
Simple Proofs of Sequential Work

Bram Cohen1(B) and Krzysztof Pietrzak2

1 Chia Network, San Francisco, USA
bram@chia.network

2 IST Austria, Klosterneuburg, Austria
pietrzak@ist.ac.at

Abstract. At ITCS 2013, Mahmoody, Moran and Vadhan [MMV13]
introduce and construct publicly verifiable proofs of sequential work,
which is a protocol for proving that one spent sequential computational
work related to some statement. The original motivation for such proofs
included non-interactive time-stamping and universally verifiable CPU
benchmarks. A more recent application, and our main motivation, are
blockchain designs, where proofs of sequential work can be used – in
combination with proofs of space – as a more ecological and economical
substitute for proofs of work which are currently used to secure Bitcoin
and other cryptocurrencies.

The construction proposed by [MMV13] is based on a hash function
and can be proven secure in the random oracle model, or assuming inher-
ently sequential hash-functions, which is a new standard model assump-
tion introduced in their work.

In a proof of sequential work, a prover gets a “statement” χ, a time
parameter N and access to a hash-function H, which for the security
proof is modelled as a random oracle. Correctness requires that an hon-
est prover can make a verifier accept making only N queries to H, while
soundness requires that any prover who makes the verifier accept must
have made (almost) N sequential queries to H. Thus a solution consti-
tutes a proof that N time passed since χ was received. Solutions must
be publicly verifiable in time at most polylogarithmic in N .

The construction of [MMV13] is based on “depth-robust” graphs, and
as a consequence has rather poor concrete parameters. But the major
drawback is that the prover needs not just N time, but also N space to
compute a proof.

In this work we propose a proof of sequential work which is much
simpler, more efficient and achieves much better concrete bounds. Most
importantly, the space required can be as small as log(N) (but we get
better soundness using slightly more memory than that).

An open problem stated by [MMV13] that our construction does
not solve either is achieving a “unique” proof, where even a cheating
prover can only generate a single accepting proof. This property would
be extremely useful for applications to blockchains.

K. Pietrzak—Supported by the European Research Council (ERC), Horizon 2020,
consolidator grant (682815 - TOCNeT).

c© International Association for Cryptologic Research 2018
J. B. Nielsen and V. Rijmen (Eds.): EUROCRYPT 2018, LNCS 10821, pp. 451–467, 2018.
https://doi.org/10.1007/978-3-319-78375-8_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78375-8_15&domain=pdf

452 B. Cohen and K. Pietrzak

1 Introduction

1.1 Proofs of Sequential Work (PoSW)

Mahmoody, Moran and Vadhan [MMV13] introduce the notion of proofs of
sequential work (PoSW), and give a construction in the random oracle model
(ROM), their construction can be made non-interactive using the Fiat-Shamir
methodology [FS87]. Informally, with such a non-interactive PoSW one can gen-
erate an efficiently verifiable proof showing that some computation was going
on for N time steps since some statement χ was received. Soundness requires
than one cannot generate such a proof in time much less than N even consider-
ing powerful adversaries that have a large number of processors they can use in
parallel.

[MMV13] introduce a new standard model assumption called “inherently
sequential” hash functions, and show that the random oracle in their construction
can be securely instantiated with such hash functions.

Random Oracle Model (ROM). PoSW are easiest to define and prove secure in
the ROM, as here we can identify a (potentially parallel) query to the RO as
one time step. Throughout this paper we’ll work in the ROM, but let us remark
that everything can be lifted to the same standard model assumptions (collision
resistant and sequential hash functions) used in [MMV13].

A proof of sequential work in the ROM is a protocol between a prover P
and a verifier V, both having access to a random oracle H : {0, 1}∗ → {0, 1}w.
Figure 1 illustrates PoSW as constructed in [MMV13] and also here. We’ll give
a more formal definition in Sect. 1.2.

Prover P(N, t, w) Verifier (N, t, w)

H : {0, 1}∗ → {0, 1}w

χ ← {0, 1}w

γ ← {0, 1}t·w

verify(χ, N, φ, γ, τ) ∈ {accept, reject}

(φ, φP) := PoSW(χ, N)

τ := open(χ, N, φP , γ)

statement χ

PoSW φ

challenge γ

answer τ

Fig. 1. Proofs of Sequential Work in the ROM as constructed in [MMV13] and this
paper. N is the time parameter, i.e., PoSW(χ, N) makes N queries to H computing
φ, and any cheating prover P̃ that makes V accept must make almost N sequential
queries to H computing φ. t is a statistical security parameter, the larger t the better
the soundness: any P̃ making only (1 − α)N sequential queries for some α > 0, will
succeed with probability at most (1 − α)t (e.g. with t = 21, a cheating prover making
only 0.8 · N sequential queries succeed with probability < 1%). w is the output range
of our hash function, which we need to be collision resistant and sequential, w = 256
is a typical value.

Simple Proofs of Sequential Work 453

Non-interactive PoSW. The first message is sent from V to P, and is just a
uniformly random w bit string χ. In applications this first message is a “state-
ment” for which we want to prove that N time has passed since it was received.
The distribution and domain of this statement is not important, as long as it
has sufficiently high min-entropy, because we can always first hash it down to a
uniform w bit string using the RO.

As the prover is public-coin, we can make the protocol non-interactive
using the Fiat-Shamir heuristic [FS87]: A non-interactive PoSW for state-
ment χ and time parameter N is a tuple (χ,N, φ, τ) where the challenge
γ = (H(φ, 1), . . . ,H(φ, t)) is derived from the proof φ by hashing with the RO.

