
Jesper Buus Nielsen
Vincent Rijmen (Eds.)

 123

LN
CS

 1
08

21

37th Annual International Conference on the Theory
and Applications of Cryptographic Techniques
Tel Aviv, Israel, April 29 – May 3, 2018, Proceedings, Part II

Advances in Cryptology –
EUROCRYPT 2018

Lecture Notes in Computer Science 10821

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7410

Jesper Buus Nielsen • Vincent Rijmen (Eds.)

Advances in Cryptology –

EUROCRYPT 2018
37th Annual International Conference on the Theory
and Applications of Cryptographic Techniques
Tel Aviv, Israel, April 29 – May 3, 2018
Proceedings, Part II

123

Editors
Jesper Buus Nielsen
Aarhus University
Aarhus
Denmark

Vincent Rijmen
University of Leuven
Leuven
Belgium

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-78374-1 ISBN 978-3-319-78375-8 (eBook)
https://doi.org/10.1007/978-3-319-78375-8

Library of Congress Control Number: 2018937382

LNCS Sublibrary: SL4 – Security and Cryptology

© International Association for Cryptologic Research 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by the registered company Springer International Publishing AG
part of Springer Nature
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

Eurocrypt 2018, the 37th Annual International Conference on the Theory and Appli-
cations of Cryptographic Techniques, was held in Tel Aviv, Israel, from April 29 to
May 3, 2018. The conference was sponsored by the International Association for
Cryptologic Research (IACR). Orr Dunkelman (University of Haifa, Israel) was
responsible for the local organization. He was supported by a local organizing team
consisting of Technion’s Hiroshi Fujiwara Cyber Security Research Center headed by
Eli Biham, and most notably by Suzie Eid. We are deeply indebted to them for their
support and smooth collaboration.

The conference program followed the now established parallel track system where
the works of the authors were presented in two concurrently running tracks. Only the
invited talks spanned over both tracks.

We received a total of 294 submissions. Each submission was anonymized for the
reviewing process and was assigned to at least three of the 54 Program Committee
members. Committee members were allowed to submit at most one paper, or two if
both were co-authored. Submissions by committee members were held to a higher
standard than normal submissions. The reviewing process included a rebuttal round for
all submissions. After extensive deliberations, the Program Committee accepted 69
papers. The revised versions of these papers are included in these three-volume pro-
ceedings, organized topically within their respective track.

The committee decided to give the Best Paper Award to the papers “Simple Proofs
of Sequential Work” by Bram Cohen and Krzysztof Pietrzak, “Two-Round Multiparty
Secure Computation from Minimal Assumptions” by Sanjam Garg and Akshayaram
Srinivasan, and “Two-Round MPC from Two-Round OT” by Fabrice Benhamouda
and Huijia Lin. All three papers received invitations for the Journal of Cryptology.

The program also included invited talks by Anne Canteaut, titled “Desperately
Seeking Sboxes”, and Matthew Green, titled “Thirty Years of Digital Currency: From
DigiCash to the Blockchain”.

We would like to thank all the authors who submitted papers. We know that the
Program Committee’s decisions can be very disappointing, especially rejections of very
good papers that did not find a slot in the sparse number of accepted papers. We
sincerely hope that these works eventually get the attention they deserve.

We are also indebted to the members of the Program Committee and all external
reviewers for their voluntary work. The Program Committee work is quite a workload.
It has been an honor to work with everyone. The committee’s work was tremendously
simplified by Shai Halevi’s submission software and his support, including running the
service on IACR servers.

Finally, we thank everyone else — speakers, session chairs, and rump-session
chairs — for their contribution to the program of Eurocrypt 2018. We would also like
to thank the many sponsors for their generous support, including the Cryptography
Research Fund that supported student speakers.

May 2018 Jesper Buus Nielsen
Vincent Rijmen

VI Preface

Eurocrypt 2018

The 37th Annual International Conference
on the Theory and Applications
of Cryptographic Techniques

Sponsored by the International Association for Cryptologic Research

April 29 – May 3, 2018
Tel Aviv, Israel

General Chair

Orr Dunkelman University of Haifa, Israel

Program Co-chairs

Jesper Buus Nielsen Aarhus University, Denmark
Vincent Rijmen University of Leuven, Belgium

Program Committee

Martin Albrecht Royal Holloway, UK
Joël Alwen IST Austria, Austria, and Wickr, USA
Gilles Van Assche STMicroelectronics, Belgium
Paulo S. L. M. Barreto University of Washington Tacoma, USA
Nir Bitansky Tel Aviv University, Israel
Céline Blondeau Aalto University, Finland
Andrey Bogdanov DTU, Denmark
Chris Brzuska TU Hamburg, Germany, and Aalto University, Finland
Jan Camenisch IBM Research – Zurich, Switzerland
Ignacio Cascudo Aalborg University, Denmark
Melissa Chase Microsoft Research, USA
Alessandro Chiesa UC Berkeley, USA
Joan Daemen Radboud University, The Netherlands,

and STMicroelectronics, Belgium
Yevgeniy Dodis New York University, USA
Nico Döttling Friedrich Alexander University Erlangen-Nürnberg,

Germany
Sebastian Faust TU Darmstadt, Germany
Serge Fehr CWI Amsterdam, The Netherlands
Georg Fuchsbauer Inria and ENS, France
Jens Groth University College London, UK
Jian Guo Nanyang Technological University, Singapore

Martin Hirt ETH Zurich, Switzerland
Dennis Hofheinz KIT, Germany
Yuval Ishai Technion, Israel, and UCLA, USA
Nathan Keller Bar-Ilan University, Israel
Eike Kiltz Ruhr-Universität Bochum, Germany
Gregor Leander Ruhr-Universität Bochum, Germany
Yehuda Lindell Bar-Ilan University, Israel
Mohammad Mahmoody University of Virginia, USA
Willi Meier FHNW, Windisch, Switzerland
Florian Mendel Infineon Technologies, Germany
Bart Mennink Radboud University, The Netherlands
María Naya-Plasencia Inria, France
Svetla Nikova KU Leuven, Belgium
Eran Omri Ariel University, Israel
Arpita Patra Indian Institute of Science, India
David Pointcheval ENS/CNRS, France
Bart Preneel KU Leuven, Belgium
Thomas Ristenpart Cornell Tech, USA
Alon Rosen IDC Herzliya, Israel
Mike Rosulek Oregon State University, USA
Louis Salvail Université de Montréal, Canada
Yu Sasaki NTT Secure Platform Laboratories, Japan
Thomas Schneider TU Darmstadt, Germany
Jacob C. N. Schuldt AIST, Japan
Nigel P. Smart KU Leuven, Belgium, and University of Bristol, UK
Adam Smith Boston University, USA
Damien Stehlé ENS de Lyon, France
Björn Tackmann IBM Research – Zurich, Switzerland
Dominique Unruh University of Tartu, Estonia
Vinod Vaikuntanathan MIT, USA
Muthuramakrishnan

Venkitasubramaniam
University of Rochester, USA

Frederik Vercauteren KU Leuven, Belgium
Damien Vergnaud Sorbonne Université, France
Ivan Visconti University of Salerno, Italy
Moti Yung Columbia University and Snap Inc., USA

Additional Reviewers

Masayuki Abe
Aysajan Abidin
Ittai Abraham
Hamza Abusalah

Divesh Aggarwal
Shashank Agrawal
Shweta Agrawal
Thomas Agrikola

Bar Alon
Abdel Aly
Prabhanjan Ananth
Elena Andreeva

VIII Eurocrypt 2018

Daniel Apon
Gilad Asharov
Nuttapong Attrapadung
Benedikt Auerbach
Daniel Augot
Christian Badertscher
Saikrishna

Badrinarayanan
Shi Bai
Josep Balasch
Marshall Ball
Valentina Banciu
Subhadeep Banik
Zhenzhen Bao
Gilles Barthe
Lejla Batina
Balthazar Bauer
Carsten Baum
Christof Beierle
Amos Beimel
Sonia Belaid
Aner Ben-Efraim
Fabrice Benhamouda
Iddo Bentov
Itay Berman
Kavun Elif Bilge
Olivier Blazy
Jeremiah Blocki
Andrey Bogdanov
Carl Bootland
Jonathan Bootle
Raphael Bost
Leif Both
Florian Bourse
Elette Boyle
Zvika Brakerski
Christian Cachin
Ran Canetti
Anne Canteaut
Brent Carmer
Wouter Castryck
Andrea Cerulli
André Chailloux
Avik Chakraborti
Yilei Chen
Ashish Choudhury

Chitchanok
Chuengsatiansup

Michele Ciampi
Thomas De Cnudde
Ran Cohen
Sandro Coretti
Jean-Sebastien Coron
Henry Corrigan-Gibbs
Ana Costache
Geoffroy Couteau
Claude Crépeau
Ben Curtis
Dana Dachman-Soled
Yuanxi Dai
Bernardo David
Alex Davidson
Jean Paul Degabriele
Akshay Degwekar
Daniel Demmler
Amit Deo
Apoorvaa Deshpande
Itai Dinur
Christoph Dobraunig
Manu Drijvers
Maria Dubovitskaya
Léo Ducas
Yfke Dulek
Pierre-Alain Dupont
François Dupressoir
Avijit Dutta
Lisa Eckey
Maria Eichlseder
Maximilian Ernst
Mohammad Etemad
Antonio Faonio
Oriol Farràs
Pooya Farshim
Manuel Fersch
Dario Fiore
Viktor Fischer
Nils Fleischhacker
Christian Forler
Tommaso Gagliardoni
Chaya Ganesh
Juan Garay
Sanjam Garg

Romain Gay
Peter Gaži
Rosario Gennaro
Satrajit Ghosh
Irene Giacomelli
Federico Giacon
Benedikt Gierlichs
Junqing Gong
Dov Gordon
Divya Gupta
Lorenzo Grassi
Hannes Gross
Vincent Grosso
Paul Grubbs
Chun Guo
Siyao Guo
Mohammad Hajiabadi
Carmit Hazay
Gottfried Herold
Felix Heuer
Thang Hoang
Viet Tung Hoang
Akinori Hosoyamada
Kristina Hostáková
Andreas Hülsing
Ilia Iliashenko
Roi Inbar
Vincenzo Iovino
Tetsu Iwata
Abhishek Jain
Martin Jepsen
Daniel Jost
Chiraag Juvekar
Seny Kamara
Chethan Kamath
Bhavana Kanukurthi
Harish Karthikeyan
Suichi Katsumata
Jonathan Katz
John Kelsey
Dakshita Khurana
Eunkyung Kim
Taechan Kim
Elena Kirshanova
Ágnes Kiss
Susumu Kiyoshima

Eurocrypt 2018 IX

Ilya Kizhvatov
Alexander Koch
Konrad Kohbrok
Lisa Kohl
Stefan Kölbl
Ilan Komargodski
Yashvanth Kondi
Venkata Koppula
Thorsten Kranz
Hugo Krawczyk
Marie-Sarah Lacharite
Kim Laine
Virginie Lallemand
Gaëtan Leurent
Anthony Leverrier
Xin Li
Pierre-Yvan Liardet
Benoît Libert
Huijia Lin
Guozhen Liu
Jian Liu
Chen-Da Liu-Zhang
Alex Lombardi
Julian Loss
Steve Lu
Atul Luykx
Vadim Lyubashevsky
Saeed Mahloujifar
Hemanta Maji
Mary Maller
Umberto Martínez-Peñas
Daniel Masny
Takahiro Matsuda
Christian Matt
Patrick McCorry
Pierrick Méaux
Lauren De Meyer
Peihan Miao
Brice Minaud
Esfandiar Mohammadi
Ameer Mohammed
Maria Chiara Molteni
Tal Moran
Fabrice Mouhartem
Amir Moradi
Pratyay Mukherjee

Marta Mularczyk
Mridul Nandi
Ventzislav Nikov
Tobias Nilges
Ryo Nishimaki
Anca Nitulescu
Ariel Nof
Achiya Bar On
Claudio Orlandi
Michele Orrù
Clara Paglialonga
Giorgos Panagiotakos
Omer Paneth
Louiza Papachristodoulou
Kostas Papagiannopoulos
Sunoo Park
Anat Paskin-Cherniavsky
Alain Passelègue
Kenny Paterson
Michaël Peeters
Chris Peikert
Alice Pellet–Mary
Geovandro C. C. F.

Pereira
Leo Perrin
Giuseppe Persiano
Thomas Peters
Krzysztof Pietrzak
Benny Pinkas
Oxana Poburinnaya
Bertram Poettering
Antigoni Polychroniadou
Christopher Portmann
Manoj Prabhakaran
Emmanuel Prouff
Carla Ràfols
Somindu C. Ramanna
Samuel Ranellucci
Shahram Rasoolzadeh
Divya Ravi
Ling Ren
Oscar Reparaz
Silas Richelson
Peter Rindal
Michal Rolinek
Miruna Rosca

Ron Rothblum
David Roubinet
Adeline Roux-Langlois
Vladimir Rozic
Andy Rupp
Yusuke Sakai
Simona Samardjiska
Niels Samwel
Olivier Sanders
Pratik Sarkar
Alessandra Scafuro
Martin Schläffer
Dominique Schröder
Sven Schäge
Adam Sealfon
Yannick Seurin
abhi shelat
Kazumasa Shinagawa
Luisa Siniscalchi
Maciej Skórski
Fang Song
Ling Song
Katerina Sotiraki
Florian Speelman
Gabriele Spini
Kannan Srinathan
Thomas Steinke
Uri Stemmer
Igors Stepanovs
Noah

Stephens-Davidowitz
Alan Szepieniec
Seth Terashima
Cihangir Tezcan
Mehdi Tibouchi
Elmar Tischhauser
Radu Titiu
Yosuke Todo
Junichi Tomida
Patrick Towa
Boaz Tsaban
Daniel Tschudi
Thomas Unterluggauer
Margarita Vald
Kerem Varici
Prashant Vasudevan

X Eurocrypt 2018

Philip Vejre
Daniele Venturi
Benoît Viguier
Fernando Virdia
Damian Vizár
Alexandre Wallet
Michael Walter
Haoyang Wang
Qingju Wang

Hoeteck Wee
Felix Wegener
Christian Weinert
Erich Wenger
Daniel Wichs
Friedrich Wiemer
David Wu
Thomas Wunderer
Sophia Yakoubov

Shota Yamada
Takashi Yamakawa
Kan Yasuda
Attila Yavuz
Scott Yilek
Eylon Yogev
Greg Zaverucha
Mark Zhandry
Ren Zhang

Eurocrypt 2018 XI

Abstract of Invited Talks

Desperately Seeking Sboxes

Anne Canteaut

Inria, Paris, France
anne.canteaut@inria.fr

Abstract. Twenty-five years ago, the definition of security criteria associated to
the resistance to linear and differential cryptanalysis has initiated a long line of
research in the quest for Sboxes with optimal nonlinearity and differential
uniformity. Although these optimal Sboxes have been studied by many cryp-
tographers and mathematicians, many questions remain open. The most
prominent open problem is probably the determination of the optimal values
of the nonlinearity and of the differential uniformity for a permutation depending
on an even number of variables.

Besides those classical properties, various attacks have motivated several
other criteria. Higher-order differential attacks, cube distinguishers and the more
recent division property exploit some specific properties of the representation
of the whole cipher as a collection of multivariate polynomials, typically the fact
that some given monomials do not appear in these polynomials. This type of
property is often inherited from some algebraic property of the Sbox. Similarly,
the invariant subspace attack and its nonlinear counterpart also originate from
specific algebraic structure in the Sbox.

Thirty Years of Digital Currency:
From DigiCash to the Blockchain

Matthew Green

Johns Hopkins University
mgreen@cs.jhu.edu

Abstract. More than thirty years ago a researcher named David Chaum pre-
sented his vision for a cryptographic financial system. In the past ten years this
vision has been realized. Yet despite a vast amount of popular excitement, it
remains to be seen whether the development of cryptocurrencies (and their
associated consensus technologies) will have a lasting positive impact—both on
society and on our research community. In this talk I will examine that question.
Specifically, I will review several important contributions that research cryp-
tography has made to this field; survey the most promising deployed
(or developing) technologies; and discuss the many challenges ahead.

Contents – Part II

Blockchain

Thunderella: Blockchains with Optimistic Instant Confirmation 3
Rafael Pass and Elaine Shi

But Why Does It Work? A Rational Protocol Design Treatment
of Bitcoin. 34

Christian Badertscher, Juan Garay, Ueli Maurer, Daniel Tschudi,
and Vassilis Zikas

Ouroboros Praos: An Adaptively-Secure, Semi-synchronous
Proof-of-Stake Blockchain . 66

Bernardo David, Peter Gaži, Aggelos Kiayias,
and Alexander Russell

Sustained Space Complexity. 99
Joël Alwen, Jeremiah Blocki, and Krzysztof Pietrzak

Multi-collision Resistance

Multi-Collision Resistant Hash Functions and Their Applications 133
Itay Berman, Akshay Degwekar, Ron D. Rothblum,
and Prashant Nalini Vasudevan

Collision Resistant Hashing for Paranoids: Dealing
with Multiple Collisions. 162

Ilan Komargodski, Moni Naor, and Eylon Yogev

Signatures

Synchronized Aggregate Signatures from the RSA Assumption. 197
Susan Hohenberger and Brent Waters

More Efficient (Almost) Tightly Secure Structure-Preserving Signatures. 230
Romain Gay, Dennis Hofheinz, Lisa Kohl, and Jiaxin Pan

Private Simultaneous Messages

The Communication Complexity of Private Simultaneous
Messages, Revisited . 261

Benny Applebaum, Thomas Holenstein, Manoj Mishra,
and Ofer Shayevitz

The Complexity of Multiparty PSM Protocols and Related Models 287
Amos Beimel, Eyal Kushilevitz, and Pnina Nissim

Masking

Formal Verification of Masked Hardware Implementations in the Presence
of Glitches . 321

Roderick Bloem, Hannes Gross, Rinat Iusupov, Bettina Könighofer,
Stefan Mangard, and Johannes Winter

Masking the GLP Lattice-Based Signature Scheme at Any Order 354
Gilles Barthe, Sonia Belaïd, Thomas Espitau, Pierre-Alain Fouque,
Benjamin Grégoire, Mélissa Rossi, and Mehdi Tibouchi

Masking Proofs Are Tight and How to Exploit it in Security Evaluations. . . . 385
Vincent Grosso and François-Xavier Standaert

Best Young Researcher Paper Award

The Discrete-Logarithm Problem with Preprocessing 415
Henry Corrigan-Gibbs and Dmitry Kogan

Best Paper Awards

Simple Proofs of Sequential Work. 451
Bram Cohen and Krzysztof Pietrzak

Two-Round Multiparty Secure Computation from Minimal Assumptions 468
Sanjam Garg and Akshayaram Srinivasan

k-Round Multiparty Computation from k-Round Oblivious Transfer
via Garbled Interactive Circuits . 500

Fabrice Benhamouda and Huijia Lin

Theoretical Multiparty Computation

Adaptively Secure Garbling with Near Optimal Online Complexity 535
Sanjam Garg and Akshayaram Srinivasan

A New Approach to Black-Box Concurrent Secure Computation 566
Sanjam Garg, Susumu Kiyoshima, and Omkant Pandey

Obfuscation

Obfustopia Built on Secret-Key Functional Encryption. 603
Fuyuki Kitagawa, Ryo Nishimaki, and Keisuke Tanaka

XVIII Contents – Part II

Limits on Low-Degree Pseudorandom Generators (Or: Sum-of-Squares
Meets Program Obfuscation) . 649

Boaz Barak, Zvika Brakerski, Ilan Komargodski,
and Pravesh K. Kothari

Symmetric Cryptanalysis

Boomerang Connectivity Table: A New Cryptanalysis Tool 683
Carlos Cid, Tao Huang, Thomas Peyrin, Yu Sasaki, and Ling Song

Correlation Cube Attacks: From Weak-Key Distinguisher
to Key Recovery. 715

Meicheng Liu, Jingchun Yang, Wenhao Wang, and Dongdai Lin

The Missing Difference Problem, and Its Applications to Counter
Mode Encryption . 745

Gaëtan Leurent and Ferdinand Sibleyras

Fast Near Collision Attack on the Grain v1 Stream Cipher 771
Bin Zhang, Chao Xu, and Willi Meier

Author Index . 803

Contents – Part II XIX

Blockchain

Thunderella: Blockchains with Optimistic
Instant Confirmation

Rafael Pass1(B) and Elaine Shi2

1 CornellTech, New York, USA
rafael@cs.cornell.edu
2 Cornell, Ithaca, USA

Abstract. State machine replication, or “consensus”, is a central
abstraction for distributed systems where a set of nodes seek to agree
on an ever-growing, linearly-ordered log. In this paper, we propose a
practical new paradigm called Thunderella for achieving state machine
replication by combining a fast, asynchronous path with a (slow) syn-
chronous “fall-back” path (which only gets executed if something goes
wrong); as a consequence, we get simple state machine replications that
essentially are as robust as the best synchronous protocols, yet “opti-
mistically” (if a super majority of the players are honest), the protocol
“instantly” confirms transactions.

We provide instantiations of this paradigm in both permissionless
(using proof-of-work) and permissioned settings. Most notably, this
yields a new blockchain protocol (for the permissionless setting) that
remains resilient assuming only that a majority of the computing power
is controlled by honest players, yet optimistically—if 3/4 of the comput-
ing power is controlled by honest players, and a special player called the
“accelerator”, is honest—transactions are confirmed as fast as the actual
message delay in the network. We additionally show the 3/4 optimistic
bound is tight for protocols that are resilient assuming only an honest
majority.

1 Introduction

State machine replication, also referred to as atomic broadcast, is a core dis-
tributed systems abstraction that has been investigated for three decades. In
a state machine replication protocol, a set of servers seek to agree on an ever-
growing, linearly-ordered log, such that two important properties are satisfied:
(1) consistency, i.e., all servers must have the same view of the log; and (2)
liveness, i.e., whenever a client submits a transaction, the transaction is incor-
porated quickly into the log. In this paper, we will also refer to state machine
replication as consensus for short1.

The full version of this paper is available at https://eprint.iacr.org/2017/913 [36].
1 Although the term “consensus” has been used in the distributed systems literature

to mean other related abstractions such as single-shot consensus; in this paper, we
use “consensus” to specifically refer to “state machine replication”.

c© International Association for Cryptologic Research 2018
J. B. Nielsen and V. Rijmen (Eds.): EUROCRYPT 2018, LNCS 10821, pp. 3–33, 2018.
https://doi.org/10.1007/978-3-319-78375-8_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78375-8_1&domain=pdf
https://eprint.iacr.org/2017/913

4 R. Pass and E. Shi

State machine replication is a fundamental building block for replicated
databases. For more than a decade, companies such as Google and Facebook
have deployed Paxos-style protocols [5,24,30] to replicate a significant part of
their computing infrastructure. These classical deployment scenarios are typi-
cally relatively small scale, with fast local-area networking, where crash (rather
than byzantine) faults are usually of concern.

Fuelled by decentralized cryptocurrencies, recently the community has been
excited about large-scale applications of distributed consensus. Two deployment
scenarios are of interest: (1) the permissionless setting where anyone can join
freely (e.g., decentralized cryptocurrencies); and (2) the permissioned setting
where only approved participants may join (e.g., a consortium blockchain where
multiple banks collaborate to build a distributed ledger). Regardless of which
setting, the typical deployment would involve a large number of nodes (e.g., thou-
sands or more) controlled by mutually distrustful individuals and organizations.

Roughly speaking, two broad classes of protocols have been considered for
the large-scale setting, each with their own set of deficiencies:

– First, classical-style protocols such as PBFT [9] and Byzantine-Paxos [30]
confirm transactions quickly in the normal case; but these protocols are noto-
riously complicated, making implementation, reconfiguration, and mainte-
nance relatively difficult especially in a large-scale setting. Further, these
protocols achieve “fast confirmation” by adopting the asynchronous (or par-
tially synchronous) model, and thus inherently they can tolerate at most 1

3
corruptions [15,38].

– Second, blockchain-style protocols, represented by Nakamoto’s original
blockchain [19,34,35], are a new breakthrough in distributed consensus: these
protocols are conceptually simple and tolerate minority corruptions. More-
over, it is has been shown how to remove the expensive proof-of-work from
blockchain-style consensus [11,26,40] thus solving the energy waste problem.
Further, not only has blockchains’ robustness been empirically proven, earlier
works [11,40] have also shown mathematically that blockchain-style consensus
indeed achieves certain robustness properties in the presence of sporadic par-
ticipation and node churn that none of the classical-style protocols can attain!
Unfortunately known blockchain-style protocols suffer from slow transaction
confirmation, e.g., Bitcoin’s Nakamoto consensus has a 10-minute block inter-
val and it takes several blocks to confirm a transaction with sufficient con-
fidence. Earlier works that mathematically analyze blockchain-style consen-
sus [35,40] have pointed out that such slowness is inherent for blockchain-style
protocols since the expected block interval must be set to be sufficiently large
for the protocol to retain security.

A natural question that arises is whether there is some way to simultaneously
reap the benefit of both of these “worlds”. Unfortunately, a negative answer
was presented by earlier works [38–40] which showed that a natural notion of
fast transaction confirmation called “responsiveness” is unattainable against 1

3

Thunderella: Blockchains with Optimistic Instant Confirmation 5

(even static) corruptions in classical or permissionless models. In this paper we
consider a new notion called optimistic responsiveness that allows us “circum-
vent” this lower bound such that we can achieve responsiveness most of the time
in practice and yet tolerate up to minority corruptions in the worst-case. In
our approach, in the optimistic case (when e.g., a super majority is honest), we
enjoy the fast nature of asynchronous protocols; and yet we retain the resilience
of synchronous (e.g., blockchain) protocols as well as their robustness proper-
ties (e.g., support for sporadic participation). More precisely, we show how to
combine a fast and simple “asynchronous path”—which guarantees consistency
but not liveness—with a (slow) synchronous “fall-back” path which only gets
executed if something goes wrong.

1.1 The Thunderella Paradigm

To characterize what we mean by “fast” or “instant confirmation”, we adopt the
same notion of responsiveness as proposed in the work by Attiya et al. [1] and
later adopted by others [23,38]. A consensus protocol is said to be responsive iff
any transaction input to an honest node is confirmed in time that depends only
on the actual network delay, but not on any a-priori known upper bound on the
network delay. Henceforth in this paper, we use δ to denote the actual network
delay and use Δ to denote an a-priori known upper bound of the network’s delay
where Δ is possibly provided as input to the protocol.

As shown in [38], achieving responsiveness requires us to assume that 2/3
of the players are honest. (Additionally, all known protocols that are responsive
are very complicated, and thus hard to implement.)

Towards overcoming this issue, we here instead consider a notion of opti-
mistic responsiveness—where responsiveness is only required to hold when-
ever some “goodness conditions” are satisfies. More precisely, we consider two
sets of conditions:

– worst-case conditions (denoted W) under which the protocol provides
worst-case guarantees including consistency and “slow” confirmation (e.g.,
W = majority honest).

– optimistic-case conditions (denoted O ⊆ W) under which the protocol addi-
tionally provides responsive confirmation (e.g., O = “more than 3

4 are honest
and online, and some designated player (the “leader”) is honest”).

Our main result is a paradigm for taking any blockchain protocol (permis-
sioned or permissionless) that satisfies consistency and liveness under conditions
W , and transform it into a new protocol that satisfies consistency and liveness
under “essentially” the same conditions W (and in many cases, actually the
same conditions W), and additionally satisfies optimistic responsiveness under
condition O.

6 R. Pass and E. Shi

The idea in a nutshell. To explain our approach, consider first the following
simple protocol:

– We have a designated entity: the leader, or “accelerator”.
– Transactions are sent to the leader; the leader signs the transaction (with

an increasing sequence number), and sends out the signed transaction to a
“committee” of players.

– The committee members “ack” all leader-signed transactions, but at most
one per sequence number.

– If a transaction has received more than 3/4 of the committees signatures—we
refer to such a transaction as being notarized. Participants, can directly output
their longest sequence of consecutive (in terms of their sequence numbers)
notarized transactions—all those transactions are confirmed.

It is not hard to see that this protocol is consistent under condition W ′ =
“1/2 the committee is honest”); additionally, it satisfies liveness with optimistic
responsiveness under condition O = “leader is honest, and 3/4 of the committee
is honest”. In fact, under these optimistic condition, we only need 2 commu-
nication rounds to confirm a transaction! This approach is extremely practical
and indeed this protocol is often used in practice—for instance chain.com use
something very similar as their permissioned blockchain (and manage to handle
a very high volume of transactions with fast confirmations).

The problem with this approach, however, is that the protocol does not satisfy
liveness (even “slow” liveness) under condition W ′. If the leader is cheating (or
is simply taken down from the network), the protocol halts. (Indeed, in this case
chain.com resorts to manually fixing the issue.)

To overcome this problem, we leverage the underlying (slow) blockchain pro-
tocol, which satisfies both consistency and liveness under W = “honest majority
of players”. Roughly speaking, if players notice that transactions are not get-
ting confirmed by the leader/committee, some “evidence” of this is sent to the
underlying blockchain. We then enter a “cool-down” period, where committee
members stop signing messages from the leader, yet we allow players to broadcast
any notarized transactions they have seen so far. The length of the cool-down
period is counted in blocks on the underlying blockchain (say κ blocks where κ
is a security parameter). Finally, after the cool-down period ends, we can safely
enter a “slow period” where transactions only get confirmed in the underlying
blockchain. We can next use the blockchain to switch out the leader (if needed)
and begin a new epoch of the optimistic protocol.

Let us point out the reason for having a cool-down period: without it, players
may disagree on the set of transactions that have been confirmed before entering
the “slow mode”, and thus may end up with inconsistent views. The cool-down
period enables honest players to post all notarized transactions they have seen
to the (slow) underlying blockchain, and thus (slowly) reach consistency of this
set of transactions; once we have reached this consistent view (at the end of the
cool-down), we can finally fully switch over to confirming new transactions on
the blockchain.

Thunderella: Blockchains with Optimistic Instant Confirmation 7

Collecting evidence of cheating. It only remains to explain how to collect evi-
dence that the leader (and/or committee) is cheating or is simply “unavailable”.
This turns out to also be simple: if a player notices that his transaction is not
getting confirmed by the leader or committee, he can send the transaction to
the underlying blockchain. The leader is additionally instructed to confirm all
transactions it sees on the blockchain.

Now, if players see some transaction on the blockchain, that has not got-
ten notarized within a sufficiently long amount of time—counted in blocks in
the underlying blockchains (say within n blocks)—they know that the leader/
committee must be cheating/unavailable, and thus should enter the cool-down
period. (Note that as long as the leader can confirm transactions before n blocks
are created on the underlying blockchain, he cannot be “falsely accused”; and, by
the security of the underlying blockchains those blocks cannot be created too fast.)

Selecting the committee. So far we have constructed a protocol that satisfies
consistency and liveness under conditions W ∩ W ′ (i.e., assuming an honest
majority of players, and an honest majority in the committee), and additionally
satisfies liveness with optimistic responsiveness under condition O. The question
now is how to select the committee. We consider two different approaches:

– Using all players as the committee: In a permissioned setting, the sim-
plest approach is to simply use all players as the committee. In this case,
W ′ = W and thus, we trivially have resilience under W . A variant of this
approach with improved communication complexity is to subsample a com-
mittee among the set of players (for instance, using the approach in [11] which
additionally requires a random oracle), and change committees on a regular
basis (to ensure adaptive security)—the resulting protocol, however, will only
be secure if corruptions are “slow” (to ensure the attacker does not have time
to corrupt the whole committee before it gets switched out). If sub-sampling
is instead done “secretly” using a VRF and a random oracle (as in [32]), we
can also ensure that the resulting protocol is adaptively secure in a model
with erasures, even with “instantaneous corruption”.

We mention that these approaches may also be used in the permissionless
setting if Thunderella is used to construct a crypto currency: then we can use
(potentially a sub-sample of) recent “stakeholders” to form a committee.

– Using “recent miners” as the committee: A different approach that
works in both the permissioned and permissionless setting is to select the
committee as the miners of recent blocks (as was done in [38]). We note, how-
ever, that to rely on this approach, we need to ensure that the underlying is
blockchain is “fair” [37] in the sense that the fraction of honestly mined blocks
is close to the fraction of honest players. This is not the case for Nakamoto’s
original blockchain (see e.g., [17]), but as shown in [37], any blockchain can be
turned into a fair one. If we use this approach, the resulting protocol will now
be consistent and live under simply the condition W (i.e., honest majority),
yet also satisfy optimistic liveness under condition O. (Again, this only gives
security under adaptive corruption where corruption is “slow”, so the set of
recent miners changes sufficiently fast before they can all be corrupted.)

8 R. Pass and E. Shi

Permissionless Thunderella. For instance, if we apply the second approach (of
selecting the committee as the recent miners) to Nakamoto’s proof-of-work based
blockchain, we get the following theorem:

Theorem 1 (Thunderellafor permissionless environments, informal).
Assume a proof-of-work random oracle. Then, there exists a state machine repli-
cation protocol that achieves consistency and (non-responsive) liveness in a per-
missionless environment as long as the adversary wields no more than 1

2 − ε the
total online computation power in every round where ε is an arbitrarily small con-
stant, and moreover it takes a short while for the adversary to adaptively corrupt
nodes. Moreover, if more than 3

4 of the online computation power is honest and
online, then the protocol achieves responsiveness (after a short non-responsive
warmup period) in any “epoch” in which the leader is honest and online.

Permissioned Thunderella. Similar theorems can be shown for permissioned envi-
ronments (in e.g., the “sleepy model” of [40], or even just in the “classic” model
of Dolev-Strong [14]).

The classical mode is essentially the standard synchronous model adopted
by the existing distributed systems and cryptography literature. In this model,
all nodes are spawned upfront, and their identities and public keys are provided
to the protocol as input; further, crashed nodes are treated as faulty and count
towards the corruption budget. In a classical, synchronous network, we show that
the classical Dolev-Strong byzantine agreement protocol [14] can be extended to
implement Thunderella’s underlying “blockchain”. In this case, our Thunderella
paradigm (where use the first approach to instantiate the committee) gives rise
to the following informal theorem:

Theorem 2 (Thunderellafor permissioned, classical environments (infor-
mal)). Assume the existence of a PKI and one-way functions. There exists a
state machine replication protocol that achieves consistency and (non-responsive)
liveness in a classical environment under any f < n number of fully adaptive,
byzantine corruptions where n denotes the total number of nodes; moreover, the
protocol achieves responsiveness as long as the leader is honest and moreover
�n+f

2 + 1� nodes are honest.

The “sleepy” model was recently proposed by Pass and Shi [40] to capture the
requirements arising from “sporadic participation” in large-scale, permissioned
consensus. Specifically, the sleepy model was in fact inspired by permissionless
decentralized cryptocurrencies such as Bitcoin, where nodes may come and go
frequently during the protocol, and the protocol should nonetheless guarantee
consistency and liveness even for players that join late, and for players who might
have had a short outage and woke up later to rejoin the protocol.

The sleepy model is “permissioned” in nature in that the set of approved
protocol participants and their public keys are a-priori known and provided to
the protocol as input. However, unlike the classical setting, (1) nodes are allowed
to be non-participating (i.e., sleeping); (2) sleeping nodes are not treated as
faulty; and (3) the protocol may not know in advance how many players will

Thunderella: Blockchains with Optimistic Instant Confirmation 9

actually show up. In comparison, in a classical setting, non-participating nodes
are regarded as having crashed and count towards the corruption budget; and
moreover a classical protocol need not guarantee consistency and liveness for
nodes that have crashed but wake up later to rejoin.

In such a sleepy model, Pass and Shi [40] show that roughly speaking, we
can achieve consensus when the majority of online (i.e., non-sleeping) nodes
are honest (interestingly, unlike the classical synchronous model, [40] also prove
that no state machine replication protocol can tolerate more than 1

2 corruption
(among online nodes).

Our Thunderella paradigm (again using the first approach for selecting the
committee) can be instantiated in the sleepy model using the sleepy consensus
protocol as the underlying blockchain. This gives rise to the following infor-
mal theorem in a sleepy environment (where we assume that the adversary can
adaptively put honest nodes to sleep).

Theorem 3 (Thunderellafor permissioned, sleepy environments (infor-
mal)). Assume the existence of a PKI, enhanced trapdoor permutations, and a
common reference string (CRS). There exists a state machine replication protocol
that achieves consistency and (non-responsive) liveness in a sleepy environment
with static corruptions, as long as 1

2 − ε of the online nodes are honest in every
round for any arbitrarily small constant ε; moreover, if more than 3

4 fraction
of nodes are honest and online, the protocol achieves responsiveness (after a
short non-responsive warmup period) in any epoch in which leader is honest and
online.

In fact, the above theorem also extends to adaptive corruptions with erasures
using the adaptively secure version of sleepy consensus [40]2 as Thunderella’s
underlying blockchain, assuming the existence of a VRF and a random oracle
(using the approach from [32]).

Lower bounds on the optimistic honest threshold. We additionally prove that
our optimistic bound of 3/4 is tight: no protocol that is (worst-case) resilient for
simply an honest majority, can be optimistically responsive when more than 1/4
of the player can be corrupted.

Practical Considerations: Instant Confirmation and Scalability. The low latency
and poor scalability of Nakamoto’s blockchain protocol are typically viewed as
the main bottlenecks for Bitcoin as well as other cryptocurrencies.

Our paradigm provides a very practical and simple approach for overcoming
these issue. The Thunderella paradigm shows how to build on top of currently
running blockchains, to enable “optimistic instant confirmation” of transactions.
Additionally, note that in our protocol, players only need to send transactions

2 The paper has multiple adaptively secure versions; here we rely on the one that
achieves adaptive security with erasures in the random oracle model (as this proto-
col has better parameters than the one which satisfies adaptive security without a
random oracle).

10 R. Pass and E. Shi

to the leader, who in turn lead the committee to confirm the transaction. Most
notably, the underlying blockchain is essentially only used when something goes
wrong, and blocks need not be distributed to the whole network before getting
confirmed; thus, Thunderella also solves the scalability issue with Nakamoto’s
blockchain protocol. Of course, both of these guarantees are only “optimistic”—
but arguably, under normal circumstances one would expect 3/4 of the play-
ers to act honestly, and the leader could be incentivized (paid) to perform its
job (and if it doesn’t, will be kicked out). Thus, we believe our approach is a
practically viable approach for circumventing the main bottlenecks of today’s
cryptocurrencies.

Comparison. At the surface, our idea is reminiscient of classical-style protocols
such as PBFT and Byzantine-Paxos. In particular, protocols like PBFT also have
a very simple normal path that consists of O(1) rounds of voting. However, when
the normal path gets stuck, PBFT-style protocols fall back to a “view change”
mechanism that is also responsive—and thus these protocols tolerate only 1

3 cor-
ruptions in the worst-case, and are invariably complex due to the need to handle
asynchrony. (Furthermore, this approach is not amenable for protocols in the
permissionless setting). Our key insight is to instead fall back to a synchronous
path in the worst case, thus allowing us to circumvent the 1

3 lower bound for par-
tial synchrony and yet still be responsive in practice most of the time. Moreover,
since our protocol is fundamentally synchronous, we benefit from the simplicity
and robustness enjoyed by synchronous protocols (e.g., blockchains).

Interestingly, Thunderella is also a constant factor faster in the fast path than
most PBFT- or Paxos-style protocols. PBFT-style protocols typically require
multiple rounds of voting even in the normal path (c.f. Thunderella has exactly
one)—and the latter rounds are necessary to prepare for the possibility of a view
change. Although it is possible to compress the normal path to a single round of
voting, this is typically achieved either by sacrificing resilience (e.g., tolerating
only 1

5 corruptions) [42] or by adding yet another optimistic layer on top of the
normal path—thus further complicating the already complex protocol [29].

Roadmap. In this extended abstract, we simply provide a description and proof
of the general Thunderella paradigm (informally described above) assuming the
existence of a fixed committee, a majority of which is honest. We defer the formal
treatment of how to select the committee to the online full version [36] (although
we described it informally above).

2 Definitions

We present informal definitions in this section while deferring the detailed formal
definitions to the online full version [36].

We adopt the standard Interactive Turing Machines (ITM) approach to
model protocol execution. A protocol refers to an algorithm for a set of
interactive Turing Machines (also called nodes) to interact with each other.

Thunderella: Blockchains with Optimistic Instant Confirmation 11

The execution of a protocol Π that is directed by an environment Z(1κ)
(where κ is a security parameter), which activates a number of nodes as either
honest or corrupt nodes. Honest nodes would faithfully follow the protocol’s pre-
scription, whereas corrupt nodes are controlled by an adversary A which reads
all their inputs/message and sets their outputs/messages to be sent.

Aprotocol’s execution proceeds in rounds thatmodel atomic time steps.Hence-
forth, we use the terms round and time interchangeably. At the beginning of every
round, honest and online nodes receive inputs from an environment Z; at the end
of every round, honest and online nodes send outputs to the environment Z.

Corruption model. In the standard distributed systems or cryptography litera-
ture, crashed nodes are often treated as faulty and count towards the corruption
budget. In this paper, we describe a more general model in which we distinguish
crashed nodes (also referred to as sleeping nodes) and corrupt nodes. An honest
node may have a short-term or long-term outage during which it is not able to
participate in the protocol. However, such a crashed node is not in the control of
the adversary—in this case we do not attribute this node as corrupt. Informally,
we often refer to the set of honest nodes that have not crashed as being online.
We also consider all corrupt nodes as being online (since this gives the adversary
more advantage).

We stress that the motivation for not treating crashed nodes as corrupt is to
allow us to prove a more powerful theorem: our Thunderella paradigm ensures
consistency and worst-case liveness when α fraction of the committee are hon-
est but not necessarily online (and assuming that the underlying blockchain is
secure). In particular, as we noted, α can be as small as a single member of
the committee—but in this case the conditions necessary for instant confirma-
tion are somewhat more stringent (i.e., all committee members must be honest
and online for instant confirmation). In a more traditional model where crash is
treated as corrupt, all of our theorems still apply—except that “honest” would
equate to “honest and online”.

More formally, in our model, the environment Z controls when nodes are
spawned, corrupted, put to sleep, or waken up:

– At any time during the protocol execution, the environment Z can spawn
new nodes, and newly spawned nodes can either be honest or corrupt. The
adversary A has full control of all corrupt nodes.

– At any time during the protocol execution, Z can issue a corrupt instruction
to an honest (and possibly sleeping) node. When this happens, its internal
states are exposed to A and A henceforth controls the node.

– At any time during the protocol execution, Z can issue a sleep instruction
to an honest node. When this happens, the node immediately becomes asleep
(or sleeping), and it stops sending and receiving protocol messages and per-
forming any computation. Sleeping is similar to the notion of a crash fault
in the classical distributed systems terminology. In our paper, though, we
treat sleeping nodes as being honest rather than attributing them towards
the faulty budget.

12 R. Pass and E. Shi

– At any time during the protocol execution, Z can issue a wake instruction
to an honest, sleeping node. At this point, this node immediately wakes up
and continues to participate in the protocol. When an honest, sleeping node
wakes up, pending messages that the node should have received while sleeping
and additionally some adversarialy inserted messages may be delivered to the
waking node.

– At any time during the protocol execution, Z can issue a kill instruction to
a corrupt node. At this point, the corrupt node is removed from the protocol
execution and is no longer considered as an online node—but note that the
adversary A still knows the internal states of a killed node prior to its being
killed.

Formally, we use the terminology online nodes to refer to the set of nodes
that are (i) either honest and not sleeping; or (ii) corrupt but not having been
killed.

Communication model. We assume that honest and online nodes can send mes-
sages to all other honest and online nodes. The adversary A is in charge of
scheduling message delivery. A cannot modify the contents of messages broad-
cast by honest nodes, but it can reorder and delay messages sent by honest
and online nodes, possibly subject to constraints on the maximum delays to be
defined later. The adversary A is allowed to send messages to a subset of honest
and online nodes but not all of them. The identity of the sender is not known
to the recipient3.

Formally, we say that (A,Z) respects Δ-bounded delay iff Z inputs Δ to all
honest nodes when they are spawned, and moreover the following holds:

Δ-bounded delay. Suppose an honest (and online) node sends a message at
time t, then in any round r ≥ t+Δ, any honest node that is online in round r
will have received the message, including nodes that may possibly have been
sleeping but just woke up in round r, as well as nodes which may have just
been spawned at the beginning of round r.

Throughout this paper, we assume that Z inputs the maximum delay param-
eter Δ to all honest nodes upon spawning (as noted in the above definition of
Δ-bounded delay)—this means that the protocol has a-priori knowledge of an
upper bound on the network’s maximum delay. This is akin to the synchronous
communication model in the classical distributed systems literature.

2.1 Classical, Sleepy, and Permissionless Models

The above generic model does not impose any constraints on when nodes are
spawned, how many nodes are spawned, and which nodes are allowed to join
the protocol. Thus the generic model can capture permissionless executions.

3 Later in the paper, for instantiations in the permissioned model under a PKI, authen-
ticated channels are implied by the PKI.

Thunderella: Blockchains with Optimistic Instant Confirmation 13

In this generic model, we can also model classical and sleepy executions by
imposing constraints on (A,Z). The classical setting is what the vast majority
of distributed systems literature focuses on. In a classical execution, (A,Z) is
required to spawn all nodes, numbered 1..n, upfront; further, honest nodes are
assumed to be always online (i.e., (A,Z)) are not allowed to issue sleep or wake
instructions. The sleepy model was first proposed by Pass and Shi [40], which
is meant to be “in-between” a fully permissionless and a classical permissioned
model. In a sleepy execution, the set of allowed players are determined upfront
and number 1..n; however, nodes can join late, they can also fall asleep and later
wake up again. Nodes that fall asleep are not treated as corrupt and when they
wake up, the security properties we define such as consistency and liveness must
ensue for them.

We use the terms (n, ρ,Δ)-permissionless environment, (n, ρ,Δ)-sleepy envi-
ronment, or (n, f,Δ)-classical environment to capture the execution environment
we care about and the parameters respected by (A,Z) (where ρ is a corruption
fraction but f is the absolute number of corrupt nodes). We defer the formal
definition of these terms to the online full version [36].

2.2 State Machine Replication

State machine replication has been a central abstraction in the 30 years of dis-
tributed systems literature. In a state machine replication protocol, a set of nodes
seek to agree on an ever-growing log over time. We require two critical security
properties: (1) consistency, i.e., all honest nodes’ logs agree with each other
although some nodes may progress faster than others; (2) liveness, i.e., transac-
tions received by honest nodes as input get confirmed in all honest nodes’ logs
quickly. We now define what it formally means for a protocol to realize a “state
machine replication” abstraction.

Syntax. In a state machine replication protocol, in every round, an honest and
online node receives as input a set of transactions txs from Z at the beginning
of the round, and outputs a LOG collected thus far to Z at the end of the round.

Security definitions. Let Tconfirm(κ, n, ρ,Δ, δ) and Twarmup(κ, n, ρ,Δ, δ) be poly-
nomial functions in the security parameter κ and possibly other parameters of
the view such as the number of nodes n, the corrupt fraction ρ, the actual max-
imum network delay δ, the network delay upper bound Δ that is provided by Z
to the protocol as input, etc.

Definition 1 (Security of a state machine replication protocol). We
say that a state machine replication protocol Π satisfies consistency (or
(Tconfirm, Twarmup)-liveness resp.) w.r.t. some (A,Z), iff there exists a negligible
function negl(·), such that for any κ ∈ N, except with negl(κ) probability over the
choice of view ← EXECΠ(A,Z, κ), consistency (or (Tconfirm, Twarmup)-liveness
resp.) is satisfied:

14 R. Pass and E. Shi

– Consistency: A view satisfies consistency iff the following holds:
• Common prefix. Suppose that in view, an honest node i outputs LOG to

Z at time t, and an honest node j outputs LOG′ to Z at time t′ (i and
j may be the same or different), it holds that either LOG ≺ LOG′ or
LOG′ ≺ LOG. Here the relation ≺ means “is a prefix of”. By convention
we assume that ∅ ≺ x and x ≺ x for any x.

• Self-consistency. Suppose that in view, a node i is honest and online at
time t and t′ ≥ t, and outputs LOG and LOG′ at times t and t′ respectively,
it holds that LOG ≺ LOG′.

– Liveness: A view satisfies (Tconfirm, Twarmup)-liveness iff the following holds: if
in some round Twarmup < t ≤ |view|−Tconfirm, some node honest and online in
round t either received from Z an input set txs that contains some transaction
m or has m in its output log to Z in round t, then, for any node i honest and
online at any time t′ ≥ t + Tconfirm, let LOG be the output of node i at time
t′, it holds that m ∈ LOG.
Intuitively, liveness says that transactions input to an honest node get
included in honest nodes’ LOGs within Tconfirm time; and further, if a transac-
tion appears in some honest node’s LOG, it will appear in every honest node’s
LOG within Tconfirm time.

2.3 Abstract Blockchain Protocols

A blockchain protocol can be regarded as a way to realize state machine repli-
cation. We now formally define what it means for a protocol to realize to a
blockchain abstraction. In our paper, our end goal is to realize state machine
replication and we leverage an abstract blockchain as an underlying building
block. We note that while the blockchain abstraction may superficially resemble
that of state machine replication, the blockchain abstraction in fact allows us to
additionally express (1) a rough notion of time through chain growth; and (2)
fairness properties [37] through chain quality.

Syntax and Security Definitions

Syntax. An abstract blockchain protocol satisfies the following syntax. In each
round, every node that is honest and online in this round receives from Z a set
of transactions txs at the beginning of the round; and outputs to Z an abstract
blockchain chain at the end of the round. An abstract blockchain denoted chain
is an ordered sequence of blocks of the following format:

chain := {txsi}i∈[|chain|]

where each txsi is an application-specific payload such as a set of transactions.

Thunderella: Blockchains with Optimistic Instant Confirmation 15

Blockchain notations. We use the notation chain to denote an abstract
blockchain. The notation chain[: −] denotes the entire chain except the trailing
	 blocks; chain[:] denotes the entire chain upto the block at length 	; chain[−	 :]
denotes the trailing 	 blocks of chain; and chain[:] denotes all blocks at length
	 or greater.

Henceforth we say that chain is “an honest chain in view”, iff chain is some
honest (and online) node’s output to the environment Z in some round in view.
We use the notation chaint

i(view) to denote node i’s chain in round t in view—
since the context is clear, we often omit writing the view explicitly in the above
notation.

Security definitions. A blockchain protocol should satisfy chain growth, chain
quality, and consistency. Intuitively, chain growth requires that honest nodes’
blockchains grow steadily, neither too fast nor too slow. Chain quality requires
that in any honest node’s chain, any sufficiently long window of consecutive
blocks contains a certain fraction of blocks that are mined by honest nodes.
Consistency requires that all honest nodes’ chains agree with each other except
for the trailing few blocks. We will formally define these security properties
below.

Definition 2 (Security of an abstract blockchain protocol). We say that
a blockchain protocol Πblockchain satisfies (T, g0, g1)-chain growth, (T, μ)-chain
quality, and T -consistency w.r.t. some (A,Z), iff there exists a negligible function
negl(·), such that for every κ ∈ N, except with negl(κ) probability over the choice
of view ← EXECΠblockchain(A,Z, κ), the following hold for view:

– (T, g0, g1)-chain growth. A view satisfies (T, g0, g1)-chain growth iff the follow-
ing hold:

• Consistent length: If in round r some honest chain is of length 	, then in
round r + Δ, all honest chains must be of length at least 	.

• Growth lower bound: For any r and t such that g0(t − r) ≥ T , let chainr

and chaint denote two honest chains in round r and t respectively, it holds
that

|chaint| − |chainr| ≥ �g0(t − r)�
• Growth upper bound: For any r and t such that g1(t − r) ≥ T , let chainr

and chaint denote two honest chains in round r and t respectively, it holds
that

|chaint| − |chainr| ≤ �g1(t − r)
– (T,L, μ)-chain quality. A view satisfies (T,L, μ)-chain quality iff the following

holds: for any honest chain denoted chain in view, for any T consecutive blocks
chain[j + 1..j + T], more than μ fraction of the blocks in chain[j + 1..j + T]
are mined by honest nodes at most L blocks ago—here we say that a block
chain[i] is “mined by an honest node at most L blocks ago” iff there is a set
txs such that txs ⊆ chain[i] and moreover Z input txs to some honest node
when its last output to Z contains the prefix chain[: i − L] (here if i − L < 0,
we round it to 0).

16 R. Pass and E. Shi

– T-consistency. A view satisfies T -consistency iff the following hold: for any
two honest chains chainr and chaint in round r and t ≥ r respectively, it holds
that

chainr[: −T] ≺ chaint

We stress that since chainr and chaint can possibly belong to the same node,
the above definition also implies “future self consistency” except for the trail-
ing T blocks.

Liveness as a derived property. Intuitively, liveness requires that if honest nodes
receive a transaction m as input, then m appear in honest chains very soon.
More formally, we say that a blockchain protocol Πblockchain satisfies (K,T)-
liveness w.r.t. some (A,Z) iff there exists a negligible function negl(·) such that
for every κ ∈ N, except with negl(κ) probability over the choice of view ←
EXECΠblockchain(A,Z, κ), the following holds:

– Suppose that in any round r ≥ t, Z always inputs a set that contains some
m to every honest and online node i unless m ∈ chainr

i [: −T]. Then, for any
honest chain denoted chain in view whose length is at least 	+K +T , it holds
that chain[: 	+K] contains m where 	 denotes the shortest honest chain length
at time t.

The liveness of a blockchain protocol is directly implied by chain growth and
chain quality as stated in the following lemma.

Lemma 1 (Liveness). Suppose that a blockchain protocol Πblockchain satis-
fies (K, g0, g1)-chain growth, (K ′, L, μ) chain quality and T -consistency w.r.t.
some (A,Z) for positive parameters K, g0, g1,K

′, L, μ and T , then it holds that
Πblockchain satisfies (2K + 2g1 + K ′ + L, T)-liveness w.r.t. (A,Z).

Proof. We ignore the negligible fraction of views where relevant bad events take
place. Let r′ be the earliest round in which some honest chain reaches length
at least 	 + K + g1 + K ′ + L + T , and let chain∗ be an honest chain in round
r′ of length at least 	 + K + g1 + K ′ + L + T . By chain quality, in the window
chain∗[+ K + g1 + L + 1 : 	 + K + g1 + K ′ + L], there must be an honest block
denoted B such that Z input (a subset of) the contents of B to some honest
node i in round r ≤ r′ when its chain contains the prefix chain∗[: 	+K +g1 +1].
By chain growth upper bound, the longest honest chain in round t must be of
length at most 	 + K + g1, and thus B must be input to some honest and online
node i by Z in some round r where t ≤ r ≤ r′. By assumption, B must contain
m unless chainr

i [: −T] already contains m. By consistency, it must be that chain∗

and chainr
i are no longer than 	 + 2(K + g1) + K ′ + L + T . By consistency, for

any honest chain ch in view of length at least 	 + 2(K + g1) + K ′ + L + T , it
must be that chainr

i [: −T] ≺ ch[: 	+2(K + g1)+K ′ +L] and chain∗[: −T] ≺ ch[:
	 + 2(K + g1) + K ′ + L], and thus ch[: 	 + 2(K + g1) + K ′ + L] must contain m.

Thunderella: Blockchains with Optimistic Instant Confirmation 17

Blockchain Implies State Machine Replication. Given any blockchain
protocol Πblockchain, it is easy to construct a state machine replication protocol
where (1) nodes run an instance of Πblockchain; (2) an honest node broadcasts all
newly seen transactions to each other; and (3) in every round, nodes remove the
trailing T blocks from the present chain (where T is the consistency parameter)
and output the truncated chain to the environment Z [38,40]. It is not difficult
to see that consistency (of the resulting state machine replication protocol) fol-
lows directly from consistency of the blockchain; and liveness follows from chain
quality and chain growth. The above intuition has been formalized in earlier
works [38,40].

2.4 Preliminaries: Responsiveness

Responsiveness. Recall that throughout this paper we always assume that
(A,Z) respects Δ-bounded delay for some Δ, i.e., Z informs the protocol of a
delay upper bound Δ upfront and all honest messages are then delivered within
Δ number of rounds. A state machine replication protocol is said to be responsive
if the transaction confirmation time is independent of the a-priori known upper
bound Δ of the network’s delay, but depends only on the actual maximum
network delay. To put our results in perspective, we formally define the notion
of responsiveness below and state a known lower bound result suggesting the
impossibility of responsiveness against 1

3 fraction of corruption. In the remainder
of the paper, we will show that if one optimistically hopes for responsiveness
only in lucky situations, then we can have protocols that retains consistency and
liveness even under more than 1

3 corruption. In practice, this means that we can
have protocols that are responsive most of the time, and even when more than
1
3 nodes are corrupt, the protocol can still guarantee consistency and liveness
although performance would degrade when under attaack.

Responsiveness. We define a technical notion called responsiveness for a state
machine replication protocol. Intuitively, responsiveness requires that except for
a (possibly non-responsive) warmup period in the beginning, all transactions
input afterwards will perceive transaction confirmation delay that is independent
of the a-priori set upper bound Δ on the network’s delay. As shown in earlier
works [15,38], responsive state machine replication is impossible if 1

3 or more
fraction of the nodes are corrupt (even in a permissioned, classical environment
with static corruptions, and even assuming that a proof-of-work oracle exists).

Definition 3 (Responsive state machine replication [38]). Suppose that
(A,Z) respects Δ-bounded delay for some Δ. We say that a state machine
replication protocol Π satisfies (Tconfirm, Twarmup-responsiveness w.r.t. (A,Z) iff
Π satisfies (Tconfirm, Twarmup)-liveness w.r.t. (A,Z), and moreover the function
Tconfirm does not depend on the a-prior delay upper bound Δ.

We say that a protocol Π satisfies consistency (or responsiveness resp.)
in (n, f,Δ)-classical, static environments iff for every p.p.t. (A,Z) pair that

18 R. Pass and E. Shi

respects (n, f,Δ)-classical execution and static corruption, Π satisfies consis-
tency (or responsiveness resp.) w.r.t. (A,Z). We can similarly define (n, ρ,Δ)-
sleepy, static environments and (n, ρ,Δ)-permissionless, static environments.

Theorem 4 (Impossibility of responsiveness against 1
3 corruption [38]).

For any n and f such that n ≤ 3f and for any polynomial Tconfirm in κ and δ,
and Twarmup in κ,Δ, and δ, there exists some polynomial function Δ in κ such
that no state machine replication protocol no state machine replication protocol
can simultaneously achieve consistency and (Tconfirm, Twarmup)-responsiveness in
(n, f,Δ)-classical, static environments even assuming the existence of a proof-
of-work oracle.

The proof of the above theorem was presented by Pass and Shi in a recent
work [38] where they modified the classical lower bound proof by Dwork et al. [15]
and made it work even in the proof-of-work setting.

Recall that permissioned-classical is expressed as constraints on (A,Z) in our
formal framework. This means that a lower bound for n ≤ 3f in the classical
setting immediately implies a lower bound in more permissive settings where
(A,Z) need not respect the permissioned-classical constraints as long as n ≤ 3f
(or the equivalent holds). In other words, the above impossibility also applies to
sleepy and permissionless settings (we defer formal theorem statements for these
settings to the online full version [36]).

Interestingly, how to achieve responsive state machine replication against
fewer than 1

3 fraction of corruption is also known in the in the permissioned
setting assuming the existence of a PKI [9], as well as in the permissionless setting
assuming proof-of-work [38] (and under additional technical assumptions).

3 Basic Thunderella Protocol with a Static Committee

We first describe the basic Thunderella protocol assuming a static committee
that is known a-priori to all nodes. We will discuss how to perform commit-
tee reconfiguration in the online full version [36]. For conceptual simplicity, we
describe a version of the protocol where the blockchain is also collecting trans-
actions constantly in the background—in practical implementations, it will not
be too difficult to optimize our theoretical construction further such that the
blockchain need not store an additional copy of all transactions under optimistic
conditions.

As mentioned, in general, the Thunderella paradigm can be instantiated with
any suitable asynchronous protocol to serve as the optimistic path and any
suitable synchronous protocol to serve as the fallback path. However, we believe
that a particular attractive instantiation is to use a simple voting-based protocol
for the optimistic path and a blockchain as the fallback. Thus for concreteness,
we will describe Thunderella for this specific instantiation.

Thunderella: Blockchains with Optimistic Instant Confirmation 19

Terminology. Our basic approach assumes three logical entities:

– miners of the underlying blockchain Πblockchain;
– a leader; and
– a committee denoted committee.

To retain consistency and worst-case liveness (i.e., confirmation in the speed
of the underlying Πblockchain), we need to assume that (1) the underlying
blockchain Πblockchain retains security (and this would translate to different
compliance rules depending on how we instantiate the underlying blockchain);
(2) α fraction of the committee are assumed to remain honest (but not neces-
sarily online) where α is a knob that effectively allows us to trade-off security
and performance as is explained later. Notably, the leader need not be trusted
for consistency and worst-case liveness.

For concreteness, in our description we will often assume that α = 1
2 , but

in fact our approach generalizes to any choice where 0 < α < 1; and when-
ever appropriate, we will remark how to generalize the scheme’s parameters for
arbitrary α.

For simplicity, in this section we start out by assuming a static committee. In
a permissioned setting, this committee can be the set of all nodes. In a permis-
sionless setting where the set of players are not known in advance, we can elect
the committee dynamically from the underlying blockchain using known tech-
niques [37,38] or have stake-holders act as the committee [6,11,32]—however we
defer the discussion of committee election and reconfiguration to the online full
version [36]. Although we assume a static committee in this section, our basic
protocol supports leader reconfiguration. In our presentation below we focus on
describing the mechanism that enables leader reconfiguration without specifying
concretely what leader re-election policy to adopt—exactly what policy to adopt
depends on the application context and we thus defer the discussion of policies
to the online full version [36].

3.1 Our Basic Protocol in a Nutshell

We first describe the intuition behind our basic protocol. For simplicity, we focus
our description on what happens within a single epoch in which the identity of
the leader is common knowledge.

Optimistic Fast Path. The optimistic fast path consists of a single round of
voting to confirm each transaction (or batch). The leader serves as a coordina-
tor and sequences transactions in the optimistic path. It tags each freshly seen
transaction (or a batch) with a sequence number that increments over time, and
the resulting tuple (seq, tx) is referred to as a notarization request. Whenever
the committee members hear a notarization request (seq, tx) from the leader, it
will sign the tuple (seq, tx) as long as it has not signed any tuple for seq before.
For consistency, it is important that an honest committee member signs only
one unique tuple (seq, tx) for every sequence number seq.

20 R. Pass and E. Shi

Whenever an honest node observes that a notarization request (seq, tx) has
collected votes from more than 3

4 of the committee, (seq, tx) is considered nota-
rized. Although any notarized transaction is ready to be confirmed, an honest
node is only allowed to output a notarized (seq, tx) tuple iff for every s < seq, a
tuple (s,) has already been output. In other words, the output sequence is not
allowed to skip any sequence numbers (since transactions must be processed in
a linearized order). Henceforth, we referred to a sequence of notarized transac-
tions with contiguous, non-skipping sequence numbers as a lucky sequence. In
other words, honest nodes always output the maximal lucky sequence they have
observed.

It is not hard to see that the optimistic, fast path satisfies the following prop-
erties as long as the majority of the online committee members are honest (below,
we focus our discussion for the specific case α = 1

2 , although the argument can
easily be generalized to arbitrary choices of α):

– The following agreement property is satisfied even when the leader is corrupt
and the committee may not be online: if any two honest nodes have output
(seq, tx) and (seq, tx′) respectively, it must be that tx = tx′ (except with
negligible probability over the choice of view).

– The following liveness property is satisfied only when the leader is honest and
online and moreover more than 3

4 of the committee are honest and online (i.e.,
when the optimistic conditions hold): every transaction input to an honest
node will appear in all nodes’ output logs in O(1) actual roundtrips—in other
words, when optimistic conditions hold, not only do we achieve liveness but
we in fact also achieve responsiveness.

Note that when the optimistic conditions do not hold, liveness is not guaran-
teed for the optimistic path. For example, a corrupt leader can propose different
transactions to different nodes for the same sequence number, and thus no trans-
action will collect enough votes to become notarized. Further, progress can also
be hampered if not enough committee members are honest and online to vote.

Summarizing the above, if the leader is honest and online and moreover more
than 3

4 fraction of the committee are honest and online, all nodes will confirm
transactions responsively in the optimistic path. However, to make our protocol
complete, we need to deal with the case when either the leader is corrupt (or not
online), or the committee is not more than 3

4 honest and online—in the latter
case, we wish to fall back to the worst-case guarantees offered by the underlying
blockchain. Below we describe how such fallback can be achieved.

Falling Back to the Blockchain. In the fallback slow path, nodes will confirm
transactions using the slow blockchain. The most non-trivial part of our protocol
is how to switch between the optimistic path and the fallback path. To this end,
we must answer the following two questions.

1. How do nodes decide when to fall back to the slow path?
2. Once the above decision is made, what is the mechanism for achieving this

fallback?

Thunderella: Blockchains with Optimistic Instant Confirmation 21

When to fall back. The idea is to use the underlying blockchain to collect evi-
dence of the optimistic path not working (e.g., either due to corrupt or crashed
leader or due to not sufficiently many committee members being honest and
online). Such evidence must be robust such that the adversary cannot raise false
alarms when the optimistic path is actually working.

For conceptual simplicity, we can imagine the following: (1) whenever hon-
est nodes mine a block, they incorporate into the block their entire view so
far, including all unnotarized transactions and notarized transactions they have
seen—in the actual protocol, the transactions stored in the blockchain can be
easily deduplicated and compressed; (2) honest nodes always gossip their views
to each other, such that if one honest node sees some (notarized or unnotarized)
transaction by round r, then all honest nodes will have seen it by round r + Δ.
Thus by the liveness property of the underlying blockchain, if any (notarized
or unnotarized) transaction is observed by any honest node in round r, then in
roughly εκ blocks of time, the transaction will appear in the blockchain.

Now, we may use the following criterion to detect when the optimistic path
is not working:

Fallback condition: Assume that chain is the stabilized prefix of some honest
node’s blockchain. If some unnotarized transaction tx appears in the block
chain[] but tx still has not become part of a lucky sequence contained in
chain[: 	 + κ] where κ is a security parameter4, then we conclude that the
optimistic path has failed, and that a fallback is necessary.

Note that if the optimistic conditions hold, then the leader would have
observed the unnotarized tx when its blockchain is roughly 	 in length, and
the committee would have notarized tx quickly; thus tx will soon become part of
a lucky sequence contained in every node’s blockchain. If this has not happened
within κ blocks of time, then the optimistic conditions must no longer hold.

We also note that using the above mechanism, all honest nodes will decide
to fall back within Δ rounds from each other. We now reach our next question:
what mechanism do we rely on for the falling back?

How to fall back. The challenge is that when honest nodes decide to fall back
(within Δ rounds from each other), although their optimistic logs are prefixes of
each other, the logs could be of different lengths. One decision to make during
the fallback is where (i.e., at which sequence number) to end the optimistic log
before switching to blockchain mode—importantly, for consistency, honest nodes
must agree on this decision. We point out that agreeing on this decision actually
requires a full agreement instance—unlike the optimistic path where we punted
on liveness, here this decision must be made with both consistency and liveness.

Thus the most natural idea is to rely on the underlying blockchain to reach
agreement regarding this decision. To this end, we introduce the notion of a grace
period that serves as a cool-down period before we eventually fall back into slow
mode. The grace period consists of κ number of consecutive blocks where κ is
4 Transactions of a lucky sequence are allowed to appear out of order in the blockchain.

22 R. Pass and E. Shi

a security parameter. Let chain denote the stabilized part of an honest node’s
blockchain and suppose that 	∗ is the first block such that chain[: 	∗] triggers the
“fallback condition” as described above. Then, the grace period will consist of
the blocks chain[∗ + 1 : 	 + κ]. Informally speaking, the grace period is utilized
in the following manner:

– Let LOG∗ be an honest node’s output log at the moment that the grace period
starts (thus LOG∗ must be a lucky sequence);

– Let chain be the stabilized prefix of this honest node’s chain:
• If the grace period has not ended in chain, then the node outputs the

longer of (1) LOG∗; and (2) the maximal lucky sequence contained in
chain. Note that in this case, the node does not output any additional
transactions that are not part of the lucky sequence.

• Else if the grace period has ended in chain, then the node first outputs the
maximal lucky sequence contained in chain; then it outputs every other
transaction (notarized or unnotarized) contained in chain (in the order
that they are included in chain). In other words, after the grace period is
over, the nodes start confirming transactions based on the blockchain.

Let LOGmax denote the maximal lucky sequence contained in an honest node’s
blockchain by the end of the grace period. Effectively, in the above mechanism,
nodes agree on LOGmax before falling to blockchain mode. Importantly, the fol-
lowing informal claim must hold:

Claim (Informal). Except with negligible probability, LOGmax must be at least
as long as any honest node’s output log when the node detects the start of the
grace period.

To see why, recall that as mentioned earlier, all honest nodes gossip always
their protocol views to each other; and honest nodes always embed their entire
protocol view into any block they mine (in the actual protocol, the messages can
be compressed). Thus, by liveness, any honest node’s output log when the grace
period starts will be in the blockchain κ blocks later.

Initiating a New Optimistic Epoch. So far, we have described our protocol
from the perspective of a single epoch in which the leader is common knowledge.
Whenever the protocol is in a slow path, however, we would like to allow the
nodes to try to reinitiate an optimistic epoch and try to be fast again. This
is easy to achieve since our underlying blockchain is always up and live! Thus
one can simply rely on the underlying blockchain to implement any policy-based
decision to reinitiate a new epoch. For example, the blockchain can be used
to agree on (1) at which block length to reinitiate a new epoch; and (2) who
will act as the leader in the new epoch. Our Thunderella framework leaves it
to the application layer to specify such policy decisions (e.g., such policies can
be implemented through generic smart contracts running atop the underlying
blockchain).

Thunderella: Blockchains with Optimistic Instant Confirmation 23

Our detailed description in the remainder of this section is aware of the
existence of multiple epochs, and thus transactions’ sequence numbers are tagged
with the epoch number to avoid namespace collision.

3.2 Detailed Protocol Description

We now formally describe our basic Thunderella protocol with a static commit-
tee. Our description and proofs are modularized. Specifically, we first describe
the minimal set of protocol instructions necessary for guaranteeing consistency
(Sect. 3.2)—in an actual implementation, security audit should be prioritized
for this part of the protocol. We then describe other surrounding mechanisms
(e.g., how to concretely instantiate the chain state function and how the leader
proposes transactions) that allow us to additionally achieve worst-case liveness
(Sect. 3.2) and optimistic responsiveness (Sect. 3.2).

Concrete blockchain parameters. For concreteness, henceforth in this section we
assume a blockchain protocol denoted Πblockchain that achieves (0.05κ, g0, g1 =
1

cΔ)-chain growth for some positive g0 and some positive constant c, (0.05κ, 1, μ)-
chain quality where μ is positive, 0.05κ-consistency, and (0.05κ, 0.05κ)-liveness
w.r.t. to any p.p.t. (A,Z) that is compliant w.r.t. Πblockchain. For our later
concrete instantiations in permissionless and permissioned settings, existing
blockchains constructions [19,35,40] would satisfy the necessary security prop-
erties given the above these parameters. Although we assume these concrete
parameters, our Thunderella framework can easily be generalized to other
parameters.

Useful Definitions. Henceforth, let Σ = (Gen,Sign,Vf) denote a digital signa-
ture scheme.

Notarized transactions. We say that a tuple (e, s,m, V) is a notarized transaction
for epoch e and sequence number s w.r.t. committee iff

– For each (pk, σ) ∈ V , pk ∈ committee and moreover σ is a valid signature
for (e, s,m) under pk—in this case, we also say that (pk, σ) is a valid vote for
(e, s,m).

– There are more than 3
4 · ∣

∣committee
∣
∣ votes in V with distinct pks.

If (e, s,m, V) is a notarized transaction, we also say that V is a valid nota-
rization for (e, s,m).

Remark 1. Note that the above definition works for α = 1
2 . For a general α ∈

(0, 1], we can simply replace the constant 3
4 with 1 − α

2 .

Blockchain states. We assume that there is a deterministic and efficiently com-
putable function Γ such that given an abstract blockchain chain, the function
Γ divides chain into multiple epochs interspersed with interims. Each epoch is
a sequence of consecutive blocks in chain, and f also outputs a unique epoch

24 R. Pass and E. Shi

number e for each epoch. A sequence of consecutive blocks that do not belong to
any epoch are called interim blocks. Each epoch always contains two sub-phases,
an optimistic period followed by a grace period, each of which contains at least κ
consecutive blocks and thus each epoch contains at least 2κ consecutive blocks
(unless end of chain is reached).

Formally, we say that Γ (κ, ·, ·) is a chain-state function iff for any chain and
0 ≤ 	 ≤ |chain|, Γ (κ, chain,) outputs one of the following:

– some (e, optimistic): in this case we say that chain[] is an optimistic block
belonging to epoch e (w.r.t. Γ (κ, ·, ·));

– some (e, grace): in this case we say that chain[] is a grace block belonging
to epoch e (w.r.t. Γ (κ, ·, ·));

– or interim: in this case we say that chain[] is an interim block (w.r.t.
Γ (κ, ·, ·)).
We say that a chain-state function Γ (κ, ·, ·) is admissible iff for any chain:

1. for any 0 ≤ 	 ≤ 	′ ≤ |chain|, if chain[] belongs to epoch e and chain[′] belongs
to epoch e′, then e′ ≥ e;

2. for every e: all blocks corresponding to epoch e in chain must appear in a
consecutive window, and moreover, all optimistic blocks for epoch e must
appear before grace blocks for epoch e;

3. for every epoch e appearing in chain: there must be at least κ grace blocks
belonging to epoch e in chain unless chain ends at an epoch-e block.

4. for every chain and every 0 ≤ 	 ≤ |chain|, Γ (κ, chain,) depends only on
chain[:] but not chain[+ 1 :].

Lucky sequence. A sequence of notarized transactions {(ei, si,mi, Vi)}i∈[m] is
said to be a lucky sequence for epoch e iff for all i ∈ [m], ei = e and si = i.

Blockchain linearization. Given an abstract blockchain chain, we do not simply
output all transactions in chain in the most natural way. Instead, we adopt an
algorithm denoted linearizeΓ (κ,·,·)(chain) for chain linearization. Henceforth we
often write linearize(chain) for simplicity without explicitly denoting the chain-
state function Γ (κ, ·, ·).

Our chain linearization algorithm linearize(chain) is defined as follows: scan
through the chain from left to right, and output the following:

1. For each epoch chain[: 	′] encountered with the epoch number e, output the
following in order:

– first extract the maximal lucky sequence TXs for epoch e from chain[: 	′]
and output strip(TXs) where strip(·) will be defined below;

– if chain[] is not the end of chain, let TXs′ be all remaining records in
chain[: 	′] not contained in TXs, output strip(TXs′);

2. For each interim chain[: 	′] encountered, extract all transactions TXs from
chain[: 	′] and output strip(TXs).

Thunderella: Blockchains with Optimistic Instant Confirmation 25

In the above, the function strip(·) removes signatures from notarized transac-
tions: for a notarized transaction strip(e, s,m, V) := (e, s,m); for an unnotarized
transaction we define strip(m) := m. If the input to strip(·) is a sequence of
transactions, the same operation is applied to each transaction.

Πthunder : Core Protocol for Consistency

Additional notation. A node’s view consists of every message (including
blockchains) it has received from Z or over the network. Henceforth we say
that a notarized transaction (e, s,m, V) is in a node’s view iff (e, s,m) exists in
the node’s view, and every (pk, σ) ∈ V exists in the node’s view (not necessarily
appearing together in the node’s view). Multiple notarized transactions can exist
for a unique (e, s,m) by taking different subsets of V —but in our presentation
below, we always take V to be all the valid votes for (e, s,m) in a node’s view,
such that if for some tuple (e, s,m) there is a notarized transaction (e, s,m, V)
in a node’s view, then the choice is unique.

Assumptions. Although not explicitly noted, henceforth in all of our protocols,
we assume that whenever an honest node receives any message on the network,
if the message has not been broadcast before, the honest node broadcasts the
message.

Protocol Πthunder. Below we describe the Π
Γ (κ,·,·)
thunder protocol that is parametrized

by an admissible chain-state function Γ (κ, ·, ·). Henceforth in our scheme, we
often omit explicitly writing the chain-state function Γ (κ, ·, ·).

– Initialize.
• Call (pk, sk) ← Σ.Gen(κ) to generate a signing key pair. Output pk to Z.
• Wait to receive committee from Z, and henceforth, validity of votes and

acceptability of chains will be defined w.r.t. committee.
• Fork an instance of the Πblockchain protocol with appropriate parameters

determined by ρ, n and Δ5.
– Notarize. Upon receiving notarization request (e, s,m) from Z: if pk ∈
committee and no signature has been produced for (e, s) earlier, compute
σ := Σ.Signsk(e, s,m) and broadcast ((e, s,m), σ).

– Propose. Every round, let chain be the output from the Πblockchain instance.
• Let TXs be a set containing (1) every notarized transaction (e, s,m, V)

in the node’s view such that no notarized transaction (e, s,m,) has
appeared in chain[: −0.5κ]; and (2) every unnotarized transaction m in
the node’s view such that no m or notarized transaction (e, s,m,) has
appeared in chain[: −0.5κ].

• Propose TXs to Πblockchain.

5 Unless otherwise noted, all messages sent from the Πblockchain instance or destined for
Πblockchain are automatically passed through, but these messages also count towards
the view of the current Πthunder protocol instance.

26 R. Pass and E. Shi

– Output. In every round, let chain be the output from Πblockchain.
• If chain[−0.5κ] is an optimistic block belonging to epoch e:

(a) let chain[−] be the starting block for epoch e in chain where 	 ≥ 0.5κ.
(b) extract the maximal lucky sequence TXs for epoch e from the node’s

view so far.
(c) let LOG := linearize(chain[: −(+ 1)])||strip(TXs).

• Else, let LOG := linearize(chain[: −0.5κ]).
• Let LOG be the previous output to Z: if LOG is longer than LOG, output
LOG; else output LOG to Z.

– Mempool. Upon receiving any other message from the network or Z, record
the tuple.

Compliant executions. We say that (A,Z) is compliant w.r.t. Π
Γ (κ,·,·)
thunder iff

– (A,Z) is compliant w.r.t. Πblockchain;

– in every view in the support of EXECΠ
Γ (κ,·,·)
thunder (A,Z, κ), Z always inputs the

same committee to all honest nodes;
– in every view in the support of EXECΠ

Γ (κ,·,·)
thunder (A,Z, κ), more than 1

2 fraction
(or in general, more than α fraction) of the distinct public keys in committee
are output by nodes that remain honest (but not necessarily online) forever.

The following theorem says that for any chain-state function f that is admis-
sible, Πf

thunder satisfies consistency under compliant executions.

Theorem 5 (Consistency). Let Γ (κ, ·, ·) be any admissible chain-state func-
tion. Then, Π

Γ (κ,·,·)
thunder satisfies consistency as defined in Sect. 2.2 w.r.t. any p.p.t.

(A,Z) that is compliant w.r.t. Π
Γ (κ,·,·)
thunder.

The proof of this theorem is presented in the online full version [36]

Concrete Chain-State Function and Worst-Case Liveness. We will
adopt the following chain-state function Γ pred(κ, ·, ·) that is parametrized by
a polynomial-time boolean predicate pred henceforth referred to as the “next-
epoch” function. Basically, the job of pred is to examine the prefix of some
blockchain and decide whether we want to advance to a larger epoch. Specifi-
cally, for some chain prefix chain[: i] if pred(chain[: i], e) = 1 then the blockchain
wants to advance to epoch e if it is not already in epoch e—if there are multiple
such e’s such that the above holds, then the blockchain wants to go the largest
such epoch.

At this moment, we define the chain state function Γ while leaving the pred
unspecified. We will show that worst-case liveness is satisfied in compliant execu-
tions regardless of the concrete policy pred. Intuitively, our concrete chain state
function is very simple: If the blockchain is currently in some epoch e, then the
chain will stay in epoch e unless one of the following things happen:

Thunderella: Blockchains with Optimistic Instant Confirmation 27

1. either pred (applied to the prefix of the blockchain) wants to go to a larger
epoch; or

2. during the current epoch some transaction did not get confirmed for a long
time.

If one of the above did happen, then the chain gracefully transitions to an interim
ensuring that there are at least κ optimistic blocks for the current epoch e fol-
lowed by at least κ grace blocks for epoch e. If the blockchain is in an interim
and pred wants to go to a next epoch, then we advance to the next epoch imme-
diately. We note that for consistency and worst-case liveness, we in fact only
need that there are at least κ grace blocks for each epoch (but not necessarily κ
or more optimistic blocks). Here we additionally require that there are at least κ
optimistic blocks for each epoch too—this gives the new epoch some time such
that the blockchain can pick up possibly stale transactions that ought to have
been confirmed such that we do not exit from the current epoch too soon.

More formally, for any chain, Γ pred(κ, chain, ·) is inductively defined as the
following:

– The chain[0] := genesis block is considered an interim block;
– If chain[i] is an interim block, let e be the largest epoch number such that
pred(chain[: i + 1], e) = 1, but no prefix of chain[: i] was ever in epoch e:

• If such an epoch e is found: then chain[i+1..i+κ] are all optimistic blocks
for epoch e′ (and if |chain| < i + κ, then all of chain[i + 1 :] are optimistic
blocks for epoch e′).

• Else chain[i + 1] is also an interim block;
– If chain[i] is the 	-th optimistic block of some epoch e where 	 ≥ κ:

• If one of the following two conditions C1 or C2 hold, then chain[i+1..i+κ]
are all grace blocks for epoch e, and chain[i + κ + 1] is an interim block
(and if |chain| ≤ i+κ then all of chain[i+1 :] are grace blocks for epoch e):
C1: some m or some notarized transaction (, ,m,) appears in chain[:

i − 0.5κ] but linearize(chain[: i]) does not contain m or (, ,m), i.e., if
some transaction has not occurred in any lucky sequence even after a
sufficiently long time;

C2: there exists some e′ > e such that pred(chain[: i + 1], e′) = 1, i.e., if
the next-epoch policy function wants to switch to a larger epoch than
the current one.

• Else chain[i + 1] is an optimistic block of epoch e.

Theorem 6 (Worst-case liveness). Let Γ (κ, ·, ·) := Γ pred(·, ·, ·) be the chain-
state function as specified above for any polynomial-time boolean predicate pred.
Let g0 denote the underlying Πblockchain’s chain growth lower bound parameter,
and let Tconfirm(κ) := 3κ

g0
. For any p.p.t. (A,Z) that is compliant w.r.t. Π

Γ (κ,·,·)
thunder,

there exists a negligible function negl(·) such that for every κ ∈ N, except with

negl(κ) probability over the choice of view ← EXECΠ
Γ (κ,·,·)
thunder (A,Z, κ), the following

holds: suppose that Z inputs a transaction m to an honest node in round r, then
in any round r′ ≥ r + Tconfirm(κ), all honest and online nodes’ output LOG to Z
will contain some (, ,m) or m.

The proof of the above theorem is deferred to the supplemental material.

28 R. Pass and E. Shi

Coordination Protocol Πella and Optimistic Responsiveness. We now
describe the full protocol Π

Γ (κ,·,·)
ella that spells out the leader-based coordina-

tion mechanism on top of Πthunder as well as the next-epoch function pred. We
will then show under exactly what optimistic conditions our protocol achieves
responsiveness.

Description of protocol Πella. Πella calls Π
Γ pred(κ,·,·)
thunder where the chain state function

Γ (κ, ·, ·) := Γ pred(κ, ·, ·) is as defined in Sect. 3.2. We spell out the next-epoch
function pred and the rest of Πella below.

– Next-epoch function. The policy function pred(chain, e) takes in an abstract
blockchain denoted chain and an epoch number e. If there exists a notarized
transaction for epoch e in chain, then output 1; else output 0.

– Initialize: fork an instance of the Π
Γ (κ,·,·)
thunder protocol.

– Leader switch: upon input leader(e, i): if no leader has been recorded for
epoch e, record i as the leader for epoch e, and do the following:

• if current node is i: send a notarization request for a special epoch-start
transaction (e, s = 1, start), and let s = 2;

• for every notarization request (e, s,m) received earlier from node i, act as
if (e, s,m) has just been received from i.

– Notarization: upon receiving notarization request (e, s,m) from i: if i has been
recorded as the leader for epoch e, forward the notarization request (e, s,m)
to Π

Γ (κ,·,·)
thunder; else ignore the request.

– Leader: every round: let e be the largest epoch recorded thus far and if current
node is recorded as the leader for epoch e:

• for every m in view such that no m or (, ,m) appears in linearize(chain[:
−κ]), if a notarization request has not been broadcast for m earlier, then
broadcast the notarization request (e, s,m) and let s := s + 1.

– Other messages: pass through all other messages between Π
Γ (κ,·,·)
thunder and Z;

similarly pass through all other messages between Π
Γ (κ,·,·)
thunder and the network.

Compliant executions. To guarantee consistency and worst-case liveness, basi-
cally we just need the same conditions as our earlier Π

Γ (κ,·,·)
thunder. We say that (A,Z)

is compliant w.r.t. Π
Γ (κ,·,·)
ella iff (A,Z) is compliant w.r.t. Π

Γ (κ,·,·)
thunder.

Lucky epoch. Below we will describe exactly under what optimistic conditions
can we achieve responsiveness. Roughly speaking, whenever a lucky epoch begins,
after a short warmup time, we can achieve responsiveness. Specifically, during a
lucky epoch, the epoch’s leader is online and honest and more than 3

4 fraction
or in general, 1 − α

2 fraction of the committee remain honest and online.
Formally, given a view, we say that [Tstart, Tend] belongs to a lucky epoch

corresponding to epoch e and leader i iff the following hold:

– In any round r ≥ Tstart +Δ, any honest and online node should have received
leader(e, i) where i is the common leader that all honest nodes receive for
epoch e. Further, prior to Tstart, no honest node has received from Z any
leader(e′,) instruction where e′ ≥ e.

Thunderella: Blockchains with Optimistic Instant Confirmation 29

– the leader (i.e., node i) is honest and online at in any round t ∈ [Tstart,
Tend + 3Δ];

– more than 3
4 fraction (or in general, more than 1 − α

2 fraction) of committee
are honest and online6 in any round t ∈ [Tstart, Tend + 3Δ].

Optimistic responsiveness in lucky epochs. We say that a protocol Π satisfies
(Twarmup, Topt)-optimistic responsiveness in lucky epochs w.r.t. (A,Z) iff except

with negl(κ) probability over the choice of view ← EXECΠ
Γ (κ,·,·)
ella (A,Z, κ): for any

duration [Tstart, Tend] in view that belongs to a lucky epoch, [Tstart+Twarmup, Tend]
is a Topt-responsive period in view.

Theorem 7 (Optimistic case responsiveness). Let g0 be the underlying
Πblockchain’s chain growth lower bound parameter. For every p.p.t. (A,Z) that
is compliant w.r.t. Π

Γ (κ,·,·)
ella , Π

Γ (κ,·,·)
ella satisfies (Twarmup, Topt)-optimistic respon-

siveness in lucky epochs for Twarmup = O(κ
g0

), and Topt = 3δ where δ is the
actual maximum network delay in view.

The proof of the above theorem is deferred to the online full version [36]. We
note that Theorem 7 implies the following: informally speaking, if throughout
the execution more than 3

4 fraction of the committee remain honest and online
and moreover, the initial epoch’s leader remains honest and online, then once
nodes enter the initial epoch, after a short warmup period, our protocol Πella

will achieve responsiveness throughout the remainder of the execution (assuming
that the underlying blockchain is secure).

Remark 2 (Leader re-election mechanism). In our scheme earlier, we left it
unspecified how the environment Z will decide when to issue leader-switch
instructions of the form leader(e, i) that will cause nodes to start a new leader
epoch. This is an application-specific policy decision. At this point, our paper
focuses on providing a general framework that enables any application-specific
policy decisions. In the online full version [36], we will give some suggestions on
leader re-election policies that are useful in practice.

Deferred materials. We defer the full proofs, the lower bounds, as well as how
to concretely instantiate the Thunderella framework in permissioned and permis-
sionless environments allowing committee reconfiguration and leader rotation in
the online full version [36]. We now conclude with the related work.

4 Related Work

State machine replication: classical and blockchain-style approaches. State
machine replication or atomic broadcast (referred to as consensus for short in this
paper) is a central abstraction of distributed systems, and has been extensively
6 We say that a public key pk ∈ committee is honest and online in round r if some

node that is honest and online in round r output pk to Z earlier.

30 R. Pass and E. Shi

investigated and widely adopted in real-world systems. Roughly speaking, there
are two, technically speaking, fundamentally different approaches towards real-
izing state machine replication, classical-style consensus [9,14,15,25,30,31], and
blockchain-style consensus [11,19,26,34,35,40]. For a while, it has been vaguely
understood by the community that blockchain-style protocols and classical ones
achieve different properties—but the community has only recently begun to for-
mally understand and articulate these differences.

The recent work by Pass and Shi [40] point out one fundamental differ-
ence between classical style and blockchain-style consensus. Most classical proto-
cols [9,14,15,25,30,31], synchronous and asynchronous ones alike, rely on nodes
having collected sufficiently many votes to make progress; thus these protocols
would fail in a model where participation is sporadic and the exact number of
players that do show up cannot be predicted upfront. More specifically, classical
models of consensus would pessimistically treat nodes that do not show up as
faulty (also referred to as crash fault); and if too many nodes do not show up,
the protocol fails to make progress. In comparison, blockchain-style protocols
can make progress regardless of how many players actually show up. Moreover,
blockchain-style consensus has also been shown to be secure in a setting where
the number of players can vary over time [18].

Classical deployments of consensus protocols are typically in a relatively
small-scale and permissioned setting. Consensus in the permissionless setting
was first empirically demonstrated to be possible due to Bitcoin’s ingenious
Nakamoto blockchain [34]. While the original Nakamoto blockchain relies on
proofs-of-work to solve the Sybil attack in the permissionless setting, other pro-
posals have been suggested since then for securely establishing identities in a
permissionless setting—for example, proof-of-stake [2,3,7,10,11,26,27,32,41] is
a most-oft cited approach where the stake-holders of a cryptocurrency system
are responsible for voting on transactions. Recent works [32] have also explored
adopting classical style consensus in a permissionless setting where approaches
such as proof-of-stake can be used to establish identities.

Other closely related works. Our work is also reminisient of recent works that
combine classical consensus and blockchains [12,28,38] although these works are
of a different nature as we explain below. Among these works, Hybrid Consen-
sus [38] is the only known formally correct approach, and moreover the only
known approach that achieves responsiveness. From a theoretical perspective,
our results are incomparable to Hybrid Consensus: we tolerate up to 1

2 corrup-
tion in the worst-case and offer responsiveness only in the optimistic case but not
in the worst case; in comparison, Hybrid Consensus achieves responsiveness even
in the worst case—but in exchange, their protocol can only tolerate up to 1

3 cor-
ruption, and this turns out to be inherent for any worst-case responsive protocol
even when assuming proof-of-work [15,38]. From a practical perspective, Thun-
derella is more likely to be the protocol of choice in a real-world implementation
partly due to its simplicity—in comparison, Hybrid Consensus requires a full-
fledged classical protocol such as PBFT and Byzantine Paxos as a subroutine,
and thus inherits the complexity of these protocols.

Thunderella: Blockchains with Optimistic Instant Confirmation 31

A line of research [8,13,16,21,22,33] has investigated Byzantine agreement
protocols capable of early-stopping when conditions are more benign than the
worst-case faulty pattern: e.g., the actual number of faulty nodes turns out to
be smaller than the worst-case resilience bound. However, these works are of a
different nature than ours as we explain below. First, these earlier works focus on
stopping in a fewer number of synchronous rounds, and it is not part of their goal
to achieve responsiveness. Second, although some known lower bounds [13] show
that the number of actual rounds must be proportional to the actual number
of faulty processors—note that these lower bounds work only for deterministic
protocols, and thus they are not applicable in our setting.

Finally, the idea of combining asynchrony and synchrony was described in
earlier works [4]; other works have also proposed frameworks for composing mul-
tiple BFT protocols [20]. However, to the best of our knowledge, none of the ear-
lier works combined a synchronous fallback path and an asynchronous optimistic
path in the manner that we do, allowing us to tolerate more than 1

3 corruptions
in the worst-case while still be responsive most of the time in practice.

Acknowledgments. We thank Jian Xie and Youcai Qian for inspiring conversations.
We also thank Lorenzo Alvisi and Robbert van Renesse for helpful discussions and
moral support. This work is supported in part by NSF grants CNS-1217821, CNS-
1314857, CNS-1514261, CNS-1544613, CNS-1561209, CNS-1601879, CNS-1617676,
AFOSR Award FA9550-15-1-0262, an Office of Naval Research Young Investigator Pro-
gram Award, a Microsoft Faculty Fellowship, a Packard Fellowship, a Sloan Fellowship,
Google Faculty Research Awards, and a VMWare Research Award.

References

1. Attiya, H., Dwork, C., Lynch, N., Stockmeyer, L.: Bounds on the time to reach
agreement in the presence of timing uncertainty. J. ACM 41(1), 122–152 (1994)

2. Bentov, I., Gabizon, A., Mizrahi, A.: Cryptocurrencies without proof of work. In:
Financial Cryptography Bitcoin Workshop (2016)

3. Bentov, I., Lee, C., Mizrahi, A., Rosenfeld, M.: Proof of activity: extending bitcoin’s
proof of work via proof of stake. In: NetEcon (2014)

4. Birman, K.P., Joseph, T.A.: Exploiting virtual synchrony in distributed systems.
In: SOSP (1987)

5. Burrows, M.: The chubby lock service for loosely-coupled distributed systems. In:
OSDI (2006)

6. Buterin, V. (2017). https://medium.com/@VitalikButerin/minimal-slashing-
conditions-20f0b500fc6c

7. Buterin, V., Zamfir, V.: Casper (2015). https://blog.ethereum.org/2015/08/01/
introducing-casper-friendly-ghost/

8. Castañeda, A., Gonczarowski, Y.A., Moses, Y.: Unbeatable consensus. In: DISC
(2014)

9. Castro, M., Liskov, B.: Practical byzantine fault tolerance. In: OSDI (1999)
10. User “cunicula”, Rosenfeld, M.: Proof of stake brainstorming, August 2011.

https://bitcointalk.org/index.php?topic=37194.0
11. Daian, P., Pass, R., Shi, E.: Snow white: provably secure proofs of stake. Cryptology

ePrint Archive, Report 2016/919 (2016)

https://medium.com/@VitalikButerin/minimal-slashing-conditions-20f0b500fc6c
https://medium.com/@VitalikButerin/minimal-slashing-conditions-20f0b500fc6c
https://blog.ethereum.org/2015/08/01/introducing-casper-friendly-ghost/
https://blog.ethereum.org/2015/08/01/introducing-casper-friendly-ghost/
https://bitcointalk.org/index.php?topic=37194.0

32 R. Pass and E. Shi

12. Decker, C., Seidel, J., Wattenhofer, R.: Bitcoin meets strong consistency. In:
ICDCN (2016)

13. Dolev, D., Reischuk, R., Raymond Strong, H.: Early stopping in byzantine agree-
ment. J. ACM 37(4), 720–741 (1990)

14. Dolev, D., Raymond Strong, H.: Authenticated algorithms for byzantine agree-
ment. SIAM J. Comput. SIAMCOMP 12(4), 656–666 (1983)

15. Dwork, C., Lynch, N., Stockmeyer, L.: Consensus in the presence of partial syn-
chrony. J. ACM 35, 288–323 (1988)

16. Dwork, C., Moses, Y.: Knowledge and common knowledge in a byzantine environ-
ment I: crash failures. In: TARK, pp. 149–169 (1986)

17. Eyal, I., Sirer, E.G.: Majority is not enough: bitcoin mining is vulnerable. In: FC
(2014)

18. Garay, J.A., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol with chains
of variable difficulty. Cryptology ePrint Archive, 2016/1048 (2016)

19. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: analysis
and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9057, pp. 281–310. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46803-6 10

20. Guerraoui, R., Knežević, N., Quéma, V., Vukolić, M.: The next 700 BFT protocols.
In: Proceedings of the 5th European Conference on Computer Systems, EuroSys
2010, pp. 363–376. ACM, New York (2010)

21. Halpern, J.Y., Moses, Y., Waarts, O.: A characterization of eventual Byzantine
agreement. SIAM J. Comput. 31(3), 838–865 (2001)

22. Herlihy, M., Moses, Y., Tuttle, M.R.: Transforming worst-case optimal solutions
for simultaneous tasks into all-case optimal solutions. In: PODC (2011)

23. Herzberg, A., Kutten, S.: Early detection of message forwarding faults. SIAM J.
Comput. 30(4), 1169–1196 (2000)

24. Junqueira, F.P., Reed, B.C., Serafini, M.: Zab: high-performance broadcast for
primary-backup systems. In: DSN (2011)

25. Katz, J., Koo, C.-Y.: On expected constant-round protocols for Byzantine agree-
ment. J. Comput. Syst. Sci. 75(2), 91–112 (2009)

26. Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: a provably secure
proof-of-stake blockchain protocol. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017.
LNCS, vol. 10401, pp. 357–388. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63688-7 12

27. King, S., Nadal, S.: PPCoin: peer-to-peer crypto-currency with proof-of-stake
(2012). https://peercoin.net/assets/paper/peercoin-paper.pdf

28. Kokoris-Kogias, E., Jovanovic, P., Gailly, N., Khoffi, I., Gasser, L., Ford, B.:
Enhancing bitcoin security and performance with strong consistency via collec-
tive signing. CoRR, abs/1602.06997 (2016)

29. Kotla, R., Alvisi, L., Dahlin, M., Clement, A., Wong, E.L.: Zyzzyva: speculative
byzantine fault tolerance. In: SOSP (2007)

30. Lamport, L.: Fast paxos. Distrib. Comput. 19(2), 79–103 (2006)
31. Lamport, L., Malkhi, D., Zhou, L.: Vertical paxos and primary-backup replication.

In: PODC, pp. 312–313 (2009)
32. Micali, S.: Algorand: the efficient and democratic ledger (2016). https://arxiv.org/

abs/1607.01341
33. Moses, Y., Raynal, M.: No double discount: condition-based simultaneity yields

limited gain. Inf. Comput. 214, 47–58 (2012)
34. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008)

https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-319-63688-7_12
https://peercoin.net/assets/paper/peercoin-paper.pdf
https://arxiv.org/abs/1607.01341
https://arxiv.org/abs/1607.01341

Thunderella: Blockchains with Optimistic Instant Confirmation 33

35. Pass, R., Seeman, L., Shelat, A.: Analysis of the blockchain protocol in asyn-
chronous networks. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017.
LNCS, vol. 10211, pp. 643–673. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56614-6 22

36. Pass, R., Shi, E.: Thunderella: blockchains with optimistic instant confirmation.
https://eprint.iacr.org/2017/913

37. Pass, R., Shi, E.: Fruitchains: a fair blockchain. In: PODC (2017)
38. Pass, R., Shi, E.: Hybrid consensus: efficient consensus in the permissionless model.

In: DISC (2017)
39. Pass, R., Shi, E.: Rethinking large-scale consensus (invited paper). In: CSF (2017)
40. Pass, R., Shi, E.: The sleepy model of consensus. In: Takagi, T., Peyrin, T.

(eds.) ASIACRYPT 2017. LNCS, vol. 10625, pp. 380–409. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-70697-9 14

41. User “QuantumMechanic”: Proof of stake instead of proof of work, July 2011.
https://bitcointalk.org/index.php?topic=27787.0

42. Song, Y.J., van Renesse, R.: Bosco: one-step byzantine asynchronous consensus.
In: Taubenfeld, G. (ed.) DISC 2008. LNCS, vol. 5218, pp. 438–450. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-87779-0 30

https://doi.org/10.1007/978-3-319-56614-6_22
https://doi.org/10.1007/978-3-319-56614-6_22
https://eprint.iacr.org/2017/913
https://doi.org/10.1007/978-3-319-70697-9_14
https://bitcointalk.org/index.php?topic=27787.0
https://doi.org/10.1007/978-3-540-87779-0_30

But Why Does It Work? A Rational
Protocol Design Treatment of Bitcoin

Christian Badertscher1(B) , Juan Garay2, Ueli Maurer1, Daniel Tschudi3 ,
and Vassilis Zikas4

1 ETH Zurich, Zürich, Switzerland
{christian.badertscher,maurer}@inf.ethz.ch
2 Texas A&M University, College Station, USA

garay@tamu.edu
3 Aarhus University, Aarhus, Denmark

tschudi@cs.au.dk
4 University of Edinburgh and IOHK, Edinburgh, UK

vassilis.zikas@ed.ac.uk

Abstract. An exciting recent line of work has focused on formally inves-
tigating the core cryptographic assumptions underlying the security of
Bitcoin. In a nutshell, these works conclude that Bitcoin is secure if and
only if the majority of the mining power is honest. Despite their great
impact, however, these works do not address an incisive question asked
by positivists and Bitcoin critics, which is fuelled by the fact that Bit-
coin indeed works in reality: Why should the real-world system adhere
to these assumptions?

In this work we employ the machinery from the Rational Protocol
Design (RPD) framework by Garay et al. [FOCS 2013] to analyze Bit-
coin and address questions such as the above. We show that under the
natural class of incentives for the miners’ behavior—i.e., rewarding them
for adding blocks to the blockchain but having them pay for mining—
we can reserve the honest majority assumption as a fallback, or even,
depending on the application, completely replace it by the assumption
that the miners aim to maximize their revenue.

Our results underscore the appropriateness of RPD as a “rational
cryptography” framework for analyzing Bitcoin. Along the way, we devise
significant extensions to the original RPD machinery that broaden its
applicability to cryptocurrencies, which may be of independent interest.

1 Introduction

Following a number of informal and/or ad hoc attempts to address the security
of Bitcoin, an exciting recent line of work has focused on devising a rigorous
cryptographic analysis of the system [2,13,14,27]. At a high level, these works

D. Tschudi—Work done while author was at ETH Zurich.
V. Zikas—Work done in part while the author was at RPI.

c© International Association for Cryptologic Research 2018
J. B. Nielsen and V. Rijmen (Eds.): EUROCRYPT 2018, LNCS 10821, pp. 34–65, 2018.
https://doi.org/10.1007/978-3-319-78375-8_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78375-8_2&domain=pdf
http://orcid.org/0000-0002-1353-1922
http://orcid.org/0000-0001-6188-1049

But Why Does It Work? 35

start by describing an appropriate model of execution, and, within it, an abstrac-
tion of the original Bitcoin protocol [23] along with a specification of its security
goals in terms of a set of intuitive desirable properties [13,14,27], or in terms of a
functionality in a simulation-based composable framework [2]. They then prove
that (their abstraction of) the Bitcoin protocol meets the proposed specifica-
tion under the assumption that the majority of the computing power invested in
mining bitcoins is by devices which mine according to the Bitcoin protocol, i.e.,
honestly. This assumption of honest majority of computing power—which had
been a folklore within the Bitcoin community for years underlying the system’s
security—is captured by considering the parties who are not mining honestly as
controlled by a central adversary who coordinates them trying to disrupt the
protocol’s outcome.

Meanwhile, motivated by the fact that Bitcoin is an “economic good” (i.e.,
BTCs are exchangeable for national currencies and goods) a number of works
have focused on a rational analysis of the system [7–9,15,22,24,28–32]. In a
nutshell, these works treat Bitcoin as a game between the (competing) rational
miners, trying to maximize a set of utilities that are postulated as a natural
incentive structure for the system. The goal of such an analysis is to investigate
whether or not, or under which assumptions on the incentives and/or the level of
collaboration of the parties, Bitcoin achieves a stable state, i.e., a game-theoretic
equilibrium. However, despite several enlightening conclusions, more often than
not the prediction of such analyses is rather pessimistic. Indeed, these results
typically conclude that, unless assumptions on the amount of honest computing
power—sometimes even stronger than just majority—are made, the induced
incentives result in plausibility of an attack to the Bitcoin mining protocol, which
yields undesired outcomes such as forks on the blockchain, or a considerable
slowdown.

Yet, to our knowledge, no fork or substantial slowdown that is attributed
to rational attacks has been observed to date, and the Bitcoin network keeps
performing according to its specification, even though mining pools would, in
principle, be able to launch collaborative attacks given the power they control.1

In the game-theoretic setting, this mismatch between the predicted and observed
behavior would be typically interpreted as an indication that the underlying
assumptions about the utility of miners in existing analysis do not accurately
capture the miners’ rationale. Thus, two main questions still remain and are
often asked by Bitcoin skeptics:

Q1. How come Bitcoin is not broken using such an attack?

Or, stated differently, why does it work and why do majorities not collude to
break it?

Q2. Why do honest miners keep mining given the plausibility of such
attacks?

1 We refer to forks of the Bitcoin chain itself, not to forks that spin-off a new currency.

36 C. Badertscher et al.

In this work we use a rigorous cryptographic reasoning to address the above
questions. In a nutshell, we devise a rational-cryptography framework for captur-
ing the economic forces that underly the tension between honest miners and (pos-
sibly colluding) deviating miners, and explain how these forces affect the miners’
behavior. Using this model, we show how natural incentives (that depend on the
expected revenue of the miners) in combination with a high monetary value of
Bitcoin, can explain the fact that Bitcoin is not being attacked in reality even
though majority coalitions are in fact possible. In simple terms, we show how nat-
ural assumptions about the miners’ incentives allow to substitute (either entirely
or as a fallback assumption) the honest-majority assumption. To our knowledge,
this is the first work that formally proves such rational statements that do not
rely on assumptions about the adversary’s computing power. We stress that the
incentives we consider depend solely on costs and rewards for mining—i.e., min-
ing (coinbase) and transaction fees—and, in particular, we make no assumption
that implicitly or explicitly deters forming adversarial majority coalitions.

What enables us to address the above questions is utilizing the Rational Pro-
tocol Design (RPD) methodology by Garay et al. [11] to derive stability notions
that closely capture the idiosyncrasies of coordinated incentive-driven attacks
on the Bitcoin protocol. To better understand how our model employs RPD to
address the above questions, we recall the basic ideas behind the framework.

Instead of considering the protocol participants—in our case, the Bitcoin
miners—as rational agents, RPD considers a meta-game, called the attack game.
The attack game in its basic form is a two-agent zero-sum extensive game of
perfect information with a horizon of length two, i.e., two sequential moves.2 It
involves two players, called the protocol designer D—who is trying to come up
with the best possible protocol for a given (multi-party) task—and the attacker
A—who is trying to come up with the (polynomial-time) strategy/adversary that
optimally attacks the protocol. The game proceeds in two steps: First, (only) D
plays by choosing a protocol for the (honest) players to execute; A is informed
about D’s move and it is now his term to produce his move. The attacker’s
strategy is, in fact, a cryptographic adversary that attacks the protocol proposed
by the designer.

The incentives of both A and D are described by utility functions, and their
respective moves are carried out with the goal of maximizing these utilities.3 In
a nutshell, the attacker’s utility function rewards the adversary proportionally
to how often he succeeds in provoking his intended breach, and depending on its
severity. Since the game is zero-sum, the designer’s utility is the opposite of the
attacker’s; this captures the standard goal of cryptographic protocols, namely,
“taming” the adversary in the best possible manner.

Based on the above game, the RPD framework introduces the following nat-
ural security notion, termed attack-payoff security, that captures the quality of

2 This is often referred to as a Stackelberg game in the game theory literature [26].
3 Notice, however, the asymmetry: The designer needs to come up with a protocol

based on speculation of what the adversary’s move will be, whereas the attacker
plays after being informed about the actual designer’s move, i.e., about the protocol.

But Why Does It Work? 37

a protocol Π for a given specification when facing incentive-driven attacks aim-
ing to maximize the attacker’s utility. Informally, attack-payoff security ensures
that the adversary is not willing to attack the protocol Π in any way that
would make it deviate from its ideal specification. In other words, the protocol
is secure against the class of strategies that maximize the attacker’s utility. In
this incentive-driven setting, this is the natural analogue of security against mali-
cious adversaries.4 For cases where attack payoff security is not feasible, RPD
proposes the notion of attack-payoff optimality, which ensures that the protocol
Π is a best response to the best attack.

A useful feature of RPD (see below) is that all definitions build on Canetti’s
simulation-based framework (either the standalone framework [5] or the UC
framework [6]), where they can be easily instantiated. In fact, there are several
reasons, both at the intuitive and technical levels, that make RPD particularly
appealing to analyze complex protocols that are already running, such as Bit-
coin. First, RPD supports adaptive corruptions which captures the scenario of
parties who are currently running their (mining) strategy changing their mind
and deciding to attack. This is particularly useful when aiming to address the
likelihood of insider attacks against a protocol which is already in operation. For
the same reason, RPD is also suitable for capturing attacks induced by com-
promised hardware/software and/or bribing [4] (although we will not consider
bribing here). Second, the use of a central adversary as the attacker’s move
ensures that, even though we are restricting to incentive-driven strategies, we
allow full collaboration of cheaters. This allows, for example, to capture mining
pools deciding to deviate from the protocol’s specification.

At the technical level, using the attack-game to specify the incentives takes
away many of the nasty complications of “rational cryptography” models. For
example, it dispenses with the need to define cumbersome computational versions
of equilibrium [10,17–19,21,25], since the actual rational agents, i.e., D and A, are
not computationally bounded. (Only their actions need to be PPT machines.)
Furthermore, as it builds on simulation-based security, RPD comes with a com-
position theorem allowing for regular cryptographic subroutine replacement. The
latter implies that we can analyze protocols in simpler hybrid-worlds, as we usu-
ally do in cryptography, without worrying about whether or not their quality or
stability will be affected once we replace their hybrids by corresponding crypto-
graphic implementations.

Our contributions. In this work, we apply the RPD methodology to analyze
the quality of Bitcoin against incentive-driven attacks, and address the existen-
tial questions posted above. As RPD is UC-based, we use the Bitcoin abstraction
as a UC protocol and the corresponding Bitcoin ledger functionality from [2] to
capture the goal/specification of Bitcoin. As argued in [2], this functionality
captures all the properties that have been proposed in [13,27].

We define a natural class of incentives for the attacker by specifying util-
ities which, on one hand, reward him according to Bitcoin’s standard reward
4 In fact, if we require this for any arbitrary utility function, then the two notions—

attack-payoff security and malicious security—coincide.

38 C. Badertscher et al.

mechanisms (i.e., block rewards and transaction fees) for blocks permanently
inserted in the blockchain by adversarial miners, and, on the other hand, penal-
ize him for resources that he uses (e.g., use of mining equipment and electricity).
In order to overcome the inconsistency of rewards being typically in Bitcoins and
costs being in real money, we introduce the notion of a conversion rate CR con-
verting reward units (such as BTC) into mining-cost units (such as US Dollar)
This allows us to make statements about the quality of the protocol depending
on its value measured in a national currency.

We then devise a similar incentive structure for the designer, where, again,
the honest parties are (collectively) rewarded for blocks they permanently insert
into the blockchain, but pay for the resources they use. What differentiates
the incentives of the attacker from the designer’s is that the latter is utmost
interested in preserving the “health” of the blockchain, which we also reflect
in its utility definition. Implicit in our formulation is the assumption that the
attacker does not gain reward from attacking the system, unless this attack has
a financial gain.5

Interestingly, in order to apply the RPD methodology to Bitcoin we need to
extend it in non-trivial ways, to capture for example non-zero-sum games—as
the utility of the designer and the attacker are not necessarily opposites—and to
provide stronger notions of security and stability. In more detail, we introduce
the notion of strong attack payoff security, which mandates that the attacker
will stick to playing a passive strategy, i.e., stick to Bitcoin (but might abuse
the adversary’s power to delay messages in the network). We also introduce
the natural notion of incentive compatibility (IC) which mandates that both
the attacker and the designer will have their parties play the given protocol.
Observe that incentive compatibility trivially implies strong attack payoff secu-
rity, and the latter implies the standard attack payoff security from the original
RPD framework assuming the protocol is at least correct when no party devi-
ates. These extensions to RPD widen its applicability and might therefore be
of independent interest. We note that although we focus on analysis of Bitcoin
here, the developed methodology can be adapted to analyze other main-stream
cryptocurrencies.

Having laid out the model, we then use it to analyze Bitcoin. We start
our analysis with the simpler case where the utilities do not depend on the
messages—i.e., transactions—that are included into the blocks of the blockchain:
when permanently inserting a block into the blockchain, a miner is just rewarded
with a fixed block-reward value. This can be seen as corresponding to the Bit-
coin backbone abstraction proposed in [13], but enriched with incentives to mine
blocks. An interpretation of our results for this setting, listed below, is that they
address blockchains that are not necessarily intended to be used as cryptocur-
rency ledgers. Although arguably this is not the case for Bitcoin, our analysis
already reveals several surprising aspects, namely, that in this setting one does
not need to rely on honest majority of computing power to ensure the quality

5 In particular, a fork might be provoked by the attacker only if it is expected to
increase his revenue.

But Why Does It Work? 39

of the system. Furthermore, these results offer intuition on what is needed to
achieve stability in the more complete case, which also incorporates transaction
fees. Summarizing, we prove the following statements for this backbone-like set-
ting, where the contents of the blocks do not influence the player’s strategies
(but the rewards and costs do):

– Bitcoin is strongly attack-payoff secure, i.e., no coordinated coalition has an
incentive to deviate from the protocol, provided that the rest of the parties
play it. Further, this statement holds no matter how large the coalition (i.e.,
no matter how large the fraction of corrupt computing power) and no matter
how high the conversion rate is. This means that in this backbone-like setting
we can fully replace the assumption of honest majority of computing power
by the above intuitive rational assumption.6

– If the reward for mining a block is high enough so that mining is on aver-
age profitable, then the Bitcoin protocol is even incentive-compatible with
respect to local deviations. In other words, not only colluding parties (e.g.,
mining pools) do not have an incentive to deviate, but also the honest miners
have a clear incentive to keep mining. Again, this makes no honest-majority
assumption. Furthermore, as a sanity check, we also prove that this is not
true if the conversion rate drops so that miners expect to be losing revenue by
mining. The above confirms the intuition that after the initial bootstrapping
phase where value is poured into the system (i.e., CR becomes large enough),
such a ledger will keep working according to its specification for as long as
the combination of conversion rate and block-reward is high enough.

With the intuition gained from the analysis in the above idealized setting, we
next turn to the more realistic setting which closer captures Bitcoin, where block
contents are messages that have an associated fee. We refer to these messages as
transactions, and use the standard restrictions of Bitcoin on the transaction fees:
every transaction has a maximum fee and the fee is a multiple of the minimum
division.7 We remark that in all formal analyses [2,13,27] the transactions are
considered as provided as inputs by an explicit environment that is supposed
to capture the application layer that sits on top of the blockchain and uses it.
As such, the environment will also be responsible for the choice of transaction
fees and the distribution of transactions to the miners. For most generality,
we do not assume as in [13,27] that all transactions are communicated by the
environment to all parties via a broadcast-like mechanism, but rather that they
are distributed (i.e., input) by the environment to the miners, individually, who
might then forward them using the network (if they are honest) or not. This
more realistic transaction-submission mechanism is already explicit in [2].

We call this model that incorporates both mining rewards and transaction
fees into the reward of the miner for a block as the full-reward model. Interest-
ingly, this model allows us to also make predictions about the Bitcoin era when
6 It should be noted though that our analysis considers, similarly to [2,13,27], a fixed

difficulty parameter. The extension to variable difficulty is left as future research.
7 For Bitcoin the minimum division is 1 satoshi = 10−8 BTC, and there is typically a

cap on fees [3].

40 C. Badertscher et al.

the rewards for mining a block will be much smaller than the transaction fees
(or even zero).

We stress that transactions in our work are dealt with as messages that have
an explicit fee associated with them, rather than actions which result in transfer-
ring BTCs from one miner to another. This means that other than its associated
fee, the contents of a transaction does not affect the strategies of the players
in the attack game. This corresponds to the assumption that the miners, who
are responsible for maintaining the ledger, are different than the users, which,
for example, translate the contents of the blocks as exchanges of cryptocur-
rency value, and which are part of the application/environment. We refer to this
assumption as the miners/users separation principle. This assumption is explicit
in all existing works, and offers a good abstraction to study the incentives for
maintaining the ledger—which is the scope of our work—separately from the
incentives of users to actually use it. Note that this neither excludes nor trivially
deters “forking” by a sufficiently powerful (e.g., 2/3 majority) attacker; indeed,
if some transaction fees are much higher than all others, then such an attacker
might fork the network by extending both the highest and the second highest
chain with the same block containing these high-fee transactions, and keep it
forked for sufficiently long until he cashes out his rewards from both forks.

In this full-reward model, we prove the following statements:

– First, we look at the worst-case environment, i.e., the one that helps the
adversary maximize its expected revenue. We prove that in this model Bitcoin
is still incentive compatible, hence also strongly attack payoff secure. In fact,
the same is true if the environment makes sure that there is a sufficient supply
of transactions to the honest miners and to the adversary, such that the fees
are high enough to build blocks that reach exactly the maximal rewarding
value (note that not necessarily the same set of transactions have to be known
to the participants). For example, as long as many users submit transactions
with the heaviest possible fee (so-called full-fee transactions), then the system
is guaranteed to work without relying on an honest majority of miners. In a
sense, the users can control the stability of the system through transaction
fees.

– Next, we investigate the question of whether or not the above is true for
arbitrary transaction-fee distributions. Not surprisingly, the answer here is
negative, and the protocol is not even attack-payoff secure (i.e, does not even
achieve its specification). The proof of this statement makes use of the above
sketched forking argument. On the positive side, our proof suggests that in the
honest-majority setting where forking is not possible (except with negligible
probability), the only way the adversary is incentivized to deviate from the
standard protocol is to withhold the transactions he is mining on to avoid
risking to lose the fees to honest parties.

Interpreting the above statements, we can relax the assumption for security
of Bitcoin from requiring an honest majority to requiring long-enough presence
of sufficiently many full-fee transactions, with a fallback to honest majority.

But Why Does It Work? 41

– Finally, observing that the typically large pool of transactions awaiting val-
idation justifies the realistic assumption that there is enough supply to the
network (and given the high adoption, this pool will not become small too
fast), we can directly use our analysis, to propose a possible modification
which would help Bitcoin, or other cryptocurrencies, to ensure incentive com-
patibility (hence also strong attack-payoff security) in the full-reward model
in the long run: The idea is to define an exact cumulative amount on fees
(or overall reward) to be allowed for each block. If there are enough high-fee
transactions, then the blocks are filled up with transactions until this amount
is reached. As suggested by our first analysis with a simple incentive struc-
ture, ensuring that this cap is non-decreasing would be sufficient to argue
about stability; however, it is well conceivable that such a bound could be for-
mally based on supply-and-demand in a more complex and economy-driven
incentive structure and an interesting future research direction is to precisely
define such a proposal together with the (economical) assumptions on which
the security statements are based. We note that the introduction of such a
rule would typically only induce a “soft fork,” and would, for a high-enough
combination of conversion rate and reward bound, ensure incentive compati-
bility even when the flat reward per block tends to zero and the main source
of rewards would be transaction fees, as it is the plan for the future of Bitcoin.

2 Preliminaries

In this section we introduce some notation and review the basic concepts and
definitions from the literature, in particular from [11] and [2] that form the basis
of our treatment. For completeness, an expanded version of this review can be
found in the full version [1]. Our definitions use and build on the simulation-
based security definition by Canetti [6]; we assume some familiarity with its
basic principles.

Throughout this work we will assume an (at times implicit) security param-
eter κ. We use ITM to the denote the set of probabilistic polynomial time (PPT)
interactive Turing machines (ITMs). We also use the standard notions of neg-
ligible, noticeable, and overwhelming (e.g., see [16]) were we denote negligible
(in κ) functions as negl(κ). Finally, using standard UC notation we denote by
EXECΠ,A,Z (resp. EXECF,S,Z) the random variable (ensemble if indexed by
κ) corresponding to the output of the environment Z witnessing an execution
of protocol Π against adversary A (resp. an ideal evaluation of functionality F
with simulator S).

2.1 The RPD Framework

The RPD framework [11] captures incentive-driven adversaries by casting attacks
as a meta-game between two rational players, the protocol designer D and the
attacker A, which we now describe. The game is parameterized by a (multi-party)
functionality F known to both agents D and A which corresponds to the ideal

42 C. Badertscher et al.

goal the designer is trying to achieve (and the attacker to break). Looking ahead,
when we analyze Bitcoin, F will be a ledger functionality (cf. [2]). The designer
D chooses a PPT protocol Π for realizing the functionality F from the set of all
probabilistic and polynomial-time (PPT) computable protocols.8 D sends Π to A
who then chooses a PPT adversary A to attack protocol Π. The set of possible
terminal histories is then the set of sequences of pairs (Π,A) as above.

Consistently with [11], we denote the corresponding attack game by GM,
where M is referred to as the attack model, which specifies all the public param-
eters of the game, namely: (1) the functionality, (2) the description of the relevant
action sets, and (3) the utilities assigned to certain actions (see below).

Stability in RPD corresponds to a refinement of a subgame-perfect equilibrium
(cf. [26, Definition 97.2]), called ε-subgame perfect equilibrium, which considers as
solutions profiles in which the parties’ utilities are ε-close to their best-response
utilities (see [11] for a formal definition). Throughout this paper, we will only
consider ε = negl(κ); in slight abuse of notation, we will refer to negl(κ)-subgame
perfect equilibrium simply as subgame perfect.

The utilities. The core novelty of RPD is in how utilities are defined. Since
the underlying game is zero-sum, it suffices to define the attacker’s utility. This
utility depends on the goals of the attacker, more precisely, the security breaches
which he succeeds to provoke, and is defined, using the simulation paradigm, via
the following three-step process:

First, we modify the ideal functionality F to obtain a (possibly weaker) ideal
functionality 〈F〉, which explicitly allows the attacks we wish to model. For
example, 〈F〉 could give its simulator access to the parties’ inputs. This allows
to score attacks that aim at input-privacy breaches.

Second we describe a scoring mechanism for the different breaches that are of
interest to the adversary. Specifically, we define a function vA mapping the joint
view of the relaxed functionality 〈F〉 and the environment Z to a real-valued
payoff. This mapping defines the random variable (ensemble) v

〈F〉,S,Z
A as the

result of applying vA to the views of 〈F〉 and Z in a random experiment describing
an ideal evaluation with ideal-world adversary S; in turn, v

〈F〉,S,Z
A defines the

attacker’s (ideal) expected payoff for simulator S and environment Z, denoted
by U

〈F〉
IA (S,Z), so the expected value of vA

〈F〉,S,Z . The triple M = (F, 〈F〉, vA)
constitutes the attack model.

The third and final step is to use U
〈F〉
IA (S,Z) to define the attackers utility,

uA(Π,A), for playing an adversary A against protocol Π, as the expected payoff
of the “best” simulator that successfully simulates A in its (A’s) favorite envi-
ronment. This best simulator is the one that translates the adversary’s breaches
against Π into breaches against the relaxed functionality 〈F〉 in a faithful man-
ner, i.e., so that the ideal breaches occur only if the adversary really makes
them necessary for the simulator in order to simulate. As argued in [11], this
corresponds to the simulator that minimizes the attacker’s utility. Formally, for
a functionality 〈F〉 and a protocol Π, denote by CA the class of simulators that

8 Following standard UC convention, the protocol description includes its hybrids.

But Why Does It Work? 43

are “good” for A, i.e, CA = {S ∈ ITM | ∀Z : EXECΠ,A,Z ≈ EXEC〈F〉,S,Z}.9

Then the attacker’s (expected) utility is defined as:

uA(Π,A) = sup
Z∈ITM

{
inf

S∈CA

{
U

〈F〉
IA (S,Z)

}}
.

For A and Π with CA = ∅, the utility is ∞ by definition, capturing the fact that
we only want to consider protocols which at the very least implement the relaxed
(i.e., explicitly breachable) functionality 〈F〉. Note that as the views in the above
experiments are in fact random variable ensembles indexed by the security param-
eter κ, the probabilities of all the relative events are in fact functions of κ, hence
the utility is also a function of κ. Note also that as long as CA = ∅ is non-empty, for
each value of κ, both the supremum and the infimum above exist and are finite and
reachable by at least one pair (S, Z), provided the scoring function assigns finite
payoffs to all possible transcripts (for S ∈ CA) (cf. [11]).

Remark 1 (Event-based utility [11]). In many applications, including those in our
work, meaningful payoff functions have the following, simple representation: Let
(E1, . . . , E�) denote a vector of (typically disjoint) events defined on the views
(of S and Z) in the ideal experiment corresponding to the security breaches
that contribute to the attacker’s utility. Each event Ei is assigned a real number
γi, and the payoff function v�γ

A assigns, to each ideal execution, the sum of γi’s
for which Ei occurred. The ideal expected payoff of a simulator is computed
according to our definition as

U
〈F〉
IA (S,Z) =

∑
Ei∈ �E,γi∈�γ

γi Pr[Ei],

where the probabilities are taken over the random coins of S, Z, and 〈F〉.

Building on the above definition of utility, [11] introduces a natural notion
of security against incentive-driven attackers. Intuitively, a protocol Π is attack-
payoff secure in a given attack model M = (F, ·, vA), if the utility of the best
adversary against this protocol is the same as the utility of the best adversary in
attacking the F-hybrid “dummy” protocol, which only relays messages between
F and the environment.

Definition 1 (Attack-payoff security [11]). Let M = (F, 〈F〉, vA, vD) be an
attack model inducing utilities uA and uD on the attacker and the designer, respec-
tively,10 and let φF be the dummy F-hybrid protocol. A protocol Π is attack-
payoff secure for M if for all adversaries A ∈ ITM,

uA(Π,A) ≤ uA(φF ,A) + negl(κ).

9 This class is finite for every given value of the security parameter, Π, and A.
10 In [11], by default uD = −uA as the game is zero-sum.

44 C. Badertscher et al.

Intuitively, this security definition accurately captures security against an
incentive-driven attacker, as in simulating an attack against the dummy F-
hybrid protocol, the simulator never needs to provoke any of the “breaching”
events. Hence, the utility of the best adversary against Π equals the utility of
an adversary that does not provoke any “bad event.”

2.2 A Composable Model for Blockchain Protocols

In [2], Badertscher et al. present a universally composable treatment of the Bit-
coin protocol, ΠB, in the UC framework. Here we highlight the basic notions
and results and refer to the full version [1] for details.

The Bitcoin ledger. The ledger functionality GB
ledger maintains a ledger state

state, which is a sequence of state blocks. A state block contains (application-
specific) content values—the “transactions.” For each honest party pi, the ledger
stores a pointer to a state block—the head of the state from pi’s point of view—
and ensures that pointers increase monotonically and are not too far away from
the head of the state (and that it only moves forward). Parties or the adversary
might submit transactions, which are first validated by means of a predicate
ValidTxB, and, if considered valid, are added to the functionality’s buffer. At
any time, the GB

ledger allows the adversary to propose a candidate next-block
for the state. However, the ledger enforces a specific extend policy specified by
an algorithm ExtendPolicy that checks whether the proposal is compliant with
the policy. If the adversary’s proposal does not comply with the ledger policy,
ExtendPolicy rejects the proposal. The policy enforced by the Bitcoin ledger can
be succinctly summarized as follows:

– Ledger’s growth. Within a certain number of rounds the number of added
blocks must not be too small or too large.

– Chain quality. A certain fraction of the proposed blocks must be mined hon-
estly and those blocks satisfy special properties (such as including all recent
transactions).

– Transaction liveness. Old enough (and valid) transactions are included in the
next block added to the ledger state.

The Bitcoin protocol. In [2] it was proved that (a [13]-inspired abstraction of)
Bitcoin as a synchronous-UC protocol [20], called the ledger protocol and denoted
by ΠB, realizes the above ledger. ΠB uses blockchains to store a sequence of
transactions. A blockchain C is a (finite) sequence of blocks B1, . . . ,B�. Each
block Bi consist of a pointer si, a state block sti, and a nonce ni. string. The
chain C�k is C with the last k blocks removed. The state �st of the blockchain C =
B1, . . . ,B� is defined as a sequence of its state blocks, i.e., �st := st1|| . . . ||st�.

The validity of a blockchain C = B1, . . . ,B� where Bi = 〈si, sti, ni〉 is
decided by a predicate isvalidchainD(C). It combines two types of validity: chain-
level, aka syntactic, validity—which, intuitively requires that valid blocks need to
be solving a proof-of-work-type puzzle for a hash function H : {0, 1}∗ → {0, 1}κ

But Why Does It Work? 45

and difficulty d—and state-level, aka semantic, validity, which specifies whether
the block’s contents, i.e., transactions, are valid, with respect to a blockchain-
specific predicate.

The Bitcoin protocol ΠB is executed in a hybrid world where parties have
access to a random oracle functionality FRO (modeling the hash function H),
a multicast asynchronous network using channels with bounded delay FN-MC,
and a global clock Gclock. Each party maintains a (local) current blockchain. It
receives the transactions from the environment (and circulates them), and adds
newly received valid transactions to a block that is then mined-on using the
algorithm extendchainD. The idea of the algorithm is to find a proof of work—by
querying the random oracle FRO—which allows to extend the local chain with a
valid block. After each mining attempt the party uses the network to multicast
their current blockchain. Parties always adopt the longest chain that they see
starting from a pre-agreed genesis block. The protocol (implicitly) defines the
ledger state to be a certain prefix of the contents of the longest chain held by
each party. More specifically, if a party holds a valid chain C that encodes the
sequence of state blocks �st, then the ledger state is defined to be �st

�T , i.e., the
party outputs a prefix of the encoded state blocks of its local longest chain. T is
chosen such that honest parties output a consistent ledger state.

The flat model of computation. In this paper, we state the results in the
synchronous flat model (with fixed difficulty) by Garay et al. [13]. This means
we assume a number of parties, denoted by n, that execute the Bitcoin protocol
ΠB, out of which t parties can get corrupted. For simplicity, the network FN-MC

guarantees delivery of messages sent by honest parties in round r to be available
to any other party at the onset of round r + 1. Moreover, every party will be
invoked in every round and can make at most one “calculation” query to the
random oracle FRO in every round (and an unrestricted number of “verification”
queries to check the validity of received chains)11, and use the above diffusion
network FN-MC once in a round to send and receive messages. To capture these
restrictions in a composable treatment, the real-world assumptions are enforced
by means of a “wrapper” functionality, Wflat, which adequately restricts access
to Gclock,FRO and FN-MC as explained in [2].

Denote by ρ the fraction of dishonest parties (i.e., t = ρ · n) and define
p := d

2κ which is the probability of finding a valid proof of work via a fresh query
to FRO (where d is fixed but sufficiently small, depending on n). Let αflat =
1− (1−p)(1−ρ)·n be the mining power of the honest parties, and βflat = p · (ρ ·n)
be the mining power of the adversary.

Theorem 1. Consider ΠB in the Wflat(Gclock,FRO,FN-MC)-hybrid world. If,
for some λ > 1, the honest-majority assumption

αflat · (1 − 4αflat) ≥ λ · βflat

11 This fine-grained round model with one hash query was already used by Pass
et al. [27]. The extension to a larger, constant upper bound of calculation queries
per round as in [13] is straightforward for the results in this work.

46 C. Badertscher et al.

holds in any real-world execution, then protocol ΠB UC-realizes GB
ledger for some

specific range of parameters (given in [2]).

3 Rational Protocol Design of Ledgers

In this section we present our framework for rational analysis of the Bitcoin proto-
col. It uses as basis the framework for rational protocol design (and analysis—RPD
framework for short) by Garay et al. [11], extending it in various ways to better cap-
ture Bitcoin’s features. (We refer to Sect. 2 and to the full version for RPD’s main
components and security definitions.) We note that although our analysis mainly
focuses on Bitcoin, several of the extensions have broader applicability, and can be
used for the rational analysis of other cryptocurrencies as well.

RPD’s machinery offers the foundations for capturing incentive-driven
attacks against multi-party protocols for a given specification. In this section
we show how to tailor this methodology to the specific task of protocols aimed
to securely implement a public ledger. The extensions and generalizations of the
original RPD framework we provide add generic features to the RPD frame-
work, including the ability to capture non-zero-sum attack games—which, as we
argue, are more suitable for the implementation of a cryptocurrency ledger—and
the extension of the class of events which yield payoff to the attacker and the
designer.

The core hypothesis of our rational analysis is that the incentives of an
attacker against Bitcoin—which affect his actions and attacks—depend only on
the possible earnings or losses of the parties that launch the attack. We do not
consider, for example, attackers that might create forks just for the fun of it. An
attacker might create a “fork” in the blockchain if he expects to gain something
by doing so. In more detail, we consider the following events that yield payoff
(or inflict a cost) for running the Bitcoin protocol:

– Inserting a block into the blockchain. It is typical of cryptocurrencies that when
a party manages to insert a block into the ledger’s state, then it is rewarded
for the effort it invested in doing so. In addition, it is typical in such protocols
that the contents of the blocks (usually transactions) have some transaction
fee associated with them. (For simplicity, in our initial formalization (Sects. 3
and 4) we will ignore transaction fees in our formal statements, describing
how they are extended to also incorporate also such fees in Sect. 5.)

– Spending resources to mine a block. These resources might be the electricity
consumed for performing the mining, the investment on mining hardware and
its deterioration with time, etc.

Remark 2 (The miners/users separation principle). We remark that the scope
of our work is to analyze the security of cryptocurrencies against incentive-
driven attacks by the miners, i.e., the parties that are responsible for maintaining
the blockchain. In particular, consistently with [2,13,27] we shall consider the
inputs to the protocol as provided by a (not-necessarily rational) environment,
which in particular captures the users of the system. As a result, other than the

But Why Does It Work? 47

transaction fees, we will assume that the contents of the ledger do not affect
the miners’ strategies, which we will refer to as the miners/users separation
principle. This principle captures the case where the users do not collude with
the miners—an assumption implicit in the above works. We leave the full rational
analysis of the protocol, including application layers for future research.

There are several challenges that one needs to overcome in deriving a formal
treatment of incentive-driven attacks against Bitcoin. First, the above reward
and cost mechanisms are measured in different “units.” Specifically, the block
reward is a cryptocurrency convention and would therefore be measured in the
specific cryptocurrency’s units, e.g., BTCs in the case of the Bitcoin network.
On the other hand, the cost for mining (e.g., the cost of electricity, equipment
usage, etc.) would be typically measured in an actual currency. To resolve this
mismatch—and refrain from adopting a specific currency—we introduce a vari-
able CR which corresponds to the conversion rate of the specific cryptocurrency
unit (e.g., BTCs) to the cost unit (e.g., euros or US dollars). As we shall see in
the next section, using such an explicit exchange rate allows us to make state-
ments about the quality of the Bitcoin network that depend on its price—as
they intuitively should. For example, we can formally confirm high-level state-
ments of the type: “Bitcoin is stable—i.e., miners have incentive to keep mining
honestly—as long as its price is high enough” (cf. Sect. 4).

Furthermore, this way we can express all payoffs in terms of cost units:
Assume that it takes r rounds for a miner (or a collection of miners) to insert
a block into the state. Denote by mcost the cost for a single mining attempt
(in our case a single RO query), and by breward the fraction of cryptocurrency
units (e.g., BTCs) that is given as a reward for each mined block.12 Then, the
payoff for the insertion of a single block is breward · CR− qr · mcost, where qr is
the number of queries to the RO that were required to mine this block during r
rounds.

The second challenge is with respect to when should a miner receive the
reward for mining. There are several reasons why solving a mining puzzle—
thereby creating a new block—does not necessary guarantee a miner that he will
manage to insert this block into the blockchain, and therefore be rewarded for it,
including the possibility of collisions—more than one miner solving the puzzle—
or, even worse, adversarial interference—e.g., network delays or “selfish mining.”
And even if the miner is the only one to solve the puzzle in a given round, he
should only be rewarded for it if his block becomes part of the (permanent) state
of the blockchain—the so-called blockchain’s “common prefix.”

To overcome this second challenge we rely on the RPD methodology. In
particular, we will use the ideal experiment where parties have access to the
global ledger functionality, where we can clearly identify the event of inserting
a block into the state, and decide, by looking into the state, which miner added
which block.13

12 Currently, for the Bitcoin network, this is 1/4 of the original reward (12.5 BTCs).
13 In [2], each block of the state includes the identifier of the miner who this block is

attributed to.

48 C. Badertscher et al.

In order to formalize the above intuitions and apply the RPD methodology
to define the utilities in the attack game corresponding to implementing a ledger
against an incentive-driven adversary, we need to make some significant adap-
tations and extensions to the original framework, which is what we do next. We
then (Sect. 3.2) use the extended framework to define the attack-model for the
Bitcoin protocol, and conclude the section by giving appropriate definitions of
security and stability in this model.

3.1 Extending the RPD Framework

We describe how to extend the model from [11] to be able to use it in our context.

Black-box simulators. The first modification is adding more flexibility to how
utilities are defined. The original definition of ideal payoff U

〈F〉
IA (S,Z) computes

the payoff of the simulator using the joint view of the environment and the
functionality. This might become problematic when attempting to assign cost to
resources used by the adversary—the RO queries in our scenario, for example.
Indeed, these queries are not necessarily in this joint view, as depending on the
simulator, one might not be able to extract them.14 To resolve this we modify the
definition to restrict it to black-box simulators, resulting in CA being the class
of simulators that use the adversary as a black box. This will ensure that the
queries to the RO are part of the interaction of the simulator with its adversary,
and therefore present in the view of the simulator. Further, we include this part
of the simulator’s view in the definition of the scoring function vA, which is
defined now as a mapping from the joint view of the relaxed functionality 〈F〉,
the environment Z, and the simulator S to a real-valued payoff.

Non-zero-sum attack games. The second modification is removing the
assumption that the attack game is zero-sum. Indeed, the natural incentive of the
protocol designer in designing a Ledger protocol is not to optimally “tame” its
attacker—as in [11]—but rather to maximize the revenue of the non-adversarially
controlled parties while keeping the blockchain healthy, i.e., free of forks. This
is an important modification as it captures attacks in which the adversary pre-
serves his rate of blocks inserted into the state, but slows down the growth of
the state to make sure that honest miners accrue less revenue in any time inter-
val. For example, the so called “selfish-mining” strategy [9] provokes a slowdown
since honest mining power is invested into mining on a chain which is not the
longest one (as the longest chain is kept private as long as possible by the party
that does the selfish-mining).

To formally specify the utility of the designer in such a non-zero-sum attack
game, we employ a similar reasoning as used in the original RPD framework for
defining the attacker’s utility. The first step, relaxing the functionality, can be
omitted provided that we relaxed it sufficiently in the definition of the attacker’s
utility. In the second step, we define the scoring mechanism for the incentives

14 Indeed, in the ideal simulation of the Bitcoin protocol presented in [2], there is no
RO in the ideal world.

But Why Does It Work? 49

of the designer as a function vD mapping the joint view of the relaxed function-
ality 〈F〉, the environment Z, and the simulator S to a real-valued payoff, and
define the designer’s (ideal) expected payoff for simulator S with respect to the
environment Z as

U
〈F〉
ID (S,Z) = E(v〈F〉,S,Z

D),

where v
〈F〉,S,Z
D describes (as a random variable) the payoff of D allocated by S

in an execution using directly the functionality 〈F〉.
The third and final step is the trickiest. Here we want to use the above ideal

expected payoff to define the expected payoff of a designer using protocol Π
when the attacker is playing adversary A. In order to ensure that our definition
is consistent with the original definition in [11]—which applied to (only) zero-
sum games—we need to make sure that the utility of the designer increases as
the utility of the attacker decreases and vice versa. Thus, to assign utility for
the designer to a strategy profile (Π,A), we will use the same simulators and
environments that were used to assign the utility for the attacker. Specifically,
let SA denote the class of simulators that are used to formulate the utility of the
adversary, and let ZA denote the class of environments that maximize this utility
for simulators in SA

15, then

SA =
{

S ∈ CA s.t. sup
Z∈ITM

{U
〈F〉
IA (S,Z)} = uA(Π,A)

}
(1)

and

ZA =
{

Z ∈ ITM s.t. for some S ∈ SA : U
〈F〉
IA (S,Z)} = uA(Π,A)

}
. (2)

It is easy to verify that this choice of simulator respects the utilities being
opposite in a zero-sum game as defined in [11], thereby preserving the results
following the original RPD paradigm.

Lemma 1. Let vD = −vA and let U
〈F〉
ID (S,Z) defined as above. For some S ∈ SA

and some Z ∈ ZA, define uD(Π,A) := U
〈F〉
ID (S,Z). Then uD(Π,A) = −uA(Π,A).

Proof. Since vD = −vA, we have that for all Z,S ∈ ITM,

U
〈F〉
ID (S,Z) = −U

〈F〉
IA (S,Z). (3)

However, by definition, since S ∈ SA, we have

uA(Π,A) = U
〈F〉
IA (S,Z) 3= −U

〈F〉
ID (S,Z) = −uD(Π,A).

�

The above lemma confirms that for a zero-sum attack game we can take any
pair (S,Z) ∈ SA ×ZD in the definition of uD(Π,A) and it will preserve the zero-
sum property (and hence all the original RPD results). This is so because all these
15 Recall that as argued in Sect. 2.1, these sets are non-empty provided CA �= ∅.

50 C. Badertscher et al.

simulators induce the same utility −uA(Π,A) for the designer. However, for our
case of non-zero-sum games, each of those simulator/environment combinations
might induce a different utility for the designer. To choose the one which most
faithfully translates the designer’s utility from the real to the ideal world we use
the same line of argument as used in RPD for defining the attacker’s utility:
The best (i.e., the most faithful) simulator is the one which always rewards the
designer whenever his protocol provokes some profitable event; in other words,
the one that maximizes the designer’s expected utility. Similarly, the natural
environment is the one that puts the protocol in its worst possible situation, i.e.,
the one that minimizes its expected gain; indeed, such an environment will ensure
that the designer is guaranteed to get his allocated utility. The above leads to
the following definition for the designer’s utility in non-zero-sum games:

uD(Π,A) := inf
Z∈ZA

{
sup
S∈SA

{
U

〈F〉
ID (S,Z)

}}
.

For completeness, we set uD(Π,A) = −∞ if CA = ∅, i.e., if the protocol does
not even achieve the relaxed functionality. This is not only intutive—as CA = ∅
means that the designer chose a protocol which does not even reach the relaxed
goal—but also analogous to how RPD defines the attacker’s utility for protocols
that do not achieve their relaxed specification.16

Finally, the attack model for non-zero-sum games is defined as the quadruple
M = (F, 〈F〉, vA, vD).

3.2 Bitcoin in the RPD Framework

Having formulated the above extensions to the RPD framework, we are ready
to apply the methodology to analyze Bitcoin.

Basic foundations. We explain in more depth on how to implement the core
steps of RPD. First, we define the Ledger functionality from [2] as Bitcoin’s ideal
goal (see Sect. 2.2). Following the three steps of the methodology, we start by
defining the relaxed version of the Ledger, denoted as GB

weak-ledger. Informally,
the relaxed Ledger functionality operates as the original ledger with the following
modifications:

The state is a tree: Instead of storing a single ledger state state as a straight-
line blockchain-like structure, GB

weak-ledger stores a tree state-tree of state
blocks where for each node the direct path from the root defines a possi-
ble ledger state that might be presented to any of the honest miners. The
functionality maintains for each registered party pi ∈ P a pointer pti to a
node in the tree which defines pi’s current-state view. Furthermore, instead
of restricting the adversary to only be able to set the state “slackness” to be
not larger than a specific parameter, GB

weak-ledger offers the command set-

pointer which allows the adversary to set the pointers of honest parties
16 Recall that RPD sets uA(Π, A) = ∞ if A cannot be simulated, i.e., if CA = ∅.

But Why Does It Work? 51

within state-tree with the following restriction: The pointer of an honest
party can only be set to a node whose distance to the root is at least the
current-pointer node’s.

Relaxed validity check of transactions: All submitted transactions are
accepted into the buffer buffer without validating against state-tree.
Moreover, transactions in buffer which are added to state-tree are not
removed as they could be reused at another branch of state-tree.

Ability to create forks: This relaxation gives the simulator the explicit power
to create a fork on the ledger’s state. This is done as follows: The command
next-block—which, recall, allows the simulator to propose the next block—
is modified to allow the simulator to extend an arbitrary leaf of a sufficiently
long rooted path of state-tree. Thus, when state-tree is just a single
path, this command operates as in the original ledger from [2]. Additionally,
in the relaxed ledger, the simulator is also allowed to add the next block to
an intermediate, i.e., non-leaf node of state-tree. This is done by using
an extra command fork which, other than extending the chain from the
indicated block provides the same functionality as next-block.

Relaxed state-extension policy: As explained in Sect. 2.2, the extend pol-
icy is a compliance check that the ledger functionality performs on blocks
that the simulator proposes to be added to the ledger’s state. This is to
ensure that they satisfy certain conditions. This is the mechanism which the
ledger functionality uses to enforce, among others, common generic-ledger
properties from the literature, such as the chain quality or the chain growth
properties, and for Bitcoin ledgers the transaction-persistence/stability prop-
erties [13,27]. of the ledger state, or on transaction persistence/stability [13].
The relaxed ledger uses a much more permissive extend policy, denoted as
weakExtendPolicy, derived from ExtendPolicy with the following modifications:
Intuitively, in contrast to ExtendPolicy, the weaker version does not check
if the adversary inserts too many or too few blocks, and it does not check
if all old-enough transactions have been included. There is also no check
of whether enough blocks are mined by honest parties, i.e., that there are
enough blocks with coin-base transactions from honest parties. In other words,
weakExtendPolicy does not enforce any concrete bounds on the chain qual-
ity or the chain growth properties of the ledger state, or on transaction
persistence/stability. It rather ensures basic validity criteria of the resulting
ledger state.
More formally, instead of state, it takes state-tree and a pointer pt as
input. It first computes a valid default block �Ndf which can be appended at
the longest branch of state-tree. It then checks if the proposed blocks �N
can be safely appended to the node pt (to yield a valid state). If this is the
case it returns (�N, pt); otherwise it returns �Ndf and a pointer to the leaf of
the longest branch in state-tree.

The formal description of the relaxed ledger functionality is found in the full
version [1]. This completes the first step of the RPD methodology.

52 C. Badertscher et al.

The second step is defining the scoring function. This is where our applica-
tion of RPD considerably deviates from past works [11,12]. In particular, those
works consider attacks against generic secure multi-party computation protocols,
where the ideal goal is the standard secure function evaluation (SFE) function-
ality (cf. [6]). The security breaches are breaking correctness and privacy [11] or
breaking fairness [12]. These can be captured by relaxing the SFE functional-
ity to allow the simulator to request extra information (breaking privacy), reset
the outputs of honest parties to a wrong value (breaking correctness), or cause
an abort (breaking fairness.) The payoff function is then defined by looking at
events corresponding to whether or not the simulator provokes these events, and
the adversary is given payoff whenever the best simulator is forced to provoke
them in order to simulate the attack.

However, attacks against the ledger that have as an incentive increasing the
revenue of a coalition are not necessarily specific events corresponding to the
simulator sending special “break” commands. Rather, they are events that are
extracted from the joint views (e.g., which blocks make it to the state and when).
Hence, attacks to the ledger correspond to the simulator implicitly “tweeking” its
parameters. Therefore, in this work we take the following approach to define the
payoffs of the attacker and designer. In contrast to the RPD examples in [11,12],
which use explicit events that “downgrade” the ideal functionality for defining
utility, we directly use more intuitive events defined on the joint view of the
environment, the functionality, and the simulator. The reason is that as we have
assumed that the only rationale is to increase one’s profit, the incentives in case
of cryptocurrencies are as follows: whenever a block is mined, the adversary gets
rewarded. A “security breach” is relevant if (and only if) the adversary can get
a better reward by doing so.

Defining concrete utility functions. Defining the utility functions lies at the
core of a rational analysis of a blockchain protocol like Bitcoin. The number
of aspects that one would like to consider steers the complexity of a concrete
analysis, the ultimate goal being to reflect exactly the incentive structure of the
actual blockchain ecosystem. Our extended RPD framework for blockchain pro-
tocols provides a guideline to defining utility functions of various complexity and
to conduct the associated formal analysis. Recall that the utility functions are
the means to formalize the assumed underlying incentive structure. As such, our
approach is extensible: if certain relevant properties or dynamics are identified or
believed (such as reflecting a doomsday risk of an attacker or a altruistic moti-
vation of honest miners), one can enrich the incentive structure by reflecting the
associated events and rewards in the utility definition, or by making the costs
and rewards time-dependent variables. The general goal of this line of research
on rational aspects of cryptocurrencies is to eventually arrive at a more detailed
model and, if the assumptions are reasonable, to have more predictive models
for reality.

Below we define a first, relatively simple incentive model to concretely show-
case our methodology. We conduct the associated rational analysis in the next

But Why Does It Work? 53

section and observe that, although being a simplified model, we can already draw
interesting conclusions from such a treatment.

Utility of the attacker. Informally, this particular utility is meant to capture
the average revenue of the attacker. Consider the following sequence of events
defined on the views of the environment, the relaxed ledger functionality, and the
black-box simulator of the entire experiment (i.e., until the environment halts)
for a given adversary A:

1. For each pair (q, r)∈N2 define event W A
q,r as follows: The simulator makes q

mining queries in round r, i.e., it receives q responses on different messages
to the RO in round r.17

2. For each pair (b, r) ∈ N2 define event IAb,r as follows: The simulator inserts
b blocks into the state of the ledger in round r, such that all these blocks
were previously queries to the (simulated) random oracle by the adversary.
More formally, IAb,r occurs if the function extend policy (of the weak ledger)
is successfully invoked and outputs a sequence of b non-empty blocks (to be
added to the state), where for each of these blocks the following properties
hold: (1) The block has appeared in the past in the transcript between the
adversary and the simulator, and (2) the contents of the block have appeared
on this transcript prior to the block’s first appearance, as a query from the
adversary to its (simulated) RO. We note in passing that this event definition
ensures that the simulator (and therefore also the adversary) does not earn
reward by adaptively corrupting parties after they have done the work/query
to mine a block but before their block is added into the state. In other words,
the adversary only gets rewarded for state blocks which corrupted parties
mined while they where already under the adversary’s control.

Now, using the simplified event-based utility definition (Remark 1) we define
the attacker’s utility for a strategy profile (Π,A) in the attack game as:18

uB
A (Π,A) = sup

Z∈ITM

{
inf

SA∈CA

{ ∑
(b,r)∈N2

b · breward · CR · Pr[IAb,r]

−
∑

(q,r)∈N2

q · mcost · Pr[W A
q,r]

}}
.

We remark that although the above sums are in principle infinite, in any
specific execution these sums will have only as many (non-zero) terms as the
number of rounds in the protocol. Indeed, if the experiment finishes in r′ rounds
then for any r > r′, Pr[IA

b,r] = Pr[WA
q,r] = 0 for all b ∈ N. Furthermore, we assume

that breward, CR and mcost are O(1), i.e., independent of the security parameter.
17 Observe that since our ideal world is the Gclock-hybrid synchronous world, the round

structure is trivially extracted from the simulated ideal experiment by the protocol
definition and the clock value. Furthermore, the adversary’s mining queries can be
trivially extracted by its interaction with the black-box simulator.

18 Recall that we assume synchronous execution as in [2] where the environment gets
to decide how many rounds it wishes to witness.

54 C. Badertscher et al.

The above expression can be simplified to the following more useful expres-
sion. Let BA denote the random variables corresponding to the number of blocks
contributed to the ledger’s state by adversarial miners and QA denote the number
of queries to the RO performed by adversarial miners (throughout the execution
of the random experiment). Then the adversary’s utility can be described using
the expectations of these random variables as follows:

uB
A (Π,A) = sup

Z∈ITM

{
inf

SA∈CA

{
breward · CR · E(BA) − mcost · E(QA)

}}
.

Utility of the designer. Since the game is not zero-sum we also need to for-
mally specify the utility of the protocol designer. Recall that we have assumed
that, analogously to the attacker, the designer accrues utility when honest min-
ers insert a block into the state, and spends utility when mining—i.e., querying
the RO. In addition, what differentiates the incentives of the designer from that
of an attacker is that his most important goal is to ensure the “health” of the
blockchain, i.e., to avoid forks. To capture this, we will assign a cost for the
designer to the event the simulator is forced to request the relaxed ledger func-
tionality to fork, which is larger than his largest possible gain. This yields the
following events that are relevant for the designer’s utility.

1. For each pair (q, r) ∈ N2 define WΠ
q,r as follows: The honest parties, as a set,

make q mining queries in round r.19

2. For each pair (b, r) ∈ N2 define IΠ
b,r as follows: The honest parties jointly insert

b blocks into the state of the ledger in round r; that is, the simulator inserts
b blocks into the state of the ledger in round r, such that for each of these
blocks, at least one of the two properties specified in the above definition of
IAb,r does not hold.20

3. For each r ∈ N define Kr as follows: The simulator uses the fork command
in round r.

The utility of the designer is then defined similarly to the attacker’s, where
we denote by SA the class of simulators that assign to the adversary his actual
utility (cf. Eq. 1):

uB
D (Π,A) = inf

Z∈Z

{
sup

SA∈SA

{ ∑
(b,r)∈N2

b · CR · (breward· Pr[IΠ
b,r] − 2polylog(κ) · Pr[Kr])

−
∑

(q,r)∈N2

q · mcost · Pr[WΠ
q,r]

}}
.

19 Note that although there is no RO in the ideal model of [2], whenever a miner would
make such a query in the Bitcoin protocol, the corresponding dummy party sends a
special maintain-ledger command to the Ledger functionality, making it possible
for us to count the mining queries also in the ideal world.

20 By definition, these two properties combined specify when the adversary should be
considered the recipient of the reward.

But Why Does It Work? 55

At first glance, the choice of 2polylog(κ) might seem somewhat arbitrary. How-
ever, it is there to guarantee that if the ledger state forks (recall that this reflects
a violation of the common-prefix property) with noticeable probability, then
the designer is punished with this super-polynomially high penalty to make his
expected payoff negative as κ grows. On the other hand, if the probability of
such a fork is sufficiently small (e.g. in the order of 2−Ω(κ)), then the loss in util-
ity is made negligible. This, combined with the fact that our stability notions
will render negligible losses in the utility irrelevant, will allow the designer the
freedom to provide slightly imperfect protocols, i.e., protocols where violations
of the common-prefix property occur with sufficiently small probability.

We will denote by MB the Bitcoin attack model which has GB
ledger as the

goal, 〈GB
ledger〉 as the relaxed functionality, and scoring functions for the attacker

and designer inducing utilities uB
A and uB

D , respectively.

3.3 Attack-Payoff Security and Incentive Compatibility

The definition of the respective utilities for designer and attacker completes
the specification of an attack game. Next, we define the appropriate notions of
security and stability as they relate to Bitcoin and discuss their meaning.

We start with attack-payoff security [11], which, as already mentioned, cap-
tures that the adversary would have no incentive to make the protocol deviate
from a protocol that implements the ideal specification (i.e., from a protocol that
implements the ideal [non-relaxed] ledger functionality), and which is useful in
arguing about the resistance of the protocol against incentive-driven attacks.
However, in the context of Bitcoin analysis, one might be interested in achieving
an even stronger notion of incentive-driven security, which instead of restricting
the adversary to strategies that yield payoff as much as the ideal ledger GB

ledger

from [2] would, restricts him to play in a coordinated fashion but passively,
i.e., follow the mining procedure mandated by the Bitcoin protocol, including
announcing each block as soon as it is found, but ensure that no two corrupt
parties try to solve the same puzzle (i.e., use the same nonce).

One can think of the above strategy as corresponding to cooperating mining-
pools which run the standard Bitcoin protocol. Nonetheless, as the adversary
has control over message delays, he is able to make sure that whenever he finds
a new block in the same round as some other party, his own block will be the one
propagated first21, and therefore the one that will be added to the blockchain.
Note that a similar guarantee is not there for honest miners as in the event of
collisions—two miners solve a puzzle in the same round—the colliding miners
have no guarantee about whose block will make it. We will refer to such an
adversary that sticks to the Bitcoin mining procedure but makes sure his blocks
are propagated first as front running.

Definition 2 (Front-running, passive mining adversary). The front-
running adversarial strategy Afr is specified as follows: Upon activation in round

21 This can be thought of as a “rushing” strategy with respect to network delays.

56 C. Badertscher et al.

r > 0, Afr activates in a round-robin fashion all its (passively) corrupted parties,
say p1, . . . , pt. When party pi generated some new message to be sent through
the network, Afr immediately delivers m to all its recepients.22 In addition, upon
any activation, any message submitted to the network FN-MC by an honest party
is maximally delayed.

Note that there might be several front-running, passive mining strategies,
depending on which parties are corrupted and (in case of adaptive adversaries)
when. We shall denote the class of all such adversary strategies by Afr. We are
now ready to provide the definition of (strong) attack-payoff security for Bitcoin.
The definition uses the standard notion of negl-best-response strategy from game
theory: Consider a two-player game with utilities u1 and u2, respectively. A
strategy for m1 of p1 is best response to a strategy m2 of p2 if for all possible
strategies m′

1, u1(m′
1,m2) ≤ u1(m1,m2)+negl(κ). For conciseness, in the sequel

we will refer to negl-best-response simply as best-response strategies.

Definition 3. A protocol Π is strongly attack-payoff secure for attack model
MB if for some A ∈ Afr the attacker playing A is a (negl-)best-response to the
designer playing Π.

Remark 3. It is instructive to see that for such a weak class of adversaries the
usual blockchain properties hold with very nice parameters23: first, the common-
prefix property is satisfied except with negligible probability (as no intentional
forks are provoked by anyone). Second, the fraction of honest blocks (in an

interval of say k blocks) is roughly α
α+β

p<<1
≈ (1−ρ)np

(1−ρ)np+ρnp = (1 − ρ) and thus,
in expectation, the chain quality corresponds to the relative mining power of
honest parties. Finally, since the adversary does contribute his mining power to
the main chain, the number of rounds it takes for the chain to grow by k blocks

is in expectation k
α+β

p<<1
≈ k

np .

Security thus means that if the honest parties stick to their protocol then the
adversary has no incentive to deviate. However, unlike in [11], where the game
is zero-sum, in a non-zero-sum setting it does not imply that the designer has
an incentive to stick to the protocol. This means that the definition is useful to
answer the question whether, assuming the network keeps mining, some of the
miners have an incentive to deviate from the protocol, but it does not address the
question of why the honest miners would keep mining. To address this question,
we adopt the notion of incentive compatibility (IC).

Informally, a protocol being incentive-compatible means that both the
attacker and the designer are willing to stick to it. In other words, it is strongly
attack-payoff secure—i.e., the adversary will run it if the honest parties do—and

22 I.e., Afr sets the delay of the corresponding transmissions to 0.
23 Recall the notation introduced in Sect. 2.2: n denotes the number of parties, ρ the

fraction of corrupted parties, α and β denote honest and dishonest mining power,
respectively, and p is the probability of a fresh RO-query to return a correct PoW
solution.

But Why Does It Work? 57

if the adversary plays it passively (and front-running), then the honest miners
will have an incentive to follow the protocol—i.e., the protocol is the designer’s
best response to a passive front-running adversary. We note that requiring IC for
Bitcoin for the class of all possible protocols would imply a proof that Bitcoin
is not only a protocol that the miners wish to follow, but also that there is no
other protocol that they would rather participate in instead. This is clearly too
strong a requirement, even more so in the presence of results [13,28] that argue
that there are alternative “fairer” blockchain protocols which improve on the
miners’ expected revenue. Thus, we can only hope to make such statements for
a subclass of possible protocols, and therefore devise a version of IC which is
parameterized by the set of all acceptable deviations (i.e., alternative protocols)
˝. For full generality, we also parameterize it with respect to the class of accept-
able adversaries A, but stress that all statements in this work are for the class
of all (PPT) adversaries.

Towards providing the formal definition of IC, we first give the straightfor-
ward restriction of equilibrium (in our case, subgame-perfect equilibrium) to a
subset of strategies.

Definition 4. Let ˝ and A be sets of possible strategies for the designer and the
attacker, respectively. We say that a pair (Π,A) ∈ (˝,A) is a (˝,A)-subgame
perfect equilibrium in the attack game defined by model M, if it is a (negl(κ)-)
subgame-perfect equilibrium on the restricted attack game where the set of all
possible deviations of the designer (resp., the attacker) is ˝ (resp., A).

The formal definition of (parameterized) IC is then as follows:

Definition 5. Let Π be a protocol and ˝ be a set of polynomial-time protocols
that have access to the same hybrids as Π. We say that Π is ˝-incentive com-
patible (˝-IC for short) in the attack model M iff for some A ∈ Afr, (Π,A) is
a (˝, ITM)-subgame-perfect equilibrium in the attack game defined by M.

4 Analysis of Bitcoin Without Transaction Fees

In this section, we present our RPD analysis of Bitcoin for the concrete incentive
structure defined in the previous section. We note that this incentive structure
does not, in particular, reflect rewards that stem from transaction fees and hence
the reward per block is constant. First, in Sect. 4.1, we prove that Bitcoin is
strongly attack-payoff secure—i.e., if the designer plays it, the attacker is better
off sticking to it as well (but in a front-running fashion). The result is independent
of the distribution of computing power to honest vs adversarial miners and
independent of the conversion rate or the values of breward and mcost.

Subsequently, in Sect. 4.2, we investigate the role of mining costs vs conver-
sion rate vs block rewards for the stability (i.e., IC) of Bitcoin in the presence
of such incentive-driven coordinated coalitions (e.g., utility-maximizing mining
pools.) We devise conditions on these values that either make the utility of honest
parties negative—hence make playing the Bitcoin protocol a sub-optimal choice

58 C. Badertscher et al.

of the protocol designer, or yield high enough utility for mining that makes Bit-
coin optimal among all possible deviations from the standard protocol that are
still compatible with the Bitcoin network (i.e., produce valid blockchains); com-
bining this with the results from Sect. 4.1, we deduce that for this latter range
of parameters Bitcoin is incentive-compatible.

4.1 Attack-Payoff Security of Bitcoin (Without Fees)

The attack-payoff security of Bitcoin without fees is stated in the following
theorem.

Theorem 2. The Bitcoin protocol is strongly attack-payoff secure in the attack
model MB.

Proof. The theorem follows as a direct corollary of the following general lemma.

Lemma 2. Given any adversarial strategy, there is a front-running, semi-honest
mining adversary A that achieves better utility. In particular, the adversarial
strategy A makes as many RO-queries per round as allowed by the real-world
restrictions, and one environment that maximizes its utility is the environment
Z that activates A as the first ITM in every round until A halts.

Proof intuition. The proof of the lemma consists of three steps. First, we ana-
lyze Bitcoin in the real world. By invoking the subroutine-replacement theorem
from [11, Theorem 6], we are able to work in a hybrid world where we can
easily compute the relevant values, such as the number of blocks an adversary
can mine in a given interval of rounds (the hybrid world is the so-called state-
exchange hybrid world of [2]). Second, we show by a generic argument that this
real-world analysis is sufficient to compute the payoffs for the attacker (which
is defined on the transcript in the ideal world). Last but not least, we make a
case distinction whether the adversary has expected utility smaller than zero (in
which he does not corrupt any party and does not participate in the network),
or whether mining Bitcoin is profitable for the attacker. In both cases, we prove
that for any attacker A, we can devise a front-running and semi-honest mining
adversary which gets higher utility. The formal proof of the lemma is found in
the full version [1]. �

4.2 Incentive Compatibility of Bitcoin (Without Fees)

We proceed by investigating how the IC of Bitcoin depends on the relation
between rewards and the conversion rate. Concretely, we describe a sufficient
condition for IC (Theorem 4) and a condition that makes it non-IC (Theorem 3).
We start with the negative result, which, informally, says that if the expected
costs are too high with respect to the expected rewards, then Bitcoin is not
IC (although it is strongly attack-payoff secure as proved above). As above,
we denote by p the probability of solving a proof of work (and hence being
a candidate to extend the ledger state) using one query to the random oracle
(or equivalently, that a query to the state-exchange functionality successfully
extends a state).

But Why Does It Work? 59

Theorem 3. For n > 0 and breward · CR < mcost
p the Bitcoin protocol is not

incentive compatible.

The proof is a straightforward calculation of the utility for the designer per
round. Under the above condition, this expectation is less than 0, since they
spend (on average) more on queries than what the reward compensates. Hence,
the best response would be a protocol that does nothing.

While the above condition implies that the Bitcoin protocol is not a stable
solution for all choices of the rewards, costs, and CR, we next provide conditions
under which the standard Bitcoin protocol is in fact a stable solution in the
attack game. For this, we need to compare it to arbitrary alternative strategies
that produce valid blocks for the Bitcoin network. Informally, our condition for
IC requires that CR and breward are sufficiently higher than the costs.

Theorem 4. Consider the real world consisting of the random oracle function-
ality FRO, the diffusion network FN-MC, and the clock Gclock, and let Wflat(·) be
the wrapper that formalizes the restrictions of the flat model.24 Consider the class
˝isvalidchainH,d(·) of protocols Π that are defined for the Wflat(Gclock,FRO,FN-MC)-
hybrid world and which are compatible with the Bitcoin network, i.e., which obey
the following two restrictions:

1. With probability 1, the real-world transcript (i.e., the real-world UC-execution
of Π, any environment and adversary) does not contain a chain C with
isvalidchainH,d(C) = 0 and this chain was an output to the network from an
uncorrupted protocol instance running Π.

2. Upon input (read, sid) to a protocol instance, the return value is (read,

sid, �st
�T

) (for some integer T), where �st
�T

denotes the prefix of the state �st
encoded in the longest valid chain C received by this protocol instance.

With respect to the class ˝isvalidchainH,d(·), the Bitcoin protocol is an incentive-
compatible choice for the protocol designer if Bitcoin is profitable as in Lemma 3,
i.e., if we are in the region breward · CR > n·mcost

p , and if

breward · CR >
mcost

p · (1 − p)n−1
. (4)

Remark 4. Formula 4 constitutes a stronger requirement than the mere condi-
tion that mining should be profitable (which we treat separately in Lemma 3
for completeness). The theorem says that the probability that a fixed miner is
uniquely successful stands in a reasonable relation to the mining cost and block
rewards to achieve a stable solution. While Bitcoin would already yield positive
utility to the protocol designer in the case of breward · CR > n·mcost

p , we have for
large n, mcost

p · n ≤ mcost
p · (1

1−p)n−1 (for p ∈ (0, 1)).

24 Recall from [2] that we model restrictions by using functionality wrappers. The
above implemented restrictions correspond to the so-called flat model of Bitcoin,
where each party gets one query to the random oracle per round and can send and
receive one vector of messages in each round.

60 C. Badertscher et al.

Proof intuition. The proof follows by demonstrating, in a sequence of claims,
that the actual choices of the Bitcoin protocol (i.e., our abstraction of it) are
optimal under the conditions of the theorem. This includes proving that the
assumed resources cannot be employed in a way that would yield better payoff
to the protocol designer. Intuitively, if the protocol has to be compatible with
the Bitcoin network (i.e., it has to produce valid chains with probability 1), and
invest its resources to achieve the optimum reward vs. query ratio in a setting
where it knows it is running against front-running adversary running Bitcoin
(such as mining pools). Optimality under the theorem’s condition follows by
deducing a couple of useful properties from the fact that the protocol has to work
potentially independently (per round) and by computing (and maximizing) the
distribution of the possible query-vs.-reward ratios. The formal proof is found
in the full version [1]. �

We note that the above conditions are not necessarily tight. Thus one might
wonder whether we can prove or disprove their tightness, and in the latter case
investigate tight conditions for the statements to hold. We conclude this section
with the following lemma which serves as first partial attempt to investigate this
gap. The lemma implies that there might be potential to prove (partial) IC even
for values of the parameters that fall in the gap between the above theorems.
We leave the thorough investigation of this gap in terms of stability as a future
research direction.

Lemma 3. If breward · CR > n·mcost
p then the Bitcoin protocol yields, with over-

whelming probability, a positive utility for the protocol designer in the presence of
front-running adversaries, i.e., the Bitcoin protocol is profitable in such a setting.

5 Analysis of Bitcoin with Transaction Fees

Recall that in our formal treatment a chain C encodes a ledger state �st. A ledger
state is a sequence of individual state-blocks, i.e., �st = st1|| . . . ||st�. In addition,
each state-block st ∈ �st (except the genesis state) of the state encoded in the
blockchain has the form st = Blockify(�N) where �N is a vector of transactions,
i.e., �N = tx1, . . . , txk. A transaction txi can be seen as the abstract content of a
block. Our above analysis assumes that the contents of the blocks do not affect
the incentives of the attacker and the designer. In the real-world execution of
Bitcoin, however, this is not the case as the contents of the blocks are money-
like transactions and have transaction fees associated with them. We model these
using positive-valued function tx �→ f(tx) mapping individual transactions to a
positive real value that are integer multiples of 1 Satoshi (equals 10−8 Bitcoin).25

For sake of brevity, we will also denote by f̂(st) :=
∑

tx∈st f(tx) the sum of all
fees contained in the state block st. The fees have to be considered when defining
the utilities in a rational analysis since they are added to the (flat) block reward
and the total sum is given as a reward to the miner who inserts the block into

25 Note that this modeling aspect is not sensitive to the basic unit of measurement.

But Why Does It Work? 61

the ledger state. Hence, this section treats the case where overall block rewards
can be a dynamic quantity. In fact, the plan for Bitcoin is to eventually drop
the block rewards at which point mining will be incentivized exclusively by the
associated transaction fees. In this section we study the security and stability of
the Bitcoin network incorporating also such fees.

5.1 Utility Functions with Fees

We first have to change the definition of the utility functions to incorporate that
the attacker and the designer receive a different reward when inserting a block
into the ledger state. The difference are the transactions fees. To this end, we
first introduce a set TZ which contains all transactions that are submitted by
the environment (and in particular not by the adversary), and then define the
relevant events to capture fees in our model.26

– In an execution, let TZ be the set of transactions such that tx ∈ TZ if and only
if tx first appeared as an input from the environment (i.e., the first occurrence
of tx is in a command (submit, tx) in this execution).

– For each (μ, r) ∈ N2 the event F A
r,μ is defined as follows: F A

r,μ denotes the event
that the total sum of the transaction fees f(tx) of all tx ∈ TZ contained in the
blocks that the adversary adds to the state in round r is equal to μ · 10−8 · CR
cost units.27

– For each (μ, r) ∈ N2 let the event F D
r,μ be defined as follows: F D

r,μ is the event
that the total sum of the transaction fees f(tx) of all tx ∈ TZ contained
in the blocks that the honest miners (jointly) add to the state in round r is
equivalent to μ · 10−8 · CR cost units.

Since it is the environment that decides on the block-content, the sum of the
fees in each block is effectively a random variable whose distribution is induced
by the environment. The utilities of the attacker and designer that incorporate
fees are defined as follows (we use ûB

A and ûB
D to denote the utilities when fees

are added to the incentives):

ûB
A (Π,A) = sup

Z∈ITM

{
inf

SA∈CA

{
breward · CR · E(BA) − q · mcost · E(QA)

+
∑

(μ,r)∈N2

μ · 10−8 · CR · Pr[F A
r,μ]

}}

26 Note that we assume that only transactions submitted by the environment can yield
fees, since the environment models “the application layer”. In particular, if the adver-
sary creates a transaction on his own and includes it in his next mined block, then
this should not assign him any payoff.

27 Recall that CR is the conversion of one cryptocurrency unit (e.g., one bitcoin) to one
cost unit (e.g., one US dollar).

62 C. Badertscher et al.

and

ûB
D (Π,A) = inf

Z∈Z

{
sup

SA∈SA

{ ∑
(b,r)∈N2

b · CR · (breward · Pr[IDb,r] − 2polylog(κ) · Pr[Kr])

−
∑

(q,r)∈N2

q · mcost · Pr[W D
q,r] +

∑
(μ,r)∈N2

μ · 10−8 · CR · Pr[F D
r,μ]

}}
.

Note that the multiplicative factor 10−8 is there to allow us to set μ to the
integer multiple of one Satoshi that the fee yields. We will denote by M̂B the
Bitcoin attack model which has GB

ledger as the goal, 〈GB
ledger〉 as the relaxed func-

tionality, and scoring functions for the attacker and designer inducing utilities
ûB
A and ûB

D .

Upper bounds on fees and total reward for blocks. In reality, transaction
fees and the overall reward of a block are naturally bounded (either by size limits
or by restricting the total value of the system).28 In the following, we assume
that for all tx, f(tx) ≤ maxfee, and that the sum of fees per block is bounded,
yielding an upper bound on the total profit per block: For all state blocks st
we require that breward + f̂(st) ≤ maxblock, where maxfee and maxblock are
(strictly) positive multiples of one Satoshi.

Restrictions on the availability of transactions. So far in our treatment,
the environment induces a distribution on the available transactions and is in
principle unrestricted in doing so. For example, the set TZ is not bounded in size
except by the running time of Z. As will become apparent below in Theorem 5,
putting no restrictions on the set TZ can still lead to meaningful statements
that apply, for example, to applications that are believed to generate an (a
priori) unbounded number of transactions. However, to model different kinds of
scenarios that appear in the real world, we have to develop a language that allows
us to speak about limited availability of transactions. To this end, we introduce
parameterized environments ZD. More precisely, let D be an oracle which takes
inputs (NextTxs, r) and returns a vector �Tr = (tx1, pi1), . . . , (txk, pik

). We say
that an environment is D-respecting, if, in every round r, the environment queries
the oracle D and only transactions tx ∈ �Tr are added to TZ . We further require
that Z submits (submit, txi) to party pk in round r if and only if (txi, pk) ∈ �Tr.
For simplicity, we call D simply a distribution. The utility for the attacker in
such environments is taken to be the supremum as above, but only over all
D-respecting environments.

5.2 Analysis of Bitcoin (with Fees)

The following theorem says that if we look at unrestricted environments, then
Bitcoin is still incentive compatible. This is a consequence of Theorems 2 and 4
and proven formally in the full version [1].
28 For example, the number of total Bitcoins is limited and the block-size is bounded.

But Why Does It Work? 63

Theorem 5. Consider arbitrary environments and let the sum of the transac-
tion fees per block be bounded by maxblock > 0. Then the Bitcoin protocol is
strongly attack-payoff secure in the attack model M̂B. It is further incentive-
compatible with respect to the class of protocols that are compatible with the
Bitcoin network under the same conditions as in Theorem 4), i.e., if

breward · CR >
mcost

p · (1 − p)n−1
.

The previous statement is void in case the flat block reward is 0. However, for
certain types of distributions D, namely, the ones that provide sufficient high-
fee transactions to the participants, it will remain in an equilibrium state. The
statement is proven in the full version [1].

Theorem 6. Consider distributions D with the following property: In every
round, D outputs a vector of transactions such that any party gets as input a list
of transactions to build a valid next state block st to extend the longest chain and
such that f̂(st) = maxblock holds (where maxblock > 0). Then, with respect to
D-respecting environments, the Bitcoin protocol is strongly attack-payoff secure
in the attack model M̂B. It is further incentive compatible with respect to the
class of protocols that are compatible with the Bitcoin network (as defined in
Theorem 4) if maxblock · CR > mcost

p·(1−p)n−1 .

However, if an application cannot provide enough transactions, it becomes
problematic, as the following counterexample shows.

Theorem 7. There exist distributions D such that the Bitcoin protocol is neither
attack-payoff secure nor strongly attack-payoff secure with respect to D-respecting
environments.

Proof. The proof is straightforward and follows from a general observation:
assume there is just a single transaction in the network which has been received
only by a corrupted party pi. Then, the adversary does not publish this transac-
tion to the network. If he does not, then he will be the one claiming the reward
with probability one, which is his best choice. Hence, he does not follow the pro-
tocol (as the semi-honest front-running adversary would do) and hence it cannot
be strongly attack-payoff secure.

Furthermore, the protocol is also not attack-payoff secure. If the honest-
majority assumption does not hold, and thus an adversary can fork the ledger
state, he would exercise his power to create a ledger state where it is a corrupted
party who mines the block containing the only transaction in the system as this
will yield better reward than simply mining on empty blocks. �

Fallback security. Note that because cryptographic security trivially implies
attack-payoff security for all possible environments and utilies, we can easily
derive a fallback security notion: If the majority of miners mines honestly, then
we get attack-payoff security; and even if this fails, we still get attack-payoff
security under the assumption that the distribution of the fees and the relation
between rewards vs costs vs conversion rate are as in Theorem 5 or 6.

