q

Check for
updates

Two-Round Multiparty Secure
Computation from Minimal Assumptions

Sanjam Garg®™) and Akshayaram Srinivasan

University of California, Berkeley, USA
{sanjamg,akshayaram}@berkeley.edu

Abstract. We provide new two-round multiparty secure computation
(MPC) protocols assuming the minimal assumption that two-round
oblivious transfer (OT) exists. If the assumed two-round OT protocol
is secure against semi-honest adversaries (in the plain model) then so
is our two-round MPC protocol. Similarly, if the assumed two-round
OT protocol is secure against malicious adversaries (in the common
random /reference string model) then so is our two-round MPC proto-
col. Previously, two-round MPC protocols were only known under rela-
tively stronger computational assumptions. Finally, we provide several
extensions.

1 Introduction

Can a group of n mutually distrusting parties compute a joint function of their
private inputs without revealing anything more than the output to each other?
This is the classical problem of secure computation in cryptography. Yao [Yao86]
and Goldreich et al. [GMW87] provided protocols for solving this problem in the
two-party (2PC) and the multiparty (MPC) cases, respectively.

A remarkable aspect of the 2PC protocol based on Yao’s garbled circuit con-
struction is its simplicity and the fact that it requires only two-rounds of commu-
nication. Moreover, this protocol can be based just on the minimal assumption
that two-round l-out-of-2 oblivious transfer (OT) exists. Two-round OT can
itself be based on a variety of computational assumptions such as the Deci-
sional Diffie-Hellman Assumption [ATR01,NP01,PVWO08], quadratic residuosity
assumption [HK12,PVWO08] or the learning-with-errors assumption [PVWO0S].

In contrast, much less is known about the assumptions that two-round MPC
can be based on (constant-round MPC protocols based on any OT protocol are
well-known [BMRI0]). In particular, two-round MPC protocols are only known
under assumptions such as indistinguishability obfuscation [GGHR14, GGH+13]

Research supported in part from AFOSR YIP Award, DARPA/ARL SAFEWARE
Award W911NF15C0210, AFOSR Award FA9550-15-1-0274, and research grants by
the Okawa Foundation, Visa Inc., and Center for Long-Term Cybersecurity (CLTC,
UC Berkeley). The views expressed are those of the author and do not reflect the
official policy or position of the funding agencies.

© International Association for Cryptologic Research 2018

J. B. Nielsen and V. Rijmen (Eds.): EUROCRYPT 2018, LNCS 10821, pp. 468-499, 2018.
https://doi.org/10.1007/978-3-319-78375-8_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78375-8_16&domain=pdf

Two-Round Multiparty Secure Computation from Minimal Assumptions 469

(or, witness encryption [GLS15,GGSW13]), LWE [CM15,MW16,BP16,PS16],
or bilinear maps [GS17,BF01,Jou04]. In summary, there is a significant gap
between assumptions known to be sufficient for two-round MPC and the assump-
tions that known to be sufficient for two-round 2PC (or, two-round OT). This
brings us to the following main question:

What are the minimal assumptions under which two-round MPC' can be
constructed?

1.1 Owur Result

In this work, we give two-round MPC protocols assuming only the necessary
assumption that two-round OT exists. In a bit more detail, our main theorem is:

Theorem 1 (Main Theorem). Let X € {semi-honest in plain model, mali-
cious in common random/reference sting model}. Assuming the existence of a
two-round X -OT protocol, there exists a compiler that transforms any polynomial
round, X-MPC protocol into a two-round, X-MPC protocol.

Previously, such compilers [GGHR14,GLS15,GS17] were only known under
comparatively stronger computational assumptions such as indistinguishability
obfuscation [BGI+01, GGH+13], witness encryption [GGSW13], or using bilin-
ear maps [GS17,BF01,Jou04]. Additionally, two-round MPC protocols assum-
ing the learning-with-errors assumptions were known [MW16,PS16,BP16] in the
CRS model satisfying semi-malicious security.! We now discuss instantiations of
the above compiler with known protocols (with larger round complexity) that
yield two-round MPC protocols in various settings under minimal assumptions.

Semi-honest Case. Plugging in the semi-honest secure MPC protocol by Gol-
dreich, Micali, and Wigderson [GMW8T7], we get the following result:

Corollary 1. Assuming the existence of semi-honest, two-round oblivious trans-
fer in the plain model, there exists a semi-honest, two-round multiparty compu-
tation protocol in the plain model.

Previously, two-round plain model semi-honest MPC protocols were only
known assuming indistinguishability obfuscation [BGI+01, GGH+13], or witness
encryption [GGSW13] or bilinear maps [GS17] or from DDH for a constant num-
ber of parties [BGI17]. Thus, using two-round plain model OT [NP01,AIR01,
HK12] based on standard number theoretic assumptions such as DDH or QR,
this work yields the first two-round semi-honest MPC protocol for polynomial
number of parties in the plain model under the same assumptions.

! Semi-malicious security is a strengthening of the semi-honest security wherein the
adversary is allowed to choose its random tape arbitrarily. Ashrov et al. [AJL+12]
showed that any protocol satisfying semi-malicious security could be upgraded to one
with malicious security additionally using Non-Interactive Zero-Knowledge proofs
(NIZKs).

470 S. Garg and A. Srinivasan

Malicious Case. Plugging in the maliciously secure MPC protocol by
Kilian [Kil88] or by Ishai et al. [IPSO08] based on any oblivious transfer, we
get the following corollary:

Corollary 2. Assuming the existence of UC secure, two-round oblivious trans-
fer against static, malicious adversaries, there exists a UC secure, two-round
multiparty computation protocol against static, malicious adversaries.

Previously, all known two-round maliciously secure MPC protocols required
additional use of non-interactive zero-knowledge proofs. As a special case, using
a DDH based two-round OT protocol (e.g., [PVWO08]), this work yields the first
two-round malicious MPC protocol in the common random string model under
the DDH assumption.

Extensions. In addition to the above main results we obtain several extensions
and refer the reader to the main body for details.

Concurrent Work. In a concurrent and independent work, Benhamouda and
Lin [BL18] also construct two-round multiparty computation from two-round
oblivious transfer. Their construction against semi-honest adversaries is proven
under the minimal assumption that two-round, semi-honest oblivious transfer
exists. However, their construction against malicious adversaries additionally
requires the existence of non-interactive zero-knowledge proofs. Additionally, in
the plain model they give a construction of 5-round maliciously secure MPC
from 5-round maliciously secure oblivious transfer.

2 Technical Overview

Towards demonstrating the intuition behind our result, in this section, we show
how to squish the round complexity of a very simple “toy” protocol to two.
Additionally, we sketch how these ideas extend to the general setting and also
work in the malicious case. We postpone the details to later sections.

Background: “Garbled Circuits that talk.” The starting point of this work
is a recent work of Garg and Srinivasan [GS17] that obtains constructions of
two-round MPC from bilinear maps. Building on [GGHR14,GLS15], the key
idea behind [GS17] is a new method for enabling “garbled circuits to talk,”
which the authors call “garbled protocols.” It is natural to imagine how “garbled
circuits that can talk” might be useful for squishing the round complexity of
any protocol. By employing this technique, a party can avoid multiple rounds
of interaction just by sending a garbled circuit that interacts with the other
parties on its behalf. At a technical level, a garbled circuit can “speak” by just
outputting a value. However, the idea of enabling garbled circuits to “listen”
without incurring any additional interaction poses new challenges. A bit more
precisely, “listen” means that a garbled circuit can take as input a bit obtained
via a joint computation on its secret state and the secret states of two or more
other parties.

Two-Round Multiparty Secure Computation from Minimal Assumptions 471

In [GS17], this idea was implemented by constructing a special purpose
witness encryption [GGSW13,BH15,GOVW12,CDG+17,DG17] using specific
algebraic properties of non-interactive zero-knowledge (NIZK) proofs by Gorth,
Ostrovsky and Sahai [GOS06]. The key contribution of this work is a realization
of the intuition of “garbled circuits that talk” using any two-round OT pro-
tocols rather than a specific NIZK proof system. In particular, we avoid using
any specialized algebraic properties of the underlying primitives. At the heart
of our construction is the following novel use of two-round OT protocols: in our
MPC protocol multiple instances of the underlying two-round OT protocol are
executed and the secret receiver’s random coins used in some of these executed
OT instances are revealed to the other parties. As we explain later, this is done
carefully so that the security of the MPC protocol is not jeopardized.

A “toy” protocol for successive ANDs. Stripping away technical details, we
highlight our core new idea in the context of a “toy” example, where a garbled
circuit will need to listen to one bit. Later, we briefly sketch how this core idea
can be used to squish the round complexity of any arbitrary round MPC protocol
to two. Recall that, in one round, each party sends a message depending on its
secret state and the messages received in prior rounds.

Consider three parties P;, P, and P; with inputs «, 3, and v (which are
single bits), respectively. Can we realize a protocol such that the parties learn
fla,B,v) = (a,a A B,a A B A) and nothing more? Can we realize a two-
round protocol for the same task? Here is a very simple three-round information
theoretic protocol @ (in the semi-honest setting) for this task: In the first round,
Py sends its input « to P, and Ps. In the second round, P, computes § = a A 3
and sends it to P; and Ps. Finally, in the third round, Ps computes v A § and
sends it to P, and Ps.

Compiling ¢ into a two-round protocol. The key challenge that we face
is that the third party’s message depends on the second party’s message, and
the second party’s message depends on the first party’s message. We will now
describe our approach to overcome this three-way dependence using two-round
oblivious transfer and thus squish this protocol @ into a two-round protocol.

We assume the following notation for a two-round OT protocol. In the first
round, the receiver with choice bit 5 generates ¢ = OT;(f;w) using w as the
randomness and passes ¢ to the sender. Then in the second round, the sender
responds with its OT response d = OTa(c, sg, s1) where sg and s; are its input
strings. Finally, using the OT response d and its randomness w, the receiver
recovers sg. In our protocol below, we will use a circuit C[y] that has a bit
~ hardwired in it and that on input a bit 0 outputs v A . At a high level in
our protocol, we will have P, and Ps send extra messages in the first and the
second rounds, respectively, so that the third round can be avoided. Here is our
protocol:

— Round 1: P; sends « to P» and Ps. P, prepares ¢g = OT1(0 A B;wp) and
¢1 =O0T1(1 A B;wr) and sends (¢g,c¢1) to Pe and Ps.

472 S. Garg and A. Srinivasan

~ Round 2: P, sends (a A 3,w,) to P, and Ps. Ps garbles C[y] obtaining C
and input labels labg and lab;. It computes d = OT3(cq, labg, lab;) and sends
(C,d) to P, and P;.

— Output Evaluation: Every party recovers labs where § = a A from d using
wq. Next, it evaluates the garbled circuit C using labs which outputs v A § as
desired.

Intuitively, in the protocol above P, sends two first OT messages ¢y and ¢; that
are prepared assuming « is 0 and assuming « is 1, respectively. Note that Pj
does not know « at the beginning of the first round, but P3; does know it at the
end of the first round. Thus, P3 just uses ¢, while discarding c¢;_,, in preparing
its messages for the second round. This achieves the three-way dependency while
only using two-rounds. Furthermore, P,’s second round message reveals the ran-
domness w, enabling all parties (and not just P and P3) to obtain the label labs
which can then be used for evaluation of C. In summary, via this mechanism,
the garbled circuit C was able to “listen” to the bit § that P; did not know when
generating the garbled circuit.