1.2 PoSW Definition

The PoSW we consider are defined by a triple of oracle aided algorithms PoSW,
open and verify as defined below.

Common Inputs P and V get as common input two statistical security param-
eters w, t ∈ N and a time parameter N ∈ N. All parties have access to a
random oracle H : {0, 1}∗ → {0, 1}w.

Statement V samples a random χ ← {0, 1}w and sends it to P.
Compute PoSW P computes (ideally, making N queries to H sequentially) a

proof (φ, φP) := PoSWH(χ,N). P sends φ to V and locally stores φP .
Opening Challenge V samples a random challenge γ ← {0, 1}t·w and sends it

to P.
Open P computes τ := openH(χ,N, φP , γ) and sends it to V.
Verify V computes and outputs verifyH(χ,N, φ, γ, τ) ∈ {accept, reject}.

We require perfect correctness: if V interacts with an honest P, then it will
output accept with probability 1. The soundness property requires that any
potentially malicious prover ˜P who makes V accept with good probability must
have queried H “almost” N times sequentially. This holds even if in every round
˜P can query H on many inputs in parallel, whereas the honest P just needs
to make a small (in our construction 1, in [MMV13] 2) number of queries per
round.

1.3 The [MMV13] and our Construction in a Nutshell

In the construction from [MMV13], the statement χ is used to sample a fresh
random oracle H. Then P uses H to compute “labels” of a directed acyclic graph
(DAG) G, where the label of a node is the hash of the labels of its parents. Next,
P computes a Merkle tree commitment of those labels, sends it to V, who then
challenges P to open some of the labels together with its parents.

If G = (V,E) is “depth-robust”, which means it has a long path even after
removing many vertices, a cheating prover can either (1) try to cheat and make
up many of the labels, or (2) compute most of the labels correctly. The security
proof now shows that in case (1) the prover will almost certainly not be able to

454 B. Cohen and K. Pietrzak

correctly open the Merkle tree commitments, and in case (2) he must make a
large number of sequential queries: if he cheats on labels of nodes S ⊆ V , then
the number of sequential queries must be at least as large as the length of the
longest path in the subgraph on V − S. As G is depth-robust and S is not too
large, this path is long.

Our construction is conceptually similar, but our underlying graph is much
simpler. We use the nodes in the tree underlying the Merkle commitment not
just for the commitment, but also to enforce sequential computation. For this it
suffices to add some edges as illustrated in Fig. 3.

Our graph has some convenient properties, for example the parents of a leaf
node v are always a subset of the nodes whose labels one needs to provide for
the opening of the Merkle tree commitment of the label of v, so checking that
the labels are correctly computed and verifying the opening of a leaf label can
be done simultaneously without increasing communication complexity and with
only a little bit of extra computation.

But most importantly, the labels in our graph can be computed in topolog-
ical order1 while keeping only logarithmically many labels in memory at any
point, whereas computing the labelling of a depth-robust graph is much more
expensive. In fact, because of this property depth-robust graphs are used to
build so called memory-hard functions. Concretely, [ABP17] show that if the
labelling of a depth-robust graph on N nodes is done in time T using space S,
then T · S ∈ Ω(N2). In particular, if one wants to compute the labels in time
N , or even just some O(N), then linear Ω(N) space is required.

There is a caveat. If using only logarithmic memory in our construction,
the prover needs to recompute all the labels in the opening phase, whereas one
wouldn’t need any computation (just some lookups) in the opening phase if
everything was stored. This is unfortunate, as it means we get a factor 2 differ-
ence in the sequential computation that is claimed, versus what has to actually
be done, but some applications need this factor to be close to 1. Fortunately
there is a simple trade-off, where using slightly more memory one can make the
opening phase much more efficient. The basic idea, which we describe in detail
in Sect. 5.4, is to store all the 2m nodes at some level m of the tree. With this,
one can compute any other node making just 2n−m queries.

1.4 More Related Work

Time Release Cryptography. The idea of “time-release” cryptography goes back
to [CLSY93,May93].

Most related to PoSW are time-lock puzzles, which were introduced by
Rivest, Shamir and Wagner [RSW00]. They give a construction of such puz-
zles based on the assumption that exponentiation modulo an RSA integer is an
“inherently sequential” computation. A recent treatment with new constructions
is [BGJ+16].

1 A topological ordering of the vertices of a DAG is an ordering v1, v2, . . . , v|V | such
that there’s no path from vj to vi whenever j > i.

Simple Proofs of Sequential Work 455

Time-lock puzzles allow a puzzle generator to generate a puzzle with a mes-
sage of its choice encoded into it, such that this message can only be redeemed
by a solver after t steps of sequential work. Such a scheme can be used as a
PoSW as the decoded message constitutes a proof of sequential work, but as the
puzzle generator has a trapdoor, this proof will not be convincing to anyone else
and as it’s not public-coin, it can’t be made non-interactive by the Fiat-Shamir
methodology. Although incomparable, time-lock puzzles seem to be more sophis-
ticated objects than PoSW. Unlike for PoSW, we have no constructions based
on random oracles, and [MMV11] give black-box separations showing this might
be inherent (we refer to their paper for the exact statements). Existing PoSW
(including ours) have another drawback, namely, that the proofs are not unique.
We’ll discuss this in more detail at the end of Sect. 6.

