
k-Round Multiparty Computation
from k-Round Oblivious Transfer
via Garbled Interactive Circuits

Fabrice Benhamouda1(B) and Huijia Lin2

1 IBM Research, Yorktown Heights, USA
fabrice.benhamouda@normalesup.org

2 University of California, Santa Barbara, USA

Abstract. We present new constructions of round-efficient, or even
round-optimal, Multi-Party Computation (MPC) protocols from Oblivi-
ous Transfer (OT) protocols. Our constructions establish a tight connec-
tion between MPC and OT: In the setting of semi-honest security, for any
k ≥ 2, k-round semi-honest OT is necessary and complete for k-round
semi-honest MPC. In the round-optimal case of k = 2, we obtain 2-round
semi-honest MPC from 2-round semi-honest OT, resolving the round
complexity of semi-honest MPC assuming weak and necessary assump-
tion. In comparison, previous 2-round constructions rely on either the
heavy machinery of indistinguishability obfuscation or witness encryp-
tion, or the algebraic structure of bilinear pairing groups. More generally,
for an arbitrary number of rounds k, all previous constructions of k-round
semi-honest MPC require at least OT with k′ rounds for k′ ≤ �k/2�.

In the setting of malicious security, we show: For any k ≥ 5, k-round
malicious OT is necessary and complete for k-round malicious MPC. In
fact, OT satisfying a weaker notion of delayed-semi-malicious security
suffices. In the common reference string model, for any k ≥ 2, we obtain
k-round malicious Universal Composable (UC) protocols from any k-
round semi-malicious OT and non-interactive zero-knowledge. Previous
5-round protocols in the plain model, and 2-round protocols in the com-
mon reference string model all require algebraic assumptions such as
DDH or LWE.

At the core of our constructions is a new framework for garbling
interactive circuits. Roughly speaking, it allows for garbling interactive
machines that participates in interactions of a special form. The garbled
machine can emulate the original interactions receiving messages sent
in the clear (without being encoded using secrets), and reveals only the
transcript of the interactions, provided that the transcript is computa-
tionally uniquely defined. We show that garbled interactive circuits for
the purpose of constructing MPC can be implemented using OT. Along
the way, we also propose a new primitive of witness selector that strength-
ens witness encryption, and a new notion of zero-knowledge functional
commitments.

c© International Association for Cryptologic Research 2018
J. B. Nielsen and V. Rijmen (Eds.): EUROCRYPT 2018, LNCS 10821, pp. 500–532, 2018.
https://doi.org/10.1007/978-3-319-78375-8_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78375-8_17&domain=pdf
http://orcid.org/0000-0002-8300-1820

k-Round MPC from k-Round OT via Garbled Interactive Circuits 501

1 Introduction

A Multi-Party Computation (MPC) protocol allows m mutually distrustful par-
ties to securely compute a functionality f(x̄) of their corresponding private
inputs x̄ = x1, . . . , xm, such that party Pi receives the i-th component of f(x̄).
The semi-honest security guarantees that honest-but-curious parties who follow
the specification of the protocol learn nothing more than their prescribed out-
puts. The stronger malicious security guarantees that even malicious parties who
may deviate from the protocol, cannot learn more information nor manipulate
the outputs of the honest parties. MPC protocols for computing general function-
alities are central primitives in cryptography and have been studied extensively.
An important question is: “how many rounds of interactions do general MPC
protocols need, and under what assumptions?”

The round complexity of 2-Party Computation (2PC) was resolved more than
three decades ago: Yao [44,45] gave a construction of general semi-honest 2PC
protocols that have only two rounds of interaction (where parties have access to a
simultaneous broadcast channel1), using garbled circuits and a 2-message semi-
honest Oblivious Transfer (OT) protocol. The round complexity is optimal, as
any one-round protocol is trivially broken. Moreover, the underlying assumption
of 2-message semi-honest OT is weak and necessary.2

In contrast, constructing round-efficient MPC protocols turned out to be
more challenging. The first general construction [32] requires a high number of
rounds, O(d), proportional to the depth d of the computation. Later, Beaver,
Micali, and Rogaway (BMR) reduced the round complexity to a constant using
garbled circuits [5]. However, the exact round complexity of MPC remained
open until recently. By relying on specific algebraic assumptions, a recent line of
works constructed (i) 2-round MPC protocols relying on trusted infrastructure
(e.g., a common reference string) assuming LWE [2,14,21,39,41] or DDH [9–11],
and (ii) 2-round protocols in the plain model from indistinguishability obfusca-
tion or witness encryption with NIZK [16,22,24,28,35], or bilinear groups [29].
However, all these constructions heavily exploit the algebraic structures of the
underlying assumptions, or rely on the heavy machinery of obfuscation or witness
encryption.

The state-of-the-art for malicious security is similar. Garg et al. [27] showed
that 4 round is optimal for malicious MPC. So far, there are constructions of
(i) 5-round protocols from DDH [1], and (ii) 4-round protocols from subex-
ponentially secure DDH [1], or subexponentially secure LWE and adaptive

1 Using the simultaneous broadcast channel, every party can simultaneously broadcast
a message to all other parties. A malicious adversary can rush in the sense that in
every round it receives the messages broadcast by honest parties first before choosing
its own messages. In the 2PC setting, if both parties receive outputs, Yao’s protocols
need simultaneous broadcast channel.

2 A 2-round OT protocol consists of one message from the receiver, followed by another
one from the sender. It is implied by 2-round 2PC protocols using the simultaneous
broadcast channel.

502 F. Benhamouda and H. Lin

commitments3 [12]. In general, for any number of round k, all known con-
structions of semi-honest or malicious MPC require at least k′ round OT for
k′ ≤ �k/2�. We ask the question,

Can we have round-optimal MPC protocols from weak and necessary
assumptions?

We completely resolve this question in the semi-honest setting, constructing 2-
round semi-honest MPC from 2-round semi-honest OT, and make significant
progress in the malicious setting, constructing 5-round malicious MPC from 5-
round delayed-semi-malicious OT, a weaker primitive than malicious OT. Our
results are obtained via a new notion of garbling interactive circuits. Roughly
speaking, classical garbling turns a computation, given by a circuit C and an
input x, into another one (Ĉ, x̂) that reveals only the output C(x). Our new
notion considers garbling a machine participating in an interaction: Let C (with
potentially hardcoded input x) be an interactive machine that interacts with an
oracle O, which is a non-deterministic algorithm that computes its replies to C’s
messages, depending on some witnesses w̄. Garbling interactive machine turns C
into Ĉ, which can emulate the interaction between C and O, given the witnesses
w̄ in the clear (without any secret encoding). It is guaranteed that Ĉ reveals only
the transcript of messages in the interaction and nothing else, provided that the
transcript is computationally uniquely defined, that is, it is computationally hard
to find two different witnesses w̄, w̄′ that lead to different transcripts.

1.1 Our Contributions

Semi-Honest Security: We construct 2-round semi-honest MPC protocols in
the plain model from 2-round semi-honest OT. Our construction can be general-
ized to an arbitrary number of rounds, establishing a tight connection between
MPC and OT: For any k, k-round OT is necessary and complete for k-round
MPC.4

Theorem 1.1 (Semi-Honest Security). For any k ≥ 2, there is a k-round
semi-honest MPC protocol for any functionality f , from any k-round semi-honest
OT protocol.

The above theorem resolves the exact round complexity of semi-honest MPC
based on weak and necessary assumptions, closing the gap between the 2-party
and multi-party case. In the optimal 2-round setting, by instantiating our con-
struction with specific 2-round OT protocols, we obtain 2-round MPC protocols

3 That is, CCA commitments introduced in [17].
4 We recall that for MPC, we suppose that parties have access to a simultaneous

broadcast channel. Furthermore a k-round OT with simultaneous broadcast channel
can be transformed into a k-round OT where each round consists a single message
or flow either from the receiver to the sender or the other way round. This is because
in the last round there is no point for the receiver to send a message to the sender.

k-Round MPC from k-Round OT via Garbled Interactive Circuits 503

in the plain model from a wide range of number theoretic and algebraic assump-
tions, including CDH [6], factoring [6],5 LWE [42],6 and constant-noise LPN
with a sub-exponential security [31,46]. This broadens the set of assumptions
that round-optimal semi-honest MPC can be based on.
Malicious Security: Going beyond semi-honest security, we further
strengthen our protocols to achieve the stronger notion of semi-malicious secu-
rity, as a stepping stone towards malicious security. Semi-malicious security
proposed by [2] considers semi-malicious attackers that follow the protocol spec-
ification, but may adaptively choose arbitrary inputs and random tapes for com-
puting each of its messages. We enhance our semi-honest protocols to handle such
attackers.

Theorem 1.2 (Semi-Malicious Security). For any k ≥ 2, there is a k-round
semi-malicious MPC protocol for any functionality f , from any k-round semi-
malicious OT protocol.

Previous semi-malicious protocols have 3 rounds based on LWE [2,12], 2 rounds
based on bilinear maps [29], or 2 rounds based on LWE but in the common
reference string model [39]. We obtain the first 2-round construction from any
2-round semi-malicious OT, which is necessary and can be instantiated from
a variety of assumptions, including DDH [40], QR, and N-th residuosity [36].
Furthermore, following the compilation paradigms in recent works [1,2,12], we
immediately obtain maliciously secure Universal Composable (UC) protocols in
the common reference string model [15,18], using non-interactive zero-knowledge
(NIZK).

Corollary 1.3 (Malicious Security in the CRS Model). For any k ≥ 2,
there is a k-round malicious UC protocol in the common reference string model
for any functionality f , from any k-round semi-malicious OT protocol and NIZK.

Moving forward to malicious MPC protocols in the plain model, we show
that, for any k ≥ 5, k-round malicious MPC protocols can be built from
k-round delayed-semi-malicious OT, which is implied by k-round malicious OT.

Theorem 1.4 (Malicious Security in the Plain Model). For any k ≥ 5,
there is a k-round malicious MPC protocol for every functionality f , from any
k-round delayed-semi-malicious OT protocol.

This theorem is obtained by first showing that our k-round semi-malicious
MPC protocols satisfy a stronger notion of delayed-semi-malicious security,
when instantiated with a k-round OT protocol satisfying the same notion.
Here, delayed-semi-malicious security guards against a stronger variant of semi-
malicious attackers, and is still significantly weaker than malicious security.
5 This follows from the fact that CDH in the group of quadratic residues is as hard as

factoring [8,38,43].
6 The scheme in [42] uses a CRS, but in the semi-honest setting, the sender can

generate the CRS and send it to the receiver.

504 F. Benhamouda and H. Lin

For instance, delayed-semi-malicious OT provides only indistinguishability-based
privacy guarantees, whereas malicious OT supports extraction of inputs and sim-
ulation. In the second step, we transform our k-round delayed-semi-malicious
MPC protocols into k-round malicious MPC protocols, assuming only one-way
functions. This transformation relies on specific structures of our protocols. In
complement, we also present a generic transformation that starts with any (k−1)-
round delayed semi-malicious MPC protocol.

Previous 5-round malicious protocols rely on LWE and adaptive commit-
ments [12], or DDH [1]. Our construction weakens the assumptions, and in par-
ticular adds factoring-based assumptions into the picture. Our result is one-step
away from constructing round-optimal malicious MPC from weak and necessary
assumptions. So far, 4-round protocols can only be based on subexponential
DDH [1] or subexponential LWE and adaptive commitments [12]. A clear open
question is constructing 4-round malicious MPC from 4-round OT.