The above description highlights our ideas for squishing round complexity of
an incredibly simple toy protocol where only one bit was being “listened to.”
Moreover, the garbled circuit “speaks” or outputs v A d, which is obtained by all
parties. In the above “toy” example, P3’s garbled circuit computes a gate that
takes only one bit as input. To compute a gate with two bit inputs, P> will need
to send four first OT messages in the first round instead of two.

Squishing arbitrary protocols. Our approach to enable garbled circuits to
“listen to” a larger number of bits with complex dependencies is as follows.
We show that any MPC protocol ¢ between parties P,--- P, can be trans-
formed into one satisfying the following format. First, the parties execute a pre-
processing step; namely, each party P; computes some randomized function of its
input x; obtaining public value z; which is shared with everyone else and private
value v;. z; is roughly an encryption of z; using randomness from v; as a one-time
pad. v; also contains random bits that will be used as one-time pad to encrypt
bits sent later by P;. Second, each party sets its local state st; = (21| ... ||zn) ®v;.
That places us at the beginning of the protocol execution phase. In our trans-
formed protocol @ can be written as a sequence of T' actions. For each ¢ € [T
the t'" action ¢; = (i, f,g, h) involves party P; computing one NAND gate; it
sets st; , = NAND(st; f,st; 4) and sends v; ;, @ st; 5, to all the other parties. Our
transformed protocol is such that for any bit st; 5, the bit v; j, is unique and acts
as the one-time pad to hide it from the other parties. (Some of the bits in v; are
set to 0. These bits do not need to be hidden from other parties.) To complete
this action, each party P; for j # i sets st; j, to be the received bit. After all the
actions are completed, each party P; outputs a function of its local state st;. In
this transformed MPC protocol, in any round only one bit is sent based on just
one gate (i.e., the gate obtained as v; j, ® NAND(st; ¢, st; ;) with inputs st; ; and
st; 4, where v; 5, is hardwired inside it) computation on two bits. Thus, we can
use the above “toy” protocol to achieve this effect.

Two-Round Multiparty Secure Computation from Minimal Assumptions 473

To squish the round complexity of this transformed protocol, in the first
round, we will have each party follow the pre-processing step from above along
with a bunch of carefully crafted first OT messages as in our “toy” protocol. In
the second round, parties will send a garbled circuit that is expected to “speak”
and “listen” to the garbled circuits of the other parties. So when ¢1 = (i, f, g, h)
is executed, we have that the garbled circuit sent by party P; speaks and all the
others listen. Each of these listening garbled circuits uses our “toy” protocol idea
from above. After completion of the first action, all the garbled circuits will have
read the transcript of communication (which is just the one bit communicated in
the first action ¢;). Next, the parties need to execute action ¢2 = (i, f, g, h) and
this is done like the first action, and the process continues. This completes the
main idea of our construction. Building on this idea, we obtain a compiler that
assuming semi-honest two-round OT transforms any semi-honest MPC protocol
into a two-round semi-honest MPC protocol. Furthermore, if the assumed semi-
honest two-round OT protocol is in the plain model then so will be the resulting
MPC protocol.

Compilation in the Malicious Case. The protocol ideas described above
only achieve semi-honest security and additional use of non-interactive zero-
knowledge (NIZK) proofs [BFMS88,FLS90] is required to upgrade security to
malicious [AJL+12,MW16]. This has been the case for all known two-round
MPC protocol constructions. In a bit more detail, by using NIZKs parties can
(without increasing the round complexity) prove in zero-knowledge that they
are following protocol specifications. The use of NIZKs might seem essential to
such protocols. However, we show that this can be avoided. Our main idea is as
follows: instead of proving that the garbled circuits are honestly generated, we
require that the garbled circuits prove to each other that the messages they send
are honestly generated. Since our garbled circuits can “speak” and “listen” over
several rounds without increasing the round complexity of the squished protocol,
therefore we can instead use interactive zero-knowledge proof system and avoid
NIZKs. Building on this idea we obtain two-round MPC protocols secure against
malicious adversaries. We elaborate on this new idea and other issues involved
in subsequent sections.

3 Preliminaries

We recall some standard cryptographic definitions in this section. Let A denote
the security parameter. A function pu(-) : N — R7 is said to be negligible if
for any polynomial poly(-) there exists A such that for all A > Ay we have
p(A) < m. We will use negl(-) to denote an unspecified negligible function
and poly(-) to denote an unspecified polynomial function.

For a probabilistic algorithm A, we denote A(z;7) to be the output of A on
input « with the content of the random tape being r. When r is omitted, A(x)
denotes a distribution. For a finite set S, we denote = < S as the process of
sampling x uniformly from the set S. We will use PPT to denote Probabilistic
Polynomial Time algorithm.

474 S. Garg and A. Srinivasan

3.1 Garbled Circuits

Below we recall the definition of garbling scheme for circuits [Yao86] (see
Applebaum et al. [ATK04, ATKO05], Lindell and Pinkas [LP09] and Bellare et
al. [BHR12] for a detailed proof and further discussion). A garbling scheme for
circuits is a tuple of PPT algorithms (Garble, Eval). Garble is the circuit garbling
procedure and Eval is the corresponding evaluation procedure. More formally:

- ((NZ, {Iblyy b }weinp(c),pefo,1}) «— Garble (1>‘, C): Garble takes as input a security
parameter 1, a circuit C, and outputs a garbled circuit C along with labels
Ibly, » where w € inp(C) (inp(C) is the set of input wires of C') and b € {0, 1}.
Each label Ibl,, ; is assumed to be in {0,1}*.

— y « Eval (6, {Ibly 5, }weinp(c)): Given a garbled circuit Cand a sequence of
input labels {Ibly ., }weinp(c) (referred to as the garbled input), Eval outputs
a string y.

Correctness. For correctness, we require that for any circuit C' and input x €
{0, 1}P()] we have that:

Pr [C(x) — Eval (E, {|b|“,,zw}weinp(c))} -1

where (C, {Ibly s }uweinp(c) bef0.1}) < Garble (11, C).

Security. For security, we require that there exists a PPT simulator Sim such
that for any circuit C' and input = € {0, 1}I""P() we have that

(E, {|b|w,m}weinp(c)) £ Sim (1ICI, 1'1‘,0(95))

where (6, {Ibly b }weinp(cy,peqo,1}) — Garble (1A,C’) and ~ denotes that the two
distributions are computationally indistinguishable.

3.2 Universal Composability Framework

We work in the Universal Composition (UC) framework [Can01] to formalize
and analyze the security of our protocols. (Our protocols can also be analyzed
in the stand-alone setting, using the composability framework of [Can00a], or in
other UC-like frameworks, like that of [PW00].) We refer the reader to [Can00b]

for details.

3.3 Oblivious Transfer

In this paper, we consider a 1-out-of-2 oblivious transfer protocol (OT), similar
to [CCM98,NP01, ATR01,DHRS04, HK12] where one party, the sender, has input
composed of two strings (so, s1) and the input of the second party, the receiver,
is a bit 3. The receiver should learn sz and nothing regarding s;_g while the
sender should gain no information about g.

Two-Round Multiparty Secure Computation from Minimal Assumptions 475

Security of the oblivious transfer (OT) functionality can be described easily
by an ideal functionality Fot as is done in [CLOS02]. However, in our construc-
tions the receiver needs to reveal the randomness (or a part of the randomness)
it uses in an instance of two-round OT to other parties. Therefore, defining
security as an ideal functionality raises issues require care and issues similar to
one involved in defining ideal public-key encryption functionality [Can05, p. 96]
arrise. Thus, in our context, it is much easier to directly work with a two-round
OT protocol. We define the syntax and the security guarantees of a two-round
OT protocol below.

Semi-honest Two-Round Oblivious Transfer. A two-round semi-honest
OT protocol (S, R) is defined by three probabilistic algorithms (0T, 0Ts, 0T3)
as follows. The receiver runs the algorithm OT; which takes the security param-
eter 1%, and the receiver’s input 3 € {0,1} as input and outputs ots; and
w.2 The receiver then sends ots; to the sender, who obtains otsy by evalu-
ating OT3(otsy, (S0,51)), where sg,51 € {0,1}* are the sender’s input mes-
sages. The sender then sends otsy to the receiver who obtains sz by evaluating

OT3 (0’[52, (ﬂ, w))

— Correctness. For every choice bit § € {0,1} of the receiver and input mes-
sages so and s; of the sender we require that, if (ots;,w) « OT(1%,3),
otsg «— OTgz(otsy, (S0, 51)), then OTg(otsg, (B,w)) = sz with overwhelming
probability.

— Receiver’s security. We require that

{ots; : (otsy,w) — OT1(1*,0)} = {ots; : (ots;,w) — OT;(1*,1)} .

— Sender’s security. We require that for any choice of 8 € {0, 1}, overwhelm-
ing choices of w’ and any strings Ko, K1, Lo, L1 € {0,1}* with K3 = Lg, we
have that

{/67(4}/7OT2<1A7OtS]_,K07K1)} é {ﬁ,w/,OT2(1>\,0t51,L07L1)}
where (ots;,w) := OT (1%, B;w’).

Constructions of semi-honest two-round OT are known in the plain model
under assumptions such as DDH [AIR01,NP01] and quadratic residuosity [HK12].

Maliciously Secure Two-Round Oblivious Transfer. We consider the
stronger notion of oblivious transfer in the common random/reference string
model. In terms of syntax, we supplement the syntax of semi-honest oblivious
transfer with an algorithm Kot that takes the security parameter 1* as input
and outputs the common random /reference string o. Also, the three algorithms
OT,,0T; and OTj3 additionally take o as input. Correctness and receiver’s secu-
rity properties in the malicious case are the same as the semi-honest case. How-
ever, we strengthen the sender’s security as described below.

2 We note that w in the output of OT; need not contain all the random coins used by
OT;. This fact will be useful in the stronger equivocal security notion of oblivious
transfer.

476 S. Garg and A. Srinivasan

— Correctness. For every choice bit § € {0,1} of the receiver and input mes-
sages sg and s; of the sender we require that, if ¢ « Kot(1%), (ots;,w) «
OT4 (0, 8), otsy < OTa(o,otsy, (S0, 51)), then OT3(o, otsg, (B,w)) = sg with
overwhelming probability.

— Receiver’s security. We require that

{(c,0ts1) : 0 Kot(1%), (otsy, w) «— OTy (o, 0)}
~ {(o,0ts1) : & « Kot (1), (ots1,w) « OT1(0,1)}

— Sender’s security. We require the existence of PPT algorithm Ext =
(Exty, Exty) such that for any choice of Ky, K1 € {0,1}* and PPT adver-
sary A we have that

'Pr[INDiEAL(l*, Ko, K1) = 1] — PrIND'PEPAL (1 Ky Ky) = 1}‘ < % + negl(\).

