
The Missing Difference Problem,
and Its Applications to Counter

Mode Encryption

Gaëtan Leurent(B) and Ferdinand Sibleyras(B)

Inria, Paris, France
{gaetan.leurent,ferdinand.sibleyras}@inria.fr

Abstract. The counter mode (CTR) is a simple, efficient and widely
used encryption mode using a block cipher. It comes with a security
proof that guarantees no attacks up to the birthday bound (i.e. as long
as the number of encrypted blocks σ satisfies σ � 2n/2), and a matching
attack that can distinguish plaintext/ciphertext pairs from random using
about 2n/2 blocks of data.

The main goal of this paper is to study attacks against the counter
mode beyond this simple distinguisher. We focus on message recovery
attacks, with realistic assumptions about the capabilities of an adversary,
and evaluate the full time complexity of the attacks rather than just the
query complexity. Our main result is an attack to recover a block of
message with complexity Õ(2n/2). This shows that the actual security of
CTR is similar to that of CBC, where collision attacks are well known to
reveal information about the message.

To achieve this result, we study a simple algorithmic problem related
to the security of the CTR mode: the missing difference problem. We give
efficient algorithms for this problem in two practically relevant cases:
where the missing difference is known to be in some linear subspace, and
when the amount of data is higher than strictly required.

As a further application, we show that the second algorithm can also
be used to break some polynomial MACs such as GMAC and Poly1305,
with a universal forgery attack with complexity Õ(22n/3).

Keywords: Modes of operation · CTR · GCM · Poly1305
Cryptanalysis

1 Introduction

Block ciphers (such as DES or the AES) are probably the most widely used
cryptographic primitives. Formally, a block cipher is just a keyed family of per-
mutations over n-bit blocks, but when combined with a mode of operation, it can
provide confidentiality (e.g. using CBC, or CTR), authenticity (e.g. using CBC-
MAC, CMAC, or GMAC), or authenticated encryption (e.g. using GCM, CCM,
or OCB). A mode of operation defines how to divide a message into blocks, and
how to process the blocks one by one with some chaining rule.
c© International Association for Cryptologic Research 2018
J. B. Nielsen and V. Rijmen (Eds.): EUROCRYPT 2018, LNCS 10821, pp. 745–770, 2018.
https://doi.org/10.1007/978-3-319-78375-8_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78375-8_24&domain=pdf

746 G. Leurent and F. Sibleyras

The security of block ciphers is studied with cryptanalysis, with classical
techniques such as differential [8] and linear [27] cryptanalysis, dedicated tech-
niques like the SQUARE attack [9], and ad-hoc improvements for specific targets.
This allows to evaluate the security margin of block ciphers, and today we have a
high confidence that AES or Blowfish are as secure as a family of pseudo-random
permutations with the same parameters (key size and block size).

On the other hand, modes of operation are mostly studied with security
proofs, in order to determine conditions where using a particular mode of oper-
ation is safe. However, exceeding those conditions doesn’t imply that there is an
attack, and even when there is one, it can range from a weak distinguisher to
a devastating key recovery. In order to get a better understanding of the secu-
rity of modes of operations, we must combine lower bound on the security from
security proofs, and upper bounds from attacks.

In particular, most of the modes used today are sensible to birthday attacks
because of collisions; those attacks can even be practical with 64-bit block
ciphers, as shown in [7], but security proofs don’t tell us how dangerous the
attacks are. For instance, the CBC and CTR modes have been proven secure
against chosen plaintext attacks up to σ � 2n/2 blocks of encrypted data [5,35].
Formally, the security statements bound the maximum advantage of an attacker
against the modes as follows:

AdvCPA
CBC−E ≤ Advprp

E + σ2/2n,

AdvCPA
CTR−E ≤ Advprp

E + σ2/2n+1.

Both statement are essentially the same, and become moot when σ reaches 2n/2,
but attacks can actually be quite different.

More precisely, the CBC mode is defined as ci = E(mi⊕ci−1), with E a block
cipher. A collision between two ciphertext blocks ci = cj is expected after 2n/2

blocks, and reveals the xor of two plaintext blocks: mi⊕mj = ci−1⊕cj−1. On the
other hand, the counter mode is defined as ci = E(i)⊕mi. There are no collisions
in the inputs/outputs of E, but this can actually be used by a distinguisher.
Indeed, if an adversary has access to 2n/2 known plaintext/ciphertext pairs, he
can recover E(i) = ci ⊕mi and detect that the values are unique (because E is a
permutation), while collisions would be expected with a random ciphertext. Both
attacks have the same complexity, and show that the corresponding proofs are
tight. However, the loss of security is quite different: the attack against CBC lets
an attacker recover message blocks from collisions (as shown in practice in [7]),
but the attack against the counter mode hardly reveals any useful information.

In general, there is a folklore belief that the leakage of the CTR mode is not
as bad as the leakage of the CBC mode. For instance, Ferguson et al. wrote [15,
Sect. 4.8.2] (in the context of a 128-bit block cipher):

CTR leaks very little data. [...] It would be reasonable to limit the cipher
mode to 260 blocks, which allows you to encrypt 264 bytes but restricts
the leakage to a small fraction of a bit.
When using CBC mode you should be a bit more restrictive. [...] We
suggest limiting CBC encryption to 232 blocks or so.

The Missing Difference Problem, and Its Applications 747

Our Contribution. The main goal of this paper is to study attacks against the
counter mode beyond the simple distinguisher given above. This is an important
security issue, because uses of the CTR mode with 64-bit block ciphers could be
attacked in practice. We consider generic attacks that work for any instance of
the block cipher E, and assume that E behaves as a pseudo-random permutation.
The complexity of the attacks will be determined by the block size n, rather
than the key size, and we focus on the asymptotic complexity, using the Big-O
notation O(), and the Soft-O notation Õ() (ignoring logarithmic factors).

We consider message recovery attacks, where an attacker tries to recover
secret information contained in the message, rather than recovering the encryp-
tion key k. Following recent attacks against HTTPS [2,7,12], we assume that
a fixed message containing both known blocks and secret blocks is encrypted
multiple times (this is common with web cookies, for instance). As shown by
McGrew [28], this kind of attack against the CTR mode can be written as a
simple algorithmic problem: the missing difference problem, defined as follows:
given two functions f, g : X → {0, 1}n, with the promise that there exists a
unique S ∈ {0, 1}n such that ∀(x, y), f(x) ⊕ g(y) �= S, recover S. We further
assume that f and g behave like random functions, and that we are given a set
S ⊆ {0, 1}n, such that S ∈ S (S represents prior knowledge about the secret). In
an attack against the counter mode, f outputs correspond to known keystream
blocks, while g outputs correspond to encryptions of S.

In the information theoretic setting, this problem can be solved with Õ(2n/2)
queries for any set S, and requires at least Ω(2n/2) queries when |S| ≥ 2. How-
ever, the analysis is more complex when taking into account the cost of the
computations required to recover S. McGrew introduces two algorithms for this
problem: a sieving algorithm with Õ(2n/2) queries and time Õ(2n), and a search-
ing algorithm that can be optimized to time and query complexity Õ(2n/2

√|S|).
Our main contribution is to give better algorithms for this problem:

1. An algorithm with Õ(2n/2) queries and time Õ(2n/2 + 2dim〈S〉), in the case
where S is (a subset of) a linear subspace of {0, 1}n. In particular, when S
is a linear subspace of dimension n/2, we reach a time and query complexity
of Õ(2n/2), while the searching algorithm of McGrew has a time and query
complexity of Õ(23n/4).

2. An algorithm with time and query complexity Õ(22n/3) for any S. In partic-
ular, with S = {0, 1}n, the best previous algorithm had a time complexity
of Õ(2n).

We also show new applications of these algorithms. The first algorithm leads
to an efficient message recovery attack with complexity Õ(2n/2) against the
CTR mode, assuming that the adversary can control the position of the secret,
by splitting it across block boundaries (following ideas of [12,32]). The second
algorithm can be used to recover the polynomial key in some polynomial based
MACs such as GMAC and Poly1305, leading to a universal forgery attack with
complexity Õ(22n/3). As far as we know, this is the first universal forgery attack
against those MACs with complexity below 2n.