Proofs of Work. Proofs of work (PoW) – introduced by Dwork and Naor [DN93] –
are defined similarly to proof of sequential work, but as the name suggests, here
one does not require that the work has been done sequentially. Proofs of work are
very easy to construct in the random oracle model. The simplest construction of
a PoW goes as follows: given a statement χ and a work parameter t, find a nonce
x s.t. H(χ, x) starts with t zeros. If H is modelled as a random oracle, finding
such an x requires an expected 2t number of queries, while verifying that x is
a valid solution just requires a single query. Proofs of work are used to secure
several decentralised cryptocurrencies and other blockchain applications, most
notably Bitcoin.

1.5 Basic Notation

We denote with {0, 1}≤n def=
⋃n

i=0{0, 1}i the set of all binary strings of length
at most n, including the empty string ε. Concatenation of bitstrings is denoted
with ‖. For x ∈ {0, 1}∗, x[i] denotes its ith bit, x[i . . . j] = x[i]‖ . . . ‖x[j] and |x|
denotes the bitlength of x.

2 Building Blocks

In Sect. 2.1 below, we define the basic properties of graphs used in this work.
Then in Sect. 2.2 we summarize the properties of the random oracle model [BR93]
used in our security proof.

2.1 Graphs Basics

To define the [MMV13] and our construction we’ll need the following

Definition 1 (Graph Labelling). Given a directed acyclic graph (DAG) G =
(V,E) on vertex set V = {0, . . . , N − 1} and a hash function H : {0, 1}∗ →
{0, 1}w, the label �i ∈ {0, 1}w of i ∈ V is recursively computed as (where u is a
parent of v if there’s a directed edge from u to v)

�i = H(i, �p1 , . . . , �pd
) where (p1, . . . , pd) = parents(i). (1)

456 B. Cohen and K. Pietrzak

Note that for any DAG the labels can be computed making N sequential queries
to H by computing them in an arbitrary topological order. If the maximum
indegree of G is δ, then the inputs will have length at most �log(N)� + δ · w.

The PoSW by Mahmoody et al. [MMV13] is based on depth-robust graphs,
a notion introduced by Erdős et al. in [EGS75].

Definition 2 (Depth-Robust DAG). A DAG G = (V,E) is (e, d) depth-
robust if for any subset S ⊂ V of at most |S| ≤ e vertices, the subgraph on V −S
has a path of length at least d.

For example, the complete DAG G = (V,E), |V | = N, E = {(i, j) : 0 ≤ i < j ≤
N − 1} is (e,N − e) depth-robust for any e, but for PoSW we need a DAG with
small indegree. Already [EGS75] showed that (Θ(N), Θ(N)) depth-robust DAGs
with indegree O(log(N)) exist. Mahmoody et al. give an explicit construction
with concrete constants, albeit with larger indegree O(log2(N)polyloglog(N)) ∈
O(log3(N)).

2.2 Random Oracles Basics

Salting the RO. In [MMV13] and also our construction, all three algorithms
PoSW, open and verify described in Sect. 1.2 use the input χ only to sample a
random oracle Hχ, for example by using χ as prefix to every input

Hχ(·) def= H(χ, ·).

We will sometimes write e.g., PoSWHχ(N) instead PoSWH(χ,N). Using the uni-
form χ like this implies that in the proof we can assume that to a cheating
prover, the random oracle Hχ just looks like a “fresh” random oracle on which
it has no auxiliary information [DGK17].

Random Oracles are Collision Resistant

Lemma 1 (RO is Collision Resistant). Consider any adversary AH which
is given access to a random function H : {0, 1}∗ → {0, 1}w. If A makes at most
q queries, the probability it will make two colliding queries x �= x′,H(x) = H(x′)
is at most q2/2w+1.

Proof. The probability that the output of the i’th query collides with any of
the i − 1 previous outputs is at most i−1

2w . By the union bound, we get that the
probability that any i hits a previous output is at most

∑q
i=1

i−1
2w < q2

2w+1 . �

Random Oracles are Sequential. Below we show that ROs are “sequential”, this
is already shown in [MMV13], except that we use concrete parameters instead
of asymptotic notations.

Definition 3 (H-sequence). An H sequence of length s is a sequence
x0, . . . , xs ∈ {0, 1}∗ where for each i, 1 ≤ i < s, H(xi) is contained in xi+1

as continuous substring, i.e., xi+1 = a‖H(xi)‖b for some a, b ∈ {0, 1}∗.

Simple Proofs of Sequential Work 457

Lemma 2 (RO is Sequential). Consider any adversary AH which is given
access to a random function H : {0, 1}∗ → {0, 1}w that it can query for at most
s − 1 rounds, where in each round it can make arbitrary many parallel queries.
If A makes at most q queries of total length Q bits, then the probability that it
outputs an H-sequence x0, . . . , xs (as defined above) is at most

q · Q +
∑s

i=0 |xi|
2w

Proof. There are two ways A can output an H sequence x0, . . . , xs making only
s − 1 sequential queries.

1. Lucky guess: It holds that for some i, H(xi) is a substring of xi+1 and the
adversary did not make the query H(xi). As H is uniform, the probability of
this event can be upper bounded by

q ·
∑s

i=0 |xi|
2w

.

2. Collision: The xi’s were not computed sequentially. That is, it holds that for
some 1 ≤ i ≤ j ≤ s − 1, a query ai is made in round i and query aj in round
j where H(aj) is a substring of ai. Again using that H is uniformly random,
the probability of this event can be upper bounded by

q · Q

2w
.

