look-ahead model: We show that no stegosystem can be SS-CCA-secure against
all 0-memoryless channels in the non-look-ahead model. In these channels, the
influence of the history is minimal. We thereby demonstrate a clear dichotomy
result for universal public-key steganography: While memoryless channels do
exhibit an SS-CCA-secure stegosystem, the introduction of the history prevents
this kind of security.

Our Contribution. As noted above, the stegosystem of Backes and Cachin
has the drawback that it achieves a weaker security than SS-CCA-security while
it works on every channel [3]. On the other hand, the stegosystem of Hopper
achieves SS-CCA-security but is specialized to a single channel [21]. We prove
(under the assumption of the existence of doubly-enhanced trapdoor permuta-
tions and collision-resistant hash functions) that there is a stegosystem that is
SS-CCA-secure on a large class of channels (namely the memoryless ones). The
main technical novelty is a method to generate covertexts for the message m
such that finding a second sequence of covertexts that encodes m is hard. Hop-
per achieves this at the cost of the universality of his system, while we still allow
a very large class of channels. We thereby answer the question of Hopper in the
affirmative, in case of memoryless channels. Note that before this work, it was
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not even known whether an SS-CCA-secure stegosystem exists that works for
some class of channels (Hopper’s system only works on a single channel that is
hard-wired into the system). Furthermore, we prove that SS-CCA-security for
memoryless channels is the best possible in a very natural model: If the history
influences the channel distribution in a minor way, i.e. only by its length, we
prove that SS-CCA-security is not achievable in the standard non-look-ahead
model of von Ahn and Hopper. In Table 1, we compare our results with previous
works.

Table 1. Comparison of the public-key stegosystems

Paper Security | Channels Applicability
von Ahn and Hopper [38] | Passive | Universal Possible
Backes and Cachin [3] $S-RCCA | Universal Possible
Hopper [21] ss-ccA | Single constr. channel | Possible
This work (Theorem 10) |ss-cca | All memoryless channels | Possible
This work (Theorem 12) |ss-cca | Universal Impossible®

#In the non-look-ahead model against non-uniform wardens.

Related Results. Anderson and Petitcolas [1] and Craver [12], have both, even
before the publication of the work by von Ahn and Hopper [38,39], described
ideas for public-key steganography, however, with only heuristic arguments for
security. Van Le and Kurosawa [28] showed that every efficiently sampleable
channel has an SS-CCA-secure public-key stegosystem. A description of the
channel is built into the stegosystem and it makes use of a pseudo-random
generator G that encoder and decoder share. But the authors make a strong
assumption concerning changes of internal states of G each time the embedding
operation is performed, which does not fit into the usual models of cryptography
and steganography. Lysyanskaya and Meyerovich [32] investigated the influence
of the sampling oracle on the security of public key stegosystems with passive
attackers. They prove that the stegosystem of von Ahn and Hopper [39] becomes
insecure if the approximation of the channel distribution by the sampling oracle
deviates only slightly from the correct distribution. They also construct a chan-
nel, where no incorrect approximation of the channel yields a secure stegosystem.
This strengthens the need for universal stegosystems, as even tiny approximation
errors of the channel distribution may lead to huge changes with regard to the
security of the system. Fazio et al. [17] extended public-key steganography to
the multi-recipient setting, where a single sender communicates with a dynam-
ically set of receivers. Their system is designed such that no outside party and
no unauthorized user is able to detect the presence of these broadcast commu-
nication. Cho et al. [11] upgraded the covert multi-party computation model of
Chandran et al. [9] to the concurrent case and gave protocols for several funda-
mental operations, e.g. string equality and set intersection. Their steganographic
(or covert) protocols are based upon the decisional Diffie-Hellman problem.
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The paper is organized as follows. Section 2 contains the basic definitions and
notations. In Sect. 3, we give an example attack on the stegosystem of Backes
and Cachin to highlight the differences between SS-RCCA-security and SS-CCA-
security. The following Sect.4 contains a high-level view of our construction.
Section 5 uses the results of [21] to prove that one can construct cryptosys-
tems with ciphertexts that are indistinguishable from a distribution on bitstrings
related to the hypergeometric distribution, which we will need later on. The main
core of our protocol is an algorithm to order the documents in an undetectable
way that still allows us to transfer information. This ordering is described in
Sect. 6. Our results concerning the existence of SS-CCA-secure steganography
for every memoryless channel are then presented and proved in Sect. 7. Finally,
Sect. 8 contains the impossibility result for SS-CCA-secure stegosystems in the
non-look-ahead model on 0-memoryless channels.

In order to improve the presentation, we moved proofs of some technical
statements to the appendix.

2 Definitions and Notation

If S is a finite set, we write © « S to denote the random assignment of a
uniformly chosen element of S to x. If A is a probability distribution or a ran-
domized algorithm, we write x <+ A to denote the assignment of the output of
A, taken over the internal coin-flips of A.

As our cryptographic and steganographic primitives will be parameterized
by the key length x, we want that the ability of any polynomial algorithm to
attack this primitives is lower than the inverse of all polynomials in . This is
modeled by the definition of a negligible function. A function negl: N — [0, 1]
is called negligible, if for every polynomial p, there is an Ny € N such that
negl(N) < p(N)~! for every N > Nj. For a probability distribution D on support
X, the min-entropy Hoo(D) is defined as inf,cx{—log D(x)}.

We also need the notion of a strongly 2-universal hash function, which is a
set of functions G mapping bitstrings of length ¢ to bitstrings of length ¢/ < ¢
such that for all z,2" € {0,1}¢ with 2 # 2/ and all (not necessarily different)
v,y € {0,1}, we have [{f € G | f(z) =y A f(a') = ¢/} = [Sh 1 ¢/ €N, a
typical example of such a family is the set of functions

{z— (fo{ s +b) mod 2 | ay,...,age,b € {0,...,2¢ —1}},

where z; denotes the i-th block of length ¢ of x and we implicitly use the
canonical bijection between {0, 1}™ and the finite field {0, ...,2"—1}. See e.g. the
textbook of Mitzenmacher and Upfal [33] for more information on this. For two
polynomials £ and ¢, a strongly 2-universal hash family is a family G = {G }cen
such that every G, is a strongly 2-universal hash function mapping strings of
length £(x) to strings of length ¢'(x).
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Channels and Stegosystems. In order to be able to embed messages into
unsuspicious communication, we first need to provide a definition for this. We
model the communication as an unidirectional transfer of documents that we will
treat as strings of length n over a constant-size alphabet Y. The communication
is defined via the concept of a channel C on X: A function, that maps, for
every n € N, a history hist € (X™)* to a probability distribution on X". We
denote this probability distribution by Chist,, and its min-entropy Hoo(C,n) as
minhist{Hoo(Chist,n)}-

Definition 1. We say that a channel C is memoryless, if Chist,n = Chist’,r, for all
hist, hist’, i.e. if the history has no effect on the channel distribution.

Note the difference between memoryless and 0-memoryless channels of Lysyan-
skaya and Meyerovich [32], where only the length of the history has an influence
on the channel, since the channel distributions are described by the use of mem-
oryless Markov chains:

Definition 2 ([32]). A channel C is O-memoryless, if Chist,n = Chist’.n, for all
hist, hist” such that |hist| = |hist'|.

A stegosystem PKStS tries to embed messages of length PKStS.ml into
PKStS.ol documents of the channel C that each have size PKStS.dl, such that this
sequence is indistinguishable from a sequence of typical documents. A public-key
stegosystem PKStS with message length PKStS.ml: N — N, document length
PKStS.dl: N — N, and output length PKStS.ol: N — N (all functions of the
security parameter k) is a triple of polynomial probabilistic Turing machines
(PPTMs) [PKStS.Gen, PKStS.Enc, PKStS.Dec]! with the functionalities:

— The key generation Gen on input 1% produces a pair (pk, sk) consisting of a
public key pk and a secret key sk (we assume that sk also fully contains pk).

— The encoding algorithm Enc takes as input the public key pk, a message
m € {0,1}™()a history hist € (290))* and some state information s €
{0,1}* and produces a document d € X4 and state information s’ € {0, 1}*
by being able to sample from Chist gi(x)- By Encc(pk,m, hist), we denote the
complete output of ol(k) documents one by one. Note that generally, the
encoder needs to decide upon document d; before it is able to get samples
for the (i + 1)-th document, as in the secret-key model of Hopper et al. [23,
Sect. 2, “channel access”| and the public-key model of von Ahn and Hopper [38,
39, Sect. 3|. This captures the notion that an attacker should have as much
information as possible while the stegosystem is not able to look-ahead into
the future. To highlight this restriction, we call this model the non-look-ahead
model. Note that this is no restriction for memoryless channels.

— The decoding algorithm Dec takes as input the secret key sk, a sequence of
documents dy, . .., doi(x), history hist and outputs a message m’.

The following properties are essential for stegosystems PKStS with output length
¢ = PKStS.ol(k). It is universal (black boz), if it works on every channel without

1 We will drop the prefix PKStS if the context is clear.
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prior knowledge of the probability distribution of the channel. Clearly channels
with too small min-entropy (such as deterministic channels) are not suitable for
steganographic purposes. We thus concentrate only on channels with sufficiently
large min-entropy.

The system is reliable if the probability that the decoding fails is bounded
by a negligible function. Formally, the unreliability UnRelpksis ¢ (k) is defined
as probability that the decoding fails, i.e.

C . .
rInn.ﬁdi};(t{(pk7sk)<—P1:K)£tS.Gen(lﬁ)[PKStS'DeC(Sk’ PKStS.Enc™ (pk, m, hist), hist) # m]}.

The system PKStS is secure, if every polynomial attacker W (the warden)
has only negligible success probability. W works in two phases: In the first phase
(called W.Find), the warden has access to the channel C and to a decoding
oracle Decgi(-), that returns upon input di,...,d, and hist the same result as
PKStS.Dec(sk, (di, . ..,ds), hist). At the end of the first phase, the warden chooses
a message m* and a history hist™.

At the beginning of the second phase (called W.Guess), the warden gets
a sequence of documents d* = df,...,d;, which is with probability of 50%
the result of PKStS.EncC(pk, m*, hist*) and with probability of 50% just the
result of sampling ¢ random documents from Chist* n, which we denote as Cfi, .-
Speaking more precisely, this sampling is done as follows: dj < Chist+az H-A-Ild;-ll’m
for i = 1,...,£. Next, the warden should distinguish between these two cases
by having access to another decoding oracle. Depending on the oracle type, two
definitions for security were proposed by Backes and Cachin in [3].

In the SS-CCA-model (chosen covertext attack), the decoding oracle, denoted
as Decgy g+ (), works like Decgy(-) on every input different from d*. If Decgy g (-)
is called with input d*, it simply returns 1. In the weaker SS-RCCA-
model (restricted chosen ciphertext attack), the decoding oracle, denoted as
DeCgk,d+,m=(-), works like Decgy(-) on most inputs: If the input d equals d* or is
a valid encoding of m* (a replay of d*), the oracle simply returns L.

Formally, SS-CCA-security is defined by the SS-CCA-security game given
below and the advantage of W = [W.Find, W.Guess] is defined as

1
Advy pres o (k) = [Pr[SS-CCA-Dist(W, PKStS, C, k) = 1] — 5].

SS-CCA-security game: SS-CCA-Dist(W, PKStS, C, k)

Input: warden W, stegosystem PKStS, channel C, security parameter x
1: (pk, sk) < PKStS.Gen(1%); (m*, hist*, s) < W.Find®s=€ (pk)

b+—{0,1}

if b =0 then d* « PKStS.Enc®(pk,m*, hist") else d* < Cligt-

b’ — W.GuessP*ska* € (pk, m*, hist*, s, d*)

if ¥’ = b then return 1 else return 0
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A stegosystem PKStS is called SS-CCA-secure against channel C if for some neg-
ligible function negl and all wardens W, we have Adv{y pisis () < negl(x). We
define SS-RCCA-security analogously, where the Guess phase uses Decgj, g+ m+ as
decoding oracle. Formally, a stegosystem is universally SS-CCA-secure (or just
universal), if it is SS-CCA-secure against all channels of sufficiently large (i.e.

super-logarithmic in ) min-entropy.

Cryptographic Primitives. Due to space constraints, we only give informal
definitions of the used cryptographic primitives and refer the reader to the text-
book of Katz and Lindell [24] for complete definitions.

We will make use of different cryptographic primitives, namely hash func-
tions, pseudorandom permutations and CCA-secure cryptosystems. A collision-
resistant hash function (CRHF) H = (H.Gen, H.Eval) is a pair of PPTMs such
that H.Gen upon input 1* produces a key k € {0,1}". The keyed function H.Eval
takes the key k « H.Gen(1%) and a string = € {0, 1}"(®) and produces a string
H.Eval,(x) of length H.out(x) < H.in(k). The probability of every PPTM Fi to
find a collision — two strings x # x’ such that H.Evalg(z) = H.Evalg(z’) — upon
random choice of k is negligible. For a set X, denote by Perms(X) the set of all
permutations on X. A pseudorandom permutation (PRP) P = (P.Gen, P.Eval) is
a pair of PPTMs such that P.Gen upon input 1% produces a key k € {0,1}". The
keyed function P.Eval takes the key k <+ P.Gen(1%) and is a permutation on the
set {0,1}P"() An attacker Dist (the distinguisher) is given black-box access
to P « Perms({0,1}P"(%)) or to P.Evaly, for a randomly chosen k and should
distinguish between those scenarios. The success probability of every Dist is neg-
ligible. A public key encryption scheme (PKES) PKES = (PKES.Gen, PKES.Enc,
PKES.Dec) is a triple of PPTMSs such that PKES.Gen(1*) produces a pair of keys
(pk, sk) with |pk| = k and |sk| = k. The key pk is called the public key and the key
sk is called the secret key (or private key). The encryption algorithm PKES.Enc
takes as input pk and a plaintext m € {0, 1}PKES™ (%) of length PKES.ml(k)
and outputs a ciphertext ¢ € {0,1}PKES<I(%) of length PKES.cl(k). The decryp-
tion algorithm PKES.Dec takes as input sk and the ciphertext ¢ and produces
a plaintext m € {0, 1}PXKES M%) Informally, we will allow an attacker A to first
choose a message m* that should be encrypted and denote this by A.Find. In the
next step (A.Guess), the attacker gets ¢*, which is either Enc(pk, m*) or a random
bitstring. He is allowed to decrypt ciphertexts different from ¢* and his task is
to distinguish between these two cases. This security notion is known as security
against chosen-ciphertext$ attack (CCAS$s). For an attacker A on cryptographic
primitive IT € {hash, prp, pkes} with implementation X, we write Advg x.c(r)
for the success probability of A against X relative to channel C, i.e. the attacker
A also has access to a sampling oracle of C. In case of encryption schemes, the
superscript cca$ is used instead of pkes.

Due to the works [16,18,31,34] we know that CCA$-secure cryptosystems
and PRPs can be constructed from doubly-enhanced trapdoor permutations
resp. one-way functions, while CRHFs can not be constructed from them in
a black-box way, as Simon showed an oracle-separation in [37].
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3 Detecting the Scheme of Backes and Cachin

In order to understand the difference between SS-CCA-security and the closely
related, but weaker, SS-RCCA-security, we give a short presentation of the uni-
versal SS-RCCA-stegosystem of Backes and Cachin [3]. We also show that their
system is not SS-CCA-secure, which was already noted by Hopper in [21]. The
proof of insecurity nicely illustrates the difference between the security models.
It also highlights the main difficulty of SS-CCA-security: One needs to prevent
so called replay attacks, where the warden constructs upon stegotext ¢ another
stegotext ¢’ — the replay of ¢ — that embeds the same message as c.

Backes and Cachin [3] showed that there is a universal SS-RCCA-
secure stegosystem under the assumption that a replayable chosen-covertext$
(RCCAS$)-secure cryptosystem exists.? They make use of a technique called
rejection sampling. Let {G,}.cn be a strongly 2-universal hash function fam-
ily, f € G,; a function, C be a channel, hist be a history and b € {0,1} be a
bit. The algorithm rejsam(f,C, b, hist) samples documents d « Chist gi(x) until
it finds a document d* such that f(d*) = b or until it has sampled k docu-
ments. If PKES is an RCCAS$-secure cryptosystem, they define a stegosystem
that computes (b1,...,b;) < PKES.Enc(pk,m) and then sends di,ds,...,dy,
where d; < rejsam(f,C,b;, hist||d1|| ... ||d;—1). The function f € Gy is also part
of the public key. The system is universal as it does not assume any knowledge
on C.

They then prove that this stegosystem is SS-RCCA-secure. And indeed, one
can show that their stegosystem is not SS-CCA-secure by constructing a generic
warden W that works as follows: The first phase W.Find chooses as message
m* =00---0 and as hist* the empty history @. The second phase W.Guess gets
d* =dj,...,d; which is either a sequence of random documents or the output
of the stegosystem on pk, m*, and hist*. The warden W now computes another
document d’ via rejection sampling that embedds f(d}) (the replay of d*) and
decodes dj,...,d;_,,d via the decoder of the rejection sampling stegosystem.
It then returns 0 if the returned message m’ consists only of zeroes. If d* was a
sequence of random documents, it is highly unlikely that d* decodes to a message
that only consists of zeroes. If d* was produced by the stegosystem, the decoder
only returns something different from the all-zero-message if d’ = dj which is
highly unlikely. The warden W has advantage of 1 —negl(x) and the stegosystem
is thus not SS-CCA-secure. Backes and Cachin posed the question whether a
universal SS-CCA-secure stegosystem exists.

4 An High-Level View of Our Stegosystem

The stegosystem of Backes and Cachin only achieves SS-RCCA-security as a
single ciphertext has many different possible encodings in terms of the documents
used. Hopper achieves SS-CCA-security by limiting those encodings: Due to

2 The definition of a RccA$-secure cryptosystem is analogous to SS-RCCA-security given
in Sect. 2.
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the sampleability of the channel, each ciphertext has exactly one deterministic
encoding in terms of the documents. While Hopper achieves SS-CCA-security,
he needs to give up the universality of the stegosystem, as a description of the
channel is hard-wired into the stegosystem. In order to handle as many channels
as possible, we will allow many different encodings of the same ciphertext, but
make it hard to find them for anyone but the stegoencoder. To simplify the
presentation, we focus on the case of embedding a single bit per document.
Straightforward modifications allow embedding of log(k) bits.

Our stegosystem, named PKStS* will use the following approach to encode a
message m: It first samples, for sufficiently large IV, a set D of N documents from
the channel C and uses a strongly 2-universal hash function f € G, to split these
documents into documents Dy that encode bit 0 (i.e. Dy = {d € D | f(d) = 0})
and D; that encode bit 1 (i.e. D1 = {d € D | f(d) = 1}). Now we encrypt the
message m via a certain public-key encryption system, named PKES* (described
in the next section), and obtain a ciphertext b = b1,...,br of length L = | N/8].
Next our goal is to order the documents in D into a sequence d = dy, ..., dy such
that the first L documents dy,...,dy encode b (i.e. f(d); = b;). This ordering
is performed by the algorithm generate. However, the attacker still has several
possibilities for a replay attack on this scheme, for example:

— He could exchange some document d; by another document d; with f(d;) =
f(d}) (as f is publicly known) and the sequence dy,...,d;—1,d;, diy1,...,dN
would be a replay of d. Such attacks will be called sampling attacks. To
prevent the attacker from exchanging a sampled document by a non-sampled
one, we also encode a hash-value of all sampled documents D and transmit
this hash value to Bob.

— The attacker can exchange documents d; and d;, with ¢ < j and f(d;) = f(d;),
and the resulting sequence di,...,d;—1,d;,dit1,...,dj—1,d;,djq1,...,dN
would be a replay of d. Such attacks will be called ordering attacks. We
thus need to prevent the attacker from exchanging the positions of sampled
documents. We achieve this by making sure that the ordering of the docu-
ments generated by generate is deterministic, i.e. for each set of documents D
and each ciphertext b, the ordering d generated by generate is deterministic.
This property is achieved by using PRPs to sort the sampled documents D.
The corresponding keys of the PRPs are also transmitted to Bob and the
stegodecoder can thus also compute this deterministic ordering.

In total, our stegoencoder PKStS*.Enc works on a secret message m and on a
publicly known hash-function f as follows:

1. Sample N documents D from the channel;

2. Get a hash-key ky and compute a hash-value h = H.Evaly, (lex(D)) of the
sampled documents, where lex(D) denotes the sequence of elements of D in
lexicographic order. This prevents sampling attacks, where a sampled docu-
ment is replaced by a non-sampled one;
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3. Get two> PRP-keys kp and kp that will be used to determine the unique
ordering of the documents in D via generate. This prevents ordering attacks,
where the order of the sampled documents is switched;

4. Encrypt the concatenation of m, ky, kp, kp, h via a certain public key encryp-
tion scheme PKES™ and obtain the ciphertext b of length L = | N/8]|. As long
as PKES™ is secure, the stegodecoder is thus able to verify whether all sampled
documents were sent and can also verify the ordering of the documents.

5. Compute the ordering d of the documents D via generate that uses the PRP
keys kp and kp to determine the ordering of the documents. It also uses
the ciphertext b to guarantee that the first L send documents encode the
ciphertext b, i.e. by...br = f(d1) ... f(dg);

6. Send the ordering of the documents d.

To decode a sequence of documents d = dy, ..., dy, the stegodecoder of PKStS*
computes the ciphertext by = f(dy),...,bp = f(dr) encoded in the first L
documents of d. It then decodes this ciphertext by ...b;, via PKES* to obtain
the message m, the PRP keys kp and kf, the hash-key kn and the hash-value h.
First it verifies the hash-value by checking whether H.Evaly,, (lex({d1,...,dn}))
equals the hash-value h to prevent sampling attacks. It then uses the PRP keys
kp and kpj, to compute an ordering of the received documents via generate to
verify that no ordering attack was used. If these validations are successful, the
decoder PKStS*.Dec returns m; Otherwise, it concludes that d is not a valid
stegotext and returns L.

Intuitively, it is clear that a successful sampling attack on this scheme would
break the collision-resistant hash function H, as it needs to create a collision
of lex(D) in order to pass the first verification step. Furthermore, a successful
ordering attack would need manipulate the ciphertext b and thus break the
security of the public key encryption scheme PKES™, as the PRP keys kp and kp
guarantee a deterministic ordering of the documents.

As explained above, our stegoencoder computes the ordering d = dy, ...,dn
of the documents D = {d;,...,dny} via the deterministic algorithm generate,
that is given the following parameters: the set of documents D, the hash-function
f and the ciphertext b to ensure that the first documents of the ordering encode
b. It has furthermore access to the PRP keys kp and kp that guarantee a deter-
ministic ordering of the documents in D and thus prevents ordering attacks. As
the ordering d produced by generate is sent by the stegoencoder, this ordering
must be indistinguishable from a random permutation on D (which equals the
channel distribution) in order to be undetectable. As f(dy) = by, ..., f(dr) = by,
not every distribution upon the ciphertext b can be used to guarantee that d
is indistinguishable from a uniformly random permutation. This indistinguisha-
bility is guaranteed by requiring that the ciphertext b is distributed according
to a certain distribution corresponding to a random process modeled by draw-
ing black and white balls from an urn without replacement. In our setting, the

3 We believe that one permutation suffices. But in order to improve the readability of
the proof for security, we use two permutations in our stegosystem.
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documents in D will play the role of the balls and the coloring is given by the
function f.

Section 5 describes this random process in detail and proves that we can
indeed construct a public-key encryption system that produces ciphertexts that
are indistinguishable from this process. Section 6 contains a formal description
of generate, proves that no attacker can produce a replay of its output and shows
that the generated permutation is indeed indistinguishable from a random per-
mutation. Finally, Sect.7 contains the complete description of the stegosystem.

5 Obtaining Biased Ciphertexts

We will now describe a probability distribution and show how one can derive a
symmetric encryption scheme with ciphertexts that are indistinguishable from
this distribution. In order to do this, we first define a channel that represents
the required probability distribution together with appropriate parameters, use
Theorem 3 to derive a stegosystem for this channel, and finally derive a cryp-
tosystem from this stegosystem.

Based upon a CCAS$-secure public-key cryptosystem PKES, Hopper [21] con-
structs for every efficiently sampleable channel C an SS-CCA-secure stegosystem
PKStSe by “derandomizing” the rejection sampling algorithm. The only require-
ment upon the channel C is the existence of the efficient sampling algorithm and
that the stegoencoder and the stegodecoder use the same sampling algorithm.
Importantly, due to the efficient sampleability of C, the encoder of PKStS¢ does
not need an access to the sample oracle. Thus, we get the following result.

Theorem 3 (Theorem 2 in [21]). IfC is an efficiently sampleable channel and
PKES is a CCAS$-secure public-key cryptosystem (which can be constructed from
doubly enhanced trapdoor permutations*) then there is a stegosystem PKStSc
(without an access to the sample oracle) such that for all wardens W there is a
negligible function negl such that

Adviy prsise (k) < negl(k) + 2~ Hoe(CR)/2,

Note that the system PKStS¢ is guaranteed to be secure (under the assump-
tion that CCAS$-secure public-key cryptosystems exist), if the channel C is effi-
ciently sampleable and has min-entropy w(log ). We call such a channel suitable.

The probability distribution for the ciphertexts we are interested in is the
distribution for the bitstrings b we announced in the previous section. As we will
see later, the required probability can be described equivalently as follows:

— We are given N elements: Ny of them are labeled with 0 and the remaining
N — Ny elements are labeled with 1.

—~ We draw randomly a sequence of K elements from the set (drawing without
replacements) and look at the generated bitstring b = by ... b of length K
determined by the labels of the elements.

4 See e.g. the work [18] of Goldreich and Rothblum.
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We will assume that there are enough elements of both types, i.e. that Ny >
K and N—Ny > K. The resulting probability distribution, denoted as DZ‘N, No,K)?
upon bitstrings of length K is then given as

No N—No
1 . -
Pr[DEﬁN,NU,K) =b... bK] = - (\blo) ](VK |b|0)
(i) %)
e 1blo—1 bli—1 (1)
§=0 J =0 o
where |b|g denotes the number of zero bits in b = by, ..., bk and |b|; the number

of one bits in b. Note that the distribution on the number of zeroes within such
bitstrings is a hypergeometric distribution with parameters N, Ny, and K.

Now we will construct a channel C* upon key parameter £ with document
length n = dI(k) = . In the definition below, bin(z), denotes the binary repre-
sentation of length exactly y for the integer x.