Garbled Interactive Circuits, and More: Along the way of constructing
our MPC protocols, we develop new techniques and primitives that are of inde-
pendent interest: We propose a new notion of garbling interactive circuits, a new
primitive of witness selector that strengthens witness encryption [26], and a new
notion of zero-knowledge functional commitment. Roughly speaking,

– As mentioned above, garbling interactive machine transforms an interactive
machine C talking to a non-deterministic oracle O(w̄) using some witnesses,
into a garbled interactive machine Ĉ that upon receiving the witnesses w̄ in
the clear (without any secret encoding) reveals the transcript of the interac-
tion between C and O(w̄) and nothing else, provided that the transcript is
computationally uniquely defined.

– Witness selector strengthens witness encryption [26] in the dimension that
hiding holds when it is computationally hard to find a witness that enables
decryption, as opposed to when no such witnesses exist.

– Finally, we enhance standard (computationally binding and computationally
hiding) commitment schemes with the capability of partially opening a com-
mitment c to the output f(v) of a function f evaluated on the committed
value v, where the commitment and partial decommitment reveal nothing
more than the output f(v).

To construct 2-round MPC, we use garbled interactive circuits and functional
commitments to collapse rounds of any multi-round MPC protocols down to 2,
and implement garbled interactive circuits using witness selector and classical
garbled circuits. Our technique generalizes the novel ideas in recent works on
constructing laconic OT from DDH [19], identity based encryption from CDH
or factoring [13,23], and 2-round MPC from bilinear pairing [29]. These works
can be rephrased as implementing special-purpose garbled interactive circuits
from standard assumptions, and applying them for their specific applications. In
this work, we implement the garbled interactive circuits, witness selector, and
functional commitments needed for our constructions of MPC, from OT. The
generality of our notions gives a unified view of the techniques in this and prior
works.

k-Round MPC from k-Round OT via Garbled Interactive Circuits 505

1.2 Organization

We start with an overview of our techniques in Sect. 2. Then, after some classical
preliminaries in Sect. 3, we formally define garbled interactive circuit schemes in
Sect. 4. In Sect. 5, we build 2-round semi-honest MPC protocols from any semi-
honest MPC protocols and (zero-knowledge) functional commitment scheme
with an associated garbled interactive circuit scheme. In Sect. 6, we define witness
selector schemes and show that they imply garbled interactive circuit schemes.
The construction of a functional commitment scheme with witness selector from
any 2-round OT (which concludes the construction of 2-round semi-honest MPC
protocols from 2-round OT), as well as the extensions to k-round OT and to the
semi-malicious and malicious settings are in the full version [7].

1.3 Concurrent Work

In a concurrent and independent work [30], Garg and Srinivasan also built
k-round semi-honest MPC from k-round semi-honest OT. In the malicious set-
ting, they obtained a stronger result in the CRS model, constructing 2-round
UC-secure MPC from 2-round UC-secure OT in the CRS model (without requir-
ing NIZK contrary to us). On the other hand, they did not consider malicious
MPC in the plain model, whereas we constructed k-round malicious MPC from
k-round delayed-semi-malicous OT for any k ≥ 5. While both works leverage
the novel ideas in [13,19,23,29], the concrete techniques are different. In our
language, if we see their protocols in the lens of garbled interactive circuits, each
step of their garbled interactive circuit performs a NAND gate on the state of
one of the parties, while each of our steps performs a full MPC round, thanks to
the functional commitment. Our approach can also be seen as more modular by
the introduction of garbled interactive circuits, witness selector, and functional
commitments, which we believe are of independent interest.

2 Overview

Garg et al. [24] introduced a generic approach for collapsing any MPC protocol
down to 2 rounds, using indistinguishability obfuscation [4,25]. Later et al. [35]
showed how to perform round collapsing using garbled circuits, witness encryp-
tion, and NIZK. Very recently, Garg and Srinivasan [29] further showed how to do
collapse rounds using garbled protocols, which can be implemented from bilinear
pairing groups. In this work, we perform round collapsing using our new notion
of garbled interactive circuits; this notion is general and enables us to weaken
the assumption to 2-round OT. (See the full version [7] for a more detailed com-
parison with prior works.) Below, we give an overview of our construction in the
2-round setting; construction in the multi-round setting is similar.

506 F. Benhamouda and H. Lin

2.1 Round-Collapsing via Obfuscation

The basic idea is natural and simple: To construct 2-round MPC protocols for a
function f , take any multi-round MPC protocols for f , referred to as the inner
MPC protocols, such as, the Goldreich-Micali-Wigderson protocol [32], and try to
eliminate interaction. Garg, Gentry, Halevi, and Raykova (GGHR) [24] showed
how to do this using indistinguishability obfuscation. The idea is to let each
player Pi obfuscate their next-step circuit Nexti(xi, ri, �) in an execution of the
inner MPC protocol Π for computing f , where Nexti(xi, ri, �) has Pi’s private
input xi and random tape ri hardcoded, and produces Pi’s next message m�

i in
round �, on input the messages m̄<� = {m�′

j }
j,�′<�

broadcast by all parties in
the previous rounds,

Nexti(xi, ri, m̄
<�) = m�

i . (1)

Given all obfuscated circuits {iO(Next(xi, ri, �)j)}, each party Pi can emulate
the execution of Π in its head, eliminating interaction completely.

The above idea achieves functionality, but not security. In fact, attackers,
given the obfuscated next-step circuits of honest parties, can evaluate the resid-
ual function f({xi}honest i, �) with the inputs of honest parties hardcoded, or
even evaluate honest parties’ next-step circuits on arbitrary “invalid” messages.
To avoid this, the protocol requires each party to commit to its input and ran-
dom tape in the first round, ci

R← Com(xi, ri). Then, in the second round, each
party obfuscates an augmented next-step circuit AugNexti that takes addition-
ally a NIZK proof π�′

j for each message m�′
j it receives, and verifies the proof

π�′
j that m�′

j is generated honestly from inputs and random tapes committed in
cj (it aborts otherwise). This way, only the unique sequence of honestly gener-
ated messages is accepted by honest parties’ obfuscated circuits. In the security
proof, by the security of indistinguishability obfuscation and NIZK, this unique
sequence can even be hardcoded into honest parties’ obfuscated circuits, enabling
simulation using the simulator of the inner MPC protocol.

2.2 Garbled Interactive Circuits

The fact that it suffices and is necessary that the honest parties’ obfuscated
circuits only allow for a single meaningful “execution path” (determined by the
unique sequence of honest messages), suggests that we should rather use garbling
instead of obfuscation for hiding honest parties’ next-step circuits. However, the
challenge is that the next-step circuits Nexti are not plain circuits: They are
interactive in the sense that they takes inputs (i.e., MPC messages) generated by
other parties that cannot be fixed at time of garbling. To overcome the challenge,
we formalize the MPC players as interactive circuits, and propose a new notion
called Garbled Interactive Circuits (GIC).

Interactive Circuits: The interaction with an interactive circuit is captured
via a non-deterministic (poly-size) oracle O that on inputs a query q and some
witness w returns an answer a = O(q, w) (or ⊥ if w is not accepting). (Note that
O is non-deterministic in the sense that without a valid witness, one cannot

k-Round MPC from k-Round OT via Garbled Interactive Circuits 507

evaluate O.) An interactive circuit iC consists of a list of L next-step circuits
{iC�}�∈[L]. Its execution with oracle O on input a list of witnesses w̄ = {w̄�}
proceeds in L iterations as depicted in Fig. 1: In round �, iC� on input the state
st�−1 output in the previous round, as well as the answers ā�−1 = {a�−1

k } from
O to queries q̄�−1 = {q�−1

k } produced in the previous round, outputs the new
state st� and queries q̄� = {q�

k}, and a (round) output o�.

∀�, iC�(st�−1, ā�−1) = (st�, q̄�, o�) , where ∀k, a�−1
k = O(q�−1

k , w�−1
k) .

The output of the execution is the list of round outputs ō = {o�}�, and the
transcript of the execution is the list of all queries, answers, and outputs
trans(iC, w̄) = {(q̄�, ā�, o�)}�. In the case that any oracle answer is a�

k = ⊥,
the execution is considered invalid. For simplicity of this high-level overview, we
consider only valid executions and valid transcript; see Sect. 4 for more details.

Fig. 1. Execution of an interactive circuit iC with witnesses w̄

Garbled Interactive Circuit Scheme: A Garbled Interactive Circuit
(GIC) scheme GiC allows us to garble an interactive circuit ̂iC R← GiC.Garble(iC),
s.t.
Correctness: We can evaluate ̂iC with the oracle O and a list w̄ of witnesses

(in the clear) to obtain each round output o� = GiC.Eval(̂iC, w̄<�). This
significantly differs from classical garbling techniques where inputs of the
computation must be encoded using secrets (such as, mapping them to cor-
responding input keys or labels).

Simulation Security for Unique Transcripts Distribution: Security guar-
antees that ̂iC reveals only the transcript of execution, including all out-
puts, queries, and answers, and nothing else, that is, it can be simulated by
˜iC R← GiC.Sim(trans), provided that there is a unique transcript of execution.

The requirement on unique transcript is necessary, otherwise, security is ill-
defined as there may exist different transcripts produced by using different wit-
nesses, and the simulator cannot hardcode them all. Furthermore, garbled inter-
active circuit schemes are meant to be different from obfuscation and hides only
a single execution path. To formalize this, there are two options:

508 F. Benhamouda and H. Lin

– Statistically Unique Transcript. The easier option is requiring sim-
ulation security only for interactive circuits iC that have unique transcript
no matter what witnesses are used, that is, for all w̄, w̄′, trans(iC,O, w̄) =
trans(iC,O, w̄′). This is, however, a strong requirement.

– (Default:) Computationally Unique Transcript. The more general
option is considering a distribution iD over (iC, w̄) that has computationally
unique transcripts, in the sense that given (iC, w̄), it is hard to find w̄′ that
leads to a different valid transcript, trans(iC,O, w̄) 	= trans(iC,O, w̄′).7

GIC for a computational or statistical unique-transcript distribution ensures:
{

GiC.Garble(iC) : (iC, w̄) R← iD
}

≈
{

GiC.Sim(trans(iC,O, w̄)) : (iC, w̄) R← iD
}

Looking ahead, our 2-round MPC protocols from 2-round semi-honest obliv-
ious transfer crucially rely on the stronger notion of GIC for computationally
unique transcripts. If using GIC for statistically unique transcripts, we would
need a 2-round OT protocol where the receiver’s message statistically binds its
input bit, which is not a necessary assumption for constructing 2-round semi-
honest MPC protocols.

