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Preface

Eurocrypt 2018, the 37th Annual International Conference on the Theory and Appli-
cations of Cryptographic Techniques, was held in Tel Aviv, Israel, from April 29 to
May 3, 2018. The conference was sponsored by the International Association for
Cryptologic Research (IACR). Orr Dunkelman (University of Haifa, Israel) was
responsible for the local organization. He was supported by a local organizing team
consisting of Technion’s Hiroshi Fujiwara Cyber Security Research Center headed by
Eli Biham, and most notably by Suzie Eid. We are deeply indebted to them for their
support and smooth collaboration.

The conference program followed the now established parallel track system where
the works of the authors were presented in two concurrently running tracks. Only the
invited talks spanned over both tracks.

We received a total of 294 submissions. Each submission was anonymized for the
reviewing process and was assigned to at least three of the 54 Program Committee
members. Committee members were allowed to submit at most one paper, or two if
both were co-authored. Submissions by committee members were held to a higher
standard than normal submissions. The reviewing process included a rebuttal round for
all submissions. After extensive deliberations, the Program Committee accepted 69
papers. The revised versions of these papers are included in these three-volume pro-
ceedings, organized topically within their respective track.

The committee decided to give the Best Paper Award to the papers “Simple Proofs
of Sequential Work” by Bram Cohen and Krzysztof Pietrzak, “Two-Round Multiparty
Secure Computation from Minimal Assumptions” by Sanjam Garg and Akshayaram
Srinivasan, and “Two-Round MPC from Two-Round OT” by Fabrice Benhamouda
and Huijia Lin. All three papers received invitations for the Journal of Cryptology.

The program also included invited talks by Anne Canteaut, titled “Desperately
Seeking Sboxes”, and Matthew Green, titled “Thirty Years of Digital Currency: From
DigiCash to the Blockchain”.

We would like to thank all the authors who submitted papers. We know that the
Program Committee’s decisions can be very disappointing, especially rejections of very
good papers that did not find a slot in the sparse number of accepted papers. We
sincerely hope that these works eventually get the attention they deserve.

We are also indebted to the members of the Program Committee and all external
reviewers for their voluntary work. The Program Committee work is quite a workload.
It has been an honor to work with everyone. The committee’s work was tremendously
simplified by Shai Halevi’s submission software and his support, including running the
service on IACR servers.



Finally, we thank everyone else — speakers, session chairs, and rump-session
chairs — for their contribution to the program of Eurocrypt 2018. We would also like
to thank the many sponsors for their generous support, including the Cryptography
Research Fund that supported student speakers.

May 2018 Jesper Buus Nielsen
Vincent Rijmen

VI Preface



Eurocrypt 2018

The 37th Annual International Conference
on the Theory and Applications
of Cryptographic Techniques

Sponsored by the International Association for Cryptologic Research

April 29 – May 3, 2018
Tel Aviv, Israel

General Chair

Orr Dunkelman University of Haifa, Israel

Program Co-chairs

Jesper Buus Nielsen Aarhus University, Denmark
Vincent Rijmen University of Leuven, Belgium

Program Committee

Martin Albrecht Royal Holloway, UK
Joël Alwen IST Austria, Austria, and Wickr, USA
Gilles Van Assche STMicroelectronics, Belgium
Paulo S. L. M. Barreto University of Washington Tacoma, USA
Nir Bitansky Tel Aviv University, Israel
Céline Blondeau Aalto University, Finland
Andrey Bogdanov DTU, Denmark
Chris Brzuska TU Hamburg, Germany, and Aalto University, Finland
Jan Camenisch IBM Research – Zurich, Switzerland
Ignacio Cascudo Aalborg University, Denmark
Melissa Chase Microsoft Research, USA
Alessandro Chiesa UC Berkeley, USA
Joan Daemen Radboud University, The Netherlands,

and STMicroelectronics, Belgium
Yevgeniy Dodis New York University, USA
Nico Döttling Friedrich Alexander University Erlangen-Nürnberg,

Germany
Sebastian Faust TU Darmstadt, Germany
Serge Fehr CWI Amsterdam, The Netherlands
Georg Fuchsbauer Inria and ENS, France
Jens Groth University College London, UK
Jian Guo Nanyang Technological University, Singapore



Martin Hirt ETH Zurich, Switzerland
Dennis Hofheinz KIT, Germany
Yuval Ishai Technion, Israel, and UCLA, USA
Nathan Keller Bar-Ilan University, Israel
Eike Kiltz Ruhr-Universität Bochum, Germany
Gregor Leander Ruhr-Universität Bochum, Germany
Yehuda Lindell Bar-Ilan University, Israel
Mohammad Mahmoody University of Virginia, USA
Willi Meier FHNW, Windisch, Switzerland
Florian Mendel Infineon Technologies, Germany
Bart Mennink Radboud University, The Netherlands
María Naya-Plasencia Inria, France
Svetla Nikova KU Leuven, Belgium
Eran Omri Ariel University, Israel
Arpita Patra Indian Institute of Science, India
David Pointcheval ENS/CNRS, France
Bart Preneel KU Leuven, Belgium
Thomas Ristenpart Cornell Tech, USA
Alon Rosen IDC Herzliya, Israel
Mike Rosulek Oregon State University, USA
Louis Salvail Université de Montréal, Canada
Yu Sasaki NTT Secure Platform Laboratories, Japan
Thomas Schneider TU Darmstadt, Germany
Jacob C. N. Schuldt AIST, Japan
Nigel P. Smart KU Leuven, Belgium, and University of Bristol, UK
Adam Smith Boston University, USA
Damien Stehlé ENS de Lyon, France
Björn Tackmann IBM Research – Zurich, Switzerland
Dominique Unruh University of Tartu, Estonia
Vinod Vaikuntanathan MIT, USA
Muthuramakrishnan

Venkitasubramaniam
University of Rochester, USA

Frederik Vercauteren KU Leuven, Belgium
Damien Vergnaud Sorbonne Université, France
Ivan Visconti University of Salerno, Italy
Moti Yung Columbia University and Snap Inc., USA

Additional Reviewers

Masayuki Abe
Aysajan Abidin
Ittai Abraham
Hamza Abusalah

Divesh Aggarwal
Shashank Agrawal
Shweta Agrawal
Thomas Agrikola

Bar Alon
Abdel Aly
Prabhanjan Ananth
Elena Andreeva

VIII Eurocrypt 2018



Daniel Apon
Gilad Asharov
Nuttapong Attrapadung
Benedikt Auerbach
Daniel Augot
Christian Badertscher
Saikrishna

Badrinarayanan
Shi Bai
Josep Balasch
Marshall Ball
Valentina Banciu
Subhadeep Banik
Zhenzhen Bao
Gilles Barthe
Lejla Batina
Balthazar Bauer
Carsten Baum
Christof Beierle
Amos Beimel
Sonia Belaid
Aner Ben-Efraim
Fabrice Benhamouda
Iddo Bentov
Itay Berman
Kavun Elif Bilge
Olivier Blazy
Jeremiah Blocki
Andrey Bogdanov
Carl Bootland
Jonathan Bootle
Raphael Bost
Leif Both
Florian Bourse
Elette Boyle
Zvika Brakerski
Christian Cachin
Ran Canetti
Anne Canteaut
Brent Carmer
Wouter Castryck
Andrea Cerulli
André Chailloux
Avik Chakraborti
Yilei Chen
Ashish Choudhury

Chitchanok
Chuengsatiansup

Michele Ciampi
Thomas De Cnudde
Ran Cohen
Sandro Coretti
Jean-Sebastien Coron
Henry Corrigan-Gibbs
Ana Costache
Geoffroy Couteau
Claude Crépeau
Ben Curtis
Dana Dachman-Soled
Yuanxi Dai
Bernardo David
Alex Davidson
Jean Paul Degabriele
Akshay Degwekar
Daniel Demmler
Amit Deo
Apoorvaa Deshpande
Itai Dinur
Christoph Dobraunig
Manu Drijvers
Maria Dubovitskaya
Léo Ducas
Yfke Dulek
Pierre-Alain Dupont
François Dupressoir
Avijit Dutta
Lisa Eckey
Maria Eichlseder
Maximilian Ernst
Mohammad Etemad
Antonio Faonio
Oriol Farràs
Pooya Farshim
Manuel Fersch
Dario Fiore
Viktor Fischer
Nils Fleischhacker
Christian Forler
Tommaso Gagliardoni
Chaya Ganesh
Juan Garay
Sanjam Garg

Romain Gay
Peter Gaži
Rosario Gennaro
Satrajit Ghosh
Irene Giacomelli
Federico Giacon
Benedikt Gierlichs
Junqing Gong
Dov Gordon
Divya Gupta
Lorenzo Grassi
Hannes Gross
Vincent Grosso
Paul Grubbs
Chun Guo
Siyao Guo
Mohammad Hajiabadi
Carmit Hazay
Gottfried Herold
Felix Heuer
Thang Hoang
Viet Tung Hoang
Akinori Hosoyamada
Kristina Hostáková
Andreas Hülsing
Ilia Iliashenko
Roi Inbar
Vincenzo Iovino
Tetsu Iwata
Abhishek Jain
Martin Jepsen
Daniel Jost
Chiraag Juvekar
Seny Kamara
Chethan Kamath
Bhavana Kanukurthi
Harish Karthikeyan
Suichi Katsumata
Jonathan Katz
John Kelsey
Dakshita Khurana
Eunkyung Kim
Taechan Kim
Elena Kirshanova
Ágnes Kiss
Susumu Kiyoshima

Eurocrypt 2018 IX



Ilya Kizhvatov
Alexander Koch
Konrad Kohbrok
Lisa Kohl
Stefan Kölbl
Ilan Komargodski
Yashvanth Kondi
Venkata Koppula
Thorsten Kranz
Hugo Krawczyk
Marie-Sarah Lacharite
Kim Laine
Virginie Lallemand
Gaëtan Leurent
Anthony Leverrier
Xin Li
Pierre-Yvan Liardet
Benoît Libert
Huijia Lin
Guozhen Liu
Jian Liu
Chen-Da Liu-Zhang
Alex Lombardi
Julian Loss
Steve Lu
Atul Luykx
Vadim Lyubashevsky
Saeed Mahloujifar
Hemanta Maji
Mary Maller
Umberto Martínez-Peñas
Daniel Masny
Takahiro Matsuda
Christian Matt
Patrick McCorry
Pierrick Méaux
Lauren De Meyer
Peihan Miao
Brice Minaud
Esfandiar Mohammadi
Ameer Mohammed
Maria Chiara Molteni
Tal Moran
Fabrice Mouhartem
Amir Moradi
Pratyay Mukherjee

Marta Mularczyk
Mridul Nandi
Ventzislav Nikov
Tobias Nilges
Ryo Nishimaki
Anca Nitulescu
Ariel Nof
Achiya Bar On
Claudio Orlandi
Michele Orrù
Clara Paglialonga
Giorgos Panagiotakos
Omer Paneth
Louiza Papachristodoulou
Kostas Papagiannopoulos
Sunoo Park
Anat Paskin-Cherniavsky
Alain Passelègue
Kenny Paterson
Michaël Peeters
Chris Peikert
Alice Pellet–Mary
Geovandro C. C. F.

Pereira
Leo Perrin
Giuseppe Persiano
Thomas Peters
Krzysztof Pietrzak
Benny Pinkas
Oxana Poburinnaya
Bertram Poettering
Antigoni Polychroniadou
Christopher Portmann
Manoj Prabhakaran
Emmanuel Prouff
Carla Ràfols
Somindu C. Ramanna
Samuel Ranellucci
Shahram Rasoolzadeh
Divya Ravi
Ling Ren
Oscar Reparaz
Silas Richelson
Peter Rindal
Michal Rolinek
Miruna Rosca

Ron Rothblum
David Roubinet
Adeline Roux-Langlois
Vladimir Rozic
Andy Rupp
Yusuke Sakai
Simona Samardjiska
Niels Samwel
Olivier Sanders
Pratik Sarkar
Alessandra Scafuro
Martin Schläffer
Dominique Schröder
Sven Schäge
Adam Sealfon
Yannick Seurin
abhi shelat
Kazumasa Shinagawa
Luisa Siniscalchi
Maciej Skórski
Fang Song
Ling Song
Katerina Sotiraki
Florian Speelman
Gabriele Spini
Kannan Srinathan
Thomas Steinke
Uri Stemmer
Igors Stepanovs
Noah

Stephens-Davidowitz
Alan Szepieniec
Seth Terashima
Cihangir Tezcan
Mehdi Tibouchi
Elmar Tischhauser
Radu Titiu
Yosuke Todo
Junichi Tomida
Patrick Towa
Boaz Tsaban
Daniel Tschudi
Thomas Unterluggauer
Margarita Vald
Kerem Varici
Prashant Vasudevan

X Eurocrypt 2018



Philip Vejre
Daniele Venturi
Benoît Viguier
Fernando Virdia
Damian Vizár
Alexandre Wallet
Michael Walter
Haoyang Wang
Qingju Wang

Hoeteck Wee
Felix Wegener
Christian Weinert
Erich Wenger
Daniel Wichs
Friedrich Wiemer
David Wu
Thomas Wunderer
Sophia Yakoubov

Shota Yamada
Takashi Yamakawa
Kan Yasuda
Attila Yavuz
Scott Yilek
Eylon Yogev
Greg Zaverucha
Mark Zhandry
Ren Zhang

Eurocrypt 2018 XI



Abstract of Invited Talks



Desperately Seeking Sboxes

Anne Canteaut

Inria, Paris, France
anne.canteaut@inria.fr

Abstract. Twenty-five years ago, the definition of security criteria associated to
the resistance to linear and differential cryptanalysis has initiated a long line of
research in the quest for Sboxes with optimal nonlinearity and differential
uniformity. Although these optimal Sboxes have been studied by many cryp-
tographers and mathematicians, many questions remain open. The most
prominent open problem is probably the determination of the optimal values
of the nonlinearity and of the differential uniformity for a permutation depending
on an even number of variables.

Besides those classical properties, various attacks have motivated several
other criteria. Higher-order differential attacks, cube distinguishers and the more
recent division property exploit some specific properties of the representation
of the whole cipher as a collection of multivariate polynomials, typically the fact
that some given monomials do not appear in these polynomials. This type of
property is often inherited from some algebraic property of the Sbox. Similarly,
the invariant subspace attack and its nonlinear counterpart also originate from
specific algebraic structure in the Sbox.



Thirty Years of Digital Currency:
From DigiCash to the Blockchain

Matthew Green

Johns Hopkins University
mgreen@cs.jhu.edu

Abstract. More than thirty years ago a researcher named David Chaum pre-
sented his vision for a cryptographic financial system. In the past ten years this
vision has been realized. Yet despite a vast amount of popular excitement, it
remains to be seen whether the development of cryptocurrencies (and their
associated consensus technologies) will have a lasting positive impact—both on
society and on our research community. In this talk I will examine that question.
Specifically, I will review several important contributions that research cryp-
tography has made to this field; survey the most promising deployed
(or developing) technologies; and discuss the many challenges ahead.
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Abstract. We introduce a formal quantitative notion of “bit security”
for a general type of cryptographic games (capturing both decision and
search problems), aimed at capturing the intuition that a cryptographic
primitive with k-bit security is as hard to break as an ideal cryptographic
function requiring a brute force attack on a k-bit key space. Our new
definition matches the notion of bit security commonly used by cryp-
tographers and cryptanalysts when studying search (e.g., key recovery)
problems, where the use of the traditional definition is well established.
However, it produces a quantitatively different metric in the case of deci-
sion (indistinguishability) problems, where the use of (a straightforward
generalization of) the traditional definition is more problematic and leads
to a number of paradoxical situations or mismatches between theoreti-
cal/provable security and practical/common sense intuition. Key to our
new definition is to consider adversaries that may explicitly declare fail-
ure of the attack. We support and justify the new definition by proving
a number of technical results, including tight reductions between several
standard cryptographic problems, a new hybrid theorem that preserves
bit security, and an application to the security analysis of indistinguisha-
bility primitives making use of (approximate) floating point numbers.
This is the first result showing that (standard precision) 53-bit floating
point numbers can be used to achieve 100-bit security in the context of
cryptographic primitives with general indistinguishability-based security
definitions. Previous results of this type applied only to search problems,
or special types of decision problems.

1 Introduction

It is common in cryptography to describe the level of security offered by a (con-
crete instantiation of a) cryptographic primitive P by saying that P provides a
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certain number of bits of security. E.g., one may say that AES offers 110-bits
of security as a pseudorandom permutation [6], or that a certain lattice based
digital signature scheme offers at least 160-bits of security for a given setting of
the parameters. While there is no universally accepted, general, formal defini-
tion of bit security, in many cases cryptographers seem to have an intuitive (at
least approximate) common understanding of what “n bits of security” means:
any attacker that successfully breaks the cryptographic primitive must incur a
cost1 of at least T > 2n, or, alternatively, any efficient attack achieves at most
ε < 2−n success probability, or, perhaps, a combination of these two conditions,
i.e., for any attack with cost T and success probability ε, it must be T/ε > 2n.
The intuition is that 2n is the cost of running a brute force attack to retrieve
an n-bit key, or the inverse success probability of a trivial attack that guesses
the key at random. In other words, n bits of security means “as secure as an
idealized perfect cryptographic primitive with an n-bit key”.

The appeal and popularity of the notion of bit security (both in theory and in
practice) rests on the fact that it nicely sits in between two extreme approaches:

– The foundations of cryptography asymptotic approach (e.g., see [9,10]) which
identifies feasible adversaries with polynomial time computation, and success-
ful attacks with breaking a system with non-negligible probability.

– The concrete security approach [3,5], which breaks the adversarial cost into
a number of different components (running time, oracle queries, etc.), and
expresses, precisely, how the adversary’s advantage in breaking a crypto-
graphic primitive depends on all of them.

The foundational/asymptotic approach has the indubious advantage of simplic-
ity, but it only offers a qualitative classification of cryptographic functions into
secure and insecure ones. In particular, it does not provide any guidance on
choosing appropriate parameters and key sizes to achieve a desired level of secu-
rity in practice. On the other hand, the concrete security treatment delivers (pre-
cise, but) substantially more complex security statements, and requires carefully
tracking a number of different parameters through security reductions. In this
respect, bit security offers a quantitative, yet simple, security metric, in the form
of a single number: the bit security or security level of a primitive, typically
understood as the logarithm (to the base 2) of the ratio T/ε between the cost T
and advantage ε of the attack, minimized over all possible adversaries.

Capturing security level with a single number is certainly convenient and use-
ful: it allows for direct comparison of the security level of different instances of
the same primitive (or even between different primitives altogether), and it pro-
vides a basis for the study of tight reductions, i.e., constructions and reductions
that approximately preserve the security level. Not surprisingly, bit security is

1 For concreteness, the reader may think of the cost as the running time of the attack,
but other cost measures are possible, and everything we say applies to any cost
measure satisfying certain general closure properties, like the fact that the cost of
repeating an attack k times is at most k times as large as the cost of a single
execution.
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widely used. However, there is no formal definition of this term at this point, but
rather just an intuitive common understanding of what this quantity should cap-
ture. This understanding has led to some paradoxical situations that suggest that
the current “definitions” might not capture exactly what they are meant to.

It has been noted that only considering the adversary’s running time is a
poor measure of the cost of an attack [7,8]. This is especially true if moving to
the non-uniform setting, where an adversary may receive additional advice, and
the question of identifying an appropriate cost measure has been studied before
[6]. However, the paradoxical situations have not, to this day, been resolved
to satisfaction, and it seems that considering only the adversary’s resources is
insufficient to address this issue.

In order to explain the problems with the current situation, we first distin-
guish between two types of primitives with respect to the type of game that
defines their security (see Sect. 3 for a more formal definition): search primitives
and decision primitives. Intuitively, the former are primitives where an adversary
is trying to recover some secret information from a large search space, as in a key
recovery attack. The latter are games where the adversary is trying to decide if
a secret bit is 0 or 1, as in the indistinguishability games underlying the defini-
tion of pseudorandom generators or semantically secure encryption. For search
games, the advantage of an adversary is usually understood to be the probability
of finding said secret information, while for decision games it is usually consid-
ered to be the distinguishing advantage (which is equal to the probability that
the output of the adversary is correct, over the trivial probability 1

2 of a random
guess).

The Peculiar Case of PRGs. Informally, a PRG is a function f : {0, 1}n �→
{0, 1}m, where m > n, such that its output under uniform input is indistinguish-
able from the uniform distribution over {0, 1}m. In the complexity community
it is common knowledge according to [8] that a PRG with seed length n cannot
provide more than n/2 bits of security under the current definition of security
level. This is because there are non-uniform attacks that achieve distinguishing
advantage 2−n/2 in very little time against any such function. Such attacks were
generalized to yield other time-space-advantage trade-offs in [7]. This is very
counter-intuitive, as the best generic seed recovery attacks do not prevent n-bit
security (for appropriate cost measure), and thus one would expect n bits of
security in such a case to be possible.

The Peculiar Case of Approximate Samplers. Many cryptographic schemes,
in particular lattice based schemes, involve specific distributions that need to
be sampled from during their execution. Furthermore, security reductions may
assume that these distributions are sampled exactly. During the transition of
such a cryptographic scheme from a theoretical construction to a practical imple-
mentation, the question arises as to how such a sampling algorithm should be
implemented. In many cases, it is much more efficient or secure (against e.g.
side channel attacks) or even only possible to approximate the corresponding
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distribution rather than generating it exactly. In such a case it is crucial to
analyze how this approximation impacts the security of the scheme. Tradition-
ally, statistical distance has been employed to quantify this trade-off between
approximation and security guarantee, but it leads to the unfortunate situation
where the 53-bit precision provided by floating point numbers (as implemented
in hardware in commodity microprocessors) only puts a 2−53 bound on statisti-
cal distance, and results in a rather weak 53-bit security guarantee on the final
application. Proving better security using statistical distance methods seems
to require higher precision floating point numbers implemented in (substantially
slower) software libraries. In recent years a number of generic results have shown
improved analysis methods based on different divergences [2,15–17] and using
the conventional definition of bit security. Surprisingly, all of them apply exclu-
sively to search primitives (with the only exception of [2], which also considers
decision primitives with a specific property). This has led to the unnatural sit-
uation where it seems that decision primitives, like encryption, require higher
precision sampling than search primitives. This is counter-intuitive, because in
search primitives, like signature schemes, the distribution is often used to hide
a specific secret and a bad approximation may leak information about it. On
the other hand, it is commonly believed within the research community that
for encryption schemes the distribution does not necessarily have to be followed
exactly, as long as it has sufficient entropy, since none of the cryptanalytic attacks
seem to be able to take advantage of a bad approximation in this case [1]. How-
ever, a corresponding proof for generic decision primitives (e.g., supporting the
use of hardware floating point numbers, while still targeting 100-bit or higher
levels of security) has so far eluded the attempts of the research community.

1.1 Contribution and Techniques

We present a new notion of bit security associated to a general cryptographic
game. Informally, we consider a game in which an adversary has to guess an n-bit
secret string2 x. This captures, in a unified setting, both decision/indistinguish-
ability properties, when n = 1, and arbitrary search/unpredictability properties,
for larger n. The definition of bit security is quite natural and intuitive, building
on concepts from information theory, but we postpone its description to the end
of this section. For now, what matters is that a distinguishing feature of our
framework is to explicitly allow the adversary to output a special “don’t know”
symbol ⊥, rather than a random guess. So, we can talk about the probability
α that the adversary outputs something (other than ⊥), and the (conditional)
probability β that the output correctly identifies the secret. This makes little
difference for search problems, but for decision problems it allows the adversary
to express different degrees of confidence in its guess: admitting failure is more
informative than a random guess. We proceed by specializing our notion of bit

2 More generally, the adversary has to output a value satisfying a relation R(x, a)
which defines successful attacks. For simplicity, in this introduction, we assume R is
the identity function. See Definition 5 for the actual definition.
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security to the two important settings of search and decision problems and show
that:

– For the case of search primitives (large secret size n = |x|), this yields the
traditional notion of bit security, as the logarithm of the ratio T/ε between
the attack cost T , and the success probability ε = αβ. The fact that our
definition is consistent with the current one in the case of search primitives
gives us confidence in its validity, since in this case the traditional definition
is very intuitive and there are no paradoxes casting doubts about it.

– Surprisingly, for decision primitives (i.e., for n = 1), our definition yields a
different formula, which, instead of being linear the distinguishing advantage
δ = 2β − 1, is quadratic in δ. In other words, the bit security is the logarithm
of T/(αδ2). This is not entirely new, as a similar proposal was already put
forward in [11,14] in a more specific context, but has so far received very little
attention.

One of the implications of our new definition is that it seemingly resolves
the paradoxical situation about the bit security of pseudorandom generators
(PRGs) described in [7]. (The significance of the nonuniform attacks to one-way
functions described in [7] can already be addressed by an appropriate choice of
cost measure.) For the PRG case, an attack achieving distinguishing advantage
δ = 2−n/2 even in constant time does not necessarily contradict n-bit security. In
fact, [7] shows that for any algorithm distinguishing the output of any function
f : {0, 1}n �→ {0, 1}n+1 from uniform with distinguishing advantage δ must use
at least T = Ω(δ22n) resources (for a suitable definition of resources, similar
to the one-way function case). So, this shows that by our definition, there exist
PRGs with bit security log2(T/δ2) = n, as one would expect.

Of course, as definitions are arbitrary, it is not clear if changing a definition
is really solving any real problem, and our definition of bit security needs to be
properly supported and justified. Notice that a reduction A ≤ B showing that if
A is n-bit secure, then B is n/2-bit secure, may be interpreted in different ways:

– Either the construction of B from A is not optimal/tight, i.e., it incurs an
actual security degradation

– Or the construction is tight, but the reduction (i.e., the security proof) is not
– Or the definition of bit security is incorrect.

The last possibility is most delicate when reducing between different types of
cryptographic primitives (e.g., from search to decision) where the definition of bit
security may take different (and somehow arbitrary) forms. All these comments
apply equally well to tight reductions, mapping n-bit security to n-bit security.
We support and justify our definition by providing a collection of results (typi-
cally in the form of tight reductions3 between different cryptographic primitives),
which are the main technical contribution of this paper. For example,
3 In the context of this work, “tight” means that bit security is (approximately) pre-

served, up to small additive logarithmic terms corresponding to the polynomial
running time of an attack. More specifically, a reduction is tight if it maps a primitive
providing n-bit security, to another with security level n − O(log n). For simplicity,
we omit all the O(log n) in this introduction.
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– We observe that the Goldreich-Levin hard-core predicate is tight according
to our definition, i.e., if f(x) is an n-bit secure one-way permutation,4 then
G(r, x) = (r, f(x), 〈r, x〉) is an n-bit secure PRG.

– There is a simple reduction showing that if G is an n-bit secure PRG, then
the same G (and also f) is an n-bit secure one-way function. (Interestingly,
the reduction is not completely trivial, and makes critical use of the special
symbol ⊥ in our definition. See Theorem4.)

Notice that, while both reductions are between different types of cryptographic
primitives (search and decision, with different bit security formulas), combining
them together gives a search-to-search reduction which uses the same security
definition on both sides. Since it would be quite counterintuitive for such a
simple reduction (from PRG to OWF) to increase the level of security from n/2
to n bits, this provides some confidence that our definition is on target, and the
Goldreich-Levin PRG is indeed as secure as the underlying one-way function.

Other technical results presented in this paper include:

– Approximate samplers: we give a proof in Sect. 5.3 that shows for the first
time that the sampling precision requirement is essentially the same for search
and decision primitives to maintain security. We do this by extending a result
from [15] for search primitives to decision primitives using our definition of
bit security.

– Hybrid argument: since our new definition of advantage no longer matches the
simple notion of statistical distance, the standard proof of the hybrid argu-
ment [12] (so ubiquitously used in cryptography and complexity) is no longer
valid. While the proof in our setting becomes considerably more involved, we
show (Theorem 7) that hybrid arguments are still valid.

– Additional examples about non-verifiable search problems (Theorem5), and
tight reductions for message-hiding encryption (Theorem 6), and multi-
message security (Corollary 1).

Beside increasing our confidence in the validity of our new bit security notion,
these reductions also start building a toolbox of techniques that can be used to
fruitfully employ the new definition in the analysis of both old and new cryp-
tographic primitives, and improve our theoretical understanding of the relation
between different cryptographic primitives by means of tight reductions. Finally,
they allow us to expand the use of divergence techniques [2,15–17] to bound the
floating point precision required to secure cryptographic primitives with indis-
tinguishability security properties.

We conclude this section with an informal overview of the new bit security
definition. As already mentioned, our definition is based on concepts from infor-
mation theory. In a purely information theoretic setting, the advantage of an
adversary A in discovering a secret X could be modeled by the mutual informa-
tion ε = I(A,X)/H(X), normalized by the entropy of the secret H(X) to ensure

4 The actual reduction holds for any one-way functions. Here we focus on permutations
just to emphasize the connection with PRGs. See Theorem 3.
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ε ≤ 1. Of course, this approach completely fails in the computational setting,
where the output of a one-way permutation f(X) is perfectly correlated with the
input X, but still we do not want to consider a trivial algorithm A(f(X)) = f(X)
as a successful attack (with advantage ε = I(A,X)/H(X) = 1 !) to the one-way
permutation input recovery problem: what the adversary knows (f(X)) identifies
the input X information theoretically, but it does not provide knowledge of it.
We adapt this definition to the computational setting by replacing A with a dif-
ferent random variable Y which equals (1) the secret X when A is successful (i.e.,
A = X), and (2) an independent copy X ′ of the secret (conditioned on X ′ �= X)
when A failed to output X. We find this definition intuitively appealing, and
we consider it the main conceptual contribution of this paper. But words are of
limited value when arguing about the validity of a new definition. We view the
technical results described above the most important evidence to support our
definition, and the main technical contribution of this work.

1.2 Related Work

While the informal concept of bit security is widely used in cryptography, not
many papers directly address the problem of its formal definition. Some of the
works that are perhaps most directly related to our are [6–8], which pinpoint
the shortcoming of the traditional definition. The work of Bernstein and Lange
[6] provides an extensive survey of relevant literature, and attempts to provide
a better definition. In [6, Appendix B] the authors analyze different measures
to address the underlying problems, and show how each of them can be used
to make partial progress towards a more sound definition of bit security, while
pointing out that none of them seem to solve the problem entirely. In contrast,
the definitions and results in this paper concern the definition of adversarial
advantage, which we consider to be orthogonal to any of the ideas presented in
[6]. So, we see our work as complementary to [6–8].

To the best of our knowledge there are only two works proposing an alterna-
tive definition of adversarial advantage for decision problems: the aforementioned
works of Goldreich and Levin [11,14] and the infamous HILL paper [13]. The lat-
ter primarily works with the traditional definition of adversarial advantage, but
presents the advantage function δ2 (note the lack of α) as an alternative, observ-
ing that many of their reductions are much tighter in this case. Our work can be
considered as a generalization of them, and supporting the definitional choices
made in [11,14]. In the last years, bit security has been the focus on a body of
work [2,15–17] aimed at optimizing the parameters and floating point precision
requirements of lattice cryptography. Our work resolves the main problem left
open in [15,17] of extending definitions and techniques from search to decision
problems, and support the secure use of standard precision floating point num-
bers in the implementation of cryptographic primitives (like encryption) with
indistinguishability security properties.
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2 Preliminaries

Notation. We denote the integers by Z and the reals by R. Roman and Greek
letters can denote elements from either set, while bold letters denote vectors over
them. Occasionally, we construct vectors on the fly using the notation (·)i∈S for
some set S (or in short (·)i if the set S is clear from context), where · is a function
of i. For a set S, we denote its complement by S̄. We denote the logarithm to
the base 2 by log and the one to the base e by ln.

Calligraphic letters are reserved for probability distributions and x ← P
means that x is sampled from the distribution P. For any x in the support of
P, we denote its probability under P by P(x). All distributions in this work are
discrete, and U(S) is the uniform distribution over the support S. If S is clear
from context, we simply write U instead of U(S). A probability ensemble {Pθ}θ

is a family of distributions indexed by a parameter θ (which may be a string
or a vector). We extend any divergence δ between distributions to probability
ensembles by δ({Pθ}θ, {Qθ}θ) = maxθ δ(Pθ,Qθ). For notational simplicity, we
do not make a distinction between random variables, probability distributions,
and probabilistic algorithms generating them.

Definition 1. The statistical distance between two distributions P and Q over
S is defined as ΔSD(P,Q) = 1

2

∑
x∈S |P(x) − Q(x)|.

2.1 Information Theory

For our definition, we need a few concepts from information theory.

Definition 2. The Shannon entropy of a random variable X is given by

H(X) = EX

[

log
1

Pr{X}
]

= −
∑

x

Pr[X = x] log Pr[X = x].

Definition 3. For two random variables X and Y , the conditional entropy of
X given Y is

H(X|Y ) = EY [H(X|Y )] =
∑

x,y

Pr[X = x, Y = y] log
Pr[Y = y]

Pr[X = x, Y = y]
.

Definition 4. The mutual information between two random variables X and Y is

I(X;Y ) = H(X) − H(X|Y ).

3 Security Games

In this section we formally define the bit security of cryptographic primitives
in a way that captures practical intuition and is theoretically sound. As the
security of cryptographic primitives is commonly defined using games, we start
by defining a general class of security games.
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Definition 5. An n-bit security game is played by an adversary A interacting
with a challenger X. At the beginning of the game, the challenger chooses a secret
x, represented by the random variable X ∈ {0, 1}n, from some distribution DX .
At the end of the game, A outputs some value, which is represented by the random
variable A. The goal of the adversary is to output a value a such that R(x, a),
where R is some relation. A may output a special symbol ⊥ such that R(x,⊥)
and R̄(x,⊥) are both false.

This definition is very general and covers a lot of standard games from the
literature. Some illustrative examples are given in Table 1. But for the crypto-
graphic primitives explicitly studied in this paper, it will be enough to consider
the simplest version of the definition where R = {(x, x)|x ∈ X} is the identity
relation, i.e., the goal of the adversary is to guess the secret x. We formally
define the indistinguishability game for two distributions because we refer to it
extensively throughout this work.

Table 1. Typical instantiations of security games covered by Definition 5. The security
parameter is denoted by κ. In the definition of digital signatures, the list Q of the
adversary’s queries are regarded as part of its output.

Game R n DX

Uninvertibility of one-way permutations {(x, y) | x = y} O(κ) U
Uninvertibility of one-way functions f {(x, y) | f(x) = f(y)} O(κ) U
2nd pre-image resistance for hash functions h {(x, y) | x �= y, h(x) = h(y)} O(κ) U
Indistinguishability of two distributions {(x, y) | x = y} 1 U
Unforgeability of signature scheme (K,S,V ) {(x, (m, σ, Q)) | (pk, sk) ←

K(x), V (pk, m, σ) = 1, m /∈ Q}
O(κ) K(U)

Definition 6. Let {D0
θ}θ, {D1

θ}θ be two distribution ensembles. The indistin-
guishability game is defined as follows: the challenger C chooses b ← U({0, 1}).
At any time after that the adversary A may (adaptively) request samples by send-
ing θi to C, upon which C draws samples ci ← Db

θi
and sends ci to A. The goal

of the adversary is to output b′ = b.

We loosely classify primitives into two categories according to their associated
security games: we call primitives, where the associated security game is a 1-bit
game (O(κ)-bit game), decision primitives (search primitive, respectively).

Note that we allow the adversary to always output ⊥, which roughly means
“I don’t know”, even for decision primitives. This is a crucial difference from
previous definitions that force the distinguisher to always output a bit. The
reason this is important is that in games, where the distinguisher is not able to
check if it produced the correct result, it is more informative to admit defeat
rather than guessing at random. In many cases this will allow for much tighter
reductions (cf. Sect. 5.2). Such a definition in the context of indistinguishability
games is not entirely new, as Goldreich and Levin [11,14] also allowed this type
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of flexibility for the distinguisher. To the best of our knowledge, this is the only
place this has previously appeared in the cryptographic literature.

Now we are ready to define the advantage. The definition is trying to cap-
ture the amount of information that the adversary is able to learn about the
secret. The reasoning is that the inverse of this advantage provides a lower
bound on the number of times this adversary needs to be run in order to extract
the entire secret. We use tools from information theory to quantify exactly this
information, in particular the Shannon entropy. Other notions of entropy might
be worth considering, but we focus on Shannon entropy as the most natural
definition that captures information. A straight-forward definition could try to
measure the mutual information between the random variables X (modeling the
secret) and A (modeling the adversary output, cf. Definition 5). Unfortunately,
the variable A might reveal X completely in an information theoretical sense,
yet not anything in a computational sense. To break any computationally hid-
den connection between X and A, we introduce another random variable Y ,
which indicates, when A actually achieves its goal and otherwise does not reveal
anything about the secret.

Definition 7. For any security game with corresponding random variable X
and A(X), the adversary’s advantage is

advA =
I(X;Y )
H(X)

= 1 − H(X|Y )
H(X)

where I(·; ·) is the mutual information, H(·) is the Shannon entropy, and
Y (X,A) is the random variable with marginal distributions Yx,a = {Y | X =
x,A = a} defined as

1. Yx,⊥ = ⊥, for all x.
2. Yx,a = x, for all (x, a) ∈ R.
3. Yx,a = {x′ ← DX | x′ �= x}, for all (x, a) ∈ R̄.

At first glance, the definition of Y might not be obviously intuitive, except
for case 1. For case 2, note that x completely determines the set R(x, ·) and
if the adversary finds an element in it, then it wins the game. Therefore, one
can think of R(x, ·) as a secret set, and finding any element in it as completely
breaking the scheme. Finally, the third case defines Y to follow the distribution
of the secret, but is conditioned on the event that it is incorrect. The intuition
here is that if an adversary outputs something, then his goal is to bias the secret
distribution towards the correct one, i.e. it will allow us to quantify how much
better A performs than random guessing.

With the definition of the advantage in place, the definition of bit security
follows quite naturally.

Definition 8. Let T : {A | A is any algorithm} �→ Z+ be a measure of resources
that is linear under repetition, i.e. T (kA) = kT (A), where kA is the k time
repetition of A. For any primitive, we define its bit security as minA log T (A)

advA .
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For convenience we will often write T (A) as TA or simply T if A is clear from
context. Note that we leave out a concrete definition of the resources on purpose,
since we focus on the advantage. Our definition can be used with many different
measures, for example running time, space, advice, etc., or combinations of them.

4 The Adversary’s Advantage

While the advantage as defined in the previous section captures the intuition
about how well an adversary performs, it seems too complex to be handled in
actual proofs or to be used in practice. A simple definition in terms of simple
quantities related to the adversary would be much more desirable. We begin by
defining the quantities of an adversary that we are interested in.

Definition 9. For any adversary A playing a security game, we define its out-
put probability as αA = Pr[A �= ⊥] and its conditional success probability as
βA = Pr[R(X,A)|A �= ⊥], where the probabilities are taken over the randomness
of the entire security game (including the internal randomness of A). Finally, in
the context of decision primitives, we also define A’s conditional distinguishing
advantage as δA = 2βA − 1. With all of these quantities, when the adversary A
is clear from context, we drop the corresponding superscript.

The goal of this section is to distill a simple definition of advantage in terms
of αA and βA by considering a broad and natural class of adversaries and games.

Theorem 1. For any n-bit security game with uniform secret distribution, let A
be an adversary that for any secret x ∈ {0, 1}n outputs ⊥ with probability 1 − α,
some value a such that R(x, a) with probability βα, and some value a such that
R̄(x, a) with probability (1 − β)α. Then

advA = α

(

1 − (1 − β) log(2n − 1) + H(Bβ)
n

)

(1)

where Bβ denotes the Bernoulli distribution with parameter β.

We defer the proof to AppendixA. Note that for large n we get advA ≈ αAβA,
which is exactly A’s success probability. Plugging this into Definition 8 matches
the well-known definition of bit security for search primitives. On the other hand,
for n = 1 this yields advA = αA(1 − H(BβA)) = αA(δA)2/(2 ln 2) + O(αA(δA)4)
by Taylor approximation, which, for our purposes, can be approximated by
αA(δA)2. This matches the definition of Levin [14], who proposed this defini-
tion since it yields the inverse sample complexity of noticing the correlation
between the adversary output and the secret. The fact that it can be derived
from Definition 7 suggests that this is the “right” definition of the adversary’s
advantage.

We now redefine the adversary’s advantage according to above observations,
which, combined with Definition 8 yields the definition of bit security we actually
put forward and will use throughout the rest of this work.
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Definition 10. For a search game, the advantage of the adversary A is

advA = αAβA

and for a decision game, it is

advA = αA(δA)2.

Note that assuming that Definition 10 is equivalent to 7 for all adversaries is
quite a leap as we only proved it for a subclass of them, and in fact, it is not true at
least for decision games. However, the following theorem shows that when used in
the context of bit security (Definition 8) for decision games, Definitions 10 and 7
are in fact equivalent, since we are quantifying over all adversaries.

Theorem 2. For any distinguisher D playing a decision game with advD = ζ
according to Definition 7, there is a distinguisher D′ such that TD = TD′

and
αD′

(δD′
)2 ≥ ζ/9 for the same game.

Before we prove Theorem 2, we observe that the distinguisher D′ that we
construct from D will run D and decide on its output depending on the result. As
such, D′ is essentially a distinguisher for the indistinguishability game (restricted
to one query) against the two distributions induced by the secret on D. We start
with a simple lemma that analyzes how well such a simple distinguisher does in
this game.

Lemma 1. Let Dx for x ∈ {0, 1} be two distributions over the same support
{a, b, c} and denote their probabilities by zx = Dx(z) for z ∈ {a, b, c}. Let Dz

be a distinguisher for the indistinguishability game instantiated with Dx that on
input z returns arg maxx(zx) and ⊥ otherwise. Then,

αDz (δDz )2 =
1
2

(z1 − z0)2

z1 + z0
.

We now prove Theorem 2 by showing that for any distinguisher D there is
an event z ∈ {⊥, 0, 1} such that αDz (δDz )2 ≈ advD.

Proof (of Theorem 2). Since advD is independent of the support/domain of D
(as long as it has size exactly 3), we identify {⊥, 0, 1} with a, b, c to highlight
this genericity.

With the same notation as in Lemma 1, we note that the conditional entropy
of the secret X given Y is

H(X|Y ) =
1
2

(H1(a0, a1) + H1(b0, b1) + H1(c0, c1))

where

H1(z0, z1) = z0 log
z0 + z1

z0
+ z1 log

z0 + z1
z1

= ((z0 + z1) log((z0 + z1) − z0 log z0 − z1 log z1.
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Setting z̄ = z1 − z0, H1 can be rewritten as

H1(z0, z̄) = (2z0 + z̄) log(2z0 + z̄) + z0 log z0 + (z0 + z̄) log(z0 + z̄).

We use the following bound on H1:

H1(z0, z̄) ≥ 2z0 for z̄ ≥ 0 (2)

H1(z0, z̄) ≥ 2z0 + z̄ − z̄2

z0
for |z̄| ≤ z0 (3)

where (2) follows from monotonicity in z̄ and (3) from Taylor approximation of
order 2 in z̄ at z̄ = 0. Since z̄ > z0 implies that (2) is larger than (3), these
bounds imply

H1(z0, z̄) ≥ max
(

2z0, 2z0 + z̄ − z̄2

z0

)

(4)

for all z̄ ∈ [−z0, 1 − z0]. In the following, we will apply the bound (3) for z̄ ∈
[−z0, 0] and (4) for z̄ ∈ [0, 1 − z0].

W.l.o.g. assume ā ≥ 0, b̄ ≤ 0 and c̄ ≤ 0 (note that
∑

z∈{a,b,c} z̄ = 0). Using
(3) and (4)

H(X|Y ) ≥ 1
2

[

max
(

2a0, 2a0 + ā − ā2

a0

)

+ 2b0 + b̄ − b̄2

b0
+ 2c0 + c̄ − c̄2

c0

]

= 1 +
1
2

[

max
(

−ā,− ā2

a0

)

− b̄2

b0
− c̄2

c0

]

which shows that

advD ≤ 1
2

[

−max
(

−ā,− ā2

a0

)

+
b̄2

b0
+

c̄2

c0

]

=
1
2

[

min
(

ā,
ā2

a0

)

+
b̄2

b0
+

c̄2

c0

]

≤ 3
2

max
[

min
(

ā,
ā2

a0

)

,
b̄2

b0
,
c̄2

c0

]

.

Note that if the maximum is attained by one of the latter two terms, since b̄

and c̄ are negative, we have αDb(δDb)2 ≥ b̄2

4b0
by Lemma 1 (and similarly for c).

So advD ≤ 6αDz (δDz )2 for one of z ∈ {b, c}.
Now assume the maximum is min(ā, ā2

a0
). If ā2

a0
≤ ā, then ā ≤ a0 and so

a0 + a1 ≤ 3a0. Again by Lemma 1, αDa(δDa)2 ≥ ā2

6a0
. Finally, if ā ≤ ā2

a0
then

a0 ≤ ā, which means a0 + a1 ≤ 3ā and so by Lemma 1, αDa(δDa)2 ≥ ā
6 . In both

cases we have advD ≤ 9αDa(δDa)2. 
�
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5 Security Reductions

To argue that our definition is useful in a theoretical sense, we apply it to several
natural reductions, which arise when constructing cryptographic primitives from
other ones. As the novelty of our definition lies mostly with decision games,
we will focus on decision primitives that are built from search primitives (cf.
Sect. 5.1), search primitives that are built from decision primitives (cf. Sect. 5.2),
and finally decision primitives that are built from other decision primitives (cf.
Sect. 5.3).

Throughout this section we will refer to two distribution ensembles {D0
θ}θ and

{D1
θ}θ as κ-bit indistinguishable, if the indistinguishability game from Definition 6

instantiated with {D0
θ}θ and {D1

θ}θ is κ-bit secure.

5.1 Search to Decision

A classical way to turn a search primitive into a decision primitive is the
Goldreich-Levin hardcore bit [11].

Definition 11. Let f : X �→ Y be a function and b : X �→ {0, 1} be a pred-
icate. The predicate b is a κ-bit secure hardcore bit for f , if the distributions
(f(x), b(x)) and (f(x),U({0, 1})), where x ← U(X), are κ-bit indistinguishable.

Goldreich and Levin showed a way to construct a function with a hardcore
bit from any one-way function. In this setting, one would hope that if the one-
way function is κ-bit secure then also the hardcore bit is close to κ bit secure.
The next theorem due to Levin [14] establishes exactly such a connection.

Theorem 3 (adapted from [14]). Let f : {0, 1}n �→ {0, 1}k be a κ-bit secure
one-way function. Then b(x, r) = 〈x, r〉 mod 2 is a (κ − O(log n))-bit secure
hardcore bit for g(x, r) = (f(x), r).

This theorem was proven in [14], and all we did was to adapt the statement
from [14] to our notation/framework. So, we refer the reader to [14] for the
proof details, and move on to make some general observations. The proof for this
theorem assumes a distinguisher D for b and constructs from it an inverter A
for f , where advD = advA (and the running time is polynomially related). Such
security preserving reductions are information theoretically only possible with a
definition of advantage that is proportional to (δD)2 for decision primitives, if it is
proportional to αAβA for search primitives. This is because any inverter querying
a distinguisher with advantage δD and attempting to learn an (αAβA)-fraction
of a uniformly chosen n-bit secret, must make at least Ω(nαAβA/(δD)2) queries.
Denote the resources of D by TD and note that TA ≥ Ω(αAβA/(δD)2)TD is a
lower bound on the resources of A. The goal of the proof is to find an upper bound
on TA/advA = TA/αAβA ≥ Ω(TD/(δD)2). This is only possible by assuming
an upper bound on TD/(δD)2. If only a bound on TD/δD is assumed, then the
upper bound on TA/advA must contain a linear factor in 1/δD, which may be
as large as O(2n) and thus result in a dramatic loss in (nominal) security.
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5.2 Decision to Search

In the following subsections we show constructions and the corresponding reduc-
tions in the other direction. The first is just a straightforward converse to the
Goldreich-Levin theorem, showing that any PRG is also a OWF for the same
bit security. The second construction is presented as a very natural and straight-
forward way of turning a decision primitive into a search primitive. The third
reduction is one that naturally arises in cryptographic applications, for example
identification protocols.

PRGs Are One-Way Functions. While the following theorem is intuitively
trivial (and technically simple), as explained in the introduction it serves to jus-
tify our definition of bit security. The proof also illustrates the subtle difference
between an adversary that outputs ⊥ and one that outputs a random guess.

Theorem 4. If g is a PRG with κ-bit security, then it is also a (κ−4)-bit secure
one-way function.

Proof. Assume A is an attack to g as a one-way function with cost T , output
probability αA, and conditional success probability βA. We turn A into an adver-
sary D to g as a PRG by letting D(y) output 1 if G(A(y)) = y and ⊥ otherwise.
Assume that A has conditional success probability βA = 1. This is without loss
of generality because one-way function inversion is a verifiable search problem,
and A can be modified (without affecting its advantage) to output ⊥ when its
answer is incorrect. So, A has advantage αA, equal to its output probability.
Notice that D is successful only when the indistinguishability game chooses the
secret bit 1, and then A correctly inverts the PRG. So, the success probability of
D is precisely αDβD = αA/2. The output probability of D can be a bit higher,
to take into account the possibility that on secret bit 0, the challenger picks a
random string that belongs (by chance) to the image of the PRG, and A correctly
inverts it. But, in any case, it always belongs to the interval αD ∈ [1/2, 3/4] ·αA.
It follows that αD ≥ αA/2 and βD = (αA/2)/αD ≥ 2/3. So, D has advantage
at least αD(δD)2 = αD(2βD −1)2 ≥ αA/9. Since the two algorithms have essen-
tially the same cost, they achieve the same level of bit security, up to a small
constant additive term log 9 < 4. 
�

We remark that our proof differs from the standard text-book reduction
that pseudorandom generators are one-way functions in a simple, but crucial
way: when A(y) fails to invert G, instead of outputting 0 as a “best guess” at
the decision problem, it outputs ⊥ to explicitly declare failure. The reader can
easily check that the standard reduction has output probability αD = 1 and
(conditional) success probability βD ≤ (αA + 1)/2. So, the advantage of the
distinguisher in the standard proof is αD(2βD − 1)2 = (αA)2, resulting in a
substantial drop (log αA) in the bit security proved by the reduction.
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Secret Recovery. We proceed by giving a construction of a search primitive
from two distributions. We are not aware of any immediate applications, but this
simple example is supposed to serve as evidence that our definitions for search
and decision primitives behave nicely under composition. It also provides an
example of “non verifiable” search problem, i.e., a cryptographic problem with
exponentially large secret space defined by a game at the end of which A cannot
efficiently determine if the secret has been found. Differently from Theorem 4,
this time one cannot assume without loss of generality that the (hypothetical)
attacker to the search problem has conditional success probability β = 1.

Definition 12. Let D0,D1 be two distributions. We define the n-bit secret
recovery game as the following n-bit security game: the challenger X chooses
an n-bit secret x ← U({0, 1}n) and sends the vector c = (ci ← Dxi

)i≤n to A.
The adversary A attempts to guess x, i.e. R is the equality relation.

The next theorem shows that when instantiating the game with two indis-
tinguishable distributions, the secret recovery game enjoys essentially the same
bit security.

Theorem 5. If the κ-bit secret recovery game is instantiated with two κ-bit
secure indistinguishable distributions D0 and D1, and D0 is publicly sampleable,
then it is (κ − 1)-bit secure.

Proof. Let A be an adversary against the secret recovery game that recovers x
from the vector c with advantage advA = αAβA. We build a distinguisher D
against the indistinguishability of D0 and D1 with essentially the same resources
and advantage: D chooses a secret x ∈ {0, 1}κ uniformly at random, which is
non-zero with high probability (otherwise output ⊥) and constructs the vector
c by sampling D0 itself for every zero bit in x and querying its oracle for every
1 bit in x (which will return either samples from D0 or from D1). It sends c to
A and returns 1 iff A returns x, otherwise it outputs ⊥.

The resources of D are essentially the same as those of A, so we analyze its
advantage advD = αD(δD)2. The output probability of D, conditioned on x �= 0,
is almost exactly A’s success probability, but note that A is only presented with
the correct input distribution if D’s challenger returns samples from D1, which is
the case with probability 1

2 . So αD ≥ 1−2−κ

2 αAβA. Furthermore, D’s conditional
distinguishing advantage is δD ≥ 1−2−κ+1, because it only outputs the incorrect
value if A returned x even though c consisted of samples only from D0. Note
that in this case A has no information about x, which was chosen uniformly
at random and thus the probability of this event is at most 2−κ. Accordingly,
advD = αD(δD)2 ≥ (1−2−κ+1)2

2 αAβA ≈ advA/2. 
�

Indistinguishability Implies Message-Hiding. In our last example for this
section we show that IND-CCA secure encryption schemes enjoy a message hid-
ing property, which we first formally define.
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Definition 13. A private or public key encryption scheme is κ-bit message
hiding, if the following security game is κ-bit secure: the challenger chooses a
message m ∈ {0, 1}n uniformly at random and sends its encryption to A. The
adversary A attempts to guess m, while C provides it with encryption (in case
of private key schemes) and decryption oracles.

This property naturally arises in the context of constructions of identification
protocols from encryption schemes (see e.g. [4]), where a random message is
encrypted and identification relies on the fact that only the correct entity can
decrypt it. While it seems intuitively obvious that breaking message hiding is
no easier than distinguishing encrypted messages, showing that this is true in a
quantifiable sense for specific definitions of bit security is not as obvious. The
next theorem establishes this connection.

Theorem 6. If a scheme with message space larger than 2κ is κ-bit IND-CCA
secure, it is κ-bit message hiding.

Proof. Let A be an adversary that is able to extract a random message from
an encryption scheme with advantage advA = αAβA. We construct a IND-
CCA distinguisher D against the scheme with essentially the same resources and
advantage: D generates two messages m0,m1 ← {0, 1}m uniformly at random,
which are distinct with overwhelming probability (if not, output ⊥). It sends
them to the challenger, which encrypts one of them. Upon receiving the challenge
cipher text cb, D forwards it to A. Any queries to the encryption (in case of
private key encryption) or decryption oracle are simply forwarded to D’s own
oracles. If A returns a message in {m0,m1}, D returns the corresponding bit.
Otherwise, it outputs ⊥.

The resources of D are essentially the same as for A, so we focus on its advan-
tage. Note that conditioned on the event that m0 �= m1, D’s output probability
αD is at least as large as the success probability of A, so αD ≥ (1 − 2−κ)αAβA.
The conditional distinguishing advantage of D is δD ≥ 1 − 2−κ+1, since the
only way D will guess incorrectly is when A somehow outputs the wrong mes-
sage mb̄. Since A has no information about this message (which was chosen
uniformly at random), the probability of this happening is at most 2−κ. This
shows that D’s advantage in the indistinguishability game is advD = αD(δD)2 ≥
(1 − 2−κ)αAβA(1 − 2−κ+1)2 ≈ αAβA = advA, where the latter is A’s advantage
in the message hiding game. 
�

5.3 Decision to Decision

Finally, we turn to reductions between decision primitives. The results in this
section are very generic. The first establishes the validity of hybrid arguments
when using our definition of advantage for decision primitives. Our second result
extends a previous result for approximate sampling to any decision primitive
fitting our definition.
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The Hybrid Argument. This section is devoted to proving a general hybrid
argument for indistinguishability games using our definition of advantage. For-
mally, we prove the following lemma.

Lemma 2. Let Hi be k distributions and Gi,j be the indistinguishability game
instantiated with Hi and Hj. Further, let εi,j = maxA advA over all T -bounded
adversaries A against Gi,j. Then ε1,k ≤ 3k

∑k−1
i=1 εi,i+1.

Applying the lemma to our definition of bit security, we immediately get the
following theorem.

Theorem 7. Let Hi be k distributions. If Hi and Hi+1 are κ-bit indistinguish-
able for all i, then H1 and Hk are (κ − 2(log k + 1))-bit indistinguishable.

Proof. Let A be any adversary with resources TA (when attacking H1 and Hk).
By assumption, εi,i+1 ≤ TA/2κ (where εi,j is defined as in Lemma 2) for all
TA-bounded adversaries against Hi and Hi+1. By Lemma 2, εi,k ≤ 3k2TA/2κ

for all TA-bounded adversaries, in particular A. 
�
As a simple application, we get the following corollary.

Corollary 1. If a public key encryption scheme is κ-bit IND-CCA secure, then
it is (κ − 2(log k + 1))-bit IND-CCA secure in the k message setting.

In contrast to the standard hybrid argument, which simply exploits the tri-
angle inequality of statistical distance, we lose an additional factor of 3k in
the advantage in Lemma 2. In particular, consider the case where the bounds
εi,i+1 = ε are the same for all i. This means that ε1,k ≤ 3k2ε. Note that this
additional factor has only a minor impact on bit security. (See below for details.)
Still, one may wonder if this additional factor is an artifact of a non-tight proof
or if it is indeed necessary. Consider a distinguisher D that never outputs ⊥
(i.e. αD = 1). Its distinguishing advantage δD

i,j in game Gi,j is exactly the sta-
tistical distance between D(Hi) and D(Hj). Assume δD

i,i+1 = ε for all i, so D’s
advantage in the game Gi,j according to Definition 10 is ε2. The standard hybrid
argument, or equivalently triangle inequality for statistical distance, implies that
δD
1,k cannot be larger than – but may be as large as – kε. So, D’s advantage in

G1,k may be as large as k2ε2, which is k2 times as large as D’s advantage against
the individual hybrids. This seems to suggest that our argument is tight (up to
the constant factor 3). Either way, as Theorem 7 and Corollary 1 demonstrate,
this additional factor only affects the constant in front of the log term in the
number of hybrids, so, we believe, it is only of secondary importance and we
leave it as an open problem.

The rest of the subsection proves Lemma 2, where we make use of the follow-
ing notation. For some distinguisher D, let αD

P,Q be its output probability, βD
P,Q

its conditional success probability, δD
P,Q its conditional distinguishing advan-

tage, and advD
P,Q = αD

P,Q(δD
P,Q)2 its advantage against the distributions P,Q.
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Furthermore, let αD
P = Pr[D(P) �= ⊥] and γD

P = Pr[D(P) = 1] for any distri-
bution P. We can express the advantage of D against P and Q in terms of αD

P ,
αD

Q, γD
P , γD

Q :

αD
P,Q =

1
2
(αD

P + αD
Q)

βD
P,Q =

γD
P − γD

Q + αD
Q

αD
P + αD

Q

δD
P,Q = 2βD

P,Q − 1 =
2(γD

P − γD
Q ) + αD

Q − αD
P

αD
P + αD

Q

advD
P,Q =

(2(γD
P − γD

Q ) + αD
Q − αD

P )2

2(αD
P + αD

Q)
. (5)

We begin with the observation that for computationally indistuingishable
distributions the output probabilities of any bounded distinguisher D cannot
vary too much under the two distributions.

Lemma 3. Let P,Q be two distributions. If advD
P,Q ≤ ε for all T -bounded dis-

tinguishers, then we have αD
P ≤ 2αD

Q +3ε and αD
Q ≤ 2αD

P +3ε for any T bounded
distinguisher.

Proof. We prove the first claim. (The proof of the second claim is symmetri-
cal.) Fix any distinguisher D. Assume αD

P ≥ 2αD
Q, since otherwise we are done.

Consider an alternative distinguisher D′, which runs D and in the event that
D �= ⊥, outputs 1 and otherwise ⊥. Obviously, D′ is also T -bounded, and (set-
ting γD′

P = αD′
P , γD′

Q = αD′
Q in (5)) we get

advD′
P,Q =

(αD
P − αD

Q)2

2(αD
P + αD

Q)

≥ (αD
P − αD

Q)2

3αD
P

=
1
3

(

αD
P − 2αD

Q +
(αD

Q)2

αD
P

)

≥ 1
3

(
αD

P − 2αD
Q

)
.

The first claim now follows from ε ≥ advD′
P,Q. 
�

Proof (of Lemma 2). We fix any distinguisher D and drop the superfix of α, γ,
δ and adv for the rest of the proof. Furthermore, we will abbreviate Hi by i in
the subfixes of α, γ, δ, and adv.

Using induction, one can prove

k∑

i=1

advi,i+1 ≥ α1 + αk

α1 + 2
∑k−1

i=2 αi + αk

adv1,k
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The proof proceeds by substituting in the definition of advi,i+1 from (5), applying
the induction hypothesis to the first k−1 terms of the sum, and then minimizing
over γk−1. Details can be found in AppendixB.

It remains to show that

α1 + αk

α1 + 2
∑k−1

i=2 αi + αk

≥ 1
3k

.

We again proceed by induction and can thus assume that adv1,i ≤
3i

∑i−1
j=1 εj,j+1 for all i < k and symmetrically advi,k ≤ 3(k − i)

∑k−1
j=i εj,j+1

for all i > 1. By Lemma 3, this means that αi ≤ 2α1 + 9i
∑i−1

j=1 εj,j+1 for all

i < k and again αi ≤ 2αk + 9(k − i)
∑k−1

j=i εj,j+1 for all i > 1. We note that

α1 + 2
k−1∑

i=2

αi + αk = α1 + 2
	(k−1)/2
∑

i=2

αi + 2
k−1∑

	(k−1)/2
+1

αi + αk

and using the above inequalities, the two sums are bounded by

2
	(k−1)/2
∑

i=2

αi ≤ 2(k − 3)α1 + 3k2

	(k−1)/2
∑

i=1

εi,i+1

and

2
k−1∑

	(k−1)/2
+1

αi ≤ 2(k − 3)αk + 3k2
k−1∑

	(k−1)/2
+1

εi,i+1

respectively. This bounds the entire sum:

α1 + 2
k−1∑

i=2

αi + αk ≤ 2k(α1 + αk) + 3k2
k−1∑

i=1

εi,i+1

This in turn leads to the lower bound

α1 + αk

α1 + 2
∑k−1

i=2 αi + αk

≥ 1

2k + 3k2
∑k−1

i=1 εi,i+1

α1+αk

The last step is noticing that we can assume that (α1 + αk) ≥ 6k
∑k−1

i=1 εi,i+1,
because (α1 +αk)/2 ≥ ε1,k and otherwise we would be done. Using this assump-
tion we have

α1 + αk

α1 + 2
∑k−1

i=2 αi + αk

≥ 1
2k + 3k2

6k

≥ 1
3k

as desired. 
�
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Approximate Samplers. In this section we bridge the gap between search
and decision primitives making use of approximate samplers, for the first time by
extending a result from [15] to arbitrary decision primitives. It might be possible
to extend other results from the literature [2,16,17] to decision primitives using
our definition, but we leave that for future work. Our main result is given in
Theorem 8. Combining it with results from [15] it implies that approximating a
distribution with relative error bounded by 2−κ/2 (e.g., as provided by floating
point numbers with κ/2-bit mantissa) allows to preserve almost all of κ bits of
security.

Before introducing the result formally, we first need to cover some prelimi-
naries from [15].

Background. Using the same terminology as [15], let δ(P,Q) be some divergence
on probability distributions. A λ-efficient divergence satisfies three properties:

1. Sub-additivity for joint distributions: if (Xi)i and (Yi)i are two lists of discrete
random variables over the support

∏
i Si, then

δ((Xi)i, (Yi)i) ≤
∑

i

max
a

δ([Xi | X<i = a], [Yi | Y<i = a]),

where X<i = (X1, . . . , Xi−1) (and similarly for Y<i), and the maximum is
taken over a ∈ ∏

j<i Sj .
2. Data processing inequality: δ(f(P), f(Q)) ≤ δ(P,Q) for any two distributions

P and Q and (possibly randomized) algorithm f(·), i.e., the measure does not
increase under function application.

3. Pythagorean probability preservation with parameter λ ∈ R: if (Xi)i and (Yi)i

are two lists of discrete random variables over the support
∏

i Si and

δ((Xi | X<i = ai), (Yi | Y<i = ai)) ≤ λ

for all i and ai ∈ ∏
j<i Sj , then

ΔSD((Xi)i, (Yi)i) ≤
∥
∥
∥
∥

(

max
ai

δ((Xi | X<i = ai), (Yi | Y<i = ai))
)

i

∥
∥
∥
∥
2

.

As an example, the max-log distance ΔML(P,Q) = max|log P(x) − log Q(x)| is
λ-efficient for any λ ≤ 1

3 [15].

Main Result for Approximate Samplers. The next theorem states the main result
of this section. It shows that it suffices to approximate a distribution P up to
distance δ(P,Q) ≤ 2−κ/2 for an efficient divergence δ in order to maintain almost
κ bits of security.

Theorem 8. Let SP be a 1-bit secrecy game with black-box access to a probabil-
ity ensemble (Pθ)θ, and δ be a λ-efficient measure for any λ ≤ 1

4 . If SP is κ-bit
secure and δ(Pθ,Qθ) ≤ 2−κ/2, then SQ is (κ − 8)-bit secure.
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The remainder of this section is devoted to proving Theorem 8. We first
rewrite a lemma from [15], which we will use in our proof.

Lemma 4 (adapted from [15]). Let SP be any security game with black-
box access to a probability distribution ensemble Pθ. For any adversary A with
resources T that plays SP and event E over its output, denote γP = Pr[A ∈ E].
For the same event, denote by γQ the probability of E when A is playing SQ. If
T
γP

≥ 2k and δ(Pθ,Qθ) ≤ 2−k/2 for any 2−k/2-efficient δ, then T
γQ

≥ 2k−3.

From Lemma 4 we can derive a bound on the output probability of an adver-
sary when switching the distribution of the scheme.

Corollary 2. For any adversary A with resources T attacking SP and any event
E over A’s output, denote the probability of E by γP . Denote the probability of
E over A’s output when attacking SQ by γQ. If δ is

√
γQ/16T -efficient and

δ(Pθ,Qθ) ≤ √
γQ/16T , then 16γP ≥ γQ.

Proof. We use Lemma 4 and set k such that 2k−4 = T
γQ

. This implies that
T
γQ

≥ 2k−3 is false. Assuming towards a contradiction that 16γP < γQ, we see
that

2k−4 =
T

γQ
≤ T

16γP
contradicting Lemma 4. 
�

With this bound in place, we are ready for the main proof.

Proof (of Theorem 8). Fix any TA-bounded adversary A against SP , output
probability αA

P and conditional success probability βA
P . By assumption we have

αA
P(2βA

P −1)2 ≤ TA/2κ. Denote the output and conditional success probability of
A against SQ by αA

Q and βA
Q. Assume towards contradiction that αA

Q(2βA
Q−1)2 >

TA/2κ−8.
First we apply Corollary 2 to obtain αA

P ≥ 2−4αA
Q. Note that by assumption

√
αA

Q/16T > 2(−κ+4)/2 > 2−κ/2 ≥ δ(Pθ,Qθ) and that trivially
√

αA
Q/16T ≤ 1

4 .

We now consider the hypothetical modified games ŜP and ŜQ, which are
the same as SP and SQ with the only difference that the adversary has the
ability to restart the game with fresh randomness at any time. Consider the
adversary B against Ŝ that simply runs A until A �= ⊥ (restarting the game if
A = ⊥) and outputs whatever A returns. Let α = min(αA

P , αA
Q) and note that

B’s resources are TB < TA/α, its output probability is 1 and the (conditional)
success probability is βB

P = βA
P (or βB

Q = βA
Q) if playing ŜP (or ŜQ, respectively).

By the properties of δ and ΔSD, we have βB
P ≥ βB

Q −
√

TBδ(Pθ,Qθ) and so
2βB

P − 1 ≥ 2βB
Q − 1 − 2

√
TB/2κ. By assumption we also have that 2βA

P − 1 ≤
√

TA/αA
P2κ, which yields

√
TA

α2κ
≥

√
TA

αA
P2κ

≥ 2βB
Q − 1 − 2

√
TA

α2κ
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because βB
P = βA

P , and so

2βA
Q − 1 = 2βB

Q − 1 ≤ 3

√
TA

α2κ
.

If αA
Q ≤ αA

P , then α = αA
Q and the above inequality immediately yields the

contradiction. Otherwise, we can derive an upper bound on αA
P from it:

αA
P ≤ 9TA

2κ(2βA
Q − 1)2

<
αA

Q
24

where the latter inequality follows from the assumption. This contradicts our
lower bound above. 
�
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A Proof of Theorem1

Proof (of Theorem 1). From the definition of Y in Definition 7 we get for any
x, y ∈ {0, 1}n with y �= x

– Pr[Y = ⊥|X = x] = 1 − α
– Pr[Y = x|X = x] = αβ

– Pr[Y = y|X = x] = α(1−β)
2n−1 .

From this we compute

– Pr[Y = ⊥] = 1 − α
– Pr[Y = y] = Pr[Y = y|X = y]Pr[X = y] + Pr[Y = y|X �= y]Pr[X �= y] =

αβ
2n + 2n−1

2n

α(1−β)
2n−1 = α

2n .

Now we calculate the conditional entropy

H(X|Y ) =
∑

x,y

Pr[Y = y|X = x]Pr[X = x] log
Pr[Y = y]

Pr[Y = y|X = x]Pr[X = x]

=
∑

x

Pr[Y = ⊥|X = x]Pr[X = x] log
Pr[Y = ⊥]

Pr[Y = ⊥|X = x]Pr[X = x]

+ Pr[Y = x|X = x]Pr[X = x] log
Pr[Y = x]

Pr[Y = x|X = x]Pr[X = x]

+
∑

y �=x∧y �=⊥
Pr[Y = y|X = x]Pr[X = x] log

Pr[Y = y]

Pr[Y = y|X = x]Pr[X = x]

=
∑

x

1 − α

2n
log

(1 − α)2n

1 − α
+

αβ

2n
log

α2n

αβ2n

+ (2n − 1)
α(1 − β)

(2n − 1)2n
log

α2n(2n − 1)

2nα(1 − β)

= (1 − α)n + αβ log
1

β
+ α(1 − β) log

2n − 1

1 − β

= (1 − α)n + α((1 − β) log(2n − 1) + H(Bβ))
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Finally, we compute the advantage

advA = 1 − H(X|Y )
n

= 1 − (1 − α) − α
(1 − β) log(2n − 1) + H(Bβ)

n

= α

(

1 − (1 − β) log(2n − 1) + H(Bβ)
n

)

.


�

B Missing Details of Proof for Lemma2

With the notation of Sect. 5.3, the goal of this section is to prove

k∑

i=1

advi,i+1 ≥ α1 + αk

α1 + 2
∑k−1

i=2 αi + αk

adv1,k.

By Eq. (5)

k∑

i=1

advi,i+1 =
k∑

i=1

(2(γi − γi+1) + αi+1 − αi)2

2(αi + αi+1)
.

Applying the induction hypothesis, this is lower bounded by

f(γk−1) =
(2(γ1 − γk−1) + αk−1 − α1)2

2(α1 + 2
∑k−2

i=2 αi + αk−1)
+

(2(γk−1 − γk) + αk − αk−1)2

2(αk−1 + αk)
.

Taking f ’s derivative

f ′(γk−1) =
2(2(γk−1 − γk) + αk − αk−1)

αk−1 + αk
− 2(2(γ1 − γk−1) + αk−1 − α1)

α1 + 2
∑k−2

i=2 αi + αk−1

Note that the second derivative is a positive constant, so if f has an extremum it
must be a minimum, and since it is a quadratic function, it is a global minimum.
Setting f ′(γk−1) = 0 and solving for 2γk−1, we get:

2γk−1

(

α1 + 2
k−1∑

i=2

αi + αk

)

= 2(γ1 + αk−1 − α1)(αk−1 + αk)

+ 2(γk + αk − αk−1)

(

α1 + 2
k−2∑

i=2

αi + αk

)

Plugging this into the terms of f :

(2(γ1 − γk−1) + αk−1 − α1) =
2(γ1 − γk) − α1 + αk)

(
α1 + 2

∑k−2
i=2 αi + αk

)

α1 + 2
∑k−1

i=2 αi + αk
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and

(2(γk−1 − γk) + αk − αk−1) =
(2(γ1 − γk) − α1 + αk)(αk−1 + αk)

α1 + 2
∑k−1

i=2 αi + αk

which yields that

f(γk−1) ≥
(2(γ1 − γk) − α1 + αk)2

(
α1 + 2

∑k−2
i=2 αi + αk

)2

(
α1 + 2

∑k−1
i=2 αi + αk

)2 (
α1 + 2

∑k−2
i=2 αi + αk

)

+
(2(γ1 − γk) − α1 + αk)2(αk−1 + αk)2
(
α1 + 2

∑k−1
i=2 αi + αk

)2

(αk−1 + αk)

=
(2(γ1 − γk) − α1 + αk)2
(
α1 + 2

∑k−1
i=2 αi + αk

)2

(

α1 + 2
k−1∑

i=2

αi + αk

)

=
(2(γ1 − γk) − α1 + αk)2
(
α1 + 2

∑k−1
i=2 αi + αk

)

=
α1 + αk(

α1 + 2
∑k−1

i=2 αi + αk

)adv1,k

as desired.
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Abstract. While symmetric-key steganography is quite well understood
both in the information-theoretic and in the computational setting,
many fundamental questions about its public-key counterpart resist per-
sistent attempts to solve them. The computational model for public-
key steganography was proposed by von Ahn and Hopper in EURO-
CRYPT 2004. At TCC 2005, Backes and Cachin gave the first universal
public-key stegosystem – i.e. one that works on all channels – achiev-
ing security against replayable chosen-covertext attacks (ss-rcca) and
asked whether security against non-replayable chosen-covertext attacks
(ss-cca) is achievable. Later, Hopper (ICALP 2005) provided such a
stegosystem for every efficiently sampleable channel, but did not achieve
universality. He posed the question whether universality and ss-cca-
security can be achieved simultaneously. No progress on this question has
been achieved since more than a decade. In our work we solve Hopper’s
problem in a somehow complete manner: As our main positive result
we design an ss-cca-secure stegosystem that works for every memory-
less channel. On the other hand, we prove that this result is the best
possible in the context of universal steganography. We provide a fam-
ily of 0-memoryless channels – where the already sent documents have
only marginal influence on the current distribution – and prove that no
ss-cca-secure steganography for this family exists in the standard non-
look-ahead model.

1 Introduction

Steganography is the art of hiding the transmission of information to achieve
secret communication without revealing its presence. In the basic setting, the
aim of the steganographic encoder (often called Alice or the stegoencoder) is to
hide a secret message in a document and to send it to the stegodecoder (Bob)
via a public channel which is completely monitored by an adversary (Warden or
steganalyst). The channel is modeled as a probability distribution of legal doc-
uments, called covertexts, and the adversary’s task is to distinguish those from
altered ones, called stegotexts. Although strongly connected with cryptographic
encryption, steganography is not encryption: While encryption only tries to hide
c© International Association for Cryptologic Research 2018
J. B. Nielsen and V. Rijmen (Eds.): EUROCRYPT 2018, LNCS 10820, pp. 29–60, 2018.
https://doi.org/10.1007/978-3-319-78381-9_2
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the content of the transmitted message, steganography aims to hide both the
message and the fact that a message was transmitted at all.

As in the cryptographic setting, the security of the stegosystems should only
rely on the secrecy of the keys used by the system. Symmetric-key steganography,
which assumes that Alice and Bob share a secret-key, has been a subject of
intensive study both in an information-theoretic [7,36,40] and in a computational
setting [13,22,23,25,26,30]. A drawback of such an approach is that the encoder
and the decoder must have shared a key in a secure way. This may be unhandy,
e.g. if the encoder communicates with several parties.

In order to avoid this problem in cryptography, Diffie and Hellman provided
the notion of a public-key scenario in their groundbreaking work [15]. This idea
has proved to be very useful and is currently used in nearly every cryptographic
application. Over time, the notion of security against so-called chosen ciphertext
attacks (chosen-ciphertext attack (CCA)-security) has established itself as the
“gold standard” for security in the public-key scenario [20,27]. In this setting, an
attacker has also access to a decoding oracle that decodes every ciphertext differ-
ent from the challenge-text. Dolev et al. [16] proved that the simplest assumption
for public-key cryptography – the existence of trapdoor permutations – is suffi-
cient to construct a CCA-secure public key cryptosystem.

Somewhat in contrast to the research in cryptographic encryption, only very
little studies in steganography have been concerned so far within the public-key
setting. Von Ahn and Hopper [38,39] were the first to give a formal framework
and to prove that secure public-key steganography exists. They formalized secu-
rity against a passive adversary in which Warden is allowed to provide challenge-
hiddentexts to Alice in hopes of distinguishing covertexts from stegotexts encod-
ing the hiddentext of his choice. For a restricted model, they also defined security
against an active adversary; It is assumed, however, that Bob must know the
identity of Alice, which deviates from the common bare public-key scenario.

Importantly, the schemes provided in [38,39] are universal (called also black-
box in the literature). This property guarantees that the systems are secure with
respect not only to a concrete channel C but to a broad range of channels. The
importance of universality is based on the fact that typically no good description
of the distribution of a channel is known.

In [3], Backes and Cachin provided a notion of security for public-key stegano-
graphy with active attacks, called steganographic chosen-covertext attacks (SS-
CCAs). In this scenario the warden may provide a challenge-hiddentext to Alice
and enforce the stegoencoder to send stegotexts encoding the hiddentext of his
choice. The warden may then insert documents into the channel between Alice
and Bob and observe Bob’s responses in hope of detecting the steganographic
communication. This is the steganographic equivalent of a chosen ciphertext
attack against encryption and it seems to be the most general type of secu-
rity for public-key steganography with active attacks similar to CCA-security
in encryption. Backes and Cachin also gave a universal public-key stegosystem
which, although not secure in the general SS-CCA-setting, satisfies a relaxed
notion called steganographic security against publicly-detectable replayable
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adaptive chosen-covertext attacks (steganographic replayable chosen-covertext
attack (SS-RCCA)) inspired by the work of Canetti et al. [8]. In this relaxed
setting, the warden may still provide a hiddentext to Alice and is allowed to
insert documents into the channel between Alice and Bob but with the restric-
tion that the warden’s document does not encode the chosen hiddentext. Backes
and Cachin left as an open problem if secure public-key steganography exists at
all in the SS-CCA-framework.

This question was answered by Hopper [21] in the affirmative in case Alice and
Bob communicate via an efficiently sampleable channel C. He proved (under the
assumption of a CCA-secure cryptosystem) that for every such channel C there
is an SS-CCA-secure stegosystem PKStSC on C. The system cleverly “derandom-
izes” sampling documents by using the sampling-algorithm of the channel and
using a pseudorandom generator to deterministically embed the encrypted mes-
sage. Hence, PKStSC is only secure on the single channel C and is thus not univer-
sal. Hopper [21] posed as a challenging open problem to show the (non)existence
of a universal SS-CCA-secure stegosystem. Since more than a decade, public
key steganography has been used as a tool in different contexts (e.g. broad-
cast steganography [17] and private computation [9,11]), but this fundamental
question remained open.

We solve Hopper’s problem in a complete manner by proving (under the
assumption of the existence of doubly-enhanced trapdoor permutations and
collision-resistant hash functions) the existence of an SS-CCA-secure public key
stegosystem that works for every memoryless channel, i.e. such that the docu-
ments are independently distributed (for a formal definition see next section). On
the other hand, we also prove that the influence of the history – the already sent
documents – dramatically limits the security of stegosystems in the realistic non-
look-ahead model: We show that no stegosystem can be SS-CCA-secure against
all 0-memoryless channels in the non-look-ahead model. In these channels, the
influence of the history is minimal. We thereby demonstrate a clear dichotomy
result for universal public-key steganography: While memoryless channels do
exhibit an SS-CCA-secure stegosystem, the introduction of the history prevents
this kind of security.

Our Contribution. As noted above, the stegosystem of Backes and Cachin
has the drawback that it achieves a weaker security than SS-CCA-security while
it works on every channel [3]. On the other hand, the stegosystem of Hopper
achieves SS-CCA-security but is specialized to a single channel [21]. We prove
(under the assumption of the existence of doubly-enhanced trapdoor permuta-
tions and collision-resistant hash functions) that there is a stegosystem that is
SS-CCA-secure on a large class of channels (namely the memoryless ones). The
main technical novelty is a method to generate covertexts for the message m
such that finding a second sequence of covertexts that encodes m is hard. Hop-
per achieves this at the cost of the universality of his system, while we still allow
a very large class of channels. We thereby answer the question of Hopper in the
affirmative, in case of memoryless channels. Note that before this work, it was
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not even known whether an SS-CCA-secure stegosystem exists that works for
some class of channels (Hopper’s system only works on a single channel that is
hard-wired into the system). Furthermore, we prove that SS-CCA-security for
memoryless channels is the best possible in a very natural model: If the history
influences the channel distribution in a minor way, i.e. only by its length, we
prove that SS-CCA-security is not achievable in the standard non-look-ahead
model of von Ahn and Hopper. In Table 1, we compare our results with previous
works.

Table 1. Comparison of the public-key stegosystems

Paper Security Channels Applicability

von Ahn and Hopper [38] Passive Universal Possible
Backes and Cachin [3] ss-rcca Universal Possible
Hopper [21] ss-cca Single constr. channel Possible
This work (Theorem 10) ss-cca All memoryless channels Possible
This work (Theorem 12) ss-cca Universal Impossiblea

aIn the non-look-ahead model against non-uniform wardens.

Related Results. Anderson and Petitcolas [1] and Craver [12], have both, even
before the publication of the work by von Ahn and Hopper [38,39], described
ideas for public-key steganography, however, with only heuristic arguments for
security. Van Le and Kurosawa [28] showed that every efficiently sampleable
channel has an SS-CCA-secure public-key stegosystem. A description of the
channel is built into the stegosystem and it makes use of a pseudo-random
generator G that encoder and decoder share. But the authors make a strong
assumption concerning changes of internal states of G each time the embedding
operation is performed, which does not fit into the usual models of cryptography
and steganography. Lysyanskaya and Meyerovich [32] investigated the influence
of the sampling oracle on the security of public key stegosystems with passive
attackers. They prove that the stegosystem of von Ahn and Hopper [39] becomes
insecure if the approximation of the channel distribution by the sampling oracle
deviates only slightly from the correct distribution. They also construct a chan-
nel, where no incorrect approximation of the channel yields a secure stegosystem.
This strengthens the need for universal stegosystems, as even tiny approximation
errors of the channel distribution may lead to huge changes with regard to the
security of the system. Fazio et al. [17] extended public-key steganography to
the multi-recipient setting, where a single sender communicates with a dynam-
ically set of receivers. Their system is designed such that no outside party and
no unauthorized user is able to detect the presence of these broadcast commu-
nication. Cho et al. [11] upgraded the covert multi-party computation model of
Chandran et al. [9] to the concurrent case and gave protocols for several funda-
mental operations, e.g. string equality and set intersection. Their steganographic
(or covert) protocols are based upon the decisional Diffie-Hellman problem.
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The paper is organized as follows. Section 2 contains the basic definitions and
notations. In Sect. 3, we give an example attack on the stegosystem of Backes
and Cachin to highlight the differences between SS-RCCA-security and SS-CCA-
security. The following Sect. 4 contains a high-level view of our construction.
Section 5 uses the results of [21] to prove that one can construct cryptosys-
tems with ciphertexts that are indistinguishable from a distribution on bitstrings
related to the hypergeometric distribution, which we will need later on. The main
core of our protocol is an algorithm to order the documents in an undetectable
way that still allows us to transfer information. This ordering is described in
Sect. 6. Our results concerning the existence of SS-CCA-secure steganography
for every memoryless channel are then presented and proved in Sect. 7. Finally,
Sect. 8 contains the impossibility result for SS-CCA-secure stegosystems in the
non-look-ahead model on 0-memoryless channels.

In order to improve the presentation, we moved proofs of some technical
statements to the appendix.

2 Definitions and Notation

If S is a finite set, we write x � S to denote the random assignment of a
uniformly chosen element of S to x. If A is a probability distribution or a ran-
domized algorithm, we write x ← A to denote the assignment of the output of
A, taken over the internal coin-flips of A.

As our cryptographic and steganographic primitives will be parameterized
by the key length κ, we want that the ability of any polynomial algorithm to
attack this primitives is lower than the inverse of all polynomials in κ. This is
modeled by the definition of a negligible function. A function negl : N → [0, 1]
is called negligible, if for every polynomial p, there is an N0 ∈ N such that
negl(N) < p(N)−1 for every N ≥ N0. For a probability distribution D on support
X, the min-entropy H∞(D) is defined as infx∈X{− logD(x)}.

We also need the notion of a strongly 2-universal hash function, which is a
set of functions G mapping bitstrings of length � to bitstrings of length �′ < �
such that for all x, x′ ∈ {0, 1}� with x �= x′ and all (not necessarily different)
y, y′ ∈ {0, 1}�′

, we have |{f ∈ G | f(x) = y ∧ f(x′) = y′}| = |G|
22�′ . If �/�′ ∈ N, a

typical example of such a family is the set of functions

{x �→
(∑�/�′

i=1 aixi + b
)
mod 2�′ | a1, . . . , a�/�′ , b ∈ {0, . . . , 2�′ − 1}},

where xi denotes the i-th block of length �′ of x and we implicitly use the
canonical bijection between {0, 1}n and the finite field {0, . . . , 2n−1}. See e.g. the
textbook of Mitzenmacher and Upfal [33] for more information on this. For two
polynomials � and �′, a strongly 2-universal hash family is a family G = {Gκ}κ∈N

such that every Gκ is a strongly 2-universal hash function mapping strings of
length �(κ) to strings of length �′(κ).
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Channels and Stegosystems. In order to be able to embed messages into
unsuspicious communication, we first need to provide a definition for this. We
model the communication as an unidirectional transfer of documents that we will
treat as strings of length n over a constant-size alphabet Σ. The communication
is defined via the concept of a channel C on Σ: A function, that maps, for
every n ∈ N, a history hist ∈ (Σn)∗ to a probability distribution on Σn. We
denote this probability distribution by Chist,n and its min-entropy H∞(C, n) as
minhist{H∞(Chist,n)}.

Definition 1. We say that a channel C is memoryless, if Chist,n = Chist′,n for all
hist, hist′, i.e. if the history has no effect on the channel distribution.

Note the difference between memoryless and 0-memoryless channels of Lysyan-
skaya and Meyerovich [32], where only the length of the history has an influence
on the channel, since the channel distributions are described by the use of mem-
oryless Markov chains:

Definition 2 ([32]). A channel C is 0-memoryless, if Chist,n = Chist′,n for all
hist, hist′ such that |hist| = |hist′|.

A stegosystem PKStS tries to embed messages of length PKStS.ml into
PKStS.ol documents of the channel C that each have size PKStS.dl, such that this
sequence is indistinguishable from a sequence of typical documents. A public-key
stegosystem PKStS with message length PKStS.ml : N → N, document length
PKStS.dl : N → N, and output length PKStS.ol : N → N (all functions of the
security parameter κ) is a triple of polynomial probabilistic Turing machines
(PPTMs) [PKStS.Gen,PKStS.Enc,PKStS.Dec]1 with the functionalities:

– The key generation Gen on input 1κ produces a pair (pk, sk) consisting of a
public key pk and a secret key sk (we assume that sk also fully contains pk).

– The encoding algorithm Enc takes as input the public key pk, a message
m ∈ {0, 1}ml(κ), a history hist ∈ (Σdl(κ))∗ and some state information s ∈
{0, 1}∗ and produces a document d ∈ Σdl(κ) and state information s′ ∈ {0, 1}∗

by being able to sample from Chist,dl(κ). By EncC(pk,m, hist), we denote the
complete output of ol(κ) documents one by one. Note that generally, the
encoder needs to decide upon document di before it is able to get samples
for the (i + 1)-th document, as in the secret-key model of Hopper et al. [23,
Sect. 2, “channel access”] and the public-key model of von Ahn and Hopper [38,
39, Sect. 3]. This captures the notion that an attacker should have as much
information as possible while the stegosystem is not able to look-ahead into
the future. To highlight this restriction, we call this model the non-look-ahead
model. Note that this is no restriction for memoryless channels.

– The decoding algorithm Dec takes as input the secret key sk, a sequence of
documents d1, . . . , dol(κ), history hist and outputs a message m′.

The following properties are essential for stegosystems PKStS with output length
� = PKStS.ol(κ). It is universal (black box ), if it works on every channel without
1 We will drop the prefix PKStS if the context is clear.
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prior knowledge of the probability distribution of the channel. Clearly channels
with too small min-entropy (such as deterministic channels) are not suitable for
steganographic purposes. We thus concentrate only on channels with sufficiently
large min-entropy.

The system is reliable if the probability that the decoding fails is bounded
by a negligible function. Formally, the unreliability UnRelPKStS,C(κ) is defined
as probability that the decoding fails, i.e.

max
m,hist

{ Pr
(pk,sk)←PKStS.Gen(1κ)

[PKStS.Dec(sk,PKStS.EncC(pk,m, hist), hist) �= m]}.

The system PKStS is secure, if every polynomial attacker W (the warden)
has only negligible success probability. W works in two phases: In the first phase
(called W.Find), the warden has access to the channel C and to a decoding
oracle Decsk(·), that returns upon input d1, . . . , d� and hist the same result as
PKStS.Dec(sk, (d1, . . . , d�), hist). At the end of the first phase, the warden chooses
a message m∗ and a history hist∗.

At the beginning of the second phase (called W.Guess), the warden gets
a sequence of documents d∗ = d∗

1, . . . , d
∗
� , which is with probability of 50%

the result of PKStS.EncC(pk,m∗, hist∗) and with probability of 50% just the
result of sampling � random documents from Chist∗,n, which we denote as C�

hist∗,n.
Speaking more precisely, this sampling is done as follows: d∗

i ← Chist∗||d∗
1 ||...||d∗

i−1,n

for i = 1, . . . , �. Next, the warden should distinguish between these two cases
by having access to another decoding oracle. Depending on the oracle type, two
definitions for security were proposed by Backes and Cachin in [3].

In the SS-CCA-model (chosen covertext attack), the decoding oracle, denoted
as Decsk,d∗(·), works like Decsk(·) on every input different from d∗. If Decsk,d∗(·)
is called with input d∗, it simply returns ⊥. In the weaker SS-RCCA-
model (restricted chosen ciphertext attack), the decoding oracle, denoted as
Decsk,d∗,m∗(·), works like Decsk(·) on most inputs: If the input d equals d∗ or is
a valid encoding of m∗ (a replay of d∗), the oracle simply returns ⊥.

Formally, SS-CCA-security is defined by the SS-CCA-security game given
below and the advantage of W = [W.Find,W.Guess] is defined as

Advss−cca
W,PKStS,C(κ) =

∣∣Pr[SS-CCA-Dist(W,PKStS, C, κ) = 1] − 1
2

∣∣.

SS-CCA-security game: SS-CCA-Dist(W,PKStS, C, κ)

Input: warden W, stegosystem PKStS, channel C, security parameter κ
1: (pk, sk) ← PKStS.Gen(1κ); (m∗, hist∗, s) ← W.FindDecsk,C(pk)
2: b ← {0, 1}
3: if b = 0 then d∗ ← PKStS.EncC(pk, m∗, hist∗) else d∗ ← C�

hist∗,n

4: b′ ← W.GuessDecsk,d ∗ ,C(pk, m∗, hist∗, s,d∗)
5: if b′ = b then return 1 else return 0
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A stegosystem PKStS is called SS-CCA-secure against channel C if for some neg-
ligible function negl and all wardens W, we have Advss-cca

W,PKStS,C(κ) ≤ negl(κ). We
define SS-RCCA-security analogously, where the Guess phase uses Decsk,d∗,m∗ as
decoding oracle. Formally, a stegosystem is universally SS-CCA-secure (or just
universal), if it is SS-CCA-secure against all channels of sufficiently large (i.e.
super-logarithmic in κ) min-entropy.

Cryptographic Primitives. Due to space constraints, we only give informal
definitions of the used cryptographic primitives and refer the reader to the text-
book of Katz and Lindell [24] for complete definitions.

We will make use of different cryptographic primitives, namely hash func-
tions, pseudorandom permutations and CCA-secure cryptosystems. A collision-
resistant hash function (CRHF) H = (H.Gen,H.Eval) is a pair of PPTMs such
that H.Gen upon input 1κ produces a key k ∈ {0, 1}κ. The keyed function H.Eval
takes the key k ← H.Gen(1κ) and a string x ∈ {0, 1}H.in(κ) and produces a string
H.Evalk(x) of length H.out(κ) < H.in(κ). The probability of every PPTM Fi to
find a collision – two strings x �= x′ such that H.Evalk(x) = H.Evalk(x′) – upon
random choice of k is negligible. For a set X, denote by Perms(X) the set of all
permutations on X. A pseudorandom permutation (PRP) P = (P.Gen,P.Eval) is
a pair of PPTMs such that P.Gen upon input 1κ produces a key k ∈ {0, 1}κ. The
keyed function P.Eval takes the key k ← P.Gen(1κ) and is a permutation on the
set {0, 1}P.in(κ). An attacker Dist (the distinguisher) is given black-box access
to P � Perms({0, 1}P.in(κ)) or to P.Evalk for a randomly chosen k and should
distinguish between those scenarios. The success probability of every Dist is neg-
ligible. A public key encryption scheme (PKES) PKES = (PKES.Gen,PKES.Enc,
PKES.Dec) is a triple of PPTMs such that PKES.Gen(1κ) produces a pair of keys
(pk, sk) with |pk| = κ and |sk| = κ. The key pk is called the public key and the key
sk is called the secret key (or private key). The encryption algorithm PKES.Enc
takes as input pk and a plaintext m ∈ {0, 1}PKES.ml(κ) of length PKES.ml(κ)
and outputs a ciphertext c ∈ {0, 1}PKES.cl(κ) of length PKES.cl(κ). The decryp-
tion algorithm PKES.Dec takes as input sk and the ciphertext c and produces
a plaintext m ∈ {0, 1}PKES.ml(κ). Informally, we will allow an attacker A to first
choose a message m∗ that should be encrypted and denote this by A.Find. In the
next step (A.Guess), the attacker gets c∗, which is either Enc(pk,m∗) or a random
bitstring. He is allowed to decrypt ciphertexts different from c∗ and his task is
to distinguish between these two cases. This security notion is known as security
against chosen-ciphertext$ attack (CCA$s). For an attacker A on cryptographic
primitive Π ∈ {hash,prp,pkes} with implementation X, we write AdvΠ

A,X,C(κ)
for the success probability of A against X relative to channel C, i.e. the attacker
A also has access to a sampling oracle of C. In case of encryption schemes, the
superscript cca$ is used instead of pkes.

Due to the works [16,18,31,34] we know that CCA$-secure cryptosystems
and PRPs can be constructed from doubly-enhanced trapdoor permutations
resp. one-way functions, while CRHFs can not be constructed from them in
a black-box way, as Simon showed an oracle-separation in [37].
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3 Detecting the Scheme of Backes and Cachin

In order to understand the difference between SS-CCA-security and the closely
related, but weaker, SS-RCCA-security, we give a short presentation of the uni-
versal SS-RCCA-stegosystem of Backes and Cachin [3]. We also show that their
system is not SS-CCA-secure, which was already noted by Hopper in [21]. The
proof of insecurity nicely illustrates the difference between the security models.
It also highlights the main difficulty of SS-CCA-security: One needs to prevent
so called replay attacks, where the warden constructs upon stegotext c another
stegotext c′ – the replay of c – that embeds the same message as c.

Backes and Cachin [3] showed that there is a universal SS-RCCA-
secure stegosystem under the assumption that a replayable chosen-covertext$
(RCCA$)-secure cryptosystem exists.2 They make use of a technique called
rejection sampling. Let {Gκ}κ∈N be a strongly 2-universal hash function fam-
ily, f ∈ Gκ a function, C be a channel, hist be a history and b ∈ {0, 1} be a
bit. The algorithm rejsam(f, C, b, hist) samples documents d ← Chist,dl(κ) until
it finds a document d∗ such that f(d∗) = b or until it has sampled κ docu-
ments. If PKES is an RCCA$-secure cryptosystem, they define a stegosystem
that computes (b1, . . . , b�) ← PKES.Enc(pk,m) and then sends d1, d2, . . . , d�,
where di ← rejsam(f, C, bi, hist||d1|| . . . ||di−1). The function f ∈ Gκ is also part
of the public key. The system is universal as it does not assume any knowledge
on C.

They then prove that this stegosystem is SS-RCCA-secure. And indeed, one
can show that their stegosystem is not SS-CCA-secure by constructing a generic
warden W that works as follows: The first phase W.Find chooses as message
m∗ = 00 · · · 0 and as hist∗ the empty history ∅. The second phase W.Guess gets
d∗ = d∗

1, . . . , d
∗
� which is either a sequence of random documents or the output

of the stegosystem on pk, m∗, and hist∗. The warden W now computes another
document d′ via rejection sampling that embedds f(d∗

� ) (the replay of d∗) and
decodes d∗

1, . . . , d
∗
�−1, d

′ via the decoder of the rejection sampling stegosystem.
It then returns 0 if the returned message m′ consists only of zeroes. If d∗ was a
sequence of random documents, it is highly unlikely that d∗ decodes to a message
that only consists of zeroes. If d∗ was produced by the stegosystem, the decoder
only returns something different from the all-zero-message if d′ = d∗

� which is
highly unlikely. The warden W has advantage of 1−negl(κ) and the stegosystem
is thus not SS-CCA-secure. Backes and Cachin posed the question whether a
universal SS-CCA-secure stegosystem exists.

4 An High-Level View of Our Stegosystem

The stegosystem of Backes and Cachin only achieves SS-RCCA-security as a
single ciphertext has many different possible encodings in terms of the documents
used. Hopper achieves SS-CCA-security by limiting those encodings: Due to
2 The definition of a rcca$-secure cryptosystem is analogous to ss-rcca-security given

in Sect. 2.
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the sampleability of the channel, each ciphertext has exactly one deterministic
encoding in terms of the documents. While Hopper achieves SS-CCA-security,
he needs to give up the universality of the stegosystem, as a description of the
channel is hard-wired into the stegosystem. In order to handle as many channels
as possible, we will allow many different encodings of the same ciphertext, but
make it hard to find them for anyone but the stegoencoder. To simplify the
presentation, we focus on the case of embedding a single bit per document.
Straightforward modifications allow embedding of log(κ) bits.

Our stegosystem, named PKStS∗ will use the following approach to encode a
message m: It first samples, for sufficiently large N , a set D of N documents from
the channel C and uses a strongly 2-universal hash function f ∈ Gκ to split these
documents into documents D0 that encode bit 0 (i.e. D0 = {d ∈ D | f(d) = 0})
and D1 that encode bit 1 (i.e. D1 = {d ∈ D | f(d) = 1}). Now we encrypt the
message m via a certain public-key encryption system, named PKES∗ (described
in the next section), and obtain a ciphertext b = b1, . . . , bL of length L = �N/8�.
Next our goal is to order the documents in D into a sequence d = d1, . . . , dN such
that the first L documents d1, . . . , dL encode b (i.e. f(d)i = bi). This ordering
is performed by the algorithm generate. However, the attacker still has several
possibilities for a replay attack on this scheme, for example:

– He could exchange some document di by another document d′
i with f(di) =

f(d′
i) (as f is publicly known) and the sequence d1, . . . , di−1, d

′
i, di+1, . . . , dN

would be a replay of d. Such attacks will be called sampling attacks. To
prevent the attacker from exchanging a sampled document by a non-sampled
one, we also encode a hash-value of all sampled documents D and transmit
this hash value to Bob.

– The attacker can exchange documents di and dj , with i < j and f(di) = f(dj),
and the resulting sequence d1, . . . , di−1, dj , di+1, . . . , dj−1, di, dj+1, . . . , dN

would be a replay of d. Such attacks will be called ordering attacks. We
thus need to prevent the attacker from exchanging the positions of sampled
documents. We achieve this by making sure that the ordering of the docu-
ments generated by generate is deterministic, i.e. for each set of documents D
and each ciphertext b, the ordering d generated by generate is deterministic.
This property is achieved by using PRPs to sort the sampled documents D.
The corresponding keys of the PRPs are also transmitted to Bob and the
stegodecoder can thus also compute this deterministic ordering.

In total, our stegoencoder PKStS∗.Enc works on a secret message m and on a
publicly known hash-function f as follows:

1. Sample N documents D from the channel;
2. Get a hash-key kH and compute a hash-value h = H.EvalkH

(lex(D)) of the
sampled documents, where lex(D) denotes the sequence of elements of D in
lexicographic order. This prevents sampling attacks, where a sampled docu-
ment is replaced by a non-sampled one;
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3. Get two3 PRP-keys kP and k′
P that will be used to determine the unique

ordering of the documents in D via generate. This prevents ordering attacks,
where the order of the sampled documents is switched;

4. Encrypt the concatenation of m, kH, kP, k′
P, h via a certain public key encryp-

tion scheme PKES∗ and obtain the ciphertext b of length L = �N/8�. As long
as PKES∗ is secure, the stegodecoder is thus able to verify whether all sampled
documents were sent and can also verify the ordering of the documents.

5. Compute the ordering d of the documents D via generate that uses the PRP
keys kP and k′

P to determine the ordering of the documents. It also uses
the ciphertext b to guarantee that the first L send documents encode the
ciphertext b, i.e. b1 . . . bL = f(d1) . . . f(dL);

6. Send the ordering of the documents d.

To decode a sequence of documents d = d1, . . . , dN , the stegodecoder of PKStS∗

computes the ciphertext b1 = f(d1), . . . , bL = f(dL) encoded in the first L
documents of d. It then decodes this ciphertext b1 . . . bL via PKES∗ to obtain
the message m, the PRP keys kP and k′

P, the hash-key kH and the hash-value h.
First it verifies the hash-value by checking whether H.EvalkH

(lex({d1, . . . , dN}))
equals the hash-value h to prevent sampling attacks. It then uses the PRP keys
kP and k′

P′ to compute an ordering of the received documents via generate to
verify that no ordering attack was used. If these validations are successful, the
decoder PKStS∗.Dec returns m; Otherwise, it concludes that d is not a valid
stegotext and returns ⊥.

Intuitively, it is clear that a successful sampling attack on this scheme would
break the collision-resistant hash function H, as it needs to create a collision
of lex(D) in order to pass the first verification step. Furthermore, a successful
ordering attack would need manipulate the ciphertext b and thus break the
security of the public key encryption scheme PKES∗, as the PRP keys kP and k′

P

guarantee a deterministic ordering of the documents.
As explained above, our stegoencoder computes the ordering d = d1, . . . , dN

of the documents D = {d1, . . . , dN} via the deterministic algorithm generate,
that is given the following parameters: the set of documents D, the hash-function
f and the ciphertext b to ensure that the first documents of the ordering encode
b. It has furthermore access to the PRP keys kP and k′

P that guarantee a deter-
ministic ordering of the documents in D and thus prevents ordering attacks. As
the ordering d produced by generate is sent by the stegoencoder, this ordering
must be indistinguishable from a random permutation on D (which equals the
channel distribution) in order to be undetectable. As f(d1) = b1, . . . , f(dL) = bL,
not every distribution upon the ciphertext b can be used to guarantee that d
is indistinguishable from a uniformly random permutation. This indistinguisha-
bility is guaranteed by requiring that the ciphertext b is distributed according
to a certain distribution corresponding to a random process modeled by draw-
ing black and white balls from an urn without replacement. In our setting, the

3 We believe that one permutation suffices. But in order to improve the readability of
the proof for security, we use two permutations in our stegosystem.
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documents in D will play the role of the balls and the coloring is given by the
function f .

Section 5 describes this random process in detail and proves that we can
indeed construct a public-key encryption system that produces ciphertexts that
are indistinguishable from this process. Section 6 contains a formal description
of generate, proves that no attacker can produce a replay of its output and shows
that the generated permutation is indeed indistinguishable from a random per-
mutation. Finally, Sect. 7 contains the complete description of the stegosystem.

5 Obtaining Biased Ciphertexts

We will now describe a probability distribution and show how one can derive a
symmetric encryption scheme with ciphertexts that are indistinguishable from
this distribution. In order to do this, we first define a channel that represents
the required probability distribution together with appropriate parameters, use
Theorem 3 to derive a stegosystem for this channel, and finally derive a cryp-
tosystem from this stegosystem.

Based upon a CCA$-secure public-key cryptosystem PKES, Hopper [21] con-
structs for every efficiently sampleable channel C an SS-CCA-secure stegosystem
PKStSC by “derandomizing” the rejection sampling algorithm. The only require-
ment upon the channel C is the existence of the efficient sampling algorithm and
that the stegoencoder and the stegodecoder use the same sampling algorithm.
Importantly, due to the efficient sampleability of C, the encoder of PKStSC does
not need an access to the sample oracle. Thus, we get the following result.

Theorem 3 (Theorem 2 in [21]). If C is an efficiently sampleable channel and
PKES is a CCA$-secure public-key cryptosystem (which can be constructed from
doubly enhanced trapdoor permutations4) then there is a stegosystem PKStSC
(without an access to the sample oracle) such that for all wardens W there is a
negligible function negl such that

Advss-cca
W,PKStSC,C(κ) ≤ negl(κ) + 2−H∞(C,κ)/2.

Note that the system PKStSC is guaranteed to be secure (under the assump-
tion that CCA$-secure public-key cryptosystems exist), if the channel C is effi-
ciently sampleable and has min-entropy ω(log κ). We call such a channel suitable.

The probability distribution for the ciphertexts we are interested in is the
distribution for the bitstrings b we announced in the previous section. As we will
see later, the required probability can be described equivalently as follows:

– We are given N elements: N0 of them are labeled with 0 and the remaining
N − N0 elements are labeled with 1.

– We draw randomly a sequence of K elements from the set (drawing without
replacements) and look at the generated bitstring b = b1 . . . bK of length K
determined by the labels of the elements.

4 See e.g. the work [18] of Goldreich and Rothblum.
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We will assume that there are enough elements of both types, i.e. that N0 ≥
K and N−N0 ≥ K. The resulting probability distribution, denoted as D∗

(N,N0,K),
upon bitstrings of length K is then given as

Pr[D∗
(N,N0,K) = b1 . . . bK ] =

1(
K

|b|0
) ·

(
N0
|b|0

) · (
N−N0
K−|b|0

)
(
N
K

)

=
(K−1∏

j=0

1
N − j

) · (|b|0−1∏
j=0

[N0 − j]
) · (|b|1−1∏

j=0

[N − N0 − j]
)
,

(1)

where |b|0 denotes the number of zero bits in b = b1, . . . , bK and |b|1 the number
of one bits in b. Note that the distribution on the number of zeroes within such
bitstrings is a hypergeometric distribution with parameters N , N0, and K.

Now we will construct a channel C∗ upon key parameter κ with document
length n = dl(κ) = κ. In the definition below, bin(x)y denotes the binary repre-
sentation of length exactly y for the integer x.

– For the empty history ∅, let C∗
∅,κ be the uniform distribution on all strings

bin(N)�κ/2	bin(N0)
κ/2� that range over all positive integers N,N0 ≤ 2
κ/2�

such that N ≥ 8κ and 1/3 ≤ N0/N ≤ 2/3 (in our construction we need
initially a stronger condition than just N0 ≥ κ and N − N0 ≥ κ).

– If the history is of the form hist′ = bin(N)�κ/2	bin(N0)
κ/2�hist for some
hist ∈ {0, 1}∗ then we consider two cases: if |hist| ≤ 1

8N then the distribution
C∗
hist′,κ equals D∗

(N−|hist|,N0−|hist|0,κ); Otherwise, i.e. if |hist| > 1
8N then C∗

hist′,κ
equals the uniform distribution over {0, 1}κ.

It is easy to see that the min-entropy H∞(C∗, n) = minhist′{H∞(C∗
hist′,n)} of the

channel C∗ is obtained for the history hist′ = bin(N)�κ/2	bin(N0)
κ/2�hist, with
8κ ≤ N ≤ 2
κ/2� and such that (i) N0 = 1

3N and hist = 00 . . . 0 of length
1
8N −κ or (ii) N0 = 2

3N and hist = 11 . . . 1 of length 1
8N −κ. In the first case we

get that the min-entropy of the distribution C∗
hist′,n is achieved on the bitstring

11 . . . 1 of length κ and in the second case on 00 . . . 0 of length κ. By Eq. (1)
the probabilities to get such strings are equal to each other and, since κ ≤ N/8,
they can be estimated as follows:

κ−1∏
j=0

2N/3 − j

7N/8 − κ − j
≤

(
2N/3

7N/8 − κ

)κ

≤
(
2N/3
6N/8

)κ

= (8/9)κ.

Thus, we get that H∞(C∗, n) ≥ κ log(9/8).
Moreover one can efficiently simulate the choice of N,N0, the sampling pro-

cess of D∗
(N,N0,κ) and the uniform sampling in {0, 1}κ. Therefore we can conclude

Lemma 4. The channel C∗ is suitable, i.e. it is efficiently sampleable and has
min-entropy ω(log κ). Furthermore, for history hist = bin(N)�κ/2	bin(N0)
κ/2�,
with 8κ ≤ N ≤ 2�κ/2	 and 1/3 ≤ N0/N ≤ 2/3, and for any integer � ≤ N

8κ , the
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bitstrings b = b1 . . . bK of length K = κ · � ≤ N/8 obtained by the concatenation
of � consecutive documents sampled from the channel with history hist, i.e. bi ←
C∗
histb1...bi−1,n=κ, have distribution D∗

(N,N0,K).

A proof for the second statement of the lemma follows directly from the
construction of the channel. Now, combining the first claim of the lemma with
Theorem 3 we get the following corollary.

Corollary 5. If doubly enhanced trapdoor permutations exists, there is a
stegosystem PKStSC∗ (without an access to the sample oracle) such that for all
wardens W there is a negligible function negl such that Advss-cca

W,PKStSC∗ ,C∗(κ) ≤
negl(κ).

Based upon this stegosystem PKStS = PKStSC∗ , we construct a public-key
cryptosystem PKES∗, with ciphertexts of length PKES∗.cl(κ) = κ · PKStS.cl(κ)
such that PKES∗ also has another algorithm, called PKES∗.Setup that takes
parameters: two integers N and N0 which satisfy 8 · PKES∗.cl(κ) ≤ N ≤ 2
κ/2�

and N0/N ∈ [1/3, 2/3]. Calling PKES∗.Setup(N,N0) stores the values N,N0 such
that PKES∗.Enc and PKES∗.Dec can use them.

– The key generation PKES∗.Gen simply equals the key generation algorithm
PKStS.Gen.

– The encoding algorithm PKES∗.Enc takes as parameters the public key pk and
a message m. It then simulates the encoder PKStS.Enc on key pk, message m
and history hist = bin(N)�κ/2	bin(N0)
κ/2� and produces a bitstring of length
PKES∗.cl(κ) = PKStS.ol(κ) · κ.

– The decoder PKES∗.Dec simply inverts this process by simulating the stegode-
coder PKStS.Dec on key sk and history hist = bin(N)�κ/2	bin(N0)
κ/2�.

Clearly, the ciphertexts of PKES∗.Enc(pk,m) are indistinguishable from the
distribution D∗

(N,N0,PKES∗.cl(κ)) by the second statement of Lemma 4. This gen-
eralization of Theorem 3 yields the following corollary:

Corollary 6. If doubly-enhanced trapdoor permutations exist, there is a secure
public-key cryptosystem PKES∗, equipped with the algorithm PKES∗.Setup that
takes two parameters N and N0, such that its ciphertexts are indistinguishable
from the probability distribution D∗

(N,N0,PKES∗.cl(κ)) whenever N and N0 satisfy
that 8 · PKES∗.cl(κ) ≤ N ≤ 2
κ/2� and N0/N ∈ [1/3, 2/3].

6 Ordering the Documents

As described before, to prevent replay attacks, we need to order the sam-
pled documents. This is done via the algorithm generate described in this
section. To improve the readability, we will abbreviate some terms and define
L = PKES∗.cl(κ) and n = PKStS∗.dl(κ), where PKES∗ is the public-key encryp-
tion scheme from the last section and PKStS∗ is our target stegosystem that we
will provide later on. We also define N = 8L.
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To order the set of documents D ⊆ Σn, we use the algorithm generate,
presented below. It takes the set of documents D with |D| = N , a hash function
f : Σn → {0, 1} from Gκ, a bitstring b1, . . . , bL, and two keys kP, k′

P for PRPs.
It then uses the PRPs to find the right order of the documents.

Algorithm: generate(D, f, b1, . . . , bL, kP, k′
P)

Input: set D with |D| = N , hash function f , bits b1, . . . , bL, PRP-keys kP, k′
P

1: let D0 = {d ∈ D | f(d) = 0} and D1 = {d ∈ D | f(d) = 1} � We assert that
|D| = N , and furthermore |D0| ∈ [N/3, 2N/3]

2: for i = 1 to L do
3: di := argmind∈Dbi

{P.EvalkP(d)}; Dbi := Dbi \ {di}
4: let D′ = D0 ∪ D1 � collect remaining documents
5: for i = L + 1, . . . , N do
6: di := argmind∈D′{P.Evalk′

P
(d)}; D′ := D′ \ {di}

7: return d1, d2, . . . , dN

Note that the permutation P.EvalkP
is a permutation upon the set {0, 1}n

(i.e. on the documents themselves) and the canonical ordering of {0, 1}n thus
implicitly gives us an ordering of the documents.

We note the following important property of generate that shows where the
urn model of the previous section comes into play. For uniform random permu-
tations P and P ′, we denote by generate(· · · , P, P ′) the run of generate, where
the use of P.EvalkP

is replaced by P and the use of P.Evalk′
P

is replaced by P ′.
If the bits b = b1, . . . , bL are distributed according to D∗

(N,|D0|,L), the resulting
distribution on the documents then equals the channel distribution.

Lemma 7. Let C be any memoryless channel, f be some hash function and D
be a set of N = 8L documents of C such that N/3 ≤ |D0| ≤ 2N/3, where
D0 = {d ∈ D | f(d) = 0}. If the permutations P, P ′ are uniformly random and
the bitstring b = b1, . . . , bL is distributed according to D∗

(N,|D0|,L), the output of
generate(D, f, b, P, P ′) is a uniformly random permutation of D.

Proof. Fix any document set D of size N = 8L and a function f that splits
D into D0∪̇D1, with |D0| ≥ N/3 and |D1| ≥ N/3. Let d̂ = d̂1, . . . , d̂N

be any permutation on D. We will prove that the probability (upon bits b
and permutations P , P ′) that d̂ is produced, is 1/N ! and thus establish the
result. Let d = d1, . . . , dN be the random variables that denote the outcome of
generate(D, f, b1, . . . , bL, P, P ′).

Note that if d[i] (resp. d̂[i]) denotes the prefix of length i of d (resp. d̂), then
using the chain rule formula we get

Pr
b,P,P ′

[d1d2 . . . dN = d̂1d̂2 . . . d̂N ] =
N∏

i=1

Pr
b,P,P ′

[di = d̂i | d[i − 1] = d̂[i − 1]].
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To estimate each of the factors of the product, we consider two cases:

– Case i ≤ L: Let b̂ = b̂1, . . . , b̂L be the bitstring such that b̂i = f(d̂i) and let
b̂[i] be the prefix b̂1, . . . , b̂i of b̂ of length i. Clearly, for i ≤ L it holds that the
event di = d̂i under the condition d[i−1] = d̂[i−1] occurs iff (A) di ∈ Db̂i

and
(B) di is put on position |b̂[i]|b̂i

by the permutation P with respect to Db̂i
. Due

to the distribution of bit bi in the random bits b, the event di ∈ Db̂i
occurs

with probability (|Db̂i
|− |b̂[i−1]|b̂i

)/(N − i+1) (under the above condition).
As d[i−1] = d̂[i−1] holds, exactly |b̂[i−1]|b̂i

documents from Db̂i
are already

used in the output. As P is a uniform random permutation, the probability
that di is put on position |b̂[i]|b̂i

by the permutation P (with respect to Db̂i
)

is thus 1/(|Db̂i
|−|b̂[i−1]|b̂i

). Since (A) and (B) are independent, we conclude
for i ≤ L that the probability Prb,P,P ′ [di = d̂i | d[i − 1] = d̂[i − 1]] is equal to

Prb [di ∈ Db̂i
| d[i − 1] = d̂[i − 1]] ×

PrP [P puts di on position |b̂[i]|b̂i
| d[i − 1] = d̂[i − 1]]

=
|Db̂i

| − |b̂[i − 1]|b̂i

N − i + 1
· 1
|Db̂i

| − |b̂[i − 1]|b̂i

=
1

N − i + 1
.

– Case i > L: As the choice of P ′ is independent from the choice of P , the
remaining 2L items are ordered completely random. Hence, for i > L we also
have

Pr
b,P,P ′

[di = d̂i | d[i − 1] = d̂[i − 1]] =
1

N − i + 1
.

Putting it together, we get

Pr
b,P,P ′

[d1d2 . . . dN = d̂1d̂2 . . . d̂N ] =
N∏

i=1

1
N − i + 1

=
1

N !
. ��

As explained above, a second property that we need is that no attacker should
be able to produce a “replay” of the output of generate. Below, we formalize this
notion and analyze the security of the algorithm. An attacker A on generate is a
PPTM, that receives nearly the same input as generate: a set D of N documents,
a hash function f : Σn → {0, 1} from the family Gκ, a sequence b1, . . . , bL of L
bits, and a key kH for the CRHF H. Then A outputs a sequence d′

1, . . . , d
′
N of

documents. We say that the algorithm A is successful if

1. f(di) = f(d′
i) for all i = 1, . . . , N ,

2. d′
1, . . . , d

′
N = generate(D′, f, b1, . . . , bL, kP, k′

P), and
3. H.EvalkH

(lex(D′)) = H.EvalkH
(lex(D)),

where D′ denotes the set {d′
1, . . . , d

′
N} and, recall, lex(X) denotes the sequence

of elements of set X in lexicographic order. We can then conclude the following
lemma.
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Lemma 8 (Informal). Let D ⊆ Σn be a set of documents with |D| = N , let
b1, . . . , bL be a bitstring, and f ∈ Gκ. For every attacker A on generate, there is
a collision finder Fi for the CRHF H such that the probability that A is successful
on D, f, b1, . . . , bL, kH is bounded by Advhash

Fi,H,C(κ).

The formal definition of “A is successful” as well as a formal statement of the
lemma can be found in Appendix A.

7 The Steganographic Protocol PKStS∗

We now have all of the ingredients of our stegosystem, namely the CCA-secure
cryptosystem PKES∗ from Sect. 5 and the ordering algorithm generate from
Sect. 6. To improve the readability, we will abbreviate some terms and define
n = PKStS∗.dl(κ), � = PKStS∗.ol(κ), and L = PKES∗.cl(κ), where PKES∗ is the
public-key encryption scheme from Sect. 5 and PKStS∗ is the stegosystem that
we will define in this section. We also let N = 8L.

In the following, let C be a memoryless channel, P be a PRP relative to
C, H be a CRHF relative to C and G = {Gκ}κ∈N be a strongly 2-universal
hash family. Remember, that PKES∗ has the algorithm PKES∗.Setup that takes
the additional parameters N,N0 ≤ 2�κ/2	, such that if N ≥ 8 · PKES∗.cl(κ)
and N0/N ∈ [1/3, 2/3] then the output of PKES∗.Enc(pk,m) is indistinguishable
from D∗

(N,N0,PKES∗.cl(κ)) (see Sect. 5 for a discussion). Furthermore, we assume
that PKES∗ has very sparse support, i.e. the ratio of valid ciphertexts com-
pared to {0, 1}PKES∗.cl(κ) is negligible: If PKES∗.Enc(pk,m) is called, we first use
some public key encryption scheme PKES with very sparse support to com-
pute c ← PKES.Enc(pk,m) and then encrypt c via PKES∗. This construction is
due to Lindell [29] and also maintains the indistinguishability of the output of
PKES∗.Enc and the distribution D∗, as this properties hold for all fixed messages
m. Now we are ready to provide our stegosystem named PKStS∗. Its main core
is the ordering algorithm generate.

– The key generating PKStS∗.Gen queries PKES∗.Gen for a key-pair (pk, sk) and
chooses a hash-function f � Gκ. The public key of the stegosystem will be
pk∗ = (pk, f) and the secret key will be sk∗ = (sk, f).

– The encoding algorithm PKStS∗.Enc presented below (as Cn is memoryless we
skip hist in the description) works as described in Sect. 4: It chooses appro-
priate keys, samples documents D, computes a hash value of D, generates
bitstring b via PKES∗, and finally orders the documents via generate.5

– To decode a sequence of documents d1, . . . , dN , the stegodecoder PKStS∗.Dec
first computes the bit string b1 = f(d1), . . . , bN = f(dN ) and computes
the number N0 = |{di : f(di) = 0}|. In case |{d1, . . . , dN}| < N or
N0/N �∈ [1/3, 2/3], the decoder PKStS∗.Dec returns ⊥ and halts. Other-
wise, using PKES∗.Dec with sk and parameters N,N0, it decrypts from the

5 That the number of produced documents is always divisible by 8 does not hurt the
security: The warden always gets the same number of documents, whether steganog-
raphy is used or not.



46 S. Berndt and M. Liśkiewicz

ciphertext b1, b2, . . . , bL the message m, the keys kH, kP, k′
P and the hash-

value h. It then checks whether the hash-value h is correct and whether
d1, . . . , dN = generate({d1, . . . , dN}, f, b1, . . . , bL, kP, k′

P). Only if this is the
case, the message m is returned. Otherwise, PKStS∗.Dec decides that it can
not decode the documents and returns ⊥.

The steganographic encoder: PKStS∗.Enc(pk∗, m)

Input: public key pk∗ = (pk, f), message m; access to channel Cn

1: let L = PKES∗.cl(κ) and N = 8L; let D0 := ∅ and D1 := ∅
2: for j = 1 to N do
3: sample dj from Cn; let Df(dj) := Df(dj) ∪ {dj}
4: N0 = |D0|
5: if |D0 ∪ D1| < N or N0/N �∈ [1/3, 2/3] then return d1, . . . , dN and halt
6: choose hash key kH ← H.Gen(1κ)
7: choose PRP keys kP, k′

P ← P.Gen(1κ)
8: let h := H.EvalkH(lex(D0 ∪ D1)) � compute hash
9: call PKES∗.Setup(N, N0) � setup N, N0

10: let b1, b2, . . . , bL ← PKES∗.Enc(pk, m || kH || kP || k′
P || h)

11: let d := generate(D0 ∪ D1, f, b1, . . . , bL, kP, k′
P)

12: return d

Proofs of Reliability and Security. We will first concentrate on the reliability
of the system PKStS∗ and prove that its unreliability is negligible. This is due
to the fact, that the decoding always works and the encoding can only fail if
a document was drawn more than once or if the sampled documents are very
imbalanced with regard to f .

Theorem 9. The probability that a message is not correctly embedded by the
encoder PKStS∗.Enc is at most 3N2 · 2−H∞(C,κ) + 2 exp(−N/54).

If 1 < λ ≤ log(κ) bits per document are embedded, this probability is
bounded by 22λ · 3N2 · 2−H∞(C,κ) + 2λ+1 exp(−N/54), which is negligible in κ if
H∞(C, κ) sufficiently large. Now, it only remains to prove that our construction
is secure. The proof proceeds similar to the security proof of Hopper [21]. But
instead of showing that no other encoding of a message exists, we prove that
finding any other encoding of the message is infeasible via Lemma 8.

Theorem 10. Let C be a memoryless channel, P be a PRP relative to C, the
algorithm H be a CRHF relative to C, the cryptosystem PKES∗ be the cryp-
tosystem designed in Sect. 5 with very sparse support relative to C, and G be
a strongly 2-universal hash family. The stegosystem PKStS∗ is SS-CCA-secure
against every memoryless channel.
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Fig. 1. An overview of hybrids H1 and H6 used in the proof of Theorem 10. Changes
between the hybrids are marked as shadowed.
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Proof (Proof sketch). We prove that the above construction is secure via a hybrid
argument. We thus define six distributions H1, . . . , H6 shown in Fig. 1.

We now proceed by proving that Hi and Hi+1 are SS-CCA-indistinguishable
(denoted by Hi ∼ Hi+1). Informally, this means that we replace in SS-CCA-Dist
the call to the stegosystem (if b = 0) by Hi and the call to the channel (if
b = 1) by Hi+1. Denote by Adv(i)

W (κ) the advantage of a warden W in this situ-
ation. Clearly, the SS-CCA-advantage of W is bounded as Advss-cca

W,PKStS∗,C(κ) ≤
Adv(1)

W (κ)+Adv(2)
W (κ)+Adv(3)

W (κ)+Adv(4)
W (κ)+Adv(5)

W (κ). This implies the
theorem, as H1 simply describes the channel and H6 describes the stegosystem.
Informally, we argue that:

1. H1 ∼ H2 because a uniform random permutation on a memoryless channel
does not change any probabilities;

2. H2 ∼ H3 because our choice of b1, . . . , bL and random permutations equal
the channel by Lemma 7;

3. H3 ∼ H4 because P is a PRP;
4. H4 ∼ H5 because P is a PRP;
5. H5 ∼ H6 because PKES∗ is secure due to Corollary 6 and because of Lemma 8. ��

8 An Impossibility Result

We first describe an argument for truly random channels using an infeasible
assumption and then proceed to modify those channels to get rid of this. All
channels will be 0-memoryless and we thus write Cη,dl instead of Chist,dl, if hist
contains η document.

The main idea of our construction lies on the unpredictability of random
channels. If Cη and Cη+1 are independent and sufficiently random, we can not
deduce anything about Cη+1 before we have sampling access to it, which we only
have after we sent the document of Cη in the standard non-look-ahead model. To
be reliable, there must be enough documents in Cη+1 continuing the already sent
documents (call those documents suitable). To be SS-CCA-secure, the number
of suitable documents in Cη+1 must be very small to prevent replay attacks like
those in Sect. 3. By replacing the random channels with pseudorandom ones, we
can thus prove that every stegosystem is either unreliable or SS-CCA-insecure
on one of those channels. To improve the readability, fix some stegosystem PKStS
and let n = PKStS.dl(κ) and � = PKStS.ol(κ).

Lower Bound on Truly Random Channels. For n ∈ N, we denote by Rn

all subsets R of {0, 1}n such that there is a negligible function negl with

– |R| ≥ negl(n)−1 and
– |R| ≤ 2n/2.
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This means each subset R has super-polynomial cardinality in n without being
too large. For an infinite sequence R = R0, R1, . . . with Ri ∈ Rn, we construct
a channel C(R) where the distribution C(R)i,n is the uniform distribution on
Ri. The family of all such channels is denoted by F(Rn). We assume that a
warden can test whether a document d belongs to the support of C(R)i,n and
denote this warden by WR . In the next section, we replace the totally random
channels by pseudorandom ones and will get rid of this infeasible assumption. For
a stegosystem PKStS – like the system PKStS∗ from the last section – we are now
interested in two possible events that may occur during the run of PKStS.Enc
on a channel C(R). The first event, denoted by ENq (for Nonqueried), happens
if PKStS.Enc outputs a document it has not seen due to sampling. We are also
interested in the case that PKStS.Enc outputs something in the support of the
channel, denoted by EInS for In Support. Clearly, upon random choice of R, η
(the length of the history), m and pk we have

Pr[EInS | ENq] ≤ � · 2
n/2 − PKStS.query(κ)
2n − PKStS.query(κ)

≤ � · 2−n/2,

where PKStS.query(κ) denotes the number of queries performed by PKStS. This
is negligible in κ as n, query and � are polynomials in κ. As warden WR can test
whether a document belongs to the random sets, we have Advss-cca

WR ,PKStS,C(R)(κ) ≥
Pr[EInS]. Clearly, since we can assume EInS ⊆ ENq we thus obtain

Pr[ENq] =
Pr[EInS ∧ ENq]
Pr[EInS | ENq]

≤ Advss-cca
WR ,PKStS,C(R)(κ)
1 − � · 2−n/2

.

Hence, if PKStS is SS-CCA-secure, the term Pr[ENq] must be negligible.
If PKStS is given a history of length η and it outputs documents d1, . . . , d�,

we note that PKStS.Enc only gets sampling access to C(R)η+�−1,n after it sent
d1, . . . , d�−1 in the standard non-look-ahead model. Clearly, due to the ran-
dom choice of R, the set Rη+� is independent of Rη, Rη+1, . . . , Rη+�−1. The
encoder PKStS.Enc thus needs to decide on the documents d1, . . . , d�−1 without
any knowledge of Rη+�. As PKStS.Enc draws a sample set D from C(R)η+�−1,n

with at most q = PKStS.query(κ) documents, we now look at the event ENsui
(for Not suitable) that none of the documents in D are suitable for the encoding,
i.e. if the sequence d1, d2, . . . , d�−1, d is not a suitable encoding of the message
m for all d ∈ D. Denote the unreliability of the stegosystem by ρ. Clearly, if
ENsui occurs, there are two possibilities for the stegosystem: It either outputs
something from D and thus increases the unreliability or it outputs something it
has not queried. We thus have Pr[ENsui] ≤ max{ρ, (1− ρ) ·Pr[ENq]}. Note that
ρ must be negligible if PKStS.Enc is reliable and, as discussed above, the term
Pr[ENq] (and thus the term (1 − ρ) · Pr[ENq]) must be negligible if PKStS.Enc is
SS-CCA-secure. Hence, if PKStS.Enc is SS-CCA-secure and reliable, the proba-
bility Pr[ENsui] must be negligible. The insight, that Pr[ENsui] must be negligible
directly leads us to the construction of a warden WR on the channel C(R). The
warden chooses a random history of length η and a random message m and sends
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those to its challenging oracle. It then receives the document sequence d1, . . . , d�.
If di �∈ Rη+i, the warden returns »Stego«. Else, it samples q documents D from
C(R)η+�,n and tests for all d ∈ D via the decoding oracle PKStS.Decsk if the
sequence d1, d2, . . . , d�−1, d decodes to m. If we find such a d, return »Stego«
and else return »Not Stego«. If the documents are randomly chosen from the
channel, the probability to return »Stego« is at most q/|2PKStS.ml(κ)|, i.e. negli-
gible. If the documents are chosen by the stegosystem, the probability of »Not
Stego« is exactly Pr[ENsui]. Hence, PKStS must be either unreliable or SS-CCA-
insecure on some channel in F(Rn).

Lower Bound on Pseudorandom Channels. To give a proof, we will
replace the random channels C(R) by pseudorandom ones. The construction
assumes existence of a CCA$-secure cryptosystem PKES with PKES.cl(κ) ≥
2PKES.ml(κ).

For ω = (pk, sk) ∈ supp(PKES.Gen(1κ)), let C(ω)i,dl(κ) be the distribution
PKES.Enc(pk,bin(i)dl(κ)), where bin(i)dl(κ) is the binary representation of the
number i of length exactly dl(κ) modulo 2dl(κ). The family of channels CPKES =
{C(ω)}ω thus has the following properties:

1. There is a negligible function negl such that for each ω and each i, we have
2PKES.ml(κ)/2 ≥ |C(ω)i,dl(κ)| ≥ negl(κ)−1 if PKES is CCA$-secure. This follows
easily from the CCA$-security of PKES: If |C(ω)i,dl(κ)| would be polynomial,
an attacker could simply store all corresponding ciphertexts.

2. An algorithm with the knowledge of ω can test in polynomial time, whether
d ∈ supp(C(ω)i,dl(κ)), i.e. whether d belongs to the support by simply testing
whether PKES.Dec(sk, d) equals bin(i)dl(κ).

3. Every algorithm Q that tries to distinguish C(ω) from a random channel C(R)
fails: For every polynomial algorithm Q, we have that the term

∣∣ Pr
R�R∗

dl(κ)

[QC(R)(1κ) = 1] − Pr
ω←PKES.Gen(1κ)

[QC(ω)(1κ) = 1]
∣∣

is negligible in κ if PKES is CCA$-secure. This follows from the fact that
no polynomial algorithm can distinguish C(R) upon random choice of R
from the uniform distribution on {0, 1}n, as |C(R)i,n| is super-polynomial.
Furthermore, an attacker A on PKES can simulate Q for a successful attack.

Note that the third property directly implies that no polynomial algorithm
can conclude anything about C(ω)i,dl(κ) from samples of previous distributions
C(ω)0,dl(κ), . . . , C(ω)i−1,dl(κ), except for a negligible term. The second property
directly implies that we can get rid of the infeasible assumption of the previous
section concerning the ability of the warden to test whether a document belongs
to the support of C(ω): We simply equip the warden with the seed ω. Call the
resulting warden Wω. Note that this results in a non-uniform warden. As above,
we are interested in the events that a stegosystem outputs a document that it
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has not seen (E
̂Nq), that a document is outputted which does not belong to the

support (E
̂InS) and the event that a random set of q documents is not suitable

to complete a given document prefix d1, d2, . . . , d�−1 (E
̂Nsui).

As E
̂InS is a polynomially testable property (due to the second property of

our construction), we can conclude a similar bound as above:

Lemma 11. Let PKStS be an SS-CCA-secure universal stegosystem. For every
warden W and every CCA$-attacker A, Pr[E

̂Nq] ≤ Advss-cca
W,PKStS,C(ω)(κ)

1−�·2−n/2 +

Advpkes
A,PKES(κ).

Hence, if the stegosystem PKStS is SS-CCA-secure and PKES is CCA$-secure,
the term Pr[E

̂Nq] must be negligible. As above, we can conclude that Pr[E
̂Nsui] ≤

max{ρ, (1− ρ) ·Pr[E
̂Nq]} for unreliability ρ. The warden Wω similar to WR from

the preceding section thus succeeds with very high probability. Hence, no SS-
CCA-secure and reliable stegosystem can exist for the family CPKES:

Theorem 12. If doubly-enhanced trapdoor permutations exist, for every
stegosystem PKStS in the non-look-ahead model there is a 0-memoryless channel
C such that PKStS is either unreliable or it is not SS-CCA-secure on C against
non-uniform wardens.

9 Discussion

The work of Dedić et al. [13] shows that provable secure universal steganogra-
phy needs a huge number of sample documents to embed long secret messages
as high bandwidth stegosystems are needed for such messages. This limitation
also transfers to the public-key scenario. However, such a limitation does not
necessarily restrict applicability of steganography, especially in case of specific
communication channels or if the length of secret messages is sufficiently short.

A prominent recent example for such applications is the use of steganography
for channels determined by cryptographic primitives, like symmetric encryption
scheme (SESs) or digital signature schemes. Bellare, Paterson, and Rogaway
introduced in [5] so called algorithm substitution attacks against SESs, where
an attacker replaces an honest implementation of the encryption algorithm by
a modified version which allows to extract the secret key from the ciphertexts
produced by the corrupted implementation. Several follow-up works have been
done based on this paper, such as those by Bellare et al. [4], Ateniese et al. [2], or
Degabriele et al. [14]. These works strengthened the model proposed in [5] and
presented new attacks against SESs or against other cryptographic primitives,
e.g. against signature schemes. Surprisingly, as we show in [6], all such algo-
rithm substitution attacks can be analyzed in the framework of computational
secret-key steganography and in consequence, the attackers can be identified as
stegosystems on certain channels determined by the primitives. In such scenar-
ios, the secret message embedded by the stegosystem corresponds to a secret key
of the cryptographic algorithm.
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A similar approach was used by Pasquini et al. [35] to show that so called
password decoy vaults used for example by Chatterjee et al. [10] and Golla et al.
[19] can also be interpreted as steganographic protocols.

A Remaining Proofs

To improve the readability, we will abbreviate some terms and define n =
PKStS∗.dl(κ), � = PKStS∗.ol(κ) and L = PKES∗.cl(κ), where PKStS∗ is our
stegosystem constructed in Sect. 7 and PKES∗ is the public-key cryptosystem
constructed in Sect. 5. We also define N = 8L.

A.1 Formal Statement of Lemma 8 and its Proof

We start with a formal definition for “A is successful on D, f, b1, . . . , bL, kH”.

Definition 13. An attacker A on generate is a PPTM, that receives the follow-
ing input:

– a sequence d1, . . . , dN of N pairwise different documents
– a hash function f : Σn → {0, 1} from the family G = {Gκ}κ∈N,
– a sequence b1, . . . , bL of L bits, and
– a hash-key kH for H.

The attacker A then outputs a sequence d′
1, . . . , d

′
N of documents. Note that the

attacker knows the mapping function f and even the hash-key kH for H.
We say that A is successful if the experiment Sgen(A,D, f, b1, . . . , bL) returns

value 1:

Security of generate: Sgen(A, D, f, b1, . . . , bL)

Input: Attacker A, set D, function f , bits b1, . . . , bL

1: kP, k′
P ← P.Gen(1κ)

2: kH ← H.Gen(1κ)
3: d1, . . . , dN := generate(D, f, b1, . . . , bL, kP, k′

P)
4: d′

1, . . . , d
′
N ← A(d1, . . . , dN , f, b1, . . . , bL, kH)

5: if f(d′
i) = bi for every i = 1, . . . L then

6: D′
0 = {d′

j | f(d′
j) = 0}; D′

1 = {d′
j | f(d′

j) = 1}
7: if d′

1, . . . , d
′
N = generate(D′

0 ∪ D′
1, f, b1, . . . , bL, kP, k′

P) then
8: if H.EvalkH(lex(D

′
0 ∪ D′

1)) = H.EvalkH(lex(D0 ∪ D1)) then
9: if d′

1, . . . , d
′
N �= d1, . . . , dN then

10: return 1 and halt
11: return 0
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We are now ready to give the formal version of Lemma 8:

Lemma (formal version of Lemma 8). Let D ⊆ Σn be a set of documents,
with |D| = N , let b1, . . . , bL be a bitstring, and f ∈ Gκ. For every attacker A on
generate, there is a collision finder Fi for the CRHF H such that

Pr[Sgen(A,D, f, b1, . . . , bL) = 1] ≤ Advhash
Fi,H,C(κ),

where the probability is taken over the random choices made in experiment Sgen.

Proof. Let A be an attacker on generate with maximal success probability. Let
D = D0∪̇D1 be the input to generate, the sequence d1, . . . , dN its output and
d′
1, . . . , d

′
N be the output of A. Furthermore, let D′

b = {d′
j | f(d′

j) = b} and
D′ = D′

0 ∪ D′
1. We now distinguish three cases of the relation between D and

D′. If D′
� D, the sequence d′

1, . . . , d
′
N must contain the same element on at

least two positions, but generate does only accept sets of size exactly N . Hence,
A was not successful in this case. If D′ = D and A was successful, it holds that
d′
1, . . . , d

′
N �= d1, . . . , dN . Hence, there must be positions i < j and j′ < i′ such

that di = di′ and dj = dj′ . As kP and k′
P define a total order, the sequence

d′
1, . . . , d

′
N could not be produced by generate. Thus, A can not be successful in

this case.
The only remaining case is D′ \ D �= ∅. If A was successful, it holds that

HkH
(lex(D′)) = HkH

(lex(D)), i.e. this is a collision with regard to H. We will
now construct a finder Fi for H, such that Advhash

Fi,H,C(κ) ≥ Pr[A succeeds]. The
finder Fi receives a hash key kH. It then chooses f � Gκ, samples D documents
of cardinality |D| = N via rejection sampling and PRP-keys kP, k′

P. The finder
simulates A and receives

d′
1, . . . , d

′
N ← A(generate(D, f, b1, . . . , bL, kP, k′

P), f, b1, . . . , bL, kH).

Then, it returns D and D′ = {d′
1, . . . , d

′
N}. Whenever A succeeds, we have

D �= D′ by the discussion above and thus also HkH
(lex(D)) = HkH

(lex(D′)).
Hence, Fi has successfully found a collision. This implies that Advhash

Fi,H,C(κ) ≥
Pr[A succeeds]. ��

A.2 Proof of Theorem 9

Recall the statement of the theorem:

Theorem (Theorem 9). The probability that a message is not correctly embed-
ded by PKStS∗.Enc is at most 3N2 · 2−H∞(C,κ) + 2 exp(−N/54).

Proof. Note that PKStS∗.Enc may not correctly embed a message m if (a) |D0 ∪
D1| < N i.e. a document sampled in line 3 was drawn twice, or (b) N0/N �∈
[1/3, 2/3] i.e. the bias is too large, or (c) the number of elements of D0 or D1

is too small to embed b1, b2, . . . , bL by generate. The probability of (a) can be



54 S. Berndt and M. Liśkiewicz

bounded similar to the birthday attack. It is roughly bounded by 3N2 ·2−H∞(C,κ)

as the probability of every document is bounded by 2−H∞(C,κ).
A simple calculation shows that the probability of (b) and (c) is negligible.

Note that the algorithm always correctly embeds a message, if |D0| ≥ L and
|D1| ≥ L. As N0/N = |D0|/N , this implies that N0/N ∈ [1/3, 2/3]. We will thus
estimate the probability for this. As f is drawn from a strongly 2-universal hash
family, we note that the probability that a random document d is mapped to
1 is equal to 1/2. For i = 1, . . . , N , let Xi be the indicator variable such that
Xi equals 1 if the i-th element drawn from the channel maps to 1. The random
variable X =

∑N
i=1 Xi thus has the size of D1. Clearly, its expected value is

N/2. The probability that |X − N/2| > L (and thus |D1| < L or |D0| < L) is
hence bounded by

Pr[|X − N/2| > L] ≤ 2 exp(−L · (1/3)2
3

) = 2 exp(−N/54)

using a Chernoff-like bound. The probability that the message m is incorrectly
embedded is thus bounded by 2−H∞(C,κ) + 2 exp(−N/54). ��

A.3 Proof of Theorem 10

We recall:

Theorem (Theorem 10). Let C be a memoryless channel, P be a PRP relative
to C, the algorithm H be a CRHF relative to C, the cryptosystem PKES∗ be the
cryptosystem designed in Sect. 5 with very sparse support relative to C, and G be
a strongly 2-universal hash family. The stegosystem PKStS∗ is SS-CCA-secure
against every memoryless channel.

Proof. We prove that the above construction is secure via a hybrid argument.
We thus define six distributions H1, . . . , H6 shown in Fig. 1.

If P and Q are two probability distributions, denote by SS-CCA-DistP,Q the
modification of the game SS-CCA-Dist, where the call to the stegosystem (if
b = 0) is replaced by a call to P and the call to the channel (if b = 1) is
replaced by a call to Q. If W is some warden, denote by Advss-cca

W,P,Q(κ) the
winning probability of W in SS-CCA-DistP,Q. If Advss-cca

W,P,Q(κ) ≤ negl(κ) for a
negligible function negl, we denote this situation as P ∼ Q and say that P and
Q are indistinguishable with respect to SS-CCA-Dist. Furthermore, we define
Adv(i)

W (κ) = Advss-cca
W,Hi,Hi+1

(κ). As the term Adv(i)
W (κ) can also be written as

∣∣Pr[W.Guess outputs b′ = 0 | b = 0] − Pr[W.Guess outputs b′ = 0 | b = 1]
∣∣,

the triangle inequality implies that Advss-cca
W,PKStS∗,C(κ) ≤ Adv(1)

W (κ) +

Adv(2)
W (κ) +Adv(3)

W (κ) +Adv(4)
W (κ) +Adv(5)

W (κ).
Informally, we argue that:

1. H1 = H2 =⇒ H1 ∼ H2 because a uniform random permutation on a
memoryless channel does not change any probabilities;
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2. H2 = H3 =⇒ H2 ∼ H3 because our choice of b1, . . . , bL and random
permutations equal the channel by Lemma 7;

3. H3 ∼ H4 because P is a PRP;
4. H4 ∼ H5 because P is a PRP;
5. H5 ∼ H6 PKES∗ is secure due to Corollary 6 and because of Lemma 8.

Distribution H1 can be specified as follows:

Indistinguishability of H1 and

If |D0 ∪D1| < N , i.e. a document was sampled twice or |D0|/|D| �∈ [1/3, 2/3],
the system only outputs the sampled documents. Hence H1 equals H2 in this
case. In the other case, we first permute the items before we output them.
But, as P is a uniform random permutation and the documents are drawn
independently from a memoryless channel, we have

Pr
H1

[d1, . . . , dN are drawn] = Pr
H1

[dP (1), . . . , dP (N) are drawn].

As pk is not used in these hybrids, H1 = H2 follows.

Indistinguishability of H2 and

If |D0 ∪D1| < N , i.e. a document was sampled twice or |D0|/|D| �∈ [1/3, 2/3],
the system only outputs the sampled documents. Hence H2 equals H3 in this
case. If |D0 ∪ D1| = N , Lemma 7 shows that H2 equals H3.
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Indistinguishability of H3 and

We will construct a distinguisher Dist on the PRP P with Advprp
Dist,P,C(κ) =

Adv(3)
W (κ). Note that such a distinguisher has access to an oracle that either

corresponds to a truly random permutation or to P.Evalk for a key k ←
P.Gen(1κ).
The PRP-distinguisher Dist simulates the run of W. It first chooses a key-
pair (pk, sk) ← PKStS∗.Gen(1κ). It then simulates W. Whenever the warden W
makes a call to its decoding-oracle PKStS∗.Dec, it computes PKStS∗.Dec(sk, ·)
(or ⊥ if necessary). In order to generate the challenge sequence d̂ upon the
message m, it simulates the run of PKStS∗.Enc and replaces every call to P or
P.EvalkP

by a call to its oracle. Similarly, the bits output by PKES∗.Enc(pk,m)
are ignored and replaced by truly random bits distributed according to
D∗

(N,|D0|,L). If the oracle is a truly random permutation, the simulation yields
exactly H3 and if the oracle equals P.Evalk for a certain key k, the simulation
yields H4. The advantage of Dist is thus exactly Adv(3)

W (κ). As P is a secure
PRP, this advantage is negligible and H3 and H4 are thus indistinguishable.

Indistinguishability of H4 and

We will construct a distinguisher Dist on the PRP P with Advprp
Dist,P,C(κ) =

Adv(4)
W (κ). Note that such a distinguisher has access to an oracle that either

corresponds to a truly random permutation or to P.Evalk for a key k ←
P.Gen(1κ).
The PRP-distinguisher Dist simulates the run of W. It first chooses a key-pair
(pk, sk) ← PKStS∗.Gen(1κ) and a key kP ← P.Gen(1κ) for the PRP P. It then
simulates W. Whenever the warden W makes a call to its decoding-oracle
PKStS∗.Dec, it computes PKStS∗.Dec(sk, ·) (or ⊥ if necessary). In order to
generate the challenge sequence d̂ upon the message m, it simulates the run
of PKStS∗.Enc and replaces every call to P ′ or P.EvalkP

by a call to its oracle.
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Similarly, the bits output by PKES∗.Enc(pk,m) are ignored and replaced by
truly random bits distributed according to D∗

(N,|D0|,L). If the oracle is a truly
random permutation, the simulation yields exactly H4 and if the oracle equals
P.Evalk for a certain key k, the simulation yields H5. The advantage of Dist
is thus exactly Adv(4)

W (κ). As P is a secure PRP, this advantage is negligible
and H4 and H5 are thus indistinguishable.

Indistinguishability of H5 and

We construct an attacker A on PKES∗ such that there is a negligible function
negl with Advcca

A,PKES∗,C(κ)+negl(κ) ≥ Adv(5)
W (κ). Note that such an attacker

A has access to the decryption-oracle PKES∗.Decsk(·).
The attacker A simply simulates W. First, it chooses f � Gκ. Whenever
W uses its decryption-oracle to decrypt d1, . . . , dN , the attacker A simulates
PKStS∗.Dec(d1, . . . , dN ) and uses its own decryption-oracle PKES∗.Decsk(·)
in this. When W outputs the challenge m, the attacker A chooses all of the
parameters D0,D1, kH, kP, k′

P as in PKStS∗.Enc and chooses its own challenge
m̃ := m || kH || kP || k′

P || h, where h = H.EvalkH
(D0 ∪ D1).

The attacker now either receives b ← PKES∗.Enc(pk, m̃) or L random bits b
from D∗

(N,|D0|,L) and computes

d1, . . . , dN = generate(D0 ∪ D1, f, b1, . . . , bL, kP, k′
P).

If the bits correspond to PKES∗.Enc(pk, m̃), this simulates the stegosystem
and thus H6 perfectly. If the bits are random, this equals H5.
After the challenge is determined, A continues to simulate W. Whenever W
uses its decryption-oracle to decrypt d1, . . . , dN , it behaves as above. There is
now a significant difference to the pre-challenge situation: The attacker A is
not allowed to decrypt the bits b = b1, . . . , bL. Hence, when W tries to decrypt
documents d1, . . . , dN such that f(di) = bi, it has no way to use its decryption-
oracle and must simply return ⊥. Suppose that this situation arises. Note that
the decryption-oracle of W would only return a message not equal to ⊥ then iff
d1, . . . , dN = generate(D0 ∪ D1, f, b, kP, k′

P) and H.EvalkH
({d1, . . . , dN}) = h.

If b is a truly random string from D∗
(N,|D0|,L), the sparsity of PKES∗ implies

that the probability that b is a valid encoding is negligible. Hence the prob-
ability that the decryption-oracle of W would return a message not equal
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to ⊥ is negligible. It only remains to prove that the probability that the
decryption-oracle of W returns a message not equal to ⊥ is negligible if b
is a valid encryption of a message. But Lemma 8 states just that. We thus
have Advcca

A,PKES∗,C(κ) + negl(κ) ≥ Adv(5)
W (κ). As the system PKES∗ is CCA-

secure by Corollary 6, this advantage is negligible. Hence, H5 and H6 are
indistinguishable.

Hence, the stegosystem PKStS∗ is SS-CCA-secure on C. ��
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Abstract. In Crypto 2017, Auerbach et al. initiated the study on
memory-tight reductions and proved two negative results on the memory-
tightness of restricted black-box reductions from multi-challenge security
to single-challenge security for signatures and an artificial hash function.
In this paper, we revisit the results by Auerbach et al. and show that for
a large class of reductions treating multi-challenge security, it is impos-
sible to avoid loss of memory-tightness unless we sacrifice the efficiency
of their running-time. Specifically, we show three lower bound results.
Firstly, we show a memory lower bound of natural black-box reductions
from the multi-challenge unforgeability of unique signatures to any com-
putational assumption. Then we show a lower bound of restricted reduc-
tions from multi-challenge security to single-challenge security for a wide
class of cryptographic primitives with unique keys in the multi-user set-
ting. Finally, we extend the lower bound result shown by Auerbach et al.
treating a hash function to one treating any hash function with a large
domain.
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Black-box reduction

1 Introduction

1.1 Background

Security proofs for cryptographic primitives are typically supported by the black-
box reduction paradigm. A black-box reduction R, which is a probabilistic
polynomial-time (PPT) algorithm, allows us to convert an adversary A against
some security game (or we say problem) GM1 into an algorithm RA against
another security game GM2. If breaking GM2 is believed to be hard, then the
existence of R implies the security of GM1. The quality of R depends on its
tightness, which measures how close the performances of A and RA are. The
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tighter a reduction is, the larger class of adversaries can be ruled out. Tightness
traditionally takes running-time and success probability into account. However,
Auerbach et al. [1] observed that some types of reductions, which are tight in
common sense, are memory-loose, meaning that they incur large increase in
memory usage when converting adversaries. For example, suppose that A use t1
time steps and m1 memory units, and succeed with probability ε1 in GM1. Even
if RA can succeed in GM2 with probability ε2 ≈ ε1 by using t2 ≈ t1 time steps,
it may use m2 � m1 memory units. If the security of GM2 is memory-sensitive,
i.e., it can be broken more quickly with large memory than small memory (when
the running-time of A is reasonably long), then a memory-loose reduction does
not rule out as many attacks as expected. Recall the instance about the learning
parities with noise (LPN) problem in dimension 1024 and error rate 1/4 in [1].
A memory-loose reduction from some security game to this problem only ensures
that adversaries running in time less than 285 cannot succeed in the game. There
are many memory-sensitive problems besides the LPN problem, such as factor-
ing, discrete-logarithm in prime fields, learning with errors, approximate shortest
vector problem, short integer solution, t-collision-resistance (CRt) where t > 2,
etc., as noted in [1]. When proving security of cryptographic primitives based on
these problems, memory-tightness should be seriously taken into account.

Memory Lower Bound of Restricted Reductions. Auerbach et al. initi-
ated the study on memory-tightness, and provided general techniques helping
achieve memory-tight reductions. Surprisingly, as negative results, they showed
a memory lower bound of reductions from multi-challenge unforgeability (mUF)
to standard unforgeability (UF) for signatures. The former security notion is
defined in exactly the same way as the latter except that it gives an adversary
many chances to produce a valid forgery rather than one chance. Although it is
trivial to reduce mUF security to UF security tightly in both running-time and
success probability, Auerbach et al. showed that some class of reductions between
these two security notions inherently and significantly increase memory usage,
unless they sacrifice the efficiency of the running-time. Specifically, they proved
that such a reduction must consume roughly Ω(q/(p+1)) bits of memory, where
2q is the number of queries made by an adversary and p is the number of times
an adversary is run. The class of black-box reductions they treated is restricted,
in the sense that a reduction R only runs an adversary A sequentially from
beginning to end, and is not allowed to rewind A. Moreover, R only forwards
the public keys and signing queries between its challenger and A, and the forgery
made by R should be amongst the ones generated by A. This result implies that
in practice, UF security and mUF security may not really be equivalent. As an
open problem left by Auerbach et al., it is not clear whether this result holds
when a reduction does not respect the restrictions. Moreover, this result does
not rule out the possibility that there exists a memory-tight restricted reduction
that directly derives mUF security from some memory-sensitive problem. There-
fore, it is desirable to clarify whether there exists a memory lower bound of any
natural reduction from mUF security to any common assumption.
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Auerbach et al. also showed another similar lower bound of restricted reduc-
tions from multi-challenge t-collision-resistance (mCRt) to standard CRt security
for an artificial hash function that truncates partial bits of its input. Here, both
security notions prevent an adversary from finding a t-collision (i.e., outputting
t distinct elements having the same hash value), while the mCRt (respectively,
CRt) game allows an adversary to have many chances (respectively, only one
chance) to find a t-collision. Since CRt security is memory-sensitive, this result
indicates that breaking mCRt security might be much easier than breaking CRt

security in practice. However, since the hash function they considered is spe-
cific and not collision-resistant, it is still not clear whether this result holds for
collision-resistant hash functions.

Finally, it is desirable to clarify whether there exist memory lower bounds
for cryptographic primitives in other settings, which are potentially based on
memory-sensitive problems.

1.2 Our Results

We revisit memory-tightness on black-box reductions, and show several lower
bound results.

Lower Bound for Unique Signatures. In [6], Coron proved a tightness lower
bound of black-box reductions from the security of unique signatures [10,19,20],
in which there exists only one valid signature for each pair of public key (not
necessarily output by the key generation algorithm) and message, to any non-
interactive (computational) assumption. Later, Kakvi and Kiltz [15] and Bader
et al. [4] respectively fixed a flaw in the proof and improved the bound. The
reductions considered in these works are “natural” reductions, in the sense that
they run adversaries only sequentially.

Although the study on the tightness of reductions for unique signatures
has a long history, memory-tightness of such reductions has never been taken
into account until [1], and it is still unclear, when considering natural reduc-
tions or reducing the security of unique signatures to common assumptions,
whether memory-tightness is achievable. In our work, we focus on natural reduc-
tions for unique signatures from the angle of memory, and prove that loss of
memory-tightness is inevitable when reducing their mUF security to computa-
tional assumptions. Specifically, we show the existence of a memory lower bound
of any natural reduction from the mUF security of unique signatures to any com-
putational assumption (rather than only UF security).1 Here, a natural black-box
reduction can interact with its challenger in any way it wants, and can adap-
tively rewind an adversary. We do not allow reductions to modify the internal
state of an adversary, which is a very natural restriction. Similarly to [1], the
bound is roughly Ω(q/(p+1)) bits of memory, where 2q is the number of queries
made by an adversary and p is the number of times an adversary is rewound.
This result indicates that for a unique signature scheme, any natural reduction
1 Note that all the memory-sensitive problems discussed in [1] fall under the notion

of computational assumptions.
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from its mUF security to a memory-sensitive problem may not rule out as many
attacks as expected. Therefore, when using a unique signature scheme based on
a memory-sensitive problem in practice, one should make its security parameter
larger than indicated by traditional security proofs. As far as we know, this is the
first negative result on memory-tight reductions to any computational assump-
tions, and also the first one treating memory-tightness of natural reductions.

Moreover, we give our result in a generalized way so that it also captures some
other assumptions that do not fall under the definition of computational assump-
tions. By slightly modifying our proof, we can also show memory lower bounds
for the notions of verifiable unpredictable functions (VUFs) and re-randomizable
signatures, which are more general primitives and hence capture more instanti-
ations (e.g., [13,19,20,23]).

Lower Bound for Unique-Key Primitives in the Multi-user Setting.
Security notions of cryptographic primitives are usually considered in the single-
user setting, where an adversary only sees one challenge public key. However, in
practice, an attacker may see many public keys and adaptively corrupt secret
keys. Hence, considering security of primitives in the multi-user setting [2,3] is
necessary. In [4], Bader et al. showed that in this setting, it is impossible to avoid
loss of tightness when deriving the security of unique-key primitives, in which
there exists only one valid secret key for each public key, from non-interactive
assumptions.

In this work, we give the first negative result on memory-tightness in the
multi-user setting. Specifically, we show a memory lower bound of restricted
black-box reductions from multi-challenge one-wayness in the multi-user set-
ting (mU-mOW) to standard one-wayness in the multi-user setting (mU-OW)
for unique-key relations. Compared with [1], the reductions we treat are less
restricted. We only require them to forward the public keys and corruption
queries between the challengers and adversaries, while they can forge secret keys
in any way they want (i.e., a forgery is not necessarily amongst the ones output
by an adversary). The bound is roughly Ω(max{q/(p+2), n/(p+2)}), where 2q
is the number of queries, n is the number of users, and p is the number of rewind-
ing procedures. Since unique-key relations are very fundamental primitives, from
this result, we can easily derive lower bounds for a large class of primitives
with unique keys (including public key encryption (PKE) schemes, signatures,
trapdoor commitment schemes (with collision-resistance), etc.), which capture
many constructions (e.g., [5,7,8,12,14,17,18,22,23]). These results imply that
for unique-key primitives in the multi-user setting, the gaps between their multi-
challenge security notions and single-challenge security notions might be wider
than indicated by conventional security proofs via restricted reductions.

As a by-product result, our result can be extended for primitives with re-
randomizable keys [4], where secret keys can be efficiently re-randomized and
the distribution of a re-randomized key is uniform.

Lower Bound for Large-Domain Hash Functions. Finally, we revisit the
memory lower bound of restricted reductions from mCRt security to CRt security
for an artificial hash function shown in [1]. We firstly show a streaming lower
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bound for all the CRt secure large-domain hash functions. Specifically, we show
that determining whether there exists a t-collision in a data stream consumes
large memory. Following from this fact, we extend the result in [1] to a lower
bound for all the large-domain hash functions. Here, a hash function is said to
have a large domain if its range is negligibly small compared with its domain
(e.g., H : {0, 1}2λ → {0, 1}λ where λ is the security parameter). It is a natu-
ral property satisfied by most practical hash functions. The bound is roughly
Ω(min{(q − κ)/(p + 1)}) where q is the number of queries, κ is the length of
the hash key, and p is the number of rewinding procedures. Since CRt security
(where t > 2) is memory-sensitive, this result implies that for any natural hash
function, its mCRt security directly derived from its CRt security via restricted
reductions does not rule out as many attacks as its CRt security does in practice.

1.3 High-Level Ideas

Like in [1], our lower bound for unique signatures follows from a streaming lower
bound result implying that determining the output of a specific function G(y)
consumes large memory. Here, y is a data stream that does not occupy local
memory and can be accessed sequentially. We construct an inefficient adversary
Ay (storing y) breaking the mUF security of any unique signature scheme iff
G(y) = 1. Let R be a black-box reduction from mUF security to a cryptographic
game GM. RAy is likely to succeed in GM when G(y) = 1. On the other hand,
when G(y) = 0, we use the meta-reduction method to show that RAy will fail.
Roughly, we construct a PPT simulator Sy that is indistinguishable from Ay due
to uniqueness. If RAy succeeds in GM, then the PPT algorithm RSy succeeds in
GM as well, which gives us the conflict. As a result, we can obtain an algorithm
that determines G(y) with high probability by simulating the game GM and
RAy . Such an algorithm must consume large memory due to the streaming
lower bound. Moreover, Ay can be simulated by accessing the stream y with
small memory usage. Therefore, R must use large memory if simulating the
challenger in GM does not consume large memory. This is the case in most
computational assumptions (including all the memory-sensitive problem noted
in [1]), where the challenger saves an answer, which only occupies small memory,
when sampling a challenge, and checks whether the final output of an adversary
is equal to that answer.

The lower bound of restricted reductions from mU-mOW security to mU-OW
security for unique-key primitives is shown in a similar way by constructing an
inefficient adversary and its simulator in the mU-mOW game. However, in this
case, we face a problem that it consumes large memory to store public keys of
users when running the mU-OW and mU-mOW games. This spoils our result since
the streaming lower bound does not imply that R consumes large memory any
more. We deal with this problem by running a pseudorandom function (PRF)
to simulate random coins used to generate public keys, which is similar to the
technique used in [1] for achieving memory-tightness. Whenever a public key is
needed, we only have to run the PRF to obtain the corresponding random coin
and generate the key again, and hence there is no need to store public keys any
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more. Here, it might seem that outputs of PRF are not indistinguishable from
real random coins since an inefficient adversary is involved in the interaction.
However, we can show that the adversary can be simulated in polynomial-time
(PT) due to the uniqueness of secret keys.

Extending the lower bound result for a specific hash function in [1] to all
the large-domain hash functions satisfying CRt security (where t is a constant)
involves three steps. Firstly, we prove a theorem saying that for a large-domain
hash function satisfying CRt security, there exist many hash values with more
than t pre-images. Intuitively, for a large-domain hash function (using a ran-
domly chosen key), if there are few hash values with more than t pre-images,
then there should exist some hash value with many pre-images. We prove that
the set of all pre-images of such a hash value is so large that t randomly cho-
sen inputs are very likely to fall into this set, which conflicts with CRt security.
Therefore, we conclude that a CRt secure large-domain hash function should have
many hash values with more than t pre-images. Then by exploiting this theorem
and the technique used in previous works [1,16,21], we prove the existence of
a memory lower bound for determining whether there exists a t-collision in a
stream, based on the disjointness problem [16,21]. Following from this result, we
achieve a memory lower bound of restricted reductions from mCRt security to
CRt security for large-domain hash functions.

1.4 Outline of This Paper

In Sect. 2, we recall some notation and describe the computational model and
data stream model. In Sect. 3, we show a lower bound of black-box reductions
from the mUF security of unique signatures to cryptographic games. In Sect. 4, we
show a lower bound of restricted reductions from mU-mOW security to mU-OW
security for unique-key cryptographic primitives. In Sect. 5, we show a lower
bound of restricted reductions from mCRt security to CRt security for large-
domain hash functions.

2 Preliminaries

In this section, we give several terminologies that are necessary to describe our
results, describe the computational model and data stream model, and recall the
disjointness problem and a streaming lower bound.

2.1 Notation and Computational Model

In this paper, all algorithms are RAMs having access to memory and registers
that each holds one word. Rewinding random bits used by RAMs is not per-
mitted, so if an algorithm wants to access previously used random bits it must
store them. If A is a deterministic (respectively, probabilistic) algorithm, then
y = A(x) (respectively, y ← A(x)) means that A takes as input x and outputs
y. By AO we mean that A has access to an oracle O. By Az we mean that z is
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stored in the memory of A. We denote the code and memory consumed by A
(but not its oracle) in the worst case by LocalMem(A), where the consump-
tion is measured in bits. negl denotes an unspecified negligible function. If Z is
a finite set, then |Z| denotes the number of (distinct) elements in Z, and z ← Z
denotes the process of sampling z at uniformly random from Z.

2.2 Data Stream Model

Now we recall stream oracles. To a stream oracle, an algorithm is allowed to make
queries to access a large stream of data sequentially, while the local memory
consumption remains small. We adopt the notation in [1] to describe stream
oracles as follows.

A stream oracle Oy is parameterized by a vector y = (y1, · · · , yn) ∈ Un where
U is some finite set. Whenever receiving a query, Oy runs i = i+1 mod n (where
i is initialized with 0), and returns yi. Let q be the total number of queries. The
number of passes is defined as p = �q/n�.

2.3 Disjointness Problem and Streaming Lower Bound

Now we recall the disjointness problem, which derives streaming lower bounds.

Theorem 1 ([16,21]). Let x1, x2 ∈ {0, 1}n and DISJ(x1, x2) be defined by

DISJ(x1, x2) =
{

1 if ∃i : x1[i] = x2[i] = 1
0 otherwise ,

where xb[j] denotes the jth bit of xb for j ∈ {1, · · · , n} and b ∈ {0, 1}. Then any
two-party protocol (P1, P2), such that Pr[DISJ(x1, x2) ← (P1(x1) � P2(x2))] ≥ c
holds for some constant c > 1/2 and every x1, x2 ∈ {0, 1}n, must have commu-
nication Ω(n) in the worst case. Here, by DISJ(x1, x2) ← (P1(x1) � P2(x2))
we mean that the interaction between P1 and P2 respectively on input x1 and x2

outputs DISJ(x1, x2).

In [1], Auerbach et al. gave a streaming lower bound result, which is a corol-
lary of prior works [16,21] based on the disjointness problem. It shows that
determining whether the second half of a stream contains an element not in
the first half requires large memory. We now follow [1] to define G(y), where
y = y1||y2 and y1,y2 ∈ Uq, and recall the streaming lower bound.

G(y) =
{

1 if ∃j ∀i : y2[j] �= y1[i]
0 otherwise .

Theorem 2. Let B be a probabilistic algorithm and λ be a (sufficiently large)
security parameter. Assuming that there exists some constant c > 1/2 such that
Pr[BOy (1λ) = G(y)] ≥ c holds for polynomials q = q(λ) and n = n(λ), and all
y ∈ ({0, 1}n)2q (respectively, y ∈ ({i}n

i=1)
2q). Then we have LocalMem(B) =

Ω(min{q/p, 2n/p}) (respectively, LocalMem(B) = Ω(min{q/p, n/p})), where p
is the number of passes B makes in the worst case.
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The above theorem is slightly different from the one in [1], in the sense that we
let y ∈ ({0, 1}n)2q or y ∈ ({i}n

i=1)
2q (instead of y ∈ U2q for all sufficiently large

q and |U|), and require q and n be polynomials in λ. However, the proof for the
streaming lower bound in [1, Appendix A] can be directly applied to prove the
above theorem. We refer the reader to [1, Appendix A] for details.

3 Lower Bound of Reductions from the mUF Security
of Unique Signatures to Cryptographic Games

In this section, we show a memory lower bound of black-box reductions from the
mUF security of unique signatures to assumptions captured by cryptographic
games. We start by recalling the definition of unique signatures and mUF security,
and then show the lower bound.

3.1 Unique Signatures and mUF Security

We now recall the definition of (digital) signatures.

Definition 1 (Digital signature). A signature scheme consists of PT algo-
rithms (Gen,Sign,Verify). (a) Gen is a probabilistic algorithm that takes as input
1λ, and returns a public/secret key pair (pk, sk). (b) Sign is a probabilistic algo-
rithm that takes as input a secret key sk and a message m ∈ {0, 1}δ where
δ = δ(λ) is some polynomial, and returns a signature σ. (c) Verify is a deter-
ministic algorithm that takes as input a public key pk, a message m, and a
signature σ, and returns 1 (accept) or 0 (reject).

A signature scheme is required to satisfy correctness, which means that
Verifypk(m,σ) = 1 holds for all λ ∈ N, all (pk, sk) ← Gen(1λ), all m ∈ {0, 1}δ,
and all σ ← Signsk(m).

Next we recall the definition of unique signatures, in which there exists only
one valid signature for each pair of public key (not necessarily output by Gen(1λ))
and message.

Definition 2 (Unique signature [19]). A signature scheme (Gen,Sign,Verify)
is said to be a unique signature scheme if for all λ ∈ N, all pk (possibly out-
side the support of Gen), and all m ∈ {0, 1}δ, there exists no pair (σ, σ′) that
simultaneously satisfies σ �= σ′ and Verifypk(m,σ) = Verifypk(m,σ′) = 1.

Now we recall mUF security. In the mUF game, an adversary has many
chances to produce a valid forgery rather than one chance. Although mUF secu-
rity can be tightly reduced to UF security straightforwardly in common sense,
it is shown in [1] that restricted reductions between these two security notions
inherently require increased memory usage.

Definition 3 (mUF [1]). A signature scheme (Gen,Sign,Verify) is said to
be mUF secure if for any PPT adversary A, we have AdvA

mUF(λ) =
Pr[CH outputs 1] ≤ negl(λ) in the following game.
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1. The challenger CH sets w = 0 and Q = ∅, samples (pk, sk) ← Gen(1λ),
and runs A on input (1λ, pk). A may make adaptive signing and verification
queries to CH, and CH responds as follows:
– On receiving a signing query m, CH computes σ ← Signsk(m), adds m to

Q, and sends σ to A.
– On receiving a verification query (m∗, σ∗), if Verifypk(m∗, σ∗) = 1 and

m∗ /∈ Q, CH sets w = 1.
2. At some point, A makes a stopping query stp to CH, and CH returns w.

The definition of UF security is exactly the same as the above one except that A
is allowed to make only one verification query and the advantage of A is denoted
by AdvA

UF(λ).

3.2 Lower Bound for Unique Signatures

Before giving the main theorem, we recall the definition of cryptographic games.

Definition 4 (Cryptographic game [11]). A cryptographic game GM con-
sists of a (possibly inefficient) random system (called the challenger) CH and a
constant c. On input security parameter 1λ, CH(1λ) interacts with some adver-
sary A(1λ), and outputs a bit b. This interaction is denoted by b ← (A(1λ) �
CH(1λ)), and the advantage of A in GM is AdvA

GM(λ) = Pr[1 ← (A(1λ) �
CH(1λ))] − c.

A cryptographic game GM = (CH, c) is said to be secure if for any PPT
adversary A, we have AdvA

GM(λ) ≤ negl(λ).

All commonly used assumptions and most security games in cryptography fall
under the framework of cryptographic games. We call a cryptographic game
GM = (CH, c) a computational assumption if c = 0.

Black-Box Reduction. Now we follow [1] to describe black-box reductions.
Unlike in [1], we do not fix the random tape of an adversary, and do not give
any restriction on the queries made by a reduction.2

Let R be a black-box reduction from GM1 to GM2. We write RA to mean that
R has oracle access to a (stateful) adversary A playing game GM1. Whenever
receiving a query from R, A returns the “next” query to R. R is not able
to modify the current state of A (i.e., A runs sequentially), but is allowed to
adaptively rewind A to previous states.

Definition 5 (c-black-box reduction). Let GM1 and GM2 be cryptographic
games and c > 0 be a constant. An oracle-access PPT machine R(·) is said to be
a c-black-box reduction from GM1 to GM2, if for any (sufficiently large) security
parameter λ and any (possibly inefficient) adversary A, we have AdvRA

GM2
(λ) ≥

c · AdvA
GM1

(λ).

2 Auerbach et al. requires a reduction to preserve the advantage of an adversary even
if the random tape of the adversary is fixed. However, we observe that this restriction
is not necessary in their work as well, which we will discuss after giving the proof.
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Like many previous works (e.g., [1,4,6,15]), we do not consider reductions that
can modify the current state of an adversary. This is a natural restriction, which
is respected by most black-box reductions.

We now give a theorem showing a memory lower bound of cr-black-box
reductions from the mUF security of unique signatures to cryptographic games
GM = (CH, cg), where cg < 1/2 and cr + cg > 1/2. When cg = 0, our result cap-
tures cr-black-box reductions where cr > 1/2 to any computational assumption.
When cr = 1, it captures 1-black-box reductions to any cryptographic game such
that cg < 1/2.3

Theorem 3. Let λ be a (sufficiently large) security parameter, Σ =
(Gen,Sign,Verify) be a unique signature scheme with message length δ, GM =
(CH, cg) be a secure cryptographic game, LocalMem(CH) be the amount of
memory consumed by CH, and R be a cr-black box reduction from the mUF
security of Σ to the security of GM. Let q = q(λ) be the maximum numbers of
signing queries and verification queries made by an adversary in the mUF game.
If (a) R rewinds the adversary for at most p = p(λ) times and (b) cg < 1/2 and
cr + cg > 1/2, then we have

LocalMem(R) = Ω(min{q/(p + 1), 2δ/(p + 1)}) − O(log q)
− LocalMem(CH) − LocalMem(Verify).

Roughly, this theorem implies that when the maximum number of signing queries
made by an adversary in the mUF game is very large, R must consume large
memory unless it rewinds A many times, which increases its running-time.

High-Level Idea. We firstly construct an inefficient adversary Ay where
y = (y1, · · · , y2q). Ay makes signing queries y1, · · · , yq, checks the validity of the
answers, and then makes verification queries (yq+1, σ

∗
1), · · · , (y2q, σ

∗
q ) which are

generated by using brute force. Consider the interaction RAy (1λ) � CH(1λ).
When G(y) = 1 (see Sect. 2.3 for the definition of G), we have {yq+i}q

i=1 �

{yi}q
i=1, which means that Ay is a deterministic algorithm breaking mUF secu-

rity. Since R is a black-box reduction, CH is likely to output 1 in this case.
When G(y) = 0, we have {yq+i}q

i=1 ⊆ {yi}q
i=1, in which case we can construct

a PT algorithm Sy running in the same way as Ay does, except that Sy uses
the answers of signing queries as its forgeries instead of exploiting brute force.
Due to uniqueness, Sy perfectly simulates Ay . If CH outputs 1 with probability
that is non-negligibly greater than cg in the interaction with RAy , then we have
a PPT algorithm RSy breaking the security of GM, which gives us the conflict.
Therefore, CH is likely to output 0 when G(y) = 0.

Then we can construct an algorithm B with access to a stream y that sim-
ulates the interaction RAy (1λ) � CH(1λ) and outputs G(y) with high proba-
bility. According to Theorem 2, the memory consumed by B is inherently large

3 There are several typical cryptographic games with 0 < cg < 1/2, such as recipient-
anonymity for IBE schemes [9] and one-wayness for encryption schemes with con-
stantly large message spaces.
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(to some extent). Moreover, although Ay consumes a large amount of memory to
store y, B does not have to use large memory when simulating Ay by accessing
its stream. As a result, if the memory consumed by CH is small (which is often
the case in computational assumptions), then R must consume large memory.

Proof (of Theorem 3). Assuming the existence of the reduction R stated in
Theorem 3, we show the existence of a probabilistic algorithm B such that
Pr[G(y) ← BOy (1λ)] ≥ c for all y = (y1, · · · , y2q) ∈ ({0, 1}δ)2q and some con-
stant c > 1/2 by giving hybrid games.

Game 0: In this game, R has access to an adversary Ay and interacts with CH,
where Ay runs as follows.

1. On receiving (1λ, pk), Ay stores (1λ, pk) and makes a signing query y1.
2. For i = 1, · · · , q − 1, on receiving the answer σi to the ith signing query, if

Verifypk(yi, σi) �= 1, Ay aborts. Otherwise, Ay makes a signing query yi+1.
3. On receiving the answer σq to the qth signing query, if Verifypk(yq, σq) �= 1, Ay

aborts. Otherwise, Ay exhaustively searches σ∗
1 such that Verifypk(yq+1, σ

∗
1) =

1, and makes a verification query (yq+1, σ
∗
1).