64 C. Badertscher et al.

References

1. Badertscher, C., Garay, J., Maurer, U., Tschudi, D., Zikas, V.: But why does it
work? A rational protocol design treatment of bitcoin. Cryptology ePrint Archive,
Report 2018/138 (2018). https://eprint.iacr.org/2018/138

2. Badertscher, C., Maurer, U., Tschudi, D., Zikas, V.: Bitcoin as a transaction ledger:
a composable treatment. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS,
vol. 10401, pp. 324–356. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-63688-7 11

3. Github: Bitcoin Core Version 0.12.0. Wallet: Transaction Fees. https://github.com/
bitcoin/bitcoin/blob/v0.12.0/doc/release-notes.md#wallet-transaction-fees

4. Bonneau, J.: Why buy when you can rent? In: Clark, J., Meiklejohn, S., Ryan,
P.Y.A., Wallach, D., Brenner, M., Rohloff, K. (eds.) FC 2016. LNCS, vol. 9604,
pp. 19–26. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53357-
4 2

5. Canetti, R.: Security and composition of multiparty cryptographic protocols. J.
Cryptol. 13(1), 143–202 (2000)

6. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society Press, October
2001

7. Carlsten, M., Kalodner, H.A., Weinberg, S.M., Narayanan, A.: On the instability of
bitcoin without the block reward. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C.,
Myers, A.C., Halevi, S. (eds.) ACM CCS 2016, pp. 154–167. ACM Press, October
2016

8. Eyal, I.: The miner’s dilemma. In: 2015 IEEE Symposium on Security and Privacy,
pp. 89–103. IEEE Computer Society Press, May 2015

9. Eyal, I., Sirer, E.G.: Majority is not enough: bitcoin mining is vulnerable. In:
Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS, vol. 8437, pp. 436–454.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45472-5 28

10. Fuchsbauer, G., Katz, J., Naccache, D.: Efficient rational secret sharing in standard
communication networks. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp.
419–436. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11799-
2 25

11. Garay, J.A., Katz, J., Maurer, U., Tackmann, B., Zikas, V.: Rational protocol
design: cryptography against incentive-driven adversaries. In: 54th FOCS, pp. 648–
657. IEEE Computer Society Press, October 2013

12. Garay, J.A., Katz, J., Tackmann, B., Zikas, V.: How fair is your protocol? A utility-
based approach to protocol optimality. In: Georgiou, C., Spirakis, P.G. (eds.) 34th
ACM PODC, pp. 281–290. ACM, July 2015

13. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: analysis
and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9057, pp. 281–310. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46803-6 10

14. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol with chains
of variable difficulty. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol.
10401, pp. 291–323. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63688-7 10

15. Gervais, A., Karame, G.O., Wüst, K., Glykantzis, V., Ritzdorf, H., Capkun, S.:
On the security and performance of proof of work blockchains. In: Weippl, E.R.,
Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM CCS 2016, pp.
3–16. ACM Press, October 2016

https://eprint.iacr.org/2018/138
https://doi.org/10.1007/978-3-319-63688-7_11
https://doi.org/10.1007/978-3-319-63688-7_11
https://github.com/bitcoin/bitcoin/blob/v0.12.0/doc/release-notes.md#wallet-transaction-fees
https://github.com/bitcoin/bitcoin/blob/v0.12.0/doc/release-notes.md#wallet-transaction-fees
https://doi.org/10.1007/978-3-662-53357-4_2
https://doi.org/10.1007/978-3-662-53357-4_2
https://doi.org/10.1007/978-3-662-45472-5_28
https://doi.org/10.1007/978-3-642-11799-2_25
https://doi.org/10.1007/978-3-642-11799-2_25
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-319-63688-7_10
https://doi.org/10.1007/978-3-319-63688-7_10

But Why Does It Work? 65

16. Goldreich, O.: Foundations of Cryptography: Volume 1, Basic Tools. Cambridge
University Press, Cambridge (2003)

17. Gradwohl, R., Livne, N., Rosen, A.: Sequential rationality in cryptographic proto-
cols. In: 51st FOCS, pp. 623–632. IEEE Computer Society Press, October 2010

18. Halpern, J.Y., Pass, R., Seeman, L.: Computational extensive-form games. In: EC
(2016)

19. Katz, J.: Bridging game theory and cryptography: recent results and future direc-
tions. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 251–272. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-78524-8 15

20. Katz, J., Maurer, U., Tackmann, B., Zikas, V.: Universally composable syn-
chronous computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 477–498.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-2 27

21. Kol, G., Naor, M.: Games for exchanging information. In: Ladner, R.E., Dwork,
C. (eds.) 40th ACM STOC, pp. 423–432. ACM Press, May 2008

22. Luu, L., Teutsch, J., Kulkarni, R., Saxena, P.: Demystifying incentives in the con-
sensus computer. In: Ray, I., Li, N., Kruegel, C. (eds.) ACM CCS 2015, pp. 706–719.
ACM Press, October 2015

23. Nakamoto, S.: Bitcoin: A Peer-to-Peer Electronic Cash System (2008). http://
bitcoin.org/bitcoin.pdf

24. Nayak, K., Kumar, S., Miller, A., Shi, E.: Stubborn mining: generalizing selfish
mining and combining with an eclipse attack. In: S&P (2016)

25. Ong, S.J., Parkes, D.C., Rosen, A., Vadhan, S.: Fairness with an honest minority
and a rational majority. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp.
36–53. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00457-5 3

26. Osborne, M.J., Rubinstein, A.: A Course in Game Theory. MIT Press, Cambridge
(1994)

27. Pass, R., Seeman, L., Shelat, A.: Analysis of the blockchain protocol in asyn-
chronous networks. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017.
LNCS, vol. 10211, pp. 643–673. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56614-6 22

28. Pass, R., Shi, E.: FruitChains: a fair blockchain. In: Schiller, E.M., Schwarzmann,
A.A. (eds.) 36th ACM PODC, pp. 315–324. ACM, July 2017

29. Rosenfeld, M.: Analysis of bitcoin pooled mining reward systems. CoRR (2011)
30. Sapirshtein, A., Sompolinsky, Y., Zohar, A.: Optimal selfish mining strategies in

bitcoin. In: Grossklags, J., Preneel, B. (eds.) FC 2016. LNCS, vol. 9603, pp. 515–
532. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54970-4 30

31. Schrijvers, O., Bonneau, J., Boneh, D., Roughgarden, T.: Incentive compatibility
of bitcoin mining pool reward functions. In: Grossklags, J., Preneel, B. (eds.) FC
2016. LNCS, vol. 9603, pp. 477–498. Springer, Heidelberg (2017). https://doi.org/
10.1007/978-3-662-54970-4 28

32. Teutsch, J., Jain, S., Saxena, P.: When cryptocurrencies mine their own business.
In: Grossklags, J., Preneel, B. (eds.) FC 2016. LNCS, vol. 9603, pp. 499–514.
Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54970-4 29

https://doi.org/10.1007/978-3-540-78524-8_15
https://doi.org/10.1007/978-3-642-36594-2_27
http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf
https://doi.org/10.1007/978-3-642-00457-5_3
https://doi.org/10.1007/978-3-319-56614-6_22
https://doi.org/10.1007/978-3-319-56614-6_22
https://doi.org/10.1007/978-3-662-54970-4_30
https://doi.org/10.1007/978-3-662-54970-4_28
https://doi.org/10.1007/978-3-662-54970-4_28
https://doi.org/10.1007/978-3-662-54970-4_29

Ouroboros Praos: An Adaptively-Secure,
Semi-synchronous Proof-of-Stake

Blockchain

Bernardo David1,2(B), Peter Gaži2, Aggelos Kiayias2,3, and Alexander Russell4

1 Tokyo Institute of Technology, Tokyo, Japan
bernardo.david@iohk.io

2 IOHK, Hong Kong, China
peter.gazi@iohk.io

3 University of Edinburgh, Edinburgh, UK
akiayias@inf.ed.ac.uk

4 University of Connecticut, Mansfield, CT, USA
acr@cse.uconn.edu

Abstract. We present “Ouroboros Praos”, a proof-of-stake blockchain
protocol that, for the first time, provides security against fully-adaptive
corruption in the semi-synchronous setting : Specifically, the adversary
can corrupt any participant of a dynamically evolving population of
stakeholders at any moment as long the stakeholder distribution main-
tains an honest majority of stake; furthermore, the protocol tolerates
an adversarially-controlled message delivery delay unknown to protocol
participants.

To achieve these guarantees we formalize and realize in the universal
composition setting a suitable form of forward secure digital signatures
and a new type of verifiable random function that maintains unpredictabil-
ity under malicious key generation. Our security proof develops a general
combinatorial framework for the analysis of semi-synchronous blockchains
that may be of independent interest. We prove our protocol secure under
standard cryptographic assumptions in the random oracle model.

1 Introduction

The design of proof-of-stake blockchain protocols was identified early on as an
important objective in blockchain design; a proof-of-stake blockchain substitutes
the costly proof-of-work component in Nakamoto’s blockchain protocol [20] while
still providing similar guarantees in terms of transaction processing in the pres-
ence of a dishonest minority of users, where this “minority” is to be understood
here in the context of stake rather than computational power.

The basic stability and security properties of blockchain protocols were first
rigorously formulated in [12] and further studied in [15,21]; these include com-
mon prefix, chain quality and chain growth and refer to resilient qualities of the
underlying data structure of the blockchain in the presence of an adversary that
attempts to subvert them.
c© International Association for Cryptologic Research 2018
J. B. Nielsen and V. Rijmen (Eds.): EUROCRYPT 2018, LNCS 10821, pp. 66–98, 2018.
https://doi.org/10.1007/978-3-319-78375-8_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78375-8_3&domain=pdf

Ouroboros Praos 67

Proof-of-stake protocols typically possess the following basic characteristics.
Based on her local view, a party is capable of deciding, in a publicly verifiable
way, whether she is permitted to produce the next block. Assuming the block is
valid, other parties update their local views by adopting the block, and proceed
in this way continuously. At any moment, the probability of being permitted to
issue a block is proportional to the relative stake a player has in the system, as
reported by the blockchain itself.

A particularly challenging design aspect is that the above probabilistic mech-
anism should be designed so that the adversary cannot bias it to its advantage. As
the stake shifts, together with the evolving population of stakeholders, so does the
honest majority assumption, and hence the function that appoints stakeholders
should continuously take the ledger status into account. Preventing the biasing of
the election mechanism in a context of a blockchain protocol is a delicate task that
so far has eluded a practical solution that is secure against all attacks.

Our Results. We present “Ouroboros Praos”, a provably secure proof-of-stake
protocol that is the first to be secure against adaptive attackers and scalable in a
truly practical sense. Our protocol is based on a previous proof-of-stake protocol,
Ouroboros [16], as its analysis builds on some of the core combinatorial argu-
ments that were developed to analyze that scheme. Nevertheless, the protocol
construction has a number of novel elements that require a significant recasting
and generalization of the previous combinatorial analysis. In more detail, our
results are as follows.

In Ouroboros Praos, deciding whether a certain participant of the protocol
is eligible to issue a block is decided via a private test that is executed locally
using a special verifiable random function (VRF) on the current time-stamp and
a nonce that is determined for a period of time known as an “epoch”. A special
feature of this VRF primitive, novel to our approach, is that the VRF must have
strong security characteristics even in the setting of malicious key generation:
specifically, if provided with an input that has high entropy, the output of the
VRF is unpredictable even when an adversary has subverted the key genera-
tion procedure. We call such VRF functions “VRF with unpredictability under
malicious key generation” and we present a strong embodiment of this notion
with a novel Universal Composable (UC) formulation. We also present a very
efficient realization of this primitive under the Computational Diffie Hellman
(CDH) assumption in the random oracle model. Beyond this VRF notion, we
also formalize in a UC fashion key evolving signatures that provide the forward
security that is necessary for handling the adaptive corruption setting.

In more detail, we analyze our protocol in the partial or semi-synchronous
model [11,21]. In this setting, we still divide the protocol execution in time units
which, as in [16], are called slots, but there is a maximum delay of Δ slots
that is applied to message delivery and it is unknown to the protocol partici-
pants.1 In order to cope with the Δ-semisynchronous setting we introduce the

1 It is worth pointing out that the notion of slots we use in this work can be substan-
tially shorter in terms of real time elapsed compared to the slots of [16], where each
slot represented a full round of interaction between all participants.

68 B. David et al.

concept of “empty slots” which occur with sufficient frequency to enable short
periods of silence that facilitate synchronization. This feature of the protocol
gives also its moniker, “Praos”, meaning “mellow”, or “gentle”. Ensuring that
the adversary cannot exploit the stakeholder keys that it possesses to confuse or
out-maneuver the honest parties, we develop a combinatorial analysis to show
that the simple rule of following the longest chain still enables the honest parties
to converge to a unique view with high probability. To accomplish this we revisit
and expand the forkable strings and divergence analysis of [16]. We remark that
significant alterations are indeed necessary: As we demonstrate in the full ver-
sion of this paper, the protocol of [16] and its analysis are critically tailored to
synchronous operation and is susceptible to a desynchronization attack that can
completely violate the common prefix property. Our new combinatorial analy-
sis introduces a new concept of characteristic strings and “forks” that reflects
silent periods in protocol execution and network delays. To bound the density
of forkable strings in this Δ-semisynchronous setting we establish a syntactic
reduction from Δ-semisynchronous characteristic strings to synchronous strings
of [16] that preserves the structure of the forks they support. This is followed
by a probabilistic analysis that controls the distortion caused by the reduction
and concludes that Δ-semisynchronous forkable strings are rare. Finally, we con-
trol the effective power of adaptive adversaries in this setting with a stochastic
dominance argument that permits us to carry out the analysis of the underlying
blockchain guarantees (e.g., common prefix) with a single distribution that prov-
ably dominates all distributions on characteristic strings generated by adaptive
adversaries. We remark that these arguments yield graceful degradation of the
analysis as a function of network delays (Δ), in the sense that the effective stake
of the adversary is amplified by a function of Δ.

The above combinatorial analysis is nevertheless only sufficient to provide a
proof of the static stake case, i.e., the setting where the stake distribution relevant
to the honest majority assumption remains fixed at the onset of the computa-
tion and prior to the selection of the random genesis data that are incorporated
in the genesis block. For a true proof-of-stake system, we must permit the set
of stakeholders to evolve over time and appropriately adapt our honest stake-
holder majority assumption. Achieving this requires a bootstrapping argument
that allows the protocol to continue unboundedly by revising its stakeholder dis-
tribution as it evolves. We bootstrap our protocol in two conceptual steps. First
we show how bootstrapping is possible if a randomness beacon is available to all
participants. The beacon at regular intervals emits a new random value and the
participants can reseed the election process so the stakeholder distribution used
for sampling could be brought closer to the one that is current. A key observation
here is that our protocol is resilient even if the randomness beacon is weakened
in the following two ways: (i) it leaks its value to the adversary ahead of time
by a bounded number of time units, (ii) it allows the adversary to reset its value
if it wishes within a bounded time window. We call the resulting primitive a
“leaky resettable beacon” and show that our bootstrapping argument still holds
in this stronger adversarial setting.

Ouroboros Praos 69

In the final refinement of our protocol, we show how it is possible to imple-
ment the leaky resettable beacon via a simple algorithm that concatenates the
VRF outputs that were contributed by the participants from the blockchain and
subjects them to a hash function that is modeled as a random oracle. This imple-
mentation explains the reasons behind the beacon relaxation we introduced:
leakiness stems from the fact that the adversary can complete the blockchain
segment that determines the beacon value before revealing it to the honest par-
ticipants, while resettability stems from the fact that the adversary can try a
bounded number of different blockchain extensions that will stabilize the final
beacon value to a different preferred value.

Putting all the above together, we show how our protocol provides a “robust
transaction ledger” in the sense that an immutable record of transactions is built
that also guarantees that new transactions will be always included. Our security
definition is in the Δ-semisynchronous setting with full adaptive corruptions. As
mentioned above, security degrades gracefully as Δ increases, and this parameter
is unknown to the protocol participants.

Note that implementing the beacon via hashing VRF values will make feasible
a type of “grinding attack” where the adversary can trade hashing power for a
slight bias of the protocol execution to its advantage. We show how this bias can
be controlled by suitably increasing the relevant parameters depending on the
hashing power that is available to the adversary.

Comparison to related work. The idea of proof-of-stake protocols has been
discussed extensively in the bitcoin forum.2 The manner that a stakeholder deter-
mines eligibility to issue a block is always publicly verifiable and the proof of
eligibility is either computed publicly (via a calculation that is verifiable by
repeating it) or by using a cryptographic mechanism that involves a secret-key
computation and a public-key verification. The first example of the former app-
roach appeared in PPCoin [17], and was followed by others including Ouroboros
and Snow White [2,8,16]; while the first example of the latter approach (that
we also employ in our work) appeared in NXT (cf. Sect. 2.4.1 of [7]) and was
then also used elsewhere, most notably in Algorand [19]. The virtue of the latter
approach is exactly in its potential to control adaptive corruptions: due to the
fact that the adversary cannot predict the eligibility of a stakeholder to issue
a block prior to corrupting it, she cannot gain an advantage by directing its
corruption quota to specific stakeholders. Nevertheless, none of these previous
works isolated explicitly the properties of the primitives that are required to pro-
vide a full proof of security in the setting of adaptive corruptions. Injecting high
quality randomness in the PoS blockchain was proposed by Bentov et al. [3,4],
though their proposal does not have a full formal analysis. The Ouroboros proof-
of-stake protocol [16] is provably secure in a corruption model that excludes fully
adaptive attacks by imposing a corruption delay on the corruption requests of
the adversary. The Snow White proof-of-stake [8] is the first to prove security
in the Δ-semi-synchronous model but—as in the case of Ouroboros—adopts a
weak adaptive corruption model.
2 Refer e.g., to the posts by QuantumMechanic and others from 2011 https://

bitcointalk.org/index.php?topic=27787.0 (Last Accessed 19/09/2017).

https://bitcointalk.org/index.php?topic=27787.0
https://bitcointalk.org/index.php?topic=27787.0

70 B. David et al.

A recent work close to ours is Algorand [19] that also provides a proof-of-
stake ledger that is adaptively secure. It follows an entirely different construc-
tion approach that runs a Byzantine agreement protocol for every block and
achieves adaptive-corruption security via a novel, appealing concept of player-
replaceability. However, Algorand is only secure against a 1/3 adversary bound;
and while the protocol itself is very efficient, it yields an inherently slower block
production rate compared to an “eventual consensus” protocol (like Bitcoin,
Snow White, and Ouroboros). In principle, proof-of-stake blockchain protocols
can advance at the theoretical maximum speed (of one block per communication
round), while protocols relying on Byzantine agreement, like Algorand, would
require a larger number of rounds to settle each block.

Sleepy consensus [22] puts forth a technique for handling adaptive corruptions
in a model that also encompasses fail-stop and recover corruptions; however, the
protocol can be applied directly only in a static stake (i.e., permissioned) setting.
We note that in fact our protocol can be also proven secure in such mixed corrup-
tion setting, where both fail-stop and recover as well as Byzantine corruptions are
allowed (with the former occurring at an arbitrarily high rate); nevertheless this
is out of scope for the present exposition and we omit further details.

Note that the possibility of adversarial grinding in Ouroboros Praos is also
present in previous work that derives randomness by hashing [8,19], as opposed
to a dedicated coin-tossing protocol as in [16]. Following the examples of [8,19],
we show that security can be guaranteed despite any adversarial bias resulting
from grinding. In fact, we show how to use the q-bounded model of [12] to derive
a bound that shows how to increase the relevant security parameters given the
hashing power that is available to the adversary.

Finally, in the present exposition we also put aside incentives; nevertheless, it
is straightforward to adapt the mechanism of input endorsers from the protocol
of [16] to our setting and its approximate Nash equilibrium analysis can be
ported directly.

2 Preliminaries

We say a function negl(x) is negligible if for every c > 0, there exists an n > 0
such that negl(x) < 1/xc for all x ≥ n. The length of a string w is denoted by
|w|; ε denotes the empty string. We let v ‖w denote concatenation of strings.

2.1 Transaction Ledger Properties

We adopt the same definitions for transaction ledger properties as [16]. A pro-
tocol Π implements a robust transaction ledger provided that the ledger that
Π maintains is divided into “blocks” (assigned to time slots) that determine
the order with which transactions are incorporated in the ledger. It should also
satisfy the following two properties.

Ouroboros Praos 71

Persistence. Once a node of the system proclaims a certain transaction tx in
the stable part of its ledger, the remaining nodes, if queried, will either report
tx in the same position of that ledger or report a stable ledger which is a prefix
of that ledger. Here the notion of stability is a predicate that is parameterized
by a security parameter k; specifically, a transaction is declared stable if and
only if it is in a block that is more than k blocks deep in the ledger.

Liveness. If all honest nodes in the system attempt to include a certain trans-
action then, after the passing of time corresponding to u slots (called the
transaction confirmation time), all nodes, if queried and responding honestly,
will report the transaction as stable.

In [15,21] it was shown that persistence and liveness can be derived from
the following three elementary properties provided that protocol Π derives the
ledger from a data structure in the form of a blockchain.

Common Prefix (CP); with parameters k ∈ N. The chains C1, C2 possessed
by two honest parties at the onset of the slots sl1 < sl2 are such that C�k

1 � C2,
where C�k

1 denotes the chain obtained by removing the last k blocks from C1,
and � denotes the prefix relation.

Chain Quality (CQ); with parameters μ ∈ (0, 1] and k ∈ N. Consider any
portion of length at least k of the chain possessed by an honest party at the
onset of a round; the ratio of blocks originating from the adversary is at most
1 − μ. We call μ the chain quality coefficient.

Chain Growth (CG); with parameters τ ∈ (0, 1], s ∈ N. Consider the chains
C1, C2 possessed by two honest parties at the onset of two slots sl1, sl2 with
sl2 at least s slots ahead of sl1. Then it holds that len(C2) − len(C1) ≥ τ ·s.
We call τ the speed coefficient.

2.2 The Semi-synchronous Model

On a high level, we consider the security model of [16] with simple modifications
to account for adversarially-controlled message delays and immediate adaptive
corruption. Namely, we allow the adversary A to selectively delay any messages
sent by honest parties for up to Δ ∈ N slots; and corrupt parties without delay.

Time and slots. We consider a setting where time is divided into discrete units
called slots. A ledger, described in more detail above, associates with each time
slot (at most) one ledger block. Players are equipped with (roughly) synchronized
clocks that indicate the current slot: we assume that any clock drift is subsumed
in the slot length. This will permit them to carry out a distributed protocol
intending to collectively assign a block to this current slot. In general, each slot
slr is indexed by an integer r ∈ {1, 2, . . .}, and we assume that the real time
window that corresponds to each slot has the following two properties: (1) The
current slot is determined by a publicly-known and monotonically increasing
function of current time. (2) Each player has access to the current time. Any
discrepancies between parties’ local time are insignificant in comparison with
the length of time represented by a slot.

72 B. David et al.

Security Model. We adopt the model introduced by [12] for analysing secu-
rity of blockchain protocols enhanced with an ideal functionality F . We note
that multiple different “functionalities” can be encompassed by F . In our model
we employ the “Delayed Diffuse” functionality, which allows for adversarially-
controlled delayed delivery of messages diffused among stakeholders.

The Diffuse Functionality. This functionality is parameterized by Δ ∈ N and
denoted as DDiffuseΔ. It keeps rounds, executing one round per slot. DDiffuseΔ

interacts with the environment Z, stakeholders U1, . . . , Un and an adversary A,
working as follows for each round:

1. DDiffuseΔ maintains an incoming string for each party Ui that participates.
A party, if activated, is allowed at any moment to fetch the contents of its
incoming string, hence one may think of this as a mailbox. Furthermore, par-
ties can give an instruction to the functionality to diffuse a message. Activated
parties are allowed to diffuse once in a round.

2. When the adversary A is activated, it is allowed to: (a) Read all inboxes and
all diffuse requests and deliver messages to the inboxes in any order it prefers;
(b) For any message m obtained via a diffuse request and any party Ui, A
may move m into a special string delayedi instead of the inbox of Ui. A can
decide this individually for each message and each party; (c) For any party
Ui, A can move any message from the string delayedi to the inbox of Ui.

3. At the end of each round, the functionality also ensures that every message
that was either (a) diffused in this round and not put to the string delayedi or
(b) removed from the string delayedi in this round is delivered to the inbox of
party Ui. If any message currently present in delayedi was originally diffused at
least Δ slots ago, then the functionality removes it from delayedi and appends
it to the inbox of party Ui.

4. Upon receiving (Create, U, C) from the environment, the functionality spawns a
new stakeholder with chain C as its initial local chain (as it was the case in [16]).

Modelling Protocol Execution and Adaptive Corruptions. Given the above we
will assume that the execution of the protocol is with respect to a functional-
ity F that incorporates DDiffuse as well as possibly additional functionalities
to be explained in the following sections. The environment issues transactions
on behalf of any stakeholder Ui by requesting a signature on the transaction
as described in Protocol πSPoS of Fig. 4 and handing the transaction to stake-
holders to put them into blocks. Beyond any restrictions imposed by F , the
adversary can only corrupt a stakeholder Ui if it is given permission by the envi-
ronment Z running the protocol execution. The permission is in the form of a
message (Corrupt, Ui) which is provided to the adversary by the environment.
Upon receiving permission from the environment, the adversary immediately
corrupts Ui without any delay, differently from [8,16], where corruptions only
take place after a given delay. Note that a corrupted stakeholder Ui will relin-
quish its entire state to A; from this point on, the adversary will be activated
in place of the stakeholder Ui. The adversary is able to control transactions and

Ouroboros Praos 73

blocks generated by corrupted parties by interacting with FDSIG, FKES and FVRF,
as described in Protocol πSPoS of Sect. 3. In summary, regarding activations we
have the following: (a) At each slot slj , the environment Z activates all honest
stakeholders.3 (b) The adversary is activated at least as the last entity in each
slj (as well as during all adversarial party activations and invocations from the
ideal functionalities as prescribed); (c) If a stakeholder does not fetch in a certain
slot the messages written to its incoming string from the diffuse functionality
they are flushed.

Restrictions imposed on the environment. It is easy to see that the model above
confers such sweeping power on the adversary that one cannot establish any
significant guarantees on protocols of interest. It is thus important to restrict the
environment suitably (taking into account the details of the protocol) so that we
may be able to argue security. We require that in every slot, the adversary does
not control more than 50% of the stake in the view of any honest stakeholder.
This transaction data, including the required signatures by each stakeholder, is
obtained by the environment as specified in the protocol. If this is violated, an
event Bad

1
2 becomes true for the given execution. When the environment spawns

a new stakeholder by sending message (Create, U, C) to the Key and Transaction
functionality, the initial local chain C can be the chain of any honest stakeholder
even in the case of “lazy honest” stakeholders without requiring this stakeholder
to have been online in the past slot as in [16]. Finally, we note that in all our
proofs, whenever we say that a property Q holds with high probability over
all executions, we will in fact argue that Q ∨ Bad

1
2 holds with high probability

over all executions. This captures the fact that we exclude environments and
adversaries that trigger Bad

1
2 with non-negligible probability.

Random Oracle. We also assume the availability of a random oracle. As usually,
this is a function H : {0, 1}∗ → {0, 1}w available to all parties that answers every
fresh query with an independent, uniformly random string from {0, 1}w, while
any repeated queries are answered consistently.

Erasures. We assume that honest users can do secure erasures, which is argued
to be a reasonable assumption in protocols with security against adaptive adver-
saries, see e.g., [18].

3 The Static Stake Protocol

We first consider the static stake case, where the stake distribution is fixed
throughout protocol execution. The general structure of the protocol in the semi-
synchronous model is similar to that of (synchronous) Ouroboros [16] but intro-
duces several fundamental modifications to the leader selection process: not all
3 We assume this to simplify our formal treatment, a variant of our protocol can

actually accommodate “lazy honesty” as introduced in [19]. In this variant, honest
stakeholders only come online at the beginning of each epoch and at a few infrequent,
predictable moments, see the full version.

74 B. David et al.

slots will be attributed a slot leader, some slots might have multiple slot leaders,
and slot leaders’ identities remain unknown until they act. The first modifica-
tion is used to deal with delays in the semi-synchronous network as the empty
slots—where no block is generated—assist the honest parties to synchronize.
The last modification is used to deal with adaptive corruptions, as it prevents
the adversary from learning the slot leaders’ identity ahead of time and using
this knowledge to strategically corrupt coalitions of parties with large (future)
influence. Moreover, instead of using concrete instantiations of the necessary
building blocks, we describe the protocol with respect to ideal functionalities,
which we later realize with concrete constructions. This difference allows us to
reason about security in the ideal model through a combinatorial argument with-
out having to deal with the probability that the cryptographic building blocks
fail. Before describing the specifics of the new leader selection process and the
new protocol, we first formally define the static stake scenario and introduce
basic definitions as stated in [16] following the notation of [12].

In the static stake case, we assume that a fixed collection of n stakeholders
U1, . . . , Un interact throughout the protocol. Stakeholder Ui is attributed stake
si at the beginning of the protocol.

Definition 1 (Genesis Block). The genesis block B0 contains the list of stake-
holders identified by a label Ui, their respective public keys and respective stakes

S0 =
(
(U1, v

vrf
1 , vkes

1 , vdsig
1 , s1), . . . , (Un, vvrf

n , vkes
n , vdsig

n , sn)
)

,

and a nonce η.

We note that the nonce η will be used to seed the slot leader election process
and that vvrf

i , vkes
i , vdsig

i will be determined by FVRF, FKES and FDSIG, respectively.

Definition 2 (Epoch, State, Block Proof, Block, Blockchain). An epoch
is a set of R adjacent slots S = {sl1, . . . , slR}. (The value R is a parameter of the
protocol we analyze in this section.) A state is a string st ∈ {0, 1}λ. A block proof
is a value (or set of values) Bπ containing information that allows stakeholders
to verify if a block is valid. A block B = (slj , st, d,Bπj , σj) generated at a slot
slj ∈ {sl1, . . . , slR} contains the current state st ∈ {0, 1}λ, data d ∈ {0, 1}∗, the
slot number slj, a block proof Bπj and σj, a signature on (st, d, slj , Bπj) under
the signing key for the time period of slot slj of the stakeholder Ui generating
the block.

A blockchain (or simply chain) relative to the genesis block B0 is a sequence
of blocks B1, . . . , Bn associated with a strictly increasing sequence of slots for
which the state sti of Bi is equal to H(Bi−1), where H is a prescribed collision-
resistant hash function. The length of a chain len(C) = n is its number of blocks.
The block Bn is the head of the chain, denoted head(C). We treat the empty string
ε as a legal chain and by convention set head(ε) = ε. Let C be a chain of length

Ouroboros Praos 75

n and k be any non-negative integer. We denote by C�k the chain resulting from
removal of the k rightmost blocks of C. If k ≥ len(C) we define C�k = ε. We let
C1 � C2 indicate that the chain C1 is a prefix of the chain C2.

We consider as valid blocks that are generated by a stakeholder in the slot
leader set of the slot to which the block is attributed. Later in Sect. 3.3 we discuss
slot leader sets and how they are selected.

Definition 3 (Absolute and Relative Stake). Let UP , UA and UH denote
the sets of all stakeholders, the set of stakeholders controlled by an adversary A,
and the remaining (honest) stakeholders, respectively. For any party (resp. set of
parties) X we denote by s+X (resp. s−

X) the maximum (resp. minimum) absolute
stake controlled by X in the view of all honest stakeholders at a given slot, and
by α+

X � s+X/sP and α−
X � s−

X/sP its relative stake taken as maximum and
minimum respectively across the views of all honest stakeholders. For simplicity,
we use ssX , αs

X instead of sUX
, αUX

for all X ∈ {P,A,H}, s ∈ {+,−}. We also
call αA � α+

A and αH � α−
H the adversarial stake ratio and honest stake ratio,

respectively.

3.1 Forward Secure Signatures and FKES

In regular digital signature schemes, an adversary who compromises the sign-
ing key of a user can generate signatures for any messages it wishes, including
messages that were (or should have been) generated in the past. Forward secure
signature schemes [1] prevent such an adversary from generating signatures for
messages that were issued in the past, or rather allows honest users to verify that
a given signature was generated at a certain point in time. Basically, such secu-
rity guarantees are achieved by “evolving” the signing key after each signature is
generated and erasing the previous key in such a way that the actual signing key
used for signing a message in the past cannot be recovered but a fresh signing
key can still be linked to the previous one. This notion is formalized through
key evolving signature schemes, which allow signing keys to be evolved into fresh
keys for a number of time periods. We remark that efficient constructions of key
evolving signature schemes with forward security exist [13] but no previous work
has fully specified them in the UC setting.

We present a UC definition of the type of key-evolving signatures that we will
take advantage of in our constructions. FKES allows us to achieve forward security
with erasures (i.e., assuming that parties securely delete old signing keys as
the protocol proceeds). This functionality embodies ideal key evolving signature
schemes allowing an adversary that corrupts the signer to forge signatures only
under the current and future signing keys, but not under a previous signing
key that has been updated. Our starting point for FKES is the standard digital
signature functionality defined in [5] with the difference that packs together with

76 B. David et al.

the signing operation a key-evolving operation. During verification, FKES lets the
adversary set the response to a verification query (taking as input a given time
period) only if no key update has been performed since that time period and
no entry exists in its internal table for the specific message, signature and time
period specified in the query. We present FKES in Fig. 1. In the full version, we
show that FKES can be realized by a construction based on key evolving signature
schemes.

Functionality FKES

FKES is parameterized by the total number of signature updates T , interacting with
a signer US and stakeholders Ui as follows:
– Key Generation. Upon receiving a message (KeyGen, sid, US) from a

stakeholder US , send (KeyGen, sid, US) to the adversary. Upon receiving
(VerificationKey, sid, US , v) from the adversary, send (VerificationKey, sid, v) to
US , record the triple (sid, US , v) and set counter kctr = 1.

– Sign and Update. Upon receiving a message (USign, sid, US , m, j) from US ,
verify that (sid, US , v) is recorded for some sid and that kctr ≤ j ≤ T . If not,
then ignore the request. Else, set kctr = j +1 and send (Sign, sid, US , m, j) to the
adversary. Upon receiving (Signature, sid, US , m, j, σ) from the adversary, verify
that no entry (m, j, σ, v, 0) is recorded. If it is, then output an error message
to US and halt. Else, send (Signature, sid, m, j, σ) to US , and record the entry
(m, j, σ, v, 1).

– Signature Verification. Upon receiving a message (Verify, sid, m, j, σ, v′) from
some stakeholder Ui do:
1. If v′ = v and the entry (m, j, σ, v, 1) is recorded, then set f = 1. (This

condition guarantees completeness: If the verification key v′ is the registered
one and σ is a legitimately generated signature for m, then the verification
succeeds.)

2. Else, if v′ = v, the signer is not corrupted, and no entry (m, j, σ′, v, 1) for
any σ′ is recorded, then set f = 0 and record the entry (m, j, σ, v, 0). (This
condition guarantees unforgeability: If v′ is the registered one, the signer is
not corrupted, and never signed m, then the verification fails.)

3. Else, if there is an entry (m, j, σ, v′, f ′) recorded, then let f = f ′. (This
condition guarantees consistency: All verification requests with identical
parameters will result in the same answer.)

4. Else, if j < kctr, let f = 0 and record the entry (m, j, σ, v, 0). Otherwise,
if j = kctr, hand (Verify, sid, m, j, σ, v′) to the adversary. Upon receiving
(Verified, sid, m, j, φ) from the adversary let f = φ and record the entry
(m, j, σ, v′, φ). (This condition guarantees that the adversary is only able to
forge signatures under keys belonging to corrupted parties for time periods
corresponding to the current or future slots.)

Output (Verified, sid, m, j, f) to Ui.

Fig. 1. Functionality FKES.

Ouroboros Praos 77

3.2 UC-VRFs with Unpredictability Under Malicious Key
Generation

The usual pseudorandomness definition for VRFs captures the fact that an
attacker, seeing a number of VRF outputs and proofs for adversarially cho-
sen inputs under a key pair that is correctly generated by a challenger, cannot
distinguish the output of the VRF on a new (also adversarially chosen) input
from a truly random string. This definition is too weak for our purposes for two
reasons: first, we need a simulation-based definition so that the VRF can be
composed directly within our protocol; second, we need the primitive to provide
some level of unpredictability even under malicious key generation, i.e., against
adversaries who are allowed to generate the secret and pubic key pair.

Our UC formulation of VRFs cannot be implied by the standard VRF secu-
rity definition or even the simulatable VRF notion of [6]. For instance, the VRF
proofs in our setting have to be simulatable without knowledge of the VRF
output (which is critical as we would like to ensure that the VRF output is
not leaked to the adversary prematurely); it is easy to construct a VRF that
is secure in the standard definition, but it is impossible to simulate its proofs
without knowledge of the VRF output. Furthermore, if the adversary is allowed
to generate its own key pair it is easy to see that the distribution of the VRF
outputs cannot be guaranteed. Indeed, even for known constructions (e.g. [10]),
an adversary that maliciously generates keys can easily and significantly skew
the output distribution.

We call the latter property unpredictability under malicious key generation
and we present, in Fig. 2, a UC definition for VRF’s that captures this stronger
security requirement.4 The functionality operates as follows. Given a key gen-
eration request from one of the stakeholders, it returns a new verification key
v that is used to label a table. Two methods are provided for computing VRF
values. The first provides just the VRF output and does not interact with the
adversary. In the second, whenever invoked on an input m that is not asked
before by a stakeholder that is associated to a certain table labeled by v, the
functionality will query the adversary for the value of the proof π, and subse-
quently sample a random element ρ to associate with m. Verification is always
consistent and will validate outputs that have already being inserted in a table.
Unpredictability against malicious key generation is captured by imposing the
same random selection of outputs even for the function tables that correspond
to keys of corrupted stakeholders. Finally, the adversary is allowed to query all
function tables maintained by the functionality for which either a proof has been

4 In fact our UC formulation captures a stronger notion: even for adversarial keys the
VRF function will act as a random oracle. We note that while we can achieve this
notion in the random oracle model, a weaker condition of mere unpredictability can
be sufficient for the security of our protocol. A UC version of the notion of verifiable
pseudorandom permutations, cf. [9], could potentially be used towards a standard
model instantiation of the primitive.

78 B. David et al.

computed, or they correspond to adversarial keys. In the full version, we show
how to realize FVRF in the random oracle model under the CDH assumption
based on the 2-Hash-DH verifiable oblivious PRF construction of [14].

Functionality FVRF.

FVRF interacts with stakeholders U1, . . . , Un as follows:
– Key Generation. Upon receiving a message (KeyGen, sid) from a

stakeholder Ui, hand (KeyGen, sid, Ui) to the adversary. Upon receiving
(VerificationKey, sid, Ui, v) from the adversary, if Ui is honest, verify that v
is unique, record the pair (Ui, v) and return (VerificationKey, sid, v) to Ui. Ini-
tialize the table T (v, ·) to empty.

– Malicious Key Generation. Upon receiving a message (KeyGen, sid, v) from
S, verify that v has not being recorded before; in this case initialize table T (v, ·)
to empty and record the pair (S, v).

– VRF Evaluation. Upon receiving a message (Eval, sid, m) from Ui, verify
that some pair (Ui, v) is recorded. If not, then ignore the request. Then, if
the value T (v, m) is undefined, pick a random value y from {0, 1}�VRF and set
T (v, m) = (y, ∅). Then output (Evaluated, sid, y) to P , where y is such that
T (v, m) = (y, S) for some S.

– VRF Evaluation and Proof. Upon receiving a message (EvalProve, sid, m)
from Ui, verify that some pair (Ui, v) is recorded. If not, then ignore the
request. Else, send (EvalProve, sid, Ui, m) to the adversary. Upon receiving
(Eval, sid, m, π) from the adversary, if value T (v, m) is undefined, verify that
π is unique, pick a random value y from {0, 1}�VRF and set T (v, m) = (y, {π}).
Else, if T (v, m) = (y, S), set T (v, m) = (y, S ∪ {π}). In any case, output
(Evaluated, sid, y, π) to P .

– Malicious VRF Evaluation. Upon receiving a message (Eval, sid, v, m) from
S for some v, do the following. First, if (S, v) is recorded and T (v, m) is undefined,
then choose a random value y from {0, 1}�VRF and set T (v, m) = (y, ∅). Then, if
T (v, m) = (y, S) for some S �= ∅, output (Evaluated, sid, y) to S, else ignore the
request.

– Verification. Upon receiving a message (Verify, sid, m, y, π, v′) from some
party P , send (Verify, sid, m, y, π, v′) to the adversary. Upon receiving
(Verified, sid, m, y, π, v′) from the adversary do:
1. If v′ = v for some (Ui, v) and the entry T (Ui, m) equals (y, S) with π ∈ S,

then set f = 1.
2. Else, if v′ = v for some (Ui, v), but no entry T (Ui, m) of the form

(y, {. . . , π, . . .}) is recorded, then set f = 0.
3. Else, initialize the table T (v′, ·) to empty, and set f = 0.

Output (Verified, sid, m, y, π, f) to P .

Fig. 2. Functionality FVRF.

Ouroboros Praos 79

3.3 Oblivious Leader Selection

As in (synchronous) Ouroboros, for each 0 < j ≤ R, a slot leader Ej is a
stakeholder who is elected to generate a block at slj . However, our leader selec-
tion process differs from Ouroboros [16] in three points: (1) potentially, multiple
slot leaders may be elected for a particular slot (forming a slot leader set);
(2) frequently, slots will have no leaders assigned to them; and (3) a priori, only
a slot leader is aware that it is indeed a leader for a given slot; this assign-
ment is unknown to all the other stakeholders—including other slot leaders of
the same slot—until the other stakeholders receive a valid block from this slot
leader. The combinatorial analysis presented in Sect. 4 shows (with an honest
stake majority) that (i.) blockchains generated according to these dynamics are
well-behaved even if multiple slot leaders are selected for a slot and that (ii.)
sequences of slots with no leader provide sufficient stability for honest stakehold-
ers to effectively synchronize. As a matter of terminology, we call slots with an
associated nonempty slot leader set active slots and slots that are not assigned
a slot leader empty slots.

The idealized slot leader assignment and the active slots coefficient. The funda-
mental leader assignment process calls for a stakeholder Ui to be independently
selected as a leader for a particular slot slj with probability pi depending only
on its relative stake. (In this static-stake analysis, relative stake is simply deter-
mined by the genesis block B0.) The exact relationship between pi and the
relative stake αi is determined by a parameter f of the protocol which we refer
to as the active slots coefficient. Specifically,

pi = φf (αi) � 1 − (1 − f)αi , (1)

where αi is the relative stake held by stakeholder Ui. We occasionally drop
the subscript f and write φ(αi) when f can be inferred from context. As the
events “Ui is a leader for slj” are independent, this process may indeed generate
multiple (or zero) leaders for a given slot.

Remarks about φf (·). Observe that φf (1) = f ; in particular, the parameter f is
the probability that a party holding all the stake will be selected to be a leader
for given slot. On the other hand, φf () is not linear, but slightly concave. To
motivate the choice of the function φf , we note that it satisfies the “independent
aggregation” property:

1 − φ

(∑
i

αi

)
=

∏
i

(1 − φ(αi)). (2)

In particular, when leadership is determined according to φf , the probability
of a stakeholder becoming a slot leader in a particular slot is independent of
whether this stakeholder acts as a single party in the protocol, or splits its stake
among several “virtual” parties. In particular, consider a party U with relative
stake α who contrives to split its stake among two virtual subordinate parties
with stakes α1 and α2 (so that α1 + α2 = α). Then the probability that one of

80 B. David et al.

these virtual parties is elected for a particular slot is 1 − (1 − φ(α1))(1 − φ(α2)),
as these events are independent. Property (2) guarantees that this is identical
to φ(α). Thus this selection rule is invariant under arbitrary reapportionment of
a party’s stake among virtual parties.

3.4 The Protocol in the FINIT-Hybrid Model

We will construct our protocol for the static stake case in the FINIT-hybrid model,
where the genesis stake distribution S0 and the nonce η (to be written in the
genesis block B0) are determined by the ideal functionality FINIT defined in Fig. 3.
Moreover, FINIT also incorporates the diffuse functionality from Sect. 2.2, which
is implicitly used by all parties to send messages and keep synchronized with a
global clock. FINIT also takes stakeholders’ public keys from them and packages
them into the genesis block at the outset of the protocol. Note that FINIT halts
if it is not possible to create a genesis block; all security guarantees we provide
later in the paper are conditioned on a successful creation of the genesis block.

Functionality FINIT

FINIT incorporates the delayed diffuse functionality from Section 2.2 and is parame-
terized by the number of initial stakeholders n and their respective stakes s1, . . . , sn.
FINIT interacts with stakeholders U1, . . . , Un as follows:
– In the first round, upon a request from some stakeholder Ui of the

form (ver keys, sid, Ui, v
vrf
i , vkes

i , vdsig
i), it stores the verification keys tuple

(Ui, v
vrf
i , vkes

i , vdsig
i) and acknowledges its receipt. If any of the n stakehold-

ers does not send a request of this form to FINIT, or if two different stake-
holders provide two identical keys, it halts. Otherwise, it samples and stores

a random value η
$← {0, 1}λ and constructs a genesis block (S0, η), where

S0 =
(
(U1, v

vrf
1 , vkes

1 , vdsig
1 , s1), . . . , (Un, vvrf

n , vkes
n , vdsig

n , sn)
)
.

– In later rounds, upon a request of the form (genblock req, sid, Ui) from some
stakeholder Ui, FINIT sends (genblock, sid, S0, η) to Ui.

Fig. 3. Functionality FINIT.

Blocks are signed with a forward secure signature scheme modelled by FKES,
while transactions are signed with a regular EUF-CMA secure digital signature
modelled by a standard signature functionality FDSIG, deferred to the full version
due to space constraints.

Notice that the implicit leader assignment process described in πSPoS calls
for a party Ui to act as a leader for a slot slj when y < Ti; this is an event that
occurs with probability (exponentially close to) φf (αi) as y is uniform according
to the functionality FVRF.

We are interested in applications where transactions are inserted in the
ledger. For simplicity, transactions are assumed to be simple assertions of the
form “Stakeholder Ui transfers stake s to Stakeholder (Uj , v

vrf
j , vkes

j , vdsig
j)”

Ouroboros Praos 81

(In an implementation the different public-keys can be hashed into a single
value). Protocol πSPoS ensures that the environment learns every stakeholder’s
public keys and provides an interface for the environment to request signatures
on arbitrary transactions. A transaction will consist of a transaction template
tx of this format accompanied by a signature of tx by stakeholder Ui. We define
a valid transaction as follows:

Definition 4 (Valid Transaction). A pair (tx, σ) is considered a valid trans-
action by a verifier V if the following holds:

– The transaction template tx is of the format “Stakeholder Ui transfers stake
s to Stakeholder (Uj , v

vrf
j , vkes

j , vdsig
j)” where Ui and Uj are stakeholders iden-

tified by tuples (Ui, v
vrf
i , vkes

i , vdsig
i) and (Uj , v

vrf
j , vkes

j , vdsig
j) contained in the

current stake distribution S and x ∈ Z.
– The verifier V obtains (Verified,m, 1) as answer upon sending

(Verify, tx, σ, vdsig
i) to FDSIG.

– Stakeholder Ui possesses x coins at the moment the transaction is issued (or
registered in the blockchain) according to the view of the verifier V.

Given Definitions 2 and 4, we define a valid chain as a blockchain (according
to Definition 2) where all transactions contained in every block are valid (accord-
ing to Definition 4). The stakeholders U1, . . . , Un interact among themselves and
with FINIT through Protocol πSPoS described in Fig. 4. The protocol relies on a
maxvalidS(C,C) function that chooses a chain given the current chain C and a
set of valid chains C that are available in the network. In the static stake case
we analyze the simple “longest chain” rule.

Function maxvalid(C,C): Returns the longest chain from C∪ {C}. Ties are
broken in favor of C, if it has maximum length, or arbitrarily otherwise.

4 Combinatorial Analysis of the Static Stake Protocol

Throughout this section, we focus solely on analysis of the protocol πSPoS using
the idealized functionalities FVRF and FKES for VRFs and digital signatures,
respectively—we refer to it as the hybrid experiment. Any property of the pro-
tocol that we prove true in the hybrid experiment (such as achieving common
prefix, chain growth and chain quality) will remain true (with overwhelming
probability) in the setting where FVRF and FKES are replaced by their real-world
implementations—in the so-called real experiment.

The hybrid experiment yields a stochastic process for assigning slots to par-
ties which we now abstract and study in detail. Our analysis of the resulting
blockchain dynamics proceeds roughly as follows: We begin by generalizing the
framework of “forks” [16] to our semi-synchronous setting—forks are a natu-
ral bookkeeping tool that reflect the chains possessed by honest players during
an execution of the protocol. We then establish a simulation rule that asso-
ciates with each execution of the semi-synchronous protocol an execution of

82 B. David et al.

Protocol πSPoS

The protocol πSPoS is run by stakeholders U1, . . . , Un interacting among themselves
and with ideal functionalities FINIT, FVRF, FKES, FDSIG,H over a sequence of slots
S = {sl1, . . . , slR}. Define Ti � 2�VRFφf (αi) as the threshold for a stakeholder Ui,
where αi is the relative stake of Ui, �VRF denotes the output length of FVRF, f is
the active slots coefficient and φf is the mapping from equation (1). Then πSPoS

proceeds as follows:
1. Initialization. The stakeholder Ui sends (KeyGen, sid, Ui) to FVRF, FKES

and FDSIG; receiving (VerificationKey, sid, vvrf
i), (VerificationKey, sid, vkes

i) and
(VerificationKey, sid, vdsig

i), respectively. Then, in case it is the first round, it
sends (ver keys, sid, Ui, v

vrf
i , vkes

i , vdsig
i) to FINIT (to claim stake from the genesis

block). In any case, it terminates the round by returning (Ui, v
vrf
i , vkes

i , vdsig
i)

to Z. In the next round, it sends (genblock req, sid, Ui) to FINIT, receiving
(genblock, sid, S0, η) as the answer. If Ui is initialized in the first round, it
sets the local blockchain C = B0 = (S0, η) and its initial internal state
st = H(B0). In case Ui is initialized after the first round, it sets its initial
state to st = H(head(C)) where C is the initial local chain provided by the
environment.

2. Chain Extension. After initialization, for every slot slj ∈ S, every online
stakeholder Ui performs the following steps:
(a) Ui receives from the environment the transaction data d ∈ {0, 1}∗ to be

inserted into the blockchain.
(b) Ui collects all valid chains received via diffusion into a set C, prun-

ing blocks belonging to future slots and verifying that for every chain
C′ ∈ C and every block B′ = (st′, d′, sl′, Bπ

′, σj′) ∈ C′ it holds that
the stakeholder who created it is in the slot leader set of slot sl′ (by
parsing Bπ

′ as (Us, y
′, π′) for some s, verifying that FVRF responds to

(Verify, sid, η ‖ sl′, y′, π′, vvrf
s) by (Verified, sid, η ‖ sl′, y′, π′, 1), and that y′ <

Ts), and that FKES responds to (Verify, sid, (st′, d′, sl′, Bπ
′), sl′, σj′ , vkes

s) by
(Verified, sid, (st′, d′, sl′, Bπ

′), sl′, 1). Ui computes C′ = maxvalid(C,C), sets
C′ as the new local chain and sets state st = H(head(C′)).

(c) Ui sends (EvalProve, sid, η ‖ slj) to FVRF, receiving (Evaluated, sid, y, π). Ui

checks whether it is in the slot leader set of slot slj by checking that
y < Ti. If yes, it chooses the maximal sequence d′ of transactions in d such
that adding a block with d′ to C results into a valid chain, and attempts
to include d′ as follows: It generates a new block B = (st, d′, slj , Bπ, σ)
where st is its current state, Bπ = (Ui, y, π) and σ is a signature ob-
tained by sending (USign, sid, Ui, (st, d

′, slj , Bπ), slj) to FKES and receiving
(Signature, sid, (st, d′, slj , Bπ), slj , σ). Ui computes C′ = C ‖ B, sets C′ as the
new local chain and sets state st = H(head(C′)). Finally, if Ui has generated
a block in this step, it diffuses C′.

3. Signing Transactions. Upon receiving (sign tx, sid′, tx) from the environment,
Ui sends (Sign, sid, Ui, tx) to FDSIG, receiving (Signature, sid, tx, σ). Then, Ui

sends (signed tx, sid′, tx, σ) back to the environment.

Fig. 4. Protocol πSPoS.

Ouroboros Praos 83

a related “virtual” synchronous protocol. Motivated by the special case of a
static adversary—which simply corrupts a family of parties at the outset of the
protocol—we identify a natural “generic” probability distribution for this sim-
ulation theorem which we prove controls the behavior of adaptive adversaries
by stochastic domination. Finally, we prove that this simulation amplifies the
effective power of the adversary in a controlled fashion and, furthermore, permits
forks of the semi-synchronous protocol to be projected to forks of the virtual pro-
tocol in a way that preserves their relevant combinatorial properties. This allows
us to apply the density theorems and divergence result of [16,23] to provide
strong common prefix, chain growth, and chain quality (Sect. 4.4) guarantees for
the semi-synchronous protocol with respect to an adaptive adversary.

We begin in Sect. 4.1 with a discussion of characteristic strings, semi-
synchronous forks, and their relationship to executions of πSPoS in the hybrid
experiment. Section 4.2 then develops the combinatorial reduction from the semi-
synchronous to the synchronous setting. The “generic, dominant” distribution
on characteristic strings is then motivated and defined in Sect. 4.3, where the
effect of the reduction on this distribution is also described. Section 4.4, as
described above, establishes various guarantees on the resulting blockchain under
the dominant distribution. The full power of adaptive adversaries is considered in
Sect. 4.5. Finally, in preparation for applying the protocol in the dynamic stake
setting, we formulate a “resettable setting” which further enlarges the power of
the adversary by providing some control over the random nonce that seeds the
protocol.

4.1 Chains, Forks and Divergence

We begin by suitably generalizing the framework of characteristic strings, forks,
and divergence developed in [16] to our semi-synchronous setting.

The leader assignment process given by protocol πSPoS in the hybrid exper-
iment assigns leaders to slots with the following guarantees: (i.) a party with
relative stake α becomes a slot leader for a given slot with probability φf (α) �
1 − (1 − f)α; (ii.) the event of becoming a slot leader is independent for each
party and for each slot (both points follow from the construction of πSPoS and
the independent random sampling of every new output in FVRF). Clearly, these
dynamics may lead to slots with multiple slot leaders and, likewise, slots with no
slot leader. For a given (adaptive) adversary A and environment Z, we reflect
the outcome of this process with a characteristic string, as described below.

Definition 5 (Execution). For an (adaptive) adversary A and an environ-
ment Z, an execution E of πSPoS is a transcript including the inputs provided
by Z, the random coins of the parties, the random coins of the adversary, the
responses of the ideal functionalities and the random oracle. This data deter-
mines the entire dynamics of the protocol: messages sent and delivered, the inter-
nal states of the parties at each step, the set of corrupt parties at each step, etc.

Definition 6 (Characteristic string). Let S = {sl1, . . . , slR} be a sequence
of slots of length R and E be an execution (with adversary A and environment Z).

84 B. David et al.

For a slot slj, let P(j) denote the set of parties assigned to be slot leaders for slot j
by the protocol πSPoS (specifically, those parties Ui for which y < 2�VRFφf (αi), where
(y, π) ← ProveVRF.ski

(η ‖ slj)). We define the characteristic string w ∈ {0, 1,⊥}R

of S to be the random variable so that

wj =

⎧
⎪⎨
⎪⎩

⊥ ifP(j) = ∅,

0 if |P(j)| = 1 and the assigned party is honest,
1 if |P(j)| > 1 or a party inP(i) is adversarial.

(3)

For such a characteristic string w ∈ {0, 1,⊥}∗ we say that the index j is uniquely
honest if wj = 0, tainted if wj = 1, and empty if wj = ⊥. We say that an
index is active if wj ∈ {0, 1}. Note that an index is “tainted” according to this
terminology in cases where multiple honest parties (and no adversarial party)
have been assigned to it.

We denote by Df
Z,A the distribution of the random variable w = w1 . . . wR in

the hybrid experiment with the active slots coefficient f , adversary A, and envi-
ronment Z. For a fixed execution E, we denote by wE the (fixed) characteristic
string resulting from that execution.

We emphasize that in an execution of πSPoS, the resulting characteristic string
is determined by both the nonce (and the effective leader selection process), the
adaptive adversary A, and the environment Z (which, in particular, determines
the stake distribution).

From Executions to Forks. The notion of a “fork”, defined in [16], is a
bookkeeping tool that indicates the chains broadcast by honest players during
an idealized execution of a blockchain protocol. We now adapt the synchronous
notion of [16] to reflect the effect of message delays.

An execution of Protocol πSPoS induces a collection of blocks broadcast by
the participants. As we now focus merely on the structural properties of the
resulting blockchain, for each broadcast block we now retain only two features:
the slot associated with the block and the previous block to which it is “attached”
by the idealized digital signature σj . (Of course, we only consider blocks with
legal structure that meet the verification criteria of πSPoS.) Note that multiple
blocks may be associated with a particular slot, either because multiple parties
are assigned to the slot or an adversarial party is assigned to a slot (who may
choose to deviate from the protocol by issuing multiple blocks). In any case,
these blocks induce a natural directed tree by treating the blocks as vertices
and introducing a directed edge between each pair of blocks (b, b′) for which b′

identifies b as the previous block. In the Δ-semisynchronous setting, the maxvalid
rule enforces a further critical property on this tree: the depth of any block
broadcast by an honest player during the protocol must exceed the depths of
any honestly-generated blocks from slots at least Δ in the past. (This follows
because such previously broadcast blocks would have been available to the honest
player, who always builds on a chain of maximal length.) We call a directed tree
with these structural properties a Δ-fork, and define them precisely below.

Ouroboros Praos 85

We may thus associate with any execution of πSPoS a fork. While this fork
disregards many of the details of the execution, any violations of common prefix
are immediately manifested by certain diverging paths in the fork. A fundamen-
tal element of our analysis relies on controlling the structure of the forks that can
be induced in this way for a given characteristic string (which determines which
slots have been assigned to uniquely honest parties). In particular, we prove that
common prefix violations are impossible for “typical” characteristic strings gen-
erated by πSPoS with an adversary A by establishing that such diverging paths
cannot exist in their associated forks.

Definition 7 (Δ-fork). Let w ∈ {0, 1,⊥}k and Δ be a non-negative integer.
Let A = {i | wi = ⊥} denote the set of active indices, and let H = {i | wi = 0}
denote the set of uniquely honest indices. A Δ-fork for the string w is a directed,
rooted tree F = (V,E) with a labeling � : V → {0} ∪ A so that (i) the root r ∈ V
is given the label �(r) = 0; (ii) each edge of F is directed away from the root;
(iii) the labels along any directed path are strictly increasing; (iv) each uniquely
honest index i ∈ H is the label of exactly one vertex of F ; (v) the function
d : H → {1, . . . , k}, defined so that d(i) is the depth in F of the unique vertex
v for which �(v) = i, satisfies the following Δ-monotonicity property: if i, j ∈ H
and i + Δ < j, then d(i) < d(j).

As a matter of notation, we write F �Δ w to indicate that F is a Δ-fork for
the string w. We typically refer to a Δ-fork as simply a “fork”.

Also note that our notion of a fork deliberately models honest parties that do
not necessarily exploit all the information available to them thanks to the deliv-
ery guarantees provided by the DDiffuse functionality. Nonetheless, it remains
true that any execution of the hybrid experiment leads to a fork as we defined
it, a relationship that we make fully formal in the full version. Given this rela-
tionship, we can later focus on investigating the properties of the distribution
Df

Z,A. Roughly speaking, if we prove that a characteristic string sampled from
Df

Z,A, with overwhelming probability, does not allow for any “harmful” forks,
then this also implies that a random execution with overwhelming probability
results in a “harmless” outcome.

Now we continue with the adaptation of the framework from [16] to the
semi-synchronous setting.

Definition 8 (Tines, length, and viability). A path in a fork F originating
at the root is called a tine. For a tine t we let length(t) denote its length, equal
to the number of edges on the path. For a vertex v, we call the length of the tine
terminating at v the depth of v. For convenience, we overload the notation �(·)
so that it applies to tines by defining �(t) � �(v), where v is the terminal vertex
on the tine t. We say that a tine t is Δ-viable if length(t) ≥ maxh+Δ≤�(t) d(h),
this maximum extended over all uniquely honest indices h (appearing Δ or more
slots before �(t)). Note that any tine terminating in a uniquely honest vertex is
necessarily viable by the Δ-monotonicity property.

86 B. David et al.

Remarks on viability and divergence. The notion of viability, defined above,
demands that the length of a tine t be no less than that of all tines broadcast by
uniquely honest slot leaders prior to slot �(t)−Δ. Observe that such a tine could,
in principle, be selected according to the maxvalid() rule by an honest player
online at time �(t): in particular, if all blocks broadcast by honest parties in slots
�(t) − Δ, . . . , �(t) are maximally delayed, the tine can favorably compete with
all other tines that the adversary is obligated to deliver by slot �(t). The major
analytic challenge, both in the synchronous case and in our semisynchronous
setting, is to control the possibility of a common prefix violation, which occurs
when the adversary can manipulate the protocol to produce a fork with two
viable tines with a relatively short common prefix. We define this precisely by
introducing the notion of divergence.

Definition 9 (Divergence). Let F be a Δ-fork for a string w ∈ {0, 1,⊥}∗.
For two Δ-viable tines t1 and t2 of F , define their divergence to be the quantity

div(t1, t2) � min{length(t1), length(t2)} − length(t1 ∩ t2),

where t1 ∩ t2 denotes the common prefix of t1 and t2. We extend this notation
to the fork F by maximizing over viable tines: divΔ(F) � maxt1,t2 div(t1, t2),
taken over all pairs of Δ-viable tines of F . Finally, we define the Δ-divergence
of a characteristic string w to be the maximum over all Δ-forks: divΔ(w) �
maxF �Δw divΔ(F).

Our primary goal in this section is to prove that, with high probability, the
characteristic strings induced by protocol πSPoS have small divergence and hence
provide strong guarantees on common prefix.

The Synchronous Case. The original development of [16] assumed a strictly
synchronous environment. Their definitions of characteristic string, fork, and
divergence correspond to the case Δ = 0, where characteristic strings are ele-
ments of {0, 1}∗. As this setting will play an important role in our analysis—
fulfilling the role of the “virtual protocol” described at the beginning of this
section—we set down some further terminology for this synchronous case and
establish a relevant combinatorial statement based on a result in [16] that we
will need for our analysis.

Definition 10 (Synchronous characteristic strings and forks). A syn-
chronous characteristic string is an element of {0, 1}∗. A synchronous fork F
for a (synchronous) characteristic string w is a 0-fork F �0 w.

An immediate conclusion of the results obtained in [16,23] is the following
bound on the probability that a synchronous characteristic string drawn from
the binomial distribution has large divergence.

Theorem 1. Let �, k ∈ N and ε ∈ (0, 1). Let w ∈ {0, 1}� be drawn according to
the binomial distribution, so that Pr[wi = 1] = (1 − ε)/2. Then Pr[div0(w) ≥
k] ≤ exp(ln � − Ω(k)).

Ouroboros Praos 87

4.2 The Semisynchronous to Synchronous Reduction

We will make use of the following mapping, that maps characteristic strings to
synchronous characteristic strings.

Definition 11 (Reduction mapping). For Δ ∈ N, we define the function
ρΔ : {0, 1,⊥}∗ → {0, 1}∗ inductively as follows: ρΔ(ε) = ε, ρΔ(⊥‖w′) = ρΔ(w′),

ρΔ(1 ‖w′) = 1 ‖ ρΔ(w′),

ρΔ(0 ‖w′) =

{
0 ‖ ρΔ(w′) if w′ ∈ ⊥Δ−1 ‖ {0, 1,⊥}∗,
1 ‖ ρΔ(w′) otherwise.

(4)

We call ρΔ the reduction mapping for delay Δ.

A critical feature of the map ρΔ is that it monotonically transforms Δ-
divergence to synchronous divergence. We state this in the following lemma,
proven in the full version.

Lemma 1. Let w ∈ {0, 1,⊥}∗. Then divΔ(w) ≤ div0(ρΔ(w)).

4.3 The Dominant Characteristic Distribution

The high-probability results for our desired chain properties depend on detailed
information about the distribution on characteristic strings Df

Z,A determined
by the adversary A, the environment Z, and the parameters f and R. In this
section we define a distinguished distribution on characteristic strings which we
will see “dominates” the distributions produced by any static adversary. Later
in Sect. 4.5 we show that the same is true also for adaptive adversaries. We then
study the effect of ρΔ on this distribution in preparation for studying common
prefix, chain growth, and chain quality.

Motivating the Dominant Distribution: Static Adversaries. To motivate
the dominant distribution, consider the distribution induced by a static adver-
sary who corrupts—at the outset of the protocol—a set UA of parties with total
relative stake αA. (Formally, one can model this by restricting to environments
that only allow static corruption.) Recalling Definition 1, a party with relative
stake αi is independently assigned to be a leader for a slot with probability

φf (αi) � φ(αi) � 1 − (1 − f)αi .

The function φf is concave since

∂2φf

∂α2
(α) = −(ln(1 − f))2(1 − f)α < 0.

Considering that φf (0) = 0 and φf (1) = f , concavity implies that φf (α) ≥ fα
for α ∈ [0, 1]. As φf (0) ≥ 0 and φf is concave, the function φf is subadditive.
This immediately implies the following proposition that will be useful during the
analysis.

88 B. David et al.

Proposition 1. The function φf (α) satisfies the following properties.

φf

(∑
i

αi

)
= 1 −

∏
i

(1 − φf (αi)) ≤
∑

i

φf (αi), αi ≥ 0, (5)

φf (α)
φf (1)

=
φf (α)

f
≥ α , α ∈ [0, 1]. (6)

Recalling Definition 6, this (static) adversary A determines a distribution
Df

Z,A on strings w ∈ {0, 1,⊥}R by independently assigning each wi so that

pA
⊥ � Pr[wi = ⊥] =

∏
i∈P

(1 − φ(αi)) =
∏
i∈P

(1 − f)αi = (1 − f),

pA
0 � Pr[wi = 0] =

∑
h∈H

(1 − (1 − f)αh) · (1 − f)1−αi ,

pA
1 � Pr[wi = 1] = 1 − pA

⊥ − pA
0 .

(7)

Here H denotes the set of all honest parties in the stake distribution S determined
by Z. As before, P denotes the set of all parties.

It is convenient to work with some bounds on the above quantities that
depend only on “macroscopic” features of S and A: namely, the relative stake
of the honest and adversarial parties, and the parameter f . For this purpose we
note that

pA
0 ≥

∑
h∈H

φ(αh) ·
∏
i∈P

(1 − φ(αi)) ≥ φ(αH) · pA
⊥ = φ(αH) · (1 − f), (8)

where αH denotes the total relative stake of the honest parties. Note that this
bound applies to all static adversaries A that corrupt no more than a 1 − αH
fraction of all stake. With this in mind, we define the dominant distribution as
follows.

Definition 12 (The dominant distribution Df
α). For two parameters f and

α, define Df
α to be the distribution on strings w ∈ {0, 1,⊥}R that independently

assigns each wi so that p⊥ � Pr[wi = ⊥] = 1−f , p0 � Pr[wi = 0] = φ(α)·(1−f),
and p1 � Pr[wi = 1] = 1 − p⊥ − p0.

The distribution Df
α “dominates” Df

Z,A for any static adversary A that corrupts
no more than a relative 1−α share of the total stake, in the sense that nonempty
slots are more likely to be tainted under Df

α than they are under Df
Z,A.

To make this relationship precise, we introduce the partial order � on the set
{⊥, 0, 1} so that x � y if and only if x = y or y = 1. We extend this partial order
to {⊥, 0, 1}R by declaring x1 . . . xR � y1 . . . yR if and only if xi � yi for each i.
Intuitively, the relationship x ≺ y asserts that y is “more adversarial than” x;
concretely, any legal fork for x is also a legal fork for y. We record this in the
lemma below, which follows directly from the definition of Δ-fork and divΔ.

Ouroboros Praos 89

Lemma 2. Let x and y be characteristic strings in {0, 1,⊥}R for which x � y.
Then (1.) for every fork F , F �Δ x =⇒ F �Δ y; (2.) for every Δ, divΔ(x) ≤
divΔ(y).

Finally, we define a notion of stochastic dominance for distributions on char-
acteristic strings, and α-dominated adversaries.

Definition 13 (Stochastic dominance). We say that a subset E ⊆ {⊥, 0, 1}R

is monotone if x ∈ E and x � y implies that y ∈ E. Let D and D′ be two
distributions on the set of characteristic strings {⊥, 0, 1}R. Then we say that D′

dominates D, written D � D′, if PrD[E] ≤ PrD′ [E] for every monotone set E.
An adversary A is called α-dominated if the distribution Df

Z,A that it induces
on the set of characteristic strings satisfies Df

Z,A � Df
α.

In our application, the events of interest are DΔ = {x | divΔ(x) ≥ k} which
are monotone by Lemma 2. We note that any static adversary that corrupts
no more than a 1 − α fraction of stake is α-dominated, and it follows that
PrDf

Z,A
[divΔ(w) ≥ k] ≤ PrDf

α
[divΔ(w) ≥ k]. This motivates a particular study

of the “dominant” distribution Df
α.

The Induced Distribution ρΔ (Df
α). The dominant distribution Df

α

on {0, 1,⊥}R in conjunction with the definition of ρΔ of (4) above implic-
itly defines a family of random variables ρΔ(w) = x1 . . . x� ∈ {0, 1}∗, where
w ∈ {0, 1,⊥}R is distributed according to Df

α. Observe that � = R − #⊥(w) is
precisely the number of active indices of w. We now note a few properties of this
resulting distribution that will be useful to us later (their proofs are presented
in the full version). In particular, we will see that the xi random variables are
roughly binomially distributed, but subject to an exotic stochastic “stopping
time” condition in tandem with some distortion of the last Δ variables.

Lemma 3 (Structure of the induced distribution). Let x1 . . . x� = ρΔ(w)
where w ∈ {0, 1,⊥}R is distributed according to Df

α. There is a sequence of
independent random variables z1, z2, . . . with each zi ∈ {0, 1} so that

Pr[zi = 0] =
(

p0
p0 + p1

)
pΔ−1

⊥ ≥ α · (1 − f)Δ, (9)

and x1 . . . x�−Δ = ρΔ(w1 . . . , wR)�Δ is a prefix of z1z2 (10)

(Note that while the zi are independent with each other, they are not independent
with w.)

Divergence for the Dominant Distribution. Our goal is to apply the reduc-
tion ρΔ, Lemma 1, and Theorem 1 to establish an upper bound on the probability
that a string drawn from the dominant distribution Df

α has large Δ-divergence.
The difficulty is that the distribution resulting from applying ρΔ to a string
drawn from Df

α is no longer a simple binomial distribution, so we cannot apply
Theorem 1 directly. We resolve this obstacle in the proof of the following theo-
rem, also given in the full version.

90 B. David et al.

Theorem 2. Let f ∈ (0, 1], Δ ≥ 1, and α be such that α(1 − f)Δ = (1 + ε)/2
for some ε > 0. Let w be a string drawn from {0, 1,⊥}R according to Df

α. Then
we have Pr[divΔ(w) ≥ k + Δ] = 2−Ω(k)+log R.

Remark. Intuitively, the theorem asserts that sampling the characteristic string
in the Δ-semisynchronous setting with protocol parameter f according to Df

α is,
for the purpose of analyzing divergence, comparable to the synchronous setting
in which the honest stake has been reduced from α to α(1 − f)Δ. Note that
this can be made arbitrarily close to α by adjusting f to be small; however, this
happens at the expense of longer periods of silence in the protocol.

4.4 Common Prefix, Chain Growth, and Chain Quality

Our results on Δ-divergence from the previous section allow us to easily estab-
lish the following three statements, their proofs are again postponed to the full
version.

Theorem 3 (Common prefix). Let k,R,Δ ∈ N and ε ∈ (0, 1). Let A be an α-
dominated adversary against the protocol πSPoS for some α satisfying α(1−f)Δ ≥
(1 + ε)/2. Then the probability that A, when executed in a Δ-semisynchronous
environment, makes πSPoS violate the common prefix property with parameter
k throughout a period of R slots is no more than exp(ln R + Δ − Ω(k)). The
constant hidden by the Ω(·)-notation depends on ε.

To obtain a bound on the probability of a violation of the chain growth prop-
erty, we again consider the Δ-right-isolated uniquely honest slots introduced in
Sect. 4.2. Intuitively, we argue that the leader of such a slot has already received
all blocks that were created in all previous such slots and therefore the block it
creates will be having depth larger than all these blocks. It then follows that the
length of the chain grows by at least the number of such slots.

Theorem 4 (Chain growth). Let k,R,Δ ∈ N and ε ∈ (0, 1). Let A be an
α-dominated adversary against the protocol πSPoS for some α > 0. Then the prob-
ability that A, when executed in a Δ-semisynchronous environment, makes πSPoS

violate the chain growth property with parameters s ≥ 4Δ and τ = cα/4 through-
out a period of R slots, is no more than exp (−cαs/(20Δ) + ln RΔ + O(1)),
where c denotes the constant c := c(f,Δ) = f(1 − f)Δ.

Our chain quality statement of Theorem 5 is a direct consequence of
Lemma 4, which observes that a sufficiently long sequence of consecutive blocks
in an honest party’s chain will most likely contain a block created in a Δ-right-
isolated uniquely honest slot.

Lemma 4. Let k,Δ ∈ N and ε ∈ (0, 1). Let A be an α-dominated adversary
against the protocol πSPoS for some α > 0 satisfying α(1 − f)Δ = (1 + ε)/2.
Let B1, . . . , Bk be a sequence of consecutive blocks in a chain C possessed by
an honest party. Then at least one block Bi was created in a Δ-right-isolated
uniquely honest slot, except with probability exp(−Ω(k)).

Ouroboros Praos 91

Theorem 5 (Chain quality). Let k,R,Δ ∈ N and ε ∈ (0, 1). Let A be an
α-dominated adversary against the protocol πSPoS for some α > 0 satisfying
α(1 − f)Δ ≥ (1 + ε)/2. Then the probability that A, when executed in a Δ-
semisynchronous environment, makes πSPoS violate the chain quality property
with parameters k and μ = 1/k throughout a period of R slots, is no more than
exp(ln R − Ω(k)).

4.5 Adaptive Adversaries

The statements in the previous sections give us guarantees on the common pre-
fix, chain growth, and chain quality properties as long as the adversary is α-
dominated for some suitable value of α. In Sect. 4.3 we argued that any static
adversary that corrupts at most (1−α)-fraction of stake is α-dominated. In this
section we extend this claim also to adaptive adversaries, showing that as long
as they corrupt no more than (1 − α)-fraction of stake adaptively throughout
the whole execution, they are still α-dominated. The proof is deferred to the full
version.

Theorem 6. Every adaptive adversary A that corrupts at most (1−α)-fraction
of stake throughout the whole execution is α-dominated.

Theorems 3, 4, 5 and 6 together give us the following corollary.

Corollary 1. Let A be an adaptive adversary against the protocol ΠSPoS that
corrupts at most (1 − α)-fraction of stake. Then the bounds on common prefix,
chain growth and chain quality given in Theorems 3, 4, 5 are satisfied for A.

4.6 The Resettable Protocol

With the analysis of these basic structural events behind us, we remark that
the same arguments apply to a modest generalization of the protocol which
permits the adversary some control over the nonce. Specifically, we introduce
a “resettable” initialization functionality Fr

INIT, which permits the adversary to
select the random nonce from a family of r independent and uniformly random
nonces. Specifically, Fr

INIT is identical to FINIT, with the following exception:

– Upon receiving the first request of the form (genblock req, Ui) from some stake-
holder Ui, Fr

INIT samples a nonce η
$← {0, 1}λ, defines a “nonce candidate” set

H = {η}, and permits the adversary to carry out up to r − 1 reset events:
each reset event draws an independent element from {0, 1}λ, adds the element
to the set H, and permits the adversary to replace the current nonce η with
any element of H. Finally, (genblock,S0, η) is sent to Ui. Later requests from
any stakeholder are answered using the same value η.

Looking ahead, our reason to introduce the resettable functionality Fr
INIT is to

capture the limited grinding capabilities of the adversary. A simple application
of the union bound shows that this selection of η from among a set of size r
uniformly random candidate nonces can inflate the probability of events during
the run of πSPoS by a factor no more than r. We record this as a corollary below.

92 B. David et al.

Corollary 2 (Corollary to Theorems 3, 4, 5). The protocol ΠSPoS, with
initialization functionality Fr

INIT, satisfies the bounds of Theorems 3, 4, 5 with
all probabilities scaled by r.

5 The Full Protocol

In this section, we construct a protocol that handles the dynamic case, where
the stake distribution changes as the protocol is executed. As in Ouroboros [16],
we divide protocol execution in a number of independent epochs during which
the stake distribution used for sampling slot leaders remains unchanged. The
strategy we use to bootstrap the static protocol is, at a high level, similar: we
first show how the protocol can accommodate dynamic stake utilizing an ideal
“leaky beacon” functionality and then we show this beacon functionality can be
simulated via an algorithm that collects randomness from the blockchain.

In order to facilitate the implementation of our beacon, we need to allow the
leaky beacon functionality to be adversarially manipulated by allowing a number
of “resets” to be performed by the adversary. Specifically, the functionality is
parameterized by values τ and r. First, it leaks to the adversary, up to τ slots
prior to the end of an epoch, the beacon value for the next epoch. (Looking
ahead, we remark that it is essential that the stake distribution used for sampling
slot leaders in the next epoch is determined prior to this leakage.) Second, the
adversary can reset the value returned by the functionality as many as r times.
As expected for a beacon, it reports to honest parties the beacon value only once
the next epoch starts. After the epoch is started no more resets are allowed for the
beacon value. This mimics the functionality FINIT and its resettable version Fr

INIT.
Note that the ability of the adversary to reset the beacon can be quite influential
in the protocol execution: for instance, any event that depends deterministically
on the nonce of an epoch and happens with probability 1/2 can be easily forced
to happen almost always by the adversary using a small number of resets.

Naturally, we do not want to assume the availability of a randomness beacon
in the final protocol, even if it is leaky and resettable. In our final iteration of
the protocol we show how it is possible to simulate such beacon using a hash
function that is modeled as a random oracle. This hash function is applied to
the concatenation of VRF values that are inserted into each block, using values
from all blocks up to and including the middle ≈ 8k slots of an epoch that lasts
approximately 24k slots in entirety. (The “quiet” periods before and after this
central block of slots that sets the nonce will ensure that the stake distribution,
determined at the beginning of the epoch, is stable, and likewise that the nonce
is stable before the next epoch begins.) The verifiability of those values is a key
property that we exploit in the proof.

Our proof strategy is to reduce any adversary against the basic properties
of the blockchain to a resettable-beacon adversary that will simulate the ran-
dom oracle. The key point of this reduction is that whenever the random oracle
adversary makes a query with a sequence of values that is a candidate sequence
for determining the nonce for the next epoch, the resettable attacker detects this
as a possible reset opportunity and resets the beacon; it obtains the response
from the beacon and sets this as the answer to the random oracle query.

Ouroboros Praos 93

The final issue is to bound the number of resets: towards this, note that the
adversary potentially controls a constant fraction of the ≈8k slots associated with
nonce selection, and this allows him to explore an a priori large space of indepen-
dent randompotential nonces (and, ultimately, select one as the next epoch nonce).
The size of this space is however upper-bounded by the number of random oracle
queries that the adversary can afford during the sequence of ≈8k slots. To formal-
ize this bound we utilize the q-bounded model of [12] that bounds the number of
queries the adversary can pose per round: in that model, the adversary is allowed
q queries per adversarial party per round (“slot” in our setting).5 Assuming that
the adversary controls t parties, we obtain a bound equal to ≈8qtk.

5.1 The Dynamic Stake Case with a Resettable Leaky Beacon

First we construct a protocol for the dynamic stake case assuming access to a
resettable leaky beacon that provides a fresh nonce for each epoch. This beacon
is leaky in the sense that it allows the adversary to obtain the nonce for the
next epoch before the epoch starts, and resettable in the sense that it allows the
adversary to reset the nonce a number of times. We model the resettable leaky
randomness beacon in functionality Fτ,r

RLB presented in Fig. 5.

Functionality Fτ,r
RLB

Fτ,r
RLB incorporates the diffuse functionality from Section 2.2 and is parameterized

by the number of initial stakeholders n and their respective stakes s1, . . . , sn, a
nonce leakage parameter τ and a number of allowed resets r. Fτ,r

RLB interacts with
stakeholders U1, . . . , Un and an adversary A as follows:

– In the first round, Fτ,r
RLB operates exactly as FINIT.

– Upon receiving (genblock req, sid, Ui) from stakeholder Ui it operates as func-
tionality FINIT on that message.

– Upon receiving (epochrnd req, sid, Ui, ej) from stakeholder Ui, if ej ≥ 2 is the
current epoch, Fτ,r

RLB sends (epochrnd, sid, ηj) to Ui.

– For every epoch ej , at slot jR−τ , Fτ,r
RLB samples the next epoch’s nonce ηj+1

$←
{0, 1}λ and leaks it by sending (epochrnd leak, sid, ej , ηj+1) to the adversary
A. Additionally, Fτ,r

RLB sets an internal reset request counter Resets = 0 and
sets P = ∅.

– Upon receiving (epochrnd reset, sid, A) from A at epoch ej , if Resets < r and
if the current slot is past slot jR − τ , Fτ,r

RLB samples a fresh nonce for the next

epoch ηj+1
$← {0, 1}λ and leaks it by sending (epochrnd leak, sid, ηj+1) to A.

Finally, Fτ,r
RLB increments Resets and adds ηj+1 to P.

– Upon receiving (epochrnd set, sid, A, η) from A at epoch ej , if the current
slot is past slot jR − τ and if η ∈ P, Fτ,r

RLB sets ηj+1 = η and sends
(epochrnd leak, sid, ηj+1) to A.

Fig. 5. Functionality Fτ,r
RLB .

5 Note that we utilize the q-bounded model only to provide a more refined analysis;
given that the total length of the execution is polynomial in λ one may also use the
total execution length as a bound.

94 B. David et al.

We now describe protocol πDPoS, which is a modified version of πSPoS that
updates its genesis block B0 (and thus the assignment of slot leader sets) for every
new epoch. The protocol also adopts an adaptation of the static maxvalidS func-
tion, defined so that it narrows selection to those chains which share common pre-
fix. Specifically, it adopts the following rule, parametrized by a prefix length k:

Function maxvalid(C,C). Returns the longest chain from C∪{C} that does
not fork from C more than k blocks (i.e., not more than k blocks of C are
discarded). If multiple exist it returns C, if this is one of them, or it returns
the one that is listed first in C.

The protocol πDPoS is described in Fig. 6 and functions in the Fτ,r
RLB-hybrid model.

Lazy players. Note that while the protocol πDPoS in Fig. 6 is stated for a
stakeholder that is permanently online, this requirement can be easily relaxed.
Namely, it is sufficient for an honest stakeholder to join at the beginning of each
epoch, determine whether she belongs to the slot leader set for any slots within
this epoch (using the Eval interface of FVRF), and then come online and act on
those slots while maintaining online presence at least every k slots. We sketch
this variant of the protocol in the full version.

We proceed to the security analysis of the full protocol in the hybrid world
where the functionality Fτ,r

RLB is available to the protocol participants. A key
challenge is that in the dynamic stake setting, the honest majority assumption
that we have in place refers to the stakeholder view of the honest stakeholders
in each slot. Already in the first few slots this assumption may diverge rapidly
from the stakeholder distribution that is built-in the genesis block.

To accommodate the issues that will arise from the movement of stake
throughout protocol execution, we recall the notion of stake shift defined in [16].

Definition 14. Consider two slots sl1, sl2 and an execution E. The stake shift
between sl1, sl2 is the maximum possible statistical distance of the two weighted-
by-stake distributions that are defined using the stake reflected in the chain C1 of
some honest stakeholder active at sl1 and the chain C2 of some honest stakeholder
active at sl2.

Finally, the security of πDPoS is stated below and proven in the full version.
We slightly abuse the notation from previous sections and denote by αH a lower
bound on the honest stake ratio throughout the whole execution.

Theorem 7 (Security of πDPoS with access to Fτ,r
RLB). Fix parameters

k,R,Δ,L ∈ N, ε, σ ∈ (0, 1) and r. Let R ≥ 16k/f be the epoch length, L the
total lifetime of the system, and

(αH − σ)(1 − f)Δ ≥ (1 + ε)/2. (11)

The protocol πDPoS, with access to Fτ,r
RLB, with τ ≤ 8k/f satisfies persistence

with parameters k and liveness with parameters u = 8k/f throughout a period
of L slots of Δ-semisynchronous execution with probability 1 − exp(ln L + Δ +
log(r) − Ω(k)) assuming that σ is the maximum stake shift over 2R slots.

Ouroboros Praos 95

Protocol πDPoS

The protocol πDPoS is run by stakeholders, initially equal to U1, . . . , Un interacting
among themselves and with ideal functionalities Fτ,r

RLB (or FINIT), FVRF, FKES, FDSIG,H
over a sequence of L = ER slots S = {sl1, . . . , slL} consisting of E epochs with R
slots each. Define T j

i � 2�VRFφf (αj
i) as the threshold for a stakeholder Ui for epoch

ej , where αj
i is the relative stake of stakeholder Ui at epoch ej , �VRF denotes the

output length of FVRF, f is the active slots coefficient and φf is the mapping from
equation (1). Then πDPoS proceeds as follows:
1. Initialization. This step is the same as Step 1 in πSPoS except that any messages

for FINIT are sent to Fτ,r
RLB if it is available instead.

2. Chain Extension. After initialization, for every slot sl ∈ S, every online
stakeholder Ui performs the following steps:
(a) This step is the same as Step 2a in πSPoS.
(b) If a new epoch ej , with j ≥ 2, has started, Ui defines Sj to be the stakeholder

distribution drawn from the most recent block with time stamp up to (j−2)R
as reflected in C and sends (epochrnd req, sid, Ui, ej) to Fτ,r

RLB, receiving
(epochrnd, sid, ηj) as answer.

(c) Ui collects all valid chains received via diffusion into a set C, pruning blocks
belonging to future slots and verifying that for every chain C′ ∈ C and every
block B′ = (st′, d′, sl′, Bπ

′, ρ′, σj′) ∈ C′ it holds that the stakeholder who
created it is in the slot leader set of slot sl′ (by parsing Bπ

′ as (Us, y
′, π′) for

some s, verifying that FVRF responds to (Verify, sid, ηj ‖ sl′ ‖ TEST, y′, π′, vvrf
s)

by (Verified, sid, ηj ‖ sl′ ‖ TEST, y′, π′, 1), and that y′ < T j
s where T j

s

is the threshold of stakeholder Us for the epoch ej to which sl′

belongs), that FVRF responds to (Verify, sid, ηj ‖ sl′ ‖ NONCE, ρ′
y, ρ′

π, vvrf
s)

(where ρ′ = (ρ′
y, ρ′

π)) by (Verified, sid, ηj ‖ sl′ ‖ NONCE, ρ′
y, ρ′

π, 1), and
that FKES responds to (Verify, sid, (st′, d′, sl′, Bπ

′, ρ′), sl′, σj′ , vkes
s) by

(Verified, sid, (st′, d′, sl′, Bπ
′, ρ′), sl′, 1). Ui computes C′ = maxvalid(C,C),

sets C′ as the new local chain and sets state st = H(head(C′)).
(d) Ui sends (EvalProve, sid, ηj ‖ sl ‖ NONCE) to FVRF, obtaining

(Evaluated, sid, ρy, ρπ), Afterwards, Ui sends (EvalProve, sid, ηj ‖ sl ‖ TEST)
to FVRF, receiving (Evaluated, sid, y, π). Ui checks whether it is in the slot
leader set of slot sl with respect to the current epoch ej by checking that
y < T j

i . If yes, it chooses the maximal sequence d′ of transactions in d such
that adding a block with d′ to C results into a valid chain, and attempts
to include d′ as follows: It generates a new block B = (st, d′, sl, Bπ, ρ, σ)
where st is its current state, Bπ = (Ui, y, π), ρ = (ρy, ρπ) and σ is
a signature obtained by sending (USign, sid, Ui, (st, d

′, sl, Bπ, ρ), sl) to
FKES and receiving (Signature, sid, (st, d′, sl, Bπ, ρ), sl, σ). Ui computes
C′ = C ‖ B, sets C′ as the new local chain and sets state st = H(head(C′)).
Finally, if Ui has generated a block in this step, it diffuses C′.

3. Signing Transactions. This step is the same as Step 3 in πSPoS.

Fig. 6. Protocol πDPoS

96 B. David et al.

Note that while Theorem 7 (and also Corollary 3 below) formulates the
bound (11) in terms of the overall upper bound on honest stake ratio αH and
maximum stake shift σ over any 2R-slots interval, one could easily prove more
fine-grained statements that would only require inequality (11) to hold for each
epoch (with respect to the honest stake ratio in that epoch, and the stake shift
occurring for that epoch’s stake distribution).

5.2 Instantiating Fτ ,r
RLB

In this section, we show how to substitute the oracle Fτ,r
RLB of protocol πDPoS

with a subprotocol πRLB that simulates Fτ,r
RLB . The resulting protocol can then

operate directly in the FINIT-hybrid model as in Sect. 3 (without resets) while
utilizing a random oracle H(·). The sub-protocol πRLB is described in Figure 7.

Protocol πRLB

Let H(·) be a random oracle. πRLB is a sub-protocol of πDPoS proceeding as follows:
– Upon receiving (epochrnd req, sid, Ui, ej) from stakeholder Ui, if ej ≥ 2

is the current epoch, it performs the following: for every block B′ =
(st′, d′, sl′, Bπ

′, ρ′, σj′) ∈ C (where C is the callee’s Ui’s internal chain) be-
longing to epoch ej−1 up to the slot with timestamp up to (j − 2)R + 16k/f ,
concatenate the values ρ′ into a value v. Compute ηj = H(ηj−1||j||v) and return
(epochrnd, sid, ηj).

Fig. 7. Protocol πRLB .

We will show next that the sub-protocol πRLB can safely substitute Fτ,r
RLB

when called from protocol πDPoS. We will perform our analysis in the q-bounded
model of [12] assuming that the adversary is capable of issuing q queries per
each round of protocol execution per corrupted party and there are t corrupted
parties. The proof is deferred to the full version.

Lemma 5. Consider the event of violating one of common prefix, chain quality,
chain growth in an execution of πDPoS using sub-protocol πRLB in the FINIT-
hybrid model with adversary A and environment Z with the same parameter
choices as Theorem 7. We construct an adversary A′ so that the corresponding
event happens with the same probability in an execution of πDPoS in the Fτ,r

RLB-
hybrid world with adversary A′ and environment Z assuming that r = 8tqk/f .

Based on the above lemma, it is now easy to revisit Theorem 7, and show
that the same result holds for r in the q-bounded model assuming r = 8tkq/f
and τ ≤ 8k/f which permits to set our epoch length R to 24k/f .

Corollary 3 (Security of πDPoS with subprotocol πRLB). Fix parameters
k,R,Δ,L ∈ N, ε, σ ∈ (0, 1). Let R = 24k/f be the epoch length, L the total
lifetime of the system, and (αH−σ)(1−f)Δ ≥ (1+ε)/2. The protocol πDPoS using

Ouroboros Praos 97

subprotocol πRLB in the FINIT-hybrid model satisfies persistence with parameters
k and liveness with parameters u = 8k/f throughout a period of L slots of Δ-
semisynchronous execution with probability 1 − exp(ln L + Δ − Ω(k − log tkq))
assuming that σ is the maximum stake shift over 2R slots.

Acknowledgements. We thank Christian Badertscher and the anonymous reviewers
for several useful suggestions improving the presentation of the paper.

Peter Gaži partly worked on this project while being a postdoc at IST Austria,
supported by the ERC consolidator grant 682815-TOCNeT. Aggelos Kiayias was partly
supported by H2020 Project #653497, PANORAMIX.

References

1. Bellare, M., Miner, S.K.: A forward-secure digital signature scheme. In: Wiener, M.
(ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 431–448. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 28

2. Bentov, I., Gabizon, A., Mizrahi, A.: Cryptocurrencies without proof of work.
CoRR, abs/1406.5694 (2014)

3. Bentov, I., Gabizon, A., Mizrahi, A.: Cryptocurrencies without proof of work. In:
Clark, J., Meiklejohn, S., Ryan, P.Y.A., Wallach, D., Brenner, M., Rohloff, K. (eds.)
FC 2016. LNCS, vol. 9604, pp. 142–157. Springer, Heidelberg (2016). https://doi.
org/10.1007/978-3-662-53357-4 10

4. Bentov, I., Lee, C., Mizrahi, A., Rosenfeld, M.: Proof of activity: extending bitcoin’s
proof of work via proof of stake. SIGMETRICS Perform. Eval. Rev. 42(3), 34–37
(2014)

5. Canetti, R.: Universally composable signature, certification, and authentication. In:
17th IEEE Computer Security Foundations Workshop, (CSFW-17 2004), p. 219.
IEEE Computer Society (2004)

6. Chase, M., Lysyanskaya, A.: Simulatable VRFs with applications to multi-theorem
NIZK. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 303–322.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74143-5 17

7. The NXT Community. Nxt whitepaper, July 2014. https://bravenewcoin.com/
assets/Whitepapers/NxtWhitepaper-v122-rev4.pdf

8. Daian, P., Pass, R., Shi, E.: Snow white: provably secure proofs of stake. Cryptology
ePrint Archive, Report 2016/919 (2016). http://eprint.iacr.org/2016/919

9. Dodis, Y., Puniya, P.: Feistel networks made public, and applications. In: Naor,
M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 534–554. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-72540-4 31

10. Dodis, Y., Yampolskiy, A.: A verifiable random function with short proofs and
keys. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 416–431. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-30580-4 28

11. Dwork, C., Lynch, N.A., Stockmeyer, L.J.: Consensus in the presence of partial
synchrony. J. ACM 35(2), 288–323 (1988)

12. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: analysis
and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9057, pp. 281–310. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46803-6 10

13. Itkis, G., Reyzin, L.: Forward-secure signatures with optimal signing and verify-
ing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 332–354. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8 20

https://doi.org/10.1007/3-540-48405-1_28
https://doi.org/10.1007/978-3-662-53357-4_10
https://doi.org/10.1007/978-3-662-53357-4_10
https://doi.org/10.1007/978-3-540-74143-5_17
https://bravenewcoin.com/assets/Whitepapers/NxtWhitepaper-v122-rev4.pdf
https://bravenewcoin.com/assets/Whitepapers/NxtWhitepaper-v122-rev4.pdf
http://eprint.iacr.org/2016/919
https://doi.org/10.1007/978-3-540-72540-4_31
https://doi.org/10.1007/978-3-540-30580-4_28
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/3-540-44647-8_20

98 B. David et al.

14. Jarecki, S., Kiayias, A., Krawczyk, H.: Round-optimal password-protected secret
sharing and T-PAKE in the password-only model. In: Sarkar, P., Iwata, T. (eds.)
ASIACRYPT 2014. LNCS, vol. 8874, pp. 233–253. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-45608-8 13

15. Kiayias, A., Panagiotakos, G.: Speed-security tradeoffs in blockchain protocols.
Cryptology ePrint Archive, Report 2015/1019 (2015). http://eprint.iacr.org/2015/
1019

16. Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: a provably secure
proof-of-stake blockchain protocol. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017.
LNCS, vol. 10401, pp. 357–388. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63688-7 12

17. King, S., Nadal, S.: PPCoin: peer-to-peer crypto-currency with proof-of-stake,
August 2012. https://peercoin.net/assets/paper/peercoin-paper.pdf

18. Lindell, A.Y.: Adaptively secure two-party computation with erasures. In: Fischlin,
M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 117–132. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-00862-7 8

19. Micali, S.: ALGORAND: the efficient and democratic ledger. CoRR,
abs/1607.01341 (2016)

20. Nakamoto, S.: The proof-of-work chain is a solution to the byzantine generals’ prob-
lem. The Cryptography Mailing List, November 2008. https://www.mail-archive.
com/cryptography@metzdowd.com/msg09997.html

21. Pass, R., Seeman, L., Shelat, A.: Analysis of the blockchain protocol in asyn-
chronous networks. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017.
LNCS, vol. 10211, pp. 643–673. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56614-6 22

22. Pass, R., Shi, E.: The sleepy model of consensus. Cryptology ePrint Archive, Report
2016/918 (2016). http://eprint.iacr.org/2016/918

23. Russell, A., Moore, C., Kiayias, A., Quader, S.: Forkable strings are rare. Cryptol-
ogy ePrint Archive, Report 2017/241 (2017). http://eprint.iacr.org/2017/241

https://doi.org/10.1007/978-3-662-45608-8_13
http://eprint.iacr.org/2015/1019
http://eprint.iacr.org/2015/1019
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-319-63688-7_12
https://peercoin.net/assets/paper/peercoin-paper.pdf
https://doi.org/10.1007/978-3-642-00862-7_8
https://www.mail-archive.com/cryptography@metzdowd.com/msg09997.html
https://www.mail-archive.com/cryptography@metzdowd.com/msg09997.html
https://doi.org/10.1007/978-3-319-56614-6_22
https://doi.org/10.1007/978-3-319-56614-6_22
http://eprint.iacr.org/2016/918
http://eprint.iacr.org/2017/241

Sustained Space Complexity

Joël Alwen1,3, Jeremiah Blocki2(B), and Krzysztof Pietrzak1

1 IST Austria, Klosterneuburg, Austria
jalwen@ist.ac.at

2 Purdue University, West Lafayette, USA
3 Wickr Inc., San Francisco, USA

Abstract. Memory-hard functions (MHF) are functions whose eval-
uation cost is dominated by memory cost. MHFs are egalitarian, in
the sense that evaluating them on dedicated hardware (like FPGAs or
ASICs) is not much cheaper than on off-the-shelf hardware (like x86
CPUs). MHFs have interesting cryptographic applications, most notably
to password hashing and securing blockchains.

Alwen and Serbinenko [STOC’15] define the cumulative memory com-
plexity (cmc) of a function as the sum (over all time-steps) of the amount
of memory required to compute the function. They advocate that a
good MHF must have high cmc. Unlike previous notions, cmc takes into
account that dedicated hardware might exploit amortization and paral-
lelism. Still, cmc has been critizised as insufficient, as it fails to capture
possible time-memory trade-offs; as memory cost doesn’t scale linearly,
functions with the same cmc could still have very different actual hard-
ware cost.

In this work we address this problem, and introduce the notion of
sustained-memory complexity, which requires that any algorithm evalu-
ating the function must use a large amount of memory for many steps.
We construct functions (in the parallel random oracle model) whose
sustained-memory complexity is almost optimal: our function can be
evaluated using n steps and O(n/ log(n)) memory, in each step making
one query to the (fixed-input length) random oracle, while any algorithm
that can make arbitrary many parallel queries to the random oracle, still
needs Ω(n/ log(n)) memory for Ω(n) steps.

As has been done for various notions (including cmc) before, we
reduce the task of constructing an MHFs with high sustained-memory
complexity to proving pebbling lower bounds on DAGs. Our main techni-
cal contribution is the construction is a family of DAGs on n nodes with
constant indegree with high “sustained-space complexity”, meaning that
any parallel black-pebbling strategy requires Ω(n/ log(n)) pebbles for at
least Ω(n) steps.

Along the way we construct a family of maximally “depth-robust”
DAGs with maximum indegree O(log n), improving upon the construc-
tion of Mahmoody et al. [ITCS’13] which had maximum indegree
O

(
log2 n · polylog(log n)

)
.

c© International Association for Cryptologic Research 2018
J. B. Nielsen and V. Rijmen (Eds.): EUROCRYPT 2018, LNCS 10821, pp. 99–130, 2018.
https://doi.org/10.1007/978-3-319-78375-8_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78375-8_4&domain=pdf

100 J. Alwen et al.

1 Introduction

In cryptographic settings we typically consider tasks which can be done efficiently
by honest parties, but are infeasible for potential adversaries. This requires an
asymmetry in the capabilities of honest and dishonest parties. An example are
trapdoor functions, where the honest party – who knows the secret trapdoor
key – can efficiently invert the function, whereas a potential adversary – who
does not have this key – cannot.

1.1 Moderately-Hard Functions

Moderately hard functions consider a setting where there’s no asymmetry, or
even worse, the adversary has more capabilities than the honest party. What
we want is that the honest party can evaluate the function with some reason-
able amount of resources, whereas the adversary should not be able to evaluate
the function at significantly lower cost. Moderately hard functions have several
interesting cryptographic applications, including securing blockchain protocols
and for password hashing.

An early proposal for password hashing is the “Password Based Key Deriva-
tion Function 2” (PBKDF2) [Kal00]. This function just iterates a cryptographic
hash function like SHA1 several times (1024 is a typical value). Unfortunately,
PBKDF2 doesn’t make for a good moderately hard function, as evaluating a cryp-
tographic hash function on dedicated hardware like ASCIs (Application Specific
Integrated Circuits) can be by several orders of magnitude cheaper in terms
of hardware and energy cost than evaluating it on a standard x86 CPU. An
economic analysis of Blocki et al. [BHZ18] suggests that an attacker will crack
almost all passwords protected by PBKDF2. There have been several suggestions
how to construct better, i.e., more “egalitarian”, moderately hard functions. We
discuss the most prominent suggestions below.

Memory-Bound Functions. Abadi et al. [ABW03] observe that the time required
to evaluate a function is dominated by the number of cache-misses, and these
slow down the computation by about the same time over different architectures.
They propose memory-bound functions, which are functions that will incur many
expensive cache-misses (assuming the cache is not too big). They propose a
construction which is not very practical as it requires a fairly large (larger than
the cache size) incompressible string as input. Their function is then basically
pointer jumping on this string. In subsequent work [DGN03] it was shown that
this string can also be locally generated from a short seed.

Bandwidth-Hard Functions. Recently Ren and Devadas [RD17] suggest the
notion of bandwidth-hard functions, which is a refinement of memory-bound
functions. A major difference being that in their model computation is not com-
pletely free, and this assumption – which of course is satisfied in practice –
allows for much more practical solutions. They also don’t argue about evalua-
tion time as [ABW03], but rather the more important energy cost; the energy

Sustained Space Complexity 101

spend for evaluating a function consists of energy required for on chip compu-
tation and memory accesses, only the latter is similar on various platforms. In
a bandwidth-hard function the memory accesses dominate the energy cost on a
standard CPU, and thus the function cannot be evaluated at much lower energy
cost on an ASICs as on a standard CPU.

Memory-Hard Functions. Whereas memory-bound and bandwidth-hard func-
tions aim at being egalitarian in terms of time and energy, memory-hard func-
tions (MHF), proposed by Percival [Per09], aim at being egalitarian in terms
of hardware cost. A memory-hard function, in his definition, is one where the
memory used by the algorithm, multiplied by the amount of time, is high, i.e., it
has high space-time (ST) complexity. Moreover, parallelism should not help to
evaluate this function at significantly lower cost by this measure. The rationale
here is that the hardware cost for evaluating an MHF is dominated by the mem-
ory cost, and as memory cost does not vary much over different architectures,
the hardware cost for evaluating MHFs is not much lower on ASICs than on
standard CPUs.

Cumulative Memory Complexity. Alwen and Serbinenko [AS15] observe that ST
complexity misses a crucial point, amortization. A function might have high ST
complexity because at some point during the evaluation the space requirement
is high, but for most of the time a small memory is sufficient. As a conse-
quence, ST complexity is not multiplicative: a function can have ST complexity
C, but evaluating X instances of the function can be done with ST complexity
much less than X · C, so the amortized ST cost is much less than C. Alwen
and Blocki [AB16,AB17] later showed that prominent MHF candidates such as
Argon2i [BDK16], winner of the Password Hashing Competition [PHC] do not
have high amortized ST complexity.

To address this issue, [AS15] put forward the notion of cumulative-memory
complexity (cmc). The cmc of a function is the sum – over all time steps –
of the memory required to compute the function by any algorithm. Unlike ST
complexity, cmc is multiplicative.

Sustained-Memory Complexity. Although cmc takes into account amortization
and parallelism, it has been observed (e.g., [RD16,Cox16]) that it still is not suf-
ficient to guarantee egalitarian hardware cost. The reason is simple: if a function
has cmc C, this could mean that the algorithm minimizing cmc uses some T time
steps and C/T memory on average, but it could also mean it uses time 100 · T
and C/100 · T memory on average. In practice this can makes a huge difference
because memory cost doesn’t scale linearly. The length of the wiring required to
access memory of size M grows like

√
M (assuming a two dimensional layout of

the circuit). This means for one thing, that – as we increase M – the latency of
accessing the memory will grow as

√
M , and moreover the space for the wiring

required to access the memory will grow like M1.5.
The exact behaviour of the hardware cost as the memory grows is not crucial

here, just the point that it’s superlinear, and cmc does not take this into account.

102 J. Alwen et al.

In this work we introduce the notion of sustained-memory complexity, which
takes this into account. Ideally, we want a function which can be evaluated by
a “näıve” sequential algorithm (the one used by the honest parties) in time T
using a memory of size S where (1) S should be close to T and (2) any parallel
algorithm evaluating the function must use memory S′ for at least T ′ steps,
where T ′ and S′ should be not much smaller than T and S, respectively.

Property (1) is required so the memory cost dominates the evaluation cost
already for small values of T . Property (2) means that even a parallel algorithm
will not be able to evaluate the function at much lower cost; any parallel algo-
rithm must make almost as many steps as the näıve algorithm during which the
required memory is almost as large as the maximum memory S used by the näıve
algorithm. So, the cost of the best parallel algorithm is similar to the cost of the
näıve sequential one, even if we don’t charge the parallel algorithm anything for
all the steps where the memory is below S′.

Ren and Devadas [RD16] previously proposed the notion of “consistent mem-
ory hardness” which requires that any sequential evaluation algorithm must
either use space S′ for at least T ′ steps, or the algorithm must run for a long
time e.g., T � n2. Our notion of sustained-memory complexity strengthens this
notion in that we consider parallel evaluation algorithms, and our guarantees are
absolute e.g., even if a parallel attacker runs for a very long time he must still
use memory S′ for at least T ′ steps. scrypt [Per09] is a good example of a MHF
that has maximal cmc Ω

(
n2

)
[ACP+17] that does not have high sustained space

complexity. In particular, for any memory parameter M and any running time
parameter n we can evaluate scrypt [Per09] in time n2/M and with maximum
space M . As was argued in [RD16] an adversary may be able to fit M = n/100
space in an ASIC, which would allow the attacker to speed up computation by
a factor of more than 100 and may explain the availability of ASICs for scrypt
despite its maximal cmc.

In this work we show that functions with asymptotically optimal sustained-
memory complexity exist in the random oracle model. We note that we must
make some idealized assumption on our building block, like being a random
oracle, as with the current state of complexity theory, we cannot even prove
superlinear circuit lower-bounds for problems in NP. For a given time T , our
function uses maximal space S ∈ Ω(T) for the näıve algorithm,1 while any
parallel algorithm must have at least T ′ ∈ Ω(T) steps during which it uses
memory S′ ∈ Ω(T/ log(T)).

Graph Labelling. The functions we construct are defined by directed acyclic
graphs (DAG). For a DAG Gn = (V,E), we order the vertices V = {v1, . . . , vn}
in some topological order (so if there’s a path from i to j then i < j), with v1
being the unique source, and vn the unique sink of the graph. The function is
now defined by Gn and the input specifies a random oracle H. The output is
the label �n of the sink, where the label of a node vi is recursively defined as
�i = H(i, �p1 , . . . , �pd

) where vp1 , . . . , vpd
are the parents of vi.

1 Recall that the näıve algorithm is sequential, so S must be in O(T) as in time T the
algorithm cannot even touch more than O(T) memory.

Sustained Space Complexity 103

Pebbling. Like many previous works, including [ABW03,RD17,AS15] discussed
above, we reduce the task of proving lower bounds – in our case, on sustained
memory complexity – for functions as just described, to proving lower bounds
on some complexity of a pebbling game played on the underlying graph.

For example, Ren and Devedas [RD17] define a cost function for the so called
reb-blue pebbling game, which then implies lower bounds on the bandwidth
hardness of the function defined over the corresponding DAG.

Most closely related to this work is [AS15], who show that a lower bound the
so called sequential (or parallel) cumulative (black) pebbling complexity (cpc) of
a DAG implies a lower bound on the sequential (or parallel) cumulative mem-
ory complexity (cmc) of the labelling function defined over this graph. Alwen
et al. [ABP17] constructed a constant indegree family of DAGs with parallel cpc
Ω(n2/ log(n)), which is optimal [AB16], and thus gives functions with optimal
cmc. More recently, Alwen et al. [ABH17] extended these ideas to give the first
practical construction of an iMHF with parallel cmc Ω(n2/ log(n)).

The black pebbling game – as considered in cpc – goes back to [HP70,Coo73].
It is defined over a DAG G = (V,E) and goes in round as follows. Initially all
nodes are empty. In every round, the player can put a pebble on a node if all its
parents contain pebbles (arbitrary many pebbles per round in the parallel game,
just one in the sequential). Pebbles can be removed at any time. The game ends
when a pebble is put on the sink. The cpc of such a game is the sum, over
all time steps, of the pebbles placed on the graph. The sequential (or parallel)
cpc of G is the cpc of the sequential (or parallel) black pebbling strategy which
minimizes this cost.

It’s not hard to see that the sequential/parallel cpc of G directly implies the
same upper bound on the sequential/parallel cmc of the graph labelling function,
as to compute the function in the sequential/parallel random oracle model, one
simply mimics the pebbling game, where putting a pebble on vertex vi with
parents vp1 , . . . , vpd

corresponds to the query �i ← H(i, �p1 , . . . , �pd
). And where

one keeps a label �j in memory, as long as vj is pebbled. If the labels �i ∈ {0, 1}w

are w bits long, a cpc of p translates to cmc of p · w.
More interestingly, the same has been shown to hold for interesting notions

also for lower bounds. In particular, the ex-post facto argument [AS15] shows
that any adversary who computes the label �n with high probability (over the
choice of the random oracle H) with cmc of m, translates into a black pebbling
strategy of the underlying graph with cpc almost m/w.

In this work we define the sustained-space complexity (ssc) of a sequen-
tial/parallel black pebbling game, and show that lower bounds on ssc translate to
lower bounds on the sustained-memory complexity (smc) of the graph labelling
function in the sequential/parallel random oracle model.

Consider a sequential (or parallel) black pebbling strategy (i.e., a valid
sequence pebbling configurations where the last configuration contains the sink)
for a DAG Gn = (V,E) on |V | = n vertices. For some space parameter s ≤ n, the
s-ssc of this strategy is the number of pebbling configurations of size at least s.
The sequential (or parallel) s-ssc of G is the strategy minimizing this value.

104 J. Alwen et al.

For example, if it’s possible to pebble G using s′ < s pebbles (using arbitrary
many steps), then its s-ssc is 0. Similarly as for csc vs cmc, an upper bound on
s-ssc implies the same upper bound for (w · s)-smc. In Sect. 5 we prove that also
lower bounds on ssc translate to lower bounds on smc.

Thus, to construct a function with high parallel smc, it suffices to construct
a family of DAGs with constant indegree and high parallel ssc. In Sect. 3 we
construct such a family {Gn}n∈N of DAGs where Gn has n vertices and has
indegree 2, where Ω(n/ log(n))-ssc is in Ω(n). This is basically the best we can
hope for, as our bound on ssc trivially implies a Ω(n2/ log(n)) bound on csc,
which is optimal for any constant indegree graph [AS15].

Data-Dependent vs Data-Independent MHFs. There are two categories of Mem-
ory Hard Functions: data-Independent Memory Hard Functions (iMHFs) and
data-dependent Memory Hard Functions (dMHFs). As the name suggests,
the algorithm to compute an iMHFs must induce a memory access pat-
tern that is independent of the potentially sensitive input (e.g., a password),
while dMHFs have no such constraint. While dMHFs (e.g., scrypt [PJ12],
Argon2d, Argon2id [BDK16]) are potentially easier to construct, iMHFs (e.g.,
Argon2i [BDK16], DRSample [ABH17]) are resistant to side channel leakage
attacks such as cache-timing. For the cumulative memory complexity metric
there is a clear gap between iMHFs and dMHFs. In particular, it is known that
scrypt has cmc at least Ω

(
n2w

)
[ACP+17], while any iMHF has cmc at most

O
(

n2w log log n
log n

)
. Interestingly, the same gap does not hold for smc. In particu-

lar, any dMHF can be computed with maximum space O (nw/ log n + n log n)
by recursively applying a result of Hopcroft et al. [HPV77]—see more details in
the full version [ABP18].

1.2 High Level Description of Our Construction and Proof

Our construction of a family {Gn}n∈N of DAGs with optimal ssc involves three
building blocks:

The first building block is a construction of Paul et al. [PTC76] of a family
of DAGs {PTCn}n∈N with indeg(PTCn) = 2 and space complexity Ω(n/ log n).
More significantly for us they proved that for any sequential pebbling of Gn there
is a time interval [i, j] during which at least Ω(n/ log n) new pebbles are placed
on sources of Gn and at least Ω(n/ log n) are always on the DAG. We extend
the proof of Paul et al. [PTC76] to show that the same holds for any parallel
pebbling of PTCn; a pebbling game first introduced in [AS15] which natural
models parallel computation. We can argue that j − i = Ω(n/ log n) for any
sequential pebbling since it takes at least this many steps to place Ω(n/ log n)
new pebbles on Gn. However, we stress that this argument does not apply to
parallel pebblings so this does not directly imply anything about sustained space
complexity for parallel pebblings.

To address this issue we introduce our second building block: a family of
{Dε

n}n∈N of extremely depth robust DAGs with indeg(Dn) ∈ O (log n)—for any

Sustained Space Complexity 105

constant ε > 0 the DAG Dε
n is (e, d)-depth robust for any e + d ≤ (1 − ε)n.

We remark that our result improves upon the construction of Mahmoody et al.
[MMV13] whose construction required indeg(Dn) ∈ O

(
log2 npolylog(log n)

)
and

may be of independent interest (e.g., our construction immediately yields a
more efficient construction of proofs of sequential work [MMV13]). Our construc-
tion of Dε

n is (essentially) the same as Erdos et al. [EGS75] albeit with much
tighter analysis. By overlaying an extremely depth-robust DAG Dε

n on top of
the sources of PTCn, the construction of Paul et al. [PTC76], we can ensure
that it takes Ω(n/ log n) steps to pebble Ω(n/ log n) sources of Gn. However,
the resulting graph would have indeg(Gn) ∈ O(log n) and would have sustained
space Ω(n/ log n) for at most O(n/ log n) steps. By contrast, we want a n-node
DAG G with indeg(G) = 2 which requires space Ω(n/ log n) for at least Ω(n)
steps2.

Our final tool is to apply the indegree reduction lemma of Alwen
et al. [ABP17] to {Dε

t}t∈N to obtain a family of DAGs {Jε
t }t∈N such that Jε

t

has indeg (Jε
t) = 2 and 2t · indeg (Dε

t) ∈ O(t log t) nodes. Each node in Dε
t is

associated with a path of length 2 · indeg(Dε
t) in Jε

t and each path p in Dε
t corre-

sponds to a path p′ of length |p′| ≥ |p| · indeg(Gt) in Jε
t . We can then overlay the

DAG Jε
t on top of the sources in PTCn where t = Ω(n/ log n) is the number of

sources in PTCn. The final DAG has size O(n) and we can then show that any
legal parallel pebbling requires Ω(n) steps with at least Ω(n/ log n) pebbles on
the DAG.

2 Preliminaries

In this section we introduce common notation, definitions and results from
other work which we will be using. In particular the following borrows heav-
ily from [ABP17,AT17].

2.1 Notation

We start with some common notation. Let N = {0, 1, 2, . . .}, N
+ = {1, 2, . . .},

and N≥c = {c, c + 1, c + 2, . . .} for c ∈ N. Further, we write [c] := {1, 2, . . . , c}
and [b, c] = {b, b + 1, . . . , c} where c ≥ b ∈ N. We denote the cardinality of a set
B by |B|.

2 We typically want a DAG G with indeg(G) = 2 because the compression function H
which is used to label the graph typically maps 2w bit inputs to w bit outputs. In this
case the labeling function would only be valid for graphs with maximum indegree
two. If we used tricks such as Merkle-Damgard to build a new compression function G
mapping δw bit inputs to w bit outputs then each pebbling step actually corresponds
to (δ − 1) calls to the compression function H which means that each black pebbling
step actually takes time (δ − 1) on a sequential computer with a single-core. As a
consequence, by considering graphs of degree δ, we pay an additional factor (δ − 1)
in the gap between the naive and adversarial evaluation of the MHF.

106 J. Alwen et al.

2.2 Graphs

The central object of interest in this work are directed acyclic graphs (DAGs).
A DAG G = (V,E) has size n = |V |. The indegree of node v ∈ V is δ = indeg(v)
if there exist δ incoming edges δ = |(V × {v}) ∩ E|. More generally, we say that
G has indegree δ = indeg(G) if the maximum indegree of any node of G is δ. If
indeg(v) = 0 then v is called a source node and if v has no outgoing edges it is
called a sink. We use parentsG(v) = {u ∈ V : (u, v) ∈ E} to denote the parents
of a node v ∈ V . In general, we use ancestorsG(v) :=

⋃
i≥1 parents

i
G(v) to denote

the set of all ancestors of v—here, parents2G(v) := parentsG (parentsG(v)) denotes
the grandparents of v and parentsi+1

G (v) := parentsG
(
parentsiG(v)

)
. When G

is clear from context we will simply write parents (ancestors). We denote the
set of all sinks of G with sinks(G) = {v ∈ V : �(v, u) ∈ E}—note that
ancestors (sinks(G)) = V . The length of a directed path p = (v1, v2, . . . , vz) in G
is the number of nodes it traverses length(p) := z. The depth d = depth(G) of
DAG G is the length of the longest directed path in G. We often consider the set
of all DAGs of fixed size n Gn := {G = (V,E) : |V | = n} and the subset of those
DAGs at most some fixed indegree Gn,δ := {G ∈ Gn : indeg(G) ≤ δ}. Finally,
we denote the graph obtained from G = (V,E) by removing nodes S ⊆ V (and
incident edges) by G−S and we denote by G[S] = G−(V \S) the graph obtained
by removing nodes V \ S (and incident edges).

The following is an important combinatorial property of a DAG for this work.

Definition 1 (Depth-Robustness). For n ∈ N and e, d ∈ [n] a DAG G =
(V,E) is (e, d)-depth-robust if

∀S ⊂ V |S| ≤ e ⇒ depth(G − S) ≥ d.

The following lemma due to Alwen et al. [ABP17] will be useful in our analy-
sis. Since our statement of the result is slightly different from [ABP17] we include
a proof in AppendixA for completeness.

Lemma 1 [ABP17, Lemma 1] (Indegree-Reduction). Let G = (V = [n], E)
be an (e, d)-depth robust DAG on n nodes and let δ = indeg(G). We can effi-
ciently construct a DAG G′ = (V ′ = [2nδ], E′) on 2nδ nodes with indeg(G′) = 2
such that for each path p = (x1, ..., xk) in G there exists a corresponding path
p′ of length ≥ kδ in G′

[⋃k
i=1[2(xi − 1)δ + 1, 2xiδ]

]
such that 2xiδ ∈ p′ for each

i ∈ [k]. In particular, G′ is (e, dδ)-depth robust.

2.3 Pebbling Models

The main computational models of interest in this work are the parallel (and
sequential) pebbling games played over a directed acyclic graph. Below we define
these models and associated notation and complexity measures. Much of the
notation is taken from [AS15,ABP17].

Sustained Space Complexity 107

Definition 2 (Parallel/Sequential Graph Pebbling). Let G = (V,E) be a
DAG and let T ⊆ V be a target set of nodes to be pebbled. A pebbling config-
uration (of G) is a subset Pi ⊆ V . A legal parallel pebbling of T is a sequence
P = (P0, . . . , Pt) of pebbling configurations of G where P0 = ∅ and which sat-
isfies conditions 1 & 2 below. A sequential pebbling additionally must satisfy
condition 3.

1. At some step every target node is pebbled (though not necessarily simultane-
ously).

∀x ∈ T ∃z ≤ t : x ∈ Pz.

2. A pebble can be added only if all its parents were pebbled at the end of the
previous step.

∀i ∈ [t] : x ∈ (Pi \ Pi−1) ⇒ parents(x) ⊆ Pi−1.

3. At most one pebble is placed per step.

∀i ∈ [t] : |Pi \ Pi−1| ≤ 1 .

We denote with PG,T and P‖
G,T the set of all legal sequential and parallel peb-

blings of G with target set T , respectively. Note that PG,T ⊆ P‖
G,T . We will

mostly be interested in the case where T = sinks(G) in which case we write PG

and P‖
G.

Definition 3 (Pebbling Complexity). The standard notions of time, space,
space-time and cumulative (pebbling) complexity (cc) of a pebbling P =
{P0, . . . , Pt} ∈ P‖

G are defined to be:

Πt(P) = t Πs(P) = max
i∈[t]

|Pi| Πst(P) = Πt(P)·Πs(P) Πcc(P) =
∑

i∈[t]

|Pi| .

For α ∈ {s, t, st, cc} and a target set T ⊆ V , the sequential and parallel pebbling
complexities of G are defined as

Πα(G,T) = min
P∈PG,T

Πα(P) and Π‖
α(G,T) = min

P∈P‖
G,T

Πα(P) .

When T = sinks(G) we simplify notation and write Πα(G) and Π
‖
α(G).

The following defines a sequential pebbling obtained naturally from a parallel
one by adding each new pebble on at a time.

Definition 4. Given a DAG G and P = (P0, . . . , Pt) ∈ P‖
G the sequential trans-

form seq(P) = P ′ ∈ ΠG is defined as follows: Let difference Dj = Pi \ Pi−1

and let ai = |Pi \ Pi−1| be the number of new pebbles placed on Gn at time
i. Finally, let Aj =

∑j
i=1 ai (A0 = 0) and let Dj [k] denote the kth ele-

ment of Dj (according to some fixed ordering of the nodes). We can construct
P ′ =

(
P ′
1, . . . , P

′
At

) ∈ P(Gn) as follows: (1) P ′
Ai

= Pi for all i ∈ [0, t], and (2)
for k ∈ [1, ai+1] let P ′

Ai+k = P ′
Ai+k−1 ∪ Dj [k].

108 J. Alwen et al.

If easily follows from the definition that the parallel and sequential space com-
plexities differ by at most a multiplicative factor of 2.

Lemma 2. For any DAG G and P ∈ P‖
G it holds that seq(P) ∈ PG and

Πs(seq(P)) ≤ 2 ∗ Π
‖
s (P). In particular Πs(G)/2 ≤ Π

‖
s (G).

Proof. Let P ∈ P‖
G and P ′ = seq(P). Suppose P ′ is not a legal pebbling because

v ∈ V was illegally pebbled in P ′
Ai+k. If k = 0 then parentsG(v) �⊆ P ′

Ai−1+ai−1

which implies that parentsG(v) �⊆ Pi−1 since Pi−1 ⊆ P ′
Ai−1+ai−1. Moreover v ∈ Pi

so this would mean that also P illegally pebbles v at time i. If instead, k > 1 then
v ∈ Pi+1 but since parentsG(v) �⊆ P ′

Ai+k−1 it must be that parentsG(v) �⊆ Pi so P
must have pebbled v illegally at time i+1. Either way we reach a contradiction so
P ′ must be a legal pebbling of G. To see that P ′ is complete note that P0 = P ′

A0
.

Moreover for any sink u ∈ V of G there exists time i ∈ [0, t] with u ∈ Pi and so
u ∈ P ′

Ai
. Together this implies P ′ ∈ PG.

Finally, it follows by inspection that for all i ≥ 0 we have |P ′
Ai

| = |Pi|
and for all 0 < k < ai we have |P ′

Ai+k| ≤ |Pi| + |Pi+1| which implies that

Πs(P ′) ≤ 2 ∗ Π
‖
s (P).

New to this work is the following notion of sustained-space complexity.

Definition 5 (Sustained Space Complexity). For s ∈ N the s-sustained-
space (s-ss) complexity of a pebbling P = {P0, . . . , Pt} ∈ P‖

G is:

Πss(P, s) = |{i ∈ [t] : |Pi| ≥ s}|.
More generally, the sequential and parallel s-sustained space complexities of G
are defined as

Πss(G,T, s) = min
P∈PG,T

Πss(P, s) and Π‖
ss(G,T, s) = min

P∈P‖
G,T

Πss(P, s) .

As before, when T = sinks(G) we simplify notation and write Πss(G, s) and
Π

‖
ss(G, s).

Remark 1 (On Amortization). An astute reader may observe that Π
‖
ss is not

amortizable. In particular, if we let G
⊗

m denotes the graph which consists of m

independent copies of G then we may have Π
‖
ss

(
G

⊗
m, s

) � mΠ
‖
ss(G, s). How-

ever, we observe that the issue can be easily corrected by defining the amortized
s-sustained-space complexity of a pebbling P = {P0, . . . , Pt} ∈ P‖

G:

Πam,ss(P, s) =
t∑

i=1

⌊ |Pi|
s

⌋
.

In this case we have Π
‖
am,ss

(
G

⊗
m, s

)
= mΠ

‖
am,ss(G, s) where Π

‖
am,ss(G, s) .=

min
P∈P‖

G,sinks(G)
Πam,ss(P, s). We remark that a lower bound on s-sustained-space

complexity is a strictly stronger guarantee than an equivalent lower bound for
amortized s-sustained-space since Π

‖
ss(G, s) ≤ Π

‖
am,ss(G, s). In particular, all of

our lower bounds for Π
‖
ss also hold with respect to Π

‖
am,ss.

Sustained Space Complexity 109

The following shows that the indegree of any graph can be reduced down to 2
without loosing too much in the parallel sustained space complexity. The tech-
nique is similar the indegree reduction for cumulative complexity in [AS15]. The
proof is in AppendixA. While we include the lemma for completeness we stress
that, for our specific constructions, we will use more direct approach to lower
bound Π

‖
ss to avoid the δ factor reduction in space.

Lemma 3 (Indegree Reduction for Parallel Sustained Space).

∀G ∈ Gn,δ, ∃H ∈ Gn′,2 such that ∀s ≥ 0 Π
‖
ss(H, s/(δ − 1)) = Π

‖
ss(G, s) where n′ ∈ [n, δn].

3 A Graph with Optimal Sustained Space Complexity

In this section we construct and analyse a graph with very high sustained space
complexity by modifying the graph of [PTC76] using the graph of [EGS75]. Theo-
rem 1, our main theorem, states that there is a family of constant indegree DAGs
{Gn}∞

n=1 with maximum possible sustained space Πss (Gn, Ω(n/ log n)) = Ω(n).

Theorem 1. For some constants c4, c5 > 0 there is a family of DAGs {Gn}∞
n=1

with indeg (Gn) = 2, O(n) nodes and Π
‖
ss (Gn, c4n/ log n) ≥ c5n.

Remark 2. We observe that Theorem 1 is essentially optimal in an asymptotic
sense. Hopcroft et al. [HPV77] showed that any DAG Gn with indeg(Gn) ∈
O(1) can be pebbled with space at most Π

‖
s (Gn) ∈ O (n/ log n). Thus,

Πss (Gn, sn = ω (n/ log n)) = 0 for any DAG Gn with indeg(Gn) ∈ O(1) since
sn > Πs(Gn).3

We now overview the key technical ingredients in the proof of Theorem1.

Technical Ingredient 1: High Space Complexity DAGs. The first
key building blocks is a construction of Paul et al. [PTC76] of a family of
n node DAGs {PTCn}∞

n=1 with space complexity Πs(PTCn) ∈ Ω(n/ log n)
and indeg(PTCn) = 2. Lemma 2 implies that Π

‖
s (PTCn) ∈ Ω(n/ log n) since

Πs(PTCn)/2 ≤ Π
‖
s (PTCn). However, we stress that this does not imply that

the sustained space complexity of PTCn is large. In fact, by inspection one
can easily verify that depth(PTCn) ∈ O(n/ log n) so we have Πss(PTCn, s) ∈
O(n/ log n) for any space parameter s > 0. Nevertheless, one of the core lemmas
from [PTC76] will be very useful in our proofs. In particular, PTCn contains

3 Furthermore, even if we restrict our attention to pebblings which finish in time

O(n) we still have Πss (Gn, f(n)) ≤ g(n) whenever f(n)g(n) ∈ ω
(

n2 log log n
log n

)
and

indeg(Gn) ∈ O(1). In particular, Alwen and Blocki [AB16] showed that for any Gn

with indeg(Gn) ∈ O(1) then there is a pebbling P = (P0, . . . , Pn) ∈ Π
‖
Gn

with

Π
‖
cc(P) ∈ O

(
n2 log log n

log n

)
. By contrast, the generic pebbling [HPV77] of any DAG

with indeg ∈ O(1) in space O (n/ log n) can take exponentially long.

110 J. Alwen et al.

O(n/ log n) source nodes (as illustrated in Fig. 1a) and [PTC76] proved that
for any sequential pebbling P = (P0, . . . , Pt) ∈ ΠPTCn

we can find an inter-
val [i, j] ⊆ [t] during which Ω(n/ log n) sources are (re)pebbled and at least
Ω(n/ log n) pebbles are always on the graph.

As Theorem 2 states that the same result holds for all parallel pebblings
P ∈ Π

‖
PTCn

. Since Paul et al. [PTC76] technically only considered sequential
black pebblings we include the straightforward proof of Theorem2 in the full
version of this paper for completeness [ABP18]. Briefly, to prove Theorem2 we
simply consider the sequential transform seq(P) = (Q0, . . . , Qt′) ∈ ΠPTCn

of the
parallel pebbling P . Since seq(P) is sequential we can find an interval [i′, j′] ⊆ [t′]
during which Ω(n/ log n) sources are (re)pebbled and at least Ω(n/ log n) pebbles
are always on the graph Gn. We can then translate [i′, j′] to a corresponding
interval [i, j] ⊆ [t] during which the same properties hold for P .

Theorem 2. There is a family of DAGs {PTCn = (Vn = [n], En)}∞
n=1 with

indeg (PTCn) = 2 with the property that for some positive constants c1, c2, c3 > 0
such that for each n ≥ 1 the set S = {v ∈ [n] : parents(v) = ∅} of sources of
PTCn has size |S| ≤ c1n/ log n and for any legal pebbling P = (P1, . . . , Pt) ∈
P‖
PTCn

there is an interval [i, j] ⊆ [t] such that (1)
∣
∣
∣S ∩ ⋃j

k=i Pk \ Pi−1

∣
∣
∣ ≥

c2n/ log n i.e., at least c2n/ log n nodes in S are (re)pebbled during this interval,
and (2) ∀k ∈ [i, j], |Pk| ≥ c3n/ log n i.e., at least c3n/ log n pebbles are always
on the graph.

One of the key remaining challenges to establishing high sustained space com-
plexity is that the interval [i, j] we obtain from Theorem 2 might be very short
for parallel black pebblings. For sequential pebblings it would take Ω(n/ log n)
steps to (re)pebble Ω(n/ log n) source nodes since we can add at most one new
pebble in each round. However, for parallel pebblings we cannot rule out the
possibility that all Ω(n/ log n) sources were pebbled in a single step!

A first attempt at a fix is to modify PTCn by overlaying a path of length
Ω(n) on top of these Ω(n/ log n) source nodes to ensure that the length of the
interval j − i + 1 is sufficiently large. The hope is that it will take now at least
Ω(n) steps to (rep)pebble any subset of Ω(n/ log n) of the original sources since
these nodes will be connected by a path of length Ω(n). However, we do not
know what the pebbling configuration looks like at time i − 1. In particular, if
Pi−1 contained just

√
n of the nodes on this path then the it would be possible

to (re)pebble all nodes on the path in at most O (
√

n) steps. This motivates our
second technical ingredient: extremely depth-robust graphs.

Technical Ingredient 2: Extremely Depth-Robust Graphs. Our second
ingredient is a family {Dε

n}∞
n=1 of highly depth-robust DAGs with n nodes and

indeg(Dn) ∈ O(log n). In particular, Dε
n is (e, d)-depth robust for any e + d ≤

n(1 − ε). We show how to construct such a family {Dε
n}∞

n=1 for any constant
ε > 0 in Sect. 4. Assuming for now that such a family exists we can overlay Dm

over the m = mn ≤ c1n/ log n sources of PTCn. Since Dε
m is highly depth-robust

Sustained Space Complexity 111

it will take at least c2n/ log n− εm ≥ c2n/ log n− εc1n/ log n ∈ Ω(n/ log n) steps
to pebble these c2n/ log n sources during the interval [i, j].

Overlaying Dε
m over the m ∈ O(n/ log(n)) sources of PTCn yields a DAG

G with O(n) nodes, indeg(G) ∈ O(log n) and Π
‖
ss (G, c4n/ log n) ≥ c5n/ log n

for some constants c4, c5 > 0. While this is progress it is still a weaker result
than Theorem 1 which promised a DAG G with O(n) nodes, indeg(G) = 2 and
Π

‖
ss (G, c4n/ log n) ≥ c5n for some constants c4, c5 > 0. Thus, we need to intro-

duce a third technical ingredient: indegree reduction.

Technical Ingredient 3: Indegree Reduction. To ensure indeg(Gn) = 2 we
instead apply indegree reduction algorithm from Lemma1 to Dε

m to obtain a
graph Jε

m with 2mδ ∈ O(n) nodes [2δm] and indeg(Jε
m) = 2 before overlaying—

here δ = indeg(Dε
m). This process is illustrated in Fig. 1b. We then obtain our

final construction Gn, illustrated in Fig. 1, by associating the m sources of PTCn

with the nodes {2δv : v ∈ [m]} in Jε
m, where ε > 0 is fixed to be some suitably

small constant.
It is straightforward to show that Jε

m is (e, δd)-depth robust for any e + d ≤
(1 − ε)m. Thus, it would be tempting that it will take Ω(n) steps to (re)pebble
c2n/ log n sources during the interval [i, j] we obtain from Theorem 2. However,
we still run into the same problem: In particular, suppose that at some point in
time k we can find a set T ⊆ {2vδ : v ∈ [m]} \ Pk with |T | ≥ c2n/ log n (e.g., a
set of sources in PTCn) such that the longest path running through T in Jε

m −Pk

has length less than c5n. If the interval [i, j] starts at time i = k + 1 then we
cannot ensure that it will take time ≥ c5n to (re)pebble these c2n/ log n source
nodes.

Claim 1 addresses this challenge directly. If such a problematic time k exists
then Claim 1 implies that we must have Π

‖
ss (P,Ω(n/ log n)) ∈ Ω(n). At a high

level the argument proceeds as follows: suppose that we find such a problem
time k along with a set T ⊆ {2vδ : v ∈ [m]} \ Pk with |T | ≥ c2n/ log n such that
depth (Jε

m[T]) ≤ c5n. Then for any time r ∈ [k − c5n, k] we know that the length
of the longest path running through T in Jε

m−Pr is at most depth (Jε
m[T] − Pr) ≤

c5n+(k−r) ≤ 2c5n since the depth can decrease by at most one each round. We
can then use the extreme depth-robustness of Dε

m and the construction of Jε
m to

argue that |Pr| = Ω(n/ log n) for each r ∈ [k−c5n, k]. Finally, if no such problem
time k exists then the interval [i, j] we obtain from Theorem 2 must have length
at least i − j ≥ c5n. In either case we have Π

‖
ss (P,Ω(n/ log n))) ≥ Ω(n).

Proof of Theorem 1. We begin with the family of DAGs {PTCn}∞
n=1 from

Theorem 2. Fixing PTCn = ([n], En) we let S = {v ∈ [n] : parents(v) = ∅} ⊆ V
denote the sources of this graph and we let c1, c2, c3 > 0 be the constants from
Theorem 2. Let ε ≤ c2/(4c1). By Theorem 3 we can find a depth-robust DAG
Dε

|S| on |S| nodes which is (a|S|, b|S|)-DR for any a + b ≤ 1 − ε with indegree
c′ log n ≤ δ = indeg(D) ≤ c′′ log(n) for some constants c′, c′′. We let Jε

|S| denote
the indegree reduced version of Dε

|S| from Lemma 1 with 2|S|δ ∈ O(n) nodes and
indeg = 2. To obtain our DAG Gn from Jε

n and PTCn we associate each of the

112 J. Alwen et al.

(a) PTCn: a superconcentrator [PTC76] with m = Ω(n/ log n) sources and
sinks and maximum space complexity Π

‖
s (PTCn) ∈ Ω

(
n

log n

)
.

(b) Indegree Recution transforms ε-extreme depth robust graph Dε
m with

m nodes and indeg (Dε
m) ∈ O(logn) into indegree reduced graph Jε

m with
2indeg (Dε

m) × m ∈ O(n) nodes and indeg (Jε
m) = 2.

(c) Final Construction Gn. Overlay m nodes Jε
m with m sources in PTCn.

Fig. 1. Building Gn with Π
‖
ss

(
Gn, cn

log n

)
∈ Ω(n) for some constant c > 0.

Sustained Space Complexity 113

S nodes 2vδ in Jε
n with one of the nodes in S. We observe that Gn has at most

2|S|δ + n ∈ O(n) nodes and that indeg(G) ≤ max {indeg(PTCn), indeg (Jε
n)} = 2

since we do not increase the indegree of any node in Jε
n when overlaying and

in Gn do not increase the indegree of any nodes other than the sources S from
PTCn (these overlayed nodes have indegree at most 2 in Jε

n).
Let P = (P0, . . . , Pt) ∈ P‖

G be given and observe that by restricting P ′
i =

Pi ∩ V (PTCn) ⊆ Pi we have a legal pebbling P ′ = (P ′
0, . . . , P

′
t) ∈ P‖

PTCn
for

PTCn. Thus, by Theorem 2 we can find an interval [i, j] during which at least
c2n/ log n nodes in S are (re)pebbled and ∀k ∈ [i, j] we have |Pk| ≥ c3n/ log n.
We use T = S ∩ ⋃j

x=i Px − Pi−1 to denote the source nodes of PTCn that are
(re)pebbled during the interval [i, j]. We now set c4 = c2/4 and c5 = c2c

′/4 and
consider two cases:

Case 1: We have depth (ancestorsGn−Pi
(T)) ≥ |T |δ/4. In other words at time i

there is an unpebbled path of length ≥ |T |δ/4 to some node in T . In this case, it
will take at least j−i ≥ |T |δ/4 steps to pebble T so we will have at least |T |δ/4 ∈
Ω(n) steps with at least c3n/ log n pebbles. Because c5 = c2c

′/4 it follows that
|T |δ/4 ≥ c2c

′n ≥ c5n. Finally, since c4 ≤ c2 we have Πss (P, c4n/ log n) ≥ c5n.

Case 2: We have depth (ancestorsGn−Pi
(T)) < |T |δ/4. In other words at

time i there is no unpebbled path of length ≥ |T |δ/4 to any node in T .
Now Claim 1 directly implies that Πss (P, |T | − ε|S| − |T |/2) ≥ δ|T |/4. This in
turn implies that Πss (P, (c2/2)n/(log n) − ε|S|) ≥ δc2n/(2 log n). We observe
that δc2n/(2 log n) ≥ c5n since, we have c5 = c2c

′/4. We also observe
that (c2/2)n/ log n − ε|S| ≥ (c2/2 − εc1)n/ log n ≥ (c2/2 − c2/4)n/ log n ≥
c2n/(4 log n) = c4n since |S| ≤ c1n/ log n, ε ≤ c2/(4c1) and c4 = c2/4.
Thus, in this case we also have Πss (P, c4n/ log n) ≥ c5n, which implies that
Π

‖
ss (Gn, c4n/ log n) ≥ c5n. �

Claim 1. Let Dε
n be an DAG with nodes V (Dε

n) = [n], indegree δ = indeg (Dε
n)

that is (e, d)-depth robust for all e, d > 0 such that e + d ≤ (1 − ε)n, let
Jε

n be the indegree reduced version of Dε
n from Lemma1 with 2δ nodes and

indeg (Jε
n) = 2, let T ⊆ [n] and let P = (P1, . . . , Pt) ∈ P‖

Jε
n,∅ be a (pos-

sibly incomplete) pebbling of Jε
n. Suppose that during some round i we have

depth
(
ancestorsJε

n−Pi

(⋃
v∈T {2δv})) ≤ cδ|T | for some constant 0 < c < 1

2 . Then
Πss (P, |T | − εn − 2c|T |) ≥ cδ|T |.
Proof of Claim 1. For each time step r we let Hr = ancestorsJε

n−Pr

(⋃
v∈T {2δv})

and let k < i be the last pebbling step before i during which depth(Gk) ≥ 2c|T |δ.
Observe that k − i ≥ depth(Hk) − depth(Hi) ≥ cnδ since we can decrease the
length of any unpebbled path by at most one in each pebbling round. We also
observe that depth(Hk) = c|T |δ since depth(Hk) − 1 ≤ depth(Hk+1) < 2c|T |δ.

Let r ∈ [k, i] be given then, by definition of k, we have depth (Hr) ≤ 2c|T |δ.
Let P ′

r = {v ∈ V (Dε
n) : Pr ∩ [2δ(v − 1) + 1, 2δv] �= ∅} be the set of nodes

v ∈ [n] = V (Dε
n) such that the corresponding path 2δ(v − 1) + 1, . . . , 2δv in Jε

n

contains at least one pebble at time r. By depth-robustness of Dε
n we have

depth (Dε
n[T] − P ′

r) ≥ |T | − |P ′
r| − εn . (1)

114 J. Alwen et al.

On the other hand, exploiting the properties of the indegree reduction from
Lemma 1, we have

depth (Dε
n[T] − P ′

r) δ ≤ depth (Hr) ≤ 2c|T |δ . (2)

Combining Eqs. 1 and 2 we have

|T | − |P ′
r| − εn ≤ depth (Dε

n[T] − P ′
r) ≤ 2c|T | .

It immediately follows that |Pr| ≥ |P ′
r| ≥ |T | − 2c|T | − εn for each r ∈ [k, i] and,

therefore, Π
‖
ss (P, |T | − εn − 2c|T |) ≥ cδ|T |. �

Remark 3 (On the Explicitness of Our Construction). Our construction of a fam-
ily of DAGs with high sustained space complexity is explicit in the sense that
there is a probabilistic polynomial time algorithm which, except with very small
probability, outputs an n node DAG G that has high sustained space complexity.
In particular, Theorem1 relies on an explicit construction of [PTC76], and the
extreme depth-robust DAGs from Theorem 3. The construction of [PTC76] in
turn uses an object called superconcentrators. Since we have explicit construc-
tions of superconcentrators [GG81] the construction of [PTC76] can be made
explicit. While the proof of the existence of a family of extremely depth-robust
DAGs is not explicit the proof uses a probabilistic argument and can be adapted
to obtain a probabilistic polynomial time which, except with very small prob-
ability, outputs an n node DAG G that is extremely depth-robust. In practice,
however it is also desirable to ensure that there is a local algorithm which, on
input v, computes the set parents(v) in time polylog(n). It is an open question
whether any DAG G with high sustained space complexity allows for highly
efficient computation of the set parents(v).

4 Better Depth-Robustness

In this section we improve on the original analysis of Erdos et al. [EGS75], who
constructed a family of DAGs {Gn}∞

n=1 with indeg(Gn) ∈ O(log n) such that each
DAG Gn is (e = Ω(n), d = Ω(n))-depth robust. Such a DAG Gn is not sufficient
for us since we require that the subgraph Gn[T] is also highly depth robust for
any sufficiently large subset T ⊆ Vn of nodes e.g., for any T such that |T | ≥
n/1000. For any fixed constant ε > 0 [MMV13] constructs a family of DAGs
{Gε

n}∞
n=1 which is (αn, βn)-depth robust for any positive constants α, β such

that α+β ≤ 1−ε but their construction has indegree O
(
log2 n · polylog (log n)

)
.

By contrast, our results in the previous section assumed the existence of such a
family of DAGs with indeg (Gε

n) ∈ O(log n).
In fact our family of DAGs is essentially the same as [EGS75] with one minor

modification to make the construction for all n > 0. Our contribution in this
section is an improved analysis which shows that the family of DAGs {Gε

n}∞
n=1

with indegree O (log n) is (αn, βn)-depth robust for any positive constants α, β
such that α + β ≤ 1 − ε.

Sustained Space Complexity 115

We remark that if we allow our family of DAGs to have indeg (Gε
n) ∈

O(log n log∗ n) then we can eliminate the dependence on ε entirely. In particular,
we can construct a family of DAGs {Gn}∞

n=1 with indeg(Gn) = O(log n log∗ n)
such that for any positive constants such that α+β < 1 the DAG Gn is (αn, βn)-
depth robust for all suitably large n.

Theorem 3. Fix ε > 0 then there exists a family of DAGs {Gε
n}∞

n=1 with
indeg (Gε

n) = O(log n) that is (αn, βn)-depth robust for any constants α, β such
that α + β < 1 − ε.

The proof of Theorem 3 relies on Lemmas 4, 5 and 6. We say that G is a
δ-local expander if for every node x ∈ [n] and every r ≤ x, n − x and every
pair A ⊆ Ir(x) .= {x − r − 1, . . . , x}, B ⊆ I∗

r (x) .= {x + 1, . . . , x + r} with size
|A| , |B| ≥ δr we have A × B ∩ E �= ∅ i.e., there is a directed edge from some
node in A to some node in B. Lemma 4 says that for any constant δ > 0 we can
construct a family of DAGs {LEδ

n}∞
n=1 with indeg = O(log n) such that each LEδ

n

is a δ-local expander. Lemma 4 essentially restates [EGS75, Claim 1] except that
we require that LEn is a δ-local expander for all n > 0 instead of for n sufficiently
large. Since we require a (very) minor modification to achieve δ-local expansion
for all n > 0 we include the proof of Lemma 4 in the full version [ABP18] for
completeness.

Lemma 4 [EGS75]. Let δ > 0 be a fixed constant then there is a family of DAGs
{LEδ

n}∞
n=1 with indeg ∈ O(log n) such that each LEδ

n is a δ-local expander.

While Lemma 4 essentially restates [EGS75, Claim 1], Lemmas 5 and 6
improve upon the analysis of [EGS75]. We say that a node x ∈ [n] is γ-good
under a subset S ⊆ [n] if for all r > 0 we have |Ir(x)\S| ≥ γ |Ir(x)| and
|I∗

r (x)\S| ≥ γ |I∗
r (x)|. Lemma 5 is similar to [EGS75, Claim 3], which also states

that all γ-good nodes are connected by a directed path in LEn − S. However,
we stress that the argument of [EGS75, Claim 3] requires that γ ≥ 0.5 while
Lemma 5 has no such restriction. This is crucial to prove Theorem3 where we
will select γ to be very small.

Lemma 5. Let G = (V = [n], E) be a δ-local expander and let x < y ∈ [n] both
be γ-good under S ⊆ [n] then if δ < min{γ/2, 1/4} then there is a directed path
from node x to node y in G − S.

Lemma 6 shows that almost all of the remaining nodes in LEδ
n − S will be

γ-good. It immediately follows that LEn − S contains a directed path running
through almost all of the nodes [n] \ S. While Lemma 6 may appear similar to
[EGS75, Claim 2] at first glance, we again stress one crucial difference. The proof
of [EGS75, Claim 2] is only sufficient to show that at least n − 2|S|/(1 − γ) ≥
n − 2|S| nodes are γ-good. At best this would allow us to conclude that LEδ

n is
(e, n− 2e)-depth robust. Together Lemmas 5 and 6 imply that if LEδ

n is a δ-local
expander (δ < min{γ/2, 1/4}) then LEδ

n is
(
e, n − e 1+γ

1−γ

)
-depth robust.

Lemma 6. For any DAG G = ([n], E) and any subset S ⊆ [n] of nodes at least
n − |S| 1+γ

1−γ of the remaining nodes in G are γ-good with respect to S.

116 J. Alwen et al.

Proof of Theorem 3. By Lemma 4, for any δ > 0, there is a family of DAGs
{LEδ

n}∞
n=1 with indeg

(
LEδ

n

)
∈ O(log n) such that for each n ≥ 1 the DAG LEδ

n

is a δ-local expander. Given ε ∈ (0, 1] we will set Gε
n = LEδ

n with δ = ε/10 < 1/4
so that Gε

n is a (ε/10)-local expander. We also set γ = ε/4 > 2δ. Let S ⊆ Vn

of size |S| ≤ e be given. Then by Lemma 6 at least n − e 1+γ
1−γ of the nodes are

γ-good and by Lemma 5 there is a path connecting all γ-good nodes in Gε
n − S.

Thus, the DAG Gε
n is

(
e, n − e 1+γ

1−γ

)
-depth robust for any e ≤ n. In particular,

if α = e/n and β = 1 − α 1+γ
1−γ then the graph is (αn, βn)-depth robust. Finally

we verify that

n − αn − βn = −e + eα
1 + γ

1 − γ
= e

2γ

1 − γ
≤ n

ε

2 − ε/2
≤ εn . �

The proof of Lemma 5 follows by induction on the distance |y − x| between
γ-good nodes x and y. Our proof extends a similar argument from [EGS75] with
one important difference. [EGS75] argued inductively that for each good node
x and for each r > 0 over half of the nodes in I∗

r (x) are reachable from x and
that x can be reached from over half of the nodes in Ir(x)—this implies that
y is reachable from x since there is at least one node z ∈ I∗

|y−x|(x) = I|y−x|(y)
such that z can be reached from x and y can be reached from z in G − S.
Unfortunately, this argument inherently requires that γ ≥ 0.5 since otherwise
we may have at least |I∗

r (x) ∩ S| ≥ (1 − γ)r nodes in the interval Ir(x) that
are not reachable from x. To get around this limitation we instead show, see
Claim 2, that more than half of the nodes in the set I∗

r (x)\S are reachable from
x and that more than half of the nodes in the set Ir(x) \ S are reachable from
x—this still suffices to show that x and y are connected since by the pigeonhole
principle there is at least one node z ∈ I∗

|y−x|(x) \ S = I|y−x|(y) \ S such that z
can be reached from x and y can be reached from z in G − S.

Claim 2. Let G = (V = [n], E) be a δ-local expander, let x ∈ [n] be a γ-good
node under S ⊆ [n] and let r > 0 be given. If δ < γ/2 then all but 2δr of the
nodes in I∗

r (x)\S are reachable from x in G − S. Similarly, x can be reached
from all but 2δr of the nodes in Ir(x)\S. In particular, if δ < 1/4 then more
than half of the nodes in I∗

r (x)\S (resp. in Ir(x)\S) are reachable from x (resp.
x is reachable from) in G − S.

Proof of Claim 2. We prove by induction that (1) if r = 2kδ−1 for some integer
k then all but δr of the nodes in I∗

r (x)\S are reachable from x and, (2) if
2k−1 < r < 2kδ−1 then all but 2δr of the nodes in I∗

r (x)\S are reachable from
x. For the base cases we observe that if r ≤ δ−1 then, by definition of a δ-local
expander, x is directly connected to all nodes in I∗

r (x) so all nodes in Ir(x)\S
are reachable.

Now suppose that Claims (1) and (2) holds for each r′ ≤ r = 2kδ−1. Then
we show that the claim holds for each r < r′ ≤ 2r = 2k+1δ−1. In particular,
let A ⊆ I∗

r (x)\S denote the set of nodes in I∗
r (x)\S that are reachable from x

via a directed path in G − S and let B ⊆ I∗
r′−r(x + r)\S be the set of all nodes

in I∗
r′−r(x + r)\S that are not reachable from x in G − S. Clearly, there are no

Sustained Space Complexity 117

directed edges from A to B in G and by induction we have |A| ≥ |I∗
r (x)\S|−δr ≥

r(γ − δ) > δr. Thus, by δ-local expansion |B| ≤ rδ. Since, |I∗
r (x)\(S ∪ A)| ≤ δr

at most |I∗
r′(x)\(S ∪ A)| ≤ |B| + δr ≤ 2δr ≤ 2δr′ nodes in I∗

2r(x)\S are not
reachable from x in G − S. Since, r′ > r the number of unreachable nodes is at
most 2δr ≤ 2δr′, and if r′ = 2r then the number of unreachable nodes is at most
2δr = δr′.

A similar argument shows that x can be reached from all but 2δr of the nodes
in Ir(x)\S in the graph G − S. �
Proof of Lemma 5. By Claim 2 for each r we can reach |I∗

r (x)\S| − δr =
|I∗

r (x)\S|
(
1 − δ

|I∗
r (x)|

|I∗
r (x)\S|

)
≥ |I∗

r (x)\S|
(
1 − δ

γ

)
> 1

2 |I∗
r (x)\S| of the nodes in

I∗
r (x)\S from the node x in G − S. Similarly, we can reach y from more than
1
2 |Ir(x)\S| of the nodes in Ir(y)\S. Thus, by the pigeonhole principle we can
find at least one node z ∈ I∗

|y−x|(x)\S = I|y−x|(y)\S such that z can be reached
from x and y can be reached from z in G − S. �

Lemma 6 shows that almost all of the nodes in G − S are γ-good. The proof
is again similar in spirit to an argument of [EGS75]. In particular, [EGS75]
constructed a superset T of the set of all γ-bad nodes and then bound the
size of this superset T . However, they only prove that BAD ⊂ T ⊆ F ∪ B
where |F |, |B| ≤ |S|/(1 − γ). Thus, we have |BAD| ≤ |T | ≤ 2|S|/(1 − γ).
Unfortunately, this bound is not sufficient for our purposes. In particular, if
|S| = n/2 then this bound does not rule out the possibility that |BAD| = n so
that none of the remaining nodes are good. Instead of bounding the size of the
superset T directly we instead bound the size of the set T \ S observing that
|BAD| ≤ |T | ≤ |S|+ |T \S|. In particular, we can show that |T \S| ≤ 2γ|S|

1−γ . We

then have |GOOD| ≥ n − |T | = n − |S| − |T\S| ≥ n − |S| − 2γ|S|
1−γ .

Proof of Lemma 6. We say that a γ-bad node x has a forward (resp. backwards)
witness r if |I∗

r (x)\S| > γr. Let x∗
1, r

∗
1 be the lexicographically first γ-bad node

with a forward witness. Once x∗
1, r

∗
1 , . . . , x

∗
k, r∗

k have been define let x∗
k+1 be the

lexicographically least γ-bad node such that x∗
k+1 > x∗

k + r∗
k and x∗

k+1 has a
forward witness r∗

k+1 (if such a node exists). Let x∗
1, r

∗
1 , . . . , x

∗
k, r∗

k∗ denote the
complete sequence, and similarly define a maximal sequence x1, r1, . . . , xk, rk of
γ-bad nodes with backwards witnesses such that xi − ri > xi+1 for each i.

Let

F =
k∗
⋃

i=1

I∗
r∗

i
(x∗

i) , and B =
k⋃

i=1

Iri
(xi)

Note that for each i ≤ k∗ we have
∣
∣
∣I∗

r∗
i
(x∗

i) \S
∣
∣
∣ ≤ γr. Similarly, for each i ≤ k we

have |Iri
(xi) \S| ≤ γr. Because the sets I∗

r∗
i
(x∗

i) are all disjoint (by construction)
we have

|F\S| ≤ γ

k∗
∑

i=1

r∗
i = γ|F | .

118 J. Alwen et al.

Similarly, |B\S| ≤ γ|B|. We also note that at least (1−γ)|F | of the nodes in |F |
are in |S|. Thus, |F |(1 − γ) ≤ |S| and similarly |B|(1 − γ) ≤ |S|. We conclude
that |F\S| ≤ γ|S|

1−γ and that |B\S| ≤ γ|S|
1−γ .

To finish the proof let T = F ∪B = S∪(F\S)∪(B\S). Clearly, T is a superset
of all γ-bad nodes. Thus, at least n − |T | ≥ n − |S|

(
1 + 2γ

1−γ

)
= n − |S| 1+γ

1−γ

nodes are good.
We also remark that Lemma 4 can be modified to yield a family of DAGs

{LEn}∞
n=1 with indeg(LEn) ∈ O (log n log∗ n) such that each LEn is a δn local

expander for some sequence {δn}∞
n=1 converging to 0. We can define a sequence

{γn}∞
n=1 such that 1+γn

1−γn
converges to 1 and 2γn > δn for each n. Lemmas 4 and 6

then imply that each Gn is
(
e, n − e 1+γn

1−γn

)
-depth robust for any e ≤ n.

4.1 Additional Applications of Extremely Depth Robust Graphs

We now discuss additional applications of Theorem3.

Application 1: Improved Proofs of Sequential Work. As we previously
noted Mahmoody et al. [MMV13] used extremely depth-robust graphs to con-
struct efficient Proofs-of-Sequential Work. In a proof of sequential work a prover
wants to convince a verifier that he computed a hash chain of length n involving
the input value x without requiring the verifier to recompute the entire hash
chain. Mahmoody et al. [MMV13] accomplish this by requiring the prover com-
putes labels L1, . . . , Ln by “pebbling” an extremely depth-robust DAG Gn e.g.,
Li+1 = H (x‖Lv1‖ . . . ‖Lvδ

) where {v1, . . . , vδ} = parents(i + 1) and H is a ran-
dom oracle. The prover then commits to the labels L1, . . . , Ln using a Merkle
Tree and sends the root of the tree to the verifier who can audit randomly chosen
labels e.g., the verifier audits label Li+1 by asking the prover to reveal the values
Li+1 and Lv for each v ∈ parents(i + 1). If the DAG is extremely-depth robust
then either a (possibly cheating) prover make at least (1− ε)n sequential queries
to the random oracle, or the prover will fail to convince the verifier with high
probability [MMV13].

We note that the parameter δ = indeg(Gn) is crucial to the efficiency of
the Proofs-Of-Sequential Work protocol since each audit challenge requires the
prover to reveal δ + 1 labels in the Merkle tree. The DAG Gn from [MMV13]
has indeg(Gn) ∈ O

(
log2 n · polylog (log n)

)
while our DAG Gn from Theorem 3

has maximum indegree indeg(Gn) ∈ O (log n). Thus, we can improve the com-
munication complexity of their Proofs-Of-Sequential Work protocol by a factor
of Ω(log n · polylog log n). However, Cohen and Pietrzak [CP18] found an alter-
nate construction of a Proofs-Of-Sequential Work protocol that does not involve
depth-robust graphs and which would almost certainly be more efficient than
either of the above constructions in practice.

Sustained Space Complexity 119

Application 2: Graphs with Maximum Cumulative Cost. We now show
that our family of extreme depth-robust DAGs has the highest possible cumu-
lative pebbling cost even in terms of the constant factors. In particular, for any
constant η > 0 and ε < η2/100 the family {Gε

n}∞
n=1 of DAGs from Theorem 3 has

Π
‖
cc (Gε

n) ≥ n2(1−η)
2 and indeg(Gn) ∈ O(log n). By comparison, Π

‖
cc(Gn) ≤ n2+n

2
for any DAG G ∈ Gn—even if G is the complete DAG.

Previously, Alwen et al. [ABP17] showed that any (e, d)-depth robust DAG G

has Π
‖
cc(G) > ed which implies that there is a family of DAG Gn with Π

‖
cc(Gn) ∈

Ω
(
n2

)
[EGS75]. We stress that we need new techniques to prove Theorem 4.

Even if a DAG G ∈ Gn were (e, n − e)-depth robust for every e ≥ 0 (the only
DAG actually satisfying this property is the compete DAG Kn) [ABP17] only
implies that Π

‖
cc(G) ≥ maxe≥0 e(n− e) = n2/4. Our basic insight is that at time

ti, the first time a pebble is placed on node i in Gε
n, the node i + γi is γ-good

and is therefore reachable via an undirected path from all of the other γ-good
nodes in [i]. If we have |Pti

| < (1 − η/2) i then we can show that at least Ω(ηi)
of the nodes in [i] are γ-good. We can also show that these γ-good nodes form a
depth robust subset and will cost Ω

(
(η − ε)2i2

)
to repebble them by [ABP17].

Since, we would need to pay this cost by time ti+γi it is less expensive to simply
ensure that |Pti

| > (1 − η/2) i. We refer an interested reader to AppendixA for
a complete proof.

Theorem 4. Let 0 < η < 1 be a positive constant and let ε = η2/100 then
the family {Gε

n}∞
n=1 of DAGs from Theorem3 has indeg (Gε

n) ∈ O (log n) and
Π

‖
cc (Gη

n) ≥ n2(1−η)
2 .

Application 3: Cumulative Space in Parallel-Black Sequential-White
Pebblings. The black-white pebble game [CS76] was introduced to model
nondeterministic computations. White pebbles correspond to nondeterministic
guesses and can be placed on any vertex at any time. However, these pebbles
can only be removed from a node when all parents of the node contain a pebble
(i.e., when we can verify the correctness of this guess). Formally, black white-
pebbling configuration Pi =

(
PW

i , PB
i

)
of a DAG G = ([n], E) consists of two

subsets PW
i , PB

i ⊆ [n] where PB
i (resp. PW

i) denotes the set of nodes in G
with black (resp. white) pebbles on them at time i. For a legal parallel-black
sequential-white pebbling P = (P0, . . . , Pt) ∈ PBW

G we require that we start
with no pebbles on the graph i.e., P0 = (∅, ∅) and that all white pebbles are
removed by the end i.e., PW

t = ∅ so that we verify the correctness of every non-
deterministic guess before terminating. If we place a black pebble on a node v
during round i + 1 then we require that all of v’s parents have a pebble (either
black or white) on them during round i i.e., parents

(
PB

i+1 \ PB
i

) ⊆ PB
i ∪ PW

i .
In the Parallel-Black Sequential-White model we require that at most one new
white pebble is placed on the DAG in every round i.e.,

∣
∣PW

i \ PW
i−1

∣
∣ ≤ 1 while

no such restrict applies for black pebbles.

120 J. Alwen et al.

We can use our construction of a family of extremely depth-robust DAG
{Gε

n}∞
n=1 to establish new upper and lower bounds for bounds for parallel-black

sequential white pebblings.
Alwen et al. [AdRNV17] previously showed that in the parallel-black sequen-

tial white pebbling model an (e, d)-depth-robust DAG G requires cumulative
space at least ΠBW

cc (G) .= minP∈PBW
G

∑t
i=1

∣
∣PB

i ∪ PW
i

∣
∣ ∈ Ω

(
e
√

d
)

or at least
≥ ed in the sequential black-white pebbling game. In this section we show that
any (e, d)-reducible DAG admits a parallel-black sequential white pebbling with
cumulative space at most O(e2 +dn) which implies that any DAG with constant
indegree admits a parallel-black sequential white pebbling with cumulative space
at most O(n2 log2 log n

log2 n
) since any DAG is (n log log n/ log n, n/ log2 n)-reducible.

We also show that this bound is essentially tight (up to log log n factors) using our
construction of extremely depth-robust DAGs. In particular, by applying inde-
gree reduction to the family {Gε

n}∞
n=1, we can find a family of DAGs {Jε

n}∞
n=1

with indeg (Jε
n) = 2 such that any parallel-black sequential white pebbling has

cumulative space at least Ω(n2

log2 n
). To show this we start by showing that any

parallel-black sequential white pebbling of an extremely depth-robust DAG Gε
n,

with indeg(G) ∈ O(log n), has cumulative space at least Ω(n2). We use Lemma 1
to reduce the indegree of the DAG and obtain a DAG Jε

n with n′ ∈ O(n log n)
nodes and indeg(G) = 2, such that any parallel-black sequential white pebbling
of Jε

n has cumulative space at least Ω(n2

log2 n
).

To the best of our knowledge no general upper bound on cumulative space
complexity for parallel-black sequential-white pebblings was known prior to our
work other than the parallel black-pebbling attacks of Alwen and Blocki [AB16].
This attack, which doesn’t even use the white pebbles, yields an upper bound
of O(ne+n

√
nd) for (e, d)-reducible DAGs and O(n2 log log n/ log n) in general.

One could also consider a “parallel-white parallel-black” pebbling model in which
we are allowed to place as many white pebbles as he would like in each round.
However, this model admits a trivial pebbling. In particular, we could place white
pebbles on every node during the first round and remove all of these pebbles in
the next round e.g., P1 = (∅, V) and P2 = (∅, ∅). Thus, any DAG has cumulative
space complexity θ(n) in the “parallel-white parallel-black” pebbling model.

Theorem 5 shows that (e, d)-reducible DAG admits a parallel-black sequen-
tial white pebbling with cumulative space at most O(e2 + dn). The basic peb-
bling strategy is reminiscent of the parallel black-pebbling attacks of Alwen and
Blocki [AB16]. Given an appropriate depth-reducing set S we use the first e = |S|
steps to place white pebbles on all nodes in S. Since G − S has depth at most
d we can place black pebbles on the remaining nodes during the next d steps.
Finally, once we place pebbles on every node we can legally remove the white
pebbles. A formal proof of Theorem5 can be found in the full version of this
paper [ABP18].

Sustained Space Complexity 121

Theorem 5. Let G = (V,E) be (e, d)-reducible then ΠBW
cc (G) ≤ e(e+1)

2 + dn.
In particular, for any DAG G with indeg(G) ∈ O(1) we have ΠBW

cc (G) ∈
O

((
n log log n

log n

)2
)

.

Theorem 6 shows that our upper bound is essentially tight. In a nut-shell
their lower bound was based on the observation that for any integers i, d the
DAG G − ⋃

j Pi+jd has depth at most d since any remaining path must have
been pebbled completely in time d—if G is (e, d)-depth robust this implies that∣
∣
∣
⋃

j Pi+jd

∣
∣
∣ ≥ e. The key difficulty in adapting this argument to the parallel-black

sequential white pebbling model is that it is actually possible to pebble a path of
length d in O(

√
d) steps by placing white pebbles on every interval of length

√
d.

This is precisely why Alwen et al. [AdRNV17] were only able to establish the
lower bound Ω(e

√
d) for the cumulative space complexity of (e, d)-depth robust

DAGs—observe that we always have e
√

d ≤ n1.5 since e + d ≤ n for any DAG
G. We overcome this key challenge by using extremely depth-robust DAGs.

In particular, we exploit the fact that extremely depth-robust DAGs are
“recursively” depth-robust. For example, if a DAG G is (e, d)-depth robust for
any e+d ≤ (1−ε)n then the DAG G−S is (e, d)-depth robust for any e+d ≤ (n−
|S|)− εn. Since G−S is still sufficiently depth-robust we can then show that for
some node x ∈ V (G−S) any (possibly incomplete) pebbling P = (P0, P1, . . . , Pt)
of G − S with P0 = Pt = (∅, ∅) either (1) requires t ∈ Ω(n) steps, or
(2) fails to place a pebble on x i.e. x /∈ ⋃t

r=0

(
PW
0 ∪ PB

r

)
. By Theorem 3 it then

follows that there is a family of DAGs {Gε
n}∞

n=1 with indeg (Gε
n) ∈ O (log n) and

ΠBW
cc (G) ∈ Ω(n2). If apply indegree reduction Lemma1 to the family {Gε

n}∞
n=1

we obtain the family {Jε
n}∞

n=1 with indeg(Jε
n) = 2 and O(n) nodes. A similar

argument shows that ΠBW
cc (Jε

n) ∈ Ω(n2/ log2 n). A formal proof of Theorem6
can be found in the full version of this paper [ABP18].

Theorem 6. Let G = (V = [n], E ⊃ {(i, i + 1) : i < n}) be (e, d)-depth-
robust for any e + d ≤ (1 − ε)n then ΠBW

cc (G) ≥ (1/16 − ε/2) n2. Furthermore,
if G′ = ([2nδ], E′) is the indegree reduced version of G from Lemma1 then
ΠBW

cc (G′) ≥ (1/16 − ε/2) n2. In particular, there is a family of DAGs {Gn}∞
n=1

with indeg(Gn) ∈ O (log n) and ΠBW
cc (G) ∈ Ω(n2), and a separate family of

DAGs {Hn}∞
n=1 with indeg(Hn) = 2 and ΠBW

cc (Hn) ∈ Ω
(

n2

log2 n

)
.

5 A Pebbling Reduction for Sustained Space Complexity

As an application of the pebbling results on sustained space in this section we
construct a new type of moderately hard function (MoHF) in the parallel ran-
dom oracle model pROM. In slightly more detail, we first fix the computational
model and define a particular notion of moderately hard function called sustained
memory-hard functions (SMHF). We do this using the framework of [AT17] so,
beyond the applications to password based cryptography, the results in [AT17]
for building provably secure cryptographic applications on top of any MoHF

122 J. Alwen et al.

can be immediately applied to SMHFs. In particular this results in a proof-of-
work and non-interactive proof-of-work where “work” intuitively means having
performed some computation entailing sufficient sustained memory. Finally we
prove a “pebbling reduction” for SMHFs; that is we show how to bound the
parameters describing the sustained memory complexity of a family of SMHFs
in terms of the sustained space of their underlying graphs.4

We note that the pebbling reduction below caries over almost unchanged
to the framework of [AS15]. That is by defining sustained space in the compu-
tational model of [AS15] similarly to the definition below a very similar proof
to that of Theorem 7 results the analogous theorem but for the [AT17] frame-
work. Never-the-less we believe the [AT17] framework to result in a more useful
definition as exemplified by the applications inherited from that work.

5.1 Defining Sustained Memory Hard Functions

We very briefly sketch the most important parts of the MoHF framework
of [AT17] which is, in turn, a generalization of the indifferentiability framework
of [MRH04].

We begin with the following definition which describes a family of functions
that depend on a (random) oracle.

Definition 6 (Oracle functions). For (implicit) oracle set H, an oracle func-
tion f (·) (with domain D and range R), denoted f (·) : D → R, is a set of
functions indexed by oracles h ∈ H where each fh maps D → R.

Put simply, an MoHF is a pair consisting of an oracle family f (·) and an
honest algorithm N for evaluating functions in the family using access to a
random oracle. Such a pair is secure relative to some computational model M if
no adversary A with a computational device adhering to M (denoted A ∈ M)
can produce output which couldn’t be produced simply by called f (h) a limited
number of times (where h is a uniform choice of oracle from H). It is assumed that
algorithm N is computable by devices in some (possibly different) computational
model M̄ when given sufficient computational resources. Usually M is strictly
more powerful than M̄ reflecting the assumption that an adversary could have
a more powerful class of device than the honest party. For example, in this work
we will let model M̄ contain only sequential devices (say Turing machines which
make one call to the random oracle at a time) while M will also include parallel
devices.

In this work, both the computational models M and M̄ are parametrized by
the same space P. For each model, the choice of parameters fixes upperbounds
on the power of devices captured by that model; that is on the computational
resources available to the permitted devices. For example Ma could be all Turing
machines making at most a queries to the random oracle. The security of a given
moderatly hard function is parameterized by two functions α and β mapping the

4 Effectively this does for SMHFs what [AT17] did for MHFs.

Sustained Space Complexity 123

parameter space for M to positive integers. Intuitively these functions are used
to provide the following two properties.

Completeness: To ensure the construction is even useable we require that N
is (computable by a device) in model Ma and that N can evaluate f (h) (when
given access to h) on at least α(a) distinct inputs.

Security: To capture how bounds on the resources of an adversary A limit
the ability of A to evaluate the MoHF we require that the output of A when
running on a device in model Mb (and having access to the random oracle)
can be reproduced by some simulator σ using at most β(b) oracle calls to f (h)

(for uniform randomly sampled h←H.

To help build provably secure applications on top of MoHFs the framework
makes use of a destinguisher D (similar to the environment in the Universal
Composability [Can01] family of models or, more accurately, to the destinguisher
in the indifferentiability framework). The job of D is to (try to) tell a real world
interaction with N and the adversary A apart from an ideal world interaction
with f (h) (in place of N) and a simulator (in place of the adversary). Intuitivelly,
D’s access to N captures whatever D could hope to learn by interacting with
an arbitrary application making use of the MoHF. The definition then ensures
that even leveraging such information the adversary A can not produce anything
that could not be simulated (by simulator σ) to D using nothing more than a
few calls to f (h).

As in the above description we have ommited several details of the framework
we will also use a somewhat simplified notation. We denote the above described
real world execution with the pair (N ,A) and an ideal world execution where
D is permitted c ∈ N calls to f (·) and simulator σ is permited d ∈ N calls to
f (h) with the pair (f (·), σ)c,d. To denote the statement that no D can tell an
interaction with (N ,A) apart one with (f (·), σ)c,d with more than probability ε
we write (N ,A) ≈ε (f (·), σ)c,d.

Finally, to accommodate honest parties with varying amounts of resources we
equip the MoHF with a hardness parameter n ∈ N. The following is the formal
security definition of a MoHF. Particular types of MoHF (such as the one we
define bellow for sustained memory complexity) differ in the precise notion of
computational model they consider. For further intuition, a much more detailed
exposition of the framework and how the following definition can be used to
prove security for applications we refer to [AT17].

Definition 7 (MoHF security). Let M and M̄ be computational models with
bounded resources parametrized by P. For each n ∈ N, let f

(·)
n be an oracle func-

tion and N (n, ·) be an algorithm (computable by some device in M̄) for evaluating
f
(·)
n . Let α, β : P × N → N, and let ε : P × P × N → R≥0. Then, (f (·)

n ,Nn)n∈N is
a (α, β, ε)-secure moderately hard function family (for model M) if

∀n ∈ N, r ∈ P,A ∈ Mr ∃σ ∀l ∈ P : (N (n, ·),A) ≈ε(l,r,n) (f (·)
n , σ)α(l,n),β(r,n) ,

(3)
The function family is asymptotically secure if ε(l, r, ·) is a negligible function
in the third parameter for all values of r, l ∈ P.

124 J. Alwen et al.

Sustained Space Constrained Computation. Next we define the honest and adver-
sarial computational models for which we prove the pebbling reduction. In partic-
ular we first recall (a simplified version of) the pROM of [AT17]. Next we define
a notion of sustained memory in that model naturally mirroring the notion of
sustained space for pebbling. Thus we can parametrize the pROM by memory
threshold s and time t to capture all devices in the pROM with no more sustained
memory complexity then given by the choice of those parameters.

In more detail, we consider a resource-bounded computational device S . Let
w ∈ N. Upon startup, Sw-prom samples a fresh random oracle h ←$ Hw with
range {0, 1}w. Now Sw-prom accepts as input a pROM algorithm A which is an
oracle algorithm with the following behavior.

A state is a pair (τ, s) where data τ is a string and s is a tuple of strings.
The output of step i of algorithm A is an output state σ̄i = (τi,qi) where qi =
[q1i , . . . , qzi

i] is a tuple of queries to h. As input to step i+1, algorithm A is given
the corresponding input state σi = (τi, h(qi)), where h(qi) = [h(q1i), . . . , h(qzi

i)]
is the tuple of responses from h to the queries qi. In particular, for a given h and
random coins of A, the input state σi+1 is a function of the input state σi. The
initial state σ0 is empty and the input xin to the computation is given a special
input in step 1.

For a given execution of a pROM, we are interested in the following new
complexity measure parametrized by an integer s ≥ 0. We call an element of
{0, 1}s a block. Moreover, we denote the bit-length of a string r by |r|. The
length of a state σ = (τ, s) with s = (s1, s2, . . . , sy) is |σ| = |τ |+∑

i∈[y] |si|. For a
given state σ let b(σ) = �|σ|/s� be the number of “blocks in σ”. Intuitively, the s-
sustained memory complexity (s-SMC) of an execution is the sum of the number
of blocks in each state. More precisely, consider an execution of algorithm A on
input xin using coins $ with oracle h resulting in z ∈ Z≥0 input states σ1, . . . , σz,
where σi = (τi, si) and si = (s1i , s

2
i , . . . , s

yj

i). Then the for integer s ≥ 0 the
s-sustained memory complexity (s-SMC) of the execution is

s-smc(Ah(xin; $)) =
∑

i∈[z]

b(σi) ,

while the total number of RO calls is
∑

i∈[z] yj . More generally, the s-SMC (and
total number of RO calls) of several executions is the sum of the s-sMC (and
total RO calls) of the individual executions.

We can now describe the resource constraints imposed by Sw-prom on
the pROM algorithms it executes. To quantify the constraints, Sw-prom is
parametrized by element from P

prom = N
3 which describe the limits on an exe-

cution of algorithm A. In particular, for parameters (q, s, t) ∈ P
prom, algorithm

A is allowed to make a total of q RO calls and have s-SMC at most t (summed
across all invocations of A in any given experiment).

As usual for moderately hard functions, to ensure that the honest algorithm
can be run on realistic devices, we restrict the honest algorithm N for evaluating
the SMHF to be a sequential algorithms. That is, N can make only a single call
to h per step. Technically, in any execution, for any step j it must be that yj ≤ 1.

Sustained Space Complexity 125

No such restriction is placed on the adversarial algorithm reflecting the power
(potentially) available to such a highly parallel device as an ASIC. In symbols we
denote the sequential version of the pROM, which we refer to as the sequential
ROM (sROM) by Sw-srom.

We can now (somewhat) formally define of a sustained memory-hard function
for the pROM. The definition is a particular instance of and moderately hard
function (c.f. Definition 7).

Definition 8 (Sustained Memory-Hard Function). For each n ∈ N, let
f
(·)
n be an oracle function and Nn be an sROM algorithm for computing f (·).

Consider the function families:

α = {αw : P
prom × N → N}w∈N , β = {βw : P

prom × N → N}w∈N ,

ε = {εw : P
prom × P

prom × N → N}w∈N .

Then F = (f (·)
n ,Nn)n∈N is called an (α, β, ε)-sustained memory-hard function

(SMHF) if ∀w ∈ N F is an (αw, βw, εw)-secure moderately hard function family
for Sw-prom.

5.2 The Construction

In this work f (·) will be a graph function [AS15] (also sometimes called “hash
graph”). The following definition is taken from [AT17]. A graph function depends
on an oracle h ∈ Hw mapping bit strings to bit strings. We also assume the
existence of an implicit prefix-free encoding such that h is evaluated on unique
strings. Inputs to h are given as distinct tuples of strings (or even tuples of tuples
of strings). For example, we assume that h(0, 00), h(00, 0), and h((0, 0), 0) all
denote distinct inputs to h.

Definition 9 (Graph function). Let function h : {0, 1}∗ → {0, 1}w ∈ Hw and
DAG G = (V,E) have source nodes {vin

1 , . . . , vina } and sink nodes (vout
1 , . . . , voutz).

Then, for inputs x = (x1, . . . , xa) ∈ ({0, 1}∗)×a, the (h,x)-labeling of G is a
mapping lab : V → {0, 1}w defined recursively to be:

∀v ∈ V lab(v) :=

{
h (x, v, xj) : v = vin

j

h (x, v, lab(v1), . . . , lab(vd)) : else

where {v1, . . . , vd} are the parents of v arranged in lexicographic order.
The graph function (of G and Hw) is the oracle function

fG : ({0, 1}∗)×a → ({0, 1}w)×z ,

which maps x �→ (lab(vout
1), . . . , lab(vout

z)) where lab is the (h,x)-labeling of G.

Given a graph function we need an honest (sequential) algorithm for com-
puting it in the pROM. For this we use the same algorithm as already used
in [AT17]. The honest oracle algorithm NG for graph function fG computes one

126 J. Alwen et al.

label of G at a time in topological order appending the result to its state. If G
has |V | = n nodes then NG will terminate in n steps making at most 1 call to h
per step, for a total of n calls, and will never store more than n ∗ w bits in the
data portion of its state. In particular for all inputs x, oracles h (and coins $)
we have that for any s ∈ [n] if the range of h is in {0, 1}w then algorithm N has
sw-SMC of n − s.

Recall that we would like to set αw : P
prom → N such that for any parameters

(q, s, t) constraining the honest algorithms resources we are still guaranteed at
least αw(q, s, t) evaluations of fG by NG. Given the above honest algorithm we
can thus set:

∀(q, s, t) ∈ P
prom αw(q, s, t) :=

{
0 : q < n

min(�q/n�, �t/(n − �s/w��) : else

It remains to determine how to set βw and εw, which is the focus of the remainder
of this section.

5.3 The Pebbling Reduction

We state the main theorem of this section which relates the parameters of an
SMHF based on a graph function to the sustained (pebbling) space complexity
of the underlying graph.

Theorem 7 (Pebbling reduction). Let Gn = (Vn, En) be a DAG of size |Vn| = n.
Let F = (fG,n,NG,n)n∈N be the graph functions for Gn and their näıve oracle
algorithms. Then, for any λ ≥ 0, F is an (α, β, ε)-sustained memory-hard func-
tion where

α = {αw(q, s, t)}w∈N
,

β =

{

βw(q, s, t) =
Π

‖
ss(G, s)(w − log q)

1 + λ

}

w∈N

, ε =
{

εw(q, m) ≤ q

2w
+ 2−λ

}

w∈N

.

The technical core of the proof follows that of [AT17] closely. The proof can
be found in the full version of this paper [ABP18].

6 Open Questions

We conclude with several open questions for future research. The primary chal-
lenge is to provide a practical construction of a DAG G with high sustained
space complexity. While we provide a DAG G with asymptotically optimal sus-
tained space complexity, we do not optimize for constant factors. We remark that
for practical applications to iMHFs it should be trivial to evaluate the function
parentsG(v) without storing the DAG G in memory explicitly. Toward this end it
would be useful to either prove or refute the conjecture that any depth-robustness
is sufficient for high sustained space complexity e.g., what is the sustained space
complexity of the depth-robust DAGs from [EGS75] or [PTC76]? Another inter-
esting direction would be to relax the notion of sustained space complexity and

Sustained Space Complexity 127

instead require that for any pebbling P ∈ P‖(G) either (1) P has large cumu-
lative complexity e.g., n3, or (2) P has high sustained space complexity. Is it
possible to design a dMHF with the property for any evaluation algorithm either
has (1) sustained space complexity Ω(n) for Ω(n) rounds, or (2) has cumulative
memory complexity ω(n2)?