Experiment IND&EAL(l)‘, Ky, K1):|Experiment INDE‘DEAL(l)‘, Ky, Kq):
o «— Kot(1?) (0,7) « Exty(1?)
ots; «— A(o) ots; «— A(o)
8= E)(tg(T7 otsl)
Lo := Kg and Ly := Kg
otsy «+— OT; (O’, otsy, (Ko, Kl)) otsy «— OTQ(O’, otsy, (Lo, Ll))
Output A(otsz) Output A(otsg)

Constructions of maliciously secure two-round OT are known in the common
random string model under assumptions such as DDH, quadratic residuosity,
and LWE [PVWO08S].

Equivocal Receiver’s Security. We also consider a strengthened notion of
malicious receiver’s security where we require the existence of a PPT simulator
Simg, such that the for any g € {0,1}:

c

{(a, (ots1,ws)) : (o, ots1, wo,wi) — SimEq(l)‘)} < {(a, OT1(0,8)) : o — KOT(ﬁ)} .

Using standard techniques in the literature (e.g., [CLOS02]) it is possible to
add equivocal receiver’s security to any OT protocol. We refer the reader to the
full-version of our paper [GS18] for details.

4 Conforming Protocols

Our protocol compilers work for protocols satisfying certain syntactic structure.
We refer to protocols satisfying this syntax as conforming protocols. In this sub-
section, we describe this notion and prove that any MPC protocol can be trans-
formed into a conforming protocol while preserving its correctness and security
properties.

Two-Round Multiparty Secure Computation from Minimal Assumptions 477

4.1 Specifications for a Conforming Protocol

Consider an n party deterministic?® MPC protocol @ between parties P, ..., P,
with inputs x1,. .., x,, respectively. For each i € [n], we let z; € {0,1}™ denote
the input of party P;. A conforming protocol @ is defined by functions pre,
post, and computations steps or what we call actions ¢1,---¢r. The protocol
@ proceeds in three stages: the pre-processing stage, the computation stage and
the output stage.

— Pre-processing phase: For each i € [n], party P; computes
(2i,v5) — pre(1*,i, ;)

where pre is a randomized algorithm. The algorithm pre takes as input the
index i of the party, its input 2; and outputs z; € {0,1}*/" and v; € {0,1}*
(where ¢ is a parameter of the protocol). Finally, P; retains v; as the secret
information and broadcasts z; to every other party. We require that v; ;, = 0
for all k € [(\{(i —1)¢/n+1,...,i¢/n}.

— Computation phase: For each i € [n], party P; sets

st; = (21” s ||Zn) D v;.

Next, for each ¢t € {1---T} parties proceed as follows:
1. Parse action ¢; as (i, f, g, h) where i € [n] and f,g,h € [{].
2. Party P; computes one NAND gate as

st; , = NAND(st; f,st; g)

and broadcasts st; », ® v; 5, to every other party.

3. Every party P; for j # ¢ updates st; j, to the bit value received from P;.
We require that for all ¢, ¢’ € [T] such that ¢ # ', we have that if ¢, = (-, -, -, h)
and ¢y = (-,-,-,h') then h # h’. Also, we denote A; C [T] to be the set of
rounds in with party P; sends a bit. Namely, A, ={t € T | ¢+ = (4,-,-,-)} .

— Output phase: For each i € [n], party P; outputs post(st;).

4.2 Transformation for Making a Protocol Conforming

We show that any MPC protocol can made conforming by making only some
syntactic changes. Our transformed protocols retains the correctness or security
properties of the original protocol.

Lemma 1. Any MPC protocol Il can be written as a conforming protocol ®
while inheriting the correctness and the security of the original protocol.

3 Randomized protocols can be handled by including the randomness used by a party
as part of its input.

478 S. Garg and A. Srinivasan

Proof. Let IT be any given MPC protocol. Without loss of generality we assume
that in each round of II, one party broadcasts one bit that is obtained by
computing a circuit on its initial state and the messages it has received so far
from other parties. Note that this restriction can be easily enforced by increasing
the round complexity of the protocol to the communication complexity of the
protocol. Let the round complexity (and also communication complexity) of IT
be p. In every round r € [p] of II, a single bit is sent by one of the parties by
computing a circuit. Let the circuit computed in round r be C,.. Without loss of
generality we assume that (i) these exists ¢ such that for each r € [p], we have
that ¢ = |Cy|, (ii) each C, is composed of just NAND gates with fan-in two, and
(iii) each party sends an equal number of bits in the execution of IT. All three
of these conditions can be met by adding dummy gates and dummy round of
interaction.

We are now ready to describe our transformed conforming protocol . The
protocol @ will have T' = pq rounds. We let £ = mn + pg and ¢ = pg/n and
depending on ¢ the compiled protocol @ is as follows.

— pre(i,x;): Sample 7; « {0,1}™ and s; «— ({0,1}971|0)?/™. (Observe that s;

is a pg/n bit random string such that its ¢*, 2¢*" - - - locations are set to 0.)
Output z; := z; ® r4[|0¢ and v; := 0" ... ||rs||si| ... []0%/™.
— We are now ready to describe the actions ¢1, - - - ¢7. For each r € [p], round

r in IT party is expanded into ¢ actions in ¢ — namely, actions {¢;}; where
je€{(r—=1)g+1---rq}. Let P; be the party that computes the circuit C, and
broadcast the output bit broadcast in round r of II. We now describe the ¢;
for j € {(r —1)g+1---rq}. For each j, we set ¢; = (i, f, g, h) where f and
g are the locations in st; that the j'* gate of C,. is computed on (recall that
initially st; is set to z; ® v;). Moreover, we set h to be the first location in st;
among the locations (i — 1)¢/n +m+ 1 to i¢/n that has previously not been
assigned to an action. (Note that this is ¢/ locations which is exactly equal to
the number of bits computed and broadcast by P;.)
Recall from before than on the execution of ¢;, party P; sets st;; :=

NAND(st; ,st; 4) and broadcasts st; , & v; 5, to all parties.

— post(i,st;): Gather the local state of P; and the messages sent by the other
parties in IT from st; and output the output of IT.

Now we need to argue that ¢ preserves the correctness and security properties
of IT. Observe that @ is essentially the same as the protocol IT except that in @
some additional bits are sent. Specifically, in addition to the messages that were
sent in I7, in @ parties send z; in the preprocessing step and ¢ — 1 additional
bits per every bit sent in II. Note that these additional bits sent are not used
in the computation of @. Thus these bits do not affect the functionality of IT if
dropped. This ensures that ¢ inherits the correctness properties of IT. Next note
that each of these bits is masked by a uniform independent bit. This ensures
that @ achieves the same security properties as the underlying properties of I7.

Two-Round Multiparty Secure Computation from Minimal Assumptions 479

Finally, note that by construction for all ¢,¢' € [T'] such that ¢ # ¢/, we have
that if ¢ = (+,-,-,h) and ¢y = (-,-,-, h’) then h # h' as required.

5 Two-Round MPC: Semi-honest Case

In this section, we give our construction of two-round multiparty computation
protocol in the semi-honest case with security against static corruptions based
on any two-round semi-honest oblivious transfer protocol in the plain model.
This is achieved by designing a compiler that takes any conforming arbitrary
(polynomial) round MPC protocol ¢ and squishes it to two rounds.

5.1 Owur Compiler

We give our construction of two-round MPC in Fig. 1 and the circuit that needs
to be garbled (repeatedly) is shown in Fig.2. We start by providing intuition
behind this construction.

Overview. In the first round of our compiled protocol, each party runs the
preprocessing phase of the protocol ¢ and obtains z; and v; and broadcasts z; to
every other party. In the second round, each party sends a set of garbled circuits
that “non-interactively” implement the entire computation phase of the protocol
@. In other words, any party with the set of garbled circuits sent by every other
party, can use them to compute the entire transcript of the computation phase
of the protocol @. This allows each party to obtain the output of the protocol
. In the following paragraphs, we give more details on how this is achieved.

To understand the main idea, let us concentrate on a particular round (let us
say the t'* round) of the computation phase of the conforming protocol @ and see
how this step is implemented using garbled circuits. Recall that before starting
the computation phase, each party locally computes st; := (21| . .. ||zn) ®v; using
the first round messages sent by the other parties. This local state is updated
(recall that only one bit location is updated) at the end of each round based on
the bit that is sent in that round. We start with some notations.

Notations. Let us say that the party P;- is the designated party in round ¢.
Let st! be the updated local state of party P; at the beginning of the #** round
of the computation phase. In the ¢ round, the designated party P;- computes
v := NAND(st}. ,st}. /), writes this bit to position % of st. and broadcasts
v @ vi= p, to every other party. Every other party P; (where i # ¢*) updates its
local state by writing the received bit at position & in its state st!.

Implementing the Computation Phase. The t** round of the computation
phase is implemented by the ' garbled circuit in each of these sequences. In a
bit more details, the garbled circuit of party P; takes as input st! which is the
state of the party P; at the beginning of the t-th round and outputs or, aids the

480 S. Garg and A. Srinivasan

process of outputting the labels corresponding to the updated local state at the
end of the ' round. These labels are then used to evaluate the garbled circuit
corresponding to the (t + 1) round of the computation phase and this process
continues. Finally, at the end each party can just compute output function on
the final local state to obtain its output. Next, we describe how the t** garbled
circuits in each of the n sequences can be used to complete the ¢** action of the
computation phase.

The t*" garbled circuit of party P;« is executed first and is the most natural
one as in this round party P;- is the one that sends a bit to the other parties.
Starting with the easy part, this garbled circuit takes as input st’., updates the
local state by writing the bit v in the position h of st!. and outputs the labels
corresponding to its updated state. However, the main challenge is that this
garbled circuit needs to communicate the bit v @ v;« ; to other garbled circuits
of the other parties. Specifically, those garbled circuits also need to output the
correct labels corresponding to the their updated local state. Note that only the
ht" Dbit of each of their local state needs to be updated. This was achieved in
[GS17] by using specific properties of Groth, Ostrovsky and Sahai proofs and in
this work, we only rely on oblivious transfer. This is our key new idea and we
provide the details next.

Relying on Oblivious Transfer. In addition to broadcasting the encoded
input z; in the first round, the party P; sends a set of 4 OT messages (acting as
the receiver) for every round in the computation phase where P; is the designated
party. Thus, if the number of rounds in the computation phase where P; is
the designated party is a;, then the party P; sends 4a; receiver OT messages.
Specifically, in our running example from above P« will generate 4 first OT
messages to help in t* round of @. In particular, for each value of a, 3 € {0, 1},
P« generates the first OT message with v;« j, & NAND(vi+ 5 @ o, v+ o & 5) as
its choice bit. Every other party P; for ¢ # i* acts as the sender and prepares
four OT responses corresponding to each of the four OT messages using labels
corresponding to the h-th input wire (say (Iabel};fgrl, IabeIZ’ffl)) of its next (i.e.,
(t+1)*h) garbled circuit. However, these values aren’t sent to anyone yet! Because
sending them all to P;« would lead to complete loss of security. Specifically, for
every choice of v f, V4= g, v~ there exists different choices of «, 3 such that
Vi, & NAND(v;- ¢ @ o, v+ g @ §) is 0 and 1, respectively. Thus, if all these
OT responses were reveled to Pj- then Pj« would learn both the input labels
Iabelz”t[;rl7 la beIZ? ! potentially breaking the security of garbled circuits. Our key
idea here is that party P; hardcodes these OT responses in its t** garbled circuit
and only one of them is revealed to P;«. We now elaborate this.