4. For i = 1, · · · , q − 1, when invoked (with no input) for the ith time, Ay

exhaustively searches σ∗
i+1 such that Verifypk(yq+i+1, σ

∗
i+1) = 1, and makes a

verification query (yq+i+1, σ
∗
i+1).

5. When invoked (with no input) for the qth time, Ay makes a stopping query
stp.

We now show the following lemma.

Lemma 1. Pr[G(y) ← (RAy (1λ) � CH(1λ))] ≥ c for all y ∈ ({0, 1}δ)2q and
some constant c > 1/2 in Game 0.

Proof (of Lemma 1). Firstly, we show the existence of a PT algorithm Sy per-
fectly simulating Ay on condition that G(y) = 0. Sy runs in the same way as Ay

except that it uses the answers of the signing queries as its verification queries.
Formally, it runs as follows. (Below, the difference from Ay is emphasized.)

1. On receiving (1λ, pk), Sy stores (1λ, pk) and makes a signing query y1.
2. For i = 1, · · · , q − 1, on receiving the answer σi to the ith signing query, if

Verifypk(yi, σi) �= 1, Sy aborts. Otherwise, Sy stores (yi, σi) in its internal list
�L (initialized with ∅), and makes a signing query yi+1.

3. On receiving the answer σq to the qth signing query, if Verifypk(yq, σq) �= 1,
Sy aborts. Otherwise, Sy stores (yq, σq) in �L, searches a pair (m,σ) in �L
such that m = yq+1, and makes a verification query (m,σ). If the searching
procedure fails, Sy aborts.

4. For i = 1, · · · , q − 1, when invoked (with no input) for the ith time, Sy

searches a pair (m,σ) in �L such that m = yq+i+1, and makes a verification
query (m,σ). If the searching procedure fails for some i, Sy aborts.

5. When invoked (with no input) for the qth time, Sy makes a stopping query
stp.
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When G(y) = 0, we have {yq+i}q
i=1 ⊆ {yi}q

i=1, which means that the searching
procedures executed by Sy (in Steps 3 and 4) will not fail. Moreover, due to the
uniqueness of Σ, the verification queries made by Sy are exactly the same as
those made by Ay . Hence, Sy perfectly simulates Ay in the view of R.

Due to the security of GM, we have AdvRAy

GM (λ) = AdvRSy

GM (λ) ≤ negl(λ)
when G(y) = 0, which implies Pr[1 ← (RAy (1λ) � CH(1λ)) | G(y) = 0] − cg ≤
negl(λ), i.e., Pr[0 ← (RAy (1λ) � CH(1λ)) | G(y) = 0] ≥ 1 − cg − negl(λ). On
the other hand, when G(y) = 1, there exists some 1 ≤ j ≤ q such that yq+j /∈
{yi}q

i=1, which implies AdvAy

mUF(λ) = 1. Since R is a cr-black-box reduction,
we have Pr[1 ← (RAy (1λ) � CH(1λ)) | G(y) = 1] − cg ≥ cr. Since cg < 1/2,
cr +cg > 1/2, and λ is sufficiently large, there exists some constant c > 1/2 such
that Pr[G(y) ← (RAy (1λ) � CH(1λ))] ≥ c for all y ∈ ({0, 1}δ)2q, completing
the proof of Lemma 1. ��
Game 1: This game is exactly the same as Game 0 except that there exists
an algorithm A′ with access to the stream oracle Oy simulating Ay as follows.
(Below, the difference from Ay is emphasized.)

1. On receiving (1λ, pk), A′ stores (1λ, pk), queries Oy to obtain y1, and makes
a signing query y1.

2. For i = 1, · · · , q − 1, on receiving the answer σi to the ith signing query, if
Verifypk(yi, σi) �= 1, A′ aborts. Otherwise, A′ queries Oy to obtain yi+1 and
makes a signing query yi+1.

3. On receiving the answer σq to the qth signing query, if Verifypk(yq, σq) �= 1,
A′ aborts. Otherwise, A′ queries Oy to obtain yq+1, exhaustively searches σ∗

1

such that Verifypk(yq+1, σ
∗
1) = 1, and makes a verification query (yq+1, σ

∗
1).

4. For i = 1, · · · , q − 1, when invoked (with no input) for the ith time,
A′ queries Oy to obtain yq+i+1, exhaustively searches σ∗

i+1 such that
Verifypk(yq+i+1, σ

∗
i+1) = 1, and makes a verification query (yq+i+1, σ

∗
i+1).

5. When invoked (with no input) for the qth time, A′ makes a stopping query
stp.

Whenever R executes a rewinding procedure, A′ makes another pass on its
stream so that it can access the message for the next signing or verification
query. Since A′Oy perfectly simulates Ay , we immediately obtain the following
lemma.

Lemma 2. Pr[G(y) ← (RA′Oy (1λ) � CH(1λ))] ≥ c for all y ∈ ({0, 1}δ)2q and
some constant c > 1/2 in Game 1.

Game 2: This game is exactly the same as Game 1 except that there exists a
stream-access algorithm BOy that simulates CH, R, and A′Oy and returns the
output of CH. Since the view of R does not change at all, we have the following
lemma.

Lemma 3. Pr[G(y) ← BOy (1λ)] ≥ c for all y ∈ ({0, 1}δ)2q and some constant
c > 1/2 in Game 2.
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Since B makes p + 1 passes on its stream in total, according to Theorem 2
and Lemma 3, we have

LocalMem(B) = Ω(min{q/(p + 1)}, 2δ/(p + 1)).

Furthermore, the memory used to simulate CH and A′ is O(log q) +
LocalMem(CH)+LocalMem(Verify), where O(log q) is the amount of memory
used to record q and the index of the next query A′ will make. Therefore, we
have

LocalMem(B) = O(LocalMem(R)) + O(log q)
+ LocalMem(CH) + LocalMem(Verify).

Combining the above two bounds completes the proof of Theorem 3. ��
Remark on Security Parameter. Theorem 3 holds only when the security
parameter λ is sufficiently large, while one may wonder why memory-tightness
makes sense when λ is already required to be very large. In fact, λ only has to be
large enough to ensure cg + AdvRSy

GM (λ) < 1/2 in the proof of Lemma 1. When
cg is small (e.g., cg = 1/4), it is obvious that cg +AdvRSy

GM (λ) < 1/2 should hold
even if λ is small (to some extent) and RSy may consume large memory, due to
the security of GM. Therefore, λ is not necessarily very large unless cg is very
close to 1/2.

Remark on Advantage-Preserving Reductions. In [1], it is required that
the black-box reductions are advantage-preserving, which means that they
should work well for adversaries with fixed random tapes. However, we observe
that this restriction is not necessary. The reason is that we can treat adver-
saries with fixed random tapes as deterministic ones, for which any black-box
reduction should work well. Furthermore, although a deterministic adversary
consumes large memory in this case (compared with an adversary with fixed
random tape), simulating it with stream does not, hence our result is not spoiled.
The same argument is made for our results in other sections.

Remark on Reductions to UF Security. Auerbach et al. [1] showed a lower
bound on the memory usage of restricted reductions from mUF security to UF
security. A restricted reduction forwards the public keys generated by CH to
Ay , and forwards the signing queries y and one of the forgery made by Ay to
the challenger CH in the UF game. One can see that CH uses large memory to
store y so that it can check whether RA succeeds later. Since LocalMem(CH)
is very large in this case, the result in [1] is not directly captured by Theorem 3.
However, one can easily modify our proof by letting CH in Game 2 access to
the stream y instead of storing y. By doing this, LocalMem(CH) can remain
small when R forwards signing queries from A to CH, and hence, the lower
bound in [1] or ones in other similar cases can be derived from our result (when
treating unique signatures). We do not take this into account in our formal proof
only for simplicity.
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Re-randomizable Signatures and VUFs. If we give an additional restric-
tion that a reduction does not control the random tape of an adversary, i.e.,
an adversary uses real random coins (but not ones from the reduction), then
by slightly modifying our proof, we can also show a memory lower bound
for re-randomizable signatures [13,23], where signatures can be efficiently re-
randomized (we refer the reader to [13] for the formal definition). In this case,
we only have to let both the inefficient adversary and the simulator re-randomize
the forged signatures so that R cannot distinguish them.

We can also extend our result for the notion of VUFs [19,20], which is exactly
the same as the notion of unique signatures except that a proof (which is not
necessarily unique) is needed when verifying the validity of a signature. We omit
the details since the extension is straightforward.

4 Lower Bound of Restricted Reductions from mU-mOW
to mU-OW for Unique-Key Cryptographic Primitives

In this section, we give a memory lower bound of restricted reductions from
mU-mOW security to mU-OW security for unique-key one-way primitives. For
simplicity, we treat a basic primitive called unique-key relation [24] and argue
that this result can be easily extended for other unique-key primitives. We start
by recalling the definition of unique-key relations and their security in the multi-
user setting, and then show the lower bound.

4.1 Unique-Key Relations

We now recall the definition of a unique-key relation. In a unique-key relation,
there exists at most one valid secret key for every public key in the support of
the key generation algorithm.4

Definition 6 (Unique-key relation). A unique-key relation consists of PT
algorithms (Gen,Check). (a) Gen is a probabilistic algorithm that takes as input
1λ, and returns a public/secret key pair (pk, sk). (b) Check is a deterministic
algorithm that takes as input a public/secret key pair (pk, sk), and returns 1
(accept) or 0 (reject).

A unique-key relation is required to satisfy correctness and uniqueness.
Correctness is satisfied if Check(pk, sk) = 1 holds for all λ ∈ N and all
(pk, sk) ← Gen(1λ). Uniqueness is satisfied if for all λ ∈ N and all pk in the
support of Gen(1λ), there exists no pair (sk, sk′) that simultaneously satisfies
sk �= sk′ and Check(pk, sk) = Check(pk, sk′) = 1.

Now we give the definitions of the mU-mOW and mU-OW security of unique-
key relations [2,3]. In these security games, an adversary sees many public keys
and can adaptively corrupt the secret keys. It succeeds if it outputs a valid secret
key that is not corrupted.
4 Unlike the definition of unique signatures, here we do not require uniqueness for

public keys outside the support of the key generation algorithm.
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Definition 7 (mU-mOW). A unique-key relation (Gen,Check) is said to be
mU-mOW secure if for any PPT adversary A, we have AdvA

mU-mOW(λ) =
Pr[CH outputs 1] ≤ negl(λ) in the following game.

1. The challenger CH sets w = 0 and Q = ∅, and runs A on input 1λ. Then A
may make sampling queries to CH, and CH responds as follows.
– On receiving the ith sampling query sp, CH samples (pki, ski) ← Gen(1λ)

and sends pki to A.
2. Then A may make adaptive corruption and verification queries to CH, and

CH responds as follows:
– On receiving a corruption query i, CH adds i to Q, and sends ski to A.
– On receiving a verification query (i∗, sk∗), if Check(pki∗ , sk∗) = 1 and

i∗ /∈ Q, CH sets w = 1.
3. At some point, A makes a stopping query stp to CH, and CH returns w.

Definition 8 (mU-OW). mU-OW security is defined in exactly the same way as
mU-mOW security except that A is allowed to make only one verification query
and the advantage of A is denoted by AdvA

mU-OW(λ).

4.2 Lower Bound for Unique-Key Relations

In this section, we define restricted reductions from the mU-mOW security to
mU-OW security of unique-key relations and show a memory lower bound of
such reductions.

Restricted Black-Box Reductions from mU-mOW to mU-OW. Let R be
a black-box reduction from mU-mOW security to mU-OW security. As before,
we write RA to mean that R has oracle access to a (stateful) adversary A
playing the mU-mOW game. Whenever receiving a query from R, A returns the
“next” query to R. R is not able to modify the current state of A (i.e., A runs
sequentially), but is allowed to adaptively rewind A to previous states.

Definition 9 (c-restricted black-box reduction from mU-mOW to
mU-OW). Let c > 0 be a constant. An oracle-access PPT machine R(·) is
said to be a c-restricted black-box reduction from the mU-mOW security to the
mU-OW security of a unique-key relation, if for any (possibly inefficient) adver-
sary A, we have AdvRA

mU-OW(λ) ≥ c·AdvA
mU-mOW(λ), and R respects the following

restriction.

– The public keys (pk1, · · · , pkn) that R sends to A are the ones generated by
the challenger and given to R in the mU-OW game.

– The set of corruption queries {y1, · · · , yq} made by R is the same as the set
of all corruption queries made by A.

Before showing the lower bound, we recall the definition of PRFs which will
be exploited in our proof.
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Definition 10 (Pseudorandom function (PRF)). F : {0, 1}κ(λ) ×
{0, 1}δ(λ) → {0, 1}ρ(λ), where κ = κ(λ), δ = δ(λ), and ρ = (λ) are polyno-
mials, is said to be a pseudorandom function, if for any PPT adversary A, we
have

AdvA
PR(λ) = |Pr[1 ← AOk(1λ) | k ← {0, 1}κ] − Pr[1 ← AO(1λ)]| ≤ negl(λ).

Here, Ok(i) returns F(k, i). O(i) returns r if there exists (i, r) in its internal list
(initiated with ∅). Otherwise, O(i) returns r ← {0, 1}ρ and adds (i, r) to its list.

The main theorem is as follows.

Theorem 4. Let λ be a (sufficiently large) security parameter, Φ =
(Gen,Check), where the internal randomness space of Gen is {0, 1}ρ, be a mU-OW
secure unique-key relation, F : {0, 1}κ × {0, 1}λ → {0, 1}ρ be a PRF, and R be
a cr-restricted black-box reduction from the mU-mOW security to the mU-OW
security of Φ. Let n = n(λ) be the maximum number of sampling queries and
q = q(λ) be the maximum numbers of corruption and verification queries made
by an adversary in the mU-mOW game, and U = {i}n

i=1. If (a) R rewinds the
adversary for at most p = p(λ) times and (b) cr > 1/2, then we have

LocalMem(R) = Ω(max{q/(p + 2), n/(p + 2)}) − O(log q) − O(log n) − κ

− max{LocalMem(Gen),LocalMem(Check),LocalMem(F)}.

Roughly, this theorem implies that when the maximum number of users and
that of corruption queries made by an adversary in the mU-mOW game are very
large, R must consume large memory unless it rewinds A many times, which
increases its running-time.

High-Level Idea of the Proof. We firstly construct an inefficient adversary Ay

where y = (y1, · · · , y2q). Ay takes as input and stores public keys pk1, · · · , pkn,
makes corruption queries y1, · · · , yq, checks the validity of the answers, and
then makes verification queries (pkyq+1 , sk

∗
1), · · · , (pky2q

, sk∗
q ) generated by using

brute force. When G(y) = 1, RAy is likely to succeed in the mU-OW game,
since R is a black-box reduction and Ay is a deterministic algorithm breaking
mU-mOW security. When G(y) = 0, we can construct a PT algorithm Sy , which
runs in the same way as Ay does except that Sy uses the answers of corruption
queries to make verification queries. Due to uniqueness, Sy perfectly simulates
Ay . Since the PPT algorithm RSy is likely to fail in the mU-OW game, RAy is
likely to fail as well.

Then, similarly to the proof of Theorem 3, we can construct an algorithm B
with access to a stream y that simulates the mU-OW game with RAy and outputs
G(y) with high probability. Therefore, we can show the lower bound on memory
consumed by R since the memory consumed by B is inherently large, due to
Theorem 2. However, one may notice that B uses a large amount of memory to
store pk1, · · · , pkn, which spoils our result since B using large memory does not
imply R using large memory any more. We deal with this problem by using a
PRF to simulate random coins used by the challenger and running the PRF to



Memory Lower Bounds of Reductions Revisited 77

output the corresponding random coin used to generate a public key when the
key is needed. In this way, B does not store the public keys anymore. Here, there
is a point that B can simulate Ay efficiently by using secret keys generated by
the challenger in the mU-OW game, so that the whole interaction B simulates
only runs in polynomial-time and cannot distinguish outputs of the PRF with
real random coins.

Proof (of Theorem 4). Assuming the existence of the reduction R stated in
Theorem 4, we show the existence of a probabilistic algorithm B such that
Pr[G(y) ← BOy (1λ)] ≥ c for all y = (y1, · · · , y2q) ∈ U2q and some constant
c > 1/2 by giving hybrid games.

Game 0: In this game, R has access to an adversary Ay and interacts with the
challenger CH in the mU-OW game. Ay runs as follows.

1. On receiving 1λ, Ay makes a sampling query sp.
2. For i = 1, · · · , n − 1, on receiving pki, Ay stores pki and makes a sampling

query sp.
3. On receiving pkn, Ay stores pkn and makes a corruption query y1.
4. For i = 1, · · · , q − 1, on receiving the answer sk′

i to the ith corruption query,
if Check(pkyi

, sk′
i) �= 1, Ay aborts. Otherwise, Ay makes a corruption query

yi+1.
5. On receiving the answer sk′

q to the qth corruption query, if Check(pkyq
, sk′

q) �=
1, Ay aborts. Otherwise, Ay exhaustively searches sk∗

1 such that
Verify(pkyq+1 , sk

∗
1) = 1, and makes a verification query (yq+1, sk

∗
1).

6. For i = 1, · · · , q − 1, when invoked (with no input) for the ith time, Ay

exhaustively searches sk∗
i+1 such that Check(pkyq+i+1 , sk

∗
i+1) = 1, and makes

a verification query (yq+i+1, sk
∗
i+1).

7. When invoked (with no input) for the qth time, Ay makes a stopping query
stp.

We now show the following lemma.

Lemma 4. Pr[G(y) ← (RAy (1λ) � CH(1λ))] ≥ cr for all y ∈ U2q in Game 0.

Proof (of Lemma 4). Firstly, we show the existence of a PT algorithm Sy per-
fectly simulating Ay on condition that G(y) = 0. Sy runs as follows. (Below,
the difference from Ay is emphasized.)

1. On receiving 1λ, Sy makes a sampling query sp.
2. For i = 1, · · · , n − 1, on receiving pki, Sy stores pki and makes a sampling

query sp.
3. On receiving pkn, Sy stores pkn and makes a corruption query y1.
4. For i = 1, · · · , q−1, on receiving the answer sk′

i to the ith corruption query, if
Check(pkyi

, sk′
i) �= 1, Sy aborts. Otherwise, Sy stores (yi, sk

′
i) in its internal

list �L (initialized with ∅), and makes a corruption query yi+1.
5. On receiving the answer sk′

q to the qth corruption query, if Check(pkyq
, sk′

q) �=
1, Sy aborts. Otherwise, Sy stores (yq, sk

′
q) in �L, searches a pair (i∗, sk) in �L

such that i∗ = yq+1, and makes a verification query (yq+1, sk). If the searching
procedure fails, Sy aborts.
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6. For i = 1, · · · , q − 1, when invoked (with no input) for the ith time, Sy

searches a pair (i∗, sk) in �L such that i∗ = yq+i+1, and makes a verification
query (yq+i+1, sk). If the searching procedure fails for some i, Sy aborts.

7. When invoked (with no input) for the qth time, Sy makes a stopping query
stp.

When G(y) = 0, we have {yq+i}q
i=1 ⊆ {yi}q

i=1, which means that the searching
procedures executed by Sy (in Steps 5 and 6) will not fail. Moreover, due to the
uniqueness of Φ, the verification queries made by Sy are exactly the same as
those made by Ay . Hence, Sy perfectly simulates Ay in the view of R.

Due to the mU-OW security of Φ, we have AdvRAy

mU-OW(λ) = AdvRSy

mU-OW(λ) ≤
negl(λ) when G(y) = 0, which implies Pr[1 ← (RAy (1λ) � CH(1λ)) | G(y) =
0] ≤ negl(λ), i.e., Pr[0 ← (RAy (1λ) � CH(1λ)) | G(y) = 0] ≥ 1 − negl(λ).
On the other hand, when G(y) = 1, there exists some 1 ≤ j ≤ q such that
yq+j /∈ {yi}q

i=1, which implies AdvAy

mU-mOW(λ) = 1. Since R is a cr-restricted
black-box reduction, we have Pr[1 ← (RAy (1λ) � CH(1λ)) | G(y) = 1] ≥ cr.
Since cr > 1/2 and λ is sufficiently large, we have Pr[G(y) ← (RAy (1λ) �
CH(1λ))] ≥ cr, completing the proof of Lemma 4. ��
Game 1: This game is exactly the same as Game 0 except that for each i, CH
generates the ith key pair by computing (pki, ski) ← Gen(1λ;F(k, i)) where k is
randomly chosen from {0, 1}κ at the beginning of the game.

Lemma 5. Pr[G(y) ← (RAy (1λ) � CH(1λ))] ≥ c for all y ∈ U2q and some
constant c > 1/2 in Game 1.

Proof (of Lemma 5). Let Pr[G(y) ← (RAy (1λ) � CH(1λ))] be cy0 (respec-
tively, cy1 ) in Game 0 (respectively, Game 1). For any y, we can construct
a PPT adversary D breaking the pseudorandom property of F with advantage
AdvD

PR(λ) = |cy0 − cy1 | as follows.
D has access to an oracle Ok parameterized by k ← {0, 1}κ or an oracle O

(see Definition 10 for the descriptions of Ok and O). D runs RAy (1λ) � CH(1λ)
in exactly the same way as in Game 0, except that Ay receives secret keys
generated by CH from D to make verification queries, instead of using brute
force to recover them. This is possible due to the restriction that all the public
keys R sends to A are generated by CH. Furthermore, when CH requires the ith
random coin, D makes a query to its oracle and sends the answer of the query
back. If CH outputs G(y), D outputs 1. Otherwise, D outputs 0.

When the oracle is O (respectively, Ok), the view of CH is exactly the same
as its view in Game 0 (respectively, Game 1) due to the unique key property.
Therefore, we have AdvD

PR(λ) = |cy0 − cy1 |. Due to the pseudorandom property
of F, we have |cy0 − cy1 | ≤ negl(λ). Since λ is sufficiently large, combining this
bound with Lemma 4 completes the proof of Lemma 5. ��
Game 2: This game is exactly the same as Game 1 except that there exists
an algorithm A′ with access to the stream oracle Oy simulating Ay as follows.
(Below, the difference from Ay is emphasized.)
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1. On receiving 1λ, A′ makes a sampling query sp.
2. For i = 1, · · · , n − 1, on receiving pki, A′ stores pki and makes a sampling

query sp.
3. On receiving pkn, A′ stores pkn, queries Oy to obtain y1, and makes a cor-

ruption query y1.
4. For i = 1, · · · , q − 1, on receiving the answer sk′

i to the ith corruption query,
if Check(pkyi

, sk′
i) �= 1, A′ aborts. Otherwise, A′ queries Oy to obtain yi+1,

and makes a corruption query yi+1.
5. On receiving the answer sk′

q to the qth corruption query, if Check(pkyq
, sk′

q) �=
1, A′ aborts. Otherwise, A′ queries Oy to obtain yq+1, exhaustively searches
sk∗

1 such that Check(pkyq+1 , sk
∗
1) = 1, and makes a verification query

(yq+1, sk
∗
1).

6. For i = 1, · · · , q − 1, when invoked (with no input), A′ queries Oy to obtain
yq+i+1, exhaustively searches sk∗

i+1 such that Check(pkyq+i+1 , sk
∗
i+1) = 1, and

makes a verification query (yq+i+1, sk
∗
i+1).

7. When invoked (without input) for the qth time, A′ makes a stopping query
stp.

Whenever R executes a rewinding procedure, A′ makes another pass on its
stream to obtain the index for the next corruption or verification query. Since
A′Oy perfectly simulates Ay , we have the following lemma.

Lemma 6. Pr[G(y) ← (RA′Oy (1λ) � CH(1λ))] ≥ c for all y ∈ U2q and some
constant c > 1/2 in Game 2.

Game 3: This game is the same as Game 2 except that there exists a stream
access algorithm A′′Oy that runs k ← {0, 1}κ, stores k, simulates CH, R, and
A′Oy , and generates the ith key pair by computing (pki, ski) ← Gen(1λ;F(k, i)).
When R makes a verification query (i, sk∗), CH makes another pass on the
stream y through A′′, and checks whether i ∈ {y1, · · · , yq} and Check(pki, sk

∗) =
1.5 If the check works, CH outputs 1. Otherwise, CH outputs 0. Then A′′ returns
the output of CH. Since the view of CH in this game is identical to its view in
Game 2, we have the following lemma.

Lemma 7. Pr[G(y) ← A′′Oy (1λ)] ≥ c for all y ∈ U2q and some constant
c > 1/2 in Game 3.

Game 4: In this game, there exists an algorithm BOy which runs in exactly
the same way as A′′Oy except that it does not store (pki)n

i=1 generated by
CH. Instead, whenever BOy needs to see pki, BOy computes (pki, ski) ←
Gen(1λ;F(k, i)). Since the view of CH in Game 4 is identical to its view in
Game 3, we have the following lemma.

Lemma 8. Pr[G(y) ← BOy (1λ)] ≥ c for all y ∈ U2q and some constant c > 1/2
in Game 4.
5 According to the second restriction in Definition 9, the corruption queries R has

made are {y1, · · · , yq}.
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Since B makes p + 2 passes on its stream in total, according to Theorem 2
and Lemma 8, we have

LocalMem(B) = Ω(min{q/(p + 2), n/(p + 2)}).

Furthermore, the memory used to simulate CH, A′′, and random
coins is O(log q) + O(log n) + max{LocalMem(Gen),LocalMem(Check),
LocalMem(F)} + κ, where O(log q) + O(log n) is the amount of memory used
to record q, n, and the index of the next query A′′ will make. Therefore we have

LocalMem(B) = O(LocalMem(R)) + O(log q) + O(log n) + κ

+ max{LocalMem(Gen),LocalMem(Check),LocalMem(F)}.

Combining the above two bounds completes Theorem 4. ��
Remark on Security Parameter. Similarly to the case of Theorem 3, Theo-
rem 4 holds only when the security parameter λ is sufficiently large, while one
may wonder why memory-tightness makes sense when λ is already required to
be large. In fact, λ only has to be large enough to ensure 1 − AdvRSy

mU-OW(λ) −
AdvD

PR(λ) > 1/2 and cr − AdvD
PR(λ) > 1/2 in the proofs of Lemmas 4 and 5.

When cr is large, these two inequations should hold even if λ is small (to some
extent) and RSy and D may consume large memory, due to mU-mOW security
and pseudorandomness. Therefore, λ is not necessarily very large unless cr is
very close to 1/2.

Lower Bound for Other Unique-Key and Re-randomizable Primitives.
It is not hard to see that the above result can be easily extended to lower bound
results for (one-way secure) PKE schemes, signatures, and many other primitives
in the multi-user setting, in which key pairs satisfy unique-key relations. Since
unique-key primitives capture many existing natural constructions [5,7,8,12,
14,17,18,22,23], a very wide class of memory lower bounds in the multi-user
setting can be directly derived from our result stated in Theorem 4. For ease of
understanding, we take unique-key PKE schemes and unique-key signatures as
examples in Appendix A. Concretely, we give the definitions of unique-key PKE
schemes and unique-key signatures and their security notions in the multi-user
setting. Then we give two corollaries showing that in this setting, reductions
from multi-challenge security to single-challenge security for these two types of
primitives must consume large memory unless they increase running-time.

Similarly to the case of unique signatures, this result can also be extended
for primitives with key re-randomization [4] if reductions do not control random
tapes of adversaries.6

5 Lower Bound of Restricted Reductions from mCRt

to CRt for Large-Domain Hash Functions

In [1], Auerbach et al. showed a memory lower bound of restricted reductions
from mCRt security to CRt security for an artificial function which just truncates
6 Similarly to the definition of unique-key relations, we do not require re-randomization

for public keys outside the support of the key generation algorithm.
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last λ bits of its input, while such a function does not satisfy CRt security itself.
In this section, we extend this result to a lower bound for all the large-domain
hash functions satisfying CRt security (where t is a constant). To achieve the
goal, we prove a streaming lower bound with respect to hash functions.

5.1 Hash Functions

In this section, we define large-domain hash functions, recall mCRt security and
CRt security, and show a theorem for large-domain hash functions.

Definition 11 (Large-domain hash function). A hash function H : {0, 1}κ×
{0, 1}δ → {0, 1}ρ, where κ = κ(λ), δ = δ(λ), and ρ = ρ(λ) are polynomials, is
said to have a large domain if 2ρ−δ ≤ negl(λ).

Definition 12 (mCRt [1]). A hash function H : {0, 1}κ × {0, 1}δ → {0, 1}ρ

is said to satisfy mCRt security (where t is some constant independent of the
security parameter λ), if for any PPT adversary A, we have AdvA

mCRt
(λ) =

Pr[CH outputs 1] ≤ negl(λ) in the following game.

1. The challenger CH sets Q = ∅, randomly chooses k ← {0, 1}κ, and runs A
on input (1λ, k). A may make adaptive input queries to CH. Every time on
receiving a query m ∈ {0, 1}δ from A, CH adds m to Q.

2. At some point, A makes a stopping query stp to CH. If there exists {m∗
i }t

i=1 ⊆
Q such that Hk(m∗

1) = · · · = Hk(m∗
t ) and |{m∗

i }t
i=1| = t, CH outputs 1.

Otherwise, CH outputs 0.

Definition 13 (CRt [1]). CRt security is defined in exactly the same way as that
of mCRt security, except that A is allowed to make at most t input queries and
the advantage of A is denoted by AdvA

CRt
(λ).

Next we give a theorem that will be used to prove a streaming lower bound
later. This theorem shows that for a large-domain hash function satisfying CRt

security, there exist “many” hash values with more than t pre-images. Intuitively,
if this theorem does not hold, then there will be some hash value with many pre-
images, so that t randomly chosen inputs are likely to fall into the class of these
pre-images, which breaks its CRt security.

Theorem 5. Let λ be a (sufficiently large) security parameter, H : {0, 1}κ ×
{0, 1}δ → {0, 1}ρ be a large-domain hash function satisfying CRt security, and
n = n(λ) be any polynomial in λ. For k ← {0, 1}κ, the probability that there
exist more than n elements in {0, 1}ρ with more than t pre-images (with respect
to Hk) is 1 − negl(λ).

Proof (of Theorem 5). Let n′ ≤ n and E be the event that the number of
elements in {0, 1}ρ that have more than t pre-images is exactly n′. To prove
Theorem 5, we just need to prove Pr[E] ≤ negl(λ).

Let k ← {0, 1}κ, m ← {0, 1}δ, and E0 be the event that the number of pre-
images of Hk(m) is more than t. Since the number of elements in {0, 1}δ, the
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hash values of which respectively have less than t pre-image, is at most 2ρ, we
have Pr[E0 | E] ≤ t · 2ρ/2δ, i.e., Pr[E0 | E] ≥ 1 − t · 2ρ/2δ. Let Ei be the event
that Hk(m) is the ith lexicographically smallest value in {0, 1}ρ with more than
t pre-images. Since Pr[E1 ∨ · · · ∨ En′ | E] = Pr[E0 | E], there must exist some
i∗ ∈ {1, · · · , n′} such that

Pr[Ei∗ | E] ≥ 1/n′ · Pr[E0 | E] ≥ (1/n) · (1 − t · 2ρ/2δ).

Now we construct a PPT adversary A in the CRt game of H. On receiving
k ← {0, 1}κ, A randomly chooses m1, · · · ,mt ← {0, 1}δ, and uses them as input
queries. Let E′ be the event that there exist some i, j ∈ {1, · · · , t} such that
mi = mj . We have Pr[E′] ≤ 1−(1−(t−1)/2δ)t ≤ O(t2/2δ). Therefore, we have

AdvA
CRt

(λ) = Pr[E′ ∧ Hk(m1) = · · · = Hk(mt)]
= Pr[Hk(m1) = · · · = Hk(mt)] − Pr[E′ ∧ Hk(m1) = · · · = Hk(mt)]
≥ Pr[Hk(m1) = · · · = Hk(mt) ∧ E] − Pr[E′]
= Pr[Hk(m1) = · · · = Hk(mt) | E] · Pr[E] − Pr[E′]

≥ Pr[Ei∗ |E]t · Pr[E] − O(t2/2δ)

≥(1/n · (1 − t · 2ρ/2δ))t · Pr[E] − O(t2/2δ).

As a result, the probability that A breaks CRt security is larger than (1/n ·(1−t ·
2ρ/2δ))t ·Pr(E)−O(t2/2δ), where t is some constant. Since (1/n·(1−t·2ρ/2δ))t ≥
1/nt − negl(λ) and O(t2/2δ) ≤ negl(λ), we have Pr[E] ≤ negl(λ), completing
the proof of Theorem 5. ��

5.2 Streaming Lower Bound for Hash Functions

In this section, we give a theorem, which is another corollary of prior works [16,
21] based on the disjointness problem. It is also a variant of a streaming lower
bound shown in [1]. It shows the existence of a memory lower bound for determin-
ing whether there exists a t-collision, with respect to a CRt secure large-domain
hash function, in a data stream. Before giving the main theorem, we define the
function FH,t(y) as follows.

Let y ∈ ({0, 1}δ)q, FH(y) be defined as FH(y) = maxs∈{0,1}ρ |{yi : H(yi) =
s}|, and FH,t(y) be defined as

FH,t(y) =
{

1 if FH(y) ≥ t
0 otherwise .

Theorem 6. Let B be a probabilistic algorithm, λ be a (sufficiently large) secu-
rity parameter, and H : {0, 1}κ × {0, 1}δ → {0, 1}ρ be a large-domain hash func-
tion satisfying CRt security. Assuming that there exists some constant c > 1/2
such that Pr[BOy (1λ, k) = FHk,t(y) | k ← {0, 1}κ] ≥ c holds for polynomial
q = q(λ) and all y ∈ ({0, 1}δ)q. Then LocalMem(B) = Ω((q − κ)/p), where p
is the number of passes B makes in the worst case.
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Proof (of Theorem 6). Let n = �q/t�. We now construct a two-party protocol
(P1, P2) by using B as follows. Taking as input x1 ∈ {0, 1}n, P1 samples k ←
{0, 1}κ and sends k to P2. If there do not exist n elements in {0, 1}ρ with more
than t pre-images for the hash function Hk(·), P1 aborts. Let hi be the ith
lexicographically smallest element in {0, 1}ρ with more than t pre-images, mij

be the jth smallest pre-image of hi, and m be an element in {0, 1}δ such that
Hk(m) /∈ {hi}n

i=1. For i = 1, · · · , n, if the ith bit of x1 is 1, P1 adds (mij)
�t/2�
j=1

to y1. Taking as input x2 ∈ {0, 1}n, for i = 1, · · · , n, if the ith bit of x2 is 1, P2

adds (mij)t
j=�t/2	 to y2. Then P1 and P2 respectively pad y1 and y2 with m so

that y = y1||y2 consists of q elements in total.
Then (P1, P2) starts to run B(1λ, k) in multiple rounds until B stops and

returns b ∈ {0, 1}. More specifically, in each round, P1 runs B(1λ, k), answers
queries from B to the stream y1, and sends the local memory state of B denoted
by s to P2 after all the elements in y1 having been queried by B. P2 runs B(1λ, k)
starting from state s, answers queries from B to the stream y2, and then sends
the local memory state of B back to P1 after all the elements in y2 having been
queried. The final output of (P1, P2) is B’s output b.

Since the probability that there exist more than n elements with more than
t pre-images is 1 − negl(λ), we have Pr[DISJ(x1,x2) = FHk,t(y) | k ← {0, 1}κ] ≥
1 − negl(λ) and Pr[BOy (1λ, k) = FHk,t(y) | k ← {0, 1}κ] ≥ c. As a result, we
have Pr[BOy (1λ, k) = DISJ(x1,x2) | k ← {0, 1}κ] ≥ c − negl(λ), which implies
Pr[P1(x1) ↔ P2(x2) = DISJ(x1,x2)] ≥ c − negl(λ). Since c > 1/2, there must
exist some constant c′ > 1/2 such that c−negl(λ) > c′ for a sufficiently large λ.
Therefore, (P1, P2) solves the disjointness problem.

Since P1 and P2 have communication κ + O(p · LocalMem(B)), and
Theorem 1 implies that the communication must be Ω(n) = Ω(�q/t�) = Ω(q)
(in the worst case), we have LocalMem(B) = Ω((q − κ)/p), completing the
proof. ��

5.3 Lower Bound for Large-Domain Hash Functions

In this section, we recall the definition of restricted reductions from mCRt secu-
rity to CRt security and show a memory lower bound of these reductions.

Restricted Black-Box Reductions from mCRt to CRt. Let R be a black-box
reduction from mCRt security to CRt security. As before, we write RA to mean
that R has oracle access to a (stateful) adversary A playing the mCRt game.
Whenever receiving a query from R, A returns the “next” query to R. R is not
able to modify the current state of A (i.e., A runs sequentially), but is allowed
to adaptively rewind A to previous states.

Definition 14 (c-restricted black-box reduction from mCRt to CRt [1]).
Let c > 0 be a constant. An oracle-access PPT machine R(·) is said to be
a c-restricted black-box reduction from the mCRt security to the CRt secu-
rity of a hash function, if for any (possibly inefficient) adversary A, we have
AdvRA

CRt
(λ) ≥ c · AdvA

mCRt
(λ), and R respects the following restrictions.
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– The key k that R sends to A is the one generated by the challenger and given
to R in the CRt game.

– The queries made by R are amongst the queries made by A.

Theorem 7. Let λ be a (sufficiently large) security parameter, H : {0, 1}κ ×
{0, 1}δ → {0, 1}ρ be a large-domain hash function satisfying CRt security, and
R be a cr-restricted black-box reduction from the mCRt security to the CRt secu-
rity of H. Let q = q(λ) be the maximum numbers of input queries made by an
adversary in the mCRt game. If (a) R rewinds the adversary for at most p = p(λ)
times and (b) cr > 1/2, then we have

LocalMem(R) = Ω(min{(q − κ)/(p + 1)}) − O(log q) − LocalMem(H).

Similarly to before, this theorem implies that when the maximum number of
input queries made by an adversary in the mCRt game is very large, R must
consume large memory unless it rewinds A many times, which increases its
running-time.

Proof (of Theorem 7). Assuming the existence of the reduction R stated in
Theorem 7, we show the existence of a probabilistic algorithm B such that
Pr[BOy (1λ, k) = FHk,t(y) | k ← {0, 1}κ] ≥ cr > 1/2 for all y = (y1, · · · , yq) ∈
({0, 1}δ)q.

Game 0: In this game, R has access to an adversary Ay , and interacts with the
challenger CH in the mCRt game. Ay runs as follows.

– On receiving (1λ, k), Ay makes an input query y1.
– For i = 1, · · · , q − 1, when invoked (with empty input) for the ith time, Ay

makes an input query yi+1.
– When invoked (with empty input) for the qth time, Ay makes a stopping

query stp.

We now show the following lemma.

Lemma 9. Pr[FHk,t(y) ← (RAy (1λ) � CH(1λ))] ≥ cr for all y =
(y1, · · · , yq) ∈ ({0, 1}δ)q in Game 0.

Proof (of Lemma 9). If FHk,t(y) = 0, then CH will output 0. This is due to the
restriction that all the input queries made by R are amongst the elements in y.
On the other hand, one can see that AdvAy

mCRt
(λ) = 1 when FHk,t(y) = 1. Since R

is a cr-restricted black-box reduction, we have AdvRAy

CRt
(λ) ≥ cr ·AdvAy

mCRt
(λ) =

cr, i.e., Pr[FHk,t(y) ← (RAy (1λ) � CH(1λ))] ≥ cr, completing the proof of
Lemma 9. ��
Game 1: This game is exactly the same as Game 0 except that there exists an
algorithm B with access to the stream y that simulates Ay , CH, and R. Here,
B takes as input k ← {0, 1}κ from an external party and uses it as the hash key
generated by CH. Moreover, B does not store y in its local memory but queries
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Oy to obtain the ith input query yi for i = 1, · · · , q. Whenever R executes a
rewinding procedure, BOy makes another pass on its stream so that it can access
its next input query to R. Since BOy perfectly simulates Ay , we immediately
obtain the following lemma.

Lemma 10. Pr[FHk,t(y) ← BOy (1λ, k)] ≥ cr for all y ∈ ({0, 1}δ)q in Game 1.

Since cr > 1/2 and B makes p + 1 passes on its stream in total, according to
Theorem 6 and Lemma 10, we have

LocalMem(B) = Ω(min{(q − κ)/(p + 1)}).

Furthermore, the memory used to simulate CH and Ay is O(log q) +
LocalMem(H), where O(log q) is the amount of memory used to record q and
the index of the next input query Ay will make. Therefore, we have

LocalMem(B) = LocalMem(R) + O(log q) + LocalMem(H).

Combining the two bounds completes Theorem 7. ��
Remark on Security Parameter. Similarly to the case of Theorems 3 and 4,
Theorem 7 holds only when the security parameter λ is sufficiently large, while
one may wonder why memory-tightness makes sense when λ is already required
to be large. Notice that λ is required to be large only when c (in Theorem 6)
is very close to 1/2. However, it is not hard to see that when cr (which is the
parameter of the reduction in Theorem 7) is not close to 1/2, c (in Theorem 6)
is not necessarily close to 1/2. Hence, λ is not necessarily very large, unless cr

(in Theorem 7) is very close to 1/2.

6 Open Problem

The lower bound results shown in Sect. 4 and Sect. 5 only treat reductions which
respect restrictions on their queries. It is desirable to clarify whether memory
lower bounds of natural black-box reductions exist with respect to those security
games. Showing some novel streaming lower bounds based on other problems
about parity learning might be a promising way. It is also desirable to know
whether there exist memory lower bounds of reductions for the multi-challenge
security of other class of cryptographic primitives, and whether it is possible to
unify these bounds. Finally, it would be interesting to find memory lower bounds
in the random oracle model.
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A Lower Bounds for Unique-Key PKE and Signature
Schemes in the Multi-user Setting

In this section, we give the security notions of unique-key signatures and encryp-
tion schemes in the multi-user setting. Then we show two memory lower bounds
of restricted reductions, which are extensions of the result in Sect. 4.

A.1 Unique-Key PKE Schemes and Signatures

A cryptographic primitive (which can be PKE scheme, signature scheme, trap-
door commitment scheme (with collision resistance), etc.) with key generation
algorithm Gen is called a unique-key primitive if there exists some algorithm
Check such that (Gen,Check) forms a unique-key relation (see Definition 7). We
now recall the definition of PKE schemes and define unique-key signatures and
unique-key PKE schemes as follows.

Definition 15 (Public key encryption (PKE)). A PKE scheme consists of
the PT algorithms (Gen,Enc,Dec). (a) Gen is a probabilistic algorithm that takes
as input 1λ, and returns a public/secret key pair (pk, sk). (b) Enc is a probabilistic
algorithm that takes as input a public key pk and a message m ∈ {0, 1}δ, and
returns a ciphertext ct. (c) Dec is a deterministic algorithm that takes as input
a secret key sk and a ciphertext ct, and returns a message m ∈ {0, 1}δ or ⊥.

A PKE scheme is required to satisfy correctness, which means that Decsk(ct)
= m holds for all λ ∈ N, all (pk, sk) ← Gen(1λ), all m ∈ {0, 1}δ, and all
ct ← Encpk(m).

Definition 16 (Unique-key signature and PKE). A signature (respectively,
PKE) scheme (Gen,Sign,Verify) (respectively, (Gen,Enc,Dec)) is said to have the
unique-key property if there exists a deterministic PT algorithm Check such that
(Gen,Check) is a unique-key relation.

Now we define the security notions for unique-key signatures and PKE
schemes. We denote mUF security and UF security in the multi-user setting by
mU-mUF and mU-UF respectively. Moreover, we overload the notions mU-mOW
and mU-OW (defined for unique-key relations) so that they apply to PKE
schemes.

Definition 17 (mU-mUF). A unique-key signature scheme (Gen,Check,Sign,
Verify) is said to be mU-mUF secure if for any PPT adversary A, we have
AdvA

mU-mUF(λ) = Pr[CH outputs 1] ≤ negl(λ) in the following game.

1. The challenger CH sets w = 0, Q = ∅, and Qs = ∅, and runs A on input 1λ.
Then A may make sampling queries to CH, and CH responds as follows.
– On receiving the ith sampling query sp, CH samples (pki, ski) ← Gen(1λ)

and sends pki to A.
Then A may make adaptive corruption, signing, and verification queries to
CH, and CH responds as follows:
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– On receiving a corruption query i, CH adds i to Q, and sends ski to A.
– On receiving a signing query (i,m), CH computes σ ← Signski

(m), adds
(i,m) to Qs, and sends σ to A.

– On receiving a verification query (i∗,m∗, σ∗), if Verifypki∗ (m∗, σ∗) = 1,
i∗ /∈ Q, and (i∗,m∗) /∈ Qs, CH sets w = 1.

2. At some point, A makes a stopping query stp to CH, and CH returns w.

Definition 18 (mU-mOW (for PKE)). A unique-key PKE scheme (Gen,
Check,Enc,Dec) is said to be mU-mOW secure if for any PPT adversary A,
we have AdvA

mU-mOW(λ) = Pr[CH outputs 1] ≤ negl(λ) in the following game.

1. The challenger CH sets w = 0, Q = ∅, and Qm = ∅, and runs A on input
1λ. Then A may make sampling queries to CH, and CH responds as follows.
– On receiving the ith sampling query sp, CH samples (pki, ski) ← Gen(1λ)

and sends pki to A.
2. A may make adaptive corruption and challenge queries to CH, and CH

responds as follows:
– On receiving a corruption query i, CH adds i to Q, and sends ski to A.
– On receiving a challenge query i, CH searches (i,m) ∈ Qm. If the search-

ing procedure fails, CH runs m ← {0, 1}δ and adds (i,m) to Qm. Then it
returns ct ← Encpki

(m) to A.
– On receiving a verification query (i∗,m′) from A. If i∗ /∈ Q and (i∗,m′) ∈

Qm, CH sets w = 1.
3. At some point, A makes a stopping query stp to CH, and CH returns w.

Definition 19 (mU-UF and mU-OW (for PKE)). mU-UF security (respec-
tively, mU-OW security for PKE) is defined in exactly the same way as mU-mUF
security (respectively, mU-mOW security for PKE) except that A is allowed
to make only one verification query and the advantage of A is denoted by
AdvA

mU-UF(λ) (respectively, AdvA
mU-OW(λ)).

A.2 Lower Bounds for Unique-Key PKE Schemes and Signatures

We now show two memory lower bounds for restricted reductions respectively
from mU-mUF security to mU-UF security and mU-mOW security to mU-OW
security. The definition of the latter type of restricted reductions is exactly the
same as Definition 9. The definition of the former type is also the same as
Definition 9 except that the following restriction is additionally required.

– The set of signing queries made by R is the same as the set of all signing
queries made by A.7

7 This restriction is made due to the fact that if the signing queries are chosen by
R, then the challenger may consume large memory to store them, which spoils our
result. When considering random message attacks, this restriction can be removed.
Also, this restriction is not made for other primitives such as PKE schemes, trapdoor
commitment, and chameleon hash function schemes (with collision resistance).
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These two by-product results can be treated as two examples of memory lower
bounds derived from our lower bound result for unique-key relations stated in
Theorem 4.

Corollary 1. Let λ be a (sufficiently large) security parameter, Σ =
(Gen,Check,Sign,Verify), where the internal randomness space of Gen is {0, 1}ρ,
be a mU-UF secure unique-key signature scheme, F : {0, 1}κ × {0, 1}λ → {0, 1}ρ

be a PRF, and R be a cr-restricted black-box reduction from the mU-mUF security
to the mU-UF security of Σ. Let n = n(λ) be the maximum number of sampling
queries and q = q(λ) be the maximum numbers of corruption and verification
queries made by an adversary in the mU-mUF game, and U = {i}n

i=1. If (a) R
rewinds the adversary for at most p = p(λ) times and (b) cr > 1/2, then we
have

LocalMem(R) = Ω(max{q/(p + 2), n/(p + 2)}) − O(log q) − O(log n) − κ

−max{LocalMem(Gen),LocalMem(Check),
LocalMem(Sign),LocalMem(Verify),LocalMem(F)}.

Corollary 2. Let λ be a (sufficiently large) security parameter, Π =
(Gen,Check,Enc,Dec) with message space M, where the internal randomness
space of Gen is {0, 1}ρ, be a mU-OW secure unique-key PKE scheme, F :
{0, 1}κ × {0, 1}λ → {0, 1}ρ and F′ : {0, 1}κ × {0, 1}λ → M be PRFs, and R
be a cr-restricted black-box reduction from the mU-mOW security to the mU-OW
security of Π. Let n = n(λ) be the maximum number of sampling queries and
q = q(λ) be the maximum numbers of corruption, challenge, and verification
queries made by an adversary in the mU-mOW game, and U = {i}n

i=1. If (a)
R rewinds the adversary for at most p = p(λ) times and (b) cr > 1/2, then we
have

LocalMem(R) = Ω(max{q/(p + 2), n/(p + 2)}) − O(log q) − O(log n) − 2κ

−max{LocalMem(Gen),LocalMem(Check),LocalMem(Enc),
LocalMem(Dec),LocalMem(F),LocalMem(F′)}.

We omit the proofs of the above two corollaries since they are very similar to
the proof of Theorem 4. The main difference is that instead of directly giving
secret keys to R as verification queries, the adversary playing the mU-mUF or
mU-mOW game uses the secret keys to forge signatures or decrypt challenge
ciphertexts. Moreover, the mU-OW challenger uses F′ to simulate the random
messages chosen for challenge queries so that it does not have to consume large
memory to store the list Qm.



Memory Lower Bounds of Reductions Revisited 89

References

1. Auerbach, B., Cash, D., Fersch, M., Kiltz, E.: Memory-tight reductions. In: Katz,
J., Shacham, H. (eds.) CRYPTO 2017, Part I. LNCS, vol. 10401, pp. 101–132.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7 4

2. Bader, C.: Efficient signatures with tight real world security in the random-oracle
model. In: Gritzalis, D., Kiayias, A., Askoxylakis, I. (eds.) CANS 2014. LNCS,
vol. 8813, pp. 370–383. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
12280-9 24

3. Bader, C., Hofheinz, D., Jager, T., Kiltz, E., Li, Y.: Tightly-secure authenticated
key exchange. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part I. LNCS, vol.
9014, pp. 629–658. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-46494-6 26
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Abstract. A hash function family is called correlation intractable if for
all sparse relations, it is hard to find, given a random function from the
family, an input-output pair that satisfies the relation (Canetti et al.,
STOC 1998). Correlation intractability (CI) captures a strong Random-
Oracle-like property of hash functions. In particular, when security holds
for all sparse relations, CI suffices for guaranteeing the soundness of
the Fiat-Shamir transformation from any constant round, statistically
sound interactive proof to a non-interactive argument. However, to date,
the only CI hash function for all sparse relations (Kalai et al., Crypto
2017) is based on general program obfuscation with exponential hardness
properties.

We construct a simple CI hash function for arbitrary sparse rela-
tions, from any symmetric encryption scheme that satisfies some natu-
ral structural properties, and in addition guarantees that key recovery
attacks mounted by polynomial-time adversaries have only exponentially
small success probability - even in the context of key-dependent messages
(KDM). We then provide parameter settings where ElGamal encryption
and Regev encryption plausibly satisfy the needed properties. Our tech-
niques are based on those of Kalai et al., with the main contribution
being substituting a statistical argument for the use of obfuscation, there-
fore greatly simplifying the construction and basing security on better-
understood intractability assumptions.

In addition, we extend the definition of correlation intractability
to handle moderately sparse relations so as to capture the properties
required in proof-of-work applications (e.g. Bitcoin). We also discuss the
applicability of our constructions and analyses in that regime.
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1 Introduction

The random oracle methodology [12,39] models cryptographic hash functions as
completely random functions. The model yields simple constructions of crypto-
graphic primitives both in theory and practice, but is known to be inherently
unsound in principle [26,32,44,51,68]. A natural alternative is to formalize con-
crete “random-oracle-like” properties of hash functions, and then (a) construct
hash functions that provably demonstrate these properties based on established
hardness assumptions, and (b) show how security of applications follow from
these properties. Indeed, a number of such notions have been proposed and used
in the literature, with multiple applications e.g. [10,11,18,23,26,29,47,52,57].

Correlation intractability. We focus on one of such notion called correlation
intractability, defined by Canetti et al. [26]. Correlation intractability attempts
to capture the following property of random functions. Consider a random func-
tion O from {0, 1}n to {0, 1}m, along with some fixed binary relation R : {0, 1}n ×
{0, 1}m → {0, 1} such that for any x ∈ {0, 1}n, the fraction of y ∈ {0, 1}m such
that R(x, y) holds is at most μ. Then, the best possible way to find x such that
R(x,O(x)) holds is to randomly try different x’s. The probability of success after t
attempts is at most tμ. A function family is correlation intractable (CI) if it behaves
similarly against polytime algorithms. Specifically, a function family H is correla-
tion intractable if, for any relation R with negligible density μ, no polytime adver-
sary can, given the description of a functionh : {0, 1}n → {0, 1}m chosen randomly
from H, find x such that R(x, h(x)) holds, except with negligible probability. Note
that there are no secrets here: The adversary sees the entire description of h, which
succinctly encodes the values h(x) for all possible values of x.

Correlation intractability captures a large class of natural properties of ran-
dom functions. For example, the infeasibility of finding preimages of any fixed
value c in the range can be formalized as correlation intractability w.r.t. any
constant relations Rc = {(x, c) | ∀x in the domain}. The “fixed output value”
in the example can be extended to “a sufficiently long fixed prefix”, e.g. suf-
ficiently many leading 0s. Indeed, correlation intractability (in its quantitative
form) is the natural formalization of the requirements expected from the hash
function used for mining chaining values in the Bitcoin protocol [66] and other
applications relied on proof-of-work [35]. We further discuss these application
later on.

Another natural and prominent application of correlation intractable hash
functions is their use for sound realization of the Fiat-Shamir (FS) heuristic
[39]. Recall that, originally, the idea of Fiat and Shamir was to transform a
three-message, public coin identification scheme to a signature scheme by having
the signer first generate the first prover message α of the identification scheme
(incorporating the message-to-be-signed in the identity), then computing the
verifier message as β = h(α) for some public hash function h, and then having
the signature consist of (α, γ), where γ is the corresponding third message of the
identification scheme. Verification first reconstructs β = h(α) and then verifies
the identification. It can be seen that if h is modeled as a random function, then
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the resulting signature scheme is unforgeable [1]. In fact, the same transform
can be used to build a non-interactive argument from any public-coin interactive
proof (even multi-round ones), as long as the initial proof is resettably sound (see
e.g. [13]).1 Furthermore, if the original proof is honest-verifier zero-knowledge,
then the resulting non-interactive protocol (in the random oracle model) is a
non-interactive zero-knowledge argument [12,39].

It has been demonstrated that CI families that withstand arbitrary binary
relations suffice for realizing the Fiat-Shamir heuristic in the case of constant-
round proofs. That is, if the initial interactive proof is constant-round and is sta-
tistically sound, then computational soundness of the resulting non-interactive
protocol holds even when the random oracle is replaced by a CI hash function
family that withstands arbitrary binary relations (the only difference from the
original Fiat-Shamir heuristic is that now the resulting protocol has an initial ver-
ifier message that determines the actual function h in the CI family.) Indeed, CI
families that withstand arbitrary binary relations are entropy preserving [24], and
entropy preserving families suffice for the soundness of the Fiat-Shamir heuristic
for constant-round proofs [10]. A direct proof is also implicit in [59, Sect. 4]. (We
note that soundness for the case of three-message proofs was observed already
in [36,49].)

Constructing correlation intractable hash functions. Canetti et al. [26] show that
there do not exist CI function families where the key is shorter than the input,
but leave open the possibility of CI functions with longer keys. Still no construc-
tion of CI functions, even for restricted cases, was known until very recently.
Furthermore, over the years evidence accumulated that coming up with CI func-
tions, and in particular a sound instantiation of the FS paradigm, would not
be easy. Goldwasser and Kalai [44] construct a public coin interactive argument
(i.e. a protocol that is only computationally sound) that becomes unsound if it
is turned into an non-interactive argument by applying the Fiat-Shamir trans-
formation with any function. Bitansky et al. show that it is impossible to prove
soundness of the FS paradigm using a black-box reduction to falsifiable assump-
tions [14].

Recently, two papers independently suggested using an obfuscated punc-
turable pseudorandom function family as a CI family. Canetti et al. [24] show
that this construction is CI for relations that are computable by circuits of a
priori bounded polynomial size, assuming sub-exponentially secure puncturable
pseudorandom functions and indistinguishability obfuscation, and in addition,
input hiding obfuscation for evasive functions. Kalai et al. [59] show that the
same construction is CI for arbitrary relations, assuming sub-exponentially
secure puncturable pseudorandom functions and indistinguishability obfusca-
tion, plus exponentially secure point obfuscation. In particular, the latter result
implies that this function family suffices for sound realization of the Fiat-Shamir
heuristic (when applied to constant-round interactive proofs).

1 In particular, every constant-round interactive proof with negligible soundness, is
resettably sound.
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1.1 Our Results

We provide new constructions of CI function families for arbitrary binary rela-
tions. Compared to [24,59], our constructions are dramatically more efficient,
and are based on better-understood assumptions. Furthermore, while sampling
a hash function from the family of obfuscated puncturable PRFs involves secret
randomness, we present candidates where the sampling can be done with only
public randomness.

The main tool (or, abstraction) we use is symmetric encryption with the
following two properties: First, the scheme should guarantee that polynomial
time key-recovery attacks have only exponentially small success probability even
after seeing encryptions of key-dependent messages (KDM). That is, for any
super-polynomial function s, for an arbitrary key-dependency function f (not
necessarily computable in polynomial time), any polynomial time adversary that
obtains c = Enc(k, f(k)) outputs k with probability no more than s(λ)

2λ , where λ
is the key length.

The second property, which we refer to as universal ciphertexts, is statisti-
cal. Loosely speaking, it requires that any ciphertext is “decryptable” under any
key. More precisely, the requirement is that (a) for every key, random ciphertexts
decrypt to random messages; (b) for every key k and message m, the encryption
algorithm generates ciphertexts that are uniformly sampled from the space of
ciphertexts that are decrypted to m with key k. (The actual definition includes
also public parameters, which are omitted here for simplicity.) Given an encryp-
tion scheme that satisfies the above requirements, we obtain the following result:

Theorem 1 (Informally stated). Assuming the existence of encryption
schemes that have universal ciphertexts and that are exponentially KDM-secure
against polytime key-recovery attacks, there exist:

– Correlation intractable hash functions for arbitrary binary sparse relations.
– Hash functions that guarantee soundness of the Fiat-Shamir transformation,

when applied to interactive proof-systems.
– Non-interactive, publicly verifiable arguments for all languages computable in

polynomial-time and bounded polynomial space (in particular, the class SC).

The last bullet follows by applying the Fiat-Shamir transformation to the recent
public-coin, constant-round interactive proof-system of Reingold et al. [74].

Our second main contribution is in providing concrete instantiations of Theo-
rem 1. Specifically, we show that variants of El-Gamal encryption [37] and Regev
encryption [72] satisfy the universal ciphertext property and plausibly satisfy the
foregoing exponential security against KDM key recovery.

Non-interactive zero-knowledge. As an additional result, we show that if the Fiat-
Shamir transformation is applied to a three-round honest-verifier zero-knowledge
proof, and the CI function family in use is programmable, then the resulting pro-
tocol is a Non-Interactive Zero-Knowledge (NIZK) argument, with the descrip-
tion of the hash function serving as a common reference string. (Here pro-
grammability means that, given random values a, b from the family’s domain
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and range, respectively, it is possible to efficiently sample a random function
h from the family such that h(a) = b.) We also observe that the CI functions
we construct are programmable. Furthermore, if the initial three-round protocol
is delayed-input (as in, e.g., [38]), then the resulting NIZK argument is both
adaptive ZK and adaptively sound. We thus have:

Theorem 2 (Informally stated). Assuming the existence of encryption
schemes that have universal ciphertexts and that are exponentially KDM-secure
against polytime key-recovery attacks, there exist NIZK arguments for all of NP.
Furthermore, these NIZKs have adaptive soundness and zero-knowledge.

We note that, prior to this work, NIZK arguments for NP were not known
based on any variant of the Diffie-Hellman assumption in groups that do not
admit bilinear pairings, nor any variant of the LWE assumption—even exponen-
tially strong ones. Also, for the NIZK application we only need the CI family
to withstand relations that are exponentially sparse, which somewhat relaxes
the assumption. For example, if the soundness of the interactive proof system is
2−λε

, then we can tolerate encryption schemes where the success probability of
polytime key-recovery attack is superpoly(λ)

2λ−λε .

Quantitative correlation intractability and its connection to the Bitcoin protocol.
A central component in the Bitcoin protocol [66] is a probabilistic mechanism
for guaranteeing that the amount of influence participants have on the process
of producing the public ledger is proportional to their computing power. The
idea here is that since each individual entity has only a fraction of the overall
computing power, the influence of each entity is limited. Indeed, the core validity
of the currency (i.e., the mechanism for preventing double spending) hinges upon
that guarantee.

The Bitcoin mechanism for limiting influence was sketched earlier in the
introduction: In order to incorporate a block of new transactions in the public
registry, the individual (“miner”) is asked to present a value x such that the pair
(x, h(x)) satisfies some known relation Rw, where h is a hash function defined
by the protocol, and w is determined by the current state of the system, the
new block, and the miner’s identity. Rw is set so that it is “moderately sparse”.
That is, for any x,w the fraction of values y such that Rw(x, y) holds is small,
but not too small.

Clearly, if h were a random function then this mechanism would work well:
Given w, the best way to find x such that Rw(x, h(x)) holds is to keep guessing
random x’s until one is found. This means that the probability of success is
proportional to the number of guesses, which is correlated to the computational
power of the miner. However, when h is an explicit function with a succinct
description, it is not clear how to provide rigorous guarantees regarding the
amount of time needed to find a “wining x” given w. Indeed, “shortcut attacks”
on the Bitcoin mechanism have been reported, e.g. [53].

We argue that correlation intractability, or more precisely a quantitative
variant of the notion, captures the properties needed from the underlying hash
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function so as to guarantee the soundness of the Bitcoin mechanism for limiting
influence. Specifically, say that a binary relation R : {0, 1}n ×{0, 1}m → {0, 1} is
μ-sparse if for any x ∈ {0, 1}n, the fraction of y ∈ {0, 1}m such that R(x, y) holds
is at most μ. A family H of functions h : {0, 1}n → {0, 1}m is f-correlation
intractable if for any binary μ-sparse relation R and for any adversary Adv
that runs in time t, the probability that Adv, given a random function h in H,
outputs x such that R(x, h(x)) holds is at most f(t, μ). The smaller f grows
the better the guarantee. Clearly we must have f(t, μ) ≥ tμ. A good “fudge
function” f will not grow much faster than that.

It should also be stressed that the quantitative correlation intractability, as
presented here, only bounds the success probability in solving a single chal-
lenge. Asserting the overall stability of the protocol would require bounding the
aggregate success probability over multiple related challenges. Formalizing a set
of properties for concrete, non-idealized hash functions, that would suffice for
the security of Bitcoin-like applications, as well as proposing constructions with
rigorous analyses is a fascinating research direction.

1.2 Our Techniques

The construction of our CI hash function is simple. Let (Enc,Dec) be an encryp-
tion scheme with key space K, message space M and ciphertext space C. The
constructed hash function family H = {hc}c∈C , where hc : K → M , is defined
by hc(k) = Deck(c). That is, a function hc in the family is defined via a cipher-
text c ∈ C. Given an input k, the function hc decrypts c using key k and returns
the decrypted plaintext.

In general, key generation (i.e., choosing a random c ∈ C) is done by encrypt-
ing a random message with a random key. We note however that for both of our
specific candidates, choosing a random ciphertext can be done obliviously and
publicly without any secret randomness.

A high level rationale for the construction may be the following: Consider
a ciphertext c = Enc(k,m) where both k and m are random. If the encryption
scheme is good, then it should be guaranteed that, when trying to decrypt c
with any key k′ �= k, then the result should be completely “random looking”.
Intuitively, this means that finding a key k′ such that Dec(k′, c) = m′ for some
target m′ should be hard. The universal ciphertexts property guarantees that
a random ciphertext looks like the result of encrypting a random message with
a random key. KDM security guarantees that the above intuition applies even
when considering relations that look at both the key and the corresponding
message together (as is indeed the case for correlation intractability).

Indeed, the crux of the proof is in translating correlation intractability, which
is a requirement on the (in)ability of polynomial time adversaries to find struc-
ture in a succinctly represented public function (namely the decryption algorithm
along with a random ciphertext), to a secrecy requirement on the corresponding
encryption process.

The actual proof is strongly inspired by that of [59]. In fact, we follow essen-
tially the same sequence of logical steps. However, the argumentation used to
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move from one step to the next is different in some key places. Specifically, our
goal is to turn an adversary A that breaks correlation intractability of the hash
function into an adversary that breaks KDM security of the underlying encryp-
tion scheme. Following [59], we start by considering a conditional experiment
where we fix some random value k∗, and consider only the probability that A,
given the hash key c, outputs a key k such that the correlation R(k,Dec(k, c))
holds, and in addition k = k∗. While this probability is very small, it allows us
to move (with some loss) to a different experiment where the value c that A sees
is the result of encrypting f(k∗) with key k∗, where f is a function related to R.
We now observe that recovering the right k∗ corresponds to breaking the KDM
security of the scheme.

As in [59], the price of this analytical approach is an exponential loss in secu-
rity against guessing attacks. On the other hand, in the case of the [59] scheme
and analysis, the critical switch from one conditional experiment to another relies
on sub-exponentially secure indistinguishability obfuscation. Here, in contrast,
the move is purely statistical.

1.3 A Closer Look at the Hardness Assumptions

We sketch the assumptions we use and briefly discuss their plausibility.

The scheme based on ElGamal encryption. We first consider the ElGamal based
scheme. For simplicity, we discuss a restricted case where both the key and
the message are represented by group elements. (See Sect. 6 for a more general
construction and the associated assumption.) Assuming there exists a family
of groups G(λ) of sizes N(λ) ≈ 2λ, with a generator g and efficient group
operations, such that for any super-polynomial function s, any (not necessar-
ily efficiently computable) function f : [N ] → [N ], and any polynomial time
adversary A:

Pr
k,a←[N ]

[
A

(
ga, gak+f(k)

)
= k

]
≤ s(λ)

2λ

We discuss the plausibility of this assumption. For the discrete-log problem over
F

∗
q , there are well-known sub-exponential time algorithms with constant success

probability [2,30]. However, a 2t-time algorithm with constant success probabil-
ity does not necessary imply a polynomial time algorithms with success proba-
bility 2−t. For example, Pollard’s rho algorithm [70] runs in time O(2λ/2) and
achieves constant success probability. But its polynomial time version only gives
polynomial advantage over simply guessing. In fact, Shoup [77] shows that any
generic algorithm (like Pollard’s rho algorithm) cannot achieve success proba-
bility better than O(T 2/2λ) if it only makes T oracle queries.

However, the index-calculus algorithm does achieve a 2−λ/c success probabil-
ity if it is allowed to have a super-polynomial preprocessing phase, keep advices
of polynomial size, and run a polynomial time online phase. We leave the algo-
rithm and analysis in AppendixA. Although it is not a complete polynomial time
algorithm (i.e. without a super-polynomial preprocessing phase) with non-trivial
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success probability, it suggests that the extra structure of the group F
∗
q can be

utilized even if the algorithm is restricted in polynomial time in a meaningful
model.

Still, the above assumption is plausible for the discrete-log problem over ellip-
tic curve groups (ECDLP), especially for those defined over prime fields. Over
decades, ECDLP algorithms only out-perform generic algorithms for specific
families of curves (e.g. [42,63]). Useful factor bases for index calculus algorithms
were not known for the elliptic curve groups, until the work of Semaev [76] which
proposes the use of summation polynomials, later developed by Gaudry [41] and
Diem [31]. But so far they are only known to out-perform Pollard’s rho algo-
rithm for elliptic curve groups defined over Fqn when certain relations of q and n
hold. For elliptic curve groups defined over prime fields, the recent attempts by
[69] and others provide plausible factor bases. Still, no algorithms are known to
achieve non-negligible success probability with less than O(2λ/2) running time.
See [40] for a survey of the recent progress on ECDLP.

To conclude, based on the current understanding ECDLP for curves defined
over prime fields, polytime algorithms that perform super-polynomially better
than guessing appear to be out of reach. In particular, any such algorithm must
exploit more structures in the elliptic curve groups than in generic groups [77].

The scheme based on Regev encryption. Consider the Regev scheme [73] with
an even polynomial modulus q(λ) ∈ poly(λ), and key space {0, ..., B − 1}� where
B� ∈ [2λ−log(λ), 2λ+log(λ)] and B ≤ q. The message space is {0, 1}w where w(λ) ∈
poly(λ). For the security of this scheme we make the following assumption: for
any (not necessarily efficiently computable) function f : {0, ..., B−1}� → {0, 1}w,
any super-polynomial function s, and any polynomial time adversary A:

Pr
k∈R{0,...,B−1}�

{aj∈RZ
1×�
q ,ej∈R[0,q/2)∩Z}

[
A

({aj ,aj · k + ej + fj(k) · q/2}j∈[w]

)
= k

]
≤ s(λ)

2λ

where fj(k) denotes the jth bit of f(k).
Note that super-polynomial algorithms that break LWE with constant suc-

cess probability are known (e.g. [8,16,60,61,75], see the analyses and surveys of
[4,55,62,65,67]). Still, within this setting of parameters, especially given a poly-
nomial size modulus q and high noise magnitude q/2, we are not aware of any
polynomial time algorithms that succeed in guessing the key super-polynomially
better than a random guess.

Possible relaxations on the assumptions of success probability. The restriction on
the success probability (smaller than s(λ)

2λ for any super-polynomial s) mentioned
in the foregoing paragraphs suffices for implying correlation intractability for all
negligible sparse relations under any given input and output length parameters.
We note that even if there are polynomial time algorithms that achieve better
success probability for these problems, our result may still apply to correlation
intractability for certain classes of relations. For example, if a polynomial time
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algorithm were found for LWE that succeeds with probability 2−λ/3, then the
Regev-based hash function may still be secure for Fiat-Shamir transformation
applied on a 3-round proof system where the length of the first message is λ,
the length of the second message is 2λ/3, and the soundness of the protocol is
2−2λ/3.

On the quantitative hardness of our assumptions. One may wonder if the ElGa-
mal or Regev-like hash functions were used for proof-of-work, what are the pre-
cise bounds of the “fudge function” f we can guarantee. For the ElGamal-based
function, as we mentioned before, the Pollard’s rho algorithm achieves success
probability O(T 2/2λ) in T steps for any group of size ≈ 2λ. So the smallest
possible f is O(T 2 ·μ), which is far from the dream bound T ·μ. For LWE, when
T is relatively small (say a small polynomial), the success probabilities of LWE
solvers are typically tiny and less studied, so the precise bound is unclear to
us. We leave to future work any additional quantitative analysis of the possible
values for f for the concrete functions.

1.4 Additional Related Works

Notions related to Fiat-Shamir paradigm. Hada, Tanaka [49] and Dwork et
al. [36] show that the existence of correlation intractable functions implies the
soundness of Fiat-Shamir paradigm for proofs, which in turn rules out the possi-
bility of constant-round public-coin zero-knowledge proofs for languages beyond
BPP. This means that, assuming KDM-secure encryption as defined above, there
do not exist constant-round public-coin zero-knowledge protocols with negligible
soundness error for languages beyond BPP.

Among the attempts to better capture the property of a hash function suit-
able for the Fiat-Shamir paradigm, Barak et al. define entropy-preserving hashing
and show it is sufficient for Fiat-Shamir [10]. Dodis et al. then provide a property
of condensers that is necessary for entropy-preserving hashing [33]. It is shown by
Canetti et al. that entropy-preservation is implied by correlation intractability
w.r.t. sparse relations whose memberships are not efficiently checkable [24].

A different way of reducing rounds in interactive proofs was shown by Kalai
and Raz [58]. However, in contrast to the Fiat-Shamir paradigm, the Kalai-Raz
transform inherently yields a private-coin argument-system (and in particular
does not yield NIZK proof-systems).

Background on KDM. The potential security risk of encrypting one’s own
key was noted already in the seminal work of Goldwasser and Micali [45].
Potential applications and suitable formalizations were provided by Camenisch
and Lysyanskaya [22] and Black, Rogaway and Shrimpton [15]. More recently,
Gentry’s breakthrough construction of fully homomorphic encryption also uti-
lizes KDM security in a fundamental way for the “bootstrapping” process (trans-
forming somewhat homomorphic schemes to fully homomorphic ones) [43].
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Encryption schemes that are KDM secure2 with respect to the class of affine
functions were constructed by Boneh et al. [19], Applebaum et al. [6] and Brakerski
and Goldwasser [20]. Using techniques developed in [5,9,21] the foregoing schemes
can be amplified to provide security for the class of KDM functions computable by
polynomial-size circuits. Canetti et al. [28] construct strong KDM-secure encryp-
tion from multi-bit point obfuscation. However, their construction inherently does
not have the universal ciphertexts property. We also note that fully-homomorphic
encryption schemes that are KDM secure w.r.t. the identity function are auto-
matically KDM secure for arbitrary polynomial functions [9]. However achieving
KDM secure FHE w.r.t. the identity function from standard assumptions is an
open problem.

Haitner and Holenstein [50] showed limitations to the possibility of construct-
ing KDM secure encryption schemes via blackbox techniques. They first show
that there is no fully blackbox reduction from the KDM security of an encryption
scheme (with respect to a certain class of functions) to the existence of one-way
permutations. More relevant for us is their second result, which shows that there
is no reduction from the KDM security of an encryption scheme to “essentially
any cryptographic assumption” if the adversary can obtain an encryption of an
arbitrary function g of the key, and the reduction treats both the adversary and
the function g as black boxes. A significant difference from our notion of KDM
security with respect to all functions is that [50] assume that the adversary also
obtains oracle access to the function g, which is not the case in our setting.
Namely, we only provide the adversary with an encryption of g(k), where k is
the key, but no additional access to g. Indeed, the oracle constructed by Haitner
and Holenstein becomes useless in this setting.

The works of Halevi, Krawczyk [51] and Hofheinz, Unruh [56] construct sev-
eral variants of KDM symmetric encryption assuming only pseudorandom func-
tions. However these schemes don’t achieve the level of security we require (expo-
nentially small probability of key-recovery) and we were unable to extend them
to schemes that do.

Relation to Extremely Lossy Functions (ELFs). Our work bears a high-level
similarity to the work of Zhandry [79] in terms of the motivation, constructions
and assumptions. However, the actual contributions are very different.

In terms of the motivation, both papers attempt to capture the proper-
ties of random oracles. Our paper focuses on correlation intractability and its
implication to Fiat-Shamir, whereas [79] defines the notion of k-ary output-
intractability, where the relation checks k output values and an additional aux-
iliary input w. Indeed, as was mentioned in [79], k-ary output-intractability
roughly corresponds to a special case of k-ary correlation intractability (namely,
correlation intractability where the relation R takes k pairs of values (x, y).)
However, k-ary output-intractability is interesting only for k > 1. For k = 1,
output intractability is trivially satisfiable. In contrast, in this work we concen-
trate on correlation intractability with k = 1.

2 More precisely, the KDM security of these scheme reduces to their plain (i.e., non key
dependent) semantic security.
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In terms of constructions and assumptions, both papers make exponential
hardness assumptions on discrete-log or DDH type problems. However the pre-
cise ways of making the assumptions are different. [79] assumes that for DDH
over group size B(λ) ≈ 2λ, the best attack takes time B(λ)c for some constant
c. Whereas we assume (modulo KDM) that all the polynomial time algorithm
solves discrete-log problem with success probability less than superpoly(λ)

B(λ) .

1.5 Organization

In Sect. 2 we provide standard notations and definitions that will be used
throughout this work. In Sect. 3 we give an overview of our construction, focus-
ing on the discrete-log based construction as a warm-up. In Sect. 4 we formally
define our notion of “universal ciphertexts” and strong KDM security. In Sect. 5
we show how to use encryption schemes satisfying the foregoing properties to
construct correlation intractable functions. In Sect. 6 we describe parameter set-
tings where the variants of ElGamal and Regev encryption schemes plausibly
satisfy these properties. Finally, in Sect. 7 we show how to construct NIZKs for
NP from our correlation intractable functions.

2 Preliminaries

Notations and terminology. Denote R, Z, N as the set of reals, integers and
natural numbers. Let Zq denote Z/(qZ). For n ∈ N, let [n] denote {1, 2, ..., n}.
The rounding operation 	a
 : Zq → Zp is defined as multiplying a by p/q and
rounding the result to the nearest integer.

In cryptography, the security parameter (denoted as λ) is a variable that is
used to parameterize the computational complexity of the cryptographic algo-
rithm or protocol, and the adversary’s probability of breaking security. An algo-
rithm is “efficient” if it runs in (probabilistic) polynomial time over λ.

For any definition based on computational hardness, we refer the relevant
security level to the success probability of any efficient adversary. For example,
a security notion is subexponential if for every efficient adversary there exists
ε > 0 such that the adversary’s advantage is less or equal to 2−λε

.
Many experiments and probability statements in this paper contain random-

ized algorithms. When a variable v is drawn uniformly random from the set S
we denote as v∈RS or v ← U(S), sometimes abbreviated as v when the context
is clear. Distributions written in multiple lines under Pr means they are sampled
in sequence.

A function ensemble F has a key generation function g : S → K; on a seed
s ∈ S(λ), g produces a key k ∈ K(λ) for a function with domain D(λ) and range
C(λ):

F = {fk : D(λ) → C(λ), k = g(s), s ∈ S(λ)}λ∈N

The bit-lengths of the seed, key, input and output are denoted as σ, κ, 	 and
w, unless specified otherwise.
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The main object studied in this article is families of public key hash func-
tions. We assume the key k is public. For certain key generation algorithm g,
publishing k implies publishing s (e.g. when g is the identity function). We call
such functions public-coin. By default we treat the bit-length of its input as being
equal to the security parameter, i.e. |D(λ)| = 2λ.

2.1 Correlation Intractability

We recall the definition of correlation intractability [27].

Definition 1 (Density of a binary relations). A binary relation R = R(λ) ⊆
{ (x, y) | x ∈ D(λ), y ∈ C(λ) } has density μ = μ(λ) if for every x ∈ D(λ) it
holds that Pry∈C(λ)[ (x, y) ∈ R(λ) ] < μ(λ). A relation R is sparse if it has
negligible density.

Definition 2 (Correlation intractability w.r.t. binary sparse relations
[27]). A family of functions H = {Hk : D(λ) → C(λ)}λ∈N is correlation
intractable w.r.t. binary sparse relations if for every polynomial-size adversary
A and every sparse relation R, there is a negligible function negl(·) such that:

Pr
k,

x←A(Hk)

[(
x,Hk(x)

) ∈ R
]

≤ negl(λ).

We introduce a quantitative generalization of correlation intractability.

Definition 3 (f-correlation intractability). A family of functions H =
{Hk : D(λ) → C(λ)}λ∈N is f-correlation intractable w.r.t. a function f :
N × [0, 1] → [0, 1] if for all time function T (·), for all density function μ(·),
for every adversary A of running time T (λ), and every relation R with density
μ(λ), it holds that

Pr
k,

x←A(Hk)

[(
x,Hk(x)

) ∈ R
]

≤ f(T, μ).

For example, random oracles satisfy f -correlation intractability for f(T, μ) =
T · μ. Definition 2 can be viewed as f -correlation intractability w.r.t. f(T, μ) =
T · μ, for all polynomial T (·), and all negligible μ(·). In the rest of the paper,
“correlation intractability” refers to Definition 2 unless explicitly stated other-
wise.

Survey of impossible parameters for correlation intractability. For some param-
eters relevant to the length of seed, key, input and output of the function, cor-
relation intractability w.r.t. binary sparse relations is impossible to achieve. We
survey some of the results.
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[27] shows that a function family cannot be correlation intractable when the
bit-length of the key κ(λ) of the function is short compared to the bit-length of
the input 	(λ):

Claim 1 ([27]). Hλ is not correlation intractable w.r.t. efficiently checkable rela-
tions when κ(λ) ≤ 	(λ).

Proof. Consider the diagonalization relation Rdiag = {(k, hk(k))|k ∈ K(λ)}. The
attacker outputs k. 
�

The impossibility result generalizes to keys that are slightly larger than the
bit-length of the input, but still smaller than the sum of the bit-length of input
plus output 	(λ)+w(λ). The idea is to consider an extension of the diagonaliza-
tion relation s.t. the relation checks a prefix of k—as long as the key is not too
long, the relation is still sparse, albeit not necessarily efficient checkable.

Claim 2 ([27]). Hλ is not correlation intractable w.r.t. possibly inefficiently
checkable relations when κ(λ) ≤ 	(λ) + w(λ) − ω(log(λ)).

We also observe when the “family size” of the function is relatively small,
precisely, when the seed length is small w.r.t. the output length, then the func-
tion family is not correlation intractable w.r.t. possibly inefficiently checkable
relations. This case is not ruled out by Claim 2 when the key is potentially long
but derived from a short seed (e.g. from applying a PRG on a short seed).

Claim 3. Hλ is not correlation intractable when the seed space S(λ) and the
range C(λ) satisfies |S(λ)| ≤ negl(λ) · |C(λ)|.
Proof. Fix the hash function family Hλ, consider the relation RH that collects
every functions in the function family RH = {(x, hk(x)) | s ∈ S, k = g(s), x ∈
D(λ)}. The density of the relation less or equal to |S(λ)|/|C(λ)| ≤ negl(λ). The
attacker simply outputs any input. 
�

For the discussions of the other impossibility results, we refer the readers to
[27] for the details.

2.2 Fiat-Shamir Heuristics

Definition 4 (Interactive proof-systems [46]). An interactive proof-system
for a language L is a protocol between a prover P and a verifier V . The prover’s
runtime is unbounded. The verifier runs in probabilistic polynomial time. The
protocol satisfies

– Completeness: For every x ∈ L, the verifier V accepts with probability 1
after interacting with P on common input x.

– Soundness: For every x /∈ L and every cheating prover P ∗, the veri-
fier accepts with negligible probability after interacting with P ∗ on common
input x.

An interactive protocol is called an argument-system if it satisfies Definition 4
except that the prover is restricted to run in (non-uniform) polynomial time. An
interactive proof or argument is called public-coin if the verifier’s messages are
random coins.



104 R. Canetti et al.

Correlation intractability and public-coin interactive proofs. Consider a language
L and a 3-round public-coin interactive proof Π for L. Let α, β, γ be the 3
messages in the protocol (α and γ are sent by the prover P , β is sent by the
verifier V ). The relation R/∈L,Π is defined by

R/∈L,Π =
{(

(x, α), β) : x /∈ L and ∃γ s.t. V (x, α, β, γ) = Accept
}

. (1)

Observe that the relation R/∈L,Π is sparse due to the statistical soundness of
the underlying proof, i.e. the density of R/∈L,Π is equal to the soundness error
of Π.

Interestingly, correlation intractability can also capture a stronger notion of
soundness called adaptive soundness. We say that a 3 message interactive proof-
system as above has adaptive soundness, if the message α sent by the honest
prover does not depend on x, and soundness is guaranteed even if the adversary
may choose the input x �∈ L on which to cheat after seeing β. For such protocols
we define the relation R/∈L,Π as

R/∈L,Π =
{(

α, β
)

: ∃x, γ s.t. x /∈ L ∧ V (x, α, β, γ) = Accept
}

(2)

Again, the relation R/∈L,Π is sparse due to the adaptive soundness of Π.
Correlation intractability also implies the soundness of Fiat-Shamir for gen-

eral constant-round public-coin interactive proof-systems. Without loss of gen-
erality assuming the number of rounds in the starting proof-system is 2c for
a constant c. In the resulting 2-message argument, the verifier samples c inde-
pendent correlation intractable hash functions. For i ∈ {1, 2, ..., c}, the prover
applies the ith hash function on (α1||β1||...||αi−1||βi−1||αi) to generate βi, where
αi is the ith message from the prover in the starting proof-system. The message
from the prover in the resulting 2-message argument is then (α1||β1||...||αc||βc).

It is shown that the transformation above yields a sound 2-message argument
if the hash functions are entropy preserving [10]. Given that CI families that
withstand arbitrary binary relations are entropy preserving [24], we have

Lemma 1 ([10,24,36,49]). Assuming correlation intractable function family
w.r.t. all binary sparse relations exists, then the Fiat-Shamir transformation is
sound when applied on any constant-round public-coin interactive proof-systems.

3 A Warm-Up Construction from Discrete Logarithm

We present a simple construction based on the discrete-log program as a warm-
up to the general scheme. Along the way we will give the rationale of the proof
strategy adapted from the work of Kalai et al. [59], and explain the level of KDM
security we need for the underlying discrete-log problem.

Let G be a cyclic group where the discrete-log problem is hard. Assume the
size of G is roughly 2λ where λ is the security parameter. Let g be a generator of
G, A = ga, B = gb be two random elements in G. Consider the following length
preserving function H : {1, ..., |G|} → G

HA,B(x) := Ax · B = gax+b ∈ G. (3)
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Theorem 4. Given G(λ) of sizes N(λ) ≈ 2λ, with a generator g and efficient
group operations, such that for any super-polynomial function s, any (not neces-
sarily efficiently computable) function f : [N ] → [N ], and any polynomial time
adversary A:

Pr
k,a←[N ]

[
A

(
ga, gak+f(k)

)
= k

]
≤ s(λ)

2λ
.

Then HA,B is correlation intractable w.r.t. all sparse relations.

Towards a contradiction, let R be any sparse relation with negligible density
μ(λ). Suppose there exists an efficient adversary Adv that breaks correlation
intractability w.r.t. R with non-negligible probability ν:

Pr
A,B

[(
Adv(HA,B) → x

)
∧

((
x,HA,B(x)

) ∈ R
)]

≥ ν, (4)

where the notation Adv(HA,B) → x simply means that we use x to refer to the
string that Adv(HA,B) outputs.

In the first step, we translate the probability of outputting some x to the
probability of outputting a particular x∗. For a random x∗ from the domain, the
probability that the adversary outputs x∗ as the answer is greater or equal to ν
divided by the domain size

Pr
x∗∈R{0,1}λ

A,B

[(
Adv(HA,B) → x′

)
∧

(
x′ = x∗

)
∧

((
x∗, HA,B(x∗)

) ∈ R
)]

≥ ν/2λ. (5)

Focusing on a single x∗ costs a huge loss in the success probability. The
readers may wonder what is the motivation of doing so. The purpose of fixing an
input x∗ is to prepare for replacing the winning condition

(
x∗,HA,B(x∗)

) ∈ R
by another condition that is “key independent”. Towards this goal, consider the
following sampling procedure: first sample a random y∗ from the range, then
sample the key (A′, B′) randomly under the condition HA′,B′(x∗) = y∗. Now
we use the fact that H is a “one-universal” function, which means that for a
fixed input, a uniformly random key projects the input to a uniformly random
output. In turn, a uniformly random output corresponds to a uniformly random
key. Therefore the key (A′, B′) obtained from reverse sampling distributes the
same as before. Hence we have

Pr
x∗∈R{0,1}λ

y∗∈RG,

A′,B′ s.t. H
A′,B′ (x∗)=y∗

[(
Adv(HA′,B′ ) = x

′) ∧
(

x
′
= x

∗)
∧

((
x

∗
, HA′,B′ (x∗

)
) ∈ R

)]
≥ ν/2

λ
.

(6)

Given that y∗ = HA′,B′(x∗), we can change the winning condition in Eq. (6) into
one which is independent from the function HA′,B′ :

Pr
x∗∈R{0,1}λ

y∗∈RG

A′,B′ s.t. HA′,B′ (x∗)=y∗

[(
Adv(HA′,B′ ) = x′) ∧ (

x′ = x∗) ∧ (
(x∗, y∗) ∈ R

)] ≥ ν/2λ. (7)
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Separating the winning condition (x∗, y∗) ∈ R from the hash key paves the
way for connecting correlation intractability to a property that is only about
hiding one specific point in the key (instead of hiding a bunch of potential
input-output pairs in the relation). In the next statement, the first equality
follows by the definition of conditional probability. The inequality follows from
Eq. (7) together with the fact that R is μ sparse:

Pr
x∗,y∗ s.t. (x∗,y∗)∈R,

A′,B′ s.t. HA′,B′ (x∗)=y∗

[(
Adv(HA′,B′) → x′) ∧ (

x′ = x∗)]

=

Pr
x∗∈R{0,1}λ

y∗∈RG

A′,B′ s.t. HA′,B′ (x∗)=y∗

⎡
⎣
Adv(HA′,B′) = x′

x′ = x∗

(x∗, y∗) ∈ R

⎤
⎦

Pr
x∗∈R{0,1}λ

y∗∈RG

[
(x∗, y∗) ∈ R

]

≥ ν

2λ · μ(λ)

(8)

The LHS of Eq. (8) spells out as an efficient adversary’s success probability
of finding the input x∗ embedded in A′, B′, where the key A′, B′ is sampled
conditioned on mapping some input-output pair in the relation (x∗, y∗) ∈ R.
Let’s examine A′, B′, and for simplicity consider only the constant relations
Rc = {(x, c) | ∀x ∈ {0, 1}λ}. Fix a c∗ ∈ G, a random input-output pair from Rc∗

distributes as (x∗, c∗), where x∗ is uniformly random from {0, 1}λ. For A′ = ga′
,

B = gb′
sampled randomly from the set {ga′

, gb′ | gz∗
:= c∗ = ga′x∗+b′}, where

z∗ is explicitly defined as the discrete-log of c∗ over base g for the convenience
of explanation. Observe that the marginal distribution of a′ is uniform, and b′

equals to z∗ − a′x∗. In other words, the adversary is asked to find x∗ given
A′ = ga′

, B′ = gz∗−a′x∗
where z∗ is fixed. The hardness of this problem follows

directly from the hardness of the discrete-log problem.
What is the hardness required for the underlying discrete-log problem in

order to form a contradiction? For the probability in the hypothesis ν(λ)
2λ·μ(λ) ,

where ν is a non-negligible function; μ, the density of a sparse relation, is an
arbitrary negligible function. We can form a contradiction by assuming that
every polynomial time algorithm for the discrete-log problem over G succeeds
with probability less than s(λ)/2λ for any super-polynomial function s.

What happens when we consider all sparse relations instead of only the con-
stant relations? For a general sparse relation, sampling a random pair (x∗, y∗)
from the relation may result into an output y∗ that is correlated to the input
x∗. Take the “fixed point” relation Rx=y := {(x, y) | x = y} as an exam-
ple. A random input-output pair from Rx=y distributes as (x∗, x∗), where x∗

is uniformly random. For A′ = ga′
, B = gb′

sampled randomly from the set
{ga′

, gb′ | gz∗(x∗) := x∗ = ga′x∗+b′}, where z∗(x∗) is the discrete-log of x∗ over
base g (unlike in the previous example, now z∗ depends on the input x∗). The
marginal distribution of a′ is still uniform, and b′ equals to z∗(x∗)−a′x∗. In other
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words, the adversary is asked to find x∗ given A′ = ga′
, B′ = gz∗(x∗)−a′x∗

where
z∗(·) is a function on x∗, a′ is independent from x∗ and uniform. The latter
corresponds to the hardness of finding the decryption key x∗ given a ciphertext
of ElGamal encryption with uniform randomness a′, and key-dependent message
z∗(x∗).

To summarize, the proof strategy translates the hardness of finding any solu-
tion in a sparse relation to the hardness of finding the key from the encryption
of possibly key-dependent messages. The translation is purely statistical, but it
results into a significant cost in the final computational assumption—the suc-
cess probability for any polytime attacker has to be extremely small. To capture
arbitrary relations, arbitrary key dependency functions are considered.

4 Encryption Scheme with Universal Ciphertext
and KDM Security

Let M = {Mλ}λ∈N be an ensemble of message spaces (i.e., Mλ is the message
space with respect to security parameter λ ∈ N). An encryption scheme, with
respect to the message space M, consists of three probabilistic polynomial-time
algorithm PP-Gen, Enc and Dec. The public-parameter generation algorithm
PP-Gen gets as input 1λ and outputs some public-parameters pp (without loss
of generality we assume that pp contains λ). Given the public-parameters pp, a
key k ∈ {0, 1}λ and a message m ∈ Mλ the encryption algorithm Enc outputs a
ciphertext c. The decryption algorithm Dec gets as input the public-parameters
pp, a key k as well as a ciphertext c and outputs a message in Mλ. We require
that (with probability 1), for every setting of the public-parameters pp, message
m ∈ Mλ and key k ∈ {0, 1}λ it holds that Dec(pp, k,Enc(pp, k,m)) = m.

In many encryption schemes each ciphertext is associated with some partic-
ular key. We will be interested in schemes where this is not the case. Namely,
ciphertexts are not associated with a specific key, but rather “make sense” under
any possible key. We denote by Cpp the distribution obtained by encrypting a
random message using a random key. Namely, the distribution Enc(pp, k,m)
where k ∈R {0, 1}λ and m ∈R Mλ.

Definition 5 (Universal Ciphertexts). We say that an encryption scheme
(PP-Gen,Enc,Dec) with respect to message space M = {Mλ}λ∈N has universal
ciphertexts if the following two conditions hold for all constant η > 0, for all
(sufficiently large) λ ∈ N and public parameters pp ∈ PP-Gen(1λ):

1. For every fixed key k∗ ∈ {0, 1}λ, a random ciphertext decrypts to a random
message. Namely, the distribution m ← Dec(pp, k∗, c), where c ← Cpp, is
2−(1+η)λ-statistically close to uniform.

2. For all k∗ ∈ {0, 1}λ and m∗ ∈ Mλ, the following distributions are 2−(1+η)λ-
statistically close
– c ← Cpp conditioned on Dec(pp, k∗, c) = m∗.
– c is sampled from c ← Enc(pp, k∗,m∗) (i.e., a fresh encryption of m∗

under public parameters pp and key k∗).
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Definition 6 (ε-KDM Security). Let ε = ε(λ) ∈ [0, 1]. We say that an
encryption scheme (PP-Gen,Enc,Dec) is ε-KDM secure, if for every polynomial-
time adversary A, for all sufficiently large values of λ and any (possibly ineffi-
cient) function f : {0, 1}λ → Mλ it holds that:

Pr
pp←PP-Gen(1λ)

k∈R{0,1}λ

[
A(

pp,Enc(pp, k, f(k)
)

= k
]

< ε.

5 Correlation Intractability from Universal-Ciphertexts
KDM Encryption

Let PP-Gen, Enc, Dec be an encryption scheme with respect to an ensemble of
message spaces M = {Mλ}λ∈N, as defined in Sect. 4. For public parameters pp
recall that we denote by Cpp the distribution obtained by encrypting a random
message using a random key (with respect to public parameters pp).

Construction 5. We construct a hash function family H = {Hλ : {0, 1}λ →
Mλ}λ∈N as follows.

The key generation algorithm of the hash function takes input 1λ, samples
public parameters pp of the encryption scheme and a random ciphertext c ← Cpp.
The hash key is hk = (pp, c). On input the key (pp, c) and a message to be hashed
α ∈ {0, 1}λ, the hashing algorithm views α as a key of the encryption scheme
and outputs Dec(pp, α, c).

The main result that we prove in this section is if the encryption scheme
has universal ciphertexts (as per Definition 5) and is ε-KDM secure (as per
Definition 6), for sufficiently small ε = ε(λ) > 0, then Construction 5 forms a
correlation intractable hash function family.

Theorem 6. If there exists an encryption scheme with universal ciphertexts
that is ε-KDM secure for ε ≤ (

poly(λ) · 2λ · μ(λ)
)−1, then Construction 5 is

correlation intractable for all sparse relations with negligible density μ(λ).

5.1 Proof of Theorem6

Let R be any sparse relation with negligible density μ = μ(λ). Suppose toward
a contradiction that there exists a probabilistic polynomial-time adversary Adv
that breaks the correlation intractability of Construction 5 with non-negligible
probability ν = ν(λ). Namely,

Pr
hk

[
Adv(Hhk) outputs some α ∧ (

α,Hhk(α)
) ∈ R

]
≥ ν(λ).

Thus, by construction of our hash function it holds that:
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Pr
pp

c←Cpp

[
Adv(pp, c) outputs some α s.t.

(
α,Dec(pp, α, c)

) ∈ R
]

≥ ν(λ), (9)

where here and below we use pp to denote public parameters sampled from
PP-Gen(1λ).

For the analysis, we consider a relaxed relation R′ where (α, β) ∈ R′ if
(α, β) ∈ R or if the first 	log(ν/2μ)
 bits of β are all 0. The density of R′ is
bounded by μ′ ≤ 4μ/ν, which is negligible when μ is negligible. Looking ahead,
the purpose of “padding” R is so that the marginal distribution of α∗, obtained
from jointly sampling a pair (α∗, β∗) randomly from R′, is close to uniform.
More specifically, following [59, Proposition 3.4] we can bound the point-wise
multiplicative difference (or ratio) between these distributions:

Fact 7. For all α′ ∈ {0, 1}λ, β′ ∈ Mλ,

Pr
α∗

β∗ s.t (α∗,β∗)∈R′

[
α∗ = α′, β∗ = β′] ≥ 1

4
· Pr

α∗,β∗ s.t (α∗,β∗)∈R′

[
α∗ = α′, β∗ = β′]

(10)

Since R ⊆ R′, Eq. (9) implies that:

Pr
pp←PP-Gen(1λ),

c←Cpp

[
Adv(pp, c) outputs α s.t.

(
α,Dec(pp, α, c)

) ∈ R′
]

≥ ν(λ). (11)

We will use Eq. (11) to show that Adv breaks the KDM security of our encryp-
tion scheme, with respect to the randomized KDM function f that given a key
α∗, outputs a random β∗ such that (α∗, β∗) ∈ R′.

We now fix some setting of the public parameters pp. Using the structure of
R′, and the fact that our encryption scheme has universal ciphertexts (property 2
of Definition 5), it holds that:

Pr
α∗

β∗ s.t (α∗,β∗)∈R′

c←Enc(pp,α∗,β∗)

[
Adv(pp, c) outputs α∗

]

≥ (1/4) · Pr
α∗,β∗ s.t (α∗,β∗)∈R′

c←Enc(pp,α∗,β∗)

[
Adv(pp, c) outputs α∗

]

≥ (1/4) ·

⎛
⎜⎝ Pr

α∗,β∗ s.t (α∗,β∗)∈R′

c←Cpp s.t. Dec(pp,α∗,c)=β∗

[
Adv(pp, c) outputs α∗

]
− 2−(1+η)λ

⎞
⎟⎠ (12)

where the first inequality is due to Fact 7; the second is due to the universal
ciphertexts property.

Our key step is captured by the following proposition, which relates the
adversary’s advantage of recovering the specific key α∗ in a ciphertext encrypt-
ing possibly key-dependent messages, to the advantage of outputting any α
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that breaks correlation intractability. While the winning probability in the key-
recovery game is exponentially small, it is lower bounded by a function of the
success probability of breaking correlation intractability.

Proposition 1. For every setting of the public-parameters pp it holds that:

Pr
α∗,β∗ s.t (α∗,β∗)∈R′

c s.t. Dec(pp,α∗,c)=β∗

[
Adv(pp, c) outputs α∗

]

≥2−λ

μ′ ·
(

Pr
c

[
Adv(pp, c) outputs α s.t.(

α,Dec(pp, α, c)
) ∈ R′

]
− 2−ηλ

)
,

Proof. Fix the public parameters pp. By the fact that the random variables
(α∗, β∗) and c are independent, it holds that:

Pr
α∗,β∗ s.t (α∗,β∗)∈R′

c s.t. Dec(pp,α∗,c)=β∗

[
Adv(pp, c) outputs α∗

]

= Pr
α∗,β∗

c s.t. Dec(pp,α∗,c)=β∗

[
Adv(pp, c) outputs α∗ ∣∣ (α∗, β∗) ∈ R′

]
.

(13)

By definition of conditional probability, it holds that:

Pr
α∗,β∗

c s.t. Dec(pp,α∗,c)=β∗

[
Adv(pp, c) outputs α∗ ∣∣ (α∗, β∗) ∈ R′

]

=

Pr α∗,β∗
c s.t. Dec(pp,α∗,c)=β∗

[
Adv(pp, c) outputs α∗

(α∗, β∗) ∈ R′

]

Prα∗,β∗
[
(α∗, β∗) ∈ R′

]

≥ (1/μ′) · Pr
α∗,β∗

c s.t. Dec(pp,α∗,c)=β∗

[
Adv(pp, c) outputs α∗(
α∗,Dec(pp, α∗, c)

) ∈ R′

]
, (14)

where the inequality follows from the density of R′.

Claim 8. The following two distributions are 2−(1+η)λ-close:

1. (α∗, c): such that α∗ ∈R {0, 1}λ, β∗ ∈R Mλ and c ← Cpp conditioned on
Dec(pp, α∗, c) = β∗.

2. (α∗, c′): such that α∗ ∈R {0, 1}λ and c′ ← Cpp.

Proof. A different way to sample the exact same distribution as in item (2) is to
first sample α∗ ∈R {0, 1}λ, then c′′ ← Cpp and finally c′ ← Cpp conditioned on
Dec(pp, α∗, c′) = Dec(pp, α∗, c′′).

By the universal ciphertext property 5(1) of the encryption scheme, the dis-
tribution Dec(pp, α∗, c′′) is 2−(1+η)λ close to the uniform distribution over Mλ.
The claim follows. 
�
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Combining Claim 8 together with Eqs. (13) and (14) yields that:

Pr
α∗,β∗ s.t (α∗,β∗)∈R′

c s.t. Dec(pp,α∗,c)=β∗

[
Adv(pp, c) outputs α∗

]

≥ (1/μ′) ·
(

Pr
α∗,c

[
Adv(pp, c) outputs α∗(
α∗,Dec(pp, α∗, c)

) ∈ R′

]
− 2−(1+η)λ

)

= (1/μ′) ·
(

2−λ · Pr
c

[
Adv(pp, c) outputs α s.t.(

α,Dec(pp, α, c)
) ∈ R′

]
− 2−(1+η)λ

)

= (2−λ/μ′) ·
(

Pr
c

[
Adv(pp, c) outputs α s.t.(

α,Dec(pp, α, c)
) ∈ R′

]
− 2−ηλ

)
(15)

This concludes the proof of Proposition 1. 
�
Using Proposition 1 and Eq. (12) we obtain that:

Pr
pp
α∗

β∗ s.t (α∗,β∗)∈R′

c←Enc(pp,α∗,β∗)

[
Adv(pp, c) outputs α∗

]

= E
pp

⎡
⎢⎢⎢⎣ Pr

α∗
β∗ s.t (α∗,β∗)∈R′

c←Enc(pp,α∗,β∗)

[
Adv(pp, c) outputs α∗

]
⎤
⎥⎥⎥⎦

≥ 1/4 · E
pp

⎡
⎢⎣ Pr

α∗,β∗ s.t (α∗,β∗)∈R′

c←Cpp s.t. Dec(pp,α∗,c)=β∗

[
Adv(pp, c) outputs α∗

]
⎤
⎥⎦ − 2−(1+η)λ

≥ 1
4 · 2λ · μ′ · E

pp

[
Pr
c

[
Adv(pp,c) outputs α s.t.(

α,Dec(pp,α,c)
)
∈R′

]
− 2−ηλ

]
− 2−(1+η)λ

=
1

4 · 2λ · μ′ ·
(

Pr
pp,c

[
Adv(pp,c) outputs α s.t.(

α,Dec(pp,α,c)
)
∈R′

]
− 2−ηλ

)
− 2−(1+η)λ

≥ ν

8 · 2λ · μ′

= ω

(
poly(λ)

2λ

)
.

Thus, Adv breaks KDM security with probability ε ≥ (1/negl) · 2−λ, in contra-
diction to our assumption.

6 Candidate KDM Encryption with Universal
Ciphertexts

We present two encryption schemes that satisfy the ciphertext universality (Def-
inition 5), and plausibly satisfy ε-KDM security (Definition 6) for exponentially
small ε.
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6.1 Discrete-Log Based

We first present the encryption scheme based on a generic multiplicative group,
and then specify its instantiation over the elliptic curve groups. The scheme can
be viewed as a bit-encryption variant of ElGamal.

Construction 9. Fix a small constant η > 0 (e.g. η = 0.01). Let the message
space be M = {Mλ}λ∈N, where Mλ = {0, 1}w(λ) and w = w(λ) ∈ N. We
construct an encryption scheme as follows.

– Public parameters Generation PP-Gen(1λ): the key-generation algorithm
selects a prime N = N(λ) ≥ 2(1+2η)λ, a group G = G(λ) of size N , and
a generator g (the exact algorithm for determining these depends on the spe-
cific group family we use - see instantiations below).
Let ext : G → {0, 1} be a deterministic efficiently computable function that
outputs 0 on �N/2
 of the group elements, and 1 on the remaining 	N/2�
elements.
The public-parameters pp include a concise3 description of the group G, gen-
erator g, and function ext.

– Encrypt Enc(pp, k, y): We view k as an integer in [2λ]. Let y1 . . . yw ∈ {0, 1}
be the bit decomposition of y.
For each j ∈ [w], sample aj∈R{0, 1, ..., N − 1} and let Aj := gaj . Sample Cj

uniformly from ext−1(yj) and let Bj = Cj · Ak
j . Output c = (Aj , Bj)j∈[w] as

the ciphertext.
– Decrypt Dec(pp, k, c): Decompose the ciphertext c as (Aj , Bj)j∈[w]. For j ∈

[w], let Cj = Bj/A
k
j and let the jth output bit be ext(Cj).

Remark 1. To ensure the KDM problem is as hard as possible, the group order is
set to be a prime so that not only the discrete-log problem but also the decisional
Diffie-Hellman problem is plausibly hard.

Since the group order is a prime, a deterministic function that extracts a bit
from the group cannot be perfectly balanced. So we set the group order to be
slightly larger than 2(1+η)λ in order to allow 2−(1+η)λ-statistical distance for the
statistical properties.

We first show that the scheme satisfies the universal ciphertext requirement
(see Definition 5).

Proposition 2. The encryption scheme of Construction 9 has universal cipher-
texts.

Proof. The first condition in Definition 5 follows from the fact that for a fixed
encryption key k, and random ciphertext (Aj , Bj)j∈[w], it holds that each Cj =
Bj/A

k
j is uniformly distributed and so we only need to account for the deviation

from ext. Overall we get that the output is at most 2−(1+η)λ-close to uniform.
3 By concise description of the group, we mean a description of length poly(λ) that

allows performing group operations such as multiplication, inversion, equality testing
and sampling random elements.
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The second condition in Definition 5 can be verified as follows. For every
j ∈ [w] and every possible value of Aj , there are exactly |ext−1(yj)| possible
values Bj that Enc can output, and each of them is equally likely. Therefore,
each pair (Aj , Bj) subject to the condition ext(Bj · Ak

j ) = wj is equally likely
to be output by Enc, and thus the distribution output by Enc is identical to a
random ciphertext for the given plaintext. 
�

As noted above, we need to assume that Construction 9 is exponentially KDM
secure.

Assumption 10 (KDM security for the discrete-log based encryption).
Let λ ∈ N, w(λ) ∈ poly(λ). There exists a family of groups G(λ) (of effi-
ciently computable sizes N(λ), with efficiently computable generators, efficient
group operations, and efficient ext : G → {0, 1}) such that for all function f :
{1, . . . , 2λ} → {0, 1}w (including those that are not efficiently computable), the
following holds. For any polynomial-time adversary Adv, for a uniformly random
k ∈ {1, . . . , 2λ}; for each j ∈ [w], sample aj∈R{0, 1, ..., N}, Cj∈Rext

−1(f(k)j).
The probability that adversary outputs k on input (Aj = gaj , Bj = gajk ·Cj)j∈[w]

is smaller than 1
2λ·negl(λ) , i.e.

Pr
k∈R{1,...,2λ}

{aj∈R{0,1,...,N},Cj∈Rext−1(f(k)j)}j∈[w]

{Aj=gaj ,Bj=gajk·Cj}j∈[w]

[
Adv({Aj , Bj}j∈[w]) = k

]
≤ 1

2λ · negl(λ)

Thus, using Theorem 6, we obtain the following corollary.

Corollary 1. Suppose that Assumption 10 holds. Then, there exists correlation
intractable function for all sparse relations.

Remark 2. In Assumption 10, if the function f is a constant (i.e. is independent
of the key), the problem can be reduced from the discrete-log problem over G

with the key restricted to {1, . . . , 2λ}, i.e. computing k ∈ {1, . . . , 2λ} given g,
gk ∈ G. In the reduction, the discrete-log attacker, given g, gk, and f , can
sample (Aj , Bj)j∈[w] from the correct distribution, send over to the adversary in
Assumption 10.

Remark 3. We chose bit encryption for simplicity of notation. Instead of repre-
senting messages as bits, we can represent them in any base b, as long as there
is an efficient and nearly-regular map ext from G to {0, . . . , b − 1}. The regu-
larity requirement, however, is quite strong: because of the first requirement in
Definition 5, the preimage size of every digit under ext must be very close to the
average, so that the statistical distance between ext(G) and uniform is 2−(1+2η)λ.

We can use seeded extractors and put the seed in the public parameters.
Specifically, if we choose N to be at least 22(1+2η)λ · b and ext : G → [b] to be
a pairwise independent hash function, then for the average seed, by the leftover
hash lemma [54, Lemma 4.8], the output will be

√|G|/b = 2−(1+2η)λ-close to
uniform. This ensures that a good seed exists (nonconstructively). If want to
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make sure the average seed is good with all but exponential probability, we can
choose N to be at least 24(1+2η)λ · b instead. Then for the average seed, the
output will be

√|G|/b = 2−2(1+2η)λ-close to uniform, and therefore for all but a
1− 2−(1+2η)λ fraction of the seeds, it will be at least 2−(1+2η)λ-close to uniform,
as required.

An instantiation over elliptic curves groups. The group G and the extraction
function ext are chosen such that they avoid the known weakness instances of
the underlying ECDLP, and at the same time enjoy the statistical properties.

An elliptic curve group E(Fq) is represent by the curve E (in the short
Weierstrass form) over finite field Fq: E(Fq) = { (x, y) | y2 = x3+ax+b mod q }∪
O. Choose the curve (namely, choose a, b and q) so that q is an odd prime, the
order of the group #E(Fq) is a prime N > 2(1+2η)λ.

In the short Weierstrass form, if (x, y) ∈ E(Fq), then (x,−y) ∈ E(Fq). Any
point P whose y-coordinate is zero does not exist in a prime order group, since
P = (x, 0) implies the order of P is 2. So one option of the extraction function
ext : E(Fq) → {0, 1} is to take the sign of the y-coordinate of a point P = (x, y) ∈
E(Fq). To be precise, if y ∈ {1, ..., (q−1)/2}, output 1; if y ∈ {(q+1)/2, ..., q−1},
output 0. As an exception, if P = O, output 0.

6.2 LWE Based

The LWE based encryption scheme is a variant of Regev’s scheme [73]. We
remark that the hash function obtained by applying Construction 5 on Con-
struction 11 yields a variant of Ajtai’s hash function [3], in the sense that we
apply rounding on the output vector.

Construction 11. The message space is M = {Mλ}λ∈N, where Mλ =
{0, 1}w(λ) and w = w(λ) ∈ N. We construct an encryption scheme as follows.

– Public parameters generation PP-Gen(1λ): Fix an even number q(λ) as
the modulus. Select B(λ), 	(λ) ∈ N such that B� ∈ [2λ−log(λ), 2λ+log(λ)] and
B ≤ q. The public-parameters pp are (B, q, 	).

– Representation of the secret key: we view the secret key k ∈ {0, 1}λ as a
vector k ∈ {0, ..., B(λ) − 1}�(λ), written as a column vector.

– Encryption Enc(pp,k, y): Given a message y ∈ {0, 1}w. For j ∈ [w], sample
aj∈RZ

1×�
q . compute bj = yj · q

2+ej−aj ·k (mod q), where ej ← U([0, q/2)∩Z).
Output c = (aj , bj)j∈[w] as the ciphertext.

– Decryption Dec(pp,k, c): View c as (aj , bj)j∈[w]. For j ∈ [w], let the jth

output bit be 	bj + aj · k mod q
2, where 	·
2 : Zq → {0, 1} outputs 0 if the
input is from [0, q/2), 1 if the input is from [q/2, q − 1].

The parameters are set according to the following constraints to minimize
the adversary’s advantage on the KDM problem, and to guarantee the statistical
properties. The choices of parameters are guided by the reductions from the
worst case problems, as well as the known attacks (e.g. [7,8,16,60,61,75]), even
though some of the attacks were designed to achieve non-trivial (sub)exponential
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running time and do not clearly achieving non-trivial success probability when
running in polynomial time.

1. q is even so that we can get perfect ciphertext-universality.
2. The error term e is sampled uniformly from [0, q/2) ∩ Z, differing from the

typical setting of discrete Gaussian distribution. Noise sampled uniformly
from a sufficiently large range is as good as Gaussian for some parameter
settings [34,64]. In particular, q/2 is sufficiently large, even larger than the
typical settings of the norm of the noise.

3. B, 	, q are selected so that each coordinate of the secret vector has enough
entropy (i.e. B >

√
n), the vector dimension 	 is sufficiently close to λ, B/q

is not too small (i.e. q/B ∈ poly(λ)). One way of setting the parameter is to
let q = O(λ3), B(λ) = 2�log λ	, 	(λ) =

⌊
λ

�log λ	
⌉
.

We first show that the scheme satisfies the universal ciphertext requirement
(see Definition 5).

Proposition 3. The encryption scheme of Construction 11 has universal
ciphertexts.

Proof. The first property (as per Definition 5(1)) follows immediately from the
perfect 1-universality of the decryption function.

The second property (as per Definition 5(2)) can be verified as follows. For
j ∈ [w], the randomness in the encryption includes aj ∈ Z

1×�
q and the error term

ej ∈ Zq. For all y∗
j ∈ {0, 1} and k∗ ∈ {0, ..., B−1}�, (bj ,aj) ∈ Zq ×Z

n
q is sampled

uniformly random conditioned on bj +aj ·k∗ mod q ∈ y∗
j · q

2 +[0, q/2)∩Z. Viewing
the equality as a 1-universal function aj · k∗ mod q ∈ y∗

j · q
2 + [0, q/2) ∩ Z − bj

with key aj , the marginal distribution of aj is uniform over Z
1×�
q . Then, ej =

bj − y∗
j · q

2 + aj · k∗ is distributed uniformly over [0, q/2) ∩ Z. 
�
Assumption 12 (KDM security for LWE-based encryption). Let λ ∈
N, w(λ) ∈ poly(λ). For all functions f : {0, ..., B − 1}� → {0, 1}w (including
those who are not efficiently computable). The probably that any polynomial time
adversary Adv, given {aj ,aj ·k+ ej + fj(k) · q/2}j∈[w] where k∈R{0, ..., B −1}�,
aj∈RZ

1×�
q , ej∈R[0, q/2) ∩ Z, outputs k is smaller than 1

2λ·negl(λ) , i.e.

Pr
k∈R{0,...,B−1}�

{aj∈RZ
1×�
q ,ej∈R[0,q/2)∩Z,

bj=aj ·k+ej+fj(k)·q/2}j∈[w]

[
Adv({aj , bj}j∈[w]) = k

]
≤ 1

2λ · negl(λ)

Thus, using Theorem 6, we obtain the following corollary.

Corollary 2. Suppose that Assumption 12 holds. Then, there exists correlation
intractable function for all sparse relations.

Remark 4. In Assumption 12, if the function f is a constant (i.e. is independent
of the key), then the problem is equivalent to search-LWE (for the same distri-
butions of secret, noise, and public matrices, and the same requirement on the
success probability as described in Assumption 12).
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7 NIZK from Fiat-Shamir

In this section we show how to use our hash functions to construct non-interactive
zero-knowledge (NIZK) arguments for NP. We follow the folklore approach of
applying the Fiat-Shamir transformation to a constant-round public-coin honest-
verifier zero-knowledge proof-system. The point however is that we can establish
soundness based on a concrete assumption (with a meaningful security reduc-
tion) rather than just heuristically assuming that the Fiat-Shamir transforma-
tion preserves soundness. Further, we show that if we start from an interactive
proof with adaptive soundness (where the instance x can be chosen adaptively
in the last message), as in [38]; then in the resulting NIZK, the soundness and
zero-knowledge properties hold even if the instance is chosen adaptively given
the CRS.

We remark that for this result to go through we require an additional property
from the hash function family that we use, beyond correlation intractability.
Namely, that it is possible to efficiently sample a uniformly random hash function
h from the family, conditioned on h(a) = b, for some arbitrary fixed values a
and b. We refer to this property as “programmability”.

Definition 7 (Programmability of hash function). A hash function ensem-
ble H = {hk : D(λ) → C(λ)}λ∈N is called programmable if there exists an
efficient algorithm M that given x ∈ D(λ) and y ∈ C(λ), outputs a uniformly
random hash function hk from the family such that hk(x) = y.

Translating the requirement to the hash function instantiated using our
KDM-secure encryption scheme, it means the encryption algorithm given a key
a and message b outputs the ciphertext efficiently.

We recall the definition of NIZK with adaptive soundness and zero-knowledge.

Definition 8 (NIZK with adaptive soundness and ZK [17,38]). Let λ ∈
N be the security parameter. A non-interactive (computational) zero-knowledge
argument system (NIZK) for an NP language L ∈ NP, with witness relation RL,
is a pair of probabilistic polynomial-time algorithms (P, V ) such that:

– Completeness: For every x ∈ L and witness w for x (i.e., (x,w ∈ RL)), for
all σ ∈ {0, 1}poly(λ),

V
(
σ, x, P (x, σ, w)

)
= 1.

– Adaptive Soundness: For every polynomial-size cheating prover P ∗, we
have

Pr
σ∈R{0,1}poly(λ)

(x,a)←P ∗(σ)

[(
V (x, σ, a) = 1

) ∧ (
x /∈ L )]

< negl(λ).

– Adaptive Zero-Knowledge: There exists a probabilistic polynomial-time
simulator S = (S1, S2) such that for every polynomial time adversary A =
(A1, A2),
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∣∣∣∣∣ Pr
σ∈R{0,1}poly(λ)

(x,w,ζ)←A1(σ)
π←P (x,σ,w)

[(
A2(σ, x, π, ζ) = 1

) ∧ (
x ∈ L)]

− Pr
σ,τ←S1(1

λ)
(x,w,ζ)←A1(σ)
π←S2(τ,x,σ)

[(
A2(σ, x, π, ζ) = 1

) ∧ (
x ∈ L)]

∣∣∣∣∣ ≤ negl(λ),

where ζ (resp., τ) denote an internal state of the adversary (resp., simulator).

The random string σ received by both P and V is referred to as the common
random string or CRS.

We establish the following result.

Theorem 13. Assume there exists one-way functions and a programmable cor-
relation intractable function ensemble for all sparse relations. Then, any lan-
guage in NP has a non-interactive zero-knowledge argument-system with adaptive
soundness and adaptive zero-knowledge.

As a corollary of Theorem 13 and the results obtained in the previous sections,
we obtain that:

Corollary 3. If either Assumption 10 or Assumption 12 holds, then any lan-
guage in NP has a non-interactive zero-knowledge argument-system with adaptive
soundness and adaptive zero-knowledge.

The readers are referred to the full version [25] for the Proof of Theorem13.
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Appendices

A Success Probability of Polynomial Time Algorithms
on Discrete-Log Problem

The discrete-log problem over F∗
q can be solved by the index calculus algorithms

in heuristic subexponential time exp(C(log q)1/3(log log q)2/3).
We consider a (commonly used) variant of the index calculus algorithm

with an online phase and an offline phase. The offline (preprocessing) phase
only gets the modulus q and the generator g, the online phase gets the chal-
lenge h ≡ gx mod q, computes x. The offline part calculates the discrete
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log of logg(2), logg(3), ..., logg(B). The online phase picks a random r, try
to factorize gr · h ≡ gr+x mod q in Z, see if all the factors are smaller or
equal to a prescribed prime bound B. If gr · h = 2x2 · 3x3 · ... · BxB , then
r + x ≡ logg(2) · x2 + logg(3) · x3 + ... + logg(B) · xB mod φ(q).

The algorithm achieves O(2− λ
c ) success probability even if the online phase is

only allowed to run in polynomial time, and the preprocessing phase is allowed to
spend super-polynomial running time, but restricted to leave polynomially many
bits as the advice for the online phase. The analysis of the success probability
relies on the estimation of the number of smooth integers Ψ(q,B), which stands
for the number of integers in the range [1, q] whose factors are all under B.
Since the online phase is forced to receive only polynomial size advice and run
in polynomial time, B will be chosen as a polynomial, whereas q ≈ 2λ.

The smooth integer bound can be derived from Rankin [71] (see the survey
of [48]) that for any A > 1, Ψ(q, log(q)A) = q1−1/A+O( 1

log log q ). This means the
probability of a number within [1, 2λ] to be O(λc) smooth is 2− λ

c +O( λ
log λ ).
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Léo Ducas(B)

Cryptology Group, CWI, Amsterdam, The Netherlands
ducas@cwi.nl

Abstract. Asymptotically, the best known algorithms for solving the
Shortest Vector Problem (SVP) in a lattice of dimension n are sieve
algorithms, which have heuristic complexity estimates ranging from
(4/3)n+o(n) down to (3/2)n/2+o(n) when Locality Sensitive Hashing tech-
niques are used. Sieve algorithms are however outperformed by pruned
enumeration algorithms in practice by several orders of magnitude,
despite the larger super-exponential asymptotical complexity 2Θ(n log n)

of the latter.
In this work, we show a concrete improvement of sieve-type algo-

rithms. Precisely, we show that a few calls to the sieve algorithm in
lattices of dimension less than n − d solves SVP in dimension n, where
d = Θ(n/ log n).

Although our improvement is only sub-exponential, its practical effect
in relevant dimensions is quite significant. We implemented it over a sim-
ple sieve algorithm with (4/3)n+o(n) complexity, and it outperforms the
best sieve algorithms from the literature by a factor of 10 in dimensions
70–80. It performs less than an order of magnitude slower than pruned
enumeration in the same range.

By design, this improvement can also be applied to most other vari-
ants of sieve algorithms, including LSH sieve algorithms and tuple-sieve
algorithms. In this light, we may expect sieve-techniques to outperform
pruned enumeration in practice in the near future.

Keywords: Cryptanalysis · Lattice · Sieving · Nearest-Plane

1 Introduction

The concrete hardness of the Shortest Vector Problem (SVP) is at the core of
the cost estimates of attacks against lattice-based cryptosystems. While those
schemes may use various underlying problems (NTRU [HPS98], SIS [Ajt99],
LWE [Reg05]) their cryptanalysis boils down to solving large instances of the
Shortest Vector Problem inside BKZ-type algorithms. There are two classes of
algorithms for SVP: enumeration algorithms and sieve algorithms.

Supported by a Veni Innovational Research Grant from NWO under project number
639.021.645.

c© International Association for Cryptologic Research 2018
J. B. Nielsen and V. Rijmen (Eds.): EUROCRYPT 2018, LNCS 10820, pp. 125–145, 2018.
https://doi.org/10.1007/978-3-319-78381-9_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78381-9_5&domain=pdf


126 L. Ducas

The first class of algorithms (enumeration) was initiated by Pohst [Poh81].
Kannan [Kan83,HS07,MW15] proved that with appropriate pre-processing, the
shortest vector could be found in time 2Θ(n log n). This algorithm only requires
a polynomial amount of memory. These algorithms can be made much faster
in practice using some heuristic techniques, in particular the pruning tech-
nique [SE94,SH95,GNR10,Che13].

The second class of algorithms (sieving) started with Ajtai et al. [AKS01], and
requires single exponential time and memory. Variants were heuristically ana-
lyzed [NV08,MV10], giving a (4/3)n+o(n) time complexity and a (4/3)n/2+o(n)

memory complexity. A long line of work, including [BGJ13,Laa15a,Laa15b,
BDGL16] decrease this time complexity down to (3/2)n/2+o(n) at the cost of
more memory. Other variants (tuple-sieving) are designed to lower the memory
complexity [BLS16,HK17].

The situation is rather paradoxical: asymptotically, sieving algorithms should
outperform enumeration algorithms, yet in practice, sieving remains several
orders of magnitude slower. This situation makes security estimates delicate,
requiring both algorithms to be considered. In that respect, one would much
prefer enumeration to become irrelevant, as the heuristics used in this algorithm
makes prediction of its practical cost tedious and maybe inaccurate.

To this end, an important goal is to improve not only the asymptotic complex-
ity of sieving, but also its practical complexity. Indeed, much can been gained
from asymptotically negligible tricks, fine-tuning of the parameters, and opti-
mized implementation effort [FBB+15,BNvdP14,MLB17].

This work. We propose a new practical improvement for sieve algorithms. In
theory, we can heuristically show that it contributes a sub-exponential gain in
the running time and the memory consumption. In practice, our implementa-
tion outperforms all sieving implementations of the literature by a factor of 10
in dimensions 70–80, despite the fact that we did not implement some known
improvements [BDGL16,MLB17]. Our improved sieving algorithm performs rea-
sonably close to pruned enumeration; more precisely, within less than an order
of magnitude of the optimized pruned enumeration implementation in fplll’s
library [Ste10,FPL16b,FPL16a].1

In brief, the main idea behind our improvement is exploiting the fact that
sieving produces many short vectors, rather than only one. We use this fact to our
advantage by solving SVP in lattices of dimension n while running a sieve algo-
rithm in projected sub-lattices of dimension smaller than n−d. Using an appro-
priate pre-processing, we show that one may choose d as large as Θ(n/ log n).
Heuristic arguments lead to a concrete prediction of d ≈ n ln(4/3)

ln(n/2πe) . This predic-
tion is corroborated by our experiments.

At last, we argue that, when combined with the LSH techniques [BDGL16,
MLB17], our new technique should lead to a sieve algorithm that outperforms

1 Please note that this library was not so fast for SVP and BKZ a few years ago
and it recently caught up with the state of the art with the addition of a pruner

module [FPL16b], and of an external Strategizer [FPL16a].
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enumeration in practice, for dimensions maybe as low as n = 90. We also suggest
four approaches to further improve sieving, including amortization inside BKZ.

Outline. We shall start with preliminaries in Sect. 2, including a generic pre-
sentation of sieve algorithms in Sect. 2.3. Our main contribution is presented
in Sect. 3. In Sect. 4, we present details of our implementation, including other
algorithmic tricks. In Sect. 5 we report on the experimental behavior of our
algorithm, and compare its performances to the literature. We conclude with
a discussion in Sect. 6, on combining our improvement with the LSH tech-
niques [Laa15a,BDGL16,MLB17], and suggest further improvements.

2 Preliminaries

2.1 Notations and Basic Definitions

All vectors are denoted by bold lower case letters and are to be read as column-
vectors. Matrices are denoted by bold capital letters. We write a matrix B as
B = (b0, · · · ,bn−1) where bi is the i-th column vector of B. If B ∈ R

m×n

has full-column rank n, the lattice L generated by the basis B is denoted by
L(B) = {Bx | x ∈ Z

n}. We denote by (b∗
0, · · · ,b∗

n−1) the Gram-Schmidt orthog-
onalization of the matrix (b0, · · · ,bn−1). For i ∈ {0, · · · , n − 1}, we denote the
orthogonal projection to the span of (b0, · · · ,bi−1) by πi. For 0 ≤ i < j ≤ n,
we denote by B[i,j] the local projected block (πi(bi), · · · , πi(bj−1)), and when
the basis is clear from context, by L[i,j] the lattice generated by B[i,j]. We use
Bi and Li as shorthands for B[i,n] and L[i,n].

The Euclidean norm of a vector v is denoted by ‖v‖. The volume of a lattice
L(B) is Vol(L(B)) =

∏
i ‖b∗

i ‖, that is an invariant of the lattice. The first
minimum of a lattice L is the length of a shortest non-zero vector, denoted by
λ1(L). We use the abbreviations Vol(B) = Vol(L(B)) and λ1(B) = λ1(L(B)).

2.2 Lattice Reduction

The Gaussian Heuristic predicts that the number |L ∩ B| lattice of points inside
a measurable body B ⊂ R

n is approximately equal to Vol(B)/Vol(L). Applied to
Euclidean n-balls, it leads to the following prediction of the length of a shortest
non-zero vector in a lattice.

Definition 1 (Gaussian Heuristic). We denote by gh(L) the expected first
minimum of a lattice L according to the Gaussian Heuristic. For a full rank
lattice L ⊂ R

n, it is given by:

gh(L) =
√

n/2πe · Vol(L)1/n.

We also denote gh(n) for gh(L) of any n-dimensional lattice L of volume 1:
gh(n) =

√
n/2πe.
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Definition 2 (Hermite-Korkine-Zolotarev and Block-Korkine-Zolotarev

reductions [Ngu09]). The basis B = (b0, . . . ,bn−1) of a lattice L is said to
be HKZ reduced if ‖b∗

i ‖ = λ1(L(Bi)) for all i < n. It is said BKZ reduced
with block-size b (for short BKZ-b reduced) ‖b∗

i ‖ = λ1(L(B[i:max(i+b,n)])) for all
i < n.2

Under the Gaussian Heuristic, we can predict the shape �0 . . . �n−1 of an HKZ
reduced basis, i.e., the sequence of expected norms for the vectors b∗

i . The
sequence is inductively defined as follows:

Definition 3. The HKZ-shape of dimension n is defined by the following
sequence:

�0 = gh(n) and �i = gh(n − i) · ( ∏

j<i

�j

)− 1
n−i .

Note that the Gaussian Heuristic is known to be violated in small dimen-
sions [CN11], fortunately we only rely on the above prediction for i � n.

Definition 4 (Geometric Series Assumption). Let B be a BKZ-b reduced
basis of a lattice of volume 1. The Geometric Series Assumption states that:

‖b∗
i ‖ = α

n−1
2 −i

b

where αb = gh(b)2/b.

This model is reasonably accurate in practice for b > 50 and b � n. For
further discussion on this model and its accuracy, the reader may refer to
[CN11,Che13,YD16].

2.3 Sieve Algorithms

There are several variants of sieving algorithms, even among the restricted class
of Sieving algorithms having asymptotic complexity (4/3)n+o(n) [NV08,MV10].
Its generic form is given below.

Algorithm 1. Sieve(L)
Require: The basis B of a lattice L of dimension n
Ensure: A list L of vectors

L ← a set of N random vectors (of length at most 2n · Vol(L)1/n) from L where
N = (4/3)n/2+o(n).
while ∃(v,w) ∈ L2 such that ‖v − w‖ < ‖v‖ do

v ← v − w
end while
return L

2 The notion of BKZ-reduction is typically slightly relaxed for algorithmic purposes,
see [HPS11].
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The initialization of the list L can be performed by first computing an LLL-
reduced basis of the lattice [LLL82], and taking small random linear combina-
tions of that basis.

Using heuristic arguments, one can show [NV08] that this algorithm will ter-
minate in time N2 · poly(n), and that the output list contains a shortest vector of
the lattice. The used heuristic reasoning might fail in some special lattices, such as
Z

n. However, nearly all lattices occurring in a cryptographic context are random-
looking lattices, for which these heuristics have been confirmed extensively.

Many tricks can be implemented to improve the hidden polynomial factors.
The most obvious one consists of working modulo negation of vectors (halving
the list size), and to exploit the identity ‖v±w‖2 = ‖v‖2 +‖w‖2 ±2〈v,w〉: two
reductions can be tested for the price of one inner product.

More substantial algorithmic improvements have been proposed in [MV10]:
sorting the list by Euclidean length to make early reduction more likely, hav-
ing the list size be adaptive, and having a queue of updated vectors to avoid
considering the same pair several times. Another natural idea used in [MLB17]
consists of strengthening the LLL-reduction to a BKZ-reduction with medium
block-size, so as to decrease the length of the initial random vectors.

One particularly cute low-level trick proposed by Fitzpatrick et al. [FBB+15]
consists of quickly rejecting pairs of vectors depending on the Hamming weight
of the XOR of their bit signs. We shall re-use (a variant of) this trick in our
implementation. This technique is in fact well known in the Nearest-Neighbor-
Search (NNS) literature [Cha02], and sometimes referred to as SimHash.

The N2 factor may also be improved to a sub-quadratic factor N c, 1 <
c < 2 using advanced NNS data-structures [Laa15a,Laa15b,BDGL16]. While
improving the exponential term, those techniques introduce extra hidden sub-
exponential factors, and typically require more memory.3 In practice these
improvements remain substantial [MLB17]. Yet, as the new improvements pre-
sented in this paper are orthogonal, we leave it to the interested reader to consult
this literature.

3 The SubSieve Algorithm and its Analysis

3.1 Approach

Our improvements rely on the remark that the output of the sieve contains much
more information than a shortest vector of L. Indeed, the analysis of [NV08,
MV10] suggests that the outputted list contains the N shortest vector of the
lattice, namely, all the vectors of the lattice of length less than

√
4/3 · gh(L).

We proceed to exploit this extra information by solving SVP in a lattice of
larger dimension. Let us choose an index d, and run the sieve in the projected
sub-lattice Ld, of dimension n − d. We obtain the list:

L := Sieve(Ld) = {x ∈ Ld \ {0}| ‖x‖ ≤
√

4/3 · gh(Ld)}. (1)
3 Becker et al. [BGJ15] proposed a way to not require extra memory, yet it may hide

an extra polynomial factor on time.
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Our hope is that the desired shortest non-zero vector s (of expected length
gh(L)) of the full lattice L projects to a vector contained in L, i.e. πd(s) ∈ L or
equivalently by Eq. (1), that ‖πd(s)‖ ≤ √

4/3 gh(Ld). Because ‖πd(s)‖ ≤ ‖s‖ =
gh(L), it is sufficient that:

gh(L) ≤
√

4/3 · gh(Ld). (2)

In fact, we may relax this condition, as we rather expect the projection to be
shorter: ‖πd(s)‖ ≈ √

(n − d)/n‖s‖ assuming the direction of s is uniform and inde-
pendent of the basis B. More precisely, it will happen with constant probability
that ‖πd(s)‖ ≤ √

(n − d)/n‖s‖. Instead we may therefore optimistically require:
√

n − d

n
· gh(L) ≤

√
4/3 · gh(Ld). (3)

We are now searching for a vector s ∈ L such that ‖s‖ ≈ gh(L), and such
that sd := πd(s) ∈ L. By exhaustive search over the list L, let us assume we
know sd; we now need to recover the full vector s. We write s = Bx and split
x = (x′,x′′) where x′ ∈ Z

d and x′′ ∈ Z
n−d. Note that sd = πd(Bx) = Bdx′′, so

we may recover x′′ from sd.
We are left with the problem of recovering x′ ∈ Z

d such that B′x′ + B′′x′′

is small where [B′|B′′] = B, i.e., finding the short vector s in the lattice coset
L(B′) − B′′x.

For appropriate parameters, this is an easy BDD instance over the d-
dimensional lattice spanned by B′. More precisely, a sufficient condition to solve
this problem using Babai’s Nearest-Plane algorithm [Bab86] is that |〈b∗

i , s〉| ≤
1
2‖b∗

i ‖2 for all i < d. A sufficient condition is that:

gh(L) ≤ 1
2

min
i<d

‖b∗
i ‖. (4)

This conditions is far from tight, and in practice should not be a serious issue.
Indeed, even for a strongly reduced basis, the d first Gram-Schmidt lengths won’t
be much smaller than gh(L), say by more than a factor 2. On the other hand assum-
ing s has a random direction we expect |〈b∗

i , s〉| ≤ ω(ln n)/
√

n · ‖b∗
i ‖ · ‖s‖ except

with super-polynomially small probability. We will check this condition in the com-
plexity analysis below (Sect. 3.2), and will simply ignore it in the rest of this paper.

Algorithm 2. SubSieve(L, d)
Require: The basis B = [B′|B′′] of a lattice L of dimension n
Ensure: A short vector of L

L ← Sieve(Ld)
for each wi ∈ L do

Compute x′′
i such that Bd · x′′

i = wi

ti = B′′ · x′′

si ← Babai(B′, ti) + ti

end for
return the shortest si
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Heuristic Claim 1. For a random lattice, and under conditions (2) and (4),
SubSieve(L, d) outputs the shortest vector of L, and its complexity is dominated
by the cost N2 · poly(n) of Sieve(Ld), with an additive overhead of n2 · N real
arithmetic operations.

We note that the success of our approach depends crucially on the length
of the Gram-Schmidt norms ‖b∗

i ‖ (indeed for a fixed d, gh(Ld) depends only of∏
i≥d ‖b∗

i ‖). In the following Sect. 3.2, we will argue that our approach can be
successfully instantiated with d = Θ(n/ ln n) using an appropriate pre-processing
of negligible cost.

3.2 Complexity Analysis

Assume that our lattice L has volume 1 (without loss of generality by scal-
ing), and that its given basis B is BKZ-b reduced. Using the Geometric Series
Assumption (Definition 4) we calculate the volume of Ld:

Vol(Ld) =
n−1∏

i=d

‖b∗
i ‖ =

n−1∏

i=d

α
n−1
2 −i

b = α
d(d−n)/2
b .

Recalling that for a k-dimensional lattice we have gh(L) ≈ Vol(L)1/k
√

k/(2πe),
condition (2) is rewritten to

√
n

2πe
≤

√
4
3

·
√

n − d

2πe
· α

−d/2
b .

Taking logarithms, we rewrite the above condition as

d ln αb ≤ ln(4/3) + ln(1 − d/n).

We (arbitrarily) choose b = n/2 which ensures that the cost of the BKZ-
preprocessing is negligible compared to the cost of sieving in dimension n−o(n).
Unrolling the definitions, we notice that lnαb = Θ((ln b)/b) = Θ((ln n)/n). We
conclude that condition (2) is satisfied for some d = Θ(n/ ln n).

The second condition (4) for the correctness of Babai lifting is easily satisfied:
for i < d = o(n) we have ‖b∗

i ‖ = gh(b)(n−o(n))/b = gh(b)2−o(1) = n1−o(1), while
gh(n) = Θ(n1/2). This concludes our argument of the following claim.

Heuristic Claim 2. Having preprocessed the basis B of L with the BKZ algo-
rithm with blocksize b = n/2—for a cost of at most poly(n) time the cost of Sieve
in dimension n/2—our SubSieve(L, d) algorithm will find the shortest vector of
L for some d = Θ(n/ ln n).

In particular, SubSieve(L, d) is faster than Sieve(L) by a sub-exponential fac-
tor 2Θ(n/ lnn).

The fact that BKZ-b requires only poly(n) calls to an SVP oracle in dimension
b is justified in [HPS11].



132 L. Ducas

3.3 (Progressive) Iteration as Pre-processing

We now propose an alternative approach to provide pre-processing in our con-
text. It consists of applying an extension of the SubSieve algorithm iteratively
from a weakly reduced basis to a strongly reduced one. To proceed, we first need
to slightly extend our algorithm, to not only provide one short vector, but a
partial basis V = [v0| . . . |vm] of rank m, such that their Gram-Schmidt lengths
are as short as possible. In other words, the algorithm now attempts to provide
the first vectors of an HKZ-reduced basis. For all practical purpose, m = n/2 is
sufficiently large. This extension comes at a negligible additional cost of O(n3)·N
compared to the sieve of complexity poly(n) · N2.

Algorithm 3. SubSieve+(L, d)
Require: The basis B = [B′|B′′] of a lattice L of dimension n
Ensure: A short vector of L

L ← Sieve(Ld)
for each wi ∈ L do

Compute x′′
i such that Bd · x′′

i = wi

ti = B′′ · x′′

si ← Babai(B′, ti) + ti

end for
for j = 0 . . . n/2 − 1 do

Set vj to be the si vector minimizing ‖π(v0...vj−1)⊥(si)‖ such that s �∈
Span(v0 . . .vj−1)
end for
return (v0 . . .vn/2−1)

Then, the iteration consists of completing V into a basis of L, and to use it
as our new input basis B.4

Additionally, as conditions (2) or even its optimistic variant (3) are not nec-
essary conditions, we may hope that a larger value of d may probabilistically
lead faster to the shortest vector. In fact, hoping to obtain the shortest vector
with d larger than required by the pessimistic condition (2) can be interpreted
in the pruning framework of [GNR10,Che13]; this will be discussed in Sect. 6.2.

For this work, we proceed with a simple strategy, namely we iterate starting
with a large value of d (say n/4) and decrease d by 1 until the shortest vector (or
a vector of the desired length) is found. This way, the failed attempts with too
small d nevertheless contribute to the approximate HKZ-reduction, improving
the basis for the next attempt.

4 This can be done by applying LLL [LLL82] on the matrix [V|B], which eliminates
linear dependencies. As LLL can only decrease partial determinants, the volume of
the first d-vectors after this process can only be smaller than the volume of V: this
does not affect condition (2) and (3).
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The author admit to have no theoretical arguments (or even heuristic) to jus-
tify that this iterating approach should be more efficient than the preprocessing
approach presented in Sect. 3.2. Yet, as we shall see, this method works quite
well in practice, and has the advantage of being much simpler to implement.

Remark. One natural tweak is to also consider the vectors in B′ when construct-
ing the new partial basis V so as to ensure that the iteration never introduces
a regression. Yet, as the optimistic condition is probabilistic, we may get stuck
with an unlucky partial basis, and prefer to change it at each iteration. This is
reminiscent of the rerandomization of the basis in the extreme pruning technique
of Gama et al. [GNR10]. It is therefore not entirely clear if this tweak should be
applied. In practice, we noted that applying this trick made the running time
of the algorithm much more erratic, making it hard to determine if it should be
better on average. For the sake of this initial study, we prefer to stick with the
more stable version of the algorithm.

3.4 Tentative Prediction of d on Quasi-HKZ Reduced Basis

We now attempt to estimate the concrete maximal value d allowing our algo-
rithm to succeed. We nevertheless warn the reader against strong conclusions
on the concrete hardness of SVP from the analysis below. Indeed, it does not
capture some practical phenomena, such as the fact that (1) is not strictly true
in practice,5 or more subtly that the directions of the vectors of B are not inde-
pendent of the direction of the shortest vector s when B is so strongly reduced.
Additionally, we identify in Sect. 6.2 avenues for improvements that could make
this analysis obsolete.

We work under the heuristic assumption that the iterations up to dlast − 1
have almost produced an HKZ-reduced basis: ‖b∗

i ‖ ≈ �i where �i follows the
HKZ-shape of dimension n (Definition 3). From there, we determine whether
the last iteration with d = dlast should produce the shortest vector according to
both the pessimistic and optimistic condition. For i � n we use the first order
approximation ln �i ≈ ln �0 − i · ln �0/�1 and obtain

ln �i ≈ ln �0 − i · ln(n/2π)
2n

.

The pessimistic condition (2) and the optimistic condition (3) respectively
rewrite as:

ln �0 ≤ ln
√

4/3 + ln �d and ln

√
n − d

n
+ ln �0 ≤ ln

√
4/3 + ln �d.

With a bit of rewriting, we arrive at the following maximal value of d respectively
under the following pessimistic and optimistic conditions:

d ≈ n ln 4/3
ln(n/2π)

and d ≈ n ln 4/3
ln(n/2πe)

.

5 Some vectors below the
√

4/3 · gh(Ld) bound may be missing, while other vectors
above this bound may be included.
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We can also numerically simulate more precisely the maximal value of d using
the exact values of the �i. All four predictions are depicted on Fig. 1. Our plots
start at dimension 50, the conventional cut-off for the validity of the Gaussian
Heuristic [GN08,Che13]. We note that the approximated predictions are accu-
rate, up to an additive term 2 over the value of d for relevant dimensions n ≤ 250.
We also note that in this range the dimension gain d looks very much linear: for
all practical concerns, our improvement should appear essentially exponential.

Fig. 1. Predictions of the maximal successful choice of d, under various methods and
conditions.

4 Other Optimizations and Implementation Details

In this section, we describe a baseline sieve algorithm and two additional tricks
to improve its practical efficiency. So as to later report the improvement brought
by each trick and by our main contribution, we shall refer to 4 versions of our
algorithm, activating one feature at the time:

– V0: GaussSieve baseline implementation
– V1: GaussSieve with XOR-POPCNT trick
– V2: GaussSieve with XOR-POPCNT trick and progressive sieving
– V3: Iterated SubSieve+ with XOR-POPCNT trick and progressive sieving.

4.1 Baseline Implementation

As a baseline algorithm, we essentially use the Gauss-Sieve algorithm of [MV10],
with the following tweaks.

First, we do not resort to Gaussian Sampling [Kle00] for the construction of
the list L as the sphericity of the initial list does not seem so crucial in practice,
and leads to starting the sieve with vectors longer than necessary. Instead, we
choose vectors by sampling their n/4 last coordinates in base B uniformly in
{0,±1,±2}, and choose the remaining coordinates deterministically using the
Babai Nearest-Plane algorithm [Bab86].
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Secondly, we do not maintain the list perfectly sorted, but only re-sort it
periodically. This makes the implementation somewhat easier6 and does not
affect performances noticeably. Similarly, fresh random vectors are not inserted
in L one by one, but in batches.

Thirdly, we use a hash table to prevent collisions: if v ± w is already in the
list, then we cancel the reduction v ← v ± w. Our hash function is defined as
random linear function h : Zn → Z/264Z tweaked so that h(x) = h(−x); hashing
is fast, and false collisions should be very rare. This function is applied to the
integer coordinates of the vector in base B.

At last, the termination condition is as follows: the algorithm terminates
when no pairs can be reduced, and when the ball of radius

√
4/3 gh(L) is half-

saturated according to the Gaussian Heuristic, i.e. when the list L contains at
least 1

2

√
4/3

n
vectors of length less than

√
4/3 gh(L).

At the implementation level, and contrary to most implementations of the
literature, our implementation works by representing vectors in bases B and
B∗ rather than in the canonical basis of R

n. It makes application of Babai’s
algorithm [Bab86] more idiomatic, and should be a crucial feature to use it as
an SVP solver inside BKZ.

4.2 The XOR-POPCNT Trick (a.k.a. SimHash)

This trick—which can be traced back to [Cha02]—was developed for sieving
in [FBB+15]. It consists of compressing vectors to a short binary representation
that still carries some geometrical information: it allows for a quick approxima-
tion of inner-products. In more detail, they choose to represent a real vector
v ∈ R

n by the binary vector ṽ ∈ Z
n
2 of it signs, and compute the Hamming

weight H = |w̃⊕ ṽ| to determine whether 〈v,w〉 is expected to be small or large
(which in turn informs us about the length ‖v−w‖2 = ‖v‖2 + ‖w‖2 − 2〈v,w〉).
If H is small enough then the exact length is computed, otherwise the pair is
directly rejected.

This trick greatly decreases the practical computational cost and the mem-
ory bandwidth of the algorithm, in particular by exploiting the native POPCNT
instruction available on most modern CPUs.

Following the original idea [Cha02], we use a generalized version of this trick,
allowing the length of the compressed representation to differ from the lattice
dimension. Indeed, we can for example choose c �= n vectors r1, . . . , rc, and
compress v as ṽ ∈ Z

c
2 where ṽi = sign(〈v, ri〉). This allows not only to align c to

machine-word size, but also to tune the cost and the fidelity of this compressed
representation.

In practice we choose c = 128 (2 machine words), and set the ri’s to be sparse
random ternary vectors. We set the acceptance threshold to |w̃⊕ṽ| < 47,7 having

6 It avoids resorting to non-contiguous containers, following the nomenclature of c++

standard library.
7 Of course, we also test whether |w̃ ⊕ ṽ| > 128 − 47 in which case we attempt the

reduction v ← v + w instead of v ← v − w.
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optimized this threshold by trial and error. Experimentally, the overall positive
rate of this test is of about 2%, with a false negative rate of less than 30%. The
sieve algorithm automatically compensates for false-negatives by increasing the
list size.

4.3 Progressive Sieving

The trick described in this section was independently invented by Laarhoven and
Mariano in [LM18]; and their work provides a much more thorough investigation
of it. It consists of progressively increasing the dimension, first running the sieve
in sublattices L[0,i] for i increasing from (say) n/2 to n.8

It allows us to obtain an initial small pool of rather short vectors for a
much cheaper cost. In turn, when we increase the dimension and insert new
fresh vectors, the long fresh vectors get shorter noticeably faster thanks to this
initial pool. We use the same terminating condition over L[0,i] to decide when
to increase i than the one described over the full lattice in Sect. 4.1.

4.4 Implementation Details

The core of the our Sieving implementation is written in c++ and the high level
algorithm in python. It relies mostly on the fpylll [FPL16c] python wrapper
for the fplll [FPL16b] library, used for calls to floating-point LLL [Ste10] and
providing the Gram-Schmidt orthogonalization. Our code is not templated by the
dimensions, doing so could improve the performance substantially by allowing
the compiler to unroll and vectorize the inner-product loop.

Our implementation is open source, available at https://github.com/lducas/
SubSieve.

5 Experiments and Performances

In this section, we report on the behavior in practice of our algorithm and the
performances of our implementation. All experiments were ran on a single core
(Intel Core i7-4790 @3.60 GHz).

For these experiments, we use the Darmstadt lattice challenges [SG10]. We
make a first run of fplll’s pruned enumeration (repeating it until 99% success
probability) to determine the exact shortest vector.9 Then, for our experiments,
we stop our iteration of the SubSieve+ algorithm when it returns a vector of the
same length.

8 Note that unlike in our main algorithm SubSieve, the sublattices considered here are
not projected sublattices, but simply the lattice spanned by the first basis vectors.

9 Which is significantly harder than finding the approximation required by [SG10] to
enter in the hall of fame.

https://github.com/lducas/SubSieve
https://github.com/lducas/SubSieve
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5.1 The Dimension Gain d in Practice

In Fig. 2, we compare the experimental value of d to the predictions of Sect. 3.4.
The area of each disc at position (n, d) is proportional the number of experiments
that succeeded with dlast = d. We repeated the experiment 20 times for each
dimension n.

Fig. 2. Comparison between experimental value of d with the prediction of Sect. 3.4.

We note that the average dlast fits reasonably well with the simulated opti-
mistic prediction. Also, in the worst case, it is never lower than the simulated
pessimistic prediction, except for one outlier in dimension 62.

Remark. The apparent erratic behavior of the average for varying n is most
likely due to the fact that our experiments are only randomized over the input
basis, and not over the lattice itself. Indeed the actual length of the shortest
vectors vary a bit around the Gaussian Heuristic, and it seems that the shorter
it actually is, the easier it is to find with our algorithm.

5.2 Performances

We present in Fig. 3 the perfomances of the 4 versions of our implementation
and of fplll’s pruned enumeration with precomputed strategies [FPL16a].

Remark. In fplll, a strategy consists of the choice of a pre-processing blocksize
b and of pruning parameters for the enumeration, as an attempt to reconstruct
the BKZ 2.0 algorithm of Chen and Nguyen [CN11].

The external program Strategizer [FPL16a] first applies various descent
techniques to optimize the pruning parameters, following the analysis of [GNR10,
CN11,Che13], and iterates over all (reasonable) choices of b, to return the best
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Fig. 3. Runing time T of all the 4 versions of sieving from 4 and fplll’s pruned
enumeration with precomputed strategies.

strategy for each dimension n. It may be considered near the state of the art,
at least for the dimensions at hand. Unfortunately, we are unaware of timing
reports for exact-SVP in this range of dimensions for other implementations.

It would also be adequate to compare ourselves to the recent discrete-pruning
techniques of Fukase and Kashiwabara [FK15,AN17], but again, we lack match-
ing data. We note that neither the analysis of [AN17] nor the experiments
of [TKH18] provide evidences that this new method is significantly more effi-
cient than the method of [GNR10].

For a fair comparison with SubSieve, we stop repeating the pruned enumera-
tion as soon as it finds the shortest vector, without imposing a minimal success
probability (unlike the first run used to determine the of length shortest vec-
tors). We also inform the enumerator of the exact length of that shortest vector,
making its task somehow easier: without this information, it would enumerate
at a larger radius.

As Algorithms V0, V1 and V2 have a rather deterministic running time
depending only on the dimension, we only provide one sample. For V3 and
enumeration, we provide 20 samples. To compute the fits, we first averaged the
running times for each dimension n, and then computed the least-square linear
fit of their logarithms (computing directly an exponential least-square fit leads
to a fit only capturing the two last dimensions).

The given fits are only indicative and we warn against extrapolations. In
particular, we note that the linear fit of V3 is below the heuristic asymptotic
estimate of (4/3)n+o(n).
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We conclude that our main contribution alone contributes a speed-up of
more than an order of magnitude in the dimensions ≥70 (V3 versus V2), and
that all the tricks taken together provide a speed-up of more than two orders of
magnitudes (V3 versus V0). It performs within less than an order of magnitude
of enumeration (V3 versus Pruned Enum).

5.3 Performance Comparison to the Literature

The literature on lattice sieving algorithms is vast [NV08,MV10,BGJ13,Laa15a,
Laa15b,BDGL16,BLS16,HK17], and many papers do report implementation
timings. We compare ourselves to four of them, namely a baseline implemen-
tation [MV10], and three advanced sieve implementations [FBB+15,MLB17,
HK17], which represent (to the best of our knowledge) the state of the art in
three different directions. This is given in Table 1.

Accounting for the CPU frequencies, we conclude that the implementation of
our algorithm is more than 10 times faster than the current fastest sieve, namely
the implementation of the Becker et al. algorithm [BDGL16] from Mariano
et al. [MLB17].10

Remark. While we can hardly compare to this computation considering the lack
of documentation, we note that T. Kleinjung holds the record for the shortest

Table 1. Comparison with other Sieve implementations.

Features Algorithms

V0 V1 V2 V3 [MV10]a [FBB+15] [MLB17] [HK17]

XOR-POPCNT trick x x x x

Progressive sieving x x

SubSieve x

LSH (more mem.) x

tuple (less mem.) x

Dimension Running times

n = 60 227 s 49s 8 s .9 s 464 s 79 s 13 s 1080 s

n = 70 - - 276 s 10 s 23933 s 4500 s ≈250 s b 33000 s

n = 80 - - - 234 s - - 4320 s 94700 s

CPU frequency (GHz) 3.6 3.6 3.6 3.6 4.0 4.0 2.3 2.3
a As reported by [FBB+15].
b This value is not given in [MLB17] as their implementation only handles dimensions
that are multiples of 4. We estimated it from the given values for n = 68 (169 s) and
n = 72 (418 s).

10 The CPU frequency may not be the only property of the machines to take account of
for a perfect comparison: memory access delay, memory bandwidth and cache sizes
may have noticeable impacts.
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vector found in Darmstadt Lattice challenge [SG10] of dimension 116 (seed 0),
since May 2014, and reported having used a sieve algorithm. According to Herold
and Kirshanova [HK17, Acknowledgments], the algorithm used by Kleinjung is
similar to theirs.

Another Sieving record was achieved by Bos et al. [BNvdP14], for an ideal
lattice of dimension 128, exploiting symmetries of ideal lattices to improve time
and memory substantially. The computation ran over 1024 cores for 9 days.
Similar computation have been run on GPU’s [YKYC17], using 8 GPU’s for
about 35 days.

6 Conclusion

6.1 Sieve will Outperform Enumeration

While this statement is asymptotically true, it was a bit unclear where the cross-
over should be, and therefore whether sieving algorithms have any practical
relevance for concrete security levels. For example, it is argued in [MW16] that
the cross-over would happen somewhere between n = 745 and n = 1895.

Our new results suggest otherwise. We do refrain from computing a cross-
over dimension from the fits of Fig. 3 which are far from reliable enough for such
an extrapolation; our prediction is of a different nature.

Our prediction is that—unless new enumerations techniques are discovered—
further improvements of sieving techniques and implementations will outperform
enumeration for exact-SVP in practice, for reachable dimensions, maybe even
as low as n = 90. This, we believe, would constitute a landmark result. This
prediction is backed by the following guesstimates, but also by the belief that
fine-tuning, low-level optimizations and new ideas should further improve the
state of the art. Some avenues for further improvements are discussed in Sect. 6.2.

Guesstimates. We can try to guesstimate how our improvements would combine
with other techniques, in particular with List-Decoding Sieve [BDGL16]. The
exact conclusion could be affected by many technical details, and is mostly meant
to motivate further research and implementation effort.

Mariano et al. [MLB17] report a running time of 1850s for LDSieve [BDGL16]
in dimension n = 76. First, the XOR-POPCNT trick is not orthogonal to LSH tech-
niques, so we shall omit it.11 The progressive sieving trick provides a speed up
of about 4 in the relevant dimensions (V1 vs V2). Then, our main contribution
offers 14 dimensions “for free”, (n = 90, dlast = 14). More accurately, the itera-
tion for increasing d would come at cost a factor

∑
i≥0(

3
2 )−i/2 ≈ 5.5. Overall we

may expect to solve exact-SVP 90 in time ≈ 5.5 · 1850/4 ≈ 2500 s. In compar-
ison, fpylll’s implementation of BKZ 2.0 [CN11] solved exact-SVP in average
time 2612 s over Darmstadt lattice challenge 90 (seed 0) over 20 samples on our
machine. For a fairer comparison across different machines, this Enumeration
timing could be scaled up by 3.6GHz/2.3GHz ≈ 1.5.

11 It could still be that, with proper tuning, combining them gives an extra speed-up.
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6.2 Avenues for Further Improvements

Pruning in SubSieve. As we mentioned in Sect. 3.3, our optimistic condition (3)
can be viewed as a form of pruning: this condition corresponds in the framework
of [GNR10,Che13] to a pruning vector of the form (1, 1, . . . , 1, γ, . . . γ) ∈ R

n with
d many 1’s, and γ = (n − d)/n. A natural idea is to attempt running SubSieve
using γ < (n − d)/n, i.e. being even more optimistic than condition (3). Indeed,
rather than cluelessly increasing d at each iteration, we could compute for each
d the success probability, and choose the value of d giving the optimal cost over
success probability ratio.

Walking beyond
√
4/3·gh(Ld). Noting m = n− d, another idea could consist

of trying to get more vectors than the
√

4/3
m

shortest for a similar or slightly
higher cost than the initial sieve, as this would allow d to increase a little bit.
For example, we can extract the sublist A of all the vectors of length less than
α · gh(Ld) where α ≤ √

4/3 from the initial sieve, and use them to walk inside
the ball of radius β · gh(Ld) ≥ √

4/3 where α
β

√
β2 − α2/4 = 1. Indeed, one can

show that the volume of (v + αB) ∩ (βB) = Ω(nc) for some constant c, where
‖v‖ = β. According to the Gaussian Heuristic, this means that from any lattice
point in the ball of radius β + ε, there exists a step in the list A that leads to
another lattice point in the ball of radius β + ε, for some ε = o(1). This kind of
variation have already been considered in the Sieving literature [BGJ13,Laa16].

Each step of this walk would cost αm and there are βm+o(m) many points to
visit. Note that in our context, this walk can be done without extra memory, by
instantly applying Babai lifting and keeping only interesting lifted vectors. We
suspect that this approach could be beneficial in practice for β =

√
4/3 + o(1),

if not for the running time, at least for the memory complexity.

Amortization Inside BKZ. We now consider two potential amortizations
inside BKZ. Both ideas are not orthogonal to each others (yet may not be incom-
patible). If our SubSieve algorithm is to be used inside BKZ, we suggest fixing
dlast (say, using the optimistic simulation), and to accept that we may not always
solve SVP exactly; this is already the case when using pruned enumeration.

Already pre-processed. One notes that SubSieve+ does more than ensure the
shorteness of the first vector, and in fact attempts a partial HKZ reduction.
This means that the second block inside the BKZ loop is already quite reduced
when we are over with the first one. One could therefore hope that directly
starting the iteration of Sect. 3.3 at d = dlast could be sufficient for the second
block, and so forth.

Optimistically, this would lead to an amortization factor f of f =∑
i≥0(

4
3 )−i = 4, or even f =

∑
i≥0(

3
2 )−i/2 ≈ 5.5 depending on which sieve

is used. In practice, it may be preferable to start at d = dlast − 1 for example.
5 blocks for the price of 9/4. A second type of amortization consists of over-
shooting the blocksize by an additive term k, so as to SVP-reduce k + 1 con-
secutive blocks of dimension b for the price of one sieving in dimension b + k.
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Indeed, an HKZ-reduction of size b+k as attempted by SubSieve+ directly guar-
entees the BKZ-b reduction of the first k + 1 blocks: we may jump directly by
k + 1 blocks. This overshoot costs a factor (3/2)k/2 using the List-Decoding-
Sieve [BDGL16]. We therefore expect to gain a factor f = (k + 1)/(3/2)k/2,
which is maximal at k = 4, with f = 20/9 ≈ 2.2.

Further, we note that the obtained basis could be better than a usual BKZ-b
reduced basis, maybe even as good as a BKZ-(b + k−1

2 ) reduced basis. If so, the
gain may be as large as f ′ = (k + 1)/(3/2)(k+1)/4, which is maximal at k = 9,
with f ′ ≈ 3.6.
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Abstract. The Ring Learning With Errors problem (RLWE) comes in
various forms. Vanilla RLWE is the decision dual-RLWE variant, con-
sisting in distinguishing from uniform a distribution depending on a
secret belonging to the dual O∨

K of the ring of integers OK of a speci-
fied number field K. In primal-RLWE, the secret instead belongs to OK .
Both decision dual-RLWE and primal-RLWE enjoy search counterparts.
Also widely used is (search/decision) Polynomial Learning With Errors
(PLWE), which is not defined using a ring of integers OK of a number
field K but a polynomial ring Z[x]/f for a monic irreducible f ∈ Z[x]. We
show that there exist reductions between all of these six problems that
incur limited parameter losses. More precisely: we prove that the (deci-
sion/search) dual to primal reduction from Lyubashevsky et al. [EURO-
CRYPT 2010] and Peikert [SCN 2016] can be implemented with a small
error rate growth for all rings (the resulting reduction is non-uniform
polynomial time); we extend it to polynomial-time reductions between
(decision/search) primal RLWE and PLWE that work for a family of poly-
nomials f that is exponentially large as a function of deg f (the result-
ing reduction is also non-uniform polynomial time); and we exploit the
recent technique from Peikert et al. [STOC 2017] to obtain a search to
decision reduction for RLWE for arbitrary number fields. The reductions
incur error rate increases that depend on intrinsic quantities related to K
and f .

1 Introduction

Different shades of RLWE. Ring Learning With Errors (RLWE) was intro-
duced by Lyubashevsky et al. in [LPR10], as a means of speeding up cryptographic
constructions based on the Learning With Errors problem (LWE) [Reg05]. Let K
be a number field, OK its ring of integers and q ≥ 2 a rational integer. The
search variant of RLWE with parameters K and q consists in recovering a secret
s ∈ O∨

K/qO∨
K with O∨

K denoting the dual of OK , from arbitrarily many sam-
ples (ai, ai · s + ei). Here each ai is uniformly sampled in OK/qOK and each ei

is a small random element of KR := K ⊗Q R. The noise term ei is sampled such
that its Minkowski embedding vector follows a Gaussian distribution with a small
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covariance matrix (relative to qO∨
K). The decision variant consists in distinguish-

ing arbitrarily many such pairs for a common s chosen uniformly in O∨
K/qO∨

K ,
from uniform samples in OK/qOK × KR/qO∨

K . More formal definitions are pro-
vided in Sect. 2, but these suffice for describing our contributions.

Lyubashevsky et al. backed in [LPR10] the conjectured hardness of RLWE
with a quantum polynomial-time reduction from the (worst-case) Approximate
Shortest Vector Problem (ApproxSVP) restricted to the class of Euclidean lat-
tices corresponding to ideals of OK , with geometry inherited from the Minkowski
embeddings. They showed its usefulness by describing a public-key encryption
with quasi-optimal efficiency: the bit-sizes of the keys and the run-times of all
involved algorithms are quasi-linear in the security parameter. A central tech-
nical contribution was a reduction from search RLWE to decision RLWE, when
K is cyclotomic, and decision RLWE for cyclotomic fields is now pervasive in
lattice-based cryptography, including in practice [ADPS16,BDK+18,DLL+18].
The search-to-decision reduction from [LPR10] was later extended to the case
of general Galois rings in [EHL14,CLS17].

Prior to RLWE, Stehlé et al. [SSTX09] introduced what is now referred to as
Polynomial Ring Learning With Errors (PLWE), for cyclotomic polynomials of
degree a power of 2. PLWE is parametrized by a monic irreducible f ∈ Z[x] and
an integer q ≥ 2, and consists in recovering a secret s ∈ Zq[x]/f from arbitrarily
many samples (ai, ai · s + ei) where each ai is uniformly sampled in Zq[x]/f and
each ei is a small random element of R[x]/f . The decision variant consists in
distinguishing arbitrarily many such samples for a common s sampled uniformly
in Zq[x]/f , from uniform samples. Here the noise term ei is sampled such that its
coefficient vector follows a Gaussian distribution with a small covariance matrix.
Stehlé et al. gave a reduction from the restriction of ApproxSVP to the class of
lattices corresponding to ideals of Z[x]/f , to search PLWE, for f a power-of-2
cyclotomic polynomial.

Finally, a variant of RLWE with s ∈ OK/qOK rather than O∨
K/qO∨

K was also
considered (see, e.g., [DD12] among others), to avoid the complication of having
to deal with the dual O∨

K of OK . In the rest of this paper, we will refer to the
latter as primal-RLWE and to standard RLWE as dual-RLWE.
The case of cyclotomics. Even though [LPR10] defined RLWE for arbitrary
number fields, the problem was mostly studied in the literature for K cyclotomic.
This specialization had three justifications:

• it leads to very efficient cryptographic primitives, in particular if q totally
splits over K;

• the hardness result from [LPR10] holds for cyclotomics;
• no particular weakness was known for these fields.

Among cyclotomics, those of order a power of 2 are a popular choice. In the
case of a field K defined by the cyclotomic polynomial f , we have that OK =
Z[α] for α a root of f . Further, in the case of power-of-2 cyclotomics, mapping
the coefficient vector of a polynomial in Z[x]/f to its Minkowski embedding is
a scaled isometry. This makes primal-RLWE and PLWE collapse into a single
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problem. Still in the case of power-of-2 cyclotomics, the dual O∨
K is a scaling

of OK , implying that dual and primal-RLWE are equivalent. Apart from the
monogenicity property, these facts do not hold for all cyclotomics. Nevertheless,
Ducas and Durmus [DD12] showed it is still possible to reduce dual-RLWE to
primal-RLWE.
Looking at other fields. The RLWE hardness proof holds with respect to a
fixed field: the reduction in [LPR10] maps ApproxSVP for lattices corresponding
to OK-ideals with small approximation factors, to decision/search dual-RLWE
on K. Apart from the very specific case of field extensions [GHPS12], hardness
on K seems unrelated to hardness on another field K ′. One may then wonder
if RLWE is easier for some fields. The attacks presented in [EHL14,ELOS15,
CLS17,CLS16] were used to identify weak generating polynomials f of a num-
ber field K, but they only work for error distributions with small width relative
to the geometry of the corresponding ring [CIV16b,CIV16a,Pei16]. At this occa-
sion, the relationships between the RLWE and PLWE variants were more closely
investigated.

Building upon [CGS14,CDPR16], Cramer et al. [CDW17] gave a quantum
polynomial-time ApproxSVP algorithm for ideals of OK when K is a cyclo-
tomic field of prime-power conductor, when the ApproxSVP approximation fac-
tor is 2 ˜O(

√
deg K). For general lattices, the best known algorithm [SE94] runs in

time 2 ˜O(
√

n) for such an approximation factor, where n is the lattice dimension
(here n = deg K). We note that the result from [CGS14,CDPR16] was partly
extended in [BBdV+17] to principal ideals generated by a short element in a
completely different family of fields. These results show that all fields are not
equal in terms of ApproxSVP hardness (unless they turn out to be all weak!). So
far, there is no such result for RLWE.

On the constructive front, Bernstein et al. [BCLvV16] showed that some
non-cyclotomic polynomials f also enjoy practical arithmetic over Zq[x]/f and
lead to efficient cryptographic design (though the concrete scheme relies on the
presumed hardness of another problem than RLWE).
Hedging against the weak field risk. Two recent works propose comple-
mentary approaches to hedge against the risk of a weakness of RLWE for specific
fields. First, in [PRS17], Peikert et al. give a new (quantum) reduction from
ApproxSVP for OK-ideals to decision dual-RLWE for the corresponding field K.
All fields support a (quantum) reduction from ApproxSVP, and hence, from this
respect, one is not restricted to cyclotomics. Second, following an analogous
result by Lyubashevsky for the Small Integer Solution problem [Lyu16], Roşca
et al. [RSSS17] introduced the Middle-Product LWE problem and showed that
it is at least as hard as PLWE for any f in an exponentially large family of f ’s (as
a function of their degree). Neither result is fully satisfactory. In the first case,
it could be that ApproxSVP is easy for lattices corresponding to ideals of OK

for any K: this would make the result vacuous. In the second case, the result
of [RSSS17] focuses on PLWE rather than the more studied RLWE problem.
Our results. The focus on the RLWE hardness for non-cyclotomic fields makes
the discrepancies between the RLWE and PLWE variants more critical. In this
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article, we show that the six problems considered above — dual-RLWE, primal-
RLWE and PLWE, all in both decision and search forms — reduce to one another
in polynomial time with limited error rate increases, for huge classes of rings.
More precisely, these reductions are obtained with the following three results.

• We show that for every field K, it is possible to implement the reduction
from decision (resp. search) dual-RLWE to decision (resp. search) primal-
RLWE from [LPR10, Le. 2.15] and [Pei16, Se. 2.3.2], with a limited error
growth. Note that there exists a trivial converse reduction from primal-RLWE
to dual-RLWE.

• We show that the reduction mentioned above can be extended to a reduc-
tion from decision (resp. search) primal-RLWE in K to decision (resp. search)
PLWE for f , where K is the field generated by the polynomial f . The anal-
ysis is significantly more involved. It requires the introduction of the so-
called conductor ideal, to handle the transformation from the ideal OK to
the order Z[x]/f , and upper bounds on the condition number of the map
that sends the coefficient embeddings to the Minkowski embeddings, to show
that the noise increases are limited. Our conditioning upper bound is polyno-
mial in n only for limited (but still huge) classes of polynomials that include
those of the form xn + x · P (x) − a, with deg P < n/2 and a prime that
is ≥25 · ‖P‖21 and ≤poly(n). A trivial converse reduction goes through for the
same f ’s.

• We exploit the recent technique from [PRS17] to obtain a search to decision
reduction for dual-RLWE.

Concretely, the error rate increases are polynomial in n = deg K, the root
discriminant |ΔK |1/n and, for the reduction to PLWE, in the root algebraic
norm N (CZ[α])1/n of the conductor ideal CZ[α] of Z[α], where α is a root of f
defining K. We note that in many cases of interest, all these quantities are poly-
nomially bounded in n. To enjoy these limited error rate growths, the first two
reductions require knowledge of specific data related to K, namely, a short ele-
ment (with respect to the Minkowski embeddings) in the different ideal (O∨

K)−1

and a short element in CZ[α]. In general, these are hard to compute.
Techniques. The first reduction is derived from [LPR10, Le. 2.15] and [Pei16,
Se. 2.3.2]: if it satisfies some arithmetic properties, a multiplication by an ele-
ment t ∈ OK induces an OK-module isomorphism from O∨

K/qO∨
K to OK/qOK .

For the reduction to be meaningful, we need t to have small Minkowski embed-
dings. We prove the existence of such a small t satisfying the appropriate
arithmetic conditions, by generalizing the inclusion-exclusion technique devel-
oped in [SS13] to study the key generation algorithm of the NTRU signature
scheme [HHPW10].

The Lyubashevsky et al. bijection works with O∨
K and OK replaced by

arbitrary ideals of K, but this does not provide a bijection from OK/qOK to
Z[α]/qZ[α], as Z[α] may only be an order of OK (and not necessarily an ideal).
We circumvent this difficulty by using the conductor ideal of Z[α]. Intuitively,
the conductor ideal describes the relationship between OK and Z[α]. As far as we
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are aware, this is the first time the conductor ideal is used in the RLWE context.
This bijection and the existence of an appropriate multiplier t as above provide
a (non-uniform) reduction from primal-RLWE to a variant of PLWE for which
the noise terms have small Minkowski embeddings (instead of small polynomial
coefficients).

We show that for many number fields, the linear map between polynomial
coefficients and Minkowski embeddings has a condition number that is polyno-
mially bounded in n, i.e., the map has bounded distortion and behaves not too
noticeably differently from a scaling. This implies that the latter reduction is also
a reduction from primal-RLWE to standard PLWE for these rings. We were able
to show condition number bounds that are polynomial in n only for restricted
families of polynomials f , yet exponentially large as n increases. These include in
particular those of the form mentioned above. Note that the primality condition
on the constant coefficient is used only to ensure that f is irreducible and hence
defines a number field. For these f ’s, we use Rouché’s theorem to prove that the
roots are close to the scaled n-th roots of unity (a1/n · αk

n)0≤k<n, and then that
f “behaves” as xn − a in terms of geometric distortion.

Our search-to-decision reduction for dual-RLWE relies on techniques devel-
oped in [PRS17]. In that article, Peikert et al. consider the following ‘oracle hid-
den center’ problem (OHCP). In this problem, we are given access to an oracle O
taking as inputs a vector z ∈ R

k and a scalar t ∈ R
≥0, and outputting a bit. The

probability that the oracle outputs 1 (over its internal randomness) is assumed
to depend only on exp(t) · ‖z − x‖, for some vector x . The goal is to recover
O’s center x . On the one hand, Peikert et al. give a polynomial-time algorithm
for this problem, assuming the oracle is ‘well-behaved’ ([PRS17, Prop. 4.4]). On
the other hand, they show how to map a Bounded Distance Decoding (BDD)
instance to such an OHCP instance if they have access to Gaussian samples
in the dual of the BDD lattice, where the engine of the oracle is the decision
dual-RLWE oracle [PRS17, Se. 6.1]. We construct the OHCP instance from the
decision RLWE oracle in a different manner. We use our input search dual-RLWE
samples and take small Gaussian combinations of them. By re-randomizing the
secret and adding some noise, we can obtain arbitrarily many dual-RLWE sam-
ples. Subtracting from the input samples well-chosen zi’s in KR and setting the
standard deviation of the Gaussian combination appropriately leads to a valid
OHCP instance. The main technical hurdle is to show that a Gaussian combi-
nation of elements of O∨

K/qO∨
K is close to uniform. For this, we generalize a ring

Leftover Hash Lemma proved for specific pairs (OK , q) in [SS11].
Related works. The reductions studied in this work can be combined
with those from ApproxSVP for OK-ideals to dual-RLWE [LPR10,PRS17].
Recently, Albrecht and Deo [AD17] built upon [BLP+13] to obtain a reduction
from Module-LWE to RLWE. This can be both combined with our reductions
and the quantum reductions from ApproxSVP for OK-modules to Module-
LWE1 [LS15,PRS17]. Downstream, the reductions can be combined with the

1 The reduction from [LS15] is limited to cyclotomic fields, but [PRS17] readily extends
to module lattices.
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reduction from PLWE to Middle-Product LWE from [RSSS17]. The latter was
showed to involve an error rate growth that is linearly bounded by the so-called
the expansion factor of f : it turns out that those f ’s for which we could bound
the condition number of the Minkowski map by a polynomial function of deg f
also have polynomially bounded expansion factor. These reductions and those
considered in the present work are pictorially described in Fig. 1.