748 G. Leurent and F. Sibleyras

Related Works. There are several known results about the security of mode
of operation beyond the birthday bound, when the proof is not applicable. For
encryption modes, the security of the CBC mode beyond the birthday bound is
well understood: collision attacks reveal the XOR of two message blocks, and
can exploited in practice [7]. Other modes that allow collisions (eg. CFB) have
the same properties. The goal of this paper is to study the security of modes
that don’t have collisions, to get a similar understanding of their security.

Many interesting attacks have also been found against authentication modes.
In 1995, Preneel and van Oorschot [31] gave a generic collision attack against
all deterministic iterated message authentication codes (MACs), leading to exis-
tential forgeries with complexity O(2n/2). Later, a number of more advanced
generic attacks have been described, with stronger outcomes than existen-
tial forgeries, starting with a key-recovery attack against the envelop MAC
by the same authors [32]. In particular, a series of attack against hash-based
MAC [11,18,25,30] led to universal forgery attacks against long challenges, and
key-recovery attacks when the hash function has an internal checksum (like the
GOST family). Against PMAC, Lee et al. showed a universal forgery attack in
2006 [24]. Later, Fuhr et al. gave a key-recovery attack against the PMAC variant
used in AEZv3 [17]. Issues with GCM authentication with truncated tags were
also pointed out by Ferguson [14].

None of these attacks contradict the proof of security of the scheme they
target, but they are important results to understand the security degradation
after the birthday bound.

Organization of the Paper. We introduce the CTR mode and the missing
difference problem in Sect. 2, and present our algorithmic contributions in Sect. 3.
Then we describe concrete attacks against the CTR mode in Sect. 4, and attacks
against Carter-Wegman MACs in Sect. 5. At last we show detailed proofs and
simulation results in Sect. 6.

2 Message Recovery Attacks on CTR Mode

The CTR mode was first proposed by Diffie and Hellman in 1979 [10]. It was not
included in the first series of standardized modes by NIST [16], but was added
later [13]. The CTR mode essentially turns a block cipher into a stream cipher, by
encrypting some non-repeating counter. It is now a popular mode of operation,
thanks to its parallelizability, speed, and simple design. This led Phillip Rogaway
to write in an evaluation of different privacy modes of operation talking about
CTR [35]: “Overall, usually the best and most modern way to achieve privacy-
only encryption”. In particular, CTR is used as the basic of the authenticated
encryption mode GCM, the most widely used mode in TLS today.

The Missing Difference Problem, and Its Applications 749

0

Ek

m0

c0

m1

c1

Ek

1

m2

c2

Ek

2

m3

c3

Ek

3

Fig. 1. CTR mode

2.1 Setting and Notations

In the following we assume that the counter mode is implemented such that the
input to the block cipher never repeats. For simplicity we consider a stateful
variant of the counter mode with a global counter that is maintained across
messages and initialized as 0 (as shown in Fig. 1):

ci = Ek(i) ⊕ mi,

where Ek is an n-bit block cipher, mi an n-bit block of plaintext and ci an n-bit
block of ciphertext.

Our attacks do not depend on the details of how the input to the block cipher
is constructed, and can also be applied to nonce-based variants1; we only require
that all inputs are different. Note that some variants of the counter mode can
have repetitions in the block cipher input2, but this gives easy attacks because
repetitions leak the xor of two plaintext blocks (as in the CBC mode).

We consider a message recovery attack, where the attacker tries to recover
some secret message block S. Throughout the attack, the key k will be invariant
so we will write Ek(i) as ai to represent the ith block of CTR keystream. We can
immediately notice that if we have partial knowledge of the plaintext, for every
known block mi we can recover the associated ai as ci ⊕mi = ai. Assume further
that we have access to the repeated encryption bj of the secret S so that bj =
aj ⊕ S. The first property of the CTR mode is that Ek(·) being a permutation,
the keystream ai never repeats, thus we have the following inequalities:

i �= j ⇒ ai �= aj ⇒ ai ⊕ aj ⊕ S �= S ⇒ ai ⊕ bj �= S.

From now on we will always assume that we can observe and collect lists of
many ai and bj and use them with the previous inequality to recover S. This
setting is similar to the practical attack Sweet32 on the CBC mode mounted by
Bhargavan and Leurent, using repeated encryptions of an authentication token
to obtain many different ciphertext blocks for the same secret information [7].

1 For instance, GCM concatenates a per-message nonce and a counter within a message.
2 For instance, the treatment of non-default-length nonces in GCM can lead to colli-

sions [23].

750 G. Leurent and F. Sibleyras

Formally, let A ⊆ {0, 1}n be the set of observed keystream blocks, B ⊆
{0, 1}n the set of observed encryptions and S ⊆ {0, 1}n the set of possible
secrets (corresponding to some already known information about S). We define
the missing difference algorithmic problem in terms of set:

Definition 1 (Missing Difference Problem). Given two sets A and B, and
a hint S, find the value S ∈ S such that:

∀(a, b) ∈ A × B, S �= a ⊕ b.

Alternatively, we can consider that the attacker is given oracle access to A and
B though some functions f and g, so that its running time includes calls to f
and g, and computations to recover S. This presentation corresponds to a more
active attack, where the adversary can optimize the size of the sets.

Definition 2 (Missing Difference Problem with Functions). Given two
functions f, g : X → {0, 1}n, and a hint S, find the value S ∈ S such that:

∀(x, y), S �= f(x) ⊕ g(y).

2.2 Previous Work

An attack can only be carried to the end if the secret S is the only value in S
such that ∀(a, b) ∈ A×B, S �= a⊕ b, or else it will be indistinguishable from the
other values that satisfy the same condition (those values could have produced
the same sets with same probability). The coupon collector’s problem predicts
that N out of N different coupons are found after N · HN � N ln N draws
(with HN the N -th harmonic number), assuming uniform distribution of the
draws. In our case we will assume that all the differences a ⊕ b are independent
and uniformly distributed over {0, 1}n \ S, which is a reasonable approximation
validated by our experiments. To carry the attack to the end we require to
collect N = |S|−1 differences thus we will need O(|S| ln |S|) “draws”. A draw is
a couple (a, b) s.t. a⊕b ∈ |S|, otherwise we discard it; it happens with probability
(|S| − 1)/(2n − 1). Therefore we need to observe enough data to have |A| · |B|
in the order of O(2n ln |S|); this may be achieved by having both sets in the
order of O(2n/2

√
ln |S|). This size of the observed sets can be understood as

the query complexity, that is the number of encrypted messages the attacker
will have to intercept in order to carry out the attack. Notice that even for
|S| = O(2n), |A| = |B| = O(

√
n · 2n/2) is quite close to the theoretical lower

bound of O(2n/2) given by the distinguishing attack and the security proof for
the CTR mode. Therefore, message recovery attacks are possible with an (almost)
optimal data complexity. The next question is to study the time complexity, i.e.
how to efficiently recover S.

A first approach consists in computing all the impossible values of S from the
large set of A × B and discard any new value we encounter as impossible until
there’s only one possible plaintext left. This is Algorithm 1. This approach works
but requires to actually compute O(2n ln |S|) values and maintain in memory a

The Missing Difference Problem, and Its Applications 751

Algorithm 1. Simple sieving algorithm
Input: A, B, S
Output: {s ∈ S | ∀(a, b) ∈ A × B, a ⊕ b �= s}

for a in A do
for b in B do

Remove (a ⊕ b) from S;
end for

end for
return S

Algorithm 2. Searching algorithm
Input: A, B, S
Output: {s ∈ S | ∀(a, b) ∈ A × B, a ⊕ b �= s}

Store B so that operation ∈ is efficient.
for s in S do

for a in A do
if (s ⊕ a) ∈ B then

Remove s from S;
end if

end for
end for
return S

sieve of size |S|. In the case where the key size is equal to the block size n, like
AES-128, this attack is actually worse than a simple exhaustive search of the key.
In a 2012 work, McGrew [28] described this sieving algorithm and noticed that
when the set S is small, the sieving wastes a lot of time computing useless values.
Therefore he proposed a second algorithm, Algorithm 2, to test and eliminate
values of S one by one. This algorithm loops over S and A to efficiently test
whether s ⊕ a ∈ B; if yes then we sieve the value s out of S.