The ¢-th garbled circuit of party P; (where ¢ # i*) outputs the set of labels
corresponding to the state bits {Stf,k}kem\{h} (as these bits do not change at
the end of the ¢-th round) and additionally outputs the sender OT response for
o= stﬁ’f and [= st;g with the messages being set to the labels corresponding

Two-Round Multiparty Secure Computation from Minimal Assumptions 481

to h-th bit of st!. It follows from the invariant of the protocol, that the choice
bit in this OT; message is indeed v @ v;« j, which is exactly the bit P« wants to
communicate to the other parties. However, this leaves us with another problem.
The OT responses only allow P;« to learn the labels of the next garbled circuits
and it is unclear how a party j # ¢* obtains the labels of the garbled circuits
generated by P;.

Enabling all Parties to Compute. The party P;.’s t*" garbled circuit, in
addition to outputting the labels corresponding to the updated state of Pj,
outputs the randomness it used to prepare the first OT message for which all P,
for i # i* output OT responses; namely, a = stf. ; © v f, § = sth @ vi= 5. It
again follows from the invariant of the protocol @ that this allows every party
P; with j # i* to evaluate the recover Iabelije;vi* , Which is indeed the label
corresponding to the correct updated state. Thus, ﬁsing the randomness output
by the garbled circuit of P;« all other parties can recover the label la belz’tje;vi* N

We stress that this process of revealing the randomness of the OT leads to
complete loss of security for the particular instance OT. Nevertheless, since the
randomness of only one of the four OT messages of P;« is reveled, overall security
is ensured. In particular, our construction ensures that the learned choice bit is
v @ v+ p, which is in fact the message that is broadcasted in the underlying
protocol @. Thus, it follows from the security of the protocol @ that learning
this message does not cause any vulnerabilities.

Theorem 2. Let @ be a polynomial round, n-party semi-honest MPC proto-
col computing a function f : ({0,1}™)" — {0,1}*, (Garble, Eval) be a garbling
scheme for circuits, and (OT1,0T2,0T3) be a semi-honest two-round OT pro-
tocol. The protocol described in Fig. 1 is a two-round, n-party semi-honest MPC
protocol computing f against static corruptions.

This theorem is proved in the rest of this section.

5.2 Correctness

In order to prove correctness, it is sufficient to show that the label com-
puted in Step 2(d)(ii) of the evaluation procedure corresponds to the bit
NAND(st;« ¢, st o) ®v;= . Notice that by the assumption on the structure of v;-
(recall that v;« is such that v;« , = 0 for all k € [(]\ {(i* —1)¢/n+1,...,i"¢/n})
we deduce that for every ¢ # i*, st;y = sty @ v+ ¢ and st g = sti= g @
v+ g. Thus, the label obtained by OTy corresponds to the bit NAND(v;+ ¢ &
Stix £ @ Vi= f,Vix g D Sti= g B V= g) D V=, = NAND(st;« f,sti«) ® v;+ , and cor-
——— SN————

a B
rectness follows.

482 S. Garg and A. Srinivasan

Let @ be an n-party conforming semi-honest MPC protocol, (Garble, Eval) be a
garbling scheme for circuits and (OT1,0T2,0T3) be a semi-honest two-round
oblivious transfer protocol.

Round-1: Each party P; does the following:
1. Compute (z;,v;) — pre(1*,4, z;).
2. For each t such that ¢, = (i, f, g, h) (A; is the set of such values of t), for
each a, 8 € {0,1}

otsi,t,a,8 < OT1(1A,vi,h @ NAND (vs, 5 @ @, vi,g @ B);Wt,0,8)-

3. Send (zi, {ots1,1,a,8}tca,,0,8¢(0,1}) tO every other party.
Round-2: In the second round, each party P; does the following:
1. Set st; := (Z1H L. sz;lHZiHZiJrlH .. Hzn) D v;.
2. Set lab”’ Tt = {Iabz’gﬂ,labz’fﬂ}kem where for each k € [{] and b €
{0,1} laby 7t = 0™,
3. for each t from T down to 1,

(a) Parse ¢¢ as (i*, f,g,h).
(b) If i = ¢* then compute (where P is described in Figure 2)

(P"*,lab"") « Garble(1*, P[i, é1, vi, {wr.a5}a5, L,Tab" 1)
(c) If i # i* then for every o, € {0,1}, set otsh, . <«
OT2(ots1,t,a,8, IabZ,tg'l, Iab;;ff'l) and compute

('|5“,E"’t) — Garble(lA, Pli, pe, vi, L, {otsé,t’aﬁ}a,g,Ei’t+1]).
4. Send ({ﬁi’t}tem,{Iabi”lsti,k}ke[e]) to every other party.
Evaluation: To compute the output of the protocol, each party P; does the
following;:
—~ 1 .
1. For each j € [n], let lab” = {lab' }re be the labels received from
party P; at the end of round 2.
2. for each t from 1 to T do:
(a) Parse ¢ as (i*, f,g,h).
(b) Compute ((«, 3,7),w, lab
(c) Set stipn =@ vin.
(d) for each j # 4" do: _
i. Compute (OtSQ, {|abi’t+1}k€[z]\{h}) = Eval(ﬁj’t, El/)]i).
ii. Recover lab)"™" := OT;3(otsz, w).
—~ G t41 .
iii. Set lab”" = {labl" }reqq.
3. Compute the output as post(z, st;).

Hl) := Eval(P"" !, lab' yt).

Fig. 1. Two-round semi-honest MPC

Two-Round Multiparty Secure Computation from Minimal Assumptions 483

Input. st;.

Hardcoded. The index ¢ of the party, the action ¢ = (i, f,g,h), the se-
cret value v;, the strings {wi,a,6}a,8, {OtS2.t,a,6}a,5 and a set of labels lab =
{Iabk,o,labk,l}ke[@].

1. if i = 4" then:
(a) Compute st; , := NAND(st; ¢, Sts,g), o :=sts,f D vs 5, B := sts,g D v; 4 and
vy = sti,n D vih.
(b) Output ((a, 8,7), Wt,a,8, {1abk,st; freia)-
2. else:
(a) Output (OtSQataSti,fwsti,g’ {Iabkqsti,k}kﬂl’]\{h})'

Fig. 2. The program P.

Via the same argument as above it is useful to keep in mind that for every
i,j € [n] and k € [{], we have that st;; & v;p = stjr ® v;,. Let us denote
this shared value by st*. Also, we denote the transcript of the interaction in the
computation phase by Z € {0, 1}!.

5.3 Simulator

Let A be a semi-honest adversary corrupting a subset of parties and let H C [n]
be the set of honest/uncorrupted parties. Since we assume that the adversary
is static, this set is fixed before the execution of the protocol. Below we provide
the simulator.

Description of the Simulator. We give the description of the ideal world
adversary S that simulates the view of the real world adversary A. S will inter-
nally use the semi-honest simulator Simg for ¢ and the simulator Simg for gar-
bling scheme for circuits. Recall that A is static and hence the set of honest
parties H is known before the execution of the protocol.

Simulating the interaction with Z. For every input value for the set of
corrupted parties that S receives from Z, S writes that value to A’s input tape.
Similarly, the output of A is written as the output on S’s output tape.

Simulating the interaction with A: For every concurrent interaction with
the session identifier sid that A may start, the simulator does the following:

— Initialization: S uses the inputs of the corrupted parties {x;};¢m and out-
put y of the functionality f to generate a simulated view of the adversary.*

4 For simplicity of exposition, we only consider the case where every party gets the
same output. The proof in the more general case where parties get different outputs
follows analogously.

484 S. Garg and A. Srinivasan

More formally, for each i € [n]\H S sends (input, sid, {P; - - - P, }, P;, x;) to the
ideal functionality implementing f and obtains the output y. Next, it executes
Simg (17, {z:}igm,y) to obtain {z},cm, the random tapes for the corrupted
parties, the transcript of the computation phase denoted by Z € {0, 1} where
Z; is the bit sent in the #*"* round of the computation phase of @, and the
value st* (which for each ¢ € [n] and k € [¢] is equal to st; Bv; k). S starts the
real-world adversary A with the inputs {z; };cg and random tape generated
by Sim¢>.

— Round-1 messages from S to A: Next S generates the OT messages
on behalf of honest parties as follows. For each ¢ € H,t € A;,a,0 €
{0,1}, generate otsy ¢ a5 «— OT1(1*,Z;;wi 0 5). For each i € H, S sends
(2i, {otS1,t,0,6 }teA;s,a,8€{0,1}) to the adversary A on behalf of the honest
party P;.

— Round-1 messages from A to S: Corresponding to every i € [n] \ H,
S receives from the adversary A the value (z;, {ots1,¢,a,5}tca; a,8¢{0,1}) O
behalf of the corrupted party P;.

— Round-2 messages from S to A: For each i € H, the simulator S generates
the second round message on behalf of party P; as follows:

1. For each k € [(] set labl" ! := 0™,

2. for each t from T down to 1,
(a) Parse ¢y as (i*, f, g, h).
(b) Set a* :=st}, §* :=st;, and 7" :=st}.
(c¢) If ¢ = ¢* then compute

(P"*, {laby" }ieg) < Simg (1A, ((Of*,ﬁ*77*)7wt,a*,ﬁ*7{Iabzwrl}ke[é]))-

(d) Tf i # i* then set otsh, ,. 5. — OTa(otsy ¢.a g+, laby T, labl ™) and
compute

(ﬁi’t, {|ab;€’t}k€m) «— SimG (1>\, (Ots;t’a*ﬁ*,{|abf€’t+1}k€[g]\{h})).

3. Send ({ﬁi’t}te[T},{Iabi’l}kem) to every other party.

— Round-2 messages from A to S: For every ¢ € [n] \ H, S obtains
the second round message from A on behalf of the malicious parties.
Subsequent to obtaining these messages, for each i € H, S sends
(generateOutput, sid, {P; - - - P,,}, P;) to the ideal functionality.

5.4 Proof of Indistinguishability

We now show that no environment Z can distinguish whether it is interacting
with a real world adversary A or an ideal world adversary S. We prove this via
an hybrid argument with 7'+ 1 hybrids.

— HRear: This hybrid is the same as the real world execution. Note that this
hybrid is the same as hybrid H; below with ¢ = 0.

Two-Round Multiparty Secure Computation from Minimal Assumptions 485

— H; (where t € {0,...T}): Hybrid H; (for t € {1---T}) is the same as hybrid
H;—1 except we change the distribution of the OT messages (both from the
first and the second round of the protocol) and the garbled circuits (from
the second round) that play a role in the execution of the ¢** round of the
protocol @; namely, the action ¢; = (i*, f, g, h). We describe the changes more
formally below.