2.3 Constructing GIC from Witness Selector

We start with the warm-up case of building GIC for statistically unique tran-
scripts by combining plain garbled circuits and witness encryption. Witness
Encryption (WE) proposed by Garg et al. [26], enables one to encrypt a
message under an instance x of an NP language L to obtain a ciphertext
ct R← WE.Enc(x,M); later this ciphertext can be decrypted using any witness
w of x, M = WE.Dec(ct,w). The idea of combining garbled circuits and witness
encryption has already appeared in three recent works by Gordon et al. [35], Cho
et al. [19], and Döttling and Garg [23]. Our garbled interactive circuit scheme
can be viewed as a generalization of their ideas for capturing the full power
of this combination. As we explain shortly, to handle computationally unique
transcripts, we need to rely on a new primitive called Witness Selector, which
strengthens WE.8

Warm-Up: GIC for Statistically Unique Transcript from WE:

To garble an interactive circuit iC = {iC�}�, a natural first attempt is gar-
bling each next-step circuit iC� as a plain circuit, yielding L garbled circuits

7 The distribution may output some additional auxiliary information, and it is hard
to find witnesses that lead to a different valid transcript even given the auxiliary
information. See Sect. 4 for more details.

8 We mention that the work of Döttling and Garg [23] defined what is called chameleon
encryption scheme, which can be viewed as a special case of our witness selector for
a specific language.

k-Round MPC from k-Round OT via Garbled Interactive Circuits 509

{̂iC�, key�}�, where each input wire of ̂iC� has two keys, (key�[k, 0], key�[k, 1]),
one for this input bit being 0 and one for 1. The difficulty is that, to evaluate
̂iC�, the evaluator must obtain keys corresponding to the honestly generated
state st�−1 and answers ā�−1 produced in the previous round; denote these keys
as key�[st�−1] and key�[ā�−1].9 We show how to enable this by modifying the
garbled circuits {̂iC�} as follows.

– The first idea is embedding all keys key� for one garbled circuit ̂iC� in the
previous one ̂iC�−1, so that, ̂iC�−1 can output directly the keys key�[st�−1] for
the state st�−1 it produces. This idea, however, does not apply for selecting
keys for answers ā�−1, as ̂iC�−1 only computes queries q̄�−1 but not answers
as it does not necessarily know the corresponding witnesses w̄�−1.

– The second idea is using WE as a “translator.” To illustrate the idea, assume
that there is a single query q�−1 and it has a Boolean answer a�−1. In this
case, let ̂iC�−1 output a pair of WE ciphertexts (ct0, ct1), where ctb encrypts
the key key�[k, b] for the answer a�−1 being b, under the statement xb that the
oracle outputs b, O(q�−1, w′

b) = b, for some witness w′
b. Now, the evaluator

after evaluating ̂iC�−1 obtains ct0, ct1. Using the witness w� it receives as
input, it can decrypt the WE ciphertext ct�−1

a�−1 for a�−1 = O(q�−1, w�−1),
obtaining the right key key�[a�−1] for evaluating the next garbled circuit.

To show security, it boils down to argue that for each garbled circuit ̂iC�, only
one key for each input wire is revealed. The security of ̂iC�−1 ensures that only
keys key�[st�−1] for the right state is revealed. On the other hand, to argue that
only keys key�[k, a�−1] for the right answers are revealed, it crucially relies on the
fact that the transcript including the answer is statistically unique. Thus, the
ciphertext ct1−a�−1 is encrypted under a false statement, and by security of WE,
the label key�[k, 1 − a�−1] is hidden. We emphasize that if the transcript were
only computationally unique, both WE ciphertexts ct0, ct1 would potentially
be encrypted under true statements, as there may exist two witnesses w0, w1

that make the oracle output 0 and 1, O(q�−1, w0) = 0, O(q�−1, w1) = 1, even
though it is computationally hard to find them; and the security of WE would
be vacuous.

General Case: GIC from Witness Selector: To handle computationally
unique transcripts, WE is not the right tool. We propose a new primitive called
Witness Selective (WS), which strengthens WE in two ways:

Correctness: WS is defined for a non-deterministic oracle O. One can encrypt a
set of keys key = {key[k, b]}k∈[l],b∈{0,1} under a query q, ct ← WS.Enc(q, key),
which can later be decrypted using a witness w revealing the keys selected
according to the output a = O(q, w), that is, {key[k, ak]}k = WS.Dec(ct, w).

Semantic Security for Unique Answers: The security guarantee is that
the WS ciphertext ct hides all the keys key[k, 1 − ak], provided that a is

9 This is a slight abuse of notation, where st�−1 and ā�−1 denote both their actual
values and the indices of the corresponding input wires.

510 F. Benhamouda and H. Lin

the computationally unique answer. Clearly, if it were easy to find two wit-
nesses w,w′ such that, (a = O(q, w)) 	= (a′ = O(q, w′)), the aforementioned
semantic security cannot hold. Therefore, similarly to GIC, security is only
required to hold for a distribution wD over (q, w) that has computationally
unique answers in the sense that given (q, w), it is hard to find w′ that makes
O output a different valid answer. Then,

{

WS.Enc(q, key) : (q, w) R← wD
}

≈
{

WS.Enc(q, key) : (q, w) R← wD; a = O(q, w); ∀k, key[k, 1 − ak] = 0
}

.

We can construct general GIC scheme for computationally unique transcript
by replacing WE in the warm-up construction with WS. Slightly more pre-
cisely, each garbled circuit ̂iC�−1 outputs a WS ciphertext ct encrypting keys
{key[k, b]} for all wires corresponding to the oracle answer a�−1, under the query
q�−1 (if there are multiple queries, simply generate one WS ciphertext for each
query); then, the evaluator can use the witness w�−1 to decrypt and obtain keys
{key[k, a�−1

k]} selected according to the oracle answer a�−1 = O(q�−1, w�−1).
Since the oracle answer (as a part of the transcript) is computationally unique,
semantic security of WS ensures that the other keys {key[k, 1 − a�−1

k]} remain
hidden, and hence we can invoke the security of the garbled circuits to argue the
security of GIC.

Relation between WS, WE, and Extractable WE: As discussed above,
WS is stronger than WE. For instance, one can use WS to encrypt a set of keys
key under a query q = (h, y = h(v)) for a randomly sampled collision-resistant
hash function h. With respect to the de-hashing oracle O(q, v′) that outputs v′

if y = h(v′), a WS ciphertext reveals only keys {key[k, vk]} selected by v, and
hides others. In contrast, WE provides no security in this case. On the other
hand, WS is weaker than the notion of extractable WE [33]. Roughly speaking,
extractable WE guarantees that for every attacker A, there is an extractor E,
such that, if A can decrypt a ciphertext encrypted under statement x, then E
can output a witness of x. Extractable WE implies WS, and is strictly stronger
as it requires knowledge extraction.

We note that so far there is no construction of general-purpose WE, let alone
WS or extractable WE, from standard assumptions. This is also not the goal
of this work. Instead, we show below how to construct special-purpose WS that
suffices to construct 2-round MPC protocols.

2.4 Round-Collapsing via Garbled Interactive Circuits

We now revisit the round-collapsing approach, by replacing obfuscation with
garbled interactive circuits. First, we observe that each player Pi in the inner
MPC protocol can be viewed as an interactive circuit {P �

i }, interacting with an
oracle O representing the other parties {Pj}, as described in Fig. 2.

The important details are: In each round �, P �
i obtains through the oracle O

all messages m̄�−1 = {m�−1
j }

j
output in the previous round, and additionally, it

k-Round MPC from k-Round OT via Garbled Interactive Circuits 511

Fig. 2. Each player Pi can be formalized as an interactive circuit Pi = {P �
i }.

outputs a proof π�
i that the message m�

i it outputs is generated honestly from
its input xi and random tape ri committed in ci. The message and proof are
exactly the witness w�

i = (m�
i , π

�
i) for the query q�

i that players P �
j make in round

� to the oracle O for obtaining Pi’s message a�
i = m�

i for the next round.

Our 2-Round MPC Protocol: Therefore, we can use a GIC scheme to garble
the interactive circuit representing each player Pi to collapse round:

1. In the first round of MPC, each Pi broadcasts a commitment ci to its input
xi and random tape ri, and

2. in the second round, each Pi sends the garbled interactive circuit ̂P i
R←

GiC.Garble({P �
i }), and

3. each Pi emulates the execution of inner MPC in its head, by evaluat-
ing all { ̂P j} round by round: In round �, it evaluates o�

j = (m�
j , π

�
j) =

GiC.Eval(̂P j , w̄
<�), using the outputs obtained in previous rounds as wit-

nesses, w<� = o<� = {(m�′
k , π�′

k)}k,�′<�. Pi obtains its output when the inner
MPC execution completes.

We observe that the transcript of execution of each {P �
i } is indeed computation-

ally unique, as the commitments {cj} have unique committed values {xj , rj} by
the computational binding property, and lead to unique next messages {m�

j},
by the soundness of proofs {π�

j}. Therefore, the GIC scheme guarantees that
the garbled interactive circuits reveals only their outputs, queries, and answers,
summing up to all commitments {cj}, inner MPC messages {m�

j}, and proofs
{π�

j}, all of which can be made simulatable.

512 F. Benhamouda and H. Lin

First Attempt of Instantiation: The MPC messages can be simulated by
the simulator of the inner MPC protocol. To make commitments and proofs sim-
ulatable, the easiest way is using a standard non-interactive commitment scheme
and a NIZK system, which however (1) requires a common reference string, and
(2) makes the task of instantiating the associated WS scheme difficult. Recall
that to instantiate the GIC scheme, we need a WS scheme for the oracle O
described above, which internally verifies proofs. To solve this, we resort to a
zero-knowledge Functional Commitment (FC) scheme that has a built-in special-
purpose proof system. By minimizing the security requirements on this commit-
ment, we manage to construct it, together with an associated WS scheme, from
2-message semi-honest OT (which is a necessary assumption). This gives 2-round
MPC protocols in the plain model from 2-message semi-honest OT.

2.5 Functional Commitment with Witness Selector from OT

A zero-knowledge functional commitment scheme FC is computationally binding
and computationally hiding, and additionally supports functional opening that
is both binding and zero-knowledge. The notion of functional commitment was
previously proposed by Libert et al. [37] for inner product functions, and later
generalized to general functions in [3]. Here, we consider a stronger property,
namely a zero-knowledge property. On the other hand, we do not require com-
mitments nor functional decommitments to be of size constant in the length of
the committed value, and our binding property only holds against semi-honest
adversaries. Functional commitments were also implicitly and informally sug-
gested by Gorbunov et al. in [34], as a way to interpret their new primitive:
Homomorphic Trapdoor Functions (HTDFs). HTDFs could be used to construct
our functional commitments (but the converse is not true). However, we do not
know how to construct WS associated to an FC built from the HTDF proposed
in [34].

Functional Opening: For a commitment c = FC.Com(v; ρ) and a circuit G,
one can generate a functional decommitment d to the output of G evaluated
on the committed value v, namely m = G(v), using the randomness ρ of the
commitment c,

d = FC.FOpen(c,G,m, ρ), FC.FVer(c,G,m, d) = 1 .

We say that (m, d) is a decommitment to (c,G); here, d serves as a proof
π = d that the value committed in c evaluates to m through G in our 2-round
MPC protocols.
(Semi-Honest) Functional Binding: For an honestly generated commitment
c = FC.Com(v; ρ) with random tape ρ, it is hard to find a decommitment
(m′, d′) to (c,G) for a different output m′ 	= m, even given ρ. Note this is
weaker than standard computational binding, as binding is only required for
honestly generated commitments. This corresponds to distributional sound-
ness of the proofs.

k-Round MPC from k-Round OT via Garbled Interactive Circuits 513

Simulation (i.e., Zero-Knowledge): An honestly generated commitment c R←
FC.Com(v; ρ) (with random tape ρ) and decommitment d can be simulated
together, using only the output m, (c̃, d̃) R← FC.Sim(c,G,m). This property
is weaker than standard zero-knowledge, as the statement is from a distri-
bution and is also simulated; only a single decommitment d can be given for
each commitment, or else simulation does not work.