The claimed bound follows by a union bound over the two cases analysed
above. �
Thus, whenever an adversary outputs an H-sequence of length s where q · (Q +
∑s

i=0 |xi|) is much smaller than 2w – which in practice will certainly be the case
if we use a standard block length like w = 256 – we can assume that it made at
least s sequential queries to H.

Merkle-Damg̊ard. The inputs to our hash function H are of length up to
(�log N� + 1)w bits (assuming N ≤ 2w, so the index of a node can be encoded
into {0, 1}w). We can build a function for arbitrary input lengths from a com-
pression function h : {0, 1}2w → {0, 1}w using the classical Merkle-Damg̊ard
construction [Dam90,Mer90]. Concretely, let y0 be the statement χ (used for
salting as outlined above) and then recursively define

H(x1, . . . , xz) = yz where yi = h(xi, yi−1) for i ≥ 1.

One must be careful with this approach in our construction. As it’s possible to
compute yi using only the prefix x1, . . . , xi, an adversary might get an advan-
tage by computing such intermediate yi’s before the entire input is known, and
thus exploit parallelism to speed up the computation. This can be avoided by
requiring that x1 is always the label of the node that was computed right before
the current node.

458 B. Cohen and K. Pietrzak

3 The [MMV13] Construction

In this section we informally describe the PoSW from [MMV13] using the high-
level protocol layout from Sect. 1.2.

For any N = 2n, the scheme is specified by a depth-robust DAG GDR
n = (V,E)

on |V | = N vertices. Let Bn = (V ′, E′) denote the full binary tree with N = 2n

leaves (and thus 2N − 1 nodes) where the edges are directed towards the root.
Let GMMV

n be the DAG we get from Bn, by identifying the N leaves of this tree
with the N nodes of GDR

n as illustrated in Fig. 2.

ε

0

00 01

1

10 11

ε

0

00 01

1

10 11

ε

0

00 01

1

10 11

Fig. 2. Illustration of B2 (left), a (toy example of a) depth-robust graph GDR
2 (middle)

and the corresponding GMMV
2 graph.

Now (φ, φP) := PoSWHχ(N) computes and stores the labels φP =
{�v}v∈{0,1}≤n (cf. Definition 1) of GMMV

n using Hχ as hash function, and sends the
label φ = �ε of the root to V. We remark that in [MMV13] this is described as a
two step process, where one first computes a labeling of GDR

n (using a sequential
hash function), and then a Merkle-tree commitment of the N labels (using a
collision resistant hash function).

After receiving the challenge γ = (γ1, . . . , γt) from V, the prover P computes
the answer τ := openHχ(N,φP , γ) as follows: For any i, 1 ≤ i ≤ t, τ contains
the opening of the Merkle commitments of the label �γi

, and the labels of the
parents of i, and moreover the labels labels required for the opening of the Merkle
commitment of this label.2

Upon receiving the answer τ , V invokes verifyHχ(N,φ, γ, τ) to check if the
labels �γi

were correctly computed as in Eq. (1), and if the Merkle openings of
the labels �γi

are all correct.
To argue soundness, one uses the fact that GDR

n is (e, d) depth-robust with
e, d = Θ(N). As Hχ is collision resistant, a cheating prover P̃ must commit to
unique labels {�′

v}v∈{0,1}n of the leaves (that it can later open to). We say that a
vertex i is inconsistent if it is not correctly computed from the other labels, i.e.,

�′
i �= H(i, �′

p1
, . . . , �′

pd
) where (p1, . . . , pd) = parents(i)

2 That is, the labels of all siblings of the nodes on the path from this vertex to the
root. E.g., for label �01 (as in Fig. 2) that would be �00 and �1. To verify, one checks
if Hχ(0, �00, �01) = �0 and Hχ(ε, �0, �1) = �ε = φ.

Simple Proofs of Sequential Work 459

Let β be the number of inconsistent vertices. We make a case distinction:

– If β ≥ e, then one uses the fact that the probability that a cheating prover
P̃ will be asked to open an inconsistent vertex is exponentially (in t) close

to 1, namely 1 −
(

N−β
N

)t

, and thus P̃ will fail to make V accept except with
exponentially small probability.

– if β < e, then there’s a path of length d = Θ(N) of consistent verticies, which
means the labels �′

i0
, . . . , �′

id−1
on this path constitute an Hχ sequence (cf.

Definition 3) of length d−1, and as Hχ is sequential, P̃ must almost certainly
have made d − 1 = Θ(N) sequential queries to Hχ.

4 Definition and Properties of the DAG GPoSW
n

In this section we describe the simple DAG underlying our construction, and
prove state some simple combinatorial properties about it which we’ll later need
in the security proof and to argue efficiency.

ε

0

00

000

0000 0001

001

0010 0011

01

010

0100 0101

011

0110 0111

1

10

100

1000 1001

101

1010 1011

11

110

1100 1101

111

1110 1111

Fig. 3. Illustration of GPoSW
4 . The set S∗ = {01, 101, 1100} – which e.g. could be derived

from S = {010, 0110, 0111, 101, 1010, 1100} – is shown in red. DS∗ is the union of red
and orange nodes. Ŝ = Ŝ∗ are the orange or red leaves. The path of length 2N − 1 −
|BS | = 32 − 1 − 11 = 19 (as constructed in the proof of Lemma 4) is shown in blue.
(Color figure online)

For n ∈ N let N = 2n+1 − 1 and Bn = (V,E′) be a complete binary tree
of depth n. We identify the N nodes V = {0, 1}≤n with the binary strings of
length at most n, the empty string ε being the root. We say vertex v is above u
if u = v‖a for some a (then u is below v). The directed edges go from the leaves
towards the root

E′ = {(x‖b, x) : b ∈ {0, 1}, x ∈ {0, 1}i, i < n}.