Both algorithms act on a sieving set S to reduce it, so McGrew proposed a
hybrid algorithm switching from one algorithm to the other in order to reduce
the searching space as quickly as possible. This improves the attack when A and
B are fixed, but if the adversary can choose the sizes of A and B (in particular,
if he actually has oracle access to functions f and g), then the searching algo-
rithm allows better trade-offs. Indeed, the searching algorithm has a complexity
of O(|B| + |A| · |S|), and is successful as soon as |A| · |B| = Ω(2n ln |S|). To
optimize the complexity, we use |B| = |A| · |S| to obtain an overall complexity
of O(2n/2

√|S| ln |S|) in both time and queries. In particular for small S (of size
polynomial in n) this algorithm is (almost) optimal, reaching the birthday bound
Õ(2n/2).

Starting from these observations we will show improved algorithms to recover
a block of secret information without big exhaustive searches in the next section.

752 G. Leurent and F. Sibleyras

3 Efficient Algorithms for the Missing Difference
Problem

We now propose two new algorithms to solve the missing difference algorithmic
problem more efficiently in two practically relevant different settings. Our first
algorithm requires that the set S — or its linear span 〈S〉 — is a vector space
of relatively small dimension, and has complexity Õ(2n/2 + |〈S〉|). The second
algorithm uses a larger query complexity of Õ(22n/3), to reduce the computation
and memory usage to Õ(22n/3).

3.1 Known Prefix Sieving

In many concrete attack scenarios, an attacker knows some bits of the secret mes-
sage in advance. For instance, an HTTP cookie typically uses ASCII printable
characters, whose high order bit is always set to zero. More generally, we assume
that S is (included in) an affine subspace of {0, 1}n of dimension n − z for some
natural z < n. In order to simplify the attack, we use a bijective affine function
φ that maps S unto {0}z × {0, 1}n−z, and rewrite the problem as follows:

S �= a ⊕ b ⇔ φ(S) �= φ(a ⊕ b), as φ is a bijection.

⇔ φ(S) �= φ(a) ⊕ φ(b) ⊕ φ(0), as φ is affine

Therefore, we can reduce the missing difference problem on A, B, S with
dim(〈S〉) = n − z to the missing difference problem on A′, B′, S ′, where the
secret is known to start with z zeroes:

S ′ := {0}z × {0, 1}n−z

A′ := {φ(a) | a ∈ A}
B′ := {φ(b) ⊕ φ(0) | b ∈ B}

We now introduce a known prefix sieving algorithm (Algorithm 3) to solve this
problem efficiently. The algorithm is quite straightforward; it looks for a prefix
collision before sieving in the same way as before to recover S. The complexity
depend on the dimension n−z; the sieving requires O(2n−z) memory and O((n−
z) · 2n−z) XOR computations in expectation, while looking for collisions only
requires to store the prefix keys and to go through one of the set. Looking for
collisions allows us to skip the computations of many pairs (a, b) that would be
irrelevant as a ⊕ b /∈ S.

The expected number of collisions required to isolate the secret is given by
the coupon collector problem as ln(2n−z)2n−z = ln 2 · (n − z) · 2n−z. Therefore
the total optimized complexity (with balanced sets A and B) to recover an n−z
bits secret with this algorithm is:

O (√
n − z · 2n/2

)
queries

O (
2n−z + n

√
n − z · 2n/2

)
bits of memory (sieving & queries)

O (
(n − z) · 2n−z +

√
n − z · 2n/2

)
operations (sieving & collisions searching)

The Missing Difference Problem, and Its Applications 753

As we can see from the complexity, when z = 0 this is the naive algorithm
with its original complexity. When z nears n, this performs similarly to McGrew’s
searching algorithm i.e. the cost of looking for collisions (or storing B so that
the search is efficient) will dominate the overall cost of the algorithm therefore
the time and query complexity will match. Actually, this algorithm improves
over previous works for intermediate values of z. With z = n/2, we have an
algorithm with complexity Õ(2n/2), while McGrew’s searching algorithm would
require Õ(23n/4) computations in the same setting. The complexity therefore
becomes tractable and we could implement and run this algorithm for n = 64
bits with success, as shown in Sect. 6.2.

Algorithm 3. Known prefix sieving algorithm
Input: n, z < n, A, B, S ⊆ {0}z × {0, 1}n−z

Output: {s ∈ S | ∀(a, b) ∈ A × B, a ⊕ b �= s}
hB ← Empty hash table.
for b in B do

hB [b[0...(z−1)]]
∪← {b[z...(n−1)]}

end for

for a in A do
va ← a[z...(n−1)]

for vb in hB [a[0...(z−1)]] do
Remove 0 ‖ (va ⊕ vb) from S;

end for
end for
return S

3.2 Fast Convolution Sieving

Alternatively, we can reduce the complexity of the sieving algorithm by using
sets A and B of size 2m � 2n/2, rather than Õ(2n/2) as required to uniquely
identify S. If we consider all the values a ⊕ b for (a, b) in A × B, we expect that
they are close to uniformly distributed over {0, 1}n\S, so that every value except
S is reached about 22m−n times, while S is never hit. Increasing m makes the
gap more visible than with sets of size only Õ(2n/2). Therefore, we can consider
buckets of several candidates s, and accumulate the number of a ⊕ b in each
bucket. If we consider buckets of 2t values, each bucket receives 22m+t−n values
on average, but the bucket containing S receives only 22m+t−n −22m−n values. If
we model this number with random variables following a binomial distribution,
the variance σ2 is about 2m+t/2−n/2. Therefore, the bias will be detectable when:
σ � 22m−n, i.e. when t � 2m − n.

Concretely, we use a truncation function T that keeps only n − t bits of an
n-bit word. We consider the values T (a⊕b) for all (a, b) ∈ A×B, and count how
many times each value is reached. If m is large enough, the value with the lowest
counter corresponds to T (S). This attack does not require any prior information

754 G. Leurent and F. Sibleyras

on the secret; it can be used with S = {0, 1}n, and once T (S) is known, we can
use known-prefix sieving to recover the remaining bits (looking for S in an affine
space of dimension t).

We now show an algorithm to quickly count the number of occurrences for
each combination. For a given multi-set X , we consider an array of counters CX ,
to represent how many times each value T (x) is reached:

CX [i] =
∣∣{x ∈ X ∣∣ T (x) = i

}∣∣.

Our goal is to compute CA⊕B efficiently from A and B, where A ⊕ B is the
multi-set {a ⊕ b | (a, b) ∈ A × B}. We observe that:

CA⊕B[i] = |{(a, b) ∈ A × B | T (a ⊕ b) = i}|
=

∑

a∈A
|{b ∈ B | T (a ⊕ b) = i}|

=
∑

a∈A
|{b ∈ B | T (b) = i ⊕ T (a)}|

=
∑

a∈A
CB[i ⊕ T (a)]

=
∑

j∈{0,1}n−t

CA[j]CB[i ⊕ j]

This is a form of convolution that can be computed efficiently only using the
Fast Walsh-Hadamard Transform (Algorithm 4), in the same way we use the Fast
Fourier Transform to compute circular convolutions (see Algorithm 5). Therefore
the full attack (shown in Algorithm 6) takes time Õ(2n−t) using lists of size 2m

with m � (n + t)/2 and a sieve of 2n−t elements.
In order to optimize the attack, we select t = n/3 such that the time com-

plexity, data complexity, and memory usage are all roughly 22n/3. A detailed
analysis in Sect. 6.1 shows that we reach a constant success rate with t = n/3
using lists of size O(

√
n · 22n/3). This gives the following complexity for the full

attack:

O(
√

n · 22n/3) queries
O(n · 22n/3) + O(n

√
n · 2n/2) bits of memory (counters + sieving)

O(n · 22n/3) + O(n
√

n · 2n/2) computations (fast Walsh-Hadamard + sieving)

As seen in Sect. 6.1, we performed experiments with n = 12, 24, 48, and the cor-
rect S was found with the lowest counter in at least 70% of our experiments,
using list of size

√
n22n/3. This validates our approach and shows that the con-

stant in the O notation is small. We could run this algorithm over n = 48 bits
in a matter of minutes.