Fig. 1. Relationships between variants of RLWE and PLWE. The dotted box contains
the problems studied in this work. Each arrow may hide a noise rate degradation
(and module rank - modulus magnitude transfer in the case of [AD17]). The top to
bottom arrows in the dotted box correspond to non-uniform reductions. The reductions
involving PLWE are analyzed for limited family of defining polynomials. The arrows
without references correspond to trivial reductions.

The ideal-changing scaling element t and the distortion of the Minkowski map
were closely studied in [CIV16b,CIV16a,Pei16] for a few precise polynomials and
fields. We use the same objects, but provide bounds that work for all (or many)
fields.
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Impact. As it is standard for the hardness foundations of lattice-based cryptog-
raphy, our reductions should not be considered for setting practical parameters.
They should rather be viewed as a strong evidence that the six problems under
scope are essentially equivalent and do not suffer from a design flaw (unless they
all do). We hope they will prove useful towards understanding the plausibility
of weak fields for RLWE.

Our first result shows that there exists a way of reducing dual-RLWE to
primal-RLWE while controlling the noise growth. Even though the reduction is
non-uniform, it gives evidence that these problems are qualitatively equivalent.
Our second result shows that RLWE and PLWE are essentially equivalent for a
large class of polynomials/fields. In particular, the transformation map between
the Minkowski embeddings and the coefficient embeddings has a bounded distor-
tion. Finally, our search to decision fills an important gap. On the one hand, it
precludes the possibility that search RLWE could be harder than decision RLWE.
On the other hand, it gives further evidence of the decision RLWE hardness.
In [PRS17], the authors give a reduction from ApproxSVP for OK-ideals to deci-
sion RLWE. But in the current state of affairs, ApproxSVP for this special class of
lattices seems easier than RLWE, at least for some parameters. Indeed, Cramer
et al. [CDW17] gave quantum algorithms that outperform generic lattice algo-
rithms for some range of approximation factors in the context of ideal lattices.
On the opposite, RLWE is qualitatively equivalent to ApproxSVP for OK-modules
[LS15,AD17].

As the studied problems reduce to one another, one may then wonder which
one to use for cryptographic design. Using dual-RLWE requires knowledge of OK ,
which is notoriously hard to compute for an arbitrary field K. This may look
as an incentive to use the corresponding PLWE problem instead, as it does not
require the knowledge of OK . Yet, for it to be useful in cryptographic design, one
must be able to decode the noise from its representative modulo a scaled version
of the lattice corresponding to Z[α]. This seems to require the knowledge of a
good basis of that lattice, which may not be easy to obtain either, depending on
the considered polynomial f .
Notations. If D is a distribution, we write x ←↩ D to say that we sample x
from D. If D1,D2 are continuous distributions over the same measurable set Ω,
we let Δ(D1,D2) =

∫
Ω

|D1(x)−D2(x)|dx denote their statistical distance. Sim-
ilarly, we let R(D1‖D2) =

∫
Ω

D1(x)2/D2(x)dx denote their Rényi divergence. If
E is a set of finite measure, we let U(E) denote the uniform distribution over E.
For a matrix V = (vij), we let ‖V ‖ =

√∑
1≤i,j≤n |vij |2 denote its Frobenius

norm.
This is the proceedings’ version. The full version contains additional appen-

dices and it is available on the IACR eprint archive.

2 Preliminaries

In this section, we give some background on algebraic number theory used in
lattice-based cryptography, recall properties of Euclidean lattices, and state the
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precise definitions of the RLWE variants we will consider. More details on stan-
dard tools of algebraic number theory can be found in the full version. Useful
references include [Ste17,Cona].

2.1 Some Algebraic Number Theory

Rings and ideals in number fields. In this article, we call any subring of K a
number ring. For a number ring R, an (integral) R-ideal is an additive subgroup
I ⊆ R which is closed by multiplication in R, i.e., such that IR = I. A more
compact definition is to say that I is an R-module. If a1, . . . , ak are elements
in R, we let 〈a1, . . . , ak〉 = a1R + . . . + akR and call it the ideal generated by
the ai’s. The product of two ideals I, J is the ideal generated by all elements xy
with x ∈ I and y ∈ J . The sum, product and intersection of two R-ideals are
again R-ideals.

Two integral R-ideals I, J are said to be coprime if I + J = R, and, in this
case, we have I ∩ J = IJ . Any non-zero ideal in a number ring has finite index,
i.e., the quotient ring R/I is always finite when I is a non-zero R-ideal. An R-
ideal p is said to be prime if whenever p = IJ for some R-ideals I, J , then either
I = p or J = p. In a number ring, any prime ideal p is maximal [Ste17, p. 19],
i.e., R is the only R-ideal containing it. It also means that the quotient ring R/p
is a finite field. It is well-known that any OK-ideal admits a unique factorization
into prime OK-ideals, i.e., it can be written I = pe1

1 . . . pek

k with all pi’s distinct
prime ideals. It fails to hold in general number rings and orders, but we describe
later in Lemma 2.1 how the result can be extended in certain cases.

A fractional R-ideal I is an R-module such that xI ⊆ R for some x ∈ K×.
An integral ideal is a fractional ideal, and so are the sum, the product and the
intersection of two fractional ideals. A fractional R-ideal I is said to be invertible
if there exists a fractional R-ideal J such that IJ = R. In this case, the (unique)
inverse is the integral ideal I−1 = {x ∈ K : xI ⊆ R}. Any OK-ideal is invertible,
but it is again false for a general number ring.

The algebraic norm of a non-zero integral R-ideal I is defined as NR(I) =
|R/I|, and we will omit the subscript when R = OK . It satisfies NR(IJ) =
NR(I)NR(J) for every R-ideals I, J .

The dual of a fractional R-ideal I is I∨ = {α ∈ K : Tr(αI) ⊆ Z}, which is
also a fractional R-ideal. We always have II∨ = R∨, so that I∨ = I−1R∨ when
I is invertible. We also have I∨∨ = I for any R-ideal I.

A particularly interesting dual is O∨
K , whose inverse (O∨

K)−1 is called the
different ideal. The different ideal is an integral ideal, whose norm ΔK =
N ((O∨

K)−1) is called the discriminant of the number field. We note that, for
every f defining K, the field discriminant ΔK is a factor of the discriminant
of f . The latter is denoted Δf and is defined as Δf =

∏
i�=j(αi − αj), where

α1, . . . , αn are the roots of f . This provides an upper bound on ΔK in terms of
the defining polynomial f .
Orders in number fields. An order O in K is a number ring which is a finite
index subring of OK . In particular, the ring of integers OK is the maximal order
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in K. Number rings such as Z[α], with α a root of a defining polynomial f ,
are of particular interest. The conductor of an order O is defined as the set
CO = {x ∈ K : xOK ⊆ O}. It is contained in O, and it is both an O-ideal and
an OK-ideal: it is in fact the largest ideal with this property. It is never empty,
as it contains the index [OK : O].

If it is coprime with the conductor, an ideal in OK can be naturally considered
as an ideal in O, and reciprocally. This is made precise in the following lemma.

Lemma 2.1 ([Cona, Th. 3.8]). Let O be an order in K.

1. Let I be an OK-ideal coprime to CO. Then I ∩O is an O-ideal coprime to CO
and the natural map O/I ∩ O −→ OK/I is a ring isomorphism.

2. Let J be an O-ideal coprime to CO. Then JOK is an OK-ideal coprime to CO
and the natural map O/J −→ OK/JOK is a ring isomorphism.

3. The set of OK-ideals coprime to CO and the set of O-ideals coprime to CO
are in multiplicative bijection by I 
−→ I ∩ O and J 
−→ JOK .

The above description does not tell how to “invert” the isomorphisms. This
can be done by a combination of the following lemmas and passing through the
conductor, as we will show in the next section.

Lemma 2.2. Let O be an order in K and I an OK-ideal coprime to the con-
ductor CO. Then the inclusions CO ⊆ O and CO ⊆ OK induce isomorphisms
CO/I ∩ CO � O/I ∩ O and CO/I ∩ CO � OK/I.

Proof. By assumption we have CO + I = OK , so that the homomorphism CO →
OK/I is surjective. By Lemma 2.1, the set I ∩ O is an O-ideal coprime to CO so
that CO + I ∩ O = O. This implies that the homomorphism CO → O/I ∩ O is
surjective too. Both homomorphisms have kernel I ∩ CO. ��
Lemma 2.3 ([Cona, Cor. 3.10]). Let O be an order in K and β ∈ O such
that βOK is coprime to CO. Then βOK ∩ O = βO.

Quotients of ideals. We will use the following result.

Lemma 2.4 ([LPR10, Le. 2.14]). Let I and J two OK-ideals. Let t ∈ I such
that the ideals t · I−1 and J are coprime and let M be any fractional OK-ideal.
Then the function θt : M → M defined as θt(x) = t · x induces an OK-module
isomorphism from M/JM to IM/IJM.

The authors of [LPR10] also gave an explicit way to obtain a suitable t by
solving a set of conditions stemming from the Chinese Remainder Theorem.
However, this construction does not give good control on the magnitudes of the
Minkowski embeddings of t.
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2.2 Lattices

For the remainder of this article, a lattice is defined as a full-rank discrete addi-
tive subgroup of an R-vector space V which is a Cartesian power Hm (for m ≥ 1)
of H := {x ∈ R

s1 × C
2s2 : ∀i ≤ s2 : xs1+s2+i = xs1+i}. This space H is some-

times called the “canonical” space. A given lattice L can be thought as the set
of Z-linear combinations (bi)i of some linearly independent vectors of V . These
vectors are said to form a lattice basis, and we define the lattice determinant as
det L = (det(〈bi, bj〉)i,j)1/2 (it does not depend on the choice of the basis of L).
For v ∈ V , let ‖v‖ = (

∑
i≤dimV |vi|2)1/2 denote the standard Hermitian norm

on V and ‖v‖∞ = maxi≤dimV |vi| denote the infinity norm. The minimum λ1(L)
is the Hermitian norm of a shortest non-zero element in L. We define λ∞

1 (L) sim-
ilarly. If L is a lattice, then we define its dual as L∗ = {y ∈ V : yT L ⊆ Z}.
Ideal lattices. While it is possible to associate lattices with fractional ideals of
a number ring, we will not need it. Any fractional OK-ideal I is a free Z-module
of rank n = deg(K), i.e., it can be written as Zu1 + · · · + Zun for some ui’s
in K. Its canonical embedding σ(I) is a lattice of dimension n in the R-vector
space H ⊆ R

s1 ×C
2s2 . Such a lattice is called an ideal lattice (for OK). For the

sake of readability, we will abuse notations and often identify I and σ(I). It is
possible to look at the coefficient embedding of such lattices as well, but we will
not need it in this work. The lattice corresponding to I∨ is I∗. The discriminant
of K satisfies ΔK = (det OK)2. In the following lemma, the upper bounds follow
from Minkowski’s theorem whereas the lower bounds are a consequence of the
algebraic structure underlying ideal lattices.

Lemma 2.5 (Adapted from [PR07, Se. 6.1]). Let K be a number field of
degree n. For any fractional OK-ideal I, we have:

√
n · N (I)1/n ≤ λ1(I) ≤ √

n · (N (I)
√

ΔK)1/n,
N (I)1/n ≤ λ∞

1 (I) ≤ (N (I)
√

ΔK)1/n.

Gaussians. It is standard practice in the RLWE setting to consider Gaussian
distributions with diagonal covariance matrices. In this work, we will be inter-
ested in the behavior of samples after linear transformations that are not nec-
essarily diagonal. As the resulting covariance matrix may not be diagonal, we
adopt a more general framework. Let Σ � 0, i.e., a symmetric positive def-
inite matrix. We define the Gaussian function on R

n of covariance matrix Σ
as ρΣ(x) := exp(−π · xT Σ−1x) for every vector x ∈ R

n. The Gaussian distri-
bution DΣ is the probability distribution whose density is proportional to ρΣ.
When Σ = diag(r2i )i for some r ∈ R

n, we write ρr and Dr , respectively.
Let (e i)i≤n be the canonical basis of C

n. We define h i = e i for i ≤ s1,
and hs1+i = (es1+i + es1+s2+i)/

√
2 and hs1+s2+i = (es1+i − es1+s2+i)/

√−2
for i ≤ s2. The h i’s form an orthonormal R-basis of H. We define the Gaus-
sian distribution DH

Σ as the distribution obtained by sampling x ←↩ DΣ and
returning

∑
i xih i. We will repeatedly use the observation that if x is sampled

from DH
Σ and t belongs to KR, then t · x is distributed as DH

Σ′ with Σ′ =
diag(|σi(t)|) · Σ · diag(|σi(t)|).
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For a lattice L over V = Hm (for some m ≥ 1) and a coset c ∈ V/L, we
let DL+c,r denote the discretization of DH

rI over L + c (we omit the subscript
for DL+c,r as all our lattices are over Cartesian powers of H). For ε > 0, we define
the smoothing parameter ηε(L) as the smallest r > 0 such that ρ(1/r)I(L∗ \0 ) ≤
ε. We have the following upper bounds.

Lemma 2.6 ([MR04, Le. 3.3]). For any lattice L over Hm and ε ∈ (0, 1), we
have ηε(L) ≤ √

log(2mn(1 + 1/ε))/π/λ∞
1 (L∗).

Lemma 2.7 (Adapted from [PR07, Le. 6.5]). For any OK-ideal I and ε ∈
(0, 1), we have ηε(I) ≤ √

log(2n(1 + 1/ε))/(πn) · (N (I)ΔK)1/n.

The following are standard applications of the smoothing parameter.

Lemma 2.8 ([GPV08, Cor. 2.8]). Let L′ ⊆ L be full-rank lattices, ε ∈ (0, 1/2)
and r ≥ ηε(L′). Then Δ(DL,r mod L′, U(L/L′)) ≤ 2ε.

Lemma 2.9 ([PR06, Le. 2.11]). Let L be an n-dimensional lattice, ε ∈ (0, 1/3)
and r ≥ 4ηε(L). Then DL,r(0) ≤ 2−2n+1.

Lemma 2.10 (Adapted from [MR04, Le. 4.4]). Let L be an n-
dimensional lattice, ε ∈ (0, 1/3) and r ≥ ηε(L). Then Prx←↩DL,r

[‖x‖ ≥
2r

√
n] ≤ 2−2n.

2.3 Computational Problems

We now formally define the computational problems we will study.

Definition 2.11 (RLWE and PLWE distributions). Let K a degree n number
field defined by f , OK its ring of integers, Σ � 0 and q ≥ 2.

For s ∈ O∨
K/qO∨

K , we define the dual-RLWE distribution A∨
s,Σ as the dis-

tribution over OK/qOK × KR/qO∨
K obtained by sampling a ←↩ U(OK/qOK),

e ←↩ DH
Σ and returning the pair (a, a · s + e).

For s ∈ OK/qOK , we define the primal-RLWE distribution As,Σ as the dis-
tribution over OK/qOK × KR/qOK obtained by sampling a ←↩ U(OK/qOK),
e ←↩ DH

Σ and returning the pair (a, a · s + e).
For s ∈ Zq[x]/f , we define the PLWE distribution Bs,Σ as the distribution

over Zq[x]/f × Rq[x]/f obtained by sampling a ←↩ U(Zq[x]/f), e ←↩ DΣ and
returning the pair (a, a · s + e) (with Rq = R/qZ).

In the definition above, we identified the support H of DH
Σ with KR, and the

support R
n of DΣ with R[x]/f . Note that sampling from A∨

s,Σ and As,Σ seems
to require the knowledge of a basis of OK . It is not known to be computable in
polynomial-time from a defining polynomial f of an arbitrary K. In this article,
we assume that a basis of OK is known.
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Definition 2.12 (The RLWE and PLWE problems). We use the same nota-
tions as above. Further, we let E� be a subset of Σ � 0 and D� be a distribution
over Σ � 0.

Search dual-RLWEq,E� (resp. primal-RLWE and PLWE) consists in finding s
from a sampler from A∨

s,Σ (resp. As,Σ and Bs,Σ), where s ∈ O∨
K/qO∨

K (resp.
s ∈ OK/qOK and s ∈ Zq[x]/f) and Σ ∈ E� are arbitrary.

Decision dual-RLWEq,D� (resp. primal-RLWE and PLWE) consists in distin-
guishing between a sampler from A∨

s,Σ (resp. As,Σ and Bs,Σ) and a uniform
sampler over OK/qOK × KR/qO∨

K (resp. OK/qOK × KR/qOK and Zq[x]/f ×
Rq[x]/f), with non-negligible probability over s ←↩ O∨

K/qO∨
K (resp. s ∈ OK/qOK

and s ∈ Zq[x]/f) and Σ ←↩ D�.

The problems above are in fact defined for sequences of number fields of
growing degrees n such that the bit-size of the problem description grows at
most polynomially in n. The run-times, success probabilities and distinguishing
advantages of the algorithms solving the problems are considered asymptotically
as functions of n.

The following reduction from dual-RLWE to primal-RLWE is a consequence
of Lemma 2.4. A proof is given in the full version.

Theorem 2.13 (Adapted from [Pei16, Se. 2.3.2]). Let Σ � 0 and s ∈
O∨

K/qO∨
K . Let t ∈ (O∨

K)−1 such that t(O∨
K) + qOK = OK . Then the map

(a, b) 
→ (a, t · b) transforms A∨
s,Σ to At·s,Σ′ and U(OK/qOK × KR/qO∨

K) into
U(OK/qOK × KR/qOK), with Σ′ = diag(|σi(t)|) · Σ · diag(|σi(t)|). The natural
inclusion OK → O∨

K induces a map that transforms U(OK/qOK ×KR/qOK) to
U(OK/qOK × KR/qO∨

K), and As,Σ to A∨
s,Σ.

We will consider variants of the decision problems for which the distinguishing
must occur for all s ∈ O∨

K/qO∨
K (resp. s ∈ OK/qOK and s ∈ Zq[x]/f) and

all Σ � 0 rather than with non-negligible probability over s. We call this variant
worst-case decision dual-RLWE (resp. primal-RLWE and PLWE). Under some
conditions on D� and E�, these variants are computationally equivalent.

Lemma 2.14 (Adapted from [LPR10, Se. 5.2]). We use the same nota-
tions as above. If PrΣ←↩D� [Σ /∈ E�] ≤ 2−n, then decision dual-RLWEq,D� (resp.
primal-RLWE and PLWE) reduces to worst-case decision dual-RLWEq,E� (resp.
primal-RLWE and PLWE).

Assume further that D� can be sampled from in polynomial-time. If
maxΣ∈E� R(D�‖D� + Σ) ≤ poly(n), then worst-case decision dual-RLWEq,E�
(resp. primal-RLWE and PLWE) reduces to decision dual-RLWEq,D� (resp.
primal-RLWE and PLWE).

Note that it is permissible to use the Rényi divergence here even though we are
considering decision problems. Indeed, the argument is applied to the random
choice of the noise distribution and not to the distinguishing advantage. The
same argument has been previously used in [LPR10, Se. 5.2].
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Proof. The first statement is direct. We prove the second statement only for dual-
RLWE, as the proofs for primal-RLWE and PLWE are direct adaptations. Assume
we are given a sampler that outputs (ai, bi) with ai ←↩ U(OK/qOK) and bi either
uniform in KR/qO∨

K or of the form bi = ais+ei with s ∈ O∨
K/qO∨

K and ei ←↩ DH
Σ .

The reduction proceeds by sampling s′ ←↩ U(O∨
K/qO∨

K) and Σ′ ←↩ D�, and
mapping all input (ai, bi)’s to (a′

i, b
′
i) = (ai, bi + ais

′ + e′
i) with e′

i ←↩ DH
Σ′ . This

transformation maps the uniform distribution to itself, and A∨
s,Σ to A∨

s+s′,Σ′′

with Σ′′
ij = Σij +Σ′

ij for all i, j. If the success probability (success being enjoying
a non-negligible distinguishing advantage) over the error parameter sampled
from D� is non-negligible, then so is it for the error parameter sampled D� +
Σ, as, by assumption, the Rényi divergence R(D�‖D� + Σ) is polynomially
bounded. ��

Many choices of D� and E� satisfy the conditions of Lemma 2.14. The follow-
ing is inspired from [LPR10, Se. 5.2]. We define the distribution E� as follows,
for an arbitrary r: Let sij = r2(1 + nxij) for all i > j, sii = r2(1 + n3xii)
for all i and sij = sji for all i < j, where the xij ’s are independent samples
from the Γ (2, 1) distribution (of density function x 
→ x exp(−x)); the output
matrix is (sij)ij . Note that it is symmetric and strictly diagonally dominant
(and hence � 0) with probability 1 − 2−Ω(n). Then the set of all Σ � 0 with
coefficients of magnitudes ≤r2n4 satisfies the first condition of Lemma 2.14, and
the set of all Σ � 0 with coefficients of magnitudes ≤r2 satisfies the second
condition of Lemma 2.14. We can hence switch from one variant to the other
while incurring an error rate increase that is ≤poly(n).

3 Controlling Noise Growth in Dual to Primal Reduction

The reduction of Theorem 2.13 is built upon the existence of t as in Lemma 2.4.
While this existence is guaranteed constructively by [LPR10], the size is not
controlled by the construction. Another t that satisfies the conditions is t =
f ′(α), where f ′ is the derivative of f defining K = Q[α]. Indeed, from [Conb,
Rem. 4.5], we know that f ′(α) ∈ (O∨

K)−1. However, the noise growth incurred
by multiplication by f ′(α) may be rather large in general: we have N(f ′(α)) =
Δf = [OK : Z[α]]2 · N ((O∨

K)−1).
In this section, we give a probabilistic proof that adequate t’s with controlled

size can be found by Gaussian sampling.
Let I and J be integral ideals of OK . Theorem 3.1 below states that a Gaus-

sian sample t in I is such that t · I−1 + J = OK with non-negligible probability.
The main technical hurdle is to show that the sample is not trapped in IJ ′

with J ′ a non-trivial factor of J . We handle this probability in different ways
depending on the algebraic norm of J ′, extending an idea used in [SS13, Se. 4].

• For small-norm factors J ′ of J , the Gaussian folded modulo IJ ′ is essen-
tially uniform over I/IJ ′, by Lemma 2.8. This requires the standard devia-
tion parameter s to be above the smoothing parameter of IJ ′. We use the
smoothing parameter bound from Lemma 2.7.
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• For large-norm factors J ′, we argue that the non-zero points of IJ ′ are very
unlikely to be hit, thanks to the Gaussian tail bound given in Lemma 2.10
and the fact that the lattice minimum of IJ ′ is large, by Lemma 2.5.

• For middle-norm factors J ′, neither of the arguments above applies. Instead,
we bound the probability that t belongs to IJ ′ by the probability that t
belongs to IJ ′′, where J ′′ is a non-trivial factor of J ′, and use the first argu-
ment above. The factor J ′′ must be significantly denser than J ′ so that we
have smoothing. But it should also be significantly sparser than OK so that
the upper bound is not too large.

Setting the standard deviation parameter of the discrete Gaussian so that at
least one of the three arguments above applies is non-trivial. In particular, this
highly depends on how the ideal J factors into primes (whether the pieces are
numerous, balanced, unbalanced, etc.). The choice we make below works in all
cases while still providing a reasonably readable proof and still being sufficient
for our needs, from an asymptotic perspective. In many cases, better choices
can be made. If J is prime, we can take a very small s and use only the second
argument. If all factors of J are small, there is good enough ‘granularity’ in the
factorization to use the third argument, and again s can be chosen very small.

Theorem 3.1. Let I and J be integral OK-ideals, and write J = pe1
1 . . . pek

k

for some prime ideals pi. We sort the pi’s by non-decreasing algebraic norms.
Assume that we can take δ ∈ [4n+log2 ΔK

log2 N (J) , 1].2 We define:

s =

{(N (J)1/2N (I)ΔK

)1/n
if N (pk) ≥ N (J)1/2+δ,

(N (J)1/2+2δN (I)ΔK

)1/n
else.

Then we have

Pr
t←↩DI,s

[tI−1 + J = OK ] ≥ 1 − k

N (p1)
− 2−n+4.

Proof. We bound the probability P of the negation, from above. We have

P = Pr
t←↩DI,s

[t ∈
⋃

i∈[k]

Ipi] =
∑

S⊆[k],S �=∅
(−1)|S|+1 · Pr

t←↩DI,s

[t ∈ I ·
∏

i∈S

pi].

We rewrite it as P = P1 + P2 with

P1 =
∑

S⊆[k],S �=∅
(−1)|S|+1 1

∏
i∈S N (pi)

= 1 −
∏

i∈[k]

(

1 − 1
N (pi)

)

,

P2 =
∑

S⊆[k],S �=∅
(−1)|S|+1

(

Pr
t←↩DI,s

[t ∈ I ·
∏

i∈S

pi] −
∏

i∈S

1
N (pi)

)

.

2 The parameter δ should be thought as near 0. It can actually be chosen such if N (J)
is sufficiently large.
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We have P1 ≤ 1 − (1 − 1/N (p1))k ≤ k/N (p1). Our task is now to bound P2.
Assume first that N (pk) ≥ N (J)1/2+δ. This implies that

∏
i∈S N (pi) ≤

N (J)1/2−δ for all S ⊆ [k] not containing k. By Lemma 2.7, we have s ≥
ηε(I

∏
i∈S pi) for all such S’s, with ε = 2−2n. We “smooth” out those ideals,

i.e., we use Lemma 2.8 to obtain, for all S ⊆ [k] \ {k}:
∣
∣
∣
∣
∣

Pr
t←↩DI,s

[t ∈ I ·
∏

i∈S

pi] −
∏

i∈S

1
N (pi)

∣
∣
∣
∣
∣
≤ 2ε.

Now if S is a subset containing k, then we have N (
∏

i∈S pi) ≥ N (J)1/2+δ. By
Lemma 2.5, we have λ1(I

∏
i∈S pi) ≥ √

n · N (I)1/nN (J)(1/2+δ)/n. On the other
hand, by Lemma 2.10, we have Prt←↩DI,s

[‖t‖ ≥ 2s
√

n] ≤ 2−2n. Thanks to our
choice of s, the assumption on δ and Lemma 2.9, we obtain

Pr
t←↩DI,s

[t ∈ I
∏

i∈S

pi] ≤ Pr
t←↩DI,s

[t = 0] + 2−2n ≤ 2−2n+2.

This allows us to bound P2 as follows:

P2 ≤ 2k ·
(
ε + 2−2n+2 + N (J)−(1/2+δ)

)
.

By assumption on δ, we have N (J) ≥ 22n and P2 ≤ 2−n+3. This completes the
proof for the large N (pk) case.

Now, assume that N (pk) < N (J)1/2+2δ. Then, as above, the definition of s
implies that, for any S ⊆ [k] with N (

∏
i∈S pi) ≤ N (J)1/2+δ, we have |Pr[t ∈

I
∏

i∈S pi] − 1/
∏

i∈S N (pi)| ≤ 2−2n+1. Also as above, if we have N (
∏

i∈S pi) ≥
N (J)1/2+3δ, then λ1(I

∏
i∈S pi) is too large for a non-zero element of I

∏
i∈S pi

to be hit with significant probability. Assume finally that

N (J)1/2+2δ ≤ N (
∏

i∈S

pi) ≤ N (J)1/2+3δ.

As N (pk) < N (J)1/2+δ, there exists S′ ⊆ S such that

N (J)δ ≤ N (
∏

i∈S′
pi) ≤ N (J)1/2+2δ.

By inclusion, we have that Pr[t ∈ I
∏

i∈S pi] ≤ Pr[t ∈ I
∏

i∈S′ pi]. Now, as the
norm of

∏
i∈S′ pi is small enough, we can use the smoothing argument above to

claim that

Pr
t←↩DI,s

[t ∈ I
∏

i∈S′
pi] ≤ 2−2n+1 +

1
N (

∏
i∈S′ pi)

≤ 2−2n+1 +
1

N (J)δ
.

By assumption on δ, the latter is ≤2−n+2. Collecting terms allows to complete
the proof. ��
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The next corollary shows that the needed t can be found with non-negligible
probability.

Corollary 3.2. Let I be an integral OK-ideal. Let q ≥ max(2n, 216 · Δ
8/n
K ) be

a prime rational integer and pk a prime factor of qOK with largest norm. We
define:

s =

{
q1/2 · (N (I)ΔK)1/n if N (pk) ≥ q(5/8)·n,

q3/4 · (N (I)ΔK)1/n else.

Then, for sufficiently large n, we have

Pr
t←↩DI,s

[tI−1 + qOK = OK ] ≥ 1/2.

Proof. The result follows from applying Theorem 3.1 with J = qOK and δ = 1/8.
The first lower bound on q ensures that k/N (p1) ≤ 1/2, where k ≤ n denotes the
number of prime factors of qOK and p1 denotes a factor with smallest algebraic
norm. The second lower bound on q ensures that we can indeed set δ = 1/8. ��

We insist again on the fact that the required lower bounds on s can be much
improved under specific assumptions on the factorization of q. For example,
one could choose a q such that all the factors of qOK have large norms, by
sampling q randomly and checking its primality and the factorization of the
defining polynomial f modulo q. In that case, the factors q1/2 and q3/4 can be
decreased drastically.

We note that if the noise increase incurred by a reduction from an LWE-type
problem to another is bounded as nc

1 · qc
2 for some c1 < 1 and some c2 > 0,

then one may set the working modulus q so that the starting LWE problem
has a sufficient amount of noise to not be trivially easy to solve, and the ending
LWE problem has not enough noise to be information-theoretically impossible to
solve (else the reduction would be vacuous). Indeed, it suffices to set q sufficiently
larger than nc1/(1−c2).

4 From Primal-RLWE to PLWE

The goal of this section is to describe a reduction from primal-RLWE to PLWE. As
an intermediate step, we first consider a reduction from primal-RLWE to a variant
PLWEσ of PLWE where the noise is small with respect to the Minkowski embed-
ding rather than the coefficient embedding. Then, we assess the noise distortion
when looking at its Minkowski embedding versus its coefficient embedding.

If K = Q[x]/f for some f =
∏

j≤n(x − αj), the associated Vandermonde
matrix Vf has jth row (1, αj , . . . , α

n−1
j ) and corresponds to the linear map

between the coefficient and Minkowski embedding spaces. Thus a good approx-
imation of the distortion is given by the condition number Cond(Vf ) = sn/s1,
where the si’s refer to the largest/smallest singular values of Vf . As we also have
Cond(Vf ) = ‖Vf‖ · ‖V −1

f ‖, these matrix norms also quantify how much Vf dis-
torts the space. For a restricted, yet exponentially large, family of polynomials
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defining number fields, we show that both ‖Vf‖ and ‖V −1
f ‖ are polynomially

bounded.
To do this, we start from fn,a = xn −a whose distortion is easily computable.

Then we add a “small perturbation” to this polynomial. Intuitively, the roots
of the resulting polynomial should not move much, so that the norms of the
“perturbed” Vandermonde matrices should be essentially the same. We formalize
this intuition in Sect. 4.2 and locate the roots of the perturbed polynomial using
Rouché’s theorem.

Mapping a sample of PLWEσ to a sample of the corresponding PLWE simply
consists in changing the geometry of the noise distribution. A noise distribution
with covariance matrix Σ in the Minkowski embedding corresponds to a noise
distribution of covariance matrice (V −1

f )T ΣV −1
f in the coefficient space. The

converse is also true, replacing V −1
f by Vf . Moreover, the noise growths incurred

by the reductions remain limited whenever ‖Vf‖ and ‖V −1
f ‖ are small.

Overall, reductions between primal-RLWE to PLWE can be obtained by com-
bining Theorems 4.2 and 4.7 below (with Lemma 2.14 to randomize the noise
distributions).

4.1 Reducing Primal-RLWE to PLWEσ

We keep the notations of the previous section, and let Z[x]/(f) = O.

Definition 4.1 (The PLWEσ problem). Let also Σ be a positive definite
matrix, and q ≥ 2. For s ∈ O/qO, we define the PLWEσ distribution Bσ

s,Σ

as the distribution over O/qO × KR/qO obtained by sampling a ←↩ U(O/qO),
e ←↩ DH

Σ and returning the pair (a, a · s + e)
Let D� be a distribution over Σ � 0. Decision PLWEσ consists in distinguish-

ing between a sampler from Bσ
s,Σ and a uniform sampler over O/qO × KR/qO,

with non-negligible probability over s ←↩ O/qO and Σ ←↩ D�.

Theorem 4.2. Assume that qOK + CO = OK . Let Σ be a positive definite
matrix and s ∈ OK/qOK . Let t ∈ CO such that tC−1

O +qOK = OK . Then the map
(a, b) 
→ (t·a, t2·b) transforms U(OK/qOK×KR/qOK) to U(O/qO×KR/qO) and
As,Σ to Bσ

t·s,Σ′ , where the new covariance is Σ′ = diag(|σ(ti)|2)·Σ·diag(|σi(t)|2).
Let Bσ

s,Σ be a PLWEσ distribution. The natural inclusion O → OK induces a
map that transforms U(O/qO × KR/qO) to U(OK/qOK × KR/qOK) and Bσ

s,Σ

to As,Σ.

Proof. Let (a, b = a · s+ e) be distributed as As,Σ. Let a′ = t ·a and b′ = t2 · b =
a′ · (t · s) + e′, with e′ = t2 · e. Then a′ is uniformly distributed in CO/qCO by
applying Lemma 2.4 for I = CO, J = qOK and M = OK . It is also uniformly
distributed in O/qO by combining Lemmas 2.2 and 2.3. The noise follows the
claimed distribution, see the observation in Sect. 2.2. The fact that t · s ∈ O/qO
completes the proof that As,Σ is mapped to Bσ

t·s,Σ′ .
Now, let (a, b) be uniform in OK/qOK ×KR/qOK . We already know that a′ is

uniformly distributed in O/qO. Let us now consider the distribution of b′. Thanks
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to the assumption on qOK , we also have t2C−1
O + qOK = OK . Therefore, by

Lemma 2.4, multiplication by t2 induces an isomorphism OK/qOK � CO/qCO,
and hence, by Lemmas 2.2 and 2.3, an isomorphism OK/qOK � O/qO. This
gives the first reduction.

We now turn to the converse reduction. By coprimality and Lemmas 2.2
and 2.4, we have |O/qO| = |OK/qOK |. This implies that any (a, b) uniform in
O/qO ×KR/qO is also uniform in OK/qOK ×KR/qOK . The inclusion O ⊆ OK

allows to conclude. ��
As Theorem 2.13, Theorem 4.2 relies on a the existence of a good multiplier.

Writing K = Q[x]/(f) = Q[α] and O = Z[α], the element f ′(α) again satisfies
the constraints. Indeed, we know that O∨ = 1

f ′(α)O (see [Conb, Th. 3.7]), and
we have the inclusion OK ⊆ O∨. Multiplying by f ′(α), we obtain f ′(α)OK ⊆ O.
By definition, this means that f ′(α) ∈ CO, as claimed. While a large f ′(α) would
mean a large noise growth in the primal-RLWE to PLWEσ reduction, we described
in Sect. 3 how to find a smaller adequate multiplier if needed.

We have N (f ′(α)) = [OK : Z[α]]2 · ΔK , and, from [Ste17, p. 48], the prime
factors of [OK : Z[α]] are exactly those of N (CO). Provided the valuations are
not too high, there should be smaller elements in CO than f ′(α). We provide in
the full version concrete examples of number fields with defining polynomials f
such that the norm of f ′(α) is considerably larger than both the norms of CO
and (O∨

K)−1.

4.2 Distortion Between Embeddings

To bound the norms of a Vandermonde matrix associated to a polynomial and
its inverse, we study the magnitude of the roots and their pairwise distances.
It is known that ‖V ‖2 = Tr(V ∗V ), where ∗ denotes the transpose-conjugate
operator. For Vandermonde matrices, this gives

‖Vf‖2 =
∑

j∈[n]

∑

k∈[n]

|αj |2(k−1), (1)

which can be handled when the magnitudes of the αj ’s are known. The entries
of V −1

f = (wij) have well-known expressions as:

wij = (−1)n−i en−i(αj)
∏

k �=j

(αj − αk)
, (2)

where e0 = 1, ej for j > 0 stands for the elementary symmetric polynomial of
total degree j in n−1 variables, and αj = (α1, . . . , αj−1, αj+1, . . . , αn), the vector
of all roots but αj . We have the following useful relations with the symmetric
functions Ei of all the roots (for all j):

⎧
⎪⎨

⎪⎩

E1(α) = αj + e1(αj),
Ei(α) = αjei−1(αj) + ei(αj) for 2 ≤ i ≤ n − 1,

En(α) = αjen−1(αj).
(3)
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Combining (3) with Vieta’s formulas, bounds on the magnitudes of the roots
leads to bounds on the numerators of the wij ’s. The denominators encode the
separation of the roots, and deriving a precise lower bound turns out to be the
main difficulty. By differentiating f(x) =

∏
j∈[n](x−αj), we note that

∏
k �=j |αj−

αk| = |f ′(αj)|.
A family of polynomials with easily computable distortion. We first
introduce a family of polynomials for which ‖Vf‖ and ‖V −1

f ‖ are both simple
to estimate. For n ≥ 2 and a ≥ 1, we define fn,a = xn − a. The roots can be
written3 as αj = a1/ne2iπ

j
n , for 0 ≤ j < n. As these are scalings of the roots of

unity, both their magnitude and separation are well-understood. With (1), we
obtain ‖Vfn,a

‖ ≤ na
n−1

n ≤ na.
For any j, we readily compute |f ′

n,a(αj)| = na
n−1

n . Using (3), we observe that
|ei(αj)| = |αj |i for 1 ≤ i < n. We obtain that the row norm of V −1

fn,a
is given by

its first row as ∑

j∈[n]

|w1j | =
1

na
n−1

n

·
∑

j∈[n]

|αj |n−1 = 1,

from which it follows that ‖V −1
fn,a

‖ ≤ √
n.

Small perturbations of fn,a. Let P (x) =
∑

1≤j≤ρ·n pjx
j for some con-

stant ρ ∈ (0, 1), where the pj ’s are a priori complex numbers. Locating the
roots of gn,a = fn,a +P is our first step towards estimating ‖Vgn,a

‖ and ‖V −1
gn,a

‖.
We will use the following version of Rouché’s theorem.

Theorem 4.3 (Rouché, adapted from [Con95, pp. 125–126]). Let f, P be
complex polynomials, and let D be a disk in the complex plane. If for any z on the
boundary ∂D we have |P (z)| < |f(z)|, then f and f + P have the same number
of zeros inside D, where each zero is counted as many times as its multiplicity.

The lemma below allows to determine sufficient conditions on the parameters
such that the assumptions of Theorem 4.3 hold. We consider small disks Dk =
D(αk, 1/n) of radius 1/n around the roots α1, . . . , αn of fn,a, and we let ∂Dk

denote their respective boundaries. We let ‖P‖1 =
∑

j |pj | denote the 1-norm
of P .

Lemma 4.4. We have, for all k ≤ n and z ∈ ∂Dk:

|P (z)| ≤ (ae)ρ · ‖P‖1 and |fn,a(z)| ≥ a

(

1 − cos(a−1/n) − 2ea−1/n

na2/n

)

.

Proof. Write z = αk + eit

n for some t ∈ [0, 2π). We have |z| ≤ a1/n + 1/n,
and hence |z|ρn ≤ aρ

(
1 + 1

na1/n

)ρn. The first claim follows from the inequality
|P (z)| ≤ max(1, |z|ρn) · ‖P‖1.

3 For the rest of this section, ‘i’ will refer to the imaginary unit.
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Next, we have |fn,a(z)| = a|(1+ eit
′

na1/n )n − 1|, where t′ = t− 2kπ/n. W.l.o.g.,
we assume that k = 0. Let Log denote the complex logarithm, defined on C\R−.
Since the power series

∑
k≥1(−1)k−1uk/k converges to Log(1 + u) on the unit

disk, we have Log(1 + eit

na1/n ) = eit

na1/n + δ, for some δ satisfying |δ| ≤ |u| ·
∑

k≥1 |u|k/(k + 1) ≤ |u|2 for u = eit

na1/n (note that it has modulus ≤ 1/n ≤ 1/2).
Similarly, we can write exp(nδ) = 1 + ε for some ε satisfying |ε| ≤ 2n|δ| ≤
2/(na2/n). We hence have:

|fn,a(z)| = a · |A · (1 + ε) − 1| ≥ a · ||A − 1| − |ε · A|| ,
with A = exp(eita−1/n). Elementary calculus leads to the inequalities |A − 1| >

1 − cos(a−1/n) and |A| ≤ ea−1/n

for all t ∈ [0, 2π). Details can be found in the
full version. The second claim follows. ��

We note that when a = 2o(n) and n is sufficiently large, then the lower bound
on |fn,a(z)| may be replaced by |fn,a(z)| > a/3. To use Rouché’s theorem, it is
then enough that a, ρ and ‖P‖1 satisfy a > (3eρ‖P‖1) 1

1−ρ . We can now derive
upper bounds on the norms of Vgn,a

and its inverse.

Lemma 4.5. For any a > (‖P‖1 · C−1 · eρ)
1

1−ρ with C = |1 − cos(a−1/n) −
2ea−1/n

na2/n |, we have:

‖Vgn,a
‖ ≤ ane and ‖V −1

gn,a
‖ ≤ n5/2(‖P‖1 + 1)a1/ne2.

Proof. Let αj = a1/ne2iπj/n be the roots of fn,a (for 0 ≤ j < n). Thanks to
the assumptions and Lemma 4.4, Theorem 4.3 allows us to locate the roots
(βj)0≤j<n of gn,a within distance 1/n from the αj ’s. Up to renumbering, we
have |αj − βj | ≤ 1/n for all j. In particular, this implies that |βj | ≤ a1/n + 1/n
for all j. The first claim follows from (1).

Another consequence is that any power less than n of any |βj | is ≤ ae.
We start the estimation of ‖V −1

gn,a
‖ by considering the numerators in (2). Let

k0 = 1 + �n(1 − ρ)�. For any k < k0, we know that Ek(β) = 0. Using (3), we
obtain |ek(β

j
)| = |βj |k ≤ ae for k < k0 and that ek0−1(β

j
) = (−1)k0−1βk0−1

j .

Then (3) gives Ek0(β) = (−1)k0pn−k0 = (−1)k0−1βk0
j + ek0(β

j
), which implies

that |ek0(β
j
)| ≤ |βj |k0 + |pn−k0 |. By induction, we obtain, for all k < n − k0:

|ek0+k(β
j
)| ≤ |pn−k0−k| + |pn−k0−k+1βj | + · · · + |pn−k0β

k
j | + |βj |k0+k

≤ (‖P‖1 + 1)max(1, |βj |n),

so that |ek(β
j
)| ≤ (‖P‖1 + 1)ae for k ≥ 1.

We now derive a lower bound on the denominators in (2). The separation
of the βj ’s is close to that of the αj ’s. Concretely: |βj − βk| ≥ |αj − αk| −
2/n for all j, k. Therefore, we have

∏
k �=j |βj − βk| ≥ ∏

k �=j(|αj − αk| − 2/n).
Using the identity |αj − αk| = 2a1/n sin(|k − j|π/n) and elementary calculus,
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we obtain
∏

k �=j |βj − βk| ≥ a
n−1

n /(ne). Details can be found in the full version.
Thus any coefficient wij of V −1

gn,a
satisfies |wij | ≤ n(‖P‖1 + 1)a1/ne2. The claim

follows from equivalence between the row and Frobenius norms. ��
We now assume that the pj ’s and a are integers. The following lemma states

that, for a prime and sufficiently large, the polynomial gn,a is irreducible, and
thus defines a number field.

Lemma 4.6. Assume that P is an integer polynomial. For any prime a >
‖P‖1 + 1, the polynomial gn,a is irreducible over Q.

Proof. Let β be a root of gn,a. Then we have a = |βn + P (β)| ≤ |β|n +
‖P‖1 max(1, |β|n). The assumption on a implies that |β| > 1. In other words,
all the roots of gn,a have a magnitude >1. Now, assume by contradiction that
gn,a = h1h2 for some rational polynomials h1, h2. Since gn,a is monic, it is prim-
itive and we can choose h1, h2 as integer polynomials. The product of their con-
stant coefficients is then the prime a. Hence the constant coefficient of h1 or h2

is ±1, which contradicts the fact that the roots of gn,a have magnitude >1. ��
Overall, we have proved the following result.

Theorem 4.7. Let ρ ∈ (0, 1) and pj ∈ Z for 1 ≤ j ≤ ρ · n. Then for
a ≥ (3eρ‖P‖1)1/(1−ρ) smaller than 2o(n) and prime, and n sufficiently large,
the polynomial gn,a = xn +

∑
1≤j≤ρ·n pjx

j +a is irreducible over Q and satisfies:

‖Vgn,a
‖ ≤ ane and ‖V −1

gn,a
‖ ≤ n5/2(‖P‖1 + 1)a1/ne2.

In particular, if a and ‖P‖1 are polynomial in n, then both ‖Vgn,a
‖ and ‖V −1

gn,a
‖

are polynomial in n.

In the full version of this article, we give another family of well-behaved
polynomials.

5 Search to Decision Dual-RLWE

The reduction relies on the recent technique of [PRS17]. To leverage it, we use a
generalized Leftover Hash Lemma over rings. The proof generalizes a technique
used in [SS11] to the case where the irreducible factors of the defining polyno-
mial (of K) reduced modulo q do not share the same degree. Alternatively, a
generalization of the regularity lemma from [LPR13, Se. 7] to arbitrary number
fields could be used. Such a generalization may go through and improve our
results a little.
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5.1 A Ring-Based Leftover Hash Lemma

Let m ≥ 2. We identify any rank m OK-module M ⊆ Km with the lattice
σ(M) ⊆ Hm. For such modules, the dual may be defined as

M̂ = {t ∈ Km : ∀x ∈ M,Tr(〈t,x〉) ∈ Z}.

Here 〈·, ·〉 is the K-bilinear map defined by 〈x,y〉 =
∑m

i=1 xiyi. We have σ(M̂) =
σ(M)∗ in Hm. For some q ≥ 2 and a fixed a ∈ (OK/qOK)m, we focus on the
modules:

L(a) =
a
q
O∨

K + (O∨
K)m and a⊥ = {t ∈ Om

K : 〈t,a〉 = 0 mod qOK}.

To prove our Leftover Hash Lemma variant, the main argument relies on
an estimation of λ∞

1 (â⊥), which is obtained by combining the following two
lemmas. The first one was stated in [LS15, Se. 5] without a proof, for the case of
cyclotomic fields (this restriction is unnecessary). We give a proof of the general
case in the full version of this article.

Lemma 5.1. Let q ≥ 2 and a ∈ (OK/qOK)m. Then we have â⊥ = L(a).

We now obtain a probabilistic lower bound on λ∞
1 (â⊥) = λ∞

1 (L(a)). In full
generality, it should depend on the ramification of the selected prime integer q,
i.e., the exponents appearing in the factorization of qOK in prime ideals. It is a
classical fact that the ramified prime integers are exactly the primes dividing the
discriminant of the field, so that there are only finitely many such q’s. Moreover,
it is always possible to use modulus switching techniques [BLP+13,LS15] if q
ramifies. Therefore, we consider only the non-ramified case.

Lemma 5.2. Let q ≥ 2 a prime that does not divide ΔK . For any m ≥ 2 and
δ > 0, and except with a probability ≤ 23n(m+1)q−mnδ over the uniform choice
of a ∈ ((OK/qOK)×)m, we have:

λ∞
1 (L(a)) ≥ Δ

−1/n
K · q− 1

m −δ.

Proof. Thanks to the assumption on q, we can write qOK = p1 . . . pk for distinct
prime ideals pi. By Lemma 2.4 and the Chinese Remainder Theorem, we have
O∨

K/qO∨
K � OK/qOK � ⊕k

i=1 Fqdi , where qdi = N (pi).
Let a = (a1, . . . , am) sampled uniformly in ((OK/qOK)×)m. Fix some bound

B > 0 and let pB be the probability that qL(a) = aO∨
K + q(O∨

K)m contains a
t = (t1, . . . , tm) such that 0 < ‖t‖∞ < B. Our goal is to bound pB from above.
By the union bound, we have that

pB ≤
∑

s∈O∨
K/qO∨

K

∑

t∈(O∨
K/qO∨

K)m

0<‖t‖∞<B

p(t, s),
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with p(t, s) = Pra[∀ j, tj = ajs mod qO∨
K ] for any s and t over O∨

K/qO∨
K . By

independance of the aj ’s, we can write p(t, s) =
∏

j∈[m] p(tj , s) with p(tj , s) =
Praj

[tj = ajs mod qO∨
K ]. As O∨

K/qO∨
K and OK/qOK are isomorphic, estimat-

ing this probability amounts to studying the solutions in (OK/qOK)× of the
equation t = as mod qOK , for all t, s ∈ OK/qOK .

Note that if there is an i such that t = 0 mod pi and s �= 0 mod pi, or vice-
versa, then there is no solution, so that p(t, s) = 0. Now, assume that s and t are
0 modulo the same pi’s. Let S ⊆ [k] denote the set of their indices, and let dS

be such that qdS = N (
∏

i∈S pi). On the one hand, for all i ∈ [k] \ S, both t and
s are invertible modulo pi so there is exactly one solution modulo those i’s. On
the other hand, for all i ∈ S, all the elements of F×

qdi
are solutions. This gives

∏
i∈S(qdi −1) possibilities out of the

∏
i(q

di −1) elements of (OK/qOK)×. Over-
all, we obtain that p(t, s) =

∏
i∈[k]\S(qdi −1)−1. Hence, for t with coordinates tj

such that s and all tj ’s are 0 modulo the same pi’s, we have:

p(t, s) = q−m(n−dS)
∏

i∈[k]\S

(1 − 1
qdi

)−m ≤ q−m(n−dS) · 2mk,

the last inequality coming from the fact that 1 − 1/qdi ≥ 1/2 for all i.
Let τ denote the isomorphism mapping O∨

K/qO∨
K to OK/qOK . The proba-

bility to bound is now

pB ≤ 2mk ·
∑

S⊆[k]

∑

τ(s)∈OK/qOK

∀i∈S:pi | τ(s)

∑

τ(t)∈(OK/qOK)m

0<‖t‖∞<B
∀ j,∀i∈S:pi | τ(tj)

q−m(n−dS).

For any r > 0, we let B(r) denote the (open) ball in H of center 0 and radius r,
with respect to the infinity norm. Such a ball has a volume Vol(B(r)) = (2r)n.
For any S ⊆ [k], we define N(B,S) = |B(B) ∩ L(τ−1(

∏
i∈S pi))| − 1. Since there

are 2k subsets in [k] and qn−dS elements τ(s) ∈ OK/qOK such that pi|s for
all i ∈ S, we have

pB ≤ 2k(m+1) · max
S⊆[k]

N(B,S)m

q(n−dS)(m−1)
. (4)

We now give an upper bound for N(B,S), from which we will obtain the
result. Let IS =

∏
i∈S pi and λS = λ∞

1 (τ−1(IS)). Observe that any two distinct
balls of radius λS/2 and centered around elements of B(B) ∩ L(τ−1(IS)) do not
intersect. Moreover, all of them are contained in B(B +λS/2). This implies that

N(B,S) ≤ Vol(B(B + λS/2))
Vol(B(λS/2))

=
(

2B

λS
+ 1

)n

.

It remains to give a lower bound on λS . As τ−1(IS) = ISO∨
K , we have

N (τ−1(IS)) = qdS/ΔK . With Lemma 2.5, this gives Δ
−1/n
K qdS/n ≤ λS . If we set

B = Δ
−1/n
K qβ , then nβ < dS leads to N(B,S) = 0 and nβ ≥ dS implies the
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upper bound N(B,S) ≤ 22nqnβ−dS . With (4), this gives

pB ≤ 2(m+1)(k+2n) · max
S⊆[k]

dS≤nβ

qm(β−1)n+(n−dS).

The maximum is reached for dS = 0 (i.e., when S = ∅). In this case, the exponent
of q is −mnδ for β = 1 − 1

m − δ. We obtain that λ∞
1 (qL(a)) ≥ Δ

−1/n
K q1− 1

m −δ

except with probability ≤23n(m+1)q−mnδ. ��
We are now ready to state the variant of the Leftover Hash Lemma.

Theorem 5.3. Let q ≥ 2 prime that does not divide ΔK . Let δ > 0, ε ∈ (0, 1/2)
and m ≥ 2. For a given a in ((OK/qOK)×)m, let Ua be the distribution of∑

i≤m tiai where the vector t = (t1, . . . , tm) is sampled from DOK ,s with s ≥
√

log(2mn(1 + 1/ε))/π · Δ1/n
K q1/m+δ. Then, except for ≤ 23n(m+1)q−mnδ of a’s,

the distance to uniformity of Ua is ≤2ε.

Proof. First we note that the map t 
→ ∑
i≤m tiai is a well-defined surjective

OK-module homomorphism from Om
K to OK/qOK , with kernel a⊥. The distance

to uniformity of Ua is hence the same as the distance to uniformity of t mod a⊥.
By Lemma 2.8, the claim follows whenever s ≥ ηε(a⊥). By Lemma 2.6, t it
suffices to find an appropriate lower bound on λ∞

1 (L(a)). Lemma 5.2 allows to
complete the proof. ��
Corollary 5.4 (Leftover Hash lemma). If t is sampled from DOK ,s with
s ≥ √

log(2mn(1 + 1/ε))/π · Δ
1/n
K q1/m+δ, and the ai’s are sampled from

U((OK/qOK)×), then:

Δ

[(

a1, . . . , am,
∑

i≤m

tiai

)

, U

(

((OK/qOK)×)m × OK/qOK

)]

≤ 2ε + 23n(m+1) · q−mnδ.

5.2 Search RLWE to Decision RLWE

We now give the reduction from search to decision. As all proofs can be done
similarly, we focus on the dual-RLWE version of the problems. For the sake of
simplicity, we consider only the case of diagonal covariance matrices. The proof
readily extends to general covariance matrices. To obtain the reduction, we need
to generate suitable new samples from a starting set of samples from search
dual-RLWE.

The lemma below is adapted from [LS15, Le. 4.15]. We will use it to analyze
the error distribution we get when generating new samples.

Lemma 5.5. Let α > 0, L a rank-m OK-module, ε ∈ (0, 1/2), a vector t ∈
DL+c,r for some c ∈ Hm, and e′ ∈ KR chosen according to DH

α . If ri ≥ ηε(L)
and α

δi
≥ ηε(L) for all i, then Δ(〈t, e〉 + e′,DH

x ) ≤ 4ε with xi =
√

(riδi)2 + α2

and δi = (
∑

k∈[m] |σi(ek)|2)1/2 for all i.
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We can now give a reduction from search dual-RLWE to worst-case decision
dual-RLWE. It may be combined with the worst-case decision dual-RLWE to
decision dual-RLWE from Lemma 2.14.

Theorem 5.6. Let r ∈ (R≥0)n be such that ri = ri+s2 for any i > s1
and ri ≤ r for some r > 0. Let d =

√
n · Δ

1/n
K q1/m+1/n, and consider

Σ = {r′ : r′
i ≤ √

d2 · r2 · m + d2}. Then there exists a probabilistic polynomial-
time reduction from search dual-RLWEq,Dr with m ≤ q/(2n) input samples to
worst-case decision dual-RLWEq,Σ.

Proof. We have m samples (ai, bi = ais + ei) ∈ OK/qOK × KR/qO∨
K from the

dual-RLWE distribution A∨
s,r, for a uniform s ∈ O∨

K/qO∨
K that we want to find.

This is equivalent to finding the error term e = (e1, . . . , em). By assumption
on m, the ai’s are all invertible with non-negligible probability. If it is not the
case, the reduction aborts. From now on, we hence assume that they are uni-
formly distributed in (OK/qOK)×.

We use the same technique as in [PRS17], in that we find the ith embeddings
σi(e1), . . . , σi(em) of the error terms by constructing an m-dimensional instance
of the Oracle Hidden Center Problem (OHCP). The only difference consists in
the way we create the samples that we give to the decision oracle. The reduction
uses the dual-RLWE decision oracle to build the oracles Oi : Rm ×R

≥0 → {0, 1}
for i ≤ s1 and Oi : Cm × R

≥0 → {0, 1} for s1 < i ≤ s1 + s2.
For i ≤ s1, we define ki : R → KR as ki(x) = σ−1(x · vi) and for s1 < i ≤

s1 + s2, we define ki : C → KR as ki(x) = σ−1(x · vi + x · vi+s2), where the vi’s
form the canonical basis of H.

On input (z1, . . . , zm, α), oracle Oi will output 1 with probability depend-
ing on exp(α)‖e − z‖, where z = (ki(z1), . . . , ki(zm)). It works as follows. It
first chooses a uniform s′ ∈ O∨

K/qO∨
K . On input (z1, . . . , zm, α), it samples

t = (t1, . . . , tm) ∈ Om
K Gaussian with parameter exp(α) ·√n ·Δ1/n

K q1/m+1/n and
some e′ from Dd. The oracle then creates (a′, b′) = (〈t,a〉, 〈t,b − z̄〉 + a′s′ + e′),
where b = (b1, . . . , bm).

By Corollary 5.4, the distribution of (a, 〈t,a〉) is exponentially close to
U(((OK/qOK)×)m × OK/qOK). Since bj = ajs + ej for all j, we get b′ =
a′(s + s′) + 〈t, e − z̄〉 + e′, so oracle Oi creates RLWE samples for a uni-
formly distributed s + s′, provided the error term follows a suitable distribu-
tion. We let δ� = (

∑
j∈[m] σ�(ej − ki(zj))|2)1/2 for � ≤ n. In particular, we have

δi = ‖σi(e1) − z1, . . . , σi(em) − zm‖. Let us now study the distribution of the
error term 〈t, e − z〉 + e′. We can see that once the value of 〈t,a〉 = c and the
ai’s are known, one can write t = (ca−1

1 , 0, . . . , 0)+ (−a−1
1

∑
i≥2 tiai, t2, . . . , tm),

where the second vector belongs to a⊥. This means that the actual support of
t is a shift of the a⊥ lattice by the vector (ca−1

1 , 0, . . . , 0). Using Lemma 5.5, we

get that the distribution of the error is DH
x where xj =

√
exp2(α) · d2 · δ2j + d2.

Let Si,(z1,...,zm,α) be the samples obtained by applying the procedure above
many times. Oracle Oi calls the dual-RLWE decision oracle with these and out-
puts 1 if and only if the latter accepts. With non-negligible probability over
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the choice of the initial errors, the distribution of the samples we get when we
call the oracle Oi on (0, 0) belongs to the set Σ. One can now show that using
the same technique as in [PRS17], it is possible to recover good approximations
of the vector (σi(e1), . . . , σi(em)). By substracting them from the initial search
samples, rounding and then taking the inverses of the ai’s, we obtain s. ��
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hardness of learning with errors. In: STOC (2013)

[CDPR16] Cramer, R., Ducas, L., Peikert, C., Regev, O.: Recovering short gen-
erators of principal ideals in cyclotomic rings. In: Fischlin, M., Coron,
J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 559–585. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5 20

[CDW17] Cramer, R., Ducas, L., Wesolowski, B.: Short stickelberger class relations
and application to ideal-SVP. In: Coron, J.-S., Nielsen, J.B. (eds.) EURO-
CRYPT 2017. LNCS, vol. 10210, pp. 324–348. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-56620-7 12

[CGS14] Campbell, P., Groves, M., Shepherd, D.: Soliloquy: a cautionary tale.
In: ETSI 2nd Quantum-Safe Crypto Workshop (2014). http://docbox.
etsi.org/Workshop/2014/201410 CRYPTO/S07 Systems and Attacks/
S07 Groves Annex.pdf

[CIV16a] Castryck, W., Iliashenko, I., Vercauteren, F.: On the tightness of the error
bound in Ring-LWE. LMS J. Comput. Math. 130–145 (2016)

https://doi.org/10.1007/978-3-319-70694-8_10
https://doi.org/10.1007/978-3-319-70694-8_10
https://doi.org/10.1007/978-3-319-56620-7_2
https://doi.org/10.1007/978-3-319-56620-7_2
http://eprint.iacr.org/2016/461
https://doi.org/10.1007/978-3-662-49896-5_20
https://doi.org/10.1007/978-3-319-56620-7_12
http://docbox.etsi.org/Workshop/2014/201410_CRYPTO/S07_Systems_and_Attacks/S07_Groves_Annex.pdf
http://docbox.etsi.org/Workshop/2014/201410_CRYPTO/S07_Systems_and_Attacks/S07_Groves_Annex.pdf
http://docbox.etsi.org/Workshop/2014/201410_CRYPTO/S07_Systems_and_Attacks/S07_Groves_Annex.pdf


172 M. Rosca et al.

[CIV16b] Castryck, W., Iliashenko, I., Vercauteren, F.: Provably weak instances of
ring-LWE revisited. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT
2016. LNCS, vol. 9665, pp. 147–167. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49890-3 6

[CLS17] Chen, H., Lauter, K., Stange, K.E.: Attacks on search RLWE. SIAM J.
Appl. Algebra Geom. (SIAGA) 1, 665–682 (2017)

[CLS16] Chen, H., Lauter, K., Stange, K.E.: Vulnerable Galois RLWE families
and improved attacks. In: Proceedings of SAC. Springer (2016)

[Cona] Conrad, K.: The conductor ideal. http://www.math.uconn.edu/
∼kconrad/blurbs/gradnumthy/conductor.pdf

[Conb] Conrad, K.: The different ideal. http://www.math.uconn.edu/∼kconrad/
blurbs/gradnumthy/different.pdf

[Con95] Conway, J.B.: Functions of One Complex Variable. Springer, New York
(1995). https://doi.org/10.1007/978-1-4612-6313-5

[DD12] Ducas, L., Durmus, A.: Ring-LWE in polynomial rings. In: Fischlin, M.,
Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 34–51.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30057-
8 3

[DLL+18] Ducas, L., Lepoint, T., Lyubashevsky, V., Schwabe, P., Seiler, G., Stehlé,
D.: CRYSTALS - Dilithium: digital signatures from module lattices. In:
TCHES (2018)
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Abstract. We present improved algorithms for gaussian preimage sam-
pling using the lattice trapdoors of (Micciancio and Peikert, CRYPTO
2012). The MP12 work only offered a highly optimized algorithm for the
on-line stage of the computation in the special case when the lattice mod-
ulus q is a power of two. For arbitrary modulus q, the MP12 preimage
sampling procedure resorted to general lattice algorithms with complex-
ity cubic in the bitsize of the modulus (or quadratic, but with substantial
preprocessing and storage overheads). Our new preimage sampling algo-
rithm (for any modulus q) achieves linear complexity with very mod-
est storage requirements, and experimentally outperforms the generic
method of MP12 already for small values of q. As an additional contribu-
tion, we give a new, quasi-linear time algorithm for the off-line perturba-
tion sampling phase of MP12 in the ring setting. Our algorithm is based
on a variant of the Fast Fourier Orthogonalization (FFO) algorithm of
(Ducas and Prest, ISSAC 2016), but avoids the need to precompute and
store the FFO matrix by a careful rearrangement of the operations. All
our algorithms are fairly simple, with small hidden constants, and offer a
practical alternative to use the MP12 trapdoor lattices in a broad range
of cryptographic applications.

1 Introduction

Lattice cryptography provides powerful techniques to build a wide range of
advanced cryptographic primitives, like identity based encryption [2–4,11,23,31],
attribute based encryption [14,16,17,19,33], some types of fully homomorphic
encryption and signatures [12,13,24,32,35], group signatures [21,36,44,45,54]
and much more (e.g., see [6,10,34,46,51,56,57,60]). Most of the advanced appli-
cations of lattice cryptography rely on a notion of strong lattice trapdoor, intro-
duced in [31], which allows to sample points from an n-dimensional lattice L
with a gaussian-like distribution. This gaussian sampling operation is often the
main bottleneck in the implementation of advanced cryptographic functions that
make use of strong lattice trapdoors, and improving the methods to generate and
use lattice trapdoors has been the subject of several investigations [5,7,31,55].
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The current state of the art in lattice trapdoor generation and sampling is
given by the work of Micciancio and Peikert [51], which introduces a new notion
of lattice trapdoor, specialized to the type of q-ary lattices used in cryptogra-
phy, i.e., integer lattices L ⊆ Z

n that are periodic modulo q ·Zn. The trapdoor is
then used to efficiently sample lattice points with gaussian distribution around
a given target. Building on techniques from [55], the sampling algorithm of [51]
includes both an on-line and an off-line stage, and [51] focuses on improving the
complexity of the on-line stage, which is far more critical in applications. Unfor-
tunately, the most efficient algorithms proposed in [51] for (the on-line stage of)
preimage sampling only apply to lattices with modulus q = 2k equal to a power
of 2 (or, more generally, the power q = pk of a small prime p,) which is not
compatible with the functional or efficiency requirements of many applications.
Moreover, only the on-line stage of [51] takes full advantage of the structure
of algebraic lattices [48–50] typically employed in the efficient instantiation of
lattice cryptography, and essential to reduce the running time of lattice opera-
tions from quadratic (in the lattice dimension) to quasi-linear. A straightforward
implementation of the off-line stage (e.g., using a generic Cholesky decomposi-
tion algorithm) completely destroys the algebraic structure, and degrades the
running time of the (off-line) algorithm from quasi-linear to quadratic or worse.
For lattices over “power-of-two” cyclotomic rings (the most popular class of alge-
braic lattices used in cryptography), a much faster algorithm for the off-line stage
was proposed by Ducas and Nguyen in [27, Sect. 6], and subsequently simplified,
improved and extended to a more general class of cyclotomic rings by the Fast
Fourier Orthogonalization (FFO) of Ducas and Prest [28].

Our Contribution. We present improved algorithms for gaussian preimage sam-
pling using the lattice trapdoors of [51]. Specifically, we present a new algorithm
(for the on-line stage) capable of handling any modulus q (including the large
prime moduli required by some applications) and still achieve the same level
of performance of the specialized algorithm of [51] for power-of-two modulus
q = 2k. This improves the running time of [51] for arbitrary modulus from cubic
log3 q (or quadratic log2 q, using precomputation and a substantial amount of
storage) to just linear in log q and with minimal storage requirements.

As an additional contribution, we present an improved algorithm for the off-
line perturbation generation problem which takes full advantage of the algebraic
structure of ring lattices. We remark that this problem can already be solved
(in quasilinear time Õ(n)) using the (FFO) algorithm of [28], which first pro-
duces a compact representation of the orthogonalized lattice basis (or covariance
matrix), and then uses it to quickly generate lattice samples. We improve on the
algorithm of [28] on two fronts. First, the FFO algorithm is quasi-linear in the
ring dimension, but quadratic in the module dimension (which, in our applica-
tion, is log q). We combine [28] with the “sparse matrix” optimization of [9] to
yield an algorithm that is linear both in the ring dimension and log q. Moreover,
we provide a variant of the FFO algorithm that performs essentially the same
operations as [28], but without requiring the precomputation and storage of the
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Table 1. Running time and storage of the (G-sampling) algorithm. G-Sampling run-
ning times are scaled by a factor n to take into account that each sample requires n
independent calls to the underlying G-sampling operation.

MP12 MP12 This work

Modulus q 2k any any

G-sampling precomp. — O(log3 q) —

G-sampling space O(log q) O(log2 q) O(log q)

G-sampling time O(n log q) O(n log2 q) O(n log q)

FFO (structured) matrix, thereby simplifying the implementation and improving
the space complexity of [28].

The G-sampling improvements are summarized in Table 1. The improvements
are not just asymptotic: our new algorithms are fairly simple, with small hidden
constants, and include a careful choice of the parameters that allows to imple-
ment most steps using only integer arithmetic on very small numbers. In Sect. 3.3,
we provide an experimental comparison showing that the new algorithm outper-
forms the generic method of [51] already for small values of the moduli, making it
an attractive choice for implementations even in applications where the modulus
q = nO(1) has logarithmic bit-size. For applications using an exponentially large
q = exp(n), the projected performance improvements are dramatic. The concrete
efficiency of our algorithms in the context of full blown cryptographic applications,
has been recently confirmed by independent implementation efforts [25,37,38].

Technical details. In order to describe our techniques, we need first to provide
more details on the lattice trapdoor sampling problem. Given a lattice L and a
target point t, the lattice gaussian sampling problem asks to generate (possibly
with the help of some trapdoor information) a random lattice point v ∈ L with
probability proportional to exp(−c‖v − t‖2). Building on techniques from [55],
this problem is solved in [51] by mapping L to a fixed (key independent) lattice
Gn, generating a gaussian sample in Gn, and then mapping the result back to L.
(The linear function T mapping Gn to L serves as the trapdoor.) Without further
adjustments, this produces a lattice point in L with ellipsoidal gaussian distri-
bution, with covariance which depends on the linear transformation T . In order
to produce spherical samples (as required1 by applications), [51] employs a per-
turbation technique of Peikert [55] which adds some noise (with complementary
covariance) to the target t, before using it as a center for the Gn-lattice sampling
operation. In summary, the sampling algorithm of [51,55] consists of two stages:

– an off-line (target independent) stage, which generates perturbation vectors
with covariance matrix defined by the trapdoor transformation T , and

– an on-line (target dependent) stage which generates gaussian samples from
an (easy to sample) lattice Gn.

1 More generally, applications require samples to be generated according to a distribu-
tion that does not depend on the trapdoor/secret key.
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Not much attention is paid in [51] to the perturbation generation, as it does not
depend on the target vector t, and it is far less time critical in applications.2

As for the on-line stage, one of the properties that make the lattice Gn easy to
sample is that it is the orthogonal sum of n copies of a (log q)-dimensional lattice
G. So, even using generic algorithms with quadratic running time, G sampling
takes a total of O(n log2 q) operations. For moduli q = nO(1) polynomial in the
lattice dimension n, this results in quasilinear running time O(n log2 n). How-
ever, since the G-sampling operation directly affects the on-line running time of
the signing algorithm, even a polylogarithmic term log2 q can be highly unde-
sirable. To this end, [51] gives a particularly efficient (and easy to implement)
algorithm for G-lattice sampling when the lattice modulus q = 2k is a power of 2
(or more generally, a power q = pk of a small prime p.) The running time of this
specialized G-sampling algorithm is log q, just linear in the lattice dimension,
and has minimal (constant) storage requirements. Thanks to its simplicity and
efficiency, this algorithm has quickly found its way in concrete implementations
of lattice based cryptographic primitives (e.g., see [9]), largely solving the prob-
lem of efficient lattice sampling for q = 2k. However, setting q to a power of
2 (or more generally, the power of a small prime), may be incompatible with
applications and other techniques used in lattice cryptography, like attribute
based encryption (ABE) schemes [14] and fast implementation via the number
theoretic transform [47,49]. For arbitrary modulus q, [51] falls back to generic
algorithms (for arbitrary lattices) with quadratic complexity. This may still be
acceptable when the modulus q is relatively small. But it is nevertheless undesir-
able, as even polylogarithmic factors have a significant impact on the practical
performance of cryptographic functions (easily increasing running times by an
order of magnitude), and can make applications completely unusable when the
modulus q = exp(n) is exponentially large. The concrete example best well illus-
trates the limitations of [51] is the recent conjunction obfuscator of [20], which
requires the modulus q to be prime with bitsize log(q) = O(n) linear in the
security parameter. In this setting, the specialized algorithm of [51] (for q = 2k)
is not applicable, and using a generic algorithm slows down the on-line stage
by a factor O(n), or, more concretely, various orders of magnitude for typical
parameter settings. Another, less drastic, example is the arithmetic circuit ABE
scheme of [14] where q is O(2nε

) for some fixed 0 < ε < 1/2. Here the slow down
is asymptotically smaller, nε, but still polynomial in the security parameter n.

Unfortunately, the specialized algorithm from [51] makes critical use of the
structure of the G-basis when q = 2k, and is not easily adapted to other moduli.
(See Sect. 3 for details). In order to solve this problem we resort to the same
approach used in [51,55] to generate samples from arbitrary lattices: we map G
to an even simpler lattice D using an easy to compute linear transformation T ′,
perform the gaussian sampling in D, and map the result back to G. As usual,
the error shape is corrected by including a perturbation term with appropriate
covariance matrix. The main technical problem to be solved is to find a suitable

2 E.g., in lattice based digital signature schemes [31,51], the off-line computation
depends only on the secret key, and can be performed in advance without know-
ing the message to be signed.



178 N. Genise and D. Micciancio

linear transformation T ′ such that D can be efficiently sampled and perturbation
terms can be easily generated. In Sect. 3 we demonstrate a choice of transfor-
mation T ′ with all these desirable properties. In particular, using a carefully
chosen transformation T ′, we obtain lattices D and perturbation matrices that
are triangular, sparse, and whose entries admit a simple (and efficiently com-
putable) closed formula expression. So, there is not even a need to store these
sparse matrices explicitly, as their entries can be easily computed on the fly.
This results in a G-sampling algorithm with linear running time, and minimal
(constant) space requirements, beyond the space necessary to store the input,
output and randomness of the algorithm.

Next, in Sect. 4, we turn to the problem of efficiently generating the per-
turbations of the off-line stage. Notice that generating these perturbations is a
much harder problem than the one faced when mapping G to D (via T ′). The
difference is that while G,D, T ′ are fixed (sparse, carefully designed) matrices,
the transformation T is a randomly chosen matrix that is used as secret key. In
this setting, there is no hope to reduce the computation time to linear in the
lattice dimension, because even reading/writing the matrix T can in general take
quadratic time. Still, when using algebraic lattices, matrix T admits a compact
(linear size) representation, and one can reasonably hope for faster perturbation
generation algorithms. As already noted, this can be achieved using the Fast
Fourier Orthogonalization algorithm of Ducas and Prest [28], which has running
time quasilinear in the ring dimension, but quadratic in the dimension (over the
ring) of the matrix T , which is O(log q) in our setting. As usual, while for polyno-
mial moduli q = nO(1), this is only a polylogarithmic slow down, it can be quite
significant in practice [9]. We improve on a direct application of the FFO algo-
rithm by first employing an optimization of Bansarkhani and Buchmann [9] to
exploit the sparsity of T . (This corresponds to the top level function SamplePz

in Fig. 4.) This optimization makes the computation linear in the dimension of
T (log q in our setting), while keeping the quasilinear dependency on the ring
dimension n from [28]. We further improve this combined algorithm by pre-
senting a variant of FFO (described by the two mutually recursive functions
SampleFz/Sample2z in Fig. 4) that does not require the precomputation and
storage of the FFO matrix.

Comparison with FFO. Since our SamplePz function (Fig. 4) uses a subproce-
dure SampleFz which is closely related to the FFO algorithm [28], we provide a
detailed comparison between the two. We recall that FFO works by first comput-
ing a binary tree data structure [28, Algorithm 3], where the root node is labeled
by an n-dimensional vector, its two children are labeled by (n/2)-dimensional vec-
tors, and so on, all the way down to n leaves which are labeled with 1-dimensional
vectors. Then, [28, Algorithm 4] uses this binary tree data structure within a
block/recursive variant of Babai’s nearest plane algorithm.3 Our SampleFz is

3 Technically, [28, Algorithm 4] deterministically rounds a target point to a point in the
lattice, rather than producing a probability distribution. But, as observed in [28], the
algorithm is easily adapted to perform gaussian sampling by replacing deterministic
rounding operations with probabilistic gaussian rounding.
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based on the observation that one can blend/interleave the computation of [28,
Algorithm 3] and [28, Algorithm 4], leading to a substantial (asymptotic) memory
saving. Specifically, combining the two algorithms avoids the need to precompute
and store the FFO binary tree data structure altogether, which is now implicitly
generated, on the fly, one node/vector at a time, and discarding each node/vector
as soon as possible in a way similar to a depth-first tree traversal. The result-
ing reduction in space complexity is easily estimated. The original FFO builds
a tree with log n levels, where level l stores 2l vectors in dimension n/2l. So, the
total storage requirement for each level is n, giving an overall space complexity
of n log n. Our FFO variant only stores one node/vector per level, and has space
complexity

∑
l(n/2l) = 2n, a O(log n) improvement over the space of original

FFO algorithm. Moreover, the nodes/vectors are stored implicitly in the execu-
tion stack of the program, rather than an explicitly constructed binary tree data
structure, yielding lower overhead and an algorithm that is easier to implement.
For simplicity we specialized our presentation to power-of-two cyclotomics, which
are the most commonly used in lattice cryptography, but everything works equally
well for the larger class of cyclotomic rings, in the canonical embedding, consid-
ered in [28].

2 Preliminaries

We denote the complex numbers as C, the real numbers as R, the rational
numbers as Q, and the integers as Z. A number is denoted by a lower case letter,
z ∈ Z for example. We denote the conjugate of a complex number y as y∗. When
q is a positive integer, log q is short for its rounded up logarithm in base two,
�log2 q�. A floating point number with mantissa length m representing x ∈ R is
denoted as x̄. The index set of the first n natural numbers is [n] = {1, . . . , n}.
Vectors are denoted by bold lower case letters, v, and are in column form (vT

is a row vector) unless stated otherwise. The inner product of two vectors is
〈x,y〉 = xT y. We denote matrices with bold upper case letters B or with upper
case Greek letters (for positive-definite matrices). The transpose of a matrix is
BT . The entry of B in row i and column j is denoted Bi,j . Unless otherwise
stated, the norm of a vector is the �2 norm. The norm of a matrix ‖B‖ =
maxi ‖bi‖ is the maximum norm of its column vectors. Given two probability
distributions over a countable domain D, the statistical distance between them
is Δsd(X,Y ) = 1

2

∑
ω∈D |X(ω)−Y (ω)|. In order to avoid tracing irrelevant terms

in our statistical distance computations, we define ε̂ = ε + O(ε2).
We denote a random variable x sampled from a distribution D as x ← D. A

random variable distributed as D is denoted x ∼ D. We denote an algorithm A
with oracle access to another algorithm B (distribution D) as AB (AD).

The max-log, or ML, distance between two distributions was recently intro-
duced by [53] in order to prove tighter bounds for concrete security. The ML
distance between two discrete distributions over the same support, S, as

Δml(P,Q) = max
x∈S

| ln Q(x) − ln P(x)|.
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Let P,Q be distributions over a countable domain again and let S be the support
of P.

The Rényi divergence of order infinity of Q from P is

R∞(P||Q) = max
x∈S

P(x)
Q(x)

.

Rényi divergence is used in [8] to yield a tighter security analysis than one using
statistical distance.

2.1 Linear Algebra

The (foreward) Gram-Schmidt orthogonalization of an ordered set of linearly
independent vectors B = {b1, . . . ,bk} is B̃ = {b̃1, . . . , b̃k} where each b̃i is
the component of bi orthogonal to span(b1, . . . ,bi−1) (and the backward GSO
is defined as b†

i = bi ⊥ span(bi+1, . . . ,bn)). An anti-cylic matrix is an n × n
matrix of the form ⎡

⎢
⎢
⎢
⎣

a0 −an−1 . . . −a1

a1 a0 . . . −a2

...
...

. . .
...

an−1 an−2 . . . a0

⎤

⎥
⎥
⎥
⎦

.

For any two (symmetric) matrices Σ,Γ ∈ R
n×n, we write Σ � Γ if xT (Σ −

Γ )x ≥ 0 for all (nonzero) vectors x ∈ R
n, and Σ � Γ if xT (Σ − Γ )x > 0. It is

easy to check that � is a partial order relation. Relations � and ≺ are defined
symmetrically. When one of the two matrices Γ = sI is scalar, we simply write
Σ � s or Σ � s. A symmetric matrix Σ ∈ R

n×n is called positive definite if
Σ � 0, and positive semidefinite if Σ � 0. Equivalently, Σ is positive semidefinite
if and only if it can be written as Σ = BBT for some (square) matrix B, called
a square root of Σ and denoted B =

√
Σ. (Notice that any Σ � 0 has infinitely

many square roots B =
√

Σ.) Σ is positive definite if and only if its square root
B is a square nonsingular matrix. When B is upper (resp. lower) triangular,
the factorization Σ = BBT is called the upper (resp. lower) triangular Cholesky
decomposition of Σ. The Cholesky decomposition of any positive definite Σ ∈
R

n×n can be computed with O(n3) floating point arithmetic operations. For any
scalar s, Σ � s if and only if all eigenvalues of Σ are strictly greater than s. In
particular, positive definite matrices are nonsingular.

For any n×n matrix S and non-empty index sets I, J ⊆ {1, . . . , n}, we write
S[I, J ] for the |I| × |J | matrix obtained by selecting the elements at positions
(i, j) ∈ I × J from S. When I = J , we write S[I] as a shorthand for S[I, I].
For any nonsingular matrix S ∈ R

n×n and index partition I ∪ Ī = {1, . . . , n},
I ∩ Ī = ∅, the I × I matrix

S/I = S[I] − S[I, Ī] · S[Ī]−1 · S[Ī , I]

is called the Schur complement of S[Ī], often denoted by S/S[Ī] = S/I.

In particular, if S =
[

A B
BT D

]

then the Schur complement of A is the matrix
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S/A = D − BT A−1B. For any index set I, a symmetric matrix S is positive
definite if and only if both S[I] and its Schur’s complement S/S[I] are positive
definite.

Let Σ =
[

A B
BT D

]

� 0. We can factor Σ in terms of a principal submatrix,

say D, and its Schur complement, Σ/D = A − BD−1BT , as follows:

Σ =
[
I BD−1

0 I

] [
Σ/D 0

0 D

] [
I 0

D−1BT I

]

.

The next two theorems regarding the spectra of principal submatrices and
Schur complements of positive definite matrices are used in Sect. 4. In both
theorems, λi is the ith (in non-increasing order, with multiplicity) eigenvalue of
a symmetric matrix.

Theorem 1 (Cauchy). For any symmetric matrix S ∈ R
n×n, I ⊆ {1, . . . , n}

and 1 ≤ i ≤ |I|
λi(S) ≥ λi(S[I]) ≥ λi+n−|I|(S).

Theorem 2 ([61, Corollary 2.3]). For any positive definite Σ ∈ R
n×n, I ⊆

{1, . . . , n} and 1 ≤ i ≤ |I|
λi(Σ) ≥ λi(Σ/I) ≥ λi+n−|I|(Σ).

In other words, the eigenvalues of principal submatrices and Schur complements
of a positive definite matrix are bounded from below and above by the smallest
and largest eigenvalues of the original matrix.

2.2 Gaussians and Lattices

A lattice Λ ⊂ R
n is a discrete subgroup of R

n. Specifically, a lattice of rank
k is the integer span L(B) = {z1b1 + · · · + zkbk | zi ∈ Z} of a basis B =
{b1, . . . ,bk} ⊂ R

n (k ≤ n). There are infinitely many bases for a given lattice
since right-multiplying a basis by a unimodular transformation gives another
basis. The dual lattice of Λ, denoted by Λ∗, is the lattice {x ∈ span(Λ)| 〈x, Λ〉 ⊆
Z}. It is easy to see that B−T is a basis for L(B)∗ for a full rank lattice (n = k).

The n-dimensional gaussian function ρ : Rn → (0, 1] is defined as ρ(x) :=
exp(−π‖x‖2). Applying an invertible linear transformation B to the gaussian
function yields

ρB(x) = ρ(B−1x) = exp(−π · xT Σ−1x)

with Σ = BBT � 0. For any c ∈ span(B) = span(Σ), we also define the shifted
gaussian function (centered at c) as ρ√

Σ,c(x) = ρ√
Σ(x − c). Normalizing the

function ρB,c(x) by the measure of ρB,c over the span of B gives the continuous
gaussian distribution with covariance Σ/(2π), denoted by D√

Σ,c. Let S ⊂ R
n

be any discrete set in R
n, then ρ√

Σ(S) =
∑

s∈S ρ√
Σ(s). The discrete gaus-

sian distribution over a lattice Λ, denoted by DΛ,
√

Σ,c, is defined by restrict-
ing the support of the distribution to Λ. Specifically, a sample y ← DΛ,

√
Σ,c
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has probability mass function ρ√
Σ,c(x)/ρ√

Σ,c(Λ) for all x ∈ Λ. Discrete gaus-
sians on lattice cosets Λ + c, for c ∈ span(Λ), are defined similarly setting
Pr{y ← DΛ+c,

√
Σ,p} = ρ√

Σ,p(y)/ρ√
Σ,p(Λ+ c) for all y ∈ Λ+ c. For brevity we

let DΛ+c,
√

Σ,p(y) := Pr{y ← DΛ+c,
√

Σ,p}.
For a lattice Λ and any (typically small) positive ε > 0, the smoothing param-

eter ηε(Λ) [52] is the smallest s > 0 such that ρ(s ·Λ∗) ≤ 1+ ε. A one-dimensional
discrete gaussian with a tail-cut, t, is a discrete gaussian DZ,c,s restricted to a sup-
port of Z∩[c−t·s, c+t·s]. We denote this truncated discrete gaussian as Dt

Z,c,s. In
order to use the ML distance in Sect. 3, we will restrict all tail-cut discrete gaus-
sians to a universal support of Z ∩ [c − t · smax, c + t · smax] for some smax.

Lemma 1 ([31, Lemma 4.2]). For any ε > 0, any s ≥ ηε(Z), and any t > 0,

Pr
x←DZ,s,c

[|x − c| ≥ t · s] ≤ 2e−πt2 · 1 + ε

1 − ε
.

More generally, for any positive definite matrix Σ and lattice Λ ⊂ span(Σ),
we write

√
Σ ≥ ηε(Λ), or Σ � η2

ε (Λ), if ρ(
√

Σ
T · Λ∗) ≤ 1 + ε. The reader is

referred to [31,52,55] for additional information on the smoothing parameter.
Here we recall two bounds and a discrete gaussian convolution theorem to

be used later.

Lemma 2 ([31, Lemma 3.1]). Let Λ ⊂ R
n be a lattice with basis B, and let

ε > 0. Then,
ηε(Λ) ≤ ‖B̃‖

√
log(2n(1 + 1/ε))/π.

Lemma 3 ([55, Lemma 2.5]). For any full rank n-dimensional lattice Λ, vector
c ∈ R

n, real ε ∈ (0, 1), and positive definite Σ � η2
ε (Λ),

ρ√
Σ(Λ + c) ∈

[
1 − ε

1 + ε
, 1

]

· ρ√
Σ(Λ).

Theorem 3 ([55, Theorem 3.1]). For any vectors c1, c2 ∈ R
n, lattices

Λ1, Λ2 ⊂ R
n, and positive definite matrices Σ1, Σ2 � 0, Σ = Σ1 + Σ2 � 0,

Σ−1
3 = Σ−1

1 + Σ−1
2 � 0, if

√
Σ1 � ηε(Λ1) and

√
Σ3 � ηε(Λ2) for some

0 < ε ≤ 1/2, then the distribution

X = {x | p ← DΛ2+c2,
√

Σ2
,x ← DΛ1+c1,

√
Σ1,p}

is within statistical distance Δ(X,Y ) ≤ 8ε from the discrete gaussian Y =
DΛ1+c1,

√
Σ.

Below we have the correctness theorem for the standard, randomized version
of Babai’s nearest plane algorithm. The term statistically close is the standard
cryptographic notion of negligible statistical distance. Precisely, a function f :
N → R≥0 is negligible if for every c > 1 there exists an N such that for all n > N ,
f(n) < n−c. We emphasize that the algorithm reduces to sampling DZ,s,c.

Theorem 4 ([31, Theorem 4.1]). Given a full-rank lattice basis B ∈ R
n×n, a

parameter s ≥ ‖B̃‖ω(
√

log n), and a center c ∈ R
n, there is an O(n2)-time, with

a O(n3)-time preprocessing, probabilistic algorithm whose output is statistically
close to DL(B),s,c.
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2.3 Cyclotomic Fields

Let n be a positive integer. The n-th cyclotomic field over Q is the number
field Kn = Q[x]/(Φn(x)) ∼= Q(ζ) where ζ is an n-th primitive root of unity and
Φn(x) is the minimal polynomial of ζ over Q. The nth cyclotomic ring is On =
Z[x]/(Φn(x)). Let ϕ(n) be Euler’s totient function. Kn is a ϕ(n)-dimensional
Q-vector space, and we can view Kn as a subset of C by viewing ζ as a complex
primitive n-th root of unity.

Multiplication by a fixed element f , g �→ f · g, is a linear transforma-
tion on Kn as a Q-vector space. We will often view field elements as ϕ(n)-
dimensional rational vectors via the coefficient embedding. This is defined by
f(x) =

∑ϕ(n)−1
i=0 fix

i �→ (f0, · · · , fϕ(n)−1)T mapping a field element to its vec-
tor of coefficients under the power basis {1, x, · · · , xϕ(n)−1} (or equivalently
{1, ζ, · · · , ζϕ(n)−1}). We can represent a field element as the matrix in Q

ϕ(n)×ϕ(n)

that represents the linear transformation by its multiplication in the coeffi-
cient embedding. This matrix is called a field element’s coefficient multiplication
matrix. When n is a power of two, an element’s coefficient multiplication matrix
is anti-cyclic.

An isomorphism from the field F to the field K is a bijection θ : F → K
such that θ(fg) = θ(f)θ(g), and θ(f + g) = θ(f) + θ(g) for all f, g ∈ F . An
automorphism is an isomorphism from a field to itself. For example, if we view
the cyclotomic field Kn as a subset of the complex numbers, then the conjugation
map f(ζ) �→ f(ζ)∗ = f(ζ∗) is an automorphism and can be computed in linear
time O(n). In power-of-two cyclotomic fields, the conjugation of a field element
corresponds to the matrix transpose of an element’s anti-cyclic multiplication
matrix.

Another embedding is the canonical embedding which maps an element f ∈
Kn to the vector of evaluations of f , as a polynomial, at each root of Φn(x).
When n is a power of two, the linear transformation between the coefficient
embedding and the canonical embedding is a scaled isometry.

Let n be a power of two, then the field K2n is a two-dimensional Kn-vector
space as see by splitting a polynomial f(x) ∈ K2n into f(x) = f0(x2)+x ·f1(x2)
for fi ∈ Kn. Now, we can view the linear transformation given by multiplication
by some f ∈ K2n as a linear transformation over Kn ⊕ Kn

∼= K2n. Let φ2n :
K2n → Q

n×n be the injective ring homomorphism from the field to an element’s
anti-cyclic matrix. Then, we have the following relationship where P below is
a simple re-indexing matrix known as a stride permutation (increasing evens
followed by increasing odds in {0, 1, . . . , n − 1}),

Pφn(f)PT =
[
φn/2(f0) φn/2(x · f1)
φn/2(f1) φn/2(f0)

]

.

3 Sampling G-Lattices

For any positive integers b ≥ 2, k ≥ 1 and non-negative integer u < bk, we write
[u]kb for the base-b expansion of u, i.e., the unique vector (u0, . . . , uk−1) with
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entries 0 ≤ ui < b such that u =
∑

i uib
i. Typically, b = 2 and [u]k2 is just the

k-digits binary representation of u, but larger values of b may be used to obtain
interesting efficiency trade-offs. Throughout this section, we consider the values
of b and k as fixed, and all definitions and algorithms are implicitly parametrized
by them.

In this section we study the so-called G-lattice sampling problem, i.e., the
problem of sampling the discrete Gaussian distribution on a lattice coset

Λ⊥
u (gT ) = {z ∈ Z

k : gT z = u mod q}

where q ≤ bk, u ∈ Zq, k = �logb q�, and g = (1, b, . . . , bk−1). G-lattice sampling
is used in many lattice schemes employing a trapdoor. Both schemes with poly-
nomial modulus, like IBE [2,4,11,18], group signatures [36,44,45,54], and others
(double authentication preventing and predicate authentication preventing sig-
natures, constraint-hiding PRFs) [15,22], and schemes with super-polynomial
modulus [1,17,19,20,33,35,42] (ABE, obfuscation, watermarking, etc.), as well
as [39], use G-lattice sampling.

A very efficient algorithm to solve this problem is given in [51] for the special
case when q = bk is a power of the base b. The algorithm, shown in Fig. 1, is
very simple. This algorithm reduces the problem of sampling the k-dimensional
lattice coset Λ⊥

u (gT ) for u ∈ Zq to the much simpler problem of sampling the
one-dimensional lattice cosets u+bZ for u ∈ Zb. The simplicity of the algorithm
is due to the fact that, when q = bk is an exact power of b, the lattice Λ⊥(gT )
has a very special basis

Bbk =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

b
−1 b

−1
. . .
. . . b

−1 b

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

which is sparse, triangular, and with small integer entries. (In particular, its
Gram-Schmidt orthogonalization B̃bk = bI is a scalar matrix.) As a result, the
general lattice sampling algorithm of [31,43] (which typically requires O(k3)-time
preprocessing, and O(k2) storage and online running time) can be specialized to
the much simpler algorithm in Fig. 1 that runs in linear time O(k), with minimal
memory requirements and no preprocessing at all.

We give a specialized algorithm to solve the same sampling problem when q <
bk is an arbitrary modulus. This is needed in many cryptographic applications
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SampleG(q = bk, s, u)
for i = 0, . . . , k − 1 :

xi ← DbZ+u,s

u := (u − xi)/b ∈ Z.
return (x0, . . . , xk−1).

Fig. 1. A sampling algorithm for G-lattices when the modulus q is a perfect power of
the base b. The algorithm is implicitly parametrized by a base b and dimension k.

where the modulus q is typically a prime. As already observed in [51] the lattice
Λ⊥(gT ) still has a fairly simple and sparse basis matrix

Bq =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

b q0
−1 b q1

−1
. . .

...
. . . b qk−2

−1 qk−1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

where (q0, . . . , qk−1) = [q]kb = q is the base-b representation of the modulus q.
This basis still has good geometric properties, as all vectors in its (left-to-right)
Gram-Schmidt orthogonalization have length at most O(b). So, it can be used
with the algorithm of [31,43] to generate good-quality gaussian samples on the
lattice cosets with small standard deviation. However, since the basis is no longer
triangular, its Gram-Schmidt orthogonalization is not sparse anymore, and the
algorithm of [31,43] can no longer be optimized to run in linear time as in Fig. 1.
In applications where q = nO(1) is polynomial in the security parameter n, the
matrix dimension k = O(log n) is relatively small, and the general sampling algo-
rithm (with O(k2) storage and running time) can still be used with an acceptable
(albeit significant) performance degradation. However, for larger q this becomes
prohibitive in practice. Moreover, even for small q, it would be nice to have an
optimal sampling algorithm with O(k) running time, linear in the matrix dimen-
sion, as for the exact power case. Here we give such an algorithm, based on the
convolution methods of [55], but specialized with a number of concrete technical
choices that result in a simple and very fast implementation, comparable to the
specialized algorithm of [51] for the exact power case.

The reader may notice that the alternating columns of Bq, b1,b3, . . . and
b2,b4, . . . , are pair-wise orthogonal. Let us call these sets B1 and B2, respec-
tively. Then, another basis for Λ⊥(gT ) is (B1,B2,q) and this might suggest that
the GSO of this basis is sparse. Unfortunately, this leads to a GSO of (B1,B∗

2,q
∗)

where B∗
2 is a dense, upper triangular block. Let b be the i − th vector in B2.

Then, there are 2+ i−1 non-orthogonal vectors to b preceding it in B1 and B∗
2,

filling in the upper portion of b̃.

Overview. The idea is the following. Instead of sampling Λ⊥
u (gT ) directly, we

express the lattice basis Bq = TD as the image (under a linear transformation T)
of some other matrix D with very simple (sparse, triangular) structure. Next, we
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sample the discrete gaussian distribution (say, with variance σ2) on an appropri-
ate coset of L(D). Finally, we map the result back to the original lattice applying
the linear transformation T to it. Notice that, even if L(D) is sampled according
to a spherical gaussian distribution, the resulting distribution is no longer spheri-
cal. Rather, it follows an ellipsoidal gaussian distribution with (scaled) covariance
σ2TTT . This problem is solved using the convolution method of [55], i.e., ini-
tially adding a perturbation with complementary covariance s2I−σ2TTT to the
target, so that the final output has covariance σ2TTT + (s2I − σ2TTT ) = s2I.
In summary, at a very high level, the algorithm performs (at least implicitly)
the following steps:

1. Compute the covariance matrix Σ1 = TTT and an upper bound r on the
spectral norm of TTT

2. Compute the complementary covariance matrix Σ2 = r2I − Σ1

3. Sample p ← DΛ1,σ
√

Σ2
, from some convenient lattice Λ1 using the Cholesky

decomposition of Σ2

4. Compute the preimage c = T−1(u − p)
5. Sample z ← DL(D),−c,σ

6. Output u + Tz

The technical challenge is to find appropriate matrices T and D that lead to
a very efficient implementation of all the steps. In particular, we would like T to
be a very simple matrix (say, sparse, triangular, and with small integer entries) so
that T has small spectral norm, and both linear transformations T and T−1 can
be computed efficiently. The matrix D (which is uniquely determined by B and
T) should also be sparse and triangular, so that the discrete gaussian distribution
on the cosets of L(D) can be efficiently sampled. Finally (and this is the trickiest
part in obtaining an efficient instantiation) the complementary covariance matrix
Σ2 = r2I − Σ1 should also have a simple Cholesky decomposition Σ2 = LLT

where L is triangular, sparse and with small entries, so that perturbations can
be generated efficiently. Ideally, all matrices should also have a simple, regular
structure, so that they do not need to be stored explicitly, and can be computed
on the fly with minimal overhead.

In the next subsection we provide an instantiation that satisfies all of these
properties. Next, in Subsect. 3.2 we describe the specialized sampling algorithm
resulting from the instantiation, and analyze its correctness and efficiency prop-
erties.

3.1 Instantiation

In this subsection, we describe a specific choice of linear transformations and
matrix decompositions that satisfies all our desiderata, and results in a very
efficient instantiation of the convolution sampling algorithm on G-lattices.

A tempting idea may be to map the lattice basis Bq to the basis Bbk , and
then use the efficient sampling algorithm from Fig. 1. However, this does not
quite work because it results in a pretty bad transformation T which has both
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poor geometrical properties and a dense matrix representation. It turns out that
a very good choice for a linear transformation T is given precisely by the matrix
T = Bbk describing the basis when q is a power of b. We remark that T is used
as a linear transformation, rather than a lattice basis. So, the fact that it equals
Bbk does not seem to carry any special geometric meaning, it just works! In
particular, what we do here should not be confused with mapping Bq to Bbk .
The resulting factorization is

Bq =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

b q0
−1 b q1

−1
. . .

...
. . . b qk−2

−1 qk−1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

b
−1 b

−1
. . .
. . . b

−1 b

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 d0
1 d1

. . .
...

1 dk−2

dk−1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

= BbkD

where the entries of the last column of D are defined by the recurrence di =
di−1+qi

b with initial condition d−1 = 0. Notice that all the di are in the range
[0, 1), and bi+1 · di is always an integer. In some sense, sampling from L(D) is
even easier than sampling from L(Bbk) because the first k − 1 columns of D are
orthogonal and the corresponding coordinates can be sampled independently in
parallel. (This should be contrasted with the sequential algorithm in Fig. 1).

We now look at the geometry and algorithmic complexity of generating per-
turbations. The covariance matrix of T = Bbk is given by

Σ1 = BbkBT
bk =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

b2 −b
−b (b2 + 1) −b

. . . . . . . . .
−b (b2 + 1) −b

−b (b2 + 1)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

The next step is to find an upper bound r2 on the spectral norm of Σ2, and com-
pute the Cholesky decomposition LLT of the complementary covariance matrix
Σ2 = r2I − Σ1. By the Gershgorin circle theorem, all eigenvalues of Σ1 are
in the range (b ± 1)2. So, we may set r = b + 1. Numerical computations also
suggest that this choice of r is optimal, in the sense that the spectral norm
of Σ1 approaches b + 1 as k tends to infinity. The Cholesky decomposition is
customarily defined by taking L to be a lower triangular matrix. However, for
sampling purposes, an upper triangular L works just as well. It turns out that
using an upper triangular L in the decomposition process leads to a much simpler
solution, where all (squared) entries have a simple, closed form expression, and
can be easily computed on-line without requiring any preprocessing computa-
tion or storage. (By contrast, numerical computations suggest that the standard
Cholesky decomposition with lower triangular L is far less regular, and even pre-
computing it requires exponentially higher precision arithmetic than our upper
triangular solution.) So, we let L be an upper triangular matrix, and set r = b+1.
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For any r, the perturbation’s covariance matrix Σ2 = r2I− Σ1 has Cholesky
decomposition Σ2 = L·LT where L is the sparse upper triangular matrix defined
by the following equations:

L =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

l0 h1

l1 h2

. . . . . .
hk−1

lk−1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

where

l20 + h2
1 = r2 − b2

l2i + h2
i+1 = r2 − (b2 + 1) (i = 1, . . . , k − 2)

l2k−1 = r2 − (b2 + 1)
lihi = b (i = 1, . . . , k − 1)

It can be easily verified that these equations have the following simple closed
form solution:

r = b + 1, l20 = b

(

1 +
1
k

)

+ 1, l2i = b

(

1 +
1

k − i

)

, h2
i+1 = b

(

1 − 1
k − i

)

(1)
We observe that also the inverse transformation B−1

bk has a simple, closed-form
solution: the ith column of B−1

bk equals (0, · · · , 0, 1
b , . . . , ( 1b )k−i). Notice that this

matrix is not sparse, as it has O(k2) nonzero entries. However, there is no need
to store it and the associated transformation can still be computed in linear time
by solving the sparse triangular system Tx = b by back-substitution.

3.2 The Algorithm

The sampling algorithm, SampleG, is shown in Fig. 2. It takes as input a
modulus q, an integer variance s, a coset u of Λ⊥(gT ), and outputs a sam-
ple statistically close to DΛ⊥

u (gT ),s. SampleG relies on subroutines Perturb

and SampleD where Perturb(σ) returns a perturbation, p, statistically close
to DL(Σ2),σ·√Σ2

, and SampleD(σ, c) returns a sample z such that Dz is statis-
tically close to DL(D),−c,σ.

Both Perturb and SampleD are instantiations of the randomized near-
est plane algorithm [31,43]. Consequently, both algorithms rely on a subrou-
tine SampleZt(σ, c, σmax) which returns a sample statistically close to one-
dimensional discrete gaussian with it a tail-cut t, Dt

Z,σ,c over the fixed support
of Z ∩ [c − t · σmax, c + t · σmax]. We fix the support of all one dimensional dis-
crete gaussians for compatibility with ML distance. In addition, we only feed
SampleZ centers c ∈ [0, 1) since we can always shift by an integer.

Storage. The scalars ci in SampleG, representing c = B−1
bk (u − p), and di in

SampleD, representing the last column of D, are rational numbers of the form
x/bi for a small integer x and i ∈ [k]. The numbers li, hi are positive numbers
of magnitude less than

√
2b + 1.

A naive implementation of the algorithms store floating point numbers ci, di,
hi, and li for a total storage of 4k floating point numbers. However, this can be
adapted to constant time storage since they are determined by simple recurrence
relations (ci, di) or simple formulas (hi, li).
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SampleG(s,u = [u]kb ,q = [q]kb )
σ := s/(b + 1)
p ← Perturb(σ)
for i = 0, . . . , k − 1 :

ci := (ci−1 + ui − pi)/b
z ← SampleD(σ, c)
for i = 0, . . . , k − 2 :

ti := b · zi − zi−1 + qi · zk−1 + ui

tk−1 := qk−1 · zk−1 − zk−2 + uk−1

return t

Perturb(σ)
β := 0
for i = 0, . . . , k − 1 :

ci := β/li, and σi := σ/li
zi ← �ci�+ SampleZt(σi, �ci�[0,1), s)
β := −zihi

p0 := (2b + 1)z0 + bz1
for i := 1, . . . , k − 1 :

pi := b(zi−1 + 2zi + zi+1)
return p

SampleD(σ, c)
zk−1 ← �−ck−1/dk−1�
zk−1 ← zk−1+ SampleZt(σ/dk−1, �−ck−1/dk−1�[0,1), s)
c := c − zk−1d
for i ∈ {0, . . . , k − 2} :

zi ← �−ci�+ SampleZt(σ, �−ci�[0,1), s)
return z

Fig. 2. Sampling algorithm for G-lattices for any modulus q < bk. The algorithms
take b and k as implicit parameters, and SampleG outputs a sample with distribution
statistically close to DΛ⊥

u (gT ),s. Any scalar with an index out of range is 0, i.e. c−1 =
z−1 = zk = 0. SampleZt(σ, c, σmax) is any algorithm that samples from a discrete
gaussian over Z exactly or approximately with centers in [0, 1) and a fixed truncated
support Z ∩ [c − t · σmax, c + t · σmax] (t is the tail-cut parameter). We denote x − �x�
as �x�[0,1).

Time Complexity. Assuming constant time sampling for SampleZ and scalar
arithmetic, SampleG runs in time O(k). Now let us consider all operations: there
are 6k integer additions/subtractions, 3k + 2 integer multiplications, 3(k + 1)
floating point divisions, 2k floating point multiplications, and 2k floating point
additions. The analysis below shows we can use double precision floating point
numbers for most applications.

Statistical Analysis and Floating Point Precision. We now perform a statisti-
cal analysis on SampleG with a perfect one-dimensional sampler (and no tail-
bound), then with a tail-bounded imperfect sampler in terms of ML distance. This
allows us to measure loss in concrete security. We direct the reader to [53, Sect. 3]
for more details on the ML distance and a complete concrete security analysis.

The following lemma is needed in order to make sense of the “Σ3 condition”
in Theorem 3.

Lemma 4. Let Σ3 be defined by Σ−1
3 = (b+1)2

s2 [Σ−1
1 + [(b + 1)2I − Σ]−1], then

its eigenvalues are Θ(s2/b). Moreover, if λi is the i−th eigenvalue of Σ1, then
the i−th eigenvalue of Σ3 is (s/[b + 1])2 · λi[(b+1)2−λi]

(b+1)2 .
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Proof. Let Σ1 = QT DQ be its diagonalization. Then, Σ−1
1 = QT D−1Q and

the rest follows from algebraic manipulations of the individual eigenvalues along
with the Gershgorin circle theorem on Σ1. ��

Let Cε,k =
√

log(2k(1 + 1/ε))/π. Now we can easily bound s from below.
We need the following three conditions for s: s ≥ (b + 1)ηε(D),

√
Σ3 ≥ ηε(Σ2),

and s ≥ (b + 1)ηε(L). The middle condition determines s with a lower bound of
s ≥ √

2b · (2b + 1) · Cε,k (the last two conditions both have s = Ω(b1.5 · Cε,k)).

Corollary 1. Fix 0 < ε ≤ 1/2 and let s ≥ √
2b · (2b + 1) · Cε,k. Then, SampleG

returns a perturbation within a statistical distance Θ(kε̂) from DΛ⊥
u (gT ),s for any

q < bk when Perturb and SampleD use a perfect one-dimensional sampler,
SampleZ. In addition, the Rényi divergence of order infinity of DΛ⊥

u (gT ),s from
SampleGwith a perfect one-dimensional sampler is less than or equal to 1+Θ(kε̂).

The statistical distance bound of Θ(kε̂) results in about a loss of log log q
bits in security if ε = 2−κ for a security parameter κ by [53, Lemma 3.1]. (The
multiplicative factor of k comes from the randomized nearest plane algorithm’s
analysis: see [31, Theorem 4.1].)

Next, we turn to the ML distance for a tighter analysis on the bits of security
lost in using SampleG with an imperfect one-dimensional sampler. Since the
centers, c, and variances, s, given to SampleZ are computed from two or three
floating point computations, we assume both c̄ and s̄ are within a relative error
of 2−m of c and s.

Proposition 1. Fix an ε > 0 and let s ≥ (b+1)·ηε(Z). For any one-dimensional
sampler SampleZt(σ̄, c̄, s) that takes as inputs approximated centers c̄ ∈ [0, 1)
and variances σ̄ ∈ [s/(b + 1), s · b/(b + 1)] represented as floating point num-
bers with mantissa length m, Δml(SampleGDt

Z,σ,c ,SampleGSampleZt(σ̄,c̄)) ≤
2k[O(b2t22−m) + maxσ̄,c̄ Δml(SampleZt(σ̄, c̄, s),Dt

Z,σ̄,c̄)].

Assuming a cryptosystem using a perfect sampler for DΛ⊥
u (gT ),s has κ

bits of security, we can combine the results of Corollary 1, Proposition 1,
and [53, Lemma 3.3] to conclude that swapping DΛ⊥

u (gT ),s with SampleG

yields about κ − 2 log(tb2) − 3 log log q − 5 bits of security when m = κ/2,
Δml(SampleZt(s̄, c̄),Dt

Z,s̄,c̄) < 2−κ/2, and ε = 2−κ.

3.3 Implementation and Comparison

In this subsection, we compare simple implementations of both SampleG and
the generic randomized nearest plane algorithm [31, Sect. 4] used in the G-lattice
setting. The implementations were carried out in C++ with double precision float-
ing point numbers for non-integers on an Intel i7-2600 3.4 GHz CPU. Clock cycles
were measured with the “time.h” library and the results are charted in Fig. 3.

The one-dimensional sampler, SampleZ, was an instantiation of a dis-
crete version of Karney’s sampler [41], which is a modified rejection sampler.
Themoduli q were chosen fromthe commonparameters subsectionof [40, Sect. 4.2],
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Fig. 3. Measured clock cycles with q = {4093, 12289, 1676083, 8383498, 4295967357, ≈
9 · 1018} and s = 100 averaged over 100,000 runs. The clock cycles for the last
three moduli are {19.4, 31.9, 73.9} for GPV and {5.5, 7.5, 13.1} for SampleG with
pre-computation.

in addition to an arbitrary 60-bit modulus. Most practical schemes require no more
than a 30-bit modulus [9] for lattice dimension (n) up to 1024. More advanced
schemes however, like ABE-encryption [14,19], predicate encryption [34], and
obfuscation [20,26], require a super-polynomial modulus often 90 or more bits
(assuming the circuits in the ABE and predicate schemes are of log-depth).

For the generic, randomized nearest plane sampler, we pre-computed and
stored the Gram-Schmidt orthogonalization of the basis Bq and we only counted
the clock cycles to run the algorithm thereafter. We had two versions of Samp-

leG: the first was the algorithm as-is, and the second would store pre-computed
perturbations from Perturb(σ), one for each G-lattice sample. This version of
SampleG with pre-computation saved about a factor of two in clock cycles.

4 Perturbation Sampling in Cyclotomic Rings

The lattice preimage sampling algorithm of [51] requires the generation of
n(2 + log q)-dimensional gaussian perturbation vectors p with covariance Σp =
s2 ·I−α2T·TT where T ∈ Z

(2+log q)n×n log q is a matrix with small entries serving
as a lattice trapdoor, α is a small constant factor and s is an upper bound on
the spectral norm of αT. In [51] this is accomplished using the Cholesky factor-
ization of Σp, which takes O(n log q)3 precomputation and O(n log q)2 storage
and running time.
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The trapdoor matrix T of [51] has some additional structure: TT = [T̄T , I]
for some T̄ ∈ Z

2n×n log q. Moreover, when working with algebraic lattices,
T̄ = φn(T̃) is the image (under a ring embedding φn : Rn → Z

n×n) of some
matrix T̃ ∈ R2×log q

n with entries in a ring Rn of rank n. (Most commonly,
Rn = O2n = Z[x]/(xn+1) is the ring of integers of the (2n)th cyclotomic field K2n

for n = 2k a power of two.) In [9] it is observed that, using the sparsity of Σp, the
preprocessing storage and on-line computation cost of noise perturbation reduce
to O(n2 log q).4 This is a factor log q improvement over a generic implementation,
but it is still quadratic in the main security parameter n. This can be a significant
improvement in practice, but the overall cost of the algorithm remains substantial.
When using generic trapdoors T̄ ∈ Z

2n×n log q, there is little hope to improve the
running time below O(n2 log q), because just reading the matrix T̄ takes this much
time. However, when using algebraic lattices, the trapdoor T̄ = φn(T̃) admits a
compact representation T̃ consisting of only 2n log q integers, so one may hope to
reduce the running time to linear or quasi-linear in n.

In this section we give an alternative algorithm to generate integer pertur-
bation vectors p with covariance Σp when T̄ = φn(T̃). Our algorithm takes
full advantage of the ring structure of Rn, compactly representing Σp and all
other matrices generated during the execution of the algorithm as the image
of matrices with entries in the ring Rn. In particular, similarly to [27,28], our
algorithm has time and space complexity quasi-linear in n, but does not require
any preprocessing/storage. The algorithm can be expressed in a modular way as
the combination of three steps:

1. First, the problem of sampling a O(n log q)-dimensional integer vectors p with
covariance Σp is reduced to the problem of sampling a 2n-dimensional integer
vector with covariance expressed by a 2 × 2 matrix over Rn.

2. Next, the problem of sampling an integer vector with covariance in R2×2
n is

reduced to sampling two n-dimensional integer vectors, each with a covariance
expressed by a single ring element in Rn.

3. Finally, if n > 1, the sampling problem with covariance in Rn is reduced to
sampling an n-dimensional perturbation with covariance expressed by a 2×2
matrix over the smaller ring Rn/2.

Iterating the last two steps log n times reduces the original problem to sampling
in R1 = Z. Details about each step are given in the next subsections. We remark
that the algorithm is described as a recursive procedure only for simplicity of
presentation and analysis, and it can be implemented just as easily using a simple
nested loop, similarly to many FFT-like algorithms.

4.1 Discrete Perturbation Algorithm for Power of Two Cyclotomics

In this subsection we present the perturbation algorithm algorithm which
produces n(2 + log q)-dimensional perturbations from a discrete gaussian on
Z

n(2+log q) in time Õ(n log q).
4 Sparsity also reduces the preprocessing running time to O(log q · n2 + n3) = O(n3),

but still cubic in n.
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The entry point of the algorithm is the SamplePz procedure, which takes
as input two integer parameters n, q, matrices T̃ ∈ R2×log q

n , Σ2 ∈ R2×2
n , and

three positive real numbers s2, α2, z = (α−2 − s−2)−1, and is expected to pro-
duce an n(2+ log q)-dimensional vector p with (non-spherical) discrete gaussian
distribution D

Zn(2+log q),
√

Σp
of covariance

Σp = s2 · I − α2

[
φn(T̃)

I

]

·
[
φn(T̃)T I

]

=
[

Σ2 −α2φn(T̃)
−α2φn(T̃)T (s2 − α2)I

]

.

The algorithm calls two subroutines:

– SampleZ(s2−α2) which samples a one-dimensional discrete gaussian variable
of variance s2−α2 centered at 0, and can be implemented using any standard
technique, and

– Sample2z(a, b, d), which, on input three ring elements a, b, d compactly
describing a positive definite matrix

Σ2 =
[

φn(a) φn(b)
φn(b)T φn(d)

]

,

is expected to sample a (2n)-dimensional vector p ← D
Z2n,

√
Σ2

.

In turn, Sample2z (also described in Fig. 4) makes use of a procedure
SampleFz(f) which on input a ring element f with positive definite φn(f),
returns a sample p ← D

Zn,
√

φn(f)
.

Efficiency. Multiplications are done in the field Ki, for an element’s dimension
i ∈ {1, 2, . . . , 2n}, in time Θ(i log i) by using the Chinese remainder transform
(CRT ) [49].

By treating scalar arithmetic as constant time, SamplePz has a time com-
plexity of Θ(n log n log q) because the transformation by T̃ is Θ(n log n log q) and
SampleFz has complexity Θ(n log2 n) (represented by the recurrence R(n) =
2R(n/2) + 2 log n/2 + 4.5n). The algorithm requires 2n log q scalar storage for
the trapdoor T̃.

Note, SampleFz is even more efficient, Θ(n log n), if one were to store the
polynomials in Ki in the canonical embedding (Fourier domain). One would
change SamplePz to give Sample2z the Fourier/canonical representations of
a, b, d, c0, c1 and perform an inverse CRT/FFT on p = (p0,p1). This allows us to
use the FFT’s butterfly transformation to convert to the Fourier representation
of f(x) = f0(x2) + xf1(x2) ∈ K2n to the Fourier representation of f0, f1 ∈ Kn

and multiplication/inversion is now linear time (we would only invert the non-
zero entries in the Fourier domain since this corresponds to pulling back to the
field, inverting, then pushing forward to the cyclic ring via the embedding given
by the Chinese remainder theorem) [28, Lemma 1]. (Moving from the canonical
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SamplePz(n, q, s, α, T̃, Σ2, z)
for i = 0, . . . , (n log q − 1) :

qi ← SampleZ(s2 − α2)
(c0, c1) := − α2

s2−α2 T̃q
c′(x) := c0(x2) + x · c1(x2))
p ← Sample2z(a, b, d, c′)
return (p,q)

Sample2z(a, b, d, c)
let c(x) = c0(x2) + x · c1(x2)
q1 ← SampleFz(d, c1)
c0 := c0 + bd−1(q1 − c1)
q0 ← SampleFz(a − bd−1b∗, c0)
return (q0, q1)

SampleFz(f, c)
if dim(f) = 1 return SampleZ(f, c)
else let f(x) = f0(x2) + x · f1(x2)

(q0, q1) ← Sample2z(f0, f1, f0, c)
let q(x) = q0(x2) + x · q1(x2)
return q

Fig. 4. Sampling algorithm SamplePz for integer perturbations where T = φn(T̃) is
a compact trapdoor over a power of two cyclotomic ring. Note, T̃i is a row vector over
Rn for each i ∈ {0, 1}. The algorithm uses a subroutine SampleZ(σ2, t) which samples
a discrete gaussian over Z with variance σ2 centered at t. The scalar z = (α−2−s−2)−1.

embedding to the FFT domain is linear time since we place zeros for the non-
primitive roots of unity [28, Sect. A.2].) This, however, does not change the
asymptotic time complexity of SamplePz since generating q in the canonical
embedding is now Θ(n log n log q).

Correctness. One would use Peikert’s convolution theorem, Theorem 3, in an
initial attempt to prove the correctness of the algorithms in Fig. 4. However,
this would only ensure the correctness of the marginal distributions of p in
SamplePz and q0 in Sample2z and not their respective joint distributions,
(p,q) and (q0, q1). Even if it were enough, tracking the Σ3 condition in Theorem 3
through the recursive calls of the algorithms above is tedious. Instead, we derive
a convolution lemma without a Σ3 condition for the joint distribution of our
discrete gaussian convolutions on the simple lattice Z

n.
First, we show the gaussian function ρ√

Σ(·) factors in a useful manner with
respect to a Schur complement decomposition.

Lemma 5. Let Σ =
[

A B
BT D

]

� 0 be a positive definite with A ∈ R
n×n and

D ∈ R
m×m and Σ/D = A − BD−1BT is D’s Schur complement, and let x1 ∈

R
n and x2 ∈ R

m be arbitrary. Then, the gaussian function ρ√
Σ(x) factors as

ρ√
Σ/D

(x1 − BD−1x2) · ρ√
D(x2) = ρ√

Σ(x) where x = (x1,x2) ∈ R
n+m.

Proof (Sketch). This is seen through defining the inverse of Σ in terms of Σ/D
and writing out ρ√

Σ(x) in terms of Σ/D. The matrix factorization

Σ =
[
I BD−1

0 I

] [
Σ/D 0

0 D

] [
I 0

D−1BT I

]

yields the formula for Σ−1 needed to show the result. �
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A consequence of the above lemma is that the gaussian sum ρ√
Σ(Zn+m)

expands in terms of the gaussian functions ρ√
D(·) and ρ√

Σ/D
(·),

ρ√
Σ(Zn+m) =

∑

y2∈Zm

ρ√
D(y2) · ρ√

Σ/D
(Zn − BD−1y2).

We will use the following lemma for the correctness proof. It states that if
a discrete gaussian on the integer lattice is wide enough in its slimmest direc-
tion, then the lower dimensional discrete gaussians with covariance shaped with
principal submatrices of the original are wide enough on their respective Z

n′
s.

Lemma 6. Let ε > 0, Σ � 0 be a positive definite matrix in R
n×n, and let

I0 ⊂ [n] be an arbitrary, non-empty subset. If Σ � η2
ε (Zn), then Σ[I0] � η2

ε (Z|I0|)
and Σ/Ī0 � η2

ε (Zn−|I0|) for any principal submatrix - Schur complement pair,
(Σ[I0], Σ/Ī0), of Σ.

Proof. Note, a consequence of Σ � η2
ε (Zn) is that Σ’s minimum eigenvalue,

λmin(Σ), is greater than η2
ε (Zn). Let M := Σ[I0] ∈ R

n0×n0 for n0 = |I0|. M
is diagonalizable so let M = QT ΛQ be its diagonalization. Notice, we have
the following inequality from the interlacing theorems which imply λmin(M) ≥
λmin(Σ),

xT Mx = xT QT ΛQx = yT Λy =
∑

i∈[n0]

λiy
2
i ≥ λmin(Σ)‖y‖2 = λmin(Σ)‖x‖2.

Next, we can bound the quantity ρ√
M−1((Zn0)∗) = ρ√

M−1(Zn0) by 1 + ε:

ρ√
M−1(Zn0) =

∑

x∈Zn0

e−πxT Mx ≤
∑

x∈Zn0

e−πλmin(Σ)‖x‖2
(2)

≤
∑

x∈Zn

e−πλmin(Σ)‖x‖2 ≤ 1 + ε. (3)

The jump from Z
n0 to Z

n comes from the relation Z
n0 ⊂ Z

n. The proof for the
Schur complement is identical. �

Next, we state and prove our main convolution lemma.

Lemma 7. For any real 0 < ε ≤ 1/2, positive integers n,m, vector c =

(c1, c2) ∈ R
n+m, and positive definite matrix Σ =

[
A B
BT D

]

� η2
ε (Zn+m),

A ∈ Z
n×n, B ∈ Z

n×m, and D ∈ Z
m×m (where Σ/D = A − BD−1BT is

the Schur complement of D) the random process

– x2 ← D
Zm,

√
D,c2

.
– x1 ← D

Zn,
√

Σ/D,c1+BD−1(x2−c2)
.
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produces a vector x = (x1,x2) ∈ Z
n+m such that the Rényi divergence of order

infinity of D
Zn+m,

√
Σ,c from x is less than or equal to 1 + 4ε.

Proof. First, we write out the probability and use Lemma5 to simplify the
numerator. Let x′ = (x′

1,x′
2) below.

Pr[x1 = x′
1,x2 = x′

2] =
ρ√

Σ/D
(x′

1 − c1 − BD−1(x′
2 − c2)) · ρ√

D(x′
2 − c2)

ρ√
Σ/D

(Zn − c1 − BD−1(x′
2 − c2)) · ρ√

D(Zm − c2)

=
ρ√

Σ(x′ − c)

ρ√
Σ/D

(Zn − c1 − BD−1(x′
2 − c2)) · ρ√

D(Zm − c2)

Regarding the denominator, we use Lemma 6 to see that Σ/D � η2
ε (Zn) since

Σ � η2
ε (Zn+m). Now, we can use Lemma 3 for the first gaussian sum (dependent

on x′
2) in the denominator to see,

Pr[x1 = x′
1,x2 = x′

2] ∈ α · D
Zn+m,

√
Σ,c(x

′) ·
[(

1 − ε

1 + ε

)

, 1
]−1

where α = ρ√
Σ(Zn+m−c)

ρ√
Σ/D

(Zn)·ρ√
D(Zm−c2)

.

Next, we show α ≈ 1. Using Lemma 5 we expand

ρ√
Σ(Zn+m − c) =

∑

y2∈Zm

ρ√
D(y2 − c2) · ρ√

Σ/D
(Zn − c1 − BD−1(y2 − c2)).

The sum ρ√
Σ/D

(Zn − c1 − BD−1(y2 − c2)) is approximately ρ√
Σ/D

(Zn)

because Σ/D � η2
ε (Zn) as a consequence of Lemma 6 and Σ � η2

ε (Zn+m). In
other words,

ρ√
Σ/D

(Zn − c1 − BD−1(y2 − c2)) ∈
[
1 − ε

1 + ε
, 1

]

· ρ√
Σ/D

(Zn)

and α ∈
[(

1−ε
1+ε

)
, 1

]
.

Finally, we have the approximation

Pr[x1 = x′
1,x2 = x′

2] ∈
[(

1 − ε

1 + ε

)

,

(
1 + ε

1 − ε

)]

· D
Zn+m,

√
Σ,c(x

′).

Given the restriction on ε ∈ (0, 1/2], we have the relation we desire

Pr[x1 = x′
1,x2 = x′

2] ∈ [1 − 4ε, 1 + 4ε] · D
Zn+m,

√
Σ,c(x

′). ��
Next, we bound the Rényi divergence of order infinity between the output

of SamplePz and the desired distribution. We need to ensure each discrete
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gaussian convolution in the algorithm is non-degenerate. We do not analyze the
statistical loss from the floating point computations. As shown in Lemma 7,
we need Σ/D � η2

ε (Zn0) and D � η2
ε (Zn1) at each of the n discrete gaussian

convolutions. This is met through a simple condition on Σp as hinted to in
Lemma 6.

Theorem 5. Let 0 < ε ≤ 1/2. If Σp � η2
ε (Zn(2+log q)), then SamplePz returns

a perturbation with a Rényi divergence of order infinity R∞(D
Zn(2+log q),

√
Σp

||
SamplePz) ≤ 1 + 12nε̂.

Proof. Since each covariance given to SampleFz is a Schur complement or a
principal submatrix of a Schur complement of Σp, Lemma 6 and the interlacing
theorems (Theorems 1 and 2) imply the conditions for Lemma 7 are met. As
there are n − 1 convolutions (inner nodes of a full binary tree of depth log n),
a quick induction argument shows the probability distribution of the output of
SamplePz is in the interval [(1 − 4ε)3(n−1), (1 + 4ε)3(n−1)] · D

Zn(2+log q),
√

Σp
(x).

Then, we have R∞(D
Zn(2+log q),

√
Σp

||SamplePz) ≤ (1 + 4ε)3(n−1) ≈ 1 + 12nε̂. �

For common parameters ε = 2−128 and n = 1024, we have 1−(1+4ε)3(n−1) ≈
2−114.

In summary, this shows the FFT-like recurrence in perturbation sampling
the integer lattice with an algebraic covariance in power of two cyclotomic rings
through repeated convolutions. The relative simplicity of the power of two case
relies on the fact that matrix transpose corresponds to the conjugation field auto-
morphism. Hermitian transpose corresponds to the conjugation automorphism
in the general cyclotomic case. Therefore, we would use the canonical embedding
for efficient perturbation sampling in general cyclotomic rings.
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A Missing Proofs

ML Analysis. Here we give the proof of Proposition 3.1. We restate the propo-
sition for convenience.

Proposition 2. Fix an ε > 0 and let s ≥ (b+1)·ηε(Z). For any one-dimensional
sampler SampleZt(σ̄, c̄, s) that takes as inputs approximated centers c̄ ∈ [0, 1)
and variances σ̄ ∈ [s/(b + 1), s · b/(b + 1)] represented as floating point num-
bers with mantissa length m, Δml(SampleGDt

Z,σ,c ,SampleGSampleZt(σ̄,c̄)) ≤
2k[O(t22−m) + maxσ̄,c̄ Δml(SampleZt(σ̄, c̄, s),Dt

Z,σ̄,c̄)].

Before we begin the proof, we note that dk−1 = q/bk ∈ [1/b, 1] since k =
�logb q�. This implies that every variance fed to SampleZ is in the range [s/(b +
1), s · b/(b+1)] ⊆ [s/(b+1), s]. We restrict all truncated one-dimensional discrete
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gaussians to Z∩ [c − t · s, c + t · s] since it is unclear when Z∩ [c − t · σ, c + t · σ] =
Z ∩ [c − t · σ̄, c + t · σ̄] when using floating point variances σ̄. The ML distance is
undefined when these two sets are not equal.

Proof. First, we use the triangle inequality on ML distance in order to pair
together terms for an easier analysis.

Δml(SampleGDt
Z,σ,c ,SampleGSampleZt(σ̄,c̄,s)) ≤

Δml(SampleGDt
Z,σ,c ,SampleGDt

Z,σ̄,c) + Δml(SampleGDt
Z,σ̄,c ,SampleGDt

Z,σ̄,c̄)+

Δml(SampleGDt
Z,σ̄,c̄ ,SampleGSampleZt(σ̄,c̄,s)).

Next, we use the data processing inequality on ML distance where we treat
SampleG as a function of 2k correlated samples from a one-dimensional discrete
gaussian sampler. From [Lemma 3.2, MW17], we get the following inequality:

Δml(SampleGDt
Z,σ,c ,SampleGSampleZt(σ̄,c̄,s)) ≤

2k · maxσi,ci
[Δml(Dt

Z,σ1,c1 ,D
t
Z,σ̄1,c1) + Δml(Dt

Z,σ̄2,c2 ,D
t
Z,σ̄2,c̄2)+

Δml(Dt
Z,σ̄3,c̄3 ,SampleZt(σ̄3, c̄3, s))].

The maximum is taken over all ci ∈ [0, 1) and σi ∈ [s/(b + 1), s · b/(b + 1)].
Let Z

t = Z ∩ [c − t · s, c + t · s]. We bound maxσ1,c1 Δml(Dt
Z,σ1,c1

,Dt
Z,σ̄1,c1

) as
follows:

max
σ1,c1

Δml(Dt
Z,σ1,c1 ,D

t
Z,σ̄1,c1) = max

σ1,c1,x∈Zt
| ln Dt

Z,σ1,c1(x) − ln Dt
Z,σ̄1,c1(x)|

= max
σ1,c1,x∈Zt

∣
∣
∣
∣π(x − c)2

[
1
σ2
1

− 1
σ̄2
1

]

+ ln
ρσ̄1,c1(Z)
ρσ1,c1(Z)

∣
∣
∣
∣ .

Since σ1, σ̄1 ≥ ηε(Z), we can approximate ρσ1,c(Z) ∈ [(1 − ε)2, (1 + ε)2] · σ and
ρσ̄1,c(Z) ∈ [(1 − ε)2, (1 + ε)2] · σ̄. Using the bound on the relative error of σ̄1

(σ̄1 ∈ [1 − 2−m, 1 + 2−m] · σ1), we can bound the expression with a simplified
form below.

max
σ1,c1

Δml(Dt
Z,σ1,c1 ,D

t
Z,σ̄1,c1) ≤

max
σ1

∣
∣
∣
∣π

t2s2

σ2
1

· σ̄2
1 − σ2

1

σ2
1

+ 2ε̂ + ˆ2−m

∣
∣
∣
∣ ≤

πt2(b + 1)2(2−m+1 + 2−2m) + ε̂ + ˆ2−m.

The proof for Δml(Dt
Z,σ̄2,c2

,Dt
Z,σ̄2,c̄2

) is nearly identical except we get a term
linear in t, yielding a bound of O(t · 2−m). �

B QR Factorization for the Basis Bq

Here we show that despite Bq having a sparse R matrix in its QR-factorization,
this does not lead to an alternative Θ(log q)-time sampling algorithm for the
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applications we are concerned with. The QR-factorization of a non-singular
matrix S is S = QR where Q is orthogonal and R is upper-triangular.

The motivation for such an algorithm comes from generic lattice algorithms,
like BKZ lattice reduction, where we view the vector space holding our lattice
in the basis given by the upper-triangular R since Q is orthogonal. The sparsity
of R yields clear computational advantages.

In the G-lattice setting, the basis Bq = QR always has a sparse R matrix
(though Q is not sparse). This leads to a linear time algorithm to sample DL(R),s

by using the canonical randomized nearest plane algorithm and a linear time
algorithm for applications if we can view the ambient vector space in terms of
R as a basis. Unfortunately, we cannot do this in the G-lattice setting.

Recall the general G-lattice paradigm: we have a secret trapdoor matrix T
with small integer entries, a public psuedo-random matrix A = [Â|G − Â · T],
and we want to return a short vector in Λ⊥

u (A) = {x ∈ Z
m : A ·x = u mod q}.

The way we sample Λ⊥
u (A) is as follows:

1. sample the perturbation p ∼ D
Zn(2+log q),

√
s2I−MMT

where M =
[
T
I

]

2. set the new coset v := u − Ap mod q
3. sample the G-lattice y ∼ DΛ⊥(G)v,s = DL(Bq)+v,s where G = In ⊗ gT

4. return p +
[
T
I

]

y.

Next, we only consider the zero-coset of Λ⊥(G) for simplicity. Usually y =
(In ⊗ Bq)z for z ∈ Z

n log q. But if we were to use the sparsity of R, then

y = (In ⊗ R)z = (In ⊗ QT Bq)z.

Therefore, we would have to apply Q′ := In ⊗Q as a linear transformation to y
(Θ(n log2 q) time) yielding a quadratic increase (in log q) in the last step as well
as a quadratic increase in storage.
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Abstract. When constructing practical zero-knowledge proofs based on
the hardness of the Ring-LWE or the Ring-SIS problems over polynomial
rings Zp[X]/(Xn+1), it is often necessary that the challenges come from
a set C that satisfies three properties: the set should be large (around
2256), the elements in it should have small norms, and all the non-zero
elements in the difference set C − C should be invertible. The first two
properties are straightforward to satisfy, while the third one requires us
to make efficiency compromises. We can either work over rings where
the polynomial Xn + 1 only splits into two irreducible factors modulo
p, which makes the speed of the multiplication operation in the ring
sub-optimal; or we can limit our challenge set to polynomials of smaller
degree, which requires them to have (much) larger norms.

In this work we show that one can use the optimal challenge sets C
and still have the polynomial Xn + 1 split into more than two factors.
This comes as a direct application of our more general result that states
that all non-zero polynomials with “small” coefficients in the cyclotomic
ring Zp[X]/(Φm(X)) are invertible (where “small” depends on the size
of p and how many irreducible factors the mth cyclotomic polynomial
Φm(X) splits into). We furthermore establish sufficient conditions for p
under which Φm(X) will split in such fashion.

For the purposes of implementation, if the polynomial Xn + 1 splits
into k factors, we can run FFT for log k levels until switching to Karat-
suba multiplication. Experimentally, we show that increasing the number
of levels from one to three or four results in a speedup by a factor of ≈ 2 –
3. We point out that this improvement comes completely for free simply
by choosing a modulus p that has certain algebraic properties. In addi-
tion to the speed improvement, having the polynomial split into many
factors has other applications – e.g. when one embeds information into
the Chinese Remainder representation of the ring elements, the more the
polynomial splits, the more information one can embed into an element.
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1 Introduction

Cryptography based on the presumed hardness of the Ring/Module-SIS and
Ring/Module-LWE problems [Mic07,PR06,LM06,LPR10,LS15] is seen as a very
likely replacement of traditional cryptography after the eventual coming of quan-
tum computing. There already exist very efficient basic public key primitives,
such as encryption schemes and digital signatures, based on the hardness of these
problems. For added efficiency, most practical lattice-based constructions work
over polynomial rings Zp[X]/(f(X)) where f(X) is the cyclotomic polynomial
f(X) = Xn +1 and p is chosen in such a way that the Xn +1 splits into n linear
factors modulo p. With such a choice of parameters, multiplication in the ring
can be performed very efficiently via the Number Theoretic Transform, which is
an analogue of the Fast Fourier Transform that works over a finite field. Some
examples of practical implementations that utilize NTT implementations of dig-
ital signatures and public key encryption based on the Ring-LWE problem can
be found in [GLP12,PG13,ADPS16,BDK+17,DLL+17].

Constructions of more advanced lattice-based primitives sometimes require
that the underlying ring has additional properties. In particular, practical pro-
tocols that utilize zero-knowledge proofs often require that elements with small
coefficients are invertible (e.g. [BKLP15,BDOP16,LN17,DLNS17]). This restric-
tion, which precludes using rings where Xn+1 splits completely modulo p, stems
from the structure of approximate zero-knowledge proofs, and we sketch this
intuition below.

1.1 Approximate Zero-Knowledge Proofs

Abstractly, in a zero-knowledge proof the prover wants to prove the knowledge
of s that satisfies the relation f(s) = t, where f and t are public. In the lattice
setting, the function

f(s) := As (1)

where A is a random matrix over some ring (the ring is commonly Zp or
Zp[X]/(Xn + 1)) and s is a vector over that same ring, where the coefficients of
all (or almost all) the elements comprising s are bounded by some small value � p.

The function f in (1) satisfies the property that f(s1) + f(s2) = f(s1 + s2)
and for any c in the ring and any vector s over the ring we have f(sc) = c · f(s).
The zero-knowledge proof for attempting to prove the knowledge of s proceeds as
follows:

The Prover first chooses a “masking parameter” y and sends w := f(y) to
the Verifier. The Verifier picks a random challenge c from a subset of the ring
and sends it to the prover (in a non-interactive proof, the Prover himself would
generate c := H(t, w), where H is a cryptographic hash function). The Prover
then computes z := sc + y and sends it to the Verifier.1

1 In lattice-based schemes, it is important to keep the coefficients of z small, and so y
must be chosen to have small coefficients as well. This can lead to the distribution
of z being dependent on sc, which leaks some information about s. This problem is
solved in [Lyu09,Lyu12] via various rejection-sampling procedures. How this is done
is not important to this paper, and so we ignore this step.
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The Verifier checks that f(z) = ct + w and, crucially, it also checks to make
sure that the coefficients of z are small. If these checks pass, then the Verifier
accepts the proof. To show that the protocol is a proof of knowledge, one can
rewind the Prover to just after his first move and send a different challenge c′,
and get a response z′ such that f(z′) = c′t+w. Combined with the first response,
we extract the equation

f(s̄) = c̄t (2)

where s̄ = z − z′ and c̄ = c − c′.
Notice that while the prover started with the knowledge of an s with small

coefficients such that f(s) = t, he only ends up proving the knowledge of an s̄
with larger coefficients such that f(s̄) = c̄t. If c̄ also has small coefficients, then
this type of proof is good enough in many (but not all) situations.

Applications of Approximate Zero-Knowledge Proofs. As a simple exam-
ple of the utility of approximate zero-knowledge proofs, we consider commitment
schemes where a commitment to a message m involves choosing some random-

ness r, and outputting f(s) = t, where s is defined as
[

r
m

]
where r and m have

small coefficients.2 Using the zero-knowledge proof from Sect. 1.1, one can prove
the knowledge of an s̄ and c̄ such that f(s̄) = c̄t. If c̄ is invertible in the ring, then
we can argue that this implies that if t is later opened to any valid commitment
s′ where f(s′) = t, then it must be s′ = s̄/c̄.

The sketch of the argument is as follows: If we extract s̄, c̄ and the com-
mitment is opened with s′ such that f(s′) = t, then multiplying both sides
by c̄ results in f(c̄s′) = c̄t. Combining this with what was extracted from the
zero-knowledge proof, we obtain that

f(c̄s′) = f(s̄). (3)

If s′ �= s̄/c̄, then c̄s′ �= s̄ and we found a collision (with small coefficients) for
the function f . Such a collision implies a solution to the (Ring-)SIS problem, or,
depending on the parameters, may simply not exist (and the scheme can thus
be based on (Ring-)LWE).

There are more intricate examples involving commitment schemes (see e.g.
[BKLP15,BDOP16]) as well as other applications of such zero knowledge proofs,
(e.g. to verifiable encryption [LN17] and voting protocols [DLNS17]) which
require that the c̄ be invertible.

The Challenge Set and its Effect on the Proof. The challenge c is drawn
uniformly from some domain C which is a subset of Zp[X]/(Xn + 1). In order
to have small soundness error, we would like C to be large. When building non-
interactive schemes that should remain secure against quantum computers, one

2 It was shown in [BKLP15,BDOP16] that one actually does not need the message m
to have small coefficients, but for simplicity we assume here that it still has them.
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should have |C| be around 2256. On the other hand, we also would like c to
have a small norm. The reason for the latter is that the honest prover computes
z := sc+y and so the s̄ that is extracted from the Prover in (2) is equal to z−z′,
and must also therefore depend on ‖sc‖. Thus, the larger the norms of c, c′ are,
the larger the extracted solution s̄ will be, and the easier the corresponding
(Ring-)SIS problem will be.

As a running example, suppose that we’re working over the polynomial ring
Zp[X]/(X256+1). If invertibility were not an issue, then a simple and nearly opti-
mal way (this way of choosing the challenge set dates back to at least the original
paper that proposed a Fiat-Shamir protocol over polynomial rings [Lyu09]) to
choose C of size 2256 would be to define

C = {c ∈ R256
p : ‖c‖∞ = 1, ‖c‖1 = 60}. (4)

In other words, the challenges are ring elements consisting of exactly 60 non-
zero coefficients which are ±1.3 The l2 norm of such elements is

√
60.

If we take invertibility into consideration, then we need the difference set
C − C (excluding 0) to consist only of invertible polynomials. There are some
folklore ways of creating sets all of whose non-zero differences are invertible
(c.f. [SSTX09,BKLP15]). If the polynomial X256 + 1 splits into k irreducible
polynomials modulo p, then all of these polynomials must have degree 256/k.
It is then easy to see, via the Chinese Remainder Theorem that every non-zero
polynomial of degree less than 256/k is invertible in the ring Zp[X]/(X256 + 1).
We can therefore define the set

C′ = {c ∈ R256
p : deg(c) < 256/k, ‖c‖∞ ≤ γ},

where γ ≈ 2k−1 in order for the size of the set to be greater than 2256. The
�2 norm of elements in this set is

√
256/k · γ. If we, for example, take k = 8,

then this norm becomes
√

32 · 27 ≈ 724, which is around 90 times larger than
the norms of the challenges in the set defined in (4). It is therefore certainly not
advantageous to increase the norm of the challenge by this much only to decrease
the running time of the computation. In particular, the security of the scheme
will decrease and one will need to increase the ring dimension to compensate,
which will in turn negate any savings in running time. For example, the extracted
solution to the SIS instance in (3) is c̄s′ − s̄, and its size heavily depends on the
size of the coefficients in c̄. A much more desirable solution would be to have the
polynomial Xn + 1 split, but still be able to use the challenge set from (4).

1.2 Our Contribution

Our main result is a general theorem (Theorem 1.1) about the invertibility of
polynomials with small coefficients in polynomial rings Zp[X]/(Φm(X)), where
Φm(X) is the mth cyclotomic polynomial. The theorem states that if a non-zero
polynomial has small coefficients (where “small” is related to the prime p and

3 The size of this set is
(
256
60

) · 260 > 2256.
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the number of irreducible factors of Φm(X) modulo p), then it’s invertible in
the ring Zp[X]/(Φm(X)). For the particular case of Φm(X) = Xn + 1, we show
that the polynomial Xn + 1 can split into several (in practice up to 8 or 16)
irreducible factors and we can still use the optimal challenge sets, like ones of
the form from (4). This generalizes and extends a result in [LN17] which showed
that one can use the optimal set when Xn + 1 splits into two factors. We also
show, in Sect. 3.3, some methods for creating challenge sets that are slightly
sub-optimal, but allow for the polynomial to split further.

The statement of Theorem 1.1 uses notation from Definition 2.1, while the par-
ticular case of Xn + 1 in Corollary 1.2 is self-contained. We therefore recommend
the reader to first skim the Corollary statement. The proofs of the Theorem and
the Corollary are given at the end of Sect. 3.2. For completeness, we also state suf-
ficient conditions for invertibility based on the �2-norm of the polynomial. This is
an intermediate result that we need on the way to obtaining our main result about
the invertibility of polynomials with small coefficients (i.e. based on the �∞ norm
of the polynomial), but it could be of independent interest.

Theorem 1.1. Let m =
∏

pei
i for ei ≥ 1 and z =

∏
pfi

i for any 1 ≤ fi ≤ ei. If
p is a prime such that p ≡ 1 (mod z) and ordm(p) = m/z, then the polynomial
Φm(X) factors as

Φm(X) ≡
φ(z)∏
j=1

(Xm/z − rj) (mod p)

for distinct rj ∈ Z
∗
p where Xm/z − rj are irreducible in the ring Zp[X]. Further-

more, any y in Zp[X]/(Φm(X)) that satisfies either

0 < ‖y‖∞ <
1

s1(z)
· p1/φ(z)

or

0 < ‖y‖ <

√
φ(m)

s1(m)
· p1/φ(z)

has an inverse in Zp[X]/(Φm(X)).

The above theorem gives sufficient conditions for p so that all polynomials
with small coefficients in Zp[X]/(Φm(X)) are invertible, but it does not state
anything about whether there exist such p. In Theorem 2.5, we show that if
we additionally put the condition on m and z that 8|m ⇒ 4|z, then there are
indeed infinitely many primes p that satisfy these conditions. In practical lattice
constructions involving zero-knowledge proofs, we would normally use a modulus
of size at least 220, and we experimentally confirmed (for various cyclotomic
polynomials) that one can indeed find many such primes that are of that size.
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Specializing the above to the ring Zp[X]/(Xn + 1), we obtain the following
corollary:

Corollary 1.2. Let n ≥ k > 1 be powers of 2 and p = 2k + 1 (mod 4k) be a
prime. Then the polynomial Xn + 1 factors as

Xn + 1 ≡
k∏

j=1

(Xn/k − rj) (mod p)

for distinct rj ∈ Z
∗
p where Xn/k − rj are irreducible in the ring Zp[X]. Further-

more, any y in Zp[X]/(Xn + 1) that satisfies either

0 < ‖y‖∞ <
1√
k

· p1/k

or

0 < ‖y‖ < p1/k

has an inverse in Zp[X]/(Xn + 1).

As an application of this result, suppose that we choose k = 8 and a prime
p congruent to 17 (mod 32) such that p > 220. Furthermore, suppose that we
perform our zero-knowledge proofs over the ring Zp[X]/(Xn + 1) (where n is a
power of 2 greater than 8), and prove the knowledge of s̄, c̄ such that f(s̄) = c̄t
where ‖c̄‖∞ ≤ 2 (i.e. the challenges c are taken such that ‖c‖∞ = 1). Then
the above theorem states that Xn + 1 factors into 8 polynomials and c̄ will be
invertible in the ring since 1√

8
· p1/8 > 2.

Having p > 220 is quite normal for the regime of zero-knowledge proofs, and
therefore having the polynomial Xn + 1 split into 8 factors should be possible
in virtually every application. If we would like it to split further into 16 or 32
factors, then we would need p > 248 or, respectively, p > 2112. In Sect. 3.3 we
describe how our techniques used to derive Theorem 1.1 can also be used in a
somewhat “ad-hoc” fashion to create different challenge sets C that are nearly-
optimal (in terms of the maximal norm), but allow Xn+1 to split with somewhat
smaller moduli than implied by Theorem1.1.

In Sect. 4, we describe how one would combine the partially-splitting FFT
algorithm with a Karatsuba multiplication algorithm to efficiently multiply in
a partially-splitting ring. For primes of size between 220 and 229, one obtains a
speed-up of about a factor of 2 by working over rings where Xn + 1 splits into
8 versus just 2 factors.

In addition to the speed improvement, there are applications whose usability
can be improved by the fact that we work over rings Zp[X]/(Xn + 1) where
Xn + 1 splits into more factors. For example, [BKLP15] constructed a commit-
ment scheme and zero-knowledge proofs of knowledge that allows to prove the
fact that c = ab when Commit(a), Commit(b), Commit(c) are public (the same
holds for addition). An application of this result is the verifiability of circuits.
For this application, one only needs commitments of 0’s and 1’s, thus if we work
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over a ring where Xn + 1 splits into k irreducible factors, one can embed k bits
into each Chinese Remainder coefficient of a and b, and therefore proving that
c = ab implies that all k multiplications of the bits were performed correctly.
Thus the larger k is, the more multiplications one can prove in parallel. Unfortu-
nately k cannot be set too large without ruining the necessary property that the
difference of any two distinct challenges is invertible or increasing the �2-norm
of the challenges as described in Sect. 1.1. Our result therefore allows to prove
products of 8 (or 16) commitments in parallel without having to increase the
parameters of the scheme to accommodate the larger challenges.

2 Cyclotomics and Lattices

2.1 Cyclotomic Polynomials

Definition 2.1. For any integer m > 1, we write

φ(m) = m ·
∏

p is prime ∧ p | m

p − 1
p

δ(m) =
∏

p is prime ∧ p | m

p

τ(m) =

{
m, if m is odd

m/2, if m is even

s1(m) = largest singular value of thematrix in (7)

ordm(n) = min{k : k > 0 andnk mod m = 1}
The function φ(m) is the Euler phi function, δ(m) is sometimes referred to as the
radical of m, and τ(m) is a function that sometimes comes into play when work-
ing with the geometry of cyclotomic rings. The function ordm(n) is the order of
an element n in the multiplicative group Z

∗
m. In the special case of m = 2k, we

have φ(m) = τ(m) = 2k−1 and δ(m) = 2.

The mth cyclotomic polynomial, written as Φm(X), is formally defined to be

Φm(X) =
φ(m)∏
i=1

(X − ωi),

where ωi are the mth complex primitive roots of unity (of which there are φ(m)
many). Of particular interest in practical lattice cryptography is the cyclotomic
polynomial Φ2k(X) = X2k−1

+ 1.
If p is some prime and r1, . . . , rφ(m) are elements in Z

∗
p such that ordp(rj) =

φ(m), then one can write

Φm(X) ≡
φ(m)∏
j=1

(X − rj) (mod p).
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For any m > 1, it is known that we can express the cyclotomic polynomial
Φm(X) as

Φm(X) = Φδ(m)

(
Xm/δ(m)

)
, (5)

and the below Lemma is a generalization of this statement.

Lemma 2.2. Let m =
∏

pei
i for ei ≥ 1 and z =

∏
pfi

i for any 1 ≤ fi ≤ ei.
Then

Φm(X) = Φz(Xm/z).

Proof. By (5), and the fact that δ(m) = δ(z), we can rewrite Φm(X) as

Φm(X) = Φδ(m)(Xm/δ(m)) = Φδ(m)(Xz/δ(m))(Xm/z)

= Φδ(z)(Xz/δ(z))(Xm/z) = Φz(Xm/z). (6)

�


2.2 The Splitting of Cyclotomic Polynomials

In Theorem 2.3, we give the conditions on the prime p such that the polynomial
Φm(X) splits into irreducible factors Xm/k − r modulo p. In Theorem 2.5, we
then show that when m and k satisfy an additional relation, there are infinitely
many p that satisfy the necessary conditions of Theorem 2.3.

Theorem 2.3. Let m =
∏

pei
i for ei ≥ 1 and z =

∏
pfi

i for any 1 ≤ fi ≤ ei. If
p is a prime such that p ≡ 1 (mod z) and ordm(p) = m/z, then the polynomial
Φm(X) factors as

Φm(X) ≡
φ(z)∏
j=1

(Xm/z − rj) (mod p)

for distinct rj ∈ Z
∗
p where Xm/z − rj are irreducible in Zp[X].

Proof. Since p is a prime and p ≡ 1 (mod z), there exists an element r such that
ordp(r) = z. Furthermore, for all the φ(z) integers 1 < i < z such that gcd(i, z) =
1, we also have ordp(ri) = z. We therefore have, by definition of Φ, that

Φz(X) ≡
φ(z)∏
j=1

(X − rj) (mod p).

Applying Lemma 2.2, we obtain that

Φm(X) ≡
φ(z)∏
j=1

(Xm/z − rj) (mod p).
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We now need to prove that the terms Xm/z−rj are irreducible modulo p. Suppose
they are not and Xm/z − rj has an irreducible divisor f of degree d < m

z . Then
f defines an extension field of Zp of degree d, i.e. a finite field with pd elements
that all satisfy Xpd

= X. Hence f divides Xpd −X. Now, from ordm(p) = m
z > d

it follows that we can write pd = am + b where b �= 1. Thus

Xpd − X = Xam+b − X = X(Xam+(b−1) − 1).

If we now consider an extension field of Zp in which f splits, the roots of f are
also roots of Xam+(b−1) − 1 and therefore have order dividing am+(b− 1). This
is a contradiction. As a divisor of Xm/z − rj (and therefore of Φm), f has only
roots of order m. �


In the proof of Theorem 2.5 we need a small result about the multiplicative
order of odd integers modulo powers of 2. Since we also need this later in the
proof of Corollary 1.2, we state this result in the next lemma.

Lemma 2.4. Let a ≡ 1 + 2f (mod 2f+1) for f ≥ 2. Then the order of a in the
group of units modulo 2e for e ≥ f is equal to 2e−f , i.e. ord2e(a) = 2e−f .

Proof. We can write a = 1 + 2fk1 with some odd k1 ∈ Z. Then notice a2 = 1 +
2f+1k1+22fk2

1 = 1+2f+1(k1+2f−1k2
1) = 1+2f+1k2 with odd k2 = k1+2f−1k2

1.
It follows iteratively that a2e−f

= 1 + 2ek2e−f ≡ 1 (mod 2e), which implies the
order of a modulo 2e divides 2e−f , but a2e−f−1

= 1 + 2e−1k2e−f−1 �≡ 1 (mod 2e)
since k2e−f−1 is odd. So, the multiplicative order of a modulo 2e must be 2e−f .

Theorem 2.5. Let m =
∏

pei
i for ei ≥ 1 and z =

∏
pfi

i for any 1 ≤ fi ≤ ei.
Furthermore, assume that if m is divisible by 8, then z is divisible by 4. Then
there are infinitely many primes p such that p ≡ 1 (mod z) and ordm(p) = m/z.

Proof. First we show that an integer not necessarily prime exists that fulfills the
two conditions. By the Chinese remainder theorem it suffices to find integers ai

such that ai mod pfi

i = 1 and ordp
ei
i

(ai) = pei−fi

i . First consider the odd primes
pi �= 2. It is easy to show that if g is a generator modulo pi then either g or
g+pi, say g′, is a generator modulo every power of pi (c.f. [Coh00, Lemma 1.4.5]).
Define ai = (g′)(pi−1)p

fi−1
i . Then, since g′ has order (pi −1)pfi−1

i modulo pfi

i and
order (pi − 1)pei−1

i mod pei
i , it follows that ai mod pfi

i = 1 and

ordp
ei
i

(ai) =
(pi − 1)pei−1

i

(pi − 1)pfi−1
i

= pei−fi

i

as we wanted. Next, consider p = 2 and the case where m is divisible by 8; that
is, e1 ≥ 3. This implies f1 ≥ 2. From Lemma 2.4 we see that 5 is a generator of a
cyclic subgroup of Z×

2e of index 2 for every e ≥ 3, i.e. ord2e(5) = 2e−2. Therefore,
52

f1−2
mod 2f1 = 1 and

ord2e1 (52
f1−2

) =
2e1−2

2f1−2
= 2e1−f1 .
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Hence a1 = 52
f1−2

is a valid choice in this case. If e1 = 2, note that 3 is a generator
modulo 4 and a1 = 32

f1−1
is readily seen to work. When e1 = f1 = 1, take a1 = 1.

So, there exists an integer a that fulfills our two conditions and in fact every integer
congruent to a mod m does. By Dirichlet’s theorem on arithmetic progressions,
there are infinitely many primes among the a + lm (l ∈ Z). �


As an experimental example consider m = 22337 = 756 and z = 2 ·3 ·7 = 42.
Then Φm splits into 12 polynomials modulo primes of the form in Theorem2.5.
There are 2058 primes of this form between 220 and 221.

2.3 The Vandermonde Matrix

To each cyclotomic polynomial Φm(X) with roots of unity ω1, . . . , ωφ(m), we
associate the Vandermonde matrix

Vm =

⎡
⎢⎢⎢⎣

1 ω1 ω2
1 . . . ω

φ(m)−1
1

1 ω2 ω2
2 . . . ω

φ(m)−1
2

. . .

1 ωφ(m) ω2
φ(m) . . . ω

φ(m)−1
φ(m)

⎤
⎥⎥⎥⎦ ∈ C

φ(m)×φ(m). (7)

The important property for us in this paper is the largest singular value of
Vm, which we write as

s1(m) = max
u∈Cφ(m)

‖Vmu‖
‖u‖ . (8)

It was shown in [LPR13, Lemma 4.3] that when m = pk for any prime p and
positive integer k, then

s1(m) =
√

τ(m). (9)

We do not know of a theorem analogous to (9) that holds for all m, and so
we numerically computed s1(m) for all m < 3000 and observed that s1(m) ≤√

τ(m) was always satisfied. Furthermore, for most m, we still had the equality
s1(m) =

√
τ(m). The only exceptions where s1(m) <

√
τ(m) were integers that

have at least 3 distinct odd prime factors. As an example, Table 1 contains a
list of all such values up to 600 for which s1(m) <

√
τ(m). We point out that

while it appears that having three prime factors is a necessary condition for m
to appear in the table, it is not sufficient. For example, 255 = 3 · 5 · 17, but still
s1(255) =

√
τ(255) =

√
255.

For all practical sizes of m used in cryptography, the value s1(m) is fairly
easy to compute numerically using basic linear algebra software (e.g. MATLAB,
Scilab, etc.), and we will state all our results in terms of s1(m). Nevertheless,
being able to relate s1(m) to τ(m) certainly simplifies the calculation. Based on
our numerical observations, we formulate the following conjecture:

Conjecture 2.6. For all positive integers m, s1(m) ≤ √
τ(m).
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Table 1. Values of m less than 600 for which s1(m) �= √
τ(m).

m s1(m)
√

τ(m)/s1(m)

105 = 3 · 5 · 7 9.952 1.0296172

165 = 3 · 5 · 11 12.785 1.0046612

195 = 3 · 5 · 13 13.936 1.0019718

210 = 2 · 3 · 5 · 7 9.952 1.0296172

315 = 32 · 5 · 7 17.237 1.0296172

330 = 2 · 3 · 5 · 11 12.785 1.0046612

390 = 2 · 3 · 5 · 13 13.936 1.0019718

420 = 22 · 3 · 5 · 7 14.074 1.0296172

495 = 32 · 5 · 11 22.145 1.0046612

525 = 3 · 52 · 7 22.253 1.0296172

585 = 32 · 5 · 13 24.139 1.0019718

2.4 Cyclotomic Rings and Ideal Lattices

Throughout the paper, we will write Rm to be the cyclotomic ring
Z[X]/(Φm(X)) and Rm,p to be the ring Zp[X]/(Φm(X)), with the usual poly-
nomial addition and multiplication operations. We will denote by normal letters
elements in Z and by bold letters elements in Rm. For an odd p, an element

w ∈ Rm,p can always be written as
φ(m)−1∑

i=0

wiX
i where |wi| ≤ (p − 1)/2. Using

this representation, for w ∈ Rm,p (and in Rm), we will define the lengths of
elements as

‖w‖∞ = max
i

|wi| and ‖w‖ =
√∑

i

|wi|2.

Just as for vectors over Z, the norms satisfy the inequality ‖w‖ ≤ √
φ(m)·‖w‖∞.

Another useful definition of length is with respect to the embedding norm of
an element in Rm. If ω1, . . . , ωφ(m) are the complex roots of Φm(X), then the
embedding norm of w ∈ Rm is

‖w‖e =
√∑

i

w(ωi)2.

If we view of w =

⎡
⎢⎢⎣

w0

w1

. . .
wφ(m)−1

⎤
⎥⎥⎦ as a vector over Z

φ(m), then the above defini-

tion is equivalent to

‖w‖e =
√∑

i

w(ωi)2 = ‖Vmw‖
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due to the fact that the ith position of Vmw is w(ωi). This gives a useful
relationship between the ‖ · ‖e and ‖ · ‖ norms as

‖w‖e ≤ s1(m) · ‖w‖. (10)

An integer lattice of dimension n is an additive sub-group of Zn. For the pur-
poses of this paper, all lattices will be full-rank. The determinant of a full-rank
integer lattice Λ of dimension n is the size of the quotient group |Zn/Λ|. We write
λ1(Λ) to denote the Euclidean length of the shortest non-zero vector in Λ.

If I is an ideal in the polynomial ring Rm, then it is also an additive sub-
group of Zφ(m), and therefore a φ(m)-dimensional lattice (it can be shown that
such lattices are always full-rank). Such lattices are therefore sometimes referred
to as ideal lattices. For any ideal lattice Λ of the ring Rm, there exists a lower
bound on the embedding norm of its vectors (c.f. [PR07, Lemma 6.2])

∀w ∈ Λ, ‖w‖e ≥
√

φ(m) · det(Λ)1/φ(m).

Combining the above with (10) yields the following lemma:

Lemma 2.7. If Λ is an ideal lattice in Rm, then

λ1(Λ) ≥
√

φ(m)
s1(m)

· det(Λ)1/φ(m).

3 Invertible Elements in Cyclotomic Rings

The main goal of this section is to prove Theorem 1.1. To this end, we first
prove Lemma 3.1, which proves the Theorem for the �2 norm. Unfortunately
directly applying this Lemma to prove the �∞ part of the Theorem 1.1 by using
the relationship between the �2 and �∞ norms is sub-optimal. In Sect. 3.2 we
instead show that by writing elements of partially-splitting rings Rm,p as sums
of polynomials over smaller, fully-splitting rings, one can obtain a tighter bound.
We prove in Lemma 3.2 that if any of the parts of y ∈ Rm,p is invertible in the
smaller fully-splitting ring, then the polynomial y is invertible in Rm,p. The full
proof of Theorem 1.1 will follow from this Lemma, the special case of Lemma 3.1
applicable to fully-splitting rings, and Theorem2.3.

3.1 Invertibility and the �2 Norm

Our main result only needs a special case of the below Lemma corresponding to
when Φm(X) fully splits, but we prove a more general statement since it doesn’t
bring with it any additional complications.

Lemma 3.1. Let m =
∏

pei
i for ei ≥ 1 and z =

∏
pfi

i for any 1 ≤ fi ≤ ei

such that

Φm(X) ≡
φ(z)∏
i=1

(Xm/z − ri) (mod p)
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for some distinct ri ∈ Z
∗
p where Xm/z − ri are irreducible in Zp[X], and let

y be any element in the ring Rm,p. If 0 < ‖y‖ <

√
φ(m)

s1(m) · p1/φ(z), then y is
invertible in Rm,p.

Proof. Suppose that y is not invertible in Rm,p. By the Chinese Remainder
Theorem, this implies that for (at least) one i, y mod

(
Xm/z − ri, p

)
= 0. For

an i for which y mod
(
Xm/z − ri, p

)
= 0 (if there is more than one such i, pick

one of them arbitrarily) define the set

Λ =
{
z ∈ Rm : z mod

(
Xm/z − ri, p

)
= 0

}
.

Notice that Λ is an additive group. Also, because Xm/z −ri is a factor of Φm(X)
modulo p, for any polynomial z ∈ Λ, the polynomial z ·X ∈ Rm is also in Λ. This
implies that Λ is an ideal of Rm, and so an ideal lattice in the ring Rm. By looking
at the Chinese Remainder representation modulo p of all the elements in Λ (they
have 0 in the coefficient corresponding to modulo Xm/z −ri, and are arbitrary in
all other coefficients), one can see that

∣∣Zφ(m)/Λ
∣∣ = pm/z = pφ(m)/φ(z), which is

the determinant of Λ. By Lemma 2.7, we then know that λ1(Λ) ≥
√

φ(m)

s1(m) ·p1/φ(z).
Since y mod

(
Xm/z − ri, p

)
= 0 and 0 < ‖y‖, we know that y is a non-zero

vector in Λ. But we also have by our hypothesis that ‖y‖ <

√
φ(m)

s1(m) · p1/φ(z) ≤
λ1(Λ), which is impossible.

�

One can see that a direct application of Lemma 3.1 gives a weaker bound than

what we are claiming in Theorem 1.1 – we can only conclude that all vectors y
such that

‖y‖∞ ≤ 1
s1(m)

· p1/φ(z)

are invertible. Since z � m, having s1(m) vs. s1(z) in the denominator makes a
very noticeable difference in the tightness of the result (for example, if m, z are
powers of 2, then s1(m) =

√
m/2 and s1(z) =

√
z/2). In Sect. 3.2, we instead

break up y into a sum of elements in smaller rings Rz,p and prove that only
some of these parts, need to be invertible in Rz,p in order for the entire element
y to be invertible in Rm,p.

We point out that Lemma 3.1 was already implicit in [SS11, Lemma 8] for
Φm(X) = Xn + 1. To obtain a bound in the �∞ norm, the authors of that work
then applied the norm inequality between the �2 and �∞ norms to obtain the
bound that we described above. Using the more refined approach in the current
paper, however, that bound can be tightened and would immediately produce an
improvement in the main result of [SS11] which derives the statistical closeness
of a particular distribution to uniform. Such applications are therefore another
area in which our main result can prove useful.
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3.2 Partially-Splitting Rings

In this section, we will be working with rings Rm,p where p is chosen such
that the polynomial Φm(X) factors into k irreducible polynomials of the form
Xφ(m)/k − ri. Theorem 2.3 states the sufficient conditions on m, k, p in order to
obtain such a factorization. Throughout this section, we will use the following
notation: suppose that

y =
φ(m)−1∑

j=0

yjX
j

is an element of the ring Rm,p, where the value p is chosen as above. Then for
all integers 0 ≤ i < φ(m)/k − 1, we define the polynomials y′

i as

y′
i =

k−1∑
j=0

yjφ(m)/k+iX
j . (11)

For example, if φ(m) = 8 and k = 4, then for y =
7∑

i=0

yiX
i, we have y′

0 =

y0 + y2X + y4X
2 + y6X

3 and y′
1 = y1 + y3X + y5X

2 + y7X
3.

The intuition behind the definition in (11) is that one can write y in terms
of the y′

i as

y =
φ(m)/k−1∑

i=0

y′
i(X

φ(m)/k) · Xi.

Then to calculate y mod (Xφ(m)/k − rj) where (Xφ(m)/k − rj) is one of the
irreducible factors of Φm(X) modulo p, we have

y mod (Xφ(m)/k − rj) =
φ(m)/k−1∑

i=0

y′
i(rj) · Xi (12)

simply because we plug in rj for every Xφ(m)/k.

Lemma 3.2. Let m =
∏

pei
i for ei ≥ 1 and z =

∏
pfi

i for any 1 ≤ fi ≤ ei, and
suppose that we can write

Φm(X) ≡
φ(z)∏
j=1

(Xm/z − rj) (mod p) (13)

for distinct rj ∈ Z
∗
p where (Xm/z − rj) are irreducible in Zp[X]. Let y be a

polynomial in Rm,p and define the associated y′
i as in (11), where k = φ(z). If

some y′
i is invertible in Rz,p, then y is invertible in Rm,p.

Proof. By the Chinese Remainder Theorem, the polynomial y is invertible in
Rm,p if and only if y mod (Xm/z − rj) �= 0 for all r1, . . . , rk. When we use
k = φ(z), (12) can be rewritten as
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y mod (Xm/z − rj) =
m/z−1∑

i=0

y′
i(rj) · Xi.

To show that y is invertible, it is therefore sufficient to show that

∃i s.t ∀j, y′
i(rj) mod p �= 0.

Let i be such that y′
i is invertible in the ring Rz,p. From (13) and Lemma 2.2

we have that

Φz(X) ≡
φ(z)∏
j=1

(X − rj) (mod p),

and so the ring Rz,p is fully-splitting. Since y′
i is invertible in Rz,p, the Chinese

Remainder Theorem implies that for all 1 ≤ j ≤ φ(z), y′
i(rj) mod p �= 0, and

therefore y is invertible in Rm,p. �

Theorem 1.1 now follows from the combination of Theorem2.3, and

Lemmas 3.1 and 3.2.

Proof (Theorem 1.1). For the conditions on m, z, and p, it follows from
Theorem 2.3 that the polynomial Φm(X) can be factored into irreducible factors

modulo p as
φ(z)∏
j=1

(Xm/z − rj). Lemma 2.2 then states that Φz(X) ≡
φ(z)∏
j=1

(X − rj)

(mod p).
For any y ∈ Rm,p, let the y′

i be defined as in (11) where k = φ(z). If
0 < ‖y‖∞ < 1

s1(z)
· p1/φ(z), then because each y′

i consists of φ(z) coefficients, we

have that for all i, ‖y′
i‖ <

√
φ(z)

s1(z)
· p1/φ(z). Since y �= 0, it must be that for some

i, y′
i �= 0.
Lemma 3.1 therefore implies that the non-zero y′

i is invertible in Rz,p. In
turn, Lemma 3.2 implies that y is invertible in Rm,p. �

Proof. (Of Corollary 1.2) If n ≥ k > 1 are powers of 2, then we set m = 2n
and z = 2k in Theorem 1.1. Then Φm(X) = Xn + 1 and the condition that
p ≡ 2k + 1 (mod 4k), i.e. p ≡ z + 1 (mod 2z), implies p ≡ 1 (mod z). Now we
need to show that ordm(p) = m/z, but this follows immediately from Lemma 2.4
by setting m = 2e and z = 2f and noting that f ≥ 2. Finally, from (9) we have
s1(z) =

√
τ(z) =

√
z
2 =

√
k and s1(m) =

√
n. Therefore the upper bounds for

the ‖ · ‖∞ and ‖ · ‖ inequalities read 1√
k
p1/k = 1

s1(z)
p1/k and p1/k =

√
n

s1(m)p
1/k,

respectively, as in Theorem 1.1. �


3.3 Example of “Ad-Hoc” Applications of Lemma 3.2

Using Lemma 3.2, as we did in the proof of Theorem1.1 above, gives a clean
statement as to a sufficient condition under which polynomials are invertible in
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a partially-splitting ring. One thing to note is that putting a bound on the �∞
norm does not take into account the other properties that our challenge space
may have. For example, our challenge space in (4) is also sparse, in addition
to having the �∞ norm bounded by 1. Yet we do not know how to use this
sparseness to show that one can let Φm(X) split further while still maintaining
the invertibility of the set C − C.

In some cases, however, there are ways to construct challenge sets that are
more in line with Lemma 3.2 and will allow further splitting. We do not see a
simple way in which to systematize these ideas, and so one would have to work
out the details on a case-by-case basis. Below, we give such an example for the
case in which we are working over the ring Zp[X]/(X256 + 1) and would like to
have the polynomial X256 + 1 split into 16 irreducible factors. If we would like
to have Xn +1 split into 16 factors modulo p and the set C −C to have elements
whose infinity norm is bounded by 2, then applying Theorem1.1 directly implies
that we need to have 2 < 1√

16
· p1/16, which implies p > 248.

We will now show how one can lower the requirement on p in order to achieve
a split into 16 factors by altering the challenge set C in (4).

For a polynomial y ∈ Zp[X]/(X256 +1), define the y′
i as in (11). Define D as

D = {y ∈ Zp[X]/(X256 + 1) : ‖yi‖∞ = 1 and ∀ 1 ≤ i ≤ 16 , ‖y′
i‖ = 2} (14)

In other words, D is the set of polynomials y, such that every y′
i has exactly 4

non-zero elements that are ±1. The size of D is
((

16
4

) · 24
)16 ≈ 2237, which should

be enough for practical quantum security. The �2 norm of every element in D is
exactly

√
64 = 8. For a fair comparison, we should redefine the set C so that it

also has size 2237. The only change that one must make to the definition in (4)
is to lower the �1 norm to 53 from 60. Thus all elements in C have �2 norm

√
53.

The elements in set D therefore have norm that is larger by a factor of about
1.1. It then depends on the application as to whether having Xn +1 split into 16
rather than 8 factors is worth this modest increase. We will now prove that for
primes p > 230.5 of a certain form, X256 + 1 will split into 16 irreducible factors
modulo p and all the non-zero elements in D − D will be invertible. Therefore
if our application calls for a modulus that is larger than 230.5 but smaller than
248, we can use the challenge set D and the below lemma.

Lemma 3.3. Suppose that p > 216 log2

√
14 ≈ 230.5 is a prime congruent to 33

(mod 64). Then the polynomial X256 + 1 splits into 16 irreducible polynomials
of the form X16 + rj modulo p, and any non-zero polynomial y ∈ D − D (as
defined in (14)) is invertible in the ring Zp[X]/(X256 + 1).

Proof. The fact that X256 + 1 splits into 16 irreducible factors follows directly
from Theorem 2.3. Notice that for any y ∈ D − D, the maximum �2 norm of
y′

i is bounded by 4. Furthermore, the degree of each y′
i is 256/16 = 16. Thus

an immediate consequence of Lemmas 3.2 and 3.1 is that if p > 232, then any
non-zero element in D − D is invertible. To slightly improve the lower bound,
we can observe that the y′

i of norm 4 are polynomials in Zp[X]/(X16 + 1) with
exactly four 2’s in them. But such elements can be written as a product of 2
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Table 2. CPU cycles of our FFT-accelerated multiplication algorithm for
Zp[X]/(X256 + 1) using Karatsuba multiplication for the base case. Both the FFT
and Karatsuba are plain C implementations.

Number of FFT levels Primes

220 − 214 + 1 223 − 213 + 1 225 − 212 + 1 227 − 211 + 1

0 123677 123717 134506 144913

1 83820 83778 91775 97641

2 55378 55700 63148 65778

3 38111 38061 43116 43282

4 27374 27626 31782 30836

5 21968 21955 26406 24937

6 17076 17007 21518 19811

7 15149 15144 20483 18026

8 16875 16893 22329 20299

and a polynomial with 4 ±1’s in it. So if both of those are invertible, so is the
product. The maximum norm of these polynomials is 2 and so they are not the
elements that set the lower bound. The next largest element in D − D is one
that has three 2’s and two ±1’s. The norm of such elements is

√
14. Thus for all

p > 216·log2(
√
14) ≈ 230.5, the y′

i will be invertible in Zp[X]/(X16 + 1), and thus
every non-zero element in D − D will be invertible in Zp[X]/(X256 + 1). �


Table 3. CPU cycles of our FFT-accelerated multiplication algorithm for
Zp[X]/(X256 + 1) using FLINT for base case multiplication. The FFT implementa-
tion is a highly optimized AVX2-based implementation.

Number of FFT levels Primes

220 − 214 + 1 223 − 213 + 1 225 − 212 + 1 227 − 211 + 1

0 28245 31574 33642 35397

1 27168 29343 31419 32613

2 20989 23158 24915 25677

3 20521 22038 23582 23757

4 22543 23695 25016 24628

5 24473 24715 25337 30366

6 13578 13572 14307 13543

7 13981 14020 14522 13986

8 3873 3844 3847 3857
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4 Polynomial Multiplication Implementation

We now describe in more detail the computational advantage of having the
modulus Φm split into as many factors as possible and present our experimental
results. We focus on the case where m is a power of two and write n = φ(m) =
m/2. In this case one can use the standard radix-2 FFT-trick to speed up the
multiplication. Note that for other m, one can also exploit the splitting in a
divide-and-conquer fashion similar to the radix-2 FFT.

Suppose that Zp contains a fourth root of unity r so that we can write

Xn + 1 = (Xn/2 + r)(Xn/2 − r).

Then, in algebraic language, the FFT (or NTT) is based on the Chinese remain-
der theorem, which says that Rm,p = Zp[X]/(Xn +1) is isomorphic to the direct
product of Zp[X]/(Xn/2+r) and Zp[X]/(Xn/2−r). To multiply two polynomials
in Rm,p one can first reduce them modulo the two factors of the modulus, then
multiply the resulting polynomials in the smaller rings, and finally invert the
Chinese remainder map in order to obtain the product of the original polynomi-
als. This is called the (radix-2) FFT-trick (see [Ber01] for a very good survey).
Note that reducing a polynomial of degree less than n modulo the two sparse
polynomials Xn/2 ± r is very easy and takes only n

2 multiplications, n
2 additions

and n
2 subtractions. If Zp contains higher roots so that Xn + 1 splits further,

then one can apply the FFT-trick recursively to the smaller rings. What is usu-
ally referred to as the number theoretic transform (NTT) is the case where Zp

contains a 2n-th root of unity so that Xn+1 splits completely into linear factors.
This reduces multiplication in Rm,p to just multiplication in Zp.