We define the DAG GPoSW
n = (V,E) by starting with Bn, and then adding some

edges. Concretely E = E′ ∪ E′′ where E′′ contains, for all leaves u ∈ {0, 1}n,
an edge (v, u) for any v that is a left sibling of a node on the path from u to

460 B. Cohen and K. Pietrzak

the root ε. E.g., for v = 1101 we add the edges (1100, 1101), (10, 1101), (0, 1101),
formally

E′′ = {(v, u) : u ∈ {0, 1}n, u = a‖1‖a′, v = a‖0}.

Lemma 3. The labels of GPoSW
n can be computed in topological order using only

w · (n + 1) bits of memory.

Proof. The proof of the lemma follows by induction: to compute the labels of
GPoSW

n , start by computing the labels of the left subtree L, which is isomorphic
to GPoSW

n−1 . Once the last label �0 of L is computed, keep only this one label. Now
compute the labels of the right subtree R, which is also isomorphic to GPoSW

n−1 ,
except that it has some incoming edges from the left subtree. As all these edges
start at �0, one can compute the labeling of this graph with just w extra bits
of space. Once the last label �1 of R is computed, delete all labels except �0, �1,
and compute the label of the root �ε = H(ε, �0, �1). The memory required to
compute the labels of GPoSW

n is thus the memory required for GPoSW
n−1 plus w bits

(to store �0 while computing the right subtree). GPoSW
1 just has 3 nodes and so

can trivially be computed with 3 · w bits. Solving this simple recursion gives the
claimed bound. �
Definition 4 (Ŝ, S∗,DS). For a subset S ⊆ V of nodes, we denote with Ŝ the
set of leaves below S

Ŝ = {v‖u ∈ {0, 1}n : v ∈ S, u ∈ {0, 1}n−|v|}

We denote with S∗ the minimal set of nodes with exactly the same set of leaves
as S, i.e., S∗ ⊆ V is the smallest set satisfying Ŝ∗ = Ŝ.

We denote with DS all the nodes which are in S or below some node in S

DS = {v‖v′ : v ∈ S, v′ ∈ {0, 1}≤n−|v|}

Lemma 4. The subgraph of GPoSW
n = (V,E) on vertex set V − DS∗ (for any

S ⊆ V) has a directed path going through all the |V |− |DS∗ | = N −|DS∗ | nodes.
Proof. The proof is by induction on n, an example path is illustrated in Fig. 3.
The lemma is trivially true for GPoSW

0 , which just contains a single node. Assume
it’s true for GPoSW

i , now GPoSW
i+1 consists of a root ε, with a left and right subgraph

L and R isomorphic to GPoSW
i , with extra edges going from the root of L –

which is 0 – to all the leaves in R. If ε ∈ S∗ the lemma is trivially true as
|V | − |DS∗ | = 0. If 0 ∈ S∗, then all of L is in DS∗ , in this case just apply the
Lemma to R ≡ GPoSW

i , and add an extra last edge 1 → ε. If 0 �∈ S∗, apply the
Lemma first to L ≡ GPoSW

i to get a path that ends in its root 0, then – if 1 �∈ S∗

– apply the lemma to R ≡ GPoSW
i , to get a path that starts at a leaf v. Now add

the edges 0 → v and 1 → ε. If 1 ∈ S∗ we just add the edge 0 → ε. �

Simple Proofs of Sequential Work 461

Lemma 5 (trivial). For any S∗, S ⊂ V , DS∗ contains

|{0, 1}n ∩ DS∗ | =
|DS∗ | + |S∗|

2

many leaves.

Proof. Let S∗ = {v1, . . . , vk}, using that Dvi
∩Dvj

= ∅ for all i �= j (as otherwise
S∗ would not be minimal), we can write

|{0, 1}n ∩ DS∗ | =
k

∑

i=1

|{0, 1}n ∩ Dvi
|.

As each Dvi
is a full binary tree it has (|Dvi

| + 1)/2 many leaves, so

k
∑

i=1

|{0, 1}n ∩ Dvi
| =

k
∑

i=1

|Dvi
| + 1
2

=
|DS∗ | + |S∗|

2
.

�

5 Our Construction

In this section we specify our PoSW based on the graphs GPoSW
n .

5.1 Parameters

We have the following parameters:

N The time parameter which we assume is of the form N = 2n+1 − 1 for an
integer n ∈ N.

H : {0, 1}≤w(n+1) → {0, 1}w the hash function, which for the security proof is
modelled as a random oracle, and which takes as inputs strings of length
up to w(n + 1) bits.

t A statistical security parameter.
M Memory available to P, we assume it’s of the form

M = (t + n · t + 1 + 2m+1)w

for some integer m, 0 ≤ m ≤ n.

5.2 The PoSW, open and verify Algorithms

Our PoSW follows the outline given in Sect. 1.2 using three algorithms PoSW,
open and verify. Note that n ≈ log N and m ≈ log M are basically the logarithms
of the time parameter N and the memory M (measured in w bit blocks) we allow
P to use.

(φ, φP) := PoSWHχ(N) : computes the labels {�i}i∈{0,1}≤n (cf. Definition 1) of
the graph GPoSW

n (as defined in Sect. 4) using Hχ. It stores the labels φP =
{�i}i∈{0,1}≤m of the m highest layers, and sends the root label φ = �ε to V.