We start by executing the protocol @ on the inputs and the random coins
of the honest and the corrupted parties. This yields a transcript Z € {0,1}7
of the computation phase. Since the adversary is assumed to be semi-honest
the execution of the protocol @ with A4 will be consistent with Z. Let st*
be the local state of the end of execution of Faithful. Finally, let o™ := st},
p* = sty and 7" := st;. In hybrid H; we make the following changes with
respect to hybrid H;_1:

e Ifi* ¢ H then skip these changes. S makes two changes in how it generates
messages on behalf of P;-. First, for all o, 8 € {0,1}, S generates ots; ¢ o3
as OTl(lA,Zt;wt?aﬁ) (note that only one of these four values is subse-
quently used) rather than OT; (1%, v; 5, @ NAND(v; 5 ® o, v, ® 3); Wt,0,8)-
Second, it generates the garbled circuit

(ﬁi*vta {labz*yt}ké[l]) — SlmG (1)\5 ((a*76*77) Wt,a*,B%, {labk WSty ke }ke[é))

where {Iabk tin

bled circuit P¥ 1,
e S makes the following two changes in how it generates messages for
other honest parties P; (ie., ¢ € H \ {i*}). S does not gener-

ate four Otsé,t,a,g values but just one of them; namely, S generates

Otsh, o g- as OTa(otsitax pe, Iab;ltztl7 lab” t+1) rather than

OTs(ots1 ¢, .3+, la bl t“ ,la bl tH) Second it generates the garbled circuit

(P, {laby"} repe) < Simg (1A7 <0t5§,t,a*,ﬁ*v{|3b2’;§k}ke[e]\{h}))7

where { Iab,c ot k} ke[are the honestly generated input labels for the gar-

bled circuit P+,
Indistinguishability between H;_; and H; is proved in Lemma 2.

— Hry1: In this hybrid we just change how the transcript Z, {z;}icn, random
coins of malicious parties and value st* are generated. Instead of generat-
ing these using honest party inputs we generate these values by executing
the simulator Simg on input {xi}ie[n]\ y and the output y obtained from the
ideal functionality.

The indistinguishability between hybrids Hy and Hrp41 follows directly
from the semi-honest security of the protocol @. Finally note that Hp, 1 is same
as the ideal execution (i.e., the simulator described in the previous subsection).

}ke[g are the honestly generates input labels for the gar-

Lemma 2. Assuming semi-honest security of the two-round OT protocol and
the security of the garbling scheme, for allt € {1...T} hybrids Hi—1 and H;
are computationally indistinguishable.

486 S. Garg and A. Srinivasan

Proof. Using the same notation as before, let ¢, = (i*, f, g, h), st;= be the state
of P« at the end of round ¢, and o™ := stj« y @ v+ ¢, §% := stj= g ® v4= 4 and
v* 1= stj« j, ®V;+ 1. The indistinguishability between hybrids H;_; and H; follows
by a sequence of three sub-hybrids H; 1, He 2, and Hy 3.

— Hy,1: Hybrid H; ; is same as hybrid H;_; except that S now generates the
garbled circuits Pit for each i € H in a simulated manner (rather than
generating them honestly). Specifically, instead of generating each garbled
circuit and input labels (ﬁi’t, {Iab;t}ke[g]) honestly, they are generated via
the simulator by hard coding the output of the circuit itself. In a bit more
details, parse ¢ as (i*, f, g, h).

o If i =i* then

(P, {laby" bretn) Sima (17, (@, 8°,7"),wr,a0 -, {126, Fep))

where {Iabzts'fl }refg are the honestly generates input labels for the gar-

bled circuit Pit+1.
o If i # i* then

(P, {lab} }reps) < Sime (1A, <0t53,t,a*,5*7{|3b2’fsﬁk}ke[q\{h})),

where {Iabk’t:trl }re[q are the honestly generated input labels for the gar-

bled circuit PHt+1.

The indistinguishability between hybrids H; 1 and H;_; follows by |H| invo-
cations of security of the garbling scheme.

— Hy.2: Skip this hybrid, if ¢* ¢ H. This hybrid is same as H; 1 except that we
change how S generates the Round-1 message on behalf of P;-. Specifically,
the simulator S generates ots; ; g as is done in the H;. In a bit more detail,
for all o, B € {0,1}, S generates otsy ;4,5 as OT1(1*,Z;;wy o 5) rather than
O-|—1(1>‘7 Vih D NAND(ULf D o, v D ﬁ), wt’ayg).

Indistinguishability between hybrids H;; and H o follows directly by a
sequence of 3 sub-hybrids each one relying on the receiver’s security of under-
lying semi-honest oblivious transfer protocol. Observe here that the security
reduction crucially relies on the fact that P“* only contains w; 4+ = (i.e., does
not have wy o 5 for o # a* or § # %).

— 'He,3: Skip this hybrid if there does not exist ¢ # ¢* such that ¢ € H. In
this hybrid, we change how S generates the ots , , 5 on behalf of every hon-
est party P; such that i € H \ {i*} for all choices of o, 8 € {0, 1}. More
specifically, S only generates one of these four values; namely, otsy, . s.

which is now generated as OTa(otsy ¢ o« g+, Iabl t+1 ,lab® t+1) instead of
OTa(otsy t,ax 5+, labyg " laby).
Indlstmgulshablhty between hybrids H; o and H; 3 follows directly from

the sender’s security of underlying semi-honest oblivious transfer protocol.
Finally, observe that H; s is the same as hybrid H;.

Two-Round Multiparty Secure Computation from Minimal Assumptions 487

5.5 Extensions

The protocol presented above is very general and can be extended in different
ways to obtain several other additional properties. We list some of the simple
extensions below.

Multi-round OT. We note that plugging in any multi-round (say, r-round) OT
scheme with semi-honest security we obtain an r-round MPC for semi-honest
adversaries. More specifically, this can be achieved as follows. We run the first
r — 2 rounds of the protocol as a pre-processing phase with the receiver’s choice
bits set as in the protocol and the sender’s message being randomly chosen labels.
We then run the first round of our MPC protocol with the (r —1)** round of OT
from the receiver and run the second round using the last round message from
the sender hardwired inside the garbled circuits. The proof of security follows
identically to proof given above for a two-round OT. A direct corollary of this
construction is a construction of three round MPC for semi-honest adversaries
from enhanced trapdoor permutations.

Two-Round MPC for RAM programs. In the previous section, we described
how protocol compilation can be done for the case of conforming MPC protocols
for circuits. Specifically, the protocol communication depends on the lengths of
the secret state of the parties. We note that we can extend this framework for
securely evaluating RAM programs [0S97, GKK+12,GGMP16,HY16] in two-
rounds. In this setting, each party has a huge database as its private input and
the parties wishes to compute a RAM program on their private databases. We
consider the persistent memory setting [LO13, GHL+14, GLOS15, GLO15] where
several programs are evaluated on the same databases. We allow an (expensive)
pre-processing phase where the parties communicate to get a shared garbled
database and the programs must be evaluated with communication and compu-
tation costs that grow with the running time of the programs. In our construction
of two-round MPC for RAM programs, the pre-processing phase involves the par-
ties executing a two-round MPC to obtain garbled databases of all the parties
using a garbled RAM scheme (say, [GLOS15]) along with the shared secret state.
Next, when a program needs to be executed, then the parties execute our two-
round MPC to obtain a garbled program. Finally, the obtained garbled program
can be executed with the garbled database to obtain the output.

Reducing the Communication Complexity. Finally, we note that in
our two-round protocol each party can reduce the communication complexity
[Gen09,BGI16,CDGH17] of either one of its two messages (with size depen-
dent just on the security parameter) using Laconic Oblivious Transfer (OT)
[CDG+17]. Roughly, laconic OT allows one party to commit to a large message
by a short hash string (depending just on the security parameter) such that the
knowledge of the laconic hash suffices for generating a garbled circuit that can
be executed on the large committed string as input. Next, we give simple trans-
formations using which the first party in any two-round MPC protocol can make
either its first message or its second message short, respectively. The general case
can also be handled in a similar manner.

488 S. Garg and A. Srinivasan

We start by providing a transformation by which the first party can make its
first message short. The idea is that in the transformed protocol the first party
now only sends a laconic hash of the first message of the underlying protocol,
which is disclosed in the second round message of the transformed protocol. The
first round of messages of all other parties in the transformed protocol remains
unchanged. However, their second round messages are now obtained by sending
garbled circuits that generate the second round message of the original protocol
using the first round message of the first party as input. This can be done using
laconic OT.

Using a similar transformation the first party can make its second message
short. Specifically, in this case, the first party appends its first round message
with a garbled circuit that generated its second round message given as input
the laconic OT hash for the first round messages of all the other parties. Now in
the second round, the first party only needs to disclose the labels for the garbled
circuit corresponding to laconic OT hash of the first round messages of all the
other parties. The messages of all the other parties remain unchanged.

6 Two-Round MPC: Malicious Case

In this section, we give our construction of two-round multiparty computation
protocol in the malicious case with security against static corruptions based
on any two-round malicious oblivious transfer protocol (with equivocal receiver
security which as argued earlier can be added with need for any additional
assumptions) This is achieved by designing a compiler that takes any conforming
arbitrary (polynomial) round MPC protocol @ and squishes it to two rounds.

6.1 Our Compiler

We give our construction of two-round MPC in Fig. 3 and the circuit that needs
to be garbled (repeatedly) is shown in Fig.2 (same as the semi-honest case). We
start by providing intuition behind this construction. Our compiler is essentially
the same as the semi-honest case. In addition to the minor syntactic changes,
the main difference is that we compile malicious secure conforming protocols
instead of semi-honest ones.

Another technical issue arises because the adversary may wait to receiver
first round messages that S sends on the behalf of honest parties before the
corrupted parties send out their first round messages. Recall that by sending the
receiver OT messages in the first round, every party “commits” to all its future
messages that it will send in the computation phase of the protocol. Thus, the
ideal world simulator & must somehow commit to the messages generated on
behalf of the honest party before extracting the adversary’s effective input. To
get around this issue, we use the equivocability property of the OT using which
the simulator can equivocate its first round messages after learning the malicious
adversary’s effective input.

Two-Round Multiparty Secure Computation from Minimal Assumptions 489

Let @ be an n-party conforming malicious MPC protocol, (Garble, Eval) be a gar-
bling scheme for circuits and (Kot,O0T1,0T2,0T3) be a malicious (with equivocal
receiver security) two-round oblivious transfer protocol.

Common Random/Reference String: For each ¢t € T,«,3 € {0,1} sample
Otap — Kor(1*) and output {o¢a,5}tie(r),a,6e{0,1} as the common ran-
dom /reference string.

Round-1: Each party P; does the following:

1. Compute (zi,v;) — pre(1*, i, z;).
2. For each t such that ¢, = (i, f, g, h) (A; is the set of such values of t), for
each a, 8 € {0,1}

otsi t,a,8 — OT1(0¢t,a,8, Vi,n ® NAND(v; 5 ® o, vi,g ® B); Wt,a,8)-

3. Send (zi, {ots1 t,a,8}tca;,a,8¢{0,1}) to every other party.
Round-2: In the second round, each party P; does the following:
L Set st; := (21| ... lzi-allzillziga |l - - - [[2n) ® vi.
2. Set lab"’ = {Iabl T labl TH}ke[z] where for each k € [¢] and b €
{0,1} laby 3 ™ == 0%
3. for each t from T down to 1,

() Parsed)t as(f7g7)
(b) If i = ¢* then compute (where P is described in Figure 2)

—i,t+1

(P, Tab"") Garble(1, P[i, g, vi, {wi,a0}a,, L, 1"]).