As we are interested in the case where the modulus does not split completely,
we need to be able to multiply in rings of the form Zp[X]/(Xn/k−rj) with k < n.
As is common in cryptographic applications (see, for example [BCLvV17]), we
will use the Karatsuba multiplication algorithm to perform this operation. For
both the FFT and the Karatsuba multiplication, we have written a relatively
straight-forward C implementation.

In Table 2 we give the measurements of our experiments. We have performed
multiplications in R512,p = Zp[X]/(X256+1) for four completely splitting primes
between 220 and 230. For each prime we have used between 0 and 8 levels of FFT
before switching to Karatsuba multiplication. 0 levels of FFT means that no FFT
stage was used at all and the input polynomials were directly multiplied via
Karatsuba multiplication. In the other extreme of 8 levels of FFT, no Karatsuba
multiplication was used and the corresponding measurements reflect the speed
of our full number theoretic transform down to linear factors with pointwise
multiplication as the base case. As one more example, when performing 3 levels
of FFT, we were multiplying 8 polynomials each of degree less then 32 via
Karatsuba multiplication. The listed numbers are numbers of CPU cycles needed
for the whole multiplication. They are the medians of 10000 multiplications each.
The tests where performed on a laptop equipped with an Intel Skylake i7 CPU
running at 3.4 GHz. The cycle counter in this CPU ticks at a constant rate of
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2.6 GHz. As one can see, being able to use a prime p so that Xn + 1 splits
into more than two factors is clearly advantageous. For instance, by allowing
Xn +1 to split into 8 factors compared to just 2, we achieve a speedup of about
a factor of two.

We have also experimented with highly-optimized polynomial multiplication
algorithms provided by a popular computer algebra library FLINT [HJP13] and
PARI [The16]. FLINT employs various forms of Kronecker substitution for the
task of polynomial multiplication. For these experiments we used a fast vector-
ized FFT implementation written in assembler language with AVX2 instructions.
For completeness, Table 3 gives the measurements for the tests with FLINT.
Unfortunately, each call of the FLINT multiplication function produces addi-
tional overhead costs such as deciding on one of several algorithms and comput-
ing complex roots for the FFT used in Kronecker substitution. These additional
costs are highly significant for our small polynomials. So for every additional
stage of our FFT, one needs to multiply twice as many polynomials with FLINT,
and hence FLINT spends twice as much time on these auxiliary tasks that one
would not have in an actual cryptographic implementation specialized to a par-
ticular prime and modulus. This is especially inefficient when the number of FFT
levels is large. There nearly all of the time is spend on these tasks as one can see
in Table 3 by comparing the cycle counts of 7 and 8 stages of FFT. Note that for
7 stages of FFT, FLINT is used for the trivial task of multiplying polynomials
of degree one.

While we were not able to do a meaningful analysis for the combination of
our highly-optimized FFT with FLINT, one can see that at level 0 (where the
amount of overhead it does is the lowest), FLINT outperforms our un-optimized
Karatsuba multiplication by a factor between 4 and 5, while looking at Level
8 shows that our AVX-optimized FFT outperforms the non-optimized version
by approximately the same margin. It is then reasonable to assume that one
can improve non-FFT multiplication by approximately the same factor as we
improved the FFT multiplication, and therefore the improvement going from
level 1 and 3 would still be approximately a factor 2 in a routine where both
Karatsuba and FFT multiplication were highly optimized.
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Abstract. We revisit security proofs for various cryptographic primi-
tives in the auxiliary-input random-oracle model (AI-ROM), in which an
attacker A can compute arbitrary S bits of leakage about the random
oracle O before attacking the system and then use additional T oracle
queries to O during the attack. This model has natural applications in
settings where traditional random-oracle proofs are not useful: (a) secu-
rity against non-uniform attackers; (b) security against preprocessing.
We obtain a number of new results about the AI-ROM:
– Unruh (CRYPTO’07) introduced the pre-sampling technique, which

generically reduces security proofs in the AI-ROM to a much simpler
P -bit-fixing random-oracle model (BF-ROM), where the attacker can
arbitrarily fix the values of O on some P coordinates, but then the
remaining coordinates are chosen at random. Unruh’s security loss
for this transformation is

√
ST/P . We improve this loss to the opti-

mal value O(ST/P ), obtaining nearly tight bounds for a variety of
indistinguishability applications in the AI-ROM.

– While the basic pre-sampling technique cannot give tight bounds
for unpredictability applications, we introduce a novel “multiplica-
tive version” of pre-sampling, which allows to dramatically reduce
the size of P of the pre-sampled set to P = O(ST ) and yields
nearly tight security bounds for a variety of unpredictability appli-
cations in the AI-ROM. Qualitatively, it validates Unruh’s “poly-
nomial pre-sampling conjecture”—disproved in general by Dodis
et al. (EUROCRYPT’17)—for the special case of unpredictability
applications.

– Using our techniques, we reprove nearly all AI-ROM bounds obtained
by Dodis et al. (using a much more laborious compression tech-
nique), but we also apply it to many settings where the compression
technique is either inapplicable (e.g., computational reductions) or
appears intractable (e.g., Merkle-Damg̊ard hashing).

– We show that for any salted Merkle-Damg̊ard hash function with
m-bit output there exists a collision-finding circuit of size Θ(2m/3)
(taking salt as the input), which is significantly below the 2m/2 birth-
day security conjectured against uniform attackers.

– We build two compilers to generically extend the security of applica-
tions proven in the traditional ROM to the AI-ROM. One compiler
simply prepends a public salt to the random oracle, showing that
salting generically provably defeats preprocessing.
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Overall, our results make it much easier to get concrete security bounds
in the AI-ROM. These bounds in turn give concrete conjectures about
the security of these applications (in the standard model) against non-
uniform attackers.

1 Introduction

We start by addressing the two main themes of this work—non-uniformity and
random oracles—in isolation, before connecting them to explain the main moti-
vation for this work.

Non-uniformity. Modern cryptography (in the “standard model”) usually mod-
els the attacker A as non-uniform, meaning that it is allowed to obtain some
arbitrary (but bounded) “advice” before attacking the system. The main ratio-
nale to this modeling comes from the realization that a determined attacker will
know the security parameter n of the system in advance and might be able to
invest a significant amount of preprocessing to do something “special” for this
fixed value of n, especially if n is not too large (for reasons of efficiency), or the
attacker needs to break a lot of instances online (therefore amortizing the one-
time offline cost). Perhaps the best known example of such attacks comes from
rainbow tables ([31,46]; see also [38, Sect. 5.4.3]) for inverting arbitrary functions;
the idea is to use one-time preprocessing to initialize a clever data structure in
order to dramatically speed up brute-force inversion attacks. Thus, restricting to
uniform attackers might not accurately model realistic preprocessing attacks one
would like to protect against. However, there are other, more technical, reasons
why this choice is convenient:

– Adleman [2] showed that non-uniform polynomial-time attackers can be
assumed to be deterministic (formally, BPP/poly = P/poly), which is handy
for some proofs.

– While many natural reductions in cryptography are uniform, there are several
important cases where the only known (or even possible!) reduction is non-
uniform. Perhaps the best known example are zero-knowledge proofs [27,28],
which are not closed under sequential composition unless one allows non-
uniform attackers (and simulators; intuitively, in order to use the simulator for
the second zero-knowledge proof, one must use the output of the first proof’s
simulator as an auxiliary input to the verifier).1 Of course, being a special case
of general protocol composition, this means that any work—either using zero-
knowledge as a subroutine or generally dealing with protocol composition—
must use security against non-uniform attackers in order for the composition
to work.

1 There are some workarounds (see [26]) that permit one to define zero-knowledge
under uniform attackers, but they are much harder to work with than assuming
non-uniformity, and, as a result, were not adopted by the community.
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– The non-uniform model of computation has many applications in complexity
theory, such as the famous “hardness-vs-randomness” connection (see [33–
36,45]), which roughly states that non-uniform hardness implies non-trivial
de-randomization. Thus, by defining cryptographic attackers as non-uniform
machines, any lower bounds for such cryptographic applications might yield
exciting de-randomization results.

Of course, despite the pragmatic, definitional, and conceptual advantages
of non-uniformity, one must ensure that one does not make the attacker “too
powerful,” so that it can (unrealistically) solve problems which one might use
in cryptographic applications. Fortunately, although non-uniform attackers can
solve undecidable problems (by encoding the input in unary and outputting solu-
tions in the non-uniform advice), the common belief is that non-uniformity can-
not solve interesting “hard problems” in polynomial time. As one indirect piece
of evidence, the Karp-Lipton theorem [37] shows that if NP has polynomial-size
circuits, then the polynomial hierarchy collapses. And, of course, the entire field
of cryptography is successfully based on the assumption that many hard prob-
lems cannot be solved even on average by polynomially sized circuits, and this
belief has not been seriously challenged so far.

Hence, by and large it is believed by the theoretical community that non-
uniformity is the right cryptographic modeling of attackers, despite being overly
conservative and including potentially unrealistic attackers.

The Random-Oracle Model. Hash functions are ubiquitous in cryptography.
They are widely used to build one-way functions (OWFs), collision-resistant hash
functions (CRHFs), pseudorandom functions/generators (PRFs/PRGs), mes-
sage authentication codes (MACs), etc. Moreover, they are often used together
with other computational assumptions to show security of higher-level appli-
cations. Popular examples include Fiat-Shamir heuristics [1,23] for signature
schemes (e.g., Schnorr signatures [49]), full-domain-hash signatures [8], or trap-
door functions (TDFs) [8] and OAEP [9] encryption, among many others.

For each such application Q, one can wonder how to assess its security ε when
instantiated with a concrete hash function H, such as SHA-3. Given our inability
to prove unconditional lower bounds, the traditional approach is the following:
Instead of proving an upper bound on ε for some specific H, one analyzes the
security of Q assuming H is a truly random (aka “ideal”) function O. Since
most Q are only secure against computationally bounded attackers, one gives
the attacker A oracle access to O and limits the number of oracle queries that A
can make by some parameter T . This now becomes the traditional random-oracle
model (ROM), popularized by the seminal paper of Bellare and Rogaway [8].

The appeal of the ROM stems from two aspects. First, it leads to very clean
and intuitive security proofs for many primitives that resisted standard-model
analysis under natural security assumptions (see some concrete examples below).
Second, this resulting ROM analysis is independent of the tedious specifics of H,
is done only once for a given hash-based application, and also provides (for non-
pathological Q’s) the best possible security one might hope to achieve with any
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concrete function H. In particular, we hope that a specific hash function H
we use is sufficiently “well-designed” that it (essentially) matches this idealized
bound. If it does, then our bound on ε was accurate anyway; and, if it does not,
this usually serves as strong evidence that we should not use this particular H,
rather than the indication that the idealized analysis was the wrong way to
guess the exact security of Q. Ironically, in theory we know that the optimistic
methodology above is false [5,11,12,29,44], and some applications secure in the
ROM will be insecure for any instantiation of H, let alone maintain the idealized
bound on ε. Fortunately, all counterexamples of this kind are rather artificial, and
do not shed much light on the security of concrete schemes used in practice, such
as the use of hash functions as OWFs, CRHFs, PRFs, PRGs, MACs, and also as
parts of natural signature and encryption schemes used in practice [8,9,23,49].
In other words, despite purely theoretical concerns, the following random-oracle
methodology appears to be a good way for practitioners to assess the best possible
security level of a given (natural) application Q.

Random-oracle methodology. For “natural” applications of hash func-
tions, the concrete security proven in the random-oracle model is the right
bound even in the standard model, assuming the “best possible” concrete
hash function H is chosen.

Random Oracles and Non-uniformity. The main motivation for this work is
to examine the soundness of the above methodology, while also being consistent
with the fact that attackers should be modeled as non-uniform. We stress that we
are not addressing the conceptual question of whether non-uniform security is the
“right” way to model attackers in cryptography, as this is the subject of a rather
heated on-going debate between theoreticians and practitioners; see [10,48] for
some discussion on the subject. Instead, assuming we want to model attackers
as non-uniform (for the reasons stated above and to be consistent with the
theoretical literature), and assuming we want to have a way of correctly assessing
the concrete, non-asymptotic security for important uses of hash functions in
applications, we ask: is the random oracle methodology a sound way to achieve
this goal? Unfortunately, with the traditional modeling of the random oracle, the
answer is a resounding “NO,” even for the most basic usages of hash functions,
as can be seen from the following examples.

(i) In the standard model, no single function H can be collision-resistant, as a
non-uniform attacker can trivially hardwire a collision. In contrast, a single
(non-salted) random oracle O is trivially collision-resistant in the ROM,
with excellent exact security O(T 2/M), where M is the range of O. This
is why in the standard model one considers a family of collision-resistant
hash functions whose public key, which we call salt, is chosen after A gets
its non-uniform advice. Interestingly, one of the results in this paper will
show that the large gap (finding collisions in time M1/2 vs. M1/3) between
uniform and non-uniform security exists for the popular Merkle-Damg̊ard
construction even if salting is allowed.
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(ii) In the standard model, no PRG candidate H(x) can have security better
than 2−n/2 even against linear-time (in n) attackers [3,10,20], where n is
the seed-length of x. In contrast, an expanding random oracle O(x) can be
trivially shown to be (T/2n)-secure PRG in the traditional ROM, easily
surpassing the 2−n/2 barrier in the standard model (even for huge T up to
2n/2, let alone polynomial T ).

(iii) The seminal paper of Hellman [31], translated to the language of non-
uniform attackers, shows that a random function H : [N ] → [N ] can be
inverted with constant probability using a non-uniform attacker of size
O

(
N2/3

)
, while Fiat and Naor [22] extended this attack to show that every

(even non-random) function H can be inverted with constant probability
by circuits of size at most N3/4. In contrast, if one models H as a random
oracle O, one can trivially show that O is a OWF with security O (T/N) in
the traditional ROM. For example, setting T = N2/3 (or even T = N3/4),
one would still get negligible security N−1/3 (or N−1/4), contradicting the
concrete non-uniform attacks mentioned above.

To put it differently, once non-uniformity is allowed in the standard model, the
separations between the random-oracle model and the standard model are no
longer contrived and artificial but rather lead to impossibly good exact security
of widely deployed applications.

Auxiliary-Input ROM. The above concern regarding the random-oracle method-
ology is not new and was extensively studied by Unruh [51] and Dodis et al. [18].
Fortunately, these works offered a simple solution, by extending the traditional
ROM to also allow for oracle-dependent auxiliary input. The resulting model,
called the auxiliary-input random-oracle model (AI-ROM), is parameterized by
two parameters S (“space”) and T (“time”) and works as follows: First, as in
the traditional random-oracle model, a function O is chosen uniformly from
the space of functions with some domain and range. Second, the attacker A in
the AI-ROM consists of two entities A1 and A2. The first-stage attacker A1 is
computationally unbounded, gets full access to the random oracle O, and com-
putes some “non-uniform” advice z of size S. This advice is then passed to the
second-stage attacker A2, who may make up to T queries to oracle O (and,
unlike A1, might have additional application-specific restrictions, like bounded
running time, etc.). This naturally maps to the preprocessing model discussed
earlier and can also be used to analyze security against non-uniform circuits of
size C by setting S = T = C.2 Indeed, none of the concerns expressed in exam-
ples (i)–(iii) remain valid in AI-ROM: (i) O itself is no longer collision-resistant
since A1 can precompute a collision; (ii)–(iii) the generic non-uniform PRG or
OWF attacks mentioned earlier can also be performed on O itself (by letting
A1 treat O as any other function H and computing the corresponding advice
for A2). In sum, the AI-ROM model allows us to restate the modified variant of
the random oracle methodology as follows:

2 But separating S and T can also model non-uniform RAM computation with memory
S and query complexity T .
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AI-Random-Oracle Methodology. For “natural” applications of hash
functions, the concrete security proven in the AI-ROM is the right bound
even in the standard model against non-uniform attackers, assuming the
“best possible” concrete hash function H is chosen.

Dealing with Auxiliary Information. The AI-ROM yields a clean and elegant
way towards obtaining meaningful non-uniform bounds for natural applications.
Unfortunately, obtaining such bounds is considerably more difficult than in the
traditional ROM. In retrospect, such difficulties are expected, since we already
saw several examples showing that non-uniform attackers are very powerful when
exact security matters, which means that the security bounds obtained in the
AI-ROM might often be noticeably weaker than in the traditional ROM. From a
technical point, the key difficulty is this: conditioned on the leaked value z, which
can depend on the entire function table of O in some non-trivial manner, many
of the individual values O(x) are no longer random to the attacker. And this
ruins many of the key techniques utilized in the traditional ROM, such as: (1)
lazy sampling, which allows the reduction to sample the not-yet-queried values
of O at random, as needed, without worrying that such lazy sampling will be
inconsistent with the past; (2) programmability, which allows the reduction to
dynamically define some value of O in a special (still random) way, as this might
be inconsistent with the leakage value z it has to produce before knowing how and
where to program O; (3) distinguishing-to-extraction argument, which states that
the attacker cannot distinguish the value of O from random without explicitly
querying it (which again is false given auxiliary input). For these reasons, new
techniques are required for dealing with the AI-ROM. Fortunately, two such
techniques are known:

– Pre-sampling technique. This beautiful technique was introduced in the orig-
inal, pioneering work of Unruh [51]. From our perspective, we will present
Unruh’s pre-sampling technique in a syntactically different (but technically
equivalent) way which will be more convenient for our presentation. Specif-
ically, Unruh implicitly introduced an intermediate oracle model, which we
term the bit-fixing random-oracle model (BF-ROM),3 which can be arbitrarily
fixed on some P coordinates, but then the remaining coordinates are chosen
at random and independently of the fixed coordinates. Moreover, the non-
uniform S-bit advice of the attacker can only depend on the P fixed points,
but not on the remaining truly random points. Intuitively, dealing with the
BF-ROM—at least when P is small—appears to be much easier than with the
AI-ROM, as many of the traditional ROM proof techniques can be adapted
provided that one avoids the “pre-sampled” set. Quite remarkably, for any
value P , Unruh showed that any (S, T )-attack in the AI-ROM will have sim-
ilar advantage in (appropriately chosen) P -BF-ROM, up to an additive loss
of δ(S, T, P ), which Unruh upper bounded by

√
ST/P . This yields a gen-

eral recipe for dealing with the AI-ROM: (a) prove security ε(S, T, P ) of the

3 This naming in inspired by the bit-fixing source [13] from complexity theory.
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given application in the P -BF-ROM;4 (b) optimize for the right value of P by
balancing ε(S, T, P ) and δ(S, T, P ) (while also respecting the time and other
constraints of the attacker).

– Compression technique. Unfortunately, Dodis et al. [18] showed that the con-
crete security loss δ(S, T, P ) =

√
ST/P proven by Unruh is not strong enough

to get tight bounds for any of the basic applications of hash functions, such
as building OWFs, PRGs, PRFs, (salted) CRHFs, and MACs. To remedy the
situation, Dodis et al. [18] showed a different, less general technique for deal-
ing with the AI-ROM, by adapting the compression paradigm, introduced by
Gennaro and Trevisan [24,25] in the context of black-box separations, to the
AI-ROM. The main idea is to argue that if some AI-ROM attacker succeeds
with high probability in breaking a given scheme, then that attacker can be
used to reversibly encode (i.e., compress) a random oracle beyond what is
possible from an information-theoretic point of view. Since we are consider-
ing attackers who perform preprocessing, our encoding must include the S-bit
auxiliary information produced by the attacker. Thus, the main technical chal-
lenge in applying this technique is to ensure that the constructed encoding
compress by (significantly) more than S bits. Dodis et al. [18] proceeded by
successfully applying this idea to show nearly tight (and always better than
what was possible by pre-sampling) bounds for a variety of natural applica-
tions, including OWFs, PRGs, PRFs, (salted) CRHFs, and MACs.

Pre-sampling or Compression? The pre-sampling and compression techniques
each have their pros and cons, as discussed below.

On a positive, pre-sampling is very general and seems to apply to most appli-
cations, as analyzing the security of schemes in BF-ROM is not much harder
than in the traditional ROM. Moreover, as shown by Unruh, the pre-sampling
technique appears at least “partially friendly” to computational applications of
random oracles (specifically, Unruh applied it to OAEP encryption [9]). Indeed, if
the size P of the pre-sampled set is not too large, then it can be hardwired as part
of non-uniform advice to the (efficient) reduction to the computational assump-
tion. In fact, in the asymptotic domain Unruh even showed that the resulting
security remains “negligible in security parameter λ,” despite not being smaller
than any concrete negligible function (like the inverse Ackermann function).5

On a negative, the concrete security bounds which are currently obtain-
able using this technique are vastly suboptimal, largely due to the big secu-
rity loss

√
ST/P incurred by using Unruh’s bound [51]. Moreover, for com-

4 Observe that the parameter S is still meaningful here. A1 fixes O at P points but
only passes S bits of advice to A2. While none of information-theoretic proofs in this
paper really use this, for computational reductions S “passes through” for the final
non-uniform attacker against the computational assumption, and it is necessary to
have S � P in this case.

5 Any AI-ROM attacker of size t = t(λ) getting inverse polynomial advantage δ =
1/p(λ) for infinitely many λ’s has advantage δ − √

ST/P in the BF-ROM, which
can be made to be δ/2 by suitably choosing P ≈ O(t2/δ2), which is polynomial and
therefore suited for a reduction to a computational hardness assumption. .
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putational applications, the value of P cannot be made larger than the size
of attacker for the corresponding computational assumption. Hence, for fixed
(“non-asymptotic”; see Footnote 5) polynomial-size attackers, the loss

√
ST/P

cannot be made negligible. Motivated by this, Unruh conjectured that the secu-
rity loss of pre-sampling can be improved by a tighter proof. Dodis et al. [18]
showed that the best possible security loss is at most ST/P . For computational
applications, this asymptotically disproves Unruh’s conjecture, as ST/P is still
non-negligible for polynomial values of P (although we will explain shortly that
the situation is actually more nuanced).

Moving to the compression technique, we already mentioned that it led Dodis
et al. [18] to establishing nearly tight AI-ROM bounds for several information-
theoretic applications of random oracles. Unfortunately, each proof was notice-
ably more involved than the original ROM proof, or than the proof in the BF-
ROM one would do if applying the more intuitive pre-sampling technique. More-
over, each primitive required a completely different set of algorithmic insights to
get the required level of compression. And it is not entirely clear how far this can
go. For example, we do not see any way to apply the compression paradigm to
relatively basic applications of hash functions beyond using the hash function by
itself as a given primitive; e.g., to show AI-ROM security of the classical Merkle-
Damg̊ard paradigm [16,42] (whose tight AI-ROM security we will later establish
in this work). Moreover, unlike pre-sampling, the compression paradigm can-
not be applied at all to computational applications, as the compressor and the
decompressor are computationally unbounded.

1.1 Our Results

We obtain a number of results about dealing with the AI-ROM, which, at a
high-level, take the best features from pre-sampling (simplicity, generality) and
compression (tightness).

Improving Unruh. Recall, Unruh [51] showed that one can move from the AI-
ROM to the P -BF-ROM at the additive cost δ(S, T, P ) ≤

√
ST/P , and Dodis

et al. [18] showed that δ(S, T, P ) = Ω (ST/P ) in general. We show that the
true additive error bound is indeed δ(S, T, P ) = Θ(ST/P ), therefore improving
Unruh’s bound by a quadratic factor; see Theorem 1. Namely, the effect of S
bits of auxiliary information z = z(O) against an attacker making T adaptive
random-oracle queries can be simulated to within an additive error O(ST/P )
by fixing the value of the random oracle on P points (which depend on the
function z), and picking the other points at random and independently of the
auxiliary information.

While the quadratic improvement might appear “asymptotically small,” we
show that it already matches the near-tight bound for all indistinguishability
applications (specifically, PRGs and PRFs) proved by [18] using much more
laborious compression arguments. For example, to match the ε = O(

√
ST/N +

T/N) bound for PRGs with seed domain N , we show using a simple argument
that the random oracle is ε′ = O(P/N + T/N)-secure in the P -BF-ROM, where
the first term corresponds to the seed being chosen from the pre-sampled set,
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and the second term corresponds to the probability of querying the oracle on
the seed in the attack stage. Setting P = O(

√
STN) to balance the P/N and

ST/P terms, we immediately get our final bound, which matches that of [18]. For
illustrative purposes, we also apply our improved bound to argue the AI-ROM
security of a couple of indistinguishability applications not considered by [18].
First, we show an improved—compared to its use as a (standard) PRF—bound
for the random oracle as a weak PRF, which is enough for chosen-plaintext secure
symmetric-key encryption. Our proof is a very simple adaptation of the PRF
proof in the BF-ROM, while we believe the corresponding compression proof,
if possible at all, would involve noticeable changes to the PRF proof of [18]
(due to the need for better compression to get the improved bound). Second, we
also apply it to a typical example of a computational application, namely, the
(KEM-variant of the) TDF-based public-key encryption scheme Encf (m;x) =
(f(x),O(x) ⊕ m) from the original Bellare-Rogaway paper [8], where f is a
trapdoor permutation (part of the public key, while the inverse is the secret
key) and x is the randomness used for encryption. Recall that the compression
technique cannot be applied to such applications.

To sum up, we conjecture that the improved security bound ST/P should
be sufficient to get good bounds for most natural indistinguishability applica-
tions; these bounds are either tight, or at least they match those attainable via
compression arguments (while being much simpler and more general).

Improved Pre-sampling for Unpredictability Applications. Even with our
improved bound of ST/P for pre-sampling, we will not match the nearly tight
compression bounds obtained by Dodis et al. [18] for OWFs and MACs. In par-
ticular, finding the optimal value of P will result in “square root terms” which
are not matched by any existing attacks. As our key insight, we notice that this is
not due to the limitations of pre-sampling (i.e., going through the BF-ROM), but
rather to the fact that achieving an additive error is unnecessarily restrictive for
unpredictability applications. Instead, we show that if one is happy with a multi-
plicative factor of 2 in the probability of breaking the system, then one can achieve
this generically by setting the pre-sampling set size P ≈ ST ; see Theorem 2.

This has a number of implications. First, with this multiplicative pre-
sampling technique, we can easily match the compression bounds for the OWF
and MAC unpredictability applications considered by Dodis et al. [18], but
with much simpler proofs. Second, we also apply it to a natural information-
theoretic application where we believe the compression technique will fail to get
a good bound; namely, building a (salted) CHRF family via the Merkle-Damg̊ard
paradigm, where the salt is the initialization vector for the construction (see The-
orem 3). The salient feature of this example is that the random oracle is applied
in iteration, which poses little difficulties to adapting the standard-ROM proof
to the BF-ROM, but seems to completely blow up the complexity of the com-
pression arguments, as there are too many possibilities for the attacker to cause
a collision for different salts when the number of blocks is greater than 1.6

6 The same difficulty of compression should also apply to indistinguishability applica-
tions of Merkle-Damg̊ard, such as building PRFs [6].
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The resulting AI-ROM bound O(ST 2/M) becomes vacuous for circuits of size
roughly M1/3, where M is the range of the compression function. This bound is
well below the conjectured M1/2 birthday security of CRHFs based on Merkle-
Damg̊ard against uniform attackers. Quite unexpectedly, we show that M1/3

security we prove is tight: there exists a (non-uniform) collision-finding attack
implementable by a circuit of size O

(
M1/3

)
(see Theorem 4)! This example

illustrates once again the surprising power of non-uniformity.

Implications to Computational Reductions. Recall that, unlike compression tech-
niques, pre-sampling can be applied to computational reductions, by “hard-
wiring” the pre-sampling set of size P into the attacker breaking the compu-
tational assumption. However, this means that P cannot be made larger than
the maximum allowed running time t of such an attacker. Since standard pre-
sampling incurs additive cost Ω(ST/P ), one cannot achieve final security better
that ST/t, irrespective of the value of ε in the (t, ε)-security of the corresponding
computational assumption. For example, when t is polynomial (in the security
parameter) and ε � 1/t is exponentially small, we only get inverse polynomial
security (at most ST/t) when applying standard pre-sampling. In contrast, the
multiplicative variant of pre-sampling sets the list size to be roughly P ≈ ST ,
which is polynomial for polynomial S and T and can be made smaller than
the complexity t of the standard model attacker for the computational assump-
tion we use. Thus, when t is polynomial and ε is exponentially small, we will
get negligible security using multiplicative pre-sampling. For a concrete illustra-
tive example, see the bound in Theorem 5 when we apply our improved pre-
sampling to the natural computational unpredictability application of Schnorr
signatures [49].7 To put it differently, while the work of Dodis et al. [18] showed
that Unruh’s “pre-sampling conjecture” is false in general—meaning that neg-
ligible security is not possible with a polynomial list size P—we show that it
is qualitatively true for unpredictability applications, where the list size can be
made polynomial (roughly ST ).

Moreover, we show that in certain computational indistinguishability appli-
cations, we can still apply our improved pre-sampling technique inside the reduc-
tion, and get final security higher than the ST/t barrier mentioned above. We
illustrate this phenomenon in our analysis of TDF encryption (cf. Theorem 6)
by separating the probability of the attacker’s success into 2 disjoint events: (1)
the attacker, given ciphertext f(x), managed to query the random oracle on
the TDP preimage x; (2) the attacker succeeds in distinguishing the value O(x)
from random without querying O(x). Now, for the event (1), we can reduce
to the TDP security with polynomial list size using our improved multiplica-
tive pre-sampling (since is an unpredictability event), while for the event (2), we
can prove information-theoretic security using standard additive pre-sampling,
without the limitation of having to upper bound P by the running time of the
TDP attacker. It is an interesting open question to classify precisely the type

7 Interestingly, general Fiat-Shamir transform is not secure in AI-ROM, and thus our
proof used the specifics of Schnorr’s signatures.
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of indistinguishability applications where such “hybrid” reduction technique can
be applied.

Going to the Traditional ROM. So far, the general paradigm we used is to reduce
the hard-to-analyze security of any scheme in the AI-ROM to the much simpler
and proof-friendly security of the same scheme in the BF-ROM. However, an even
simpler approach, if possible, would be to reduce the security in the AI-ROM
all the way to the traditional ROM. Of course, we know that this is impossible
without any modifications to the scheme, as we have plenty of examples where
the AI-ROM security of the scheme is much weaker than its ROM security (or
even disappears completely). Still, when a simple modification is possible without
much inconvenience to the users, reducing to the ROM has a number of obvious
advantages over the BF-ROM:

– While much simpler than in the AI-ROM, one must still prove a security bound
in BF-ROM. It would be much easier if one could just utilize an already proven
result in ROM and seamlessly “move it” to the AI-ROM at a small cost.

– Some natural schemes secure in the traditional ROM are insecure in the BF-
ROM (and also in the AI-ROM) without any modifications. Simple exam-
ple include the general Fiat-Shamir heuristic [1,23] or the FDH signature
scheme [8] (see the full version of this paper [15]). Thus, to extend such
schemes to the AI-ROM, we must modify them anyway, so we might as well
try to generically ensure that ROM security is already enough.

As our next set of results, we show two simple compilers which build a hash
function O′ to be used in AI-ROM application out of hash function O used in
the traditional ROM application. Both results are in the common-random-string
model. This means that they utilize a public random string (which we call salt
and denote a) chosen after the auxiliary information about O is computed by the
attacker. The honest parties are then assumed to have reliable access to this a
value. We note that in basic applications, such as encryption and authentication,
the salt can simply be chosen at key generation and be made part of the public
key/parameters, so this comes at a small price indeed.

The first transformation analyzed in Sect. 6.1 is simply salting; namely
O′

a(x) = O(a, x), where a is a public random string chosen from the domain
of size K. This technique is widely used in practice (going back to password
hashing [43]), and was analyzed by Dodis et al. [18] in the context of AI-ROM,
by applying the compression argument to show that salting provably defeats pre-
processing for the few natural applications they consider (OWFs, PRGs, PRFs,
and MACs). What our work shows is that salting provably defeats pre-processing
generically, as opposed to a few concrete applications analyzed by [18].8 Namely,
8 Of course, by performing a direct analysis of the salted scheme (e.g., using Theo-

rems 1 or 2), we might get better exact security bounds than by using our general
result; namely, shorter salt would be enough to get the claimed amount of security.
Still, for settings where obtaining the smallest possible salt value is not critical, the
simplicity and generality of our compilers offer a convenient and seamless way to
argue security in AI-ROM without doing a direct analysis.
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by making the salt domain K large enough, one gets almost the same security
in AI-ROM than in the traditional ROM. To put differently, when salting is
possible, one gets the best of both worlds: security against non-uniform attacks,
but with exact security matching that in the traditional ROM.

The basic salting technique sacrificed a relatively large factor of K from the
domain of the random oracle O in order to build O′ (for K large enough to bring
the “salting error” down). When the domain of O is an expensive resource, in
Sect. 6.2 we also design a more domain-efficient compiler, which only sacrifices
a small factor k ≥ 2 in the domain of O, at the cost that each evaluation of O′

takes k ≥ 2 evaluations of O (and the “salting error” decays exponentially in k).
This transformation is based on the adaptation of the technique of Maurer [41],
originally used in the context of key-agreement with randomizers. While the
basic transformation needs O(k log N) bits of public salt, we also show than one
can reduce the number of random bits to O(k + log N). And since we do not
envision k to be larger than O(log N) for any practical need, the total length of
the salt is always O(log N).

Our Main Lemma. The key technical contribution of our work is Lemma 1,
proved in Sect. 2.1, which roughly shows that a random oracle with auxiliary
input is “close” to the convex combination of “P -bit-fixing sources” (see Def-
inition 1). Moreover, we give both additive and multiplicative versions of this
“closeness,” so that we can later use different parameters to derive our Theo-
rem 1 (for indistinguishability applications in the AI-ROM) and Theorem 2 (for
unpredictability applications in the AI-ROM) in Sect. 2.2.

1.2 Other Related Work

Most of the related work was already mentioned earlier. The realization that
multiplicative error is enough for unpredictability applications, and this can
lead to non-trivial savings, is related to the work of Dodis et al. [19] in the
context of improved entropy loss of key derivation schemes. Tessaro [50] general-
ized Unruh’s presampling techniques to the random-permutation model, albeit
without improving the tightness of the bound.

De et al. [17] study the effect of salting for inverting a permutation O as
well as for a specific pseudorandom generator based on one-way permutations.
Chung et al. [14] study the effects of salting in the design of collision-resistant
hash functions, and used Unruh’s pre-sampling technique to argue that salting
defeats preprocessing in this important case. Using salting to obtain non-uniform
security was also advocated by Mahmoody and Mohammed [40], who used this
technique for obtaining non-uniform black-box separation results.

Finally, the extensive body of work on the bounded storage model [4,21,41,52]
is related to the special case of AI-ROM, where all T queries in the second stage
are done by the challenger to derive the key (so that one tries to minimize T
to ensure local computability), but the actual attacker is not allowed any such
queries after S-bit preprocessing.
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2 Dealing with Auxiliary Information

Since an attacker with oracle-dependent auxiliary input may obtain the output
of arbitrary functions evaluated on a random oracle’s function table, it is not
obvious how the security of schemes in the auxiliary-input random-oracle model
(AI-ROM) can be analyzed. To remedy this situation, Unruh [51] introduced the
bit-fixing random-oracle model (BF-ROM), in which the oracle is fixed on a sub-
set of the coordinates and uniformly random and independent on the remaining
ones, and showed that such an oracle is indistinguishable from an AI-RO.

In Sect. 2.1, we improve the security bounds proved by Unruh [51] in the fol-
lowing two ways: First, we show that a BF-RO is indistinguishable from an AI-RO
up to an additive term of roughly ST/P , where P is the size of the fixed portion
of the BF-RO; this improves greatly over Unruh’s bound, which was in the order
of

√
ST/P . Second, we prove that the probability that any distinguisher outputs

1 in the AI-ROM is at most twice the probability that said distinguisher outputs
1 in the BF-ROM—already when P is roughly equal to ST .

Section 2.2 contains the formalizations of the AI and BF-ROMs, attackers
with oracle-dependent advice, and the notion of application. As a consequence
of the connections between the two models, the security of any application in
the BF-ROM translates to the AI-ROM at the cost of the ST/P term, and,
additionally, the security of unpredictability applications translates at the mere
cost of a multiplicative factor of 2 (as long as P ≥ ST ). The corresponding
theorems and their proofs can also be found in Sect. 2.2.

2.1 Replacing Auxiliary Information by Bit-Fixing

In this section, we show that any random oracle about which an attacker may
have a certain amount of auxiliary information can be replaced by a suitably
chosen convex combination of bit-fixing sources. This substitution comes at the
price of either an additive term to the distinguishing advantage or a multiplica-
tive one to the probability that a distinguisher outputs 1. To that end, consider
the following definition:

Definition 1. An (N,M)-source is a random variable X with range [M ]N . A
source is called

– (1 − δ)-dense if for every subset I ⊆ [N ],

H∞(XI) ≥ (1 − δ) · |I| · log M = (1 − δ) · log M |I|.

– (P, 1 − δ)-dense if it is fixed on at most P coordinates and is (1 − δ)-dense on
the rest,

– P -bit-fixing if it is fixed on at most P coordinates and uniform on the rest.

That is, the min-entropy of every subset of the function table of a δ-dense source
is at most a fraction of δ less than what it would be for a uniformly random one.
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Lemma 1. Let X be distributed uniformly over [M ]N and Z := f(X), where
f : [M ]N → {0, 1}S is an arbitrary function. For any γ > 0 and P ∈ N, there
exists a family {Yz}z∈{0,1}S of convex combinations Yz of P -bit-fixing (N,M)-
sources such that for any distinguisher D taking an S-bit input and querying at
most T < P coordinates of its oracle,

∣
∣P

[
DX(f(X)) = 1

]
− P

[
DYf(X)(f(X)) = 1

]∣∣ ≤ (S + log 1/γ) · T

P
+ γ

and

P
[
DX(f(X)) = 1

]
≤ 2(S+log 1/γ)T/P · P

[
DYf(X)(f(X)) = 1

]
+ γ.

Lemma 1 is proved using a technique (cf. the first claim in the proof) put
forth by Göös et al. [30] in the area of communication complexity. The technique
was also adopted in a paper by Kothari et al. [39], who gave a simplified argu-
ment for decomposing high-entropy sources into bit-fixing sources with constant
density (cf. Definition 1). For self-containment, the full version of this paper [15]
contains a proof of this decomposition technique. Furthermore, the proof uses
the well-known H-coefficient technique by Patarin [47], while following a recent
re-formulation of it due to Hoang and Tessaro [32].

Proof. Fix an arbitrary z ∈ {0, 1}S and let Xz be the distribution of X condi-
tioned on f(X) = z. Let Sz = N log M −H∞(Xz) be the min-entropy deficiency
of Xz. Let γ > 0 be arbitrary.

Claim 1. For every δ > 0, Xz is γ-close to a convex combination of finitely many
(P ′, 1 − δ)-dense sources for

P ′ =
Sz + log 1/γ

δ · log M
.

The proof of the above claim can be found in the full version of this paper [15].
Let X ′

z be the convex combination of (P ′, 1− δ)-dense sources that is γ-close
to Xz for a δ = δz to be determined later. For every (P ′, 1− δ) source X ′ in said
convex combination, let Y ′ be the corresponding P ′-bit-fixing source Y ′, i.e.,
X ′ and Y ′ are fixed on the same coordinates to the same values. The following
claim bounds the distinguishing advantage between X ′ and Y ′ for any T -query
distinguisher.

Claim 2. For any (P ′, 1− δ)-dense source X ′ and its corresponding P ′-bit-fixing
source Y ′, it holds that for any (adaptive) distinguisher D that queries at most
T coordinates of its oracle,

∣
∣
∣P

[
DX′

= 1
]
− P

[
DY ′

= 1
]∣∣
∣ ≤ Tδ · log M,

and
P
[
DX′

= 1
]

≤ MTδ · P
[
DY ′

= 1
]
.
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Proof. Assume without loss of generality that D is deterministic and does not
query any of the fixed positions. Let TX′ and TY ′ be the random variables
corresponding to the transcripts containing the query/answer pairs resulting
from D’s interaction with X ′ and Y ′, respectively. For a fixed transcript τ , denote
by pX′(τ) and pY ′(τ) the probabilities that X ′ and Y ′, respectively, produce the
answers in τ if the queries in τ are asked. Observe that these probabilities depend
only on X ′ resp. Y ′ and are independent of D.

Observe that for every transcript τ ,

pX′(τ) ≤ M−(1−δ)T and pY ′(τ) = M−T (1)

as X ′ is (1 − δ)-dense and Y ′ is uniformly distributed.
Since D is deterministic, P[TX′ = τ ] ∈ {0, pX′(τ)}, and similarly,

P[TY ′ = τ ] ∈ {0, pY ′(τ)}. Denote by TX the set of all transcripts τ for which
P[TX′ = τ ] > 0. For such τ , P[TX′ = τ ] = pX′(τ) and also P[TY ′ = τ ] = pY ′(τ).
Towards proving the first part of the lemma, observe that

∣
∣
∣P

[
DX′

= 1
]
− P

[
DY ′

= 1
]∣∣
∣ ≤ SD(TX′ , TY ′)

=
∑

τ

max {0,P[TX′ = τ ] − P[TY ′ = τ ]}

=
∑

τ∈TX

max {0, pX′(τ) − pY ′(τ)}

=
∑

τ∈TX

pX′(τ) · max
{

0, 1 − pY ′(τ)
pX′(τ)

}

≤ 1 − M−Tδ ≤ Tδ · log M,

where the first sum is over all possible transcripts and where the last inequality
uses 2−x ≥ 1 − x for x ≥ 0.

As for the second part of the lemma, observe that due to (1) and the support
of TX′ being a subset of TY ′ ,

P[TX′ = τ ] ≤ MTδ · P[TY ′ = τ ]

for any transcript τ . Let TD be the set of transcripts where D outputs 1. Then,

P[DX′
= 1] =

∑

τ∈TD

P[TX′ = τ ] ≤ MTδ ·
∑

τ∈TD

P[TY ′ = τ ] = MTδ ·P[DY ′
= 1].

��

Let Y ′
z be obtained by replacing every X ′ by the corresponding Y ′ in X ′

z.
Setting δz = (Sz + log 1/γ)/(P log M), Claims 1 and 2 imply

∣
∣
∣P

[
DXz (z) = 1

]
− P

[
DY ′

z (z) = 1
]∣∣
∣ ≤ (Sz + log 1/γ) · T

P
+ γ, (2)
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as well as

P
[
DXz (z) = 1

]
≤ 2(Sz+log 1/γ)T/P · P

[
DY ′

z (z) = 1
]
+ γ . (3)

Moreover, note that for the above choice of δz, P ′ = P , i.e., the sources Y ′ are
fixed on at most P coordinates, as desired.

Claim 3. Ez[Sz] ≤ S and Ez[2SzT/P ] ≤ 2ST/P .

The proof of the above claim can be found in the full version of this paper [15].
The lemma now follows (using Yz := Y ′

z ) by taking expectations over z of (2)
and (3) and applying the above claim. ��

2.2 From the BF-ROM to the AI-ROM

Capturing the Models. Before Lemma 1 from the preceding section can be
used to show how security proofs in the BF-ROM can be transferred to the AI-
ROM, it is necessary to formally define the two models as well as attackers with
oracle-dependent advice and the notion of an application. The high-level idea is
to consider two-stage attackers A = (A1,A2) and (single-stage) challengers C
with access to an oracle O. Oracles have two interfaces pre and main, where pre
is accessible only to A1, which may pass auxiliary information to A2, and both
A2 and C may access main.

Oracles. An oracle O has two interfaces O.pre and O.main, where O.pre is acces-
sible only once before any calls to O.main are made. Oracles used in this work are:

– Random oracle RO(N,M): Samples a random function table F ← FN,M ,
where FN,M is the set of all functions from [N ] to [M ]; offers no functionality
at O.pre; answers queries x ∈ [N ] at O.main by the corresponding value F [x] ∈
[M ].

– Auxiliary-input random oracle AI-RO(N,M): Samples a random function
table F ← FN,M ; outputs F at O.pre; answers queries x ∈ [N ] at O.main
by the corresponding value F [x] ∈ [M ].

– Bit-Fixing random oracle BF-RO(P,N,M): Samples a random function table
F ← FN,M ; takes a list at O.pre of at most P query/answer pairs that override
F in the corresponding positions; answers queries x ∈ [N ] at O.main by the
corresponding value F [x] ∈ [M ].

– Standard model: Neither interface offers any functionality.

The parameters N , M are occasionally omitted in contexts where they are of
no relevance. Similarly, whenever evident from the context, explicitly specifying
which interface is queried is omitted.
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Attackers with Oracle-Dependent Advice. Attackers A = (A1,A2) consist of a
preprocessing procedure A1 and a main algorithm A2, which carries out the
actual attack using the output of A1. Correspondingly, in the presence of an
oracle O, A1 interacts with O.pre and A2 with O.main.

Definition 2. An (S, T )-attacker A = (A1,A2) in the O-model consists of two
procedures

– A1, which is computationally unbounded, interacts with O.pre, and outputs an
S-bit string, and

– A2, which takes an S-bit auxiliary input and makes at most T queries to
O.main.

In certain contexts, additional restrictions may be imposed on A2, captured by
some parameters p. A is referred to as (S, T, p)-attacker in such cases. Examples
of such parameters include time and space requirements of A2 or a limit on the
number of queries of a particular type that A2 makes to a challenger it interacts
with. Observe that the parameter S is meaningful also in the standard model,
where it measures the length of standard non-uniform advice to the attacker.
The parameter T , however, is not relevant as there is no random oracle to query
in the attack stage. Consequently, standard-model attackers with resources p are
referred to as (S, ∗, p)-attackers.

Applications. Let O be an arbitrary oracle. An application G in the O-model
is defined by specifying a challenger C, which is an oracle algorithm that has
access to O.main, interacts with the main stage A2 of an attacker A = (A1,A2),
and outputs a bit at the end of the interaction. The success of A on G in the
O-model is defined as

SuccG,O(A) := P
[
AO.main

2 (AO.pre
1 ) ↔ CO.main = 1

]
,

where AO.main
2 (AO.pre

1 ) ↔ CO.main denotes the bit output by C after its interaction
with the attacker. This work considers two types of applications, captured by
the next definition.

Definition 3. For an indistinguishability application G in the O-model, the
advantage of an attacker A is defined as

AdvG,O(A) := 2
∣
∣
∣
∣SuccG,O(A) − 1

2

∣
∣
∣
∣ .

For an unpredictability application G, the advantage is defined as

AdvG,O(A) := SuccG,O(A).

An application G is said to be ((S, T, p), ε)-secure in the O-model if for every
(S, T, p)-attacker A,

AdvG,O(A) ≤ ε.
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Combined Query Complexity. In order to enlist Lemma 1 for proving Theorems 1
and 2 below, the interaction of some attacker A = (A1,A2) with a challenger C in
the O-model must be “merged” into a single entity D = (D1,D2) that interacts
with oracle O. That is, D(·)

1 := A(·)
1 and D(·)

2 (z) := A(·)
2 (z) ↔ C(·) for z ∈ {0, 1}S .

D is called the combination of A and C, and the number of queries it makes to
its oracle is referred to as the combined query complexity of A and C. For all
applications in this work there exists an upper bound T comb

G = T comb
G (S, T, p) on

the combined query complexity of any attacker and the challenger.

Additive Error for Arbitrary Applications. Using the first part of
Lemma 1, one proves the following theorem, which states that the security of
any application translates from the BF-ROM to the AI-ROM at the cost of an
additive term of roughly ST/P , where P is the maximum number of coordinates
an attacker A1 is allowed to fix in the BF-ROM.

Theorem 1. For any P ∈ N and every γ > 0, if an application G is
((S, T, p), ε′)-secure in the BF-RO(P )-model, then it is ((S, T, p), ε)-secure in the
AI-RO-model, for

ε ≤ ε′ +
(S + log γ−1) · T comb

G

P
+ γ,

where T comb
G is the combined query complexity corresponding to G.

Proof. Fix P as well as γ. Set BF-RO := BF-RO(P ) and let G be an arbitrary
application and C the corresponding challenger. Moreover, fix an (S, T )-attacker
A = (A1,A2), and let {Yz}z∈{0,1}S be the family of distributions guaranteed to
exist by Lemma 1, where the function f is defined by A1. Consider the following
(S, T )-attacker A′ = (A′

1,A′
2) (expecting to interact with BF-RO):

– A′
1 internally simulates A1 to compute z ← AAI-RO.pre

1 . Then, it samples one
of the P -bit-fixing sources Y ′ making up Yz and presets BF-RO to match Y ′

on the at most P points where Y ′ is fixed. The output of A′
1 is z.

– A′
2 works exactly as A2.

Let D be the combination of A2 = A′
2 and C. Hence, D is a distinguisher taking

an S-bit input and making at most T comb
G queries to its oracle. Therefore, by the

first part of Lemma 1,

SuccG,AI-RO(A) ≤ SuccG,BF-RO(A′) +
(S + log γ−1) · T comb

G

P
+ γ.

Since there is only an additive term between the two success probabilities, the
above inequality implies

AdvG,AI-RO(A) ≤ AdvG,BF-RO(A′) +
(S + log γ−1) · T comb

G

P
+ γ

for both indistinguishability and unpredictability applications. ��
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Multiplicative Error for Unpredictability Applications. Using the second
part of Lemma 1, one proves the following theorem, which states that the security
of any unpredictability application translates from the BF-ROM to the AI-ROM
at the cost of a multiplicative factor of 2, provided that A1 is allowed to fix
roughly ST coordinates in the BF-ROM.

Theorem 2. For any P ∈ N and every γ > 0, if an unpredictability application
G is ((S, T, p), ε′)-secure in the BF-RO(P,N,M)-model for

P ≥ (S + log γ−1) · T comb
G ,

then it is ((S, T, p), ε)-secure in the AI-RO(N,M)-model for

ε ≤ 2ε′ + γ,

where T comb
G is the combined query complexity corresponding to G.

Proof. Using the same attacker A′ as in the proof of Theorem 1 and applying
the second part of Lemma 1, one obtains, for any P ≥ (S + log γ−1) · T comb

G ,

SuccG,AI-RO(A) ≤ 2(S+log 1/γ)T comb
G /P · SuccG,BF-RO(A′) + γ

≤ 2 · SuccG,BF-RO(A′) + γ,

which translates into

AdvG,AI-RO(A) ≤ 2 · AdvG,BF-RO(A′) + γ

for unpredictability applications. ��

The Security of Applications in theAI-ROM. The connections between the
auxiliary-input random-oracle model (AI-ROM) and the bit-fixing random-oracle
model (BF-ROM) established above suggest the following approach to proving the
security of particular applications in the AI-ROM: first, deriving a security bound
in the easy-to-analyze BF-ROM, and then, depending on whether one deals with
an indistinguishability or an unpredictability application, generically inferring the
security of the schemes in the AI-ROM, using Theorems 1 or 2.

The three subsequent sections deal with various applications in the AI-ROM:
Sect. 3 is devoted to security analyses of basic primitives, where “basic” means
that the oracle is directly used as the primitive; Sect. 4 deals with the collision
resistance of hash functions built from a random compression function via the
Merkle-Damg̊ard construction (MDHFs); and, finally, Sect. 5 analyzes several
cryptographic schemes with computational security.

3 Basic Applications in the AI-ROM

This section treats the AI-ROM security of one-way functions (OWFs),
pseudorandom generators (PRGs), normal and weak pseudorandom functions
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(PRFs and wPRFs), and message-authentication codes (MACs). More specifi-
cally, the applications considered are:

– One-way functions: For an oracle O : [N ] → [M ], given y = O(x) for a
uniformly random x ∈ [N ], find a preimage x′ with O(x′) = y.

– Pseudo-random generators: For an oracle O : [N ] → [M ] with M > N ,
distinguish y = O(x) for a uniformly random x ∈ [N ] from a uniformly
random element of [M ].

– Pseudo-random functions: For an oracle O : [N ] × [L] → [M ], distinguish
oracle access to O(s, ·) for a uniformly random s ∈ [N ] from oracle access to
a uniformly random function F : [L] → [M ].

– Weak pseudo-random functions: Identical to PRFs, but the inputs to the
oracle are chosen uniformly at random and independently.

– Message-authentication codes: For an oracle O : [N ]× [L] → [M ], given access
to an oracle O(s, ·) for a uniformly random s ∈ [N ], find a pair (x, y) such
that O(s, x) = y for an x on which O(s, ·) was not queried.

AI-ROM security Bound in [18] Lower bound

OWFs ST
N

+ T
N

Same min
{

ST
N

,
(
S2T
N2

)1/3}
+ T

N

PRGs
(
ST
N

)1/2
+ T

N
Same

(
S
N

)1/2
+ T

N

PRFs
(S(T+qprf)

N

)1/2
+ T

N
Same

(
S
N

)1/2
+ T

N

wPRFs
(S(T+qprf)qprf

LN

)1/2
+ T

N
Not analyzed Not known

MACs
S(T+qsig)

N
+ T

N
+ 1

M

S(T+qsig)

N
+ T

N
+ T

M
min

{
ST
N

,
(
S2T
N2

)1/3}
+ T

N

Table 1. Asymptotic upper and lower bounds on the security of basic primitives against
(S, T )-attackers in the AI-ROM, where qprf and qsig denote PRF and signing queries,
respectively, and where (for simplicity) N = M for OWFs. Observe that attacks against
OWFs also work against PRGs and PRFs.

The asymptotic bounds for the applications in question are summarized in
Table 1. For OWFs, PRGs, PRFs, and MACs, the resulting bounds match the
corresponding bounds derived by Dodis et al. [18], who used (considerably) more
involved compression arguments; weak PRFs have not previously been analyzed.

The precise statements and the corresponding proofs can be found in the full
version of this paper [15]; the proofs all follow the paradigm outlined in Sect. 2.2
of first assessing the security of a particular application in the BF-ROM and then
generically inferring the final bound in the AI-ROM using Theorems 1 or 2.

4 Collision Resistance in the AI-ROM

A prominent application missing from Sect. 3 is that of collision resistance, i.e.,
for an oracle O : [N ] × [L] → M , given a uniformly random salt value a ∈ [N ],
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finding two distinct x, x′ ∈ [L] such that O(a, x) = O(a, x′). The reason for this
omission is that in the BF-ROM, the best possible bound is easily seen to be
in the order of P/N + T 2/M . Even applying Theorem 2 for unpredictability
applications with P ≈ ST results in a final AI-ROM bound of roughly ST/N +
T 2/M , which is inferior to the optimal bound of S/N + T 2/M proved by Dodis
et al. [18] using compression.

However, hash functions used in practice, most notably SHA-2, are based on
the Merkle-Damg̊ard mode of operation for a compression function O : [M ] ×
[L] → [M ], modeled as a random oracle here. Specifically, a B-block message
y = (y1, . . . , yB) with yj ∈ [L] is hashed to OB(y), where

O1(y1) = O(a, y1) and Oj(y1, . . . , yj) = O(Oj−1(y1, . . . , yj−1), yj) for j > 1.

While—as pointed out above—Dodis et al. [18] provide a tight bound for
the one-block case, it is not obvious at all how their compression-based proof
can be extended to deal with even two-block messages. Fortunately, no such
difficulties appear when we apply our technique of going through the BF-ROM
model, allowing us to derive a bound in Theorem 3 below.

Formally, the collision resistance of Merkle-Damg̊ard hash functions
(MDHFs) in the O(ML,M)-model is captured by the application GMDHF,M,L,
which is defined via the following challenger CMDHF,M,L: It initially chooses a
public initialization vector (IV) a ∈ [M ] uniformly at random and sends it to the
attacker. The attacker wins if he submits y = (y1, . . . , yB) and y′ = (y′

1, . . . , y
′
B′)

such that y �= y′ and OB(y) = OB′
(y′).

For attackers A = (A1,A2) in the following theorem, we make the simplifying
assumption that T > max(B,B′). We prove the following bound on the security
of MDHFs in the AI-ROM:

Theorem 3. Application GMDHF,M,L is ((S, T,B), ε)-secure in the AI-RO(ML,
M)-model, where

ε = Õ

(
ST 2

M
+

T 2

M

)
.

The proof of Theorem 3 is provided in the full version of this paper [15].
Observe that if S and T are taken to be the circuit size, the bound in The-

orem 3 becomes vacuous for circuits of size M1/3, i.e., it provides security only
well below the birthday bound and may therefore seem extremely loose. Quite
surprisingly, however, it is tight:

Theorem 4. There exists an (S, T )-attacker A = (A1,A2) against application
G := GMDHF,M,L in the O := AI-RO(ML,M)-model with advantage at least

AdvG,O(A) = Ω̃

(
ST 2

M
+

1
M

)
,

assuming ST 2 ≤ M/2 and L ≥ M .
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The attack is loosely based on rainbow tables [31] and captured by the following
(S, T )-attacker A = (A1,A2):

– A1: Obtain the function table F : [M ]×[L] → [M ] from O. For i = 1, . . . , m :=
S/(3�log L�), proceed as follows:
1. Choose ai,0 ∈ [M ] uniformly at random.
2. Compute ai,�−1 ← F (�−1)(ai,0, 0), where 	 := �T/2�.9
3. Find values xi �= x′

i such that ai,� := F (ai,�−1, xi) = F (ai,�−1, x
′
i); abort

if no such values exist.
Output the triples (ai,�−1, xi, x

′
i) for i = 1, . . . , m.

– A2: Obtain the public initialization vector a from CMDHF,M,L and the m triples
output by A1. Proceed as follows:
1. If a = ai,�−1 for some i, return (xi, x

′
i).

2. Otherwise, set ã ← a and for j = 1, . . . , T , proceed as follows:
(a) Query ã ← O(ã, 0).
(b) If ã = ai,�−1 for some i, return (0j‖xi, 0j‖x′

i); otherwise return (0, 1).

The analysis of the attack canbe found in the full version of this paper [15]. It should
benoted that inpractice hash functions use afixed IVa, and, therefore—in contrast
to, e.g., function inversion, where usually the cost of a single preprocessing stage
can be amortized over many inversion challenges—the rather sizeable amount of
preprocessing required by the attack to just find a collision may not be justified.
However, in some cases, the hash function used in a particular application (relying
on collision-resistance) is salted by prepending a random salt value to the input.
Such salting essentially corresponds to the random-IV setting consideredhere, and,
therefore, the attack becomes relevant again as one might be able to break many
instances of the application using a single preprocessing phase.

5 Computationally Secure Applications in the AI-ROM

This section illustrates the bit-fixing methodology on two typical computa-
tionally secure applications: (1) Schnorr signatures [49], where Theorem 2
can be applied since forging signatures is an unpredictability application, and
(2) trapdoor-function (TDF) key-encapsulation (KEM) [8], where an approach
slightly more involved than merely analyzing security in the BF-ROM and apply-
ing Theorem 1 is required in order to get a tighter security reduction; see below.

(Please refer to Sect. A of the appendix for the definitions of digital signa-
tures, KEMs, TDFs, and other standard concepts used in this section.)

Fiat-Shamir with Schnorr. Let G be a cyclic group of prime order |G| = N .
The Schnorr signature scheme Σ = (Gen,Sig,Vfy) in the O(N2, N)-model works
as follows:

– Key generation: Choose x ∈ ZN uniformly at random, compute y ← gx, and
output sk := x and vk := y.

9 F (k) stands for the k-fold application of F , and, for the sake of concreteness, let
[L] = {0, . . . , L − 1}.
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– Signing: To sign a message m ∈ [N ] with key sk = x, pick r ∈ ZN uniformly
at random, compute a ← gr, query c ← O(a,m), set z ← r + cx, and output
σ := (a, z).

– Verification: To verify a signature σ = (a, z) for a message m with key vk = y,
query c ← O(a,m), and check whether gz ?= ayc. If the check succeeds and
c �= 0, accept the signature, and reject it otherwise.

For attackers A = (A1,A2) in Theorem 5, which assesses the security of Fiat-
Shamir with Schnorr in the AI-ROM, we make the running time t and space
complexity s of A2 explicit. Moreover, if A is an attacker against GDS,Σ , there
is an additional parameter qsig that restricts A2 to making at most qsig signing
queries. The proof of Theorem 5 is provided in the full version of this paper [15].

Theorem 5. Assume GDL,G for a prime |G| = N is ((S′, ∗, t′, s′), ε′)-secure,
and let Σ = (Gen,Sig,Vfy) be the Schnorr scheme. Then, for any T, qsig ∈ N,
GDS,Σ is ((S, T, t, s, qsig), ε)-secure in the AI-RO(N2, N)-model for

ε = Õ

(√
Tε′ +

Sqsig(qsig + T )
N

)
,

any S ≤ S′/Õ (T + qsig), t ≤ t′ − Õ (S(T + qsig)), and s ≤ s′ − Õ (S(T + qsig)).

For comparison, note that the security of Schnorr signatures in the standard
ROM is O

(√
Tε′ + qsig(qsig+T )

N

)
, i.e., in the AI-ROM the second term worsens by

a factor of S.

TDF Key Encapsulation. Let F be a trapdoor family (TDF) generator. TDF
encryption is a key-encapsulation mechanism Π = (Gen,Enc,Dec) that works as
follows:

– Key generation: Run the TDF generator to obtain (f, f−1) ← F , where
f, f−1 : [N ] → [N ]. Set the public key pk := f and the secret key sk := f−1.

– Encapsulation: To encapsulate a key with public key pk = f , choose x ∈ [N ],
query k ← O(x), compute y ← f(x), and output (c, k) ← (y, k).

– Decapsulation: To decapsulate a ciphertext c = y with secret key sk = f−1,
output k ← O(f−1(y)).

Theorem 6 deals with the security of TDF key encapsulation in the AI-ROM.
Once again, for attackers A = (A1,A2), the running time t and space complexity
s of A2 is made explicit. The proof of Theorem 6 is provided in the full version
of this paper [15].

Theorem 6. Let Π be TDF encapsulation. If GTDF,F is ((S′, ∗, t′, s′), ε′)-secure,
then, for any T ∈ N, GKEM-CPA,Π is ((S, T, t, s), ε)-secure in the AI-RO(N,N)-
model, where

ε = Õ

(

ε′ +

√
ST

N

)
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and S = S′ − Õ (ST ), t = t′ − Õ (ttdf · T ), and s = s′ − Õ (ST ), where ttdf is the
time required to evaluate the TDF.

Moreover, GKEM-CCA,Π is ((S, T, t, s), ε)-secure with the same parameters,
except that t = t′ − Õ (ttdf · ST ).

Observe that the above security bound corresponds simply to the sum of the
security of the TDF and the security of O as a PRG (cf. Sect. 3); in the standard
random-oracle model, the security of TDF encryption is simply upper bounded
by O (ε′) (cf. Sect. A.2).

An important point about the proof of Theorem 6 is that it does not follow
the usual paradigm of deriving the security of TDF encryption in the BF-ROM
and thereafter applying Theorem 1 (for CPA/CCA security is an indistinguisha-
bility application). Doing so—as Unruh does for RSA-OAEP [51] (but in an
“asymptotic sense,” as explained in Footnote 5)—would immediately incur an
additive error of ST/P ≤ ST/t′, since the size of the list P is upper bounded
by the TDF attacker size t′. So the naive application Theorem 1 would result in
poor exact security.

Instead, our tighter proof of Theorem 6 considers two hybrid experiments
(one of which is the original CPA/CCA security game in the AI-ROM). The
power of the BF-ROM is used twice—with different list sizes: (1) to argue the
indistinguishability of the two experiments and (2) to upper bound the advantage
of the attacker in the second hybrid. Crucially, a reduction to TDF security is
only required for (1), which has an unpredictability flavor and can therefore get
by with a list size of roughly P ≈ ST ; observe that this is polynomial for efficient
(S, T )-attackers. The list size for (2) is obtained via the usual balancing between
ST/P and the security bound in the BF-ROM.10

6 Salting Defeats Auxiliary Information

There exist schemes that are secure in the standard ROM but not so in the
AI-ROM. A simple example is if the random oracle itself is directly used as a
collision-resistant hash function O : [N ] → [M ] for some N and M : in the ROM,
O is easily seen to be collision-resistant, while in the AI-ROM, the first phase
A1 of an attacker A = (A1,A2) (cf. Sect. 2.2) can simply leak a collision to A2,
which then outputs it, thereby breaking the collision-resistance property.

The full version of this paper [15] briefly highlights two schemes with compu-
tational security where the above phenomenon can be observed as well. The first
one is a generic transformation of an identification scheme into a signature
scheme using the so-called Fiat-Shamir transform, and the second one is the
well-known full-domain hash.11

10 A similar approach also works to improve the security bounds of [51] for RSA-OAEP
in the AI-ROM.

11 By virtue of Theorem 2, the existence of attacks in the AI-ROM against the above
schemes obviously implies that these schemes cannot be secure in the BF-ROM
either. It is also relatively straight-forward to devise direct attacks in the BF-ROM.
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To remedy the situation with schemes such as those mentioned above, in this
section we prove that the security of any standard ROM scheme can be carried
over to the BF-ROM by sacrificing part of the domain of the BF-RO for salting.
First, in Sect. 6.1, we analyze the standard way of salting a random oracle by
prefixing a randomly chosen (public) value to every oracle query. Second, in
Sect. 6.2, we also show how to adapt a technique by Maurer [41], originally used
in the context of key-agreement with randomizers, to obtain a more domain-
efficient salting technique, albeit with a longer salt value; the salt length can
be reduced by standard derandomization techniques based on random walks on
expander graphs.

6.1 Standard Salting

The standard way of salting a scheme is to simply prepend a public salt value to
every oracle query: Consider an arbitrary application G with the corresponding
challenger C. Let Csalt be the challenger that is identical to C except that it ini-
tially chooses a uniformly random value a ∈ [K], outputs a to A2, and prepends
a to every oracle query. Denote the corresponding application by Gsalt. Observe
that the salt value a is chosen after the first stage A1 of the attack, and, hence,
as long as the first stage A1 of the attacker in the BF-ROM does not prefix
a position starting with a, it is as if the scheme were executed in the standard
ROM. Moreover, note that the time and space complexities s and t, respectively,
of A2 increase roughly by P due to the security reduction used in the proof.

Theorem 7. For any P ∈ N, if an application G is ((S′, T ′, t′, s′), ε′)-
secure in the RO(N,M)-model, then Gsalt is ((S, T, t, s), ε)-secure in the
BF-RO(P,NK,M)-model for

ε = ε′ +
P

K
,

S = S′ − Õ (P ), T = T ′, t = t′ − Õ (P ), and s = s′ − Õ (P ).

The proof of Theorem 7 is provided in the full version of this paper [15]. Com-
bining Theorem 7 with Theorems 1 and 2 from Sect. 2.2 yields the following
corollaries:

Corollary 1. For any P ∈ N and every γ > 0, if an arbitrary application G
is ((S′, T ′, t′, s′), ε′)-secure in the RO(N,M)-model, then Gsalt is ((S, T, t, s), ε)-
secure in the AI-RO(NK,M)-model for

ε = ε′ +
P

K
+

(S + log γ−1) · T comb
Gsalt

P
+ γ

and any S = S′ − Õ (P ), T = T ′, t = t′ − Õ (P ), and s = s′ − Õ (P ), where
T comb

Gsalt
is the combined query complexity corresponding to Gsalt.
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Corollary 2. For every γ > 0, if an unpredictability application G is ((S′, T ′, t′,
s′), ε′)-secure in the RO(N,M)-model, then Gsalt is ((S, T, t, s), ε)-secure in the
AI-RO(NK,M)-model for

ε = 2ε +
2(S + log γ−1) · T comb

Gsalt

K
+ γ

and any S = S′/Õ(T comb
Gsalt

), T = T ′, t′ = t − Õ (P ), and s′ = s − Õ (P ), where
P = (S + log γ−1)T comb

Gsalt
and where T comb

Gsalt
is the combined query complexity cor-

responding to Gsalt.

Applications. In the full version of this paper [15], we briefly discuss how salting
affects the security of the applications presented in Sects. 3 to 5. We also provide
examples to illustrate that directly analyzing a salted scheme in the BF-ROM
can lead to much better bounds than combining a standard-ROM security bound
with one of the above corollaries.

6.2 Improved Salting

One way to think of salting is to view the function table of BF-RO(KN,M)
as a (K × N)-matrix and let the challenger in the salted application randomly
pick and announce the row to be used for oracle queries. However, K has to be
around the same size as N to obtain meaningful bounds. In this section, based on
a technique by Maurer [41], we provide a more domain-efficient means of salting,
where the security will decay exponentially (as opposed to inverse linearly) with
the domain expansion factor K, at the cost that each evaluation of the derived
random oracle will cost K evaluations (as opposed to 1 evaluation) of the original
random oracle.

Consider an arbitrary application G with corresponding challenger C. Let
Csalt′ be the challenger works as follows: It initially chooses a uniformly random
value a = (a1, . . . , aK) ∈ [N ]K and outputs a to A2. Then, it internally runs
C, forwards all messages between the attacker and C, but answers the queries
x ∈ [N ] that C makes to the oracle by

K∑

i=1

BF-RO.main(i, x + ai),

where addition is in ZN and ZM , respectively. In other words, the function table
of BF-RO is arranged as a K ×N matrix, the ith row is shifted by ai, and queries
x are answered by computing the sum modulo M of all the values in the xth

column of the shifted matrix, denoted Fa. Denote the corresponding application
by Gsalt′ . The proof of the following theorem is provided in the full version of
this paper [15]. Moreover, we present a means of reducing the size of the public
salt value.
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Theorem 8. For any P ∈ N, if an application G is ((S′, T ′, t′, s′), ε′)-
secure in the RO(N,M)-model, then Gsalt′ is ((S, T, t, s), ε)-secure in the
BF-RO(P,NK,M)-model for

ε′ = ε + N ·
(

P

KN

)K

,

S = S′ − Õ (P ), T = T ′, t = t′ − Õ (P ), and s = s′ − Õ (P ).

In particular, assuming P ≤ KN/2, setting K = O(log N) will result in
additive error N(P/NK)K = o( 1

N ) and domain size O(N log N). But if P ≤
N1−Ω(1), setting K = O(1) will result in the same additive error o( 1

N ) in the
original domain of near-optimal size O(N). Hence, for most practical purposes,
the efficiency slowdown K (in both the domain size and the complexity of oracle
evaluation) is at most O(log N) and possibly constant.

Combining the above results with those in Sect. 2.2 yields the following
corollaries:

Corollary 3. For any P ∈ N and every γ > 0, if an application G is ((S′, T ′, t′,
s′), ε′)-secure in the RO(N,M)-model, then Gsalt′ is ((S, T, t, s), ε)-secure in the
AI-RO(NK,M)-model for

ε = ε′ + N ·
(

P

KN

)K

+
(S + log γ−1) · T comb

Gsalt′

P
+ γ

and any S = S′ − Õ (P ), T = T ′, t = t′ − Õ (P ), and s = s′ − Õ (P ), where
T comb

Gsalt′
is the combined query complexity corresponding to Gsalt′ .

Corollary 4. For every γ > 0, if an application G is ((S′, T ′, t′, s′), ε′)-secure in
the RO(N,M)-model, then Gsalt′ is ((S, T, t, s), ε)-secure in the AI-RO(NK,M)-
model for

ε = 2ε + 2N ·
(

(S + log γ−1)T comb
Gsalt′

KN

)K

and any S = S′/Õ(T comb
Gsalt′

), T = T ′, t′ = t − Õ (P ), and s′ = s − Õ (P ), where
P = (S + log γ−1)T comb

Gsalt′
and where T comb

Gsalt′
is the combined query complexity cor-

responding to Gsalt′ .

Acknowledgments. The authors thank Mika Göös for pointing out the decomposi-
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A Standard-ROM Definitions and Security

A.1 Fiat-Shamir with Schnorr

Digital Signature Schemes. A digital signature scheme is a triple of algorithms
Σ = (Gen,Sig,Vfy), where Gen generates a signing key sk and a verification key
vk, Sig takes a signing key sk and a message m and outputs a signature σ, and Vfy
takes a verification key vk, a message m, and a signature σ and outputs a single
bit, indicating whether σ is valid. In the O-oracle model, all three algorithms
may make calls to O.main.

The application of digital signatures GDS,Σ is defined via the following chal-
lenger CDS,Σ , which captures the (standard) EUF-CMA security of a digital
signature scheme: Initially, CDS,Σ generates a key pair (sk, vk) ← Gen and
passes vk to the attacker. Then, the attacker may repeatedly submit signature
queries m to the challenger, who answers them by the corresponding signature
σ ← Sigσ(m). In the end, the challenger outputs 1 if and only if the attacker sub-
mits a pair (m∗, σ∗) with Vfyvk(m∗, σ∗) = 1 and such that no signature query was
asked for m∗.

The Discrete-Logarithm Problem. The discrete-logarithm problem in a group
G = 〈g〉 can be phrased as an application GDL,G, defined via the challenger
CDL,G that picks a uniformly random x ∈ Z|G|, passes y := gx to the attacker,
and outputs 1 if and only if the attacker finds x. Observe that GDL,G is a standard-
model application.

Schnorr Signatures in the Standard ROM. In the standard ROM, using the
forking lemma as stated by Bellare and Neven [7], one can show the following
security bound for Schnorr signatures.

Theorem 9. Assume GDL,G for |G| = N is ((S, ∗, t′, s′), ε′)-secure, and let Σ =
(Gen,Sig,Vfy) be the Schnorr scheme. Then, GDS,Σ is ((S, T, t, s, qsig), ε)-secure
in the RO(N2, N)-model for

ε = O

(√
Tε′ +

qsig(qsig + T )
N

)
,

where t = Ω(t′) and s = Ω(s′).

A.2 TDF Encryption

Key-Encapsulation Mechanisms. A key-encapsulation mechanism (KEM) is a
triple of algorithms Π = (K,E,D), where K generates a public key pk and a
secret key sk, E takes a public key pk and outputs a ciphertext c and a key
k, and D takes a secret key sk and a ciphertext c and outputs a key k. In the
O-oracle model, all three algorithms may make calls to O.main.

The application corresponding to CPA security for KEMs GKEM-CPA,Π is
defined via the following challenger CKEM-CPA,Π , which captures the (standard)
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CCA security of a KEM scheme: Initially, CKEM-CPA,Π generates a key pair
(pk, sk) ← K and passes pk to the attacker. Then, the challenger chooses a
random bit b as well as a random key k1, computes (c, k0) ← Epk, and returns
the challenge (c, kb). In the end, the challenger outputs 1 if and only if the
attacker submits a bit b′ with b′ = b.

To capture CCA security, one considered the application CKEM-CCA,Π defined
by the challenger CKEM-CCA,Π that proceeds as CKEM-CPA,Π , except that the
attacker gets to ask decryption queries c′, which the challenger answers with
k′ ← Dsk(c′), provided c′ �= c.

Trapdoor Functions. The inversion problem for a trapdoor function generator
F can be phrased as an application GTDF,F , defined via the challenger CTDF,F

that generates (f, f−1) ← F , picks a random x, passes y := f(x) to the attacker,
and outputs 1 if and only if the attacker finds x. Observe that GTDF,F is a
standard-model application.

The security of TDF key encapsulation in the standard ROM. In the standard
ROM, one can show the following security bound for TDF encryption.

Theorem 10. Let Π be TDF key encapsulation. If GTDF,F is ((S′, ∗, t′, s′), ε′)-
secure, then GKEM-CPA,Π is ((S, T, t, s), ε)-secure in the RO(N,N), where

ε = O (ε′)

and S = S′, t = Ω(t′), and s = Ω(s′).
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30. Göös, M., Lovett, S., Meka, R., Watson, T., Zuckerman, D.: Rectangles are non-
negative juntas. SIAM J. Comput. 45(5), 1835–1869 (2016)

31. Hellman, M.E.: A cryptanalytic time-memory trade-off. IEEE Trans. Inf. Theory
26(4), 401–406 (1980)

32. Hoang, V.T., Tessaro, S.: Key-alternating ciphers and key-length extension: exact
bounds and multi-user security. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016.
LNCS, vol. 9814, pp. 3–32. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-53018-4 1

33. Impagliazzo, R.: Hardness as randomness: a survey of universal derandomization.
CoRR, cs.CC/0304040 (2003)

34. Impagliazzo, R., Nisan, N., Wigderson, A.: Pseudorandomness for network algo-
rithms. In: Proceedings of the Twenty-Sixth Annual ACM Symposium on Theory
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Abstract. The random oracle paradigm allows us to analyze the secu-
rity of protocols and construction in an idealized model, where all parties
have access to a truly random function. This is one of the most successful
and well-studied models in cryptography. However, being such a strong
idealized model, it is known to be susceptible to various weaknesses when
implemented naively in “real-life”, as shown by Canetti, Goldreich and
Halevi (J. ACM 2004).

As a counter-measure, one could try to identify and implement only
one or few of the properties a random oracle possesses that are needed
for a specific setting. Such a systematic study was initiated by Canetti
(CRYPTO 1997), who showed how to implement the property that the
output of the function does not reveal anything regarding the input by
constructing a point function obfucator. This property turned out to suf-
fice in many follow-up works and applications.

In this work, we tackle another natural property of random oracles
and implement it in the standard model. The property we focus on is
non-malleability, where it is guaranteed that the output on an input
cannot be used to generate the output on any related point. We con-
struct a point-obfuscator that is both point-hiding (à la Canetti) and is
non-malleable. The cost of our construction is a single exponentiation
on top of Canetti’s construction and could be used for any application
where point obfuscators are used and obtain improved security guaran-
tees. The security of our construction relies on variants of the DDH and
power-DDH assumptions.

On the technical side, we introduce a new technique for proving secu-
rity of a construction based on a DDH-like assumption. We call this
technique “double-exponentiation” and believe it will be useful in the
future.
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1 Introduction

The Random Oracle model [6] is one of the most well studied models in the
cryptographic literature. In this model, everyone has access to a single random
function. It is usually possible to show clean and simple constructions that are
information-theoretically secure in this idealized model. Also, in many cases it
allows to prove unconditional lower bounds.

One major question is when (and under what assumptions) can we replace the
Random Oracle with a “real life” object. It is known that such a transformation
is impossible in the general case, but the counter examples are usually quite
contrived [13,17,26]. This leaves the possibility that for specific applications of a
Random Oracle such a transformation could possibly exist. One of the obstacles
in answering the aforementioned question is that it seems hard to formalize and
list all the properties such a generic transformation should preserve. In practice,
this difficulty is circumvented by replacing the Random Oracle with an ad-hoc
“cryptogrpahic hash function” (e.g., MD5, SHA-1, SHA-256) which results with
protocols and constructions that have no provable security guarantees, and often
tend to be broken [39,41,42].

Motivated by the above, Canetti [15] initiated the systematic study of iden-
tifying useful properties of a Random Oracle and then realizing them in the
standard model. In his work, he focused on one property called “point obfus-
cation” (or “oracle hashing”). This property ensures that when the Random
Oracle is applied on an input, the output value is completely uncorrelated to the
input, and at the same time, it is possible to verify whether a given output was
generated from a given input. Canetti formally defined this notion and gave a
construction of such a primitive in the standard model based on a variant of the
decisional Diffie-Hellman assumption (DDH). Since then, other instantiations of
this primitive were suggested. Wee [43] gave a construction whose security is
based on a strong notion of one-way permutations, Goldwasser et al. [27] gave a
construction based on the Learning With Errors assumption, and more recently
Bellare and Stepanovs [7] proposed a framework for constructing point obfusca-
tors. The latter result gives a generic construction of point obfuscators based on
either (1) indistinguishability obfuscation [3,24] and any one-way function, (2)
deterministic public-key encryption [4], or (3) UCEs [5].

While hiding the point is a natural and useful goal, there are many setting
where this is not enough to replace a Random Oracle. One other natural property
we wish to realize in “real life” is that of non-malleability : given the value of a
Random Oracle on a random point x, it is infeasible to get the value of the
Random Oracle at any “related” point (e.g., the point x + 1). The work of
Canetti and Varia [19] identified this property and the goal of realizing it. Their
work provided definitions (of non-malleable obfuscation for general circuits, and
not only for point functions) and constructions of non-malleable (multi) point
obfuscators in the random oracle model.

In this work, we focus on construction of non-malleable point obfuscators in
the plain model. Observe that many of the known constructions of point obfus-
cators are malleable. For example, let us recall the construction of Canetti [15]
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which involves a group G with a generator g ∈ G. For an input point x and
randomness r (interpreted as a random group element) the obfuscation is:

O(x; r) = (r, rx).

Indeed, the obfuscation of x + 1 can be computed by multiplying rx by r and
outputting the pair (r, rx+1). In other words, the obfuscation of a point is mal-
leable. The point obfuscators of Wee [43] and of Goldwasser et al. [27] admit
similar attacks (i.e., they are malleable).1

Thus, we ask whether we can remedy this situation and provide a con-
struction of a secure point obfuscator in the plain model that is provably non-
malleable under simple and concrete assumptions. We view this as a necessary
and vital step towards understanding the possibility for realizing a Random
Oracle in “real life”.

1.1 Our Results

We provide a construction of a secure point obfuscator that is non-malleable for
a wide class of mauling functions. Our notion of non-malleability is parametrized
by a distribution X over the input domain X and by a class of possible mauling
attacks F = {f : X → X}. Roughly speaking, our notion guarantees that for
every function f ∈ F , any polynomial-time adversary, when given the obfusca-
tion of a point x ← X , cannot generate the obfuscation of the point f(x).2

We give a construction of a (public-coin3) point obfuscator that is non-
malleable for any well-spread distribution X (i.e., a distribution that has super-
logarithmic min-entropy) and the class of mauling functions F which can be
described by univariate polynomials of bounded polynomial degree (in the secu-
rity parameter). Our construction involves a group G with a generator g ∈ G.
For an input point x and randomness r (interpreted as a random group element)
the obfuscation is:

O(x; r) = (r, rgh(x)
),

where h(x) = x4 + x3 + x2 + x. We prove security and non-malleability of the
above point obfuscator under variants of the DDH and power-DDH assump-
tions (see Sect. 2.2). We also present two ways to support more general maul-
ing functions F by strengthening the underlying security assumption (yet the
1 The work of [7] is an exception since it gives constructions based on generic primitives

so we need non-malleability of the underlying building block. The required notion
of non-malleability is usually very strong. Consider, for example, their construction
from DPKE, where the point function obfuscation includes a ciphertext and a public-
key (of some encryption scheme). To get non-malleability for the point obfuscator
we need non-malleability for the DPKE for an adversary that can maul not only the
ciphertext but also the public-key.

2 We also require that the obfuscation that the adversary outputs is verifiable, that is,
it looks like an obfuscation of the value f(x) (i.e., it comes from the “same family”
of circuits). This prevents trivial attacks that treat the input circuit as a black-box.

3 An obfuscator is public-coin if the random bits used for the obfuscation are given as
part of the output of the obfuscator.
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construction remains the same). First, we show how to support a larger class
of mauling function by assuming (sub-)exponential security of the underlying
assumption. Second, we show that our construction is secure against any maul-
ing function f for which one cannot distinguish the triple (g, gx, gh(f(x))) from a
triple (g, gr1 , gr2), where r1, r2 are random exponents. We do not have a simple
characterization of the functions f for which this assumption holds.

In terms of efficiency, our construction is quite efficient: it involves only two
group exponentiation (Canetti’s construction requires a single exponentiation),
does not rely on any setup assumptions, and does not rely on expensive machin-
ery such as zero-knowledge proofs, which are usually employed to achieve non-
malleability. Moreover, it satisfies the same privacy guarantees as of Canneti’s
obfuscator. As such, our point obfuscator can be used in any application where
point obfuscators are used. These include encryption schemes [15], storing pass-
words [19,40], reusable fuzzy extractors [16], round-efficient zero-knowledge proofs
and arguments [10], and more.

Applications to Non-interactive Non-malleable Commitments. It is possible to
view our obfuscator as a non-interactive non-malleable commitment that is
secure when committing to strings that come from a distribution with super-
logarithmic entropy. To commit to a string x, compute the obfuscation of x and
that would be the commitment. The opening is x itself (and thus for security
it has to have entropy). The resulting commitment scheme is computationally
hiding by the security of the point obfuscator, and also non-malleable against a
large class of mauling functions.

Previously, constructions of non-interactive non-malleable commitments (in
the plain model, without any setup assumptions) required an ad-hoc and non-
standard primitive called “adaptive injective one-way functions” that has built-
in some form of non-malleability [34]. More recent works provide constructions
that are secure against uniform adversaries [33] or ensure limited forms of non-
malleability (“with respect to opening”) [31]. These constructions, however,
allow to commit on worst-case inputs and handle arbitrary mauling functions.

1.2 Related Work

Non-malleable Cryptography. Non-malleability was introduced as a measure to
augment and strengthen cryptographic primitives (such as encryption schemes
or commitment schemes) in such a way that it does not only guarantee privacy,
but also that it is hard to manipulate a given ciphertext (or commitment) of one
value into a ciphertext of another.

Non malleability was first defined in the seminal work of Dolev, Dwork, and
Naor [22] where they presented a non-malleable public-key encryption scheme, a
non-malleable string commitment scheme, a non-malleable zero-knowledge pro-
tocol. Since then, there has been a long line of works on non-malleability. See
[12,29–33,33,35–37] to name just a few.

A particular type of non-malleable protocols (or primitives) that may a-priori
be related to non-malleable point obfuscators are non-interactive commitments
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and encryption schemes. These were the focus of multiple works (see, for exam-
ple, [21–23,38] and some of the references given above). However, these notions
do not imply point obfuscators as they do not support public verification
on a given input (without revealing the randomness which completely breaks
security).

In the context of obfuscation, the only work we are aware of is that of Canetti
and Varia [19] who gave several incomparable definitions for non-malleable obfus-
cation. They also gave a construction of a (multi-bit) non-malleable point obfus-
cator (under each definition), however, their construction is in the Random Ora-
cle model.

Obfuscation with High Min-Entropy. Canetti, Micciancio and Reingold [18] gave
a construction of a point obfuscator that satisfies a relaxed notion of security
where the input is guaranteed to come from a source with high min-entropy.
Their underlying assumption is any collision resistant hash function. There is a
significant (qualitative) difference between this notion and the original notion of
Canetti [15] that we consider in this work. We refer to Wee [43, Section 1.3] for
an elaborate discussion.

Boldyreva et al. [11] showed how to make the point obfuscator of [18] non-
malleable using non-interactive zero-knowledge proofs (assuming a common ref-
erence string). Following the work of Boldyreva et al., Baecher et al. [2] presented
a game-based definition of non-malleability which is very similar to ours (see also
[20]). However, they did not provide new constructions in the plain model.

1.3 Our Techniques

Our starting point is Canetti’s point function construction [15], who presented a
construction under a variant of the DDH assumption (and no random oracles).
Recall that the DDH assumption involves a group ensemble G = {Gλ}λ∈N with a
generator g and it asserts that (gx, gy, gxy) is computationally indistinguishable
from a sequence of random group elements, where x and y are chosen uniformly
at random. Canetti’s variant is that the foregoing indistinguishability holds even
if x has high enough min-entropy (yet y is completely random). For an input
point x and using randomness r, viewed as a random group element of Gλ,
Canetti’s construction is:

O(x; r) = r, rx.

As we mentioned, it is easy to modify rx to get rx+1, giving an obfuscation of
the point x+1. Let us first focus on the goal of modifying the construction such
that it is non-malleable against this function: f(x) = x + 1. Towards this end,
we change the construction to be:

O(x; r) = r, rx2
.

The claim is that under a suitable variant of the power-DDH assumptions this
is a non-malleable point obfuscator against the function f . Roughly speaking,
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we assume that (gx, gx2
, gx3

, . . .) is indistinguishable from a sequence of ran-
dom group elements, where x comes from a distribution with high enough min-
entropy. Assume first that the adversary outputs a point obfuscation of x + 1
under the same randomness r as she received. That is, on input r, w, the output
is r, w′ for an element w′ ∈ G. Later, we show how to handle adversaries that
output an obfuscation of x + 1 under new randomness.

The point obfuscation of x + 1 under this construction (with the same ran-
domness r) is (r, w), where w = rx2+2x+1. Suppose that there is an adversary A
that given r, rx2

can compute w, then we show how to break the security of our
assumption. We are given a challenge (g, gz1 , gz2), where either zi = xi or zi = ri

and each ri is chosen at random. Then, we can run the adversary on the input
gs, gsz2 , for a random s to get w. We compute w′ = gs(z2+2z1+1) and compare
it to w. If w = w′ we output 1, and otherwise we output a random bit. In the
case that zi = xi, the adversary gets gs, gsx2

which is exactly the distribution of
a point obfuscation of x and thus will output w = gs(x2+2x+1) = w′ with some
non-negligible probability. Otherwise, the adversary gets gsr2 for a random r2
and the probability that she outputs w′ = gs(r2+2r1+1) is negligible as she has
no information regarding r2 (this is true even for an unbounded adversaries).
Overall, we have a non-negligible advantage in distinguishing the two cases.

While the above construction is non-malleable against the function f(x) =
x+1, it is malleable for the function f(x) = 2x. Indeed, given rx2

one can simply
compute (rx2

)4 = r4x2
= r(2x)2 which is a valid obfuscation of the point 2x. Our

second observation is that we can modify the construction to resist this attack
by defining:

O(x; r) = r, rx2+x.

The proof of non-malleability is similar to the proof above; we run the adversary
A on gs, gs(z2+z1) to get w, and compute w′ = gs(4z2+2z1). If zi = xi, then the
adversary sees exactly the distribution of a point obfuscation of x and thus will
output w = gs(4z2+2z1) = w′ with some non-negligible probability. Otherwise,
the adversary gets gs(r2+r1) for random ri’s. We bound the probability that A
outputs w′ = gr(4r2+2r1). This is again an information theoretic argument where
we assume that the adversary gets r2 + r1 and needs to compute 4r2 + 2r1. The
argument follows since the adversary has only information regarding the sum
r2 + r1 which leaves the random variable corresponding to 4r2 + 2r1 with high
min-entropy (given the adversary’s view), and thus the probability of outputting
w = w′ is negligible.

One important thing to notice is that the proof relied on the fact that the
adversary only had the sum r1 +r2 which is a linear combination of (r1, r2) with
the coefficients (1, 1) but the final goal was to output a different combination
with the coefficients (4, 2), which are linearly independent of (1, 1). That is, the
key observation is that for h(x) = x2 + x the polynomial h(f(x)) for f(x) = 2x
has (non-free) coefficients which are not all the same. Generalizing this argument,
we can show that the construction is non-malleable against any linear function
f(x) = ax + b for any constants a, b such that the function h(f(x)) written as a
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polynomial over x has at least 2 different (non-free) coefficients. For non-linear
functions, a similar proof works but the running time of the security reduction
(that is, the loss in the security of our scheme) will be proportional to the degree
of f(x).

Given the above observation, we can easily check if our construction is non-
malleable for a function f by computing the polynomial h(f(x)). It turns our
that the above construction is actually malleable for a simple function such as
f(x) = 3x + 1. Indeed, h(f(x)) = (3x + 1)2 + (3x + 1) = 9x2 + 9x + 2 has
the same two non-free coefficients. In order to eliminate more functions f , we
need to add more constraints to the set of equations which translates to taking
a higher degree of polynomial h(x). That is, we define h(x) = x3 + x2 + x, and
construct the obfuscator:

O(x; r) = r, rx3+x2+x.

For a function f to be malleable under this construction, it must hold that the
polynomial h(f(x)) has all three non-free coefficients equal. However, there is still
single function that satisfies this condition (the function is f(x) = −x − 2 · 3−1,
where 3−1 is the inverse of 3 in the relevant group). As a final step, we modify
the construction to be of one degree higher and this does eliminate all possible
functions f . Thus, we define the construction:

O(x; r) = r, rx4+x3+x2+x.

The Double Exponentiation. In our exposition above, we assumed that the adver-
sary “uses the same randomness she received”. That is, on input r, w she mauls
the point and outputs r, w′. Suppose now that the adversary is allowed to out-
put r′, w′, where r′ might be arbitrary. Recall that the issue is that we cannot
simulate the power of w′ from the challenge under the randomness r′ to check
consistency (since we do not know the discrete log of r′). Let us elaborate on this
in the simple case where the obfuscation is r, rx (and not the degree 4 polynomial
in the exponent; this is just for simplicity). When the malleability adversary gets
r, rx and returns r, w′, it is easy to check that w′ = rf(x) by recomputing this
value since we know the discrete log of r. However, when it return r′, w′, it is
hard to recompute r′f(x) since we do not know the discrete log of r (and only
get the value x in the exponent from the challenge).

In other words, we need to be able (in the security proof) to compute the
obfuscation of some input that depends on the exponents from the challenge
under randomness that comes from the adversary’s mauled obfuscation. If we
knew either the discrete log of the challenge or the discrete log of the randomness
used by the adversary we would be done.

In the description above we actually used this property. Since we assumed
that the adversary outputs the same randomness r (that we chose and know the
discrete log of), we could use r = gs to compute the obfuscation of the challenge
we received. However, if the adversary outputs randomness r′, then not only we
no longer know the discrete log of r′ (and this is hard to compute), but we also
do not have the discrete log of the challenge.
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Thus, we need to modify our construction such that we can compute the
obfuscation of x given only gx and while given the public coins r explicitly
(without given their discrete log). Towards this end, we introduce a new tech-
nique that we call “double exponentiation”. Consider any mapping of the group
elements Gλ → Z

∗
q where q is the order of Gλ (e.g., their binary representation

as strings). Then, we define the final version of our construction:

O(x; r) = r, rgx4+x3+x2+x

.

One can observe that it is possible to compute the obfuscation of x given only
gx4+x3+x2+x and given r by a single exponentiation. In addition, the construc-
tion is still efficient, consists of just two group elements, and involves only two
exponentiations.

A final remark about security. Proving that the resulting construction is still
a point obfuscator is not immediate a-priori. Our proof works by a reduction
to the security of Canetti’s construction via an intermediate notion of security
called virtual gray-box obfuscation [8]. We refer to Sect. 4 for more details.

2 Preliminaries

For a distribution X we denote by x ← X the process of sampling a value x
from the distribution X. Similarly, for a set X we denote by x ← X the process
of sampling a value x from the uniform distribution over X . For a randomized
function f and an input x ∈ X , we denote by y ← f(x) the process of sampling
a value y from the distribution f(x). For an integer n ∈ N we denote by [n] the
set {1, . . . , n}.

Throughout the paper, we denote by λ the security parameter. A function
negl : N → R

+ is negligible if for every constant c > 0 there exists an integer
Nc such that negl(λ) < λ−c for all λ > Nc. Two sequences of random variables
X = {Xλ}λ∈N and Y = {Yλ}λ∈N are computationally indistinguishable if for
any probabilistic polynomial-time algorithm A there exists a negligible func-
tion negl(·) such that

∣
∣Pr[A(1λ,Xλ) = 1] − Pr[A(1λ, Yλ) = 1]

∣
∣ ≤ negl(λ) for all

sufficiently large λ ∈ N.

2.1 Point Obfuscation

For an input x ∈ {0, 1}n, the point function Ix : {0, 1}n → {0, 1} outputs 1 on
input x and 0 everywhere else. A point obfuscator is a compiler that gets a point
x as input and outputs a circuit that has the same functionality as Ix but where
x is (supposedly) computationally hidden. Let us recall the definition of security
of Canetti [15] (called there oracle simulation).

Definition 1 (Functional Equivalence). We say that two circuits C and C ′

are functionally equivalent and denote it by C ≡ C ′ if they compute the same
function (i.e., ∀x : C(x) = C ′(x)).
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Definition 2 (Point Obfuscation). A point obfuscator O for a domain X =
{Xλ}λ∈N of inputs is a probabilistic polynomial-time algorithm that gets as input
a point x ∈ Xλ, and outputs a circuit C such that

1. Completeness: For all λ ∈ N and all x ∈ Xλ, it holds that

Pr[O(x) ≡ Ix] = 1,

where the probabilities are over the internal randomness of O.
2. Soundness: For every probabilistic polynomial-time algorithm A, and any

polynomial function p(·), there exists a probabilistic polynomial-time simulator
S, such that for every x ∈ Xλ, any predicate P : Xλ → {0, 1}, and all large
enough λ ∈ N,

∣
∣Pr[A(O(x)) = P (x)] − Pr[SIx(1λ) = P (x)]

∣
∣ ≤ 1

p(λ)
,

where the probabilities are over the internal randomness of A and O, and S,
respectively.

The obfuscation is called public coin if it publishes its internal coin tosses as
part of its output.

Indistinguishability-Based Security. Another way to formalize the security of a
point obfuscator is via an indistinguishability-based security definition (rather
than simulation-based). Canetti [15] suggested such a definition (termed distri-
butional indistinguishability there): the input comes from a distribution Xλ over
the input space Xλ and the guarantee is that for any adversary A that outputs a
single bit, the following two distributions are computationally indistinguishable:

(x,A(O(x; r))) ≈c (x,A(O(y; r))), (1)

where r is the randomness (chosen uniformly) for the point obfuscator and x
and y are chosen independently from Xλ.

One of Canetti’s results [15, Theorem 4] was that the indisinguishability-
based definition is equivalent to the simulation-based definition given in Eq. 1 if
the indisinguishability-based security holds with respect to all distributions that
have super-logarithmic min-entropy (over the message space). Such a distribu-
tion is called a well-spread distribution:

Definition 3 (Well-Spread Distribution). An ensemble of distributions
X = {Xλ}λ∈N, where Xλ is over {0, 1}λ, is well-spread if

1. it is efficiently and uniformly samplable – there is a probabilistic polynomial-
time algorithm that given 1λ as input, outputs a sample according to Xλ.

2. for all large enough λ ∈ N, it has super-logarithmic min-entropy. Namely,

H∞(Xλ) = − min
x∈{0,1}λ

log2 Pr[X = x] ≥ ω(log λ).
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Canetti’s Construction. In [15], Canetti provided a construction that satisfies
Definition 2. In his construction, the domain of inputs Xλ is Zp for prime p ≈ 2λ.
Let G = {Gλ}λ∈N be a group ensemble with uniform and efficient representa-
tion and operations, where each Gλ is a group of prime order p ∈ (2λ, 2λ+1).
The public coin point obfuscator O for points in the domain Zp is defined as
follows: O(Ix) samples a random generator r ← G

∗
λ and outputs the pair (r, rx).

Evaluation of the obfuscation at point z is done by checking whether rx = rz.
Canetti proved that this construction satisfies Eq. 1 for any well-spread dis-

tribution under the strong variant of the DDH assumption, that we review below
(see Assumption 3). Thereby, the result is that under the same assumption his
construction satisfies Definition 2, as well.

2.2 Hardness Assumptions

The DDH and Power-DDH Assumptions. The DDH assumption says that in a
suitable group, the triple of elements (gx, gy, gxy) is pseudorandom for random x

and y. The power-DDH assumption says that the power sequence (g, gx, gx2
, . . . ,

gxt

) is pseudorandom, for a random x and a polynomially bounded t. While the
power-DDH assumption is less common in the literature, there are many works
that explicitly rely on it (see, for example, [1,14,25,28]). To the best of our
knowledge, the power-DDH assumption is incomparable to the DDH assumption.

Throughout this section, let G = {Gλ}λ∈N be a group ensemble with uniform
and efficient representation and operations, where each Gλ is a group of prime
order p ∈ (2λ−1, 2λ).

Assumption 1 (DDH). The DDH assumption asserts that for the group Gλ

with associated generator g, the ensembles (gx, gy, gxy) and (gx, gy, gz) are com-
putationally indistinguishable, where x, y, z ← Z

∗
p.

Assumption 2 (Power-DDH). The power-DDH assumption asserts that for
the group Gλ with associated generator g, for every polynomially bounded func-
tion t(·), the ensembles (g, gx, gx2

. . . , gxt

) and (g, gr1 , gr2 . . . , grt) are computa-
tionally indistinguishable, where x, r1, . . . , rt ← Z

∗
p.

We need an even stronger variant of both assumptions. The strong variant
that we need, first proposed by Canetti [15], roughly, says that DDH is hard
not only if x, y and z are chosen uniformly at random, but even if x is chosen
from a distribution with enough min-entropy (i.e., a well-spread distribution;
see Definition 3). Analogously, we define a strong variant of the power-DDH
assumption where x is chosen from such a distribution rather than from the
uniform one.

Assumption 3 (Strong DDH and power-DDH). The strong variant of
the DDH and power-DDH assumptions is when the two distributions are com-
putationally indistinguishable even if x is chosen uniformly from a well-spread
distribution Xλ (rather than from Z

∗
p).
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3 Non-malleable Point Obfuscation

We define non-malleability of point function obfuscators. Such obfuscators not
only hide the obfuscated point, but they also (informally) ensure that an obfus-
cation of a point x cannot be transformed into an obfuscation of a related (yet
different) point.

There are several ways to formalize this notion of security. We focus on a
notion of security where the objective of the adversary, given an obfuscation of
x, is to come up with a circuit (of prescribed structure) that is a point function
on a related point (a similar definition is given in [2]). We discuss the relation
to the notions of Canetti and Varia [19] below.

Definition 4 (Verifier). A PPT algorithm V for a point obfuscator O for the
ensemble of domains {Xλ}λ∈N domain is called a verifier if for all λ ∈ N and all
x ∈ Xλ, it holds that Pr[V(O(x)) = 1] = 1, where the probability is taken over
the randomness of V and O.

Notice that there is no guarantee as to what V is suppose to output when its
input is not a valid obfuscation. In particular, a verifier that always outputs 1 is
a legal verifier. In many cases, including the obfuscator of Canetti [15] and our
own, one can define a meaningful verifier.

Definition 5 (Non-malleable Point Function). Let O be a point obfusca-
tor for an ensemble of domains {Xλ}λ∈N with an associated verifier V. Let
{Fλ}λ∈N = {f : Xλ → Xλ}λ∈N be an ensemble of families of functions, and
let {Xλ}λ∈N be an ensemble of distributions over X.

The point obfuscator O is a non-malleable obfuscator for F and X if for any
polynomial-time adversary A, there exists a negligible function negl(·), such that
for any λ ∈ N it holds that:

Pr

[

V(C) = 1, f ∈ Fλ, and If(x) ≡ C

∣
∣
∣
∣
∣

x ← Xλ

(C, f) ← A(O(x))

]

≤ negl(λ).

That is, the adversary A, given an obfuscation of a point x sampled from Xλ,
cannot output a function f ∈ Fλ and a valid-looking obfuscation of the point
f(x), except with negligible probability.

The verifier V. We require that an attacker outputs an obfuscation with a pre-
scribed structure so that it passes the verifier V. Without such a requirement,
there is a trivial attack for the adversary: use the given circuit Ĉw to create a
new circuit that gets x, computes f−1(x) and then applies Ĉw on this value. The
result is a circuit that accepts the point f(w).

In general, it might be hard to come up with a verifier V that tests whether
a given circuit is legal, but here we are interested in the case where this can
be done efficiently. In our case, it will be very easy to define V since a “valid-
looking” obfuscation will consist of all pairs of group elements (in some given
group).
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Adaptivity of f . We stress that our definition is adaptive with respect to the
family Fλ. That is, the adversary first gets to see the obfuscation O(x) of the
point x and then may chose the function it wishes to maul to. This definition
is stronger than a static version in which the function f is fixed and known in
advance (before the adversary sees the challenge).

3.1 Relation to Canetti-Varia

The work of Canetti and Varia [19] presented a systematic study of non-malleable
obfuscation both specifically for point functions and also for general function-
alities. They gave two definitions for non-malleability, called functional non-
malleability and verifiable non-malleability.

The verifiable non-malleability definition is more related to ours since there
they also require that there is a verifier V that gets an alleged obfucated circuit
and checks whether it is a legitimate output of the obfuscator. Recall that the
obfuscator of Canetti (as well as ours) has this property: An obfuscation can
be verified by simply checking whether the obfuscation consists of two group
elements in the desired group.

The verifiable non-malleability notion of Canetti and Varia asserts that,
roughly, whatever mauling attack one can apply on an obfuscation, there exists a
simulator that has only oracle access to the input circuit and outputs a “similarly
mauled” obfuscation. To prevent trivial attacks (that treat the input circuit as
a black-box), they allow the simulator to output a circuit that has oracle gates
to its own oracle (namely, to the input circuit). The verifiability ensures that
the output of the adversary (and the simulator) have a “legal” structure. The
precise definition is subtle and it captures a wide range of mauling attacks in a
meaningful way. We refer to [19] for their elaborate discussions on the matter.
We provide their formal definition, restricted to point functions next.

Definition 6 (Verifiable Non-malleable Point Obfuscation [19]). Let O
be a point obfuscator for a domain X = {Xλ}λ∈N with an associated verifier
V. For every PPT adversary A and every polynomial p(·), there exists a PPT
simulator S such that for all sufficiently large λ ∈ N, for any input x ∈ Xλ and
any polynomial-time computable relation E : Xλ×Xλ → {0, 1} (that may depend
on x), it holds that

Pr [C 
= O(x) ∧ V(C) = 1 ∧ (∃y ∈ Xλ : Iy ≡ C ∧ E(x, y) = 1) | C ← A(O(x))] −
Pr

[V(C) = 1 ∧ (∃y ∈ Xλ : Iy ≡ CIx ∧ E(x, y) = 1
) | C ← SIx(1λ)

] ≤ 1
p(λ)

.

We observe that our definition is related to the above definition albeit
with the following modifications. First, the input for our obfuscator is sam-
pled from a well-spread distribution, rather than being worst-case. Second, the
non-malleablility in our definition is parametrized with a family of functions,
whereas the above definition requires non-malleability for all possible relations.
The modified definition is given next.
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Definition 7 (). Let O be a point obfuscator for a domain X = {Xλ}λ∈N with
an associated verifier V. Let {Fλ}λ∈N = {f : Xλ → Xλ}λ∈N be an ensemble
of families of functions, and let {Xλ}λ∈N be an ensemble of distributions over
X. For every PPT adversary A and every polynomial p(·), there exists a PPT
simulator S such that for all sufficiently large λ ∈ N, for any function f ∈ Fλ,
it holds that

Pr
x←Xλ

[

C 
= O(x), V(C) = 1 and If(x) ≡ C | C ← A(O(x))
] −

Pr
x←Xλ

[V(C) = 1 and If(x) ≡ CIx | C ← SIx(1λ)
] ≤ 1

p(λ)
.

Definition 7 is a special case of Definition 6 since it has restrictions on the
input to the obfuscator and the set of relations it supports. In the next claim,
we show that our notion of non-malleability from Definition 5 implies the notion
from Definition 7.

Claim. A point obfuscator satisfying Definition 5 with respect to an ensemble of
families of functions F and an ensemble of distributions X also satisfies Definition
7 with respect to F and X .

Proof. Let O be an obfuscator that satisfies Definition 5 with respect to the
function in F and the distribution X . Thus, for any f ∈ F , there is no PPT
adversary that can generate a valid-looking circuit C such that If(x) ≡ C for
x ← X , except with negligible probability. Namely,

Pr
x←X

[

C 
= O(x), V(C) = 1 and If(x) ≡ C | C ← A(O(x))
] ≤ negl(λ).

Hence, a simulator that does nothing (say, outputs ⊥) will satisfy security
requirement of Definition 7.

A Discussion. Our definition is thus, morally, equivalent to the strong definition
of [19], albeit with the assumption that the input comes from a well-spread
distribution and the mauling is restricted to functions rather than relations.
Getting a construction in the plain model that resolves these two issues is left
as an open problem.

Lastly, observe that in the above proof, the simulator is in fact independent of
the adversary A and independent of the distinguishability gap (the polynomial
p(·)). Thus, we actually get one simulator for all adversaries and the compu-
tational distance between the output of the adversary and the output of the
simulator is negligible.

4 Our Obfuscator

Let λ ∈ N be the security parameter and let Xλ = Z2λ be the domain. Let
Fpoly = {f : Xλ → Xλ}λ∈N be the ensemble of classes of all functions that can
be computed by polynomials of degree poly(λ), except the constant functions
and the identity function.
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Let G = {Gλ}λ∈N be a group ensemble with uniform and efficient representa-
tion and operations, where each Gλ is a group of prime order q ∈ (2λ−1, 2λ). We
assume that for every λ ∈ N there is a canonical and efficient mapping between
the elements of Gλ and the domain Xλ. Let g be the generator of the group G5λ.
Our obfuscator gets as input an element x ∈ Xλ and randomness r ∈ G5λ and
computes:

O(x; r) =
(

r, rgx4+x3+x2+x
)

.

The verifier V for a valid-looking obfuscation is the natural one: it checks
whether the obfuscation consists of merely two group elements in G5λ. In the
next two theorems we show that our obfuscator is both secure and non-malleable.
The first part is based on the strong DDH assumption (Assumptions 1 and 3)
and the second is based on (Assumptions 2 and 3). Thus, overall, our obfuscator
is both secure and non-malleable under the assumption that there is a group
where the strong DDH and strong power-DDH assumptions hold.

Theorem 4. Under the strong DDH assumption (Assumptions 1 and 3), the
obfuscator O above is a point obfuscator according to Definition 2.

Theorem 5. Let Xλ be any well-spread distribution over Xλ. Under the strong
power-DDH assumption (Assumptions 2 and 3), the obfuscator O above is non-
malleable according to Definition 5 for the family of functions Fpoly and the
distribution Xλ.

The proofs of these theorems appear in the following two subsections.

4.1 Proof of Theorem 4

For completeness, we first notice that for any x ∈ Xλ it holds that x4 + x3 +
x2 +x ≤ 25λ and thus for any distinct x, y ∈ Xλ it holds that y4 + y3 + y2 + y 
=
x4+x3+x2+x. Therefore, we get that for every x ∈ Xλ it holds that O(x) ≡ Ix,
as required.

To prove soundness, we reduce to the security of our construction to the
security of the r, rx construction of Canetti [15]. We prove the following claim
general claim regarding point function obfuscators.

Claim. Let f : Xλ → X ′
λ be an injective polynomial-time computable function,

and let O be a secure point obfuscator. Then, O′(x) = O(f(x)) is also a secure
point obfuscator.

Proof. We prove that for any probabilistic polynomial-time algorithm A, there
is a probabilistic polynomial-time simulator S and a negligible function negl(·),
such that for all x ∈ Xλ and all λ ∈ N,

∣
∣
∣
∣
Pr
A,O

[A(O′(x)) = 1] − Pr
S

[SIx(1λ)) = 1]
∣
∣
∣
∣
≤ negl(λ),

where the probabilities are over the internal randomness of A,O and S.
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Let A be such an adversary and let S be the corresponding simulator whose
existence is guaranteed by the fact that O is a secure point obfuscator. It holds
that for every x ∈ Xλ:

∣
∣
∣
∣
Pr
A,O

[A(O(x)) = 1] − Pr
S

[SIx(1λ)) = 1]
∣
∣
∣
∣
≤ negl(λ),

As a first step, we construct a simulator S ′ that is inefficient yet makes only
a polynomial-number of queries to its oracle (we will get rid of this assumption
later using a known transformation). We define a simulator S ′ (with oracle access
to Ix) that works by simulating S as follows. When S performs a query y to its
oracles, then S ′ finds x′ such that f(x′) = y. If no such x′ exists, then S ′ replies
with 0. Otherwise, if S ′ found such an x′, then it performs the query to its oracle
with x′ and answers with the reply of the oracle. Since f is injective, we have
that f(x) = y if and only if x′ = x. Thus, it holds that

Pr
S

[SIf(x)(1λ)) = 1] = Pr
S′

[S ′Ix(1λ)) = 1].

Thus, we get that
∣
∣
∣
∣
Pr
A,O

[A(O′(x)) = 1] − Pr
S′

[S ′Ix(1λ)) = 1]
∣
∣
∣
∣
≤ negl(λ).

We are left to take care of the fact that the simulator is inefficient. For this
we use a result of Bitansky and Canetti [8] who showed that this can be solved
generically. Let us elaborate.

Bitansky and Canetti called obfuscators in which the simulation is ineffi-
cient yet the number of queries is bounded by a polynomial as gray-box obfusca-
tion. This is in contrast to virtual-black box obfuscation where the simulator is
required to be both efficient in its running time and the number of queries and
indistinguishability obfuscation [3,24], which can be phrased as a simulation-
based definition where the simulator is unbounded in both running time and
number of queries (see [8, Proposition 3.1]). One of the main results of Bitansky
and Canetti was that for point functions, the virtual-black box and virtual-gray
box notions are equivalent: a simulator that runs in unbounded time yet makes
a polynomial number of queries can be turned into one that runs in polynomial-
time and makes a polynomial number of queries.4

Using their result for our construction we obtain a simulator that works in
polynomial-time and makes a polynomial number of queries to its oracle. This
completes the claim.

We finish the proof by applying the claim with f(x) = gx4+x3+x2+x, noticing
that this function is injective and efficiently computable.

4 See [9] for more general families of functions where a similar equivalence holds.



274 I. Komargodski and E. Yogev

4.2 Proof of Theorem 5

Assume that there exists an adversary A, and a distribution Xλ such that given
an obfuscation of a point x ← Xλ, the adversary A outputs a function f ∈ Fpoly

and a valid-looking obfuscation (i.e., an obfuscation that passes the verification
of V) of f(x) with probability at least ε > 0. Denote by t = t(λ) the degree of f
(written as a polynomial over Xλ). We show how to construct an adversary A′

that breaks the strong power-DDH assumption for the power sequence of length
T = 4t.

Suppose we are given (gz0 , gz1 , . . . , gzT ), where z0 = 1 and either ∀i ∈ [T ] :
zi = xi for a random x ← Xλ or ∀i ∈ [T ] : zi = ri for random r1, . . . , rt ←
Xλ. Our goal is to show that A′ can distinguish between the two cases. The
algorithm A′, on input (gz0 , . . . , gzT ), first samples a random generator r ← G

and computes gz1+z2+z3+z4 . Then, it runs A on the input pair (r, rgz1+z2+z3+z4 )
to get a function f and an output pair (rA, wA). We assume that we are given the
coefficients of the polynomial that represents the function f , as otherwise we can
learns these coefficients by interpolation of random evaluations of f (according
to the distribution of the inputs Xλ).

Let h(x) = x4 + x3 + x2 + x and let us write the polynomial h(f(x)) as a
polynomial of degree at most 4t with coefficients bi:

h(f(x)) = (f(x))4 + (f(x))3 + (f(x))2 + f(x) =
4t∑

i=0

bix
i.

Using these values, it computes u = g
∑T

i=0 bizi and wreal = ru
A. Finally, the

adversary A′ outputs 1 if and only if wreal = wA. The precise description of A′

is given in Fig. 1.

The algorithm A′(gz0 , gz1 , . . . , gzT ):

1. Choose a random generator r ← G and compute gz1+z2+z3+z4 .
2. (f, rA, wA) ← A(r, rg

z1+z2+z3+z4 ).
3. Compute the coefficients bi for i ∈ [T ] of h(f(x)).

4. Compute wreal = rg
∑T

i=0 bizi

A .
5. If wreal = wA, then output 1. Otherwise, output 0.

Fig. 1. The adversary A′ that breaks the power-DDH assumption.

We argue that A′ successfully breaks the power-DDH assumption.

The Real Case. Observe that if zi = xi for each i ∈ [T ], then the distribution

that A sees is exactly the distribution (r, rgx4+x3+x2+x

) and thus with probability
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at least ε, the adversary A will maul the point obfuscation of x to a point
obfuscation of f(x). That is,

wA = rgh(f(x))

A = rg
∑T

i=0 bixi

A = rg
∑T

i=0 bizi

A = wreal.

Thus, A′ will output 1 with probability at least ε.

The Random Case. Suppose that zi = ri is random for each i ∈ [T ]. We show
that the probability that wreal = wA is negligible (in λ). This is an information
theoretic claim that holds against unbounded adversaries. The adversary A holds
r and rgr1+r2+r3+r4 and let us even assume that she knows s = r1 + r2 + r3 + r4.
In order for A′ to succeed, she needs to be able to compute s′ =

∑T
i=0 biri (recall

that A′ is unbounded). We show that the min-entropy of this value s′ given all
the information of the adversary is high and therefore it cannot guess it with
noticeable probability. Denote by view(A) a random variables that correspond
to the view of A and denote by S′ a random variable that corresponds to the
value of s′.

We first show that if the degree of f (denoted above by t) is at least 2, then
the min-entropy of S′ is at least λ. This means that A′ will be able to guess it
with only negligible probability.

Claim. If t ≥ 2, then H∞(S′ | view(A)) ≥ λ.

Proof. If the degree of f is at least 2, then the degree of h(f(·)) is at least 5 and
thus there exist i > 4 such that bi 
= 0. In this case, since ri is uniform in Xλ,
then the random variable s′ has min-entropy λ given the view of A.

The case where f is a linear function (i.e., a degree 1 polynomial) is slightly
harder to handle and here we use properties of the exact choice of our degree
4 polynomial. Let f be written as f(x) = ax + b for some fixed a, b ∈ Xλ. We
expand the polynomial h(f(x)) and rewrite it by grouping terms:

h(f(x)) = (ax + b)4 + (ax + b)3 + (ax + b)2 + (ax + b)

= a4x4 + (4a3b + a3)x3 + (6a2b2 + 3a2b + a2)x2

+ (4ab3 + 3ab2 + 2ab + a)x + b4 + b3 + b2 + b.

We show that the coefficients of h(f(·)) cannot be all identical.

Claim. The coefficients of h are not all identical.

Proof. If they were identical, then

a4 = 4a3b + a3 = 6a2b2 + 3a2b + a2 = 4ab3 + 3ab2 + 2ab + a.

Solving this set of equations gives that the only solutions are a = 0, b = ∗ (i.e.,
b is arbitrary) and a = 1, b = 0 (i.e., the identity function). However, these are
illegal according to our definition of Fpoly: this class contains neither constant
functions nor the identity function.
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Using the fact that the coefficients are not all identical, we claim that the min-
entropy of S′ is at least λ even given the view of A. Thus, again, the probability
of guessing correctly the value is negligible.

Claim. Let R1, R2, R3, R4 ← Xλ be random variable whose distribution is uni-
form from Xλ, and let their sum be S = R1 + R2 + R3 + R4 ∈ X6λ. Let
b1, b2, b3, b4 ∈ Xλ be arbitrary constants such that at least two of them are
different. Let S′ = b1R1 + b2R2 + b3R3 + b4R4. Then, H∞(S′ | S) ≥ λ.

Proof. We lower bound the min entropy by computing Pr[S′ = s′ | S = s] for
each s, s′ ∈ Xλ. This probability is exactly the fraction of possible r1, r2, r3, r4
such that r1 + r2 + r3 + r4 = s and b1r1 + b2r2 + b3r3 + b4r4 = s′. Writing this
in matrix form we have

[
1 1 1 1
b1 b2 b3 b4

]

︸ ︷︷ ︸

A

·

⎡

⎢
⎢
⎣

r1
r2
r3
r4

⎤

⎥
⎥
⎦

=
[

s
s′

]

.

Denote by Q the size of the support of Xλ and notice that Q ≥ 2λ. Since Xλ is
well-spread, its min-entropy is super logarithmic in λ and thus the support size
is super polynomial in λ. Since not all the bi’s are equal, we have that A’s rank
is 2, and thus the solution dimension is 2 for each s′ ∈ Xλ and the number of
possible solutions is Q2 out of the total Q4 possibilities. Altogether, we get that
for every s′ ∈ Xλ, it holds that Pr[S′ = s′ | S = s] = Q2/Q4 ≤ 1/Q < 1/2λ.
Thus, the min-entropy is at least λ.

Combining the above, we get that overall, the probability of distinguishing is:
∣
∣
∣Pr[A′(gx1

, . . . , gxT

) = 1] − Pr[A′(gr1 , . . . , grT ) = 1]
∣
∣
∣ ≥ ε − negl(λ)

which contradicts the security of the power-DDH assumption.

4.3 Supporting More Functions

In our construction above, we have shown how to get a point function obfuscator
that is non-malleable against any function that can be written as a univariate
polynomial of a polynomial degree. The reason that there is a bound on the
degree of the polynomial is that the security reduction runs in time that is
proportional to the degree. In particular, to be resilient against a function f of
degree t we had to construct gh(f(x)) in the reduction given the sequence {gxi}4t

i=0

(recall that h(x) = x4 + x3 + x2 + x).

Exponential Security. Suppose that the min-entropy of the inputs is k. Thus, the
support-size of the distribution is at most 2k and hence any function can be written
as a polynomial of degree at most 2k. That is, we can assume without loss of gener-
ality that the mauling function is described by a degree t ≤ 2k polynomial. Thus, if
we assume an exponential version of the strong power-DDH assumption, where the
adversary’s running time and advantage are bounded by 2O(k) and 2−Ω(k), respec-
tively, we can support functions of exponential degree (in k).
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Uber Assumption. Instead of building the polynomial h(f(x)) in the proof mono-
mial by monomial in order to break the power-DDH assumption, we can, alter-
natively, modify our assumption to get a more direct security proof without
the large security loss. Concretely, instead of having the reduction computing
gh(f(x)) given {gzi}4t

i=0, where t is the degree f , we assume an “uber” power-DDH
assumption that is parametrized by a class of functions F = {f : Zp → Zp} (and
thus can thought of as a collection of assumptions, one per f ∈ F). The assump-
tion says that for any f ∈ F , the following two distributions are computationally-
indistinguishable:

(g, gx, gh(f(x))) ≈c (g, gx, gs),

where x ← X and s ← Z
∗
p is chosen at random. Having such an assumption for

a class of mauling functions F , implies that our construction is non-malleable
for the same class F .
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Abstract. The random-oracle model by Bellare and Rogaway (CCS’93)
is an indispensable tool for the security analysis of practical crypto-
graphic protocols. However, the traditional random-oracle model fails
to guarantee security when a protocol is composed with arbitrary pro-
tocols that use the same random oracle. Canetti, Jain, and Scafuro
(CCS’14) put forth a global but non-programmable random oracle in the
Generalized UC framework and showed that some basic cryptographic
primitives with composable security can be efficiently realized in their
model. Because their random-oracle functionality is non-programmable,
there are many practical protocols that have no hope of being proved
secure using it. In this paper, we study alternative definitions of a global
random oracle and, perhaps surprisingly, show that these allow one to
prove GUC-secure existing, very practical realizations of a number of
essential cryptographic primitives including public-key encryption, non-
committing encryption, commitments, Schnorr signatures, and hash-and-
invert signatures. Some of our results hold generically for any suitable
scheme proven secure in the traditional ROM, some hold for specific con-
structions only. Our results include many highly practical protocols, for
example, the folklore commitment scheme H(m‖r) (where m is a mes-
sage and r is the random opening information) which is far more efficient
than the construction of Canetti et al.

1 Introduction

The random-oracle model (ROM) [3] is an overwhelmingly popular tool in cryp-
tographic protocol design and analysis. Part of its success is due to its intuitive
idealization of cryptographic hash functions, which it models through calls to an
external oracle that implements a random function. Another important factor
is its capability to provide security proofs for highly practical constructions of
important cryptographic building blocks such as digital signatures, public-key
encryption, and key exchange. In spite of its known inability to provide provable
guarantees when instantiated with a real-world hash function [14], the ROM
is still widely seen as convincing evidence that a protocol will resist attacks in
practice.
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Most proofs in the ROM, however, are for property-based security notions,
where the adversary is challenged in a game where he faces a single, isolated
instance of the protocol. Security can therefore no longer be guaranteed when
a protocol is composed. Addressing this requires composable security notions
such as Canetti’s Universal Composability (UC) framework [10], which have the
advantage of guaranteeing security even if protocols are arbitrarily composed.

UC modeling. In the UC framework, a random oracle is usually modeled as
an ideal functionality that a protocol uses as a subroutine in a so-called hybrid
model, similarly to other setup constructs such as a common reference string
(CRS). For example, the random-oracle functionality FRO [21] simply assigns a
random output value h to each input m and returns h. In the security proof, the
simulator executes the code of the subfunctionality, which enables it to observe
the queries of all involved parties and to program any random-looking values
as outputs. Setup assumptions play an important role for protocols in the UC
model, as many important cryptographic primitives such as commitments simply
cannot be achieved [13]; other tasks can, but have more efficient instantiations
with a trusted setup.

An important caveat is that this way of modeling assumes that each instance
of each protocol uses its own separate and independent instance of the subfunc-
tionality. For a CRS this is somewhat awkward, because it raises the question of
how the parties should agree on a common CRS, but it is even more problematic
for random oracles if all, supposedly independent, instances of FRO are replaced
in practice with the same hash function. This can be addressed using the Gen-
eralized UC (GUC) framework [12] that allows one to model different protocol
instances sharing access to global functionalities. Thus one can make the setup
functionality globally available to all parties, meaning, including those outside
of the protocol execution as well as the external environment.

Global UC random oracle. Canetti et al. [15] indeed applied the GUC framework
to model globally accessible random oracles. In doing so, they discard the globally
accessible variant of FRO described above as of little help for proving security of
protocols because it is too “strict”, allowing the simulator neither to observe the
environment’s random-oracle queries, nor to program its answers. They argue
that any shared functionality that provides only public information is useless as
it does not give the simulator any advantage over the real adversary. Instead,
they formulate a global random-oracle functionality that grants the ideal-world
simulator access to the list of queries that the environment makes outside of the
session. They then show that this shared functionality can be used to design a
reasonably efficient GUC-secure commitment scheme, as well as zero-knowledge
proofs and two-party computation. However, their global random-oracle func-
tionality rules out security proofs for a number of practical protocols, especially
those that require one to program the random oracle.

Our Contributions. In this paper, we investigate different alternative formu-
lations of globally accessible random-oracle functionalities and protocols that
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can be proven secure with respect to these functionalities. For instance, we show
that the simple variant discarded by Canetti et al. surprisingly suffices to prove
the GUC-security of a number of truly practical constructions for useful cryp-
tographic primitives such as digital signatures and public-key encryption. We
achieve these results by carefully analyzing the minimal capabilities that the
simulator needs in order to simulate the real-world (hybrid) protocol, while
fully exploiting the additional capabilities that one has in proving the indistin-
guishability between the real and the ideal worlds. In the following, we briefly
describe the different random-oracle functionalities we consider and which we
prove GUC-secure using them.

Strict global random oracle. First, we revisit the strict global random-oracle
functionality GsRO described above and show that, in spite of the arguments of
Canetti et al. [15], it actually suffices to prove the GUC-security of many practical
constructions. In particular, we show that any digital signature scheme that is
existentially unforgeable under chosen-message attack in the traditional ROM
also GUC-realizes the signature functionality with GsRO, and that any public-
key encryption (PKE) scheme that is indistinguishable under adaptive chosen-
ciphertext attack in the traditional ROM GUC-realizes the PKE functionality
under GsRO with static corruptions.

This result may be somewhat surprising as it includes many schemes that,
in their property-based security proofs, rely on invasive proof techniques such
as rewinding, observing, and programming the random oracle, all of which are
tools that the GUC simulator is not allowed to use. We demonstrate, however,
that none of these techniques are needed during the simulation of the protocol,
but rather only show up when proving indistinguishability of the real and the
ideal worlds, where they are allowed. A similar technique was used It also does
not contradict the impossibility proof of commitments based on global setup
functionalities that simply provide public information [12,13] because, in the
GUC framework, signatures and PKE do not imply commitments.

Programmable global random oracles. Next, we present a global random-oracle
functionality GpRO that allows the simulator as well as the real-world adversary
to program arbitrary points in the random oracle, as long as they are not yet
defined. We show that it suffices to prove the GUC-security of Camenisch et al.’s
non-committing encryption scheme [8], i.e., PKE scheme secure against adaptive
corruptions. Here, the GUC simulator needs to produce dummy ciphertexts that
can later be made to decrypt to a particular message when the sender or the
receiver of the ciphertext is corrupted. The crucial observation is that, to embed
a message in a dummy ciphertext, the simulator only needs to program the
random oracle at random inputs, which have negligible chance of being already
queried or programmed. Again, this result is somewhat surprising as GpRO does
not give the simulator any advantage over the real adversary either.

We also define a restricted variant GrpRO that, analogously to the observ-
able random oracle of Canetti et al. [15], offers programming subject to some
restrictions, namely that protocol parties can check whether the random oracle
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was programmed on a particular point. If the adversary tries to cheat by pro-
gramming the random oracle, then honest parties have a means of detecting this
misbehavior. However, we will see that the simulator can hide its programming
from the adversary, giving it a clear advantage over the real-world adversary. We
use it to GUC-realize the commitment functionality through a new construction
that, with only two exponentiations per party and two rounds of communication,
is considerably more efficient than the one of Canetti et al. [15], which required
five exponentiations and five rounds of communication.

Programmable and observable global random oracle. Finally, we describe a global
random-oracle functionality GrpoRO that combines the restricted forms of pro-
grammability and observability. We then show that this functionality allows us
to prove that commitments can be GUC-realized by the most natural and effi-
cient random-oracle based scheme where a commitment c = H(m‖r) is the hash
of the random opening information r and the message m.

Transformations between different oracles. While our different types of oracles
allow us to securely realize different protocols, the variety in oracles partially
defies the original goal of modeling the situation where all protocols use the
same hash function. We therefore explore some relations among the different
types by presenting efficient protocol transformations that turn any protocol
that securely realizes a functionality with one type of random oracle into a
protocol that securely realizes the same functionality with a different type.

Other Related Work. Dodis et al. [17] already realized that rewinding can
be used in the indistinguishability proof in the GUC model, as long as it’s not
used in the simulation itself. In a broader sense, our work complements existing
studies on the impact of programmability and observability of random oracles
in security reductions. Fischlin et al. [18] and Bhattacharyya and Mukherjee [6]
have proposed formalizations of non-programmable and weakly-programmable
random oracles, e.g., only allowing non-adaptive programmability. Both works
give a number of possibility and impossibility results, in particular that full-
domain hash (FDH) signatures can only be proven secure (via black-box reduc-
tions) if the random oracle is fully programmable [18]. Non-observable random
oracles and their power are studied by Ananth and Bhaskarin [1], showing that
Schnorr and probabilistic RSA-FDH signatures can be proven secure. All these
works focus on the use of random oracles in individual reductions, whereas our
work proposes globally re-usable random-oracle functionalities within the UC
framework. The strict random oracle functionality GsRO that we analyze is com-
parable to a non-programmable and non-observable random oracle, so our result
that any unforgeable signature scheme is also GUC-secure w.r.t. GsRO may seem
to contradict the above results. However, the GsRO functionality imposes these
restrictions only for the GUC simulator, whereas the reduction can fully program
the random oracle.
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Summary. Our results clearly paint a much more positive picture for global
random oracles than was given in the literature so far. We present several formu-
lations of globally accessible random-oracle functionalities that allow to prove the
composable security of some of the most efficient signature, PKE, and commit-
ment schemes that are currently known. We even show that the most natural
formulation, the strict global random oracle GsRO that was previously consid-
ered useless, suffices to prove GUC-secure a large class of efficient signature and
encryption schemes. By doing so, our work brings the (composable) ROM back
closer to its original intention: to provide an intuitive idealization of hash func-
tions that enables to prove the security of highly efficient protocols. We expect
that our results will give rise to many more practical cryptographic protocols
that can be proven GUC-secure, among them known protocols that have been
proven secure in the traditional ROM model.

2 Preliminaries

In the rest of this work, we use “iff” for “if and only if”, “w.l.o.g.” for “without
loss of generality”, and n ∈ N to denote the security parameter. A function
ε(n) is negligible if it is asymptotically smaller than 1/p(n) for every polynomial
function p. We denote by x $←−X that x is a sample from the uniform distribution
over the set X. When A is a probabilistic algorithm, then y := A(x; r) means that
y is assigned the outcome of a run of A on input x with coins r. Two distributions
X and Y over a domain Σ(n) are said to be computationally indistinguishable,
written X ≈ Y , if for any PPT algorithm A, |A(X(s)) − A(Y (s))| is negligible
for all s ∈ Σ(n).

2.1 The Basic and Generalized UC Frameworks

Basic UC. The universal composability (UC) framework [9,10] is a framework to
define and prove the security of protocols. It follows the simulation-based security
paradigm, meaning that security of a protocol is defined as the simulatability
of the protocol based on an ideal functionality F . In an imaginary ideal world,
parties hand their protocol inputs to a trusted party running F , where F by
construction executes the task at hand in a secure manner. A protocol π is
considered a secure realization of F if the real world, in which parties execute
the real protocol, is indistinguishable from the ideal world. Namely, for every
real-world adversary A attacking the protocol, we can design an ideal-world
attacker (simulator) S that performs an equivalent attack in the ideal world. As
the ideal world is secure by construction, this means that there are no meaningful
attacks on the real-world protocol either.

One of the goals of UC is to simplify the security analysis of protocols, by
guaranteeing secure composition of protocols and, consequently, allowing for
modular security proofs. One can design a protocol π assuming the availability
of an ideal functionality F ′, i.e., π is a F ′-hybrid protocol. If π securely realizes
F , and another protocol π′ securely realizes F ′, then the composition theorem
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guarantees that π composed with π′ (i.e., replacing π′ with F ′) is a secure
realization of F .

Security is defined through an interactive Turing machine (ITM) Z that
models the environment of the protocol and chooses protocol inputs to all par-
ticipants. Let EXECπ,A,Z denote the output of Z in the real world, running
with protocol π and adversary A, and let IDEALF,S,Z denote its output in the
ideal world, running with functionality F and simulator S. Protocol π securely
realizes F if for every polynomial-time adversary A, there exists a simulator S
such that for every environment Z, EXECπ,A,Z ≈ IDEALF,S,Z .

Generalized UC. A Basic UC protocol using random oracles is modeled as a FRO-
hybrid protocol. Since an instance of a Basic UC functionality can only be used
by a single protocol instance, this means that every protocol instance uses its
own random oracle that is completely independent of other protocol instances’
random oracles. As the random-oracle model is supposed to be an idealization
of real-world hash functions, this is not a very realistic model: Given that we
only have a handful of standardized hash functions, it’s hard to argue their
independence across many protocol instances.

To address these limitations of Basic UC, Canetti et al. [12] introduced the
Generalized UC (GUC) framework, which allows for shared “global” ideal func-
tionalities (denoted by G) that can be used by all protocol instances. Addi-
tionally, GUC gives the environment more powers in the UC experiment. Let
GEXECπ,A,Z be defined as EXECπ,A,Z , except that the environment Z is no
longer constrained, meaning that it is allowed to start arbitrary protocols in
addition to the challenge protocol π. Similarly, GIDEALF,S,Z is equivalent to
IDEALF,S,Z but Z is now unconstrained. If π is a G-hybrid protocol, where
G is some shared functionality, then Z can start additional G-hybrid protocols,
possibly learning information about or influencing the state of G.

Definition 1. Protocol π GUC-emulates protocol ϕ if for every adversary A
there exists an adversary S such that for all unconstrained environments Z,
GEXECπ,A,Z ≈ GEXECϕ,S,Z .

Definition 2. Protocol π GUC-realizes ideal functionality F if for every adver-
sary A there exists a simulator S such that for all unconstrained environments
Z, GEXECπ,A,Z ≈ GIDEALF,S,Z .

GUC gives very strong security guarantees, as the unconstrained environ-
ment can run arbitrary protocols in parallel with the challenge protocol, where
the different protocol instances might share access to global functionalities. How-
ever, exactly this flexibility makes it hard to reason about the GUC experiment.
To address this, Canetti et al. also introduced Externalized UC (EUC). Typ-
ically, a protocol π uses many local hybrid functionalities F but only uses a
single shared functionality G. Such protocols are called G-subroutine respect-
ing, and EUC allows for simpler security proofs for such protocols. Rather
than considering unconstrained environments, EUC considers G-externally con-
strained environments. Such environments can invoke only a single instance of
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the challenge protocol, but can additionally query the shared functionality G
through dummy parties that are not part of the challenge protocol. The EUC
experiment is equivalent to the Basic UC experiment, except that it consid-
ers G-externally constrained environments: A G-subroutine respecting protocol
π EUC-emulates a protocol ϕ if for every polynomial-time adversary A there
is an adversary S such that for every G-externally constrained environment
EXECG

π,A,Z ≈ EXECG
ϕ,S,Z . Figure 2(b) depicts EUC-emulation and shows that

this setting is much simpler to reason about than GUC-emulation: We can rea-
son about this static setup, rather than having to imagine arbitrary protocols
running alongside the challenge protocol. Canetti et al. prove that showing EUC-
emulation is useful to obtain GUC-emulation.

Theorem 1. Let π be a G-subroutine respecting protocol, then protocol π GUC-
emulates protocol ϕ if and only if π G-EUC-emulates ϕ.

Conventions. When specifying ideal functionalities, we will use some conventions
for ease of notation. For a non-shared functionality with session id sid, we write
“On input x from party P”, where it is understood the input comes from machine
(P, sid). For shared functionalities, machines from any session may provide input,
so we always specify both the party identity and the session identity of machines.
In some cases an ideal functionality requires immediate input from the adversary.
In such cases we write “wait for input x from the adversary”, which is formally
defined by Camenisch et al. [7].

2.2 Basic Building Blocks

One-Way Trapdoor Permutations. A (family of) one-way trapdoor permutations
is a tuple OWTP := (OWTP.Gen,OWTP.Sample,OWTP.Eval,OWTP.Invert) of
PPT algorithms. On input n; OWTP.Gen outputs: a permutation domain Σ
(e.g., ZN for an RSA modulus N), and efficient representations of, respectively,
a permutation ϕ in the family (e.g., an RSA public exponent e), and of its inverse
ϕ−1 (e.g., an RSA secret exponent d). Security requires that no PPT adversary
can invert a point y = ϕ(x) for a random challenge template (Σ,ϕ, y) with non-
negligible probability. We will often use OWTPs to generate public and secret
keys for, e.g., signature schemes or encryption schemes by, e.g., setting pk =
(Σ,ϕ) and sk = ϕ−1. W.l.o.g. in the following we assume that the representation
of Σ also includes the related security parameter n, and secret keys also include
the public part. Notice that, in general, OWTP.Invert also takes ϕ as input,
although in practice this might be unnecessary, depending on the particular
OWTP in exam.

Signature Schemes. A (stateless) signature scheme is a tuple SIG = (KGen,
Sign,Verify) of polynomial time algorithms, where KGen and Sign can be proba-
bilistic and Verify is deterministic. On input the security parameter, KGen outputs
a public/secret key pair (pk, sk). Sign takes as input sk (and we write this as a short-
hand notation Signsk) and a message m, and outputs a signature σ. Verify takes as
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GsRO – functionality for the strict global random oracle.

Parameters: output size �(n)
Variables: initially empty list ListH

1. Query: on input (HashQuery, m) from a machine (P, sid), proceed as follows.
– Find h such that (m, h) ∈ ListH. If no such h exists, let h $←− {0, 1}�(n) and store

(m, h) in ListH.
– Output (HashConfirm, h) to (P, sid).

Fig. 1. The strict global random oracle functionality GsRO that does not give any extra
power to anyone (mentioned but not defined by Canetti et al. [15]).

input a public key pk (and we write this as a shorthand notation Verifypk), a mes-
sage m and a signature σ, and outputs a single bit denoting acceptance or rejection
of the signature. The standard security notion we assume for signature schemes is
existential unforgeability under chosen message attacks (EUF-CMA) [20], which
we recall here briefly. In such game-based security notion, an adversary is allowed
to perform a number of signature queries, adaptively, on messages of his choice for
a secret key generated by a challenger. Then, he wins the game if he manages to
output a valid signature for a fresh message for that key. We say that a signature
scheme is EUF-CMA secure if no PPT adversary can win this game with more than
negligible probability.

Public-Key Encryption Schemes. A public-key encryption scheme is a tuple
of PPT algorithms Π = (KGen,Enc,Dec). On input n, KGen outputs a pub-
lic/private key pair (pk, sk). Enc takes as input a public key pk (and we write
this as a shorthand notation Encpk) and a plaintext m, and outputs a ciphertext
c. Dec takes as input a secret key sk (and we write this as a shorthand notation
Decsk) and a ciphertext c, and outputs either ⊥m or a message m. The standard
security notion we assume for public-key encryption schemes is indistinguisha-
bility under adaptive chosen message attacks (IND-CCA2) [2], which we recall
here briefly. In such game-based security notion, an adversary sends a challenge
plaintext of his choice to an external challenger, who generates a key pair and
either responds to the adversary with an encryption of the challenge plaintext,
or with the encryption of a random plaintext (having the same leakage as the
original plaintext, in case we are considering corruption models), the goal of the
adversary being to distinguish which is the case. We say that a PKE scheme is
IND-CCA2 secure if no PPT adversary can win this game with more than neg-
ligible advantage over guessing, even if allowed to query adaptively a decryption
oracle on any ciphertext of his choice – except the challenge ciphertext.

3 Strict Random Oracle

This section focuses on the so-called strict global random oracle GsRO depicted in
Fig. 1, which is the most natural definition of a global random oracle: on a fresh
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(a) Local random oracle: the simulator
simulates the RO and has full control.

(b) Global random oracle: the random
oracle is external to the simulator.

Fig. 2. The UC experiment with a local random oracle (a) and the EUC experiment
with a global random oracle (b).

Fig. 3. Reduction B from a real-world adversary A and a black-box environment Z,
simulating all the ideal functionalities (even the global ones) and playing against an
external challenger C.

input m, a random value h is chosen, while on repeating inputs, a consistent
answer is given back. This natural definition was discussed by Canetti et al. [15]
but discarded as it does not suffice to realize FCOM. While this is true, we will
argue that GsRO is still useful to realize other functionalities.

The code of GsRO is identical to that of a local random oracle FRO in UC.
In Basic UC, this is a very strong definition, as it gives the simulator a lot of
power: In the ideal world, it can simulate the random oracle FRO, which gives
it the ability to observe all queries and program the random oracle on the fly
(cf. Fig. 2(a)). In GUC, the global random oracle GsRO is present in both worlds
and the environment can access it (cf. Fig. 2(b)). In particular, the simulator is
not given control of GsRO and hence cannot simulate it. Therefore, the simulator
has no more power over the random oracle than explicitly offered through the
interfaces of the global functionality. In the case of GsRO, the simulator can
neither program the random oracle, nor observe the queries made.

As the simulator obtains no relevant advantage over the real-world adversary
when interacting with GsRO, one might wonder how it could help in security
proofs. The main observation is that the situation is different when one proves
that the real and ideal world are indistinguishable. Here one needs to show that
no environment can distinguish between the real and ideal world and thus, when
doing so, one has full control over the global functionality. This is for instance the
case when using the (distinguishing) environment in a cryptographic reduction:
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as depicted in Fig. 3, the reduction algorithm B simulates the complete view
of the environment Z, including the global GsRO, allowing B to freely observe
and program GsRO. As a matter of facts, B can also rewind the environment
here – another power that the simulator S does not have but is useful in the
security analysis of many schemes. It turns out that for some primitives, the
EUC simulator does not need to program or observe the random oracle, but
only needs to do so when proving that no environment can distinguish between
the real and the ideal world.

This allows us to prove a surprisingly wide range of practical protocols secure
with respect to GsRO. First, we prove that any signature scheme proven to be
EUF-CMA in the local random-oracle model yields UC secure signatures with
respect the global GsRO. Second, we show that any public-key encryption scheme
proven to be IND-CCA2 secure with local random oracles yields UC secure
public-key encryption (with respect to static corruptions), again with the global
GsRO. These results show that highly practical schemes such as Schnorr sig-
natures [23], RSA full-domain hash signatures [3,16], RSA-PSS signatures [5],
RSA-OAEP encryption [4], and the Fujisaki-Okamoto transform [19] all remain
secure when all schemes share a single hash function that is modeled as a strict
global random oracle. This is remarkable, as their security proofs in the local
random-oracle model involve techniques that are not available to an EUC simula-
tor: signature schemes typically require programming of random-oracle outputs
to simulate signatures, PKE schemes typically require observing the adversary’s
queries to simulate decryption queries, and Schnorr signatures need to rewind
the adversary in a forking argument [22] to extract a witness. However, it turns
out, this rewinding is only necessary in the reduction B showing that no dis-
tinguishing environment Z can exist and we can show that all these schemes
can safely be used in composition with arbitrary protocols and with a natural,
globally accessible random-oracle functionality GsRO.

3.1 Composable Signatures Using GsRO

Let SIG = (KGen,Sign,Verify) be an EUF-CMA secure signature scheme in the
ROM. We show that this directly yields a secure realization of UC signatures
FSIG with respect to a strict global random oracle GsRO. We assume that SIG

uses a single random oracle that maps to {0, 1}�(n). Protocols requiring multi-
ple random oracles or mapping into different ranges can be constructed using
standard domain separation and length extension techniques.

We define πSIG to be SIG phrased as a GUC protocol. Whenever an algorithm
of SIG makes a call to a random oracle, πSIG makes a call to GsRO.

1. On input (KeyGen, sid), signer P proceeds as follows.
– Check that sid = (P, sid′) for some sid′, and no record (sid, sk) exists.
– Run (pk, sk) ← SIG.KGen(n) and store (sid, sk).
– Output (KeyConf, sid, pk).

2. On input (Sign, sid,m), signer P proceeds as follows.
– Retrieve record (sid, sk), abort if no record exists.



290 J. Camenisch et al.

FSIG – functionality for public-key signatures.
Variables: initially empty records keyrec and sigrec.

1. Key Generation. On input (KeyGen, sid) from a party P.
– If sid �= (P, sid′) or a record (keyrec, sid, pk) exists, then abort.
– Send (KeyGen, sid) to A and wait for (KeyConf, sid, pk) from A. If a record

(sigrec, sid, ∗, ∗, pk, ∗) exists, abort (Consistency).
– Create record (keyrec, sid, pk).
– Output (KeyConf, sid, pk) to P.

2. Signature Generation. On input (Sign, sid, m) from P.
– If sid �= (P, sid′) or no record (keyrec, sid, pk) exists, then abort.
– Send (Sign, sid, m) to A, and wait for (Signature, sid, σ) from A.
– If a record (sigrec, sid, m, σ, pk, false) exists, then abort.
– Create record (sigrec, sid, m, σ, pk, true) (Completeness).
– Output (Signature, sid, σ) to P.

3. Signature Verification. On input (Verify, sid, m, σ, pk′) from some party V.
– If a record (sigrec, sid, m, σ, pk′, b) exists, set f ← b (Consistency).
– Else, if a record (keyrec, sid, pk) exists, P is honest, and no record

(sigrec, sid, m, ∗, pk, true) exists, set f ← 0 (Unforgeability).
– Else, send (Verify, sid, m, σ, pk′) to A and wait for (Verified, sid, b), and set f ← b.
– Create a record (sigrec, sid, m, σ, pk′, f) and output (Verified, sid, f) to V.

Fig. 4. The signature functionality FSIG due to Canetti [11]

– Output (Signature, sid, σ) with σ ← SIG.Sign(sk,m).
3. On input (Verify, sid,m, σ, pk′) a verifier V proceeds as follows.

– Output (Verified, sid, f) with f ← SIG.Verify(pk′, σ,m).

We will prove that πSIG will realize UC signatures. There are two main
approaches to defining a signature functionality: using adversarially provided
algorithms to generate and verify signature objects (e.g., the 2005 version of
[9]), or by asking the adversary to create and verify signature objects (e.g., [11]).
For a version using algorithms, the functionality will locally create and verify
signature objects using the algorithm, without activating the adversary. This
means that the algorithms cannot interact with external parties, and in particu-
lar communication with external functionalities such as a global random oracle
is not permitted. We could modify an algorithm-based FSIG to allow the sign
and verify algorithms to communicate only with a global random oracle, but we
choose to use an FSIG that interacts with the adversary as this does not require
special modifications for signatures with global random oracles.

Theorem 2. If SIG is EUF-CMA in the random-oracle model, then πSIG GUC-
realizes FSIG (as defined in Fig. 4) in the GsRO-hybrid model.

Proof. By the fact that πSIG is GsRO-subroutine respecting and by Theorem 1, it is
sufficient to show that πSIG GsRO-EUC-realizes FSIG. We define the UC simulator
S as follows.
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1. Key Generation. On input (KeyGen, sid) from FSIG, where sid = (P, sid′) and
P is honest.

– Simulate honest signer “P”, and give it input (KeyGen, sid).
– When “P” outputs (KeyConf, sid, pk) (where pk is generated according to

πSIG), send (KeyConf, sid, pk) to FSIG.
2. Signature Generation. On input (Sign, sid,m) from FSIG, where sid =

(P, sid′) and P is honest.
– Run simulated honest signer “P” with input (Sign, sid,m).
– When “P” outputs (Signature, sid, σ) (where σ is generated according to

πSIG), send (Signature, sid, σ) to FSIG.
3. Signature Verification. On input (Verify, sid,m, σ, pk′) from FSIG, where

sid = (P, sid′).
– Run f ←− SIG.Verify(pk′, σ,m), and send (Verified, sid, f) to FSIG.

We must show that πSIG realizes FSIG in the Basic UC sense, but with respect
to GsRO-externally constrained environments, i.e., the environment is now allowed
to access GsRO via dummy parties in sessions unequal to the challenge session.
Without loss of generality, we prove this with respect to the dummy adversary.

During key generation, S invokes the simulated honest signer P, so the result-
ing keys are exactly like in the real world. The only difference is that in the ideal
world FSIG can abort key generation in case the provided public key pk already
appears in a previous sigrec record. But if this happens it means that A has
successfully found a collision in the public key space, which must be exponen-
tially large as the signature scheme is EUF-CMA by assumption. This means
that such event can only happen with negligible probability.

For a corrupt signer, the rest of the simulation is trivially correct: the adver-
sary generates keys and signatures locally, and if an honest party verifies a sig-
nature, the simulator simply executes the verification algorithm as a real world
party would do, and FSIG does not make further checks (the unforgeability check
is only made when the signer is honest). When an honest signer signs, the simula-
tor creates a signature using the real world signing algorithm, and when FSIG asks
the simulator to verify a signature, S runs the real world verification algorithm,
and FSIG keeps records of the past verification queries to ensure consistency. As
the real world verification algorithm is deterministic, storing verification queries
does not cause a difference. Finally, when S provides FSIG with a signature, FSIG

checks that there is no stored verification query exists that states the provided
signature is invalid. By completeness of the signature scheme, this check will
never trigger.

The only remaining difference is that FSIG prevents forgeries: if a verifier
uses the correct public key, the signer is honest, and we verify a signature on a
message that was never signed, FSIG rejects. This would change the verification
outcome of a signature that would be accepted by the real-world verification
algorithm. As this event is the only difference between the real and ideal world,
what remains to show is that this check changes the verification outcome only
with negligible probability. We prove that if there is an environment that causes
this event with non-negligible probability, then we can use it to construct a forger
B that breaks the EUF-CMA unforgeability of SIG.



292 J. Camenisch et al.

Our forger B plays the role of FSIG, S, and even the random oracle GsRO, and
has black-box access to the environment Z. Then B receives a challenge public
key pk and is given access to a signing oracle OSign(sk,·) and to a random oracle
RO. It responds Z’s GsRO queries by relaying queries and responses to and from
RO. It runs the code of FSIG and S, but uses OSign(sk,m) instead of FSIG’s signature
generation interface to generate signatures. If the unforgeability check of FSIG

triggers for a cryptographically valid signature σ on message m, then we know
that B made no query OSign(sk,m), meaning that B can submit (σ,m) to win the
EUF-CMA game. ��

3.2 Composable Public-Key Encryption Using GsRO

Let PKE = (KGen,Enc,Dec) be a CCA2 secure public-key encryption scheme in
the ROM. We show that this directly yields a secure realization of GUC public-
key encryption FL

PKE, as recently defined by Camenisch et al. [8] and depicted in
Fig. 5, with respect to a strict global random oracle GsRO and static corruptions.
As with our result for signature schemes, we require that PKE uses a single
random oracle that maps to {0, 1}�(n).

We define πPKE to be PKE phrased as a GUC protocol.

1. On input (KeyGen, sid, n), party P proceeds as follows.
– Check that sid = (P, sid′) for some sid′, and no record (sid, sk) exists.
– Run (pk, sk) ← PKE.KGen(n) and store (sid, sk).
– Output (KeyConf, sid, pk).

2. On input (Encrypt, sid, pk′,m), party Q proceeds as follows.
– Set c ← PKE.Enc(pk′,m) and output (Ciphertext, sid, c).

3. On input (Decrypt, sid, c), party P proceeds as follows.
– Retrieve (sid, sk), abort if no such record exist.
– Set m ← PKE.Dec(sk, c) and output (Plaintext, sid,m).

Theorem 3. Protocol πPKE GUC-realizes FL
PKE with static corruptions with

leakage function L in the GsRO-hybrid model if PKE is CCA2 secure with leakage
L in the ROM.

Proof. By the fact that πPKE is GsRO-subroutine respecting and by Theorem 1,
it is sufficient to show that πPKE GsRO-EUC-realizes FL

PKE.
We define simulator S as follows.

1. On input (KEYGEN, sid).
– Parse sid as (P, sid′). Note that P is honest, as S does not make KeyGen

queries on behalf of corrupt parties.
– Invoke the simulated receiver “P” on input (KeyGen, sid) and wait for

output (KeyConf, sid, pk) from “P”.
– Send (KeyConf, sid, pk) to FL

PKE.
2. On input (Enc-M, sid, pk′,m) with m ∈ M.

– S picks some honest party “Q” and gives it input (Encrypt, sid, pk′,m).
Wait for output (Ciphertext, sid, c) from “Q”.
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FL
PKE – functionality of public-key encryption with leakage function L.

Parameters: message space M
Variables: initially empty records keyrec, encrec, decrec.

1. KeyGen. On input (KeyGen, sid) from party P:
– If sid �= (P, sid′) or a record (keyrec, sid, pk) exists, then abort.
– Send (KeyGen, sid) to A and wait for (KeyConf, sid, pk) from A.
– Create record (keyrec, sid, pk).
– Output (KeyConf, sid, pk) to P.

2. Encrypt. On input (Encrypt, sid, pk′, m) from party Q with m ∈ M:
– Retrieve record (keyrec, sid, pk) for sid.
– If pk′ = pk and P is honest, then:

• Send (Enc-L, sid, pk, L(m)) to A, and wait for (Ciphertext, sid, c) from A.
• If a record (encrec, sid, ·, c) exists, then abort.
• Create record (encrec, sid, m, c).

– Else (i.e., pk′ �= pk or P is corrupt) then:
• Send (Enc-M, sid, pk′, m) to A, and wait for (Ciphertext, sid, c) from A.

– Output (Ciphertext, sid, c) to Q.
3. Decrypt. On input (Decrypt, sid, c) from party P:
– If sid �= (P, sid′) or no record (keyrec, sid, pk) exists, then abort.
– If a record (encrec, sid, m, c) for c exists:

• Output (Plaintext, sid, m) to P.
– Else (i.e., if no such record exists):

• Send (Decrypt, sid, c) to A and wait for (Plaintext, sid, m) from A.
• Create record (encrec, sid, m, c).
• Output (Plaintext, sid, m) to P.

Fig. 5. The PKE functionality FL
PKE with leakage function L [8,9].

– Send (Ciphertext, sid, c) to FL
PKE.

3. On input (Enc-L, sid, pk, l).
– S does not know which message is being encrypted, so it chooses a dummy

plaintext m′ ∈ M with L(m′) = l.
– Pick some honest party “Q” and give it input (Encrypt, sid, pk,m′), Wait

for output (Ciphertext, sid, c) from “Q”.
– Send (Ciphertext, sid, c) to FL

PKE.
4. On input (Decrypt, sid, c).

– Note that S only receives such input when P is honest, and therefore S
simulates “P” and knows its secret key sk.

– Give “P” input (Decrypt, sid, c) and wait for output (Plaintext, sid,m)
from “P”.

– Send (Plaintext, sid,m) to FL
PKE.

What remains to show is that S is a satisfying simulator, i.e., no GsRO-externally
constrained environment can distinguish the real protocol πPKE from FL

PKE with
S. If the receiver P (i.e., such that sid = (P, sid′)) is corrupt, the simulation is
trivially correct: S only creates ciphertexts when it knows the plaintext, so it
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can simply follow the real protocol. If P is honest, S does not know the message
for which it is computing ciphertexts, so a dummy plaintext is encrypted. When
the environment submits that ciphertext for decryption by P, the functionality
FL

PKE will still return the correct message. Using a sequence of games, we show
that if an environment exists that can notice this difference, it can break the
CCA2 security of PKE.

Let Game 0 be the game where S and FL
PKE act as in the ideal world, except

that FL
PKE passes the full message m in Enc-L inputs to S, and S returns a real

encryption of m as the ciphertext. It is clear that Game 0 is identical to the
real world EXECG

π,A,Z . Let Game i for i = 1, . . . , qE, where qE is the number of
Encrypt queries made by Z, be defined as the game where for Z’s first i Encrypt
queries, FL

PKE passes only L(m) to S and S returns the encryption of a dummy
message m′ so that L(m′) = L(m), while for the i + 1-st to qE-th queries, FL

PKE

passes m to S and S returns an encryption of m. It is clear that Game qE is
identical to the ideal world IDEALG

F,S,Z .
By a hybrid argument, for Z to have non-negligible probability to distin-

guish between EXECG
π,A,Z and IDEALG

F,S,Z , there must exist an i such that Z
distinguishes with non-negligible probability between Game (i − 1) and Game i.
Such an environment gives rise to the following CCA2 attacker B against PKE.

Algorithm B receives a challenge public key pk as input and is given access
to decryption oracle ODec(sk,·) and random oracle RO. It answers Z’s queries
GsRO(m) by relaying responses from its own oracle RO(m) and lets S use pk as
the public key of P. It largely runs the code of Game (i−1) for S and FL

PKE, but
lets S respond to inputs (Dec, sid, c) from FL

PKE by calling its decryption oracle
m = ODecrypt(sk,c). Note that FL

PKE only hands such inputs to S for ciphertexts c
that were not produced via the Encrypt interface of FL

PKE, as all other ciphertexts
are handled by FL

PKE itself.
Let m0 denote the message that Functionality FL

PKE hands to S as part of
the i-th Enc-L input. Algorithm B now sets m1 to be a dummy message m′

such that L(m′) = L(m0) and hands (m0,m1) to the challenger to obtain the
challenge ciphertext c∗ that is an encryption of mb. It is clear that if b = 0,
then the view of Z is identical to that in Game (i − 1), while if b = 1, it is
identical to that in Game i. Moreover, B will never have to query its decryption
oracle on the challenge ciphertext c∗, because any decryption queries for c∗ are
handled by FL

PKE directly. By outputting 0 if Z decides it runs in Game (i − 1)
and outputting 1 if Z decides it runs in Game i, B wins the CCA2 game with
non-negligible probability. ��

4 Programmable Global Random Oracle

We now turn our attention to a new functionality that we call the programmable
global random oracle, denoted by GpRO. The functionality simply extends the
strict random oracle GsRO by giving the adversary (real-world adversary A and
ideal-world adversary S) the power to program input-output pairs. Because we
are in GUC or EUC, that also means that the environment gets this power.
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GpRO – functionality for the programmable global random oracle.

Parameters: output size �(n)
Variables: initially empty list ListH

1. Query: on input (HashQuery, m) from a machine (P, sid), proceed as follows.
– Find h such that (m, h) ∈ ListH. If no such h exists, let h $←− {0, 1}�(n) and store

(m, h) in ListH.
– Output (HashConfirm, h) to (P, sid).

2. Program: on input (ProgramRO, m, h) from adversary A
– If ∃ h′ ∈ {0, 1}�(n) such that (m, h′) ∈ ListH and h �= h′, then abort
– Else, add (m, h) to ListH and output (ProgramConfirm) to A

Fig. 6. The programmable global random oracle functionality GpRO.

Thus, as in the case of GsRO, the simulator is thus not given any extra power
compared to the environment (through the adversary), and one might well think
that this model would not lead to the realization of any useful cryptographic
primitives either. To the contrary, one would expect that the environment being
able to program outputs would interfere with security proofs, as it destroys many
properties of the random oracle such as collision or preimage resistance.

As it turns out, we can actually realize public-key encryption secure against
adaptive corruptions (also known as non-committing encryption) in this model:
we prove that the PKE scheme of Camenisch et al. [8] GUC-realizes FPKE against
adaptive corruptions in the GpRO-hybrid model. The security proof works out
because the simulator equivocates dummy ciphertexts by programming the ran-
dom oracle on random points, which are unlikely to have been queried by the
environment before.

4.1 The Programmable Global Random Oracle GpRO

The functionality GpRO (cf. Fig. 6) is simply obtained from GsRO by adding an
interface for the adversary to program the oracle on a single point at a time. To
this end, the functionality GpRO keeps an internal list of preimage-value assign-
ments and, if programming fails (because it would overwrite a previously taken
value), the functionality aborts, i.e., it replies with an error message ⊥.

Notice that our GpRO functionality does not guarantee common random-oracle
properties such as collision resistance: an adversary can simply program colli-
sions into GpRO. However, this choice is by design, because we are interested
in achieving security with the weakest form of a programmable global random
oracle to see what can be achieved against the strongest adversary possible.

4.2 Public-Key Encryption with Adaptive Corruptions from GpRO

We show that GUC-secure non-interactive PKE with adaptive corruptions (often
referred to as non-committing encryption) is achievable in the hybrid GpRO model
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by proving the PKE scheme by Camenisch et al. [8] secure in this model. We
recall the scheme in Fig. 7 based on the following building blocks:

– a family of one-way trapdoor permutations OWTP = (OWTP.Gen,OWTP.Sample,
OWTP.Eval,OWTP.Invert), where domains Σ generated by OWTP.Gen(1n) have

cardinality at least 2n;

– a block encoding scheme (EC,DC), where EC : {0, 1}∗ → ({0, 1}�(n))∗ is an
encoding function such that the number of blocks that it outputs for a given
message m depends only on the leakage L(m), and DC its deterministic inverse
(possibly rejecting with ⊥ if no preimage exists).

πPKE – public-key encryption secure against adaptive corruptions.

Parameters: block size �(n)

1. KeyGen. On input (KeyGen, sid) from party P:
– Check that sid = (P, sid′) and no record (keyrec, sid, sk) exist.
– Sample (ϕ, ϕ−1, Σ) ←− OWTP.Gen(1n).
– Set pk ← (ϕ, Σ), sk ← (ϕ, ϕ−1, Σ).
– Create record (keyrec, sid, pk, sk).
– Output (KeyConf, sid, pk) to P.

2. Encrypt. On input (Encrypt, sid, pk′, m) from party Q:
– Parse pk′ as (ϕ, Σ), get (m1, . . . , mk) ← EC(m) and x ←− OWTP.Sample(Σ).
– Let c1 ← OWTP.Eval(Σ,ϕ,x), c2,i ← mi⊕hi, ∀ i=1, . . . , k, and c3 ← h where

h and all hi are obtained as (HashConfirm, hi) ← GpRO(HashQuery, (x‖i)) and
(HashConfirm, h) ← GpRO(HashQuery, (x‖k‖m)), respectively.

– Set c ← (c1, c2,1, . . . , c2,k, c3).
– Output (Ciphertext, sid, c) to Q.

3. Decrypt. On input (Decrypt, sid, c) from party P:
– Check that sid = (P, sid′) and (keyrec, sid, sk) exist, if not, then abort.
– Parse sk as (ϕ, ϕ−1, Σ), and c as (c1, c2,1, . . . , c2,k, c3).
– Set x′ ←− OWTP.Invert(Σ, ϕ, ϕ−1, c1), m′

i ← c2,i ⊕ h′
i for i = 1, . . . , k, and

m′ ←− DC(m′
1, . . . , m

′
k), where all h′

i are obtained as
(HashConfirm, h′

i) ← GpRO(HashQuery, (x′‖i)).
– If m′ = ⊥m or h′ �= c3, then output (Plaintext, sid, ⊥m) to P, where h′ is

obtained from (HashConfirm, h′) ← GpRO(HashQuery, (x′‖k‖m′)).
– Else, output (Plaintext, sid, m) to P.

Fig. 7. Public-key encryption scheme secure against adaptive attacks [8] based on one-
way permutation OWTP and encoding function (EC,DC).

Theorem 4. Protocol πPKE in Fig. 7 GUC-realizes FPKE with adaptive corrup-
tions and leakage function L in the GpRO-hybrid model.

Proof. We need to show that πPKE GUC-realizes FL
PKE, i.e., that, given any envi-

ronment Z and any real-world adversary A, there exists a simulator S such
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that the output distribution of Z interacting with FL
PKE, GpRO, and S is indis-

tinguishable from its output distribution when interacting with πPKE, GpRO, and
A. Because πPKE is GsRO-subroutine respecting, by Theorem 1 it suffices to show
that πPKE GpRO-EUC-realizes FL

PKE.
The simulator S is depicted in Fig. 8. Basically, it generates an honest key pair

for the receiver and responds to Enc-M and Decrypt inputs by using the honest
encryption and decryption algorithms, respectively. On Enc-L inputs, however, it
creates a dummy ciphertext c composed of c1 = ϕ(x) for a freshly sampled x (but
rejecting values of x that were used before) and randomly chosen c2,1, . . . , c2,k

and c3 for the correct number of blocks k. Only when either the secret key
or the randomness used for this ciphertext must be revealed to the adversary,
i.e., only when either the receiver or the party Q who created the ciphertext is
corrupted, does the simulator program the random oracle so that the dummy
ciphertext decrypts to the correct message m. If the receiver is corrupted, the
simulator obtains m by having it decrypted by FPKE; if the encrypting party
Q is corrupted, then m is included in the history of inputs and outputs that is
handed to S upon corruption. The programming is done through the Program
subroutine, but the simulation aborts in case programming fails, i.e., when a
point needs to be programmed that is already assigned. We will prove in the
reduction that any environment causing this to happen can be used to break the
one-wayness of the trapdoor permutation.

We now have to show that S successfully simulates a real execution of the
protocol πPKE to a real-world adversary A and environment Z. To see this,
consider the following sequence of games played with A and Z that gradually
evolve from a real execution of πPKE to the simulation by S.

Let Game 0 be a game that is generated by letting an ideal functionality
F0 and a simulator S0 collaborate, where F0 is identical to FL

PKE, except that
it passes the full message m along with Enc-L inputs to S0. The simulator S0

simply performs all key generation, encryption, and decryption using the real
algorithms, without any programming of the random oracle. The only difference
between Game 0 and the real world is that the ideal functionality F0 aborts
when the same ciphertext c is generated twice during an encryption query for
the honest public key. Because S0 generates honest ciphertexts, the probability
that the same ciphertext is generated twice can be bounded by the probability
that two honest ciphertexts share the same first component c1. Given that c1
is computed as ϕ(x) for a freshly sampled x from Σ, and given that x is uni-
formly distributed over Σ which has size at least 2n, the probability of a collision
occurring over qE encryption queries is at most q2E/2n.

Let Game 1 to Game qE be games for a hybrid argument where gradually all
ciphertexts by honest users are replaced with dummy ciphertexts. Let Game i be
the game with a functionality Fi and simulator Si where the first i−1 Enc-L inputs
of Fi to Si include only the leakage L(m), and the remaining such inputs include
the full message. For the first i−1 encryptions, Si creates a dummy ciphertext and
programs the random oracle upon corruption of the party or the receiver as done
by S in Fig. 8, aborting in case programming fails. For the remaining Enc-L inputs,
Si generates honest encryptions of the real message.
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Parameters: leakage function L, hash output length �(n)
Variables: initially empty list EncL
Subroutines: Program(m, c, r) depicted in Figure 9

1. On input (KeyGen, sid) from FL
PKE:

– Sample r $←−{0, 1}n and honestly generate keys with randomness r by gener-
ating (Σ, ϕ, ϕ−1) ←− OWTP.Gen(n; r) and setting pk ← (Σ, ϕ), sk ← ϕ−1.

– Record (pk, sk, r).
– Send (KeyConf, sid, pk) to FL

PKE.
2. On input (Enc-L, sid, pk, λ) from FL

PKE:
– Parse pk as (Σ, ϕ).
– Sample r $←−{0, 1}n and generate x ← OWTP.Sample(Σ; r) until x does not

appear in EncL.
– Choose a dummy plaintext m such that L(m) = λ and let k be such that

(m1, . . . , mk) ← EC(m).
– Generate a dummy ciphertext c with c1 ← OWTP.Eval(Σ, ϕ, x) and with

random c2,1, . . . , c2,k, c3
$←−{0, 1}�(n).

– Record (c, ⊥m, r, x, pk) in EncL.
– Send (Ciphertext, sid, c) to FL

PKE.
3. On input (Enc-M, sid, pk′, m) from FL

PKE:
– Sample r $←−{0, 1}n and produce ciphertext c honestly from m using key pk′

and randomness r.
– Send (Ciphertext, sid, c) to FL

PKE.
4. On input (Decrypt, sid, c) from FL

PKE:
– Decrypt c honestly using the recorded secret key sk to yield plaintext m.
– Send (Plaintext, sid, m) to FL

PKE.
5. On corruption of party Q, receive as input from FL

PKE the history of Q’s inputs
and outputs, then compose Q’s state as follows and hand it to FL

PKE:
– For every input (Encrypt, sid, pk′, m) and corresponding response

(Ciphertext, sid, c) in Q’s history:
• If pk′ �= pk, then include the randomness r that S used in the corre-

sponding Enc-M query into Q’s state.
• If pk′ = pk, then

∗ Find (c, ⊥m, r, x, pk) in EncL, update it to (c, m, r, x, pk), and in-
clude r into Q’s state.

∗ Execute Program(m, c, r).
– If Q is the receiver, i.e., sid = (Q, sid′), then include the randomness r used

at key generation into Q’s state, and for all remaining (c, ⊥m, r, x, pk) in
EncL do:

• Send (Decrypt, sid, c) to FL
PKE in name of Q and wait for response

(Plaintext, sid, m).
• If m �= ⊥m, then execute Program(m, c, r).
• Update record (c, ⊥m, r, x, pk) in EncL to (c, m, r, x, pk)

Fig. 8. The EUC simulator S for protocol πPKE.
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On input (m, c, r) do the following:

– Parse (m1, . . . , mk) := EC(m), and c := (c1, c2,1, . . . , c2,k′ , c3); let x :=
OWTP.Sample(Σ; r).

– For i = 1, . . . , k:
• Execute GpRO.Program(x‖i, mi ⊕ c2,i) ; abort if unsuccessful.

– Execute GpRO.Program(x‖k‖m, c3) ; abort if unsuccessful.

Fig. 9. The oracle programming routine Program.

One can see that Game qE is identical to the ideal world with FL
PKE and S.

To have a non-negligible advantage distinguishing the real from the ideal world,
there must exist an i ∈ {1, . . . , qE} such that Z and A can distinguish between
Game (i − 1) and Game i. These games are actually identical, except in the case
that abort happens during the programming of the random oracle GpRO for the i-
th ciphertext, which is a real ciphertext in Game (i−1) and a dummy ciphertext
in Game i. We call this the ROABORT event. We show that if there exists an
environment Z and real-world adversary A that make ROABORT happen with
non-negligible probability ν, then we can construct an efficient algorithm B (the
“reduction”) with black-box access to Z and A that is able to invert OWTP.

Our reduction B must only simulate honest parties, and in particular must
provide to A a consistent view of their secrets (randomness used for encryption,
secret keys, and decrypted plaintexts, just like S does) when they become cor-
rupted. Moreover, since we are not in the idealized scenario, there is no external
global random oracle functionality GpRO: instead, B simulates GpRO for all the
parties involved, and answers all their oracle calls.

Upon input the OWTP challenge (Σ,ϕ, y), B runs the code of Game (i − 1),
but sets the public key of the receiver to pk = (Σ,ϕ). Algorithm B answers the
first i − 1 encryption requests with dummy ciphertexts and the (i + 1)-st to qE-
th queries with honestly generated ciphertexts. For the i-th encryption request,
however, it returns a special dummy ciphertext with c1 = y.

To simulate GpRO, B maintains an initially empty list ListH to which pairs
(m,h) are either added by lazy sampling for HashQuery queries, or by program-
ming for ProgramRO queries. (Remember that the environment Z can program
entries in GpRO as well.) For requests from Z, B actually performs some additional
steps that we describe further below.

It answers Decrypt requests for a ciphertext c = (c1, c2,1, . . . , c2,k, c3) by
searching for a pair of the form (x‖k‖m, c3) ∈ ListH such that ϕ(x) = c1 and
m = DC(c2,1⊕h1, . . . , c2,k⊕hk), where hj = H(x‖j), meaning that hj is assigned
the value of a simulated request (HashQuery, x‖j) to GpRO. Note that at most one
such pair exists for a given ciphertext c, because if a second (x′‖k‖m′, c3) ∈ ListH
would exist, then it must hold that ϕ(x′) = c1. Because ϕ is a permutation, this
means that x = x′. Since for each j = 1, . . . , k, only one pair (x‖j, hj) ∈ ListH
can be registered, this means that m′ = DC(c2,1⊕h1, . . . , c2,k ⊕hk) = m because



300 J. Camenisch et al.

DC is deterministic. If such a pair (x‖k‖m, c3) exists, it returns m, otherwise it
rejects by returning ⊥m.

One problem with the decryption simulation above is that it does not
necessarily create the same entries into ListH as an honest decryption would
have, and Z could detect this by checking whether programming for these
entries succeeds. In particular, Z could first ask to decrypt a ciphertext c =
(ϕ(x), c2,1, . . . , c2,k, c3) for random x, c2,1, . . . , c2,k, c3 and then try to program
the random oracle on any of the points x‖j for j = 1, . . . , k or on x‖k‖m. In
Game (i− 1) and Game i, such programming would fail because the entries were
created during the decryption of c. In the simulation by B, however, program-
ming would succeed, because no valid pair (x‖k‖m, c3) ∈ ListH was found to
perform decryption.

To preempt the above problem, B checks all incoming requests HashQuery
and ProgramRO by Z for points of the form x‖j or x‖k‖m against all previous
decryption queries c = (c1, c2,1, . . . , c2,k, c3). If ϕ(x) = c1, then B immediately
triggers (by mean of appropriate HashQuery calls) the creation of all random-
oracle entries that would have been generated by a decryption of c by computing
m′ = DC(c2,1⊕H(x‖1), . . . , c2,k ⊕H(x‖k)) and c′

3 = H(x‖k‖m′). Only then does
B handle Z’s original HashQuery or ProgramRO request.

The only remaining problem is if during this procedure c′
3 = c3, meaning

that c was previously rejected during by B, but it becomes a valid ciphertext
by the new assignment of H(x‖k‖m) = c′

3 = c3. This happens with negligible
probability, though: a random value c′

3 will only hit a fixed c3 with probability
1/|Σ| ≤ 1/2n. Since up to qD ciphertexts may have been submitted with the
same first component c1 = ϕ(x) and with different values for c3, the probability
that it hits any of them is at most qD/2n. The probability that this happens
for at least one of Z’s qH HashQuery queries or one of its qP ProgramRO queries
during the entire execution is at most (qH + qP)qD/2n.