Optimizations. In order to increase the success rate of the algorithm, one
can test several candidates for T (S) (using the lowest remaining counters), and

The Missing Difference Problem, and Its Applications 755

Algorithm 4. Fast Walsh-Hadamard Transform
Input: CA, |CA| = 2m

Output: The Walsh-Hadamard transform of CA
for d = m downto 0 do

for i = 0 to 2m−d do
for j = 0 to 2d−1 do

CA[i · 2d + j] ← CA[i · 2d + j] + CA[i · 2d + j + 2d−1]
CA[i · 2d + j + 2d−1] ← CA[i · 2d + j] − 2 · CA[i · 2d + j + 2d−1]

end for
end for

end for
return CA

Algorithm 5. Fast convolution
Input: CA, CB
Output: CA⊕B

{Perform fast Walsh-Hadamard transform in-place}
FWHT(CA); FWHT(CB);
for c = 0 to 2n−t do

CA⊕B[c] ← CA[c] · CB[c]
end for
{Perform fast Walsh-Hadamard transform in-place}
FWHT(CA⊕B);
return CA⊕B

Algorithm 6. Sieving with fast convolution
Input: A, B, t ≤ n
Output: S s.t. ∀(a, b) ∈ A × B, a ⊕ b �= S

CA, CB, CA⊕B ← arrays of 2n−t integers initialized to 0;
for a in A do

Increment CA[a0..(n−t−1)]
end for
for b in B do

Increment CB[b0..(n−t−1)]
end for
CA⊕B ← FastConvolution(CA, CB)
u ← argminiCA⊕B[i]
Run known prefix sieving (Algorithm 3), knowing that T (S) = u

use the known-prefix sieving to detect whether the candidate is correct. Another
option is to run multiple independent runs of the algorithm with different choices
of the n/3 truncated bits. This would avoid some bad cases we have observed in
simulations, where the right counter grows abnormally high and gets hidden in
all of the other counters.

For the memory complexity, notice that we don’t need to store all the data
but simply to increment a counter. We only need to keep enough blocks for the

756 G. Leurent and F. Sibleyras

second part of the algorithm so that the sieving yields a unique result. Initially
the counters for CA and CB are quite small,

√
n in expectation. However, CA⊕B

will have much bigger entries, n ·22n/3 in expectation, so that we need O(n) bits
to store each entry.

4 Application to the CTR Mode

We know show how to mount attacks against the counter mode using the new
algorithms for the missing difference problem.

4.1 Attack Using Fast Convolution

Use of the fast convolution algorithm to recover one block of CTR mode plaintext
is straightforward. The attacker is completely passive and observes encryptions
of S (gathered in set B), and keystream blocks recovered from the encryption of
known message blocks (gathered in set A). When the lists are large enough, he
runs the fast convolution algorithm on A and B to recover S.

4.2 Attacks Using Known Prefix Sieving

Direct Attack. There are many settings where unknown plaintext will natu-
rally lie in some known affine subspace, and the known prefix sieving algorithm
can be used directly. For instance a credit card number (or any number) could
be encoded in 16 bytes of ASCII then encrypted. Because in ASCII the encoding
of any digit starts by 0x3 (0x30 to 0x39), we know half of the bits of the plain-
text, and we can use the known-prefix sieving with z = n/2. Other examples are
information encoded by uuencode that uses ASCII values 0x20 to 0x5F (corre-
sponding to two known bits) or HTML authentication cookies that are typically
encoded to some subset of ASCII numbers and letters3.

Block Splitting. We often assume that the secret is encrypted in its own
block, but when the secret is part of the message, it can also be split across
block boundaries, depending on how the plaintext is constructed and encrypted
by the protocol. In particular, if a message block contains both known bytes and
secret bytes, we can apply the known prefix sieving algorithm to this block and
recover the secret bytes.

In many protocols, messages start with some low entropy header that can be
guessed by an attacker. Moreover, the attacker often has some degree of control
over those headers. For instance, in the BEAST attack [12] against HTTPS, an
attacker uses Javascript code to generate HTTPS requests, and he can choose
the URL corresponding to the requests. Using this control of the length of the
header, block splitting attacks have been shown in the BEAST model [12,20].

3 For example, wikipedia.org encodes cookies with lower case letters and digits, this
corresponds to two known bits.

http://wikipedia.org

The Missing Difference Problem, and Its Applications 757

Table 1. Example of an attack on two blocks secret S = S1‖S2‖S3‖S4. Each step
performs the known prefix sieving algorithm. Known information in blue, unknown
information in red, attacked information in yellow.

Queries Q1 with half-block header H1 S1 S2 S3 S4

Queries Q2 with full-block header H1 H2 S1 S2 S3 S4

Reuse Q1 with known S1, S2 H1 S1 S2 S3 S4

Reuse Q2 with known S1, S2, S3 H1 H2 S1 S2 S3 S4

The attacker starts with a header length so that a small chunk of the secret
message is encrypted together with known information, and recovers this secret
chunk. Then he changes the length of the header to recover a second chunk of
the message, using the fact that the first chunk is now known. Eventually, the
full secret can be recovered iteratively.

In our case, the easiest choice is to recover chunks of n/2 bits of secret one by
one, using the known-prefix sieving algorithm with z = n/2. We illustrate this
attack in Table 1, assuming a two-block secret S = S1‖S2‖S3‖S4, and a protocol
that lets the adversary query an encryption of the secret with an arbitrary chosen
prefix:

1. The attacker makes two kind of queries
– Q1 with a known half-block header H1 (E([H1‖S1]‖[S2‖S3]‖[S4]));
– Q2 with a known full-block header H1‖H2 (E([H1‖H2]‖[S1‖S2]‖[S3‖S4])).

2. He first recovers S1 using the known-prefix sieving with the first block of each
type of query. More precisely, he uses A = {E(H1‖H2)} and B = {E(H1‖S1)},
so that the missing difference is 0 ‖ (S1 ⊕ H2).

3. When S1 is known, he can again use known prefix sieving to recover S2,
with the first and second blocks of Q2 queries: A = {E(H1‖H2)} and B =
{E(S1‖S2)}, so that the missing difference is (S1⊕H1)‖(S2⊕H2). To improve
the success rate of this step, he can also consider the first block of Q1 queries
as known keystream.

4. When S2 is known, another round of known prefix sieving reveals S3, e.g.
with A = {E(H1‖H2)} and B = {E(S2‖S3)}, the missing difference is (S2 ⊕
H1)‖(S3 ⊕ H2).

5. Finally, S4 is recovered with a last round of known prefix sieving using
A = {E(H1‖H2)} and B = {E(S3‖S4)}, with missing difference is (S3 ⊕
H1)‖(S4 ⊕ H2).

This gives an algorithm with query complexity of O(
√

n2n/2) to recover repeated
encryption of a secret over multiple blocks in the BEAST attacker model. In
Sect. 6.2, we analyze the constants in the O() and run experiments with n = 64
using locally encrypted data. In particular, we have a success probability higher
than 80% using two lists of 5 × 232 queries with n = 64.

758 G. Leurent and F. Sibleyras

More generally, we show that for n ≥ 32 the success probability of this attack
is at least 99% with lists of size

√
n/2 ·2n/2. With a one block secret, an optimal

attack uses two lists of
√

n/2 · 2n/2 two-block queries: queries [H1‖S1]‖[S2] with
a half-block header, and queries [H1‖H2]‖[S1‖S2] with a full-block header. This
translates to a data complexity of 4

√
n/2·2n/2 blocks. For comparison, an attack

against the CBC mode requires on average 2·2n/2 blocks of data in the ideal case.
Alternatively, an attacker could recover the secret bit by bit. This leads

to a more complex attack in practice, but the complexity is similar, and this
variant could use McGrew’s searching algorithm instead of our known-prefix
sieving algorithm (because in this scenario, we have |S| = 2). We show a detailed
analysis of this variant in Sect. 6.2, taking into account the n steps necessary for
this attack.

4.3 Use of CTR Mode in Communication Protocols

The CTR mode is widely used in internet protocols, in particular as part of
the GCM authenticated encryption mode [29], with the AES block cipher. For
instance, Mozilla telemetry data show that more than 90% of HTTPS connec-
tions from Firefox 58 use AES-GCM4. While attacks against modes with a 128-
bit block cipher are not practical yet, it is important to limit the amount of
data processed with a given key, in order to keep the probability of a successfull
attack negligible, following the guidelines of Luykx and Paterson [26].