Acknowledgments. This work was supported by the European Research Council
under ERC consolidator grant (682815 - TOCNeT) and by the National Science Foun-
dation under NSF Award #1704587. The opinions expressed in this paper are those of
the authors and do not necessarily reflect those of the European Research Council or
the National Science Foundation.

A Missing Proofs

Reminder of Theorem 4. Let 0 < η < 1 be a positive constant and let ε =
η2/100 then the family {Gε

n}∞
n=1 of DAGs from Theorem 3 has indeg (Gε

n) ∈
O (log n) and Π

‖
cc (Gη

n) ≥ n2(1−η)
2 .

Proof of Theorem 4. We set ε = η2/100 and consider the DAG Gε
n from the proof

of Theorem 3. In particular, Gε
n is a δ = ε/10-local expander. We also set γ = ε/4

when we consider γ-good nodes.
Consider a legal pebbling P ∈ P‖

Gε
n

and let ti denote the first time that node
i is pebbled (i ∈ Pti

, but i /∈ ⋃
j<ti

Pj). We consider two cases:

Case 1 |Pti
| ≥ (1 − η/2) i. Observe that if this held for all i then we immediately

have
∑t

j=1 |Pi| ≥ ∑n
j=1 |Pti

| ≥ (1 − η/2)
∑n

i=1 i ≥ n2(1−ε/2)
2 .

Case 2 Pti
< (1 − η/2) i. Let GOODi denote the set of γ-good nodes in [i].

We observe that at least i − (1 − η/2)i1−γ
1+γ ≥ iη/4 of the nodes in

[i] are γ-good by Lemma 6. Furthermore, we note that the subgraph
Hi = Gε

n[GOODi] is (a |Goodi| , (1 − a) |Goodi| − εi)-depth robust for
any constants a > 0.5

Thus, a result of Alwen et al. [ABP17] gives us Π
‖
cc (Hi) ≥ i2η2/100

since the DAG Hi is at least (iη/10, iη/10)-depth robust. To see this set
a = 1/2 and observe that a|Goodi| ≥ iη/8 and that (1 − a) |Goodi|−εi ≥
iη/8− ηi/100 ≥ iη/10. Similarly, we note that at time ti the node i+γi
is γ-good. Thus, by Lemma 5 we will have to completely repebble Hi

by time ti+γi. This means that
∑ti+γi

j=ti
|Pj | ≥ Π

‖
cc (Hi) ≥ i2η2/100 and,

since γ = η2/400 we have i2η2/100 > 2γi2 >
∑i+γi

j=i j(1 − η/2).

5 To see this observe that if Gε
n is a δ-local expander then Gε

n[{1, . . . , i}] is also a δ-
local expander. Therefore, Lemmas 5 and 6 imply that Gε

n[{1, . . . , i}] is (ai, bi)-depth
robust for any a+b ≤ 1−ε. Since, Hi is a subgraph of Gε

n[{1, . . . , i}] it must be that Hi

is (a |Goodi| , (1 − a) |Goodi| − εi)-depth robust. Otherwise, we have a set S ⊆ V (Hi)
of size a |Goodi| such that depth(Hi − S) < (1 − a) |Goodi| − εi which implies that
depth(Gε

n[{1, . . . , i}] − S) ≤ i − |Goodi| + depth(Goodi − S) < i − a|Goodi| − εi
contradicting the depth-robustness of Gε

n[{1, . . . , i}].

128 J. Alwen et al.

Let x1 denote the first node 1 ≤ x1 ≤ n − γn for which
∣
∣Ptx1

∣
∣ < (1 − η/2) i

and, once x1, . . . , xk have been defined let xk+1 denote the first node such that
n − γn > xk+1 > γxk + xk and

∣
∣
∣Ptxk+1

∣
∣
∣ < (1 − η/2) i. Let x1, . . . , xk∗ denote a

maximal such sequence and let F =
⋃k∗

j=1[xj , xj +γxj]. Let R = [n−γn]\F . We
have

∑
j∈R |Pj | ≥ ∑

j∈R j(1 − η/2) and we have
∑

j∈F |Pj | ≥ ∑
j∈R j(1 − η/2).

Thus,

t∑

j=1

|Pi| ≥
∑

j∈R

|Pj | +
∑

j∈F

|Pj | ≥
n−γn∑

j=1

n2 (1 − η/2)

2
≥ n2 (1 − η/2)

2
− γn2 ≥ n2 (1 − η)

2
.

�

References

[AB16] Alwen, J., Blocki, J.: Efficiently computing data-independent memory-
hard functions. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS,
vol. 9815, pp. 241–271. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-53008-5 9

[AB17] Alwen, J., Blocki, J.: Towards practical attacks on Argon2i and balloon
hashing. In: Proceedings of the 2nd IEEE European Symposium on Secu-
rity and Privacy (EuroS&P 2017), pp. 142–157. IEEE (2017). http://
eprint.iacr.org/2016/759

[ABH17] Alwen, J., Blocki, J., Harsha, B.: Practical graphs for optimal side-channel
resistant memory-hard functions. In: ACM CCS 2017, pp. 1001–1017.
ACM Press (2017)

[ABP17] Alwen, J., Blocki, J., Pietrzak, K.: Depth-robust graphs and their cumu-
lative memory complexity. In: Coron, J.-S., Nielsen, J.B. (eds.) EURO-
CRYPT 2017. LNCS, vol. 10212, pp. 3–32. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-56617-7 1

[ABP18] Alwen, J., Blocki, J., Pietrzak, K.: Sustained space complexity. Cryptology
ePrint Archive, Report 2018/147 (2018). https://eprint.iacr.org/2018/147

[ABW03] Abadi, M., Burrows, M., Wobber, T.: Moderately hard, memory-bound
functions. In: Proceedings of the Network and Distributed System Security
Symposium, NDSS 2003, San Diego, California, USA (2003)

[ACP+17] Alwen, J., Chen, B., Pietrzak, K., Reyzin, L., Tessaro, S.: Scrypt is max-
imally memory-hard. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT
2017. LNCS, vol. 10212, pp. 33–62. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-56617-7 2

[AdRNV17] Alwen, J., de Rezende, S.F., Nordström, J., Vinyals, M.: Cumulative space
in black-white pebbling and resolution. In: 8th Innovations in Theoretical
Computer Science (ITCS) Conference, Berkeley, 9–11 January 2017

[AS15] Alwen, J., Serbinenko, V.: High parallel complexity graphs and memory-
hard functions. In: Proceedings of the Eleventh Annual ACM Symposium
on Theory of Computing, STOC 2015 (2015). http://eprint.iacr.org/2014/
238

[AT17] Alwen, J., Tackmann, B.: Moderately hard functions: definition, instanti-
ations, and applications. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS,
vol. 10677, pp. 493–526. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-70500-2 17

https://doi.org/10.1007/978-3-662-53008-5_9
https://doi.org/10.1007/978-3-662-53008-5_9
http://eprint.iacr.org/2016/759
http://eprint.iacr.org/2016/759
https://doi.org/10.1007/978-3-319-56617-7_1
https://eprint.iacr.org/2018/147
https://doi.org/10.1007/978-3-319-56617-7_2
https://doi.org/10.1007/978-3-319-56617-7_2
http://eprint.iacr.org/2014/238
http://eprint.iacr.org/2014/238
https://doi.org/10.1007/978-3-319-70500-2_17
https://doi.org/10.1007/978-3-319-70500-2_17

Sustained Space Complexity 129

[BDK16] Biryukov, A., Dinu, D., Khovratovich, D.: Argon2: new generation of
memory-hard functions for password hashing and other applications. In:
2016 IEEE European Symposium on Security and Privacy (EuroS&P),
pp. 292–302. IEEE (2016)

[BHZ18] Blocki, J., Harsha, B., Zhou, S.: On the economics of offline password
cracking. IEEE Secur. Priv. (2018, to appear)

[Can01] Canetti, R.: Universally composable security: a new paradigm for crypto-
graphic protocols. In: 42nd Annual Symposium on Foundations of Com-
puter Science, Las Vegas, Nevada, pp. 136–145. IEEE, October 2001

[Coo73] Cook, S.A.: An observation on time-storage trade off. In: Proceedings of
the Fifth Annual ACM Symposium on Theory of Computing, STOC 1973,
pp. 29–33. ACM, New York (1973)

[Cox16] Cox, B.: Re: [Cfrg] Balloon-Hashing or Argon2i. CFRG Mailinglist,
August 2016. https://www.ietf.org/mail-archive/web/cfrg/current/
msg08426.html

[CP18] Cohen, B., Pietrzak, K.: Simple proofs of sequential work. In: Nielsen,
J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part II. LNCS, vol. 10821,
pp. 451–467. Springer, Cham (2018)

[CS76] Cook, S., Sethi, R.: Storage requirements for deterministic polynomialtime
recognizable languages. J. Comput. Syst. Sci. 13(1), 25–37 (1976)

[DGN03] Dwork, C., Goldberg, A., Naor, M.: On memory-bound functions for
fighting spam. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp.
426–444. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-
45146-4 25

[EGS75] Erdös, P., Graham, R.L., Szemerédi, E.: On sparse graphs with dense long
paths. Technical report, Stanford, CA, USA (1975)

[GG81] Gabber, O., Galil, Z.: Explicit constructions of linear-sized superconcen-
trators. J. Comput. Syst. Sci. 22(3), 407–420 (1981)

[HP70] Hewitt, C.E., Paterson, M.S.: Record of the project MAC conference on
concurrent systems and parallel computation. In: Comparative Schema-
tology, pp. 119–127. ACM, New York (1970)

[HPV77] Hopcroft, J., Paul, W., Valiant, L.: On time versus space. J. ACM 24(2),
332–337 (1977)

[Kal00] Kaliski, B.: PKCS# 5: password-based cryptography specification version
2.0 (2000)

[MMV13] Mahmoody, M., Moran, T., Vadhan, S.P.: Publicly verifiable proofs of
sequential work. In: Kleinberg, R.D. (ed.) Innovations in Theoretical Com-
puter Science, ITCS 2013, Berkeley, CA, USA, 9–12 January 2013, pp.
373–388. ACM (2013)

[MRH04] Maurer, U., Renner, R., Holenstein, C.: Indifferentiability, impossibility
results on reductions, and applications to the random Oracle methodol-
ogy. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 21–39. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-24638-1 2

[Per09] Percival, C.: Stronger key derivation via sequential memory-hard func-
tions. In: BSDCan 2009 (2009)

[PHC] Password hashing competition. https://password-hashing.net/
[PJ12] Percival, C., Josefsson, S.: The scrypt password-based key derivation func-

tion (2012)
[PTC76] Paul, W.J., Tarjan, R.E., Celoni, J.R.: Space bounds for a game on graphs.

In: Proceedings of the Eighth Annual ACM Symposium on Theory of
Computing, STOC 1976, pp. 149–160. ACM, New York (1976)

https://www.ietf.org/mail-archive/web/cfrg/current/msg08426.html
https://www.ietf.org/mail-archive/web/cfrg/current/msg08426.html
https://doi.org/10.1007/978-3-540-45146-4_25
https://doi.org/10.1007/978-3-540-45146-4_25
https://doi.org/10.1007/978-3-540-24638-1_2
https://password-hashing.net/

130 J. Alwen et al.

[RD16] Ren, L., Devadas, S.: Proof of space from stacked expanders. In: Hirt,
M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9985, pp. 262–285. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53641-4 11

[RD17] Ren, L., Devadas, S.: Bandwidth hard functions for ASIC resistance. In:
Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp. 466–492.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2 16

https://doi.org/10.1007/978-3-662-53641-4_11
https://doi.org/10.1007/978-3-319-70500-2_16

Multi-collision Resistance

Multi-Collision Resistant Hash Functions
and Their Applications

Itay Berman1(B), Akshay Degwekar1, Ron D. Rothblum1,2,
and Prashant Nalini Vasudevan1

1 MIT, Cambridge, USA
{itayberm,akshayd,ronr,prashvas}@mit.edu

2 Northeastern University, Boston, USA

Abstract. Collision resistant hash functions are functions that shrink
their input, but for which it is computationally infeasible to find a colli-
sion, namely two strings that hash to the same value (although collisions
are abundant).

In this work we study multi-collision resistant hash functions (MCRH)
a natural relaxation of collision resistant hash functions in which it is
difficult to find a t-way collision (i.e., t strings that hash to the same
value) although finding (t−1)-way collisions could be easy. We show the
following:

– The existence of MCRH follows from the average case hardness of
a variant of the Entropy Approximation problem. The goal in this
problem (Goldreich, Sahai and Vadhan, CRYPTO ’99) is to distin-
guish circuits whose output distribution has high entropy from those
having low entropy.

– MCRH imply the existence of constant-round statistically hiding
(and computationally binding) commitment schemes. As a corol-
lary, using a result of Haitner et al. (SICOMP, 2015), we obtain a
blackbox separation of MCRH from any one-way permutation.

1 Introduction

Hash functions are efficiently computable functions that shrink their input and
mimic ‘random functions’ in various aspects. They are prevalent in cryptography,
both in theory and in practice. A central goal in the study of the foundations of
cryptography has been to distill the precise, and minimal, security requirements
necessary from hash functions for different applications.

One widely studied notion of hashing is that of collision resistant hash func-
tions (CRH). Namely, hash functions for which it is computationally infeasi-
ble to find two strings that hash to the same value, even when such collisions
are abundant. CRH have been extremely fruitful and have notable applications

The full version [BDRV17] is available at https://eprint.iacr.org/2017/489.

c© International Association for Cryptologic Research 2018
J. B. Nielsen and V. Rijmen (Eds.): EUROCRYPT 2018, LNCS 10821, pp. 133–161, 2018.
https://doi.org/10.1007/978-3-319-78375-8_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78375-8_5&domain=pdf
https://eprint.iacr.org/2017/489

134 I. Berman et al.

in cryptography such as digital signatures1 [GMR88], efficient argument sys-
tems for NP [Kil92,Mic00] and (constant-round) statistically hiding commitment
schemes [NY89,DPP93,HM96].

In this work we study a natural relaxation of collision resistance. Specifically,
we consider hash functions for which it is infeasible to find a t-way collision: i.e.,
t strings that all have the same hash value. Here t is a parameter, where the
standard notion of collision resistance corresponds to the special case of t = 2.
We refer to such functions as multi-collision resistant hash functions (MCRH)
and emphasize that, for t > 2, it is a weaker requirement than that of standard
collision resistance.

The property of multi-collision resistance was considered first by Merkle
[Mer89] in analyzing a hash function construction based on DES. The notion
has also been considered in the context of identification schemes [GS94], micro-
payments [RS96], and signature schemes [BPVY00]. Joux [Jou04] showed that
for iterated hash functions, finding a large number of collisions is no harder than
finding pairs of highly structured colliding inputs (namely, collisions that share
the same prefix). We emphasize that Joux’s multi-collision finding attack only
applies to certain types of hash functions (e.g., iterated hash functions, or tree
hashing) and requires a strong break of collision resistance. In general, it seems
that MCRH is a weaker property than CRH.

As in the case of CRH, to obtain a meaningful definition, we must consider
keyed functions (since for non keyed functions there are trivial non-uniform
attacks). Thus, we define MCRH as follows (here and throughout this work, we
use n to denote the security parameter.)

Definition 1.1 ((s, t)-MCRH). Let s = s(n) ∈ N and t = t(n) ∈ N be functions
computable in time poly(n). An (s, t)-Multi-Collision Resistant Hash Function Fam-
ily ((s, t)-MCRH) consists of a probabilistic polynomial-time algorithm Gen that
on input 1n outputs a circuit h such that:

– s-Shrinkage: The circuit h : {0, 1}n → {0, 1}n−s maps inputs of length n to
outputs of length n − s.

– t-Collision Resistance: For every polynomial size family of circuits A =
(An)n∈N,

Pr
h←Gen(1n),

(x1,x2,...,xt)←An(h)

[
For all i �= j,

h(xi) = h(xj) and xi �= xj

]
< negl(n).

Note that the standard notion of CRH simply corresponds to (1, 2)-MCRH
(which is easily shown to be equivalent to (s, 2)-CRH for any s = n − ω(log n)).
We also remark that Definition 1.1 gives a non-uniform security guarantee, which
is natural, especially in the context of collision resistance. Note though that all
of our results are obtained by uniform reductions.
1 We remark that the weaker notion of universal one-way hash functions (UOWHF)

(which is known to be implied by standard one-way functions) suffices for this appli-
cation [NY89,Rom90].

Multi-Collision Resistant Hash Functions and Their Applications 135

Remark 1.2 (Shrinkage vs. Collision Resistance). Observe that (s, t)-MCRH are
meaningful only when s ≥ log t, as otherwise t-way collisions might not even
exist (e.g., consider a function mapping inputs of length n to outputs of length
n − log(t − 1) in which each range element has exactly t − 1 preimages).

Moreover, we note that in contrast to standard CRH, it is unclear whether the
shrinkage factor s can be trivially improved (e.g., by composition) while preserv-
ing the value of t. Specifically, constructions such as Tree Hashing (aka Merkle
Tree) inherently rely on the fact that it is computationally infeasible to find any
collision. It is possible to get some trade-offs between the number of collisions
and shrinkage. For example, given an (s = 2, t = 4)-MCRH, we can compose it
with itself to get an (s = 4, t = 10)-MCRH. But it is not a priori clear whether
there exist transformations that increase the shrinkage s while not increasing t.
We remark that a partial affirmative answer to this question was recently given
in an independent and concurrent work by Bitansky et al. [BPK17], as long as
the hash function is substantially shrinking (see additional details in Sect. 1.2).

Thus, we include both the parameters s and t in the definition of MCRH,
whereas in standard CRH the parameter t is fixed to 2, and the parameter s can be
given implicitly (since the shrinkage can be trivially improved by composition).

Remark 1.3 (Scaling of Shrinkage vs. Collisions). The shrinkage s is measured in
bits, whereas the number of collisions t is just a number. A different definitional
choice could have been to put s and t on the same “scale” (e.g., measure the
logarithm of the number of collisions) so to make them more easily comparable.
However, we refrain from doing so since we find the current (different) scaling
of s and t to be more natural.

Remark 1.4 (Public-coin MCRH). One can also consider the stronger public-coin
variant of MCRH, in which it should be hard to find collisions given not only the
description of the hash function, but also the coins that generated the description.

Hsiao and Reyzin [HR04] observed that for some applications of standard
collision resistance, it is vital to use the public-key variant (i.e., security can be
broken in case the hash function is not public-coin). The distinction is similarly
important for MCRH and one should take care of which notion is used depending
on the application. Below, when we say MCRH, we refer to the private-coin
variant (as per Definition 1.1).

1.1 Our Results

The focus of this work is providing a systematic study of MCRH. We consider
both the question of constructing MCRH and what applications can we derive
from them.

1.1.1 Constructions of MCRH

Since any CRH is in particular also an MCRH, candidate constructions are abun-
dant (based on a variety of concrete computational assumptions). The actual

136 I. Berman et al.

question that we ask, which has a more foundational flavor, is whether we can
construct MCRH from assumptions that are not known to imply CRH.

Our first main result is that the existence of MCRH follows from the average-
case hardness of a variant of the Entropy Approximation problem studied by
Goldreich, Sahai and Vadhan [GSV99]. Entropy Approximation, denoted EA, is
a promise problem, where YES inputs are circuits whose output distribution
(i.e., the distribution obtained by feeding random inputs to the circuit) has
entropy at least k, whereas NO inputs are circuits whose output distribution
has entropy at most k − 1 (where k is a parameter that is unimportant for the
current discussion). Here by entropy we specifically refer to Shannon entropy.2

Goldreich et al. showed that EA is complete for the class of (promise) problems
that have non-interactive statistical zero-knowledge proofs (NISZK).

In this work we consider a variant of EA, first studied by Dvir et al. [DGRV11],
that uses different notions of entropy. Specifically, consider the promise problem
EAmin,max, where the goal now is to distinguish between circuits whose output
distribution has min-entropy3 at least k from those with max-entropy at most
k − 1. It is easy to verify that EAmin,max is an easier problem than EA.

Theorem 1.1 (Informal, see Theorem 3.6). If EAmin,max is average-case
hard, then there exist (s, t)-MCRH, where s =

√
n and t = 6n2.

(Note that in the MCRH that we construct there exist 2
√

n-way collisions, but it
is computationally hard to find even a 6n2-way collision.)

In contrast to the original entropy approximation problem, we do not know
whether EAmin,max is complete for NISZK. Thus, establishing the existence of
MCRH based solely on the average-case hardness of NISZK (or SZK) remains
open. Indeed such a result could potentially be an interesting extension of Ostro-
vsky’s [Ost91] proof that average-case hardness of SZK implies the existence of
one-way functions.

Instantiations. Dvir et al. [DGRV11], showed that the average-case hardness
of EAmin,max is implied by either the quadratic residuocity (QR) or decisional
Diffie Hellman (DDH) assumptions.4 It is not too hard to see that above extends
to any encryption scheme (or even commitment scheme) in which ciphertexts
can be perfectly re-randomized.5

2 Recall that the Shannon Entropy of a random variable X is defined as HShannon(X) =

Ex←X

[
log

(
1

Pr[X=x]

)]
.

3 For a random variable X, the min-entropy is defined as Hmin(X) =

minx∈Supp(X) log
(

1
Pr[X=x]

)
whereas the max-entropy is Hmax(X) = log (|Supp(X)|).

4 In fact, [DGRV11] show that the same conclusion holds even if we restrict the prob-
lem to constant-depth (i.e., NC0) circuits.

5 Given such a scheme consider a circuit that has, hard-coded inside, a pair of cipher-
texts (c0, c1) which are either encryptions of the same bit or of different bits. The
circuit gets as input a bit b and random string r and outputs a re-randomization of cb
(using randomness r). If the scheme is perfectly re-randomizing (and perfectly cor-
rect) then the min-entropy of the output distribution in case the plaintexts disagree
is larger than the max-entropy in case the plaintexts agree.

Multi-Collision Resistant Hash Functions and Their Applications 137

The hardness of EAmin,max can also be shown to follow from the average-case
hardness of the Shortest Vector Problem or the Closest Vector Problem with
approximation factor roughly

√
n.6 To the best of our knowledge the existence

of CRH is not known based on such small approximation factors (even assuming
average-case hardness).

We remark that a similar argument establishes the hardness of EAmin,max

based on the plausible assumption that graph isomorphism is average-case hard.7

1.1.2 Applications of MCRH

The main application that we derive from MCRH is a constant-round statistically
hiding commitment scheme.

Theorem 1.2 (Informally stated, see Theorem 4.4). Assume that there
exists a (log(t), t)-MCRH. Then, there exists a 3-round statistically-hiding and
computationally-binding commitment scheme.

We note that Theorem 1.2 is optimal in the sense of holding for MCRH
that are minimally shrinking. Indeed, as noted in Remark 1.2, (s, t)-MCRH with
s ≤ log(t − 1) exist trivially and unconditionally.

It is also worthwhile to point out that by a result of Haitner et al. [HNO+09],
statistically-hiding commitment schemes can be based on the existence of any
one-way function. However, the commitment scheme of [HNO+09] uses a polyno-
mial number of rounds of interaction and the main point in Theorem 1.2 is that
we obtain such a commitment scheme with only a constant number of rounds.

Moreover, by a result of [HHRS15], any fully black-box construction of a
statistically hiding commitment scheme from one-way functions (or even one-
way permutations) must use a polynomial number of rounds. Loosely speaking,
a construction is “fully black-box” [RTV04] if (1) the construction only requires
an input-output access to the underlying primitive and (2) the security proof also
relies on the adversary in a black-box way. Most constructions in cryptography

6 The hard distribution for SVP√
n and CVP√

n is the first message from the 2-message
honest-verifier SZK proof system of Goldreich and Goldwasser [GG98]. In the case of
CVP√

n, the input is (B, t, d) where B is the basis of the lattice, t is a target vector
and d specifies the bound on the distance of t from the lattice. The distribution is
obtained by sampling a random error vector η from the ball of radius d

√
n/2 centered

at the origin and outputting b · t + η mod P(B), where b ← {0, 1} and P(B) is the
fundamental parallelopiped of B. When t is far from the lattice, this distribution is
injective and hence has high min-entropy while when t is close to the lattice, the
distribution is not injective and hence has lower max-entropy. Similarly for SVP√

n,
on input (B, d), the output is η mod P(B) where η is again sampled from a ball of
radius d

√
n/2.

7 Note that the graph isomorphism is known to be solvable in polynomial-time for
many natural distributions, and the recent breakthrough result of Babai [Bab16]
gives a quasi-polynomial worst-case algorithm. Nevertheless, it is still plausible that
Graph Isomorphism is average-case quasi-polynomially hard (for some efficiently
samplable distribution).

138 I. Berman et al.

are fully black-box. Since our proof of Theorem 1.2 is via a fully black-box
construction, we obtain the following immediate corollary:

Corollary 1.3 (Informally stated). There does not exist a fully blackbox con-
struction of MCRH from one-way permutations.

Corollary 1.3 can be viewed as an extension of Simon’s [Sim98] blackbox
separation of CRH from one-way permutations. Due to space limitations, the
formal statement and proof of Corollary 1.3 is deferred to the full version of this
paper [BDRV17].

1.2 Related Works

Generic Constructions of CRH. Peikert and Waters [PW11] construct CRH
from lossy trapdoor functions. Their construction can be viewed as a construc-
tion of CRH from EAmin,max with a huge gap. (Specifically, the lossy trap-
door function h is either injective (i.e., Hmin(h) ≥ n) or very shrinking (i.e.,
Hmax(h) < 0.5n).8 One possible approach to constructing CRH from lossy func-
tions with small ‘lossiness’ (Hmax(h)/Hmin(h)) is to first amplify the lossiness
and then apply the [PW11] construction. Pietrzak et al. [PRS12] rule out this
approach by showing that it is impossible to improve the ‘lossiness’ in a black-
box way.9 We show that even with distributions where the gap is tiny, we can
achieve weaker yet very meaningful notions of collision-resistance.

Applebaum and Raykov [AR16] construct CRH from any average-case hard
language with a Perfect Randomized Encoding in which the encoding algorithm is
one-to-one as a function of the randomness. Perfect Randomized Encodings are a
way to encode the computation of a function f on input x such that information-
theoretically, the only information revealed about x is the value f(x). The class
of languages with such randomized encodings PRE is contained in PZK. Their
assumption of an average-case hard language with a perfect randomized encoding
implies EAmin,max as well.

Constant-Round Statistically Hiding Commitments from SZK Hard-
ness. The work of Ong and Vadhan [OV08] yields constant-round statistically-
hiding commitment schemes from average-case hardness of SZK.10 Our construc-
tion of statistically-hiding commitments via MCRH is arguably simpler, although
it relies on a stronger assumption (EAmin,max) instead of average-case hardness
of SZK.

8 The trapdoor to the lossy function is not used in the construction of CRH.
9 In contrast, it is easy to see that repetition amplifies the additive gap between the

min-entropy and the max-entropy. In fact, we use this in our construction.
10 Actually, Ong and Vadhan [OV08] only construct instance-dependent commitments.

Dvir et al. [DGRV11] attribute the construction of constant-round statistically hiding
commitments from average-case hardness of SZK to a combination of [OV08] and an
unpublished manuscript of Guy Rothblum and Vadhan [RV09].

Multi-Collision Resistant Hash Functions and Their Applications 139

Distributional CRH. A different weakening of collision resistance was consid-
ered by Dubrov and Ishai [DI06]. Their notion, called “distributional collision-
resistant” in which it may be feasible to find some specific collision, but it is hard
to sample a random collision pair. That is, given the hash function h, no efficient
algorithm can sample a pair (z1, z2) such that z1 is uniform and z2 is uniform
in the set {z : h(z) = h(z1)}. The notions of MCRH and distributional CRH are
incomparable and whether one can be constructed from the other is open.

Min-Max Entropy Approximation. The main result of the work of Dvir
et al. [DGRV11] (that was mentioned above) was showing that the problem EA
for degree-3 polynomial mappings (i.e., where the entropies are measured by
Shannon entropy) is complete for SZKL, a sub-class of SZK in which the verifier
and the simulator run in logarithmic space. They also construct algorithms to
approximate different notions of entropy in certain restricted settings (but their
algorithms do not violate the assumption that EAmin,max is average-case hard).

1.2.1 Independent Works
MCRH have been recently considered in an independent work by Komargodski
et al. [KNY17b] (which was posted online roughly four months prior to the
first public posting of our work). Komargodski et al. study the problem, arising
from Ramsey theory, of finding either a clique or an independent set (of roughly
logarithmic size) in a graph, when such objects are guaranteed to exist. As one
of their results, [KNY17b] relate a variant of the foregoing Ramsey problem (for
bipartite graphs) to the existence of MCRH. We emphasize that the focus of
[KNY17b] is in studying computational problems arising from Ramsey theory,
rather than MCRH directly.

Beyond the work of [KNY17b], there are two other concurrent works that
specifically study MCRH [BPK17,KNY17a] (and were posted online simultane-
ously to our work). The main result of [KNY17a] is that the existence of MCRH
(with suitable parameters) implies the existence of efficient argument-systems
for NP, á la Kilian’s protocol [Kil92]. Komargodski et al. [KNY17a] also prove
that MCRH imply constant-round statistically hiding commitments (similarly
to Theorem 1.2), although their result only holds for MCRH who shrink their
input by a constant multiplicative factor. Lastly, [KNY17a] also show a blackbox
separation between MCRH in which it is hard to find t collisions from those in
which it is hard to find t + 1 collisions.

Bitansky et al. [BPK17] also study MCRH, with the motivation of construct-
ing efficient argument-systems. They consider both a keyed version of MCRH (as
in our work) and an unkeyed version (in which, loosely speaking, the require-
ment is that adversary cannot produce more collisions than those it can store
as non-uniform advice). [BPK17] show a so-called “domain extension” result
for MCRH that are sufficiently shrinking. Using this result they construct vari-
ous succinct and/or zero-knowledge argument-systems, with optimal or close-to-
optimal round complexity. In particular, they show the existence of 4 round zero-
knowledge arguments for NP based on MCRH, and, assuming unkeyed MCRH,
they obtain a similar result but with only 3 rounds of interaction.

140 I. Berman et al.

1.3 Our Techniques

We provide a detailed overview of our two main results: Constructing MCRH
from EAmin,max and constructing constant-round statistically-hiding commit-
ment scheme from MCRH.

1.3.1 Constructing MCRH from EAmin,max

Assume that we are given a distribution on circuits
{

C : {0, 1}n → {0, 1}2n
}

such that it is hard to distinguish between the cases Hmin(C) ≥ k or Hmax(C) ≤
k − 1, where we overload notation and let C also denote the output distribution
of the circuit when given uniformly random inputs. Note that we have set the
output length of the circuit C to 2n but this is mainly for concreteness (and to
emphasize that the circuit need not be shrinking).

Our goal is to construct an MCRH using C. We will present our construction
in steps, where in the first case we start off by assuming a very large entropy
gap. Specifically, for the first (over-simplified) case, we assume that it is hard
to distinguish between min-entropy ≥ n vs. max-entropy ≤ n/2.11 Note that
having min-entropy n means that C is injective.

Warmup: The case of Hmin(C) ≥ n vs. Hmax(C) � n/2. In this case, it is
already difficult to find even a 2-way collision in C: if Hmin(C) ≥ n, then C is
injective and no collisions exist. Thus, if one can find a collision, it must be the
case that Hmax(C) ≤ n/2 and so any collision finder distinguishes the two cases.

The problem though is that C by itself is not shrinking, and thus is not an
MCRH. To resolve this issue, a natural idea that comes to mind is to hash the
output of C, using a pairwise independent hash function.12 Thus, the first idea
is to choose f : {0, 1}2n → {0, 1}n−s, for some s ≥ 1, from a family of pairwise
independent hash functions and consider the hash function h(x) = f(C(x)).

If Hmin(C) ≥ n (i.e., C is injective), then every collision in h is a collision
on the hash function f . On the other hand, if Hmax(C) ≤ n/2, then C itself
has many collisions. To be able to distinguish between the two cases, we would
like that in the latter case there will be no collisions that originate from f . The
image size of C, if Hmax(C) � n/2, is smaller than 2n/2. If we set s to be
sufficiently small (say constant) than the range of f has size roughly 2n. Thus,
we are hashing a set into a range that is more than quadratic in its size. In such
case, we are “below the birthday paradox regime” and a random function on this
set will be injective. A similar statement can be easily shown also for functions
that are merely pairwise independent (rather than being entirely random).

Thus, in case C is injective, all the collisions appear in the second part of
the hash function (i.e., the application of f). On the other hand, if C has max-
entropy smaller than n/2, then all the collisions happen in the first part of the
11 This setting (and construction) is similar to that of Peikert and Waters’s construction

of CRH from lossy functions [PW11].
12 Recall that a collection of functions F is k-wise independent if for every distinct

x1, . . . , xk, the distribution of (f(x1), . . . , f(xk)) (over the choice of f ← F) is uni-
form.

Multi-Collision Resistant Hash Functions and Their Applications 141

hash function (i.e., in C). Thus, any adversary that finds a collision distinguishes
between the two cases and we actually obtain a full-fledged CRH (rather than
merely an MCRH) at the cost of making a much stronger assumption.

The next case that we consider is still restricted to circuits that are injective
(i.e., have min entropy n) in one case but assumes that it is hard to distinguish
injective circuits from circuits having max-entropy n−√

n (rather than n/2 that
we already handled).

The case of Hmin(C) ≥ n vs. Hmax(C) ≤ n − √
n. The problem that we

encounter now is that in the low max entropy case, the output of C has max-
entropy n − √

n. To apply the above birthday paradox argument we would need
the range of f to be of size roughly (2n−√

n)2 	 2n and so our hash function
would not be shrinking. Note that if the range of f were smaller, than even if f
were chosen entirely at random (let alone from a pairwise independent family)
we would see collisions in this case (again, by the birthday paradox).

The key observation that we make at this point is that although we will
see collisions, there will not be too many of them. Specifically, suppose we set
s ≈ √

n. Then, we are now hashing a set of size 2n−√
n into a range of size

2n−√
n. If we were to choose f entirely at random, this process would correspond

to throwing N = 2n−√
n balls (i.e., the elements in the range of C) into N bins

(i.e., elements in the range of f). It is well-known that in such case, with high
probability, the maximal load for any bin will be at most log(N)

log log(N) < n. Thus,
we are guaranteed that there will be at most n collisions.

Unfortunately, the work of Alon et al. [ADM+99] shows that the same
argument does not apply to functions that are merely pairwise independent
(rather than entirely random). Thankfully though, suitable derandomizations
are known. Specifically, it is not too difficult to show that if we take f from a
family of n-wise independent hash functions, then the maximal load will also be
at most n (see Sect. 2.2 for details).13

Similarly to before, in case C is injective, there are no collisions in the first
part. On the other hand, in case C has max-entropy at most n − √

n, we have
just argued that there will be less than n collisions in the second part. Thus, an
adversary that finds an n-way collision distinguishes between the two cases and
we have obtained an (s, t)-MCRH, with s =

√
n and t = n (i.e., collisions of size

2
√

n exist but finding a collision of size even n is computationally infeasible).

The case of Hmin(C) ≥ k vs. Hmax(C) ≤ k − √
n. We want to remove the

assumption that when the min-entropy of C is high, then it is in fact injective.
Specifically, we consider the case that either C’s min-entropy is at least k (for
some parameter k ≤ n) or its max entropy is at most k − √

n. Note that in the
high min-entropy case, C — although not injective — maps at most 2n−k inputs
to every output (this is essentially the definition of min-entropy). Our approach
is to apply hashing a second time (in a different way), to effectively make C
injective, and then apply the construction from the previous case.

13 We remark that more efficient constructions are known, see Remark 2.4.

142 I. Berman et al.

Consider the mapping h′(x) = (C(x), f(x)), where f will be defined ahead.
For h′ to be injective, f must be injective over all sets of size 2n−k. Taking f to
be pairwise-independent will force to set its output length to be too large, in a
way that will ruin the entropy gap between the cases.

As in the previous case, we resolve this difficulty by using many-wise inde-
pendent hashing. Let f : {0, 1}n → {0, 1}n−k be a 3n-wise independent hash
function. If Hmin(C) ≥ k, then the same load-balancing property of f that we
used in the previous case, along with a union bound, implies that with high
probability (over the choice of f) there will be no 3n-way collisions in h′. Our
final construction applies the previous construction on h′. Namely,

hC,f,g(x) = g(C(x), f(x)),

for f : {0, 1}n → {0, 1}n−k and g : {0, 1}3n−k → {0, 1}n−√
n being 3n-wise and

2n-wise independent hash functions, respectively. We can now show that

– If Hmin(C) ≥ k, then there do not exist 3n distinct inputs x1, . . . , x3n such
that they all have the same value of (C(xi), f(xi)); and

– If Hmax(C) ≤ k − √
n, then there do not exist 2n distinct inputs x1, . . . , x2n

such that they all have distinct values of (C(xi), f(xi)), but all have the same
value g(C(xi), f(xi)).

We claim that hC,f,g is (s, t)-MCRH for s =
√

n and t = 6n2: First, note that
in any set of 6n2 collisions for hC,f,g, there has to be either a set of 3n collisions
for (C, f) or a set of 2n collisions for g, and so at least one of the conditions
in the above two statements is violated. Now, assume that an adversary A finds
a 6n2-way collision in hC,f,g with high probability. Then, an algorithm D that
distinguishes between Hmin(C) ≥ k to Hmax(C) ≤ k − √

n chooses f and g
uniformly at random and runs A on the input h = hC,f,g to get x1, . . . , x6n2

with h(x1) = · · · = h(x6n2). The distinguisher D now checks which of the two
conditions above is violated, and thus can distinguish if it was given C with
Hmin(C) ≥ k or Hmax(C) ≤ k − √

n.
We proceed to the case that the entropy gap is 1 (rather than

√
n). This case

is rather simple to handle (via a reduction to the previous case).

The case of Hmin(C) ≥ k vs. Hmax(C) ≤ k − 1. This case is handled by
reduction to the previous case. The main observation is that if C has min-
entropy at least k, and we take � copies of C, then we get a new circuit with
min-entropy at least � · k. In contrast, if C had max-entropy at most k − 1, then
C ′ has max-entropy at most � ·k − �. Setting � = k, we obtain that in the second
case the max-entropy is n′ −√

n′, where n′ = � ·k is the new input length. Thus,
we have obtained a reduction to the

√
n′ gap case that we already handled.

1.3.2 Statistically-Hiding Commitments from MCRH

The fact that MCRH imply constant-round statistically-hiding commitments can
be shown in two ways. The first, more direct way, uses only elementary notions
such as k-wise independent hashing and is similar to the interactive hashing

Multi-Collision Resistant Hash Functions and Their Applications 143

protocol of Ding et al. [DHRS07]. An alternative method, is to first show that
MCRH imply the existence of an (O(1)-block) inaccessible entropy generator
[HRVW09,HV17]. The latter was shown by [HRVW09,HV17] to imply the exis-
tence of constant-round statistically-hiding commitments. We discuss these two
methods next and remark that in our actual proof we follow the direct route.

1.3.2.1 Direct Analysis
In a nutshell our approach is to follow the construction of Damg̊ard et al. [DPP93]
of statistically-hiding commitments from CRH, while replacing the use of pairwise
independent hashing, with the interactive hashing of Ding et al. [DHRS07]. We
proceed to the technical overview, which does not assume familiarity with any
of these results.

Warmup: Commitment from (Standard) CRH. Given a family of collision
resistant hash functions H =

{
h : {0, 1}n → {0, 1}n−1

}
, a natural first attempt

is to have the receiver sample the hash function h ← H and send it to the sender.
The sender, trying to commit to a bit b, chooses x ← {0, 1}n and r ← {0, 1}n,
and sends (y = h(x), r, σ = 〈r, x〉⊕b) to the receiver. The commitment is defined
as c = (h, y, r, σ). To reveal, the sender sends (x, b) to the receiver, which verifies
that h(x) = y and σ = 〈r, x〉 ⊕ b. Pictorially, the commit stage is as follows:

S(b) R

h h ← Gen(1n)

x, r ← {0, 1}n c = (h(x), r, 〈r, x〉 ⊕ b)

The fact that the scheme is computationaly binding follows immediately from
the collision resistance of h: if the sender can find (x, 0) and (x′, 1) that pass the
receiver’s verification, then x �= x′ and h(x) = h(x′).

Arguing that the scheme is statistically-hiding is trickier. The reason is that
h(x) might reveal a lot of information on x. What helps us is that h is shrinking,
and thus some information about x is hidden from the receiver. In particular, this
means that x has positive min-entropy given h(x). At this point we would like
to apply the Leftover Hash Lemma (LHL) to show that for any b, the statistical
distance between (h(x), r, 〈r, x〉 ⊕ b) and (h(x), r, u) is small. Unfortunately, the
min-entropy level is insufficient to derive anything meaningful from the LHL and
indeed the distance between these two distributions is a constant (rather than
negligible as required).

To reduce the statistical distance, we increase the min-entropy via repetition.
We modify the protocol so that the sender selects k values x = (x1, . . . , xk) ←
{0, 1}n·k and r ← {0, 1}n·k, and sends

(
h(x1), . . . , h(xk), r, 〈r,x〉 ⊕ b

)
to the

receiver. The min-entropy of x, even given h(x1), . . . , h(xk) is now Ω(k), and
the LHL now yields that the statistical distance between the two distributions

144 I. Berman et al.

(
h, h(x1), . . . , h(xk), r, 〈r,x〉⊕0

)
and

(
h, h(x1), . . . , h(xk), r, 〈r,x〉⊕1

)
is roughly

2−k. Setting k to be sufficiently large (e.g., k = poly(n) or even k = poly log(n))
we obtain that the scheme is statistically-hiding. Note that repetition also does
not hurt binding: if the sender can find valid decommitments (x = (x1 . . . , xk), 0)
and (x′ = (x′

1, . . . , x
′
k), 1) that pass the receiver’s verification, then there must

exist i ∈ [k] with xi �= x′
i and h(xi) = h(x′

i) (i.e., a collision).

HandlingMCRHs. For simplicity, let us focus on the case t = 4 (since it basically
incorporates all the difficulty encountered when dealing with larger values of t).
That is, we assume that H =

{
h : {0, 1}n → {0, 1}n−s

}
is an (s, t)-MCRH with

s = 2 and t = 4. Namely, it is hard to find 4 inputs that map to the same hash
value for a random function from H, even though such 4-way collisions exist.
Note however that it might very well be easy to find 3 such colliding inputs.
And indeed, the binding argument that we had before breaks: finding x �= x′

with h(x) = h(x) is no longer (necessarily) a difficult task.
The problem comes up because even after the sender ‘commits’ to y1 =

h(x1), . . . , yk = h(xk), it is no longer forced to reveal x1, . . . , xk. Intuitively, for
every yi, the sender might know 3 inputs that map to yi, so, the sender is free
to reveal any value in the Cartesian product of these triples. Concretely, let
Syi

be the set of inputs that h maps to yi that the sender can find efficiently,
and let Sy = Sy1 × · · · × Syk

. Since the sender can find at most 3 colliding
inputs, it holds that |Syi

| ≤ 3 for every i, and thus |Sy| ≤ 3k. To fix the binding
argument, we want to force every efficient sender to able to reveal a unique
x = (x1, . . . , xk) ∈ Sy.

A first attempt toward achieving the above goal is to try to use a pairwise-
independent hash function f that is injective over Sy with high probability. At a
high level, the receiver will also specify to the sender a random function f from
the pairwise independent hash function family. The sender in turn sends f(x)
as well as (h(x1), . . . , h(xk)). The receiver adds a check to the verification step
to ensure that f maps the decommited input sequence (x′

1, . . . , x
′
k) to the value

that was pre-specified.
In order for the function f to be injective on the set Sy, the birthday paradox

tells us that the range of f must have size at least |Sy|2 (roughly), which means
at least 32k. Thus, to ensure that f is injective on Sy, we can use a pairwise-
independent function f : {0, 1}nk → {0, 1}2k log(3).

Unfortunately, this scheme is still not binding: f is promised (with high prob-
ability) to be injective for fixed sets of size 3k, but the sender can choose y based
on the value of f . Specifically, to choose y so that f is not injective over Sy. To fix
the latter issue, we split the messages that the receiver sends into two rounds. In
the first round the receiver sends h and receives y =

(
h(x1), . . . , h(xk)

)
from the

sender. Only then the receiver sends f and receives z1 = f(x). Now, the scheme
is binding: since f is chosen after y is set, the pairwise-independence property
guarantees that f will be injective over Sy with high probability. Pictorially, the
commit stage of the new scheme is as follows:

Multi-Collision Resistant Hash Functions and Their Applications 145

S(b) R

h h ← Gen(1n)

x ← {0, 1}nk,

yi = h(xi)
y = (y1, y2 . . . yk)

f f : {0, 1}nk → {0, 1}2k log(3)

r ← {0, 1}nk f(x), r, 〈r,x〉 ⊕ b

But is this scheme statistically-hiding? Recall that previously, to argue hid-
ing, we used the fact that the mapping (x1, . . . , xk) �→ (h(x1), . . . , h(xk)) is
shrinking. In an analogous manner, here, we need the mapping (x1, . . . , xk) �→(
h(x1), . . . , h(xk), f(x)

)
to be shrinking. However, the latter mapping maps

strings of length n · k bits to strings of length (n − 2) · k + 2 log(3) · k, which is
obviously not shrinking.

One work-around is to simply assume that the given MCRH shrinks much
more than we assumed so far. For example, to assume that H is (4, 4)-MCRH
(or more generally (s, t)-MCRH for s 	 log(t)).14 However, by adding one more
round of interaction we can actually fix the protocol so that it gives statistically-
hiding commitments even with tight shrinkage of log(t).

Overcoming the Birthday Paradox. To guarantee hiding, it seems that we
cannot afford the range of f to be as large as (3k)2. Instead, we set its range size
to 3k (i.e., f : {0, 1}nk → {0, 1}k log(3)). Moreover, rather than choosing it from
a pairwise independent hash function family, we shall one more use one that is
many-wise-independent. Again, the important property that we use is that such
functions are load-balanced15 with high probability, z1 — the value that the
sender sends in the second round — has at most log(3k) = k · log(3) pre-images
from Sy under f (i.e., |{x ∈ Sy : f(x) = z1}| ≤ k · log(3)). We once more face the
problem that the sender can reveal any of these inputs, but now their number
is exponentially smaller — it is only k log(3) (as opposed to 3k before). We can
now choose a pairwise-independent g : {0, 1}nk → {0, 1}2(log(k)+log log(3)) that is
injective over sets of size k · log(3) (with high probability). For the same reasons
that f was sent after h, the receiver sends g only after receiving f(x).

Thus, our final protocol has three rounds (where each round is composed
of one message for each of the two parties) and is as follows: In the first
round, the receiver selects h ← H and sends it to the sender. The sender,

14 We remark that our construction of MCRH based on EAmin,max (see Sect. 3) actually
supports such large shrinkage.

15 In a nutshell, the property that we are using is that if N = 3k balls are thrown into
N bins, with high probability the maximal load in every bin will be at most log(N).
It is well-known that hash functions that are log(N)-wise independent also have this
property. See Sect. 2.2 for details.

146 I. Berman et al.

trying to commit to a bit b, chooses x = (x1, . . . , xk) ← {0, 1}nk and sends
y = (y1 = h(x1), . . . , yk = h(xk)). In the second round, the receiver selects
a many-wise-independent hash function f : {0, 1}nk → {0, 1}k log(3) and sends
it to the sender. The sender sends z1 = f(x) to the receiver. In the third
and final round, the receiver selects a pairwise-independent hash function
g : {0, 1}n·k → {0, 1}2(log(k)+log log(3)) and sends it to the sender. The sender
selects r ← {0, 1}nk, and sends (z2 = g(x), r, σ = 〈r,x〉 ⊕ b) to the receiver. The
commitment is defined as c = (h,y, f, z1, g, z2, σ). To reveal, the sender sends
(x, b) to the receiver, which verifies that h(xi) = yi for every i, that f(x) = z1,
g(x) = z2 and σ = 〈r,x〉 ⊕ b. Pictorially, the commit stage is as follows:

S(b) R

h h ← Gen(1n)

x ← {0, 1}nk,

yi = h(xi)
y = (y1, y2 . . . yk)

f f : {0, 1}nk → {0, 1}k log(3)

f(x)

g g : {0, 1}nk → {0, 1}2(log k+log log(3))

r ← {0, 1}nk g(x), r, 〈r,x〉 ⊕ b

Intuitively, the scheme is computationally binding since for any computa-
tionally bounded sender that committed to c, there is a unique x that passes
the receiver’s verification. As for hiding, we need the mapping (x1, . . . , xk) �→
(h(x1), . . . , h(xk), f(x), g(x)) to be shrinking. Observe that we are mapping n ·k
bits to (n − 2)k + log(3)k + 2(log(k) + log log(3)) bits (where all logarithms are
to the base 2). Choosing k to be sufficiently large (e.g., k = poly(n) certainly
suffices) yields that the mapping is shrinking.

This completes the high level overview of the direct analysis of our construc-
tion of constant-round statistically hiding commitments. The formal proof, done
via a reduction from the binding of the scheme to the MCRH property, requires
more delicate care (and in particular handling certain probabilistic dependencies
that arise in the reduction). See Sect. 4 for details.

1.3.2.2 Analysis via Inaccesible Entropy
Consider the jointly distributed random variables (h(x), x), where h is cho-
sen at random from a family of t-way collision resistant hash functions H ={

h : {0, 1}n → {0, 1}n−log(t)
}

and x is a uniform n-bit string. Since h(x) is only
(n − log(t)) bits long, it can reveal only that amount of information about x.

Multi-Collision Resistant Hash Functions and Their Applications 147

Thus, the entropy of x given h(x) (and h) is at least log(t). In fact, a stronger
property holds: the expected number of pre-images of h(x), over the choice of
x, is t. This implies that x given h(x) has log(t) bits of (a weaker variant of)
min-entropy.

While h(x) has t pre-images (in expectation), no efficient strategy can find
more than t − 1 of them. Indeed, efficiently finding t such (distinct) pre-images
directly violates the t-way collision resistance of h.

In terms of inaccessible entropy, the foregoing discussion establishes that
(h(x), x) is a 2-block inaccessible entropy generator where the second block (i.e.,
x) has real min-entropy log(t) and accessible max-entropy at most log(t − 1).
This block generator is not quite sufficient to get statistically-hiding commit-
ment since the construction of [HRVW09,HV17] requires a larger gap between
the entropies. This, however, is easily solved since taking many copies of the
same generator increases the entropy gap. That is, the final 2-block generator
is

(
(h(x1), . . . , h(xk)), (x1, . . . , xk)

)
, for a suitable choice of k. The existence of

constant-round statistically-hiding commitment now follows immediately from
[HV17, Lemma 19].16 The resulting protocol turns out to be essentially the same
as that obtained by the direct analysis discussed above (and proved in Sect. 4).

1.4 Organization

In Sect. 2 we provide standard definitions and basic facts. In Sect. 3 we formally
state the entropy approximation assumption and present our construction of
MCRH based on this assumption. Lastly, In Sect. 4 we describe the construction
of constant-round statistically-hiding commitments from MCRH.

As already mentioned, we defer the proof of the blackbox separation of MCRH
from one-way permutations to the full version of this paper [BDRV17].

2 Preliminaries

We use lowercase letters for values, uppercase for random variables, uppercase
calligraphic letters (e.g., U) to denote sets, boldface for vectors (e.g., x), and
uppercase sans-serif (e.g., A) for algorithms (i.e., Turing Machines). All log-
arithms considered here are in base two. We let poly denote the set of all
polynomials. A function ν : N → [0, 1] is negligible, denoted ν(n) = negl(n),
if ν(n) < 1/p(n) for every p ∈ poly and large enough n.

Given a random variable X, we write x ← X to indicate that x is selected
according to X. Similarly, given a finite set S, we let s ← S denote that s is
selected according to the uniform distribution on S. We adopt the convention

16 The general construction of statistically-hiding commitments from inaccessible
entropy generators is meant to handle a much more general case than the one needed
in our setting. In particular, a major difficulty handled by [HRVW09,HV17] is when
the generator has many blocks and it is not known in which one there is a gap
between the real and accessible entropies.

148 I. Berman et al.

that when the same random variable occurs several times in an expression, all
occurrences refer to a single sample. For example, Pr[f(X) = X] is defined to be
the probability that when x ← X, we have f(x) = x. We write Un to denote the
random variable distributed uniformly over {0, 1}n. The support of a distribution
D over a finite set U , denoted Supp(D), is defined as {u ∈ U : D(u) > 0}. The
statistical distance of two distributions P and Q over a finite set U , denoted as
SD(P,Q), is defined as maxS⊆U |P (S) − Q(S)| = 1

2

∑
u∈U |P (u) − Q(u)|.

2.1 Many-Wise Independent Hashing

Many-wise independent hash functions are used extensively in complexity theory
and cryptography.

Definition 2.1 (�-wise Independent Hash Functions). For � ∈ N, a fam-
ily of functions F = {f : {0, 1}n → {0, 1}m} is �-wise independent if for every
distinct x1, x2, . . . , x� ∈ {0, 1}n and every y1, y2, . . . , y� ∈ {0, 1}m, it holds that

Pr
f←F

[f(x1) = y1 ∧ f(x2) = y2 ∧ · · · ∧ f(x�) = y�] =
1

M �
.

Note that if H is k-wise independent for k ≥ 2, it is also universal. The
existence of efficient many-wise hash function families is well known.

Fact 2.2 (c.f. [Vad12, Corollary 3.34]). For every n,m, � ∈ N, there exists
a family of �-wise independent hash functions F (�)

n,m = {f : {0, 1}n → {0, 1}m}
where a random function from F (�)

n,m can be selected using � ·max(m,n) bits, and
given a description of f ∈ F (�)

n.m and x ∈ {0, 1}n, the value f(x) can be evaluated
in time poly(n,m, �).

Whenever we only need pairwise independent hash function F (2)
n,m, we remove

the two from the superscript and simply write Fn,m.

2.2 Load Balancing

The theory of load balancing deals with allocating elements into bins, such that
no bin has too many elements. If the allocation is done at random, it can be
shown that with high probability the max load (i.e., the number of elements in
the largest bin) is not large. In fact, allocating via many-wise independent hash
function also suffices.

Fact 2.3 (Folklore (see, e.g., [CRSW13])). Let n,m, � ∈ N with � ≥ 2e (where
e is the base of the natural logarithm) and let F (�)

n,m be an �-wise independent hash
function family. Then, for every set S ⊆ {0, 1}n with |S| ≤ 2m it holds that:

Pr
f←F(�)

n,m

[∃y ∈ {0, 1}m such that
∣∣f−1(y) ∩ S∣∣ ≥ �

] ≤ 2m−�,

where f−1(y) = {x ∈ {0, 1}n : f(x) = y}.

Multi-Collision Resistant Hash Functions and Their Applications 149

Proof. Fix y ∈ {0, 1}m. It holds that

Pr
f←F(�)

n,m

[
∣∣f−1(y) ∩ S∣∣ ≥ �

]

≤ Pr
f←F(�)

n,m

[∃ distinct x1, . . . , x� ∈ S : f(x1) = y ∧ · · · ∧ f(x�) = y]

≤
∑

distinct x1,...,x�∈S
Pr

f←F�
n,m

[f(x1) = y ∧ · · · ∧ f(x�) = y]

≤
(

2m

�

)
·
(

1
2m

)�

≤
(

e · 2m

�

)�

·
(

1
2m

)�

≤ 2−�,

where the second inequality is by a union bound, the third inequality follows from
the �-wise independence of F (�)

n,m, the fourth inequality is by a standard bound
on binomial coefficients, and the last inequality follows by our assumption that
� ≥ 2e.

Fact 2.3 follows from a union bound over all values of y ∈ {0, 1}m. ��
Remark 2.4 (More Efficient Hash Functions). We remark that more efficient
constructions of hash functions guaranteeing the same load balancing perfor-
mance as in Fact 2.3 are known in the literature.

Specifically, focusing on the setting of � = O(m), Fact 2.3 gives a load bal-
ancing guarantee for functions whose description size (i.e., key length) is Ω(m2)
bits. In contrast, a recent result of Celis et al. [CRSW13] constructs such func-
tions that require only Õ(m) key size. Furthermore, a follow up work of Meka
et al. [MRRR14] improves the evaluation time of the [CRSW13] hash function
to be only poly-logarithmic in m (in the word RAM model).

However, since our focus is not on concrete efficiency, we ignore these opti-
mizations throughout this work.

3 Constructing MCRH Families

In this section, we present a construction of a Multi-Collision Resistant Hash
family (MCRH) based on the hardness of estimating certain notions of entropy
of a distribution, given an explicit description of the distribution (i.e., a circuit
that generates it). We define and discuss this problem in Sect. 3.1, and present
the construction of MCRH in Sect. 3.2.

3.1 Entropy Approximation

In order to discuss the problem central to our construction, we first recall some
standard notions of entropy.

150 I. Berman et al.

Definition 3.1. For a random variable X, we define the following notions of
entropy:

– Min-entropy: Hmin(X) = minx∈Supp(X) log
(

1
Pr[X=x]

)
.

– Max-entropy: Hmax(X) = log (|Supp(X)|).
– Shannon entropy: HShannon(X) = Ex←X

[
log

(
1

Pr[X=x]

)]
.

For any random variable, these entropies are related as described below.
These relations ensure that the problems we describe later are well-defined.

Fact 3.2. For a random variable X supported over {0, 1}m,

0 ≤ Hmin(X) ≤ HShannon(X) ≤ Hmax(X) ≤ m.

Given a circuit C : {0, 1}n → {0, 1}m, we overload C to also denote the
random variable induced by evaluating C on a uniformly random input from
{0, 1}n. With this notation, the Entropy Approximation problem is defined as
below.

Definition 3.3 (Min-Max Entropy Approximation). Let g = g(n) ∈ R

be a function such that 0 < g(n) < n. The min-max Entropy Approximation
problem with gap g, denoted EA

(g)
min,max, is a promise problem (YES,NO) for

YES = {YESn}n∈N
and NO = {NOn}n∈N

, where we define

YESn = {(1n, Cn, k) : Hmin(Cn) ≥ k}, and
NOn = {(1n, Cn, k) : Hmax(Cn) ≤ k − g(n)},

and where in both cases Cn is a circuit that takes n bits of input, and k ∈
{0, . . . , n}.

We also define EAmin,max = EA
(1)
min,max. That is, when we omit the gap g we

simply mean that g = 1.
The Shannon Entropy Approximation problem (where Hmin and Hmax

above are replaced with HShannon), with constant gap, was shown by Goldreich
et al. [GSV99] to be complete for the class NISZK (promise problems with non-
interactive statistical zero knowledge proof systems). For a discussion of gen-
eralizations of Entropy Approximation to other notions of entropy, and other
related problems, see [DGRV11].

3.1.1 The Assumption: Average-Case Hardness of Entropy Approx-
imation.

Our construction of MCRH is based on the average-case hardness of the Entropy
Approximation problem EAmin,max defined above (i.e., with gap 1). We use the
following definition of average-case hardness of promise problems.

Multi-Collision Resistant Hash Functions and Their Applications 151

Definition 3.4 (Average-case Hardness). We say that a promise problem
Π = (YES,NO), where YES = {YESn}n∈N

and NO = {NOn}n∈N
, is average-

case hard if there is a probabilistic algorithm S such that S(1n) outputs sam-
ples from (YESn ∪ NOn), and for every family of polynomial-sized circuits
A = (An)n∈N,

Pr
x←S(1n)

[An(x) = Π(x)] ≤ 1
2

+ negl(n),

where Π(x) = 1 if x ∈ YES and Π(x) = 0 if x ∈ NO. We call S a hard-instance
sampler for Π. The quantity (Prx←S(1n)[An(x) = Π(x)] − 1/2) is referred to as
the advantage the algorithm A has in deciding Π with respect to the sampler S.

In our construction and proofs, it will be convenient for us to work with the

problem EA
(�√

n�)
min,max rather than EAmin,max = EA

(1)
min,max. At first glance EA(�√

n�)
min,max

seems to be an easier problem because the gap here is �√n�, which is much
larger. The following simple proposition shows that these two problems are in
fact equivalent (even in their average-case complexity). The key idea here is
repetition: given a circuit C, we can construct a new circuit C ′ that outputs C
evaluated on independent inputs with a larger gap.

Proposition 3.5. EA
(�√

n�)
min,max is average-case hard if and only if EA

(1)
min,max is

average-case hard.

Proof Sketch. Note that any YES instance of EA(�√
n�)

min,max is itself a YES instance of

EA
(1)
min,max, and the same holds for NO instances. So the average-case hardness of

EA
(�√

n�)
min,max immediately implies that of EA(1)

min,max, with the same hard-instance
sampler. In order to show the implication in the other direction, we show how to
use a hard-instance sampler for EA

(1)
min,max to construct a hard-instance sampler

S′ for EA
(�√

n�)
min,max.

S′ on input (1n):

1. Let � = �√n�. S′ samples (1�, C�, k) ← S(1�).
2. Let Ĉn be the following circuit that takes an n-bit input x. It breaks x into

� + 1 disjoint blocks x1, . . . , x�+1, where x1, . . . , x� are of size �, and x�+1 is
whatever remains. It ignores x�+1, runs a copy of C� on each of the other xi’s,
and outputs a concatenation of all the outputs.

3. S′ outputs (1n, Ĉn, k · �).

. .
As Ĉn is the �-fold repetition of C�, its max and min entropies are � times

the respective entropies of C�. So if C� had min-entropy at least k, then Ĉn has
min-entropy at least k · �, and if C� had max-entropy at most (k − 1), then Ĉn

has max-entropy at most (k − 1) · � = k · � − �, where � = �√n�. The proposition
follows. ��

152 I. Berman et al.

3.2 The Construction

Our construction of a Multi-Collision Resistant Hash (MCRH) family is presented
in Fig. 1. We now prove that the construction is secure under our average-case
hardness assumption.

The Construction of MCRH

Let S be a hard-instance sampler for EA(�
√

n�)
min,max.

Gen(1n):

1. Sample (1n, Cn, k) ← S(1n), where Cn maps {0, 1}n → {0, 1}n′
.

2. Samplea f ← F (3n)
n,(n−k) and g ← F (2n)

(n′+n−k),(n−�√
n�).

3. Output the circuit that computes the function hCn,f,g : {0, 1}n →
{0, 1}n−�√

n� that is defined as follows:

hCn,f,g(x) := g Cn(x), f(x)
)
.

aRecall that F (�)
n,m = {f : {0, 1}n → {0, 1}m} is a family of �-wise independent

hash functions.

Fig. 1. Construction of MCRH from Entropy Approximation.

Theorem 3.6. If EA(�√
n�)

min,max is average-case hard, then the construction in Fig. 1
is an (s, t)-MCRH, where s = �√n� and t = 6n2.

The above theorem, along with Proposition 3.5, now implies the following.

Corollary 3.7. If EAmin,max is average-case hard, then there exists an (s, t)-
MCRH, where s = �√n� and t = 6n2.

Note that above, the shrinkage being �√n� guarantees that there exist 2�√
n�-

way collisions. But the construction is such that it is not possible to find even
a 6n2-way collision, (which is sub-exponentially smaller). This is significant
because, unlike in the case of standard collision-resistant hash functions (i.e.,
in which it is hard to find a pair of collisions), shrinkage in MCRHs cannot be
easily amplified by composition while maintaining the same amount of collision-
resistance (see Remark 1.2).

The rest of this section is dedicated to proving Theorem 3.6.

Proof of Theorem 3.6. Let Gen denote the algorithm described in Fig. 1, and S
be the hard-instance sampler used there. Fact 2.2, along with the fact that S
runs in polynomial-time ensures that Gen runs in polynomial-time as well. The
shrinkage requirement of an MCRH is satisfied because here the shrinkage is
s(n) = �√n�. To demonstrate multi-collision resistance, we show how to use an
adversary that finds 6n2 collisions in hash functions sampled by Gen to break the

Multi-Collision Resistant Hash Functions and Their Applications 153

average-case hardness of EA(�√
n�)

min,max. For the rest of the proof, to avoid cluttering

up notations, we will denote the problem EA
(�√

n�)
min,max by just EA.

We begin with an informal discussion of the proof. We first prove that large
sets of collisions that exist in a hash function output by Gen have different
properties depending on whether the instance that was sampled in step 1 of Gen
was a YES or NO instance of EA. Specifically, notice that the hash functions
that are output by Gen have the form hCn,f,g(x) = g(Cn(x), f(x)); we show that,
except with negligible probability:

– In functions hCn,f,g generated from (1n, Cn, k) ∈ YES, with high probability,
there do not exist 3n distinct inputs x1, . . . , x3n such that they all have the
same value of (Cn(xi), f(xi)).

– In functions hCn,f,g generated from (1n, Cn, k) ∈ NO, with high probability,
there do not exist 2n distinct inputs x1, . . . , x2n such that they all have dis-
tinct values of (Cn(xi), f(xi)), but all have the same value g(Cn(xi), f(xi)).

Note that in any set of 6n2 collisions for hCn,f,g, there has to be either a set
of 3n collisions for (Cn, f) or a set of 2n collisions for g, and so at least one of
the conclusions in the above two statements is violated.

A candidate average-case solver for EA, when given an instance (1n, Cn, k),
runs steps 2 and 3 of the algorithm Gen from Fig. 1 with this Cn and k. It then
runs the collision-finding adversary on the hash function hCn,f,g that is thus
produced. If the adversary does not return 6n2 collisions, it outputs a uniformly
random answer. But if these many collisions are returned, it checks which of the
conclusions above is violated, and thus knows whether it started with a YES
or NO instance. So whenever the adversary succeeds in finding collisions, the
distinguisher can decide EA correctly with overwhelming probability. As long as
the collision-finding adversary succeeds with non-negligible probability, then the
distinguisher also has non-negligible advantage, contradicting the average-case
hardness of EA.

We now state and prove the above claims about the properties of sets of
collisions, then formally write down the adversary outlined above and prove
that it breaks the average case hardness of EA.

The first claim is that for hash functions hCn,f,g generated according to Gen
using a YES instance, there is no set of 3n distinct xi’s that all have the same
value for Cn(xi) and f(xi), except with negligible probability.

Claim 3.7.1. Let (1n, Cn, k) be a YES instance of EA. Then,

Pr
f←F(3n)

n,(n−k)

[∃y, y1 ∈ {0, 1}∗ :
∣∣C−1

n (y) ∩ f−1(y1)
∣∣ ≥ 3n

] ≤ 1
2n

.

Intuitively, the reason this should be true is that when Cn comes from a YES
instance, it has high min-entropy. This means that for any y, the set C−1

n (y) will
be quite small. The function f can now be thought of as partitioning each set
C−1

n (y) into several parts, none of which will be too large because of the load-
balancing properties of many-wise independent hash functions.

154 I. Berman et al.

Proof. The above probability can be bounded using the union bound as follows:

Pr
f

[∃y, y1 :
∣∣C−1

n (y) ∩ f−1(y1)
∣∣ ≥ 3n

]

≤
∑

y∈Im(Cn)

Pr
f

[∃y1 :
∣∣C−1

n (y) ∩ f−1(y1)
∣∣ ≥ 3n

]
. (1)

The fact that (1n, Cn, k) is a YES instance of EA means that Hmin(Cn) ≥ k.
The definition of min-entropy now implies that for any y ∈ Im(Cn):

log
(

1
Prx←{0,1}n [Cn(x) = y]

)
≥ k,

which in turn means that
∣∣C−1

n (y)
∣∣ ≤ 2n−k. Fact 2.3 (about the load-balancing

properties of F (3n)
n,(n−k)) now implies that for any y ∈ Im(Cn):

Pr
f

[∃y1 :
∣∣C−1

n (y) ∩ f−1(y1)
∣∣ ≥ 3n

] ≤ 2n−k

23n
≤ 1

22n
. (2)

Combining Eqs. (1) and (2), and noting that the image of Cn has at most 2n

elements, we get the desired bound:

Pr
f

[∃y, y1 :
∣∣C−1

n (y) ∩ f−1(y1)
∣∣ ≥ 3n

] ≤ 2n · 1
22n

≤ 1
2n

.

��
The next claim is that for hash functions hCn,f,g generated according to Gen

using a NO instance, there is no set of 2n values of xi that all have distinct values
of (Cn(xi), f(xi)), but the same value g(Cn(xi), f(xi)), except with negligible
probability.

Claim 3.7.2. Let (1n, Cn, k) be a NO instance of EA. Then,

Pr
f←F(3n)

n,(n−k)

g←F(2n)
(n′+n−k),(n−	√

n
)

⎡
⎢⎢⎣∃x1, . . . , x2n :

For all i �= j,(
Cn(xi), f(xi)

) �= (
Cn(xj), f(xj)

)
and

g
(
Cn(xi), f(xi)

)
= g

(
Cn(xj), f(xj)

)

⎤
⎥⎥⎦ ≤ 1

2n
.

Proof. The fact that (1n, Cn, k) is a NO instance of EA means that Hmax(Cn) ≤
k − �√n�; that is, Cn has a small range: |Im(Cn)| ≤ 2k−�√

n�.
For any f ∈ F (3n)

n,(n−k), which is what is sampled by Gen when this instance

is used, the range of f is a subset of {0, 1}n−k. This implies that even together,
Cn and f have a range whose size is bounded as:

|Im(Cn, f)| ≤ 2k−�√
n� · 2n−k = 2n−�√

n�,

where (Cn, f) denotes the function that is the concatenation of Cn and f .

Multi-Collision Resistant Hash Functions and Their Applications 155

For there to exist a set of 2n inputs xi that all have distinct values for
(Cn(xi), f(xi)) but the same value for g(Cn(xi), f(xi)), there has to be a y that
has more than 2n inverses under g that are all in the image of (Cn, f). As g comes
from F (2n)

(n′+n−k),(n−�√
n�), we can use Fact 2.3 along with the above bound on

the size of the image of (Cn, f) to bound the probability that such a y exists as
follows:

Pr
g

[∃y :
∣∣g−1(y) ∩ Im(Cn, f)

∣∣ ≥ 2n
] ≤ 2n−�√

n�
22n

≤ 1
2n

.

��
Let A = (An)n∈N be a polynomial-size family of circuits that given a hash

function output by Gen(1n) finds a 6n2-way collision in it with non-negligible
probability. The candidate circuit family A′ = (A′

n)n∈N for solving EA on average
is described below.

A′
n on input (1n, Cn, k):

1. Run steps 2 and 3 of the algorithm Gen in Fig. 1 with (1n, Cn, k) in place of
the instance sampled from S there. This results in the description of a hash
function hCn,f,g.

2. Run An(hCn,f,g) to get a set of purported collisions S.
3. If S does not actually contain 6n2 collisions under hCn,f,g, output a random

bit.
4. If S contains 3n distinct xi’s such that they all have the same value of

(Cn(xi), f(xi)), output 0.
5. If S contains 2n distinct xi’s such that they all have distinct values of

(Cn(xi), f(xi)) but the same value g(Cn(xi), f(xi)), output 1.

. .
The following claim now states that any collision-finding adversary for the

MCRH constructed can be used to break the average-case hardness of EA, thus
completing the proof.

Claim 3.7.3. If A finds 6n2 collisions in hash functions output by Gen(1n) with
non-negligible probability, then A′ has non-negligible advantage in deciding EA
with respect to the hard-instance sampler S used in Gen.

Proof. On input (1n, Cn, k), the adversary A′
n computes hCn,f,g and runs An on

it. If An does not find 6n2 collisions for hCn,f,g, then A′
n guesses at random and

is correct in its output with probability 1/2. If An does find 6n2 collisions, then
A′

n is correct whenever one of the following is true:

1. (1n, Cn, k) is a YES instance and there is no set of 3n collisions for (Cn, f).
2. (1n, Cn, k) is a NO instance and there is no set of 2n collisions for g in the

image of (Cn, f).

156 I. Berman et al.

Note that inputs to A′
n are drawn from S(1n), and so the distribution over

hCn,f,g produced by A′
n is the same as that produced by Gen(1n) itself. With

such samples, let E1 denote the event of (Cn, f) having a set of 3n collisions
from S (the set output by An), and let E2 denote the event of g having a set of
2n collisions in the image of (Cn, f) from S. Also, let EY denote the event of
the input to A′

n being a YES instance, EN that of it being a NO instance, and
EA the event that S contains at least 6n2 collisions.

Following the statements above, the probability that A′
n is wrong in deciding

EA with respect to (1n, Cn, k) ← S(1n) can be upper-bounded as:

Pr
[
A′

n(1n, Cn, k) is wrong]

= Pr
[
(¬EA) ∧ (A′

n is wrong)
]
+ Pr

[
EA ∧ (A′

n is wrong)
]

≤ Pr[¬EA] · 1
2

+ Pr[(EY ∧ E1) ∨ (EN ∧ E2)].

The first term comes from the fact that if An doesn’t find enough collisions, A′
n

guesses at random. The second term comes from the fact that if both (EY ∧E1)
and (EN ∧ E2) are false and EA is true, then since at least one of EY and EN

is always true, one of (EY ∧ ¬E1) and (EN ∧ ¬E2) will also be true, either of
which would ensure that A′

n is correct, as noted earlier.
We now bound the second term above, starting as follows:

Pr[(EY ∧ E1) ∨ (EN ∧ E2)] ≤ Pr[(EY ∧ E1)] + Pr[(EN ∧ E2)]

= Pr[EY] Pr[E1|EY] + Pr[EN] Pr[E2|EN]

≤ Pr[EY] · negl(n) + Pr[EN] · negl(n)

= negl(n),

where the first inequality follows from the union bound and the last inequality
follows from Claims 3.7.1 and 3.7.2.

Putting this back in the earlier expression,

Pr
[
A′

n(1n, Cn, k) is wrong
] ≤ Pr[¬EA] · 1

2
+ negl(n)

=
1
2

− Pr[EA]
2

+ negl(n).

In other words,

Pr
[
A′

n(1n, Cn, k) is correct
] ≥ 1

2
+

Pr[EA]
2

− negl(n).

So if A succeeds with non-negligible probability in finding 6n2 collisions, then A′

had non-negligible advantage in deciding EA over S. ��
This concludes the proof of Theorem 3.6. ��

Multi-Collision Resistant Hash Functions and Their Applications 157

4 Constant-Round Statistically-Hiding Commitments

In this section we show that multi-collision-resistant hash functions imply the
existence of constant-round statistically-hiding commitments. Here we follow
the “direct route” discussed in the introduction (rather than the “inaccessible
entropy route”).

For simplicity, we focus on bit commitment schemes (in which messages are
just single bits). As usual, full-fledged commitment schemes (for long messages)
can be obtained by committing bit-by-bit.

Definition 4.1 (Bit Commitment Scheme). A bit commitment scheme is
an interactive protocol between two polynomial-time parties — the sender S and
the receiver R — that satisfies the following properties.

1. The protocol proceeds in two stages: the commit stage and the reveal stage.
2. At the start of the commit stage both parties get a security parameter 1n as

a common input and the sender S also gets a private input b ∈ {0, 1}. At the
end of the commit stage the parties have a shared output c, which is called
the commitment, and the sender S has an additional private output d, which
is called the decommitment.

3. In the reveal stage, the sender S sends (b, d) to the receiver R. The receiver R
accepts or rejects based on c, d and b. If both parties follow the protocol, then
the receiver R always accepts.

In this section we focus on commitment schemes that are statistically-hiding
and computationally-binding.

Definition 4.2 (Statistically Hiding Bit Commitment). A bit commit-
ment scheme (S,R) is statistically-hiding if for every cheating receiver R∗ it holds
that

SD((S(0),R∗)(1n), (S(1),R∗)(1n)) = negl(n),

where (S(b),R∗)(1n) denotes the transcript of the interaction between R∗ and
S(b) in the commit stage.

Definition 4.3 (Computationally Binding Bit Commitment). A bit com-
mitment scheme (S,R) is said to be computationally-binding if for every family
of polynomial-size circuits sender S∗ = (S∗

n)n∈N it holds that S∗ wins in the
following game with only with negl(n) probability:

1. The cheating sender S∗
n interacts with the honest receiver R(1n) in the commit

stage obtaining a commitment c.
2. Then, S∗

n outputs two pairs (0, d0) and (1, d1). The cheating sender S∗ wins
if the honest receiver R accepts both (c, 0, d0) and (c, 1, d1).

We are now ready to state the main result of this section. A round of a
commitment scheme is a pair of messages, the first sent from the receiver to the
sender, and the second the other way.

158 I. Berman et al.

Theorem 4.4 (MCRH =⇒ Constant-Round Statistically-Hiding Com-
mitments). Let t = t(n) ∈ N be a polynomial computable in poly(n) time.
Assume that there exists a (s, t)-MCRH for s ≥ log(t), then there exists a three-
round statistically-hiding computationally-binding commitment scheme.

As we already mentioned in Sect. 1, constructions of statistically-hiding
computationally-binding commitment schemes are known assuming only the
minimal assumption that one-way functions exist. Those constructions, how-
ever, have a polynomial number of rounds (and this is inherent for black-box
constructions [HHRS15]). Theorem 4.4, on the other hand, yields a commitment
scheme with only a constant (i.e., three) number of rounds.

Due to space limitation, we defer the complete proof of Theorem 4.4 to the
full version of this paper [BDRV17].

Acknowledgments. We thank Vinod Vaikuntanathan for helpful discussions and for
his support, and Oded Goldreich, Yuval Ishai and the anonymous reviewers for useful
comments. We thank Nir Bitansky, Yael Kalai, Ilan Komargodski, Moni Naor, Omer
Paneth and Eylon Yogev for helping us provide a good example of a t-way collision. We
also thank Nir Bitansky and an anonymous reviewer for pointing out the connection
to inaccessible entropy.

This research was supported in part by NSF Grants CNS-1413920 and CNS-
1350619, and by the Defense Advanced Research Projects Agency (DARPA) and the
U.S. Army Research Office under contracts W911NF-15-C-0226 and W911NF-15-C-
0236. The third author was also partially supported by the SIMONS Investigator award
agreement dated 6-5-12 and by the Cybersecurity and Privacy Institute at Northeastern
University.

References

[ADM+99] Alon, N., Dietzfelbinger, M., Miltersen, P.B., Petrank, E., Tardos, G.:
Linear hash functions. J. ACM 46(5), 667–683 (1999)

[AR16] Applebaum, B., Raykov, P.: On the relationship between statistical
zero-knowledge and statistical randomized encodings. In: Robshaw, M.,
Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9816, pp. 449–477. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53015-3 16

[Bab16] Babai, L.: Graph isomorphism in quasipolynomial time [extended
abstract]. In: Wichs, D., Mansour, Y. (eds.) Proceedings of the 48th
Annual ACM SIGACT Symposium on Theory of Computing, STOC 2016,
Cambridge, MA, USA, 18–21 June 2016, pp. 684–697. ACM (2016)

[BDRV17] Berman, I., Degwekar, A., Rothblum, R.D., Vasudevan, P.N.: Multi col-
lision resistant hash functions and their applications. IACR Cryptology
ePrint Archive 2017, 489 (2017)

[BPK17] Bitansky, N., Paneth, O., Kalai, Y.T.: Multi-collision resistance: A
paradigm for keyless hash functions. Electron. Colloquium Comput. Com-
plex. (ECCC) 24, 99 (2017)

[BPVY00] Brickell, E., Pointcheval, D., Vaudenay, S., Yung, M.: Design Validations
for Discrete Logarithm Based Signature Schemes. In: Imai, H., Zheng,
Y. (eds.) PKC 2000. LNCS, vol. 1751, pp. 276–292. Springer, Heidelberg
(2000). https://doi.org/10.1007/978-3-540-46588-1 19

https://doi.org/10.1007/978-3-662-53015-3_16
https://doi.org/10.1007/978-3-540-46588-1_19

Multi-Collision Resistant Hash Functions and Their Applications 159

[CRSW13] Elisa Celis, L., Reingold, O., Segev, G., Wieder, U.: Balls and bins: smaller
hash families and faster evaluation. SIAM J. Comput. 42(3), 1030–1050
(2013)

[DGRV11] Dvir, Z., Gutfreund, D., Rothblum, G.N., Vadhan, S.P.: On approximat-
ing the entropy of polynomial mappings. In: Proceedings of Innovations
in Computer Science - ICS 2010, Tsinghua University, Beijing, China, 7–9
January 2011, pp. 460–475 (2011)

[DHRS07] Ding, Y.Z., Harnik, D., Rosen, A., Shaltiel, R.: Constant-round oblivious
transfer in the bounded storage model. J. Cryptol. 20(2), 165–202 (2007)

[DI06] Dubrov, B., Ishai, Y.: On the randomness complexity of efficient sampling.
In: Proceedings of the Thirty-Eighth Annual ACM Symposium on Theory
of Computing, pp. 711–720. ACM (2006)

[DPP93] Damg̊ard, I.B., Pedersen, T.P., Pfitzmann, B.: On the existence of statis-
tically hiding bit commitment schemes and fail-stop signatures. In: Stin-
son, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 250–265. Springer,
Heidelberg (1994). https://doi.org/10.1007/3-540-48329-2 22

[GG98] Goldreich, O., Goldwasser, S.: On the limits of non-approximability of lat-
tice problems. In: Proceedings of the Thirtieth Annual ACM Symposium
on Theory of Computing, pp. 1–9. ACM (1998)

[GMR88] Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure
against adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–
308 (1988)

[GS94] Girault, M., Stern, J.: On the length of cryptographic hash-values used in
identification schemes. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS,
vol. 839, pp. 202–215. Springer, Heidelberg (1994). https://doi.org/10.
1007/3-540-48658-5 21

[GSV99] Goldreich, O., Sahai, A., Vadhan, S.: Can statistical zero knowledge be
made non-interactive? or on the relationship of SZK and NISZK. In:
Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 467–484. Springer,
Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1 30

[HHRS15] Haitner, I., Hoch, J.J., Reingold, O., Segev, G.: Finding collisions in
interactive protocols—tight lower bounds on the round and communica-
tion complexities of statistically hiding commitments. SIAM J. Comput.
44(1), 193–242 (2015)

[HM96] Halevi, S., Micali, S.: Practical and provably-secure commitment schemes
from collision-free hashing. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS,
vol. 1109, pp. 201–215. Springer, Heidelberg (1996). https://doi.org/10.
1007/3-540-68697-5 16

[HNO+09] Haitner, I., Nguyen, M.-H., Ong, S.J., Reingold, O., Vadhan, S.P.: Sta-
tistically hiding commitments and statistical zero-knowledge arguments
from any one-way function. SIAM J. Comput. 39(3), 1153–1218 (2009)

[HR04] Hsiao, C.-Y., Reyzin, L.: Finding collisions on a public road, or do secure
hash functions need secret coins? In: Franklin, M. (ed.) CRYPTO 2004.
LNCS, vol. 3152, pp. 92–105. Springer, Heidelberg (2004). https://doi.
org/10.1007/978-3-540-28628-8 6

[HRVW09] Haitner, I., Reingold, O., Vadhan, S.P., Wee, H.: Inaccessible entropy. In:
Proceedings of the 41st Annual ACM Symposium on Theory of Comput-
ing, STOC 2009, Bethesda, MD, USA, 31 May-2 June 2009, pp. 611–620
(2009)

https://doi.org/10.1007/3-540-48329-2_22
https://doi.org/10.1007/3-540-48658-5_21
https://doi.org/10.1007/3-540-48658-5_21
https://doi.org/10.1007/3-540-48405-1_30
https://doi.org/10.1007/3-540-68697-5_16
https://doi.org/10.1007/3-540-68697-5_16
https://doi.org/10.1007/978-3-540-28628-8_6
https://doi.org/10.1007/978-3-540-28628-8_6

160 I. Berman et al.

[HV17] Haitner, I., Vadhan, S.: The many entropies in one-way functions. Tuto-
rials on the Foundations of Cryptography. ISC, pp. 159–217. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-57048-8 4

[Jou04] Joux, A.: Multicollisions in iterated hash functions. Application to cas-
caded constructions. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol.
3152, pp. 306–316. Springer, Heidelberg (2004). https://doi.org/10.1007/
978-3-540-28628-8 19

[Kil92] Kilian, J.: A note on efficient zero-knowledge proofs and arguments
(extended abstract). In: Proceedings of the 24th Annual ACM Sympo-
sium on Theory of Computing, Victoria, British Columbia, Canada, 4–6
May 1992, pp. 723–732 (1992)

[KNY17a] Komargodski, I., Naor, M., Yogev, E.: Collision resistant hashing for para-
noids: dealing with multiple collisions. IACR Cryptology ePrint Archive
2017, 486 (2017)

[KNY17b] Komargodski, I., Naor, M., Yogev, E.: White-box vs. black-box complex-
ity of search problems: ramsey and graph property testing. Electron. Col-
loquium Comput. Complex. (ECCC) 24, 15 (2017)

[Mer89] Merkle, R.C.: One way hash functions and DES. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 428–446. Springer, New York (1990).
https://doi.org/10.1007/0-387-34805-0 40

[Mic00] Micali, S.: Computationally sound proofs. SIAM J. Comput. 30(4), 1253–
1298 (2000)

[MRRR14] Meka, R., Reingold, O., Rothblum, G.N., Rothblum, R.D.: Fast pseu-
dorandomness for independence and load balancing. In: Esparza, J.,
Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS,
vol. 8572, pp. 859–870. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-662-43948-7 71

[NY89] Naor, M., Yung, M.: Universal one-way hash functions and their crypto-
graphic applications. In: Proceedings of the 21st Annual ACM Symposium
on Theory of Computing, Seattle, Washigton, USA, 14–17 May 1989, pp.
33–43 (1989)

[Ost91] Ostrovsky, R.: One-way functions, hard on average problems, and statisti-
cal zero-knowledge proofs. In: Proceedings of the Sixth Annual Structure
in Complexity Theory Conference, Chicago, Illinois, USA, 30 June-3 July
1991, pp. 133–138 (1991)

[OV08] Ong, S.J., Vadhan, S.: An equivalence between zero knowledge and com-
mitments. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 482–500.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78524-
8 27

[PRS12] Pietrzak, K., Rosen, A., Segev, G.: Lossy functions do not amplify well.
In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 458–475. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-28914-9 26

[PW11] Peikert, C., Waters, B.: Lossy trapdoor functions and their applications.
SIAM J. Comput. 40(6), 1803–1844 (2011)

[Rom90] Rompel, J.: One-way functions are necessary and sufficient for secure sig-
natures. In: Proceedings of the 22nd Annual ACM Symposium on Theory
of Computing, Baltimore, Maryland, USA, 13–17 May 1990, pp. 387–394
(1990)

[RS96] Rivest, R.L., Shamir, A.: Payword and micromint: two simple micropay-
ment schemes. In: Proceedings of Security Protocols, International Work-
shop, Cambridge, United Kingdom, 10–12 April 1996, pp. 69–87 (1996)

https://doi.org/10.1007/978-3-319-57048-8_4
https://doi.org/10.1007/978-3-540-28628-8_19
https://doi.org/10.1007/978-3-540-28628-8_19
https://doi.org/10.1007/0-387-34805-0_40
https://doi.org/10.1007/978-3-662-43948-7_71
https://doi.org/10.1007/978-3-662-43948-7_71
https://doi.org/10.1007/978-3-540-78524-8_27
https://doi.org/10.1007/978-3-540-78524-8_27
https://doi.org/10.1007/978-3-642-28914-9_26

Multi-Collision Resistant Hash Functions and Their Applications 161

[RTV04] Reingold, O., Trevisan, L., Vadhan, S.: Notions of reducibility between
cryptographic primitives. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951,
pp. 1–20. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-
540-24638-1 1

[RV09] Rothblum, G.N., Vadhan, S.P.: Unpublished Manuscript (2009)
[Sim98] Simon, D.R.: Finding collisions on a one-way street: can secure hash

functions be based on general assumptions? In: Nyberg, K. (ed.) EURO-
CRYPT 1998. LNCS, vol. 1403, pp. 334–345. Springer, Heidelberg (1998).
https://doi.org/10.1007/BFb0054137

[Vad12] Vadhan, S.P.: Pseudorandomness. Found. Trends Theor. Comput. Sci.
7(1–3), 1–336 (2012)

https://doi.org/10.1007/978-3-540-24638-1_1
https://doi.org/10.1007/978-3-540-24638-1_1
https://doi.org/10.1007/BFb0054137

Collision Resistant Hashing for Paranoids:
Dealing with Multiple Collisions

Ilan Komargodski1(B), Moni Naor2, and Eylon Yogev2

1 Cornell Tech, NewYork, NY 10044, USA
komargodski@cornell.edu

2 Weizmann Institute of Science, 76100 Rehovot, Israel
{moni.naor,eylon.yogev}@weizmann.ac.il

Abstract. A collision resistant hash (CRH) function is one that com-
presses its input, yet it is hard to find a collision, i.e. a x1 �= x2

s.t. h(x1) = h(x2). Collision resistant hash functions are one of the
more useful cryptographic primitives both in theory and in practice and
two prominent applications are in signature schemes and succinct zero-
knowledge arguments.

In this work we consider a relaxation of the above requirement that we
call Multi-CRH: a function where it is hard to find x1, x2, . . . , xk which
are all distinct, yet h(x1) = h(x2) = · · · = h(xk). We show that for
some of the major applications of CRH functions it is possible to replace
them by the weaker notion of a Multi-CRH, albeit at the price of adding
interaction: we show a constant-round statistically-hiding commitment
scheme with succinct interaction (committing to poly(n) bits requires
exchanging Õ(n) bits) that can be opened locally (without revealing the
full string). This in turn can be used to provide succinct arguments for
any NP statement.

We formulate four possible worlds of hashing-related assumptions (in
the spirit of Impagliazzo’s worlds). They are (1) Nocrypt, where no one-
way functions exist, (2) Unihash, where one-way functions exist, and
hence also UOWHFs and signature schemes, but no Multi-CRH func-
tions exist, (3) Minihash, where Multi-CRH functions exist but no CRH
functions exist, and (4) Hashomania, where CRH functions exist. We
show that these four worlds are distinct in a black-box model: we show
a separation of CRH from Multi-CRH and a separation of Multi-CRH
from one-way functions.

I. Komargodski—Supported in part by a Packard Foundation Fellowship and AFOSR
grant FA9550-15-1-0262. Most work done while the author was a Ph.D. student at the
Weizmann Institute of Science, supported in part by a grant from the Israel Science
Foundation (no. 950/16) and by a Levzion Fellowship.
M. Naor and E. Yogev—Supported in part by a grant from the Israel Science Foun-
dation (no. 950/16). Moni Naor is the incumbent of the Judith Kleeman Professorial
Chair.

c© International Association for Cryptologic Research 2018
J. B. Nielsen and V. Rijmen (Eds.): EUROCRYPT 2018, LNCS 10821, pp. 162–194, 2018.
https://doi.org/10.1007/978-3-319-78375-8_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78375-8_6&domain=pdf

Collision Resistant Hashing for Paranoids: Dealing with Multiple Collisions 163

1 Introduction

In any function that compresses its input, say from 2n bits to n bits, there are
many collisions, that is, pairs of distinct inputs whose image is the same. But
what is the complexity of finding such a collision? Families of functions where
this collision finding task is hard are known as collision resistant hash (CRH)
functions.1 CRH functions have many appealing properties, such as preservation
under composition and concatenation. The presumed hardness of finding colli-
sions in such functions is the basis for increased efficiency of many useful crypto-
graphic schemes, in particular signature schemes and succinct (zero-knowledge)
arguments, i.e., methods for demonstrating the correctness of a statement that
are much shorter than the proof or even the statement itself (see Kilian [37] and
Barak and Goldreich [4]). The latter is achieved via a hash tree commitment2

scheme whose opening is local i.e., opening a bit does not require revealing the
full string (known as a “Merkle tree”). Results of this sort enable the construc-
tion of efficient delegation of computation where the goal is to offload significant
computation to some server but also to verify the computation.

Such a task (“breaking a collision resistant hash function”) is indeed hard
based on a variety of assumptions such as the hardness of factoring integers, find-
ing discrete logs in finite groups or learning with errors (LWE). There are popular
functions (standards) with presumed hardness of collision finding such as SHA-2
and SHA-3 (adopted by NIST3 in 2015). These functions can be evaluated very
quickly; however, their hardness is based on more ad hoc assumptions and some
former standards have been shown to be insecure (such as MD4, MD5, SHA-1).
On the other hand there is no known construction of CRHs based solely on the
existence of one-way functions or even one-way permutations and, furthermore,
they were shown to be separated in a black-box model (see Simon [50]).

But a sufficiently compressing function also assures us that there are multi-
ple collisions, i.e., k distinct values whose image under the function is equal.
What about the problem of finding a k-collision? Assuming such hardness is
a weaker computational assumption than hardness of finding a single pair of
colliding inputs and the question is whether it yields a useful primitive.

In this paper we deal with multiple collision resistant hash (MCRH) functions
and systematically investigate their properties and applications. We show that
for some of the major applications of CRH functions it is possible to replace
them by an MCRH, albeit at the price of adding some rounds of interaction:

1 The function h ∈ H can be sampled efficiently, it is easy to compute h(x) given h
and x, however, given h it is hard to find x1 �= x2 s.t. h(x1) = h(x2).

2 A commitment scheme is a protocol where a sender commits to a string x in the
“commit” phase and that later can be revealed at the opening phase. The two
properties are binding and hiding: in what sense is the sender bound to the string x
(computationally or information theoretically) and in what sense is x hidden from
the receiver before the opening - statistically or computationally.

3 NIST is the National Institute of Standards and Technology, a US agency.

164 I. Komargodski et al.

a constant-round4 commitment scheme with succinct communication
that can be opened locally (without revealing the full string) (see Theorem2).
This implies that it is possible to effectively verify the correctness of computa-
tion much more efficiently than repeating it. As an application we get universal
arguments [4] (and public-coin zero-knowledge argument systems for NP [3])
with an arbitrary super-constant number of rounds based on MCRH functions.
We also provide a constant-round statistically-hiding scheme and thus we can
get constant-round statistical zero-knowledge arguments [8].5

On the other hand, we show various black-box separation results concern-
ing MCRH. First, we separate them from one-way permutations. This follows
from the lower bound of Haitner et al. [23] on the number of rounds needed
to build a statistically-hiding commitment from one-way permutations. Further-
more, we show a black-box separation from standard CRH: there is no fully
black-box construction of a k-MCRH from a (k + 1)-MCRH for all k with poly-
nomial security loss (see Theorem 4). These results yield an infinite hierarchy
of natural cryptographic primitives, each two being separated by a fully black-
box construction, between one-way function/permutations and collision-resistant
hash function.6

One motivation for investigating MCRH functions is the progress in find-
ing collisions in the hash function SHA-1 (that has long been considered inse-
cure [53]) and recently an actual meaningful collision has been found [51].
In general, finding a collision with arbitrary Initialization Vector (IV) allows
finding multiple collisions in an iteration of the function (say in a Merkle-
Damg̊ard lopsided tree), as shown by Joux [35] (see also Coppersmith and Girault
et al. [9,15] for older attacks). However, for the compression function of SHA-1
(or other such functions) there is no non-trivial algorithm for finding multi-
collisions.7 Also, multi-collision resistance is sometimes useful for optimizing
concrete parameters, as shown by Girault and Stern [16] for reducing the com-
munication in identification schemes. So the question is what can we do if all
we assume about a given hash function is that multi-collision are hard to find,
rather than plain collisions.

Our interest in MCRH functions originated in the work of Komargodski
et al. [39], where MCRHs were first defined in the context of the bipartite
Ramsey problem. They showed that finding cliques or independent sets in
succinctly-represented bipartite graphs (whose existence is assured by Ramsey
Theory) is equivalent to breaking an MCRH: a hard distribution for finding these

4 By “constant-round” we mean that for a c ∈ N to commit to a string of length nc

using a compression function from 2n to n bits the number of rounds is a constant
that depends on c.

5 For constant values of k, we give a 4-round computationally-binding commitment
scheme with succinct communication (see Theorem 3).

6 This hierarchy translates to an infinite hierarchy of natural subclasses in TFNP. See
the full version [38] for details.

7 Beyond the “birthday-like” algorithm that will take time 2n· k−1
k [35], where 2n is

the size of the range. See [30] for very recent work in the quantum case.

Collision Resistant Hashing for Paranoids: Dealing with Multiple Collisions 165

objects implies the existence of an MCRH and vice-versa (with slightly different
parameters).8

Families of CRHs compose very nicely, and hence domain extension is rela-
tively simple, that is, once we have a CRH that compresses by a single bit we
can get any polynomial compression (i.e., from poly(n) to n bits). In contrast,
we do not know how to construct a k′-MCRH on very large domains from a fixed
k-MCRH, where k′ is not much larger than k. Nevertheless, in Sect. 6, we show
how to get such a construction with k′ = kO(log n).

A well-known relaxation of CRHs are Universal One-way Hash Functions
(UOWHF) or second pre-image resistance: first the target x is chosen (perhaps
adversarially), then a function h ∈R H is sampled and the challenge is to find
x′ �= x s.t. h(X) = h(x′). Such families are good enough for signatures (at least
existentially) and can be used for the hash-and-sign paradigm, if one chooses h
per message (see Naor and Yung [46] and Mironov [43]). It is known how to get
such family of functions from one-way functions, but the construction is rather
involved and inefficient (and there are some inherent reasons for that, see [14]).
We show how to go from any interactive commitment protocol where the com-
munication is shorter than the string committed to (a succinct commitment) to
a UOWHF (see Theorem 5). Together with our commitment schemes, this gives
new constructions of UOWHFs on long inputs based on MCRHs with a shorter
description than the ones known starting from a UOWHF on fixed input length.

The Four Worlds of Hashing. Impagliazzo’s five worlds [32] are a way to char-
acterize the strength of a cryptographic assumption. The worlds he defined are:
Algorithmica (where P = NP), Heuristica (where NP is hard in the worst case
but easy on average, i.e., one simply does not encounter hard problems in NP),
Pessiland (where hard-on-the-average problems in NP exist, but one-way func-
tions do not exist), Minicrypt (where one-way functions exist), and Cryptomania
(where Oblivious Transfer exists). (Nowadays, it is possible to add a sixth world,
Obfustopia, where indistinguishability obfuscation for all programs exists.)

In the spirit of Impagliazzo’s five worlds of cryptographic assumptions, we
define four worlds of hashing-related primitives:

Nocrypt: A world where there are no one-way functions. There are no crypto-
graphic commitments of any kind in this world [34].

Unihash: A world where one-way functions exist (and so do UOWHFs), but
there are no MCRH functions. Therefore, signatures exist and hashing appli-
cations such as the hash-and-sign paradigm [46]. Also, statistically-hiding
commitments exist (albeit with a linear number of rounds) [23,24,26,45].
There are no known short commitment (where the communication is much
shorter than the string committed to).

8 In the bipartite Ramsey problem, the goal is to find a bi-clique or bi-independent set
of size n/4 × n/4 in a bipartite graph of size 2n × 2n. The work of [39] showed that
if this problem is hard, then there exists an (n/4)-MCRH from n bits to n/2 bits.
Conversely, If a

√
n-MCRH mapping n bits to

√
n/8 bits exists, then this problem

is hard.

166 I. Komargodski et al.

Minihash: A world where MCRH exists but there is no CRH: that is, for some
polynomial k(n) there exists a k-MCRH that compresses 2n to n bits. In
this work we give a protocol for short and statistically-hiding commitments
with a constant number of rounds. Furthermore the string can be opened
locally, with little communication and computation, without requiring the
full opening of the string.

Hashomania: A world where CRH exists. There is a short commitment pro-
tocol that requires only two rounds (i.e., two messages) with local opening.
This is the famed Merkle-tree.

Note that our separation results imply that these four worlds have black-box
separations. Unihash and Minihash are separated by the separation of MCRH
from one-way permutations, and Minihash and Hashomania are separated by
the separation of CRH from MCRH. Moreover, the separation in Sect. 7 actually
implies that the world Minihash can be split further into sub-worlds parameter-
ized by k, the number of collisions it is hard to find.

Multi-pair Collision Resistance. A different way to relax the standard notion
of collision resistance is what we call multi-pair-collision-resistance, where the
challenge is to find arbitrary k distinct pairs of inputs that collide (possibly
to different values). One may wonder what is the difference between these two
notions and why we focus on the hardness of finding a k-wise collision rather
than hardness of finding k distinct colliding pairs. The answer is that the notion
of k-pair-collision-resistance is existentially equivalent to the standard notion of
collision resistance (see the full version [38] for details).

Concurrent work
In parallel to this work, MCRH functions were studied by two other groups that
obtained various related results [6,7] with different motivation and perspective.

Berman et al. [6] showed how to obtain MCRH functions from a spe-
cific assumption. Concretely, they construct an n2-MCRH function compressing
inputs of length n to outputs of length n − √

n from the average-case hardness
of the min-max variant of the entropy approximation problem. This variant is a
promise problem where the YES inputs are circuits whose output distribution has
min-entropy at least κ, whereas NO inputs are circuits whose output distribution
has max -entropy less than κ.9 Berman et al. also show how to get a constant-
round statistically-hiding (computationally-binding) commitment scheme from
any k-MCRH that compresses n bits into n−log k bits (which implies a black-box
separation of MCRH from one-way permutations). However, their commitment
scheme is not short and does not support local opening10.

9 The original entropy approximation problem is the one obtained by replacing the
min- and max-entropy with the Shannon entropy. It is known to be complete for
the class of languages that have non-interactive statistical zero-knowledge proofs
(NISZK) [17].

10 Starting out with such a weak primitive our methods will not yield a succinct com-
mitment either.

Collision Resistant Hashing for Paranoids: Dealing with Multiple Collisions 167

Bitansky et al. [7] replace the CRH assumption with a k-MCRH in several
applications related to zero-knowledge and arguments of knowledge for NP with
few rounds. They rely on either MCRH that compresses by a polynomial factor
(say n2 bits into n), or alternatively on an MCRH that compresses by a linear
factor but lose a quasi-polynomial factor in security. Their main technical com-
ponent is a two-round (i.e., two-message) short commitments with local opening
but with weak computational-binding. The latter means that the sender may be
able to open the commitment to more than one value, but not to too many val-
ues. Their construction of the commitment scheme is related to our construction
presented in Theorem 3 but they design a specific code that allows them to get
local opening.

Summary of Results and Paper Organization
Our main results are:

1. Any k-MCRH can be used to get a constant round short commitment scheme
which is computationally-binding, statistically-hiding and support local open-
ing (à la Merkle commitments). This result in Sect. 5.

2. Any k-MCRH, where k is constant, can be used to get a 4 round short commit-
ment scheme which is computationally-binding and statistically-hiding open-
ing. This appears in Sect. 6.

3. We prove a fully black-box separation between standard collision resistant
hash functions and multi-collision resistant ones. This appears in Sect. 7.

4. We present a generic and direct construction of UOWHFs from any short
commitment schemes (and thereby from any multi-collision resistant func-
tions). See Sect. 8.

In Sect. 2 we provide an overview of our main ideas and techniques. In Sects. 3
and 4 we provide preliminary standard definitions used throughout the paper
and the definition of MCRH functions, respectively.

2 Our Techniques

In this section we present some of our main ideas and techniques used in the
construction of the commitment scheme and in the black-box separation result.

2.1 The Main Commitment Scheme

A commitment scheme is a two stage interactive protocol between a sender and
a receiver such that after the first stage the sender is bound to at most one value
(this is called “binding”). In the second stage the sender can open his commit-
ted value to the sender. There are a few security properties one can ask from
such a protocol: have statistical/computational binding, and have the committed
value of the sender be statistically/computationally hidden given the commit-
ment (this is called “hiding”). Our commitment scheme satisfies computational
binding and statistical hiding. In this overview we will mostly focus on obtaining
computational binding and briefly discuss how we obtain hiding towards the end.

168 I. Komargodski et al.

There is a trivial commitment protocol that is (perfectly) binding: let the
sender send its value to the receiver. Perhaps the most natural non-trivial prop-
erty one can ask is that the commitment is shorter than the committed string.
There are additional useful properties one can require such as local-opening
which allows the sender to open a small fraction of its input without sending the
whole string (local opening is very important in applications of such commit-
ment schemes, e.g., to proof systems and delegation protocols). In our protocol
the commitment is short and it supports local-opening; we will focus here on the
former and shortly discuss the latter towards the end.

Our goal now is to construct a commitment scheme which is computationally
binding and the commitment is shorter than the value of the sender. If we had
a standard collision resistant hash function mapping strings of length 2n to
strings of length n, this task would be easy to achieve: the receiver will sample
a hash function h and send it to the sender which will reply with h(x∗), where
x∗ ∈ {0, 1}2n is its value. The commitment thus consists of (h, h(x∗)) and its
size is n bits.11 It is easy to verify that for a sender to cheat during the opening
phase it actually has to break the collision resistance of h (i.e., come up with a
value x �= x∗ such that h(x) = h(x∗)).

When h is only a k-MCRH for k > 2, the above protocol is clearly insecure:
the sender can potentially find two inputs that collide to the same value and cheat
when asked to open its commitment. The first observation we make is that even
though the sender is not bound to a single value after sending h(x∗), it is bound
to a set of values of size at most k−1. Otherwise, at least intuitively, he might be
able to find k inputs that map to the same output relative to h, which contradicts
the security of the k-MCRH. Our first idea is to take advantage of this fact by
adding an additional round of communication whose goal is to “eliminate” all
but one possible value for the sender. Specifically, after the receiver got h(x∗),
it samples a random universal hash12 function, g, mapping strings of length 2n
to strings of length m. and sends it to the sender. The sender then responds
with g(x). The commitment thus consists of (h, h(x∗), g, g(x∗)). To open the
commitment the sender just sends x∗ (just as before).

One can show that this protocol is binding: Out of the k−1 possible values the
sender knows that are consistent with h(x∗), with probability roughly k2 · 2−m

there will be no two that agree on g(x∗). Conditioning on this happening, the
sender cannot submit x �= x∗ that is consistent with both h(x∗) and g(x∗). To
formally show that the protocol is binding we need to show how to find a k-
wise collision using a malicious sender. We simulate the protocol between the
malicious sender and the receiver multiple times (roughly k times) with the same
h but with freshly sampled g, by partially rewinding the malicious sender. We
show that with good probability, every iteration will result with a new collision.

11 For simplicity of presentation here, we ignore the cost of the description of h, so it
will not significantly affect the size of the commitment.

12 A universal hash function is a function of families G = {g : {0, 1}n → {0, 1}m} such
that for any x, y ∈ {0, 1}n such that x �= y it holds that Prg←G [g(x) = g(y)] ≤ 2−m.

Collision Resistant Hashing for Paranoids: Dealing with Multiple Collisions 169

The protocol consists now of 4 rounds, but is the commitment short? Well, it
depends on m and on the description size of g. The description size of a universal
function is proportional to the input size (2n in our case), which totally ruins
the shortness of the protocol. We fix this by sampling g from an almost universal
family and apply the above protocol. We obtain a 4-round protocol in which the
commitment size is of the order roughly n + m + log(1/δ), where δ is related
to the error probability of the almost universal function. Choosing m and δ
appropriately we obtain a protocol with short (<2n) commitments.

Handling Longer Inputs. How would we commit on a longer string, say of 10n
bits or even n10 bits? (Recall that all we have is a hash function mapping 2n bits
into n bits.) One well-known solution is based on a standard collision resistant
hash function, and what is known as a Merkle tree (the tree structure will be
useful later for a local opening). The input x ∈ {0, 1}2dn (for simplicity think of
d as either a large constant or even O(log n)) is partitioned into 2d blocks each
of size n. These blocks are partitioned into pairs and the hash function is applied
to each pair resulting in 2d−1 blocks. Then, the remaining blocks are partitioned
into pairs and the hash function is applied on each pair. This is repeated d times
resulting in a binary tree of hash values of depth d. The value associated with
the root of the tree is called the root-hash.

If h is a standard CRH sent by the receiver, then it is known that sending the
root-hash by the sender is actually a commitment on the input x∗ [37,41]. Can
we apply the same trick from before to make this a commitment protocol even
when h is only a k-MCRH? That is, after sending the root-hash, let the sender
sample a good-enough combinatorial hash function g : {0, 1}2dn → {0, 1}m and
send it to the sender that will reply with g(x∗). Is this protocol binding? The
answer is “no”, even for large values of m. Observe that for every node in the
Merkle tree, the sender can potentially provide k − 1 valid inputs (that hash to
the same value). Since the tree is of depth d, one can observe that by a mix-
and-match method of different colliding values on different nodes of the tree
the sender might be able to come up with as many as (k − 1)2

d

valid inputs
x whose corresponding root-hash is h(x∗). Thus, to satisfy that no two have
the same value under g, we have to choose m ≈ 2d · log(k − 1), in which case
the almost uniform hash function has a pretty long description. Nevertheless,
it is less than 2dn (the input length) so we might hope that some progress has
been made. Is this protocol computationally-binding? Not quite. Using the proof
technique from above (of partially rewinding and “collecting” collisions) would
require running the malicious sender more than (k − 1)2

d

times until it has to
present more than k − 1 collisions for some value. This is, of course, way too
expensive.

The bottom line of the above paragraph is that “mix-and-match” attacks are
very powerful for a malicious sender in the context of tree hashing by allowing
him to leverage the ability of finding few collisions into an ability to find expo-
nentially many collisions. The reason why this happens is that we compose hash
functions but apply the universal hash function on the whole input as a single

170 I. Komargodski et al.

string. Our next idea is to apply a “small” hash function g : {0, 1}2n → {0, 1}n

per node in the Merkle tree. That is, after the sender sends the root-hash h(x∗),
the receiver samples g and sends it to the sender. The sender computes g(·, ·) for
every pair of siblings along the Merkle tree, concatenates them all and sends this
long string back to the receiver. This protocol is more promising since, in some
sense, we have a small consistency check per node in the tree which should rule
out simple “mix-and-match” attacks. This is our construction and the proof of
security works by partially rewinding a malicious sender and “collecting” colli-
sions until we get k collisions with respect to some internal node in the tree (we
need to collect roughly 2dk collisions overall so that such a node exists, by the
pigeonhole principle). How efficient is the protocol? Details follow.

The protocol still consists of 4 rounds. A commitment consists of the hash
function h, the root hash h(x∗), a universal hash function g : {0, 1}2n → {0, 1}m

and the value of g on every internal node of the tree. The overall size is thus
of order n + 2dm. Notice that n + 2dm � 2dn whenever d is not too small, so
we have made progress! We reduced the size of the commitment by a factor of
m/n. The final step is to really get down to a commitment of size roughly n.
To achieve this, we apply our protocol recursively : Instead of sending the hashes
(with respect to g) of all internal nodes, we run our commit protocol recursively
on this string. Notice that this string is shorter (2dm compared to 2dn) so the
recursion does progress. The base of the recursion is when the string length is
roughly n bits, then the sender can simply send it to the receiver.

Choosing the parameters carefully, we get various trade-offs between the
number of rounds, the commitment size, and the security of the resulting proto-
col. For example, setting m = n0.99, results with a O(1)-round protocol in which
the commitment size is O(n) (here the big “O” hides constants that depend on
logn(|x∗|) which is constant for a polynomially long x∗), and whose security is
worse than the security of the k-MCRH by an additive factor of exp(−n0.99).

Local Opening. Due to the tree structure of our commitment protocol, it can
be slightly modified to support local opening. Recall that the goal here is to
allow the receiver to send an index i of a block to the sender, who can reply
with the opening of the block, with communication proportional to n but not to
the number of blocks 2d. The idea here is, given an index i of a block, to open
the hash values along the path corresponding to the i-block along with the tree
sibling of every node in the path. Then, i′ is defined to be the index of the block
in the shorter string (the string committed to in the next step of the recursion)
which containing all the g(·, ·) values of the nodes on the path (we make sure
that such a block exists). Then, we add the hash values of the path for block i′

and continue in a recursive manner.

Statistical Hiding. We show how to transform any short commitment scheme
that is computationally binding (but perhaps not hiding) to a new scheme that
is short, computationally binding and statistically hiding. Moreover, if the origi-
nal scheme admits a local-opening, then the new scheme admits a local-opening

Collision Resistant Hashing for Paranoids: Dealing with Multiple Collisions 171

as well. Our transformation is information theoretic, adds no additional assump-
tions and preserves the security, the number of rounds and communication com-
plexity of the original scheme (up to a small constant factor). The transforma-
tion is partially based on ideas originating in the work of Naor and Yung [46,
Sect. 5.2] and the follow-up works of Damg̊ard, Pedersen, and Pfitzmann [11,12]
giving constructions of statistical-hiding commitments from (standard) collision
resistant hash function.

The idea of our transformation is to leverage the fact that the basic commit-
ment protocol is short: when committing to a long string x∗, the communication
is very short. Thus, a large portion of x∗ is not revealed to the receiver by the
protocol so this part of x∗ is statistically hidden. The task that remains is to
make sure that all of x∗ is hidden. Thus, instead of committing to x∗ directly, we
commit to a random string r that is independent of x∗ and slightly longer. Then,
we extract from r the remaining randomness r′ given the communication of the
protocol using a strong extractor. Finally, we commit on the string x∗ ⊕ r′. It is
not hard to show that if the original scheme was computationally binding, then
the new one is as well. The fact that the scheme is statistically-hiding follows
from the use of the strong extractor and the fact that the commitment is short.

One problem with the recipe above, is that the protocol (as describe) no
longer admits a local-opening. This is because to open an index i, we need the
i-th output bit of the extractor, but computing this bit might require reading a
large portion of the input of r. Our solution is to break the input to sufficiently
small parts such that each part is small enough to fit in a local-opening but is
long enough to have enough entropy (given the communication of the protocol)
so that we can apply the extractor on it.

2.2 Separating Multi-CRH from Standard CRH

We show barriers of constructing a collision-resistant hash function from a 3-
multi-collision-resistant hash function. We rule out fully black-box constructions
(see Definition 9). Our proof technique is inspired by the works of Asharov and
Segev [2] and Haitner et al. [23], that are based in turn on ideas originating in
the works of Simon [50], Gennaro et al. [14] and Wee [54]. However, when trying
to adapt their proof to the setting of multi collisions one encounters several
obstacles and we explain how to overcome them.

The high-level overview of the proof is to show that there exists an oracle Γ
such that relative to Γ there exists a 3-MCRH, however there exist no standard
CRH. Our oracle will contain a truly random function f that maps 2n bits to
n bits. Relative to this oracle, it is clear that 3-MCRH exists, however, also
standard CRH exist. We add an oracle ColFinder that will be used to break any
CRH construction. The main difficulty of the proof is to show that this oracle
cannot be used to break the 3-MCRH.

The oracle ColFinder is essentially the same as in Simon [50]. It gets as an
input a circuit C, possibly with f gates and it outputs two random elements w,w′

such that C(w) = C(w′). It is easy to see that no family of hash functions can
be collision resistant in the presence of such an oracle. A single call to ColFinder

172 I. Komargodski et al.

with the query C (where C(x) = f(x)) will find a collision with high probability.
The main question is whether this oracle be used to find multiple collisions?

Originally, Simon showed that this oracle cannot be used to invert a one-way
function (or even a permutation). Let A be an adversary that uses ColFinder to
invert f on a random challenge y = f(x). Clearly, if A make no calls to ColFinder
then his chances in inverting y are negligible. Assume, for simplicity, that A
performs only a single query to ColFinder. In order for A to gain some advantage,
it must make an “interesting” query to ColFinder. That is, a query which results
in w,w′ and the computation of either C(w) or C(w′) makes a direct query
to some x ∈ f−1(y). This event is called a hit. An important point is that for
any circuit C the marginal distribution of w and of w′ is uniform. Therefore,
the probability of the event “hit” in the ColFinder query is at most twice that
probability when evaluating C(z) for a random z. Thus, we can construct a
simulator that replaces A’s query to ColFinder with the evaluation of C(z) and
hits an inverse of y with roughly the same probability as A (while making no
queries to ColFinder). The task of inverting y without ColFinder can be shown
to be hard, ruling out the existence of such a simulator and in turn of such an
adversary A.

Our goal is to extend this proof and show that ColFinder cannot be used to
find 3-wise collisions. The above approach above simply does not work: specifi-
cally, in our case the event “hit” corresponds to query C to ColFinder that results
in w,w′ and the computation of C(w) and C(w′) together make direct queries
three elements x1, x2, x3 that collide under f (i.e., f(x1) = f(x2) = f(x3)). It
might be the case that these three elements are hit by C(w) and C(w′) com-
bined, but never by one of them alone. Thus, when simulating the C(z) for a
random z we will hit only part of the trio x1, x2, x3 and might never hit all three.

Our main observation is that since A finds a 3-wise collision, but ColFinder
finds only a 2-wise collision (namely w,w′), by the pigeonhole principle, either
w or w′ will hit two of the three elements of the 3-wise collision. Again, since
the marginals of w and w′ each are uniform, we can construct a simulator that
runs A and on the query to ColFinder samples a uniform z and compute C(z)
and will get a colliding x1 and x2 without performing any queries to ColFinder.
Then, one can show that such a simulator cannot exist.

Several problems arise with this approach. First, notice that this does not
extend to an adversary A that makes more than one query. In such a case,
the resulting simulator finds a 2-wise collision x1, x2 without the “hit” event
occurring (i.e., finding a 3-wise collision) but while performing several ColFinder
queries. Such a simulator (that finds a collision), of course, trivially exists, and
we do not get the desired contradiction. Nevertheless, we show that the collision
found by our simulator is somewhat special, and using ColFinder one can only
find “non-special” collisions, ruling out the existence of A in this case. Second,
the event “hit” itself might be spread out within several ColFinder queries, where,
for example, one queries finds x1 and then another query finds x2, x3. We tailor
a simulator for each case, and show that for each case the resulting simulating
cannot exist, completely ruling out the possibility of A to exist.

Collision Resistant Hashing for Paranoids: Dealing with Multiple Collisions 173

3 Preliminaries

Unless stated otherwise, the logarithms in this paper are base 2. For an integer
n ∈ N we denote by [n] the set {1, . . . , n}. We denote by Un the uniform distri-
bution over n-bit strings. For a distribution D we denote by x ← D an element
chosen from D uniformly at random. We denote by ◦ the string concatenation
operation. A function negl : N → R

+ is negligible if for every constant c > 0,
there exists an integer Nc such that negl(n) < n−c for all n > Nc.

Definition 1 (Statistical Distance). The statistical distance between two ran-
dom variables X,Y is defined by

Δ(X,Y) � 1
2

·
∑

x

|Pr[X = x] − Pr[Y = x]|

We say that X and Y are δ-close (resp. -far) if Δ(X,Y) ≤ δ (resp.
Δ(X,Y) ≥ δ).

3.1 Limited Independence

Definition 2 (k-wise independence). Fix n,m, k ∈ N. A function family G =
{g : {0, 1}n → {0, 1}m} is k-wise independent if for every distinct x1, . . . , xk ∈
{0, 1}n and every y1, . . . , yk ∈ {0, 1}m it holds that

Pr
g←G

[∀i ∈ [k] : g(xi) = yi] =
1

2km
.

It is known that for every m ≤ n, there exists a k-wise independent family
of functions, where each function is described by k · n bits. One well-known
construction which is optimal in terms of size is by letting each g ∈ {0, 1}k·n

describe a degree k−1 polynomial over GF[2n]. The description of the polynomial
requires k field elements so k · n bits are enough. Evaluation of such a function
is merely an evaluation of the polynomial.

In some applications (including some of ours) the input size n is very large
and we prefer that the description size of the hash function to be much shorter.
To circumvent this, it is sometimes enough to use almost k-wise independent
functions.

Definition 3 (Almost k-wise independence). Fix n,m, k ∈ N and δ ∈ R.
A function family G = {g : {0, 1}n → {0, 1}m} is (k, δ)-wise independent if for
every distinct x1, . . . , xk ∈ {0, 1}n the distribution of (g(x1), . . . , g(xk)) is δ-close
to the distribution (u1, . . . , uk), where g ← G and each ui ← {0, 1}m are chosen
uniformly at random.

It is known that for every m ≤ n, there exists a (k, δ)-wise independent
function with each function g ∈ G being described by O(mk + log(n/δ)) bits
[1,44] (see also [52]).

174 I. Komargodski et al.

3.2 Randomness Extractors

We consider random variables supported on n-bit strings. A random variable X
is said to have min-entropy H∞(X) = k if for every x ∈ Supp(X) it holds that
Pr[X = x] ≤ 2−k.

We say that a function Ext : {0, 1}n × {0, 1}d → {0, 1}m is a (k, ε)-seeded
extractor if for every distribution X over {0, 1}n with min-entropy k, it holds
that

Δ(Ext(X,Ud), Um) ≤ ε.

The extractor Ext is said to be strong if Ext′(x, s) = Ext(x, s) ◦ s is a (k, ε)-
seeded extractor. That is, if

Δ((Ext(X,Ud) ◦ Ud), (Um ◦ Ud)) ≤ ε.

The famous leftover hash lemma [27,33] says that a pairwise independent
function family is a strong extractor.

Proposition 1. Let G = {g : {0, 1}n → {0, 1}m} be a pairwise independent
family of hash functions where m = k − 2 log(1/ε). Then, Ext(x, h) = h(x) is a
strong (k, ε)-seeded extractor.

Note that the seed length in this extractor equals the number of bits required
to sample g ← G which is 2n bits.

We will also need the following standard proposition that says that condi-
tioning does not reduce entropy by more than the information given by the
condition.

Proposition 2. Let X and Y be random variables. Then, if Y is supported on
strings of length k, then H∞(X | Y) ≥ H∞(X) − k.

3.3 List-Recoverable Codes

The classical notion of error correcting codes ensures that for a code C ⊆ F
n,

where F is a finite field, given a somewhat corrupted version of c ∈ C, it is
possible to recover c. The model of allowed corruptions is that some fraction of
the symbols in the codeword might be adversarially changed. List recoverable
codes were introduced to handle a different model of corruptions: they allow an
adversary to submit, for every coordinate i ∈ [n] a small list Si ⊆ F of possible
symbols. In this model, it is impossible to completely recover a codeword given
the lists, but these codes guarantee that there is only a small list of codewords
that are consistent with all the lists.

More precisely, a mapping C : Fk → F
n from length k messages to length n

codewords, is called (α, �, L)-list-recoverable if there is a procedure that is given a
sequence of lists S1, . . . , Sn ⊆ F each of size �, and is able to output all messages
x ∈ F

k such that C(x)i /∈ Si for at most an α fraction of the coordinates i ∈ [n].
The code guarantees that there are at most L such messages.

Collision Resistant Hashing for Paranoids: Dealing with Multiple Collisions 175

Definition 4 (List-recoverable codes). Let α ∈ [0, 1]. We say that a tuple
x ∈ ({0, 1}k)n is α-consistent with sets S1, . . . , Sn ⊆ {0, 1}k, if |{i : xi ∈ Si|} ≥
αn.

A function C : {0, 1}v → ({0, 1}k)n is (α, �, L)-list recoverable, if for every
set S1, . . . , Sn ⊆ {0, 1}k each of size at most �, there are at most L strings
x ∈ {0, 1}v such that C(x) is α-consistent with S1, . . . , Sn. For α = 1, we omit
α in the above notation and call C (�, L)-list recoverable. The strings in the
image of C are referred to as codewords.

These code were initially studied in the context of list-decoding (and indeed
the latter is just a special case of the former with � = 1) by [18–21]. More
recently, they were proven useful in other areas such as compressed sensing [47],
non-adaptive domain extension for hashing [25], domain extension for public
random functions and MACs [13,40], and more (see Sect. 6, and for example,
[29] and references therein).

A natural relaxation of the above codes is to require that S1 = . . . = Sn.
This variant is called weakly list-recoverable codes. A list-recoverable code is
immediately weakly list-recoverable and the converse also holds albeit with a
minor loss in parameters: An (�, L)-weakly list-recoverable code is an (�, nL)-
list-recoverable code. Looking ahead, this loss will not make much of a difference
for us since our L will be polynomial in n.

For our purposes, we will need a list-recoverable code with α = 1. It is
well-known (see e.g., [25]) that the notion of weakly list-recoverable codes is
equivalent to unbalanced expanders with a certain expansion property. The left
set of vertices in the graph is {0, 1}v, the right set of vertices is {0, 1}k and the
left degree is n. This graph naturally induces a mapping C : {0, 1}v → ({0, 1}k)n

which on input x ∈ {0, 1}v (left vertex) outputs n neighbors (right vertices).
The mapping C is (�, L)-list-recoverable iff for every set S ⊆ {0, 1}k of size
larger than L of nodes on the right, the set of left neighbors of S is of size larger
than �.

The following instantiation of locally-recoverable codes based on the explicit
construction of unbalanced expanders of [22] is taken (with minor modifications)
from [25].

Theorem 1 ([22,25]). For every α ≥ 1/2, and k < v, there exists a poly(n)-
time computable function C : {0, 1}v → ({0, 1}k

)n for n = O(v ·k)2 which defines
an (α, �, L)-list recoverable code for every L ≤ 2k/2 and � = Ω(L). The list-
recovery algorithm runs in time poly(v, �).

3.4 Cryptographic Primitives

A function f , with input length m1(n) and outputs length m2(n), specifies for
every n ∈ N a function fn : {0, 1}m1(n) → {0, 1}m2(n). We only consider func-
tions with polynomial input lengths (in n) and occasionally abuse notation and
write f(x) rather than fn(x) for simplicity. The function f is computable in
polynomial time (efficiently computable) if there exists an algorithm that for
any x ∈ {0, 1}m1(n) outputs fn(x) and runs in time polynomial in n.

176 I. Komargodski et al.

A function family ensemble is an infinite set of function families, whose ele-
ments (families) are indexed by the set of integers. Let F = {Fn : Dn → Rn}n∈N

stand for an ensemble of function families, where each f ∈ Fn has domain Dn

and range Rn. An efficient function family ensemble is one that has an efficient
sampling and evaluation algorithms.

Definition 5 (Efficient function family ensemble). A function family
ensemble F = {Fn : Dn → Rn}n∈N is efficient if:

– F is samplable in polynomial time: there exists a probabilistic polynomial-time
machine that given 1n, outputs (the description of) a uniform element in Fn.

– There exists a deterministic algorithm that given x ∈ Dn and (a description
of) f ∈ Fn, runs in time poly(n, |x|) and outputs f(x).

Universal One-Wayness. A one-way function is an efficiently computable func-
tion which is hard to invert on a random output for any probabilistic polynomial-
time machine. A universal one-way hash function (UOWHF) is a family of com-
pressing functions H for which any PPT adversary has a negligible chance of
winning in the following game: the adversary submits an x and gets back a
uniformly chosen h ← H. The adversary wins if it finds an x′ �= x such that
h(x) = h(x′). UOWHF were introduced by Naor and Yung [46] and were shown
to imply secure digital signature schemes. Rompel [48] (see also [36]) showed how
to construct UOWHF based on the minimal assumption that one-way functions
exist.

Definition 6 (Universal one-way hash functions (UOWHF)). An effi-
cient function family ensemble F = {Fn : {0, 1}m1(n) → {0, 1}m2(n)}n∈N is a
universal one-way hash function family if the probability of every probabilistic
polynomial-time adversary A to win in the following game is negligible in n:

1. A, given 1n, submits x ∈ {0, 1}m1(n).
2. Challenger responds with a uniformly random f ← Fn.
3. A (given f) outputs x′ ∈ {0, 1}m1(n).
4. A wins iff x �= x′ and f(x) = f(x′).

3.5 Commitment Schemes

A commitment scheme is a two-stage interactive protocol between a sender S
and a receiver R. The goal of such a scheme is that after the first stage of the
protocol, called the commit protocol, the sender is bound to at most one value.
In the second stage, called the opening protocol, the sender opens its committed
value to the receiver. We also require that the opening protocol allows to open
only a single bit of the committed string. More precisely, a commitment scheme
for a domain of strings {0, 1}� is defined via a pair of probabilistic polynomial-
time algorithms (S,R,V) such that:

Collision Resistant Hashing for Paranoids: Dealing with Multiple Collisions 177

– The commit protocol: S receives as input the security parameter 1n and a
string s ∈ {0, 1}�. R receives as input the security parameter 1n. At the end
of this stage, S outputs decom1 . . . , decom� (the local decommitments) and
R outputs com (the commitment).

– The local-opening procedure: V receives as input the security parameter 1n, a
commitment com, an index i ∈ [�], a local-decommitment decomi, and outputs
either a bit b or ⊥.

A commitment scheme is public coin if all messages sent by the receiver are
independent random coins.

Denote by (decom1, . . . , decom�, com) ← 〈S(1n, s),R〉 the experiment in
which S and R interact with the given inputs and uniformly random coins, and
eventually S outputs a list of � decommitment strings and R outputs a com-
mitment. The completeness of the protocol says that for all n ∈ N, every string
s ∈ {0, 1}�, every tuple (decom1, . . . , decom�, com) in the support of 〈S(1n, s),R〉,
and every i ∈ [�], it holds that V(i, decomi, com) = si.

Below we define two security properties one can require from a commitment
scheme. The properties we list are statistical-hiding and computational-binding.
These roughly say that after the commit stage, the sender is bound to a specific
value which remains statistically hidden for the receiver.

Definition 7 (ε-binding). A commitment scheme (S,R,V) is (t(n), ε(n))-
binding if for every probabilistic adversary S∗ that runs in time at most t(n), it
holds that

Pr
[

(i, decomi, decom
′
i, com) ← 〈S∗(1n),R〉 and

⊥ �= V(i, decomi, com) �= V(i, decom′
i, com) �= ⊥

]
≤ ε(n)

for all sufficiently large n, where the probability is taken over the random coins
of both S∗ and R.

Given a commitment scheme (S,R,V) and an adversary R∗, we denote
by view〈S(s),R∗〉(n) the distribution on the view of R∗ when interacting with
S(1n, s). The view consists of R∗’s random coins and the sequence of messages
it received from S. The distribution is take over the random coins of both S and
R. Without loss of generality, whenever R∗ has no computational restrictions,
we can assume it is deterministic.

Definition 8 (ρ-hiding). A commitment scheme (S,R,V) is ρ(n)-hiding if for
every (deterministic) adversary R∗ and every distinct s0, s1 ∈ {0, 1}�, it holds
that

Δ
({view〈S(s0),R∗〉(n)}, {view〈S(s1),R∗〉(n)}) ≤ ρ(n)

for all sufficiently large n ∈ N.

178 I. Komargodski et al.

Complexity Measures. The parameters of interest are (1) the number of rounds
the commit protocol requires, (2) the size of a commitment, and (3) the size of
a local opening.

The size of a commitment is the size (in bits) of the output of S denoted
above by com. A short commitment is such that the size of com is much smaller
than �. Preferably, the size of a short commitment depends solely on n, but
poly-logarithmic dependence on � is also okay. The size of a local opening is the
maximum size of decomi (in bits). A protocol is said to support local opening if
this size depends only on n and at most poly-logarithmically on �.

3.6 Fully Black-Box Constructions

We give a definition of a fully black-box reduction from an MCRH to standard
CRH. For this, we generalize the definition of an MCRH to the setting of oracle-
aided computation: The generation and evaluation algorithms of an MCRH are
given access to an oracle Γ relative to which they can generate a description of
a hash function and evaluate an index at a point. The adversary is also given
oracle access to Γ in the security game and has to find multiple collisions relative
to it.

We focus here on k-MCRH functions with k = 3. The following definition of
a “black-box construction” is directly inspired by those of [2,23].

Definition 9. A fully black-box construction of a collision-resistant function
family H′ from a 3-MCRH function family H mapping 2n bits to n bits consists
of a pair of probabilistic polynomial-time algorithms (H.G,H.E) and an oracle-
aided polynomial-time algorithm M such that:

– Completeness: For any n ∈ N, for any 3-MCRH function family H and any
function h produced by h ← H′H(1n), it holds that hH : {0, 1}2n → {0, 1}n.

– Black-box proof of security: For any collision resistant hash H′, any
probabilistic polynomial-time oracle-aided algorithm A, every polynomial p(·),
if

Pr
[

x1 �= x2

hH(x1) = hH(x2)

∣∣∣∣
h ← hH(1n)

(x1, x2) ← AH(1n, h)

]
≥ 1

p(n)

for infinitely many values of n, then there exists a polynomial p′(·) such that

Pr
[
x1, x2, x3are distinct and
h(x1) = h(x2) = h(x3)

∣∣∣∣
h ← H(1n)

(x1, x2, x3) ← MA,H(1n, h)

]
≥ 1

p′(n)

for infinitely many values of n.

4 Multi-Collision-Resistant Function Families

A multi-collision-resistant hash function is a relaxation of standard collision-
resistant hash function in which it is hard to find multiple collisions on the same
value.

Collision Resistant Hashing for Paranoids: Dealing with Multiple Collisions 179

Definition 10 (Multi-Collision-Resistant Hashing). Let k = k(n) be a
polynomial function. An efficient function family ensemble H = {Hn : {0, 1}2n →
{0, 1}n}n∈N is a (t, ε)-secure k-multi-collision-resistant hash (MCRH) function
family if for any probabilistic algorithm A that runs in time at most t(n), for
large enough n ∈ N:

Pr
[
x1, . . . , xk are distinct and

h(x1) = · · · = h(xk)

∣∣∣∣
h ← Hn

(x1, . . . , xk) ← A(h)

]
≤ ε(n).

We call such x1, . . . , xk that map to the same value under h a k-wise collision.
Lastly, we say that H is a secure k-MCRH if it is (p, 1/p)-secure for every poly-
nomial p(·).
The Compression Ratio. In the definition above we assume that the hash func-
tion compresses its input from 2n bits into n, where the choice of the constant
2 is somewhat arbitrary. Our choice of linear compression rate (in contrast to,
say, a polynomial compression rate) models the basic building blocks in most
standards of cryptographic hash functions, such as the ones published by NIST
(e.g., most of the SHA-x family).

When considering k-MCRH functions, a compression that eliminates less
than log k bits is not of interest, since such a function exists unconditionally, say
by chopping (there simply will be no k-wise collision).

The factor two compression is somewhat arbitrary as any k-MCRH that
compresses (1 + ε)n bits into n bits can be translated into a (k1/ε)-MCRH that
compresses 2n bits into n (e.g. via the Merkle-Damg̊ard iterated construction [10,
42]). It is possible to assume an even stronger hash function that compresses by
a polynomial factor, say n2 bits into n bits (and this is sometimes useful; see the
paragraph in the end of Sect. 6 for an example), but this is a strong assumption
that we prefer to avoid.

For standard collision resistant hash function (with k = 2), it is known that
composition allows to translate hash functions that compress by one bit into
hash functions that compress by any polynomial factor (from n bits into nδ bits
for any constant δ > 0). Obtaining a similar result for k-MCRH functions (with
k > 2) without significantly compromising on the value of k in the resulting
family is an open problem. In Sect. 6 we give a transformation in which the
resulting family is (kO(log n))-MCRH.

Public vs. Private Coins. Our definition above is of a private-coin MCRH,
namely, the coins used by the key-generation procedure are not given to the
collision finder, but are rather kept secret. One can define the stronger public-
coin variant in which the aforementioned coins are given to the attacker. The
weaker notion is enough for our applications. There are (other) cases where this
distinction matters, see Hsiao and Reyzin [31].

5 Tree Commitments from Multi-CRH

We show how to build a commitment scheme which is computationally-binding,
statistically-hiding, round-efficient, has short commitments, and supports local

180 I. Komargodski et al.

opening. We refer to Sect. 3.5 for the definition of a commitment scheme,
computational-binding, statistical-hiding, and the efficiency measures of com-
mitments we consider below.

Theorem 2. Assume that there exists a (t, ε)-secure k-MCRH H for a polyno-
mial k = k(n) in which every function can be described using � = �(n) bits. For
any parameters d = d(n) and 1 < z ≤ n/2d, there is commitment protocol for
strings of length 2d · n with the following properties:

1. (t′, ε′)-computationally-binding for ε′ = O
(
2

d
log(n/(zd)) ·

(
k2

2z−d + ε
))

and t′ =

O
(

ε′2·t
nk2d·p(n)

)
, where p(·) is some fixed polynomial function.

2. 2−n-statistically-hiding.
3. takes O

(
d

log(n/(zd))

)
rounds.

4. the commitment has length O (d� + dn).
5. supports local opening of size O

(
d2n

)
.

There are various ways to instantiate z compared to n and d, offering various
trade-offs between security and efficiency. We focus here on the case in which we
wish to commit on a polynomially-long string, that is, d = c log n for a constant
c ∈ N. In the following the big “O” notation hides constants that depend on c.
Setting z = n1−δ for a small constant δ > 0, the parameters of our commitment
scheme are:

1. ε′ = O
(

k2

2n1−δ + ε
)

and t′ = ε′2·t
poly(n) .

2. 2−n-statistically-hiding.
3. takes O(1) rounds.
4. the commitment has length O(� + n log n).
5. supports local opening of size O(n log2 n).

This setting is very efficient in terms of rounds (it is a constant that depends
solely on c) but suffers in security loss (the resulting scheme is at most 2−n1−δ

-
secure). In the regime where the MCRH is (p, 1/p)-secure for every polynomial
p, our resulting scheme is as secure (i.e., (p, 1/p)-computationally-binding for
every polynomial p).

In case ε is very small to begin with (e.g., much smaller than 2−n1−δ

), we
can use set z to be z = n/(2c log n) for a small constant δ > 0. The resulting
commitment scheme satisfies:

1. ε′ = O
(
nc−1 ·

(
k2

2n/ log n + ε
))

and t′ = t·ε′2
poly(n) .

2. 2−n-statistically-hiding.
3. takes O(log n) rounds.
4. the commitment has length O(� log n + n log n).
5. supports local opening of size O(n log2 n).

This setting has a logarithmic number of rounds, but the security loss is much
smaller than before (only of order 2−n/ log n).

Collision Resistant Hashing for Paranoids: Dealing with Multiple Collisions 181

Roadmap. Our protocol is constructed in two main steps. In the first step (given
in Sect. 5.1) we construct a protocol with the above properties (i.e., Theorem 2)
except that it is not statistically hiding (but is computationally-binding, takes
few rounds, has short commitment, and supports local opening). In the second
step (given in Sect. 5.2), we show how to generically bootstrap our commitment
scheme, into one that is also statistically-hiding. This reduction is both efficient
and security preserving with respect to all parameters.

5.1 A Computationally-Binding Scheme

The main ingredients in our first protocol are an MCRH (Definition 10) and a
limited-independent family (Definition 2):

– A (t, ε)-secure k-MCRH for a polynomial k = k(n):

H = {h : {0, 1}2n → {0, 1}n}.

We assume that every h ∈ H can be described using � = �(n) bits.
– A family of pairwise-independent functions mapping strings of length 2n to

strings of length z:

G = {g : {0, 1}2n → {0, 1}z}.

Recall that every g ∈ G can be described using 4n bits.

Description of the Protocol. Our protocol relies on the notion of a Merkle hash
tree. This is a method to hash a long string into a short one using a hash
function with fixed input length. Let x ∈ {0, 1}� be a string. A Merkle hash
tree is a binary tree T , associated with a string x ∈ {0, 1}� and a hash function
h : {0, 1}2n → {0, 1}n. Let x = x1, . . . , x2d be the decomposition of x into 2d

blocks, each of length n. Every node v in the tree has a sibling denoted by N(v)
(we assume that the sibling of the root is ⊥). Every node v in the tree is labeled
with a string πv ∈ {0, 1}n. The tree has 2d leaves v1, . . . , v2d and the label of vi

are set to πvi
= xi. The labels of the rest of the nodes are computed iteratively

from the leaves to the root. Given a node v whose both children u1, u2 are labeled
with πu1 , πv2 , we set the label of v to be πv = h(πu1 , πv2). The node root has
label y and we call it the root-hash.

Given a Merkle hash tree for a string x = x1 . . . x2d ∈ {0, 1}2d·n, let pathi be a
set of nodes in the tree including the nodes on the path from xi to the root of the
tree and all their siblings along this path. We further let Pi = {πv | v ∈ pathi}
be the set of all the labels of the nodes in the set pathi (the labels of the nodes
on the path from xi to the root of the tree and the labels of their siblings). Each
set pathi contains 2d nodes and thus the description size of each Pi is 2dn bits.

The commitment protocol (S,R,V) specifies how to commit to a string of
length 2dn. Our protocol uses a Merkle hash tree with a function h supplied
by the receiver and a root hash replied by the sender. In the next round, the
receiver chooses a limited-independence function g with z bits of output (z is

182 I. Komargodski et al.

a tunable parameter) and sends it to the sender. The sender then computes g
on the hash values of every pair of sibling nodes in the Merkle hash tree (i.e.,
g(πv ◦ πN(v))). Then it concatenates all of these values into one long string s′.
Then, the protocol continues in a recursive manner on this string s′. The length
of s′ is roughly z2d bits (there are 2d internal nodes in the tree and each requires
z bits) which is still too long to send as is, however is smaller than the original
string s. This allows us to apply the same ideas recursively with the base case,
committing on a string of length n, being the trivial protocol of sending the
string as is. Choosing parameters carefully, we balance between the efficiency
and security of our resulting commitment.

The commitment protocol for strings of length 2dn for d ≥ 1 is described in
Fig. 1.

The commit protocol between S and R

The sender S has string s = s1 . . . s2d where si ∈ {0, 1}n for all i ∈ [2d].

1. R ⇒ S: Sample h ← H and send h.
2. S ⇒ R: Compute a Merkle hash-tree T of s using h and send the root-hash y. Let

πv be the hash value in the tree for node v ∈ T , and let Pi =
{
πv ◦ πN(v)

}
v∈pathi

for all i ∈ [d].
3. R ⇒ S: Sample g ← G and send g.
4. S ⇔ R: Recursively interact to commit on the string s′ = u1 ◦ . . . ◦ u2d , where

ui =
{
g(πv ◦ πN(v))

}
v∈pathi

. Notice that |s′| = 2d · dz = 2d
′
n, where d′ = d −

(logn − log z − log d). Denote the outputs of the sender and receiver by

((D1, . . . , D2d
′
n), C) ← 〈S(1n, s′), R〉.

The output of each party

– R’s output: The receiver R outputs com = (h, y, g, C).
– S’s output: The sender S outputs (decom1, . . . , decom2d), where decomi is defined

as follows: Let i′ be the index in s′ of the block containing ui. Set decomi =
(si, Pi, Di′).a

The local-opening procedure V

The verifier V has an index i ∈ [2d], a decommitment decomi, and a commitment
com.

1. Verify that si appears in Pi in the right location.
2. Verify that the values in Pi are consistent with respect to h and y.
3. Compute ui =

{
g(πv ◦ πN(v))

}
v∈pathi

, where Pi =
{
πv ◦ πN(v)

}
v∈pathi

. Recur-
sively compute u′

i ← V(i′, Di′ , C) and verify that u′
i = ui.

4. If all tests pass, output si. Otherwise, output ⊥.

a We assume without loss of generality that each ui is contained in a single block
(otherwise, we pad the string).

Fig. 1. Our commitment protocol for strings of length 2d · n.

Collision Resistant Hashing for Paranoids: Dealing with Multiple Collisions 183

Rounds and Communication Analysis. Denote by Size(2dn), Rounds(2dn), and
Decom(2dn), the total size of the commitment, the number of rounds of the com-
mit stage, and the size of a local opening on a string of length 2dn, respectively.
The commitment consists of a description of a hash function h ∈ H (whose size
is denoted by �(n)), the root-hash value of a Merkle hash-tree (which is of size
n), a function g ∈ G (which is of size 4n), and the recursive commitment. The
opening for an index i ∈ [2d] consists of a block (of size n), the full i-th path
(which consists of 2dn bits), and the recursive opening.

Recall that the protocol for committing on strings of length 2dn uses (recur-
sively) a protocol for committing on strings of length 2d′

n, where

d′ = d − (log n − log z − log d) = d − log(n/(zd)).

Moreover, the commitment protocol on strings of length n has communication
complexity n, consists of a single round and the opening is n bits. Thus, the
total number of recursive call will be

⌈
d

log(n/(zd))

⌉
.

We get that the total number of communication rounds is bounded by

Rounds(2dn) ≤ 3 + Rounds(2d′
n) ≤ · · · ≤

⌈
3d

log(n/(zd))

⌉
+ O(1)

Actually, since each recursive call consists of three messages (except the base of
the recursion), we can join the last round of every iteration with the first round
in the next one. Therefore, we can get the improved bound

Rounds(2dn) ≤ 2d

log(n/(zd))
+ O(1)

The size of a commitment is bounded by

Size(2dn) ≤ �(n) + 5n + Size(2d′
n)

≤
⌈

d · (�(n) + 5n)
log(n/(zd))

⌉
≤ d · (�(n) + 5n).

The size of a local opening is bounded by

Decom(2dn) ≤ n + 2dn + Decom(2d′
n)

≤
⌈

3d2n

log(n/(zd))

⌉
≤ 3d2n.

Computational-Binding. We show that our protocol is (td, εd)-computationally-
binding for strings of length 2d · n. We assume that the k-MCRH is (t, ε)-
secure and that the internal protocol for strings of length 2d′

n is (td′ , εd′)-
computationally-binding. We set εd to satisfy the following recursive relation:

εd =
4k2

2z−d
+ 4ε + 4εd′ .

184 I. Komargodski et al.

Plugging in the number of rounds our recursion takes, we get that

εd ≤ 2
6d

log n−log z−log d ·
(

4k2

2z−d
+ 4ε

)
.

Let S∗ be a (cheating) adversary that runs in time td and breaks the binding
of the protocol, namely, with probability εd, S∗ is able to (locally) open the
commitment in two ways without getting caught. That is, after the commitment
stage, there is an index i ∈ [2d] for which the adversary S∗ is able to open the
corresponding block in two different ways with probability εd:

Pr
S∗,R

[
(i, decom0

i , decom
1
i , com) ← 〈S∗(1n),R〉 and

⊥ �= V(i, decom0
i , com) �= V(i, decom1

i , com) �= ⊥

]
≥ εd, (1)

where the probability is taken over the random coins of both S∗ and R. The
randomness of R consists of uniformly chosen functions h ← H and a function
g ← G, so we can rewrite Eq. (1) as

Pr
S∗,h←H,

g←G

[
(i, decom0

i , decom
1
i , com) ← 〈S∗(1n), (h, g)〉

and⊥ �= V(i, decom0
i , com) �= V(i, decom1

i , com) �= ⊥

]
≥ εd. (2)

We will show how to construct an adversary A that runs in time at most t
and finds a k-wise collision relative to a randomly chosen hash function h ← H.
The procedure A will run the protocol 〈S∗(1n), (h, g)〉 with the given h and
a function g chosen uniformly at random and get (with good probability) two
valid and different openings for some index i. Then, A will partially rewind the
adversary S∗ to the stage after he received the hash function h and replied with
the root hash y (of s), and execute it again but with a fresh function g ← G.
With noticeable probability, this will again result with two valid openings for
some (possibly different) index i. Repeating this process enough times, A will
translate a large number of different (yet valid) decommitments into a large
number of collisions relative to h. The fact that these collisions are distinct (with
good probability) will follow from the fact that the g’s are sampled independently
in every repetition.

We introduce some useful notation. Recall that S∗ is the sender that is able
to locally open its commitment in two different ways. We slightly abuse nota-
tion and also think of S∗ as a distribution over senders (this is without loss of
generality since we can assume it chooses all of its randomness ahead of time).
For an index i∗ ∈ [R], string y ∈ {0, 1}n, we denote by S∗|h,y a distribution
over all senders S∗ in which the first message received is h and the reply is the
root-hash y. For a string y that is sampled by choosing h ← H and running
S∗ for one round to obtain y, the adversary S∗|h,y is uniformly chosen from
all possible continuations of the adversary S∗ given these first two messages.
Given this notation, we can write the adversary S∗ as a pair of two distribu-
tions (Yh,S∗|h,Yh

), where Yh is the distribution of the first message S∗ sends in
response to h, and S∗|h,Yh

is the distribution over the rest of the protocol.

Collision Resistant Hashing for Paranoids: Dealing with Multiple Collisions 185

In a high-level, our algorithm A maintains a binary tree of depth d and
2d leaves, in which each node v is associated with a set of labels Sv. At the
beginning, each such set Sv is initialized to be empty. The algorithm A uses S∗

to get many valid pairs of openings decom0
i and decom1

i for an index i:

decom0
i = (s0i , P

0
i ,D0

i′) and decom1
i = (s1i , P

1
i ,D1

i′)

that are consistent with a commitment:

com = (h, y, g, C).

Since both openings are valid and si �= s′
i, it must be that (1) s0i (resp., s1i)

appears in P 0
i (resp., P 1

i) and (2) P 0
i and P 1

i are consistent with the root-hash
y. Thus, it must be that P 0

i �= P 1
i and there is a node v on the path pathi that

is the first (going from the root to the leaves) non-trivial collision between P 0
i

and P 1
i . Now, by the induction hypothesis, the probability that S∗ cheats in

the internal decommitment is small, and since g is sampled uniformly at every
iteration, we show that it must be a new collision that did not appear before.
We will identify the location of the collision at a node v and add this collision
to the set Sv. See Fig. 2 for a precise description of A.

The adversary A(1n, h):

1. For all nodes v, set Sv = ∅ to be the empty set.
2. Send to S∗ the function h and receive a root-hash y ∈ {0, 1}n.
3. Do the following T = 50nk2d/ε2d times:

(a) Sample g ← G.
(b) Obtain (i, decom0

i , decom
1
i , com) ← 〈S∗|h,y(1n), g〉.

(c) Parse decom0
i = s0i , P

0
i , D0

i′
)
and decom1

i = s1i , P
1
i , D1

i′
)
. Parse com =

(h, y, g, C).
(d) If any of the following occurs, continue to the next iteration:

i. ⊥ �= V(i, decom0
i , com) �= V(i, decom1

i , com) �= ⊥.
ii. ⊥ �= V(i′, D0

i′ , C) �= V(i′, D1
i′ , C) �= ⊥.

(e) Let v the node of the first (from the root to the leaves) non-trivial collision
between P 0

i and P 1
i . Let X = π0

v, π0
N(v) and Y = π1

v, π1
N(v) be the values of

the collision for P 0
i and P 1

i , respectively. Add X and Y to Sv.
(f) If there exists a node v for which |Sv| ≥ k, then output Sv and halt.

4. Output ⊥.

Fig. 2. The algorithm A to find a k-wise collision in H.

The analysis of the adversary A can be found in the full version [38].

Remark 1 (Optimization I: recycling h). In the recursive step of our protocol, we
can use the same hash function h as in the first step of the recursion. This saves
sending its description (which is of size �(n) at every iteration and the resulting
size of a commitment is (O(�(n) + d2n).

186 I. Komargodski et al.

Remark 2 (Optimization II: almost-universal hashing). In our protocol we used
a pairwise independent hash function whose description size is proportional to
their input size. This costs us in communication. We could save communication
by using almost-universal hash functions whose description size is proportional
to their output size.

5.2 Getting Statistical-Hiding Generically

We show how to transform any short commitment scheme Π that is compu-
tationally binding (but perhaps not hiding) to a new scheme Π ′ that is short,
computationally binding and statistically hiding. Moreover, if Π admits a local-
opening, then Π ′ admits a local-opening as well. Our transformation is informa-
tion theoretic, adds no additional assumptions and preserves the security, the
number of rounds and communication complexity of the original scheme (up to
a small constant factor).

High-Level Idea. The underlying idea of our transformation is to leverage the
fact that the commitment protocol Π is short. Specifically, when committing to
a long string s ∈ {0, 1}nc

for some large c ∈ N, the communication is very short:
Λ(n) bits for a fixed polynomial function.13 Thus, when we commit to s, a large
portion of s is not revealed to the receiver by the protocol so this part of s is
statistically hidden. The question is how to make sure that all of s is hidden.

Our solution takes advantage of the fact that some fraction of s remains hid-
den. We commit on a random string r that is independent of s and slightly longer.
Then, we extract from r the remaining randomness r′ given the communication
of the protocol using a strong extractor (see Sect. 3.2). Finally, we commit on
the string s ⊕ r′. We need to show that this scheme is computationally-binding
and statistically-hiding. The former follows from the computational-binding of
the original scheme. The latter follows from the fact that r′ is completely hidden
to the receiver and it masks the value of s.

The details of this transformation appear in the full version [38].

6 Four-Round Short Commitments from Multi-CRH

We show how to construct a 4-round short commitment protocol based on a
family of k-MCRH functions. Compared to the protocol from Sect. 5, this pro-
tocol has no local opening and is secure only for constant values of k. However,
it consists only of 4 rounds. Furthermore, using techniques similar to Sect. 5.2
the protocol can be made also statistically-hiding which suffices for some appli-
cations such as statistical zero-knowledge arguments [8].

We discuss methods that allow us to prove security even for polynomial values
of k towards the end of the section.

13 Our protocol from Sect. 5.1 has an additional linear dependence on c, but we will
ignore this in this section to simplify notation.

Collision Resistant Hashing for Paranoids: Dealing with Multiple Collisions 187

Theorem 3. Assume that there exists a (t, ε)-secure k-MCRH H for a constant
k in which every function can be described using � = �(n) bits. For any c ∈
N, there is a commitment protocol for strings of length nc with the following
properties:

1. (t′, ε′)-computationally-binding for ε′ = 4ε + O(kc log n)
2n and t′ = t·ε′2

O(kc log n)·p(n) ,
where p(·) is some fixed polynomial function.

2. takes 4 rounds (i.e., 4 messages).
3. the commitment has length � + O (n).

Proof. We describe a commitment protocol for a string s = s1 . . . s2d of length
2d ·n for d = (c−1) · log n. We show that our protocol is computationally-binding
and getting statistical-hiding can be done using the generic transformation from
Sect. 5.2. Our protocol uses a Merkle hash-tree as described in Sect. 5. The main
observation made in this construction is that before using the Merkle hash-
tree we can use a special type of encodings, called list-recoverable codes (see
Definition 4) to get meaningful security. Let C : {0, 1}2dn → ({0, 1}2n)2

d′
be

an (�, L)-list-recoverable code for � = kd, L = O(kd), and d′ = O(log n) with
some large enough hidden constants. Such a code exists by Theorem1 (with
efficient encoding and list-recovery). Let G be a family of (2−n)-almost pairwise-
independent functions mapping strings of length 2dn to strings of length n (see
Definition 3): G = {g : {0, 1}2dn → {0, 1}n}. Recall that every g ∈ G can be
described using at most 2n + log(2dn) + log(2n) ≤ 4n bits.

The commitment protocol for a string s = s1 . . . s2d of length 2d · n for
d = (c − 1) · log n works as follows. The receiver first sends a description of
an h ← H which is a k-MCRH to the sender. The sender then computes the
encoding C(s) of s and computes the Merkle hash tree of s′ = C(s) (and not
of s). The sender sends the root of the hash tree y to the receiver. The receiver
replies with a hash function g ← G and finally the sender replies with u = g(s).
The opening is done is the natural way by letting the sender reveal s to the
receiver who then simulates the computation and makes sure that the messages
y and u are consistent. See Fig. 3 for the precise description.

By the description of the protocol, one can see that the protocol consists of
4-rounds and has communication complexity of � + n + 4n + n = � + 6n bits. In
addition, for the honest sender the verification succeeds with probability 1.

The analysis of the commitment scheme can be found in the full version [38].

Supporting Arbitrary Larger k. The reason why we could prove security only for
constant values of k stems from the fact that our adversary A for the MCRH
runs in time proportional to kd. The source of this term in the running time
is that our Merkle hash tree in the construction is of depth d = O(log n) and
when counting the number of possible openings per coordinate in a leaf, we get
kd possibilities. Our adversary A basically “collects” this number of different
openings for some coordinate and thereby finds a k-wise collision. If k is super-
constant the running time of A becomes super-polynomial.

188 I. Komargodski et al.

The commit protocol between S and R

The sender S has string s = s1 . . . s2d where si ∈ {0, 1}n for all i ∈ [2d].

1. R ⇒ S: Samples h ← H and sends h.
2. S ⇒ R: Compute s′ = C(s) and a Merkle hash-tree T of s′ using h and send the

root-hash y.
3. R ⇒ S: Sample g ← G and send g.
4. S ⇔ R: Send u = g(s) to the receiver

The output of the receive is com = (h, y, g, u).

The verifier V gets the input s simulates the sender to verify y and u.

Fig. 3. Our four-round commitment protocol for strings of length 2d · n.

There are two paths we can take to bypass this. One is to assume super-
polynomial security of the MCRH and allow our adversary to run in super-
polynomial time. The second assumption is to assume that we start with a
stronger MCRH that compresses by a polynomial factor (i.e., from n1+Ω(1) to
n) rather than by a factor of 2. This will cause the Merkle hash tree to be
of constant depth. Under either of the assumptions, we can support polynomial
values of k (in n). However, both assumptions are rather strong on the underlying
MCRH and we thus prefer to avoid them; see Sect. 4 for a discussion.

Domain Extension of MCRH Functions. The construction we gave in the proof
of Theorem 3 can be viewed as a domain extension method for MCRH functions.
Specifically, given a k-MCRH f that maps 2n bits into n bits, we constructed a
function g that maps m = m(n) bits into n bits for any polynomial m(·) such
that g is a ((k − 1)log m + 1)-MCRH.

Other Uses of List-Recoverable Codes for Domain-Extension. List-recoverable
codes have been proven useful in various applications in cryptography. The work
of Maurer and Tessaro [40] considers the problem of a extending the domain
of a public random function. They show how to use a length-preserving ran-
dom function f on n input bits, to get a variable-input-length function g that
maps arbitrary polynomial-size inputs into arbitrary polynomial-size outputs
such that g is indistinguishable from a random function for adversaries making
up to 2(1−ε)n queries to g. One of their main components in the construction is a
list-recoverable code (there referred to as an input-restricting function family).

Building on ideas and techniques of [40], Dodis and Steinberger [13] showed
that list-recoverable codes are also useful for security preserving domain exten-
sion of message-authentication codes (with “beyond-birthday” security).

More recently, Haitner et al. [25] studied the possibility of a fully parallel
(i.e., non-adaptive) domain-extension scheme that realizes a collision-resistant

Collision Resistant Hashing for Paranoids: Dealing with Multiple Collisions 189

hash function. Starting with a random function f that maps n bits into n bits,
they construct a function g that maps m(n) bits into n bits for any polynomial
m(·), makes only parallel calls to f , and requiring an attacker to make at least
2n/2 queries to g to find a collision with high probability. Their construction uses
list-recoverable codes and they show that such codes are actually necessary for
this task.

7 Separating Multi-CRH from CRH

In this section we rule out fully black-box constructions (see Definition 9) of CRH
functions from k-MCRH functions for k > 2. Our proof technique is inspired by
the works of Asharov and Segev [2] and Haitner et al. [23], that are based in
turn on ideas originating in the works of Simon [50] Gennaro et al. [14]) and
Wee [54].

We present an oracle Γ relative to which there exists a 3-multi-collision-
resistant hash function, but any collision-resistant hash function can be easily
broken. The theorem below is stated and proved only for the case of standard
CRH and 3-MCRH. The ideas in this proof naturally extend to a separation of
k-MCRH from (k + 1)-MCRH for all fixed values of k.

Theorem 4. There is no fully black-box construction of a collision-resistant
hash function family from a 3-multi-collision-resistant hash function family map-
ping 2n bits to n bits.

The proof can be found in the full version [38].

8 UOWHFs, MCRHs and Short Commitments

We explore the relationship between short commitments, MCRHs and univer-
sal one-way hash functions (see Definition 6). Our main message is that short
commitment protocols (with some requirements listed below) directly imply
UOWHFs. The transformation is efficient in the sense that a description of a
hash function corresponds to the messages sent by the receiver and evaluation of
the function is done by executing the protocol. In some cases this gives a way to
construct a UOWHF which is more efficient than the direct construction based
on one-way functions or permutations [46,48] (see comparison below).

Theorem 5. Any short commitment protocol in which the receiver is public-coin
yields a universal one-way hash function with the following properties:

1. The key size is the total number of (public) coins sent by the receiver.
2. The length of inputs that the UOWHF supports is the length of messages the

commitment protocol commits to and the length of the output is the amount
of bits sent from the sender to the receiver.

3. The evaluation of a hash function amounts to a single execution of the com-
mitment protocol.

190 I. Komargodski et al.

Plugging in our construction of short commitments from MCRH functions
from Theorem 2, we obtain a new construction of a UOWHF for messages of
length n2d starting with a k-MCRH for a polynomial k = k(n). The key size in
the resulting family is proportional to the number of bits sent from the receiver
to the sender: � + O(d · n/ log n) bits, where � is the size of an MCRH key.14

Using our construction of short commitments from MCRH functions from
Theorem 3, we get a new construction of a UOWHF for messages of length n2d

starting from a k-MCRH for any constant k. The key size in the resulting family
is �+O(n) bits. Notice that this term is independent of d and the hidden constant
in the big “O” is pretty small.15

Comparison with Previous Constructions. Starting with a standard collision
resistant hash function on short inputs, it is known how a collision resistant
hash function on long inputs (based on the so called Merkle-Damg̊ard iterated
construction) [10,42]. This directly implies a UOWHF. The key size in the result-
ing construction is optimal: it is just a key for a single collision resistant hash.
However, when starting with weaker building blocks the key size grows.

Naor and Yung [46] suggested a solution based on a tree hash (similar to a
construction of Wegman and Carter for universal hash functions [55]). In their
scheme, hashing a message of length n2d is done by a balanced tree such that in
the i-th level n2d−i bits are hashed into n2d−i−1 bits by applying the same basic
compression function 2d−i−1 times. Each level in the tree requires its own basic
compression function which results with a total of d keys for the basic UOWHF.
Thus, the total size of a key in the resulting function is d� bits, where � is the
bit size of a key in the basic UOWHF.

In case that the keys of the basic scheme (� above) are rather long, Shoup [49],
following on the XOR tree hash of Bellare and Rogaway [5], offered the following
elegant scheme to transform a fixed-input UOWHF into a UOWHF that supports
arbitrary long inputs. Given an input of 2d blocks each of size n, for i = 1, . . . , 2d

we compute ci = h((ci−1 ⊕ sκ(i)) ◦ mi), where s0, . . . , sd are uniformly random
“chaining variables”, and κ(i) chooses one of the elements s0, . . . , sd.16 Thus,
the total size of a key in the resulting function is � + (d + 1)n bits.

The proof of Theorem5 appears in the full version [38].

Acknowledgments. We are grateful to Noga Ron-Zewi for teaching us about list-
recoverable codes, for multiple useful discussions, and for sharing with us a preliminary
version of [28]. We greatly acknowledge Gilad Asharov and Gil Segev for educating us
about black-box separations. We thank Iftach Haitner and Eran Omri for answering
questions related to [25]. We also thank Stefano Tessaro for telling us about [13,40]
and in particular for explaining the relation of [40] to this work.

14 The overhead in the key size can be improved if the pairwise hash function is replaced
by an almost uniform hash function as described in Remark 2.

15 The concrete constant in our scheme is roughly 6 but we did not try to optimize it
further.

16 The function κ(i) counts the number of times 2 divides i, that is, for i ≥ 1, κ(i) is
the largest integer κ such that 2κ divides i.

Collision Resistant Hashing for Paranoids: Dealing with Multiple Collisions 191

References

1. Alon, N., Goldreich, O., H̊astad, J., Peralta, R.: Simple construction of almost
k-wise independent random variables. Random Struct. Algorithms 3(3), 289–304
(1992)

2. Asharov, G., Segev, G.: Limits on the power of indistinguishability obfuscation
and functional encryption. SIAM J. Comput. 45(6), 2117–2176 (2016)

3. Barak, B.: How to go beyond the black-box simulation barrier. In: 42nd Annual
Symposium on Foundations of Computer Science, FOCS, pp. 106–115. IEEE Com-
puter Society (2001)

4. Barak, B., Goldreich, O.: Universal arguments and their applications. SIAM J.
Comput. 38(5), 1661–1694 (2008)

5. Bellare, M., Rogaway, P.: Collision-resistant hashing: towards making UOWHFs
practical. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 470–484.
Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052256

6. Berman, I., Degwekar, A., Rothblum, R.D., Vasudevan, P.N.: Multi collision resis-
tant hash functions and their applications. IACR Cryptology ePrint Archive 2017,
489 (2017)

7. Bitansky, N., Kalai, Y.T., Paneth, O.: Multi-collision resistance: A paradigm for
keyless hash functions. IACR Cryptology ePrint Archive 2017, 488 (2017)

8. Brassard, G., Chaum, D., Crépeau, C.: Minimum disclosure proofs of knowledge.
J. Comput. Syst. Sci. 37(2), 156–189 (1988)

9. Coppersmith, D.: Another birthday attack. In: Williams, H.C. (ed.) CRYPTO
1985. LNCS, vol. 218, pp. 14–17. Springer, Heidelberg (1986). https://doi.org/10.
1007/3-540-39799-X 2

10. Damg̊ard, I.B.: A design principle for hash functions. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 416–427. Springer, New York (1990). https://
doi.org/10.1007/0-387-34805-0 39

11. Damg̊ard, I., Pedersen, T.P., Pfitzmann, B.: On the existence of statistically hiding
bit commitment schemes and fail-stop signatures. J. Cryptol. 10(3), 163–194 (1997)

12. Damg̊ard, I., Pedersen, T.P., Pfitzmann, B.: Statistical secrecy and multibit com-
mitments. IEEE Trans. Inf. Theory 44(3), 1143–1151 (1998)

13. Dodis, Y., Steinberger, J.: Domain extension for MACs beyond the birthday bar-
rier. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 323–342.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4 19

14. Gennaro, R., Gertner, Y., Katz, J., Trevisan, L.: Bounds on the efficiency of generic
cryptographic constructions. SIAM J. Comput. 35(1), 217–246 (2005)

15. Girault, M., Cohen, R., Campana, M.: A generalized birthday attack. In: Barstow,
D., Brauer, W., Brinch Hansen, P., Gries, D., Luckham, D., Moler, C., Pnueli, A.,
Seegmüller, G., Stoer, J., Wirth, N., Günther, C.G. (eds.) EUROCRYPT 1988.
LNCS, vol. 330, pp. 129–156. Springer, Heidelberg (1988). https://doi.org/10.1007/
3-540-45961-8 12

16. Girault, M., Stern, J.: On the length of cryptographic hash-values used in iden-
tification schemes. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp.
202–215. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48658-5 21

17. Goldreich, O., Sahai, A., Vadhan, S.: Can statistical zero knowledge be made
non-interactive? or on the relationship of SZK and NISZK. In: Wiener, M.
(ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 467–484. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 30

https://doi.org/10.1007/BFb0052256
https://doi.org/10.1007/3-540-39799-X_2
https://doi.org/10.1007/3-540-39799-X_2
https://doi.org/10.1007/0-387-34805-0_39
https://doi.org/10.1007/0-387-34805-0_39
https://doi.org/10.1007/978-3-642-20465-4_19
https://doi.org/10.1007/3-540-45961-8_12
https://doi.org/10.1007/3-540-45961-8_12
https://doi.org/10.1007/3-540-48658-5_21
https://doi.org/10.1007/3-540-48405-1_30

192 I. Komargodski et al.

18. Guruswami, V., Indyk, P.: Near-optimal linear-time codes for unique decoding and
new list-decodable codes over smaller alphabets. In: Proceedings on 34th Annual
ACM Symposium on Theory of Computing, pp. 812–821. ACM (2002)

19. Guruswami, V., Indyk, P.: Linear time encodable and list decodable codes. In:
Proceedings of the 35th Annual ACM Symposium on Theory of Computing, pp.
126–135. ACM (2003)

20. Guruswami, V., Indyk, P.: Linear-time list decoding in error-free settings. In:
Dı́az, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS,
vol. 3142, pp. 695–707. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-27836-8 59

21. Guruswami, V., Sudan, M.: Improved decoding of Reed-Solomon and algebraic-
geometry codes. IEEE Trans. Inf. Theory 45(6), 1757–1767 (1999)

22. Guruswami, V., Umans, C., Vadhan, S.P.: Unbalanced expanders and randomness
extractors from parvaresh-vardy codes. J. ACM 56(4), 20:1–20:34 (2009)

23. Haitner, I., Hoch, J.J., Reingold, O., Segev, G.: Finding collisions in interactive
protocols - tight lower bounds on the round and communication complexities of
statistically hiding commitments. SIAM J. Comput. 44(1), 193–242 (2015)

24. Haitner, I., Horvitz, O., Katz, J., Koo, C., Morselli, R., Shaltiel, R.: Reducing
complexity assumptions for statistically-hiding commitment. J. Cryptol. 22(3),
283–310 (2009)

25. Haitner, I., Ishai, Y., Omri, E., Shaltiel, R.: Parallel hashing via list recoverability.
In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 173–190.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-7 9

26. Haitner, I., Nguyen, M., Ong, S.J., Reingold, O., Vadhan, S.P.: Statistically hiding
commitments and statistical zero-knowledge arguments from any one-way function.
SIAM J. Comput. 39(3), 1153–1218 (2009)

27. H̊astad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator
from any one-way function. SIAM J. Comput. 28, 1364–1396 (1999)

28. Hemenway, B., Ron-Zewi, N., Wootters, M.: Local list recovery of high-rate ten-
sor codes & applications. In: 58th IEEE Annual Symposium on Foundations of
Computer Science, FOCS, pp. 204–215. IEEE Computer Society (2017)

29. Hemenway, B., Wootters, M.: Linear-time list recovery of high-rate expander codes.
In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP
2015. LNCS, vol. 9134, pp. 701–712. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-47672-7 57

30. Hosoyamada, A., Sasaki, Y., Xagawa, K.: Quantum multicollision-finding algo-
rithm. IACR Cryptology ePrint Archive 2017, 864 (2017)

31. Hsiao, C.-Y., Reyzin, L.: Finding collisions on a public road, or do secure hash
functions need secret coins? In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol.
3152, pp. 92–105. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-
28628-8 6

32. Impagliazzo, R.: A personal view of average-case complexity. In: Proceedings of
the Tenth Annual Structure in Complexity Theory Conference, pp. 134–147. IEEE
Computer Society (1995)

33. Impagliazzo, R., Levin, L.A., Luby, M.: Pseudo-random generation from one-way
functions (extended abstracts). In: Proceedings of the 21st Annual ACM Sympo-
sium on Theory of Computing, pp. 12–24. ACM (1989)

34. Impagliazzo, R., Luby, M.: One-way functions are essential for complexity based
cryptography (extended abstract). In: 30th Annual Symposium on Foundations of
Computer Science, FOCS, pp. 230–235. IEEE Computer Society (1989)

https://doi.org/10.1007/978-3-540-27836-8_59
https://doi.org/10.1007/978-3-540-27836-8_59
https://doi.org/10.1007/978-3-662-48000-7_9
https://doi.org/10.1007/978-3-662-47672-7_57
https://doi.org/10.1007/978-3-662-47672-7_57
https://doi.org/10.1007/978-3-540-28628-8_6
https://doi.org/10.1007/978-3-540-28628-8_6

Collision Resistant Hashing for Paranoids: Dealing with Multiple Collisions 193

35. Joux, A.: Multicollisions in iterated hash functions. application to cascaded con-
structions. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 306–316.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-8 19

36. Katz, J., Koo, C.: On constructing universal one-way hash functions from arbitrary
one-way functions. IACR Cryptology ePrint Archive 2005, 328 (2005)

37. Kilian, J.: A note on efficient zero-knowledge proofs and arguments (extended
abstract). In: STOC, pp. 723–732. ACM (1992)

38. Komargodski, I., Naor, M., Yogev, E.: Collision resistant hashing for paranoids:
Dealing with multiple collisions. IACR Cryptology ePrint Archive 2017, 486 (2017)

39. Komargodski, I., Naor, M., Yogev, E.: White-box vs. black-box complexity of
search problems: ramsey and graph property testing. In: 58th IEEE Annual Sym-
posium on Foundations of Computer Science, FOCS, pp. 622–632 (2017)

40. Maurer, U., Tessaro, S.: Domain extension of public random functions: beyond
the birthday barrier. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp.
187–204. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74143-
5 11

41. Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO 1989.
LNCS, vol. 435, pp. 218–238. Springer, New York (1990). https://doi.org/10.1007/
0-387-34805-0 21

42. Merkle, R.C.: One way hash functions and DES. In: Brassard, G. (ed.) CRYPTO
1989. LNCS, vol. 435, pp. 428–446. Springer, New York (1990). https://doi.org/
10.1007/0-387-34805-0 40

43. Mironov, I.: Collision-resistant no more: hash-and-sign paradigm revisited. In:
Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958,
pp. 140–156. Springer, Heidelberg (2006). https://doi.org/10.1007/11745853 10

44. Naor, J., Naor, M.: Small-bias probability spaces: efficient constructions and appli-
cations. SIAM J. Comput. 22(4), 838–856 (1993)

45. Naor, M., Ostrovsky, R., Venkatesan, R., Yung, M.: Perfect zero-knowledge argu-
ments for NP using any one-way permutation. J. Cryptol. 11(2), 87–108 (1998)

46. Naor, M., Yung, M.: Universal one-way hash functions and their cryptographic
applications. In: Proceedings of the 21st Annual ACM Symposium on Theory of
Computing, pp. 33–43. ACM (1989)

47. Ngo, H.Q., Porat, E., Rudra, A.: Efficiently decodable compressed sensing by list-
recoverable codes and recursion. In: 29th International Symposium on Theoreti-
cal Aspects of Computer Science, STACS. LIPIcs, vol. 14, pp. 230–241. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik (2012)

48. Rompel, J.: One-way functions are necessary and sufficient for secure signatures.
In: Proceedings of the 22nd Annual ACM Symposium on Theory of Computing,
pp. 387–394. ACM (1990)

49. Shoup, V.: A composition theorem for universal one-way hash functions. In:
Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 445–452. Springer,
Heidelberg (2000). https://doi.org/10.1007/3-540-45539-6 32

50. Simon, D.R.: Finding collisions on a one-way street: can secure hash functions
be based on general assumptions? In: Nyberg, K. (ed.) EUROCRYPT 1998.
LNCS, vol. 1403, pp. 334–345. Springer, Heidelberg (1998). https://doi.org/10.
1007/BFb0054137

51. Stevens, M., Bursztein, E., Karpman, P., Albertini, A., Markov, Y.: The first col-
lision for full SHA-1. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol.
10401, pp. 570–596. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63688-7 19

https://doi.org/10.1007/978-3-540-28628-8_19
https://doi.org/10.1007/978-3-540-74143-5_11
https://doi.org/10.1007/978-3-540-74143-5_11
https://doi.org/10.1007/0-387-34805-0_21
https://doi.org/10.1007/0-387-34805-0_21
https://doi.org/10.1007/0-387-34805-0_40
https://doi.org/10.1007/0-387-34805-0_40
https://doi.org/10.1007/11745853_10
https://doi.org/10.1007/3-540-45539-6_32
https://doi.org/10.1007/BFb0054137
https://doi.org/10.1007/BFb0054137
https://doi.org/10.1007/978-3-319-63688-7_19
https://doi.org/10.1007/978-3-319-63688-7_19

194 I. Komargodski et al.

52. Ta-Shma, A.: Explicit, almost optimal, epsilon-balanced codes. In: Proceedings of
the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC, pp.
238–251 (2017)

53. Wang, X., Yin, Y.L., Yu, H.: Finding collisions in the full SHA-1. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005).
https://doi.org/10.1007/11535218 2

54. Wee, H.: One-way permutations, interactive hashing and statistically hiding com-
mitments. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 419–433.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70936-7 23

55. Wegman, M.N., Carter, L.: New hash functions and their use in authentication
and set equality. J. Comput. Syst. Sci. 22(3), 265–279 (1981)

https://doi.org/10.1007/11535218_2
https://doi.org/10.1007/978-3-540-70936-7_23

Signatures

Synchronized Aggregate Signatures
from the RSA Assumption

Susan Hohenberger1(B) and Brent Waters2

1 Johns Hopkins University, Baltimore, USA
susan@cs.jhu.edu

2 University of Texas at Austin, Austin, USA
bwaters@cs.utexas.edu

Abstract. In this work we construct efficient aggregate signatures from
the RSA assumption in the synchronized setting. In this setting, the sign-
ing algorithm takes as input a (time) period t as well the secret key and
message. A signer should sign at most once for each t. A set of signatures
can be aggregated so long as they were all created for the same period t.
Synchronized aggregate signatures are useful in systems where there is
a natural reporting period such as log and sensor data, or for signatures
embedded in a blockchain protocol.

We design a synchronized aggregate signature scheme that works for
a bounded number of periods T that is given as a parameter to a global
system setup. The big technical question is whether we can create solu-
tions that will perform well with the large T values that we might use
in practice. For instance, if one wanted signing keys to last up to ten
years and be able to issue signatures every second, then we would need
to support a period bound of upwards of 228.

We build our solution in stages where we start with an initial solu-
tion that establishes feasibility, but has an impractically large signing
time where the number of exponentiations and prime searches grows lin-
early with T . We prove this scheme secure in the standard model under
the RSA assumption with respect to honestly-generated keys. We then
provide a tradeoff method where one can tradeoff the time to create sig-
natures with the space required to store private keys. One point in the
tradeoff is where each scales with

√
T .

Finally, we reach our main innovation which is a scheme where both
the signing time and storage scale with lg T which allows for us to
keep both computation and storage costs modest even for large values
of T . Conveniently, our final scheme uses the same verification algorithm,

S. Hohenberger—Supported by the National Science Foundation CNS-1228443 and
CNS-1414023, the Office of Naval Research N00014-15-1-2778, and a Microsoft Fac-
ulty Fellowship.
B. Waters—Supported by NSF CNS-1414082, DARPA SafeWare, Microsoft Faculty
Fellowship, and Packard Foundation Fellowship. Any opinions, findings, and con-
clusions or recommendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of the Department of Defense or the U.S.
Government.

c© International Association for Cryptologic Research 2018
J. B. Nielsen and V. Rijmen (Eds.): EUROCRYPT 2018, LNCS 10821, pp. 197–229, 2018.
https://doi.org/10.1007/978-3-319-78375-8_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78375-8_7&domain=pdf

198 S. Hohenberger and B. Waters

and has the same distribution of public keys and signatures as the first
scheme. Thus we are able to recycle the existing security proof for the
new scheme.

We also extend our results to the identity-based setting in the random
oracle model, which can further reduce the overall cryptographic over-
head. We conclude with a detailed evaluation of the signing time and
storage requirements for various settings of the system parameters.

1 Introduction

Aggregate signatures, as introduced by Boneh, Gentry, Lynn and Shacham [13],
allow a third party to compress an arbitrary group of signatures (σ1, . . . , σn)
that verify with respect to a corresponding collection of public key and message
pairs ((pk1,m1), . . ., (pkn,mn)) and produce a short aggregated signature that
verifies the same collection. There are many applications where reducing the
cryptographic overhead is desirable including BGP routing [11,13,29], bundling
software updates [1], sensor data [1] and block chain protocols [2].