462 B. Cohen and K. Pietrzak

τ := openHχ(N,φP , γ) : on challenge γ = (γ1 . . . , γt), τ contains – for every
i, 1 ≤ i ≤ t – the label �γi

of node γi ∈ {0, 1}n and the labels of all siblings of
the nodes on the path from γi to the root (as in an opening of a Merkle tree
commitment), i.e.,

{�k}k∈Sγi
where Sγi

def= {γi[1 . . . j − 1]‖(1 − γi[j])}j=1...n

and
τ

def= {�γi
, {�k}k∈Sγi

}i=1...t.

E.g., for γi = 0101 (cf. Fig. 3) τ contains the labels of 0101, 0100, 011, 00
and 1.
If m = n, P stores all labels in φP and thus this needs no queries to Hχ. We’ll
discuss the case 0 < m < n in Sect. 5.4.

verifyHχ(N,φ, γ, τ) : Using that the graphs GPoSW
n have the property that all the

parents of a leaf γi are in Sγi
, for every i, 1 ≤ i ≤ t, one first checks that �γi

was correctly computed from its parent labels (i.e., as in Eq. 1)

�γi

?= Hχ(i, �p1 , . . . , �pd
) where (p1, . . . , pd) = parents(γi).

Then we verify the “Merkle tree like” commitment of �γi
, by using the labels

in τ to recursively compute, for i = n − 1, n − 2, . . . 0

�γi[0...i] := Hχ(γi[0 . . . i], �γi[0...i]‖0, �γi[0...i]‖1)

and then verifying that the computed root �γi[0...0] = �ε is equal to φ received
before.

5.3 Security

Theorem 1. Consider the PoSW from Sect. 5.2, with parameters t, w,N and a
“soundness gap” α > 0. If P̃ makes at most (1 − α)N sequential queries to H
after receiving χ, and at most q queries in total, then V will output reject with
probability

1 − (1 − α)t − 2 · n · w · q2

2w

So, for example setting the statistical security parameter to t = 21, means a P̃
who makes only 0.8N sequential queries will be able to make V accept with ≤1%
probability. This is sufficient for some applications, but if we want to use Fiat-
Shamir to make the proof non-interactive, the error should be much smaller, say
2−50 which we get with t = 150.

Proof. The exponentially small 2 · n · w · q2/2w loss accounts for the assumption
we’ll make, that P̃, after receiving χ (1) won’t find a collision in Hχ, and (2)
whenever it outputs an Hχ-sequence of length s it must have made s sequential
queries to H. The concrete bound follows from Lemmas 1 and 2 (recall that H
only takes inputs of length ≤ (n + 1)w).

Simple Proofs of Sequential Work 463

After sending φ, P̃ is committed to the labels {�′
i}i∈{0,1}≤n it can open. We

say a node i is inconsistent if its label �′
i was not correctly computed, i.e.,

�′
i �= H(i, �′

p1
, . . . , �′

pd
) where (p1, . . . , pd) = parents(i).

Let us mention that i can be consistent even though �′
i �= �i (�i denoting the

label the honest P would compute), so being consistent is not the same as being
correct. We can also determine these �′

i from just looking at P̃’s oracle queries,
but for the proof we just need that they are unique.

Let S ⊆ V = {0, 1}≤n denote all inconsistent nodes. Then by Lemma 4
there’s a path going through all the nodes in V − DS∗ . As all these nodes are
consistent, the labels �′

i on this path constitute an Hχ-sequence of length N −
|DS∗ |. If |DS∗ | ≤ αN , P̃ must have made at least (1 − α)N sequential queries
(recall we assume P̃ did not break sequentiality of Hχ), so we now assume

|DS∗ | > αN = α(2n+1 − 1).

By Lemma 5 and the above equation

|{0, 1}n ∩ DS∗ | =
|DS∗ | + |S∗|

2
> α2n. (2)

P̃ will fail to produce a valid proof given t random challenges γ = (γ1, . . . , γt) if
there’s at least one γi such that a node on the path from γi to the root is in S,
i.e., γ ∩ Ŝ �= ∅, or equivalently

γ ∩ DS∗ = γ ∩ Ŝ∗ = γ ∩ Ŝ �= ∅.

By Eq. (2), and using that every γi is uniform

Pr[γi �∈ DS∗] = 1 − |{0, 1}n ∩ DS∗ |/2n < 1 − α

and as the γi are also independent

Pr[γ ∩ DS∗ = ∅] =
t

∏

i=1

Pr[γi �∈ DS∗] < (1 − α)t

so P̃ will fail to generate a valid proof with probability > 1 − (1 − α)t as
claimed. �

5.4 Efficiency

We’ll now discuss the efficiency of the scheme from Sect. 5.2 in terms of proof
size, computation and memory requirements.

464 B. Cohen and K. Pietrzak

Proof Size. The exchanged messages χ, φ, γ, τ are of length (we need w bits to
specify a label and n bits to specify a node)

|χ| = w |φ| = w |γ| = t · n |τ | ≤ t · w · n

When we make the proof non-interactive using Fiat-Shamir (where γ is derived
from φ) the length of a proof for a given statement χ becomes

|φ| + |τ | ≤ w(t · n + 1)

With w = 256 bit blocks, t = 150, which is sufficient to get 2−50 security
for soundness gap α = 0.2 (i.e., a cheating prover must make 0.8N sequential
queries) and n = 40 (i.e., over a trillion steps) the size of the proof is less than
200 KB.

Prover Efficiency. P’s efficiency is dominated by queries to Hχ for computing
PoSW and open, so below we just count these.