(c) If i # 4* then for every a,8 € {0,1}, set otsh, .,z

pirt+1 |abi,t+1)

OT2(0t,a,8, 0tS1,4,a,8, 1ab}] and compute

(P, Tab"") «— Garble(1*,Pli, b1, vi, L, {otsh s o 5}a,5,1ab "]).

4. Send ({flsi’t}te[T],{labi’_ylsti k}kélﬁ]) to every other party.
Evaluation: To compute the oﬁtput of the protocol, each party P; does the
following: ‘
1. For each j € [n], let b = {lab' } e be the labels received from
party P; at the end of round 2.
2. for each t from 1 to 7" do:

(a) Parse ¢: as (i*, f, g, h).
(b) Compute ((cv, 3,7),w, lab’ 7t+1) := Eval(P""*, lab’ 7t).
(c) Set stip =75 D vsn.
(d) for each j #i* do: _
i. Compute (otsz, {Iabf;’tﬂ}kem\{h}) := Eval(P7, I;[)J’t).
ii. Recover Iab{L’H'1 := OT3(0¢,a,8,0ts2,w).
iii. Set lab”" " = {lab)
3. Compute the output as post(s,st;).

Fig. 3. Two-round malicious MPC.

490 S. Garg and A. Srinivasan

Theorem 3. Let @ be a polynomial round, n-party malicious MPC protocol
computing a function f : ({0,1}™)" — {0,1}*, (Garble, Eval) be a garbling
scheme for circuits, and (Kot,0T1,0T3,0T3) be a maliciously secure (with
equivocal receiver security) two-round OT protocol. The protocol described in
Fig. 3 is a two-round, n-party malicious MPC protocol computing f against static
corruptions.

We prove the security of our compiler in the rest of the section. The proof of
correctness is the same as for the case of semi-honest security (see Sect. 5.2).

As in the semi-honest case Via the same argument as above it is useful to keep
in mind that for every ¢, j € [n] and k € [¢], we have that st; Bv; ; = st; x Sv; k.
Let us denote this shared value by st*. Also, we denote the transcript of the
interaction in the computation phase by Z € {0, 1}.

6.2 Simulator

Let A be a malicious adversary corrupting a subset of parties and let H C [n]
be the set of honest/uncorrupted parties. Since we assume that the adversary
is static, this set is fixed before the execution of the protocol. Below we provide
thenotion of faithful execution and then describe our simulator.

Faithful Execution. In the first round of our compiled protocol, A provides z;
for every i € [n]\ H and otsy ¢ 4,5 for every t € Ujepn\n and o, 3 € {0,1}. These
values act as “binding” commitments to all of the adversary’s future choices. All
these committed choices can be extracted using the extractor Exty. Let b, o g be
the value extracted from ots; ; o g. Intuitively speaking, a faithful execution is
an execution that is consistent with these extracted values.

More formally, we define an interactive procedure Faithful(i,{2;}ic[n,
{bt,a,5}teA;,a,5) that on input i € [n], {2i}icn), {bt,0.8}tcA,,a,8¢70,13 Produces
protocol @ message on behalf of party P; (acting consistently/faithfully with the
extracted values) as follows:

1. Set st* := z]| ... ||zn-
2. Forte{l---T}
(a) Parse ¢ = (i*, f, g, h).
(b) If ¢ # i* then it waits for a bit from P;» and sets st} to be the received
bit once it is received.
(c) Set st* := bt,st;,st; and output it to all the other parties.

We will later argue that any deviation from the faithful execution by the adver-
sary A on behalf of the corrupted parties (during the second round of our com-
piled protocol) will be be detected. Additionally, we prove that such deviations
do not hurt the security of the honest parties.

Description of the Simulator. We give the description of the ideal world
adversary S that simulates the view of the real world adversary A. S will inter-
nally use the malicious simulator Simg for @, the extractor Ext = (Exty, Exts)

Two-Round Multiparty Secure Computation from Minimal Assumptions 491

implied by the sender security of two-round OT, the simulator Simg, implied by
the equivocal receiver’s security and the simulator Simg for garbling scheme for
circuits. Recall that A is static and hence the set of honest parties H is known
before the execution of the protocol.

Simulating the interaction with Z. For every input value for the set of
corrupted parties that S receives from Z, S writes that value to A’s input tape.
Similarly, the output of A is written as the output on S’s output tape.

Simulating the interaction with A: For every concurrent interaction with
the session identifier sid that A may start, the simulator does the following:

— Generation of the common random /reference string: S generates the
common random/reference string as follows:

1. For each i € H,t € Aj,a,3 € {0,1} set (01,a.8, (0tS1,t.0.8, W) 0.3 Wt 0.8))

— Simg,(1*) (using equivocal simulator).

2. For each i € [n]\ H,o, 8 € {0,1} and ¢t € A; generate (04,48, Tt,a,8)

Ext; (1) (using the extractor of the OT protocol).

3. Output the common random/reference string as {0}, , 5-

— Initialization: S executes the simulator (against malicious adversary’s)
Simg (1) to obtain {z;};cm. Moreover, S starts the real-world adversary A.
We next describe how S provides its messages to Simg and A.

— Round-1 messages from S to A: For each i € H, S sends
(i, {otS1,t,0,6 }te A;s,a,8¢70,1}) to the adversary A on behalf of the honest
party P;.

— Round-1 messages from A to S: Corresponding to every i € [n] \ H,
S receives from the adversary A the value (z;, {ots1,¢,a,5}teA; ,a.8¢{0,1}) ON
behalf of the corrupted party P;. Next, for each i € [n]\H,t € A;, o, 8 € {0, 1}
extract by o g := Exta(7t,0,8,0tS1 ¢,0.8)-

— Completing the execution with the Simg: For each i € [n] \ H, S sends
z; to Simg on behalf of the corrupted party P;. This starts the computation
phase of @ with the simulator Simg. S provides computation phase messages
to Simg by following a faithful execution. More formally, for every corrupted
party P; where i € [n]\ H, S generates messages on behalf of P; for Simg using
the procedure Faithful(4, {z; }ic[n]; {bt,a,5 }te A, ,a,5)- At some point during the
execution, Simg will return the extracted inputs {z;}ic[n)\z of the corrupted
parties. For each i € [n]\ H, S sends (input, sid, { Py - - - P, }, P;, z;) to the ideal
functionality implementing f and obtains the output y which is provided to
Simg. Finally, at some point the faithful execution completes.

Let Z € {0,1}! where Z; is the bit sent in the t** round of the computation
phase of @ be output of this execution. And let st* be the state value at the end
of execution of one of the corrupted parties (this value is the same for all the
parties). Also, set for each t € Ujeg A; and «, 5 € {0,1} set wy o, := wtzfaﬁ.

— Round-2 messages from S to A: For each i € H, the simulator S generates
the second round message on behalf of party P; as follows:

1. For each k € [{] set Iab?ﬂ’T"'1 = 0N
2. for each t from T down to 1,

492 S. Garg and A. Srinivasan

(a) Parse (bt as (Z*a fa 9, h)
(b) Set a* :=st}, 3" :=sty, and 7" := stj.
(¢) If i = ¢* then compute

(P, {1ab} brei) — Sims (1%, (0", 877", wrav.0 {1ab} hyern)))-
(d) If ¢ # ¢* then set OtSQ’t’a*7B* — OTg(Ut,a*_ﬂ*,otslvt’a*ﬁ*,IabZ’tH,

Iabz’tﬂ) and compute

(iSi,t) {|ab2’t}k€m) — SimG (1/\, (Otsé,t,a*,ﬁ*’ {|abj€’t+1}k€[£]\{h})).

3. Send ({Isi’t}tem,{IabZ’l}ke[g]) to every other party.

— Round-2 messages from A to S: For every i € [n]\ H, S obtains the
second round message from 4 on behalf of the malicious parties. Subsequent
to obtaining these messages, S executes the garbled circuits provided by A on
behalf of the corrupted parties to see the execution of garbled circuits proceeds
consistently with the expected faithful execution. If the computation succeeds
then for each i € H, S sends (generateOutput, sid, {P; - - - P, }, P;) to the ideal
functionality.

6.3 Proof of Indistinguishability

We now show that no environment Z can distinguish whether it is interacting
with a real world adversary A or an ideal world adversary S. We prove this via
an hybrid argument with 7"+ 2 hybrids.

— HRear: This hybrid is the same as the real world execution.

— Hp: In this hybrid we start by changing the distribution of the common
random string. Specifically, the common random string is generated as is done
in the simulation. More formally, S generates the common random /reference
string as follows:

1. For each i € H,t € Aja,8 € {0,1} set (01,8, (0S1,t,0,8,%f o 5>
Wi ap)) — Simg,(1?) (using equivocal simulator).
For all ¢t € Ujepgd; and o, € {0,1} set wiap =
wZZ’j?NAND(“’f@a’vi“q@ﬁ) where v; is the secret value of party P; gener-
ated in the pre-processing phase of &.
2. For each i € [n]\ H,a, 0 € {0,1} and t € A; generate (04,48, Tt,0,8) <
Ext;(1*) (using the extractor of the OT protocol).

Corresponding to every ¢ € [n] \ H, A sends (z,
{ots1,t,a,6}teA;,a,8e10,13) on behalf of the corrupted party P; as its first
round message. For each i € [n]\ H,t € A;,«, 5 € {0,1} in this hybrid
we extract by o g := Ext(7,0,3,0tS1 t,0,8)-

Note that this hybrid is the same as hybrid H; below with ¢ = 0.

The indistinguishability between hybrids Hgeq and Hy follow from a
reduction to the sender’s security and the equivocal receiver’s security of
the two-round OT protocol.

Two-Round Multiparty Secure Computation from Minimal Assumptions 493

— H; (where t € {0,...T}): Hybrid H; (for t € {1---T}) is the same as hybrid
H;—1 except we change the distribution of the OT messages (both from the
first and the second round of the protocol) and the garbled circuits (from the
second round) that play a role in the execution of the #** round of the pro-
tocol @; namely, the action ¢, = (i*, f, g, h). We describe the changes more
formally below.

For each i € [n] \ H, in this hybrid S (in his head) completes an exe-
cution of @ using honest party inputs and randomness. In this execution,
the messages on behalf of corrupted parties are generated via faithful exe-
cution. Specifically, S sends {z;};cin)\u# to the honest parties on behalf
of the corrupted party P; in this mental execution of &@. This starts the
computation phase of @. In this computation phase, S generates honest
party messages using the inputs and random coins of the honest parties
and generates the messages of the each malicious party P; by executing
Faithful (i, {2 }icpp #15 {bt,a,8}te A, 0,8) . Let st* be the local state of the end
of execution of Faithful. Finally, let o := st}, 3 := sty and 7" := stj. In
hybrid H; we make the following changes with respect to hybrid H;_1:

e Ifi* ¢ H then skip these changes. S makes two changes in how it generates
messages on behalf of P;«. First, for all o, 8 € {0,1}, S sets wy o 5 as wtzjxﬁ

rather than wf’g"gaNAND(vi’feaa’m‘g695) (note that these two values are the

same when usirfg the honest party’s input and randomness). Second, it
generates the garbled circuit

(ﬁi*’tv {Iab;':yt}ke[f]) — SlmG (1/\7 ((a*7 6*7 ’7*)7 Wt,a* 3%, {lab;:,s’fj_kl}ke[é]))a

where {Iab?;ﬁj}j}ke[g] are the honestly generates input labels for the gar-

bled circuit P¥ 11,
e S makes the following two changes in how it generates messages for other
honest parties P (i.e., i € H\{i*}). S does not generate four ots}, , , 5 val-

ues but just one of them; namely, S generates Otsé,t,a*,g* as OTa(0¢ o~ g,

s, t+1 s, t+1 i, t+1
Otsy 1.+ g+, labyF ! laby'S) rather than OTy (0 q+ g+, Ots1 ¢ ax g+, laby o,

Iab;‘l’_tfr 1). Second it generates the garbled circuit

(ﬁi,t’ {Iabgt}ke[z]) — Sim(; (1A7 (Otséyta*”@»* s {|ab2’fs—;1}ke[@]\{h})),

3,t4+1
bk,Sti,

bled circuit Pht+1.
Indistinguishability between H;_; and H; is proved in Lemma 2.