When A corrupts a party, B provides the encryption randomness that it
used for all ciphertexts that such party generated. If A corrupts the receiver
or the party that generated the i-th ciphertext, then B cannot provide that
randomness. Remember, however, that B is running Z and A in the hope for the
ROABORT event to occur, meaning that the programming of values for the i-th
ciphertext fails because the relevant points in GpRO have been assigned already.
Event ROABORT can only occur at the corruption of either the receiver or of
the party that generated the i-th ciphertext, whichever comes first. Algorithm B
therefore checks ListH for points of the form x‖j or x‖k‖m such that ϕ(x) = y. If
ROABORT occurred, then B will find such a point and output x as its preimage
for y. If it did not occur, then B gives up. Overall, B will succeed whenever
ROABORT occurs. Given that Game (i − 1) and Game i are different only when
ROABORT occurs, and given that Z and A have non-negligible probability of
distinguishing between Game (i − 1) and Game i, we conclude that B succeeds
with non-negligible probability. ��
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5 Restricted Programmable Global Random Oracles

The strict and the programmable global random oracles, GsRO and GpRO, respec-
tively, do not give the simulator any extra power compared to the real world
adversary/environment. Canetti and Fischlin [13] proved that it is impossible to
realize UC commitments without a setup assumption that gives the simulator an
advantage over the environment. This means that, while GsRO and GpRO allowed
for security proofs of many practical schemes, we cannot hope to realize even
the seemingly simple task of UC commitments with this setup. In this section,
we turn our attention to programmable global random oracles that do grant an
advantage to the simulator.

5.1 Restricting Programmability to the Simulator

Canetti et al. [15] defined a global random oracle that restricts observability only
adversarial queries, (hence, we call it the restricted observable global random
oracle GroRO), and show that this is sufficient to construct UC commitments.
More precisely, if sid is the identifier of the challenge session, a list of so-called
illegitimate queries for sid can be obtained by the adversary, which are queries
made on inputs of the form (sid, . . .) by machines that are not part of session
sid. If honest parties only make legitimate queries, then clearly this restricted
observability will not give the adversary any new information, as it contains only
queries made by the adversary. In the ideal world, however, the simulator S can
observe all queries made through corrupt machines within the challenge session
sid as it is the ideal-world attacker, which means it will see all legitimate queries
in sid. With the observability of illegitimate queries, that means S can observe all
hash queries of the form (sid, . . .), regardless of whether they are made by honest
or corrupt parties, whereas the real-world attacker does not learn anything form
the observe interface.

We recall the restricted observable global random oracle GroRO due to Canetti
et al. [15] in a slightly modified form in Fig. 10. In their definition, it allows ideal
functionalities to obtain the illegitimate queries corresponding to their own ses-
sion. These functionalities then allow the adversary to obtain the illegitimate
queries by forwarding the request to the global random oracle. Since the adver-
sary can spawn any new machine, and in particular an ideal functionality, the
adversary can create such an ideal functionality and use it to obtain the illegit-
imate queries. We chose to explicitly model this adversarial power by allowing
the adversary to query for the illegitimate queries directly.

Also in Fig. 10, we define a restricted programmable global random oracle
GrpRO by using a similar approach to restrict programming access from the real-
world adversary. The adversary can program points, but parties in session sid can
check whether the random oracle was programmed on a particular point (sid, . . .).
In the real world, the adversary is allowed to program, but honest parties can
check whether points were programmed and can, for example, reject signatures
based on a programmed hash. In the ideal world, the simulator controls the
corrupt parties in sid and is therefore the only entity that can check whether
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GroRO, GrpRO, and GrpoRO – functionalities of the global random oracle with restricted
programming and/or restricted observability.

Parameters: output size function �.
Variables: initially empty lists ListH, prog.

1. Query. On input (HashQuery, m) from a machine (P, sid) or from the adversary:
– Look up h such that (m, h) ∈ ListH. If no such h exists:

• draw h $←− {0, 1}�(n)

• set ListH := ListH ∪ {(m, h)}
– Parse m as (s, m′).
– If this query is made by the adversary, or if s �= sid, then add (s, m′, h) to

the (initially empty) list of illegitimate queries Qs.
– Output (HashConfirm, h) to the caller.

2. Observe. (GroRO and GrpoRO only) On input (Observe, sid) from the adversary:
– If Q|sid does not exist yet, then set Qsid = ∅.
– Output (ListObserve, Qsid) to the adversary.

3. Program. (GrpRO and GrpoRO only) On input (ProgramRO, m, h) with h ∈
{0, 1}�(n) from the adversary:
– If ∃ h′ ∈ {0, 1}�(n) such that (m, h′) ∈ ListH and h �= h′, ignore this input.
– Set ListH := ListH ∪ {(m, h)} and prog := prog ∪ {m}.
– Output (ProgramConfirm) to the adversary.

4. IsProgrammed: (GrpRO and GrpoRO only) On input (IsProgrammed, m) from a ma-
chine (P, sid) or from the adversary:
– If the input was given by (P, sid), parse m as (s, m′). If s �= sid, ignore this

input.
– Set b ← m ∈ prog and output (IsProgrammed, b) to the caller.

Fig. 10. The global random-oracle functionalities GroRO, GrpRO, and GrpoRO with
restricted observability, restricted programming, and combined restricted observabil-
ity and programming, respectively. Functionality GroRO contains only the Query and
Observe interfaces, GrpRO contains only the Query, Program, and IsProgrammed inter-
faces, and GrpoRO contains all interfaces.

points are programmed. Note that while it typically internally simulates the
real-world adversary that may want to check whether points of the form (sid, . . .)
are programmed, the simulator can simply “lie” and pretend that no points are
programmed. Therefore, the extra power that the simulator has over the real-
world adversary is programming points without being detected.

It may seem strange to offer a new interface allowing all parties to check
whether certain points are programmed, even though a real-world hash function
does not have such an interface. However, we argue that if one accepts a pro-
grammable random oracle as a proper idealization of a clearly non-programmable
real-world hash function, then it should be a small step to accept the instantia-
tion of the IsProgrammed interface that always returns “false” to the question
whether any particular entry was programmed into the hash function.
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5.2 UC-Commitments from GrpRO

We now show that we can create a UC-secure commitment protocol from GrpRO. A
UC-secure commitment scheme must allow the simulator to extract the message
from adversarially created commitments, and to equivocate dummy commit-
ments created for honest committers, i.e., first create a commitment that it can
open to any message after committing. Intuitively, achieving the equivocability
with a programmable random oracle is simple: we can define a commitment that
uses the random-oracle output, and the adversary can later change the com-
mitted message by programming the random oracle. Achieving extractability,
however, seems difficult, as we cannot extract by observing the random-oracle
queries. We overcome this issue with the following approach. The receiver of
a commitment chooses a nonce on which we query random oracle, interpreting
the random oracle output as a public key pk. Next, the committer encrypts the
message to pk and sends the ciphertext to the receiver, which forms the com-
mitment. To open, the committer reveals the message and the randomness used
to encrypt it.

This solution is extractable as the simulator that plays the role of receiver
can program the random oracle such that it knows the secret key corresponding
to pk, and simply decrypt the commitment to find the message. However, we
must take care to still achieve equivocability. If we use standard encryption, the
simulator cannot open a ciphertext to any value it learns later. The solution is
to use non-committing encryption, which, as shown in Sect. 4, can be achieved
using a programmable random oracle. We use a slightly different encryption
scheme, as the security requirements here are slightly less stringent than full
non-committing encryption, and care must be taken that we can interpret the
result of the random oracle as a public key, which is difficult for constructions
based on trapdoor one-way permutations such as RSA. This approach results
in a very efficient commitment scheme: with two exponentiations per party (as
opposed to five) and two rounds of communication (as opposed to five), it is
considerably more efficient than the one of [15].

Let COMGrpRO
be the following commitment protocol, parametrized by a group

G = 〈g〉 of prime order q. We require an algorithm Embed that maps ele-
ments of {0, 1}�(n) into G, such that for h $←−{0, 1}�(n), Embed(h) is statistically
close to uniform in G. Furthermore, we require an efficiently computable prob-
abilistic algorithm Embed−1, such that for all x ∈ G, Embed(Embed−1(x)) =
x and for x $←−G, Embed−1(x) is statistically close to uniform in {0, 1}�(n).
COMGrpRO

assumes authenticated channels Fauth as defined by Canetti [9].

1. On input (Commit, sid, x), party C proceeds as follows.
– Check that sid = (C,R, sid′) for some C, sid′. Send Commit to R over Fauth

by giving Fauth input (Send, (C,R, sid, 0), “Commit”).
– R, upon receiving (Sent, (C,R, sid, 0), “Commit”) from Fauth, takes a

nonce n $←−{0, 1}n and sends the nonce back to C by giving Fauth input
(Send, (R, C, sid, 0), n).
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FCOM – functionality for interactive commitments.

1. Commit: on input (Commit, sid, x) from a party C proceed as follows.
– Check that sid = (C, R, sid′).
– Store x and generate public delayed output (Receipt, sid) to R. Ignore subse-

quent Commit inputs.
2. Open: on input (Open, sid) from C proceed as follows.
– Check that a committed value x is stored.
– Generate public delayed output (Open, sid, x) to R.

Fig. 11. The commitment functionality FCOM by Canetti [9].

– C, upon receiving (Sent, (R, C, sid, 0), n), queries GrpRO on (sid, n) to obtain
hn. It checks whether this point was programmed by giving GroRO input
(IsProgrammed, (sid, n)) and aborts if GroRO returns (IsProgrammed, 1).

– Set pk ← Embed(hn).
– Pick a random r $←−G and ρ ∈ Zq. Set c1 ← gr, query GrpRO on (sid, pkr)

to obtain hr and let c2 ← hr ⊕ x.
– Store (r, x) and send the commitment to R by giving Fauth input (Send,

(C,R, sid, 1), (c1, c2)).
– R, upon receiving (Sent, (C,R, sid, 1), (c1, c2)) from Fauth outputs

(Receipt, sid).
2. On input (Open, sid), C proceeds as follows.

– It sends (r, x) to R by giving Fauth input (Send, (C,R, sid, 2), (r, x)).
– R, upon receiving (Sent, (C,R, sid, 1), (r, x)):

• Query GrpRO on (sid, n) to obtain hn and let pk ← Embed(hn).
• Check that c1 = gr.
• Query GrpRO on (sid, pkr) to obtain hr and check that c2 = hr ⊕ x.
• Check that none of the points was programmed by giving GroRO inputs

(IsProgrammed, (sid, n)) and (IsProgrammed, pkr) and asserting that it
returns (IsProgrammed, 0) for both queries.

• Output (Open, sid, x).

COMGrpRO
is a secure commitment scheme under the computational Diffie-

Hellman assumption, which given a group G generated by g of prime order q,
challenges the adversary to compute gαβ on input (gα, gβ), with (α, β) $←−Z

2
q.

Theorem 5. COMGrpRO
GUC-realizes FCOM (as defined in Fig. 11) in the GroRO

and Fauth hybrid model under the CDH assumption in G.

Proof. By the fact that COMGrpRO
is GrpRO-subroutine respecting and by Theo-

rem 1, it is sufficient to show that COMGrpRO
GrpRO-EUC-realizes FCOM.

We describe a simulator S by defining its behavior in the different corruption
scenarios. In all scenarios, whenever the simulated real-world adversary makes
an IsProgrammed query or instructs a corrupt party to make such a query on a
point that S has programmed, the simulator intercepts this query and simply
replies (IsProgrammed, 0), lying that the point was not programmed.

When both the sender and the receiver are honest, S works as follows.
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1. When FCOM asks S for permission to output (Receipt, sid):
– Parse sid as (C,R, sid′) and let “C” create a dummy commitment by choos-

ing r $←−Zq, letting c1 = gr, choosing c2
$←−{0, 1}�(n).

– When “R” outputs (Receipt, sid), allow FCOM to proceed.
2. When FCOM asks S for permission to output (Open, sid, x):

– Program GrpRO by giving GroRO input (ProgramRO, (sid, pkr), c2 ⊕x), such
that the commitment (c1, c2) commits to x.

– Give “C” input (Open, sid) instructing it to open its commitment to x.
– When “R” outputs (Open, sid, x), allow FCOM to proceed.

If the committer is corrupt but the receiver is honest, S works as follows.

1. When the simulated receiver “R” notices the commitment protocol starting
(i.e., receives (Sent, (C,R, sid, 0), “Commit”) from “Fauth”):

– Choose nonce n as in the protocol.
– Before sending n, choose sk $←−Zq and set pk ← gsk.
– Program GrpRO by giving GrpRO input (ProgramRO, (sid, n),Embed−1(pk)).

Note that this simulation will succeed with overwhelming probability as
n is freshly chosen, and note that as pk is uniform in G, by definition of
Embed−1 the programmed value Embed−1(pk) is uniform in {0, 1}�(n).

– S now lets “R” execute the remainder the protocol honestly.
– When “R” outputs (Receipt, sid), S extracts the committed value from

(c1, c2). Query GrpRO on (sid, csk1 ) to obtain hr and set x ← c2 ⊕ hr.
– Make a query with FCOM on C’s behalf by sending (Commit, sid, x) on C’s

behalf to FCOM.
– When FCOM asks permission to output (Receipt, sid), allow.

2. When “R” outputs (Open, sid, x):
– Send (Open, sid) on C’s behalf to FCOM.
– When FCOM asks permission to output (Open, sid, x), allow.

If the receiver is corrupt but the committer is honest, S works as follows.

1. When FCOM asks permission to output (Receipt, sid):
– Parse sid as (C,R, sid′).
– Allow FCOM to proceed.
– When FCOM receives (Receipt, sid) from FCOM as R is corrupt, it simulates

“C” by choosing r $←−Zq, computing c1 = gr, and choosing c2
$←− {0, 1}�(n).

2. When FCOM asks permission to output (Open, sid, x):
– Allow FCOM to proceed.
– When S receives (Open, sid, x) from FCOM as R is corrupt, S programs

GrpRO by giving GrpRO input (ProgramRO, (sid, pkr), c2 ⊕ x), such that the
commitment (c1, c2) commits to x.

– S inputs (Open, sid) to “C”, instructing it to open its commitment to x.
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What remains to show is that S is a satisfying simulator, i.e., no
GrpRO-externally constrained environment can distinguish FCOM and S from
COMGrpRO

and A. When simulating an honest receiver, S extracts the committed
message correctly: Given pk and c1 = gr for some r, there is a unique value pkr,
and the message x is uniquely determined by c2 and pkr. Simulator S also sim-
ulates an honest committer correctly. When committing, it does not know the
message, but can still produce a commitment that is identically distributed as
long as the environment does not query the random oracle on (sid, pkr). When S
later learns the message x, it must equivocate the commitment to open to x, by
programming GrpRO on (sid, pkr), which again succeeds unless the environment
makes a random oracle query on (sid, pkr). If there is an environment that trig-
gers such a GrpRO with non-negligible probability, we can construct an attacker
B that breaks the CDH problem in G.

Our attacker B plays the role of FCOM, S, and GrpRO, and has black-box
access to the environment. B receives CDH problem gα, gβ and is challenged
to compute gαβ . It simulates GrpRO to return hn ← Embed−1(gα) on random
query (sid, n). When simulating an honest committer committing with respect
to this pk, set c1 ← gβ and c2

$←−{0, 1}�(n). Note that S cannot successfully
open this commitment, but remember that we consider an environment that
with non-negligible probability makes a GrpRO query on pkr(= gαβ) before the
commitment is being opened. Next, B will choose a random GrpRO query on
(sid,m). With nonnegligible probability, we have m = gαβ , and B found the
solution to the CDH challenge. ��

5.3 Adding Observability for Efficient Commitments

While the commitment scheme COMGrpRO
from the restricted programmable

global random oracle is efficient for a composable commitment scheme, there
is still a large efficiency gap between composable commitments from global ran-
dom oracles and standalone commitments or commitments from local random
oracles. Indeed, COMGrpRO

still requires multiple exponentiations and rounds of
interaction, whereas the folklore commitment scheme c = H(m‖r) for message m
and random opening information r consists of computing a single hash function.

We extend GrpRO to, on top of programmability, offer the restricted observ-
ability interface of the global random oracle due to Canetti et al. [15]. With this
restricted programmable and observable global random oracle GrpoRO (as shown
in Fig. 10), we can close this efficiency gap and prove that the folklore commit-
ment scheme above is a secure composable commitment scheme with a global
random oracle.

Let COMGrpoRO
be the commitment scheme that simply hashes the message

and opening, phrased as a GUC protocol using GrpoRO and using authenticated
channels, which is formally defined as follows.

1. On input (Commit, sid, x), party C proceeds as follows.
– Check that sid = (C,R, sid′) for some C, sid′.
– Pick r $←−{0, 1}n and query GrpoRO on (sid, r, x) to obtain c.
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– Send c to R over Fauth by giving Fauth input (Send, (C,R, sid, 0), c).
– R, upon receiving (Sent, (C,R, sid, 0), c) from Fauth, outputs (Receipt, sid).

2. On input (Open, sid), C proceeds as follows.
– It sends (r, x) to R by giving Fauth input (Send, (C,R, sid, 2), (r, x)).
– R, upon receiving (Sent, (C,R, sid, 1), (r, x)) from Fauth, queries GrpoRO on

(sid, r, x) and checks that the result is equal to c, and checks that (sid, r, x)
is not programmed by giving GrpoRO input (IsProgrammed, (sid, r, x)) and
aborting if the result is not (IsProgrammed, 0). Output (Open, sid, x).

Theorem 6. COMGrpoRO
GUC-realizes FCOM (as defined in Fig. 11), in the

GrpoRO and Fauth hybrid model.

Proof. By the fact that COMGrpoRO
is GrpoRO-subroutine respecting and by Theo-

rem 1, it is sufficient to show that COMGrpoRO
GrpoRO-EUC-realizes Frpo-COM.

We define a simulator S by describing its behavior in the different corrup-
tion scenarios. For all scenarios, S will internally simulate A and forward any
messages between A and the environment, the corrupt parties, and GrpoRO. It
stores all GrpoRO queries that it makes for A and for corrupt parties. Only when
A directly or through a corrupt party makes an IsProgrammed query on a point
that S programmed, S will not forward this query to GrpoRO but instead return
(IsProgrammed, 0). When we say that S queries GrpoRO on a point (s,m) where
s is the challenge sid, for example when simulating an honest party, it does
so through a corrupt dummy party that it spawns, such that the query is not
marked as illegitimate.

When both the sender and the receiver are honest, S works as follows.

1. When Frpo-COM asks S for permission to output (Receipt, sid):
– Parse sid as (C,R, sid′) and let “C” commit to a dummy value by giving

it input (Commit, sid,⊥), except that it takes c $←−{0, 1}�(n) instead of
following the protocol.

– When “R” outputs (Receipt, sid), allow Frpo-COM to proceed.
2. When Frpo-COM asks S for permission to output (Open, sid, x):

– Choose a random r $←−{0, 1}n and program GrpoRO by giving it input
(ProgramRO, (sid, r, x), c), such that the commitment c commits to x. Note
that since r is freshly chosen at random, the probability that GrpoRO is
already defined on (sid, r, x) is negligible, so the programming will succeed
with overwhelming probability.

– Give “C” input (Open, sid) instructing it to open its commitment to x.
– When “R” outputs (Open, sid, x), allow Frpo-COM to proceed.

If the committer is corrupt but the receiver is honest, S works as follows.

1. When simulated receiver “R” outputs (Receipt, sid):
– Obtain the list Qsid of all random oracle queries of form (sid, . . .), by

combining the queries that S made on behalf of the corrupt parties and
the simulated honest parties, and by obtaining the illegitimate queries
made outside of S by giving GrpoRO input (Observe, sid).
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– Find a non-programmed record ((sid, r, x), c) ∈ Qsid. If no such record is
found, set x to a dummy value.

– Make a query with Frpo-COM on C’s behalf by sending (Commit, sid, x) on
C’s behalf to Frpo-COM.

– When Frpo-COM asks permission to output (Receipt, sid), allow.
2. When “R” outputs (Open, sid, x):

– Send (Open, sid) on C’s behalf to Frpo-COM.
– When Frpo-COM asks permission to output (Open, sid, x), allow.

If the receiver is corrupt but the committer is honest, S works as follows.

1. When Frpo-COM asks permission to output (Receipt, sid):
– Parse sid as (C,R, sid′).
– Allow Frpo-COM to proceed.
– When S receives (Receipt, sid) from Frpo-COM as R is corrupt, it simulates

“C” by choosing c $←−{0, 1}�(n) instead of following the protocol.
2. When Frpo-COM asks permission to output (Open, sid, x):

– Allow Frpo-COM to proceed.
– When S receives (Open, sid, x) from Frpo-COM as R is corrupt,

choose r $←−{0, 1}n and program GrpoRO by giving Frpo-COM input
(ProgramRO, (sid, r, x), c), such that the commitment c commits to x. Note
that since r is freshly chosen at random, the probability that GrpoRO is
already defined on (sid, r, x) is negligible, so the programming will succeed
with overwhelming probability.

– S inputs (Open, sid) to “C”, instructing it to open its commitment to x.

We must show that S extracts the correct value from a corrupt commit-
ment. It obtains a list of all GrpoRO queries of the form (sid, . . .) and looks for
a non-programmed entry (sid, r, x) that resulted in output c. If this does not
exist, then the environment can only open its commitment successfully by later
finding a preimage of c, as the honest receiver will check that the point was not
programmed. Finding such a preimage happens with negligible probability, so
committing to a dummy value is sufficient. The probability that there are mul-
tiple satisfying entries is also negligible, as this means the environment found
collisions on the random oracle.

Next, we argue that the simulated commitments are indistinguishable from
honest commitments. Observe that the commitment c is distributed equally to
real commitments, namely uniform in {0, 1}�(n). The simulator can open this
value to the desired x if programming the random oracle succeeds. As it first
takes a fresh nonce r $←−{0, 1}n and programs (sid, r, x), the probability that
GrpoRO is already defined on this input is negligible. ��

6 Unifying the Different Global Random Oracles

At this point, we have considered several notions of global random oracles that
differ in whether they offer programmability or observability, and in whether this
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GsRO s2ro GroRO

GpRO
p2rp GrpRO

rp2rpo GrpoRO

Fig. 12. Relations between different notions of global random oracles. An arrow from
G to G′ indicates the existence of simple transformation such that any protocol that
G-EUC-realizes a functionality F , the transformed protocol G′-EUC-realizes the trans-
formed functionality F (cf. Theorem 7).

power is restricted to machines within the local session, or also available to other
machines. Having several coexisting variants of global random oracles, each with
their own set of schemes that they can prove secure, is somewhat unsatisfying.
Indeed, if different schemes require different random oracles that in practice end
up being replaced with the same hash function, then we’re back to the problem
that motivated the concept of global random oracles.

We were able to distill a number of relations and transformations among the
different notions, allowing a protocol that realizes a functionality with access to
one type of global random oracle to be efficiently transformed into a protocol that
realizes the same functionality with respect to a different type of global random
oracle. A graphical representation of our transformation is given in Fig. 12.

The transformations are very simple and hardly affect efficiency of the proto-
col. The s2ro transformation takes as input a GsRO-subroutine-respecting protocol
π and transforms it into a GroRO-subroutine respecting protocol π′ = s2ro(π) by
replacing each query (HashQuery,m) to GsRO with a query (HashQuery, (sid,m))
to GroRO, where sid is the session identifier of the calling machine. Likewise,
the p2rp transformation takes as input a GpRO-subroutine-respecting protocol π
and transforms it into a GrpRO-subroutine respecting protocol π′ = p2rp(π) by
replacing each query (HashQuery,m) to GpRO with a query (HashQuery, (sid,m))
to GrpRO and replacing each query (ProgramRO,m, h) to GpRO with a query
(ProgramRO, (sid,m), h) to GrpRO, where sid is the session identifier of the
calling machine. The other transformation rp2rpo simply replaces HashQuery,
ProgramRO, and IsProgrammed queries to GrpRO with identical queries to GrpoRO.

Theorem 7. Let π be a GxRO-subroutine-respecting protocol and let GyRO be
such that there is an edge from GxRO to GyRO in Fig. 12, where x, y ∈ {s, ro, p,
rp, rpo}. Then if π GxRO-EUC-realizes a functionality F , where F is an ideal
functionality that does not communicate with GxRO, then π′ = x2y(π) is a GyRO-
subroutine-respecting protocol that GyRO-EUC-realizes F .

Proof (sketch). We first provide some detail for the s2ro transformation. The
other transformations can be proved in a similar fashion, so we only provide an
intuition here.

As protocol π GsRO-EUC-realizes F , there exists a simulator Ss that correctly
simulates the protocol with respect to the dummy adversary. Observe that GroRO

offers the same HashQuery interface to the adversary as GsRO, and that the GroRO
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only gives the simulator extra powers. Therefore, given the dummy-adversary
simulator Ss for π, one can build a dummy-adversary simulator Sro for s2ro(π) as
follows. If the environment makes a query (HashQuery, x), either directly through
the dummy adversary, or indirectly by instructing a corrupt party to make that
query, Sro checks whether x can be parsed as (sid, x′) where sid is the challenge
session. If so, then it passes a direct or indirect query (HashQuery, x′) to Ss,
depending whether the environment’s original query was direct or indirect. If x
cannot be parsed as (sid, x′), then it simply relays the query to GroRO. Simulator
Sro relays Ss’s inputs to and outputs from F . When Ss makes a (HashQuery, x′)
query to GsRO, Sro makes a query (HashQuery, (sid, x′)) to GroRO and relays the
response back to Ss. Finally, Sro simply relays any Observe queries by the envi-
ronment to GroRO. Note, however, that these queries do not help the environment
in observing the honest parties, as they only make legitimate queries.

To see that Sro is a good simulator for s2ro(π), we show that if there exists a
distinguishing dummy-adversary environment Zro for s2ro(π) and Sro, then there
also exists a distinguishing environment Zs for π and Ss, which would contradict
the security of π. The environment Zs runs Zro by internally executing the code
of GroRO to respond to Zro’s GroRO queries, except for queries (HashQuery, x)
where x can be parsed as (sid, x′), for which Zs reaches out to its own GsRO

functionality with a query (HashQuery, x′).
The p2rp transformation is very similar to s2ro and prepends sid to ran-

dom oracle queries. Moving to the restricted programmable RO only reduces
the power of the adversary by making programming detectable to honest users
through the IsProgrammed interface. The simulator, however, maintains its power
to program without being detected, because it can intercept the environment’s
IsProgrammed queries for the challenge sid and pretend that they were not pro-
grammed. The environment cannot circumvent the simulator and query GrpRO

directly, because IsProgrammed queries for sid must be performed from a machine
within sid.

Finally, the rp2rpo transformation increases the power of both the simulator
and the adversary by adding a Observe interface. Similarly to the s2ro simulator,
however, the interface cannot be used by the adversary to observe queries made
by honest parties, as these queries are all legitimate. ��

Unfortunately, we were unable to come up with security-preserving transfor-
mations from non-programmable to programmable random oracles that apply
to any protocol. One would expect that the capability to program random-
oracle entries destroys the security of many protocols that are secure for non-
programmable random oracles. Often this effect can be mitigated by letting the
protocol, after performing a random-oracle query, additionally check whether
the entry was programmed through the IsProgrammed interface, and rejecting
or aborting if it was. While this seems to work for signature or commitment
schemes where rejection is a valid output, it may not always work for arbitrary
protocols with interfaces that may not be able to indicate rejection. We leave
the study of more generic relations and transformations between programmable
and non-programmable random oracles as interesting future work.
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Abstract. Bootstrapping is a crucial operation in Gentry’s break-
through work on fully homomorphic encryption (FHE), where a homo-
morphic encryption scheme evaluates its own decryption algorithm.
There has been a couple of implementations of bootstrapping, among
which HElib arguably marks the state-of-the-art in terms of throughput,
ciphertext/message size ratio and support for large plaintext moduli.

In this work, we applied a family of “lowest digit removal” polynomi-
als to design an improved homomorphic digit extraction algorithm which
is a crucial part in bootstrapping for both FV and BGV schemes. When
the secret key has 1-norm h = ||s||1 and the plaintext modulus is t = pr,
we achieved bootstrapping depth log h + log(logp(ht)) in FV scheme. In
case of the BGV scheme, we brought down the depth from log h + 2 log t
to log h + log t.

We implemented bootstrapping for FV in the SEAL library. We also
introduced another “slim mode”, which restrict the plaintexts to batched
vectors in Zpr . The slim mode has similar throughput as the full mode,
while each individual run is much faster and uses much smaller mem-
ory. For example, bootstrapping takes 6.75 s for vectors over GF (127)
with 64 slots and 1381 s for vectors over GF (257128) with 128 slots. We
also implemented our improved digit extraction procedure for the BGV
scheme in HElib.

Keywords: Homomorphic encryption · Bootstrapping
Implementation

1 Introduction

Fully Homomorphic Encryption (FHE) allows an untrusted party to evalu-
ate arbitrary functions on encrypted data, without knowing the secret key.
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Gentry introduced the first FHE scheme in the breakthrough work [20]. Since
then, there has been a large collection of work (e.g., [6–10,13,16,19,22,31]),
introducing more efficient schemes.

These schemes all follow Gentry’s original blueprint, where each ciphertext is
associated with a certain amount of “noise”, and the noise grows as homomorphic
evaluations are performed. When the noise is too large, decryption will fail to
give the correct result. Therefore, if no additional measure is taken, one set
of parameters can only evaluate circuits of a bounded depth. This approach is
called leveled homomorphic encryption (LHE) and is used in a many works.

However, if we wish to homomorphically evaluate functions of arbitrary com-
plexity using one single set of parameters, then we need a procedure to lower
the noise in a ciphertext. This can be done via Gentry’s brilliant bootstrapping
technique. Roughly speaking, bootstrapping a ciphertext in some given scheme
means running its own decryption algorithm homomorphically, using an encryp-
tion of the secret key. The result is a new ciphertext which encrypts the same
message while having lower noise.

Bootstrapping is a very expensive operation. The decryption circuit of a
scheme can be complex, and may not be conveniently supported by the scheme
itself. Hence, in order to perform bootstrapping, one either needs to make sig-
nificant optimizations to simplify the decryption circuit, or design some scheme
which can handle its decryption circuit more comfortably. Among the best works
on bootstrapping implementations, the work of Halevi and Shoup [25], which
optimized and implemented bootstrapping over the scheme of Brakerski, Gen-
try and Vaikuntanathan (BGV), is arguably still the state-of-the-art in terms
of throughput, ciphertext/message size ratio and flexible plaintext moduli. For
example, they were able to bootstrap a vector of size 1024 over GF (216) within
5 min. However, when the plaintext modulus reaches 28, bootstrapping still takes
a few hours to perform. The reason is mainly due to a digit extraction procedure,
whose cost grows significantly with the plaintext modulus. The Fan-Vercauteran
(FV) scheme, a scale-invariant variant of BGV, has also been implement in [1,27]
and used in applications. We are not aware of any previous implementation of
bootstrapping for FV.

1.1 Contributions

In this paper, we aim at improving the efficiency of bootstrapping under large
prime power plaintext moduli.

• We used a family of low degree lowest-digit-removal polynomials to design an
improved algorithm to remove v lowest base-p digits from integers modulo
pe. Our new algorithm has depth v log p + log e, compared to (e − 1) log p in
previous work.

• We then applied our algorithm to improve the digit extraction step in the
bootstrapping procedure for FV and BGV schemes. Let h = ||s||1 denote
the 1-norm of the secret key, and assume the plaintext space is a prime
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power t = pr. Then for FV scheme, we achieved bootstrapping depth
log h+log logp(ht). In case of BGV, we have reduced the bootstrapping degree
from log h + 2 log(t) to log h + log t.

• We provided a first implementation of the bootstrapping functionality for
FV scheme in the SEAL library [27]. We also implemented our revised digit
extraction algorithm in HElib which can directly be applied to improve HElib
bootstrapping for large plaintext modulus pr.

• We also introduced a light-weight mode of bootstrapping which we call the
“slim mode” by restricting the plaintexts to a subspace. In this mode, mes-
sages are vectors where each slot only holds a value in Zpr instead of a degree-d
extension ring. The slim mode might be more applicable in some use-cases of
FHE, including machine learning over encrypted data. We implemented the
slim mode of bootstrapping in SEAL and showed that in this mode, boot-
strapping is about d times faster, hence we can achieve a similar throughput
as in the full mode.

1.2 Application: Machine Learning over Encrypted Data

Machine learning over encrypted data is one of the signature use-cases of FHE
and an active research area. Research works in this area can be divided into two
categories: evaluating a pre-trained machine learning model over private testing
data, or training a new model on private training data. Often times, the model
evaluation requires a lower-depth circuit, and thus can be achieved using LHE.
On the other hand, training a machine learning model requires a much deeper
circuit, and bootstrapping becomes necessary. This may explain that there are
few works in the model training direction.

In the model evaluation case (e.g. [4,5,23,24]), one encodes the data as either
polynomials in Rt, or as elements of Zt when batching is used. One distinguish-
ing feature of these methods is that the scheme maintains the full precision of
plaintexts as evaluations are performed, in contrast to computations over plain-
text data, where floating point numbers are used and only a limited precision is
maintained. This implies that the plaintext modulus t needs to be taken large
enough to “hold the result”.

In the training case, because of the large depth and size of the circuit, the
above approach is simply infeasible: t needs to be so large that the homomorphic
evaluations become too inefficient, as pointed out in [17]. Therefore, some analog
of plaintext truncation needs to be performed alongside the evaluation. However,
in order to perform the truncation function homomorphically, one has to express
the function as a polynomial. Fortunately, our digit removal algorithm can also
be used as a truncation method over Zpr . Therefore, we think that improving
bootstrapping for prime power plaintext modulus has practical importance.

There is one other work [12] which does not fall into either categories. It per-
forms homomorphic evaluation over point numbers and outputs an approximate
result. It modifies the BGV and FV schemes: instead of encoding noise and mes-
sage in different parts of a ciphertexts, one puts noise in lower bits of messages,
and uses modulus switching creatively as a plaintext management technique.
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As a result, they could evaluate deeper circuits with smaller HE parameters. It
is then an interesting question whether there exists an efficient bootstrapping
algorithm for this modified scheme.

1.3 Related Works

After bootstrapping was introduced by Gentry at 2009, many methods are pro-
posed to improve its efficiency. Existing bootstrapping implementations can be
classified into three branches. The first branch [21,25] builds on top of some-
what homomorphic encryption schemes based on the RLWE problem. The sec-
ond branch aims at minimizing the time to bootstrap one single bit of message
after each boolean gate evaluation. Works in this direction include [3,14,15,18].
They were able to obtain very fast results: less than 0.1 s for a single bootstrap-
ping. The last branch considers bootstrapping over integer-based homomorphic
encryption schemes under the sparse subset sum problem assumption. Some
works [13,16,28,31] used a squashed decryption circuit and evaluate bit-wise
(or digit-wise) addition in encrypted state instead of doing a digit extraction. In
[11], they show that using digit extraction for bootstrapping results in lower com-
putational complexity while consuming a similar amount of depth as previous
approaches.

Our work falls into the first branch. We aim at improving the bootstrapping
procedure for the two schemes BGV and FV, with the goal of improving the
throughput and after level for bootstrapping in case of large plaintext modulus.
Therefore, our main point of comparison in this paper will be the work of Halevi
and Shoup [25]. We note that a digit extraction procedure is used for all branches
except the second one. Therefore, improving the digit extraction procedure is one
of the main tasks for an efficient bootstrapping algorithm.

1.4 Roadmap

In Sect. 2, we introduce notations and necessary background on the BGV and
FV schemes. In Sect. 3, after reviewing the digit extraction procedure of [25], we
define the lowest digit removal polynomials, and use them to give an improved
digit removal algorithm. In Sect. 4, we describe our method for bootstrapping
in the FV scheme, and how our algorithm leads to an improved bootstrapping
for BGV scheme when the plaintext modulus is pr with r > 1. In Sect. 5, we
present and discuss our performance results. Finally, in Sect. 6 we conclude with
future directions. Proofs and more details regarding the SEAL implementation
of bootstrapping are included in the Appendix.
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2 Background

2.1 Basics of BGV and FV Schemes

First, we introduce some notations. Both BGV and FV schemes are initialized
with integer parameters m, t and q. Here m is the cyclotomic field index, t is the
plaintext modulus, and q is the coefficient modulus. Note that in BGV, it is
required that (t, q) = 1.

Let φm(x) denote the m-th cyclotomic polynomial and let n denote its degree.
We use the following common notations R = Z[x]/(φm(x)), Rt = R/tR, and
Rq = R/qR. In both schemes, the message is a polynomial m(x) in Rt, and the
secret key s is an element of Rq. In practice, s is usually taken to be ternary
(i.e., each coefficient is either −1, 0 or 1) and often sparse (i.e., the number of
nonzero coefficients of s are bounded by some h � n). A ciphertext is a pair
(c0, c1) of elements in Rq.

Decryption Formula. The decryption of both schemes starts with a dot-
product with the extended secret key (1, s). In BGV, we have

c0 + c1s = m(x) + tv + αq,

and decryption returns m(x) = ((c0+c1s) mod q) mod t. In FV, the equation is

c0 + c1s = Δm(x) + v + αq

and decryption formula is m(x) = � (c0+c1s) mod q
Δ �.

Plaintext Space. The native plaintext space in both schemes is Rt, which
consists of polynomials with degree less than n and integer coefficients between
0 and t − 1. Additions and multiplications of these polynomials are performed
modulo both φm(x) and t.

A widely used plaintext-batching technique [30] turns the plaintext space
into a vector over certain finite rings. Since batching is used extensively in our
bootstrapping algorithm, we recall the details here. Suppose t = pr is a prime
power, and assume p and m are co-prime. Then φm(x) mod pr factors into a
product of k irreducible polynomials of degree d. Moreover, d is equal to the
order of p in Z

∗
m, and k is equal to the size of the quotient group Z

∗
m/〈p〉.

For convenience, we fix a set S = {s1, . . . , sk} of integer representatives of the
quotient group. Let f(x) be one of the irreducible factors of φm(x) mod pr, and
consider the finite extension ring

E = Zpr [x]/(f(x)).

Then all primitive m-th roots of unity exist in E. Fix ζ ∈ E to be one such root.
Then we have a ring isomorphism

Rt → Ek

m(x) 	→ (m(ζs1),m(ζs2), . . . ,m(ζsk))
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Using this isomorphism, we can regard the plaintexts as vectors over E, and
additions/multiplications between the plaintexts are executed coefficient-wise
on the components of the vectors, which are often called slots.

In the reset of the paper, we will move between the above two ways of viewing
the plaintexts, and we will distinguish them by writing them as polynomials (no
batching) and vectors (batching). For example, Enc(m(x)) means an encryption
of m(x) ∈ Rt, whereas Enc((m1, . . . ,mk)) means a batch encryption of a vector
(m1, . . . ,mk) ∈ Ek.

Modulus Switching. Modulus switching is a technique which scales a cipher-
text (c0, c1) with modulus q to another one (c′

0, c
′
1) with modulus q′ that decrypts

to the same message. In BGV, modulus switching is a necessary technique to
reduce the noise growth. Modulus switching is not strictly necessary for FV, at
least if used in the LHE mode. However, it will be of crucial use in our boot-
strapping procedure. More precisely, modulus switching in BGV requires q and
q′ to be both co-prime to t. For simplicity, suppose q ≡ q′ ≡ 1( mod t). Then
c′
i equals the closest integer polynomial to q′

q c such that c′
i ≡ ci mod t. For FV,

q and q′ do not need to be co-prime to t, and modulus switching simply does
scaling and rounding to integers, i.e., c′

i = �q′/qci�.
We stress that modulus switching slightly increase the noise-to-modulus ratio

due to rounding errors in the process. Therefore, one can not switch to arbitrarily
small modulus q′. On the other hand, in bootstrapping we often like to switch
to a small q′. The following lemma puts a lower bound on the size of q′ for FV
(the case for BGV is similar).

Lemma 1. Suppose c0+c1s = Δm+v+aq is a ciphertext in FV with |v| < Δ/4.
if q′ > 4t(1 + ||s||1), and (c′

0, c
′
1) is the ciphertext after switching the modulus to

q′, then (c′
0, c

′
1) also decrypts to m.

Proof. See appendix.

We remark that although the requirement in BGV that q and t are co-prime
seems innocent, it affects the depth of the decryption circuit when t is large.
Therefore, it results in an advantage for doing bootstrapping in FV over BGV.
We will elaborate on this point later.

Multiply and Divide by p in Plaintext Space. In bootstrapping, we will
use following functionalities: dividing by p, which takes an encryption of pm
mod pe and returns an encryption of m mod pe−1, and multiplying by p which
is the inverse of division. In BGV scheme, multiply by p can be realized via a fast
scalar multiplication (c0, c1) → ((pc0) mod q, (pc1) mod q). In the FV scheme,
these operations are essentially free, because if c0+c1s = � q

pe−1 �m+v+qα, then
the same ciphertext satisfies c0 + c1s = � q

pe �pm + v + v′ + qα for some small v′.
In the rest of the paper, we will omit these operations, assuming that they are
free to perform.
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3 Digit Removal Algorithm

The previous method for digit extraction used certain lifting polynomials with
good properties. We used a family of “lowest digit removal” polynomials which
have a stronger lifting property. We then combined these lowest digit removal
polynomials with the lifting polynomials to construct a new digit removal algo-
rithm.

For convenience of exposition, we use some slightly modified notations
from [25]. Fix a prime p. Let z be an integer with (balanced) base-p expansion
z =

∑e−1
i=0 zip

i. For integers i, j ≥ 0, we use zi,j to denote any integer with first
base-p digit equal to zi and the next j digits zero. In other words, we have zi,j ≡ zi

mod pj+1.

3.1 Reviewing the Digit Extraction Method of Halevi and Shoup

The bootstrapping procedure in [25] consists of five main steps: modulus switch-
ing, dot product (with an encrypted secret key), linear transform, digit extrac-
tion, and another “inverse” linear transform. Among these, the digit extraction
step dominates the cost in terms of both depth and work. Hence we will focus on
optimizing the digit extraction. Essentially, we need the following functionality.

DigitRemove(p, e, v) : fix prime p, for two integers v < e and an input u
mod pe, let u =

∑
uip

i with |ui| ≤ p/2 when p is odd (and ui = 0, 1 when
p = 2), returns

u〈v, . . . , e − 1〉 :=
e−1∑

i=v

uip
i.

We say this functionality “removes” the v lowest significant digits in base p
from an e-digits integer. To realize the above functionality over homomorphically
encrypted data, the authors in [25] constructed some special polynomials Fe(·)
with the following lifting property.

Lemma 2 (Corollary 5.5 in [25]). For every prime p and e ≥ 1 there exist a
degree p-polynomial Fe such that for every integer z0, z1 with z0 ∈ [p] and every
1 ≤ e′ ≤ e we have Fe(z0 + pe′

z1) = z0 (mod pe′+1).

For example, if p = 2, we can take Fe(x) = x2. One then uses these lifting
polynomials Fe to extract each digit ui from u in a successive fashion. The digit
extraction procedure is defined in Fig. 1 in [25] and can be visualized in the
following diagram.

In the diagram, the top-left digit is the input. This algorithm starts with
the top row. From left to right, it successively applies the lifting polynomial to
obtain all the blue digits. Then the green digits on the next row can be obtained
from subtracting all blue digits on the same diagonal from the input and then
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dividing by p. When this procedure concludes, the (i, j)-th digit of the diagram
will be ui,j . In particular, digits on the final diagonal will be ui,e−1−i. Then we
can compute

u〈v, · · · , e − 1〉 = u −
v−1∑

i=0

ui,e−1−i · pi.

u = u0,0 u0,1 · · · u0,r−1 · · · u0,e−1

u1,0 u1,1 · · · u1,r−2 · · · u1,e−2

...
... . .

.

ue−2,0 ue−2,1

ue−1,0

3.2 Lowest Digit Removal Polynomials

We first stress that in the above method, it is not enough to obtain the ui

mod p. Rather, one requires ui,e−1−i. The reason is one has to clear the higher
digits to create numbers with base -p expansion (ui, 0, 0, . . . , 0

︸ ︷︷ ︸
e−1−i

), otherwise it will

mess up the u′
i for i′ > i. Previously, to obtain ui,j , one needs to apply the lifting

polynomial j times. Fortunately, there is a polynomial of lower degree with the
same functionality, as shown in the following lemma.

Lemma 3. Let p be a prime and e ≥ 1. Then there exists a polynomial f of
degree at most (e − 1)(p − 1) + 1 such that for every integer 0 ≤ x < pe, we have

f(x) ≡ x − (x mod p) mod pe,

where |x mod p| ≤ (p − 1)/2 when p is odd.

Proof. We complete the proof sketch in [26] by adding in the necessary details.
To begin, we introduce a function

FA(x) :=
∞∑

j=0

(−1)j

(
A + j − 1

j

)(
x

A + j

)

.

This function FA(x) converges on every integer, and for M ∈ Z,

FA(M) =

{
1 if M > A

0 otherwise.

Define f̂(x) as

f̂(x) = p

∞∑

j=1

Fj·p(x) =
∞∑

m=p

a(m)
(

x

m

)

. (1)
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We can verify that the function f̂(x) satisfies the properties in the lemma (for
the least residue system), but its degree is infinite. So we let

f(x) =
(e−1)(p−1)+1∑

m=p

a(m)
(

x

m

)

.

Now we will prove that the polynomial f(x) has p-integral coefficients and has
the same value with f̂(x) for x ∈ Zpe .

Claim. f(x) has p-integral coefficients and a(m)
(

x
m

)
is multiple of pe for all x ∈ Z

when m > (e − 1)(p − 1) + 1.

Proof. If we rewrite the Eq. 1,

f̂(x) = p
∞∑

j=1

Fj·p(x) = p
∞∑

j=1

( ∞∑

i=0

(−1)i

(
jp + i − 1

i

)(
x

jp + i

))

.

By replacing the jp + i to m, we arrive at the following equation:

a(m) = p

∞∑

k=1

(−1)m−kp

(
m − 1
m − kp

)

.

In the equation, we can notice that the term (−1)m−kp
(

m−1
m−kp

)
is the coefficient

of Xm−pk in the Taylor expansion of (1+X)−kp. Therefore, a(m) is actually the
coefficient of Xm in the Taylor expansion of

∑∞
k=1 pXkp(1 + X)−kp.

∞∑

k=1

pXkp(1 + X)−kp = p

∞∑

k=1

(
X

X + 1
)kp = p

(1 + X)p

(1 + X)p − Xp

We can get a m-th coefficient of Taylor expansion from following equation:

p
(1 + X)p

(1 + X)p − Xp
= p

(1 + X)p

1 + B(X)
= p(1 + X)p(1 − B(X) + B(X)2 − · · · ).

Because B(X) is multiple of pX, the coefficient of Xm can be obtained from a
finite number of powers of B(X). We can also find out the degree of B(X) is
p − 1, so

Deg(p(1 + X)p(1 − B(X) + · · · + (−1)(e−2)B(X)(e−2))) = (e − 1)(p − 1) + 1.

Hence these terms do not contribute to Xm. This means that a(m) is m-th
coefficient of

p(1 + X)pB(X)e−1
∞∑

i=0

(−1)iB(X)i

which is multiple of pe (since B(X) is multiple of p). �
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By the claim above, the p-adic valuation of a(m) is larger than m
p−1 and it

is trivial that the p-adic valuation of m! is less than m
p−1 . Therefore, we proved

that the coefficients of f(x) are p-integral. Indeed, we proved that a(m)
(

x
m

)
is

multiple of pn for any integer when m > (e − 1)(p − 1) + 1. This means that
f̂(x) = f(x) mod pe for all x ∈ Zpe .

As a result, the degree (e−1)(p−1)+1 polynomial f(x) satisfies the conditions
in lemma for the least residue system. For balanced residue system, we can just
replace f(x) by f(x + (p − 1)/2). �

Note that the above polynomial f(x) removes the lowest base-p digit in an
integer. It is also desirable sometimes to “retain” the lowest digit, while setting
all the other digits to zero. This can be easily done via g(x) = x − f(x). In the
rest of the paper, we will denote such polynomial that retains the lowest digit
in the balanced base-p representation by Ge,p(x) (or Ge(x) if p is clear from
context). In other words, if x ∈ Zpe and x ≡ x0 mod p with |x0| ≤ p/2, then
Ge(x) = x0 mod pe.

Example 4. When e = 2, we have f(x) = −x(x−1) · · · (x−p+1) and G2(x) =
x − f(x + (p − 1)/2).

We recall that in the previous method, it takes degree pe−i−1 and (e − i − 1)
evaluations of polynomials of degree p to obtain ui,e−i. With our lowest digit
removing polynomial, it only takes degree (e − i − 1)(p − 1) + 1. As a result,
by combining the lifting polynomials and lowest digit removing polynomials, we
can make the digit extraction algorithm faster with lower depth.

The following diagram illustrates how our new digit removal algorithm works.
First, each blue digit is obtained by evaluating a lifting polynomial to the entry
on its left. Then, the red digit on each row is obtained by evaluating the remain-
ing lowest digit polynomial to the left-most digit on its row. Green digits are
obtained by subtracting all the blue digits on the same diagonal from the input,
and dividing by p. Finally, in order to remove the v lowest digits, we subtract
all the red digits from the input.

u0,0 u0,1 · · · u0,v−2 u0,v−1 u0,e−1

u1,0 u1,1 · · · u1,v−2 u1,e−2

...
uv−2,0 uv−2,1 uv−2,e−r+1

uv−1,0 uv−1,e−v

We remark that the major difference of this procedure is that we only need
to populate the top left triangle of side length v, plus the right most v-by-1
diagonal, where as the previous method needs to populate the entire triangle of
side length e.

Moreover, the red digits in our method has lower depth: in the previous
method, the i-th red digit is obtained by evaluating lift polynomial (e − i − 1)
times, hence its degree is pe−i−1 on top of the i-th green digit. However, in our
method, its degree is only (p − 1)(e − i − 1) + 1 on top of the i-th green digit,
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which has degree at most pi, the total degree of the algorithm is bounded by the
maximum degree over all the red digits, that is

max
0≤i<r

pi((e − 1 − i)(p − 1) + 1).

Since each individual term is bounded by epv, the total degree of the procedure
is at most epv. This is lower than pe−1 in the previous method when v ≤ e − 2
and p > e.

3.3 Improved Algorithm for Removing Digits

We discuss one further optimization to remove v lowest digits in base p from an
e-digit integer. If � is an integer such that p� > (p − 1)(e − 1) + 1, then instead

Data: x ∈ Zpe

Result: x − [x]pv mod pe

// Fi(x) : lifting polynomial with Fi(x + O(pi)) = x + O(pi+1)

// Gi(x) : lowest digit retain polynomial with Gi(x) = [x]p mod pi

Find largest � such that p� < (p − 1)(e − 1) + 1;
Initialize res = x;
for i ∈ [0, v) do

// evaluate lowest digit retain polynomial

Ri = Ge−i(x
′) ; // Ri = xi mod pe−i

Ri = Ri · pi ; // Ri = xip
i mod pe

if i < v − 1 then
// evaluate lifting polynomial

Li,0 = F1(x
′)

end
for j ∈ [0, � − 2) do

if i + j < v − 1 then
Li,j+1 = Fj+2(Li,j)

end

end
if i < v − 1 then

x′ = x;
for j ∈ [0, i + 1) do

if i − j > � − 2 then
x′ = x′ − Rj

end
else

x′ = x′ − Lj,i−j

end

end

end
res = res − Ri;

end
return res;

Algorithm 1. Removing v lowest digits from x ∈ Zpe
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of using lifting polynomials to obtain the �-th digit, we can just use the result
of evaluating the Gi polynomial (or, the red digit) to obtain the green digit in
the next row. This saves some work and also lowers the depth of the overall
procedure. This optimization is incorporated into Algorithm 1.

The depth and computation cost of Algorithm 1 is summarized in Theo-
rem 5. The depth is simply the maximum depth of all the removed digits. To
determine the computational cost to evaluate Algorithm 1 homomorphically, we
need to specify the unit of measurement. Since scalar multiplication is much
faster than FHE schemes than ciphertext multiplication, we choose to mea-
sure the computational cost by the number of ciphertext multiplications. The
Paterson-Stockmeyer algorithm [29] evaluates a polynomial of degree d with
∼ √

2d non-constant multiplications, and we use that as the base of our estimate.

Theorem 5. Algorithm 1 is correct. Its depth is bounded above by

log(epv) = v log(p) + log(e).

The number of non-constant multiplications is asymptotically equal to
√

2pev.

Table 1 compares the asymptotic depth and number of non-constant multi-
plications between our method for digit removal and the method of [25]. From
the table, we see that the advantage of our method grows with the difference
e − v. In the bootstrapping scenario, we have e − v = r, the exponent of the
plaintext modulus. Hence, our algorithm compares favorably for larger values
of r.

Table 1. Complexity of DigitRemove(p, e, v)

Method Depth No. ciphertext multiplications

[25] e log(p) 1
2
e2

√
2p

This work v log(p) + log(e)
√

2pev

4 Improved Bootstrapping for FV and BGV

4.1 Reviewing the Method of [25]

The bootstrapping for FV scheme follows the main steps from [25] for the BGV
scheme, while we make two modifications in modulus switching and digit extrac-
tion. First, we review the procedure in [25].

Modulus Switching. One fixes some q′ < q and compute a new ciphertext c′

which encrypts the same plaintext but has much smaller size.
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Fig. 1. Bootstrapping procedure

Dot Product with Bootstrapping Key. Here we compute homomorphically
the dot product 〈c′, s〉, where s is an encryption of a new secret key s′ under a
large coefficient modulus Q and a new plaintext modulus t′ = pe. The result of
this step is an encryption of m + tv under the new parameters (s′, t′, Q).

Linear Transformation. Let d denote the multiplicative order of p in Z
∗
m

and k = n/d be the number of slots supported in plaintext batching. Suppose
the input to linear transform is an encryption of

∑n−1
i=0 aix

i, then the output
of this step is d ciphertexts C0, . . . , Cd−1, where Cj is a batch encryption of
(ajk, ajk+1, . . . , ajk+k−1).

Digit Extraction. When the above steps are done, we obtain d ciphertexts,
where the first ciphertext is a batch encryption of

(m0 · pe−r + e0,m1 · pe−r + e1, · · · ,mk−1 · pe−r + ek−1).

Assuming that |ei| ≤ pe−r

2 for each i, we will apply Algorithm 1 to remove the
lower digits ei, resulting in d new ciphertexts encrypting Δmi for 0 ≤ i < n in
their slots. Then we perform a free division to get d ciphertexts, encrypting mi

in their slots.

Inverse Linear Transformation. Finally, we apply another linear transfor-
mation which combines the d ciphertexts into one single ciphertext encrypting
m(x).

4.2 Our Modifications

FV. Suppose t = pr is a prime power, and we have a ciphertext (c0, c1) modulo
q. Here, instead of switching to a modulus q′ co-prime to p as done in BGV, we
switch to q′ = pe, and obtain ciphertext (c′

0, c
′
1) such that

c′
0 + c′

1s = pe−rm + v + αpe.
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Then, one input ciphertext to the digit extraction step will be a batch encryption

Enc((pe−rm0 + v0, . . . , p
e−rmk + vk))

under plaintext modulus pe. Hence this step requires DigitRemove(p, e, e − r).

BGV. To apply our ideas to the digit extraction step in BGV bootstrapping,
we simply replace the algorithm in [25] with our digit removal Algorithm 1.

4.3 Comparing Bootstrapping Complexities

The major difference in the complexities of bootstrapping between the two
schemes comes from the parameter e. In case of FV, by Lemma 1, we can choose
(roughly) e = r + logp(||s||1)). On the other hand, the estimate of e for correct
bootstrapping in [25] for the BGV scheme is

e ≥ 2r + logp(||s||1).
We can analyze the impact of this difference on the depth of digit removal, and
therefore on the depth of bootstrapping. Setting v = e − r in Theorem 5, the
depth for the BGV case is

(r + logp(||s||1) log p + log(2r + logp(||s||1)).
Substituting r = logp(t) into the above formula and throwing away lower order
terms, we obtain the improved depth for the digit extraction in step BGV boot-
strapping as

log t + log(||s||1) + log(logp(t
2 · ||s||1)) ≈ log t + log(||s||1).

Note that the depth grows linearly with the logarithm of the plaintext modulus
t. On the other hand, the depth in the FV case turns out to be

log(||s||1) + log(logp(t · ||s||1)).
which only scales with log log t. This is smaller than BGV in the large plaintext
modulus regime.

We can also compare the number of ciphertext multiplications needed for
the digit extraction procedures. Replacing v with e − r in the second formula in
Theorem 5 and letting e = 2r+logp(||s||1) for BGV (resp. e = r+logp(||s||1) for
FV), we see that the number of ciphertext multiplications for BGV is asymp-
totically equal to

√
2p

(log p)3/2
(2 log(t) + log(||s||1))1/2(log(t) + log(||s||1)).

In the FV case, the number of ciphertext multiplications is asymptotically
equal to √

2p

(log p)3/2
(log(t) + log(||s||1))1/2 log(||s||1)).
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Hence when t is large, the digit extraction procedure in bootstrapping requires
less work for FV than BGV.

For completeness, we also analyze the original digit extraction method in
BGV bootstrapping. Recall that the previous algorithm has depth (e − 1) log p,
and takes about 1

2e2 homomorphic evaluations of polynomials of degree p. If we
use the Paterson-Stockmeyer method for polynomial evaluation, then the total
amount of ciphertext multiplications is roughly 1

2e2
√

2p. Plugging in the lower
bound e ≥ 2r + logp(||s||1), we obtain an estimate of depth and work needed
for the digit extraction step in the original BGV bootstrapping method in [25].
Table 2 summarizes the cost for three different methods.

Table 2. Asymptotic complexity of digit extraction step in bootstrapping. Here h =
||s||1 is the 1-norm of the secret key, and t = pr is the plaintext modulus.

Method Depth No. ciphertext multiplications

[25] (BGV) 2 log(t) + log(h)
√
2p

2(log p)2
(2 log(t) + log(h))2

This work (BGV) log(t) + log(h)
√
2p

(log p)3/2
(2 log(t) + log(h))1/2(log(t) + log(h))

This work (FV) log log(t) + log(h)
√
2p

(log p)3/2
(log(t) + log(h))1/2 log(h)

Fixing p and h in the last column of Table 2, we can see how the number of
multiplications grows with log t. The method in [25] scales by (log t)2, while our
new method for BGV improves it to (log t)3/2. In the FV case, the number of
multiplications scales by only (log t)1/2.

Remark 1. As another advantage of our revised BGV bootstrapping, we make
a remark on security. From Table 2, we see that in order for bootstrapping to
be more efficient, it is advantageous to use a secret key with smaller 1-norm.
For this reason, both [25] and this work choose to use a sparse secret key, and a
recent work [2] shows that sparseness can be exploited in the attacks. To resolve
this, note that it is easy to keep the security level in our situation: since our
method reduces the overall depth for the large plaintext modulus case, we could
use a smaller modulus q, which increases the security back to a desired level.

4.4 Slim Bootstrapping Algorithm

The bootstrapping algorithm for FV and BGV is expensive also due to the
d repetitions of digit extraction. For some parameters, the extension degree d
can be large. However, many interesting applications requires arithmetic over
Zpr rather than its degree-d extension ring, making it hard to utilize the full
plaintext space.

Therefore we will introduce one more bootstrapping algorithm which is called
“slim” bootstrapping. This bootstrapping algorithm works with the plaintext
space Z

k
t , embedded as a subspace of Rt through the batching isomorphism.
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This method can be adapted using almost the same algorithm as the original
bootstrapping algorithm, except that we only need to perform one digit extrac-
tion operation, hence it is roughly d times faster than the full bootstrapping
algorithm. Also, we need to revise the linear transformation and inverse linear
transformation slightly. We give an outline of our slim bootstrapping algorithm
below (Fig. 2).

Fig. 2. Slim bootstrapping

Inverse Linear Transformation. We take as input a batch encryption of
(m1 . . . ,mk) ∈ Z

k
pr . In the first step, we apply an “inverse” linear transformation

to obtain an encryption of m1 +m2x
d + . . .+mkxd(k−1). This can be done using

k slot permutations and k plaintext multiplications.

Modulus Switching and Dot Product with Bootstrapping Key. These
two steps are exactly the same as the full bootstrapping procedure. After these
steps, we obtain a (low-noise) encryption of

(Δm1 + v1 + (Δm2 + v2)xd + . . . + (Δmk + vk)xd(k−1)).

Linear Transformation. In this step, we apply another linear transformation
consisting of k slot permutations and k scalar multiplications to obtain a batch
encryption of (Δm1 + v1, . . . ,Δmk + vk). Details of this step can be found in
the appendix.

Digit Extraction. Then, we apply digit-removal algorithm to remove the noise
coefficients vi, resulting in a batch encryption of (Δm1, . . . ,Δmk). We then
execute the free division and obtain a batch encryption of (m1, . . . ,mk). This
completes the slim bootstrapping process.
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5 Implementation and Performance

We implemented both the full mode and the slim mode of bootstrapping for FV
in the SEAL library. We also implemented our revised digit extraction procedure
in HElib. Since SEAL only supports power-of-two cyclotomic rings, and p needs
to be co-prime to m in order to use batching, we can not use p = 2 for SEAL
bootstrapping. Instead we chose p = 127 and p = 257 because they give more
slots among primes of reasonable size.

The following tables in this section illustrate some results. We used sparse
secrets with hamming weight 64 and 128, and we estimated security levels using
Martin Albrecht’s LWE estimator [2].

Table 3. Comparison of digit removal algorithms in HElib (Toshiba Portege Z30t-C
laptop with 2.6 GHz CPU and 8GB memory)

(p, e, v) [25] Our method

Timing (s) Before/After level Timing (s) Before/After level

(2, 11, 5) 15 23/3 16 23/10

(2, 21, 13) 264 56/16 239 56/22

(5, 6, 3) 49.5 39/5 30 39/13

(17, 4, 2) 61.2 38/5 35.5 38/14

(31, 3, 1) 26.3 32/8 12.13 32/18

(127, 3, 1) 73.2 42/3 38 42/20

We implemented Algorithm 1 in HElib and compared with the results of the
original HElib implementation for removing v digits from e digits. From Table 3,
we see that for e ≥ v+2 and large p, our digit removal procedure can outperform
the current HElib implementation in both depth and work. Therefore, for these
settings, we can replace the digit extraction procedure in the recryption function
in HElib, and obtain a direct improvement on after level and time for recryption.
When p = 2 and r, e are small, the current HElib implementation can be faster
due to the fact that the lifting polynomial is Fe(x) = x2 and squaring operation
is faster than generic multiplication. Also, when e = v + 1, i.e., the task is to
remove all digits except the highest one, our digit removal method has similar
performance as the HElib counterpart.

Tables 4 and 5 present timing results for the full and slim modes of boot-
strapping for FV implemented in SEAL. In both tables, the column labeled
“recrypt init. time” shows the time to compute the necessary data needed in
bootstrapping. The “recrypt time” column shows the time it takes to perform
one bootstrapping. The before (resp. after) level shows the maximal depth of
circuit that can be evaluated on a freshly encrypted ciphertext (resp. freshly
bootstrapped ciphertext). Here R(pr, d) denotes a finite ring with degree d over
base ring Zpr , and GF(pr) denotes the finite field with pr elements.
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Table 4. Time table for bootstrapping for FV scheme, hw= 128 (Intel(R) Core(TM)
i7-4770 CPU with 3.4 GHZ CPU and 32 GB memory)

Parameters Result

n log q Plaintext
space

Slots Security Fresh/After
level

Recrypt
time (s)

Memory
usage
(GB)

Recrypt
init.
time (s)

16384 558 GF(127256) 64 92.9 24/7 2027 8.9 193

16384 558 GF(257128) 128 92.9 22/4 1381 7.5 242

32768 806 R(1272, 256) 64 126.2 32/12 21295 27.6 658

32768 806 R(2572, 128) 128 126.2 23/6 11753 26.6 732

Table 5. Time table for slim bootstrapping for FV scheme, hw= 128 (Intel(R)
Core(TM) i7-4770 CPU with 3.4 GHZ CPU and 32 GB memory)

Parameters Result

n log q Plaintext
space

Number
of slots

Security
parame-
ter

Fresh/After
level

Recrypt
init.
time (s)

Memory
usage
(GB)

Recrypt
time (s)

16384 558 Z127 64 92.9 23/10 57 2.0 6.75

32768 806 Z1272 64 126.2 25/11 59 2.0 30.2

32768 806 Z1273 64 126.2 20/6 257 8.9 34.5

16384 558 Z257 128 92.9 22/7 59 2.0 10.8

32768 806 Z257 128 126.2 31/15 207 7.4 36.8

32768 806 Z2572 128 126.2 23/7 196 7.4 42.1

Comparing the corresponding entries from Tables 4 and 5, we see that the
slim mode of bootstrapping is either close to or more than d times faster than
the full mode.

6 Future Directions

In this work, we designed bootstrapping algorithms for the FV scheme whose
depth depend linearly on log log t. For the BGV scheme, we were able to improve
the dependence on t from 2 log t to log t. One interesting direction is to explore
whether we can further improve the bootstrapping depth for BGV.

We also presented a slim mode of bootstrapping, which operates on a sub-
space of the plaintext space equivalent to a vector over Zpr . The slim mode has
a similar throughput as the full mode while being much faster. For example, it
takes less than 7 s to bootstrap a vector in Z

64
127 with after level 10. However,

the ciphertext sizes of the slim mode are the same as those of the full mode,
resulting in a larger ciphertext/message expansion ratio. It would be interesting
to investigate whether we could reduce the ciphertext sizes while keeping the
performance results.
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A Optimizing the Linear Transform for Slim
Bootstrapping

In our slim mode of bootstrapping, we used a linear transform which has the
following property: the input is an encryption of

∑
mix

i, and the output is a
batch encryption of (m0,md, . . . ,md(k−1)). A straightforward implementation
of this functionality requires n slot permutations and n scalar multiplications.
However, in the case when n is a power of 2, we can break down the linear
transform into two parts, which we call coefficient selection and sparse linear
transform. This reduces the number of slot permutations to log(d) + k and the
number of scalar multiplications to k.

A.1 Coefficient Selection

The first part of the optimized linear transform functionality can be viewed as a
coefficient selection. This process gets input Enc(m(x)) and outputs Enc(m′(x))
with m′(x) =

∑n/d−1
i=0 mid ·xid. In other words, it selects the coefficients of m(x)

where the exponents of x are divisible by d. The following algorithm is specified
to the case when n is a power of two. Using the property that xn = −1 in the
ring R, we can construct an automorphism φi of R such that

φi : X2i → Xn+2i = −X2i .

For example, φ0(·) negates all odd coefficients, because φ0 maps X to −X. This
means that 1

2 (φ0(m(x)) + m(x)) will remove all odd terms and double the even
terms. Using this property, we construct a recursive algorithm which return
m′(x) =

∑n/d−1
i=0 mid · xid for power of two d.

– For given m(x), First compute m0(x) = m(x) + φ0(m(x)).
– Recursively compute mi(x) = φi(mi−1(x)) + mi−1(x) for 1 ≤ i ≤ log2 d.
– Return m′(x) = d−1 · mlog2 d mod t for plain modulus t.

The function φi : X → X
n+2i

2i can be evaluated homomorphically by using the
same technique used in slot permutation. Another operation is just multiplying
by d−1 mod t. Hence we can obtain Enc(m′(x)). This process needs log d slot
permutations and additions.

A.2 Sparse Linear Transform

The desired functionality of the sparse linear transform is: take as input an
encryption c of

∑
mix

id and output a batch encryption of (m0,m1 . . . ,mk−1).
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We claim that this functionality can be expressed as
∑k−1

i=0 λiσsi
(c), where λi

are pre-computed polynomials in Rt and the si form a set of representatives
of Z

∗
m/〈p〉. This is because the input plaintext only has k nonzero coefficients

m0, . . . ,mk−1. Hence for each i it is possible to write mi as a linear combination
of the evaluations of the input at k different roots of unity. Therefore, this step
only requires k slot permutations and k plaintext multiplications. We can also
adapt the babystep-giantstep method to reduce the number of slot permutations
to O(

√
k), and we omit further details.

B Memory Usage

In our implementation of the bootstrapping procedure in SEAL, we pre-compute
some data which are used in the linear transforms. The major part of the memory
consumption consists of slot-permutation keys and plaintext polynomials. More
precisely, each plaintext polynomial has size n log t bits, and the size of one
slot-permutation key in SEAL is (2n log q) · � log q

62 �.
Here we report the number of such keys and plaintext polynomials used in

our bootstrapping. In the full mode, we need 2
√

n slot-permutation keys, and
2
√

n + d + k plaintext polynomials.
On the other hand, the slim mode of bootstrapping in SEAL requires con-

siderably less memory. Both inverse linear transform and the linear transform
can be implemented via the babystep-giantstep technique, each using only 2

√
k

slot-permutation keys and k plaintext polynomials.

C Proofs

C.1 Proof of Lemma 1

Lemma 1. Suppose c0+c1s = Δm+v+aq is a ciphertext in FV with |v| < Δ/4.
if q′ > 4t(1 + ||s||1), and (c′

0, c
′
1) is the ciphertext after switching the modulus to

q′, then (c′
0, c

′
1) also decrypts to m.

Proof. We define the invariant noise to be the term vinv such that

t

q
(c0 + c1s) = m + vinv + rt.

Decryption is correct as long as ||vinv|| < 1
2 . Now introducing the new modulus

q′, we have
t

q′

(
q′

q
c0 +

q′

q
c1s

)

= m + vinv + rt.

Taking nearest integers of the coefficients on the left hand side, we arrive at

t

q′

(

�q′

q
c0� + �q′

q
c1�s

)

= m + vinv + rt + δ,
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with the rounding error ||δ|| ≤ t/q′(1 + ||s||1). Thus the new invariant noise is

vinv′ = vinv + δ

We need ||δ|| < 1/4 for correct decryption. Hence the lower bound on q′ is

q′ > 4t(1 + ||s||1).

C.2 Proof of Theorem 5

Proof. Correctness of Algorithm 1 is easy to show. In fact, the only place we
deviate from the algorithm in [25] for digit extraction is that we used the digits
Ri to replace xi,j in certain places. Since Ri has lowest digit xi followed by
(e − i − 1) zeros, we can actually use it to replace xi,j for any j ≤ e − i − 1 and
still maintain the correctness.

To analyze the depth, note that we used polynomials of degree pi to compute
zi,i for 0 ≤ i ≤ v − 1. Then, to compute zi,e−1−i, a polynomial of degree (e −
1 − i)(p − 1) + 1 is used. Since the final result is a sum of the terms zi,e−1−i for
0 ≤ i < v, the degree of the entire algorithm is given by

max
0≤i<v

pi((e − 1 − i)(p − 1) + 1)

Since each individual term above is bounded by epv, the degree is at most epv.
Hence the depth of the algorithm is bounded by log(e) + v log(p).

We now estimate the amount of work of our algorithm in terms of non-
constant multiplications. The work consists of two parts: evaluating lift poly-
nomials and lowest digit removal polynomials. Let W (n) denote the number of
non-constant multiplications to evaluate a polynomial of degree n. Then the
total work is

v∑

i=1

W ((e − i)(p − 1) + 1) + �vW (p)

where � = �logp((e − 1)(p − 1) + 1)� is the optimization parameter used in
Algorithm 1. Since we used the Paterson-Stockmeyer algorithm for polynomial
evaluation, we have W (n) ∼ √

2n. Substituting this estimate into the above
formula, we obtain

v∑

i=1

√
2((e − i)(p − 1) + 1) + �v

√
2p

∼
√

2p

v∑

i=1

√
e − i +

√
2p(1 + logp(e))v

∼
√

2pv(
√

e + logp(e))

∼
√

2pev.

This completes the proof.
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13. Cheon, J.H., Stehlé, D.: Fully homomophic encryption over the integers revisited.
In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 513–
536. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5 20

14. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster fully homomorphic
encryption: bootstrapping in less than 0.1 seconds. In: Cheon, J.H., Takagi, T.
(eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 3–33. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53887-6 1

15. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Improving TFHE: faster
packed homomorphic operations and efficient circuit bootstrapping (2017). https://
eprint.iacr.org/2017/430

https://doi.org/10.1007/978-3-319-29485-8_20
https://doi.org/10.1007/978-3-319-29485-8_20
https://doi.org/10.1007/978-3-319-22174-8_7
http://eprint.iacr.org/2017/333
http://eprint.iacr.org/2016/1117
http://eprint.iacr.org/2016/1117
https://doi.org/10.1007/978-3-642-45239-0_4
https://doi.org/10.1007/978-3-642-45239-0_4
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1007/978-3-642-22792-9_29
https://doi.org/10.1007/978-3-642-22792-9_29
http://eprint.iacr.org/2016/421
https://doi.org/10.1007/978-3-662-46800-5_20
https://doi.org/10.1007/978-3-662-53887-6_1
https://eprint.iacr.org/2017/430
https://eprint.iacr.org/2017/430


Homomorphic Lower Digits Removal and Improved FHE Bootstrapping 337

16. Coron, J.-S., Lepoint, T., Tibouchi, M.: Scale-invariant fully homomorphic encryp-
tion over the integers. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp.
311–328. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54631-
0 18

17. Costache, A., Smart, N.P., Vivek, S., Waller, A.: Fixed point arithmetic in SHE
scheme. IACR Cryptology ePrint Archive, 2016:250 (2016)

18. Ducas, L., Micciancio, D.: FHEW: bootstrapping homomorphic encryption in less
than a second. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9056, pp. 617–640. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46800-5 24

19. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. Cryp-
tology ePrint Archive, Report 2012/144 (2012). http://eprint.iacr.org/

20. Gentry, C.: Fully homomorphic encryption using ideal lattices. STOC 9, 169–178
(2009)

21. Gentry, C., Halevi, S., Smart, N.P.: Better bootstrapping in fully homomorphic
encryption. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS,
vol. 7293, pp. 1–16. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-30057-8 1

22. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75–92. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4 5

23. Gilad-Bachrach, R., Dowlin, N., Laine, K., Lauter, K., Naehrig, M., Wernsing, J.,
Cryptonets: applying neural networks to encrypted data with high throughput and
accuracy. In: International Conference on Machine Learning, pp. 201–210 (2016)

24. Graepel, T., Lauter, K., Naehrig, M.: ML confidential: machine learning on
encrypted data. In: Kwon, T., Lee, M.-K., Kwon, D. (eds.) ICISC 2012. LNCS,
vol. 7839, pp. 1–21. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-37682-5 1

25. Halevi, S., Shoup, V.: Bootstrapping for HElib. In: Oswald, E., Fischlin, M. (eds.)
EUROCRYPT 2015. LNCS, vol. 9056, pp. 641–670. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46800-5 25

26. Griffin, M.: Lowest degree of polynomial that removes the first digit of an integer
in base p. MathOverflow, Version 08 May 2017. https://mathoverflow.net/users/
61910/michaelgriffin, https://mathoverflow.net/q/269282

27. Laine, K., Player, R.: Simple encrypted arithmetic library-SEAL (v2. 0). Technical
report, September 2016

28. Nuida, K., Kurosawa, K.: (Batch) fully homomorphic encryption over integers for
non-binary message spaces. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015.
LNCS, vol. 9056, pp. 537–555. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46800-5 21

29. Paterson, M.S., Stockmeyer, L.J.: On the number of nonscalar multiplications nec-
essary to evaluate polynomials. SIAM J. Comput. 2(1), 60–66 (1973)

30. Smart, N.P., Vercauteren, F.: Fully homomorphic SIMD operations. Des. Codes
Cryptograp. 292, 1–25 (2014)

31. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic
encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 24–43. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-13190-5 2

https://doi.org/10.1007/978-3-642-54631-0_18
https://doi.org/10.1007/978-3-642-54631-0_18
https://doi.org/10.1007/978-3-662-46800-5_24
https://doi.org/10.1007/978-3-662-46800-5_24
http://eprint.iacr.org/
https://doi.org/10.1007/978-3-642-30057-8_1
https://doi.org/10.1007/978-3-642-30057-8_1
https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1007/978-3-642-37682-5_1
https://doi.org/10.1007/978-3-642-37682-5_1
https://doi.org/10.1007/978-3-662-46800-5_25
https://mathoverflow.net/users/61910/michaelgriffin
https://mathoverflow.net/users/61910/michaelgriffin
https://mathoverflow.net/q/269282
https://doi.org/10.1007/978-3-662-46800-5_21
https://doi.org/10.1007/978-3-662-46800-5_21
https://doi.org/10.1007/978-3-642-13190-5_2
https://doi.org/10.1007/978-3-642-13190-5_2


Homomorphic SIM2D Operations:
Single Instruction Much More Data

Wouter Castryck(B) , Ilia Iliashenko , and Frederik Vercauteren

imec-Cosic, Department of Electrical Engineering, KU Leuven, Leuven, Belgium
{wouter.castryck,ilia.iliashenko,frederik.vercauteren}@esat.kuleuven.be

Abstract. In 2014, Smart and Vercauteren introduced a packing tech-
nique for homomorphic encryption schemes by decomposing the plain-
text space using the Chinese Remainder Theorem. This technique allows
to encrypt multiple data values simultaneously into one ciphertext and
execute Single Instruction Multiple Data operations homomorphically.
In this paper we improve and generalize their results by introducing a
flexible Laurent polynomial encoding technique and by using a more fine-
grained CRT decomposition of the plaintext space. The Laurent polyno-
mial encoding provides a convenient common framework for all conven-
tional ways in which input data types can be represented, e.g. finite field
elements, integers, rationals, floats and complex numbers. Our methods
greatly increase the packing capacity of the plaintext space, as well as
one’s flexibility in optimizing the system parameters with respect to effi-
ciency and/or security.

1 Introduction

Homomorphic encryption allows to perform arithmetic operations on encrypted
data without decryption. The idea stems from [26] where the authors introduced
so-called ‘privacy homomorphisms’ from plaintext space to ciphertext space.
In 2009, Gentry [21] presented the first fully homomorphic encryption scheme
(FHE) using ideal lattices. This breakthrough result was followed by several
variants and improvements [6–9,20,23] all using the same blueprint. One first
constructs a somewhat homomorphic encryption (SHE) scheme that can homo-
morphically evaluate arithmetic circuits of limited depth and then turns this
into a fully homomorphic scheme using a bootstrapping procedure. The security
of these schemes relies on the presence of a noise component in the cipher-
texts. This noise grows during arithmetic operations and eventually reaches a
threshold beyond which the ciphertext can no longer be decrypted correctly.
The bootstrapping procedure basically reduces the inherent noise by executing
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the decryption circuit homomorphically. Despite considerable effort in making
bootstrapping more efficient [2,11,13,19], full fledged FHE is still rather slow, so
implementers typically resort to using SHE schemes for practical applications.

The efficiency of homomorphic encryption schemes can be improved signifi-
cantly by a judicious choice of plaintext space and encoding techniques for the
common data types such as finite field elements, integers, rationals, floats and
complex numbers. Concretely, throughout this paper we assume that the plain-
text space is a ring of the form

Rt = Zt[X]/(f(X))

where t ≥ 2 is an integer called the plaintext modulus, and f(X) is the reduction
modulo t of a monic irreducible polynomial f(X) ∈ Z[X] of degree d ≥ 1. This
setting is valid for most SHE schemes whose security relies on the Ring-LWE
problem.1 The degree d together with the ciphertext modulus q and the standard
deviation σ of the initial noise distribution are the main security parameters,
and these are typically determined by the required security level. The noise
growth is influenced by d, q, σ, but also by the plaintext modulus t. A first
optimization to decrease the noise growth is therefore to use a smaller plaintext
space. Several encoding techniques [3,10,12,14,18,25] have been proposed whose
goal is to ‘spread out’ the numerical input data as evenly as possible over the
whole plaintext space, allowing for a smaller value of t. A second optimization,
which can be combined with the first, is to decompose the plaintext space into
smaller pieces using the Chinese Remainder Theorem (CRT) and run several
computations in parallel [4,27]. Smart and Vercauteren [27] described how to
carry out SIMD calculations in an SHE context by viewing Rt as the CRT
composition of

Zt[X]/(f1(X)) × Zt[X]/(f2(X)) × · · · × Zt[X]/(fr(X)),

where f1(X)f2(X) · · · fr(X) is a factorization of f(X) into coprime factors. In
fact, they concentrate on the case t = 2, but the above immediate generalization
is discussed in [22]. We will refer to this decomposition of Rt as a vertical slicing
of the plaintext space.

Contributions. Our first contribution is an improvement of the above SIMD
approach by utilizing a more fine-grained CRT decomposition of the plaintext
space. We do this by also taking into account factorizations of the plaintext
modulus t. We will refer to the CRT decomposition

Rt
∼= Z[X]/(t1, f(X)) × Z[X]/(t2, f(X)) × · · · × Z[X]/(ts, f(X)),

1 A recent adaptation of the FV scheme due to Chen et al. [10] uses as plaintext
modulus a linear polynomial x − a instead of an integer t. The resulting plaintext
space Rx−a = Z[X]/(Xn + 1, x − a) ∼= Z/(an + 1) has various nice features, both
in terms of noise growth and in terms of packing capacity. However, the algebraic
structure of Rx−a becomes more restrictive for CRT decomposition, so rings of this
type will not be considered in this paper.
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corresponding to a factorization t = t1t2 · · · ts into coprime factors, as a horizon-
tal slicing of the plaintext space. The flexibility of our method stems partly from
the fact that factorisations modulo the various ti do not imply a global factorisa-
tion modulo t. This alternative type of slicing for SIMD purposes is not new (see
e.g. [4]). However, by combining horizontal and vertical slicing as explained in
Sect. 4, the plaintext space becomes subdivided in ‘bricks’ as depicted in Fig. 4.
In our SIMD approach, which we call SIM2D, each data slot corresponds to a
set of such bricks (called a block) rather than one vertical or horizontal slice as
considered in previous works. This results in a much more flexible but, at the
same time, denser packing as described in Sect. 5. In Sect. 6 we provide several
tools that can help in making an optimal choice of blocks. This includes slight
alterations to t and/or f(X) that lead to more fine-grained decompositions.

Our second contribution is a novel encoding technique for Laurent polynomi-
als into a plaintext space of the form Rt = Zt[X]/(f(X)) that works for general
f (under the mild assumption that f(0) is an invertible element of Zt). Previous
work [15] could only deal with the very special case of 2-power cyclotomic poly-
nomials, due to concerns of mixing of integral and fractional parts. Our encoding
technique is explained in Sect. 3. Encoding elements of the Laurent polynomial
ring Z[X±1] serves as a convenient common framework for all customary encod-
ing techniques: indeed, under X �→ b the Laurent polynomials specialize to b-ary
expansions for any choice of base b ∈ C \ {0}. This framework allows to encode
common data types such as finite field elements, integers, rationals, floats and
complex numbers. Furthermore, we show that choosing different bases b for dif-
ferent blocks can be useful in optimizing the data packing (see Sect. 6).

Our algorithms for encoding, packing, unpacking and decoding are easy to
implement (pseudo-code is provided) and extremely flexible to use. The overall
goal is to provide a set of tools which together can be used to perform SIMD in
an optimal way, given the constraints on the plaintext space imposed by security,
efficiency and correctness requirements.

2 Preliminaries

2.1 Basic Notation

Vectors are denoted by bold letters such as a and when the individual coordinates
are required, we write a row vector as (a1, . . . , ak). For a natural number r, we
denote the set {1, . . . , r} by [r]. Similarly, for any �,m ∈ Z, � ≤ m, the set
{�, �+1, . . . ,m−1,m} is denoted by [�,m]. The quotient ring of integers modulo
a natural number t is denoted Zt.

2.2 Laurent Polynomials

Most common numerical types (integers, rational, real or complex numbers) are
represented as (finite) power series expansions in a certain base b ∈ C\{0}, using
digits that are taken from some given subset of Z. These expansions naturally
correspond to Laurent polynomials with integral coefficients, i.e. elements of the
ring Z[X±1].
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Most frequently, an integral base b > 1 with digit set {0, . . . , b−1} is used in
practice, such as binary b = 2 or ternary b = 3. For use in SHE schemes, several
variations [3,12,14,18] have been proposed. For the purposes of this paper we
mention the non-integral base non-adjacent form (NIBNAF) from [3] which is a
very sparse expansion with respect to a real base b ∈ (1, 2) and using the digit
set {−1, 0, 1}. All of these expansions can be thought of as the evaluations at
X = b of a Laurent polynomial with integral coefficients.

Example 1. The real number 2.3 can be approximated in base b = 2 using digits
in {0, 1} as

2.3 � 1 · 2 + 1 · 2−2 + 1 · 2−5 + 1 · 2−6,

which is the evaluation of the Laurent polynomial

1 · X + 1 · X−2 + 1 · X−5 + 1 · X−6 ∈ Z[X±1]

at X = b = 2.

Recall that in general, any Laurent polynomial a(X) ∈ Z[X±1] can be
written as

a(X) = a�X
� + · · · + am−1X

m−1 + amXm (1)

where ai ∈ Z for every i ∈ [�,m], a�, am 	= 0 and � ≤ m. For a modulus t (which
will be clear from the context) we write a(X) for the Laurent polynomial in
Zt[X±1] obtained by reducing all coefficients.

Definition 1. For an integral Laurent polynomial a(X) ∈ Z[X±1] represented
as in Eq. (1), we define the bounding box of a(X) as the tuple (w, h) with
w = m− � and h = log2(maxi ai −mini ai +1) the sizes of the exponent and the
coefficient ranges of a(X).

We represent the bounding box graphically with a rectangle of width w and
height h (Fig. 1).

Fig. 1. The bounding box of a polynomial.
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2.3 Plaintext Space

Most SHE schemes utilize quotient rings of the form

R = Z[X]/(f(X))

where f(X) ∈ Z[X] is a monic irreducible polynomial of degree d. The plain-
text space is typically represented as a quotient ring Rt = Zt[X]/(f(X)) for
an integral plaintext modulus t. Similarly, the ciphertext space is defined as
Rq = Zq[X]/(f(X)) where q 
 t. Another important parameter is the stan-
dard deviation σ of the discretized Gaussian distribution from which the SHE
encryption scheme samples its noise, which is embedded into the ciphertexts.

Typically, one first sets the parameters q, d and σ, primarily as functions of the
security level, in order to prevent all known attacks on the underlying lattice prob-
lems [1]. Afterwards, the plaintext modulus t is selected, subject to two constraints.
Firstly, it is bounded from above, which stems from the fact that the embedded
noise grows during arithmetic operations up to a critical threshold above which
ciphertexts canno longer be decrypted. Since the plaintextmodulus directly affects
the noise growth in ciphertexts, one can find a maximal t for which the decryp-
tion remains correct while evaluating a given arithmetic circuit C. We denote this
bound by tmax

C . If it is impossible to satisfy this bound then one can use the Chi-
nese Remainder Theorem to split the computation into smaller parts, as explained
in Remark 3; see also [4]. Secondly, as explained in the next section, the plaintext
modulus t is bounded from below by some value tmin

C which depends on the input
data and on the way the latter is encoded, and which ensures correct decoding.

Remark 1. The values of q, d, σ are not uniquely determined by the security level.
Therefore, one can try to use the remaining freedom to target a specific value of
tmax
C . In the remainder of the paper, we will assume that tmax

C is given, and our
aim is to utilize the available plaintext space in an optimal way. One motivation
for targeting maximal flexibility here is that it is not clear whether preselecting
a precise value of tmax

C is always possible in practice (e.g., for a fixed degree and
security level it turns out that the value of tmax

C stabilizes as q → ∞). This is further
impeded by the fact that concrete implementations often do not allow q and d to be
picked from some continuous-like range (e.g., the FV-NFLlib [16] and the SEAL [24]
libraries require that d is a power of 2 and that log2 q is a multiple of some integer).
A second motivation is that it can be desirable to use a single SHE implementation
for encrypting batches of data of largely varying sizes. The plaintext space should
be chosen to fit the largest data, and the methods presented below can then be used
to optimize the handling of the smaller data.

The most common choice for f(X) is a cyclotomic polynomial. The nth
cyclotomic polynomial Φn(X) ∈ Z[X] is the minimal polynomial of a primitive
nth root of unity in C

Φn(X) =
∏

0<k<n , (k,n)=1

(X − ζk
n),

where ζn = e2πi/n. The degree of Φn(X) is equal to φ(n), where φ(n) is the totient
function. It is always irreducible over Z and, additionally, Φ(0) = 1 for n ≥ 3.
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Cyclotomic polynomials are often used by SHE implementers since they have
very nice arithmetic properties such as fast modular reduction and simple Galois
groups, which can be used to move data values in between data slots.

3 Plaintext Encoding/decoding of Laurent Polynomials

In this section we consider the problem of encoding an integral Laurent polyno-
mial in the plaintext space and the reverse operation of decoding. We also give
necessary conditions on the ‘size’ of the plaintext space such that a given circuit
C can be evaluated correctly.

3.1 Encoding

Assume that the input data (integers, rationals, reals, . . . ) has been represented
as a Laurent polynomial a(X) ∈ Z[X±1]. Encoding such a Laurent polynomial in
the plaintext space Rt has been considered in a series of recent works [3,12,14,18].
However, it was emphasized in [14] that the plaintext space should only be defined
modulo a 2-power cyclotomic polynomial f(X) = X2k + 1 for some k. The reason
for this restriction is that the authors required a small and sparse representation
for X−1, which in this case is given by X−1 ≡ −X2k−1 mod f(X).

Here we propose a very general way of encoding Laurent polynomials which
works for almost all defining polynomials f . Let f(X) denote the reduction
modulo t of f(X) and assume that f(0) is co-prime with t, so f(0) is invertible
in Zt. Define g(X) by writing f(X) = g(X)X + f(0), then it is obvious that
modulo f(X) we have that X−1 ≡ −g(X)f(0)−1.

The encoding map Encdf is then given by the sequence of ring homomorphisms

Z[X±1] mod t−−−−→ Zt[X±1]
ηf−→ Rt

with

ηf :
X �→ X

X−1 �→ −g(X)f(0)−1 .

Example 2. In the case of the 2-power cyclotomic polynomial f(X) = X2k + 1,
the above map replaces negative powers X−j by −Xd−j , which coincides with
the approach from [14]: when expressed in terms of the basis 1,X,X2, . . . , Xd−1

of Rt, the map ηf places the positive exponents at the low end of this range,
and the negative exponents are placed at the high end.

3.2 Decoding

The crux of the construction relies on the fact that the above encoding map
Encdf defines an isomorphism when restricted to a subset of Laurent polynomi-
als. Indeed, if we choose a subset of Zt[X±1] of the form

Zt[X±1]m� =

{
m∑

i=�

aiX
i|ai ∈ Zt

}
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with � and m chosen such that m − � + 1 = d, then the restriction of ηf to
Zt[X±1]m� is an isomorphism between two free Zt-modules of rank d. The inverse
of this map, denoted θf,�,m, is easy to compute in practice, since it simply cor-
responds to a matrix inversion.

Thus, θf,�,m determines the decoding algorithm from Rt to Laurent polyno-
mials over Zt. In the final step, one has to lift a Laurent polynomial from Zt[X±1]
to Z[X±1] by choosing a representative for each coefficient in a non-empty subset
A of Z of size t. For simplicity we will always take A = [z, z + t − 1] for some
z ∈ Z, common choices being A = [−
(t−1)/2�, �(t−1)/2�] or A = [0, t−1]. But
any set A of representatives would be possible, and in fact it can even depend on
the coefficient under consideration. Together these two steps define the decoding
map Decdf,�,m,A.

3.3 Correctness Conditions

Since homomorphic encryption aims to perform arithmetic operations on cipher-
texts, one usually deals with a ciphertext being the outcome of an arithmetic
circuit involving only multiplications and additions. By the homomorphic prop-
erty this ciphertext corresponds to a plaintext which is the result of the same
operations in the plaintext space. Given a circuit C, the result of its evalua-
tion on encodings of Laurent polynomials a = (a1(X), . . . , ak(X)) is denoted by
C(Encdf (a)) ∈ Rt.

To guarantee correctness of circuit evaluation, one has to make sure that
there exist �,m ∈ Z such that m − � + 1 = d and some non-empty set A � Z of
size at most t such that

Decdf,�,m,A(C(Encdf (a))) = C(a),

where C(a) is the result of the same circuit evaluation in Z[X±1]. This implies
that the bounding box (w, h) of C(a) has to satisfy w ≤ m − � + 1 = d and
h ≤ log2 |A| = log2 t. In this case, we say that the plaintext space covers the
bounding box of C(a) as shown in Fig. 2 below.

Fig. 2. The bounding box of C(a) is covered by the plaintext space Rt.
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If the bounding box (w, h) of a Laurent polynomial has larger height than
the plaintext space, i.e. h > log2 t, then we say that the computation overflows
modulo t. If we end up with w > d then we say that it overflows modulo f(X).

The parameters t and d should therefore be taken large enough to satisfy
the above requirement. In practice, d is usually fixed by the security require-
ments of the SHE scheme. The choice for t, however, strongly depends on the
arithmetic circuit C one is trying to evaluate. Initially, the input data of the
circuit is encoded by Laurent polynomials whose bounding boxes are of height
h ≤ log2(|{b-base digits}|). During arithmetic operations the height (typically)
grows to the height of the bounding box of the outcome. For a given circuit C,
this defines a lower bound for t to guarantee correct decoding, which we denote
tmin
C . Combined with the upper bound on t from Sect. 2.3, one obtains a range

for t, namely [tmin
C , tmax

C ].

Example 3. To illustrate encoding and decoding, we take Rt = Z7[X]/(f(X))
where f(X) = X9 + 4X7 + 1. Thus, g(X) = X8 + 4X6 and Encdf maps X−1 to
6X8 + 3X6. Let us multiply two rational numbers, 182

243 and 1476. Their base-3
expansions are as follows

182
243

= 2 · 3−5 + 2 · 3−3 + 2 · 3−1, 1476 = 2 · 32 + 2 · 36

or as Laurent polynomials

a = 2X−5 + 2X−3 + 2X−1, b = 2X2 + 2X6.

Applying Encdf we get encodings of a and b in Rt, namely, a = 6X2 + 4X4 +
4X6 + 5X8 and b = 2X2 + 2X6. Their product is equal to

c = X + 4X3 + 5X4 + 4X5 + X6 + 3X8.

We take � = −3, m = 5 and A = {4, 5, . . . , 10} in order to keep the product
inside the box. Now we can define Decdf,−3,5,A. The first step is to construct a
linear operator θf,−3,5 using the inverse of the matrix defining the restriction of
ηf on Z7[X±1]5−3:

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
3 0 0 0 0 0 0 1 0
0 3 0 0 0 0 0 0 1
6 0 3 0 0 0 0 0 0
0 6 0 0 0 0 0 0 0
0 0 6 0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 6 0 4
3 0 0 0 0 0 0 6 0
0 0 0 0 0 0 0 0 6
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 3 0 2
5 0 0 0 0 1 0 3 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ Z
9×9
7 .
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Then c is mapped to a Laurent polynomial 4X−3 + 4X−1 + X + 4X3 + 4X5 ∈
Z7[X±1]. By looking for representatives of the coefficients in the set A we get
4X−3 + 4X−1 + 8X + 4X3 + 4X5 ∈ Z[X±1] and evaluate it at X = 3

4 · 3−3 + 4 · 3−1 + 8 · 3 + 4 · 33 + 4 · 35 =
29848

27
,

which is the correct product of 182
243 and 1476.

Remark 2. Note that the above condition for correct decoding only depends on
the bounding box of the evaluation of the circuit C(a) and not on the bounding
boxes of the individual inputs ai(X) ∈ Z[X±1] nor on those of the intermediate
values. Indeed, we always have

C(Encdf (a1(X)), . . . ,Encdf (ak(X))) = Encdf (C(a)), (2)

simply because Encdf is a ring homomorphism. This implies that the bounding
boxes of the input or intermediate values should not necessarily be contained in
the bounding box of the plaintext space, as long as the outcome of evaluation is.

4 Splitting the Plaintext Space

In this section we recall how the Chinese Remainder Theorem (CRT) can be
used to split the plaintext space naturally along two directions: firstly, we will
split horizontally for each prime power factor ti of the plaintext modulus t and
secondly, each horizontal slice will be split vertically by factoring f(X) mod ti.

4.1 Horizontal Splitting

If t is a composite that factors into distinct prime powers t = t1 . . . ts then the
ring Rt can be mapped via the CRT to a direct product of Rti ’s resulting in the
following ring isomorphism

CRTt : Rt → Rt1 × · · · × Rts

a(X) �→ (a(X) mod t1, . . . , a(X) mod ts)

whose inverse is easy to compute. For a given index subset I = {i1, . . . , ic} ⊆ [s]
the map CRTt induces a surjective morphism

CRTtI : Rt → Rti1
× · · · × Rtic

,

which is well-defined via the projection map

πtI :
∏

i∈[s]

Rti →
∏

i∈I

Rti

so that CRTtI = πtI · CRTt. The CRTt can be represented as a ‘horizontal’
splitting of the plaintext space according to the unique factorization of t into
distinct prime powers {ti}i∈[s]. Each horizontal slice in Fig. 3 corresponds to
some Rti .
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Fig. 3. CRTt decomposition of Rt

4.2 Vertical Splitting

For each factor ti of t we define f i(X) ∈ Zti [X] to be the reduction of f(X)
modulo ti. Since f(0) is co-prime with t, it is also co-prime with any ti and thus,
f i(0) is invertible.

The factorization of f i(X) into irreducible factors modulo ti can be com-
puted as follows: if ti is prime, then one can simply use factorization algorithms
for polynomials over finite fields; for ti a prime power, one first computes the
factorization modulo the prime and then lifts it using Hensel’s lemma to a fac-
torization modulo ti. The result in both cases is that we can easily obtain a
factorization

f i(X) ≡
ri∏

j=1

f ij(X)

for monic irreducible polynomials f ij(X) ∈ Zti [X]. Note that the constant terms
f ij(0) are all invertible because their product f i(0) is invertible. Applying the
CRT in the polynomial dimension gives the following map for each ti:

CRTti,fi
: Rti → Rti,1 × · · · × Rti,ri

a(X) �→ (a(X) mod f i1(X), . . . , a(X) mod f iri
(X)).

Here the Rti,j denotes the ring Zti [X]/(f ij(X)), which corresponds to a ‘brick’
in Fig. 4. The map CRTti,fi

, whose inverse is again easy to compute, can be
thought of as a ‘vertical’ splitting of Rti . For simplicity we will usually just write
Ri,j rather than Rti,j . By analogy with CRTtI , we introduce the surjective ring
homomorphism CRTti,fJ

from Rti to
∏

j∈J Rti,j where J = {j1, . . . , jc} ⊆ [ri].

5 Improved SIMD Encoding

In this section we combine the results of Sects. 3 and 4 to derive flexible SIMD
encoding and decoding algorithms. Recall that to correctly decode the result of a
circuit evaluation C(a), we require that the bounding box of the plaintext space
covers the bounding box of C(a). We assume that this is indeed the case, and
show how to select a minimal number of bricks of Rt to cover the bounding box
of C(a), leaving the other bricks available for doing parallel computations.
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Fig. 4. Decomposition of Rt using fac-
torization of t and f i’s

Fig. 5. Encoding of a single Laurent
polynomial into Rt.

Recall that each brick corresponds to a ring Ri,j in the decomposition

Rt → Rt1 × · · · × Rts → (R1,1 × · · · × R1,r1) × · · · × (Rs,1 × · · · × Rs,rs
).

Each ring Ri,j has its own bounding box of size (dij , log2 ti), where dij = deg f ij .
Assuming that the bounding box of C(a) is given by (w, h), we need to combine
enough horizontal slices to cover the height h, and inside each horizontal slice,
we need to select enough bricks to cover the width w as illustrated in Fig. 5.
Any unused bricks can be used to encode other data values, for instance to
compute C(b) for some other input vector b, immediately resulting in SIMD
computations.

We formalize this approach by combining bricks into a block structure: we call
a block a set of tuples B = {(ti, f ij)}i∈I(B),j∈J(B,i) with index sets I(B) ⊆ [s] and
J(B, i) ⊆ [ri], where we recall that ri is the number of irreducible factors of f i.
We of course think of this as corresponding to the set of Ri,j ’s with i ∈ I(B), j ∈
J(B, i). Equivalently, through an application of the CRT this corresponds to the
set of quotient rings {Rti/(F i,B)}i∈I(B) where F i,B =

∏
j∈J(B,i) f ij . Graphically

we think of a block as a set of bricks of Rt, which are combined such that the
Ri,j ’s with the same index i are glued column-wise and the resulting rows are
placed on top of each other (Fig. 6).

Fig. 6. Example of a block taken from the CRT decomposition of Rt. The bottom
combination of ‘bricks’ is not a block because their first indices do not coincide.
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In order for a block B to be suitable for computing C(a), whose bounding box
we denote by (w, h), we note that the bounding box of Rti/(F i,B) with i ∈ I(B)
is (wi,B, log2 ti) where

wi,B = deg F i,B =
∑

j∈J(B,i)

dij .

If mini∈I(B) wi,B ≥ w and
∑

i∈I(B) log2 ti ≥ h then we say that B covers the
bounding box (w, h). As we will see C(a) will be decoded correctly as soon as an
encoding block B is used that covers its bounding box.

Example 4. We decompose Rt = Z2761[X]/(f(X)) where f(X) = X20+X15+1.
The plaintext modulus factors into t1 = 11 and t2 = 251 and

f(X) ≡ f1,1(X) · f1,2(X)
≡ (X5 + 3)(X15 + 9X10 + 6X5 + 4) mod 11,

f(X) ≡ f2,1(X) · f2,2(X) · f2,3(X)
≡ (X5 + 18)(X5 + 120)(X10 + 114X5 + 180) mod 251.

Accordingly, Rt splits into (R1,1 ×R1,2)× (R2,1 ×R2,2 ×R2,3). Overall we have 5
‘bricks’ that can be combined into 31 different blocks. For example, one can take
a block {(11,X15+9X10+6X5+4), (251,X5+18), (251,X5+120)} corresponding
to the combination of R1,2, R2,1 and R2,2 or {(11,X5 + 3), (11,X15 + 9X10 +
6X5 + 4)} which simply corresponds to R11 = Rt/(11) (see Fig. 7).

Fig. 7. The block structure of Rt = Z[X]/(2651, X20+X15+1) with two blocks colored
in gray.

The whole plaintext space can be represented by a block as well

P =
⋃

i∈[s]

⋃

j∈[ri]

{(ti, f ij)}.

Therefore, the SIMD packing problem consists in finding a set of disjoint blocks
S = {B1, . . . ,Bu} such that

⋃
B∈S B = P and every block covers the maximal

bounding box among the corresponding output values.
To a partition S of P there naturally corresponds a factorization of f i for

every i ∈ [s]:
f i(X) =

∏

B∈S,i∈I(B)

F i,B(X).
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This induces a family of CRT isomorphisms

CRTti,fi,S
: Rti →

∏

B∈S,i∈I(B)

Rti/(F i,B).

Now we have all the ingredients to pack a number of data values into one plain-
text as described in Algorithm 1.

Algorithm 1. Plaintext packing.
Input : a set of disjoint blocks S = {B1, . . . ,Bu} with corresponding

data values a1, . . . , au ∈ Z[X±1] such that
⋃u

k=1 Bk = P.
Output: b ∈ Rt

1 for k ← 1 to u do
2 for i ∈ I(Bk) do
3 ati,F i,Bk

← EncdF i,Bk
(ak)

4 for i ← 1 to s do
5 bi ← CRT−1

ti,fi,S
({ati,F i,B}B,i∈I(B))

6 b ← CRT−1
t (b1, . . . , bs)

After packing one can encrypt the output and feed it to an arithmetic circuit
(together with other packings in case the circuit takes more than one argument).
The resulting plaintext contains multiple evaluations corresponding to each block
that can be decoded using Algorithm 2.

Algorithm 2. Plaintext decoding for one block.
Input : a plaintext c ∈ Rt, a block B, an exponent range [�,m] and a

coefficient set A ∈ Z

Output: a Laurent polynomial a ∈ Z[X±1]

1 tI ← 1
2 for i ∈ I(B) do
3 tI ← tI · ti
4 ci ← c mod ti
5 ci ← ci mod F i,B
6 mi ← � + wi,B − 1
7 ci ← θF i,B,�,mi

(ci)

8 a ← coefficient-wise CRT−1 of {ci}i∈I(B) to ZtI [X
±1]

9 a ← selecting coefficient representatives of a from the set A

Algorithm 2 produces correct circuit evaluations for all blocks occurring in
Algorithm 1 that satisfy the properties outlined in the next theorem.
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Theorem 1. Let S be a set of disjoint blocks such that
⋃

B∈S B = P. Let C be an
arithmetic circuit taking v arguments and for each block B let aB = (aB,1, . . . , aB,v)
be a vector of Laurent polynomials. For each k = 1, . . . , v let bk denote the output of
Algorithm 1 upon input of (aB,k)B∈S. Let c = C(b1, . . . , bv). Then for each block B
we have that if it covers the bounding box of C(aB), then upon input of c Algorithm 2
produces C(aB), for an appropriate choice of �, m and A.

Proof. By our assumption there are �,m such that C(aB) =
∑m

i=� αiX
i where

min
i∈I(B)

wi,B ≥ m − � + 1 and
∏

i∈I(B)

ti ≥ |A|, (3)

with A = {mini αi, . . . ,maxi αi}. Let a denote the output of Algorithm 2 upon
input of c using these �, m, and A. Since this is a Laurent polynomial having
coefficients in A, by (3) it suffices to prove that the reductions of a and C(aB)
modulo ti are the same for each i ∈ I(B). Again by (3) these reductions are
contained in Zti [X

±1]mi

� where mi = � + wi,B − 1, so by injectivity of ηF i,B it
suffices to prove that

EncdF i,B(a) = EncdF i,B(C(aB)).

From Algorithm 2 we see that the left-hand side is just the reduction of c into
Rti/(F i,B), while the right hand side is

C(EncdF i,B(aB,1), . . . ,EncdF i,B(aB,v))

because of the homomorphic properties of the encoding map. From Algorithm 1
we clearly see that EncdF i,B(aB,k) is the reduction of bk into Rti/(F i,B), for all
k = 1, . . . , v, so the theorem follows. �

Example 5. Using the CRT decomposition of Rt from Example 4 we cube two
Laurent polynomials simultaneously using SIMD, namely u(X) = 7X3 + 7X2

and v(X) = 8X5 + 7X. To encode u3 we take the block B1 with rings R1,1, R2,1

and the remaining bricks to build the block B2 to hold the result v3.
Since only positive exponents are present in the data, all encoding functions

EncdF i,B1
and EncdF i,B2

map u(X) and v(X) identically to the corresponding
Ri,j ’s. Then we get

a11,F1,B1
(X) = 7X3 + 7X2 ∈ R1,1 = R11/(X

5 + 3),

a251,F2,B1
(X) = 7X3 + 7X2 ∈ R2,1 = R251/(X

5 + 18),

a11,F1,B2
(X) = 8X5 + 7X ∈ R1,2 = R11/(X

15 + 9X10 + 6X5 + 4),

a251,F2,B2
(X) = 8X5 + 7X ∈ R2,2 × R2,3

∼= R251/(X
15 + 234X10 + 55X5 + 14).

Applying CRT−1

ti,fi,{B1,B2} for each ti we find

b1 = X18 + X17 + 10X16 + 5X15 + 9X13 + 9X12

+ 2X11 + X10 + 6X8 + 6X7 + 5X6 + 5X5 + 4X3 + 4X2 + 3X + 9 ∈ R11,
b2 = 162X18 + 162X17 + 89X16 + 213X15 + 7X13 + 7X12

+ 244X11 + 144X10 + 125X8 + 125X7 + 126X6 + 177X5

+ 9X3 + 9X2 + 249X + 221 ∈ R251,
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which finally leads to the following plaintext via CRT−1
t

b = 2421X18 + 2421X17 + 340X16 + 1468X15 + 2517X13 + 2517X12

+ 244X11 + 144X10 + 2635X8 + 2635X7 + 126X6 + 2436X5

+ 2017X3 + 2017X2 + 751X + 1978 ∈ R2761.

Now we evaluate an arithmetic circuit z �→ z3 in b and obtain

c = 1943X19 + 401X18 + 745X17 + 391X16 + 433X15

+ 2109X14 + 1717X13 + 2646X12 + 2729X11 + 2347X10

+ 2198X9 + 1724X8 + 234X7 + 421X6 + 2683X5 + 94X4

+ 1188X3 + 1143X2 + 1960X + 1906 ∈ R2761,

which simultaneously encodes u3 and v3.
In order to decode the data we apply Algorithm 2 starting with the block B1

equipped with the exponent range [6, 9] and the coefficient set AB1 = [0, 2760].
At first, we should reduce c modulo F i,B1 and ti for each i ∈ I(B1). As a result,
we find

c1,B1 = 5X4 + 4X3 + 4X2 + 5X ∈ R11/(X5 + 3),
c2,B1 = 101X4 + 52X3 + 52X2 + 101X ∈ R251/(X5 + 18).

To decode into Laurent polynomials we set �i = 6 and mi = 10 for every i ∈
I(B1) because deg F 1,B1 = deg F 2,B1 = 5. Then we follow the same procedure
as in Example 3 to define θF 1,6,10 and θF 2,6,10 via matrices M1 = 7 · M and
M2 = 237 · M where

M =

⎡

⎢⎢⎢⎢⎣

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0

⎤

⎥⎥⎥⎥⎦
.

These linear transformations give us two Laurent polynomials modulo 11 and
251, respectively

c1,B1 = 2X9 + 6X8 + 6X7 + 2X6 ∈ Z11[X±1],
c2,B1 = 92X9 + 25X8 + 25X7 + 92X6 ∈ Z251[X±1].

Using the coefficient-wise CRT and lifting coefficients in AB1 we recover the
Laurent polynomial

aB1 = 343X9 + 1029X8 + 1029X7 + 343X6 ∈ Z[X±1],

which is equal to u3.
We repeat the same steps for the block B2 with the exponent range [3, 15]

and the same coefficient set A. This block has again the polynomials F i,B2 of
the same degree and thus every mi = 17 and �i = 3. Executing Algorithm 2 we
get the following sequence of calculations
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c1,B2 = 2X11 + X10 + 10X7 + 8X5 + 2X3 + 9,
c2,B2 = 89X11 + 170X10 + 172X7 + 203X5 + 92X3 + 111,
↓
c1,B2 = 6X15 + 2X11 + 10X7 + 2X3,
c2,B2 = 10X15 + 89X11 + 172X7 + 92X3,
↓
aB2 = 512X15 + 1344X11 + 1176X7 + 343X3.

The last polynomial is exactly v3 so we correctly cubed two Laurent polynomials.

Remark 3. The CRT factorization can also be exploited when a homomorphic
algorithm needs a bigger plaintext modulus than the upper bound tmax

C discussed
above. Let us denote this modulus with a capital T to emphasize direct incompat-
ibility of this parameter with other SHE parameters, namely, T > tmax

C . However,
one can find a set of natural numbers {Ti ≤ tmax

C } such that T ≤ T ′ =
∏

i Ti.
Then RT ′ splits into smaller quotient rings RTi

. A plaintext a ∈ RT ′ then maps
to a vector whose ith component lies in RTi

. In that case the plaintext space
splits into quotient rings with smaller moduli via CRT such that each ring fits
the SHE settings according to the following diagram

RT ′
CRT−−→

⎧
⎪⎨

⎪⎩

RT1

CRT−−→ ∏
t′|T1

∏
f ′|f mod t′ Rt′,f ′

Alg 1−−−→ RT1

. . .

RTs

CRT−−→ ∏
t′|Ts

∏
f ′|f mod t′ Rt′,f ′

Alg 1−−−→ RTs

A homomorphic circuit evaluation must then be repeated over each CRT
factor Ti. Nevertheless, this gives some freedom of choice for Ti’s so as to find
RT ′ with a nice CRT decomposition.

6 Parameter Choice

In this section we discuss a set of tools that will allow implementers to benefit
from our enhanced SIMD approach as much as possible. There are three param-
eters that directly affect the packing capacity. We list them below in an order
that seems natural for solving any packing problem. Nevertheless, all parameters
depend on each other.

Plaintext Modulus. Earlier we defined the range [tmin
C , tmax

C ] from which the
plaintext modulus t is allowed to be chosen. Additionally, at the end of Sect. 4
we discussed the CRT trick that allows to handle plaintext moduli that are
bigger than tmax

C . Altogether this gives a designer some freedom to choose t such
that it splits into many ‘advantageous’ ti’s. An ‘advantageous’ ti means that the
factorization of f i is such that the resulting CRT decomposition can embed as
many plaintexts as possible, which is usually facilitated by a finer brick structure
as in Fig. 8.
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Fig. 8. The CRT decompositions of plaintext spaces corresponding to different t’s.

This brick structure is defined by the ti’s and by the degrees of the f ij ’s,
namely di1, . . . , diri

which constitute a decomposition type of f modulo ti. Let
G be the Galois group of the splitting field of f over Q. It can be considered as
a subgroup of the group Sd of permutations of d elements. Every automorphism
σ can be represented as a product of cycle permutations with a corresponding
pattern of cycle lengths. Additionally, we say that a set P of prime numbers has
density δ if

lim
x→∞

|{p ≤ x : p ∈ P}|
|{p ≤ x : p prime}| = δ.

Then the probability that a desired decomposition type occurs for some random
ti is estimated by the following classical theorem.

Theorem 2 (Frobenius). The density of the set P of primes modulo which
f has a given decomposition type d1, d2, . . . , dr exists, and it is equal to 1/|G|
times the number of automorphisms σ ∈ G with cycle pattern d1, d2, . . . , dr.

An interesting case is where f i splits into linear factors since it gives maximal
flexibility to combine blocks. There exists only one σ ∈ G corresponding to
such a decomposition which is the identity permutation, so the corresponding
probability is 1/|G|.
Example 6. If f(X) is the nth cyclotomic polynomial then its Galois group G
has d = φ(n) elements and it always splits into irreducible factors of the same
degree, i.e. its decomposition type modulo ti is always (d′, . . . , d′) where d′ is the
order of ti modulo n; here we implicitly assume that gcd(ti, n) = 1. Let us take
f(X) = X2k +1. Its Galois group is isomorphic to Z

×
2k+1 or to the direct product

of two cyclic groups C2 × C2k−1 . It contains 2k elements with orders shown in
the following table:

ord 1 2 4 . . . 2k−1

#{a ∈ Z
×
2k+1} 1 3 4 . . . 2k−1

This implies that f splits into 2k′
irreducible factors of degree 2k−k′

modulo
a random ti with probability 2−k′

, for any k′ ∈ {1, . . . , k − 2, k − 1}.
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In the classical example of a homomorphic application a client encrypts his
data and sends it to a third party to perform calculations. Since encryption and
decryption are done only on the client side, he therefore has the possibility to
tweak the plaintext modulus without re-generation of keys as long as the eval-
uation (or linearization) key does not depend on t. It is important to note that
the plaintext modulus does not affect the security level of an SHE scheme but it
does affect the decryption correctness. Hence, t should fit the upper bound tmax

C
introduced by the noise growth inside ciphertexts. As a result, one can exploit
the same technique as above to find Rt with the most useful decomposition.

Block Set. Recall that the plaintext space can be thought of as a set of bricks
P. Every block is then a subset of P. The packing problem consists in finding a
partition of P with the maximal number of blocks where each one satisfies Theo-
rem 1. It is clear that the partition search is highly dependent on the data values
and the arithmetic operations being performed homomorphically. Therefore the
same plaintext space can be used differently for various applications as shown in
Fig. 9. If r =

∑s
i=1 ri is the cardinality of P then the total number of partitions

is equal to the r-th Bell number Br. That number grows exponentially (see [17])
while r is increasing according to

ln Br

r
� ln r.

As a result a system designer has a lot of flexibility to play with the plaintext
space partitions to fit data into some block structure. Obviously, the maximal
number of blocks cannot be bigger than r, in which case the blocks are just the
singletons {Ri,j}. A plaintext space with many CRT factors is usually easier to
handle because it is more flexible for block constructions.

Fig. 9. Different partitions of P.
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If one does not find a satisfying partition of all of P, it is of course also
possible to leave a couple of bricks unused by packing zeros in them (or even
random values).

Encoding Base. Representing data using Laurent polynomials requires a
numerical base b which can be a real or a complex number. The size of b affects
the length of a representation as well as the size of its coefficients.

In [3] it was shown that non-integral bases taken from the interval (1, 2) have
a simple greedy algorithm that, given a real number, produces a base-b expansion
with a ternary set of coefficients. This procedure has the property that smaller
bases lead to sparser representations and thus smaller coefficient growth but
longer expansions. To illustrate this we resort again to the box representation of
a Laurent polynomial (Fig. 10).

Fig. 10. The examples of bounding boxes corresponding to different encoding bases.

As a result, by changing the encoding base one could play a trade-off game
between degree and coefficient size such that the number of plaintexts fitting a
block structure is maximal. Furthermore, each block allows to encode data in
a different base because neither Algorithm 1 nor Algorithm 2 depends on the
choice of b.

Example 7. To illustrate the aforementioned techniques we revisit a medical appli-
cation of the YASHE homomorphic encryption scheme [4] given in [5]. In this paper
the standard logistic function is homomorphically computed to predict the prob-
ability of having a heart attack. The algorithm is divided into two steps.

Step 1. One computes the following weighted sum of six encrypted predictive
variables

z = 0.072 · z1 + 0.013 · z2 − 0.029 · z3 + 0.008 · z4 − 0.053 · z5 + 0.021 · z6,

where each zi ∈ [0, 400]. The multiplicative depth of the corresponding circuit
is 1. For this step we take the same YASHE parameters as in [5], i.e. q � 2128 and
f(X) = X4096 + 1. Given these parameters we derive tCmax = 2097152 � 221 using
[4, Lem. 9]. Running over all primes less than tCmax we find that modulo t1 = 257
and modulo t2 = 3583 our polynomial f(X) can be written as a product of 128
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coprime factors of degree 32. With t = t1 the conventional SIMD technique allows
then to pack at most 128 values into one plaintext. This capacity can be achieved
with base-3 balanced ternary expansions that result in an output bounding box of
size (29, log2 53). However, our approach supports t = t1 · t2 so one can pack 256
values using the same encoding method.

Step 2. The output of Step 1 is decrypted, decoded to a real number and
encoded again to a plaintext. This ‘refreshed’ encoding is then encrypted and
given as input to the following approximation of the logistic function

P (x) =
1
2

+
1
4
x − 1

48
x3 +

1
480

x5 − 17
80640

x7.

In this step the multiplicative depth is 3, q � 2512 and f(X) = X16384+1. These
parameters lead to tCmax � 250. Using the previous SIMD technique the maximal
plaintext capacity can be achieved with the plaintext modulus t � 230.54 and
base-3 balanced ternary encoding. In this case f(X) splits into 8192 quadratic
factors and the output bounding box is of size (229, 29.54). We can thus compose
71 blocks with 115 slots and one block with the remaining slots. As a result, one
plaintext can contain at most 71 values.

This capacity can be increased with our SIM2D technique. In particular, one
can notice that the ratio between tCmax and the previously mentioned modulus t
is around 219.46, which implies some part of the plaintext space remains unfilled.
We can fill that space setting the plaintext modulus to t1 ·t2 with t1 � 230.54 and
t2 = 675071 � 219.36. The polynomial f(X) splits into 128 factors of degree 128
modulo t2. To fit the modulus t2 we encoded real values with the non-integral
base b = 1.16391 and obtained the output bounding box (1684, 19.36). Therefore
one block should consist of 14 slots, and we can construct 9 such blocks. As a
result, we can combine these blocks with the 71 blocks given by the old SIMD
technique, which results in a total plaintext capacity of 80 values.

7 Conclusion

In this paper we presented two techniques that make SIMD operations in the set-
ting of homomorphic encryption more flexible and efficient. Our first technique
showed how data values that are naturally represented as Laurent polynomials
can be encoded into a plaintext space of the form Zt[X]/(f(X)). Furthermore,
we also provided sufficient conditions for correct decoding after evaluation of an
arithmetic circuit. Our second technique relied on a fine-grained CRT decompo-
sition of the plaintext space resulting in a much denser and thus more efficient
data packing compared to the state of the art. Finally, we provided guidelines
on how to choose system parameters in order to find the most efficient packing
strategy for a particular task.
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Abstract. This paper extends the leveled homomorphic encryption
scheme for an approximate arithmetic of Cheon et al. (ASIACRYPT
2017) to a fully homomorphic encryption, i.e., we propose a new tech-
nique to refresh low-level ciphertexts based on Gentry’s bootstrapping
procedure. The modular reduction operation is the main bottleneck in
the homomorphic evaluation of the decryption circuit. We exploit a
scaled sine function as an approximation of the modular reduction oper-
ation and present an efficient evaluation strategy. Our method requires
only one homomorphic multiplication for each of iterations and so the
total computation cost grows linearly with the depth of the decryption
circuit. We also show how to recrypt packed ciphertexts on the RLWE
construction with an open-source implementation. For example, it takes
139.8 s to refresh a ciphertext that encrypts 128 numbers with 12 bits of
precision, yielding an amortized rate of 1.1 seconds per slot.

Keywords: Homomorphic encryption · Approximate arithmetic
Bootstrapping

1 Introduction

Homomorphic encryption (HE) is a cryptographic scheme that allows us to eval-
uate an arbitrary arithmetic circuit on encrypted data without decryption. There
have been a number of studies [5–9,11,16,19,22,25,30,31] to improve the effi-
ciency of HE cryptosystem after Gentry’s blueprint [26]. This cryptographic
primitive has a number of prospective real-world applications based on the secure
outsourcing of computation in public clouds. For example, HE can be a solution
to performing the computation of various algorithms on financial, medical, or
genomic data without any information leakage [15,36,38,39,41].

Unfortunately, most of existing HE schemes support the exact arithmetic
operations over some discrete spaces (e.g. finite field), so that they are not suit-
able for many real-world applications which require a floating point operation
or real number arithmetic. To be specific, bitwise encryption schemes [17,24]
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can evaluate a boolean gate with bootstrapping in much shorter time, but it is
necessary to evaluate a deep circuit with a number of gates to perform a sin-
gle arithmetic operation (e.g. addition or multiplication) between high-precision
numbers. Moreover, a huge expansion rate of ciphertexts is another issue that
stands in the way of the practical use of bitwise encryptions. On the other hand,
word encryption schemes [6,7,25,30] can encrypt multiple high-precision num-
bers in a single ciphertext but the rounding operation is difficult to be evaluated
since it is not expressed as a small-degree polynomial. Therefore, they require
either a plaintext space with an exponentially large bit size on the depth of a
circuit, or an expensive computation such as rounding operation and extraction
of the most significant bits.

Recently, Cheon et al. [14] proposed a HE scheme for an Arithmetic of
Approximate Numbers (called HEAAN in what follows) based on the ring learning
with errors (RLWE) problem. The main idea is to consider an encryption error
as part of a computational error that occurs during approximate computations.
For an encryption ct of a message m with a secret key sk, the decryption algo-
rithm [〈ct, sk〉]q outputs an approximate value m+e of the original message with
a small error e. The main advantage of HEAAN comes from the rescaling proce-
dure for managing the magnitude of plaintexts. It truncates a ciphertext into
a smaller modulus, which leads to an approximate rounding of the encrypted
plaintext. As a result, it achieved the first linear growth of the ciphertext modu-
lus on the depth of the circuit being evaluated, against the exponential growth in
previous word encryption schemes. In addition, the RLWE-based HEAAN scheme
has its own packing strategy to encrypt multiple complex numbers in a single
ciphertext and perform a parallel computation. However, HEAAN is a leveled HE
scheme which can only evaluate a circuit of fixed depth. As homomorphic opera-
tions progresses, the ciphertext modulus decreases and finally becomes too small
to carry out more computations.

In previous literature, Gentry’s bootstrapping is the only known method
to construct a fully homomorphic encryption (FHE) scheme which allows us
to evaluate an arbitrary circuit. Technically, the bootstrapping method can be
understood as a homomorphic evaluation of the decryption circuit to refresh a
ciphertext for more computations. The HEAAN scheme does not support the mod-
ular arithmetic, however, its decryption circuit [〈ct, sk〉]q requires the modular
reduction operation, which makes its bootstrapping much harder. Therefore, the
bootstrapping of HEAAN can be reduced to a problem that represents the modu-
lar reduction function F (t) = [t]q as a polynomial over the integers (or, complex
numbers). One may use the polynomial interpolation of this function over the
domain of t = 〈ct, sk〉, but it is a limiting factor for practical implementation
due to a huge computational cost of an evaluation.

Our Contributions. We present a methodology to refresh ciphertexts of HEAAN
and make it bootstrappable for the evaluation of an arbitrary circuit. We take
advantage of its intrinsic characteristic - approximate computation on encrypted
data. Our bootstrapping procedure aims to evaluate the decryption formula
approximately and obtain an encryption of the original message in a large
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ciphertext modulus. Hence, we find an approximation of the modular reduction
function that can be evaluated efficiently using arithmetic operations of HEAAN.
The approximation error should be small enough to maintain the precision of an
input plaintext.

We first note that the modular reduction function F (t) = [t]q is the identity
nearby zero and periodic with period q. If t = 〈ct, sk〉 is close to a multiple of
the ciphertext modulus q (or equivalently, if the encrypted plaintext m = [t]q is
small compared to q), then a trigonometric function can be a good approxima-
tion to the modular reduction. Namely, the decryption formula of HEAAN can be
represented using the following scaled sine function as

[〈ct, sk〉]q =
q

2π
· sin

(
2π

q
· 〈ct, sk〉

)
+ O(ε3 · q),

when |[〈ct, sk〉]q| ≤ ε · q. Hence we may use this analytic function instead of the
modular reduction in the decryption formula.

Now our goal is to homomorphically evaluate the trigonometric function
q
2π · sin

(
2π
q · t

)
with an input t = 〈ct, sk〉, which is bounded by Kq for some

constant K = O(λ) with λ the security parameter. We can consider the Taylor
polynomial as an approximation to the trigonometric function, but its degree
should be at least O(Kq) to make an error term small enough on the interval
(−Kq,Kq). The evaluation of polynomial can be done in O(

√
Kq) homomorphic

multiplications with Paterson-Stockmeyer method [40], but this complexity of
recryption grows exponentially with the depth L = O(log q) of the decryption
circuit - which is still quite substantial.

We suggest an evaluation strategy of the trigonometric function to reduce its
computation cost by exploiting the following double-angle formulas:

{
cos(2θ) = cos2 θ − sin2 θ,

sin(2θ) = 2 cos θ · sin θ,

which means that we can obtain some approximate values of cos(2θ) and sin(2θ)
from approximate values of cos θ and sin θ. In our bootstrapping process, we
first compute the Taylor expansions of cos

(
2π
q · t

2r

)
and sin

(
2π
q · t

2r

)
of a small

degree d0 = O(1) for some r = O(log(Kq)). Then we use the doubling-angle for-
mulas r times recursively to get an approximate value of sin

(
2π
q · t

)
. In the case

of the RLWE-based construction, this evaluation can be even more simplified by
encrypting the complex exponentiation exp(iθ) = cos θ + i · sin θ and adapting
the identity exp(i · 2θ) = (exp(i · θ))2.

Results. Our bootstrapping technique for HEAAN is a new cryptographic prim-
itive for FHE mechanisms, which yields the first word encryption scheme for
approximate arithmetic. For a ciphertext ct with a modulus q, our bootstrapping
procedure generates a ciphertext ct′ with a larger ciphertext modulus Q � q, sat-
isfying the condition [〈ct′, sk〉]Q ≈ [〈ct, sk〉]q while an error is kept small enough
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Fig. 1. Modular reduction and scaled sine functions

not to destroy the significant digits of a plaintext. The output ciphertext will have
a sufficiently large modulus compared to a plaintext, thereby enabling further
computation on the ciphertext. In addition, our approximation to a trigonomet-
ric function and efficient evaluation strategy reduce the complexity of the eval-
uation down to O(L) homomorphic multiplications for the depth L = O(log q)
of the decryption circuit.

We also give an open-source implementation [12] to demonstrate the perfor-
mance of our bootstrapping method. It contains some optimization techniques
including the linear transformation method of [33] for the recryption over the
packed ciphertexts. When we want to preserve 12 bits of precision, our bootstrap-
ping on a single-slot ciphertext takes about 26.6 s. We also optimize the linear
transforms for sparsely packed ciphertexts and it takes about 139.8 s to recrypt
a ciphertext that encrypts 128 complex numbers in plaintext slots, yielding an
amortized rate of 1.1 seconds per slot.

Implications of Our Bootstrapping Method. The main feature of approx-
imate arithmetic is that every number contains an error of which could increase
during computation. The precision of a number is reduced by approximately one
bit after multiplication and finally we may not extract any meaningful informa-
tion from the computation result if the depth of a circuit is larger than the bit
precision of the input data. On the other hand, our bootstrapping procedure
is to refresh ciphertexts and then perform further computation on encrypted
data. This concept of an unlimited computation may seem a contradiction to
the property of finite precision in the approximate arithmetic.

However, it turns out to be better for real-world applications that have a
property of negative feedback or stability. For example, a cyber-physical system
(CPS) is a compromised mechanism of physical and computational components.
A computational element commutes with the sensors and every signal contains
a small error. One can guarantee the correctness of CPS only when it is stable
because an error is reduced by negative feedback to the input. Another example is
the gradient descent method, which is the most widely used algorithm to perform
optimization. It has a number of applications in machine learning such as logistic
regression and neural networks. It computes the gradient of a point and moves
it closer to an optimal point, which reduces the effects of perturbations in the
output.
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As in the examples above, we do not have to worry about the precision
of numbers when the overall system is stable. In fact, there are some proof-of-
concept implementations about the secure control of CPS [35] and secure logistic
regression using biomedical data [37]. We expect that our bootstrapping process
can be applied to these real-world applications.

Related Works. There have been several attempts to carry out an approximate
arithmetic using HE. Downlin et al. [23] (see also [4,21]) described a method to
transform a real number into a polynomial with small and sparse coefficients to
reduce the required size of a plaintext modulus. Costache et al. [20] suggested a
similar encoding method with [14] to evaluate the discrete Fourier transformation
efficiently, but a ciphertext could encrypt only one value. Chen et al. [10] uses a
technique of [34] to encrypt a single high-precision number. However, they still
have some problems: (1) the coefficients and the degree of encoded polynomial
grow exponentially with the depth of a circuit and (2) there is no known result
to achieve an FHE scheme because a polynomial should be re-encoded to be
represented with a smaller degree and coefficients for more computations and
the bootstrapping method of [33] is not enough for this functionality.

The original Gentry’s bootstrapping technique was implemented by Gentry
and Halevi [27], which took a half hour to recrypt a single bit ciphertext. Gentry
et al. [28] represented the decryption circuit of RLWE-based HE with a lower
depth circuit using a special modulus space. The Halevi-Shoup FHE implemen-
tation [33] reported a recryption time of approximately six minutes per slot.
Meanwhile, Ducas and Micciancio [24] proposed the FHEW scheme that boot-
straps a single-bit encryption in less than a second based on the framework
of [2]. Chillotti et al. [17] obtained a speed up to less than 0.1 s. The following
works [3,18] improved the performance by using the evaluation of a look-up table
before bootstrapping. However, the size of an input plaintext of bootstrapping
is very limited since it is related to the ring dimension of an intermediate Ring
GSW scheme. In addition, a huge expansion rate of ciphertexts is still an open
problem in bitwise encryption schemes.

The previous FHE schemes evaluate the exact decryption circuit using the
structure of a finite field or a polynomial ring in bootstrapping algorithm. The
evaluation of an arbitrary polynomial of degree d requires O(

√
d) homomorphic

multiplications, but Halevi and Shoup [33] used a polynomial with the lifting
property to reduce the computational cost of bootstrapping. They used a recur-
sive algorithm to extract some digits in an encrypted state, so the number of
homomorphic multiplications for bootstrapping was reduced down to O(log2 d).
Contrary to the work of Halevi and Shoup, we find an approximate decryption
circuit using a trigonometric function and suggest an even simpler recursive algo-
rithm. As a result, our algorithm only requires O(log d) number of homomorphic
multiplications, which results in an enhanced performance.

Road-map. Section 2 briefly introduces notations and some preliminaries about
algebra. We also review the HEAAN scheme of Cheon et al. [14]. Section 3
explains our simplified decryption formula by using a trigonometric function. In
Sect. 4, we recall the ciphertext packing method of HEAAN and describe a linear
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transformation on packed ciphertexts. In Sect. 5, we present our bootstrapping
technique with a precise noise estimation. In Sect. 6, we implement the recryption
procedure based on the proposed method and discuss the performance results.

2 Preliminaries

The binary logarithm will be simply denoted by log(·). We denote vectors in
bold, e.g. a, and every vector in this paper is a column vector. For a n1 × m
matrix A1 and a n2 × m matrix A2, (A1;A2) denotes the (n1 + n2) × m matrix
obtained by concatenating matrices A1 and A2 in a vertical direction.

We denote by 〈·, ·〉 the usual dot product of two vectors. For a real number
r, �r	 denotes the nearest integer to r, rounding upwards in case of a tie. For an
integer q, we identify Z ∩ (−q/2, q/2] as a representative of Zq and use [z]q to
denote the reduction of the integer z modulo q into that interval. We use x ← D
to denote the sampling x according to distribution D. The uniform distribution
over a finite set S is denoted by U(S). We let λ denote the security parameter
throughout the paper: all known valid attacks against the cryptographic scheme
under scope should take Ω(2λ) bit operations.

2.1 Cyclotomic Ring

For a positive integer M , let ΦM (X) be the M -th cyclotomic polynomial of
degree N = φ(M). Let R = Z[X]/(ΦM (X)) be the ring of integers of a number
field Q[X]/(ΦM (X)). We write Rq = R/qR for the residue ring of R modulo an
integer q. An arbitrary element of the set P = R[X]/(ΦM (X)) will be represented
as a polynomial a(X) =

∑N−1
j=0 ajX

j of degree strictly less than N and identified
with its coefficients vector a = (a0, . . . , aN−1) ∈ R

N . We define ‖a‖∞ and ‖a‖1
by the relevant norms on the coefficients vector a .

Write Z
∗
M = {x ∈ ZM : gcd(x,M) = 1} for the multiplicative group of

units in ZM . Recall that the canonical embedding of a(X) ∈ Q[X]/(ΦM (X))
into C

N is the vector of evaluations of a(X) at the M -th primitive roots of
unity. We use its natural extension σ to P, defined by σ(a) = (a(ζj))j∈Z

∗
M

for
ζ = exp (2πi/M). Its �∞-norm is called the canonical embedding norm, denoted
by ‖a‖can∞ = ‖σ(a)‖∞.

2.2 Homomorphic Encryption for Arithmetic of Approximate
Numbers

HE is one of the prospective cryptographic primitives for secure outsourcing
computation without information leakage. However, an inefficiency of real num-
ber computation is one of the main obstacles to apply HE schemes in real-world
applications. Recently Cheon et al. [14] proposed a method to construct the
HE scheme for approximate arithmetic, called HEAAN. Their scheme supports an
efficient rounding operation of encrypted plaintext as well as basic arithmetic
operations. This subsection gives a concrete description of the RLWE-based
HEAAN scheme.
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For a real σ > 0, DG(σ2) denotes a distribution over Z
N which samples its

components independently from the discrete Gaussian distribution of variance
σ2. For an positive integer h, HWT (h) denotes a uniform distribution over the
set of signed binary vectors in {±1}N whose Hamming weight is exactly h. For
a real 0 ≤ ρ ≤ 1, the distribution ZO(ρ) draws each entry in the vector from
{0,±1}, with probability ρ/2 for each of −1 and +1, and probability being zero
1 − ρ.

• KeyGen(1λ).
– For a base p and an integer L, let q� = p� for � = 1, . . . , L. Given the

security parameter λ, choose a power-of-two M , an integer h, an integer
P , and a real number σ > 0 for an RLWE problem that achieves λ-bit of
security level.

– Sample s ← HWT (h), a ← U(RqL
) and e ← DG(σ2). Set the secret key

as sk ← (1, s) and the public key as pk ← (b, a) ∈ R2
qL

where b ← −as+e
(mod qL).

• KSGensk(s′). For s′ ∈ R, sample a′ ← U(RP ·qL
) and e′ ← DG(σ2). Output

the switching key as swk ← (b′, a′) ∈ R2
P ·qL

where b′ ← −a′s + e′ + Ps′

(mod P · qL).
– Set the evaluation key as evk ← KSGensk(s2).

• Encpk(m). For m ∈ R, sample v ← ZO(0.5) and e0, e1 ← DG(σ2). Output
v · pk + (m + e0, e1) (mod qL).

• Decsk(ct). For ct = (c0, c1) ∈ R2
q�

, output m = c0 + c1 · s (mod q�).
• Add(ct1, ct2). For ct1, ct2 ∈ R2

q�
, output ctadd ← ct1 + ct2 (mod q�).

• Multevk(ct1, ct2). For ct1 = (b1, a1), ct2 = (b2, a2) ∈ R2
q�

, let (d0, d1, d2) =
(b1b2, a1b2 + a2b1, a1a2) (mod q�). Output ctmult ← (d0, d1) + �P−1 · d2 · evk	
(mod q�).

• RS�→�′(ct). For a ciphertext ct ∈ R2
q�

at level �, output ct′ ← �p�′−� · ct	
(mod q�′). We will omit the subscript (� → �′) when �′ = � − 1.

The native plaintext space of HEAAN can be understood as the set of poly-
nomials m(X) in Z[X]/(ΦM (X)) such that ‖m‖can∞ < q/2. For convenience, we
allow an arbitrary element of P = R[X]/(ΦM (X)) as a plaintext polynomial, so
that a ciphertext ct = (c0, c1) ∈ R2

q�
at level � will be called an encryption of

m(X) ∈ P with an error bound B if it satisfies 〈ct, sk〉 = m + e (mod q�) for
some polynomial e(X) ∈ P satisfying ‖e‖can∞ ≤ B. The set P = R[X]/(ΦM (X))
can be identified with the complex coordinate space C

N/2 using a ring isomor-
phism. This decoding map allows us to encrypt at most (N/2) numbers in a
single ciphertext and carry out parallel operations in a Single Instruction Mul-
tiple Data (SIMD) manner. A simple description of the packing method will be
described in Sect. 4.1.

We will make the use of the following lemmas from [14] for noise estimation.
We adapt some notations from [14], defining the constants Bks and Brs.

Lemma 1 ([14, Lemma 1]). Let ct ← Encpk(m) be an encryption of m ∈ R.
Then 〈ct, sk〉 = m + e (mod qL) for some e ∈ R satisfying ‖e‖can∞ ≤ Bclean for
Bclean = 8

√
2σN + 6σ

√
N + 16σ

√
hN .
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Lemma 2 ([14, Lemma 2]). Let ct′ ← RS�→�′(ct) for a ciphertext ct ∈ R2
q�
.

Then 〈ct′, sk〉 = q�′
q�

〈ct, sk〉 + e (mod q�′) for some e ∈ P satisfying ‖e‖can∞ ≤ Brs

for Brs =
√

N/3 · (3 + 8
√

h).

Lemma 3 ([14, Lemma 3]). Let ctmult ← Multevk(ct1, ct2) for two ciphertexts
ct1, ct2 ∈ R2

q�
. Then 〈ctmult, sk〉 = 〈ct1, sk〉 · 〈ct2, sk〉 + emult (mod q�) for some

e ∈ R satisfying ‖emult‖can∞ ≤ Bmult(�) for Bks = 8σN/
√

3 and Bmult(�) = P−1 ·
q� · Bks + Brs.

A rescaling (rounding) error is the smallest error type of homomorphic oper-
ations. The least digits of a plaintext is destroyed by some error after multipli-
cation or rescaling, so its significand should be placed in higher digits not to lose
the precision of the resulting plaintext.

3 Decryption Formula over the Integers

The goal of bootstrapping is to refresh a ciphertext and keep computing on
encrypted data. Recall that HEAAN supports arithmetic operations on a charac-
teristic zero plaintext space such as C However, its decryption formula consists
of two steps: the inner product t = 〈ct, sk〉 over the integers and the modu-
lar reduction m = [t]q. We therefore have to express this decryption formula
efficiently using homomorphic operations provided in the HEAAN scheme.

The main difficulty comes from the fact that the reduction modular q function
F (t) = [t]q is not represented as a small-degree polynomial. A naive approach
such as the polynomial interpolation causes a huge degree, resulting in a large
parameter size and an expensive computational cost for bootstrapping process.
Instead, we reduce the required circuit depth and the evaluation complexity by
exploiting a polynomial approximation of the decryption formula and taking
advantage of approximate arithmetic.

3.1 Approximation of the Modular Reduction Function

Let ct be a ciphertext relative to a secret key sk and a modulus q. Since sk is
sampled from a small distribution, the size of its decryption structure t = 〈ct, sk〉
is bounded by Kq for some fixed constant K. So we can say that the decryption
formula of HEAAN is defined on the set Z ∩ (−Kq,Kq) and it maps an arbitrary
integer t ∈ Z ∩ (−Kq,Kq) to the reduction modular q.

It is infeasible to find a good approximation of the modular reduction func-
tion since it is not continuous. We first assume that a message m of an input
ciphertext is still much smaller than a ciphertext modulus q, so that t = 〈ct, sk〉
can be expressed as qI + m for some I and m such that |I| < K and |m| � q.
This assumption is reasonable because one can start the bootstrapping proce-
dure on a ciphertext before its modulus becomes too small. Then the modular
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reduction F (t) = [t]q on a restricted domain becomes a piecewise linear func-
tion (see Fig. 1). We point out that this function is the identity near zero and
periodic, so it looks like a part of the scaled sine

S(t) =
q

2π
sin

(
2πt

q

)
.

Note that it gives a good approximation to the piecewise linear function when an
input value t = qI + m is close to a multiple of q. Specifically, an error between
F (t) and S(t) is bounded by

|F (t) − S(t)| =
q

2π

∣∣∣∣2πm

q
− sin

(
2πm

q

)∣∣∣∣ ≤ q

2π
· 1
3!

(
2π|m|

q

)3

= O

(
q · |m|3

q3

)
,

which is equivalently O(1) when m = O(q2/3).

3.2 Homomorphic Evaluation of the Complex Exponential Function

As discussed before, the scaled sine function S(t) is a good approximation of the
reduction modulo q. However, this function cannot be evaluated directly using
HE since it is not a polynomial function. The goal of this subsection is to explain
how to approximately and efficiently evaluate this trigonometric function based
on HEAAN.

We may consider the Taylor polynomial q
2π

∑d−1
j=0

(−1)j

(2j+1)!

(
2πt
q

)2j+1

of S(t).
The size of error converges to zero very rapidly as the degree grows, i.e., an
error between S(t) and its Taylor polynomial of degree 2d is bounded by
q
2π · 1

(2d+1)! (2πK)2d+1 when |t| < Kq, and it becomes small enough when
the degree of the Taylor polynomial is O(Kq). However, despite its high pre-
cision, this naive method has an ineffective problem in practice. The complexity
grows exponentially with the depth of a circuit, e.g. O(

√
d) using the Paterson-

Stockmeyer algorithm [40] for an evaluation of a degree-d polynomial.
Instead, we can reduce the computational cost by exploiting the following

double-angle formulas: cos(2θ) = cos2 θ−sin2 θ and sin(2θ) = 2 cos θ ·sin θ. From
approximate values of trigonometric functions in a small domain, we extend to
find good approximations of the sign function on a wider (doubled) range. In
particular, the RLWE-based HEAAN scheme can encrypt the complex numbers,
so that the evaluation algorithm can be more simplified using the complex expo-
nential function. Specifically, we use the identities

{
exp(iθ) = cos θ + i · sin θ,

exp(2iθ) = (exp(iθ))2,

and the error growth from squaring can be bounded by about one bit since
(exp(iθ) ± ε)2 ≈ exp(2iθ) ± 2ε.

We take the Taylor polynomial of a small degree d0 ≥ 1 as a high-precision
approximation of the complex exponential function within a small range.
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Then we perform the squaring operation repeatedly to get an approximation
of the complex exponential function over the desirable domain. Note that we
multiply a scale factor of Δ to prevent the precision loss and divide the inter-
mediate ciphertexts by a constant Δ using the rescaling procedure of HEAAN.

The use of the complex exponential function has another advantage in error
analysis. When we consider the RLWE-based HEAAN scheme, small complex errors
are added to plaintext slots during encryption, evaluation, rescaling and slot
permutation. Therefore, we have only one constraint such that a decryption
formula should be tolerant of small complex errors. Another advantage of our
method comes from the fact that the complex exponential function is analytic
with a bounded derivative over the whole complex plane, and therefore an error
does not blow up by the decryption formula. The whole procedure is explicitly
described as follows.

A value t ∈ (−Kq,Kq) is given as an input of the decryption formula.

1. Consider the complex exponential function of exp
(

2πit
2r·q

)
and compute

its (scaled) Taylor expansion as

P0(t) = Δ ·
d0∑

k=0

1
k!

(
2πit

2r · q

)k

of degree d0 ≥ 1.
2. For j = 0, 1, . . . , r − 1, repeat the squaring Pj+1(t) ← Δ−1 · (Pj(t))2.
3. Return Pr(t).

The degree d0 of the initial Taylor polynomial, the scaling factor of Δ, and
the number r of the iterations (squaring) are determined by the following noise
analysis. Since the size of the initial input (2πt)/(2r · q) of the complex expo-
nential function has a small upper bound (2πK/2r), even the Taylor polynomial
of a small degree d0 can be a good approximation to the complex exponential
function exp

(
2πit
2r·q

)
. From the above observation, the output Pr(t) is a polyno-

mial of degree dr = d0 · 2r and it is an approximation of E(t) := Δ · exp
(

2πit
q

)
on a wide interval t ∈ (−Kq,Kq). After the evaluation of the complex expo-
nential function, we can extract the imaginary (sine) part by conjugation oper-
ation (i.e., 2 sin θ = exp(iθ) − exp(−iθ)), which will be described in the next
section.

For the estimation of noise, we start from an initial error between P0(t) and
Δ · exp

(
2πit
2r·q

)
, which is bounded by Δ

(d0+1)!

∣∣ 2πK
2r

∣∣d0+1
from the Taylor remain-

der theorem. As described above, the error bound is almost doubled after each
squaring. Therefore, we get a bound from an approximation as follows:



370 J. H. Cheon et al.

|Pr(t) − E(t)| ≤ Δ · 2r

(d0 + 1)!

(
2πK

2r

)d0+1

≤ Δ · 2r√
2π(d0 + 1)

(
eπK

2r−1(d0 + 1)

)d0+1

from Stirling’s formula. Asymptotically the choice of parameters d0 = O(1)
and r = O(log(Kq)) gives us a sufficiently small error bound. Note that the
complexity of the algorithm is r = O(log(Kq)) homomorphic multiplications
and it grows linearly with the depth of the decryption circuit.

4 Linear Transformation on Packed Ciphertexts

In this section, we explain how to homomorphically evaluate the linear transfor-
mations over the vector of plaintext slots. We first present a simple description
of the packing method of HEAAN. We then explain how to compute the rotation
and the complex conjugation over the plaintext slots using the key-switching
technique. These functionalities can be applied to the evaluation of a linear
transformation over plaintext slots.

4.1 Packing Method

The packing technique of HE schemes allows us to encrypt multiple messages
in a single ciphertext and enables a parallel computation in a SIMD manner.
Cheon et al. [14] proposed a method to identify a cyclotomic polynomial with
real coefficients to a vector of complex numbers. We clarify this encoding method
and give a simpler description using the structure of a cyclotomic ring with a
power-of-two dimension.

Recall that for a power-of-two integer M > 4, we have N = M/2 and
ΦM (X) = XN + 1. The integer 5 has the order of (N/2) modulo M and spans
Z

∗
M with the integer “−1”. Hence {ζj , ζj : 0 ≤ j < N/2} forms the set of the

primitive M -th roots of unity for ζj := ζ5
j

and 0 ≤ j < N/2. We use the
notation τ : P = R[X]/(XN + 1) → C

N/2 to denote a variant of the complex
canonical embedding map defined by τ : m(X) �→ z = (zj)0≤j<N/2 such that
zj = m(ζj). Note that τ is an isometric ring homomorphism between metric
spaces (P, ‖·‖can∞ ) and (CN/2, ‖·‖∞). We use this isomorphism τ as the decoding
function for packing of (N/2) complex numbers in a single polynomial. By iden-
tifying a polynomial m(X) =

∑N−1
i=0 miX

i ∈ P with the vector of its coefficients
m = (m0, . . . ,mN−1), the decoding algorithm τ can be understood as a linear
transformation from R

N to C
N/2. Its matrix representation is given by

U =

⎡
⎢⎢⎢⎢⎣

1 ζ0 ζ20 . . . ζN−1
0

1 ζ1 ζ21 . . . ζN−1
1

...
...

...
. . .

...
1 ζN

2 −1 ζ2N
2 −1

. . . ζN−1
N
2 −1

⎤
⎥⎥⎥⎥⎦



Bootstrapping for Approximate Homomorphic Encryption 371

which is the (N/2) × N Vandermonde matrix generated by {ζj : 0 ≤ j < N/2}.
In order to compute the encoding function, which is the inverse of τ , we first

note that the relation z = U · m is obtained from z = U · m by taking the
conjugation. If we write CRT = (U ;U) as the CRT matrix generated by the set
{ζj , ζj : 0 ≤ j < N/2} of M -th primitive roots of unity, we have the identities
(z ; z ) = CRT · m and CRT−1 = 1

N CRT
T
. This implies that the inverse of τ can

be computed by

m =
1
N

(U
T · z + UT · z ).

Throughout this paper, we will identify two spaces P and C
N/2 via the map τ ,

and hence a ciphertext will be called an encryption of z ∈ C
N/2 if it encrypts

the corresponding polynomial m(X) = τ−1(z ).

4.2 Rotation and Conjugation

The purpose of the key-switching operation is to convert a ciphertext under a
secret s′ into a ciphertext of the same message with respect to another secret
key sk = (1, s). The switching key swk can be generated by the procedure of
KSGensk(s′). Given a ciphertext ct = (c0, c1) at level �, the procedure KSswk(ct)
proceeds as follows.

• KSswk(ct). Output the ciphertext ct′ ← (c0, 0) + �P−1 · c1 · swk	 (mod q�).

The following lemma shows the correctness of key-switching procedure and esti-
mates a noise bound. It has a similar noise bound P−1 · q · Bks + Brs ≈ Brs with
the rescaling process.

Lemma 4 (Key-switching). Let ct = (c0, c1) ∈ R2
q be a ciphertext with

respect to a secret key sk′ = (1, s′) and let swk ← KSGensk(s′). Then ct′ ←
KSswk(ct) satisfies 〈ct′, sk〉 = 〈ct, sk′〉 + eks (mod q) for some eks ∈ R with
‖eks‖can∞ ≤ P−1 · q · Bks + Brs.

Proof. Let e′ = 〈swk, sk〉 − P · s′ (mod P · qL) be the inserted error of the
switching key swk. It was shown in [14, Lemma 3] that the ciphertext ct′ contains
an additional error e′′ = c1 · e′ in the modulus P · q from the key-switching
operation. The key-switching error is the sum of P−1 · e′′ and a rounding error
ers of P−1 · c1 · swk, so its size is bounded by

‖eks‖can∞ ≤ P−1 · ‖e′′‖can∞ + ‖ers‖can∞ ≤ P−1 · q · Bks + Brs,

as desired. ��

For an integer k co-prime with M , let κk : m(X) �→ m(Xk) (mod ΦM (X))
be a mapping defined on the set P. As noted in [29], this transformation can
be used to provide more functionalities on plaintext slots. In some more details,
given a ciphertext ct of a message m with sk = (1, s), we denote κk(ct) the
ciphertext which is obtained by applying κk to each entry of ct. Then κk(ct) is a
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valid encryption of κk(m) with the secret key κk(s). The key-switching technique
can be applied to the ciphertext κk(ct) to get an encryption of the same message
κk(m) with respect to the original secret key sk.

Rotation. Suppose that ct is an encryption of a message m(X) with the corre-
sponding plaintext vector z = (zj)0≤j< N

2
∈ C

N/2. For any 0 ≤ i, j < N/2, there
is a mapping κk which sends an element in the slot of index i to an element in
the slot of index j. Let us define k = 5i−j (mod M) and m̃ = κk(m). Denoting
z̃ = (z̃j)0≤j< N

2
as the corresponding plaintext vector of m̃, we have

z̃j = m̃(ζj) = m(ζ5
i−j

j ) = m(ζi) = zi,

so the j-th slot of τ(m̃) and the i-th entry of τ(m) have the same value. In
general, we may get a ciphertext κ5r (ct) encrypting ρ(z ; r) := (zr, . . . , zN

2 −1,

z0, . . . , zr−1), which is the vector obtained from z by rotation. Below, we describe
the rotation procedure including the key-switching operation.

• Generate the rotation key rkr ← KSGensk(κ5r (s)).
• Rot(ct; r). Output the ciphertext KSrkr

(κ5r (ct)).

Conjugation. We see that κ−1(ct) is a valid encryption of the plaintext vector
z = (zj)0≤j<N/2 with the secret key κ−1(s). It follows from that fact that

zj = m(ζj) = m(ζj) = m(ζ−1
j ).

Then the homomorphic evaluation of the conjugation operation over plaintext
slots consists of two procedures:

• Generate the conjugation key ck ← KSGensk(κ−1(s)).
• Conj(ct). Output the ciphertext KSck(κ−1(ct)).

4.3 Linear Transformations

In general, an arbitrary linear transformation over the vector of plaintext slots
in C

N/2 can be represented as z �→ A · z + B · z for some complex matrices
A,B ∈ C

N/2×N/2. As discussed in [32], it can be efficiently done by handling the
matrix in a diagonal order and making use of SIMD computation. Specifically,
let uj = (A0,j , A1,j+1, . . . , AN

2 −j−1, N
2 −1, AN

2 −j,0, . . . , AN
2 −1,j−1) ∈ C

N/2 denote
the shifted diagonal vector of A for 0 ≤ j < N/2. Then we have

A · z =
∑

0≤j<N/2

(uj � ρ(z ; j)) (1)

where � denotes the Hadamard (component-wise) multiplication between vec-
tors. Therefore, if the matrix A is given in plaintext and ct is given as an encryp-
tion of the vector z , the matrix-vector multiplication A ·z is expressed as combi-
nation of rotations and scalar multiplications. The vector rotation ρ(z ; j) can be
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homomorphically computed by Rot(ct; j) and the Hadamard (component wise)
scalar multiplication is done by multiplying the polynomial τ−1(uj). See Algo-
rithm 1 for an explicit description of the homomorphic matrix multiplication.
Similarly, the second term B · z can be obtained by multiplying the matrix B
after applying the slot-wise conjugation on z .

Algorithm 1. Homomorphic evaluation of matrix multiplication
1: procedure MatMult(ct ∈ R2

q, A ∈ C
N/2×N/2)

2: ct′ ← �τ−1(u0)� · ct (mod q)
3: for j = 1 to N/2 − 1 do
4: ctj ← �τ−1(uj)� · Rot(ct; j) (mod q)
5: ct′ ← Add(ct′, ctj) (mod q)
6: end for
7: return ct′

8: end procedure

Algorithm 1 requires (N/2 − 1) rotations and N multiplications with scalar
polynomials but the complexity can be reduced down using the idea of Baby-
Step Giant-Step algorithm. Let N1 = O(

√
N) be a divisor of N/2 and denote

N2 = N/2N1. It follows from [33] that Eq. (1) can be expressed as

A · z =
∑

0≤j<N2

∑
0≤i<N1

(uN1·j+i � ρ(z ;N1 · j + i))

=
∑

0≤j<N2

ρ

⎛
⎝ ∑

0≤i<N1

ρ(uN1·j+i;−N1 · j) � ρ(z ; i);N1 · j

⎞
⎠ .

For the homomorphic evaluation of the arithmetic circuit, we first compute the
ciphertexts of ρ(z ; k) for i = 1, . . . , N1−1. For each index j, we perform N1 scalar
multiplications and aggregate the resulting ciphertexts. In total, the matrix mul-
tiplication can be homomorphically evaluated with (N1−1)+(N2−1) = O(

√
N)

rotations and N1 · N2 = O(N) scalar multiplications.
We provide a trade-off between the precision of a plaintext and the size of

a ciphertext modulus. The output plaintext contains errors from the rounding
operation of scalar polynomial and the homomorphic rotation. We can reduce the
relative size of the rounding error by multiplying a scaling factor of Δ ≥ 1 to the
scalar polynomials, and the relative size of the rotation error can be controlled
by placing the significand of an input ciphertext in higher digits. Therefore,
the modulus of an output ciphertext is reduced after the evaluation of a linear
transformation if we use a scaling factor to get a better precision of plaintexts.

4.4 Sparsely Packed Ciphertext

The packing method described in Sect. 4.1 allows us to encrypt (N/2) complex
numbers in a single ciphertext. However, it is sufficient to deal with a small
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number of slots in some applications of HE. In this section, we explain how to
encode a sparse plaintext vector and describe the relation with the ordinary pack-
ing method. This idea will be applied to our bootstrapping method and provide
a trade-off between the latency time and the amortized time of bootstrapping
procedure.

Let n ≥ 2 be a divisor of N and let Y = XN/n. The native plaintext space
of HEAAN is the set of small polynomials in Z[X]/(XN + 1), and it has a subring
Z[Y ]/(Y n+1). Note that Z[Y ]/(Y n+1) can be identified with the complex coor-
dinate space C

n/2 by adapting the idea of ordinary packing method in Sect. 4.1.
Specifically, a polynomial m(Y ) is mapped to the vector w = (wj)0≤j<n/2 where
wj = m(ξj), ξ = exp(−2πi/n) = ζN/n, and ξj = ξ5

j

for 0 ≤ j < n/2. If
we consider a plaintext polynomial m(Y ) ∈ Z[Y ]/(Y n + 1) as a polynomial
m̃(X) = m(XN/n) in X, then the image of m̃ through the ordinary decoding
function τ is obtained by τ(m̃) = (zj)0≤j<N/2 where

zj = m̃(ζN/n
j ) = m(ξ5

j

) = wj (mod n/2)

for 0 ≤ j < N/2. Hence z = (zj)0≤j<N/2 can be understood as the vector
obtained from w by concatenating itself (N/n) times.

An encryption of a plaintext polynomial m(Y ) ∈ Z[Y ]/(Y n +1) with respect
to a secret key sk = (1, s) will be pairs as ct ∈ R2

q satisfying 〈ct, sk〉 =
m(Y )+e(X) (mod q) for some small polynomial e(X) ∈ R. We may employ key-
switching technique to get the functionalities of rotation, conjugation, and linear
transformation on sparsely packed slots. The main advantage of this method is
that it reduces the complexity of an arbitrary linear transformation: the total
complexity on (n/2)-sparsely packed ciphertexts is bounded by O(

√
n) rotations

and O(n) scalar multiplications.

5 Bootstrapping for HEAAN

5.1 Overview of the Recryption Procedure

This section gives a high level structure of the bootstrapping process for
the HEAAN scheme. We employ the ciphertext packing method and combine
it with our efficient evaluation strategy to achieve a better performance in
terms of memory and computation cost. Below we describe all the parts of
the recryption procedure in more details. We denote the following five steps by
ModRaise, CoeffToSlot, EvalExp, ImgExt and SlotToCoeff, respec-
tively. See Fig. 2 for an illustration.

Modulus Raising. Let ct be an input ciphertext of the bootstrapping procedure
with a ciphertext modulus q satisfying m(X) = [〈ct, sk〉]q. We start with the
point that its inner product t(X) = 〈ct, sk〉 (mod XN + 1) is of the form t =
qI + m for some small I(X) ∈ R with a bound ‖I‖∞ < K. Thus ct itself can
be viewed as an encryption of t(X) = t0 + t1X + · · · + tN−1X

N−1 in a large
modulus Q0 � q due to [〈ct, sk〉]Q0 = t(X). Our bootstrapping procedure aims to
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Fig. 2. Pipeline of our bootstrapping process

homomorphically and approximately evaluate the reduction mod q F (t) = [t]q
using arithmetic operations over the integers, and hence we can generate an
encryption of the original message m = [t]q with a ciphertext modulus larger
than q.

Putting Polynomial Coefficients in Plaintext Slots. Given the input
ciphertext ct ∈ R2

Q0
with a decryption structure t(X) = 〈ct, sk〉, this step aims

to put the coefficients t0, . . . , tN−1 in plaintext slots in order to evaluate the
modular reduction function F (t) coefficient-wisely. Let z ′ = τ(t) ∈ C

N/2 be the
corresponding vector of plaintext slots of the ciphertext ct. Since each ciphertext
can store at most N/2 plaintext values, we will generate two ciphertexts encrypt-
ing the vectors z ′

0 = (t0, . . . , tN
2 −1) and z ′

1 = (tN
2
, . . . , tN−1), respectively.

As mentioned in Sect. 4.1, recall the linear relation between the coefficient
vector of a polynomial and its corresponding vector of plaintext slots. If we divide
the matrix U into two square matrices
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U0 =

⎡
⎢⎢⎢⎢⎢⎣

1 ζ0 . . . ζ
N
2 −1
0

1 ζ1 . . . ζ
N
2 −1
1

...
...

. . .
...

1 ζN
2 −1 . . . ζ

N
2 −1

N
2 −1

⎤
⎥⎥⎥⎥⎥⎦

and U1 =

⎡
⎢⎢⎢⎢⎢⎣

ζ
N
2
0 ζ

N
2 +1
0 . . . ζN−1

0

ζ
N
2
1 ζ

N
2 +1
1 . . . ζN−1

1
...

...
. . .

...

ζ
N
2

N
2 −1

ζ
N
2 +1

N
2 −1

. . . ζN−1
N
2 −1

⎤
⎥⎥⎥⎥⎥⎦

,

then we get an identity z ′
k = 1

N (Uk
T · z ′ + UT

k · z ′) for k = 0, 1. Therefore, we
can generate encryptions of z ′

0 and z ′
1 using the linear transformations on the

plaintext vector z ′. One can apply our general method in Sect. 4.3 to this step.

Evaluation of the Complex Exponential Function. This step takes the
results of the previous step and homomorphically computes the reduction mod q
function F (t) = [t]q homomorphically. We use the trigonometric function S(t) :=
q
2π sin

(
2πt
q

)
as an approximation of F (t) and adapt the optimized evaluation

strategy for the complex exponential function E(t) := q
2π exp

(
2πit

q

)
.

Since the plaintext slots of the input ciphertexts contain the coefficients tj =

qIj + mj for 0 ≤ j < N , the output ciphertexts will encrypt q
2π exp

(
2πitj

q

)
=

q
2π exp

(
2πimj

q

)
in the corresponding plaintext slots.

Extraction of the Imaginary Part. We take two input ciphertexts encrypting
the values q

2π exp
(

2πimj

q

)
in their plaintext slots for 0 ≤ j < N . We extract their

imaginary parts as q
2π sin

(
2πmj

q

)
≈ mj by using the relation

sin
(

2πmj

q

)
=

1
2

(
exp

(
2πimj

q

)
− exp

(
−2πimj

q

))

and applying the evaluation method of slot-wise conjugation described in
Sect. 4.2.

Switching Back to the Coefficient Representation. The final step is to
pack all the coefficients mj in the plaintext slots of two ciphertexts back in a
single ciphertext. This procedure is exactly the inverse of the CoeffToSlot

transformation. That is, when given two ciphertexts that encrypt the vectors
z 0 = (m0, . . . ,mN

2 −1) and z 1 = (mN
2
, . . . ,mN−1), we aim to generate an encryp-

tion of m(X). Since the plaintext vector z = τ(m) of m(X) satisfies the identity
z = U ·m = U0 · z 0 + U1 · z 1, this transformation is also represented as a linear
transformation over the plaintext vectors.

Our bootstrapping process returns an encryption of m(X) with a ciphertext
modulus Q1 < Q0, which is much larger enough than the initial modulus q to
allow us to perform further homomorphic operations on the ciphertext.

We can perform the final two steps together by pre-computing the composi-
tion of linear transformations. The (inverse) linear transformation step consumes
only one level for scalar multiplications but requires a number of slot rotations.
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On the other hand, EvalExp performs homomorphic evaluation of the polyno-
mial Pr(·), which is the most levels consuming part of the recryption but requires
relatively small computational cost from our recursive evaluation strategy: linear
with the depth.

5.2 Recryption with Sparsely Packed Ciphertexts

As mentioned in Sect. 4.4, the use of sparsely packed ciphertexts has an advan-
tage in some applications, in that it reduces the complexity of linear transfor-
mation steps. However, the recryption of sparsely packed ciphertexts requires an
additional step before the CoeffToSlot step.

Let n ≥ 2 be a divisor of N and let Y = XN/n as in Sect. 4.4. Assume that
we are given an encryption ct of m(Y ) ∈ Z[Y ]/(Y n + 1) such that 〈ct, sk〉 ≈
q · I(X) + m(Y ) for some I(X) = I0 + I1 · X + · · · + IN−1 · XN−1 ∈ R. Then
the ModRaise step returns an encryption of q · I(X) + m(Y ) which is not
a polynomial of Y . We aim to generate an encryption of q · Ĩ(Y ) + m(Y ) for
some Ĩ(Y ) ∈ Z[Y ]/(Y n +1) before the next CoeffToSlot step. It proceeds as
described in Algorithm 2.

Algorithm 2. Homomorphic evaluation of the partial-sum procedure
1: procedure PartialSum(ct ∈ R2

q, n|N, n ≥ 2)
2: ct′ ← ct (mod q)
3: for j = 0 to log(N/n) − 1 do
4: ctj ← Rot(ct′; 2j · (n/2)) (mod q)
5: ct′ ← Add(ct′, ctj) (mod q)
6: end for
7: return ct′

8: end procedure

Note that the monomial Xk vanishes by the homomorphism X �→ X−Xn+1+
X2n+1−· · ·−XN−n+1 if k is not divisible by (N/n); otherwise, it is multiplied by
the constant (N/n). Hence q ·I(X)+m(Y ) is mapped to (N/n)·(q · Ĩ(Y )+m(Y ))
by this homomorphism where Ĩ(Y ) = I0 + IN/n · Y + · · · + IN−(N/n) · Y n−1. For
an efficient evaluation of this homomorphism, Algorithm 2 uses the rotation
operation repeatedly to fill the same value in the plaintext slots of index j
(mod n/2) for each j = 0, . . . , n/2 − 1.

As mentioned before, the main advantage of sparsely packed ciphertexts
is that the CoeffToSlot step can be represented as relatively small matri-
ces multiplications with only a single encryption of the coefficients vector of
t(Y ) = q · Ĩ(Y ) + m(Y ) while fully-packed slots need two ciphertexts for the
CoeffToSlot step. In some more details, for the plaintext vector w ∈ C

n/2 of
t(Y ), the desired ciphertext can be computed by 1

n (U ′T · w + U ′T · w) where
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U ′ =

⎡
⎢⎢⎢⎣

1 ξ0 ξ20 . . . ξn−1
0

1 ξ1 ξ21 . . . ξn−1
1

...
...

...
. . .

...
1 ξn

2 −1 ξ2n
2 −1 . . . ξn−1

n
2 −1

⎤
⎥⎥⎥⎦ ,

as in Sect. 4.1. We can either generate two ciphertexts encrypting two plain-
text vectors (w0, . . . , wn/2−1) and (wn/2, . . . , wn−1) by separating U ′ into two
square matrices, or compute a single encryption of (w0, . . . , wn−1) with n plain-
text slots when n < N . In the latter case, EvalExp and ImgExt perform the
same operations as in the fulled-packed ciphertexts, but the memory and the
computational cost are reduced by half since we can work on a single ciphertext.
The final SlotToCoeff step is also expressed as a linear transformation over
n-dimensional vector.

5.3 Noise Estimation of Recryption

In this section, we describe each step of recryption procedure with a noise anal-
ysis. We start with an upper bound K of ‖I‖∞. Since each coefficient of a
ciphertext ct = (c0, c1) is an element of Zq and the signed binary secret key s
has exactly h nonzero coefficients, each coefficient of 〈ct, sk〉 = c0 + c1s can be
considered to be the sum of (h+1) elements in Zq, which is bounded by q

2 (h+1).
Hence all the coefficient of I(X) = � 1

q 〈ct, sk〉	 is bounded by 1
2 (h + 1) ≈ 1

2‖s‖1.
In practice, the coefficients of ci look like a random variable over the interval
Zq and a coefficient of 1

q 〈ct, sk〉 behaves as the sum of (h + 1)-numbers of i.i.d.
uniform random variables over the interval (− 1

2 , 1
2 ). This heuristic assumption

gives us a smaller bound as K = O(
√

h) for ‖I‖∞.
We now consider the error growth during homomorphic evaluation of a linear

transformation. As noted in Sect. 4.3, it induces two types of errors such as
from the rounding of a scalar polynomial and the key-switching operation. We
multiply a sufficiently large scaling factor of Δ = O(q) to scalar polynomials,
so that the precision of rounded polynomials becomes larger than that of an
input plaintext. Then we do not need to consider the rounding errors because
they have no effect on the precision of the resulting plaintext. The second type
of error is added to a plaintext when we apply the key-switching technique for
some functionalities such as rotation or conjugation. From Lemma 4, the key-
switching error is bounded by P−1 · q · Bks + Brs ≈ Brs since we set a ciphertext
modulus q much smaller than P . During matrix multiplication, key-switching
errors are multiplied with diagonal vectors of matrix. Since infinite norms of
diagonal vectors of 1

N U0 and 1
N U1 are exactly one, the total error of second type

is bounded by O(Brs).
In the EvalExp step, we take two ciphertexts to be homomorphically eval-

uated by the approximate polynomial Pr(·) of the complex exponential polyno-
mial. Each component of the corresponding plaintext slots contains tj + ej for
some small error ej such that |ej | ≤ O(Brs). Hence, the error between the desired
value E(tj) and the resulting plaintext of EvalExp can be measured by
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|E(tj) − Pr(tj + ej)| ≤ |E(tj) − E(tj + ej)| + |E(tj + ej) − Pr(tj + ej)|

≤ Δ · 2π

q
|ej | +

Δ · 2r√
2π(d0 + 1)

(
eπK

2r−1(d0 + 1)

)d0+1

,

since E(·) is analytic and |E′(·)| ≤ Δ ·2π/q. The second term can be bounded by
O(1) and so it is negligible when d0 = O(1) and r = O(log(qK)) as described in
Sect. 3.2. By combining the error bound as |ej | ≤ O(Brs) of the previous step, we

deduce that the output ciphertexts of EvalExp encrypt E(tj) = Δ ·exp
(

2πitj

q

)
in their plaintext slots with errors bounded by O(Brs).

The imaginary part of E(t) is Δ·2π
q S(t) = Δ · sin

(
2πt
q

)
, which is an approx-

imation of Δ·2π
q m with an error bounded by O

(
q · |m|3

q3

)
for m = [t]q. We set a

small bound on an input plaintext (e.g. |m| ≤ q2/3) so that an approximation
error does not destroy the significant digits of the plaintext. Hence the ImgExt

step does not change the magnitude of bootstrapping error.
Finally, in the SlotToCoeff step, the plaintext vectors are multiplied with

the matrices U0 and U1, and their diagonal vectors have the size of one. The
size of error in the resulting plaintext is bounded by O(N · Brs) since it is the
sum of N errors of size O(Brs). In practice, under the heuristic assumption that
these errors behaves as independent Gaussian distributions, we get a reduced
error bound as O(

√
N · Brs).

In summary, for an input ciphertext ct ∈ R2
q satisfying 〈ct, sk〉 = m (mod q),

our bootstrapping process returns a ciphertext ct′ such that 〈ct′, sk〉 = m + e
(mod Q1) for a modulus Q1 � q and some error e with ‖e‖can∞ ≤ O(

√
N · Brs).

It consists of the initial/final linear transformations and the evaluation of the
complex exponential function, so the total depth (number of levels consumed)
for bootstrapping is O(log(Kq)) = O(log λ). The linear transformations require
and O(

√
N) rotations, while the evaluation of the exponential function needs r =

O(log(Kq)) = O(log λ) homomorphic multiplications, which is linear with the
depth of the decryption formula. As described above, the total complexity can
be significantly reduced when we handle a sparsely packed ciphertext with (n/2)
slots: the linear transformations require O(

√
n) rotations and the evaluation

complexity of the exponential function is reduced by half.

6 Implementation

In this section, we suggest some parameter sets for our bootstrapping procedure
with experimental results. Our implementation is based on the HEAAN library [13]
implementing the HE scheme of Cheon et al. [14]. The source code is publicly
available at github [12].

6.1 Parameter Selection

We adapt the estimator of Albrecht at el. [1] to guarantee the concrete security of
the proposed parameters. All the parameter sets achieve at least 80-bit security
level against the known attacks of the LWE problem.
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The key-switching keys have the largest modulus in the HEAAN scheme and
the modulus Q0 (after ModRaise) has half the bit size of the modulus. We
use the discrete Gaussian distribution of standard deviation σ = 3.2 to sample
error polynomials and set the Hamming weight h = 64 of the secret key s(X).
The parameters d0 = O(1) and r = O(log q) were chosen asymptotically in
the above sections, but in practice, we set the parameter experimentally based
on the bootstrapping error. We take the degree 7 Taylor expansion as an initial
approximation of the exponential function and choose a sufficiently large number
of iterations r to maintain the precision of output plaintexts.

The parameter log p is the bit size of plaintexts and the plaintext precision
denotes the number of significant bits of plaintexts after bootstrapping. The
before and after levels L0, L1 are obtained by dividing log Q0 and log Q1 by
log p, respectively. The whole parameter sets are described in Table 1.

Table 1. Parameter sets

Parameter log N log p log q r log Q0 L0 log Q1 L1 Plaintext precision

Set-I 15 23 29 6 620 26 202 8 8 bits

Set-II 27 37 7 22 64 2 12 bits

Set-III 16 31 41 7 1240 40 631 20 16 bits

Set-IV 39 54 9 31 344 8 24 bits

We present some specific examples of input and output plaintexts. For sim-
plicity, we show the real parts of the plaintext values in four slots. All the values
are divided by a factor of p for a clear interpretation.

Before bootstrapping : [0.777898 0.541580 0.603675 0.822638]

After bootstrapping : [0.777435 0.541021 0.603023 0.822321]

It shows that the error vectors is bounded by 2−11 · p, i.e., the bootstrapping
procedure with the parameter set I outputs a ciphertext of 10 bits of precision.

Before bootstrapping : [0.516015 0.772621 0.939175 0.345987]

After bootstrapping : [0.516027 0.772614 0.939172 0.346001]

Similarly, the second example shows that the bootstrapping error with the
parameter set II is bounded by 2−16 · p and the output plaintext has 15 bits
of precision.

6.2 Experimental Results

We show the performance of our bootstrapping procedure based on the pro-
posed parameter sets. All the experimentations were performed as a single
hyperthread on a 2.10 GHz Intel Xeon E5-2620. The experimental results are
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Table 2. Bootstrapping timings with parameter sets I to IV

Parameter Number of slots Linear trans. EvalExp Total time Amortized time

Set-I 1 12.3 s 12.3 s 24.6 s 24.6 s

32 48.6 s 60.9 s 1.9 s

64 82.8 s 95.1 s 1.5 s

128 139.2 s 151.5 s 1.2 s

Set-II 1 14.1 s 12.5 s 26.6 s 26.6 s

32 46.0 s 58.5 s 1.8 s

64 77.1 s 89.6 s 1.4 s

128 127.3 s 139.8 s 1.1 s

Set-III 1 64 s 63 s 127 s 127 s

32 218 s 281 s 8.8 s

64 343 s 406 s 6.3 s

128 528 s 591 s 4.6 s

Set-IV 1 58 s 68 s 126 s 126 s

32 200 s 268 s 8.4 s

64 307 s 375 s 5.9 s

128 456 s 524 s 4.1 s

summarized in Table 2. The linear transformation includes the three steps -
PartialSum, CoeffToSlot, and SlotToCoeff. The amortized time is
obtained by dividing the total bootstrapping time by the number of plaintext
slots.