PoSWHχ(N) can be computed making N (sequential) queries to Hχ, each
input being of length at most (n + 1) · w bits, and on average about 1/4 of
that (for comparison, the construction from [MMV13] has inputs of length n2 ·
polylog(n) · w).

openHχ(N,φ, γ): Here the efficiency depends on m, which specifies the size of the
memory M = (n + 1 + n · t + 2m+1)w we allow P to use. Here w · n · t bits are
used to store the values in τ to send back, (n + 1) · w bits are used to compute
the label (cf. Lemma 3), and 2m+1w labels are used to store φP , which contains
the labels of the m upmost levels {�i}i∈{0,1}≤m .

– If m = n, P stored all the labels computed by PoSWHχ(N), and thus needs
no more queries.

– If m = 0, P needs to recompute all N labels. This is not very satisfying,
as it means that we’ll always have a soundness gap of at least 2: the hon-
est prover needs a total of 2N sequential queries (N for each, PoSW and
open), whereas (even an honest) prover with m = n space will only require N
sequential queries. Fortunately there is a nice trade-off, where already using
a small memory means P just needs to make slightly more than N queries,
as described next.

– In the general case 0 ≤ m ≤ n, P needs to compute 2n−m+1 − 1 labels for
each of the t challenges, thus at most

t · (2n−m+1 − 1)

in total (moreover this can be done making 2n−m+1 − 1 queries sequentially,
each with t inputs). E.g. if m = n/2, this means P uses around

√
N · w bits

memory, and
√

N · t queries on top of the N for computing PoSW. For typical
parameters

√
N · t will be marginal compared to N . More generally, for any

0 ≤ β ≤ 1, given N1−β · w memory means P needs Nβ · t queries to compute
open (or Nβ sequential queries with parallelism t).

For our example with w = 256, n = 40, t = 150, setting, say m = 20, means
P uses 70 MB of memory, and the number of queries made by open is less than
N/1000, which is marginal compared to the N queries made by PoSW.

Simple Proofs of Sequential Work 465

5.5 Verifier Efficiency

The verifier is extremely efficient, it must only sample a random challenge γ (of
length t · w) and computing verify(χ,N, φ, γ, τ) can be done making t · n queries
to Hχ, each of length at most n ·w bits. This is also basically the cost of verifying
a non-interactive proof.

6 Conclusions and Open Problems

We constructed a proof of sequential work which is much simpler and enjoys
much better parameters than the original construction from [MMV13]. They
also state three open questions, two of which we answer in this work. Their first
question is:

Space Complexity of the Solver. In our construction of time stamping
and time-lock puzzles for time N , the solver keeps the hash labels of a
graph of N vertices. Is there any other solution that uses o(N) storage?
Or is there any inherent reason that Ω(N) storage is necessary?

We give a strong negative answer to this question, in our construction the storage
of the prover is only O(log(N)). Their second question is:

Necessity of Depth-Robust Graphs. The efficiency and security of
our construction is tightly tied to the parameters of depth-robust graph
constructions: graphs with lower degree give more efficient solutions, while
graphs with higher robustness (the lower bound on the length of the longest
path remaining after some of the vertices are removed) give us puzzles with
smaller adversarial advantage. An interesting open question is whether the
converse also holds: do time-lock puzzles with better parameters also imply
the existence of depth-robust graphs with better parameters?

Also here the answer is no. The graphs GPoSW
n we use, as illustrated in Fig. 3, are

basically as terrible in terms of depth-robustness as a simple path. For example
just removing the vertex 0 cuts the depth in half. Or just removing the 2n/2 ≈√

N vertices in the middle layer, will leave no paths of length more than
√

N .
Maybe depth-robustness is the wrong notion to look at here, our graphs satisfy a
notion of “weighted” depth-robustness: assign each leaf weight 1, the nodes one
layer up weight 2, then 4 etc., doubling with every layer. The total weight of all
nodes will be n2n (2n for every layer), and one can show hat for any 0 ≤ α ≤ 1,
removing nodes of weight α2n, will leave a path of length (1 − α)2n.

Apart from [MMV13], depth-robust graphs have been used for cryptographic
applications in at least one other case, namely to construct memory-hard func-
tions [ABP17]. Moreover the proofs of space protocol from [DFKP15] is quite
similar to the PoSW from [MMV13], the main difference being that the under-
lying graph does not have to be depth-robust, but needs to have high space
complexity. Due to this similarities, it seems conceivable that using ideas from

466 B. Cohen and K. Pietrzak

this work one can get improved constructions for memory-hard functions and
proofs of space.

Let us also mention the third open question asked by [MMV13]. It asks
whether a PoSW based only on random oracles can be used to achieve fairness
in protocols like coin tossing. We refer to their paper for the details, and just
mention that to achieve this, it’s sufficient to construct a PoSW with a “unique”
proof (note that we already mention this problem in the related work Sect. 1.4).
That is, we not only require that to generate a proof one needs to spend sequen-
tial time, but for every input (statement and time parameter), it should be hard
to come up with two different valid proofs. Such a property would also be very
useful in other contexts, like for constructing blockchains, which was the main
motivation for this work.