— For the empty history &, let C . be the uniform distribution on all strings
bin(N)r,./21bin(No) | 2) that range over all positive integers N, Ny < 2Lr/2]
such that N > 8k and 1/3 < Ny/N < 2/3 (in our construction we need
initially a stronger condition than just Ny > x and N — Ny > k).

— If the history is of the form hist' = bin(N) r/21PIn(Ng) /2 hist for some
hist € {0,1}* then we consider two cases: if |hist| < N then the distribution
Cristr . €quals D{Nf‘hist"%f‘histhﬁ); Otherwise, i.e. if |hist| > %N then Cpi
equals the uniform distribution over {0, 1}".

It is easy to see that the min-entropy Heo(C*,n) = minpisy { Hoo (Ciigyr ,,) } of the
channel C* is obtained for the history hist’ = bin(NV) r1/21bin(No) /2 hist, with
8k < N < 2lr/2] and such that (i) Ng = %N and hist = 00...0 of length
N —rkor (ii) No = 2N and hist = 11...1 of length £ N — x. In the first case we
get that the min-entropy of the distribution Cp, . is achieved on the bitstring
11...1 of length x and in the second case on 00...0 of length x. By Eq. (1)
the probabilities to get such strings are equal to each other and, since k < N/8,
they can be estimated as follows:

K—1 . K K
2N/3 — 2N/3 2N/3
H / J < ( / ) < ( / ) — (8/9)5.
o TN/8—kKk—j TN/8 — K 6N/8
Thus, we get that Ho(C*,n) > r1og(9/8).

Moreover one can efficiently simulate the choice of N, Ny, the sampling pro-
cess of Df’y y, ) and the uniform sampling in {0, 1}*. Therefore we can conclude

Lemma 4. The channel C* is suitable, i.e. it is efficiently sampleable and has
min-entropy w(log k). Furthermore, for history hist = bin(N ), 21bin(No)| /2],
with 8k < N < 2[%/21 gnd 1/3 < No/N < 2/3, and for any integer £ < %, the
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bitstrings b =by ...bx of length K = k- £ < N/8 obtained by the concatenation
of ¢ consecutive documents sampled from the channel with history hist, i.e. b; —
Cﬁistbl...bi,hn:m have distribution DE“N No,K)*

A proof for the second statement of the lemma follows directly from the
construction of the channel. Now, combining the first claim of the lemma with
Theorem 3 we get the following corollary.

Corollary 5. If doubly enhanced trapdoor permutations exists, there is a
stegosystem PKStSc« (without an access to the sample oracle) such that for all

Ss-cca

wardens W there is a negligible function negl such that Advy piss.. ¢+ (k) <
negl(k).

Based upon this stegosystem PKStS = PKStSe«, we construct a public-key
cryptosystem PKES™, with ciphertexts of length PKES%cl(k) = & - PKStS.cl(k)
such that PKES*® also has another algorithm, called PKES”Setup that takes
parameters: two integers N and Ny which satisfy 8 - PKES*cl(k) < N < 2l#/2]
and No/N € [1/3,2/3]. Calling PKESSetup(N, Ny) stores the values N, Ny such
that PKES*Enc and PKES”Dec can use them.

— The key generation PKES”Gen simply equals the key generation algorithm
PKStS.Gen.

— The encoding algorithm PKES*Enc takes as parameters the public key pk and
a message m. It then simulates the encoder PKStS.Enc on key pk, message m
and history hist = bin(N) . /21bin(No)|. 2| and produces a bitstring of length
PKES”cl(k) = PKStS.ol(k) - .

— The decoder PKES”Dec simply inverts this process by simulating the stegode-
coder PKStS.Dec on key sk and history hist = bin(N)r,/21bin(No) |, /2)-

Clearly, the ciphertexts of PKES*Enc(pk, m) are indistinguishable from the
distribution DE‘M No,PKES*.cl(r)) by the second statement of Lemma 4. This gen-
eralization of Theorem 3 yields the following corollary:

Corollary 6. If doubly-enhanced trapdoor permutations exist, there is a secure
public-key cryptosystem PKES™, equipped with the algorithm PKES*Setup that
takes two parameters N and Ny, such that its ciphertexts are indistinguishable
from the probability distribution D?N,NO,PKES*.cl(K,)) whenever N and Ny satisfy

that 8 - PKES*cl(k) < N < 21%/2] and Ny /N € [1/3,2/3].

6 Ordering the Documents

As described before, to prevent replay attacks, we need to order the sam-
pled documents. This is done via the algorithm generate described in this
section. To improve the readability, we will abbreviate some terms and define
L = PKES".cl(k) and n = PKStS"dl(x), where PKES" is the public-key encryp-
tion scheme from the last section and PKStS™ is our target stegosystem that we
will provide later on. We also define N = 8L.
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To order the set of documents D C XY™, we use the algorithm generate,
presented below. It takes the set of documents D with |D| = N, a hash function
f: 2™ — {0,1} from Gy, a bitstring b1, ...,br, and two keys kp, kj, for PRPs.
It then uses the PRPs to find the right order of the documents.

Algorithm: generate(D, f,b1,...,br, kp, kp)

Input: set D with |D| = N, hash function f, bits b1, ...,br, PRP-keys kp, kp
1: let Do ={d € D | f(d) =0} and D; = {d € D | f(d) = 1} > We assert that
|D| = N, and furthermore |Do| € [N/3,2N/3]

2: for i =1 to L do

3: di := arg minge p,, {P.Evali, (d)}; Dy, := Dy, \ {d:}

4: let D' = Dy U D, > collect remaining documents
5 fori=L+1,...,N do

6: di := argminge p/{P.Evaly, (d)}; D" := D"\ {di}

7: return di,ds,...,dn

Note that the permutation P.Evaly, is a permutation upon the set {0,1}"
(i.e. on the documents themselves) and the canonical ordering of {0,1}"™ thus
implicitly gives us an ordering of the documents.

We note the following important property of generate that shows where the
urn model of the previous section comes into play. For uniform random permu-
tations P and P’, we denote by generate(--- , P, P') the run of generate, where
the use of P.Evaly, is replaced by P and the use of P.Evaly, is replaced by P
If the bits b = by,..., by, are distributed according to DEKN,IDol,L)’ the resulting
distribution on the documents then equals the channel distribution.

Lemma 7. Let C be any memoryless channel, f be some hash function and D
be a set of N = 8L documents of C such that N/3 < |Dg| < 2N/3, where
Do ={d e D| f(d) = 0}. If the permutations P, P’ are uniformly random and
the bitstring b = by, ...,br is distributed according to DZ*N"DO"L), the output of
generate(D, f, b, P, P') is a uniformly random permutation of D.

Proof. Fix any document set D of size N = 8L and a function f that splits
D into DoUD;, with [Do| > N/3 and |Dy| > N/3. Let d = di,...,dy
be any permutation on D. We will prove that the probability (upon bits b
and permutations P, P’) that d is produced, is 1/N! and thus establish the
result. Let d = d1,...,dy be the random variables that denote the outcome of
generate(D, f,by,...,br, P, P').

Note that if d[i] (resp. d[i]) denotes the prefix of length i of d (resp. d), then
using the chain rule formula we get

N
b711§753/[d1d2...dN =didy...dy] = Hbgrpl[di =d; | dli — 1] =di — 1]].
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To estimate each of the factors of the product, we consider two cases:

- Qase 1 < L: Let IAZ = 51,;. . ’i)f be the bitstring such that b; = f(cil) and let
b[i] be the Rreﬁx bi,...,b; of b of length 3. C}early, for ¢« < L it holds that the
event d; = d; under the condition d[i—1] = d[i—1] occurs iff (A) d; € D;, and
(B) d; is put on position |b]i] |3, by the permutation P with respect to D; . Due
to the distribution of bit b; in the random bits b, the event d; € DEi occurs
with probability (|Dj |— |bi —1] 3,)/ (N —i+1) (under the above condition).
Asdfi—1] = d[i—1] holds exactly’|b[zf 1]|;, documents from D; are already
used in the output. As P is a uniform random permutation, the probability
that d; is put on position |b[i i]|;, by the permutation P (with respect to Dj )
is thus 1/(| D | — |bli — 1][3,)- Since (A) and (B) are independent, we conclude
for # < L that the probability Pry p pr[d; = d; | d[i — 1] = d[i — 1]] is equal to

Pry(d; € Dy | dfi — 1] = dli — 1]] x
Prp[P puts d; on position |B[z]|b | dfi —1] = d[i — 1]
1D 1Bl 1], | o
N—itl Dy | —[Bli —1][;, N-i+1

— Case @ > L: As the choice of P’ is independent from the choice of P, the
remaining 2L items are ordered completely random. Hence, for ¢ > L we also
have

R - 1
Pr [d;=d;|d[li—1]=d[i—1]] = ——.
JBo (= di [ dii~ 1) =dli—1]) = 57—
Putting it together, we get
Pr [didy...dy = did J}—ﬂ*—i 0
b,P,IID’ 192 ON = T152 .- - ON] = LN _—j4+1 NI

i=1

As explained above, a second property that we need is that no attacker should
be able to produce a “replay” of the output of generate. Below, we formalize this
notion and analyze the security of the algorithm. An attacker A on generate is a
PPTM, that receives nearly the same input as generate: a set D of N documents,
a hash function f: X — {0,1} from the family G, a sequence by,...,by of L
bits, and a key ky for the CRHF H. Then A outputs a sequence df,...,dy of
documents. We say that the algorithm A is successful if

1. f(di) = f(d) foralli=1,...,N,
2. d},...,dy = generate(D’, f,b1,...,br, kp,kp), and
3. H.Evaly, (lex(D")) = H.Evaly, (lex(D)),

where D’ denotes the set {d],...,dy} and, recall, lex(X) denotes the sequence
of elements of set X in lexicographic order. We can then conclude the following
lemma.
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Lemma 8 (Informal). Let D C X™ be a set of documents with |[D| = N, let
b1,...,br be a bitstring, and f € G,. For every attacker A on generate, there is
a collision finder Fi for the CRHF H such that the probability that A is successful
on D, f,by,...,br, ky is bounded by Advﬁfﬂfc(n).

The formal definition of “A is successful” as well as a formal statement of the
lemma can be found in Appendix A.

7 The Steganographic Protocol PKStS*

We now have all of the ingredients of our stegosystem, namely the CCA-secure
cryptosystem PKES™ from Sect.5 and the ordering algorithm generate from
Sect. 6. To improve the readability, we will abbreviate some terms and define
n = PKStS™dI(k), £ = PKStS"ol(k), and L = PKES™.cl(x), where PKES" is the
public-key encryption scheme from Sect.5 and PKStS™ is the stegosystem that
we will define in this section. We also let N = 8L.

In the following, let C be a memoryless channel, P be a PRP relative to
C, H be a CRHF relative to C and G = {Gy}xen be a strongly 2-universal
hash family. Remember, that PKES* has the algorithm PKES*Setup that takes
the additional parameters N, Ny < 2[%/21 such that if N > 8- PKES*cl(x)
and No/N € [1/3,2/3] then the output of PKES Enc(pk, m) is indistinguishable
from Dy v pkes*ci(x)) (see Sect.5 for a discussion). Furthermore, we assume

that PKES* has very sparse support, i.e. the ratio of valid ciphertexts com-
pared to {0, 1}PKES (%) is negligible: If PKES*Enc(pk,m) is called, we first use
some public key encryption scheme PKES with very sparse support to com-
pute ¢ « PKES.Enc(pk, m) and then encrypt ¢ via PKES™. This construction is
due to Lindell [29] and also maintains the indistinguishability of the output of
PKES™ Enc and the distribution D*, as this properties hold for all fixed messages
m. Now we are ready to provide our stegosystem named PKStS*. Its main core
is the ordering algorithm generate.

— The key generating PKStS*.Gen queries PKES*.Gen for a key-pair (pk, sk) and
chooses a hash-function f « G,. The public key of the stegosystem will be
pk™ = (pk, f) and the secret key will be sk* = (sk, f).

— The encoding algorithm PKStS*.Enc presented below (as C,, is memoryless we
skip hist in the description) works as described in Sect. 4: It chooses appro-
priate keys, samples documents D, computes a hash value of D, generates
bitstring b via PKES*, and finally orders the documents via generate.’

— To decode a sequence of documents dy, . .., dy, the stegodecoder PKStS*.Dec
first computes the bit string by = f(d1),...,by = f(dny) and computes
the number Ny = |{d;: f(d;) = 0}. In case |{di,...,dy}| < N or
No/N & [1/3,2/3], the decoder PKStS*.Dec returns L and halts. Other-
wise, using PKES*.Dec with sk and parameters N, Ny, it decrypts from the

® That the number of produced documents is always divisible by 8 does not hurt the
security: The warden always gets the same number of documents, whether steganog-
raphy is used or not.
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ciphertext b1,bs,...,br the message m, the keys ky, kp,kp and the hash-
value h. It then checks whether the hash-value h is correct and whether
di,...,dn = generate({d1,...,dn}, f,b1,...,br, kp, kp). Only if this is the
case, the message m is returned. Otherwise, PKStS*.Dec decides that it can
not, decode the documents and returns L.

The steganographic encoder: PKStS*.Enc(pk™, m)

Input: public key pk* = (pk, f), message m; access to channel C,
1: let L = PKES*.cl(x) and N = 8L; let Do := () and D; :=0)
for j =1to N do
sample d; from Cy; let Dy(a;) = Dyea;) U{d;}

No = | Do
if |[DoUD;| < N or No/N ¢ [1/3,2/3] then return di,...,dy and halt
choose hash key ky «— H.Gen(1%)
choose PRP keys kp, kp < P.Gen(1")
let h := H.Evaly,, (lex(Do U Dy)) > compute hash
9: call PKES”Setup(N, No) > setup N, No
10: let b1,bo,...,br « PKES*Enc(pk,m || ku || ke || kp || R)
11: let d := generate(Do U D1, f,b1,...,br, kp, kp)
12: return d

Proofs of Reliability and Security. We will first concentrate on the reliability
of the system PKStS™ and prove that its unreliability is negligible. This is due
to the fact, that the decoding always works and the encoding can only fail if
a document was drawn more than once or if the sampled documents are very
imbalanced with regard to f.

Theorem 9. The probability that a message is not correctly embedded by the
encoder PKStS*.Enc is at most 3N? - 27 He(C:5) 1 9 exp(—N/54).

If 1 < XA < log(k) bits per document are embedded, this probability is
bounded by 22* - 3N? . 2= H<(C:r) 1 92+ exp(—N/54), which is negligible in « if
H(C, k) sufficiently large. Now, it only remains to prove that our construction
is secure. The proof proceeds similar to the security proof of Hopper [21]. But
instead of showing that no other encoding of a message exists, we prove that
finding any other encoding of the message is infeasible via Lemma 8.

Theorem 10. Let C be a memoryless channel, P be a PRP relative to C, the
algorithm H be a CRHF relative to C, the cryptosystem PKES™ be the cryp-
tosystem designed in Sect. 5 with very sparse support relative to C, and G be
a strongly 2-universal hash family. The stegosystem PKStS* is SS-CCA-secure
against every memoryless channel.
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H, =cl H,

1: pk™ = (pk, f) + PKStS".Gen(1") pk™ = (pk, f) + PKStS™.Gen(1%)

2: forj:=1,2,...,N: Lines 1 to 4 in PKStS™.Enc
3: dj < Cai(r) 5: P « Perms
4: return ((di,...,dn),pk") 6: return ((dpa),...,dpw)), Pk")

Hs

pk* = (pk, f)  PKStS*.Gen(1%)

Lines 1 to 4 in PKStS™.Enc

5: P « Perms; P’ « Perms; ky + H.Gen(1")

61 biba,....br < Diy Ny

7: return (generate(Do U D1, f,b1,...,br, P, P’), pk")

/| generate(. .., P, P') uses the permutations P, P’

Hy

pk" = (pk, f) « PKStS™.Gen(1")

Lines 1 to 4 in PKStS™.Enc

5: kp + P.Gen(17); P' « Perms; ky <+ H.Gen(1")

6:  bi,ba,...,br « D{n.ny.L)

7: return (generate(Do U Dy, f,by,...,br, kp, P'), pk*)

// generate(. .., P') uses the permutation P’

Hs

pk" = (pk, f) « PKStS".Gen(1")

Lines 1 to 4 in PKStS™.Enc

5: kp <+ P.Gen(1%);kp < P.Gen(1%); kny < H.Gen(17)
6 b17b27-'~7bL«_DZN,NU,L)

7: return (generate(Do U D1, f,b1,...,br, ke, kp), pk*)

Hg = PKStS*.Enc

pk™ = (pk, f) < PKStS".Gen(1")

Lines 1 to 4 in PKStS™.Enc

5: kp < P.Gen(1%);kp < P.Gen(1"); kn < H.Gen(1")
6: h:=H.Evaly,(lex(Do U D1))

7: PKES Setup(N, No)

8: bi,ba,... by < PKES".Enc(pk,m || ku || ke || kb || h)
9: return (generate(Do U D1, f,b1,...,br, kp, kp), pk*)

47

Fig. 1. An overview of hybrids H1 and Hg used in the proof of Theorem 10. Changes
between the hybrids are marked as shadowed.
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Proof (Proof sketch). We prove that the above construction is secure via a hybrid
argument. We thus define six distributions Hj, ..., Hg shown in Fig. 1.

We now proceed by proving that H; and H;,; are SS-CCA-indistinguishable
(denoted by H; ~ H;;1). Informally, this means that we replace in SS-CCA-Dist
the call to the stegosystem (if b = 0) by H; and the call to the channel (if
b=1) by H;y1. Denote by Adv\%)(li) the advantage of a warden W in this situ-
ation. Clearly, the SS-CCA-advantage of W is bounded as Advyy pisis c(K) <
Adv\(,\l,) (k) + Adv\(,a) (k) + Adv\(,g) (k) + Adv\(,é) (k) + Adv\(,a) (x). This implies the
theorem, as H; simply describes the channel and Hg describes the stegosystem.
Informally, we argue that:

1. Hy ~ Hs because a uniform random permutation on a memoryless channel
does not change any probabilities;

2. Hy ~ Hj because our choice of by,...,b;, and random permutations equal
the channel by Lemma 7;

3. H3 ~ Hy because P is a PRP;

4. Hy ~ Hs because P is a PRP;

5. Hs ~ Hg because PKES™ is secure due to Corollary 6 and because of Lemma 8. [0

8 An Impossibility Result

We first describe an argument for truly random channels using an infeasible
assumption and then proceed to modify those channels to get rid of this. All
channels will be 0-memoryless and we thus write C, g instead of Chist,qi, if hist
contains n document.

The main idea of our construction lies on the unpredictability of random
channels. If C, and C,11 are independent and sufficiently random, we can not
deduce anything about C,;1 before we have sampling access to it, which we only
have after we sent the document of C,, in the standard non-look-ahead model. To
be reliable, there must be enough documents in C, 11 continuing the already sent
documents (call those documents suitable). To be SS-CCA-secure, the number
of suitable documents in C,; must be very small to prevent replay attacks like
those in Sect. 3. By replacing the random channels with pseudorandom ones, we
can thus prove that every stegosystem is either unreliable or SS-CCA-insecure
on one of those channels. To improve the readability, fix some stegosystem PKStS
and let n = PKStS.dl(k) and ¢ = PKStS.ol(k).

Lower Bound on Truly Random Channels. For n € N, we denote by R,
all subsets R of {0,1}" such that there is a negligible function negl with

— |R| > negl(n)~! and
~ |R| < 272,
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This means each subset R has super-polynomial cardinality in n without being
too large. For an infinite sequence R = Ry, Ry, ... with R; € R,,, we construct
a channel C(R) where the distribution C(R); ,, is the uniform distribution on
R;. The family of all such channels is denoted by F(R,). We assume that a
warden can test whether a document d belongs to the support of C(R);,, and
denote this warden by Wg. In the next section, we replace the totally random
channels by pseudorandom ones and will get rid of this infeasible assumption. For
a stegosystem PKStS — like the system PKStS* from the last section — we are now
interested in two possible events that may occur during the run of PKStS.Enc
on a channel C(R). The first event, denoted by Eng (for Nongueried), happens
if PKStS.Enc outputs a document it has not seen due to sampling. We are also
interested in the case that PKStS.Enc outputs something in the support of the
channel, denoted by &r,g for In Support. Clearly, upon random choice of R, 7
(the length of the history), m and pk we have

2"/2 — PKStS.query(k)
2" — PKStS.query(k)

Pr(€las | Eng] < €- <0272

where PKStS.query(x) denotes the number of queries performed by PKStS. This
is negligible in k as n, query and ¢ are polynomials in k. As warden Wg can test
whether a document belongs to the random sets, we have Advyy “sksis c(r) (%) >
Pr[€,g]. Clearly, since we can assume Er,g C Eng we thus obtain

Pr[€ng] = Pr[€1s A Eng] < AdV\S/\S/_RCfSKSts,C(R)(/f)
N Pr€ins | Engl 1—¢.2-n/2

Hence, if PKStS is SS-CCA-secure, the term Pr[€yq] must be negligible.
If PKStS is given a history of length n and it outputs documents dy, ..., dy,
we note that PKStS.Enc only gets sampling access to C(R);4¢—1,» after it sent

di,...,d¢—1 in the standard non-look-ahead model. Clearly, due to the ran-
dom choice of R, the set R, , is independent of R,, Ryt1,...,Ryt¢—1. The
encoder PKStS.Enc thus needs to decide on the documents dy, ..., d;_1 without

any knowledge of R, /. As PKStS.Enc draws a sample set D from C(R);4¢—1,n
with at most ¢ = PKStS.query(x) documents, we now look at the event Ensu
(for Not suitable) that none of the documents in D are suitable for the encoding,
i.e. if the sequence di,ds,...,d¢—1,d is not a suitable encoding of the message
m for all d € D. Denote the unreliability of the stegosystem by p. Clearly, if
ENsui occurs, there are two possibilities for the stegosystem: It either outputs
something from D and thus increases the unreliability or it outputs something it
has not queried. We thus have Pr[€nsui] < max{p, (1 — p) - Pr[éng]}. Note that
p must be negligible if PKStS.Enc is reliable and, as discussed above, the term
Pr[éng] (and thus the term (1 — p) - Pr[éng]) must be negligible if PKStS.Enc is
SS-CCA-secure. Hence, if PKStS.Enc is SS-CCA-secure and reliable, the proba-
bility Pr[€nsui] must be negligible. The insight, that Pr[€nsui] must be negligible
directly leads us to the construction of a warden Wg on the channel C(R). The
warden chooses a random history of length  and a random message m and sends
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those to its challenging oracle. It then receives the document sequence dy, . . ., dy.
If d; & Ry 4;, the warden returns »Stego«. Else, it samples ¢ documents D from
C(R)p+e,n and tests for all d € D via the decoding oracle PKStS.Decgy, if the
sequence di,ds, ...,dy_1,d decodes to m. If we find such a d, return »Stego«
and else return »Not Stego«. If the documents are randomly chosen from the
channel, the probability to return »Stego« is at most g/|2P¥StSM(%)| { e, negli-
gible. If the documents are chosen by the stegosystem, the probability of »Not
Stego« is exactly Pr[Ensui]. Hence, PKStS must be either unreliable or SS-CCA-
insecure on some channel in F(R,,).

Lower Bound on Pseudorandom Channels. To give a proof, we will
replace the random channels C(R) by pseudorandom ones. The construction
assumes existence of a CCA$-secure cryptosystem PKES with PKES.cl(k) >
2 PKES.mI(/i).

For w = (pk, sk) € supp(PKES.Gen(1%)), let C(w);ai(x) be the distribution
PKES.Enc(pk, bin(i)ai(x)), where bin(i)qi.) is the binary representation of the
number ¢ of length exactly dl(x) modulo 2dl(%)  The family of channels Cpkgs =
{C(w)}, thus has the following properties:

1. There is a negligible function negl such that for each w and each 4, we have
2PKES-mI(®)/2 > |C(w); iy | > negl(k) 1 if PKES is CCA$-secure. This follows
easily from the CCAS$-security of PKES: If |C(w); ai(x)| would be polynomial,
an attacker could simply store all corresponding ciphertexts.

2. An algorithm with the knowledge of w can test in polynomial time, whether
d € supp(C(w);,di(x)), i-e. whether d belongs to the support by simply testing
whether PKES.Dec(sk, d) equals bin(i)gi(.)-

3. Every algorithm Q that tries to distinguish C(w) from a random channel C(R)
fails: For every polynomial algorithm Q, we have that the term

P CR(1F) =1] - P C@(1r) =1
|R«77'(’]fd|( )[Q ( ) } wHPKES.rGen(l””)[Q ( ) ]|

is negligible in k if PKES is CCAS$-secure. This follows from the fact that
no polynomial algorithm can distinguish C(R) upon random choice of R
from the uniform distribution on {0,1}", as |[C(R); | is super-polynomial.
Furthermore, an attacker A on PKES can simulate Q for a successful attack.

Note that the third property directly implies that no polynomial algorithm
can conclude anything about C(w); qi(x) from samples of previous distributions
C(w)odi(r)s -+ C(W)i—1,di(x), €xcept for a negligible term. The second property
directly implies that we can get rid of the infeasible assumption of the previous
section concerning the ability of the warden to test whether a document belongs
to the support of C(w): We simply equip the warden with the seed w. Call the
resulting warden W,,. Note that this results in a non-uniform warden. As above,
we are interested in the events that a stegosystem outputs a document that it
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has not seen (Eﬁl ), that a document is outputted which does not belong to the
support (€f5) and the event that a random set of ¢ documents is not suitable
to complete a given document prefix dy, da, ..., de—1 (Eg)-

As & is a polynomially testable property (due to the second property of
our construction), we can conclude a similar bound as above:

Lemma 11. Let PKStS be an SS-CCA-secure universal stegosystem. For every
warden W and every CCAS$-attacker A, Prl€g] < Advivpics.c () |

- 1—¢-2-n/2
pkes
AdvRres(k).

Hence, if the stegosystem PKStS is SS-CCA-secure and PKES is CCA$-secure,
the term Pr[€g; | must be negligible. As above, we can conclude that Pri€g] <
max{p, (1 — p)-Pr[€g,]} for unreliability p. The warden W, similar to Wg from
the preceding section thus succeeds with very high probability. Hence, no SS-

CCA-secure and reliable stegosystem can exist for the family Cpggs:

Theorem 12. If doubly-enhanced trapdoor permutations exist, for every
stegosystem PKStS in the non-look-ahead model there is a 0-memoryless channel
C such that PKStS is either unreliable or it is not SS-CCA-secure on C against
non-uniform wardens.