The linear transformations take a longer time as the number of plaintext
slots grows while the complexity of the EvalExp step remains stable. Therefore,
we can make a trade-off between the latency time and the amortized time by
changing the number of slots. Figure 3 illustrates the trend of evaluation timings
for each of the bootstrapping phases (parameter set I).

Fig. 3. Tendency of real (left) and amortized (right) bootstrapping timings
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7 Conclusion

In this paper, we suggested a method to recrypt a ciphertext of the HEAAN scheme.
The performance of our bootstrapping procedure was significantly improved by
adapting a trigonometric approximation of the modular reduction function. The
linear transformation turns out to be the most time-consuming part, but we used
almost the same method as in [28,33]. It would be an interesting open problem to
find an efficient algorithm to evaluate the linear transformations approximately.
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Abstract. The construction XORP (bitwise-xor of outputs of two inde-
pendent n-bit random permutations) has gained broad attention over
the last two decades due to its high security. Very recently, Dai et al.
(CRYPTO’17), by using a method which they term the Chi-squared
method (χ2 method), have shown n-bit security of XORP when the under-
lying random permutations are kept secret to the adversary. In this work,
we consider the case where the underlying random permutations are
publicly available to the adversary. The best known security of XORP
in this security game (also known as indifferentiable security) is 2n

3
-bit,

due to Mennink et al. (ACNS’15). Later, Lee (IEEE-IT’17) proved a

better (k−1)n
k

-bit security for the general construction XORP[k] which
returns the xor of k (≥ 2) independent random permutations. However,
the security was shown only for the cases where k is an even integer.
In this paper, we improve all these known bounds and prove full, i.e.,
n-bit (indifferentiable) security of XORP as well as XORP[k] for any k.
Our main result is n-bit security of XORP, and we use the χ2 method to
prove it.

Keywords: Random permutation · Indifferentiable security
χ2 method · XOR construction · Simulator

1 Introduction

The problem to construct pseudorandom functions (PRFs) from pseudorandom
permutations (PRPs) is called “Luby-Rackoff Backwards” [BKR98] (referring to
the well known work of Luby and Rackoff who showed how to construct a PRP
from a PRF [LR88]). In [BKR98], the authors considered two sequential block
cipher calls, where the output of the first call is the key input to the second
one. However, this construction achieves security only up to the birthday bound
on the output size. Achieving security beyond the birthday bound is somewhat
non-trivial. Xoring the outputs of two independent n-bit random permutations1

1 In this work, we will essentially focus on information theoretic security in the ideal
model. Therefore, the permutations and functions that we will consider, will be
random (and not pseudorandom).
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is a very simple way to construct random functions from random permutations.
We call it the XOR construction and denote it as XORP. We also consider a
generalized version of the XOR construction in which we xor k independent
n-bit random permutations, and denote it as XORP[k]. Lucks [Luc00] showed
beyond the birthday bound security for XORP[k] for all k ≥ 2. In particular,
he showed that the construction achieves at least kn

k+1 -bit security. This bound
was further improved in a sequence of papers [BI99,CLP14,Pat10,Pat08b]. Very
recently, Dai et al. [DHT17] have shown n-bit security for XORP. Earlier, Men-
nink et al. [MP15] showed a reduction proving that the security of XORP[k]
can be reduced to that of XORP for any k ≥ 3. Hence, XORP[k] also achieves
n-bit security. The XORP (or its general version XORP[k]) construction is impor-
tant since it has been used to obtain some constructions achieving beyond the
birthday bound (or sometimes almost full) security (e.g., CENC [Iwa06,IMV16],
PMAC Plus [Yas11], and ZMAC [IMPS17]).

Moving from secret to public random permutation. While to a cer-
tain degree it is possible to view the permutations as secret, there are many
reasons to consider the setting where they are public. For example, we some-
times instantiate block ciphers with fixed keys. Moreover, many unkeyed per-
mutations are designed as an underlying primitive of encryption [BDPVA11a],
MAC [BDPVA11b], hash functions [BDP+13,RAB+08,Wu11,GKM+09], etc.
The CAESAR competition [CAE] received various permutation-based authen-
ticated encryptions, and all of these constructions have been analyzed in the
public permutation model.

The security game, in this setting, is clearly different from the standard
indistinguishable model due to the public access of the adversary to the under-
lying permutations. An appropriate notion is the indifferentiability framework,
introduced by Maurer et al. [MRH04]. Informally, it gives a sufficient condi-
tion under which an ideal functionality can be replaced by an indifferentiable-
secure construction based on ideal, publicly available underlying primitives. We
note that the security game for indifferentiability is also an indistinguisha-
bility game in which one has to design a simulator aimed to simulate the
underlying primitive. In the past, many constructions were analyzed (e.g.,
[AMP10,BDPVA08,BMN10]) under this security notion.

Known indifferentiable security bounds of XORP and XORP[k]. In this
indifferentiability model, Mandal et al. [MPN10] proved 2n

3 -bit security for
XORP. Later, Mennink et al. [MP15] pointed out a subtle but non-negligible
flaw in their proof and fixed the security proof. Recently, Lee [Lee17] has shown
improved security for the general construction XORP[k]. In particular, he has
proved (k−1)n

k -bit security for the general construction XORP[k] when k is an
even integer. Table 1 summarizes the state-of-the-art for XORP and XORP[k] in
the public permutation setting.
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Table 1. A brief comparison of known bounds and our bounds for the constructions
XORP and XORP[k]. Here q denotes the total number of queries made by the adversary
to all oracles.

Construction Best known bound Our bound

XORP q3/22n [MP15]
√

q/2n

XORP[k] qk+1

2nk (k ≥ 4 even) [Lee17]
√

q/2n

Mirror theory and its limitation. Patarin introduced a combinatorial prob-
lem motivated from the PRF-security of XORP[k] type constructions. Informally,
mirror theory (see [Pat10]) provides a suitable lower bound on the number of
solutions satisfying a system of linear equations involving exactly two variables
at a time. Together with the H-coefficient technique [Vau03,Pat08a,IMV16], this
leads to a bound on the PRF-distinguishing advantage of XORP. The mirror the-
ory seems to be very powerful as it can be applied to prove optimal security for
many constructions such as EDM, EWCDM, etc. [MN17a,MN17b]. However,
the proof of the mirror theory is quite complex with some of its steps lacking
necessary details. Later, Patarin [CLP14] himself provided a simpler alternative
but sub-optimal proof for XORP[k] (which is a trivial corollary of the mirror
theory).

One may wonder whether the same technique can be applied to the indiffer-
entiability setup or not. Here, we note that the mirror theory puts a constraint
on the system of equations so that no equation in one variable can be generated
through linear combination of equations from the system. On the other hand, in
the indifferentiable security game, the adversary can make public permutation
calls and observe the responses. So, along with the two variables linear equa-
tions, we also have to consider several single variable equations. This shows the
limitation of the mirror theory in this setup.

Our contribution and the proof technique. Proving full security of XORP in
the public permutation model was an open problem so far. The original simulator
[MPN10], used in the security proof of XORP, is conjectured to allow for security
up to 2n queries. However, the authors of [MP15] expressed this as a highly non-
trivial exercise. In this paper, we resolve this open problem and prove n-bit
indifferentiable security of XORP and XORP[k] for all k ≥ 3. Full indifferentiable
security of XORP is our main result which we state and prove in Theorem2.
Subsequently, in Theorem 3, we show full indifferentiability of XORP[k]; for this,
we reduce the security of XORP[k](k ≥ 3), to the security of XORP, and then
apply our main result.

The simulator (described in Sect. 3) that we consider in the security proof of
XORP follows the same steps as the simulator of [MPN10,Lee17] in the case of
forward queries. However, the simulator differs in the responses to the backward
queries. In the case of backward queries, the simulator queries the ideal random
function repeatedly (about n times) until it succeeds in its goal.
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We follow the recently introduced χ2 method [DHT17] to prove our claim.
This method was implicitly used by Stam [Sta78] while proving a bound on the
total variation between a truncated random permutation and a random function.
Though in a purely statistical context, (to the best of our knowledge) Stam’s work
can be viewed as the origin of the χ2 method, which led to a bound on the PRF-
security of the truncated random permutation construction (see [GG16,GGM17]
for recent results and discussion on this construction). In [DHT17], the authors
used this method to obtain bounds on the PRF-security of XORP and the EDM
construction [CS16a,MN17b]. Also, using this method full PRF-security of vari-
able output length XOR pseudorandom functions has been shown [BN18].

In this paper, we show another application of the χ2 method in (symmetric-
key) cryptography in the context of XORP[k] type construction. Our main result
demonstrates the power of this method as the proof of full security of XORP, in the
indifferentiability setup, becomes very hard with the existing methods. However,
our proof using the χ2 method is not a straightforward extension of the proof in the
indistinguishability framework due to Dai et al.; it is somewhat complicated as,
unlike in the indistinguishability framework, we will need to consider the primitive
queries (i.e., outputs of the individual permutations). Moreover, we will have to
handle the backward queries whose analysis is somewhat involved.

Outline of the paper. In the next section, we cover the preliminaries where we
discuss the notion of indifferentiability and the χ2 method. In Sect. 3, we describe
the simulator that we consider in the proof of our main result (Theorem2). In
Sect. 4, we state and prove Theorem 2. Some auxilliary proofs, used in the proof of
Theorem 2, are given in Sect. 5. Finally, in Sect. 6, we show full indifferentiability
of XORP[k].

2 Preliminaries

In this section, we cover the technical preliminaries required to understand our
results. We begin with the notational setup. Then we recall the preliminary
security notions related to adversary and its advantage in the context of an
indistinguishability game. This is to motivate our subsequent discussion on the
notion of indifferentiability. Finally, we briefly describe the χ2 method which is
our main tool.

Notational convention. We will use upper case letters to denote random
variables and their corresponding lower case letters to denote particular real-
izations of the variables. Given an integer s we will use the notation Xs to
denote the tuple (X1, . . . , Xs) of random variables and use xs to denote the
tuple (x1, . . . , xs) of corresponding realizations. Moreover, we write {Xs} to
denote the set {Xi : 1 ≤ i ≤ s}. Given a set S , we will write X ←$ S to mean
that X is sampled uniformly at random from the set S .
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2.1 Adversary and Advantage

Here, we recall the notion of adversarial advantage in the context of a generic
indistinguishability game. An adversary A is an oracle algorithm that interacts
with an oracle O through queries and responses. Finally, it returns a bit b ∈
{0, 1}. We express this as A O → b.

In an indistinguishability game, A interacts with two oracles O1 and O2.
The goal of A is to distinguish between O1 and O2 only from the corresponding
queries and responses. The advantage of the adversary in this game, denoted
AdvA (O1,O2), is given by

Advdist
O1,O2

(A ) := |Pr[A O1 → 1] − Pr[A O2 → 1]|,

where the probabilities are taken over the random coins of A ,O1, and O2.
In this work, we will focus on the information theoretic security of the con-

structions (XORP and XORP[k]). So, we let A to be computationally unbounded.
Therefore, without loss of any generality, we assume A to be deterministic (it
can always fix its internal coin tosses to those which maximizes its advantage).
However, we restrict A to only q queries. Let the corresponding replies from
O1 and O2 be Xq

1 = (X1,1, . . . , X1,q) and Xq
2 = (X2,1, . . . , X2,q) respectively.

Note that Xq
1 and Xq

2 are random variables that capture the randomness of the
oracles O1 and O2 respectively. Both Xq

1 and Xq
2 are distributed over the output

alphabet Ωq = Ω × · · · × Ω of the oracles. Then in this setting, it is not difficult
to see that

Advdist
O1,O2

(A ) = |Pr[A O1 → 1] − Pr[A O2 → 1]|
≤ max

E ⊆Ωq

∑

xq∈E

(Pr[Xq
1 = xq] − Pr[Xq

2 = xq]). (1)

The quantity on the r.h.s. of (1) is the statistical distance or the total varia-
tion distance between Xq

1 and Xq
2 . We will consider it slightly more formally in

Sect. 2.3. We denote by Advdist
O1,O2

(q) the maximum of the distinguishing advan-
tages Advdist

O1,O2
(A ) among all the adversaries A making at most q queries.

2.2 Indifferentiability

The notion of indifferentiability was introduced by Maurer et al. in [MRH04].
It is a stronger security notion than indistinguishability in the following sense.
Informally, let a construction T have oracle access to an ideal primitive F. Then
in an indistinguishability game, when T is presented as an oracle to the adversary
A , it can only query T in a black-box manner, i.e., A can not query F. Whereas
in the indifferentiability game, A can query both T and F.
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As shown in Fig. 1, in the indifferentiability game, in the real world, a con-
struction T has oracle access to an ideal primitive F. On the other hand, in the
ideal world, the simulator S has access to another ideal primitive G. A can query
any of these four entities with the goal of distinguishing between the two worlds.
In this case, A ’s advantage can be written as

Advdiff
TF,GS(A ) = |Pr[A T,F → 1] − Pr[A G,S → 1]|.

In order to prove indifferentiability of T from G, it is sufficient to construct a
simulator S in such a way that Advdiff

TF,GS(A ) becomes negligible for any adversary
A . The following definition captures this idea more formally.

Fig. 1. Indifferentiability game

Definition 1 (Indifferentiability [MRH04]). A Turing machine T with oracle
access to an ideal primitive F is said to be (t, qT, qF, ε)-indifferentiable from an
ideal primitive G if there exists a simulator S with oracle access to G and running
time at most t, such that for any adversary A , it holds that

Advdiff
TF,GS(A ) < ε.

A makes at most qT queries to T or G and at most qF queries to F or S. Similarly,
TF is said to be computationally indifferentiable from G if the running time of A
is bounded above by a polynomial in the security parameter and ε is a negligible
function of the security parameter.

Remark 1. For our purpose, we will not consider the parameter t. Also, we will
not consider qT and qF separately and focus on their sum q = qT + qF, which is
the total number of queries made by A . Moreover, when F and S are adequately
understood we will write the advantage term as Advdiff

T,G(A ).

We write Advdiff
T,G(q) = maxA Advdiff

T,G(A ), where maximum is taken over all
adversaries making at most q queries to its oracles.

Indifferentiable security of XORP and XORP[k]. We first describe the XORP
and XORP[k] constructions. Let Perm denote the set of all permutations over
the set {0, 1}n. Let Π0 and Π1 be two independent random permutations, i.e.,
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Π0,Π1 ←$ Perm. The XORP construction takes an input x from {0, 1}n and
returns the element Π0(x)⊕Π1(x). This construction can be further generalized
to k permutations. Let Π0, . . . ,Πk−1 be k independent random permutations.
We define

XORP[k](x) =
k−1⊕

i=0

Πi(x). (2)

So, XORP[2] is same as XORP. Now, we describe the setting of indifferentiable
security in our context.

Real world. In the real world, the construction XORP has oracle access to the
random permutations Π0 and Π1. When the adversary A queries the construc-
tion XORP with a value x ∈ {0, 1}n, XORP queries the oracles Π0 and Π1

with x and receives back Π0(x) and Π1(x) respectively. Finally, it computes
Π0(x) ⊕ Π1(x) and returns it to A . In addition to querying the XORP con-
struction, A can directly query the oracles Π0 and Π1 and obtain the values
of Π0(y),Π1(y),Π−1

0 (y), and Π−1
1 (y) for any y ∈ {0, 1}n. The queries for Π0(y)

and Π1(y) are forward queries and the queries Π−1
0 (y) and Π−1

1 (y) are backward
queries.

Ideal world. In the ideal world, A queries the random function $ and the sim-
ulator S. S has oracle access to $. However, S does not have access to (the
transcripts of) the interactions between A and $. The purpose of S is to simu-
late the output behavior of the oracles Π0 and Π1. That is, for b ∈ {0, 1}, when
A makes a forward query (x, b) with x ∈ {0, 1}n, S returns a random variable
Vb ∈ {0, 1}n. So, for b ∈ {0, 1}, Vb simulates Πb(x). Similarly, when A makes
a backward query (y, b) (with y ∈ {0, 1}n and b ∈ {0, 1}) S returns a random
variable Vb ∈ {0, 1}n ∪ {⊥}. Vb ∈ {0, 1}n simulates Πb

−1(y). The output Vb =⊥
indicates that S aborted after a fixed number of iterations. This will be more
clear when we will describe the simulator S in Sect. 3. In order to prove that
XORP is indifferentiable from $ it is enough to construct simulator S in such a
way that no adversary A can distinguish between the distributions of Vb and
Πb. In other words, advantage of any adversary A , which, in this case, can be
written as below,

Advdiff
XORP,$(A ) = |Pr[A XOR,(Π0,Π1,Π

−1
0 ,Π−1

1 ) → 1] − Pr[A $,S → 1]|
becomes negligible. In our case, we will restrict A to q queries and obtain a
concrete upper bound on Advdiff

XORP,$(A ) (in terms of parameters q and n). This
will be sufficient to show indifferentiability of XORP with $. For the XORP[k]
construction, we obtain similar upper bound on Advdiff

XORP[k],$(A ).

2.3 χ2 Method for Bounding Total Variation

Here, we provide a brief description of the χ2 method. Given a set Ω, let Xq :=
(X1, . . . , Xq) and Zq := (Z1, . . . , Zq) be two random vectors distributed over
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Ωq = Ω×· · ·×Ω (q times) according to the distributions P0 and P1 respectively.
Then the total variation distance or statistical distance between the distributions
P0 and P1 is defined as

‖P0 − P1‖ :=
1
2

∑

xq∈Ωq

|P0(xq) − P1(xq)| = max
E ∈Ωq

(
∑

xq∈E

P0(xq) − P1(xq)

)
.

In what follows, we will require the following conditional distributions.

P0|xi−1(xi) := Pr[Xi = xi | X1 = x1, . . . , Xi−1 = xi−1],

P1|xi−1(xi) := Pr[Zi = xi | Z1 = x1, . . . , Zi−1 = xi−1].

When i = 1, P0|xi−1 [x1] represents Pr[X1 = x1]. Similarly, for P1|xi−1 [x1]. Let
xi−1 ∈ Ωi−1, i ≥ 1. The χ2-distance2 between these two conditional probability
distributions is defined as

χ2(P0|xi−1 ,P1|xi−1) :=
∑

xi∈Ω

(P0|xi−1(xi) − P1|xi−1(xi))2

P1|xi−1(xi)
. (3)

Note that for the above definition to work, it is required that the support of the
distribution P0|xi−1 be contained within the support of the distribution P1|xi−1 .
Further, when the distributions P0|xi−1 and P1|xi−1 are clear from the context
we will use the notation χ2(xi−1) for χ2(P0|xi−1 ,P1|xi−1).

In a very recent work [DHT17], Dai et al. introduced a new method, which
they term the χ2 method (Chi-squared method), to bound the statistical distance
between two joint distributions in terms of the expectations of the χ2-distances
of the corresponding conditional distributions. At the heart of the χ2 method is
the following theorem, stated in our notation and setting.

Theorem 1 ([DHT17]). Following the notation as above and suppose the sup-
port of the distribution P0|xi−1 is contained within the support of the distribution
P1|xi−1 for all xi−1, then

‖P0 − P1‖ ≤
(

1
2

q∑

i=1

Ex[χ2(Xi−1)]

) 1
2

, (4)

where for each i, the expectation is over the (i−1)-th marginal distribution of P0.

As an aside, we mention that the main ingredients of the proof of Theorem1
are (i) Pinsker’s inequality, (ii) chain rule of Kullback-Leibler divergence (KL
divergence), and (iii) Jensen’s inequality3: Pinsker’s inequality upper bounds
statistical distance between the distributions by the KL divergence between the
2 χ2-distance has its origin in mathematical statistics dating back to the work of

Pearson (see [LV87]). It may be observed that χ2-distance is not symmetric and
hence it is not a metric.

3 See [CT06] for a background on these topics.
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two distributions, chain rule of KL divergence expresses the KL divergence of two
joint distributions as the sum of the KL divergences between corresponding con-
ditional distributions, and finally Jensen’s inequality is used to upper bound the
KL divergence between two distributions by their χ2-divergence (χ2-distance).

In [DHT17], Dai et al. have applied Theorem1 to show PRF-security of
two well known constructions, namely the xor of two random permutations
[Pat08b,Pat10,BI99,Luc00] and the encrypted Davies-Meyer (EDM) construc-
tion [CS16a,MN17a]. Subsequently, in [BN18], this method has been applied to
prove full PRF-security of the variable output length XOR pseudorandom func-
tion construction. This method seems to have potential for further application
to obtain better bounds (and simplified proofs) on the PRF-security of other
constructions where proofs so far have evaded more classical methods, such as
the H-coefficient method [Pat08a]. In fact, much earlier, Stam [Sta78] used this
method, implicitly and in a purely statistical context, to obtain a PRF-security
bound of the truncated random permutation construction.

3 Simulator and Transcripts

3.1 Description of the Simulator

Here, we describe the simulator S used in the proof of Theorem 2.4 The goal of
the simulator S is to mimic the permutations Π := (Π0(.),Π1(.),Π0

−1(.),Π1
−1(.))

in such a way that (XORP,Π) and ($,S) look indistinguishable. So, S has inter-
faces corresponding to the forward and backward queries of the random permuta-
tions Π0 and Π1. Formally, S consists of a pair of stateful randomized algorithms
SIMFWD (which is invoked for the responses to the forward queries) and SIMBCK

(which is invoked for responses to the backward queries). More precisely, for
x ∈ {0, 1}n and b ∈ {0, 1}, when an adversary A makes a forward query (x, b)
to S, S runs the algorithm SIMFWD and returns a random variable Vb ∈ {0, 1}n.
So, for b ∈ {0, 1}, Vb simulates Πb(x). Similarly, when A makes a backward query
(y, b) (with y ∈ {0, 1}n and b ∈ {0, 1}) to S, S runs the algorithm SIMBCK and
returns a random variable Vb ∈ {0, 1}n ∪ {⊥}. Vb ∈ {0, 1}n simulates Πb

−1(y).
Note that S has access to the random function $ which returns random elements
from {0, 1}n on every fresh query. The goal of the simulator S is to simulate the
output behavior of Π0(.),Π1(.),Π0

−1(.), and Π1
−1(.) in the ideal world in such

a way that it remains consistent with the XORP construction, which is given by
the condition

$(x) = SIMFWD(x, 0) ⊕ SIMFWD(x, 1) for x ∈ {0, 1}n.

However, S may fail to maintain the condition. Whenever it fails (which happens
only for the backward queries), SIMBCK returns ⊥. Before returning ⊥ it makes
several attempts where it interacts with $. If after n attempts it fails to maintain
the condition (we will show that would happen with very low probability), it
aborts. Vb = ⊥ indicates that event.
4 We will consider another simulator in the proof of Theorem 3.
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Description of the internal state. In order to be consistent with its replies,
i.e., to output the same Vb corresponding to the same queries (forward or back-
ward), S is stateful, i.e., it maintains a history of all the previous interactions
(i.e., queries and responses) with A . To do this, S internally maintains three
sets D ,R0, and R1, and also maintains two lists (indexed by elements of D)
L0,L1.

The set D contains all x ∈ {0, 1}n belonging to the forward queries (x, b)
made by A and all Vb ∈ {0, 1}n that the simulator output on a backward query
made by A . For b ∈ {0, 1}, the set Rb contains all y ∈ {0, 1}n belonging to the
backward queries (y, b) made by A along with all Vb output by S on a forward
query made by A . The lists L0,L1 capture the input-output mapping of S.
More precisely, for b ∈ {0, 1}, x ∈ D , y ∈ Rb, Lb(x) = y implies either Vb = y
was output on a forward query (x, b) or Vb = x was output on a backward query
(y, b). More importantly, for all x ∈ D , the relationship L0(x) ⊕ L1(x) = $(x)
is always satisfied.

Now, we describe how the simulator works via the algorithms SIMFWD and
SIMBCK. Details of the these algorithms are given in Figs. 2 and 3. In the follow-
ing, we assume that A always makes fresh queries since otherwise the simulator
can repeat the previous responses (as it maintains internal states keeping all
previous queries and responses).

Algorithm SIMFWD (see Fig. 2). On an input (x ∈ {0, 1}n, b ∈ {0, 1}), S queries
$ to obtain Z = $(x). Then, S samples Vb randomly from the set {0, 1}n \ {Rb ∪
{Z ⊕ R1−b}}, where Z ⊕ R1−b denotes the set {Z ⊕ y|y ∈ R1−b}. Here, it can

Fig. 2. Description of the simulator for all forward queries.
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be observed that the set {0, 1}n \ {Rb ∪ {Z ⊕ R1−b}} is non-empty, provided
q < 2n−1. Therefore, for q < 2n−1, the sampling is always possible. Subsequently,
S sets Vb and Z⊕Vb as outputs of SIMFWD(x, b) and SIMFWD(x, 1−b) respectively
(and hence SIMFWD(x, 0) ⊕ SIMFWD(x, 1) = $(x)). Before S returns Vb to the
adversary, it updates all internal sets accordingly.

Algorithm SIMBCK (see Fig. 3). Next, we present the algorithm SIMBCK. On an
input (y ∈ {0, 1}n, b ∈ {0, 1}), S samples an element Vb randomly from outside
the set D and then obtains $(Vb) by querying $. Now, there is a certain chance
that $(Vb)⊕y is in the range set R1−b, which would then violate the permutation
property of Π1−b that S is simulating. So, S continue with similar attempts until
it samples a Vb such that $(Vb) ⊕ y /∈ R1−b. It makes at most n such attempts.
If it fails after all these n attempts, it returns ⊥. In all these attempts, the S
maintains an auxiliary set D ′ which is not a part of its state and only used
locally during an execution. At the beginning of the algorithm, D ′ is initialized
to the current domain D . At the start of each iteration, a fresh Vb is sampled
from the set {0, 1}n \ D ′. If the conditions y ⊕ $(Vb) ∈ R1−b is satisfied (i.e.,
the sampled Vb turns out to be a bad choice), then Vb is appended to D ′ and
the next iteration begins. Note that if q + n < 2n then the set {0, 1}n \ D ′ is
always non-empty so that the sampling of Vb (in Step 6) is possible in every
iteration. But q + n < 2n is trivially satisfied for n ≥ 3 and q < 2n−1. When the
condition is not satisfied (i.e., when y ⊕ $(Vb) /∈ R1−b) then S returns Vb after
appropriately updating all the internal sets.

Remark 2. Here, as an aside, one may notice that there is a chance of collision
due to two backward queries made to the two random permutations in the real
world or two interfaces in the ideal world. We explain this with the following
example. Assume that A makes backward queries (y, 0) and (y′, 1) in the real
world. Then it is easy to see that there is a positive probability of getting the
same output in both the cases (as Π0 and Π1 are sampled independently from
the set Perm). On the other hand, in the ideal world, when A makes the query
(y, 0), then if y ⊕ $(V0) /∈ R1 (which has positive probability) then at Step 13 of
SIMBCK L1(V0) is set to $(V0) ⊕ y and V0 is returned to A . Now, if A makes
the query ($(V0) ⊕ y, 1) then due to the check at Step 2, V0 is again returned
to A . Therefore, there is a positive probability of collision for the queries (y, 0)
and (y′, 1) in the ideal world as well (as was to be expected since the simulator
is simulating the permutations Π0 and Π1), where y′ = $(V0) ⊕ y in this case.

3.2 Additional Information to the Adversary

After the adversary A has finished its interaction in the real/ideal world, i.e.,
when it has made q queries and received corresponding replies, it is provided
with the following additional information. Note that the additional information
does not degrade A ’s advantage as it is always possible to discard it. Below we
assume x, xi, y are from {0, 1}n and b is from {0, 1}.
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Fig. 3. Description of the simulator for all backward queries.

1. For each query x made to the construction XORP, A is given the values Π0(x)
and Π1(x). Similarly, for each query x made to the random function $, A is
given the outputs of the simulator S corresponding to the forward queries
(x, 0) and (x, 1).

2. For each forward query (x, b) made to Πb (i.e., for each value of Πb(x)), it is
also given Π1−b(x). Similarly, for each forward query (x, b) made to S, A is
also given the value corresponding to the forward query (x, 1 − b).

3. For each backward query (y, b) made to Πb (i.e., for each value of Π−1
b (y)), it

is also given Π1−b(Π−1
b (y)). For each backward query (y, b) made to S, A is

also given the value corresponding to the forward query (x, 1 − b), where x is
the value returned by S on the backward query (y, b).

With access to this extra information, A knows the tuple (xi,Π0(xi),Π1(xi))
corresponding to its i-th query in the real world. Note that from Π0(xi) and
Π1(xi), A can always obtain Π0(xi) ⊕ Π1(xi) (which is, in fact, the output
of XORP when queried with xi). Therefore, we do not include this redundant
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information in the tuple. When Π0(xi) and Π1(xi) are treated as random
variables, we will denote Π0(xi) by U0,i and Π1(xi) by U1,i. So, the tuple
(xi, U0,i, U1,i) is a random variable and an arbitrary but fixed value of this ran-
dom variable will be denoted by (xi, u0,i, u1,i). Similarly, in the ideal world,
corresponding to the i-th query, A knows the tuple (xi, V0,i, V1,i), where for
b ∈ {0, 1}, Vb,i is the reply of S to the forward query (xi, b). Similar to the pre-
vious case, we will denote a fixed value of the random variable (xi, V0,i, V1,i) by
(xi, v0,i, v1,i). In the case where the backward query resulted in an abort, i.e.,
the output was ⊥, we take xi = ⊥ and v0,i and v1,i can be arbitrary (but fixed).
In fact, in this case, v0,i and v1,i are purely included to maintain uniformity of
presentation and will be disregarded in subsequent calculations. Further, slightly
abusing the notation for its simplicity, we will denote any such tuple (i.e., a tuple
with xi = ⊥) by ⊥. Note that we did not include the query type (i.e., forward
or backward) information in the tuple as, in our calculation, we will consider
both the possibilities for a tuple. However, for the sake of completeness, one can
assume that A has this information.

Without loss of any generality we will assume that A does not repeat its
queries as the response will be the same for a repeated query. Also, we will
discard any duplicate copy of a tuple that may have occurred due to the extra
information supplied to A 5.

(Extended) transcript of the adversary. In the real world, the sequence of
random variables (xi, U0,i, U1,i), with 1 ≤ i ≤ q, is supported on the set Tu of
sequences (xi, u0,i, u1,i), 1 ≤ i ≤ q, xi, u0,i, u1,i ∈ {0, 1}n and xi �= xj , u0,i �=
u0,j , u1,i �= u1,j for 1 ≤ i < j ≤ q. Whereas in the ideal world the sequence of
random variables (xi, V0,i, V1,i), with 1 ≤ i ≤ q, is supported on the set Tv of
sequences (xi, v0,i, v1,i), 1 ≤ i ≤ q, xi ∈ {0, 1}n ∪ {⊥}, v0,i, v1,i ∈ {0, 1}n and
xi �= xj , v0,i �= v0,j , v1,i �= v1,j for each 1 ≤ i < j ≤ q such that xi �= ⊥ �= xj . So,
we have Tu ⊂ Tv. We term elements of Tu and Tv views of the adversary. In
our subsequent treatment, we will solely work with the views from the real and
the ideal world, and the fact that Tu ⊂ Tv will be essential for the application
of the χ2 method.

4 Main Result

In this section, we state and prove our main result. We continue in the setup of
the previous section. To simplify the presentation we denote 2n by N . Our main
result is the following.

Theorem 2. Let N ≥ 16 and q < N
2 . Then

Advdiff
XORP,$(q) ≤

√
1.25q

N

5 For example, such a duplicate of a tuple (xi, u0,i, u1,i) can occur in the real world if
A queries the XORP with xi and later makes a backward query to Π0 with u0,i.
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Proof. Before presenting the technical details we will provide a brief outline of
the proof to help the reader follow the underlying idea and the flow of the proof.
But before that we will describe our notational setup for the proof.

Notational setup: To simplify the notation we will denote the random variable
(xi, U0,i, U1,i) by Si and (xi, V0,i, V1,i) by Ti. So, Si (resp. Ti) follows the distri-
bution of the real (resp. ideal) world which we denote by pfwd

0 (.) (resp pfwd
1 ) when

Si (resp Ti) is a forward query and by pbck
0 (.) (resp pbck

1 ) when Si (resp Ti) is a
backward query. Hence, we denote Pr[Si = si] by pfwd

0 (si) and Pr[Ti = ti] by
pfwd

1 (ti) when Si and Ti are forward queries and likewise for backward queries.
Further, we will abuse the notation to denote the joint distribution of Si−1 by
pfwd

0 when Si−1 corresponds to i − 1 forward queries and by pbck
0 when Si−1 cor-

responds to i − 1 backward queries. Moreover, for fixed si and si−1, we denote
Pr[Si = si | S1 = s1, . . . , Si−1 = si−1] by pfwd

0 (si | si−1) when Si corresponds to
a forward query; likewise for the other cases.

Outline of the proof: The main tool we use in our proof is Theorem1. Our goal
is to evaluate the r.h.s. of (4). In doing so, we calculate Ex[χ2(Si−1)] over the real
world distributions (pfwd

0 and pbck
0 ). More precisely, we consider the two cases;

(i) when si is a forward query, and (ii) when si is a backward query. For the
forward query case, we first calculate χ2(si−1) for fixed si−1, which is given by
the sum of

(pfwd
0 (si | si−1) − pfwd

1 (si | si−1))2

pfwd
1 (si | si−1)

taken over all possible si given si−1. Here, we note that the support Tu of real
world distributions (pfwd

0 and pbck
0 ) is included in the supports Tu and Tv of

the ideal world distributions pfwd
0 and pbck

0 respectively. Hence, χ2(si−1) is well
defined. Next, we consider the random variable Si−1 in the real world. Each
Sj ∈ {Si−1} may correspond to a forward query or a backward query. However,
since the distributions pfwd

0 and pbck
0 are identical, the distribution of Si−1 does

not depend on the query type of each individual Sj . So, we treat χ2(Si−1) as a
random variable and take its expectation under the distribution of Si−1. Finally,
we take the sum of Ex[χ2(Si−1)] for all i in the range 1 ≤ i ≤ q, which turns
out to be 8q3

N3 .
Corresponding steps for the backward query case are exactly similar to the

forward query case when si �=⊥. The case when si =⊥ is treated separately.
Summing the expectations Ex[χ2(Si−1)] for the two subcases (i.e., for si �=⊥
and si =⊥) we obtain the final sum (taken over all i in the range 1 ≤ i ≤ q)
for the backward query case to be 2.5q

N . Finally, we get the upper bound on
Advdiff

XORP,$(q) by applying Theorem1, where we get an upper bound on the r.h.s.
of (4) by taking the maximum of the forward and backward queries for all the q
queries (which in this case turns out to be the backward query).
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Technical details: Following the above discussion we first consider the case when
si is a forward query, and then consider the case when it is a backward query.
To simplify notation, from here on, we will denote i − 1 by r.

Forward query

First, we calculate pfwd
0 (si | sr) and pfwd

1 (si | sr) for fixed si and sr, where
si = (xi, u0,i, u1,i). pfwd

0 (si | sr) is straightforward to calculate. Since xi /∈ {xr},
Π0(xi) and Π1(xi) are two independent random samples drawn from outside the
sets {ur

0} and {ur
1} respectively. Thus

pfwd
0 (si | sr) = Pr[Si = (xi, u0,i, u1,i) | S1 = (x1, u0,1, u1,1), . . . ,

Sr = (xr, u0,r, u1,r)]
= Pr[Π0(xi) = u0,i ∧ Π1(xi) = u1,i | Π0(xj) = u0,j∧

Π1(xj) = u1,j∀1 ≤ j ≤ r]

=
1

(N − r)2
(5)

To calculate pfwd
1 (si | sr), we consider, without loss of any generality, the execu-

tion of the algorithm SIMFWD algorithm on the forward query (v0,i, 0) (the case
when the forward query is (v1,i, 1) is identical). In this case, D = {xr},R0 =
{ur

0},R1 = {ur
1}. Then we have

pfwd
1 (si | sr) = Pr[Ti = (xi, v0,i, v1,i) | T1 = (x1, v0,1, v1,1), . . . , Tr = (xr, v0,r, v1,r)]

= Pr[$(xi) = v0,i ⊕ v1,i ∧ V0 = v0,i | D = {xr},R0 = {ur
0},R1 = {ur

1}]

=
1

N
× 1

N − |Wxi |
, (6)

where Wxi
= R0 ∪ {$(xi) ⊕ R1}. From (5) and (6) we derive the expression for

χ2(sr) below.

χ2(sr) =
∑

si

(pfwd
0 (si|sr)−pfwd

1 (si|sr))2

pfwd
1 (si|sr)

=
∑

si

(
1

(N−r)2
− 1

N(N−|W xi
|)

)2

1
N(N−|W xi

|)

=
∑

si

N
(

|Wxi
|− 2rN−r2

N

)2

(N−|Wxi
|)(N−r)4 . (7)

The sum in (7) is over all possible si’s given sr. The number of such number of
such si’s is (N − r)(N − |Wxi

|). Therefore,

χ2(sr) =
N
(
|Wxi

| − 2rN−r2

N

)2

(N − r)3
(8)

Let Sr be chosen according to the distribution pfwd
0 . Then D ,R0,R1 are random

variables. This, in turn, means Wxi
and χ2(Sr) are also random variables (as
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functions of D ,R0,R1). Our goal is to calculate the expectation of χ2(Sr) under
the distribution pfwd

0 . For notational simplicity, we denote the random variable
|Wxi

| by W (mildly violating our notational convention). So, from (8) we have

Ex[χ2(Zr)] = Ex

⎡

⎢⎣
N
(
W − 2rN−r2

N

)2

(N − r)3

⎤

⎥⎦

=
N

(N − r)3
× Ex

[(
W − 2rN − r2

N

)2
]

. (9)

In the next lemma, whose proof is postponed to Sect. 5, we calculate Ex[W].

Lemma 1. With the above notation

Ex[W] =
2rN − r2

N
, and Var[W] ≤ r2

N
.

Using Lemma 1, (9) can be written as

Ex[χ2(Sr)] =
N

(N − r)3
× Ex

[
(W − Ex[W])2

]

=
N

(N − r)3
× Var[W].

In Lemma 1, we also showed that Var[W] ≤ r2

N . This leads to the following final
expression for the forward query case.

q∑

i=1

Ex[χ2(Sr)] ≤
q∑

i=1

r2

(N − r)3

≤ 8q3

N3
. (10)

In (10), we used the fact r < q and q < N
2 .

Backward query

Let Z be the set of all possible si’s which are not ‘abort’, i.e., si �= ⊥. Then for
backward queries we have the following split.

Ex[χ2(Sr)] =Ex

[
∑

si∈Z

(pbck
0 (si | Sr) − pbck

1 (si | Sr))2

pbck
1 (si | Sr)

]

+ Ex
[
(pbck

0 (⊥ | Sr) − pbck
1 (⊥ | Sr))2

pbck
1 (⊥ | Sr)

]
(11)

We evaluate the two expectations on the r.h.s. of (11) in the following two cases.
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Case 1: si ∈ Z
In this case, we have for fixed sr,

pbck
0 (si | sr) = pfwd

0 (si | sr) =
1

(N − r)2
.

Next, we calculate pbck
1 (si | sr). For this, we need to consider the execution of

the algorithm SIMBCK. Let the backward query, without loss of any generality, be
(v0,i, 0). Further, let us denote by V j

0 the V0 sampled by the algorithm SIMBCK

at the j-th iteration, where by j-th iteration we mean j-th repeated execution
of the steps 6 to 19 of SIMBCK. Let us assume that SIMBCK succeeds at the �-
th iteration for 1 ≤ � ≤ n, i.e., for 1 ≤ j ≤ � − 1, $(V j

0 ) ⊕ v0,i ∈ R1, and
V �

0 = xi, where R1 = {vr
1} (also R0 = {vr

0},D = {xr}). Let us denote by
BAD�−1 the event $(V 1

0 ) ⊕ v0,i, . . . , $(V �−1
0 ) ⊕ v0,i ∈ R1 and by E the event

D = {xr} ∧ R0 = {vr
0} ∧ R1 = {vr

1}. Then

pbck
1 (si | sr) = Pr[Ti = (xi, v0,i, v1,i) | Tr = (xr, v0,r, v1,r), . . . , T1 = (x1, v0,1, v1,1)]

=
n∑

�=1

Pr[BAD�−1 ∧ V �
0 = xi ∧ $(xi) = v0,i ⊕ v1,i | E]

=
n∑

�=1

Pr[V �
0 = xi ∧ $(xi) = v0,i ⊕ v1,i | BAD�−1,E] × Pr[BAD�−1 | E]

Now, Pr[BAD�−1 | E] can be calculated as

Pr[BAD�−1 | E] =
�−1∏

j=1

Pr[$(V j
0 ) ⊕ v0,i ∈ R1 = {vr

1} | E]

=
( r

N

)�−1

. (12)

To justify (12) we first note that the distribution pbck
0 (.) is supported on the

set of tuples sr = (s1, . . . , sr) such that none of the sj , with 1 ≤ j ≤ r, is ⊥.
So, in the SIMBCK algorithm the set R1 has size r. Also, at the j-th iteration,
with 1 ≤ j ≤ � − 1 a fresh V j

0 (sampled from outside the set D ′) is given to $.
Therefore, BAD�−1 occurs when � − 1 independent events each with probability
r
N occur, leading to the expression in (12).

Next, at the �-th iteration the set D ′ has size r + � − 1. Since V �
0 is sampled

at random from the set {0, 1}n \ D ′, we immediately have

Pr[V �
0 = xi ∧ $(xi) = v0,i ⊕ v1,i | BAD�−1,E] =

1
N

× 1
N − r − � + 1

. (13)

By combining (12) and (13) we get

pbck
1 (si | sr) =

n∑

�=1

1
N

× 1
N − r − � + 1

×
( r

N

)�−1

. (14)

In the following lemma, we derive a lower and an upper bound on pbck
1 (si | sr).

Proof of the lemma is given in Sect. 5.
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Lemma 2. With the above notation, the following bounds hold for pbck
1 (si | sr).

1
(N − r)2

×
(
1 −
( r

N

)n)
≤ pbck

1 (si | sr) ≤ 4
N(N − r)

.

Let us denote the lower and upper bounds in Lemma2 by L and U respectively.
Then

(
pbck

0 (si | sr) − pbck
1 (si | sr)

)2

pbck
1 (si | sr)

≤ max

⎧
⎪⎨

⎪⎩

(
U − 1

(N−r)2

)2

U
,

(
L − 1

(N−r)2

)2

L

⎫
⎪⎬

⎪⎭
.

(15)

(15) is justified because the function

(
y− 1

(N−r)2

)2

y attains its minimum (= 0) at
y = 1

(N−r)2 and is strictly increasing for y ≥ 1
(N−r)2 and strictly decreasing for

y ≤ 1
(N−r)2 . Now,

(
U − 1

(N−r)2

)2

U
=

3N − 4r

4N(N − r)3
,

and
(
L − 1

(N−r)2

)2

L
=

(
r
N

)2n

(N − r)2 × (1 − ( r
N

)n) .

Further, considering that |Z | is at most (N −|D |)(N −|R1|) = (N −r)2, we get

∑

si∈Z

(
pbck

0 (si | sr) − pbck
1 (si | sr)

)2

pbck
1 (si | sr)

≤ max

{
3N − 4r

4N(N − r)
,

(
r
N

)2n

(
1 − ( r

N

)n)
}

.

Therefore, when Sr is a random variable that follows the distribution pbck
0 , we

obtain the following expectation under the distribution pbck
0 .

Ex

[
∑

si∈Z

(
pbck

0 (si | Sr) − pbck
1 (si | Sr)

)2

pbck
1 (si | Sr)

]
≤ max

{
3N − 4r

4N(N − r)
,

(
r
N

)2n

(
1 − ( r

N

)n)
}

.

(16)

Case 2: si = ⊥
In the real world, there is no abort, so pbck

0 (⊥ | Sr) = 0. Therefore, similar to (12),

Ex

[(
pbck

0 (⊥ | Sr) − pbck
1 (⊥ | Sr)

)2

pbck
1 (⊥ | Sr)

]
= Ex

[
pbck

1 (⊥ | Sr)
]

= pbck
1 (⊥)

=
( r

N

)n

. (17)
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From (11), (16), and (17) we derive

q−1∑

r=0

Ex[χ2(Sr)] ≤
q−1∑

r=0

max

{
3N − 4r

4N(N − r)
,

(
r
N

)2n

(
1 − ( r

N

)n)
}

+
( r

N

)n

≤ q ×
(

max

{
3

4(N − q)
,

(
q
N

)2n

(
1 − ( q

N

)n)
}

+
( q

N

)n
)

.

For q < N
2 we have the following bounds,

3
4(N − q)

<
3

2N
,

(
q
N

)2n

(
1 − ( q

N

)n) <
1

N(N − 1)
, and

( q

N

)n

<
1
N

.

Hence, we have for the backward query

q−1∑

r=0

Ex[χ2(Sr)] ≤ 2.5q

N
. (18)

Finally, we get the following upper bound on Advdiff
XORP,$(q).

Advdiff
XORP,$(q) = ‖Sq − T q‖ (19)

≤
√√√√1

2

q−1∑

r=0

Ex[χ2(Sr)] (20)

≤
√

1.25q

N
, (21)

where (19) is from the definition of Advdiff
XORP,$(q). (20) is given by (4) and (21)

is given by the maximum of (10) and (18) (which is (18)) for the q queries. ��

5 Auxiliary Proofs

In this section we state and prove Lemmas 1 and 2. We begin with Lemma 1
where we work with the same notation and setting of the Forward Query part
of the proof of Theorem 2.

5.1 Proof of Lemma 1

Lemma 1. With the notation of Theorem2,

Ex[W] =
2rN − r2

N
, and Var[W] ≤ r2

N
.
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Proof. When Zr is chosen according to the distribution pfwd
0 the sets {Ur

0 } and
{Ur

1 } are two random subsets (sampled independently) of {0, 1}n of cardinality
r. Also, in keeping with the notation of Theorem2, we assume xi to be a fixed
element of {0, 1}n. Now, for each g ∈ {0, 1}n, we define an indicator random
variable Ig as follows.

Ig =

{
1 if g ∈ {Ur

0 } and g ⊕ xi ∈ {Ur
1 }

0 otherwise.

Therefore,

Ex[Ig] = Pr[Ig = 1] = Pr[g ∈ {Ur
0 } ∧ g ⊕ xi ∈ {Ur

1 }] =
r

N
× r

N
=

r2

N2
. (22)

Also,

W = 2r −
∑

g∈{0,1}n

Ig.

Thus,

Ex[W] = 2r − Ex

⎡

⎣
∑

g∈{0,1}n

Ig

⎤

⎦ = 2r −
∑

g∈{0,1}n

Ex[Ig] =
2rN − r2

N
.

Next, to calculate Var[W] we use the following relationship.

Var[W] = Var

⎡

⎣
∑

g∈{0,1}n

Ig

⎤

⎦ =
∑

g∈{0,1}n

Var[Ig] +
∑

g �=h∈{0,1}n

Cov[Ig, Ih].

Var[Ig] is straightforward to calculate from the defintion;

Var[Ig] = Ex[I2
g ] − Ex[Ig]2 = Ex[Ig](1 − Ex[Ig])

=
r2

N2
×
(

1 − r2

N2

)

<
r2

N2
.

From the definition, Cov[Ig, Ih] is given by Cov[Ig, Ih] = Ex[IgIh] −
Ex[Ig]Ex[Ih]. Since Ex[Ig] = Ex[Ih] = r2

N2 is given by (22), the task reduces to
the calculation of Ex[IgIh] which we consider below.

Ex[IgIh] = Pr[Ig = 1 ∧ Ih = 1]
= Pr[g ∈ {Ur

0 } ∧ h ∈ {Ur
0 } ∧ g ⊕ xi ∈ {Ur

1 } ∧ h ⊕ xi ∈ {Ur
1 }]

= Pr[g ∈ {Ur
0 } ∧ h ∈ {Ur

0 }] × Pr[g ⊕ xi ∈ {Ur
1 } ∧ h ⊕ xi ∈ {Ur

1 }]

=
r(r − 1)

N(N − 1)
× r(r − 1)

N(N − 1)

=
(

r(r − 1)
N(N − 1)

)2
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Therefore, Cov[Ig, Ih] =
(

r(r−1)
N(N−1)

)2

−
(

r2

N2

)2

< 0. This implies that

Var[W] < N × r2

N2
=

r2

N
.

This finishes the proof of the lemma. ��

5.2 Proof of Lemma 2

Lemma 2. With the notation of Theorem2, the following bounds hold for
pbck

1 (si | sr).

1
(N − r)2

×
(
1 −
( r

N

)n)
≤ pbck

1 (zi | zr) ≤ 4
N(N − r)

.

Proof. The lower bound is justified as follows.

pbck
1 (zi | zr) =

n∑

�=1

1
N

× 1
N − r − � + 1

×
( r

N

)�−1

≥ 1
N(N − r)

×
n∑

�=1

( r

N

)�−1

=
1

N(N − r)
× 1 − ( r

N

)n

1 − ( r
N

)

=
1

(N − r)2
×
(
1 −
( r

N

)n)
.

For the upper bound, we get

pbck
1 (zi | zr) =

n∑

�=1

1
N

× 1
N − r − � + 1

×
( r

N

)�−1

≤ 4
N2

×
∞∑

�=1

( r

N

)�−1

(23)

=
4

N(N − r)
.

The first term on the r.h.s. of (23) follows by noting that r < q < N
2 and

� < n = log N ≤ N
4 , for N ≥ 16. ��

6 Extension to the Xor of k Permutations

In this section, we apply our main result (Theorem2) to show full indifferen-
tiable security of the XORP[k] construction for any k. Following Theorem 2, it
is sufficient to consider XORP[k] with k ≥ 3. In particular, our result is the
following.
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Theorem 3. Let N ≥ 16 and q < N
2 . Then, there exists a simulator S′ for

XORP[k], k ≥ 3, such that for any adversary A ′, there exists an adversary A with

Advdiff
XORP[k],$(A

′) = Advdiff
XORP,$(A )

and hence, Advdiff
XORP[k],$(q) ≤

√
1.25q

N .

Proof. The indifferentiable security analysis of XORP[k] follows a reduction tech-
nique which is similar to the technique used in [MP15] to prove PRF-security of
XORP[k] in the indistinguishability setting. However, in our case, we additionally
need to consider the simulator S′.
Brief description of S′. First, we recall the simulator S for XORP from Sect. 3.
The simulator S′ works almost the same way as S works. It first samples (k − 2)
independent random permutations Π2, . . . ,Πk−1. Note that the sampling can be
simulated as a lazy sampling in an efficient manner instead of sampling the whole
permutations at a time.

In case of a forward or backward query (x, i), with i ≥ 2, S′ responds honestly
(i.e., it uses its own sampled random permutation as mentioned above). When
i ∈ {0, 1}, it behaves exactly in the same way as S except that it computes
$′(x) = $(x) ⊕ Π2(x) ⊕ · · · Πk−1(x) and then applies Step 5 of SIMFWD (see
Fig. 2) in case of a forward query, or Step 7 of SIMBCK ( see Fig. 3) in case of a
backward query.

Next, we describe the reduction for the adversaries. Suppose there is an
adversary A ′ against XORP[k] and consider the simulator S′ defined above. Now,
we construct an adversary A against XORP and the simulator S. The adversary
A first stores the permutations Π2, . . . ,Πk−1 (again using lazy sampling to make
those efficient). Next, A runs the algorithm A ′ which can make two types of
queries, namely (a) primitive or simulator queries and (b) construction or random
function queries. Below, we consider these two types of queries.

(a) In case of a primitive or simulator query (x, i) (either forward or back-
ward), A first checks whether i ≥ 2 or not. If i ≥ 2, then A can sim-
ulate the response on its own, i.e., it computes Πi(x) or Π−1

i (x), where
Πi ∈ {Π2, . . . ,Πk−1}, and sends the output back to A ′. If i = 0 or 1,
then A forwards the query to its simulator/primitive oracle and whatever
response it gets again forwards to A ′; so, it basically relays the queries and
responses.

(b) In case of a construction or random function query, A forwards the query to
its corresponding construction/random function oracle. Suppose A gets Z as
a response. Then it computes Z ′ = Z ⊕⊕k−1

i=2 Πi(x), and sends Z ′ back toA ′.

Note that A is actually interacting with (XORP, (Π0,Π1,Π
−1
0 ,Π−1

1 )), whereas
the interaction interface of A ′ is equivalent to

(XORP[k], (Π0, . . . ,Πk−1,Π
−1
0 , . . . ,Π−1

k−1)).
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Now, assume that A is interacting with ($,S), the interaction interface of A ′

is then equivalent to ($ ⊕ XORP[k − 2],S′). It is easy to see the correctness of
the first oracle as A ′ xors his computation of XORP[k − 2] with the output
of $. Similarly, one can show the simulator interface of A ′ is S′. Note that $ ⊕
XORP[k−2] is completely independent of XORP[k−2], and we can consider it as
another independent random function $′. Thus, the interface of A ′ is equivalent
to ($′,S′). So, A perfectly simulates the real and the ideal world of A ′. Therefore,
Advdiff

XORP[k],$(A
′) = Advdiff

XORP,$(A ). By Theorem 2, we finally have

Advdiff
XORP[k],$(q) ≤

√
1.25q

N
. ��

7 Conclusion

Proving full security of XORP construction in the secret or public permutation
model (i.e., indifferentiable security) is a challenging problem. Recently, Dai et
al. introduced a method, called the χ2 method, using which they were able to
obtain full PRF-security of XORP in the secret random permutation model. The
full security in the public permutation model for this construction was an open
problem. In this paper, we apply the χ2 method to the XORP construction to
prove its full indifferentiable security. We believe this method can also be used
for other cryptographic constructions for which the full security is not known.

Here, we also remark that though our bound shows full (i.e., n-bit) indiffer-
entiable security of XORP and XORP[k], in practice (i.e., for realistic setting of
parameters), it does not lead to full n-bit security (mainly due to the presence
of the square root in the bound). As an immediate goal, it will be interesting to
investigate if a more sophisticated application of the χ2 method can get rid of
the square root in our bound.
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Abstract. In this paper we study the affine equivalence problem, where
given two functions F ,G : {0, 1}n → {0, 1}n, the goal is to determine
whether there exist invertible affine transformations A1, A2 over GF (2)n

such that G = A2◦F ◦A1. Algorithms for this problem have several well-
known applications in the design and analysis of Sboxes, cryptanalysis
of white-box ciphers and breaking a generalized Even-Mansour scheme.

We describe a new algorithm for the affine equivalence problem and
focus on the variant where F ,G are permutations over n-bit words, as
it has the widest applicability. The complexity of our algorithm is about
n32n bit operations with very high probability whenever F (or G) is
a random permutation. This improves upon the best known algorithms
for this problem (published by Biryukov et al. at EUROCRYPT 2003),
where the first algorithm has time complexity of n322n and the second
has time complexity of about n323n/2 and roughly the same memory
complexity.

Our algorithm is based on a new structure (called a rank table) which
is used to analyze particular algebraic properties of a function that
remain invariant under invertible affine transformations. Besides its stan-
dard application in our new algorithm, the rank table is of independent
interest and we discuss several of its additional potential applications.

Keywords: Affine equivalence problem · Block cipher
Even-Mansour cipher · Cryptanalysis · Rank table

1 Introduction

In the affine equivalence problem, the input consists of two functions F ,G and
the goal is to determine whether they are affine equivalent, and if so, output
the equivalence relations. More precisely, if there exist invertible affine transfor-
mations (over some field) A1, A2 such that G = A2 ◦ F ◦ A1, output A1, A2.
Otherwise, assert that F ,G are not affine equivalent.

Variants of the affine equivalence problem have been studied in several
branches of mathematics and are relevant to both asymmetric and symmet-
ric cryptography. In the context of asymmetric cryptography, the problem was
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first formalized by Patarin [17] and referred to as isomorphism of polynomials.
In this setting F ,G are typically of low algebraic degree (mainly quadratic) over
some field.

The focus of this work is on the affine equivalence variant in which F ,G map
between n-bit words and the affine transformations A1, A2 are over GF (2)n. This
variant is mostly relevant in several contexts of symmetric-key cryptography. In
particular, it is relevant to the classification and analysis of Sboxes (see [6,14]) as
affine equivalent Sboxes share differential, linear and several algebraic properties
(refer to [7] for recent results on this subject). Moreover, algorithms for the affine
equivalence problem were applied in [3] to generate equivalent representations
of AES and other block ciphers. These algorithms also have cryptanalytic appli-
cations and were used to break white-box ciphers (e.g., in [15]). Additionally,
solving the affine equivalence problem can be viewed as breaking a generaliza-
tion of the Even-Mansour scheme [11], which has received substantial attention
from the cryptographic community in recent years. The original scheme builds
a block cipher from a public permutation F using two n-bit keys k1, k2 and its
encryption function is defined as E(p) = F (p + k1) + k2 (where addition is over
GF (2)n). The generalized Even-Mansour scheme replaces the key additions with
secret affine mappings and breaking it reduces to solving the affine equivalence
problem, as originally described in [3].

The best known algorithms for the affine equivalence problem were presented
by Biryukov et al. at EUROCRYPT 2003 [3]. The main algorithm described
in [3] has complexity of about n322n bit operations, while a secondary algorithm
has time complexity of about n323n/2, but also uses about the same amount of
memory.1 Besides its high memory consumption, another disadvantage of the
secondary algorithm of [3] is that it cannot be used to prove that F and G are
not affine equivalent.

In this paper we devise a new algorithm for the affine equivalence problem
whose complexity is about n32n bit operations with very high probability when-
ever F (or G) is chosen uniformly at random from the set of all permutations on
n-bit words. Our algorithm is also applicable without any modification to arbi-
trary functions (rather than permutations) and seems to perform similarly on
random functions. However we focus on permutations as almost all applications
actually require solving the affine equivalence problem for permutations. Since
our algorithm can be used to prove that F and G are not affine equivalent, it
does not share the disadvantage of the secondary algorithm of [3].

As a consequence of our improved algorithm, we solve within several minutes
affine equivalence problem instances of size up to n = 28 on a single core.
Optimizing our implementation and exploiting parallelism would most likely
allow solving instances of size at least n = 40 using an academic budget. Such
instances are out of reach of all previous algorithms for the problem.

1 Biryukov et al. also described a more efficient algorithm of complexity n32n for the
linear equivalence problem, which is a restricted variant of the affine equivalence
problem.
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Technically, the main algorithm devised in [3] for the affine equivalence prob-
lem is a guess-and-determine algorithm (which is related to the “to and fro”
algorithm of [18], devised to solve the problem of isomorphism of polynomi-
als) whereas the secondary algorithm is based on collision search (it generalizes
Daemen’s attack on the original Even-Mansour cipher [8]). On the other hand,
algorithms that use algebraic techniques (such as [5]) are mainly known for the
asymmetric variant, in which F ,G are functions of low degree, and it is not clear
how to adapt them to arbitrary functions.

In contrast to previous algorithms, our approach involves analyzing algebraic
properties of F ,G which are of high algebraic degree. More specifically, we are
interested in the polynomial representation (algebraic normal form or ANF) of
each of the n output bits of F (and G) as a Boolean function in the n input
bits. In fact, we are mainly interested in “truncated” polynomials that include
only monomials of degree at least d (in particular, we choose d = n − 2). Each
such polynomial can be viewed a vector in a vector space (with the standard
basis of all monomials of degree at least d = n − 2). Therefore we can define
the rank of the set of n truncated polynomials for each F ,G as the rank of the
matrix formed by arranging these polynomials as row vectors. In other words,
we associate a rank value (which is an integer between 0 and n) to F (and to
G) by computing the rank of its n truncated polynomials (derived from its n
output bits) as vectors. We first show that if F ,G are affine equivalent, their
associated ranks are equal.2

To proceed, we analyze F ,G independently. We derive from F several func-
tions, each one defined by restricting its 2n inputs to an affine subspace of dimen-
sion n−1. Since each such derived function (restricted to an affine subspace) has
an associated rank, we assign to each possible (n − 1)-dimensional subspace a
corresponding rank. As there are 2n+1 possible affine subspaces (such a subspace
can be characterized using its orthogonal subspace by a single linear expression
over n variables and a free coefficient), we obtain 2n+1 rank values for F . These
values are collected in the rank table of F , where a rank table entry r stores
the set of all affine subspaces (more precisely, their compact representations as
linear expressions) assigned to rank r.3

The main idea of the algorithm is to compute the rank tables of both F and
G and then use these tables (and additional more complex structures derived
from them) to recover the (unknown) affine transformation A1, assuming that
G = A2 ◦ F ◦ A1. In essence, the rank tables allow us to recover matchings
between (n − 1)-dimensional affine subspaces that are defined by A1: an affine
subspace S in matched with S′ if A1 transforms S to the affine subspace S′.
Each such matching between S and S′ reveals information about A1 in the form
of linear equations. Hence we aim to use the rank tables to recover sufficiently
many such matchings and compute A1 using linear algebra. Once A1 is derived,

2 The choice of d = n − 2 seems arbitrary at this stage. We only note that choosing
a larger or smaller value for d typically results in a rank value which is constant for
almost all functions, providing no information about them.

3 The formal definition of a rank table is slightly different.



416 I. Dinur

computing A2 is trivial. The main property of the rank table that we prove and
exploit to recover the matchings is that if S in matched with S′, then S appears
in the rank table of G in the same entry r as S′ appears in the rank table of F .

Since the number of (n−1)-dimensional affine subspaces is 2n+1, each contain-
ing 2n−1 elements, a naive approach to computing the rank table (which works
independently on each subspace) has complexity of at least 2n+1 · 2n−1 = 22n.
However, using symbolic computation of polynomials, we show how to reduce this
complexity to about n32n bit operations. While this computational step is easy
to analyze, this is not the case for the overall algorithm’s performance. Indeed,
its success probability and complexity depend on the monomials of degree at
least n − 2 of F and G. In particular, if all n output bits of F and G are func-
tions of degree n − 3 or lower, they do not contain any such monomials. As a
result, all affine subspaces for F and G are assigned rank zero and the rank
tables of these functions contain no useful information, leading to failure of the
algorithm.4

When F (or G) is chosen uniformly at random from the set of all possible
n-bit permutations (or n-bit functions in general), the case that its algebraic
degree is less than n − 2 is extremely unlikely for n ≥ 8. Nevertheless, rigorous
analysis of the algorithm seems challenging as its performance depends on subtle
algebraic properties of random permutations. To deal with this situation, we
make a heuristic assumption about the distribution of high degree monomials
in random permutations which enables us to use well-known results regarding
the rank distribution of random Boolean matrices. Consequently, we derive the
distribution of the sizes of the rank table entries for a random permutation. This
distribution and additional properties enable us to show that asymptotically the
algorithm succeeds with probability close to 1 in complexity of about n32n bit
operations. This heuristic analysis is backed up by thousands of experiments on
various problem instances of different sizes. Rigorously analyzing the algorithm
and extending it to succeed on all functions (or permutations) with probability
1 in the same complexity remain open problems.

The properties of the rank table and the algorithm for computing it are of
independent interest. In particular, we propose methods to build experimental
distinguishers for block ciphers based on the rank table and a method to effi-
ciently detect high-order differential distinguishers based on the algorithm for its
computation. Furthermore, our techniques are relevant to decomposition attacks
on the white-box ASASA block cipher instances proposed by Biryukov et al. [2].
In this application, we adapt the algorithm for computing the rank table in
order to improve the complexity of the integral attack on ASASA published
in [10] from 23n/2 to about 2n (where n is the block size of the instance).

The rest of the paper is organized as follows. In Sect. 2 we describe some
preliminaries and give an overview of the new affine equivalence algorithm in
Sect. 3. In Sect. 4 we prove the basic property of rank equality for affine equiv-
alent functions, while in Sect. 5 we define and analyze the matching between

4 In case the algorithm fails, one can try to apply it to F−1 and G−1 which may be
of higher algebraic degree.
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(n − 1)-dimensional affine subspaces that we use to recover A1. In Sect. 6 we
define the rank table and additional objects used in our algorithm, and describe
the relation between these objects for affine equivalent functions. In Sect. 7 we
analyze properties of rank tables for random permutations under our heuristic
assumption. Then, we describe and analyze the new affine equivalence algorithm
in Sect. 8. Next, in Sect. 9, we describe applications of the new algorithm and
the rank table structure. Finally, we conclude the paper in Sect. 10.

2 Preliminaries

For a finite set R, denote by |R| its size. Given a vector u = (u[1], . . . , u[n]) ∈
GF (2)n, let wt(u) denote its Hamming weight. Throughout this paper, addition
between vectors u1, u2 ∈ GF (2)n is performed bit-wise over GF (2)n.

Multivariate Polynomials. Any Boolean function F : {0, 1}n → {0, 1} can be
represented as a multivariate polynomial whose algebraic normal form (ANF) is
unique and given as F (x[1], . . . , x[n]) =

∑

u=(u[1],...,u[n])∈{0,1}n

αuMu, where αu ∈

{0, 1} is the coefficient of the monomial Mu =
∏n

i=1 x[i]u[i], and the sum is
over GF (2). The algebraic degree of the function F is defined as deg(F ) =
max{wt(u) | αu �= 0}.

In several cases it will be more convenient to directly manipulate the repre-
sentation of F as a multivariate polynomial P (x[1], . . . , x[n]) =

∑
u∈{0,1}n αuMu.

Note that unlike F , the polynomial P is not treated as a function but rather
as a symbolic object. P (x[1], . . . , x[n]) can be viewed as a vector in the vector
space spanned by the set of all monomials {Mu | u ∈ {0, 1}n}.

Given a multivariate polynomial P (x[1], . . . , x[n]) =
∑

u∈{0,1}n αuMu and a
positive integer d, define P(≥d) by taking all the monomials of P of degree at
least d, namely, P(≥d)(x[1], . . . , x[n]) =

∑

u∈{0,1}n∧wt(u)≥d

αuMu. Note that P(≥d)

can be represented using at most
∑n

i=d

(
n
i

)
non-zero coefficients.

Given a function F : {0, 1}n → {0, 1} represented by a polynomial
P (x[1], . . . , x[n]), define F(≥d) : {0, 1}n → {0, 1} as the function represented
by P(≥d).

Vectorial Functions and Polynomials. Given a vectorial Boolean function
F : {0, 1}n → {0, 1}m, let F (i) : {0, 1}n → {0, 1} denote the Boolean function of
its i’th output bit.

We say that a sequence of m polynomials P = {P (i)(x[1], . . . , x[n])}m
i=1 rep-

resents F if for each i ∈ {1, 2, . . . ,m}, the i’th polynomial P (i) represents F (i).
Given a positive integer d, denote P (≥d) = {P

(i)
(≥d)(x[1], . . . , x[n])}m

i=1. The
vectorial function F (≥d) : {0, 1}n → {0, 1}m is defined analogously.

The algebraic degree deg(P ) of P is defined as the maximal degree of its m
polynomials. The algebraic degree deg(F ) is defined analogously.
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As each P (i) can be viewed as a vector in a vector space, we define the
symbolic rank of P as the rank of the m vectors {P (i)}m

i=1. We denote the
symbolic rank of P as SR(P ). Note that SR(P ) ∈ Zm+1.

Affine Transformations and Affine Equivalence. An affine transformation
A : {0, 1}m → {0, 1}n over GF (2)m is defined using a Boolean matrix Ln×m and
a word a ∈ {0, 1}n as A(x) = L(x) + a (L(x) is simply matrix multiplication).
The transformation is invertible if m = n and L is an invertible matrix. If a = 0,
then the A is called a linear transformation (such functions are a subclass of
affine functions).

Two functions F : {0, 1}n → {0, 1}m, G : {0, 1}n → {0, 1}m are affine
equivalent is there exist two invertible affine transformations A1 : {0, 1}n →
{0, 1}n and A2 : {0, 1}m → {0, 1}m such that G = A2 ◦ F ◦ A1. It is easy to
show that the affine equivalence relation partitions the set of all functions into
(affine) equivalence classes. We denote F ≡ G if F is affine equivalent to G.

Symbolic Composition. Given P = {P (i)(x[1], . . . , x[n])}m
i=1, and an affine

function A1 : {0, 1}n′ → {0, 1}n, the composition P ◦ A1 is a sequence of m
polynomials in n′ variables. For i ∈ {1, 2, . . . ,m}, the i’th polynomial in this
composition is P (i) ◦ A1. It can be computed by substituting each variable x[j]
in P (i) with the (affine) symbolic representation of the j’th output bit of A1

(and simplifying the outcome to obtain the ANF).
For example, given P (x[1], x[2], x[3]) = x[1]x[2] + x[1]x[3] + x[2] + 1 and

A1 : {0, 1}2 → {0, 1}3 defined by the relations x[1] = y[1] + y[2] + 1, x[2] =
y[2], x[3] = y[1] + y[2], then

P ◦ A1 = (y[1] + y[2] + 1)(y[2]) + (y[1] + y[2] + 1)(y[1] + y[2]) + y[2] + 1 =

(y[1]y[2] + y[2] + y[2]) + (y[1] + y[1]y[2] + y[1]y[2] + y[2] + y[1] + y[2]) + y[2] + 1 =

y[1]y[2] + y[2] + 1.

Thus, we compose each monomial Mu with coefficient 1 in P with A1 to obtain a
polynomial expression, add all the expressions and simplify the result. Formally,
if we denote P ’s Mu coefficient by αu, then

P ◦ A1 =
∑

u∈{0,1}n

αu · (Mu ◦ A1).

Note that composition with an affine function does not increase the algebraic
degree of the composed polynomial, namely deg(P ◦ A1) ≤ deg(P ).

Analogously, given an affine function A2 : {0, 1}m → {0, 1}m′
, the composi-

tion A2 ◦ P is a sequence of m′ polynomials in n variables. It can be computed
by substituting each variable x[j] in the (affine) symbolic representation of A2

with P (j). Equivalently, if A2(x) = L(x) + a, then A2 ◦ P can be computed by
symbolic matrix multiplication (and addition of a) as L(P )+ a. In particular, if
m′ = 1 and a = 0, then A2 reduces to a vector v = (v[1], v[2], . . . , v[m]) ∈ {0, 1}m

and v(P ) =
∑m

i=1 v[i]P (i) is a symbolic inner product.
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By rules of composition, ifF is represented byP , thenP ◦A1 representsF ◦A1

(which is a standard composition of functions) and A2 ◦ P represents A2 ◦ F .

Half-Space Masks and Coefficients. Let A : {0, 1}n−1 → {0, 1}n be an affine
transformation such that A(x) = L(x) + a for a matrix Ln×n−1 with linearly
independent columns. Then the (affine) range of A is an (n − 1)-dimensional
affine subspace spanned by the columns of L with the addition of a. The subspace
orthogonal to the range of A is of dimension 1 and hence spanned by a single
non-zero vector h ∈ {0, 1}n. Namely, a vector v ∈ {0, 1}n is in the range of A if
and only if h(v + a) = 0, i.e., v satisfies the linear equation h(v) + h(a) = 0.

Since h partitions the space of {0, 1}n into two halves, we call h the half-space
mask (HSM) of A and call the bit h(a) the half-space free coefficient (HSC) of A.

We call the linear subspace spanned by the columns of L the linear range of
A. A vector v ∈ {0, 1}n is in the linear range of A if and only if h(v) = 0.

Canonical Affine Transformations. Given non-zero h ∈ {0, 1}n and c ∈
{0, 1}, there exist many affine transformations whose HSM and HSC are equal
to h, c, respectively. We will use the fact (stated formally below) that all affine
transformations with an identical affine range are related by composition on the
right with an invertible affine transformation.

Fact 1. The affine transformations A1 : {0, 1}n−1 → {0, 1}n and A2 : {0, 1}n−1

→ {0, 1}n have the same affine range if and only if there exists an invertible
affine transformation A′ : {0, 1}n−1 → {0, 1}n−1 such that A1 = A2 ◦ A′.

Given A1, A2 the matrix A′ above can be computed using basic linear algebra.
We now define the canonical affine transformation C|h,c : {0, 1}n−1 → {0, 1}n

with respect to h, c. Let � denote the index of the first non-zero bit of h =
(h[1], . . . , h[n]). Write C|h,c(x) = L(x) + a. We define a = c · e� (where e� is the
�’th unit vector) and define L[i] (the i’th column of L) using h and the unit
vectors as follows:

L[i] =

{
ei if i < �

ei+1 + h[i + 1]e� otherwise (� ≤ i ≤ n − 1)

Thus, on input (y[1], . . . , y[n− 1]), the transformation C|h,c is defined by the
symbolic form

(x[1], x[2], . . . , x[n]) = (y[1], . . . , y[� − 1],
n−1∑

i=�

h[i + 1]y[i] + c, y[�], . . . , y[n − 1]).

The motivation behind the definition of C|h,c is that it allows very simple symbolic
composition when applied on the right: its main action is to replace the variable
x[�] with the affine combination that is specified by the coefficients of h and by c.
Other variables are just renamed: variables with index i < � remain with the same
index, while for each variable with index i > �, its index it reduced by 1.
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Remark 1. Note that we have to show that the definition of C|h,c is valid. First,
the n − 1 columns of L are clearly linearly independent. It remains to prove
that h, c are indeed the HSM and HSC of C|h,c. For this purpose, it suffices
to show that for each column L[i], the vector L[i] + a satisfies the equation
h(L[i] + a) + c = 0. Since h(a) = h(c · e�) = c · h(e�) = c (as h� = 1), it remains
to show that h(L[i]) = 0. Indeed, if 0 ≤ i < �, then h(L[i]) = hi = 0 (as �
is the index of the first non-zero bit of h). Otherwise, � ≤ i ≤ n − 1, then
h(L[i]) = h[i + 1] + h[i + 1]h[�] = 0 (as h[�] = 1).

3 Overview of the New Affine Equivalence Algorithm

We demonstrate the new algorithm using an example. Although it is oversim-
plified, this example is sufficient to convey the main ideas of our algorithm.

Definition of Functions. We define the function F : {0, 1}3 → {0, 1}3 using
its symbolic representation P = {P (i)(x[1], x[2], x[3])}3i=1,

P (1)(x[1], x[2], x[3]) =x[1]x[2] + x[1]x[3] + x[2] + 1

P (2)(x[1], x[2], x[3]) =x[1]x[2] + x[1] + x[2]

P (3)(x[1], x[2], x[3]) =x[1]x[3] + x[3].

We define G : {0, 1}3 → {0, 1}3 using 2 affine transformations as G =
A2 ◦F ◦A1, where A2 is simply the identity and A1 is defined using the relations

x[1] = y[1] + y[3] + 1, x[2] = y[1] + y[2], x[3] = y[2].

Composing A2 ◦ P ◦ A1 and simplifying the resultant ANFs, gives the symbolic
representation of G as Q = {Q(i)(y[1], y[2], y[3])}3i=1, where

Q(1)(y[1], y[2], y[3]) =y[1]y[3] + y[1] + y[2] + 1

Q(2)(y[1], y[2], y[3]) =y[1]y[2] + y[1]y[3] + y[2]y[3] + y[3] + 1

Q(3)(y[1], y[2], y[3]) =y[1]y[2] + y[2]y[3].

The input to our affine equivalence algorithm is F ,G defined above and its
goal is to recover the (presumably) unknown affine transformation A1. The first
step of the algorithm is to interpolate F ,G and obtain P ,Q, respectively.

Rank Tables and Histograms. The most basic property that we prove in The-
orem 1 is that since F and G are affine equivalent, the symbolic ranks of P and
Q (as vectors) are equal. Indeed, it is easy to verify that both P and Q have
symbolic rank of 3. More significantly, Theorem 1 is stronger and asserts that
SR(P (≥d)) = SR(Q(≥d)) for every d ≥ 1. Indeed, if we take d = 2, we getP (≥2) =
{x[1]x[2] + x[1]x[3], x[1]x[2], x[1]x[3]}, which has symbolic rank 2. This is also the
symbolic rank ofQ(≥2) = {y[1]y[3], y[1]y[2]+y[1]y[3]+y[2]y[3], y[1]y[2]+y[2]y[3]}.
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We would like to use this property to recover A1. Let us examine the 2-
dimensional affine subspace defined by the 3-bit HSM h′ = 100 (whose bits are
h[1] = 1, h[2] = 0, h[3] = 0) and the single bit HSC c = 0. We calculate the
symbolic form of (F ◦ C|h′,0)(≥1) by evaluating (P ◦ C|h′,0)(≥1) (i.e., plugging
x[1] = 0 into P (≥1)) and obtain {x[2], x[2], x[3]} which has symbolic rank 2.
Similarly, for c = 1 we calculate (P ◦ C|h′,1)(≥1) (i.e., plug x[1] = 1 into P (≥1))
and obtain {x[3], 0, 0} which has symbolic rank 1. Hence, we attach the symbolic
rank pair (2, 1) to h′ = 100. We do the same for all 7 non-zero h′ ∈ {0, 1}3. The
result is a table whose entries are pairs of ranks of the form (maxR,minR) ∈
Z4 ·Z4 (where maxR ≥ minR), such that entry (maxR,minR) stores the set of
HSMs that are associated with this pair of ranks.

(3, 2) : {010, 011, 111, 110}
(2, 2) : {001}
(2, 1) : {100, 101}

This table is called the rank table of F (with respect to the degree d = 1 as
we only considered monomials of degree at least 1). The set of HSMs in an entry
(maxR,minR) of the rank table is called a rank group (e.g., the rank group
with index (2, 1) is {100, 101}). Similarly, we compute the rank table of G with
respect to d = 1.

(3, 2) : {100, 001, 110, 011}
(2, 2) : {010}
(2, 1) : {101, 111}

Although the rank tables are different, the size of each rank group
(maxR,minR) of F ,G is identical. We define the rank histogram of F (with
respect to d) as a mapping from each (maxR,minR) value to the correspond-
ing rank group size (e.g., the histogram entry for F with index (2, 1) has value
|{100, 101}| = 2). As we show in Lemma 9, that rank histograms of affine equiv-
alent functions (such as F ,G) are identical.

To explain this, we look at the HSM h = 101 in the rank group of G =
A2 ◦ F ◦ A1 with index (2, 1) and note that it partitions the space into halves
{000, 101, 010, 111} and {001, 011, 100, 110} (according to whether x[1] + x[3] =
0 or x[1] + x[3] = 1). After applying A1, these half-spaces are mapped into
{100, 101, 110, 111} and {000, 001, 010, 011}. This is exactly the partition defined
by h′ = 100, which is in the rank group of F with the same index (2, 1). In terms
of canonical affine transformations, C|h′,c and A1◦C|h,0 have the same half-space
range of {100, 101, 110, 111} (for c = 1 in this case) and we define a mapping
h 	→A1 h′ to capture this. In Lemma 3 we show that this mapping is a bijection
as A1 is invertible.

Exploiting Matchings. The central property of the mapping 	→A1 is proved
in Lemma 6 which asserts that it preserves affine equivalence. Namely, if F ≡ G
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and h 	→A1 h′, then F ◦ C|h′,c ≡ G ◦ C|h,0 (for some c ∈ {0, 1}). By flipping the
half-space ranges and applying the same argument, we also obtain F ◦C|h′,c+1 ≡
G ◦ C|h,1. Combined with Theorem 1 (which states that symbolic rank is an
invariant of affine equivalent functions) we obtain that for any d ≥ 1, r0 �
SR((F ◦ C|h′,c)(≥d)) = SR((G ◦ C|h,0)(≥d)) and r1 � SR((F ◦ C|h′,c+1)(≥d)) =
SR((G ◦ C|h,1)(≥d)). Since the ordered rank pairs for h′, h in F ,G are equal to
(maxR,minR) (for maxR = max{r0, r1},minR = min{r0, r1}), they belong
to rank groups with the same index (maxR,minR) in the rank tables of F ,G,
respectively. The fact that 	→A1 is a bijection leads to Lemma 9 (which assets
that the rank histograms of F ,G are identical).

The main goal of our affine equivalence algorithm is to recover matchings
h 	→A1 h′ for several pairsh, h′.This is useful, as inLemma5we showthat each such
matching gives n linear equations on the unknown matrix L of A1(x) = L(x) + a.
Furthermore, the constant c associated with h 	→A1 h′ (which determines whether
F ◦ C|h′,0 ≡ G ◦ C|h,0 or F ◦ C|h′,1 ≡ G ◦ C|h,0) gives a linear equation on a (once
again, by Lemma 5). In total, we need to find about n matchings h 	→A1 h′ along
with their associated constants to completely recover A1.

Going back to the example, the rank group with index (2, 2) for G is {010},
while the rank group with the same index for F is {001}. Therefore, after com-
puting the rank tables we know that

010 	→A1 001. (1)

Remark 2. We matched 010 	→A1 001 in the rank group (maxR,minR) = (2, 2)
and since maxR = minR we cannot derive the constant c associated with this
matching (hence we cannot derive a linear equation on a). Such constants can
only be derived for matchings h 	→(A1) h′ in rank groups where maxR > minR,
as in such cases we know whether F ◦C|h′,0 ≡ G ◦C|h,0 or F ◦C|h′,1 ≡ G ◦C|h,0

according to the equality SR((F ◦ C|h′,c)(≥d)) = SR((G ◦ C|h,0)(≥d)). More pre-
cisely, if maxR > minR, then either SR((F ◦ C|h′,0)(≥d)) = SR((G ◦ C|h,0)(≥d))
or SR((F ◦ C|h′,1)(≥d)) = SR((G ◦ C|h,0)(≥d)), but not both. In this sense, it is
more useful to recover matchings for HSMs in rank groups (maxR,minR) such
that maxR > minR.

By applying similar arguments to the rank group (2, 1), we know that either
101 	→A1 100 or 101 	→A1 101 (and similarly 111 	→A1 100 or 111 	→A1 101).
Since we have very few possibilities, we can guess which matchings hold, derive
A1 and test our guess. Unfortunately, for larger n we expect the rank groups to
be much bigger and it would be inefficient to exhaustively match HSMs for F ,G
only based on their ranks. Thus, to narrow down the number of possibilities and
eventually uniquely match sufficiently many pairs h, h′ such that h 	→A1 h′, we
need to attach more data to each HSM for F ,G.

HSM Rank Histograms. The main observation that allows attaching more
data to each HSM is given in Lemma 4 which shows that the mapping 	→A1 is
additive.
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Consider the two rank groups with index (3, 2) for F ,G. They are of size 4
and their HSMs cannot be uniquely matched. We first focus on G and exam-
ine the rank group (3, 2) which is {100, 001, 110, 011}. We take h1 = 011 and
compute its HSM rank histogram with respect to the rank group (2, 1) (which
is {101, 111}). This is done by computing the (maxR,minR) rank pairs for
the set defined by adding all elements of rank group (2, 1) to 011, namely
{011 + 101, 011 + 111} = {110, 100}. Looking for 110 and 100 in the rank table
of G, both HSMs have ranks (3, 2). Thus, the HSM rank histogram of h1 = 011
with respect to rank group (2, 1) has a single non-zero entry (3, 2) with the value
of 2. We write this HSM rank histogram in short as [(3, 2) : 2].

We now consider the match of h1 = 011 under A1 which is h′
1 = 110 (namely,

h1 	→(A1) h′
1). Similarly to h1, we compute the HSM rank histogram of h′

1 with
respect to the rank group (2, 1) for F (which is {100, 101}) and obtain the same
HSM rank histogram [(3, 2) : 2]. This is a particular case of Lemma 10, which
shows that matching HSMs for F ,G have identical HSM rank histograms (with
respect to a fixed rank group). Lemma 10 is derived using Lemma 4 which
asserts that the mapping 	→A1 is additive: if h1 	→(A1) h′

1 and h2 	→(A1) h′
2, then

(h1 + h2) 	→(A1) (h′
1 + h′

2).
Fixing h1 = 011 for G and its match h′

1 = 110 under A1, let hi
2, h

′i
2 for

i ∈ {1, 2} vary over the 2 elements of the rank groups with index (2, 1) in G,F ,
respectively. Then, as h1 	→(A1) h′

1 and hi
2 	→(A1) h′i

2 for i ∈ {1, 2}, we get
(h1 + hi

2) 	→(A1) (h′
1 + h′i

2 ). By the aforementioned Theorem 1 and Lemma 6
(equating ranks for matching HSMs) we conclude that indeed the HSM rank
histograms of 011 and 110 with respect to rank group (2, 1) are identical (which
is a special case of Lemma 10).

HSM Rank Histogram Multi-Sets. Since we do not know in advance that
h1 	→(A1) h′

1, we have to compute the HSM rank histograms (with respect to
rank group (2, 1)) for all HSMs in rank group (3, 2). The outcome is the HSM
rank histogram multi-set of rank group (3, 2) with respect to rank group (2, 1).
It is computed by considering all the HSMs in the rank group (3, 2), namely
{100, 001, 110, 011} for G and {010, 011, 111, 110} for F . Lemma 11 (whose proof
is based on Lemma 10) asserts that these HSM rank histogram multi-sets are
identical as F ,G are affine equivalent.

We hope that these multi-sets contain unique HSM rank histograms (with
multiplicity 1), which would allow us to derive more matching between HSMs.
Unfortunately, the resultant multi-set (for both F and G) is {[(3, 2) : 2], [(3, 2) :
2], [(3, 2) : 2], [(3, 2) : 2]}. It contains 4 identical elements and does not give
us any new information about A1. If the multiplicity of the element [(3, 2) : 2]
(calculated above for h1, h

′
1) in this multi-set would have been 1, we could have

derived the relation h1 	→(A1) h′
1.

Remark 3. Generally, when n is very small (as in our case), the direct application
of the algorithm is more likely to fail to completely recover A1. As we show later
in this paper, for n ≥ 8 the fraction of instances for which this occurs is very
small (and tends to 0 as n grows). In some cases a failure to retrieve A1 occurs
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since the affine mappings A1, A2 are not uniquely defined. In particular, if there
are several solutions for A1, then we cannot hope to obtain unique matchings
that completely define A1, but we can recover all possible solutions to the affine
equivalence problem by enumerating several possibilities for the matchings.

In conclusion, we attached to each HSM in rank group (3, 2) for F ,G its
HSM rank histogram with respect to rank group (2, 1) and in general such data
may allow us to derive additional matchings h 	→(A1) h′. Once we obtain about
n matchings, we can recover A1 by solving a system of linear equations.

4 A Basic Property of Affine Equivalent Functions

Before proving the main result of this section, we state two useful lemmas (the
first is proved in the extended version of this paper [9]).

Lemma 1. Let P = {P (i)(x[1], . . . , x[n])}m
i=1, let A1 : {0, 1}n′ → {0, 1}n, A2 :

{0, 1}m → {0, 1}m′
be affine functions, and d be a positive integer. Then,

1. (P (≥d) ◦ A1)(≥d) = (P ◦ A1)(≥d)

2. (A2◦(P (≥d)))(≥d) = (A2◦P )(≥d) and if A2 is a linear function, A2◦(P (≥d)) =
(A2 ◦ P )(≥d).

Essentially, the lemma states that removing all monomials of degree less than
d from P can be done before or after composing it with an affine function and
the outcomes are identical.

Note that a potentially simplified first part of the lemma which equates
P (≥d) ◦ A1 and (P ◦ A1)(≥d) is generally incorrect, as the first expression may
contain monomials of degree less than d. For example, if d = 2 and we compose
the affine transformation defined by x[1] = y[1] + y[2] and x[2] = y[2] with
the polynomial x[1]x[2], then we get the polynomial y[1]y[2] + y[2] which has a
monomial of degree 1.

Lemma 2. Let P = {P (i)(x[1], . . . , x[n])}m
i=1, and let A1 : {0, 1}n → {0, 1}n be

an invertible affine function. Then, deg(P ) = deg(P ◦ A1).

Proof. We show that for i ∈ {1, 2, . . . ,m}, deg(P (i)) = deg(P (i) ◦ A1). Observe
that deg(P (i)) ≥ deg(P (i) ◦ A1) as composition with an affine function cannot
increase the algebraic degree of a polynomial. By the same argument and by the
invertibility of A1, we also obtain deg(P (i) ◦ A1) ≥ deg(P (i) ◦ A1 ◦ (A1)−1) =
deg(P (i)). �

Theorem 1. Let F : {0, 1}n → {0, 1}m, G : {0, 1}n → {0, 1}m be two affine
equivalent functions, represented by P ,Q, respectively. Then, for every positive
integer d, SR(P (≥d)) = SR(Q(≥d)).
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Proof. At a high level, the fact that P and Q have the same symbolic rank
follows since rank is preserved by composition with invertible affine transfor-
mations. Moreover, this rank equality is preserved after truncating low degree
monomials since they cannot affect the high degree monomials when composing
with invertible affine transformations. The formal proof is below.

Write G = A2 ◦F ◦A1, implying that Q = A2 ◦P ◦A1. Denote P ′ = P ◦A1

and observe that

SR(P ′
(≥d)) = SR((A2 ◦ (P ′

(≥d)))(≥d)) = SR((A2 ◦ P ′)(≥d)) = SR(Q(≥d)),

where the first equality holds since rank is preserved by invertible linear
transformations5 and the second equality is due to the second part of Lemma 1.

It remains to show that SR(P ′
(≥d)) = SR(P (≥d)), or SR((P ◦ A1)(≥d)) =

SR(P (≥d)). We first show that SR(P (≥d)) ≥ SR((P ◦ A1)(≥d)).
If P (≥d) has full rank of m then the claim is trivial. Otherwise, let v ∈ {0, 1}m

be a non-zero vector in the kernel of P (≥d), namely v(P (≥d)) = 0. Then,

v((P ◦ A1)(≥d)) = (v((P ◦ A1)(≥d)))(≥d) = (v(P (≥d)) ◦ A1)(≥d) = 0,

where the first equality follows from the second part of Lemma 1 and the second
equality follows from the first part of this lemma. This implies that v is also in
the kernel of (P ◦ A1)(≥d), as required.

To prove that SR(P (≥d)) ≤ SR((P ◦A1)(≥d)), observe that if v is a non-zero
vector in the kernel of (P ◦ A1)(≥d), then by the equality above we have 0 =
v((P ◦A1)(≥d)) = (v(P (≥d))◦A1)(≥d). This implies that deg(v(P (≥d))◦A1) < d
and since A1 is invertible, by Lemma 2, deg(v(P (≥d))) = deg(v(P (≥d))◦A1) < d.
This gives v(P (≥d)) = 0, as the polynomial does not contain monomials of degree
less than d. Hence, v is in the kernel of P (≥d) which completes the proof. �

5 The Half-Space Mask Bijection and Its Properties

Definition 1. Let A : {0, 1}n → {0, 1}n be an invertible affine transformation.
Define a mapping between HSMs using A as follows: h ∈ {0, 1}n is mapped to
h′ if there exists c ∈ {0, 1} such that the affine ranges of A ◦ C|h,0 and C|h′,c are
equal. We write h 	→(A) h′ and say that h and h′ match (under A). The bit c is
called the associated constant of h 	→(A) h′.

Lemma 3. Let A : {0, 1}n → {0, 1}n be an invertible affine transformation.
The mapping 	→(A) is a bijection and its inverse is given by 	→(A−1).

Proof. The proof follows from the invertibility of A. Given that h 	→(A) h′,
there exists c ∈ {0, 1} such that the affine ranges of A ◦ C|h,0 and C|h′,c are
equal. According to Fact 1, this implies that there exists an invertible affine
transformation A′ : {0, 1}n−1 → {0, 1}n−1 such that A ◦ C|h,0 = C|h′,c ◦ A′.

5 The affine transformation A2 also adds a constant, but it does contribute to the rank
as d > 0.
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Consequently, C|h,0 ◦ (A′)−1 = A−1 ◦ C|h′,c and the affine ranges of C|h,0 and
A−1 ◦ C|h′,c are equal (again, according to Fact 1). This implies that the affine
ranges of A−1 ◦ C|h′,0 and C|h,c are equal (flipping the HSC of both sides if
c = 1), namely h′ 	→(A−1) h. �

A property of 	→(A) which will be very useful is that it is additive. This is
established by the lemma below (proved in the extended version of this paper [9]).

Lemma 4. Let A : {0, 1}n → {0, 1}n be an invertible affine transformation. Let
h1, h

′
1, h2, h

′
2 ∈ {0, 1}n be HSMs where h1 �= h2 and h1 	→(A) h′

1, h2 	→(A) h′
2

with associated constants c1, c2, respectively. Then (h1 +h2) 	→(A) (h′
1 +h′

2) with
the associated constant c1 + c2.

The following lemma (proved in the extended version of this paper [9]) shows
that the bijection reveals information about the presumably unknown transfor-
mation A.

Lemma 5. Let A : {0, 1}n → {0, 1}n be an invertible affine transformation
such that A(x) = L(x)+a. Let h, h′ ∈ {0, 1}n be HSMs such that h 	→(A) h′ with
associated constant c. Then, A satisfies the following constraints.

1. For each i ∈ {1, 2, . . . , n}, the i’th column of L, denoted by L[i], satisfies the
equation h′(L[i]) = h[i], where h[i] is the i’th bit of h.

2. The vector a satisfies the equation h′(a) = c.

The following lemma asserts that affine equivalence is preserved under com-
position with matching HSMs.

Lemma 6. Let F : {0, 1}n → {0, 1}m, G : {0, 1}n → {0, 1}m be two affine
equivalent functions such that G = A2 ◦ F ◦ A1. Let h, h′ ∈ {0, 1}n be HSMs
such that h 	→(A1) h′ with associated constant c. Then, F ◦ C|h′,c ≡ G ◦ C|h,0

and F ◦ C|h′,c+1 ≡ G ◦ C|h,1.

Proof. Since h 	→(A1) h′ with associated constant c, the affine ranges of A1 ◦
C|h,0 and C|h′,c are equal. According to Fact 1, there exists an invertible affine
transformation A′

1 : {0, 1}n−1 → {0, 1}n−1 such that A1 ◦ C|h,0 = C|h′,c ◦ A′
1.

We obtain, A2 ◦ F ◦ C|h′,c ◦ A′
1 = A2 ◦ F ◦ A1 ◦ C|h,0 = G ◦ C|h,0, implying

that F ◦ C|h′,c and G ◦ C|h,0 are affine equivalent.
The claim that F ◦ C|h′,c+1 and G ◦ C|h,1 are affine equivalent follows by

considering the complimentary half-space and observing that the affine ranges
of A1 ◦ C|h,1 and C|h′,c+1 are equal. The remainder of the proof is similar. �

Definition 2. Let F : {0, 1}n → {0, 1}m be a function represented by P , let d
be a positive integer and let h ∈ {0, 1}n be a HSM. Let r0 = SR((P ◦C|h,0)(≥d)),
r1 = SR((P ◦ C|h,1)(≥d)), maxR = max{r0, r1} and minR = min{r0, r1}.

1. The HSM rank of h (with respect F , d) is the ordered pair of integers
(maxR,minR), denoted as RF ,d,h,
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2. The attached constant of h is the value c ∈ {0, 1} such that maxR = SR((P ◦
C|h,c)(≥d)) (if maxR = minR, the attached constant is undefined).

The lemma below states that the HSM ranks of matching HSMs are equal
for affine equivalent functions.

Lemma 7. Let F : {0, 1}n → {0, 1}m, G : {0, 1}n → {0, 1}m be two affine
equivalent functions and let d be a positive integer. Assume that G = A2◦F ◦A1.
Let h, h′ ∈ {0, 1}n be HSMs such that h 	→(A1) h′. Then RG,d,h = RF ,d,h′ .

Proof. Let c ∈ {0, 1} be the associated constant of h 	→(A1) h′. According to
Lemma 6, F ◦ C|h′,c ≡ G ◦ C|h,0 and F ◦ C|h′,c+1 ≡ G ◦ C|h,1.

Assume that F ,G are represented by P ,Q, respectively. Denote r′
0 =

SR((F ◦ C|h′,c)(≥d)), r′
1 = SR((F ◦ C|h′,c+1)(≥d)), r0 = SR((G ◦ C|h,0)(≥d)),

r1 = SR((G ◦ C|h,1)(≥d)).
By the above affine equivalences and Theorem 1, we have r0 = r′

0 and r1 = r′
1.

Hence max(r0, r1) = max(r′
0, r

′
1) and min(r0, r1) = min(r′

0, r
′
1) and the lemma

follows. �

6 Rank Tables, Rank Histograms and their Properties

Definition 3. Given a function F : {0, 1}n → {0, 1}m and a positive integer d,
define the following mappings.

1. The rank table of F with respect to d is a mapping TF ,d, whose keys (indexes)
are integer pairs (maxR,minR) ∈ Zm+1 × Zm+1 such that maxR ≥ minR.
It is defined as

TF ,d(maxR,minR) = {h ∈ {0, 1}n | RF ,d,h = (maxR,minR)}.

Moreover, along with each such HSM h, the table stores its attached constant
c ∈ {0, 1} (if defined).
An entry in the rank table TF ,d(maxR,minR) (containing all HSMs with this
rank) is called a rank group.

2. The rank histogram of F with respect to d is a mapping HF ,d : Zm+1 ×
Zm+1 → Z such that HF ,d(maxR,minR) = |TF ,d(maxR,minR)|.

To simplify our notation, in the following we refer to a HSM
rank (maxR,minR) ∈ Zm+1 × Zm+1 such that maxR ≥ minR using a single
symbol r.

The lemma below states that if F ≡ G, then each HSM with rank r for G
is matched in the rank group with the same HSM rank r for F .

Lemma 8. Let F : {0, 1}n → {0, 1}m, G : {0, 1}n → {0, 1}m be two affine
equivalent functions and let d be a positive integer. Assume that G = A2 ◦F ◦A1

and let r ∈ Zm+1 ×Zm+1. Then, for each h ∈ TG,d(r), there exists h′ ∈ TF ,d(r)
such that h 	→(A1) h′.
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Proof. By Lemma 7, given h ∈ TG,d(r), its match h′ under A1 satisfies RF ,d,h′ =
RG,d,h = r hence h′ ∈ TF ,d(r) as claimed. �

Lemma 9. Let F : {0, 1}n → {0, 1}m, G : {0, 1}n → {0, 1}m be two affine
equivalent functions and let d be a positive integer. Then the rank histograms of
F and G with respect to d are equal, namely HF ,d = HG,d.

Proof. Assume that G = A2 ◦ F ◦ A1. Given a histogram entry with index r,
for each h ∈ TG,d(r) let h′ be its match h 	→(A1) h′. Then, by Lemma 8, h′ ∈
TF ,d(r). Since h 	→(A1) h′ is a bijection, this shows that HG,d(r) = |TG,d(r)| ≤
|TF ,d(r)| = HF ,d(r). On the other hand, as HG,d(r) ≤ HF ,d(r) holds for all
histogram entries r and the sum of entries in both histograms is 2n − 1, this
implies that HF ,d = HG,d. �

Definition 4. Given a function F : {0, 1}n → {0, 1}m, a positive integer d, a
HSM h1 ∈ {0, 1}n and r ∈ Zm+1 ×Zm+1, we define the HSM rank histogram of h1

with respect to (or relative to) the rank group r and denote it by HGF ,d,h1,r . As the
standard histogram, it is a mapping HGF ,d,h1,r : Zm+1 × Zm+1 → Z, where

HGF ,d,h1,r (r
′) = |{h1 + h2 | h2 ∈ {0, 1}n ∧ h1 �= h2 ∧ RF ,d,h2 = r ∧ RF ,d,h1+h2 = r′}|.

Note that unlike the (standard) rank histogram, the HSM rank histogram is
defined for a specific HSM with respect to a rank group. We further remark that
the HSM rank histogram of h1 can also be defined with respect to its own the
rank group (this is assured by the condition h1 �= h2).

The following lemma equates HSM rank histograms for matching HSMs in
affine equivalent functions.

Lemma 10. Let F : {0, 1}n → {0, 1}m, G : {0, 1}n → {0, 1}m be two affine
equivalent functions and let d be a positive integer. Assume that G = A2◦F ◦A1.
Let h1, h

′
1 ∈ {0, 1}n be such that h1 	→(A1) h′

1. Then, for every r ∈ Zm+1×Zm+1,
HGG,d,h1,r = HGF ,d,h′

1,r .

Proof. The proof follows from the fact that the mapping 	→(A1) preserves HSM
ranks for affine equivalent functions (Lemma 7), and by exploiting its additive
property (Lemma 4).

Fix a HSM rank histogram entry r′ ∈ Zm+1 × Zm+1. Define the following
two sets:

D1 = {h1 + h2 | h2 ∈ {0, 1}n ∧ h1 �= h2 ∧ RG,d,h2 = r ∧ RG,d,h1+h2 = r′}

and

D2 = {h′
1 + h′

2 | h′
2 ∈ {0, 1}n ∧ h′

1 �= h′
2 ∧ RF ,d,h′

2
= r ∧ RF ,d,h′

1+h′
2

= r′}.

To prove the lemma, we need to show that |D1| = |D2|. Let h1 + h2 ∈ D1

and denote by ĥ ∈ {0, 1}n the vector such that h1 + h2 	→(A1) ĥ. We show that
ĥ ∈ D2.
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Since h1 + h2 	→(A1) ĥ, by Lemma 7, RF ,d,ĥ = RG,d,h1+h2 = r′. Next, write
ĥ = h′

1 + (h′
1 + ĥ). Since h1 	→(A1) h′

1 and h1 + h2 	→(A1) ĥ, by Lemma 4,
h2 	→(A1) h′

1 + ĥ, and by Lemma 7, RF ,d,h′
1+ĥ = RG,d,h2 = r, giving ĥ ∈ D2.

Since 	→(A1) is a bijection this implies that |D2| ≥ |D1|.
As |D2| ≥ |D1| holds for all HSM histogram entries r′ and the sum of HSM

histogram entries in both HGG,d,h1,r and HGF ,d,h′
1,r is equal to size of the rank

group6 r (which is equal to HF ,d(r) = HG,d(r)), the equality |D1| = |D2|
holds. �

Definition 5. Given a function F : {0, 1}n → {0, 1}m, a positive integer d,
HSMs ranks r, r′ ∈ Zm+1 × Zm+1, we define the HSM rank histogram multi-set
of rank group r with respect to rank group r′ as

HMF ,d,r ,r ′ = {HGF ,d,h,r ′ | RF ,d,h = r}.

The HSM rank histogram multi-set collects all the HSM histograms for HSMs
in rank group r with respect to the rank group r′. Note that it is possible to
have r = r′.

The following lemma equates HSM rank histogram multi-set in affine equiv-
alent functions.

Lemma 11. Let F : {0, 1}n → {0, 1}m, G : {0, 1}n → {0, 1}m be two
affine equivalent functions and let d be a positive integer. Then, for every
r, r′ ∈ Zm+1 × Zm+1, HMF ,d,r ,r ′ = HMG,d,r ,r ′ .

Proof. Fix r, r′ ∈ Zm+1 × Zm+1. We define a mapping between the elements
(HSM histograms) of the multi-sets HMG,d,r ,r ′ and HMF ,d,r ,r ′ . Naturally, the
mapping is based on the bijection 	→(A1).

Assume that G = A2 ◦F ◦A1. Let h ∈ {0, 1}n be such that RG,d,h = r which
implies that HGG,d,h,r ′ ∈ HMG,d,r ,r ′ . Let h′ ∈ {0, 1}n be the HSM such that
h 	→(A1) h′. By Lemma 10, HGG,d,h,r ′ = HGF ,d,h′,r ′ . Furthermore, by Lemma 7
we have RF ,d,h′ = RG,d,h = r, hence HGG,d,h,r ′ = HGF ,d,h′,r ′ ∈ HMF ,d,r ,r ′ .
Since 	→(A1) is a bijection, we obtain HMG,d,r ,r ′ ⊆ HMF ,d,r ,r ′ as multi-sets.

On the other hand, the number of elements (HSM histograms) in both multi-
sets is equal to the size of the rank group r (which is equal to HF ,d(r) =
HG,d(r)), hence HMG,d,r ,r ′ = HMF ,d,r ,r ′ . �

Definition 6. Let F : {0, 1}n → {0, 1}m, let d be a positive integer and let
r, r′ ∈ Zm+1 × Zm+1. A HSM h ∈ {0, 1} such that RF ,d,h = r is called unique
(with respect to F , d, r′) if HGF ,d,h,r ′ ∈ HMF ,d,r ,r ′ has multiplicity 1 in this
multi-set.

The following theorem establishes the importance of unique HSMs in recov-
ering matchings between HSMs for affine equivalent functions.

6 Unless the HSM rank of h1 is r, in which case the sum of HSM histogram entries is
HF ,d(r) − 1.
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Theorem 2. Let F : {0, 1}n → {0, 1}m, G : {0, 1}n → {0, 1}m be two affine
equivalent functions and let d be a positive integer. Then for every r, r′ ∈ Zm+1×
Zm+1, if h ∈ {0, 1}n (such that RG,d,h = r) is unique with respect to G, d, r′,
then the following statements hold:

1. There exists h′ ∈ {0, 1}n such that RF ,d,h′ = r and h′ is unique with respect
to F , d, r′.

2. HGG,d,h,r ′ = HGF ,d,h′,r ′ .
3. Assume that G = A2 ◦ F ◦ A1. Then, h 	→(A1) h′. Moreover, if the attached

constants of h, h′ are defined and equal to c, c′, respectively, then the associated
constant of h 	→(A1) h′ is c + c′.

Proof. By Lemma 11, we have equality of the multi-sets HMF ,d,r ,r ′ =
HMG,d,r ,r ′ which immediately implies the first two statements. Denote by
h′′ ∈ {0, 1}n the HSM such that h 	→(A1) h′′. To complete the proof of the
third statement we show that h′′ = h′.

By Lemma 7, we have RF ,d,h′′ = RG,d,h = r. Hence HGF ,d,h′′,r ∈ HMF ,d,r ,r ′

(and also HGF ,d,h′,r ∈ HMF ,d,r ,r ′ from the first statement). Since h′ is unique
with respect to F , d, r′, then HGF ,d,h′,r ′ has multiplicity 1 in HMF ,d,r ,r ′ . Thus if
we show that HGF ,d,h′,r ′ = HGF ,d,h′′,r , then h′′ = h′ must hold.

According to Lemma 10, HGG,d,h,r = HGF ,d,h′′,r and by the second state-
ment we obtain HGF ,d,h′,r ′ = HGG,d,h,r ′ = HGF ,d,h′′,r as required.

Finally, we examine the attached constants c, c′ of h, h′, respectively (assum-
ing they are defined). If c = c′, then the affine ranges of A1 ◦C|h,0 and C|h′,0 are
equal implying that the associated constant of h 	→(A1) h′ is 0 = c+c′. Otherwise
c = c′ + 1 and the affine ranges of A1 ◦ C|h,0 and C|h′,1 are equal implying that
the associated constant of h 	→(A1) h′ is 1 = c + c′. �

7 Analysis of the Distribution of Rank Histogram Entries
for Random Permutations

In this section we analyze the distribution of entries of the rank histogram HF ,d

for a random permutation F : {0, 1}n → {0, 1}n. The analysis is performed for
d = n−2,which is the value thatwe use in our algorithmas explained in detail next.

Assume that F is represented by P = {P (i)(x[1], . . . , x[n])}n
i=1. For a given

h ∈ {0, 1}n, we consider SR((P ◦C|h,0)(≥n−2)) and SR((P ◦C|h,1)(≥n−2)). For c ∈
{0, 1}, every one of the n polynomials of (P ◦C|h,c)(≥n−2) has n−1 variables (the
number of variables in P is reduced by 1 after composition with C|h,c). Hence,
the number of possible non-zero monomial coefficients in each such polynomial
is

(
n−1
n−1

)
+

(
n−1
n−2

)
= 1+n−1 = n. Therefore, (P ◦C|h,c)(≥n−2) can be represented

by an n × n Boolean matrix and we are interested in its rank.
Choosing d = n−1 would leave at most one non-zero monomial which almost

always would be present in (P ◦C|h,c)(≥n−1). Hence, essentially all HSMs would
fall into a single rank group and the affine equivalence algorithm would not be
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able to distinguish and match them. On the other hand, choosing d ≤ n−3 would
leave Ω(n2) non-zero monomials and (P ◦ C|h,c)(≥r) would almost always have
full rank, leading once again to a single rank group. We conclude that d = n − 1
is indeed the optimal choice.

Our analysis is based on the following heuristic assumption.

Assumption 1. For a random permutation F : {0, 1}n → {0, 1}n represented
by P , for every h ∈ {0, 1}n and c ∈ {0, 1}, the entries of the n × n Boolean
matrix (P ◦ C|h,c)(≥n−2) are uniform independent random variables.

The n × n Boolean matrix (P ◦ C|h,c)(≥n−2) is indeed uniform for a random
function F (rather than a random permutation), given any h ∈ {0, 1}n and
c ∈ {0, 1}. However, even for a random function the Boolean matrices obtained
for different h, c values are correlated. Nevertheless, these correlations (and the
fact that F is a permutation) do not seem to have a noticeable influence on our
algorithm in practice (as we demonstrate in Sect. 8.5 and the extended version
of this paper [9]).

The rank of random matrices is a well-studied problem. For large n and a
non-negative integer r ≤ n, we denote the probability that a random Boolean
n × n matrix has rank r by βr. We can lower bound βr by considering the event
where we first select r linearly independent rows to form a subspace of size 2r

(which occurs with constant probability) and then select the remaining n − r

rows within this subspace (which occurs with probability 2−(r−n)2). This gives
a lower bound of Ω(2−(r−n)2) on βr. The exact formula is given by the theorem
below, taken and adapted from [13].

Theorem 3 ([13], p. 126, adapted). For n → ∞, the probability that a
random Boolean n × n matrix has rank r is

βr = 2−(r−n)2 · α ·
n−r∏

i=1

(1 − 1/2i)−2, (2)

where α =
∏∞

i=1(1 − 1/2i) ≈ 0.2888.

Since α ≤ α ·
∏n−r

i=1 (1 − 1/2i)−2 < 1/α, the initial probability estimation of
≈ 2−(r−n)2 is correct up to a small constant. We also note that (2) is a good
estimation even for relatively small values of n (e.g., n ≥ 8).
Let

pmaxR,minR =

{
2βmaxRβminR if minR < maxR

βmaxRβminR otherwise (minR = maxR),
(3)

where

βmaxRβminR = α2 · 2−(maxR−n)2−(minR−n)2 ·
n−maxR∏

i=1

(1− 1/2i)−2 ·
n−minR∏

i=1

(1− 1/2i)−2.
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Then, based on Assumption 1 and Theorem 3, for every (maxR,minR) ∈
Zm+1 × Zm+1 such that maxR ≥ minR, given h ∈ {0, 1}n, we have
Pr[RF ,n−2,h = (maxR,minR)] ≈ pmaxR,minR. Hence, according to Assump-
tion 1, the entries of HF ,n−2 are distributed multinomially, with parameter 2n

(the number of HSMs7) and probabilities given by pmaxR,minR. In particular,
each individual histogram entry HF ,n−2(maxR,minR) is distributed binomi-
ally with parameter 2n and probability pmaxR,minR.

Experimental results that support this conclusion are given in the extended
version of this paper [9].

Asymptotic Analysis of Specific Histogram Entries. For large n, the
binomial variable HF ,n−2(maxR,minR) is with high probability very close to
its expectation, which is about

2n · pmaxR,minR.

If we ignore constant multiplicative factors, we can approximate this expec-
tation by

2n · 2−(maxR−n)2−(minR−n)2 , (4)

as pmaxR,minR ≈ 2−(maxR−n)2−(minR−n)2 .
We now approximate (up to constant multiplicative factors) the expected

values of two specific histogram entries which will be useful for our algorithm.
Denote γn = �(n/2)1/2�, and let r1 = (n + 1 − γn, n − γn) and r2 = (n, n − γn).
Define the random variables S1 = HF ,d(r1) and S2 = HF ,d(r2). Below, we
estimate their expected values according to (4).

Write γn = �(n/2)1/2� = (n/2)1/2 − k, where 0 ≤ k < 1. Hence, with very
high probability we have S2 = HF ,d(r2) = HF ,d(n, n − γn) ≈ 2n · pn,n−γn

≈
2n · 2−(γn)

2
= 2n · 2−((n/2)1/2−k)2 = 2n · 2−n/2+2k(n/2)1/2−k2

= 2n/2+O(n1/2).
Therefore, S2 is close to 2n/2.

Similarly S1 = HF ,d(r1) = HF ,d(n + 1 − γn, n − γn) ≈ 2n · pn+1−γn,n−γn
≈

2n · 2−(γn−1)2−(γn)
2

= 2n · 2−2(γn)
2+2γn−1 = 2n · 2−n+(4k+2)(n/2)1/2−2k2−2k−1 =

2Θ(n1/2). Hence S1 is sub-exponential in n.

8 Details of the New Affine Equivalence Algorithm

In this section we describe and analyze our new affine equivalence algorithm. We
start with a description of the auxiliary algorithms it uses.

7 More accurately, the parameter is 2n − 1 as HSMs are non-zero.
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8.1 The Rank Table and Histogram Algorithm

For F : {0, 1}n → {0, 1}n represented by P = {P (i)(x[1], . . . , x[n])}n
i=1, the

following algorithm computes the rank histogram HF ,d and rank table TF ,d for
d = n − 2. The algorithm is given as input P≥(n−2).

1. For each non-zero HSM h ∈ {0, 1}n:
(a) Compute RF ,n−2,h = (maxR,minR) as follows. Compute

(P (≥n−2)◦C|h,0)(≥n−2) = (P ◦C|h,0)(≥n−2) and calculate its symbolic
rank r0 using Gaussian elimination. Similarly, compute (P (≥n−2) ◦
C|h,1)(≥n−2) = (P ◦ C|h,1)(≥n−2) and its symbolic rank r1. Let
maxR = max{r0, r1} and minR = min{r0, r1}.

(b) Insert h into TF ,n−2(maxR,minR), along with the value of the
attached constant c ∈ {0, 1} such that maxR = SR((F ◦
C|h,c)(≥n−2)) (if maxR > minR). In addition, increment entry
HF ,n−2(maxR,minR).

Note that (P (≥n−2) ◦C|h,0)(≥n−2) = (P ◦C|h,0)(≥n−2) holds according to the
first part of Lemma 1.

The time complexity of the algorithm depends on how a polynomial is rep-
resented. Here, we represent it using a bit array that specifies the values of its
monomial coefficients.

We first analyze the complexity of computing the composition (P (≥n−2) ◦
C|h,c)(≥n−2) in Step 1.(a), which is performed for each non-zero h ∈ {0, 1}n

and c ∈ {0, 1}. Each of the n polynomials of P (≥n−2) contains at most
(
n
n

)
+(

n
n−1

)
+

(
n

n−2

)
< n2 non-zero monomials. As described in Sect. 2, computing the

composition P (≥n−2) ◦ C|h,c requires substituting one of the n variables with a
linear combination of the remaining n−1 variables (while renaming the variables
of the monomials).

In total, for each polynomial of P (≥n−2)◦C|h,c, we compose its n2 monomials
with a linear combination of size n, which requires n2 · n = n3 bit operations.
However, as we are only interested in monomials of degree at least n − 2, the
outcome (P (≥n−2) ◦ C|h,0)(≥n−2) is a polynomial of at most

(
n−1
n−1

)
+

(
n−1
n−2

)
=

1 + n − 1 = n monomials, and the average complexity can be easily reduced to
n2 using low-level optimization techniques.8

In conclusion, the average complexity of computing the n polynomials of
(P (≥n−2) ◦C|h,0)(≥n−2) is n ·n2 = n3 and the total time spent on composition is
n3 ·2n bit operations (up to multiplicative constant factors). Similarly, Gaussian
elimination requires n3 bit operations, hence the total time complexity of the
algorithm is n3 · 2n bit operations.

8 For example, we can exploit the fact that the composition (P (≥n−2) ◦C|h,c)(≥n−2) is
computed for each h ∈ {0, 1}n and c ∈ {0, 1}, and the effect of flipping a bit in h on
the outcome can be precomputed. Consequently, we iterate over h ∈ {0, 1}n using a
Gray code.
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8.2 The Unique HSM Algorithm

The following algorithm computes the HSM rank histogram multi-set
HMF ,n−2,r ,r ′ and uses it to compute a set of unique HSMs, denoted by UF .
This set contains triplets of the form (h, c,HGF ,n−2,h,r ′), where h ∈ TF ,n−2(r)
is unique with respect to F , n − 2, r′ and c ∈ {0, 1} is its attached constant.
Note that for the attached constant to be defined, we must have maxR > minR,
where (maxR,minR) = r.

The algorithm is given as input the rank table TF ,n−2 and rank group
indexes r, r′.

1. For each h ∈ TF ,n−2(r), compute HGF ,n−2,h,r ′ as follows:
(a) for each h′ ∈ TF ,n−2(r′):

i. Compute h + h′, find its rank r′′ = RF ,n−2,h+h′ in TF ,n−2 and
increment HGF ,n−2,h,r ′(r′′).

(b) Insert HGF ,n−2,h,r ′ along with h and its attached constant c into the
multi-set HMF ,n−2,r ,r ′ .

2. For each unique HSM h in HMF ,n−2,r ,r ′ , add the triplet
(h, c,HGF ,n−2,h,r ′) to UF .

The time complexity of the algorithm is the product of sizes of the rank
groups |TF ,n−2(r)| · |TF ,n−2(r′)| = HF ,n−2(r) · HF ,n−2(r′).

Since the goal of the affine equivalence algorithm will be to find n linearly
independent unique HSMs, it is useful to estimate their number. In the extended
version of this paper [9] we lower bound the expected number of unique HSMs
in HMF ,n−2,r ,r ′ asymptotically (ignoring constant factors) based on Assump-
tion 1, given that F is a random permutation. More specifically, we obtain the
lower bound of S − S2/

√
S′, where S = HF ,n−2(r), and S′ = HF ,n−2(r′).

8.3 The Affine Transformation A1 Recovery Algorithm

Assume that we have affine equivalent functions F and G such that G = A2 ◦
F ◦ A1 and A1(x) = L(x) + a.

The following algorithm recovers A1 using sets of unique HSMs UF and UG ,
computed with the previous algorithm of Sect. 8.2 (where its invocations for F
and G use the same parameters values of r, r′). Since F and G are affine equiva-
lent, the HSM rank histograms of the HSMs in these sets have to match according
to Theorem 2. Each equal HSM histogram pair reveals the matching h 	→A1 h′

and its associated constant is revealed by adding the attached constants of h, h′

(which are defined in case maxR > minR, where (maxR,minR) = r), again by
Theorem 2.

Each matching h 	→A1 h′ and its associated constant give linear equations
on the columns of L and on a (respectively) according to Lemma 5. Assuming
that UF and UG contain n linearly independent unique HSMs, A1 is recovered
by linear algebra.
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1. Allocate n+1 linear equation systems {Ei}n+1
i=1 , each of dimension n×n:

the first n equation systems are on the columns L[i] of L and the final
equation system En+1 is on a.

2. Locate n linearly independent HSMs in UG . For each such HSM h:
(a) Recover the triplet (h, c,HGG,n−2,h,r ′) from UG .
(b) Search UF for a triplet (h′, c′,HGF ,n−2,h′,r ′) such that

HGF ,n−2,h′,r ′ = HGG,n−2,h,r ′ . If no match exists, return “Not
Equivalent”.

(c) Based on Lemma 5, for i = 1, 2, . . . , n add equation h′(L[i]) = h[i]
to Ei.

(d) Based on Lemma 5, add equation h′(a) = c + c′ to En+1.
3. Solve each one of {Ei}n+1

i=1 , recover A1 and return its matrix L and vector
a.

The complexity of the algorithm is about n ·n3 = n4 bit operations, which is
polynomial in n. Since we solve the same linear equation (with coefficients given
by the h′ vectors) n + 1 times with different constants, the complexity can be
reduced to n3 by inverting the matrix which defines the linear equations.

8.4 The New Affine Equivalence Algorithm

We describe the new affine equivalence algorithm below. Let r1 = (n+1−γn, n−
γn) and r2 = (n, n − γn) for γn = �(n/2)1/2�, as defined in Sect. 7.

1. Given F : {0, 1}n → {0, 1}n, G : {0, 1}n → {0, 1}n, compute their
corresponding ANF representations P≥(n−2) and Q≥(n−2).

2. Run the algorithm of Section 8.1 to compute the rank table TF ,n−2 and
rank histogram HF ,n−2 for F using P≥(n−2), and similarly compute
TG,n−2 and HG,n−2 forG. If HF ,n−2 �= HG,n−2, return “Not Equivalent”.

3. Run the unique HSM algorithm of Section 8.2 for F on inputs TF ,n−2

and r1, r2 defined above, and obtain the set UF . Similarly, obtain the
set for UG by running this algorithm on inputs TG,n−2 and r1, r2.
If |UF | �= |UG |, return “Not Equivalent”. Otherwise, if UF does not
contain n linearly independent HSMs, return “Fail”.

4. Run the affine transformation recovery algorithm of Section 8.3 on inputs
UF and UG . If it returns “Not Equivalent”, return the same output.
Otherwise, it returns a candidate for A1.

5. Recover a candidate for A2 = L2(x)+a2 by evaluating inputs v ∈ {0, 1}n

to F ◦ A1 and G: each input v gives n linear equations on L2 and a2.
Hence, after a bit more than n evaluations, we expect the linear equation
system to have a single solution which gives a candidate for A2.

6. Test the candidates A1, A2 by equating the evaluations of G and A2 ◦
F ◦ A1 on all 2n possible inputs. If G(v) �= A2 ◦ F ◦ A1(v) for some
v ∈ {0, 1}n, return “Not Equivalent”. Otherwise, return A1, A2.

The correctness of the algorithm follows from the correctness of the sub-
procedures is executes and from the results obtained so far. In particular,
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Step 2 is correct according to Lemma 9, while the correctness of Step 3 is based
on Theorem 2. The correctness of the final step is trivial.

Step 3 is the most complex to analyze in terms of success probability and
complexity (which is the product HF ,n−2(r1) · HF ,n−2(r2)). We first focus on
the time complexity analysis of the other steps.

The complexities of steps 4, 5 are at most polynomial in n and can be
neglected. Step 1 interpolates the 2n ANF coefficients for each of the n output
bits of F ,G. Each such interpolation can be performed in n2n bit operations
using the Moebius transform [12]. Hence this step requires n22n bit operations
and 2n function evaluations in total. The complexity of Step 2 was shown to be
n32n bit operations, while the complexity of Step 6 is 2n function evaluations.

In total, the time complexity of the algorithm is at most n32n bit operations
and 2n function evaluations, assuming that the complexity of Step 3 does not
dominate the algorithm (as we show below).

The memory complexity is 2n words of n bits, but it can be significantly
reduced in some cases as described in Sect. 8.6.

Asymptotic Analysis of the Unique HSM Algorithm. As in Sect. 7,
denote S1 = HF ,d(r1) and S2 = HF ,d(r2) and recall that their expected values
are 2Θ(n1/2) and 2n/2+O(n1/2), respectively.

The expected asymptotic complexity of the unique HSM algorithm is there-
fore at most

S1 · S2 = 2n/2+O(n1/2) � 2n.

Hence, the complexity of Step 3 is negligible compared to the complexity of the
remaining steps of the affine equivalence algorithm described above.

According to the analysis of the unique HSM algorithm given in the extended
version of this paper [9], the asymptotic lower bound on the expected number
of unique HSMs in HMF ,n−2,r ,r ′ is

S1 − (S1)2/
√

S2 > 2Θ(n1/2) − 2Θ(n1/2)/2n/4+O(n1/4) = 2Θ(n1/2) � n.

Out of these unique HSMs, n are very likely to be linearly independent. This shows
that asymptotically the algorithm succeeds with overwhelming probability.

We remark that there are many possible ways to select the rank group indexes
r1 and r2 that give similar results.

8.5 Experimental Results

In practice we do not pre-fix the rank groups of F ,G for which we run the
unique HSM algorithm. Instead, we select a reference rank group r′ such that
|TF ,n−2(r′)| ≈ 2n/2 (as r2 defined above). We then iterate over the rank groups
r from the smallest to the largest, while collecting unique HSMs using repeated
executions of the unique HSM algorithm with inputs r, r′ . We stop once we col-
lect n linearly independent unique HSMs. This practical variant is more flexible
and succeeds given that the variant above succeeds.
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We implemented the algorithm and tested it for various values of 8 ≤ n ≤
28. In each trial we first selected the permutation F uniformly at random. We
then chose invertible affine mappings A1, A2 uniformly at random and defined
G = A2 ◦F ◦ A1. After calculating these inputs, we executed the algorithm and
verified that it correctly recovered A1, A2.

Following this initial verification, our goal was to collect statistics that sup-
port the asymptotic complexity analysis of the unique HSM algorithm above.
For this purpose, we selected the permutation F at random and calculated the
success rate and complexity of Step 3, which executes the unique HSM algo-
rithm on F (after running steps 1, 2). If Step 3 succeeds to return n linearly
independent unique HSMs with a certain complexity for F , then it would suc-
ceed with identical complexity on any linearly equivalent G, hence analyzing a
single permutation is sufficient for the purpose of gathering statistics.

Our results for n ∈ {8, 12, 16, 20, 24, 28} are summarized in Table 1. This table
shows that all the trials for the various choices of n were successful. In terms of
complexity, for n = 8, the unique HSM algorithm had to iterate over 210.5 > 28

HSMs on average in order to find 8 unique linearly independent HSMs. This
relatively high complexity is due to the fact that our asymptotic analysis ignores
constants whose effect is more pronounced for smaller values of n. Nevertheless,
the complexity of the algorithm for n = 8 in terms of bit operations remains
roughly 83 · 28, as the unique HSM algorithm does not perform linear algebra.

For n ≥ 12, the average complexity of the unique HSM algorithm is below
2n, and this gap increases as n grows (as predicted by the asymptotic analysis).
Note that the complexity drops in two cases (between n = 16 and n = 20
and between n = 24 and n = 28) since for larger n we have more non-empty
rank groups of various sizes and hence more flexibility in the algorithm (which
happens to be quite substantial for n = 20 and n = 28). Finally, we note that
we did not optimize the index r′ of the reference rank group and better options
that improve the complexities are likely to exist. However, since the unique HSM
algorithm does not dominate the overall complexity, such improvements would
have negligible effect.

In addition to the experiments on random permutations, we also performed
simulations on random functions and obtained similar results.

8.6 Additional Variants of the New Affine Equivalence Algorithm

We describe several variants of the affine equivalence algorithm.

Using Rank Group Sums. The first additional variant we describe uses the
rank tables of F ,G to directly recover several matchings in the initial stage of
the algorithm. It is based on the observation that for each non-empty rank group
r, the HSM obtained by summing of all HSMs in TG,n−2(r) has to match (under
	→(A1)) the HSM obtained by summing of all HSMs in TF ,n−2(r) due to the addi-
tive property of the HSM bijection. Simple analysis (based on Assumption 1 and
backed up by experimental results) shows that the number of non-empty rank
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Table 1. Experimental results for the unique HSM algorithm

n Number of trials Number of successful trials Average complexity

8 1000 1000 1486 ≈ 210.5

12 1000 1000 3229 ≈ 211.7

16 1000 1000 25599 ≈ 214.6

20 1000 1000 15154 ≈ 213.9

24 1000 1000 126777 ≈ 217

28 100 100 40834 ≈ 215.3

groups for a random permutation F is at least n/4 with very high probability.
Hence we can initially recover at least n/4 matchings using this approach. There
are several ways to recover the remaining matchings by exploiting the fact that
we have essentially reduced the size of the problem from 2n to at most 23n/4.
We can also continue in a similar way, further exploiting additive properties of
the bijection: we take a uniquely matched HSM pair h, h′. For G, we compute
the HSM rank table for h with respect to some rank group r′ by adding it to all
HSMs in this group. We do the same for F by computing the HSM rank table of
h′ with respect to r′. As in the initial observation, the sum of HSMs in each non-
empty rank group of these smaller tables for F ,G match under 	→(A1), revealing
additional matchings. We repeat this process for several uniquely matched HSM
pairs (computing additional HSM rank tables) until we identify the required n
linearly independent matchings.

Reducing the Memory Complexity. The memory complexity of the algo-
rithm is about 2n words of n bits. If the functions F ,G are given as truth
tables, then the memory complexity cannot be reduced by much. However, if we
are given access to F ,G via oracles (e.g., they are implemented by block ciphers
with a fixed key), then we can significantly reduce the memory complexity with
no substantial effect on the time complexity.

First, instead of using the Moebius transform in Step 1 in order to interpolate
all the coefficients of F ,G, we simply interpolate each of the relevant ≈ n2

coefficients of degree at least n − 2 independently, increasing the complexity of
Step 1 by a factor of about n. Next, in Step 2 we do not store the entire rank
table, but only the relevant rank groups with indexes r1 and r2. As a result, we
now have to recompute the ranks of S1 · S2 HSMs in Step 3, but this requires
much lower complexity than 2n.

Overall, the memory complexity of this low-memory variant is dominated by
the size of largest rank group stored in memory S2, which is bit more than 2n/2.
Finally, by a different choice of rank groups of indexes r1 and r2, it is possible
reduce the memory to be sub-exponential in n.
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Multiple Solutions to the Affine Equivalence Problem. Consider the
case where there are two or more solutions of the form (A(i)

1 , A
(i)
2 ) to an instance

of the affine equivalence problem F ,G. This may occur (for example) if F is
self-affine equivalent, namely, there exist (A1, A2) (that are not both identities)
such that F = A2 ◦ F ◦ A1. We note that this case is extremely unlikely if F
is chosen uniformly at random for n ≥ 8, but it may occur for specific choices
(e.g., the AES Sbox is self-affine equivalent).

In case of multiple solutions, a straightforward application of the affine equiv-
alence algorithm would fail, as a HSM h would most likely match a different h′(i)

for each solution A
(i)
1 , namely h 	→

A
(i)
1

h′(i). Consequently, we would not be able
to find sufficiently many unique HSMs in Step 4. However, we can tweak the algo-
rithm to deal with this case by working on each match h 	→

A
(i)
1

h′(i) separately.
More specifically, according to Lemma 6 we know that F ◦ C|h′(i),c ≡ G ◦ C|h,0

and we can apply the algorithm recursively on these functions.

Affine Equivalences Among a Set of Functions. We consider a generaliza-
tion of the affine equivalence problem that was described in [3]. Given a set of K
functions {Fi}K

i=1, our goal is to partition them into groups of affine equivalent
functions. The naive approach is to run the affine equivalence algorithm on each
pair of functions, which results in complexity of K2 · n32n.

We can improve this complexity by noticing that up to Step 4 of the affine
equivalence algorithm the functions F ,G are analyzed independently. In par-
ticular, we can compute the rank histogram HFi ,n−2 for each function Fi inde-
pendently (as done in Step 2) in time n32n, and then sort the functions and
classify them according to their rank histograms.9 This reduces the time com-
plexity to about K · n32n + Õ(K2) (where Õ hides a small polynomial factor in
n), improving upon the time complexity of K · n322n + Õ(K2), obtained in [3].

9 Applications

We describe applications of the affine equivalence algorithm and then focus on
additional applications of the new objects and algorithms defined in this paper.

9.1 Applications of the New Affine Equivalence Algorithm

Algorithms for the affine equivalence problem are useful in several contexts such
as classification of Sboxes [6,14], producing equivalent representations of block
ciphers [3] and attacking white-box ciphers [15]. In all of these contexts, if the
goal is to apply the algorithm a few times to functions with a small domain size
n, then the main algorithm of Biryukov et al. [3] is already practical and there
is little to be gained by using our algorithm.

9 We can also attach more data to each function by computing HSM histogram multi-
sets between groups HMFi ,n−2,r ,r ′ .
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On the other hand, our algorithm may provide an advantage if the goal is to
solve the affine equivalence problem on functions with a larger domain sizes (e.g.,
the domain size of the CAST Sbox [1] is n = 32). Furthermore, our algorithm
may be beneficial if we need to solve the affine equivalence problem for many
functions with domain size n ≥ 8. For example, if we want to classify a large set of
8-bit Sboxes produced based on some design criteria, we can use the variant that
searches for affine equivalences among a set of functions (described in Sect. 8.6).

An additional application (which is also described in [3]) is cryptanalysis of
a generalization of the Even-Mansour scheme. The original scheme [11] builds
a block cipher using a public permutation F : {0, 1}n → {0, 1}n and a pair of
n-bit keys k1, k2 by defining the encryption function on a plaintext p ∈ {0, 1}n as
E(p) = F (p+k1)+k2. Breaking the scheme may be considered as a special case of
solving the affine equivalence problem where the linear matrices are identities.
Thus, in the generalized scheme, arbitrary affine transformations A1, A2 are
used as the key and the encryption function is defined as E(p) = A2 ◦ F ◦
A1(p). Clearly, breaking the generalized Even-Mansour scheme reduces to solving
the affine equivalence problem. The currently best know attack on this scheme
(given in [3]) requires about 23n/2 time and memory. It uses a birthday paradox
based approach that generalizes Daemen’s attack on the original Even-Mansour
cipher [8]. Hence, we improve the complexity of the best known attack on the
generalized Even-Mansour cipher from about 23n/2 to 2n.

9.2 Additional Applications

We describe additional applications of the rank table and histogram objects
defined in this paper, and the algorithm used to compute them.

Application to Decomposition of the ASASA Construction. The
ASASA construction is an SP-network that consists of three secret affine layers
(A) interleaved with two secret Sbox layers (S). At ASIACRYPT 2014, Biryukov
et al. [2] proposed several concrete ASASA block cipher designs as candidates
for white-box cryptography, whose security was based on the alleged difficulty of
recovering their internal components. These designs were subsequently broken
in [16] and [10].

Of particular interest is the integral attack of [10]. While the full details of
this attack are out of the scope of this paper, we focus on its heaviest computa-
tional step that consists of summing over about 2n affine subspaces of dimension
slightly less than n (where n is the block size of the scheme). This step was per-
formed in [10] in complexity of about 23n/2. We can improve the complexity of
this step (and the complexity of the full attack) to about 2n by using a symbolic
algorithm which is similar to the one used for computing the rank table.

Application to Distinguishers on Sboxes and Block Ciphers. In [4]
Biryukov and Perrin considered the problem of reverse-engineering Sboxes and
proposed techniques to check whether a given Sbox was selected at random or
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was designed according to some unknown criteria. These techniques are based on
the linear approximation table (LAT) and difference distribution table (DDT)
of the Sbox. Here, we provide another method based on the distribution of
entries in the rank histogram of the Sbox. More specifically, an Sbox would be
considered suspicious if its rank histogram entry sizes differ significantly from
their expected values according to the distribution derived in Sect. 7 (supported
by the experimental results of the extended version of this paper [9]).

An advantage of our proposal is that the LAT and DDT require about 22n

time and memory to compute and store, whereas the rank histogram can be
computed in time of about 2n. Hence, our proposal can be used to analyze larger
Sboxes. We can also use additional properties of HSM rank histogram multi-sets
(such as the number of unique HSMs) as possible distinguishing techniques.

In a related application, the rank table (and additional structures defined in
this paper) can be used to experimentally construct distinguishers on block ciphers
with a small block size (e.g., 32 bits). This is done be selecting a few keys for the
block cipher at random and detecting consistent deviations from random among
the resultant permutations. In particular, if there is a linear combination of the
output bits that is a low-degree function of some (n − 1)-dimensional input sub-
space, then we can detect it in time complexity of about 2n. Since there are 2n+1

possible (n − 1)-dimensional affine subspaces and 2n linear combinations of out-
put bits, we search over a space of 22n+1 possible distinguishers in about 2n time.
This can be viewed as an improvement over known experimental methods [19] that
search a much smaller space containing about n2 potential high-order differential
distinguishers in similar complexity (these methods only consider the input and
output bits, but not their linear combinations). Finally, the technique can also be
used on block ciphers with larger block sizes by considering linear subspaces of the
input domain and output range.

10 Conclusions and Open Problems

In this paper we described an improved algorithm for the affine equivalence
problem, focusing on randomly chosen permutations. The main open problem is
to further improve the algorithm’s complexity and applicability. An additional
future work item is to find more applications for the rank table and related
structures defined in this paper.
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7. Canteaut, A., Roué, J.: On the behaviors of affine equivalent sboxes regarding
differential and linear attacks. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT
2015. LNCS, vol. 9056, pp. 45–74. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46800-5 3

8. Daemen, J.: Limitations of the Even-Mansour construction. In: Imai, H., Rivest,
R.L., Matsumoto, T. (eds.) ASIACRYPT 1991. LNCS, vol. 739, pp. 495–498.
Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-57332-1 46

9. Dinur, I.: An improved affine equivalence algorithm for random permutations.
IACR Cryptology ePrint Archive 2018, p. 115 (2018)

10. Dinur, I., Dunkelman, O., Kranz, T., Leander, G.: Decomposing the asasa block
cipher construction. IACR Cryptology ePrint Archive 2015, p. 507 (2015)

11. Even, S., Mansour, Y.: A construction of a cipher from a single pseudorandom
permutation. J. Cryptol. 10(3), 151–162 (1997)

12. Joux, A.: Algorithmic Cryptanalysis. Chapman & Hall, London (2009)
13. Kolchin, V.F.: Random Graphs. Cambridge University Press, Cambridge (1999)
14. Leander, G., Poschmann, A.: On the classification of 4 bit S-boxes. In: Carlet, C.,

Sunar, B. (eds.) WAIFI 2007. LNCS, vol. 4547, pp. 159–176. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-73074-3 13

15. Michiels, W., Gorissen, P., Hollmann, H.D.L.: Cryptanalysis of a generic class of
white-box implementations. In: Avanzi, R.M., Keliher, L., Sica, F. (eds.) SAC
2008. LNCS, vol. 5381, pp. 414–428. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-04159-4 27

16. Minaud, B., Derbez, P., Fouque, P.-A., Karpman, P.: Key-recovery attacks on
ASASA. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9453,
pp. 3–27. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48800-
3 1

17. Patarin, J.: Hidden Fields Equations (HFE) and Isomorphisms of Polynomials (IP):
two new families of asymmetric algorithms. In: Maurer, U. (ed.) EUROCRYPT
1996. LNCS, vol. 1070, pp. 33–48. Springer, Heidelberg (1996). https://doi.org/10.
1007/3-540-68339-9 4

18. Patarin, J., Goubin, L., Courtois, N.: Improved algorithms for isomorphisms of
polynomials. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 184–
200. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054126

19. Wang, Q., Liu, Z., Varıcı, K., Sasaki, Y., Rijmen, V., Todo, Y.: Cryptanalysis
of reduced-round SIMON32 and SIMON48. In: Meier, W., Mukhopadhyay, D.
(eds.) INDOCRYPT 2014. LNCS, vol. 8885, pp. 143–160. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-13039-2 9

https://doi.org/10.1007/3-540-39200-9_3
https://doi.org/10.1007/3-540-39200-9_3
https://doi.org/10.1007/978-3-662-47989-6_6
https://doi.org/10.1007/978-3-662-47989-6_6
https://doi.org/10.1007/978-3-642-38348-9_13
https://doi.org/10.1007/978-3-642-38348-9_13
https://doi.org/10.1007/978-3-662-46800-5_3
https://doi.org/10.1007/978-3-662-46800-5_3
https://doi.org/10.1007/3-540-57332-1_46
https://doi.org/10.1007/978-3-540-73074-3_13
https://doi.org/10.1007/978-3-642-04159-4_27
https://doi.org/10.1007/978-3-642-04159-4_27
https://doi.org/10.1007/978-3-662-48800-3_1
https://doi.org/10.1007/978-3-662-48800-3_1
https://doi.org/10.1007/3-540-68339-9_4
https://doi.org/10.1007/3-540-68339-9_4
https://doi.org/10.1007/BFb0054126
https://doi.org/10.1007/978-3-319-13039-2_9


Galois Counter Mode



Optimal Forgeries Against
Polynomial-Based MACs and GCM

Atul Luykx1(B) and Bart Preneel2

1 Visa Research, Palo Alto, USA
aluykx@visa.com

2 imec-COSIC, KU Leuven, Leuven, Belgium
bart.preneel@esat.kuleuven.be

Abstract. Polynomial-based authentication algorithms, such as GCM
and Poly1305, have seen widespread adoption in practice. Due to their
importance, a significant amount of attention has been given to under-
standing and improving both proofs and attacks against such schemes.
At EUROCRYPT 2005, Bernstein published the best known analysis of
the schemes when instantiated with PRPs, thereby establishing the most
lenient limits on the amount of data the schemes can process per key.
A long line of work, initiated by Handschuh and Preneel at CRYPTO
2008, finds the best known attacks, advancing our understanding of the
fragility of the schemes. Yet surprisingly, no known attacks perform as
well as the predicted worst-case attacks allowed by Bernstein’s analy-
sis, nor has there been any advancement in proofs improving Bernstein’s
bounds, and the gap between attacks and analysis is significant. We settle
the issue by finding a novel attack against polynomial-based authentica-
tion algorithms using PRPs, and combine it with new analysis, to show
that Bernstein’s bound, and our attacks, are optimal.

Keywords: Forgery · Wegman-Carter · Authenticator · MAC
GCM · Universal hash · Polynomial

1 Introduction

Polynomial-based universal hash functions [dB93,Tay93,BJKS93] are simple and
fast. They map inputs to polynomials, which are then evaluated on keys to pro-
duce output. When used to provide data authenticity as Message Authentication
Code (MAC) algorithms or in Authenticated Encryption (AE) schemes, they
often take the form of Wegman-Carter (WC) authenticators [WC81], which add
the polynomial output to randomly generated values.

Part of the appeal of such polynomial-based WC authenticators is that if the
polynomial keys and random values are generated independently and uniformly
for each message, then information-theoretic security is achieved, as initially
explored by Gilbert, MacWilliams, and Sloane [GMS74], following pioneering
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work by Simmons as described in [Sim91]. However, in the interest of speed
and practicality, tweaks were introduced to WC authenticators, seemingly not
affecting security.

Wegman and Carter [WC81] introduced one of the first such tweaks1, by
holding polynomial keys constant across messages, which maintained security as
long as the polynomial outputs are still added to fresh random values each time.
Further work then instantiated the random values via a pseudorandom num-
ber generator [Bra82], pseudorandom function (PRF), and then pseudorandom
permutation (PRP) outputs [Sho96], the latter being dubbed Wegman-Carter-
Shoup (WCS) authenticators by Bernstein [Ber05b]. Uniqueness of the PRF and
PRP outputs is guaranteed using a nonce. With m the message and n the nonce,
the resulting constructions take the form (n,m) �→ π(n)+ρ(m), with π the PRF
or PRP, and ρ the universal hash function.

The switch to using PRFs and PRPs means that information-theoretic
is replaced by complexity-theoretic security. Furthermore, switching to PRPs
in WCS authenticators results in security bound degradation, impacting the
amount of data that can be processed per key (as, for example, exploited by the
Sweet32 attacks [BL16]). Näıve analysis uses the fact that PRPs are indistin-
guishable from PRFs up to the birthday bound, however this imposes stringent
limits. Shoup [Sho96], and then Bernstein [Ber05b] improve this analysis signif-
icantly using advanced techniques, yet do not remove the birthday bound limit.
Regardless, despite the data limits, the use of PRPs enables practical and fast
instantiations of MAC and AE algorithms, such as Poly1305-AES [Ber05c] and
GCM [MV04a,MV04b], the latter of which has seen widespread adoption in
practice [VM06,SMC08,IS09].

As a result of the increased significance of WCS authenticators schemes like
GCM, more recent work has focused on trying to understand their fragility when
deployed in the real-world. The history of attacks against WC and WCS authen-
ticators consists of work exploring the consequences of fixing the polynomial key
across all messages—once the polynomial key is known, all security is lost.

Joux [Jou] and Handschuh and Preneel [HP08] exhibit attacks which
recover the polynomial key the moment a nonce is repeated. Ferguson [Fer05]
explores attacks when tags are too short, further improved by Mattson and
Westerlund [MW16]. A long line of work initiated by Handschuh and
Preneel [HP08], illustrates how to efficiently exploit verification attempts to elim-
inate false keys, by systematically narrowing the set of potential polynomial keys
and searching for so-called “weak” keys [Saa12,PC15,ABBT15,ZW17,ZTG13].

However, interestingly, in the case of polynomial-based WCS authenticators,
none of the nonce-respecting attacks match the success of the predicted worst-
case attacks by Bernstein [Ber05b]. Furthermore, the gap in success between the
predicted worst-case and best-known attacks grows quadratically in the number
of queries made to the authenticator. Naturally, one is led to question whether

1 Strictly speaking, Wegman and Carter did not tweak the constructions pioneered
by Simmons, as the connection between the two works was made only later by
Stinson [Sti91].
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Bernstein’s analysis is in fact the best one can do, or whether there actually is
an attack, forcing us to abide by the data limits.

1.1 Contributions

We exhibit novel nonce-respecting attacks against polynomial-based WCS
authenticators (Sect. 3), and show how they naturally arise from a new, simplified
proof (Sect. 4). We prove that both our attack and Bernstein’s bound [Ber05b]
are optimal, by showing they match (Sect. 5).

Unlike other birthday bound attacks, our attacks work by establishing
quadratically many polynomial systems of equations from the tagging queries. It
applies to polynomial-based WCS authenticators such as Poly1305-AES, as well
as GCM and the variant SGCM [Saa11]. We achieve optimality in a chosen-
plaintext setting, however the attacks can be mounted passively, using just
known plaintext for MACs and ciphertext for AE schemes.

1.2 Related Work

Our introduction provides only a narrow view of the history of universal
hash functions, targeted to ones based on polynomials. Bernstein [Ber05c]
provides a genealogy of polynomial-based universal hash functions and
Wegman-Carter authenticators, and both Procter and Cid [PC15,PC13] and
Abdelraheem et al. [ABBT15] provide detailed overviews of the past attacks
against polynomial-based Wegman-Carter MACs and GCM.

Zhu, Tan, and Gong [ZTG13] and Ferguson [Fer05] have pointed out that non-
96-bit nonce GCM suffers from birthday bound attacks which lead to immediate
recovery of the polynomial key. Such attacks use the fact that the nonce is pro-
cessed by the universal hash function before being used, resulting in block cipher
call collisions. These attacks are not applicable to the most widely deployed ver-
sion of GCM, which uses 96 bit nonces, nor to polynomial-based WCS authen-
ticators in general.

Iwata et al. [IOM12] identify and correct issues with GCM’s original analy-
sis [MV04a]. Niwa et al. find further improvements in GCM’s bounds [NOMI15].
Their proofs do not improve over Bernstein’s analysis [Ber05b].

New constructions using universal hash functions like EWCDM [CS16]
achieve full security [MN17] in the nonce-respecting setting, and maintain secu-
rity during nonce-misuse.

McGrew and Fluhrer [MF05] and Black and Cochran [BC09] explore how
easy it is to find multiple forgeries once a single forgery has been performed.

A long line of research seeks attacks and proofs of constructions which match
each other, such as the generic attack by Preneel and van Oorschot [PvO99],
tight analysis for CBC-MAC [BPR05,Pie06], keyed sponges and truncated
CBC [GPT15], and HMAC [GPR14], and new attacks for PMAC [LPSY16,
GPR16].
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2 Preliminaries

2.1 Basic Definitions and Notation

The notation used throughout the paper is summarized in AppendixC. Unless
specified otherwise, all sets are assumed to be finite. Vectors are denoted x ∈ Xq,
with corresponding components (x1, x2, . . . , xq). Given a set X, X≤� denotes the
set of non-empty sequences of elements of X with length not greater than �.

A random function ρ : M → T is a random variable distributed over the set of
all functions from M to T. A uniformly distributed random permutation (URP)
ϕ : N → N is a random variable distributed over the set of all permutations on
N, where N is assumed to be finite. When we write ϕ : N → T is a URP, we
implicitly assume that N = T.

The symbol P denotes a probability measure, and E expected value.
We make the following simplifications when discussing the algorithms. We ana-

lyze block cipher-based constructions by replacing each block cipher call with a
URP call. This commonly used technique allows us to focus on the constructions’
security without worrying about the underlying block cipher’s quality. See for
example [Ber05b]. Furthermore, although our analysis uses information-theoretic
adversaries, the attacks we describe are efficient, but require large storage.

We also implicitly include key generation as part of the oracles. For example,
consider a construction E : K × M → T, where E is stateless and deterministic,
and K is its “key” input. In the settings we consider, E-queries are only actually
made to E(k, ·), where the key input is fixed to some random variable k chosen
uniformly at random from K. Hence, rather than each time talking of E(k, ·),
we simplify notation by considering the random function ρ(m) def= E(k,m), with
the uniform random variable k implicitly part of ρ’s description.

2.2 Polynomial-Based WCS Authenticators

Although not necessary, for simplicity we fix tags to lie in a commutative group.
The following definition is from Bernstein [Ber05b].

Definition 2.1 (WCS Authenticator). Let T be a commutative group with
operation +. Let π : N → T be a URP, and ρ : M → T a random function. The
Wegman-Carter-Shoup (WCS) authenticator maps elements (n,m) ∈ N × M to
π(n) + ρ(m).

We take the following definition from Procter and Cid [PC15].

Definition 2.2 (Polynomial-Based Universal Hash). LetX be a field and � a
positive integer. Given x = (x1, x2, . . . , xl) ∈ X≤�, define the polynomial px(α) by

px(α) def=
l∑

i=1

xi · αi. (1)
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Then the polynomial-based universal hash function ρ : X≤� → X is the random
function ρ(x) def= px(κ), where κ is a uniform random variable over X, and
x ∈ X≤�.

We say that the input messages X≤� to the polynomial-based universal hash
consist of blocks, with the block length of the messages being at most �.

When a WCS authenticator uses a polynomial-based universal hash function,
we call the resulting construction a polynomial-based WCS authenticator.

Let γ : N×M → T be a WCS authenticator. An adversary A interacting with
γ is said to be nonce-respecting if it never repeats N-input to γ. Furthermore,
the verification oracle associated to γ, V : N × M × T → {0, 1}, is defined as

V (n,m, t) =

{
1 if γ(n,m) = t

0 otherwise
. (2)

Nonce-respecting adversaries may repeat nonce-input to V .

Definition 2.3 (Authenticity Advantage). Let A be a nonce-respecting
adversary interacting with WCS authenticator γ : N × M → T and associated
verification oracle V . Then A’s authenticity advantage, denoted Authγ(A), is
the probability that A makes a V -query (n∗,m∗, t∗) resulting in V outputting 1
and γ(n∗,m∗) = t∗ was not a previous query-response from γ.

In our analysis we will also need the following definition.

Definition 2.4 (Single-Forgery Advantage). Let A be a nonce-respecting
adversary interacting with WCS authenticator γ : N × M → T, resulting in
queries γ(ni,mi) = ti for i = 1, . . . , q. Say that A outputs (n∗,m∗, t∗) after its
interaction. Then A’s single-forgery advantage is

sAuthγ(A) def= P

[
γ(n∗,m∗) = t∗, (n∗,m∗, t∗) �= (ni,mi, ti) ∀i

]
. (3)

The maximum over all adversaries making at most q queries is denoted
sAuthγ(q).

Bernstein connects Auth and sAuth as follows.

Theorem 2.1 ([Ber05a]). Let A be an authenticity adversary making at most
q γ queries and v verification queries, then

Authγ(A) ≤ v · sAuthγ(q). (4)

Bellare et al. prove a similar result for different constructions [BGM04].

2.3 GCM

We present those details of GCM [MV04a,MV04b] necessary to describe our
attacks. GCM takes nonce, associated data, and plaintext input. It operates by



450 A. Luykx and B. Preneel

first encrypting the plaintext using CTR mode [Nat80] into a ciphertext c. Then
it processes the ciphertext and associated data using a WCS authenticator into
a tag.

GCM only uses one key, namely a block cipher key; as explained before, we
view the keyed block cipher as a URP π over the set of 128-bit strings, hence
the block cipher key is implicit in our description. An authentication key L
is computed as the output of π under the all-zero string, which we denote 0:
L

def= π(0).
GCM’s WCS authenticator views the set of 128-bit strings as a finite field

with 2128 elements. Once the ciphertext c has been computed using CTR mode,
its length is encoded in a 64-bit string and the ciphertext is padded with zeros
to have length a multiple of 128 bits. The associated data is processed in the
same way. Let a1, a2, . . . , al and c1, c2, . . . , cl′ denote the padded associated data
and ciphertext, respectively, where the length of all blocks ai and ci is 128 bits.
Let x0 denote the concatenation of the encoded lengths of the associated data
and ciphertext. Then, if x = (x0, al, al−1, . . . , a1, cl′ , . . . , c1), GCM computes its
tag as

px(L) + π(n) with L = π(0), (5)

where n is a value deduced from the nonce.
All π-input in GCM can be derived from the nonce and L, and no two π-

inputs are the same, unless some unlikely event happens, in which case GCM
loses all security [Jou,Fer05,ZTG13]. In more detail, the nonce is converted into
distinct counters for CTR mode, as well as an additional, distinct input, which is
used for the URP input in GCM’s WCS authenticator, denoted n in 5. In 96-bit
nonce GCM, n is equal to the nonce concatenated with a string consisting of 31
zeroes, followed by a 1, and the counters used in CTR mode increment the last
32 bits of n.

In our attacks and analysis below we mostly focus on plain WCS authen-
ticators, however everything translates nearly verbatim over to GCM’s WCS
authenticator.

3 Key Recovery Attacks

Most of the previously published attacks aim to recover the polynomial key of the
WCS authenticator in order to be able to construct arbitrary forgeries. All known
key recovery attacks focus either on reducing the set of candidate keys T , which
contains the actual key, or, equivalently, increasing T ’s complement F , the set
of “false” keys. The former can be achieved through nonce misuse [Jou,HP08],
which allows one to obtain a polynomial for which the key is a root, thereby
reducing T to the set of all roots of the polynomial. Although nonce misuse
attacks are important to understand the fragility of the schemes, we focus on
attacks which stay in the nonce-respecting model.

In contrast, the nonce-respecting attacks reduce T via repeated verification
attempts [HP08,PC15,ABBT15]. Their goal is to construct a forgery polynomial
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which evaluates to zero on the key. Then the forgery polynomial is combined with
a previous tagging query into a verification attempt in such a way that if the
verification attempt fails, then one knows that the key is not one of the roots of
the forgery polynomial. If the forgery polynomial has degree �, then at most �
faulty keys can be removed for each verification attempt, resulting in a success
probability of at most

1
|T| − v�

, (6)

where v is the number of verification attempts.
Our attacks differ from the previous nonce-respecting attacks in two ways:

they do not require verification attempts in order to increase F , and F increases
quadratically as a function of the number of tagging queries, q, giving a success
probability of roughly

1
|T| − q2

. (7)

We describe chosen-plaintext attacks which perfectly match the bounds for both
polynomial-based WCS MACs and GCM. The attacks can also be applied pas-
sively, where adversaries do not have chosen-plaintext control. Success then
depends in a non-trivial way on the message distribution, which in turn depends
on the application in consideration; we leave further detailed analysis of the
known-plaintext attacks for future work. In Sect. 5 we show that our chosen-
plaintext attacks are optimal.

3.1 WCS Authenticator Attacks

Constructing the False-Key Set. Let γ(n,m) = π(n) + ρ(m) be a polynomial-
based WCS authenticator, with π a URP and ρ a polynomial-based universal
hash function. Say that we somehow know that the queries γ(ni,mi) = ti for
i = 1, . . . , q were made. This means

π(ni) + ρ(mi) = ti or π(ni) = ti − ρ(mi), for i = 1, . . . , q. (8)

Since π is a permutation, this means

ti − ρ(mi) �= tj − ρ(mj), for i �= j. (9)

In particular, we know that the real key κ does not satisfy the polynomial
equations

ρ(mi) − ρ(mj) + tj − ti = 0, for i �= j. (10)

Therefore, each query to γ might allow us to increase the set of false keys. In
fact, the jth query to γ gives an additional j − 1 equations which can be used
to discard keys.
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Known-plaintext Attack. Given (ni,mi, ti) for i = 1, . . . , q, perform the following:

1. Construct

F def=
{
k

∣∣ pmi
(k) − pmj

(k) + tj − ti = 0, i �= j
}

. (11)

2. Pick any k∗ �∈ F , output k∗.

Analysis of the known-plaintext attack is complicated by the choice of distribu-
tion for the messages mi. We focus instead on analyzing the chosen-plaintext
attack below.

Chosen-Plaintext Attack. Choose q distinct messages of length one block, m1,
m2, . . . ,mq, and q nonces n1, n2, . . . , nq. For example, one could pick mi =
ni = i, for some encoding of i. Then conclude with the known-plaintext attack
described above. The resulting false-key set is

F =
{

ti − tj
mi − mj

, i �= j

}
. (12)

The following proposition establishes the expected size of F for this attack.
In Sect. 5 we connect the expected size of F with the success of key recovery
attacks and forgeries.

Proposition 3.1. Let N = |T|, and say that q ≤
√

N − 3, then

E (|F|) ≥ q(q − 1)
4

, (13)

where F is from (12) and |F| denotes its cardinality.

Proof. Let κ denote the real key, then

F =
{

π(ni) − π(nj) + κmi − κmj

mi − mj
, i �= j

}
(14)

=
{

π(ni) − π(nj) + κ(mi − mj)
mi − mj

, i �= j

}
(15)

=
{

π(ni) − π(nj)
mi − mj

+ κ, i �= j

}
. (16)

Let S = {(π(ni) − π(nj))/(mi − mj), i �= j}, so that |S| = |F|.
By Markov’s inequality,

E (|S|) ≥ P

[
|S| ≥ q(q − 1)

2

]
· q(q − 1)

2
, (17)

and |S| ≥ q(q − 1)/2 only if none of the (π(ni) − π(nj))/(mi − mj) collide. By
applying a union bound we know that the probability there is such a collision is
at most q(q − 1)/(2(N − 3)), hence

P

[
|S| ≥ q(q − 1)

2

]
≥ 1 − q(q − 1)

2(N − 3)
. (18)
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If q ≤
√

N − 3, then

1 − q(q − 1)
2(N − 3)

≥ 1
2
, (19)

and we have our desired bound. 
�

3.2 GCM Attacks

With a known-plaintext attack against GCM it is possible to increase F without
resorting to verification attempts or polynomial equations. Since we know that
the authentication key is computed as π(0), and all inputs to π are distinct,
each URP output from CTR mode reduces the set of valid keys, which you can
compute easily if you know the plaintext. However, such an attack still requires
known plaintext, potentially making it more difficult to implement in practice.

In contrast, if we apply our WCS authenticator attacks described above to
GCM, by replacing messages with ciphertexts, then we arrive at an attack which
potentially only requires ciphertext. In a passive setting, the steps are identical:
create a false-key set F as in Eq. 11, except the polynomials are replaced by
GCM’s, from (5).

The optimal chosen-plaintext attack changes slightly for GCM, since we need
to deal with the encoded lengths of the ciphertexts in the polynomials of Eq. 5.
Instead of choosing q distinct plaintexts mi, we now set all plaintexts to be the
all-zero string of length one block. This results in polynomials

xL + ciL
2 , (20)

where x is the encoding of the length of a one-block length ciphertext, and the
ci are the ciphertexts, all distinct from each other. The resulting false-key set is
as follows: {√

ti − tj
ci − cj

, i �= j

}
. (21)

Since the square root is bijective in finite fields of characteristic two, we have
that the above set contains the same number of elements as

{
ti − tj
ci − cj

, i �= j

}
, (22)

and the analysis made for WCS authenticators holds with little modification.

4 Bounding Authenticity with Key Recovery

4.1 Bernstein’s Analysis

Bernstein analyzes a generalization of Wegman-Carter and WCS MACs, namely
those of the form (n,m) �→ ρ(m) + ϕ(n), where ρ : M → T and ϕ : N → T
are independent random functions. Wegman-Carter authenticators fix ϕ to be
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a uniformly distributed random function, and WCS authenticators fix ϕ to be
a URP. As part of his analysis, Bernstein uses differential probability [Ber05b],
more commonly known as ε-almost (XOR) universal, given by

Δρ
def= max

m �=m′
t∈T

P [ρ(m) = ρ(m′) + t] . (23)

Various papers [dB93,Tay93,BJKS93] establish that for a polynomial-based uni-
versal hash function ρ : M → T, Δρ ≤ �/ |T|, where M = T≤�.

Bernstein also introduces the concept of interpolation probabilities of a ran-
dom function ϕ, which is the probability that ϕ(xi) = yi for some values
x1, . . . , xq and y1, . . . , yq. Bernstein establishes that ρ(m) + ϕ(n) is secure if
ρ’s differential and ϕ’s interpolation probabilities are small. Ultimately when
applied to polynomial-based WCS authenticators, we get the following.

Theorem 4.1. Let γ : N × M → T be a polynomial-based WCS authenticator
with M = T≤� and let A be a nonce-respecting adversary against γ making at
most q γ queries and v verification queries, then

Authγ(A) ≤ v · �

|T| ·
(

1 − q

|T|

)− q+1
2

. (24)

4.2 Reshaping Authenticity Advantage

Although Bernstein’s analysis is general and applies to more than just
polynomial-based WCS MACs, a targeted analysis will elucidate the gap between
currently known attacks and the bound given by Bernstein.

Whereas Bernstein proves bounds for ϕ(n) + ρ(m) in terms of ϕ’s inter-
polation and ρ’s differential probability, we instead rework the bounds to ϕ’s
unpredictability (Sect. 4.3) and key recovery against ρ (Sect. 4.4), the latter only
applying to polynomial-based MACs. The concepts introduced in this section
will allow us to prove that the CPA attacks introduced in Sect. 3 are in fact
optimal.

Instrumental to our analysis is the fact that an adversary’s single-forgery
advantage can be split in two, according to whether its attempted forgery
(n∗,m∗, t∗) uses a nonce n∗ that was never used before, or not. We let
sAuthnewγ (A) denote the probability that A forges and uses a new nonce, and
sAutholdγ (A) the probability that A forges and uses an old nonce. By basic prob-
ability theory,

sAuthγ(A) ≤ max
{
sAuthnewγ (A), sAutholdγ (A)

}
. (25)

Letting KR denote polynomial key recovery advantage (see Definition 4.2),
we establish the following result.
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Corollary 4.1. Let γ : (n,m) �→ ρ(m) + π(n) be a polynomial-based WCS
authenticator with ρ : M → T a random function, and π : N → T an inde-
pendent URP. Let A be an authenticity adversary against γ making at most q
queries of length at most �. Then

Authγ(A) ≤ v · max
{

� · KRγ(q) ,
1

|T| − q

}
. (26)

The proof can be found in AppendixA, which relies on results developed in the
next sections.

4.3 Unpredictability

We show how any attempted forgery using a new nonce against a WCS authen-
ticator has low success probability. This means if authenticity adversaries want
to achieve significant advantage, then they must re-use nonces during forg-
eries. We state the result more generally than for only polynomial-based WCS
authenticators.

Definition 4.1 (Unpredictability). Let A be an adversary interacting with
random function ϕ : X → Y. Say that A produces the sequence x ∈ Xq and
ϕ responds with outputs y ∈ Yq. Let (x∗, y∗) be A’s output, then A’s unpre-
dictability advantage against ϕ is

Unpredϕ(A) def= P

[
ϕ(x∗) = y∗, x∗ �= xi, i = 1, . . . , q

]
, (27)

where the probability is taken over the randomness of A and ϕ.

Let γ : (n,m) �→ ρ(m) + π(n) be any Wegman-Carter-style MAC using
random functions ρ : M → T and ϕ : N → T which are independent of each other.
Let A be an authenticity adversary against γ. We construct an unpredictability
adversary B 〈A〉 against ϕ as follows.

1. B runs A.
2. B simulates ρ using its own randomness; call it ρ′.
3. Every γ-query made by A is reconstructed by B using ρ′ and the ϕ-oracle B

interacts with. Concretely, every γ(n,m) made by A gets forwarded as ϕ(n),
and B returns ϕ(n) + ρ′(m).

4. B receives A’s final output, (n∗,m∗, t∗), and finally outputs (n∗, t∗ −ρ′(m∗)).

Proposition 4.1
sAuthnewγ (A) ≤ Unpredϕ(B 〈A〉). (28)

Proof. First note that B perfectly reconstructs A’s authenticity game since ρ’
is independent of ϕ. Then, if A wins its authenticity game, γ(n∗,m∗) = t∗, or
in other words, ϕ(n∗) + ρ(m∗) = t∗. In particular, ϕ(n∗) = t∗ − ρ(m∗). If n∗ has
never been queried to ϕ before, t∗ − ρ(m∗) would correctly predict ϕ’s output
on an unknown input, hence B〈A〉 would win its unpredictability game. 
�
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Lemma 4.1. Let π : N → T be a URP and B an adversary making at most q
queries, then

Unpredπ(B) ≤ 1
|T| − q

. (29)

4.4 Bounding Forgeries with Key Recovery

Having set aside adversaries which use new nonces for forgeries, we can focus
on those that re-use nonces. This section applies only to polynomial-based WCS
authenticators.

Definition 4.2 (Polynomial Key Recovery). Let A be a nonce-respecting
adversary interacting with polynomial-based WCS authenticator γ using URP
π and polynomial-based universal hash ρ, with κ denoting the random variable
representing the key underlying ρ. Say that A outputs an element k∗ ∈ K, then
A’s polynomial key recovery advantage against γ is

KRγ(A) def= P

[
k∗ = κ

]
, (30)

where the randomness is taken over A and γ. We let KRγ(q) denote the maxi-
mum of KRγ(A) over all adversaries A making at most q queries.

Forgeries can be used to recover authentication keys. We construct a poly-
nomial key recovery adversary C 〈A〉 against γ.

1. C runs A.
2. Every (n,m) query by A gets forwarded to C’s oracle, and C returns the

output γ(n,m) to A.
3. When A outputs (n∗,m∗, t∗), then C checks to see if n∗ = ni for some

previous query γ(ni,mi) = ti. If this is not the case, then C aborts. Otherwise
C computes the roots of the polynomial2 pm∗(α) − pmi

(α) − t∗ + ti = 0, and
chooses a key uniformly at random from the set of roots.

Proposition 4.2. Let A be an adversary making queries of length at most �.
The probability that A wins its authenticity game and outputs (n∗,m∗, t∗) where
n∗ = ni for some previous query (ni,mi) to γ, is bounded above by

� · KRγ(C 〈A〉). (31)

Proof. If A wins with n∗ = ni, then

γ(n∗,m∗) = γ(ni,m
∗) = ϕ(ni) + ρ(m∗) = t∗, (32)

and
γ(ni,mi) = ϕ(ni) + ρ(mi) = ti, (33)

therefore ρ(m∗) − ρ(mi) − t∗ + ti = 0. We know that the key used by ρ is in
the set of roots of the polynomial pm∗(α) − pmi

(α) − t∗ + ti, which has size at
most max {|m∗| , |mi|}. Picking an element uniformly at random from this set,
we have that C wins with probability at least 1/max {|m∗| , |mi|}. 
�
2 Finding roots of polynomials over a finite field is computationally efficient using

Berlekamp’s algorithm [Ber70] or the Cantor-Zassenhaus algorithm [CZ81].
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5 Using Key Recovery to Mount Forgeries

The previous section discussed how to convert authenticity attacks into key
recovery attacks to reshape the upper bounds on forgery attacks. Here we discuss
the opposite, namely how to use key recovery adversaries to mount forgeries. This
will allow us to not only show that the analysis of Sect. 4 is tight, but also that
the attacks of Sect. 3 are optimal, using Bernstein’s analysis.

5.1 Key-Set Recovery

The obvious way to convert a key recovery attack into an authenticity attack
is to run the key recovery adversary and use the output of the key recovery
adversary to mount a forgery. We explain this formally in AppendixB. However,
this method constructs authenticity adversaries which are about as successful as
key recovery adversaries.

In contrast, as seen in Sect. 4.4, Proposition 4.2, authenticity adversaries
might improve over key recovery adversaries by up to a factor of �. Intuitively,
given a key recovery adversary, one could try to do this by taking the candidate
key k∗ output by the key recovery adversary, and finding a polynomial of degree
� which contains k∗ as a root, and then construct a forgery using this polyno-
mial. The problem with this approach is that most of the roots of the polynomial
chosen by the resulting authenticity adversary could be useless, as they could,
for example, lie in some false-key set determined by the key recovery adversary.
Without any further information about the key recovery adversary it does not
seem possible to improve the authenticity adversary.

However, if we instead look at key-set recovery adversaries, we can improve
our chances of constructing forgeries. We will show that key-set recovery and key-
recovery adversaries are in fact very similar, allowing us to prove tight bounds
on the connection between key-recovery and forgeries.

Definition 5.1 (Polynomial Key-Set Recovery). Let A be a nonce-
respecting adversary interacting with polynomial-based WCS authenticator γ
using URP π and polynomial-based universal hash ρ, with κ denoting the random
variable representing the key underlying ρ. Say that A outputs a set K∗ ⊂ K,
and let 1K∗ denote the random variable which equals one if κ ∈ K∗ and zero
otherwise. Then A’s polynomial key-set recovery advantage against γ is

KSγ(A) def= E

(
1K∗

|K∗|

)
, (34)

where the randomness is taken over A and γ. We let KSγ(q) denote the maximum
of KSγ(A) taken over all adversaries making at most q queries.

Let C be a key-set recovery adversary. Once C has made all its queries, it is
possible to compute FC, the random set of false keys given by Eq. (11), and TC

its complement. Then it is straightforward to construct key-set adversary D 〈C〉
which runs C, and then returns TC. We argue that C’s advantage is not greater
than D’s.
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Lemma 5.1. Let C and D 〈C〉 be defined as above, then

KSγ(C) ≤ KSγ(D 〈C〉). (35)

Proof. First note that κ, the key underlying the polynomial-based universal
hash, must be in TC, since by definition it cannot satisfy any of the equations
given in (11). Therefore, if C’s output, denoted K∗, contains elements not in TC,
then it is possible to improve C’s advantage by having C output K∗ ∩ TC, since
that would reduce C’s output set size without affecting the probability that κ
is in the set. Therefore without loss of generality we assume that K∗ ⊂ TC.

Then, given any sequence of q queries thatCmakes, TC describes exactly those
keys which satisfy the transcript, and in particular κ is uniformly distributed over
TC. Therefore, if K∗ ⊂ TC, then C’s advantage is the same as D:

E

(
1K∗

|K∗|

)
=

∑

n

1
n

∑

m

P

[
κ ∈ K∗, |K∗| = n, |TC| = m

]
(36)

=
∑

n

1
n

∑

m

P

[
κ ∈ K∗

∣∣∣ |K∗| = n, |TC| = m
]
P

[
|K∗| = n, |TC| = m

]

(37)

=
∑

n

1
n

∑

m

n

m
· P

[
|K∗| = n, |TC| = m

]
(38)

=
∑

m

1
m
P

[
|TC| = m

]
(39)

= E

(
1TC

|TC|

)
. (40)


�
Since our focus is on optimal, information-theoretic adversaries, without loss of
generality we assume that all key-set recovery adversaries return T .

Given such a key-set recovery adversary D, we construct single-forgery adver-
sary A 〈D〉 as follows:

1. A runs D, and responds to any D-query (n,m) with γ(n,m).
2. When D outputs the candidate set TD, A picks � distinct elements uniformly

at random from TD and constructs a polynomial pm∗ with those elements as
roots.

3. A picks any previous query γ(n,m) = t made by D, adds m∗ to m component-
wise to get m′ = (m1 + m∗

1,m2 + m∗
2, . . .), and submits the forgery attempt

(n,m′, t).

Naturally this reduction becomes void if the size of TD is less than �, however as
we will see in Sect. 5.2, this can only happen if q nearly as large as the number
of nonces the adversary can query. We capture this limit on q with Mγ , which
is defined to be

Mγ
def= max

⎧
⎨

⎩q

∣∣∣∣∣∣
min

m1,...,mq,
t1,...,tq

|T| ≥ �

⎫
⎬

⎭ . (41)
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The following proposition shows that one can construct better forgeries using
key-set recovery adversaries.

Proposition 5.1. Let q ≤ Mγ , then

� · KSγ(D) ≤ sAutholdγ (A 〈D〉). (42)

Proof. Let L denote the � elements that A picks from TD. Adversary A wins if
κ ∈ L, since then pm∗(κ) = 0 and so pm+m∗(κ) + π(n) = t.

P

[
κ ∈ L

]
=

∑

n

P

[
κ ∈ L

∣∣∣ |TD| = n, κ ∈ TD

]
P

[
κ ∈ TD, |TD| = n

]
(43)

=
∑

n

�

n
· P

[
κ ∈ TD, |TD| = n

]
(44)

= � · E
(

1TD

|TD|

)
= � · KSγ(D). (45)


�

Furthermore, there is little real difference between key-recovery and key-set
recovery advantage.

Proposition 5.2
KSγ(q) = KRγ(q). (46)

Proof. If the output set size of a key-set recovery adversary is always one, then
key-set recovery advantage is identical to key-recovery advantage. Since any
key-recovery adversary can be converted into a key-set recovery adversary with
output set size one, we have that KRγ(q) ≤ KSγ(q).

Given any key-set recovery adversary C, we convert it into a key-recovery
adversary C′ by picking a candidate key k∗ uniformly at random from the output
set K∗. Then

KRγ(C′) = P

[
κ = k∗

]
(47)

=
∑

n

P

[
κ = k∗

∣∣∣ κ ∈ K∗, |K∗| = n
]
P

[
κ ∈ K∗, |K∗| = n

]
(48)

=
∑

n

1
n
P

[
κ ∈ K∗, |K∗| = n

]
= KSγ(C). (49)


�

Propositions 4.2, 5.1 and 5.2 establish the following result, confirming that
the analysis of Sect. 4.4 is tight.

Corollary 5.1. Let q ≤ Mγ , then

� · KRγ(q) = sAutholdγ (q). (50)
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5.2 Attack Success Probability and Optimality

Our chosen-plaintext attack only uses messages of length one block, which is
reflected in the fact that |F| only grows as a function of q. Intuitively one would
expect to be able to increase F as well by taking advantage of longer messages
and the fact that polynomials of higher degree have more roots. However, here
we show that this is impossible.

The success probability of the key recovery attacks from Sect. 3 is given as
follows, which results from the observation that the real key cannot be in F by
definition.

Proposition 5.3. Let A denote the chosen-plaintext attack from Sect. 3, then

KRγ(A) ≥ 1
|T| − E (|F|) . (51)

Combining this result with Bernstein’s result, we have the following.

Theorem 5.1. Let F be defined as in Sect. 3, then

E (|F|) ≤ q(q + 1)
2

. (52)

Proof. Using Theorem 4.1, Corollary 5.1, and Proposition 5.3, we have

� · 1
|T| − E (|F|) ≤ �

|T| ·
(

1 − q

|T|

)− q+1
2

. (53)

Letting x denote E(|F|) and N = |T|, we have

1
N − x

≤ 1
N

(
1 − q

N

)− q+1
2

(54)

x ≤ N

[
1 −

(
1 − q

N

) q+1
2

]
. (55)

We apply Bernoulli’s inequality, namely that (1 + x)r ≥ 1 + rx if r ≥ 1 and
x ≥ −1, which holds in our case when 1 ≤ q ≤ N , to get

(
1 − q

N

) q+1
2 ≥ 1 − q + 1

2
· q

N
, (56)

hence

x ≤ q(q + 1)
2

. (57)


�
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6 Conclusions, Limitations, and Open Problems

Using new analysis and attacks we have shown that, without further restrictions
on the adversaries, Bernstein’s analysis is in fact optimal. We can therefore
conclude that the data limits imposed by Bernstein’s bounds are necessary.