Unfortunately, our construction also does not have unique proofs. It’s an
intriguing open problem to construct a PoSW with unique proofs and an
exponential gap between proof generation and proof verification. Currently, the
publicly verifiable function with the largest gap between computation and verifi-
cation is the sloth function [LW17], which is based on the assumption that com-
puting square roots in a field of size p takes log(p) times longer than the inverse
operation, i.e., squaring. Under this assumption, the gap is log(p), in practice one
would probably use something like log(p) ≈ 1000. Sloth is not a time-lock puzzle
(as discussed in Sect. 1.4), as one can’t sample an input together with its output.
It’s also not a good PoSW as there’s no further speedup if we only want to verify
that a lot of sequential time has been spend on the computation, not correctness.
Let us also mention that sloth, as well as our PoSW (but not [MMV13]) allow
for a speedup of q in verification time if parallelism q is allowed and the proof
can be of size linear in q. Basically one adds q “checkpoints” to the proof. These
are intermediate states that appear during the computation, and one can verify
that each two consecutive checkpoints are consistent independently.

References

[ABP17] Alwen, J., Blocki, J., Pietrzak, K.: Depth-robust graphs and their cumu-
lative memory complexity. In: Coron, J.-S., Nielsen, J.B. (eds.) EURO-
CRYPT 2017. LNCS, vol. 10212, pp. 3–32. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-56617-7 1

[BGJ+16] Bitansky, N., Goldwasser, S., Jain, A., Paneth, O., Vaikuntanathan, V.,
Waters, B.: Time-lock puzzles from randomized encodings. In: Sudan, M.
(ed.) ITCS 2016, pp. 345–356. ACM, January 2016

[BR93] Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for
designing efficient protocols. In: Ashby, V. (ed.) ACM CCS 93, pp. 62–73.
ACM Press, November 1993

[CLSY93] Cai, J.-Y., Lipton, R.J., Sedgewick, R., Yao, A.C.-C.: Towards uncheatable
benchmarks. In: Proceedings of the Eighth Annual Structure in Complexity
Theory Conference, San Diego, CA, USA, 18–21 May 1993, pp. 2–11 (1993)

[Dam90] Damg̊ard, I.B.: A design principle for hash functions. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 416–427. Springer, New York (1990).
https://doi.org/10.1007/0-387-34805-0 39

https://doi.org/10.1007/978-3-319-56617-7_1
https://doi.org/10.1007/978-3-319-56617-7_1
https://doi.org/10.1007/0-387-34805-0_39

Simple Proofs of Sequential Work 467

[DFKP15] Dziembowski, S., Faust, S., Kolmogorov, V., Pietrzak, K.: Proofs of space.
In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp.
585–605. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-
48000-7 29

[DGK17] Dodis, Y., Guo, S., Katz, J.: Fixing cracks in the concrete: random oracles
with auxiliary input, revisited. In: Coron, J.-S., Nielsen, J.B. (eds.) EURO-
CRYPT 2017. LNCS, vol. 10211, pp. 473–495. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-56614-6 16

[DN93] Dwork, C., Naor, M.: Pricing via processing or combatting junk mail. In:
Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 139–147. Springer,
Heidelberg (1993). https://doi.org/10.1007/3-540-48071-4 10

[EGS75] Erdoes, P., Graham, R.L., Szemeredi, E.: On sparse graphs with dense long
paths. Technical report, Stanford, CA, USA (1975)

[FS87] Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identi-
fication and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986.
LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987). https://doi.org/
10.1007/3-540-47721-7 12

[LW17] Lenstra, A.K., Wesolowski, B.: Trustworthy public randomness with sloth,
unicorn, and trx. IJACT 3(4), 330–343 (2017)

[May93] May, T.C.: Timed-release crypto (1993). http://www.hks.net/cpunks/
cpunks-0/1460.html

[Mer90] Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO
1989. LNCS, vol. 435, pp. 218–238. Springer, New York (1990). https://doi.
org/10.1007/0-387-34805-0 21

[MMV11] Mahmoody, M., Moran, T., Vadhan, S.: Time-lock puzzles in the Ran-
dom Oracle model. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841,
pp. 39–50. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-
22792-9 3

[MMV13] Mahmoody, M., Moran, T., Vadhan, S.P.: Publicly verifiable proofs of
sequential work. In: Kleinberg, R.D. (ed.) ITCS 2013, pp. 373–388. ACM,
January 2013

[RSW00] Rivest, R.L., Shamir, A., Wagner, D.A.: Time-lock puzzles and timed
release crypto. Technical report (2000)

https://doi.org/10.1007/978-3-662-48000-7_29
https://doi.org/10.1007/978-3-662-48000-7_29
https://doi.org/10.1007/978-3-319-56614-6_16
https://doi.org/10.1007/3-540-48071-4_10
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12
http://www.hks.net/cpunks/cpunks-0/1460.html
http://www.hks.net/cpunks/cpunks-0/1460.html
https://doi.org/10.1007/0-387-34805-0_21
https://doi.org/10.1007/0-387-34805-0_21
https://doi.org/10.1007/978-3-642-22792-9_3
https://doi.org/10.1007/978-3-642-22792-9_3

	Simple Proofs of Sequential Work
	1 Introduction
	1.1 Proofs of Sequential Work (PoSW)
	1.2 PoSW Definition
	1.3 The ITCS:MahMorVad13 and our Construction in a Nutshell
	1.4 More Related Work
	1.5 Basic Notation

	2 Building Blocks
	2.1 Graphs Basics
	2.2 Random Oracles Basics

	3 The ITCS:MahMorVad13 Construction
	4 Definition and Properties of the DAG GPoSWn
	5 Our Construction
	5.1 Parameters
	5.2 The PoSW,open and verify Algorithms
	5.3 Security
	5.4 Efficiency
	5.5 Verifier Efficiency

	6 Conclusions and Open Problems
	References