9 Discussion

The work of Dedi¢ et al. [13] shows that provable secure universal steganogra-
phy needs a huge number of sample documents to embed long secret messages
as high bandwidth stegosystems are needed for such messages. This limitation
also transfers to the public-key scenario. However, such a limitation does not
necessarily restrict applicability of steganography, especially in case of specific
communication channels or if the length of secret messages is sufficiently short.

A prominent recent example for such applications is the use of steganography
for channels determined by cryptographic primitives, like symmetric encryption
scheme (SESs) or digital signature schemes. Bellare, Paterson, and Rogaway
introduced in [5] so called algorithm substitution attacks against SESs, where
an attacker replaces an honest implementation of the encryption algorithm by
a modified version which allows to extract the secret key from the ciphertexts
produced by the corrupted implementation. Several follow-up works have been
done based on this paper, such as those by Bellare et al. [4], Ateniese et al. [2], or
Degabriele et al. [14]. These works strengthened the model proposed in [5] and
presented new attacks against SESs or against other cryptographic primitives,
e.g. against signature schemes. Surprisingly, as we show in [6], all such algo-
rithm substitution attacks can be analyzed in the framework of computational
secret-key steganography and in consequence, the attackers can be identified as
stegosystems on certain channels determined by the primitives. In such scenar-
ios, the secret message embedded by the stegosystem corresponds to a secret key
of the cryptographic algorithm.
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A similar approach was used by Pasquini et al. [35] to show that so called
password decoy vaults used for example by Chatterjee et al. [10] and Golla et al.
[19] can also be interpreted as steganographic protocols.

A Remaining Proofs

To improve the readability, we will abbreviate some terms and define n =
PKStS*.dI(k), £ = PKStS*.ol(xk) and L = PKES"cl(x), where PKStS* is our
stegosystem constructed in Sect.7 and PKES™ is the public-key cryptosystem
constructed in Sect. 5. We also define N = 8L.

Al Formal Statement of Lemma 8 and its Proof

We start with a formal definition for “A is successful on D, f,b1,...,by, ky”.

Definition 13. An attacker A on generate is a PPTM, that receives the follow-
mng input:

— a sequence dy,...,dy of N pairwise different documents
- a hash function f : X™ — {0,1} from the family G = {Gx}xen,
- a sequence by, ..., by of L bits, and

— a hash-key ky for H.

The attacker A then outputs a sequence di,...,d of documents. Note that the
attacker knows the mapping function f and even the hash-key kg for H.

We say that A is successful if the experiment Sgen(A, D, f,by,...,br) returns
value 1:

Security of generate: Sgen(A, D, f,b1,...,br)

Input: Attacker A, set D, function f, bits b1,...,br

1: ke, kp < P. Gen( )

2: ky < H.Gen(1")

3: di,...,dn := generate(D, f,b1,...,br, kp, kp)

4: /17...,d§\,<—A(dh...,dN,f,bl,...,bL,kH)
5: if f(dj) = b; for every i = 1,... L then
6 Dp={d} | [(d;) =0} D} = {d} | f(d}) = 1}
s if dy,...,dy = generate(Dy U D1, f,b1,...,br, ke, kp) then
8 if H.Evaly, (lex(Dj U D1)) = H.Evaly, (lex(Do U D1)) then
9 if di,...,dy #di,...,dy then

0 return 1 and halt

1: return 0
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We are now ready to give the formal version of Lemma 8:

Lemma (formal version of Lemma 8). Let D C X™ be a set of documents,
with |D| = N, let by, ..., by, be a bitstring, and f € G,,.. For every attacker A on
generate, there is a collision finder Fi for the CRHF H such that

Pr[Sgen(A, D, f,by,...,by) = 1] < Adv{ile(k),
where the probability is taken over the random choices made in experiment Sgen.

Proof. Let A be an attacker on generate with maximal success probability. Let
D = DyUD; be the input to generate, the sequence d,...,dy its output and

1,---»dy be the output of A. Furthermore, let Dy = {d} | f(d;) = b} and
D" = Dj U D}. We now distinguish three cases of the relation between D and
D'. If D" C D, the sequence dj,...,dy must contain the same element on at
least two positions, but generate does only accept sets of size exactly N. Hence,
A was not successful in this case. If D’ = D and A was successful, it holds that

.., dy #di,...,dn. Hence, there must be positions ¢ < j and j' < 4’ such
that d; = dy and d; = dj. As kp and kj define a total order, the sequence
dy,...,dy could not be produced by generate. Thus, A can not be successful in
this case.

The only remaining case is D’ \ D # (). If A was successful, it holds that
Hy, (lex(D")) = Hy, (lex(D)), i.e. this is a collision with regard to H. We will
now construct a finder Fi for H, such that Adv}ﬁﬁﬂfc(/ﬁ) > Pr[A succeeds]. The
finder Fi receives a hash key ky. It then chooses f « G, samples D documents
of cardinality |D| = N via rejection sampling and PRP-keys kp, kp. The finder
simulates A and receives

dy,...,dy «— Agenerate(D, f,b1,...,br, kp, kp), f,b1,--.,br, kn).

Then, it returns D and D’ = {d},...,dy}. Whenever A succeeds, we have
D # D’ by the discussion above and thus also Hg,(lex(D)) = Hk? (lex(D")).
Hence, Fi has successfully found a collision. This implies that Advﬁﬁﬁjc(n) >

Pr[A succeeds]. O

A.2 Proof of Theorem 9
Recall the statement of the theorem:

Theorem (Theorem 9). The probability that a message is not correctly embed-
ded by PKStS*.Enc is at most 3N? - 27 Hoe(C:r) 4 2 exp(—N/54).

Proof. Note that PKStS*.Enc may not correctly embed a message m if (a) |DgU
D] < N ie. a document sampled in line 3 was drawn twice, or (b) No/N &
[1/3,2/3] i.e. the bias is too large, or (¢) the number of elements of Dy or Dy
is too small to embed by, bs,...,b;, by generate. The probability of (a) can be
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bounded similar to the birthday attack. It is roughly bounded by 3N?2.2~Hee(C:r)
as the probability of every document is bounded by 2~ Hee(C:r),

A simple calculation shows that the probability of (b) and (c) is negligible.
Note that the algorithm always correctly embeds a message, if |Dg| > L and
|D1| > L. As Ny/N = |Dy|/N, this implies that No/N € [1/3,2/3]. We will thus
estimate the probability for this. As f is drawn from a strongly 2-universal hash
family, we note that the probability that a random document d is mapped to
1 is equal to 1/2. For ¢ = 1,..., N, let X; be the indicator variable such that
X, equals 1 if the i-th element drawn from the channel maps to 1. The random
variable X = Zf;l X, thus has the size of D;. Clearly, its expected value is
N/2. The probability that |[X — N/2| > L (and thus |Dy| < L or |Dg| < L) is
hence bounded by

L-(1/3)2
Pr[|X = N/2| > L] < Qexp(—%) = 2exp(—N/54)
using a Chernoff-like bound. The probability that the message m is incorrectly
embedded is thus bounded by 27 (%) 4 2 exp(—N/54). O

A.3 Proof of Theorem 10
We recall:

Theorem (Theorem 10). Let C be a memoryless channel, P be a PRP relative
to C, the algorithm H be a CRHF relative to C, the cryptosystem PKES® be the
cryptosystem designed in Sect. 5 with very sparse support relative to C, and G be
a strongly 2-universal hash family. The stegosystem PKStS* is SS-CCA-secure
against every memoryless channel.

Proof. We prove that the above construction is secure via a hybrid argument.
We thus define six distributions Hy, ..., Hg shown in Fig. 1.

If P and @ are two probability distributions, denote by SS-CCA-Distp g the
modification of the game SS-CCA-Dist, where the call to the stegosystem (if
b = 0) is replaced by a call to P and the call to the channel (if b = 1) is
replaced by a call to Q. If W is some warden, denote by Advy 5 (x) the
winning probability of W in SS-CCA-Distp q. If Advy 55 (k) < negl(x) for a
negligible function negl, we denote this situation as P ~ @) and say that P and
Q are indistinguishable with respect to SS-CCA-Dist. Furthermore, we define
AdV\(X/)(H) = Advyy 5 m,,, (k). As the term Adv\(,f,)(/{) can also be written as

|Pr[W.Guess outputs b = 0 | b = 0] — Pr[W.Guess outputs b’ =0 | b = 1|,

the triangle inequality implies that Advy pgsis- (k) < Adv\(,\l,)(/i) +
AdV\(/a)(li) + AdV\(/g)(H) + Adv\(,é)(n) + Adv\(,s)(m).
Informally, we argue that:

1. HH = H, — H; ~ Hsy because a uniform random permutation on a
memoryless channel does not change any probabilities;
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2. Hp = H3 — H,; ~ Hjz because our choice of by,...,b;r and random
permutations equal the channel by Lemma 7;

3. H3 ~ H, because P is a PRP;

4. Hy ~ Hj because P is a PRP;

5. Hs ~ Hg PKES™ is secure due to Corollary 6 and because of Lemma 8.

Distribution H; can be specified as follows:
H, =¢Y

1: pk* = (pk, f) — PKStS*.Gen(1")
2: forj:=12,...,N:

3: dj + Caqi(x)

4: return ((di,...,dn), pk")

Indistinguishability of H; and
Hy

pk* = (pk, f) < PKStS™.Gen(1")

Lines 1 to 4 in PKStS*.Enc

5: P « Perms

6: return ((dp(),...,dpw)), pk")
If |[DoUD;| < N, i.e. a document was sampled twice or |Dy|/|D| & [1/3,2/3],
the system only outputs the sampled documents. Hence H; equals Hs in this
case. In the other case, we first permute the items before we output them.

But, as P is a uniform random permutation and the documents are drawn
independently from a memoryless channel, we have

Ef[dl’ ...,dy are drawn| = 1;1¥[dp(1), ..., dp(yy are drawn].
As pk is not used in these hybrids, H; = H> follows.

Indistinguishability of Hs and
H3

pk* = (pk, f) < PKStS*.Gen (1)

Lines 1 to 4 in PKStS*.Enc

5: P « Perms; P’ « Perms; ky < H.Gen(1")

61 b1,ba,....bL — D{y n,.1)

7: return (generate(Do U D1, f,b1,...,br, P, P'), pk*)

// generate(. .., P, P’) uses the permutations P, P’

If |[DoUD;| < N, i.e. a document was sampled twice or |Dy|/|D| & [1/3,2/3],
the system only outputs the sampled documents. Hence Hs equals Hg in this
case. If |Dg U D1| = N, Lemma 7 shows that Hs equals Hs.
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Indistinguishability of H; and
Hy

pk* = (pk, f) — PKStS".Gen(1")
Lines 1 to 4 in PKStS*.Enc
5: kp «— P.Gen(1%); P’ « Perms; ki «— H.Gen(1")
6: b1,b2,...,b0 « D(yno.1)
7: return (generate(Do U D1, f,b1,...,br, ke, P'), pk*)
/| generate(. .., P') uses the permutation P’
We will construct a distinguisher Dist on the PRP P with Advpil p o (k) =

AdV\(/g)(Hl). Note that such a distinguisher has access to an oracle that either
corresponds to a truly random permutation or to P.Eval, for a key k& «
P.Gen(1%).

The PRP-distinguisher Dist simulates the run of W. It first chooses a key-
pair (pk, sk) < PKStS*.Gen(1%). It then simulates W. Whenever the warden W
makes a call to its decoding-oracle PKStS*.Dec, it computes PKStS*.Dec(sk, -)
(or L if necessary). In order to generate the challenge sequence d upon the
message m, it simulates the run of PKStS*.Enc and replaces every call to P or
P.Evaly, by a call to its oracle. Similarly, the bits output by PKES*.Enc(pk, m)
are ignored and replaced by truly random bits distributed according to
D?N,|D0|,L)' If the oracle is a truly random permutation, the simulation yields
exactly H3 and if the oracle equals P.Evaly, for a certain key k, the simulation
yields Hy. The advantage of Dist is thus exactly Adv\(,i) (k). As P is a secure
PRP, this advantage is negligible and H3 and H, are thus indistinguishable.

Indistinguishability of H, and

5

pk* = (pk, f) — PKStS™.Gen(1")
Lines 1 to 4 in PKStS*.Enc
5: kp <« P.Gen(1");kp «— P.Gen(1"); kny < H.Gen(1%)
6: bi,ba,...,br « Din.no.1)
7: return (generate(Do U D1, f,b1,...,br, ke, kp), pk™)
We will construct a distinguisher Dist on the PRP P with Advpil p (k) =

Adv\(,é)(m). Note that such a distinguisher has access to an oracle that either
corresponds to a truly random permutation or to P.Eval, for a key k& «
P.Gen(1%).

The PRP-distinguisher Dist simulates the run of W. It first chooses a key-pair
(pk, sk) «+ PKStS*.Gen(1%) and a key kp < P.Gen(1%) for the PRP P. It then
simulates W. Whenever the warden W makes a call to its decoding-oracle
PKStS*.Dec, it computes PKStS*.Dec(sk,-) (or L if necessary). In order to
generate the challenge sequence d upon the message m, it simulates the run
of PKStS™.Enc and replaces every call to P’ or P.Evaly, by a call to its oracle.
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Similarly, the bits output by PKES*.Enc(pk, m) are ignored and replaced by
truly random bits distributed according to DE‘M| Dol,L)" If the oracle is a truly
random permutation, the simulation yields exactly H4 and if the oracle equals
P.Eval, for a certain key k, the simulation yields Hs. The advantage of Dist
is thus exactly Adv\(,é)(n). As P is a secure PRP, this advantage is negligible
and Hy and Hj are thus indistinguishable.

Indistinguishability of H; and
Hg = PKStS*.Enc

pk™ = (pk, f) <+ PKStS*.Gen(17)

Lines 1 to 4 in PKStS*.Enc

5: kp« P.Gen(1%); kp < P.Gen(1%); kn «— H.Gen(1")
6: h:=H.Evaly,(lex(Do U Dy))

7: PKES"Setup(N, No)

8: bi,bo,...,by — PKES".Enc(pk,m || ku || ke || kb || R)
9: return (generate(Do U D1, f,b1,...,br, ke, kp), pk*)

We construct an attacker A on PKES™ such that there is a negligible function
negl with Advi'pkes- (k) +negl(x) > Adv\(,s)(/i). Note that such an attacker
A has access to the decryption-oracle PKES™.Decg(-).

The attacker A simply simulates W. First, it chooses f « G,. Whenever
W uses its decryption-oracle to decrypt di,...,dy, the attacker A simulates
PKStS*.Dec(dy, . ..,dn) and uses its own decryption-oracle PKES".Decy(-)
in this. When W outputs the challenge m, the attacker A chooses all of the
parameters Dy, D1, kn, kp, kp as in PKStS*.Enc and chooses its own challenge
m:=m || ku || kp || kp || b, where h = H.Evaly, (Do U Dy).

The attacker now either receives b < PKES™.Enc(pk,m) or L random bits b
from D?N,|D0|,L) and computes

dl, .. .,dN = generate(DO U th, b17 e ,bL,kP,kI/;).

If the bits correspond to PKES*.Enc(pk,m), this simulates the stegosystem
and thus Hg perfectly. If the bits are random, this equals Hs.

After the challenge is determined, A continues to simulate W. Whenever W
uses its decryption-oracle to decrypt di,...,dy, it behaves as above. There is
now a significant difference to the pre-challenge situation: The attacker A is
not allowed to decrypt the bits b = by, ..., br. Hence, when W tries to decrypt
documents dy, .. ., dy such that f(d;) = b;, it has no way to use its decryption-
oracle and must simply return L. Suppose that this situation arises. Note that
the decryption-oracle of W would only return a message not equal to L then iff
di,...,dn = generate(Dy U Dy, f, b, kp, kp) and H.Evaly, ({d1,...,dn}) = h.

If b is a truly random string from D?N,lDo\,L)’ the sparsity of PKES™ implies
that the probability that b is a valid encoding is negligible. Hence the prob-
ability that the decryption-oracle of W would return a message not equal
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to L is negligible. It only remains to prove that the probability that the
decryption-oracle of W returns a message not equal to L is negligible if b
is a valid encryption of a message. But Lemma 8 states just that. We thus
have Advy pyes+ c(#) + negl(x) > Adv\(,s)(m). As the system PKES™ is CCA-
secure by Corollary 6, this advantage is negligible. Hence, Hs and Hg are
indistinguishable.

Hence, the stegosystem PKStS™ is SS-CCA-secure on C. O
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Abstract. In Crypto 2017, Auerbach et al. initiated the study on
memory-tight reductions and proved two negative results on the memory-
tightness of restricted black-box reductions from multi-challenge security
to single-challenge security for signatures and an artificial hash function.
In this paper, we revisit the results by Auerbach et al. and show that for
a large class of reductions treating multi-challenge security, it is impos-
sible to avoid loss of memory-tightness unless we sacrifice the efficiency
of their running-time. Specifically, we show three lower bound results.
Firstly, we show a memory lower bound of natural black-box reductions
from the multi-challenge unforgeability of unique signatures to any com-
putational assumption. Then we show a lower bound of restricted reduc-
tions from multi-challenge security to single-challenge security for a wide
class of cryptographic primitives with unique keys in the multi-user set-
ting. Finally, we extend the lower bound result shown by Auerbach et al.
treating a hash function to one treating any hash function with a large
domain.

Keywords: Memory + Tightness + Lower bound + Uniqueness
Black-box reduction

1 Introduction

1.1 Background

Security proofs for cryptographic primitives are typically supported by the black-
box reduction paradigm. A black-box reduction R, which is a probabilistic
polynomial-time (PPT) algorithm, allows us to convert an adversary A against
some security game (or we say problem) GM; into an algorithm R+ against
another security game GMs. If breaking GMs is believed to be hard, then the
existence of R implies the security of GM;. The quality of R depends on its
tightness, which measures how close the performances of A and R4 are. The

© International Association for Cryptologic Research 2018
J. B. Nielsen and V. Rijmen (Eds.): EUROCRYPT 2018, LNCS 10820, pp. 61-90, 2018.
https://doi.org/10.1007/978-3-319-78381-9_3


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78381-9_3&domain=pdf
http://orcid.org/0000-0002-1198-1903

62 Y. Wang et al.

tighter a reduction is, the larger class of adversaries can be ruled out. Tightness
traditionally takes running-time and success probability into account. However,
Auerbach et al. [1] observed that some types of reductions, which are tight in
common sense, are memory-loose, meaning that they incur large increase in
memory usage when converting adversaries. For example, suppose that A use t;
time steps and m; memory units, and succeed with probability €; in GM;. Even
if R4 can succeed in GMy with probability €5 & €1 by using t3 ~ t; time steps,
it may use mg > m; memory units. If the security of GMy is memory-sensitive,
i.e., it can be broken more quickly with large memory than small memory (when
the running-time of A is reasonably long), then a memory-loose reduction does
not rule out as many attacks as expected. Recall the instance about the learning
parities with noise (LPN) problem in dimension 1024 and error rate 1/4 in [1].
A memory-loose reduction from some security game to this problem only ensures
that adversaries running in time less than 28° cannot succeed in the game. There
are many memory-sensitive problems besides the LPN problem, such as factor-
ing, discrete-logarithm in prime fields, learning with errors, approximate shortest
vector problem, short integer solution, t-collision-resistance (CR;) where ¢t > 2,
etc., as noted in [1]. When proving security of cryptographic primitives based on
these problems, memory-tightness should be seriously taken into account.

Memory Lower Bound of Restricted Reductions. Auerbach et al. initi-
ated the study on memory-tightness, and provided general techniques helping
achieve memory-tight reductions. Surprisingly, as negative results, they showed
a memory lower bound of reductions from multi-challenge unforgeability (mUF)
to standard unforgeability (UF) for signatures. The former security notion is
defined in exactly the same way as the latter except that it gives an adversary
many chances to produce a valid forgery rather than one chance. Although it is
trivial to reduce mUF security to UF security tightly in both running-time and
success probability, Auerbach et al. showed that some class of reductions between
these two security notions inherently and significantly increase memory usage,
unless they sacrifice the efficiency of the running-time. Specifically, they proved
that such a reduction must consume roughly 2(¢/(p+1)) bits of memory, where
2q is the number of queries made by an adversary and p is the number of times
an adversary is run. The class of black-box reductions they treated is restricted,
in the sense that a reduction R only runs an adversary A sequentially from
beginning to end, and is not allowed to rewind A. Moreover, R only forwards
the public keys and signing queries between its challenger and A, and the forgery
made by R should be amongst the ones generated by A. This result implies that
in practice, UF security and mUF security may not really be equivalent. As an
open problem left by Auerbach et al., it is not clear whether this result holds
when a reduction does not respect the restrictions. Moreover, this result does
not rule out the possibility that there exists a memory-tight restricted reduction
that directly derives mUF security from some memory-sensitive problem. There-
fore, it is desirable to clarify whether there exists a memory lower bound of any
natural reduction from mUF security to any common assumption.
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Auerbach et al. also showed another similar lower bound of restricted reduc-
tions from multi-challenge ¢-collision-resistance (mCR;) to standard CR; security
for an artificial hash function that truncates partial bits of its input. Here, both
security notions prevent an adversary from finding a ¢-collision (i.e., outputting
t distinct elements having the same hash value), while the mCR; (respectively,
CR;) game allows an adversary to have many chances (respectively, only one
chance) to find a t-collision. Since CR; security is memory-sensitive, this result
indicates that breaking mCR; security might be much easier than breaking CR;
security in practice. However, since the hash function they considered is spe-
cific and not collision-resistant, it is still not clear whether this result holds for
collision-resistant hash functions.

Finally, it is desirable to clarify whether there exist memory lower bounds
for cryptographic primitives in other settings, which are potentially based on
memory-sensitive problems.

1.2 Our Results

We revisit memory-tightness on black-box reductions, and show several lower
bound results.

Lower Bound for Unique Signatures. In [6], Coron proved a tightness lower
bound of black-box reductions from the security of unique signatures [10,19,20],
in which there exists only one valid signature for each pair of public key (not
necessarily output by the key generation algorithm) and message, to any non-
interactive (computational) assumption. Later, Kakvi and Kiltz [15] and Bader
et al. [4] respectively fixed a flaw in the proof and improved the bound. The
reductions considered in these works are “natural” reductions, in the sense that
they run adversaries only sequentially.

Although the study on the tightness of reductions for unique signatures
has a long history, memory-tightness of such reductions has never been taken
into account until [1], and it is still unclear, when considering natural reduc-
tions or reducing the security of unique signatures to common assumptions,
whether memory-tightness is achievable. In our work, we focus on natural reduc-
tions for unique signatures from the angle of memory, and prove that loss of
memory-tightness is inevitable when reducing their mUF security to computa-
tional assumptions. Specifically, we show the existence of a memory lower bound
of any natural reduction from the mUF security of unique signatures to any com-
putational assumption (rather than only UF security).! Here, a natural black-box
reduction can interact with its challenger in any way it wants, and can adap-
tively rewind an adversary. We do not allow reductions to modify the internal
state of an adversary, which is a very natural restriction. Similarly to [1], the
bound is roughly £2(¢/(p+1)) bits of memory, where 2q is the number of queries
made by an adversary and p is the number of times an adversary is rewound.
This result indicates that for a unique signature scheme, any natural reduction

! Note that all the memory-sensitive problems discussed in [1] fall under the notion
of computational assumptions.
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from its mUF security to a memory-sensitive problem may not rule out as many
attacks as expected. Therefore, when using a unique signature scheme based on
a memory-sensitive problem in practice, one should make its security parameter
larger than indicated by traditional security proofs. As far as we know, this is the
first negative result on memory-tight reductions to any computational assump-
tions, and also the first one treating memory-tightness of natural reductions.
Moreover, we give our result in a generalized way so that it also captures some
other assumptions that do not fall under the definition of computational assump-
tions. By slightly modifying our proof, we can also show memory lower bounds
for the notions of verifiable unpredictable functions (VUFs) and re-randomizable
signatures, which are more general primitives and hence capture more instanti-

ations (e.g., [13,19,20,23]).

Lower Bound for Unique-Key Primitives in the Multi-user Setting.
Security notions of cryptographic primitives are usually considered in the single-
user setting, where an adversary only sees one challenge public key. However, in
practice, an attacker may see many public keys and adaptively corrupt secret
keys. Hence, considering security of primitives in the multi-user setting [2,3] is
necessary. In [4], Bader et al. showed that in this setting, it is impossible to avoid
loss of tightness when deriving the security of unique-key primitives, in which
there exists only one valid secret key for each public key, from non-interactive
assumptions.

In this work, we give the first negative result on memory-tightness in the
multi-user setting. Specifically, we show a memory lower bound of restricted
black-box reductions from multi-challenge one-wayness in the multi-user set-
ting (mU-mOW) to standard one-wayness in the multi-user setting (mU-OW)
for unique-key relations. Compared with [1], the reductions we treat are less
restricted. We only require them to forward the public keys and corruption
queries between the challengers and adversaries, while they can forge secret keys
in any way they want (i.e., a forgery is not necessarily amongst the ones output
by an adversary). The bound is roughly 2(max{q/(p+2),n/(p+2)}), where 2¢
is the number of queries, n is the number of users, and p is the number of rewind-
ing procedures. Since unique-key relations are very fundamental primitives, from
this result, we can easily derive lower bounds for a large class of primitives
with unique keys (including public key encryption (PKE) schemes, signatures,
trapdoor commitment schemes (with collision-resistance), etc.), which capture
many constructions (e.g., [5,7,8,12,14,17,18,22,23]). These results imply that
for unique-key primitives in the multi-user setting, the gaps between their multi-
challenge security notions and single-challenge security notions might be wider
than indicated by conventional security proofs via restricted reductions.

As a by-product result, our result can be extended for primitives with re-
randomizable keys [4], where secret keys can be efficiently re-randomized and
the distribution of a re-randomized key is uniform.

Lower Bound for Large-Domain Hash Functions. Finally, we revisit the
memory lower bound of restricted reductions from mCR; security to CR; security
for an artificial hash function shown in [1]. We firstly show a streaming lower
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bound for all the CR; secure large-domain hash functions. Specifically, we show
that determining whether there exists a t-collision in a data stream consumes
large memory. Following from this fact, we extend the result in [1] to a lower
bound for all the large-domain hash functions. Here, a hash function is said to
have a large domain if its range is negligibly small compared with its domain
(e.g., H: {0,1}2* — {0,1}* where A is the security parameter). It is a natu-
ral property satisfied by most practical hash functions. The bound is roughly
2(min{(q — k)/(p + 1)}) where ¢ is the number of queries, « is the length of
the hash key, and p is the number of rewinding procedures. Since CR; security
(where t > 2) is memory-sensitive, this result implies that for any natural hash
function, its mCR; security directly derived from its CR; security via restricted
reductions does not rule out as many attacks as its CR; security does in practice.