When exploring a primitive such as aggregate signatures, it is desirable to
have multiple realizations under different cryptographic assumptions or con-
structs. This provides redundancy in the case that one of the assumptions proves
to be false. Also different approaches often yield a menu of performance tradeoffs
that one can select from in an application-dependent manner.

To date, the design of aggregate signature schemes has mostly been domi-
nated by bilinear (or multilinear) map-based proposals [1,7,10,11,13,14,18,19,
22,23,29,31,36]. Most proposals to aggregate outside of the bilinear setting have
required signers to interact either by signing in a sequential chain [4,15,17,27,
28,30,33] or otherwise cooperate interactively on signature creation or verifica-
tion [3,8]. Here we seek a solution that does not require bilinear maps or signer
interaction. We are aware of two prior attempts [20,37] to aggregate RSA-based
signatures (without interaction), but to the best of our understanding, both
schemes appear to lack basic correctness (that is, each user creates and signs
with his own unique modulus, but then the signatures are aggregated and veri-
fied with respect to the same modulus).

In this work we construct efficient aggregate signatures from the RSA
assumption in the synchronized setting of Gentry and Ramzan [19]. In the syn-
chronized setting the signing algorithm will take as input a (time) period t as
well the secret key and message. A signer should sign at most once for each t.
A set of signatures can be aggregated so long as they were all created for the
same period t. Synchronized aggregate signatures are useful in systems where
there is a natural reporting period such as log or sensor data. Another example
is for use in signatures embedded in a blockchain protocol where the creation of
an additional block is a natural synchronization event. For instance, consider a
blockchain protocol that records several signed transactions in each new block
creation. These signed transactions could use a synchronized aggregate signature
scheme with the block iteration as the period number. This would reduce the

Synchronized Aggregate Signatures from the RSA Assumption 199

signature overhead from one per transaction to only one synchronized signature
per block iteration.

Ahn, Green and Hohenberger [1] gave a synchronized aggregate signature
scheme in bilinear groups from the (standard model) computational Diffie-
Hellman assumption by adapting the Hohenberger-Waters [24] short signature
scheme. Since Hohenberger and Waters in the same work also provided a similar
scheme from the RSA assumption it is natural to wonder why that one could not
be adapted as well. Unfortunately, this approach will not work as the HW RSA-
based signature scheme requires the signer to have knowledge of φ(N) and thus
the factorization of N . This trapdoor information cannot be securely dispensed
among all signers that might work in Z

∗
N .

In this work we design a synchronized aggregate signature scheme that works
for a bounded number of periods T that is given as a parameter to a global
system setup. We believe that such a bound is acceptable in the synchronized
setting where a reasonable estimate of it can be derived by first determining
a fixed lifetime of keys in the system (e.g., 10 years) and dividing it by the
expected frequency that periods will occur (e.g., every minute). The big question
is whether we can create solutions that will perform well with the larger T values
that we might use in practice. For instance, suppose that we wanted signing keys
to last up to ten years and wanted to have the capability of signing on periods
as short as a second. In this case we would need to be able to support a period
bound of upwards of 228.

We will build our solution in stages where we start with an initial solution
that establishes feasibility of synchronized aggregation in the RSA setting, but
has an impractically large signing time where the number of exponentiations
and prime searches grows linearly with T . We prove this scheme secure in the
standard model under the RSA assumption. We then provide a basic tradeoff
that allows one to tradeoff the time to create signatures with the space required
to store private keys. One point in the tradeoff is where each scales with

√
T .

We reach our main innovation which is a scheme where both the signing time
and storage scale with lg(T) which allows for us to keep both computation and
storage costs modest even for large values of T . Conveniently, our final scheme
uses the same verification algorithm, and has the same distribution of public
keys and signatures as the first scheme. Thus we are able to recycle the existing
security proof for the new scheme.

We continue our exploration of using RSA in the synchronized aggregate
setting by demonstrating how to extend our results to be identity-based. Since
identity strings are typically much shorter than public keys, this setting can
help achieve better overall reduction of cryptographic overhead. Our solution is
secure under the standard RSA assumption in the random oracle model.

Finally, we provide a detailed performance evaluation of the various schemes
from both a signing time and private key storage perspective, concluding that
the lg(T) construction is relatively practical for realistic settings of the system
parameters and far exceeds the performance of the others for most settings.

200 S. Hohenberger and B. Waters

Overview of the Schemes. In our schemes, messages will be of length L bits
which will be broken up into k chunks of � bits each. In our initial scheme a
global system setup will first choose an RSA modulus N = p · q where we let g
be a generator of the quadratic residues of Z∗

N . Next it picks a key K that is used
to define a hash function HK(t) = et that maps a period t ∈ [1, T] to a prime
value et. We will defer the details of how this function works to the main body.
Finally, the setup computes E =

∏T
j=1 ej mod φ(N) and Y = gE mod N and

publishes the public parameters as pp = (T,N, g, Y,K).
Key generation is performed by choosing random u0, u1, . . . , uk in [1, N]

and setting the secret key as sk = (u0, u1, . . . , uk) and the public key pk =
(U0, U1, . . . , Uk) where Uj = Y uj = guj

∏
i∈T ei , for j = 0 to k. To sign a

message first compute all the primes ei ← HK(i) for i �= t and then output
σ =

(
gu0

∏k
j=1 guj ·mj

)∏
i∈T \{t} ei =

(
U0

∏k
j=1 U

mj

j

)1/et (mod N). Verification is

performed by testing if σet
?= U0

∏k
i=1 Umi

i . Aggregation is done by simply mul-
tiplying individual signatures together (mod N) and testing against the product
of the individual verification tests. We remark that our group hash function falls
into a more general group hash framework proposed by Hofheinz, Jager and
Kiltz [21]. In Sect. 4, we discuss potential future improvements by incorporating
their framework.

We give a proof of security under the RSA assumption. Our proof is standard
model with respect to honestly-generated keys and uses techniques from [24] for
embedding an RSA challenge into the function HK . The choice of k provides a
tradeoff between the secret key storage size which grows linearly with k to the
tightness in the reduction which has a loss factor of 2� = 2L/k.

Taking a step back, our signature scheme involves reconstructing et-th roots
of a public key and then manipulating these according to the message. Here the
secret key simply holds a group element that is root of all the ei values. The
underlying structure is reminiscent of earlier RSA-based accumulator schemes
(e.g., [6,9]). The problem, however, is that building up this root from the secret
key is quite costly and requires T − 1 exponentiations and calls to HK(·) which
are roughly equivalent to prime searches. Returning to our example of T = 228,
our measured cost of signing one message was more than one day on a common
processor. Clearly, we must do better.

We next show how to obtain a basic tradeoff between the time to sign and the
size of the private key storage. Very roughly the time to sign will scale linearly
with a parameter a and the storage with a parameter b with the constraint that
a · b = T . Thus we can explore tradeoffs such as setting a = T, b = 1 which
corresponds to the scheme above, go the opposite direction and set a = 1, b = T
to achieve fast signing at the expense of large storage, or try to balance these
by choosing a = b =

√
T .

The main technical idea is for the key generation algorithm to organize T
into b “windows” each of size a. (We will assume a divides T evenly for ease
of exposition.) Each window will be connected with a group element that has g
raised to the exponents associated with every period except for a window of a
of them. Thus to sign we need to do a − 1 exponentiations and prime searches
and our private keys roughly grow as b group elements.

Synchronized Aggregate Signatures from the RSA Assumption 201

While this simple tradeoff technique provides more flexibility, there is still
a significant gap from the performance numbers we would like to achieve. Let’s
return again to our T = 228 example. In setting a = 1, we would get very fast
signing (a few tens of milliseconds), but with very huge keys of 64 GB. On the
other hand, if we aimed for the

√
T tradeoff we would end up with 4 MB private

keys and roughly 9 s per signature. This achieves greater balance, but is still
impractical.

This finally moves us to our last solution. Here we wish to find a more intricate
way of handling the key storage that allows us to sign efficiently, but without
a significant storage penalty. To do this we design a key storage mechanism
that has about 2 lg(T) group elements and requires lg(T) exponentiations per
signing. Returning to our example of T = 228, we can now achieve the much
more practical 16 KB private key storage with 58 ms per signature.

To achieve this, we leverage the fact that the synchronized signatures are
performed in sequence over the total number of periods. The goal is to maintain
a data structure which (1) is small, (2) is ready to quickly produce a signature
for the next period and (3) can perform a small amount of work to update
it for future periods. To this end we organize a data structure according to a
levels parameter where T = 2levels+1 − 2. In addition, a current index value
is associated with the structure that indicates how many periods have passed
so far. At level i at any time there will be one or two tuples which include a
group element which is g raised to all exponents corresponding to periods except
those with indices anywhere from 2i to 2i−1. During each signature the signing
algorithm will grab an element from level 1 and use it to sign as well as perform a
little bit of work on each level to close the window of exponents further. We defer
the details of how this is achieved to Sect. 6. We remark that this approach is
conceptually similar to the pebbling optimization used by Itkis and Reyzin [26]
to realize efficient forward-secure signatures.

Organization and Summary of the Results. In Sect. 2, we provide the specifica-
tions and security definitions. Section 3 covers the algebraic setting, assumptions
and related lemmas. Section 4 gives the base construction as well as its proof of
security in the standard model under the RSA assumption. Section 5 describes
changes to the key generation and signing algorithms that can achieve a trade-
off in private key size versus signing time; one point achieves a balance of

√
T

for both. Section 6 provides a deeper innovation on how change key generation
and signing to scale with lg(T). Recall that the distribution of the public keys
and signatures in all of these schemes are the same as are the verification algo-
rithms and thus the security proof in Sect. 4 suffices for all. We then show how to
extend these results to the identity-based setting in Sect. 7. Finally, we conclude
with a detailed time and space performance analysis of these constructions in
Sect. 8 showing that the lg(T) constructions can be practical even for very large
bounds on T .

202 S. Hohenberger and B. Waters

2 Scheme Specifications and Definitions of Security

In a basic aggregate signature scheme [13], anyone given n signatures on n mes-
sages from n users can aggregate all these signatures into a single short signature.
This aggregate signature (together with the n public keys and n messages) can
be publicly verified to convince anyone that user i authenticated message i for
i = 1 to n. This is also true for synchronized aggregate signatures except that
we assume all signers have a synchronized period identifier (such as a clock) and
the following restrictions apply:

1. A signer can issue at most one signature per period and keeps state to ensure
this.

2. Only signatures created during the same period can be aggregated.

Gentry and Ramzan [19] were the first to consider this “synchronized” set-
ting in the context of aggregate signatures. In their model, they assumed that
signatures were issued using a special tag (which could not be re-used) and
only signatures with the same tag could be aggregated. Ahn, Green and Hohen-
berger [1] formalized this synchronization as a time period, assuming all signers
have access to the same clock.1 Here, we include a bound T on the periods.

Definition 1 (Synchronized Aggregate Signatures [1,19]). A synchronized
aggregate signature scheme for a bounded number of periods and message space
M(·) is a tuple of algorithms (Setup,KeyGen,Sign,Verify,Aggregate, AggVerify)
such that

Setup(1λ, 1T) : On input the security parameter λ and the period bound T , the
setup algorithm outputs public parameters pp.

KeyGen(pp) : On input the public parameters pp, the key generation algorithm
outputs a keypair (pk , sk).

Sign(pp, sk ,M, t) : On input the public parameters pp, the signing algorithm
takes in a secret key sk, a message M ∈ M(λ), the current period t ≤ T , and
produces a signature σ.

Verify(pp, pk ,M, t, σ) : On input the public parameters pp, the verification algo-
rithm takes in a public key pk, a message M , a period t and a purported
signature σ, and returns 1 if and only if the signature is valid and t ≤ T , and
0 otherwise.

Aggregate(pp, t, (pk1,M1, σ1), . . . , (pkn,Mn, σn)) : On input the public param-
eters pp, a period t, a sequence of public keys (pk1, . . . , pkn), messages (M1,
. . . , Mn), and purported signatures (σ1, . . . , σn) for period t ≤ T , it outputs
an aggregate signature σagg or error message ⊥.

1 In this work, as in the case of [1], if the signers’ clocks become out of sync with
each other, this will lead to inefficiencies in the system, as it will not be possible to
aggregate some signatures, but this will not open up security issues. As in [1,19],
there is a security issue if a tag or period value is reused by the signer, so an
adversary’s ability to move a user’s clock backward could lead to forgeries for that
signer.

Synchronized Aggregate Signatures from the RSA Assumption 203

AggVerify(pp, t, (pk1, . . . , pkn), (M1, . . . , Mn), σagg) : On input the public
parameters pp, a period t, a sequence of public keys (pk1, . . . , pkn) and mes-
sages (M1, . . . , Mn), and a purported aggregate signature σagg, the aggregate-
verification algorithm outputs 1 if and only if σagg is a valid aggregate signa-
ture and t ≤ T , and 0 otherwise.

Efficiency. We require that the setup algorithm run in time polynomial in its
inputs and all other algorithms run in time polynomial in λ, T .

Correctness. Let poly(x) denote the set of polynomials in x. In addition to the
standard correctness properties of the basic signature scheme, for a synchronized
aggregation scheme, the correctness requirements on Aggregate and AggVerify
stipulate that for all λ ∈ N, T ∈ poly(λ), n ∈ poly(λ), pp ∈ Setup(1λ, 1T),
(pk1, sk1), . . . , (pkn, skn) ∈ KeyGen(pp), 1 ≤ t ≤ T , Mi ∈ M(λ), σi ∈ Sign(pp,
sk i,Mi, t) and σagg ∈ Aggregate(pp, t, (pk1,M1, σ1), . . . , (pkn,Mn, σn)), it holds
that

AggVerify(pp, t, (pk1, . . . , pkn), (M1, . . . , Mn), σagg) = 1.

Unforgeability. The definition uses the following game between a challenger and
an adversary A for a given scheme Π = (Setup,KeyGen,Sign,Verify,Aggregate,
AggVerify), security parameter λ, and message space M(λ):

Setup: The adversary sends 1T , 1n to the challenger, who runs Setup(1λ, 1T) to
obtain the public parameters pp.2 Then the challenger runs KeyGen(pp) a total
of n times to obtain the key pairs (pk1, sk1), . . . , (pkn, skn). The adversary is
sent (pp, pk1, (pk2, sk2), . . . , (pkn, skn)).

Queries: For each period t starting with 1 and incrementing up to T , the adver-
sary can request one signature on a message of its choice in M under sk1, or
it can choose to skip that period. The challenger responds to a query for Mi

during period ti ∈ [1, T] as Sign(pp, sk1,Mi, ti).
Output: Let γ be a function mapping integers to [1, n]. Eventually, the adver-

sary outputs a tuple (t, (pkγ(1), . . . , pkγ(k)), (M ′
1, . . . , M

′
k), σagg) and wins the

game if:

1. 1 ≤ t ≤ T ; and
2. there exists an z∗ ∈ [1, k] such that γ(z∗) = 1; and
3. all M ′

i ∈ M; and
4. M ′

z∗ is not in the set of messages A queried during the Queries phase3;
and

5. AggVerify(pp, t, (pkγ(1), . . . , pkγ(k)), (M ′
1, . . . , M

′
k), σagg) = 1, where 1 ≤

k ≤ n.
2 For any adversary A that runs in time polynomial in λ will be restricted (by its own

running time) to giving T values out that are polynomial in λ.
3 As observed by [1], one can relax this unforgeability condition to allow the forgery

message, M ′
z∗ , to have been previously queried to the signing oracle provided that it

was not done during the same period used in the forgery. This “stronger” notion can
be achieved by any scheme satisfying the above unforgeability definition by having
the signer incorporate the period into each message.

204 S. Hohenberger and B. Waters

We define SigAdvA,Π,M(λ) to be the probability that the adversary A wins
in the above game with scheme Π for message space M and security parameter
λ taken over the coin tosses made by A and the challenger.

Definition 2 (Unforgeability). A synchronized aggregate signature scheme Π
for message space M is existentially unforgeable under an adaptive chosen mes-
sage attack if for all sufficiently large λ ∈ N and all probabilistic polynomial-time
in λ adversaries A, there exists a negligible function negl, such that

SigAdvA,Π,M(λ) ≤ negl(λ).

Discussion. Above, we require that the Setup algorithm is honestly executed,
so in practice this could be run by a trusted party or realized via a specialized
multiparty protocol (see Sect. 4 for more). We also require that the non-challenge
public keys be chosen honestly instead of adversarially. Our later proof requires
that the challenger has knowledge of the secret keys corresponding to the non-
challenge public keys. This can be realized by working in the Registered Key
Model [5] or adding an appropriate NIZK to the user’s public key.

3 Number Theoretic Assumptions and Related Lemmas

There are many variants of the RSA assumption [35]. Here we use a variant
involving safe primes. A safe prime is a prime number of the form 2p + 1, where
p is also a prime.

Assumption 1 (RSA). Let λ be the security parameter. Let integer N be the
product of two λ-bit, distinct safe primes primes p, q where p = 2p′ + 1 and
q = 2q′ + 1. Let e be a randomly chosen prime between 2λ and 2λ+1 − 1. Let
QRN be the group of quadratic residues in Z

∗
N of order p′q′. Given (N, e) and a

random h ∈ QRN , it is hard to compute x such that xe ≡ h mod N .

We note that a randomly chosen element in Z
∗
N would be a quadratic residue

1/4-th of the time, so the restriction to h ∈ QRN is for convenience and could
be relaxed.

In our schemes, we will refer to and require a primality test. For our purposes,
it will be sufficient to use the efficient Miller-Rabin test [32,34]. We will also make
use of the following lemmas:

Lemma 1 (Cramer-Shoup [16]). Given x, y ∈ Zn together with a, b ∈ Z such
that xa = yb and gcd(a, b) = 1, there is an efficient algorithm for computing
z ∈ Zn such that za = y.

Theorem 2 (Prime Number Theorem). Define π(x) as the number of
primes ≤ x. For x > 1,

7
8

· x

ln x
< π(x) <

9
8

· x

ln x
.

Synchronized Aggregate Signatures from the RSA Assumption 205

4 A Base Scheme for Aggregation from RSA

We begin with a base scheme that assumes a trusted global setup and works
in the registered key model, where every signer needs to show their key pair to
an authority that certifies their public key. The global setup of our scheme will
take as input a security parameter λ and the maximum number of periods T .
The message space M will be {0, 1}L where L is some polynomial function of
λ. (One can handle messages of arbitrary length by first applying a collision-
resistant hash.)

In addition, associated with the scheme will be a “message chunking alpha-
bet” where we break each L-bit message into k chunks each of � bits where
k · � = L with the restriction that � ≤ λ and thus 2� ≤ 2λ. As we will see the
choice of � will effect both the tightness of the security reduction as well as the
size of the signatures.4 We make use of a variant of the hash function in [24] to
map integers to primes of an appropriate size.

Setup(1λ, 1T) The setup algorithm chooses an integer N = pq as the product of
two safe primes where p− 1 = 2p′ and q − 1 = 2q′, such that 2λ < φ(N) < 2λ+1.
Let QRN denote the group of quadratic residues of order p′q′ with generator g.

Next, it sets up a hash function H : [1, T] → {0, 1}λ+1 where H will take as
input a period t ∈ [1, T] and output a prime between 2λ and 2λ+1 − 1. It begins
by randomly choosing a K ′ for the PRF function F : [1, T] × [1, λ2] → {0, 1}λ, a
random c ∈ {0, 1}λ as well as an arbitrary prime edefault between 2λ and 2λ+1−1.
We let K = (K ′, c, edefault).

We define how to compute HK(t). For each i = 1 to λ · (λ2 + λ), let yi =
c ⊕ FK(t, i). If 2λ + yi is prime return it. Else increment i and repeat. If no such
i ≤ λ · (λ2 + λ) exists, return edefault.5 We note that this computation returns
the smallest i such that 2λ + yi is a prime. Notationally, for t ∈ [1, T] we will let
et = HK(t).

The algorithm concludes by computing E =
∏T

j=1 ej mod φ(N) and Y = gE

mod N .
It publishes the public parameters as pp = (T,N, g, Y,K).

KeyGen(pp) The algorithm retrieves Y from the pp. It chooses random integers
u0, u1, . . . , uk in [1, N]. It sets the secret key as sk = (u0, u1, . . . , uk) and the
public key pk = (U0, U1, . . . , Uk) where

Uj = Y uj = guj

∏
i∈T ei , for j = 0 to k.

Sign(pp, sk ,M, t) The signing algorithm takes as input a time period 1 ≤ t ≤ T
and an L = (�k)-bit message M = m1|m2| . . . |mk, where each mi contains
4 In practice, one might use a collision-resistant hash function to map arbitrarily long

messages into L = 256 bits and then set � = 32 and k = 8. We discuss the efficiency
implications of these choices in Sect. 8.

5 We expect this default case to be exercised only with negligible probability, but define
it so that the function HK(t) is guaranteed to terminate in a bounded amount of
time.

206 S. Hohenberger and B. Waters

�-bits and these are concatenated together to form M . It computes the primes
(e1, . . . , et−1, et+1, . . . , eT) from pp and then outputs

σ =
(
gu0

k∏

j=1

guj ·mj
)∏

i∈T \{t} ei =
(
U0

k∏

j=1

U
mj

j

)1/et (mod N).

V erify(pp, pk ,M, t, σ) Let M = m1|m2| . . . |mk. The algorithm computes the
prime et from pp. Output 1 if 1 ≤ t ≤ T and

σet
?= U0

k∏

i=1

Umi
i (mod N)

or 0 otherwise.

Aggregate(pp, t, (pk1,M1, σ1), . . . , (pkn,Mn, σn)) An aggregate signature on sig-
natures from the same time period 1 ≤ t ≤ T is computed as σagg =

∏n
j=1 σj

(mod N).

AggV erify(pp, t, (pk1, . . . , pkn), (M1, . . . , Mn), σagg) Let pk j = (Uj,0, Uj,1, . . . ,
Uj,k) and Mj = mj,1|mj,2| . . . |mj,k. The algorithm computes the prime et from
pp. Output 1 if 1 ≤ t ≤ T , each public key is unique (i.e., ∀i �= j ∈ [1, n],
pk i �= pk j) and

σet
agg

?=
n∏

j=1

(Uj,0

k∏

i=1

U
mj,i

j,i) (mod N)

or 0 otherwise.

Discussion. Observe that the above group hash function we employ falls into a
more general group hash framework proposed by Hofheinz, Jager and Kiltz [21]
that uses programmable hash functions. One might use their general framework
to explore further concrete efficiency tradeoffs, such as letting the group hash
function be more complex and letting the hash function output the product
of multiple smaller primes. Our concrete analysis, however, will focus on the
core scheme above along with tradeoffs in key storage and signing time that we
explore later. We leave open the interesting question of what other tradeoffs can
be realized via [21], keeping in mind that some of those instantiations add per
signer randomness, which makes aggregation challenging.

Recall from Sect. 2 that Setup must be executed honestly. It seems possi-
ble that, for this scheme, this might be realized efficiently using a specialized
multiparty computation protocol, such as an adaptation of one due to Boneh
and Franklin [12] for efficiently allowing a group of parties to generate an RSA
modulus, where each party learns N , but no party learns the factorization of N .

4.1 Proof of Security

Theorem 3. If the RSA assumption (Assumption 1) holds and F is a secure
pseudorandom function, then the above synchronized aggregate signature con-
struction is existentially unforgeable under an adaptive chosen message attack.

Synchronized Aggregate Signatures from the RSA Assumption 207

Proof. The reduction algorithm receives an RSA challenge (N, e∗, h) and needs
to use the attacker to compute h1/e∗

mod N . Define a “conforming” attacker
as one that will always make a signing query on the period t∗ that it forges on.
We can assume our attacker is conforming without loss of generality because if
there exists an attacker that breaks the scheme, there exits one that breaks it
and queries for a signature on period t∗ by simply adding a signature query on
a random message at that period. Our proof will assume a conforming attacker.

Next, we define a sequence of games.

Game 1: (Security Game) This game is defined to be the same as the security
game of the scheme.

Game 2: (Guessing the forgery period and part of its queried message) The
same as Game 1, except the game guesses the period the attacker will forge
on and a part of the message queried for a signature during the period that
will be different from the forgery message, and the adversary only wins if these
guesses were correct. Formally, the game chooses random t′ ∈ [1, T], α ∈ [1, k]
and β ∈ {0, 1}�. An adversary wins this game iff: (1) it would have won in
Game 1 with a forgery on period t∗ for some message M∗ = m∗

1|m∗
2| . . . |m∗

k

with some message M = m1|m2| . . . |mk queried to the signing oracle on
period t∗, (2) t′ = t∗, (3) β = mα and (4) mα �= m∗

α.
Game 3: (HK does not default) The attacker wins only if it meets all the

conditions to win in Game 2 and HK(t∗) �= edefault (that is, the default
condition of the hash is not triggered on the forgery message or otherwise
equal to the default prime.)

Game 4: (HK does not collide) The attacker wins only if it meets all the con-
ditions to win in Game 3 and HK(t∗) �= HK(t) for all t ∈ [1, T] where t �= t∗.

Game 5: (Guess resolving i∗ for HK) The game chooses a random i∗ ∈ [1, λ3 +
λ2]. Attacker wins only if it meets all the conditions of Game 4 and i∗ was
the “resolving” index in HK(t∗); that is, i∗ was the smallest i such that
yi = FK′(t∗, i) ⊕ c and (2λ + yi) was a prime.

Game 6: (Programming HK with random value) The same as Game 5, except
that it chooses a random y′ ∈ {0, 1}λ and set c = y′ ⊕ FK′(t∗, i∗).

Game 7: (Programming HK with e∗) The same as Game 6, except choose e∗ as
a random prime in the range [2λ, 2λ+1−1] and let y′ be the λ least significant
bits of e∗; that is, drop the leading 1. As before, set c = y′ ⊕ FK′(t∗, i∗).

We now establish a series of claims that show that if an adversary is successful
against the real security game (Game 1) then it will be successful against in Game
7 as well. We will then shortly describe a simulator that can use any adversary
successful in Game 7 to solve the RSA challenge.

Define AdvA[Game x] as the advantage of an adversary A in Game x.

Claim 4

AdvA[Game 2] ≥ AdvA[Game 1]
T · k · 2�

.

Proof. Since there is no change to the adversary’s view of the game, the prob-
ability of the adversary winning in Game 2 is the same as Game 1 times the

208 S. Hohenberger and B. Waters

probability of the game’s guesses being correct. There is a 1/T probability of
guessing the forging period, at least a 1/k probability of guessing a message
chunk in the signing query that will be different in the forgery (there may be
more than one), and a 2� probability of guessing that chunk’s value in the queried
message. We note that this gives a polynomial-time reduction for whenever � is
polylogarithmic in λ. Recall that any adversary that is polynomial time in λ
must give out a 1T that is polynomially bounded in λ.

Claim 5. If F is a secure pseudorandom function and λ ≥ 4, then

AdvA[Game 3] = AdvA[Game 2] − negl(λ).

Proof. We here need to understand the probability that HK(t∗) = edefault. Using
the Prime Number Theorem, we can bound the number of primes in the range
[2λ, 2λ+1 − 1] as follows. Plugging into the formula in Lemma 2, we have that
the number of primes less than 2λ+1 − 1 is at least 7

8 · 2λ+1

(λ+1) (the value 2λ+1 is
not prime, since it is a power of two, for any λ ≥ 1) and the number of primes
less than 2λ is at most 9

8 · 2λ

λ . Thus, the total number of primes in our range of
interest is at least

7
8

· 2λ+1

(λ + 1)
− 9

8
· 2λ

λ
=

7 · λ · 2λ+1 − 9 · (λ + 1) · 2λ

8(λ + 1)λ
(1)

=
14 · λ · 2λ − 9 · (λ + 1) · 2λ

8(λ + 1)λ
=

5 · λ · 2λ − 9 · 2λ

8(λ + 1)λ
(2)

=
(5λ − 9) · 2λ

8(λ2 + λ)
>

2λ

λ2 + λ
, for all λ ≥ 4. (3)

Let R be a random function that outputs a value in the range [2λ, 2λ+1].
Then the probability that R outputs a prime is at least:

2λ/(λ2 + λ)
2λ+1 − 2λ

=
2λ

2λ(λ2 + 1)
=

1
λ2 + λ

(4)

The probability that R fails to output a prime after λ(λ2 + λ) tries is
as follows. We again use the fact that 2λ+1 is not a prime. Recall Cher-
noff’s bound for any ε ≥ 0, we have Pr[X ≤ (1 − ε)μ] ≤ e− ε2μ

2 . Here when
X is the number of primes output by R in λ(λ2 + λ) trials, ε = 1 and
μ =

∑λ(λ2+λ) Pr[R fails to output a prime on one trial], we have that

Pr[R fails to output a prime inλ3 + λ2 trials] = Pr[X ≤ 0] ≤ e− μ
2 (5)

≤ e−
λ(λ2+λ)· 1

λ2+λ
2 = e−λ/2 (6)

The PRF we employ to sample from this range cannot non-negligibly differ from
R in its probability of selecting primes or this provides for a distinguishing attack
on the PRF. Thus, the probability that HK(t∗) = edefault is the probability that

Synchronized Aggregate Signatures from the RSA Assumption 209

the PRF chose the same prime as the setup algorithm, which is negligible at 1 in
the number of primes in that range (> 2λ/(λ2 + λ)), plus the probability that
HK triggers the default condition by failing to output a prime, which we also
argued was negligibly close to the negligible probability of R doing the same.

Claim 6. If F is a secure pseudorandom function and T ∈ poly(λ), then

AdvA[Game 4] = AdvA[Game 3] − negl(λ).

Proof. These games differ only in the event that HK(t∗) = HK(t) for some
t ∈ [1, T] where t �= t∗. Let R be a random function that outputs a value in the
range [2λ, 2λ+1]. Suppose HK uses R instead of the PRF. Then the probability
of a collision for a single t is one in the number of primes in [2λ, 2λ+1] or at most
1/ 2λ

λ2+λ = λ2+λ
2λ , which is negligible. So the probability of a collision for any

t ∈ [1, T] (recall that T is polynomial in λ) is T · λ2+λ
2λ = poly(λ)(λ2+λ)

2λ = poly(λ)
2λ =

negl(λ). When we replace R with the PRF, the probability of a collision cannot
non-negligibly differ or this provides a distinguishing attack on the PRF.

Claim 7

AdvA[Game 5] =
AdvA[Game 4]

λ3 + λ2
.

Proof. The attacker’s view in these games is identical. The only difference is
whether the game correctly guesses the resolving index i∗ for HK(t∗). Since
i∗ ∈ [1, λ3 + λ2], the game has a 1/(λ3 + λ2) chance of guessing this correctly.

Claim 8
AdvA[Game 6] = AdvA[Game 5].

Proof. In Game 5, c is chosen randomly in {0, 1}λ. In Game 6, c is set by
randomly selecting y′ ∈ {0, 1}λ and setting c = y′ ⊕ FK′(t∗, i∗), where t∗ is the
period on which the attacker will attack and i∗ is the resolving index for this
value. Since y′ is chosen randomly and independently of FK′(t∗, i∗), the resulting
c will be from the same distribution as Game 5.

Claim 9
AdvA[Game 7] = AdvA[Game 6].

Proof. An adversary’s advantage in these games is the same. In Game 6, the
attacker could only win if 2λ + y′ was a prime, and thus the distributions are
the same.

Main Reduction. We now show that if there exists a polynomial-time (in λ)
attacker that has advantage ε = ε(λ) in Game 7, then there exists a polynomial-
time (in λ) attacker for the RSA problem in Assumption 1 with advantage ε.

210 S. Hohenberger and B. Waters

On input an RSA challenge (N, e∗, h), the reduction algorithm proceeds as
follows:

Setup.

1. Obtain 1T , 1n from the aggregate signature adversary A.
2. Make random guesses of t∗ ∈ [1, T], α ∈ [1, k], β ∈ {0, 1}�, i∗ ∈ [1, λ3 + λ2].
3. Choose a random PRF key K ′. Let y′ be the λ least significant bits of the

RSA input e∗ (note that this is a prime randomly chosen from the appropriate
range by the RSA challenger) and set c = y′ ⊕ FK′(t∗, i∗). Choose a random
prime edefault ∈ [2λ, 2λ+1 − 1]. Set K = (K ′, c, edefault). Thus, note that by
construction when i∗ is the resolving index for t∗,

et∗ = HK(t∗) = 2λ + (c ⊕ FK′(t∗, i∗)) = 2λ + y′ = e∗.

4. Choose a random g ∈ QRN . Compute Y as before.
5. Set the pp = (T,N, g, Y,K).
6. Set up the “target” user’s public key pk1 as:

(a) Choose random u0, u1, . . . , uk ∈ [1, N].
(b) Set U0 = (h−β)

∏T
i�=t∗ ei · Y u0 . We note that the reduction algorithm can

take the et root of U0 so long as t �= t∗.
(c) For j = 1 to k such that j �= α, compute Uj = Y uj .
(d) Set Uα = h

∏T
i�=t∗ ei · Y uα .

7. Set pk1 = (U0, U1, . . . , Uk). For j = 2 to n, (pk j , sk j) = KeyGen(pp).
8. Send to A the tuple (pp, pk1, (pk2, sk2), . . . , (pkn, skn)).

Queries. For each period t = 1 to T , the adversary can request one signature on
a message of its choice in the message space under sk1 or skip that period. Recall
that the adversary must be conforming and thus will request some signature on
the forgery period t∗. In our construction, signing during period t requires taking
the et-th root of each Uj value. By construction, the reduction algorithm can do
this so long as: (1) t �= t∗ or (2) for t∗, when the α-th �-bits of the message are
the string β. If the reduction is ever asked a query it cannot answer, then it will
abort. We note that this only occurs when the guesses of t∗, α, β are incorrect,
which is consistent with the attacker not winning in Game 7 anyway. Formally,
when asked to sign M = m1|m2| . . . |mk for period t �= t∗, the reduction outputs:

σ = (h−β · hmα)
∏T

i�=t∗,i�=t ei · (
gu0

k∏

j=1

gujmj
)∏

i∈T \{t} ei (7)

= (h−β
∏T

i�=t∗ ei · Y u0)1/et · (
k∏

j=1,j �=α

U
mj

j)1/et · (h
∏T

i�=t∗ ei · Y uα)mα/et (8)

= (U0

k∏

j=1

U
mj

j)1/et mod N. (9)

Synchronized Aggregate Signatures from the RSA Assumption 211

and when t = t∗ and mα = β, it outputs the signature:

σ =
(
gu0

k∏

j=1

gujmj
)∏

i∈T \{t} ei (10)

= (1)
∏T

i�=t∗,i�=t ei · (
gu0

k∏

j=1

gujmj
)∏

i∈T \{t} ei (11)

= (h−β · hmα)
∏T

i�=t∗,i�=t ei · (
gu0

k∏

j=1

gujmj
)∏

i∈T \{t} ei (12)

= (h−β
∏T

i�=t∗ ei · Y u0)1/et · (
k∏

j=1,j �=α

U
mj

j)1/et · (h
∏T

i�=t∗ ei · Y uα)mα/et (13)

= (U0

k∏

j=1

U
mj

j)1/et mod N. (14)

Output. Eventually A outputs a tuple (tf , (pkγ(1), . . . , pkγ(z)), (M1, . . . , Mz),
σagg). Since aggregation order does not matter here6, we can w.l.o.g. assume
that γ(1) = 1 (corresponding to the target key pk1); we also drop γ from the
subscript below. If the aggregate signature does not verify or if any of the reduc-
tion’s guesses of t∗, i∗, α, β were incorrect, then abort. These abort conditions are
all consistent with the adversary not winning Game 7. Let E′ =

∏
i∈T\{t∗} ei.

Otherwise we have that:

σe∗
agg =

n∏

j=1

(Uj,0

k∏

i=1

U
mj,i

j,i) (15)

= (U1,0

k∏

i=1

U
m1,i

1,i) ·
n∏

j=2

(Uj,0

k∏

i=1

U
mj,i

j,i) (16)

= (hE′(β−mα) · Y u0

k∏

j=1

Y ujmj) ·
n∏

j=2

(Uj,0

k∏

i=1

U
mj,i

j,i) (17)

Since the reduction can compute the e∗-th root of all values not in the h term,
it can divide them out as:

(
σagg

∏n
j=1(guj,0

∏k
i=1 guj,imj,i)E′

)e∗

(18)

=
(hE′(β−mα) · Y u0

∏k
j=1 Y ujmj) · ∏n

j=2(Uj,0

∏k
i=1 U

mj,i

j,i)
∏n

j=1(guj,0
∏k

i=1 guj,imj,i)e∗·E′ (19)

= hE′(β−mα). (20)
6 Our scheme has the property that any σagg that verifies on period t for pk1, . . . , pkz

and M1, . . . , Mz also verifies on any permutation applied to both sequences.

212 S. Hohenberger and B. Waters

Now, we have an equation of the form xa = yb, for x = σagg∏n
j=1(g

uj,0
∏k

i=1 guj,imj,i)E′ ,

a = e∗, y = h and b = E′(β − mα). Recall that the game would have already
aborted if e∗ was output for any period other than t∗ and thus, gcd(e∗, E′) = 1.
The game would also have aborted if β = mα. Finally since the |β| = |mα| =
� < λ and e∗ > 2λ, we can conclude that gcd(a, b) = 1. This allows the reduction
to apply Lemma 1 to efficiently compute ĥ ∈ ZN such that ĥe∗

= h mod N .
The reduction outputs this value as the RSA solution.

Analysis. We argue that the above reduction will succeed in outputting the RSA
solution whenever the adversary wins in Game 7. The adversary’s view in these
scenarios differs only in the way that public key elements U0 and Uα are chosen.
We will first argue that the way they are chosen in Game 7 (and the actual
scheme) is statistically close to choosing a random element in QRN . Next, we
argue that the (different) way they are chosen in the reduction above is also
statistically close to choosing a random element in QRN . It follows then that
the public key in both Game 7 and the reduction are statistically close and thus
cannot be distinguished by our polynomial-time adversary. Moreover, while the
signatures are computed via a different method in Game 7 and the reduction,
the signature the adversary sees is identical (and unique) given the public infor-
mation known to the adversary, so there is no information the adversary can use
to distinguish. For any given U ∈ QRN , prime e ∈ [1, N], and m < 2λ, the values
Uem and U1/e are unique since each ei is relatively prime to φ(N). It remains
to support the arguments listed above.

First, recall how U0, Uα are chosen in Game 7 (and the actual scheme). Here
u0, uα are randomly chosen from [1, N] and the public key elements are set as:

U0 = Y u0 = gu0
∏T

i=1 ei , Uα = Y uα = guα

∏
i∈T ei .

Observe that the group of QRN has order p′q′. Thus Y = g
∏T

i=1 ei is also a
generator since all the ei values are relatively prime to p′q′. Since Y is a generator,
if we take Y r for a random r ∈ [1, φ(N)] that has the same distribution as
choosing a random element in QRN . Now, the process of raising Y r for a random
r ∈ [1, N] is statistically close to the process of raising it to a random r ∈
[1, φ(N)]. The reason is that N = φ(N)+p+q−1 where the difference (p+q−1)
is negligible. Thus, we achieve our first argument.

Second, recall how U0, Uα are chosen in the reduction. Here u0, uα are ran-
domly chosen from [1, N] and the public key elements are set as:

U ′
0 = (h−β)

∏T
i�=t∗ ei · Y u0 = h−β

∏T
i�=t∗ ei · gu0

∏T
i=1 ei , U ′

α = h
∏T

i�=t∗ ei · Y uα .

We previously argued that the Y u0 and Y uα components are distributed statis-
tically close to a random element in QRN . We assume that h ∈ QRN ; this will
be true for a random element in Z

∗
N with 1/4 probability. Each value has an h

term that is in QRN but not necessarily distributed randomly. However, once we
multiply this value in the group by a (statistically close to) random element of

Synchronized Aggregate Signatures from the RSA Assumption 213

the group, we have a product that is distributed statistically close to a random
element in QRN . Thus, we achieve our second argument.

Since the adversary cannot distinguish either distribution of public keys from
a random distribution, then it cannot distinguish them from each other as well.
Thus, whenever the adversary succeeds in Game 7, we can conclude it will also
succeed in helping the reduction solve RSA.

5 Trading Off Signing Time with Storage

In this section we show a basic tradeoff between the time to sign and the size of
the private key storage. Very roughly the time to sign will scale linearly with a
parameter a and the storage with a parameter b with the constraint that a·b = T .
Thus we can explore tradeoffs such as setting a = T, b = 1 as we saw in the last
section or go the opposite direction and set a = 1, b = T to achieve fast signing
at the expense of large storage, or try to balance these by choosing a = b =

√
T .

Our system will use the same setup, verification and aggregation algorithms
as in Sect. 4 and just replace the KeyGen and Sign algorithms. Moreover, the
public keys output by the KeyGen algorithm and corresponding signatures out-
put by the Sign algorithm will have an identical distribution to the original
Sect. 4 scheme and thus not require a new security proof.

Let the public parameters output from Setup be pp = (T,N, g, Y,K) as
before. Our KeyGeneration algorithm will organize T into b “windows” each of
size a. (We assume a divides T evenly for ease of exposition.) Then the private
key will be setup to contain a sequence of values Rw which is g raised to all ei

except those in a sliding window of periods. To sign faster during time period
t, select these partially computed values where t is in the window and complete
its computation for signing by raising to all ei in that window except et.

The new key generation and signing algorithms follow.

KeyGen′(pp, a) It obtains the primes (e1, . . . , eT) and sets b = T/a (we
assume it divides evenly for ease of exposition). Next it chooses random inte-
gers u0, u1, . . . , uk in [1, N] and computes pk = (U0, U1, . . . , Uk). For w = 1
to b, define Σw as the set of integers in [1, T] other than those in the set
{a(w − 1) + 1, a(w − 1) + 2, . . . , a(w − 1) + a}.

For w = 1 to b, it then computes:

Rw = g
∏

i∈Σw
ei

where the ei values are computed using K from pp. It sets the secret key as
sk = ({Rw}1≤w≤b, {ui}0≤i≤k). The public key pk = (U0, U1, . . . , Uk) is computed
as Uj = Y uj = guj

∏
i∈T ei , for j = 0 to k as in Sect. 4.

Sign′(pp, sk ,M, t) It computes the necessary subset of primes in (e1, . . . , eT)
using K in pp and then for period t, selects the window w = t/a�. Let Σ′

w denote
the set of periods in the window {a(w−1)+1, a(w−1)+2, . . . , a(w−1)+a}1≤w≤b.
It outputs

σ =
(
Ru0

w

k∏

j=1

Ruj ·mj
w

)∏
i∈Σ′

w\{t} ei =
(
U0

k∏

j=1

U
mj

j

)1/et (mod N).

214 S. Hohenberger and B. Waters

Analysis. Observe that the public keys and signatures are of the same form
and distribution as those of the base system in Sect. 4, as are the verification
equations, and thus the security of this tradeoff system follows. We analyze the
performance of this system in Sect. 8.

6 Obtaining O(lg(T)) Signing Time and Private Key Size

The previous section showed a basic tradeoff between signing time and private
key size. However, it was limited in that the most “balanced” version required
both time and storage to grow with the square root of the number of periods.

In this section we show how a more intricate key storage technique can give
us much better results with a scheme where the number of exponentiations
and prime searches is ≈ lg(T) per signing operation and where we store ≈
lg(T) elements of Z

∗
N in the private key. Unlike the previous schemes where

the private key remained static, our method here will require us to update the
private key on each signing period. As a consequence a signer will be required to
sign using each period in sequence.7 Again, our new scheme will produce public
keys and signatures with exactly the same distribution as the base scheme of
Sect. 4. Therefore we will only need to describe and analyze the new method
of key generation and storage and are not required to produce a new security
proof. As mentioned earlier, this approach has conceptual roots in the pebbling
optimization used by Itkis and Reyzin [26] to realize efficient forward-secure
signatures.

We present our method by introducing new two algorithms. The first
algorithm StorageInit(pp, v) takes in the public parameters and an element
v ∈ Z

∗
N and outputs the initial key storage state store. The second algorithm

StorageUpdate(store) takes in the storage store and outputs an updated stor-
age value store as well as a group element s ∈ Z

∗
N .

6.1 Storage Algorithms

We assume that there exists an integer ‘levels’ such that T = 2levels+1 − 2.
(One could always pad T out to match this.) The key storage will be structured
as a sequence of sets S1, . . . , Slevels where elements of set Si are of the form

w ∈ Z
∗
N , open ∈ [1, T], closing ∈ [1, T], count ∈ [1, T].

Let R be the set of integers [open, open+2i−1−1]∪ [closing+count, closing+
2i−1−1]. Then w = v

∏
j∈T \R ej . Intuitively, w is v raised to all of the e exponents

except the sequence of 2i−1 values starting at open and a second sequence of
length 2i−1 − count starting at closing + count. When the StorageUpdate
algorithm runs for each i, it will find an element of the set Si and help “move it
forward” by incrementing its counter count and updating w accordingly. When
7 We expect this to be the normal mode of operation in a synchronized scheme, how-

ever, the previous schemes have the ability to sign for periods in an arbitrary order.

Synchronized Aggregate Signatures from the RSA Assumption 215

count reaches 2i the update storage algorithm removes the tuple from the set
Si at level i and then splits it into two parts and puts these in set Si−1. We now
describe the algorithms.

StorageInit(pp, v) Initially, sets S1, . . . , Slevels are empty. Then for i = 1 to
levels perform the following:

– Let R = [2i − 1, 2i+1 − 2].
– Compute w = v

∏
j∈T \R ej .

– Put in Si (w, 2i − 1, (2i − 1) + 2i−1, 0).
– Put in Si (w, (2i − 1) + 2i−1, 2i − 1, 0).

The storage value store =
(
(S1, . . . , Slevels), index = 0

)
is output.

StorageUpdate(pp, store) For i = 1 to levels perform the following:

– Find a tuple (if any exist) in Si of (w, open, closing, count) with the smallest
open value.8

– Replace it with a new tuple (w′ = weclosing+count , open′ = open, closing′ =
closing, count′ = count+1) where (w′, open′, closing′, count′) is the newly
added tuple.

Then for i = levels down to 2

– Find a tuple (if any) of the form (w, open, closing, count = 2i−1) in Si.
– Remove this tuple from the set Si.
– To the set Si−1 add the tuple (w′ = w, open′ = open, closing′ = open +

2i−2, count′ = 0) where (w′, open′, closing′, count′) is the newly added
tuple.

– Also add to the set Si−1 the tuple (w′ = w, open′ = open+ 2i−2, closing′ =
open, count′ = 0).

Finally, from S1 find the tuple (w, open = index + 1, closing, 1). Remove
this from S1 and output s = w which gives s = v

∏
j∈T \{(index+1)} ej as needed.

Finally, the storage value store = ((S1, . . . , Slevels), index = index + 1) is
output.

6.2 Analysis

We need to show that the storage primitives give the desired correctness and
performance properties. To analyze correctness and storage size we consider
what the key storage state will look like for each value of index between 0
and T . Recall that in a stored key, index represents the number of signatures
generated so far. We describe what each Si set contains for a particular index
value — breaking things into three cases. We will refer to this as our “state
description” given below.
8 In a particular Si there might be zero, one or two tuples. If there are two, the one

with the larger open value is ignored. Ties will not occur, as we will see from the
case analysis in Sect. 6.2.

216 S. Hohenberger and B. Waters

Case 1: T − index ≤ 2i − 2. In this case the set Si will be empty.
Case 2: Not Case 1 and index = k · 2i + r for 0 ≤ r < 2i−1. Si will contain

two elements. The first is a tuple

(w = v
∏

j∈T \R ej , open = (k + 1) · 2i − 1, closing = (k + 1) · 2i − 1 + 2i−1,

count = r).

Where we let R = [open, open + 2i−1 − 1] ∪ [closing + count, closing +
2i−1 − 1].
The second is a tuple

(w = v
∏

j∈T \R ej , open = (k + 1) · 2i − 1 + 2i−1, closing = (k + 1) · 2i − 1,

count = 0).

Where R = [open, open+ 2i−1 − 1] ∪ [closing+ count, closing+ 2i−1 − 1].
(Here count = 0.)

Case 3: Not Case 1 and index = k · 2i + r for 2i−1 ≤ r < 2i. Si has a single
element. A tuple

(w = v
∏

j∈T \R ej , open = (k + 1) · 2i − 1 + 2i−1, closing = (k + 1) · 2i − 1,

count = r − 2i−1).

Where R = [open, open + 2i−1] ∪ [closing + count, closing + 2i−1].

Proof of State Description Accuracy.

Theorem 10. The above state description for variable index accurately
describes the key storage state after an initial call to StorageInit(pp, v) and
index subsequent calls to StorageUpdate(pp, store).

Proof. We begin by establishing two claims about when the “pass down” oper-
ation can and cannot happen which will be used later on in the proof.

Claim 11. Suppose that our state description is accurate for period index. Con-
sider an update operation where the period moves from index to index+1. This
will result in an tuple being “passed down” from Si to Si−1 only if index + 1 is
a multiple of 2i−1, if anything is passed down at all.

Proof. If (index, i) were in Case 1, then Si is empty and there is nothing that
could be passed down. If in Case 2, then one tuple has a count = r which is
the remainder of index mod 2i. It will trigger a pass down operation only when
count increments to count = 2i−1. Similarly, in Case 3 there is a tuple with
count = r − 2i−1. A push down operation is only triggered when it increments
to 2i which means index + 1 is a multiple of 2i−1.

Claim 12. Suppose that our state description is accurate for period index and
all smaller values. Further suppose that index + 1 = 0 mod 2i for some i and
that set Si+1 is in Case 1 at index. (I.e. T − index ≤ 2i+1 − 2.) Then it will be
that at period index+ 1 we have T − index ≤ 2i − 2 and set Si is designated as
Case 1 by our description.

Synchronized Aggregate Signatures from the RSA Assumption 217

Proof. Let z be the value where T − z = 2i+1 − 2 since T = 2levels+1 − 2 it
follows that z = y · 2i+1 for some y. Also note that z must be the smallest value
of index where T − index ≤ 2i+1 − 2. It then follows that z + 2i − 1 is the
smallest value of index where T − index ≤ 2i+1 − 2 AND index mod 2i. Now
let’s consider the next value of index + 1 which is equal to z + 2i and use it to
prove that at index + 1 the set Si is assigned to be in Case 1. Then

T − (index + 1) = T − (z + 2i) = (T − z) − 2i = 2i+1 − 2 − 2i = 2i − 2.

Then we have that at index+ 1 the set Si is categorized at Case 1 (and empty)
by our description.

We now show that for each index if the state description was valid at index
then it is valid at index + 1. We break this into three separate claims showing
that if a set Si is in Case 1, 2 and 3 respectively at index that in index + 1 it
will match the state description.

Claim 13. Suppose at period index the state description is accurate and for a
set Si we are in Case 1 where T − index ≤ 2i − 2 and the set Si is empty. Then
at period index + 1 the state description is accurate for set Si.

Proof. For period index + 1 we have that T − (index + 1) is also ≤ 2i − 2 and
therefore it should also be Case 1 and Si should remain empty. The only way
for it not to remain empty would be if the StorageUpdate algorithm “passed
down” a new tuple from Si+1. However, if Si was in Case 1 for period index
then Si+1 must also be and also be empty. Since Si+1 is empty there is nothing
to pass down.

Claim 14. Suppose at period index the state description is accurate and for a
set Si we are in Case 2 where index = k ·2i +r for 0 ≤ r < 2i−1. Then at period
index + 1 the state description is accurate for set Si.

Proof. First consider the subcase where r �= 2i−1−1 which should keep Si in Case
2 on period index+1. We will verify this. Since at period index we are in Case 2
there are two tuples in Si where the one with the smaller open value is of the form
(w = v

∏
j∈T \R ej , open = (k+1)·2i−1, closing = (k+1)·2i−1+2i−1, count = r).

The update algorithm will increment count to r + 1 and update w to w =
weclosing+count which gives the needed form to remain in Case 2. The second tuple
will is of the form (w = v

∏
j∈T \R ej , open = (k + 1) · 2i − 1 + 2i−1, closing =

(k +1) · 2i − 1, count = 0). The update algorithm will not modify it as the other
tuple had the smaller open value. Thus it remains the same which matches the
behavior for Si remaining in Case 2. Finally, we need to check that no new tuples
are passed down from Si+1. This follows from the fact (Claim 11) that index
mod 2i = r �= 2i −1 and that a pushdown would only happen as index transfers
to being a multiple of 2i.

We now consider the subcase where r = 2i−1 − 1 at index and thus at
index+1 we should be moving into Case 3. In this subcase the set Si begins with

218 S. Hohenberger and B. Waters

two tuples with one of the form (w = v
∏

j∈T \R ej , open = (k+1)·2i−1, closing =
(k + 1) · 2i − 1 + 2i−1, count = r = 2i−1 − 1). The update operation will first
modify the tuple to a new count value of count = 2i−1. This will trigger the
pushdown operation to move the tuple out of Si. It then leaves it with one tuple
of the needed form which transitions Si to Case 3 as needed. Again no new
elements are pushed onto Si from Si+1 due to Claim 11.

Claim 15. Suppose at period index the state description is accurate and for a
set Si we are in Case 3 where index = k · 2i + r for 2i−1 ≤ r < 2i for some k.
Then at period index + 1 the state description is accurate for set Si.

Proof. We first focus on the subcase where r �= 2i − 1 and thus at index + 1
we want to verify that we stay in Case 3. Initially there is one tuple of the form
(w = v

∏
j∈T \R ej , open = (k+1) ·2i −1+2i−1, closing = (k+1) ·2i −1, count =

r − 2i−1). The update algorithm will increment count to r + 1 and update w to
w = weclosing+count which gives the needed form to remain in Case 3. As before no
new tuples will be added since index + 1 mod 2i �= 0.

We end by considering the subcase where r = 2i − 1. In this subcase there
is initially a single tuple with a count value of count = 2i−1 − 1. The update
algorithm will increment this count which triggers its removal from the set.
What remains to be seen is whether a new element is added or if it becomes
empty.

We now consider two possibilities. If T − (index + 1) ≤ 2i − 2, then our
description states that set Si should enter Case 1 on index+ 1. It is easy to see
that if this is true that the set Si+1 was already Case 1 and empty on index
and nothing new will be added so the set Si is empty as needed.

The somewhat trickier case is when T −(index+1) > 2i −2. Here we need to
verify that the set Si ends up in Case 2 with the appropriate tuple at index+1.
First, since index + 1 mod 2i = 0 we can apply Claim 12. It states that if
set Si+1 were in Case 1 (empty) at index then set Si would be in Case 1 for
index+ 1. Since this is not the case, we have that Si+1 must be non empty and
in Case 2 or 3.

If Si+1 started in Case 2 at index, it initially has a tuple of the form:

(w = v
∏

j∈T \R ej , open = (k̃ + 1) · 2i+1 − 1, closing = (k̃ + 1) · 2i+1 − 1 + 2i,

count = 2i − 1).

Where we let R = [open, open+2i−1]∪[closing+count, closing+2i−1]. Note
by the description index = 2i+1k̃ + 2i − 1. After the update algorithm has its
first pass, count is incremented to 2i and an exponentiation is done that updates
w where it is now for R = [open, open + 2i − 1] as the second half of the range
falls off with the new count value. The update algorithm then removes this tuple
from Si+1 and creates two new tuples from it. One with an open′ = open and
closing′ = open+ 2i; the second with open′ = open+ 2i and closing′ = open.

To verify correctness recall that index = 2ik + 2i − 1 and index = 2i+1k̃ +
2i − 1. It follows that k = 2 · k̃. Second, index + 1 = 2i · k′ where k′ = k + 1.

Synchronized Aggregate Signatures from the RSA Assumption 219

To match the description for index + 1 we must have that the first tuple created
has an open′ value of open′ = (k′ + 1)2i − 1. Plugging in terms:

(k′ + 1)2i − 1 = (k + 1 + 1)2i − 1 = (2k̃ + 2)2i − 1 = (k̃ + 1)2i+1 − 1.

However, this is exactly the value it inherited from open as needed.
The argument that the right tuple is inherited when set Si+1 is in Case 3

proceeds in almost the same way as above.

The proof of our theorem now comes via induction. The accuracy of the
state description for index = 0 can be verified by inspection. We can prove
the rest by induction on index. For any index the accuracy of the description
index+1 follows from its accuracy on period index. In particular, our previous
three claims show that for any i if the state Si is accurate in period index then
after the update algorithm executes, Si will be accurate in period index+1 too.

Computational and Storage Efficiency. Analyzing the running time for these
storage operations is straightforward. We have that levels = �lg T �. In each
storage update operation there is at each level at most one prime search operation
and at most one exponentiation. This comes from the fact that for each i the
algorithm updates a single set element — the one with the smallest open value
(if any). Therefore the number of prime searches and exponentiations is bounded
by lg(T) as desired.

The above state description immediately gives us the storage efficiency we
desire. There are at most lg(T) sets i which have at most two tuples. Each tuple
has a single group element. As written, a tuple also has three (small) integers
(of value at most T), although a program could drop these because they can be
inferred from index, so we will not count them in our Sect. 8 analysis.

Sample Snapshot of Storage. To help the reader better understand these storage
algorithms, we provide an example of the storage states for levels = 3 and
T = 2levels+1 − 2 = 24 − 2 = 14 in Appendix A.

6.3 Using the Storage Primitives and Optimizations

We can use the storage primitive above to modify our signing algorithm and key
storage of Sect. 4. We describe two slightly different methods to do this.

Method 1. The Setup algorithm will run as before and output the core public
parameters as pp = (T,N, g, Y,K). However, it will also run StorageInit(pp, g)
which outputs a value store which is appended to the public parameters.

The secret key algorithm will choose random integers u0, u1, . . . , uk in [1, N].
It sets the secret key as sk = (u0, u1, . . . , uk) and the public key pk = (U0, U1, . . . ,
Uk) where Uj = Y uj = guj

∏
i∈T ei , for j = 0 to k. Note all of this is identical

to the Sect. 4 scheme. However, it additionally appends store from the public
parameters to its secret key. The store is the part of the secret key that will be
modified at each signing.

220 S. Hohenberger and B. Waters

During each the t-th signing step, it will call StorageUpdate(pp, storet−1)
and as output get a new storage value storet that is uses to replace the previous
one as well as J = Y 1/et . It uses this to sign by computing:

σ = Ju0

k∏

j=1

Juj ·mj =
(
U0

k∏

j=1

U
mj

j

)1/et (mod N).

Method 2. This will be similar to Method 1 except that instead of raising to the
u0, . . . , uk values at the end of signing the algorithm will keep k+1 parallel copies
of storage that already have each respective ui exponent raised. The description
below will need to slightly “break into” the abstraction that we gave earlier.

Setup will run as before and output the core public parameters as pp =
(T,N, g, Y,K). However, it will also run StorageInit(pp, g) which outputs a
value store which is appended to the public parameters.

The secret key algorithm will choose random integers u0, u1, . . . , uk in [1, N].
It sets the public key pk = (U0, U1, . . . , Uk) where Uj = Y uj = guj

∏
i∈T ei , for

j = 0 to k (as in the Sect. 4 scheme). For j = 0 to k it computes store(j) by
taking each of the group elements in store and raising it to uj . This process
effectively changes store from being a storage of v = g to being a storage
of vj = guj for the respective uj . Note that each conversion takes 2 · levels
exponentiations since there are 2 · levels group elements per storage.

During each t-th signing step, for each j ∈ [0, k] it will call
StorageUpdate(pp, store(j)t−1) and as output get a new storage value store

(j)
t

that is uses to replace the previous one as well as Jj = U
1/et

j . It uses these to
sign by computing:

σ = J0

k∏

j=1

J
mj

j =
(
U0

k∏

j=1

U
mj

j

)1/et (mod N).

Efficiency note: in the scheme above, the update operation will perform
levels prime searches for each of the k + 1 stores. (By prime search we mean
computing the relevant ei values needed in update.) This gives (k + 1) · levels
total prime searches. However, each of these stores will be computing the same
e values. Thus if we slightly break into the abstraction then one can do only
levels total prime searches by sharing that part of the computation across all
k + 1 storage updates.

7 Identity-Based Aggregation from RSA

In the full version [25], we provide the definition for synchronized identity-based
aggregate signatures. We now give a construction based on the RSA assumption.

Setup(1λ, 1T) The setup algorithm chooses an integer N = pq as the product of
two safe primes where p− 1 = 2p′ and q − 1 = 2q′, such that 2λ < φ(N) < 2λ+1.

Synchronized Aggregate Signatures from the RSA Assumption 221

The scheme assumes a hash function (modeled as a random oracle) G : I →
Z

∗(k+1)
N . It also uses the hash function H : [1, T] → {0, 1}λ+1 with key K as

specified in Sect. 4. It computes:

D =
T∏

i=1

HK(i)−1 mod φ(N).

It publishes the public parameters as pp = (T,N,K) and we assume all parties
have access to G. The master secret key includes the factorization of N and the
value D.

Extract(msk , ID) The algorithm computes (U0, . . . , Uk) ← G(ID). For i = 1
to k, it computes di = UD

i mod N . It returns the secret key as sk =
(d0, d1, . . . , dk).

Sign(pp, sk ID ,M, t) The signing algorithm takes as input a time period 1 ≤ t ≤
T and an L = (�k)-bit message M = m1|m2| . . . |mk, where each mi contains
�-bits and these are concatenated together to form M . It computes the primes
(e1, . . . , eT) from pp and then outputs

σ =
(
d0

k∏

j=1

d
mj

j

)∏
i∈T \{t} ei =

(
U0

k∏

j=1

U
mj

j

)1/et (mod N).

V erify(pp, ID ,M, t, σ) Let M = m1|m2| . . . |mk and G(ID) = (U0, . . . , Uk) The
algorithm computes the prime et from pp. Output 1 if 1 ≤ t ≤ T and σet

?=
U0

∏k
i=1 Umi

i or 0 otherwise.

Aggregate(pp, t, (ID1,M1, σ1), . . . , (IDn,Mn, σn)) As before, σagg =
∏n

j=1 σj

(mod N).

AggV erify(pp, t, (ID1, . . . , IDn), (M1, . . . , Mn), σagg) As before, output 1 if and

only if all inputs are in the correct range, each identity is unique and σet
agg

?=
∏n

j=1(Uj,0

∏k
i=1 U

mj,i

j,i) where here G(ID i) = (Ui,0, . . . , Ui,k).

Remarks. We remark that the same performance enhancements explored in
Sects. 5 and 6 apply here. For simplicity, we present the identity-based version
only for the scheme in Sect. 4.

Theorem 16. If the RSA assumption (as stated in Assumption 1) holds, F is
a secure pseudorandom function and G is modeled as a random oracle, then
the above identity-based synchronized aggregate signature construction is exis-
tentially unforgeable under an adaptive chosen message attack.

Proof of this theorem appears in the full version [25] of this work.

222 S. Hohenberger and B. Waters

Scheme
Signing Operations

P EN E|e| E� M

Section 4 T − 1 k + 1 T − 1 k k

Section 5 (a =
√

T)
√

T − 1 k + 1
√

T − 1 k k

Section 5 (a = 1) 0 k + 1 0 k k

Section 6 Method 1 lg(T) k + 1 lg(T) k k

Section 6 Method 2 lg(T) 0 (k + 1) lg(T) k k

Fig. 1. Signing Operations Evaluation. Let the modulus be N . Let P be the time for
function HK to output a prime of |e| bits, Ej be the time to perform a j-bit modular
exponentiation, and M be the time to perform a modular multiplication. For the Sect. 6,
we round up and treat lg T ≈ levels. For that scheme via Method 2, the results of
the prime search from the first store are shared with all other stores.

8 Performance Evaluation

We now analyze the performance of the various RSA-based aggregate signature
schemes in this work. In particular we consider: our core signature scheme of
Sect. 4, our scheme with ≈ √

(T) storage and signing time of Sect. 5, our “big
storage for fast signing” scheme also of Sect. 5 and our scheme of ≈ lg(T) storage
and signing of Sect. 6 via two different methods of implementing signing (which
may out perform each other based on the selection of various implementation
parameters). The scheme of Sect. 4 has similar performance to that of Sect. 5
when a = T and therefore we do not separately analyze it.

Operation P257 P80 E2048 E257 E256 E80 E32 M

Time (ms) 0.975 0.311 4.604 0.670 0.629 0.235 0.094 0.00091

Fig. 2. Time recorded in milliseconds for the above operations are averaged over 1,000
iterations for a 2048-bit modulus using NTL v10.5.0 on a modern laptop. Let Px denote
an x-bit prime search, Ex be an x-bit modular exponentiation, and M be a modular
multiplication.

For each scheme, we first evaluate its run-time performance with a signing
algorithm operations count in Fig. 1. We then proceed to inspect its practical
performance using a 2048-bit RSA modulus and a 256-bit message (the latter
corresponding to an output of SHA-256). In Fig. 3, we evaluate each scheme with
each of the following parameters: 1 message chunk size of 256 bits, 8 message
chunks of 32 bits and 256 messages chunks of 1 bit. When message chunks are
256 bits, we use 257-bit prime e values and for chunks of size 32 bits or 1 bit we
consider 80-bit e values. Here we make sure that the size of the RSA primes are
at least as big as the message chunks, but let them fall no further than 80 bits to
avoid collisions.9 These evaluations will be considered for a maximum number
9 We remark that the parameters given for this evaluation do not have a total corre-

spondence to the scheme description. For example, using 80-bit e values will techni-

Synchronized Aggregate Signatures from the RSA Assumption 223

Scheme
Parameters Time when T =
k � |e| 212 216 220 224 228 232

Section 4
1 256 257 6.7s 1.8m 28.7m 7.7h 5.1d 81.7d
8 32 80 2.3s 35.8s 9.5m 2.5h 1.7d 27.1d

256 1 80 3.4s 37.0s 9.6m 2.5h 1.7d 27.1d

Section 5 (a =
√

T)
1 256 257 113.4ms 0.4s 1.7s 6.7s 27.0s 1.8m
8 32 80 76.6ms 0.2s 0.6s 2.3s 9.0s 35.8s

256 1 80 1.2s 1.3s 1.7s 3.4s 10.1s 36.8s

Section 5 (a = 1)
1 256 257 9.8ms 9.8ms 9.8ms 9.8ms 9.8ms 9.8ms
8 32 80 42.2ms 42.2ms 42.2ms 42.2ms 42.2ms 42.2ms

256 1 80 1.2s 1.2s 1.2s 1.2s 1.2s 1.2s

Section 6 Method 1
1 256 257 29.6ms 36.1ms 42.7ms 49.3ms 55.9ms 62.5ms
8 32 80 48.8ms 50.9ms 53.1ms 55.3ms 57.5ms 59.7ms

256 1 80 1.2s 1.2s 1.2s 1.2s 1.2s 1.2s

Section 6 Method 2
1 256 257 28.4ms 37.7ms 47.0ms 56.2ms 65.4ms 74.7ms
8 32 80 29.9ms 39.6ms 49.3ms 59.1ms 68.8ms 78.5ms

256 1 80 0.7s 1.0s 1.2s 1.5s 1.7s 1.9s

Fig. 3. Signing Time Evaluations for 90 different performance points; here N is 2048
bits. Times are calculated by taking the average time for an operation (see Fig. 2) and
summing up the total times of each operation (see Fig. 1). Let ms denote milliseconds,
s denote seconds, m denote minutes, h denote hours, and d denote days.

of periods of T ∈ {212, 216, 220, 224, 228, 232}. Technically, for the log scheme the
numbers of time periods is T = 2levels+1 − 2, however for the sake of these
comparisons we will ignore the small constants.

To perform the timing evaluations in Fig. 3, we utilized the high-performance
NTL number theory library in C++ v10.5.0 by Victor Shoup [38]. Averaged over
1000 iterations, we measured the cost of a prime search of the relevant size as well
as the time to compute modular multiplications and modular exponentiations
for the relevant exponent sizes using a 2048-bit RSA modulus. We took all time
measurements on an early 2015 MacBook Air with a 1.6 GHz Intel Core i5
processor and 8 GB 1600 MHz DDR3 memory. These timing results are recorded
in Fig. 2.

We next report on the signer’s storage space requirements in Fig. 4 for all of
these combinations. And in Fig. 5, we show how to view T in practical terms
for how often one can issue signatures according to the synchronized restrictions
over the lifespan of a private key.

Some Conclusions. As expected the initial core scheme of Sect. 4 is much too
costly for signing. Even for T = 220 (where one signature is permitted every 5 min
for 10 years), it takes roughly 10 min to sign a single message, so the processor

cally require a variant of the RSA assumption with smaller exponents. And we do
not attempt to set the modulus size to match the security loss of our reduction. (It
is unknown whether this loss can actually be utilized by an attacker or not.) Our
focus here is to give the reader a sense of the relative performance of the scheme
variants for parameters that might be used in practice.

224 S. Hohenberger and B. Waters

Scheme
SK Elements Param. Size when T =

ZN k 212 216 220 224 228 232

S4 k + 1
1 0.5K 0.5K 0.5K 0.5K 0.5K 0.5K
8 2.3K 2.3K 2.3K 2.3K 2.3K 2.3K

256 64.3K 64.3K 64.3K 64.3K 64.3K 64.3K

S5 (a =
√

T) (k + 1) +
√

T

1 16.5K 64.5K 256.5K 1.0M 4.0M 16.0M
8 18.3K 66.3K 258.3K 1.0M 4.0M 16.0M

256 80.3K 128.3K 320.3K 1.1M 4.1M 16.1M

S5 (a = 1) (k + 1) + T
1 1.0M 16.0M 256.0M 4.0G 64.0G 1.0Tb
8 1.0M 16.0M 256.0M 4.0G 64.0G 1.0Tb

256 1.1M 16.1M 256.1M 4.0G 64.0G 1.0Tb

S6 Method 1 (k + 1) + 2 lg T
1 6.5K 8.5K 10.5K 12.5K 14.5K 16.5K
8 8.3K 10.3K 12.3K 14.3K 16.3K 18.3K

256 70.3K 72.3K 74.3K 76.3K 78.3K 80.3K

S6 Method 2 2(k + 1) lg T
1 12.0K 16.0K 20.0K 24.0K 28.0K 32.0K
8 54.0K 72.0K 90.0K 108K 106K 144K

256 1.5M 2.0M 2.5M 3.0M 3.5M 4.0M

Fig. 4. Private Key Size Evaluation. Here the modulus N is 2048 bits. The above
numbers are rounded to show one decimal point. Let K denote a kilobyte (210 bytes),
M a megabyte (220 bytes), G a gigabyte (230 bytes), and Tb a terabyte (240 bytes).
Any of the schemes that compute primes during Signing (all but Sect. 5 when a = 1),
could instead choose to speed up signing by additionally storing those values at an
additional storage cost of T elements of Z|e|. All but the last scheme include k + 1
elements that are the randomization factors u0, . . . , uk ∈ [1, N]; this space could be
shrunk by re-computing these from a PRF.

we took these measurements on could not “break even” by keeping up with the
modest pace of one signature every 5 min using the base scheme. At larger time
periods, the signing time moves into days. One noticeable aspect is that the
k = 1 (where k is the number of message chunks) time measurements are about
a factor of three greater than when k ∈ {8, 256} for this scheme and the square
root one. This is due to the cost difference of searching for and raising to 257-bit
primes versus 80-bit primes which dominate these schemes.

The square root tradeoff certainly does better, but cannot break even (on the
processor measured) once we hit T = 228. Additionally, the keys are somewhat
large on the order of a few megabytes. This could be an issue if we would want
to store several keys or a single key on a low memory device.

On the other end of the spectrum when setting a = 1, we get relatively fast
signatures. Here things flip where it is significantly more expensive to sign for
k = 256 than k ∈ {1, 8}. The reason is that at this point the cost of raising to
the ui values now dominates the computation — whereas in the earlier schemes
it was dominated by raising to the ei values. The main downside of this setting
is that the key sizes are huge — breaking into the terabyte range for T = 232.

Synchronized Aggregate Signatures from the RSA Assumption 225

Setting of T Frequency of Signatures
212 76,992 sec (≈ one per day)
216 4,812 sec (≈ one every 1.5 hours)
220 300 sec (≈ one every 5 minutes)
224 19 sec
228 1.2 sec
232 0.07 sec (≈ ten per second)

Fig. 5. Approximate view of how to select T based on how often an application needs
the ability to issue signatures during a key’s 10-year lifespan. (One can approximate a
20-year key lifespan by cutting the above frequencies in half.)

We finally move to our log scheme of Sect. 6 where we start with Method
1. It scales well with the number of time periods where even for T = 232 it is
only about 60 ms for k ∈ {1, 8}. For k = 256 the time is again dominated by
the raising to the ui values at the end. Also, the private keys can be kept in the
range of ten to twenty kilobytes for lower k values. (We note that for k = 256
one possibility is that the ui values could be generated from a pseudo random
function which could lower the key storage cost.) The second method of using
the log storage is more costly in terms of key storage cost. Its performance in
signing time is slightly better for smaller values of T , but for values higher than
220 turns worse. For this reason the first method seems to perform better overall
than the second.

Altogether, the log storage solution (of Sect. 6 using Method 1) offers prac-
tical time/space costs and appears to provide the best overall practical perfor-
mance of all schemes analyzed.

Acknowledgments. We thank the anonymous reviewers for their helpful comments
and Joseph Ayo Akinyele for implementation discussions.

A Sample Snapshot of Storage for Sect. 6 Scheme

To aid the reader, we provide an example of the storage states for levels = 3
and T = 2levels+1−2 = 24−2 = 14 in Fig. 6. This example shows the states after
updates; it does not show any intermediate states during an update operation.
The example gives just the open, closing and count values. The prior section
describes how the corresponding group element w is computed based on these
values (see the description of R as the range of indices of ei values excluded from
the product in the exponent.) Initially, we have sets S1, . . . , Slevels=3 that are
empty. The values at index = 0 show the states after running StorageInit.
The values at index > 0 show the state after a call to StorageUpdate.

226 S. Hohenberger and B. Waters

index
Set S1 Set S2 Set S3

open closing count open closing count open closing count

0
1 2 0 3 5 0 7 11 0
2 1 0 5 3 0 11 7 0

1
2 1 0 3 5 1 7 11 1

5 3 0 11 7 0

2
3 4 0 5 3 0 7 11 2
4 3 0 11 7 0

3
4 3 0 5 3 1 7 11 3

11 7 0

4
5 6 0 7 9 0 11 7 0
6 5 0 9 7 0

5
6 5 0 7 9 1 11 7 1

9 7 0

6
7 8 0 9 7 0 11 7 2
8 7 0

7 8 7 0 9 7 1 11 7 3

8
9 10 0 11 13 0
10 9 0 13 11 0

9
10 9 0 11 13 1

13 11 0

10
11 12 0 12 11 0
13 11 0

11 12 11 0 13 11 1

12
13 14 0
14 13 0

13 14 13 0
14

Fig. 6. Storage State Example for levels = 3, T = 14. See above description.

References

1. Ahn, J.H., Green, M., Hohenberger, S.: Synchronized aggregate signatures: new
definitions, constructions and applications. In: ACM Conference on Computer and
Communications Security, pp. 473–484 (2010)

2. Anonymous. Increasing anonymity in bitcoin (2013). https://bitcointalk.org/index.
php?topic=1377298.0

3. Bagherzandi, A., Jarecki, S.: Identity-based aggregate and multi-signature schemes
based on RSA. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol.
6056, pp. 480–498. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-13013-7 28

4. El Bansarkhani, R., Mohamed, M.S.E., Petzoldt, A.: MQSAS - a multivariate
sequential aggregate signature scheme. In: Bishop, M., Nascimento, A.C.A. (eds.)
ISC 2016. LNCS, vol. 9866, pp. 426–439. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-45871-7 25

https://bitcointalk.org/index.php?topic=1377298.0
https://bitcointalk.org/index.php?topic=1377298.0
https://doi.org/10.1007/978-3-642-13013-7_28
https://doi.org/10.1007/978-3-642-13013-7_28
https://doi.org/10.1007/978-3-319-45871-7_25
https://doi.org/10.1007/978-3-319-45871-7_25

Synchronized Aggregate Signatures from the RSA Assumption 227

5. Barak, B., Canetti, R., Nielsen, J.B., Pass, R.: Universally composable protocols
with relaxed set-up assumptions. In: Symposium on Foundations of Computer
Science, pp. 186–195. IEEE Computer Society (2004)

6. Barić, N., Pfitzmann, B.: Collision-free accumulators and fail-stop signature
schemes without trees. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233,
pp. 480–494. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-69053-
0 33

7. Bellare, M., Namprempre, C., Neven, G.: Unrestricted aggregate signatures. In:
Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol.
4596, pp. 411–422. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-73420-8 37

8. Bellare, M., Neven, G.: Identity-based multi-signatures from RSA. In: Abe, M.
(ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 145–162. Springer, Heidelberg (2006).
https://doi.org/10.1007/11967668 10

9. Benaloh, J., de Mare, M.: One-way accumulators: a decentralized alternative to
digital signatures. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp.
274–285. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48285-7 24

10. Boldyreva, A.: Threshold signatures, multisignatures and blind signatures based
on the Gap-Diffie-Hellman-Group signature scheme. In: Desmedt, Y.G. (ed.) PKC
2003. LNCS, vol. 2567, pp. 31–46. Springer, Heidelberg (2003). https://doi.org/10.
1007/3-540-36288-6 3

11. Boldyreva, A., Gentry, C., O’Neill, A., Yum, D.H.: Ordered multisignatures and
identity-based sequential aggregate signatures, with applications to secure routing.
In: ACM Conference on Computer and Communications Security (CCS), pp. 276–
285 (2007), http://www.cc.gatech.edu/∼amoneill/bgoy.html

12. Boneh, D., Franklin, M.K.: Efficient generation of shared RSA keys. J. ACM 48(4),
702–722 (2001)

13. Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted
signatures from bilinear maps. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS,
vol. 2656, pp. 416–432. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-39200-9 26

14. Boneh, D., Gentry, C., Lynn, B., Shacham, H.: A survey of two signature aggre-
gation techniques. RSA Cryptobytes 6(2), 1–9 (2003)

15. Brogle, K., Goldberg, S., Reyzin, L.: Sequential aggregate signatures with lazy
verification from trapdoor permutations. Inf. Comput. 239, 356–376 (2014)

16. Cramer, R., Shoup, V.: Signature schemes based on the strong RSA assumption.
ACM Trans. Inf. Syst. Secur. 3(3), 161–185 (2000)

17. Fischlin, M., Lehmann, A., Schröder, D.: History-free sequential aggregate signa-
tures. In: Visconti, I., De Prisco, R. (eds.) SCN 2012. LNCS, vol. 7485, pp. 113–130.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32928-9 7

18. Freire, E.S.V., Hofheinz, D., Paterson, K.G., Striecks, C.: Programmable hash func-
tions in the multilinear setting. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013.
LNCS, vol. 8042, pp. 513–530. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40041-4 28

19. Gentry, C., Ramzan, Z.: Identity-based aggregate signatures. In: Yung, M., Dodis,
Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 257–273.
Springer, Heidelberg (2006). https://doi.org/10.1007/11745853 17

20. Guo, X., Wang, Z.: An efficient synchronized aggregate signature scheme from
standard RSA assumption. Int. J. Future Gener. Commun. Netw. 7(3), 229–240
(2014)

https://doi.org/10.1007/3-540-69053-0_33
https://doi.org/10.1007/3-540-69053-0_33
https://doi.org/10.1007/978-3-540-73420-8_37
https://doi.org/10.1007/978-3-540-73420-8_37
https://doi.org/10.1007/11967668_10
https://doi.org/10.1007/3-540-48285-7_24
https://doi.org/10.1007/3-540-36288-6_3
https://doi.org/10.1007/3-540-36288-6_3
http://www.cc.gatech.edu/~amoneill/bgoy.html
https://doi.org/10.1007/3-540-39200-9_26
https://doi.org/10.1007/3-540-39200-9_26
https://doi.org/10.1007/978-3-642-32928-9_7
https://doi.org/10.1007/978-3-642-40041-4_28
https://doi.org/10.1007/978-3-642-40041-4_28
https://doi.org/10.1007/11745853_17

228 S. Hohenberger and B. Waters

21. Hofheinz, D., Jager, T., Kiltz, E.: Short signatures from weaker assumptions. In:
Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 647–666.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0 35

22. Hohenberger, S., Koppula, V., Waters, B.: Universal signature aggregators. In:
Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 3–34.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6 1

23. Hohenberger, S., Sahai, A., Waters, B.: Full domain hash from (leveled) multi-
linear maps and identity-based aggregate signatures. In: Canetti, R., Garay, J.A.
(eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 494–512. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40041-4 27

24. Hohenberger, S., Waters, B.: Short and stateless signatures from the RSA assump-
tion. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 654–670. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8 38

25. Hohenberger, S., Waters, B.: Synchronized aggregate signatures from the RSA
assumption. In: Eurocrypt (This Issue) (2018). The full version appears, https://
eprint.iacr.org/2018/082

26. Itkis, G., Reyzin, L.: Forward-secure signatures with optimal signing and verify-
ing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 332–354. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8 20

27. Lee, K., Lee, D.H., Yung, M.: Sequential aggregate signatures made shorter. In:
Jacobson, M., Locasto, M., Mohassel, P., Safavi-Naini, R. (eds.) ACNS 2013.
LNCS, vol. 7954, pp. 202–217. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-38980-1 13

28. Lee, K., Lee, D.H., Yung, M.: Sequential aggregate signatures with short public
keys: design, analysis and implementation studies. In: Kurosawa, K., Hanaoka,
G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 423–442. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-36362-7 26

29. Lu, S., Ostrovsky, R., Sahai, A., Shacham, H., Waters, B.: Sequential aggregate sig-
natures and multisignatures without random oracles. In: Vaudenay, S. (ed.) EURO-
CRYPT 2006. LNCS, vol. 4004, pp. 465–485. Springer, Heidelberg (2006). https://
doi.org/10.1007/11761679 28. http://cseweb.ucsd.edu/∼hovav/dist/agg-sig.pdf

30. Lysyanskaya, A., Micali, S., Reyzin, L., Shacham, H.: Sequential aggregate signa-
tures from trapdoor permutations. In: Cachin, C., Camenisch, J.L. (eds.) EURO-
CRYPT 2004. LNCS, vol. 3027, pp. 74–90. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-24676-3 5

31. Ma, D., Tsudik, G.: Extended abstract: forward-secure sequential aggregate
authentication. In: IEEE Symposium on Security and Privacy, pp. 86–91 (2007)

32. Miller, G.L.: Riemann’s hypothesis and tests for primality. J. Comput. Syst. Sci.
13, 300–317 (1976)

33. Neven, G.: Efficient sequential aggregate signed data. In: Smart, N. (ed.) EURO-
CRYPT 2008. LNCS, vol. 4965, pp. 52–69. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-78967-3 4

34. Rabin, M.O.: Probabilistic algorithm for testing primality. J. Number Theory 12,
128–138 (1980)

35. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems. Comm. ACM 21(2), 120–126 (1978)

36. Rückert, M., Schröder, D.: Aggregate and verifiably encrypted signatures from mul-
tilinear maps without random oracles. In: Park, J.H., Chen, H.-H., Atiquzzaman,
M., Lee, C., Kim, T., Yeo, S.-S. (eds.) ISA 2009. LNCS, vol. 5576, pp. 750–759.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02617-1 76

https://doi.org/10.1007/978-3-642-25385-0_35
https://doi.org/10.1007/978-3-662-46803-6_1
https://doi.org/10.1007/978-3-642-40041-4_27
https://doi.org/10.1007/978-3-642-03356-8_38
https://eprint.iacr.org/2018/082
https://eprint.iacr.org/2018/082
https://doi.org/10.1007/3-540-44647-8_20
https://doi.org/10.1007/978-3-642-38980-1_13
https://doi.org/10.1007/978-3-642-38980-1_13
https://doi.org/10.1007/978-3-642-36362-7_26
https://doi.org/10.1007/11761679_28
https://doi.org/10.1007/11761679_28
http://cseweb.ucsd.edu/~hovav/dist/agg-sig.pdf
https://doi.org/10.1007/978-3-540-24676-3_5
https://doi.org/10.1007/978-3-540-24676-3_5
https://doi.org/10.1007/978-3-540-78967-3_4
https://doi.org/10.1007/978-3-540-78967-3_4
https://doi.org/10.1007/978-3-642-02617-1_76

Synchronized Aggregate Signatures from the RSA Assumption 229

37. Sharmila Deva Selvi, S., Sree Vivek, S., Pandu Rangan, C.: Deterministic identity
based signature scheme and its application for aggregate signatures. In: Susilo, W.,
Mu, Y., Seberry, J. (eds.) ACISP 2012. LNCS, vol. 7372, pp. 280–293. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-31448-3 21

38. Shoup, V.: NTL: A Library for doing Number Theory, v10.5.0 (2017). http://www.
shoup.net/ntl/

https://doi.org/10.1007/978-3-642-31448-3_21
http://www.shoup.net/ntl/
http://www.shoup.net/ntl/

More Efficient (Almost) Tightly Secure
Structure-Preserving Signatures

Romain Gay1,2(B), Dennis Hofheinz3, Lisa Kohl3, and Jiaxin Pan3

1 Département d’informatique de l’ENS, École normale supérieure,
CNRS, PSL Research University, Paris, France

rgay@di.ens.fr
2 INRIA, Paris, France

3 Karlsruhe Institute of Technology, Karlsruhe, Germany
{Dennis.Hofheinz,Lisa.Kohl,Jiaxin.Pan}@kit.edu

Abstract. We provide a structure-preserving signature (SPS) scheme
with an (almost) tight security reduction to a standard assumption.
Compared to the state-of-the-art tightly secure SPS scheme of Abe
et al. (CRYPTO 2017), our scheme has smaller signatures and public
keys (of about 56%, resp. 40% of the size of signatures and public keys
in Abe et al.’s scheme), and a lower security loss (of O(log Q) instead of
O(λ), where λ is the security parameter, and Q = poly(λ) is the number
of adversarial signature queries).

While our scheme is still less compact than structure-preserving sig-
nature schemes without tight security reduction, it significantly lowers
the price to pay for a tight security reduction. In fact, when accounting
for a non-tight security reduction with larger key (i.e., group) sizes, the
computational efficiency of our scheme becomes at least comparable to
that of non-tightly secure SPS schemes.

Technically, we combine and refine recent existing works on tightly
secure encryption and SPS schemes. Our technical novelties include a
modular treatment (that develops an SPS scheme out of a basic message
authentication code), and a refined hybrid argument that enables a lower
security loss of O(log Q) (instead of O(λ)).

Keywords: Structure-preserving signatures · Tight security

R. Gay—Supported by ERC Project aSCEND (639554), and a Google PhD
fellowship.
D. Hofheinz—Supported by ERC Project PREP-CRYPTO (724307), and by DFG
grants HO 4534/4-1 and HO 4534/2-2.
L. Kohl—Supported by ERC Project PREP-CRYPTO (724307), and by DFG grant
HO 4534/2-2.
J. Pan—Supported by DFG grant HO 4534/4-1.

c© International Association for Cryptologic Research 2018
J. B. Nielsen and V. Rijmen (Eds.): EUROCRYPT 2018, LNCS 10821, pp. 230–258, 2018.
https://doi.org/10.1007/978-3-319-78375-8_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78375-8_8&domain=pdf

More Efficient (Almost) Tightly Secure Structure-Preserving Signatures 231

1 Introduction

Structure-Preserving Signatures (SPSs). Informally, a cryptographic
scheme (such as an encryption or signature scheme) is called structure-preserving
if its operation can be expressed using equations over a (usually pairing-friendly)
cyclic group. A structure-preserving scheme has the advantage that we can rea-
son about it with efficient zero-knowledge proof systems such as the Groth-Sahai
non-interactive zero-knowledge (NIZK) system [31]. This compatibility is the key
to constructing efficient anonymous credential systems (e.g., [10]), and can be
extremely useful in voting schemes and mix-nets (e.g., [30]).

In this work, we are concerned with structure-preserving signature (SPS)
schemes. Since popular tools such as “structure-breaking” collision-resistant hash
functions cannot be used in a structure-preserving scheme, constructing an SPS
scheme is a particularly challenging task. Still, there already exist a variety of SPS
schemes in the literature [2,4–6,17–19,29,35,37,39,44] (see also Table 1 for details
on some of them).

Tight Security for SPS Schemes. A little more specifically, in this work we
are interested in tightly secure SPS schemes. Informally, a cryptographic scheme
is tightly secure if it enjoys a tight security reduction, i.e., a security reduction
that transforms any adversary A on the scheme into a problem-solver with about
the same runtime and success probability as A, independently of the number of
uses of the scheme.1 A tight security reduction gives security guarantees that do
not degrade in the size of the setting in which the scheme is used.

Specifically, tight security reductions allow to give “universal” keylength rec-
ommendations that do not depend on the envisioned size of an application.
This is useful when deploying an application for which the eventual number of
uses cannot be reasonably bounded a priori. Moreover, this point is particularly
vital for SPS schemes. Namely, an SPS scheme is usually combined with several
other components that all use the same cyclic group. Thus, a keylength increase
(which implies changing the group, and which might be necessary for a non-
tightly secure scheme for which a secure keylength depends on the number of
uses) affects several schemes, and is particularly costly.

In recent years, progress has been made in the construction of a variety of
tightly2 secure cryptographic schemes such as public-key encryption schemes [11,
25,33–35,42,43], identity-based encryption schemes [8,14,20,21,27,36], and sig-
nature schemes [3,6,14,16,21,34,35,42]. However, somewhat surprisingly, only
few SPS schemes with tight security reductions are known. Moreover, these

1 We are only interested in reductions to well-established and plausible computational
problems here. While the security of any scheme can be trivially (and tightly) reduced
to the security of that same scheme, such a trivial reduction is of course not very
useful.

2 Most of the schemes in the literature are only “almost” tightly secure, meaning
that their security reduction suffers from a small multiplicative loss (that however
is independent of the number of uses of the scheme). In the following, we will not
make this distinction, although we will of course be precise in the description and
comparison of the reduction loss of our own scheme.

232 R. Gay et al.

tightly secure SPS schemes [6,35] are significantly less efficient than either “ordi-
nary” SPS or tightly secure signature schemes (see Table 1). One reason for this
apparent difficulty to construct tightly secure SPS schemes is that tight security
appears to require dedicated design techniques (such as a sophisticated hybrid
argument over the bits of an IBE identity [21]), and most known such techniques
cannot be expressed in a structure-preserving manner.

Table 1. Comparison of standard-model SPS schemes (in their most efficient variants).
We list unilateral schemes (with messages over one group) and bilateral schemes (with
messages over both source groups of a pairing) separately. The notation (x1, x2) denotes
x1 elements in G1 and x2 elements in G2. |M |, |σ|, and |pk | denote the size of messages,
signatures, and public keys (measured in group elements). “Sec. loss” denotes the
multiplicative factor that the security reduction to “Assumption” loses, where we omit
dominated and additive factors. (Here, “generic” means that only a proof in the generic
group model is known.) For the tree-based scheme HJ12, � denotes the depth of the tree
(which limits the number of signing queries to 2�). Q denotes the number of adversarial
signing queries, and λ is the security parameter.

Scheme |M | |σ| |pk | Sec. loss Assumption

HJ12 [35] 1 10� + 6 13 8 DLIN

ACDKNO16 [2] (n1, 0) (7, 4) (5, n1 + 12) Q SXDH, XDLIN

LPY15 [44] (n1, 0) (10, 1) (16, 2n1 + 5) O(Q) SXDH, XDLINX

KPW15 [39] (n1, 0) (6, 1) (0, n1 + 6) 2Q2 SXDH

JR17 [37] (n1, 0) (5, 1) (0, n1 + 6) Q log Q SXDH

AHNOP17 [6] (n1, 0) (13, 12) (18, n1 + 11) 80λ SXDH

Ours (unilateral) (n1, 0) (8, 6) (2, n1 + 9) 6 log Q SXDH

AGHO11 [5] (n1, n2) (2, 1) (n1, n2 + 2) — Generic

ACDKNO16 [2] (n1, n2) (8, 6) (n2 + 6, n1 + 13) Q SXDH, XDLIN

KPW15 [39] (n1, n2) (7, 3) (n2 + 1, n1 + 7) 2Q2 SXDH

AHNOP17 [6] (n1, n2) (14, 14) (n2 + 19, n1 + 12) 80λ SXDH

Ours (bilateral) (n1, n2) (9, 8) (n2 + 4, n1 + 9) 6 log Q SXDH

1.1 Our Contribution

Overview. We present a tightly secure SPS scheme with significantly improved
efficiency and tighter security reduction compared to the state-of-the-art tightly
secure SPS scheme of Abe et al. [6]. Specifically, our signatures contain 14 group
elements (compared to 25 group elements in [6]), and our security reduction
loses a factor of only O(log Q) (compared to O(λ)), where λ denotes the security
parameter, and Q = poly(λ) denotes the number of adversarial signature queries.
When accounting for loose reductions through an appropriate keylength increase,
the computational efficiency of our scheme even compares favorably to that of
state-of-the-art non-tightly secure SPS schemes.

More Efficient (Almost) Tightly Secure Structure-Preserving Signatures 233

In the following, we will detail how we achieve our results, and in particular
the progress we make upon previous techniques. We will also compare our work
to existing SPS schemes (both tightly and non-tightly secure).

Central Idea: A Modular Treatment. A central idea in our work (that
in particular contrasts our approach to the one of Abe et al.) is a modular
construction. That is, similar to the approach to tight IBE security of Blazy,
Kiltz, and Pan [14], the basis of our construction is a tightly secure message
authentication code (MAC). This tightly secure MAC will then be converted
into a signature scheme by using NIZK proofs, following (but suitably adapting)
the generic MAC-to-signatures conversion of Bellare and Goldwasser [12].

Starting Point: A Tightly Secure MAC. Our tightly secure MAC will have
to be structure-preserving, so the MAC used in [14] cannot be employed in our
case. Instead, we derive our MAC from the recent tightly secure key encapsula-
tion mechanism (KEM) of Gay, Hofheinz, and Kohl [26] (which in turn builds
upon the Kurosawa-Desmedt PKE scheme [41]). To describe their scheme, we
assume a group G = 〈g〉 of prime order p, and we use the implicit notation
[x] := gx from [24]. We also fix an integer k that determines the computational
assumption to which we want to reduce.3 Now in (a slight simplification of) the
scheme of [26], a ciphertext C with corresponding KEM key K is of the form

C = ([t], π), K = [(k0 + μk1)�t] (for μ = H([t])), (1)

where H is a collision-resistant hash function, and k0,k1, t ∈ Z
2k
p and π are

defined as follows. First, k0,k1 ∈ Z
2k
p comprise the secret key. Next, t = A0r

for a fixed matrix A0 (given as [A0] in the public key) and a random vector
r ∈ Z

k
p chosen freshly for each encryption. Finally, π is a NIZK proof that proves

that t ∈ span(A0)∪ span(A1) for another fixed matrix A1 (also given as [A1] in
the public key). The original Kurosawa-Desmedt scheme [41] is identical, except
that π is omitted, and k = 1. Hence, the main benefit of π is that it enables a
tight security reduction.4

We can view this KEM as a MAC scheme simply by declaring the MAC tag
for a message M to be the values (C,K) from (1), only with μ := M (instead
of μ = H([t])). The verification procedure of the resulting MAC will check π,
and then check whether C really decrypts to K. (Hence, MAC verification still
requires the secret key k0,k1.) Now a slight adaptation of a generic argument of
Dodis et al. [22] reduces the security of this MAC tightly to the security of the
underlying KEM scheme. Unfortunately, this resulting MAC is not structure-
preserving yet (even if the used NIZK proof π is): the message M = μ is a scalar
(from Zp).5

3 For k = 1, we can reduce to DDH in G, and for k > 1, we can reduce to the k-Linear
assumption, and in fact even to the weaker Matrix-DDH assumption [24].

4 Actually, the scheme of [26] uses an efficient designated-verifier NIZK proof π that
is however not structure-preserving (and thus not useful for our case), and also
induces an additional term in K. For our purposes, we can think of π as a (structure-
preserving) Groth-Sahai proof.

5 A structure-preserving scheme should have group elements (and not scalars) as mes-
sages, since Groth-Sahai proofs cannot (easily) be used to prove knowledge of scalars.

234 R. Gay et al.

Abstracting Our Strategy into a Single “core lemma”. We can distill
the essence of the security proof of our MAC above into a single “core lemma”.
This core lemma forms the heart of our work, and shows how to randomize all
tags of our MAC. While this randomization follows a previous paradigm called
“adaptive partitioning” (used to prove the tight security of PKE [26,33] and
SPS schemes [6]), our core lemma induces a much smaller reduction loss. The
reason for this smaller reduction loss is that previous works on tightly secure
schemes (including [6,26,33]) conduct their reduction along the individual bits
of a certain hash value (or message to be signed). Since this hash value (or
message) usually has O(λ) bits, this induces a hybrid argument of O(λ) steps,
and thus a reduction loss of O(λ). In contrast, we conduct our security argument
along the individual bits of the index of a signing query (i.e., a value from 1 to
Q, where Q is the number of signing queries). This index exists only in the
security proof, and can thus be considered as an “implicit” way to structure our
reduction.6

From MACs to Signatures and Structure-Preserving Signatures. For-
tunately, our core lemma can be used to prove not only our MAC scheme, but
also a suitable signature and SPS scheme tightly secure. To construct a signature
scheme, we can now use an case-tailored (and heavily optimized) version of the
generic transformation of Bellare and Goldwasser [12]. In a nutshell, that trans-
formation turns a MAC tag (that requires a secret key to verify) into a publicly
verifiable signature by adding a NIZK proof to the tag that proves its validity,
relative to a public commitment to the secret key. For our MAC, we only need
to prove that the given key K really is of the form K = [(k0 + μk1)�t]. This
linear statement can be proven with a comparatively simple and efficient NIZK
proof π′. For k = 1, an optimized Groth-Sahai-based implementation of π, and
an implicit π′ (that uses ideas from [38,40]), the resulting signature scheme will
have signatures that contain 14 group elements.

To turn our scheme into an SPS scheme, we need to reconsider the equation
K = [(k0 + μk1)�t] from (1). In our MAC (and also in the signature scheme
above), we have set μ = M ∈ Zp, which we cannot afford to do for an SPS
scheme. Our solution consists in choosing a different equation that fulfills the
following requirements:

(a) it is algebraic (in the sense that it integrates a message M ∈ G), and
(b) it is compatible with our core lemma (so it can be randomized quickly).

For our scheme, we start from the equation

K = [k�
0 t + k�

(
M
1

)
] (2)

for uniform keys k0,k. We note that a similar equation has already been used
by Kiltz, Pan, and Wee [39] for constructing SPS schemes, although with a very

6 A reduction loss of O(log Q) has been achieved in the context of IBE schemes [20],
but their techniques are different and rely on a composite-order group.

More Efficient (Almost) Tightly Secure Structure-Preserving Signatures 235

different and non-tight security proof. We can plug this equation into the MAC-
to-signature transformation sketched above, to obtain an SPS scheme with only
14 group elements (for k = 1) per signature.

Our security proof will directly rely on our core lemma to first randomize
the k�

0 t part of (2) in all signatures. After that, similar to [39], an information-
theoretic argument (that only uses the pairwise independence of the second part
of (2), when viewed as a function of M) shows security.

Our basic SPS scheme is unilateral, i.e., its messages are vectors over only
one source group of a given pairing. To obtain a bilateral scheme that accepts
“mixed” messages over both source groups of an asymmetric pairing, we can use
a generic transformation of [39] that yields a bilateral scheme with signatures of
17 group elements (for k = 1).

1.2 Related Work and Efficiency Comparison

In this subsection, we compare our work to the closest existing work (namely,
the tightly secure SPS scheme of Abe et al. [6]) and other, non-tightly secure
SPS schemes.

Comparison to the Work of Abe et al. The state of the art in tightly secure
SPS schemes (and in fact currently the only other efficient tightly secure SPS
scheme) is the recent work of Abe et al. [6]. Technically, their scheme also uses a
tightly secure PKE scheme (in that case [33]) as an inspiration. However, there
are also a number of differences in our approaches which explain our improved
efficiency and reduction.

Table 2. Comparison of the computational efficiency of state-of-the-art SPS schemes
(in their most efficient, SXDH-based variants) with our SXDH-based schemes in the
unilateral (UL) and bilateral (BL) version. With “PPEs” and “Pairings”, we denote
the number of those operations necessary during verification, where “batched” denotes
optimized figures obtained by “batching” verification equations [13]. The “|M |” and
“Sec. loss” columns have the same meaning as in Table 1. The column “|G1|” denotes
the (bit)size of elements from the first source group in a large but realistic scenario
(under some simplifying assumptions), see the discussion in Sect. 1.2. “|σ| (bits)”
denotes the resulting overall signature size, where we assume that the bitsize of G2

elements is twice the bitsize of G1-elements.

Scheme |M | PPEs Pairings
(plain)

Pairings
(batched)

Sec. loss |G1|
(bits)

|σ|
(bits)

KPW [39] (n1, 0) 3 n1 + 11 n1 + 10 2Q2 322 2576

JR [37] (n1, 0) 2 n1 + 8 n1 + 6 Q log Q 270 1890

AHNOP [6] (n1, 0) 15 n1 + 57 n1 + 16 80λ 226 8362

Ours (UL) (n1, 0) 6 n1 + 29 n1 + 11 6 log Q 216 4320

KPW [39] (n1, n2) 4 n1+n2+15 n1+n2+14 2Q2 322 4186

AHNOP [6] (n1, n2) 16 n1+n2+61 n1+n2+18 80λ 226 9492

Ours (BL) (n1, n2) 7 n1+n2+33 n1+n2+15 6 log Q 216 5400

236 R. Gay et al.

First, Abe et al.’s scheme involves more (and more complex) NIZK proofs,
since they rather closely follow the PKE scheme from [33]. This leads to larger
proofs and thus larger signatures. Instead, our starting point is the much simpler
scheme of [26] (which only features one comparatively simple NIZK proof in its
ciphertext).

Second, while the construction of Abe et al. is rather monolithic, our con-
struction can be explained as a modification of a simple MAC scheme. Our
approach thus allows for a more modular exposition, and in particular we can
outsource the core of the reduction into a core lemma (as explained above) that
can be applied to MAC, signature, and SPS scheme.

Third, like previous tightly secure schemes (and in particular the PKE
schemes of [26,33]), Abe et al. conduct their security reduction along the indi-
vidual bits of a certain hash value (or message to be signed). As explained above,
our reduction is more economic, and uses a hybrid argument over an “implicit”
counter value.

Efficiency Comparison. We give a comparison to other SPS schemes in
Table 1. This table shows that our scheme is still significantly less efficient in
terms of signature size than existing, non-tightly secure SPS schemes. However,
when considering computational efficiency, and when accounting for a larger
security loss in the reduction with larger groups, things look differently.

The currently most efficient non-tightly secure SPS schemes are due to Jutla
and Roy [37] and Kiltz, Pan, and Wee [39]. Table 2 compares the computational
complexity of their verification operation with the tightly secure SPSs of Abe
et al. and our schemes. Now consider a large scenario with Q = 230 signing
queries and a target security parameter of λ = 100. Assume further that we
use groups that only allow generic attacks (that require time about the square
root of the group size). This means that we should run a scheme in a group of
size at least 22(λ+log L), where L denotes the multiplicative loss of the respective
security reduction. Table 2 shows the resulting group sizes in column “|G1|” (in
bits, such that |G1| = 200 denotes a group of size 2200).

Now very roughly, the computational complexity of pairings can be assumed
to be cubic in the (bit)size of the group [7,9,23,28]. Hence, in the unilateral set-
ting, and assuming an optimized verification implementation (that uses “batch-
ing” [13]) the computational efficiency of the verification in our scheme is roughly
on par with that in the (non-tightly secure) state-of-the-art scheme of Jutla
and Roy [37], even for small messages. For larger messages, our scheme becomes
preferable. In the bilateral setting, our scheme is clearly the most efficient known
scheme.

Roadmap

We fix some notation and recall some preliminaries in Sect. 2. In Sect. 3, we
present our basic MAC and prove it secure (using the mentioned core lemma).
In Sects. 4 and 5, we present our signature and SPS schemes. Due to lack of
space, for some proofs (including the more technical parts of the proof of the
core lemma, and a full proof for the signature scheme) we refer to the full version.

More Efficient (Almost) Tightly Secure Structure-Preserving Signatures 237

2 Preliminaries

In this section we provide the preliminaries which our paper builds upon. First,
we want to give an overview of notation used throughout all sections.

2.1 Notation

By λ ∈ N we denote the security parameter. We always employ negl : N → R≥0 to
denote a negligible function, that is for all polynomials p ∈ N[X] there exists an
n0 ∈ N such that negl(n) < 1/p(n) for all n ≥ n0. For any set S, by s ←R S we
set s to be a uniformly at random sampled element from S. For any distribution
D by d ← D we denote the process of sampling an element d according to the
distribution D. For any probabilistic algorithm B by out ← B(in) by out we
denote the output of B on input in. For a deterministic algorithm we sometimes
use the notation out := B(in) instead. By p we denote a prime throughout the
paper. For any element m ∈ Zp, we denote by mi ∈ {0, 1} the i-th bit of m’s bit
representation and by m|i ∈ {0, 1}i the bit string comprising the first i bits of
m’s bit representation.

It is left to introduce some notation regarding matrices. To this end let k, � ∈
N such that � > k. For any matrix A ∈ Z

�×k
p , we write

span(A) := {Ar | r ∈ Z
k
p} ⊂ Z

�
p,

to denote the span of A.
For a full rank matrix A ∈ Z

�×k
p we denote by A⊥ a matrix in Z

�×(�−k)
p

with A�A⊥ = 0 and rank � − k. We denote the set of all matrices with these
properties as

orth(A) := {A⊥ ∈ Z
�×(�−k)
p | A�A⊥ = 0 and A⊥ has rank � − k}.

For vectors v ∈ Z
k+n
p (n ∈ N), by v ∈ Z

k
p we denote the vector consisting

of the upper k entries of v and accordingly by v ∈ Z
n
p we denote the vector

consisting of the remaining n entries of v.
Similarly, for a matrix A ∈ Z

2k×k
p , by A ∈ Z

k×k
p we denote the upper square

matrix and by A ∈ Z
k×k
p the lower one.

2.2 Pairing Groups and Matrix Diffie-Hellman Assumptions

Let GGen be a probabilistic polynomial time (PPT) algorithm that on input
1λ returns a description PG = (G1,G2, GT , p, P1, P2, e) of asymmetric pairing
groups where G1, G2, GT are cyclic group of order p for a 2λ-bit prime p,
P1 and P2 are generators of G1 and G2, respectively, and e : G1 × G2 → GT is
an efficiently computable (non-degenerate) bilinear map. Define PT := e(P1, P2),
which is a generator of GT . We use implicit representation of group elements. For
i ∈ {1, 2, T} and a ∈ Zp, we define [a]i = aPi ∈ Gi as the implicit representation
of a in Gi. Given [a]1, [a]2, one can efficiently compute [ab]T using the pairing e.

238 R. Gay et al.

For two matrices A, B with matching dimensions, we define e([A]1, [B]2) :=
[AB]T ∈ GT .

We recall the definitions of the Matrix Decision Diffie-Hellman (MDDH)
assumption from [24].

Definition 1 (Matrix distribution). Let k, � ∈ N, with � > k and p be a
2λ-bit prime. We call a PPT algorithm D�,k a matrix distribution if it outputs
matrices in Z

�×k
p of full rank k.

Note that instantiating D2,1 with a PPT algorithm outputting matrices
(

1
a

)

for a ←R Zp, D2,1-MDDH relative to G1 corresponds to the DDH assumption
in G1. Thus, for PG = (G1,G2, GT , p, P1, P2, e), assuming D2,1-MDDH relative
to G1 and relative to G2, corresponds to the SXDH assumption.

In the following we only consider matrix distributions D�,k, where for all
A ←R D�,k the first k rows of A form an invertible matrix. We also require that
in case � = 2k for any two matrices A0,A1 ←R D2k,k the matrix (A0 | A1)
has full rank with overwhelming probability. In the following we will denote this
probability by 1 − ΔD2k,k

. Note that if (A0 | A1) has full rank, then for any
A⊥

0 ∈ orth(A0), A⊥
1 ∈ orth(A1) the matrix (A⊥

0 | A⊥
1) ∈ Z

2k×2k
p has full rank

as well, as otherwise there would exists a non-zero vector v ∈ Z
2k
p \{0} with

(A0 | A1)�v = 0. Further, by similar reasoning (A⊥
0)�A1 ∈ Z

k×k
p has full rank.

The D�,k-Matrix Diffie-Hellman problem in Gi, for i ∈ {1, 2, T}, is to distin-
guish the between tuples of the form ([A]i, [Aw]i) and ([A]i, [u]i), for a randomly
chosen A ←R D�,k, w ←R Z

k
p and u ←R Z

�
p.

Definition 2 (D�,k-Matrix Diffie-Hellman D�,k-MDDH). Let D�,k be a
matrix distribution. We say that the D�,k-Matrix Diffie-Hellman (D�,k-MDDH)
assumption holds relative to a prime order group Gi for i ∈ {1, 2, T}, if for all
PPT adversaries A,

Advmddh
PG,Gi,D�,k,A(λ) := |Pr[A(PG, [A]i, [Aw]i) = 1]

−Pr[A(PG, [A]i, [u]i) = 1]| ≤ negl(λ),

where the probabilities are taken over PG := (G1,G2,GT , p, P1, P2) ← GGen(1λ),
A ←R D�,k,w ←R Z

k
p,u ←R Z

�
p.

For Q ∈ N, W ←R Z
k×Q
p and U ←R Z

�×Q
p , we consider the Q-fold

D�,k-MDDH assumption, which states that distinguishing tuples of the form
([A]i, [AW]i) from ([A]i, [U]i) is hard. That is, a challenge for the Q-fold D�,k-
MDDH assumption consists of Q independent challenges of the D�,k-MDDH
assumption (with the same A but different randomness w). In [24] it is shown that
the two problems are equivalent, where the reduction loses at most a factor � − k.

Lemma 1 (Random self-reducibility of D�,k-MDDH, [24]). Let �, k, Q ∈
N with � > k and Q > � − k and i ∈ {1, 2, T}. For any PPT adversary A,

More Efficient (Almost) Tightly Secure Structure-Preserving Signatures 239

there exists an adversary B such that T (B) ≈ T (A) + Q · poly(λ) with poly(λ)
independent of T (A), and

AdvQ-mddh
PG,Gi,D�,k,A(λ) ≤ (� − k) · Advmddh

PG,Gi,D�,k,B(λ) + 1
p−1 .

Here

AdvQ-mddh
PG,Gi,D�,k,A(λ) := |Pr[A(PG, [A]i, [AW]i) = 1]

−Pr[A(PG, [A]i, [U]i) = 1]| ,

where the probability is over PG := (G1,G2,GT , p, P1, P2) ← GGen(1λ), A ←R

D�,k,W ←R Z
k×Q
p and U ←R Z

�×Q
p .

For k ∈ N we define Dk := Dk+1,k.
The Kernel-Diffie-Hellman assumption Dk-KMDH [45] is a natural computa-

tional analogue of the Dk-MDDH Assumption.

Definition 3 (Dk-Kernel Diffie-Hellman assumption Dk-KMDH). Let
Dk be a matrix distribution. We say that the Dk-Kernel Diffie-Hellman (Dk-
KMDH) assumption holds relative to a prime order group Gi for i ∈ {1, 2} if for
all PPT adversaries A,

Advkmdh
PG,Gi,D�,k,A(λ) := Pr[c�A = 0 ∧ c = 0 | [c]3−i ←R A(PG, [A]i)]

≤ negl(λ),

where the probabilities are taken over PG := (G1,G2,GT , p, P1, P2) ← GGen(1λ),
and A ←R Dk.

Note that we can use a non-zero vector in the kernel of A to test membership
in the column space of A. This means that the Dk-KMDH assumption is a
relaxation of the Dk-MDDH assumption, as captured in the following lemma
from [45].

Lemma 2 ([45]). For any matrix distribution Dk, Dk-MDDH ⇒ Dk-KMDH.

2.3 Signature Schems and Message Authentication Codes

Definition 4 (MAC). A message authentication code (MAC) is a tuple of
PPT algorithms MAC := (Gen,Tag,Ver) such that:

Gen(1λ): on input of the security parameter, generates public parameters pp and
a secret key sk.

Tag(pp, sk ,m): on input of public parameters pp, the secret key sk and a message
m ∈ M, returns a tag tag.

Ver(pp, sk ,m, tag): verifies the tag tag for the message m, outputting a bit b = 1
if tag is valid respective to m, and 0 otherwise.

240 R. Gay et al.

We say MAC is perfectly correct, if for all λ ∈ N,all m ∈ M and all (pp, sk) ←
Gen(1λ) we have

Ver(pp, sk ,m,Tag(pp, sk ,m)) = 1.

Definition 5 (UF-CMA security). Let MAC := (Gen,Tag,Ver) be a MAC. For
any adversary A, we define the following experiment:

Expuf-cma
MAC,A(λ):

(pp, sk) ← Gen(1λ)
Qtag := ∅
(m�, tag�) ← ATagO(·)(pp)
if m� /∈ Qtag and VerO(m�, tag�) = 1

return 1
else return 0

TagO(m):
Qtag := Qtag ∪ {m}
tag ← Tag(pp, sk ,m)
return tag

VerO(m, tag):
b ← Ver(pp, sk ,m, tag)
return b

The adversary is restricted to one call to VerO. We say that a MAC scheme
MAC is UF-CMA secure, if for all PPT adversaries A,

Advuf-cma
MAC,A(λ) := Pr[Expuf-cma

MAC,A(λ) = 1] ≤ negl(λ).

Note that in our notion of UF-CMA security, the adversary gets only one forgery
attempt. This is due to the fact that we employ the MAC primarily as a building
block for our signature. Our notion suffices for this purpose, as an adversary can
check the validity of a signature itself.

Definition 6 (Signature). A signature scheme is a tuple of PPT algorithms
SIG := (Gen,Sign,Ver) such that:

Gen(1λ): on input of the security parameter, generates a pair (pk , sk) of keys.
Sign(pk , sk ,m): on input of the public key pk, the secret key sk and a message

m ∈ M, returns a signature σ.
Ver(pk ,m, σ): verifies the signature σ for the message m, outputting a bit b = 1

if σ is valid respective to m, and 0 otherwise.

We say that SIG is perfectly correct, if for all λ ∈ N, all m ∈ M and all
(pk , sk) ← Gen(1λ),

Ver(pk ,m,Sign(pk , sk ,m)) = 1.

In bilinear pairing groups, we say a signature scheme SIG is structure-preserving
if its public keys, signing messages, signatures contain only group elements and
verification proceeds via only a set of pairing product equations.

Definition 7 (UF-CMA security). For a signature scheme SIG := (Gen,Sign,
Ver) and any adversary A, we define the following experiment:

More Efficient (Almost) Tightly Secure Structure-Preserving Signatures 241

Expuf-cma
SIG,A (λ):

(pk , sk) ← Gen(1λ)
Qsign := ∅
(m�, σ�) ← ASignO(·)(pk)
if m� /∈ Qsign and Ver(pk ,m�, σ�) = 1

return 1
else return 0

SignO(m):
Qsign := Qsign ∪ {m}
σ ← Sign(pk , sk ,m)
return σ

We say that a signature scheme SIG is UF-CMA, if for all PPT adversaries A,

Advuf-cma
SIG,A (λ) := Pr[Expuf-cma

SIG,A (λ) = 1] ≤ negl(λ).

2.4 Non-interactive Zero-Knowledge Proof (NIZK)

The notion of a non-interactive zero-knowledge proof was introduced in [15]. In
the following we present the definition from [32]. Non-interactive zero-knowledge
proofs will serve as a crucial building block for our constructions.

Definition 8 (Non-interactive zero-knowledge proof [32]). We consider
a family of languages L = {Lpars} with efficiently computable witness relation
RL. A non-interactive zero-knowledge proof for L is a tuple of PPT algorithms
PS := (PGen,PTGen,PPrv,PVer,PSim) such that:

PGen(1λ, pars) generates a common reference string crs.
PTGen(1λ, pars) generates a common reference string crs and additionally a

trapdoor td.
PPrv(crs, x, w) given a word x ∈ L and a witness w with RL(x,w) = 1, outputs

a proof Π ∈ P.
PVer(crs, x,Π) on input crs, x ∈ X and Π outputs a verdict b ∈ {0, 1}.
PSim(crs, td , x) given a crs with corresponding trapdoor td and a word x ∈ X ,

outputs a proof Π.

Further we require the following properties to hold.

Completeness: For all possible public parameters pars, for all words x ∈ L,
and all witnesses w such that RL(x,w) = 1, we have

Pr[PVer(crs, x,Π) = 1] = 1,

where the probability is taken over (crs, psk) ← PGen (1λ, pars) and Π ←
PPrv(crs, x, w).

Composable zero-knowledge�: For all PPT adversaries A we have that

Advkeygen
PS,A (λ) :=

∣∣Pr[A(1λ, crs) = 1 | crs ← PGen(1λ, pars)]

−Pr[A(1λ, crs) = 1 | (crs, td) ← PTGen(1λ, pars)]
∣∣

is negligible in λ.

242 R. Gay et al.

Further for all public parameters pars, all pairs (crs, td) in the range of
PTGen(1λ), all words x ∈ L, and all witnesses w with RL(x,w) = 1, we have
that the outputs of

PPrv(crs, x, w) and PSim(crs, td , x)

are statistically indistinguishable.
Perfect soundness: For all crs in the range of PGen(1λ, pars), for all words

x /∈ L and all proofs Π it holds PVer(crs, x,Π) = 0.

Remark. We will employ a weaker notion of composable zero-knowledge in the
following. Namely:

Composable zero-knowledge: For a PPT adversary A, we define

Advzk
PS,A(λ) :=

∣∣∣∣ Pr

⎡
⎢⎢⎣b′ = b

∣∣∣∣∣∣∣∣

crs0 ←R PGen(1λ, pars);
(crs1, td) ←R PTGen(1λ, pars);
b ←R {0, 1};
b′ ←R AProve(·,·)(1λ, crsb)

⎤
⎥⎥⎦ − 1

2

∣∣∣∣.

Fig. 1. NIZK argument for L∨
A0,A1 [31,46].

More Efficient (Almost) Tightly Secure Structure-Preserving Signatures 243

Here Prove(x,w) returns ⊥ if RL(x,w) = 0 or Πb if RL(x,w) = 1, where
Π0 ←R PPrv(crs0, x, w) and Π1 ←R PSim(crs1, td , x). We say that PS satis-
fies composable zero-knowledge if Advzk

PS,A(λ) is negligible in λ for all PPT A.

Note that the original definition of composable zero-knowledge tightly implies
our definition of composable zero-knowledge. We choose to work with the latter
in order to simplify the presentation of our proofs. Note that for working with this
definition in the tightness setting, it is crucial that Advzk

PS,A(λ) is independent
of the number of queries to the oracle Prove.

2.5 NIZK for Our OR-language

In this section we recall an instantiation of a NIZK for an OR-language implicitly
given in [31,46]. This NIZK will be a crucial part of all our constructions, allowing
to employ the randomization techniques from [6,26,33] to obtain a tight security
reduction.

Public Parameters. Let PG ← GGen(1λ). Let k ∈ N. Let A0,A1 ←R D2k,k.
We define the public parameters to comprise

pars := (PG, [A0]1, [A1]1).

We consider k ∈ N to be chosen ahead of time, fixed and implicitly known to all
algorithms.

OR-Proof ([31,46]). In Fig. 1 we present a non-interactive zero-knowledge proof
for the OR-language

L∨
A0,A1

:= {[x]1 ∈ Z
2k
p | ∃r ∈ Z

k
p : [x]1 = [A0]1 · r ∨ [x]1 = [A1]1 · r}.

Note that this OR-proof is implicitly given in [31,46]. We recall the proof in
the full version.

Lemma 3. If the Dk-MDDH assumption holds in the group G2, then the proof
system PS := (PGen,PTGen,PPrv,PVer,PSim) as defined in Fig. 1 is a non-
interactive zero-knowledge proof for L∨

A0,A1
. More precisely, for every adversary

A attacking the composable zero-knowledge property of PS, we obtain an adver-
sary B with T (B) ≈ T (A) + Qprove · poly(λ) and

Advzk
PS,A(λ) ≤ Advmddh

PG,G2,Dk,B(λ).

3 Tightly Secure Message Authentication Code Scheme

Let k ∈ N and let PS := (PGen,PTGen,PPrv,PSim) a non-interactive zero-
knowledge proof for L∨

A0,A1
as defined in Sect. 2.5. In Fig. 2 we provide a MAC

MAC := (Gen,Tag,Ver) whose security can be tightly reduced to D2k,k-MDDH
and the security of the underlying proof system PS.

244 R. Gay et al.

Fig. 2. Tightly secure MAC MAC := (Gen,Tag,Ver) from the D2k,k-MDDH
assumption.

Instead of directly proving UF-CMA security of our MAC, we will first provide
our so-called core lemma, which captures the essential randomization technique
from [6,26,33]. We can employ this lemma to prove the security of our MAC and
(structure-preserving) signature schemes. Essentially, the core lemma shows that
the term [k�

0 t]1 is pseudorandom. We give the corresponding formal experiment
in Fig. 3.

Fig. 3. Experiment for the core lemma. Here, F : Zp → Z
2k
p is a random function

computed on the fly. We highlight the difference between Expcore
0,A and Expcore

1,A in gray.

More Efficient (Almost) Tightly Secure Structure-Preserving Signatures 245

Lemma 4 (Core lemma). If the D2k,k-MDDH assumption holds in G1 and
the tuple of algorithms PS := (PGen,PTGen,PPrv,PVer) is a non-interactive
zero-knowledge proof system for L∨

A0,A1
, then going from experiment Expcore

0,A (λ)
to Expcore

1,A (λ) can (up to negligible terms) only increase the winning chances of
an adversary. More precisely, for every adversary A, there exist adversaries B,
B′ with running time T (B) ≈ T (B′) ≈ T (A) + Q · poly(λ) such that

Advcore
0,A (λ) ≤ Advcore

1,A (λ) + Δcore
A (λ),

where

Δcore
A (λ) :=(4k�log Q� + 2) · Advmddh

PG,G1,D2k,k,B(λ)

+ (2�log Q� + 2) · AdvZK
PS,B′(λ)

+ �log Q� · ΔD2k,k
+ 4�log Q	+2

p−1 + �log Q	·Q
p .

Recall that by definition of the distribution D2k,k (Sect. 2.2), the term ΔD2k,k
is

statistically small.

Proof Outline. Since the proof of Lemma 4 is rather complex, we first outline
our strategy. Intuitively, our goal is to randomize the term u′ used by oracles
TagO and VerO (i.e., to change this term from k�

0 t to (k0 + F(ctr))�t for a
truly random function F). In this, it will also be helpful to change the distribution
of t ∈ Z

2k
p in tags handed out by TagO as needed. (Intuitively, changing t can

be justified with the D2k,k-MDDH assumption, but we can only rely on the
soundness of PS if t ∈ span(A0) ∪ span(A1). In other words, we may assume
that t ∈ span(A0)∪ span(A1) for any of A’s VerO queries, but only if the same
holds for all t chosen by TagO.)

We will change u′ using a hybrid argument, where in the i-th hybrid we set
u′ = (k�

0 + Fi(ctr|i))�t for a random function Fi on i-bit prefixes, and the i-bit
prefix ctr|i of ctr. (That is, we introduce more and more dependencies on the
bits of ctr.) To move from hybrid i to hybrid i + 1, we proceed again along a
series of hybrids (outsourced into the full version), and perform the following
modifications:

Partitioning. First, we choose t ∈ span(Actri+1) in VerO, where ctri+1 is the
(i + 1)-th bit of ctr. As noted above, this change can be justified with the
D2k,k-MDDH assumption, and we may still assume t ∈ span(A0)∪ span(A1)
in every TagO query from A.

Decoupling. At this point, the values u′ computed in TagO and VerO are
either of the form u′ = (k�

0 + Fi(ctr|i))�A0r or u′ = (k�
0 + Fi(ctr|i))�A1r

(depending on t). Since Fi : {0, 1}i → Z
2k
p is truly random, and the matrix

A0||A1 ∈ Z
2k×2k
p has linearly independent columns (with overwhelming

probability), the two possible subterms Fi(ctr|i)�A0 and Fi(ctr|i)�A1 are
independent. Thus, switching to u′ = (k�

0 +Fi+1(ctr|i+1))�t does not change
A’s view at all.

246 R. Gay et al.

After these modifications (and resetting t), we have arrived at the (i + 1)-th
hybrid, which completes the proof. However, this outline neglects a number of
details, including a proper reasoning of PS proofs, and a careful discussion of
the decoupling step. In particular, an additional complication arises in this step
from the fact that an adversary may choose t ∈ span(Ab) for an arbitrary bit
b not related to any specific ctr. This difficulty is the reason for the somewhat
surprising “∃ctr′ ≤ ctr” clause in VerO.

Proof (of Lemma 4). We proceed via a series of hybrid games G0, . . . ,G3.�log Q	,
described in Fig. 4, and we denote by εi the advantage of A to win Gi, that is
Pr[Gi(A, 1λ) = 1], where the probability is taken over the random coins of Gi

and A.

Fig. 4. Games G0,G1,G2,G3.i for i ∈ {0, . . . , �log Q� − 1}, for the proof of the core
lemma (Lemma 4). Fi : {0, 1}i → Z

2k
p denotes a random function, and ctr|i denotes

the i-bit prefix of the counter ctr written in binary. In each procedure, the components
inside a solid (dotted, gray) frame are only present in the games marked by a solid
(dotted, gray) frame.

G0: We have G0 = Expcore
0,A (λ) and thus by definition:

ε0 = Advcore
0,A (λ).

G0 � G1: Game G1 is as G0, except that crs is generated by PTGen and the
proofs computed by TagO are generated using PSim instead of PPrv. This
change is justified by the zero-knowledge of PS. Namely, let A be an adver-
sary distinguishing between G0 and G1. Then we can construct an adversary

More Efficient (Almost) Tightly Secure Structure-Preserving Signatures 247

B on the composable zero-knowledge property of PS as follows. The adversary
B follows G0, except he uses the crs obtained by its own experiment instead
of calling PGen. B answers tag queries following the tag oracle, but instead of
computing Π itself it asks its own oracle Prove. Now B simulates G0 in case it
was given a real crs and it simulates G1 in case it was given a crs generated by
PTGen. B is thus such that T (B) ≈ T (A) + Q · poly(λ) and

|ε0 − ε1| ≤ AdvZK
PS,B(λ).

G1 � G2: We can switch [t]1 to random over G1 by applying the D2k,k

assumption. More precisely, let A be an adversary distinguishing between G1

and G2 and let B be an adversary given a Q-fold D2k,k-MDDH challenge
(PG, [A0]1, [z1]1, . . . , [zQ]1) as input. Now B sets up the game for A similar
to G1, but instead choosing A0 ←R D2k,k, it uses its challenge matrix [A0]1
as part of the public parameters pars. Further, to answer tag queries B sets
[ti]1 := [zi]1 and computes the rest accordingly. This is possible as the proof
Π is simulated from game G1 on. In case B was given a real D2k,k-challenge, it
simulates G1 and otherwise G2. Lemma 1 yields the existence of an adversary B1

with T (B1) ≈ T (A) + Q · poly(λ) and

|ε1 − ε2| ≤ k · Advmddh
PG,G1,D2k,k,B1

(λ) + 1
p−1 .

G2 � G3.0: As for all ctr ∈ N we have F0(ctr|0) = F0(ε) and k0 is distributed
identically to k0 + F0(ε) for k0 ←R Z

2k
p we have

ε2 = ε3.0.

G3.i � G3.(i+1): For the proof of this transition we refer to the full version. We
obtain: For every adversary A there exist adversaries Bi, B′

i such that T (Bi) ≈
T (B′

i) ≈ T (A) + Q · poly(λ), and

ε3.i ≤ε3.(i+1) + 4k · Advmddh
PG,G1,D2k,k,Bi

(λ) + 2AdvZK
PS,B′

i
(λ)

+ ΔD2k,k
+ 4

p−1 + Q
p .

G3.�logQ	 � Expcore
1,A (λ) : It is left to reverse the changes introduced in the

transitions from game G0 to game G2 to end up at the experiment Expcore
1,A (1λ).

In order to do so we introduce an intermediary game G4, where we set [t] :=
[A0]1r for r ←R Z

k
p. This corresponds to reversing transition G1 � G2. By the

same reasoning for every adversary A we thus obtain an adversary B3.�log Q	 with
T (B3.�log Q) ≈ T (A) + Q · poly(λ) such that

|ε3.�log Q	 − ε4| ≤ k · Advmddh
PG,G1,D2k,k,B3.�log Q�(λ) + 1

p−1 .

As [t]1 is now chosen from span([A0]1) again, we can switch back to honest
generation of the common reference string crs and proofs Π. As in transition

248 R. Gay et al.

G0 � G1 for an adversary A we obtain an adversary B4 with T (B4) ≈ T (A) +
Q · poly(λ) and

|ε4 − Advcore
1,A (λ)| ≤ AdvZK

PS,B4
(λ).

Theorem 1 (UF-CMA security of MAC). If the D2k,k-MDDH assumptions
holds in G1, and the tuple PS := (PGen,PTGen,PPrv,PVer) is a non-interactive
zero-knowledge proof system for L∨

A0,A1
, then the MAC MAC := (Gen,Tag,Ver)

provided in Fig. 2 is UF-CMA secure. Namely, for any adversary A, there exists
an adversary B with running time T (B) ≈ T (A) + Q · poly(λ), where Q is the
number of queries to TagO, poly is independent of Q, and

Advuf-cma
MAC,A(λ) ≤ Δcore

B (λ) + Q
p .

Proof. We employ an intermediary game G0 to prove UF-CMA security of
the MAC. By ε0 we denote the advantage of A to win game G0, that is
Pr[G0(A, 1λ) = 1], where the probability is taken over the random coins of G0

and A.

Expuf-cma
A (λ) � G0: Let A be an adversary distinguishing between Expuf-cma

A (λ)
and G0. Then we construct an adversary B with T (B) ≈ T (A) + Q · poly(λ)
allowing to break the core lemma (Lemma 4) as follows. On input pp from
Expcore

β (1λ,B) the adversary B forwards pp to A. Then, B samples k1 ←R Z
2k
p .

Afterwards, on a tag query μ from A, B queries its own TagO oracle (which
takes no input), receives ([t]1,Π, [u′]1), computes [u]1 := [u′]1 + μk�

1 [t]1, and
answers with ([t]1,Π, [u]1). Finally, given the forgery

(
μ�, tag� := ([t]1,Π, [u�]1)

)
from A, if μ� /∈ Qtag and [u�]1 = [0]1, then the adversary B sends tag′ :=
([t]1,Π, [u�]1 + μk�

1 [t]1) to its experiment (otherwise an invalid tuple). Then
we have Advuf-cma

MAC,A(λ) = Advcore
0,B (λ) and ε0 = Advcore

1,B (λ). The core lemma
(Lemma 4) yields

Advcore
0,B (λ) ≤ Advcore

1,B (λ) + Δcore
B (λ)

and thus altogether we obtain

Advuf-cma
MAC,A(λ) ≤ ε0 + Δcore

B (λ).

Game G0: We now prove that any adversary A has only negligible chances to
win game G0 using the randomness of F together with the pairwise independence
of μ �→ k0 + μk1.

Let
(
μ�, tag�

)
be the forgery of A. we can replace k1 by k1−v for v ←R Z

2k
p ,

as both are distributed identically. Next, for all j ≤ Q we can replace F(j) by
F(j) + μ(j) · v for the same reason. This way, TagO(μ(j)) computes

[u(j)]1 : = [(k0 + μ(j)k1 −μ(j)v + F(j) +μ(j)v)�t(j)]1

= [(k0 + μ(j)k1 + F(j)�t(j)]1,

and VerO
(
[μ�]2, tag� := ([t]1,Π, [u])

)
checks if there exists a counter i ∈ Qtag

such that:

[u]1 = [(k0 + μ�k1 −μ�v + F(i) +μ(i)v)�t]1

= [(k0 + μ�k1 + F(i)�t�]1 +[(μ(i) − μ�)v�t]1 .

More Efficient (Almost) Tightly Secure Structure-Preserving Signatures 249

Fig. 5. The UF-CMA security experiment and game G for the UF-CMA proof of MAC
in Fig. 2. F : {0, 1}�log Q� → Z

2k
p denotes a random function, applied on ctr written in

binary. In each procedure, the components inside a gray frame are only present in the
games marked by a gray frame.

For the forgery to be successful, it must hold μ� /∈ Qtag and [u] = 0 (and thus
[t]1 = [0]1). Therefore, each value computed by VerO is (marginally) uniformly
random over G1.

As the verification oracle checks for all counters i ≤ Q, applying the union
bound yields

ε0 ≤ Q
p .

4 Tightly Secure Signature Scheme

In this section, we present a signature scheme SIG for signing messages from
Zp, described in Fig. 6, whose UF-CMA security can be tightly reduced to the
D2k,k-MDDH and Dk-MDDH assumptions.

SIG builds upon the tightly secure MAC from Sect. 3, and functions as a
stepping stone to explain the main ideas of the upcoming structure-preserving
signature in Sect. 5. Recall that our MAC outputs tag = ([t]1,Π, [u]1), where Π
is a (publicly verifiable) NIZK proof of the statement t ∈ span(A0) ∪ span(A1),
and u = (k0 + μk1)�t has an affine structure. Hence, alternatively, we can also
view our MAC as an affine MAC [14] with t ∈ span(A0) ∪ span(A1) and a
NIZK proof for that. Similar to [14], we use (tuned) Groth-Sahai proofs to make
[u]1 publicly verifiable. Similar ideas have been used to construct efficient quasi-
adaptive NIZK for linear subspace [38,40], structure-preserving signatures [39],

250 R. Gay et al.

Fig. 6. Tightly UF-CMA secure signature scheme SIG.

and identity-based encryption schemes [14]. In the following theorem we state
the state the security of SIG. For a proof we refer to the full version.

Theorem 2 (Security of SIG). If PS := (PGen,PPrv,PVer,PSim) is a non-
interactive zero-knowledge proof system for L∨

A0,A1
, then the signature scheme

SIG described in Fig. 6 is UF-CMA secure under the D2k,k-MDDH and Dk-MDDH
assumptions. Namely, for any adversary A, there exist adversaries B,B′ with
running time T (B) ≈ T (B′) ≈ T (A) + Q · poly(λ), where Q is the number of
queries to SignO, poly is independent of Q, and

Advuf−cma
SIG,A (λ) ≤ Advuf−cma

MAC,B (λ) + Advmddh
PG,G2,Dk,B′(λ).

5 Tightly Secure Structure-Preserving Signature Scheme

In this section we present a structure-preserving signature scheme SPS, described
in Fig. 7, whose security can be tightly reduced to the D2k,k-MDDH and Dk-
MDDH assumptions. It builds upon the tightly secure signature presented in
Sect. 4 by using a similar idea of [39]. Precisely, we view μ as a label and the
main difference between both schemes is that in the proof we do not need to
guess which μ the adversary may reuse for its forgery, and thus our security
proof is tight.

Theorem 3 (Security of SPS). If PS := (PGen,PTGen,PVer,PSim) is a non-
interactive zero-knowledge proof system for L∨

A0,A1
, the signature scheme SPS

described in Fig. 7 is UF-CMA secure under the D2k,k-MDDH and Dk-MDDH
assumptions. Namely, for any adversary A, there exist adversaries B,B′ with
running time T (B) ≈ T (B′) ≈ T (A) + Q · poly(λ), where Q is the number of
queries to SignO, poly is independent of Q, and

Advuf−cma
SPS,A (λ) ≤ Δcore

B (λ) + Advmddh
PG,G2,Dk,B′(λ) + Q

pk + Q
p .

More Efficient (Almost) Tightly Secure Structure-Preserving Signatures 251

Fig. 7. Tightly UF-CMA secure structure-preserving signature scheme SPS with mes-
sage space G

n
1 .

When using PS from Sect. 2.5, we obtain

Advuf−cma
SPS,A (λ) ≤(4k�log Q� + 2) · Advmddh

PG,G1,D2k,k,B(λ)

+ (2�log Q� + 3) · Advmddh
PG,G2,Dk,B′(λ) + �log Q� · ΔD2k,k

+ 4�log Q	+2
p−1 + (Q+1)�log Q	+Q

p + Q
pk .

Strategy. In a nutshell, we will embed a “shadow MAC” in our signature scheme,
and then invoke the core lemma to randomize the MAC tags computed during
signing queries and the final verification of A’s forgery. A little more specifically,
we will embed a term k�

0 t into the A-orthogonal space of each u computed by
SignO and VerO. (Intuitively, changes to this A-orthogonal space do not influ-
ence the verification key, and simply correspond to changing from one signing key
to another signing key that is compatible with the same verification key.) Using
our core lemma, we can randomize this term k�

0 t to (k0 + F(ctr))�t for a ran-
dom function F and a signature counter ctr. Intuitively, this means that we use a
freshly randomized signing key for each signature query. After these changes, an
adversary only has a statistically small chance in producing a valid forgery.

Proof (of Theorem 3). We proceed via a series of hybrid games G0 to G2,
described in Fig. 8. By εi we denote the advantage of A to win Gi.

Expuf-cma
SPS,A (λ) � G0: Here we change the verification oracle as described in

Fig. 8.
Note that a pair (μ�, σ�) that passes VerO in G0 always passes the VerO

check in Expuf-cma
SPS,A (λ). Thus, to bound |Advuf-cma

SPS,A (λ)−ε0|, it suffices to bound the
probability that A produces a tuple (μ�, σ�) that passes VerO in Expuf-cma

SPS,A (λ),

252 R. Gay et al.

Fig. 8. Games G0 to G2 for proving Theorem 3. Here, F : Zp → Z
2k
p is a random

function. In each procedure, the components inside a solid (dotted, double, gray) frame
are only present in the games marked by a solid (dotted, double, gray) frame.

but not in G0. For the signature σ� =: ([t]1,Π, [u]1) we can write the verification
equation in Expuf-cma

SPS,A (λ) as

e([u]�1 , [A]2) = e([t]�1 , [K0A]2) + e(
[
m
1

]�

1

, [KA]2)

⇔ e([u]1 − [t]�1 K0 −
[
m
1

]�

1

K, [A]2) = 0

Observe that for any (μ�, ([t]1,Π, [u]1)) that passes the verification equation
in the experiment Expuf-cma

SPS,A (λ), but not the one in G0, the value

[u]1 − [t]�1 K0 −
[
m
1

]�

1

K

is a non-zero vector in the kernel of A. Thus, from A we can construct an adver-
sary B against the Dk-KMDH assumption. Finally, Lemma2 yields an adversary

More Efficient (Almost) Tightly Secure Structure-Preserving Signatures 253

B′ with T (B′) ≈ T (A) + Q · poly(λ) such that

|Advuf-cma
SPS,A (λ) − ε0| ≤ Advmddh

PG,G2,Dk,B(λ).

G0 � G1: We can replace K0 by K0+k0(a⊥)� for a⊥ ∈ orth(A) and ki ←R Z
2k
p ,

as both are distributed identically. Note that this change does not show up in the
public key pk . Looking ahead, this change will allow us to use the computational
core lemma (Lemma 4). This yields

ε0 = ε1.

G1 � G2: Let A be an adversary playing either G1 or G2. We build an adversary
B such that T (B) ≈ T (A) + Q · poly(λ) and

Pr[Expcore
0,B (1λ) = 1] = ε1 and Pr[Expcore

1,B (1λ) = 1] = ε2.

This implies, by the core lemma (Lemma 4), that

ε1 ≤ ε2 + Δcore
B (λ).

We now describe B against Expcore
β,B (1λ) for β equal to either 0 or 1. First,

B receives pp := (PG, [A0]1, crs) from Expcore
β,B (1λ), then, B samples A ←R Dk,

a⊥ ∈ orth(A), K0 ←R Z
2k×(k+1)
p , K ←R Z

(n+1)×(k+1)
p and forwards pk :=

(PG, [A0]1, crs, [A]2, [K0A]2, [KA]2) to A.
To simulate SignO([m]1), B uses its oracle TagO, which takes no input, and

gives back ([t]1,Π, [u]1). Then, B computes [u]1 := K�
0 [t]1 +a⊥[u]1 +K�

[
m
1

]
1

,

and returns σ := ([t]1,Π, [u]1) to A.
Finally, given the forgery

(
[m�]1, σ�) with corresponding signature σ� :=

([t�]1,Π�, [u�]1), B first checks if [m�]1 /∈ Qsign and [u�]1 = [0]1. If it is not the
case, then B returns 0 to A. If it is the case, with the knowledge of a⊥ ∈ Zp,
B efficiently checks whether there exists [u�]1 ∈ G1 such that [u�]1 − K�

0 [t�]1 −
K�

[
m�

1

]
1

= [u�]1a⊥. If it is not the case, B returns 0 to A. If it is the case, B
computes [u�]1 (it can do so efficiently given a⊥), sets tag := ([t�]1,Π�, [u�]1),
calls its verification oracle VerO(tag), and forwards the answer to A.

G2 � G3: In game G2 the vectors r sampled by SignO are uniformly random
over Zk

p, while they are uniformly random over (Zk
p)∗ = Z

k
p\{0} in G3. Since this

is the only difference between the games, the difference of advantage is bounded
by the statistical distance between the two distributions of r. A union bound
over the number of queries yields

ε2 − ε3 ≤ Q
pk .

G3 � G4: These games are the same except for the extra condition c̃tr = ctr′ in
G4, which happens with probability 1

Q over the choice of c̃tr ←R [Q]. Since the
adversary view is independent of c̃tr, we have

ε4 = ε3
Q .

254 R. Gay et al.

Game G4: We prove that ε4 ≤ 1
p .

First, we can replace K by K + v(a⊥)� for v ←R Z
n+1
p , and {F(i) : i ∈

[Q], i = c̃tr} by {F(i) +wi : i ∈ [Q], i = c̃tr} for wi ←R Z
2k
p . Note that this does

not change the distribution of the game.
Thus, for the i-th signing query with i = c̃tr the value u is computed by

SignO([mi]1) as

[u]1 = K�
0 [t]1 + (K� +a⊥v�)

[
mi

1

]
1

+a⊥(k0+F(i) +wi)�[t]1,

with [t]1 := [A0]1r, r ←R (Zk
p)∗. This is identically distributed to

[u]1 = K�
0 [t]1 + K�

[
mi

1

]
1

+ γi · a⊥, with γi ←R Zp.

For the c̃tr’th signing query, we have

[u]1 = K�
0 [t]1 + (K� +a⊥v�)

[
m

˜ctr

1

]
1

+ a⊥(k0 + F(c̃tr))�[t]1.

Assuming A succeeds in producing a valid forgery, VerO computes

[u�]1 = K�
0 [t�]1 + (K� +a⊥v�)

[
m�

1

]
1

+a⊥(k0+F(c̃tr))�[t]1.

Since m� = m
˜ctr by definition of the security game, we can use the pairwise

independence of m �→ v�
[
m
1

]
1

to argue that v�
[
m�

1

]
1

and v�
[
m

˜ctr

1

]
1

are two

independent values, uniformly random over G1. Thus, the verification equation
is satisfied with probability at most 1

p , that is

ε4 ≤ 1
p .

Bilateral Structure-Preserving Signature Scheme. Our structure-
preserving signature scheme, SPS, defined in Fig. 7 can sign only messages from
G

n
1 . By applying the generic transformation from [39, Sect. 6], we can transform

our SPS to sign messages from G
n1
1 × G

n2
2 using their two-tier SPS, which is

a generalization of [1]. The transformation is tightness-preserving by Theorem
6 of [39] and costs additional k elements from G1 and k + 1 elements from G2

in the signature. For the SXDH assumption (k = 1), our bilateral SPS scheme
requires additional 1 element from G1 and 2 elements from G2 in the signature.

More Efficient (Almost) Tightly Secure Structure-Preserving Signatures 255

References

1. Abe, M., Chase, M., David, B., Kohlweiss, M., Nishimaki, R., Ohkubo, M.:
Constant-size structure-preserving signatures: generic constructions and simple
assumptions. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658,
pp. 4–24. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-
4 3

2. Abe, M., Chase, M., David, B., Kohlweiss, M., Nishimaki, R., Ohkubo, M.:
Constant-size structure-preserving signatures: generic constructions and simple
assumptions. J. Cryptol. 29(4), 833–878 (2016). https://doi.org/10.1007/s00145-
015-9211-7

3. Abe, M., David, B., Kohlweiss, M., Nishimaki, R., Ohkubo, M.: Tagged one-time
signatures: tight security and optimal tag size. In: Kurosawa, K., Hanaoka, G. (eds.)
PKC 2013. LNCS, vol. 7778, pp. 312–331. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-36362-7 20

4. Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-
preserving signatures and commitments to group elements. J. Cryptol. 29(2), 363–
421 (2016). https://doi.org/10.1007/s00145-014-9196-7

5. Abe, M., Groth, J., Haralambiev, K., Ohkubo, M.: Optimal structure-preserving
signatures in asymmetric bilinear groups. In: Rogaway, P. (ed.) CRYPTO 2011.
LNCS, vol. 6841, pp. 649–666. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22792-9 37

6. Abe, M., Hofheinz, D., Nishimaki, R., Ohkubo, M., Pan, J.: Compact structure-
preserving signatures with almost tight security. In: Katz, J., Shacham, H. (eds.)
CRYPTO 2017. LNCS, vol. 10402, pp. 548–580. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63715-0 19

7. Acar, T., Lauter, K., Naehrig, M., Shumow, D.: Affine pairings on ARM. In:
Abdalla, M., Lange, T. (eds.) Pairing 2012. LNCS, vol. 7708, pp. 203–209. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-36334-4 13

8. Attrapadung, N., Hanaoka, G., Yamada, S.: A framework for identity-based encryp-
tion with almost tight security. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT
2015. LNCS, vol. 9452, pp. 521–549. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-48797-6 22

9. Barreto, P.S.L.M., Costello, C., Misoczki, R., Naehrig, M., Pereira, G.C.C.F.,
Zanon, G.: Subgroup security in pairing-based cryptography. In: Lauter, K.,
Rodŕıguez-Henŕıquez, F. (eds.) LATINCRYPT 2015. LNCS, vol. 9230, pp. 245–
265. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22174-8 14

10. Belenkiy, M., Chase, M., Kohlweiss, M., Lysyanskaya, A.: P-signatures and non-
interactive anonymous credentials. In: Canetti, R. (ed.) TCC 2008. LNCS, vol.
4948, pp. 356–374. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-78524-8 20

11. Bellare, M., Boldyreva, A., Micali, S.: Public-key encryption in a multi-user setting:
security proofs and improvements. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 259–274. Springer, Heidelberg (2000). https://doi.org/10.1007/3-
540-45539-6 18

12. Bellare, M., Goldwasser, S.: New paradigms for digital signatures and message
authentication based on non-interactive zero knowledge proofs. In: Brassard, G.
(ed.) CRYPTO 1989. LNCS, vol. 435, pp. 194–211. Springer, New York (1990).
https://doi.org/10.1007/0-387-34805-0 19

https://doi.org/10.1007/978-3-642-34961-4_3
https://doi.org/10.1007/978-3-642-34961-4_3
https://doi.org/10.1007/s00145-015-9211-7
https://doi.org/10.1007/s00145-015-9211-7
https://doi.org/10.1007/978-3-642-36362-7_20
https://doi.org/10.1007/978-3-642-36362-7_20
https://doi.org/10.1007/s00145-014-9196-7
https://doi.org/10.1007/978-3-642-22792-9_37
https://doi.org/10.1007/978-3-642-22792-9_37
https://doi.org/10.1007/978-3-319-63715-0_19
https://doi.org/10.1007/978-3-319-63715-0_19
https://doi.org/10.1007/978-3-642-36334-4_13
https://doi.org/10.1007/978-3-662-48797-6_22
https://doi.org/10.1007/978-3-662-48797-6_22
https://doi.org/10.1007/978-3-319-22174-8_14
https://doi.org/10.1007/978-3-540-78524-8_20
https://doi.org/10.1007/978-3-540-78524-8_20
https://doi.org/10.1007/3-540-45539-6_18
https://doi.org/10.1007/3-540-45539-6_18
https://doi.org/10.1007/0-387-34805-0_19

256 R. Gay et al.

13. Blazy, O., Fuchsbauer, G., Izabachène, M., Jambert, A., Sibert, H., Vergnaud, D.:
Batch Groth–Sahai. In: Zhou, J., Yung, M. (eds.) ACNS 2010. LNCS, vol. 6123, pp.
218–235. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13708-
2 14

14. Blazy, O., Kiltz, E., Pan, J.: (Hierarchical) identity-based encryption from affine
message authentication. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS,
vol. 8616, pp. 408–425. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-44371-2 23

15. Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its appli-
cations (extended abstract). In: 20th ACM STOC, pp. 103–112. ACM Press, May
1988

16. Boneh, D., Mironov, I., Shoup, V.: A secure signature scheme from bilinear maps.
In: Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 98–110. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-36563-X 7

17. Camenisch, J., Dubovitskaya, M., Haralambiev, K.: Efficient structure-preserving
signature scheme from standard assumptions. In: Visconti, I., De Prisco, R. (eds.)
SCN 2012. LNCS, vol. 7485, pp. 76–94. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-32928-9 5

18. Cathalo, J., Libert, B., Yung, M.: Group encryption: non-interactive realization in
the standard model. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
179–196. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-
7 11

19. Chase, M., Kohlweiss, M.: A new hash-and-sign approach and structure-preserving
signatures from DLIN. In: Visconti, I., De Prisco, R. (eds.) SCN 2012. LNCS,
vol. 7485, pp. 131–148. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-32928-9 8

20. Chen, J., Gong, J., Weng, J.: Tightly secure IBE under constant-size master pub-
lic key. In: Fehr, S. (ed.) PKC 2017. LNCS, vol. 10174, pp. 207–231. Springer,
Heidelberg (2017). https://doi.org/10.1007/978-3-662-54365-8 9

21. Chen, J., Wee, H.: Fully, (almost) tightly secure IBE and dual system groups.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 435–460.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1 25

22. Dodis, Y., Kiltz, E., Pietrzak, K., Wichs, D.: Message authentication, revisited. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
355–374. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4 22

23. Enge, A., Milan, J.: Implementing cryptographic pairings at standard security lev-
els. In: Chakraborty, R.S., Matyas, V., Schaumont, P. (eds.) SPACE 2014. LNCS,
vol. 8804, pp. 28–46. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
12060-7 3

24. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework
for Diffie-Hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013.
LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40084-1 8

25. Gay, R., Hofheinz, D., Kiltz, E., Wee, H.: Tightly CCA-secure encryption without
pairings. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665,
pp. 1–27. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-
3 1

26. Gay, R., Hofheinz, D., Kohl, L.: Kurosawa-Desmedt meets tight security. In: Katz,
J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10403, pp. 133–160. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-63697-9 5

https://doi.org/10.1007/978-3-642-13708-2_14
https://doi.org/10.1007/978-3-642-13708-2_14
https://doi.org/10.1007/978-3-662-44371-2_23
https://doi.org/10.1007/978-3-662-44371-2_23
https://doi.org/10.1007/3-540-36563-X_7
https://doi.org/10.1007/978-3-642-32928-9_5
https://doi.org/10.1007/978-3-642-32928-9_5
https://doi.org/10.1007/978-3-642-10366-7_11
https://doi.org/10.1007/978-3-642-10366-7_11
https://doi.org/10.1007/978-3-642-32928-9_8
https://doi.org/10.1007/978-3-642-32928-9_8
https://doi.org/10.1007/978-3-662-54365-8_9
https://doi.org/10.1007/978-3-642-40084-1_25
https://doi.org/10.1007/978-3-642-29011-4_22
https://doi.org/10.1007/978-3-642-29011-4_22
https://doi.org/10.1007/978-3-319-12060-7_3
https://doi.org/10.1007/978-3-319-12060-7_3
https://doi.org/10.1007/978-3-642-40084-1_8
https://doi.org/10.1007/978-3-642-40084-1_8
https://doi.org/10.1007/978-3-662-49890-3_1
https://doi.org/10.1007/978-3-662-49890-3_1
https://doi.org/10.1007/978-3-319-63697-9_5

More Efficient (Almost) Tightly Secure Structure-Preserving Signatures 257

27. Gong, J., Chen, J., Dong, X., Cao, Z., Tang, S.: Extended nested dual system
groups, revisited. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.)
PKC 2016. LNCS, vol. 9614, pp. 133–163. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49384-7 6

28. Grewal, G., Azarderakhsh, R., Longa, P., Hu, S., Jao, D.: Efficient implementation
of bilinear pairings on ARM processors. In: Knudsen, L.R., Wu, H. (eds.) SAC
2012. LNCS, vol. 7707, pp. 149–165. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-35999-6 11

29. Groth, J.: Simulation-sound NIZK proofs for a practical language and constant size
group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284,
pp. 444–459. Springer, Heidelberg (2006). https://doi.org/10.1007/11935230 29

30. Groth, J., Lu, S.: A non-interactive shuffle with pairing based verifiability. In:
Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 51–67. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-76900-2 4

31. Groth, J., Ostrovsky, R., Sahai, A.: New techniques for noninteractive zero-
knowledge. J. ACM 59(3), 1–35 (2012). https://doi.org/10.1145/2220357.2220358.
ISSN: 0004-5411. http://doi.acm.org/10.1145/2220357.2220358

32. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups.
In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3 24

33. Hofheinz, D.: Adaptive partitioning. In: Coron, J.-S., Nielsen, J.B. (eds.) EURO-
CRYPT 2017. LNCS, vol. 10212, pp. 489–518. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-56617-7 17

34. Hofheinz, D.: Algebraic partitioning: fully compact and (almost) tightly secure
cryptography. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9562, pp.
251–281. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49096-
9 11

35. Hofheinz, D., Jager, T.: Tightly secure signatures and public-key encryption. In:
Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 590–607.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5 35

36. Hofheinz, D., Koch, J., Striecks, C.: Identity-based encryption with (almost) tight
security in the multi-instance, multi-ciphertext setting. In: Katz, J. (ed.) PKC
2015. LNCS, vol. 9020, pp. 799–822. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-46447-2 36

37. Jutla, C.S., Roy, A.: Improved structure preserving signatures under standard bilin-
ear assumptions. In: Fehr, S. (ed.) PKC 2017. LNCS, vol. 10175, pp. 183–209.
Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54388-7 7

38. Jutla, C.S., Roy, A.: Switching lemma for bilinear tests and constant-size NIZK
proofs for linear subspaces. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014.
LNCS, vol. 8617, pp. 295–312. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-662-44381-1 17

39. Kiltz, E., Pan, J., Wee, H.: Structure-preserving signatures from standard assump-
tions, revisited. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol.
9216, pp. 275–295. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-48000-7 14

40. Kiltz, E., Wee, H.: Quasi-adaptive NIZK for linear subspaces revisited. In: Oswald,
E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 101–128. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6 4

41. Kurosawa, K., Desmedt, Y.: A new paradigm of hybrid encryption scheme. In:
Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 426–442. Springer, Hei-
delberg (2004). https://doi.org/10.1007/978-3-540-28628-8 26

https://doi.org/10.1007/978-3-662-49384-7_6
https://doi.org/10.1007/978-3-662-49384-7_6
https://doi.org/10.1007/978-3-642-35999-6_11
https://doi.org/10.1007/978-3-642-35999-6_11
https://doi.org/10.1007/11935230_29
https://doi.org/10.1007/978-3-540-76900-2_4
https://doi.org/10.1145/2220357.2220358
http://doi.acm.org/10.1145/2220357.2220358
https://doi.org/10.1007/978-3-540-78967-3_24
https://doi.org/10.1007/978-3-319-56617-7_17
https://doi.org/10.1007/978-3-319-56617-7_17
https://doi.org/10.1007/978-3-662-49096-9_11
https://doi.org/10.1007/978-3-662-49096-9_11
https://doi.org/10.1007/978-3-642-32009-5_35
https://doi.org/10.1007/978-3-662-46447-2_36
https://doi.org/10.1007/978-3-662-46447-2_36
https://doi.org/10.1007/978-3-662-54388-7_7
https://doi.org/10.1007/978-3-662-44381-1_17
https://doi.org/10.1007/978-3-662-44381-1_17
https://doi.org/10.1007/978-3-662-48000-7_14
https://doi.org/10.1007/978-3-662-48000-7_14
https://doi.org/10.1007/978-3-662-46803-6_4
https://doi.org/10.1007/978-3-540-28628-8_26

258 R. Gay et al.

42. Libert, B., Joye, M., Yung, M., Peters, T.: Concise multi-challenge CCA-secure
encryption and signatures with almost tight security. In: Sarkar, P., Iwata, T.
(eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp. 1–21. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-45608-8 1

43. Libert, B., Peters, T., Joye, M., Yung, M.: Compactly hiding linear spans. In:
Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 681–707.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48797-6 28

44. Libert, B., Peters, T., Yung, M.: Short group signatures via structure-preserving
signatures: standard model security from simple assumptions. In: Gennaro, R.,
Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 296–316. Springer, Hei-
delberg (2015). https://doi.org/10.1007/978-3-662-48000-7 15

45. Morillo, P., Ràfols, C., Villar, J.L.: The kernel matrix Diffie-Hellman assumption.
In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 729–
758. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6 27

46. Ràfols, C.: Stretching Groth-Sahai: NIZK proofs of partial satisfiability. In: Dodis,
Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 247–276. Springer, Hei-
delberg (2015). https://doi.org/10.1007/978-3-662-46497-7 10

https://doi.org/10.1007/978-3-662-45608-8_1
https://doi.org/10.1007/978-3-662-48797-6_28
https://doi.org/10.1007/978-3-662-48000-7_15
https://doi.org/10.1007/978-3-662-53887-6_27
https://doi.org/10.1007/978-3-662-46497-7_10

Private Simultaneous Messages

The Communication Complexity
of Private Simultaneous
Messages, Revisited

Benny Applebaum1(B), Thomas Holenstein2, Manoj Mishra1,
and Ofer Shayevitz1

1 Tel Aviv University, Tel Aviv, Israel
benny.applebaum@gmail.com, mishra.m@gmail.com, ofersha@gmail.com

2 Google, Zurich, Switzerland
thomas.holenstein@gmail.com

Abstract. Private Simultaneous Message (PSM) protocols were intro-
duced by Feige, Kilian and Naor (STOC ’94) as a minimal non-interactive
model for information-theoretic three-party secure computation. While
it is known that every function f : {0, 1}k × {0, 1}k → {0, 1} admits a
PSM protocol with exponential communication of 2k/2 (Beimel et al.,
TCC ’14), the best known (non-explicit) lower-bound is 3k − O(1) bits.
To prove this lower-bound, FKN identified a set of simple requirements,
showed that any function that satisfies these requirements is subject to
the 3k − O(1) lower-bound, and proved that a random function is likely
to satisfy the requirements.

We revisit the FKN lower-bound and prove the following results:
(Counterexample) We construct a function that satisfies the FKN

requirements but has a PSM protocol with communication of 2k + O(1)
bits, revealing a gap in the FKN proof.

(PSM lower-bounds) We show that, by imposing additional
requirements, the FKN argument can be fixed leading to a 3k −O(log k)
lower-bound for a random function. We also get a similar lower-bound
for a function that can be computed by a polynomial-size circuit
(or even polynomial-time Turing machine under standard complexity-
theoretic assumptions). This yields the first non-trivial lower-bound for
an explicit Boolean function partially resolving an open problem of
Data, Prabhakaran and Prabhakaran (Crypto ’14, IEEE Information
Theory ’16). We further extend these results to the setting of imper-
fect PSM protocols which may have small correctness or privacy error.

(CDS lower-bounds) We show that the original FKN argument
applies (as is) to some weak form of PSM protocols which are strongly
related to the setting of Conditional Disclosure of Secrets (CDS). This
connection yields a simple combinatorial criterion for establishing linear
Ω(k)-bit CDS lower-bounds. As a corollary, we settle the complexity of
the Inner Product predicate resolving an open problem of Gay, Kerenidis,
and Wee (Crypto ’15).

T. Holenstein—This work was done while the author was at ETH Zurich.

c© International Association for Cryptologic Research 2018
J. B. Nielsen and V. Rijmen (Eds.): EUROCRYPT 2018, LNCS 10821, pp. 261–286, 2018.
https://doi.org/10.1007/978-3-319-78375-8_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78375-8_9&domain=pdf

262 B. Applebaum et al.

1 Introduction

Information theoretic cryptography studies the problem of secure communica-
tion and computation in the presence of computationally unbounded adver-
saries. Unlike the case of computational cryptography whose full understanding
is closely tied to basic open problems in computational complexity, information
theoretic solutions depend “only” on non-computational (typically combinato-
rial or algebraic) objects. One may therefore hope to gain a full understanding
of the power and limitations of information theoretic primitives. Indeed, Shan-
non’s famous treatment of perfectly secure symmetric encryption [30] provides
an archetypical example for such a study.

Unfortunately, for most primitives, the picture is far from being complete.
This is especially true for the problem of secure function evaluation (SFE) [33],
in which a set of parties P1, . . . , Pm wish to jointly evaluate a function f over
their inputs while keeping those inputs private. Seminal completeness results
show that any function can be securely evaluated with information theoretic
security [10,13] (or computational security [19,33]) under various adversarial
settings. However, the communication complexity of these solutions is tied to
the computational complexity of the function (i.e., its circuit size), and it is
unknown whether this relation is inherent. For instance, as noted by Beaver,
Micali, and Rogaway [8] three decades ago, we cannot even rule out the possibil-
ity that any function can be securely computed by a constant number of parties
with communication that is polynomial in the input length, even in the simple
setting where the adversary passively corrupts a single party. More generally,
the communication complexity of securely computing a function (possibly via
an inefficient protocol) is wide open, even in the most basic models.

1.1 A Minimal Model for Secure Computation

In light of the above, it makes sense to study the limitation of information theoretic
secure computation in its simplest form. In [16] Feige, Kilian and Naor (hereinafter
referred to as FKN) presented such a “Minimal Model for Secure Computation”.
In this model, Alice and Bob hold private inputs, x and y, and they wish to let
Charlie learn the value of f(x, y) without leaking any additional information. The
communication pattern is minimal. Alice and Bob each send to Charlie a single
message, a and b respectively, which depends on the party’s input and on a ran-
dom string r which is shared between Alice and Bob but is hidden from Charlie.
Given (a, b) Charlie should be able to recover f(x, y) without learning additional
information. The parties are assumed to be computationally unbounded, and the
goal is to minimize the communication complexity of the protocol (i.e., the total
number of bits sent by Alice and Bob). Following [23], we refer to such a protocol
as a private simultaneous message protocol (PSM) (Fig. 1).

Definition 1 (Private Simultaneous Messages). A private simultaneous
message (PSM) protocol Π = (ΠA,ΠB , g) for a function f : X × Y → Z is
a triple of functions ΠA : X × R → A, ΠB : Y × R → B, and g : A × B → Z
that satisfy the following two properties.

The Communication Complexity of Private Simultaneous Messages 263

Alice
(x, r)

Bob
(y, r)

Charlie
g(a, b) = f(x, y)

a b

Fig. 1. Schematic of a PSM protocol.

– (δ-Correctness) The protocol has correctness error of δ if for every (x, y) ∈
X × Y it holds that

Pr
r

$←R
[f(x, y) �= g(ΠA(x, r),ΠB(y, r))] ≤ δ

– (ε-Privacy) The protocol has privacy error of ε if for every pair of inputs
(x, y) ∈ X × Y and (x′, y′) ∈ X × Y for which f(x, y) = f(x′, y′) the random
variables

(ΠA(x, r),ΠB(y, r)) and (ΠA(x′, r),ΠA(y′, r), (1)

induced by a uniform choice of r
$← R, are ε-close in statistical distance.

We mainly consider perfect protocols which enjoy both perfect correctness
(δ = 0) and perfect privacy (ε = 0). We define the communication complexity
of the protocol to be log |A| + log |B|.
The correctness and privacy conditions assert that, for every pair of inputs
(x, y) and (x′, y′), the transcript distributions are either close to each other
when f(x, y) = f(x′, y′), or far apart when f(x, y) �= f(x′, y′). Hence, the joint
computation of Alice and Bob, Cr(x, y) = (ΠA(x, r),ΠB(y, r)), can be also
viewed as a “randomized encoding” [5,24] (or “garbled version”) of the func-
tion f(x, y) that has the property of being 2-decomposable into an x-part and
a y-part. Being essentially non-interactive, such protocols (and their multiparty
variants [23]) have found various applications in cryptography (cf. [2,22]). More-
over, it was shown in [6,9] that PSM is the strongest model among several other
non-interactive models for secret-sharing and zero-knowledge proofs.

FKN showed that any function f : {0, 1}k × {0, 1}k → {0, 1} admits a PSM
protocol [16]. The best known communication complexity is polynomial for log-
space computable functions [16] and O(2k/2) for general functions [9]. While it
seems likely that some functions require super-polynomial communication, the
best known lower-bound, due to the original FKN paper, only shows that a
random function requires 3k − O(1) bits of communication. This lower-bound is
somewhat weak but still non-trivial since an insecure solution (in which Alice

264 B. Applebaum et al.

and Bob just send their inputs to Charlie) costs 2k bits of communication.
The question of improving this lower-bound is an intriguing open problem. In
this paper, we aim for a more modest goal. Inspired by the general theory of
communication complexity, we ask:

How does the PSM complexity of a function f relate to its combinatorial
properties? Is there a “simple” condition that guarantees a non-trivial
lower-bound on the PSM complexity?

We believe that such a step is necessary towards proving stronger lower-bounds.
Additionally, as we will see, this question leads to several interesting insights for
related information-theoretic tasks.

1.2 Revisiting the FKN Lower-Bound

Our starting point is the original proof of the 3k lower-bound from [16]. In
order to prove a lower-bound FKN relax the privacy condition by requiring
that Charlie will not be able to recover the last bit of Alice’s input. Formally,
let us denote by x̄ the string obtained by flipping the last bit of x. Then, the
privacy condition (Eq. 1) is relaxed to hold only over sibling inputs (x, y) and
(x̄, y) for which f(x, y) = f(x̄, y). We refer to this relaxation as weak privacy.
Since (standard) privacy implies weak privacy, it suffices to lower-bound the
communication complexity of weakly private PSM protocols.

To prove a lower-bound for random functions, FKN (implicitly) identify
three conditions which hold for most functions and show that if a function
f : {0, 1}k × {0, 1}k → {0, 1} satisfies these conditions then any weak PSM
for f has communication complexity of at least 3k − O(1). The FKN conditions
are:

1. The function f is non-degenerate, namely, for every x �= x′ there exists y
for which f(x, y) �= f(x′, y) and similarly, for every y �= y′ there exists x for
which f(x, y) �= f(x, y′).

2. The function is useful in the sense that for at least 1
2 − o(1) of the inputs

(x, y) it holds that f(x, y) = f(x̄, y) where x̄ denotes the string x with its
last bit flipped. (An input (x, y) for which the equation holds is referred to
as being useful.1)

3. We say that (x1, . . . , xm) × (y1, . . . , yn) is a complement similar rectangle of
f if f(xi, yj) = f(x̄i, yj) for every 1 ≤ i ≤ m and 1 ≤ j ≤ n. Then, f has no
complement similar rectangle of size mn larger than M = 2k+1. Equivalently,
the function f ′(x, y) = f(x, y) − f(x̄, y), which can be viewed as a partial
derivative of f with respect to its last coordinate, has no 0-monochromatic
rectangle of size M .

We observe that the above conditions are, in fact, insufficient to prove a non-
trivial lower-bound. As a starting point, we note that the inner-product function

1 In the FKN terminology such an input (x, y) is referred to as being dangerous.

The Communication Complexity of Private Simultaneous Messages 265

has low PSM complexity and has no large monochromatic rectangles. While the
inner-product function cannot be used directly as a counterexample (since it
has huge complement similar rectangles), we can construct a related function
f such that: (1) the derivative f ′ is (a variant of) the inner product function
and so f ′ has no large monochromatic rectangles; and (2) by applying some
local preprocessing on Alice’s input, the computation of f(x, y) reduces to the
computation of the inner product function. Altogether, we prove the following
theorem (see Sect. 3).

Theorem 1 (FKN counterexample). There exists a function f : {0, 1}k ×
{0, 1}k → {0, 1} that satisfies the FKN conditions but has a (standard) PSM of
communication complexity of 2k + O(1).

Let us take a closer look at the proof of the FKN lower-bound to see where
the gap is. The FKN proof boils down to showing that the set Sr of all possible
transcripts (a, b) sent by Alice and Bob under a random string r, has relatively
small intersection with the set Sr′ of all possible transcripts (a, b) sent by Alice
and Bob under a different random string r′. Such a collision, c = (a, b) ∈ Sr ∩Sr′ ,
is counted as a trivial collision if the inputs (x, y) that generate c under r are
the same as the inputs (x′, y′) that generate c under r′. Otherwise, the collision
is counted as non-trivial. The argument mistakenly assumes that all non-trivial
collisions are due to sibling inputs, i.e., (x′, y′) = (x̄, y). In other words, it is
implicitly assumed that the transcript (a, b) fully reveals all the information
about (x, y) except for the last input of x. (In addition to the value of f(x, y)
which is revealed due to the correctness property.) Indeed, we show that the FKN
argument holds if one considers fully-revealing PSM protocols. (See Theorem 8
for a slightly stronger version.)

Theorem 2 (LB’s against weakly private fully revealing PSM). Let f :
{0, 1}k × {0, 1}k → {0, 1} be a non-degenerate function. Let M be an upper-
bound on size of the largest complement similar rectangle of f and let U be
a lower-bound on the number of useful inputs of f . Then, any weakly-private
fully-revealing PSM for f has communication complexity of at least 2 log U −
log M −O(1). In particular, for all but o(1) fraction of the functions f : {0, 1}k ×
{0, 1}k → {0, 1}, we get a lower-bound of 3k − O(1).

A lower-bound of c bits against fully-revealing weakly-private PSM easily
yields a lower-bound of c − 2k + 1 bits for PSM. (Since a standard PSM can be
turned into a fully-revealing weakly-private PSM by letting Alice/Bob append
x[1 : k − 1] and y to their messages.) Unfortunately, this loss (of 2k bits) makes
the 3k bit lower-bound useless. Moreover, Theorem 1 shows that this loss is
unavoidable. Put differently, fully-revealing weakly-private PSM may be more
expensive than standard PSM. Nevertheless, as we will see in Sect. 1.4, lower-
bounds for fully-revealing weakly-private PSM have useful implications for other
models.

266 B. Applebaum et al.

1.3 Fixing the PSM Lower-Bound

We show that the FKN argument can be fixed by posing stronger require-
ments on f . Roughly speaking, instead of limiting the size of complement
similar rectangles, we limit the size of any pair of similar rectangles by a
parameter M . That is, if the restriction of f to the ordered rectangle R =
(x1, . . . , xm) × (y1, . . . , y�) is equal to the restriction of f to the ordered rectan-
gle R′ = (x′

1, . . . , x
′
m) × (y′

1, . . . , y
′
�) and the rectangles are disjoint in the sense

that either xi �= x′
i for every i, or yj �= y′

j for every j, then the size m� of R
should be at most M . (See Sect. 2 for a formal definition.)

Theorem 3 (perfect-PSM LB’s). Let X ,Y be sets of size at least 2, and let
f : X × Y → {0, 1} be a non-degenerate function for which any pair of disjoint
similar rectangles (R,R′) satisfies |R| ≤ M . Then, any perfect PSM for f has
communication of at least 2(log |X | + log |Y|) − log M − 3.

The theorem is proved by a distributional version of the FKN argument which
also implies Theorem 2. (See Sect. 4.) As a corollary, we recover the original
lower-bound claimed by FKN.

Corollary 1. For a 1 − o(1) fraction of the functions f : {0, 1}k × {0, 1}k →
{0, 1} any perfect PSM protocol for f requires 3k − 2 log k − O(1) bits of total
communication.2

Proof. It is not hard to verify that 1 − o(1) fraction of all functions are non-
degenerate. In Sect. 6 we further show that, for 1 − o(1) of the functions, any
pair of disjoint similar rectangles (R,R′) satisfies |R| ≤ k2 ·2k. The proof follows
from Theorem 3. �	

By partially de-randomizing the proof, we show that the above lower-bound
applies to a function that is computable by a family of polynomial-size cir-
cuits, or, under standard complexity-theoretic assumptions, by a polynomial-
time Turing machine. This resolves an open question of Data, Prabhakaran and
Prabhakaran [15] who proved a similar lower-bound for an explicit non-boolean
function f : {0, 1}k × {0, 1}k → {0, 1}k−1. Prior to our work, we could not even
rule out the (absurd!) possibility that all efficiently computable functions admit
a perfect PSM with communication of 2k + o(k).

Theorem 4. There exists a sequence of polynomial-size circuits

f =
{
fk : {0, 1}k × {0, 1}k → {0, 1}}

such that any perfect PSM for fk has communication complexity of at least 3k −
O(log k) bits. Moreover, assuming the existence of a hitting-set generator against
co-nondeterministic uniform algorithms, f is computable by a polynomial-time
Turing machine.3

2 The constant 2 can be replaced by any constant larger than 1.
3 It is worth mentioning that the proof of Theorem 4 strongly relies on the explicit

combinatorial condition given in Theorem 3 (and we do not know how to obtain it
directly from Corollary 1). This illustrates again the importance of relating PSM
complexity to other more explicit properties of functions.

The Communication Complexity of Private Simultaneous Messages 267

Remark 1 (On the hitting-set generator assumption). The exact definition of
a hitting-set generator against co-nondeterministic uniform algorithms is post-
poned to Sect. 6. For now, let us just say that the existence of such a generator
follows from standard Nissan-Wigderson type complexity-theoretic assumptions.
In particular, it suffices to assume that the class E of functions computable in
2O(n)-deterministic time contains a function that has no sub-exponential non-
deterministic circuits [28], or, more liberally, that some function in E has no
sub-exponential time Arthur-Merlin protocol [21]. (See also the discussion in [7].)

Lower-bounds for imperfect PSM’s. We extend Theorem 3 to handle imperfect
PSM protocols by strengthening the non-degeneracy condition and the non self-
similarity condition. This can be used to prove an imperfect version of Corollary 1
showing that, for almost all functions, an imperfect PSM with correctness error
δ and privacy error ε must communicate at least

min {3k − 2 log(k), 2k + log(1/ε), 2k + log(1/δ)} − O(1)

bits. An analogous extension of Theorem 4, yields a similar bound for an explicit
function. (See Sect. 5.)

1.4 Applications to Conditional Disclosure of Secrets

We move on to the closely related model of Conditional Disclosure of Secrets
(CDS) [18]. In the CDS model, Alice holds an input x and Bob holds an input
y, and, in addition, Alice holds a secret bit s. The referee, Charlie, holds both
x and y, but does not know the secret s. Similarly to the PSM case, Alice and
Bob use shared randomness to compute the messages a and b that are sent to
Charlie. The CDS requires that Charlie can recover s from (a, b) if and only if
the predicate f(x, y) evaluates to one.4

Definition 2 (Conditional Disclosure of Secrets). A conditional disclosure
of secrets (CDS) protocol Π = (ΠA,ΠB , g) for a predicate f : X ×Y → {0, 1} and
domain S of secrets is a triple of functions ΠA : X ×S×R → A, ΠB : Y×R → B
and g : X × Y × A × B → S that satisfy the following two properties:

1. (Perfect Correctness) For every (x, y) that satisfies f and any secret s ∈ S
we have that:

Pr
r

$←R
[g(x, y,ΠA(x, s, r),ΠB(y, r)) �= s] = 0.

2. (Perfect Privacy) For every input (x, y) that does not satisfy f and any pair
of secrets s, s′ ∈ S the distributions

(x, y,ΠA(x, s, r),ΠB(y, r)) and (x, y,ΠA(x, s′, r),ΠB(y, r)),

induced by r
$← R are identically distributed.

4 Usually, it is assumed that both Alice and Bob hold the secret s. It is not hard
to see that this variant and our variant (in which only Alice knows the secret) are
equivalent up to at most 1-bit of additional communication.

268 B. Applebaum et al.

The communication complexity of the CDS protocol is (log |A| + log |B|) and
its randomness complexity is log |R|. By default, we assume that the protocol
supports single-bit secrets (S = {0, 1}).5

Intuitively, CDS is weaker than PSM since it either releases s or keeps it
private but it cannot manipulate the secret data.6 Still, this notion has found
useful applications in various contexts such as information-theoretically private
information retrieval (PIR) protocols [14], priced oblivious transfer protocols [1],
secret sharing schemes for graph-based access structures (cf. [11,12,31]), and
attribute-based encryption [20,29].

The communication complexity of CDS. In light of the above, it is interesting
to understand the communication complexity of CDS. Protocols with commu-
nication of O(t) were constructed for t-size Boolean formula by [18] and were
extended to t-size (arithmetic) branching programs by [25] and to t-size (arith-
metic) span programs by [6]. Until recently, the CDS complexity of a general
predicate f : {0, 1}k × {0, 1}k → {0, 1} was no better than its PSM complexity,
i.e., O(2k/2) [9]. This was improved to 2O(

√
k log k) by Liu, Vaikuntanathan and

Wee [27]. Moreover, Applebaum et al. [4] showed that, for very long secrets, the
amortized complexity of CDS can be reduced to O(log k) bits per bit of secret.
Very recently, the amortized cost was further reduced to O(1) establishing the
existence of general CDS with constant rate [3].

Lower-bounds for the communication complexity of CDS were first estab-
lished by Gay et al. [17]. Their main result shows that the CDS communication
of a predicate f is at least logarithmic in its randomized one-way communication
complexity, and leads to an Ω(log k) lower-bound for several explicit functions.
Applebaum et al. [4] observed that weakly private PSM reduces to CDS. This
observation together with the 3k-bit FKN lower-bound for weakly private PSM
has lead to a CDS lower-bound of k − o(k) bits for some non-explicit predicate.
(The reduction loses about 2k bits.)

In this paper, we further exploit the connection between CDS and PSM
by observing that CDS protocols for a predicate h(x, y) give rise to weakly
private fully revealing PSM for the function f((x ◦ s), y) = h(x, y) ∧ s, where
◦ denotes concatenation. By using our lower-bounds for weakly private fully
revealing PSM’s we get the following theorem. (See Sect. 7 for a proof.)

Theorem 5. Let h : X × Y → {0, 1} be a predicate. Suppose that M upper-
bounds the size of the largest 0-monochromatic rectangle of h and that for every
x ∈ X , the residual function h(x, ·) is not the constant zero function. Then, the
communication complexity of any perfect CDS for h is at least

2 log |f−1(0)| − log M − log |X | − log |Y| − 1,

where |f−1(0)| denotes the number of inputs (x, y) that are mapped to zero.
5 One may consider imperfect variants of CDS. In this paper we restrict our attention

to the (more common) setting of perfect CDS.
6 This is analogous to the relation between Functional Encryption and Attribute Based

Encryption. Indeed, CDS can be viewed as an information-theoretic one-time variant
of Attribute Based Encryption.