A WS scheme associated with FC is for the oracle OFC that on input a query (c,G)
and a witness w = (m, d), outputs m if (m, d) is a valid decommitment to (c,G),
and ⊥ otherwise. The functional binding property ensures that for any v,G,
the distribution wDv,G of query q = (c,G) and decommitment w = (m, d) for
honestly generated c = FC.Com(v; ρ), produces computationally unique oracle
answer m (even given the randomness ρ as auxiliary information). Despite the
fact that functional commitments are only semi-honestly binding and one-time
simulatable, we show that, together with an associated WS scheme, they suffice
to instantiate our 2-round MPC protocols.

FC from Garbled Circuits and OT: We show how to construct a func-
tional commitment, and its associated WS scheme, from garbled circuits and
a 2-round string 2-to-1 semi-honest OT.
OT as semi-honest binding commitment: We start with observing that any string
2-to-1 semi-honest OT gives a commitment scheme that is semi-honest binding;
that is, given an honestly generated commitment c = Com(v; ρ) using a uniformly
random tape ρ, it is hard to find a decommitment (v′, ρ′) that opens c to a
different value v′ 	= v even given ρ. To see this, consider the parallelized version
of 2-to-1 string OT, where ot1 = pOT1(x; ρ) generates the first flows from OT
receiver for every bit xk, and ot2 = pOT2(ot1, {key[k, b]}) generates the second
flows from OT sender for every pair of inputs (key[k, 0], key[k, 1]). Combining ot2
with the randomness ρ used for generating the first flows, one can act as the OT
receiver to recover exactly one input key[k, xk] at each coordinate k. We argue
that the first flow ot1 = pOT1(x; ρ) is a semi-honest commitment to x. Suppose
that it is not the case and that it is easy to find a decommitment ρ′ to a different
value x′ 	= x. Then a semi-honest attacker acting as OT receiver can violate
the privacy of OT sender. (However, observe that pOT1(x) is not necessarily
computationally binding, as there is no security for maliciously generated first
flows of OT.)
Functional Opening: We use garbled circuits and OT (as a semi-honest binding
commitment scheme) to enable functional opening. To commit to a value v,
garble a universal circuit Uv(�) = U(v, �) with v hardcoded, and commit to all
its input keys {key[k, b]} using pOT1:

FC.Com(v; ρ) = c = (̂Uv, ot1) , where ot1[k, b] = pOT1(key[k, b]; ρ[k, b]) .

To generate a decommitment (m, d) of (c,G), simply send the keys and random-
ness used for generating the OT first flows {ot1[k,G[k]]} selected by G. More
formally, if G[k] is the k-th bit of the description of G which is used as input
to Uv:

514 F. Benhamouda and H. Lin

FC.FOpen(c,G,m, ρ) = d = {key[k,G[k]], ρ[k,G[k]]}.

Verifying a decommitment d = {key′, ρ′} w.r.t. (c,G,m) involves checking that
the keys and randomness contained in d′ generate the OT first flows selected by
G, and the garbled universal circuit ̂Uv evaluates to m on input these keys.

FC.FVer(c,G,m, d) = 1 iff (1) ∀k, ot1[k,G[k]] = pOT1(key′[k]; ρ′[k]) and

(2) ̂Uv(key′) = m.

It is easy to see that the semi-honest binding property of pOT1 implies the semi-
honest functional binding of FC, and that a pair (c, d) can be simulated relying
on the security of garbled circuits and the computational hiding property (i.e.,
receiver privacy) of pOT1.
WS for FC: Next, to construct a WS scheme for the oracle OFC that verifies
the functional decommitment of FC, we again use garbled circuits to “enforce
and hide” this verification. To encrypt a set of messages M[i, b′] under a query
(c,G), our idea is to garble the following circuit V that acts as FC.FVer (without
checking (1)), and selects messages according to the output m if verification
passes,

V ({key′[k]}) =

{

{M[i,mi]} if ̂Uv({key′[k]}) = m

⊥ otherwise
. (2)

Let ̂V be the garbled circuit, and {okeyk[j, β]}j the set of keys for the input
wires corresponding to key′[k]. (For clarity, we denote keys for ̂V as okey.)

Given a decommitment d = (key′, ρ′), correct WS decryption should recover
messages {M[i, G(v)i]} selected according to the correct output G(v) if the
decommitment is valid, and ⊥ if invalid. To enable this, what is missing is a
“translation mechanism” that can achieve the following: For every k,

– Correctness: if (key′[k], ρ′[k]) is a valid decommitment to ot1[k,G[k]], it trans-
lates this pair into input keys of ̂V corresponding to key[k,G[k]], namely
{okeyk[j, key[k,G[k]]j]}j .

– Security: the other keys {okeyk[j, 1 − key[k,G[k]]j]}j are always hidden.

With such a translation mechanism, given a valid decommitment d =
{key[k,G[k]], ρ[k,G[k]]}, one can obtain all input keys corresponding to
{key[k,G[k]]}, and can evaluate ̂V with these keys to obtain the correct out-
put,

̂V
({

{okeyk[j, key[k,G[k]]j]}j

}

k

)

= V ({key[k,G[k]]}k) = {M[i, G(v)i]}i . (3)

The security of the translation mechanism and garbled circuit ̂V guarantees that
only the right messages {M[i, G(v)i]} are revealed.

k-Round MPC from k-Round OT via Garbled Interactive Circuits 515

Our key observation is that the second flows of OT is exactly such a trans-
lation mechanism. For every OT first flows ot1[k,G[k]] selected by G, generate
the OT second flows using appropriate input keys of ̂V as sender’s inputs,

∀k, ot2[k] R← pOT2(ot1[k,G[k]], {okeyk[j, β]}j,β) . (4)

Indeed, for every k, given a valid decommitment (key[k,G[k]], ρ′) to ot1[k,G[k]],
one can act as an OT receiver to recover input keys {okeyk [j, key[k,G[k]]j]}j ,
achieving correct translation. On the other hand, the OT sender’s security guar-
antees that the other keys {okeyk [j, 1 − key[k,G[k]]j]}j remain hidden.

Summarizing the above ideas gives the following construction of WS for FC:

– WS.Enc((c,G),M): To encrypt M under (c,G), encryptor garbles the circuit
V as in Eq. (2), and generates the second OT flows as in Eq. (4). The WS
ciphertext is ct = (c,G, ̂V , {ot2[k]}).

– WS.Dec(ct, d): To decrypt ct with a decommitment d = {key′, ρ′}, the decryp-
tor first verifies that for every k (key′[k], ρ′[k]) is a valid decommitment
of ot1[k,G[k]] in c; otherwise, abort. Then, for every k, it acts as an OT
receiver with input key′[k], randomness ρ′[k], and OT sender’s message ot2[k]
to recover input keys of ̂V corresponding to key′[k]. Finally, it evaluates ̂V

with the obtained keys and output the messages output by ̂V , as in Eq. (3).

The correctness and security of the WS scheme follows directly from the cor-
rectness and security of the translation mechanism, which are in turn implied
by those of OT. See the full version [7] for more details.

Combining Sects. 2.1 to 2.5, we get a construction of a 2-round semi-honest
MPC protocol from any 2-round semi-honest OT protocol using round collapsing
for an inner MPC protocol.

2.6 Semi-Malicious and Malicious Security in the CRS Model

Toward achieving malicious security, we first achieve semi-malicious security.
Roughly speaking, a semi-malicious party Pj generates its messages according
to the protocol using arbitrarily and adaptively chosen inputs and random tapes.
This is formalized by letting Pj “explain” each message m�

j it sends with a pair
of input and random tape consistent with it, on a special witness tape. In the
two-round setting, the challenge in simulating the view of Pj lies in simulating
honest parties’ first messages without knowing any secret information of Pj . This
is because Pj may rush to see honest parties’ first messages before outputting
its own message, input, and random tape. (Observe that this is not an issue for
semi-honest security, as the simulator learns the inputs and random tapes of
corrupted parties first.)

Recall that in our 2-round protocols, each party Pi sends functional commit-
ments ci to its input and random tape (xi, ri) in the first round, which are later
partially decommitted to reveal Pi’s messages m in the inner MPC protocol.
The simulation property of the functional commitment scheme FC ensures that

516 F. Benhamouda and H. Lin

the commitment and decommitment can be simulated together using just the
message. However, this is insufficient for achieving semi-malicious security, as the
simulator must simulate commitments in the first round with no information.
To overcome this problem, we strengthen the simulatability of FC to equivoca-
bility, that is, simulation takes the following two steps: First, a commitment c̃
is simulated with no information, and later it is equivocated to open to any
output m w.r.t. any circuit G. Instantiating our 2-round MPC protocols with
such an equivocal functional commitment scheme, and other primitives that are
semi-maliciously secure (e.g., using a semi-maliciously secure multi-round MPC
protocol, and 2-round OT protocol), naturally “lift” semi-honest security to
semi-malicious security.

With a simple idea, we can transform any simulatable functional commitment
scheme FC into an equivocal one eFC: Let (OT1,OT2) be the sender and receiver’s
algorithms of a 2-out-of-1 OT scheme.

– To commit to v, generate a FC commitment c to v, and then commit to each
bit ci twice using the algorithm OT1, yielding the eFC commitment:

ec = {ot1[i, 0] = OT1(ci; r[i, 0]), ot1[i, 1] = OT1(ci; r[i, 1])}i .

– An eFC decommitment (ed,G(v)) to (ec,G) contains the FC decommitment
(d,G(v)) to (c,G), and the OT randomness {r[i, ci]} for generating the set of
first flows {ot1[i, ci]} selected by c. Note that for any ec generated according
to the above commitment algorithm, the revealed OT randomness determines
the commitment c, and then the FC decommitment d determines G(v).

– Now, a commitment can be simulated by committing to both 0 and 1 in ec,

ẽc = {ot1[i, 0] = OT1(0; r[i, 0]), ot1[i, 1] = OT1(1; r[i, 1])}i .

To decommit ẽc to output G(v), first simulate the FC commitment and decom-
mitment (c̃, d̃) together using G(v), and then reveal the set of randomness
{r[i, c̃i]} selected according to the simulated commitment c̃.

The WS scheme associated with eFC can be constructed similarly as that for FC.
The above idea is conceptually simple, but leads to nested calls of pOT1/OT1,
as a FC commitment c already contains OT first flows. This is not a problem
when using 2-round OT, but does not extend to multi-round OT. In the full
version [7], we present a more involved construction that avoids nested calls.