1.3 High-Level Ideas

Like in [1], our lower bound for unique signatures follows from a streaming lower
bound result implying that determining the output of a specific function G(y)
consumes large memory. Here, y is a data stream that does not occupy local
memory and can be accessed sequentially. We construct an inefficient adversary
A, (storing y) breaking the mUF security of any unique signature scheme iff
G(y) = 1. Let R be a black-box reduction from mUF security to a cryptographic
game GM. R4 is likely to succeed in GM when G(y) = 1. On the other hand,
when G(y) = 0, we use the meta-reduction method to show that R4 will fail.
Roughly, we construct a PPT simulator S, that is indistinguishable from A, due
to uniqueness. If R4 succeeds in GM, then the PPT algorithm RS succeeds in
GM as well, which gives us the conflict. As a result, we can obtain an algorithm
that determines G(y) with high probability by simulating the game GM and
RAv. Such an algorithm must consume large memory due to the streaming
lower bound. Moreover, A, can be simulated by accessing the stream y with
small memory usage. Therefore, R must use large memory if simulating the
challenger in GM does not consume large memory. This is the case in most
computational assumptions (including all the memory-sensitive problem noted
in [1]), where the challenger saves an answer, which only occupies small memory,
when sampling a challenge, and checks whether the final output of an adversary
is equal to that answer.

The lower bound of restricted reductions from mU-mOW security to mU-OW
security for unique-key primitives is shown in a similar way by constructing an
inefficient adversary and its simulator in the mU-mOW game. However, in this
case, we face a problem that it consumes large memory to store public keys of
users when running the mU-OW and mU-mOW games. This spoils our result since
the streaming lower bound does not imply that R consumes large memory any
more. We deal with this problem by running a pseudorandom function (PRF)
to simulate random coins used to generate public keys, which is similar to the
technique used in [1] for achieving memory-tightness. Whenever a public key is
needed, we only have to run the PRF to obtain the corresponding random coin
and generate the key again, and hence there is no need to store public keys any
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more. Here, it might seem that outputs of PRF are not indistinguishable from
real random coins since an inefficient adversary is involved in the interaction.
However, we can show that the adversary can be simulated in polynomial-time
(PT) due to the uniqueness of secret keys.

Extending the lower bound result for a specific hash function in [1] to all
the large-domain hash functions satisfying CR; security (where ¢ is a constant)
involves three steps. Firstly, we prove a theorem saying that for a large-domain
hash function satisfying CR; security, there exist many hash values with more
than ¢ pre-images. Intuitively, for a large-domain hash function (using a ran-
domly chosen key), if there are few hash values with more than ¢ pre-images,
then there should exist some hash value with many pre-images. We prove that
the set of all pre-images of such a hash value is so large that ¢ randomly cho-
sen inputs are very likely to fall into this set, which conflicts with CR; security.
Therefore, we conclude that a CR; secure large-domain hash function should have
many hash values with more than ¢ pre-images. Then by exploiting this theorem
and the technique used in previous works [1,16,21], we prove the existence of
a memory lower bound for determining whether there exists a t-collision in a
stream, based on the disjointness problem [16,21]. Following from this result, we
achieve a memory lower bound of restricted reductions from mCR; security to
CR; security for large-domain hash functions.

1.4 Outline of This Paper

In Sect.2, we recall some notation and describe the computational model and
data stream model. In Sect. 3, we show a lower bound of black-box reductions
from the mUF security of unique signatures to cryptographic games. In Sect. 4, we
show a lower bound of restricted reductions from mU-mOW security to mU-OW
security for unique-key cryptographic primitives. In Sect.5, we show a lower
bound of restricted reductions from mCR; security to CR; security for large-
domain hash functions.

2 Preliminaries

In this section, we give several terminologies that are necessary to describe our
results, describe the computational model and data stream model, and recall the
disjointness problem and a streaming lower bound.

2.1 Notation and Computational Model

In this paper, all algorithms are RAMs having access to memory and registers
that each holds one word. Rewinding random bits used by RAMs is not per-
mitted, so if an algorithm wants to access previously used random bits it must
store them. If A is a deterministic (respectively, probabilistic) algorithm, then
y = A(x) (respectively, y < A(x)) means that A takes as input « and outputs
y. By A® we mean that A has access to an oracle O. By A, we mean that z is
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stored in the memory of A. We denote the code and memory consumed by A
(but not its oracle) in the worst case by LocalMem(.A), where the consump-
tion is measured in bits. negl denotes an unspecified negligible function. If Z is
a finite set, then | Z| denotes the number of (distinct) elements in Z, and z «— Z
denotes the process of sampling z at uniformly random from Z.

2.2 Data Stream Model

Now we recall stream oracles. To a stream oracle, an algorithm is allowed to make
queries to access a large stream of data sequentially, while the local memory
consumption remains small. We adopt the notation in [1] to describe stream
oracles as follows.

A stream oracle O, is parameterized by a vector y = (y1,--- ,yn) € U" where
U is some finite set. Whenever receiving a query, O, runs ¢ = i+1 mod n (where
i is initialized with 0), and returns y;. Let ¢ be the total number of queries. The
number of passes is defined as p = [g/n].

2.3 Disjointness Problem and Streaming Lower Bound
Now we recall the disjointness problem, which derives streaming lower bounds.
Theorem 1 ([16,21]). Let x1,z2 € {0,1}™ and DISJ(z1,x2) be defined by

1 if Ji: .’1?1[1] Z.’I?Q[Z] =1

0 otherwise ’

DlSJ(ZL’l,(EQ) = {
where (4] denotes the jth bit of zy for j € {1,--- ,n} and b € {0,1}. Then any
two-party protocol (P1, Py), such that Pr[DISJ(x1, z3) « (Pi(21) = Pa(x2))] > ¢
holds for some constant ¢ > 1/2 and every x1,x9 € {0,1}", must have commu-
nication £2(n) in the worst case. Here, by DISJ(x1,x2) «— (Pi(x1) = Pa(z2))
we mean that the interaction between Py and Py respectively on input x1 and xs
outputs DISJ(x1, x2).

In [1], Auerbach et al. gave a streaming lower bound result, which is a corol-
lary of prior works [16,21] based on the disjointness problem. It shows that
determining whether the second half of a stream contains an element not in
the first half requires large memory. We now follow [1] to define G(y), where
Yy = y4]|y, and y;,y, € U?, and recall the streaming lower bound.

G(y) _ {1 if HJ Vi : y2[ﬂ 7& yl[z]

0 otherwise

Theorem 2. Let B be a probabilistic algorithm and X be a (sufficiently large)
security parameter. Assuming that there exists some constant ¢ > 1/2 such that
Pr[B% (1*) = G(y)] > ¢ holds for polynomials ¢ = q(A\) and n = n()\), and all
y € ({0,1}™)%9 (respectively, y € ({i}",)??). Then we have LocalMem(B) =
2(min{q/p, 2" /p}) (respectively, LocalMem(B) = 2(min{q/p,n/p})), where p
1s the number of passes B makes in the worst case.
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The above theorem is slightly different from the one in [1], in the sense that we
let y € ({0,1}")%7 or y € ({i}"1)?? (instead of y € U?? for all sufficiently large
q and |U|), and require ¢ and n be polynomials in A\. However, the proof for the
streaming lower bound in [1, Appendix A] can be directly applied to prove the
above theorem. We refer the reader to [1, Appendix A] for details.

3 Lower Bound of Reductions from the mUF Security
of Unique Signatures to Cryptographic Games

In this section, we show a memory lower bound of black-box reductions from the
mUF security of unique signatures to assumptions captured by cryptographic
games. We start by recalling the definition of unique signatures and mUF security,
and then show the lower bound.

3.1 Unique Signatures and mUF Security
We now recall the definition of (digital) signatures.

Definition 1 (Digital signature). A signature scheme consists of PT algo-
rithms (Gen, Sign, Verify). (a) Gen is a probabilistic algorithm that takes as input
1%, and returns a public/secret key pair (pk, sk). (b) Sign is a probabilistic algo-
rithm that takes as input a secret key sk and a message m € {0,1}° where
0 = §(N\) is some polynomial, and returns a signature o. (c) Verify is a deter-
ministic algorithm that takes as input a public key pk, a message m, and a
signature o, and returns 1 (accept) or 0 (reject).

A signature scheme is required to satisfy correctness, which means that
Verify,,.(m,0) = 1 holds for all X € N, all (pk, sk) « Gen(1Y), all m € {0,1}°,
and all o — Signgy,(m).

Next we recall the definition of unique signatures, in which there exists only
one valid signature for each pair of public key (not necessarily output by Gen(1*))
and message.

Definition 2 (Unique signature [19]). A signature scheme (Gen, Sign, Verify)
is said to be a unique signature scheme if for all A € N, all pk (possibly out-
side the support of Gen), and all m € {0,1}°, there exists no pair (o,0') that
simultaneously satisfies o # o' and Verify,, (m, o) = Verify , (m,o’) = 1.

Now we recall mUF security. In the mUF game, an adversary has many
chances to produce a valid forgery rather than one chance. Although mUF secu-
rity can be tightly reduced to UF security straightforwardly in common sense,
it is shown in [1] that restricted reductions between these two security notions
inherently require increased memory usage.

Definition 3 (mUF [1]). A signature scheme (Gen,Sign,Verify) is said to
be mUF secure if for any PPT adversary A, we have Adviye(\) =
Pr[CH outputs 1] < negl(X\) in the following game.
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1. The challenger CH sets w = 0 and Q = 0, samples (pk,sk) «— Gen(1*),
and runs A on input (1*,pk). A may make adaptive signing and verification
queries to CH, and CH responds as follows:

— On receiving a signing query m, CH computes o < Sign . (m), adds m to
Q, and sends o to A.
~ On receiving a verification query (m*,o*), if Verify, (m*,0*) = 1 and
m* ¢ Q, CH sets w=1.
2. At some point, A makes a stopping query stp to CH, and CH returns w.

The definition of UF security is exactly the same as the above one except that A

is allowed to make only one verification query and the advantage of A is denoted
by Adv{jr(\).

3.2 Lower Bound for Unique Signatures

Before giving the main theorem, we recall the definition of cryptographic games.

Definition 4 (Cryptographic game [11]). A cryptographic game GM con-
sists of a (possibly inefficient) random system (called the challenger) CH and a
constant c. On input security parameter 1, CH(1%) interacts with some adver-
sary A(1*), and outputs a bit b. This interaction is denoted by b +— (A(1*) =
CH(1Y)), and the advantage of A in GM is Adviy(A) = Pr[l — (A(1*) =
CH(1M)] —c.

A cryptographic game GM = (CH,c) is said to be secure if for any PPT
adversary A, we have Advgy(\) < negl(\).

All commonly used assumptions and most security games in cryptography fall
under the framework of cryptographic games. We call a cryptographic game
GM = (CH, ¢) a computational assumption if ¢ = 0.

Black-Box Reduction. Now we follow [1] to describe black-box reductions.
Unlike in [1], we do not fix the random tape of an adversary, and do not give
any restriction on the queries made by a reduction.?

Let R be a black-box reduction from GM; to GMsy. We write R to mean that
R has oracle access to a (stateful) adversary A playing game GM;. Whenever
receiving a query from R, A returns the “next” query to R. R is not able
to modify the current state of A (i.e., A runs sequentially), but is allowed to
adaptively rewind A to previous states.

Definition 5 (c-black-box reduction). Let GM; and GMy be cryptographic
games and ¢ > 0 be a constant. An oracle-access PPT machine R") is said to be
a c-black-box reduction from GM; to GMa, if for any (sufficiently large) security
parameter A and any (possibly inefficient) adversary A, we have Advg\jz A\ >
¢ Advgy, (V).

2 Auerbach et al. requires a reduction to preserve the advantage of an adversary even
if the random tape of the adversary is fixed. However, we observe that this restriction
is not necessary in their work as well, which we will discuss after giving the proof.
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Like many previous works (e.g., [1,4,6,15]), we do not consider reductions that
can modify the current state of an adversary. This is a natural restriction, which
is respected by most black-box reductions.

We now give a theorem showing a memory lower bound of ¢,-black-box
reductions from the mUF security of unique signatures to cryptographic games
GM = (CH, ¢q), where ¢, < 1/2 and ¢, 4+ ¢4 > 1/2. When ¢, = 0, our result cap-
tures ¢,-black-box reductions where ¢, > 1/2 to any computational assumption.
When ¢, = 1, it captures 1-black-box reductions to any cryptographic game such
that ¢, < 1/2.3

Theorem 3. Let N\ be a (sufficiently large) security parameter, X =
(Gen, Sign, Verify) be a unique signature scheme with message length §, GM =
(CH,cq) be a secure cryptographic game, LocalMem(CH) be the amount of
memory consumed by CH, and R be a c.-black box reduction from the mUF
security of X to the security of GM. Let ¢ = q(\) be the mazimum numbers of
signing queries and verification queries made by an adversary in the mUF game.
If (a) R rewinds the adversary for at most p = p(\) times and (b) ¢y < 1/2 and
¢r +c¢g > 1/2, then we have

LocalMem(R) = 2(min{q/(p+1),2°/(p+1)}) — O(log )
— LocalMem(CH) — LocalMem(Verify).

Roughly, this theorem implies that when the maximum number of signing queries
made by an adversary in the mUF game is very large, R must consume large
memory unless it rewinds .4 many times, which increases its running-time.

High-Level Idea. We firstly construct an inefficient adversary A, where
y=(y1, - ,Y2q)- Ay makes signing queries yi,- - - , ¥y, checks the validity of the
answers, and then makes verification queries (yq+1,07), -, (y2¢,0,) which are
generated by using brute force. Consider the interaction R4v (1*) = CH(1*).
When G(y) = 1 (see Sect.2.3 for the definition of G), we have {y,4:}i, €
{yi}{_,, which means that 4, is a deterministic algorithm breaking mUF secu-
rity. Since R is a black-box reduction, CH is likely to output 1 in this case.
When G(y) = 0, we have {yg1:}i_; € {y;};_,, in which case we can construct
a PT algorithm Sy running in the same way as A, does, except that S, uses
the answers of signing queries as its forgeries instead of exploiting brute force.
Due to uniqueness, S, perfectly simulates A, . If CH outputs 1 with probability
that is non-negligibly greater than ¢, in the interaction with RAv | then we have
a PPT algorithm RSv breaking the security of GM, which gives us the conflict.
Therefore, CH is likely to output 0 when G(y) = 0.

Then we can construct an algorithm B with access to a stream y that sim-
ulates the interaction R4 (1*) = CH(1*) and outputs G(y) with high proba-
bility. According to Theorem 2, the memory consumed by B is inherently large

3 There are several typical cryptographic games with 0 < cg < 1/2, such as recipient-
anonymity for IBE schemes [9] and one-wayness for encryption schemes with con-
stantly large message spaces.
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(to some extent). Moreover, although A, consumes a large amount of memory to
store y, B does not have to use large memory when simulating A, by accessing
its stream. As a result, if the memory consumed by CH is small (which is often
the case in computational assumptions), then R must consume large memory.

Proof (of Theorem 3). Assuming the existence of the reduction R stated in
Theorem 3, we show the existence of a probabilistic algorithm B such that
Pr[G(y) « B% (1M)] > c for all y = (y1,- -+ ,y24) € ({0,1}°)%7 and some con-
stant ¢ > 1/2 by giving hybrid games.

Game 0: In this game, R has access to an adversary A, and interacts with CH,
where Ay runs as follows.

1. On receiving (1*,pk), A, stores (1*, pk) and makes a signing query y;.

2. Fori=1,---,q — 1, on receiving the answer o; to the ith signing query, if
Verify,.(vi, 0i) # 1, Ay aborts. Otherwise, A, makes a signing query ;1.

3. Onreceiving the answer o, to the gth signing query, if Verify,, (y4,04) # 1, Ay
aborts. Otherwise, A, exhaustively searches o} such that Verify,, (y,+1,07) =
1, and makes a verification query (yq+1,07).

4. For i = 1,---,q — 1, when invoked (with no input) for the ith time, A,
exhaustively searches o7, ; such that Verify,; (yg4it1,0; ;) = 1, and makes a
verification query (yq+it+1,0741)-

5. When invoked (with no input) for the gth time, A, makes a stopping query
stp.

We now show the following lemma.

Lemma 1. Pr[G(y) « (RY (1*) = CH(1M))] > ¢ for all y € ({0,1}°)%7 and
some constant ¢ > 1/2 in Game 0.

Proof (of Lemma 1). Firstly, we show the existence of a PT algorithm S, per-
fectly simulating A, on condition that G(y) = 0. S, runs in the same way as A,
except that it uses the answers of the signing queries as its verification queries.
Formally, it runs as follows. (Below, the difference from A, is emphasized.)

1. On receiving (1%, pk), Sy stores (1%, pk) and makes a signing query y;.

2. For i =1,--- ,q — 1, on receiving the answer o; to the ith signing query, if
Verify,,.(yi, 0i) # 1, Sy aborts. Otherwise, Sy stores (y;, 0;) in its internal list
L (initialized with §), and makes a signing query ;1.

3. On receiving the answer o, to the gth signing query, if Verifypk(yq, oq) # 1,
Sy aborts. Otherwise, S, stores (yq,04) in L, searches a pair (m,o) in L
such that m = yg4+1, and makes a verification query (m, o). If the searching
procedure fails, S, aborts.

4. For i = 1,---,q — 1, when invoked (with no input) for the ith time, S,
searches a pair (m,o) in L such that m = ygyi41, and makes a verification
query (m, o). If the searching procedure fails for some i, Sy aborts.

5. When invoked (with no input) for the gth time, S, makes a stopping query
stp.
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When G(y) = 0, we have {y,+:}?_; C {y;}._,, which means that the searching
procedures executed by S, (in Steps 3 and 4) will not fail. Moreover, due to the
uniqueness of X, the verification queries made by S, are exactly the same as
those made by A,. Hence, Sy perfectly simulates 4, in the view of R.

Due to the security of GM, we have Advg,\j,‘y A = Advg,\jy (A) < negl(N)
when G(y) = 0, which implies Pr[l « (R4 (1*) = CH(1*)) | G(y) = 0] — ¢, <
negl()), i.e., Pr[0 « (R4 (1*) = CH(1")) | G(y) = 0] > 1 — ¢, — negl(\). On
the other hand, when G(y) = 1, there exists some 1 < j < ¢ such that y,1; ¢
{yi}{_,, which implies AdvﬁﬂF()\) = 1. Since R is a ¢q-black-box reduction,
we have Pr[l « (R4 (1*) = CH(1Y)) | G(y) = 1] — ¢4 > ¢,. Since ¢, < 1/2,
¢r+cg > 1/2, and A is sufficiently large, there exists some constant ¢ > 1/2 such
that Pr[G(y) « (R (1) = CH(1*))] > ¢ for all y € ({0,1}°)%?, completing
the proof of Lemma 1. a

Game 1: This game is exactly the same as Game 0 except that there exists
an algorithm A’ with access to the stream oracle O, simulating A, as follows.
(Below, the difference from A, is emphasized.)

1. On receiving (1%, pk), A’ stores (1%, pk), queries O, to obtain y;, and makes
a signing query ;.

2. For i = 1,--- ,q — 1, on receiving the answer o; to the i¢th signing query, if
Verify,. (yi, 0i) # 1, A" aborts. Otherwise, A" queries Oy to obtain y;11 and
makes a signing query ;1.

3. On receiving the answer o, to the gth signing query, if Verifypk(yq, oq) # 1,
A’ aborts. Otherwise, A’ queries Oy to obtain yq41, exhaustively searches o]
such that Verify,; (y441,07) = 1, and makes a verification query (y,41,07)-

4. For i = 1,---,q — 1, when invoked (with no input) for the ith time,
A’ queries Oy to obtain y,iiy1, exhaustively searches o, such that
Verify, . (Yg+i+1,0741) = 1, and makes a verification query (yg+i+1,071)-

5. When invoked (with no input) for the gth time, A" makes a stopping query
stp.

Whenever R executes a rewinding procedure, A’ makes another pass on its
stream so that it can access the message for the next signing or verification
query. Since A’©v perfectly simulates Ay, we immediately obtain the following
lemma.

Lemma 2. Pr[G(y) « (RA™ (1N) = CH(1IMN)] > ¢ for ally € ({0,1}°)%7 and
some constant ¢ > 1/2 in Game 1.

Game 2: This game is exactly the same as Game 1 except that there exists a
stream-access algorithm B that simulates CH, R, and A’®v and returns the
output of CH. Since the view of R does not change at all, we have the following
lemma.

Lemma 3. Pr[G(y) « B9 (1")] > ¢ for all y € ({0,1}°)?? and some constant
¢>1/2 in Game 2.
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Since B makes p + 1 passes on its stream in total, according to Theorem 2
and Lemma 3, we have

LocalMem(B) = 2(min{q/(p + 1)},2°/(p + 1)).

Furthermore, the memory used to simulate CH and A is O(logq) +
LocalMem(CH)+LocalMem(Verify), where O(log ¢) is the amount of memory
used to record ¢ and the index of the next query A’ will make. Therefore, we
have

LocalMem(B) = O(LocalMem(R)) + O(log q)
+ LocalMem(CH) + LocalMem Verify).

Combining the above two bounds completes the proof of Theorem 3. O

Remark on Security Parameter. Theorem 3 holds only when the security
parameter A is sufficiently large, while one may wonder why memory-tightness
makes sense when A is already required to be very large. In fact, A only has to be
large enough to ensure ¢, + Advgljy (A) < 1/2 in the proof of Lemma 1. When
cg is small (e.g., ¢ = 1/4), it is obvious that ¢, —&—Advg,\jy (M) < 1/2 should hold
even if \ is small (to some extent) and R may consume large memory, due to
the security of GM. Therefore, A is not necessarily very large unless ¢, is very
close to 1/2.

Remark on Advantage-Preserving Reductions. In [1], it is required that
the black-box reductions are advantage-preserving, which means that they
should work well for adversaries with fixed random tapes. However, we observe
that this restriction is not necessary. The reason is that we can treat adver-
saries with fixed random tapes as deterministic ones, for which any black-box
reduction should work well. Furthermore, although a deterministic adversary
consumes large memory in this case (compared with an adversary with fixed
random tape), simulating it with stream does not, hence our result is not spoiled.
The same argument is made for our results in other sections.

Remark on Reductions to UF Security. Auerbach et al. [1] showed a lower
bound on the memory usage of restricted reductions from mUF security to UF
security. A restricted reduction forwards the public keys generated by CH to
Ay, and forwards the signing queries y and one of the forgery made by A, to
the challenger CH in the UF game. One can see that C’H uses large memory to
store y so that it can check whether R4 succeeds later. Since LocalMem(CH)
is very large in this case, the result in [1] is not directly captured by Theorem 3.
However, one can easily modify our proof by letting CH in Game 2 access to
the stream y instead of storing y. By doing this, LocalMem(CH) can remain
small when R forwards signing queries from A to CH, and hence, the lower
bound in [1] or ones in other similar cases can be derived from our result (when
treating unique signatures). We do not take this into account in our formal proof
only for simplicity.
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Re-randomizable Signatures and VUFs. If we give an additional restric-
tion that a reduction does not control the random tape of an adversary, i.e.,
an adversary uses real random coins (but not ones from the reduction), then
by slightly modifying our proof, we can also show a memory lower bound
for re-randomizable signatures [13,23], where signatures can be efficiently re-
randomized (we refer the reader to [13] for the formal definition). In this case,
we only have to let both the inefficient adversary and the simulator re-randomize
the forged signatures so that R cannot distinguish them.

We can also extend our result for the notion of VUF's [19,20], which is exactly
the same as the notion of unique signatures except that a proof (which is not
necessarily unique) is needed when verifying the validity of a signature. We omit
the details since the extension is straightforward.

4 Lower Bound of Restricted Reductions from mU-mOW
to mU-OW for Unique-Key Cryptographic Primitives

In this section, we give a memory lower bound of restricted reductions from
mU-mOW security to mU-OW security for unique-key one-way primitives. For
simplicity, we treat a basic primitive called unique-key relation [24] and argue
that this result can be easily extended for other unique-key primitives. We start
by recalling the definition of unique-key relations and their security in the multi-
user setting, and then show the lower bound.

4.1 Unique-Key Relations

We now recall the definition of a unique-key relation. In a unique-key relation,
there exists at most one valid secret key for every public key in the support of
the key generation algorithm.*

Definition 6 (Unique-key relation). A unique-key relation consists of PT
algorithms (Gen, Check). (a) Gen is a probabilistic algorithm that takes as input
1%, and returns a public/secret key pair (pk,sk). (b) Check is a deterministic
algorithm that takes as input a public/secret key pair (pk,sk), and returns 1
(accept) or 0 (reject).

A unique-key relation is required to satisfy correctness and uniqueness.
Correctness 1is satisfied if Check(pk,sk) = 1 holds for all A € N and all
(pk, sk) « Gen(1%). Uniqueness is satisfied if for all A\ € N and all pk in the
support of Gen(1%), there exists no pair (sk,sk') that simultaneously satisfies
sk # sk’ and Check(pk, sk) = Check(pk, sk') = 1.

Now we give the definitions of the mU-mOW and mU-OW security of unique-
key relations [2,3]. In these security games, an adversary sees many public keys
and can adaptively corrupt the secret keys. It succeeds if it outputs a valid secret
key that is not corrupted.

4 Unlike the definition of unique signatures, here we do not require uniqueness for
public keys outside the support of the key generation algorithm.
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Definition 7 (mU-mOW). A wunique-key relation (Gen,Check) is said to be
mU-mOW secure if for any PPT adversary A, we have Advi, .ow(A) =
Pr[CH outputs 1] < negl(\) in the following game.

1. The challenger CH sets w = 0 and Q = (), and runs A on input 1*. Then A
may make sampling queries to CH, and CH responds as follows.
~ On receiving the ith sampling query sp, CH samples (pk;, sk;) < Gen(1*)
and sends pk; to A.
2. Then A may make adaptive corruption and verification queries to CH, and
CH responds as follows:
— On receiving a corruption query i, CH adds i to Q, and sends sk; to A.
— On receiving a verification query (i*,sk*), if Check(pk;«,sk*) = 1 and
i*¢ Q,CH setsw=1.
8. At some point, A makes a stopping query stp to CH, and CH returns w.