The Communication Complexity of Private Simultaneous Messages 269

Unlike the non-explicit lower-bound of [4], the above theorem provides a simple
and clean sufficient condition for proving non-trivial CDS lower-bounds. For
example, we can easily show that a random function has at least linear CDS
complexity.

Corollary 2. For all but a o(1) fraction of the predicates h : {0, 1}k ×{0, 1}k →
{0, 1}, any perfect CDS for h has communication of at least k − 4 − o(1).

Proof. Let h : {0, 1}k × {0, 1}k → {0, 1} be a randomly chosen predicate. Let
K = 2k and let ε = 1/

√
K. There are exactly 2K ·2K = 22K rectangles. Therefore,

by a union-bound, the probability of having a 0-monochromatic rectangle of size
M = 2K(1 + ε) is at most

22K · 2−M = 2−2εK = 2−Ω(
√

K).

Also, since h has K2 inputs, the probability of having less than (12 − ε) · K2

unsatisfying inputs is, by a Chernoff bound, 2−Ω(ε2K2) = 2−Ω(K). Finally, by
the union bound, the probability that there exists x ∈ X for which h(x, ·) is
the all-zero function is at most K · 2−K . It follows, by Theorem 5, that with
probability of 1 − 2−Ω(

√
K), the function h has a CDS complexity of at least

k − 4 − o(1). �	
We can also get lower-bounds for explicit functions. For example, Gay

et al. [17] studied the CDS complexity of the binary inner product function
h(x, y) = 〈x, y〉. They proved an upper-bound of k +1 bits and a lower-bound of
Ω(log k) bits, and asked as an open question whether a lower-bound of Ω(k) can
be established. (The question was open even for the special case of linear CDS
for which [17] proved an Ω(

√
k) lower-bound). By plugging the inner-product

predicate into Theorem 5, we conclude:

Corollary 3. Any perfect CDS for the inner product predicate hip : {0, 1}k ×
{0, 1}k → {0, 1} requires at least k − 3 − o(1) bits of communication.

Proof. It suffices to prove the lower bound for the restriction of inner-product in
which x �= 0n. It is well known (cf. [26]) that the largest monochromatic rectangle
is of size M = 2k, and the number of “zero” inputs is exactly S = 22k−1 − 2k.
Hence, Theorem 5 yields a lower-bound of k − 3 − o(1). �	
This lower-bound matches the k + 1 upper-bound up to a constant additive
difference (of 4 bits). It also implies that in any ABE scheme for the inner-
product function which is based on the dual system methodology [32] either the
ciphertext or the secret-key must be of length Ω(k). (See [17] for discussion.)

270 B. Applebaum et al.

Organization. Following some preliminaries (Sect. 2), we present the counter
example for the FKN lower-bound (Sect. 3). We then analyze the communication
complexity of perfect PSM (Sect. 4) and imperfect PSM (Sect. 5). Based on these
results, we obtain PSM lower-bounds for random and explicit functions (Sect. 6),
as well as CDS lower-bounds (Sect. 7).

2 Preliminaries

For a string (or a vector) x of length n, and indices 1 ≤ i ≤ j ≤ n, we let x[i]
denote the i-th entry of x, and let x[i : j] denote the string (x[i], x[i+1] . . . , x[j]).
By convention, all logarithms are taken base 2.

Rectangles. An (ordered) rectangle of size m × n over some finite domain X × Y
is a pair ρ = (x,y), where x = (x1, . . . , xm) ⊆ X m and y = (y1, . . . , yn) ⊆ Yn

satisfy xi �= xj and yi �= yj for all i �= j. We say that (x, y) belongs to ρ if x = xi

and y = yj for some i, j (or by abuse of notation we simply write x ∈ x and
y ∈ y). The size of an m × n rectangle ρ is mn, and its density with respect to
some probability distribution μ over X × Y, is

∑
x∈x,y∈y μ(x, y). Let ρ = (x,y)

and ρ′ = (x′,y′) be a a pair of m × n-rectangles. We say that ρ and ρ′ are
x-disjoint (resp., y-disjoint) if xi �= x′

i for all i ∈ {1, . . . , m} (resp., if yj �= y′
j for

all j ∈ {1, . . . , n}). We say that ρ and ρ′ are disjoint if they are either x-disjoint
or y-disjoint.

As an example, consider the three 2 × 3 rectangles ρ1 =
(
(1, 2), (5, 6, 7)

)
,

ρ2 =
(
(2, 1), (6, 5, 4)

)
, and ρ3 =

(
(1, 3), (7, 5, 6)

)
. Among those, ρ1 and ρ3 are

y-disjoint but not x-disjoint, ρ2 and ρ3 are x-disjoint but not y-disjoint, and
ρ1 and ρ2 are both x-disjoint and y-disjoint. Therefore, each of these pairs is
considered to be disjoint.

If f : X × Y → Z is a function and ρ a rectangle of size m × n, we let f[ρ]
be the matrix M of size m × n whose entry Mij is f(xi, yj). A rectangle ρ is
0-monochromatic (resp., 1-monochromatic) if f[ρ] is the all-zero matrix (resp.,
all-one matrix). A rectangle ρ is similar to a rectangle ρ′ (with respect to f)
if f[ρ] = f[ρ′]. A rectangle (x = (x1, . . . , xm),y) is complement similar if it is
similar to the rectangle ((x̄1, . . . , x̄m),y), where x̄ denotes the string x with its
last bit flipped.

Probabilistic notation. We will use calligraphic letters A, B, . . . , to denote finite
sets. Lower case letters denote values from these sets, i.e., x ∈ X . Upper case
letters usually denote random variables (unless the meaning is clear from the
context).

Given two random variables A and B over the same set A, we use ‖A−B‖ to
denote their statistical distance ‖A−B‖ = 1

2

∑
a∈A |Pr[A = a]−Pr[B = a]|. The

min-entropy of A, denoted by H∞(A), is minus the logarithm of the probability
of the most likely value of A, i.e., − log maxa∈A Pr[A = a].

The Communication Complexity of Private Simultaneous Messages 271

3 A Counterexample to the FKN Lower-Bound

Let T0,T1 be a pair of (k − 1) × (k − 1) non-singular matrices (over the binary
field F = GF[2]) with the property that T = T0 +T1 is also non-singular. (The
existence of such matrices is guaranteed via a simple probabilistic argument.7)
Define the mapping L : Fk → F

k by

x �→ (Tx[k] · x[1 : k − 1]) ◦ x[k],

where ◦ denotes concatenation. That is, if the last entry of x is zero then L
applies T0 to the k − 1 prefix x′ = x[1 : k − 1] and extends the resulting k − 1
vector by an additional 0 entry, and if x[k] = 1 then the prefix x′ is sent to T1x

′

and the vector is extended by an additional 1 entry. Note that L is a bijection
(since T0,T1 are non-singular). The function f : Fk × F

k → F
k is defined by

(x, y) �→ 〈L(x), y〉,

where 〈·, ·〉 denotes the inner-product function over F.
In Sect. 3.1, we will prove that f satisfies the FKN conditions (described in

Sect. 1.2).

Lemma 1. The function f is (1) non-degenerate, (2) useful, and (3) its largest
complement similar rectangle is of size at most M = 2k+1.

Recall that f is non-degenerate if for every distinct x �= x′ (resp., y �= y′) the
residual functions f(x, ·) and f(x′, ·) (resp., f(·, y′) and f(·, y′)) are distinct.
It is useful if Prx,y[f(x, y) �= f(x̄, y)] ≥ 1

2 , where x̄ denotes the string x with
its last entry flipped. Also, a rectangle R = (x,y) is complement similar if
f(x, y) = f(x̄, y) for every x ∈ x, y ∈ y.

In Sect. 3.2 we will show that f admits a PSM with communication complex-
ity of 2k + O(1).

Lemma 2. The function f has a PSM protocol with communication complexity
of 2k + 2.

Theorem 1 follows from Lemmas 1 and 2.

7 When k−1 is even, there is a simple deterministic construction: Take T0 (resp., T1)
to be the upper triangular matrix (resp., lower triangular matrix) whose entries on
and above main diagonal (resp., on and below the diagonal) are ones and all other
entries are zero. It is not hard to verify that both matrices are non-singular. Also
T = T0 + T1 has a zero diagonal and ones in all other entries and so T has full
rank if k − 1 is even. The same construction can be used when k − 1 is odd, at the
expense of obtaining a matrix T with an almost full rank that has only minor affect
on the parameter M obtained in Lemma 1.

272 B. Applebaum et al.

3.1 f Satisfies the FKN Properties (Proof of Lemma 1)

(1) f is non-degenerate. Fix x1 �= x2 ∈ F
k and observe that L(x1) �= L(x2) (since

L is a bijection). Therefore there exists y for which f(x1, y) = 〈L(x1), y〉 �=
〈L(x2), y〉 = f(x2, y). (In fact this holds for half of y’s). Similarly, for every
y1 �= y2 there exists v ∈ F

k for which 〈v, y1〉 �= 〈v, y2〉, and since L is a bijection
we can take x = L−1(v) and get that f(x, y1) = 〈v, y1〉 �= 〈v, y2〉 = f(x, y2).

(2) f is useful. Choose x′ $← F
k−1 and y

$← F
k and observe that f(x′ ◦0, y) =

f(x′ ◦ 1, y) if and only if

〈Tx′, y[1 : k − 1]〉 + yk = 0,

which happens with probability 1
2 .

(3) The largest complement similar rectangle is of size at most 2k+1. Fix some
rectangle R = (x,y), where x = (x1, . . . , xm) ∈ (Fk)m and y = (y1, . . . , yn) ∈
(Fk)n. We show that if R is complement similar then mn ≤ 2 · 2k. Since R is
complement similar for every x ∈ x, y ∈ y it holds

f(x, y) = f(x̄, y),

which by definition of f implies that

〈Tx′ ◦ 1, y〉 = 0,

where x′ is the (k − 1) prefix of x. Let d be the dimension of the linear subspace
spanned by the vectors in x, and so m ≤ 2d. Since T has full rank, the dimension
of the subspace V spanned by {(Tx[1 : k − 1] ◦ 1) : x ∈ x} is at least d − 1. (We
may lose 1 in the dimension due to the removal of the last entry of the vectors
x ∈ x.) Noting that every y ∈ y is orthogonal to V , we conclude that the
dimension of the subspace spanned by y is at most k − (d − 1). It follows that
n ≤ 2k−(d−1) and so mn < 2 · 2k. �	

3.2 PSM for f (Proof of Lemma 2)

Note that f can be expressed as applying the inner product to v and y where
v can be locally computed based on x. Hence it suffices to construct a PSM
for the inner-product function and let Alice compute v and apply the inner-
product protocol to v. (This reduction is a special instance of the so-called
substitution lemma of randomize encoding, cf. [2,22].) Lemma 2 now follows
from the following lemma.

Lemma 3. The inner product function hip : Fk × F
k → F has a PSM protocol

with communication complexity of 2k + 2.

A proof of the lemma appears8 in [27, Corollary 3]. For the sake of self-
containment we describe here an alternative proof.
8 We thank the anonymous reviewer for pointing this out.

The Communication Complexity of Private Simultaneous Messages 273

Proof. We show a PSM Π = (ΠA,ΠB , g) with communication 2k under the
promise that the inputs of Alice and Bob, x, y, are both not equal to the all
zero vector. To get a PSM for the general case, let Alice and Bob locally extend
their inputs x, y to k + 1-long inputs x′ = x ◦ 1 and y′ = y ◦ 1. Then run the
protocol Π and at the end let Charlie flip the outcome. It is easy to verify that
the reduction preserves correctness and privacy. Since the inputs are longer by
a single bit the communication becomes 2(k + 1) as promised.

We move on to describe the protocol Π. The common randomness consists
of a random invertible matrix R ∈ F

k×k. Given non-zero x ∈ F
k, Alice outputs

a = Rx where x is viewed as a column vector. Bob, who holds y ∈ F
k, outputs

b = yTR−1. Charlie outputs ba.
Prefect correctness is immediate: (yTR−1) · (Rx) = yT x, as required. To

prove perfect privacy, we use the following claim.

Claim 6. Let x, y ∈ F
k be non-zero vectors and denote their inner-product by z.

Then, there exists an invertible matrix M ∈ F
k×k for which Me1 = x and

vT
z M

−1 = yT where ei is the i-th unit vector, and vz is taken to be e1 if z = 1
and ek if z = 0.

Proof. Let us first rewrite the condition vT
z M

−1 = yT as vT
z = yTM. Let V ⊂ F

k

be the linear subspace of all vectors that are orthogonal to y. Note that the
dimension of V is k−1. We distinguish between two cases based on the value of z.

Suppose that z = 0, that is, x ∈ V and vz = ek. Then set the first column of
M to be x and choose the next k − 2 columns M2, . . . ,Mk−1 so that together
with x they form a basis for V . Let the last column Mk be some vector outside V .
Observe that the columns are linearly independent and so M is invertible. Also,
it is not hard to verify that Me1 = x and that yTM = eT

k .
Next, consider the case where z = 1, that is, x /∈ V and vz = e1. Then, take

M1 = x and let the other columns M2, . . . ,Mk to be some basis for V . Since
x is non-zero the columns of M are linearly independent. Also, Me1 = x and
yTM = eT

1 . The claim follows. �	
We can now prove perfect privacy. Fix some non-zero x, y ∈ F

k and let
z = 〈x, y〉. We show that the joint distribution of the messages (A,B) depends
only on z. In particular, (A,B) is distributed identically to (Re1, v

T
b R

−1) where
R a random invertible matrix. Indeed, letting M be the matrix guaranteed in
Claim 6 we can write

(Rx, yTR−1) = (R(Me1), (vT
z M

−1)R−1).

Noting that T = RM is also a random invertible matrix (since the the set
of invertible matrices forms a group) we conclude that the RHS is identically
distributed to Te1, v

T
z T

−1, as claimed. �	
Remark 2. Overall the PSM for f has the following form: Alice sends a =
R · (L(x) ◦ 1) and Bob sends b = (y ◦ 1)TR where R ∈ F

(k+1)×(k+1) is a random
invertible matrix. The privacy proof shows that if the input (x, y) is mapped to
(a, b) for some R then for every (x′, y′) for which f(x, y) = f(x′, y′), there exists

274 B. Applebaum et al.

R′ under which the input (x′, y′) is mapped to (a, b) as well. Hence, there are col-
lisions between non-sibling inputs. As explained in the introduction, this makes
the FKN lower-bound inapplicable.

4 Lower Bound for Perfect PSM Protocols

In this Section we will prove a lower bound for perfect PSM protocols.

Definition 3. For a function f : X ×Y → Z and distribution μ over the domain
X × Y with marginals μA and μB, define

α(μ) = max
(R1,R2)

min(μ(R1), μ(R2)),

where the maximum ranges over all pairs of similar disjoint rectangles (R1, R2).
We also define

β(μ) = Pr[(X,Y) �= (X ′, Y ′) | f(X,Y) = f(X ′, Y ′)],

where (X,Y) and (X ′, Y ′) represent two independent samples from μ. Finally, we
say that f is non-degenerate with respect to μ if for every x �= x′ in the support of
μA there exists some y ∈ Y for which f(x, y) �= f(x′, y), and similarly for every
y �= y′ in the support of μB there exists some x ∈ X for which f(x, y) �= f(x, y′).

We prove the following key lemma.

Lemma 4. Let f : X × Y → Z. Then the communication complexity of any
perfect PSM protocol is at least

max
μ

log(1/α(μ)) + H∞(μ) − log(1/β(μ)) − 1,

where the maximum is taken over all (not necessarily product) distribution μ
under which f is non-degenerate.

The lower-bound is meaningful as long as β is not too small. Intuitively, this
makes sure that the privacy requirement (which holds only over inputs on which
the function agrees) is not trivial to achieve under μ.

For the special case of a Boolean function f , we can use the uniform distri-
bution over X × Y and prove Theorem 3 from the introduction (restated here
for the convenience of the reader).

Theorem 7 (Theorem 3 restated). Let X ,Y be sets of size at least 2. Let
f : X × Y → {0, 1} be a non-degenerate function for which any pair of disjoint
similar rectangles (R,R′) satisfies |R| ≤ M . Then, any perfect PSM for f has
communication of at least 2(log |X | + log |Y|) − log M − 3.

The Communication Complexity of Private Simultaneous Messages 275

Proof. For the uniform distribution μ we have α(μ) ≤ M/(|X ||Y|), H∞(μ) =
log |X | + log |Y| and

β(μ) ≥ Pr[(X,Y) �= (X ′, Y ′)] − Pr[f(X,Y) �= f(X ′, Y ′)],

where X,Y and X ′, Y ′ are two independent copies of uniformly distributed
inputs. The minuend is 1 − 1/(|X ||Y|) and the subtrahend is at most 1

2 (since f
is Boolean). For |X ||Y| ≥ 4, we get β(μ) ≥ 1/4, and the proof follows from the
key lemma (Lemma 4). �	
We note that the constant 3 can be replaced by 2 + ok(1) when the size of the
domain X × Y grows with k.

Weakly Private Fully Revealing PSM. We can also derive a lower-bound
on the communication complexity of weakly private fully revealing PSM. We
begin with a formal definition.

Definition 4 (Weakly Private Fully Revealing PSM). A weakly private
fully revealing PSM Π = (ΠA,ΠB , g) for a function f : X × Y → Z is a perfect
PSM for the function f ′ : {0, 1}k1 ×{0, 1}k2 → {0, 1}k1−1 ×{0, 1}k2 ×{0, 1} that
takes (x, y) and outputs (x[1 : k1 − 1], y, f(x, y)), where x[1 : k1 − 1] is the k1 − 1
prefix of x.

In the following, we say that f is weakly non-degenerate if for every x there
exists y such that f(x, y) �= f(x̄, y). Recall that an input (x, y) is useful if
f(x, y) = f(x̄, y). We prove the following (stronger) version of Theorem 2 from
the introduction.

Theorem 8. Let f : {0, 1}k1 × {0, 1}k2 → {0, 1} be a weakly non-degenerate
function. Let M be an upper-bound on size of the largest complement similar
rectangle of f and let U be a lower-bound on the number of useful inputs of f .
Then, any weakly-private fully-revealing PSM for f has communication complex-
ity of at least 2 log U − log M −2. In particular, for all but an o(1) fraction of the
predicates f : {0, 1}k × {0, 1}k → {0, 1} we get a lower-bound of 3k − 4 − o(1).

Proof. Let f ′ be the function defined in Definition 4 based on f . We will prove
a lower-bound on the communication complexity of any perfect PSM for f ′. Let
μ be the uniform distribution over the set of useful inputs. Since f is weakly
non-degenerate the function f ′ is non-degenerate under μ. Also, observe that

α(μ) ≤ M/U, β(μ) = 1/2, and H∞(μ) ≥ log U.

The first part of the theorem follows from Lemma 4.
To prove the second (“in particular”) part observe that, for a random func-

tion f , each pair of inputs (x, y) and (x̄, y) gets the same f -value with probability
1
2 independently of other inputs. Hence, with all but o(1) probability, a fraction
of 1

2 − o(1) of all 22k−1 of the pairs is mapped to the same value, and so there
will be 22k−1(1 − o(1)) useful inputs. (Since each successful pair contributes two

276 B. Applebaum et al.

useful inputs.) Also, each M -size rectangle R is complement similar with proba-
bility 2−M . By taking a union bound over all 22

k+1
rectangles, we conclude that

f has an M = 2k+1(1+o(1))-size complement similar rectangle with probability
at most 22

k+1−M = o(1). We conclude that, all but an o(1) fraction of the func-
tions, do not have weakly-private fully-revealing PSM with complexity smaller
than 3k − 4 − o(1). �	

4.1 Proof of the Key Lemma (Lemma 4)

Fix some function f : X × Y → Z and let Π = (ΠA,ΠB , g) be a perfect PSM
protocol for f . Let μ denote some distribution over the domain X ×Y and assume
that f is non-degenerate with respect to μ.

We will use a probabilistic version of the FKN proof. In particular, consider
two independent executions of Π on inputs that are sampled independently
from μ. We let X,Y and R (resp., X ′, Y ′ and R′) denote the random variables
that represent the inputs of Alice and Bob and their shared randomness in
the first execution (resp., second execution). Thus, we can for example write
Pr[(A,B) = (A′, B′) ∧ X �= X ′] to denote the probability that the messages in
the two executions match while the two inputs for Alice are different.

To simplify notation somewhat, we define the following events:

P(=) :≡ (A = A′) ∧ (B = B′)

I(=) :≡ (X = X ′) ∧ (Y = Y ′)

I(�=) :≡ (X �= X ′) ∨ (Y �= Y ′) ≡ ¬I(=)

F (=) :≡ f(X,Y) = f(X ′, Y ′)

(The notation P is chosen to indicate equivalence/inequivalence of Protocol mes-
sage and I to indicate equivalence/inequivalence of the Inputs.) Our lower-bound
follows from the following claims.

Claim 9. The communication complexity of Π is at least log(1/Pr[I(�=) ∧
P(=)]) − log(1/β).

Proof. We will compute the collision probability Pr[(A,B) = (A′, B′)] of two
random executions by showing that

Pr[P(=)] =
Pr[I(�=) ∧ P(=)]
Pr[I(�=)|F (=)]

=
Pr[I(�=) ∧ P(=)]

β
. (2)

Because the collision probability of two independent instances of a random vari-
able is at least the inverse of the alphabet size, the alphabet of A and B must
have size at least β/Pr[I(�=) ∧ P(=)]. Thus, in total the protocol requires

log(1/Pr[I(�=) ∧ P(=)]) − log(1/β)

bits of communication.

The Communication Complexity of Private Simultaneous Messages 277

We move on to prove (2). By perfect correctness, P(=) can only happen if
F (=) happens, therefore

Pr[P(=)]
Pr[I(�=) ∧ P(=)]

=
Pr[F (=)] Pr[P(=)|F (=)]

Pr[I(�=) ∧ P(=)]
. (3)

By the same reasoning, we can express the denominator of the RHS by

Pr[I(�=) ∧ P(=) ∧ F (=)] = Pr[F (=)] Pr[I(�=)|F (=)] Pr[P(=)|F (=) ∧ I(�=)].

It follows that (3) equals to

Pr[F (=)] Pr[P(=)|F (=)]
Pr[F (=)] Pr[I(�=)|F (=)] Pr[P(=)|F (=) ∧ I(�=)]

=
1

Pr[I(�=)|F (=)]
, (4)

where equality follows by noting that Pr[P(=)|F (=)] = Pr[P(=)|F (=) ∧ I(�=)]
(due to perfect privacy). Multiplying the LHS of (3) and the RHS of (4) by
Pr[I(�=) ∧ P(=)], we conclude (2). �	
Claim 10. For any pair of strings r �= r′,

Pr[P(=) ∧ I(�=)|R = r,R′ = r′] ≤ 2α(μ)2−H∞(μ).

Proof. We see that

Pr
[P(=) ∧ I(�=)|R = r ∧ R′ = r′] ≤ Pr

[P(=) ∧ (X �= X ′)|R = r ∧ R′ = r′]

+ Pr
[P(=) ∧ (Y �= Y ′)|R = r ∧ R′ = r′] .

Due to symmetry it suffices to bound the first summand by α(μ)2−H∞(μ).
Say that x collides with x′ if ΠA(x, r) = ΠA(x′, r′). Restricting our attention

to x’s in the support of μA, we claim that every x can collide with at most a
single x′. Indeed, if this is not the case, then ΠA(x, r) = ΠA(x′, r′) = ΠA(x′′, r′).
The second equality implies that when the randomness is r′, for every y, the
messages (a, b) communicated under (x′, y) are equal to the ones communicated
under (x′′, y). By perfect correctness, this implies that f(x′, y) = f(x′′, y) for
every y, contradicting the non-degeneracy of f under μ. Analogously, let us say
that y collides with y′ if ΠB(y, r) = ΠB(y′, r′). The same reasoning shows that
every y in the support of μB can collide with at most a single y′ in the support
of μB .

Let x = (x1, . . . , xm) and x′ = (x′
1, . . . , x

′
m) be a complete list of entries for

which xi collides with x′
i and xi �= x′

i and μA(xi), μA(x′
i) > 0. Analogously let

y = (y1, . . . , yn) and y′ = (y′
1, . . . , y

′
n) be a complete list for which yi collides

with y′
i and μB(yi), μB(y′

i) > 0. (Note that we do not require yi �= y′
i.) Since

collisions are unique (as explained above), the tuples x,x′,y,y′ are uniquely
determined up to permutation.

By definition, the tuples (x, y, x′, y′) with x �= x′, and (a, b) = (a′, b′) are
exactly those of the form (xi, yj , x

′
i, y

′
j) for some i and j.

278 B. Applebaum et al.

Now, consider the two x-disjoint rectangles ρ = (x,y) and ρ′ = (x′,y′) and
assume, without loss of generality, that μ(ρ) ≤ μ(ρ′). Since Alice and Bob both
send the same messages with randomness r on inputs (xi, yj) as they send with
randomness r′ on inputs x′

i, y
′
j , we see that it must be that f(xi, yj) = f(x′

i, y
′
j)

if the protocol is correct. Therefore, f[ρ] = f[ρ′], and so μ(ρ) ≤ α(μ).
To complete the argument, note that P(=) ∧ (X �= X ′) can only happen

if we pick (X,Y) = (xi, yj) and (X ′, Y ′) = (x′
i, y

′
j) for some i, j. The event

that there exists i, j for which (X,Y) = (xi, yj) has probability at most α(μ).
The event that (X ′, Y ′) = (x′

i, y
′
j) for the same (i, j) has probability at most

maxx,y μ(x, y) = 2−H∞(μ). �	
Combining Claims 9 and 10, we derive Lemma 4. �	

5 Lower Bounds for Imperfect PSM Protocols

In this section we state a lower-bound on the communication complexity of
imperfect PSM protocols. For this, we will have to strengthen the requirements
from the function f .

We call f strongly non-degenerate if for any x �= x′ we have |{y|f(x, y) =
f(x′, y)}| ≤ 0.9|Y| and for any y �= y′ we have |{x|f(x, y) = f(x, y′)}| ≤ 0.9|X |.
A pair of ordered m × n rectangles R = (x,y) and R′ = (x′,y′) in which either
xi �= x′

i for all i ∈ [m], or yi �= y′
i for all i ∈ [n] are called approximately similar

if for 0.99 of the pairs (i, j) we have f(xi, yj) = f(x′
i, y

′
j). (The constants 0.9 and

0.99 are somewhat arbitrary and other constants may be chosen.)
In the full version we prove the following theorem:

Theorem 11. Let f : X × Y → Z be a strongly non-degenerate function whose
largest approximately similar pair of rectangles is of size at most M . Then, any
PSM for f with privacy error of ε and correctness error of δ < 1

100 , requires at
least

log |X | + log |Y| + min

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

log |X | + log |Y| − log
(

1
Pr[F(=)]

)
,

log |X | + log |Y| − log M,
log(1/ε),
log(1/δ) − log

(
1

Pr[F(=)]

)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

− c (5)

bits of communication, where c is some universal constant (that does not depend
on f) and Pr[F (=)] = Pr[f(X,Y) = f(X ′, Y ′)] when (X,Y) and (X ′, Y ′) are
picked independently and uniformly at random from X × Y.

In the special case of a Boolean function f , it holds that Pr[F (=)] = Pr[f(X,Y) =
f(X ′, Y ′)] ≥ 1/2, and the communication lower-bound simplifies to

log |X | + log |Y| + min {log |X | + log |Y| − log M, log(1/ε), log(1/δ)} − c

where c is some universal constant. In Sect. 6, we will use Theorem 11 to prove
imperfect PSM lower-bounds for random functions and for efficiently computable
functions.

The Communication Complexity of Private Simultaneous Messages 279

6 Imperfect PSM Lower-Bounds for Random
and Explicit Functions

In this section we will show that most functions have non-trivial imperfect PSM
complexity, and establish the existence of an explicit function that admits a
non-trivial imperfect PSM lower-bound. Formally, in Sect. 6.1 we will prove the
following theorem (which strengthens Corollary 1 from the introduction).

Theorem 12. For a 1 − o(1) fraction of the functions f : {0, 1}k × {0, 1}k →
{0, 1} any PSM protocol for f with privacy error of ε and correctness error of δ,
δ < 1

100 , requires at least

�(k, ε, δ) = min {3k − 2 log(k), 2k + log(1/ε), 2k + log(1/δ)} − c (6)

bits of communication, where c is some universal constant.

By de-randomizing the proof, we derive (in Sect. 6.2) the following theorem
(which strengthens Theorem 4 from the introduction).

Theorem 13. There exists a sequence of polynomial-size circuits

f =
{
fk : {0, 1}k × {0, 1}k → {0, 1}}

such that any δ-correct ε-private PSM for fk has communication complexity
of at least �(k, ε, δ) bits (as defined in (6)). Moreover, assuming the existence
of a hitting-set generator against co-nondeterministic uniform algorithms, there
exists an explicit family f which is computable by a polynomial-time Turing
machine whose imperfect PSM communication complexity is at least �(k, ε, δ) −
O(log k).

The reader is advised to read the following subsections sequentially since the
proof of Theorem 13 builds over the proof of Theorem 12.

6.1 Lower Bounds for Random Functions (Proof of Theorem 12)

We will need the following definition.

Definition 5 (good function). We say that a function f : {0, 1}k ×{0, 1}k →
{0, 1} is good if it satisfies the following conditions:

1. For every x �= x′ and every set y of k2 consecutive strings (according to some
predefined order over {0, 1}k), it holds that f(x, y) = f(x′, y) for at most
0.9-fraction of the elements y ∈ y.

2. Similarly, for every y �= y′ and set x of k2 consecutive strings (according to
some predefined order over {0, 1}k), it holds that f(x, y) = f(x, y′) for at
most 0.9-fraction of x ∈ x.

3. For every pair of k2 × k2 x-disjoint or y-disjoint rectangles R,R′, it holds
that f[R] disagrees with f[R′] on at least 0.01 fraction of the entries.

280 B. Applebaum et al.

Claim 14. Any good f : {0, 1}k × {0, 1}k → {0, 1} satisfies the conditions of
Theorem 11 with M = 2k · k2, and therefore any δ-correct ε-private PSM for f ,
δ < 1

100 , requires communication of

�(k, ε, δ) = min {3k − 2 log(k), 2k + log(1/ε), 2k + log(1/δ)} − c,

for some universal constant c.

Proof. Fix some good f . Condition (1) guarantees that f(x, ·) and f(x′, ·) differ
on 0.1 fraction of each k2 block of consecutive y’s, and therefore, overall, they
must differ on a 0.1 fraction of all possible y’s. Applying the same argument on
the y-axis (using condition (2)), we conclude that a good f must be strongly
non-degenerate.

Similarly, a good f cannot have a pair of x-disjoint approximately similar
m × n rectangles R,R′ of size mn ≥ 2k · k2. To see this, observe that the
latter condition implies that m,n are both larger than k2, and therefore, again
by an averaging argument, there must exists a pair of k2 × k2 x-disjoint sub-
rectangles R′

0 ⊆ R0, R
′
1 ⊆ R1 which are also approximately similar. Applying

the same argument to y-disjoint rectangles we conclude that any good f satisfies
the conditions of Theorem 11. �	

We say that a family of functions {fz : A → B}z∈Z is t-wise independent
functions if for any t-tuple of distinct inputs (a1, . . . , at) and for a uniformly

chosen z
$← Z, the joint distribution of (fz(a1), . . . , fz(at)) is uniform over Bt.

Claim 15. Pick f : {0, 1}k × {0, 1}k → {0, 1} uniformly at random among all
such functions. Then, with probability 1 − o(1), the resulting function is good.
Moreover, this holds even if f is chosen from a family of k4-wise independent
functions.

Proof. Choose f randomly from a family of k4-wise independent hash functions.
Fix a pair of x �= x′ and a k2-subset y ⊂ {0, 1}k of consecutive y’s. By a Chernoff
bound, the probability that f(x, y) = f(x′, y) for more than 0.9 of y ∈ y is at
most 2−Ω(k2). There are at most 22k pairs of x, x′, and at most 2k different sets
y of consecutive y’s, therefore by a union bound the probability that condition
(1) does not hold is 23k2−Ω(k2) = 2−Ω(k2). A similar argument, shows that
(2) fails with a similar probability.

We move on to prove there is no pair of approximately similar x-disjoint
rectangles of size exactly k2 × k2. (Again, the case of y-disjoint rectangles is
treated similarly.)

Let m = k2. Fix two x-disjoint m×m-rectangles R = (x,y) and R′ = (x′,y′).
We want to give an upper bound on the probability that f[R] agrees with f[R′] on
99% of their entries. This event happens only if the entries of f satisfy all but 1%
of the the m2 equations f(xi, yj) = f(x′

i, y
′
j) for (i, j) ∈ {1, . . . , m}×{1, . . . ,m}.

The probability that any such equation is satisfied is 1
2 : since the rectangles

are x-disjoint the equation is non-trivial. We can further find a subset T of at
least m2/2 such equations such that each equation in the subset uses an entry

The Communication Complexity of Private Simultaneous Messages 281

f(x, y) that is not used in any other equation. Let us fix some 0.01m2 subset
S of equations that are allowed to be unsatisfied. After removing S from T ,
we still have at least 0.49m2 equations that are simultaneously satisfied with
probability of at most 2−0.49m2

. There are at most 2H2(0.01)m2
sets S (where H2

is the binary entropy function), and at most 22mk choices for R and 22mk choices
for R′. Hence, by a union bound, the probability that (3) fails is at most

2−0.49m2+0.081m2+4m3/2
< 2−Ω(m2),

the claim follows. �	
Theorem 12 follows from Claims 14 and 15. �	

6.2 Explicit Lower-Bound (Proof of Theorem 13)

Our next goal is to obtain an explicit lower-bound. We begin by noting that good
functions (as per definition 5) can be identified by efficient co-nondeterministic
algorithms.

Definition 6. A co-nondeterministic algorithm M(x, y) is a Turing machine
that takes z as its primary input and v as a witness. For each z ∈ {0, 1}∗ we
define M(z) = 1 if there exist a witness v such that M(z, v) = 0.

Claim 16. There exists a co-nondeterministic algorithm that given some s-bit
representation of a function f : {0, 1}k ×{0, 1}k → {0, 1} accepts f if and only if
f is good with complexity of O(k4t) where t is the time complexity of evaluating
f on a given point.

Proof. It suffices to describe a polynomial-time verifiable witness for the failure
of each of the goodness conditions. If f is not good due to (1), then the witness
is a pair x �= x′ and a k2-set y of consecutive y’s. Since fz can be efficiently
evaluated we can verify that f(x, y) = f(x′, y) for more than 0.9-fraction of the
y’s in y in times O(k2t). A violation of (2) is treated similarly. If f is not good
due to (3), then the witness is a pair of x-disjoint or y-disjoint k2 ×k2 rectangles
R,R′ that are approximately similar. Again, we can verify the validity of this
witness in time O(k4t). �	

Let s(k) = poly(k) and let
{
fz : {0, 1}k × {0, 1}k → {0, 1}}

z∈{0,1}s be a fam-
ily of k4-wise independent functions with an evaluator algorithm F which takes
an index z ∈ {0, 1}s and input (x, y) ∈ {0, 1}k × {0, 1}k and outputs in time
t(k) the value of fz(x, y). (Such an F can be based on k4-degree polynomials
over a field of size Θ(k4)). Claims 14 and 15 imply that for most choices of z,
the function fz has an imperfect PSM complexity of at least �(k, ε, δ). Since F
is efficiently computable, for every z there is a polynomial-size circuit that com-
putes fz. Hence, there exists a polynomial-size computable function for which
the �(k, ε, δ) lower-bound holds, and the first part of Theorem 13 follows.

To prove the second part, we use a properly chosen pseudorandom gener-
ator (PRG) G : {0, 1}O(log k) → {0, 1}s to “derandomize” the family {fz}.

282 B. Applebaum et al.

That is, we define the function g : {0, 1}O(log k)×{0, 1}k ×{0, 1}k → {0, 1} which
takes (w, x, y) and outputs fz(x, y) where z = G(w) ∈ {0, 1}s. Concretely, we
require G to “hit” the image of any co-nondeterministic algorithms of complex-
ity T = O(k4t). Formally, this means that for every T -time co-nondeterministic
algorithm M it holds that if Prz[M(z) = 1] ≥ 1

2 then there exists a “seed” r for
which M(G(r)) = 1.

Taking M to be the algorithm from Claim 16, we conclude, by Claims 15
and 14, that for some seed w, the function fG(w) has an imperfect PSM complex-
ity of at least �(k, ε, δ). Let us parse g as a two-party function, say by partitioning
w to two halves wA, wB and giving (x,wA) to Alice, and y, wB to Bob. We con-
clude that g must have an imperfect PSM complexity of at least �(k, ε, δ). Since
the input length k′ of Alice and Bob becomes longer by an additional O(log k)
bits, the lower-bound becomes at least �(k′, ε, δ) − O(log k′), as claimed. The
part of Theorem 13 follows. �	

7 Lower-Bounds for Conditional Disclosure of Secrets

In this section we derive CDS lower bounds. We begin with a reduction from
fully revealing weakly hiding PSM (Definition 4) to CDS.

Claim 17. Let h : X × Y → {0, 1} be a predicate. Define the function f :
X ′ × Y → {0, 1} where X ′ = X × {0, 1} by f((x, s), y) = s ∧ h(x, y). If h has
a perfect CDS with communication complexity of c then f has a weakly-private
fully-revealing PSM with complexity of c + log |X | + log |Y|.
Proof. Given a CDS protocol Π = (ΠA,ΠB , g) for h we construct a weakly-
private fully-revealing PSM for f as follows. Given an input (x, s), Alice sends
(x, a = ΠA(x, s, r)) where x plays the role of the Alice’s input in the CDS, s
plays the role of the secret, and r is a shared string uniformly sampled from R.
Bob takes his input y, and sends (y, b = ΠB(y, r)). Charlie outputs h(x, y) ∧
g(x, y, a, b).

It is not hard to verify that the protocol is perfectly correct and fully reveal-
ing. Indeed, a PSM decoding error happens only if g(x, y, a, b) fails to decode the
secret s (which happens with probability zero). To prove weak privacy observe
that if f agrees on a pair of inputs, ((x, 0), y) and ((x, 1), y), then h(x, y) must be

zero. By CDS privacy, for R
$← R the distribution (x, y,ΠA(x, 0, R),ΠB(y,R))

is identical to the distribution (x, y,ΠA(x, 1, R),ΠB(y,R)), as required. �	
Next, we show that the properties of f needed for applying Theorem 8, follow

from simple requirements on h. In the following, we say that x ∈ X is a null
input if the residual function h(x, ·) is the constant zero function.

Claim 18. Let h and f be as in Claim 17. Then

1. The size of the largest complement similar rectangle of f equals to the size of
the largest 0-monochromatic rectangle of h.

The Communication Complexity of Private Simultaneous Messages 283

2. The number U of useful inputs of f is exactly two times larger than the number
of inputs that are mapped by h to zero.

3. If h has no input x for which the residual function h(x, ·) is the constant zero
function, then f is weakly non-degenerate.

Proof. The claim follows immediately by noting that for every (x, y) it holds
that f((x, 1), y) = f((x, 0), y) if and only if h(x, y) = 0. We proceed with a
formal argument.

1. Consider some complement similar rectangle R = (x′ × y) of f . For every
(x, b) ∈ x′ and y ∈ y, it holds that

f((x, b), y) = f((x, 1 − b), y),

and therefore h(x, y) = 0 and R is a 0-monochromatic rectangle of h.
2. Every input (x, y) that does not satisfy h induces an unordered pair, ((x, 1), y)

and ((x, 0), y), of useful inputs for f . Therefore, the number of (ordered) useful
inputs of f is exactly 2|h−1(0)|.

3. Fix some (x, s) ∈ X ′ and assume, towards a contradiction, that for every y
it holds that f((x, s), y) = f((x, 1 − s), y). By the definition of f this means
that h(x, y) = 0 for every y, contradicting our assumption on h. �	
Theorem 5 (restated here for convenience) now follows immediately from the

lower-bound on weakly-private fully revealing PSM (Theorem 8).

Theorem 19 (Theorem 5 restated). Let h : X × Y → {0, 1} be a predicate.
Suppose that M upper-bounds the size of the largest 0-monochromatic rectangle
of h and that for every x ∈ X , the residual function h(x, ·) is not the constant
zero function. Then, the communication complexity of any perfect CDS for h is
at least

2 log |f−1(0)| − log M − log |X | − log |Y| − 1,

where |f−1(0)| denotes the number of inputs (x, y) that are mapped to zero.

Proof. Let h : X × Y → {0, 1} be a predicate that satisfies the theorem require-
ment. That is, M upper-bounds the size of the largest 0-monochromatic rectangle
of h, there at least S inputs that are mapped to zero, and for every x ∈ X , the
residual function h(x, ·) is not the constant zero function.

Suppose that h has a perfect CDS with communication complexity of c.
By Claim 17, the function f (defined in the claim) has a weakly-private fully-
revealing PSM with complexity of at most

c + log |X | + log |Y|,
which, by Claim 18 and Theorem 8, is at least

2 log U − log M − 2 = 2 log S − log M − 1.

It follows that

c ≥ 2 log S − log M − 1 − (log |X | + log |Y|),
as required. �	

284 B. Applebaum et al.

Example 1 (The index predicate). As a sanity check, consider the index predicate
find : [k] × {0, 1}k → {0, 1} which given an index i ∈ [k] and a string y ∈ {0, 1}k

outputs y[i], the i-th bit of y. Clearly exactly half of all inputs are mapped to
0. Also, for every i the residual function f(i, ·) is not the constant zero. Finally,
every zero rectangle is of the form I × {y : y[i] = 0,∀i ∈ I} where I ⊆ [k]. This
implies that the size of any such rectangle is exactly |I| ·2k−|I| ≤ 2k−1. Plugging
this into Theorem 19, we get a lower-bound of

2(k + log k − 1) − (k − 1) − k − log k − 1 ≥ log k − 2.

References

1. Aiello, B., Ishai, Y., Reingold, O.: Priced oblivious transfer: how to sell digital
goods. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 119–135.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44987-6 8

2. Applebaum, B.: Garbled circuits as randomized encodings of functions: a primer.
Tutorials on the Foundations of Cryptography. ISC, pp. 1–44. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-57048-8 1

3. Applebaum, B., Arkis, B.: Conditional disclosure of secrets and d-uniform secret
sharing with constant information rate. In: Electronic Colloquium on Computa-
tional Complexity (ECCC), vol. 24, p. 189 (2017)

4. Applebaum, B., Arkis, B., Raykov, P., Vasudevan, P.N.: Conditional disclosure of
secrets: amplification, closure, amortization, lower-bounds, and separations. In:
Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 727–757.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7 24

5. Applebaum, B., Ishai, Y., Kushilevitz, E.: Cryptography in NC0. In: FOCS, pp.
166–175 (2004)

6. Applebaum, B., Raykov, P.: From private simultaneous messages to zero-
information arthur-merlin protocols and back. In: Kushilevitz, E., Malkin, T. (eds.)
TCC 2016. LNCS, vol. 9563, pp. 65–82. Springer, Heidelberg (2016). https://doi.
org/10.1007/978-3-662-49099-0 3

7. Barak, B., Jinong, S., Vadhan, S.P.: Derandomization in cryptography. SIAM J.
Comput. 37(2), 380–400 (2007)

8. Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols
(extended abstract). In: STOC, pp. 503–513 (1990)

9. Beimel, A., Ishai, Y., Kumaresan, R., Kushilevitz, E.: On the cryptographic com-
plexity of the worst functions. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp.
317–342. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-
8 14

10. Ben-or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In:
STOC, pp. 1–10 (1988)

11. Brickell, E.F., Davenport, D.M.: On the classification of ideal secret sharing
schemes. J. Cryptol. 4(2), 123–134 (1991)

12. Capocelli, R.M., De Santis, A., Gargano, L., Vaccaro, U.: On the size of shares for
secret sharing schemes. J. Cryptol. 6(3), 157–167 (1993)

13. Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure protocols
(extended abstract). In: STOC, pp. 11–19 (1988)

https://doi.org/10.1007/3-540-44987-6_8
https://doi.org/10.1007/978-3-319-57048-8_1
https://doi.org/10.1007/978-3-319-63688-7_24
https://doi.org/10.1007/978-3-662-49099-0_3
https://doi.org/10.1007/978-3-662-49099-0_3
https://doi.org/10.1007/978-3-642-54242-8_14
https://doi.org/10.1007/978-3-642-54242-8_14

The Communication Complexity of Private Simultaneous Messages 285

14. Chor, B., Kushilevitz, E., Goldreich, O., Sudan, M.: Private information retrieval.
J. ACM 45(6), 965–981 (1998)

15. Data, D., Prabhakaran, V.M., Prabhakaran, M.M.: Communication and random-
ness lower bounds for secure computation. IEEE Trans. Inf. Theor. 62(7), 3901–
3929 (2016)

16. Feige, U., Kilian, J., Naor, M.: A minimal model for secure computation (extended
abstract). In: STOC, pp. 554–563 (1994)

17. Gay, R., Kerenidis, I., Wee, H.: Communication complexity of conditional dis-
closure of secrets and attribute-based encryption. In: Gennaro, R., Robshaw, M.
(eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 485–502. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48000-7 24

18. Gertner, Y., Ishai, Y., Kushilevitz, E., Malkin, T.: Protecting data privacy in
private information retrieval schemes. J. Comput. Syst. Sci. 60(3), 592–629 (2000)

19. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: STOC (1987)

20. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: Juels, A., Wright, R.N., De Capitani
di Vimercati, S., (eds.), Proceedings of the 13th ACM Conference on Computer
and Communications Security, CCS 2006, Alexandria, VA, USA, 30 October–3
November 2006, vol. 1, pp. 89–98. ACM (2006)

21. Gutfreund, D., Shaltiel, R., Ta-Shma, A.: Uniform hardness versus randomness
tradeoffs for arthur-merlin games. Comput. Complex. 12(3–4), 85–130 (2003)

22. Ishai, Y.: Randomization techniques for secure computation. In: Prabhakaran, M.,
Sahai, A., (eds), Secure Multi-Party Computation of Cryptology and Information
Security Series, vol. 10, pp. 222–248. IOS Press (2013)

23. Ishai, Y., Kushilevitz, E.: Private simultaneous messages protocols with applica-
tions. In: ISTCS (Israel Symposium on Theory of Computing and Systems), pp.
174–184 (1997)

24. Ishai, Y., Kushilevitz, E.: Randomizing polynomials: a new representation with
applications to round-efficient secure computation. In: FOCS, pp. 294–304 (2000)

25. Ishai, Y., Wee, H.: Partial garbling schemes and their applications. In: Esparza,
J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol.
8572, pp. 650–662. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-43948-7 54

26. Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge University
Press, Cambridge (1997)

27. Liu, T., Vaikuntanathan, V., Wee, H.: Conditional disclosure of secrets via non-
linear reconstruction. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol.
10401, pp. 758–790. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63688-7 25

28. Miltersen, P.B., Vinodchandran, N.V.: Derandomizing Arthur-Merlin games using
hitting sets. In: FOCS, pp. 71–80 (1999)

29. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). https://
doi.org/10.1007/11426639 27

30. Shannon, C.E.: Communication theory of secrecy systems. Bell Syst. Tech. J. 28,
656–715 (1949)

https://doi.org/10.1007/978-3-662-48000-7_24
https://doi.org/10.1007/978-3-662-43948-7_54
https://doi.org/10.1007/978-3-662-43948-7_54
https://doi.org/10.1007/978-3-319-63688-7_25
https://doi.org/10.1007/978-3-319-63688-7_25
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/11426639_27

286 B. Applebaum et al.

31. Sun, H.-M., Shieh, S.-P.: Secret sharing in graph-based prohibited structures. In:
Proceedings IEEE INFOCOM 1997, The Conference on Computer Communica-
tions, Sixteenth Annual Joint Conference of the IEEE Computer and Communi-
cations Societies, Driving the Information Revolution, Kobe, Japan, pp. 718–724.
IEEE, 7–12 April 1997

32. Waters, B.: Ciphertext-policy attribute-based encryption: an expressive, efficient,
and provably secure realization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi,
A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19379-8 4

33. Yao, A.C.-C.: Protocols for secure computations (extended abstract). In: FOCS,
pp. 160–164 (1982)

https://doi.org/10.1007/978-3-642-19379-8_4

The Complexity of Multiparty PSM
Protocols and Related Models

Amos Beimel1(B), Eyal Kushilevitz2, and Pnina Nissim1

1 Department of Computer Science, Ben Gurion University, Beer Sheva, Israel
amos.beimel@gmail.com, pninani@post.bgu.ac.il

2 Department of Computer Science, Technion, Haifa, Israel
eyalk@cs.technion.ac.il

Abstract. We study the efficiency of computing arbitrary k-argument
functions in the Private Simultaneous Messages (PSM) model of [10,14].
This question was recently studied by Beimel et al. [6], in the two-party
case (k = 2). We tackle this question in the general case of PSM proto-
cols for k ≥ 2 parties. Our motivation is two-fold: On one hand, there
are various applications (old and new) of PSM protocols for construct-
ing other cryptographic primitives, where obtaining more efficient PSM
protocols imply more efficient primitives. On the other hand, improved
PSM protocols are an interesting goal on its own. In particular, we pay a
careful attention to the case of small number of parties (e.g., k = 3, 4, 5),
which may be especially interesting in practice, and optimize our proto-
cols for those cases.

Our new upper bounds include a k-party PSM protocol, for any k > 2
and any function f : [N]k → {0, 1}, of complexity O(poly(k) · Nk/2)
(compared to the previous upper bound of O(poly(k) ·Nk−1)), and even
better bounds for small values of k; e.g., an O(N) PSM protocol for the
case k = 3. We also handle the more involved case where different par-
ties have inputs of different sizes, which is useful both in practice and
for applications.

As applications, we obtain more efficient Non-Interactive secure Multi-
Party (NIMPC) protocols (a variant of PSM, where some of the par-
ties may collude with the referee [5]), improved ad-hoc PSM protocols
(another variant of PSM, where the subset of participating parties is not
known in advance [4,7]), secret-sharing schemes for uniform access struc-
tures with smaller share size than previously known, and better homo-
geneous distribution designs [4] (a primitive with many cryptographic
applications on its own).

1 Introduction

Private simultaneous messages (PSM) protocols, introduced by Feige, Kilian,
and Naor [10] and further studied by Ishai and Kushilevitz [14], are secure multi-
party computation (MPC) protocols with a minimal communication pattern. In

A. Beimel and P. Nissim—Supported by ISF grants 544/13 and 152/17.
E. Kushilevitz—Supported by ISF grant 1709/14, BSF grant 2012378, and NSF-BSF
grant 2015782.

c© International Association for Cryptologic Research 2018
J. B. Nielsen and V. Rijmen (Eds.): EUROCRYPT 2018, LNCS 10821, pp. 287–318, 2018.
https://doi.org/10.1007/978-3-319-78375-8_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78375-8_10&domain=pdf

288 A. Beimel et al.

a PSM protocol for a function f , there are k parties, each of them holds a common
random string r and a private input xi. Each party computes a message based on
its input and the common random string and sends it to a referee. The referee,
which gets the k messages but does not know the common random string, should
be able to compute f(x1, . . . , xk) without learning any additional information
about the inputs. This model, beside being interesting for its simplicity, implies
many cryptographic primitives e.g., constant round secure multi-party protocols
(without a common random string) [14,15], protocols for conditional disclosure
of secrets [6], generalized oblivious transfer protocols [14], and zero-information
Arthur-Merlin protocols [1]. Several generalizations of PSM protocols have been
studied, e.g., non-interactive (or robust) MPC [5], in which security is guaranteed
even when the referee colludes with some parties, and ad-hoc PSM protocols
[4,7], in which only a subset of the parties take part in computing the function.
It was shown that PSM protocols imply these generalizations [7,8].

The common random string is crucial for this model – without it only very
simple functions can be securely computed against an unbounded adversary;
however, given the common random string, there is a PSM protocol (i.e., with-
out any interaction) for any function [10]. Furthermore, many functions can
be computed by PSM protocols with short messages, e.g., functions that have
small non-deterministic branching programs (i.e., NL) [10] and even functions
that have small modular branching programs [14]. Beimel et al. [6] presented
improved upper-bounds for computing arbitrary functions in the 2-party PSM
model. In this paper, we present improved upper-bounds for computing arbitrary
functions in the k-party case. Then, we show that these improvements imply bet-
ter complexity for various other primitives, including homogenous distribution
designs, t-robust non-interactive secure multi-party computation protocols, and
secret-sharing schemes for, so-called, uniform access structures. We elaborate
below.

1.1 Our Results

Our main contributions are constructions of multi-party PSM protocols for every
function. Prior to our work, the length of the messages in the best known PSM
protocol for an arbitrary function f : [N]k → {0, 1} was O(Nk−1) for k ≥ 3 [10]
and O(N1/2) for k = 2 [6]. We present, for every k > 2, a PSM protocol with
messages of length O(poly(k)Nk/2); for k = 3, 4, 5 we present better protocols
(see Fig. 1). Understanding the complexity of secure computation with small
number of parties is motivated by practical systems and was done in other secure
computation contexts (see, e.g., [13]). We also design PSM protocols for functions
in which the inputs have different lengths. For example, for any 3-argument
function f : [Nα] × [Nα] × [N] → [N] for some α ≥ 1 (i.e., a function in
which the largest two input domains are the same), we design a PSM protocol
whose communication complexity is O(N (2α+1)/3) (that is, proportional to the
geometric average of the domains).

The Complexity of Multiparty PSM Protocols and Related Models 289

Num. of parties Complexity citation

2 O(N1/2) [6]
3 O(N) this paper
4 O(N5/3) this paper
5 O(N7/3) this paper

k ≥ 6 O(k3 · Nk/2) this paper

Fig. 1. Complexity of PSM protocols for an arbitrary functions.

There are two additional advantages for our protocols for k ≥ 6:

– They can handle long outputs with the same message length, that is for every
function f : [N]k → [Nk], we construct a PSM protocol with complexity
O(k3 · Nk/2).1

– By increasing the complexity by a poly(log N) factor, the protocol can be
made locally computable; that is, each party, holding an input from [N], can
compute log N messages, where each message depends on a single bit of the
input. This property is useful when we design PSM protocols for some of
the applications (e.g., when constructing NIMPC protocols from our PSM
protocols; see below).

Following [6], our protocols use techniques from private information retrieval
(PIR) [9]; specifically, we use the cube approach of [9], where a function f :
[N]k → {0, 1} is represented by a d-dimensional cube, for some integer d. The
2-party PSM protocol of [6] uses a 4-dimensional cube. For k = 3, 4, 5 we use a
3-dimensional cube, and for k ≥ 6 we use a 2-dimensional cube. These turn out
to be the optimal values of d for our approach. The fact that we can only use
integral values for d results in the “somewhat unnatural” exponents in the Fig. 1.
As the number of dimensions in our protocols for k ≥ 4 is smaller than the
number of parties, our protocols have to address a few problems that were not
relevant in the 2-party protocol of [6].

We note that, by simulation arguments, if for every N , every function f :
[N]k → {0, 1} has a k-party PSM protocol with message length O(Nα) for
some constant α, then every function g : [N]2 → {0, 1} has a 2-party PSM
protocol with message length O(Nα/�k/2�). Thus, if one can improve the message
length for k-party PSM protocols for an arbitrary function beyond O(Nk/4) for
an even k, then this would yield 2-party PSM protocols with message length
O(Nα) for α < 1/2. Similarly, any improvement for k-party PSM protocols
for k > 6, would imply an improvement for 6-party PSM protocols compared
to our protocols. Thus, to improve the complexity of k-party PSM protocols
for arbitrary functions, one might want to start with designing k-party PSM
protocols for small values of k.

1 As the inputs are from [N]k, we can assume without loss of generality that the size
of the domain of the outputs of f is at most Nk.

290 A. Beimel et al.

1.2 Applications

We show that our PSM protocols imply the following constructions.

Non-Interactive secure Multi-Party (NIMPC) protocols. A non-interactive MPC
protocol [5] is a PSM protocol in which the security is guaranteed even when
the referee colludes with some parties. Specifically, a k-party NIMPC protocol is
t-robust if it is secure against any coalition of the referee and at most t parties,
and it is fully robust if it is k-robust. Prior to our work, the length of mes-
sages in the best known fully robust NIMPC protocol for an arbitrary function
f : [N]k → {0, 1} was O(poly(log N, k) · Nk) [19] (improving on [5]). No better
t-robust protocols were known for any t > 0. We construct t-robust NIMPC
protocols for any function f : [N]k → {0, 1} with complexity Õ(Nk/2+t); that
is, we improve the complexity when t < k/2. Our construction is based on an
information-theoretic transformation of [8] that takes any PSM (i.e., 0-robust
NIMPC) protocol and transforms it into a t-robust NIMPC protocol. An imme-
diate application of this transformation yields a t-robust NIMPC protocol with
complexity Õ(Nk/2+t+1). We use properties of our protocols and of the trans-
formation of [8] to improve the complexity by a factor of N . For example, we
construct a fully-robust 3-party NIMPC protocol with complexity Õ(N2.5) (com-
pared to O(N3) using the transformation as is). Thus, for 3 parties, we improve
the complexity of fully-robust NIMPC protocols compared to [19].

Ad-hoc PSM protocols. A k-out-of-n ad-hoc PSM protocol [4,7] is a PSM proto-
col with n parties, where only k parties, whose identity is not known in advance,
actually participate in the execution of the protocol. For example, think of an
election, where only some of the potential voters will end up voting. Using a
transformation, presented in [7], from a t-party PSM protocol for a symmetric
function to an ad-hoc PSM protocol for the same function, we construct a k-out-
of-n ad-hoc PSM protocol for any symmetric function f : [N]k → {0, 1} with
communication complexity O(ek · k6 · log n · Nk/2).

Distribution designs. The goal of a distribution design, introduced in [4], is to
find a joint distribution on N random variables that satisfies a given set of
constraints on the marginal distributions. Each constraint can either require
that two sets of variables are identically distributed or, alternatively, that two
sets of variables have disjoint supports. Distribution design generalizes many
cryptographic primitives, such as secret-sharing, PSM protocols, and NIMPC
protocols. We consider k-homogeneous sets of constraints, where all sets in the
constraints are of size exactly k. In [4], it was shown that every k-homogeneous
set of constraints without contradictions can be realized by a distribution design
such that the size of the support of each variable is O(

(
N
k

)
k log N). We show

that, for every k-homogeneous set of constraints, we can define a symmetric
function f : [N]k → (

N
[k]

)
such that any ad-hoc PSM protocol Π for f can

be used to construct a distribution design realizing the constraints, where each
variable is a message of a party in Π. Using the 2-party PSM of [6] and the

The Complexity of Multiparty PSM Protocols and Related Models 291

two transformations described above, we get a distribution design for every
2-homogeneous set of constraints in which the size of the support of each variable
is O(log2 N · √

N). Using our constructions of PSM protocols, we get a distri-
bution design for every k-homogeneous set of constraints in which the support
of each variable is of size O(k6ek log N · Nk/2). For 3 ≤ k ≤ 5, we get better
distribution designs.

Conditional Disclosure of Secrets. In Conditional Disclosure of Secrets (CDS)
protocols, introduced in [12], there are k parties, a referee, and a function f :
[N]k → {0, 1}. As in the PSM model, each party gets a common random string
r and an input xi. In addition, all parties (excluding the referee) have a secret s.
Each party Pi sends one message to the referee, based on r, xi and s. The referee,
which in the CDS setting knows the inputs x1, . . . , xk, should learn s if and only
if f(x1, . . . , xk) = 1. It was shown in [2] that every PSM protocol for f implies a
CDS protocol for f with the same complexity. Thus, our PSM protocols imply
CDS protocols. However, there are direct constructions of CDS protocols that are
much more efficient than the known PSM protocols. Liu, Vaikuntanathan, and
Wee [16] showed a CDS protocol for an arbitrary 2-party function f : [N]×[N] →
{0, 1} with communication complexity 2O(

√
log N log log N) = No(1). Very recently,

Liu, Vaikuntanathan, and Wee [17] have shown a construction of k-party CDS
protocols for any function f : [N]k → {0, 1} with complexity 2Õ(

√
k log N).

We show that CDS protocols imply secret-sharing schemes for uniform access
structures. An access structure is t-uniform if all sets of size less than t are
unauthorized, all sets of size greater that t are authorized, and sets of size t
can be either authorized or unauthorized. 2-uniform access structures are called
forbidden graph access structures [18] and were studied in, e.g., [2,3]. Secret-
sharing schemes for forbidden bipartite graph access structures with N parties
are equivalent to 2-party CDS protocols for functions f : [N]2 → {0, 1}. We
show that if every k-party function f : {0, 1}k → {0, 1} has a CDS protocol with
communication complexity Com(k), then every t-uniform access structure with
k parties can be realized by a secret-sharing scheme with share size k · Com(k).
Combined with the result of [17], we get that every t-uniform access structures
with k parties can be realized by a secret-sharing scheme with share size 2Õ(

√
k).

1.3 Discussion

CDS protocols vs. PSM protocols. The models of CDS and PSM look similar
except that, in CDS protocols, the referee knows the inputs and should learn the
secret if and only if some function of the inputs returns 1, while in PSM protocols
the referee should learn the value of the function without learning additional
information about the inputs. It was shown in [6,12] that a PSM protocol for f
implies a CDS protocol for f with the same complexity. This similarity and the
recent dramatic efficiency improvements for CDS protocols [16,17] may indicate
that better PSM protocols also exist.

292 A. Beimel et al.

There are, however, some differences between the models. In [11], it was
shown that a CDS protocol for a function f : [N] × [N] → {0, 1} can be con-
structed from a CDS for the index function – a function where P1 holds a list
of length N , party P2 holds an index i and the referee should reconstruct the
secret if and only if the ith element in the list is 1. The CDS protocols of [16] for
an arbitrary function build on a construction of a CDS protocol for the index
function. The PSM of [10] for an arbitrary function can be seen as, implicitly,
constructing a PSM for the index function. However, the correctness of PSM
protocols (even without the security requirement) implies that the communica-
tion complexity of any PSM protocol for the index function is Ω(N). Thus, for
non-binary functions there is a separation between the CDS and PSM models.
It is open if such huge separation exists for Boolean functions. We note that our
constructions of PSM protocols use PSM protocols for the (k-dimensional) index
function, however with shorter lists.

An alternative approach. We next describe an alternative approach for con-
structing PSM protocols with communication complexity that is better than
that of previously known protocols, but is worse than the complexity of the pro-
tocols constructed in this paper. We explain some difficulties in applying this
approach. Suppose we want to construct a 4-party PSM protocol for a function
f : [N]4 → {0, 1} using a 2-party PSM protocol. Viewing the function f as a
two-argument function with domain [N2] × [N2], by [6], it has a 2-party PSM
protocol with complexity O(N), where the first message m1 depends on the
inputs of the first two parties and the second message m2 depends on the inputs
of the other two parties. Thus, the first two parties can execute a PSM protocol
for computing m1. This can be done by O(N) invocations of a (2-party) PSM
protocol with a binary output. If the parties could have used the PSM of [6],
which has complexity O(N0.5), then the resulting PSM protocol would have
complexity O(N1.5). However, we do not know how to use the PSM protocol
of [6] here, since it only applies to deterministic functions and the messages of
the 2-party PSM protocol depend on the common randomness.2 Instead, one can
apply the protocol of [10], which can be used for randomized functions as well,
but has complexity O(N). This gives a protocol with complexity O(N2). More
generally, for k-party functions this approach results in a PSM with complexity
O(N3k/4−1). This approach is described in more details in Sect. 6.

Our protocols can be viewed as a generalization of the above approach.
Instead of using the PSM protocol of [10] to compute the message of a 2-party
protocol, we use a special purpose PSM protocol to compute the message. For
example, our k-party protocol from Sect. 4 can be viewed as simulating the
2-party PSM protocol from Sect. 3.2.

2 We can treat the random string generating the message as a common input (or as
an input of, e.g, P1). However, this increases the length of the inputs, resulting in a
non-efficient protocol.

The Complexity of Multiparty PSM Protocols and Related Models 293

2 Preliminaries

In this section we define PSM protocols and describe two PSM protocols that
will be used in this paper.

2.1 Private Simultaneous Messages Protocols

In a PSM protocol, k parties P1, . . . , Pk hold a common random string r and
inputs x1, . . . , xk, respectively; each party Pi sends a single message to a ref-
eree, based on r and its xi, so that the referee learns the value of a function
f(x1, . . . , xk) but nothing else. It is formally defined as follows:

Definition 2.1 (PSM protocols – Syntax and correctness). Let X1, . . . ,
Xk, and Z be finite domains. A private simultaneous messages (PSM) protocol
P, computing a k-argument function f : X1 × · · · × Xk → Z, consists of:

– A finite domain R of common random inputs, and k finite message domains
M1, . . . ,Mk.

– Message computation algorithms Enc1, . . . ,Enck, where Enci : Xi × R →
Mi.

– A reconstruction algorithm Dec : M1 × · · · × Mk → Z.

We say that the protocol P is correct (with respect to f) if Dec(Enc1(x1, r),
. . . ,Enck(xk, r)) = f(x1, . . . , xk), for every input (x1, . . . , xk) ∈ X1 × · · · × Xk

and every random input r ∈ R. The communication complexity of PSM protocol
P is defined as

∑k
i=1 log |Mi|. The randomness complexity of PSM protocol P is

defined as log |R|.
The security of a PSM protocol requires that the message distribution seen

by the referee on input x1, . . . , xk can be generated by a simulator that has
access only to f(x1, . . . , xk); that is, everything that can be learned from the
PSM protocol can be learned from the output of f .

Definition 2.2 (PSM protocols – Security). A PSM protocol P is secure
with respect to f if there exists a randomized algorithm Sim such that, for every
input (x1, . . . , xk) ∈ X1×· · ·×Xk, the distribution of messages (Enc1(x1, r), . . . ,
Enck(xk, r)) induced by uniformly choosing a common random string r ∈ R and
the distribution of the output of Sim(f(x1, . . . , xk)) are identical.

Ishai and Kushilevitz [14] have shown that every function that has a small
modular or non-deterministic branching program can be computed by an efficient
PSM protocol. We will use their result for a deterministic branching program.

Theorem 2.3 ([10,14]). Let BP = (V,E, φ, s, t) be a deterministic branching
program of size α(k) computing a function f : {0, 1}k → {0, 1}. Then, there
exist a PSM protocol for f with communication and randomness complexity O(k ·
α(k)2).

294 A. Beimel et al.

Notation. Denote by [N] the set {1, 2, . . . , N}. For a finite set S, denote choosing
a random element i from S with a uniform distribution by i ∈R S; similarly,
denote choosing a random subset T of S with a uniform distribution by T ⊆R S.

2.2 A PSM Protocol for the Index Function

In this section, we show a construction of [10] of a PSM protocol for the index
function defined below.

Definition 2.4. We represent a string D ∈ {0, 1}Nk−1
as a (k−1)-dimensional

cube (array), that is, D = (Dx2,...,xk
)x2,...,xk∈[N], where each Dx2,...,xk

is a bit.
For a (k − 1)-dimensional cube D, and a position (i2, . . . , ik) let Di2,...,ik

denote
the value in position (i2, . . . , ik) in the cube D. We define a k-argument function
indN,k : {0, 1}Nk−1 × [N] × · · · × [N] → {0, 1}, whose inputs are a (k − 1)-
dimensional cube and k−1 indices, by indN,k(D,x2, . . . , xk) = Dx2,...,xk

; that is,
indN,k(D,x2, . . . , xk) returns the value of D in the position indexed by x2, . . . , xk.
When N, k will be clear from the context, we will write ind instead of indN,k.

For sake of completeness, we next present a PSM protocol for the index
function, based on a PSM from [10]; for simplicity, we assume here that N is a
power of 2 (and so values in [N] can be represented by log N -bit strings).

Claim 2.5 ([10]). There is a k-party PSM protocol PindN,k
computing the func-

tion indN,k with communication and randomness complexity is O(kNk−1).

Proof. In a non-secure protocol for indN,k, party P1 would send its input D and
parties P2, . . . , Pk would send their inputs, x2, . . . , xk respectively, to the referee
who could easily compute Dx2,...,xk

. However, in a secure protocol, the referee
should not learn information on D and x2, . . . xk except for Dx2,...,xk

.
To hide the indices x2, . . . , xk we permute D: we give (k − 1) random

strings r2, . . . , rk ∈ [N] to the parties as their common randomness. Now,
party P1 creates a new cube D′ such that D′

x2,...,xk
= Dx2⊕r2,...,xk⊕rk

for
every x2, . . . , xk ∈ [N]. Party P1 sends to the referee D′ and parties P2, . . . , Pk

send to the referee x2 ⊕ r2, . . . , xk ⊕ rk respectively. The referee computes
D′

x2⊕r2,...,xk⊕rk
= D(x2⊕r2)⊕r2,...,(xk⊕rk)⊕rk

= Dx2,...,xk
as required.

In the above protocol the referee does not learn information on x2, . . . xk;
however, it learns information on the cube D because party P1 sends D′, which
is a shift of the cube D. We fix this protocol by masking D′ and revealing to
the referee only the mask of position x2, . . . , xk. Specifically, we choose (k − 1)
random strings r2, . . . , rk ∈ {0, 1}Nk−1

; each string is viewed as a (k − 1)-
dimensional cube. Party P1 computes D′′ = D′ ⊕ r2 ⊕ · · · ⊕ rk and sends D′′,
which is now a random string. Each party Pj , for j = 2, . . . , k, sends xj ⊕ rj

and also rj
i2,...,ij−1,xj⊕rj ,ij+1,...,ik

for every i2, . . . , ij−1, ij+1, . . . , ik ∈ [N] (the
length of the message of Pj is log N + Nk−2). The referee computes Dx2,...,xk

as
D′′

x2⊕r2,...,xk⊕rk
⊕ (

⊕k
j=2 rj

x2⊕r2,...,xk⊕rk
). To see that the protocol is secure note

that for each entry in the cube the referee gets at most k − 2 masks (except for

The Complexity of Multiparty PSM Protocols and Related Models 295

the entry (x2 ⊕ r2, . . . , xk ⊕ rk) for which the referee gets all k − 1 masks). The
communication complexity of this protocol is O(Nk−1 +k ·Nk−2) = O(k ·Nk−1)
and the randomness complexity is O(k · Nk−1). 	

Remark: The dominant contribution to the complexity of the above protocol
comes from the size of the cube (i.e., Nk−1). We will sometimes need a natural
extension of Pind, where the dimensions are not necessarily of the same size. It
is not hard to see that the complexity of this variant remains proportional to
the size of the cube.

2.3 A PSM Protocol for S ⊕ {x}
For a set S and an element i, let S⊕{i} denote the set S\{i} if i∈S, and the set
S∪{i} otherwise.

Definition 2.6. Define the function Sxor : {0, 1}Nk ×[N]×· · ·×[N] → {0, 1}Nk

as the function, whose inputs are a string of length Nk (interpreted as
a set contained in [Nk]) and k elements from [N], where Sxor outputs a
string of length Nk (again, interpreted as a set contained in [Nk]) such that
Sxor(S, x1, . . . , xk) = S ⊕ {x1 ◦ x2 ◦ · · · ◦ xk} (where x1 ◦ x2 ◦ · · · ◦ xk is the
concatenation of the k strings, interpreted as an element of [Nk]).

We construct a k-party PSM protocol for Sxor, where P1 holds S and x1 and
P2, . . . , Pk hold x2, . . . , xk, respectively.3

Claim 2.7. There exists a PSM protocol PSxor computing the function Sxor with
communication and randomness complexity O(k3 · Nk).

Proof. Let S′ = Sxor(S, x1, . . . , xk) and for every i1, . . . , ik ∈ [N] denote Si1,...,ik

and S′
i1,...,ik

as the i1 ◦ · · · ◦ ikth bits of the strings S and S′ respectively.
To compute Sxor, for every bit of S′ we execute a PSM protocol comput-

ing the bit as explained below. For each (i1, . . . , ik) such that (i1, . . . , ik) =
(x1, . . . , xk), it holds that S′

i1,...,ik
= Si1,...,ik

, and S′
x1,...,xk

= Sx1,...,xk
⊕1. Let �j

be 1 if ij = xj and 0 otherwise. Notice that S′
i1,...,ik

= Si1,...,ik
⊕(�1∧�2∧. . .∧�k).

Thus, every bit of S′
i1,...,ik

depends only on one bit of S and on �1, . . . , �k,
where party Pj can locally compute �j from xj and ij . Define the function
g : {0, 1}k+1 → {0, 1} such that g(s, �1, . . . , �k) = s⊕ (�1 ∧ �2 ∧ . . .∧ �k) for every
s, �1, . . . , �k ∈ {0, 1}. We have shown that S′

i1,...,ik
could be computed using Nk

copies of a PSM for g.
Next, we show the existence of an efficient k-party PSM protocol Pg for g,

where P1 holds the inputs s and �1 and each party Pj , for 2 ≤ j ≤ k, holds
the input �j . There is a simple deterministic branching program of size O(k)
computing g, thus, by Theorem 2.3, we get that g has an efficient PSM protocol
Pg with complexity O(k3).

3 When we use this PSM protocol, all parties know S. We do not use this advantage
as it cannot significantly improve the complexity of the protocol.

296 A. Beimel et al.

Protocol PSxor computing Sxor executes the protocol Pg for every bit of
S′, namely Nk times. The correctness and privacy of protocol PSxor follows
immediately from the correctness and privacy of the PSM protocol Pg. The
complexity of PSxor is O(k3Nk). 	

3 A 3-Party PSM Protocol for an Arbitrary Function

In this section we show that every function f : [N]3 → {0, 1} has a PSM protocol
with communication and randomness complexity of O(N). Our construction is
inspired by the cubes approach of [9]. We describe this approach in Sect. 3.1.
Next, as a warm-up, we construct a 2-party PSM protocol using this approach
in Sect. 3.2. We describe the 3-party PSM protocol in Sect. 3.3.

3.1 The Cube Approach

We start with a high level description of the cube approach; specifically, for the
case of 2-dimensional cubes, we present a PIR protocol with 4 servers from [9].
Recall that in a PIR protocol, a client holds an index x, each server holds a copy
of database D, and the goal of the client is to retrieve Dx without disclosing
information about x.

The starting point of the cube approach [9] (restricted here to 2 dimensions)
is viewing the database D as a 2-dimensional cube containing N2 bits, that is
D = (Di1,i2)i1,i2∈[N]. Correspondingly, the index that the client wishes to retrieve
is viewed as a pair x = (x1, x2). The protocol starts by the client choosing a
random subset for each dimension, i.e. S1, S2⊆R [N]. The client then creates
4 queries of the form (T1, T2) where each Tj is either Sj itself or Sj⊕{xj};
i.e. (S1, S2), (S1 ⊕ {x1}, S2), (S1, S2 ⊕ {x2}), and (S1 ⊕ {x1}, S2 ⊕ {x2}); we
denote these 4 queries by q00, q10, q01, q11, respectively. The client sends each
query to a different server (2·N bits to each server). A server, which gets a
query (T1, T2), replies with a single bit which is the XOR of all bits of D in
the sub-cube T1⊗T2, i.e.

⊕
i1∈T1,i2∈T2

Di1,i2 . The observation made in [9] is that
each element of the cube appears in an even number of those 4 sub-cubes except
the entry x = (x1, x2) that appears exactly once. Therefore, taking the XOR of
the 4 answer bits, all elements of the cube are canceled except for the desired
element in position x. Each server gets no information about x from its query. For
example, in the query q01, the sets S1 and S2 ⊕ {x2} are uniformly distributed,
independently of x1, x2.

The above approach can be generalized to any number of dimensions. Specif-
ically, for 3 dimensions, the client chooses 3 sets S1, S2, S3 ⊆ [N] and generates
8 queries q000, . . . , q111.

3.2 A 2-Party PSM Protocol

Given a function f : [N] × [N] → {0, 1}, we construct a 2-party PSM protocol
P2 for f using the above approach. This PSM protocol is not as efficient as the

The Complexity of Multiparty PSM Protocols and Related Models 297

PSM protocol of [6]; we present it to introduce the ideas we use in our PSM
protocol for k > 2 parties. The protocol is formally described in Fig. 2.

Next, we give an informal description of an insecure protocol, and then we
fix it so it will be secure. We associate the function f with an N2-bit database,
viewed as a 2-dimensional cube (that is, the (x, y) entry in the database is
f(x, y)). The common randomness of the two parties is viewed as two random
subsets, one for each dimension, i.e. S1, S2⊆R [N]. In the PSM protocol, party
P1 holds x1, party P2 holds x2, and the referee wishes to compute f(x1, x2), i.e.
the XOR of the answers to the same 4 queries mentioned above. This should
be done without learning information about x1, x2 (besides what follows from
f(x1, x2)). In the protocol, P1 computes the answers, denoted a00, a10, to the
queries q00, q10 (using S1, S2 and its input x1). For example, the answer to the
query q10 is

a10 = ⊕i1∈S1⊕{x1},i2∈S2f(i1, i2).

It then sends these answers to the referee. Similarly, P2 computes the answer,
denoted a01, to the query q01 and sends it to the referee. Now, the referee has
the answers to 3 of the 4 queries and the only query that remains unanswered
is q11. To compute the answer to q11, party P1 sends to the referee S1⊕{x1}
and P2 sends S2⊕{x2}, i.e. the referee gets the query q11 and can compute the
corresponding answer a11 (as it knows the function f). Now, the referee has the
answers to all 4 queries and it can compute f(x1, x2) = a00⊕a10⊕a01⊕a11. The
correctness of this protocol follows immediately from the correctness of the cube
approach.

This protocol is not secure because the referee learns the answers to all
4 queries and this could leak information about x1 and x2. In order to deal
with this problem, we add one more random bit to the common randomness
of the two parties, i.e., b ∈R {0, 1}. Party P1 sends to the referee a00⊕a10⊕b
instead of a00, a10, and P2 sends a01⊕b instead of a01. Now, the referee only gets
random bits from the parties (from the randomness of S1, S2, b) and it learns
only f(x1, x2). The communication complexity and randomness complexity of
this protocol are O(N).

More formally, to argue that the PSM protocol P2 described in Fig. 2 is
secure, we construct a simulator whose input is f(x1, x2) and whose output
is two messages distributed identically to the messages in P2. The simulator
first chooses with uniform distribution two sets T1, T2 ⊆R [N] and a ran-
dom bit c ∈ {0, 1}. It then computes the answer to the query q11, namely,
a11 = ⊕i1∈T1,i2∈T2f(i1, i2). Finally, it outputs (c, T1), (c ⊕ f(x1, x2) ⊕ a11, T2).
Note that in the messages of P2 the sets S1 ⊕ {x1} and S2 ⊕ {x2} are dis-
tributed independently with uniform distribution. Furthermore, m1 is uniformly
distributed given the two sets, since we mask m1 with a random bit b. Finally, by
the correctness of P2, given m1, S1 ⊕{x1}, S2 ⊕{x2}, and f(x1, x2), the value of
m2 is fully determined (as the sets determine a11). Thus, the simulator’s output
is distributed as the messages generated in protocol P2 on inputs x1, x2.

298 A. Beimel et al.

Protocol P2

Common randomness: Both parties share uniform random strings:

– S1, S2⊆R [N] and b∈R{0, 1}.
The protocol:

1. P1, holding x1, computes the answers a00, a10 to the queries q00 = (S1, S2)
and q10 = (S1 ⊕ {x1}, S2) respectively. It then computes q111 = S1 ⊕ {x1}.
Finally, it sends m1 = a00⊕a10⊕b and q111 to the referee.

2. P2, holding x2, computes the answer a01 to the query q01 = (S1, S2⊕{x2}).
It then computes q211 = S2 ⊕ {x2}. Finally, it sends m2 = a01⊕b and q211
to the referee.

3. The referee computes the answer a11 to the query q11 = (q111, q211) =
(S1 ⊕ {x1}, S2 ⊕ {x2}). The referee computes f(x1, x2) = m1⊕m2⊕a11.

Fig. 2. A 2-party PSM protocol P2 for a function f : [N] × [N] → {0, 1}.

3.3 A 3-Party PSM Protocol

In this section, we show how to construct a PSM protocol P3 for any function
f : [N]3 → {0, 1} with communication and randomness complexity O(N). As in
the 2-party case above, our construction is inspired by the cube approach [9], as
described in Sect. 3.1, using 3-dimensional cubes.

Again, we first give an informal description of an insecure protocol, and then
we fix it so it will be secure. The protocol P3 is formally described in Fig. 3. We
associate f with an N3-bit database that is viewed as a 3-dimensional cube. The
common randomness of the 3 parties consists of 3 random subsets, one for each
dimension, i.e., S1, S2, S3⊆R [N]. The referee wishes to compute f(x1, x2, x3), i.e.
the XOR of the answers to 8 queries. Each query is of the form (T1, T2, T3) where
each Tj is either Sj or Sj⊕{xj}. Party P1 computes the answers a000, a100 to the
queries q000, q100 respectively, and sends these answers to the referee. Similarly,
party P2 (resp. P3) computes the answer a010 (resp. a001) to the query q010 (resp.
q001) and sends the answer to the referee. There is no party that knows the
values of two inputs from {x1, x2, x3} and therefore, no party can answer queries
of weight 2; e.g. q110. However, using an idea of [9], party P1 can provide the
answers to the queries (S1⊕{x1}, S2⊕{�}, S3) for all possible values of � ∈ [N].
This is a list of length N in which the entry corresponding to � = x2 is the desired
answer for the query q110. Party P1 computes the N -bit list and represents it
as a 1-dimension cube; party P2 holds x2, which is the position of the answer
a110 in the list. Now, P1 and P2 execute the (2-party) PSM protocol Pind for the
index function, described in Sect. 2.2, which enables the referee to compute the
answer to the query q110 without leaking any additional information. Similarly,
P1 and P3 (resp. P2 and P3) execute the PSM protocol Pind that enables the
referee to compute the answer to the query q101 (resp. q011). Finally, party P1

The Complexity of Multiparty PSM Protocols and Related Models 299

Protocol P3

Common randomness: The three parties share uniform random strings:

– S1, S2, S3⊆R [N].
– r110, r101, r011 ∈R {0, 1}O(N) required for the PSM protocol Pind with a

list of length N .
– b100, b010, b001, b110, b101, b011 ∈R {0, 1}, b000 = b100 ⊕ b010 ⊕ b001 ⊕ b110 ⊕

b101 ⊕ b011.

The protocol:

1. Party P1:
– Computes the answers a000, a100 to the queries q000 = (S1, S2, S3) and

q100 = (S1 ⊕ {x1}, S2, S3), respectively.
– Computes the answers to all queries (S1 ⊕ {x1}, S2 ⊕ {�}, S3) for all

possible values of � ∈ [N] and represents the answers as a 1-dimension
database (a1

110, . . . , a
N
110). Using D110 = (a1

110 ⊕ b110, . . . , a
N
110 ⊕ b110)

and common randomness r110, party P1 computes m1
110 – the message

of the first party in the 2-party PSM protocol Pind.
– Computes the answers to all queries (S1 ⊕ {x1}, S2, S3 ⊕ {�}) for all

possible values of � ∈ [N], and represents the answers as a 1-dimension
database (a1

101, . . . , a
N
101). Using D101 = (a1

101 ⊕ b101, . . . , a
N
101 ⊕ b101)

and common randomness r101, computes m1
101 – the message of the

first party in the 2-party PSM protocol Pind.
– Sends m000 = a000⊕b000, m100 = a100⊕b100, m1

110, m1
101, and S1⊕{x1}

to the referee.
2. Party P2:

– Computes the answer a010 to the query q010 = (S1, S2 ⊕ {x2}, S3).
– Using x2 and common randomness r110, computes m2

110 – the message
of the second party in the 2-party PSM protocol Pind.

– Computes the answers to all queries (S1, S2 ⊕ {x2}, S3 ⊕ {�}) for all
possible values of � ∈ [N] and represents the answers as a 1-dimension
database (a1

011, . . . , a
N
011). Using D011 = (a1

011 ⊕ b011, . . . , a
N
011 ⊕ b011)

and common randomness r011, computes m2
011 – the message of the

first party in the PSM protocol Pind.
– Sends m010 = a010⊕b010, m2

110, m2
011, and S2 ⊕ {x2} to the referee.

3. Party P3:
– Computes the answer a001 to the query q001 = (S1, S2, S3 ⊕ {x3}).
– Using x3 and common randomness r101, computes m3

101 – the message
of the second party in the 2-party PSM protocol Pind.

– Using x3 and common randomness r011 it computes m2
011 – the mes-

sage of the second party in the 2-party PSM protocol Pind.
– Sends m001 = a001⊕b001, m3

101, m3
011, and S3 ⊕ {x3} to the referee.

4. The referee:
– Computes the answer a111 to the query q111 = (S1 ⊕ {x1}, S2 ⊕

{x2}, S3 ⊕{x3}) (using the sets received from P1, P2, P3 and the truth
table of f).

– Using the PSM messages m1
110, m2

110 the referee computes D110
x2 . Using

the PSM messages m1
101, m3

101 the referee computes D101
x3 . Using the

PSM messages m2
011, m3

011 the referee computes D011
x3 .

– Output f(x) = m000⊕m100⊕m010⊕m001⊕D110
x2 ⊕D101

x3 ⊕D011
x3 ⊕a111.

Fig. 3. A 3-party PSM protocol P3 for a function f : [N]3 → {0, 1}.

300 A. Beimel et al.

sends to the referee S1 ⊕ {x1}, party P2 sends S2 ⊕ {x2}, and party P3 sends
S3 ⊕{x3}. The referee gets the query q111 and computes the answer a111. It now
has the answers to all 8 queries and it can compute f(x1, x2, x3) as the XOR of
these 8 answers.

As in the 2-party case, this protocol is not secure because the referee learns
the answers to all 8 queries, which could leak information about x1, x2, and x3.
To deal with that, we mask these answers so that the referee gets random bits
from the parties whose sum is f(x1, x2, x3) (the details of applying these masks
appear in Fig. 3).

Theorem 3.1. Let f : [N]3 → {0, 1} be a function. The protocol P3 is a secure
PSM protocol for f with communication and randomness complexity O(N).

Proof. First, we argue that the protocol is correct. The output of the referee is

m000 ⊕ m100 ⊕ m010 ⊕ m001 ⊕ D110
x2

⊕ D101
x3

⊕ D011
x3

⊕ a111

= (a000 ⊕ b000) ⊕ (a100 ⊕ b100) ⊕ (a010 ⊕ b010) ⊕ (a001 ⊕ b001) ⊕ (ax2
110 ⊕ b110)

⊕ (ax3
101 ⊕ b101) ⊕ (ax3

011 ⊕ b011) ⊕ a111

= a000 ⊕ a100 ⊕ a010 ⊕ a001 ⊕ ax2
110 ⊕ ax3

101 ⊕ ax3
011 ⊕ a111 (1)

= f(x1, x2, x3), (2)

where the equality in (1) follows from the fact that the exclusive or of the b’s is
zero, and the equality in (2) follows from the correctness of the cube approach.

To argue that protocol P3 is secure, we construct a simulator whose input is
f(x1, x2, x3) and whose output is three messages distributed as the messages in
P3. The simulator on input f(x1, x2, x3) does the following:

1. Chooses three random sets T1, T2, T3 ⊆R [N] and 6 random bits c100, c010,
c001, c110, c101, c011 ∈R {0, 1}.

2. Computes the answer to the query q111, namely,

a111 = ⊕i1∈T1,i2∈T2,i3∈T3f(i1, i2, i3).

3. Computes c000 = f(x1, x2, x3) ⊕ a111 ⊕ c100 ⊕ c010 ⊕ c001 ⊕ c110 ⊕ c101 ⊕ c011.
4. Invokes the simulator Simind of protocol Pind 3 times:

– (m1
110,m

2
110) ← Simind(c110),

– (m1
101,m

3
101) ← Simind(c101),

– (m2
011,m

3
011) ← Simind(c011).

5. Outputs

(c000, c100,m1
110,m

1
101, T1), (c010,m2

110,m
2
011, T2), (c001,m3

101,m
3
011, T3).

Note that in the messages of protocol P3 the sets S1 ⊕ {x1}, S2 ⊕ {x2},
and S3 ⊕ {x3} are distributed independently with uniform distribution. Fur-
thermore, m100, m010, m001, D110

x2
,D101

x3
,D011

x3
are uniformly distributed given

these 3 sets, since we mask them using independent random bits. Since D110
x2

and c110 are both random bits, the output of Simind(c110) is distributed as

The Complexity of Multiparty PSM Protocols and Related Models 301

the messages of Pind(D110, x2). The same holds for the other two invocations
of Simind. Finally, given the sets S1 ⊕ {x1}, S2 ⊕ {x2}, S3 ⊕ {x3}, the bits
m100,m010,m001,D

110
x2

,D101
x3

, D011
x3

, a111, and f(x1, x2, x3), the value of m000 is
fully determined (by the correctness of P3 and by the fact that the above sets
determine a111). Thus, the simulator’s output is distributed as the messages
generated in protocol P3 on inputs x1, x2, x3.

We next analyze the complexity of P3. The communication and randomness
complexity of each invocation of Pind is linear in the length of the list, i.e.,
it is O(N). In addition, parties P1, P2, P3 send the subsets S1⊕{x1}, S2⊕{x2},
S3⊕{x3} respectively, which are of size N , and O(1) bits each for the answers
of the queries q000, q100, q010, q001. Therefore, the communication complexity and
randomness complexity of our PSM protocol P3 is O(N). 	

4 A k-Party PSM Protocol for an Arbitrary Function
and Some Extensions

In this section, we show how to construct a k-party PSM protocol Pk for a
function f : [N]k → [Nk] with communication and randomness complexity O(k3·
Nk/2). The above complexity is achieved even when the output is of length
k log N (as the input length is k log N , we can assume, without loss of generality,
that the output length is at most k log N). In general, when the output of f is
an L-bit string, one can execute a PSM protocol for every bit of the output, and
the complexity of the PSM protocol for f is L times the complexity of a PSM
protocol for a Boolean function. In protocol Pk, we do not pay any penalty for
long outputs. We also present better protocols for 4 and 5 parties.

We first describe our construction for an even k. Our construction is inspired
by our 2-party PSM protocol presented in Sect. 3.2. The protocol is formally
described in Fig. 4. Next, we give an informal description of the protocol for the
case that the range of f is Boolean. We associate f with an Nk-bit database
that is viewed as a 2-dimensional cube, where each dimension of the cube is of
size Nk/2. Correspondingly, each input x = (x1, . . . , xk) ∈ [N]k is viewed as a
pair (y1, y2) ∈ [Nk/2]2, where y1 = (x1, . . . , xk/2) and y2 = (xk/2+1, . . . , xk). The
common randomness of the k parties contains two random subsets, one for each
dimension, i.e. S1, S2⊆R [Nk/2]. The referee wishes to compute f(x1, . . . , xk),
i.e., the XOR of answers to the same 4 queries of the cube approach described in
Sect. 3.1. Party P1 can easily compute the answer to the query (S1, S2) (i.e., q00)
and send the answer to the referee. However, as the inputs y1, y2 are distributed
among the parties, there are two problems we have to address: (1) how to answer
the queries (S1 ⊕ {y1}, S2), (S1, S2 ⊕ {y2}), and (2) how to send S1 ⊕ {y1} and
S2 ⊕ {y2} to the referee.

We first address the first problem. The answer to query (S1⊕{y1}, S2)
depends on y1, i.e., on inputs (x1, . . . , xk/2), and there is no party that knows
all these inputs. We solve this problem in a similar way to what is done in [9]
and in our protocol P3, that is, by using the PSM protocol Pind. Although party
P1 does not know the exact value of y1 = (x1, . . . , xk/2), it can compute the

302 A. Beimel et al.

answers to all queries (S1⊕{�}, S2) for � = (x1, i2, . . . , ik/2) for all possible values
i2, . . . , ik/2 ∈ [N]k/2−1. This is a list of length Nk/2−1 in which the entry corre-
sponding to � = y1 is the desired answer for the query q10. We view this answer
as a (k/2−1)-dimensional cube such that the answer corresponding to the values
(x1, i2, i3, . . . , ik/2) is in position (i2, i3, . . . , ik/2). Specifically, the answer to the
query (S1⊕{y1}, S2) is in position (x2, . . . , xk/2) in the cube. Parties P1, . . . , Pk/2

use the PSM protocol Pind for the index function described in Sect. 2.2, from
which the referee learns the answer to the query (S1⊕{y1}, S2) and nothing else.
Similarly, Pk can compute an Nk/2−1-bit cube, corresponding to all choices of
ik/2+1, . . . , ik−1, such that the answer to the query (S1, S2 ⊕ {y2}) is in position
xk/2+1, . . . , xk−1 in this cube. Parties Pk, Pk/2+1 . . . , Pk−1 use the PSM protocol
Pind, from which the referee learns the answer to the query (S1, S2 ⊕ {y2}) and
nothing else.

The only query that remained unanswered is the query q11. Parties
P1, . . . , Pk/2 execute the PSM protocol PSxor described in Sect. 2.3 that enables
the referee to compute S1⊕{y1} without learning any information about
y1. Similarly, parties Pk/2+1, . . . , Pk execute the PSM protocol PSxor that
enables the referee to compute S2⊕{y2}. The referee learns the query q11 =
(S1⊕{y1}, S2⊕{y2}) and computes the corresponding answer a11. Now, the
referee has the answers to all 4 queries and it can XOR them to compute
f(x1, . . . , xk).

The main contributions to the communication complexity of the above proto-
col is the invocations of the PSM protocols Pind and PSxor. We invoke Pind with
k/2 parties and a database containing Nk/2−1 bits, thus, the complexity of this
protocol is O(kNk/2−1). We invoke PSxor with k/2 parties and a set contained
in [Nk/2], thus, its complexity is O(k3 · Nk/2).

Note that the complexity of invoking PSxor dominates the complexity of
invoking Pind. We capitalize on this gap and construct a PSM protocol for any
function with output range [Nk]. Again, we represent f : [N]k → [Nk] as a two
dimensional cube, where the size of each dimension is Nk/2, however now every
entry in the cube is from [Nk]. The protocol proceeds as above, where the only
difference is that we invoke Pind with a database containing Nk/2−1 elements
from [Nk].4 Thus, the complexity of this protocol is O(kNk/2−1 · k log N). The
resulting PSM protocol has complexity O(k3 · Nk/2).

Next, we give an informal description of protocol Pk for an odd k, i.e., k =
2t + 1 for some t. Here, we partition the input xt+1 of party Pt+1 to two parts,
i.e. xt+1 = (x1

t+1, x
2
t+1) such that x1

t+1, x
2
t+1 ∈ [N1/2]. Again, we associate f

with an Nk-bit database that is viewed as a 2-dimensional cube (i.e., the size of
each dimension is Nk/2). Correspondingly, each input x = (x1, . . . , xk) ∈ [N]k

is viewed as a pair (y1, y2) ∈ [Nk/2]2, where y1 = (x1, . . . , xt, x
1
t+1) and y2 =

(x2
t+1, xt+2, . . . , xk). The referee needs the answers to the same 4 queries in order

to compute f(x1, . . . , xk). The rest of the protocol is similar to the protocol for
an even k, just that in this case, party Pt+1 participates in the PSM protocols

4 Protocol Pind (described in Sect. 2.3) can deal with L-bit entries and its complexity,
for a list of N entries, is O(L · N).

The Complexity of Multiparty PSM Protocols and Related Models 303

Protocol Pk

Common randomness: The k parties share uniform random strings:

– S1, S2⊆R [Nk/2].
– r10, r01 ∈R {0, 1}O(kNk/2−1 logN) required for the PSM protocol Pind with

a list of length [N]k/2−1, where each element is from [Nk].
– ρ10, ρ01 ∈R {0, 1}O(Nk/2) required for the k/2-party PSM protocol PSxor

with a set S ⊆ [Nk/2].
– b10, b01 ∈R {0, 1}k logN , b00 = b10⊕b01.

The protocol:

1. Party P1:
– Compute the answer a00 to the query q00 = (S1, S2).
– Compute the answers to all queries (S1 ⊕ {�}, S2) where � = x1 ◦

i2 ◦ . . . ◦ ik/2, for all possible values i2, . . . , ik/2 ∈ [N], and represent

the answers as a (k/2 − 1)-dimensional cube (a
i2,...,ik/2
10)i2,...,ik/2∈[N].

Using D10 = (a
i2,...,ik/2
10 ⊕ b10)i2,...,ik/2∈[N] and common randomness

r10, compute m1
10 – the message of the first party in Pind.

– Using x1, S1 and common randomness ρ10, compute s110 – the message
of the first party in PSxor.

– Send m00 = a00⊕b00, m1
10, and s110 to the referee.

2. Party Pj , where j ∈ {2, . . . , k/2}:
– Using xj and common randomness r10, compute mj

10 – the message
of the jth party in Pind.

– Using xj and common randomness ρ10, compute sj10 – the message of
the jth party in PSxor.

– Send mj
10 and sj10 to the referee.

3. Party Pk:
– Compute the answers to all queries (S1, S2 ⊕ {�}) where � =

ik/2+1 ◦ . . . ◦ ik−1 ◦ xk, for all possible values ik/2−1, . . . , ik−1 ∈
[N], and represent the answers as a (k/2 − 1)-dimensional cube
(a

ik/2+1,...,ik−1
01)ik/2+1,...,ik−1∈[N]. Using D01 = (a

ik/2+1,...,ik−1
01 ⊕

b01)ik/2+1,...,ik−1∈[N] and common randomness r01, compute mk
01 –

the message of the first party in Pind.
– Using xk, S2 and common randomness ρ01, compute sk01 – the message

of the first party in PSxor.
– Send mk

01 and sk01 to the referee.
4. Party Pj , where j ∈ {k/2 + 1, . . . , k − 1}:

– Using xj and common randomness r01, compute mj
01 – the message

of the (j − k/2 + 1)th party in Pind.
– Using xj and common randomness ρ01, compute sj01 – the message of

the (j − k/2 + 1)th party in PSxor.
– Send mj

01 and sj01 to the referee.
5. The referee:

– Using the messages s110, . . . , s
k/2
10 of PSxor, compute q111 = S1 ⊕ {y1}.

Using the messages sk01, s
k/2+1
01 , . . . , sk−1

01 of PSxor, compute q211 = S2⊕
{y2}. Compute the answer a11 to the query q11 = (q111, q211) = (S1 ⊕
{y1}, S2 ⊕ {y2}).

– Using the messages m1
10, . . . , m

k/2
10 of Pind, compute D10

x2,...,xk/2
.

Using the messages mk
01, m

k/2+1
01 , . . . , mk−1

01 of Pind, compute
D01

xk/2+1,...,xk−1 .
– Output f(x) = m00 ⊕ D10

x2,...,xk/2
⊕ D01

xk/2+1,...,xk−1 ⊕ a11.

Fig. 4. A k-party PSM protocol Pk for a function f : [N]k → [Nk] for an even k.

304 A. Beimel et al.

for both queries q10, q01, each time only with half of its input, as well as in both
PSM protocols for S1 ⊕ {y1} and for S2 ⊕ {y2}. The communication complexity
and randomness complexity of this protocol are O(k3Nk/2).

Theorem 4.1. Let f : [N]k → [Nk] be a function. The protocol Pk is a secure
PSM protocol for f with communication and randomness complexity O(k3Nk/2).

Proof. Correctness follows from the cube approach, where f(x1, . . . , xk) is the
XOR of the answers for the 4 queries q00, q10, q01, q11. The referee computes
these 4 answers (each answer is a string in [Nk]); however, the first 3 answers
are masked. Nevertheless, the XOR of the 3 masks b00, b10, b01 is zero, so when
the referee computes the XOR of the 4 masked answers, the masks are canceled
and the referee gets the correct answer.

To argue that the PSM protocol Pk is secure, we construct a simulator whose
input is f(x1, . . . , xk) and whose output is k messages distributed as the messages
in Pk. To simplify the indices, we only construct a simulator for an even k;
however, the simulator (with minor changes) remains valid also for an odd k.
The simulator on input f(x1, . . . , xk) does the following:

1. Chooses two random sets T1, T2 ⊆R [Nk/2] and two random strings c10, c01 ∈R

{0, 1}k log N .
2. Computes the answer to the query q11, namely, a11 = ⊕i1∈T1,i2∈T2f(i1, i2)

(where i1, i2 are considered as k/2 elements from [N]).
3. Computes c00 = f(x1, . . . , xk) ⊕ a11 ⊕ c10 ⊕ c01.
4. Invokes the simulator Simind of protocol Pind twice:

– (m1
10, . . . ,m

k/2
10) ← Simind(c10),

– (mk
01,m

k/2+1
01 , . . . ,mk−1

01) ← Simind(c01).
5. Invokes the simulator SimSxor of protocol PSxor twice:

– (s110, . . . , s
k/2
10) ← SimSxor(T1),

– (sk
01, s

k/2+1
01 , . . . , sk−1

01) ← SimSxor(T2).
6. Outputs

(c00,m1
10, s

1
10), (m

2
10, s

2
10), . . . , (m

k/2
10 , s

k/2
10), (mk/2+1

01 , s
k/2+1
01), . . . , (mk

01, s
k
01).

Note that, in the messages of Pk, the sets S1⊕{y1}, S2⊕{y2} are distributed inde-
pendently with uniform distribution. Furthermore, D10

x2,...,xk/2
,D10

xk/2+1,...,xk−1

are uniformly distributed given these 2 sets, since we mask them using inde-
pendent random strings. Since D10

x2,...,xk/2
and c10 are both random strings, the

output of Simind(c10) is distributed as the messages of Pind(D10, x2, . . . , xk/2).
Since S1 ⊕ {y1} and T1 are both random sets, the output of SimSxor(T1) is dis-
tributed as the messages in PSxor((S1, x1), x2, . . . , xk/2). The same holds for the
other invocation of Simind and SimSxor. Finally, given the sets S1⊕{y1}, S2⊕{y2},
the strings m10,m01,D

10
x2,...,xk/2

,D01
xk/2+1,...,xk−1

, and f(x1, . . . , xk), the value of
m00 is fully determined (by the correctness of Pk and by the fact that the above
sets determine a11). Thus, the simulator’s output is distributed in the same way
as the messages generated in protocol Pk on inputs x1, . . . , xk.

The Complexity of Multiparty PSM Protocols and Related Models 305

The communication and randomness complexity of each invocation of the
PSM protocol Pind are O(k ·Nk/2−1 ·k log N). The communication and random-
ness complexity of each invocation of the PSM protocol PSxor is O(k3 · Nk/2).
Party P1 also sends a string of length k log N to the referee (that is, m00).
Therefore, the communication complexity and randomness complexity of the
PSM protocol Pk are O(k3 · Nk/2). 	

4.1 PSM Protocols for 4 and 5 Parties

We next show how to use the ideas of our previous protocols to construct more
efficient k-party PSM protocols, for k = 4, 5.

Theorem 4.2.

– Let f : [N]4 → {0, 1} be a function. There is a secure 4-party PSM protocol
P4 for f with communication and randomness complexity O(N5/3).

– Let f : [N]5 → {0, 1} be a function. There is a secure 5-party PSM protocol
P5 for f with communication and randomness complexity O(N7/3).

Proof Sketch. The protocols P4 and P5 are similar to protocol Pk, except that
we view f as a 3-dimensional cube. Specifically, in P4 the size of each dimension
of the cube is N4/3. We partition the inputs x2, x3 as follows: x2 = (x1

2, x
2
2)

and x3 = (x2
3, x

3
3) such that x1

2, x
3
3 ∈ [N1/3] and x2

2, x
2
3 ∈ [N2/3]. We view each

input (x1, x2, x3, x4) as a 3-tuple (y1, y2, y3) ∈ [N4/3]3, where y1 = (x1, x
1
2), y2 =

(x2
2, x

2
3), and y3 = (x3

3, x4). The common randomness of the parties contains 3
random sets S1, S2, S3 ⊆R [N4/3], random strings for protocols Pind and PSxor,
and random masks. The referee should get the answers of 8 queries q000, . . . , q111.
The (masked) answer to q000 is computed by P1 and sent to the referee. The
answers to the queries of weight 2 and 3 are computed using protocol Pind, where
the more expensive queries are queries of weight 2. As an example, we explain
how to answer q110. The answer to this query requires knowing (y1, y2) ∈ [N4/3]2.
As y1 = (x1, x

1
2) and party P1 has x1, party P1 can prepare a list of length

N5/3 (one entry for each possible value of x1
2, y2) and P1, P2, and P3 use the

3-party PSM protocol Pind to send the answer of q110 to the referee. As the list
contains N5/3 entries (where each entry is a bit), the complexity of invoking
Pind is O(N5/3) (the input of P2 is from [N] and of P3 is from [N2/3]). Queries
q101, q011 are dealt in a similar way, where P1 and P4, respectively, construct the
list. To answer query q111, the sets S1 ⊕{y1}, S2 ⊕{y2}, S3 ⊕{y3} are sent to the
referee using PSxor. As each set is contained in [N4/3], the complexity of invoking
PSxor is O(N4/3). The total communication and randomness complexity of P4

is O(N5/3).
In P5, the size of each dimension of the cube is N5/3 and the 5 inputs are

partitioned into 3 inputs y1, y2, y3 ∈ [N5/3]. The details are similar to the PSM
protocol P4. As for the complexity analysis, to answer q110, party P1 needs
(y1, y2) ∈ [N5/3]2 and it knows x1 ∈ [N] which is part of y1, thus, it creates a
list of length N7/3, and the complexity of invoking Pind is O(N7/3). As each set
in P5 is contained in [N5/3], the complexity of invoking PSxor is O(N5/3). The
total communication and randomness complexity of P5 is O(N7/3). 	

306 A. Beimel et al.

Discussion. Our protocols, and the 2-party PSM protocol of [6], use cubes of
different dimensions for different values of k; i.e., in [6], 4 dimensions are used
for 2 parties, and in this work 3 dimensions are used for 3, 4, and 5 parties, and 2
dimensions are used for more than 5 parties. These are the optimal dimensions,
when using our approach, as we next explain. If there are k inputs (each from the
domain [N]) and d dimensions, then the size of at least one dimension is Nk/d.
Thus, communicating each set Sj ⊕ {yj} (either directly, as in the 2-party and
3-party protocols, or using the PSM protocol PSxor, as done for k > 3 parties)
requires Ω(Nk/d) bits. The parties also need to send the answers to the 2d − 1
queries of weight at most d − 1 using protocol Pind. The most expensive queries
are queries of weight d − 1, which involve d − 1 “virtual” inputs yj , each one
is taken from [Nk/d]. As each party Pj knows only xj , the parties will invoke
the PSM protocol Pind with a list of length at least N (k/d)(d−1)−1 = Nk−k/d−1;5

the cost of this invocation will be at least Nk−k/d−1. Thus, for a given number
of parties k, we need to choose d that will minimize max{k/d, k − k/d − 1}. If,
hypothetically, we could choose a non-integral dimension, we would take d =
2k/(k − 1) and the complexity of our protocol would have been O(N (k−1)/2).
This matches the complexity of the PSM protocols for 2 and 3 parties. For k > 3,
we achieve a slightly worst complexity, since we need to round 2k/(k − 1) to the
nearest integer.

5 PSM Protocols with Inputs of Different Sizes

In this section, we construct PSM protocols for functions in which the domains
of inputs are not necessarily the same. That is, we consider functions f : [Nα1]×
[Nα2]×· · ·×[Nαk] → {0, 1}, for some integer N and positive numbers α1, . . . , αk.
By reordering the parties and normalization, we can assume that α1 ≥ α2 ≥
· · · ≥ αk = 1.

We first observe that the complexity of the PSM of [10] for an arbitrary
function does not depend on the size of the largest domain (i.e., of party P1).

Claim 5.1. Let f : [Nα1] × [Nα2] × · · · × [Nαk] → {0, 1} be a function. Then,
there is a PSM protocol for f with communication complexity O(N

∑k
i=2 αi) and

randomness complexity O(k · N
∑k

i=2 αi).

Proof. We describe a protocol with the desired complexity. Party P1 prepares a
list of length N

∑k
i=2 αi , which contains f(x1, i2, . . . , ik) for every (i2, i3, . . . , ik) ∈

[Nα2] × · · · × [Nαk]. The parties invoke the PSM Pind, where the input of P1 is
this list and the input of Pj , for 2 ≤ j ≤ k, is xj . 	

We next construct more efficient k-party protocols. Again, we use the cube
approach, with 2 differences compared to the previous protocols. First, the num-
ber of dimensions d will be bigger than in our previous protocols (the number
5 For the interesting parameters (specifically, when d ≤ k), there will always be a

party whose entire input xi is part of the query and the length of the list would be
exactly Nk−k/d−1.

The Complexity of Multiparty PSM Protocols and Related Models 307

of dimensions grows as
∑k

i=2 αi grows). Thus, the k inputs are partitioned to d
virtual inputs. Unlike previous protocols, each Pi, where 1 ≤ i ≤ k, holds part
of each virtual input.

Lemma 5.2. Let f : [Nα1] × [Nα2] × · · · × [Nαk] → {0, 1} be a function where
α1 ≥ α2 ≥ · · · ≥ αk = 1. Then, there is a PSM protocol for f with communica-
tion and randomness complexity

O(min{k · N (
∑k

i=2 αi)(1−1/	a
), k3 · N (
∑k

i=1 αi)/�a�})

where a = α1/(
∑k

i=2 αi) + 2.

Proof. We view f as a d-dimensional cube, where the size of each dimension
is N (

∑k
i=1 αi)/d and d will be fixed later. We partition the inputs as follows:

xj = (x1
j , x

2
j , ..., x

d
j) for 1 ≤ j ≤ k, where x1

j , x
2
j , ..., x

d
j ∈ [Nαj/d]. We define

y� = (x�
1, x

�
2, . . . , x

�
k) for each 1 ≤ � ≤ d. The common randomness of the parties

contains d random sets S1, ..., Sd ⊆R [N (
∑k

i=1 αi)/d], random strings for protocols
Pind and PSxor, and random masks. Using the cube approach, the referee should
get the answers to 2d queries. To answer query q11...1 (the query of weight d),
the sets S1 ⊕ {y1}, ..., Sd ⊕ {yd} are sent to the referee using PSxor. As each
set is contained in [N (

∑k
i=1 αi)/d], the complexity of invoking PSxor is O(k3 ·

N (
∑k

i=1 αi)/d). The (masked) answer to q00...0 (the query of weight 0) is computed
by P1 and sent to the referee. The answers to the queries of weight m for any
1 ≤ m ≤ d − 1 are computed using protocol Pind, where the more expensive
queries are queries of weight d − 1. To answer the query q11...10, party P1, which
has x1

1, ..., x
d−1
1 , prepares a list of length N (

∑k
i=2 αi)(d−1)/d (one entry for each

possible value of (x1
2, . . . , x

1
k), ..., (xd−1

2 , . . . , xd−1
k)) and the parties P1, . . . , Pk

use the PSM protocol Pind to send the masked answer of q11...10 to the referee.
The complexity of invoking Pind is O(k ·N (

∑k
i=2 αi)(d−1)/d). All other queries are

dealt in a similar way, where P1 constructs the list. The total communication
and randomness complexity of the protocol are

O(max{k · N (
∑k

i=2 αi)(d−1)/d, k3 · N (
∑k

i=1 αi)/d}).

If we could choose a non-integral value for d then the optimal value of d in this
approach would be d = a = α1/(

∑k
i=2 αi)+ 2. Since d must be an integral value

the communication and randomness complexity are minimized either on �a� or
on �a�. Thus, we get a protocol with the following complexity.

O(min{k · N (
∑k

i=2 αi)(1−1/	a
), k3 · N (
∑k

i=1 αi)/�a�}).

	

Corollary 5.3. Let f : [Nα1] × [Nα2] × · · · × [Nαk] → {0, 1} be a function
where α1 ≥ α2 ≥ · · · ≥ αk = 1. Then, there is a PSM protocol for f with
communication and randomness complexity O(k · N (

∑k
i=2 αi)·c) where c < 1.

308 A. Beimel et al.

5.1 2-Party PSM Protocols

In this section, we describe results for 2-party PSM protocols summarized in the
following lemma.

Lemma 5.4. Let f : [Nα] × [N] → {0, 1}, where α ≥ 1. Then, there is a PSM
for f with communication and randomness complexity:

– O(Nα/2) if 1 ≤ α ≤ 3/2,
– O(N (α+1)/(�α+2�)) if α − �α� ≤ 1/�α + 2� and α > 3/2,
– O(N1− 1

�α+2�) otherwise.

Proof. For the first item, we use the protocol of [6], which has complexity
O(Nα/2) (where we consider both domains to be of size Nα). The second and
third items follow from Lemma 5.2. 	

5.2 3-Party PSM Protocols

In this section, we consider 3-party PSM protocols and show that, for many
values of the parameters α1, α2, there is a PSM protocol whose complexity is
the geometric mean of the sizes of domains.

Claim 5.5. Let f : [Nα1] × [Nα2] × [N] → {0, 1}, where α1 ≥ α2 ≥ 1 and
α1 ≤ 2α2 − 1. Then, there is a PSM for f with communication and randomness
complexity O(N (α1+α2+1)/3).

Proof. The idea of the protocol is similar to the protocols of Theorem 4.2. We
view f as a 3-dimensional cube, where the size of each dimension is N (α1+α2+1)/3.
We partition the inputs x1 ∈ [Nα1], x2 ∈ [Nα2], x3 ∈ [N] to equal size
inputs y1, y2, y3 ∈ [N (α1+α2+1)/3]. The way we partition the inputs will be
described below. The common randomness of the parties contains 3 random
sets S1, S2, S3 ⊆R [N (α1+α2+1)/3], random strings for protocols Pind and PSxor,
and random masks. The referee should get the answers to 8 queries q000, . . . , q111.
To answer query q111, the sets S1 ⊕ {y1}, S2 ⊕ {y2}, S3 ⊕ {y3} are sent to the
referee using PSxor. As each set is contained in [N (α1+α2+1)/3], the complexity
of invoking PSxor is O(N (α1+α2+1)/3). The (masked) answer to q000 is computed
by P1 and sent to the referee. The answers to the queries of weight 1 and 2 are
computed using protocol Pind, where the more expensive queries are queries of
weight 2. The details of how to answer these queries depends on the partition of
the inputs into y1, y2, y3.

We partition x1 and x2 as follows: x1 = (x1
1, x

3
1) and x2 = (x2

2, x
3
2), where

x1
1, x

2
2 ∈ [N (α1+α2+1)/3], x3

1 ∈ [N (2α1−α2−1)/3] (note that 2α1 − α2 − 1 ≥ 0 since
α1 ≥ α2 ≥ 1), and x3

2 ∈ [N (2α2−α1−1)/3] (note that 2α2 − α1 − 1 ≥ 0 by our
assumption). We define y1 = x1

1, y2 = x2
2, and y3 = (x3, x

3
1, x

3
2). To answer the

query q110, party P1, which has y1 = x1
1, prepares a list of length N (α1+α2+1)/3

(one entry for each possible value of y2) and P1, P2 use the 2-party PSM protocol
Pind to send the masked answer of q110 to the referee. The complexity of invoking

The Complexity of Multiparty PSM Protocols and Related Models 309

Pind is O(N (α1+α2+1)/3). Queries q101, q011 are dealt in a similar way, where P1

and P2, respectively, construct the list and all 3 parties participate (as each
has a part of y3). The total communication and randomness complexity of the
protocol are O(N (α1+α2+1)/3). 	

Claim 5.6. Let f : [Nα1] × [Nα2] × [N] → {0, 1}, where α1 ≥ α2 ≥ 1 and
α1 ≥ 2α2 − 1. Then, there is a PSM for f with communication and randomness
complexity O(N (α1+1)/2).

Proof. The idea of the protocol is similar to the protocols of Theorem 4.2. We
view f as a 3-dimensional cube, where the size of each dimension is N (α1+α2+1)/3.
We define x1 = (x1

1, x
3
1), where x1

1 ∈ [N (α1+1)/2] and x3
1 ∈ [N (α1−1)/2], and

y1 = x1
1, y2 = x2, and y3 = (x3, x

3
1). The common randomness of the parties

contains 3 random sets S1, S3 ⊆R [N (α1+1)/2] and S2 ⊆R [Nα2], random strings
for protocols Pind and PSxor, and random masks. The referee should get the
answers to 8 queries q000, . . . , q111. To answer query q111, the sets S1⊕{y1}, S2⊕
{y2}, S3 ⊕ {y3} are sent to the referee using PSxor. The complexity of invoking
PSxor is O(N (α1+1)/2) (where, for S2, we use the assumption that α1 ≥ 2α2 −1).
The (masked) answer to q000 is computed by P1 and sent to the referee. The
answers to the queries of weight 2 and 3 are computed using protocol Pind, where
the most expensive query is q011, for which P2 has to prepare a list of length
N (α1+1)/2 (one entry for every possible value of y3) and parties P1, P2, and P3

use the 3-party PSM protocol Pind to send the answer of q011 to the referee.
The complexity of invoking Pind is O(N (α1+1)/2). Queries q101, q011 are dealt
in a similar way. The total communication and randomness complexity of the
protocol are O(N (α1+1)/2). 	

The next two lemmas summarize the various cases of 3-argument functions;
the first claim deals with the case α2 ≥ 2 and the second claim with the case
α2 < 2.

Lemma 5.7. Let f : [Nα1]×[Nα2]×[N] → {0, 1}, where α1 ≥ α2 ≥ 1. If α2 ≥ 2
then there is a PSM for f with communication and randomness complexity:

– O(N (α1+α2+1)/3) if α1 < α2 + 1.
– O(min{N (α2+1)(1−1/	a
), N (α1+α2+1)/�a�}) where a = (α1 +2α2 +2)/(α2 +1)

if α1 ≥ α2 + 1.

Proof. If α1 < α2 + 1, then α1 < 2α2 − 1 (since α2 ≥ 2). Thus, the first item is
implied by Claim 5.5. The second item follows from Lemma 5.2. 	

Lemma 5.8. Let f : [Nα1]× [Nα2]× [N] → {0, 1}, where α1 ≥ α2 ≥ 1. Assume
1 ≤ α2 < 2. Then there is a PSM for f with communication and randomness
complexity:

– O(N (α1+α2+1)/3) if α2 ≤ α1 ≤ 2α2 − 1.
– O(N (α1+1)/2) if 2α2 − 1 ≤ α1 ≤ (4α2 + 1)/3.
– O(min{N (α2+1)(1−1/	a
), N (α1+α2+1)/�a�}) where a = (α1 +2α2 +2)/(α2 +1)

if (4α2 + 1)/3 ≤ α1.

Proof. The first item follows from Claim 5.5. The second item follows from Claim
5.6. The third item follows from Lemma 5.2. 	

310 A. Beimel et al.

6 A PSM for k Parties from a PSM for t Parties

In this section, we show how to construct a k-party PSM protocol for a function
from a t-party PSM protocol for a related function where k > t. This is a generic
transformation, which does not result in better protocols than the protocols
presented in this paper. However, it shows that improvements in the complexity
of t-party PSM protocols for small values of t will results in better k-party PSM
protocols for all values k.

Claim 6.1. Let k, t,N be integers such that k > t and N ≥ 2t and let g :
[N]k → {0, 1} be a function. If every function f : [n]t → {0, 1} has a t-party
PSM protocol with communication and randomness complexity O(nα) for n =
Nk/t, then there is a PSM protocol for g with communication and randomness
complexity O(k · t · N (α+1)k/t−1).

Proof. We construct the following protocol Pk for g. We partition the inputs
x1, ..., xk to equal size inputs y1, ..., yt where yj ∈ [Nk/t] for j = 1, ..., t. Let
xi = (x1

i , ..., x
t
i) for all i = t + 1, ..., k where x1

i , ..., x
t
i ∈ [N1/t]. We define yj =

(xj , x
j
t+1, ..., x

j
k) for j = 1, ..., t. Furthermore, we define g′ : [Nk/t]t → {0, 1}

such that g′(y1, ..., yt) = g(x1, ..., xk). By the assumption of the claim, there
is a PSM protocol Pt for g′ with communication and randomness complexity
O(nα) = O(Nαk/t).

In protocol Pk, for every 1 ≤ j ≤ t, party Pj together with parties Pt+1, ..., Pk

simulate the j-th party of protocol Pt as follows. For this simulation, party Pj

prepares a list of length Nk/t−1 of the possible messages of the j-th party in Pt

with input yj = (xj , x
j
t+1, ..., x

j
k). As Pj knows xj and does not know xj

t+1, ..., x
j
k

the list contains one entry for every possible value of (xj
t+1, ..., x

j
k) ∈ [Nk/t−1].

Each entry in the list is a message taken from [Nαk/t]. Parties Pj , Pt+1, ..., Pk use
the PSM protocol Pind to send the message corresponding to their inputs to the
referee. The referee computes the t messages and then computes g(x1, ..., xk) =
g′(y1, ..., yt) according to the protocol Pt. The communication and randomness
complexities of the PSM protocol Pind are O(k · N (α+1)k/t−1) and the parties
Pt+1, ..., Pk invoke this protocol t times. Therefore, the total communication and
randomness complexity of this protocol are O(k · t · N (α+1)k/t−1). 	

For example, for t = 2 there is a 2-party PSM protocol with complexity
O(N0.5) [6] (here α = 0.5). This implies that any function f : [N]k → {0, 1}
has a k-party PSM protocol with complexity O(N3k/4−1). This is inferior to our
protocols from Sects. 3 and 4. For t = 3, we get that any function f : [N]k →
{0, 1} has a k-party PSM protocol with complexity O(N2k/3−1) (using our 3-
party PSM protocol which has complexity O(N), i.e. α = 1). In particular,
for k = 4, we can construct a 4-party PSM protocol with complexity O(N5/3)
from our 3-party PSM protocol, matching the complexity of our protocol from
Sect. 4.1. Thus, if one can improve the message length of 3-party PSM protocols
for an arbitrary function to o(N), then this would yield 4-party PSM protocol
with message length o(N5/3) improving on our construction.

The Complexity of Multiparty PSM Protocols and Related Models 311

To conclude, to improve the complexity of k-party PSM protocols for an
arbitrary functions, one might want to start with designing k-party PSM
protocols for small values of k. For example, if the complexity of the 2-party
PSM protocols will be improved to O(Nβ) for β < 2/k, then we will get k-party
PSM protocols with complexity better than O(Nk/2).

7 Applications

In this section, we present some applications of our PSM protocols for several
cryptographic primitives.

7.1 t-robust NIMPC Protocols

A Non-Interactive secure Multi-Party Computation (NIMPC) protocol, defined
in [5], is a PSM protocol that is secure even if some parties collude with the
referee. Such parties may send the referee their messages for every possible input
and therefore the referee can always compute the function on many inputs. The
model is defined with correlated randomness r1, . . . , rk between the k parties,
rather than common randomness, and the dishonest parties can, alternatively,
send the referee their ri’s.

In such setting, one may only hope for a so-called “best possible security”;
that is, in a t-robust NIMPC protocol, an adversary controlling at most t parties
and seeing all the messages sent by honest parties learns no information that
is not implied by the unavoidable information – the restriction of f fixing the
inputs of the honest parties.

The communication complexity of the best known fully-robust (i.e.,
k-robust) NIMPC protocol, for an arbitrary function f : [N]k → {0, 1}, was
O(poly(log N, k) · Nk) [19] (improving on [5]). We show that every function
f : [N]k → {0, 1} has a t-robust NIMPC with complexity Õ(Nk/2+t), which
improves on previous constructions when t < k/2. Our construction is based
on an information-theoretic transformation of [8], which constructs a t-robust
NIMPC protocol for f from any PSM (that is, 0-robust NIMPC) protocol for f .

Theorem 7.1 ([8]). Let t be a positive integer and P be a PSM protocol for a
Boolean function f : [N]k → {0, 1} with randomness and communication com-
plexity α(N). Then, there exists a t-robust NIMPC protocol for f with random-
ness and communication complexity O((2max{N, k})t+1k(t log(N +k)+α(N))).

Using Theorem 7.1 and our PSM protocol Pk, we get a t-robust NIMPC
protocol for f : [N]k → {0, 1} with randomness and communication complexity
O(k42tNk/2+t+1) (assuming that N ≥ k). We next construct a t-robust NIMPC
protocol where we improve the complexity by a factor of N . This optimization
is more significant when k and t are small. For example, consider a 3-argument
function f : [N]3 → {0, 1}. By Theorem 3.1, the function f has a PSM protocol
with complexity O(N). Thus, by Theorem 7.1, we get a 1-robust PSM for f
with complexity O(N3). Notice that a 1-robust 3-party NIMPC protocol is a

312 A. Beimel et al.

fully-robust protocol (as even in an ideal world 2 parties can basically learn the
input of the third party). Our optimized fully robust NIMPC protocol for f will
have complexity O(N2.5 log4 N).

Theorem 7.2. Let t, k,N be positive integers such that t < k/2 and k ≤ N and
f : [N]k → {0, 1} be a Boolean function. Then, there exists a t-robust NIMPC
protocol for f with randomness and communication complexity O(k4 log4 N ·
(2N)k/2+t).

Proof. The basic idea is that, instead of viewing f as a k-argument function,
where each party has an input from [N], we consider a (k log N)-argument func-
tion f ′, where each party has an input from {0, 1} and construct a (t log N)-
robust protocol for f ′. For simplicity of notation we assume that N is a power
of 2. (This results in multiplying N by at most 2, yielding the term 2N in
Theorem 7.2.) We define f ′ : {0, 1}k log N → {0, 1}, where

f ′(x1,1, . . . , x1,log N , . . . , xk,1, . . . , xk,log N)
= f((x1,1, . . . , x1,log N), . . . , (xk,1, . . . , xk,log N)).

By Theorem 4.1, the function f ′ has a PSM protocol with communication and
randomness complexity O((k log N)32(k log N)/2) = O(k3 log3 N · Nk/2). We can-
not apply Theorem 7.1 directly, as it will not result in the desired complexity.
We observe that the NIMPC that we construct needs to be robust only against
sets T that contain t blocks of size log N (where a block is a set of log N parties
of f ′ holding the bits of some party Pj in f). By [8, Theorem 6.4], we need a
matrix H ′ that is T -admissible only for such sets T .6 If we have such matrix
with � rows over a finite field Fq, then we can replace the term (2max{N, k})t+1

with q�+1 in Theorem 7.1.
We next explain how to construct such H ′. In [8], it was shown that a t × k

parity-check matrix H of the Reed-Solomon code over Fq, where q ≥ max{k,N}
is a prime-power, is T -admissible for every set T of size t. We take such matrix H
over the field F2log N and construct a matrix H ′ over F2 with t log N rows and k′ =
k log N columns by replacing each entry a ∈ F2log N with a log N × log N matrix
A over F2 such that for every b ∈ F2log N it holds that ab, viewed as a vector
over F2, is the same as A(b0, . . . , blog N−1)T (when viewing elements of F2log N as
polynomials, the matrix A simulates the multiplication of the polynomial by the
polynomial representing a modulo the irreducible polynomial). The matrix H ′

is T -admissible for every T that contains at most t blocks.
By [8, Theorem 6.4], the function f ′ has an NIMPC protocol that is T -robust,

for every T that contains at most t blocks, and has complexity

O(q�+1(k′)42k′/2)) = O(2t log N+1(k log N)4 ·2(k log N)/2) = O(k4 log4 N ·Nk/2+t).

If N is not a power of 2, we need to replace N by 2N in the complexity. To
construct a PSM protocol for f , the parties P1, . . . , Pk execute the PSM for f ′,
6 A matrix H ′ is T -admissible if H ′u �= H ′v for any two vectors u , v that agree on

all entries not indexed by T .

The Complexity of Multiparty PSM Protocols and Related Models 313

where each party Pj sends the messages of the block of parties holding the bits
of its input. 	

If we consider a 3-argument function f : [N]3 → {0, 1}, we get a 1-private
NIMPC protocol with communication and randomness complexity O(log4 N ·
N5/2). As discussed above, this protocol is fully robust. This improves on the
previously best known 3-party NIMPC protocol of [19] whose complexity is
O(N3 log2 N). While the protocol of [19] hides the function f , in our protocol
the referee needs to know f in order to reconstruct its output. In [19], it is proved
that in any NIMPC protocol for every k-argument function f : [N]k → {0, 1}
that hides the function, the size of the common randomness is Ω(Nk). The
proof of this lower bound actually holds for any PSM protocol in which the
reconstruction of f ’s value is independent of f . Thus, in a fully robust 3-party
NIMPC protocol with randomness complexity o(N3) for an arbitrary function
f : [N]3 → {0, 1}, the referee has to know f in advance.

Example 7.3. For the 3-party case, the construction of the admissible matrix
H ′ is much simpler starting from the 1-admissible matrix H = (1, 1, 1). The
resulting matrix H ′ is H ′ = (Ilog NIlog NIlog N) (that is, H ′ contains 3 copies of
the (log N)× (log N) identity matrix). Consider two vectors u,v that differ only
in the first block i.e., u = (u1,u2,u3) and v = (v1,v2,v3) where u1 = v1 while
u2 = v2 and u3 = v3. Then, H ′u − H ′v = H ′(u − v) = Ilog N (u1 − v1) = 0.
Thus, H ′ is T -admissible for the 3 blocks T .

7.2 Ad-hoc PSM Protocols and Homogeneous Distribution Designs

A k-out-of-n ad-hoc PSM protocol is a PSM protocol with n parties, where only
k parties, whose identity is not known in advance, actually participate in the
protocol. For a formal definition of ad-hoc PSM protocols see [7].

We obtain improved k-out-of-n ad-hoc PSM protocols for symmetric func-
tions7 f : [N]k → {0, 1} with communication complexity O(ek · k6 · log n · Nk/2)
and randomness complexity O(ek · k8 · log n · Nk/2), based on a transformation
from k-party PSM protocols to ad-hoc PSM protocols from [7] and on our new
PSM protocols.

Theorem 7.4 ([7]). Assume that there is a k-party PSM protocol Π for a
symmetric function f with randomness complexity Rnd(Π) and communication
complexity Com(Π). Then, there is a k-out-of-n ad-hoc PSM protocol for f with
randomness complexity O(ek · k3 · log n · (Rnd(Π) + k2 · max{Com(Π), log n}))
and communication complexity O(ek · k3 · log nmax{Com(Π), log n}).

Using Theorem 7.4 and our PSM protocol Pk, whose communication and
randomness complexity are O(k3Nk/2), we get:

7 A function f is symmetric if for every input (x1, . . . , xk) ∈ [N]k and every permuta-
tion π : [k] → [k], it holds that f(x1, . . . , xk) = f(xπ(1), . . . , xπ(k)).

314 A. Beimel et al.

Theorem 7.5. Let f : [N]k → [Nk] be a symmetric function. Then, there is a
k-out-of-n ad-hoc PSM protocol for f with communication complexity O(ek · k6 ·
log n · Nk/2) and randomness complexity O(ek · k8 · log n · Nk/2).

We next show that ad-hoc PSM protocols imply distribution design. The
goal of distribution design, introduced in [4], is to find a joint distribution on
N random variables (X1,X2, . . . , XN) that satisfies a given set of constraints
on the marginal distributions. If such a distribution exists we say that the
set of constraints is realizable. Each constraint involves two equal-size sets
{i1, . . . , id} and {j1, . . . , jd} and can either be an equality constraint of the form
{i1, . . . , id} ≡ {j1, . . . , jd}, in which case the two marginal distributions should
be identical, or a disjointness constraint of the form {i1, . . . , id} ‖ {j1, . . . , jd},
in which case the two marginal distributions should have disjoint supports.8 A
k-homogenous set of constraints is one where all sets in the constraints have
the same size k. Borrowing terminology from secret sharing (which is one of the
applications of distribution design), we refer to the value of a random variable
Xi as the ith share.

We obtain distribution designs for 2-homogeneous sets of constraints with
share size O(

√
N · log2 N). Previously, the best known distribution design had

share size of O(N log N). We also obtain distribution designs for k-homogeneous
sets of constraints, for k > 2, with share size O(ek ·k6 ·Nk/2 ·log N), improving on
the best known distribution design whose share size was O(

(
N
k

)·min{d log N,N}).
Our construction is based on a PSM protocol for a function that represents the
constraints. We use the messages of this protocol to define the random variables.

Definition 7.6. Given a k-homogenous set of constraints R on N variables,
define the following symmetric function fR: Construct an undirected graph,
whose vertices are all subsets of size k. Connect two vertices (sets of size
k) A and B if and only if “A ≡ B” ∈ R and let A1, . . . ,A� be the con-
nected components of this graph.9 Define a symmetric function fR : [N]k →(
N
k

)
such that, for every set {i1, . . . , ik} (i.e. i1 < i2 < . . . < ik), define

fR(i1, . . . , ik) = j where (i1, . . . , ik) ∈ Aj. To make this function symmetric,
define fR(σ(i1), . . . , σ(ik)) = fR(i1, . . . , ik) for every permutation σ : [k] → [k].

Theorem 7.7. Let R be a k-homogenous set of constraints on N variables.
Assume that there is a k-out-of-N ad-hoc PSM protocol Pk,N for fR : [N]k →(
N
k

)
with communication complexity Com(Pk,N). If R is realizable, then there is

a distribution design X realizing R with share size Com(Pk,N) + log N .

8 We only consider the projective case, in which the constraints are restricted to be on
sets of variables; that is, the elements in the sets are sorted. In [4], also constraints
for non-sorted elements are considered.

9 By [4], a distribution design exists if and only if for every constraint “A‖B” ∈ R,
the sets A and B are in different connected components. Furthermore, it is enough
to construct a distribution design X where XA ≡ XB whenever A and B are in the
same component Ai, and XA ‖ XB whenever A and B are in different components.

The Complexity of Multiparty PSM Protocols and Related Models 315

Proof. To construct the distribution design, we first choose a random permu-
tation π : [N] → [N]. Let Mπ(i) be the messages in Pk,N of party Pπ(i) with
input i. We set Xi to be (Mπ(i), π(i)) for all i ∈ [N]. The reason that we choose
the permutation π is that an ad-hoc PSM protocol does not hide the identities
of the parties sending messages. We claim that X = (X1, . . . , XN) realizes R:

Equivalence constraints. Let A = {i1, . . . , ik} and let B = {j1, . . . , jk} be two
sets such that “(i1, . . . , ik) ≡ (j1, . . . , jk)” ∈ R. Vertices A and B are in the
same connected component and therefore fR(i1, . . . , ik) = fR(j1, . . . , jk). From
the construction, XA = (Xi1 , . . . , Xik

) = ((Mπ(i1), π(i1)), . . . , (Mπ(ik), π(ik))),
and XB = (Xj1 , . . . , Xjk

) = ((Mπ(j1), π(j1)), . . . , (Mπ(jk), π(jk))). We argue that
XA and XB are equally distributed. First, π is a random permutation, thus
{π(i1), . . . , π(ik)} ≡ {π(j1), . . . , π(jk)}. We next fix a set C = {c1, ..., ck} ⊆ [N]
of size k and show that the distribution of XA conditioned on π(i�) = c� for every
� ∈ [k] is equal to the distribution of XB conditioned on π(j�) = c� for every
� ∈ [k]. That is, XA and XB contain the messages of the same set C with inputs
i1, . . . , ik and j1, . . . , jk respectively. Since fR(i1, . . . , ik) = fR(j1, . . . , jk), by the
security of the ad-hoc PSM protocol, these messages are equally distributed.

Disjointness constraints. Let A = {i1, . . . , ik} and let B = {j1, . . . , jk} be two
subsets such that “(i1, . . . , ik) ‖ (j1, . . . , jk)” ∈ R. Vertices A and B are in differ-
ent connected components and therefore fR(i1, . . . , ik) = fR(j1, . . . , jk). Let X ′

A

and X ′
B be the messages in XA and XB respectively sorted according to π; i.e.

X ′
A = (Mπ(it1)

, . . . ,Mπ(itk
)) such that π(it1) < π(it2) < . . . < π(itk

) and, simi-
larly, X ′

B = (Mπ(jm1)
, . . . ,Mπ(jmk

)) such that π(jm1) < π(jm2) < . . . < π(jmk
).

By the correctness of the ad-hoc PSM protocol Pk,N , we can reconstruct
fR(i1, . . . , ik) from the messages (Mπ(it1)

, . . . ,Mπ(itk
)) and, similarly, we can

reconstruct fR(j1, . . . , jk) from the messages (Mπ(jm1)
, . . . ,Mπ(jmk

)) and there-
fore, XA ‖ XB . 	

Corollary 7.8. Let R be a k-homogenous set of constraints on N variables. If
R is realizable, then there is a distribution design X realizing R with share size
O(k3Nk/2). If k = 2, the size of the shares is O(N0.5), if k = 3, the size of the
shares is O(N), if k = 4, the size of the shares is O(N5/3), and if k = 5, the
size of the shares is O(N7/3).

The size of the shares in our distribution design is smaller than the size of
the shares in the distribution designs of [6] for homogeneous sets of constraints
when the number of constraints is large. However, the distribution designs in [6]
have extra properties that can be used to construct distribution designs for non-
homogeneous sets of constraints. We do not know how to use our distribution
designs to realize non-homogeneous sets of constraints.

7.3 Conditional Disclosure of Secrets and Secret-Sharing Schemes
for Uniform Access Structures

A CDS protocol allows a set of parties P1, . . . , Pk to disclose a secret to a referee,
subject to a given condition on their inputs. In such a protocol, each party Pi

316 A. Beimel et al.

holds an input xi ∈ [N], a joint secret s, and a common random string, and
there is a public function f : [N]k → {0, 1}. The referee knows x1, . . . , xk. The
protocol involves only a unidirectional communication from the parties to the
referee, which should learn s if and only if f(x1, . . . , xk) = 1.

Using the transformations of [6,12] from PSM protocols to CDS protocols,
our PSM protocols from Sect. 4 imply k-party CDS protocols with complexity
O(k3 · Nk/2) for an arbitrary function. However, in a very recent result, Liu,
Vaikuntanathan, and Wee [17] have constructed much more efficient CDS proto-
cols; they construct a k-party CDS protocols for any function f : [N]k → {0, 1}
with complexity 2Õ(

√
k log N).

We show that a CDS protocol implies a secret-sharing scheme for t-uniform
access structures in which the share size is the communication complexity of
the CDS protocols. An access structure is said to be t-uniform if the size of
every minimal authorized sets is either t or t + 1 and all sets of size at least
t + 1 are authorized. That is, every set of size less than t is unauthorized, every
set of size greater than t is authorized, and some sets of size t are authorized.
Our construction realizing a uniform access structure takes a CDS protocol for
a function f : {0, 1}k → {0, 1} and transforms it to a secret-sharing scheme
realizing a t-uniform access structure (with k parties).

Definition 7.9. Let P = {P1, . . . , Pk} be a set of parties. We represent a subset
of parties A ⊆ P by its characteristic string xA = (x1, . . . , xk) ∈ {0, 1}k where
for each i ∈ [k], xi = 1 if and only if Pi ∈ A. For a t-uniform access structure A,
we define a function fA : {0, 1}k → {0, 1} such that for every subset of parties
A ⊆ P, f(xA) = 1 if and only if A ∈ A. In particular, if |A| > t then f(xA) = 1.

Theorem 7.10. Let A be a t-uniform access structure on a set of parties P =
{P1, . . . , Pk}, and let Π be a CDS protocol for the function fA : {0, 1}k → {0, 1}
with a secret s. If Π has communication complexity Com(Π), then there is a
secret-sharing scheme for A with share size

O(k · max{Com(Π), log k} + log k).

Proof. Assume the dealer wants to share a secret s ∈ {0, 1}. The dealer chooses
at random a bit s1 ∈ {0, 1} and shares s1 using Shamir’s t-out-of-k secret-
sharing scheme. Let s2 = s ⊕ s1. The dealer chooses the randomness r, required
for the CDS protocol Π. Let Mi,0,Mi,1 be the message of party Pi on inputs
0 and 1 respectively in the CDS protocol Π with secret s2 and randomness r.
For each i ∈ [k] the dealer shares Mi,0 in Shamir’s t-out-of-(k − 1) threshold
secret-sharing scheme among all the parties except for party Pi. Next, the dealer
gives to each party Pi the share Mi,1. The size of Mi,b is Com(Π) for each
i ∈ [k], and b ∈ {0, 1}. The share of each party Pi is Mi,1 and k − 1 additional
shares created in the t-out-of-(k − 1) Shamir’s threshold secret-sharing scheme
for messages of the CDS, and a share of the bit s1. Thus, the total share size
is k · Com(Π) + log k (assuming that Com(Π) ≥ log k). We claim that this
secret-sharing scheme realizes A.

The Complexity of Multiparty PSM Protocols and Related Models 317

First, let A be an authorized set of parties such that |A| ≥ t, thus, f(xA) = 1
and the parties in A can reconstruct s1. By the correctness of Π, if the parties
have the messages Mi,1 for each Pi ∈ A and Mi,0 for each Pi /∈ A, then they can
reconstruct the secret s2. As |A| ≥ t, the parties in A hold at least t shares of
Mi,0 for every Pi /∈ A and therefore, they can reconstruct Mi,0. The parties in
A also have their message on input 1; i.e. Mi,1 for each Pi ∈ A. Therefore, they
can reconstruct the secret s2, and therefore, reconstruct s.

Second, let A be a set of parties such that |A| < t. The parties have no
information on s1, hence no information on s. Finally, let A be an unauthorized
subset of parties such that |A| = t. From the correctness of Shamir’s secret-
sharing scheme, the parties in A can reconstruct Mi,0 for every Pi /∈ A and have
no information on Mi,0 for Pi ∈ A (since Pi does not get a share of Mi,0). The
parties in A also have their message on input 1; i.e. Mi,1 for each Pi ∈ A. The
set A is unauthorized, thus, f(xA) = 0. From the security of Π, the parties in
A do not learn any information on the secret s2 from the messages on input
f(xA) = 0, therefore, they learn no information about s. 	

Corollary 7.11. Let A be a t-uniform access structure with k parties. Then,
there exists a secret-sharing scheme realizing A with shares of size 2Õ(

√
k).

References

1. Applebaum, B., Raykov, P.: From private simultaneous messages to zero-
information Arthur-Merlin protocols and back. In: Kushilevitz, E., Malkin, T.
(eds.) TCC 2016. LNCS, vol. 9563, pp. 65–82. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49099-03

2. Beimel, A., Farràs, O., Mintz, Y., Peter, N.: Linear secret-sharing schemes for
forbidden graph access structures. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS,
vol. 10678, pp. 394–423. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-70503-313

3. Beimel, A., Farràs, O., Peter, N.: Secret sharing schemes for dense forbidden
graphs. In: Zikas, V., De Prisco, R. (eds.) SCN 2016. LNCS, vol. 9841, pp. 509–528.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44618-927

4. Beimel, A., Gabizon, A., Ishai, Y., Kushilevitz, E.: Distribution design. In: ITCS
2016, pp. 81–92 (2016)

5. Beimel, A., Gabizon, A., Ishai, Y., Kushilevitz, E., Meldgaard, S., Paskin-
Cherniavsky, A.: Non-interactive secure multiparty computation. In: Garay, J.A.,
Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8617, pp. 387–404. Springer, Hei-
delberg (2014). https://doi.org/10.1007/978-3-662-44381-122

6. Beimel, A., Ishai, Y., Kumaresan, R., Kushilevitz, E.: On the cryptographic com-
plexity of the worst functions. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp.
317–342. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-
814

7. Beimel, A., Ishai, Y., Kushilevitz, E.: Ad hoc PSM protocols: secure computation
without coordination. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017.
LNCS, vol. 10212, pp. 580–608. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56617-720

https://doi.org/10.1007/978-3-662-49099-0_3
https://doi.org/10.1007/978-3-662-49099-0_3
https://doi.org/10.1007/978-3-319-70503-3_13
https://doi.org/10.1007/978-3-319-70503-3_13
https://doi.org/10.1007/978-3-319-44618-9_27
https://doi.org/10.1007/978-3-662-44381-1_22
https://doi.org/10.1007/978-3-642-54242-8_14
https://doi.org/10.1007/978-3-642-54242-8_14
https://doi.org/10.1007/978-3-319-56617-7_20
https://doi.org/10.1007/978-3-319-56617-7_20

318 A. Beimel et al.

8. Benhamouda, F., Krawczyk, H., Rabin, T.: Robust non-interactive multiparty com-
putation against constant-size collusion. In: Katz, J., Shacham, H. (eds.) CRYPTO
2017. LNCS, vol. 10401, pp. 391–419. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-63688-713

9. Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private information retrieval.
J. ACM 45, 965–981 (1998)

10. Feige, U., Kilian, J., Naor, M.: A minimal model for secure computation. In: 26th
STOC, pp. 554–563 (1994)

11. Gay, R., Kerenidis, I., Wee, H.: Communication complexity of conditional dis-
closure of secrets and attribute-based encryption. In: Gennaro, R., Robshaw, M.
(eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 485–502. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48000-724

12. Gertner, Y., Ishai, Y., Kushilevitz, E., Malkin, T.: Protecting data privacy in
private information retrieval schemes. JCSS 60(3), 592–629 (2000)

13. Ishai, Y., Kumaresan, R., Kushilevitz, E., Paskin-Cherniavsky, A.: Secure compu-
tation with minimal interaction, revisited. In: Gennaro, R., Robshaw, M. (eds.)
CRYPTO 2015. LNCS, vol. 9216, pp. 359–378. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48000-718

14. Ishai, Y., Kushilevitz, E.: Private simultaneous messages protocols with applica-
tions. In: 5th Israel Symposium on Theory of Computing and Systems, pp. 174–183
(1997)

15. Ishai, Y., Kushilevitz, E., Paskin, A.: Secure multiparty computation with minimal
interaction. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 577–594.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-731

16. Liu, T., Vaikuntanathan, V., Wee, H.: Conditional disclosure of secrets via non-
linear reconstruction. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol.
10401, pp. 758–790. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63688-725

17. Liu, T., Vaikuntanathan, V., Wee, H.: Towards breaking the exponential barrier
for general secret sharing. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018,
Part II. LNCS, vol. 10821, pp. 567–596. Springer, Cham (2018)

18. Sun, H.-M., Shieh, S.-P.: Secret sharing in graph-based prohibited structures. In:
INFOCOM 1997, pp. 718–724 (1997)

19. Yoshida, M., Obana, S.: On the (in)efficiency of non-interactive secure multiparty
computation. In: Kwon, S., Yun, A. (eds.) ICISC 2015. LNCS, vol. 9558, pp. 185–
193. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30840-112

https://doi.org/10.1007/978-3-319-63688-7_13
https://doi.org/10.1007/978-3-319-63688-7_13
https://doi.org/10.1007/978-3-662-48000-7_24
https://doi.org/10.1007/978-3-662-48000-7_18
https://doi.org/10.1007/978-3-642-14623-7_31
https://doi.org/10.1007/978-3-319-63688-7_25
https://doi.org/10.1007/978-3-319-63688-7_25
https://doi.org/10.1007/978-3-319-30840-1_12

Masking

Formal Verification of Masked Hardware
Implementations in the Presence

of Glitches

Roderick Bloem(B) , Hannes Gross , Rinat Iusupov , Bettina Könighofer,
Stefan Mangard , and Johannes Winter

Institute for Applied Information Processing and Communications (IAIK),
Graz University of Technology, Inffeldgasse 16a, 8010 Graz, Austria

{roderick.bloem,hannes.gross,rinat.iusupov,bettina.konighofer,
stefan.mangard,johannes.winter}@iaik.tugraz.at

Abstract. Masking provides a high level of resistance against side-
channel analysis. However, in practice there are many possible pitfalls
when masking schemes are applied, and implementation flaws are eas-
ily overlooked. Over the recent years, the formal verification of masked
software implementations has made substantial progress. In contrast to
software implementations, hardware implementations are inherently sus-
ceptible to glitches. Therefore, the same methods tailored for software
implementations are not readily applicable.

In this work, we introduce a method to formally verify the security
of masked hardware implementations that takes glitches into account.
Our approach does not require any intermediate modeling steps of the
targeted implementation. The verification is performed directly on the
circuit’s netlist in the probing model with glitches and covers also higher-
order flaws. For this purpose, a sound but conservative estimation of the
Fourier coefficients of each gate in the netlist is calculated, which char-
acterize statistical dependence of the gates on the inputs and thus allow
to predict possible leakages. In contrast to existing practical evaluations,
like t-tests, this formal verification approach makes security statements
beyond specific measurement methods, the number of evaluated leakage
traces, and the evaluated devices. Furthermore, flaws detected by the
verifier are automatically localized. We have implemented our method
on the basis of a SAT solver and demonstrate the suitability on a range of
correctly and incorrectly protected circuits of different masking schemes
and for different protection orders. Our verifier is efficient enough to
prove the security of a full masked first-order AES S-box, and of the
Keccak S-box up to the third protection order.

Keywords: Masking · Formal verification
Threshold implementations · Hardware security
Side-channel analysis · Private circuits

c© International Association for Cryptologic Research 2018
J. B. Nielsen and V. Rijmen (Eds.): EUROCRYPT 2018, LNCS 10821, pp. 321–353, 2018.
https://doi.org/10.1007/978-3-319-78375-8_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78375-8_11&domain=pdf
http://orcid.org/0000-0002-1411-5744
http://orcid.org/0000-0003-1262-8076
http://orcid.org/0000-0003-4440-7884
http://orcid.org/0000-0001-9650-8041

322 R. Bloem et al.

1 Introduction

Security critical embedded systems rely on the protection of sensitive information
against exposure. While the transmission of sensitive information over conven-
tional communication channels can be protected by means of strong cryptography,
the protection against unintentionally created side channels, like power consump-
tion [28] or electromagnetic emanation [33], requires additional countermeasures.

Since the risk of side-channel analysis (SCA) is inevitable in many appli-
cations, different countermeasures have been proposed in the past. One of the
best researched and most effective countermeasures against SCA is masking.
Many different masking schemes have been introduced [24,26,31,35,37] over the
years. The history of masking, however, is also a history of failure and learning.
Some of the first masking schemes were shown to be insecure in practical imple-
mentations because glitches in the combinatorial logic (temporary logic states
caused by propagation time differences of the driving signals) were not consid-
ered in the formal models [26,37]. The first provably secure masking scheme with
inherent resistance to glitches was the threshold implementation (TI) scheme of
Nikova et al. [31]. Over the last years the TI scheme has been extended further
by Bilgin et al. [12], and other schemes have been proposed like the consolidated
masking scheme (CMS) of Reparaz et al. [35], and the domain-oriented masking
scheme (DOM and the low-randomness variant UMA) of Gross et al. [23,24].

Even if the used masking scheme is secure, this is not automatically true
for the implementations that rely on this scheme. One problem that thus still
remains is the verification of masked implementations. There are basically two
approaches that are used in practice to verify the resistance against SCA, namely
formal verification and empirical leakage assessment. The predominant approach
for the verification of masked hardware implementations is still the empirical
leakage assessment in form of statistical significance tests [21] or by attacking
the devices by using state-of-the-art side-channel analysis techniques. However,
such practical evaluations are never complete, in a sense that if no flaw is found
it remains uncertain whether or not the implementation could be broken with a
better measurement setup or more leakage traces.

Recently there has been some substantial development towards the formal veri-
fication for masked software implementations [3,7,17]. However, these verification
methods are tailored to software and do not take glitches into account. Therefore,
they cannot readily be applied to hardware implementations. In terms of non-
empirical verification of hardware implementations, there exist tools to test for
leakage by either modeling of the circuit in software [34] or approaches that sim-
ulate possible leakages by assuming a specific power model [9]. To the best of our
knowledge there exist no formal tools that take glitches into account and directly
prove the security of masked hardware implementations on its netlist.

Our contribution. In this work, we introduce a method to formally prove the
security of masked hardware implementations in the presence of glitches. In con-
trast to existing formal or non-empirical verification approaches for hardware
designs, the introduced approach does not require any additional modeling of
the circuit or the leakage source and proves the security of a circuit directly on

Formal Verification of Masked Hardware Implementations 323

its netlist. Compared to empirical verification methods based on the statistical
analysis of leakage traces, our formal approach allows direct localization of the
detected flaws, and gives conclusive security statements that are independent of
device- or measurement-specific conditions, or the amount of gathered leakage
information.

We base our approach on the probing model of Ishai et al. [26] and take
the effects of glitches into account. We introduce a circuit verification method
that performs a conservative estimate of the data that an attacker can learn by
probing different gates and wires. The verification works directly on the gate-level
representation of the circuit. It uses the Fourier expansion (or Walsh expansion)
of the functions that are computed and uses the fact that a non-zero Fourier
coefficient for a linear combination of variables indicates a correlation between
the function and these variables (cf. [10]). A correlation with a linear combination
of variables that contains secrets but no uniformly distributed masking variables
corresponds to an information leak. By only keeping track of whether coefficients
are zero or not, we circumvent the complexity of a full Fourier representation of
all functions computed by all gates of the circuit, at the cost of a loss of precision
that may lead to false alarms. The information of whether a coefficient is zero
or not can be encoded as a propositional logic formula whose size is linear in the
size of the circuit and vulnerability can be computed efficiently by a SAT solver.

To show the practicality of this approach, we check a variety of masked cir-
cuits that originate from different masking schemes. We focus on acyclic (feed-
back free) pipelined masked circuits, like the S-boxes of symmetric primitives
which are usually the parts of a circuit that are the hardest to protect in prac-
tice and therefore most susceptible to flaws. The security of the linear circuits
parts, on the other hand, can be established and verified more easily in practice,
for instance by ensuring that only one masked value or mask of one variable
is used inside each of the linear circuit parts [24]. For the same reason multi-
ple cipher rounds and S-box lookups can be analyzed separately, as long as it is
ensured that the masked outputs of the nonlinear parts are always independently
and freshly masked (which is the case for most masking schemes).

We ran our tool on a set of example circuits including the S-boxes of Keccak,
Fides and AES. Our verifier is efficient enough to formally prove the resistance
of a full first-order masked AES S-box. Because of the circuit size of the AES
S-box, which consumes about 40% of the entire AES area [24], the parallelized
evaluation takes about 10 h. We also prove a Keccak S-box up to order three,
and the GF (2) multipliers of DOM up to order four. Furthermore, we show that
our approach correctly detects flaws in masked circuits that are known to be
flawed in the presence of glitches e.g. [26,37]. The implementation of our tool
and some example circuits are available on github [27].

This paper is organized as follows. In Sect. 2 we give a short overview of
existing verification approaches and discuss the differences to our approach. In
Sect. 3, we introduce the used notation and the Fourier expansion. We give an
introduction to masked circuits and the probing model in Sect. 4, and show
how to leverage the Fourier expansion to test for probing security. We start
the introduction of our verification approach in Sect. 5, at first without taking

324 R. Bloem et al.

signal timings into account. Before we complete the description of our general
verification approach in Sect. 7, we first discuss in Sect. 6 how we model timing
effects i.e. glitches. A concrete instantiation of our verification approach based on
a SAT solver is then introduced in Sect. 8. Evaluation results for various masked
circuits are discussed in Sect. 9. We conclude this work in Sect. 10.

2 Related Work

Automated verification of masked implementations has been intensively
researched over the last years and recently many works targeting this topic have
been published [1,6,7,9,16–18,30]. Most of the existing work, however, targets
software based masking which does not include the effects of glitches.

Verification of masked software. One of the most groundbreaking works
towards the efficient verification of masked software implementations is the work
of Barthe et al. [3]. Instead of proving the security of a whole implementation
at once, this work introduces the notion of strong non-interference (SNI). SNI is
an extension to the more general non-interference (NI) notion introduced in [2].
The SNI notion allows to prove the security of smaller code sequences (called
gadgets) in terms of composability with other code parts. Gadgets fulfilling this
SNI notion can be freely composed with other gadgets without interfering with
their SCA resistance.

Verification of algorithms that fulfill this notion scale much better than other
approaches but, on the other hand, not all masking algorithms that are secure are
also directly composable. As a matter of fact the most efficient software masking
algorithms in terms of randomness of Belaid et al. [7,8], Barthe et al. [4], and
Gross et al. [23], for example, do not achieve SNI directly.

In contrast to Barthe et al.’s work on SNI [3], our approach does not check for
composability and is therefore less restrictive to the circuits and masking schemes
that can be proven (similar to the NI approach of Barthe et al.’ [2]). Since
Barthe et al.’s work is designed to prove masked software implementations it does
not cover glitches. In our work we introduce the necessary formal groundwork for
the verification of masked circuits and in particular the propagation of glitches.
Our approach is thereby not bound to our SAT realization but is also compatible
with existing tools like easycrypt which is developed by Barthe et al. [5].

Most recently another formal verification approach by Coron [14] was intro-
duced that builds on the work of Barthe et al.. Essentially two approaches are
discussed in this work. The first approach is basically the same as the approach
in [2] but written in Common Lisp language. The second approach is quite differ-
ent and works by using elementary transformations in order to make the targeted
program verifiable using the NI and SNI properties. The work of Coron targets
again only software based masking and does not take glitches into account.

Eldib et al. [17] present an approach to verify masked software implementa-
tions. Similar to our approach, the verification problem is encoded into SMT and
verified by checking the constraints for individual nodes (operations) inside the
program. This approach allows direct localization of the vulnerable code parts.

Formal Verification of Masked Hardware Implementations 325

However, their approach targets software and therefore does not cover glitches.
It also produces SMT formulas that are exponential in the number of secret vari-
ables, whereas the formulas that are produced by our approach are only linear.

Bhasin et al. [10] also use Fourier transforms to estimate the side channel
attack resistance of circuits. Their approach uses a SAT solver to construct low-
weight functions of a certain resistance order. They have not used their approach
to evaluate existing implementations of cryptographic functions, and they do not
take glitching behavior into account.

Verification of masked hardware. Similar to our approach, Bertoni et al. [9]
address verification of masked hardware implementations in the presence of
glitches. In this work all possible transients at the input of a circuit are considered
and all resulting glitches that could occur at the gates are modeled. However,
this approach focuses on first-order masking of purely combinatorial logic and
uses a rather simple power model to measure the impact (transitions from 0 to 1
result in the same power consumption as transitions from 1 to 0). We note that
focusing on combinatorial logic only, leaves out most of the existing hardware-
based masking schemes such as [23,24,31,35]. Bertoni et al. demonstrated their
approach on a masked implementation of Keccak based on a masking scheme
that is known to be insecure in the presence of glitches.

In contrast to Bertoni et al.’s work, our approach considers combinatorial
logic as well as sequential gates (registers), covers also higher-order leakages,
and is not restricted to circuits with only one output bit.

In the work of Reparaz [34], a leakage assessment approach is introduced
that works by simulating leakages of a targeted hardware implementation in
software. At first, a high-level model of the hardware implementation is created,
and the verification then works by simulating the model with different inputs
and extracting leakage traces. The verification result is gathered by applying
statistical significance tests (t-tests) to the simulated leakage traces. Compared
to our approach, the leakage detection approach of Reparaz does not perform a
formal verification but an empirical leakage assessment. Furthermore, the veri-
fication is not directly performed on the targeted hardware implementation but
requires to model its (leakage) behavior in software.

Most recently a paper by Faust et al. [19] was published that introduces the
so-called robust-probing model as extension to the original probing model with
regard to glitches. They build upon the work of Barthe et al. [3] and target the
verification of the SNI notion in their extended probing model. In contrast to
Faust et al.’s approach, our formal verification approach does not strife for the
verification of the SNI notion which trades higher randomness and implementa-
tions costs against faster verification. Furthermore, to the best of our knowledge,
there exists no implementation of their verification approach in form of a tool
to check real hardware circuits.

326 R. Bloem et al.

3 Preliminaries

In the following we make extensive use of the usual set notation, where S �T =
S \ T ∪ T \ S denotes the symmetric difference of S and T and for two sets of
sets S and T , we define S �� T = {S � T | S ∈ S, T ∈ T } to be the pointwise
set difference of all elements. We write B = {true, false} for the set of Booleans.
For a set X of Boolean variables, we identify an assignment f : X → B with the
set of variables x for which f(x) = true. For a Boolean function f(X,Y) and an
assignment x ⊆ X, we write f |x to denote the function f |x(y) = f(x, y).

Fourier expansion of Boolean functions. There is a close connection
between statistical dependence and the Fourier expansion of Boolean functions.
First we formally define statistical independence.

Definition 1 (Statistical independence). Let X, Y , and Z be sets of Boolean
variables and let f : 2X × 2Y → 2Z . We say that f is statistically independent of
X if for all z there is a c such that for all x we have |{y | f(x, y) = z}| = c.

Lemma 2. Let F : B
X × B

Y → B
Z . Function F is statistically independent of X

iff for all functions f : B
Z → B we have that f ◦F is statistically independent of X.

Please find the proof in Appendix A. To define Fourier expansions, we follow
the exposition of [32] and associate true with −1 and false with 1. We can then
represent a Boolean function as a multilinear polynomial over the rationals.

Definition 3 (Fourier expansion). A Boolean function f : {−1, 1}n →
{−1, 1} can be uniquely expressed as a multilinear polynomial in the n-tuple
of variables X = (x1, x2, . . . , xn) with xi ∈ {±1}, i.e., the multilinear polyno-
mial of f is a linear combination of monomials, called Fourier characters, of the
form χT (X) =

∏
xi∈T xi for every subset T ⊆ X. The coefficient of χT ∈ Q

is called the Fourier coefficient f̂(T) of the subset T. Thus we have the Fourier
representation of f:

f(X) =
∑

T⊆X

f̂(T)χT (X) =
∑

T⊆X

f̂(T)
∏

xi∈T

xi.

The Fourier characters χT : {−1, 1}n → {−1, 1} form an orthonormal basis
for the vector space of functions in f : {−1, 1}n → {−1, 1}. The Fourier
coefficients are given by the projection of the function to its basis, i.e., for
f : {−1, 1}n → {−1, 1} and T ⊆ X = (x1, x2, . . . , xn), the coefficient f̂(T) is
given by f̂(T) = 1/2n ·

∑
X∈{±1}n(f(X) · χT (X)). In order to prevent confusion

between multiplication and addition on rationals and conjuction and XOR on
Booleans, we write · and + for the former and ∧ and ⊕ for the latter.

As an example, the Fourier expansion of x ∧ y is

1/2 + 1/2 · x + 1/2 · y − 1/2 · x · y. (1)

If x = false = 1 and y = true = −1, for example, the polynomial evaluates to
1/2 + 1/2 − 1/2 + 1/2 = 1 = false as expected for an AND function.

Formal Verification of Masked Hardware Implementations 327

Let us note some simple facts. (1) the Fourier expansion uses the exclusive
or of variables as the basis: x ⊕ y = x · y. (2) f2 = 1 for the Fourier expansion of
any Boolean function f [32]. (3) there are two linear functions of two arguments:
f = x · y (XOR) and f = −(x · y) (XNOR). All other functions f are nonlinear
and for them, each of f̂(∅), f̂({x}), f̂({y}), and f̂({x, y}) is nonzero. (We are
ignoring the constant and unary functions.) (4) the statistical dependence of the
functions can be read off directly from the Fourier expansion: the conjunction
has a constant bias, positively correlates with x and y, and negatively with its
x ⊕ y. This last fact can be generalized to the following lemma.

Lemma 4 (Xiao-Massey [39]). A Boolean function f : {−1, 1}n → {−1, 1} is
statistically independent of a set of variables X ′ ⊆ X iff ∀T ⊆ X ′ it holds that
if T �= ∅ then f̂(T) = 0.

4 Masking and the Probing Model

The intention of masking is to harden side-channel analysis attacks (like differen-
tial power analysis or electromagnetic emanation analysis) by making side-channel
information independent of the underlying security sensitive information. This
independence is achieved through the randomization of the representation of secu-
rity sensitive variables inside the circuit. For this purpose, randomly produced and
uniformly distributed masks are added (XOR) to the security sensitive variables on
beforehand of a security critical computation. The number of used masks depends
on the used masking scheme and is a function of the security order.

As a simple example, we consider the security sensitive 1-bit variable s in
Eq. 2 that is protected by adding a uniformly random mask ms, resulting in the
masked representation sm.

sm = s ⊕ ms. (2)

The masked value sm is again uniformly distributed and statistically inde-
pendent of s, i.e., it has the same probability to be 0 or 1 regardless of the value
of s. Any operation that is performed only on sm is statistically independent of
s and thus also the produced side-channel information. Since the mask ms is
randomly produced, operations on the mask are uncritical. However, the com-
bination of side-channel information on sm and ms can reveal information on s.
The independence achieved through masking is thus only given up to a certain
degree (the number of fresh masks used for masking s), and it is important to
ensure this degree of independence throughout the entire circuit. The degree of
independence is usually refereed to as the protection order d.

Masked circuits. For the remainder of the paper, let us fix an ordered set
X = {x0, . . . , xn} of input variables. We partition the input variables X into
three categories:

– S = {s1, . . . sj} are security sensitive variables such as key material and inter-
mediate values of cryptographic algorithms that must be protected against
an attacker by means of masking.

328 R. Bloem et al.

– M = {m1, . . .mk} are masks that are used to break the statistical dependency
between the secrets S and the information carried on the wires and gates.
Masks are assumed to be fresh random variables with uniform distribution
and with no statistical dependency to any other variable of the circuit.

– P = {p1, . . . pl} are all other variables including publicly known constants,
control signals, et cetera. Unlike secret variables, these signals do not need to
be protected by masks and are unsuitable to protect secret variables.

We define a circuit C = (G,W, R, f, I), where (G,W) is an acyclic directed
graph with vertices G (gates) and edges W ⊆ G × G (wires). Gates with inde-
gree zero are called inputs I, gates with outdegree zero are called outputs O.
Furthermore, R ⊆ G is a set of registers, f is a function that associates with any
gate g ∈ G \ I with indegree k a function f(g) : B

k → B, and I : I → (2X → B)
associates an externally computed Boolean function over X to each input. We
require that registers have indegree one and that the associated function is the
identity. In the following, we assume, wlog, that all gates, except inputs and reg-
isters, have indegree 2 and we partition these gates into a set L of linear gates
(XOR, XNOR) and a set N of nonlinear gates (AND, NAND, OR, NOR, the
two implications and their negations). We also require that for any gate g, any
path from some input to g has the same number of registers.

∈

∈

⊕ ⊕

⊕

Fig. 1. Circuit graph of circuit in Fig. 2

The intuitive meaning of f is the local function computed by a gate. For
instance, if g is an AND gate, f(g)(x, y) = x ∧ y. We associate with every gate
another function F (g) : 2X → B, which defines the function computed by the
output of the gates in terms of the circuit inputs. The function F (g) is defined
by the functions of the predecessor gates and f(g) in the obvious way. Given a
sequence of gates (g1, . . . , gd), we extend F pointwise to F (g1, . . . , gd) : 2X → B

d:
F (g1, . . . , gd)(x) = (g1(x), . . . , gd(x)). We often identify a gate with its function.

Formal Verification of Masked Hardware Implementations 329

As an example, consider the circuit graph in Fig. 1 (which corresponds to the
circuit depicted in Fig. 2). We have f(g3)(a, b) = a⊕ b and F (g3) = (sm ⊕m1)⊕
(ms ∧ p1).

For a circuit C, a sequence of gates G = (g1, . . . , gn), and a sequence of
functions F = (f1, . . . , fn) with fi ∈ B

2 → B, we write C[G → F] for the circuit
C in which gate gi is replaced by a gate with the Boolean function fi.

Security of masked circuits. The security of various masking schemes is often
analyzed in the so-called probing model that was introduced by Ishai et al. [26].
It was shown by Faust et al. [20] and Rivain et al. [36] that the probing model
is indeed suitable to model side-channel attacks and to describe the resistance
of an implementation in relation to the protection order d. As it was shown by
Chari et al. [13], there is an exponential relation between d and the number of
leakage traces required to exploit the side-channel information.

In the probing model, an attacker is bound to d probing needles which can be
freely placed on arbitrary circuit gates (or wires). Probes are placed permanently
on these gates and monitor all signals states and signal transitions that occur at
the probed circuit gate from the circuit reset onwards. Thus one probe records the
probed signals at all time instances. The probing model quantifies the level of side-
channel resistance of a circuit over the minimum number of probing needles an
attacker requires to extract any secret information. More specifically, a circuit is
secure in the probing model if an attacker cannot combine the information gath-
ered from d probes over all points in time in an arbitrary function F such that F
statistically depends on any of the secret variables in S. We model a probe as the
ability to read the Boolean function produced by the probed gate or its associated
wire. Since we assume that the masking variables are uniformly distributed, and
the public variables are known, the circuit leaks information iff F is statistically
dependent on S regardless of the values that the public variables take.

Definition 5 (secure functions). A function f : 2X → B
d is secure if f is for

any assignment p ⊆ P to the public variables, f |p is statistically independent of S.

Definition 6 (d-probing security [26]). A circuit C = (G,W, f, I) is order
d probing secure (d-probing secure) iff for any gates g1, . . . , gd ∈ G, F (g1, . . . , gd)
is secure.

Verification example using the Fourier expansion. According to Lemma 4,
we can decide whether the values computed by a circuit are secure by computing
the Fourier expansion of all its gates and checking whether there is a coefficient
that contains only secret variables without a mask (and with or without public
variables). Formally we check that ∅ �= S′ ⊆ S ∪ P such that F̂ (g)(S′) �= 0. The
first-order security of a circuit can thus be verified using the probing model by

330 R. Bloem et al.

calculating the Fourier expansion of the whole circuit. As an example consider the
Fourier expansion of the circuit in Fig. 2 for which we have:

F (g1) = sm · m1,

F (g2) = 1/2 + 1/2 · ms + 1/2 · p1 − 1/2 · msp1, and
F (g3) = F (g1) · F (g2)

= 1/2 · smm1 + 1/2 · mssmm1 + 1/2 · p1smm1 − 1/2 · msp1smm1.

Assuming that sm = s ⊕ ms and using the properties of the Fourier expansion
this implies that

F (g3) = 1/2 · smsm1 + 1/2 · sm1 + 1/2 · sp1msm1 − 1/2 · sp1m1. (3)

For the example circuit in Fig. 2, if s is a secret and m1 is a uniformly
distributed random mask, then g3 in Eq. 3 computes a function that does not
reveal any secret information. This follows from the fact that in F (g3) there are
only (non-zero) Fourier coefficients for terms that contain s and at least one
masked value.

Since the exact computation of Fourier coefficients is very expensive and
the extension to higher-order probing security nontrivial, in the following we
develop a method to estimate the Fourier coefficients of each gate and to check
for higher-order security.

5 Our Verification Approach for Stable Signals

In this section, we present a sound verification method for (d-)probing security
for the steady-state of a digital circuit. It is assumed that the signals at the
circuit input are fixed to a certain value and that all intermediate signals at
the gates and the circuit output have reached their final (stable) state. This
approach is later on extended in Sects. 6 and 7 to cover transient signals and
glitches.

Since the formal verification of the security order of masked circuits has
proven to be a non-trivial problem in practice, the intuition behind a circuit
verifier is to have a method that correctly classifies a wide range of practically
relevant and securely masked circuits but rejects all insecure circuits. Any circuit
that is not secure according to Definition 6 is rejected. Our verification approach
can be subdivided into three parts: (1) the labeling system, (2) the propagation
rules, and (3) the actual verification.

5.1 Labeling

In order to check the security of a circuit we introduce a labeling over the set
of input variables X for the stable signals S : G → 22

X

that associates a set
of sets of variables to every gate. This labeling system is based on the Fourier
representation of Boolean functions (see Sect. 3) and intuitively, a label contains

Formal Verification of Masked Hardware Implementations 331

at least those sets X ′ ⊆ X for which f̂(X ′) �= 0 (the sets that correlate with the
Boolean functions).

The initial labeling is derived from I. For an input g which is fed by function
fg = I(g), we have S(g) = {X ′ ⊂ X | f̂g(X ′) �= 0}. In practice, the initial
labeling of the circuits is easy to determine as inputs are typically provided with
either a single variable m or a masked secret x⊕m. An example for the labeling of
an example circuit is shown in Fig. 2 (blue). Inputs containing security sensitive
variables contain a single set listing all security sensitive variables and masks
that protect this sensitive variables. For the masked signal sm = s ⊕ ms, for
example, the initial label is S(sm) = {{s,ms}}. The meaning of the label is that
by probing this input the attacker does not learn anything about s. In order to
reveal any information on s, also some information on ms needs to be combined
with this wire in, either by the circuit itself (which would be a first-order flaw)
or by the attacker by probing an according wire. If the attacker is assumed to
be restricted to a single probing needle (d = 1) the signal sm is secure against
first-order attacks. Finally, the masked inputs ms and m1 in Fig. 2 contain only
the mask variables. Formally, for inputs g ∈ I with function I(g) = f(X), we
set S(g) = {X ′|X ′ = X}.

5.2 Propagation Rules

To estimate the information that an attacker can learn by probing the output
of a gate, we propagate the input labels through the circuit. For the verification
we conservatively estimate which coefficients of the Fourier representation are
different from zero and correlate with the variables. We prove at the end of
this section that our estimation is sufficient to point out all security relevant
information.

Nonlinear gates. To generate the labels for the outputs of each gate of the
circuit, we introduce the nonlinear gate rule. The nonlinear gate rule corresponds
to a worst-case estimation of the concrete Fourier spectrum of the signals and
trivially catches all flaws. The labeling for the output of the nonlinear gate
g ∈ N , with inputs ga and gb is:

S(g) = {∅} ∪ S(ga) ∪ S(gb) ∪ S(ga) �� S(gb).

See gate g2 in Fig. 2 for a simple example of an AND gate calculating ms∧p1.
The resulting labels denote the information that can be learned by probing this
gate which could be either ms or p1 alone, or together. The labeling reflects the
Fourier spectrum of the AND gate (see Eq. 1). In particular the labeling shows
all terms of the Fourier polynomial which coefficients are different from zero and
are therefore statistical dependent.

Linear gate rule. By following the Definition 3 of the Fourier expansions fur-
ther we can also model linear gates which have a reduced spectrum compared
to nonlinear gates. We model this circumstance by introducing a new rule for
labeling a linear gate g ∈ L with inputs ga and gb:

S(g) = S(ga) �� S(gb).

332 R. Bloem et al.

Fig. 2. Masked circuit example with according labels after the propagation step (Color
figure online)

Combined example. To demonstrate how the propagation step works in prac-
tice, we applied the propagation rules (summarized in Table 1) to an example
circuit. The result is shown in Fig. 2. The AND gate g2 is a nonlinear gate, and
the propagation rules are then iteratively applied to the gates g1 to g3. The out-
put labeling of g1 indicates that the security critical variable s is here not only
protected by ms but also by the mask m1. Combining the public signal p1 with
the mask ms in the nonlinear gate results in a nonuniform output signal which
is indicated by the {∅} label at the output of g2. For the calculation of the labels
of g3, the linear rule is used on the output labels of g1 and g2 which results in a
labeling that indicates that s is even in the worst-case still protected by ms, or
m1, or both.

5.3 Verification

For the verification step, in the first-order case, the circuit verifier checks if any
of the sublabels created in the propagation step contains one or more secret
variables without any masking variables (public variables are ignored since they
are unable to mask secret data). If this is the case, the verifier rejects the circuit.
In the example circuit in Fig. 2, all of the labels that contain s also contain m1

or ms and therefore the circuit is accepted by the verifier.

Table 1. Propagation rules for the stable set S(g) connected to the gates ga and gb

Gate type of g Stable set rule

Input I(g) = f(X) S(g) = {X ′ | X ′ = X}
Nonlinear gate S(g) = {∅} ∪ S(ga) ∪ S(gb) ∪ S(ga) �� S(gb)

Linear gate S(g) = S(ga) �� S(gb)

Register S(g) = S(ga)

Formal Verification of Masked Hardware Implementations 333

Higher-order verification. For the generalization to d-order verification it is
quite tempting to model the attackers abilities by letting the attacker pick mul-
tiple labels from any gate and combining them in an arbitrary manner. However,
we note that the labeling does not reflect the relation of the probed information
among each other and thus does not give a suitable approximation of what can
be learned when multiple gates are probed. As a trivial example consider a cir-
cuit that calculates q = (a ∧ b) ⊕ c where all inputs are uniformly distributed.
The labeling of the output q after the propagation step consists of the labels {c},
{a, c}, {b, c}, and {a, b, c} for all of which an attacker probing q would indeed
see a correlation. If an attacker restricted to two probes would probe q with the
first probe, she obviously would not learn anything more by probing q a second
time. In other words, if we would model a higher-order attacker by the ability
to combine multiple labels, she could combine the label {c} with any other label
of q, e.g. {a, b, c}, in order to get information on a or b which is of course not
the case.

Instead of modeling higher-order verification by the straight-forward com-
bination of labels, we instead check the nonlinear combination of any tuple of
d gates. An attacker can thus pick any number of up to d gates and combines
them in an arbitrary function. We then need to check that even the worst case
function over the gates could never contain a secret variable without a mask.
This causes an obvious combinatorial blowup. In Sect. 8, we show how to har-
ness a SAT solver to combat this problem. A proof for the correctness of the
verification without glitches is provided in Appendix B.

In the next two sections we extend the verifier to cover glitches which shows
that the example circuit is actually insecure.

6 Modeling Transient Timing Effects

So far, we have only considered the circuit’s stable signals. We now discuss
signal timing effects inside one clock cycle i.e. glitches and formalize how we
model glitches in the probing model. Subsequently, we discuss how we model
information that is collected from multiple clock cycles.

Fig. 3. Masked circuit example, insecure due to glitches

334 R. Bloem et al.

6.1 Glitches

As an example of what can go wrong when differences in the signal propagation
times are not taken into account [29], consider the circuit in Fig. 3. The depicted
circuit is secure in the original probing model as introduced in [26].

The information on the outputs of the XOR gates is (sm = s ⊕ ms):

g1 = sm ⊕ m1 = s ⊕ ms ⊕ m1 and
g3 = sm ⊕ m1 ⊕ ms = s ⊕ m1.

Since the other circuit gates (input terminals are modeled as gates) only carry
information on the masked value sm or the masks ms and m1, a single probe
on any parts of the circuit does not reveal s and the circuit is thus first-order
secure in the original probing model.

However, if we assume that in a subsequent clock cycle (Cycle 2 in Fig. 4) a
different secret s′ is processed, the circuit inputs change accordingly from sm, ms,
and m1 to s′

m, m′
s, and m′

1, respectively. Figure 4 shows an example on how these
changes propagate through the circuit. Due to signal timing variance caused by
physical circumstances, like different wire lengths or different driving strengths
of transistors, so-called glitches arise. As a result of this timing variance m1

changes its value later (t2) than the other inputs (t1) thus creating a temporary
information leak (glitch). An attacker who places one probe on the output of g3
firsts observes the original value s ⊕ m1 (at time t0) and then s′ ⊕ m1 (between
t1 and t2). By combining the information the attacker obtains the information
(s ⊕ m1) ⊕ (s′ ⊕ m1) which is equivalent to s ⊕ s′. Thus, she learns the relation
of two secret bits. This information could not be obtained by combining the
stable signals in the two clock cycles. Indeed, the leakage critically depends
on the temporary information provided by the glitch in the circuit. To verify
the security of a circuit in the probing model with glitches, all possible signal
combinations that could arise because of propagation delays of signals need to
be considered.