Surprisingly, there are also real protocols that use 64-bit block ciphers with
the CTR mode (or variants of the CTR mode), as shown below. Attacks against
those protocols would be (close to) practical, assuming a scenario where an
attacker can generate the encryption of a large number of messages with some
fixed secret.

SSH. Ciphersuites based on the CTR mode were added to SSHv2 in 2006 [4].
In particular, 3DES-CTR is one of the recommended ciphers, but actual usage of
3DES-CTR seems to be rather low [1]. In practice, 3DES-CTR is optionally sup-
ported by the dropbear server, but it is not implemented in OpenSSH. According
to a scan of the full IPv4 space by Censys.io5, around 9% of SSH servers support
3DES-CTR, but actual usage is hard to estimate because it depends on client
configuration.

The SSH specification requires to rekey after 1 GB of data, but an attack is
still possible, although the complexity increases.

3G Telephony. The main encryption algorithm in UMTS telephony is based
on the 64-bit blockcipher Kasumi. The mode of operation, denoted as f8, is
represented in Fig. 2. While this mode in not the CTR mode and was designed
to avoid its weaknesses, our attack can be applied to the first block of ciphertext.

4 https://mzl.la/2GY53Mc, accessed February 8, 2018.
5 https://censys.io/data/22-ssh-banner-full ipv4, scan performed July 5, 2017.

https://mzl.la/2GY53Mc
https://censys.io/data/22-ssh-banner-full_ipv4

The Missing Difference Problem, and Its Applications 759

Indeed the first block of message i is encrypted as ci,0 = mi,0⊕Ek(Ek′(i)), where
the value Ek(Ek′(i)) is unique for all the messages encrypted with a given key.

There is a maximum of 232 messages encrypted with a given key in 3G, but
this only has a small effect on the complexity of attacks.

i

Ek′

0

Ek

mi,0

ci,0

1

Ek

mi,1

ci,1

2

Ek

mi,2

ci,2

Fig. 2. f8 mode (i is a message counter)

Because of the low usage of 3DES-CTR in SSH, and the difficulty of mounting
an attack against 3G telephony in practice, we did not attempt to demonstrate
the attack in practice, but the setting and complexity of our attacks are compa-
rable to recent results on the CBC mode with 64-bit ciphers [7].

4.4 Counter-Measures

As for many modes of operation, the common wisdom to counter this kind of
attacks asks for rekeying before the birthday bound, i.e. before 2n/2 blocks.
However rekeying too close to the birthday bound may not be enough. For
example let’s consider an implementation of a CTR based mode of operation that
rekeys every 2n/2 blocks, Using the same model as previously, and a one-block
secret, an optimal attack uses queries [H1‖S1]‖[S2] with a half-block header, and
queries [H1‖H2]‖[S1‖S2] with a full-block header, where rekeying occurs after
2n/2−2 queries of each type. To recover S1, we use the known prefix sieving
algorithm as previously, but we can only use relations between ciphertext blocks
encrypted with the same key. In each session of 2n/2 blocks, we consider 2n−4

pairs of ciphertext blocks; on average there are 2n/2−4 pairs with the correct
prefix used for sieving. Since we need n/2 · 2n/2 draws to reduce the sieve to a
single element with high probability, we use 8n sessions, i.e. 8n · 2n/2 blocks of
data in total. The same data can be reused to recover S2 when S1 is known.
This should be compared with the previous data complexity of 4

√
n/2 · 2n/2 in

the absence of rekeying.

760 G. Leurent and F. Sibleyras

However, rekeying every 2n/2−16 blocks makes the data complexity goes up to
235n sessions or n · 219+n/2 blocks to recover the secret block. Notice that the
security gain of rekeying is comparable with what is gained in CBC, where rekey-
ing every 2n/2−16 blocks forces increases the data complexity from 2 · 2n/2 to
218 · 2n/2.

5 Application to Wegman-Carter MACs

Because the fast convolution algorithm requires fewer assumptions, it can be
adapted to other modes of operation based on CTR and particularly to Wegman-
Carter type of constructions for MAC. Wegman-Carter MACs use a keyed per-
mutation E and a keyed universal hash function h, with k1 and k2 two private
keys. The input is a message M and a nonce N , and the MAC is defined as:

MAC(N,M) = hk1(M) + Ek2(N)

Again, the construction requires that all block cipher inputs are different. To
apply our attack, we use two fixed message M and M ′, and we capture many
values MAC(N,M) in a list A and values MAC(N ′,M ′) in a list B, all using
unique nonces. Then we solve the missing difference problem to recover hk1(M)−
hk1(M ′) as we know that ∀N �= N ′ : Ek2(N)−Ek2(N ′) �= 0. It is often sufficient
to know this difference and the two messages M and M ′ to recover the key k1.
We give two examples with concrete MAC algorithms.

Galois/Counter Mode. GCM is an authenticated encryption mode with asso-
ciated data, combining the CTR mode for encryption and a Wegman-Carter
MAC based on polynomial evaluation in a Galois field for authentication. It
takes as input a message M that is encrypted and authenticated, and some
associated data A that is authenticated but not encrypted. When used with an
empty message, the resulting MAC is known as GMAC. In our attack, we use
an empty message with one block of authenticated data A, so that the tag is
computed as:

MAC(N,A) = A · H2 ⊕ H ⊕ Ek(N),

with H the hash key and (·) the multiplication in a Galois Field defined by a
public polynomial. So, for two different blocks of authenticated data A and A′

we collect O(
√

n · 22n/3) MACs and perform the fast convolution algorithm to
recover A · H2 ⊕ H ⊕ A′ · H2 ⊕ H = (A ⊕ A′) · H2. We known A ⊕ A′ and the
field is known so we invert that value and recover H2 then compute the square
root and recover the hash key H.

Comparison with previous attacks against GMAC. There are several
known attacks against GCM and GMAC, but none of them seems to allow univer-
sal forgery with just 22n/3 blocks of data and 22n/3 computations. In particular,
Handschuh and Preneel [19] gave a weak-key attack, that can also be used to

The Missing Difference Problem, and Its Applications 761

recover the hash key without weak key assumptions, using roughly 2n/2 mes-
sages of 2n/2 blocks. Later work extended these weak key properties [33,36] but
an attack still requires about 2n blocks in total when no assumptions are made
about the key. We also note that these attacks require access to a verification
oracle, while our attack only uses a MAC oracle.

Some earlier attacks use specific options of the GCM specifications to reach
a lower complexity, but cannot be applied with standard-length IV, and tag:
Ferguson [14] showed an attack when the tag is truncated, and Joux [23] gave
an attack based on non-default IV lengths.

Poly1305. Poly1305 [6] is a MAC scheme following the Wegman-Carter con-
struction, using polynomial evaluation modulo the prime number 2130 − 5. It
uses a keyed 128-bit permutation (usually AES), and the hash function key, r,
has 106 free bits (22 bits of the key are set to 0, including in particular the 4
most significant ones). The message blocks are first padded to 129-bit values ci.
Then the MAC of a q-block message M with nonce N is defined as:

T (M,N) = (((c1rq + c2r
q−1 + ... + cqr) mod 2130 − 5) + Ek(N)) mod 2128.

With the same strategy as above, using two different messages M and M ′ we
recover the missing difference

(((c1 − c′
1)r

q + (c2 − c′
2)r

q−1 + ... + (cq − c′
q)r) mod 2130 − 5) mod 2128.

Moreover, we chose M and M ′ such that ci − c′
i = 0 and cq − c′

q = 1; since by
design, r < 2124 the value recovered is simply the hash key r.

Notice that Poly1305 doesn’t use the XOR operation but a modular addition,
and we have to adapt our algorithms to this case. Luckily, the fast convolution
algorithm can easily be tweaked. First, we keep the 2n/3 least significant bits to
avoid issues the carry, something the XOR operation doesn’t have. Then, when
the lists of counters are up, we need to compute their cyclic convolution, which
is done with a fast convolution algorithm based on the fast Fourier transform
(instead of fast Walsh-Hadamard). Then we verify the value suggested by the
lowest counter by running the known prefix algorithm looking for collisions on the
least significant bits and sieving the modular subtraction of the most significant
bits. This adaptation has similar complexities and proofs than the one described
earlier. Moreover, in the case of Poly1305, one can further adapt the algorithms
to take into account the fact that 22 bits of the key r are fixed at 0 effectively
reducing the dimension of S.