Malicious Security in the CRS Model. Given 2-round semi-maliciously secure
protocols, in the CRS model, we can let each party prove using NIZK that each
message is generated in a semi-malicious way (i.e., according to the protocol
w.r.t. some input and random tape) as done in [2], which immediately gives
Corollary 1.3 in the introduction. We refer the reader to [2] for more details.
Extension to k Rounds. Our 2-round semi-honest or semi-malicious constructions
so far can be extended to k-round constructions, when replacing the underlying
2-round OT protocols with semi-honest or semi-malicious k-round OT protocols.
See the full version [7] for more details.

k-Round MPC from k-Round OT via Garbled Interactive Circuits 517

2.7 Malicious Security in the Plain Model

From General (k − 1)-Round Delayed-Semi-Malicious MPC: We first
show a new compilation that turns any (k−1)-round MPC protocol for comput-
ing f satisfying a stronger variant of semi-malicious security, called delayed-semi-
malicious security, into a k-round malicious MPC protocol for f , assuming only
one-way functions, for any k ≥ 5. Roughly speaking, a delayed-semi-malicious
party Pj acts like a semi-malicious party, except that, it only “explains” all its
messages once, before the last round (instead of explaining each of its messages
after each round). This is formalized by letting Pj output a pair of input and
random tape before the last round (on its special witness tape) which is required
to be consistent with all Pj ’s messages. We say that a protocol is delayed-semi-
malicious secure if it is secure against such adversaries. (For technical reasons,
we require the protocols to have a universal simulator.) We observe that our k-
round semi-malicious MPC protocols, when instantiated with a k-round delayed-
semi-malicious OT become secure against delayed semi-malicious attackers (and
admit a universal simulator).

To “lift” delayed-semi-malicious security to malicious security generically,
our compilation builds on techniques of [1]. To illustrate the idea, consider com-
piling our 2-round delayed-semi-malicious MPC protocol Φ for f into a 5-round
malicious MPC protocol Π for f . The basic idea is running Φ for computing f ,
and restricting a malicious adversary A to act as a delayed-semi-malicious one A′

by requiring A to prove using zero-knowledge proof of knowledge (ZKPOK) that
its messages in each round of Φ are generated correctly according to some input
and random tape. Unlike the CRS model, ZKPOK in the plain model requires at
least 4 rounds. Sequentializing the two ZKPOK leads to a 8-round protocol. But
if the ZKPOK allows for delayed-input, that is, only the last prover’s message
depends on the statement and witness, then the two ZKPOK can be partially
parallelized, leading to a 5-round protocol. In addition, in order to prevent maul-
ing attacks, the ZKPOK must be non-malleable. Fortunately, Ciampi, Ostrovsky,
Siniscalchi, and Visconti [20] (COSV) recently constructed a 4-round delayed-
input non-malleable ZKPOK protocol from one-way functions, which suffice for
our purpose. When starting from a 4-round (instead of 2-round) protocol Φ, to
obtain a 5-round malicious protocol Π, we cannot afford to prove correctness of
each round. But, if Φ is delayed-semi-malicious secure, then it suffices to prove
correctness only at the last two rounds, keeping the round complexity at 5.

Though the high-level ideas are simple, there are subtleties in the construc-
tion and proof. We cannot use the non-malleable ZKPOK in a black-box. This
is because simulation of non-malleable ZKPOK uses rewindings and may render
the Φ instance running in parallel insecure. In addition, the COSV non-malleable
ZKPOK is only many-many non-malleable in the synchronous setting, but in Π,
the non-malleable ZKPOKs are not completely synchronized (ending either at the
second last or the last round). Therefore, we use the COSV construction in a non-
black-box way in Π (with some simplification) as done in [1]. The specific prop-
erty of COSV non-malleable ZKPOK that we rely on is that simulation requires
only rewinding the second and third rounds, while (witness) extraction requires

518 F. Benhamouda and H. Lin

only rewinding the third and forth rounds. This means Φ would be rewound at
second/third and third/fourth rounds. The security of a generic delayed-semi-
malicious protocol may not hold amid such rewinding. However, if we start
with a 4-round protocol, rewindings can be circumvented if Π contains no mes-
sages of Φ in its third round. This means, in the rewindings of second/third and
third/fourth rounds, the simulator can simply replay messages of Φ in the main
thread, keeping the instance of Φ secure. See the full version [7] for details.

From Our Specific k-Round Delayed-Semi-Malicious MPC: The above
transformation is modular and general, but comes at a price—it only gives k-
round malicious MPC from (k − 1)-round delayed-semi-malicious OT, which is
not necessary. To eliminate the gap, we leverage specific structures of our k-
round delayed-semi-malicious protocols, to address the rewinding issue above.
To illustrate the ideas, lets again examine the k = 5 case.

To handle rewindings at third/fourth rounds, we observe that at the end of
fourth round, each party Pi proves using COSV non-malleable ZK that it has
acted honestly in Φ according to some input and random tape (xi, ri). If in the
malicious protocol Π, each party additionally commits to (xi, ri) in the first
two rounds using a statistically binding commitment scheme (and prove that
its messages are generated honestly using the committed value). Then, as long
as the adversary cannot cheat in the non-malleable ZK proofs, its messages in
the third/fourth rounds of Φ are determined by the commitments in the first
two rounds. Therefore, the simulator can afford to continuously rewinding the
adversary, until it repeats its messages in Φ in the main execution thread. In this
case, the simulator can simply replay the honest parties’ messages in Φ in the
main thread.

To handle rewindings at second/third rounds, the specific property of our
protocol that we rely on is that the first 2 rounds of Φ contains only instances of
OT, whose messages do not depend on parties’ inputs. The latter holds because
of the random self-reducibility of OT (hence, the sender and receiver can only
use their inputs for generating their last messages). To avoid rewinding these
OT instances in Φ, our idea is modifying the malicious protocol Π as follows:
In the first 2 rounds, for every OT instance OTj in Φ, Π runs two independent
OT instances OT0

j and OT1
j . In the third round, an random instance OT

bj

j for

bj ← {0, 1} is chosen to be continued, and the other OT
1−bj

j aborted—they
are referred to as the real and shadow instances. Now in a rewinding of the
second/third round, to avoid rewinding the real OT instances, the simulator
replays the OT messages in the second round, and in the third round, continues
the shadow instances OT

1−bj

j and aborts the real instances OT
bj

j . Importantly,
since for every pair (OT0

j ,OT
1
j), the choice bj of which is real and which is shadow

is random and independent, the view of the adversary in a rewinding is identical
to that in the main execution thread. This guarantees that rewindings would
succeed.

We remark that this idea does not apply in general. This is because to con-
tinue a random instance of a general protocol Φ in the third round, parties may

k-Round MPC from k-Round OT via Garbled Interactive Circuits 519

need to agree on that instance, which requires coin-tossing. In contrast, our pro-
tocol Φ consists of many OT instances OTj , the decision of which of (OT0

j ,OT
1
j)

to continue can be made locally by the party who is supposed to send the third
message of OTj in Φ. In the full version [7], we put the above two ideas together,
which gives k-round malicious OT from k-round delayed-semi-malicious OT.

A figure summarizing the results is provided in the full version [7].

3 Preliminaries

The security parameter is denoted λ. We recall the notion of polynomial-size
circuit classes and families, together with the notion of statistical and computa-
tional indistinguishability in the full version [7].

For the sake of simplicity, we suppose that all circuits in a circuit class have
the same input and output lengths. This can be achieved without loss of gen-
erality using appropriate paddings. We recall that for any S-size circuit class
C = {Cλ}λ∈N

, there exists a universal poly(S)-size circuit family {Uλ}λ∈N
such

that for any λ ∈ N, any circuit C ∈ Cλ with input and output lengths n, l, and
any input x ∈ {0, 1}n, Uλ(C, x) = C(x).

We make use of garbled circuit schemes. A garbled circuit scheme GC for a
poly-size circuit class C = {Cλ}λ∈N

is defined by four polynomial-time algorithms
GC = (GC.Gen,GC.Garble,GC.Eval,GC.Sim): (i) key R← GC.Gen(1λ) generates
input labels key = {key[i, b]}i∈[n],b∈{0,1}; (ii) ̂C R← GC.Garble(key, C) garbles the

circuit C ∈ Cλ into ̂C; (iii) y = GC.Eval(̂C, key′) evaluates the garbled circuit
GC.Garble using input labels key′ = {key′[i]}i∈[n] and returns the output y ∈
{0, 1}l; (iv) (key′, ˜C) R← GC.Sim(1λ, y) simulates input labels key′ = {key′[i]}i∈[n]

and a garbled circuit ˜C corresponding to the output y ∈ {0, 1}l. The formal
definition can be found in the full version [7]. We recall that garbled circuit
schemes can be constructed from one-way functions.

4 Definition of Garbled Interactive Circuit Schemes

In this section, we define Garbled Interactive Circuit (GIC) schemes. An overview
is provided in Sect. 2.2.

4.1 Interactive Circuits

We start by defining non-deterministic oracles and interactive circuits.

Definition 4.1 (Non-Deterministic Oracles). A non-deterministic oracle O
is a circuit that takes as input a pair of bitstrings (q, w) ∈ {0, 1}n × {0, 1}m,
called query and witness respectively, and the output is a l-bit string or a
special element ⊥, called answer : O(q, w) ∈ {0, 1}l ∪ {⊥}. A poly-size non-
deterministic oracle family is an ensemble of poly-size non-deterministic oracles
O = {Oλ}λ∈N .

520 F. Benhamouda and H. Lin

Definition 4.2. Let O be a non-deterministic oracle. An L-round interactive
circuit iC = {iC�}�∈[L] with oracle O consists of a list of L next-step circuits.

Execution of iC with O on Witnesses w̄: An execution of iC with O and
a list of witnesses w̄ = {w̄�}�∈[L] proceeds in L iterations as follows: In round
� ∈ [L], the next-step circuit iC� on input the state st�−1 (output in the previous
round) and answers ā�−1 = {a�−1

k }
k

(to queries q̄�−1 = {q�−1
k }

k
produced in the

previous round), outputs a new state st�, queries q̄� = {q�
k}k, and a (round)

output o�,

(st�, q̄�, o�) =

{

iC�(st�−1, ā�−1) if ∀k, a�−1
k = O(q�−1

k , w�−1
k) 	= ⊥

(⊥,⊥,⊥) otherwise
.

The execution terminates after L rounds, or whenever ⊥ is output. By conven-
tion, st0 and q̄0 are empty strings.

We say that an execution is valid if it terminates after L rounds with-
out outputting ⊥. We call the list of witnesses w̄ the witnesses of the
execution. The output of the execution is the list of round outputs, denoted
as out(iC,O, w̄) = ō = {o�}�∈[L]. The transcript of the execution is the list
of queries, answers, and outputs, denoted as trans(iC,O, w̄) = {q̄�, ā�, o�}�∈[L].
(If the execution outputs ⊥ in round �, q̄�′

= ā�′
= o�′

= ⊥ for all �′ ≥ �.)
Finally, we say that iC has size S if the total size of all circuits are bounded by
S. In the rest of the paper, when the oracle O is clear from the context, we often
omit it in the notations and write out(iC, w̄) and trans(iC, w̄).