6.2 Formalization of Probing Security with Glitches

To formalize the probing model with glitches in the first-order case, the attacker’s
abilities are extended as follows: The attacker can first replace any number of
gates (except for registers) by a gate that computes an arbitrary Boolean func-
tion from the gate’s original inputs, and may then place one probe on any wire
such that there is no register between any replaced gate and the probe.

For higher-order attacks with d > 1, the formalization is a little more cumber-
some. Intuitively, the attacker should be able to modify the behavior of arbitrary
gates, but this effect should disappear when the signal passes through a register.
We model this by copying the combinational parts of the circuit and allowing

Formal Verification of Masked Hardware Implementations 335

Fig. 4. Waveform example for the circuit in Fig. 3, showing security critical glitch (red)
(Color figure online)

the attacker to change gates in the copy, whereas the original, unmodified signals
are propagated by the unmodified gates. Figure 5 illustrates an example for the
modeling of the glitches. The copied gates, which the attacker may modify, are
drawn in blue. Note in particular that gate g7 feeds into register g8, but the copy
g′
7 becomes a new primary output.

Formally, given a circuit C = (G,W, R, f, I), we do the following.

(1) We define a circuit C ′ = (G′,W ′, R, f ′, I). We copy all the gates except
inputs and registers: G′ = G ∪ {g′ | g ∈ G \ R \ I}. We introduce wires from
the inputs and registers to the copied gates and introduce wires between the
copied gates: W ′ = W ∪ {(g, h′) | (g, h) ∈ W, g ∈ I ∪ R} ∪ {(g′, h′) | (g, h) ∈
W, g /∈ I ∪R, h /∈ R}. Finally, the functions of the copied gates are the same
as those of the originals: f ′(g′) = f(g) for g ∈ G′ \ G.

(2) The attacker may replace any gate copy g′ by a gate that computes an
arbitrary Boolean function. We model this by defining a set of circuits, one
for any set of gates that the attacker may modify:

Cglitch(C) = {C′[(g′
1, . . . , g

′
n) �→ (f1, . . . , fn)] | (g1, . . . , gn) ∈ Gn, ∀i.fi : B

2 → B}.

Definition 7 (d-probing security with glitches). A circuit C is order d
probing secure with glitches iff for any Cglitch = (G′,W ′, R, f ′, I) ∈ Cglitch and
any gates g1, . . . , gd ∈ G′, F (g1, . . . , gd) is secure.

336 R. Bloem et al.

Fig. 5. Example for modeling of glitches of a circuit C (without blue parts) in C′

(Color figure online)

6.3 Modeling Information from Multiple Clock Cycles

The verification of higher-order probing security requires to model information
that is obtained and combined over different clock cycles. In our verification app-
roach we consider dependencies between variables rather than concrete instanti-
ation of these variables. The way we model glitches allows an attacker to exploit
the worst case dependencies between the variables in between two register stages.
We now state assumptions on masked circuit that ensure that the worst case
dependencies are the same in each clock cycle.

Assumptions on masked circuits. Without loss of relevance for masked cir-
cuits we make the following assumptions which are inspired by practical masked
circuits: (1) We assume that the values on the inputs remain the same through-
out a clock cycle, they toggle only once at the beginning of a new clock cycle
(registered inputs). (2) The class of the variables that are used in the input func-
tions and the functions themselves do not change over time. For the circuit in
Fig. 3, for example, the input sm always contains a variable s ∈ S and the asso-
ciated mask ms ∈ M even though in each clock cycle the variables may change
(e.g. from s to s’). (3) Mask variables are fresh random and uniform distributed
at each clock cycle. (4) The circuits are feedback free and loop free, except the
inherent feedback loops of registers. (5) The register depth (number of registers
passed, counting from the input of the circuit) for each variable combined in a
gate function is the same. No information resulting from different clock cycles
is thus combined apart from the effects of delays and glitches which may tem-
porarily combine information from two successive clock cycles. This assumption
is motivated by the fact that most of the masked hardware designs, e.g. common
S-box designs, are designed in a pipelined way.

From these assumptions it follows that all variables change in each cycle
(e.g. from s to s’, and so on), however, at varying times and in an arbitrary order.
The variable classes and functions remain the same, and as a result from the
assumptions 4 and 5 it is ensured that only variables that are fed into the circuit

Formal Verification of Masked Hardware Implementations 337

at the same cycle or from the cycle before are combined. It is therefore enough
to consider the propagation of dependencies instead of concrete instantiation
of variables.

7 Extending the Verification Approach to Transient
Signals

In this section we use the modeling of the transient timing effects from the previ-
ous section to complete our verification approach. We take glitches into account
by extending the propagation rules accordingly. The modeling of information
from different clock cycles, on the other hand, does not require any changes in
the verification approach from Sect. 5.

The nonlinear gate rule in Table 1 already inherently covers glitches by prop-
agating the labels of the inputs and all possible combinations of these labels
directly to the output. To hinder the propagation of glitches, circuit designers
use registers that propagate their input only on a specific clock event, and thus
isolate the register input from the output during the evaluation phase. We model
the glitching behavior of a circuit by introducing an additional transient set of
labels T per gate. Each gate thus has two associated sets: S carries the informa-
tion of the stable state of the circuit as before, and the transient set T describes
the transient information that is only accessible to an attacker in between two
registers (or an input and a register, or a register and an output). In between
two registers we also apply the nonlinear gate rule to linear gates to ensure we
cover all possible effects of glitches.

Figure 6 illustrates the new linear gate rule for the stable (blue) and the
transient (red) set of labels. The stable and transient sets of the inputs are equal
at the beginning because the inputs are either circuit inputs or outputs of a
register. When the signals propagate through the linear XOR gate, the transient
set is calculated by applying the linear rule from Table 2 and the stable set with
the linear rule from Table 1. After the signal passes the register, only the stable
information remains and the transient set carries thus the same information as
the stable set. Table 2 summarizes the rules for creating the transient-set labels
T (g). Please note that introducing the transient set and the transient gate rules
corresponds to the modeling of glitches from Sect. 6 as depicted in Fig. 5 (blue),
where the gates in between two registers are copied and their function can be
changed in an arbitrary manner by the attacker. Replacing the transient labels
with the stable labels at a register corresponds to connecting the copied gates
to the circuit output to hinder the propagation of glitches.

Aside from the introduction of the transient set and the according propaga-
tion rules, the verification work as described in Sect. 5. The circuit inputs are
initially labeled according to their input variables where both the stable and
transient sets hold the same labels. Then for all possible combinations of up to
d gates the propagation of the labels is performed according to the stable and
transient propagation rules. The circuit is order-d probing secure if for no combi-
nation of gates produces a label that only consists of secrets and public variable

338 R. Bloem et al.

Table 2. Propagation rules for the transient set T (g) fed by the gates ga and gb

Gate type of g Transient set rule

Input T (g) = S(g)

Nonlinear gate T (g) = {∅} ∪ T (ga) ∪ T (gb) ∪ T (ga) �� T (gb)

Linear gate T (g) = {∅} ∪ T (ga) ∪ T (gb) ∪ T (ga) �� T (gb)

Register T (g) = S(ga)

Fig. 6. XOR gate rules for stable (blue) and transient (red) signal sets (Color figure
online)

without masks. A proof for the verification approach for transient signals is
provided in Appendix C.

Example. The transient labels T of the circuit in Fig. 2 are shown in Fig. 7
(the stable sets are omitted since they do not carry any additional information).
Due to the transient set propagation rules, the functionality of the gates g1 and
g3, which are linear gates in the underlying circuit in Fig. 2, are replaced with
nonlinear gates. As can be observed at the output of the circuit, the verification
under the consideration of glitches leads to a rejection of the circuit because the
s variable (black labels) is in the output labeling without being masked by either
ms or m1.

To make it clear that the circuit is indeed insecure, we assume that p1 = true
and that sm and ms change their values to s′

m and m′
s, resp., but the value of m1

and p1 temporarily remains unchanged. Then, g1 transitions from s ⊕ ms ⊕ m1

to s′ ⊕m′
s⊕m1 and as a result g3 transitions from s⊕m1 to s′ ⊕m1, thus leaking

information about the relation of s and s′. (Cf. Fig. 4). The flaw can be easily
repaired by adding a register after g1 which ensures that sm is always remasked
before ms is combined with sm in g3, and the same labels as in Fig. 2 for g1
would thus be propagated.

8 SAT Based Circuit Verification

In this section, we introduce one concrete instantiation of our verification app-
roach based on a SAT solver. The verification approach introduced in the previ-
ous sections is thus encoded as formulas in propositional logic. We start with the
stable set rules and verification before we extend the encoding to the transient
set rules.

Formal Verification of Masked Hardware Implementations 339

Verification of stable signals. The SAT based verification works as follows.
Intuitively, for every gate g, we pick one set X ′ ⊆ S(g), i.e., we pick one Fourier
character with a possibly nonempty coefficient. We then encode the rules for the
linear and nonlinear gates of Tables 2 and 1, respectively. To check for higher-
order security we connect an XOR gate (checking gate) to any possible subset
of up to d gates and check that the label of this gate does not contain a label
with just secrets and no masks.

Fig. 7. Masked circuit example from Fig. 2 reevaluated with the transient rules (red)
which leads to a flaw due to glitches (black labels) (Color figure online)

Let C = (G,W, R, f, I) be a circuit. For each gate g we introduce a set of
Boolean variables Xg = {xg | x ∈ X} and a Boolean activation variable ag.
For a checking gate gc we introduce a set of Boolean variables Xgc . We define
a formula Ψ to check whether the masking scheme is secure. Recall that L and
N are the sets of linear gates and nonlinear gates, resp. Formula Ψ consist of
multiple parts:

Ψ = Ψgates ∧ Ψunsafe, where

Ψgates =
∧

g∈I

Ψinp(g) ∧
∧

g∈N

Ψnl(g) ∧
∧

g∈L

Ψlin(g) ∧
∧

g∈R

Ψreg(g).

The labeling of the inputs is determined by I. For X ′ ⊆ X, we define

ψg(X ′) =
∧

x∈X

{
xg(X ′) if x ∈ X ′,
¬xg(X ′) if x /∈ X ′, and

Ψinp(g) =
∨

X′⊆X: ̂I(g)(X′) �=0

ψg(X ′).

To define the behavior of linear and nonlinear gates we define the follow-
ing auxiliary formulas using the rules from Table 1, where T = (t1, . . . , tn),

340 R. Bloem et al.

U = (u1, . . . , un), and V = (v1, . . . , vn) are ordered sets of variables, and define
↔ to denote equality.

Ψempty(T) =
∧

i

¬ti,

Ψcopy(T,U) =
∧

i

(ti ↔ ui), and

Ψlin(T,U, V) =
∧

i

(ti ↔ (ui ⊕ vi)).

For a linear gate g with inputs g′ and g′′, we use the formula

Ψlin(g) = Ψlin(Xg,Xg′ ,Xg′′),

for a nonlinear gate g with inputs g′ and g′′, we use the formula

Ψnl(g) = Ψempty(Xg)∨Ψcopy(Xg,Xg′)∨Ψcopy(Xg,Xg′′)∨Ψlin(Xg,Xg′ ,Xg′′), and

for a register g with input g′, we simply have Ψreg(g) = Ψcopy(Xg,X
′
g). Also we

introduce an integer variable asum, and bound it to the attack order d:

asum =
∑

g

ite(ag, 1, 0)

asum ≤ d.

The function Ite(ag, 1, 0) (if-then-else) converts a Boolean variable to Integer.
For the checking gate we xor the corresponding inputs:

Ψ(gc) =
∧

x∈X

xgc ↔ ⊕g∈Gag ∧ xg.

Finally, for the checking gate gc we define a constraint to check whether security
is violated, that is, whether there is a non-zero Fourier coefficient which contains
secrets and no masks:

Ψunsafe(gc) =
∨

s∈S

sg ∧
∧

m∈M

¬mg.

Formula Ψ contains |X| · |G| propositional variables and O(|X| · |G|) constraints.
An example for the SAT encoding is provided in Appendix F along with a

proof for its correctness in Appendix D.

Extension to transient signals. The encoding for the transient rules follows
the exposition in Sect. 7 and in particular the rules from Table 2. We introduce a
second set of variables X ′

g = {x′
g | x ∈ X}, which represent the Fourier characters

on the “copied” gates in Definition 7. We introduce a slightly modified set of

Formal Verification of Masked Hardware Implementations 341

constraints, where we write Φ′ to denote a formula Φ in which each variable xg

has been replaced by x′
g.

Φ = Φgates ∧ Φ′
unsafe, where

Φgates =
∧

g∈I

(Ψinp(g) ∧ Ψ ′
inp(g)) ∧

∧

g∈N

(Ψnl(g) ∧ Ψ ′
nl(g))∧

∧

g∈L

(Ψlin(g) ∧ Ψ ′
nl(g)) ∧

∧

g∈R

Φreg(g),

where for a register g with input g′, we copy only the original (glitch-free) signals:

Φreg(g) = Ψcopy(Xg,Xg′) ∧ Ψcopy(Xg,X
′
g′).

Fig. 8. Illustration of the verification flow

Note the use of the constraint for nonlinear gates for the copy of linear gates,
which corresponds to the attacker’s ability to replace such a gate by any other
gate in Cglitch(C). Finally, we check for leakage only on the gate copies:

Φ′
unsafe(gc) =

∨

s∈S

s′
gc ∧

∧

m∈M

¬m′
gc .

Formula Φ contains 2·|X|·|G| propositional variables and O(|X|·|G|) constraints.
A proof for the correctness of the encoding for transient signals is given in
Appendix E.

9 Practical Results

Figure 8 illustrates the implemented verification flow that is used to gather
the results presented in this section. At first the circuit description is parsed
using Yosys 0.7 [38] open synthesis suite. The resulting circuit tree is stored in
JavaScript Object Notation (JSON). The user then needs to provide the circuit’s
input labels by telling the JSON parser (written in Python) which signals are
secrets (S), masks (M), or other signals (P), and for which security order (d)
the circuit needs to be tested. The construction of the SAT formulas is then
performed in about 1,000 lines of Python code, and checked by the Z3 Theorem

342 R. Bloem et al.

Prover 4.5.1 [15] (initial experiments with other SAT solvers, including Crypto-
Minisat 5.0.1 were not encouraging). All results are gathered on a Intel Xeon
E5-2699v4 CPU with a clock frequency of 3.6 GHz and 512 GB of RAM running
in a 64-bit Linux OS environment (Debian 9).

Optimizations. There are a two simple optimizations that we use to speed up
the verification. First, we can treat public variables at the inputs as constants.
We can easily prove by induction that if P ′ ∪S′ ∪M ′ ∈ S(q) for some gate g and
P ′ ⊆ P , S′ ⊆ S, and M ′ ⊆ M and we compute a new labeling S ′ by treating the
public variables as constants, then S′ ∪ M ′ ∈ S ′(q) and thus, if S(q) is insecure,
so is S ′(q). A similar argument holds for T and for combinations of signals.

Second, we can treat secret bits one at a time, treating the other secret bits
as constants. The argument is much the same as for the first optimization, if a
function is insecure then it has a label with at least one secret bit and no masks.
Removing any other secret bits from the label does not affect whether the label
is seen as secure or not. This optimization allows for a significant speedup on
larger examples as it allows us to run the checks for each of the secret bits in
parallel.

Table 3. Overview of masked circuits the first order verification results

Name Gates Variables Part w/o glitches w/glitches

Linear Nonlin Reg Secret Mask Pub Time Result Time Result

Trichina gate [37] 4 4 0 2 3 1 ≤1 s ✗ ≤2 s ✗

ISW AND [26] 4 4 0 2 3 0 ≤1 s ✓ ≤2 s ✗

TI AND [31] 6 9 0 2 4 0 ≤1 s ✓ ≤3 s ✓

DOM AND [24] 4 4 2 2 3 1 ≤1 s ✓ ≤2 s ✓

DOM Keccak S-box [25] 30 20 10 5 10 1 ≤1 s ✓ ≤20 s ✓

DOM AES S-box [24] 392 144 208 8 26 1 1–8 ≤30 s ✓ ≤5–10 h ✓

TI Fides-160 S-box [11] 128 60 0 5 15 0 1–4 ≤1–2 s ✓ ≤1–3 s ✓

TI Fides-192 APN [11] 4, 035 3, 046 0 6 24 0

134 44 0 0 24 0 1 ≤2 s ✓ ≤5 s ✓

649 314 0 6 24 0 2 ≤1m ✓ ≤15m ✓

1, 697 1, 098 0 6 24 0 3 ≤20m ✓ ≤2 h ✓

1, 186 1, 086 0 6 24 0 4 ≤10m ✓ ≤40m ✓

369 504 0 6 24 0 5 ≤2m ✓ ≤3m ✓

Evaluation. An overview of the experiments is given in Table 3. The table
states the number of linear and nonlinear gates of the circuits as well as the
number of variables classified as secret, mask, and public, resp. Furthermore, the
verification results are given for the stable set (without glitches) and transient
set (with glitches) verification separately. The table states whether the circuit is
secure in the given model (✓ for secure and ✗ for insecure) and the time needed
for checking and generation of the constraints.

The selection of masked circuits cover different masked GF (2) multiplier con-
structions (masked AND gates) of the Trichina gate [37], the ISW scheme [26],

Formal Verification of Masked Hardware Implementations 343

the threshold implementation (TI) scheme [31], and the domain-oriented mask-
ing scheme (DOM) [24]. We also check larger circuits including the AES S-box
constructions of Gross et al. [24] using the domain-oriented masking (DOM)
scheme. Furthermore, we verify a FIDES S-box implementation by Bilgin
et al. [11], and a Keccak S-box by Gross et al. [25].

9.1 Verification of First-Order Masked Implementations

Table 3 shows the verification results of the first-order masked hardware imple-
mentations. For larger circuits, like the AES S-box, we checked each of the secret
bits separately. If multiple CPU’s are available, these verifications can run simul-
taneously and we thus split the verification up into multiple parts.

Masked AND gates. The first masked AND we verify is the so-called Trichina
gate which was originally designed to resist first-order attacks. Equation 4 shows
the underlying logic function. The Trichina gate was designed without consider-
ing the effect of glitches. As a result, if the inputs are correctly and independently
masked (am = a ⊕ ma and bm = b ⊕ mb), the stable state of the output of the
circuit is also correctly masked.

q = am ∧ bm ⊕ am ∧ mb ⊕ ma ∧ bm ⊕ ma ∧ mb ⊕ mq (4)

However, due to timing differences in the propagation of the signals, glitches
may occur in one of the XOR gates. This makes the design vulnerable unless
additional measures are taken which is also indicated by our verification results.
Interestingly also the result of the stable verification already shows the vulnera-
bility of the Trichina gate. This is due to timing optimizations of the synthesizer
that change the sequence in which the AND gate outputs are XORed together
which is a common problem in masked circuit designs and is easily overseen.

The masked AND gate from the ISW scheme is similar to the Trichina gate
but scalable to any protection order. This gate suffers from the same vulnerabil-
ity to glitches, which makes any straightforward implementation of the original
proposed circuit construction insecure against first-order attacks. This time the
flaw is not detected in the stable set because the gates are arranged in a way
that the secrets are always masked in the stable analysis of the circuit. However,
the circuit is nevertheless vulnerable to glitches which is shown in the transient
analysis of the circuit.

To overcome the issue of glitches, the threshold implementation (TI) scheme
proposed a masking with two fresh masks per sensitive variable (e.g., am =
a ⊕ ma0 ⊕ ma1). The resistance to glitches is then achieved by ensuring that in
no part of the circuit the masked value and all its masks come together.

A different approach, which requires fewer masks is provided e.g. by the
domain-oriented masking AND. For the security of this masked AND a separa-
tion of the terms is required by using a register for the combination of the terms
with a fresh random mask. The verifier also correctly labels the DOM AND to
be secure for the stable and in the transient verification. The verification without

344 R. Bloem et al.

glitches takes less than a second for all masked AND gate constructions, and less
than three seconds for the verification with glitches.

Verification of masked S-box circuits and permutations. For the remain-
ing circuits, we either used the source code which is available online [22] for the
DOM Keccak S-box and the DOM AES S-box, or in case of Fides kindly received
the circuit design from the designers. In order to check the circuits in a more
efficient manner, we used different optimizations. For the TI S-box of the Fides-
160 design, we checked the individual S-box functions in parallel but for a fixed
assignment of the secrets and masks. The result for all Fides-160 TI functions
is computed in less than three seconds with and without glitches. For the TI
Fides-192 design not only the S-Box but the whole APN permutation is split
into five functions. Again we assumed a fixed masking and checked the func-
tions individually, which makes the verification of the first TI function very fast
(because no secrets are fed into this part). For the other circuit parts, the ver-
ification takes between 20 min for the verification without glitches verification
and 2 h for the verification with glitches. Please note that the differences in the
verification timings for the different parts of Fides-192 result from the varying
gate counts. All circuit parts are labeled to be secure. Finally, we also checked
a DOM AES S-box design for which we checked the whole circuit for the eight
individual secret bits separately. The stable set verification takes less than 30 s,
and the verification of the transient sets between 5 and 10 h for each part. Again
the verification result indicates a securely masked first-order protected circuit.

9.2 Verification of Higher-Order Masked Implementations

To evaluate the performance of our verification approach for higher-order masked
circuits, we run our tool on the generically masked DOM AND gate [24] and the
Keccak S-box [25]. The results are shown in Table 4 where the protection order
of the circuit and the verification order are always set equal and are summarized
in a single column (order).

The verification of the second-order masked DOM AND takes less than a
second. For the fourth-order protected AND the verification time increases to
about 7 min. The influence of the protection order at varying verification orders
is depicted in Fig. 9. We evaluated each masked DOM AND from first-order up to
its claimed protection order plus one additional order. This figure underlines the
intuition that finding a flaw takes less time than ensuring that the circuit is free
from flaws.

For the Keccak S-box circuit we again split the verification for the five secrets
into five separate verificaiton runs. The verification for the second order than
takes about 10 s per verification run without glitches and about 40 s when glitches
are considered. For the third-order verification the times increase to 4 min and
25 min, respectively.

Formal Verification of Masked Hardware Implementations 345

Table 4. Overview of masked circuits and the higher order verification results

Name Order Gates Variables w/o glitches w/glitches

Linear Nonlin Reg Secret Mask Pub Time Result Time Result

DOM AND [24] 2 12 9 9 2 11 1 ≤1 s ✓ ≤1 s ✓

3 24 16 16 2 17 1 ≤4 s ✓ ≤20 s ✓

4 40 25 25 2 24 1 ≤2m ✓ ≤7m ✓

Keccak S-boxa [25] 2 75 45 45 5 35 7 ≤10 s ✓ ≤40 s ✓

3 140 80 80 5 60 7 ≤4m ✓ ≤25m ✓
a For the Keccak S-box we performed the verification for the five secrets separately.

Fig. 9. Verification time for the DOM ANDs with varying protection and verification
order

10 Conclusions

In this paper we introduced the formal groundwork for the verification of masked
hardware implementations in the presence of glitches. We built upon the probing
model of Ishai et al. and presented a method to conservatively estimate the secu-
rity of circuits under this model for the worst case signal timings. Our approach
is based on an estimation of the non-zero Fourier coefficients of the functions
computed by the circuit, and we have provided a proof of its correctness. To
demonstrate the practicality, we have implemented our formal approach on top
of the Z3 theorem prover to verify the masking properties of a side-channel pro-
tected hardware implementation directly on the gate-level netlist. We have shown
the suitability of our approach to verify masked circuits on practical examples
from different masking schemes and different sources.

The advantages of this approach are evident. Circuits deemed secure do not
leak secret information under any possible signal timings, which includes the

346 R. Bloem et al.

effects of glitches in the combinatorial logic of the circuit, and even for higher-
order attacks. If a circuit is rejected, we can pinpoint the gate that causes the
potential leakage, which makes checking and fixing of the flaw much easier than
by conventional approaches. Furthermore, the verifier can be used at different
development stages of the masked circuit or for testing new masking schemes.
This makes it a useful method for both practical applications as well as for
research purposes.

Acknowledgements. The work has been supported in part by the Austrian Sci-
ence Fund (FWF) through project P26494-N15, project S114-06, and project W1255-
N23. Furthermore this work has received funding from the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation programme
(grant agreement No 681402), and from the European Commission (grant agreement
No 644905).

A Proof of Lemma 2

1. Suppose that f ◦F is statistically dependent on X. Then by Definition 1 there
are x, x′ ∈ 2X such that |{y | (f ◦ F)(x, y) = 1}| �= |{y | (f ◦ F)(x′, y) = 1}|.
Let Z ′ = f−1(1) be the assignments of Z that are mapped to true. Since
|{y | (f ◦ F)(x, y) = 1}| =

∑
z∈Z |{y | F (x, y) = z}|, there must be at least

one z ∈ Z ′ such that |{y | F (x, y) = z}| �= |{y | F (x′, y) = z}|.
2. Suppose F is statistically dependent on X. Then there is a z ∈ 2Z and

x, x′ ∈ 2X such that |{y | F (x, y) = z}| �= |{y | F (x′, y) = z}|. Let f(z′) = 1
iff z′ = z, then f ◦ F is statistically dependent on X. ��

B Proof of the Stable Verification Approach

Lemma 8. For any circuit C, any gate g and any T ⊆ X, if the Fourier coef-
ficient ĝ(T) �= 0, then T ∈ S(g).

Proof. We prove the lemma by induction on the depth k of the circuit.

Base. k = 0. For an input g the lemma holds by the definition of the initial label.

Inductive step. Let k ≥ 1 and suppose that a gate g at depth k is the output
of a gate with two input gates u and v, with Fourier representations u(X) =∑

T⊆X û(T)χT (X), and v(X) =
∑

T⊆X v̂(T)χT (X).
We distinguish two cases: (1) g is linear or (2) g is nonlinear. (The case of

registers is trivial when we do not consider glitching.)
Case 1: g = u ⊕ v. The Fourier representation of g is

g(X) = u(X) · v(X) =
∑

T⊆X

ĝ(T) · χT (X),

Formal Verification of Masked Hardware Implementations 347

where
ĝ(T) =

∑

T1⊆X

û(T1) · v̂(T � T1).

Assume that ĝ(T) �= 0. If ĝ(T) �= 0, then there exists a set T1 ⊆ X such that
û(T1) · v̂(T �T1) �= 0. Therefore, û(T1) �= 0 and v̂(T �T1) �= 0. By the inductive
hypothesis, it holds that T1 ∈ S(u) and T �T1 ∈ S(v), which, by the linear rule
means that T1 � (T � T1) = T ∈ S(g).

Case 2: g is a nonlinear gate. In this case, the Fourier representation of g is

g(X) = α00 + α01 · u(X) + α10 · v(X) + α11 · u(X) · v(X)

for some αij . Consequently, ĝ(T) �= 0 implies that either (1) û(T) �= 0, (2)
v̂(T) �= 0, or (3) ∃T ′ ⊆ X.û(T) �= 0 and v̂(T ′ � T) �= 0. (The converse does not
hold.) In each of these three conditions, T ∈ S(w). ��

The next lemma shows that an arbitrary function for d gates corresponds to
a generalization of the non-linear rule from Table 1. (Note the use of �d∈DTd to
denote the symmetric set difference of all Tds).

Lemma 9. Let F1, . . . , Fd : B
X → B, let f : B

d → B, and let F (x) =
f(F1(x), . . . , Fd(x)). For any T ⊆ X, we have that F̂ (T) �= 0 implies that there
is a D ⊆ {1, . . . , d} and T1 . . . Td ⊆ X such that T = �i∈DTi and for all i,
F̂i(Ti) �= 0.

Proof. Let f(a1, . . . , ad) =
∑

D⊆{1,...,d} αD

∏
i∈D ai be the Fourier expansion of

f. We have that

F (x) =
∑

D⊆{1,...,d}
αD

∏

i∈D

Fi(x)

=
∑

D⊆{1,...,d}
αD

∏

i∈D

∑

T⊆X

F̂i(T)χT (X)

=
∑

D⊆{1,...,d}
αD

∑

T1⊆X

...
Td⊆X

∏

i∈D

F̂i(Ti)χTi
(X)

=
∑

D⊆{1,...,d}
αD

∑

T1⊆X

...
Td⊆X

χ�i∈DTi
(X)

∏

i∈D

F̂i(Ti).

Consequently, if F̂ (T) �= 0, then there is a D ⊆ {1, . . . , d} and T1 . . . Td ⊆ X

such that for all i ∈ D F̂i(Ti) �= 0 and T = �i∈KTi. ��

Note that for d = 2, the lemma specializes to F̂ (T) �= 0 implies T = ∅, F̂1(T) �= 0,
F̂2(T) �= 0, or T = T1 � T2, F̂1(T1) �= 0, and F̂2(T2) �= 0, which reflects the
nonlinear rule.

348 R. Bloem et al.

Theorem 10. Let C be a circuit. If for all S′ ⊆ S ∪ P such that S′ ∩ S �= ∅,
for all sets g1, . . . , gd of gates, for all D ⊆ {1, . . . , d}, for all T1 . . . Td ⊆ X such
that �d∈DTd = S′, and for all i ∈ D, we have that Ti /∈ S(gi), then C is order
d secure.

Proof. (By contradiction.) Suppose that C is not order d secure. By Definitions 5
and 6, and Lemma 2, this implies that there are gates g1, . . . , gd, a functionf and
an assignment p ⊆ P such that f ◦F |p(g1, . . . , gd) is statistically dependent on S.
By Lemma 4, this implies that for some S′ ⊆ S, S′ �= ∅, ̂f ◦ F |p(g)(S′) �= ∅. The
Fourier expansion of F |p is obtained from the expansion of p by substituting
−1 or 1 for each public variable, so if F̂ |p(S′) �= 0, then F̂ (S′ ∪ p′) �= 0 for
some p′ ⊆ p. By Lemmas 8 and 9, this means that there is a D ⊆ {1, . . . , d},
T1 . . . Td ⊆ X such that �d∈DTk = S′, and i ∈ K, such that that Ti ∈ S(gi). ��

Note that for the first order attacks, we just need to consider the labels of all
gates (see Lemma 8. For order d attacks, conceptually we connect a d-ary AND
gate to any set of d gates and check that the label of this gate does not contain
a label with secrets and no masks.

It is worth pointing out that the converse of the theorem does not hold. As
an example of imprecision, one can construct a ⊕ b as a combination of three
nonlinear gates. In this case, the output would be labeled {∅, {a}, {b}, {a, b}}
although the Fourier expansion of the circuit is a · b.

C Proof of the Transient Verification Approach

Lemma 11. For any gate g of C and any T ⊆ X, if for any Cglitch ∈ Cglitch,
either ĝ(T) �= 0 or ĝ′(T) �= 0, then T ∈ T (g).

Proof. The proof follows that of Lemma 8 with the modification that regardless
of the function of a gate g′, if g′ has inputs g1 and g2, then ĝ′(T) �= 0 implies
that either (1) ĝ1(T) �= 0, (2) ĝ2(T) �= 0, or (3) ∃T ′ ⊆ X.ĝ1(T ′) �= 0 and
ĝ2(T ′ � T) �= 0. Thus, we can overapproximate the set of non-zero Fourier
coefficients for a copied gate g′ with inputs g1 and g2 by the set that consists of
the union of the nonzero coefficients T (g1) of g1, the nonzero coefficients T (g2)
of g2, and the set T (g1) �� T (g2). ��

Theorem 12. Let C be a circuit. If for all S′ ⊆ S ∪ P such that S′ ∩ S �= ∅,
for all sets g1, . . . , gd of gates, for all D ⊆ {1, . . . , d}, for all T1 . . . Td ⊆ X such
that �d∈DTd = S′, and for all i ∈ D, we have that Ti /∈ T (gi), then C is order
d secure.

Proof. The proof proceeds along the lines Theorem 12 by using Lemma 11
instead of Lemma 8. ��

Formal Verification of Masked Hardware Implementations 349

D Proof of the SAT Based Verification for Stable Signals

Lemma 13. For any gate g ∈ G and any X ′ ⊆ X, if F̂ (g)(X ′) �= 0 then there
is a satisfying assignment χ of Ψgates with χ(xg) = true iff x ∈ X ′.

Proof. The Fourier expansion of any gate g can be obtained recursively from the
Fourier expansion of its inputs, where the coefficient of every Fourier character is
obtained by multiplying out the coefficients of the inputs. For a linear gate, this
is a simple multiplication. A nonlinear gate results in more Fourier coefficients:
those for each input separately, and those that result from the multiplication of
the inputs. We can represent the way that each Fourier character is derived as
a subgraph of the circuit.

Suppose that a coefficient f̂(g)(X ′) is nonzero. Then there is a set of wires
W ′ and a set of gates G′ that fulfills the following constraints. (1) g ∈ G′. (2)
If g ∈ G′ and g is a linear gate, then both incoming wires are in W ′; if g′ in
nonlinear, than 0, 1, or 2 of the incoming wires are in W ′. (3) if w ∈ W ′ then
the gate g′ that feeds w is in G′. (4) X ′ is the symmetric set difference of the
nonzero Fourier coefficients of the inputs that feed into an odd number of paths
to g. The latter observation follows from the fact that in Fourier representation
f2 = 1 for any Boolean function f.

The choice of W ′ and G′ is dictated by the choices made at the nonlinear
gates, which corresponds to the disjuncts in the definition of Ψnl(g). The satis-
fying assignments of the formula then follow the paths described above, where
the cancellation of coefficients that occur an even number of times is ensured by
the XORs in the formulas for linear and nonlinear gates. ��

Theorem 14. If C is not order d secure without glitches then Ψ is satisfiable.

Proof. The theorem follows easily from the Lemma 13 by the fact that informa-
tion leakage occurs iff there is a gate which is statistically dependent on a set of
secret variables (Lemma 4, Definition 6). ��

Note if the formula Ψ is satisfiable, i.e. the circuit is not secure, we can easily see
what gates the solver picked for the probes. The activation variables for those
gates are equal to true.

E Proof of the SAT Based Approach for Transient
Signals

Lemma 15. For any circuit C ′ ∈ Cglitch(C), gate g in C ′, and X ′ ⊆ X, if
F̂ (g)(X ′) �= 0, then there is a satisfying assignment χ of Φgates with χ(x′

g) = true
iff x ∈ X ′.

Proof. The proof follows that of Lemma 13 with the modification that for a
gate g, an assignment to the variables {x′

g | x ∈ X} is part of a satisfying
assignment if the corresponding Fourier coefficient is non-zero for any C ′ ∈
Cglitch(G). Intuitively, a nonlinear gate presents the “worst-case” scenario that
subsumes the behavior of an arbitrary gate. ��

350 R. Bloem et al.

Theorem 16. If C is not order d secure with glitches then Φ is satisfiable.

Proof. The proof follows from Lemmas 4, 15, and Definition 7. ��

F Example for the SAT Encoding

To illustrate the encoding let us consider the example on the Fig. 2. For this
circuit we have one secret variable s and two mask variables ms and m1. Since
input sm is driven by the function I(sm) = s ⊕ ms = s · ms, we have the
constraint

ψinp(sm) = ssm ∧ ms,sm ∧ ¬m1,sm ∧ ¬p1,sm .

For the other inputs we have:

ψinp(m1) = ¬sm1 ∧ ¬ms,m1 ∧ m1,m1 ∧ ¬p1,m1

ψinp(ms) = ¬sms
∧ ms,ms

∧ ¬m1,ms
∧ ¬p1,ms

ψinp(p1) = ¬sp1 ∧ ¬ms,p1 ∧ ¬m1,p1 ∧ p1,p1 .

For the linear gates g1 and g3 we use the linear rule

Ψlin(g1) = (sg1 ↔ (ssm ⊕ sm1)) ∧ (ms,g1 ↔ (ms,sm ⊕ ms,m1))
∧ (m1,g1 ↔ (m1,sm ⊕ m1,m1) ∧ (p1,g1 ↔ (p1,sm ⊕ p1,m1))

Ψlin(g3) = (sg3 ↔ (sg2 ⊕ sg1)) ∧ (ms,g3 ↔ (ms,g1 ⊕ ms,g2))
∧ (m1,g3 ↔ (m1,g1 ⊕ m1,g2) ∧ (p1,g3 ↔ (p1,g1 ⊕ p1,g2)).

For the non-linear gate g2 we use the non-linear rule:

Ψnl(g2) = (¬sg2 ∧ ¬ms,g2 ∧ ¬m1,g2 ∧ ¬p1,g2)
∨ (sg2 ↔ sms

∧ ms,g2 ↔ ms,ms
∧ m1,g2 ↔ m1,ms

∧ p1,g2 ∧ p1,ms
)

∨ (sg2 ↔ sp1 ∧ ms,g2 ↔ ms,p1 ∧ m1,g2 ↔ m1,p1 ∧ p1,g2 ∧ p1,p1)
∨ (sg2 ↔ (sms

⊕ sp1)) ∧ (ms,g2 ↔ (ms,ms
⊕ ms,p1))

∧ (m1,g2 ↔ (m1,ms
⊕ m1,p1) ∧ (p1,g2 ↔ (p1,ms

⊕ p1,p1)).

For the checking gate we have:

Ψ(gc) = (sgc ↔ (asm ∧ ssm ⊕ am1 ∧ sm1 ⊕ ams
∧ sms

⊕ ap1 ∧ sp1))
∧ (m1,gc ↔ (asm ∧ m1,sm ⊕ am1 ∧ m1,m1 ⊕ ams

∧ m1,ms
⊕ ap1 ∧ m1,p1))

∧ (ms,gc ↔ (asm ∧ ms,sm ⊕ am1 ∧ ms,m1 ⊕ ams
∧ ms,ms

⊕ ap1 ∧ ms,p1))
∧ (p1,gc ↔ (asm ∧ p1,sm ⊕ am1 ∧ p1,m1 ⊕ ams

∧ p1,ms
⊕ ap1 ∧ pm,p1)).

Formal Verification of Masked Hardware Implementations 351

To check first order security we bound asum to 1:

asum = Ite(asm , 1, 0) + Ite(am1 , 1, 0) + Ite(ams
, 1, 0) + Ite(ap1 , 1, 0)

+ Ite(ag1 , 1, 0) + Ite(ag2 , 1, 0) + Ite(ag3 , 1, 0)

The unsafety constraint is

Ψunsafe(gc) = sgc ∧ ¬ms,gc ∧ ¬m1,gc .

In this example the formula Ψ for the entire circuit is unsatisfiable meaning
that it is first secure in the probing model without glitches.

References

1. Barthe, G., Beläıd, S., Dupressoir, F., Fouque, P., Grégoire, B.: Compositional
verification of higher-order masking: application to a verifying masking compiler.
IACR Cryptology ePrint Archive, 2015:506 (2015)

2. Barthe, G., Beläıd, S., Dupressoir, F., Fouque, P.-A., Grégoire, B., Strub, P.-Y.:
Verified proofs of higher-order masking. In: Oswald, E., Fischlin, M. (eds.) EURO-
CRYPT 2015. LNCS, vol. 9056, pp. 457–485. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-46800-5 18

3. Barthe, G., Beläıd, S., Dupressoir, F., Fouque, P., Grégoire, B., Strub, P., Zucchini,
R.: Strong non-interference and type-directed higher-order masking. In: Proceed-
ings of the 2016 ACM SIGSAC CCS, Vienna, Austria, 24–28 October 2016, pp.
116–129 (2016)

4. Barthe, G., Dupressoir, F., Faust, S., Grégoire, B., Standaert, F., Strub, P.: Parallel
implementations of masking schemes and the bounded moment leakage model.
IACR Cryptology ePrint Archive, 2016:912 (2016)

5. Barthe, G., Dupressoir, F., Grégoire, B., Stoughton, A., Strub, P.: EasyCrypt:
Computer-Aided Cryptographic Proofs (2017). https://github.com/EasyCrypt/
easycrypt

6. Bayrak, A.G., Regazzoni, F., Novo, D., Ienne, P.: Sleuth: automated verification
of software power analysis countermeasures. In: Bertoni, G., Coron, J.-S. (eds.)
CHES 2013. LNCS, vol. 8086, pp. 293–310. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-40349-1 17

7. Beläıd, S., Benhamouda, F., Passelègue, A., Prouff, E., Thillard, A., Vergnaud,
D.: Randomness complexity of private circuits for multiplication. In: Fischlin, M.,
Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 616–648. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5 22

8. Beläıd, S., Benhamouda, F., Passelègue, A., Prouff, E., Thillard, A., Vergnaud, D.:
Private multiplication over finite fields. In: Katz, J., Shacham, H. (eds.) CRYPTO
2017. LNCS, vol. 10403, pp. 397–426. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-63697-9 14

9. Bertoni, G., Martinoli, M.: A methodology for the characterisation of leakages in
combinatorial logic. In: Carlet, C., Hasan, M.A., Saraswat, V. (eds.) SPACE 2016.
LNCS, vol. 10076, pp. 363–382. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-49445-6 21

https://doi.org/10.1007/978-3-662-46800-5_18
https://doi.org/10.1007/978-3-662-46800-5_18
https://github.com/EasyCrypt/easycrypt
https://github.com/EasyCrypt/easycrypt
https://doi.org/10.1007/978-3-642-40349-1_17
https://doi.org/10.1007/978-3-642-40349-1_17
https://doi.org/10.1007/978-3-662-49896-5_22
https://doi.org/10.1007/978-3-319-63697-9_14
https://doi.org/10.1007/978-3-319-63697-9_14
https://doi.org/10.1007/978-3-319-49445-6_21
https://doi.org/10.1007/978-3-319-49445-6_21

352 R. Bloem et al.

10. Bhasin, S., Carlet, C., Guilley, S.: Theory of masking with codewords in hard-
ware: low-weight dth-order correlation-immune boolean functions. IACR Cryptol-
ogy ePrint Archive, 2013:303 (2013)

11. Bilgin, B., Bogdanov, A., Knežević, M., Mendel, F., Wang, Q.: Fides: lightweight
authenticated cipher with side-channel resistance for constrained hardware. In:
Bertoni, G., Coron, J.-S. (eds.) CHES 2013. LNCS, vol. 8086, pp. 142–158.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40349-1 9

12. Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: Higher-order threshold
implementations. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol.
8874, pp. 326–343. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-45608-8 18

13. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to counter-
act power-analysis attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666,
pp. 398–412. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-
1 26

14. Coron, J.-S.: Formal verification of side-channel countermeasures via elementary
circuit transformations. Cryptology ePrint Archive, Report 2017/879

15. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

16. Eldib, H., Wang, C.: Synthesis of masking countermeasures against side channel
attacks. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 114–130.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-9 8

17. Eldib, H., Wang, C., Schaumont, P.: SMT-based verification of software coun-
termeasures against side-channel attacks. In: Ábrahám, E., Havelund, K. (eds.)
TACAS 2014. LNCS, vol. 8413, pp. 62–77. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-642-54862-8 5

18. Eldib, H., Wang, C., Taha, M.M.I., Schaumont, P.: QMS: evaluating the side-
channel resistance of masked software from source code. In: DAC 2014, San Fran-
cisco, CA, USA, 1–5 June 2014, pp. 209:1–209:6 (2014)

19. Faust, S., Grosso, V., Pozo, S.M.D., Paglialonga, C., Standaert, F.: Composable
masking schemes in the presence of physical defaults and the robust probing model.
IACR Cryptology ePrint Archive, 2017:711 (2017)

20. Faust, S., Rabin, T., Reyzin, L., Tromer, E., Vaikuntanathan, V.: Protecting cir-
cuits from leakage: the computationally-bounded and noisy cases. In: Gilbert, H.
(ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 135–156. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-13190-5 7

21. Goodwill, G., Jun, B., Jaffe, J., Rohatgi, P.: A Testing Methodology for Side-
Channel Resistance Validation. In: NIST Non-Invasive Attack Testing Workshop
(2011)

22. Gross, H.: Collection of protected hardware implementations. https://github.com/
hgrosz

23. Gross, H., Mangard, S.: Reconciling d+1 masking in hardware and software. In:
CHES 2017 (2017)

24. Gross, H., Mangard, S., Korak, T.: An efficient side-channel protected AES imple-
mentation with arbitrary protection order. In: Handschuh, H. (ed.) CT-RSA 2017.
LNCS, vol. 10159, pp. 95–112. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-52153-4 6

25. Gross, H., Schaffenrath, D., Mangard, S.: Higher-order side-channel protected
implementations of keccak. Cryptology ePrint Archive, Report 2017/395

https://doi.org/10.1007/978-3-642-40349-1_9
https://doi.org/10.1007/978-3-662-45608-8_18
https://doi.org/10.1007/978-3-662-45608-8_18
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-319-08867-9_8
https://doi.org/10.1007/978-3-642-54862-8_5
https://doi.org/10.1007/978-3-642-54862-8_5
https://doi.org/10.1007/978-3-642-13190-5_7
https://github.com/hgrosz
https://github.com/hgrosz
https://doi.org/10.1007/978-3-319-52153-4_6
https://doi.org/10.1007/978-3-319-52153-4_6

Formal Verification of Masked Hardware Implementations 353

26. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against prob-
ing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4 27

27. Iusupov, R.: REBECCA - Masking verification tool. https://github.com/riusupov/
rebecca

28. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 25

29. Mangard, S., Schramm, K.: Pinpointing the side-channel leakage of masked
AES hardware implementations. In: Goubin, L., Matsui, M. (eds.) CHES 2006.
LNCS, vol. 4249, pp. 76–90. Springer, Heidelberg (2006). https://doi.org/10.1007/
11894063 7

30. Moss, A., Oswald, E., Page, D., Tunstall, M.: Compiler assisted masking. In: Prouff,
E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 58–75. Springer, Hei-
delberg (2012). https://doi.org/10.1007/978-3-642-33027-8 4

31. Nikova, S., Rechberger, C., Rijmen, V.: Threshold implementations against side-
channel attacks and glitches. In: Ning, P., Qing, S., Li, N. (eds.) ICICS 2006.
LNCS, vol. 4307, pp. 529–545. Springer, Heidelberg (2006). https://doi.org/10.
1007/11935308 38

32. O’Donnell, R.: Analysis of Boolean Functions. Cambridge University Press, Cam-
bridge (2014)

33. Quisquater, J.-J., Samyde, D.: ElectroMagnetic analysis (EMA): measures and
counter-measures for smart cards. In: Attali, I., Jensen, T. (eds.) E-smart 2001.
LNCS, vol. 2140, pp. 200–210. Springer, Heidelberg (2001). https://doi.org/10.
1007/3-540-45418-7 17

34. Reparaz, O.: Detecting flawed masking schemes with leakage detection tests. In:
Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 204–222. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-52993-5 11

35. Reparaz, O., Bilgin, B., Nikova, S., Gierlichs, B., Verbauwhede, I.: Consolidating
masking schemes. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS,
vol. 9215, pp. 764–783. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-47989-6 37

36. Rivain, M., Prouff, E.: Provably secure higher-order masking of AES. In: Mangard,
S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 413–427. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-15031-9 28

37. Trichina, E.: Combinational logic design for AES subbyte transformation on
masked data. IACR Cryptology ePrint Archive (2003)

38. Wolf, C., Glaser, J.: Yosys - a free verilog synthesis suite. In: Proceedings of Aus-
trochip 2013 (2013)

39. Xiao, G., Massey, J.L.: A spectral characterization of correlation-immune combin-
ing functions. IEEE Trans. Inf. Theory 34(3), 569–571 (1988)

https://doi.org/10.1007/978-3-540-45146-4_27
https://github.com/riusupov/rebecca
https://github.com/riusupov/rebecca
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/11894063_7
https://doi.org/10.1007/11894063_7
https://doi.org/10.1007/978-3-642-33027-8_4
https://doi.org/10.1007/11935308_38
https://doi.org/10.1007/11935308_38
https://doi.org/10.1007/3-540-45418-7_17
https://doi.org/10.1007/3-540-45418-7_17
https://doi.org/10.1007/978-3-662-52993-5_11
https://doi.org/10.1007/978-3-662-47989-6_37
https://doi.org/10.1007/978-3-662-47989-6_37
https://doi.org/10.1007/978-3-642-15031-9_28

Masking the GLP Lattice-Based
Signature Scheme at Any Order

Gilles Barthe1, Sonia Beläıd2, Thomas Espitau3, Pierre-Alain Fouque4,
Benjamin Grégoire5, Mélissa Rossi6,7, and Mehdi Tibouchi8(B)

1 IMDEA Software Institute, Madrid, Spain
gilles.barthe@imdea.org

2 CryptoExperts, Paris, France
sonia.belaid@cryptoexperts.com

3 UPMC, Paris, France
thomas.espitau@lip6.fr

4 Univ Rennes, Rennes, France
pierre-alain.fouque@univ-rennes1.fr

5 Inria Sophia Antipolis, Sophia Antipolis, France
benjamin.gregoire@sophia.inria.fr

6 Thales, Paris, France
7 Département d’informatique de l’École normale supérieure de Paris,

CNRS, PSL Research University, INRIA, Paris, France
melissa.rossi@ens.fr

8 NTT Secure Platform Laboratories, Tokyo, Japan
tibouchi.mehdi@lab.ntt.co.jp

Abstract. Recently, numerous physical attacks have been demonstrated
against lattice-based schemes, often exploiting their unique properties
such as the reliance on Gaussian distributions, rejection sampling and
FFT-based polynomial multiplication. As the call for concrete imple-
mentations and deployment of postquantum cryptography becomes more
pressing, protecting against those attacks is an important problem. How-
ever, few countermeasures have been proposed so far. In particular, mask-
ing has been applied to the decryption procedure of some lattice-based
encryption schemes, but the much more difficult case of signatures (which
are highly non-linear and typically involve randomness) has not been con-
sidered until now.

In this paper, we describe the first masked implementation of a lattice-
based signature scheme. Since masking Gaussian sampling and other pro-
cedures involving contrived probability distributionwould be prohibitively
inefficient, we focus on the GLP scheme of Güneysu, Lyubashevsky and
Pöppelmann (CHES 2012). We show how to provably mask it in the Ishai–
Sahai–Wagner model (CRYPTO 2003) at any order in a relatively efficient
manner, using extensions of the techniques of Coron et al. for converting
between arithmetic and Boolean masking. Our proof relies on a mild gen-
eralization of probing security that supports the notion of public outputs.
We also provide a proof-of-concept implementation to assess the efficiency
of the proposed countermeasure.

Keywords: Side-channel · Masking · GLP lattice-based signature

c© International Association for Cryptologic Research 2018
J. B. Nielsen and V. Rijmen (Eds.): EUROCRYPT 2018, LNCS 10821, pp. 354–384, 2018.
https://doi.org/10.1007/978-3-319-78375-8_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78375-8_12&domain=pdf

Masking the GLP Lattice-Based Signature Scheme at Any Order 355

1 Introduction

As the demands for practical implementations of postquantum cryptographic
schemes get more pressing ahead of the NIST postquantum competition and
in view of the recommendations of various agencies, understanding the security
of those schemes against physical attacks is of paramount importance. Lattice-
based cryptography, in particular, is an attractive option in the postquantum
setting, as it allows to design postquantum implementations of a wide range of
primitives with strong security guarantees and a level of efficiency comparable to
currently deployed RSA and elliptic curve-based schemes. However, it poses new
sets of challenges as far as side-channels and other physical attacks are concerned.
In particular, the reliance on Gaussian distributions, rejection sampling or the
number-theoretic transform for polynomial multiplication have been shown to
open the door to new types of physical attacks for which it is not always easy
to propose efficient countermeasures.

The issue has in particular been laid bare in a number of recent works for the
case of lattice-based signature schemes. Lattice-based signature in the random
oracle model can be roughly divided into two families: on the one hand, con-
structions following Lyubashevsky’s “Fiat–Shamir with aborts” paradigm [23],
and on the other hand, hash-and-sign signatures relying on lattice trapdoors,
as introduced by Gentry, Peikert and Vaikuntanathan [19]. Attempts have been
made to implement schemes from both families, but Fiat–Shamir signatures are
more common (although their postquantum security is admittedly not as well
grounded). The underlying framework is called Fiat–Shamir with aborts because,
unlike RSA and discrete logarithm-based constructions, lattice-based construc-
tions involve sampling from sets that do not admit a nice algebraic structure.
A näıve sampling algorithm would leak partial key information, in much the
same way as it did in early heuristic schemes like GGH and NTRUSign; this
is avoided by forcing the output signature to be independent of the secret key
using rejection sampling. Many instantiations of the framework have been pro-
posed [15,21,23,24,27], some of them quite efficient: for example, the BLISS
signature scheme [15] boasts performance and key and signature sizes roughly
comparable to RSA and ECDSA signatures.

However, the picture becomes less rosy once physical attacks are taken into
account. For instance, Groot Bruinderink et al. [20] demonstrated a cache attack
targetting the Gaussian sampling of the randomness used in BLISS signatures,
which recovers the entire secret key from the side-channel leakage of a few thou-
sand signature generations. Fault attacks have also been demonstrated on all
kinds of lattice-based signatures [6,17]. In particular, Espitau et al. recover the
full BLISS secret key using a single fault on the generation of the random-
ness (and present a similarly efficient attack on GPV-style signatures). More
recently, ACM CCS 2017 has featured several papers [18,26] exposing further
side-channel attacks on BLISS, its variant BLISS–B, and their implementation
in the strongSwan VPN software. They are based on a range of different side
channels (cache attacks, simple and correlation electromagnetic analysis, branch

356 G. Barthe et al.

tracing, etc.), and some of them target new parts of the signature generation
algorithm, such as the rejection sampling.

In order to protect against attack such as these, one would like to apply pow-
erful countermeasures like masking. However, doing so efficiently on a scheme
like BLISS seems hard, as discussed in [18]. Indeed, the sampling of the Gaus-
sian randomness in BLISS signature generation involves either very large lookup
tables, which are expensive to mask efficiently, or iterative approaches that are
hard to even implement in constant time–let alone mask. Similarly, the rejection
sampling step involves transcendental functions of the secret data that have to
be computed to high precision; doing so in masked form seems daunting.

However, there exist other lattice-based signatures that appear to support
side-channel countermeasures like masking in a more natural way, because they
entirely avoid Gaussians and other contrived distributions. Both the sampling
of the randomness and the rejection sampling of signatures target uniform dis-
tributions in contiguous intervals. Examples of such schemes include the GLP
scheme of Güneysu, Lyubashevsky and Pöppelmann [21], which can be seen as
the ancestor of BLISS, and later variants like the Dilithium scheme of Ducas
et al. [16] (but not Dilithium-G).

In this paper, we show how to efficiently mask the GLP scheme at any mask-
ing order, so as to achieve security against power analysis and related attacks
(both simple power analysis and higher-order attacks like differential/correlation
power analysis). This is to the best of our knowledge the first time a masking
countermeasure has been applied to protect lattice-based signatures.

Related Work. Masking is a well-known technique introduced by Chari, Rao
and Rohatgi at CHES 2002 [7] and essentially consists in splitting a secret value
into d+1 ones (d is thus the masking order), using a secret sharing scheme. This
will force the adversary to read many internal variables if he wants to recover the
secret value, and he will gain no information if he observes fewer than d values.
The advantage of this splitting is that linear operations cost nothing, but the
downside is that non-linear operations (such as the AES S-box) can become quite
expensive. Later, Ishai, Sahai and Wagner [22] developed a technique to prove the
security of masking schemes in the threshold probing model (ISW), in which the
adversary can read off at most d wires in a circuit. Recently, Duc, Dziembowski
and Faust [14] proved the equivalence between this threshold model and the more
realistic noisy model, in which the adversary acquires leakage on all variables,
but that leakage is perturbed with some noise distribution, as is the case in
practical side-channel attacks. Since the ISW model is much more convenient
for designing and proving masking countermeasures, it is thus preferred, as the
equivalence results of Duc et al. ultimately ensure that a secure implementation
in the ISW model at a sufficiently high masking order is going to be secure
against practical side-channel attacks up to a given signal-to-noise ratio.

Masking has been applied to lattice-based encryption schemes before [28,29].
However, in these schemes, only the decryption procedure needs to be protected,
and it usually boils down to computing a scalar product between the secret

Masking the GLP Lattice-Based Signature Scheme at Any Order 357

key and the ciphertext (which is a linear operation in the secret data) followed
by a comparison (which is non-linear, but not very difficult to mask). Oder
et al. [25] point out a number of issues with those masked decryption algorithms,
and describe another one, for a CCA2-secure version of Ring-LWE public-key
encryption.

Our Results. Masking lattice-based signatures, even in the comparatively sim-
ple case of GLP, turns out to be surprisingly difficult—possibly more so than any
of the previous masking countermeasures considered so far in the literature. The
probabilistic nature of signature generation, as well as its reliance on rejection
sampling, present challenges (both in terms of design and of proof techniques)
that had not occurred in earlier schemes, most of them deterministic. In addi-
tion, for performance reasons, we are led to require a stronger security property
of the original, unprotected signature scheme itself, which we have to establish
separately. More precisely, the following issues arise.

Conversion between Boolean and mod-p arithmetic masking. Most steps of the
signing algorithm involve linear operations on polynomials in the ring R =
Zp[x]/(xn + 1). They can thus be masked very cheaply using mod-p arithmetic
masking: each coefficient is represented as a sum of d+1 additive shares modulo
p. For some operations, however, this representation is less convenient.

This is in particular the case for the generation of the randomness at the
beginning of the algorithm, which consists of two polynomials y1,y2 with uni-
formly random coefficients in a subinterval [−k, k] of Zp. Generating such a ran-
dom value in masked form is relatively easy with Boolean masking, but seems
hard to do efficiently with arithmetic masking. Therefore, we have to carry out
a conversion from Boolean masking to mod-p arithmetic masking. Such conver-
sions have been described before [11,13], but only when the modulus p was a
power of 2. Adapting them to our settings requires some tweaks.

Similarly, the rejection sampling step amounts to checking whether the poly-
nomials in the signature have their coefficients in another interval [−k′, k′]. Car-
rying out the corresponding comparison is again more convenient with Boolean
masking, and hence we need a conversion algorithm in the other direction, from
mod-p arithmetic masking to Boolean masking. We are again led to adapt ear-
lier works on arithmetic-to-Boolean masking conversion [12,13] to the case of a
non-prime modulus.

Security of the signature scheme when revealing the “commitment” value. One
of the operations in signature generation is the computation of a hash function
mapping to polynomials in R of a very special shape. Masking the computation
of this hash function would be highly inefficient and difficult to combine with the
rest of the algorithm. Indeed, the issue with hashing is not obtaining a masked
bit string (which could be done with something like SHA-3), but expanding that
bit string into a random-looking polynomial c of fixed, low Hamming weight in
masked form. The corresponding operation is really hard to write down as a cir-
cuit. Moreover, even if that could be done, it would be terrible for performances

358 G. Barthe et al.

because subsequent multiplications by c are no longer products by a known
sparse constant, but full-blown ring operations that have to be fully masked.

But more importantly, this masking should intuitively be unnecessary.
Indeed, when we see the signature scheme as the conversion of an identifica-
tion protocol under the Fiat–Shamir transform, the hash function computation
corresponds to the verifier’s sampling of a random challenge c after it receives the
commitment value r from the prover. In particular, the verifier always learns the
commitment value r (corresponding to the input of the hash function), so if the
identification protocol is “secure”, one should always be able to reveal this value
without compromising security. But the security of the signature scheme only
offers weak guarantees on the security of the underlying identification protocol,
as discussed by Abdalla et al. [1].

In usual Fiat–Shamir signatures, this is never an issue because the commit-
ment value can always be publicly derived from the signature (as it is necessary
for signature verification). However, things are more subtle in the Fiat–Shamir
with aborts paradigm, since the value r is not normally revealed in executions
of the signing algorithm that do not pass the rejection sampling step. In our set-
ting, though, we would like to unmask the value to compute the hash function in
all cases, before knowing whether the rejection sampling step will be successful.
If we do so, the side-channel attacker can thus learn the pair (r, c) corresponding
to rejected executions as well, and this is not covered by the original security
proof, nor does security with this additional leakage look reducible to the original
security assumption.

However, it is heuristically a hard problem to distinguish those pairs from
uniform (an LWE-like problem with a rather unusual distribution), so one pos-
sible approach, which requires no change at all to the algorithm itself, is to redo
the security proof with an additional, ad hoc hardness assumption. This is the
main approach that we suggest in this paper. Although heuristically safe, it is
rather unsatisfactory from a theoretical standpoint, so we additionally propose
another approach:1 compute the hash function not in terms of r itself, but of f(r)
where f is a statistically-hiding commitment scheme whose opening information
is added to actual signatures, but not revealed in executions of the algorithm
that do not pass the rejection sampling. Using a suitable f , f(r) can be efficiently
computed in masked form, and only the result needs to be unmasked. It is then
clear that the leakage of

(
f(r), c

)
is innocuous, and the modified scheme can be

proved entirely with no additional hardness assumption. The downside of this
approach is of course that the commitment key increases the size of the public
key, the opening information increases the size of signatures, and the masked
computation of the commitment itself takes a not insignificant amount of time.
For practical purposes, we therefore recommend the heuristic approach.

Security of masking schemes with output-dependent probes. In order to prove the
security of our masked implementation we see that we reveal some public value
r or a commitment of it. Consequently, we must adapt the notion of security

1 We are indebted to Vadim Lyubashevsky for suggesting this approach.

Masking the GLP Lattice-Based Signature Scheme at Any Order 359

from the threshold probing model to account for public outputs; the idea here
is not to state that public outputs do not leak relevant information, but rather
that the masked implementation does not leak more information than the one
that is released through public outputs. We capture this intuition by letting the
simulator depend on the distribution of the public outputs. This extends the
usual “non-interference” (NI) security notion to a new, more general notion of
“non-interference with public outputs” (NIo).

Security proofs. The overall security guarantee for the masked implementation
is established by proving the security of individual gadgets and asserting the
security of their combination. For some gadgets, one establishes security in the
usual threshold probing model, opening the possibility to resort to automated
tools such as maskComp [4] to generate provably secure masked implementations.
For other gadgets, the proofs of security are given by exhibiting a simulator, and
checking its correctness manually. Finally, the main theorem is deduced from
the proof of correctness and security in the threshold probing model with public
outputs for the masked implementation, and from a modified proof of security
for the GLP scheme.

Organization of the Paper. In Sect. 2, we describe the GLP signature scheme
and the security assumption on which its security is based. In Sect. 3, we present
the new security notions used in our proofs. Then, in Sect. 4, we describe how to
mask the GLP algorithm at any masking order. Finally, in Sect. 5, we describe
an implementation of this masking countermeasure, and suggest some possible
efficiency improvements.

2 The GLP Signature Scheme

2.1 Parameters and Security

Notations. Throughout this paper, we will use the following notations: n is a
power of 2, p is a prime number congruent to 1 modulo 2n, R is the polynomial
ring modulo xn + 1, R = Zp[x]/(xn + 1). The elements of R can be represented
by polynomials of degree n−1 with coefficients in the range [−p−1

2 , p−1
2]. For an

integer k such that 0 < k ≤ (p − 1)/2, we denote by Rk the elements of R with

coefficients in the range [−k, k]. We write $←− S for picking uniformly at random

in a set S or $←− D for picking according to some distribution D.
The key generation algorithm for the GLP signature scheme is as follows:

Algorithm 1. GLP key derivation
Result: Signing key sk, verification key pk

1 s1, s2
$←− R1 //s1 and s2 have coefficients in {−1, 0, 1}

2 a $←− R
3 t ← as1 + s2
4 sk ← (s1, s2)
5 pk ← (a, t)

360 G. Barthe et al.

Given the verification key pk = (a, t), if an attacker can derive the signing
key, he can be used to also solve a DCKp,n problem defined in [21].

Definition 1. The DCKp,n problem (Decisional Compact Knapsack problem)
is the problem of distinguishing between the uniform distribution over R×R and
the distribution (a,as1 + s2) with s1, s2 uniformly random in R1.

In the security proof of our variant of the signature scheme, we introduce a
new computational problem.

Definition 2. The R-DCKp,n problem (Rejected-Decisional Compact Knap-
sack problem) is the problem of distinguishing between the uniform distribution
over R × R × Dn

α and the distribution (a,ay1 +y2, c) where (a, c,y1,y2) is uni-
formly sampled in R × Dn

α × R2
k, conditioned by the event s1c + y1 /∈ Rk−α or

s2c + y2 /∈ Rk−α.

As shown in the full version of this paper [5], assuming the hardness of
R-DCKp,n can be avoided entirely by computing the hash value c not in terms
of r = ay1 +y2, but of a statistically hiding commitment thereof. This approach
shows that masking can be done based on the exact same assumptions as the
original scheme, but at some non-negligible cost in efficiency.

To obtain a scheme that more directly follows the original one and to keep the
overhead reasonable, we propose to useR-DCKp,n as an extra assumption, which
we view as a pragmatic compromise. The assumption is admittedly somewhat arti-
ficial, but the same can be said of DCKp,n itself to begin with, and heuristically,
R-DCKp,n is similar, except that it removes smaller (hence “easier”) instances
from the distribution: one expects that this makes distinguishing harder, even
though one cannot really write down a reduction to formalize that intuition.

2.2 The Signature Scheme

This part describes the signature scheme introduced in [21]. Additional functions
like transform and compress introduced in [21] can be used to shorten the size of
the signatures. Note however that for masking purposes, we only need to consider
the original, non-compressed algorithm of Güneysu et al., which we describe
below. Indeed, signature compression does not affect our masking technique at
all, because it only involves unmasked parts of the signature generation algorithm
(the input of the hash function and the returned signature itself). As a result,
although this paper only discusses the non-compressed scheme, we can directly
apply our technique to the compressed GLP scheme with no change, and in fact
this is what our proof-of-concept implementation in Sect. 5 actually does.

The signature scheme needs a particular cryptographic hash function, H :
{0, 1}∗ → Dn

α, where Dn
α is the set of polynomials in R that have all zero coef-

ficients except for at most α = 32 coefficients that are in {−1,+1} (or α = 16
when using the updated parameters presented in [8]).

Let k be a security parameter. Algorithms 2 and 3 respectively describe the
GLP signature and verification. Here is the soundness equation for the verifica-
tion: az1 + z2 − tc = ay1 + y2.

Masking the GLP Lattice-Based Signature Scheme at Any Order 361

The parameter k controls the trade-off between the security and the runtime
of the scheme. The smaller k gets, the more secure the scheme becomes and the
shorter the signatures get but the time to sign will increase. The authors of the
implementation of [21] suggest k = 214, n = 512 and p = 8383489 for ≈ 100 bits
of security and k = 215, n = 1024 and p = 16760833 for > 256 bits of security.

2.3 Security Proof of the r-GLP Variant

As mentioned above, masking the hash function of the GLP signature directly
has a prohibitive cost, and it is thus preferable to unmask the input r = ay1+y2

to compute the hash value c = H(r,m). Doing so allows a side-channel attacker
to learn the pair (r, c) corresponding to rejected executions as well, and since that
additional information is not available to the adversary in the original setting,
we need to show that it does not affect the security of the scheme.

This stronger security requirement can be modeled as the unforgeability
under chosen message attacks of a modified version of the GLP signature scheme
in which the pair (r, c) is made public when a rejection occurs. We call this modi-
fied scheme r-GLP, and describe it as Algorithm 4. The modification means that,
in the EUF-CMA security game, the adversary gets access not only to correctly
generated GLP signatures, but also to pairs (r, c) when rejection occurs, which
is exactly the setting that arises as a result of unmasking the value r. The follow-
ing theorem, proved in the full version of this paper [5], states that the modified
scheme is indeed secure, at least if we are willing to assume the hardness of the
additional DCKp,n assumption.

Theorem 1. Let n, p, R and Dn
α as defined in Sect. 2.1. Assuming the hardness

of the DCKp,n and R-DCKp,n problems, the signature r-GLP is EUF-CMA
secure in the random oracle model.

Remark 1. As mentioned previously, we can avoid the non-standard assumption
R-DCKp,n by hashing not r but f(r) for some statistically hiding commitment
f (which can itself be constructed under DCKp,n, or standard lattice assump-
tions). See the full version of this paper for details [5]. The downside of that

Algorithm 2. GLP signature
Data: m, pk, sk
Result: Signature σ

1 y1,y2
$←− Rk

2 c ← H(r = ay1 + y2,m)
3 z1 ← s1c + y1

4 z2 ← s2c + y2

5 if z1 or z2 /∈ Rk−α then
6 restart
7 end
8 return σ = (z1, z2, c)

Algorithm 3. GLP verifica-
tion
Data: m, σ, pk

1 if z1, z2 ∈ Rk−α and
c = H(az1 + z2 − tc,m) then

2 accept
3 else
4 reject
5 end

362 G. Barthe et al.

Algorithm 4. Tweaked signature with public r
Data: m, pk = (a, t), sk = (s1, s2)
Result: Signature σ

1 y1
$←− Rk

2 y2
$←− Rk

3 r ← ay1 + y2

4 c ← H(r,m)
5 z1 ← s1c + y1

6 z2 ← s2c + y2

7 if z1 or z2 /∈ Rk−α then
8 (z1, z2) ← (⊥, ⊥)
9 end

10 return σ = (z1, z2, c, r)

approach is that it has a non negligible overhead in terms of key size, signature
size, and to a lesser extent signature generation time.

3 Threshold Probing Model with Public Outputs

In this section, we briefly review the definition of the threshold probing model,
and introduce an extension to accommodate public outputs.

3.1 Threshold Probing Model

The threshold probing model introduced by Ishai, Sahai and Wagner considers
implementations that operate over shared values [22].

Definition 3. Let d be a masking order. A shared value is a (d + 1)-tuple of
values, typically integers or Booleans.

A (u, v)-gadget is a probabilistic algorithm that takes as inputs u shared val-
ues, and returns distributions over v-tuples of shared values. (u, v)-gadgets are
typically used to implement functions that take u inputs and produce v outputs.

Gadgets are typically written in pseudo-code, and induce a mapping from
u-tuples of shared values (or equivalently u(d + 1)-tuples of values) to a dis-
tribution over v-tuples of values, where the output tuple represents the joint
distribution of the output shared values as well as all intermediate values com-
puted during the execution of the gadget.

We now turn to the definition of probing security. Informally, an implemen-
tation is d-probing secure if and only if an adversary that can observe at most
d intermediate values cannot recover information on secret inputs.

Definition 4. d-non-interference (d-NI): A gadget is d-non-interfering if and
only if every set of at most d intermediate variables can be perfectly simulated
with at most d shares of each input.

Masking the GLP Lattice-Based Signature Scheme at Any Order 363

Definition 5. d-strong-non-interference (d-SNI): A gadget is d-strongly non
interfering if and only if every set of size d0 ≤ d containing d1 intermediate
variables and d2 = d0 − d1 returned values can be perfectly simulated with at
most d1 shares of each input.

This notion of security is formulated in a simulation-based style. It is however
possible to provide an equivalent notion as an information flow property in the
style of programming language security and recent work on formal methods for
proving security of masked implementations.

The maskComp tool. For certain composition proofs, we will use the maskComp
tool from Barthe et al. [4]. It uses a type-based information flow analysis with
cardinality constraints and ensures that the composition of gadgets is d-NI secure
at arbitrary orders, by inserting refresh gadgets when required.

3.2 Threshold Probing Model with Public Outputs

The security analysis of our masked implementation of GLP requires an adapta-
tion of the standard notion of security in the threshold probing model. Specifi-
cally, our implementation does not attempt to mask the computation of H(r,m)
at line 2 of Algorithm 2; instead, it recovers r from its shares and then computes
H(r,m). This optimization is important for the efficiency of the masked algo-
rithm, in particular because it is not immediately clear whether one can mask
the hash function H efficiently—note that this kind of optimization is also remi-
niscent of the method used to achieve efficient sorting algorithms in multi-party
computations.

From a security perspective, recombining r in the algorithm is equivalent
to making r a public output. In contrast with “return values”, we will refer
to “outputs” as values broadcast on a public channel during the execution of
the masked algorithm. The side-channel attacker can therefore use outputs in
attacks. Since the usual notions of NI and SNI security do not account for outputs
in that sense, we need to extend those notions of security to support algorithms
that provide such outputs. The idea here is not to state that public outputs do
not leak relevant information, but rather that the masked implementation does
not leak more information than the one that is released through public outputs.
We capture this intuition by letting the simulator depend on the distribution of
the public outputs.

Definition 6. A gadget with public outputs is a gadget together with a dis-
tinguished subset of intermediate variables whose values are broadcast during
execution.

We now turn to the definition of probing security for gadgets with public
outputs.

Definition 7. d-non-interference for gadgets with public outputs (d-NIo): A
gadget with public outputs X is d-NIo if and only if every set of at most d

364 G. Barthe et al.

intermediate variables can be perfectly simulated with the public outputs and at
most d shares of each input.

Again, it is possible to provide an equivalent notion as an information flow
property in the style of programming language security.

Note that the use of public outputs induces a weaker notion of security.

Lemma 1. Let G be a d-NI-gadget. Then G is d-NIo secure for every subset X
of intermediate variables.

Informally, the lemma states that a gadget that does not leak any information
also does not leak more information than the one revealed by a subset of its
intermediate variables. The lemma is useful to resort to automated tools for
proving NI security of some gadgets used in the masked implementations of
GLP. In particular, we will use the maskComp tool.

Since d-NIo security is weaker than d-NI security, we must justify that it
delivers the required security guarantee. This is achieved by combining the proofs
of security for the modified version of GLP with public outputs, and the proofs
of correctness and security for the masked implementations of GLP.

4 Masked Algorithm

In this section, the whole GLP scheme is turned into a functionally equivalent
scheme secure in the d-probing model with public outputs. Note that it suf-
fices to mask the key derivation in the d-probing model and the signature in
the d-probing model with public output r , since the verification step does not
manipulate sensitive data.

Remark 2. The masked version of GLP scheme with commitment has also been
turned into a functionally equivalent scheme proved secure in the d-probing
model with public output r . Its masked version is a little more complex, it is
detailed in the full version of this paper [5].

H1 FullAdd

DG

DG

a

(s1,i)0≤i≤d

(s2,i)0≤i≤d

(ti)0≤i≤d t

(s1,i)0≤i≤d

(s2,i)0≤i≤d

Fig. 1. Composition of mKD (The blue gadgets will be proved d-NIo, the white ones
will be proved d-NI) (Color figure online)

Masking the GLP Lattice-Based Signature Scheme at Any Order 365

4.1 Overall Structure

For simplicity, we will show the masking on a single iteration version of the
signature. The masking can be generalized by calling the masked signature again
if it fails.

To ensure protection against d-th order attacks, we suggest a masking coun-
termeasure with d + 1 shares for the following sensitive data: y1, y2, s1 and s2.
All the public variables are (a, t) (i.e., the public key), m (i.e., the message),
RejSp (i.e., the bit corresponding to the success of the rejection sampling),
(z1, z2, c) (i.e., the signature). As mentioned before, because of the need of r
recombination, even if r is an intermediate value, it is considered as a public
output.

Most operations carried out in the GLP signing algorithm are arithmetic
operations modulo p, so we would like to use arithmetic masking. It means for
example that y1 will be replaced by y1,0, ...y1,d ∈ R such that

y1 = y1,0 + ... + y1,d mod p.

The issue is that at some points of the algorithm, we need to perform operations
that are better expressed using Boolean masking. Those parts will be extracted
from both the key derivation and the signature to be protected individually and
then securely composed. The different new blocks to achieve protection against
d-th order attacks are depicted hereafter and represented in Figs. 1 and 2:

H1 FullAdd

DG

DG

RS

FullAdd

FullAdd

H2

Hash

H2

H1

H1

a

(s1,i)0≤i≤d

(s2,i)0≤i≤d

m

(y1,i)0≤i≤d

(y2,i)0≤i≤d

(ri)0≤i≤d

(z1,i)0≤i≤d

(z2,i)0≤i≤d

RejSp

r c

z1

z2

(z1,i)0≤i≤d

(z2,i)0≤i≤d

(y1,i)0≤i≤d

(y2,i)0≤i≤d

(z1,i)0≤i≤d

(z2,i)0≤i≤d

c

Fig. 2. Composition of mSign (The blue gadgets will be proved d-NIo, the white ones
will be proved d-NI and the red one won’t be protected) (Color figure online)

– Generation of the shared data (DG), masked version of line 1 in Algorithm2
and line 1 in Algorithm 1, is a function to generate shares of y1, y2, s1 and
s2. It will be described in Algorithm 7, decomposed and proved d-NIo secure
by decomposition.

– Rejection Sampling (RS), masked version of line 5 in Algorithm2, is a test to
determine if z1 and z2 belong to the set Rk−α. It will be detailed in Algorithm
15 and proved d-NI secure by decomposition.

366 G. Barthe et al.

– Refresh and unmask (FullAdd) is a function that unmasks securely a variable
by adding together its shares modulo p without leaking the partial sums. It
will be described in Algorithm 16 and proved d-NIo secure and d-NI secure
when used at the end.

– H1 and H2 are the elementary parts, masked versions of line 2, 3–4 and then
5–6 in Algorithm 2. H1 is also the masked version of the instruction called
in line 3 of the key derivation algorithm (Algorithm 1). They are made of
arithmetic computations. They are depicted in Algorithms 17 and 18. They
will be proved d-NI secure.

– Hash function, line 2 in Algorithm2. As mentioned before, is left unmasked
because it manipulates only public data.

Algorithm 6 shows a high level picture of mSign with all these blocks and
Algorithm 5 shows mKD.

The proofs of dNI or d-NIo security will be given in the following subsection.
Then, the composition will be proved in Sect. 4.3 to achieve global security in
the d-probing model with public outputs. This yields the d-NIo security of the
masked signature and masked key generation algorithms in Theorems 2 and 3,
respectively. By combining these results with the refined analysis of the GLP
signature in Theorem 1, one obtains the desired security guarantee, as discussed
in Sect. 3.

4.2 Masked Gadgets

In this section each gadget will be described and proved d-NI or d-NIo secure. The
difficulty is located in the gadgets containing Boolean/arithmetic conversions.
In those gadgets (DG and RS) a detailed motivation and description has been
made.

Data generation (DG). In the unmasked GLP signing algorithm, the coef-
ficients of the “commitment” polynomials y1, y2 are sampled uniformly and
independently from an integer interval of the form [−k, k]. In order to mask the

Algorithm 5. mKD
Result: Signing key sk, verification key pk

1 (s1,i)0≤i≤d ← DG(1, d)
2 (s2,i)0≤i≤d ← DG(1, d)

3 a
$←− R

4 (ti)0≤i≤d ← H1(a, (s1,i)0≤i≤d, (s2,i)0≤i≤d)
5 t ← FullAdd((ti)0≤i≤d)
6 sk ← ((s1,i)0≤i≤d, (s2,i)0≤i≤d)
7 pk ← (a, t)
8 return as public key (a, t)
9 return as secret key ((s1,i)0≤i≤d, (s2,i)0≤i≤d)

Masking the GLP Lattice-Based Signature Scheme at Any Order 367

Algorithm 6. mSign
Data: m, pk = (a, t), sk = ((s1,i)0≤i≤d, (s2,i)0≤i≤d)
Result: Signature σ

1 (y1,i)0≤i≤d ← DG(k, d)
2 (y2,i)0≤i≤d ← DG(k, d)
3 (ri)0≤i≤d ← H1(a, (y1,i)0≤i≤d, (y2,i)0≤i≤d)
4 r ← FullAdd((ri)0≤i≤d)
5 c ← hash(r,m)
6 (z1,i)0≤i≤d ←H1(c, (s1,i)0≤i≤d, (y1,i)0≤i≤d)
7 (z2,i)0≤i≤d ←H1(c, (ts2,i)0≤i≤d, (y2,i)0≤i≤d)
8 RejSp ← RS((z1,i)0≤i≤d, (z2,i)0≤i≤d, k − α)
9 (z1,i)0≤i≤d ← H2(RejSp, (z1,i)0≤i≤d)

10 (z2,i)0≤i≤d ← H2(RejSp, (z2,i)0≤i≤d)
11 z1 ←FullAdd((z1,i)0≤i≤d)
12 z2 ←FullAdd((z2,i)0≤i≤d)
13 return σ = (z1, z2, c)

Algorithm 7. Data Generation (DG)
Data: k and d
Result: A uniformly random y integer in Rk in arithmetic masked form

(yi)0≤i≤d.
1 (yi)0≤i≤d ← {0}d

2 for j = 1 to n do
3 (ai)0≤i≤d ← RG(k, d)

4 (yi)0≤i≤d ← (yi + aix
j)0≤i≤d

5 end
6 return (yi)0≤i≤d

signing algorithm, one would like to obtain those values in masked form, using
order-d arithmetic masking modulo p. Note that since all of these coefficients
are completely independent, the problem reduces to obtaining an order-d mod-p
arithmetic masking of a single random integer in [−k, k].

Accordingly, we will first create an algorithm called Random Generation
(RG) which generates an order-d mod-p arithmetic masking of a single random
integer in [−k, k]. Next, we will use RG in an algorithm called Data Generation
(DG) which generates a sharing of a value in Rk. DG is calling RG n times
and is described in Algorithm 7. RG is described hereafter and will be given in
Algorithm 14.

Let us now build RG. Carrying out this masked random sampling in arith-
metic form directly and securely seems difficult. On the other hand, it is rela-
tively easy to generate a Boolean masking of such a uniformly random value. We
can then convert that Boolean masking to an arithmetic masking using Coron
et al.’s higher-order Boolean-to-arithmetic masking conversion technique [13].
The technique has to be modified slightly to account for the fact that the mod-

368 G. Barthe et al.

ulus p of the arithmetic masking is not a power of two, but the overall structure
of the algorithm remains the same. To obtain a better complexity, we also use
the Kogge–Stone adder based addition circuit already considered in [12].

A more precise description of our approach is as follows. Let K = 2k+1, and
w0 be the smallest integer such that 2w0 > K. Denote also by w the bit size of the
Boolean masking we are going to use; we should have w > w0 + 1 and 2w > 2p.
For GLP masking, a natural choice, particularly on a 32-bit architecture, would
be w = 32.

Now the first step of the algorithm is to generate w0-bit values (x0
i)0≤i≤d

uniformly and independently at random, and apply a multiplication-based share
refreshing algorithm Refresh, as given in Algorithm 8, to obtain a fresh w-bit
Boolean masking (xi)0≤i≤d of the same value x:

x =
d⊕

i=0

x0
i =

d⊕

i=0

xi.

Note that x is then a uniform integer in [0, 2w0 − 1].

Algorithm 8. Multiplication-based refresh algorithm for Boolean masking
(Refresh)
Data: A Boolean masking (xi)0≤i≤d of some value x; the bit size w of the

returned masks
Result: An independent Boolean masking (x′

i)0≤i≤d of x
1 (x′

i)0≤i≤d ← (xi)0≤i≤d

2 for i = 0 to d do
3 for j = i + 1 to d do
4 pick a uniformly random w-bit value r
5 x′

i ← x′
i ⊕ r

6 x′
j ← x′

j ⊕ r

7 end

8 end
9 return (x′

i)0≤i≤d

We then carry out a rejection sampling on x: if x ≥ K, we restart the algo-
rithm. If this step is passed successfully, x will thus be uniformly distributed
in [0,K − 1] = [0, 2k]. Of course, the test has to be carried out securely at
order d. This can be done as follows: compute a random w-bit Boolean mask-
ing (ki)0≤i≤d of the constant (−K) (the two’s complement of K over w bits;
equivalently, one can use 2w − K), and carry out the d-order secure addition
SecAdd

(
(xi)0≤i≤d, (ki)0≤i≤d

)
, given in Algorithm 9 (where Refresh denotes the

d-SNI multiplication-based refresh as proven in [4] and recalled in Algorithm 8).
The result is a Boolean masking (δi)0≤i≤d of the difference δ = x − K in two’s
complement form. In particular, the most significant bit b of δ is 0 if and only
if x ≥ K. Since computing the most significant bit is an F2-linear operation,

Masking the GLP Lattice-Based Signature Scheme at Any Order 369

Algorithm 9. Integer addition of Boolean maskings (SecAdd), as generated
by the maskComp tool from the Kogge–Stone adder of [12]
Data: Boolean maskings (xi)0≤i≤d, (yi)0≤i≤d of integers x, y; the bit size w of

the masks
Result: A Boolean masking (zi)0≤i≤d of x + y

1 (pi)0≤i≤d ← (xi ⊕ yi)0≤i≤d

2 (gi)0≤i≤d ← SecAnd
(
(xi)0≤i≤d, (yi)0≤i≤d, w

)

3 for j = 1 to W := �log2(w − 1)� − 1 do
4 pow ← 2j−1

5 (ai)0≤i≤d ← (gi � pow)0≤i≤d

6 (ai)0≤i≤d ← SecAnd
(
(ai)0≤i≤d, (pi)0≤i≤d, w

)

7 (gi)0≤i≤d ← (gi ⊕ ai)0≤i≤d

8 (a′
i)0≤i≤d ← (pi � pow)0≤i≤d

9 (a′
i)0≤i≤d ← Refresh

(
(ai)0≤i≤d, w

)

10 (pi)0≤i≤d ← SecAnd
(
(pi)0≤i≤d, (a′

i)0≤i≤d, w
)

11 end

12 (ai)0≤i≤d ← (gi � 2W)0≤i≤d

13 (ai)0≤i≤d ← SecAnd
(
(ai)0≤i≤d, (pi)0≤i≤d, w

)

14 (gi)0≤i≤d ← (gi ⊕ ai)0≤i≤d

15 (zi)0≤i≤d ← (
xi ⊕ yi ⊕ (gi � 1)

)
0≤i≤d

16 return (zi)0≤i≤d

we can carry it out componentwise to obtain a masking (bi)0≤i≤d of b with
bi = δi � (w − 1). The resulting bit b is non-sensitive, so we can unmask it to
check whether to carry out the rejection sampling.

After carrying out these steps, we have obtained a Boolean masking of a
uniformly random integer in [0, 2k]. What we want is a mod-p arithmetic masking
of a uniformly random integer in the interval [−k, k], which is of the same length
as [0, 2k]. If we can convert the Boolean masking to an arithmetic masking, it
then suffices to subtract k from one of the shares and we obtain the desired
result. To carry out the Boolean-to-arithmetic conversion itself, we essentially
follow the approach of [13, Sect. 5], with a few changes to account for the fact
that p is not a power of two.

The main change is that we need an algorithm for the secure addition mod-
ulo p of two values y, z in Boolean masked form (yi)0≤i≤d, (zi)0≤i≤d (assum-
ing that y, z ∈ [0, p)). Such an algorithm SecAddModp is easy to construct
from SecAdd (see Algorithm 10 with SecAnd the d-order secure bitwise AND
operation from [22,30] and recalled in Algorithm 11) and the comparison trick
described earlier. More precisely, the approach is to first compute (si)0≤i≤d =
SecAdd

(
(yi)0≤i≤d, (zi)0≤i≤d

)
, which is a Boolean sharing of the sum s = y + z

without modular reduction, and then (s′
i)0≤i≤d = SecAdd

(
(si)0≤i≤d, (pi)0≤i≤d

)

for a Boolean masking (pi)0≤i≤d of the value −p in two’s complement form (or
equivalently 2w − p). The result is a masking of s′ = s − p in two’s complement
form. In particular, we have s ≥ p if and only if the most significant bit b of s′

is 0. Denote by r the desired modular addition y + z mod p. We thus have:

370 G. Barthe et al.

Algorithm 10. Mod-p addition of Boolean maskings (SecAddModp)
Data: Boolean maskings (xi)0≤i≤d, (yi)0≤i≤d of integers x, y; the bit size w of

the masks (with 2w > 2p)
Result: A Boolean masking (zi)0≤i≤d of x + y mod p

1 (pi)0≤i≤d ← (
2w − p, 0, . . . , 0

)

2 (si)0≤i≤d ← SecAdd
(
(xi)0≤i≤d, (yi)0≤i≤d, w

)

3 (s′
i)0≤i≤d ← SecAdd

(
(si)0≤i≤d, (pi)0≤i≤d, w

)

4 (bi)0≤i≤d ← (
s′

i 	 (w − 1)
)
0≤i≤d

5 (ci)0≤i≤d ← Refresh
(
(bi)0≤i≤d, w

)

6 (zi)0≤i≤d ← SecAnd
(
(si)0≤i≤d, (c̃i)0≤i≤d, w

)

7 (ci)0≤i≤d ← Refresh
(
(bi)0≤i≤d, w

)

8 (zi)0≤i≤d ← (zi)0≤i≤d ⊕ SecAnd
(
(s′

i)0≤i≤d, (¬̃ci)0≤i≤d, w
)

9 return (zi)0≤i≤d

Algorithm 11. Bitwise AND of Boolean maskings (SecAnd) from [22,30]
Data: Boolean maskings (xi)0≤i≤d, (yi)0≤i≤d of integers x, y; the bit size w of

the masks
Result: A Boolean masking (ri)0≤i≤d of x ∧ y

1 (ri)0≤i≤d ← (xi ∧ yi)0≤i≤d

2 for i = 0 to d do
3 for j = i + 1 to d do
4 pick a uniformly random w-bit value zij

5 zji ← (xi ∧ yj) ⊕ zij

6 zji ← zji ⊕ (xj ∧ yi)
7 ri ← ri ⊕ zij

8 rj ← rj ⊕ zji

9 end

10 end
11 return (ri)0≤i≤d

r =

{
s if b = 1;
s′ if b = 0.

As a result, we can obtain the masking of r in a secure way as:

(ri)0≤i≤d = SecAnd
(
(si)0≤i≤d, (b̃i)0≤i≤d

) ⊕ SecAnd
(
(s′

i)0≤i≤d, (¬̃bi)0≤i≤d

)
,

where we denote by b̃ the extension of the bit b to the entire w-bit register (this
is again an F2-linear operation that can be computed componentwise). This
concludes the description of SecAddModp.

Using SecAddModp instead of SecAdd in the algorithms of [13, Sect. 4], we also
immediately obtain an algorithm SecArithBoolModp for converting a mod-p arith-
metic masking a =

∑d
i=0 ai mod p of a value a ∈ [0, p) into a Boolean masking

a =
⊕d

i=0 a′
i of the same value. The naive way of doing so (see Algorithm 12),

Masking the GLP Lattice-Based Signature Scheme at Any Order 371

Algorithm 12. Secure conversion from mod-p arithmetic masking to
Boolean masking (SecArithBoolModp); this is the simple version (cubic in
the masking order)
Data: Arithmetic masking (ai)0≤i≤d modulo p of an integer a; the bit size w of

the returned masks (with 2w > 2p)
Result: A Boolean masking (a′

i)0≤i≤d of a
1 (a′

i)0≤i≤d ← (
0, . . . , 0

)

2 for j = 0 to d do
3 (bi)0≤i≤d ← (

aj , 0, . . . , 0
)

4 (bi)0≤i≤d ← Refresh
(
(bi)0≤i≤d, w

)

5 (a′
i)0≤i≤d ← SecAddModp

(
(a′

i)0≤i≤d, (bi)0≤i≤d, w
)

6 end
7 return (a′

i)0≤i≤d

Algorithm 13. Refresh-and-unmask algorithm for Boolean masking
(FullXor) from [13]
Data: A Boolean masking (xi)0≤i≤d of some value x; the bit size w of the masks
Result: The value x

1 (x′
i)0≤i≤d ← FullRefresh

(
(xi)0≤i≤d, w

)

2 x ← x′
0 for i = 1 to d do

3 x ← x ⊕ x′
i

4 end
5 return x

which is the counterpart of [13, Sect. 4.1], is to simply construct a Boolean mask-
ing of each of the shares ai, and to iteratively apply SecAddModp to those masked
values. This is simple and secure, but as noted by Coron et al., this approach has
cubic complexity in the masking order d (because SecAdd and hence SecAddModp
are quadratic). A more advanced, recursive approach allows to obtain quadratic
complexity for the whole conversion: this is described in [13, Sect. 4.2], and directly
applies to our setting.

With both algorithms SecAddModp and SecArithBoolModp in hand, we can
easily complete the description of our commitment generation algorithm by mim-
icking [13, Algorithm 6]. To convert the Boolean masking (xi)0≤i≤d of x to a
mod-p arithmetic masking, we first generate random integer shares ai ∈ [0, p),
1 ≤ i ≤ d, uniformly at random. We then define a′

i = −ai mod p = p − ai for
1 ≤ i ≤ d and a′

0 = 0. The tuple (a′
i)0≤i≤d is thus a mod-p arithmetic masking

of the sum a′ = −∑
1≤i≤d ai mod p. Using SecArithBoolModp, we convert this

arithmetic masking to a Boolean masking (yi)0≤i≤d, so that
⊕d

i=0 yi = a′. Now,
let (zi)0≤i≤d = SecAddModp

(
(xi)0≤i≤d, (yi)0≤i≤d

)
; this is a Boolean masking of:

z = (x + a′) mod p =

(

x −
d∑

i=1

ai

)

mod p.

372 G. Barthe et al.

Fig. 3. Randomness Generation RG (The green (resp. white, red) gadgets will be proved
d-SNI (resp. d-NI, unmasked)) (Color figure online)

Algorithm 14. Randomness generation (RG)
Data: k and d
Result: A uniformly random a integer in [−k, k] in mod-p arithmetic masked

form (ai)0≤i≤d.
1 generate uniformly random w0-bit values (x0

i)0≤i≤d

2 (xi)0≤i≤d ← Refresh
(
(x0

i)0≤i≤d

)

3 initialize (ki)0≤i≤d to a w-bit Boolean sharing of the two’s complement value
−K = −2k − 1

4 (δi)0≤i≤d ← SecAdd
(
(xi)0≤i≤d, (ki)0≤i≤d

)

5 (bi)0≤i≤d ← (δi)0≤i≤d 	 (w − 1)
6 b ← FullXor

(
(bi)0≤i≤d

)

7 output b
8 if b = 0 then
9 restart

10 end
11 generate uniform integers (ai)1≤i≤d in [0, p)
12 a′

i ← −ai mod p for i = 1, . . . , d
13 a′

0 ← 0
14 (yi)0≤i≤d ← SecArithBoolModp

(
(a′

i)0≤i≤d

)

15 (zi)0≤i≤d ← SecAddModp
(
(xi)0≤i≤d, (yi)0≤i≤d

)

16 a0 ← FullXor
(
(zi)0≤i≤d

)

17 return (ai)0≤i≤d

We then securely unmask this value using Coron et al. FullXor procedure,
recalled in Algorithm 13, and set a0 = z − k mod p. Then, we have:

d∑

i=0

ai mod p = z−k+
d∑

i=1

ai mod p = x−k−
d∑

i=1

ai+
d∑

i=1

ai mod p = x−k mod p.

Masking the GLP Lattice-Based Signature Scheme at Any Order 373

Thus, (ai)0≤i≤d is a correct mod-p arithmetic masking of a uniformly random
value in [−k, k] as required. The whole procedure is summarized in Algorithm 14
and described in Fig. 3 where xGen stands for the generation of x0’s shares,
Refresh for the multiplication-based refreshing from [4,22], kGen for the genera-
tion of k’s shares, � for the right shift of δ’s shares, FullX for FullXor, aGen for
the generation of a’s shares, SecABM for SecArithBoolModp, and SecAMp for
SecAddModp.

The success probability of the rejection sampling step (the masked compar-
ison to K) is K/2w0 , and hence is at least 1/2 by definition of w0. Therefore,
the expected number of runs required to complete is at most 2 (and in fact, a
judicious choice of k, such as one less than a power of two, can make the suc-
cess probability very close to 1). Since all the algorithms we rely on are at most
in the masking order and (when using the masked Kogge–Stone adder of [12])
logarithmic in the size w of the Boolean shares, the overall complexity is thus
O(d2 log w).

Now that the randomness generation is decribed, each intermediate gadget
will be proven either d-NI or d-NIo secure. Then, the global composition is proven
d-NIo secure as well.

Lemma 2. Gadget SecAdd is d-NI secure.

Proof. Gadget SecAdd is built from the Kogge-Stone adder of [12] with secure
AND and secure linear functions such as exponentiations and Boolean additions.
As to ensure its security with the combination of these atomic masked functions,
the tool maskComp was used to properly insert the mandatory d-SNI refreshings,
denoted as Refresh in Algorithm 9. As deeply explained in its original paper,
maskComp provides a formally proven d-NI secure implementation.
�
Lemma 3. Gadget SecAddModp is d-NI secure.

Proof. Gadget SecAddModp is built from the gadget SecAdd and SecAnd and
linear operations (like ⊕). We use the tool maskComp to generate automatically
a verified implementation. Note that the tool automatically adds the two refreshs
(line 5 and 7) and provides a formally proven d-NI secure implementation.
�
Lemma 4. Gadget SecArithBoolModp is d-SNI secure.

Proof. A graphical representation of SecArithBoolModp is in Fig. 4. Let O be a
set of observations performed by the attacker on the final returned value, let IAj

be the set of internal observations made in step j in the gadget SecAddModp
(line 5), and IRj

be the set of internal observations made in the step j in the
initialisation of b (line 3) or in the Refresh (line 4). Assuming that |O|+∑

(|IAj
|+

|IRj
|) ≤ d, the gadget is d-SNI secure, if we can build a simulator allowing to

simulate all the internal and output observations made by the attacker using a
set S of shares of a such that |S| ≤ ∑

(|IAj
| + |IRj

|).

374 G. Barthe et al.

(0, 0, ..., 0)

Refresh SecAMp
(a0, 0, ..., 0) (bi)0≤i≤d

Step 0

Refresh SecAMp
(a1, 0, ..., 0) (bi)0≤i≤d

(a′
i)0≤i≤d

(a′
i)0≤i≤d

Step 1

...

Refresh SecAMp
(aj , 0, ..., 0) (bi)0≤i≤d

(a′
i)0≤i≤d

Step j

...

Refresh SecAMp
(ad, 0, ..., 0) (bi)0≤i≤d

(a′
i)0≤i≤d

Step d

Fig. 4. Graphical Representation of SecArithBoolModp (The green (resp. white) gad-
gets will be proved d-SNI (resp. d-NI)) (Color figure online)

At the last iteration (see Fig. 5), the set of observations O ∪ IAd
can be

simulated using a set Sa′
d−1

of shares of a′ and Sbd−1 of shares of b with |Sa′
d−1

| ≤
|O| + |IAd

| and |Sbd−1 | ≤ |O| + |IAd
| (because the gadget SecAddModp is d-NI

secure). Since the Refresh is d-SNI secure, the sets Sbd−1 and IRd
can be simulated

using a set Sb′
d−1

of input share with |Sb′
d−1

| ≤ |IRd
|. If IRd

is not empty, then
Sb′

d−1
may contain ad, so we add ad to S. For each iteration of the loop this

process can be repeated. At the very first iteration, several shares of a′ may be
necessary to simulate the set of observations. However, there are all initialized
to 0, nothing is added to S.

At the end we can conclude that the full algorithm can be simulated using
the set S of input shares. Furthermore we have |S| ≤ ∑ |IRj

| (since aj is added

Refresh

IRd

SecAMp

IAd

(ad, 0, ..., 0)

Sb′
d−1

Sbd−1

Sa′
d−1

O

Step d

Fig. 5. Last step of SecArithBoolModp with probes (The green (resp. white) gadgets
will be proved d-SNI (resp. d-NI)) (Color figure online)

Masking the GLP Lattice-Based Signature Scheme at Any Order 375

in S only if IRj
is not empty), so we can conclude that |S| ≤ ∑ |IAj

| + |IRj
|

which concludes the proof.
�
Lemma 5. Gadget RG is d-NIo secure with public output b.

Proof. Here we need to ensure that the returned shares of a cannot be revealed
to the attacker through a d-order side-channel attack. Since xGen and aGen are
just random generation of shares, the idea is to prove that any set of t ≤ d
observations on RG including these inputs can be perfectly simulated with at
most t shares of x and t shares of a.

Gadget RG is built with no cycle. In this case, from the composition results
of [4], it is enough to prove that each sub-gadget is d-NI to achieve global secu-
rity. In our case, it is enough to prove that each sub-gadget is d-NIo with the
knowledge of b to achieve global security.

From Lemmas 2, 4, and 3, SecAdd, SecArithBoolModp, and SecAddModp are
d-NI secure. � is trivially d-NI secure as well since it applies a linear function,
gadget FullRefresh is d-SNI secure thus d-NI secure by definition, and gadget
kGen is generating shares of a non sensitive value.

At this point, both gadgets FullXor have to be analyzed to achieve the
expected overall security. We start with the gadget computing b. After its execu-
tion, b is broadcasted. Since b have to be public, its knowledge does not impact
the security but because of this output, the security of RG will be d-NIo with
public output b and not d-NI. FullXor is composed of a d-SNI secure refreshing
(made of d+1 linear refreshing) of the shares and of a Boolean addition of these
resulting shares. The attacker is not able to observe intermediate variable of all
the linear refreshings (since he only has δ ≤ d available observations), thus we
consider that the ith refreshing is left unobserved. As a consequence, all the previ-
ous observations involve only one b’s share and all the following observations are
independent from b’s share except for their sum. That is, FullXor is d-NI secure.
As for its second instance to compute a0, FullXor is still d-NI secure but a0 is not
revealed after its execution. While the attacker is able to observe its value, it is
not returned for free. All the δ0 ≤ d observations made by the attacker of this
last instance of FullXor can be perfectly simulated with a0 (for the observations
performed after the unobserved linear refreshing) and at most δ0 − 1 shares of z
(for the observations made before the unobserved linear refreshing).
�
Remark 3. The knowledge of b (ie. the success of the randomness generation) is
not sensitive and we decided to consider it as a public output. To simplify the
notation when we report the security on the whole scheme, we will omit b in the
public outputs.

Lemma 6. Gadget DG is d-NIo secure with public output b.

Proof. From Lemma 5, Gadget DG is d-NIo secure since it only consists in the
linear application of Gadget RG to build the polynomial coefficients.
�

376 G. Barthe et al.

Algorithm 15. Rejection sampling (RS)

Data: The 4n values a(j) to check, in mod-p arithmetic masked representation
(a

(j)
i)0≤i≤d.

Result: The bit r equal to 1 if all values satisfy that a(j) + k − α ≥ 0, and 0
otherwise.

1 initialize (ri)0≤i≤d as a single-bit Boolean masking of 1
2 initialize (pi)0≤i≤d as a w-bit Boolean masking of −p
3 initialize (p′

i)0≤i≤d as a w-bit Boolean masking of −(p + 1)/2
4 initialize (k′

i)0≤i≤d as a w-bit Boolean masking of k − α
5 for j = 1 to 4n do

6 (a′
i)0≤i≤d ← SecArithBoolModp

(
(a

(j)
i)0≤i≤d

)

7 (δi)0≤i≤d ← SecAdd
(
(a′

i)0≤i≤d, (p′
i)0≤i≤d

)

8 (bi)0≤i≤d ← (δi)0≤i≤d 	 (w − 1)
9 (si)0≤i≤d ← SecAdd

(
(a′

i)0≤i≤d, (pi)0≤i≤d

)

10 (ci)0≤i≤d ← Refresh
(
(bi)0≤i≤d

)

11 (a′
i)0≤i≤d ← SecAnd

(
(a′

i)0≤i≤d, (c̃i)0≤i≤d

)

12 (ci)0≤i≤d ← Refresh
(
(bi)0≤i≤d

)

13 (a′
i)0≤i≤d ← (a′

i)0≤i≤d ⊕ SecAnd
(
(si)0≤i≤d, ¬(c̃i)0≤i≤d

)

14 (δi)0≤i≤d ← SecAdd
(
(a′

i)0≤i≤d, (k′
i)0≤i≤d

)

15 (bi)0≤i≤d ← (δi)0≤i≤d 	 (w − 1)
16 (ri)0≤i≤d ← SecAnd

(
(ri)0≤i≤d, ¬(bi)0≤i≤d

)

17 end
18 r ← FullXor

(
(ri)0≤i≤d

)

19 return r

Rejection Sampling (RS). Right before the rejection sampling step of the
masked signing algorithm, the candidate signature polynomials z1 and z2 have
been obtained as sums of d + 1 shares modulo p, and we want to check whether
the coefficients in Z/pZ represented by those shares are all in the interval [−k +
α, k − α]. Again, carrying out this check using mod-p arithmetic masking seems
difficult, so we again resort to Boolean masking.

For each coefficient zi,j of z1 and z2, one can trivially obtain a mod-
p arithmetic masked representation of both zi,j and −zi,j , and the goal is
to check whether those values, when unmasked modulo p in the interval
[(−p + 1)/2, (p − 1)/2)], are all greater than −k + α.

Let a be one of those values, and a = a0+ · · ·+ad mod p its masked represen-
tation. Using SecArithBoolModp as above, we can convert this mod-p arithmetic
masking to a w-bit Boolean masking (a′

i)0≤i≤d. From this masking, we first want
to obtain a masking of the centered representative of a mod p, i.e. the value a′′

such that:

a′′ =

{
a if a ≤ (p − 1)/2,

a − q otherwise.

This can be done using a similar approach as the one taken for randomness
generation: compute a Boolean masking (bi)0≤i≤d of the most significant bit
a−(p+1)/2 (which is 1 in the first case and 0 in the second case), and a Boolean

Masking the GLP Lattice-Based Signature Scheme at Any Order 377

masking (si)0≤i≤d of the sum a − q. Then, a Boolean masking of (a′′
i)0≤i≤d is

obtained as:

(a′′
i)0≤i≤d = SecAnd

(
(a′

i)0≤i≤d, (b̃i)0≤i≤d

) ⊕ SecAnd
(
(si)0≤i≤d,¬(b̃i)0≤i≤d

)
.

Finally, once this Boolean masking is obtained, it suffices to add k − ω to it and
check the most significant bit to obtain the desired test.

We cannot directly unmask that final bit, but we can compute it in masked
form for all the 4n values to be tested, and apply SecAnd iteratively on all of
these values to compute a Boolean masked representation of the bit equal to 1
if all the coefficients are in the required intervals, and 0 otherwise. This bit can
be safely unmasked, and is the output of our procedure. The whole algorithm is
summarized as Algorithm 15.

Since both SecArithBoolModp and SecAnd have quadratic complexity in the
masking order (and SecArithBoolModp has logarithmic complexity in the size w
of the Boolean shares), the overall complexity of this algorithm is O(nd2 log w).

Lemma 7. Gadget RS is d-NI secure.

Proof. From Lemmas 2 and 4, Gadgets SecArithBoolModp and SecAdd are d-NI
secure. Gadget SecAnd is d-SNI secure from [4,30] and � is linear, thus trivially
d-NI secure as well.

As done for Gadget SecAdd, the tool maskComp was called to generate a
d-NI circuit from the initial sequence of gadgets. It inserted gadgets Refresh (as
shown in Algorithm 15) at specific locations so that the overall circuit is formally
proven to be d-NI secure.
�

Refresh and Unmask (FullAdd). This part provides a computation of the
sensitive value as the sum of all its shares. It is a gadget with public output
because the final value is returned and also output. This output is useful when
FullAdd is used to recombine the intermediate value r.

Before summing, the sharing is given as input for FullRefresh [10, Algorithm
4], which is made of a succession of d + 1 linear refresh operations. Those linear
refreshing modify the sharing by adding randoms elements to each share while
keeping constant the value of the sum. Their number is strictly superior to d
which is useful to consider that any share or strictly partial sum of shares at
the output of the final linear refreshing is independent from the original sharing.
Then, the following partial sums do not give any information about the original
sharing which is dependent of the sensitive values. The whole algorithm, given
in Algorithm 16 has a quadratic complexity in d.

Lemma 8. Gadget FullAdd is d-NIo secure with public output r.

Proof. Let δ ≤ d be the number of observations made by the attacker. We use
a combination of d + 1 linear refresh operations. That is, there is at least one of
the linear refreshing (we call it the ith refreshing) which is not observed by the
attacker. For all the δ1 ≤ δ observations preceding the ith refreshing in FullAdd,

378 G. Barthe et al.

Algorithm 16. FullAdd
Data: (ri)0≤i≤d

Result: r
1 if (ri)0≤i≤d = ⊥ then
2 return ⊥
3 end
4 (ri)0≤i≤d ← FullRefresh ((ri)0≤i≤d)
5 r ← (r0 + ... + rd)
6 output (r)
7 return (r)

Algorithm 17. H1

Data: a, (y1,i)0≤i≤d

1 for 0 ≤ i ≤ d do
2 ri ← ay1,i + y2,i

3 end
4 return (ri)0≤i≤d

Algorithm 18. H2

Data: RejSp, (z1,i)0≤i≤d

1 if RejSp = 0 then
2 (z1,i)0≤i≤d ← ⊥
3 end
4 return (z1,i)0≤i≤d

they can be perfectly simulated with at most δ1 shares of r since each one of
them involves at most one ri. As for the observations performed after the ith

refreshing, each one of them is independent from the ri inside the refresh mask
and each intermediate sum of the unmask part is independent of the ri as well
with the knowledge of r. Then, during the sum computation, all the ri can be
simulated with fresh random that sum to r (the public output). Thus, at most
δ shares of r and r itself are enough to simulate further probes.
�
Remark 4. When FullAdd is used at the very end of the whole algorithm (mKD or
mSign), the public outputs are also among the returned values. Then, in those
cases, it can be considered as d-NI.

Transition Parts. The elementary parts H1 and H2 are quite easy to build since
they perform only linear operations on the input data. A masked implementation
only performs these linear operations on each share to securely compute the
returned shares. H1 and H2 are described in Algorithms 17 and 18.

Lemma 9. Gadget H2 and H1 are d-NI secure.

The straightforward proof is given in the full version of this paper.

Hash Function. The hash function does not manipulate any sensitive data.
Thus, it is left unmasked.

Masking the GLP Lattice-Based Signature Scheme at Any Order 379

4.3 Proofs of Composition

Theorem 2. The masked GLP sign in Algorithm6 is d-NIo secure with public
output {r, b}.
Proof. From Lemmas 6, 7 and 9, Algorithms DG, RS, H1, and H2 are all d-NI.
From Lemma 8, FullAdd is d-NIo secure.

Let us assume that an attacker has access to δ ≤ d observations on the whole
signature scheme. Then, we want to prove that all these δ observations can be
perfectly simulated with at most δ shares of each secret among y1, y2, s1 and
s2 and the public variables. With such a result, the signature scheme is then
secure in the d-probing model since no set of at most d observations would give
information on the secret values.

In the following, we consider the following distribution of the attacker’s δ
observations: δ1 (resp. δ2) on the instance of DG that produces shares of y1

(resp. y2), δ3 on H1, δ4 on FullAdd of r, δ5 (resp. δ6) on H1 which produces z1
(resp. z2), δ7 on the instance of RS, δ8 (resp. δ9) on H2 applied on z1 (resp. z2),
and δ10 (resp. δ11) on FullAdd of z1 (resp. z2). Some other observations can
be made on the Hash function, their number won’t matter during the proof.
Finally, we have

∑11
i=1 δi ≤ ∑11

i=1 +δHash ≤ δ.
Now, we build the proof from right to left as follows.
Both last FullAdd blocks in the very end of mSign are d-NI secure, then all

the observations performed during the execution of FullAdd on z1 (resp. z2) can
be perfectly simulated with at most δ10 (resp. δ11) shares of z1 (resp. z2).

H2 is d-NI secure, then all the observations from the call of H2 on z1 (resp. z2)
can be perfectly simulated with δ8 + δ10 (resp. δ9 + δ11) shares of the sensitive
input z1 (resp. z2). The inputs z1 and z2 do not come from RS which do not act
on them. They are directly taken from the returned values of H1.

RS is d-NI secure and do not return any sensitive element, then all the obser-
vations performed in gadget RS can be perfectly simulated with at most δ7 shares
of z1 and z2. So, after H1, the observations can be simulated with δ7 +(δ8 + δ10)
shares of z1 and δ7 + (δ9 + δ11) shares of z2.

H1 is d-NI secure as well, thus all the observations from the call of H1 on
y1 can be perfectly simulated with δ5 + δ7 + δ8 + δ10 ≤ δ shares of y1 and s1.
Respectively, on y2, the observations can be perfectly simulated from δ6 + δ7 +
δ9 + δ11 ≤ δ shares of y2 and s2.

The left FullAdd gadget is d-NIo secure and do not return any sensitive ele-
ment, then all the observations performed in this gadget can be perfectly simu-
lated with at most δ4 shares of r.

The left H1 gadget is d-NI secure, thus all the observations from its call can
be perfectly simulated with at most δ3 + δ4 shares of each one of the inputs y1

and y2.
DG is also d-NI secure, thus we need to ensure that the number of reported

observations does not exceed δ. At the end of DG, the simulation relies on
(δ3+δ4)+(δ5+δ7+δ8+δ10) ≤ δ shares of y1 and (δ3+δ4)+(δ6+δ7+δ9+δ11) ≤ δ
shares of y2. With the additional δ1 (resp. δ2) observations performed on the

380 G. Barthe et al.

first (resp. the second) instance of DG, the number of observations remains below
δ which is sufficient to ensure security of the whole scheme in the d-probing
model.
�
Theorem 3. The masked GLP key derivation in Algorithm5 is d-NIo secure
with public output b.

Proof. From Lemmas 6 and 9, Algorithms DG, H1 are all d-NI. From Lemma 8,
FullAdd is d-NIo secure.

Here too, let us assume that an attacker has access to δ ≤ d observations on
the whole signature scheme. Then, we want to prove that all these δ observations
can be perfectly simulated with at most δ shares of each secret among s1 and s2.

We now consider the following distribution of the attacker’s δ observations:
δ1 (resp. δ2) on the instance of DG that produces shares of s1 (resp. s2), δ3 on
H1, and δ4 on FullAdd, such that

∑4
i=1 δi = δ.

Now, we build the proof from right to left: FullAdd is used at the very end of
mKD, so it is d-NI secure. Thus, all the observations from the call of FullAdd can
be perfectly simulated with δ4 ≤ δ sensitive shares of the input t.

H1 is d-NI, thus all the observations from its call can be perfectly simulated
with at most δ3 + δ4 ≤ δ shares of each one of the inputs s1 and s2.

DG is d-NIo, thus we need to ensure that the number of reported observations
does not exceed δ. At the end of DG, the simulation relies on (δ3+δ4) ≤ δ shares
of s1 and s2. With the additional δ1 (resp. δ2) observations performed on the
first (resp. the second) instance of DG, the number of observations on each block
remains below δ. All the observations can thus be perfectly simulated with the
only knowledge of the outputs, that is, the key derivation algorithm is this d-NIo
secure.
�

5 Implementation of the Countermeasure

We have carried out a completely unoptimized implementation of our masking
countermeasure based on a recent, public domain implementation of the GLP
signature scheme called GLYPH [8,9]. The GLYPH scheme actually features a
revised set of parameters supposedly achieving a greater level of security (namely,
n = 1024, p = 59393, k = 16383 and α = 16), as well as a modified technique for
signature compression. We do not claim to vouch for those changes, but stress
that, for our purposes, they are essentially irrelevant. Indeed, the overhead of our
countermeasure only depends on the masking order d, the bit size w of Boolean
masks (which should be chosen as w = 32 both for GLYPH and the original GLP
parameters) and the degree n of the ring R (which is the same in GLYPH as
in the high-security GLP parameters). Therefore, our results on GLYPH should
carry over to a more straightforward implementation of GLP as well.

Implementation results on a single core of an Intel Core i7-3770 CPU are
provided in Table 1. In particular, we see that the overhead of our countermeasure
with 2, 3 and 4 shares (secure in the d-probing model for d = 1, 2, 3 respectively)
is around 15×, 30× and 73×. In view of the complete lack of optimizations

Masking the GLP Lattice-Based Signature Scheme at Any Order 381

Table 1. Implementation results. Timings are provided for 100 executions of the signing
and verification algorithms, on one core of an Intel Core i7-3770 CPU-based desktop
machine.

Number of shares (d + 1) Unprotected 2 3 4 5 6

Total CPU time (s) 0.540 8.15 16.4 39.5 62.1 111

Masking overhead — ×15 ×30 ×73 ×115 ×206

of this implementation, we believe that those results are quite promising. The
memory overhead is linear in the masking order, so quite reasonable in practice
(all masked values are simply represented as a vector of shares).

For future work, we mention several ways in which our implementation could
be sped up:

– For simplicity, we use a version of SecArithBoolModp with cubic complexity
in the masking order, as in [13, Sect. 4.1]. Adapting the quadratic algorithm
of [13, Sect. 4.2] should provide a significant speed-up. Moreover, for small
values of d, Coron’s most recent algorithm [11] should be considerably faster.
However, the technique from [11] unfortunately has an overhead exponential
in the masking order, so it is not suitable for our purpose of masking GLP at
any order.

– Several of our algorithms call SecAdd on two masked values one of which is
actually a public constant. One could use a faster SecAddConst procedure
that only protect the secret operand instead.

– Our algorithms are generic, and do not take advantage of the special shape
of k for example. In the case of GLYPH, a comparison to k = 214 − 1 could
be greatly simplified.

– One key way in which masking affects the efficiency of GLP signing is in the
computation of the product a ·y1. This product is normally carried out using
a number-theoretic transform (NTT), with O(n log n) complexity. However,
the NTT is not linear, and is thus inconvenient to use when y1 is masked. In
our implementation, we use the schoolbook O(n2) polynomial multiplication
instead. However, one could consider other approaches: either use a faster
linear algorithm, like Karatsuba or Toom–Cook, or try and mask the NTT
itself.

– Many other more technical improvements are also possible: for example, we
have made no attempt to reduce the number of unnecessary array copies.

6 Conclusion

In this paper, we have described a provably secure masking of the GLP lattice-
based signature scheme, as well as a proof-of-concept implementation thereof.
The security proof itself involved a number of new techniques in the realm of
masking countermeasures. Our method should apply almost identically to other
lattice-based Fiat–Shamir type signature schemes using uniform distributions in

382 G. Barthe et al.

intervals (as opposed to Gaussian distributions). This includes the Bai–Galbraith
signature scheme [2], as well as the recently proposed Dilithium signature [16].

We have mostly ignored the issue of signature compression, which is an impor-
tant one in all of these constructions, GLP included. However, it is easy to see
that compression can be securely applied completely separately from our coun-
termeasure: this is because it only affects already generated signatures (which
are non-sensitive) as well as the input to the hash function (which is already
unmasked in our technique).

On the other hand, extending our approach to schemes using Gaussian dis-
tributions appears to be really difficult: neither Boolean masking nor arith-
metic masking with uniform masks seems particularly well-suited to address the
problem. One way to tackle the problem might be to consider masking with non-
uniform noise, and only achieving statistically close instead of perfect simulata-
bility. Developing such a framework, however, is certainly a formidable challenge.

Masking hash-and-sign type signatures in using GPV lattice trapdoors is
probably even harder, as they involve Gaussian sampling not only in Z but on
arbitrary sublattices of Zn, with variable centers. It seems unlikely that a masked
GPV signature scheme can achieve a reasonable level of efficiency.

Finally, while we have used the maskComp tool to securely instantiate the
masked versions of some of the gadgets we use in our construction, it would
be interesting to leverage recent advances in verification [3] and synthesis [4] of
masked implementations in a more systematic way in the lattice-based setting.
Even for verification, the sheer size of the algorithms involved poses significant
challenges in terms of scalability; however, automated tool support would be
invaluable for the further development of masking in the postquantum setting.

Acknowledgements. We are indebted to Vadim Lyubashevsky for fruitful discus-
sions, and to the reviewers of EUROCRYPT for their useful comments. We acknowledge
the support of the French Programme d’Investissement d’Avenir under national project
RISQ. This work is also partially supported by the European Union PROMETHEUS
project (Horizon 2020 Research and Innovation Program, grant 780701) and ONR
Grant N000141512750.

References

1. Abdalla, M., An, J.H., Bellare, M., Namprempre, C.: From identification to sig-
natures via the fiat-shamir transform: minimizing assumptions for security and
forward-security. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332,
pp. 418–433. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-
7 28

2. Bai, S., Galbraith, S.D.: An improved compression technique for signatures based
on learning with errors. In: Benaloh, J. (ed.) CT-RSA 2014. LNCS, vol. 8366, pp.
28–47. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-04852-9 2

3. Barthe, G., Beläıd, S., Dupressoir, F., Fouque, P.-A., Grégoire, B., Strub, P.-Y.:
Verified proofs of higher-order masking. In: Oswald, E., Fischlin, M. (eds.) EURO-
CRYPT 2015. LNCS, vol. 9056, pp. 457–485. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-46800-5 18

https://doi.org/10.1007/3-540-46035-7_28
https://doi.org/10.1007/3-540-46035-7_28
https://doi.org/10.1007/978-3-319-04852-9_2
https://doi.org/10.1007/978-3-662-46800-5_18
https://doi.org/10.1007/978-3-662-46800-5_18

Masking the GLP Lattice-Based Signature Scheme at Any Order 383

4. Barthe, G., Beläıd, S., Dupressoir, F., Fouque, P.-A., Grégoire, B., Strub, P.-Y.,
Zucchini, R.: Strong non-interference and type-directed higher-order masking. In:
Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM
CCS 16, pp. 116–129. ACM Press, October 2016

5. Barthe, G., Beläıd, S., Espitau, T., Fouque, P.-A., Grégoire, B., Rossi, M.,
Tibouchi, M.: Masking the GLP lattice-based signature scheme at any order. Cryp-
tology ePrint Archive (2018). http://eprint.iacr.org/. Full version of this paper

6. Bindel, N., Buchmann, J.A., Krämer, J.: Lattice-based signature schemes and their
sensitivity to fault attacks. In: Maurine, P., Tunstall, M. (eds.) FDTC 2016, pp.
63–77. IEEE Computer Society (2016)

7. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski Jr., B.S., Koç,
K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-36400-5 3

8. Chopra, A.: GLYPH: a new insantiation of the GLP digital signature scheme.
Cryptology ePrint Archive, Report 2017/766 (2017). http://eprint.iacr.org/2017/
766

9. Chopra, A.: Software implementation of GLYPH. GitHub repository (2017).
https://github.com/quantumsafelattices/glyph

10. Coron, J.-S.: Higher order masking of look-up tables. In: Nguyen, P.Q., Oswald,
E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 441–458. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-642-55220-5 25

11. Coron, J.-S.: High-order conversion from Boolean to arithmetic masking. Cryptol-
ogy ePrint Archive, Report 2017/252 (2017). http://eprint.iacr.org/2017/252

12. Coron, J.-S., Großschädl, J., Tibouchi, M., Vadnala, P.K.: Conversion from arith-
metic to Boolean masking with logarithmic complexity. In: Leander, G. (ed.) FSE
2015. LNCS, vol. 9054, pp. 130–149. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-48116-5 7

13. Coron, J.-S., Großschädl, J., Vadnala, P.K.: Secure conversion between Boolean
and arithmetic masking of any order. In: Batina, L., Robshaw, M. (eds.) CHES
2014. LNCS, vol. 8731, pp. 188–205. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-662-44709-3 11

14. Duc, A., Dziembowski, S., Faust, S.: Unifying leakage models: from probing attacks
to noisy leakage. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS,
vol. 8441, pp. 423–440. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-642-55220-5 24

15. Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures and
bimodal Gaussians. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol.
8042, pp. 40–56. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
40041-4 3

16. Ducas, L., Lepoint, T., Lyubashevsky, V., Schwabe, P., Seiler, G., Stehle, D.:
CRYSTALS - dilithium: digital signatures from module lattices. Cryptology ePrint
Archive, Report 2017/633 (2017). http://eprint.iacr.org/2017/633

17. Espitau, T., Fouque, P.-A., Gérard, B., Tibouchi, M.: Loop-abort faults on lattice-
based Fiat-Shamir and hash-and-sign signatures. In: Avanzi, R., Heys, H. (eds.)
SAC 2016. LNCS, vol. 10532, pp. 140–158. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-69453-5 8

18. Espitau, T., Fouque, P.-A., Gérard, B., Tibouchi, M.: Side-channel attacks on
BLISS lattice-based signatures: exploiting branch tracing against strongSwan and
electromagnetic emanations in microcontrollers. In: Thuraisingham, B.M., Evans,
D., Malkin, T., Xu, D. (eds.) ACM CCS 17, pp. 1857–1874. ACM Press, Octo-
ber/November 2017

http://eprint.iacr.org/
https://doi.org/10.1007/3-540-36400-5_3
http://eprint.iacr.org/2017/766
http://eprint.iacr.org/2017/766
https://github.com/quantumsafelattices/glyph
https://doi.org/10.1007/978-3-642-55220-5_25
http://eprint.iacr.org/2017/252
https://doi.org/10.1007/978-3-662-48116-5_7
https://doi.org/10.1007/978-3-662-48116-5_7
https://doi.org/10.1007/978-3-662-44709-3_11
https://doi.org/10.1007/978-3-662-44709-3_11
https://doi.org/10.1007/978-3-642-55220-5_24
https://doi.org/10.1007/978-3-642-55220-5_24
https://doi.org/10.1007/978-3-642-40041-4_3
https://doi.org/10.1007/978-3-642-40041-4_3
http://eprint.iacr.org/2017/633
https://doi.org/10.1007/978-3-319-69453-5_8
https://doi.org/10.1007/978-3-319-69453-5_8

384 G. Barthe et al.

19. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC,
pp. 197–206. ACM Press, May 2008

20. Groot Bruinderink, L., Hülsing, A., Lange, T., Yarom, Y.: Flush, gauss, and reload
– a cache attack on the BLISS lattice-based signature scheme. In: Gierlichs, B.,
Poschmann, A.Y. (eds.) CHES 2016. LNCS, vol. 9813, pp. 323–345. Springer, Hei-
delberg (2016). https://doi.org/10.1007/978-3-662-53140-2 16

21. Güneysu, T., Lyubashevsky, V., Pöppelmann, T.: Practical lattice-based cryptog-
raphy: a signature scheme for embedded systems. In: Prouff, E., Schaumont, P.
(eds.) CHES 2012. LNCS, vol. 7428, pp. 530–547. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-33027-8 31

22. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against prob-
ing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4 27

23. Lyubashevsky, V.: Fiat-Shamir with aborts: applications to lattice and factoring-
based signatures. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
598–616. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-
7 35

24. Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4 43

25. Oder, T., Schneider, T., Pöppelmann, T., Güneysu, T.: Practical CCA2-secure and
masked ring-LWE implementation. Cryptology ePrint Archive, Report 2016/1109
(2016). http://eprint.iacr.org/2016/1109

26. Pessl, P., Bruinderink, L.G., Yarom, Y.: To BLISS-B or not to be: attacking
strongSwan’s implementation of post-quantum signatures. In: Thuraisingham,
B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 17, pp. 1843–1855. ACM
Press, October/November 2017

27. Pöppelmann, T., Ducas, L., Güneysu, T.: Enhanced lattice-based signatures on
reconfigurable hardware. In: Batina, L., Robshaw, M. (eds.) CHES 2014. LNCS,
vol. 8731, pp. 353–370. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-44709-3 20

28. Reparaz, O., de Clercq, R., Roy, S.S., Vercauteren, F., Verbauwhede, I.: Additively
homomorphic ring-LWE masking. In: Takagi, T. (ed.) PQCrypto 2016. LNCS,
vol. 9606, pp. 233–244. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
29360-8 15

29. Reparaz, O., Sinha Roy, S., Vercauteren, F., Verbauwhede, I.: A masked ring-
LWE implementation. In: Güneysu, T., Handschuh, H. (eds.) CHES 2015. LNCS,
vol. 9293, pp. 683–702. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-48324-4 34

30. Rivain, M., Prouff, E.: Provably secure higher-order masking of AES. In: Mangard,
S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 413–427. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-15031-9 28

https://doi.org/10.1007/978-3-662-53140-2_16
https://doi.org/10.1007/978-3-642-33027-8_31
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/978-3-642-29011-4_43
http://eprint.iacr.org/2016/1109
https://doi.org/10.1007/978-3-662-44709-3_20
https://doi.org/10.1007/978-3-662-44709-3_20
https://doi.org/10.1007/978-3-319-29360-8_15
https://doi.org/10.1007/978-3-319-29360-8_15
https://doi.org/10.1007/978-3-662-48324-4_34
https://doi.org/10.1007/978-3-662-48324-4_34
https://doi.org/10.1007/978-3-642-15031-9_28

Masking Proofs Are Tight and How
to Exploit it in Security Evaluations

Vincent Grosso1(B) and François-Xavier Standaert2

1 Digital Security Group, Radboud University Nijmegen,
Nijmegen, The Netherlands

v.grosso@cs.ru.nl
2 ICTEAM - Crypto Group, Université catholique de Louvain,

Louvain-la-Neuve, Belgium

Abstract. Evaluating the security level of a leaking implementation
against side-channel attacks is a challenging task. This is especially true
when countermeasures such as masking are implemented since in this
case: (i) the amount of measurements to perform a key recovery may
become prohibitive for certification laboratories, and (ii) applying optimal
(multivariate) attacks may be computationally intensive and technically
challenging. In this paper, we show that by taking advantage of the
tightness of masking security proofs, we can significantly simplify this
evaluation task in a very general manner. More precisely, we show that the
evaluation of a masked implementation can essentially be reduced to the
one of an unprotected implementation. In addition, we show that despite
optimal attacks againstmasking schemes are computationally intensive for
large number of shares, heuristic (soft analytical side-channel) attacks can
approach optimality efficiently. As part of this second contribution, we also
improve over the recent multivariate (aka horizontal) side-channel attacks
proposed at CHES 2016 by Battistello et al.

1 Introduction

Say you design a new block cipher and want to argue about its resistance against
linear cryptanalysis [44]. One naive approach for this purpose would be to launch
many experimental attacks. Yet, such a naive approach rapidly turns out to
be unsuccessful if the goal is to argue about security levels beyond the com-
putational power of the designer (e.g., 80-bit or 128-bit security for current
standards). Hence, symmetric cryptographers have developed a variety of tools
allowing them to bound the security of a block cipher against linear cryptanal-
ysis, under sound and well-defined assumptions. As a typical example of these
tools, one can cite the wide-trail strategy that has been used in the design of the
AES Rijndael [17]. Its main idea is to minimize the bias (i.e., the informative-
ness) of the best linear characteristics within the cipher, which can be estimated
under some independence assumptions thanks to the piling-up lemma.

Interestingly, the last years have shown a similar trend in the field of side-
channel security evaluations. That is, while certification practices are still heav-
ily dominated by “attack-based evaluations”, solutions have emerged in order
c© International Association for Cryptologic Research 2018
J. B. Nielsen and V. Rijmen (Eds.): EUROCRYPT 2018, LNCS 10821, pp. 385–412, 2018.
https://doi.org/10.1007/978-3-319-78375-8_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78375-8_13&domain=pdf

386 V. Grosso and F.-X. Standaert

to both extend the guarantees and reduce the cost of these evaluations. More
precisely, current certification practices focus either on the automatic verifica-
tion of some minimum (non-quantitative) properties based on so-called leakage
detection tools (e.g., [13,22,30,42,55]), or on the exhibition of concrete attack
paths exploiting the detected leakages (typically taking advantages of standard
distinguishers such as [9,11,28,54]). But they are anyway unable to claim secu-
rity levels beyond the measurement efforts of the evaluation laboratory. In order
to mitigate this limitation, one first intuitive line of papers proposed tools allow-
ing to easily predict the success rate of some specialized distinguishers, based
on parameters such as the noise level of the implementation [18,27,38,51]. In
parallel, and following a more standard cryptographic approach trying to be
independent of the adversarial strategy, significant progresses have been made in
the mathematical treatment of physical security. In particular the masking coun-
termeasure, which is one of the most common methods to improve the security
of leaking cryptographic implementations, has been analyzed in several more or
less formal models [10,19,34,50,58]. These works suggest that physical security
via masking has strong analogies with the case of linear cryptanalysis. Namely,
security against linear cryptanalysis is obtained by ensuring that the XOR of
many (local) linear approximations has low bias. Similarly, masking ensures that
every sensitive variable within an implementation is split (e.g., XORed) into sev-
eral shares that the adversary has to recombine. So intuitively, masking security
proofs can be viewed as a noisy version of the piling-up lemma.

Following these advances, the integration of masking proofs as a part of
concrete security evaluation practices, undertaken in [20], appears as a necessary
next step. And this is especially true when envisioning future cryptographic
implementations with high (e.g., >80-bit) security levels, for which an attack-
based certification process is unlikely to bring any meaningful conclusion. So
the main objective of this paper is to follow such an approach and to show how
masking security proofs can be used to gradually simplify side-channel security
evaluations, at the cost of some conservative assumptions, but also some more
critical ones (e.g., related to the independence of the shares’ leakages).

More precisely, we start from the observation that a so far under-discussed
issue in physical security evaluations is the case of attacks taking advan-
tage of multiple leaking intermediate variables (e.g., see [33,43,59] for recent
references).1 As put forward in a recent CHES 2016 paper, this issue gains rele-
vance in the context of masked implementations, in view of the (quadratic) cost
overheads those implementations generally imply [7]. In this respect, our first
contribution is to extend the analysis of masking security proofs from [20] and
to show that these proofs remain essentially tight also for multi-target attacks.

Next, and since we aim to discuss the cost of side-channel security evalu-
ations, we propose a simple metric for the evaluation complexity, and use it
to extensively discuss the tradeoff between the time needed for a (worst-case)
security evaluation and the risks related to the (e.g., independence) assumptions

1 Which is an orthogonal concern to the more studied one of exploiting multiple leakage
samples per intermediate variable (e.g., see [1] and follow up works).

Masking Proofs Are Tight and How to Exploit it in Security Evaluations 387

it exploits. As our investigations suggest that the time complexity of optimal
side-channel attacks can become a bottleneck when the security levels of masked
implementations increase, we also study efficient (heuristic) multi-target attacks
against masked implementations. Our best attack significantly improves the mul-
tivariate (aka horizontal) iterative attack proposed at CHES 2016 by Battistello
et al., that we re-frame as a Soft Analytical Side-Channel Attack [33,59]. Note
that our results provide a complementary view to those of Battistello et al.,
since they typically fix the masking noise parameter and look for the number of
masking shares such that their attack is feasible, while we rather fix the number
of shares and estimate the resulting security level in function of the noise.

Eventually, we show that the security evaluation of a leaking implementation
against worst-case attacks taking advantage of all the target intermediate vari-
ables that can be enumerated by an adversary (so still limited to the first/last
cipher rounds) boils down to the information theoretic analysis of a couple of its
samples, for which good tools exist to guarantee a sound treatment [23,24]. By
combining information theoretic evaluations with metric-based bounds for the
complexity of key enumeration [48], we can obtain security graphs for optimal
attacks, plotting the success rate in function of the measurement and time com-
plexity, within seconds of computation on a computer. We argue that such tools
become increasingly necessary for emerging high-security implementations.

2 Cautionary Remarks

Admittedly, the more efficient evaluations we discuss next are based on a number
of simplifying assumptions. In this respect, we first recall that secure masking
depends on two conditions: sufficient noise and independent leakages. This paper
is about the first condition only. That is, we assume that the independence
condition is fulfilled (to a sufficient extent), and study how exploiting all the
leakage samples in an implementation allows reducing its noise.

We note that tools to ensure (or at least test empirically) the independence
condition are already widely discussed in the literature. Concretely, there are two
main issues that can break this assumption. First, imperfect refreshing schemes
can cause d′-tuples of leakage samples to be key-dependent with d′ lower than the
number of shares used in the masking scheme d. For example, such an issue was put
forward in [16]. It can be provably avoided by using “composable” (e.g., SNI [4])
gadgets or testing the security of the masking description code (i.e., the instruc-
tions defining an algorithm) thanks to formal methods [3].

Second, and more critically, different case studies have shown that actual leak-
age functions can break the independence assumption and recombine (a part of)
the shares, e.g., because of transitions in software implementations [14] or glitches
in hardware implementations [40]. Nevertheless, in practice such (partial) recombi-
nations typically reduce the (statistical) “security order” of the implementations,
captured by the lowest statistical moment of the leakage distribution that is key-
dependent (minus one) [5], to some value d′′ below the optimal (d − 1), while
leaving security margins (i.e., d′′ > 1). As a result, by increasing the number of

388 V. Grosso and F.-X. Standaert

shares d, one can generally mitigate these physical defaults to a good extent [2,46].
Furthermore, simple leakage detection tools such as [13,22,30,42,55] can be used
to (empirically) assess the security order of an implementation, and these non-
independence issues can be reflected in information theoretic evaluations (see [20],
Sect. 4.2). So overall, ensuring the independence of the shares’ leakages in a masked
implementation is an orthogonal concern to ours. While non-independence issues
may indeed increase the information leakage of the tuples of samples exploited in
an high-order side-channel attack, it does not affect the importance/relevance of
taking all the exploitable tuples into account in a (worst-case) security evaluation,
which is our main concern.

Eventually, we insist that this work is prospective in the sense that our
typical targets are masked implementations with (very) large number of shares,
aimed at (very) high security levels (e.g., no key recovery with less than
240 measurements). In this respect, we refer to two recently accepted papers
(to Eurocrypt 2017) as an excellent motivation for our purposes [5,31]. In partic-
ular, [31] describes AES implementations masked with 5 to 10 shares, for which
the security evaluation was left as an open problem by the authors and that are
typical targets for which attack-based evaluations are unlikely to bring mean-
ingful conclusions. Our following discussions describe theoretical tools allowing
one to state sound security claims for such implementations. The important
message they carry is that even when the independent shares’ leakage assump-
tion is guaranteed, one also needs to pay attention to noise. Simple univariate
tests are not enough for this purpose. Performing highly multivariate attacks
is (very) expensive. We introduce an intermediate path that allows principled
reasoning and to assess the risks of overstated security based on well identified
parameters. Quite naturally, this intermediate path also comes with limitations.
Namely, since we focus on (very) high security levels, the bounds we provide are
also less accurate, and reported as log-scaled plots for convenience (i.e., we typ-
ically ignore the impact of small constants as a first step). We will conclude the
paper by referring to a recent CHES 2017 work that demonstrated to applica-
bility of our tools based on a 32-share masked AES implementation in an ARM
Cortex M4 [35].

3 Background

3.1 S-box Implementations

Our investigations consider both the unprotected and the masked implementa-
tion of an m-bit S-box S taking place in the first round of a block cipher.

For the unprotected case, we denote the input plaintext with x and the secret
key with k. We define ya = x⊕k as the result of a key addition between x and k,
and yb = S(ya) as the S-box output. The vector of the target intermediate vari-
ables is further denoted with y = [ya, yb] and the leakage vector corresponding to
these variables with L = [La, Lb] + N , where N is a bivariate random variable
representing an additive Gaussian noise. We make the usual assumption that
the noise covariance matrix is diagonal and each sample Li has a similar noise

Masking Proofs Are Tight and How to Exploit it in Security Evaluations 389

Fig. 1. Multiplication chain for the inversion in GF(28) from [52].

variance σ2
n.2 Eventually, the deterministic part of the leakage samples are the

output of a leakage function L such that Li = Li(yi), ∀i ∈ {a, b}. For simplicity,
our experiments will consider Li to be the Hamming weight function ∀i’s. We
detail in Sect. 3.2 why this choice does not affect our conclusions.

For the masked case, we will focus on the secure inversion in GF(28) pro-
posed in [52], which is the core of the AES S-box and illustrated in Fig. 1. More
precisely, we use a slightly modified version of the algorithms of [52], with a
secure refreshing R (e.g., from [4,34]) represented by black rectangles on the
figure, in order to avoid the attack put forward in [16].3 Next, we define the
notations y1 = ya = x ⊕ k, y2 = (y1)2, y3 = R(y2), y4 = y1 ⊗ y3 = (y1)3,
y5 = (y4)4 = (y1)12, y6 = R(y5), y7 = y4 ⊗ y6 = (y1)15, y8 = (y7)16 = (y1)240,
y9 = y5 ⊗ y8 = (y1)252, y10 = y2 ⊗ y9 = (y1)254, with ⊗ the field multiplication.
This leads to a vector of target intermediate variables y = [y1, y2, . . . , y10]. For
an implementation masked with d shares, we additionally have a vector of shares
ȳ = [ȳ1, ȳ2, . . . , ȳ10] such that ȳi = [yi(1), yi(2), . . . , yi(d)] ∀i ∈ {1, 2, . . . , 10}. It
leads to a leakage vector L̄ = [L̄1, L̄2, . . . , L̄10]+N , where each leakage d-tuple is
denoted as L̄i = [Li(1), Li(2), . . . , Li(d)] and made of d samples, the multivariate
noise variable is defined as in the unprotected case (with more dimensions) and
Li(j) = Li,j(yi(j)) ∀i ∈ {1, 2, . . . , 10}, j ∈ {1, 2, . . . , d}. Such a masking scheme
has security order (d − 1), meaning that any (d − 1)-tuple of leakage samples is
independent of k, given that each leakage sample depends on a single share. We
call this assumption the Independent Shares’ Leakage (ISL) assumption.

Concretely, the multiplication chain of Fig. 1 is made of squarings, that are
GF(2)-linear, and multiplications. In order to evaluate them securely, we use
Algorithms 1 and 2 given in AppendixA. For the squarings, the operations are
applied to each share independently and therefore can be tabulized. For the mul-
tiplications, the different shares need to interact and the algorithm has quadratic
overheads that correspond to the computation of all the partial products and
their refreshing. For example, for x = x(1)⊕· · ·⊕x(d) and y = y(1)⊕· · ·⊕y(d),
producing the shares of x ⊗ y requires to compute (for d = 3):

⎛
⎝

x(1) ⊗ y(1) x(1) ⊗ y(2) x(1) ⊗ y(3)
x(2) ⊗ y(1) x(2) ⊗ y(2) x(2) ⊗ y(3)
x(3) ⊗ y(1) x(3) ⊗ y(2) x(3) ⊗ y(3)

⎞
⎠ ⊕

⎛
⎝

0 r1,2 r1,3

−r1,2 0 r2,3

−r1,3 − r2,3 0

⎞
⎠ · (1)

2 The impact of this noise assumption is specifically discussed in Sect. 5.3.
3 Note that more efficient solutions for this secure inversion exist, such as [32]. We

kept the chain of Rivain and Prouff because for its simpler description.

390 V. Grosso and F.-X. Standaert

This directly implies that whenever such a multiplication is targeted by the
adversary, we need to add d leakage d-tuples to the leakage vector L̄ he is pro-
vided with, that we next denote as [L̄1

i , L̄
2
i , . . . , L̄

d
i], with i ∈ {4, 7, 9, 10}.

Eventually, the GF(28) field multiplication is usually implemented using
log/alog tables, as described in AppendixA, Algorithm 3. In case the adversary
additionally targets these operations, another set of d leakage d-tuples must be
added to L̄, next denoted as [L̄d+1

i , L̄d+2
i , . . . , L̄2d

i], with i ∈ {4, 7, 9, 10}.
In the following, we will consider different (more or less powerful) attack cases:

C1. The adversary targets only a single d-tuple (e.g., the S-box output one).
C2. The adversary exploits the ten d-tuples of the multiplication chain.
C3. The adversary additionally exploits the leakage of the four secure multipli-

cations (i.e., Algorithm 2), leading to a total of 10 d-tuples and 4 d2-tuples.
C4. The adversary additionally exploits the leakage of the field multiplications

(i.e., Algorithm 3), leading to a total of 10 d-tuples and 8 d2-tuples.

Furthermore, since a number of these d-tuples contain fresh randomness (e.g.,
the ones corresponding to multiplications algorithms) while other ones are deter-
ministically related to each other, we will denote with δ = λ + � the number of
d-tuples exploited, such that we have λ fresh ones and � deterministic ones.

Note that our notations describe serial implementations where the adversary
can observe the noisy leakage of each share in his d-tuples separately. This is
a relevant choice since serial implementations are typically very expensive to
analyze due to their large number of dimensions/leakage samples to consider.
Yet, as recently discussed in [5], side-channel security for a serial implementation
generally implies side-channel security for its parallel counterpart (as long as the
ISL assumption remains fulfilled). So our conclusions apply in this case too.

3.2 Mutual Information Metric

In order to evaluate the worst-case security level of our different (unprotected and
masked) simulated implementations, we will use the mutual information metric
first put forward in [57]. The motivation of this choice is twofold. First, it was
shown recently that this metric can be linked to the measurement complexity of
the corresponding (worst-case) Bayesian adversary [20]. Second, it is significantly
faster to estimate than the success rate, which is specially important/relevant in
our context where we aim to minimize the evaluator’s workload. We illustrate
this fact with a simple example. Say an evaluator has 1000,000 measurements
to estimate the security of an implementation with a worst-case Bayesian attack
that is roughly successful after the collection of 1000 traces. In this case, it means
that he can repeat 1000 independent experiments to estimate the success rate
with 1000 traces (with good confidence). But say now that the implementation
to evaluate can only be broken after (roughly) 1000,000 traces. Then it means
that from his set of traces, the evaluator can only estimate the success rate
based on a single experiment (which will not lead to any statistical confidence).
By contrast, as discussed in [24], cross-validation allows him to exploit most of

Masking Proofs Are Tight and How to Exploit it in Security Evaluations 391

his 1000,000 evaluation traces to estimate the mutual information metric, which
will then be correlated with the success rate (for any number of traces).4

Concretely, computing the mutual information for an unprotected implemen-
tation simply requires to estimate the following sum of log probabilities:

MI(K;X,L) = H[K] +
∑
k∈K

Pr[k] ·
∑
x∈X

Pr[x] ·
∑
l∈Lδ

Pr[l|k, x] · log2 Pr[k|x, l]

︸ ︷︷ ︸
δ−dimension integral

, (2)

where the conditional probability Pr[k|x, l] is computed from the Probability
Density Function (PDF) f[l|x, k] thanks to Bayes’ theorem as: f[l|x,k]∑

k∗ f[l|x,k∗] · This
corresponds to performing δ-dimensional integrals over the leakage samples, for
each combination of the key k and plaintext x, or each bitwise XOR between k
and x if taking advantage of the Equivalence under Independent Subkeys (EIS)
assumption formalized in [54]. There are numerous publications where this metric
has been computed, via numerical integrals or sampling (e.g., [20] provides an
open source code for it), so we do not detail its derivation further.

When moving to masked implementations, the computation of the metric
remains essentially similar. The only difference is that we need to sum over
the randomness vector ȳ (which may become computationally intensive as the
number of shares increases, as discussed in the next sections):

MI(K;X, L̄) = H[K] +
∑
k∈K

Pr[k] ·
∑
x∈X

Pr[x] ·
∑

ȳ∈Y(d−1)·λ

Pr[ȳ] ·
∑

l̄∈Ld·δ

Pr[l|k, x, ȳ] · log2 Pr[k|x, l̄]

︸ ︷︷ ︸
δ−dimension integral

. (3)

The computation of the conditional probability Pr[k|x, l] follows similar guide-
lines as in the unprotected case, where the PDF of masked implementations
becomes a mixture that can be written as f[l|x, k] =

∑
ȳ f[l|x, k, ȳ] [36,58].

Remark. In our experiments where the (simulated) noise is Gaussian, we use a
Gaussian PDF in the unprotected case, and a Gaussian mixture PDF in the
masked case. Since we know the PDF exactly in these cases, we can compute
the MI metric exactly and perform worst-case security evaluations. However,
we insist that our discussions relate to the complexity of side-channel security
evaluations, not their optimality. More precisely, our goal is to show that we
can significantly simplify the evaluation of a highly protected implementation.
These efficiency gains and our methodological conclusions are independent of the

4 Note that the mutual information metric is not the only one allowing to simplify the
estimation of a security level for a leaking cryptographic implementation. However,
it is the most generic one since it does not require assumptions on the leakage
distribution, nor on the choice of concrete distinguisher chosen by the adversary.
More specialized (and sometimes more efficient) solutions include [18,27,38,51].

392 V. Grosso and F.-X. Standaert

leakage function and model used by a concrete adversary (which however impacts
the numerical results obtained). The main difference, if a concrete adversarial
model was used in place of the perfect one, is that the log probabilities in Eqs. 2
and 3 would be evaluated based on it. This implies that less information would
be extracted in case of model estimation or assumption errors, which is again
an orthogonal concern to ours. Leakage certification could then be used to test
whether estimation and assumption errors are small enough [23,24].

4 Unprotected Implementations

Evaluation complexity. Since our goal is to make side-channel security evalua-
tions more efficient, a first question is to specify how we will evaluate complexity.
Eventually we are interested in the measurement complexity of the attacks, which
masking is expected to increase exponentially (in the number of shares). But of
course, we also want to be able to evaluate the security of implementations of
which the security is beyond what we can actually measure as evaluators. As
just mentioned, computing the mutual information metric is an interesting tool
for this purpose. Yet, it means that we still have to compute Eqs. 2 and 3, which
are essentially made of a sum of δ-dimension integrals. Concretely, the (time)
complexity for computing such a sum is highly dependent on the choice of PDF
estimation tool chosen by the adversary/evaluator. In our case where we focus
on attacks based on the exhaustive estimation of a mixture model, the number
of integrals to perform is a natural candidate for the complexity of a (worst-case)
side-channel evaluation, which we will next denote with E$.5

In the case of an unprotected S-box implementation in GF(2m), this leads
to E$ = 22m in general (since we sum over 2m key bytes and 2m plaintext
bytes). This complexity is reduced to E$ = 2m if we take advantage of the EIS
assumption. Since the latter assumption is generally correct in the “standard
DPA” attack context we consider in this paper [39], we will always consider the
complexity of evaluations taking advantage of EIS in the following (ignoring this
simplification implies an additional 2m factor in the evaluation complexities).

Practical evaluation results. As suggested by the previous formula, evaluat-
ing the security of an unprotected (8-bit) S-box is cheap. We now report on some
exemplary results which we use to introduce an important assumption regarding
our following simplifications. We consider different attack cases:

5 Note that the only message this metric supports is that the evaluation complexity of
an optimal side-channel attack can be reduced from unrealistic to easy by exploit-
ing various assumptions. The integral count provides an intuitive solution for this
purpose, but other metrics could be considered equivalently. Note also that heuris-
tic attacks may approach worst-case ones more efficiently (we address this issue in
Sect. 5.4). So we mostly use this metric to motivate the need of new tools for evaluat-
ing and attacking masked cryptographic implementations: for evaluations, it justifies
why shortcut approaches are useful; for attacks, it justifies why heuristic appraoches
such as outlined in Sect. 5.4 become necessary for large d’s.

Masking Proofs Are Tight and How to Exploit it in Security Evaluations 393

log10(SNR)
-3 -2 -1 0 1 2

lo
g 10

(m
ut

ua
l i

nf
or

m
at

io
n)

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

univariate, no repetition
univariate, 2 repetitions
univariate, 4 repetitions
bivariate
bivariate, IOL bound

Fig. 2. Unprotected AES S-box evaluation results.

– Univariate, no repetition: the adversary observes the S-box output leakage.
– Univariate, with repetitions: the adversary observes the S-box output leakage

several times with independent noise samples (e.g., 2 times, 4 times).
– Bivariate: the adversary observes the S-box input and output leakage.

Additionally, we consider a “bivariate attack bound” which is just the sum of
two “univariate, no repetition” curves. In order to allow an easier interpretation
of the results, we use the Signal-to-Noise Ratio (SNR) as X axis, defined as the
variance of the noise-free traces (i.e., m/4 for Hamming weight leakages) divided
by the variance of the noise. It better reflects the fact that the impact of the noise
depends on the scaling of the signal. The results of these information evaluations
are given in Fig. 2 from which two main conclusions can be extracted.

First, there is a difference between the impact of repeated observations, which
just reduce the noise and therefore translate the information curves on the right,
and bivariate attacks which (may) add information and shift these curves ver-
tically. Interestingly, the latter observation is dependent on the S-boxes [49]:
an identity S-box would lead to a repetition without information gain; a truly
random one would lead to independent information for the two observations.

Second, the bivariate attack bound is tight in this case. This suggests that
the AES S-box leads to quite independent information for the leakage samples
La and Lb of our case study, which is consistent with the conclusions in [49].
Formally, we will say that this bound is tight if the Independent Operations’
Leakages (IOL) assumption holds, which considers that the inputs/outputs of
an operation (i.e., the AES S-box in our case study) are independent.

Note that as for the ISL assumption, the latter does not mean that the
noise of the leakage samples has to be independent (which will be discussed in
Sect. 5.2). Note also that the impact of a deviation from this IOL assumption is

394 V. Grosso and F.-X. Standaert

very different than a deviation from the ISL assumption. Namely, if the share’s
leakages are not independent, then the formal security guarantees of masking
vanish. By contrast, if the operation leakages are not independent, this will lead
to less information and therefore less effective attacks. So the IOL assumption is
not critical for the conclusion of a security evaluation, and overstating IOL may
only lead to less tight (i.e., more conservative) security bounds.

5 Masked Implementations

We now move to the context of masked implementations which is the main
contribution of this paper. We start by arguing that an exhaustive security eval-
uation is rapidly unreachable as the number of shares in masking increases. We
then gradually simplify the evaluations, first without critical assumptions on the
leakage distributions, second by exploiting the ISL assumption.

5.1 Exhaustive Approach

By visual inspection of Eq. 3, we directly find that the evaluation complexity
E$ = 2dmλ +� ·2dm, where we recall that λ is the number of fresh dimensions and
� the number of deterministic ones. For the case C1 in Sect. 3.1 with d = 2 shares,
where the adversary targets only one 2-tuple of leakage samples corresponding
to the masked S-box output y8 in Fig. 1, this means a reachable 22m integrals.
But as soon as we move to a (slightly) more powerful adversary, the complexity
explodes. For example, the adversary of case C2 (who is still not optimal) with
m = 8, d = 2, λ = 6 (due to the fresh intermediate values in Fig. 1) and � = 4
(due to the key addition and squarings), already leads to E$ = 296 integrals
which is by far too expensive for evaluation laboratories.

5.2 Reducing Dimensionality with the IOL Assumption

The first cause in the complexity explosion of the exhaustive approach is the
number of fresh dimensions. In this respect, a natural simplification is to exploit
the IOL assumption. Indeed, by considering the operations in the multiplication
chain of Fig. 1 as independent, the evaluation complexity of the previous (C2)
adversary can be reduced to E$ = δ · (2dm) = 10 · 216 integrals. This is an inter-
esting simplification since it corresponds to the strategy of an adversary willing
to perform a multivariate attack against such a leaking masked implementation.
Namely, he will identify the ten d-tuples of interest and combine their results via
a maximum likelihood approach. We report the result of an information theo-
retic evaluation of this C2 adversary in Fig. 3, where we also plot the IOL bound
provided by multiplying the information theoretic curve of the C1 adversary by
ten. As for the case of unprotected implementations, the bound is tight.

Nevertheless, this simplification also implies two important technical ques-
tions. First, and since we assume the leakage of independent operations to be
independent, what would be the impact of a dependent noise? Second, how to
generalize this simplification to the adversaries C3 and C4 which imply the need
of considering d2-tuples jointly (rather than d-tuples jointly in the C2 case)?

Masking Proofs Are Tight and How to Exploit it in Security Evaluations 395

log10(SNR)
-3 -2 -1 0 1 2

lo
g 10

(m
ut

ua
l i

nf
or

m
at

io
n)

-6

-5

-4

-3

-2

-1

0

1

unprotected S-box
masked S-box, C1 adv.
masked S-box, C2 adv.
C2 adv. IOL bound

Fig. 3. Masked AES S-box evaluation results: cases C1 & C2 (d = 2).

5.3 The Dependent Noise Issue

To the best of our knowledge, this noise dependency issue has not been specif-
ically discussed in the literature on masking, although the existence of cor-
related noise has been put forward in other contexts (e.g., see the discussion
in [12], Chap. 6). We therefore launched an information theoretic evaluation of
our masked S-box (case C1) with d = 2 and the covariance matrix such that
the correlation between the noise samples of the two shares equals 0, 0.25, 0.5
and 0.75. The results of these evaluations are in Fig. 4. As expected, a correlated
noise does not impact the security order of the countermeasure, defined as the
lowest key-dependent moment in the leakage distribution Pr[k|x, l̄] minus one,
and reflected by the slope of the information theoretic curves in the high-noise
region (i.e., where the curves are linear) minus one. By contrast, correlated noise
implies a shift of the curves by a factor that can be significant (e.g., ×2 for cor-
relation 0.5 and ×8 for correlation 0.75). Such large correlations typically vanish
after a couple of clock cycles. Yet, our results highlight that estimating the non-
diagonal elements of the noise covariance matrices in masked implementations
is an important sanity check that could be part of a certification process.

5.4 Secure Multiplication Leakages

When also considering the leakages of the d2 cross products involved in a secure
multiplication (such as the ones of Eq. 1 in Sect. 3.1 for d = 3), an additional
problem is that computing an integral of d2 dimensions rapidly becomes compu-
tationally intensive. This is particularly true if one considers an optimal Gaussian
mixture model for the PDF since in this case the computation of the integral
requires summing over the randomness vector. In fact, already for small field

396 V. Grosso and F.-X. Standaert

−3 −2 −1 0 1 2
−7

−6

−5

−4

−3

−2

−1

0

log10(SNR)

lo
g 10

(m
ut

ua
l i

nf
or

m
at

io
n)

correlation = 0
correlation = 0.25
correlation = 0.5
correlation = 0.75

Fig. 4. Masked AES S-box evaluation results: case C1 with correlated noise (d = 2).

sizes and number of shares, the problem is hard. For example, for d = 3 and
m = 8, the multiplication between two dependent values such as required in the
multiplication chain of Fig. 1 requires performing 224 integrals (corresponding to
8 bits of secret and twice 8 bits of randomness) of a 9-dimensional PDF.

In order to deal with this limitation, a solution is to look at masking proofs.
In particular, Theorem 3 in [50] and Theorem 2 in [19] both provide bounds on
the amount of information leaked by the multiplication of two secrets shared
with Boolean masking, roughly corresponding to (1.72d + 2.72) and (28d + 16)
times the information leakage of a single d-tuple. In this respect, there are again
two important questions. First, are these bounds (and in particular the first
one) tight? Second, given that the evaluation with an optimal attack becomes
computationally intensive for large d values as just argued, does it mean that
these bounds are unreachable by adversaries with realistic computing power?

We answer these questions in two steps. First, we investigate a simplified con-
text with small d and m values such that the optimal attack is applicable. Second,
we discuss heuristic attacks which approach the optimal attack efficiently.

Simplified case study. Figure 5 shows the information theoretic evaluation of
a secure multiplication with d = 3 and m = 2.6 We can clearly observe the larger
leakage of optimal attack exploiting the δ = 9 dimensions of the multiplication
jointly, compared to the information provided by the encoding (i.e., the C1
adversary). As for the bounds, we first note that a simple (intuitive) bound is
to assume that given two dependent values that are multiplied together, one

6 Due to the large number of dimensions, the integrals were computed via sampling in
this case, which also explains the lower noise variances that we could reach. However,
we note that these lower noise levels were sufficient to reach the asymptotic (i.e.,
linear) regions of the information theoretic curves supporting our conclusions.

Masking Proofs Are Tight and How to Exploit it in Security Evaluations 397

−1.5 −1 −0.5 0 0.5 1 1.5
−5

−4

−3

−2

−1

0

1

log10(SNR)

lo
g 10

(m
ut

ua
l i

nf
or

m
at

io
n)

δ=3, C1 adv.
δ=9, optimal attack
δ=9, PR bound
multi−tuple attack, t=1
multi−tuple attack, t=18

Fig. 5. Secure multiplication evaluation results (d = 3, m = 2).

leaks d horizontal d-tuples corresponding to one value (assuming the other to be
known) and another d vertical d-tuples corresponding to the other value (under
the same assumption). This leads to an estimation of the multiplication matrix
leakage as 2d times the one of a single d-tuple, which is close to the 1.72d factor
given by Prouff and Rivain in [50]. Hence, we added the latter bound on the
figure (under the name PR bound). Concretely, it simply consists in multiplying
the information of the encoding by 1.72d and turns out to be remarkably tight
as soon as a sufficient amount of noise affects the measurements.7

Heuristic attacks. As the optimal attack in the previous paragraph becomes
computationally intensive for large d and m values, we now consider alternatives
that allow an adversary to exploit the information leakage of the multiplication
matrix without summing over all the randomness and considering all the dimen-
sions jointly. A first candidate is the recursive attack proposed by Battistello
et al. at CHES 2016 [7]. In the following, we revisit and improve this attack
by framing it as a Soft Analytical Side-Channel Attack (SASCA) [33,59].8 In
a SASCA, the adversary essentially describes all the leaking operations in his
target implementation as a “factor graph” and then decodes the leakage infor-
mation by exploiting the Belief Propagation (BP) algorithm. The main interest
of this approach is that it allows combining the information of multiple leaking
instructions (e.g., the cross products in a secure multiplication) locally, without
the need to consider them jointly. Its time complexity depends on the diameter
of the factor graph (which is constant when all target intermediate variables are
directly connected as in the secure multiplication), the cost of the probabilities’

7 Note that a parallel implementation would lead to a slightly better bound of ≈ d
since reducing the amount of observable leakage samples by a factor d [5].

8 Details about SASCA are provided in supplementary material for completeness.

398 V. Grosso and F.-X. Standaert

Fig. 6. Factor graph of a secure multiplication (d = 3).

updates (which is constant and depends on the bit size of the operations consid-
ered) and the number of these updates (which depends on the size of the factor
graph and grows quadratically in d). The factor graph of a secure multiplication
with d = 3 shares is pictured in Fig. 6. Its only specificity is that for the BP
algorithm to succeed, we need to initialize the leakage on the shares x0, x1, x2

and y0, y1, y2, which means that a SASCA must consider the target operations
more globally. In our experiments we added the leakage of these shares for this
purpose, which can be obtained, e.g., when loading them into a register.

An alternative (and conceptually simple) approach allowing to get rid of the
need of initialization is to always target d-tuples of informative leakage samples
jointly. Such a “multi-tuple attack” can be viewed as an intermediate between
the optimal attack targeting d2 samples jointly and the previous SASCA tar-
geting samples one by one, as illustrated in Fig. 6. More precisely, the optimal
attack outlined in Sect. 3.2 exploits a leakage PDF Pr[ld2 |k, x, ȳd2], where the
d2 subscripts of the vectors ld2 and ȳd2 now highlight their number of dimen-
sions. In a multi-tuple attack, we simply select a number of d-tuples of which
the combination depends on the target secret and approximate:

Pr
[
ld2 |k, x, ȳd2

]
≈ Pr

[
l
1

d|k, x, ȳ1
d

]
· Pr

[
l
2

d|k, x, ȳ2
d

]
· . . . · Pr

[
l
t

d|k, x, ȳt
d

]
,

Masking Proofs Are Tight and How to Exploit it in Security Evaluations 399

number of measurements
0 5000 10000 15000

su
cc

es
s

ra
te

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

optimal attack
SASCA
CHES 2016 attack

Fig. 7. Optimal attack vs. efficient heuristics (d = 3, m = 2, SNR = 2
10

).

where t is the number of tuples exploited.9 As illustrated in Fig. 5, an attack using
a single d-tuple (e.g., here a matrix line) only leads to little exploitable informa-
tion, which is consistent with the observations in [7]. By contrast, increasing t
rapidly allows reaching a close-to-optimal attack.

Note that the multi-tuples attack still does not scale well since the total
number of informative d-tuples in the matrix multiplications grows following a
binomial rule. So the most appealing attacks to target the secure multiplication
algorithm are the CHES 2016 iterative one and the SASCA. Unfortunately,
in these cases we face the problem that the heuristic nature of the decoding
algorithms (which both propagate information locally without formal guarantees
of convergence) does not formally lead them to output probabilities. Typically,
by iterating the CHES 2016 and BP algorithms more, it is possible to artificially
crush the probabilities of the variable nodes in the factor graph. So formally, we
cannot evaluate the mutual information metric in this case. As a result, and for
this part of our experiments only, we directly evaluated the success rate of an
optimal attack, a SASCA and the CHES 2016 iterative attack (using exactly the
same leaking operations as the SASCA) for various noise levels.

For example, Fig. 7 contains the result of such an experiment (for σ2
n = 10

meaning SNR = 2
10) where we observe that (i) the SASCA outperforms the

CHES 2016 iterative attack, and (ii) the SASCA leads to attack efficiencies
that approach the optimal one. The first observation is easily explained since
the CHES 2016 iterative attack can in fact be viewed as a modified version of
SASCA. Namely, the main difference between the SASCA and the CHES 2016

9 Note that whenever an imperfect model is used by the adversary/evaluator, the
estimation of Eqs. 2 and 3 does not strictly converge towards the mutual information,
but only to the so-called perceived information discussed in [24].

400 V. Grosso and F.-X. Standaert

iterative attack is the fact that we take advantage of the relation between the
two secrets that are multiplied (i.e., the g function in Fig. 6), which allows the
BP algorithm to extract more information (while the factor graph of the CHES
2016 iterative attack ignores this connection).10 As for the second observation,
we launched attacks for different values of the SNR in order to verify whether
the distance between the optimal attack and the SASCA is noise-dependent.
For example, Fig. 12 in AppendixB shows the result of an experiment similar to
the one of Fig. 7 but with better SNR (σ2

n = 1 meaning SNR = 2), leading to
a tighter approximation. It suggests that the heuristic use of the BP algorithm
in a SASCA against the multiplication of Fig. 6 tends to perform worse as the
noise increases. In this respect, we note that our experiments consider the (more
efficient) variation of SASCA where the factor graph is decoded for each mea-
surement independently and probabilities are re-combined afterwards. It is an
interesting open problem to investigate the (more expensive) version where the
factor graph is extended for each new measurement (since it was shown in [59]
that the gain such attacks provide over a standard DPA attack is independent
of the noise in the context of an unprotected AES implementation).

Remark. As previously mentioned, extending these experiments to larger d and
m values is not possible because the optimal attack becomes too expensive (com-
putationally). By contrast, we could check that the success rate curves of the
SASCA consistently outperform the ones of the CHES 2016 iterative attack by
an approximate factor > 2 in measurement complexity, for larger m values. For
example, we report the result of such a comparison for the relevant m = 8-bit
case corresponding to the AES S-box in AppendixB, Fig. 13.

Overall, we conclude from this section that the IOL assumption and the
PR bound for secure multiplications give rise to quite tight estimations of the
information leakage of a masked implementation (at least for the leakage func-
tions and noise levels considered experimentally). Furthermore, this leakage can
also be exploited quite efficiently using heuristics such as the BP algorithm.
We conjecture that these observations generally remain correct for most leakage
functions, and when the number of shares in the masking schemes increases.

5.5 Reducing Cardinality with the ISL Assumption

Eventually, the previous experiments suggest that the evaluation of a masked
implementation against multivariate attacks can boil down to the evaluation of
the information leakage of a d-tuple. Yet, this still has evaluation cost propor-
tional to 2dm. Fortunately, at this stage we can use the ISL assumption and the
bound discussed at Eurocrypt 2015 showing that this information can be (very
efficiently) computed based on the information of a single share (essentially by
raising this information to the security order), which has (now minimal) eval-
uation cost E$ = δ · 2m (or even 2m if one assumes that the leakage function
10 Technically, the rules used for updating the probabilities in the CHES 2016 attack

are also presented slightly differently than in SASCA, where the BP algorithm is
explicitly invoked with variable to factors and factors to variable message passing.

Masking Proofs Are Tight and How to Exploit it in Security Evaluations 401

log10(SNR)
-3 -2 -1 0 1 2

lo
g 10

(m
ut

ua
l i

nf
or

m
at

io
n)

-15

-10

-5

0

d=1
d=2
d=2 (DFS bound)
d=3 (DFS bound)
d=5 (DFS bound)

Fig. 8. Masked AES S-box evaluation results: case C1 with ISL assumption.

of the target implementation is similar for all operations, or if we bound the
overall leakage based on the most informative d-tuple found) [20]. For complete-
ness, we illustrate such a result in Fig. 8, where we compare the bound (denoted
as DFS) and the true information leakage for d = 2, and only plot the bound
for larger d’s. As already mentioned, the big conceptual change at this step of
our simplifications is that the ISL assumption is no longer a conservative one.
If it turns out to be incorrect, then the security order of higher-order masking
schemes may be less than predicted by the number of shares. Yet, as discussed
in Sect. 2, this does not decrease the relevance of our method and bounds: it
simply implies that applying them first requires to assess the security order of
the target implementation (which we briefly discuss in Sect. 6.2).

Note also that as carefully discussed in [20] (Sect. 4.1, part c), the DFS bound
is only conjectured and ignores a square root loss in the reduction from the
mutual information to the statistical distance used in the proofs.11 Yet, this
square root loss vanishes when the noise increases, as per the upper bound in [50].
More precisely, this reference showed that the mutual information is (up to
constants) lower than the statistical distance (not its square), and this inequality
becomes an equality for low SNRs. In this respect, we recall that masking proofs
are anyway only relevant for large enough noises (or low enough SNRs), which
corresponds to the linear (left) parts of the information theoretic curves of Fig. 8
(i.e., where the DFS bound is tight). Intuitively, this is because masking can
be viewed as a noise amplification mechanism. So without noise to amplify, the
countermeasure does not provide any concrete benefits. In other words, either the

11 Strictly speaking, it also ignores a small constant factor discussed in the optimal
reduction given by [26], which is assumed to be a proof artifact and is at least not
observed for the simple leakage functions considered in our experiments.

402 V. Grosso and F.-X. Standaert

noise is too low and our tools do not apply but the implementation is insecure
anyway, or the noise is sufficient and the bound applies. Technically, this is
reflected by the hypotheses of masking security proofs, which require that the
information of a single share (to be raised to the security order) is at least lower
than one.12 The DFS bound was also confirmed experimentally in [58].

6 Fast and Sound Leakage Assessment

6.1 Putting Things Together

By combining the IOL assumption, the PR bound for evaluating the leakage of a
secure multiplication, the ISL assumption and the DFS bound for evaluating the
leakage of an encoding with large number of shares, all evaluated and discussed in
the previous section, we can now easily obtain the results of a security evaluation
for the four adversaries outlined in Sect. 3.1. For example, Fig. 9 plots them for
d = 3, 5 and 7 shares, for various noise levels. For readability, we only provide the
results of the extreme attacks (C1 and C4). These curves are simply obtained by
performing powers and sums of the information theoretic curve for the simplest
possible case d = 1. In other words, we can evaluate the leakage of a masked
implementation against optimal (highly multivariate) side-channel attacks at the
cost of the evaluation of an unprotected implementation.

Note that the curves clearly highlight the need of a higher noise level when
implementing higher-order masking schemes, in order to mitigate the noise
reduction that is caused by the possibility to perform highly multivariate attacks
(reflected by a shift of the curves towards the left of the figure). And quite nat-
urally, they directly allow one to quantify the increasing impact of such attacks
when the security order increases. For example, the factor between the measure-
ment complexity of the adversary C1 (exploiting one tuple of leakage samples)
and the optimal C4 ranges from 50 (for d = 3) to 100 (for d = 7).

In this respect, there is one final remark. In concrete implementations, it
frequently happens that some of the target intermediate values appear several
times (e.g., because they need to be reloaded for performing the cross products
in a secure multiplication). In this case, the adversary can additionally average
the noise for these target intermediate values, as proposed in [7]. As mentioned
in Sect. 4, such an effect is also easy to integrate into our evaluations since it
only corresponds to a shift of the information theoretic curves. However, it is
worth emphasizing that this averaging process is applied to the shares (i.e.,
before their combination provides noise amplification), which implies that it is
extremely damaging for the security of masking. Concretely, this means that
averaging the leakage samples of a masked implementation with d shares by a
factor d (because these shares are loaded d times to perform cross products) may
lead to a reduction of the security level by a factor dd. For illustration, Fig. 10

12 Otherwise raising the information leakage of individual shares to some power may
lead to larger values than the maximum m. For convenience, the following plots limit
the mutual information to m when this happens (i.e., for too low noise levels).

Masking Proofs Are Tight and How to Exploit it in Security Evaluations 403

−3 −2 −1 0 1 2
−16

−14

−12

−10

−8

−6

−4

−2

0

2

log10(SNR)

lo
g 10

(m
ut

ua
l i

nf
or

m
at

io
n)

d=3, C1 adv.
d=3, C4 adv.
d=5, C1 adv.
d=5, C4 adv.
d=7, C1 adv.
d=7, C4 adv.

Fig. 9. Masked AES S-box evaluation results: cases C1 & C4 (with all assumptions).

shows the result of such a security evaluation in a context similar to Fig. 9, where
the shares of each the masked multiplication are averaged d times, this times
causing reductions of the security level by several orders of magnitude.

The difference between the multivariate attacks of Fig. 9 and the ones in
Fig. 10 is easily explained by looking back at Fig. 8 where the leakage of a single
d-tuple of shares is reported. First observe that in practice, any actual device
has a fixed SNR: say 10−2 for illustration, leading to a mutual information of
≈ 10−13 for the d = 5 case. In case several (say ≈ 78) independent d tuples
are combined in an attack (which is essentially what the C4 adversary of Fig. 9
achieves), the total amount of information available to the adversary is multiplied
by a factor ≈ 78. This corresponds to a vertical shift in the information theoretic
curves. Say now the adversary can average each of his leakage samples d = 5
times (which is essentially what the adversaries of Fig. 10 achieve). Then the
SNR will be reduced 5 times, leading to an horizontal shift in the information
theoretic curve, and reducing the averaged 5-tuples’ information leakage by a
factor 55 = 3125, as per the curves’ slope. This last observation suggests that
each share in a masked implementation should be manipulated minimally.

Note that such an averaging is easy to perform in worst-case evaluations
where the implementation is known to the adversary and the points in time where
the shares are manipulated can be directly spot. But its exploitation with limited
implementation knowledge may be more challenging. It is an interesting scope
for further research to investigate whether some statistical tools can approach
such worst-case attacks in this case (e.g., based on machine learning [37]).13

13 Note also that traces averaging can be exploited constructively in the assessment of
a security order. For example, in case the masks are known to the evaluator, he can
average traces before evaluating the security order, leading to the efficiency gains [56].

404 V. Grosso and F.-X. Standaert

−3 −2 −1 0 1 2
−16

−14

−12

−10

−8

−6

−4

−2

0

2

log10(SNR)

lo
g 10

(m
ut

ua
l i

nf
or

m
at

io
n)

d=3, C1 adv.
d=3, C4 adv. + avg.
d=5, C1 adv.
d=5, C4 adv. + avg.
d=7, C1 adv.
d=7, C4 adv. + avg

Fig. 10. Masked AES S-box evaluation results: cases C1 & C4 (with all assumptions
& d-times averaging applied to the shares of the secure multiplications).

6.2 A Real-World Case Study

Our methodology has been recently applied (at CHES 2017) to a 32-bit shared
implementation of the AES in an ARM Cortex M4 device [35]. As mentioned in
introduction, such implementations are the typical targets for which our proof-
based approach becomes necessary. This reference first assesses the security order
by investigating reduced-shares versions of the algorithms (which can be viewed
as an analogy to the reduced-rounds versions in block cipher cryptanalysis). Since
overestimated orders are the main risk of overstated security (because they reflect
the ISL assumption), the paper additionally considers a risk factor (i.e., evaluates
the security for the best detected order and for its reduction by a conservative
factor two). “Single tuple”, “all tuples” and “all tuples + averaging” attacks are
then analyzed, based on the number of leaking operations in the implementation
code, and the number of shares’ repetitions. It allows claiming so far unreported
security levels, under well identified (and empirically falsifiable) assumptions.

6.3 Exploiting Computational Power

Eventually, and given some mutual information value extracted from the pre-
vious plots, we mention that one can easily insert this value in a metric-based
bound in order to build a security graph, such as suggested in [21] and illus-
trated in Fig. 11. While such metric-based bounds only provide a conservative
estimation of the impact of key enumeration in a side-channel attack [41,48],
they are obtained withing seconds of computation on a desktop computer. We
detail how to build such a graph and the heuristics we rely on in AppendixC.

Masking Proofs Are Tight and How to Exploit it in Security Evaluations 405

Fig. 11. Exemplary metric-based bound for a security graph (with MI = 10−7).

6.4 Conclusions

1. On too simple evaluation methodologies. Looking at the power of multi-
variate (aka horizontal) side-channel attacks taking advantage of all the leaking
operations in the multiplicative chain of a masked AES S-box, an important
conclusion is that simple (univariate) evaluation strategies become increasingly
irrelevant as the number of shares in a masked implementation increases.

2. On the need of formal methods and security order detection. As
made clear in Sect. 2, the tools we provide in this paper only solve the “noise”
part of the security evaluation problem for masked implementations. Hence,
their combination with formal methods and security order detection techniques
is an interesting scope for further research. Typically, one could extend the
tools put forward in [3] in order to detect all the leaking operations in an
assembly code (possibly with repetitions), then use leakage detection methods
such as [13,22,30,42,55] to assess the security order of actual measurements,
and finally evaluate their informativeness as we suggest in this paper, in order
to obtain a fast assessment of the worst-case security level of an implementation.

3. On how to reach high security levels. Our results show that ensur-
ing high security levels against optimal adversaries taking advantage of all the
information provided by a masked implementation is challenging. It requires
many shares, high noise levels and independence. In this respect, the application
of our progresses to alternative multiplication chains [16,32], to the optimized
algorithms in [8], to new primitives allowing more efficient masking (e.g., the pro-
posal in [25] of which the complexity scales linearly in the number of shares and
is well suited to guarantee the ISL assumption), and the combination of these
ideas with parallel and/or hardware implementations (which improve security
against multivariate attacks), is another interesting research direction.

406 V. Grosso and F.-X. Standaert

4. On the “circuit size parameter” of masking security proofs. Even-
tually, our investigations are still limited to the evaluation of leakage samples
that can be exploited via a divide-and-conquer strategy (i.e., attacks targeting
independent parts of the key one by one). Yet, masking security proofs suggest
that the success rate of an adversary is proportional to the target circuit size
(i.e., the total amount of leakage samples) independent of whether these samples
correspond to enumerable intermediate computations [20]. In this respect, ana-
lyzing the extent to which a SASCA exloiting a factor graph for a full masked
implementation can confirm this fact is one more important open problem, which
would first require a better formalization of such analytical attacks.

Acknowledgments. François-Xavier Standaert is a senior associate researcher of the
Belgian Fund for Scientific Research (FNRS-F.R.S.). This work has been funded in
parts by the ERC project 724725 (acronym SWORD), the EU project REASSURE
and the Brussels Region INNOVIRIS project SCAUT.

A Algorithms for the Masked S-box

Algorithm 1. Secure evaluation of a GF(2)-linear function g.
Require: Shares x(i) such that x = x(1) ⊕ · · · ⊕ x(d).
Ensure: Shares y(i) such that g(x) = y = y(1) ⊕ · · · ⊕ y(d).
1: for i from 1 to d do
2: y(i) ← g(x(i))
3: end for

Algorithm 2. Multiplication of two masked secrets ∈ GF(2m).
Require: Shares x(i) and y(i) such that x = x(1)⊕· · ·⊕x(d) and y = y(1)⊕· · ·⊕y(d).
Ensure: Shares z(i) such that x ⊗ y = z = z(1) ⊕ · · · ⊕ z(d).
1: for i from 1 to d do
2: for j from i + 1 to d do
3: ri,j

r← GF(2m)
4: rj,i ← (ri,j ⊕ x(i) ⊗ y(j)) ⊕ x(j) ⊗ y(i)
5: end for
6: end for
7: for i from 1 to d do
8: z(i) ← x(i) ⊗ y(i)
9: for j from 1 to d, j �= i do

10: z(i) ← z(i) ⊕ ri,j
11: end for
12: end for
13: return (z(1), ..., z(d))

Masking Proofs Are Tight and How to Exploit it in Security Evaluations 407

Algorithm 3. Field multiplication of two elements ∈ GF(2m).
Require: x, y ∈ GF(2m).
Ensure: z such that z = x ⊗ y.
1: x′ ← LogTab[x]
2: y′ ← LogTab[y]
3: z′ ← x′ + y′ mod 2m − 1
4: z ← (x �= 0 ∧ y �= 0) aLogTab[z′]
5: return z

B Additional Figures

number of measurements
0 10 20 30 40 50 60 70

su
cc

es
s

ra
te

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

optimal attack
SASCA
CHES 2016 attack

Fig. 12. Optimal attack vs. efficient heuristics (d = 3, m = 2, SNR = 2).