— Hr41: In this hybrid we just change how the transcript Z, {z;};cq, random
coins of malicious parties and value st* are generated. Instead of generating
these using honest party inputs in execution with a faithful execution of &, we
generate it via the simulator Simg (of the maliciously secure protocol @). In
other words, we execute the simulator Simg where messages on behalf of each

where {la k} ke[are the honestly generated input labels for the gar-

494 S. Garg and A. Srinivasan

corrupted party P; are generated using Faithful(7, {z; }icinp\ &5 {0t,0.5 }te A a,8)-
(Note that Simg might rewind Faithful. This can be achieved since Faithful is just
a polynomial time interactive procedure that can also be rewound.)

The indistinguishability between hybrids Hp and Hpy; follows directly
from the malicious security of the protocol @. Finally note that Hpyq is
same as the ideal execution (i.e., the simulator described in the previous
subsection).

Lemma 3. Assuming malicious security of the two-round OT protocol and the
security of the garbling scheme, for allt € {1...T} hybrids Hi;—1 and H; are
computationally indistinguishable.

Proof. Using the same notation as before, let ¢, = (i*, f, g, h), st;+ be the state
of P;« at the end of round ¢, and a* := sty y ® v~ 5, §* 1= sty g ® v4+ ¢ and
v* :=st;» B+ . The indistinguishability between hybrids H;_; and H; follows
by a sequence of three sub-hybrids H: 1, H¢2, and Hy 3.

e H;1: Hybrid H;,; is same as hybrid H;_; except that S now generates the
garbled circuits P%® for each i € H in a simulated manner (rather than
generating them honestly). Specifically, instead of generating each garbled
circuit and input labels (P*f, {Iab;’t}kem) honestly, they are generated via
the simulator by hard coding the output of the circuit itself. In a bit more
details, parse ¢ as (i*, f, g, h).

o If i =i* then

(P, {laby"}repy) «— Simg <1Aa <(a*7ﬁ*77*)’wt,a*,ﬁ*’{labzfsik}’“em»’

where {la bZ’tstlk} ke[q are the honestly generates input labels for the gar-

bled circuit P+,
o If i # i* then

(B, {labi"} () < Sime (1*, (ots§7t7a*75*,{|ab2)t5—,5k}ke[é]\{h}>)7

where {la b;ct_:trlk} ke[are the honestly generated input labels for the gar-

bled circuit Pit+1.
The indistinguishability between hybrids H, 1 and H;_; follows by |H| invo-
cations of security of the garbling scheme.

o H, o: Skip this hybrid, if ¢* ¢ H. This hybrid is same as H; ; except that we
change how S generates the Round-1 message on behalf of P;+. Specifically,
the simulator S generates ots; ; .3 as is done in the H;. In a bit more detail,
for all a, 8 € {0,1}, S generates otsy ;o8 8 OT1(0¢,0.8, Zt;Wt,a,3) Tather
than OTq(ot, a, B,v;,5, ® NAND(v; 1 & @, 05,4 @ 8); wi.a,8)-

Indistinguishability between hybrids H;; and H o follows directly by a
sequence of 3 sub-hybrids each one relying on the receiver’s security of under-
lying semi-honest oblivious transfer protocol. Observe here that the security
reduction crucially relies on the fact that P** only contains Wi+ g+ (1., does
not have wy o 5 for o # a* or § # %).

Two-Round Multiparty Secure Computation from Minimal Assumptions 495

e H,;3: Skip this hybrid if there does not exist i # ¢* such that i € H. In
this hybrid, we change how S generates the otsé’t’a} 5 on behalf of every hon-
est party P; such that ¢ € H \ {i*} for all choices of a,3 € {0,1}. More
specifically, S only generates one of these four values; namely, otsé,ta*ﬁ*

c il Lty
which is now generated as OT2(0¢ a+ g+, 0ts1,1,ax 6+, 1aby 7 7, lab,"; ") instead

of 0T (0 ax 5+, OtS1 1.0+ g+, laby o, laby).

Indistinguishability between hybrids H; o and H; 3 follows directly from
the sender’s security of underlying malicious oblivious transfer protocol.
Finally, observe that H; 3 is the same as hybrid H;.

6.4 Extensions

As in the semi-honest case, we discuss several extensions to the construction of
two-round maliciously secure MPC.

Fairness. Assuming honest majority we obtain fairness in three rounds using
techniques from [GLS15]. Specifically, we can change the function description to
output a n/2-out-of-n secret sharing of the output. In the last round, the parties
exchange their shares to reconstruct the output. Note that since the corrupted
parties is in minority, it cannot learn the output of the function even if it obtains
the second round messages from all the parties. Note that Gordon et al. [GLS15]
showed that three rounds are necessary to achieve fairness. Thus this is optimal.

Semi-malicious security in Plain Model. We note that a simple modification
of our construction in Fig.3 can be made semi-maliciously secure in the plain
model. The modification is to use a two-round OT secure against semi-malicious
receiver and semi-honest sender (e.g., [NPO1]) and achieve equivocability by
sending two OT; messages in the first round having the same receiver’s choice
bit. Note that this is trivially equivocal since a simulator can use different choice
bits in the OT; message. On the other hand, since a semi-malicious party is
required to follow the protocol, it will always use the same choice bit in both the
OT; messages.

References

[AIK04] Applebaum, B., Ishai, Y., Kushilevitz, E.: Cryptography in NC°. In: 45th
FOCS, Rome, Italy, 17-19 October 2004, pp. 166—-175. IEEE Computer
Society Press (2004)

[AIKO05] Applebaum, B., Ishai, Y., Kushilevitz, E.: Computationally private ran-
domizing polynomials and their applications. In: 20th Annual IEEE Con-
ference on Computational Complexity (CCC 2005), San Jose, CA, USA,
11-15 June 2005, pp. 260-274 (2005)

[AIRO1] Aiello, B., Ishai, Y., Reingold, O.: Priced oblivious transfer: how to sell
digital goods. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol.
2045, pp. 119-135. Springer, Heidelberg (2001). https://doi.org/10.1007/
3-540-44987-6_8

https://doi.org/10.1007/3-540-44987-6_8
https://doi.org/10.1007/3-540-44987-6_8

496 S. Garg and A. Srinivasan

[AJL+12]

[BFO1]

[BFMS8S]

[BGI+01]

[BGI16]

[BGI17]

[BH15]

[BHR12]

[BL18]

[BMRIO0]

[BP16]

[Can00a]

[Can00b]

[Can01]

Asharov, G., Jain, A., Lépez-Alt, A., Tromer, E., Vaikuntanathan, V.,
Wichs, D.: Multiparty computation with low communication, computa-
tion and interaction via threshold FHE. In: Pointcheval, D., Johansson,
T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 483-501. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_29

Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing.
In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213-229. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_13

Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its
applications (extended abstract). In: 20th ACM STOC, Chicago, 1L, USA,
2-4 May 1988, pp. 103-112. ACM Press (1988)

Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan,
S., Yang, K.: On the (im)possibility of obfuscating programs. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 1-18. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-44647-8_1

Boyle, E., Gilboa, N., Ishai, Y.: Breaking the circuit size barrier for secure
computation under DDH. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016.
LNCS, vol. 9814, pp. 509-539. Springer, Heidelberg (2016). https://doi.
org/10.1007/978-3-662-53018-4_19

Boyle, E., Gilboa, N., Ishai, Y.: Group-based secure computation: optimiz-
ing rounds, communication, and computation. In: Coron, J.-S., Nielsen,
J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10211, pp. 163-193. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-56614-6_6

Bellare, M., Hoang, V.T.: Adaptive witness encryption and asymmetric
password-based cryptography. In: Katz, J. (ed.) PKC 2015. LNCS, vol.
9020, pp. 308-331. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-46447-2_14

Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits.
In: Yu, T., Danezis, G., Gligor, V.D. (eds.) ACM CCS 12, Raleigh, NC,
USA, 16-18 October 2012, pp. 784-796. ACM Press (2012)
Benhamouda, F., Lin, H.: k-round multiparty computation from k-round
oblivious transfer via garbled interactive circuits. In: Nielsen, J.B., Rijmen,
V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 500-532. Springer,
Cham (2018). https://eprint.iacr.org/2017/1125

Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure pro-
tocols (extended abstract). In: 22nd ACM STOC, Baltimore, MD, USA,
14-16 May 1990, pp. 503-513. ACM Press (1990)

Brakerski, Z., Perlman, R.: Lattice-based fully dynamic multi-key FHE
with short ciphertexts. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016.
LNCS, vol. 9814, pp. 190-213. Springer, Heidelberg (2016). https://doi.
org/10.1007/978-3-662-53018-4_8

Canetti, R.: Security and composition of multiparty cryptographic proto-
cols. J. Cryptol. 13(1), 143-202 (2000)

Canetti, R.: Universally composable security: a new paradigm for cryp-
tographic protocols. Cryptology ePrint Archive, Report 2000/067 (2000).
http://eprint.iacr.org/2000/067

Canetti, R.: Universally composable security: a new paradigm for crypto-
graphic protocols. In: 42nd FOCS, Las Vegas, NV, USA, 14-17 October
2001, pp. 136-145. IEEE Computer Society Press (2001)

https://doi.org/10.1007/978-3-642-29011-4_29
https://doi.org/10.1007/3-540-44647-8_13
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/978-3-662-53018-4_19
https://doi.org/10.1007/978-3-662-53018-4_19
https://doi.org/10.1007/978-3-319-56614-6_6
https://doi.org/10.1007/978-3-662-46447-2_14
https://doi.org/10.1007/978-3-662-46447-2_14
https://eprint.iacr.org/2017/1125
https://doi.org/10.1007/978-3-662-53018-4_8
https://doi.org/10.1007/978-3-662-53018-4_8
http://eprint.iacr.org/2000/067

Two-Round Multiparty Secure Computation from Minimal Assumptions 497

[Can05]

[CCMYS]

[CDG+17]

[CLOS02]

[CM15]

[DG17]

[DHRS04]

[FLS90]

[Gen09]

[GGH+13]

[GGHR14]

[GGMP16]

[GGSW13)]

Canetti, R.: Universally composable security: a new paradigm for crypto-
graphic protocols, Version of December 2005 (2005). http://eccc.uni-trier.
de/eccc-reports/2001/TR01-016