4.2 Garbling Interactive Circuits

As mentioned above, an important difference between GIC schemes and classical
garbled circuit schemes is that to evaluate a garbled (plain) circuit, one must
obtain encoded inputs, whereas a garble interactive circuit can be evaluated
with its oracle O on input an arbitrary list of witnesses, without encoding.
This provides a more powerful functionality, but poses an issue on security:
There may exist different lists of witnesses w̄, w̄′ that lead to executions with
completely different transcripts. In this case, it is unclear how simulation can be
done. To circumvent this, we only require the security of the garbling scheme
to hold for distributions iD of interactive circuits iC and witnesses w̄ (with
potentially some auxiliary information aux) that have computationally unique
transcripts trans(iC,O, w̄), in the sense that (given aux) it is hard to find another
list of witnesses w̄′ that leads to an inconsistent transcript trans(iC,O, w̄), where
inconsistency means:

Definition 4.3 (Consistent Transcripts). We say that two transcripts
{q̄�, ā�, o�}�∈[L] and {q̄′�, ā′�, o′�}�∈[L] are consistent if for every � ∈ [L],
(q̄�, ā�, o�) = (q̄′�, ā′�, o′�) or (q̄�, ā�, o�) = (⊥,⊥,⊥) or (q̄′�, ā′�, o′�) = (⊥,⊥,⊥).
Otherwise, we say that the two transcripts are inconsistent.

k-Round MPC from k-Round OT via Garbled Interactive Circuits 521

Note that one can always produce a list of invalid witnesses that lead to an
invalid execution. Therefore, difference due to outputting ⊥ does not count as
inconsistency. Next, we formally define these distributions that produce unique
transcripts.

Definition 4.4 (Unique-Transcript Distribution). Let O = {Oλ}λ∈N
be

a non-deterministic oracle family. Let iD = {iDλ,id}λ∈N,id be an ensemble of
efficiently samplable distributions over tuples (iC, w̄, aux). We say that iD is a
(computationally) unique-transcript distribution for O, if

Valid Execution: For any λ ∈ N, any index id ∈ {0, 1}poly(λ), and any (iC, w̄,
aux) in the support of iDλ,id, the execution of iC with Oλ and w̄ is valid.

Computationally Unique Transcript: For any poly-size circuit family A =
{Aλ}λ, any sequence of indices {idλ}λ, there is a negligible function negl,
such that for any λ:

Pr
[

trans(iC,Oλ, w̄′) and trans(iC,Oλ, w̄) are inconsistent :

(iC, w̄, aux) R← iDλ,idλ
; w̄′ R← Aλ(iC, w̄, aux)

]

≤ negl(λ) .

It is a statistically unique-transcript distribution if the second property holds for
any arbitrary-size circuit family A = {Aλ}λ.

Now, we are ready to define GIC schemes.

Definition 4.5 (Garbled Interactive Circuit Schemes). Let O = {Oλ}λ∈N

be a non-deterministic oracle family, and iD = {iDλ,id}λ∈N,id be a unique-
transcript distribution for O. A garbled interactive circuit scheme for (O, iD) is a
tuple of three polynomial-time algorithms GiC = (GiC.Garble,GiC.Eval,GiC.Sim):

Garbling: ̂iC R← GiC.Garble(1λ, iC) garbles an interactive circuit iC into a gar-
bled interactive circuit ̂iC;

Evaluation: o� = GiC.Eval(̂iC, w̄<�) evaluates a garbled interactive circuit ̂iC
with a partial list of witness w̄<�, and outputs the �-th round output o�;

Simulation: ˜iC R← GiC.Sim(1λ, T) simulates a garbled circuit ˜iC from a tran-
script T of an execution;

satisfying the following properties:

Correctness: For any λ ∈ N, any index id ∈ {0, 1}poly(λ), any (iC, w̄, aux) in
the support of iDλ,id, it holds that

Pr
[

{GiC.Eval(̂iC, w̄<�)}�∈[L] = out(iC,Oλ, w̄) :

̂iC R← GiC.Garble(1λ, iC)
]

= 1 ;

522 F. Benhamouda and H. Lin

Simulatability: The following two distributions are computationally indistin-
guishable:

{

(iC, w̄, aux, ̂iC) :
(iC, w̄, aux) R← iDλ,id;
̂iC R← GiC.Garble(1λ, iC)

}

λ,id

,

{

(iC, w̄, aux, ˜iC) :
(iC, w̄, aux) R← iDλ,id;
˜iC R← GiC.Sim(1λ, trans(iC,Oλ, w̄))

}

λ,id

.

Remark 4.6. In this paper, we always consider perfect correctness for all prim-
itives for the sake of simplicity. We could relax this notion to correctness up to
a negligible error probability if, in addition, we ask that no non-uniform poly-
time adversary can generate inputs and randomness which would not satisfy the
correctness property, with non-negligible probability. In other words, in the case
of GIC schemes, semi-maliciously generated GIC should satisfy the correctness
property (except with negligible probability). This additional property is not
needed for our semi-honest constructions.

5 2-Round Semi-Honest MPC Protocols

In this section, we present our construction of 2-round semi-honest MPC proto-
cols. For that purpose, we first introduce the notion of functional commitment.
We then show the MPC construction.

5.1 New Tool: Functional Commitment

Definition 5.1 ((Zero-Knowledge) Functional Commitment). Let G =
{Gλ}λ∈N

be a poly-size circuit class. A (zero-knowledge) functional commit-
ment scheme FC for G is a tuple of four polynomial-time algorithms FC =
(FC.Com,FC.FOpen,FC.FVer,FC.Sim):

Commitment: c = FC.Com(1λ, v; ρ) generates a commitment c of v ∈ {0, 1}n

using random tape ρ ∈ {0, 1}τ , for the security parameter λ, where the
random tape length τ is polynomial in λ;

Functional Opening: d = FC.FOpen(c,G, v, ρ) derives from the commitment c
and the random tape ρ used to generate it, a functional decommitment d
of c to y = G(v) for G ∈ Gλ;

Functional Verification: b = FC.FVer(c,G, y, d) outputs b = 1 if d is a valid
functional decommitment of c to y for G ∈ Gλ; and outputs b = 0 otherwise;

Simulation: (c, d) R← FC.Sim(1λ, G, y) simulates a commitment c together with
a functional decommitment d of c to y for G ∈ Gλ;

satisfying the following properties:

Correctness: For any security parameter λ ∈ N, for any v ∈ {0, 1}n, for any
circuit G ∈ Gλ, for any ρ ∈ {0, 1}τ , it holds that if c = FC.Com(1λ, v; ρ),
then:

FC.FVer(c,G,G(v),FC.FOpen(c,G, v, ρ)) = 1 ;

k-Round MPC from k-Round OT via Garbled Interactive Circuits 523

Semi-Honest Functional Binding: For any polynomial-time circuit family
A = {Aλ}λ∈N

, there exists a negligible function negl, such that for any
λ ∈ N, for any v ∈ {0, 1}n, for any circuit G ∈ Gλ:

Pr
[

FC.FVer(c,G, y, d) = 1 and y 	= G(v) :

ρ R← {0, 1}τ ; c = FC.Com(1λ, v; ρ); (y, d) R← Aλ(1λ, c, v, ρ)
]

≤ negl(λ) ;

Simulatability: The following two distributions are computationally indistin-
guishable:

{

(c, d) : ρ R← {0, 1}τ ; c R← FC.Com(1λ, v; ρ);
d = FC.FOpen(c,G, v, ρ)

}

λ,G,v

,

{

(c, d) : (c, d) R← FC.Sim(1λ, G,G(v))
}

λ,G,v
.

Note that the simulatability property implies the standard hiding property
of commitments, if each circuit class Gλ contains a constant circuit: Consider
indeed any constant circuit C(x) = α, the fact that (c, d) can be simulated from
C and α implies that c hides the message committed inside.

Let us now define the non-deterministic oracle family associated to FC.

Definition 5.2. Let G = {Gλ}λ∈N
be a poly-size circuit class. Let FC =

(FC.Com,FC.FOpen,FC.FVer,FC.Sim) be a functional commitment scheme for G.
We define the following associated non-deterministic oracle family OFC =
{OFC

λ }λ∈N
:

OFC
λ ((c,G), (y, d)) =

{

y if FC.FVer(c,G, y, d) = 1;
⊥ otherwise.

5.2 Construction of 2-Round Semi-Honest MPC

Tools: Let f be an arbitrary N -party functionality.10 To construct a 2-round
semi-honest MPC protocol ˜Π for f , we rely on the following tools:

– A semi-honestly secure L-round MPC protocol Π = (Next,Output) for f . We
will refer to this protocol the “inner MPC protocol”.
Recall that Next is next message function that computes the message broad-
casted by party Pi in round �, m�

i = Nexti(xi, ri, m̄
<�), on input xi and

random tape ri, after receiving messages m̄<� = {m�′
j }

j∈[N],�′<�
broadcasted

by parties Pj on previous rounds. And Output is the output function that
computes the output of party Pi, yi = Outputi(xi, ri, m̄), after receiving all
the messages m̄ = {m�

j}j∈[N],�∈[L]
. The security parameter λ is an implicit

parameter 1λ of Next and Output.
10 Formal definitions of MPC protocol and N -party functionality are provided in the

full version [7].

524 F. Benhamouda and H. Lin

– A functional commitment scheme FC = (FC.Com,FC.FOpen,FC.FVer,FC.Sim)
for the class of all S-size circuits with a sufficiently large polynomial bound S.
We denote by OFC the associated non-deterministic oracle family defined in
Definition 5.2.

– A GIC scheme GiC = (GiC.Garble,GiC.Eval) for the oracle OFC and the unique-
transcript distribution iD = {iDλ,id}λ∈N,id that we define later.

We will show that using the constructions in Sect. 6 and in the full version [7],
we can construct the two last tools from 2-round (semi-honest) OT. With the
above tools, our 2-round MPC protocol ˜Π = (˜Next, Õutput) for f proceed as
follows:
The First Round: Each party Pi computes its first message m̃1

i = ˜Nexti(xi,
r̃i, ∅), using security parameter λ, input xi, random tape r̃i, and no messages,
as follows.

1. Take a sufficient long substring ri of r̃i as the random tape for running the
inner MPC protocol Π.

2. Commit L times to (xi, ri) using the functional commitment scheme FC: for
� ∈ [L], c�

i = FC.Com(1λ, (xi, ri); ρ�
i), where all the ρ�

i ’s (and ri) are non-
overlapping substrings of r̃i.

3. Broadcast the first message m̃1
i = {c�

i}�∈[L], and keep {ρ�
i}�∈[L] secret.

The Second Round: Each party Pi computes its second message m̃2
i =

˜Nexti(xi, r̃i, {m̃1
j}j∈N

), using all first messages {m̃1
j}j∈N

as follows:

1. Garble the interactive circuit iCi = {iC�
i}�∈[L] defined in Fig. 3:

̂iCi
R← GiC.Garble(1λ, iCi).

2. Broadcast the second message m̃2
i = ̂iCi.

The Output Function: Each party Pi computes its output yi = Õutputi(xi,
r̃i, {m̃1

j , m̃
2
j}j∈[N]

), using all first and second messages {m̃1
j , m̃

2
j}j∈N

as follows.

Proceed in L iterations to evaluate the N garbled circuits {̂iCj}j∈[N] in parallel.
Before iteration � ∈ [L] starts, the following invariant holds:
Invariant: After the first (� − 1) iterations, Pi has obtained for every j ∈ [N]
and every �′ < �:

– the inner MPC message m�′
j generated in the �′-th round by party Pj , and

– the associated functional decommitment d�′
j of c�′

j for the circuit G�′
j (�, �) =

Nextj(�, �, m̄<�′
).