Definition 8 (mU-OW). mU-OW security is defined in exactly the same way as
mU-mOW security except that A is allowed to make only one verification query
and the advantage of A is denoted by Advi,_ow(N).

4.2 Lower Bound for Unique-Key Relations

In this section, we define restricted reductions from the mU-mOW security to
mU-OW security of unique-key relations and show a memory lower bound of
such reductions.

Restricted Black-Box Reductions from mU-mOW to mU-OW. Let R be
a black-box reduction from mU-mOW security to mU-OW security. As before,
we write R to mean that R has oracle access to a (stateful) adversary A
playing the mU-mOW game. Whenever receiving a query from R, A returns the
“next” query to R. R is not able to modify the current state of A (i.e., A runs
sequentially), but is allowed to adaptively rewind A to previous states.

Definition 9 (c-restricted black-box reduction from mU-mOW to
mU-OW). Let ¢ > 0 be a constant. An oracle-access PPT machine R") is
said to be a c-restricted black-box reduction from the mU-mOW security to the
mU-OW security of a unique-key relation, if for any (possibly inefficient) adver-
sary A, we have Advﬁj‘_ow()\) > ¢ Adviy_ow(N), and R respects the following
restriction.

— The public keys (pk1,--- ,pkys) that R sends to A are the ones generated by
the challenger and given to R in the mU-OW game.

— The set of corruption queries {y1,--- ,yq} made by R is the same as the set
of all corruption queries made by A.

Before showing the lower bound, we recall the definition of PRFs which will
be exploited in our proof.
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Definition 10 (Pseudorandom function (PRF)). F : {0,1}*® x
{0,139 — {0,1}N) | where k = k(N), § = §(N), and p = (\) are polyno-
mials, is said to be a pseudorandom function, if for any PPT adversary A, we
have

Advi(\) = | Pr[l — A% (1%) | k — {0,1}"] — Pr[l — A°(1")]| < negl()).

Here, O (i) returns F(k,i). O(i) returns r if there exists (i,7) in its internal list
(initiated with §). Otherwise, O(3) returns r < {0,1}* and adds (i,7) to its list.

The main theorem is as follows.

Theorem 4. Let A be a (sufficiently large) security parameter, & =
(Gen, Check), where the internal randomness space of Gen is {0,1}*, be a mU-OW
secure unique-key relation, F : {0,1}* x {0,1}* — {0,1}” be a PRF, and R be
a c.-restricted black-box reduction from the mU-mOW security to the mU-OW
security of @. Let n = n(\) be the maximum number of sampling queries and
q = q(\) be the mazimum numbers of corruption and verification queries made
by an adversary in the mU-mOW game, and U = {i}?_,. If (a) R rewinds the
adversary for at most p = p(X\) times and (b) ¢, > 1/2, then we have

LocalMem(R) = 2(max{q/(p+2),n/(p+2)}) — O(logq) — O(logn) — Kk
— max{LocalMem(Gen), LocalMem/(Check), LocalMem(F)}.

Roughly, this theorem implies that when the maximum number of users and
that of corruption queries made by an adversary in the mU-mOW game are very
large, R must consume large memory unless it rewinds A many times, which
increases its running-time.

High-Level Idea of the Proof. We firstly construct an inefficient adversary A,
where y = (y1,- -+ ,¥2q)- Ay takes as input and stores public keys pkq, - - , pkn,
makes corruption queries yi,---,yq, checks the validity of the answers, and
then makes verification queries (pky, ., sk7), -, (pky,,, sk;) generated by using
brute force. When G(y) = 1, R4 is likely to succeed in the mU-OW game,
since R is a black-box reduction and A4, is a deterministic algorithm breaking
mU-mOW security. When G(y) = 0, we can construct a PT algorithm Sy, which
runs in the same way as A, does except that S, uses the answers of corruption
queries to make verification queries. Due to uniqueness, S, perfectly simulates
A, . Since the PPT algorithm RSy is likely to fail in the mU-OW game, R4 is
likely to fail as well.

Then, similarly to the proof of Theorem 3, we can construct an algorithm B
with access to a stream y that simulates the mU-OW game with R4 and outputs
G (y) with high probability. Therefore, we can show the lower bound on memory
consumed by R since the memory consumed by B is inherently large, due to
Theorem 2. However, one may notice that B uses a large amount of memory to
store pky, - - - , pky, which spoils our result since B using large memory does not
imply R using large memory any more. We deal with this problem by using a
PRF to simulate random coins used by the challenger and running the PRF to
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output the corresponding random coin used to generate a public key when the
key is needed. In this way, B does not store the public keys anymore. Here, there
is a point that B can simulate A, efficiently by using secret keys generated by
the challenger in the mU-OW game, so that the whole interaction B simulates
only runs in polynomial-time and cannot distinguish outputs of the PRF with
real random coins.

Proof (of Theorem 4). Assuming the existence of the reduction R stated in
Theorem 4, we show the existence of a probabilistic algorithm B such that
Pr[G(y) « B9 (1")] > c for all y = (y1,* ,y24) € U?¥ and some constant
¢ > 1/2 by giving hybrid games.

Game 0: In this game, R has access to an adversary A, and interacts with the
challenger CH in the mU-OW game. A, runs as follows.

1. On receiving 1%, A, makes a sampling query sp.

2. For i =1,--- ,n — 1, on receiving pk;, A, stores pk; and makes a sampling
query sp.

3. On receiving pky,, Ay stores pk, and makes a corruption query yi.

4. Fori=1,---,q— 1, on receiving the answer sk, to the ith corruption query,

if Check(pk,,, sk;) # 1, A, aborts. Otherwise, A, makes a corruption query
Yit1-

5. On receiving the answer sk; to the gth corruption query, if Check(pk,_, sk;) #*
1, A, aborts. Otherwise, A, exhaustively searches ski such that
Verify(pk,, ., ,sk}) = 1, and makes a verification query (yq41,5k7).

6. For ¢ = 1,--- ,q — 1, when invoked (with no input) for the ith time, A,
exhaustively searches sk, ; such that Check(pk ski,,) = 1, and makes
a verification query (yg4iy1,5k7 1)

7. When invoked (with no input) for the gth time, A, makes a stopping query
stp.

Yq+i+1

We now show the following lemma.
Lemma 4. Pr[G(y) « (R* (1*) = CH(1*))] > ¢, for ally € U? in Game 0.

Proof (of Lemma 4). Firstly, we show the existence of a PT algorithm S, per-
fectly simulating A, on condition that G(y) = 0. S, runs as follows. (Below,
the difference from A, is emphasized.)

1. On receiving 1%, Sy makes a sampling query sp.

2. For i = 1,--- ,n — 1, on receiving pk;, Sy stores pk; and makes a sampling
query sp.

3. On receiving pk,, Sy stores pk, and makes a corruption query y.

4. Fori=1,---,q—1, on receiving the answer skj to the ith corruption query, if

Check(pk,,, sk;) # 1, Sy aborts. Otherwise, S, stores (y;, sk;) in its internal
list L. (initialized with (), and makes a corruption query ;1.

5. On receiving the answer sk; to the gth corruption query, if Check(pk,_, sk;) #*
1, Sy aborts. Otherwise, Sy stores (yq, sk(’J) in L, searches a pair (i*,sk) in L
such that i* = yg41, and makes a verification query (yq+1, sk). If the searching
procedure fails, Sy aborts.
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6. For ¢ = 1,---,¢ — 1, when invoked (with no input) for the ith time, S,
searches a pair (1%, sk) in L such that i* = yg4i11, and makes a verification
query (Yqti+1, sk). If the searching procedure fails for some i, S, aborts.

7. When invoked (with no input) for the gth time, S, makes a stopping query
stp.

When G(y) = 0, we have {y,+;}i; C {y:}{_;, which means that the searching
procedures executed by S, (in Steps 5 and 6) will not fail. Moreover, due to the
uniqueness of @, the verification queries made by S, are exactly the same as

those made by A,. Hence, Sy perfectly simulates A4, in the view of R.

Due to the mU-OW security of &, we have Advzj_yow(/\) = Adv?jfow()\) <
negl(\) when G(y) = 0, which implies Pr[l « (R4 (1) = CH(1Y)) | G(y) =
0] < negl(N), ie., Pr[0 « (R4 (1) = CH(1")) | G(y) = 0] > 1 — negl(\).
On the other hand, when G(y) = 1, there exists some 1 < j < ¢ such that
Yg+; ¢ {viti_,, which implies Adv’n:‘fj_mow()\) = 1. Since R is a c¢,-restricted
black-box reduction, we have Pr[l « (R4 (1*) = CH(1Y)) | G(y) = 1] > ¢,.
Since ¢, > 1/2 and X is sufficiently large, we have Pr[G(y) « (RA (1") =
CH(1*))] > ¢,, completing the proof of Lemma 4. O

Game 1: This game is exactly the same as Game 0 except that for each ¢, CH
generates the ith key pair by computing (pk;, sk;) < Gen(1*; F(k,4)) where k is
randomly chosen from {0,1}* at the beginning of the game.

Lemma 5. Pr[G(y) « (R* (1) = CH(1*))] > ¢ for all y € U*? and some
constant ¢ > 1/2 in Game 1.

Proof (of Lemma 5). Let Pr[G(y) « (R™ (1) = CH(1*))] be ¢} (respec-
tively, ¢¥) in Game 0 (respectively, Game 1). For any y, we can construct
a PPT adversary D breaking the pseudorandom property of F with advantage
AdvER(\) = |c¥ — Y| as follows.

D has access to an oracle Oy parameterized by k < {0,1}* or an oracle O
(see Definition 10 for the descriptions of O and O). D runs R4 (1*) = CH (1)
in exactly the same way as in Game 0, except that A4, receives secret keys
generated by CH from D to make verification queries, instead of using brute
force to recover them. This is possible due to the restriction that all the public
keys R sends to A are generated by CH. Furthermore, when CH requires the ith
random coin, D makes a query to its oracle and sends the answer of the query
back. If CH outputs G(y), D outputs 1. Otherwise, D outputs 0.

When the oracle is O (respectively, Oy), the view of CH is exactly the same
as its view in Game 0 (respectively, Game 1) due to the unique key property.
Therefore, we have Advig(\) = |c¥ — ¢?|. Due to the pseudorandom property
of F, we have |cf — ¢¥| < negl()\). Since X is sufficiently large, combining this
bound with Lemma 4 completes the proof of Lemma 5. O

Game 2: This game is exactly the same as Game 1 except that there exists
an algorithm A" with access to the stream oracle O, simulating A, as follows.
(Below, the difference from A, is emphasized.)
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1. On receiving 1*, A’ makes a sampling query sp.

2. Fori =1,--- ,n — 1, on receiving pk;, A’ stores pk; and makes a sampling
query sp.

3. On receiving pk,,, A’ stores pky, queries Oy to obtain y,, and makes a cor-
ruption query ;.

4. Fori=1,---,q— 1, on receiving the answer sk to the ith corruption query,
if Check(pk,,, skj) # 1, A’ aborts. Otherwise, A" queries Oy to obtain y;t1,
and makes a corruption query y;41.

5. On receiving the answer sk; to the gth corruption query, if Check(pk,,_, sk;) #*
1, A’ aborts. Otherwise, A’ queries Oy to obtain yq1, exhaustively searches
ski such that Check(pk, .,,ski) = 1, and makes a verification query
(yq-‘rl? Sk}f)

6. For i =1,---,¢ — 1, when invoked (with no input), A" queries O, to obtain
Yg+i+1, exhaustively searches sk}, | such that Check(pk sk 1) =1, and
makes a verification query (yqtit1,5k7, 1)

7. When invoked (without input) for the gth time, A’ makes a stopping query
stp.

q+1?

Yq+i+1)

Whenever R executes a rewinding procedure, A’ makes another pass on its
stream to obtain the index for the next corruption or verification query. Since
A'©v perfectly simulates A, , we have the following lemma.

Lemma 6. Pr[G(y) — (RA" (1) = CH(1))] > ¢ for all y € U and some
constant ¢ > 1/2 in Game 2.

Game 3: This game is the same as Game 2 except that there exists a stream
access algorithm A”®v that runs k « {0, 1}*, stores k, simulates CH, R, and
A’© and generates the ith key pair by computing (pk;, sk;) < Gen(1*; F(k,1)).
When R makes a verification query (i, sk*), CH makes another pass on the
stream y through A", and checks whether ¢ € {y1,--- ,y,} and Check(pk;, sk*) =
1.5 If the check works, CH outputs 1. Otherwise, CH outputs 0. Then A" returns
the output of C’H. Since the view of CH in this game is identical to its view in
Game 2, we have the following lemma.

Lemma 7. Pr[G(y) « A"%(1N)] > ¢ for all y € U?? and some constant
¢>1/2 in Game 3.

Game 4: In this game, there exists an algorithm B® which runs in exactly
the same way as A”P except that it does not store (pk;)"_, generated by
CH. Instead, whenever B® needs to see pk;, B® computes (pk;,sk;)
Gen(1*;F(k,4)). Since the view of CH in Game 4 is identical to its view in
Game 3, we have the following lemma.

Lemma 8. Pr[G(y) « B (1*)] > ¢ for ally € U*? and some constant ¢ > 1/2
in Game 4.

5 According to the second restriction in Definition 9, the corruption queries R has
made are {y1, - ,Yq}-
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Since B makes p + 2 passes on its stream in total, according to Theorem 2
and Lemma 8, we have

LocalMem(B) = 2(min{q/(p + 2),n/(p + 2)}).

Furthermore, the memory used to simulate CH, A”, and random
coins is O(logq) + O(logn) + max{LocalMem(Gen), LocalMem/(Check),
LocalMem(F)} + x, where O(log q) + O(logn) is the amount of memory used
to record ¢, n, and the index of the next query A” will make. Therefore we have

LocalMem(B) = O(LocalMem(R)) + O(log q) + O(logn) + &
+ max{LocalMem/(Gen), LocalMem(Check), LocalMem(F)}.

Combining the above two bounds completes Theorem 4. O

Remark on Security Parameter. Similarly to the case of Theorem 3, Theo-
rem 4 holds only when the security parameter A is sufficiently large, while one
may wonder why memory-tightness makes sense when A is already required to
be large. In fact, A only has to be large enough to ensure 1 — Advzjfow(/\) —
AdvZi(\) > 1/2 and ¢, — AdvBg(\) > 1/2 in the proofs of Lemmas 4 and 5.
When ¢, is large, these two inequations should hold even if A is small (to some
extent) and RS and D may consume large memory, due to mU-mOW security
and pseudorandomness. Therefore, A is not necessarily very large unless ¢, is
very close to 1/2.

Lower Bound for Other Unique-Key and Re-randomizable Primitives.
It is not hard to see that the above result can be easily extended to lower bound
results for (one-way secure) PKE schemes, signatures, and many other primitives
in the multi-user setting, in which key pairs satisfy unique-key relations. Since
unique-key primitives capture many existing natural constructions [5,7,8,12,
14,17,18,22,23], a very wide class of memory lower bounds in the multi-user
setting can be directly derived from our result stated in Theorem 4. For ease of
understanding, we take unique-key PKE schemes and unique-key signatures as
examples in Appendix A. Concretely, we give the definitions of unique-key PKE
schemes and unique-key signatures and their security notions in the multi-user
setting. Then we give two corollaries showing that in this setting, reductions
from multi-challenge security to single-challenge security for these two types of
primitives must consume large memory unless they increase running-time.

Similarly to the case of unique signatures, this result can also be extended
for primitives with key re-randomization [4] if reductions do not control random
tapes of adversaries.5

5 Lower Bound of Restricted Reductions from mCR;
to CR; for Large-Domain Hash Functions

In [1], Auerbach et al. showed a memory lower bound of restricted reductions
from mCR; security to CR; security for an artificial function which just truncates

6 Similarly to the definition of unique-key relations, we do not require re-randomization
for public keys outside the support of the key generation algorithm.
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last A bits of its input, while such a function does not satisfy CR; security itself.
In this section, we extend this result to a lower bound for all the large-domain
hash functions satisfying CR; security (where ¢ is a constant). To achieve the
goal, we prove a streaming lower bound with respect to hash functions.

5.1 Hash Functions

In this section, we define large-domain hash functions, recall mCR; security and
CR; security, and show a theorem for large-domain hash functions.

Definition 11 (Large-domain hash function). A hash function H : {0,1}" x
{0,1}% — {0,1}?, where k = k(\), § = §(N\), and p = p(\) are polynomials, is
said to have a large domain if 2°7° < negl()).

Definition 12 (mCR; [1]). A hash function H : {0,1}* x {0,1}° — {0,1}*
is said to satisfy mCR; security (where t is some constant independent of the
security parameter ), if for any PPT adversary A, we have AdvﬁCRt()\) =
Pr[CH outputs 1] < negl(X\) in the following game.

1. The challenger CH sets Q = 0, randomly chooses k «— {0,1}*, and runs A
on input (1, k). A may make adaptive input queries to CH. Every time on
receiving a query m € {0,1}° from A, CH adds m to Q.

2. At some point, A makes a stopping query stp to CH. If there exists {m}}!_, C
Q such that Hg(m3) = -+ = Hg(m}) and |[{m;}_i| = t, CH outputs 1.
Otherwise, CH outputs 0.

Definition 13 (CR; [1]). CR; security is defined in exactly the same way as that
of mCRy security, except that A is allowed to make at most t input queries and
the advantage of A is denoted by Adv“éRt()\).

Next we give a theorem that will be used to prove a streaming lower bound
later. This theorem shows that for a large-domain hash function satisfying CR;
security, there exist “many” hash values with more than ¢ pre-images. Intuitively,
if this theorem does not hold, then there will be some hash value with many pre-
images, so that ¢ randomly chosen inputs are likely to fall into the class of these
pre-images, which breaks its CR; security.

Theorem 5. Let \ be a (sufficiently large) security parameter, H : {0,1}" x
{0,1}° — {0,1}* be a large-domain hash function satisfying CR; security, and
n = n(\) be any polynomial in . For k «— {0,1}*, the probability that there
exist more than n elements in {0, 1}? with more than t pre-images (with respect
to Hi) is 1 — negl()).

Proof (of Theorem 5). Let n’ < n and E be the event that the number of
elements in {0,1}” that have more than t pre-images is exactly n’. To prove
Theorem 5, we just need to prove Pr[E] < negl(\).

Let k « {0,1}*, m « {0,1}°, and Ey be the event that the number of pre-
images of Hy(m) is more than t. Since the number of elements in {0,1}%, the
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hash values of which respectively have less than t pre-image, is at most 2”7, we
have Pr[Ey | E] <t-2°/2% ie., Pr[Ey | E] > 1 —t-2°/2°. Let E; be the event
that Hy(m) is the ith lexicographically smallest value in {0,1}” with more than
t pre-images. Since Pr[Ey V ---V E,/ | E] = Pr[Ey | E], there must exist some
i* € {1,--- ,n'} such that

Pr[E | E] > 1/n’ - Pr[Ey | E] > (1/n) - (1 —t-2°/2%).

Now we construct a PPT adversary A in the CR; game of H. On receiving
k « {0,1}*, A randomly chooses my,--- ,m; « {0,1}°, and uses them as input
queries. Let E’ be the event that there exist some 4,5 € {1,---,t} such that
m; =m;. We have Pr[E'] <1—(1—(t—1)/2%) < O(t?/2?). Therefore, we have

Advig (\) =Pr[E A Hk(ml) = = Hg(my)]
=Pr[Hi(my) = -+ = Hg(my)] — Pr[E" AHg(my) = - - = Hg(my)]
>Pr[Hi(m1) = = Hy(my) A E] — Pr[E’]
=Pr[Hy(m1) = -+ = Hy(m¢) | E] - Pr[E] — Pr[E]
>Pr[E;- [E]" - Pr[E] - O(t?/2°)

>(1/n- (1—t-20/2%)" - Pr[E] - O(#/2).

As a result, the probability that A breaks CR; security is larger than (1/n-(1—t-
2° /20))t.Pr(E)—O(t? /2%), where t is some constant. Since (1/n-(1—t-2°/29))t >
1/nt — negl(\) and O(t2/2%) < negl(\), we have Pr[E] < negl()\), completing
the proof of Theorem 5. g

5.2 Streaming Lower Bound for Hash Functions

In this section, we give a theorem, which is another corollary of prior works [16,
21] based on the disjointness problem. It is also a variant of a streaming lower
bound shown in [1]. It shows the existence of a memory lower bound for determin-
ing whether there exists a t-collision, with respect to a CR; secure large-domain
hash function, in a data stream. Before giving the main theorem, we define the
function Fy¢(y) as follows.

Let y € ({0,1}°)%, Fu(y) be defined as Fu(y) = maxseqo1ye [{y: : H(yi) =
s}, and Fy¢(y) be defined as

1 if Fy(y) >t
0 otherwise

Fus(y) = {

Theorem 6. Let B be a probabilistic algorithm, X be a (sufficiently large) secu-
rity parameter, and H : {0,1}* x {0,1}% — {0,1}? be a large-domain hash func-
tion satisfying CR; security. Assuming that there exists some constant ¢ > 1/2
such that Pr[B% (1% k) = Fu, +(y) | k «— {0,1}*] > ¢ holds for polynomial
q=q(\) and all y € ({0,1}°)9. Then LocalMem(B) = 2((q — x)/p), where p
s the number of passes B makes in the worst case.
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Proof (of Theorem 6). Let n = |q/t]. We now construct a two-party protocol
(P1, P;) by using B as follows. Taking as input x; € {0,1}", P; samples k «
{0,1}" and sends k to Ps. If there do not exist n elements in {0,1}” with more
than ¢ pre-images for the hash function Hg(-), P aborts. Let h; be the ith
lexicographically smallest element in {0,1}” with more than ¢ pre-images, m;;
be the jth smallest pre-image of h;, and 7 be an element in {0,1}° such that
Hi(m) ¢ {h;}7—,. For i = 1,--- ,n, if the ¢th bit of z; is 1, P; adds (mij)th:/fJ
to y;. Taking as input x5 € {0,1}", for i = 1,--- ,n, if the ith bit of x5 is 1, Py
adds (mijﬁ':[t/z] to y5. Then P; and P; respectively pad y; and y, with m so
that y = y, ||y, consists of ¢ elements in total.

Then (Py, P,) starts to run B(1*,k) in multiple rounds until B stops and
returns b € {0,1}. More specifically, in each round, P; runs B(1*, k), answers
queries from B to the stream y,, and sends the local memory state of B denoted
by s to P, after all the elements in y, having been queried by B. P, runs B(1*, k)
starting from state s, answers queries from B to the stream y,, and then sends
the local memory state of B back to P, after all the elements in y, having been
queried. The final output of (P, P3) is B’s output b.

Since the probability that there exist more than n elements with more than
t pre-images is 1 — negl(\), we have Pr[DISJ(z1, x2) = Fh, «(y) | k — {0,1}"] >
1 — negl(A\) and Pr[B% (1) k) = Fu, +(y) | k < {0,1}"] > c. As a result, we
have Pr[B% (1*,k) = DISJ(zy,x2) | k « {0,1}*] > ¢ — negl()\), which implies
Pr[Pi(x1) < Pa(x2) = DISJ(x1,22)] > ¢ — negl(A). Since ¢ > 1/2, there must
exist some constant ¢/ > 1/2 such that ¢ — negl(X) > ¢ for a sufficiently large .
Therefore, (Py, P») solves the disjointness problem.

Since P, and P, have communication x + O(p - LocalMem(B)), and
Theorem 1 implies that the communication must be 2(n) = 2(|q/t]) = 2(q)
(in the worst case), we have LocalMem(B) = 2((¢ — k)/p), completing the
proof. a

5.3 Lower Bound for Large-Domain Hash Functions

In this section, we recall the definition of restricted reductions from mCR; secu-
rity to CR; security and show a memory lower bound of these reductions.

Restricted Black-Box Reductions from mCR; to CR;. Let R be a black-box
reduction from mCR; security to CR; security. As before, we write R to mean
that R has oracle access to a (stateful) adversary A playing the mCR; game.
Whenever receiving a query from R, A returns the “next” query to R. R is not
able to modify the current state of A (i.e., A runs sequentially), but is allowed
to adaptively rewind A to previous states.

Definition 14 (c-restricted black-box reduction from mCR; to CR; [1]).
Let ¢ > 0 be a constant. An oracle-access PPT machine R() is said to be
a c-restricted black-box reduction from the mCR; security to the CR; secu-
rity of a hash function, if for any (possibly inefficient) adversary A, we have

Adv?Ré()\) >c- AdVJr:CR,,(A): and R respects the following restrictions.
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— The key k that R sends to A is the one generated by the challenger and given
to R in the CR; game.
— The queries made by R are amongst the queries made by A.

Theorem 7. Let A be a (sufficiently large) security parameter, H : {0,1}" x
{0,1}° — {0,1}* be a large-domain hash function satisfying CR; security, and
R be a c,-restricted black-box reduction from the mCR; security to the CR; secu-
rity of H. Let ¢ = q(\) be the mazimum numbers of input queries made by an
adversary in the mCR; game. If (a) R rewinds the adversary for at most p = p(\)
times and (b) ¢, > 1/2, then we have

LocalMem(R) = $2(min{(q — x)/(p + 1)}) — O(log q) — LocalMem(H).

Similarly to before, this theorem implies that when the maximum number of
input queries made by an adversary in the mCR; game is very large, R must
consume large memory unless it rewinds .4 many times, which increases its
running-time.

Proof (of Theorem 7). Assuming the existence of the reduction R stated in
Theorem 7, we show the existence of a probabilistic algorithm B such that
Pr[B% (1M k) = Fu,+(y) | k — {0,1}%] > ¢, > 1/2 for all y = (y1,--- ,y,) €
({0,13%)%.

Game 0: In this game, R has access to an adversary Ay, and interacts with the
challenger CH in the mCR; game. A, runs as follows.

— On receiving (1%, k), A, makes an input query y;.

— Fori=1,---,¢g— 1, when invoked (with empty input) for the ith time, A,
makes an input query y;41.

— When invoked (with empty input) for the gth time, A, makes a stopping

query stp.
We now show the following lemma.

Lemma 9. Pr[Fy, ;(y) « (RM(1) = CH(1)] > ¢ for all y =
(Y1, ,yq) € ({0,1}%)7 in Game 0.