Our attacks illustrate for the first time how to maximally take advantage
of tagging queries without needing verification queries in order to attack WCS
authenticators. However, there are limitations on the applicability of the attacks.

As implied by the introduction, our attacks only work against polynomial-
based WCS authenticators when they re-use the polynomial key, and is there-
fore not applicable to, for example, SNOW 3G [3GP17] or Poly1305 as used in
NaCl [Ber09,Ber09].

The attacks work best when tags are not truncated, since the underlying PRP
behaves more like a PRF with increased truncation [GGM18,HWKS98]. How-
ever, as pointed out by Ferguson [Fer05] and Mattsson and Westerlund [MW16],
one must take care when truncating tags in WCS authenticators. In some cases
standards mandate that tags not be truncated [VM06,SMC08,IS09].

The attacks are not directly applicable to constructions which do not fol-
low the WCS authenticator structure of mapping (n,m) to π(n) + ρ(m). A
few different constructions are discussed by Bernstein [Ber05c] and Handschuh
and Preneel [HP08]. In particular, if a PRF instead of a PRP is used to hide
the polynomial output, or if multiple PRP calls are XORed together as with
CWC [KVW04] and GCM/2+ [AY12], then the attacks are not applicable; it
remains an open problem whether the analyses of the latter constructions are
tight.

WCS authenticators can also be instantiated using non-polynomial-
based universal hash functions, [BHK+99,HK97,EPR99,Joh97,KYS05,Kro06,
BHK+99]. We expect that similar attacks are applicable to these functions.

As shown by Luykx et al. [LMP17], the attacks’ success probability will not
improve in the multi-key setting.

Finally, although our attacks show that one should abide by Bernstein’s
bounds, implementing the attacks seems to require a large amount of storage
to achieve significant success probability. It is unclear whether there is a com-
pact way of representing the set of false keys. Alternatively, if one were able
to prove lower bounds on the storage requirements for any attacker, one could
possibly afford to use keys beyond the data limits recommended by Bernstein’s
analysis, assuming adversaries have bounded storage capabilities.

Acknowledgments. The authors would like to thank Guy Barwell, Dan Bernstein,
Bart Mennink, Scott Fluhrer, and the anonymous reviewers for their comments, as well
as Mridul Nandi for pointing out an error in a previous version of the manuscript.
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A Proof of Corollary 4.1

We re-use the notation and definitions from Sects. 4.3 and 4.4.

Corollary. Let γ : (n,m) �→ ρ(m) + π(n) be a polynomial-based WCS authen-
ticator with ρ : M → T a random function, and π : N → T an independent URP.
Let A be an authenticity adversary against γ making at most q queries of length
at most �. Then A’s advantage against γ is bounded by

v · max
{

� · KRγ(C 〈A〉), 1
|T| − q

}
. (58)

Proof. We restrict our attention to single-forgery adversaries, and use Theorem2.1
to generalize to any authenticity adversary.

Let E denote the event that n∗ does not equal a previous query to ϕ. By
Proposition 4.1, the probability that A wins and E occurs is bounded above by
the probability that B 〈A〉 wins, which is at most 1/(|T| − q) by Lemma 4.1. By
Proposition 4.2, the probability that A wins and E does not occur is bounded
above by � times the probability that C 〈A〉 wins. 
�

B From Key Recovery to Forgeries

Let C be a polynomial authenticator key recovery adversary against γ, then we
construct an authenticity adversary A 〈C〉 against γ as follows:

1. A runs C.
2. Every (n,m) query by C gets forwarded to A’s oracle, and A returns the

output γ(n,m) to C.
3. When C outputs k∗, A uses it to compute y∗ = γ(n1,m1) − pm1(k

∗), where
(n1,m1) is the first query made by C. Then A picks a message m∗, and
attempts the forgery (n1,m

∗, y∗ + pm∗(k∗)).

Proposition B.1
KRγ(C) ≤ Authγ(A 〈C〉). (59)

Proof. If C wins its game, then k∗ = k, the key used by the polynomial hash.
Then we have

γ(n1,m
∗) = π(n1) + pm∗(k) (60)

= γ(n1,m1) − pm1(k) + pm∗(k) (61)
= γ(n1,m1) − pm1(k

∗) + pm∗(k∗), (62)

which is exactly the tag submitted by A. 
�
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C Notation

Table 1. List of notation.

Symbol Description

Quantities

v Number of verification queries

q Number of tagging queries

� Maximum message length

N Size of T

Random variables

ϕ Random function

π URP

γ Authenticator

ρ Polynomial-based universal hash

κ Key of a polynomial hash

Sets

x ∈ X Domain, block

y ∈ Y Range

k ∈ K Key set

n ∈ N Nonce set

m ∈ M Message space

t ∈ T Tag space

F Faulty keys output by attacks

T Complement of F , i.e. K\F
Adversaries

A Adversary (generic or authenticity)

B Unpredictability adversary

C Key recovery or key set recovery adversary

D Optimal key recovery or key set recovery adversary

Miscellaneous

x Vector of elements

pm(k) Polynomial defined by m evaluated at k
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Abstract. This paper revisits the multi-user (mu) security of symmet-
ric encryption, from the perspective of delivering an analysis of the
AES-GCM-SIV AEAD scheme. Our end result shows that its mu security
is comparable to that achieved in the single-user setting. In particular,
even when instantiated with short keys (e.g., 128 bits), the security of
AES-GCM-SIV is not impacted by the collisions of two user keys, as long
as each individual nonce is not re-used by too many users. Our bounds
also improve existing analyses in the single-user setting, in particular
when messages of variable lengths are encrypted. We also validate secu-
rity against a general class of key-derivation methods, including one that
halves the complexity of the final proposal.

As an intermediate step, we consider mu security in a setting where
the data processed by every user is bounded, and where user keys are
generated according to arbitrary, possibly correlated distributions. This
viewpoint generalizes the currently adopted one in mu security, and can
be used to analyze re-keying practices.

Keywords: Multi-user security · AES-GCM-SIV
Authenticated encryption · Concrete security

1 Introduction

This work continues the study of the multi-user (mu) security of symmetric
cryptography, the setting where the adversary distributes its resources to attack
multiple instances of a cryptosystem, with the end goal of compromising at least
one of them. This attack model was recently the object of extensive scrutiny [2,
9,21,22,26,29,35], and its relevance stems from the en masse deployment of
symmetric cryptography, e.g., within billions of daily TLS connections. The main
goal is to study the degradation in security as the number of users increases.

Our contributions. This paper will extend this line of work in different
ways. The most tangible contribution is a complete analysis in the mu setting
of the AES-GCM-SIV [18] scheme by Gueron, Langley, and Lindell, an AES-
based scheme for authenticated encryption with associated data (AEAD) which
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is meant to resist nonce misuse. Our main result will show that the scheme’s secu-
rity does not degrade in the mu setting, in a sense much stronger than what was
claimed in the previous mu analyses. Also, we abstract the requirement needed
for AES-GCM-SIV’s key-derivation step, and show that a very simple KDF is
sufficient for high security. Beyond this, our analysis also delivers conceptual
and technical insights of wider interest.

Concretely, our result will highlight the benefit of ensuring limited nonce re-
use across different users (e.g., by choosing nonces randomly). We show that in
this setting AES-GCM-SIV does not suffer any impact from key-collisions, in par-
ticular allowing security to go beyond the Birthday barrier (wrt the key length)
even in the multi-user setting. The resulting analysis is particularly involved, and
calls for a precise understanding of the power of verification queries (for which
nonce re-use across multiple users cannot be restricted). Previous analyses of AE
schemes (specifically, those of [9]) do not ensure security when two users have
the same key, thus forcing either an increase of the key length or a worse security
guarantee.

On the way, we analyze the building blocks of AES-GCM-SIV in a refined
model of mu security where the amount of data processed by each user is
bounded, and where keys come from arbitrary distributions. These results could
be of independent interest.

We now continue with a more detailed overview of our results.

Multi-user security. Multi-user (mu) security was introduced by Bellare,
Boldyreva and Micali [3] in the public-key setting as an explicit security tar-
get, although in the symmetric setting the notion had already been targeted in
attacks [10,11], and was used implicitly as a technical tool in [4].

For example, in the mu definition of encryption security under chosen-
plaintext attacks, each user i is assigned a secret key Ki, and the attacker’s
encryption queries Enc(i,M) result in either an encryption of M under Ki (in
the real world), or an equally long random ciphertext (in the ideal world). The
goal is to distinguish the real from the ideal-world.

Assessing security in this model is interesting and non-trivial. Take for exam-
ple randomized counter-mode encryption (CTR), based on a block cipher with
key length k and block length n. The advantage of any single-user adversary
encrypting, in total, L blocks of data and making p queries to the cipher (which
we model as ideal) is upper bounded by εsu(L, p) ≤ L2

2n + p
2k

(cf. e.g. [5]). If the
attacker now adaptively distributes its queries across u users, a hybrid argument
shows that the bound is εmu(L, p, u) ≤ u · εsu(L, p + L) ≤ 2uL2

2n + u(p+L)
2k

.
Usually, we do not want to fix u, and allow the adversary to encrypt its

budget of L blocks adaptively across as many users as it sees fit. In particular,
the adversary could (1) query one message only with length L, or (2) query L
messages with length 1, each to a different user. Thus, in the worst case, the
bound becomes εmu(L, p) ≤ 2L3

2n + Lp+L2

2k
. A number of recent works [2,21,22,

29,35] have shown that this is overly pessimistic, and the security loss can be
much smaller; in fact, often εmu(L, p) ≈ εsu(L, p) holds.
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Bounding the per-user data complexity. Note that even if εmu(L, p) ≈
εsu(L, p) above, the matching attack could be a single-user attack, requiring a
single honest user to encrypt L ≈ 2n/2 blocks under the same key. For k = n =
128, this would require a single honest user to willingly encrypt multiple exabytes
of data, and there are many scenarios where we can easily enforce this not to
happen. If we enforce a per-user upper bound B on the number of encrypted
blocks, an L-block adversary would be forced to spread its effort across at least
L/B users, and the advantage could become even smaller. Indeed, tightening
existing bounds, we show below that for CTR, the advantage of such an attacker
is at most

LB

2n
+

L2

2n+k
+

ap

2k
.

for some constant a. This bound shows that the fewer blocks we encrypt per
user, the higher the security: Beyond-birthday security is possible, e.g., for k =
n = 128 and B = 232, the bound is of the order L/296 + p/2128. Also, the
bound is independent of the number of users, and in particular the role of off-
line computation – captured here by p – is also independent of L. Note that
most previous results on mu security target deterministic security games, such
as PRFs/PRPs [2,21,22,29,35] or deterministic AE [9,26], and security falls
apart when more than 2k/2 users are present, and their keys collide. Here, key-
collisions are irrelevant, and security well beyond 2k/2 users is possible.

AES-GCM-SIV: Overview and bounds. The above viewpoint generalizes that
of Abdalla and Bellare [1], who were first to observe, in a simpler model, that re-
keying after encrypting B blocks increases security. The fewer data we encrypt
per key, the higher the security.

AES-GCM-SIV adapts the re-keying idea to the AEAD setting, making it in
particular nonce based – i.e., to encrypt a message M with a nonce N , we use
a key-derivation function (KDF) KD to derive a key KN ← KD(K,N) from the
master secret key K and the nonce N , and then encrypt the message M with
the nonce N under the key KN using a base AE scheme AE. Now, the keys KN

can be thought as belonging to different (virtual) users. Existing analyses [20,24]
show indeed that, assuming KD is a good PRF, a mu security bound for AE can
be lifted to a bound on the end scheme in the single-user setting, where now B
is a bound on the amount of data encrypted per nonce, rather than per user. If
nonces are not re-used, B is the maximum block length of an encrypted message.

Concretely, in AES-GCM-SIV, the underlying AE is GCM-SIV+, a slight mod-
ification of GCM-SIV [19]. This relies in turn on SIV (“synthetic IV”) [34], an
AEAD scheme which combines a PRF F and an encryption scheme SE (only
meant to be CPA secure) to achieve nonce-misuse resistance. For message M ,
nonce N , and associated data A, the encryption of SIV results into a ciphertext
C obtained as

IV ← F(KF, (M,N,A)), C ← SE.E(KE,M ; IV),

where KF and KE are the two components of the secret key, and SE.E(KE,M ; IV)
is the deterministic encryption function of SE run with IV IV.
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In GCM-SIV+, SE is counter mode, and F is what we call GMAC+, a Wegman-
Carter MAC [38] similar to, but different from, the one used in GCM [28]. It
composes an xor-universal hash function with n-bit key, with a block cipher
of block length n and key length k. GMAC+’s total key length is hence k + n
bits. (As we target AES, n = 128 and k ∈ {128, 256}.) A difference from the
original SIV scheme is that the same block cipher key is used across GMAC+ and
counter-mode, but an appropriate domain separation is used.

For nonce-misuse resistance (so-called mrae security), the best published
bound for AES-GCM-SIV with key length 128 bits is of order

QB2

2128
+

�maxQR

2128
+

p

2128
+ ε(Q),

for any adversary that makes at most p ideal-cipher queries, encrypts at most
B blocks per nonce, uses at most Q < 264 nonces in encryption/verification
queries, where R is the maximum number of repetition of a nonce, and �max is
the maximal length of a verification query. Here, ε(Q) is the PRF advantage of
KD against Q queries, and it is Q/296 for the considered instantiation.

Our bounds in the mu setting. The analysis of AES-GCM-SIV uses mu
security as a tool, but still only gives su security bounds. A valid question is
whether its security substantially degrades in the mu setting or not.

We answer this question, and show that for a large class of suitable instan-
tiations of KD, multi-user mrae security of AES-GCM-SIV is of order

LB

2128
+

d(p + L)
2128

,

where L, B, and d are upper bounds, respectively, of the overall number of
encrypted/verified blocks, of the number of blocks encrypted per user-nonce
pair, and of the number of users that re-use a particular nonce value.

This shows a number of things: First off, our bound is an improvement even
in the single-user case, as d = 1 vacuously holds, and even if we use the KDF
considered in the previous works. (Note in particular that the PRF advantage
term ε(Q) disappears from the bound.) The term LB

2128 can be much smaller than
QB2

2128 , as in many settings Q and L can be quite close (e.g., if most messages
are very short). In fact, the point is slightly more subtle, and we elaborate on
it at the end of the introduction. Second, if d is constant (which we can safely
assume if nonces are randomly chosen), security does not degrade as the number
of users increases. In particular, the security is unaffected by key collisions. If d
cannot be bounded, we necessarily need to increase the key length to 256 bits,
and in this case the second term becomes d(p+L)

2256 . Finally, we have no assumption
on the data amount of verification queries per user-nonce pair (other than the
overall bound L), whereas the bounds in prior works can become weak if there is
a very long verification query, and the adversary uses only a single nonce among
verification queries.

The rest of the introduction will explain some ideas behind the bound and
the techniques, which we believe to be more broadly applicable.
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Challenges. On the way to our end result, we give a number of results of
independent interest. Interestingly, while we will recycle ideas on the way, the
approach is less modular than one expects. First off, we analyze CTR and GMAC+

in a regime where the amount of data processed by each user is bounded. We
will then obtain an analysis of the mu security GCM-SIV+. Here, due to the key
re-use, the technique for generic composition used in the original SIV scheme
fails, but we will be able to recycle many low-level parts of the proofs for CTR
and GMAC+.

At this point, however, it is unclear whether nonce-based key derivation
achieves its purpose in the mu setting, where B is now a bound on the number
of blocks encrypted per user-nonce pair. Indeed, say the master secret key K
has length k = 128. Then, should the number of users exceed 2k/2 = 264, with
high probability two users will end up with identical keys. If we treat KD as
a PRF, like [20,24] do, all security will vanish at this point. Indeed, the exist-
ing mu analysis of GCM succumbs to this problem [9], and the problem seems
unavoidable here too, since we are considering a deterministic security game.

Bounded nonce re-use across users. The way out from this problem is to
assume every nonce is re-used by at most d users. Consider the canonical attack
to break privacy of the scheme: Fix a sufficiently long message M and a nonce
N , and re-use them over and over in encryption queries for different users, and
if the same ciphertext appears twice after roughly 2k/2 queries, we are likely to
be in the real world, as ciphertexts are random and independent in the ideal
world. This however requires us to re-use the same nonce across 2k/2 users. A
first interesting point we observe is that the security of KD as PRF degrades
gracefully with the number of users d that can re-use the same input/nonce.

Unfortunately, this is not enough. The catch is that a bound d on the num-
ber of users re-using a nonce is only meaningful for encryption queries, e.g., if
nonces are chosen randomly. For authenticity, an attacker would attempt to issue
verification queries for as many users as it wishes, and we cannot restrict the
choice of nonces. In particular, we cannot prevent that 2k/2 verification queries
for different users with the same nonce may end up using colliding user keys.
The question is how far this is an issue.

To get some intuition, consider the security of KD as a MAC, i.e., the adver-
sary issues, in a first stage, queries (i,N), producing output KD(Ki, N) (where
Ki is the key of the i-th user), but respecting the constraint that no nonce is
used more than d times across different i’s, where d is relatively small. Then, in
a second stage, the adversary gets to ask unrestricted verification queries with
input (i,N, T ), except for the obvious requirement that (i,N) must be previously
un-queried. The adversary wins if KD(Ki, N) = T for one of these verification
queries. At first glance, a collision Ki = Kj could help if we have queried (i,N)
in the first stage, learnt T , and now can submit (j,N, T ) in the second. The
caveat is that we need to be able to have detected such collisions. This is hard
to do during the first stage, even with many queries, due to the constraint of
reusing N only d times. Thus, the only obvious way to exploit this would be to
try, for each of the q first-stage queries (i,N) with corresponding output T , to
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query (j,N, T ) for many j �= i. This would however require roughly 2k trials to
succeed. Finally, note that while it may be that we ask two verification queries
(i,N, T ) and (j′, N ′, T ′) where Ki = Kj , this does not seem to give any help in
succeeding, because a verification query does not reveal the actual output of KD
on that input.

Confirming this intuition is not simple. We will do so for a specific class of
natural KD constructions outlined below, and point out that the setting of AE
is harder than studying the security of KD itself as a MAC. Indeed, our KD is
used to derive keys for GMAC+ and CTR at the same time, and we need to prove
unpredictability of the overall encryption scheme on a new pair (N, i) which was
previously unqueried, while producing a bound which does not depend on key
collisions. This is the most technically involved part of the paper.

A simpler KDF. Finally, let us address how we instantiate KD. The construc-
tion of KD from [18] is truncation based, and makes 4 (for k = 128), respectively
6 (for k = 256) calls to a block cipher to derive a key. A recent proposal [24] sug-
gests using the so-called XOR construction to achieve higher security, as multiple
analyses [7,14,25,31,33] confirm better bounds than for truncation [16]. Still, the
resulting KD would need 4 resp. 6 calls. They also consider a faster construction,
based on CENC [23], which would require 3 resp. 4 calls. All of these constructions
are required to be good PRFs in existing analyses.

Rather than studying concrete constructions, we apply our result to a gen-
eral class of KDFs which includes in particular all of these proposals, but also
simpler ones. For instance, our bounds apply to the following simple KDF, a
variant of which was in the initial AES-GCM-SIV proposal, but was discarded
due to security concerns. Namely, given the underlying block cipher E, the KDF
outputs

KD(K,N) = E(K, pad(N, 0)) ‖ E(K, pad(N, 1)) (1)

for k = n and N an nl-bit string, with nl ≤ n − 2, and, analogously, for k = 2n,
one can extend this by additionally concatenating E(K, pad(N, 2)). Here, pad
is a mapping with the property that the sets {pad(N, 0), pad(N, 1), pad(N, 2)}
defined by each N are disjoint. This approach seems to contradict common
sense which was adopted in the new KDF variants for AES-GCM-SIV, because
the derived keys are not truly random. However, a crucial point of our analyses
is that we do not prove PRF security of these KDFs. Rather, we study the
distributions on keys they induce, and then (implicitly) rely on the security
of the underlying components using keys obtained from (slightly) non-uniform
distributions.1

1 This key-derivation scheme is also used to derive sub-keys from tweaks in the set-
ting of FPE within the DFF construction [37]. DFF is a replacement for FF2 [36],
a scheme proposed to NIST for standardization but eventually rejected due to a
birthday-bound key-recovery attack [15]. The security of DFF is formalized and
studied in [6], but their analysis is still in the su setting, namely there is only one
master key for KD.
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In platforms that support AES hardware acceleration, the difference in per-
formance between the KDF in Eq. (1) and the current one in AES-GCM-SIV is
not important, as demonstrated via the experiments in [18]. Still, we believe it
is important for schemes to be minimal, and thus to understand the security of
the simplest possible instantiations of the KDF.

Sub-optimality of POLYVAL. We also observe that the universal hash
POLYVAL within GMAC+ is somewhat suboptimal. That is, if both the mes-
sage and the associated data are the empty string, then their hash image under
POLYVAL is always 0128, regardless of the hash key. This does not create any
issue in the single-user setting, but substantially weakens the mu security of
GCM-SIV+ and GMAC+ to LB

2128 + d(p+L)
2128 , despite their use of 256-bit keys. Had

the padding in POLYVAL ensured that the hash image of empty strings under a
random key has a uniform distribution, the security of GCM-SIV+ and GMAC+

could be improved to LB
2128 + Lp

2256 , meaning this bound is independent of the num-
ber d of users that reuse any particular nonce. While this issue does not affect
the concrete security bound of AES-GCM-SIV, this change becomes necessary if
GCM-SIV+ or GMAC+ are used as standalone schemes.

Relation to existing works. We elaborate further on our improvements in
the su setting over recent analyses [20,24]. As mentioned above, their bound
contains a term of the order QB2/2n, which we improve to LB/2n. The fact
that the latter is better is not quite obvious. Indeed, it is not hard to improve
the term QB2/2n in [20,24] to

∑Q
i=1 B2

i /2n, where Bi is a bound on the number
of blocks encrypted with the i-th nonce. This seems to address the point that
different amounts of data can be encrypted for different nonces.

The crucial point is that we capture a far more general class of attacks by
only limiting the adversary in terms of L, p, and d. For instance, for a parameter
L, consider the following single-user adversary using Q = L/2 nonces. It will
select a random subset of the Q nonces, of size L/(2B), for which it encrypts
B blocks of data, and for the remaining L/2 − L/(2B) nonces, it only encrypts
one block of data. In our bound, we still get a term LB/2n. In contrast, with
the parametrization adopted by [20,24], we can only set Q = L/2 and Bi = B
for all i ∈ [Q], because any of the nonces can, a priori, be used to encrypt B
blocks. This ends up giving a term of magnitude LB2/2n, however, which is
much larger. For B = 232, the difference between L/264 and L/296 is enormous.

Switching to the type of bounds is non-trivial: The adversary can adopt an
arbitrarily adaptive attack pattern. Handling such adversaries was the object of
recent works in the mu regime [2,21,22,26,29,35].

Standard vs ideal-model. We also note that the bound of [24] is expressed
in the standard model, and contains a term Qε, where ε is the advantage of a
PRF adversary A′ against the cipher E, making B queries. The catch is that
ε is very sensitive to the time complexity of A′, which we approximate with
the number of ideal-cipher queries p. Thus, Qε is of order Q(B2/2n + p/2k).
While [24] argues that QB2/2n is the largest term, the ideal model makes it
evident that the hidden term Qp/2k is likely to be far more problematic in the
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case n = k. Indeed, p ≥ Q and B2 ≤ Q are both plausible (the attacker can
more easily invest in local computation than obtaining honest encryptions under
equal nonces), and this becomes Q2

2k
. This shows security is bounded by 2k/2.

The work of [26] on classical GCM also seemingly focuses on the standard model
and thus seems to fail to capture such hidden terms. In contrast, [20] handles
this properly.

We stress that we share the sentiment that ideal-model analysis may oversim-
plify some security issues. However, we find them a necessary evil when trying
to capture the influence of local computation in multi-user attacks, which is a
fundamental part of the analysis.

Outline of this paper. We introduce basic notions and security definitions
in the multi-user setting in Sect. 3. Then, in Sect. 4, we study the security of our
basic building blocks, CTR and GMAC+, in the multi-user setting. In Sect. 5, we
analyze the SIV composition when keys are re-used across encryption and PRF,
and observe this to work in particular for the setting of GCM-SIV. Finally, Sect. 6
studies our variant of AES-GCM-SIV with more general key derivation.

2 Preliminaries

Notation. Let ε denote the empty string. For a finite set S, we let x ←$ S
denote the uniform sampling from S and assigning the value to x. Let |x| denote
the length of the string x, and for 1 ≤ i < j ≤ |x|, let x[i, j] (and also x[i : j])
denote the substring from the ith bit to the jth bit (inclusive) of x. If A is
an algorithm, we let y ← A(x1, . . . ; r) denote running A with randomness r
on inputs x1, . . . and assigning the output to y. In the context that we use a
blockcipher E : {0, 1}k × {0, 1}n → {0, 1}n, the block length of a string x,
denoted |x|n, is max

{
1,

⌈
|x|/n

⌉}
.

Systems and Transcripts. Following the notation from [21] (which was in
turn inspired by Maurer’s framework [27]), it is convenient to consider interac-
tions of a distinguisher A with an abstract system S which answers A’s queries.
The resulting interaction then generates a transcript τ = ((X1, Y1), . . . , (Xq, Yq))
of query-answer pairs. It is well known that S is entirely described by the prob-
abilities pS(τ) that if we make queries in τ to system S, we will receive the
answers as indicated in τ .

We will generally describe systems informally, or more formally in terms a
set of oracles they provide, and only use the fact that they define corresponding
probabilities pS(τ) without explicitly giving these probabilities.

The H-coefficient technique. We now describe the H-coefficient technique
of Patarin [13,32]. Generically, it considers a deterministic distinguisher A, inter-
acting with system S0 or with system S1. Let X0 and X1 be random variables
for the transcripts defined by these interactions with S0 and S1, and a bound on
the distinguishing advantage of A is given by the statistical distance SD(X0,X1).
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Lemma 1. [13,32] Supposed we can partition transcripts into good and bad tran-
scripts. Further, suppose that there exists ε ≥ 0 such that 1− pS0 (τ)

pS1 (τ)
≤ ε for every

good transcript τ such that pS1(τ) > 0. Then,

SD(X1,X0) ≤ ε + Pr[X1 is bad].

3 Multi-user Security of Symmetric Primitives

We revisit security definitions for basic symmetric primitives in the multi-user
setting. We will in particular extend existing security definitions to impose overall
bounds on the volume of data processed by each user, however we will relegate
this matter to theorem statements restricting the considered adversaries, rather
than hard-coding these bounds in the definitions.

3.1 Symmetric and Authenticated Encryption

We define AE syntax here, as well as natural multi-user generalizations of clas-
sical security notions for confidentiality and integrity. Since this paper will deal
both with probabilistic and deterministic schemes, we define both, following the
treatment of Namprempre, Rogaway, and Shrimpton [30]. Our notational con-
ventions are similar to those from [9].

IV-based encryption. An IV-based symmetric encryption scheme SE consists
of two algorithms, the randomized encryption algorithm SE.E and the deter-
ministic decryption algorithm SE.D, and is associated with a corresponding key
length SE.kl ∈ N and initialization-vector (IV) length SE.vl ∈ N. Here, SE.E
takes as input a secret key K ∈ {0, 1}SE.kl and a plaintext M ∈ {0, 1}∗. It then
samples IV ←$ {0, 1}SE.vl, deterministically computes a ciphertext core C ′ from
K,M and IV, and returns C ← IV ‖ C ′. We often write C ←$ SE.EK(M) or
C ←$ SE.E(K,M). If we want to force the encryption scheme to run on a spe-
cific initialization vector IV, then we write SE.E(K,M ; IV). The corresponding
decryption algorithm SE.D takes as input a key K ∈ {0, 1}SE.kl and a cipher-
text C ∈ {0, 1}∗, returns either a plaintext M ∈ {0, 1}∗, or an error symbol ⊥.
For correctness, we require that if C is output by SE.EK(M), then SE.DK(C)
returns M . We allow all algorithms to make queries to an ideal primitive Π, in
which case this will be made explicit when not clear from the context, e.g., by
writing SE[Π] in lieu of SE.

Chosen-plaintext security for IV-based encryption. We re-define the
traditional security notion of ind-security for the multi-user setting. Our defini-
tion will however incorporate a general, stateful key-generation algorithm KeyGen
which is invoked every time a new user is spawned via a call to the New oracle.
KeyGen is a parameter of the game, and it takes additionally some input string
aux which is supplied by the adversary. The traditional mu security setting would
have KeyGen simply output a random string, and ignore aux, but we will con-
sider a more general setting to lift mu bounds to the key-derivation setting.
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The game is further generalized to handle an arbitrary ideal primitive (an ideal
cipher, a random oracle, or a combination thereof) via an oracle Prim.2 Also
note that the oracle Prim can simply trivially provide no functionality, in which
case we revert to the standard-model definition. We note that the key-generation
algorithm KeyGen does not have access to the oracle Prim.

Given an adversary A, the resulting game is Gmu-ind
SE,KeyGen,Π(A), and is depicted

at the top of Fig. 1. The associated advantage is

Advmu-ind
SE,KeyGen,Π(A) = 2 · Pr

[
Gmu-ind

SE,KeyGen,Π(A)
]
− 1.

Whenever we use the canonical KeyGen which outputs a random string regardless
of its input, we will often omit it, and just write Advmu-ind

SE,Π (A) instead.

Authenticated encryption scheme. An authenticated encryption scheme
AE with associated data (also referred to as an AEAD scheme), the algorithms
AE.E and AE.D are both deterministic. In particular, AE.E takes as input a
secret key K ∈ {0, 1}AE.kl, a nonce N ∈ {0, 1}AE.nl, a plaintext M ∈ {0, 1}∗, and
the associated data A, and returns the ciphertext C ← AE.E(K,N,M,A). The
corresponding decryption algorithm AE.D takes as input a key K ∈ {0, 1}AE.kl,
the nonce N , the ciphertext C ∈ {0, 1}∗, and the associated data A, and returns
either a plaintext M ∈ {0, 1}∗, or an error symbol ⊥. We require that if C is
output by AE.EK(M,N,A), then AE.DK(C,N,A) returns M .

Our security notion for AE is nonce-misuse-resistant: Ciphertexts produced
by encryptions with the same nonce are pseudorandom as long as the encryptions
are on different messages or associated data, even if they are for the same nonce.
Our formalization of AE multi-user security in terms of Gmu-mrae

AE,KeyGen,Π(A) is that
of Bellare and Tackmann [9], with the addition of a KeyGen algorithm to handle
arbitrary correlated key distributions. It is depicted in Fig. 1, at the bottom.

Given an adversary A and a key-generation algorithm KeyGen, we are then
going to define

Advmu-mrae
AE,KeyGen,Π(A) = 2 · Pr

[
Gmu-mrae

AE,KeyGen,Π(A)
]

− 1.

As above, KeyGen is omitted if it is the canonical one.
We say that an adversary is d-repeating if among the encryption queries, an

adversary only uses each nonce for at most d users. We stress that we make no
assumption on how the adversary picks nonces for the verification queries, and
for each individual user, the adversary can repeat nonces in encryption queries
as often as it wishes. If nonces are chosen arbitrarily then d can be as big as the
number of encryption queries. If nonces are picked at random then d is a small
constant.

A key-collision attack. We now show that for any AE scheme AE that uses
the canonical KeyGen, if an adversary can choose nonces arbitrarily then there
2 If Prim is meant to handle multiple primitives, we assume they can be accessed

through the same interface by pre-pending to the query a prefix indicating which
primitive is meant to be queried.
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Fig. 1. Security definitions for chosen-plaintext security of IV-based encryp-
tion (top), as well as nonce-misuse resistance for authenticated encryption
(bottom). We assume (without making this explicit) that Prim implements the ideal-
primitive Π.

is an attack, using q encryption queries and no verification query, that achieves
advantage q(q − 1)/2AE.kl+3.

Suppose that under AE, a ciphertext is always at least as long as the corre-
sponding plaintext. Fix an arbitrary message M such that |M | ≥ AE.kl+ 2. Fix
a nonce N and associated data A. The adversary A attacks q users, and for each
user i, it queries Enc(i,N,M,A) to get answer Ci. If there are distinct i and j
such that Ci = Cj then it outputs 1, hoping that users i and j have the same
key. For analysis, we need the following well-known result; see, for example, [17,
Chapter 5.8] for a proof.

Lemma 2 (Lower bound for birthday attack). Let q,N ≥ 1 be integers
such that q ≤

√
2N . Suppose that we throw q balls at random into N bins. Then

the chance that there is a bin of at least two balls is at least q(q−1)
4N .

From Lemma 2 above, in the real world, the adversary will output 1 if two users
have the same key, which happens with probability at least q(q − 1)/2AE.kl+2.
In contrast, since the ciphertexts are at least |M |-bit long, in the ideal world, it
outputs 1 with probability at most q(q − 1)/2|M |+1 ≤ q(q − 1)/2AE.kl+3. Hence
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Advmu-mrae
AE,Π (A) ≥ q(q − 1)

2AE.kl+2
− q(q − 1)

2AE.kl+3
=

q(q − 1)
2AE.kl+3

.

3.2 Multi-user PRF Security

We consider keyed functions F : {0, 1}F.kl×{0, 1}F.il → {0, 1}F.ol, possibly making
queries to an ideal primitive Π. Here, note that we allow F.il = ∗, indicating a
variable-input-length function. We define a variant of the standard multi-user
version of PRF security from [4] using (as in the previous section) a general
algorithm KeyGen to sample possibly correlated keys.

Concretely, let Func(il, ol) be the set of all functions {0, 1}il → {0, 1}ol, where,
once again, il = ∗ is allowed. We give the multi-user PRF security game in Fig. 2.
There, F’s access to Π is modeled by having oracle access to Prim. For any
adversary A, and key-generation algorithm KeyGen, we define

Advmu-prf
F,KeyGen,Π(A) = 2 · Pr

[
Gmu-prf

F,KeyGen,Π(A)
]

− 1.

As usual, we will omit KeyGen when it is the canonical key generator outputting
independent random keys.

Fig. 2. Definition of multi-user PRF security. Again, Prim implements the ideal
primitive Π.

3.3 Decomposing AE Security

While the notion mu-mrae is very strong, it might be difficult to prove that
an AE scheme, say AES-GCM-SIV meets this notion, if one aims for beyond-
birthday bounds. We therefore decompose this notion into separate privacy and
authenticity notions, as defined below.

Privacy. Consider the game Gmu-priv
AE,KeyGen,Π(A) in Fig. 3 that defines the (misuse-

resistant) privacy of an AE scheme AE, with respect to a key-generation algo-
rithm KeyGen, and an ideal primitive Π. Define

Advmu-priv
AE,KeyGen,Π(A) = 2Pr[Gmu-priv

AE,KeyGen,Π(A)] − 1.

Under this notion, the adversary is given access to an encryption oracle that
either implements the true encryption or returns a random string of appropri-
ate length, but there is no decryption oracle. If the adversary repeats a prior
encryption query then this query will be ignored.
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Fig. 3. Games to define privacy (left), and authenticity (right) of an AE
scheme AE with respect to a key-generation algorithm KeyGen : K × N →
{0, 1}AE.kl. The oracle Prim implements the ideal primitive Π. In the authenticity
notion, queries to Vf must be performed after all queries to Enc.

Authenticity. Consider the game Gmu-auth
AE,KeyGen,Π(A) in Fig. 3 that defines the

(misuse-resistant) authenticity of an AE scheme AE, with respect to a key-
generation algorithm KeyGen, and an ideal primitive Π. Define

Advmu-auth
AE,KeyGen,Π(A) = 2Pr[Gmu-auth

AE,KeyGen,Π(A)] − 1.

Under this notion, initially a bit b is set to 0 and the adversary is given an
encryption oracle that always implements the true encryption, and a verification
oracle. We require that the verification queries be made after all the evalua-
tion queries. On a verification (i,N,C,A), if there is a prior encryption query
(i,N,M,A) for an answer C, then the oracle ignores this query. Otherwise, the
oracle sets b ← 1 if AE.DPrim(Ki, N,C,A) returns a non-⊥ answer. The goal of
the adversary is to set b = 1.

Relations. Note that in the mrae notion, the adversary can perform encryption
and verification queries in an arbitrary order. In contrast, in the authenticity
notion, the adversary can only call the verification oracle after it finishes querying
the encryption oracle. Still, in Proposition 1 below, we show that authenticity
and privacy tightly implies mrae security. The proof is in the full version of this
paper [12].

Proposition 1. Let AE be an AE scheme associated with a key-generation algo-
rithm KeyGen and an ideal primitive Π. Suppose that a ciphertext in AE is always
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at least n-bit longer than the corresponding plaintext. For any adversary A0 that
makes qv verification queries, we can construct adversaries A1 and A2 such that

Advmu-mrae
AE,KeyGen,Π(A0) ≤ Advmu-priv

AE,KeyGen,Π(A1) + Advmu-auth
AE,KeyGen,Π(A2) +

2qv

2n
.

Any query of A1 or A2 is produced directly from A0. If A0 is d-repeating then
so are A1 and A2.

4 Multi-user Security of Basic Symmetric Schemes

4.1 Security of Counter-Mode Encryption

We study the mu security of counter mode encryption, or CTR for short. While
this is interesting on its own right (we are not aware of any analysis achieving
a comparable bound in the literature), we will also use Theorem 1 below to
obtain security results for AES-GCM-SIV. For this reason, we introduce some
extra notions to handle the degree of generality needed for our proof. Also, our
result is general enough to suggest an efficient solution to the re-keying problem
first studied by Abdalla and Bellare [1].

General IVs. We will consider a general IV-increasing procedure add, which is
associated with some maximal message length of Lmax blocks, and a block length
n. In particular, add takes an n-bit string IV and an offset i ∈ {0, . . . , Lmax − 1}
as inputs, and is such that add(IV, i) returns an n-bit string, and for all IV, the
strings add(IV, 0), . . . , add(IV, Lmax − 1) are distinct. We also say that add has
min-entropy h if for a random n-bit IV, and every i ∈ ZLmax , add(IV, i) takes any
value with probability at most 2−h, i.e., its min-entropy is at least h.

For example, the canonical IV addition is such that add(IV, i) = IV + i
(mod 2n), where we identify n-bit strings with integers in Z2n . Here, Lmax = 2n.
In contrast, AES-GCM-SIV will use CTR with Lmax = 232, n = 128, and
add(IV, i) = 1 ‖ IV[2, 96] ‖ (IV[97, 128] + i (mod 232)). Clearly, here, the min-
entropy is 127 bits, due to the first bit being set to one.

CTR encryption. Let E : {0, 1}k × {0, 1}n → {0, 1}n be a block cipher, i.e.,
E(K, ·) is a permutation for all k-bit K. We denote E(K, ·) = EK(·), and E−1

K

is the inverse of EK . Further, let add be a general IV-increasing procedure with
maximal block length Lmax. We define the IV-based encryption scheme CTR =
CTR[E, add] with CTR.kl = k, and where encryption operates as follows (where
we use n← to denote some function which pads a message M into n-bit blocks).

CTR.E(K,M) :

C[0] ← IV ←$ {0, 1}n,M [1], . . . , M [�] n← M

If � > Lmax then return ⊥
For i = 1 to � do C[i] ← EK(add(IV, i − 1)) ⊕ M [i]
Return C[0] ‖ C[1] ‖ · · · ‖ C[�]
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Decryption CTR.D re-computes the masks EK(add(IV, i−1)) using C[0] = IV,
and then retrieves the message blocks by xoring the masks to the ciphertext.
Here, we assume without loss of generality messages are padded (e.g., PKCS#7),
so that they are split uniquely into full-length n-bit blocks. Our result extends
easily to the more common padding-free variant where the last block is allowed to
be shorter than n bits, and the output of EK(add(IV, �−1)) is truncated accord-
ingly, since an adversary can simulate the padding-free version by removing the
appropriate number of bits from the received ciphertexts.

Security of CTR. We establish the (CPA) security of randomized CTR in
the ideal-cipher model for an arbitrary key-generation algorithm KeyGen which
produces keys that collide with small probability. In particular, we say that
KeyGen is α-smooth if for a sequence of keys (K1, . . . , Ku) output by an arbitrary
interaction with New, we have Pr[Ki = K] ≤ α for all i and K ∈ {0, 1}k, and
Pr[Ki = Kj ] ≤ α for all i �= j. The canonical KeyGen is α-smooth for α = 2−k.
See the full version of this paper [12] for the proof.

Theorem 1. Let E be modeled as an ideal cipher, add have min-entropy h, and
KeyGen be α-smooth. Further, let L,B ≥ 1 such that L ≤ 2(1−ε)h−1, for some
ε ∈ (0, 1], and let A be an adversary that queries Enc for at most L n-bit blocks,
and at most B blocks for each user, and makes p Prim queries. Then,

Advmu-ind
CTR[E,add],KeyGen,E(A) ≤ 2−n/2 +

(
LB + L2α

)
·
(

1
2n

+
1
2h

)

+ apα,

where a :=
⌈
1.5n
εh

⌉
− 1.

The bound highlights the benefits when each user only encrypts B blocks.
In particular, assume h = n, α = 1/2k. If B = 2b, then the number L of blocks
encrypted overall by the scheme can be as high as 2n−b. (The second term has
L2 in the numerator, but the denominator is much larger, i.e., 2n+k.) Another
interesting feature is that the contribution of Prim queries to the bound is
independent of the number of users and L.

More on the bound. Previous works [20,24] implicitly give mu security
bounds for CTR, but adopt a different model, where the adversary is a-priori
constrained in (1) the number of queries q, (2) a bound Bi on the number of
blocks encrypted per user i ∈ [u]. The resulting bounds contain a leading term∑u

i=1 B2
i /2n, assuming no primitive queries are made (adding primitive queries p

only degrades the bound). This is essentially what one can obtain by applying a
näıve hybrid argument to the single-user analysis. We discussed the disadvantage
of such a bound in the introduction already.

Re-keying, revisited. Also, in contrast to the previous works, the above result
holds for an arbitrary KeyGen, and only requires very weak randomness from it.
This suggests a new and efficient solutions for the re-keying problem of [1]. Let
H : {0, 1}k×{0, 1}∗ → {0, 1}k be a hash function, and let KeyGen, on input aux ∈
{0, 1}∗, simply output H(K, aux) for some master secret key K, and this KeyGen
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is α-smooth if H is for example POLYVAL from AES-GCM-SIV, where α = �/2k,
and � is an upper bound on the length of aux. We can assume � to be fixed to
something short, even 1. Indeed, aux could be a counter, or some other short
string. The resulting bound (when h = n) would be 2−n/2 + 2LB

2n + 2L2

2n+k +ap/2k.
Note that this solution heavily exploits the ideal-cipher model — clearly, we are
indirectly assuming some form of related-key security on E implicitly, and one
should carefully assess the security of E in this setting.

The results in the model of Abdalla and Bellare [1] are weaker in that they
only study more involved key-derivation methods (but with the benefit of a
standard-model security reduction), in a more constrained model, where the
adversary sequentially queries B blocks on a key, before moving to the next
key. Our model, however, is adaptive, as the adversary can distribute queries
as it pleases across users. But difference is not only qualitative, as quantitative
bounds in [1] are obtained via näıve hybrid arguments.

4.2 Security of GMAC+

This section deals with an abstraction of GMAC+, the PRF used within the
AES-GCM-SIV mode of operation. We show good mu bounds for this construc-
tion. The ideas extend similarly to various Wegman-Carter type MACs [38], but
we focus here on GMAC+.

The GMAC+
construction. The construction relies on a hash function H :

{0, 1}n × {0, 1}∗ × {0, 1}∗ → {0, 1}n, which is meant to satisfy the following
properties. (We employ the shorthand HK(M,A) = H(K,M,A).)

Definition 1. Let H : {0, 1}n × {0, 1}∗ × {0, 1}∗ → {0, 1}n. We say that H is
c-almost XOR universal if for all (M,A) �= (M ′, A′), and all Δ ∈ {0, 1}n, and
K ←$ {0, 1}n,

Pr[HK(M,A) ⊕ HK(M ′, A′) = Δ] ≤ c · max{|M |n + |A|n, |M ′|n + |A′|n}
2n

,

where |X|n = max{1, �|X| /n�} is the block length of string X, as defined in
Sect. 2. Further, we say it is c-regular if for all Y ∈ {0, 1}n, M,A ∈ {0, 1}∗, and
K ←$ {0, 1}n,

Pr[HK(M,A) = Y ] ≤ c · (|M |n + |A|n)
2n

.

We say it is weakly c-regular if this is only true for (M,A) �= (ε, ε), and
HK(ε, ε) = 0n for all K.

Remark 1. Note that for POLYVAL as used in AES-GCM-SIV, we can set c =
1.5 provided that we exclude the empty string as input. This is because the
empty string results in POLYVAL outputting 0n regardless of the key, and thus
POLYVAL is only weakly c-regular. It is easy to fix POLYVAL so that this does
not happen (as the input is padded with its length, it is sufficient to ensure that
the length padding of the empty string contains at least one bit with value 1).
See the full version of this paper [12] for more details.
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We also consider a generic function xor : {0, 1}n × {0, 1}nl → {0, 1}n, for
nl < n, which is meant to add a nonce to a string. In particular, we require:
(1) λ-regularity: For every N ∈ {0, 1}nl and Z ∈ {0, 1}n, there are at most
λ strings Y ∈ {0, 1}n such that xor(Y,N) = Z, (2) injectivity: For every Y ,
xor(Y, ·) is injective, and (3) linearity: For every Y, Y ′, N,N ′, we have xor(Y,N)⊕
xor(Y ′, N ′) = xor(Y ⊕ Y ′, N ⊕ N ′).

Example 1. In GCM-SIV and AES-GCM-SIV, one uses

xor(Y,N) = 0 ‖ (Y ⊕ 0n−nlN)[2 : n].

This is clearly 2-regular, injective, and linear. Note that here it is important to
prepend 0’s to the nonce N ; if one instead appends 0’s to N then injectivity of
xor will be destroyed.

Given H and xor, as well as a block cipher E : {0, 1}k ×{0, 1}n → {0, 1}n, we
define GMAC+ = GMAC+[H,E, xor] : {0, 1}k+n × ({0, 1}∗ ×{0, 1}∗ ×{0, 1}nl) →
{0, 1}n such that

GMAC+(Kin ‖ Kout, (M,A,N)) = EKout(xor(HKin(M,A), N)). (2)

Mu-prf security of GMAC+. We upper bound the mu-prf advantage
for GMAC+. We stress here that the adversary’s Eval queries have form
(i,M,A,N), and the length of such queries is implicitly defined as |M |n + |A|n.

We also consider an arbitrary KeyGen algorithm, which outputs pairs of keys
(Ki

in,K
i
out) ∈ {0, 1}n × {0, 1}k. We will only require these keys to be pairwise-

close to uniform, i.e., we say that KeyGen is β-pairwise almost uniform (AU)
if for every i �= j, the distribution of (Ki

in,K
i
out), (K

j
in,K

j
out) is such that every

pair of (n+k)-bit strings appears with probability at most β 1
22(n+k) . Clearly, the

canonical KeyGen satisfies this with β = 1, but we will be for instance interested
later on in cases where β = 1 + ε for some small constant ε > 0.

The proof of the following theorem is in the full version of this paper [12].

Theorem 2 (Security of GMAC+). Let H : {0, 1}n × {0, 1}∗ × {0, 1}∗ →
{0, 1}n be c-almost xor universal and c-regular, KeyGen be β-pairwise AU, xor be
injective, linear, and λ-regular, and let E : {0, 1}k ×{0, 1}n → {0, 1}n be a block
cipher, which we model as an ideal cipher. Then, for any adversary A making q
Eval queries of at most L n-bit blocks (with at most B blocks queries per user),
as well as p ideal-cipher queries,

Advmu-prf
GMAC+[H,E,xor],B,E(A) ≤ (1 + C)qB

2n
+

CL(p + q) + βq2

2n+k
, (3)

where C := c · λ · β.

Here, parameters are even better than in the case of counter-mode, but this
is in part due to the longer key. In particular, this being PRF security, it is
unavoidable that security is compromised when more than 2(k+n)/2 users are
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involved. The interesting fact is that partial key collisions (i.e., a collision in the
hash keys or in the cipher keys) alone do not help.

For example, take k = n = 128, C = β = 1, B = 232, L = qB, q ≤ 295, then
the bound becomes roughly q/295+p/2128, and note that this is when processing
up to 2128 blocks of data.

Weak regularity. We also provide a version of Theorem 2 for the case where
H is only weakly c-regular. We stress that the security loss is substantial here
(and thus if using GMAC+ alone, one should rather make sure H is c-regular),
but nonetheless the security is preserved in the case where a nonce N is reused
across a sufficiently small number d of users. A proof sketch is in the full version
of this paper [12].

Theorem 3 (Security of GMAC+, weak regularity). Let H : {0, 1}n ×
{0, 1}∗ × {0, 1}∗ → {0, 1}n be c-almost xor universal and weakly c-regular,
KeyGen be β-pairwise AU, xor be injective, linear, and λ-regular, and let
E : {0, 1}k × {0, 1}n → {0, 1}n be a block cipher, which we model as an ideal
cipher. Then, for any adversary A making q Eval queries of at most L n-bit
blocks (with at most B blocks queries per user), as well as p ideal-cipher queries,

Advmu-prf
GMAC+[H,E,xor],B,E(A) ≤ (1 + C)qB

2n
+

CL(p + 2q) + βq2

2n+k
+

d(p + q)
2k

, (4)

where C := c · λ · β, and d is a bound on the number of users re-using any given
nonce.

5 SIV Composition with Key Reuse

SIV with key reuse. Let E : {0, 1}k ×{0, 1}n → {0, 1}n be a blockcipher that
we will model as an ideal cipher. Let F : {0, 1}F.kl×N ×{0, 1}∗×{0, 1}∗ → {0, 1}∗

be a keyed function, with F.kl ≥ k. Let SE : {0, 1}k × {0, 1}∗ → {0, 1}∗ be an
IV-based encryption scheme of IV length n. Both F and SE are built on top of E.
In a generic SIV composition, the key Kin ‖Kout of F and the key J of SE will be
chosen independently. However, for efficiency, it would be convenient if one can
reuse Kout = J , which GCM-SIV+ does. Formally, let AE = SIV[F,SE] be the AE
scheme as defined in Fig. 4.

Results. We consider security of the SIV construction for F = GMAC+ and SE =
CTR. We assume that GMAC+ and CTR use functions xor and add, respectively,
such that (1) xor is 2-regular, injective, and linear, and xor(X,N) ∈ 0{0, 1}n−1

for every string X ∈ {0, 1}n and every nonce N ∈ {0, 1}nl, and (2) add has min-
entropy n−1, and add(IV, �) ∈ 1{0, 1}n−1 for every IV ∈ {0, 1}n and every � ∈ N.
(Those notions for add and xor can be found in Sects. 4.1 and 4.2 respectively.)
This assumption holds for the design choice of AES-GCM-SIV. We thus only write
CTR[E] or GMAC+[H,E] instead of CTR[E, add] or GMAC+[H,E, xor]. Below,
we show the mu-mrae security of SIV[GMAC+[H,E],CTR[E]], with respect to
a pairwise AU KeyGen, and a c-regular, c-AXU hash function H; the notion of
pairwise AU for key-generation algorithms can be found in Sect. 4.2. See the full
version of this paper [12] for the proof.
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Fig. 4. The SIV construction (with key reuse) AE = SIV[F, SE] that is built on top of
an ideal cipher E.

Theorem 4 (Security of SIV). Let E : {0, 1}k × {0, 1}n → {0, 1}n be a
blockcipher that we will model as an ideal cipher. Fix 0 < ε < 1. Let H :
{0, 1}n × {0, 1}∗ × {0, 1}∗ → {0, 1}∗ be a c-regular, c-AXU hash. Let AE ←
SIV[GMAC+[H,E],CTR[E]]. Then for any β-pairwise AU KeyGen and for any
adversary A that makes at most q encryption/verification queries whose total
block length is at most L ≤ 2(1−ε)n−4, and encryption queries of at most B
blocks per user, and p ≤ 2(1−ε)n−4 ideal-cipher queries,

Advmu-mrae
AE,KeyGen,E(A) ≤ 1

2n/2
+

βap

2k
+

(3βc + 7β)L2 + 4βcLp

2n+k

+
(4cβ + 0.5β + 6.5)LB

2n
,

where a = �1.5n/(n − 1)ε� − 1.

Remarks. The proof of Theorem 4 only needs to know that the mu-ind proof
of CTR and the mu-prf proof of GMAC+ follow some high-level structure that
we will describe below. We do not need to know any other specific details about
those two proofs. This saves us the burden of repeating the entire prior proofs
in Sects. 4.1 and 4.2. The mu-ind proof of CTR uses the H-coefficient technique
and follows this canonical structure:

(i) When the adversary finishes querying, we grant it all the keys. Note that
in the ideal world, the keys are still created but not used.

(ii) For each ideal-cipher query EK(X) for answer Y , the transcript correspond-
ingly stores an entry (prim,K,X, Y,+). Likewise, for each query E−1(K,Y )
for answer X, the transcript stores an entry (prim,K,X, Y,−). For each
query Enc(i,M) with answer C, we store an entry (enc, i,M,C).

(iii) When the adversary finishes querying, for each entry (enc, i,M,C), in the
real world, we grant it a table that stores all triples (Ki,X,E(Ki,X)) for
all queries E(Ki,X) that CTR.E[E](Ki,M ;T ) makes, where Ki is the key
of user i and T is the IV of C. In the ideal world, the proof generates
a corresponding fake table as follows. If we consider the version of CTR
in which messages are padded (e.g., PKCS#7), then one can first parse
IV‖C1‖ · · · ‖Cm

n← C and M1‖ · · · ‖Mm
n← M and then return (Ki,X1, C1⊕

M1), . . . , (Ki,Xm, Cm ⊕ Mm), where Xi = add(IV, i − 1) and we use n← to
denote some function that pads a message into n-bit blocks. If one uses the
well-known padding-free version of CTR where the last block of the message
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is allowed to be shorter than n-bit, then one first pads C with random bits
so that the last fragmentary block becomes n-bit long, and likewise pads M
with 0’s so that the last fragmentary block becomes n-bit long, and then
proceeds as above. (This step can be optionally omitted for the padding
version since the adversary can generate the table by itself.)

(iv) Consider a transcript τ . If there are two tables T1 and T2 in τ that contain
triples (K,X, Y ) and (K,X ′, Y ′) respectively, and either X = X ′, or Y =
Y ′, then τ must be considered bad. If there is a table T that contains triples
(K,X, Y ) and (K,X ′, Y ′) such that either X = X ′, or Y = Y ′, then τ is
also considered bad. In addition, if there is a table T that contains a triple
(K,X, Y ), and there is an entry (prim,K,X ′, Y ′, ·), and either X = X ′ or
Y = Y ′, then τ is considered bad. The proof may define some other criteria
for badness of transcripts.

We say that a CTR transcript is CTR-bad if it is bad according to the criteria
defined by the proof of Theorem 1. (Note that although not all of those criteria
are specified in the structure above, it is enough for our purpose, as our proof of
Theorem 4 does not need to know those specific details.) The proof of GMAC+

also follows a similar high-level structure. We say that a GMAC+ transcript
is GMAC+-bad if it is bad according to the criteria defined by the proof of
Theorem 2.

Weak regularity. We also provide a version of Theorem 4 for the case where
H is only weakly c-regular. Again, the security loss is substantial here, but
security is preserved if each nonce is reused across a sufficiently small number d
of users. A proof sketch is given in the full version of this paper [12].

Theorem 5 (Security of SIV, weak regularity). Let E : {0, 1}k×{0, 1}n →
{0, 1}n be a blockcipher that we will model as an ideal cipher. Fix 0 < ε < 1.
Let H : {0, 1}n × {0, 1}∗ × {0, 1}∗ → {0, 1}∗ be a weakly c-regular, c-AXU hash.
Let AE ← SIV[GMAC+[H,E],CTR[E]]. Then for any β-pairwise AU KeyGen and
for any adversary A that makes at most q encryption/verification queries whose
total block length is at most L ≤ 2(1−ε)n−4, and encryption queries of at most B
blocks per user, and p ≤ 2(1−ε)n−4 ideal-cipher queries,

Advmu-mrae
AE,KeyGen,E(A) ≤ 1

2n/2
+

βap

2k
+

(3βc + 7β)L2 + 4βcLp

2n+k

+
(4cβ + 0.5β + 6.5)LB

2n
+

dp + (2d + a)L
2k

,

where a = �1.5n/(n− 1)ε�− 1, and d is a bound on the number of users re-using
any given nonce.

6 AES-GCM-SIV with a Generic Key Derivation

In this section we consider the mu-mrae security of AES-GCM-SIV with respect to
a quite generic class of key-derivation functions. This class includes the current
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KDF KD0 of AES-GCM-SIV, but it contains another KDF KD1 that is not only
simpler but also twice faster. This KD1 was the original KDF in AES-GCM-SIV,
but then subsequently replaced by KD0. Our multi-user bound is even better
than the single-user bound of Gueron and Lindell [20]. In this section, we assume
that GMAC+ and CTR use functions xor and add, respectively, such that (1) xor
is 2-regular, injective, and linear, and xor(X,N) ∈ 0{0, 1}n−1 for every string
X ∈ {0, 1}n and every nonce N ∈ N = {0, 1}nl, and (2) add has min-entropy
n−1, and add(IV, �) ∈ 1{0, 1}n−1 for every IV ∈ {0, 1}n and every � ∈ N. (Those
notions for add and xor can be found in Sects. 4.1 and 4.2 respectively.) This
assumption holds for the design choice of AES-GCM-SIV. We thus only write
CTR[E] or GMAC+[H,E] instead of CTR[E, add] or GMAC+[H,E, xor].

Below, we will formalize the Key-then-Encrypt transform that captures the
way AES-GCM-SIV generates session keys for every encryption/decryption. We
then describe our class of KDFs.

The KtE transform. Let AE be an AE scheme of nonce space N and let KD :
K × N → {0, 1}AE.kl be a key-derivation function. Given KD and AE, the Key-
then-Encrypt (KtE) transform constructs another AE scheme AE = KtE[KD,AE]
as shown in Fig. 5.

Fig. 5. The AE scheme AE = KtE[KD,AE] constructed from an AE scheme AE and a
key-derivation function KD, under the KtE transform.

Natural KDFs. Let n ≥ 1 be an integer and let k ∈ {n, 2n}. Let E : {0, 1}k ×
{0, 1}n → {0, 1}n be a blockcipher that we will model as an ideal cipher. Let
pad : N ×{0, . . . , 5} → {0, 1}n be a padding mechanism such that pad(N0, s0) �=
pad(N1, s1) for every distinct pairs (N0, s0), (N1, s1) ∈ N × {0, . . . , 5}. Let
KD[E] : {0, 1}k × N → {0, 1}n+k be a KDF that is associated with a deter-
ministic algorithm KD.Map : ({0, 1}n)6 → {0, 1}n+k. We say that KD[E] is
natural if on input (K,N), KD[E] first calls R0 ← E(K, pad(N, 0)), . . . , R5 ←
E(K, pad(N, 5)), and then returns KD.Map(R0, . . . , R5).

It might seem arbitrary to limit the number of blockcipher calls of a natural
KDF to six. However, note that since k ≤ 2n, the block length of each (k + n)-
bit derived key is at most three. All known good constructions, which we list
below, use at most six blockcipher calls. Using more would simply make the
performance and even the bounds worse. We therefore define a natural KDF to
use at most six blockcipher calls.

The current KDF KD0[E] of AES-GCM-SIV, as shown in the left panel of
Fig. 6, is natural; it is defined for even n only. For k = n, it can be imple-
mented using four blockcipher calls, but for k = 2n it needs six blockcipher
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calls. Consider the KDF KD1[E] on the right panel of Fig. 6. For k = n it can be
implemented using two blockcipher calls, and k = 2n it needs three blockcipher
calls. This KDF is also simpler to implement than KD0. Iwata and Seurin [24]
propose to use either the XOR construction [8,14] or the CENC construction [23].
Both the XOR and CENC constructions are natural; the former uses four block-
cipher calls for k = n and six blockcipher calls for k = 2n, and the latter uses
three and four blockcipher calls respectively.

Fig. 6. Key-derivation functions KD0 (left) and KD1 (right).

For a natural key-derivation function KD[E], we say that it is γ-unpredictable
if for any subset S ⊆ {0, 1}n of size at least 15

16 · 2n and any s ∈ {0, 1}n+k, if the
random variables R0, . . . , R5 are sampled uniformly without replacement from
S then Pr[KD.Map(R0, . . . , R5) = s] ≤ γ/2n+k. Lemma 3 below shows that both
KD0[E] and KD1[E] are 2-unpredictable; see the full version of this paper [12]
for the proof. One might also show that both the XOR and CENC constructions
are 2-unpredictable. Therefore, in the remainder of this section, we only consider
natural, 2-unpredictable KDFs.

Lemma 3. Let n ≥ 128 be an even integer and let k ∈ {n, 2n}. Let E : {0, 1}k ×
{0, 1}n → {0, 1}n be a blockcipher that we will model as an ideal cipher. Then
both KD0[E] and KD1[E] are 2-unpredictable.

Ideal counterpart of natural KDF. For a natural KDF KD[E], consider
its following ideal version KD[k]. The key space of KD[k] is the entire set Perm(n).
It takes as input a permutation π ∈ Perm(n) and a string N ∈ N , computes
Rs ← π(pad(N, s)) for all s ∈ {0, . . . , 5}, and returns KD.Map(R0, . . . , R5). Of
course KD[k] is impractical since its key length is huge, but it will be useful in
studying the security of the KtE transform. The following bounds the privacy and
authenticity of KtE[KD[k],AE] via the mu-mrae security of the AE scheme AE;
the proof is in the full version of this paper [12]. In light of that, in the subsequent
subsections, we will analyze the difference between security of KtE[KD[E],AE]
and that of KtE[KD[k],AE].

Proposition 2. Let n ≥ 8 be an integer and let k ∈ {n, 2n}. Let E : {0, 1}k ×
{0, 1}n → {0, 1}n be a blockcipher that we will model as an ideal cipher. Let
KD[E] be a natural KDF. Let AE be an AE scheme of key length k + n. Let
AE = KtE[KD[k],AE]. Then for any adversaries A1 and A2, we can construct
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Fig. 7. Key-generation algorithm KeyGen corresponding to KD[k].

a key-generation algorithm KD.KeyGen as shown in Fig. 7, and an adversary A
such that

Advmu-priv

AE,E
(A1) + Advmu-auth

AE,E
(A2) ≤ 3 Advmu-mrae

AE,KeyGen,E(A).

For any type of queries, the number of A’s queries is at most the maximum of
that of A1 and A2, and the similar claim holds for the total block length of the
encryption/verification queries. Moreover, the maximum of total block length of
encryption queries per user of A is at most the maximum of that per (user,
nonce) pair of A1 and A2.

The following lemma says that if KD[E] is 2-unpredictable then the con-
structed KeyGen in the theorem statement of Proposition 2 is 4-pairwise AU; the
notion of pairwise AU for key-generation algorithms can be found in Sect. 4.2.
The proof is in the full version of this paper [12].

Lemma 4. Let n ≥ 8 be an integer and let k ∈ {n, 2n}. Let E : {0, 1}k ×
{0, 1}n → {0, 1}n be a blockcipher that we will model as an ideal cipher. Let
KD[E] be a natural, 2-unpredictable KDF. Then the corresponding key-generation
algorithm KeyGen in Fig. 7 is 4-pairwise AU.

Indistinguishability of KD[E]. For an adversary A, define

AdvdistKD[E](A) = 2Pr[Gdist
KD[E](A)] − 1

as the advantage of A in distinguishing a natural KDF KD[E] and its ideal
counterpart KD[k] in the multi-user setting, where game Gdist

KD[E](A) is defined
in Fig. 8. Under this notion, the adversary is given access to both E and E−1,
an oracle New() to initialize a new user v with a truly random master key Kv

and a secret ideal permutation πv, and an evaluation oracle Eval that either
implements KD[E] or KD[k]. We say that an adversary A is d-repeating if among
its evaluation queries, a nonce is used for at most d users.

Lemma 5 below bounds the indistinguishability advantage between KD[E]
and KD[k]. The proof is in the full version of this paper [12].
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Fig. 8. Game to distinguish KD[E] and its ideal counterpart KD[k].

Lemma 5. Fix 0 < ε < 1. Let n ≥ 16 be an integer and let k ∈ {n, 2n}. Let
E : {0, 1}k × {0, 1}n → {0, 1}n be a blockcipher that we will model as an ideal
cipher. Let KD[E] be a natural KDF. For any d-repeating adversary A that makes
at most p ≤ 2n−4 ideal-cipher queries, and q ≤ 2(1−ε)n−4 evaluation queries,

AdvdistKD[E](A) ≤ 1
2n/2

+
24pq + 18q2

2k+n
+

ap + d(p + 3q)
2k

where a = �1.5/ε�−1. The theorem statement still holds if we grant the adversary
the master keys when it finishes querying.

6.1 Privacy Analysis

Lemma 6 below reduces the privacy security of KtE[KD[E],AE] for a generic AE
scheme AE, to that of KtE[KD[k],AE]; the proof relies crucially on Lemma 5.

Lemma 6. Fix 0 < ε < 1. Let n ≥ 16 be an integer and let k ∈ {n, 2n}. Let
E : {0, 1}k × {0, 1}n → {0, 1}n be a blockcipher that we will model as an ideal
cipher. Let KD[E] be a natural KDF. Let AE be an AE scheme of key length k+n,
and let AE = KtE[KD[E],AE]. Consider a d-repeating adversary A that makes
p ≤ 2n−5 ideal-cipher queries and q ≤ 2(1−ε)n−4 encryption queries. Suppose
that using AE to encrypt A’s encryption queries would need to make L ≤ 2n−5

ideal-cipher queries. Then

Advmu-priv

AE,E
(A) ≤ Advmu-priv

KtE[KD[k],AE],E(A) +
2

2n/2
+

48(L + p)q + 36q2

2k+n

+
2a(L + p) + 2d(L + p + 3q)

2k
,

where a = �1.5/ε� − 1.

Proof. We first construct an adversary A that tries to distinguish KD[E] and
KD[k]. Adversary A simulates game Gmu-priv

AE,E
(A), but each time it needs to gen-

erate a session key, it uses its Eval oracle instead of KD[E]. However, if A
previously queried Eval(i,N) for an answer K, next time it simply uses K
without querying. Finally, adversary A outputs 1 only if the simulated game
returns true. Let b be the challenge bit in game Gdist

KD[E](A). Then
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Pr[Gdist
KD[E](A) ⇒ true | b = 1] = Pr[Gmu-priv

AE,E
(A)], and

Pr[Gdist
KD[E](A) ⇒ false | b = 0] = Pr[Gmu-priv

KtE[KD[k],AE],E(A)].

Subtracting, we get

AdvdistKD[E](A) =
1
2
(
Advmu-priv

AE,E
(A1) − Advmu-priv

KtE[KD[k],AE],E(A1)
)
.

Note that A makes at most p + L ≤ 2n−4 ideal-cipher queries, and q Eval

queries. Moreover, A is also d-repeating. Hence using Lemma 5,

AdvdistKD[E],KD[k](A) ≤ 1
2n/2

+
24(L + p)q + 18q2

2k+n
+

a(L + p) + d(L + p + 3q)
2k

.

Putting this all together,

Advmu-priv

AE,E
(A) ≤ Advmu-priv

KtE[KD[k],AE],E(A) +
2

2n/2
+

48(L + p)q + 36q2

2k+n

+
2a(L + p) + 2d(L + p + 3q)

2k
.

This concludes the proof. ��

6.2 Authenticity Analysis

In Sect. 6.1, we bound the privacy advantage by constructing a d-repeating adver-
sary distinguishing KD[E] and KD[k], and then using Lemma 5. This method
does not work for authenticity: the constructed adversary might be q-repeating,
because there is no restriction of the nonces in verification queries, and one
would end up with an inferior term q(L+p+ q)/2k. We instead give a dedicated
analysis.

Restricting to simple adversaries. We say that an adversary is simple if for
any nonce N and user i, if the adversary uses N for an encryption query of user i,
then it will never use nonce N on verification queries for user i. Lemma 7 below
reduces the authenticity advantage of a general adversary against KtE[KD[E],AE]
to that of a simple adversary; the proof is in the full version of this paper [12],
and is based on the idea of splitting the cases of where the adversary forges on
a fresh (N, i) pair and where it does not, and the latter can be handled using
Lemma 5 above. Handling the former is the harder part, which we deal with
below. We discuss the bound however below, and give an overview of the proof.

Lemma 7. Let n ≥ 16 be an integer and let k ∈ {n, 2n}. Let E : {0, 1}k ×
{0, 1}n → {0, 1}n be a blockcipher that we will model as an ideal cipher. Let
KD[E] be a natural KDF. Let AE be an AE scheme of key length n + k, and
let AE = KtE[KD[E],AE]. Let A0 be a d-repeating adversary that makes at most
q ≤ 2(1−ε)n−4 encryption/verification queries and p ≤ 2n−5 ideal-cipher queries.
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Suppose that using AE to encrypt A0’s encryption queries and decrypt its verifi-
cation queries would need to make L ≤ 2n−5 ideal-cipher queries. Then, we can
construct an adversary A1 and a simple adversary A2, both d-repeating, such
that

Advmu-auth
AE,E

(A0) ≤ Advmu-auth
KtE[KD[k],AE],E(A1) + Advmu-auth

AE,E
(A2)

+
2

2n/2
+

48(L + p)q + 36q2

2n+k
+

2(a + d)L + 2(a + d)p + 6dq

2k
,

where a = �1.5/ε� − 1. Any query of A1 or A2 is also a query of A0.

Handling simple adversaries. Lemma 8 below shows that the AE scheme
KtE

[
KD[E],SIV[GMAC+[H,E],CTR[E]]

]
has good authenticity against simple

adversaries, for any 2-unpredictable, natural KDF KD[E]. See the full version [12]
for the proof. Note that here we can handle both regular and weakly regular hash
functions. (If we instead consider just regular hash functions, we can slightly
improve the bound, but the difference is inconsequential.)

Lemma 8. Fix 0 < ε < 1 and let a = �1.5/ε� − 1. Let n ≥ 128 be an integer,
and let k ∈ {n, 2n}. Let E : {0, 1}k × {0, 1}n → {0, 1}n be a blockcipher that
we will model as an ideal cipher. Let H : {0, 1}n × {0, 1}∗ × {0, 1}∗ → {0, 1}n

be a hash function that is either c-regular or weakly c-regular. Let KD[E] be a
natural, 2-unpredictable KDF. Let AE = SIV[GMAC+[H,E],CTR[E]] and AE =
KtE[KD[E],AE]. Let A be a d-repeating, simple adversary that makes at most
p ≤ 2(1−ε)n−8 ideal-cipher queries, and q ≤ 2(1−ε)n−8 encryption/verification
queries whose total block length is at most L ≤ 2(1−ε)n−8. Then

Advmu-auth
AE,E

(A) ≤ 3
2n/2

+
11q

2n
+

288(L + p)q + 36q2 + 48c(L + p + q)L
2n+k

+
(8a + 7a2 + 3d)q

2k
+

(na + 6a + 6d)L + 6(a + d)p
2k

.

Discussion. The bound in Lemma 8 consists of three important terms q
2n , pd

2k
,

and naL
2k

, each corresponding to an actual attack. Let us revisit these, as this
will be helpful in explaining the proof below. First, since the IV length is
only n-bit long, even if an adversary simply outputs q verification queries in
a random fashion, it would get an advantage about q

2n . Next, for the term pd
2k

,
consider an adversary that picks a long enough message M and then makes
encryption queries (1, N,M,A), . . . , (d,N,M,A) of the same nonce N and asso-
ciated data, for answers C1, . . . , Cd respectively. (Recall that the adversary is
d-repeating, so it cannot use the nonce N in encryption queries for more than d
users.) By picking p candidate master keys K1, . . . , Kp and comparing Ci with
AE.E(Kj , N,M,A) for all i ≤ d and j ≤ p, the adversary can recover one master
key with probability about pd

2k
.

Finally, for the term naL
2k

, consider the following attack. The adversary
first picks a nonce N and p candidate keys K1, . . . , Kp, and then queries
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R0,j ← EK(Kj , pad(N, 0)), . . . , R5,j ← E(Kj , pad(N, 5)) for every j ≤ p.
Let Kj

in ‖ Kj
out ← KD.Map(R0,j , . . . , R5,j). Now, if some Kj is the master

key of some user i then Kj
in ‖ Kj

out will be the session key of that user i for
nonce N . The adversary then picks an arbitrary ciphertext C, and then com-
putes Mj ← CTR[E].D(Kj , C) and Vj ← E−1(Kj

out, T ) for each j ≤ p, where T
is the IV of C. The goal of the adversary is to make a sequence of q verification
queries (1, N,C,A), . . . , (q,N,C,A), for an �-block associated data A that it will
determine later. (Recall that in verification queries, the adversary can reuse a
nonce across as many users as it likes.) To maximize its chance of winning, the
adversary will iterate through every possible string A∗ of block length �, and let
count(A∗) denote the number of j’s that xor(H(Kj

in,Mj , A
∗), N) = Vj . Then it

picks A as the string to maximize count(A). The proof of Lemma 8 essentially
shows that with very high probability, we have count(A) ≤ na(� + |C|n) ≤ naL

q ,
and thus the advantage of this attack is bounded by naL

2k
.

Proof ideas. We now sketch some ideas in the proof of Lemma 8. First consider
an adversary that does not use the encryption oracle. Assume that the adver-
sary does not repeat a prior ideal-cipher query, or make redundant ideal-cipher
queries. For each query EK(Y ) of answer Y , create an entry (prim,K,X, Y,+).
Likewise, for each query E−1

K (Y ) of answer X, create an entry (prim,K,X, Y,−).
Consider a verification query (i,N,C,A). Let Ki be the secret master key
of user i, and let Kin ‖ Kout be the session key of user i for nonce N . Let
T be the IV of C. The proof examines several cases, but here we only dis-
cuss a few selective ones. If there is no entry (prim,Ki,X, Y, ·) such that
X ∈ {pad(N, 0), . . . , pad(N, 5)} then given the view of the adversary, the ses-
sion key Kin ‖ Kout still has at least k + n − 1 bits of (conditional) min-entropy.
In this case, the chance that AE.D(Kin ‖ Kout, N,C,M) returns a non-⊥ answer
is roughly 1/2n. Next, suppose that there is an entry (prim,K,X, Y,−) such
that K = Ki and X ∈ {pad(N, 0), . . . , pad(N, 5)}. By using some balls-into-
bins analysis,3 we can argue that it is very likely that there are at most 6a
entries (prim,K∗,X∗, Y ∗,−) such that X∗ ∈ {pad(N, 0), . . . , pad(N, 5)}. Hence
the chance this case happens is at most 6a/2k.

Now consider the case that there are entries (prim,Ki, pad(N, 0), R0,+), . . . ,
(prim,Ki, pad(N, 5), R5,+), and (prim,Kout, V, T,−), with V ∈ 0{0, 1}n−1 and
Kin‖Kout ← KD.Map(R0, . . . , R5). This corresponds to the last attack in the dis-
cussion above. We need to bound Pr[Bad], where Bad is the the event (i) this case
happens, and (ii) V = xor(H(Kin,M,A), N), where M ← CTR[E].D(Kout, C).
This is highly non-trivial because somehow the adversary already sees the keys
Ki and Kin ‖ Kout, and can adaptively pick (C,A), as shown in the third attack
above.

To deal with this, we consider a fixed (i∗, N∗, C∗, A∗). There are at most p
septets T of entries (prim,K, pad(N∗, 0), R∗

0,+), . . . , (prim,K, pad(N∗, 5), R∗
5,+)

3 We note that this is not the classic balls-into-bins setting, because the balls are
thrown in an inter-dependent way. In the full version [12], we give an analysis of this
biased balls-into-bins setting.
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and (prim, J, U, T ∗,−), with U ∈ 0{0, 1}n−1 and J ′ ‖ J ← KD.Map(R∗
0, . . . , R

∗
5).

We then show that the chance that there are n�a such septets T such that
xor(H(J ′(T ),M∗(T ), A∗), N∗) = U(T ) is at most 21−(3�n+2n), where � = |C∗|n+
|A∗|n ≥ 2 and M∗(T ) ← CTR[E].D(J(T ), C∗). Hence, regardless of how the
adversary picks (i,N,C,A) from all possible choices of (i∗, N∗, C∗, A∗), the chance
that there are na(|C|n + |A|n) septets T such that xor(H(J ′(T ),M(T ), A), N) =
U(T ), where M(T ) ← CTR[E].D(J(T ), C), is at most

∞∑

�=2

∑

(i∗,N∗,C∗,A∗)
|C∗|n+|A∗|n=�

21−(3n�+2n) ≤
∞∑

�=2

22n�+2n · 21−(3n�+2n) =
∞∑

�=2

2
2n�

≤ 1
2n

.

Thus Pr[Bad] ≤ 1
2n + na·E[|A|n+|C|n]

2k
.

Now we consider the general case where the adversary A might use the
encryption oracle. Clearly if for each encryption query (i,N,M,A), we grant
the adversary the session key KD[E](Ki, N), where Ki is the master key of
user i, then it only helps the adversary. Recall that here the adversary is simple,
so it cannot query Enc(i,N,M,A) and later query Vf(i,N,C ′, A′). We also let
the adversary compute up to L + p ideal-cipher queries, so that the encryption
oracle does not have to give the ciphertexts to the adversary. Effectively, we can
view that A is in the following game G0. It is given access to E/E−1 and an
oracle Eval(i,N) that generates KD[E](i,N). Then it has to generate a list of
verification queries. The game then tries to decrypt those, and returns true only
if some gives a non-⊥ answer.

To remove the use of the Eval oracle, it is tempting to consider the vari-
ant G1 of game G0 where Eval instead implements KD[k], and then bound
the gap between G0 and G1 by constructing a d-repeating adversary A distin-
guishing KD[E] and KD[k]. However, this approach does not work because it is
impossible for A to correctly simulate the processing of the verification queries.
Instead, we define game G1 as follows. Its Eval again implements KD[k], but
after the adversary produces its verification queries, the game tries to program
E so that the outputs of Eval are consistent with KD[E] on random master
keys K1,K2, · · · ←$ {0, 1}n+k. (But E still has to remain consistent with its
past ideal-cipher queries.) Of course it is not always possible, because the fake
Eval might have generated some inconsistency. In this case, the game returns
false, meaning that the adversary loses. If there is no inconsistency, then after
the programming, the game processes the verification queries as in G0.

To bound the gap between G0 and G1, we will construct a d-repeating adver-
sary A distinguishing KD[E] and KD[k], but additionally, it wants to be granted
the master keys after it finishes querying. Note that Lemma 5 applies to this
key-revealing setting. Now, after the adversary A finishes querying, it is granted
the master keys and checks for inconsistency between the outputs of Eval and
the ideal-cipher queries. If there is inconsistency then A outputs 0, indicating
that it has been dealing with KD[k]. Otherwise, it has to simulate the process-
ing of the verification queries. However, although it knows the keys now, it can
no longer queries E. Instead, A tries to sample an independent blockcipher Ẽ,
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subject to (1) Ẽ and E agree on the outputs of the past ideal-cipher queries, and
the outputs of Eval are consistent with KD[Ẽ] on the master keys K1,K2, . . ..
It then processes the verification queries using this blockcipher Ẽ instead of E.

Although the game G1 above does not completely remove the use of the
Eval oracle, it still creates some sort of independence between the sampling of
the master keys, and the outputs that the adversary A receives, allowing us to
repeat several proof ideas above.

Handling general adversaries. Combining Lemmas 7 and 8, we immedi-
ately obtain the following result.

Lemma 9. Fix 0 < ε < 1 and let a = �1.5/ε� − 1. Let n ≥ 128 be an integer,
and let k ∈ {n, 2n}. Let E : {0, 1}k × {0, 1}n → {0, 1}n be a blockcipher that
we will model as an ideal cipher. Let H : {0, 1}n × {0, 1}∗ × {0, 1}∗ → {0, 1}n

be a hash function that is either c-regular hash or weakly c-regular. Let KD[E]
be a natural, 2-unpredictable KDF. Let AE = SIV[GMAC+[H,E],CTR[E]] and
AE = KtE[KD[E],AE]. Let A be a d-repeating adversary that makes at most
p ≤ 2(1−ε)n−8 ideal-cipher queries, and q ≤ 2(1−ε)n−8 encryption/verification
queries whose total block length is at most L ≤ 2(1−ε)n−8. Then we can construct
a d-repeating adversary A such that

Advmu-auth
AE,E

(A) ≤ Advmu-auth
KtE[KD[k],AE],E(A) +

5
2n/2

+
11q

2n
+

336(L + p)q + 72q2

2n+k

+
48c(L + p + q)L

2n+k
+

(8a + 7a2 + 9d)q + (na + 8a + 8d)L + 8(a + d)p
2k

.

Moreover, any query of A is also a query of A.

6.3 Unwinding Mu-Mrae Security

The following Theorem 6 concludes the mu-mrae security of AE scheme AE =
KtE[KD[E],SIV[GMAC+[H,E],CTR[E]]]; the proof is in the full version of this
paper [12]. Note that here we can handle both regular and weakly regular hash
functions. (If we instead consider just regular hash functions, we can slightly
improve the bound, but the difference is inconsequential.)

Theorem 6 (Security of AES-GCM-SIV). Let n ≥ 128 be an integer, and
let k ∈ {n, 2n}. Fix 0 < ε < 1 and let a = �1.5n/(n − 1)ε� − 1. Let E :
{0, 1}k ×{0, 1}n → {0, 1}n be a blockcipher that we will model as an ideal cipher.
Let H : {0, 1}n×{0, 1}∗×{0, 1}∗ → {0, 1}n be a c-AXU hash function. Moreover,
either H is c-regular, or weakly c-regular. Let KD[E] be a natural, 2-unpredictable
KDF. Let AE = SIV[GMAC+[H,E],CTR[E]] and AE = KtE[KD[E],AE]. Let A be
a d-repeating adversary that makes at most p ≤ 2(1−ε)n−8 ideal-cipher queries,
and q ≤ 2(1−ε)n−8 encryption/verification queries whose total block length is at
most L ≤ 2(1−ε)n−8 and encryption queries of at most B blocks per (user, nonce)
pair. Then,
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Advmu-mrae
AE,E

(A) ≤ 10
2n/2

+
(17a + 4a2 + 24d + na)L + (22a + 13d)p

2k

+
(48c + 30)LB

2n
+

(303 + 108c)L2 + (192 + 96c)Lp

2n+k
.

We note that one way that d can be kept small is by choosing nonces randomly,
or at least with sufficient entropy. Then, by a classical balls-into-bins analysis, if
q is quite smaller than 2nl, where nl is the nonce length, which holds in practice
for nl = 96, then the value d is bounded by a constant with high probability.
We also point out that if d cannot be bounded, then our security bound still
gives very meaningful security guarantees if k = 2n (i.e., this would have us use
AES-256). As there is a matching attack in the unbounded d case, which just
exploits key collisions, this suggests the need to increase the key length to 256
bits in the multi-user case. However, many uses in practice will have d bounded,
and for these 128-bit keys will suffice.
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At the core of all of these constructions is a “bilinear entropy expansion”
lemma that allows us to generate any polynomial amount of entropy
starting from constant-size public parameters; the entropy can then be
used to transform existing adaptively secure “bounded” ABE schemes
into unbounded ones.

1 Introduction

Attribute-based encryption (ABE) [13,25] is a generalization of public-key
encryption to support fine-grained access control for encrypted data. Here,
ciphertexts and keys are associated with descriptive values which determine
whether decryption is possible. In a key-policy ABE (KP-ABE) scheme for
instance, ciphertexts are associated with attributes like ‘(author:Waters), (inst:UT),

(topic:PK)’ and keys with access policies like ‘((topic:MPC) OR (topic:Qu)) AND

(NOT(inst:CWI))’, and decryption is possible only when the attributes satisfy the
access policy. A ciphertext-policy (CP-ABE) scheme is the dual of KP-ABE with
ciphertexts associated with policies and keys with attributes.

Over past decade, substantial progress has been made in the design and anal-
ysis of ABE schemes, leading to a large families of schemes that achieve various
trade-offs between efficiency, security and underlying assumptions. Meanwhile,
ABE has found use as a tool for providing and enhancing privacy in a variety of
settings from electronic medical records to messaging systems and online social
networks.

As institutions grow and with new emerging and more complex applications
for ABE, it became clear that we need ABE schemes that can readily accom-
modate the addition of new roles, entities, attributes and policies. This means
that the ABE set-up algorithm should put no restriction on the length of the
attributes or the size of the policies that will be used in the ciphertexts and
keys. This requirement was introduced and first realized in the work of Lewko
and Waters [21] under the term unbounded ABE. Their constructions have since
been improved and extended in several subsequent works [1–3,5,12,17,18,23,24]
(cf. Figs. 1 and 2).

In this work, we put forth new ABE schemes that simultaneously:

(1) are unbounded (the set-up algorithm is independent of the length of the
attributes or the size of the policies);

(2) can be based on faster asymmetric prime-order bilinear groups;
(3) achieve adaptive security;
(4) rely on simple hardness assumptions in the standard model.

All four properties are highly desirable from both a practical and theoretical
stand-point and moreover, properties (1)–(3) are crucial for many real-world
applications of ABE. Indeed, properties (2), (3) and (4) are by now standard
cryptographic requirements pertaining to speed and efficiency, strong security
guarantees under realistic and natural attack models, and minimal hardness
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Fig. 1. Summary of unbounded KP-ABE
schemes for monotone span programs from
prime-order groups with O(1)-size mpk.

Fig. 2. Summary of unbounded KP-
ABE schemes for monotone span
programs with n-bit attributes (i.e.
universe [n]) from composite-order
groups.

assumptions. Property (2) is additionally motivated by the fact that pairing-
based schemes are currently more widely implemented and deployed than lattice-
based ones. There is now a vast body of works (e.g. [2,3,6,19,22,27]) showing
how to achieve properties (2)–(4) for “bounded” ABE where the set-up time and
public parameters grow with the attributes or policies, culminating in unifying
frameworks that provide a solid understanding of the design and analysis of these
schemes. Unbounded ABE, on the other hand, has received comparatively much
less attention in the literature; this is in part because the schemes and proofs
remain fairly complex and delicate. Amongst these latter works, only the work
of Okamato and Takashima (OT) [23] simultaneously achieved (1)–(4).

Our Results. We present simpler and more modular constructions of
unbounded ABE that realize properties (1)–(4) with better efficiency and expres-
siveness than was previously known.

(i) We present new adaptively secure, unbounded KP-ABE schemes for mono-
tone span programs –which capture access policies computable by monotone
Boolean formulas– whose ciphertexts are 42% smaller and our keys are 8%
smaller than the state-of-the-art in [23] (with even more substantial savings
with our SXDH-based scheme), as well as CP-ABE schemes with similar
savings, cf. Fig. 3.

(ii) Our constructions generalize to the larger class of arithmetic span programs
[15], which capture many natural computational models, such as monotone
Boolean formulas, as well as Boolean and arithmetic branching programs;
this yields the first adaptively secure, unbounded KP-ABE for arithmetic
span programs. Prior to this work, we do not even know any selectively
secure, unbounded KP-ABE for arithmetic span programs.

Moreover, our constructions generalize readily to the k-Lin assumption.
At the core of all of these constructions is a “bilinear entropy expansion”

lemma [17] that allows us to generate any polynomial amount of entropy starting
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Fig. 3. Summary of adaptively secure, unbounded ABE schemes for read-once mono-
tone span programs with n-bit attributes (i.e. universe [n]) from prime-order groups.
The columns |sk| and |ct| refer to the number of group elements in G2 and G1 respec-
tively (minus a |GT | contribution in ct).

from constant-size public parameters; the entropy can then be used to transform
existing adaptively secure bounded ABE schemes into unbounded ones in a single
shot. The fact that we only need to invoke our entropy expansion lemma once
yields both quantitative and qualitative advantages over prior works [17,23]: (i)
we achieve security loss O(n + Q) for n-bit attributes (i.e. universe [n]) and
Q secret key queries, improving upon O(n · Q) in [23] and O(log n · Q) in [17]
and (ii) there is clear delineation between entropy expansion and the analysis
of the underlying bounded ABE schemes, whereas prior works interweave both
techniques in a more complex nested manner.

Following the recent literature on adaptively secure bounded ABE, we first
describe our constructions in the simpler setting of composite-order bilinear
groups, and then derive our final prime-order schemes by building upon and
extending previous frameworks in [6,7,11]. Along the way, we also present a
simple adaptively secure unbounded KP-ABE scheme in composite-order groups
whose hardness relies on standard, static assumptions (cf. Fig. 2).

1.1 Technical Overview

We will start with asymmetric composite-order bilinear groups (GN ,HN , GT )
whose order N is the product of three primes p1, p2, p3. Let gi, hi denote gener-
ators of order pi in GN and HN , for i = 1, 2, 3.

Warm-Up. We begin with the LOSTW KP-ABE for monotone span programs
[19]; this is a bounded, adaptively secure scheme that uses composite-order groups.
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Here, ciphertexts ctx are associated with attribute vector1 x ∈ {0, 1}n and keys
skM with read-once monotone span programs M.2

mpk := (g1, gv1
1 , . . . , gvn

1 , e(g1, h1)α) (1)
ctx := (gs

1, {g
svj

1 }xj=1, e(g1, h1)αs · m)

skM := ({h
αj+rjvj

1 , h
rj

1 }j∈[n])

where α1, . . . , αn are shares of α w.r.t. the span program M; the shares satisfy
the requirement that for any x ∈ {0, 1}n, the shares {αj}xj=1 determine α if x
satisfies M, and reveal nothing about α otherwise. For decryption, observe that
we can compute {e(g1, h1)αjs}xj=1, from which we can compute the blinding
factor e(g1, h1)αs. The proof of security relies on Waters’ dual system encryption
methodology [2,20,26,27], in the most basic setting at the core of which is an
information-theoretic statement about αj , vj .

Towards Our Unbounded ABE. The main challenge in building an
unbounded ABE lies in “compressing” gv1

1 , . . . , gvn
1 in mpk down to a constant

number of group elements. The first idea following [21,23] is to generate {vj}j∈[n]

via a pairwise-independent hash function as w0 + j · w1, as in the Lewko-Waters
IBE. Simply replacing vj with w0 + j · w1 leads to natural malleability attacks
on the ciphertext, and instead, we would replace svj with sj(w0 + j · w1), where
s1, . . . , sn are fresh randomness used in encryption. Next, we need to bind the
sj(w0 + j · w1)’s together via some common randomness s; it suffices to use
sw + sj(w0 + j · w1) in the ciphertext. That is, we start with the scheme in (1)
and we perform the substitutions (*) for each j ∈ [n]:

ciphertext: (s, svj) �→ (s, sw + sj(w0 + j · w1), sj)
secret key: (αj + vjrj , rj) �→ (αj + rjw, rj , rj(w0 + j · w1))

(*)

This yields the following scheme:

mpk := (g1, gw
1 , gw0

1 , gw1
1 , e(g1, h1)α) (2)

ctx := (gs
1, {g

sw+sj(w0+j·w1)
1 , g

sj

1 }xj=1, e(g1, h1)αs · m)

skM := ({h
αj+rjw
1 , h

rj

1 , h
rj(w0+j·w1)
1 }j∈[n])

As a sanity check for decryption, observe that we can compute {e(g1, h1)αjs}xj=1

and then e(g1, h1)αs as before. We note that the ensuing scheme is similar to

1 Some works associate ciphertexts with a set S ⊆ [n] where [n] is referred to as the
attribute universe, in which case x ∈ {0, 1}n corresponds to the characteristic vec-
tor of S.

2 All known adaptively secure ABE for monotone span programs under static assump-
tions in the standard model (even in the bounded setting and even with composite-
order groups) have a read-once restriction [2,3,6,19,22,27].
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Attrapadung’s unbounded KP-ABE in [2, Sect. 7.1], except the latter requires
q-type assumptions.3

Our Proof Strategy. To analyze our scheme in (2), we follow a very simple
and natural proof strategy: we would “undo” the substitutions described in (*)
to recover ciphertext and keys similar to those in the LOSTW KP-ABE, upon
which we could apply the analysis for the bounded setting from the prior works.
That is, we want to computationally replace each w0 + j · w1 with a fresh uj :{

gs
1, {g

sw+sj(w0+j·w1)

1 , g
sj

1 }j∈[n]

{h
αj+rjw

1 , h
rj

1 , h
rj(w0+j·w1)

1 }j∈[n]

}
hopefully≈c

{
gs
1, {g

sw+sjuj

1 , g
sj

1 }j∈[n]

{h
αj+rjw

1 , h
rj

1 , h
rjuj

1 }j∈[n]

}
(3)

Unfortunately, once we give out gw0
1 , gw1

1 in mpk, the above distributions are triv-
ially distinguishable by using the relation e(g1, h

rj(w0+j·w1)
1 ) = e(gw0+j·w1

1 , h
rj

1 ).
Furthermore, the above statement does not yield a scheme similar to LOSTW
when applied to our scheme in (2); for that, we would need to also replace w on
the RHS in (3) with fresh vj as described by

(gsw+sjuj

1 , h
αj+rjw
1 ) �→ (g

svj+sjuj

1 , h
αj+rjvj

1 )

in order to match up with the LOSTW KP-ABE in (1).

1.2 Bilinear Entropy Expansion

The core of our analysis is a (bilinear) entropy expansion lemma [17] that cap-
tures the spirit of the above statement in (3), namely, it allows us to generate
fresh independent randomness starting from the correlated randomness, albeit
in a new subgroup of order p2 generated by g2, h2.

More formally, given public parameters (g1, gw
1 , gw0

1 , gw1
1 , h1, h

w
1 , hw0

1 , hw1
1 ), we

show that{
gs
1, {g

sw+sj(w0+j·w1)
1 , g

sj

1 }j∈[n]

{h
rjw
1 , h

rj

1 , h
rj(w0+j·w1)
1 }j∈[n]

}
≈c — ·

{
gs
2, {g

svj+sjuj

2 , g
sj

2 }j∈[n]

{h
rjvj

2 , h
rj

2 , h
rjuj

2 }j∈[n]

}
(4)

where “—” is short-hand for duplicating the terms on the LHS, so that the g1,
h1-components remain unchanged. That is, starting with the LHS, we replaced
(i) w0 + j · w1 with fresh uj , and (ii) w with fresh vj , both in the p2-subgroup.
We also omitted the αj ’s from (3). We clarify that the trivial distinguisher on
(3) fails here because e(g1, h2) = 1.

3 Attrapadung’s unbounded KP-ABE does have the advantage that there is no read-
once restriction on the span programs, but even with the read-once restriction, the
proof still requires q-type assumptions.
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Prior Work. We clarify that the name “bilinear entropy expansion” was intro-
duced in the prior work of Kowalczyk and Lewko (KL) [17], which also proved
a statement similar to (3), with three notable differences: (i) our entropy expan-
sion lemma starts with 3 units of entropy (w,w0, w1) whereas KL uses O(log n)
units of entropy; (ii) the KL statement does not account for the public parame-
ters, and therefore (unlike our lemma) cannot serve as an immediate bridge from
the unbounded ABE to the bounded variant; (iii) our entropy expansion lemma
admits an analogue in prime-order groups, which in turn yields an unbounded
ABE scheme in prime-order groups, whereas the composite-order ABE scheme
in KL does not have an analogue in prime-order setting (an earlier prime-order
construction was retracted on June 1, 2016). In fact, the “consistent randomness
amplification” techniques used in the unbounded ABE schemes of Okamoto and
Takashima (OT) [23] also seem to yield an entropy expansion lemma with O(1)
units of entropy in prime-order groups. As noted earlier in the introduction,
our approach is also different from both KL and OT in the sense that we only
need to invoke our entropy expansion lemma once when proving security of the
unbounded ABE.

Proof Overview. We provide a proof overview of our entropy expansion lemma
in (4). The proof proceeds in two steps: (i) replacing w0 + j · w1 with fresh uj ,
and then (ii) replacing w with fresh vj .

(i) We replace w0 + j · w1 with fresh uj ; that is,{
{g

sj(w0+j·w1)
1 , g

sj

1 }j∈[n]

{h
rj

1 , h
rj(w0+j·w1)
1 }j∈[n],

}
≈c — ·

{{g
sjuj

2 , g
sj

2 }j∈[n]

{h
rj

2 , h
rjuj

2 }j∈[n]

}
(5)

where we suppressed the terms involving w; moreover, this holds even given
g1, g

w0
1 , gw1

1 . Our first observation is that we can easily adapt the proof of
Lewko-Waters IBE [8,20] to show that for each i ∈ [n],{

g
si(w0+i·w1)
1 , gsi

1

{h
rj

1 , h
rj(w0+j·w1)
1 }j �=i

}
≈c — ·

{
gsiui
2 , gsi

2

{h
rj

2 , h
rjuj

2 }j �=i

}
(6)

The idea is that the first term on the LHS corresponds to an encryption for
the identity i, and the next n−1 terms correspond to secret keys for identities
j �= i; on the right, we have the corresponding “semi-functional entities”. At
this point, we can easily handle (hri

2 , h
ri(w0+i·w1)
2 ) via a statistical argument,

thanks to the entropy in w0 + i · w1 mod p2. Next, we need to get from a
single (gsi(w0+i·w1)

1 , gsi
1 ) on the LHS in (6) to n such terms on the LHS in

(5). This requires a delicate “two slot” hybrid argument over i ∈ [n] and the
use of an additional subgroup; similar arguments also appeared in [14,23].
This is where we used the fact that N is a product of three primes, whereas
the Lewko-Waters IBE and the statement in (6) works with two primes in
the asymmetric setting.
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(ii) Next, we replace w with fresh vj ; that is,{
gs
2, {g

sw+sjuj

2 , g
sj

2 }j∈[n]

{h
rjw
2 , h

rj

2 , h
rjuj

2 }j∈[n]

}
≈c

{
gs
2, {g

svj+sjuj

2 , g
sj

2 }j∈[n]

{h
rjvj

2 , h
rj

2 , h
rjuj

2 }j∈[n]

}

Intuitively, this should follow from the DDH assumption in the p2-subgroup,
which says that (hrjw

2 , h
rj

2 ) ≈c (hrjvj

2 , h
rj

2 ). The actual proof is more delicate
since w also appears on the other side of the pairing as g

sw+sjuj

2 ; fortunately,
we can treat uj as a one-time pad that masks w.

Completing the Proof of Unbounded ABE. We return to a proof sketch
of our unbounded ABE in (2). Let us start with the simpler setting where the
adversary makes only a single key query. Upon applying our entropy expansion
lemma4, we have that the ciphertext/key pair (ctx, skM) satisfies

{
gs
1, {g

sw+sj(w0+j·w1)
1 , g

sj

1 }xj=1

{h
αj+rjw
1 , h

rj

1 , h
rj(w0+j·w1)
1 }j∈[n]

}
≈c — ·

{
gs
2, {g

svj+sjuj

1 , g
sj

2 }xj=1

{h
αj+rjvj

2 , h
rj

2 , h
rjuj

2 }j∈[n]

}

with e(g1, h1)αs · m omitted. Note that the boxed term on the RHS is exactly
the LOSTW KP-ABE ciphertext/key pair in (1) over the p2-subgroup, once we
strip away the terms involving uj , sj .

Finally, to handle the general setting where the ABE adversary makes Q key
queries, we simply observe that thanks to self-reducibility, our entropy expansion
lemma extends to a Q-fold setting (with Q copies of {rj}j∈[n]) without any
additional security loss:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

gs
1, {g

sw+sj(w0+j·w1)
1 , g

sj

1 }j∈[n]

{h
rj,1w
1 , h

rj,1
1 , h

rj,1(w0+j·w1)
1 }j∈[n]

...
{h

rj,Qw
1 , h

rj,Q

1 , h
rj,Q(w0+j·w1)
1 }j∈[n]

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

≈c — ·

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

gs
2, {g

svj+sjuj

2 , g
sj

2 }j∈[n]

{h
rj,1vj

2 , h
rj,1
2 , h

rj,1uj

2 }j∈[n]

...
{h

rj,Qvj

2 , h
rj,Q

2 , h
rj,Quj

2 }j∈[n]

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

At this point, we can rely on the (adaptive) security for the LOSTW KP-ABE
for the setting with a single challenge ciphertext and Q key queries.

1.3 Our Prime-Order Scheme

To obtain prime-order analogues of our composite-order schemes, we build upon
and extend the previous framework of Chen et al. [6,11] for simulating composite-
order groups in prime-order ones. Along the way, we present a more general
framework that provides prime-order analogues of the static assumptions used
in the security proof for our composite-order ABE. Moreover, we show that these
prime-order analogues follow from the standard k-Linear assumption (and more
generally, the MDDH assumption [9]) in prime-order bilinear groups.
4 And a subgroup assumption to introduce the h

αj

2 ’s.
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Our KP-ABE. Let (G1, G2, GT ) be a bilinear group of prime order p. Following
[6,11], we start with our composite-order KP-ABE scheme in (2), sample A1 ←r

Z
(2k+1)×k
p ,B ←r Z

(k+1)×k
p , and carry out the following substitutions:

g1 �→ [A1]1, h1 �→ [B]2
α �→ k ∈ Z

2k+1
p w,w0, w1 �→ W,W0,W1 ∈ Z

(2k+1)×(k+1)
p

s, sj �→ s, sj ∈ Z
k
p, rj �→ rj ∈ Z

k
p

gs
1 �→ [s�A�

1 ]1, h
rj

1 �→ [Brj ]2
gws
1 �→ [s�A�

1 W]1, h
wrj

1 �→ [WBrj ]2

(7)

where [·]1, [·]2 correspond respectively to exponentiations in the prime-order
groups G1, G2. This yields the following prime-order KP-ABE scheme for mono-
tone span programs:

mpk := ( [A�
1 ]1, [A�

1 W]1, [A�
1 W0]1, [A�

1 W1]1, e([A�
1 ]1, [k]2) ),

ctx := ( [s�A�
1 ]1, {[s�A�

1 W + s�
j A�

1 (W0 + j · W1)]1, [s�
j A�

1 ]1}xj=1,

e([s�A�
1 ]1, [k]2) · m )

skM := ( {[kj + WBrj ]2, [Brj ]2, [(W0 + j · W1)Brj ]2}j∈[n] )

where kj is the j’th share of k. Decryption proceeds as before by first computing
{e([s�A�

1 ]1, [kj ]2)}xj=1 and relies on the associativity relations A�
1 W · B =

A�
1 · WB (ditto W0 + j · W1) [7].

Dimensions of A1,B. It is helpful to compare the dimensions of A1,B to those
of the CGW prime-order analogue of LOSTW in [6]; once we fix the dimensions
of A1,B, the dimensions of W,W0,W1 are also fixed. In all of these construc-
tions, the width of A1,B is always k, for constructions based on the k-linear
assumption. CGW uses a shorter A1 of dimensions (k + 1) × k, and a B of the
same dimensions (k + 1) × k. Roughly speaking, increasing the height of A1 by
k plays the role of adding a subgroup in our composite-order scheme; in particu-
lar, the LOSTW KP-ABE uses a group of order p1p2 in the asymmetric setting,
whereas our unbounded ABE uses a group of order p1p2p3.

We note that the direct adaptation of the prior techniques in [11] would
yield A1 of height 3k and B of height k + 1, and reducing the height of A1

down to 2k + 1 is the key to our efficiency improvements over the prime-order
unbounded KP-ABE scheme in [23]. To accomplish this, we need to optimize on
the static assumptions used in the composite-order bilinear entropy expansion
lemma, and thereafter, carefully transfer these optimizations to the prime-order
setting, building upon and extending the recent prime-order IBE schemes in [11].

Bilinear Entropy Expansion Lemma. In the rest of this overview, we moti-
vate the prime-order analogue of our bilinear entropy expansion lemma in (4),
and defer a more accurate treatment to Sect. 6. Upon our substitutions in (7),
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we expect to prove a statement of the form:{
[s�A�

1 ]1, {[s�A�
1 W + s�

j A�
1 (W0 + j · W1)]1, [s�

j A�
1 ]1}j∈[n]

{[WBrj ]2, [Brj ]2, [(W0 + j · W1)Brj ]2}j∈[n]

}
(8)

roughly≈c — ·
{

[ŝ�A�
2 ]1, {[ŝ�A�

2 Vj + ŝ�
j A�

2 Uj ]1, [ŝ�
j A�

2 ]1}j∈[n]

{[VjBrj ]2, [0]2, [UjBrj ]2}j∈[n]

}

given also the public parameters [A�
1 ]1, [A�

1 W]1, [A�
1 W0]1, [A�

1 W1]1. Here,
A2 ←r Z

(2k+1)×k
p is an additional matrix that plays the role of g2, whereas Uj ,Vj

play the roles of the fresh entropy uj , vj . Note that we do not introduce additional
terms that correspond to those involving h2 on the RHS, and can therefore keep B
of dimensions (k + 1) × k. To prevent a trivial distinguishing attack based on the
associativity relation A�

1 W · B = A�
1 · WB, we need to sample random Uj ,Vj

subject to the constraints A�
1 Uj = A�

1 Vj = 0. In the proof of the entropy expan-
sion lemma, we will show that the k-Lin assumption implies

(A1,A
�
1 W, {[WBrj ]2, [Brj ]2}j∈[n]) ≈c (A1,A

�
1 W, {[(W + Uj )Brj ]2, [Brj ]2}j∈[n]).

To complete the proof of the unbounded ABE, we proceed as before in the
composite-order setting, and observe that the boxed term in (8) above (once we
strip away the terms involving Uj and ŝj) correspond to the prime-order variant
of the LOSTW KP-ABE in CGW, as given by:

ctx := ( [ŝ�A�
2 ]1, {[ŝ�A�

2 Vj ]1}xj=1, e([ŝ�A�
2 ]1, [k]2) · m )

skM := ( {[kj + VjBrj ]2, [Brj ]2}j∈[n] )

As in the composite-order setting, we need to first extend our bilinear entropy
expansion lemma to a Q-fold setting via random self-reducibility. We may then
carry out the analysis in CGW to complete the proof of our unbounded ABE.

1.4 Extensions

Due to lack of space, we briefly sketch two extensions: CP-ABE for monotone
span programs, and KP-ABE for arithmetic span programs.

CP-ABE. Here, we start with the LOSTW CP-ABE for monotone span pro-
grams [19], which basically reverses the structures of the ciphertexts and keys.
This means that we will need a variant of our entropy expansion lemma that
accommodates a similar reversal. The statement adapts naturally to this setting,
and so does the proof, except we need to make some changes to step two, which
requires that we start with a taller A1 ∈ Z

3k×k
q . This gives rise to the following

prime-order CP-ABE:

mpk := ( [A�
1 ]1, [A�

1 W]1, [A�
1 W0]1, [A�

1 W1]1, [A�
1 U0]1 e([A�

1 ]1, [k]2) ),
ctM := ( [s�A�

1 ]1, { [c�
0,j + s�

j A�
1 W]1, [s�

j A�
1 ]1, [s�

j A�
1 (W0 + j · W1)]1 }j∈[n],

e([s�A�
1 ]1, [k]2) · m )

skx := ( [k + U0Br]2, [Br]2, { [WBr + (W0 + j · W1)Brj ]2, [Brj ]2 }xj=1 )
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where c0,j is the j’th share of c0 := s�A�
1 U0 w.r.t. M. Decryption proceeds by

first computing {e([c�
0,j ]1, [Br]2)}xj=1 and then e([c�

0 ]1, [Br]2).

Arithmetic Span Programs. In arithmetic span programs, the attributes
x come from Z

n
p instead of {0, 1}n, which enable richer and more expressive

arithmetic computation. The analogue of the LOSTW KP-ABE for arithmetic
span programs [6,15] will then have ciphertexts:

ctx := (gs
1, {g

(vj+xjv′
j)s

1 }j∈[n], e(g1, h1)αs · m).

That is, we replaced g
xjvjs
1 in (1) with g

(vj+xjv′
j)s

1 . In the unbounded setting,
we will need to generate {vj}j∈[n] and {v′

j}j∈[n] via two different pairwise-
independent hash functions, given by w0 + j · w1 and w′

0 + j · w′
1 respectively.

Our entropy expansion lemma generalizes naturally to this setting.

2 Preliminaries

Notation. We denote by s ←r S the fact that s is picked uniformly at ran-
dom from a finite set S. By PPT, we denote a probabilistic polynomial-time
algorithm. Throughout this paper, we use 1λ as the security parameter. We use
lower case boldface to denote (column) vectors and upper case boldcase to denote
matrices. We use ≡ to denote two distributions being identically distributed,
and ≈c to denote two distributions being computationally indistinguishable. For
any two finite sets (also including spaces and groups) S1 and S2, the notation
“S1 ≈c S2” means the uniform distributions over them are computationally
indistinguishable.

2.1 Monotone Span Programs

We define (monotone) span programs [16].

Definition 1 (span programs [4,16]). A (monotone) span program for
attribute universe [n] is a pair (M, ρ) where M is a � × �′ matrix over Zp and
ρ : [�] → [n]. Given x = (x1, . . . , xn) ∈ {0, 1}n, we say that

x satisfies (M, ρ) if f 1 ∈ span〈Mx〉,

Here, 1 := (1, 0, . . . , 0)� ∈ Z
1×�′

is a row vector; Mx denotes the collection of
vectors {Mj : xρ(j) = 1} where Mj denotes the j’th row of M; and span refers
to linear span of collection of (row) vectors over Zp.

That is, x satisfies (M, ρ) if f there exists constants ω1, . . . , ω� ∈ Zp such that∑
j:xρ(j)=1

ωjMj = 1 (9)
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Observe that the constants {ωj} can be computed in time polynomial in the size
of the matrix M via Gaussian elimination. Like in [6,19], we need to impose a
one-use restriction, that is, ρ is a permutation and � = n. By re-ordering the
rows of M, we may assume WLOG that ρ is the identity map, which we omit
in the rest of this section.

Lemma 1 (statistical lemma [6, Appendix A.6]). For any x that does not
satisfy M, the distributions

({vj}j:xj=1, {Mj ( α
u ) + rjvj , rj}j∈[n])

perfectly hide α, where the randomness is taken over vj ←r Zp,u ←r Z
�′−1
p , and

for any fixed rj �= 0.

2.2 Attribute-Based Encryption

An attribute-based encryption (ABE) scheme for a predicate P( · , · ) consists of
four algorithms (Setup,Enc, KeyGen,Dec):

Setup(1λ,X ,Y,M) → (mpk,msk). The setup algorithm gets as input the security
parameter λ, the attribute universe X , the predicate universe Y, the message
space M and outputs the public parameter mpk, and the master key msk.

Enc(mpk, x,m) → ctx. The encryption algorithm gets as input mpk, an attribute
x ∈ X and a message m ∈ M. It outputs a ciphertext ctx. Note that x is
public given ctx.

KeyGen(mpk,msk, y) → sky. The key generation algorithm gets as input msk and
a value y ∈ Y. It outputs a secret key sky. Note that y is public given sky.

Dec(mpk, sky, ctx) → m. The decryption algorithm gets as input sky and ctx
such that P(x, y) = 1. It outputs a message m.

Correctness. We require that for all (x, y) ∈ X × Y such that P(x, y) = 1 and
all m ∈ M,

Pr[Dec(mpk, sky,Enc(mpk, x,m)) = m] = 1,

where the probability is taken over (mpk,msk) ← Setup(1λ,X ,Y,M), sky ←
KeyGen(mpk,msk, y), and the coins of Enc.

Security Definition. For a stateful adversary A, we define the advantage
function

AdvabeA (λ) := Pr

⎡
⎢⎢⎣b = b′ :

(mpk,msk) ← Setup(1λ,X ,Y,M);
(x∗,m0,m1) ← AKeyGen(msk,·)(mpk);
b ←r {0, 1}; ctx∗ ← Enc(mpk, x∗,mb);
b′ ← AKeyGen(msk,·)(ctx∗)

⎤
⎥⎥⎦− 1

2

with the restriction that all queries y that A makes to KeyGen(msk, ·) satisfies
P(x∗, y) = 0 (that is, sky does not decrypt ctx∗). An ABE scheme is adaptively
secure if for all PPT adversaries A, the advantage AdvabeA (λ) is a negligible
function in λ.
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Unbounded ABE. An ABE scheme is unbounded [21] if the running time of
Setup only depends on λ; otherwise, we say that it is bounded.

3 Bilinear Entropy Expansion, Revisited

3.1 Composite-Order Bilinear Groups and Computational
assumptions

A generator G takes as input a security parameter λ and outputs G :=
(GN ,HN , GT , e), where N is product of three primes p1, p2, p3 of Θ(λ) bits,
GN , HN and GT are cyclic groups of order N and e : GN × HN → GT is a non-
degenerate bilinear map. We require that the group operations in GN , HN and
GT as well the bilinear map e are computable in deterministic polynomial time
with respect to λ. We assume that a random generator g (resp. h) of GN (resp.
HN ) is always contained in the description of bilinear groups. For every divisor
n of N , we denote by Gn the subgroup of GN of order n. We use g1, g2, g3 to
denote random generators of the subgroups Gp1 , Gp2 , Gp3 respectively. We define
h1, h2, h3 random generators of the subgroups Hp1 ,Hp2 ,Hp3 analogously.

Computational Assumptions. We review two static computational assump-
tions in the composite-order group, used e.g. in [8,20].

Assumption 1 (SDGN
p1 �→p1p2

). We say that (p1 �→ p1p2)-subgroup decision
assumption, denoted by SDGN

p1 �→p1p2
, holds if for all PPT adversaries A, the fol-

lowing advantage function is negligible in λ.

Adv
SD

GN
p1 �→p1p2

A (λ) :=
∣∣Pr[A(G,D, T0) = 1] − Pr[A(G,D, T1) = 1]

∣∣
where

D := (g1, g2, g3, h1, h3, h12), h12 ←r Hp1p2

T0 ←r Gp1 , T1 ←r Gp1p2 .

Assumption 2 (DDHHN
p1

). We say that p1-subgroup Diffie-Hellman assump-
tion, denoted by DDHHN

p1
, holds if for all PPT adversaries A, the following

advantage function is negligible in λ.

Adv
DDH

HN
p1

A (λ) :=
∣∣Pr[A(G,D, T0) = 1] − Pr[A(G,D, T1) = 1]

∣∣
where

D := (g1, g2, g3, h1, h2, h3),

T0 := (hx
1 , hy

1, hxy
1 ), T1 := (hx

1 , h
y
1, hxy+z

1 ), x, y, z ←r ZN .

By symmetry, one may permute the indices for subgroups and/or exchange the
roles of GN and HN , and define SDGN

p1 �→p1p3
, SDGN

p3 �→p3p2
, SDHN

p1 �→p1p2
, SDHN

p1 �→p1p3

and DDHHN
p2

,DDHHN
p3

analogously.
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3.2 Lemma in Composite-Order Groups

We state our entropy expansion lemma in composite-order groups as follows.

Lemma 2 (Bilinear entropy expansion lemma). Under the SDHN
p1 �→p1p2

,
SDHN

p1 �→p1p3
, SDGN

p1 �→p1p2
, DDHHN

p2
, SDGN

p1 �→p1p3
, DDHHN

p3
, SDGN

p3 �→p3p2
assumptions,

we have ⎧⎪⎨
⎪⎩

aux : g1, g
w
1 , gw0

1 , gw1
1

ct : gs
1, {g

sw+sj(w0+j·w1)
1 , g

sj

1 }j∈[n]

sk : {h
rjw
1 , h

rj

1 , h
rj(w0+j·w1)
1 }j∈[n]

⎫⎪⎬
⎪⎭

≈c

⎧⎪⎪⎨
⎪⎪⎩

aux : g1, g
w
1 , gw0

1 , gw1
1

ct : gs
1 · gs

2 , {g
sw+sj(w0+j·w1)
1 · g

svj+sjuj

2 , g
sj

1 · g
sj

2 }j∈[n]

sk : {h
rjw
1 · h

rjvj

2 , h
rj

1 · h
rj

2 , h
rj(w0+j·w1)
1 · h

rjuj

2 }j∈[n]

⎫⎪⎪⎬
⎪⎪⎭

where
w,w0, w1 ←r ZN , vj , uj ←r ZN , s, sj ←r ZN , rj ←r ZN .

Concretely, the distinguishing advantage AdvExpLemA (λ) is at most

Adv
SD

HN
p1 �→p1p2

B (λ) + Adv
SD

HN
p1 �→p1p3

B′ (λ) + Adv
SD

GN
p1 �→p1p2

B′′ (λ) + Adv
SD

HN
p1 �→p1p3

B′′′ (λ)

+ Adv
DDH

HN
p2

B0
(λ) + n · (AdvSDGN

p1 �→p1p3
B1

(λ) + Adv
DDH

HN
p3

B2
(λ) + Adv

SD
GN
p3 �→p3p2

B4
(λ)

+ Adv
DDH

HN
p3

B6
(λ) + Adv

SD
GN
p1 �→p1p3

B7

)
(λ) + Adv

DDH
HN
p2

B8
(λ)

where Time(B), Time(B′), Time(B′′), Time(B′′′), Time(B0), Time(B1), Time(B2),
Time(B4), Time(B6), Time(B7), Time(B8) ≈ Time(A).

We will prove the lemma in two main steps (cf. Sect. 1.2), which are formu-
lated via the following two lemmas.

Lemma 3 (Bilinear entropy expansion lemma (step one)). Under the
DDHHN

p2
, SDGN

p1 �→p1p3
, DDHHN

p3
, SDGN

p3 �→p3p2
assumptions, we have

⎧⎪⎨
⎪⎩

aux : g1, g
w0
1 , gw1

1 , g2

ct : {g
sj(w0+j·w1)
1 , g

sj

1 }j∈[n]

sk : {h
rj

123, h
rj(w0+j·w1)
123 }j∈[n]

⎫⎪⎬
⎪⎭ ≈c

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

aux : g1, g
w0
1 , gw1

1 , g2

ct : {g
sj(w0+j·w1)
1 · g

sjuj

2 , g
sj

1 · g
sj

2 }j∈[n]

sk : {h
rj

13 · h
rj

2 , h
rj(w0+j·w1)
13 · h

rjuj

2 }j∈[n]

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

where
w0, w1 ←r ZN , uj ←r ZN , sj ←r ZN , rj ←r ZN .

Concretely, the distinguishing advantage AdvStep1A (λ) is at most

Adv
DDH

HN
p2

B0
(λ) + n · (AdvSDGN

p1 �→p1p3
B1

(λ) + Adv
DDH

HN
p3

B2
(λ) + Adv

SD
GN
p3 �→p3p2

B4
(λ)

+ Adv
DDH

HN
p3

B6
(λ) + Adv

SD
GN
p1 �→p1p3

B7
(λ)
)

where Time(B0), Time(B1), Time(B2), Time(B4), Time(B6), Time(B7) ≈
Time(A).
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Note that sk in the LHS of this lemma has an extra h23-component, which
we may introduce using the SDHN

p1 �→p1p2
and SDHN

p1 �→p1p3
assumption. The proof

of this lemma is fairly involved, and we defer the proof to Sect. 3.3.

Lemma 4 (Bilinear entropy expansion lemma (step two)). Under the
DDHHN

p2
assumption, we have

⎧⎨
⎩

aux : g1, g
w
1 , h1, h

w
1

ct : gs
2, { gsw

2 · g
sjuj

2 , g
sj

2 }j∈[n]

sk : {h
rjw
2 , h

rj

2 , h
rjuj

2 }j∈[n]

⎫⎬
⎭ ≈c

⎧⎪⎪⎨
⎪⎪⎩

aux : g1, g
w
1 , h1, h

w
1

ct : gs
2, { g

svj

2 · g
sjuj

2 , g
sj

2 }j∈[n]

sk : { h
rjvj

2 , h
rj

2 , h
rjuj

2 }j∈[n]

⎫⎪⎪⎬
⎪⎪⎭

where
w ←r ZN , vj , uj ←r ZN , s, sj ←r ZN , rj ←r ZN .

Concretely, the distinguishing advantage AdvStep2A (λ) is at most Adv
DDH

HN
p2

B8
(λ)

where Time(B8) ≈ Time(A).

Proof. This follows from the DDHHN
p2

assumption, which tells us that

{h
rj

2 , h
rjw
2 }j∈[n] ≈c {h

rj

2 , h
rjvj

2 }j∈[n].

The adversary B8 on input {h
rj

2 , Tj}j∈[n] along with g1, g2, h1, h2, picks
w̃, s, sj , ũj ←r ZN (and implicitly sets uj = 1

sj
(ũj − sw)), then runs A

on input ⎧⎪⎨
⎪⎩

aux : g1, g
w̃
1 , h1, h

w̃
1

ct : gs
2, { g

ũj

2 , g
sj

2 }j∈[n]

sk : {Tj , h
rj

2 , (hrj

2 )
ũj
sj · T

− s
sj

j }j∈[n]

⎫⎪⎬
⎪⎭ .

By the Chinese Remainder Theorem, we have (gw
1 , hw

1 , gw
2 , hw

2 ) ≡
(gw̃

1 , hw̃
1 , gw

2 , hw
2 ), where w, w̃ ←r ZN . Next, observe that

– When Tj = grjw and if we write rjuj = rj · ũj

sj
+rjw·(− s

sj
), then ũj = sw+sjuj

and the distribution we feed to A is exactly that of the left distribution.
– When Tj = grjvj and if we write rjuj = rj · ũj

sj
+ rjvj · (− s

sj
), then ũj =

svj + sjuj and the distribution we feed to A is exactly that of the right
distribution.

This completes the proof. ��

3.3 Entropy Expansion Lemma: Step One

Proof Overview. First, we note that we can adapt the proof of the Lewko-
Waters IBE [8,20]5 to show that under SDGN

p1 �→p1p3
and DDHHN

p3
assumptions,

5 With two main differences: (i) we are in the selective setting which allows for a much
simpler proof, (ii) we allow j = i in sk.
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we have that for each i ∈ [n]:

⎧⎪⎨
⎪⎩

aux : g1, g
w0
1 , gw1

1

ct : {g
si(w0+i·w1)
1 , gsi

1 }
sk : {h

rj

13, h
rj(w0+j·w1)
13 }j∈[n]

⎫⎪⎬
⎪⎭ ≈c

⎧⎪⎪⎨
⎪⎪⎩

aux : g1, g
w0
1 , gw1

1

ct : {g
si(w0+i·w1)
1 · gsiui

3 , gsi
1 · gsi

3 }
sk : {h

rj

1 · h
rj

3 , h
rj(w0+j·w1)
1 · h

rjuj

3 }j∈[n]

⎫⎪⎪⎬
⎪⎪⎭ .

We can then use the SDGN
p3 �→p2p3

assumption to argue that

(gsi
3 , gsiui

3 ) ≈c (gsi
3 · gsi

2 , gsiui
3 · gsiui

2 )

Roughly speaking, we will then repeat the above argument n times for each
i ∈ [n] (see Sub-Gamei,1 through Sub-Gamei,4 below). Here, there is an addi-
tional complication arising from the fact that in order to invoke the SDGN

p1 �→p1p3

assumption, we need to simulate sk given only h1, h13, h2. To do this, we need to
switch sk back to {h

rj

13, h
rj(w0+j·w1)
13 }j∈[n], which we do in Sub-Gamei,5 through

Sub-Gamei,7.
At this point, we are almost done, except we still need to introduce a

(hrj

2 , h
rjuj

2 )-component into sk. We will handle this at the very beginning of
the proof (cf. Game0′). Fortunately, we can carry out the above argument even
with the extra (hrj

2 , h
rjuj

2 )-component in sk.

Actual Proof. We prove step one of the entropy expansion lemma in Lemma 3
via the following game sequence. Each claim will be followed by a proof sketch
but a formal proof is omitted. By ctj (resp. skj), we denote the j’th tuple of ct
(resp. sk).
Game0. This is the left distribution in Lemma 3:⎧⎪⎨

⎪⎩
aux : g1, g

w0
1 , gw1

1 , g2

ct : {g
sj(w0+j·w1)
1 , g

sj

1 }j∈[n]

sk : {h
rj

123, h
rj(w0+j·w1)
123 }j∈[n]

⎫⎪⎬
⎪⎭ .

Game0′ . We modify sk as follows:

sk : {h
rj

13 · h
rj

2 , h
rj(w0+j·w1)
13 · h

rjuj

2 }j∈[n]

where u1, . . . , un ←r ZN . We claim that Game0 ≈c Game0′ . This follows from
the DDHHN

p2
assumption, which tells us that

{h
rj

2 , h
rjw0
2 }j∈[n] ≈c {h

rj

2 , h
rju′

j

2 }j∈[n] given g1, g2, h13

where u′
j ←r ZN and we will then implicitly set uj = u′

j + j · w1 for all j ∈ [n].
In the security reduction, we use the fact that aux, ct leak no information about
w0 mod p2.
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Gamei(i = 1, . . . , n + 1). We modify ct as follows:

ct : {g
sj(w0+j·w1)
1 · g

sjuj

2 , g
sj

1 · g
sj

2 }j<i

{g
sj(w0+j·w1)
1 , g

sj

1 }j≥i

where u1, . . . , ui−1 are defined as in Game0′ . It is easy to see that Game0′ ≡
Game1. To show that Gamei ≈c Gamei+1, we will require another sequence of
sub-games.
Sub-Gamei,1. Identical to Gamei except that we modify cti as follows:

cti : {g
si(w0+i·w1)
1 · g

si(w0+i·w1)
3 , gsi

1 · gsi
3 }

We claim that Gamei ≈c Sub-Gamei,1. This follows from the SDGN
p1 �→p1p3

assump-
tion, which tells us that

gsi
1 ≈c gsi

1 · gsi
3 given g1, g2, h13, h2

In the reduction, we will sample w0, w1, uj ←r ZN and use g1, g2 to simulate
aux, {ctj}j �=i and h13, h2 to simulate sk.
Sub-Gamei,2. We modify the distribution of skj for all j �= i (while keeping ski

unchanged):

skj (j �= i) : h
rj

1 · h
rj

2 · h
rj

3 , h
rj(w0+j·w1)
1 · h

rjuj

2 · h
rjuj

3

We claim that Sub-Gamei,1 ≈c Sub-Gamei,2. This follows from the DDHHN
p3

assumption, which tells us that

{h
rj

3 , h
rjw1
3 }j �=i ≈c {h

rj

3 , h
rju′

j

3 }j �=i given g1, g2, g3, h1, h2, h3.

where u′
j ←r ZN . In the reduction, we will program w0 := w̃0 − i · w1 mod p3

with w̃0 ←r ZN so that we can simulate g
si(w0+i·w1)
3 in cti, and then implicitly

set uj = w̃0 + (j − i) · u′
j mod p3 for all j �= i.

Sub-Gamei,3. We modify the distribution of cti and ski simultaneously:

cti : g
si(w0+i·w1)
1 · gsiui

3 , gsi
1 · gsi

3

ski : hri
1 · hri

2 · hri
3 , h

ri(w0+i·w1)
1 · hriui

2 · hriui
3

We claim that Sub-Gamei,2 ≡ Sub-Gamei,3. This follows from the fact that for
all j �= i, the quantity w0 + j · w1 mod p3 leaked in skj is masked by uj and
therefore {w0 + i · w1 mod p3} ≡ {ui mod p3}.
Sub-Gamei,4. We modify the distribution of cti as follows:

cti : g
si(w0+i·w1)
1 · gsiui

2 · gsiui
3 , gsi

1 · gsi
2 · gsi

3
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We claim that Sub-Gamei,3 ≈c Sub-Gamei,4. This follows from the SDGN
p3 �→p3p2

assumption, which tells us that

gsi
3 ≈c gsi

2 · gsi
3 given g1, g2, h1, h23.

In the reduction, we will sample w0, w1, uj ←r ZN and use g1, g2 to simulate
aux, {ctj}j �=i. In addition, we will use generator h23 to sample {h

rj

2 · h
rj

3 , h
rjuj

2 ·
h

rjuj

3 }j∈[n] in sk.
Sub-Gamei,5. We modify the distribution of cti and ski:

cti : g
si(w0+i·w1)
1 · gsiui

2 · g
si(w0+i·w1)
3 , gsi

1 · gsi
2 · gsi

3

ski : hri
1 · hri

2 · hri
3 , h

ri(w0+i·w1)
1 · hriui

2 · h
ri(w0+i·w1)
3

We claim that Sub-Gamei,4 ≡ Sub-Gamei,5. The proof is completely analogous
to that of Sub-Gamei,2 ≡ Sub-Gamei,3.
Sub-Gamei,6. We modify the distribution of skj for all j �= i:

skj (j �= i) : h
rj

1 · h
rj

2 · h
rj

3 , h
rj(w0+j·w1)
1 · h

rjuj

2 · h
rj(w0+j·w1)
3

We claim that Sub-Gamei,5 ≈c Sub-Gamei,6. The proof is completely analogous
to that of Sub-Gamei,1 ≈c Sub-Gamei,2.
Sub-Gamei,7. We modify the distribution of cti:

cti : g
si(w0+i·w1)
1 · gsiui

2 ·������
g

si(w0+i·w1)
3 , gsi

1 · gsi
2 ·��g

si
3

We claim that Sub-Gamei,6 ≈c Sub-Gamei,7. The proof is completely analogous
to that of Gamei ≈c Sub-Gamei,1. Furthermore, observe that Sub-Gamei,7 is
actually identical to Gamei+1.
Gamen+1. In Gamen+1, we have:

⎧⎪⎪⎨
⎪⎪⎩

aux : g1, g
w0
1 , gw1

1 , g2

ct : {g
sj(w0+j·w1)
1 · g

sjuj

2 , g
sj

1 · g
sj

2 }j∈[n]

sk : {h
rj

13 · h
rj

2 , h
rj(w0+j·w1)
13 · h

rjuj

2 }j∈[n]

⎫⎪⎪⎬
⎪⎪⎭ .

This is exactly the right distribution of Lemma 3.

4 KP-ABE for Monotone Span Programs
in Composite-Order Groups

In this section, we present our adaptively secure, unbounded KP-ABE for mono-
tone span programs based on static assumptions in composite-order groups (cf.
Sect. 3.1).
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4.1 Construction

Setup(1λ, 1n): On input (1λ, 1n), sample G := (N = p1p2p3, GN ,HN , GT , e) ←
G(1λ) and select random generators g1, h1 and h123 of Gp1 , Hp1 and HN ,
respectively. Pick

w,w0, w1 ←r ZN , α ←r ZN ,

a pairwise independent hash function H : GT → {0, 1}λ, and output the
master public and secret key pair

mpk := ( (N,GN ,HN , GT , e); g1, gw
1 , gw0

1 , gw1
1 , e(g1, h123)α; H )

msk := (h123, h1, α, w,w0, w1 ) .

Enc(mpk,x,m): On input an attribute vector x := (x1, . . . , xn) ∈ {0, 1}n and
m ∈ {0, 1}λ, pick s, sj ←r ZN for all j ∈ [n] and output

ctx :=
(

C0 := gs
1, { C1,j := g

sw+sj(w0+j·w1)
1 , C2,j := g

sj

1 }j:xj=1,
C := H(e(g1, h123)αs) · m

)
∈ G2n+1

N × {0, 1}λ.

KeyGen(mpk,msk,M): On input a monotone span program M ∈ Z
n×�′
N , pick

u ←r Z
�′−1
N and rj ←r ZN for all j ∈ [n], and output

skM :=
( { K0,j := h

Mj( α
u )

123 · h
rjw

1 , K1,j := h
rj

1 , K2,j := h
rj(w0+j·w1)

1 }j∈[n]

) ∈ H3n
N .

Dec(mpk, skM, ctx): If x satisfies M, compute ω1, . . . , ωn ∈ Zp such that∑
j:xj=1 ωjMj = 1.

Then, compute

K ←∏
j:xj=1

(
e(C0,K0,j) · e(C1,j ,K1,j)−1 · e(C2,j ,K2,j)

)ωj
,

and recover the message as m ← C/H(K) ∈ {0, 1}λ.

It is direct to prove the correctness and we omit the detail here.

4.2 Proof of Security

We prove the following theorem:

Theorem 1. Under the subgroup decision assumptions and the subgroup Diffie-
Hellman assumptions (cf. Sect. 3.1), the unbounded KP-ABE scheme described
in this section (cf. Sect. 4.1) is adaptively secure (cf. Sect. 2.2).
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Main Technical Lemma. We prove the following technical lemma. Our proof
consists of two steps. We first apply the entropy expansion lemma (see Lemma 2)
and obtain a copy of the LOSTW KP-ABE (variant there-of) in the p2-subgroup.
We may then carry out the classic dual system methodology used for estab-
lishing adaptive security of the LOSTW KP-ABE in the p2-subgroup with the
p3-subgroup as the semi-functional space.

Lemma 5. For any adversary A that makes at most Q key queries against the
unbounded KP-ABE scheme, there exist adversaries B0,B1,B2,B2 such that:

AdvabeA (λ) ≤ AdvExpLemB0
(λ)+Adv

SD
GN
p2 �→p2p3

B1
(λ)+Q ·AdvSD

HN
p2 �→p2p3

B2
(λ)+Q ·AdvSD

HN
p2 �→p2p3

B3
(λ)

where Time(B0),Time(B1),Time(B2),Time(B3) ≈ Time(A). In particular, we
achieve security loss O(n + Q) based on the SDHN

p1 �→p1p2
, SDHN

p1 �→p1p3
, SDGN

p1 �→p1p2
,

DDHHN
p2

, SDGN
p1 �→p1p3

, DDHHN
p3

, SDGN
p3 �→p3p2

, SDGN
p2 �→p2p3

, SDHN
p2 �→p2p3

assumptions.

The proof follows a series of games based on the dual system methodology (see
Fig. 4). We first define the auxiliary distributions, upon which we can describe
the games.

Fig. 4. Game sequence for our composite-order unbounded KP-ABE.

Auxiliary Distributions. We define various forms of a ciphertext (of message
m under attribute vector x):

– Normal: Generated by Enc.
– E-normal: Same as a normal ciphertext except that a copy of normal cipher-

text is created in Gp2 and then we use the substitution:

w �→ vj mod p2 in j’th component and w0 + j · w1 �→ uj mod p2 (10)
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where vj , uj ←r ZN . Concretely, an E-normal ciphertext is of the form

ctx :=

⎛
⎝gs

1 · gs
2 , { g

sw+sj(w0+j·w1)
1 · g

svj+sjuj

2 , g
sj

1 · g
sj

2 }j:xj=1,

H(e(gs
1 · gs

2 , hα
123)) · m

⎞
⎠

where g2 is a random generator of Gp2 and s, sj ←r ZN .
– SF: Same as E-normal ciphertext except that we copy all entropy from Gp2

to Gp3 . Concretely, an SF ciphertext is of the form

ctx :=

⎛
⎜⎜⎝

gs
1 · gs

2 · gs
3 ,

{ g
sw+sj(w0+j·w1)
1 · g

svj+sjuj

2 · g
svj+sjuj

3 , g
sj

1 · g
sj

2 · g
sj

3 }j:xj=1,

H(e(gs
1 · gs

2 · gs
3 , hα

123)) · m

⎞
⎟⎟⎠

where g3 is a random generator of Gp3 and s, sj ←r ZN .

Then we pick α̂ ←r ZN and define various forms of a key (for span program M):

– Normal: Generated by KeyGen.
– E-normal: Same as a normal key except that a copy of {h

rjw
1 , h

rj

1 ,

h
rj(w0+j·w1)
1 }j∈[n] is created in Hp2 and use the same substitution as in (10).

Concretely, an E-normal key is of the form

skM :=
( { h

Mj(α
u )

123 · h
rjw
1 · h

rjvj

2 , h
rj

1 · h
rj

2 , h
rj(w0+j·w1)
1 · h

rjuj

2 }j∈[n]

)
where h123, h1 and h2 are respective random generators of HN , Hp1 and Hp2 ,
u ←r Z

�′−1
N and rj ←r ZN .

– P-normal: Same as E-normal key except that a copy of {h
rjvj

2 , h
rj

2 , h
rjuj

2 }j∈[n]

is created in Hp3 . Concretely, a P-normal key is of the form

skM :=

⎛
⎜⎝
⎧⎨
⎩ h

Mj(α
u )

123 · h
rjw
1 · h

rjvj

2 · h
rjvj

3 ,

h
rj

1 · h
rj

2 · h
rj

3 , h
rj(w0+j·w1)
1 · h

rjuj

2 · h
rjuj

3

⎫⎬
⎭

j∈[n]

⎞
⎟⎠

where h3 is a random generator of Hp3 , u ←r Z
�′−1
N and rj ←r ZN .

– P-SF: Same as P-normal key except that α̂ is introduced in Hp3 . Concretely,
a P-SF key is of the form

skM :=

⎛
⎜⎝
⎧⎨
⎩ h

Mj(α
u )

123 · h
Mj( α̂

0 )
3 · h

rjw
1 · h

rjvj

2 · h
rjvj

3 ,

h
rj

1 · h
rj

2 · h
rj

3 , h
rj(w0+j·w1)
1 · h

rjuj

2 · h
rjuj

3

⎫⎬
⎭

j∈[n]

⎞
⎟⎠

where u ←r Z
�′−1
N and rj ←r ZN .
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– SF: Same as P-SF key except that {h
rjvj

3 , h
rj

3 , h
rjuj

3 }j∈[n] is removed. Con-
cretely, a SF key is of the form

skM :=

⎛
⎝
{

h
Mj(α

u )
123 · h

Mj( α̂
0 )

3 · h
rjw
1 · h

rjvj

2 ·���h
rjvj

3 ,

h
rj

1 · h
rj

2 ·��hrj

3 , h
rj(w0+j·w1)
1 · h

rjuj

2 ·���h
rjuj

3

}
j∈[n]

⎞
⎠

where u ←r Z
�′−1
N and rj ←r ZN .

Here E, P, SF means “expanded”, “pesudo”, “semi-functional”, respectively.

Games. We describe the game sequence in detail. For each following claim, we
omit its formal proof but provide a proof sketch instead.
Game0. The real security game (cf. Sect. 2.2) where keys and ciphertext are
normal.
Game′

0. Identical to Game0 except that all keys and the challenge ciphertext
are E-normal. We claim that Game0 ≈c Game0′ . This follows from the entropy
expansion lemma (see Lemma 2). In the reduction, on input⎧⎨

⎩
aux : g1, g

w
1 , gw0

1 , gw1
1

ct : C0, {C1,j , C2,j}j∈[n]

sk : {K0,j , K1,j , K2,j}j∈[n]

⎫⎬
⎭ ,

we select a random generator h123 of HN , sample α ←r ZN , uκ ←r Z
�′−1
N ,

r̃j,κ ←r ZN for j ∈ [n] and κ ∈ [Q], and simulate the game with⎧⎪⎨
⎪⎩

mpk : aux, e(g1, h123)α

ctx∗ : {C0, C1,j , C2,j}j:x∗
j=1, e(C0, h

α
123) · mb

skκ
M : { h

Mj( α
uκ

)
123 · K

r̃j,κ

0,j ,K
r̃j,κ

1,j ,K
r̃j,κ

2,j }j∈[n]

⎫⎪⎬
⎪⎭ .

Gamei. Identical to Game0′ except that the first i − 1 keys and the challenge
ciphertext is SF. We claim that Game0′ ≈c Game1. This follows from the
SDGN

p2 �→p2p3
assumption, which asserts that

( gs
2, {g

sj

2 }j∈[n] ) ≈c ( gs
2 · gs

3 , {g
sj

2 · g
sj

3 }j∈[n] ) given g1, h1, h2.

In the reduction, we sample w,w0, w1, vj , uj ←r ZN , h123 ←r HN , α ←r ZN and
simulate mpk, skκ

M honestly. To show that Gamei ≈c Gamei+1, we will require
another sequence of sub-games.
Gamei,1. Identical to Gamei except that the i’th key is P-normal. We claim that
Gamei ≈c Gamei,1. This follows from SDHN

p2 �→p2p3
assumption which asserts that

{h
rj

2 }j∈[n] ≈c {h
rj

2 · h
rj

3 }j∈[n] given g1, g23, h1, h2, h3

In the reduction, we sample w,w0, w1, vj , uj , α, α̂ ←r ZN and select a random
generator h123 of HN , and simulate mpk, ct, {skκ

M}κ�=i honestly.
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Gamei,2. Identical to Gamei except that the i’th key is P-SF. We claim that
Gamei,1 ≡ Gamei,2. This follows from Lemma 1 in Sect. 2 which ensures that for
any x that does not satisfy M,

(

κ’th sk, κ �= i︷ ︸︸ ︷
h2, {h

vj

2 }j∈[n], α, α̂;

SF ct︷ ︸︸ ︷
{g2, g

vj

2 , g3, g
vj

3 }j:xj=1;

P-normal i’th sk︷ ︸︸ ︷
{h

Mj( α
u )

123 · h
rjvj

3 , h
rj

3 }j∈[n] )

≡ ( h2, {h
vj

2 }j∈[n], α, α̂; {g2, g
vj

2 , g3, g
vj

3 }j:xj=1; {h
Mj( α

u )
123 · h

Mj( α̂
0 )

3 · h
rjvj

3 , h
rj

3 }j∈[n]︸ ︷︷ ︸
P-SF i’th sk

)

where vj ←r ZN and u ←r Z
�′−1
N , and for all α, α̂, and rj �= 0 mod p3. It is

straight-forward to compute the remaining terms in mpk, the challenge cipher-
text and the Q secret keys by sampling g1, w, w0, w1, uj , s, sj ourselves.
Gamei,3. Identical to Gamei except that the i’th key is SF. We claim that
Gamei,2 ≈c Gamei,3. The proof is completely analogous to that of Gamei ≈c

Gamei,1. Furthermore, observe that Gamei,3 is actually identical to Gamei+1.
GameFinal. Identical to GameQ+1 except that the challenge ciphertext is a SF
one for a random message in GT . We claim that GameQ+1 ≡ GameFinal. This
follows from the fact that

(

mpk︷ ︸︸ ︷
e(g1, hα

123),

SF sk︷ ︸︸ ︷
hα
123 · hα̂

3 ,

SF ct︷ ︸︸ ︷
e(gs

123, h
α
123) ) ≡ ( e(g1, hα

123), hα
123, e(gs

123, h
α
123 · hα̂

3 ) )

where g123, h123 and h3 are respective random generators of GN , HN and Hp3 ,
α, α̂ ←r ZN . The message mb is statistically hidden by e(gs

123, h
α̂
3 ). In GameFinal,

the view of the adversary is statistically independent of the challenge bit b. Hence,
AdvFinal = 0.

5 Simulating Composite-Order Groups in Prime-Order
Groups

We build upon and extend the previous framework of Chen et al. [6,11] for
simulating composite-order groups in prime-order ones. We provide prime-order
analogues of the static assumptions SDGN

p1 �→p1p2
,DDHHN

p1
used in the previous

sections. Moreover, we show that these prime-order analogues follow from the
standard k-Linear assumption (and more generally, the MDDH assumption [9])
in prime-order bilinear groups.

Additional Notation. Let A be a matrix over Zp. We use span(A) to denote
the column span of A, and we use span�(A) to denote matrices of width � where
each column lies in span(A); this means M ←r span�(A) is a random matrix of
width � where each column is chosen uniformly from span(A). We use basis(A)
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to denote a basis of span(A), and we use (A1 | A2) to denote the concatenation
of matrices A1,A2. If A is a m-by-n matrix with m > n, we use A to denote the
sub-matrix consisting of the first n rows and A the sub-matrix with remaining
m − n rows. We let In be the n-by-n identity matrix and 0 be a zero matrix
whose size will be clear from the context.

5.1 Prime-Order Groups and Matrix Diffie-Hellman Assumptions

A generator G takes as input a security parameter λ and outputs a description
G := (p,G1, G2, GT , e), where p is a prime of Θ(λ) bits, G1, G2 and GT are cyclic
groups of order p, and e : G1 × G2 → GT is a non-degenerate bilinear map. We
require that the group operations in G1, G2 and GT as well the bilinear map e
are computable in deterministic polynomial time with respect to λ. Let g1 ∈ G1,
g2 ∈ G2 and gT = e(g1, g2) ∈ GT be the respective generators. We employ the
implicit representation of group elements: for a matrix M over Zp, we define
[M]1 := gM1 , [M]2 := gM2 , [M]T := gMT , where exponentiation is carried out
component-wise. Also, given [A]1, [B]2, we let e([A]1, [B]2) = [AB]T .

We define the matrix Diffie-Hellman (MDDH) assumption on G1 [9]:

Assumption 3 (MDDHm
k,� Assumption). Let � > k ≥ 1 and m ≥ 1. We say

that the MDDHm
k,� assumption holds if for all PPT adversaries A, the following

advantage function is negligible in λ.

Adv
MDDHm

k,�

A (λ) :=
∣∣Pr[A(G, [M]1, [MS]1) = 1] − Pr[A(G, [M]1, [U]1) = 1]

∣∣
where M ←r Z

�×k
p , S ←r Z

k×m
p and U ←r Z

�×m
p .

The MDDH assumption on G2 can be defined in an analogous way. Escala et al. [9]
showed that

k-Lin ⇒ MDDH1
k,k+1 ⇒ MDDHm

k,� ∀� > k,m ≥ 1

with a tight security reduction. Henceforth, we will use MDDHk to denote
MDDH1

k,k+1.

5.2 Basis Structure

We want to simulate composite-order groups whose order is the product of three
primes. Fix parameters �1, �2, �3, �W ≥ 1. Pick random

A1 ←r Z
�×�1
p ,A2 ←r Z

�×�2
p ,A3 ←r Z

�×�3
p

where � := �1+�2+�3. Let (A‖
1 | A‖

2 | A‖
3)

� denote the inverse of (A1 | A2 | A3),
so that A�

i A‖
i = I (known as non-degeneracy) and A�

i A‖
j = 0 if i �= j (known as

orthogonality), as depicted in Fig. 5. This generalizes the constructions in [10,11]
where �1 = �2 = �3 = k.
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Fig. 5. Basis relations. Solid lines mean orthogonal, dashed lines mean non-
degeneracy. Similar relations hold in composite-order groups with (g1, g2, g3) in place

of (A1,A2,A3) and (h1, h2, h3) in place of (A
‖
1,A

‖
2,A

‖
3).

Correspondence. We have the following correspondence with composite-order
groups:

gi �→ [Ai]1, gs
i �→ [Ais]1

w ∈ ZN �→ W ∈ Z
�×�W
p , gw

i �→ [A�
i W]1

The following statistical lemma is analogous to the Chinese Remainder Theorem,
which tells us that w mod p2 is uniformly random given gw

1 , gw
3 , where w ←r ZN :

Lemma 6 (statistical lemma). With probability 1 − 1/p over A1,A2,A3,

A‖
1,A

‖
2,A

‖
3, the following two distributions are statistically identical.

{ A�
1 W,A�

3 W, W } and { A�
1 W,A�

3 W, W + U(2) }

where W ←r Z
�×�W
p and U(2) ←r span�W (A‖

2).

5.3 Basic Assumptions

We first describe the prime-order (A1 �→ A1,A2)-subgroup decision assumption,
denoted by SDG1

A1 �→A1,A2
. This is analogous to the subgroup decision assumption

in composite-order groups SDGN
p1 �→p1p2

which asserts that Gp1 ≈c Gp1p2 given
h1, h3, h12 along with g1, g2, g3. By symmetry, we can permute the indices for
A1,A2,A3.

Lemma 7 (MDDH�1,�1+�2 ⇒ SDG1
A1 �→A1,A2

). Under the MDDH�1,�1+�2

assumption in G1, there exists an efficient sampler outputting random
([A1]1, [A2]1, [A3]1) (as described in Sect. 5.2) along with base basis(A‖

1),
basis(A‖

3), basis(A
‖
1,A

‖
2) (of arbitrary choice) such that the following advantage

function is negligible in λ.

Adv
SD

G1
A1 �→A1,A2

A (λ) :=
∣∣Pr[A(D, [t0]1) = 1] − Pr[A(D, [t1]1) = 1]

∣∣
where

D := ( [A1]1, [A2]1, [A3]1, basis(A
‖
1), basis(A

‖
3), basis(A

‖
1,A

‖
2) ),

t0 ←r span(A1), t1 ←r span(A1,A2).
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Similar statements were also implicit in [10,11].
We then formalize the prime-order A1-subgroup Diffie-Hellman assump-

tion, denoted by DDHG2
A1

. This is analogous to the subgroup Diffie-Hellman
assumption in the composite-order group DDHHN

p1
which ensures that

{h
rjw
1 , h

rj

1 }j∈[Q] ≈c {h
rjw
1 · h

uj

1 , h
rj

1 }j∈[Q] given g1, g2, g3, h1, h2, h3 for Q =
poly(λ). One can permute the indices for A1,A2,A3.

Lemma 8 (MDDH�1
�W ,Q ⇒ DDHG2

A1
). Fix Q = poly(λ) with Q > �W ≥ 1.

Under the MDDH�1
�W ,Q assumption in G2, the following advantage function is

negligible in λ

Adv
DDH

G2
A1

A (λ) :=
∣∣Pr[A(D,T0) = 1] − Pr[A(D,T1) = 1]

∣∣
where

D := ( A1,A2,A3,A
‖
1,A

‖
2,A

‖
3; A�

2 W,A�
3 W ),

T0 := ([WD]2, [D]2), T1 := ([WD + R(1)]2, [D]2),

and W ←r Z
�×�W
p , D ←r Z

�W ×Q
p , R(1) ←r spanQ(A‖

1).

6 KP-ABE for Monotone Span Programs in Prime-Order
Groups

In this section, we present our adaptively secure, unbounded KP-ABE for mono-
tone span programs programs based on the k-Lin assumption in prime-order
groups.

6.1 Construction

Setup(1λ, 1n): On input (1λ, 1n), sample A1 ←r Z
(2k+1)×k
p ,B ←r Z

(k+1)×k
p and

W,W0,W1 ←r Z
(2k+1)×(k+1)
p , k ←r Z

2k+1
p

and output the master public and secret key pair

mpk :=
(

[A�
1 ,A�

1 W,A�
1 W0,A�

1 W1]1, e([A�
1 ]1, [k]2)

)
msk := ( k, B, W, W0, W1 ) .

Enc(mpk,x,m): On input an attribute vector x := (x1, . . . , xn) ∈ {0, 1}n and
m ∈ GT , pick c, cj ←r span(A1) for all j ∈ [n] and output

ctx :=

⎛
⎝C0 := [c�]1,

{ C1,j := [c�W + c�
j (W0 + j · W1)]1, C2,j := [c�

j ]1 }j:xj=1,
C := e([c�]1, [k]2) · m

⎞
⎠

∈ G2k+1
1 × (Gk+1

1 × G2k+1
1 )n × GT .
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KeyGen(mpk,msk,M): On input a monotone span program M ∈ Z
n×�′
p , pick

K′ ←r Z
(2k+1)×(�′−1)
p , dj ←r span(B) for all j ∈ [n], and output

skM :=

({
K0,j := [(k‖K′)M�

j + Wdj ]2, K1,j := [dj ]2,
K2,j := [(W0 + j · W1)dj ]2

}
j∈[n]

)

∈ (G2k+1
2 × Gk+1

2 × G2k+1
2 )n.

Dec(mpk, skM, ctx): If x satisfies M, compute ω1, . . . , ωn ∈ Zp such that∑
j:xj=1 ωjMj = 1.

Then, compute

K ←∏
j:xj=1

(
e(C0,K0,j) · e(C1,j ,K1,j)−1 · e(C2,j ,K2,j)

)ωj
,

and recover the message as m ← C/K ∈ GT .

The proof of correctness is direct and we omit it here.

6.2 Entropy Expansion Lemma in Prime-Order Groups

With A1,A2,A3,A
‖
1,A

‖
2,A

‖
3 defined as in Sect. 5.2, our prime-order entropy

expansion lemma is stated as follows. The proof is analogous to that for
composite-order entropy expansion lemma (Lemma 2) shown in Sect. 3.2.

Lemma 9 (prime-order entropy expansion lemma). Suppose �1, �3, �W ≥
k. Then, under the MDDHk assumption, we have

⎧⎪⎨
⎪⎩

aux : [A�
1 ]1, [A�

1 W]1, [A�
1 W0]1, [A�

1 W1]1

ct : [c�]1,
{
[c�W + c�

j (W0 + j · W1)]1, [c�
j ]1

}
j∈[n]

sk :
{
[WDj ]2, [Dj ]2, [(W0 + j · W1)Dj ]2

}
j∈[n]

⎫⎪⎬
⎪⎭

≈c

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

aux : [A�
1 ]1, [A�

1 W]1, [A�
1 W0]1, [A�

1 W1]1

ct : [ c
�
]1,

{
[ c

�
(W + V

(2)
j ) + cj

�
(W0 + j · W1 + U

(2)
j )]1, [ cj

�
]1

}
j∈[n]

sk :
{
[(W + V

(2)
j )Dj ]2, [Dj ]2, [(W0 + j · W1 + U

(2)
j )Dj ]2

}
j∈[n]

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

where W,W0,W1 ←r Z
�×�W
p ,V(2)

j ,U(2)
j ←r span�W (A‖

2),Dj ←r Z
�W ×�W
p , and

c, cj ←r span(A1) in the left distribution while c, cj ←r span(A1,A2) in the right
distribution. Concretely, the distinguishing advantage AdvExpLemA (λ) is at most

Adv
SD

G1
A1 �→A1,A2

B (λ) + Adv
DDH

G2
A2

B0
(λ) + n · (AdvSDG1

A1 �→A1,A3
B1

(λ) + Adv
DDH

G2
A3

B2
(λ)

+ Adv
SD

G1
A3 �→A3,A2

B4
(λ) + Adv

DDH
G2
A3

B6
(λ) + Adv

SD
G1
A1 �→A1,A3

B7
(λ)
)

+ Adv
DDH

G2
A2

B8
(λ)

where Time(B), Time(B0), Time(B1), Time(B2), Time(B4), Time(B6), Time(B7),
Time(B8) ≈ Time(A).
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Remark 1 (Differences from overview in Sect. 1.3). We stated our prime-order
expansion lemma for general �1, �2, �3; for our KP-ABE, it suffices to set
(�1, �2, �3) = (k, 1, k). Compared to the informal statement (8) in Sect. 1.3, we use
A2 ∈ Z

2k+1
p instead of A2 ∈ Z

(2k+1)×k
p , and we introduced extra A2-components

corresponding to A�
2 W,A�

2 (W0+j ·W1) in ct on the RHS. We have Dj in place
of Brj in the above statement, though we will introduce B later on in Lemma 10.
We also picked Dj to be square matrices to enable random self-reducibility of
the sk-terms. Finally, V(2)

j ,U(2)
j correspond to Vj ,Uj in the informal statement,

and in particular, we have A�
1 V(2)

j = A�
1 U(2)

j = 0.

6.3 Proof of Security

We prove the following theorem:

Theorem 2. Under the MDDHk assumption in prime-order groups
(cf. Sect. 5.1), the unbounded KP-ABE scheme for monotone span programs
described in this Section (cf. Sect. 6.1) is adaptively secure (cf. Sect. 2.2).

Bilinear Entropy Expansion Lemma, Revisited. With the additional basis
B ∈ Z

(k+1)×k
p , we need a variant of the entropy expansion lemma in Lemma 9

with (�1, �2, �3, �W ) = (k, 1, k, k + 1) where the columns of Dj are drawn from
span(B) instead of Zk+1

p (see Lemma 10).

Lemma 10 (prime-order entropy expansion lemma, revisited). Pick
(A1,a2,A3) ←r Z

(2k+1)×(k+1)
p × Z

2k+1
p × Z

(2k+1)×(k+1)
p and define its dual

(A‖
1,a

‖
2,A

‖
3) as in Sect. 5.2. With B ←r Z

(k+1)×k
p , we have

⎧⎪⎨
⎪⎩

aux : [A�
1 ]1, [A�

1 W]1, [A�
1 W0]1, [A�

1 W1]1

ct : [c�]1,
{
[c�W + c�

j (W0 + j · W1)]1, [c�
j ]1

}
j∈[n]

sk :
{
[WDj ]2, [Dj ]2, [(W0 + j · W1)Dj ]2

}
j∈[n]

⎫⎪⎬
⎪⎭

≈c

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

aux : [A�
1 ]1, [A�

1 W]1, [A�
1 W0]1, [A�

1 W1]1

ct : [ c
�
]1,

{
[ c

�
(W + V

(2)
j ) + cj

�
(W0 + j · W1 + U

(2)
j )]1, [ cj

�
]1

}
j∈[n]

sk :
{
[(W + V

(2)
j )Dj ]2, [Dj ]2, [(W0 + j · W1 + U

(2)
j )Dj ]2

}
j∈[n]

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

where W,W0,W1 ←r Z
(2k+1)×(k+1)
p , V(2)

j ,U(2)
j ←r spank+1(a‖

2),
Dj ←r spank+1(B), and c, cj ←r span(A1) in the left distribution while c, cj ←r

span(A1,a2) in the right distribution. We let AdvExpLemRev
A (λ) denote the distin-

guishing advantage.

We claim that the lemma follows from the basic entropy expansion lemma
(Lemma 9) and the MDDHk assumption, which tells us that

{[Dj ←r Z
(k+1)×(k+1)
p ]2}j∈[n] ≈c {[Dj ←r spank+1(B)]2}j∈[n].
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Concretely, for all A, we can construct B0 and B1 with Time(B0),Time(B1) ≈
Time(A) such that

AdvExpLemRev
A (λ) ≤ AdvExpLemB0

(λ) + 2 · AdvMDDH
n(k+1)
k,k+1

B1
(λ).

The proof is straight-forward by demonstrating that the left (resp. right) distri-
butions in Lemmas 9 and 10 are indistinguishable under the MDDHk assump-
tion and then applying Lemma 9. In the reduction, we sample W,W0,W1 ←r

Z
(2k+1)×(k+1)
p (and V(2)

j ,U(2)
j ←r spank+1(a‖

2) for the right distributions) and
simulate aux, ct honestly.

Main Technical Lemma. We prove the following technical lemma. As with
the composite-order scheme in Sect. 4, we first apply the new entropy expansion
lemma in Lemma 10 and obtain a copy of the CGW KP-ABE (variant-thereof)
in the a2-subspace. We may then carry out the classic dual system methodology
used for establishing adaptive security of the CGW KP-ABE.

Lemma 11. For any adversary A that makes at most Q key queries against the
unbounded KP-ABE scheme, there exist adversaries B0,B1,B2 such that:

AdvabeA (λ) ≤ AdvExpLemRev
B0

(λ) + Q · AdvMDDHn
k,k+1

B1
(λ) + Q · AdvMDDHn

k,k+1
B2

(λ) + O(1/p).

where Time(B0),Time(B1),Time(B2) ≈ Time(A). In particular, we achieve secu-
rity loss O(n + Q) based on the MDDHk assumption.

The proof follows the same game sequence as shown in Sect. 4.2 except that
the adversary is given an E-normal challenge ciphertext instead of a SF one in
Gamei, Gamei,1, Gamei,2, Gamei,3 (in fact, we do not need to define SF cipher-
texts) and the auxiliary distributions are defined as follows.

Auxiliary Distributions. We define various forms of ciphertext (of message
m under attribute vector x):

– Normal: Generated by Enc; in particular, c, cj ←r span(A1).
– E-normal: Same as a normal ciphertext except that c, cj ←r span(A1,a2)

and we use the substitution:

W �→ W + V(2)
j in j’th component

and W0 + j · W1 �→ W0 + j · W1 + U(2)
j (11)

where U(2)
j ,V(2)

j ←r spank+1(a‖
2).

Then we pick α ←r Zp and define various forms of key (for span program M):

– Normal: Generated by KeyGen.
– E-normal: Same as a normal key except that we use the same substitution

as in (11).
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– P-normal: Sample dj ←r Z
k+1
p in an E-normal key.

– P-SF: Replace k with k + αa‖
2 in a P-normal key.

– SF: Sample dj ←r span(B) in a P-SF key.

Acknowledgments. We greatly thank Katsuyuki Takashima for insightful and con-
structive feedback. We also thank all anonymous reviewers for their helpful comments.
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Abstract. In anonymous identity-based encryption (IBE), ciphertexts
not only hide their corresponding messages, but also their target identity.
We construct an anonymous IBE scheme based on the Computational
Diffie-Hellman (CDH) assumption in general groups (and thus, as a spe-
cial case, based on the hardness of factoring Blum integers).

Our approach extends and refines the recent tree-based approach
of Cho et al. (CRYPTO ’17) and Döttling and Garg (CRYPTO ’17).
Whereas the tools underlying their approach do not seem to provide any
form of anonymity, we introduce two new building blocks which we uti-
lize for achieving anonymity: blind garbled circuits (which we construct
based on any one-way function), and blind batch encryption (which we
construct based on CDH).

We then further demonstrate the applicability of our newly-developed
tools by showing that batch encryption implies a public-key encryption
scheme that is both resilient to leakage of a (1−o(1))-fraction of its secret
key, and KDM secure (or circular secure) with respect to all linear func-
tions of its secret key (which, in turn, is known to imply KDM security
for bounded-size circuits). These yield the first high-rate leakage-resilient
encryption scheme and the first KDM-secure encryption scheme based
on the CDH or Factoring assumptions.

Finally, relying on our techniques we also construct a batch encryption
scheme based on the hardness of the Learning Parity with Noise (LPN)
problem, albeit with very small noise rate Ω(log2(n)/n). Although this
batch encryption scheme is not blind, we show that it still implies stan-
dard (i.e., non-anonymous) IBE, leakage resilience and KDM security.
IBE and high-rate leakage resilience were not previously known from
LPN, even with extremely low noise.

1 Introduction

Identity Based Encryption (IBE) is a form of public key encryption where a user’s
public key is just his name. Specifically, an authority holding a master secret key

The full version of this paper [BLSV17] is available on ePrint.
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msk can generate individual secret keys for users skid according to their identity
id, and encryption is performed using a master public key (mpk) and the identity
of the recipient. The notion of IBE was proposed by Shamir [Sha84] but first
realized only over 15 years later [BF03,Coc01]. Aside from the obvious utility
of using IBE for the purpose for which it was intended, it has also proved to
be a useful building block to achieve other cryptographic tasks (e.g. chosen-
ciphertext secure encryption [BCHK07]) as well as an inspiration for defining
more expressive forms of encryption schemes with access control. Most generally,
the latter refers to schemes where multiple secret keys can be generated, but
each key can only recover encrypted information if some predefined condition
holds. The most natural generalization is to attribute based encryption (ABE)
[SW05,GPSW06] where secret keys skf correspond to policies f , and encryptions
are with respect to attributes x, so that the message is decryptable only if
f(x) = 1. IBE is a special case where f is a point function (i.e. fa(x) = 1 if and
only if x = a).

Very recently, a beautiful work of Döttling and Garg [DG17a] proposed a
new tree based approach for IBE and showed that it implies a candidate IBE
scheme from the computational Diffie-Hellman assumption (CDH), which was
previously unknown. Their main building blocks were garbled circuits and a
special form of encryption called Chameleon Encryption. In a follow-up work
[DG17b] they showed that tree based constructions can also be used to amplify
the properties of IBE schemes.

An important variant of IBE is one where it is also required that a cipher-
text for recipient id does not expose id to an unauthorized decryptor. This
property is called anonymity. Anonymous IBE is quite useful, e.g. for search-
able encryption [BCOP04], and analogously to the connection between IBE and
ABE, anonymous IBE is a special case of attribute hiding ABE (e.g., as in
[KSW08]). The latter has raised much interest recently in the cryptographic lit-
erature due to its connection to functional encryption schemes. Anonymous IBE
schemes can be constructed from pairings [BCOP04,ABC+08,BW06,Gen06],
lattices [GPV08,ABB10,CHKP12] and quadratic residuosity [BGH07] (the last
one in the random oracle model).

The [DG17a,DG17b] constructions are not anonymous for a fundamental
reason. Their construction is based on an implicit exponential-size prefix tree
representing the entire space of identities. The encryption operation considers a
path from the root to the leaf representing the target id and constructs a sequence
of garbled circuits, each respective to a node along this path. At decryption
time, the garbled circuits are evaluated from root to leaf, where the output of
each garbled circuit is used to generate the input labels for the next garbled
circuit along the path. Therefore, if one tries to decrypt a ciphertext intended
for id using a key for id′, the decryption process will succeed up to the node
of divergence between sk and sk′, at which point the skid′ decryptor will not be
able to decode the labels that correspond to the next garbled circuit. Thus, this
process necessarily reveals the common prefix of id and (a known) id′.
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1.1 Our Results

In this work, we present new primitives and techniques showing how to get signif-
icantly more mileage out of the tree-based approach. First and most importantly,
we build on the tree-based approach using new tools that we call blind batch
encryption and blind garbled circuits to construct anonymous IBE schemes. Sec-
ondly, we show that our building blocks can be constructed from assumptions
not previously known to imply IBE at all, in particular, the learning parity
with noise (LPN) assumption with extremely small noise. Finally, we show that
our building blocks can be used to achieve cryptographic capabilities that are
apparently unrelated to IBE, namely leakage resilience and KDM security. We
elaborate on all of these contributions below.

Batch Encryption and New Constructions of IBE. The recent work of Döttling
and Garg [DG17b] show an amplification between notions of identity based
encryption. Namely, they show how to go from any selective IBE scheme to
a fully secure IBE scheme. We notice that their construction can be repur-
posed to do something very different. Namely, we show how to start from an
IBE scheme which only supports polynomially many identities but with short
master public key, and construct a full-fledged IBE scheme. In particular, the
scheme should support T = T (λ) identities with a master public key of size
S = S(λ) = T 1−ε · poly(λ) for some constant ε > 0 and a fixed polynomial
poly; we call this a weakly compact IBE scheme. We remind the reader that
non-compact IBE schemes, namely ones that support T identities and have a
master public key that grows linearly with T , in fact follow quite easily from any
public-key encryption scheme (see, e.g., [DKXY02]).

Weakly compact IBE turns out to be easier to construct using the tech-
niques of [DG17a], and in particular it does not require the full power of their
Chameleon Encryption. We show that it is sufficient to start from a building
block that we call batch encryption. In particular, whereas Chameleon Encryp-
tion is required to have a trapdoor, a batch encryption scheme has no trapdoors.
Indeed, looking ahead, we remark that this feature of requiring no trapdoors is
what enables our IBE construction from the extremely-low-noise LPN assump-
tion. The batch encryption definition takes after the laconic oblivious transfer
primitive presented by Cho, Döttling, Garg, Gupta, Miao and Polychroniadou
[CDG+17] (a definition that preceded Chameleon Encryption).

A batch encryption scheme is a public key encryption scheme in which key
generation is a projection (i.e. the key generation algorithm takes the secret key
as input and outputs a shorter string as the public key). For secret keys of length
n, a batch encryption scheme encrypts an array of n × 2 messages at a time.
At decryption, only one out of each pair of messages is recovered, depending on
the value of the respective secret key bit. We require that we can instantiate
the scheme for any n without increasing the length of the public key. Indeed,
batch encryption is very similar to laconic oblivious transfer [CDG+17] and the
two are essentially existentially equivalent. The formal definition varies slightly
in that laconic OT can more efficiently handle situations where only a subset of
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the n message pairs are encrypted. Another formal difference is that the laconic
OT formulation allows for a randomized receiver message, however since receiver
privacy is not a requirement for this primitive this is not actually needed and
therefore the analogous component in batch encryption is deterministic. The
formulation of batch encryption is more useful for our applications, but our
constructions can be seen as simply constructing laconic OT.

We show that batch encryption implies weakly compact IBE (as defined
above) and that weakly compact IBE can be bootstrapped to a full-fledged IBE
scheme.

Batch Encryption from CDH and Extremely-Low-Noise LPN. Batch encryption
can be constructed from CDH, using the methods of [DG17a]; it can also be con-
structed from the Learning with Errors (LWE) assumption in a straightforward
manner without using lattice trapdoors. Thus we observe that LWE-based IBE
does not require lattice trapdoors, even though they are used by all previous
constructions. We note that the resulting IBE scheme is greatly inefficient, quite
probably much less efficient than a trapdoor based construction, however the
conceptual difference here could be of interest.

We take an additional step forward and show that even the learning par-
ity with noise (LPN) assumption is sufficient to instantiate batch encryption,
although we must rely on LPN with very extreme parameters. The LPN assump-
tion with a constant noise rate implies one-way functions; with a noise rate
of 1/

√
n (where n is the dimension of the LPN secret), it implies public-key

encryption [Ale11]; and with the extremely low noise rate of log2 n/n, it implies
collision-resistant hash functions [BLVW17,YZW+17]. The latter parameter set-
ting is insecure against quasi-polynomial adversaries, but given the state of the
art in algorithms for LPN, presumably secure against polynomial-time adver-
saries. Indeed, it is ill advised to base cryptographic hardness on the gap between
polynomial time adversaries and quasi-polynomial time hardness and we see this
result mainly as proof of concept showing that batch encryption can be based
on structures that were not considered to imply IBE so far.

The Blinding Technique and Anonymous IBE. Our main contribution is a con-
struction of anonymous IBE from the CDH assumption.

To construct anonymous IBE we present techniques that allow us to walk down
the identity-space tree at decryption time blindly. Namely, in a way that does not
reveal to the decryptor whether they are on the correct path until the very end
of the process. This allows us to overcome the aforementioned basic obstacle. We
present a variety of blind primitives that help us in achieving this goal.

The first building block we introduce is blind garbled circuits. Recall that
a standard circuit garbling scheme takes a circuit C as input, and outputs a
garbled version of the circuit ̂C together with pairs of labels labi,b for the input
wires. Given ̂C, labi,xi

, the value C(x) can be computed. For security, there
is a simulator that takes y = C(x) and produces a garbled circuit and a set
of input labels that are indistinguishable from the original. We augment this
definition with a blindness property, requiring that the simulated garbled circuit
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and labels are completely uniform when starting with a completely uniform y
that is unknown to the distinguisher (indeed, the latter condition is necessary
since an attempt to evaluate the simulated garbled circuit should output y). We
show that blind garbled circuits can be constructed by properly instantiating
the “point-and-permute” construction [BMR90,Rog91], based on any one way
function. Interestingly, as far as we know, the point-and-permute construction
has been used to achieve more efficient garbled circuits, but has never been used
to achieve stronger security properties.

We then introduce blind batch encryption, which is the blind version of the
aforementioned batch encryption primitive. The use of batch encryption in IBE
constructions is as a way to encrypt labels for a garbled circuit so that only
one label per input wire can be decrypted (i.e. the one corresponding to the
batch encryption secret key). Blind batch encryption is a “blindness preserving”
counterpart for blind garbled circuits as follows. We require that if a random
message is encrypted using a blind batch encryption scheme, then the resulting
ciphertext is completely random as well.1 This combines very naturally with
a blind garbling scheme: if we batch encrypt labels to a blind garbled circuit
with a random output, then by simulation security this is indistinguishable from
encrypting random labels that are independent of the garbled circuit. Therefore,
we are guaranteed that the batch ciphertext itself is random as well. At a very
high level, this will allow us to propagate the randomness (blindness) property
along the leaf-root path in the tree, and avoid revealing any information via
partial decryption.

We show that blind batch encryption can be constructed based on CDH by
introducing a modification to the CDH based Chameleon Encryption construc-
tion from [DG17a]. Unfortunately, our construction based on extremely low noise
LPN is not blind.

We apply these building blocks to anonymize the aforementioned IBE con-
struction from batch encryption. We present a blindness property for IBE that is
analogous to the one for batch encryption, requiring that an encryption of ran-
dom message is indistinguishable from random even to a user who is permitted
to decrypt it. We show that this notion implies anonymous IBE, and further-
more, the construction of full-fledged IBE from a weakly compact scheme, and
a construction of the weakly compact scheme from a batch encryption scheme
both preserve blindness (if we use blind garbled circuits). In fact, formally, to
avoid redundancy we only present the reduction in the blind setting, and the
non-blind variant follows as a special case.

We find it intriguing that even though we only require anonymous IBE at
the end, we have to go through the (apparently stronger) primitive of blind IBE.
Roughly speaking, the difference is that anonymous IBE only requires hiding of
the identities in settings where the adversary cannot decrypt (namely, he only
obtains secret keys for identities id different from either of the challenge identi-
ties id0 and id1) while blind IBE requires hiding of the identities even in settings
where the adversary can decrypt. Morally, we think of this as the difference

1 We actually allow a slight relaxation of this condition.
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between weak attribute-hiding and strong attribute-hiding in predicate encryp-
tion (although the details are somewhat different). We also note that weakly
compact anonymous IBE can be constructed generically from any weakly com-
pact IBE scheme. Thus, had we been able to bootstrap from a weakly compact
anonymous IBE scheme into a full-fledged anonymous IBE, we would have a
generic construction of anonymous IBE scheme from any IBE scheme.

Batch Encryption Implies Leakage Resilience and KDM Security. We show
that the utility of batch encryption schemes go beyond IBE, thus expand-
ing [CDG+17] who showed a variety of applications of laconic OT, mostly
in the context of multi-party computation. We show that batch encryption
naturally gives rise to a public key encryption scheme with desirable prop-
erties such as resilience to high rate (1 − o(1)) key leakage [AGV09,NS12]
and security for key dependent messages [BRS02] (KDM, also known as cir-
cular security). This allows us to present constructions from assumptions such
as CDH, Factoring and extremely-low-noise LPN that were not known before
[AGV09,NS12,BHHO08,ACPS09,BG10,HLWW16]. Note that from [CDG+17]
it was not even clear that the (nearly) equivalent notion of laconic OT even
implies plain public key encryption (without assuming “receiver privacy”; with
receiver privacy, we know that any 2 message OT implies PKE). This further
strengthens our impression that batch encryption is a notion worthy of further
exploration.

The basic idea is quite straightforward. Recall that a batch encryption scheme
encrypts an array of n × 2 bits, and decryption only recovers one out of two
pairs. Therefore, if the secret key is x ∈ {0, 1}n and the encrypted message
is M ∈ {0, 1}n×2, then the decrypted message is equal to m =

∑

i(Mi,0(1 ⊕
xi) ⊕ Mi,1xi) =

∑

i Mi,0 ⊕ ∑

i(Mi,1 ⊕ Mi,0)xi. Denote α0 =
∑

i Mi,0, αi =
Mi,1 ⊕ Mi,0. Note that it is sufficient that one out of each pair Mi,0,Mi,1 is
random to make all {αi}i>0 completely random, this property will be useful for
us. To encrypt, we will n-out-of-n secret share our message m =

∑

i μi and set
Mi,0 = Mi,1 = μi. Decryption follows by decrypting the batch ciphertext and
reconstructing m. For security, we notice that the batch security means that we
can convert one out of each pair Mi,0,Mi,1 to random (this will be unnoticed even
to a distinguisher who has the key x). At this point, we recall that x is in fact
information theoretically unknown to the adversary who only sees the projected
public key (recall that the projection key generation function is shrinking). Thus
the value

∑

i αixi extracts from the remaining entropy in x and is statistically
close to uniform (indeed one has to prove that there is no additional usable
information in the ciphertext other than the output message m). This argument
naturally extends to leakage resilience, since we can allow additional leakage on x
so long as sufficient information remains to allow for extraction. It appears that
security against computationally (sub-exponentially) hard to invert unbounded
length leakage (“auxiliary input resilience” [DGK+10]) should follow in a similar
manner, however we do not provide a proof.