We define w̄<� = {w�′
j }

j,�′<�
= {(m�′

j , d�′
j)}

�′<�
.

In the first round � = 1, all these messages and functional decommitments are
empty. Thus, the invariant holds initially. With the above, Pi does the following
in iteration �: for every j ∈ [N]: (m�

j , d
�
j) = o�

j = GiC.Eval(̂iCj , w̄
<�).

k-Round MPC from k-Round OT via Garbled Interactive Circuits 525

Fig. 3. The interactive circuit iCi

After all L iterations, Pi obtains the set of all messages m̄, and computes
the output by invoking the output function of the inner MPC protocol: yi =
Outputi (xi, ri, m̄).

Unique-Transcript Distribution: We now define the unique-transcript dis-
tribution iD = {iDλ,id}λ∈N,id (for the garbled interactive circuit iCi) as follows:
id = (i, x̄, r̄, m̄) and iDλ,id is
⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

(iCi, w̄, ρ̄ = {ρ�
j}j,�

) :

∀j ∈ [N], ∀� ∈ [L],
ρ�

j
R← {0, 1}|ρ�

j |; c�
j = FC.Com(1λ, (xj , rj); ρ�

j);
G�

j(�, �) = Nextj(�, �, m̄<�);
d�

j = FC.FOpen(c�
j , G

�
j , (xj , rj), ρ�

j);
w̄ = {w�

j = (m�
j , d

�
j)}j,�

; iCi defined in Fig. 3

⎫

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎭

.

The unique-transcript property follows from the semi-honest functional binding
property of FC. See the full version [7] for details.

Security: We have the following theorem proven in the full version [7].

Theorem 5.3. If the inner MPC Π = (Next,Output) is correct and secure
against semi-honest adversaries, if the functional scheme FC is correct, semi-
honest functional binding, and simulatable, if the garbled interactive circuit

526 F. Benhamouda and H. Lin

scheme GiC is correct and simulatable, then the MPC protocol defined above
is correct and secure against semi-honest adversaries.

6 Garbled Interactive Circuit from Witness Selector

In this section, we show how to construct GIC from another tool we call witness
selector, which can be seen as generalization of witness encryption to languages
defined by a non-deterministic oracle family O. Contrary to witness encryption,
each query to O may have multiple answers, as long as at most one can be found
efficiently.

We first define the notion of computationally unique-answer distribution
for O and the notion of witness selector for such a distribution. Then we show
how to construct a garbled interactive circuit scheme for (O, iD) from any wit-
ness selector for a unique-answer distribution for O which is consistent with the
unique-transcript distribution iD.

6.1 Witness Selector

Definition 6.1 (Unique-Answer Distribution). Let O be a non-
deterministic oracle family. Let wD = {wDλ,id}λ∈N,id be an ensemble of efficiently
samplable distributions over tuples (q, w, aux). We say that wD is a (computa-
tionally) unique-answer distribution for O if

Non-⊥ Answer: For any λ ∈ N, any index id ∈ {0, 1}poly(λ), and any (q, w, aux)
in the support of wDλ,id, Oλ(q, w) 	= ⊥.

Computationally Unique Answer: For any poly-size circuit family A =
{Aλ}λ∈N

, for any sequence of indices {idλ}λ, there exists a negligible function
negl, such that for any λ ∈ N:

Pr
[

Oλ(q, w′) 	=⊥ and Oλ(q, w′) 	= Oλ(q, w) :

(q, w, aux) R← wDλ,idλ
; w′ R← Aλ(q, w, aux)

]

≤ negl(λ) .

It is a statistically unique-answer distribution if the second property holds for
any arbitrary-size circuit family A = {Aλ}λ.

Definition 6.2 (Witness Selector). Let O = {Oλ}λ∈N be a non-
deterministic oracle family, and wD = {wDλ,id}λ∈N,id a unique-answer distribu-
tion for O. A witness selector scheme for (O,wD) is a tuple of two polynomial-
time algorithms WS = (WS.Enc,WS.Dec):

Encryption: ct R← WS.Enc(1λ, q,M) encrypts messages M = {M[i, b]}i∈[l],b∈{0,1}
for a query q, into a ciphertext ct, where each message has the same length
|M[i, b]| = poly(λ);

Decryption: M′ = WS.Dec(ct, w) decrypts a ciphertext ct into messages M′ =
{M′[i]}i∈[l] using a witness w;

k-Round MPC from k-Round OT via Garbled Interactive Circuits 527

satisfying the following properties:

Correctness: For any security parameter λ ∈ N, for any index id, for any
(q, w, aux) in the support of wDλ,id, for any messages M = {M[i, b]}i,b, for
a = O(q, w):

Pr
[

WS.Dec(WS.Enc(1λ, q,M), w) = {M[i, ai]}i∈[l]

]

= 1 ;

Semantic Security: The following two distributions are indistinguishable:
{

(q, w, aux,WS.Enc(1λ, q,M)) : (q, w, aux) R← wDλ,id

}

λ,id,M
,

⎧

⎨

⎩

(q, w, aux,WS.Enc(1λ, q,M′)) :
(q, w, aux) R← wDλ,id;
a = Oλ(q, w);
{M′[i, b]}i,b = {M[i, ai]}i,b

⎫

⎬

⎭

λ,id,M

.

6.2 Garbled Interactive Circuit from Witness Selector

Let O = {Oλ}λ∈N
be a poly-size non-deterministic oracle family. Let iD =

{iDλ,id}λ∈N,id be an ensemble of efficiently samplable distributions over tuples
(iC, w̄, aux), where iC is an L-round interactive circuit. We suppose that iD is a
unique-transcript distribution for O. To construct a garbled interactive circuit
scheme GiC = (GiC.Garble,GiC.Eval,GiC.Sim) for (O, iD), we rely on the following
tools:

– A witness selector WS = (WS.Enc,WS.Dec) for (O,wD) where wD =
{wDλ,id} is a unique-answer distribution for O, which is consistent with the
unique-transcript distribution iD (consistency is defined below).

– A garbled circuit scheme GC = (GC.Gen,GC.Garble,GC.Eval,GC.Sim) for the
class of all S-size circuits with a sufficiently large polynomial bound S.

The naive notion of consistence would be: iD is consistent with wD if each
query q�

k and its associated witness w�
k follow the same distribution as wD.

Unfortunately, this is not sufficient as the adversary may learn some auxil-
iary information. Instead, we require that for any � and k, the distribution of
(iC, w̄, aux) R← iDλ,id can be simulated from (q, w, aux) R← wDλ,id′ (for some
index id′ function of id) in such a way that q�

k and w�
k match q and w. A formal

definition is provided in the full version [7].
The construction proceeds as follows:

Garbling: ̂iC R← GiC.Garble(1λ, iC) garbles the interactive circuit iC =
{iC�}�∈[L] into ̂iC as follows: For � from L to 1,
1. Generate input labels key� R← GC.Gen(1λ).
2. Garble the circuit iC.AugNext� defined in Fig. 4:

̂iC.AugNext� R← GC.Garble(key�, iC.AugNext�).
And output ̂iC = { ̂iC.AugNext�}�∈[L].

528 F. Benhamouda and H. Lin

Evaluation: o�′
= GiC.Eval(̂iC, w̄<�′

) evaluates the garbled interactive cir-
cuit ̂iC with the partial list of witnesses w̄<�′

as follows. For � ∈ [�′], we
denote by key′� the set of input labels that we actually use to evaluate

̂iC.AugNext� (i.e., it contains one label per input wire; key′1 and key′L+1

are the empty strings). key′� is composed of two parts key′�[[st�]] and
key′�[[ā�]] = {key′�[[a�

k]]}k corresponding to the input wires for st� and ā�

respectively: key′� = (key′�[[st�]], {key′�[[a�
k]]}k). For � from 1 to �′, the eval-

uator does the following:
1. Evaluate the garbled circuit ̂iC.AugNext�:

(key′�+1[[st�]], q̄�, c̄t�, o�) = GC.Eval(̂iC.AugNext�, key′�).
2. If � < �′, for each k ∈ [|c̄t�|], decrypt ct�k using the witness w�

k:
key′�+1[[a�

k]] = WS.Dec(ct�k, w�
k).

And output o�′
(except if o� = ⊥ for some � ≤ �′).

Simulation: ˜iC R← GiC.Sim(1λ, T) simulates a garbled interactive circuit ˜iC from
a transcript T = {q̄�, ā�, o�}�∈[L] as follows. As for evaluation, for � ∈ [L], we
denote by key′� = (key′�[[st�]], {key′�[[a�

k]]}k) the set of input labels that we
actually use as inputs to ̂iC.AugNext� (i.e., it contains one label per input
wire). For � from L to 1, the simulator does the following:

1. Define key�+1 to be such that key�+1[i, b] = key′�+1[i] for all input wire i
and all bits b ∈ {0, 1}. key′L+1 and keyL+1 are empty.

Fig. 4. The augmented next message function iC.AugNext�

k-Round MPC from k-Round OT via Garbled Interactive Circuits 529

2. Encrypt the labels generated for the round � + 1 corresponding to the
answer ā�, using the witness selector scheme: for each k,
ct�k

R← WS.Enc(1λ, q̄�, key�+1[[a�
k]]). (For � = L, c̄t� and key�+1 are empty.)

3. Simulate the garbling of ̂iC.AugNext�, using its outputs key′�+1[[st�]] =
key�+1[st�] (for � = L, this value is empty), q̄�+1, c̄t�, and o�:

̂iC.AugNext� R← GC.Sim(1λ, (key′�+1[[st�]], q̄�, c̄t�, o�)).

Security: We prove the following security theorem in the full version [7].

Theorem 6.3. If GC is correct and simulatable, if WS is correct and semanti-
cally secure, if wD is unique-answer, and if iD and wD are consistent, then the
garbled interactive circuit scheme GiC defined above is correct and simulatable.

Acknowledgments. The authors thank Yuval Ishai, Antigoni Polychroniadou, and
Stefano Tessaro for helpful discussions.

This work was supported by NSF grants CNS-1528178, CNS-1514526, CNS-1652849
(CAREER), a Hellman Fellowship, the Defense Advanced Research Projects Agency
(DARPA) and Army Research Office (ARO) under Contract No. W911NF-15-C-0236,
and a subcontract No. 2017-002 through Galois. The views expressed are those of the
authors and do not reflect the official policy or position of the Department of Defense,
the National Science Foundation, or the U.S. Government.