Proof (of Lemma 9). If Fy, (y) = 0, then CH will output 0. This is due to the
restriction that all the input queries made by R are amongst the elements in y.
On the other hand, one can see that Adv:}éRt (A) =1 when Fy, +(y) = 1. Since R

is a ¢,-restricted black-box reduction, we have Advg:y A >er- Advﬁ”CRt (A =
Cry L6, Pr[Fy, +(y) « (RA (1Y) = CH(1*))] > ¢, completing the proof of
Lemma 9. O

Game 1: This game is exactly the same as Game 0 except that there exists an
algorithm B with access to the stream y that simulates A,, CH, and R. Here,
B takes as input k < {0,1}"* from an external party and uses it as the hash key
generated by CH. Moreover, B does not store y in its local memory but queries
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Oy to obtain the ith input query y; for ¢ = 1,---,q. Whenever R executes a
rewinding procedure, B® makes another pass on its stream so that it can access
its next input query to R. Since B perfectly simulates A, , we immediately
obtain the following lemma.

Lemma 10. Pr[Fy, (y) « B (1), k)] > ¢, for all y € ({0,1}°)? in Game 1.

Since ¢, > 1/2 and B makes p + 1 passes on its stream in total, according to
Theorem 6 and Lemma 10, we have

LocalMem(B) = 2(min{(¢ — x)/(p+ 1)}).

Furthermore, the memory used to simulate CH and A, is O(logq) +
LocalMem(H), where O(log ¢) is the amount of memory used to record ¢ and
the index of the next input query A, will make. Therefore, we have

LocalMem(B) = LocalMem(R) + O(log ¢) + LocalMem(H).

Combining the two bounds completes Theorem 7. a

Remark on Security Parameter. Similarly to the case of Theorems 3 and 4,
Theorem 7 holds only when the security parameter X is sufficiently large, while
one may wonder why memory-tightness makes sense when A is already required
to be large. Notice that A is required to be large only when ¢ (in Theorem 6)
is very close to 1/2. However, it is not hard to see that when ¢, (which is the
parameter of the reduction in Theorem 7) is not close to 1/2, ¢ (in Theorem 6)
is not necessarily close to 1/2. Hence, A is not necessarily very large, unless c,
(in Theorem 7) is very close to 1/2.

6 Open Problem

The lower bound results shown in Sect. 4 and Sect. 5 only treat reductions which
respect restrictions on their queries. It is desirable to clarify whether memory
lower bounds of natural black-box reductions exist with respect to those security
games. Showing some novel streaming lower bounds based on other problems
about parity learning might be a promising way. It is also desirable to know
whether there exist memory lower bounds of reductions for the multi-challenge
security of other class of cryptographic primitives, and whether it is possible to
unify these bounds. Finally, it would be interesting to find memory lower bounds
in the random oracle model.
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A Lower Bounds for Unique-Key PKE and Signature
Schemes in the Multi-user Setting

In this section, we give the security notions of unique-key signatures and encryp-
tion schemes in the multi-user setting. Then we show two memory lower bounds
of restricted reductions, which are extensions of the result in Sect. 4.

A.1 Unique-Key PKE Schemes and Signatures

A cryptographic primitive (which can be PKE scheme, signature scheme, trap-
door commitment scheme (with collision resistance), etc.) with key generation
algorithm Gen is called a unique-key primitive if there exists some algorithm
Check such that (Gen, Check) forms a unique-key relation (see Definition 7). We
now recall the definition of PKE schemes and define unique-key signatures and
unique-key PKE schemes as follows.

Definition 15 (Public key encryption (PKE)). A PKE scheme consists of
the PT algorithms (Gen, Enc, Dec). (a) Gen is a probabilistic algorithm that takes
as input 1*, and returns a public/secret key pair (pk, sk). (b) Enc is a probabilistic
algorithm that takes as input a public key pk and a message m € {0, 1}‘5, and
returns a ciphertext ct. (c¢) Dec is a deterministic algorithm that takes as input
a secret key sk and a ciphertext ct, and returns a message m € {0,1}° or L.

A PKE scheme is required to satisfy correctness, which means that Decgy(ct)
= m holds for all X € N, all (pk,sk) «— Gen(1*), all m € {0,1}°, and all
ct «— Encyi(m).

Definition 16 (Unique-key signature and PKE). A signature (respectively,
PKFE) scheme (Gen, Sign, Verify) (respectively, (Gen, Enc, Dec)) is said to have the
unique-key property if there exists a deterministic PT algorithm Check such that
(Gen, Check) is a unique-key relation.

Now we define the security notions for unique-key signatures and PKE
schemes. We denote mUF security and UF security in the multi-user setting by
mU-mUF and mU-UF respectively. Moreover, we overload the notions mU-mOW
and mU-OW (defined for unique-key relations) so that they apply to PKE
schemes.

Definition 17 (mU-mUF). A unique-key signature scheme (Gen,Check, Sign,
Verify) is said to be mU-mUF secure if for any PPT adversary A, we have
Advur(N) = Pr[CH outputs 1] < negl(\) in the following game.

1. The challenger CH sets w =0, Q =0, and Q, = 0, and runs A on input 1.
Then A may make sampling queries to CH, and CH responds as follows.
~ On receiving the ith sampling query sp, CH samples (pk;, sk;) « Gen(17)
and sends pk; to A.
Then A may make adaptive corruption, signing, and verification queries to
CH, and CH responds as follows:
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— On receiving a corruption query i, CH adds i to Q, and sends sk; to A.
~ On receiving a signing query (i,m), CH computes o « Sign,. (m), adds
(i,m) to Qs, and sends o to A.
— On receiving a verification query (i*,m*,0%), if Verify,, (m*,o*) = 1,
i* ¢ Q, and (i*,m*) ¢ Q,, CH sets w = 1.
2. At some point, A makes a stopping query stp to CH, and CH returns w.

Definition 18 (mU-mOW (for PKE)). A unique-key PKE scheme (Gen,
Check, Enc, Dec) is said to be mU-mOW secure if for any PPT adversary A,
we have AdvA_ ow(N) = Pr[CH outputs 1] < negl()) in the following game.

1. The challenger CH sets w = 0, Q@ = 0, and Q,, = 0, and runs A on input
1. Then A may make sampling queries to CH, and CH responds as follows.
~ On receiving the ith sampling query sp, CH samples (pk;, sk;) < Gen(1*)
and sends pk; to A.
2. A may make adaptive corruption and challenge queries to CH, and CH
responds as follows:
— On receiving a corruption query i, CH adds i to Q, and sends sk; to A.
— On receiving a challenge query i, CH searches (i,m) € Q. If the search-
ing procedure fails, CH runs m < {0,1}° and adds (i,m) to Q,,. Then it
returns ct «— Encpy, (m) to A.
— On receiving a verification query (i*,m') from A. If i* ¢ Q and (i*,m') €
Om, CH sets w = 1.
3. At some point, A makes a stopping query stp to CH, and CH returns w.

Definition 19 (mU-UF and mU-OW (for PKE)). mU-UF security (respec-
tively, mU-OW security for PKE) is defined in exactly the same way as mU-mUF
security (respectively, mU-mOW security for PKE) except that A is allowed
to make only one wverification query and the advantage of A is denoted by
AdvA (N (respectively, AdvA,_ow (V).

A.2 Lower Bounds for Unique-Key PKE Schemes and Signatures

We now show two memory lower bounds for restricted reductions respectively
from mU-mUF security to mU-UF security and mU-mOW security to mU-OW
security. The definition of the latter type of restricted reductions is exactly the
same as Definition 9. The definition of the former type is also the same as
Definition 9 except that the following restriction is additionally required.

— The set of signing queries made by R is the same as the set of all signing
queries made by A.7

" This restriction is made due to the fact that if the signing queries are chosen by
R, then the challenger may consume large memory to store them, which spoils our
result. When considering random message attacks, this restriction can be removed.
Also, this restriction is not made for other primitives such as PKE schemes, trapdoor
commitment, and chameleon hash function schemes (with collision resistance).
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These two by-product results can be treated as two examples of memory lower
bounds derived from our lower bound result for unique-key relations stated in
Theorem 4.

Corollary 1. Let A be a (sufficiently large) security parameter, X =
(Gen, Check, Sign, Verify), where the internal randomness space of Gen is {0,1}#,
be a mU-UF secure unique-key signature scheme, F : {0,1}* x {0,1}* — {0,1}*
be a PRF, and R be a c,-restricted black-box reduction from the mU-mUF security
to the mU-UF security of X'. Let n = n(\) be the maximum number of sampling
queries and q = q(\) be the maximum numbers of corruption and verification
queries made by an adversary in the mU-mUF game, and U = {i} . If (a) R
rewinds the adversary for at most p = p(X\) times and (b) ¢, > 1/2, then we
have

LocalMem(R) = 2(max{q/(p +2),n/(p+2)}) — O(logq) — O(logn) — k
— max{LocalMem/(Gen), LocalMem/(Check),
LocalMem(Sign), LocalMem(Verify), LocalMem(F)}.

Corollary 2. Let A\ be a (sufficiently large) security parameter, II =
(Gen, Check, Enc, Dec) with message space M, where the internal randomness
space of Gen is {0,1}?, be a mU-OW secure unique-key PKE scheme, F :
{0,1}% x {0,1}* — {0,1}* and F’ : {0,1}* x {0,1}* — M be PRFs, and R
be a c.-restricted black-box reduction from the mU-mOW security to the mU-OW
security of II. Let n = n(\) be the mazimum number of sampling queries and
g = q(\) be the mazimum numbers of corruption, challenge, and verification
queries made by an adversary in the mU-mOW game, and U = {i}}_,. If (a)
R rewinds the adversary for at most p = p(X\) times and (b) ¢, > 1/2, then we
have

LocalMem(R) = 2(max{q/(p+2),n/(p+2)}) — O(logq) — O(logn) — 2k
— max{LocalMem/(Gen), LocalMem/(Check), LocalMem(Enc),
LocalMem(Dec), LocalMem(F), LocalMem(F’)}.

We omit the proofs of the above two corollaries since they are very similar to
the proof of Theorem 4. The main difference is that instead of directly giving
secret keys to R as verification queries, the adversary playing the mU-mUF or
mU-mOW game uses the secret keys to forge signatures or decrypt challenge
ciphertexts. Moreover, the mU-OW challenger uses F’ to simulate the random
messages chosen for challenge queries so that it does not have to consume large
memory to store the list Q,,.
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Abstract. A hash function family is called correlation intractable if for
all sparse relations, it is hard to find, given a random function from the
family, an input-output pair that satisfies the relation (Canetti et al.,
STOC 1998). Correlation intractability (CI) captures a strong Random-
Oracle-like property of hash functions. In particular, when security holds
for all sparse relations, CI suffices for guaranteeing the soundness of
the Fiat-Shamir transformation from any constant round, statistically
sound interactive proof to a non-interactive argument. However, to date,
the only CI hash function for all sparse relations (Kalai et al., Crypto
2017) is based on general program obfuscation with exponential hardness
properties.

We construct a simple CI hash function for arbitrary sparse rela-
tions, from any symmetric encryption scheme that satisfies some natu-
ral structural properties, and in addition guarantees that key recovery
attacks mounted by polynomial-time adversaries have only exponentially
small success probability - even in the context of key-dependent messages
(KDM). We then provide parameter settings where ElGamal encryption
and Regev encryption plausibly satisfy the needed properties. Our tech-
niques are based on those of Kalai et al., with the main contribution
being substituting a statistical argument for the use of obfuscation, there-
fore greatly simplifying the construction and basing security on better-
understood intractability assumptions.

In addition, we extend the definition of correlation intractability
to handle moderately sparse relations so as to capture the properties
required in proof-of-work applications (e.g. Bitcoin). We also discuss the
applicability of our constructions and analyses in that regime.

The full version [25] is available at https://eprint.iacr.org/2018/131.
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1 Introduction

The random oracle methodology [12,39] models cryptographic hash functions as
completely random functions. The model yields simple constructions of crypto-
graphic primitives both in theory and practice, but is known to be inherently
unsound in principle [26,32,44,51,68]. A natural alternative is to formalize con-
crete “random-oracle-like” properties of hash functions, and then (a) construct
hash functions that provably demonstrate these properties based on established
hardness assumptions, and (b) show how security of applications follow from
these properties. Indeed, a number of such notions have been proposed and used
in the literature, with multiple applications e.g. [10,11,18,23,26,29,47,52,57].

Correlation intractability. We focus on one of such notion called correlation
intractability, defined by Canetti et al. [26]. Correlation intractability attempts
to capture the following property of random functions. Consider a random func-
tion O from {0, 1}™ to {0, 1}™, along with some fixed binary relation R : {0,1}" x
{0,1}™ — {0,1} such that for any = € {0,1}", the fraction of y € {0,1}"™ such
that R(x,y) holds is at most p. Then, the best possible way to find z such that
R(z,O(x)) holds is to randomly try different 2’s. The probability of success after ¢
attempts is at most ¢tu. A function family is correlation intractable (CI) if it behaves
similarly against polytime algorithms. Specifically, a function family H is correla-
tion intractable if, for any relation R with negligible density 1, no polytime adver-
sary can, given the description of a function i : {0,1}" — {0, 1}" chosen randomly
from H, find x such that R(z, h(z)) holds, except with negligible probability. Note
that there are no secrets here: The adversary sees the entire description of h, which
succinctly encodes the values h(z) for all possible values of x.

Correlation intractability captures a large class of natural properties of ran-
dom functions. For example, the infeasibility of finding preimages of any fixzed
value ¢ in the range can be formalized as correlation intractability w.r.t. any
constant relations R. = {(x,¢) | Vz in the domain}. The “fixed output value”
in the example can be extended to “a sufficiently long fixed prefix”, e.g. suf-
ficiently many leading 0s. Indeed, correlation intractability (in its quantitative
form) is the natural formalization of the requirements expected from the hash
function used for mining chaining values in the Bitcoin protocol [66] and other
applications relied on proof-of-work [35]. We further discuss these application
later on.

Another natural and prominent application of correlation intractable hash
functions is their use for sound realization of the Fiat-Shamir (FS) heuristic
[39]. Recall that, originally, the idea of Fiat and Shamir was to transform a
three-message, public coin identification scheme to a signature scheme by having
the signer first generate the first prover message « of the identification scheme
(incorporating the message-to-be-signed in the identity), then computing the
verifier message as = h(«) for some public hash function h, and then having
the signature consist of («, ), where =y is the corresponding third message of the
identification scheme. Verification first reconstructs 5 = h(a) and then verifies
the identification. It can be seen that if h is modeled as a random function, then
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the resulting signature scheme is unforgeable [1]. In fact, the same transform
can be used to build a non-interactive argument from any public-coin interactive
proof (even multi-round ones), as long as the initial proof is resettably sound (see
e.g. [13]).} Furthermore, if the original proof is honest-verifier zero-knowledge,
then the resulting non-interactive protocol (in the random oracle model) is a
non-interactive zero-knowledge argument [12,39].

It has been demonstrated that CI families that withstand arbitrary binary
relations suffice for realizing the Fiat-Shamir heuristic in the case of constant-
round proofs. That is, if the initial interactive proof is constant-round and is sta-
tistically sound, then computational soundness of the resulting non-interactive
protocol holds even when the random oracle is replaced by a CI hash function
family that withstands arbitrary binary relations (the only difference from the
original Fiat-Shamir heuristic is that now the resulting protocol has an initial ver-
ifier message that determines the actual function h in the CI family.) Indeed, CI
families that withstand arbitrary binary relations are entropy preserving [24], and
entropy preserving families suffice for the soundness of the Fiat-Shamir heuristic
for constant-round proofs [10]. A direct proof is also implicit in [59, Sect. 4]. (We
note that soundness for the case of three-message proofs was observed already
in [36,49].)

Constructing correlation intractable hash functions. Canetti et al. [26] show that
there do not exist CI function families where the key is shorter than the input,
but leave open the possibility of CI functions with longer keys. Still no construc-
tion of CI functions, even for restricted cases, was known until very recently.
Furthermore, over the years evidence accumulated that coming up with CI func-
tions, and in particular a sound instantiation of the FS paradigm, would not
be easy. Goldwasser and Kalai [44] construct a public coin interactive argument
(i.e. a protocol that is only computationally sound) that becomes unsound if it
is turned into an non-interactive argument by applying the Fiat-Shamir trans-
formation with any function. Bitansky et al. show that it is impossible to prove
soundness of the F'S paradigm using a black-box reduction to falsifiable assump-
tions [14].

Recently, two papers independently suggested using an obfuscated punc-
turable pseudorandom function family as a CI family. Canetti et al. [24] show
that this construction is CI for relations that are computable by circuits of a
priori bounded polynomial size, assuming sub-exponentially secure puncturable
pseudorandom functions and indistinguishability obfuscation, and in addition,
input hiding obfuscation for evasive functions. Kalai et al. [59] show that the
same construction is CI for arbitrary relations, assuming sub-exponentially
secure puncturable pseudorandom functions and indistinguishability obfusca-
tion, plus exponentially secure point obfuscation. In particular, the latter result
implies that this function family suffices for sound realization of the Fiat-Shamir
heuristic (when applied to constant-round interactive proofs).

! In particular, every constant-round interactive proof with negligible soundness, is
resettably sound.
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1.1 Our Results

We provide new constructions of CI function families for arbitrary binary rela-
tions. Compared to [24,59], our constructions are dramatically more efficient,
and are based on better-understood assumptions. Furthermore, while sampling
a hash function from the family of obfuscated puncturable PRFs involves secret
randomness, we present candidates where the sampling can be done with only
public randomness.

The main tool (or, abstraction) we use is symmetric encryption with the
following two properties: First, the scheme should guarantee that polynomial
time key-recovery attacks have only exponentially small success probability even
after seeing encryptions of key-dependent messages (KDM). That is, for any
super-polynomial function s, for an arbitrary key-dependency function f (not
necessarily computable in polynomial time), any polynomial time adversary that
obtains ¢ = Enc(k, f(k)) outputs k with probability no more than séi‘), where A
is the key length.

The second property, which we refer to as universal ciphertexts, is statisti-
cal. Loosely speaking, it requires that any ciphertext is “decryptable” under any
key. More precisely, the requirement is that (a) for every key, random ciphertexts
decrypt to random messages; (b) for every key k and message m, the encryption
algorithm generates ciphertexts that are uniformly sampled from the space of
ciphertexts that are decrypted to m with key k. (The actual definition includes
also public parameters, which are omitted here for simplicity.) Given an encryp-
tion scheme that satisfies the above requirements, we obtain the following result:

Theorem 1 (Informally stated). Assuming the existence of encryption
schemes that have universal ciphertexts and that are exponentially KDM-secure
against polytime key-recovery attacks, there exist:

— Correlation intractable hash functions for arbitrary binary sparse relations.

— Hash functions that guarantee soundness of the Fiat-Shamir transformation,
when applied to interactive proof-systems.

— Non-interactive, publicly verifiable arguments for all languages computable in
polynomial-time and bounded polynomial space (in particular, the class SC).

The last bullet follows by applying the Fiat-Shamir transformation to the recent
public-coin, constant-round interactive proof-system of Reingold et al. [74].

Our second main contribution is in providing concrete instantiations of Theo-
rem 1. Specifically, we show that variants of El-Gamal encryption [37] and Regev
encryption [72] satisfy the universal ciphertext property and plausibly satisfy the
foregoing exponential security against KDM key recovery.

Non-interactive zero-knowledge. As an additional result, we show that if the Fiat-
Shamir transformation is applied to a three-round honest-verifier zero-knowledge
proof, and the CI function family in use is programmable, then the resulting pro-
tocol is a Non-Interactive Zero-Knowledge (NIZK) argument, with the descrip-
tion of the hash function serving as a common reference string. (Here pro-
grammability means that, given random values a,b from the family’s domain
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and range, respectively, it is possible to efficiently sample a random function
h from the family such that h(a) = b.) We also observe that the CI functions
we construct are programmable. Furthermore, if the initial three-round protocol
is delayed-input (as in, e.g., [38]), then the resulting NIZK argument is both
adaptive ZK and adaptively sound. We thus have:

Theorem 2 (Informally stated). Assuming the existence of encryption
schemes that have universal ciphertexts and that are exponentially KDM-secure
against polytime key-recovery attacks, there exist NIZK arguments for all of NP.
Furthermore, these NIZKs have adaptive soundness and zero-knowledge.

We note that, prior to this work, NIZK arguments for NP were not known
based on any variant of the Diffie-Hellman assumption in groups that do not
admit bilinear pairings, nor any variant of the LWE assumption—even exponen-
tially strong ones. Also, for the NIZK application we only need the CI family
to withstand relations that are exponentially sparse, which somewhat relaxes
the assumption. For example, if the soundness of the interactive proof system is
2-*°, then we can tolerate encryption schemes where the success probability of

polytime key-recovery attack is S“pgipf"jz(”.

Quantitative correlation intractability and its connection to the Bitcoin protocol.
A central component in the Bitcoin protocol [66] is a probabilistic mechanism
for guaranteeing that the amount of influence participants have on the process
of producing the public ledger is proportional to their computing power. The
idea here is that since each individual entity has only a fraction of the overall
computing power, the influence of each entity is limited. Indeed, the core validity
of the currency (i.e., the mechanism for preventing double spending) hinges upon
that guarantee.

The Bitcoin mechanism for limiting influence was sketched earlier in the
introduction: In order to incorporate a block of new transactions in the public
registry, the individual (“miner”) is asked to present a value x such that the pair
(z,h(x)) satisfies some known relation R,,, where h is a hash function defined
by the protocol, and w is determined by the current state of the system, the
new block, and the miner’s identity. R,, is set so that it is “moderately sparse”.
That is, for any z,w the fraction of values y such that R, (x,y) holds is small,
but not too small.

Clearly, if h were a random function then this mechanism would work well:
Given w, the best way to find x such that R, (z, h(z)) holds is to keep guessing
random z’s until one is found. This means that the probability of success is
proportional to the number of guesses, which is correlated to the computational
power of the miner. However, when h is an explicit function with a succinct
description, it is not clear how to provide rigorous guarantees regarding the
amount of time needed to find a “wining x” given w. Indeed, “shortcut attacks”
on the Bitcoin mechanism have been reported, e.g. [53].

We argue that correlation intractability, or more precisely a quantitative
variant of the notion, captures the properties needed from the underlying hash
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function so as to guarantee the soundness of the Bitcoin mechanism for limiting
influence. Specifically, say that a binary relation R : {0,1}" x {0,1}™ — {0,1} is
u-sparse if for any « € {0, 1}, the fraction of y € {0, 1}™ such that R(z,y) holds
is at most p. A family H of functions h : {0,1}" — {0,1}"™ is f-correlation
intractable if for any binary p-sparse relation R and for any adversary Adv
that runs in time ¢, the probability that Adv, given a random function h in H,
outputs = such that R(z,h(z)) holds is at most f(t,u). The smaller f grows
the better the guarantee. Clearly we must have f(t,u) > tu. A good “fudge
function” f will not grow much faster than that.

It should also be stressed that the quantitative correlation intractability, as
presented here, only bounds the success probability in solving a single chal-
lenge. Asserting the overall stability of the protocol would require bounding the
aggregate success probability over multiple related challenges. Formalizing a set
of properties for concrete, non-idealized hash functions, that would suffice for
the security of Bitcoin-like applications, as well as proposing constructions with
rigorous analyses is a fascinating research direction.

1.2 Our Techniques

The construction of our CI hash function is simple. Let (Enc, Dec) be an encryp-
tion scheme with key space K, message space M and ciphertext space C. The
constructed hash function family H = {h.}.cc, where h. : K — M, is defined
by h.(k) = Decg(c). That is, a function h. in the family is defined via a cipher-
text ¢ € C. Given an input k, the function h. decrypts c using key k and returns
the decrypted plaintext.

In general, key generation (i.e., choosing a random ¢ € C) is done by encrypt-
ing a random message with a random key. We note however that for both of our
specific candidates, choosing a random ciphertext can be done obliviously and
publicly without any secret randomness.

A high level rationale for the construction may be the following: Consider
a ciphertext ¢ = Enc(k, m) where both k and m are random. If the encryption
scheme is good, then it should be guaranteed that, when trying to decrypt ¢
with any key k' # k, then the result should be completely “random looking”.
Intuitively, this means that finding a key &’ such that Dec(k’,c) = m’ for some
target m’ should be hard. The universal ciphertexts property guarantees that
a random ciphertext looks like the result of encrypting a random message with
a random key. KDM security guarantees that the above intuition applies even
when considering relations that look at both the key and the corresponding
message together (as is indeed the case for correlation intractability).

Indeed, the crux of the proof is in translating correlation intractability, which
is a requirement on the (in)ability of polynomial time adversaries to find struc-
ture in a succinctly represented public function (namely the decryption algorithm
along with a random ciphertext), to a secrecy requirement on the corresponding
encryption process.

The actual proof is strongly inspired by that of [59]. In fact, we follow essen-
tially the same sequence of logical steps. However, the argumentation used to
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move from one step to the next is different in some key places. Specifically, our
goal is to turn an adversary A that breaks correlation intractability of the hash
function into an adversary that breaks KDM security of the underlying encryp-
tion scheme. Following [59], we start by considering a conditional experiment
where we fix some random value k*, and consider only the probability that A,
given the hash key ¢, outputs a key k such that the correlation R(k,Dec(k,c))
holds, and in addition k = k*. While this probability is very small, it allows us
to move (with some loss) to a different experiment where the value ¢ that A sees
is the result of encrypting f(k*) with key k*, where f is a function related to R.
We now observe that recovering the right £* corresponds to breaking the KDM
security of the scheme.

As in [59], the price of this analytical approach is an exponential loss in secu-
rity against guessing attacks. On the other hand, in the case of the [59] scheme
and analysis, the critical switch from one conditional experiment to another relies
on sub-exponentially secure indistinguishability obfuscation. Here, in contrast,
the move is purely statistical.

1.3 A Closer Look at the Hardness Assumptions

We sketch the assumptions we use and briefly discuss their plausibility.

The scheme based on ElGamal encryption. We first consider the ElGamal based
scheme. For simplicity, we discuss a restricted case where both the key and
the message are represented by group elements. (See Sect. 6 for a more general
construction and the associated assumption.) Assuming there exists a family
of groups G(\) of sizes N()\) ~ 2%, with a generator g and efficient group
operations, such that for any super-polynomial function s, any (not necessar-
ily efficiently computable) function f : [N] — [N], and any polynomial time

adversary A: »

a ak+f(h)) _ s(A)
4 =] <
We discuss the plausibility of this assumption. For the discrete-log problem over
7, there are well-known sub-exponential time algorithms with constant success
probability [2,30]. However, a 2!-time algorithm with constant success probabil-
ity does not necessary imply a polynomial time algorithms with success proba-
bility 27*. For example, Pollard’s rho algorithm [70] runs in time O(2*/2) and
achieves constant success probability. But its polynomial time version only gives
polynomial advantage over simply guessing. In fact, Shoup [77] shows that any
generic algorithm (like Pollard’s rho algorithm) cannot achieve success proba-
bility better than O(T2/2%) if it only makes T oracle queries.