For KDM security, we notice that for any linear function of x of the form
α0 ⊕ ∑

i αixi the above shows how to simulate a ciphertext that decrypts to
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this message (in fact, how to sample a random such ciphertext). Indeed this
ciphertext is not honestly generated but we can show that it is indistinguish-
able from one. This is the basis for KDM security. We recall that as shown in
[BHHI10,App11], KDM security with respect to linear functions can be ampli-
fied to KDM security for bounded polynomial functions of the key. Interestingly,
this amplification approach also involves batch encrypting labels for a garbled
circuit. For lack of space, we refer the reader to our full version [BLSV17] for
the details on the leakage-resilience and KDM security constructions.

1.2 Concurrent Work

In concurrent and independent work, Döttling, Garg, Hajiabadi, and Masny
[DGHM18] construct (non-anonymous) IBE from a subexponential assumption
on constant-noise LPN (similar in spirit to our assumption). In another concur-
rent and independent work, Kitagawa and Tanaka [KT18] construct KDM-secure
IBE fromany IBEalongwith anyKDM-secure secret key encryption scheme. Since
we construct both IBE and KDM-secure PKE from Batch Encryption, combining
[KT18] with our work yields KDM-secure IBE from Batch Encryption (and hence
constructions from CDH/Factoring and from log2(n)/n-noise LPN).

1.3 Our Techniques

The rest of the paper is organized as follows. In Sect. 3, we define the notion of
(blind) batch encryption and construct it from the CDH assumption. We also
provide a construction of the (non-blind) batch encryption from the extremely
low noise LPN assumption. We then introduce the notion of blind garbled circuits
and construct it in Sect. 4. Then, in Sect. 5, we show how to use (blind) batch
encryption to construct a weakly compact (blind) IBE scheme. In Sect. 6, we
bootstrap the weakly compact (blind) IBE scheme into a full-fledged (blind)
IBE scheme. The applications to leakage resilience and KDM security, as well
as many details in the following sections, are deferred to the full version of our
paper [BLSV17].

We first provide an overview of the last step of our anonymous IBE construc-
tion, namely our bootstrapping theorem for blind IBE, and then the construction
of weakly compact IBE from batch encryption.

Bootstrapping Blind IBE. We start with bootstrapping a regular IBE scheme,
and then describe the additional techniques required to handle blindness.

Suppose we have a blind IBE scheme WIBE that supports T = T (λ) iden-
tities and has a master public key whose size is S = S(λ) = T 1−ε · p(λ) for
some absolute constant ε > 0 and a fixed polynomial p. To keep our exposi-
tion simple, assume that the ciphertexts in this scheme are truly pseudorandom.
We remark that without the restriction on the master public key length, there
are generic ways of constructing such schemes from any public-key encryption
scheme, resulting in master public key of length O(T · λ); see, e.g., [DKXY02].



542 Z. Brakerski et al.

The key leverage we have in WIBE is that the master public key grows sublin-
early with the number of identities the scheme supports.

We will show how to construct another (blind) IBE scheme WIBE ′ that
supports 2T identities without growing the master public key at all. This will
not be enough by itself to prove the full bootstrapping theorem by induction
because the ciphertext and secret key sizes grow significantly in the transforma-
tion. Nevertheless, all of the necessary ideas for the full bootstrapping theorem
are in this toy example already.

We start by picking T to be sufficiently large so that the size of the master
public key T 1−ε ·p(λ) is at most T/4. The master public key of WIBE ′ is a single
master public key of WIBE ; we will denote it by mpk(ε) and associate it with
the root of a depth-2 tree with branching factor 2 in the first level and T in the
second. We will also pick two other master public keys mpk(0) and mpk(1), but
will not publish it as part of the WIBE ′ master public key. The master secret
key in WIBE ′ will, however, include msk(ε) as well as mpk(i),msk(i).

The two questions we address next is (a) how to encrypt a message m for an
identity id||id′ where id ∈ {0, 1} and id′ ∈ {0, . . . , T −1} and (b) how to generate
identity secret keys.

Let us address the question of secret keys first. The secret key for an identity
id||id′ where id ∈ {0, 1} and id′ ∈ {0, . . . , T − 1} will include as part of it sk

(id)
id′ ,

namely the secret key for the identity id′ generated with respect to the master
public key mpk(id). Thus, it makes sense to encrypt a message m under the
identity id||id′ by encrypting it with respect to the identity id′ under the master
public key mpk(id). If the encryptor could do this, decryption indeed works and
we are done! However, the big problem here is that the encryptor does not know
mpk(0) or mpk(1). How can the encryptor generate a ciphertext without knowing
the master public key?

It is here that we use the technique of deferred encryption similarly to
[GKW16] and the aforementioned [DG17a]. That is, instead of having to gen-
erate an encryption of m under an unknown master public key, the encryptor
simply constructs a circuit C[m, id′] which has the message m and the identity
id′ hardcoded. The circuit C[m, id′], on input an mpk, produces an encryption of
m under mpk with identity id′. (The circuit also has the encryption randomness
r hardcoded).

The encryptor now does two things. It first garbles this circuit to produce
̂C, the garbled circuit, together with 2S labels labi,b for i ∈ [S] and b ∈ {0, 1}.
It then encrypts each label labi,b using the identity (id, i, b) under the master
public key mpk(ε). It is here that we use compactness of WIBE in a crucial way:
since WIBE can support T > 4S identities, it can indeed be used to encrypt
these labels.

The identity secret key for id||id′ now contains two things. As before, it
contains the secret key for the identity id′ under the master public key mpk(id).
It also contains the secret keys for the S identities (id, i,mpk(id)[i]) under the
master public key mpk(ε).
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Decryption proceeds by first using the secret keys for the S identities to unlock
half the labels for the garbled circuit ̂C, namely, the labels corresponding to the
input mpk(id). It then decodes the garbled circuit to produce an encryption of m
with identity id′ under the master public key mpk(id). The first part of the secret
key is now precisely what is necessary to decrypt and obtain the message m.

We first argue semantic security (IND-ID-CPA security), then show the barri-
ers to achieving blindness/anonymity and how our new techniques overcome them.
Let the challenge identity be id||id′. A ciphertext of a message m under id||id′

contains the garbled circuit ̂C and encryptions of the labels Li,b under identities
(id, i, b) with respect to the master public key mpk(ε). Notice first that secret keys
for identities that begin with the bit (1 − id) are completely useless in unlocking
any of the labels of the garbled circuit. Only secret keys for identities that begin
with the bit id are useful. Even they can only ever unlock half the labels of the gar-
bled circuit. Indeed, this is crucial since otherwise we will not be able to invoke the
security of the garbled circuit at all!

The secret keys for identities that begin with the (matching) bit id unlock the
garbled labels corresponding to the input mpk(id). One now invokes the security of
the garbled circuit which says that the only thing revealed by these labels together
with the garbled circuit is the encryption of m under the identity id′ generated with
the master public key mpk(id). Now, since the adversary never obtains the secret
key for the challenge identity, she never gets the secret key for id′ under mpk(id).
Thus, the semantic security of WIBE tells us that the message m remains hidden.

As described in the introduction, this construction does not lead to an anony-
mous IBE scheme. Indeed, given a ciphertext with respect to the identity id1||id′

1

and a secret key for id2||id′
2 �= id1||id′

1, one can easily tell if id1 = id2 or not, simply
by seeing if the first decryption step succeeds. Worse, it is unclear if the anonymity
of the underlying WIBE scheme helps here at all. If id1 = id2, the secret keys are
authorized to decrypt half the encrypted labels (“first level ciphertexts”), and if
id1 �= id2, the secret keys do not decrypt any of them. Thus, it seems at first glance
that we are doomed: one can seemingly always recover the first bit of the identity
in any tree-based scheme.

Our key observation is that even in the “partly-authorized case”, the cipher-
texts are encryptions of fresh random labels. (In reality, these labels do appear
again in the garbled circuits; in the proof, this is handled by doing the hybrids in
the reverse order from the current presentation where pseudorandomness at the
leaves comes from the adversary not having the final secret key corresponding to
the target identity.) Thus, if the WIBE scheme is blind, the adversary can still not
tell the difference between whether she had an authorized key or not. In both cases,
the output of the decryption is a bunch of uniformly random strings! Our troubles,
unfortunately, do not stop there. The next line of defense, the garbled circuit, could
also help the adversary distinguish whether she obtained the right labels in the first
step or just random strings. Blindness again comes to the rescue: this time, we use
our blind garbled circuits in conjunction with the fact that the output of the circuit
we are garbling is actually pseudorandom.

This concludes a sketch of our toy construction and its security proof.



544 Z. Brakerski et al.

Of course, there was no reason a-priori to have only one level of garbled circuits.
One can garble the “inner WIBE” encryptions and do so for every level in the tree.
The inputs to each such garbled circuit is a single master public key, so the input
labels to this new garbled circuit will be no larger than the previous level’s input
labels. We can thus build an IBE scheme corresponding to a tree of any poly(λ)
depth, allowing us to support exponentially many identities: a full IBE scheme. Of
course, we cannot generate exponentially many WIBE master public keys (one for
each node of the tree), but we can implicitly generate them using a PRF.

For full details on our bootstrapping theorem, see Sect. 6.

From Batch Encryption to Weakly Compact IBE. We now provide a high level
overview of how to construct weakly compact IBE from batch encryption. For-
mally, we construct a scheme that supports any polynomial number T of iden-
tities with public key size λ. We focus on the vanilla (non-blind) variant as the
blind one follows via a similar construction.Wenote that batch encryption schemes
go hand-in-hand with garbled circuits (a connection that is extensively used in
[CDG+17,DG17a]). Consider a batch encryption scheme with secret key x of
length n � λ and public key length λ. Then we can encrypt an array of n × 2 ele-
ments, specifically we can encrypt labels for an n-input garbled circuit. The holder
of the secret key will be able to evaluate said garbled circuit on the labels that cor-
respond to his secret key. In other words, batch encryption allows us to specify a
circuit C : {0, 1}n → {0, 1}m and generate a ciphertext that will reveal only C(x),
even to an adversary that holds the secret key.

Recall that the only requirement we want from the resulting IBE is short mas-
ter public key. All other parameters can depend polynomially on the size of the
identity space. We will therefore generate a sequence of T key pairs for a standard
public key encryption scheme (pke.pk1, pke.sk1), . . . , (pke.pkT , pke.skT ). For sim-
plicity assume |pke.pki| = λ. Thenwe instantiate the batch encryption schemewith
n = T ·λ and generate a batch public key, a projection ofx = pke.pk1‖ · · · ‖pke.pkT .
The batch public key will serve as mpk of the weakly compact IBE scheme, and
indeed its length is λ, independent of T .

To encrypt a ciphertext to target identity id ∈ [T ], we generate a garbled circuit
that expects as input a sequence of T public keys, and takes the id-th of them and
uses it to encrypt the message. The IBE secret key for identity id will contain the
entire sequence x = pke.pk1‖ · · · ‖pke.pkT , indeed in this case the batch encryp-
tion secret key is not secret at all! In addition, the IBE secret key for id will contain
pke.skid. Given a ciphertext, a decryptor will first use x to evaluate the garbled cir-
cuit and recover C(x), which in this case is just a public-key encryption ciphertext
with respect to pke.pkid. The next step is to just use pke.skid to decrypt this cipher-
text and recover the message.

Security follows from the security of batch encryption (which conveniently
applies also when the batch secret key x is known) and the security of the public
key encryption scheme.
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2 Preliminaries andDefinitions

2.1 (Anonymous) Identity-Based Encryption

Definition 1 (Identity Based Encryption). An identity based encryption
(IBE) scheme consists of five PPT algorithms (Params,Setup,Keygen,Enc,Dec)
with the following syntax.

1. Params(1λ, 1t) takes as input the security parameter 1λ and an identity length 1t.
It returns public parameters pp (which can be reused to generate multiple master
public key/master secret key pairs).

2. Setup(pp) takes as input public parameters pp and returns a master public key
mpk and master secret key msk.

3. Keygen(pp,msk, id) takes as input public parameters pp and themaster secret key
msk. It outputs a secret key skid associated to id.

4. Enc(pp,mpk, id,m) encrypts a message m to a specified identity id. It outputs a
ciphertext ct.

5. Dec(pp, sk, ct) decrypts a ciphertext ct with secret key sk, outputting a plaintext
message m′.

We require that an IBE scheme satisfy the following two properties.

– Correctness: with probability 1 over the randomness of (Params,Setup,
Keygen,Enc,Dec), we have that Dec(pp, skid,Enc(pp,mpk, id,m)) = m where
(mpk, msk) ← Setup(pp) and skid ← Keygen(msk, id).

– IND-ID-CPA Security: a PPT adversary A cannot win the following security
game with probability greater than 1

2 + negl(λ):
1. pp ← Params(1λ, 1t)
2. (mpk,msk) ← Setup(pp)
3. (id∗,m0,m1, st) ← AKeygen(pp,msk,·)(mpk)
4. b

$← {0, 1}
5. ct ← Enc(pp,mpk, id∗,mb)
6. b′ ← AKeygen(pp,msk,·)(st, ct)
7. A wins if and only if b′ = b and id∗ was never queried by A to its Keygen

oracle.

Definition 2 (Anonymous IBE).An anonymous IBE scheme also has the syn-
tax (Params, Setup, Keygen, Enc, Dec) of an IBE scheme. It satisfies the same cor-
rectness property as IBE, and has the following stronger notion of security:

– IND-ANON-ID-CPA Security: A PPT adversary A cannot with the following
security game with probability greater than 1

2 + negl(λ):
1. pp ← Params(1λ, 1t)
2. (mpk,msk) ← Setup(pp)
3. (id0, id1,m0,m1, st) ← AKeygen(pp,msk,·)(mpk)
4. b

$← {0, 1}
5. ct ← Enc(pp,mpk, idb,mb)
6. b′ ← AKeygen(pp,msk,·)(st, ct)
7. A wins if and only if b′ = b and id0, id1 were never queried byA to itsKeygen

oracle.
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2.2 Computational Diffie-Hellman (CDH)

Let g be an element of some group G. We say that q is a ε-randomizer for g if the
statistical distance between ga for a ← Zq and h ← 〈g〉 is at most ε. We note that
any q ≥ ord(g) · 
1/ε� is an ε-randomizer, so it is sufficient to have an upper bound
on the order of g in order to compute a randomizer for any ε.

A (possibly randomized) group sampler is a ppt algorithm G that on input the
security parameter outputs a tuple (G, g, q) ← G(1λ) which defines a G by provid-
ing a poly(λ)-bit representation for group elements, and a polynomial time algo-
rithm for computing the group operation and inversion (and thus also exponenti-
ation), together with an element g ∈ G and a negl(λ)-randomizer q for 〈g〉.

The Computational Diffie-Hellman (CDH) assumption with respect to G,
denoted CDHG , is that for every ppt algorithm A it holds that

AdvCDHG [A](λ) = Pr
(G,g,q)←G(1λ)

a1,a2←Zq

[A(1λ, (G, g, q), ga1 , ga2) = ga1a2 ] = negl(λ).

We sometimes omit the indication of G when it is clear from the context.
We note that there exists a randomized group sampler such that the hard-

ness of factoring Blum integers reduces to the hardness of the CDH problem
[Shm85,McC88,BBR99].

2.3 Learning Parity with Noise (LPN)

For alln ∈ N, rowvector s ∈ {0, 1}n and real value ε ∈ [0, 1/2], define a randomized
oracle As,ε to be s.t. for every call to As,ε, the oracle samples a ← {0, 1}n, e ←
Berε (where Ber is the Bernoulli distribution), and outputs (a, s · a + e) where
arithmetics are over the binary field. Note that As,1/2 outputs completely uniform
entries for every call.

The Learning Parity with Noise assumption LPNn,ε, for a polynomial function
n : N → N and a function ε : N → [0, 1/2] is that for every ppt oracle algorithm A
it holds that

AdvLPNn,ε
[A](λ) =

∣

∣

∣

∣

Pr
s←{0,1}n

[AAs,ε(1λ)] − Pr[AA0,1/2(1λ)]
∣

∣

∣

∣

= negl(λ),

where n = n(λ), ε = ε(λ).
We note that if ε = log n/n then LPN is solvable in polynomial time, but no

polynomial time algorithm is known for ε = Ω(log2 n/n).

The Collision Resistant Hash Family of [BLVW17]. It is shown in [BLVW17] how
to create Collision Resistant Hash functions based on the hardness of LPNn,ε for
any polynomial n, ε = Ω(log2 n/n). Since this construction is the basis for our
LPN-based batch encryption construction, let us elaborate a little on it here.

The key to the hash function is a random matrix A ∈ {0, 1}n×(2n2/ log n). To
apply the hash function on an input x ∈ {0, 1}2n, they first preprocess it as fol-
lows. Interpret x as a collection of 2n/ log n blocks, each containing log n bits.
Then interpret each block as a number in {1, . . . , n} using the usual mapping,
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so x ∈ [n]2n/ log n. Then define a vector x̂ ∈ {0, 1}2n2/ log n as a concatenation of
2n/ log n blocks of n-bits, such that each block is a {0, 1}n indicator vector of the
respective entry in x (i.e. have a single bit equal 1 in the location corresponding
to the value of the entry in x). Finally output Ax̂. This is shrinking from 2n to n
bits, and CRH follows since a collision implies a low norm vector v s.t. Av = 0.
The argument of security for our batch encryption scheme is similar to their proof
of security of CRH, however we do not use it as black box.

2.4 One-Time Encryption Using Goldreich-Levin Hard-Core Bit

We show the following one time encryption scheme based on the Goldreich-Levin
hard-core bit [GL89].

Definition 3. Define gl-enc(x, μ) as a randomized function that on input x ∈
{0, 1}�, μ ∈ {0, 1} samples α ∈ {0, 1}� and outputs (α, 〈α, x〉 ⊕ μ), where the inner
product is over the binary field. Define gl-dec(x, (α, σ)) be the function that takes
x ∈ {0, 1}� and (α, σ) ∈ {0, 1}�+1 and outputs σ ⊕ 〈α, x〉.

By definition, for all x, μ it holds that gl-dec(x, gl-enc(x, μ)) = μ with proba-
bility 1. Furthermore, the Goldreich-Levin Theorem asserts that given an ensem-
ble of joint distributions {(Xλ, Zλ)}λ s.t. for any polynomial time algorithm A,
Pr(x,z)←(X,Z),A[A(1λ, z) = x] = negl(λ), then (z, gl-enc(x, μ)) is computationally
indistinguishable from (z, U�+1) for any μ (possibly dependent on z). We further-
more note that if μ is random and unknown to the distinguisher then gl-enc(x, μ)
is uniformly random regardless of x.

3 Blind Batch Encryption and Instantiations

3.1 Defining Batch Encryption

A Batch Encryption scheme is an encryption scheme whose key generation is a pro-
jection function (or a hash function) taking as input a string x to be used as secret
key, and outputting a hash value h to be used as public key. The batch encryption
scheme is parameterized by a block size B. The aforementioned string x should be
parsed as x ∈ [B]n. Batch encryption uses the public key h to encrypt an n × B
matrix M such that a decryptor with secret key x can obtain exactly Mi,xi

for all
i ∈ [n]; that is, exactly one matrix element from each row of M. Note that when
B = 2 we can think of x as a bit vector x ∈ {0, 1}n with the natural translation
between {0, 1} and {1, 2}.

In more detail, the syntax of the batch encryption scheme is as follows, where
we think of the function B = B(λ, n) as a global parameter of the construction.

1. Setup(1λ, 1n). Takes as input the security parameter λ and key length n, and
outputs a common reference string crs.

2. Gen(crs, x). Using the common reference string, project the secret key x ∈ [B]n

to a public key h.
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3. Enc(crs, h,M). Takes as input a common reference string crs, the public key
h, and a matrix M ∈ {0, 1}n×B and outputs a ciphertext ct. For the purpose
of defining the blinding property below, the ciphertext ct can be written as a
concatenation of two parts ct = (subct1, subct2).

4. Dec(crs, x, ct). Given a ciphertext ct, output a message vector m.

Additionally, a batch encryption scheme supports two optional functions.

5. SingleEnc(crs, h, i,m). Takes as input a common reference string crs, the public
key h, an index i ∈ [n], and a message m ∈ {0, 1}B and outputs a ciphertext
ct. As above, the ciphertext ct can be written as a concatenation of two parts
ct = (subct1, subct2) for blindness purposes to be defined below.

6. SingleDec(crs, x, i, cti). Takes as input a common reference string crs, the secret
key x, an index i ∈ [n], and a ciphertext cti and outputs a message m ∈ {0, 1}.

Whenever SingleEnc and SingleDec are defined, we require that Enc(crs, h,M) =
(cti)i∈[n] for cti ← SingleEnc(crs, h, i,mi), where mi denotes the ith row of M.
Similarly, we require that for ct = (cti)i∈[n], the decryption algorithm computes
mi ← SingleDec(crs, x, i, cti) for all i ∈ [n] and outputs their concatenation.

Correctness of Batch Encryption. We define two notions of correctness of a batch
encryption scheme, the first stronger than the second.

Definition 4 (Batch Correctness). Letting crs = Setup(1λ, 1n), then for all
x,M, it holds that taking h = Gen(crs, x), ct = Enc(crs, h,M), m′ = Dec(crs,
x, ct), it holds that m′

i = Mi,xi
for all i with probability at least 1 − 2λ over the

randomness of Enc.

Definition 5 (δ-Pointwise-Correctness for SingleEnc). Letting crs =
Setup(1λ, 1n), then for all x, i,m, taking h = Gen(crs, x), cti = SingleEnc
(crs, h, i,m), m′ = SingleDec(crs, x, i, cti), it holds that m′ = mxi

with probabil-
ity at least 1/2 + δ over the randomness of SingleEnc.

Note that 1/poly(λ)-pointwise-correctness implies batch correctness via
repetition.

Succinctness of Batch Encryption

Definition 6. A batch encryption scheme is α-succinct if for crs = Setup(1λ, 1n)
and h = Gen(crs, x) for some x ∈ [B]n, it holds that |h| ≤ αn log B.

Definition 7. A batch encryption scheme is fully succinct if for crs =
Setup(1λ, 1n) and h = Gen(crs, x) for some x ∈ [B]n, it holds that |h| ≤ p(λ)
for some fixed polynomial p(λ).
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Semantic Security of Batch Encryption

Definition 8 (BatchEncryptionSecurity).The security of a batch encryption
scheme is defined using the following game between a challenger and adversary.

1. The adversary takes 1λ as input, and sends 1n, x ∈ [B]n to the challenger.
2. The challenger generates crs = Setup(1λ, 1n) and sends crs to the adversary.
3. The adversary generates M(0),M(1) ∈ {0, 1}n×B such that M(0)

i,xi
= M(1)

i,xi
for

all i ∈ [n] and sends them to the challenger.
4. The challenger computes h = Gen(crs, x) and encrypts ct = Enc(crs, h,M (β))

for a random bit β ∈ {0, 1}. It sends ct to the adversary.
5. The adversary outputs a bit β′ and wins if β′ = β.

The batch encryption scheme is secure if no polynomial time adversary can win the
above game with probability ≥1/2 + 1/poly(λ).

By a standard hybrid argument, the above definition is implied by the following
security property for SingleEnc.

Definition 9 (SingleEncSecurity).We say that a batch encryption scheme satis-
fies SingleEnc-security if no polynomial time adversary can win the following game
with probability ≥1/2 + 1/poly(λ):

1. The adversary takes 1λ as input, and sends 1n, x ∈ [B]n, i ∈ [n] to the challenger.
2. The challenger generates crs = Setup(1λ, 1n) and sends crs to the adversary.
3. The adversary generates m(0),m(1) ∈ {0, 1}B s.t. m(0)

xi = m(1)
xi and sends them

to the challenger.
4. The challenger computes h = Gen(crs, x) and encrypts ct = SingleEnc

(crs, h, i,m(β)) for a random bit β ∈ {0, 1}. It sends ct to the adversary.
5. The adversary outputs a bit β′ and it wins if β′ = β.

Relation to Chameleon Encryption and Laconic Oblivious Transfer. For readers
familiar with the notions of chameleon encryption [DG17a] and laconic oblivious
transfer [CDG+17], we compare the notion of batch encryption to these objects.

First, we note that the notion of batch encryption is a significant weakening of
the notion of a chameleon encryption scheme defined in [DG17a] in the following
two ways. Most significantly, we do not require a trapdoor which supports finding
collisions (namely, the “chameleon” part of chameleon encryption); this is crucial
because our construction from LPN does not seem to have an associated trapdoor.
Nevertheless, we show that batch encryption is sufficient to construct IBE. As well,
our security definition is selective in the input x rather than adaptive (that is, the
adversary picks x before seeing the crs), which means that batch encryption does
not obviously imply collision resistant hash functions (CRHF), but rather only
target collision-resistance. In contrast, the hash function implicit in chameleon
encryption is a CRHF).

On the other hand, batch encryption is essentially equivalent to laconic obliv-
ious transfer as defined in [CDG+17], as long as you restrict the first message of
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the OT protocol to be a deterministic function of the crs and database D (however,
since receiver privacy is not required for laconic OT, any laconic OT scheme can
be modified to have this property). Our transformations show that batch encryp-
tion (or laconic OT) is the right primitive from which to bootstrap and obtain IBE.
Additionally, our new blindness property also has an interpretation in the language
of laconic OT.

3.2 Defining Blind Batch Encryption

Next, we define the additional blindness property of a batch encryption scheme,
which asserts that when encrypting a random message that is not known to the
distinguisher, the ciphertext is “essentially” indistinguishable from uniform. More
specifically, we allow a part of the ciphertext to not be indistinguishable from uni-
form so long as it does not reveal any information on h or on the encrypted message.

Definition 10 (Blindness). Let BBENC = (Setup,Gen,Enc,Dec) be a batch
encryption scheme. Furthermore, suppose that

Enc(crs, h,M; r) = E1(crs, h,M; r)||E2(crs, h,M; r)

is some decomposition of Enc(·) into two parts. We say that BBENC is blind if
(1) the function E1(crs, h,M; r) = E1(crs; r) does not depend on the public key
h or messageM, and (2) no polynomial time adversary can win the following game
with probability ≥ 1

2 + 1/poly(λ).

1. The adversary takes 1λ as input, and sends 1n, x ∈ [B]n to the challenger.
2. The challenger generates crs = Setup(1λ, 1n) and computes h = Gen(crs, x). It

samples a random β ← {0, 1}, a random message matrix M ← {0, 1}n×B, and
encrypts (subct1, subct2) ← Enc(crs, h,M). It then generates ct as follows.
– If β = 0 then ct = (subct1, subct2).
– If β = 1 then sample a random bit string subct′2 of the same length as subct2.

Set ct = (subct1, subct′2).
The challenger sends crs, ct to the adversary (note thatM is not sent to the adver-
sary).

3. The adversary outputs a bit β′ and it wins if β′ = β.

Again, the above definition of blindness is implied by an analogous blindness
property for SingleEnc via a standard hybrid argument. If BBENC is a blind batch
encryption scheme, we call Enc = E1||E2 the blind decomposition of Enc and
adopt the notation that outputs of E1 are denoted by subct1 and outputs of E2

are denoted by subct2.

From Block Size B to Block Size 2. Although our construction of batch encryption
itself from LPN constructs a scheme with large block size, the lemma below shows
that we can work with block size 2, without loss of generality. The proof of the
lemma is in the full version [BLSV17].

Lemma 1. Suppose that there is an α-succinct (blind) batch encryption scheme
with block sizeB. Then, there is anα-succinct (blind) batch encryption scheme with
block size 2.
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From α-Succinct to Fully Succinct (Blind) Batch Encryption. We show that fully
succinct (blind) batch encryption can be built from 1/2-succinct (blind) batch
encryption. The construction and proof are similar to the laconic OT bootstrap-
ping theorem of Cho et al. [CDG+17]. However, to preserve blindness, we make
use of blind garbled circuits (defined in Sect. 4), similar to its use in Sects. 5 and 6.
We state the lemma below and provide the proof in the full version [BLSV17].

Lemma 2. Suppose that there is a 1/2-succinct (blind) batch encryption scheme
with block size B = 2 and a (blind) garbling scheme. Then, there is a fully succinct
(blind) batch encryption scheme with block size B = 2.

3.3 Blind Batch Encryption from CDH

In this section, we construct blind batch encryption from the CDH assumption.
The scheme has perfect correctness, is fully succinct, and has block size B = 2. This
construction is inspired by the Chameleon Encryption construction in [DG17a] but
does not require a trapdoor. Let G be a group sampler as described in Sect. 2.2.
Recall the Goldreich-Levin encoding/decoding procedure as per Sect. 2.4. The
blind batch encryption scheme is as follows.

1. CDH-BE.Setup(1λ, 1n). Sample (G, g, q) ← G(1λ). Sample αi,b ← Zq for i ∈ [n],
b ∈ {0, 1}. Define gi,b = gαi,b . Output crs = ((G, g, q), {gi,b}i,b).

2. CDH-BE.Gen(crs, x). Output h =
∏

i gi,xi
.

3. CDH-BE.SingleEnc(crs, h, i,m). Sample r ← Zq. For all j �= i and for all
b ∈ {0, 1} compute: ĝj,b = gr

j,b. Compute ĝi,b = hrg−r
i,b , and let μi,b =

gl-enc(ĝi,b,mb). Output

ct =
(

subct1 = {ĝj,b}j �=i,b∈{0,1}, subct2 = {μi,b}b∈{0,1}
)

.

4. CDH-BE.SingleDec(crs, x, i, ct). Given ct =
({ĝj,b}j �=i,b∈{0,1}, {μi,b}b∈{0,1}

)

.
Compute ĝi,xi

=
∏

j �=i = ĝi,xi
. Output m = gl-dec(ĝi,xi

, μi,xi
).

Correctness follows immediately by definition. Moreover, we note that this
scheme is fully succinct (see Definition 7; note that h ∈ G has a fixed poly(λ) size
representation by assumption).

Lemma 3. The scheme CDH-BE is secure under the CDHG assumption.

Proof. Consider the following game between a challenger and an adversary.

1. The adversary takes 1λ as input, and sends 1n, x ∈ {0, 1}n, i ∈ [n], to the chal-
lenger.

2. The challenger generates crs = CDH-BE.Setup(1λ, 1n), i.e. a group (G, g, q) and
collection of gj,b. It computes h = CDH-BE.Gen(x). It then samples r ← Zq and
computes ĝj,b = gr

j,b for all j �= i, b ∈ {0, 1}, as well as ĝi,xi
= hrg−r

i,xi
. It sends

crs and the computed ĝ values to the adversary.
3. The adversary returns g′.
4. The challenger declares that the adversary wins if g′ = hrg−r

i,1−xi
.
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We will prove that all polynomial time adversaries have negligible advantage in
the above game. By the Goldreich-Levin theorem (see Sect. 2.4), this implies the
security of the scheme as per Definition 9.

To see that the above holds, an adversary against the above game, and consider
an input to the CDHG problem consisting of (G, g, q), ga1 , ga2 . We will show how
to produce a challenger for the above game, so that when the adversary succeeds,
the value ga1a2 can be computed. The challenger, upon receiving 1n, x, i will do the
following. Generate αj,b ← Zq for all j �= i, b ∈ {0, 1}, and also αi,1−xi

. Concep-
tually, we will associate a1 with the value r to be generated by the challenger, and
a2 with the difference (αi,xi

− αi,1−xi
).2

Following this intuition, the challenger will generate gi,b = gαj,b for all j �= i,
b ∈ {0, 1} as well as for (j, b) = (i, 1 − xi). Then generate gi,xi

= gi,1−xi
· ga2 .

Generate ĝj,b = (ga1)αj,b for all j �= i, b ∈ {0, 1}. We are left with generating
ĝi,xi

= hrg−r
i,xi

=
∏

j �=i gr
j,xj

=
∏

j �=i ĝj,xj
, which can be derived from previously

computed values. Note that the computed values are within negligible statistical
distance of their distribution in the real experiment. If the adversary manages to
compute g′ = hrg−r

i,1−xi
=

(

∏

j �=i ĝj,xj

)

· (gi,xi
/gi,1−xi

)r =
(

∏

j �=i ĝj,xj

)

· ga1a2 ,
then the product

∏

j �=i ĝj,xj
canbe canceled out and a solution toCDHG is achieved.

Lemma 4. The scheme CDH-BE is blind under the CDHG assumption.

Proof. Consider the game in Definition 10. We first of all note that in our scheme,
subct1 is independent of h,m and therefore the marginal distribution of subct1 is
identical regardless of the value of β. From the properties of gl-enc (see Sect. 2.4),
if m is uniform then the μi,b values are uniformly distributed. It follows that any
adversary will have exactly 1/2 probability to win the blindness game.

3.4 Batch Encryption from LPN

In this section we present a candidate construction from LPN with noise rate
Ω(log2(n)/n). Specifically, we will show an LPN based construction which has δ-
pointwise correctness for δ = 1/poly(n), is 1

2 -succinct, and has block size B = n.
Our construction is based on a collision resistant hash function construction of
[BLVW17]. See Sect. 2.3 for details about the assumption and the CRH candidate.
Unfortunately, we are unable to prove blindness for this candidate. As explained
above, the δ point-wise correctness can be amplified, however this amplification
does not preserve the blindness property. Therefore, even though our δ-point-wise
correct candidate is blind, we cannot amplify it to have batch correctness without
giving up blindness.

We introduce the following notation. For any number j ∈ [B] we define ind(j) ∈
{0, 1}B to be the vector with 1 in the j-th coordinate and 0 in all other coordinates.
Note that for a matrix A ∈ {0, 1}k×B (for arbitrary k) it holds that A · ind(j) is
exactly the j-th column of A.
2 In fact, this correspondence only needs to hold in the exponent. Specifically, note that

both g(αi,xi
−αi,1−xi

) and ga2 are statistically indistinguishable from uniform in 〈g〉
and therefore from each other.
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1. LPN-BE.Setup(1λ, 1n). Recall that B = n, and assume w.l.o.g that λ ≤ n (oth-
erwise redefine n = λ and proceed with the new value, which only strengthens
the constructed object). We define ñ = n log B

2 = n log n
2 and a parameter ε =

log n/n = Ω(log2(ñ)/ñ) to be used below. Sample A1, . . . ,An ← {0, 1}ñ×B

(we will also denote A = [A1‖ · · · ‖An]). Output crs = {Ai}i∈[n].
2. LPN-BE.Gen(crs, x). Output h =

∑

i∈[n] Ai · ind(xi).
3. LPN-BE.SingleEnc(crs,h, i,m). Define A−i = [A1‖ · · · ‖Ai−1‖Ai+1‖ · · · ‖An].

For all j ∈ [B] sample s(j) ← {0, 1}ñ and e(j) ← Ber(n−1)B+1
ε . Compute

v(j) = s(j)[A−i‖Ai · ind(j) − h] + e(j) + [0, . . . , 0,mj ].

Output ct = subct2 = {v(j)}j∈[B].
4. LPN-BE.SingleDec(crs, x, i, ct). Given ct = {v(j)}j∈[B], define

x̂−i = [ind(x1)‖ · · · ‖ind(xi−1)‖ind(xi+1)‖ · · · ‖ind(xn)‖1]†,

where † represents vector transpose. Output m = v(xi) · x̂−i.

Lemma 5. The scheme LPN-BE is 1/poly(n)-pointwise correct.

Proof. Let crs, x, i, m be arbitrary, and consider computing h = Gen(crs, x), ct =
SingleEnc(crs, h, i,m) and m′ = SingleDec(crs, x, i, ct). Then, by definition

m′ =
(

s(j)[A−i‖Ai · ind(xi) − h] + e(xi) + [0, . . . , 0,mj ]
)

x̂−i

= mj + e(xi) · x̂−i,

but since e(xi) is Bernoulli with parameter ε, and the hamming weight of x̂−i is
exactly nby definition, then e(xi) ·x̂−i is Bernoulli with parameter ε′ ≤ 1/2−e−2εn.
Since we set ε = log n/n, pointwise correctness follows.

Lemma 6. The scheme LPN-BE is secure under the LPNñ,ε assumption (we recall
that ε = Ω(log2(ñ)/ñ)).

Proof. We consider the SingleEnc security game in Definition 9 (recall that this is
sufficient for full batch security). We will prove that the view of the adversary is
computationally indistinguishable from one where all v(j) are uniformly random
for all j �= xi. Security will follow.

Consider a challenger that receives an LPN challenge of the form A′
1, . . . ,A

′
n ∈

{0, 1}ñ×B , {bj,k}j∈[B]\{xi},k∈[n], wherebj,k are either all uniformor are of the form
bj,k = s(j)A′

k + ej,k. (Note that the challenge does not actually depend on xi, we
can just take j ∈ [B − 1] and map the values to [B] \ {xi} after the fact.)

Upon receivingx, i from the adversary, the challenger computesh =
∑

i∈[n] A
′
i·

ind(xi). Then, for all k �= i it sets Ak = A′
k, and then sets Ai as follows. Set

Ai ·ind(xi) = A′
i ·ind(xi) (recall that multiplying by ind(j) is equivalent to selecting

the j-th column), and for all j �= xi set Ai · ind(j) = A′
i · ind(j) + h. Note that

since Ai · ind(xi) = A′
i · ind(xi) it holds that h =

∑

i∈[n] Ai · ind(xi), and indeed
crs = {A1, . . . ,An},h, x, i are distributed identically to the original game.
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The challenger sends crs,h to the adversary and receives the message vectors. It
then samples s(xi), e(xi) itself and generates v(xi) properly. For all j �= xi generate

v(j) = [bj,[n]\{i}‖bj,i · ind(j)] + [0, . . . , 0,mj ] ,

where bj,[n]\{i} is the concatenation of all bj,k for k �= i in order. We notice that
if the vectors {bj,k} were generated from an LPN distribution, then v(j) has the
correct distribution. This is because we defined Ai · ind(j)−h = A′

i · ind(j). On the
other hand, if {bj,k} are uniform then all v(j), j �= xi are uniform. Security thus
follows.

4 BlindGarbled Circuits

In this section, we define the notion of a blind garbled circuit and show a construc-
tion assuming only one-way functions. Indeed, we observe that the widely used
“point-and-permute” garbled circuit construction [BMR90,Rog91] is in fact blind.
We start with the definition of standard garbled circuits and proceed to define and
construct blind garbled circuits.

Definition 11 (Garbled Circuits). A garbling scheme consists of three algo-
rithms (Garble,Eval,Sim) where:

1. Garble(1λ, 1n, 1m, C) is a PPT algorithm that takes as input the security param-
eter λ and a circuitC : {0, 1}n → {0, 1}m, and outputs a garbled circuit ̂C along
with input labels (labi,b)i∈[n],b∈{0,1} where each label labi,b ∈ {0, 1}λ.

2. Eval(1λ, ̂C, ̂L) is a deterministic algorithm that takes as input a garbled circuit
̂C along with a set of n labels ̂L = (labi)i∈[n], and outputs a string y ∈ {0, 1}m.

3. Sim(1λ, 1|C|, 1n, y) is aPPTalgorithm that takes as input the security parameter,
the description length of C, an input length n and a string y ∈ {0, 1}m, and
outputs a simulated garbled circuit ˜C and labels ˜L.

We often omit the first input to these algorithms (namely, 1λ) when it is clear from
the context. We require that the garbling scheme satisfies two properties:

1. Correctness: For all circuits C, inputs x, and all ( ̂C, (labi,b)i,b) ← Garble(C, x)
and ̂L = (labi,xi

)i∈[n], we have that Eval( ̂C, ̂L) = C(x).
2. Simulation Security: for all circuits C : {0, 1}n → {0, 1}m and all inputs x ∈

{0, 1}n, the following two distributions are computationally indistinguishable:
{

( ̂C, ̂L) : ( ̂C, labi,b)i,b ← Garble(C, x), ̂L = (labi,xi
)i∈[n]

}

≈c

{

( ˜C, ˜L) : ( ˜C, ˜L) ← Sim(1λ, 1|C|, 1n, C(x))
}

.

The traditional notion of security of a garbled circuit requires that the garbling
̂C of a circuitC and the garbled labels ̂L corresponding to an inputx together reveal
C(x) and nothing more (except the size of the circuit C and the input x). Formally,
this is captured by a simulation definition which requires that a simulator who is
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given only C(x) can faithfully simulate the joint distribution of ̂C and ̂L. Blindness
requires that the simulator’s output is uniformly random. Of course, this is simply
unachievable if the distinguisher is given the circuit C and the input x, or if the
distribution of C(x) is not uniformly random. However, blindness only refers to
the setting where the distribution of C(x) is uniformly random.

Definition 12 (Blind Garbled Circuits). A garbling scheme (Garble,Eval,
Sim) is called blind if the distribution Sim(1λ, 1c, 1n, Um), representing the output
of the simulator on a completely uniform output, is indistinguishable from a com-
pletely uniform bit string. (Note that the distinguisher must not know the random
output value that was used for the simulation.)

Using a construction essentially identical to the point-and-permute garbled cir-
cuits of [BMR90,Rog91], we prove the following result.

Lemma 7. Assuming the existence of one-way functions, there exists a blind gar-
bling scheme.

We refer the reader to the full version [BLSV17] for details.

5 Weakly Compact Blind IBE

5.1 Defining Weakly Compact Blind IBE

We nowbegin our construction of anonymous IBE fromblind batch encryption and
blind garbled circuits; along the way, we will also construct IBE from batch encryp-
tion. As noted earlier, we construct anonymous IBE as a consequence of building a
stronger object which we call blind IBE. Similar in nature to the blindness property
of batch encryption (Definition 10), we say that an IBE scheme is blind if, when
encrypting (under some identity id∗) a random message that is not known to the
distinguisher, the ciphertext is “essentially” indistinguishable from uniform, even
given any polynomial number of secret keys {skid} possibly including skid∗ .

Definition 13 (Blind IBE). An IBE scheme satisfies IND-BLIND-ID-CPA
security if (1) it satisfies IND-ID-CPA security and (2) the function
Enc(pp,mpk, id,m; r) can be expressed as a concatenation E1(pp; r)||E2

(pp,mpk, id,m; r) such that no PPT adversary A can win the following game with
probability greater than 1

2 + negl(λ):

1. pp ← Params(1λ||1t)
2. (mpk,msk) ← Setup(pp)
3. (id∗, st) ← AKeygen(pp,msk,·)(mpk)

4. m
$← M

5. (subct1, subct2) ← Enc(pp,mpk, id∗,m) = (E1(pp; r), E2(pp,mpk, id∗,m; r))

6. β
$← {0, 1}. If β = 1, subct2

$← {0, 1}|subct2|

7. β′ ← AKeygen(pp,msk,·)(st, (subct1, subct2))
8. A wins if and only if β′ = β.
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We call Enc = E1||E2 the blind decomposition of Enc.

Lemma 8. Any blind IBE scheme is also an anonymous IBE scheme.

Proof. Consider an adversary A playing the IND-ANON-ID-CPA security game;
A is eventually given a challenge ct ← Enc(pp,mpk, idb,mb) where (id0,m0) and
(id1,m1) are the challenge id-message pairs chosen by A. For each b ∈ {0, 1}, it
is certainly the case that A cannot distinguish whether it was given ctidb,mb

←
Enc(pp,mpk, idb,mb) or ctidb,m ← Enc(pp,mpk, idb,m) where m

$← M is a uni-
formly random message; this follows from ordinary IBE security. Additionally, by
blind IBE security, A also cannot distinguish whether it is given ctidb,m as above

or c̃tidb,m ← E1(pp; r)||C for C
$← {0, 1}|E2(pp,mpk,idb,m;r)|. But c̃tid0,m and c̃tid1,m

are drawn from identical distributions, so we conclude that A cannot distinguish
whether it was given ctid0,m0 or ctid1,m1 , as desired.

Our overall goal is to construct (blind) IBE from (blind) batch encryption; this
will be done in two steps. In this section, we construct what we call weakly compact
(blind) IBE, which is intuitively an IBE scheme for any T = poly(λ) identities
which is at least slightly more efficient than the trivial “IBE scheme” consisting of
T independent PKE schemes (one for each identity), which has |mpk| = T ·poly(λ).
Indeed, all we require is that |mpk| grows sublinearly with T . In Sect. 6, we show
that full (blind) IBE can be bootstrapped from weakly compact (blind) IBE.

Definition 14 (Weakly Compact IBE). A weakly compact IBE scheme con-
sists of five PPT algorithms (Params,Setup,Keygen,Enc,Dec)with the same syntax
as an IBE scheme.What distinguishes aweakly compact IBE scheme froma full IBE
scheme is the following weakened efficiency requirements:

– Params now takes as input 1λ||1T where T = 2t is the number of identi-
ties. This means that all five algorithms now run in time poly(T, λ) rather than
poly(log T, λ).3

– Weak Compactness: we require that |mpk| = O(T 1−εpoly(λ)) for some ε > 0.
– Security still holds with respect to adversaries running in time poly(λ), not

poly(λ, T ). /See Footnote 3/

Definition 15. A weakly compact blind IBE scheme is a weakly compact IBE
scheme satisfying IND-BLIND-ID-CPA security.

We will construct weakly compact (blind) IBE from the following building
blocks: (1) (blind) batch encryption, (2) (blind) garbled circuits, and (3) (blind)
public key encryption, where blind PKE is defined as follows.

Definition 16 (Blind Public Key Encryption). An blind public key
encryption scheme (with public parameters) is a public key encryption scheme

3 This is only a technical difference, since we only consider weakly compact IBE schemes
with T = poly(λ).
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(Params,Gen,Enc,Dec) which is IND-CPA secure and satisfies the following addi-
tional security property: the function Enc(pp, pk,m; r) can be expressed as a con-
catenation E1(pp; r)||E2(pp, pk,m; r) such that the distribution

{
pp ← Params(1λ), (pk, sk) ← Gen(pp), m

$← {0, 1}n : (pp, pk, sk,Enc(pp, pk, m))
}

is computationally indistinguishable from the distribution
{

pp ← Params(1λ), (pk, sk) ← Gen(pp),m $← M, L = |E2(pp, pk,m; r)|,

subct2
$← {0, 1}L : (pp, pk, sk, E1(pp; r)||subct2)

}

.

That is, encryptions of randommessages are pseudorandom (along with some func-
tion independent of the public key) even given the secret key.

We note here that blind public key encryption can be constructed generically
from blind batch encryption; indeed, blind batch encryption can be used to build
a blind PKE scheme satisfying stronger security notions such as leakage resilience
and key-dependent message (KDM) security.

5.2 The Construction

The construction of our weakly compact blind IBE scheme WBIBE uses three
ingredients:

– A blind public-key encryption scheme

BPKE = (BPKE.Params,BPKE.Gen,BPKE.Enc,BPKE.Dec)

where the encryption algorithm can be decomposed intoBPKE.E1||BPKE.E2 as
in Definition 16;

– A blind garbling scheme

BGBL = (BGC.Garble,BGC.Eval,BGC.Sim); and

– A blind batch encryption scheme

BBENC = (Batch.Setup,Batch.Gen,Batch.Enc,Batch.Dec)

where the encryption algorithm can be decomposed into Batch.E1||Batch.E2 as
in Definition 10. Moreover, we assume that BBENC is fully succinct.

The construction works as follows.

1. WBIBE.Params(1T ): Given a bound T on the number of identities, the param-
eter generation algorithm Params first obtains blind public-key encryption
parameters bpke.pp ← BPKE.Params(1λ). Letting n be the length of the pub-
lic keys generated by BPKE.Gen, it then obtains a common reference string
batch.crs ← Batch.Setup(1λ, 1nT ). The output is

wbibe.pp = (bpke.pp, batch.crs)
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2. WBIBE.Setup(wbibe.pp): On input the public parameters, the setup algorithm
first obtains T key pairs (bpke.pki, bpke.ski) ← BPKE.Gen(bpke.pp). Secondly,
it compresses the sequence of BPKE public keys into a BBENC public key:

h ← Batch.Gen(batch.crs, (bpke.pk0, bpke.pk1, . . . , bpke.pkT−1)).

The output is the pair (wbibe.mpk,wbibe.msk) where

wbibe.mpk = h and
wbibe.msk = (bpke.pk0, . . . , bpke.pkT−1, bpke.sk0, . . . , bpke.skT−1)

3. WBIBE.Keygen(wbibe.pp,wbibe.msk, id): On input the public parameters, the
master secret key and an identity id ∈ {0, 1, . . . , T − 1}, the key generation
algorithm outputs

wbibe.skid = (id, bpke.pk0, bpke.pk1, . . . , bpke.pkT−1, bpke.skid).

4. WBIBE.Enc(wbibe.pp,wbibe.mpk, id,m): On input the public parameters, a
master public key, an identity id and a message m, the encryption algorithm
does the following.

First, sample a uniformly random string r and compute

ct0 = BPKE.E1(bpke.pp; r).

Secondly, let C[bpke.pp,m, r] be a circuit with public parameters bpke.pp (con-
tained as part of wbibe.pp), the message m and the random string r hardcoded.
C takes as input a blind public key and outputs the encryption of m under the
public key using randomness r. That is,

C[bpke.pp,m, r](bpke.pk) = BPKE.E2(bpke.pp, bpke.pk,m; r)

Compute
(

̂C, lab
) ← BGC.Garble(1λ, 1n, 1�, C[bpke.pp,m, r])

where lab ∈ ({0, 1}λ)n×2 and 	 is defined to be the output length of C. Set
ct1 := ̂C.

Finally, let M ∈ ({0, 1}λ)nT×2 be a uniformly random nT -by-2 matrix and
then redefine M[id · n + j, b] = lab[j, b] for all 1 ≤ j ≤ n, b ∈ {0, 1}. Compute

(ct2, ct′2) ← Batch.Enc(batch.crs, h,M).

Output the ciphertext wbibe.ct = (ct0, ct1, ct2, ct′2).
5. WBIBE.Dec(wbibe.pp,wbibe.sk,wbibe.ct): On input the public parameters, a

secret key and a ciphertext, the decryption algorithm parses the secret key as
wbibe.sk = (id, bpke.pk0, . . . , bpke.pkT−1, bpke.skid), and parses the ciphertext
as wbibe.ct = (ct0, ct1, ct2, ct′2). It then does three things.
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First, it computes

m ← Batch.Dec(batch.crs, (bpke.pk0, bpke.pk1, . . . , bpke.pkT−1), ct2||ct′2),

Secondly, it defines ̂L = (Lj)j∈[n] ∈ ({0, 1}λ)n by Lj = m[id · n + j] and
computes ct′0 ← BGC.Eval(ct1, ̂L). Finally, it computes and outputs

m ← BPKE.Dec(bpke.pp, bpke.skid, ct0||ct′0).

We show that this scheme is a weakly compact blind IBE scheme.

Theorem 1. Suppose BPKE is a blind public-key encryption scheme, BBENC is
a blind batched encryption scheme, and BGBL is a blind garbling scheme. Then,
WBIBE is a weakly compact blind IBE scheme.

We defer the reader to the full version [BLSV17] for details.

6 Bootstrapping (Blind) IBE

Our bootstrapping theorem converting a weakly compact (blind) IBE scheme into
a full-fledged (blind) IBE scheme follows the ideas of [DG17a,DG17b] and is essen-
tially a way to achieve domain extension of the space of identities. The boot-
strapping scheme is described in Sect. 6.1 and analyzed in the full version of our
paper [BLSV17]. Recall that a high level overview was provided in the introduc-
tion (Sect. 1.3).

6.1 The Bootstrapping Theorem

Let WBIBE denote a weakly compact blind IBE scheme supporting T = T (λ)
identities with a master public key of size S = S(λ) bits. By compactness, we may
choose T = poly(λ) large enough so that S < T/4. Additionally, let BGBL =
(BGC.Garble,BGC.Eval,BGC.Sim) denote a blind garbling scheme. We construct a
full-fledged blind IBE scheme BIBE as follows.

– BIBE.Params(1λ, 1n): On input the length n of the identities supported by the
system, the parameter generation algorithm generates parameter wbibe.pp ←
WBIBE.Params(1λ, 1T ) and outputs bibe.pp = (1n,wbibe.pp).

– BIBE.Setup(bibe.pp): On input the public parameters, the setup algorithm
chooses a seed s for a PRF family fs : {0, 1}≤n → {0, 1}r where r is the number
of random bits used by the Setup algorithm of WBIBE .BIBE.Setup then obtains

(wbibe.mpk(ε),wbibe.msk(ε)) ← WBIBE.Setup(wbibe.pp; fs(ε))

where ε denotes the empty string. The output is

bibe.mpk = wbibe.mpk(ε) and bibe.msk = s.
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– BIBE.Keygen(bibe.pp, bibe.msk, id): On input the public parameters, the master
secret key and an n-bit identity id = id1||id2||...idn, the key generation algorithm
does the following.

First, for eachprefix id[≤ i] = id1||id2|| . . . ||idi ∈ {0, 1}i, compute themaster
public key wbibe.mpk(≤i) and the master secret key wbibe.msk(≤i):

(wbibe.mpk(≤i),wbibe.msk(≤i)) ← WBIBE.Setup(wbibe.pp; fs(id[≤ i])).

(By convention, id[≤ 0] = ε)
For each 0 ≤ i ≤ n − 1 and j ∈ [S], define id′

i,j := idi+1||j||bi+1,j ∈ {0, 1} ×
[S] × {0, 1}, where bi+1,j := wbibe.mpk(≤i+1)[j]. Compute

ski,j ← WBIBE.Keygen(wbibe.pp,wbibe.msk(≤i), id′
i,j).

Finally, compute

skleaf ← WBIBE.Keygen(wbibe.pp,wbibe.msk(≤n), idnull),

where idnull = 0T is a default identity, and output

bibe.skid =
(

(

wbibe.mpk(≤i)
)

0≤i≤n
,
(

ski,j

)

j∈[S],0≤i≤n−1
, skleaf

)

.

– BIBE.Enc(bibe.pp, bibe.mpk, id,m): On input the public parameters, the master
public key, an n-bit identity id, and a message m, the encryption algorithm does
the following.

Let C[wbibe.pp, η, lab, r] be a circuit that computes the function
(

WBIBE.E2(wbibe.pp,wbibe.mpk, η||j||b, labj,b; rj,b)
)

j∈[S],b∈{0,1}

on input wbibe.mpk, where r is the collection of all rj,b and lab is the collection
of all labj,b. Let C ′[wbibe.pp,m, r] be a circuit that computes the function

WBIBE.E2(wbibe.pp,wbibe.mpk, idnull,m; r)

on input wbibe.mpk. Choose random strings r, r(1), . . . , r(n).
Compute ( ̂Cn, lab

(n)
) ← BGC.Garble

(

C ′[wbibe.pp,m, r]
)

. For i = n − 1 to
0, compute

( ̂Ci, lab
(i)

) ← BGC.Garble
(

C[wbibe.pp, idi+1, lab
(i+1)

, r(i+1)]
)

Compute ctn+1 ← WBIBE.E1(wbibe.pp; r), and for i = 1 to n, compute

cti,j,b ← WBIBE.E1(wbibe.pp; r
(i)
j,b),

and let cti := (cti,j,b)j,b.
Output the following as the ciphertext:

bibe.ct =
(

̂C0, . . . , ̂Cn−1, ̂Cn, ct1, . . . , ctn, ctn+1, lab
(0)

[wbibe.mpk(ε)]
)

,

where lab
(0)

[wbibe.mpk(ε)] is short-hand for (lab(0)j,b0,j
)j∈[S].
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– BIBE.Dec(bibe.pp, bibe.skid, bibe.ct): On input the public parameters, an iden-
tity secret key and a ciphertext, the decryption algorithm does the following.

Let ̂L(0) :=
(

lab
(0)
j,b0,j

)

j∈[S]
. For 1 ≤ i ≤ n, do the following steps one after

the other.
• Compute ct′i ← Eval( ̂Ci−1, ̂L(i−1)) which itself consists of ciphertexts ct′i,j,b

for j ∈ [S] and b ∈ {0, 1}.
• Compute L

(i)
j ← WBIBE.Dec(wbibe.pp, ski,j , cti,j,bi,j

||ct′i,j,bi,j
) for all j ∈

[S] and bi,j = wbibe.mpk(≤i)[j]. Let ̂L(i) denote the collection of all L
(i)
j .

Finally, compute ct′n+1 ← Eval( ̂Cn, ̂L(n)) and output

m′ ← WBIBE.Dec(wbibe.pp, skleaf, ctn+1||ct′n+1).

– The blind decomposition of BIBE.Enc is as follows: BIBE.E1(bibe.pp;
R) is defined to be the collection (ct1, ct2, . . . , ctn+1), while
BIBE.E2(bibe.pp, bibe.mpk, id,m;R) is defined to be the collection
(

̂C0, ..., ̂Cn, lab(0)[bibe.mpk]
)

.

Theorem 2. Suppose thatWBIBE is a weakly compact blind IBE scheme and that
BGBL is a blind garbling scheme. Then,BIBE is a blind IBE scheme. Additionally,
even without the blindness assumptions, BIBE is an IBE scheme.

We refer the reader to the full version [BLSV17] for details.
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Abstract. A secret-sharing scheme for a monotone Boolean (access)
function F : {0, 1}n → {0, 1} is a randomized algorithm that on input
a secret, outputs n shares s1, . . . , sn such that for any (x1, . . . , xn) ∈
{0, 1}n, the collection of shares {si : xi = 1} determine the secret if
F (x1, . . . , xn) = 1 and reveal nothing about the secret otherwise. The
best secret sharing schemes for general monotone functions have shares
of size Θ(2n). It has long been conjectured that one cannot do much
better than 2Ω(n) share size, and indeed, such a lower bound is known
for the restricted class of linear secret-sharing schemes.

In this work, we refute two natural strengthenings of the above
conjecture:

– First, we present secret-sharing schemes for a family of 22n/2

monotone functions over {0, 1}n with sub-exponential share size

2O(
√

n log n). This unconditionally refutes the stronger conjecture that
circuit size is, within polynomial factors, a lower bound on the share
size.

– Second, we disprove the analogous conjecture for non-monotone func-
tions. Namely, we present “non-monotone secret-sharing schemes” for
every access function over {0, 1}n with shares of size 2O(

√
n log n).

Our construction draws upon a rich interplay amongst old and new
problems in information-theoretic cryptography: from secret-sharing, to
multi-party computation, to private information retrieval. Along the way,
we also construct the first multi-party conditional disclosure of secrets
(CDS) protocols for general functions F : {0, 1}n → {0, 1} with commu-

nication complexity 2O(
√

n log n).
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1 Introduction

Secret sharing [Sha79,Bla79] is a powerful cryptographic technique that allows
a dealer to distribute shares of a secret to n parties such that certain authorized
subsets of parties, and only they, can recover the secret. The original definition
of secret sharing is what we now call an (n, t)-threshold secret sharing scheme,
where any set of t or more parties can recover the secret, and no subset of fewer
than t parties can learn any information about the secret whatsoever.

Later on, this was generalized in [ISN89] to the notion of a secret-sharing
scheme realizing a monotone function F : {0, 1}n → {0, 1}. This is simply a ran-
domized algorithm that on input a secret, outputs n shares s1, . . . , sn such that
for any (x1, . . . , xn) ∈ {0, 1}n, the collection of shares {si : xi = 1} determine
the secret if F (x1, . . . , xn) = 1 and reveal nothing about the secret otherwise.1

It is easy to see that (n, t)-threshold secret sharing corresponds to the special
case where F is the (monotone) threshold function that outputs 1 if and only if
at least t of the n input bits are 1.

While the landscape of threshold secret sharing is relatively well-understood,
even very basic information-theoretic questions about the more general notion
of secret sharing remain embarrassingly open. It is simple to construct a secret
sharing scheme realizing any monotone function F : {0, 1}n → {0, 1} where each
share is at most 2n bits; the share size can be improved to O(2n/

√
n) bits [ISN89].

We also know that there is an (explicit) monotone function F : {0, 1}n → {0, 1}
that requires a total share size of Ω(n2/ log n) bits [Csi97], a far cry from the
upper bound. No better lower bounds are known (except for the restricted class
of linear secret-sharing schemes, cf. Sect. 1.3), even in a non-explicit sense.

Closing the exponential gap between the aforementioned upper bound or
lower bounds is a long-standing open problem in cryptography. The general
consensus appears to be that the upper bound is almost tight, as formalized in
a conjecture of Beimel [Bei11]:

Conjecture (Main). There exists a family of monotone functions {Fn :
{0, 1}n → {0, 1}}n∈N s.t. the total share size of any secret sharing scheme real-
izing Fn is 2Ω(n) bits.

Note that this is a purely information-theoretic statement with no reference to
the computational complexity of sharing or reconstruction.

1.1 Our Results

In this work, we refute two natural strengthenings of the main conjecture by
presenting new secret sharing schemes. The first variant of the main conjecture
1 The typical formulation of secret-sharing refers to a dealer that holds a secret dis-

tributing shares to n parties, such that only certain subsets of parties —described
by a so-called access structure— can reconstruct the secret. In our formulation, the
randomized algorithm corresponds to the dealer, si corresponds to the share given
to party i, xi ∈ {0, 1} indicates whether party i is present in a subset, and F corre-
sponds to the access structure.
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considers a lower bound on share size that depends on the representation size of
the function F as is the case for the state-of-the-art upper bounds, and the sec-
ond variant considers a natural generalization of secret-sharing to non-monotone
functions.

The Representation Size Barrier. To construct a secret-sharing scheme for a
function F , we would need some representation of the function F , e.g., as a
boolean formula or as a circuit or as a span program [KW93]. The most general
approach we have for constructing secret-sharing schemes with small share sizes
yields share sizes that are linear in the size of the monotone Boolean formula
(more generally, the monotone span program) [BL88]. Recall that there are most
2O(s log s) circuits or formulas or span programs of size s. The following conjecture
then captures the intuition that any secret-sharing scheme must yield share sizes
that is polynomial in the representation size:

Conjecture 1. For any collection Fn of monotone functions over {0, 1}n such
that |Fn| ≥ 2ω(n log n), the total share size of any secret-sharing scheme realizing
Fn is at least (log |Fn|)Ω(1)2.

Note that there are 2Θ(2n/
√

n) monotone functions over {0, 1}n, so the main
conjecture is a special case of Conjecture 1. In addition, by a counting argument,
the number of unbounded-fan-in circuits with s gates is no more than 2O(s(n+s)),
thus the collection Fn contains functions whose circuit (and thus formula) size
at least Ω(

√
log |Fn| − n). This means that if our intuition that the share size is

polynomial in the representation size (as a formula or even a circuit) is correct,
then the share size for Fn must be at least (log |Fn|)Ω(1), as captured by the
conjecture. Indeed, we refute this conjecture.

Theorem 1 (Informal). For any s = s(n) ≤ 2n/2, there is a collection F̂n,s

of 2s(n) monotone functions over {0, 1}n and a secret-sharing scheme for F̂n,s

where each share is 2O(
√
log s log log s) = (log |F̂n,s|)o(1) bits.

In particular, Theorem1 has the following, we believe surprising,
consequences.

First, our result implies that there are secret sharing schemes whose share
size is much better than what the “representation size intuition” would suggest.
In one extreme case, taking s(n) = 2n/2, our result implies a family F̂n,2n/2 of
22

n/2
= 22

Ω(n)
monotone functions and a secret sharing scheme for F̂n,2n/2 with

share size only 2Õ(
√

n). Whereas, by simple counting arguments, there must be
a function in this class with circuits (or formulas or monotone span programs or
essentially every other natural computational model we can think of) of size 2Ω(n).

2 The same secret-sharing algorithm can be used to realizing as many as n! differ-
ent access functions by permuting the parties. This trick comes from the nature of
secret sharing, thus two access functions is equivalent if one is the composition of
a permutation and the other, and Conjecture 1 should be stated on the number of
equivalence classes in Fn. Assuming |Fn| � n! has essentially the same effect.
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As another reference point, taking s(n) = nlog n, it follows that there exists mono-
tone functions over {0, 1}n that require quasi-polynomial (in n) size circuits (and
formulas and monotone span programs), but which admit secret-sharing schemes
with polynomial share size. This in particular implies that existing secret-sharing
schemes with share sizes linear in the formula size are far from optimal.

Second, our result implies that “non-linear reconstruction” totally dominates
“linear reconstruction”. Secret-sharing schemes with linear reconstruction are
known to be equivalent to monotone span programs [KW93], whereas the scheme
from Theorem 1 has a non-linear reconstruction algorithm. In particular, our
results shows that for share size poly(n) (resp., 2

√
n), there are 2quasipoly(n) (resp.,

22
Ω(n)

) access structures that can be realized by secret sharing schemes with non-
linear reconstruction, compared to 2poly(n) (resp., 22

Ω(
√

n)
) by linear schemes.

Prior to this work, such a statement was only known under intractability
assumptions pertaining to number-theoretic and combinatorial problems like
quadratic residuosity and graph isomorphism [BI01,VV15], whereas our result
is unconditional.

Non-monotone Secret Sharing. A further generalization called non-monotone
secret sharing was defined in the work of Beimel and Ishai [BI01] and further
studied in [BIKK14,VV15]; this is a natural extension of secret sharing to any
arbitrary, possibly non-monotone F . A non-monotone secret-sharing scheme for
a function F : {0, 1}n → {0, 1} is a randomized algorithm that on input a
secret, outputs n pairs of shares (si,0, si,1)i∈[n] such that for any (x1, . . . , xn),
the n shares (s1,x1 , . . . , sn,xn

) determine the secret if F (x1, . . . , xn) = 1 and
reveal nothing about the secret otherwise. Standard monotone secret-sharing
correspond to the special case where F is monotone and s1,0 = · · · = sn,0 = ⊥.
Non-monotone secret sharing schemes are natural candidates for use in advanced
cryptographic schemes such as attribute-based encryption [GPSW06,OSW07].

It is easy to see that we can construct non-monotone secret-sharing schemes
for all functions on n bits starting from standard secret-sharing for all mono-
tone functions on 2n bits, with a small polynomial blow-up in the share size.
This might suggest that the best share sizes for non-monotone secret-sharing
and standard secret-sharing are polynomially related, motivating the following
strengthening of the main conjecture that we formalize below:

Conjecture 2. There exists a family of functions {Fn : {0, 1}n → {0, 1}}n∈N

such that the total share size in any non-monotone secret sharing scheme for Fn

is 2Ω(n) bits.

Indeed, we also refute this conjecture:

Theorem 2 (Informal). There is a non-monotone secret-sharing for the family
of all functions F : {0, 1}n → {0, 1} where each share is 2Õ(

√
n) bits.

1.2 Overview of Our Constructions

We derive both Theorems 1 and 2 from the construction of a more general
cryptographic primitive, namely that of conditional disclosure of secrets (CDS)
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[GIKM00], which is a generalization of non-monotone secret-sharing to general,
non-boolean inputs. Informally, conditional disclosure of secrets allows a set of
parties to disclose a secret to an external party Charlie, subject to a given con-
dition on their joint inputs. Concretely, we consider (k + 1)-party CDS for
INDEXN , where Alice holds D ∈ {0, 1}N , parties P1, . . . , Pk “jointly” hold an
index i ∈ [N ]3, and all of them hold a secret μ ∈ {0, 1}, and Charlie knows
D, i and should learn μ iff D[i] = 1. To enable this, Alice and all the parties
should share randomness that is hidden from Charlie (akin to the random coins
used in a secret-sharing scheme). Our goal is to minimize the communication
complexity in CDS, that is, the total number of bits sent by Alice and the k
parties to Charlie.

Our main result is as follows:

Theorem (Main). For any 1 ≤ k ≤ log N , there is a (k + 1)-party CDS for
INDEXN where the total communication complexity is 2O(

√
log N ·log log N) bits.

Previously, such a result was only known for k = 1 [LVW17]. Before describ-
ing our (k + 1)-party CDS, we briefly explain how Theorems 1 and 2 follow from
the CDS.

Our non-monotone secret-sharing scheme for all functions F : {0, 1}n →
{0, 1} in Theorem 2 follows from the special case k = log N , where N = 2n.
Concretely, the non-monotone secret-sharing scheme for F is derived from the
(n + 1)-party CDS for INDEX2n as follows: Alice holds the truth table D ∈
{0, 1}2n

of a function F : {0, 1}n → {0, 1} and each party Pi, i = 1, . . . , n
holds a single bit of the index i ∈ [2n], and the messages sent by Pi in the
CDS corresponds to the shares. Going from the (n+1)-party CDS to Theorem1
requires an additional folklore transformation which transforms a non-monotone
secret-sharing scheme for any F : {0, 1}n → {0, 1} into a monotone secret-
sharing scheme with roughly the same share size for a related function F ′; see
Sect. 6.3 for details.

A General Framework for CDS. We proceed to provide an overview for our
(k+1)-party CDS protocol. We begin with a general framework for constructing
CDS protocols, and then sketch how to instantiate the underlying building blocks
to obtain our main result.

The LVW17 Framework. We begin by sketching the 2-party CDS protocol,
i.e. k = 1, from [LVW17] (which in turn builds upon [BIKK14,DG15]). The
starting point of their protocol is a notion of (N, �)-PIR encoding, which encodes
i ∈ [N ] as vector ui ∈ Z

�
6 and D as a function HD : Z�

6 → Z
�
6 such that for all

i,D,w, we have

D[i] = 〈HD(ui + w),ui〉 − 〈HD(w),ui〉.
3 We will make the precise sense of how the parties “jointly” hold the index clear in

a little bit, but roughly speaking, the reader should imagine that each party holds
�(log N)/k� bits of the index.
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This immediately implies that for all μ ∈ {0, 1}, we have

μD[i] = 〈HD(μui + w),ui〉 − 〈HD(w),ui〉. (1)

[LVW17] constructed a two-party CDS protocol with communication O(�)
starting from any (N, �)-PIR encoding, and also gave a construction of a
(N, 2Õ(

√
log N))-PIR encoding. The two-party CDS protocol is as follows:

– Alice and P1 share randomness w, r (hidden from Charlie);
– Alice sends m1

A := HD(w) + r.
– P1 sends m1

B := μui + w and m2
B := 〈ui, r〉.

– Charlie can now compute μD[i] (and thus μ) given D, i, (m1
A,m1

B ,m2
B) using

the relation

μD[i] = 〈HD(μui + w
︸ ︷︷ ︸

m1
B

),ui〉 − 〈HD(w) + r
︸ ︷︷ ︸

m1
A

,ui〉 + 〈r,ui〉︸ ︷︷ ︸
m2

B

which follows readily from (1).

It is easy to see that the total communication is O(�). Privacy follows fairly readily
from the fact that the joint distribution of (m1

A,m1
B) is uniformly random, and

that m2
B is completely determined given (m1

A,m1
B) and μD[i] along with D, i.

The Multi-party Setting. We show how to extend the [LVW17] construction
to the multi-party setting with k parties, for any k ≥ 1. Here, the index i is
distributed across k parties P1, . . . , Pk. The key idea is to have these k parties
jointly emulate P1 in the two-party CDS via secure multi-party computation
(MPC); in fact, because of communication constraints, we will use a private
simultaneous messages protocol [FKN94,IK97] in this setting, where each of the
k parties sends a single message to Charlie. That is, these k parties jointly hold
inputs i,w, r, μ and they will run an MPC protocol with Charlie so that Charlie
learns

(μui + w, 〈ui, r〉), (2)

upon which Charlie can proceed as in the two-party CDS to recover μD[i].
Moreover, security of the MPC protocol ensures that what Charlie learns in the
k-party CDS is the same as that in the two-party CDS. Correctness and security
then follow readily from those of the two-party CDS and the MPC protocol.

Recall that our goal is to obtain a protocol with total communication com-
plexity 2o(n), and we need to make sure that the MPC protocol does not blow
up the communication by too much. The key insight is that the total size of the
inputs for the MPC protocol is O(log N + �) and is in particular independent
of D. Therefore, it suffices to design an MPC protocol for computing (2) with
polynomial communication for the (N, 2Õ(

√
log N))-PIR encoding in [LVW17],

upon which we will derive a k-party CDS protocol with total communication
poly(�) = 2Õ(

√
log N).



Towards Breaking the Exponential Barrier for General Secret Sharing 573

Minimizing Communication via Decomposability. Prior works on MPC
tells us that the communication cost for securely computing (2) is essentially
dominated by the cost of (non-securely) computing the k-ary functionality

i = (i1, . . . , ik) 
→ ui.

In fact, it suffices to construct PIR-encodings where ui ∈ Z
�
6 may be derived by

applying a simple function to vectors ui1 , . . . ,uik
∈ Z

�
6, each of which is derived

from some local (and possibly complex) computation on i1, . . . , ik respectively.
In this work, we consider ui that are given by

ui = u1,i1 ◦ · · · ◦ uk,ik

where ◦ corresponds to point-wise product of vectors. We refer to this property
as k-decomposability.

Using k-decomposable ui, the computation in (2) can be written as

(i1, . . . , ik,w, r, μ) 
→ (μu1,i1 ◦ · · · ◦ uk,ik
+ w, 〈u1,i1 ◦ · · · ◦ uk,ik

, r〉)

which is essentially a degree k+1 computation over the inputs; concretely, it can
be written as the sum of a small number of monomials over (ui1 , . . . ,uik

,w, r, μ).
Following [IK00,IK02,CFIK03], such a computation admits a non-interactive
MPC protocol satisfying perfect, information-theoretic security, and total com-
munication polynomial in �, k, log N .

This brings us to the final building block: a (N, 2Õ(
√
log N))-PIR encoding

that is k-decomposable.

PIR-Encodings from Matching Vector (MV) Families. The key tool in
the (N, 2Õ(

√
log N))-PIR encoding in [LVW17] is matching vector (MV) families,

first constructed by Grolmusz [Gro00] and introduced to cryptography in the
context of private information retrieval [Yek08,Efr12,DGY11,DG15].

MV Families. A (mod 6) MV family is an explicit collection of vectors
{(ui,vi)}i∈[N ] such that ui,vi ∈ Z

�
6 where � = 2O(

√
log N ·log log N) and:

〈ui,vi〉 = 0,

〈ui,vj〉 ∈ {1, 3, 4} for i �= j.

where all computations are done mod 6.
At this point, it may seem like we are abusing notation as we are using

ui to denote both the vectors in a MV family and those in a PIR encoding.
Fortunately, they are essentially the same thing in the [LVW17] construction,
and therefore, it suffices to construct MV families where the underlying ui’s are
k-decomposable.
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Prior Constructions. We begin with an overview of Grolmusz’s MV families
[Gro00]. Fix any integers h,w so that

(
h
w

) ≥ N . Pick any distinct x1, . . . ,xN ∈
{0, 1}h of Hamming weight exactly w. Observe that for all i, j ∈ [N ]:

‖xi ◦ xj‖1
{

=w if i = j

<w if i �= j

The vectors ui will have length � = hO(
√

w) indexed by subsets S of [h] of
size at most O(

√
w) and defined as follows:

ui[S] =
∏

i′∈S

xi[i′]

The reason for defining ui this way is that for any fixed polynomial f of degree
O(

√
w) from {0, 1}h → Z6, we can write f(xi ◦xj) as 〈ui,vj〉 where vj depends

only on f and xj . (Roughly speaking, the polynomial f checks whether the
Hamming weight of its input is equal to or less than w.) We can then set h =
2 log N,w = log N , which yields � = 2O(

√
log N ·log log N).

Our Construction. In our setting, the index i = (i1, . . . , ik) is divided equally
amongst k parties and want ui to be of the form

ui = u1,i1 ◦ · · · ◦ uk,ik
.

To achieve this property, it suffices to modify the choices of x1, . . . ,xN in the
prior construction. Concretely, we pick w, h to be multiples of k such that
(

h/k
w/k

)k ≥ N . Then, we choose x1, . . . ,xN so that each xi can be decomposed into
k blocks (xi1‖ · · · ‖xik

) each of weight exactly w/k. Recall that each entry of ui is
a product of O(

√
w) entries of xi, which means we can write ui = u1,i1 ◦· · ·◦uk,ik

where each u1,i1 , . . . ,uk,ik
depends on xi1 , . . . ,xik

respectively. We can still

set h = 2 log N,w = log N as before, since
(

h/k
w/k

)k ≥ (( h
w )w/k)

k
= N for any

1 ≤ k ≤ log N .

1.3 Related Work

A linear secret-sharing scheme is one where the secret sharing algorithm com-
putes a linear function of the secret and its randomness. Most secret-sharing
schemes in the literature are linear secret-sharing schemes, and many crypto-
graphic applications also require the linearity property. For linear secret-sharing
schemes, the existing upper bounds (namely, linear in formula or span program
size) are essentially optimal, due to their connection to a computational model
called monotone span programs defined by Karchmer and Wigderson [KW93].

Using this connection, we know the following results about linear secret-
sharing schemes. We know there exist access functions that need 2Ω(n) share
size for linear secret sharing via a counting argument [KW93,Bei11]. As for
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explicit functions, we have nlog n/ log log n lower bounds for linear secret shar-
ing realizing some explicit access functions [BGP95,BGW99]. Quite recently,
this was improved by Pitassi and Robere [RPRC16,PR17] who showed an expo-
nential lower bound for monotone span programs realizing some explicit access
functions. Therefore, to beat these exponential bounds, as we do in this work,
we need to turn to general, non-linear secret-sharing schemes.

1.4 Discussion

Our work highlights new connections and exploits the rich interplay amongst old
and new problems in information-theoretic cryptography: from secret-sharing
(70s), to multi-party computation (80s), to private information retrieval (90s),
and brings forth strong evidence against the conjectured optimality of the classic
constructions for monotone secret-sharing.

While we do not construct secret-sharing schemes with sub-exponential share
sizes for all monotone functions over {0, 1}n, as would be necessary to refute the
main conjecture, we do achieve sub-exponential 2O(

√
n log n) share sizes for a large

number of these functions, namely 22
n/2

out of 22
n−O(log n)

of them. There are
several very exciting new research directions at this point, and we highlight two
specific questions related to the main conjecture:

– Does there exist a family containing 1% of all monotone functions over {0, 1}n

that admit a monotone secret-sharing scheme of total share size 2o(n)? Here,
1% can be replaced by any constant. One way to resolve this question would
be to extend our construction to a larger set of monotone functions.

– Does there exist a family of 22
Ω(n)

functions over {0, 1}n that admit a mono-
tone secret-sharing scheme of total share size 2o(

√
n)? One way to resolve

this question would be to improve the communication complexity of 2-party
CDS, which in turn seems closely related to the problem of improving the
communication complexity of the state-of-the-art 2-server private informa-
tion retrieval.

On another thread, we note that the work of Beimel et al. [BIKK14] showed
ways to use improved PIR schemes to obtain protocols for various information-
theoretic multiparty tasks improving their communication complexity or ran-
domness complexity. Our work continues this line of thought. We mention that
the problem of improving the communication complexity of private simultaneous
messages (PSM) protocols, a generalization of CDS, for general functions to a
sub-exponential number remains wide open.

1.5 Organization

We start with Sect. 3 which describes the framework of the multiparty CDS con-
struction. That is, a multi-party CDS scheme for the INDEXpredicate can be
constructed from: (a) a “PIR-encoding”, and (b) a private simultaneous mes-
sages (PSM) protocol computing a special functionality related to the PIR-
encoding (see Theorem 3.1). The following two sections construct these two
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building blocks. Section 4 shows there exists a succinct PIR-encoding that is
also decomposable (Theorem 4.9). Section 5 shows there exists an efficient PSM
for the special functionality if the PIR-encoding is decomposable (Theorem 5.1).
An immediate combination of the above results gives an good multi-party CDS
protocol (Theorem 6.1, which is a restatement of the main theorem in the intro-
duction). Section 6 also presents our applications to secret sharing. A good multi-
party CDS protocol implies non-monotone secret sharing for all functions (Theo-
rem 6.5, which is a restatement of Theorem 2 in the introduction). It also implies
monotone secret sharing for a large class of functions (Theorem 6.7, which is a
restatement of Theorem 1 in the introduction). In addition, Sect. 7 shows similar
results for linear CDS and linear secret sharing.

2 Preliminaries and Definitions

We start with some notation that we will use throughout the paper.

– Let R denote a generic commutative ring, Z denote the integer ring, and
Zm denote the ring of integers modulo m. Let F denote a generic finite field.
When q is a prime power, let Fq denote the finite field of size q. For an integer
m, let [m] := {1, . . . , m}.

– We will let boldface letters, such as x, denote vectors. When x is a vector,
let x[i] denote its i-th element.

– For vectors x ∈ R�,y ∈ R�′
, let x‖y ∈ R�+�′

denote their concatenation.
– Call a vector x ∈ R� a zero-one vector if its entries are either 0 or 1. For a

zero-one vector x, let ‖x‖1 denote the number of 1’s in x.

Definition 2.1 (Point-wise product). For any two vectors x,y ∈ R�, their
point-wise product, denoted by x ◦ y, is a vector in the same linear space whose
i-th element is the product of the i-th elements of x,y, i.e. (x ◦y)[i] = x[i] ·y[i].

This is also known in the literature as the Hadamard product or Schur prod-
uct, typically used in the context of matrices.

2.1 k-party Conditional Disclosure of Secrets (CDS)

In a k-party CDS scheme, there are k parties who know a secret message μ and
jointly hold input x. These parties cannot communicate with each other, but
instead they have access to a common random string (CRS). Their goal is to send
a single message to the CDS referee Charlie, at the end of which Charlie, who
already knows x, should learn μ if and only if P(x) = 1, for a fixed predicate P.

Definition 2.2 (Conditional disclosure of secrets (CDS) [GIKM00]). Let
input spaces X1, . . . ,Xk, secret space M and randomness space W be finite sets.
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Fix a predicate P : X1 × X2 × . . . × Xk → {0, 1}. A cc-conditional disclosure of
secrets (CDS) protocol for P is a tuple of deterministic functions (B1, . . . ,Bk,C)

Transmitting functions Bi : M × Xi × W → {0, 1}cc
Reconstruction function C : X1 × . . . × Xk × {0, 1}cc×k → M

satisfying the following properties:

(reconstruction). For all (x1, . . . , xk) ∈ X1×. . .×Xk such that P(x1, . . . , xk) =
1, for all w ∈ W, and for all μ ∈ M:

C(x1, . . . , xk,B1(μ, x1;w), . . . ,Bk(μ, xk;w)) = μ.

(privacy). There exists a randomized algorithm S such that for all input
tuple (x1, . . . , xk) ∈ X1 × . . . × Xk satisfying P(x1, . . . , xk) = 0, the joint
distribution of

(
B1(μ, x1;w), . . . ,Bk(μ, xk;w)

)
is perfectly indistinguishable

from S(x1, . . . , xk), where the randomness are taken over w
r←W and the

coin tosses of S.

Predicates. We consider the following predicates:

– Index INDEXk+1
N : An index i ∈ [N ] is distributed amongst the first k parties.

Let X1 = · · · = Xk := [ k
√

N ], Xk+1 = {0, 1}N and under the natural mapping
[N ] � i 
→ (i1, . . . , ik) ∈ ([ k

√
N ])k,

PINDEX(i1, . . . , ik,D) = 1 iff D[i] = 1

Note that D can also be interpreted as the characteristic vector of a subset
of [N ].

– All (“worst”) predicates ALLk
N : An index i ∈ [N ] is distributed among the

k parties as before and the predicate is specified by a truth table. Let X1 =
. . . = Xk := [ k

√
N ] and there is a fixed public function F : [N ] → {0, 1}. under

the natural mapping i ∈ [N ] 
→ (i1, . . . , ik) ∈ [ k
√

N ]k,

PALL(i1, . . . , ik) := F (i).

ALLk
N is an easier predicate (family) than INDEXk+1

N , as any CDS proto-
col for INDEXk+1

N implies a CDS protocol for ALLk
N with the same total

communication complexity (e.g. [LVW17, Sect. 2.3]).

The definitions of both predicates inherently require N to be a perfect k-th
power. In the case where N is not a k-th power, we can pad N to the nearest
larger k-th power. When k ≤ log N , it’s guaranteed that the nearest larger k-th
power is no greater than N2. For the sake of our result, a square blowup on N
doesn’t matter.
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2.2 k-party Private Simultaneous Messages (PSM)

In a k-party PSM scheme, there are k parties who jointly have input x, and they
cannot communicate with each other, but have access to a common random
string (CRS), as in the case of CDS. There is also the PSM referee Charlie who
wants to learn F(x), for a fixed functionality F. In the PSM scheme, every party
sends a single message to Charlie based on its piece of input and the CRS. Given
these messages, Charlie should be able to learn F(x) and nothing else about x.

Definition 2.3 (Private simultaneous message (PSM)). Let Xt be the
input space of the t-th party, let X ⊆ X1 × . . . × Xk be the input space, and
let M be the output space. Fix a functionality F : X → M. A cc-bits private
simultaneous message (PSM) protocol for F is a tuple of deterministic functions
(B1, . . . ,Bk,C):

Transmitting functions Bi : Xi × W → {0, 1}cc,
Reconstruction function C : {0, 1}cc×k → M

satisfying the following properties:

(reconstruction). For all (x1, . . . , xk) ∈ X :

C(B1(x1;w), . . . ,Bk(xk;w)) = F(x1, . . . , xk)

(privacy). There exists a randomized simulator S, such that for any input tuple
(x1, . . . , xk) ∈ X , the joint distribution (B1(x1;w), . . . ,Bk(xk;w)) is perfectly
indistinguishable from S(F(x1, . . . , xk)), where the distributions are taken over
w

r←W and the coin tosses of S.

Common Input. In the PSM functionalities we care about in this work, a part of
the input is shared among all parties. That is, the input of the t-th party is of the
form x′

t = (xt, y), where xt is t-th party’s exclusive input, and y is shared input
known by all parties but the referee Charlie. This can be formalized by letting
X ′

t = Xt × Y as the t-th party’s input space and by defining the global input
space X as consisting of vectors ((x1, y1), . . . , (xk, yk)) where y1 = . . . = yk. For
notational simplicity, let F(x1, . . . , xk; y) denotes F((x1, y), . . . , (xk, y)) and let
the transmission functions be denoted as Bi(xi; y;w).

Functionality. We consider the following functionalities of interest:

– Affine functions AFFINEk: For vectors x1, . . . ,xk ∈ Rn and any affine func-
tion f : Rkn → R

FAFFINE(x1, . . . ,xk; f) = f(x1, . . . ,xk).

– Branching Program BPk
m: A mod-R branching program is a directed acyclic

graph with a source s and a sink t, where every edge is labeled with an affine
function. Given an input vector x, the value of an edge is the value of its label
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function when applied to x; the value of an (s, t)-path is the product of the
values on its edges; and the value of the branching program is the sum of the
values of all (s, t)-paths.
To formalize the branching program problem as a PSM functionality: let
the branching program be the shared input; split input vector x among the
parties as their exclusive input. More precisely, in BPk

m, there are k parties
and a branching program with m nodes. Let fi,j (1 ≤ i < j ≤ m) denote the
affine function assigned to edge (i, j). The t-th party’s input is xt ∈ Rn and
{fi,j}i<j . The functionality BPk

m is defined as
FBP(x1, . . . ,xk; {fi,j}i<j) =

∑

s-t path p

∏

edge (i, j)
in p

fi,j(x1, . . . ,xk).

The affine function functionality AFFINEk is the special case of BPk when
the associated graph has only two nodes and one edge.

3 A Framework for Multi-party CDS

In this section, we describe a framework for constructing multi-party conditional
disclosure of information (CDS) protocols. Our framework relies on vector fami-
lies that satisfy two properties described below. The first is the property of being
a “PIR encoding”, satisfied by matching vector families and was used in [LVW17]
to construct two-party CDS. The second is the existence of a communication-
efficient private simultaneous messages (PSM) protocol for a functionality asso-
ciated to the PIR encoding scheme.

PIR Encoding. We define an (N, �)-PIR encoding as a family of N vectors
(ui)i∈[N ] where each ui ∈ Z

�
6, along with a mapping HD : Z�

6 → Z
�
6 for every

table (string) D ∈ {0, 1}N . The PIR encoding property requires that for any
index i ∈ [N ] and any vector w ∈ Z

�
6,

〈
ui,HD(w + ui) − HD(w)

〉
= D[i] · φw,i (3)

where φw,i �= 0.
As the name suggests, any PIR encoding scheme can be used to construct

a 2-server information theoretic private information retrieval (PIR) scheme.
Indeed, the 2-server PIR schemes of [CKGS98,WY05,DG15] can all be viewed
as instances of this paradigm.

A Special-Purpose PSM Protocol. A PIR encoding scheme can also be used to
construct the following CDS protocol as described in [LVW17]. Alice holds a
database D, and Bob holds an index i and a secret message μ. Bob sends the
pair (w + μui, 〈ui, r〉), and Alice sends HD(w) + r to Charlie. Here, w and r
come from the CRS. Charlie now has enough information to compute

〈
ui,HD(w + μui) − HD(w)

〉
= D[i] · μ · φw,i
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which reveals the secret μ if and only if D[i] �= 0.
In (k + 1)-party CDS for INDEXN , the index i = (i1, . . . , ik) is divided

equally among the first k parties and the (k + 1)th party holds the database
D. Our plan is to have the first k parties simulate what Bob did in the 2-party
CDS. We describe our CDS protocol in Fig. 1, which assumes a PSM protocol
for computing the k-party functionality

Faux : [ k
√

N ] × . . . × [ k
√

N ] × ({0, 1} × Z
�
6 × Z

�
6) → Z

�
6 × Z6

where Faux(i1, . . . , ik; (μ,w, r)) 
→ (w + μui, 〈ui, r〉)
(4)

Here, w, r and μ are common inputs and the index i is divided equally among
the first k parties. This, in particular, will enable the k parties to simulate
the Bob in the 2-party CDS setting, and jointly send w + μui and 〈ui, r〉 to
Charlie without revealing any extra information. More precisely, our construction
requires a PIR encoding such that there is a PSM for this functionality with
communication complexity ccPSM(N, �, k) that is as small as possible.

Theorem 3.1. Assume that there is an (N, �)-PIR encoding scheme (ui)i∈[N ]

and a PSM for Faux in (4) with communication complexity ccPSM(N, �, k), then
there is a (k+1)-party CDS protocol for INDEXk+1

N (Fig. 1) with communication
complexity � + ccPSM(N, �, k).

Fig. 1. (k + 1)-party CDS for INDEXk+1
N from PIR encodings and PSM.

Proof. By the definition of PIR encoding, for any table D ∈ {0, 1}N , there exists
a mapping HD : Z�

6 → Z
�
6 that satisfies Eq. (3). We now show correctness, privacy

and efficiency of the protocol.
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Correctness. The correctness of the PSM protocol tells us that m1
B = w + μui

and m2
B = 〈ui, r〉. Equation (3) then directly implies that

〈ui,HD(w + μui)〉 − 〈ui,HD(w)〉 = D[i] · μ · φw,i

where μ ∈ {0, 1} is the secret message. Charlie learns

〈ui,HD(m1
B)〉 − 〈ui,mA〉 + m2

B

= 〈ui,HD(w + μui)〉 − 〈ui, r + HD(w)〉 + 〈ui, r〉
= 〈ui,HD(w + μui)〉 − 〈ui,HD(w)〉
= D[i] · μφw,i,

which, since φw,i �= 0, gives μ if and only if D[i] = 1.

Privacy. Privacy follows by putting the following observations together.

– First, the joint distribution of m1
B and mA is uniformly random, since we are

using (w, r) as one-time pads;
– Secondly, when D[i] = 0, we have 〈ui,HD(w + μui)〉 − 〈ui,HD(w)〉 = 0.

This means that m2
B = 〈ui,mA〉 − 〈ui,HD(m1

B)〉 and thus can be simulated
knowing only mA and m1

B (and, of course, D and i);
– Finally, the joint distribution of mpsm,1, . . . ,mpsm,k can be perfectly simu-

lated from (m1
B ,m2

B), due to the privacy of the PSM.

Efficiency. Each party except Alice sends a PSM message of size at most
ccPSM(N, �, k). Alice sends a vector of size �. The communication complexity
of a party is no more than � + ccPSM(N, �, k). ��

4 PIR Encoding from Decomposable Matching Vectors

These two ingredients used to construct multi-party CDS, namely PIR encod-
ings and the special-purpose PSM protocol are connected by the property of
decomposability.

Definition 4.1 (k-decomposability). Let N ′ := k
√

N . A family of vectors
(ui)N

i=1 is k-decomposable if there exist vector families (u1,i)N ′
i=1, . . . , (uk,i)N ′

i=1

such that under the natural mapping i 
→ (i1, . . . , ik) ∈ [N ′]k

ui = u1,i1 ◦ . . . ◦ uk,ik

for all i ∈ [N ]. Here, ◦ denotes the component-wise multiplication operation. A
family of vectors (ui)i∈[N ] is called a k-decomposable PIR encoding if it is a PIR
encoding and it is k-decomposable.

In this section, we construct a k-decomposable (N, �)-PIR encoding with
� = 2O(

√
log N log log N). In Sect. 5, we show an efficient PSM for functionality (4)

as long as (ui)i∈[N ] is k-decomposable. Put together, they fulfill the assumptions
in Theorem 3.1 and give us a communication-efficient multiparty CDS protocol.
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4.1 PIR Encodings from Matching Vector Families

First, we define matching vector families and show that they give rise to PIR
encodings. Our exposition here follows [LVW17] and uses techniques from [DG15].

Definition 4.2 (Matching vector family). For integers N, �, a collection of
N pairs of vectors {(ui,vi)}N

i=1 where all vectors are in Z
�
6, is an (N, �)-matching

vector family if

– for any i ∈ [N ], 〈ui,vi〉 = 0,
– for any i �= j ∈ [N ], 〈ui,vj〉 ∈ {1, 3, 4}.
where all operations are done over Z6.

This definition is a specialization of the one from [Yek08,Efr12], and is suffi-
cient for our purposes. The magical fact about matching vector families is that
they exist for values of � that are significantly less than N . (In contrast, if one
replaces Z6 with Zp for a prime p, we know that � ≥ N1/(p−1) [BF98,BDL12].
It is thus a surprise that one can do much better when the modulus is a (small)
composite number.

Lemma 4.3 ([Gro00]). For every integer N , there exists an (N, �)-matching
vector family {(ui,vi)}i∈[N ] of length � = 2O(

√
log N log log N) = No(1).

We now show that any MV family gives rise to a PIR encoding scheme.
This lemma was observed in the current form in [LVW17] and is implicit in the
2-server PIR protocol of [DG15].

Lemma 4.4 ([LVW17]). If {(ui,vi)}N
i=1 is an (N, �)-matching vector family,

then the family of vectors {1‖ui}N
i=1 is an (N, � + 1)-PIR encoding.

Proof. Define ûi = 1‖ui ∈ Z
�+1
6 and v̂i = 0‖vi ∈ Z

�+1
6 for all i ∈ [N ]. Then

{(ûi, v̂i)}N
i=1 remains an (N, � + 1)-matching vector family since

〈ûi, v̂i〉 = 〈ui,vi〉.

Given a database D ∈ {0, 1}N , an index i ∈ [N ], and randomness w ∈ Z
�
6,

define auxiliary functions G,G′ : {0, 1} → Z6, Following [DG15]. (G and G′

implicitly depend on i, D and w). G and G′ are defined as follows.

G(μ) :=
∑

j∈[N ]

D[j] · (−1)〈μûi+w,v̂j〉, and

G′(μ) :=
∑

j∈[N ]

〈ûi, v̂j〉 · D[j] · (−1)〈μûi+w,v̂j〉. (5)

A straightforward computation shows the following (see [LVW17, Theorem 4.2]):

G′(1) − G(1) + G′(0) − G(0) = D[i] · (−1)〈w,v̂i〉. (6)
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For each D ∈ {0, 1}N , define HD : Z�
6 → Z

�
6 by

HD(z) := (−1)z[1] ·
∑

j∈[N ]

(v̂j − e1) · D[j] · (−1)〈z,v̂j〉

where e1 = (1, 0, . . . , 0) is the first vector in the standard basis. Recalling that
ûi[1], the first bit of ûi, equals 1, we have

〈ûi,HD(μûi + w)〉 = (−1)μûi[1]+w[1] ·
∑

j∈[N ]

〈ûi, v̂j − e1〉 · D[j] · (−1)〈μûi+w,v̂j〉

= (−1)μ+w[1] ·
∑

j∈[N ]

(〈ûi, v̂j〉 − 1) · D[j] · (−1)〈μûi+w,v̂j〉

= (−1)μ+w[1] ·
(
G′(μ) − G(μ)

)
.

Combined with Eq. (6), we see that:

〈ûi,HD(ûi + w)〉 − 〈ûi,HD(w)〉 = (−1)1+w[1] · (G′(1) − G(1) + G′(0) − G(0))

= (−1)1+w[1] · D[i] · (−1)〈w,v̂i〉

= D[i] · φw,i.

where φw,i := (−1)1+w[1]+〈w,v̂i〉. This completes the proof. ��

4.2 Decomposable Matching Vector (DMV) Families

The main contribution of this section is the definition and construction of a
decomposable matching vector family and thus, decomposable PIR encoding
schemes.

Definition 4.5 (Decomposable Matching Vector Family). For integers
N, � and k ≤ log N , a collection of vectors u1, . . . ,uN ,v1, . . . ,vN ∈ Z

�
6 is a

k-decomposable (N, �)-matching vector family if it is an (N, �)-matching vector
family and (ui)N

i=1 is k-decomposable (as in Definition 4.1).

First, we show that decomposable matching vector families imply decompos-
able PIR encodings, extending Lemma 4.4.

Lemma 4.6. For integers N, � and k ≤ log N , if {(ui,vi)}N
i=1 is a k-

decomposable (N, �)-matching vector family, then the family {1‖ui}N
i=1 is a k-

decomposable (N, � + 1)-PIR encoding.

Proof. By Lemma 4.4, {1‖ui}N
i=1 is a (N, � + 1)-PIR encoding.

Let N ′ = k
√

N and let {u1,i}N ′
i=1, . . . , {uk,i}N ′

i=1 be the k-decomposition of
{ui}N

i=1, then {1‖ui}N
i=1 is a k-decomposable and {1‖u1,i}N ′

i=1, . . . , {1‖uk,i}N ′
i=1 is

a k-decomposition of it. ��
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Thus, our main goal is to construct a decomposable matching vector family
(whose parameters are slightly worse than that of the [Gro00] matching vector
family). To this end, we build on the construction of MV families from the work
of Grolmusz [Gro00].

Lemma 4.7 (Implicit in [Gro00]). For integers h,w,N and any distinct vec-
tors x1, . . . ,xN ∈ {0, 1}h of Hamming weight exactly w. Then, there exists a
matching vector family of N vectors where the vectors have length � = hO(

√
w).

In particular, the vectors ui are indexed by subsets S of [h] of size at most O(
√

w)
and defined as follows:

ui[S] =
∏

j∈S

xi[j]

Proof (Sketch). Observe that for all i, j ∈ [N ]:

‖xi ◦ xj‖1
{

=w if i = j

<w if i �= j

Let thresw : {0, 1}h → Z6 denote the function which maps 0–1 vectors of Ham-
ming weight exactly w to 0, and those of weight less than w to {1, 3, 4}. This
means that

thresw(xi ◦ xi) = 0
thresw(xi ◦ xj) ∈ {1, 3, 4} if i �= j

The choices of Z6 and {1, 3, 4} come from the work of Barrington et al. [BBR94]
which tells us that thresw can be computed by a multilinear polynomial over Z6

of total degree O(
√

w).
Next, we will construct the vectors ui and vj of length � = hO(

√
w) from

xi and xj respectively so that 〈ui,vj〉 = thresw(xi ◦ xj) for all i, j. The bound
on � comes from the fact that we can write the evaluation of a multilinear
polynomial of total degree O(

√
w) in h variables as the inner product of two

vectors of length � = hO(
√

w). In particular, ui will be defined as above and
vj will be the coefficient vector of the degree O(

√
w) multilinear polynomial fj

which maps x 
→ thresw(x ◦ xj). ��

In our setting, the index i = (i1, . . . , ik) ∈ [ k
√

N ] × · · · × [ k
√

N ] is divided
amongst k players, as described in Sect. 2.1.

Lemma 4.8. For integers N and k ≤ log N , there exists a k-decomposable
(N, �)-matching vectors family where � = 2O(

√
log N ·log log N).

Proof. Let h,w be multiples of k such that
(

h/k
w/k

)k ≥ N . Let y1, . . . ,y k√
N

be distinct vectors in {0, 1}h/k, each of Hamming weight w/k. For each i =
(i1, . . . , ik) ∈ [N ], we define

xi := yi1‖ · · · ‖yik
∈ {0, 1}h
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Clearly, x1, . . . ,xN is a collection of distinct vectors with Hamming weight w,
and by Lemma 4.7, there exists a matching vector family {(ui,vi)}i∈[N ], where
the ui’s are indexed by subsets S ⊆ [h] of size at most O(

√
w) and satisfies

ui[S] =
∏

j∈S

xi[j] =
k∏

t=1

∏

j∈St

xi[j].

where St := S ∩ {(t − 1) · h
k + 1, . . . , t · h

k }. Now, if we define

ut,it
[S] :=

∏

j∈St

xi[j] =
∏

j∈St

yit
[j − (t − 1) · h

k ],

we have ui = u1,i1 ◦ . . . ◦ uk,ik
, giving us a k-decomposition.

Set w = �log N/k� · k and h = 2w (so that h,w are multiples of k). Then,
(

h/k

w/k

)k

≥ ((h/w)w/k)
k

= 2w ≥ N

Also, we have � = hO(
√

w) = 2O(
√
log N ·log log N). ��

As a result, we have the main theorem of this section:

Theorem 4.9. For integers N and k ≤ log N , there exists a k-decomposable
(N, �)-PIR encoding where � = 2O(

√
log N ·log log N).

5 A Special-Purpose PSM Protocol

Given the decomposable PIR encoding from Sect. 4.2, the final piece required to
instantiate the framework in Sect. 3 is a special purpose PSM protocol for the
functionality described in Eq. 4.

Theorem 5.1. For integers N, � and k ≤ log N , if (ui)N
i=1 is k-decomposable,

then there is a PSM for the functionality

Faux : [ k
√

N ] × . . . × [ k
√

N ] × ({0, 1} × Z
�
6 × Z

�
6) → Z

�
6 × Z6

where Faux(i1, . . . , ik; (μ,w, r)) 
→ (w + μui, 〈ui, r〉)
(4)

with communication complexity O(�k2) per party.

In order to construct a efficient PSM protocol for this specialized functionality,
we show that (a) this functionality can be written as an affine mod-6 branching
program of size O(k · �) and (b) use the fact that there are efficient PSM protocols
that compute affine branching programs over rings [IK00,IK02,CFIK03] where
the total communication is polynomial in the size of the branching program.

Lemma 5.2. There is a PSM protocol for the k-party affine branching program
functionality BPk

m over the ring Z6 with communication complexity O(m2) per
party.
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Proof. A mod-Z6 branching program can be locally decomposed into a mod-F2

branching program and a mod-F3 branching program using Chinese remainder
theorem. [IK02] show a cc = O(m2 log p) PSM protocol for mod-Fp branching
program when p is a prime.

Moreover, [IK02] can be immediately extended to branching programs over
any commutative rings; see Appendix A for more details. It is further extended
by [CFIK03] to branching programs over any rings. ��

Proof (Proof of Theorem 5.1). Let {u1,i}
k√

N
i=1 , . . . , {uk,i}

k√
N

i=1 ⊆ Z
�
6 be the decom-

position, then under the natural mapping i 
→ (i1, . . . , iN ) ∈ [ k
√

N ]k, we have

ui = u1,i1 ◦ . . . ◦ uk,ik

for all i ∈ [N ].

For the functionality

F (1)
aux (i1, . . . , ik;μ,w) = μui + w ∈ Z

�
6,

its j-th output bit can be written as

(μui + w)[j] = μu1,i1 [j]u2,i2 [j] . . .uk,ik
[j] + w[j].

Since the t-th party (1 ≤ t ≤ k) can compute ut,it
locally, the j-th bit of

μui + w can be computed by a mod-Z6 branching program with O(k) nodes.
By Lemma 5.2, there exists a PSM scheme evaluating the j-th output bit using
O(k2) communication per party. Thus, all � outputs can be computed with com-
munication complexity O(�k2) per party.

For the functionality

F (2)
aux (i1, . . . , ik; r) = 〈ui, r〉 ∈ Z6,

let s ∈ Z
�
6 be a random vector sampled from CRS such that

∑�
j=1 s[j] = 0.

Then, instead of computing the functionality, the parties compute together the
functionality

F (2)′
aux (i1, . . . , ik; r, s) = ui ◦ r + s ∈ Z

�
6,

It is easy to see that ui ◦ r + s reveals 〈ui, r〉 and nothing more. The j-th bit of
ui ◦ r + s can be written as

(ui ◦ r + s)[j] = u1,i1 [j]u2,i2 [j] . . .uk,ik
[j]r[j] + s[j],

which can again be computed by a simple affine branching program with O(k)
nodes. By Lemma 5.2, there exists a PSM scheme evaluating this with O(k2)
bits of communication per party. Thus, to compute all the bits, we need O(�k2)
bits of communication.

Clearly, once Charlie learns ui ◦r+s, he can add up all the bits to get 〈ui, r〉.
��



Towards Breaking the Exponential Barrier for General Secret Sharing 587

6 Putting Together

We finally put together all the pieces to construct a multiparty CDS scheme,
and various types of secret sharing schemes.

6.1 Multi-party CDS for INDEXk+1
N

We obtain the multiparty CDS protocol by instantiating our general framework
in Sect. 3 with the decomposable PIR encodings in Sect. 4.2 and the PSM pro-
tocol in Sect. 5.

Theorem 6.1. For 1 ≤ k ≤ log N , there is a (k + 1)-party CDS protocol for
INDEXk+1

N whose communication complexity is 2O(
√
log N log log N).

Proof. Theorem 3.1 gives us a k+1-party CDS protocol for INDEXk+1
N assum-

ing a k-decomposable PIR encoding scheme and a PSM protocol for the associ-
ated functionality Faux. Theorem 4.9 constructs such a k-decomposable (N, �)-
PIR encoding scheme with � = 2O(

√
log N log log N) and Theorem 5.1 constructs

a PSM protocol for the associated functionality Faux with communication com-
plexity O(k2 · �). Put together, applying Theorem 3.1, we get a (k + 1)-party
CDS protocol with communication complexity O(� + k2�) = 2O(

√
log N log log N).

��
Because CDS for ALLk

N is easier than CDS for INDEXk+1
N , we also get:

Corollary 6.2. For 1 ≤ k ≤ log N , there is a k-party CDS protocol for ALLk
N

whose communication complexity is 2O(
√
log N log log N).

6.2 From CDS to Non-monotone Secret Sharing

A non-monotone secret-sharing scheme for access function F is a randomized
algorithm that on input a secret bit, outputs n pairs of shares (si,0, si,1)i∈[n] such
that for any (x1, . . . , xn) ∈ {0, 1}n, the n shares (s1,x1 , . . . , sn,xn

) determine the
secret if F (x1, . . . , xn) = 1 and reveal nothing about the secret otherwise.

Definition 6.3 (Non-monotone Secret Sharing). Given a function F :
{0, 1}n → {0, 1}, a non-monotone secret-sharing scheme for access function F
is a randomized algorithm

nmSS : M × W → ({0, 1}cc)2n

that on input a secret bit, outputs n pairs of shares s1,0, s1,1, . . . , sn,0, sn,1 ∈
{0, 1}cc satisfying the following properties:

(correctness). There exists a reconstruction algorithm C : {0, 1}n ×
({0, 1}cc)n → M such that for all (x1, . . . , xn) ∈ {0, 1}n that F (x1, . . . , xn) =
1 and for all μ ∈ M, w ∈ W,

nmSS(μ;w) = (s1,0, s1,1, . . . , sn,0, sn,1) =⇒ C(x1, . . . , xn, s1,x1 , . . . , sn,xn
)=μ.
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(privacy). There exists a simulator S such that for all (x1, . . . , xn) ∈ {0, 1}n

satisfying F (x1, . . . , xn) = 0, the joint distribution of (s1,x1 , . . . , sn,xn
) is per-

fectly indistinguishable from S(x1, . . . , xk), where (s1,0, s1,1, . . . , sn,0, sn,1) :=
nmSS(μ;w) and the randomness are taken over w

r←W and the coin tosses
of S.

Standard monotone secret-sharing correspond to the special case where F
is monotone and s1,0 = · · · = sn,0 = ⊥. In such case, let s1, . . . , sn denotes
s1,1, . . . , sn,1 respectively.

Let N := 2n. It is not hard to see that non-monotone secret sharing for all
n-party access functions F is the same as n-party CDS for ALLn

N . This connec-
tion is almost syntactic, and can be formalized as follows.

Lemma 6.4. For any access function F : {0, 1}n → {0, 1}, there is a non-
monotone secret-sharing scheme for F with share size cc if and only if there is a
CDS scheme for ALLn

2n with communication complexity cc when the predicate
is F .

Proof. Assume (B1, . . . ,Bn) is a CDS for ALLn
2n with predicate function F , a

non-monotone secret sharing scheme for F can be defined as

nmSS(μ;w) = (B1(μ, 0;w),B1(μ, 1;w), . . . ,Bn(μ, 0;w),Bn(μ, 1;w)).

Assume nmSS is a non-monotone secret sharing scheme for access function
F . Then (B1, . . . ,Bn) is a CDS for ALLn

2n with predicate function F if Bt(xt;w)
outputs st,xt

and st,xt
is defined as (s1,0, s1,1, . . . , sn,0, sn,1) := nmSS(μ;w). ��

Thus, we obtain the following theorem, disproving Conjecture 2.

Theorem 6.5. There is a non-monotone secret-sharing for the family of all
access functions F : {0, 1}n → {0, 1} with total share size 2O(

√
n log n) bits.

6.3 From Non-monotone to Monotone Secret Sharing

We describe the following folklore transformation which transforms a non-
monotone secret-sharing scheme for any F : {0, 1}n → {0, 1} into a monotone
secret-sharing scheme with roughly the same share size for a related function F ′.

Lemma 6.6. For any function F : {0, 1}n → {0, 1}, a non-monotone secret
sharing scheme for F with share size cc implies a monotone secret sharing
scheme for a monotone access function F ′ : {0, 1}2n → {0, 1} with share size
cc + 2, where F ′ : {0, 1}2n → {0, 1} is defined as

F ′(x′
1, . . . , x

′
2n) =

⎧
⎪⎨

⎪⎩

1 if ∃i such that x′
2i−1 = x′

2i = 1
0 else if ∃i such that x′

2i−1 = x′
2i = 0

F (x′
2, x

′
4, . . . , x

′
2n) otherwise.
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Proof. It is easy that F ′ is monotone. Let nmSS be the non-monotone secret-
sharing scheme for F , we construct a monotone secret sharing scheme mSS for
F ′ as follows:
On input μ ∈ {0, 1}
1. Sample bits b1, . . . , bn, r1, . . . , rn and w ∈ W uniformly at random.
2. Let (s1,0, s1,1, . . . , sn,0, sn,1) := nmSS(μ ⊕ r1 ⊕ . . . ⊕ rn;w).
3. Output (s′

1, . . . , s
′
2n) where

s′
2i−1 := (si,0, ri, bi) s′

2i := (si,1, ri, bi ⊕ μ).

The reconstruction algorithm for mSS either computes μ from (bi, bi⊕μ), or runs
the one for nmSS to recover μ⊕r1⊕· · ·⊕rn and thus μ. More precisely, we argue
correctness and privacy via a case analysis. For any (x′

1, . . . , x
′
2n) ∈ {0, 1}2n,

given the shares (sj)x′
j=1:

Case 1: ∃i s.t. (x′
2i−1, x

′
2i) = (1, 1). Here, F ′(x′

1, . . . , x
′
2n) = 1, and the recon-

struction algorithm can recover μ from bi, bi ⊕ μ given in s′
2i−1, s

′
2i.

Case 2: ∃i s.t. (x′
2i−1, x

′
2i) = (0, 0). Here, F ′(x′

1, . . . , x
′
2n) = 0, and privacy fol-

lows from the fact that ri is perfectly hidden, and therefore μ is also perfectly
hidden.

Case 3: ∀i, (x′
2i−1, x

′
2i) ∈ {(0, 1), (1, 0)}. So F ′(x′

1, . . . , x
′
2n) = F (x′

2,
x′
4, . . . , x

′
2n). First, observe that the shares (sj)x′

j=1 = (s′
2i−1+x′

2i
)i∈[n] and

reveal exactly
s1,x′

2
, s2,x′

4
, . . . , sn,x′

2n
, r1, . . . , rn.

Now, if F (x′
2, x

′
4, . . . , x

′
2n) = 1, correctness of nmSS enables Charlie to recover

μ⊕r1⊕ . . .⊕rn and thus μ. Otherwise, privacy of nmSS hides μ⊕r1⊕ . . .⊕rn,
thus μ is perfectly hidden.

This completes the proof. ��
As for non-monotone secret sharing, there are double exponential different

access functions. Under the mapping specified in Lemma 6.6, they are mapped to
different monotone functions. Thus, we obtain the following theorem, disproving
Conjecture 1.

Theorem 6.7. There is a collection F̂n of 22
n/2

monotone functions over
{0, 1}n, such that there is monotone secret sharing scheme for F̂n with share
size 2O(

√
n log n) bits.

To obtain the more general statement in Theorem 1 (informal), we just apply
the above construction to the first log s bits of the input.
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7 Linear CDS and Secret Sharing

A CDS protocol is linear if the transmitting functions are linear on the secret
and randomness (not necessarily linear on the inputs). A secret sharing scheme
is linear if the share generation algorithm is linear on the secret and randomness.

We present a linear non-monotone secret sharing scheme (equivalently, a mul-
tiparty CDS protocol) for every access function over {0, 1}n with shares of size
O(2n/2). It is sufficient to construct a linear (n + 1)-party CDS for INDEXn+1

2n

where each party sends O(2n/2) bits. The construction will follow our general
framework for building multi-party CDS from 2-party CDS.

In CDS for INDEXn+1
2n , each of the first n parties holds a bit of i ∈ {0, 1}n,

the last party holds a truth-table D ∈ {0, 1}2n

, the secret is disclosed if and only
if D[i] = 1. As a warm-up, we recap the 2-party linear CDS for INDEX2

2n with
total communication O(2n/2).

2-party CDS [GKW15]. Bob holds i ∈ {0, 1}n and split it into higher half
jH ∈ {0, 1}n/2 and lower half jL ∈ {0, 1}n/2. The shared randomness is
w, r ∈ {0, 1}2n/2

. Bob sends

m1
B := μejL + w ∈ {0, 1}2n/2

, m2
B := r[jH ]

to Charlie. Alice holds the truth table D ∈ {0, 1}2n

which can be viewed as a
2n/2 × 2n/2 matrix, sends

mA := Dw + r ∈ {0, 1}2n/2
.

Charlie computes

ejH · D · m1
B − ejH · mA + m2

B

= ejH · D · (μejL + w) − ejH · (Dw + r) + r[jH ]
= μejH · D · ejL

= μD[i].

(7)

PSM Building Block. Following our general framework for building multi-party
CDS from 2-party CDS, the crux is to construct a “linear” n-party PSM for the
following functionality where each party sends O(2n/2) bits.

(jH ; r) 
→ r[jH ] ∈ {0, 1} (8)

(jL;w, μ) 
→ μejL + w ∈ {0, 1}2n/2
(9)

where w ∈ {0, 1}2n/2
. For this, we should use “partial garbling” [IW14] and

exploit the fact that the PSM does not need to protect the privacy of jH , jL,
which we may treat as “public” inputs. In addition, observe that the computation
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in (8) and (9) are linear on the “private” inputs r,w, μ. Our goal is a protocol
where

– the communication of the “partial garbling PSM” is O(2n/2).
– each party’s PSM message is linear in r,w, μ and the PSM randomness.

As a partial PSM protocol for functionality (8): Sample random vectors
r1, . . . , rn/2 ∈ {0, 1}2n/2

such that r =
∑n/2

t=1 rt. For every 1 ≤ t ≤ n/2, the
party who holds jH

t sends rt[j] for all j ∈ {0, 1}n/2 such that jt = jH
t . Charlie

can reconstruct r[jH ] =
∑

t rt[jH ].
As a partial PSM protocol for functionality (9): For every 1 ≤ t ≤ n/2, the

party who holds jL
t sends w[j] for all j ∈ {0, 1}n/2 such that jt �= jL

t . One party
sends μ +

∑
j w[j] in addition. Charlie can reconstruct vector μejL + w as he

receives all the bits of it except the jL-th bit and the jL-th bit can be recovered
from the sum the vector and the rest of the vector.

Fig. 2. (k + 1)-party linear CDS for INDEXk+1
N , when k is even.

Theorem 7.1. For even k ≤ log N , there is a (k +1)-party linear CDS protocol
for INDEXk+1

N (Fig. 2) whose communication complexity is O(
√

N) per party.

Proof. The argument for correctness is the same as that for 2-party CDS: Let
r :=

∑
t rt. Charlie learns w′ = μejL +w from the first k/2 parties, learns r[jH ]

from the following k/2 parties, gets Dw+ r from the last party (Alice), then he
can reconstruct μ · D[i] using Eq. (7).
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Privacy follows from the following observations:

– When D[i] = 0, the joint distribution of w′,mA, r[iH ] can be simulated
from D, i without knowing μ. This is due the security of 2-party CDS for
INDEX[GKW15].

– The messages from the first k/2 parties together with mD can be determined
by (w′, jL): the messages from the first k/2 parties all bits in w′; and mD =∑

j w
′[j].

– The messages from the following k/2 parties can be simulated from
(r[jH ], jH): sample rk/2+1, . . . , rk such that

∑
t rt[jH ] = r[jH ]; the t-th party

sends rt[j] for all j ∈ [ k
√

N ]k/2 such that jt−k/2 = it.

Theorem 7.2. There is a linear non-monotone secret-sharing for the family of
all access functions F : {0, 1}n → {0, 1} with share size O(2n/2) bits for each
party.

Proof. (Sketch). Use Lemma 6.4 to construct non-monotone secret sharing from
multi-party CDS for ALL, with the observation that the transformation in
Lemma 6.4 preserves linearity.

Acknowledgments. We thank Yuval Ishai for telling us about Conjecture 1. We
thank the anonymous EUROCRYPT 2018 reviewers for their insightful comments.

A Private Simultaneous Message for Branching Program
over Commutative Rings

We sketch the PSM schemes from [IK02,CFIK03] for branching programs over
commutative rings.

Fig. 3. The log |R|-bit PSM protocol for AFFINEk.
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Theorem A.1 (Folklore). There is a PSM scheme (Fig. 3) for AFFINEk

over commutative ring R such that every party sends one ring element.

Proof. The correctness is straight-forward,

k∑

t=1

mt =
k−1∑

t=1

(〈xt,yt〉+rt)+〈xk,yk〉+c−
k−1∑

t=1

rt =
k∑

t=1

〈xt,yt〉+c = f(x1, . . . ,xk).

Privacy follows from the following observations:

– the joint distribution of m1, . . . ,mk−1 is uniformly random, since we are using
(r1, . . . , rk−1) is one-time pads;

– mk is determined by m1, . . . ,mk−1 and f(x1, . . . ,xk) as mk = f(x1, . . . ,xk)−∑k−1
t=1 mt.

Putting the two together, we can simulate Charlie’s view given just f(x1, . . . ,xk).
��

Lemma A.2 ([IK02]). For any matrix M ∈ Rm×m such that Mi,j = −1 for
i = j + 1 and Mi,j = 0 for i > j + 1, there exist matrix L,R ∈ Rm×m satisfying
(10) such that

M =

⎡

⎢⎢⎢
⎣

1 L1,2 · · · L1,m

1
. . .

1

⎤

⎥⎥⎥
⎦

︸ ︷︷ ︸
L

·

⎡

⎢⎢⎢
⎣

det M
−1

. . .
−1

⎤

⎥⎥⎥
⎦

·

⎡

⎢⎢⎢⎢
⎣

1 R1,2 · · · R1,m

1
. . .

...
. . . Rm−1,m

1

⎤

⎥⎥⎥⎥
⎦

︸ ︷︷ ︸
R

Lemma A.3 ([IK02]). For any matrix M ∈ Rm×m such that Mi,j = −1 for
i = j + 1 and Mi,j = 0 for i > j + 1, the distribution of L · M · R is determined
by det M , where L,R ∈ Rm×m are random matrices satisfying (10).

Proof. Let LM , RM be the matrices implied by Lemma A.2 such that LM , RM

are upper triangular matrices with 1’s in their diagonal, L
(M)
i,j = 0 for 1 < i <

j ≤ m and

M = LM ·

⎡

⎢⎢⎢
⎣

det M
−1

. . .
−1

⎤

⎥⎥⎥
⎦

· RM

L · M · R can be written as

L · M · R = L · LM︸ ︷︷ ︸
same distribution as L

·
⎡

⎣
detM−1

. . .
−1

⎤

⎦ · RM · R︸ ︷︷ ︸
same distribution as R

The joint distribution of (L · LM , RM · R) is the same as (L,R), thus detM
determines the distribution of L · M · R. ��
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Theorem A.4. There is a PSM scheme (Fig. 4) for BPk
m over commutative

ring R such that every party sends m(m+1)
2 ring elements.

Proof. Correctness is straight-forward, as

det C = det F ′(x1, . . . ,xk) = det L·det F (x1, . . . ,xk)·det R = det F (x1, . . . ,xk).

Privacy follows from the following observations:

– The distribution of C = L·F (x1, . . . ,xk)·R is determined by detF (x1, . . . ,xk)
(Lemma A.3);

– For each 1 ≤ i ≤ j ≤ m, Charlie learns Ci,j in an independent nested PSM
scheme, the corresponding messages can be simulated given C.

Thus Charlie’s view can be simulated by first sampling C given det F (x1, . . . ,xk),
then simulating the messages using C and the simulator of the underlaying PSM.

��

Fig. 4. The ( 1
2
m(m + 1) log |R|)-bit PSM protocol for BPk

m.
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Abstract. We present a new improvement in the linear programming
technique to derive lower bounds on the information ratio of secret shar-
ing schemes. We obtain non-Shannon-type bounds without using infor-
mation inequalities explicitly. Our new technique makes it possible to
determine the optimal information ratio of linear secret sharing schemes
for all access structures on 5 participants and all graph-based access
structures on 6 participants. In addition, new lower bounds are pre-
sented also for some small matroid ports and, in particular, the optimal
information ratios of the linear secret sharing schemes for the ports of
the Vamos matroid are determined.

Keywords: Secret sharing · Information inequalities
Rank inequalities · Common information · Linear programming

1 Introduction

Linear programming involving information inequalities has been extensively used
in different kinds of information theoretic problems. An early instance is the
verification of Shannon information inequalities [63], and we find more examples
in secret sharing [15,52], network coding [61,64], and other topics [62].

In this work, we present a new improvement of the linear programming
technique in the search for lower bounds on the information ratio of secret
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sharing schemes. Namely, instead of known non-Shannon information inequal-
ities, we propose to use constraints based on the properties from which those
inequalities are deduced.

Secret sharing, which was independently introduced by Shamir [58] and
Blakley [9], is a very useful tool that appears as a component in many dif-
ferent kinds of cryptographic protocols. The reader is referred to [4] for a survey
on secret sharing and its applications. In a secret sharing scheme, a secret value
is distributed into shares among a set of participants in such a way that only
the qualified sets of participants can recover the secret value. This work deals
exclusively with unconditionally secure and perfect secret sharing schemes, in
which the shares from any unqualified set do not provide any information on the
secret value. In this case, the family of qualified sets of participants is called the
access structure of the scheme.

In a linear secret sharing scheme, the secret and the shares are vectors over
some finite field, and both the computation of the shares and the recovering of the
secret are performed by linear maps. Because of their homomorphic properties,
linear schemes are used in many applications of secret sharing. Moreover, most
of the known constructions of secret sharing schemes yield linear schemes.

The information ratio of a secret sharing schemes is the ratio between the
length of the shares and the length of the secret. The optimization of this param-
eter, both for linear and general secret sharing schemes, has attracted a lot of
attention. This problem has been analyzed for several families of access struc-
tures. For example, access structures defined by graphs [5,10,12,16,18,20,30,32],
access structures on a small number of participants [20,30–32,37,52,59], bipar-
tite access structures [25,51], the ones having few minimal qualified sets [43,45],
or ports of non-representable matroids [7,44,48,52].

That optimization problem is related to the search for asymptotic lower
bounds on the length of the shares, which is one of the main open problems
in secret sharing. The reader is referred to the survey by Beimel [4] for more
information about this topic. For linear secret sharing schemes, building up
on the superpolynomial lower bounds in [3,6], exponential lower bounds have
been proved recently [53,55]. Nevertheless, for the general case, no proof for
the existence of access structures requiring shares of superpolynomial size has
been found. Moreover, the best of the known lower bounds is the one given by
Csirmaz [14,15], who presented a family of access structures on an arbitrary
number n of participants whose optimal information ratio is Ω(n/ log n).

Almost all known lower bounds on the optimal information ratio have been
obtained by the same method, which is called here the linear programming (LP)
technique. In particular, the asymptotic lower bound found by Csirmaz [14,15]
and most of the lower bounds for the aforementioned families of access structures.
The LP-technique is based on the fact, pointed out by Karnin et al. [39], that a
secret sharing scheme can be defined as a collection of random variables such that
their joint entropies satisfy certain constraints derived from the access structure.

The technique was first used by Capocelli et al. [12]. In particular, they pre-
sented the first examples of access structures with optimal information ratio
strictly greater than 1. Csirmaz [15] refined the method by introducing some
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abstraction revealing its combinatorial nature. This was achieved by using
the connection between Shannon entropies and polymatroids discovered by
Fujishige [26,27]. The lower bounds on the optimal information ratio that can be
obtained by using that connection between Shannon entropies and polymatroids
or, equivalently, by using only Shannon information inequalities are called here
Shannon-type lower bounds. The known exact values of the optimal informa-
tion ratio have been determined by finding, for each of the corresponding access
structures, both a Shannon-type lower bound and a linear secret sharing scheme
whose information ratio equals that bound.

A further improvement, which was first applied in [7], consists in adding to
the game constraints that cannot be derived from Shannon information inequal-
ities. Specifically, the so-called non-Shannon information inequalities and non-
Shannon rank inequalities. The former provide lower bounds for the general case,
while the bounds derived from the latter apply to linear secret schemes. That
addition made it possible to find several new lower bounds [7,16,48,52] and
also the first examples of access structures whose optimal information ratios are
strictly greater than any Shannon-type lower bound [7], namely the ports of the
Vamos matroid.

Finally, Metcalf-Burton [48] and Padró et al. [52] realized that the method
consists of finding lower bounds on the solutions of certain linear programming
problems, which can be solved if the number of participants is small. In partic-
ular, the best Shannon-type lower bound for any given access structure is the
optimal value of a certain linear programming problem. Again, new lower bounds
for a number of access structures [25,45,48,52] were obtained as a consequence
of that improvement.

Some limitations of the LP-technique in the search for asymptotic lower
bounds have been found. Namely, the best lower bound that can be obtained
by using all information inequalities that were known at the beginning of this
decade is linear in the number of participants [8,15], while at most polynomial
lower bounds can be found by using all known or unknown inequalities on a
bounded number of variables [46].

Summarizing, while the LP-technique has important limitations when trying
to find asymptotic lower bounds, it has been very useful in the search for lower
bounds for finite and infinite families of access structures, providing in many
cases tight bounds. More details about the LP-technique and its application are
discussed in Sect. 2.

Yet another improvement to the LP-technique is presented in this work.
Instead of using the known non-Shannon information and rank inequalities, we
use the properties from which most of them have been derived. Specifically, most
of the known non-Shannon information inequalities are obtained by using the
copy lemma [22,66] or the Ahlswede-Körner lemma [1,2,38,42]. These two tech-
niques are proved to be equivalent in [38]. All known non-Shannon rank inequal-
ities, which provide lower bounds on the information ratio of linear secret shar-
ing schemes, are derived from the common information property [23]. We derive
from these properties some constraints to be added to the linear programming
problems that are used to find lower bounds.
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We applied that improvement to several access structures on a small num-
ber of players and we find new lower bounds that could not be found before by
using the known information and rank inequalities. Specifically, the access struc-
tures on five participants, the graph-based access structures on six participants,
and some ports of non-representable matroids have been the testbeds for our
improvement on the LP-technique.

Jackson and Martin [37] determined the optimal information ratios of most
of the access structures on five participants. The use of computers to solve the
corresponding linear programming problems provided better Shannon-type lower
bounds for some of the unsolved cases [52]. In addition, constructions of linear
secret sharing schemes were presented in [31] improving some upper bounds.
After those developments, only eight cases remained unsolved. Moreover, the
values of the optimal information ratios for all solved cases were determined
by a linear secret sharing scheme matching a Shannon-type lower bound. The
negative result in [52, Proposition 7.1] clearly indicated that some of the open
cases could not be solved in that way. Nevertheless, adding non-Shannon infor-
mation and rank inequalities to the linear programs did not produce any new
lower bound [52]. In contrast, our enhanced LP-technique provides better lower
bounds for those unsolved cases, which are tight for linear secret sharing schemes.
In particular, the optimal information ratio of linear secret sharing schemes is
now determined for every access structure on five participants. Even though we
present new lower bounds, some values are still unknown for general schemes.
So, we partially concluded the project initiated by Jackson and Martin in [37].
Moreover, we found the smallest examples of access structures for which the
optimal information ratio does not coincide with the best Shannon-type lower
bound.

A similar project was undertaken by van Dijk [20] for graph-based access
structures on six participants, that is, access structures whose minimal qualified
sets have exactly two participants. Most of the cases were solved in the initial
work [20], and several advances were presented subsequently [13,30,32,41,52].
At this point, only nine cases remained unsolved. We have been able to find for
them new lower bounds for linear schemes by using our enhanced LP-technique.
Once our new lower bounds were made public, Gharahi and Khazaei [33] pre-
sented constructions of linear secret sharing schemes proving that they are tight.
Therefore, our results made it possible to determine the optimal information rate
of linear secret sharing schemes for all graph-based access structures on six par-
ticipants.

In addition, we present new lower bounds for the ports of four non-repre-
sentable matroids on eight points and, in particular, we determine the optimal
information ratio of linear schemes for the ports of the Vamos matroid and the
matroid Q8.

All the lower bounds that are presented in this paper have been found
by solving linear programming problems with conveniently chosen additional
constraints derived from the common information property and the Ahlswede-
Körner lemma. Since the number of variables and constraints is exponential in
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the number of participants, this can be done only for access structures on small
sets. However, several lower bounds for infinite families of access structures have
been obtained by using the LP-technique without solving linear programming
problems [10,15,17,18,51]. Nevertheless, a better understanding of those tools
is needed to apply our improvement of the LP-technique in a similar way. Since
the known limitations of the LP-technique do not imply the contrary, it may be
even possible to improve Csirmaz’s [14,15] asymptotic lower bound Ω(n/ log n).

The paper is organized as follows. A detailed discussion on the LP-technique
is given in Sect. 2. Our improvement on the method is described in Sect. 3. The
new lower bounds that have been obtained by applying our technique are pre-
sented in Sect. 4. Constructions of linear secret sharing schemes that are used to
prove the tightness of some of those bounds are given in Sect. 5. We conclude
the paper in Sect. 6 with some open problems and suggestions for future work.

2 Lower Bounds in Secret Sharing from Linear
Programming

We begin by introducing some notation. For a finite set Q, we use P(Q) to denote
its power set, that is, the set of all subsets of Q. We use a compact notation for
set unions, that is, we write XY for X ∪ Y and Xy for X ∪ {y}. In addition, we
write X � Y for the set difference and X � x for X � {x}.

2.1 Entropic and Linear Polymatroids

Only discrete random variables are considered in this paper. For a finite set Q,
consider a random vector (Sx)x∈Q. For every X ⊆ Q, we use SX to denote the
subvector (Sx)x∈X , and H(SX) will denote its Shannon entropy. Given three
random variables (Si)i∈{1,2,3}, the entropy of S1 conditioned on S2 is

H(S1|S2) = H(S12) − H(S2),

the mutual information of S1 and S2 is

I(S1 :S2) = H(S1) − H(S1|S2) = H(S1) + H(S2) − H(S12)

and, finally, the conditional mutual information is defined by

I(S1 :S2|S3) = H(S1|S3) − H(S1|S23) = H(S13) + H(S23) − H(S123) − H(S3).

A fundamental fact about Shannon entropy is that the conditional mutual
information is always nonnegative, and this implies the following connection
between Shannon entropy and polymatroids, which was first described by
Fujishige [26,27].

Definition 2.1. A polymatroid is a pair (Q, f) formed by a finite set Q, the
ground set, and a rank function f : P(Q) → R satisfying the following properties.
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(P1) f(∅) = 0.
(P2) f is monotone increasing: if X ⊆ Y ⊆ Q, then f(X) ≤ f(Y ).
(P3) f is submodular: f(X ∪Y )+f(X ∩Y ) ≤ f(X)+f(Y ) for every X,Y ⊆ Q.

A polymatroid is called integer if its rank function is integer-valued. If S = (Q, f)
is a polymatroid and α is a positive real number, then (Q,αf) is a polymatroid
too, which is called a multiple of S.

Theorem 2.2 (Fujishige [26,27]). Let (Sx)x∈Q be a random vector. Consider
the mapping h : P(Q) → R defined by h(∅) = 0 and h(X) = H(SX) if ∅ �= X ⊆
Q. Then h is the rank function of a polymatroid with ground set Q.

Definition 2.3. The polymatroids that can be defined from a random vector as
in Theorem2.2 are called entropic. Consider a field K, a vector space V with
finite dimension over K and a collection (Vx)x∈Q of vector subspaces of V . It is
clear from basic linear algebra that the map f defined by f(X) = dim

∑
x∈X Vx

for every X ⊆ Q is the rank function of a polymatroid. Every such polymatroid
is said to be K-linear.

Because of the connection given in Theorem 2.2, if f is the rank function of
a polymatroid, we use the notation f(A|B) = f(AB) − f(A) for every pair of
subsets of the ground set.

We discuss in the following the well known connection between entropic
and linear polymatroids, as described in [34]. Let K be a finite field and V
a vector space with finite dimension over K. Let S be the random variable
determined by the uniform probability distribution on the dual space V ∗. For
every vector subspace W ⊆ V , the restriction of S to W determines a ran-
dom variable S|W that is uniformly distributed on its support W ∗, and hence
H(S|W ) = log |K| dim W ∗ = log |K|dim W . Let (Vx)x∈Q be a collection of sub-
spaces of V . For every X ⊆ Q, we notate VX =

∑
x∈X Vx. This collection of sub-

spaces determines the K-linear random vector (Sx)x∈Q = (S|Vx
)x∈Q. Observe

that SX = S|VX
for every X ⊆ Q, and hence

H(SX) = log |K| dim VX = log |K| dim
∑

x∈X

Vx.

This implies that the K-linear polymatroid determined by the collection of sub-
spaces (Vx)x∈Q is a multiple of the entropic polymatroid defined by the K-linear
random vector (Sx)x∈Q = (S|Vx

)x∈Q. By taking also into account that every
linear polymatroid admits a linear representation over some finite field [23,54],
from this discussion we can conclude the well known fact that every linear poly-
matroid is the multiple of an entropic polymatroid.

2.2 Secret Sharing

Definition 2.4. Let P be a set of participants. An access structure Γ on P
is a monotone increasing family of subsets of P , that is, if A ⊆ B ⊆ P and
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A ∈ Γ , then B ∈ Γ . The members of Γ are the qualified sets of the structure.
An access structure is determined by the family min Γ of its minimal qualified
sets. A participant is redundant in an access structure if it is not in any minimal
qualified set. All access structures in this paper are assumed to have no redundant
participants. The dual Γ ∗ of an access structure Γ on P is formed by the sets
A ⊆ P such that its complement P � A is not in Γ .

Definition 2.5. Let Γ be an access structure on a set of participants P . Con-
sider a special participant po /∈ P , which is usually called dealer, and the set
Q = Ppo. A secret sharing scheme on P with access structure Γ is a random
vector Σ = (Sx)x∈Q such that the following properties are satisfied.

1. H(Spo
) > 0.

2. If A ∈ Γ , then H(Spo
|SA) = 0.

3. If A /∈ Γ , then H(Spo
|SA) = H(Spo

).

The random variable Spo
corresponds to the secret value, while the shares received

by the participants are given by the random variables Sx with x ∈ P . Condition 2
implies that the shares from a qualified set determine the secret value while, by
Condition 3, the shares from an unqualified set and the secret value are indepen-
dent.

Definition 2.6. Let K be a finite field. A secret sharing scheme Σ = (Sx)x∈Q

is K-linear if it is a is K-linear random vector.

Definition 2.7. The information ratio σ(Σ) of the secret sharing scheme Σ is

σ(Σ) = max
x∈P

H(Sx)
H(Spo

)

and its average information ratio σ̃(Σ) is

σ̃(Σ) =
1
n

∑

x∈P

H(Sx)
H(Spo

)
.

Definition 2.8. The optimal information ratio σ(Γ ) of an access structure Γ
is the infimum of the information ratios of all secret sharing schemes for Γ .
The optimal average information ratio σ̃(Γ ) is defined analogously. The values
λ(Γ ) and λ̃(Γ ) are defined by restricting the optimization to linear secret sharing
schemes.

2.3 Lower Bounds from Shannon Information Inequalities

We describe next how to find linear programming problems whose optimal values
are lower bounds on those parameters. Let Γ be an access structure on a set
P and take, as usual, Q = Ppo. Given a secret sharing scheme Σ = (Sx)x∈Q

with access structure Γ , consider the entropic polymatroid (Q,h) determined
by the random vector (Sx)x∈Q, that is, h(X) = H(SX) for every X ⊆ Q. Take
α = 1/h(po) and the polymatroid (Q, f) with f = αh. The rank function f can
be seen as a vector (f(X))X⊆Q ∈ R

P(Q) that satisfies the linear constraints
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(N) f(po) = 1,
(Γ1) f(Xpo) = f(X) for every X ⊆ P with X ∈ Γ ,
(Γ2) f(Xpo) = f(X) + 1 for every X ⊆ P with X /∈ Γ ,

and also the polymatroid axioms (P1)–(P3) in Definition 2.1. Observe that con-
straints (Γ1), (Γ2) are derived from the chosen access structure Γ . Constraints
(P1)–(P3) are equivalent to the so-called Shannon information inequalities, that
is, the ones implied by the fact that the conditional mutual information is non-
negative. Therefore, the vector f is a feasible solution of Linear Programming
Problem 2.9.

Linear Programming Problem 2.9. The optimal value of this linear pro-
gramming problem is, by definition, κ̃(Γ ):

Minimize (1/n)
∑

x∈P

f(x)

subject to (N), (Γ1), (Γ2), (P1), (P2), (P3)

Since this applies to every secret sharing scheme Σ with access structure Γ
and the objective function equals σ̃(Σ), the optimal value κ̃(Γ ) of this linear pro-
gramming problem is a lower bound on σ̃(Γ ). Similarly, a lower bound on σ(Γ )
is provided by the optimal value κ(Γ ) of the Linear Programming Problem 2.10.

Linear Programming Problem 2.10. The optimal value of this linear pro-
gramming problem is, by definition, κ(Γ ):

Minimize v

subject to v ≥ f(x) for every x ∈ P

(N), (Γ1), (Γ2), (P1), (P2), (P3)

The parameters κ(Γ ) and κ̃(Γ ) were first introduced in [44]. They are the
best lower bounds on σ(Γ ) and, respectively, σ̃(Γ ) that can be obtained by
using only Shannon information inequalities, that is, they are the best possible
Shannon-type lower bounds. If the number of participants is small, they can
be computed by solving the corresponding linear programming problems. This
approach has been used in [25,45,52]. In more general situations, lower bounds
on κ(Γ ) and κ̃(Γ ) can be derived from the constraints without solving the linear
programming problems, as in [10,12,17,18,20,37] and many other works. In
particular, the result in the following theorem, which is the best of the known
general asymptotic lower bounds, was found in this way.

Theorem 2.11 (Csirmaz [14,15]). For every n, there exists an access struc-
ture Γn on n participants such that κ̃(Γn) is Ω(n/ log n).

Since not all polymatroids are entropic, the lower bounds κ(Γ ) and κ̃(Γ ) are
not tight in general. Moreover, Csirmaz [15] proved that κ(Γ ) ≤ n for every
access structure Γ on n participants, which indicates that those lower bounds
may be very far from tight. That result was proved by showing feasible solutions
of the linear programming problems with small values of the objective function.
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Duality simplifies the search for bounds in secret sharing. Indeed, if Γ ∗ is the
dual of the access structure Γ , then λ(Γ ∗) = λ(Γ ) and λ̃(Γ ∗) = λ̃(Γ ) [36], and
also κ(Γ ∗) = κ(Γ ) and κ̃(Γ ∗) = κ̃(Γ ) [44]. In contrast, it is not known whether
the analogous relation applies to the parameters σ and σ̃ or not.

2.4 Ideal Secret Sharing Schemes and Matroid Ports

The extreme case κ(Γ ) = 1 deserves some attention because it is related to
ideal secret sharing schemes. Since we are assuming that there are no redundant
participants, it is easy to prove that every feasible solution f of the Linear Pro-
gramming Problems 2.9 and 2.10 satisfies f(x) ≥ 1 for every x ∈ P . Therefore,
1 ≤ κ̃(Γ ) ≤ κ(Γ ) for every access structure Γ , and hence the average information
ratio of every secret sharing scheme is at least 1.

Definition 2.12. A secret sharing scheme Σ = (Sx)x∈Q is ideal if its informa-
tion ratio is equal to 1, which is best possible. Ideal access structures are those
that admit an ideal secret sharing scheme.

Definition 2.13. A matroid M = (Q, r) is an integer polymatroid such that
r(X) ≤ |X| for every X ⊆ Q. The port of the matroid M at po ∈ Q is the access
structure on P = Q � po whose qualified sets are the sets X ⊆ P satisfying
r(Xpo) = r(X).

The following theorem is a consequence of the results by Brickell and
Davenport [11], who discovered the connection between ideal secret sharing and
matroids.

Theorem 2.14. Let Σ = (Sx)x∈Q be an ideal secret sharing scheme on P with
access structure Γ . Then the mapping given by f(X) = H(SX)/H(Spo

) for every
X ⊆ Q is the rank function of a matroid M with ground set Q. Moreover, Γ is
the port of the matroid M at po.

As a consequence, every ideal access structure is a matroid port. The first
counterexample for the converse, the ports of the Vamos matroid, was presented
by Seymour [57]. Additional results on matroid ports and ideal secret sharing
schemes were proved in [44] by using the forbidden minor characterization of
matroid ports by Seymour [56].

Theorem 2.15 ([44]). Let Γ be an access structure. Then Γ is a matroid port
if and only if κ(Γ ) = 1. Moreover, κ(Γ ) ≥ 3/2 if Γ is not a matroid port.

In particular, there is a gap in the values of the parameter κ. Namely, there is
no access structure Γ with 1 < κ(Γ ) < 3/2. Therefore, the optimal information
ratio of an access structure that is not a matroid port is at least 3/2.
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2.5 Lower Bounds from Non-Shannon Information
and Rank Inequalities

Better lower bounds can be obtained by adding to the Linear Programming
Problems 2.9 and 2.10 new constraints derived from non-Shannon information
inequalities, which are satisfied by every entropic polymatroid but are not derived
from the basic Shannon information inequalities. Zhang and Yeung [66] presented
such an inequality for the first time, and many others have been found subse-
quently [22,24,47,65]. This approach was first applied in [7] to prove that the
optimal information ratio of the ports of the Vamos matroid is larger than 1,
the first known examples of matroid ports with that property. They are as well
the first known examples of access structures with κ(Γ ) < σ(Γ ), and also the
first known examples with 1 < σ(Γ ) < 3/2. Other lower bounds for the ports of
the Vamos matroid and other non-linear matroids have been presented [48,52].

When searching for bounds for linear secret sharing schemes, that is, bounds
on λ(Γ ) and λ̃(Γ ), one can improve the linear program by using rank inequal-
ities, which apply to configurations of vector subspaces or, equivalently, to the
joint entropies of linear random vectors. It is well-known that every information
inequality is also a rank inequality. The first known rank inequality that cannot
be derived from the Shannon inequalities was found by Ingleton [35]. Other such
rank inequalities have been presented afterwards [23,40]. Better lower bounds on
the information ratio of linear secret sharing schemes have been found for some
families of access structures by using non-Shannon rank inequalities [7,16,52].

On the negative side, Beimel and Orlov [8] proved that the best lower bound
that can be obtained by using all information inequalities on four and five vari-
ables, together with all inequalities on more than five variables that were known
by then, is at most linear on the number of participants. Specifically, they proved
that every linear programming problem that is obtained by using these inequal-
ities admits a feasible solution with a small value of the objective function. That
solution is related to the one used by Csirmaz [15] to prove that κ(Γ ) is at most
the number of participants. Another negative result about the power of infor-
mation inequalities to provide asymptotic lower bounds was presented in [46].
Namely, every lower bound that is obtained by using rank inequalities on at
most r variables is O(nr−2), and hence polynomial on the number n of partici-
pants. Since all information inequalities are rank inequalities, this negative result
applies to the search for asymptotic lower bounds for both linear and general
secret sharing schemes.

3 Improved Linear Programming Technique

Our improvements on the LP-technique are presented in this section. Instead of
adding non-Shannon information and rank inequalities to the linear program-
ming problems, which is the strategy described in Sect. 2.5, we add constraints
that are obtained by using some properties from which those inequalities are
derived.
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3.1 Common Information

According to [23], all known non-Shannon rank inequalities are derived from
the so-called common information property. We say that a random variable
S3 conveys the common information of the random variables S1 and S2 if
H(S3|S2) = H(S3|S1) = 0 and H(S3) = I(S1 :S2). In general, given two random
variables, it is not possible to find a third one satisfying those conditions [28].
Nevertheless, this is possible for every pair of K-linear random variables. Indeed,
if S1 = S|V1 and S2 = S|V2 for some vector subspaces V1, V2 of a K-vector space
V , then S3 = S|V1∩V2 conveys the common information of S1 and S2. The fol-
lowing definition is motivated by the concept of common information of a pair
of random variables.

Definition 3.1. Consider a polymatroid (Q, f) and two sets A,B ⊆ Q. Then
every subset Xo ⊆ Q such that

– f(Xo|A) = f(Xo|B) = 0, and
– f(Xo) = f(A) + f(B) − f(AB)

is called a common information for the pair (A,B). If Xo = {xo}, then the
element xo is also called a common information for the pair (A,B).

Definition 3.2. An extension of a polymatroid (Q, f) is any polymatroid
(Q′, f ′) with Q ⊆ Q′ and f ′(X) = f(X) for every X ⊆ Q. Usually, we are
going to use the same symbol for the rank function of a polymatroid and that of
an extension of it.

Definition 3.3. A polymatroid (Q, f) satisfies the common information prop-
erty if, for every pair (A0, A1) of subsets of Q, there exists an extension (Qxo, f)
of it such that xo is a common information for the pair (A0, A1).

Proposition 3.4. Every linear polymatroid satisfies the common information
property. Moreover, given a linear polymatroid (Q, f) and a pair (A0, A1) of
subsets of Q, it can be extended to a linear polymatroid (Qxo, f) such that xo

is a common information for the pair (A0, A1). In particular, the extension also
satisfies the common information property.

Proof. Let (Vx)x∈Q be a collection of vector subspaces representing a K-linear
polymatroid (Q, f), and consider two subsets A0, A1 ⊆ Q. By taking Vxo

=
VA0 ∩ VA1 , an extension of our polymatroid to Qxo is obtained in which xo

is a common information for (A0, A1). Obviously, this new polymatroid is K-
linear too.

We describe next how to modify the Linear Programming Problems 2.9
and 2.10 by using the common information property in order to obtain bet-
ter lower bounds on the information ratio of linear secret sharing schemes. Let
Γ be an access structure on a set P and Σ = (Sx)x∈Q a linear secret sharing
scheme for Γ . As usual, associated to Σ consider the polymatroid (Q, f) defined
by f(X) = H(SX)/H(Spo

) for every X ⊆ Q. Since the scheme Σ is linear,
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(Q, f) is the multiple of a linear polymatroid, and hence it satisfies the common
information property. Therefore, given any two sets A0, A1 ⊆ Q, we can find a
polymatroid (Qxo, f), an extension of (Q, f), such that xo is a common infor-
mation for the pair (A0, A1). Clearly, the vector (f(X))X⊆Qxo

∈ R
P(Qxo) is a

feasible solution of the Linear Programming Problem 3.5.

Linear Programming Problem 3.5. The optimal value of this linear pro-
gramming problem is a lower bound on λ̃(Γ ):

Minimize (1/n)
∑

x∈P

f(x)

subject to (N), (Γ1), (Γ2)
f(xo|A0) = f(xo|A1) = 0
f(xo) = f(A0) + f(A1) − f(A0 A1)
(P1), (P2), (P3) on the set Qxo

Since this applies to every linear secret sharing scheme with access struc-
ture Γ , the optimal value of that linear programming problem is a lower bound
on λ̃(Γ ). Of course, we can use the common information for more than one pair
of sets. Specifically, given k pairs (Ai0, Ai1)i∈[k] of subsets of Q, the optimal
value of the Linear Programming Problem 3.6 is a lower bound on λ̃(Γ ). Obvi-
ously, analogous modifications on Linear Programming Problem 2.10 provide
lower bounds on λ(Γ ).

Linear Programming Problem 3.6. The optimal value of this linear pro-
gramming problem is a lower bound on λ̃(Γ ):

Minimize (1/n)
∑

x∈P

f(x)

subject to (N), (Γ1), (Γ2)
f(xi|Ai0) = f(xi|Ai1) = 0,

f(xi) = f(Ai0) + f(Ai1) − f(Ai0 Ai1) for every i = 1, . . . , k

(P1), (P2), (P3) on the set Qx1 . . . xk

Remark 3.7. One can also find the common information of a pair of random
variables defined from abelian groups. Specifically, given a finite abelian group G
and a subgroup H ⊆ G, consider the random variables S, uniformly distributed
on G, and S/H determined from S by the projection on the quotient group G/H.
Given two such random variables S1 = S/H1 and S2 = S/H2 , the random variable
S3 = S/(H1+H2) conveys the common information of S1 and S2. Therefore, the
lower bounds obtained from the linear programming problems introduced in this
section apply also to secret sharing schemes defined from abelian groups.
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3.2 Ahlswede and Körner’s Information

In Sect. 3.1, the common information property was used to improve lower bounds
on the information ratio of linear secret sharing schemes and, more generally,
schemes that are defined from abelian groups. For the general case, we are going
to use a similar property motivated by the works of Ahlswede and Körner.

The known non-Shannon-type inequalities can be derived by using two tech-
niques, the so-called Copy lemma [66] and the Ahlswede-Körner lemma as used
in [42]. It turns out that the power of these two lemmas is equivalent [38].
In particular, both constructions can be used to derive the same non-Shannon
inequalities. Hereafter, we choose to use a version of the Ahlswede and Körner
(AK) lemma, as it makes the LP program slightly easier to formulate because
the constraints needed for the construction of additional variables are shorter to
write down. The original result by Ahlswede and Körner [1,2,19] is a statement
about the achievable rate region of a certain communication problem. Here, we
use the AK lemma as presented in [38, Lemma 2], a statement that in its part
can be derived from the proof of [42, Lemma 5]. That result deals with sequences
of random variables, and hence with almost entropic polymatroids.

Definition 3.8. We say that a polymatroid is almost entropic if it is the limit
of a sequence of entropic polymatroids.

We introduce next the AK-information property, which will play the same
role in the general case as the common information for linear schemes.

Definition 3.9. Consider a polymatroid (Q, f), and subsets U, V, Z ⊆ Q. Then
every subset Zo ⊆ Q such that

– f(Zo|UV ) = 0,
– f(U |Zo) = f(U |Z),
– f(V |Zo) = f(V |Z),
– f(UV |Zo) = f(UV |Z)

is called an AK-information for the triple (U, V, Z). Moreover, we say that a
polymatroid (Q, f) satisfies the AK-information property, if, for every triple
(U, V, Z) of subsets of Q, there exists an extension (Qzo, f) such that zo is an
AK-information for the triple (U, V, Z).

The following version of the AK lemma is a straightforward consequence
of [38, Lemma 2].

Proposition 3.10 (Ahlswede and Körner lemma). Let (Q, f) be an
entropic polymatroid and consider U, V, Z ⊆ Q. Then there exists a sequence
(Qzo, fN )N>0 of entropic polymatroids satisfying the following properties.

– The sequence (Qzo, (1/N)fN )N>0 converges to a polymatroid (Qzo, f
′) that

is an extension of (Q, f).
– The element zo in (Qzo, f

′) is an AK-information for the triple (U, V, Z).
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Loosely speaking, the AK lemma says that given any triple of random vari-
ables, we can always construct a new random variable that is as close as we
want to their AK-information. The following result is a consequence of Proposi-
tion 3.10 and the fact that every multiple of an entropic polymatroid is almost
entropic [63].

Proposition 3.11. Every almost entropic polymatroid satisfies the AK-infor-
mation property. More specifically, for every almost entropic polymatroid (Q, f)
and sets U, V, Z ⊆ Q, there exists an almost entropic extension (Qzo, f) such
that zo is an AK-information for the triple (U, V, Z).

Of course, this proposition can be repeatedly applied to construct the AK-
informations of various triples of subsets. Moreover, entropic polymatroids are
trivially almost entropic, therefore we can add any AK-information constraint to
the Linear Programming Problems 2.9 and 2.10 in order to obtain lower bounds
on σ̃(Γ ) and σ(Γ ). For instance, suppose we want to use k such AK-informations,
then for i ∈ {1, . . . , k}, let Ui, Vi, Zi ⊆ Q, and let zi be an AK-information
for the triple (Ui, Vi, Zi). Then the optimal value of the Linear Programming
Problem 3.12 is a lower bound on σ̃(Γ ). An analogous modification on the Linear
Programming Problem 2.9 provides lower bounds on σ(Γ ).

Linear Programming Problem 3.12. The optimal value of this linear pro-
gramming problem is a lower bound on σ̃(Γ ):

Minimize (1/n)
∑

x∈P

f(x)

subject to (N), (Γ1), (Γ2),
f(zi|UiVi) = 0,

f(Ui|zi) = f(Ui|Zi),
f(Vi|zi) = f(Vi|Zi),
f(UiVi|zi) = f(UiVi|Zi) for every i = 1, . . . , k

(P1), (P2), (P3) on the set Qz1 . . . zk

4 New Lower Bounds

We present here the new lower bounds on the optimal information ratio that
were obtained by using our improvement on the LP-technique. All of them deal
with access structures on small sets of participants and were computed by solving
the linear programming problems introduced in Sect. 3.

4.1 Access Structures on Five Participants

Jackson and Martin [37] determined the optimal information ratios of most
access structures on five participants. The case of four participants had been pre-
viously solved by Stinson [59]. After some additional contributions [21,31,52],
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both σ(Γ ) and σ̃(Γ ) were determined for 172 of the 180 access structures on
five participants. All these results were obtained by finding the exact values or
lower bounds on κ(Γ ) and κ̃(Γ ), and then constructing linear secret sharing
schemes whose (average) information ratios equaled the lower bounds. There-
fore, κ(Γ ) = σ(Γ ) = λ(Γ ) and κ̃(Γ ) = σ̃(Γ ) = λ̃(Γ ) for each of those 172
access structures. The unsolved cases correspond to the access structures Γ30,
Γ40, Γ53, and Γ73 (we use the same notation as in [37]) and their duals Γ153,
Γ150, Γ152, and Γ151, respectively. Following [37], we take these access structures
on the set {a, b, c, d, e}. The minimal qualified sets of the first four are given in
the following.

– min Γ30 = {ab, ac, bc, ad, bd, ae, cde}.
– min Γ40 = {ab, ac, bc, ad, be, cde}.
– min Γ53 = {ab, ac, ad, bcd, be, ce}.
– min Γ73 = {ab, ac, bd, ce, ade}.

We list in the following what is known for them. These results apply also to the
corresponding dual access structures.

– κ̃(Γ ) = σ̃(Γ ) = λ̃(Γ ) = 7/5 for Γ30 and Γ40.
– κ̃(Γ ) = σ̃(Γ ) = λ̃(Γ ) = 3/2 for Γ53.
– 3/2 = κ̃(Γ ) ≤ σ̃(Γ ) ≤ λ̃(Γ ) ≤ 8/5 for Γ73.
– 3/2 = κ(Γ ) ≤ σ(Γ ) ≤ λ(Γ ) ≤ 5/3 for Γ30, Γ53 and Γ73.
– 3/2 = κ(Γ ) ≤ σ(Γ ) ≤ λ(Γ ) ≤ 12/7 for Γ40.

The values of κ(Γ ) and κ̃(Γ ), which coincide with the lower bounds given in [21,
37], were determined in [52] by solving the Linear Programming Problems 2.9
and 2.10. The upper bounds were given in [37], except the one on λ̃(Γ53), which
was proved in [31].

By [52, Proposition 7.1], there is no linear scheme for Γ53 or Γ73 with informa-
tion ratio equal to 3/2, and there is no linear scheme for Γ73 with average infor-
mation ratio equal to 3/2. Therefore, it appears that a new technique is required
to solve these cases. Our improvement of the LP-technique provided new lower
bounds. Namely, by solving problems as the Linear Programming Problems 3.5
and 3.12 with the specified settings, we obtain the bounds in Tables 1 and 2,
respectively.

Table 1. Results on five participants using common information.

Access structure A0 A1 New lower bound

Γ30, Γ40, Γ53, Γ73 a d 5/3 ≤ λ(Γ )

Γ73 a d 23/15 ≤ ˜λ(Γ )

The values of λ(Γ ) and λ̃(Γ ) can be now determined for all access structures
on 5 participants by combining the lower bounds in Table 1 with the existing
upper bounds and the ones derived from the constructions in Sect. 5. Observe



612 O. Farràs et al.

Table 2. Results on five participants using AK information for the subsets (Z, U, V ).

Access structure Z U V New lower bound

Γ30, Γ40, Γ53, Γ73 a d e 14/9 ≤ σ(Γ )

Γ73 a d e 53/35 ≤ σ̃(Γ )

that Γ30, Γ40, Γ53, Γ73 and their duals are precisely the access structures on least
participants satisfying κ(Γ ) < λ(Γ ).

From the bounds in Table 2, we see that Γ30, Γ40, Γ53, Γ73 are among the
smallest access structures with κ(Γ ) < σ(Γ ). Unfortunately, all our attempts
to obtain lower bounds on σ(Γ ) for their duals by using AK-informations have
been unsuccessful.

4.2 Graph-Based Access Structures on Six Participants

If all minimal qualified sets of an access structure have two participants, it can be
represented by a graph whose vertices and edges correspond to the participants
and the minimal qualified sets, respectively. Van Dijk [20] determined the opti-
mal information ratio of most graph-based access structures on 6 participants
and provided lower and upper bounds for the remaining cases. After several
other authors improved those results [13,30,32,41,52], only nine cases remained
unsolved. Since the known values of σ(Γ ) have been determined by finding lower
bounds on κ(Γ ) and upper bounds on λ(Γ ), we have κ(Γ ) = σ(Γ ) = λ(Γ ) in the
solved cases. The unsolved cases correspond to the following graph-based access
structures on P = {1, 2, 3, 4, 5, 6}.

– min Γ55 = {12, 23, 34, 45, 56, 61, 26, 25}
– min Γ59 = {12, 23, 34, 45, 56, 61, 24, 13}
– min Γ70 = {12, 23, 34, 45, 56, 61, 24, 25, 26}
– min Γ71 = {12, 23, 34, 45, 56, 61, 26, 35, 36}
– min Γ75 = {12, 23, 34, 45, 56, 61, 26, 46, 14}
– min Γ77 = {12, 23, 34, 45, 56, 61, 26, 35, 13}
– min Γ84 = {12, 23, 34, 45, 56, 61, 13, 15, 35, 25}
– min Γ91 = {12, 23, 34, 45, 56, 61, 15, 25, 35, 46}
– min Γ93 = {12, 23, 34, 45, 56, 61, 15, 35, 46, 24}
The known lower and upper bounds for those access structures are

– 3/2 = κ(Γ ) ≤ σ(Γ ) ≤ λ(Γ ) ≤ 8/5 for Γ = Γ91 and Γ = Γ93, and
– 3/2 = κ(Γ ) ≤ σ(Γ ) ≤ λ(Γ ) ≤ 5/3 for the other seven access structures.

The values of κ were determined by solving the corresponding linear program-
ming problems, and they are equal to the lower bounds in [20]. All upper bounds
were presented in [20], except the one for Γ93, which was given in [41].

By using the common information property with the settings specified in
Table 3, we found the new lower bound λ(Γ ) ≥ 8/5 for all those access structures,
which is tight for Γ91 and Γ93. In particular, those nine graph-based access
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structures satisfy κ(Γ ) < λ(Γ ). We have to mention here that all our attempts to
improve the known lower bounds on σ(Γ ) for those graph-based access structures
by using linear programming problems with AK-informations did not give any
result.

Table 3. New bounds for graph-based access structures on six participants using com-
mon information.

Access structure A00 A01 A10 A11 New lower bound

Γ55, Γ70, Γ75, Γ84 3 6 8/5 ≤ λ(Γ )

Γ71 5 po3 8/5 ≤ λ(Γ )

Γ91, Γ93 6 po5 8/5 ≤ λ(Γ )

Γ59 3 6 5 po4 8/5 ≤ λ(Γ )

Γ77 4 po3 2 po6 8/5 ≤ λ(Γ )

After a preprint of this work was in circulation, Gharahi and Khazaei [33]
proved that all lower bounds on λ(Γ ) in Table 3 are tight by presenting con-
structions of linear secret sharing schemes for the corresponding graph-based
access structures. Therefore, the exact value of λ(Γ ) is now determined for all
graph-based access structures on six participants.

4.3 Ports of Non-representable Matroids

Recall from Sect. 2.4 that Γ is a matroid port if and only if κ(Γ ) = 1. Moreover,
κ(Γ ) = σ(Γ ) = λ(Γ ) = 1 if Γ is the port of a linear matroid. In this section,
we apply our techniques to find new lower bounds on the optimal information
ratio of some ports of non-linear matroids on eight points, which are access
structures on seven participants. All matroids on seven points are linear. Hence,
the matroids we consider here are amongst the smallest non-linear matroids.

We describe next several matroids (Q, r) on eight points with r(Q) = 4 that
admit convenient geometric representations on a cube. All of them satisfy that

– r(X) = |X| for every X ⊆ Q with |X| ≤ 3,
– r(X) = 4 for every X ⊆ Q with |X| ≥ 5, and
– 3 ≤ r(X) ≤ 4 for every X ⊆ Q with |X| = 4.

In particular, they are paving matroids (see [49]). Observe that such a matroid
can be described by giving the subsets X ⊆ Q with |X| = 4 and r(X) = 3, that
is, by giving its 4-points planes.

Consider the 3-dimensional cube with vertices on the points (x, y, z) ∈
{0, 1}3. By using the binary representation, identify each of those vertices to
an integer in {0, 1, . . . , 7}. For instance, (0, 1, 0) is identified to 2 and (1, 1, 0) to
6. Consider the following 14 sets of vertices.

– The six faces of the cube: 0123, 0145, 0246, 1357, 2367, 4567,
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– the six diagonal planes: 0167, 0257, 0347, 1256, 1346, 2345, and
– the two twisted planes: 0356, 1247.

The matroid whose 4-points planes are those fourteen sets is the binary affine
cube AG(3, 2). This matroid is K-linear if and only if the field K has characteristic
2 [49].

All matroids that are obtained from AG(3, 2) by relaxing one of the 4-points
planes (that is, by changing the value of its rank to 4) are isomorphic to the
matroid AG(3, 2)′ [49]. We consider here the one obtained by the relaxation of
one of the twisted planes, say 1247. The matroid AG(3, 2)′ is a smallest non-
linear matroid [49]. The port of AG(3, 2)′ at po = 0 is the access structure A on
the set {1, . . . , 7} with minimal qualified sets

min A = {123, 145, 167, 246, 257, 347, 356, 1247}
Every port of AG(3, 2)′ is either isomorphic to A or to its dual A∗, which has
minimal qualified sets

min A∗ = {123, 145, 167, 246, 257, 347, 1356, 2356, 3456, 3567}
By relaxing the other twisted plane 0356 we obtain from AG(3, 2)′ the

matroid R8, the real affine cube. The 4-points planes of this matroid are the
six faces and the six diagonal planes. It is K-linear if and only if K has charac-
teristic different from 2 [49].

If, instead, the 4-points set 1256 is relaxed in AG(3, 2)′, one obtains the
smallest non-linear matroid F8 [49]. The port of F8 at po = 0 is the access
structure F on {1, . . . , 7} with minimal qualified sets

min F = {123, 145, 167, 246, 257, 347, 356, 1247, 1256}
The port of F8 at po = 3 is isomorphic to F . The ports of F8 at po = 1 and
po = 2 are both isomorphic to F∗, whose minimal qualified sets are

min F∗ = {123, 145, 167, 246, 257, 1356, 2356, 3456, 3567, 1347, 2347, 3457, 3467}
All the other ports of F8 are isomorphic to the port of F8 at po = 4, and hence
isomorphic to the access structure F̂ on {1, . . . , 7} with minimal qualified sets

min F̂ = {123, 145, 246, 167, 257, 347, 1256, 1356, 2356, 3456, 3567}
Observe that F̂ is isomorphic to its dual access structure F̂∗.

The relaxation of one of the diagonal planes of the real affine cube R8, say
1256, produces the matroid Q8, again a smallest non-linear matroid [49]. Let Q
be the port of Q8 at po = 0. Its minimal qualified sets are

min Q = {123, 145, 246, 167, 257, 347, 1256, 1247, 1356, 2356, 3456, 3567}
All ports of Q8 are isomorphic to Q or to its dual Q∗. The access structure Q∗

has minimal qualified sets

{123, 145, 246, 167, 257, 1247, 1347, 1356, 2347, 2356, 3456, 3457, 3467, 3567}
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Finally, the Vamos matroid V8 is another smallest non-linear matroid [49].
Its 4-points planes are 0123, 0145, 2345, 2367, and 4567. The minimal qualified
sets of the port V of the Vamos matroid V8 at po = 0 are the 3-sets 123, 145
and all 4-sets not containing them, except 2345, 2367, 4567. Every port of V8

is isomorphic either to V or to V∗. The minimal qualified sets of V∗ are the
3-sets 123, 145, 167 and all 4-sets not containing them, except 2367, 4567. The
known bounds on the optimal information ratio of the ports of those non-linear
matroids are summarized as follows.

– 67/59 ≤ σ(V) ≤ 4/3.
– 9/8 ≤ σ(V∗) ≤ 4/3.
– 5/4 ≤ λ(V) = λ(V∗) ≤ 4/3.
– 19/17 ≤ σ(Γ ) if Γ = A or Γ = Q.
– 9/8 ≤ σ(Γ ) if Γ = A∗ or Γ = Q∗.
– 5/4 ≤ λ(Γ ) if Γ is one of the structures A, A∗, Q, Q∗.

The lower bounds were obtained in [7,29,48,52] by using the LP-technique
enhanced with the Ingleton inequality or with several non-Shannon informa-
tion inequalities. The upper bounds for the ports of the Vamos matroid were
presented in [44].

By solving the LP Problems 3.6 and 3.12 for those access structures with the
given choices, the lower bounds in Tables 4 and 5 are obtained. Except for σ(V∗),
they improve all existing lower bounds. In particular, we have determined the
exact value of λ(V) = λ(V∗) = 4/3. Moreover, the construction we present in
Sect. 5 implies λ(Q) = λ(Q∗) = 4/3.

Table 4. Results on matroid ports using common information.

Access structure A0 A1 New lower bound

A, F , ̂F 06 17 4/3 ≤ λ(Γ )

Q 04 15 4/3 ≤ λ(Γ )

V 01 23 4/3 ≤ λ(Γ )

5 Constructions

We present here linear secret sharing schemes for the access structures Γ40 and
Γ73 on five participants and also for the matroid port Q. These constructions and
the lower bounds for linear schemes that have been obtained with our enhance-
ment of the LP-technique determine the exact values of λ(Γ40), λ̃(Γ73), and
λ(Q). As a consequence, the exact values of λ(Γ ) and λ̃(Γ ) are now determined
for all access structures on five participants.

We present first a linear scheme with information ratio 5/3 for the access
structure Γ40 on five participants. For a finite field K with characteristic larger
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Table 5. Results on matroid ports using AK information for the subsets (Z1, U1, V1)
and (Z2, U2, V2).

Access structure Z1 U1 V1 Z2 U2 V2 New lower bound

A 03 12 56 9/8 ≤ σ(Γ )

A∗ 03 12 47 12 47 56 33/29 ≤ σ(Γ )

F , Q 04 15 37 9/8 ≤ σ(Γ )

F∗ 04 15 26 14 27 36 42/37 ≤ σ(Γ )

̂F 04 15 37 14 27 36 42/37 ≤ σ(Γ )

Q∗ 04 15 26 15 26 37 33/29 ≤ σ(Γ )

V 01 23 45 23 45 67 33/29 ≤ σ(Γ )

V∗ 01 23 45 9/8 ≤ σ(Γ )

than 5, consider the K-linear secret sharing scheme that is determined by the
K-linear code with generator matrix

⎛

⎝
1 0 1 0 0 1 0 1
1 0 0 0 1 2 1 0
1 1 0 1 0 1 2 0

⎞

⎠

Namely, every codeword corresponds to a distribution of shares. The vertical
bars indicate which positions of the codeword correspond to the secret and to
every participant. In this case, a codeword

(spo
| sa1, sa2 | sb1, sb2 | sc | sd | se) ∈ K

8

corresponds to a distribution of shares in which the secret value is spo
∈ K,

the share for a is (sa1, sa2) ∈ K
2, and so on. The access structure of this linear

scheme is Γ40. Another K-linear secret sharing scheme for Γ40 is given by the
K-linear code with generator matrix

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 −1 1 1 0 0 1 0 0 0 0 0 0 0 1 1 0 1
2 1 0 0 1 1 0 1 0 0 0 0 1 0 1 0 0 1
0 3 0 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 1
1 1 0 0 1 0 0 0 0 1 0 0 0 0 1 0 1 0

−1 2 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 1
1 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

By concatenating these two schemes, we obtain a scheme for Γ40 with information
ratio 5/3.
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If K is a field with characteristic 2, the K-linear code with generator matrix
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 1 1 0
0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 1 0 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 1 0 1 0 1 0 0 1 0 1 0
0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 1 0 1 0 0 1 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 0 0 0 1 0 1 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

defines a K-linear secret sharing scheme with access structure Γ73. Its average
information ratio is equal to 23/15.

Finally, we present a construction of a linear secret sharing scheme with
information ratio 4/3 for the access structure Q. It is obtained by combining
four ideal secret sharing schemes in a λ-decomposition with λ = 3. The reader
is referred to [50,60] for more information about λ-decompositions. Let K be a
finite field with characteristic different from 2. The first scheme is the one given
by the K-linear code with generator matrix

⎛

⎜
⎜
⎝

0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1
1 1 1 1 1 1 1 1

⎞

⎟
⎟
⎠

Its access structure R is the port at po = 0 of the matroid R8, the real affine cube.
One can see that all minimal qualified sets of Q except 1256 are also qualified
sets of R. On the other hand, the unqualified sets of Q are also unqualified sets
of R. The second and third pieces in the decomposition are ideal schemes given
by K-linear codes with generator matrices of the form

⎛

⎜
⎜
⎝

0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 z2 1 z4 1 z6 1
1 1 1 1 1 1 1 1

⎞

⎟
⎟
⎠

If z2 = 0 and z4 = z6 = −1, that linear code represents the matroid that is
obtained from R8 by relaxing the 4-points planes 0347 and 1256. Therefore, we
obtain a secret sharing scheme in which 347 is not qualified. If, instead, we take
z2 = −1 and z4 = z6 = 0, the matroid represented by that K-linear code is
obtained from R8 by relaxing the 4-point planes 1256, 0246, and 0257. In the
corresponding secret sharing scheme, the sets 246 and 257 are unqualified. The
fourth scheme is given by the K-linear code with generator matrix
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⎛

⎜
⎜
⎝

0 0 0 0 1 1 1 1
0 −1 1 1 0 0 1 1
0 1 0 1 0 1 0 1
1 1 1 1 1 1 1 1

⎞

⎟
⎟
⎠

which represents the matroid that is obtained from R8 by relaxing the 4-points
planes 1256, 0145, and 0167. The sets 145 and 167 are not qualified in the
corresponding scheme. Observe that every minimal qualified set of Q appears
in at least 3 of those 4 ideal linear secret sharing schemes. Therefore, we get a
linear secret sharing scheme for Q with information ratio 4/3.

6 Open Problems

The first line of future work worth mentioning is to fully conclude the projects
initiated by Jackson and Martin [37] and van Dijk [20] by determining the values
of σ(Γ ), σ̃(Γ ), λ(Γ ), and λ̃(Γ ) for all access structures on five participants and
all graph-based access structures on six participants. By Remark 3.7, our bounds
on λ(Γ ), and λ̃(Γ ) apply also to schemes defined by abelian groups.

Many examples of access structures with κ(Γ ) = σ(Γ ) = λ(Γ ) are known,
and also examples with κ(Γ ) < σ(Γ ) and κ(Γ ) < λ(Γ ). An open problem is
to find the smallest examples with σ(Γ ) < λ(Γ ), and also examples in each
of the following situations: κ(Γ ) = σ(Γ ) < λ(Γ ), κ(Γ ) < σ(Γ ) = λ(Γ ), and
κ(Γ ) < σ(Γ ) < λ(Γ ). Another interesting problem is to find matroid ports such
that σ(Γ ) or λ(Γ ) are greater than 3/2 or even arbitrarily large.

It is worth noticing that, even though we used the common information
property to derive lower bounds for linear secret sharing schemes, we could not
determine whether that property have a good behavior with respect to duality
or not. This may be due to the fact that, by Remark 3.7, those bounds apply
to a more general class of schemes. Therefore, when searching for bounds by
using common informations, it is worth to apply the method both to an access
structure and its dual.

The main direction for future research is to obtain a better understanding
of the techniques introduced here in order to improve, if possible, the known
asymptotic lower bounds on σ(Γ ). Notice that it is not necessary to solve the
corresponding linear programming problem to determine a lower bound. Instead,
any feasible solution of the dual linear programming problem provides a lower
bound. This strategy, which was suggested by one of the reviewers of this work,
has been used, not explicitly, by the authors that have derived lower bounds
from the constraints without solving the linear programming problem.
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22. Dougherty, R., Freiling, C., Zeger, K.: Six new non-Shannon information inequali-
ties. In: 2006 IEEE International Symposium on Information Theory, pp. 233–236
(2006)

23. Dougherty, R., Freiling, C., Zeger, K.: Linear rank inequalities on five or more
variables. arXiv.org, arXiv:0910.0284v3 (2009)

24. Dougherty, R., Freiling, C., Zeger, K.: Non-Shannon information inequalities in
four random variables. arXiv.org, arXiv:1104.3602v1 (2011)
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