References

1. Ananth, P., Choudhuri, A.R., Jain, A.: A new approach to round-optimal secure
multiparty computation. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS,
vol. 10401, pp. 468–499. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-63688-7 16

2. Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V., Wichs, D.:
Multiparty computation with low communication, computation and interaction
via threshold FHE. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 483–501. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-29011-4 29

3. Badrinarayanan, S., Goyal, V., Jain, A., Sahai, A.: Verifiable functional encryption.
In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 557–
587. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-6 19

4. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S., Yang,
K.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.) CRYPTO
2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001). https://doi.org/10.
1007/3-540-44647-8 1

5. Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols
(extended abstract). In: 22nd ACM STOC, pp. 503–513. ACM Press, May 1990

6. Bellare, M., Micali, S.: Non-interactive oblivious transfer and applications. In: Bras-
sard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 547–557. Springer, New York
(1990). https://doi.org/10.1007/0-387-34805-0 48

7. Benhamouda, F., Lin, H.: k-round MPC from k-round OT via garbled interactive
circuits. Cryptology ePrint Archive, Report 2017/1125 (2017). https://eprint.iacr.
org/2017/1125

https://doi.org/10.1007/978-3-319-63688-7_16
https://doi.org/10.1007/978-3-319-63688-7_16
https://doi.org/10.1007/978-3-642-29011-4_29
https://doi.org/10.1007/978-3-642-29011-4_29
https://doi.org/10.1007/978-3-662-53890-6_19
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/0-387-34805-0_48
https://eprint.iacr.org/2017/1125
https://eprint.iacr.org/2017/1125

530 F. Benhamouda and H. Lin

8. Biham, E., Boneh, D., Reingold, O.: Generalized Diffie-Hellman modulo a com-
posite is not weaker than factoring. Cryptology ePrint Archive, Report 1997/014
(1997). http://eprint.iacr.org/1997/014

9. Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing: improvements and exten-
sions. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S.
(eds.) ACM CCS 16, pp. 1292–1303. ACM Press, October 2016

10. Boyle, E., Gilboa, N., Ishai, Y.: Group-based secure computation: optimizing
rounds, communication, and computation. In: Coron, J.-S., Nielsen, J.B. (eds.)
EUROCRYPT 2017. LNCS, vol. 10211, pp. 163–193. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-56614-6 6

11. Boyle, E., Gilboa, N., Ishai, Y., Lin, H., Tessaro, S.: Foundations of homomorphic
secret sharing. In: ITCS (2018, to appear)

12. Brakerski, Z., Halevi, S., Polychroniadou, A.: Four round secure computation with-
out setup. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp. 645–
677. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2 22

13. Brakerski, Z., Lombardi, A., Segev, G., Vaikuntanathan, V.: Anonymous IBE,
leakage resilience and circular security from new assumptions. Cryptology ePrint
Archive, Report 2017/967 (2017). https://eprint.iacr.org/2017/967

14. Brakerski, Z., Perlman, R.: Lattice-based fully dynamic multi-key FHE with short
ciphertexts. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp.
190–213. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-
4 8

15. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society Press, October
2001

16. Canetti, R., Goldwasser, S., Poburinnaya, O.: Adaptively secure two-party com-
putation from indistinguishability obfuscation. In: Dodis, Y., Nielsen, J.B. (eds.)
TCC 2015. LNCS, vol. 9015, pp. 557–585. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-46497-7 22

17. Canetti, R., Lin, H., Pass, R.: Adaptive hardness and composable security in the
plain model from standard assumptions. In: 51st FOCS, pp. 541–550. IEEE Com-
puter Society Press, October 2010

18. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-
party and multi-party secure computation. In: 34th ACM STOC, pp. 494–503.
ACM Press, May 2002

19. Cho, C., Döttling, N., Garg, S., Gupta, D., Miao, P., Polychroniadou, A.: Laconic
oblivious transfer and its applications. In: Katz, J., Shacham, H. (eds.) CRYPTO
2017. LNCS, vol. 10402, pp. 33–65. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-63715-0 2

20. Ciampi, M., Ostrovsky, R., Siniscalchi, L., Visconti, I.: Delayed-input non-
malleable zero knowledge and multi-party coin tossing in four rounds. In: Kalai,
Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp. 711–742. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-70500-2 24

21. Clear, M., McGoldrick, C.: Multi-identity and multi-key leveled FHE from learn-
ing with errors. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol.
9216, pp. 630–656. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-48000-7 31

22. Dachman-Soled, D., Katz, J., Rao, V.: Adaptively secure, universally composable,
multiparty computation in constant rounds. In: Dodis, Y., Nielsen, J.B. (eds.) TCC
2015. LNCS, vol. 9015, pp. 586–613. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-46497-7 23

http://eprint.iacr.org/1997/014
https://doi.org/10.1007/978-3-319-56614-6_6
https://doi.org/10.1007/978-3-319-70500-2_22
https://eprint.iacr.org/2017/967
https://doi.org/10.1007/978-3-662-53018-4_8
https://doi.org/10.1007/978-3-662-53018-4_8
https://doi.org/10.1007/978-3-662-46497-7_22
https://doi.org/10.1007/978-3-662-46497-7_22
https://doi.org/10.1007/978-3-319-63715-0_2
https://doi.org/10.1007/978-3-319-63715-0_2
https://doi.org/10.1007/978-3-319-70500-2_24
https://doi.org/10.1007/978-3-662-48000-7_31
https://doi.org/10.1007/978-3-662-48000-7_31
https://doi.org/10.1007/978-3-662-46497-7_23
https://doi.org/10.1007/978-3-662-46497-7_23

k-Round MPC from k-Round OT via Garbled Interactive Circuits 531

23. Döttling, N., Garg, S.: Identity-based encryption from the Diffie-Hellman assump-
tion. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 537–
569. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7 18

24. Garg, S., Gentry, C., Halevi, S., Raykova, M.: Two-round secure MPC from indis-
tinguishability obfuscation. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp.
74–94. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8 4

25. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: 54th
FOCS, pp. 40–49. IEEE Computer Society Press, October 2013

26. Garg, S., Gentry, C., Sahai, A., Waters, B.: Witness encryption and its applications.
In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th ACM STOC, pp. 467–
476. ACM Press, June 2013

27. Garg, S., Mukherjee, P., Pandey, O., Polychroniadou, A.: The exact round com-
plexity of secure computation. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT
2016. LNCS, vol. 9666, pp. 448–476. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-49896-5 16

28. Garg, S., Polychroniadou, A.: Two-round adaptively secure MPC from indistin-
guishability obfuscation. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS,
vol. 9015, pp. 614–637. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46497-7 24

29. Garg, S., Srinivasan, A.: Garbled protocols and two-round MPC from bilinear
maps. In: 58th FOCS, pp. 588–599. IEEE Computer Society Press (2017)

30. Garg, S., Srinivasan, A.: Two-round multiparty secure computation from minimal
assumptions. Cryptology ePrint Archive, Report 2017/1156 (2017). http://eprint.
iacr.org/2017/1156

31. Gertner, Y., Kannan, S., Malkin, T., Reingold, O., Viswanathan, M.: The rela-
tionship between public key encryption and oblivious transfer. In: 41st FOCS, pp.
325–335. IEEE Computer Society Press, November 2000

32. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: Aho, A. (ed.) 19th ACM
STOC, pp. 218–229. ACM Press, May 1987

33. Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.:
How to run turing machines on encrypted data. In: Canetti, R., Garay, J.A.
(eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 536–553. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40084-1 30

34. Gorbunov, S., Vaikuntanathan, V., Wichs, D.: Leveled fully homomorphic signa-
tures from standard lattices. In: Servedio, R.A., Rubinfeld, R. (eds.) 47th ACM
STOC, pp. 469–477. ACM Press, June 2015

35. Dov Gordon, S., Liu, F.-H., Shi, E.: Constant-round MPC with fairness and guar-
antee of output delivery. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015.
LNCS, vol. 9216, pp. 63–82. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-48000-7 4

36. Halevi, S., Kalai, Y.T.: Smooth projective hashing and two-message oblivious
transfer. J. Cryptology 25(1), 158–193 (2012)

37. Libert, B., Ramanna, S.C., Yung, M.: Functional commitment schemes: from poly-
nomial commitments to pairing-based accumulators from simple assumptions. In:
Chatzigiannakis, I., Mitzenmacher, M., Rabani, Y., Sangiorgi, D. (eds.) ICALP
2016. LIPIcs, vol. 55, pp. 30:1–30:14. Schloss Dagstuhl, July 2016

38. McCurley, K.S.: A key distribution system equivalent to factoring. J. Cryptol. 1(2),
95–105 (1988)

https://doi.org/10.1007/978-3-319-63688-7_18
https://doi.org/10.1007/978-3-642-54242-8_4
https://doi.org/10.1007/978-3-662-49896-5_16
https://doi.org/10.1007/978-3-662-49896-5_16
https://doi.org/10.1007/978-3-662-46497-7_24
https://doi.org/10.1007/978-3-662-46497-7_24
http://eprint.iacr.org/2017/1156
http://eprint.iacr.org/2017/1156
https://doi.org/10.1007/978-3-642-40084-1_30
https://doi.org/10.1007/978-3-662-48000-7_4
https://doi.org/10.1007/978-3-662-48000-7_4

532 F. Benhamouda and H. Lin

39. Mukherjee, P., Wichs, D.: Two round multiparty computation via multi-key FHE.
In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp.
735–763. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-
5 26

40. Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: Kosaraju, S.R. (ed.)
12th SODA, pp. 448–457. ACM-SIAM, January 2001

41. Peikert, C., Shiehian, S.: Multi-key FHE from LWE, revisited. In: Hirt, M., Smith,
A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 217–238. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53644-5 9

42. Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and compos-
able oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp.
554–571. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-
5 31

43. Shmuely, Z.: Composite Diffie-Hellman Public-Key Generating Systems are Hard
to Break. Technical report, Technion (1985). http://www.cs.technion.ac.il/users/
wwwb/cgi-bin/tr-info.cgi/1985/CS/CS0356

44. Yao, A.C.C.: Protocols for secure computations (extended abstract). In: 23rd
FOCS, pp. 160–164. IEEE Computer Society Press, November 1982

45. Yao, A.C.C.: How to generate and exchange secrets (extended abstract). In: 27th
FOCS, pp. 162–167. IEEE Computer Society Press, October 1986

46. Yu, Y., Zhang, J.: Cryptography with auxiliary input and trapdoor from constant-
noise LPN. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp.
214–243. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-
4 9

https://doi.org/10.1007/978-3-662-49896-5_26
https://doi.org/10.1007/978-3-662-49896-5_26
https://doi.org/10.1007/978-3-662-53644-5_9
https://doi.org/10.1007/978-3-540-85174-5_31
https://doi.org/10.1007/978-3-540-85174-5_31
http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-info.cgi/1985/CS/CS0356
http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-info.cgi/1985/CS/CS0356
https://doi.org/10.1007/978-3-662-53018-4_9
https://doi.org/10.1007/978-3-662-53018-4_9

	k-Round Multiparty Computation from k-Round Oblivious Transfer via Garbled Interactive Circuits
	1 Introduction
	1.1 Our Contributions
	1.2 Organization
	1.3 Concurrent Work

	2 Overview
	2.1 Round-Collapsing via Obfuscation
	2.2 Garbled Interactive Circuits
	2.3 Constructing GIC from Witness Selector
	2.4 Round-Collapsing via Garbled Interactive Circuits
	2.5 Functional Commitment with Witness Selector from OT
	2.6 Semi-Malicious and Malicious Security in the CRS Model
	2.7 Malicious Security in the Plain Model

	3 Preliminaries
	4 Definition of Garbled Interactive Circuit Schemes
	4.1 Interactive Circuits
	4.2 Garbling Interactive Circuits

	5 2-Round Semi-Honest MPC Protocols
	5.1 New Tool: Functional Commitment
	5.2 Construction of 2-Round Semi-Honest MPC

	6 Garbled Interactive Circuit from Witness Selector
	6.1 Witness Selector
	6.2 Garbled Interactive Circuit from Witness Selector

	References