However, the index-calculus algorithm does achieve a 27*/¢ success probabil-
ity if it is allowed to have a super-polynomial preprocessing phase, keep advices
of polynomial size, and run a polynomial time online phase. We leave the algo-
rithm and analysis in Appendix A. Although it is not a complete polynomial time
algorithm (i.e. without a super-polynomial preprocessing phase) with non-trivial
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success probability, it suggests that the extra structure of the group F; can be
utilized even if the algorithm is restricted in polynomial time in a meaningful
model.

Still, the above assumption is plausible for the discrete-log problem over ellip-
tic curve groups (ECDLP), especially for those defined over prime fields. Over
decades, ECDLP algorithms only out-perform generic algorithms for specific
families of curves (e.g. [42,63]). Useful factor bases for index calculus algorithms
were not known for the elliptic curve groups, until the work of Semaev [76] which
proposes the use of summation polynomials, later developed by Gaudry [41] and
Diem [31]. But so far they are only known to out-perform Pollard’s rho algo-
rithm for elliptic curve groups defined over Fy» when certain relations of ¢ and n
hold. For elliptic curve groups defined over prime fields, the recent attempts by
[69] and others provide plausible factor bases. Still, no algorithms are known to
achieve non-negligible success probability with less than 0(2)‘/ 2) running time.
See [40] for a survey of the recent progress on ECDLP.

To conclude, based on the current understanding ECDLP for curves defined
over prime fields, polytime algorithms that perform super-polynomially better
than guessing appear to be out of reach. In particular, any such algorithm must
exploit more structures in the elliptic curve groups than in generic groups [77].

The scheme based on Regev encryption. Consider the Regev scheme [73] with
an even polynomial modulus ¢(\) € poly()), and key space {0, ..., B — 1}¢ where
Bt ¢ [2X~108(N) 22 +10e(N] and B < ¢. The message space is {0, 1}* where w()\) €
poly(\). For the security of this scheme we make the following assumption: for
any (not necessarily efficiently computable) function f : {0, ..., B—1}¢ — {0,1}*,
any super-polynomial function s, and any polynomial time adversary A:

s(A)
keR{o,Iir,B—utz [A ({aj, 5 - k+e; + f5(k) - a/2} jequi) k} = 22
{ajERZ;X[',E]’ER[OgQ/2)mZ}

where f;(k) denotes the j* bit of f(k).

Note that super-polynomial algorithms that break LWE with constant suc-
cess probability are known (e.g. [8,16,60,61,75], see the analyses and surveys of
[4,55,62,65,67]). Still, within this setting of parameters, especially given a poly-
nomial size modulus ¢ and high noise magnitude ¢/2, we are not aware of any
polynomial time algorithms that succeed in guessing the key super-polynomially
better than a random guess.

Possible relaxations on the assumptions of success probability. The restriction on
the success probability (smaller than 52(1‘) for any super-polynomial s) mentioned
in the foregoing paragraphs suffices for implying correlation intractability for all
negligible sparse relations under any given input and output length parameters.
We note that even if there are polynomial time algorithms that achieve better
success probability for these problems, our result may still apply to correlation

intractability for certain classes of relations. For example, if a polynomial time
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algorithm were found for LWE that succeeds with probability 2=*/3, then the
Regev-based hash function may still be secure for Fiat-Shamir transformation
applied on a 3-round proof system where the length of the first message is A,

the length of the second message is 2A/3, and the soundness of the protocol is
2—2>\/3.

On the quantitative hardness of our assumptions. One may wonder if the ElGa-
mal or Regev-like hash functions were used for proof-of-work, what are the pre-
cise bounds of the “fudge function” f we can guarantee. For the ElGamal-based
function, as we mentioned before, the Pollard’s rho algorithm achieves success
probability O(T?/2*) in T steps for any group of size ~ 2*. So the smallest
possible f is O(T? - ), which is far from the dream bound 7T - . For LWE, when
T is relatively small (say a small polynomial), the success probabilities of LWE
solvers are typically tiny and less studied, so the precise bound is unclear to
us. We leave to future work any additional quantitative analysis of the possible
values for f for the concrete functions.

1.4 Additional Related Works

Notions related to Fiat-Shamir paradigm. Hada, Tanaka [49] and Dwork et
al. [36] show that the existence of correlation intractable functions implies the
soundness of Fiat-Shamir paradigm for proofs, which in turn rules out the possi-
bility of constant-round public-coin zero-knowledge proofs for languages beyond
BPP. This means that, assuming KDM-secure encryption as defined above, there
do not exist constant-round public-coin zero-knowledge protocols with negligible
soundness error for languages beyond BPP.

Among the attempts to better capture the property of a hash function suit-
able for the Fiat-Shamir paradigm, Barak et al. define entropy-preserving hashing
and show it is sufficient for Fiat-Shamir [10]. Dodis et al. then provide a property
of condensers that is necessary for entropy-preserving hashing [33]. It is shown by
Canetti et al. that entropy-preservation is implied by correlation intractability
w.r.t. sparse relations whose memberships are not efficiently checkable [24].

A different way of reducing rounds in interactive proofs was shown by Kalai
and Raz [58]. However, in contrast to the Fiat-Shamir paradigm, the Kalai-Raz
transform inherently yields a private-coin argument-system (and in particular
does not yield NIZK proof-systems).

Background on KDM. The potential security risk of encrypting one’s own
key was noted already in the seminal work of Goldwasser and Micali [45].
Potential applications and suitable formalizations were provided by Camenisch
and Lysyanskaya [22] and Black, Rogaway and Shrimpton [15]. More recently,
Gentry’s breakthrough construction of fully homomorphic encryption also uti-
lizes KDM security in a fundamental way for the “bootstrapping” process (trans-
forming somewhat homomorphic schemes to fully homomorphic ones) [43].
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Encryption schemes that are KDM secure? with respect to the class of affine
functions were constructed by Boneh et al. [19], Applebaum et al. [6] and Brakerski
and Goldwasser [20]. Using techniques developed in [5,9,21] the foregoing schemes
can be amplified to provide security for the class of KDM functions computable by
polynomial-size circuits. Canetti et al. [28] construct strong KDM-secure encryp-
tion from multi-bit point obfuscation. However, their construction inherently does
not have the universal ciphertexts property. We also note that fully-homomorphic
encryption schemes that are KDM secure w.r.t. the identity function are auto-
matically KDM secure for arbitrary polynomial functions [9]. However achieving
KDM secure FHE w.r.t. the identity function from standard assumptions is an
open problem.

Haitner and Holenstein [50] showed limitations to the possibility of construct-
ing KDM secure encryption schemes via blackbox techniques. They first show
that there is no fully blackbox reduction from the KDM security of an encryption
scheme (with respect to a certain class of functions) to the existence of one-way
permutations. More relevant for us is their second result, which shows that there
is no reduction from the KDM security of an encryption scheme to “essentially
any cryptographic assumption” if the adversary can obtain an encryption of an
arbitrary function g of the key, and the reduction treats both the adversary and
the function g as black boxes. A significant difference from our notion of KDM
security with respect to all functions is that [50] assume that the adversary also
obtains oracle access to the function g, which is not the case in our setting.
Namely, we only provide the adversary with an encryption of g(k), where k is
the key, but no additional access to g. Indeed, the oracle constructed by Haitner
and Holenstein becomes useless in this setting.

The works of Halevi, Krawczyk [51] and Hofheinz, Unruh [56] construct sev-
eral variants of KDM symmetric encryption assuming only pseudorandom func-
tions. However these schemes don’t achieve the level of security we require (expo-
nentially small probability of key-recovery) and we were unable to extend them
to schemes that do.

Relation to Extremely Lossy Functions (ELFs). Our work bears a high-level
similarity to the work of Zhandry [79] in terms of the motivation, constructions
and assumptions. However, the actual contributions are very different.

In terms of the motivation, both papers attempt to capture the proper-
ties of random oracles. Our paper focuses on correlation intractability and its
implication to Fiat-Shamir, whereas [79] defines the notion of k-ary output-
intractability, where the relation checks k output values and an additional aux-
iliary input w. Indeed, as was mentioned in [79], k-ary output-intractability
roughly corresponds to a special case of k-ary correlation intractability (namely,
correlation intractability where the relation R takes k pairs of values (z,y).)
However, k-ary output-intractability is interesting only for k£ > 1. For k = 1,
output intractability is trivially satisfiable. In contrast, in this work we concen-
trate on correlation intractability with k = 1.

2 More precisely, the KDM security of these scheme reduces to their plain (i.e., non key
dependent) semantic security.
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In terms of constructions and assumptions, both papers make exponential
hardness assumptions on discrete-log or DDH type problems. However the pre-
cise ways of making the assumptions are different. [79] assumes that for DDH
over group size B()\) ~ 2*, the best attack takes time B(\)¢ for some constant
c. Whereas we assume (modulo KDM) that all the polynomial time algorithm

solves discrete-log problem with success probability less than %.

1.5 Organization

In Sect.2 we provide standard notations and definitions that will be used
throughout this work. In Sect. 3 we give an overview of our construction, focus-
ing on the discrete-log based construction as a warm-up. In Sect.4 we formally
define our notion of “universal ciphertexts” and strong KDM security. In Sect. 5
we show how to use encryption schemes satisfying the foregoing properties to
construct correlation intractable functions. In Sect. 6 we describe parameter set-
tings where the variants of ElGamal and Regev encryption schemes plausibly
satisfy these properties. Finally, in Sect.7 we show how to construct NIZKs for
NP from our correlation intractable functions.

2 Preliminaries

Notations and terminology. Denote R, Z, N as the set of reals, integers and
natural numbers. Let Z, denote Z/(¢Z). For n € N, let [n] denote {1,2,...,n}.
The rounding operation |a| : Z, — Z, is defined as multiplying a by p/q and
rounding the result to the nearest integer.

In cryptography, the security parameter (denoted as A) is a variable that is
used to parameterize the computational complexity of the cryptographic algo-
rithm or protocol, and the adversary’s probability of breaking security. An algo-
rithm is “efficient” if it runs in (probabilistic) polynomial time over A.

For any definition based on computational hardness, we refer the relevant
security level to the success probability of any efficient adversary. For example,
a security notion is subexponential if for every efficient adversary there exists
€ > 0 such that the adversary’s advantage is less or equal to 272",

Many experiments and probability statements in this paper contain random-
ized algorithms. When a variable v is drawn uniformly random from the set S
we denote as vERS or v «— U(S), sometimes abbreviated as v when the context
is clear. Distributions written in multiple lines under Pr means they are sampled
in sequence.

A function ensemble F has a key generation function g : § — K; on a seed
s € §(N), g produces a key k € IC()) for a function with domain D(\) and range
C(A):

F={fe : DA) = C(A),k = g(s),s € S(A) }ren

The bit-lengths of the seed, key, input and output are denoted as o, k, £ and
w, unless specified otherwise.
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The main object studied in this article is families of public key hash func-
tions. We assume the key k is public. For certain key generation algorithm g,
publishing & implies publishing s (e.g. when g is the identity function). We call
such functions public-coin. By default we treat the bit-length of its input as being
equal to the security parameter, i.e. [D()\)| = 2*.

2.1 Correlation Intractability
We recall the definition of correlation intractability [27].

Definition 1 (Density of a binary relations). A binary relation R = R(\) C
{ (z,y) | € D(N\),y € C(N\) } has density u = u(X) if for every x € D(N) it
holds that Pryceny| (z,y) € R(X) | < u(A). A relation R is sparse if it has
negligible density.

Definition 2 (Correlation intractability w.r.t. binary sparse relations
[27]). A family of functions H = {Hp : D(A\) — C(\)}xen is correlation
intractable w.r.t. binary sparse relations if for every polynomial-size adversary
A and every sparse relation R, there is a negligible function negl(-) such that:

PZr [(z,Hk(x)) € R] < negl(\).

We introduce a quantitative generalization of correlation intractability.

Definition 3 (f-correlation intractability). A family of functions H =
{Hr : D(A\) — C(AN)}ren is f-correlation intractable w.r.t. a function f :
N x [0,1] — [0,1] if for all time function T(-), for all density function u(-),
for every adversary A of running time T'(\), and every relation R with density
w(N), it holds that

Pr [ (2. Hi(x)) € B < F(T.p).
z—A(Hy)

For example, random oracles satisfy f-correlation intractability for f(T, u) =
T - u. Definition 2 can be viewed as f-correlation intractability w.r.t. f(T,u) =
T - p, for all polynomial T(-), and all negligible p(-). In the rest of the paper,
“correlation intractability” refers to Definition 2 unless explicitly stated other-
wise.

Survey of impossible parameters for correlation intractability. For some param-
eters relevant to the length of seed, key, input and output of the function, cor-
relation intractability w.r.t. binary sparse relations is impossible to achieve. We
survey some of the results.
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[27] shows that a function family cannot be correlation intractable when the
bit-length of the key x(A) of the function is short compared to the bit-length of
the input £(\):

Claim 1 ([27]). H) is not correlation intractable w.r.t. efficiently checkable rela-
tions when k(X)) < L(N).

Proof. Consider the diagonalization relation Rgiag = {(k, hi(k))|k € K(X\)}. The
attacker outputs k. O

The impossibility result generalizes to keys that are slightly larger than the
bit-length of the input, but still smaller than the sum of the bit-length of input
plus output £(A\) +w(A). The idea is to consider an extension of the diagonaliza-
tion relation s.t. the relation checks a prefix of k—as long as the key is not too
long, the relation is still sparse, albeit not necessarily efficient checkable.

Claim 2 ([27]). Hx is not correlation intractable w.r.t. possibly inefficiently
checkable relations when k(X) < (X)) +w(A) — w(log(A)).

We also observe when the “family size” of the function is relatively small,
precisely, when the seed length is small w.r.t. the output length, then the func-
tion family is not correlation intractable w.r.t. possibly inefficiently checkable
relations. This case is not ruled out by Claim 2 when the key is potentially long
but derived from a short seed (e.g. from applying a PRG on a short seed).

Claim 3. H, is not correlation intractable when the seed space S(\) and the
range C(\) satisfies |S(N)| < negl(X) - |C(N)].

Proof. Fix the hash function family H,, consider the relation Ry that collects
every functions in the function family Ry = {(z,hi(z)) | s € S, k= g(s), z €
D(A)}. The density of the relation less or equal to |S(A)|/|C(A)| < negl(A). The
attacker simply outputs any input. a

For the discussions of the other impossibility results, we refer the readers to
[27] for the details.

2.2 Fiat-Shamir Heuristics

Definition 4 (Interactive proof-systems [46]). An interactive proof-system
for a language L is a protocol between a prover P and a verifier V. The prover’s
runtime is unbounded. The verifier runs in probabilistic polynomial time. The
protocol satisfies

- Completeness: For every x € L, the verifier V accepts with probability 1
after interacting with P on common input x.

— Soundness: For every x ¢ L and every cheating prover P*, the veri-
fier accepts with negligible probability after interacting with P* on common
mput x.

An interactive protocol is called an argument-system if it satisfies Definition 4
except that the prover is restricted to run in (non-uniform) polynomial time. An
interactive proof or argument is called public-coin if the verifier’s messages are
random coins.
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Correlation intractability and public-coin interactive proofs. Consider a language
L and a 3-round public-coin interactive proof II for L. Let «, (3,7 be the 3
messages in the protocol (« and v are sent by the prover P, § is sent by the
verifier V). The relation Rg¢p, ;7 is defined by

Rerm={((z,0),8) : ¢ Land Iys.t. V(z,o,B,7) = Accept}. (1)

Observe that the relation Re¢y, r7 is sparse due to the statistical soundness of
the underlying proof, i.e. the density of Rg¢p, ;7 is equal to the soundness error
of IT.

Interestingly, correlation intractability can also capture a stronger notion of
soundness called adaptive soundness. We say that a 3 message interactive proof-
system as above has adaptive soundness, if the message o sent by the honest
prover does not depend on x, and soundness is guaranteed even if the adversary
may choose the input z ¢ L on which to cheat after seeing (. For such protocols
we define the relation Rgp 7 as

Rerm={(a,) : 3z,vst. 2 ¢ LAV(z,a,p,7) = Accept} (2)

Again, the relation Rgp, 7 is sparse due to the adaptive soundness of II.
Correlation intractability also implies the soundness of Fiat-Shamir for gen-
eral constant-round public-coin interactive proof-systems. Without loss of gen-
erality assuming the number of rounds in the starting proof-system is 2c¢ for
a constant c. In the resulting 2-message argument, the verifier samples ¢ inde-
pendent correlation intractable hash functions. For i € {1,2,...,c}, the prover
applies the i*" hash function on (a||B1||...||ci—1]|Bi—1]|ci) to generate 3;, where
; is the it" message from the prover in the starting proof-system. The message
from the prover in the resulting 2-message argument is then (aq||B1]|-.-||ac||Be)-
It is shown that the transformation above yields a sound 2-message argument
if the hash functions are entropy preserving [10]. Given that CI families that
withstand arbitrary binary relations are entropy preserving [24], we have

Lemma 1 ([10,24,36,49]). Assuming correlation intractable function family
w.r.t. all binary sparse relations exists, then the Fiat-Shamir transformation is
sound when applied on any constant-round public-coin interactive proof-systems.

3 A Warm-Up Construction from Discrete Logarithm

We present a simple construction based on the discrete-log program as a warm-
up to the general scheme. Along the way we will give the rationale of the proof
strategy adapted from the work of Kalai et al. [59], and explain the level of KDM
security we need for the underlying discrete-log problem.

Let G be a cyclic group where the discrete-log problem is hard. Assume the
size of G is roughly 2* where ) is the security parameter. Let ¢ be a generator of
G, A = g%, B = g* be two random elements in G. Consider the following length
preserving function H : {1,...,|G|} = G

Hypp(z):= A®-B =g cG. (3)
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Theorem 4. Given G(\) of sizes N(\) ~ 2*, with a generator g and efficient
group operations, such that for any super-polynomial function s, any (not neces-
sarily efficiently computable) function f : [N] — [N], and any polynomial time
adversary A:

[A (ga7gak+f(k)> _ k} < s(A)

k,a:[N] 22

Then H, p is correlation intractable w.r.t. all sparse relations.

Towards a contradiction, let R be any sparse relation with negligible density
1(N). Suppose there exists an efficient adversary Adv that breaks correlation
intractability w.r.t. R with non-negligible probability v:

E}; [(AdV(HA7B) — x) A ((1‘7HA’B<.’17)) € R)} > v, (4)

where the notation Adv(H 4, p) — « simply means that we use x to refer to the
string that Adv(H 4 p) outputs.

In the first step, we translate the probability of outputting some x to the
probability of outputting a particular z*. For a random z* from the domain, the
probability that the adversary outputs x* as the answer is greater or equal to v
divided by the domain size

z*E;:?{%,l}k [(Adv(HA,B) — ac') A (z/ = z*) A ((:c*,HA,B(:c*)) € R)] > v/ (5)
A,B

Focusing on a single #* costs a huge loss in the success probability. The
readers may wonder what is the motivation of doing so. The purpose of fixing an
input z* is to prepare for replacing the winning condition (x*, Hy, B(a:*)) €R
by another condition that is “key independent”. Towards this goal, consider the
following sampling procedure: first sample a random y* from the range, then
sample the key (A’, B") randomly under the condition Ha/ g (2*) = y*. Now
we use the fact that H is a “one-universal” function, which means that for a
fixed input, a uniformly random key projects the input to a uniformly random
output. In turn, a uniformly random output corresponds to a uniformly random
key. Therefore the key (A’, B') obtained from reverse sampling distributes the
same as before. Hence we have

B e e R I
y*EREG,
A’ B’ s.t. HA/YB/(I*):y*
Given that y* = Ha/ p/(z*), we can change the winning condition in Eq. (6) into
one which is independent from the function H 4/ pr:
Pr [(Adv(HA/yB/) =z YA (' =2*) A ((z*,y") € R)] >v/2r. (7)
z*e€R{0,1}

y*€eRrG
A',B" s.t. H s pr(z™*)=y*
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Separating the winning condition (z*,y*) € R from the hash key paves the
way for connecting correlation intractability to a property that is only about
hiding one specific point in the key (instead of hiding a bunch of potential
input-output pairs in the relation). In the next statement, the first equality
follows by the definition of conditional probability. The inequality follows from
Eq. (7) together with the fact that R is u sparse:

/ r_
z* Y s.t.PEJI;*’y*)ER, [<AdV(HA/’B,) —a)A (@ = )}
A/,B/ s.t. HA/.,B/ (;C*):y*

AdV(HA/’B/) = {E/

Pr R 7 =z*
z*€r{0,1} % %
yfeRG (x Y ) €ER (8)

A',B’ s.t. HA/YB/(x*):y*
Pr  [(z*,y*) € R]

z*er{0,1}*
y"erG

>__ Y
22 ()

The LHS of Eq. (8) spells out as an efficient adversary’s success probability
of finding the input z* embedded in A’, B/, where the key A’, B’ is sampled
conditioned on mapping some input-output pair in the relation (z*,y*) € R.
Let’s examine A’, B’, and for simplicity consider only the constant relations
R. = {(x,¢c) | Vx € {0,1}*}. Fix a ¢* € G, a random input-output pair from R,
distributes as (z*, ¢*), where z* is uniformly random from {0,1}*. For 4’ = g%,
B = ¢ sampled randomly from the set {g*,¢" | ¢* = ¢* = ¢** ¥}, where
z* is explicitly defined as the discrete-log of ¢* over base g for the convenience
of explanation. Observe that the marginal distribution of a’ is uniform, and b’
equals to z* — a/z*. In other words, the adversary is asked to find z* given
A =g, B' = g ~%*" where z* is fixed. The hardness of this problem follows
directly from the hardness of the discrete-log problem.

What is the hardness required for the underlying discrete-log problem in
order to form a contradiction? For the probability in the hypothesis #)‘()A),
where v is a non-negligible function; u, the density of a sparse relation, is an
arbitrary negligible function. We can form a contradiction by assuming that
every polynomial time algorithm for the discrete-log problem over G succeeds
with probability less than s(\)/2* for any super-polynomial function s.

What happens when we consider all sparse relations instead of only the con-
stant relations? For a general sparse relation, sampling a random pair (x*,y*)
from the relation may result into an output y* that is correlated to the input
x*. Take the “fixed point” relation Ry—, := {(z,y) | ¢ = y} as an exam-
ple. A random input-output pair from R,—, distributes as (z*,2*), where a*
is uniformly random. For A’ = ¢, B = ¢* sampled randomly from the set
{97, 9" | g7 @) := a* = g2’} where z*(2*) is the discrete-log of * over
base g (unlike in the previous example, now z* depends on the input z*). The
marginal distribution of @’ is still uniform, and &’ equals to z*(z*)—a’x*. In other
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words, the adversary is asked to find z* given 4’ = g%, B’ = g% () ='2" where
z*(+) is a function on z*, @’ is independent from z* and uniform. The latter
corresponds to the hardness of finding the decryption key x* given a ciphertext
of ElGamal encryption with uniform randomness a’, and key-dependent message
To summarize, the proof strategy translates the hardness of finding any solu-
tion in a sparse relation to the hardness of finding the key from the encryption
of possibly key-dependent messages. The translation is purely statistical, but it
results into a significant cost in the final computational assumption—the suc-
cess probability for any polytime attacker has to be extremely small. To capture
arbitrary relations, arbitrary key dependency functions are considered.

4 Encryption Scheme with Universal Ciphertext
and KDM Security

Let M = {M )} en be an ensemble of message spaces (i.e., M is the message
space with respect to security parameter A € N). An encryption scheme, with
respect to the message space M, consists of three probabilistic polynomial-time
algorithm PP-Gen, Enc and Dec. The public-parameter generation algorithm
PP-Gen gets as input 1* and outputs some public-parameters pp (without loss
of generality we assume that pp contains A). Given the public-parameters pp, a
key k € {0,1}* and a message m € M, the encryption algorithm Enc outputs a
ciphertext c. The decryption algorithm Dec gets as input the public-parameters
pp, a key k as well as a ciphertext ¢ and outputs a message in M. We require
that (with probability 1), for every setting of the public-parameters pp, message
m € My and key k € {0,1}* it holds that Dec(pp, k, Enc(pp, k,m)) = m.

In many encryption schemes each ciphertext is associated with some partic-
ular key. We will be interested in schemes where this is not the case. Namely,
ciphertexts are not associated with a specific key, but rather “make sense” under
any possible key. We denote by C,, the distribution obtained by encrypting a
random message using a random key. Namely, the distribution Enc(pp, k,m)
where k € {0,1}* and m € M.

Definition 5 (Universal Ciphertexts). We say that an encryption scheme
(PP-Gen, Enc, Dec) with respect to message space M = {M}ren has universal
ciphertexts if the following two conditions hold for all constant n > 0, for all
(sufficiently large) X € N and public parameters pp € PP-Gen(1):

1. For every fived key k* € {0,1}*, a random ciphertext decrypts to a random
message. Namely, the distribution m « Dec(pp, k*,c), where ¢ «— Cpp, is
2~ (M _statistically close to uniform.

2. For all k* € {0,1}* and m* € My, the following distributions are 2~ (7M.
statistically close

— ¢ — Cpp conditioned on Dec(pp, k*, c) = m*.
— ¢ is sampled from ¢ — Enc(pp, k*,m*) (i.e., a fresh encryption of m*
under public parameters pp and key k* ).

*
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Definition 6 (e-KDM Security). Let ¢ = ¢(\) € [0,1]. We say that an
encryption scheme (PP-Gen, Enc, Dec) is e-KDM secure, if for every polynomial-
time adversary A, for all sufficiently large values of A and any (possibly ineffi-
cient) function f:{0,1}* — M, it holds that:

Pr [A(pp. Enclop, b, f(R)) = k| <.
pp<—PP-Gen(17)

ker{0,1}*

5 Correlation Intractability from Universal-Ciphertexts
KDM Encryption

Let PP-Gen, Enc, Dec be an encryption scheme with respect to an ensemble of
message spaces M = { M }en, as defined in Sect. 4. For public parameters pp
recall that we denote by Cp, the distribution obtained by encrypting a random
message using a random key (with respect to public parameters pp).

Construction 5. We construct a hash function family H = {Hy : {0,1}* —
M }aen as follows.

The key generation algorithm of the hash function takes input 1*, samples
public parameters pp of the encryption scheme and a random ciphertext c < Cpp.
The hash key is hk = (pp, ¢). On input the key (pp, ¢) and a message to be hashed
a € {0,1}*, the hashing algorithm views o as a key of the encryption scheme
and outputs Dec(pp, a, ¢).