C Metric-Based Bound for the Key Rank

Very summarized, the two core ideas used in [21] to take the computational
(enumeration) power of a divide-and-conquer adversary into account in a side-
channel evaluation are: (i) to bound the success rate per S-box in function of the
adversary’s computational power thanks to the mutual information of an aggre-
gated key variable Kc

agg, where c is an aggregation parameter (corresponding to
the computational power), and (ii) to plug these success rate bounds into the
metric-based rank-estimation algorithm of [48]. So technically, the only ingredi-
ent needed to exploit the same tools is the mutual information of the aggregated
key variable (i.e., the so-called NAMI, for Normalized Aggregated Mutual Infor-
mation). Unfortunately, the exact computation of the NAMI is impossible in our

408 V. Grosso and F.-X. Standaert

number of measurements
0 2000 4000 6000 8000 10000

su
cc

es
s

ra
te

0

0.2

0.4

0.6

0.8

1

SASCA
CHES 2016 attacks

Fig. 13. Efficient heuristic attacks (d = 3, m = 8, SNR = 2).

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

log2(c)

N
AM

I

Fig. 14. Bound on the Normalized Aggregated Mutual Information.

case, since we do not have access to the probabilities of all the key candidates
(that are combined during the aggregation process). So we need a way to bound
the NAMI based on its first value NAMI(c = 1) = MI(K;X, L̄).

For this purpose, a simple observation is that for c ≤ 2m−1, aggregating c =
2q key candidates together can at most multiply the NAMI by q+1. The behavior
of the NAMI for c > 2m−1 is less intuitive (since in general, the definition of
the NAMI is most intuitive when c is a power of two). Yet, as illustrated by the
example in Fig. 14, a simple heuristic to bound it is then to connect the value of
the NAMI at c = 2m−1 and the maximum value of 1 that is reached at c = 2m

Masking Proofs Are Tight and How to Exploit it in Security Evaluations 409

by a straight line (which is obviously conservative as well, since the figure is in
log-lin scale). Alternatively, when MI(K;X, L̄) < 1

2m , an even simpler bound is
to connect log(NAMI(c = 1)) = log(MI(K;X, L̄)) and log(NAMI(c = 2m)) = 0
by a straight line. More accurate bounds are certainly reachable, yet not useful
here since the general focus of the paper is on providing fast intuitions regarding
the computational security of a key manipulated by a leaking device.

References

1. Archambeau, C., Peeters, E., Standaert, F.-X., Quisquater, J.-J.: Template attacks
in principal subspaces. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol.
4249, pp. 1–14. Springer, Heidelberg (2006). https://doi.org/10.1007/11894063 1

2. Balasch, J., Gierlichs, B., Grosso, V., Reparaz, O., Standaert, F.-X.: On the cost
of lazy engineering for masked software implementations. In: Joye, M., Moradi, A.
(eds.) CARDIS 2014. LNCS, vol. 8968, pp. 64–81. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-16763-3 5

3. Barthe, G., Beläıd, S., Dupressoir, F., Fouque, P.-A., Grégoire, B., Strub, P.-Y.:
Verified proofs of higher-order masking. In: Oswald and Fischlin [47], pp. 457–485

4. Barthe, G., Beläıd, S., Dupressoir, F., Fouque, P.-A., Grégoire, B., Strub, P.-Y.,
Zucchini, R.: Strong non-interference and type-directed higher-order masking. In:
Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S., (eds.) Pro-
ceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security, Vienna, Austria, 24–28 October, 2016, pp. 116–129. ACM (2016)

5. Barthe, G., Dupressoir, F., Faust, S., Grégoire, B., Standaert, F.-X., Strub, P.-Y.:
Parallel implementations of masking schemes and the bounded moment leakage
model. In: Coron and Nielsen [15], pp. 535–566

6. Batina, L., Robshaw, M. (eds.): CHES 2014. LNCS, vol. 8731. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-662-44709-3

7. Battistello, A., Coron, J.-S., Prouff, E., Zeitoun, R.: Horizontal side-channel attacks
and countermeasures on the ISW masking scheme. In: Gierlichs and Poschmann
[29], pp. 23–39

8. Beläıd, S., Benhamouda, F., Passelègue, A., Prouff, E., Thillard, A., Vergnaud,
D.: Randomness complexity of private circuits for multiplication. In: Fischlin, M.,
Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 616–648. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5 22

9. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28632-5 2

10. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to counter-
act power-analysis attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666,
pp. 398–412. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-
1 26

11. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, K.,
Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-36400-5 3

12. Choudary, M.O.: Efficient multivariate statistical techniques for extracting secrets
from electronic devices. Ph.D. thesis, University of Cambridge (2014)

https://doi.org/10.1007/11894063_1
https://doi.org/10.1007/978-3-319-16763-3_5
https://doi.org/10.1007/978-3-319-16763-3_5
https://doi.org/10.1007/978-3-662-44709-3
https://doi.org/10.1007/978-3-662-49896-5_22
https://doi.org/10.1007/978-3-540-28632-5_2
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/3-540-36400-5_3

410 V. Grosso and F.-X. Standaert

13. Cooper, J., De Mulder, E., Goodwill, G., Jaffe, J., Kenworthy, G., Rohatgi,
P.: Test vector leakage assessment (TVLA) methodology in practice (extended
abstract). In: ICMC 2013. http://icmc-2013.org/wp/wp-content/uploads/2013/
09/goodwillkenworthtestvector.pdf

14. Coron, J.-S., Giraud, C., Prouff, E., Renner, S., Rivain, M., Vadnala, P.K.: Conver-
sion of security proofs from one leakage model to another: a new issue. In: Schindler,
W., Huss, S.A. (eds.) COSADE 2012. LNCS, vol. 7275, pp. 69–81. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-29912-4 6

15. Coron, J.-S., Nielsen, J.B. (eds.): EUROCRYPT 2017. LNCS, vol. 10210. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-56620-7

16. Coron, J.-S., Prouff, E., Rivain, M., Roche, T.: Higher-order side channel security
and mask refreshing. In: Moriai, S. (ed.) FSE 2013. LNCS, vol. 8424, pp. 410–424.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43933-3 21

17. Daemen, J., Rijmen, V.: The wide trail design strategy. In: Honary, B. (ed.) Cryp-
tography and Coding 2001. LNCS, vol. 2260, pp. 222–238. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-45325-3 20

18. Ding, A.A., Zhang, L., Fei, Y., Luo, P.: A statistical model for higher order DPA
on masked devices. In: Batina and Robshaw [6], pp. 147–169

19. Duc, A., Dziembowski, S., Faust, S.: Unifying leakage models: from probing attacks
to noisy leakage. In: Nguyen and Oswald [45], pp. 423–440

20. Duc, A., Faust, S., Standaert, F.-X.: Making masking security proofs concrete - or
how to evaluate the security of any leaking device. In: Oswald and Fischlin [47],
pp. 401–429

21. Duc, A., Faust, S., Standaert, F.-X.: Making masking security proofs concrete
or how to evaluate the security of any leaking device (extended version). IACR
Cryptology ePrint Archive 2015, 119 (2015)

22. Durvaux, F., Standaert, F.-X.: From improved leakage detection to the detection
of points of interests in leakage traces. In: Fischlin, M., Coron, J.-S. (eds.) EURO-
CRYPT 2016. LNCS, vol. 9665, pp. 240–262. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49890-3 10

23. Durvaux, F., Standaert, F.-X., Del Pozo, S.M.: Towards easy leakage certification.
In: Gierlichs and Poschmann [29], pp. 40–60

24. Durvaux, F., Standaert, F.-X., Veyrat-Charvillon, N.: How to certify the leakage
of a chip? In: Nguyen and Oswald [45], pp. 459–476

25. Dziembowski, S., Faust, S., Herold, G., Journault, A., Masny, D., Standaert, F.-X.:
Towards sound fresh re-keying with hard (physical) learning problems. In: Rob-
shaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 272–301. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-5 10

26. Dziembowski, S., Faust, S., Skorski, M.: Noisy leakage revisited. In: Oswald, E.,
Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 159–188. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6 6

27. Fei, Y., Luo, Q., Ding, A.A.: A statistical model for dpa with novel algorithmic
confusion analysis. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol.
7428, pp. 233–250. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-33027-8 14

28. Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual information analysis. In:
Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 426–442. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-85053-3 27

29. Gierlichs, B., Poschmann, A.Y. (eds.): CHES 2016. LNCS, vol. 9813. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53140-2

http://icmc-2013.org/wp/wp-content/uploads/2013/09/goodwillkenworthtestvector.pdf
http://icmc-2013.org/wp/wp-content/uploads/2013/09/goodwillkenworthtestvector.pdf
https://doi.org/10.1007/978-3-642-29912-4_6
https://doi.org/10.1007/978-3-319-56620-7
https://doi.org/10.1007/978-3-662-43933-3_21
https://doi.org/10.1007/3-540-45325-3_20
https://doi.org/10.1007/978-3-662-49890-3_10
https://doi.org/10.1007/978-3-662-49890-3_10
https://doi.org/10.1007/978-3-662-53008-5_10
https://doi.org/10.1007/978-3-662-46803-6_6
https://doi.org/10.1007/978-3-642-33027-8_14
https://doi.org/10.1007/978-3-642-33027-8_14
https://doi.org/10.1007/978-3-540-85053-3_27
https://doi.org/10.1007/978-3-662-53140-2

Masking Proofs Are Tight and How to Exploit it in Security Evaluations 411

30. Goodwill, G., Jun, B., Jaffe, J., Rohatgi, P.: A testing methodology for
side channel resistance validation. In: NIST Non-invasive Attack Testing
Workshop (2011). http://csrc.nist.gov/news events/non-invasive-attack-testing-
workshop/papers/08 Goodwill.pdf

31. Goudarzi, D., Rivain, M.: How fast can higher-order masking be in software? In:
Coron and Nielsen [15], pp. 567–597

32. Grosso, V., Prouff, E., Standaert, F.-X.: Efficient masked s-boxes processing –
a step forward. In: Pointcheval, D., Vergnaud, D. (eds.) AFRICACRYPT 2014.
LNCS, vol. 8469, pp. 251–266. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-06734-6 16

33. Grosso, V., Standaert, F.-X.: ASCA, SASCA and DPA with enumeration: which
one beats the other and when? In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT
2015. LNCS, vol. 9453, pp. 291–312. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-48800-3 12

34. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against prob-
ing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4 27

35. Journault, A., Standaert, F.-X.: Very high order masking: efficient implementation
and security evaluation. In: Fischer, W., Homma, N. (eds.) CHES 2017. LNCS,
vol. 10529, pp. 623–643. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-66787-4 30

36. Lemke-Rust, K., Paar, C.: Gaussian mixture models for higher-order side channel
analysis. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp.
14–27. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74735-2 2

37. Lerman, L., Poussier, R., Bontempi, G., Markowitch, O., Standaert, F.-X.: Tem-
plate attacks vs. machine learning revisited (and the curse of dimensionality in
side-channel analysis). In: Mangard, S., Poschmann, A.Y. (eds.) COSADE 2014.
LNCS, vol. 9064, pp. 20–33. Springer, Cham (2015). https://doi.org/10.1007/978-
3-319-21476-4 2

38. Lomné, V., Prouff, E., Rivain, M., Roche, T., Thillard, A.: How to estimate the
success rate of higher-order side-channel attacks. In: Batina and Robshaw [6], pp.
35–54

39. Mangard, S., Oswald, E., Standaert, F.-X.: One for all - all for one: unifying stan-
dard differential power analysis attacks. IET Inf. Secur. 5(2), 100–110 (2011)

40. Mangard, S., Popp, T., Gammel, B.M.: Side-channel leakage of masked CMOS
gates. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 351–365. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-30574-3 24

41. Martin, D.P., Mather, L., Oswald, E., Stam, M.: Characterisation and estimation of
the key rank distribution in the context of side channel evaluations. In: Cheon, J.H.,
Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 548–572. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6 20

42. Mather, L., Oswald, E., Bandenburg, J., Wójcik, M.: Does my device leak infor-
mation? An a priori statistical power analysis of leakage detection tests. In: Sako,
K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8269, pp. 486–505. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-42033-7 25

43. Mather, L., Oswald, E., Whitnall, C.: Multi-target DPA attacks: Pushing DPA
beyond the limits of a desktop computer. In: Sarkar and Iwata [53], pp. 243–261

44. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994).
https://doi.org/10.1007/3-540-48285-7 33

http://csrc.nist.gov/news_events/non-invasive-attack-testing-workshop/papers/08_Goodwill.pdf
http://csrc.nist.gov/news_events/non-invasive-attack-testing-workshop/papers/08_Goodwill.pdf
https://doi.org/10.1007/978-3-319-06734-6_16
https://doi.org/10.1007/978-3-319-06734-6_16
https://doi.org/10.1007/978-3-662-48800-3_12
https://doi.org/10.1007/978-3-662-48800-3_12
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/978-3-319-66787-4_30
https://doi.org/10.1007/978-3-319-66787-4_30
https://doi.org/10.1007/978-3-540-74735-2_2
https://doi.org/10.1007/978-3-319-21476-4_2
https://doi.org/10.1007/978-3-319-21476-4_2
https://doi.org/10.1007/978-3-540-30574-3_24
https://doi.org/10.1007/978-3-662-53887-6_20
https://doi.org/10.1007/978-3-642-42033-7_25
https://doi.org/10.1007/3-540-48285-7_33

412 V. Grosso and F.-X. Standaert

45. Nguyen, P.Q., Oswald, E. (eds.): EUROCRYPT 2014. LNCS, vol. 8441. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5

46. Nikova, S., Rijmen, V., Schläffer, M.: Secure hardware implementation of nonlinear
functions in the presence of glitches. J. Cryptol. 24(2), 292–321 (2011)

47. Oswald, E., Fischlin, M. (eds.): EUROCRYPT 2015. LNCS, vol. 9056. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5

48. Poussier, R., Grosso, V., Standaert, F.-X.: Comparing approaches to rank esti-
mation for side-channel security evaluations. In: Homma, N., Medwed, M. (eds.)
CARDIS 2015. LNCS, vol. 9514, pp. 125–142. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-31271-2 8

49. Prouff, E.: DPA attacks and s-boxes. In: Gilbert, H., Handschuh, H. (eds.) FSE
2005. LNCS, vol. 3557, pp. 424–441. Springer, Heidelberg (2005). https://doi.org/
10.1007/11502760 29

50. Prouff, E., Rivain, M.: Masking against side-channel attacks: a formal security
proof. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol.
7881, pp. 142–159. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-38348-9 9

51. Rivain, M.: On the exact success rate of side channel analysis in the Gaussian
model. In: Avanzi, R.M., Keliher, L., Sica, F. (eds.) SAC 2008. LNCS, vol. 5381, pp.
165–183. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04159-
4 11

52. Rivain, M., Prouff, E.: Provably secure higher-order masking of AES. In: Mangard,
S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 413–427. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-15031-9 28

53. Sarkar, P., Iwata, T. (eds.): ASIACRYPT 2014. LNCS, vol. 8874. Springer, Hei-
delberg (2014). https://doi.org/10.1007/978-3-662-45608-8

54. Schindler, W., Lemke, K., Paar, C.: A stochastic model for differential side channel
cryptanalysis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp.
30–46. Springer, Heidelberg (2005). https://doi.org/10.1007/11545262 3

55. Schneider, T., Moradi, A.: Leakage assessment methodology - extended version. J.
Crypt. Eng. 6(2), 85–99 (2016)

56. Standaert, F.-X.: How (not) to use Welch’s t-test in side-channel security evalua-
tions. IACR Cryptology ePrint Archive 2017, 138 (2017)

57. Standaert, F.-X., Malkin, T.G., Yung, M.: A Unified Framework for the Analysis
of Side-Channel Key Recovery Attacks. In: Joux, A. (ed.) EUROCRYPT 2009.
LNCS, vol. 5479, pp. 443–461. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-01001-9 26

58. Standaert, F.-X., Veyrat-Charvillon, N., Oswald, E., Gierlichs, B., Medwed, M.,
Kasper, M., Mangard, S.: The world is not enough: another look on second-order
DPA. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 112–129. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-8 7

59. Veyrat-Charvillon, N., Gérard, B., Standaert, F.-X.: Soft analytical side-channel
attacks. In: Sarkar and Iwata [53], pp. 282–296

https://doi.org/10.1007/978-3-642-55220-5
https://doi.org/10.1007/978-3-662-46800-5
https://doi.org/10.1007/978-3-319-31271-2_8
https://doi.org/10.1007/978-3-319-31271-2_8
https://doi.org/10.1007/11502760_29
https://doi.org/10.1007/11502760_29
https://doi.org/10.1007/978-3-642-38348-9_9
https://doi.org/10.1007/978-3-642-38348-9_9
https://doi.org/10.1007/978-3-642-04159-4_11
https://doi.org/10.1007/978-3-642-04159-4_11
https://doi.org/10.1007/978-3-642-15031-9_28
https://doi.org/10.1007/978-3-662-45608-8
https://doi.org/10.1007/11545262_3
https://doi.org/10.1007/978-3-642-01001-9_26
https://doi.org/10.1007/978-3-642-01001-9_26
https://doi.org/10.1007/978-3-642-17373-8_7

Best Young Researcher Paper Award

The Discrete-Logarithm Problem
with Preprocessing

Henry Corrigan-Gibbs(B) and Dmitry Kogan

Stanford University, Stanford, USA
henrycg@cs.stanford.edu

Abstract. This paper studies discrete-log algorithms that use
preprocessing. In our model, an adversary may use a very large amount
of precomputation to produce an “advice” string about a specific group
(e.g., NIST P-256). In a subsequent online phase, the adversary’s task is
to use the preprocessed advice to quickly compute discrete logarithms in
the group. Motivated by surprising recent preprocessing attacks on the
discrete-log problem, we study the power and limits of such algorithms.

In particular, we focus on generic algorithms—these are algorithms
that operate in every cyclic group. We show that any generic discrete-
log algorithm with preprocessing that uses an S-bit advice string, runs
in online time T , and succeeds with probability ε, in a group of prime
order N , must satisfy ST 2 = ˜Ω(εN). Our lower bound, which is tight
up to logarithmic factors, uses a synthesis of incompressibility techniques
and classic methods for generic-group lower bounds. We apply our tech-
niques to prove related lower bounds for the CDH, DDH, and multiple-
discrete-log problems.

Finally, we demonstrate two new generic preprocessing attacks: one
for the multiple-discrete-log problem and one for certain decisional-type
problems in groups. This latter result demonstrates that, for generic algo-

rithms with preprocessing, distinguishing tuples of the form (g, gx, g(x2))
from random is much easier than the discrete-log problem.

1 Introduction

The problem of computing discrete logarithms in groups is fundamental to cryp-
tography: it underpins the security of widespread cryptographic protocols for key
exchange [31], public-key encryption [26,34], and digital signatures [46,53,68].

In the absence of an unconditional proof that computing discrete logarithms
is hard, one fruitful research direction has focused on understanding the hard-
ness of these problems against certain restricted classes of algorithms [6,61,71].
In particular, Shoup considered discrete-log algorithms that are generic, in the
sense that they only use the group operation as a black box [71]. Generic algo-
rithms are useful in practice since they apply to every group. In addition, lower
bounds against generic algorithms are meaningful because, in popular elliptic-
curve groups, generic attacks are the best known [38,51].

c© International Association for Cryptologic Research 2018
J. B. Nielsen and V. Rijmen (Eds.): EUROCRYPT 2018, LNCS 10821, pp. 415–447, 2018.
https://doi.org/10.1007/978-3-319-78375-8_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78375-8_14&domain=pdf

416 H. Corrigan-Gibbs and D. Kogan

The traditional notion of generic algorithms models online-only attacks, in
which the adversary simultaneously receives the description of a cyclic group
G = 〈g〉 and a problem instance gx ∈ G. In this model, when the attack algorithm
begins executing, the attacker has essentially no information about the group G.
Shoup [71] showed that, in this online-only setting, every generic discrete-log
algorithm that succeeds with good probability in a group of prime order N must
run in time at least N1/2.

In practice, however, an adversary may have access to the description of the
group G long before it has to solve a discrete-log problem instance. In particular,
the vast majority of real-world cryptosystems use one of a handful of groups,
such as NIST P-256, Curve25519 [12], or the DSA groups. In this setting, a
real-world adversary could potentially perform a preprocessing attack [28,32,45]
relative to a popular group: In an offline phase, the adversary would compute
and store a data structure (“advice string”) that depends on the group G. In
a subsequent online phase, the adversary could use its precomputed advice to
solve the discrete-log problem in the group G much more quickly than would be
possible in an online-only attack.

In recent work, Mihalcik [59] and Bernstein and Lange [13] demonstrated
the surprising power of preprocessing attacks against the discrete-log problem. In
particular, they construct a generic algorithm with preprocessing that computes
discrete logarithms in every group of order N using N1/3 bits of group-specific
advice and roughly N1/3 online time. Since their algorithm is generic, it applies to
every group, including popular elliptic-curve groups. In contrast, Shoup’s result
shows that, without preprocessing, every generic discrete-log algorithm requires
at least N1/2 time. The careful use of a large amount of preprocessing—roughly
N2/3 operations—is what allows the attack of Mihalcik, Bernstein, and Lange
to circumvent this lower bound.

As of now, there is no reason to believe that the attack of Mihalcik, Bernstein,
and Lange is the best possible. For example, we know of no results ruling out a
generic attack that uses N1/2 precomputation to build an advice string of size
N1/8, which can be used to compute discrete logs in online time N1/8.

The existence of such an attack would—at the very least—shake our confi-
dence in 256-bit elliptic-curve groups. An attacker who wanted to break NIST
P-256, for example, could perform a one-time 2128 precomputation to compute
a 232-bit advice string. Given this advice string, an attacker could compute dis-
crete logarithms on the P-256 curve in online time 232. The precomputed advice
string would essentially be a “trapdoor” that would allow its holder to compute
discrete-logs on the curve in seconds.

The possibility of such devastating discrete-log preprocessing attacks, and
the lack of lower-bounds for such algorithms, leads us to ask:

How helpful can preprocessing be to generic discrete-log algorithms?

In this paper, we extend the classic model of generic algorithms to capture
preprocessing attacks. To do so, we introduce the notion of generic algorithms
with preprocessing for computational problems in cryptographic groups. These

The Discrete-Logarithm Problem with Preprocessing 417

algorithms make only black-box use of the group operation, but may perform a
large number of group operations during a preprocessing phase. Following prior
work on preprocessing attacks [28,32,35,45], we measure the complexity of such
algorithms by (a) the size of the advice string that the algorithm produces in the
preprocessing phase, and (b) the running time of the algorithm’s online phase.

These two standard cost metrics do not consider the preprocessing time
required to compute the advice string. Ignoring the preprocessing cost only
strengthens the resulting lower bounds, but it leaves open the question of how
much preprocessing is really necessary to compute a useful advice string. Towards
the end of this paper, we take up this question as well by extending our model
to account for preprocessing time.

1.1 Our Results

We prove new lower bounds on generic algorithms with preprocessing that relate
the time, advice, and preprocessing complexity of generic discrete-log algorithms,
and algorithms for related problems. We also introduce new generic preprocess-
ing attacks for the multiple-discrete-log problem and for certain distinguishing
problems in groups.

Lower Bounds for Discrete Log and CDH. We prove in Theorem 2 that
every generic algorithm that uses S bits of group-specific precomputed advice
and that computes discrete logarithms in online time T with success probability
ε must satisfy ST 2 = ˜Ω(εN), where the ˜Ω(·) notation hides logarithmic factors
in N . When S = T the bound shows that, for constant ε, the best possible
generic attack must use roughly N1/3 bits of advice and runs in online time
roughly N1/3.

Our lower bound is tight, up to logarithmic factors, for the full range of
parameters S, T , and ε, since the attack of Mihalcik [59] and Bernstein and
Lange [13], which we summarize in Sect. 7.1, gives a matching upper bound.
(These attacks sidestep Shoup’s N1/2-time lower bound for generic discrete-log
algorithms [71] by using more than N1/2 time in their preprocessing phase.) As
a consequence, beating the preprocessing algorithm of Mihalcik, Bernstein, and
Lange on the NIST P-256 curve, for example, would require developing a new
non-generic attack.

Our lower bound extends naturally to the computational Diffie-Hellman
problem, for which we also prove an ST 2 = ˜Ω(εN) lower bound
(Theorem 6), and the M -instance multiple-discrete-log problem, for which we
prove an ST 2/M +T 2 = ˜Ω(ε1/MMN) lower bound (Theorem 8). The attacks of
Sect. 7 show that these lower bounds are tight.

Lower Bound for DDH with Preprocessing. We also look at the more
subtle case of distinguishing attacks. We show in Theorem9, that every generic
distinguisher with preprocessing that achieves advantage ε against the decisional
Diffie-Hellman problem (DDH) must satisfy ST 2 = ˜Ω(ε2N). The quadratic
dependence on the error probability makes this bound weaker than the pre-
vious ones. We know of no DDH distinguisher that matches this lower bound for

418 H. Corrigan-Gibbs and D. Kogan

all parameter ranges (e.g., for ε = N−1/4), and we leave the question of whether
such a distinguisher exists as an open problem.

Lower Bound on Preprocessing Time. In addition, we prove lower bounds
on the amount of computation required to produce the advice string in the
preprocessing phase of a generic discrete-log algorithm. We show in Theorem 10
that any such algorithm that uses preprocessing time P , online time T , and
achieves success probability ε must satisfy: PT +T 2 = Ω(εN). Our lower bound
matches the preprocessing time used by the discrete-log preprocessing attack
of Mihalcik, Bernstein, and Lange, and essentially rules out the existence of
very fast generic algorithms that also use modest amounts of preprocessing. For
example, any generic algorithm that runs in online time T = N1/8 must use
close to N7/8 preprocessing time to succeed with good probability—no matter
how large of an advice string it uses.

New Preprocessing Attacks. Finally, in Theorem11, we introduce a new
preprocessing algorithm for the multiple-discrete-log problem that shows that
our lower bound is tight for constant ε. In addition, for the problem of distin-
guishing tuples of the form (g, gx, g(x

2)) from random, Theorem13 gives a new
algorithm that satisfies ST 2 = ˜O(ε2N). The existence of such an algorithm is
especially surprising because solving the (g, gx, g(x

2)) distinguishing problem is
as hard as computing discrete logarithms for online-only algorithms. In contrast,
our algorithm shows that this problem is substantially easier than computing
discrete logarithms for preprocessing algorithms: computing discrete logarithms
requires S = T = 1/ε = N1/4 while our new distinguishing attack requires
S = T = 1/ε = N1/5.

1.2 Our Techniques

The starting point of our lower bounds is an incompressibility argument, which
is also at the heart of classic lower bounds against preprocessing algorithms
(also known as “non-uniform algorithms”) for inverting one-way permuta-
tions [42,76,77] and random functions [32]. At a high level, our approach is
to show that if there exists a generic discrete-log algorithm A that (a) uses few
bits of preprocessed advice and (b) uses few online group operations, then we
can use such an algorithm A to compress a random permutation.

Incompressibility. The first technical challenge is that a straightforward appli-
cation of incompressibility techniques does not suffice in the setting of generic
groups. To explain the difficulty, let us sketch the argument that a random permu-
tation oracle π is one-way, even against preprocessing adversaries [28,42,76,77].
The argument builds a compression scheme by invoking A(x) on some point x in
the image of π and answering A’s queries to π. The key observation is that when A
produces its output y = π−1(x), we have learned some extra information about π
beyond the information that the query responses contain. In this way, each invo-
cation of A yields some “profit,” in terms of our knowledge of π. We can use this
profit to compress π.

The Discrete-Logarithm Problem with Preprocessing 419

To apply this argument to generic groups, we could replace the random per-
mutation oracle π by an oracle that implements the group operation for a random
group (We define the model precisely in Sect. 2.) The challenge is that a group-
operation oracle has extra structure that a random permutation oracle does not.
This extra structure fouls up the standard incompressibility argument, since the
query responses that the compression routine must feed to A might themselves
contain enough information to recover the discrete log that A will later output.
If this happens, the compression scheme will not “profit” at all from invoking
A, and we will not be able to use A to compress the oracle.

To handle this case, we notice that this sort of compression failure only occurs
when two distinct queries to the group oracle return the same string. By using a
slightly more sophisticated compression routine, which notices and compensates
for these “collision” events, we achieve compression even where the traditional
incompressibility argument would have failed. (Dodis et al. [33] use a similar
observation in their analysis of the RSA-FDH signature scheme.)

To keep track of when these collision events occur, we adopt an idea from
Shoup’s generic-group lower-bound proof [71], which does not use incompress-
ibility at all. Shoup’s idea is to keep a careful accounting of the information
that the adversary’s queries have revealed about the generic-group oracle at any
point during the execution. Our compression scheme exploits a similar account-
ing strategy, which allows it to halt the adversary A as soon as the compressor
notices that continuing to run A would be “unprofitable.”

Handling Randomized Algorithms. The second technical challenge we face is
in handling algorithms that succeed with arbitrarily small probability ε. The
standard incompressibility methods invoke the algorithm A on many inputs,
and the compression routine succeeds only if all of these executions succeed. If
the algorithm A fails often, then we will fail to construct a useful compression
scheme.

The näıve way around this problem would be to amplify A’s success prob-
ability by having the compression scheme run the algorithm A many times on
each input. The problem is that amplifying the success probability in this way
decreases the “profit” that we gain from A, since the compression scheme has
to answer many more group-oracle queries in the amplified algorithm than in
the unamplified algorithm. As a result, this näıve amplification strategy yields
an ST 2 = ˜Ω(ε2N) lower bound that is loose in its dependence on the success
probability ε.

Our approach is to leverage the observation, applied fruitfully to the random-
permutation model by De et al. [28], that it is without loss of generality to assume
that the compression and decompression algorithms share a common string of
independent random bits. Rather than amplifying the success probability of A by
iteration, the compression scheme simply finds a set of random bits in the shared
random string that cause A to produce the correct output. The compression
scheme then writes this pointer out as part of the compressed representation of
the group oracle. This optimization yields the tight ST 2 = ˜Ω(εN) lower bound.

420 H. Corrigan-Gibbs and D. Kogan

Along the way, we exploit the random self-reducibility of the discrete-log
problem to transform an average-case discrete-log algorithm, which succeeds on a
random instance with probability ε, to a worst-case algorithm, which succeeds on
every instance with probability ε. Using the random self-reduction substantially
simplifies the incompressibility argument, since it allows the compression routine
to invoke the algorithm A on arbitrary inputs.

Generalizing to Decisional Problems. The final technical challenge is to extend
our core incompressibility argument to give lower bounds for the decisional Diffie-
Hellman Problem (DDH). The difficulty with using a DDH algorithm to build
a compression scheme is that each execution of the DDH distinguisher only
produces a single bit of information. Furthermore, if the distinguishing advantage
ε is small, the distinguisher produces only a fraction of a bit of information. The
straightforward amplification would again work but would yield a very loose
ST 2 = ˜Ω(ε4N) bound.

To get around this issue, we execute the distinguisher on large batches of
input instances. We judiciously choose the batch size to balance the profit from
each batch with the probability that all runs in a batch succeed. Handling col-
lision events in this case requires extra care. Putting these ingredients together,
we achieve an ST 2 = ˜Ω(ε2N) lower bound for the DDH problem.

1.3 Related Work

This paper builds upon two major lines of prior work: one on preprocessing lower
bounds for symmetric-key problems, and the other on online lower bounds for
generic algorithms in groups. We prove preprocessing lower bounds for generic
algorithms and, indeed, our proofs use a combination of techniques from both
prior settings.

Incompressibility Methods. One prominent related area of research puts lower
bounds on the efficiency of preprocessing algorithms for inverting random func-
tions and random permutations. An early motivation was Hellman’s preprocess-
ing algorithm (“Hellman tables”) for inverting random functions [45]. Fiat and
Naor [35] later extended the technique to allow inverting general functions and
Oechslin [63] proposed practical improvements to Hellman’s construction.

Yao [77] used an incompressibility argument to show the optimality of Hell-
man’s method for inverting random permutations. Gennaro and Trevisan [42]
and Wee [76] proved related lower bounds, also using incompressibility methods.
Barkan et al. [9] showed that, in a restricted model of computation, Hellman’s
method is optimal for inverting random functions (not just permutations).

De et al. [28] demonstrated how to use randomized encodings, essentially an
incompressibility argument augmented with random oracles, to give alternative
proofs of preprocessing lower bounds on the complexity of inverting random per-
mutations and breaking general pseudo-random generators. We adopt the pow-
erful randomized encoding technique of De et al. in our proofs. Dodis et al. [32]
applied this technique to show that salting [60] defeats preprocessing attacks
against certain computational tasks (e.g., collision finding) in the random-oracle

The Discrete-Logarithm Problem with Preprocessing 421

model [10]. Abusalah et al. [2] used the technique to construct proofs of space
from random functions.

Unruh [74] gave an elegant framework for proving the hardness of compu-
tational problems in the random-oracle model against preprocessing adversaries
(or against algorithms with “auxiliary input,” in his terminology). He proves
that if a computational problem is hard when a certain number of points of
the random oracle are fixed (“presampled”), then the problem is hard in the
random-oracle model against preprocessing adversaries using a certain amount
of oracle-dependent advice. This presampling technique gives an often simpler
alternative to incompressibility-based lower bounds. Coretti et al. [24] recently
introduced new variants of Unruh’s presampling technique that give tighter lower
bounds against preprocessing adversaries for a broad set of problems.

Generic-Group Lower Bounds. All of the aforementioned work studies precom-
putation attacks on one-way permutations and one-way functions, which are
essentially symmetric-key primitives. In the setting of public-key cryptography,
a parallel—and quite distinct—line of work studies lower bounds on algorithms
for the discrete-log problem and related problems in generic groups. All of these
lower bounds study online-only algorithms (i.e., that do not use preprocessing).

In particular, Shoup [71] introduced the modern generic-group model to cap-
ture algorithms that make black-box use of a group operation. In Shoup’s model,
which draws on earlier treatments of black-box algorithms for groups [6,61], the
discrete-logarithm problem in a group of prime order N requires time Ω(N1/2)
to solve. Shoup’s model captures many popular discrete-log algorithms, includ-
ing Shanks’ Baby-Step Giant-Step algorithm [70], Pollard’s Rho and Kangaroo
algorithms [67], and the Pohlig-Hellman algorithm [66]. For computing discrete
logarithms on popular elliptic curves, variants of these algorithms are the best
known [11,39,75,80].

Subsequent works used Shoup’s model to prove lower bounds against
generic algorithms for RSA-type problems [27], knowledge assumptions [30], the
multiple-discrete-log problem [79], assumptions in groups with pairings [15], and
for algorithms with access to additional oracles [57]. A number of works also
prove the security of specific cryptosystems in the generic-group model [20,21,
29,36,49,69,72]. Other work studies computational problems in generic rings, to
analyze generic algorithms for RSA-type problems [4,55].

Preprocessing Attacks in Generic Groups. The works most relevant to our
new algorithms with preprocessing are Mihalcik’s master’s thesis [59], which sur-
veys preprocessing attacks on the discrete-logarithm problem, and the paper of
Bernstein and Lange [13], which demonstrated preprocessing attacks—both
generic and non-generic—on a wide range of symmetric- and public-key primitives.
We design new preprocessing attacks against the multiple-discrete-logarithm
problem and against a large class of distinguishing problems in groups.

Non-generic discrete-log algorithms. In certain groups there are non-generic
discrete-log attacks that dramatically outperform the generic ones. The land-
scape of non-generic discrete-log algorithms is vast, so we refer the reader to the

422 H. Corrigan-Gibbs and D. Kogan

2000 survey of Odlyzko [62] and the 2014 survey of Joux et al. [47] for details.
To give a taste of these results: when computing discrete logarithms in finite
fields Fpn , the running time of the best discrete logarithms depend on the rela-
tive size of p and n. When p � n, a recent algorithm of Barbulescu et al. [8]
computes discrete logarithms in quasi-polynomial time. When p � n, the best
methods are based on “index calculus” techniques and run in sub-exponential time
eO((log p)1/3(log log p)2/3) [44,56]. The analysis of these algorithms is heuristic, in that
it relies on some unproved (but reasonable) number-theoretic assumptions.

In certain classes of elliptic-curve groups, there are non-generic algorithms for
the discrete-log problem that outperform the generic algorithms [41]; some such
algorithms run in sub-exponential time [58], or even in polynomial time [73]. In
the standard elliptic-curve groups used for key exchange (e.g., NIST P-256) how-
ever, the generic preprocessing attacks discussed in this paper are still essentially
the best known.

Non-generic discrete-log algorithms also benefit from preprocessing. Cop-
persmith demonstrated a sub-exponential-time preprocessing attack on the
integer factorization problem [23] that also yields a non-generic sub-exponential-
time preprocessing attack on the finite-field discrete-log problem [7,13]. Adrian
et al. [3] show how to use such an attack compute discrete logs modulo a 512-bit
prime in less than a minute of online time.

Organization of This Paper. In Sect. 2, we introduce notation, our model of
computation, and a key lemma. In Sect. 3, we prove a lower bound on generic
algorithms with preprocessing for the discrete-logarithm and CDH problems. In
Sects. 4 and 5, we extend these bounds to the multiple-discrete-logarithm and
DDH problems. In Sect. 6, we investigate the amount of precomputation such
generic preprocessing algorithms require. In Sect. 7, we introduce new generic
preprocessing attacks. In Sect. 8, we conclude with open questions.

2 Background

In this section, we recall the standard model of computation in generic groups,
we introduce our model of generic algorithms with preprocessing, and we recall
an incompressibility lemma that will be essential to our proofs.

Notation. We use ZN to denote the ring of integers modulo N , [N] indicates
the set {1, . . . , N}, and Z

+ indicates the set of positive integers. Throughout this
paper, we take N to be prime, so ZN is also a field. We use the notation x ← 5
to indicate the assignment of a value to a variable and, when S is a finite set,
the notation x ←R S indicates that x is a sample from the uniform distribution
over S. For a probability distribution D, d ∼ D indicates that d is a random
variable distributed according to D. The statement f(x) =def x2 − x indicates the
definition of a function f . All logarithms are base two, unless otherwise noted.

We use the standard Landau notation O(·), Θ(·), Ω(·), and o(·) to indicate
the asymptotics of a function. For example f(N) = O(g(N)) if there exists a
constant c > 0 such that for all large enough N , |f(N)| ≤ c · g(N). When

The Discrete-Logarithm Problem with Preprocessing 423

there are many variables inside the big-O, as in f(N) = O(N/ST), all variables
other than N are implicit functions of N . The tilde notation ˜O(·) and ˜Ω(·) hides
polylogarithmic factors in N . So, we can say for example that S log2 N = ˜O(S).

Generic Algorithms. Following Shoup [71], we model a generic group using a
random injective function σ that maps the integers in ZN (representing the set of
discrete logarithms) to a set of labels L (representing the set of group elements).
We then write the elements of an order-N group as {σ(1), σ(2), . . . , σ(N)},
instead of the usual {g, g2, · · · , gN}. We often say that i ∈ ZN is the “discrete
log” of its label σ(i) ∈ L.

The generic group oracle Oσ(·, ·) for a labeling function σ takes as input two
strings si, sj ∈ L and responds as follows:

– If the arguments to the oracle are in the image of σ, then we can write
si = σ(i) and sj = σ(j). The oracle responds with σ(i+j), where the addition
is modulo the group order N .

– If either of the arguments to the oracle falls outside of the image of σ, the
oracle returns ⊥.

Given such an oracle and a label σ(x), it is possible to compute σ(αx) for any
constant α ∈ ZN using O(log N) oracle queries, by repeated squaring.

Some authors define the group oracle Oσ with a second functionality that
maps labels σ(x) to their inverses σ(−x) in a single query. Our oracle can simu-
late this inversion oracle in at most O(log N) queries. To do so: given an element
σ(x), compute the element σ((N − 1)x) = σ(−x). Since providing an inversion
oracle can decrease a generic algorithm’s running time by at most a logarithmic
factor, we omit it for simplicity.

A generic algorithm for ZN on L is a probabilistic algorithm that takes as
input a list of labels (σ(x1), . . . , σ(xL)) and has oracle access to Oσ. We measure
the time complexity of a generic algorithm by counting the number of queries it
makes to the generic group oracle.

Although the generic algorithms we consider may be probabilistic, we require
that for every choice of σ, inputs, and random tapes, every algorithm halts after
a finite number of steps. In this way, for every group order N ∈ Z

+, we can
compute an upper bound on the number of random bits the algorithm uses by
iterating over all possible labelings, inputs, and random tapes. For this reason,
we need only consider finite probability spaces in our discussion.

Generic Algorithms with Preprocessing. A generic algorithm with prepro-
cessing is a pair of generic algorithms (A0,A1) for ZN on L such that:

– Algorithm A0 takes the label σ(1) as input, makes some number of queries
to the oracle Oσ (“preprocessing queries”), and outputs an advice string stσ.

– Algorithm A1 takes as input the advice string stσ and a list of labels
(σ(x1), . . . , σ(xL)), makes some number of queries to the oracle Oσ (“online
queries”), and produces some output.

424 H. Corrigan-Gibbs and D. Kogan

We typically measure the complexity of the algorithm (A0,A1) by (a) the size
of the advice string stσ that A0 outputs, and (b) the number of oracle queries
that algorithm A1 makes.

In Sect. 6, we consider generic algorithms with preprocessing for which the
running time of A0 (i.e., the preprocessing time) is also bounded. In all other
sections, we put no running time bound on A0, so without loss of generality, we
may assume in these sections that A0 is deterministic.

Incompressibility Arguments. We use the following proposition of De
et al. [28], which formalizes the notion that it is impossible to compress every
element in a set X to a string less than log |X | bits long, even relative to a
random string.

Proposition 1 (De, Trevisan, and Tulsiani [28]). Let E : X × {0, 1}ρ →
{0, 1}m and D : {0, 1}m × {0, 1}ρ → X be randomized encoding and decoding
procedures such that, for every x ∈ X , Prr←{0,1}ρ

[

D(E(x, r), r) = x
] ≥ δ. Then

m ≥ log |X | − log 1/δ.

Notice that the encoding and decoding algorithms of Proposition 1 take the
same random string r as input. Additionally, that bound on the string length m
is independent of the number of random bits that these routines take as input.
As a consequence, Proposition 1 holds even when the algorithms E and D have
access to a common random oracle.

3 Lower Bound for Discrete Logarithms

In this section we prove that every generic algorithm that uses S bits of group-
specific precomputed advice and that computes discrete logs in online time T
with probability ε must satisfy ST 2 = ˜Ω(εN).

Theorem 2. Let N be a prime. Let (A0,A1) be a pair of generic algorithms
for ZN on L, such that A0 outputs an S-bit state, A1 makes at most T oracle
queries, and

Pr
σ,x,A1

[

AOσ
1

(

AOσ
0 (σ(1)), σ(x)

)

= x
]

≥ ε,

where the probability is taken over the uniformly random choice of the labeling σ,
the instance x ∈ ZN , and the coins of A1. Then ST 2 = ˜Ω(εN).

Remark. The statement of Theorem 2 models the case in which the group gen-
erator σ(1) is fixed, and the online algorithm must compute the discrete-log of
the instance σ(x) with respect to the fixed generator. Using a fixed generator is
essentially without loss of generality, since an algorithm that computes discrete
logarithms with respect to one generator can also be used to compute discrete
logarithms with respect to any generator by increasing its running time by a
factor of two. Because of this, we treat the generator as fixed throughout this
paper.

The Discrete-Logarithm Problem with Preprocessing 425

Remark. Theorem 2 treats only prime-order groups. In the more general case of
composite-order groups a similar result holds, except that the bound is ST 2 =
˜Ω(εp), where p is the largest prime factor of the group order. Since the techniques
needed to arrive at this more general result are essentially the same as in the
proof of Theorem2, we focus on the prime-order case for simplicity.

We first give the idea behind the proof of Theorem2 and then present a
detailed proof.

Proof Idea for Theorem 2. Our proof uses an incompressibility argument. The
basic idea is to compress the random labeling function σ using a discrete-log
algorithm with preprocessing (A0,A1). To do so, we write A0’s S-bit advice
about σ into the compressed string. We then run A1 on many discrete-log
instances σ(x) and we write the T responses to A1’s queries into the compressed
string. For each execution of A1, we only need to write T values of σ into the
compressed string, but we get T +1 values of σ back, since the output of A1(σ(x))
gives us the value of x “for free.” If S and T are simultaneously small, then we
can compress σ using this method, which yields a contradiction.

However, this näıve technique might never yield any compression at all. The
problem is that the T responses to A1’s queries might contain “collision events,”
in which the response to one of A1’s queries is equal to a previously seen query
response. For example, say that A1 makes a query of the form Oσ(σ(x), σ(3))
and the oracle’s response is a string σ(7) that also appeared in response to a
previous query. In this case, just seeing the queries of A1 and their responses is
enough to conclude that x+3 = 7 mod N , which immediately yields the discrete
log x = 4. This is problematic because even if A1 eventually halts and outputs
x = 4, we have not received any “profit” from A1 since the T query responses
themselves already contain all of the information we need to conclude that x = 4.

To profit in spite of these collisions, our compression scheme halts the exe-
cution of A1 as soon as it finds such a collision, since every collision event yields
the discrete log being sought. The profit comes from the fact that, as long as
the list of previous query responses is not too long, encoding a pointer to the
collision-causing response requires many fewer bits than encoding an arbitrary
element in the range of σ.

Our lower bound needs to handle randomized algorithms A = (A0,A1) that
succeed with arbitrarily small probability ε. Yet to use A to compress σ, the
algorithm A1 must succeed with very high probability. That is because the com-
pression routine may invoke A1 as many as N times, and each execution must
succeed for the compression scheme to succeed. The random self-reducibility of
the discrete-log problem allows us to convert an average-case algorithm that
succeeds on an ε fraction of instances (for a given labeling σ) to a worst-case
algorithm that succeeds with probability ε on every instance (for a given
labeling σ).

We still need to handle the fact that ε may be quite small. The straightforward
way to amplify the success probability of A1 would be to construct an algorithm
A′

1 that runs R independent executions of A1 and that succeeds with probability
at least 1−εR. We could then use the amplified algorithm (A0,A′

1) to compress σ.

426 H. Corrigan-Gibbs and D. Kogan

The problem in our setting is that this simple amplification strategy yields
a loose lower bound: if we run A1 for R iterations, and each iteration makes T
queries, our compression scheme ends up “paying” for RT queries instead of T
queries for each bit of “profit” it gets (i.e., for each output of A′

1). Carrying this
argument through yields an ST 2 = ˜Ω(ε2N) bound, which is worse than our goal
of ˜Ω(εN).

Our idea is to leverage the correlated randomness between the compressor
and decompressor to our advantage. In our compression scheme, the compressor
runs A1 using R sets of independent random coins, sampled from the random
string shared with the decompressor. The compressor then writes into the com-
pressed representation a log R-bit pointer to a set of random coins (if one exists)
that caused A1 to succeed. Using this strategy, instead of paying for RT queries
per execution of A1, the compression scheme only pays for T queries, plus a
small pointer. We can then choose R large enough to ensure that at least one of
the R executions succeeds with extremely high probability. �

We now turn to the proof.
We say that a discrete-log algorithm succeeds in the worst case if it succeeds

on every problem instance σ(x) for x ∈ ZN . We say that a discrete-log algorithm
succeeds in the average case if it succeeds on a random problem instance σ(x)
for x ←R

ZN .
We first use the random self-reducibility of the discrete-log problem to show

that an average-case discrete-log algorithm implies a worst-case discrete-log algo-
rithm. A lower bound on worst-case algorithms is therefore enough to prove
Theorem 2. This is formalized in the next lemma.

Lemma 3 (Adapted from Abadi, Feigenbaum, and Kilian [1]). Let N be
a prime. Let (A0,A1) be a pair of generic algorithms for ZN on L such that A0

outputs an S-bit advice string and A1 makes at most T oracle queries. Then,
there exists a generic algorithm A′

1 that makes at most T + O(log N) oracle
queries and, for every σ : ZN → L, if Prx,A1

[AOσ
1 (AOσ

0 (σ(1)), σ(x)) = x
] ≥ ε,

then for every x ∈ ZN , PrA′
1

[A′Oσ
1 (AOσ

0 (σ(1)), σ(x)) = x
] ≥ ε.

Proof. On input (stσ, σ(x)), algorithm A′
1 executes the following steps: First,

it samples a random r ←R
ZN and computes σ(x + r), using O(log N) group

operations. Then, it runs A1(stσ, σ(x + r)). Finally, when A1 outputs a discrete
log x′, algorithm A′

1 outputs x = x′ − r mod N .
Notice that A′

1 invokes A1 on σ(x + r), which is the image of a uniformly
random point in ZN . Since A1 succeeds with probability at least ε over the
random choice of x ←R

ZN and its coins, A′
1 succeeds with probability ε, only

over the choice of its coins. �
To prove Theorem 2, we will use the generic algorithms (A0,A1) to construct

a randomized encoding scheme that compresses a good fraction of the labeling
functions σ. The following lemma gives us such a scheme.

Lemma 4. Let N be a prime. Let G = {σ1, σ2, . . . } be a subset of the labeling
functions from ZN to L. Let (A0,A1) be a pair of generic algorithms for ZN

The Discrete-Logarithm Problem with Preprocessing 427

on L such that for every σ ∈ G and every x ∈ ZN , A0 outputs an S-bit advice
string, A1 makes at most T oracle queries, and (A0,A1) satisfy

Pr
A1

[

AOσ
1

(

AOσ
0 (σ(1)), σ(x)

)

= x
]

≥ ε .

Then, there exists a randomized encoding scheme that compresses elements of G
to bitstrings of length at most

log
|L|!

(|L| − N)!
+ S + 1 − εN

6T (T + 1)(log N + 1)
,

and succeeds with probability at least 1/2.

We prove Lemma 4 in Sect. 3.1. Given the above two lemmas, we can prove
Theorem 2.

Proof of Theorem 2. We say that a labeling σ is “good” if (A0,A1) computes
discrete logs with probability at least ε/2 on σ. More precisely, a labeling σ is
“good” if:

Pr
x,A1

[

AOσ
1

(

AOσ
0 (σ(1)), σ(x)

)

= x
]

≥ ε/2 ,

where the probability is taken over the choice of x ∈ ZN as well as over the
random tape of A1. Let G be the set of good labelings. A standard averaging
argument [5, Lemma A.12] guarantees that an ε/2 fraction of injective mappings
from ZN to L are good. Then |G| ≥ ε/2 · |L|!/(|L| − N)!, where we’ve used the
fact that the number of injective functions from ZN to L is |L|!/(|L| − N)!.

Lemma 3 then implies that there exists a pair of generic algorithms (A0,A′
1)

such that for every σ ∈ G and every x ∈ ZN , A′Oσ
1 (AOσ

0 (σ(1)), σ(x)) makes at
most T ′ = T + O(log N) queries, and outputs x with probability at least ε/2.
Lemma 4 then implies that we can use (A0,A′

1) to compress any labeling σ ∈ G
to a string of bitlength at most

log
|L|!

(|L| − N)!
+ S + 1 − (ε/2)N

6T ′(T ′ + 1)(log N + 1)
, (1)

where the encoding scheme works with probability at least 1/2. By Proposition 1,
this length must be at least log |G| − log 2. Thus, it must hold that

log
|L|

(|L| − N)!
+ S + 1 − εN

12T ′(T ′ + 1)(log N + 1)
≥ log

|L|!
(|L| − N)!

− log
4
ε

.

Rearranging, we obtain

S ≥ εN

O(T 2) · polylog(N)
− log

8
ε

.

We may assume without loss of generality that ε ≥ 1/N , since an algorithm
that just guesses the discrete log achieves this advantage. Therefore, log 8

ε =
O(log N), and we get

(S + O(log N))T 2 = ˜Ω(εN) ,

which implies that ST 2 = ˜Ω(εN). �

428 H. Corrigan-Gibbs and D. Kogan

3.1 Proof of Lemma 4

Recall that a randomized encoding scheme consists of an encoding and a decod-
ing routine, such that both routines take the same string r of random bits as
input. The encoding scheme we construct for the purposes of Lemma 4 operates
on labelings σ. That is, the encoding routine takes a labeling σ ∈ G and the ran-
dom bits r, and constructs a compressed representation of σ. Correspondingly,
the decoding routine takes this compressed representation and the same random
bits r, and reconstructs σ.

While the encoding routine runs, it builds up a table of pairs (f, σ(i)) ∈
(ZN [X] × L). The decoder constructs a similar table during its execution. At
any point during the encoding process, the table contains a representation of
the information about σ that the encoder has communicated to the decoder
up to the current point in the encoding process. The indeterminate X that
appears in this table represents a discrete log value x ∈ ZN , which the decoder
does not know. Once the decoder has enough information to determine x, each
of the routines replaces every non-constant polynomial f(X) in the table with
its evaluation f(x) at the point x. Subsequently, both routines can introduce
a new variable X into the table, which represents a different unknown discrete
logarithm in ZN . Therefore, at any point during the execution, there is at most a
single indeterminate X in the table. Finally, when each of the routines completes,
the table contains only constant polynomials, and the table fully determines σ.

We stress that the table is not part of the compressed representation of σ,
but is part of the internal state of both routines.

Simulating A1’s Random Tape. Since the algorithm A1 is randomized, each
time the encoder (or decoder) runs the algorithm A1, it must provide A1 with
a fresh random tape. Both routines take as input a common random bitstring,
and the encoder can reserve a substring of it to feed to each invocation of A1

as that algorithm’s random tape. Since A1 always terminates, the encoder can
determine an upper bound on the number of random bits that A1 will need for
a given group size N and can partition the common random string accordingly.

The decoder follows the same process, and the fact that the encoder and
decoder take the same random string r as input ensures that A1 behaves iden-
tically during the encoding and decoding processes.

Encoding Routine. The encoding routine, on input σ, uses two parameters
d,R ∈ Z

+, which we will set later, and proceeds as follows:

1. Compute stσ ← A0(σ(1)). The encoder can respond to all of the algorithm’s
oracle queries since the encoder knows all of σ. Write the S-bit output stσ
into the encoding.

2. Encode the image of σ as a subset of L using log
(|L|

N

)

bits, and append it to
the encoding.

3. Initialize the table of pairs to an empty list.
4. Repeat d times:

The Discrete-Logarithm Problem with Preprocessing 429

(a) Choose the first string in the lexicographical order of the image of σ that
does not yet appear in the table. Call this string σ(x) and add the pair
(X,σ(x)) to the table.

(b) Run A1(stσ, σ(x)) up to R times using independent randomness from the
encoder’s random string in each run. The encoder answers all of A1’s
oracle queries using its knowledge of σ. If A1 fails on all R executions,
abort the entire encoding routine. Otherwise, write into the encoding the
index r∗ ∈ [R] of the successful execution (using log R bits).

(c) Write a placeholder of log T zeros into the encoding. (The routine over-
writes these zeros with a meaningful value once this execution of A1

terminates.)
(d) Rerun A1(stσ, σ(x)) using the r∗-th random tape. While A1 is running,

it makes a number of queries and then outputs its guess of the discrete
log x. The encoding routine processes each of A1’s queries (σ(i), σ(j)) as
follows:
i. If either of the query arguments is outside of the range of σ, reply ⊥

and continue to the next query.
ii. If either (or both) of the arguments is missing from the table, then

this is an “unexpected” query input. Add each such input, together
with its discrete log, to the table, and append the discrete-log value
i to the encoding, using log(N − |Table|) bits.

iii. Otherwise, look up the linear polynomials fi, fj representing σ(i),
σ(j) in the table, and compute the linear polynomial fi + fj rep-
resenting the response σ(i + j). We then distinguish between three
cases:
A. If (fi + fj , σ(i + j)) is already in the table, simply reply with

σ(i + j).
B. If σ(i + j) does not appear in the table, then add σ(i + j) to the

encoding, using log(N − |Table|) bits, and reply with σ(i + j).
C. If σ(i + j) appears in the table but its discrete log in the table is

a polynomial fk such that fk �= fi + fj , encode the reply to this
query as a (log |Table|)-bit pointer to the table entry (fk, σ(i+ j))
and add this pointer the encoding. Stop this execution of A1, and
indicate this “early stop” by writing the actual number of queries
t ≤ T into its placeholder above.

(e) When the execution A1(stσ, σ(x)) outputs x, evaluate all of the polyno-
mials in the table at the point x.

5. Append the remaining values that do not yet appear in the table to the
encoding in lexicographic order.

Decoding Routine. The decoder proceeds analogously to the encoder. A key
property of our randomized encoding scheme is that each position in the encoded
string corresponds to the same state of the table in both the encoding and the
decoding routines. In other words, when the decoding routine reads a certain posi-
tion in the encoded string, its internal table is identical to the internal table the

430 H. Corrigan-Gibbs and D. Kogan

encoding routine had when it wrote to that position in the encoded string. The
table allows the decoder to correctly classify each query to the correct category.

Note that in the case of a collision query (case C above), the decoder can
use the collision to recover the value x of the indeterminate X. Specifically, for a
query (u, v) where u, v ∈ L, the decoder reads the reply w ∈ L from the encoding
string, looks up the polynomials fu, fv, and fw in the table, and solves for X the
equation fw = fu +fv mod N . This equation always has a unique solution, since
N is a prime and fu, fv and fw are linear polynomials in X such that fu + fv

is not identical to fw.
The full description of the decoder appears in the full version of this

paper [25].

Encoding Length. The encoding contains:

– the advice to the algorithm about the labeling σ (S bits),
– the encoding of the image of σ (log

(|L|
N

)

bits),
– for each of the d invocations of A1, the index r∗ of the random tape on which

it succeeded (d · log R bits in total),
– for the i-th entry added to the table (0 ≤ i < N), if the entry was added

• as the result of resolving a collision within the table, log i bits,
• from the output of A1, 0 bits,
• otherwise, log(N − i) bits,

– a counter indicating the number of queries for which to run each execution
(d · log T bits in total).

Observe that each of the d executions of A1 saves log(N −|Table|) bits compared
to the straightforward encoding (either due to A1 successfully computing the
discrete log of its input, or finding a collision), but incurs an additional cost
of at most log R + log T + log |Table| bits. Since each execution of A1 adds at
most 3T + 1 rows to the table (T replies plus 2T unexpected inputs and either
one collision or one output of A1) we have that |Table| ≤ d · (3T + 1). Setting
d = �N/((2RT + 1)(3T + 1))� guarantees that each of the d executions results
in a net profit of

log
N − |Table|
RT |Table| ≥ log

N − d(3T + 1)
RdT (3T + 1)

≥ log
1 − 1

2RT+1
RT

2RT+1

= log 2 = 1

bit. In this case, the total bitlength of the encoding is at most

S + log
(|L|

N

)

+
N−1
∑

i=0

log(N − i) − d = log
|L|!

(|L| − N)!
+ S − d

≤ log
|L|!

(|L| − N)!
+ S − N

(2RT + 1)(3T + 1)
+ 1

≤ log
|L|!

(|L| − N)!
+ S − N

6RT (T + 1)
+ 1 .

The Discrete-Logarithm Problem with Preprocessing 431

We need to choose R large enough to ensure that the encoding routine fails
with probability at most 1/2. If we choose R = (1+log N)/ε, then the probability
that R invocations of A1 all fail is, by a union bound, at most (1−ε)R ≤ e−εR ≤
2−εR ≤ 2−1−log N ≤ 1/(2N). The encoding scheme invokes A1 on at most N
different inputs, so by a union bound, the probability that any invocation fails
is at most 1/2. Overall, the encoding length is at most:

log
|L|!

(|L| − N)!
+ S + 1 − εN

6T (T + 1)(log N + 1)
bits,

which completes the proof of Lemma 4. �

3.2 Discrete Logarithms in Short Intervals

When working in groups of large order N , it is common to rely on the hardness
of the short-exponent discrete-log problem, rather than the standard discrete-log
problem [43,52,64,65]. In the usual discrete-log problem, a problem instance is
a pair of the form (g, gx) ∈ G

2 for x ←R
ZN . The short-exponent problem is

identical, except that x is sampled at random from {1, . . . , W} ⊂ ZN , for some
interval width parameter W < N . Using short exponents speeds up the Diffie-
Hellman key-agreement protocol when it is feasible to set the interval width W
to be much smaller than the group order N [64]. A variant of Pollard’s “Lambda
Method” [40,67] solves the short-exponent discrete-log problem in every group
in time O(W 1/2), so W cannot be too small.

The following corollary of Theorem2 shows that the short-exponent problem
is no easier for generic algorithms with preprocessing than computing a discrete-
logarithm in an order-W group.

Corollary 5 (Informal). Let A be a generic algorithm with preprocessing that
solves the short-exponent discrete-log problem in an interval of width W . If A
uses S bits of group-specific advice, runs in online time T , and succeeds with
probability ε, then ST 2 = ˜Ω(εW).

Proof. We claim that the algorithm A of the corollary solves the standard
discrete-log problem with probability ε′ = ε · (W/N). The reason is that a stan-
dard discrete-log instance gx for x ←R

ZN has a short exponent (i.e., x ∈ [W])
with probability W/N . Algorithm A solves these short instances with probabil-
ity ε. By Theorem 2, ST 2 = ˜Ω(ε′N) = ˜Ω(εW). �

As an application: decryption in the Boneh-Goh-Nissim cryptosystem [18]
requires solving a short-exponent discrete-log problem in an interval of width
W , for a polynomially large width W . The designers of that system suggest
using a size-W table of precomputed discrete logs (i.e., S = ˜O(W)) to enable
decryption in constant time. Corollary 5 shows that the best generic decryption
algorithm that uses a size-S table requires roughly

√

W/S time.

432 H. Corrigan-Gibbs and D. Kogan

3.3 The Computational Diffie-Hellman Problem

A generic algorithm for the computational Diffie-Hellman problem takes as
input a triple of labels (σ(1), σ(x), σ(y)) and must output the label σ(xy).
The following theorem demonstrates that in generic groups—even allowing for
preprocessing—the computational Diffie-Hellman problem is as hard as comput-
ing discrete logarithms.

Theorem 6 (Informal). Let A = (A0,A1) be a generic algorithm with pre-
processing for the computational Diffie-Hellman problem in a group of prime
order N . If A uses S bits of group-specific advice, runs in online time T , and
succeeds with probability ε, then ST 2 = ˜Ω(εN).

We present only the proof idea, since the structure of the proof is very similar
to that of Theorem 2.

Proof Idea. The primary difference from the proof of Theorem 2, is that, we run
A1 on pairs of labels (σ(x), σ(y)), and a successful run of A1 produces the CDH
value σ(xy). Since we run A1 on two labels at once, the encoder’s table now has
two formal variables: X and Y .

In this case, whenever the encoder encounters a collision, it gets a single linear
relation on X and Y modulo the group order N . Since there are at most N solu-
tions (x0, y0) to a linear relation in X and Y over ZN , the encoder can describe the
solution to the decoder using log(N − |Table|) bits. The encoder gets some profit,
in terms of encoding length, since it will get two discrete logs for the cost of one
discrete log and one pointer into the table (of length log |Table| bits).

The rest of the proof is as in Theorem 2. �

3.4 Lower Bounds for Families of Groups

The lower bound of Theorem2 suggests that one way to mitigate the risk of
generic preprocessing attacks is to increase the group size. Doubling the size of
group elements from log N to 2 log N recovers the same level of security as if
the attacker could not do any preprocessing. The downside of this mitigation
strategy is that increasing the group size also increases the cost of each group
operation and requires using larger cryptographic keys (e.g., when using the
group for Diffie-Hellman key exchange [31]).

One might ask whether it would be possible to defend against preprocessing
attacks without having to pay the price of using longer keys. One now-standard
method to defend against preprocessing attacks when using a common crypto-
graphic hash function H is to use “salts” [60]. When using salts, each user u
of the hash function H chooses a random salt value su from a large space of
possible salts. User u then uses the salted function Hu(x) =def H(su, x) as her
hash function, and the salt value u can be made public. Chung et al. [22] showed
that this approach can result in obtaining collision-resistant hashing against pre-
processing attacks, and Dodis et al. [32] demonstrated the effectiveness of this
approach for a variety of cryptographic primitives.

The Discrete-Logarithm Problem with Preprocessing 433

The analogue to salting in generic groups would be to have a large family of
groups (e.g., of elliptic-curve groups) {Gk}K

k=1 indexed by a key k. Rather than
having all users share a single group—as is the case today with NIST P-256—
different users and systems could use different groups Gk sampled from this large
family. In particular, pairs of users executing the Diffie-Hellman key-exchange
protocol could first jointly sample a group Gk from this large family and then
perform their key exchange in Gk.

We show that using group families in this way effectively defends against
generic preprocessing attacks, as long as the family contains a large enough
number of groups.

To model group families, we replace the labeling function σ : ZN → L with
a keyed family of labeling functions σkey : [K] × ZN → L. The keyed generic-
group oracle Oσkey(·, ·, ·) then takes a key k and two labels σ1, σ2 ∈ L and
returns σkey(k, x + y) if there exist x, y ∈ ZN such that σkey(k, x) = σ1 and
σkey(k, y) = σ2. The oracle returns ⊥ otherwise. In addition, when fed the pair
(k,), for a key k ∈ [K] and a special symbol 	, the oracle returns the identity
element in the kth group: σ(k, 1).

The following theorem demonstrates that using a large keyed family of groups
effectively defends against generic preprocessing attacks:

Theorem 7. Let N be a prime. Let (A0,A1) be a pair of generic algorithms for
[K]×ZN on L, such that A0 outputs an S-bit state, A1 makes at most T oracle
queries, and

Pr
σ,k,x,A1

[

AOσkey
1

(

AOσkey
0 (), k, σ(k, x)

)

= x
]

≥ ε ,

where the probability is taken over the uniformly random choice of the label-
ing σkey, the key k ∈ [K], the instance x ∈ ZN , and the coins of A1. Then
ST 2 = ˜Ω(εKN).

The proof of Theorem7 appears in the full version of this paper [25]. The
structure of the proof follows that of Theorem2, except that we need some extra
care to handle the fact that an adversary may query the oracle at many different
values of k in a single execution.

4 Lower Bound for Computing Many Discrete
Logarithms

A natural extension of the standard discrete-log problem is the multiple-discrete-
log problem [37,48,54,78,79], in which the adversary’s task is to solve M
discrete-log problems at once. This problem arises in the setting of multiple-
instance security of discrete-log-based cryptosystems. If an adversary has a list
of M public keys (gx1 , . . . , gxM) in some group G = 〈g〉 of prime order N , we
would like to understand the cost to the adversary of recovering all M secret
keys x1, . . . , xM ∈ ZN .

434 H. Corrigan-Gibbs and D. Kogan

Solving the multiple-discrete-log problem cannot be harder than solving M
instances of the standard discrete-log problem independently using ˜O(M

√
N)

time overall. One can however do better: generic algorithms due to Kuhn and
Struik [54] and Fouque, Joux, and Mavromati [37] solve it in time ˜O(

√
MN).

These algorithms achieve a speed-up over solving M discrete-log instances in
sequence by reusing some of the work between instances. Yun [79] showed that in
the generic-group model, these algorithms are optimal up to logarithmic factors
by proving an Ω(

√
NM)-time lower bound for online-only algorithms, subject

to the natural restriction that M = o(N).
Our methods give the more general ST 2 = ˜Ω(ε1/MNM) generic lower bound

for the M -instance multiple-discrete-log problem with preprocessing. For the spe-
cial case of algorithms without preprocessing, our bound gives T = ˜Ω(

√
NM),

which matches the above upper and lower bounds. An additional benefit of our
analysis it that it handles arbitrarily small success probabilities ε, whereas Yun’s
bound applies only to the ε = Ω(1) case.

Let x̄ = (x1, . . . , xM) ∈ Z
M
N and, for a labeling σ : ZN → L, define the vector

σ(x̄) = (σ(x1), . . . , σ(xM)) ∈ LM . We restrict ourselves to the case of M ≤ T ,
as otherwise the algorithm cannot even afford to perform a group operation on
each of its inputs.

Theorem 8. Let N be a prime. Let (A0,A1) be a pair of generic algorithms
for ZN on L such that A0 outputs an S-bit advice string, A1 makes at most T
oracle queries,

Pr
σ,x̄,A1

[

AOσ
1

(AOσ
0 (σ(1)), σ(x̄)

)

= x̄
]

≥ ε,

where the probability is taken over the random choice of the labeling σ, a random
input vector x̄ ∈ Z

M
N (for M ≤ T), and the coins of A1. Then

ST 2/M + T 2 = ˜Ω(ε1/MNM).

We prove this theorem in the full version of this paper [25].
The proof follows the proof of Theorem2, except the encoder now runs A1

on M labels at a time. The encoder and decoder keep a table in M formal
variables (X1, . . . , XM), representing the M discrete logs being sought. With
every “collision event,” we show that the number of formal variables in the table
can decrease by one until either (a) A1 outputs the M discrete logs, or (b) the
table has no more formal variables and the encoder halts A1.

5 The Decisional Diffie-Hellman Problem

The decisional Diffie-Hellman problem [14] (DDH) is to distinguish tuples of the
form (g, gx, gy, gxy) from tuples of the form (g, gx, gy, gz), for random x, y, z ∈
ZN . In this section, we show that every generic distinguisher with preprocessing
for the decisional Diffie-Hellman problem that achieves advantage ε must satisfy
ST 2 = ˜Ω(ε2N). More formally:

The Discrete-Logarithm Problem with Preprocessing 435

Theorem 9. Let N be a prime. Let (A0,A1) be a pair of generic algorithms
for ZN on L, such that A0 outputs an S-bit state, A1 makes at most T oracle
queries, and

∣

∣

∣Pr
[

AOσ
1

(

AOσ
0 (σ(1)), σ(x), σ(y), σ(xy)

)

= 1
]

−Pr
[

AOσ
1

(

AOσ
0 (σ(1)), σ(x), σ(y), σ(z)

)

= 1
]∣

∣

∣ ≥ ε ,

where the probabilities are over the choice of the label σ, the values x, y, z ∈ ZN ,
and the randomness of A1. Then ST 2 = ˜Ω(ε2N).

The proof of Theorem9 appears in the full version of this paper [25].
While the proof uses an incompressibility argument, extending the technique

of Theorem 2 to give lower bounds for decisional-type problems requires over-
coming additional technical challenges. Consider a DDH distinguisher with pre-
processing (A0,A1) that achieves advantage ε. The difficulty with using such an
algorithm to build a scheme for compressing σ is that each execution of A1 only
produces a single bit of output. When ε < 1, each execution of A1 produces even
less—a fraction of a bit of useful information.

To explain why getting only a single bit of output from A1 is challenging:
the encoder of Theorem 2 derandomized A1 by writing a pointer r∗ ∈ [R] to a
“good” set of random coins for A1 into the encoding, thus turning a faulty ran-
domized algorithm into a correct deterministic algorithm at the cost of slightly
increasing the encoding length. This derandomization technique does not apply
immediately here, since the log R-bit value required to point to the “good” set
of random coins eliminates any profit in encoding length that we would have
gained from the fraction of a bit that A1 produces as output.

A straightforward amplification strategy—building an algorithm A′
1 that

calls A1 many times and takes the majority output—would circumvent this
problem, but would yield an ST 2 = ˜Ω(ε4N) lower bound that is loose in ε.

To achieve a tighter ST 2 = ˜Ω(ε2N) bound, our strategy is to use A1 to
construct an algorithm A×B

1 that executes A1 on a batch of B independent DDH
problem instances (one at a time), for some batch size parameter B ∈ Z

+. The
algorithm A×B

1 now produces B bits of output and succeeds with probability
εB . If we now choose R such that log R < B, we can now apply our prior
derandomization technique, since each execution of A×B

1 will yield some profit
in our compression scheme.

Handling collisions in this case involves additional technicalities, since there
might (or might not) be a collision in each of the B sub-executions of A×B

1 and
we need to be able to identify which execution encountered a collision without
squandering the small profit that A×B

1 yields.
Putting everything together, we achieve an ST 2 = ˜Ω(ε2N) lower bound for

the DDH problem.

436 H. Corrigan-Gibbs and D. Kogan

6 Lower Bounds with Limited Preprocessing

Up to this point, we have measured the cost of a discrete-log algorithm with
preprocessing by (a) number of bits of preprocessed advice it requires and (b)
its online running time. In this section, we explore the preprocessing cost—the
time required to compute the advice string—and we prove tight lower bounds
on the preprocessing cost of generic discrete-log algorithms.

Let (A0,A1) be a generic discrete-log algorithm with preprocessing, as
defined in Sect. 2. For this section, we allow A0 to be randomized. We say that
(A0,A1) uses P preprocessing queries and T online queries if A0 makes P ora-
cle queries and A1 makes T oracle queries. In this section, we do not put any
restriction on the size of the state that A0 outputs—we are only interested in
understanding the relationship between the preprocessing time P and the online
time T .

Remark. When P = Θ(N), there is a trivial discrete-log algorithm with pre-
processing (A0,A1) that uses T = 0 online queries and succeeds with constant
probability. In the preprocessing step, A0 computes a table of Θ(N) distinct
pairs of the form (i, σ(i)) ∈ ZN × L. On receiving a discrete-log instance σ(x),
the online algorithm A1 looks to see if σ(x) is already stored in its precom-
puted table and outputs the discrete log x if so. This algorithm succeeds with
probability ε = P/N = Ω(1).

Remark. When P = o(
√

N), we can rule out algorithms that run in online time
T = o(

√
N) and succeed with constant probability. To do so, we observe that

every generic discrete-log algorithm that uses P preprocessing queries and T
online queries can be converted into an algorithm that uses no preprocessing
queries and T ′ = (P + T) online queries, such that both algorithms achieve the
same success probability.

Shoup’s lower bound [71] states that every generic discrete-log algorithm
without preprocessing that runs in time T ′ succeeds with probability at most
ε = O(T ′2/N). This implies that any algorithm with preprocessing P and online
time T succeeds with probability at most ε = O((T + P)2/N).

Put another way: Shoup’s result implies a lower bound of (T +P)2 = Ω(εN).
So any algorithm that makes only P = o(

√
N) preprocessing queries must use

T = Ω(
√

N) online queries to succeed with constant probability. Thus, an algo-
rithm that uses o(

√
N) preprocessing queries cannot asymptotically outperform

an online algorithm.

Given these two remarks, the remaining parameter regime of interest is when√
N < P < N . We prove:

Theorem 10. Let (A0,A1) be a generic discrete-log algorithm with preprocess-
ing for ZN on L that makes at most P preprocessing queries and T online queries.
If x ∈ ZN and a labeling function σ are chosen at random, then A succeeds with
probability ε = O((PT + T 2)/N).

The Discrete-Logarithm Problem with Preprocessing 437

As a corollary, we find that every algorithm that succeeds with probability
ε must satisfy PT + T 2 = Ω(εN). For example, an algorithm that uses P =
O(N2/3) preprocessing queries must use online time at least T = Ω(N1/3) to
succeed with constant probability.

The full proof appears in the full version of this paper [25], and we sketch
the proof idea here.

Proof Idea for Theorem 10. We prove the theorem using a pair of probabilistic
experiments, following the general strategy of Shoup’s now-classic proof tech-
nique [71].

In both experiments, the adversary interacts with a challenger, who plays the
role of the generic group oracle Oσ. The challenger defines the labeling function
σ(·) lazily in response to the adversary’s queries. Both experiments follow similar
steps:

1. The challenger sends a label s1 ∈ L, representing σ(1), to the adversary.
2. The adversary makes P preprocessing group-oracle queries to the challenger.
3. The challenger sends the discrete-log instance sx ∈ L, representing σ(x), to

the adversary.
4. The adversary makes T online queries and outputs a guess x′ of x.

The difference between the two experiments is in how the challenger defines the
discrete log of the instance sx ∈ L.

In Experiment 0, the challenger chooses the discrete log x ∈ ZN of sx before
the adversary makes any online queries. The challenger in Experiment 0 is thus
a faithful (or honest) oracle.

In Experiment 1, the challenger chooses the discrete log x of σx after the
adversary has made all of its online queries. In this latter case, the challenger is
essentially “cheating” the adversary, since all of the challenger’s query responses
are independent of x and the adversary cannot recover x with probability bet-
ter than random guessing. To complete the argument, we show that unless the
adversary makes many queries, it can only rarely distinguish between the two
experiments.

A detailed description of the experiments and their analysis appears in the
full version of this paper [25]. �
The Lower Bound is Tight. From Theorem 2, we know that a discrete-log
algorithm that succeeds with constant probability must use advice S and online
time T such that ST 2 = ˜Ω(N). From Theorem 10, we know that any such
algorithm must also use preprocessing P such that PT + T 2 = Ω(N). The best
tradeoff we could hope for, ignoring the constants and logarithmic factors, is
PT +T 2 = ST 2, or P = ST . Indeed, the known upper bound with preprocessing
(see Sect. 7.1) matches this lower bound, disregarding low-order terms.

7 Preprocessing Attacks on Discrete-Log Problems

In this section, we recall the known generic discrete-log algorithm with prepro-
cessing and we introduce two new generic attacks with preprocessing. Specifi-
cally, we show an attack on the multiple-discrete-log problem that matches the

438 H. Corrigan-Gibbs and D. Kogan

lower bound of Theorem 8, and we show an attack on certain decisional problems
in groups that matches the lower bound of Theorem9.

G

h = gx

Fig. 1. The discrete-log algorithm with preprocessing of Sect. 7.1 uses a random func-
tion F to define a walk on the elements of G. The preprocessed advice consists of the
discrete logs of S points that lie at the end of length-Θ(T) disjoint paths on the walk.
In the online phase, the algorithm walks from the input point until hitting a stored
endpoint, which occurs with good probability.

These attacks are all generic, so they apply to every group, including pop-
ular elliptic-curve groups. Our preprocessing attacks are not polynomial-time
attacks—indeed our lower bounds rule out such attacks—but they yield better-
than-known exponential-time attacks on these problems.

The analysis of the algorithms in these sections rely on the attacker
having access to a random function (i.e., a random oracle [10]), which the
attacker could instantiate with a standard cryptographic hash function, such as
SHA-256. Removing the attacks’ reliance on a truly random function remains a
useful task for future work.

7.1 The Existing Discrete-Log Algorithm with Preprocessing

For the reader’s reference, we describe a variation of the discrete-log algorithm
with preprocessing, introduced by Mihalcik [59] and Bernstein and Lange [13],
with a slightly more detailed analysis. This discrete-log algorithm shows that the
lower bound of Theorem 2 is tight. Our algorithms for the multiple-discrete-log
problem (Sect. 7.2) and for distinguishing pseudo-random generators (Sect. 7.3)
use ideas from this algorithm.

The algorithm computes discrete logs in a group G of prime order N with
generator g. The algorithm takes as input parameters S, T ∈ Z

+ such that
ST 2 ≤ N . The algorithm uses ˜O(S) bits of precomputed advice about the group
G, uses ˜O(T) group operations in the online phase, and succeeds with probability
ε = Ω(ST 2/N).

Let F : G → ZN be a random function, which we can instantiate in practice
using a standard hash function. We use the function F to define a walk on the
elements of G. Given a point h ∈ G, the walk computes α ← F (h) and moves to
the point gαh ∈ G.

The Discrete-Logarithm Problem with Preprocessing 439

Given these preliminaries, the algorithm works as follows:

– Preprocessing phase. Repeat S times: pick r ←R
ZN and, starting at gr ∈ G,

take the walk defined by F for T/2 steps. Store the endpoint of the walk gr′

and its discrete log r′ in a table: (r′, gr′
).

At the end of the preprocessing phase, the algorithm stores this table of
S group elements along with their discrete logs, using O(S log N) bits.

– Online phase. Given a discrete-log instance h = gx, the algorithm takes T
steps along the random walk defined by F , starting from the point h (see
Fig. 1). If the walk hits one of the S points stored in the precomputed table,
this collision yields a linear relation on x in the exponent: gr′

= gx+α1+···+αk ∈
G. Solving this linear relation for x ∈ ZN reveals the desired discrete log.

The algorithm uses ˜O(S) bits of group-specific advice and runs in online time
˜O(T). The remaining task is to analyze its success probability.

We first claim that, with good probability, the S walks in the preprocessing
phase touch at least ST/4 distinct points. To this end, observe that for every walk
in the preprocessing phase, the probability that it touches T/2 new points is at
least (1−ST/(2N))T/2 ≥ 1−ST 2/(4N), by Bernoulli’s inequality. Since ST 2 ≤
N , we have that 1 − ST 2/(4N) ≥ 1 − 1/4 = 3/4. Therefore, in expectation,
each walk touches at least 3T/8 new points and by linearity of expectation, the
overall expected number of touched points is at least 3ST/8. The number of
touched points is at most ST/2 and is at least 3ST/8, in expectation. We can
apply Markov’s inequality to an auxiliary random variable to conclude that the
number of touched points is greater than ST/4 with probability at least 1/2.

Next, observe that if at any of its first T/2 steps, the online walk hits any of
the points touched by one of the preprocessed walks, in the remaining T/2 steps
it will hit the stored endpoint of that preprocessed walk. It will then successfully
compute the discrete log. Moreover, as long as the online walk does not hit any of
these points, its steps are independent random points in G. If the number points
touched during preprocessing is at least ST/4, then the online walk succeeds with
probability at least 1−(1−(ST/(4N))T/2 ≥ 1−exp(−ST 2/(8N)) ≥ ST 2/(16N).
Overall, the probability of success ε is at least 1/2 · ST 2/(16N) = Ω(ST 2/N).

7.2 Multiple Discrete Logarithms with Preprocessing

We now demonstrate that a similar technique allows solving the multiple-
discrete-log problem more quickly using preprocessing. The algorithm is a mod-
ification to the attack of Fouque et al. [37] to allow for precomputation, in the
spirit of the algorithm of Sect. 7.1.

This upper bound matches the lower bound of Theorem8 for a constant ε,
up to logarithmic factors, which shows that the lower bound is tight for con-
stant ε. To recall, an instance of the multiple-discrete-log problem is a vector
(gx1 , . . . , gxM) for random xi ∈ ZN . The solution is the vector (x1, . . . , xM).
Then we have the following theorem:

440 H. Corrigan-Gibbs and D. Kogan

Theorem 11. There exists a generic algorithm with preprocessing for the M -
instance multiple-discrete-log problem in a group of prime order N that makes
use of a random function, uses ˜O(S) bits of group-specific advice, runs in time
˜O(T), succeeds with constant probability, and satisfies ST 2/M + T 2 = O(MN).

We prove the theorem in the full version of this paper [25].

7.3 Distinguishers with Preprocessing

In this section, we give a new distinguishing algorithm for certain decisional
problems in groups.

For concreteness, we first demonstrate how to use preprocessing to attack the
square decisional Diffie-Hellman problem (sqDDH) [50], which is the problem of
distinguishing tuples of the form (g, gx, gy) from tuples of the form (g, gx, g(x

2))
for random x, y ∈ ZN . In groups for which DDH is hard, the best known attack
against this assumption requires solving the discrete-log problem. Later on, we
show how to generalize the attack to a larger family of natural decisional assump-
tions in groups.

Definition 12. We say that an oracle algorithm AO has advantage ε at distin-
guishing distributions D1 and D2 if

∣

∣ Pr[AO(d1) = 1] − Pr[AO(d2) = 1]
∣

∣ = ε,
where the probability is over the randomness of the oracle and samples d1 ∼ D1

and d2 ∼ D2.

Theorem 13. There is a sqDDH distinguisher with preprocessing that makes
use of a random function, uses ˜O(S) bits of group-specific advice, runs in time
˜O(T), and achieves distinguishing advantage ε whenever ST 2 = Ω(ε2N).

Remark. A simple sqDDH distinguisher takes as input a sample (h0, h1) ∈ G
2,

computes the discrete logarithm x = logg(h0) of the first group element and
checks whether h1 = g(x

2) ∈ G. Theorem 2 indicates that such a distinguisher
using advice S and time T and achieving advantage ε must satisfy ST 2 = ˜Ω(εN).
So, this attack allows the parameter setting S = T = 1/ε = N1/4. In contrast,
the distinguisher of Theorem13 allows the better running time and advice com-
plexity roughly S = T = 1/ε = N1/5.

Remark. To see the cryptographic significance of Theorem 13, consider the
pseudo-random generator P (x) =def (gx, g(x

2)) that maps ZN to G
2. Theorem 13

shows that, for generic algorithms with preprocessing, it is significantly easier to
distinguish this PRG from random than it is to compute discrete logs.

Proof Sketch of Theorem 13. The attack that proves the theorem combines two
technical tools. The first tool is a general method for using preprocessing to
distinguish PRG outputs from random, which we adopt from Bernstein and
Lange [13] (De et al. [28] rigorously analyze a more nuanced PRG distinguisher
with preprocessing.). The second tool, adopted from the attack of Sect. 7.1, is

The Discrete-Logarithm Problem with Preprocessing 441

the idea of taking a walk on the elements of the group, and applying the PRG
distinguisher only to the set of points that lie at the end of long walks.

The attack works because a walk that begins at a point of the form (gx, g(x
2))

is likely to hit one of the precomputed endpoints quickly and applying the PRG
distinguisher yields an ε-biased output value. In contrast, an attack that begins
at a point of the form (gx, gy) will never hit a precomputed point and applying
the distinguisher yields a relatively unbiased output.

The algorithm (illustrated in Fig. 2) takes as input parameters S, T ∈ Z
+.

As in the attack of Sect. 7.1, we use a random function to define a walk on
a graph. In this case, the vertices of the graph are pairs of group elements—so
every vertex is an element of G

2. We also define the subset of vertices Y =
{(gx, g(x

2)) | x ∈ ZN} ⊂ G
2 that correspond to “yes” instances of the sqDDH

problem. The subset Y is very small relative to the set of all vertices G
2, since

|G2| = N2, while |Y| = N .
To define the walk on the vertices of this graph, we use a random function

F that maps G
2 → ZN . Given a point (h0, h1) ∈ G

2, the walk computes α ←
F (h0, h1) and moves to the point (hα

0 , h
(α2)
1) ∈ G

2. Observe that if the walk
starts in Y (i.e., at a “yes” point), the walk remains inside of Y. If the walk
starts at a point outside of Y, the walk remains outside of Y.

Out of the N2 total vertices in the graph, we choose a set of distinguished
or “marked” points M, by marking each point independently at random with
probability 1/T . (In practice, we can choose the set of marked points using a
hash function). To each point in M, we assign one of S different “colors,” again
using a hash function. So there are roughly N2/(ST) points each with color
1, 2, . . . , S.

Given these preliminaries, the algorithm works as follows:

– Preprocessing phase. Choose N/3T 2 random points in Y. From each of these
points, take 2T steps of the walk on G

2 that F defines. Halt the walk upon
reaching a marked point m ∈ M. If the walk hits a marked point, store the
marked point along with its color c in a table.

Group the endpoints of the walks by color. For each of the colors c ∈ [S],
find the prefix string pc ∈ {0, 1}log N that maximizes the sum

∑

H(pc,m),
where H : {0, 1}log N × G

2 → {0, 1} is a random function and the sum is
taken over the stored marked points m of color c.

Store the prefix strings (p1, . . . , pS) as the distinguisher’s advice.
– Online phase. Given a sqDDH challenge (h0, h1) ∈ G

2 as input, perform at
most 10T steps of the walk on G

2 that the function F defines. As soon as
the walk hits a marked point m ∈ M of color c, return the value H(pc,m)
as output. If the walk never hits a marked point, output “0” or “1” with
probability 1/2 each.

The distinguisher uses ˜O(S) bits of group-specific advice and runs in time ˜O(T)
as desired. So all we must argue is that the algorithm achieves distinguishing
advantage ε = Ω(

√

ST 2/N). We argue this last step in the full version of this
paper [25].

442 H. Corrigan-Gibbs and D. Kogan

Fig. 2. The preprocessing phase of the sqDDH distinguisher takes walks on the ele-
ments of Y ⊂ G

2. Each walk terminates upon hitting the set of marked points M,
which we further partition into S “colors”. The advice consists of a string pc for each
of the colors, such that the sum

∑

H(pc, m) is maximized over all the endpoints of
color c. In the online phase (in red), the algorithm walks from the input point until
hitting a marked point. (Color figure online)

Attacking More-General Problems. The distinguishing attack of Theo-
rem 13 applies to a general class of decisional problems in cyclic groups. Let
(f1, . . . , f�) be k-variate polynomials and let x̄ = (x1, . . . , xk) ∈ Z

k
N . Then we

can define the problem of distinguishing tuples of the form

(gx1 , . . . , gxk , gf1(x̄), . . . , gf�(x̄)) from (gx1 , . . . , gxk , gr1 , . . . , gr�),

for uniformly random x1, . . . , xk, r1, . . . , r� ∈ ZN .
The attack of Theorem 13 applies whenever there exists an index i, a linear

function L : Gk+� → G, and a constant c > 1 such that L(x̄, f1(x̄), . . . , f�(x̄)) =
xc

i . To apply the attack, first apply L(·) “in the exponent” to the challenge to
get a pair (gxi , gxc

i) ∈ G
2 and then run the distinguisher on this pair of elements.

As an example, this attack can distinguish tuples of the form (gx1 , gx2 ,

g(x
2
1), gx1x2 , g(x

2
2)) from random. The attack uses i = 1, L(z1, z2, z3, z4, z5) = z3,

and c = 2. Note that this assumption is very closely related to the standard
DDH assumption, except that the challenge tuple includes the extra elements
g(x

2
1) and g(x

2
2).

Remark. Somewhat surprising is that the distinguishing attack of Theorem13
does not translate to an equivalently strong attack for the DDH problem. The
immediate technical obstacle for this is the fact that the distinguishing advantage
of the generic PRG distinguisher reduces as the size of the seed space of the PRG
grows. That space is of size N in the sqDDH problem, but of size N2 in the DDH
case, which results in a weaker distinguisher.

8 Conclusion

We studied the limits of generic group algorithms with preprocessing for the
discrete-logarithm problem and related computational tasks.

The Discrete-Logarithm Problem with Preprocessing 443

In almost all cases, our lower bounds match the best known attacks up to
logarithmic factors in group order. The one exception is our lower bound for the
decisional Diffie-Hellman problem, in which our lower bound is ST 2 = ˜Ω(ε2N),
but the attack requires computing a discrete logarithm with ST 2 = ˜O(εN).
When the success probability ε is constant, these bounds match. For intermediate
values of ε, such as ε = N−1/4, it is not clear which bound is correct.

One useful task for future work would be to generalize our lower bounds
to more complex assumptions, such as Diffie-Hellman assumptions on pairing-
equipped groups [17], q-type assumptions [15], or the “uber” assumptions [16,19].

In addition, our upper bounds of Sect. 7 make use of a public random func-
tion. Making the attacks fully constructive by removing this heuristic, in the
spirit of Fiat and Naor [35] and De et al. [28], would be valuable as well.

Acknowledgements. We would like to thank Dan Boneh for encouraging us to under-
take this project and for his advice along the way. We thank Omer Reingold, David
Wu, and Benedikt Bünz for fruitful discussions during the early stages of this work.
Saba Eskandarian, Steven Galbraith, Sam Kim, and Florian Tramèr gave suggestions
that improved the presentation. This work was supported by NSF, DARPA, the Stan-
ford Cyber Initiative, the Simons foundation, a grant from ONR, and an NDSEG
Fellowship.

References

1. Abadi, M., Feigenbaum, J., Kilian, J.: On hiding information from an oracle. In:
STOC (1987). https://doi.org/10.1145/28395.28417

2. Abusalah, H., Alwen, J., Cohen, B., Khilko, D., Pietrzak, K., Reyzin, L.: Beyond
Hellman’s time-memory trade-offs with applications to proofs of space. In: Takagi,
T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10625, pp. 357–379. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-70697-9 13

3. Adrian, D., Bhargavan, K., Durumeric, Z., Gaudry, P., Green, M., Halderman,
J.A., Heninger, N., Springall, D., Thomé, E., Valenta, L., et al.: Imperfect forward
secrecy: how Diffie-Hellman fails in practice. In: CCS (2015). https://doi.org/10.
1145/2810103.2813707

4. Aggarwal, D., Maurer, U.: Breaking RSA generically is equivalent to factoring.
In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 36–53. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-01001-9 2

5. Arora, S., Barak, B.: Computational Complexity: A Modern Approach. Cambridge
University Press, Cambridge (2009)

6. Babai, L., Szemeredi, E.: On the complexity of matrix group problems I. In: FOCS
(1984). https://doi.org/10.1109/sfcs.1984.715919

7. Bărbulescu, R.: Improvements on the Discrete Logarithm Problem in GF(p). Mas-
ter’s thesis, Ècole Normale Supérieure de Lyon (2011). https://hal.inria.fr/inria-
00588713

8. Barbulescu, R., Gaudry, P., Joux, A., Thomé, E.: A heuristic quasi-polynomial
algorithm for discrete logarithm in finite fields of small characteristic. In: Nguyen,
P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 1–16. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5 1

https://doi.org/10.1145/28395.28417
https://doi.org/10.1007/978-3-319-70697-9_13
https://doi.org/10.1145/2810103.2813707
https://doi.org/10.1145/2810103.2813707
https://doi.org/10.1007/978-3-642-01001-9_2
https://doi.org/10.1109/sfcs.1984.715919
https://hal.inria.fr/inria-00588713
https://hal.inria.fr/inria-00588713
https://doi.org/10.1007/978-3-642-55220-5_1

444 H. Corrigan-Gibbs and D. Kogan

9. Barkan, E., Biham, E., Shamir, A.: Rigorous bounds on cryptanalytic
time/memory tradeoffs. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117,
pp. 1–21. Springer, Heidelberg (2006). https://doi.org/10.1007/11818175 1

10. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: CCS (1993). https://doi.org/10.1145/168588.168596

11. Bernstein, D., Lange, T.: Two grumpy giants and a baby. In: The Open Book
Series, vol. 1, no. 1, pp. 87–111 (2013). https://doi.org/10.2140/obs.2013.1.87

12. Bernstein, D.J.: Curve25519: new Diffie-Hellman speed records. In: Yung, M.,
Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 207–
228. Springer, Heidelberg (2006). https://doi.org/10.1007/11745853 14

13. Bernstein, D.J., Lange, T.: Non-uniform cracks in the concrete: the power of free
precomputation. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol.
8270, pp. 321–340. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-42045-0 17

14. Boneh, D.: The decision Diffie-Hellman problem. In: Buhler, J.P. (ed.) ANTS 1998.
LNCS, vol. 1423, pp. 48–63. Springer, Heidelberg (1998). https://doi.org/10.1007/
BFb0054851

15. Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3 4

16. Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption with con-
stant size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494,
pp. 440–456. Springer, Heidelberg (2005). https://doi.org/10.1007/11426639 26

17. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In: Kil-
ian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-44647-8 13

18. Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF formulas on ciphertexts. In:
Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg
(2005). https://doi.org/10.1007/978-3-540-30576-7 18

19. Boyen, X.: The uber-assumption family. In: Galbraith, S.D., Paterson, K.G. (eds.)
Pairing 2008. LNCS, vol. 5209, pp. 39–56. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-85538-5 3

20. Brown, D.: On the provable security of ECDSA. In: Advances in Elliptic Curve
Cryptography, pp. 21–40. Cambridge University Press (2005). https://doi.org/10.
1017/cbo9780511546570.004

21. Brown, D.R.L.: Generic groups, collision resistance, and ECDSA. Des. Codes
Crypt. 35(1), 119–152 (2005). https://doi.org/10.1007/s10623-003-6154-z

22. Chung, K.M., Lin, H., Mahmoody, M., Pass, R.: On the power of nonuniformity in
proofs of security. In: ITCS (2013). http://doi.acm.org/10.1145/2422436.2422480

23. Coppersmith, D.: Modifications to the number field sieve. J. Cryptology 6(3), 169–
180 (1993)

24. Coretti, S., Dodis, Y., Guo, S., Steinberger, J.: Random oracles and non-uniformity.
Cryptology ePrint Archive, Report 2017/937 (2017). https://eprint.iacr.org/2017/
937

25. Corrigan-Gibbs, H., Kogan, D.: The discrete-logarithm problem with preprocess-
ing. Cryptology ePrint Archive, Report 2017/1113 (2017). https://eprint.iacr.org/
2017/1113

26. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure
against adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998.
LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998). https://doi.org/10.1007/
BFb0055717

https://doi.org/10.1007/11818175_1
https://doi.org/10.1145/168588.168596
https://doi.org/10.2140/obs.2013.1.87
https://doi.org/10.1007/11745853_14
https://doi.org/10.1007/978-3-642-42045-0_17
https://doi.org/10.1007/978-3-642-42045-0_17
https://doi.org/10.1007/BFb0054851
https://doi.org/10.1007/BFb0054851
https://doi.org/10.1007/978-3-540-24676-3_4
https://doi.org/10.1007/11426639_26
https://doi.org/10.1007/3-540-44647-8_13
https://doi.org/10.1007/978-3-540-30576-7_18
https://doi.org/10.1007/978-3-540-85538-5_3
https://doi.org/10.1007/978-3-540-85538-5_3
https://doi.org/10.1017/cbo9780511546570.004
https://doi.org/10.1017/cbo9780511546570.004
https://doi.org/10.1007/s10623-003-6154-z
http://doi.acm.org/10.1145/2422436.2422480
https://eprint.iacr.org/2017/937
https://eprint.iacr.org/2017/937
https://eprint.iacr.org/2017/1113
https://eprint.iacr.org/2017/1113
https://doi.org/10.1007/BFb0055717
https://doi.org/10.1007/BFb0055717

The Discrete-Logarithm Problem with Preprocessing 445

27. Damg̊ard, I., Koprowski, M.: Generic lower bounds for root extraction and sig-
nature schemes in general groups. In: Knudsen, L.R. (ed.) EUROCRYPT 2002.
LNCS, vol. 2332, pp. 256–271. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-46035-7 17

28. De, A., Trevisan, L., Tulsiani, M.: Time space tradeoffs for attacks against one-
way functions and PRGs. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp.
649–665. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-
7 35

29. Dent, A.W.: Adapting the weaknesses of the random oracle model to the generic
group model. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 100–109.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36178-2 6

30. Dent, A.W.: The hardness of the DHK problem in the generic group model. Cryp-
tology ePrint Archive, Report 2006/156 (2006). https://eprint.iacr.org/2006/156

31. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans. Inf. Theory
22(6), 644–654 (1976)

32. Dodis, Y., Guo, S., Katz, J.: Fixing cracks in the concrete: random oracles with
auxiliary input, revisited. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017.
LNCS, vol. 10211, pp. 473–495. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56614-6 16

33. Dodis, Y., Haitner, I., Tentes, A.: On the instantiability of hash-and-sign RSA
signatures. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 112–132. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-28914-9 7

34. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196,
pp. 10–18. Springer, Heidelberg (1985). https://doi.org/10.1007/3-540-39568-7 2

35. Fiat, A., Naor, M.: Rigorous time/space tradeoffs for inverting functions. In: STOC
(1991). http://doi.acm.org/10.1145/103418.103473

36. Fischlin, M.: A note on security proofs in the generic model. In: Okamoto, T. (ed.)
ASIACRYPT 2000. LNCS, vol. 1976, pp. 458–469. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-44448-3 35

37. Fouque, P.-A., Joux, A., Mavromati, C.: Multi-user collisions: applications to dis-
crete logarithm, Even-Mansour and PRINCE. In: Sarkar, P., Iwata, T. (eds.)
ASIACRYPT 2014. LNCS, vol. 8873, pp. 420–438. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-45611-8 22

38. Freeman, D., Scott, M., Teske, E.: A taxonomy of pairing-friendly elliptic curves.
J. Cryptology 23(2), 224–280 (2010). https://doi.org/10.1007/s00145-009-9048-z

39. Galbraith, S.D., Gaudry, P.: Recent progress on the elliptic curve discrete logarithm
problem. Des. Codes Crypt. 78(1), 51–72 (2016). https://doi.org/10.1007/s10623-
015-0146-7

40. Galbraith, S.D., Ruprai, R.S.: Using equivalence classes to accelerate solving the
discrete logarithm problem in a short interval. In: Nguyen, P.Q., Pointcheval,
D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 368–383. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-13013-7 22

41. Gaudry, P., Hess, F., Smart, N.P.: Constructive and destructive facets of Weil
descent on elliptic curves. J. Cryptol. 15(1), 19–46 (2002). https://doi.org/10.
1007/s00145-001-0011-x

42. Gennaro, R., Trevisan, L.: Lower bounds on the efficiency of generic cryptographic
constructions. In: FOCS (2000). https://doi.org/10.1109/SFCS.2000.892119

43. Gennaro, R.: An improved pseudo-random generator based on discrete log. In: Bel-
lare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 469–481. Springer, Heidelberg
(2000). https://doi.org/10.1007/3-540-44598-6 29

https://doi.org/10.1007/3-540-46035-7_17
https://doi.org/10.1007/3-540-46035-7_17
https://doi.org/10.1007/978-3-642-14623-7_35
https://doi.org/10.1007/978-3-642-14623-7_35
https://doi.org/10.1007/3-540-36178-2_6
https://eprint.iacr.org/2006/156
https://doi.org/10.1007/978-3-319-56614-6_16
https://doi.org/10.1007/978-3-319-56614-6_16
https://doi.org/10.1007/978-3-642-28914-9_7
https://doi.org/10.1007/3-540-39568-7_2
http://doi.acm.org/10.1145/103418.103473
https://doi.org/10.1007/3-540-44448-3_35
https://doi.org/10.1007/978-3-662-45611-8_22
https://doi.org/10.1007/s00145-009-9048-z
https://doi.org/10.1007/s10623-015-0146-7
https://doi.org/10.1007/s10623-015-0146-7
https://doi.org/10.1007/978-3-642-13013-7_22
https://doi.org/10.1007/s00145-001-0011-x
https://doi.org/10.1007/s00145-001-0011-x
https://doi.org/10.1109/SFCS.2000.892119
https://doi.org/10.1007/3-540-44598-6_29

446 H. Corrigan-Gibbs and D. Kogan

44. Gordon, D.M.: Discrete logarithms in GF(P) using the number field sieve. SIAM
J. Discrete Math. 6(1), 124–138 (1993). https://doi.org/10.1137/0406010

45. Hellman, M.: A cryptanalytic time-memory trade-off. IEEE Trans. Inf. Theory
26(4), 401–406 (1980). https://doi.org/10.1109/TIT.1980.1056220

46. Johnson, D., Menezes, A., Vanstone, S.: The elliptic curve digital signature algo-
rithm (ECDSA). Int. J. Inf. Secur. 1(1), 36–63 (2001). https://doi.org/10.1007/
s102070100002

47. Joux, A., Odlyzko, A., Pierrot, C.: The past, evolving present, and future of the
discrete logarithm. In: Koç, Ç.K. (ed.) Open Problems in Mathematics and Com-
putational Science, pp. 5–36. Springer, Cham (2014). https://doi.org/10.1007/978-
3-319-10683-0 2

48. Kim, T.: Multiple discrete logarithm problems with auxiliary inputs. In: Iwata, T.,
Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 174–188. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-48797-6 8

49. Koblitz, N., Menezes, A.: Another look at generic groups. Adv. Math. Commun.
1(1), 13–28 (2007). https://doi.org/10.3934/amc.2007.1.13

50. Koblitz, N., Menezes, A.: Intractable problems in cryptography. In: Conference on
Finite Fields and Their Applications (2010). https://doi.org/10.1090/conm/518/
10212

51. Koblitz, N., Menezes, A., Vanstone, S.: The state of elliptic curve cryptogra-
phy. Des. Codes Cryptogr. 19(2–3), 173–193 (2000). https://doi.org/10.1023/A:
1008354106356

52. Koshiba, T., Kurosawa, K.: Short exponent Diffie-Hellman problems. In: Bao, F.,
Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 173–186. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-24632-9 13

53. Kravitz, D.W.: Digital signature algorithm. US Patent 5,231,668 (1993)
54. Kuhn, F., Struik, R.: Random walks revisited: extensions of Pollard’s Rho algo-

rithm for computing multiple discrete logarithms. In: Vaudenay, S., Youssef, A.M.
(eds.) SAC 2001. LNCS, vol. 2259, pp. 212–229. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45537-X 17

55. Leander, G., Rupp, A.: On the equivalence of RSA and factoring regarding generic
ring algorithms. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284,
pp. 241–251. Springer, Heidelberg (2006). https://doi.org/10.1007/11935230 16

56. Matyukhin, D.V.: On asymptotic complexity of computing discrete logarithms
over GF(p). Discrete Math. Appl. 13(1), 27–50 (2003). https://doi.org/10.1515/
156939203321669546

57. Maurer, U.: Abstract models of computation in cryptography. In: Smart, N.P. (ed.)
Cryptography and Coding 2005. LNCS, vol. 3796, pp. 1–12. Springer, Heidelberg
(2005). https://doi.org/10.1007/11586821 1

58. Menezes, A.J., Okamoto, T., Vanstone, S.A.: Reducing elliptic curve logarithms
to logarithms in a finite field. IEEE Trans. Inf. Theory 39(5), 1639–1646 (1993).
https://doi.org/10.1109/18.259647

59. Mihalcik, J.P.: An analysis of algorithms for solving discrete logarithms in fixed
groups. Master’s thesis, Naval Postgraduate School (2010). https://calhoun.nps.
edu/bitstream/handle/10945/5395/10Mar Mihalcik.pdf

60. Morris, R., Thompson, K.: Password security: a case history. Commun. ACM
22(11), 594–597 (1979). https://doi.org/10.1145/359168.359172

61. Nechaev, V.I.: Complexity of a determinate algorithm for the discrete logarithm.
Math. Notes 55(2), 165–172 (1994). https://doi.org/10.1007/bf02113297

62. Odlyzko, A.: Discrete logarithms: the past and the future. Des. Codes Cryptogr.
19(2), 129–145 (2000). https://doi.org/10.1023/A:1008350005447

https://doi.org/10.1137/0406010
https://doi.org/10.1109/TIT.1980.1056220
https://doi.org/10.1007/s102070100002
https://doi.org/10.1007/s102070100002
https://doi.org/10.1007/978-3-319-10683-0_2
https://doi.org/10.1007/978-3-319-10683-0_2
https://doi.org/10.1007/978-3-662-48797-6_8
https://doi.org/10.3934/amc.2007.1.13
https://doi.org/10.1090/conm/518/10212
https://doi.org/10.1090/conm/518/10212
https://doi.org/10.1023/A:1008354106356
https://doi.org/10.1023/A:1008354106356
https://doi.org/10.1007/978-3-540-24632-9_13
https://doi.org/10.1007/3-540-45537-X_17
https://doi.org/10.1007/11935230_16
https://doi.org/10.1515/156939203321669546
https://doi.org/10.1515/156939203321669546
https://doi.org/10.1007/11586821_1
https://doi.org/10.1109/18.259647
https://calhoun.nps.edu/bitstream/handle/10945/5395/10Mar_Mihalcik.pdf
https://calhoun.nps.edu/bitstream/handle/10945/5395/10Mar_Mihalcik.pdf
https://doi.org/10.1145/359168.359172
https://doi.org/10.1007/bf02113297
https://doi.org/10.1023/A:1008350005447

The Discrete-Logarithm Problem with Preprocessing 447

63. Oechslin, P.: Making a faster cryptanalytic time-memory trade-off. In: Boneh, D.
(ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 617–630. Springer, Heidelberg (2003).
https://doi.org/10.1007/978-3-540-45146-4 36

64. van Oorschot, P.C., Wiener, M.J.: On Diffie-Hellman key agreement with short
exponents. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 332–
343. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68339-9 29

65. Patel, S., Sundaram, G.S.: An efficient discrete log pseudo random generator. In:
Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 304–317. Springer, Hei-
delberg (1998). https://doi.org/10.1007/BFb0055737

66. Pohlig, S., Hellman, M.: An improved algorithm for computing logarithms over
GF (p) and its cryptographic significance (corresp.). IEEE Trans. Inf. Theory 24(1),
106–110 (1978). https://doi.org/10.1109/tit.1978.1055817

67. Pollard, J.M.: Monte Carlo methods for index computation (mod p). Math. Com-
put. 32(143), 918–924 (1978). https://doi.org/10.2307/2006496

68. Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Brassard,
G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, New York (1990).
https://doi.org/10.1007/0-387-34805-0 22

69. Schnorr, C.P., Jakobsson, M.: Security of signed ElGamal encryption. In: Okamoto,
T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 73–89. Springer, Heidelberg
(2000). https://doi.org/10.1007/3-540-44448-3 7

70. Shanks, D.: Class number, a theory of factorization, and genera (1971). https://
doi.org/10.1090/pspum/020/0316385

71. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(1997). https://doi.org/10.1007/3-540-69053-0 18

72. Smart, N.P.: The exact security of ECIES in the generic group model. In: Honary,
B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 73–84. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-45325-3 8

73. Smart, N.P.: The discrete logarithm problem on elliptic curves of trace one. J.
Cryptol. 12(3), 193–196 (1999). https://doi.org/10.1007/s001459900052

74. Unruh, D.: Random oracles and auxiliary input. In: Menezes, A. (ed.) CRYPTO
2007. LNCS, vol. 4622, pp. 205–223. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-74143-5 12

75. Wang, P., Zhang, F.: Computing elliptic curve discrete logarithms with the nega-
tion map. Inf. Sci. 195, 277–286 (2012). https://doi.org/10.1016/j.ins.2012.01.044

76. Wee, H.: On obfuscating point functions. In: STOC (2005). http://doi.acm.org/
10.1145/1060590.1060669

77. Yao, A.C.C.: Coherent functions and program checkers. In: STOC (1990). http://
doi.acm.org/10.1145/100216.100226

78. Ying, J.H.M., Kunihiro, N.: Bounds in various generalized settings of the discrete
logarithm problem. In: Gollmann, D., Miyaji, A., Kikuchi, H. (eds.) ACNS 2017.
LNCS, vol. 10355, pp. 498–517. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-61204-1 25

79. Yun, A.: Generic hardness of the multiple discrete logarithm problem. In: Oswald,
E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 817–836. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6 27

80. Zhang, F., Wang, P., Galbraith, S.: Computing elliptic curve discrete logarithms
with improved baby-step giant-step algorithm. Adv. Math. Commun. 11(3), 453–
469 (2017). https://doi.org/10.3934/amc.2017038

https://doi.org/10.1007/978-3-540-45146-4_36
https://doi.org/10.1007/3-540-68339-9_29
https://doi.org/10.1007/BFb0055737
https://doi.org/10.1109/tit.1978.1055817
https://doi.org/10.2307/2006496
https://doi.org/10.1007/0-387-34805-0_22
https://doi.org/10.1007/3-540-44448-3_7
https://doi.org/10.1090/pspum/020/0316385
https://doi.org/10.1090/pspum/020/0316385
https://doi.org/10.1007/3-540-69053-0_18
https://doi.org/10.1007/3-540-45325-3_8
https://doi.org/10.1007/s001459900052
https://doi.org/10.1007/978-3-540-74143-5_12
https://doi.org/10.1007/978-3-540-74143-5_12
https://doi.org/10.1016/j.ins.2012.01.044
http://doi.acm.org/10.1145/1060590.1060669
http://doi.acm.org/10.1145/1060590.1060669
http://doi.acm.org/10.1145/100216.100226
http://doi.acm.org/10.1145/100216.100226
https://doi.org/10.1007/978-3-319-61204-1_25
https://doi.org/10.1007/978-3-319-61204-1_25
https://doi.org/10.1007/978-3-662-46803-6_27
https://doi.org/10.3934/amc.2017038

Best Paper Awards

Simple Proofs of Sequential Work

Bram Cohen1(B) and Krzysztof Pietrzak2

1 Chia Network, San Francisco, USA
bram@chia.network

2 IST Austria, Klosterneuburg, Austria
pietrzak@ist.ac.at

Abstract. At ITCS 2013, Mahmoody, Moran and Vadhan [MMV13]
introduce and construct publicly verifiable proofs of sequential work,
which is a protocol for proving that one spent sequential computational
work related to some statement. The original motivation for such proofs
included non-interactive time-stamping and universally verifiable CPU
benchmarks. A more recent application, and our main motivation, are
blockchain designs, where proofs of sequential work can be used – in
combination with proofs of space – as a more ecological and economical
substitute for proofs of work which are currently used to secure Bitcoin
and other cryptocurrencies.

The construction proposed by [MMV13] is based on a hash function
and can be proven secure in the random oracle model, or assuming inher-
ently sequential hash-functions, which is a new standard model assump-
tion introduced in their work.

In a proof of sequential work, a prover gets a “statement” χ, a time
parameter N and access to a hash-function H, which for the security
proof is modelled as a random oracle. Correctness requires that an hon-
est prover can make a verifier accept making only N queries to H, while
soundness requires that any prover who makes the verifier accept must
have made (almost) N sequential queries to H. Thus a solution consti-
tutes a proof that N time passed since χ was received. Solutions must
be publicly verifiable in time at most polylogarithmic in N .

The construction of [MMV13] is based on “depth-robust” graphs, and
as a consequence has rather poor concrete parameters. But the major
drawback is that the prover needs not just N time, but also N space to
compute a proof.

In this work we propose a proof of sequential work which is much
simpler, more efficient and achieves much better concrete bounds. Most
importantly, the space required can be as small as log(N) (but we get
better soundness using slightly more memory than that).

An open problem stated by [MMV13] that our construction does
not solve either is achieving a “unique” proof, where even a cheating
prover can only generate a single accepting proof. This property would
be extremely useful for applications to blockchains.

K. Pietrzak—Supported by the European Research Council (ERC), Horizon 2020,
consolidator grant (682815 - TOCNeT).

c© International Association for Cryptologic Research 2018
J. B. Nielsen and V. Rijmen (Eds.): EUROCRYPT 2018, LNCS 10821, pp. 451–467, 2018.
https://doi.org/10.1007/978-3-319-78375-8_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78375-8_15&domain=pdf

452 B. Cohen and K. Pietrzak

1 Introduction

1.1 Proofs of Sequential Work (PoSW)

Mahmoody, Moran and Vadhan [MMV13] introduce the notion of proofs of
sequential work (PoSW), and give a construction in the random oracle model
(ROM), their construction can be made non-interactive using the Fiat-Shamir
methodology [FS87]. Informally, with such a non-interactive PoSW one can gen-
erate an efficiently verifiable proof showing that some computation was going
on for N time steps since some statement χ was received. Soundness requires
than one cannot generate such a proof in time much less than N even consider-
ing powerful adversaries that have a large number of processors they can use in
parallel.

[MMV13] introduce a new standard model assumption called “inherently
sequential” hash functions, and show that the random oracle in their construction
can be securely instantiated with such hash functions.

Random Oracle Model (ROM). PoSW are easiest to define and prove secure in
the ROM, as here we can identify a (potentially parallel) query to the RO as
one time step. Throughout this paper we’ll work in the ROM, but let us remark
that everything can be lifted to the same standard model assumptions (collision
resistant and sequential hash functions) used in [MMV13].

A proof of sequential work in the ROM is a protocol between a prover P
and a verifier V, both having access to a random oracle H : {0, 1}∗ → {0, 1}w.
Figure 1 illustrates PoSW as constructed in [MMV13] and also here. We’ll give
a more formal definition in Sect. 1.2.

Prover P(N, t, w) Verifier (N, t, w)

H : {0, 1}∗ → {0, 1}w

χ ← {0, 1}w

γ ← {0, 1}t·w

verify(χ, N, φ, γ, τ) ∈ {accept, reject}

(φ, φP) := PoSW(χ, N)

τ := open(χ, N, φP , γ)

statement χ

PoSW φ

challenge γ

answer τ

Fig. 1. Proofs of Sequential Work in the ROM as constructed in [MMV13] and this
paper. N is the time parameter, i.e., PoSW(χ, N) makes N queries to H computing
φ, and any cheating prover P̃ that makes V accept must make almost N sequential
queries to H computing φ. t is a statistical security parameter, the larger t the better
the soundness: any P̃ making only (1 − α)N sequential queries for some α > 0, will
succeed with probability at most (1 − α)t (e.g. with t = 21, a cheating prover making
only 0.8 · N sequential queries succeed with probability < 1%). w is the output range
of our hash function, which we need to be collision resistant and sequential, w = 256
is a typical value.

Simple Proofs of Sequential Work 453

Non-interactive PoSW. The first message is sent from V to P, and is just a
uniformly random w bit string χ. In applications this first message is a “state-
ment” for which we want to prove that N time has passed since it was received.
The distribution and domain of this statement is not important, as long as it
has sufficiently high min-entropy, because we can always first hash it down to a
uniform w bit string using the RO.

As the prover is public-coin, we can make the protocol non-interactive
using the Fiat-Shamir heuristic [FS87]: A non-interactive PoSW for state-
ment χ and time parameter N is a tuple (χ,N, φ, τ) where the challenge
γ = (H(φ, 1), . . . ,H(φ, t)) is derived from the proof φ by hashing with the RO.

1.2 PoSW Definition

The PoSW we consider are defined by a triple of oracle aided algorithms PoSW,
open and verify as defined below.

Common Inputs P and V get as common input two statistical security param-
eters w, t ∈ N and a time parameter N ∈ N. All parties have access to a
random oracle H : {0, 1}∗ → {0, 1}w.

Statement V samples a random χ ← {0, 1}w and sends it to P.
Compute PoSW P computes (ideally, making N queries to H sequentially) a

proof (φ, φP) := PoSWH(χ,N). P sends φ to V and locally stores φP .
Opening Challenge V samples a random challenge γ ← {0, 1}t·w and sends it

to P.
Open P computes τ := openH(χ,N, φP , γ) and sends it to V.
Verify V computes and outputs verifyH(χ,N, φ, γ, τ) ∈ {accept, reject}.

We require perfect correctness: if V interacts with an honest P, then it will
output accept with probability 1. The soundness property requires that any
potentially malicious prover ˜P who makes V accept with good probability must
have queried H “almost” N times sequentially. This holds even if in every round
˜P can query H on many inputs in parallel, whereas the honest P just needs
to make a small (in our construction 1, in [MMV13] 2) number of queries per
round.

1.3 The [MMV13] and our Construction in a Nutshell

In the construction from [MMV13], the statement χ is used to sample a fresh
random oracle H. Then P uses H to compute “labels” of a directed acyclic graph
(DAG) G, where the label of a node is the hash of the labels of its parents. Next,
P computes a Merkle tree commitment of those labels, sends it to V, who then
challenges P to open some of the labels together with its parents.

If G = (V,E) is “depth-robust”, which means it has a long path even after
removing many vertices, a cheating prover can either (1) try to cheat and make
up many of the labels, or (2) compute most of the labels correctly. The security
proof now shows that in case (1) the prover will almost certainly not be able to

454 B. Cohen and K. Pietrzak

correctly open the Merkle tree commitments, and in case (2) he must make a
large number of sequential queries: if he cheats on labels of nodes S ⊆ V , then
the number of sequential queries must be at least as large as the length of the
longest path in the subgraph on V − S. As G is depth-robust and S is not too
large, this path is long.

Our construction is conceptually similar, but our underlying graph is much
simpler. We use the nodes in the tree underlying the Merkle commitment not
just for the commitment, but also to enforce sequential computation. For this it
suffices to add some edges as illustrated in Fig. 3.

Our graph has some convenient properties, for example the parents of a leaf
node v are always a subset of the nodes whose labels one needs to provide for
the opening of the Merkle tree commitment of the label of v, so checking that
the labels are correctly computed and verifying the opening of a leaf label can
be done simultaneously without increasing communication complexity and with
only a little bit of extra computation.

But most importantly, the labels in our graph can be computed in topolog-
ical order1 while keeping only logarithmically many labels in memory at any
point, whereas computing the labelling of a depth-robust graph is much more
expensive. In fact, because of this property depth-robust graphs are used to
build so called memory-hard functions. Concretely, [ABP17] show that if the
labelling of a depth-robust graph on N nodes is done in time T using space S,
then T · S ∈ Ω(N2). In particular, if one wants to compute the labels in time
N , or even just some O(N), then linear Ω(N) space is required.

There is a caveat. If using only logarithmic memory in our construction,
the prover needs to recompute all the labels in the opening phase, whereas one
wouldn’t need any computation (just some lookups) in the opening phase if
everything was stored. This is unfortunate, as it means we get a factor 2 differ-
ence in the sequential computation that is claimed, versus what has to actually
be done, but some applications need this factor to be close to 1. Fortunately
there is a simple trade-off, where using slightly more memory one can make the
opening phase much more efficient. The basic idea, which we describe in detail
in Sect. 5.4, is to store all the 2m nodes at some level m of the tree. With this,
one can compute any other node making just 2n−m queries.

1.4 More Related Work

Time Release Cryptography. The idea of “time-release” cryptography goes back
to [CLSY93,May93].

Most related to PoSW are time-lock puzzles, which were introduced by
Rivest, Shamir and Wagner [RSW00]. They give a construction of such puz-
zles based on the assumption that exponentiation modulo an RSA integer is an
“inherently sequential” computation. A recent treatment with new constructions
is [BGJ+16].

1 A topological ordering of the vertices of a DAG is an ordering v1, v2, . . . , v|V | such
that there’s no path from vj to vi whenever j > i.

Simple Proofs of Sequential Work 455

Time-lock puzzles allow a puzzle generator to generate a puzzle with a mes-
sage of its choice encoded into it, such that this message can only be redeemed
by a solver after t steps of sequential work. Such a scheme can be used as a
PoSW as the decoded message constitutes a proof of sequential work, but as the
puzzle generator has a trapdoor, this proof will not be convincing to anyone else
and as it’s not public-coin, it can’t be made non-interactive by the Fiat-Shamir
methodology. Although incomparable, time-lock puzzles seem to be more sophis-
ticated objects than PoSW. Unlike for PoSW, we have no constructions based
on random oracles, and [MMV11] give black-box separations showing this might
be inherent (we refer to their paper for the exact statements). Existing PoSW
(including ours) have another drawback, namely, that the proofs are not unique.
We’ll discuss this in more detail at the end of Sect. 6.

Proofs of Work. Proofs of work (PoW) – introduced by Dwork and Naor [DN93] –
are defined similarly to proof of sequential work, but as the name suggests, here
one does not require that the work has been done sequentially. Proofs of work are
very easy to construct in the random oracle model. The simplest construction of
a PoW goes as follows: given a statement χ and a work parameter t, find a nonce
x s.t. H(χ, x) starts with t zeros. If H is modelled as a random oracle, finding
such an x requires an expected 2t number of queries, while verifying that x is
a valid solution just requires a single query. Proofs of work are used to secure
several decentralised cryptocurrencies and other blockchain applications, most
notably Bitcoin.

1.5 Basic Notation

We denote with {0, 1}≤n def=
⋃n

i=0{0, 1}i the set of all binary strings of length
at most n, including the empty string ε. Concatenation of bitstrings is denoted
with ‖. For x ∈ {0, 1}∗, x[i] denotes its ith bit, x[i . . . j] = x[i]‖ . . . ‖x[j] and |x|
denotes the bitlength of x.

2 Building Blocks

In Sect. 2.1 below, we define the basic properties of graphs used in this work.
Then in Sect. 2.2 we summarize the properties of the random oracle model [BR93]
used in our security proof.

2.1 Graphs Basics

To define the [MMV13] and our construction we’ll need the following

Definition 1 (Graph Labelling). Given a directed acyclic graph (DAG) G =
(V,E) on vertex set V = {0, . . . , N − 1} and a hash function H : {0, 1}∗ →
{0, 1}w, the label �i ∈ {0, 1}w of i ∈ V is recursively computed as (where u is a
parent of v if there’s a directed edge from u to v)

�i = H(i, �p1 , . . . , �pd
) where (p1, . . . , pd) = parents(i). (1)

456 B. Cohen and K. Pietrzak

Note that for any DAG the labels can be computed making N sequential queries
to H by computing them in an arbitrary topological order. If the maximum
indegree of G is δ, then the inputs will have length at most �log(N)� + δ · w.

The PoSW by Mahmoody et al. [MMV13] is based on depth-robust graphs,
a notion introduced by Erdős et al. in [EGS75].

Definition 2 (Depth-Robust DAG). A DAG G = (V,E) is (e, d) depth-
robust if for any subset S ⊂ V of at most |S| ≤ e vertices, the subgraph on V −S
has a path of length at least d.

For example, the complete DAG G = (V,E), |V | = N, E = {(i, j) : 0 ≤ i < j ≤
N − 1} is (e,N − e) depth-robust for any e, but for PoSW we need a DAG with
small indegree. Already [EGS75] showed that (Θ(N), Θ(N)) depth-robust DAGs
with indegree O(log(N)) exist. Mahmoody et al. give an explicit construction
with concrete constants, albeit with larger indegree O(log2(N)polyloglog(N)) ∈
O(log3(N)).

2.2 Random Oracles Basics

Salting the RO. In [MMV13] and also our construction, all three algorithms
PoSW, open and verify described in Sect. 1.2 use the input χ only to sample a
random oracle Hχ, for example by using χ as prefix to every input

Hχ(·) def= H(χ, ·).

We will sometimes write e.g., PoSWHχ(N) instead PoSWH(χ,N). Using the uni-
form χ like this implies that in the proof we can assume that to a cheating
prover, the random oracle Hχ just looks like a “fresh” random oracle on which
it has no auxiliary information [DGK17].

Random Oracles are Collision Resistant

Lemma 1 (RO is Collision Resistant). Consider any adversary AH which
is given access to a random function H : {0, 1}∗ → {0, 1}w. If A makes at most
q queries, the probability it will make two colliding queries x �= x′,H(x) = H(x′)
is at most q2/2w+1.

Proof. The probability that the output of the i’th query collides with any of
the i − 1 previous outputs is at most i−1

2w . By the union bound, we get that the
probability that any i hits a previous output is at most

∑q
i=1

i−1
2w < q2

2w+1 . �

Random Oracles are Sequential. Below we show that ROs are “sequential”, this
is already shown in [MMV13], except that we use concrete parameters instead
of asymptotic notations.

Definition 3 (H-sequence). An H sequence of length s is a sequence
x0, . . . , xs ∈ {0, 1}∗ where for each i, 1 ≤ i < s, H(xi) is contained in xi+1

as continuous substring, i.e., xi+1 = a‖H(xi)‖b for some a, b ∈ {0, 1}∗.

Simple Proofs of Sequential Work 457

Lemma 2 (RO is Sequential). Consider any adversary AH which is given
access to a random function H : {0, 1}∗ → {0, 1}w that it can query for at most
s − 1 rounds, where in each round it can make arbitrary many parallel queries.
If A makes at most q queries of total length Q bits, then the probability that it
outputs an H-sequence x0, . . . , xs (as defined above) is at most

q · Q +
∑s

i=0 |xi|
2w

Proof. There are two ways A can output an H sequence x0, . . . , xs making only
s − 1 sequential queries.

1. Lucky guess: It holds that for some i, H(xi) is a substring of xi+1 and the
adversary did not make the query H(xi). As H is uniform, the probability of
this event can be upper bounded by

q ·
∑s

i=0 |xi|
2w

.

2. Collision: The xi’s were not computed sequentially. That is, it holds that for
some 1 ≤ i ≤ j ≤ s − 1, a query ai is made in round i and query aj in round
j where H(aj) is a substring of ai. Again using that H is uniformly random,
the probability of this event can be upper bounded by

q · Q

2w
.

The claimed bound follows by a union bound over the two cases analysed
above. �
Thus, whenever an adversary outputs an H-sequence of length s where q · (Q +
∑s

i=0 |xi|) is much smaller than 2w – which in practice will certainly be the case
if we use a standard block length like w = 256 – we can assume that it made at
least s sequential queries to H.

Merkle-Damg̊ard. The inputs to our hash function H are of length up to
(�log N� + 1)w bits (assuming N ≤ 2w, so the index of a node can be encoded
into {0, 1}w). We can build a function for arbitrary input lengths from a com-
pression function h : {0, 1}2w → {0, 1}w using the classical Merkle-Damg̊ard
construction [Dam90,Mer90]. Concretely, let y0 be the statement χ (used for
salting as outlined above) and then recursively define

H(x1, . . . , xz) = yz where yi = h(xi, yi−1) for i ≥ 1.

One must be careful with this approach in our construction. As it’s possible to
compute yi using only the prefix x1, . . . , xi, an adversary might get an advan-
tage by computing such intermediate yi’s before the entire input is known, and
thus exploit parallelism to speed up the computation. This can be avoided by
requiring that x1 is always the label of the node that was computed right before
the current node.

458 B. Cohen and K. Pietrzak

3 The [MMV13] Construction

In this section we informally describe the PoSW from [MMV13] using the high-
level protocol layout from Sect. 1.2.

For any N = 2n, the scheme is specified by a depth-robust DAG GDR
n = (V,E)

on |V | = N vertices. Let Bn = (V ′, E′) denote the full binary tree with N = 2n

leaves (and thus 2N − 1 nodes) where the edges are directed towards the root.
Let GMMV

n be the DAG we get from Bn, by identifying the N leaves of this tree
with the N nodes of GDR

n as illustrated in Fig. 2.

ε

0

00 01

1

10 11

ε

0

00 01

1

10 11

ε

0

00 01

1

10 11

Fig. 2. Illustration of B2 (left), a (toy example of a) depth-robust graph GDR
2 (middle)

and the corresponding GMMV
2 graph.

Now (φ, φP) := PoSWHχ(N) computes and stores the labels φP =
{�v}v∈{0,1}≤n (cf. Definition 1) of GMMV

n using Hχ as hash function, and sends the
label φ = �ε of the root to V. We remark that in [MMV13] this is described as a
two step process, where one first computes a labeling of GDR

n (using a sequential
hash function), and then a Merkle-tree commitment of the N labels (using a
collision resistant hash function).

After receiving the challenge γ = (γ1, . . . , γt) from V, the prover P computes
the answer τ := openHχ(N,φP , γ) as follows: For any i, 1 ≤ i ≤ t, τ contains
the opening of the Merkle commitments of the label �γi

, and the labels of the
parents of i, and moreover the labels labels required for the opening of the Merkle
commitment of this label.2

Upon receiving the answer τ , V invokes verifyHχ(N,φ, γ, τ) to check if the
labels �γi

were correctly computed as in Eq. (1), and if the Merkle openings of
the labels �γi

are all correct.
To argue soundness, one uses the fact that GDR

n is (e, d) depth-robust with
e, d = Θ(N). As Hχ is collision resistant, a cheating prover P̃ must commit to
unique labels {�′

v}v∈{0,1}n of the leaves (that it can later open to). We say that a
vertex i is inconsistent if it is not correctly computed from the other labels, i.e.,

�′
i �= H(i, �′

p1
, . . . , �′

pd
) where (p1, . . . , pd) = parents(i)

2 That is, the labels of all siblings of the nodes on the path from this vertex to the
root. E.g., for label �01 (as in Fig. 2) that would be �00 and �1. To verify, one checks
if Hχ(0, �00, �01) = �0 and Hχ(ε, �0, �1) = �ε = φ.

Simple Proofs of Sequential Work 459

Let β be the number of inconsistent vertices. We make a case distinction:

– If β ≥ e, then one uses the fact that the probability that a cheating prover
P̃ will be asked to open an inconsistent vertex is exponentially (in t) close

to 1, namely 1 −
(

N−β
N

)t

, and thus P̃ will fail to make V accept except with
exponentially small probability.

– if β < e, then there’s a path of length d = Θ(N) of consistent verticies, which
means the labels �′

i0
, . . . , �′

id−1
on this path constitute an Hχ sequence (cf.

Definition 3) of length d−1, and as Hχ is sequential, P̃ must almost certainly
have made d − 1 = Θ(N) sequential queries to Hχ.

4 Definition and Properties of the DAG GPoSW
n

In this section we describe the simple DAG underlying our construction, and
prove state some simple combinatorial properties about it which we’ll later need
in the security proof and to argue efficiency.

ε

0

00

000

0000 0001

001

0010 0011

01

010

0100 0101

011

0110 0111

1

10

100

1000 1001

101

1010 1011

11

110

1100 1101

111

1110 1111

Fig. 3. Illustration of GPoSW
4 . The set S∗ = {01, 101, 1100} – which e.g. could be derived

from S = {010, 0110, 0111, 101, 1010, 1100} – is shown in red. DS∗ is the union of red
and orange nodes. Ŝ = Ŝ∗ are the orange or red leaves. The path of length 2N − 1 −
|BS | = 32 − 1 − 11 = 19 (as constructed in the proof of Lemma 4) is shown in blue.
(Color figure online)

For n ∈ N let N = 2n+1 − 1 and Bn = (V,E′) be a complete binary tree
of depth n. We identify the N nodes V = {0, 1}≤n with the binary strings of
length at most n, the empty string ε being the root. We say vertex v is above u
if u = v‖a for some a (then u is below v). The directed edges go from the leaves
towards the root

E′ = {(x‖b, x) : b ∈ {0, 1}, x ∈ {0, 1}i, i < n}.

We define the DAG GPoSW
n = (V,E) by starting with Bn, and then adding some

edges. Concretely E = E′ ∪ E′′ where E′′ contains, for all leaves u ∈ {0, 1}n,
an edge (v, u) for any v that is a left sibling of a node on the path from u to

460 B. Cohen and K. Pietrzak

the root ε. E.g., for v = 1101 we add the edges (1100, 1101), (10, 1101), (0, 1101),
formally

E′′ = {(v, u) : u ∈ {0, 1}n, u = a‖1‖a′, v = a‖0}.

Lemma 3. The labels of GPoSW
n can be computed in topological order using only

w · (n + 1) bits of memory.

Proof. The proof of the lemma follows by induction: to compute the labels of
GPoSW

n , start by computing the labels of the left subtree L, which is isomorphic
to GPoSW

n−1 . Once the last label �0 of L is computed, keep only this one label. Now
compute the labels of the right subtree R, which is also isomorphic to GPoSW

n−1 ,
except that it has some incoming edges from the left subtree. As all these edges
start at �0, one can compute the labeling of this graph with just w extra bits
of space. Once the last label �1 of R is computed, delete all labels except �0, �1,
and compute the label of the root �ε = H(ε, �0, �1). The memory required to
compute the labels of GPoSW

n is thus the memory required for GPoSW
n−1 plus w bits

(to store �0 while computing the right subtree). GPoSW
1 just has 3 nodes and so

can trivially be computed with 3 · w bits. Solving this simple recursion gives the
claimed bound. �
Definition 4 (Ŝ, S∗,DS). For a subset S ⊆ V of nodes, we denote with Ŝ the
set of leaves below S

Ŝ = {v‖u ∈ {0, 1}n : v ∈ S, u ∈ {0, 1}n−|v|}

We denote with S∗ the minimal set of nodes with exactly the same set of leaves
as S, i.e., S∗ ⊆ V is the smallest set satisfying Ŝ∗ = Ŝ.

We denote with DS all the nodes which are in S or below some node in S

DS = {v‖v′ : v ∈ S, v′ ∈ {0, 1}≤n−|v|}

Lemma 4. The subgraph of GPoSW
n = (V,E) on vertex set V − DS∗ (for any

S ⊆ V) has a directed path going through all the |V |− |DS∗ | = N −|DS∗ | nodes.
Proof. The proof is by induction on n, an example path is illustrated in Fig. 3.
The lemma is trivially true for GPoSW

0 , which just contains a single node. Assume
it’s true for GPoSW

i , now GPoSW
i+1 consists of a root ε, with a left and right subgraph

L and R isomorphic to GPoSW
i , with extra edges going from the root of L –

which is 0 – to all the leaves in R. If ε ∈ S∗ the lemma is trivially true as
|V | − |DS∗ | = 0. If 0 ∈ S∗, then all of L is in DS∗ , in this case just apply the
Lemma to R ≡ GPoSW

i , and add an extra last edge 1 → ε. If 0 �∈ S∗, apply the
Lemma first to L ≡ GPoSW

i to get a path that ends in its root 0, then – if 1 �∈ S∗

– apply the lemma to R ≡ GPoSW
i , to get a path that starts at a leaf v. Now add

the edges 0 → v and 1 → ε. If 1 ∈ S∗ we just add the edge 0 → ε. �

Simple Proofs of Sequential Work 461

Lemma 5 (trivial). For any S∗, S ⊂ V , DS∗ contains

|{0, 1}n ∩ DS∗ | =
|DS∗ | + |S∗|

2

many leaves.

Proof. Let S∗ = {v1, . . . , vk}, using that Dvi
∩Dvj

= ∅ for all i �= j (as otherwise
S∗ would not be minimal), we can write

|{0, 1}n ∩ DS∗ | =
k

∑

i=1

|{0, 1}n ∩ Dvi
|.

As each Dvi
is a full binary tree it has (|Dvi

| + 1)/2 many leaves, so

k
∑

i=1

|{0, 1}n ∩ Dvi
| =

k
∑

i=1

|Dvi
| + 1
2

=
|DS∗ | + |S∗|

2
.

�

5 Our Construction

In this section we specify our PoSW based on the graphs GPoSW
n .

5.1 Parameters

We have the following parameters:

N The time parameter which we assume is of the form N = 2n+1 − 1 for an
integer n ∈ N.

H : {0, 1}≤w(n+1) → {0, 1}w the hash function, which for the security proof is
modelled as a random oracle, and which takes as inputs strings of length
up to w(n + 1) bits.

t A statistical security parameter.
M Memory available to P, we assume it’s of the form

M = (t + n · t + 1 + 2m+1)w

for some integer m, 0 ≤ m ≤ n.

5.2 The PoSW, open and verify Algorithms

Our PoSW follows the outline given in Sect. 1.2 using three algorithms PoSW,
open and verify. Note that n ≈ log N and m ≈ log M are basically the logarithms
of the time parameter N and the memory M (measured in w bit blocks) we allow
P to use.

(φ, φP) := PoSWHχ(N) : computes the labels {�i}i∈{0,1}≤n (cf. Definition 1) of
the graph GPoSW

n (as defined in Sect. 4) using Hχ. It stores the labels φP =
{�i}i∈{0,1}≤m of the m highest layers, and sends the root label φ = �ε to V.

462 B. Cohen and K. Pietrzak

τ := openHχ(N,φP , γ) : on challenge γ = (γ1 . . . , γt), τ contains – for every
i, 1 ≤ i ≤ t – the label �γi

of node γi ∈ {0, 1}n and the labels of all siblings of
the nodes on the path from γi to the root (as in an opening of a Merkle tree
commitment), i.e.,

{�k}k∈Sγi
where Sγi

def= {γi[1 . . . j − 1]‖(1 − γi[j])}j=1...n

and
τ

def= {�γi
, {�k}k∈Sγi

}i=1...t.

E.g., for γi = 0101 (cf. Fig. 3) τ contains the labels of 0101, 0100, 011, 00
and 1.
If m = n, P stores all labels in φP and thus this needs no queries to Hχ. We’ll
discuss the case 0 < m < n in Sect. 5.4.

verifyHχ(N,φ, γ, τ) : Using that the graphs GPoSW
n have the property that all the

parents of a leaf γi are in Sγi
, for every i, 1 ≤ i ≤ t, one first checks that �γi

was correctly computed from its parent labels (i.e., as in Eq. 1)

�γi

?= Hχ(i, �p1 , . . . , �pd
) where (p1, . . . , pd) = parents(γi).

Then we verify the “Merkle tree like” commitment of �γi
, by using the labels

in τ to recursively compute, for i = n − 1, n − 2, . . . 0

�γi[0...i] := Hχ(γi[0 . . . i], �γi[0...i]‖0, �γi[0...i]‖1)

and then verifying that the computed root �γi[0...0] = �ε is equal to φ received
before.

5.3 Security

Theorem 1. Consider the PoSW from Sect. 5.2, with parameters t, w,N and a
“soundness gap” α > 0. If P̃ makes at most (1 − α)N sequential queries to H
after receiving χ, and at most q queries in total, then V will output reject with
probability

1 − (1 − α)t − 2 · n · w · q2

2w

So, for example setting the statistical security parameter to t = 21, means a P̃
who makes only 0.8N sequential queries will be able to make V accept with ≤1%
probability. This is sufficient for some applications, but if we want to use Fiat-
Shamir to make the proof non-interactive, the error should be much smaller, say
2−50 which we get with t = 150.

Proof. The exponentially small 2 · n · w · q2/2w loss accounts for the assumption
we’ll make, that P̃, after receiving χ (1) won’t find a collision in Hχ, and (2)
whenever it outputs an Hχ-sequence of length s it must have made s sequential
queries to H. The concrete bound follows from Lemmas 1 and 2 (recall that H
only takes inputs of length ≤ (n + 1)w).

Simple Proofs of Sequential Work 463

After sending φ, P̃ is committed to the labels {�′
i}i∈{0,1}≤n it can open. We

say a node i is inconsistent if its label �′
i was not correctly computed, i.e.,

�′
i �= H(i, �′

p1
, . . . , �′

pd
) where (p1, . . . , pd) = parents(i).

Let us mention that i can be consistent even though �′
i �= �i (�i denoting the

label the honest P would compute), so being consistent is not the same as being
correct. We can also determine these �′

i from just looking at P̃’s oracle queries,
but for the proof we just need that they are unique.

Let S ⊆ V = {0, 1}≤n denote all inconsistent nodes. Then by Lemma 4
there’s a path going through all the nodes in V − DS∗ . As all these nodes are
consistent, the labels �′

i on this path constitute an Hχ-sequence of length N −
|DS∗ |. If |DS∗ | ≤ αN , P̃ must have made at least (1 − α)N sequential queries
(recall we assume P̃ did not break sequentiality of Hχ), so we now assume

|DS∗ | > αN = α(2n+1 − 1).

By Lemma 5 and the above equation

|{0, 1}n ∩ DS∗ | =
|DS∗ | + |S∗|

2
> α2n. (2)

P̃ will fail to produce a valid proof given t random challenges γ = (γ1, . . . , γt) if
there’s at least one γi such that a node on the path from γi to the root is in S,
i.e., γ ∩ Ŝ �= ∅, or equivalently

γ ∩ DS∗ = γ ∩ Ŝ∗ = γ ∩ Ŝ �= ∅.

By Eq. (2), and using that every γi is uniform

Pr[γi �∈ DS∗] = 1 − |{0, 1}n ∩ DS∗ |/2n < 1 − α

and as the γi are also independent

Pr[γ ∩ DS∗ = ∅] =
t

∏

i=1

Pr[γi �∈ DS∗] < (1 − α)t

so P̃ will fail to generate a valid proof with probability > 1 − (1 − α)t as
claimed. �

5.4 Efficiency

We’ll now discuss the efficiency of the scheme from Sect. 5.2 in terms of proof
size, computation and memory requirements.

464 B. Cohen and K. Pietrzak

Proof Size. The exchanged messages χ, φ, γ, τ are of length (we need w bits to
specify a label and n bits to specify a node)

|χ| = w |φ| = w |γ| = t · n |τ | ≤ t · w · n

When we make the proof non-interactive using Fiat-Shamir (where γ is derived
from φ) the length of a proof for a given statement χ becomes

|φ| + |τ | ≤ w(t · n + 1)

With w = 256 bit blocks, t = 150, which is sufficient to get 2−50 security
for soundness gap α = 0.2 (i.e., a cheating prover must make 0.8N sequential
queries) and n = 40 (i.e., over a trillion steps) the size of the proof is less than
200 KB.

Prover Efficiency. P’s efficiency is dominated by queries to Hχ for computing
PoSW and open, so below we just count these.

PoSWHχ(N) can be computed making N (sequential) queries to Hχ, each
input being of length at most (n + 1) · w bits, and on average about 1/4 of
that (for comparison, the construction from [MMV13] has inputs of length n2 ·
polylog(n) · w).

openHχ(N,φ, γ): Here the efficiency depends on m, which specifies the size of the
memory M = (n + 1 + n · t + 2m+1)w we allow P to use. Here w · n · t bits are
used to store the values in τ to send back, (n + 1) · w bits are used to compute
the label (cf. Lemma 3), and 2m+1w labels are used to store φP , which contains
the labels of the m upmost levels {�i}i∈{0,1}≤m .

– If m = n, P stored all the labels computed by PoSWHχ(N), and thus needs
no more queries.

– If m = 0, P needs to recompute all N labels. This is not very satisfying,
as it means that we’ll always have a soundness gap of at least 2: the hon-
est prover needs a total of 2N sequential queries (N for each, PoSW and
open), whereas (even an honest) prover with m = n space will only require N
sequential queries. Fortunately there is a nice trade-off, where already using
a small memory means P just needs to make slightly more than N queries,
as described next.

– In the general case 0 ≤ m ≤ n, P needs to compute 2n−m+1 − 1 labels for
each of the t challenges, thus at most

t · (2n−m+1 − 1)

in total (moreover this can be done making 2n−m+1 − 1 queries sequentially,
each with t inputs). E.g. if m = n/2, this means P uses around

√
N · w bits

memory, and
√

N · t queries on top of the N for computing PoSW. For typical
parameters

√
N · t will be marginal compared to N . More generally, for any

0 ≤ β ≤ 1, given N1−β · w memory means P needs Nβ · t queries to compute
open (or Nβ sequential queries with parallelism t).

For our example with w = 256, n = 40, t = 150, setting, say m = 20, means
P uses 70 MB of memory, and the number of queries made by open is less than
N/1000, which is marginal compared to the N queries made by PoSW.

Simple Proofs of Sequential Work 465

5.5 Verifier Efficiency

The verifier is extremely efficient, it must only sample a random challenge γ (of
length t · w) and computing verify(χ,N, φ, γ, τ) can be done making t · n queries
to Hχ, each of length at most n ·w bits. This is also basically the cost of verifying
a non-interactive proof.

6 Conclusions and Open Problems

We constructed a proof of sequential work which is much simpler and enjoys
much better parameters than the original construction from [MMV13]. They
also state three open questions, two of which we answer in this work. Their first
question is:

Space Complexity of the Solver. In our construction of time stamping
and time-lock puzzles for time N , the solver keeps the hash labels of a
graph of N vertices. Is there any other solution that uses o(N) storage?
Or is there any inherent reason that Ω(N) storage is necessary?

We give a strong negative answer to this question, in our construction the storage
of the prover is only O(log(N)). Their second question is:

Necessity of Depth-Robust Graphs. The efficiency and security of
our construction is tightly tied to the parameters of depth-robust graph
constructions: graphs with lower degree give more efficient solutions, while
graphs with higher robustness (the lower bound on the length of the longest
path remaining after some of the vertices are removed) give us puzzles with
smaller adversarial advantage. An interesting open question is whether the
converse also holds: do time-lock puzzles with better parameters also imply
the existence of depth-robust graphs with better parameters?

Also here the answer is no. The graphs GPoSW
n we use, as illustrated in Fig. 3, are

basically as terrible in terms of depth-robustness as a simple path. For example
just removing the vertex 0 cuts the depth in half. Or just removing the 2n/2 ≈√

N vertices in the middle layer, will leave no paths of length more than
√

N .
Maybe depth-robustness is the wrong notion to look at here, our graphs satisfy a
notion of “weighted” depth-robustness: assign each leaf weight 1, the nodes one
layer up weight 2, then 4 etc., doubling with every layer. The total weight of all
nodes will be n2n (2n for every layer), and one can show hat for any 0 ≤ α ≤ 1,
removing nodes of weight α2n, will leave a path of length (1 − α)2n.

Apart from [MMV13], depth-robust graphs have been used for cryptographic
applications in at least one other case, namely to construct memory-hard func-
tions [ABP17]. Moreover the proofs of space protocol from [DFKP15] is quite
similar to the PoSW from [MMV13], the main difference being that the under-
lying graph does not have to be depth-robust, but needs to have high space
complexity. Due to this similarities, it seems conceivable that using ideas from

466 B. Cohen and K. Pietrzak

this work one can get improved constructions for memory-hard functions and
proofs of space.

Let us also mention the third open question asked by [MMV13]. It asks
whether a PoSW based only on random oracles can be used to achieve fairness
in protocols like coin tossing. We refer to their paper for the details, and just
mention that to achieve this, it’s sufficient to construct a PoSW with a “unique”
proof (note that we already mention this problem in the related work Sect. 1.4).
That is, we not only require that to generate a proof one needs to spend sequen-
tial time, but for every input (statement and time parameter), it should be hard
to come up with two different valid proofs. Such a property would also be very
useful in other contexts, like for constructing blockchains, which was the main
motivation for this work.

Unfortunately, our construction also does not have unique proofs. It’s an
intriguing open problem to construct a PoSW with unique proofs and an
exponential gap between proof generation and proof verification. Currently, the
publicly verifiable function with the largest gap between computation and verifi-
cation is the sloth function [LW17], which is based on the assumption that com-
puting square roots in a field of size p takes log(p) times longer than the inverse
operation, i.e., squaring. Under this assumption, the gap is log(p), in practice one
would probably use something like log(p) ≈ 1000. Sloth is not a time-lock puzzle
(as discussed in Sect. 1.4), as one can’t sample an input together with its output.
It’s also not a good PoSW as there’s no further speedup if we only want to verify
that a lot of sequential time has been spend on the computation, not correctness.
Let us also mention that sloth, as well as our PoSW (but not [MMV13]) allow
for a speedup of q in verification time if parallelism q is allowed and the proof
can be of size linear in q. Basically one adds q “checkpoints” to the proof. These
are intermediate states that appear during the computation, and one can verify
that each two consecutive checkpoints are consistent independently.

References

[ABP17] Alwen, J., Blocki, J., Pietrzak, K.: Depth-robust graphs and their cumu-
lative memory complexity. In: Coron, J.-S., Nielsen, J.B. (eds.) EURO-
CRYPT 2017. LNCS, vol. 10212, pp. 3–32. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-56617-7 1

[BGJ+16] Bitansky, N., Goldwasser, S., Jain, A., Paneth, O., Vaikuntanathan, V.,
Waters, B.: Time-lock puzzles from randomized encodings. In: Sudan, M.
(ed.) ITCS 2016, pp. 345–356. ACM, January 2016

[BR93] Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for
designing efficient protocols. In: Ashby, V. (ed.) ACM CCS 93, pp. 62–73.
ACM Press, November 1993

[CLSY93] Cai, J.-Y., Lipton, R.J., Sedgewick, R., Yao, A.C.-C.: Towards uncheatable
benchmarks. In: Proceedings of the Eighth Annual Structure in Complexity
Theory Conference, San Diego, CA, USA, 18–21 May 1993, pp. 2–11 (1993)

[Dam90] Damg̊ard, I.B.: A design principle for hash functions. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 416–427. Springer, New York (1990).
https://doi.org/10.1007/0-387-34805-0 39

https://doi.org/10.1007/978-3-319-56617-7_1
https://doi.org/10.1007/978-3-319-56617-7_1
https://doi.org/10.1007/0-387-34805-0_39

Simple Proofs of Sequential Work 467

[DFKP15] Dziembowski, S., Faust, S., Kolmogorov, V., Pietrzak, K.: Proofs of space.
In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp.
585–605. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-
48000-7 29

[DGK17] Dodis, Y., Guo, S., Katz, J.: Fixing cracks in the concrete: random oracles
with auxiliary input, revisited. In: Coron, J.-S., Nielsen, J.B. (eds.) EURO-
CRYPT 2017. LNCS, vol. 10211, pp. 473–495. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-56614-6 16

[DN93] Dwork, C., Naor, M.: Pricing via processing or combatting junk mail. In:
Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 139–147. Springer,
Heidelberg (1993). https://doi.org/10.1007/3-540-48071-4 10

[EGS75] Erdoes, P., Graham, R.L., Szemeredi, E.: On sparse graphs with dense long
paths. Technical report, Stanford, CA, USA (1975)

[FS87] Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identi-
fication and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986.
LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987). https://doi.org/
10.1007/3-540-47721-7 12

[LW17] Lenstra, A.K., Wesolowski, B.: Trustworthy public randomness with sloth,
unicorn, and trx. IJACT 3(4), 330–343 (2017)

[May93] May, T.C.: Timed-release crypto (1993). http://www.hks.net/cpunks/
cpunks-0/1460.html

[Mer90] Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO
1989. LNCS, vol. 435, pp. 218–238. Springer, New York (1990). https://doi.
org/10.1007/0-387-34805-0 21

[MMV11] Mahmoody, M., Moran, T., Vadhan, S.: Time-lock puzzles in the Ran-
dom Oracle model. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841,
pp. 39–50. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-
22792-9 3

[MMV13] Mahmoody, M., Moran, T., Vadhan, S.P.: Publicly verifiable proofs of
sequential work. In: Kleinberg, R.D. (ed.) ITCS 2013, pp. 373–388. ACM,
January 2013

[RSW00] Rivest, R.L., Shamir, A., Wagner, D.A.: Time-lock puzzles and timed
release crypto. Technical report (2000)

https://doi.org/10.1007/978-3-662-48000-7_29
https://doi.org/10.1007/978-3-662-48000-7_29
https://doi.org/10.1007/978-3-319-56614-6_16
https://doi.org/10.1007/3-540-48071-4_10
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12
http://www.hks.net/cpunks/cpunks-0/1460.html
http://www.hks.net/cpunks/cpunks-0/1460.html
https://doi.org/10.1007/0-387-34805-0_21
https://doi.org/10.1007/0-387-34805-0_21
https://doi.org/10.1007/978-3-642-22792-9_3
https://doi.org/10.1007/978-3-642-22792-9_3

Two-Round Multiparty Secure
Computation from Minimal Assumptions

Sanjam Garg(B) and Akshayaram Srinivasan

University of California, Berkeley, USA
{sanjamg,akshayaram}@berkeley.edu

Abstract. We provide new two-round multiparty secure computation
(MPC) protocols assuming the minimal assumption that two-round
oblivious transfer (OT) exists. If the assumed two-round OT protocol
is secure against semi-honest adversaries (in the plain model) then so
is our two-round MPC protocol. Similarly, if the assumed two-round
OT protocol is secure against malicious adversaries (in the common
random/reference string model) then so is our two-round MPC proto-
col. Previously, two-round MPC protocols were only known under rela-
tively stronger computational assumptions. Finally, we provide several
extensions.

1 Introduction

Can a group of n mutually distrusting parties compute a joint function of their
private inputs without revealing anything more than the output to each other?
This is the classical problem of secure computation in cryptography. Yao [Yao86]
and Goldreich et al. [GMW87] provided protocols for solving this problem in the
two-party (2PC) and the multiparty (MPC) cases, respectively.

A remarkable aspect of the 2PC protocol based on Yao’s garbled circuit con-
struction is its simplicity and the fact that it requires only two-rounds of commu-
nication. Moreover, this protocol can be based just on the minimal assumption
that two-round 1-out-of-2 oblivious transfer (OT) exists. Two-round OT can
itself be based on a variety of computational assumptions such as the Deci-
sional Diffie-Hellman Assumption [AIR01,NP01,PVW08], quadratic residuosity
assumption [HK12,PVW08] or the learning-with-errors assumption [PVW08].

In contrast, much less is known about the assumptions that two-round MPC
can be based on (constant-round MPC protocols based on any OT protocol are
well-known [BMR90]). In particular, two-round MPC protocols are only known
under assumptions such as indistinguishability obfuscation [GGHR14,GGH+13]

Research supported in part from AFOSR YIP Award, DARPA/ARL SAFEWARE
Award W911NF15C0210, AFOSR Award FA9550-15-1-0274, and research grants by
the Okawa Foundation, Visa Inc., and Center for Long-Term Cybersecurity (CLTC,
UC Berkeley). The views expressed are those of the author and do not reflect the
official policy or position of the funding agencies.

c© International Association for Cryptologic Research 2018
J. B. Nielsen and V. Rijmen (Eds.): EUROCRYPT 2018, LNCS 10821, pp. 468–499, 2018.
https://doi.org/10.1007/978-3-319-78375-8_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78375-8_16&domain=pdf

Two-Round Multiparty Secure Computation from Minimal Assumptions 469

(or, witness encryption [GLS15,GGSW13]), LWE [CM15,MW16,BP16,PS16],
or bilinear maps [GS17,BF01,Jou04]. In summary, there is a significant gap
between assumptions known to be sufficient for two-round MPC and the assump-
tions that known to be sufficient for two-round 2PC (or, two-round OT). This
brings us to the following main question:

What are the minimal assumptions under which two-round MPC can be
constructed?

1.1 Our Result

In this work, we give two-round MPC protocols assuming only the necessary
assumption that two-round OT exists. In a bit more detail, our main theorem is:

Theorem 1 (Main Theorem). Let X ∈ {semi-honest in plain model, mali-
cious in common random/reference sting model}. Assuming the existence of a
two-round X -OT protocol, there exists a compiler that transforms any polynomial
round, X -MPC protocol into a two-round, X -MPC protocol.

Previously, such compilers [GGHR14,GLS15,GS17] were only known under
comparatively stronger computational assumptions such as indistinguishability
obfuscation [BGI+01,GGH+13], witness encryption [GGSW13], or using bilin-
ear maps [GS17,BF01,Jou04]. Additionally, two-round MPC protocols assum-
ing the learning-with-errors assumptions were known [MW16,PS16,BP16] in the
CRS model satisfying semi-malicious security.1 We now discuss instantiations of
the above compiler with known protocols (with larger round complexity) that
yield two-round MPC protocols in various settings under minimal assumptions.

Semi-honest Case. Plugging in the semi-honest secure MPC protocol by Gol-
dreich, Micali, and Wigderson [GMW87], we get the following result:

Corollary 1. Assuming the existence of semi-honest, two-round oblivious trans-
fer in the plain model, there exists a semi-honest, two-round multiparty compu-
tation protocol in the plain model.

Previously, two-round plain model semi-honest MPC protocols were only
known assuming indistinguishability obfuscation [BGI+01,GGH+13], or witness
encryption [GGSW13] or bilinear maps [GS17] or from DDH for a constant num-
ber of parties [BGI17]. Thus, using two-round plain model OT [NP01,AIR01,
HK12] based on standard number theoretic assumptions such as DDH or QR,
this work yields the first two-round semi-honest MPC protocol for polynomial
number of parties in the plain model under the same assumptions.

1 Semi-malicious security is a strengthening of the semi-honest security wherein the
adversary is allowed to choose its random tape arbitrarily. Ashrov et al. [AJL+12]
showed that any protocol satisfying semi-malicious security could be upgraded to one
with malicious security additionally using Non-Interactive Zero-Knowledge proofs
(NIZKs).

470 S. Garg and A. Srinivasan

Malicious Case. Plugging in the maliciously secure MPC protocol by
Kilian [Kil88] or by Ishai et al. [IPS08] based on any oblivious transfer, we
get the following corollary:

Corollary 2. Assuming the existence of UC secure, two-round oblivious trans-
fer against static, malicious adversaries, there exists a UC secure, two-round
multiparty computation protocol against static, malicious adversaries.

Previously, all known two-round maliciously secure MPC protocols required
additional use of non-interactive zero-knowledge proofs. As a special case, using
a DDH based two-round OT protocol (e.g., [PVW08]), this work yields the first
two-round malicious MPC protocol in the common random string model under
the DDH assumption.

Extensions. In addition to the above main results we obtain several extensions
and refer the reader to the main body for details.

Concurrent Work. In a concurrent and independent work, Benhamouda and
Lin [BL18] also construct two-round multiparty computation from two-round
oblivious transfer. Their construction against semi-honest adversaries is proven
under the minimal assumption that two-round, semi-honest oblivious transfer
exists. However, their construction against malicious adversaries additionally
requires the existence of non-interactive zero-knowledge proofs. Additionally, in
the plain model they give a construction of 5-round maliciously secure MPC
from 5-round maliciously secure oblivious transfer.

2 Technical Overview

Towards demonstrating the intuition behind our result, in this section, we show
how to squish the round complexity of a very simple “toy” protocol to two.
Additionally, we sketch how these ideas extend to the general setting and also
work in the malicious case. We postpone the details to later sections.

Background: “Garbled Circuits that talk.” The starting point of this work
is a recent work of Garg and Srinivasan [GS17] that obtains constructions of
two-round MPC from bilinear maps. Building on [GGHR14,GLS15], the key
idea behind [GS17] is a new method for enabling “garbled circuits to talk,”
which the authors call “garbled protocols.” It is natural to imagine how “garbled
circuits that can talk” might be useful for squishing the round complexity of
any protocol. By employing this technique, a party can avoid multiple rounds
of interaction just by sending a garbled circuit that interacts with the other
parties on its behalf. At a technical level, a garbled circuit can “speak” by just
outputting a value. However, the idea of enabling garbled circuits to “listen”
without incurring any additional interaction poses new challenges. A bit more
precisely, “listen” means that a garbled circuit can take as input a bit obtained
via a joint computation on its secret state and the secret states of two or more
other parties.

Two-Round Multiparty Secure Computation from Minimal Assumptions 471

In [GS17], this idea was implemented by constructing a special purpose
witness encryption [GGSW13,BH15,GOVW12,CDG+17,DG17] using specific
algebraic properties of non-interactive zero-knowledge (NIZK) proofs by Gorth,
Ostrovsky and Sahai [GOS06]. The key contribution of this work is a realization
of the intuition of “garbled circuits that talk” using any two-round OT pro-
tocols rather than a specific NIZK proof system. In particular, we avoid using
any specialized algebraic properties of the underlying primitives. At the heart
of our construction is the following novel use of two-round OT protocols: in our
MPC protocol multiple instances of the underlying two-round OT protocol are
executed and the secret receiver’s random coins used in some of these executed
OT instances are revealed to the other parties. As we explain later, this is done
carefully so that the security of the MPC protocol is not jeopardized.

A “toy” protocol for successive ANDs. Stripping away technical details, we
highlight our core new idea in the context of a “toy” example, where a garbled
circuit will need to listen to one bit. Later, we briefly sketch how this core idea
can be used to squish the round complexity of any arbitrary round MPC protocol
to two. Recall that, in one round, each party sends a message depending on its
secret state and the messages received in prior rounds.

Consider three parties P1, P2 and P3 with inputs α, β, and γ (which are
single bits), respectively. Can we realize a protocol such that the parties learn
f(α, β, γ) = (α, α ∧ β, α ∧ β ∧ γ) and nothing more? Can we realize a two-
round protocol for the same task? Here is a very simple three-round information
theoretic protocol Φ (in the semi-honest setting) for this task: In the first round,
P1 sends its input α to P2 and P3. In the second round, P2 computes δ = α ∧ β
and sends it to P1 and P3. Finally, in the third round, P3 computes γ ∧ δ and
sends it to P1 and P2.

Compiling Φ into a two-round protocol. The key challenge that we face
is that the third party’s message depends on the second party’s message, and
the second party’s message depends on the first party’s message. We will now
describe our approach to overcome this three-way dependence using two-round
oblivious transfer and thus squish this protocol Φ into a two-round protocol.

We assume the following notation for a two-round OT protocol. In the first
round, the receiver with choice bit β generates c = OT1(β;ω) using ω as the
randomness and passes c to the sender. Then in the second round, the sender
responds with its OT response d = OT2(c, s0, s1) where s0 and s1 are its input
strings. Finally, using the OT response d and its randomness ω, the receiver
recovers sβ . In our protocol below, we will use a circuit C[γ] that has a bit
γ hardwired in it and that on input a bit δ outputs γ ∧ δ. At a high level in
our protocol, we will have P2 and P3 send extra messages in the first and the
second rounds, respectively, so that the third round can be avoided. Here is our
protocol:

– Round 1: P1 sends α to P2 and P3. P2 prepares c0 = OT1(0 ∧ β;ω0) and
c1 = OT1(1 ∧ β;ω1) and sends (c0, c1) to P2 and P3.

472 S. Garg and A. Srinivasan

– Round 2: P2 sends (α ∧ β, ωα) to P1 and P3. P3 garbles C[γ] obtaining C̃
and input labels lab0 and lab1. It computes d = OT2(cα, lab0, lab1) and sends
(C̃, d) to P1 and P2.

– Output Evaluation: Every party recovers labδ where δ = α∧β from d using
ωα. Next, it evaluates the garbled circuit C̃ using labδ which outputs γ ∧ δ as
desired.

Intuitively, in the protocol above P2 sends two first OT messages c0 and c1 that
are prepared assuming α is 0 and assuming α is 1, respectively. Note that P3

does not know α at the beginning of the first round, but P3 does know it at the
end of the first round. Thus, P3 just uses cα while discarding c1−α in preparing
its messages for the second round. This achieves the three-way dependency while
only using two-rounds. Furthermore, P2’s second round message reveals the ran-
domness ωα enabling all parties (and not just P2 and P3) to obtain the label labδ

which can then be used for evaluation of C̃. In summary, via this mechanism,
the garbled circuit C̃ was able to “listen” to the bit δ that P3 did not know when
generating the garbled circuit.

The above description highlights our ideas for squishing round complexity of
an incredibly simple toy protocol where only one bit was being “listened to.”
Moreover, the garbled circuit “speaks” or outputs γ ∧ δ, which is obtained by all
parties. In the above “toy” example, P3’s garbled circuit computes a gate that
takes only one bit as input. To compute a gate with two bit inputs, P2 will need
to send four first OT messages in the first round instead of two.

Squishing arbitrary protocols. Our approach to enable garbled circuits to
“listen to” a larger number of bits with complex dependencies is as follows.
We show that any MPC protocol Φ between parties P1, · · · Pn can be trans-
formed into one satisfying the following format. First, the parties execute a pre-
processing step; namely, each party Pi computes some randomized function of its
input xi obtaining public value zi which is shared with everyone else and private
value vi. zi is roughly an encryption of xi using randomness from vi as a one-time
pad. vi also contains random bits that will be used as one-time pad to encrypt
bits sent later by Pi. Second, each party sets its local state sti = (z1‖ . . . ‖zn)⊕vi.
That places us at the beginning of the protocol execution phase. In our trans-
formed protocol Φ can be written as a sequence of T actions. For each t ∈ [T]
the tth action φt = (i, f, g, h) involves party Pi computing one NAND gate; it
sets sti,h = NAND(sti,f , sti,g) and sends vi,h ⊕ sti,h to all the other parties. Our
transformed protocol is such that for any bit sti,h, the bit vi,h is unique and acts
as the one-time pad to hide it from the other parties. (Some of the bits in vi are
set to 0. These bits do not need to be hidden from other parties.) To complete
this action, each party Pj for j �= i sets stj,h to be the received bit. After all the
actions are completed, each party Pj outputs a function of its local state stj . In
this transformed MPC protocol, in any round only one bit is sent based on just
one gate (i.e., the gate obtained as vi,h ⊕NAND(sti,f , sti,g) with inputs sti,f and
sti,g, where vi,h is hardwired inside it) computation on two bits. Thus, we can
use the above “toy” protocol to achieve this effect.

Two-Round Multiparty Secure Computation from Minimal Assumptions 473

To squish the round complexity of this transformed protocol, in the first
round, we will have each party follow the pre-processing step from above along
with a bunch of carefully crafted first OT messages as in our “toy” protocol. In
the second round, parties will send a garbled circuit that is expected to “speak”
and “listen” to the garbled circuits of the other parties. So when φ1 = (i, f, g, h)
is executed, we have that the garbled circuit sent by party Pi speaks and all the
others listen. Each of these listening garbled circuits uses our “toy” protocol idea
from above. After completion of the first action, all the garbled circuits will have
read the transcript of communication (which is just the one bit communicated in
the first action φ1). Next, the parties need to execute action φ2 = (i, f, g, h) and
this is done like the first action, and the process continues. This completes the
main idea of our construction. Building on this idea, we obtain a compiler that
assuming semi-honest two-round OT transforms any semi-honest MPC protocol
into a two-round semi-honest MPC protocol. Furthermore, if the assumed semi-
honest two-round OT protocol is in the plain model then so will be the resulting
MPC protocol.

Compilation in the Malicious Case. The protocol ideas described above
only achieve semi-honest security and additional use of non-interactive zero-
knowledge (NIZK) proofs [BFM88,FLS90] is required to upgrade security to
malicious [AJL+12,MW16]. This has been the case for all known two-round
MPC protocol constructions. In a bit more detail, by using NIZKs parties can
(without increasing the round complexity) prove in zero-knowledge that they
are following protocol specifications. The use of NIZKs might seem essential to
such protocols. However, we show that this can be avoided. Our main idea is as
follows: instead of proving that the garbled circuits are honestly generated, we
require that the garbled circuits prove to each other that the messages they send
are honestly generated. Since our garbled circuits can “speak” and “listen” over
several rounds without increasing the round complexity of the squished protocol,
therefore we can instead use interactive zero-knowledge proof system and avoid
NIZKs. Building on this idea we obtain two-round MPC protocols secure against
malicious adversaries. We elaborate on this new idea and other issues involved
in subsequent sections.

3 Preliminaries

We recall some standard cryptographic definitions in this section. Let λ denote
the security parameter. A function μ(·) : N → R

+ is said to be negligible if
for any polynomial poly(·) there exists λ0 such that for all λ > λ0 we have
μ(λ) < 1

poly(λ) . We will use negl(·) to denote an unspecified negligible function
and poly(·) to denote an unspecified polynomial function.

For a probabilistic algorithm A, we denote A(x; r) to be the output of A on
input x with the content of the random tape being r. When r is omitted, A(x)
denotes a distribution. For a finite set S, we denote x ← S as the process of
sampling x uniformly from the set S. We will use PPT to denote Probabilistic
Polynomial Time algorithm.

474 S. Garg and A. Srinivasan

3.1 Garbled Circuits

Below we recall the definition of garbling scheme for circuits [Yao86] (see
Applebaum et al. [AIK04,AIK05], Lindell and Pinkas [LP09] and Bellare et
al. [BHR12] for a detailed proof and further discussion). A garbling scheme for
circuits is a tuple of PPT algorithms (Garble,Eval). Garble is the circuit garbling
procedure and Eval is the corresponding evaluation procedure. More formally:

– (˜C, {lblw,b}w∈inp(C),b∈{0,1}) ← Garble
(

1λ, C
)

: Garble takes as input a security
parameter 1λ, a circuit C, and outputs a garbled circuit ˜C along with labels
lblw,b where w ∈ inp(C) (inp(C) is the set of input wires of C) and b ∈ {0, 1}.
Each label lblw,b is assumed to be in {0, 1}λ.

– y ← Eval
(

˜C, {lblw,xw
}w∈inp(C)

)

: Given a garbled circuit ˜C and a sequence of
input labels {lblw,xw

}w∈inp(C) (referred to as the garbled input), Eval outputs
a string y.

Correctness. For correctness, we require that for any circuit C and input x ∈
{0, 1}|inp(C)| we have that:

Pr
[

C(x) = Eval
(

˜C, {lblw,xw
}w∈inp(C)

)]

= 1

where (˜C, {lblw,b}w∈inp(C),b∈{0,1}) ← Garble
(

1λ, C
)

.

Security. For security, we require that there exists a PPT simulator Sim such
that for any circuit C and input x ∈ {0, 1}|inp(C)|, we have that

(

˜C, {lblw,xw
}w∈inp(C)

)

c≈ Sim
(

1|C|, 1|x|, C(x)
)

where (˜C, {lblw,b}w∈inp(C),b∈{0,1}) ← Garble
(

1λ, C
)

and
c≈ denotes that the two

distributions are computationally indistinguishable.

3.2 Universal Composability Framework

We work in the Universal Composition (UC) framework [Can01] to formalize
and analyze the security of our protocols. (Our protocols can also be analyzed
in the stand-alone setting, using the composability framework of [Can00a], or in
other UC-like frameworks, like that of [PW00].) We refer the reader to [Can00b]
for details.

3.3 Oblivious Transfer

In this paper, we consider a 1-out-of-2 oblivious transfer protocol (OT), similar
to [CCM98,NP01,AIR01,DHRS04,HK12] where one party, the sender, has input
composed of two strings (s0, s1) and the input of the second party, the receiver,
is a bit β. The receiver should learn sβ and nothing regarding s1−β while the
sender should gain no information about β.

Two-Round Multiparty Secure Computation from Minimal Assumptions 475

Security of the oblivious transfer (OT) functionality can be described easily
by an ideal functionality FOT as is done in [CLOS02]. However, in our construc-
tions the receiver needs to reveal the randomness (or a part of the randomness)
it uses in an instance of two-round OT to other parties. Therefore, defining
security as an ideal functionality raises issues require care and issues similar to
one involved in defining ideal public-key encryption functionality [Can05, p. 96]
arrise. Thus, in our context, it is much easier to directly work with a two-round
OT protocol. We define the syntax and the security guarantees of a two-round
OT protocol below.

Semi-honest Two-Round Oblivious Transfer. A two-round semi-honest
OT protocol 〈S,R〉 is defined by three probabilistic algorithms (OT1,OT2,OT3)
as follows. The receiver runs the algorithm OT1 which takes the security param-
eter 1λ, and the receiver’s input β ∈ {0, 1} as input and outputs ots1 and
ω.2 The receiver then sends ots1 to the sender, who obtains ots2 by evalu-
ating OT2(ots1, (s0, s1)), where s0, s1 ∈ {0, 1}λ are the sender’s input mes-
sages. The sender then sends ots2 to the receiver who obtains sβ by evaluating
OT3(ots2, (β, ω)).

– Correctness. For every choice bit β ∈ {0, 1} of the receiver and input mes-
sages s0 and s1 of the sender we require that, if (ots1, ω) ← OT1(1λ, β),
ots2 ← OT2(ots1, (s0, s1)), then OT3(ots2, (β, ω)) = sβ with overwhelming
probability.

– Receiver’s security. We require that
{

ots1 : (ots1, ω) ← OT1(1λ, 0)
} c≈ {

ots1 : (ots1, ω) ← OT1(1λ, 1)
}

.

– Sender’s security. We require that for any choice of β ∈ {0, 1}, overwhelm-
ing choices of ω′ and any strings K0,K1, L0, L1 ∈ {0, 1}λ with Kβ = Lβ , we
have that

{

β, ω′,OT2(1λ, ots1,K0,K1)
} c≈ {

β, ω′,OT2(1λ, ots1, L0, L1)
}

where (ots1, ω) := OT1(1λ, β;ω′).

Constructions of semi-honest two-round OT are known in the plain model
under assumptions such as DDH [AIR01,NP01] and quadratic residuosity [HK12].

Maliciously Secure Two-Round Oblivious Transfer. We consider the
stronger notion of oblivious transfer in the common random/reference string
model. In terms of syntax, we supplement the syntax of semi-honest oblivious
transfer with an algorithm KOT that takes the security parameter 1λ as input
and outputs the common random/reference string σ. Also, the three algorithms
OT1,OT2 and OT3 additionally take σ as input. Correctness and receiver’s secu-
rity properties in the malicious case are the same as the semi-honest case. How-
ever, we strengthen the sender’s security as described below.
2 We note that ω in the output of OT1 need not contain all the random coins used by
OT1. This fact will be useful in the stronger equivocal security notion of oblivious
transfer.

476 S. Garg and A. Srinivasan

– Correctness. For every choice bit β ∈ {0, 1} of the receiver and input mes-
sages s0 and s1 of the sender we require that, if σ ← KOT(1λ), (ots1, ω) ←
OT1(σ, β), ots2 ← OT2(σ, ots1, (s0, s1)), then OT3(σ, ots2, (β, ω)) = sβ with
overwhelming probability.

– Receiver’s security. We require that
{

(σ, ots1) : σ ← KOT(1λ), (ots1, ω) ← OT1(σ, 0)
}

c≈ {

(σ, ots1) : σ ← KOT(1λ), (ots1, ω) ← OT1(σ, 1)
}

– Sender’s security. We require the existence of PPT algorithm Ext =
(Ext1,Ext2) such that for any choice of K0,K1 ∈ {0, 1}λ and PPT adver-
sary A we have that

∣
∣
∣Pr[INDREAL

A (1λ, K0, K1) = 1] − Pr[INDIDEAL
A (1λ, K0, K1) = 1]

∣
∣
∣ ≤ 1

2
+ negl(λ).

Experiment INDREAL
A (1λ,K0,K1):

σ ← KOT(1λ)
ots1 ← A(σ)

ots2 ← OT1(σ, ots1, (K0,K1))
Output A(ots2)

Experiment INDIDEAL
A (1λ,K0,K1):

(σ, τ) ← Ext1(1λ)
ots1 ← A(σ)
β := Ext2(τ, ots1)
L0 := Kβ and L1 := Kβ

ots2 ← OT2(σ, ots1, (L0, L1))
Output A(ots2)

Constructions of maliciously secure two-round OT are known in the common
random string model under assumptions such as DDH, quadratic residuosity,
and LWE [PVW08].

Equivocal Receiver’s Security. We also consider a strengthened notion of
malicious receiver’s security where we require the existence of a PPT simulator
SimEq such that the for any β ∈ {0, 1}:
{

(σ, (ots1, ωβ)) : (σ, ots1, ω0, ω1) ← SimEq(1
λ)

}
c≈

{

(σ,OT1(σ, β)) : σ ← KOT(1λ)
}

.

Using standard techniques in the literature (e.g., [CLOS02]) it is possible to
add equivocal receiver’s security to any OT protocol. We refer the reader to the
full-version of our paper [GS18] for details.

4 Conforming Protocols

Our protocol compilers work for protocols satisfying certain syntactic structure.
We refer to protocols satisfying this syntax as conforming protocols. In this sub-
section, we describe this notion and prove that any MPC protocol can be trans-
formed into a conforming protocol while preserving its correctness and security
properties.

Two-Round Multiparty Secure Computation from Minimal Assumptions 477

4.1 Specifications for a Conforming Protocol

Consider an n party deterministic3 MPC protocol Φ between parties P1, . . . , Pn

with inputs x1, . . . , xn, respectively. For each i ∈ [n], we let xi ∈ {0, 1}m denote
the input of party Pi. A conforming protocol Φ is defined by functions pre,
post, and computations steps or what we call actions φ1, · · · φT . The protocol
Φ proceeds in three stages: the pre-processing stage, the computation stage and
the output stage.

– Pre-processing phase: For each i ∈ [n], party Pi computes

(zi, vi) ← pre(1λ, i, xi)

where pre is a randomized algorithm. The algorithm pre takes as input the
index i of the party, its input xi and outputs zi ∈ {0, 1}�/n and vi ∈ {0, 1}�

(where � is a parameter of the protocol). Finally, Pi retains vi as the secret
information and broadcasts zi to every other party. We require that vi,k = 0
for all k ∈ [�]\ {(i − 1)�/n + 1, . . . , i�/n}.

– Computation phase: For each i ∈ [n], party Pi sets

sti := (z1‖ · · · ‖zn) ⊕ vi.

Next, for each t ∈ {1 · · · T} parties proceed as follows:
1. Parse action φt as (i, f, g, h) where i ∈ [n] and f, g, h ∈ [�].
2. Party Pi computes one NAND gate as

sti,h = NAND(sti,f , sti,g)

and broadcasts sti,h ⊕ vi,h to every other party.
3. Every party Pj for j �= i updates stj,h to the bit value received from Pi.