6 Proofs and Simulations

In this section we give some theoretical and simulation results that further sup-
port the claims we made thus far.

762 G. Leurent and F. Sibleyras

6.1 About the Fast Convolution Algorithm

Proof of query complexity for the claim made in Sect. 3.2. Consider, without
loss of generality and for blocks of size n, that we possess a · 22n/3 blocks of
keystream and the same number of blocks of encrypted secret S with a a function
of n. So in this setting we have a2 ·24n/3 different XORed-values possible between
the two lists, that we will consider as independent and uniformly distributed over
2n − 1 values. We will then focus on the 2n/3 bits truncation, T (·), and ignore
the rest. We count the number of occurrences for every truncated values and
store them in two lists of size 22n/3. Using the fast Walsh-Hadamard transform
3 times, Algorithm 5, we can therefore compute the same counters but for all
the XORed-values. We hope that the counter for T (S), the good counter, will
be lower than all of the other counters, the bad counters, with probability Ω(1).
In which case we say the algorithm succeeds.

Let Xc
i represents the fact that the ith value truncates to c, so that Xc

i follows

a Bernoulli distribution and any counter can be written as Xc =
∑a224n/3

i=1 Xc
i .

Now we have to discriminate between the distributions of the good and bad
counters:

Good case c = T (S): Pr(XT (S)
i = 1) = (2n/3 − 1)/2n = 2−2n/3 − 2−n

=⇒ E[XT (S)] = 22n/3a2 − 2n/3a2

Bad case c �= T (S): Pr(Xc
i = 1) = (2n/3)/2n = 2−2n/3

=⇒ E[Xc] = 22n/3a2

Now we are interested by the probability that a bad counter gets a value
below E[XT (S)] as a measure of how distinct the distributions are. Using Chernov
Bound we get for all c �= T (S):

Pr(Xc < E[XT (S)]) = Pr(Xc < (1 − 2−n/3)22n/3a2)

= Pr(Xc < (1 − 2−n/3)E[Xc])

≤ e−((2−n/3)2·22n/3a2)/2) = e−a2/2

And to compute the probability that no bad counter gets below E[XT (S)] we
will have to assume their independence, which is wrong, but we will come back
later to discuss this assumption.

Pr(∀c �= T (S) : Xc ≥ E[XT (S)]) =
∏

c �=T (S)

(
1 − Pr(Xc < E[XT (S)])

)

≥
(
1 − e−a2/2

)22n/3

The Missing Difference Problem, and Its Applications 763

To conclude, we need to find an a = a(n) such that this probability remains
greater than some positive value as n grows. This is clearly achieved with a =
O(

√
n) as for example taking a = 2

√
n√

3·log2(e)
� 0.96

√
n we get:

Pr(∀c �= T (S) : Xc ≥ E[XT (S)]) ≥ (1 − e−a2/2)2
2n/3

≥ (1 − 2−2n/3)2
2n/3

≥ 0.25, ∀n ≥ 3/2

Therefore we can bound the probability of success by the events ‘XT (S) <
E[XT (S)]’, probability � 1/2, and ‘∀c �= T (S) : Xc ≥ E[XT (S)]’, probability at
least 1/4. Then we indeed have a probability of at least 1/8 of having a successful
algorithm. We can conclude that with O(n · 24n/3) XORed-values the algorithm
has probability Ω(1) of succeeding.

Notice that this requires lists of size O(
√

n · 22n/3) but for the proof we
only need the total number of pairs between the two lists. So we can break the
requirement that the two lists are of comparable sizes as long as the product of
their sizes sum up to the order of required values.

On the independence of the counters, this is obviously wrong as they are
bound by the relation

∑
c Xc = a224n/3. However this relation becomes looser

and looser as n grows so the approximation obtained should still be correct
asymptotically. Moreover, the covariances implied are negative i.e. knowing one
draw is big makes the other draws smaller in expectation to compensate. Small
negative covariances will make the distribution look more evenly distributed
in the sense that we can’t observe too many extreme events in a particular
direction which is good for the success rate of the algorithm. So the assumption
of independence may be a conservative one for this complexity analysis.

Simulation Results. We ran simulations for block sizes n = 12, 24, 32 and 48
bits, so that we could do some statistical estimations of the success probability
for this attack. We first create two lists of same size, one of raw keystream output
and one XORed with an n-bit secret S. Then we pass the two lists in Algorithm 5
counting over n′ = 2n/3 bits (unless specified otherwise) to get a list of counters
for each possible XOR outputs on those n′ bits. Then the expected behaviour of
the attack would be to look for a solution whose n′ first bits correspond to the
position of the lowest counter and test this hypothesis with Algorithm 3. If it
returns a unique value then this is S and we are done, if it returns an empty set
then test with the position of the second lowest counter, etc. We can therefore
know the number of key candidates that would be required to recover S and,
over many trials, have an estimation of the probability of success after a given
number of candidates in these parameters.

For block sizes of 12 and 24 we simulated a permutation simply by shuffling
a range into a list. For bigger sizes of 32 and 48 we used the Simon lightweight
cipher from the NSA [3] as that is one of the rare block cipher who can act on
48-bit blocks. We could quickly gather 10 000 runs for each setting except for
the 48-bit blocks simulation where we gathered 756 runs.

764 G. Leurent and F. Sibleyras

20 23 26 29
0

0.2

0.4

0.6

0.8

1

Number of key candidates

P
r(
su
cc
es
s)

n = 12 bits
n = 24 bits

Fig. 3. Results for lists size of 3 · 22n/3

20 23 26 29
0

0.2

0.4

0.6

0.8

1

Number of key candidates
P
r(
su
cc
es
s)

� 4.9 · 22n/3 data
3 · 22n/3 data

Fig. 4. Results for n = 24 bits

20 23 26 29
0

0.2

0.4

0.6

0.8

1

Number of key candidates

P
r(
su
cc
es
s)

counting over 22 bits
counting over 21 bits

Fig. 5. Results for n = 32 bits;√
n22n/3 � 5.66 · 22n/3 data

20 23 26 29
0

0.2

0.4

0.6

0.8

1

Number of key candidates

P
r(
su
cc
es
s)

n = 12
n = 24
n = 48

Fig. 6. Results for
√

n22n/3 data; counting
over 2n/3 bits

In general we observe in Fig. 6 that the algorithm has a good chance of success
with the first few candidates when using the suggested parameters. Moreover the
sensibility with respect to the data complexity (Fig. 4) and to the number of bits
counted over (Fig. 5) is fairly high. These results back up our complexity analysis
and are a good indication that no big constant is ignored by the O() notation.

On the speed at which the probability increases we realized that, despite the
log scale on the x axis, the curves take a straight (Fig. 3) or concave shape (Figs. 5
and 6). That means that the probability of success with the next key candidate

The Missing Difference Problem, and Its Applications 765

decreases very quickly with the number of key candidates already tested and
proved wrong. For example for n = 48 bits (Fig. 6) over 756 trials the right key
candidate was in the 2048 lowest counters in 98.1% of the time but the worst
case found was 1 313 576 and these “very bad” cases push the mean rank of the
right key candidate to 2287 and its sample variance to 2 336 937 008.

For n = 48 bits, one simulation took us 40 min over 10 cores (each step is
highly parallelizable), and 64 gibibytes of RAM for the counters lists.

6.2 About the Known Prefix Sieving Algorithm

We consider two particular settings for the known prefix sieving algorithm and
the corresping block splitting attack, with z = n/2 and z = 1.

Theoretical Bound. We first give a theoretical lower bound to the probability
of success of the sieving when dim(S) = n/2 (i.e. z = n/2), depending on the
query complexity. Every partial collision found helps us to sieve. After collecting
many blocks of keystream and encryption of S let |A| · |B| =: α2n for some α.
Thus we get α2n/2n/2 = α2n/2 partial collisions in expectation. More precisely,
the Chernoff bound gives us a lower bound for the probability of finding at least
(1 − δ)α2n/2 collisions:

p ≥ 1 −
(

e−δ

(1 − δ)(1−δ)

)α2n/2

for any δ > 0.
We see one partial collision as a draw in the coupon collector problem. One

can use the formula in [34] for the tail of coupon collector problem probability
distribution to estimate the chance of success after obtaining β · 2n/2 partial
collisions:

p ≥ 1 − 2−β/ ln(2)+n/2

which is positive whenever β ≥ n/2 · ln(2).
Therefore we bound the probability of success when collecting |A| · |B| =

α2n pairs as the probability of obtaining at least (1 − δ)α2n/2 partial collisions
multiplied by the probability of success after sieving (1 − δ)α2n/2 values:

p ≥
(

1 −
(

e−δ

(1 − δ)(1−δ)

)α2n/2)

·
(

1 − 2−(1−δ)·α/ ln(2)+n/2

)

In particular, with two lists of size
√

n/2 · 2n/2 (i.e. α = n/2), we get p ≥ 0.99
as long as n ≥ 32 (using δ = 2−8).