Cachin, C., Crépeau, C., Marcil, J.: Oblivious transfer with a memory-
bounded receiver. In: 39th FOCS, Palo Alto, CA, USA, 8-11 November
1998, pp. 493-502. IEEE Computer Society Press (1998)

Cho, C., Déttling, N., Garg, S., Gupta, D., Miao, P., Polychroniadou,
A.: Laconic oblivious transfer and its applications. In: Katz, J., Shacham,
H. (eds.) CRYPTO 2017. LNCS, vol. 10402, pp. 33-65. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-63715-0_2

Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally compos-
able two-party and multi-party secure computation. In: 34th ACM STOC,
Montréal, Québec, Canada, 19-21 May 2002, pp. 494-503. ACM Press
(2002)

Clear, M., McGoldrick, C.: Multi-identity and multi-key leveled FHE from
learning with errors. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015.
LNCS, vol. 9216, pp. 630-656. Springer, Heidelberg (2015). https://doi.
org/10.1007/978-3-662-48000-7_31

Déttling, N., Garg, S.: Identity-based encryption from the Diffie-Hellman
assumption. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol.
10401, pp. 537-569. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-63688-7_18

Ding, Y.Z., Harnik, D., Rosen, A., Shaltiel, R.: Constant-round oblivious
transfer in the bounded storage model. In: Naor, M. (ed.) TCC 2004.
LNCS, vol. 2951, pp. 446-472. Springer, Heidelberg (2004). https://doi.
org/10.1007/978-3-540-24638-1_25

Feige, U., Lapidot, D., Shamir, A.: Multiple non-interactive zero knowledge
proofs based on a single random string (extended abstract). In: 31st FOCS,
St. Louis, Missouri, 22—24 October 1990, pp. 308-317. IEEE Computer
Society Press (1990)

Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzen-
macher, M. (ed.) 41st ACM STOC, Bethesda, MD, USA, 31 May—2 June
2009, pp. 169-178. ACM Press (2009)

Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Can-
didate indistinguishability obfuscation and functional encryption for all
circuits. In: 54th FOCS, Berkeley, CA, USA, 26-29 October 2013, pp.
40-49. IEEE Computer Society Press (2013)

Garg, S., Gentry, C., Halevi, S., Raykova, M.: Two-round secure MPC from
indistinguishability obfuscation. In: Lindell, Y. (ed.) TCC 2014. LNCS,
vol. 8349, pp. 74-94. Springer, Heidelberg (2014). https://doi.org/10.1007/
978-3-642-54242-8_4

Garg, S., Gupta, D., Miao, P., Pandey, O.: Secure multiparty RAM com-
putation in constant rounds. In: Hirt, M., Smith, A. (eds.) TCC 2016.
LNCS, vol. 9985, pp. 491-520. Springer, Heidelberg (2016). https://doi.
org/10.1007/978-3-662-53641-4_19

Garg, S., Gentry, C., Sahai, A., Waters, B.: Witness encryption and its
applications. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th
ACM STOC, Palo Alto, CA, USA, 1-4 June 2013, pp. 467-476. ACM
Press (2013)

http://eccc.uni-trier.de/eccc-reports/2001/TR01-016
http://eccc.uni-trier.de/eccc-reports/2001/TR01-016
https://doi.org/10.1007/978-3-319-63715-0_2
https://doi.org/10.1007/978-3-662-48000-7_31
https://doi.org/10.1007/978-3-662-48000-7_31
https://doi.org/10.1007/978-3-319-63688-7_18
https://doi.org/10.1007/978-3-319-63688-7_18
https://doi.org/10.1007/978-3-540-24638-1_25
https://doi.org/10.1007/978-3-540-24638-1_25
https://doi.org/10.1007/978-3-642-54242-8_4
https://doi.org/10.1007/978-3-642-54242-8_4
https://doi.org/10.1007/978-3-662-53641-4_19
https://doi.org/10.1007/978-3-662-53641-4_19

498 S. Garg and A. Srinivasan

[GHL+14]

[GKK+12]

[GLO15]

[GLOS15]

[GLS15]

[GMWS7]

[GOS06]

[GOVW12]

[GS17]

[GS18]

[HK12]

[HY16]

[IPS08]

[Jou04]

[Kil8g]

Gentry, C., Halevi, S., Lu, S., Ostrovsky, R., Raykova, M., Wichs, D.: Gar-
bled RAM revisited. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT
2014. LNCS, vol. 8441, pp. 405-422. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-642-55220-5_23

Dov Gordon, S., Katz, J., Kolesnikov, V., Krell, F., Malkin, T., Raykova,
M., Vahlis, Y.: Secure two-party computation in sublinear (amortized)
time. In: Yu, T., Danezis, G., Gligor, V.D. (eds.) ACM CCS 2012, Raleigh,
NC, USA, 16-18 October 2012, pp. 513-524. ACM Press (2012)

Garg, S., Lu, S., Ostrovsky, R.: Black-box garbled RAM. In: Guruswami,
V. (ed.) 56th FOCS, Berkeley, CA, USA, 17-20 October 2015, pp. 210-229.
IEEE Computer Society Press (2015)

Garg, S., Lu, S., Ostrovsky, R., Scafuro, A.: Garbled RAM from one-
way functions. In: Servedio, R.A., Rubinfeld, R. (eds.) 47th ACM STOC,
Portland, OR, USA, 14-17 June 2015, pp. 449-458. ACM Press (2015)
Dov Gordon, S., Liu, F.-H., Shi, E.: Constant-round MPC with fairness
and guarantee of output delivery. In: Gennaro, R., Robshaw, M. (eds.)
CRYPTO 2015. LNCS, vol. 9216, pp. 63-82. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48000-7_4

Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game
or a completeness theorem for protocols with honest majority. In: Aho, A.
(ed.) 19th ACM STOC, New York City, NY, USA, 25-27 May 1987, pp.
218-229. ACM Press (1987)

Groth, J., Ostrovsky, R., Sahai, A.: Perfect non-interactive zero knowl-
edge for NP. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol.
4004, pp. 339-358. Springer, Heidelberg (2006). https://doi.org/10.1007/
1176167921

Garg, S., Ostrovsky, R., Visconti, 1., Wadia, A.: Resettable statistical
zero knowledge. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp.
494-511. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
28914-9_28

Garg, S., Srinivasan, A.: Garbled protocols and two-round MPC from bilin-
ear maps. In: 58th FOCS, pp. 588-599. IEEE Computer Society Press
(2017)

Garg, S., Srinivasan, A.: Two-round multiparty secure computation
from minimal assumptions. In: Nielsen, J.B., Rijmen, V. (eds.) EURO-
CRYPT 2018. LNCS, vol. 10821, pp. 468-499. Springer, Cham (2018).
https://eprint.iacr.org/2017/1156

Halevi, S., Kalai, Y.T.: Smooth projective hashing and two message obliv-
ious transfer. J. Cryptol. 25(1), 158-193 (2012)

Hazay, C., Yanai, A.: Constant-round maliciously secure two-party com-
putation in the RAM model. In: Hirt, M., Smith, A. (eds.) TCC 2016.
LNCS, vol. 9985, pp. 521-553. Springer, Heidelberg (2016). https://doi.
org/10.1007/978-3-662-53641-4_20

Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious
transfer — efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157,
pp- 572-591. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-85174-5_32

Joux, A.: A one round protocol for tripartite Diffie-Hellman. J. Cryptol.
17(4), 263-276 (2004)

Kilian, J.: Founding cryptography on oblivious transfer. In: 20th ACM
STOC, Chicago, 1L, USA, 2-4 May 1988, pp. 20-31. ACM Press (1988)

https://doi.org/10.1007/978-3-642-55220-5_23
https://doi.org/10.1007/978-3-642-55220-5_23
https://doi.org/10.1007/978-3-662-48000-7_4
https://doi.org/10.1007/11761679_21
https://doi.org/10.1007/11761679_21
https://doi.org/10.1007/978-3-642-28914-9_28
https://doi.org/10.1007/978-3-642-28914-9_28
https://eprint.iacr.org/2017/1156
https://doi.org/10.1007/978-3-662-53641-4_20
https://doi.org/10.1007/978-3-662-53641-4_20
https://doi.org/10.1007/978-3-540-85174-5_32
https://doi.org/10.1007/978-3-540-85174-5_32

Two-Round Multiparty Secure Computation from Minimal Assumptions 499

[LO13]

[LP09]

[MW16]

[NPO1]

[0S97]

[PS16]

[PVWO08]

[PWO0O]

[Yao86]

Lu, S., Ostrovsky, R.: How to garble RAM programs? In: Johans-
son, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
719-734. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
38348-9_42

Lindell, Y., Pinkas, B.: A proof of security of Yao’s protocol for two-party
computation. J. Cryptol. 22(2), 161-188 (2009)

Mukherjee, P., Wichs, D.: Two round multiparty computation via multi-
key FHE. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS,
vol. 9666, pp. 735-763. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-49896-5_26

Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: Rao
Kosaraju, S. (ed.) 12th SODA, Washington, DC, USA, 7-9 January 2001,
pp. 448-457. ACM-SIAM (2001)

Ostrovsky, R., Shoup, V.: Private information storage (extended abstract).
In: 29th ACM STOC, El Paso, TX, USA, 4-6 May 1997, pp. 294-303. ACM
Press (1997)

Peikert, C., Shiehian, S.: Multi-key FHE from LWE, revisited. In: Hirt,
M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 217-238. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53644-5_9

Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient
and composable oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008.
LNCS, vol. 5157, pp. 554-571. Springer, Heidelberg (2008). https://doi.
org/10.1007/978-3-540-85174-5_31

Pfitzmann, B., Waidner, M.: Composition and integrity preservation of
secure reactive systems. In: Jajodia, S., Samarati, P. (eds.) ACM CCS
2000, Athens, Greece, 1-4 November 2000, pp. 245-254. ACM Press (2000)
Yao, A.C.-C.: How to generate and exchange secrets (extended abstract).
In: 27th FOCS, Toronto, Ontario, Canada, 27-29 October 1986, pp. 162—
167. IEEE Computer Society Press (1986)

https://doi.org/10.1007/978-3-642-38348-9_42
https://doi.org/10.1007/978-3-642-38348-9_42
https://doi.org/10.1007/978-3-662-49896-5_26
https://doi.org/10.1007/978-3-662-49896-5_26
https://doi.org/10.1007/978-3-662-53644-5_9
https://doi.org/10.1007/978-3-540-85174-5_31
https://doi.org/10.1007/978-3-540-85174-5_31

	Two-Round Multiparty Secure Computation from Minimal Assumptions
	1 Introduction
	1.1 Our Result

	2 Technical Overview
	3 Preliminaries
	3.1 Garbled Circuits
	3.2 Universal Composability Framework
	3.3 Oblivious Transfer

	4 Conforming Protocols
	4.1 Specifications for a Conforming Protocol
	4.2 Transformation for Making a Protocol Conforming

	5 Two-Round MPC: Semi-honest Case
	5.1 Our Compiler
	5.2 Correctness
	5.3 Simulator
	5.4 Proof of Indistinguishability
	5.5 Extensions

	6 Two-Round MPC: Malicious Case
	6.1 Our Compiler
	6.2 Simulator
	6.3 Proof of Indistinguishability
	6.4 Extensions

	References