The main result that we prove in this section is if the encryption scheme
has wuniversal ciphertexts (as per Definition5) and is e-KDM secure (as per
Definition 6), for sufficiently small ¢ = ¢(A) > 0, then Construction5 forms a
correlation intractable hash function family.

Theorem 6. If there exists an encryption scheme with universal ciphertexts
that is e-KDM secure for ¢ < (poly(]\)- 2/\~u()\))71, then Construction 5 is

correlation intractable for all sparse relations with negligible density p(N).
5.1 Proof of Theorem 6

Let R be any sparse relation with negligible density 1 = pu(A). Suppose toward
a contradiction that there exists a probabilistic polynomial-time adversary Adv
that breaks the correlation intractability of Construction5 with non-negligible
probability v = v(A). Namely,

1}?}5 [Adv(Hhk) outputs some o A (o, Hpi(e)) € R] > v(A).

Thus, by construction of our hash function it holds that:
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1;11; [Adv(pp, c) outputs some « s.t. (a, Dec(pp, a,c)) € R} >v(A), (9)

c—Cpp

where here and below we use pp to denote public parameters sampled from
PP-Gen(1%).

For the analysis, we consider a relaxed relation R’ where (o, () € R’ if
(o, B) € R or if the first [log(v/2u)] bits of § are all 0. The density of R’ is
bounded by ' < 4p/v, which is negligible when p is negligible. Looking ahead,
the purpose of “padding” R is so that the marginal distribution of a*, obtained
from jointly sampling a pair (a*,5*) randomly from R’ is close to uniform.
More specifically, following [59, Proposition 3.4] we can bound the point-wise
multiplicative difference (or ratio) between these distributions:

Fact 7. For all o/ € {0,1}*, B’ € M,

1

Pr o g — a1 > . ) = B =p

a* [OZ @ 75 ﬂ} — 4 a*,B* s.t (i*,ﬁ*)ER’ [ @ ﬁ 5]
B* s.t (a*,8*)ER’

(10)
Since R C R, Eq. (9) implies that:

Pr [Adv(pp7 ¢) outputs « s.t. (a, Dec(pp,a,c)) € R'} >v(N). (11)

pp—PP-Gen(1%),
c—Cpp

We will use Eq. (11) to show that Adv breaks the KDM security of our encryp-
tion scheme, with respect to the randomized KDM function f that given a key
a*, outputs a random [(* such that (a*,5*) € R'.

We now fix some setting of the public parameters pp. Using the structure of
R’, and the fact that our encryption scheme has universal ciphertexts (property 2
of Definition 5), it holds that:

Pr [Adv(pp, ¢) outputs a*]

«
B* s.t (a*,8*)ER’
c—Enc(pp,a”,B")

> (1/4) - Pr [Adv(pp, ¢) outputs a*]
o™ 8" st (a*,B")ER’
c—Enc(pp,a”,3")
> (1/4) - Pr {/—\dv(pp, ¢) outputs a*] — 9~ (1+mA (12)

o, B* st (@*,B)ER’
c—Cpp s.t. Dec(pp,a”,c)=p"

where the first inequality is due to Fact7; the second is due to the universal
ciphertexts property.

Our key step is captured by the following proposition, which relates the
adversary’s advantage of recovering the specific key o* in a ciphertext encrypt-
ing possibly key-dependent messages, to the advantage of outputting any «
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that breaks correlation intractability. While the winning probability in the key-
recovery game is exponentially small, it is lower bounded by a function of the
success probability of breaking correlation intractability.

Proposition 1. For every setting of the public-parameters pp it holds that:

Pr [Adv(pp7 c) oulputs a*}
a*,8" s.t (a*,B")ER/
¢ s.t. Dec(pp,a™,c)=0"

Y
227/. Pr Adv(pp, ¢) outputs o 5.35. _g-m )
L ¢ | (a,Dec(pp,a,c)) € R

Proof. Fix the public parameters pp. By the fact that the random variables
(a*, B*) and c are independent, it holds that:

Pr [Adv(pp, ¢) outputs a*]
a*,B* st (a*,8*)ER’
¢ s.t. Dec(pp,a™,c)=8"

(13)
= FE [Adv(pp7 ¢) outputs o ’ (", %) € R']
c s.t. Dec(p;),a*,c):ﬁ*
By definition of conditional probability, it holds that:
Pr [Adv(pp, ¢) outputs o | (a*,8%) € R/}
¢ s.t. Decozp;o,(l*,c)=5*
Adv(pp, ¢) outputs a*
Pro o (a*,3") € R
_ ¢ s.t. Dec(pp,a™,c)=p"
Pro- 5 [(a*,ﬁ*) =
, Adv(pp, c outputs a*
/) i oubs

¢ s.t. Dec(pp,a ,c)=0"
where the inequality follows from the density of R’.
Claim 8. The following two distributions are 2~ (1HMA_close:

1. (a*,c): such that o €r {0,1}*, B* €gp My and ¢ « Cpp conditioned on
Dec(pp, a*, c) = §*.
2. (a*,c'): such that a* €r {0,1}* and ¢’ «— Cpp.

Proof. A different way to sample the exact same distribution as in item (2) is to
first sample a* €g {0,1}*, then ¢ « C,, and finally ¢’ « C,, conditioned on
Dec(pp, a*, ') = Dec(pp, a*, ).

By the universal ciphertext property 5(1) of the encryption scheme, the dis-
tribution Dec(pp, a*,c”) is 2~ (1M close to the uniform distribution over M.
The claim follows. O
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Combining Claim 8 together with Eqgs. (13) and (14) yields that:

Pr [Adv(pp, ¢) outputs a*]
a*,B* st (a*,8*)ER’
¢ s.t. Dec(pp,a®,c)=3"*

' Adv(pp, c) outputs a” | o (14n)x
> 0u)- ([0 Dty < ] =2

_ Adv(pp, ¢) outputs « s.t. _
- AW AL ) _ 9—(14+mA
(/1) (2 Izr [ (v, Dec(pp, v, ¢)) € R’ 2

s (e[ TRA T ] ) o

This concludes the proof of Proposition 1. a
Using Proposition 1 and Eq. (12) we obtain that:
l;’g [Adv(pp, ¢) outputs a*}

«
B* st (a*,B%)ER’
c—Enc(pp,a”,8")

=E Pr [Adv(pp, ¢) outputs a*}

«
B* st (a*,8")ER’
c—Enc(pp,a”,5")

>1/4-E Pr [Adv(pp, ¢) outputs a*} _9—(1+mA
pp a”,B" st (@",B7)ER’
cCpp s.t. Dec(pp,a™,c)=B"

1 Adv(pp,c) outputs « s.t. —nA —(1+m)A
> 4.9x. /J/ 1]:% |:1:;r { (a,Dec(pp,oc,c)) 194 } -2 —2
_ 1 Adv(pp,c) outputs a s.t. —nA —(1+n)A
= o (B[ Theomyin ] -2™) -2

14
Z 8.921. w

ED)

Thus, Adv breaks KDM security with probability € > (1/negl) - 27*, in contra-
diction to our assumption.

6 Candidate KDM Encryption with Universal
Ciphertexts

We present two encryption schemes that satisfy the ciphertext universality (Def-
inition 5), and plausibly satisfy e-KDM security (Definition 6) for exponentially
small e.
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6.1 Discrete-Log Based

We first present the encryption scheme based on a generic multiplicative group,
and then specify its instantiation over the elliptic curve groups. The scheme can
be viewed as a bit-encryption variant of ElGamal.

Construction 9. Fiz a small constant n > 0 (e.g. n = 0.01). Let the message
space be M = {My}ren, where My = {0,1}*N and w = w(\) € N. We
construct an encryption scheme as follows.

~ Public parameters Generation PP-Gen(1*): the key-generation algorithm
selects a prime N = N(\) > 204202 g group G = G(\) of size N, and
a generator g (the exact algorithm for determining these depends on the spe-
cific group family we use - see instantiations below).
Let ext : G — {0,1} be a deterministic efficiently computable function that
outputs 0 on [N/2] of the group elements, and 1 on the remaining [N/2]
elements.
The public-parameters pp include a concise® description of the group G, gen-
erator g, and function ext.

~ Encrypt Enc(pp, k,y): We view k as an integer in [2)]. Let y1 ...y, € {0,1}
be the bit decomposition of y.
For each j € [w], sample a;€r{0,1,..., N — 1} and let A; := g% . Sample C;
uniformly from ext™'(y;) and let By = C; - A¥. Output ¢ = (A;, Bj)jefu) as
the ciphertext.

— Decrypt Dec(pp, k,c): Decompose the ciphertext ¢ as (Aj, Bj)jcjw). For j €
[w], let C; = Bj/A;C and let the j" output bit be ext(C;).

Remark 1. To ensure the KDM problem is as hard as possible, the group order is
set to be a prime so that not only the discrete-log problem but also the decisional
Diffie-Hellman problem is plausibly hard.

Since the group order is a prime, a deterministic function that extracts a bit
from the group cannot be perfectly balanced. So we set the group order to be
slightly larger than 21T in order to allow 2~ (1+"A_statistical distance for the
statistical properties.

We first show that the scheme satisfies the universal ciphertext requirement
(see Definition 5).

Proposition 2. The encryption scheme of Construction 9 has universal cipher-
texts.

Proof. The first condition in Definition 5 follows from the fact that for a fixed
encryption key k, and random ciphertext (A;, B;);e[w), it holds that each C; =
B; /A;C is uniformly distributed and so we only need to account for the deviation
from ext. Overall we get that the output is at most 2~ (4 _close to uniform.

3 By concise description of the group, we mean a description of length poly(A) that

allows performing group operations such as multiplication, inversion, equality testing
and sampling random elements.
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The second condition in Definition5 can be verified as follows. For every
j € [w] and every possible value of A;, there are exactly |ext™!(y;)| possible
values B; that Enc can output, and each of them is equally likely. Therefore,
each pair (A;, B;) subject to the condition ext(B; - A;“) = w; is equally likely
to be output by Enc, and thus the distribution output by Enc is identical to a
random ciphertext for the given plaintext. a

As noted above, we need to assume that Construction 9 is exponentially KDM
secure.

Assumption 10 (KDM security for the discrete-log based encryption).
Let A € N, w(\) € poly(A). There exists a family of groups G(\) (of effi-
ciently computable sizes N(\), with efficiently computable generators, efficient
group operations, and efficient ext : G — {0,1}) such that for all function f :
{1,...,2*} — {0,1}* (including those that are not efficiently computable), the
following holds. For any polynomial-time adversary Adv, for a uniformly random
ke {1,...,2*}; for each j € [w], sample a;€r{0,1,...., N}, C;€pext=(f(k);).
The probability that adversary outputs k on input (A; = g%, B; = g%k Cj)jciw
is smaller than

1 .
2*-negl(\)’ e

1

Pr AdV({Aj,Bj}je[w]) = k:| S m

ker{l,...,2*}
{a;€r{0,1,...N},Cj€rext™ (f(k);)}je uw]
{A;=9%,B;=g"1*-C;} ;e

Thus, using Theorem 6, we obtain the following corollary.

Corollary 1. Suppose that Assumption 10 holds. Then, there exists correlation
intractable function for all sparse relations.

Remark 2. In Assumption 10, if the function f is a constant (i.e. is independent
of the key), the problem can be reduced from the discrete-log problem over G
with the key restricted to {1,...,2*}, i.e. computing k& € {1,...,2*} given g,
g® € G. In the reduction, the discrete-log attacker, given ¢, ¢*, and f, can
sample (Aj, Bj) e from the correct distribution, send over to the adversary in
Assumption 10.

Remark 3. We chose bit encryption for simplicity of notation. Instead of repre-
senting messages as bits, we can represent them in any base b, as long as there
is an efficient and nearly-regular map ext from G to {0,...,b — 1}. The regu-
larity requirement, however, is quite strong: because of the first requirement in
Definition 5, the preimage size of every digit under ext must be very close to the
average, so that the statistical distance between ext(G) and uniform is 2~ (121

We can use seeded extractors and put the seed in the public parameters.
Specifically, if we choose N to be at least 22(12MA . p and ext : G — [b] to be
a pairwise independent hash function, then for the average seed, by the leftover
hash lemma [54, Lemma 4.8], the output will be \/|G[/b = 2~ 21 _close to
uniform. This ensures that a good seed exists (nonconstructively). If want to
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make sure the average seed is good with all but exponential probability, we can
choose N to be at least 24(1+2MA . p instead. Then for the average seed, the
output will be \/|G[/b = 272(1+2DA_close to uniform, and therefore for all but a
1 — 2= (420 fraction of the seeds, it will be at least 2~ (1421 _close to uniform,
as required.

An instantiation over elliptic curves groups. The group G and the extraction
function ext are chosen such that they avoid the known weakness instances of
the underlying ECDLP, and at the same time enjoy the statistical properties.

An elliptic curve group E(F,) is represent by the curve E (in the short
Weierstrass form) over finite field F: E(F,) = { (z,y) | y* = 23+az+b mod ¢ }U
O. Choose the curve (namely, choose a, b and ¢) so that ¢ is an odd prime, the
order of the group #E(F,) is a prime N > 2(1+2mA

In the short Weierstrass form, if (z,y) € E(F,), then (z,—y) € E(F,). Any
point P whose y-coordinate is zero does not exist in a prime order group, since
P = (z,0) implies the order of P is 2. So one option of the extraction function
ext : E(F,) — {0, 1} is to take the sign of the y-coordinate of a point P = (z,y) €
E(F,). To be precise, ify € {1, ..., (¢—1)/2}, output 1; if y € {(¢+1)/2,...,¢—1},
output 0. As an exception, if P = O, output 0.

6.2 LWE Based

The LWE based encryption scheme is a variant of Regev’s scheme [73]. We
remark that the hash function obtained by applying Construction5 on Con-
struction 11 yields a variant of Ajtai’s hash function [3], in the sense that we
apply rounding on the output vector.

Construction 11. The message space is M = {Mj}ren, where My =
{0,1}*N and w = w(\) € N. We construct an encryption scheme as follows.

— Public parameters generation PP-Gen(1*): Fiz an even number q()\) as
the modulus. Select B(\),£(\) € N such that B* € [227108(0) 2A+1oe(N)] gng
B < q. The public-parameters pp are (B, q,?).

- Representation of the secret key: we view the secret key k € {0,1}* as a
vector k € {0,..., B(\) — 1}¥N) | written as a column vector.

— Encryption Enc(pp, k,y): Given a message y € {0,1}. For j € [w], sample
ajeRZL*". computeb; = y;-34e;—a;-k (mod q), where e; — U([0,q/2)NZ).
Output ¢ = (a;,b;) jcw) as the ciphertext.

~ Decryption Dec(pp, k,c): View ¢ as (a;,b;)cqw). For j € [w], let the gth
output bit be [bj 4 a; -k mod q,, where -], : Zy — {0,1} outputs 0 if the
input is from [0,q/2), 1 if the input is from [q/2,q — 1].

The parameters are set according to the following constraints to minimize
the adversary’s advantage on the KDM problem, and to guarantee the statistical
properties. The choices of parameters are guided by the reductions from the
worst case problems, as well as the known attacks (e.g. [7,8,16,60,61,75]), even
though some of the attacks were designed to achieve non-trivial (sub)exponential
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running time and do not clearly achieving non-trivial success probability when
running in polynomial time.

1. ¢ is even so that we can get perfect ciphertext-universality.

2. The error term e is sampled uniformly from [0,q/2) N Z, differing from the
typical setting of discrete Gaussian distribution. Noise sampled uniformly
from a sufficiently large range is as good as Gaussian for some parameter
settings [34,64]. In particular, ¢/2 is sufficiently large, even larger than the
typical settings of the norm of the noise.

3. B, ¢, q are selected so that each coordinate of the secret vector has enough
entropy (i.e. B > y/n), the vector dimension £ is sufficiently close to A\, B/q
is not too small (i.e. ¢/B € poly(\)). One way of setting the parameter is to

let ¢ = O(A3), B(\) = 2181 g()) = [ﬁ .

We first show that the scheme satisfies the universal ciphertext requirement
(see Definition 5).

Proposition 3. The encryption scheme of Construction11 has wuniversal
ciphertexts.

Proof. The first property (as per Definition 5(1)) follows immediately from the
perfect 1-universality of the decryption function.

The second property (as per Definition 5(2)) can be verified as follows. For
J € [w], the randomness in the encryption includes a; € Z}I” and the error term
ej € Zq. For all y; € {0,1} and k* € {0, ..., B—1}¢, (bj,a;) € Zy x Z} is sampled
uniformly random conditioned on b;+a;-k* mod g € y; - 2410,¢/2)NZ. Viewing
the equality as a l-universal function a; - k* mod ¢ € yj - 4 +[0,¢/2) N Z — b,
with key a;, the marginal distribution of a; is uniform over Z}]”. Then, e; =
bj —y; - 4 +a; - k* is distributed uniformly over [0,¢/2) N Z. O

Assumption 12 (KDM security for LWE-based encryption). Let A €
N, w(\) € poly()). For all functions f : {0,...,B — 1} — {0,1}* (including
those who are not efficiently computable). The probably that any polynomial time
adversary Adv, given {a;,a; k+e; + f;(k)-q/2},cqw) where keg{0,...,B—1}",
ajERZéxe, e;€r[0,q/2) NZ, outputs k is smaller than

1
2> -negl(\)’ t-c.

1
Pr Adv({a;,b;}icrl) = k| < ———
ker{0,...,.B—1}* ({aj,b;}ieiw) 2X - negl())
{a;€RZL*" e;€R[0,9/2)NZ,
bj=a;kte;+f;(k)q/2}jew)
Thus, using Theorem 6, we obtain the following corollary.

Corollary 2. Suppose that Assumption 12 holds. Then, there exists correlation
intractable function for all sparse relations.

Remark 4. In Assumption 12, if the function f is a constant (i.e. is independent
of the key), then the problem is equivalent to search-LWE (for the same distri-
butions of secret, noise, and public matrices, and the same requirement on the
success probability as described in Assumption 12).
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7 NIZK from Fiat-Shamir

In this section we show how to use our hash functions to construct non-interactive
zero-knowledge (NIZK) arguments for NP. We follow the folklore approach of
applying the Fiat-Shamir transformation to a constant-round public-coin honest-
verifier zero-knowledge proof-system. The point however is that we can establish
soundness based on a concrete assumption (with a meaningful security reduc-
tion) rather than just heuristically assuming that the Fiat-Shamir transforma-
tion preserves soundness. Further, we show that if we start from an interactive
proof with adaptive soundness (where the instance z can be chosen adaptively
in the last message), as in [38]; then in the resulting NIZK, the soundness and
zero-knowledge properties hold even if the instance is chosen adaptively given
the CRS.

We remark that for this result to go through we require an additional property
from the hash function family that we use, beyond correlation intractability.
Namely, that it is possible to efficiently sample a uniformly random hash function
h from the family, conditioned on h(a) = b, for some arbitrary fixed values a
and b. We refer to this property as “programmability”.

Definition 7 (Programmability of hash function). A hash function ensem-
ble H = {hy : D(\) — C(N\)}ren is called programmable if there exists an
efficient algorithm M that given x € D(A\) and y € C(\), outputs a uniformly
random hash function hy, from the family such that hy(z) =y.

Translating the requirement to the hash function instantiated using our
KDM-secure encryption scheme, it means the encryption algorithm given a key
a and message b outputs the ciphertext efficiently.

We recall the definition of NIZK with adaptive soundness and zero-knowledge.

Definition 8 (NIZK with adaptive soundness and ZK [17,38]). Let A €
N be the security parameter. A non-interactive (computational) zero-knowledge
argument system (NIZK) for an NP language £ € NP, with witness relation R,
is a pair of probabilistic polynomial-time algorithms (P,V') such that:

- Completeness: For every x € L and witness w for x (i.e., (x,w € R¢)), for
all o € {0,1}PVN)
V(a,x,P(a:,a,w)) =1.

- Adaptive Soundness: For every polynomial-size cheating prover P*, we
have
—1 ] ().
aeR{o,lr}P"'YW [(V(x,a, a) ) A (:U ¢ L ) < negl(\)
(z,a)—P" (o)
— Adaptive Zero-Knowledge: There exists a probabilistic polynomial-time
stmulator S = (S1,52) such that for every polynomial time adversary A =

(Ala A2)7
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O'ER{Olvjlr}P"l‘/O\) {(A2(0-’ % C> - 1) A (.%‘ < L)}
(w’w)C)HAl(U)

TP (z,0,w)

_ 0-77—4_:F;r1(1’\) {(Ag(o,x,ﬂ,g) = 1) A (x € E)}
(x,w,()eAl(a)

m—Sa(1,2,0)

< negl(A),

where ¢ (resp., T) denote an internal state of the adversary (resp., simulator).

The random string o received by both P and V is referred to as the common
random string or CRS.
We establish the following result.

Theorem 13. Assume there exists one-way functions and a programmable cor-
relation intractable function ensemble for all sparse relations. Then, any lan-
guage in NP has a non-interactive zero-knowledge argument-system with adaptive
soundness and adaptive zero-knowledge.

As a corollary of Theorem 13 and the results obtained in the previous sections,
we obtain that:

Corollary 3. If either Assumption 10 or Assumption 12 holds, then any lan-
guage in NP has a non-interactive zero-knowledge argument-system with adaptive
soundness and adaptive zero-knowledge.

The readers are referred to the full version [25] for the Proof of Theorem 13.
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Appendices

A Success Probability of Polynomial Time Algorithms
on Discrete-Log Problem

The discrete-log problem over Fy can be solved by the index calculus algorithms
in heuristic subexponential time exp(C (log ¢)'/3(loglog q)%/?).

We consider a (commonly used) variant of the index calculus algorithm
with an online phase and an offline phase. The offline (preprocessing) phase
only gets the modulus ¢ and the generator g, the online phase gets the chal-
lenge h = ¢” mod ¢q, computes x. The offline part calculates the discrete
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log of log,(2), log,(3), ..., log,(B). The online phase picks a random r, try
to factorize ¢" - h = ¢"™* mod q in Z, see if all the factors are smaller or
equal to a prescribed prime bound B. If g" - h = 272 - 3% . ... - B¥B then
r+ax =log,(2) - z2 +log,(3) - x3 + ... +log,(B) - x5 mod ¢(q).

The algorithm achieves O(2™ ) success probability even if the online phase is

only allowed to run in polynomial time, and the preprocessing phase is allowed to
spend super-polynomial running time, but restricted to leave polynomially many
bits as the advice for the online phase. The analysis of the success probability
relies on the estimation of the number of smooth integers ¥ (g, B), which stands
for the number of integers in the range [1,¢] whose factors are all under B.
Since the online phase is forced to receive only polynomial size advice and run
in polynomial time, B will be chosen as a polynomial, whereas ¢ ~ 2*.

The smooth integer bound can be derived from Rankin [71] (see the survey
1

of [48]) that for any A > 1, ¥(q,log(q)*) = ql_l/A+O(10g10gq). This means the
probability of a number within [1,2*] to be O(A¢) smooth is 97 e +0(mex),
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Abstract. Asymptotically, the best known algorithms for solving the
Shortest Vector Problem (SVP) in a lattice of dimension n are sieve
algorithms, which have heuristic complexity estimates ranging from
(4/3)"+°™ down to (3/2)™/2+°(™ when Locality Sensitive Hashing tech-
niques are used. Sieve algorithms are however outperformed by pruned
enumeration algorithms in practice by several orders of magnitude,
despite the larger super-exponential asymptotical complexity 20(nlogn)
of the latter.

In this work, we show a concrete improvement of sieve-type algo-
rithms. Precisely, we show that a few calls to the sieve algorithm in
lattices of dimension less than n — d solves SVP in dimension n, where
d=06(n/logn).

Although our improvement is only sub-exponential, its practical effect
in relevant dimensions is quite significant. We implemented it over a sim-
ple sieve algorithm with (4/ 3)" o) complexity, and it outperforms the
best sieve algorithms from the literature by a factor of 10 in dimensions
70-80. It performs less than an order of magnitude slower than pruned
enumeration in the same range.

By design, this improvement can also be applied to most other vari-
ants of sieve algorithms, including LSH sieve algorithms and tuple-sieve
algorithms. In this light, we may expect sieve-techniques to outperform
pruned enumeration in practice in the near future.

Keywords: Cryptanalysis - Lattice - Sieving - Nearest-Plane

1 Introduction

The concrete hardness of the Shortest Vector Problem (SVP) is at the core of
the cost estimates of attacks against lattice-based cryptosystems. While those
schemes may use various underlying problems (NTRU [HPS98], SIS [Ajt99],
LWE [Reg05]) their cryptanalysis boils down to solving large instances of the
Shortest Vector Problem inside BKZ-type algorithms. There are two classes of
algorithms for SVP: enumeration algorithms and sieve algorithms.
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The first class of algorithms (enumeration) was initiated by Pohst [Poh81].
Kannan [Kan83, HS07, MW15] proved that with appropriate pre-processing, the
shortest vector could be found in time 2€("1°87)  This algorithm only requires
a polynomial amount of memory. These algorithms can be made much faster
in practice using some heuristic techniques, in particular the pruning tech-
nique [SE94,SH95, GNR10, Chel3].

The second class of algorithms (sieving) started with Ajtai et al. [AKSO01], and
requires single exponential time and memory. Variants were heuristically ana-
lyzed [NV08,MV10], giving a (4/3)"+°(™) time complexity and a (4/3)"/2+°(")
memory complexity. A long line of work, including [BGJ13,Laalba,Laal5b,
BDGL16] decrease this time complexity down to (3/2)"/2+°(") at the cost of
more memory. Other variants (tuple-sieving) are designed to lower the memory
complexity [BLS16,HK17].

The situation is rather paradoxical: asymptotically, sieving algorithms should
outperform enumeration algorithms, yet in practice, sieving remains several
orders of magnitude slower. This situation makes security estimates delicate,
requiring both algorithms to be considered. In that respect, one would much
prefer enumeration to become irrelevant, as the heuristics used in this algorithm
makes prediction of its practical cost tedious and maybe inaccurate.

To this end, an important goal is to improve not only the asymptotic complex-
ity of sieving, but also its practical complexity. Indeed, much can been gained
from asymptotically negligible tricks, fine-tuning of the parameters, and opti-
mized implementation effort [FBB+15, BNvdP14, MLB17].

This work. We propose a new practical improvement for sieve algorithms. In
theory, we can heuristically show that it contributes a sub-exponenti