Simulation Results. We ran simulations with a block size n = 64 bits, and a
secret S of size n/2 = 32 bits, using the Tiny Encryption Algorithm (TEA [37])

766 G. Leurent and F. Sibleyras

20 21 22 23 24 25 26 27 28 29 30 31
0

0.2

0.4

0.6

0.8

1

Number of iterations

P
r(
su
cc
es
s)

Theoretical lower bound with δ = 2−16

Observed among 3700 simulations.

Fig. 7. Probability of success of the known prefix sieving knowing 232 encryptions of a
32-bit secret against the number of chunks of 232 keystream blocks of size n = 64 bits
used.

in CTR mode to encrypt the data. We create two lists, the keystream output list
ai ∈ A, and the encryptions bj = aj ⊕ (0̄‖S) ∈ B. We first produce and sort a
list B with 232 elements then produce, sort and sieve iteratively several lists A
with 232 elements, until the secret S is the only one remaining in the sieve.

One simulation runs in around 20 min over 36 cores, as every steps are
trivially parallelizable: encryption, sorting and sieving. We ran 3700 simula-
tions and tracked how many chunks of 2n/2 = 232 keystream outputs were
needed for sieving. The coupon collector problem predicts that one will need
on average n/2 · ln(2) · 2n/2 partial collisions which will be obtained after
n/2 · ln(2) � 22.18 < 23 rounds in expectation. And indeed the simulations
showed a 64.5% probability of success after 23 iterations. Figure 7 shows the
convergence between the theoretical lower bound and the simulated probabili-
ties. We also noticed that the discrepancy in the number of rounds required is
largely due to the last few candidates remaining in the sieve. If we decided the
attack is successful when we are left with less than 1000 potential candidates for
the secret then the algorithm successfully finishes after 16 rounds every time. In
fact after 16 rounds the number of candidates left varies from 419 to 560 in all
the simulations we have run.

Bit by Bit Secret Recovery. We also want to study the complexity of recov-
ering the secret S bit by bit as an extreme case of the block splitting scenario
described in Sect. 4.2. For simplicity, we consider a setting where one query
returns a block of keystream and the encryption of 0 ‖si with an unknown bit
si. We are interested in the query complexity for recovering n bits of secret one
bit at a time; that is we need to know the first bit to ask for the second one, etc.

The Missing Difference Problem, and Its Applications 767

Clearly this can be done in O(n · 2n/2) queries by repeating n times the attack
on one bit. But the intuition is that we may need less and less queries to uncover
the next bit as we go forward and accumulate blocks of keystream.

Let:

Ui ←The expected number of encryption of 0 ‖si to recover si.

Ki ←The expected number of raw keystream outputs to recover si.

From the definition of a query, the above description and because each time we
find a bit of secret we can deduce a range of keystream blocks for the next step
we have the relations:

K1 = U1 (1)
Ki+1 = Ki + Ui + Ui+1 for i ≥ 1 (2)

Ki · Ui = 2n (in expectation) (3)

We consider the following proposition:

Pi : Ui = 2n/2(
√

i − √
i − 1),

and, using (2), when Pk true for all k ≤ i we have:

Ki = 2
i−1∑

k=1

Uk + Ui = 2n/2(
√

i +
√

i − 1).

Moreover (1) and (3) imply K1 = U1 = 2n/2 so P1 is true. Now suppose Pk true
for all k ≤ i, let’s prove it holds for Pi+1:

Ki+1 · Ui+1 = 2n by (3)

=⇒ U2
i+1 + (Ki + Ui) · Ui+1 − 2n = 0 by (2)

=⇒ U2
i+1 + 2n/2 · 2

√
i · Ui+1 − 2n = 0 byPi

=⇒ Ui+1 = 2n/2(
√

i + 1 −
√

i) as Ui+1 ≥ 0
=⇒ Pi+1 is true.

Now that we have a closed form for Ui we can deduce the expected number of
queries needed to recover n bits of secret by summing over as

∑n
i=1 Ui = 2n/2

√
n.

Therefore the query complexity is really O(
√

n · 2n/2) ignoring a constant
depending on the length of a query. Notice that this complexity is the same as
when sieving S as a whole showing that we don’t grow the query complexity by
more than a constant with this strategy.

7 Conclusion

In this work, we have studied the missing difference problem and its relation
to the security of the CTR mode. We have given efficient algorithms for the

768 G. Leurent and F. Sibleyras

missing difference problem in two practically relevant cases: with an arbitrary
missing difference, and when the missing difference is known to be in some
low-dimension vector space. These algorithms lead to a message-recovery attack
against the CTR mode with complexity Õ(2n/2), and a universal forgery attack
against some Carter-Wegman MACs with complexity Õ(22n/3).

In particular, we show that message-recovery attacks against the CTR mode
can be mounted with roughly the same requirements and the same complexity as
attacks against the CBC mode. While both modes have similar security proofs,
there was a folklore assumption that the security loss of the CTR mode with
large amounts of data is slower than in the CBC mode, because the absence
of collision in the CTR keystream is harder to exploit than CBC collisions [15,
Sect. 4.8.2]. Our results show that this is baseless, and use of the CTR mode with
64-bit block ciphers should be considered unsafe (unless strict data limits are
in place). As a counter-measure, we recommend to use larger block sizes, and
to rekey well before 2n/2 blocks of data. Concrete guidelines for 128-bit block
ciphers have been given by Luykx and Paterson [26]. Alternatively, if the use of
small block is required, we suggest using a mode with provable security beyond
the birthday bound, such as CENC [21,22].

Our missing difference attacks against CTR and the collision attacks against
CBC are two different possible failure of block cipher modes beyond the birth-
day bound. They exploit different properties of the modes but result in similar
attacks. These techniques can be used against other modes of operations (OFB,
CFB, . . .), and most of them will be vulnerable to at least one the attacks, unless
they have been specially designed to provide security beyond the birthday bound.

Acknowledgement. Part of this work was supported by the French DGA, and the
authors are partially supported by the French Agence Nationale de la Recherche
through the BRUTUS project under Contract ANR-14-CE28-0015.

References

1. Albrecht, M.R., Degabriele, J.P., Hansen, T.B., Paterson, K.G.: A surfeit of SSH
cipher suites. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi,
S. (eds.) ACM CCS 2016, pp. 1480–1491. ACM Press, October 2016

2. AlFardan, N.J., Bernstein, D.J., Paterson, K.G., Poettering, B., Schuldt, J.C.N.:
On the security of RC4 in TLS. In: King, S.T. (ed.) USENIX Security 2013, pp.
305–320. USENIX Association (2013)

3. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.:
SIMON and SPECK: Block ciphers for the internet of things. Cryptology ePrint
Archive, Report 2015/585 (2015). http://eprint.iacr.org/2015/585

4. Bellare, M., Kohno, T., Namprempre, C.: The Secure Shell (SSH) Transport Layer
Encryption Modes. IETF RFC 4344 (2006)

5. Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A concrete security treatment of
symmetric encryption. In: 38th FOCS, pp. 394–403. IEEE Computer Society Press,
October 1997

6. Bernstein, D.J.: The Poly1305-AES message-authentication code. In: Gilbert, H.,
Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 32–49. Springer, Heidelberg
(2005). https://doi.org/10.1007/11502760 3

http://eprint.iacr.org/2015/585
https://doi.org/10.1007/11502760_3

The Missing Difference Problem, and Its Applications 769

7. Bhargavan, K., Leurent, G.: On the practical (in-)security of 64-bit block ciphers:
collision attacks on HTTP over TLS and OpenVPN. In: Weippl, E.R., Katzen-
beisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM CCS 2016, pp. 456–467.
ACM Press, October 2016

8. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. J.
Cryptol. 4(1), 3–72 (1991). https://doi.org/10.1007/BF00630563

9. Daemen, J., Knudsen, L., Rijmen, V.: The block cipher Square. In: Biham, E. (ed.)
FSE 1997. LNCS, vol. 1267, pp. 149–165. Springer, Heidelberg (1997). https://doi.
org/10.1007/BFb0052343

10. Diffie, W., Hellman, M.E.: Privacy and authentication: an introduction to cryp-
tography. Proc. IEEE 67(3), 397–427 (1979)

11. Dinur, I., Leurent, G.: Improved generic attacks against hash-based MACs and
HAIFA. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol.
8616, pp. 149–168. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-44371-2 9

12. Duong, T., Rizzo, J.: Here come the ⊕ ninjas (2011)
13. Dworkin, M.: Recommendation for Block Cipher Modes of Operation: Methods and

Techniques. NIST Special Publication 800–38A, National Institute for Standards
and Technology, December 2001

14. Ferguson, N.: Authentication weaknesses in GCM. Comment to NIST (2005).
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/comments/CWC-
GCM/Ferguson2.pdf

15. Ferguson, N., Schneier, B., Kohno, T.: Cryptography Engineering: Design Princi-
ples and Practical Applications. Wiley, New York (2011)

16. DES Modes of Operation. NIST Special Publication 81, National Institute for
Standards and Technology, December 1980

17. Fuhr, T., Leurent, G., Suder, V.: Collision attacks against CAESAR candidates.
In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015, Part II. LNCS, vol. 9453, pp.
510–532. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48800-
3 21

18. Guo, J., Peyrin, T., Sasaki, Y., Wang, L.: Updates on generic attacks against
HMAC and NMAC. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I.
LNCS, vol. 8616, pp. 131–148. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-662-44371-2 8

19. Handschuh, H., Preneel, B.: Key-recovery attacks on universal hash function based
MAC algorithms. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 144–
161. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5 9

20. Hoang, V.T., Reyhanitabar, R., Rogaway, P., Vizár, D.: Online authenticated-
encryption and its nonce-reuse misuse-resistance. In: Gennaro, R., Robshaw, M.
(eds.) CRYPTO 2015, Part I. LNCS, vol. 9215, pp. 493–517. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-47989-6 24

21. Iwata, T.: New blockcipher modes of operation with beyond the birthday bound
security. In: Robshaw, M. (ed.) FSE 2006. LNCS, vol. 4047, pp. 310–327. Springer,
Heidelberg (2006). https://doi.org/10.1007/11799313 20

22. Iwata, T., Mennink, B., Vizár, D.: CENC is optimally secure. Cryptology ePrint
Archive, Report 2016/1087 (2016). http://eprint.iacr.org/2016/1087

23. Joux, A.: Authentication failures in NIST version of GCM. Comment to NIST
(2006). http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/comments/800-
38 Series-Drafts/GCM/Joux comments.pdf

https://doi.org/10.1007/BF00630563
https://doi.org/10.1007/BFb0052343
https://doi.org/10.1007/BFb0052343
https://doi.org/10.1007/978-3-662-44371-2_9
https://doi.org/10.1007/978-3-662-44371-2_9
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/comments/CWC-GCM/Ferguson2.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/comments/CWC-GCM/Ferguson2.pdf
https://doi.org/10.1007/978-3-662-48800-3_21
https://doi.org/10.1007/978-3-662-48800-3_21
https://doi.org/10.1007/978-3-662-44371-2_8
https://doi.org/10.1007/978-3-662-44371-2_8
https://doi.org/10.1007/978-3-540-85174-5_9
https://doi.org/10.1007/978-3-662-47989-6_24
https://doi.org/10.1007/11799313_20
http://eprint.iacr.org/2016/1087
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/comments/800-38_Series-Drafts/GCM/Joux_comments.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/comments/800-38_Series-Drafts/GCM/Joux_comments.pdf

770 G. Leurent and F. Sibleyras

24. Lee, C., Kim, J., Sung, J., Hong, S., Lee, S.: Forgery and key recovery attacks
on PMAC and Mitchell’s TMAC variant. In: Batten, L.M., Safavi-Naini, R. (eds.)
ACISP 2006. LNCS, vol. 4058, pp. 421–431. Springer, Heidelberg (2006). https://
doi.org/10.1007/11780656 35

25. Leurent, G., Peyrin, T., Wang, L.: New generic attacks against hash-based MACs.
In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270, pp.
1–20. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42045-0 1

26. Luykx, A., Paterson, K.G.: Limits on authenticated encryption use in TLS, March
2016. http://www.isg.rhul.ac.uk/∼kp/TLS-AEbounds.pdf

27. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994).
https://doi.org/10.1007/3-540-48285-7 33

28. McGrew, D.: Impossible plaintext cryptanalysis and probable-plaintext collision
attacks of 64-bit block cipher modes. Cryptology ePrint Archive, Report 2012/623.
Accepted to FSE 2013 (2012). http://eprint.iacr.org/2012/623

29. McGrew, D.A., Viega, J.: The security and performance of the Galois/counter
mode (GCM) of operation. In: Canteaut, A., Viswanathan, K. (eds.) INDOCRYPT
2004. LNCS, vol. 3348, pp. 343–355. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-30556-9 27

30. Peyrin, T., Wang, L.: Generic universal forgery attack on iterative hash-based
MACs. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol.
8441, pp. 147–164. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
642-55220-5 9

31. Preneel, B., van Oorschot, P.C.: MDx-MAC and building fast MACs from hash
functions. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 1–14.
Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-44750-4 1

32. Preneel, B., van Oorschot, P.C.: On the security of two MAC algorithms. In: Mau-
rer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 19–32. Springer, Heidelberg
(1996). https://doi.org/10.1007/3-540-68339-9 3

33. Procter, G., Cid, C.: On weak keys and forgery attacks against polynomial-based
MAC schemes. J. Cryptol. 28(4), 769–795 (2015)

34. Rajeev, M., Prabhakar, R.: Randomized Algorithms. Cambridge University Press,
New York (1995)

35. Rogaway, P.: Evaluation of some blockcipher modes of operation (2011)
36. Saarinen, M.-J.O.: Cycling attacks on GCM, GHASH and other polynomial MACs

and hashes. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol. 7549, pp. 216–225.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34047-5 13

37. Wheeler, D.J., Needham, R.M.: TEA, a tiny encryption algorithm. In: Preneel,
B. (ed.) FSE 1994. LNCS, vol. 1008, pp. 363–366. Springer, Heidelberg (1995).
https://doi.org/10.1007/3-540-60590-8 29

https://doi.org/10.1007/11780656_35
https://doi.org/10.1007/11780656_35
https://doi.org/10.1007/978-3-642-42045-0_1
http://www.isg.rhul.ac.uk/~kp/TLS-AEbounds.pdf
https://doi.org/10.1007/3-540-48285-7_33
http://eprint.iacr.org/2012/623
https://doi.org/10.1007/978-3-540-30556-9_27
https://doi.org/10.1007/978-3-540-30556-9_27
https://doi.org/10.1007/978-3-642-55220-5_9
https://doi.org/10.1007/978-3-642-55220-5_9
https://doi.org/10.1007/3-540-44750-4_1
https://doi.org/10.1007/3-540-68339-9_3
https://doi.org/10.1007/978-3-642-34047-5_13
https://doi.org/10.1007/3-540-60590-8_29

	The Missing Difference Problem, and Its Applications to Counter Mode Encryption
	1 Introduction
	2 Message Recovery Attacks on CTR Mode
	2.1 Setting and Notations
	2.2 Previous Work

	3 Efficient Algorithms for the Missing Difference Problem
	3.1 Known Prefix Sieving
	3.2 Fast Convolution Sieving

	4 Application to the CTR Mode
	4.1 Attack Using Fast Convolution
	4.2 Attacks Using Known Prefix Sieving
	4.3 Use of CTR Mode in Communication Protocols
	4.4 Counter-Measures

	5 Application to Wegman-Carter MACs
	6 Proofs and Simulations
	6.1 About the Fast Convolution Algorithm
	6.2 About the Known Prefix Sieving Algorithm

	7 Conclusion
	References