We require that for all t, t′ ∈ [T] such that t �= t′, we have that if φt = (·, ·, ·, h)
and φt′ = (·, ·, ·, h′) then h �= h′. Also, we denote Ai ⊂ [T] to be the set of
rounds in with party Pi sends a bit. Namely, Ai = {t ∈ T | φt = (i, ·, ·, ·)} .

– Output phase: For each i ∈ [n], party Pi outputs post(sti).

4.2 Transformation for Making a Protocol Conforming

We show that any MPC protocol can made conforming by making only some
syntactic changes. Our transformed protocols retains the correctness or security
properties of the original protocol.

Lemma 1. Any MPC protocol Π can be written as a conforming protocol Φ
while inheriting the correctness and the security of the original protocol.

3 Randomized protocols can be handled by including the randomness used by a party
as part of its input.

478 S. Garg and A. Srinivasan

Proof. Let Π be any given MPC protocol. Without loss of generality we assume
that in each round of Π, one party broadcasts one bit that is obtained by
computing a circuit on its initial state and the messages it has received so far
from other parties. Note that this restriction can be easily enforced by increasing
the round complexity of the protocol to the communication complexity of the
protocol. Let the round complexity (and also communication complexity) of Π
be p. In every round r ∈ [p] of Π, a single bit is sent by one of the parties by
computing a circuit. Let the circuit computed in round r be Cr. Without loss of
generality we assume that (i) these exists q such that for each r ∈ [p], we have
that q = |Cr|, (ii) each Cr is composed of just NAND gates with fan-in two, and
(iii) each party sends an equal number of bits in the execution of Π. All three
of these conditions can be met by adding dummy gates and dummy round of
interaction.

We are now ready to describe our transformed conforming protocol Φ. The
protocol Φ will have T = pq rounds. We let � = mn + pq and �′ = pq/n and
depending on � the compiled protocol Φ is as follows.

– pre(i, xi): Sample ri ← {0, 1}m and si ← ({0, 1}q−1‖0)p/n. (Observe that si

is a pq/n bit random string such that its qth, 2qth · · · locations are set to 0.)
Output zi := xi ⊕ ri‖0�′

and vi := 0�/n‖ . . . ‖ri‖si‖ . . . ‖0�/n.
– We are now ready to describe the actions φ1, · · · φT . For each r ∈ [p], round

r in Π party is expanded into q actions in Φ — namely, actions {φj}j where
j ∈ {(r−1)q+1 · · · rq}. Let Pi be the party that computes the circuit Cr and
broadcast the output bit broadcast in round r of Π. We now describe the φj

for j ∈ {(r − 1)q + 1 · · · rq}. For each j, we set φj = (i, f, g, h) where f and
g are the locations in sti that the jth gate of Cr is computed on (recall that
initially sti is set to zi ⊕ vi). Moreover, we set h to be the first location in sti
among the locations (i − 1)�/n + m + 1 to i�/n that has previously not been
assigned to an action. (Note that this is �′ locations which is exactly equal to
the number of bits computed and broadcast by Pi.)

Recall from before than on the execution of φj , party Pi sets sti,h :=
NAND(sti,f , sti,g) and broadcasts sti,h ⊕ vi,h to all parties.

– post(i, sti): Gather the local state of Pi and the messages sent by the other
parties in Π from sti and output the output of Π.

Now we need to argue that Φ preserves the correctness and security properties
of Π. Observe that Φ is essentially the same as the protocol Π except that in Φ
some additional bits are sent. Specifically, in addition to the messages that were
sent in Π, in Φ parties send zi in the preprocessing step and q − 1 additional
bits per every bit sent in Π. Note that these additional bits sent are not used
in the computation of Φ. Thus these bits do not affect the functionality of Π if
dropped. This ensures that Φ inherits the correctness properties of Π. Next note
that each of these bits is masked by a uniform independent bit. This ensures
that Φ achieves the same security properties as the underlying properties of Π.

Two-Round Multiparty Secure Computation from Minimal Assumptions 479

Finally, note that by construction for all t, t′ ∈ [T] such that t �= t′, we have
that if φt = (·, ·, ·, h) and φt′ = (·, ·, ·, h′) then h �= h′ as required.

5 Two-Round MPC: Semi-honest Case

In this section, we give our construction of two-round multiparty computation
protocol in the semi-honest case with security against static corruptions based
on any two-round semi-honest oblivious transfer protocol in the plain model.
This is achieved by designing a compiler that takes any conforming arbitrary
(polynomial) round MPC protocol Φ and squishes it to two rounds.

5.1 Our Compiler

We give our construction of two-round MPC in Fig. 1 and the circuit that needs
to be garbled (repeatedly) is shown in Fig. 2. We start by providing intuition
behind this construction.

Overview. In the first round of our compiled protocol, each party runs the
preprocessing phase of the protocol Φ and obtains zi and vi and broadcasts zi to
every other party. In the second round, each party sends a set of garbled circuits
that “non-interactively” implement the entire computation phase of the protocol
Φ. In other words, any party with the set of garbled circuits sent by every other
party, can use them to compute the entire transcript of the computation phase
of the protocol Φ. This allows each party to obtain the output of the protocol
Φ. In the following paragraphs, we give more details on how this is achieved.

To understand the main idea, let us concentrate on a particular round (let us
say the tth round) of the computation phase of the conforming protocol Φ and see
how this step is implemented using garbled circuits. Recall that before starting
the computation phase, each party locally computes sti := (z1‖ . . . ‖zn)⊕vi using
the first round messages sent by the other parties. This local state is updated
(recall that only one bit location is updated) at the end of each round based on
the bit that is sent in that round. We start with some notations.

Notations. Let us say that the party Pi∗ is the designated party in round t.
Let stti be the updated local state of party Pi at the beginning of the tth round
of the computation phase. In the tth round, the designated party Pi∗ computes
γ := NAND(stti∗,f , stti∗,g), writes this bit to position h of stti∗ and broadcasts
γ ⊕ vi∗,h to every other party. Every other party Pi (where i �= i∗) updates its
local state by writing the received bit at position h in its state stti.

Implementing the Computation Phase. The tth round of the computation
phase is implemented by the tth garbled circuit in each of these sequences. In a
bit more details, the garbled circuit of party Pi takes as input stti which is the
state of the party Pi at the beginning of the t-th round and outputs or, aids the

480 S. Garg and A. Srinivasan

process of outputting the labels corresponding to the updated local state at the
end of the tth round. These labels are then used to evaluate the garbled circuit
corresponding to the (t + 1)th round of the computation phase and this process
continues. Finally, at the end each party can just compute output function on
the final local state to obtain its output. Next, we describe how the tth garbled
circuits in each of the n sequences can be used to complete the tth action of the
computation phase.

The tth garbled circuit of party Pi∗ is executed first and is the most natural
one as in this round party Pi∗ is the one that sends a bit to the other parties.
Starting with the easy part, this garbled circuit takes as input stti∗ , updates the
local state by writing the bit γ in the position h of stti∗ and outputs the labels
corresponding to its updated state. However, the main challenge is that this
garbled circuit needs to communicate the bit γ ⊕ vi∗,h to other garbled circuits
of the other parties. Specifically, those garbled circuits also need to output the
correct labels corresponding to the their updated local state. Note that only the
hth bit of each of their local state needs to be updated. This was achieved in
[GS17] by using specific properties of Groth, Ostrovsky and Sahai proofs and in
this work, we only rely on oblivious transfer. This is our key new idea and we
provide the details next.

Relying on Oblivious Transfer. In addition to broadcasting the encoded
input zi in the first round, the party Pi sends a set of 4 OT messages (acting as
the receiver) for every round in the computation phase where Pi is the designated
party. Thus, if the number of rounds in the computation phase where Pi is
the designated party is ai, then the party Pi sends 4ai receiver OT messages.
Specifically, in our running example from above Pi∗ will generate 4 first OT
messages to help in tth round of Φ. In particular, for each value of α, β ∈ {0, 1},
Pi∗ generates the first OT message with vi∗,h ⊕ NAND(vi∗,f ⊕ α, vi∗,g ⊕ β) as
its choice bit. Every other party Pi for i �= i∗ acts as the sender and prepares
four OT responses corresponding to each of the four OT messages using labels
corresponding to the h-th input wire (say (labeli,t+1

h,0 , labeli,t+1
h,1)) of its next (i.e.,

(t+1)th) garbled circuit. However, these values aren’t sent to anyone yet! Because
sending them all to Pi∗ would lead to complete loss of security. Specifically, for
every choice of vi∗,f , vi∗,g, vi∗,h there exists different choices of α, β such that
vi∗,h ⊕ NAND(vi∗,f ⊕ α, vi∗,g ⊕ β) is 0 and 1, respectively. Thus, if all these
OT responses were reveled to Pi∗ then Pi∗ would learn both the input labels
labeli,t+1

h,0 , labeli,t+1
h,1 potentially breaking the security of garbled circuits. Our key

idea here is that party Pi hardcodes these OT responses in its tth garbled circuit
and only one of them is revealed to Pi∗ . We now elaborate this.

The t-th garbled circuit of party Pi (where i �= i∗) outputs the set of labels
corresponding to the state bits {stti,k}k∈[�]\{h} (as these bits do not change at
the end of the t-th round) and additionally outputs the sender OT response for
α = stti,f and β = stti,g with the messages being set to the labels corresponding

Two-Round Multiparty Secure Computation from Minimal Assumptions 481

to h-th bit of stti. It follows from the invariant of the protocol, that the choice
bit in this OT1 message is indeed γ ⊕ vi∗,h which is exactly the bit Pi∗ wants to
communicate to the other parties. However, this leaves us with another problem.
The OT responses only allow Pi∗ to learn the labels of the next garbled circuits
and it is unclear how a party j �= i∗ obtains the labels of the garbled circuits
generated by Pi.

Enabling all Parties to Compute. The party Pi∗ ’s tth garbled circuit, in
addition to outputting the labels corresponding to the updated state of Pi∗ ,
outputs the randomness it used to prepare the first OT message for which all Pi

for i �= i∗ output OT responses; namely, α = stti∗,f ⊕ vi∗,f , β = stti∗,g ⊕ vi∗,g. It
again follows from the invariant of the protocol Φ that this allows every party
Pj with j �= i∗ to evaluate the recover labeli,t+1

h,γ⊕vi∗,h
which is indeed the label

corresponding to the correct updated state. Thus, using the randomness output
by the garbled circuit of Pi∗ all other parties can recover the label labeli,t+1

h,γ⊕vi∗,h
.

We stress that this process of revealing the randomness of the OT leads to
complete loss of security for the particular instance OT. Nevertheless, since the
randomness of only one of the four OT messages of Pi∗ is reveled, overall security
is ensured. In particular, our construction ensures that the learned choice bit is
γ ⊕ vi∗,h which is in fact the message that is broadcasted in the underlying
protocol Φ. Thus, it follows from the security of the protocol Φ that learning
this message does not cause any vulnerabilities.

Theorem 2. Let Φ be a polynomial round, n-party semi-honest MPC proto-
col computing a function f : ({0, 1}m)n → {0, 1}∗, (Garble,Eval) be a garbling
scheme for circuits, and (OT1,OT2,OT3) be a semi-honest two-round OT pro-
tocol. The protocol described in Fig. 1 is a two-round, n-party semi-honest MPC
protocol computing f against static corruptions.

This theorem is proved in the rest of this section.

5.2 Correctness

In order to prove correctness, it is sufficient to show that the label com-
puted in Step 2(d)(ii) of the evaluation procedure corresponds to the bit
NAND(sti∗,f , sti∗,g)⊕vi∗,h. Notice that by the assumption on the structure of vi∗

(recall that vi∗ is such that vi∗,k = 0 for all k ∈ [�]\ {(i∗ − 1)�/n + 1, . . . , i∗�/n})
we deduce that for every i �= i∗, sti,f = sti∗,f ⊕ vi∗,f and sti,g = sti∗,g ⊕
vi∗,g. Thus, the label obtained by OT2 corresponds to the bit NAND(vi∗,f ⊕
sti∗,f ⊕ vi∗,f
︸ ︷︷ ︸

α

, vi∗,g ⊕ sti∗,g ⊕ vi∗,g
︸ ︷︷ ︸

β

) ⊕ vi∗,h = NAND(sti∗,f , sti∗,g) ⊕ vi∗,h and cor-

rectness follows.

482 S. Garg and A. Srinivasan

Let Φ be an n-party conforming semi-honest MPC protocol, (Garble,Eval) be a
garbling scheme for circuits and (OT1,OT2,OT3) be a semi-honest two-round
oblivious transfer protocol.

Round-1: Each party Pi does the following:
1. Compute (zi, vi) ← pre(1λ, i, xi).
2. For each t such that φt = (i, f, g, h) (Ai is the set of such values of t), for

each α, β ∈ {0, 1}
ots1,t,α,β ← OT1(1λ, vi,h ⊕ NAND(vi,f ⊕ α, vi,g ⊕ β);ωt,α,β).

3. Send zi, {ots1,t,α,β}t∈Ai,α,β∈{0,1}
)
to every other party.

Round-2: In the second round, each party Pi does the following:
1. Set sti := (z1‖ . . . ‖zi−1‖zi‖zi+1‖ . . . ‖zn) ⊕ vi.
2. Set lab

i,T+1
:= {labi,T+1

k,0 , labi,T+1
k,1 }k∈[�] where for each k ∈ [�] and b ∈

{0, 1} labi,T+1
k,b := 0λ.

3. for each t from T down to 1,
(a) Parse φt as (i∗, f, g, h).
(b) If i = i∗ then compute (where P is described in Figure 2)

P̃i,t, lab
i,t) ← Garble(1λ,P[i, φt, vi, {ωt,α,β}α,β , ⊥, lab

i,t+1
]).

(c) If i �= i∗ then for every α, β ∈ {0, 1}, set otsi2,t,α,β ←
OT2(ots1,t,α,β , labi,t+1

h,0 , labi,t+1
h,1) and compute

P̃i,t, lab
i,t) ← Garble(1λ,P[i, φt, vi, ⊥, {otsi2,t,α,β}α,β , lab

i,t+1
]).

4. Send {P̃i,t}t∈[T],{labi,1
k,sti,k

}k∈[�]

)
to every other party.

Evaluation: To compute the output of the protocol, each party Pi does the
following:
1. For each j ∈ [n], let l̃ab

j,1
:= {labj,1

k }k∈[�] be the labels received from
party Pj at the end of round 2.

2. for each t from 1 to T do:
(a) Parse φt as (i∗, f, g, h).

(b) Compute ((α, β, γ), ω, l̃ab
i∗,t+1

) := Eval(P̃i∗,t, l̃ab
i∗,t

).
(c) Set sti,h := γ ⊕ vi,h.
(d) for each j �= i∗ do:

i. Compute (ots2, {labj,t+1
k }k∈[�]\{h}) := Eval(P̃j,t, l̃ab

j,t
).

ii. Recover labj,t+1
h := OT3(ots2, ω).

iii. Set l̃ab
j,t+1

:= {labj,t+1
k }k∈[�].

3. Compute the output as post(i, sti).

Fig. 1. Two-round semi-honest MPC

Two-Round Multiparty Secure Computation from Minimal Assumptions 483

P

Input. sti.
Hardcoded. The index i of the party, the action φt = (i∗, f, g, h), the se-
cret value vi, the strings {ωt,α,β}α,β , {ots2,t,α,β}α,β and a set of labels lab =
{labk,0, labk,1}k∈[�].

1. if i = i∗ then:
(a) Compute sti,h := NAND(sti,f , sti,g), α := sti,f ⊕ vi,f , β := sti,g ⊕ vi,g and

γ := sti,h ⊕ vi,h.
(b) Output ((α, β, γ), ωt,α,β , {labk,sti,k}k∈[�]).

2. else:
(a) Output (ots2,t,sti,f ,sti,g , {labk,sti,k}k∈[�]\{h}).

Fig. 2. The program P.

Via the same argument as above it is useful to keep in mind that for every
i, j ∈ [n] and k ∈ [�], we have that sti,k ⊕ vi,k = stj,k ⊕ vj,k. Let us denote
this shared value by st∗. Also, we denote the transcript of the interaction in the
computation phase by Z ∈ {0, 1}t.

5.3 Simulator

Let A be a semi-honest adversary corrupting a subset of parties and let H ⊆ [n]
be the set of honest/uncorrupted parties. Since we assume that the adversary
is static, this set is fixed before the execution of the protocol. Below we provide
the simulator.

Description of the Simulator. We give the description of the ideal world
adversary S that simulates the view of the real world adversary A. S will inter-
nally use the semi-honest simulator SimΦ for Φ and the simulator SimG for gar-
bling scheme for circuits. Recall that A is static and hence the set of honest
parties H is known before the execution of the protocol.

Simulating the interaction with Z. For every input value for the set of
corrupted parties that S receives from Z, S writes that value to A’s input tape.
Similarly, the output of A is written as the output on S’s output tape.

Simulating the interaction with A: For every concurrent interaction with
the session identifier sid that A may start, the simulator does the following:

– Initialization: S uses the inputs of the corrupted parties {xi}i�∈H and out-
put y of the functionality f to generate a simulated view of the adversary.4

4 For simplicity of exposition, we only consider the case where every party gets the
same output. The proof in the more general case where parties get different outputs
follows analogously.

484 S. Garg and A. Srinivasan

More formally, for each i ∈ [n]\H S sends (input, sid, {P1 · · · Pn}, Pi, xi) to the
ideal functionality implementing f and obtains the output y. Next, it executes
SimΦ(1λ, {xi}i�∈H , y) to obtain {zi}i∈H , the random tapes for the corrupted
parties, the transcript of the computation phase denoted by Z ∈ {0, 1}t where
Zt is the bit sent in the tth round of the computation phase of Φ, and the
value st∗ (which for each i ∈ [n] and k ∈ [�] is equal to sti,k⊕vi,k). S starts the
real-world adversary A with the inputs {zi}i∈H and random tape generated
by SimΦ.

– Round-1 messages from S to A: Next S generates the OT messages
on behalf of honest parties as follows. For each i ∈ H, t ∈ Ai, α, β ∈
{0, 1}, generate ots1,t,α,β ← OT1(1λ,Zt;ωt,α,β). For each i ∈ H, S sends
(zi, {ots1,t,α,β}t∈Ai,α,β∈{0,1}) to the adversary A on behalf of the honest
party Pi.

– Round-1 messages from A to S: Corresponding to every i ∈ [n] \ H,
S receives from the adversary A the value (zi, {ots1,t,α,β}t∈Ai,α,β∈{0,1}) on
behalf of the corrupted party Pi.

– Round-2 messages from S to A: For each i ∈ H, the simulator S generates
the second round message on behalf of party Pi as follows:
1. For each k ∈ [�] set labi,T+1

k := 0λ.
2. for each t from T down to 1,

(a) Parse φt as (i∗, f, g, h).
(b) Set α∗ := st∗f , β∗ := st∗g, and γ∗ := st∗h.
(c) If i = i∗ then compute

(

P̃i,t, {labi,t
k }k∈[�]

) ← SimG

(

1λ,
(

(α∗, β∗, γ∗), ωt,α∗,β∗ , {labi,t+1
k }k∈[�]

))

.

(d) If i �= i∗ then set otsi2,t,α∗,β∗ ← OT2(ots1,t,α∗,β∗ , labi,t+1
h , labi,t+1

h) and
compute

(

˜Pi,t, {labi,t
k }k∈[�]

) ← SimG

(

1λ,
(

otsi2,t,α∗,β∗ , {labi,t+1
k }k∈[�]\{h}

))

.

3. Send
({˜Pi,t}t∈[T],{labi,1

k }k∈[�]

)

to every other party.
– Round-2 messages from A to S: For every i ∈ [n] \ H, S obtains

the second round message from A on behalf of the malicious parties.
Subsequent to obtaining these messages, for each i ∈ H, S sends
(generateOutput, sid, {P1 · · · Pn}, Pi) to the ideal functionality.

5.4 Proof of Indistinguishability

We now show that no environment Z can distinguish whether it is interacting
with a real world adversary A or an ideal world adversary S. We prove this via
an hybrid argument with T + 1 hybrids.

– HReal: This hybrid is the same as the real world execution. Note that this
hybrid is the same as hybrid Ht below with t = 0.

Two-Round Multiparty Secure Computation from Minimal Assumptions 485

– Ht (where t ∈ {0, . . . T}): Hybrid Ht (for t ∈ {1 · · · T}) is the same as hybrid
Ht−1 except we change the distribution of the OT messages (both from the
first and the second round of the protocol) and the garbled circuits (from
the second round) that play a role in the execution of the tth round of the
protocol Φ; namely, the action φt = (i∗, f, g, h). We describe the changes more
formally below.

We start by executing the protocol Φ on the inputs and the random coins
of the honest and the corrupted parties. This yields a transcript Z ∈ {0, 1}T

of the computation phase. Since the adversary is assumed to be semi-honest
the execution of the protocol Φ with A will be consistent with Z. Let st∗

be the local state of the end of execution of Faithful. Finally, let α∗ := st∗f ,
β∗ := st∗g and γ∗ := st∗h. In hybrid Ht we make the following changes with
respect to hybrid Ht−1:

• If i∗ �∈ H then skip these changes. S makes two changes in how it generates
messages on behalf of Pi∗ . First, for all α, β ∈ {0, 1}, S generates ots1,t,α,β

as OT1(1λ,Zt;ωt,α,β) (note that only one of these four values is subse-
quently used) rather than OT1(1λ, vi,h ⊕NAND(vi,f ⊕α, vi,g ⊕β);ωt,α,β).
Second, it generates the garbled circuit

(

P̃i∗,t, {labi∗,t
k }k∈[�]

) ← SimG

(

1λ,
(

(α∗, β∗, γ∗), ωt,α∗,β∗ , {labi∗,t+1
k,sti,k

}k∈[�]

))

,

where {labi∗,t+1
k,sti,k

}k∈[�] are the honestly generates input labels for the gar-

bled circuit ˜Pi∗,t+1.
• S makes the following two changes in how it generates messages for

other honest parties Pi (i.e., i ∈ H \ {i∗}). S does not gener-
ate four otsi2,t,α,β values but just one of them; namely, S generates
otsi2,t,α∗,β∗ as OT2(ots1,t,α∗,β∗ , labi,t+1

h,Zt
, labi,t+1

h,Zt
) rather than

OT2(ots1,t,α∗,β∗ , labi,t+1
h,0 , labi,t+1

h,1). Second it generates the garbled circuit

(

˜Pi,t, {labi,t
k }k∈[�]

) ← SimG

(

1λ,
(

otsi2,t,α∗,β∗ , {labi,t+1
k,sti,k

}k∈[�]\{h}
))

,

where {labi,t+1
k,sti,k

}k∈[�] are the honestly generated input labels for the gar-

bled circuit ˜Pi,t+1.
Indistinguishability between Ht−1 and Ht is proved in Lemma 2.

– HT+1: In this hybrid we just change how the transcript Z, {zi}i∈H , random
coins of malicious parties and value st∗ are generated. Instead of generat-
ing these using honest party inputs we generate these values by executing
the simulator SimΦ on input {xi}i∈[n]\H and the output y obtained from the
ideal functionality.

The indistinguishability between hybrids HT and HT+1 follows directly
from the semi-honest security of the protocol Φ. Finally note that HT+1 is same
as the ideal execution (i.e., the simulator described in the previous subsection).

Lemma 2. Assuming semi-honest security of the two-round OT protocol and
the security of the garbling scheme, for all t ∈ {1 . . . T} hybrids Ht−1 and Ht

are computationally indistinguishable.

486 S. Garg and A. Srinivasan

Proof. Using the same notation as before, let φt = (i∗, f, g, h), sti∗ be the state
of Pi∗ at the end of round t, and α∗ := sti∗,f ⊕ vi∗,f , β∗ := sti∗,g ⊕ vi∗,g and
γ∗ := sti∗,h⊕vi∗,h. The indistinguishability between hybrids Ht−1 and Ht follows
by a sequence of three sub-hybrids Ht,1, Ht,2, and Ht,3.

– Ht,1: Hybrid Ht,1 is same as hybrid Ht−1 except that S now generates the
garbled circuits ˜Pi,t for each i ∈ H in a simulated manner (rather than
generating them honestly). Specifically, instead of generating each garbled
circuit and input labels

(

˜Pi,t, {labi,t
k }k∈[�]

)

honestly, they are generated via
the simulator by hard coding the output of the circuit itself. In a bit more
details, parse φt as (i∗, f, g, h).

• If i = i∗ then
(

˜Pi,t, {labi,t
k }k∈[�]

) ← SimG

(

1λ,
(

(α∗, β∗, γ∗), ωt,α∗,β∗ , {labi,t+1
k,sti,k

}k∈[�]

))

,

where {labi,t+1
k,sti,k

}k∈[�] are the honestly generates input labels for the gar-

bled circuit ˜Pi,t+1.
• If i �= i∗ then

(

˜Pi,t, {labi,t
k }k∈[�]

) ← SimG

(

1λ,
(

otsi2,t,α∗,β∗ , {labi,t+1
k,sti,k

}k∈[�]\{h}
))

,

where {labi,t+1
k,sti,k

}k∈[�] are the honestly generated input labels for the gar-

bled circuit ˜Pi,t+1.
The indistinguishability between hybrids Ht,1 and Ht−1 follows by |H| invo-
cations of security of the garbling scheme.

– Ht,2: Skip this hybrid, if i∗ �∈ H. This hybrid is same as Ht,1 except that we
change how S generates the Round-1 message on behalf of Pi∗ . Specifically,
the simulator S generates ots1,t,α,β as is done in the Ht. In a bit more detail,
for all α, β ∈ {0, 1}, S generates ots1,t,α,β as OT1(1λ,Zt;ωt,α,β) rather than
OT1(1λ, vi,h ⊕ NAND(vi,f ⊕ α, vi,g ⊕ β);ωt,α,β).

Indistinguishability between hybrids Ht,1 and Ht,2 follows directly by a
sequence of 3 sub-hybrids each one relying on the receiver’s security of under-
lying semi-honest oblivious transfer protocol. Observe here that the security
reduction crucially relies on the fact that ˜Pi,t only contains ωt,α∗,β∗ (i.e., does
not have ωt,α,β for α �= α∗ or β �= β∗).

– Ht,3: Skip this hybrid if there does not exist i �= i∗ such that i ∈ H. In
this hybrid, we change how S generates the otsi2,t,α,β on behalf of every hon-
est party Pi such that i ∈ H \ {i∗} for all choices of α, β ∈ {0, 1}. More
specifically, S only generates one of these four values; namely, otsi2,t,α∗,β∗

which is now generated as OT2(ots1,t,α∗,β∗ , labi,t+1
h,Zt

, labi,t+1
h,Zt

) instead of
OT2(ots1,t,α∗,β∗ , labi,t+1

h,0 , labi,t+1
h,1).

Indistinguishability between hybrids Ht,2 and Ht,3 follows directly from
the sender’s security of underlying semi-honest oblivious transfer protocol.
Finally, observe that Ht,3 is the same as hybrid Ht.

Two-Round Multiparty Secure Computation from Minimal Assumptions 487

5.5 Extensions

The protocol presented above is very general and can be extended in different
ways to obtain several other additional properties. We list some of the simple
extensions below.

Multi-round OT. We note that plugging in any multi-round (say, r-round) OT
scheme with semi-honest security we obtain an r-round MPC for semi-honest
adversaries. More specifically, this can be achieved as follows. We run the first
r − 2 rounds of the protocol as a pre-processing phase with the receiver’s choice
bits set as in the protocol and the sender’s message being randomly chosen labels.
We then run the first round of our MPC protocol with the (r−1)th round of OT
from the receiver and run the second round using the last round message from
the sender hardwired inside the garbled circuits. The proof of security follows
identically to proof given above for a two-round OT. A direct corollary of this
construction is a construction of three round MPC for semi-honest adversaries
from enhanced trapdoor permutations.

Two-Round MPC for RAM programs. In the previous section, we described
how protocol compilation can be done for the case of conforming MPC protocols
for circuits. Specifically, the protocol communication depends on the lengths of
the secret state of the parties. We note that we can extend this framework for
securely evaluating RAM programs [OS97,GKK+12,GGMP16,HY16] in two-
rounds. In this setting, each party has a huge database as its private input and
the parties wishes to compute a RAM program on their private databases. We
consider the persistent memory setting [LO13,GHL+14,GLOS15,GLO15] where
several programs are evaluated on the same databases. We allow an (expensive)
pre-processing phase where the parties communicate to get a shared garbled
database and the programs must be evaluated with communication and compu-
tation costs that grow with the running time of the programs. In our construction
of two-round MPC for RAM programs, the pre-processing phase involves the par-
ties executing a two-round MPC to obtain garbled databases of all the parties
using a garbled RAM scheme (say, [GLOS15]) along with the shared secret state.
Next, when a program needs to be executed, then the parties execute our two-
round MPC to obtain a garbled program. Finally, the obtained garbled program
can be executed with the garbled database to obtain the output.

Reducing the Communication Complexity. Finally, we note that in
our two-round protocol each party can reduce the communication complexity
[Gen09,BGI16,CDG+17] of either one of its two messages (with size depen-
dent just on the security parameter) using Laconic Oblivious Transfer (OT)
[CDG+17]. Roughly, laconic OT allows one party to commit to a large message
by a short hash string (depending just on the security parameter) such that the
knowledge of the laconic hash suffices for generating a garbled circuit that can
be executed on the large committed string as input. Next, we give simple trans-
formations using which the first party in any two-round MPC protocol can make
either its first message or its second message short, respectively. The general case
can also be handled in a similar manner.

488 S. Garg and A. Srinivasan

We start by providing a transformation by which the first party can make its
first message short. The idea is that in the transformed protocol the first party
now only sends a laconic hash of the first message of the underlying protocol,
which is disclosed in the second round message of the transformed protocol. The
first round of messages of all other parties in the transformed protocol remains
unchanged. However, their second round messages are now obtained by sending
garbled circuits that generate the second round message of the original protocol
using the first round message of the first party as input. This can be done using
laconic OT.

Using a similar transformation the first party can make its second message
short. Specifically, in this case, the first party appends its first round message
with a garbled circuit that generated its second round message given as input
the laconic OT hash for the first round messages of all the other parties. Now in
the second round, the first party only needs to disclose the labels for the garbled
circuit corresponding to laconic OT hash of the first round messages of all the
other parties. The messages of all the other parties remain unchanged.

6 Two-Round MPC: Malicious Case

In this section, we give our construction of two-round multiparty computation
protocol in the malicious case with security against static corruptions based
on any two-round malicious oblivious transfer protocol (with equivocal receiver
security which as argued earlier can be added with need for any additional
assumptions) This is achieved by designing a compiler that takes any conforming
arbitrary (polynomial) round MPC protocol Φ and squishes it to two rounds.

6.1 Our Compiler

We give our construction of two-round MPC in Fig. 3 and the circuit that needs
to be garbled (repeatedly) is shown in Fig. 2 (same as the semi-honest case). We
start by providing intuition behind this construction. Our compiler is essentially
the same as the semi-honest case. In addition to the minor syntactic changes,
the main difference is that we compile malicious secure conforming protocols
instead of semi-honest ones.

Another technical issue arises because the adversary may wait to receiver
first round messages that S sends on the behalf of honest parties before the
corrupted parties send out their first round messages. Recall that by sending the
receiver OT messages in the first round, every party “commits” to all its future
messages that it will send in the computation phase of the protocol. Thus, the
ideal world simulator S must somehow commit to the messages generated on
behalf of the honest party before extracting the adversary’s effective input. To
get around this issue, we use the equivocability property of the OT using which
the simulator can equivocate its first round messages after learning the malicious
adversary’s effective input.

Two-Round Multiparty Secure Computation from Minimal Assumptions 489

Let Φ be an n-party conforming malicious MPC protocol, (Garble,Eval) be a gar-
bling scheme for circuits and (KOT,OT1,OT2,OT3) be a malicious (with equivocal
receiver security) two-round oblivious transfer protocol.

Common Random/Reference String: For each t ∈ T, α, β ∈ {0, 1} sample
σt,α,β ← KOT(1λ) and output {σt,α,β}t∈[T],α,β∈{0,1} as the common ran-
dom/reference string.

Round-1: Each party Pi does the following:
1. Compute (zi, vi) ← pre(1λ, i, xi).
2. For each t such that φt = (i, f, g, h) (Ai is the set of such values of t), for

each α, β ∈ {0, 1}
ots1,t,α,β ← OT1(σt,α,β , vi,h ⊕ NAND(vi,f ⊕ α, vi,g ⊕ β);ωt,α,β).

3. Send zi, {ots1,t,α,β}t∈Ai,α,β∈{0,1}
)
to every other party.

Round-2: In the second round, each party Pi does the following:
1. Set sti := (z1‖ . . . ‖zi−1‖zi‖zi+1‖ . . . ‖zn) ⊕ vi.
2. Set lab

i,T+1
:= {labi,T+1

k,0 , labi,T+1
k,1 }k∈[�] where for each k ∈ [�] and b ∈

{0, 1} labi,T+1
k,b := 0λ.

3. for each t from T down to 1,
(a) Parse φt as (i∗, f, g, h).
(b) If i = i∗ then compute (where P is described in Figure 2)

P̃i,t, lab
i,t) ← Garble(1λ,P[i, φt, vi, {ωt,α,β}α,β , ⊥, lab

i,t+1
]).

(c) If i �= i∗ then for every α, β ∈ {0, 1}, set otsi2,t,α,β ←
OT2(σt,α,β , ots1,t,α,β , labi,t+1

h,0 , labi,t+1
h,1) and compute

P̃i,t, lab
i,t) ← Garble(1λ,P[i, φt, vi, ⊥, {otsi2,t,α,β}α,β , lab

i,t+1
]).

4. Send {P̃i,t}t∈[T],{labi,1
k,sti,k

}k∈[�]

)
to every other party.

Evaluation: To compute the output of the protocol, each party Pi does the
following:
1. For each j ∈ [n], let l̃ab

j,1
:= {labj,1

k }k∈[�] be the labels received from
party Pj at the end of round 2.

2. for each t from 1 to T do:
(a) Parse φt as (i∗, f, g, h).

(b) Compute ((α, β, γ), ω, l̃ab
i∗,t+1

) := Eval(P̃i∗,t, l̃ab
i∗,t

).
(c) Set sti,h := γ ⊕ vi,h.
(d) for each j �= i∗ do:

i. Compute (ots2, {labj,t+1
k }k∈[�]\{h}) := Eval(P̃j,t, l̃ab

j,t
).

ii. Recover labj,t+1
h := OT3(σt,α,β , ots2, ω).

iii. Set l̃ab
j,t+1

:= {labj,t+1
k }k∈[�].

3. Compute the output as post(i, sti).

Fig. 3. Two-round malicious MPC.

490 S. Garg and A. Srinivasan

Theorem 3. Let Φ be a polynomial round, n-party malicious MPC protocol
computing a function f : ({0, 1}m)n → {0, 1}∗, (Garble,Eval) be a garbling
scheme for circuits, and (KOT,OT1,OT2,OT3) be a maliciously secure (with
equivocal receiver security) two-round OT protocol. The protocol described in
Fig. 3 is a two-round, n-party malicious MPC protocol computing f against static
corruptions.

We prove the security of our compiler in the rest of the section. The proof of
correctness is the same as for the case of semi-honest security (see Sect. 5.2).

As in the semi-honest case Via the same argument as above it is useful to keep
in mind that for every i, j ∈ [n] and k ∈ [�], we have that sti,k ⊕vi,k = stj,k ⊕vj,k.
Let us denote this shared value by st∗. Also, we denote the transcript of the
interaction in the computation phase by Z ∈ {0, 1}t.

6.2 Simulator

Let A be a malicious adversary corrupting a subset of parties and let H ⊆ [n]
be the set of honest/uncorrupted parties. Since we assume that the adversary
is static, this set is fixed before the execution of the protocol. Below we provide
thenotion of faithful execution and then describe our simulator.

Faithful Execution. In the first round of our compiled protocol, A provides zi

for every i ∈ [n] \ H and ots1,t,α,β for every t ∈ ∪i∈[n]\h and α, β ∈ {0, 1}. These
values act as “binding” commitments to all of the adversary’s future choices. All
these committed choices can be extracted using the extractor Ext2. Let bt,α,β be
the value extracted from ots1,t,α,β . Intuitively speaking, a faithful execution is
an execution that is consistent with these extracted values.

More formally, we define an interactive procedure Faithful(i, {zi}i∈[n],
{bt,α,β}t∈Ai,α,β) that on input i ∈ [n], {zi}i∈[n], {bt,α,β}t∈Ai,α,β∈{0,1} produces
protocol Φ message on behalf of party Pi (acting consistently/faithfully with the
extracted values) as follows:

1. Set st∗ := z1‖ . . . ‖zn.
2. For t ∈ {1 · · · T}

(a) Parse φt = (i∗, f, g, h).
(b) If i �= i∗ then it waits for a bit from Pi∗ and sets st∗h to be the received

bit once it is received.
(c) Set st∗ := bt,st∗f ,st∗g and output it to all the other parties.

We will later argue that any deviation from the faithful execution by the adver-
sary A on behalf of the corrupted parties (during the second round of our com-
piled protocol) will be be detected. Additionally, we prove that such deviations
do not hurt the security of the honest parties.

Description of the Simulator. We give the description of the ideal world
adversary S that simulates the view of the real world adversary A. S will inter-
nally use the malicious simulator SimΦ for Φ, the extractor Ext = (Ext1,Ext2)

Two-Round Multiparty Secure Computation from Minimal Assumptions 491

implied by the sender security of two-round OT, the simulator SimEq implied by
the equivocal receiver’s security and the simulator SimG for garbling scheme for
circuits. Recall that A is static and hence the set of honest parties H is known
before the execution of the protocol.

Simulating the interaction with Z. For every input value for the set of
corrupted parties that S receives from Z, S writes that value to A’s input tape.
Similarly, the output of A is written as the output on S’s output tape.

Simulating the interaction with A: For every concurrent interaction with
the session identifier sid that A may start, the simulator does the following:

– Generation of the common random/reference string: S generates the
common random/reference string as follows:
1. For each i ∈ H, t ∈ Ai, α, β ∈ {0, 1} set (σt,α,β , (ots1,t,α,β , ω0

t,α,β , ω1
t,α,β))

← SimEq(1λ) (using equivocal simulator).
2. For each i ∈ [n] \ H,α, β ∈ {0, 1} and t ∈ Ai generate (σt,α,β , τt,α,β) ←

Ext1(1λ) (using the extractor of the OT protocol).
3. Output the common random/reference string as {σt,α,β}t,α,β .

– Initialization: S executes the simulator (against malicious adversary’s)
SimΦ(1λ) to obtain {zi}i∈H . Moreover, S starts the real-world adversary A.
We next describe how S provides its messages to SimΦ and A.

– Round-1 messages from S to A: For each i ∈ H, S sends
(zi, {ots1,t,α,β}t∈Ai,α,β∈{0,1}) to the adversary A on behalf of the honest
party Pi.

– Round-1 messages from A to S: Corresponding to every i ∈ [n] \ H,
S receives from the adversary A the value (zi, {ots1,t,α,β}t∈Ai,α,β∈{0,1}) on
behalf of the corrupted party Pi. Next, for each i ∈ [n]\H, t ∈ Ai, α, β ∈ {0, 1}
extract bt,α,β := Ext2(τt,α,β , ots1,t,α,β).

– Completing the execution with the SimΦ: For each i ∈ [n] \ H, S sends
zi to SimΦ on behalf of the corrupted party Pi. This starts the computation
phase of Φ with the simulator SimΦ. S provides computation phase messages
to SimΦ by following a faithful execution. More formally, for every corrupted
party Pi where i ∈ [n]\H, S generates messages on behalf of Pi for SimΦ using
the procedure Faithful(i, {zi}i∈[n], {bt,α,β}t∈Ai,α,β). At some point during the
execution, SimΦ will return the extracted inputs {xi}i∈[n]\H of the corrupted
parties. For each i ∈ [n]\H, S sends (input, sid, {P1 · · · Pn}, Pi, xi) to the ideal
functionality implementing f and obtains the output y which is provided to
SimΦ. Finally, at some point the faithful execution completes.

Let Z ∈ {0, 1}t where Zt is the bit sent in the tth round of the computation
phase of Φ be output of this execution. And let st∗ be the state value at the end
of execution of one of the corrupted parties (this value is the same for all the
parties). Also, set for each t ∈ ∪i∈HAi and α, β ∈ {0, 1} set ωt,α,β := ωZt

t,α,β .
– Round-2 messages from S to A: For each i ∈ H, the simulator S generates

the second round message on behalf of party Pi as follows:
1. For each k ∈ [�] set labi,T+1

k := 0λ.
2. for each t from T down to 1,

492 S. Garg and A. Srinivasan

(a) Parse φt as (i∗, f, g, h).
(b) Set α∗ := st∗f , β∗ := st∗g, and γ∗ := st∗h.
(c) If i = i∗ then compute

(

P̃i,t, {labi,t
k }k∈[�]

) ← SimG

(

1λ,
(

(α∗, β∗, γ∗), ωt,α∗,β∗ , {labi,t+1
k }k∈[�]

))

.

(d) If i �= i∗ then set otsi2,t,α∗,β∗ ← OT2(σt,α∗,β∗ , ots1,t,α∗,β∗ , labi,t+1
h ,

labi,t+1
h) and compute

(

˜Pi,t, {labi,t
k }k∈[�]

) ← SimG

(

1λ,
(

otsi2,t,α∗,β∗ , {labi,t+1
k }k∈[�]\{h}

))

.

3. Send
({˜Pi,t}t∈[T],{labi,1

k }k∈[�]

)

to every other party.
– Round-2 messages from A to S: For every i ∈ [n] \ H, S obtains the

second round message from A on behalf of the malicious parties. Subsequent
to obtaining these messages, S executes the garbled circuits provided by A on
behalf of the corrupted parties to see the execution of garbled circuits proceeds
consistently with the expected faithful execution. If the computation succeeds
then for each i ∈ H, S sends (generateOutput, sid, {P1 · · · Pn}, Pi) to the ideal
functionality.

6.3 Proof of Indistinguishability

We now show that no environment Z can distinguish whether it is interacting
with a real world adversary A or an ideal world adversary S. We prove this via
an hybrid argument with T + 2 hybrids.

– HReal: This hybrid is the same as the real world execution.
– H0: In this hybrid we start by changing the distribution of the common

random string. Specifically, the common random string is generated as is done
in the simulation. More formally, S generates the common random/reference
string as follows:
1. For each i ∈ H, t ∈ Ai, α, β ∈ {0, 1} set (σt,α,β , (ots1,t,α,β , ω0

t,α,β ,

ω1
t,α,β)) ← SimEq(1λ) (using equivocal simulator).

For all t ∈ ∪i∈HAi and α, β ∈ {0, 1} set ωt,α,β :=
ω

vi,h⊕NAND(vi,f⊕α,vi,g⊕β)
t,α,β where vi is the secret value of party Pi gener-

ated in the pre-processing phase of Φ.
2. For each i ∈ [n] \ H,α, β ∈ {0, 1} and t ∈ Ai generate (σt,α,β , τt,α,β) ←

Ext1(1λ) (using the extractor of the OT protocol).
Corresponding to every i ∈ [n] \ H, A sends (zi,

{ots1,t,α,β}t∈Ai,α,β∈{0,1}) on behalf of the corrupted party Pi as its first
round message. For each i ∈ [n] \ H, t ∈ Ai, α, β ∈ {0, 1} in this hybrid
we extract bt,α,β := Ext(τt,α,β , ots1,t,α,β).

Note that this hybrid is the same as hybrid Ht below with t = 0.
The indistinguishability between hybrids HReal and H0 follow from a

reduction to the sender’s security and the equivocal receiver’s security of
the two-round OT protocol.

Two-Round Multiparty Secure Computation from Minimal Assumptions 493

– Ht (where t ∈ {0, . . . T}): Hybrid Ht (for t ∈ {1 · · · T}) is the same as hybrid
Ht−1 except we change the distribution of the OT messages (both from the
first and the second round of the protocol) and the garbled circuits (from the
second round) that play a role in the execution of the tth round of the pro-
tocol Φ; namely, the action φt = (i∗, f, g, h). We describe the changes more
formally below.

For each i ∈ [n] \ H, in this hybrid S (in his head) completes an exe-
cution of Φ using honest party inputs and randomness. In this execution,
the messages on behalf of corrupted parties are generated via faithful exe-
cution. Specifically, S sends {zi}i∈[n]\H to the honest parties on behalf
of the corrupted party Pi in this mental execution of Φ. This starts the
computation phase of Φ. In this computation phase, S generates honest
party messages using the inputs and random coins of the honest parties
and generates the messages of the each malicious party Pi by executing
Faithful

(

i, {zi}i∈[n]\H , {bt,α,β}t∈Ai,α,β

)

. Let st∗ be the local state of the end
of execution of Faithful. Finally, let α∗ := st∗f , β∗ := st∗g and γ∗ := st∗h. In
hybrid Ht we make the following changes with respect to hybrid Ht−1:

• If i∗ �∈ H then skip these changes. S makes two changes in how it generates
messages on behalf of Pi∗ . First, for all α, β ∈ {0, 1}, S sets ωt,α,β as ωZt

t,α,β

rather than ω
vi,h⊕NAND(vi,f⊕α,vi,g⊕β)
t,α,β (note that these two values are the

same when using the honest party’s input and randomness). Second, it
generates the garbled circuit

(

P̃i∗,t, {labi∗,t
k }k∈[�]

) ← SimG

(

1λ,
(

(α∗, β∗, γ∗), ωt,α∗,β∗ , {labi∗,t+1
k,sti,k

}k∈[�]

))

,

where {labi∗,t+1
k,sti,k

}k∈[�] are the honestly generates input labels for the gar-

bled circuit ˜Pi∗,t+1.
• S makes the following two changes in how it generates messages for other

honest parties Pi (i.e., i ∈ H \{i∗}). S does not generate four otsi2,t,α,β val-
ues but just one of them; namely, S generates otsi2,t,α∗,β∗ as OT2(σt,α∗,β∗ ,

ots1,t,α∗,β∗ , labi,t+1
h,Zt

, labi,t+1
h,Zt

) rather thanOT2(σt,α∗,β∗ , ots1,t,α∗,β∗ , labi,t+1
h,0 ,

labi,t+1
h,1). Second it generates the garbled circuit

(

˜Pi,t, {labi,t
k }k∈[�]

) ← SimG

(

1λ,
(

otsi2,t,α∗,β∗ , {labi,t+1
k,sti,k

}k∈[�]\{h}
))

,

where {labi,t+1
k,sti,k

}k∈[�] are the honestly generated input labels for the gar-

bled circuit ˜Pi,t+1.
Indistinguishability between Ht−1 and Ht is proved in Lemma 2.

– HT+1: In this hybrid we just change how the transcript Z, {zi}i∈H , random
coins of malicious parties and value st∗ are generated. Instead of generating
these using honest party inputs in execution with a faithful execution of Φ, we
generate it via the simulator SimΦ (of the maliciously secure protocol Φ). In
other words, we execute the simulator SimΦ where messages on behalf of each

494 S. Garg and A. Srinivasan

corrupted party Pi are generated using Faithful(i, {zi}i∈[n]\H , {bt,α,β}t∈Ai,α,β).
(Note that SimΦ might rewindFaithful. This can be achieved sinceFaithful is just
a polynomial time interactive procedure that can also be rewound.)

The indistinguishability between hybrids HT and HT+1 follows directly
from the malicious security of the protocol Φ. Finally note that HT+1 is
same as the ideal execution (i.e., the simulator described in the previous
subsection).

Lemma 3. Assuming malicious security of the two-round OT protocol and the
security of the garbling scheme, for all t ∈ {1 . . . T} hybrids Ht−1 and Ht are
computationally indistinguishable.

Proof. Using the same notation as before, let φt = (i∗, f, g, h), sti∗ be the state
of Pi∗ at the end of round t, and α∗ := sti∗,f ⊕ vi∗,f , β∗ := sti∗,g ⊕ vi∗,g and
γ∗ := sti∗,h⊕vi∗,h. The indistinguishability between hybrids Ht−1 and Ht follows
by a sequence of three sub-hybrids Ht,1, Ht,2, and Ht,3.

• Ht,1: Hybrid Ht,1 is same as hybrid Ht−1 except that S now generates the
garbled circuits ˜Pi,t for each i ∈ H in a simulated manner (rather than
generating them honestly). Specifically, instead of generating each garbled
circuit and input labels

(

˜Pi,t, {labi,t
k }k∈[�]

)

honestly, they are generated via
the simulator by hard coding the output of the circuit itself. In a bit more
details, parse φt as (i∗, f, g, h).

• If i = i∗ then
(

˜Pi,t, {labi,t
k }k∈[�]

) ← SimG

(

1λ,
(

(α∗, β∗, γ∗), ωt,α∗,β∗ , {labi,t+1
k,sti,k

}k∈[�]

))

,

where {labi,t+1
k,sti,k

}k∈[�] are the honestly generates input labels for the gar-

bled circuit ˜Pi,t+1.
• If i �= i∗ then

(

˜Pi,t, {labi,t
k }k∈[�]

) ← SimG

(

1λ,
(

otsi2,t,α∗,β∗ , {labi,t+1
k,sti,k

}k∈[�]\{h}
))

,

where {labi,t+1
k,sti,k

}k∈[�] are the honestly generated input labels for the gar-

bled circuit ˜Pi,t+1.
The indistinguishability between hybrids Ht,1 and Ht−1 follows by |H| invo-
cations of security of the garbling scheme.

• Ht,2: Skip this hybrid, if i∗ �∈ H. This hybrid is same as Ht,1 except that we
change how S generates the Round-1 message on behalf of Pi∗ . Specifically,
the simulator S generates ots1,t,α,β as is done in the Ht. In a bit more detail,
for all α, β ∈ {0, 1}, S generates ots1,t,α,β as OT1(σt,α,β ,Zt;ωt,α,β) rather
than OT1(σt, α, β, vi,h ⊕ NAND(vi,f ⊕ α, vi,g ⊕ β);ωt,α,β).

Indistinguishability between hybrids Ht,1 and Ht,2 follows directly by a
sequence of 3 sub-hybrids each one relying on the receiver’s security of under-
lying semi-honest oblivious transfer protocol. Observe here that the security
reduction crucially relies on the fact that ˜Pi,t only contains ωt,α∗,β∗ (i.e., does
not have ωt,α,β for α �= α∗ or β �= β∗).

Two-Round Multiparty Secure Computation from Minimal Assumptions 495

• Ht,3: Skip this hybrid if there does not exist i �= i∗ such that i ∈ H. In
this hybrid, we change how S generates the otsi2,t,α,β on behalf of every hon-
est party Pi such that i ∈ H \ {i∗} for all choices of α, β ∈ {0, 1}. More
specifically, S only generates one of these four values; namely, otsi2,t,α∗,β∗

which is now generated as OT2(σt,α∗,β∗ , ots1,t,α∗,β∗ , labi,t+1
h,Zt

, labi,t+1
h,Zt

) instead
of OT2(σt,α∗,β∗ , ots1,t,α∗,β∗ , labi,t+1

h,0 , labi,t+1
h,1).

Indistinguishability between hybrids Ht,2 and Ht,3 follows directly from
the sender’s security of underlying malicious oblivious transfer protocol.
Finally, observe that Ht,3 is the same as hybrid Ht.

6.4 Extensions

As in the semi-honest case, we discuss several extensions to the construction of
two-round maliciously secure MPC.

Fairness. Assuming honest majority we obtain fairness in three rounds using
techniques from [GLS15]. Specifically, we can change the function description to
output a n/2-out-of-n secret sharing of the output. In the last round, the parties
exchange their shares to reconstruct the output. Note that since the corrupted
parties is in minority, it cannot learn the output of the function even if it obtains
the second round messages from all the parties. Note that Gordon et al. [GLS15]
showed that three rounds are necessary to achieve fairness. Thus this is optimal.

Semi-malicious security in Plain Model. We note that a simple modification
of our construction in Fig. 3 can be made semi-maliciously secure in the plain
model. The modification is to use a two-round OT secure against semi-malicious
receiver and semi-honest sender (e.g., [NP01]) and achieve equivocability by
sending two OT1 messages in the first round having the same receiver’s choice
bit. Note that this is trivially equivocal since a simulator can use different choice
bits in the OT1 message. On the other hand, since a semi-malicious party is
required to follow the protocol, it will always use the same choice bit in both the
OT1 messages.

References

[AIK04] Applebaum, B., Ishai, Y., Kushilevitz, E.: Cryptography in NC0. In: 45th
FOCS, Rome, Italy, 17–19 October 2004, pp. 166–175. IEEE Computer
Society Press (2004)

[AIK05] Applebaum, B., Ishai, Y., Kushilevitz, E.: Computationally private ran-
domizing polynomials and their applications. In: 20th Annual IEEE Con-
ference on Computational Complexity (CCC 2005), San Jose, CA, USA,
11–15 June 2005, pp. 260–274 (2005)

[AIR01] Aiello, B., Ishai, Y., Reingold, O.: Priced oblivious transfer: how to sell
digital goods. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol.
2045, pp. 119–135. Springer, Heidelberg (2001). https://doi.org/10.1007/
3-540-44987-6 8

https://doi.org/10.1007/3-540-44987-6_8
https://doi.org/10.1007/3-540-44987-6_8

496 S. Garg and A. Srinivasan

[AJL+12] Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V.,
Wichs, D.: Multiparty computation with low communication, computa-
tion and interaction via threshold FHE. In: Pointcheval, D., Johansson,
T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 483–501. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4 29

[BF01] Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing.
In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8 13

[BFM88] Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its
applications (extended abstract). In: 20th ACM STOC, Chicago, IL, USA,
2–4 May 1988, pp. 103–112. ACM Press (1988)

[BGI+01] Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan,
S., Yang, K.: On the (im)possibility of obfuscating programs. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-44647-8 1

[BGI16] Boyle, E., Gilboa, N., Ishai, Y.: Breaking the circuit size barrier for secure
computation under DDH. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016.
LNCS, vol. 9814, pp. 509–539. Springer, Heidelberg (2016). https://doi.
org/10.1007/978-3-662-53018-4 19

[BGI17] Boyle, E., Gilboa, N., Ishai, Y.: Group-based secure computation: optimiz-
ing rounds, communication, and computation. In: Coron, J.-S., Nielsen,
J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10211, pp. 163–193. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-56614-6 6

[BH15] Bellare, M., Hoang, V.T.: Adaptive witness encryption and asymmetric
password-based cryptography. In: Katz, J. (ed.) PKC 2015. LNCS, vol.
9020, pp. 308–331. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-46447-2 14

[BHR12] Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits.
In: Yu, T., Danezis, G., Gligor, V.D. (eds.) ACM CCS 12, Raleigh, NC,
USA, 16–18 October 2012, pp. 784–796. ACM Press (2012)

[BL18] Benhamouda, F., Lin, H.: k-round multiparty computation from k-round
oblivious transfer via garbled interactive circuits. In: Nielsen, J.B., Rijmen,
V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 500–532. Springer,
Cham (2018). https://eprint.iacr.org/2017/1125

[BMR90] Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure pro-
tocols (extended abstract). In: 22nd ACM STOC, Baltimore, MD, USA,
14–16 May 1990, pp. 503–513. ACM Press (1990)

[BP16] Brakerski, Z., Perlman, R.: Lattice-based fully dynamic multi-key FHE
with short ciphertexts. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016.
LNCS, vol. 9814, pp. 190–213. Springer, Heidelberg (2016). https://doi.
org/10.1007/978-3-662-53018-4 8

[Can00a] Canetti, R.: Security and composition of multiparty cryptographic proto-
cols. J. Cryptol. 13(1), 143–202 (2000)

[Can00b] Canetti, R.: Universally composable security: a new paradigm for cryp-
tographic protocols. Cryptology ePrint Archive, Report 2000/067 (2000).
http://eprint.iacr.org/2000/067

[Can01] Canetti, R.: Universally composable security: a new paradigm for crypto-
graphic protocols. In: 42nd FOCS, Las Vegas, NV, USA, 14–17 October
2001, pp. 136–145. IEEE Computer Society Press (2001)

https://doi.org/10.1007/978-3-642-29011-4_29
https://doi.org/10.1007/3-540-44647-8_13
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/978-3-662-53018-4_19
https://doi.org/10.1007/978-3-662-53018-4_19
https://doi.org/10.1007/978-3-319-56614-6_6
https://doi.org/10.1007/978-3-662-46447-2_14
https://doi.org/10.1007/978-3-662-46447-2_14
https://eprint.iacr.org/2017/1125
https://doi.org/10.1007/978-3-662-53018-4_8
https://doi.org/10.1007/978-3-662-53018-4_8
http://eprint.iacr.org/2000/067

Two-Round Multiparty Secure Computation from Minimal Assumptions 497

[Can05] Canetti, R.: Universally composable security: a new paradigm for crypto-
graphic protocols, Version of December 2005 (2005). http://eccc.uni-trier.
de/eccc-reports/2001/TR01-016

[CCM98] Cachin, C., Crépeau, C., Marcil, J.: Oblivious transfer with a memory-
bounded receiver. In: 39th FOCS, Palo Alto, CA, USA, 8–11 November
1998, pp. 493–502. IEEE Computer Society Press (1998)

[CDG+17] Cho, C., Döttling, N., Garg, S., Gupta, D., Miao, P., Polychroniadou,
A.: Laconic oblivious transfer and its applications. In: Katz, J., Shacham,
H. (eds.) CRYPTO 2017. LNCS, vol. 10402, pp. 33–65. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-63715-0 2

[CLOS02] Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally compos-
able two-party and multi-party secure computation. In: 34th ACM STOC,
Montréal, Québec, Canada, 19–21 May 2002, pp. 494–503. ACM Press
(2002)

[CM15] Clear, M., McGoldrick, C.: Multi-identity and multi-key leveled FHE from
learning with errors. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015.
LNCS, vol. 9216, pp. 630–656. Springer, Heidelberg (2015). https://doi.
org/10.1007/978-3-662-48000-7 31

[DG17] Döttling, N., Garg, S.: Identity-based encryption from the Diffie-Hellman
assumption. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol.
10401, pp. 537–569. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-63688-7 18

[DHRS04] Ding, Y.Z., Harnik, D., Rosen, A., Shaltiel, R.: Constant-round oblivious
transfer in the bounded storage model. In: Naor, M. (ed.) TCC 2004.
LNCS, vol. 2951, pp. 446–472. Springer, Heidelberg (2004). https://doi.
org/10.1007/978-3-540-24638-1 25

[FLS90] Feige, U., Lapidot, D., Shamir, A.: Multiple non-interactive zero knowledge
proofs based on a single random string (extended abstract). In: 31st FOCS,
St. Louis, Missouri, 22–24 October 1990, pp. 308–317. IEEE Computer
Society Press (1990)

[Gen09] Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzen-
macher, M. (ed.) 41st ACM STOC, Bethesda, MD, USA, 31 May–2 June
2009, pp. 169–178. ACM Press (2009)

[GGH+13] Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Can-
didate indistinguishability obfuscation and functional encryption for all
circuits. In: 54th FOCS, Berkeley, CA, USA, 26–29 October 2013, pp.
40–49. IEEE Computer Society Press (2013)

[GGHR14] Garg, S., Gentry, C., Halevi, S., Raykova, M.: Two-round secure MPC from
indistinguishability obfuscation. In: Lindell, Y. (ed.) TCC 2014. LNCS,
vol. 8349, pp. 74–94. Springer, Heidelberg (2014). https://doi.org/10.1007/
978-3-642-54242-8 4

[GGMP16] Garg, S., Gupta, D., Miao, P., Pandey, O.: Secure multiparty RAM com-
putation in constant rounds. In: Hirt, M., Smith, A. (eds.) TCC 2016.
LNCS, vol. 9985, pp. 491–520. Springer, Heidelberg (2016). https://doi.
org/10.1007/978-3-662-53641-4 19

[GGSW13] Garg, S., Gentry, C., Sahai, A., Waters, B.: Witness encryption and its
applications. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th
ACM STOC, Palo Alto, CA, USA, 1–4 June 2013, pp. 467–476. ACM
Press (2013)

http://eccc.uni-trier.de/eccc-reports/2001/TR01-016
http://eccc.uni-trier.de/eccc-reports/2001/TR01-016
https://doi.org/10.1007/978-3-319-63715-0_2
https://doi.org/10.1007/978-3-662-48000-7_31
https://doi.org/10.1007/978-3-662-48000-7_31
https://doi.org/10.1007/978-3-319-63688-7_18
https://doi.org/10.1007/978-3-319-63688-7_18
https://doi.org/10.1007/978-3-540-24638-1_25
https://doi.org/10.1007/978-3-540-24638-1_25
https://doi.org/10.1007/978-3-642-54242-8_4
https://doi.org/10.1007/978-3-642-54242-8_4
https://doi.org/10.1007/978-3-662-53641-4_19
https://doi.org/10.1007/978-3-662-53641-4_19

498 S. Garg and A. Srinivasan

[GHL+14] Gentry, C., Halevi, S., Lu, S., Ostrovsky, R., Raykova, M., Wichs, D.: Gar-
bled RAM revisited. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT
2014. LNCS, vol. 8441, pp. 405–422. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-642-55220-5 23

[GKK+12] Dov Gordon, S., Katz, J., Kolesnikov, V., Krell, F., Malkin, T., Raykova,
M., Vahlis, Y.: Secure two-party computation in sublinear (amortized)
time. In: Yu, T., Danezis, G., Gligor, V.D. (eds.) ACM CCS 2012, Raleigh,
NC, USA, 16–18 October 2012, pp. 513–524. ACM Press (2012)

[GLO15] Garg, S., Lu, S., Ostrovsky, R.: Black-box garbled RAM. In: Guruswami,
V. (ed.) 56th FOCS, Berkeley, CA, USA, 17–20 October 2015, pp. 210–229.
IEEE Computer Society Press (2015)

[GLOS15] Garg, S., Lu, S., Ostrovsky, R., Scafuro, A.: Garbled RAM from one-
way functions. In: Servedio, R.A., Rubinfeld, R. (eds.) 47th ACM STOC,
Portland, OR, USA, 14–17 June 2015, pp. 449–458. ACM Press (2015)

[GLS15] Dov Gordon, S., Liu, F.-H., Shi, E.: Constant-round MPC with fairness
and guarantee of output delivery. In: Gennaro, R., Robshaw, M. (eds.)
CRYPTO 2015. LNCS, vol. 9216, pp. 63–82. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48000-7 4

[GMW87] Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game
or a completeness theorem for protocols with honest majority. In: Aho, A.
(ed.) 19th ACM STOC, New York City, NY, USA, 25–27 May 1987, pp.
218–229. ACM Press (1987)

[GOS06] Groth, J., Ostrovsky, R., Sahai, A.: Perfect non-interactive zero knowl-
edge for NP. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol.
4004, pp. 339–358. Springer, Heidelberg (2006). https://doi.org/10.1007/
11761679 21

[GOVW12] Garg, S., Ostrovsky, R., Visconti, I., Wadia, A.: Resettable statistical
zero knowledge. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp.
494–511. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
28914-9 28

[GS17] Garg, S., Srinivasan, A.: Garbled protocols and two-round MPC from bilin-
ear maps. In: 58th FOCS, pp. 588–599. IEEE Computer Society Press
(2017)

[GS18] Garg, S., Srinivasan, A.: Two-round multiparty secure computation
from minimal assumptions. In: Nielsen, J.B., Rijmen, V. (eds.) EURO-
CRYPT 2018. LNCS, vol. 10821, pp. 468–499. Springer, Cham (2018).
https://eprint.iacr.org/2017/1156

[HK12] Halevi, S., Kalai, Y.T.: Smooth projective hashing and two message obliv-
ious transfer. J. Cryptol. 25(1), 158–193 (2012)

[HY16] Hazay, C., Yanai, A.: Constant-round maliciously secure two-party com-
putation in the RAM model. In: Hirt, M., Smith, A. (eds.) TCC 2016.
LNCS, vol. 9985, pp. 521–553. Springer, Heidelberg (2016). https://doi.
org/10.1007/978-3-662-53641-4 20

[IPS08] Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious
transfer – efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157,
pp. 572–591. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-85174-5 32

[Jou04] Joux, A.: A one round protocol for tripartite Diffie-Hellman. J. Cryptol.
17(4), 263–276 (2004)

[Kil88] Kilian, J.: Founding cryptography on oblivious transfer. In: 20th ACM
STOC, Chicago, IL, USA, 2–4 May 1988, pp. 20–31. ACM Press (1988)

https://doi.org/10.1007/978-3-642-55220-5_23
https://doi.org/10.1007/978-3-642-55220-5_23
https://doi.org/10.1007/978-3-662-48000-7_4
https://doi.org/10.1007/11761679_21
https://doi.org/10.1007/11761679_21
https://doi.org/10.1007/978-3-642-28914-9_28
https://doi.org/10.1007/978-3-642-28914-9_28
https://eprint.iacr.org/2017/1156
https://doi.org/10.1007/978-3-662-53641-4_20
https://doi.org/10.1007/978-3-662-53641-4_20
https://doi.org/10.1007/978-3-540-85174-5_32
https://doi.org/10.1007/978-3-540-85174-5_32

Two-Round Multiparty Secure Computation from Minimal Assumptions 499

[LO13] Lu, S., Ostrovsky, R.: How to garble RAM programs? In: Johans-
son, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
719–734. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
38348-9 42

[LP09] Lindell, Y., Pinkas, B.: A proof of security of Yao’s protocol for two-party
computation. J. Cryptol. 22(2), 161–188 (2009)

[MW16] Mukherjee, P., Wichs, D.: Two round multiparty computation via multi-
key FHE. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS,
vol. 9666, pp. 735–763. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-49896-5 26

[NP01] Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: Rao
Kosaraju, S. (ed.) 12th SODA, Washington, DC, USA, 7–9 January 2001,
pp. 448–457. ACM-SIAM (2001)

[OS97] Ostrovsky, R., Shoup, V.: Private information storage (extended abstract).
In: 29th ACM STOC, El Paso, TX, USA, 4–6 May 1997, pp. 294–303. ACM
Press (1997)

[PS16] Peikert, C., Shiehian, S.: Multi-key FHE from LWE, revisited. In: Hirt,
M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 217–238. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53644-5 9

[PVW08] Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient
and composable oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008.
LNCS, vol. 5157, pp. 554–571. Springer, Heidelberg (2008). https://doi.
org/10.1007/978-3-540-85174-5 31

[PW00] Pfitzmann, B., Waidner, M.: Composition and integrity preservation of
secure reactive systems. In: Jajodia, S., Samarati, P. (eds.) ACM CCS
2000, Athens, Greece, 1–4 November 2000, pp. 245–254. ACM Press (2000)

[Yao86] Yao, A.C.-C.: How to generate and exchange secrets (extended abstract).
In: 27th FOCS, Toronto, Ontario, Canada, 27–29 October 1986, pp. 162–
167. IEEE Computer Society Press (1986)

https://doi.org/10.1007/978-3-642-38348-9_42
https://doi.org/10.1007/978-3-642-38348-9_42
https://doi.org/10.1007/978-3-662-49896-5_26
https://doi.org/10.1007/978-3-662-49896-5_26
https://doi.org/10.1007/978-3-662-53644-5_9
https://doi.org/10.1007/978-3-540-85174-5_31
https://doi.org/10.1007/978-3-540-85174-5_31

k-Round Multiparty Computation
from k-Round Oblivious Transfer
via Garbled Interactive Circuits

Fabrice Benhamouda1(B) and Huijia Lin2

1 IBM Research, Yorktown Heights, USA
fabrice.benhamouda@normalesup.org

2 University of California, Santa Barbara, USA

Abstract. We present new constructions of round-efficient, or even
round-optimal, Multi-Party Computation (MPC) protocols from Oblivi-
ous Transfer (OT) protocols. Our constructions establish a tight connec-
tion between MPC and OT: In the setting of semi-honest security, for any
k ≥ 2, k-round semi-honest OT is necessary and complete for k-round
semi-honest MPC. In the round-optimal case of k = 2, we obtain 2-round
semi-honest MPC from 2-round semi-honest OT, resolving the round
complexity of semi-honest MPC assuming weak and necessary assump-
tion. In comparison, previous 2-round constructions rely on either the
heavy machinery of indistinguishability obfuscation or witness encryp-
tion, or the algebraic structure of bilinear pairing groups. More generally,
for an arbitrary number of rounds k, all previous constructions of k-round
semi-honest MPC require at least OT with k′ rounds for k′ ≤ �k/2�.

In the setting of malicious security, we show: For any k ≥ 5, k-round
malicious OT is necessary and complete for k-round malicious MPC. In
fact, OT satisfying a weaker notion of delayed-semi-malicious security
suffices. In the common reference string model, for any k ≥ 2, we obtain
k-round malicious Universal Composable (UC) protocols from any k-
round semi-malicious OT and non-interactive zero-knowledge. Previous
5-round protocols in the plain model, and 2-round protocols in the com-
mon reference string model all require algebraic assumptions such as
DDH or LWE.

At the core of our constructions is a new framework for garbling
interactive circuits. Roughly speaking, it allows for garbling interactive
machines that participates in interactions of a special form. The garbled
machine can emulate the original interactions receiving messages sent
in the clear (without being encoded using secrets), and reveals only the
transcript of the interactions, provided that the transcript is computa-
tionally uniquely defined. We show that garbled interactive circuits for
the purpose of constructing MPC can be implemented using OT. Along
the way, we also propose a new primitive of witness selector that strength-
ens witness encryption, and a new notion of zero-knowledge functional
commitments.

c© International Association for Cryptologic Research 2018
J. B. Nielsen and V. Rijmen (Eds.): EUROCRYPT 2018, LNCS 10821, pp. 500–532, 2018.
https://doi.org/10.1007/978-3-319-78375-8_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78375-8_17&domain=pdf
http://orcid.org/0000-0002-8300-1820

k-Round MPC from k-Round OT via Garbled Interactive Circuits 501

1 Introduction

A Multi-Party Computation (MPC) protocol allows m mutually distrustful par-
ties to securely compute a functionality f(x̄) of their corresponding private
inputs x̄ = x1, . . . , xm, such that party Pi receives the i-th component of f(x̄).
The semi-honest security guarantees that honest-but-curious parties who follow
the specification of the protocol learn nothing more than their prescribed out-
puts. The stronger malicious security guarantees that even malicious parties who
may deviate from the protocol, cannot learn more information nor manipulate
the outputs of the honest parties. MPC protocols for computing general function-
alities are central primitives in cryptography and have been studied extensively.
An important question is: “how many rounds of interactions do general MPC
protocols need, and under what assumptions?”

The round complexity of 2-Party Computation (2PC) was resolved more than
three decades ago: Yao [44,45] gave a construction of general semi-honest 2PC
protocols that have only two rounds of interaction (where parties have access to a
simultaneous broadcast channel1), using garbled circuits and a 2-message semi-
honest Oblivious Transfer (OT) protocol. The round complexity is optimal, as
any one-round protocol is trivially broken. Moreover, the underlying assumption
of 2-message semi-honest OT is weak and necessary.2

In contrast, constructing round-efficient MPC protocols turned out to be
more challenging. The first general construction [32] requires a high number of
rounds, O(d), proportional to the depth d of the computation. Later, Beaver,
Micali, and Rogaway (BMR) reduced the round complexity to a constant using
garbled circuits [5]. However, the exact round complexity of MPC remained
open until recently. By relying on specific algebraic assumptions, a recent line of
works constructed (i) 2-round MPC protocols relying on trusted infrastructure
(e.g., a common reference string) assuming LWE [2,14,21,39,41] or DDH [9–11],
and (ii) 2-round protocols in the plain model from indistinguishability obfusca-
tion or witness encryption with NIZK [16,22,24,28,35], or bilinear groups [29].
However, all these constructions heavily exploit the algebraic structures of the
underlying assumptions, or rely on the heavy machinery of obfuscation or witness
encryption.

The state-of-the-art for malicious security is similar. Garg et al. [27] showed
that 4 round is optimal for malicious MPC. So far, there are constructions of
(i) 5-round protocols from DDH [1], and (ii) 4-round protocols from subex-
ponentially secure DDH [1], or subexponentially secure LWE and adaptive

1 Using the simultaneous broadcast channel, every party can simultaneously broadcast
a message to all other parties. A malicious adversary can rush in the sense that in
every round it receives the messages broadcast by honest parties first before choosing
its own messages. In the 2PC setting, if both parties receive outputs, Yao’s protocols
need simultaneous broadcast channel.

2 A 2-round OT protocol consists of one message from the receiver, followed by another
one from the sender. It is implied by 2-round 2PC protocols using the simultaneous
broadcast channel.

502 F. Benhamouda and H. Lin

commitments3 [12]. In general, for any number of round k, all known con-
structions of semi-honest or malicious MPC require at least k′ round OT for
k′ ≤ �k/2�. We ask the question,

Can we have round-optimal MPC protocols from weak and necessary
assumptions?

We completely resolve this question in the semi-honest setting, constructing 2-
round semi-honest MPC from 2-round semi-honest OT, and make significant
progress in the malicious setting, constructing 5-round malicious MPC from 5-
round delayed-semi-malicious OT, a weaker primitive than malicious OT. Our
results are obtained via a new notion of garbling interactive circuits. Roughly
speaking, classical garbling turns a computation, given by a circuit C and an
input x, into another one (Ĉ, x̂) that reveals only the output C(x). Our new
notion considers garbling a machine participating in an interaction: Let C (with
potentially hardcoded input x) be an interactive machine that interacts with an
oracle O, which is a non-deterministic algorithm that computes its replies to C’s
messages, depending on some witnesses w̄. Garbling interactive machine turns C
into Ĉ, which can emulate the interaction between C and O, given the witnesses
w̄ in the clear (without any secret encoding). It is guaranteed that Ĉ reveals only
the transcript of messages in the interaction and nothing else, provided that the
transcript is computationally uniquely defined, that is, it is computationally hard
to find two different witnesses w̄, w̄′ that lead to different transcripts.

1.1 Our Contributions

Semi-Honest Security: We construct 2-round semi-honest MPC protocols in
the plain model from 2-round semi-honest OT. Our construction can be general-
ized to an arbitrary number of rounds, establishing a tight connection between
MPC and OT: For any k, k-round OT is necessary and complete for k-round
MPC.4

Theorem 1.1 (Semi-Honest Security). For any k ≥ 2, there is a k-round
semi-honest MPC protocol for any functionality f , from any k-round semi-honest
OT protocol.

The above theorem resolves the exact round complexity of semi-honest MPC
based on weak and necessary assumptions, closing the gap between the 2-party
and multi-party case. In the optimal 2-round setting, by instantiating our con-
struction with specific 2-round OT protocols, we obtain 2-round MPC protocols

3 That is, CCA commitments introduced in [17].
4 We recall that for MPC, we suppose that parties have access to a simultaneous

broadcast channel. Furthermore a k-round OT with simultaneous broadcast channel
can be transformed into a k-round OT where each round consists a single message
or flow either from the receiver to the sender or the other way round. This is because
in the last round there is no point for the receiver to send a message to the sender.

k-Round MPC from k-Round OT via Garbled Interactive Circuits 503

in the plain model from a wide range of number theoretic and algebraic assump-
tions, including CDH [6], factoring [6],5 LWE [42],6 and constant-noise LPN
with a sub-exponential security [31,46]. This broadens the set of assumptions
that round-optimal semi-honest MPC can be based on.
Malicious Security: Going beyond semi-honest security, we further
strengthen our protocols to achieve the stronger notion of semi-malicious secu-
rity, as a stepping stone towards malicious security. Semi-malicious security
proposed by [2] considers semi-malicious attackers that follow the protocol spec-
ification, but may adaptively choose arbitrary inputs and random tapes for com-
puting each of its messages. We enhance our semi-honest protocols to handle such
attackers.

Theorem 1.2 (Semi-Malicious Security). For any k ≥ 2, there is a k-round
semi-malicious MPC protocol for any functionality f , from any k-round semi-
malicious OT protocol.

Previous semi-malicious protocols have 3 rounds based on LWE [2,12], 2 rounds
based on bilinear maps [29], or 2 rounds based on LWE but in the common
reference string model [39]. We obtain the first 2-round construction from any
2-round semi-malicious OT, which is necessary and can be instantiated from
a variety of assumptions, including DDH [40], QR, and N-th residuosity [36].
Furthermore, following the compilation paradigms in recent works [1,2,12], we
immediately obtain maliciously secure Universal Composable (UC) protocols in
the common reference string model [15,18], using non-interactive zero-knowledge
(NIZK).

Corollary 1.3 (Malicious Security in the CRS Model). For any k ≥ 2,
there is a k-round malicious UC protocol in the common reference string model
for any functionality f , from any k-round semi-malicious OT protocol and NIZK.

Moving forward to malicious MPC protocols in the plain model, we show
that, for any k ≥ 5, k-round malicious MPC protocols can be built from
k-round delayed-semi-malicious OT, which is implied by k-round malicious OT.

Theorem 1.4 (Malicious Security in the Plain Model). For any k ≥ 5,
there is a k-round malicious MPC protocol for every functionality f , from any
k-round delayed-semi-malicious OT protocol.

This theorem is obtained by first showing that our k-round semi-malicious
MPC protocols satisfy a stronger notion of delayed-semi-malicious security,
when instantiated with a k-round OT protocol satisfying the same notion.
Here, delayed-semi-malicious security guards against a stronger variant of semi-
malicious attackers, and is still significantly weaker than malicious security.
5 This follows from the fact that CDH in the group of quadratic residues is as hard as

factoring [8,38,43].
6 The scheme in [42] uses a CRS, but in the semi-honest setting, the sender can

generate the CRS and send it to the receiver.

504 F. Benhamouda and H. Lin

For instance, delayed-semi-malicious OT provides only indistinguishability-based
privacy guarantees, whereas malicious OT supports extraction of inputs and sim-
ulation. In the second step, we transform our k-round delayed-semi-malicious
MPC protocols into k-round malicious MPC protocols, assuming only one-way
functions. This transformation relies on specific structures of our protocols. In
complement, we also present a generic transformation that starts with any (k−1)-
round delayed semi-malicious MPC protocol.

Previous 5-round malicious protocols rely on LWE and adaptive commit-
ments [12], or DDH [1]. Our construction weakens the assumptions, and in par-
ticular adds factoring-based assumptions into the picture. Our result is one-step
away from constructing round-optimal malicious MPC from weak and necessary
assumptions. So far, 4-round protocols can only be based on subexponential
DDH [1] or subexponential LWE and adaptive commitments [12]. A clear open
question is constructing 4-round malicious MPC from 4-round OT.

Garbled Interactive Circuits, and More: Along the way of constructing
our MPC protocols, we develop new techniques and primitives that are of inde-
pendent interest: We propose a new notion of garbling interactive circuits, a new
primitive of witness selector that strengthens witness encryption [26], and a new
notion of zero-knowledge functional commitment. Roughly speaking,

– As mentioned above, garbling interactive machine transforms an interactive
machine C talking to a non-deterministic oracle O(w̄) using some witnesses,
into a garbled interactive machine Ĉ that upon receiving the witnesses w̄ in
the clear (without any secret encoding) reveals the transcript of the interac-
tion between C and O(w̄) and nothing else, provided that the transcript is
computationally uniquely defined.

– Witness selector strengthens witness encryption [26] in the dimension that
hiding holds when it is computationally hard to find a witness that enables
decryption, as opposed to when no such witnesses exist.

– Finally, we enhance standard (computationally binding and computationally
hiding) commitment schemes with the capability of partially opening a com-
mitment c to the output f(v) of a function f evaluated on the committed
value v, where the commitment and partial decommitment reveal nothing
more than the output f(v).

To construct 2-round MPC, we use garbled interactive circuits and functional
commitments to collapse rounds of any multi-round MPC protocols down to 2,
and implement garbled interactive circuits using witness selector and classical
garbled circuits. Our technique generalizes the novel ideas in recent works on
constructing laconic OT from DDH [19], identity based encryption from CDH
or factoring [13,23], and 2-round MPC from bilinear pairing [29]. These works
can be rephrased as implementing special-purpose garbled interactive circuits
from standard assumptions, and applying them for their specific applications. In
this work, we implement the garbled interactive circuits, witness selector, and
functional commitments needed for our constructions of MPC, from OT. The
generality of our notions gives a unified view of the techniques in this and prior
works.

k-Round MPC from k-Round OT via Garbled Interactive Circuits 505

1.2 Organization

We start with an overview of our techniques in Sect. 2. Then, after some classical
preliminaries in Sect. 3, we formally define garbled interactive circuit schemes in
Sect. 4. In Sect. 5, we build 2-round semi-honest MPC protocols from any semi-
honest MPC protocols and (zero-knowledge) functional commitment scheme
with an associated garbled interactive circuit scheme. In Sect. 6, we define witness
selector schemes and show that they imply garbled interactive circuit schemes.
The construction of a functional commitment scheme with witness selector from
any 2-round OT (which concludes the construction of 2-round semi-honest MPC
protocols from 2-round OT), as well as the extensions to k-round OT and to the
semi-malicious and malicious settings are in the full version [7].

1.3 Concurrent Work

In a concurrent and independent work [30], Garg and Srinivasan also built
k-round semi-honest MPC from k-round semi-honest OT. In the malicious set-
ting, they obtained a stronger result in the CRS model, constructing 2-round
UC-secure MPC from 2-round UC-secure OT in the CRS model (without requir-
ing NIZK contrary to us). On the other hand, they did not consider malicious
MPC in the plain model, whereas we constructed k-round malicious MPC from
k-round delayed-semi-malicous OT for any k ≥ 5. While both works leverage
the novel ideas in [13,19,23,29], the concrete techniques are different. In our
language, if we see their protocols in the lens of garbled interactive circuits, each
step of their garbled interactive circuit performs a NAND gate on the state of
one of the parties, while each of our steps performs a full MPC round, thanks to
the functional commitment. Our approach can also be seen as more modular by
the introduction of garbled interactive circuits, witness selector, and functional
commitments, which we believe are of independent interest.

2 Overview

Garg et al. [24] introduced a generic approach for collapsing any MPC protocol
down to 2 rounds, using indistinguishability obfuscation [4,25]. Later et al. [35]
showed how to perform round collapsing using garbled circuits, witness encryp-
tion, and NIZK. Very recently, Garg and Srinivasan [29] further showed how to do
collapse rounds using garbled protocols, which can be implemented from bilinear
pairing groups. In this work, we perform round collapsing using our new notion
of garbled interactive circuits; this notion is general and enables us to weaken
the assumption to 2-round OT. (See the full version [7] for a more detailed com-
parison with prior works.) Below, we give an overview of our construction in the
2-round setting; construction in the multi-round setting is similar.

506 F. Benhamouda and H. Lin

2.1 Round-Collapsing via Obfuscation

The basic idea is natural and simple: To construct 2-round MPC protocols for a
function f , take any multi-round MPC protocols for f , referred to as the inner
MPC protocols, such as, the Goldreich-Micali-Wigderson protocol [32], and try to
eliminate interaction. Garg, Gentry, Halevi, and Raykova (GGHR) [24] showed
how to do this using indistinguishability obfuscation. The idea is to let each
player Pi obfuscate their next-step circuit Nexti(xi, ri, �) in an execution of the
inner MPC protocol Π for computing f , where Nexti(xi, ri, �) has Pi’s private
input xi and random tape ri hardcoded, and produces Pi’s next message m�

i in
round �, on input the messages m̄<� = {m�′

j }
j,�′<�

broadcast by all parties in
the previous rounds,

Nexti(xi, ri, m̄
<�) = m�

i . (1)

Given all obfuscated circuits {iO(Next(xi, ri, �)j)}, each party Pi can emulate
the execution of Π in its head, eliminating interaction completely.

The above idea achieves functionality, but not security. In fact, attackers,
given the obfuscated next-step circuits of honest parties, can evaluate the resid-
ual function f({xi}honest i, �) with the inputs of honest parties hardcoded, or
even evaluate honest parties’ next-step circuits on arbitrary “invalid” messages.
To avoid this, the protocol requires each party to commit to its input and ran-
dom tape in the first round, ci

R← Com(xi, ri). Then, in the second round, each
party obfuscates an augmented next-step circuit AugNexti that takes addition-
ally a NIZK proof π�′

j for each message m�′
j it receives, and verifies the proof

π�′
j that m�′

j is generated honestly from inputs and random tapes committed in
cj (it aborts otherwise). This way, only the unique sequence of honestly gener-
ated messages is accepted by honest parties’ obfuscated circuits. In the security
proof, by the security of indistinguishability obfuscation and NIZK, this unique
sequence can even be hardcoded into honest parties’ obfuscated circuits, enabling
simulation using the simulator of the inner MPC protocol.

2.2 Garbled Interactive Circuits

The fact that it suffices and is necessary that the honest parties’ obfuscated
circuits only allow for a single meaningful “execution path” (determined by the
unique sequence of honest messages), suggests that we should rather use garbling
instead of obfuscation for hiding honest parties’ next-step circuits. However, the
challenge is that the next-step circuits Nexti are not plain circuits: They are
interactive in the sense that they takes inputs (i.e., MPC messages) generated by
other parties that cannot be fixed at time of garbling. To overcome the challenge,
we formalize the MPC players as interactive circuits, and propose a new notion
called Garbled Interactive Circuits (GIC).

Interactive Circuits: The interaction with an interactive circuit is captured
via a non-deterministic (poly-size) oracle O that on inputs a query q and some
witness w returns an answer a = O(q, w) (or ⊥ if w is not accepting). (Note that
O is non-deterministic in the sense that without a valid witness, one cannot

k-Round MPC from k-Round OT via Garbled Interactive Circuits 507

evaluate O.) An interactive circuit iC consists of a list of L next-step circuits
{iC�}�∈[L]. Its execution with oracle O on input a list of witnesses w̄ = {w̄�}
proceeds in L iterations as depicted in Fig. 1: In round �, iC� on input the state
st�−1 output in the previous round, as well as the answers ā�−1 = {a�−1

k } from
O to queries q̄�−1 = {q�−1

k } produced in the previous round, outputs the new
state st� and queries q̄� = {q�

k}, and a (round) output o�.

∀�, iC�(st�−1, ā�−1) = (st�, q̄�, o�) , where ∀k, a�−1
k = O(q�−1

k , w�−1
k) .

The output of the execution is the list of round outputs ō = {o�}�, and the
transcript of the execution is the list of all queries, answers, and outputs
trans(iC, w̄) = {(q̄�, ā�, o�)}�. In the case that any oracle answer is a�

k = ⊥,
the execution is considered invalid. For simplicity of this high-level overview, we
consider only valid executions and valid transcript; see Sect. 4 for more details.

Fig. 1. Execution of an interactive circuit iC with witnesses w̄

Garbled Interactive Circuit Scheme: A Garbled Interactive Circuit
(GIC) scheme GiC allows us to garble an interactive circuit ̂iC R← GiC.Garble(iC),
s.t.
Correctness: We can evaluate ̂iC with the oracle O and a list w̄ of witnesses

(in the clear) to obtain each round output o� = GiC.Eval(̂iC, w̄<�). This
significantly differs from classical garbling techniques where inputs of the
computation must be encoded using secrets (such as, mapping them to cor-
responding input keys or labels).

Simulation Security for Unique Transcripts Distribution: Security guar-
antees that ̂iC reveals only the transcript of execution, including all out-
puts, queries, and answers, and nothing else, that is, it can be simulated by
˜iC R← GiC.Sim(trans), provided that there is a unique transcript of execution.

The requirement on unique transcript is necessary, otherwise, security is ill-
defined as there may exist different transcripts produced by using different wit-
nesses, and the simulator cannot hardcode them all. Furthermore, garbled inter-
active circuit schemes are meant to be different from obfuscation and hides only
a single execution path. To formalize this, there are two options:

508 F. Benhamouda and H. Lin

– Statistically Unique Transcript. The easier option is requiring sim-
ulation security only for interactive circuits iC that have unique transcript
no matter what witnesses are used, that is, for all w̄, w̄′, trans(iC,O, w̄) =
trans(iC,O, w̄′). This is, however, a strong requirement.

– (Default:) Computationally Unique Transcript. The more general
option is considering a distribution iD over (iC, w̄) that has computationally
unique transcripts, in the sense that given (iC, w̄), it is hard to find w̄′ that
leads to a different valid transcript, trans(iC,O, w̄) 	= trans(iC,O, w̄′).7

GIC for a computational or statistical unique-transcript distribution ensures:
{

GiC.Garble(iC) : (iC, w̄) R← iD
}

≈
{

GiC.Sim(trans(iC,O, w̄)) : (iC, w̄) R← iD
}

Looking ahead, our 2-round MPC protocols from 2-round semi-honest obliv-
ious transfer crucially rely on the stronger notion of GIC for computationally
unique transcripts. If using GIC for statistically unique transcripts, we would
need a 2-round OT protocol where the receiver’s message statistically binds its
input bit, which is not a necessary assumption for constructing 2-round semi-
honest MPC protocols.

2.3 Constructing GIC from Witness Selector

We start with the warm-up case of building GIC for statistically unique tran-
scripts by combining plain garbled circuits and witness encryption. Witness
Encryption (WE) proposed by Garg et al. [26], enables one to encrypt a
message under an instance x of an NP language L to obtain a ciphertext
ct R← WE.Enc(x,M); later this ciphertext can be decrypted using any witness
w of x, M = WE.Dec(ct,w). The idea of combining garbled circuits and witness
encryption has already appeared in three recent works by Gordon et al. [35], Cho
et al. [19], and Döttling and Garg [23]. Our garbled interactive circuit scheme
can be viewed as a generalization of their ideas for capturing the full power
of this combination. As we explain shortly, to handle computationally unique
transcripts, we need to rely on a new primitive called Witness Selector, which
strengthens WE.8

Warm-Up: GIC for Statistically Unique Transcript from WE:

To garble an interactive circuit iC = {iC�}�, a natural first attempt is gar-
bling each next-step circuit iC� as a plain circuit, yielding L garbled circuits

7 The distribution may output some additional auxiliary information, and it is hard
to find witnesses that lead to a different valid transcript even given the auxiliary
information. See Sect. 4 for more details.

8 We mention that the work of Döttling and Garg [23] defined what is called chameleon
encryption scheme, which can be viewed as a special case of our witness selector for
a specific language.

k-Round MPC from k-Round OT via Garbled Interactive Circuits 509

{̂iC�, key�}�, where each input wire of ̂iC� has two keys, (key�[k, 0], key�[k, 1]),
one for this input bit being 0 and one for 1. The difficulty is that, to evaluate
̂iC�, the evaluator must obtain keys corresponding to the honestly generated
state st�−1 and answers ā�−1 produced in the previous round; denote these keys
as key�[st�−1] and key�[ā�−1].9 We show how to enable this by modifying the
garbled circuits {̂iC�} as follows.

– The first idea is embedding all keys key� for one garbled circuit ̂iC� in the
previous one ̂iC�−1, so that, ̂iC�−1 can output directly the keys key�[st�−1] for
the state st�−1 it produces. This idea, however, does not apply for selecting
keys for answers ā�−1, as ̂iC�−1 only computes queries q̄�−1 but not answers
as it does not necessarily know the corresponding witnesses w̄�−1.

– The second idea is using WE as a “translator.” To illustrate the idea, assume
that there is a single query q�−1 and it has a Boolean answer a�−1. In this
case, let ̂iC�−1 output a pair of WE ciphertexts (ct0, ct1), where ctb encrypts
the key key�[k, b] for the answer a�−1 being b, under the statement xb that the
oracle outputs b, O(q�−1, w′

b) = b, for some witness w′
b. Now, the evaluator

after evaluating ̂iC�−1 obtains ct0, ct1. Using the witness w� it receives as
input, it can decrypt the WE ciphertext ct�−1

a�−1 for a�−1 = O(q�−1, w�−1),
obtaining the right key key�[a�−1] for evaluating the next garbled circuit.

To show security, it boils down to argue that for each garbled circuit ̂iC�, only
one key for each input wire is revealed. The security of ̂iC�−1 ensures that only
keys key�[st�−1] for the right state is revealed. On the other hand, to argue that
only keys key�[k, a�−1] for the right answers are revealed, it crucially relies on the
fact that the transcript including the answer is statistically unique. Thus, the
ciphertext ct1−a�−1 is encrypted under a false statement, and by security of WE,
the label key�[k, 1 − a�−1] is hidden. We emphasize that if the transcript were
only computationally unique, both WE ciphertexts ct0, ct1 would potentially
be encrypted under true statements, as there may exist two witnesses w0, w1

that make the oracle output 0 and 1, O(q�−1, w0) = 0, O(q�−1, w1) = 1, even
though it is computationally hard to find them; and the security of WE would
be vacuous.

General Case: GIC from Witness Selector: To handle computationally
unique transcripts, WE is not the right tool. We propose a new primitive called
Witness Selective (WS), which strengthens WE in two ways:

Correctness: WS is defined for a non-deterministic oracle O. One can encrypt a
set of keys key = {key[k, b]}k∈[l],b∈{0,1} under a query q, ct ← WS.Enc(q, key),
which can later be decrypted using a witness w revealing the keys selected
according to the output a = O(q, w), that is, {key[k, ak]}k = WS.Dec(ct, w).

Semantic Security for Unique Answers: The security guarantee is that
the WS ciphertext ct hides all the keys key[k, 1 − ak], provided that a is

9 This is a slight abuse of notation, where st�−1 and ā�−1 denote both their actual
values and the indices of the corresponding input wires.

510 F. Benhamouda and H. Lin

the computationally unique answer. Clearly, if it were easy to find two wit-
nesses w,w′ such that, (a = O(q, w)) 	= (a′ = O(q, w′)), the aforementioned
semantic security cannot hold. Therefore, similarly to GIC, security is only
required to hold for a distribution wD over (q, w) that has computationally
unique answers in the sense that given (q, w), it is hard to find w′ that makes
O output a different valid answer. Then,

{

WS.Enc(q, key) : (q, w) R← wD
}

≈
{

WS.Enc(q, key) : (q, w) R← wD; a = O(q, w); ∀k, key[k, 1 − ak] = 0
}

.

We can construct general GIC scheme for computationally unique transcript
by replacing WE in the warm-up construction with WS. Slightly more pre-
cisely, each garbled circuit ̂iC�−1 outputs a WS ciphertext ct encrypting keys
{key[k, b]} for all wires corresponding to the oracle answer a�−1, under the query
q�−1 (if there are multiple queries, simply generate one WS ciphertext for each
query); then, the evaluator can use the witness w�−1 to decrypt and obtain keys
{key[k, a�−1

k]} selected according to the oracle answer a�−1 = O(q�−1, w�−1).
Since the oracle answer (as a part of the transcript) is computationally unique,
semantic security of WS ensures that the other keys {key[k, 1 − a�−1

k]} remain
hidden, and hence we can invoke the security of the garbled circuits to argue the
security of GIC.

Relation between WS, WE, and Extractable WE: As discussed above,
WS is stronger than WE. For instance, one can use WS to encrypt a set of keys
key under a query q = (h, y = h(v)) for a randomly sampled collision-resistant
hash function h. With respect to the de-hashing oracle O(q, v′) that outputs v′

if y = h(v′), a WS ciphertext reveals only keys {key[k, vk]} selected by v, and
hides others. In contrast, WE provides no security in this case. On the other
hand, WS is weaker than the notion of extractable WE [33]. Roughly speaking,
extractable WE guarantees that for every attacker A, there is an extractor E,
such that, if A can decrypt a ciphertext encrypted under statement x, then E
can output a witness of x. Extractable WE implies WS, and is strictly stronger
as it requires knowledge extraction.

We note that so far there is no construction of general-purpose WE, let alone
WS or extractable WE, from standard assumptions. This is also not the goal
of this work. Instead, we show below how to construct special-purpose WS that
suffices to construct 2-round MPC protocols.

2.4 Round-Collapsing via Garbled Interactive Circuits

We now revisit the round-collapsing approach, by replacing obfuscation with
garbled interactive circuits. First, we observe that each player Pi in the inner
MPC protocol can be viewed as an interactive circuit {P �

i }, interacting with an
oracle O representing the other parties {Pj}, as described in Fig. 2.

The important details are: In each round �, P �
i obtains through the oracle O

all messages m̄�−1 = {m�−1
j }

j
output in the previous round, and additionally, it

k-Round MPC from k-Round OT via Garbled Interactive Circuits 511

Fig. 2. Each player Pi can be formalized as an interactive circuit Pi = {P �
i }.

outputs a proof π�
i that the message m�

i it outputs is generated honestly from
its input xi and random tape ri committed in ci. The message and proof are
exactly the witness w�

i = (m�
i , π

�
i) for the query q�

i that players P �
j make in round

� to the oracle O for obtaining Pi’s message a�
i = m�

i for the next round.

Our 2-Round MPC Protocol: Therefore, we can use a GIC scheme to garble
the interactive circuit representing each player Pi to collapse round:

1. In the first round of MPC, each Pi broadcasts a commitment ci to its input
xi and random tape ri, and

2. in the second round, each Pi sends the garbled interactive circuit ̂P i
R←

GiC.Garble({P �
i }), and

3. each Pi emulates the execution of inner MPC in its head, by evaluat-
ing all { ̂P j} round by round: In round �, it evaluates o�

j = (m�
j , π

�
j) =

GiC.Eval(̂P j , w̄
<�), using the outputs obtained in previous rounds as wit-

nesses, w<� = o<� = {(m�′
k , π�′

k)}k,�′<�. Pi obtains its output when the inner
MPC execution completes.

We observe that the transcript of execution of each {P �
i } is indeed computation-

ally unique, as the commitments {cj} have unique committed values {xj , rj} by
the computational binding property, and lead to unique next messages {m�

j},
by the soundness of proofs {π�

j}. Therefore, the GIC scheme guarantees that
the garbled interactive circuits reveals only their outputs, queries, and answers,
summing up to all commitments {cj}, inner MPC messages {m�

j}, and proofs
{π�

j}, all of which can be made simulatable.

512 F. Benhamouda and H. Lin

First Attempt of Instantiation: The MPC messages can be simulated by
the simulator of the inner MPC protocol. To make commitments and proofs sim-
ulatable, the easiest way is using a standard non-interactive commitment scheme
and a NIZK system, which however (1) requires a common reference string, and
(2) makes the task of instantiating the associated WS scheme difficult. Recall
that to instantiate the GIC scheme, we need a WS scheme for the oracle O
described above, which internally verifies proofs. To solve this, we resort to a
zero-knowledge Functional Commitment (FC) scheme that has a built-in special-
purpose proof system. By minimizing the security requirements on this commit-
ment, we manage to construct it, together with an associated WS scheme, from
2-message semi-honest OT (which is a necessary assumption). This gives 2-round
MPC protocols in the plain model from 2-message semi-honest OT.

2.5 Functional Commitment with Witness Selector from OT

A zero-knowledge functional commitment scheme FC is computationally binding
and computationally hiding, and additionally supports functional opening that
is both binding and zero-knowledge. The notion of functional commitment was
previously proposed by Libert et al. [37] for inner product functions, and later
generalized to general functions in [3]. Here, we consider a stronger property,
namely a zero-knowledge property. On the other hand, we do not require com-
mitments nor functional decommitments to be of size constant in the length of
the committed value, and our binding property only holds against semi-honest
adversaries. Functional commitments were also implicitly and informally sug-
gested by Gorbunov et al. in [34], as a way to interpret their new primitive:
Homomorphic Trapdoor Functions (HTDFs). HTDFs could be used to construct
our functional commitments (but the converse is not true). However, we do not
know how to construct WS associated to an FC built from the HTDF proposed
in [34].

Functional Opening: For a commitment c = FC.Com(v; ρ) and a circuit G,
one can generate a functional decommitment d to the output of G evaluated
on the committed value v, namely m = G(v), using the randomness ρ of the
commitment c,

d = FC.FOpen(c,G,m, ρ), FC.FVer(c,G,m, d) = 1 .

We say that (m, d) is a decommitment to (c,G); here, d serves as a proof
π = d that the value committed in c evaluates to m through G in our 2-round
MPC protocols.
(Semi-Honest) Functional Binding: For an honestly generated commitment
c = FC.Com(v; ρ) with random tape ρ, it is hard to find a decommitment
(m′, d′) to (c,G) for a different output m′ 	= m, even given ρ. Note this is
weaker than standard computational binding, as binding is only required for
honestly generated commitments. This corresponds to distributional sound-
ness of the proofs.

k-Round MPC from k-Round OT via Garbled Interactive Circuits 513

Simulation (i.e., Zero-Knowledge): An honestly generated commitment c R←
FC.Com(v; ρ) (with random tape ρ) and decommitment d can be simulated
together, using only the output m, (c̃, d̃) R← FC.Sim(c,G,m). This property
is weaker than standard zero-knowledge, as the statement is from a distri-
bution and is also simulated; only a single decommitment d can be given for
each commitment, or else simulation does not work.

A WS scheme associated with FC is for the oracle OFC that on input a query (c,G)
and a witness w = (m, d), outputs m if (m, d) is a valid decommitment to (c,G),
and ⊥ otherwise. The functional binding property ensures that for any v,G,
the distribution wDv,G of query q = (c,G) and decommitment w = (m, d) for
honestly generated c = FC.Com(v; ρ), produces computationally unique oracle
answer m (even given the randomness ρ as auxiliary information). Despite the
fact that functional commitments are only semi-honestly binding and one-time
simulatable, we show that, together with an associated WS scheme, they suffice
to instantiate our 2-round MPC protocols.

FC from Garbled Circuits and OT: We show how to construct a func-
tional commitment, and its associated WS scheme, from garbled circuits and
a 2-round string 2-to-1 semi-honest OT.
OT as semi-honest binding commitment: We start with observing that any string
2-to-1 semi-honest OT gives a commitment scheme that is semi-honest binding;
that is, given an honestly generated commitment c = Com(v; ρ) using a uniformly
random tape ρ, it is hard to find a decommitment (v′, ρ′) that opens c to a
different value v′ 	= v even given ρ. To see this, consider the parallelized version
of 2-to-1 string OT, where ot1 = pOT1(x; ρ) generates the first flows from OT
receiver for every bit xk, and ot2 = pOT2(ot1, {key[k, b]}) generates the second
flows from OT sender for every pair of inputs (key[k, 0], key[k, 1]). Combining ot2
with the randomness ρ used for generating the first flows, one can act as the OT
receiver to recover exactly one input key[k, xk] at each coordinate k. We argue
that the first flow ot1 = pOT1(x; ρ) is a semi-honest commitment to x. Suppose
that it is not the case and that it is easy to find a decommitment ρ′ to a different
value x′ 	= x. Then a semi-honest attacker acting as OT receiver can violate
the privacy of OT sender. (However, observe that pOT1(x) is not necessarily
computationally binding, as there is no security for maliciously generated first
flows of OT.)
Functional Opening: We use garbled circuits and OT (as a semi-honest binding
commitment scheme) to enable functional opening. To commit to a value v,
garble a universal circuit Uv(�) = U(v, �) with v hardcoded, and commit to all
its input keys {key[k, b]} using pOT1:

FC.Com(v; ρ) = c = (̂Uv, ot1) , where ot1[k, b] = pOT1(key[k, b]; ρ[k, b]) .

To generate a decommitment (m, d) of (c,G), simply send the keys and random-
ness used for generating the OT first flows {ot1[k,G[k]]} selected by G. More
formally, if G[k] is the k-th bit of the description of G which is used as input
to Uv:

514 F. Benhamouda and H. Lin

FC.FOpen(c,G,m, ρ) = d = {key[k,G[k]], ρ[k,G[k]]}.

Verifying a decommitment d = {key′, ρ′} w.r.t. (c,G,m) involves checking that
the keys and randomness contained in d′ generate the OT first flows selected by
G, and the garbled universal circuit ̂Uv evaluates to m on input these keys.

FC.FVer(c,G,m, d) = 1 iff (1) ∀k, ot1[k,G[k]] = pOT1(key′[k]; ρ′[k]) and

(2) ̂Uv(key′) = m.

It is easy to see that the semi-honest binding property of pOT1 implies the semi-
honest functional binding of FC, and that a pair (c, d) can be simulated relying
on the security of garbled circuits and the computational hiding property (i.e.,
receiver privacy) of pOT1.
WS for FC: Next, to construct a WS scheme for the oracle OFC that verifies
the functional decommitment of FC, we again use garbled circuits to “enforce
and hide” this verification. To encrypt a set of messages M[i, b′] under a query
(c,G), our idea is to garble the following circuit V that acts as FC.FVer (without
checking (1)), and selects messages according to the output m if verification
passes,

V ({key′[k]}) =

{

{M[i,mi]} if ̂Uv({key′[k]}) = m

⊥ otherwise
. (2)

Let ̂V be the garbled circuit, and {okeyk[j, β]}j the set of keys for the input
wires corresponding to key′[k]. (For clarity, we denote keys for ̂V as okey.)

Given a decommitment d = (key′, ρ′), correct WS decryption should recover
messages {M[i, G(v)i]} selected according to the correct output G(v) if the
decommitment is valid, and ⊥ if invalid. To enable this, what is missing is a
“translation mechanism” that can achieve the following: For every k,

– Correctness: if (key′[k], ρ′[k]) is a valid decommitment to ot1[k,G[k]], it trans-
lates this pair into input keys of ̂V corresponding to key[k,G[k]], namely
{okeyk[j, key[k,G[k]]j]}j .

– Security: the other keys {okeyk[j, 1 − key[k,G[k]]j]}j are always hidden.

With such a translation mechanism, given a valid decommitment d =
{key[k,G[k]], ρ[k,G[k]]}, one can obtain all input keys corresponding to
{key[k,G[k]]}, and can evaluate ̂V with these keys to obtain the correct out-
put,

̂V
({

{okeyk[j, key[k,G[k]]j]}j

}

k

)

= V ({key[k,G[k]]}k) = {M[i, G(v)i]}i . (3)

The security of the translation mechanism and garbled circuit ̂V guarantees that
only the right messages {M[i, G(v)i]} are revealed.

k-Round MPC from k-Round OT via Garbled Interactive Circuits 515

Our key observation is that the second flows of OT is exactly such a trans-
lation mechanism. For every OT first flows ot1[k,G[k]] selected by G, generate
the OT second flows using appropriate input keys of ̂V as sender’s inputs,

∀k, ot2[k] R← pOT2(ot1[k,G[k]], {okeyk[j, β]}j,β) . (4)

Indeed, for every k, given a valid decommitment (key[k,G[k]], ρ′) to ot1[k,G[k]],
one can act as an OT receiver to recover input keys {okeyk [j, key[k,G[k]]j]}j ,
achieving correct translation. On the other hand, the OT sender’s security guar-
antees that the other keys {okeyk [j, 1 − key[k,G[k]]j]}j remain hidden.

Summarizing the above ideas gives the following construction of WS for FC:

– WS.Enc((c,G),M): To encrypt M under (c,G), encryptor garbles the circuit
V as in Eq. (2), and generates the second OT flows as in Eq. (4). The WS
ciphertext is ct = (c,G, ̂V , {ot2[k]}).

– WS.Dec(ct, d): To decrypt ct with a decommitment d = {key′, ρ′}, the decryp-
tor first verifies that for every k (key′[k], ρ′[k]) is a valid decommitment
of ot1[k,G[k]] in c; otherwise, abort. Then, for every k, it acts as an OT
receiver with input key′[k], randomness ρ′[k], and OT sender’s message ot2[k]
to recover input keys of ̂V corresponding to key′[k]. Finally, it evaluates ̂V

with the obtained keys and output the messages output by ̂V , as in Eq. (3).

The correctness and security of the WS scheme follows directly from the cor-
rectness and security of the translation mechanism, which are in turn implied
by those of OT. See the full version [7] for more details.

Combining Sects. 2.1 to 2.5, we get a construction of a 2-round semi-honest
MPC protocol from any 2-round semi-honest OT protocol using round collapsing
for an inner MPC protocol.

2.6 Semi-Malicious and Malicious Security in the CRS Model

Toward achieving malicious security, we first achieve semi-malicious security.
Roughly speaking, a semi-malicious party Pj generates its messages according
to the protocol using arbitrarily and adaptively chosen inputs and random tapes.
This is formalized by letting Pj “explain” each message m�

j it sends with a pair
of input and random tape consistent with it, on a special witness tape. In the
two-round setting, the challenge in simulating the view of Pj lies in simulating
honest parties’ first messages without knowing any secret information of Pj . This
is because Pj may rush to see honest parties’ first messages before outputting
its own message, input, and random tape. (Observe that this is not an issue for
semi-honest security, as the simulator learns the inputs and random tapes of
corrupted parties first.)

Recall that in our 2-round protocols, each party Pi sends functional commit-
ments ci to its input and random tape (xi, ri) in the first round, which are later
partially decommitted to reveal Pi’s messages m in the inner MPC protocol.
The simulation property of the functional commitment scheme FC ensures that

516 F. Benhamouda and H. Lin

the commitment and decommitment can be simulated together using just the
message. However, this is insufficient for achieving semi-malicious security, as the
simulator must simulate commitments in the first round with no information.
To overcome this problem, we strengthen the simulatability of FC to equivoca-
bility, that is, simulation takes the following two steps: First, a commitment c̃
is simulated with no information, and later it is equivocated to open to any
output m w.r.t. any circuit G. Instantiating our 2-round MPC protocols with
such an equivocal functional commitment scheme, and other primitives that are
semi-maliciously secure (e.g., using a semi-maliciously secure multi-round MPC
protocol, and 2-round OT protocol), naturally “lift” semi-honest security to
semi-malicious security.

With a simple idea, we can transform any simulatable functional commitment
scheme FC into an equivocal one eFC: Let (OT1,OT2) be the sender and receiver’s
algorithms of a 2-out-of-1 OT scheme.

– To commit to v, generate a FC commitment c to v, and then commit to each
bit ci twice using the algorithm OT1, yielding the eFC commitment:

ec = {ot1[i, 0] = OT1(ci; r[i, 0]), ot1[i, 1] = OT1(ci; r[i, 1])}i .

– An eFC decommitment (ed,G(v)) to (ec,G) contains the FC decommitment
(d,G(v)) to (c,G), and the OT randomness {r[i, ci]} for generating the set of
first flows {ot1[i, ci]} selected by c. Note that for any ec generated according
to the above commitment algorithm, the revealed OT randomness determines
the commitment c, and then the FC decommitment d determines G(v).

– Now, a commitment can be simulated by committing to both 0 and 1 in ec,

ẽc = {ot1[i, 0] = OT1(0; r[i, 0]), ot1[i, 1] = OT1(1; r[i, 1])}i .

To decommit ẽc to output G(v), first simulate the FC commitment and decom-
mitment (c̃, d̃) together using G(v), and then reveal the set of randomness
{r[i, c̃i]} selected according to the simulated commitment c̃.

The WS scheme associated with eFC can be constructed similarly as that for FC.
The above idea is conceptually simple, but leads to nested calls of pOT1/OT1,
as a FC commitment c already contains OT first flows. This is not a problem
when using 2-round OT, but does not extend to multi-round OT. In the full
version [7], we present a more involved construction that avoids nested calls.

Malicious Security in the CRS Model. Given 2-round semi-maliciously secure
protocols, in the CRS model, we can let each party prove using NIZK that each
message is generated in a semi-malicious way (i.e., according to the protocol
w.r.t. some input and random tape) as done in [2], which immediately gives
Corollary 1.3 in the introduction. We refer the reader to [2] for more details.
Extension to k Rounds. Our 2-round semi-honest or semi-malicious constructions
so far can be extended to k-round constructions, when replacing the underlying
2-round OT protocols with semi-honest or semi-malicious k-round OT protocols.
See the full version [7] for more details.

k-Round MPC from k-Round OT via Garbled Interactive Circuits 517

2.7 Malicious Security in the Plain Model

From General (k − 1)-Round Delayed-Semi-Malicious MPC: We first
show a new compilation that turns any (k−1)-round MPC protocol for comput-
ing f satisfying a stronger variant of semi-malicious security, called delayed-semi-
malicious security, into a k-round malicious MPC protocol for f , assuming only
one-way functions, for any k ≥ 5. Roughly speaking, a delayed-semi-malicious
party Pj acts like a semi-malicious party, except that, it only “explains” all its
messages once, before the last round (instead of explaining each of its messages
after each round). This is formalized by letting Pj output a pair of input and
random tape before the last round (on its special witness tape) which is required
to be consistent with all Pj ’s messages. We say that a protocol is delayed-semi-
malicious secure if it is secure against such adversaries. (For technical reasons,
we require the protocols to have a universal simulator.) We observe that our k-
round semi-malicious MPC protocols, when instantiated with a k-round delayed-
semi-malicious OT become secure against delayed semi-malicious attackers (and
admit a universal simulator).

To “lift” delayed-semi-malicious security to malicious security generically,
our compilation builds on techniques of [1]. To illustrate the idea, consider com-
piling our 2-round delayed-semi-malicious MPC protocol Φ for f into a 5-round
malicious MPC protocol Π for f . The basic idea is running Φ for computing f ,
and restricting a malicious adversary A to act as a delayed-semi-malicious one A′

by requiring A to prove using zero-knowledge proof of knowledge (ZKPOK) that
its messages in each round of Φ are generated correctly according to some input
and random tape. Unlike the CRS model, ZKPOK in the plain model requires at
least 4 rounds. Sequentializing the two ZKPOK leads to a 8-round protocol. But
if the ZKPOK allows for delayed-input, that is, only the last prover’s message
depends on the statement and witness, then the two ZKPOK can be partially
parallelized, leading to a 5-round protocol. In addition, in order to prevent maul-
ing attacks, the ZKPOK must be non-malleable. Fortunately, Ciampi, Ostrovsky,
Siniscalchi, and Visconti [20] (COSV) recently constructed a 4-round delayed-
input non-malleable ZKPOK protocol from one-way functions, which suffice for
our purpose. When starting from a 4-round (instead of 2-round) protocol Φ, to
obtain a 5-round malicious protocol Π, we cannot afford to prove correctness of
each round. But, if Φ is delayed-semi-malicious secure, then it suffices to prove
correctness only at the last two rounds, keeping the round complexity at 5.

Though the high-level ideas are simple, there are subtleties in the construc-
tion and proof. We cannot use the non-malleable ZKPOK in a black-box. This
is because simulation of non-malleable ZKPOK uses rewindings and may render
the Φ instance running in parallel insecure. In addition, the COSV non-malleable
ZKPOK is only many-many non-malleable in the synchronous setting, but in Π,
the non-malleable ZKPOKs are not completely synchronized (ending either at the
second last or the last round). Therefore, we use the COSV construction in a non-
black-box way in Π (with some simplification) as done in [1]. The specific prop-
erty of COSV non-malleable ZKPOK that we rely on is that simulation requires
only rewinding the second and third rounds, while (witness) extraction requires

518 F. Benhamouda and H. Lin

only rewinding the third and forth rounds. This means Φ would be rewound at
second/third and third/fourth rounds. The security of a generic delayed-semi-
malicious protocol may not hold amid such rewinding. However, if we start
with a 4-round protocol, rewindings can be circumvented if Π contains no mes-
sages of Φ in its third round. This means, in the rewindings of second/third and
third/fourth rounds, the simulator can simply replay messages of Φ in the main
thread, keeping the instance of Φ secure. See the full version [7] for details.

From Our Specific k-Round Delayed-Semi-Malicious MPC: The above
transformation is modular and general, but comes at a price—it only gives k-
round malicious MPC from (k − 1)-round delayed-semi-malicious OT, which is
not necessary. To eliminate the gap, we leverage specific structures of our k-
round delayed-semi-malicious protocols, to address the rewinding issue above.
To illustrate the ideas, lets again examine the k = 5 case.

To handle rewindings at third/fourth rounds, we observe that at the end of
fourth round, each party Pi proves using COSV non-malleable ZK that it has
acted honestly in Φ according to some input and random tape (xi, ri). If in the
malicious protocol Π, each party additionally commits to (xi, ri) in the first
two rounds using a statistically binding commitment scheme (and prove that
its messages are generated honestly using the committed value). Then, as long
as the adversary cannot cheat in the non-malleable ZK proofs, its messages in
the third/fourth rounds of Φ are determined by the commitments in the first
two rounds. Therefore, the simulator can afford to continuously rewinding the
adversary, until it repeats its messages in Φ in the main execution thread. In this
case, the simulator can simply replay the honest parties’ messages in Φ in the
main thread.

To handle rewindings at second/third rounds, the specific property of our
protocol that we rely on is that the first 2 rounds of Φ contains only instances of
OT, whose messages do not depend on parties’ inputs. The latter holds because
of the random self-reducibility of OT (hence, the sender and receiver can only
use their inputs for generating their last messages). To avoid rewinding these
OT instances in Φ, our idea is modifying the malicious protocol Π as follows:
In the first 2 rounds, for every OT instance OTj in Φ, Π runs two independent
OT instances OT0

j and OT1
j . In the third round, an random instance OT

bj

j for

bj ← {0, 1} is chosen to be continued, and the other OT
1−bj

j aborted—they
are referred to as the real and shadow instances. Now in a rewinding of the
second/third round, to avoid rewinding the real OT instances, the simulator
replays the OT messages in the second round, and in the third round, continues
the shadow instances OT

1−bj

j and aborts the real instances OT
bj

j . Importantly,
since for every pair (OT0

j ,OT
1
j), the choice bj of which is real and which is shadow

is random and independent, the view of the adversary in a rewinding is identical
to that in the main execution thread. This guarantees that rewindings would
succeed.

We remark that this idea does not apply in general. This is because to con-
tinue a random instance of a general protocol Φ in the third round, parties may

k-Round MPC from k-Round OT via Garbled Interactive Circuits 519

need to agree on that instance, which requires coin-tossing. In contrast, our pro-
tocol Φ consists of many OT instances OTj , the decision of which of (OT0

j ,OT
1
j)

to continue can be made locally by the party who is supposed to send the third
message of OTj in Φ. In the full version [7], we put the above two ideas together,
which gives k-round malicious OT from k-round delayed-semi-malicious OT.

A figure summarizing the results is provided in the full version [7].

3 Preliminaries

The security parameter is denoted λ. We recall the notion of polynomial-size
circuit classes and families, together with the notion of statistical and computa-
tional indistinguishability in the full version [7].

For the sake of simplicity, we suppose that all circuits in a circuit class have
the same input and output lengths. This can be achieved without loss of gen-
erality using appropriate paddings. We recall that for any S-size circuit class
C = {Cλ}λ∈N

, there exists a universal poly(S)-size circuit family {Uλ}λ∈N
such

that for any λ ∈ N, any circuit C ∈ Cλ with input and output lengths n, l, and
any input x ∈ {0, 1}n, Uλ(C, x) = C(x).

We make use of garbled circuit schemes. A garbled circuit scheme GC for a
poly-size circuit class C = {Cλ}λ∈N

is defined by four polynomial-time algorithms
GC = (GC.Gen,GC.Garble,GC.Eval,GC.Sim): (i) key R← GC.Gen(1λ) generates
input labels key = {key[i, b]}i∈[n],b∈{0,1}; (ii) ̂C R← GC.Garble(key, C) garbles the

circuit C ∈ Cλ into ̂C; (iii) y = GC.Eval(̂C, key′) evaluates the garbled circuit
GC.Garble using input labels key′ = {key′[i]}i∈[n] and returns the output y ∈
{0, 1}l; (iv) (key′, ˜C) R← GC.Sim(1λ, y) simulates input labels key′ = {key′[i]}i∈[n]

and a garbled circuit ˜C corresponding to the output y ∈ {0, 1}l. The formal
definition can be found in the full version [7]. We recall that garbled circuit
schemes can be constructed from one-way functions.

4 Definition of Garbled Interactive Circuit Schemes

In this section, we define Garbled Interactive Circuit (GIC) schemes. An overview
is provided in Sect. 2.2.

4.1 Interactive Circuits

We start by defining non-deterministic oracles and interactive circuits.

Definition 4.1 (Non-Deterministic Oracles). A non-deterministic oracle O
is a circuit that takes as input a pair of bitstrings (q, w) ∈ {0, 1}n × {0, 1}m,
called query and witness respectively, and the output is a l-bit string or a
special element ⊥, called answer : O(q, w) ∈ {0, 1}l ∪ {⊥}. A poly-size non-
deterministic oracle family is an ensemble of poly-size non-deterministic oracles
O = {Oλ}λ∈N .

520 F. Benhamouda and H. Lin

Definition 4.2. Let O be a non-deterministic oracle. An L-round interactive
circuit iC = {iC�}�∈[L] with oracle O consists of a list of L next-step circuits.

Execution of iC with O on Witnesses w̄: An execution of iC with O and
a list of witnesses w̄ = {w̄�}�∈[L] proceeds in L iterations as follows: In round
� ∈ [L], the next-step circuit iC� on input the state st�−1 (output in the previous
round) and answers ā�−1 = {a�−1

k }
k

(to queries q̄�−1 = {q�−1
k }

k
produced in the

previous round), outputs a new state st�, queries q̄� = {q�
k}k, and a (round)

output o�,

(st�, q̄�, o�) =

{

iC�(st�−1, ā�−1) if ∀k, a�−1
k = O(q�−1

k , w�−1
k) 	= ⊥

(⊥,⊥,⊥) otherwise
.

The execution terminates after L rounds, or whenever ⊥ is output. By conven-
tion, st0 and q̄0 are empty strings.

We say that an execution is valid if it terminates after L rounds with-
out outputting ⊥. We call the list of witnesses w̄ the witnesses of the
execution. The output of the execution is the list of round outputs, denoted
as out(iC,O, w̄) = ō = {o�}�∈[L]. The transcript of the execution is the list
of queries, answers, and outputs, denoted as trans(iC,O, w̄) = {q̄�, ā�, o�}�∈[L].
(If the execution outputs ⊥ in round �, q̄�′

= ā�′
= o�′

= ⊥ for all �′ ≥ �.)
Finally, we say that iC has size S if the total size of all circuits are bounded by
S. In the rest of the paper, when the oracle O is clear from the context, we often
omit it in the notations and write out(iC, w̄) and trans(iC, w̄).

4.2 Garbling Interactive Circuits

As mentioned above, an important difference between GIC schemes and classical
garbled circuit schemes is that to evaluate a garbled (plain) circuit, one must
obtain encoded inputs, whereas a garble interactive circuit can be evaluated
with its oracle O on input an arbitrary list of witnesses, without encoding.
This provides a more powerful functionality, but poses an issue on security:
There may exist different lists of witnesses w̄, w̄′ that lead to executions with
completely different transcripts. In this case, it is unclear how simulation can be
done. To circumvent this, we only require the security of the garbling scheme
to hold for distributions iD of interactive circuits iC and witnesses w̄ (with
potentially some auxiliary information aux) that have computationally unique
transcripts trans(iC,O, w̄), in the sense that (given aux) it is hard to find another
list of witnesses w̄′ that leads to an inconsistent transcript trans(iC,O, w̄), where
inconsistency means:

Definition 4.3 (Consistent Transcripts). We say that two transcripts
{q̄�, ā�, o�}�∈[L] and {q̄′�, ā′�, o′�}�∈[L] are consistent if for every � ∈ [L],
(q̄�, ā�, o�) = (q̄′�, ā′�, o′�) or (q̄�, ā�, o�) = (⊥,⊥,⊥) or (q̄′�, ā′�, o′�) = (⊥,⊥,⊥).
Otherwise, we say that the two transcripts are inconsistent.

k-Round MPC from k-Round OT via Garbled Interactive Circuits 521

Note that one can always produce a list of invalid witnesses that lead to an
invalid execution. Therefore, difference due to outputting ⊥ does not count as
inconsistency. Next, we formally define these distributions that produce unique
transcripts.

Definition 4.4 (Unique-Transcript Distribution). Let O = {Oλ}λ∈N
be

a non-deterministic oracle family. Let iD = {iDλ,id}λ∈N,id be an ensemble of
efficiently samplable distributions over tuples (iC, w̄, aux). We say that iD is a
(computationally) unique-transcript distribution for O, if

Valid Execution: For any λ ∈ N, any index id ∈ {0, 1}poly(λ), and any (iC, w̄,
aux) in the support of iDλ,id, the execution of iC with Oλ and w̄ is valid.

Computationally Unique Transcript: For any poly-size circuit family A =
{Aλ}λ, any sequence of indices {idλ}λ, there is a negligible function negl,
such that for any λ:

Pr
[

trans(iC,Oλ, w̄′) and trans(iC,Oλ, w̄) are inconsistent :

(iC, w̄, aux) R← iDλ,idλ
; w̄′ R← Aλ(iC, w̄, aux)

]

≤ negl(λ) .

It is a statistically unique-transcript distribution if the second property holds for
any arbitrary-size circuit family A = {Aλ}λ.

Now, we are ready to define GIC schemes.

Definition 4.5 (Garbled Interactive Circuit Schemes). Let O = {Oλ}λ∈N

be a non-deterministic oracle family, and iD = {iDλ,id}λ∈N,id be a unique-
transcript distribution for O. A garbled interactive circuit scheme for (O, iD) is a
tuple of three polynomial-time algorithms GiC = (GiC.Garble,GiC.Eval,GiC.Sim):

Garbling: ̂iC R← GiC.Garble(1λ, iC) garbles an interactive circuit iC into a gar-
bled interactive circuit ̂iC;

Evaluation: o� = GiC.Eval(̂iC, w̄<�) evaluates a garbled interactive circuit ̂iC
with a partial list of witness w̄<�, and outputs the �-th round output o�;

Simulation: ˜iC R← GiC.Sim(1λ, T) simulates a garbled circuit ˜iC from a tran-
script T of an execution;

satisfying the following properties:

Correctness: For any λ ∈ N, any index id ∈ {0, 1}poly(λ), any (iC, w̄, aux) in
the support of iDλ,id, it holds that

Pr
[

{GiC.Eval(̂iC, w̄<�)}�∈[L] = out(iC,Oλ, w̄) :

̂iC R← GiC.Garble(1λ, iC)
]

= 1 ;

522 F. Benhamouda and H. Lin

Simulatability: The following two distributions are computationally indistin-
guishable:

{

(iC, w̄, aux, ̂iC) :
(iC, w̄, aux) R← iDλ,id;
̂iC R← GiC.Garble(1λ, iC)

}

λ,id

,

{

(iC, w̄, aux, ˜iC) :
(iC, w̄, aux) R← iDλ,id;
˜iC R← GiC.Sim(1λ, trans(iC,Oλ, w̄))

}

λ,id

.

Remark 4.6. In this paper, we always consider perfect correctness for all prim-
itives for the sake of simplicity. We could relax this notion to correctness up to
a negligible error probability if, in addition, we ask that no non-uniform poly-
time adversary can generate inputs and randomness which would not satisfy the
correctness property, with non-negligible probability. In other words, in the case
of GIC schemes, semi-maliciously generated GIC should satisfy the correctness
property (except with negligible probability). This additional property is not
needed for our semi-honest constructions.

5 2-Round Semi-Honest MPC Protocols

In this section, we present our construction of 2-round semi-honest MPC proto-
cols. For that purpose, we first introduce the notion of functional commitment.
We then show the MPC construction.

5.1 New Tool: Functional Commitment

Definition 5.1 ((Zero-Knowledge) Functional Commitment). Let G =
{Gλ}λ∈N

be a poly-size circuit class. A (zero-knowledge) functional commit-
ment scheme FC for G is a tuple of four polynomial-time algorithms FC =
(FC.Com,FC.FOpen,FC.FVer,FC.Sim):

Commitment: c = FC.Com(1λ, v; ρ) generates a commitment c of v ∈ {0, 1}n

using random tape ρ ∈ {0, 1}τ , for the security parameter λ, where the
random tape length τ is polynomial in λ;

Functional Opening: d = FC.FOpen(c,G, v, ρ) derives from the commitment c
and the random tape ρ used to generate it, a functional decommitment d
of c to y = G(v) for G ∈ Gλ;

Functional Verification: b = FC.FVer(c,G, y, d) outputs b = 1 if d is a valid
functional decommitment of c to y for G ∈ Gλ; and outputs b = 0 otherwise;

Simulation: (c, d) R← FC.Sim(1λ, G, y) simulates a commitment c together with
a functional decommitment d of c to y for G ∈ Gλ;

satisfying the following properties:

Correctness: For any security parameter λ ∈ N, for any v ∈ {0, 1}n, for any
circuit G ∈ Gλ, for any ρ ∈ {0, 1}τ , it holds that if c = FC.Com(1λ, v; ρ),
then:

FC.FVer(c,G,G(v),FC.FOpen(c,G, v, ρ)) = 1 ;

k-Round MPC from k-Round OT via Garbled Interactive Circuits 523

Semi-Honest Functional Binding: For any polynomial-time circuit family
A = {Aλ}λ∈N

, there exists a negligible function negl, such that for any
λ ∈ N, for any v ∈ {0, 1}n, for any circuit G ∈ Gλ:

Pr
[

FC.FVer(c,G, y, d) = 1 and y 	= G(v) :

ρ R← {0, 1}τ ; c = FC.Com(1λ, v; ρ); (y, d) R← Aλ(1λ, c, v, ρ)
]

≤ negl(λ) ;

Simulatability: The following two distributions are computationally indistin-
guishable:

{

(c, d) : ρ R← {0, 1}τ ; c R← FC.Com(1λ, v; ρ);
d = FC.FOpen(c,G, v, ρ)

}

λ,G,v

,

{

(c, d) : (c, d) R← FC.Sim(1λ, G,G(v))
}

λ,G,v
.

Note that the simulatability property implies the standard hiding property
of commitments, if each circuit class Gλ contains a constant circuit: Consider
indeed any constant circuit C(x) = α, the fact that (c, d) can be simulated from
C and α implies that c hides the message committed inside.

Let us now define the non-deterministic oracle family associated to FC.

Definition 5.2. Let G = {Gλ}λ∈N
be a poly-size circuit class. Let FC =

(FC.Com,FC.FOpen,FC.FVer,FC.Sim) be a functional commitment scheme for G.
We define the following associated non-deterministic oracle family OFC =
{OFC

λ }λ∈N
:

OFC
λ ((c,G), (y, d)) =

{

y if FC.FVer(c,G, y, d) = 1;
⊥ otherwise.

5.2 Construction of 2-Round Semi-Honest MPC

Tools: Let f be an arbitrary N -party functionality.10 To construct a 2-round
semi-honest MPC protocol ˜Π for f , we rely on the following tools:

– A semi-honestly secure L-round MPC protocol Π = (Next,Output) for f . We
will refer to this protocol the “inner MPC protocol”.
Recall that Next is next message function that computes the message broad-
casted by party Pi in round �, m�

i = Nexti(xi, ri, m̄
<�), on input xi and

random tape ri, after receiving messages m̄<� = {m�′
j }

j∈[N],�′<�
broadcasted

by parties Pj on previous rounds. And Output is the output function that
computes the output of party Pi, yi = Outputi(xi, ri, m̄), after receiving all
the messages m̄ = {m�

j}j∈[N],�∈[L]
. The security parameter λ is an implicit

parameter 1λ of Next and Output.
10 Formal definitions of MPC protocol and N -party functionality are provided in the

full version [7].

524 F. Benhamouda and H. Lin

– A functional commitment scheme FC = (FC.Com,FC.FOpen,FC.FVer,FC.Sim)
for the class of all S-size circuits with a sufficiently large polynomial bound S.
We denote by OFC the associated non-deterministic oracle family defined in
Definition 5.2.

– A GIC scheme GiC = (GiC.Garble,GiC.Eval) for the oracle OFC and the unique-
transcript distribution iD = {iDλ,id}λ∈N,id that we define later.

We will show that using the constructions in Sect. 6 and in the full version [7],
we can construct the two last tools from 2-round (semi-honest) OT. With the
above tools, our 2-round MPC protocol ˜Π = (˜Next, Õutput) for f proceed as
follows:
The First Round: Each party Pi computes its first message m̃1

i = ˜Nexti(xi,
r̃i, ∅), using security parameter λ, input xi, random tape r̃i, and no messages,
as follows.

1. Take a sufficient long substring ri of r̃i as the random tape for running the
inner MPC protocol Π.

2. Commit L times to (xi, ri) using the functional commitment scheme FC: for
� ∈ [L], c�

i = FC.Com(1λ, (xi, ri); ρ�
i), where all the ρ�

i ’s (and ri) are non-
overlapping substrings of r̃i.

3. Broadcast the first message m̃1
i = {c�

i}�∈[L], and keep {ρ�
i}�∈[L] secret.

The Second Round: Each party Pi computes its second message m̃2
i =

˜Nexti(xi, r̃i, {m̃1
j}j∈N

), using all first messages {m̃1
j}j∈N

as follows:

1. Garble the interactive circuit iCi = {iC�
i}�∈[L] defined in Fig. 3:

̂iCi
R← GiC.Garble(1λ, iCi).

2. Broadcast the second message m̃2
i = ̂iCi.

The Output Function: Each party Pi computes its output yi = Õutputi(xi,
r̃i, {m̃1

j , m̃
2
j}j∈[N]

), using all first and second messages {m̃1
j , m̃

2
j}j∈N

as follows.

Proceed in L iterations to evaluate the N garbled circuits {̂iCj}j∈[N] in parallel.
Before iteration � ∈ [L] starts, the following invariant holds:
Invariant: After the first (� − 1) iterations, Pi has obtained for every j ∈ [N]
and every �′ < �:

– the inner MPC message m�′
j generated in the �′-th round by party Pj , and

– the associated functional decommitment d�′
j of c�′

j for the circuit G�′
j (�, �) =

Nextj(�, �, m̄<�′
).

We define w̄<� = {w�′
j }

j,�′<�
= {(m�′

j , d�′
j)}

�′<�
.

In the first round � = 1, all these messages and functional decommitments are
empty. Thus, the invariant holds initially. With the above, Pi does the following
in iteration �: for every j ∈ [N]: (m�

j , d
�
j) = o�

j = GiC.Eval(̂iCj , w̄
<�).

k-Round MPC from k-Round OT via Garbled Interactive Circuits 525

Fig. 3. The interactive circuit iCi

After all L iterations, Pi obtains the set of all messages m̄, and computes
the output by invoking the output function of the inner MPC protocol: yi =
Outputi (xi, ri, m̄).

Unique-Transcript Distribution: We now define the unique-transcript dis-
tribution iD = {iDλ,id}λ∈N,id (for the garbled interactive circuit iCi) as follows:
id = (i, x̄, r̄, m̄) and iDλ,id is
⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

(iCi, w̄, ρ̄ = {ρ�
j}j,�

) :

∀j ∈ [N], ∀� ∈ [L],
ρ�

j
R← {0, 1}|ρ�

j |; c�
j = FC.Com(1λ, (xj , rj); ρ�

j);
G�

j(�, �) = Nextj(�, �, m̄<�);
d�

j = FC.FOpen(c�
j , G

�
j , (xj , rj), ρ�

j);
w̄ = {w�

j = (m�
j , d

�
j)}j,�

; iCi defined in Fig. 3

⎫

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎭

.

The unique-transcript property follows from the semi-honest functional binding
property of FC. See the full version [7] for details.

Security: We have the following theorem proven in the full version [7].

Theorem 5.3. If the inner MPC Π = (Next,Output) is correct and secure
against semi-honest adversaries, if the functional scheme FC is correct, semi-
honest functional binding, and simulatable, if the garbled interactive circuit

526 F. Benhamouda and H. Lin

scheme GiC is correct and simulatable, then the MPC protocol defined above
is correct and secure against semi-honest adversaries.

6 Garbled Interactive Circuit from Witness Selector

In this section, we show how to construct GIC from another tool we call witness
selector, which can be seen as generalization of witness encryption to languages
defined by a non-deterministic oracle family O. Contrary to witness encryption,
each query to O may have multiple answers, as long as at most one can be found
efficiently.

We first define the notion of computationally unique-answer distribution
for O and the notion of witness selector for such a distribution. Then we show
how to construct a garbled interactive circuit scheme for (O, iD) from any wit-
ness selector for a unique-answer distribution for O which is consistent with the
unique-transcript distribution iD.

6.1 Witness Selector

Definition 6.1 (Unique-Answer Distribution). Let O be a non-
deterministic oracle family. Let wD = {wDλ,id}λ∈N,id be an ensemble of efficiently
samplable distributions over tuples (q, w, aux). We say that wD is a (computa-
tionally) unique-answer distribution for O if

Non-⊥ Answer: For any λ ∈ N, any index id ∈ {0, 1}poly(λ), and any (q, w, aux)
in the support of wDλ,id, Oλ(q, w) 	= ⊥.

Computationally Unique Answer: For any poly-size circuit family A =
{Aλ}λ∈N

, for any sequence of indices {idλ}λ, there exists a negligible function
negl, such that for any λ ∈ N:

Pr
[

Oλ(q, w′) 	=⊥ and Oλ(q, w′) 	= Oλ(q, w) :

(q, w, aux) R← wDλ,idλ
; w′ R← Aλ(q, w, aux)

]

≤ negl(λ) .

It is a statistically unique-answer distribution if the second property holds for
any arbitrary-size circuit family A = {Aλ}λ.

Definition 6.2 (Witness Selector). Let O = {Oλ}λ∈N be a non-
deterministic oracle family, and wD = {wDλ,id}λ∈N,id a unique-answer distribu-
tion for O. A witness selector scheme for (O,wD) is a tuple of two polynomial-
time algorithms WS = (WS.Enc,WS.Dec):

Encryption: ct R← WS.Enc(1λ, q,M) encrypts messages M = {M[i, b]}i∈[l],b∈{0,1}
for a query q, into a ciphertext ct, where each message has the same length
|M[i, b]| = poly(λ);

Decryption: M′ = WS.Dec(ct, w) decrypts a ciphertext ct into messages M′ =
{M′[i]}i∈[l] using a witness w;

k-Round MPC from k-Round OT via Garbled Interactive Circuits 527

satisfying the following properties:

Correctness: For any security parameter λ ∈ N, for any index id, for any
(q, w, aux) in the support of wDλ,id, for any messages M = {M[i, b]}i,b, for
a = O(q, w):

Pr
[

WS.Dec(WS.Enc(1λ, q,M), w) = {M[i, ai]}i∈[l]

]

= 1 ;

Semantic Security: The following two distributions are indistinguishable:
{

(q, w, aux,WS.Enc(1λ, q,M)) : (q, w, aux) R← wDλ,id

}

λ,id,M
,

⎧

⎨

⎩

(q, w, aux,WS.Enc(1λ, q,M′)) :
(q, w, aux) R← wDλ,id;
a = Oλ(q, w);
{M′[i, b]}i,b = {M[i, ai]}i,b

⎫

⎬

⎭

λ,id,M

.

6.2 Garbled Interactive Circuit from Witness Selector

Let O = {Oλ}λ∈N
be a poly-size non-deterministic oracle family. Let iD =

{iDλ,id}λ∈N,id be an ensemble of efficiently samplable distributions over tuples
(iC, w̄, aux), where iC is an L-round interactive circuit. We suppose that iD is a
unique-transcript distribution for O. To construct a garbled interactive circuit
scheme GiC = (GiC.Garble,GiC.Eval,GiC.Sim) for (O, iD), we rely on the following
tools:

– A witness selector WS = (WS.Enc,WS.Dec) for (O,wD) where wD =
{wDλ,id} is a unique-answer distribution for O, which is consistent with the
unique-transcript distribution iD (consistency is defined below).

– A garbled circuit scheme GC = (GC.Gen,GC.Garble,GC.Eval,GC.Sim) for the
class of all S-size circuits with a sufficiently large polynomial bound S.

The naive notion of consistence would be: iD is consistent with wD if each
query q�

k and its associated witness w�
k follow the same distribution as wD.

Unfortunately, this is not sufficient as the adversary may learn some auxil-
iary information. Instead, we require that for any � and k, the distribution of
(iC, w̄, aux) R← iDλ,id can be simulated from (q, w, aux) R← wDλ,id′ (for some
index id′ function of id) in such a way that q�

k and w�
k match q and w. A formal

definition is provided in the full version [7].
The construction proceeds as follows:

Garbling: ̂iC R← GiC.Garble(1λ, iC) garbles the interactive circuit iC =
{iC�}�∈[L] into ̂iC as follows: For � from L to 1,
1. Generate input labels key� R← GC.Gen(1λ).
2. Garble the circuit iC.AugNext� defined in Fig. 4:

̂iC.AugNext� R← GC.Garble(key�, iC.AugNext�).
And output ̂iC = { ̂iC.AugNext�}�∈[L].

528 F. Benhamouda and H. Lin

Evaluation: o�′
= GiC.Eval(̂iC, w̄<�′

) evaluates the garbled interactive cir-
cuit ̂iC with the partial list of witnesses w̄<�′

as follows. For � ∈ [�′], we
denote by key′� the set of input labels that we actually use to evaluate

̂iC.AugNext� (i.e., it contains one label per input wire; key′1 and key′L+1

are the empty strings). key′� is composed of two parts key′�[[st�]] and
key′�[[ā�]] = {key′�[[a�

k]]}k corresponding to the input wires for st� and ā�

respectively: key′� = (key′�[[st�]], {key′�[[a�
k]]}k). For � from 1 to �′, the eval-

uator does the following:
1. Evaluate the garbled circuit ̂iC.AugNext�:

(key′�+1[[st�]], q̄�, c̄t�, o�) = GC.Eval(̂iC.AugNext�, key′�).
2. If � < �′, for each k ∈ [|c̄t�|], decrypt ct�k using the witness w�

k:
key′�+1[[a�

k]] = WS.Dec(ct�k, w�
k).

And output o�′
(except if o� = ⊥ for some � ≤ �′).

Simulation: ˜iC R← GiC.Sim(1λ, T) simulates a garbled interactive circuit ˜iC from
a transcript T = {q̄�, ā�, o�}�∈[L] as follows. As for evaluation, for � ∈ [L], we
denote by key′� = (key′�[[st�]], {key′�[[a�

k]]}k) the set of input labels that we
actually use as inputs to ̂iC.AugNext� (i.e., it contains one label per input
wire). For � from L to 1, the simulator does the following:

1. Define key�+1 to be such that key�+1[i, b] = key′�+1[i] for all input wire i
and all bits b ∈ {0, 1}. key′L+1 and keyL+1 are empty.

Fig. 4. The augmented next message function iC.AugNext�

k-Round MPC from k-Round OT via Garbled Interactive Circuits 529

2. Encrypt the labels generated for the round � + 1 corresponding to the
answer ā�, using the witness selector scheme: for each k,
ct�k

R← WS.Enc(1λ, q̄�, key�+1[[a�
k]]). (For � = L, c̄t� and key�+1 are empty.)

3. Simulate the garbling of ̂iC.AugNext�, using its outputs key′�+1[[st�]] =
key�+1[st�] (for � = L, this value is empty), q̄�+1, c̄t�, and o�:

̂iC.AugNext� R← GC.Sim(1λ, (key′�+1[[st�]], q̄�, c̄t�, o�)).

Security: We prove the following security theorem in the full version [7].

Theorem 6.3. If GC is correct and simulatable, if WS is correct and semanti-
cally secure, if wD is unique-answer, and if iD and wD are consistent, then the
garbled interactive circuit scheme GiC defined above is correct and simulatable.

Acknowledgments. The authors thank Yuval Ishai, Antigoni Polychroniadou, and
Stefano Tessaro for helpful discussions.

This work was supported by NSF grants CNS-1528178, CNS-1514526, CNS-1652849
(CAREER), a Hellman Fellowship, the Defense Advanced Research Projects Agency
(DARPA) and Army Research Office (ARO) under Contract No. W911NF-15-C-0236,
and a subcontract No. 2017-002 through Galois. The views expressed are those of the
authors and do not reflect the official policy or position of the Department of Defense,
the National Science Foundation, or the U.S. Government.

References

1. Ananth, P., Choudhuri, A.R., Jain, A.: A new approach to round-optimal secure
multiparty computation. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS,
vol. 10401, pp. 468–499. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-63688-7 16

2. Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V., Wichs, D.:
Multiparty computation with low communication, computation and interaction
via threshold FHE. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 483–501. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-29011-4 29

3. Badrinarayanan, S., Goyal, V., Jain, A., Sahai, A.: Verifiable functional encryption.
In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 557–
587. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-6 19

4. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S., Yang,
K.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.) CRYPTO
2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001). https://doi.org/10.
1007/3-540-44647-8 1

5. Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols
(extended abstract). In: 22nd ACM STOC, pp. 503–513. ACM Press, May 1990

6. Bellare, M., Micali, S.: Non-interactive oblivious transfer and applications. In: Bras-
sard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 547–557. Springer, New York
(1990). https://doi.org/10.1007/0-387-34805-0 48

7. Benhamouda, F., Lin, H.: k-round MPC from k-round OT via garbled interactive
circuits. Cryptology ePrint Archive, Report 2017/1125 (2017). https://eprint.iacr.
org/2017/1125

https://doi.org/10.1007/978-3-319-63688-7_16
https://doi.org/10.1007/978-3-319-63688-7_16
https://doi.org/10.1007/978-3-642-29011-4_29
https://doi.org/10.1007/978-3-642-29011-4_29
https://doi.org/10.1007/978-3-662-53890-6_19
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/0-387-34805-0_48
https://eprint.iacr.org/2017/1125
https://eprint.iacr.org/2017/1125

530 F. Benhamouda and H. Lin

8. Biham, E., Boneh, D., Reingold, O.: Generalized Diffie-Hellman modulo a com-
posite is not weaker than factoring. Cryptology ePrint Archive, Report 1997/014
(1997). http://eprint.iacr.org/1997/014

9. Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing: improvements and exten-
sions. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S.
(eds.) ACM CCS 16, pp. 1292–1303. ACM Press, October 2016

10. Boyle, E., Gilboa, N., Ishai, Y.: Group-based secure computation: optimizing
rounds, communication, and computation. In: Coron, J.-S., Nielsen, J.B. (eds.)
EUROCRYPT 2017. LNCS, vol. 10211, pp. 163–193. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-56614-6 6

11. Boyle, E., Gilboa, N., Ishai, Y., Lin, H., Tessaro, S.: Foundations of homomorphic
secret sharing. In: ITCS (2018, to appear)

12. Brakerski, Z., Halevi, S., Polychroniadou, A.: Four round secure computation with-
out setup. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp. 645–
677. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2 22

13. Brakerski, Z., Lombardi, A., Segev, G., Vaikuntanathan, V.: Anonymous IBE,
leakage resilience and circular security from new assumptions. Cryptology ePrint
Archive, Report 2017/967 (2017). https://eprint.iacr.org/2017/967

14. Brakerski, Z., Perlman, R.: Lattice-based fully dynamic multi-key FHE with short
ciphertexts. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp.
190–213. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-
4 8

15. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society Press, October
2001

16. Canetti, R., Goldwasser, S., Poburinnaya, O.: Adaptively secure two-party com-
putation from indistinguishability obfuscation. In: Dodis, Y., Nielsen, J.B. (eds.)
TCC 2015. LNCS, vol. 9015, pp. 557–585. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-46497-7 22

17. Canetti, R., Lin, H., Pass, R.: Adaptive hardness and composable security in the
plain model from standard assumptions. In: 51st FOCS, pp. 541–550. IEEE Com-
puter Society Press, October 2010

18. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-
party and multi-party secure computation. In: 34th ACM STOC, pp. 494–503.
ACM Press, May 2002

19. Cho, C., Döttling, N., Garg, S., Gupta, D., Miao, P., Polychroniadou, A.: Laconic
oblivious transfer and its applications. In: Katz, J., Shacham, H. (eds.) CRYPTO
2017. LNCS, vol. 10402, pp. 33–65. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-63715-0 2

20. Ciampi, M., Ostrovsky, R., Siniscalchi, L., Visconti, I.: Delayed-input non-
malleable zero knowledge and multi-party coin tossing in four rounds. In: Kalai,
Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp. 711–742. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-70500-2 24

21. Clear, M., McGoldrick, C.: Multi-identity and multi-key leveled FHE from learn-
ing with errors. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol.
9216, pp. 630–656. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-48000-7 31

22. Dachman-Soled, D., Katz, J., Rao, V.: Adaptively secure, universally composable,
multiparty computation in constant rounds. In: Dodis, Y., Nielsen, J.B. (eds.) TCC
2015. LNCS, vol. 9015, pp. 586–613. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-46497-7 23

http://eprint.iacr.org/1997/014
https://doi.org/10.1007/978-3-319-56614-6_6
https://doi.org/10.1007/978-3-319-70500-2_22
https://eprint.iacr.org/2017/967
https://doi.org/10.1007/978-3-662-53018-4_8
https://doi.org/10.1007/978-3-662-53018-4_8
https://doi.org/10.1007/978-3-662-46497-7_22
https://doi.org/10.1007/978-3-662-46497-7_22
https://doi.org/10.1007/978-3-319-63715-0_2
https://doi.org/10.1007/978-3-319-63715-0_2
https://doi.org/10.1007/978-3-319-70500-2_24
https://doi.org/10.1007/978-3-662-48000-7_31
https://doi.org/10.1007/978-3-662-48000-7_31
https://doi.org/10.1007/978-3-662-46497-7_23
https://doi.org/10.1007/978-3-662-46497-7_23

k-Round MPC from k-Round OT via Garbled Interactive Circuits 531

23. Döttling, N., Garg, S.: Identity-based encryption from the Diffie-Hellman assump-
tion. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 537–
569. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7 18

24. Garg, S., Gentry, C., Halevi, S., Raykova, M.: Two-round secure MPC from indis-
tinguishability obfuscation. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp.
74–94. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8 4

25. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: 54th
FOCS, pp. 40–49. IEEE Computer Society Press, October 2013

26. Garg, S., Gentry, C., Sahai, A., Waters, B.: Witness encryption and its applications.
In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th ACM STOC, pp. 467–
476. ACM Press, June 2013

27. Garg, S., Mukherjee, P., Pandey, O., Polychroniadou, A.: The exact round com-
plexity of secure computation. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT
2016. LNCS, vol. 9666, pp. 448–476. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-49896-5 16

28. Garg, S., Polychroniadou, A.: Two-round adaptively secure MPC from indistin-
guishability obfuscation. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS,
vol. 9015, pp. 614–637. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46497-7 24

29. Garg, S., Srinivasan, A.: Garbled protocols and two-round MPC from bilinear
maps. In: 58th FOCS, pp. 588–599. IEEE Computer Society Press (2017)

30. Garg, S., Srinivasan, A.: Two-round multiparty secure computation from minimal
assumptions. Cryptology ePrint Archive, Report 2017/1156 (2017). http://eprint.
iacr.org/2017/1156

31. Gertner, Y., Kannan, S., Malkin, T., Reingold, O., Viswanathan, M.: The rela-
tionship between public key encryption and oblivious transfer. In: 41st FOCS, pp.
325–335. IEEE Computer Society Press, November 2000

32. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: Aho, A. (ed.) 19th ACM
STOC, pp. 218–229. ACM Press, May 1987

33. Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.:
How to run turing machines on encrypted data. In: Canetti, R., Garay, J.A.
(eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 536–553. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40084-1 30

34. Gorbunov, S., Vaikuntanathan, V., Wichs, D.: Leveled fully homomorphic signa-
tures from standard lattices. In: Servedio, R.A., Rubinfeld, R. (eds.) 47th ACM
STOC, pp. 469–477. ACM Press, June 2015

35. Dov Gordon, S., Liu, F.-H., Shi, E.: Constant-round MPC with fairness and guar-
antee of output delivery. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015.
LNCS, vol. 9216, pp. 63–82. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-48000-7 4

36. Halevi, S., Kalai, Y.T.: Smooth projective hashing and two-message oblivious
transfer. J. Cryptology 25(1), 158–193 (2012)

37. Libert, B., Ramanna, S.C., Yung, M.: Functional commitment schemes: from poly-
nomial commitments to pairing-based accumulators from simple assumptions. In:
Chatzigiannakis, I., Mitzenmacher, M., Rabani, Y., Sangiorgi, D. (eds.) ICALP
2016. LIPIcs, vol. 55, pp. 30:1–30:14. Schloss Dagstuhl, July 2016

38. McCurley, K.S.: A key distribution system equivalent to factoring. J. Cryptol. 1(2),
95–105 (1988)

https://doi.org/10.1007/978-3-319-63688-7_18
https://doi.org/10.1007/978-3-642-54242-8_4
https://doi.org/10.1007/978-3-662-49896-5_16
https://doi.org/10.1007/978-3-662-49896-5_16
https://doi.org/10.1007/978-3-662-46497-7_24
https://doi.org/10.1007/978-3-662-46497-7_24
http://eprint.iacr.org/2017/1156
http://eprint.iacr.org/2017/1156
https://doi.org/10.1007/978-3-642-40084-1_30
https://doi.org/10.1007/978-3-662-48000-7_4
https://doi.org/10.1007/978-3-662-48000-7_4

532 F. Benhamouda and H. Lin

39. Mukherjee, P., Wichs, D.: Two round multiparty computation via multi-key FHE.
In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp.
735–763. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-
5 26

40. Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: Kosaraju, S.R. (ed.)
12th SODA, pp. 448–457. ACM-SIAM, January 2001

41. Peikert, C., Shiehian, S.: Multi-key FHE from LWE, revisited. In: Hirt, M., Smith,
A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 217–238. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53644-5 9

42. Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and compos-
able oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp.
554–571. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-
5 31

43. Shmuely, Z.: Composite Diffie-Hellman Public-Key Generating Systems are Hard
to Break. Technical report, Technion (1985). http://www.cs.technion.ac.il/users/
wwwb/cgi-bin/tr-info.cgi/1985/CS/CS0356

44. Yao, A.C.C.: Protocols for secure computations (extended abstract). In: 23rd
FOCS, pp. 160–164. IEEE Computer Society Press, November 1982

45. Yao, A.C.C.: How to generate and exchange secrets (extended abstract). In: 27th
FOCS, pp. 162–167. IEEE Computer Society Press, October 1986

46. Yu, Y., Zhang, J.: Cryptography with auxiliary input and trapdoor from constant-
noise LPN. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp.
214–243. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-
4 9

https://doi.org/10.1007/978-3-662-49896-5_26
https://doi.org/10.1007/978-3-662-49896-5_26
https://doi.org/10.1007/978-3-662-53644-5_9
https://doi.org/10.1007/978-3-540-85174-5_31
https://doi.org/10.1007/978-3-540-85174-5_31
http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-info.cgi/1985/CS/CS0356
http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-info.cgi/1985/CS/CS0356
https://doi.org/10.1007/978-3-662-53018-4_9
https://doi.org/10.1007/978-3-662-53018-4_9

Theoretical Multiparty Computation

Adaptively Secure Garbling with Near
Optimal Online Complexity

Sanjam Garg(B) and Akshayaram Srinivasan

University of California, Berkeley, USA
{sanjamg,akshayaram}@berkeley.edu

Abstract. We construct an adaptively secure garbling scheme with an
online communication complexity of n + m + poly(log |C|, λ) where C :
{0, 1}n → {0, 1}m is the circuit being garbled, and λ is the security
parameter. The security of our scheme can be based on (polynomial
hardness of) the Computational Diffie-Hellman (CDH) assumption, or
the Factoring assumption or the Learning with Errors assumption. This
is nearly the best achievable in the standard model (i.e., without random
oracles) as the online communication complexity must be larger than
both n and m. The online computational complexity of our scheme is
O(n+m)+poly(log |C|, λ). Previously known standard model adaptively
secure garbling schemes had asymptotically worse online cost or relied
on exponentially hard computational assumptions.

1 Introduction

Introduced in the seminal work of Yao [Yao86], garbling techniques are one of
the main cornerstones of cryptography. Garbling schemes have found numerous
applications in multiparty computation [Yao86,AF90,BMR90], parallel cryp-
tography [AIK04,AIK05], one-time programs [GKR08], verifiable computation
[GGP10,AIK10], functional encryption [SS10,GVW12,GKP+13], efficient zero-
knowledge proofs [JKO13,FNO15] and program obfuscation [App14,LV16].

Garbling a circuit C and an input x yields a garbled circuit ˜C and a garbled
input x̃ respectively. Next, using ˜C and x̃ anyone can efficiently compute C(x)
but security requires that ˜C and x̃ jointly reveal nothing about C or x beyond
C(x). Typical garbling schemes are only proved to satisfy the weaker notion
of selective security where both the circuit C and the input x are chosen a
priori. However, in certain applications, a stronger notion of adaptive security
wherein the input x can be chosen adaptively based on the garbled circuit ˜C
is needed [BHR12a]. We refer to the size of ˜C as the offline communication
complexity and the size of x̃ as the online communication complexity.

Research supported in part from 2017 AFOSR YIP Award, DARPA/ARL SAFE-
WARE Award W911NF15C0210, AFOSR Award FA9550-15-1-0274, and research
grants by the Okawa Foundation, Visa Inc., and Center for Long-Term Cybersecu-
rity (CLTC, UC Berkeley). The views expressed are those of the author and do not
reflect the official policy or position of the funding agencies.

c© International Association for Cryptologic Research 2018
J. B. Nielsen and V. Rijmen (Eds.): EUROCRYPT 2018, LNCS 10821, pp. 535–565, 2018.
https://doi.org/10.1007/978-3-319-78375-8_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78375-8_18&domain=pdf

536 S. Garg and A. Srinivasan

Constructing such adaptively secure garbling schemes with better online com-
munication cost has been an active area of investigation [BHR12a,BGG+14,
HJO+16,JW16,AS16,JKK+17,JSW17]. Despite tremendous effort, all standard
model constructions of adaptively secure garbling which are based on polyno-
mially hard assumptions have online communication cost that grows with the
width of the circuit.

1.1 Our Contributions

We obtain a new adaptive garbling scheme with online communication complex-
ity of n + m + poly(log |C|, λ) where n is the input length of the circuit C, m
is its output length and λ is the security parameter. This almost matches the
lower bounds of n and m due to Applebaum et al. [AIKW13].1 Moreover, this
complexity is very close to the best known constructions for the selective security
setting [AIKW13]. More formally, our main result is:

Theorem 1. Assuming either the Computational Diffie-Hellman assumption or
the Factoring assumption or the Learning with Errors assumption, there exists a
construction of adaptive garbling scheme with online communication complexity
of n + m + poly(log |C|, λ) with simulation security.

All prior constructions of adaptively secure garbling schemes in the standard
model had online communication complexity that grew with either the circuit
depth/width. Moreover, several of these schemes suffered from an exponential
loss in security reduction. We summarize the known constructions and our new
results in Table 1.

Table 1. Constructions of known and new adaptive garbling schemes (with simulation
security).

Assumption Online communication
complexity

Security loss Model

[BHR12a] Const. 1 OWF nλ poly(|C|, λ) RO

[BHR12a] Const. 2 OWF |C| + nλ poly(|C|, λ) Std.

[BGG+14] Const.1 LWE (n + m)poly(λ, d) 2O(d) Std.

[BGG+14] Const.2 LWE + MDDH O(n + m) + poly(λ, d) 2O(d) Std.

[HJO+16] Const. 1 OWF (n + m + w)poly(λ) poly(|C|, λ) Std.

[HJO+16] Const. 2 OWF (n + m + d)poly(λ) 2O(d) Std.

[JW16] OWF (n + m + d)poly(λ) 2O(d) Std.

[JKK+17] OWF (n + m + d)poly(λ) 2O(d) Std.

This work CDH/Factoring/LWE n + m + poly(λ, log |C|) poly(|C|, λ) Std.

1 In this work, we consider the standard simulation based security notion. Indeed,
if one considers the weaker notion of indistinguishablity based security this lower
bound can be bypassed as shown in [AS16,JSW17].

Adaptively Secure Garbling with Near Optimal Online Complexity 537

Additionally, we note that as a special case, our result implies selectively
secure garbling scheme with online cost n + poly(λ) from the same assumptions.
Previously, this result was not known under CDH or Factoring. Specifically,
constructions were known from DDH or RSA [AIKW13].

1.2 Applications

We now mention some of the applications of our result. These applications were
already noted in the work of Hemenway et al. [HJO+16] and we improve their
efficiency.

One-time Program and Verifiable Computation. Plugging our result in
the one-time program construction of [GKR08], we get a construction of one-time
program where the number of hardware tokens is O(n + m + poly(λ, log |C|)).
Similarly, the running time of verification protocol in the work of [GGP10] can
be improved to match our online complexity.

Compact Functional Encryption. Starting with a single-key, selective func-
tional encryption scheme with weakly compact ciphertexts and using the transfor-
mations of [ABSV15,AS16,GS16,LM16] along with our construction of adaptively
secure garbled circuits, we obtain a multi-key secure, adaptive functional encryp-
tion scheme whose ciphertext size grows only with the output size of the functions.

2 Our Techniques

In this section, we outline the main techniques and tools used in the construction
of adaptively secure garbled circuits.

Adaptive Security Game. Before explaining our construction, let us first
explain the adaptive security game in a bit more detail. In this game, the adver-
sary provides the challenger with a circuit C and the challenger responds with
a garbled circuit ˜C. The adversary later provides with an input x (that could
potentially depend on ˜C) and the challenger responds with garbled input x̃. In
the real world, both the garbled circuit and the garbled input are generated hon-
estly whereas in the ideal world, the garbled circuit ˜C is generated by a simulator
Sim1 that is given the size of C as input and the garbled input x̃ is generated by
another simulator Sim2 that is given C(x) as input. The goal of the adversary is
to distinguish between the real world and the ideal world distributions.

The reason why the proof of Yao’s construction breaks down in the adaptive
setting is because the distribution of the garbled circuit ˜C in the intermediate
hybrids depends on the value of the (adversarily chosen) input x. Naturally,
Yao’s approach is not feasible when the garbled circuit needs to be sent before
the adversary gives its input x.

Prior Approaches. To solve the issue with Yao’s construction, Bellare et al.
[BHR12b] encrypted the garbled circuit by an (fully) equivocal encryption
scheme and sent the ciphertext in the offline phase. Later, in the online phase,

538 S. Garg and A. Srinivasan

the key for decrypting this ciphertext was provided. Since an equivocal cipher-
text can be opened to any value, the simulator in each intermediate hybrid opens
the ciphertext sent in the offline phase to an appropriate simulated value (that
depends on C and x). However, the key size for an equivocal encryption scheme
in the standard model has to grow with the size of the message [Nie02] and in
this case it grows with the size of the circuit. Thus, the online complexity of this
approach has to grow with the size of the circuit.

The work of Hemenway, Jafargholi, Ostrovsky, Scafuro and Wichs [HJO+16]
improved the online complexity by replacing the fully equivocal encryption
scheme with a somewhere equivocal encryption. Roughly speaking, a somewhere
equivocal encryption allows to generate a ciphertext encrypting a vector of mes-
sages with “holes” in some positions. Later, these “holes” could be filled with
arbitrary message values by deriving a suitable decryption key. Intuitively, in
each intermediate hybrid, “holes” are created in the garbled circuit in those
positions that depend on the input and the simulator fills these “holes” in the
online phase based on the input x. The crucial aspect of a somewhere equivocal
encryption is that its key size is only proportional to number of holes which
could be much smaller than the total length of the message vector. Thus to
minimize the online complexity, it is sufficient to come up with a sequence of
hybrids where the number of holes in each intermediate hybrid is minimized.
Hemenway et al. provide two sequences of hybrid arguments: the first sequence
where the number of “holes” in each hybrid is at most the width of the circuit
and the second sequence of hybrids where the number of “holes” in each hybrid
is at most the depth (with 2O(depth) hybrids). However, even in this approach
the online complexity could be as large as the circuit size as the circuit width or
depth could be as large as the circuit itself.

Our approach. We follow the high level idea of Hemenway et al. [HJO+16]
in encrypting the garbled circuit using a somewhere equivocal encryption but
employ a crucial trick to minimize the number of “holes” in each intermedi-
ate hybrid. At a very high level, we use the recent construction of updatable
laconic oblivious transfer [CDG+17,DG17,DGHM18,BLSV18] (which can be
constructed based either on CDH/Factoring/LWE) to “linearize” the garbled
circuit. Informally, a garbled circuit is “linearized” if the simulation of a garbled
gate g depends only on simulating one additional gate. We note that all the
prior approaches [HJO+16,JW16] resulted in “non-linearized” garbled circuits.
In particular, in all the prior works, simulating the garbled gate g depended on
simulating all gates that provide inputs to g (which are at least two in number).
With this “linearization” in place, we design a sequence of hybrids (based on the
pebbling strategy of [Ben89]) where the number of “holes” in each intermediate
hybrid is O(log(|C|)). This allows us to achieve nearly optimal online complexity.
We elaborate on our approach in the next subsection.

Adaptively Secure Garbling with Near Optimal Online Complexity 539

2.1 Our Approach: “Linearizing” the Garbled Circuit

We now explain our construction of “linearized” garbled circuits.

Step Circuits. To understand our construction, it is best to view the circuit C
as a sequence of step circuits. In more details, we will consider C as a sequence
of step circuits along with a database/memory D. For simplicity, we consider a
circuit with a single output bit. The i-th step circuit implements the i-th gate
(with some topological ordering of the gates) in the circuit C. The database D is
initially loaded with the input x and contents of the database represent the state
of the computation. That is, the snapshot of the database before the evaluation
of the i-th step circuit contains the output of every gate g < i in the execution
of C on input x. The i-th step circuit reads contents from two pre-determined
locations in the database and writes a bit to location i. The bits that are read
correspond to the values in the input wires for the i-th gate. The output of
the circuit is easily derived from the contents of the database at the end of the
computation. To garble the circuit C, we must garble each of the step circuits
and the database D.

Garbling Step Circuits. Our approach of garbling the step circuits involves
a primitive called as updatable laconic oblivious transfer [CDG+17]. To make
the exposition easy, we first consider a simplistic setting where the database D
is not protected i.e., it is revealed in the clear to the adversary. We will later
explain how this restriction can be removed.

A laconic oblivious transfer is a protocol between two parties: sender and
a receiver. The receiver holds a large database D ∈ {0, 1}N and sends a short
digest d (with length λ) of the database to the sender. The sender obtains as
input a location L ∈ [N] and two messages m0,m1. The sender computes a
read-ciphertext c using his private inputs and the received digest d by running
in time poly(log N, |m0|, |m1|, λ) and sends c to the receiver. Note that the time
required to compute the read-ciphertext c grows logarithmically with the size
of the database. The receiver recovers the message mD[L] from the ciphertext
c and the security requirement is that the message m1−D[L] is computationally
hidden. A laconic oblivious transfer is said to be updatable if it additionally
allows updates on the database. In particular, the sender on input a location
L ∈ [N], a bit b, digest d and a sequence of λ messages {mj,0,mj,1}j∈[λ] creates
a write-ciphertext cw (by running in time that grows logarithmically with the
size of the database). The receiver on input cw can recover {mj,d∗

j
}j∈[λ] where

d∗ is the digest of the updated database with bit b written in location L. As
in the previous case, the security requires that the messages {mj,1−d∗

j
}j∈[λ] are

computationally hidden. An updatable laconic oblivious transfer was first con-
structed in [CDG+17] from the Decisional Diffie-Hellman (DDH) problem and
the assumptions were later improved to CDH/Factoring in [DG17] and to LWE
in [DGHM18,BLSV18].

Let us now give details on how to use updatable laconic OT to garble the cir-
cuit C. At a very high level, the garbled circuit consists of a sequence of garbled
augmented step circuits ˜SC

′
1, . . . ,

˜SC
′
N and the garbled input consists of the labels

540 S. Garg and A. Srinivasan

for executing the first garbled step circuit ˜SC
′
1. These garbled step circuits are con-

structed in special way such that the output of the garbled step circuit ˜SC
′
i can be

used to derive the labels for executing the next garbled step circuit ˜SC
′
i+1. Thus,

starting from ˜SC
′
1, we can evaluate every garbled step circuit in the sequence. Let

us now give details on the internals of the augmented step circuits.
The i-th augmented step circuit SC′

i takes as input the digest d of the snap-
shot of database D before the evaluation of i-th gate and two bits αi and βi.
The bits αi and βi correspond to the inputs to gate i in the evaluation of C.
The augmented step circuit SC′

i additionally has the set of both labels for each
input wire of ˜SC

′
i+1 hardwired in its description. We denote these labels by

{labdj,0, labdj,1}j∈[λ] that correspond to the digest and {labα
0 , labα

1 } and {labβ
0 , labβ

1}
that correspond to the input bits of gate i + 1. SC′

i first computes the output
of the i-th gate (denoted by γ) using αi and βi. This bit must be written to
the database and the updated hash value must be fed to the next circuit SC′

i+1.
Towards this goal, SC′

i computes a write-ciphertext cw using the digest d, loca-
tion i, bit γ and {labdj,0, labdj,1}j∈[λ]. This write-ciphertext will be used to derive
the labels corresponding to the updated value of the digest which is fed to SC′

i+1.
Recall that SC′

i+1 must also take in the input values to the (i + 1)th gate of the
circuit C. For this purpose, SC′

i also computes two read ciphertexts cα, cβ using
the value of the (updated) digest d∗ and labels {labα

0 , labα
1 } and {labβ

0 , labβ
1}

respectively. These read ciphertexts will be used to derive the labels correspond-
ing to the values of the input wires to the gate i+1. It finally outputs cw, cα, cβ .
An evaluator for this garbled circuit can recover the set of labels for evaluating
˜SC

′
i+1 from these ciphertexts using the decryption functionality of updatable

laconic OT.
Notice that in order to simulate the garbled step-circuit ˜SC

′
i, it is sufficient to

simulate the garbled step-circuit ˜SC
′
i−1. This is because the labels for evaluating

˜SCi are only hardwired in the step-circuit SC′
i−1 and are not available anywhere

else. Once the garbled step circuit ˜SC
′
i−1 is simulated, we can use the security

of updatable laconic oblivious transfer and (plain) garbled circuits to simulate
˜SC

′
i. This helps us to achieve the right “linearized” structure for simulating the

garbled step circuits.

Protecting the Database. In the above exposition, the database D is revealed
in the clear which is clearly insecure as database holds the values of all the
intermediate wires in the evaluation of the circuit. To protect the database, we
mask the contents of the database with a random string. To be more precise,
each step circuit additionally has the masking bits for the two input wires and
the masking bit for the output wire hardwired. When the step circuit is fed
with the masked values of the input wires, it unmasks those values (using the
hardwired masking bits) and computes the output of the gate. Finally, it uses
the hardwired masking bit for the output wire to mask the output and uses this
value to compute the updated digest. This trick of protecting the intermediate

Adaptively Secure Garbling with Near Optimal Online Complexity 541

computation values using random masks is closely related to the “point and
permute” construction of garbled circuits [BMR90,MNPS04].

Pebbling Game. As in the work of [HJO+16], we encrypt these garbled step
circuits {˜SC

′
i} using a somewhere equivocal encryption scheme and send the

ciphertext in the offline phase. Later in the online phase, we reveal the key for
decrypting this ciphertext along with the labels for evaluating ˜SC

′
1. The task

that remains is to come up with a sequence of hybrids such that the number of
“holes” in each intermediate hybrid is minimized. Recall that a “hole” appears
in a position that depends on the adaptively chosen input. To design a sequence
of hybrids, we consider the following pebbling game.2

Consider a number line 1, 2, . . . , N . We are given some pebbles and we can
place a pebble on the number line according the following rules:

– We can always place or remove a pebble from position 1.
– We can place or remove a pebble from position i if and only if there exists a

pebble in position i − 1.

The goal is to be place at position N by minimizing the number of pebbles
(denoted as the pebbling complexity) present in the graph at any point of time.
A trivial strategy would be to consecutively place pebbles starting from position
1 upto N . The maximum number of pebbles used is N and the hope is to have
a strategy that uses far less pebbles.

Intuitively, a pebble in the above game corresponds to a “hole” in the some-
where equivocal ciphertext. Alternatively, we can view the process of placing a
pebble in position i as simulating the i-th garbled circuit.3 The above two rules
naturally correspond to rules for simulating a garbled step circuit i.e., the first
garbled step circuit can always be simulated and we can simulate the i-th garbled
step circuit if the (i − 1)-th garbled step circuit is simulated. Bennett [Ben89]
showed an inductive pebbling strategy for the above game using O(log N) peb-
bles. This readily gives a sequence of hybrids to prove adaptive security where
the number of “holes” in each intermediate hybrid is logarithmic in the size of
the circuit. This helps us achieve nearly optimal online complexity.

Why is “linearization” important? The work of Hemenway et al. consider
a pebbling game directly on the topology of the circuit rather than on a line
graph. In more details, they interpreted the circuit C as a DAG with every gate
in C being a node in the graph, the input gates represented as sources in the

2 The pebble game we describe is a simplification of the actual pebbling game we
design later. This simplification is sufficient to get the main intuition.

3 These two views are equivalent since simulation of a garbled step circuit depends
on the output of that step circuit which in turn depends on the adversarily chosen
input x. Thus, if a garbled step circuit is simulated we must have a “hole” in the
corresponding position of the somewhere equivocal encryption.

542 S. Garg and A. Srinivasan

graph (nodes with in-degree 0) and output gate represented as sink (node with
out-degree 0). The rules of the pebbling game are 4:

1. A pebble can always be placed or removed from a source.
2. A pebble can be placed or removed from a node if all its predecessors have

pebbles.

The goal is to place a pebble at the sink node by minimizing the number of
pebbles placed in the graph at any point of time. Note that unlike our game, in
order to place a pebble at a node it is required that pebbles are present on all
the predecessors which are at least two in number. This makes the task of using
logarithmic many pebbles extremely difficult and there are strong lower bounds
[PTC76] concerning the pebbling complexity of the above game. In particular,
the work of [PTC76] shows that existence of certain families of DAGs on n nodes
(with in-degree 2 and out-degree more than 1) such that the pebbling complexity
of those graphs is Ω(n

log n). This naturally corresponds to similar lower bounds
on the pebbling complexity of circuits with fan-in 2 and fan-out greater than
1. Thus, to get around these lower bounds, the use of the “linearized” garbled
circuit seems necessary.

Why Garbled RAM fails? To garble the step circuits and the database D,
we could hope to use ideas from the garbled RAM literature [LO13,GHL+14,
GLOS15,GLO15].5 This would have given us a garbling scheme based on just
one-way functions instead of requiring public-key assumptions. However, all
known approaches of constructing garbled RAM introduce additional depen-
dencies in garbling step circuits. This implies that in order to garble a particular
step circuit, at least two other step circuits must be garbled. Thus, the graph to
be pebbled is no longer a straight line and the known lower bounds apply.

3 Preliminaries

Let λ denote the security parameter. A function μ(·) : N → R
+ is said to be

negligible if for any polynomial poly(·) there exists λ0 ∈ N such that for all λ > λ0

we have μ(λ) < 1
poly(λ) . For a probabilistic algorithm A, we denote A(x; r) to

be the output of A on input x with the content of the random tape being r.
When r is omitted, A(x) denotes a distribution. For a finite set S, we denote
x ← S as the process of sampling x uniformly from the set S. We will use PPT
to denote Probabilistic Polynomial Time. We denote [a] to be the set {1, . . . , a}
and [a, b] to be the set {a, a + 1, . . . , b} for a ≤ b and a, b ∈ Z. For a binary
string x ∈ {0, 1}n, we will denote the ith bit of x by xi. We assume without
loss of generality that the length of the random tape used by all cryptographic
algorithms is λ. We will use negl(·) to denote an unspecified negligible function
and poly(·) to denote an unspecified polynomial function.
4 For the sake of exposition, we give a simplified version of the pebbling game con-

sidered in the work of [HJO+16]. We refer the reader to their work for the full
description.

5 We in fact do not require the full power of garbled RAM as the locations that are
accessed by each step circuit are fixed a priori.

Adaptively Secure Garbling with Near Optimal Online Complexity 543

3.1 Garbled Circuits

Below we recall the definition of garbling scheme for circuits [Yao82] with selec-
tive security (see Lindell and Pinkas [LP09] and Bellare et al. [BHR12b] for a
detailed proof and further discussion). A garbling scheme for circuits is a tuple
of PPT algorithms (GarbleCkt,EvalCkt). Very roughly, GarbleCkt is the circuit
garbling procedure and EvalCkt the corresponding evaluation procedure. We use
a formulation where input labels for a garbled circuit are provided as input to
the garbling procedure rather than generated as output. (This simplifies the
presentation of our construction.) More formally:

– ˜C ← GarbleCkt
(

1λ, C, {labw,b}w∈[n],b∈{0,1}
)

: GarbleCkt takes as input a secu-
rity parameter λ, a circuit C, and input labels labw,b where w ∈ [n] ([n] is the
set of input wires to the circuit C) and b ∈ {0, 1}. This procedure outputs
a garbled circuit ˜C. We assume that for each w, b, labw,b is chosen uniformly
from {0, 1}λ.

– y ← EvalCkt
(

˜C, {labw,xw
}w∈[n]

)

: Given a garbled circuit ˜C and a sequence of
input labels {labw,xw

}w∈[n] (referred to as the garbled input), EvalCkt outputs
a string y.

Correctness. For correctness, we require that for any circuit C, input x ∈
{0, 1}|[n]| and input labels {labw,b}w∈[n],b∈{0,1} we have that:

Pr
[

C(x) = EvalCkt
(

˜C, {labw,xw
}w∈[n]

)]

= 1

where ˜C ← GarbleCkt
(

1λ, C, {labw,b}w∈[n],b∈{0,1}
)

.

Selective Security. For security, we require that there exists a PPT simulator
SimCkt such that for any circuit C and input x ∈ {0, 1}|[n]|, we have that

{
C̃, {labw,xw}w∈[n]

}
c≈

{
SimCkt

(
1λ, 1|C|, C(x), {labw,xw}w∈[n]

)
, {labw,xw}w∈[n]

}

where ˜C ← GarbleCkt
(

1λ, C, {labw,b}w∈[n],b∈{0,1}
)

and for each w ∈ [n] and

b ∈ {0, 1} we have labw,b ← {0, 1}λ. Here
c≈ denotes that the two distributions

are computationally indistinguishable.

Theorem 2 ([Yao86,LP09]). Assuming the existence of one-way functions,
there exists a construction of garbling scheme for circuits.

3.2 Updatable Laconic Oblivious Transfer

In this subsection, we recall the definition of updatable laconic oblivious transfer
from [CDG+17].

544 S. Garg and A. Srinivasan

Definition 1 ([CDG+17]). An updatable laconic oblivious transfer consists of
the following algorithms:

– crs ← crsGen(1λ) : It takes as input the security parameter 1λ (encoded in
unary) and outputs a common reference string crs.

– (d, ̂D) ← Hash(crs,D) : It takes as input the common reference string crs

and database D ∈ {0, 1}∗ as input and outputs a digest d and a state ̂D. We
assume that the state ̂D also includes the database D.

– e ← Send(crs, d, L,m0,m1) : It takes as input the common reference string
crs, a digest d, a location L ∈ N and two messages m0,m1 ∈ {0, 1}p(λ) and
outputs a ciphertext e.

– m ← Receive
̂D(crs, e, L) : This is a RAM algorithm with random read access

to ̂D. It takes as input a common reference string crs, a ciphertext e, and a
database location L ∈ N and outputs a message m.

– ew ← SendWrite(crs, d, L, b, {mj,0,mj,1}|d|
j=1) : It takes as input the common

reference string crs, a digest d, a location L ∈ N, a bit b ∈ {0, 1} to be written,
and |d| pairs of messages {mj,0,mj,1}|d|

j=1, where each mj,c is of length p(λ)
and outputs a ciphertext ew.

– {mj}|d|
j=1 ← ReceiveWrite

̂D(crs, L, b, ew) : This is a RAM algorithm with ran-
dom read/write access to ̂D. It takes as input the common reference string
crs, a location L, a bit b ∈ {0, 1} and a ciphertext ew. It updates the state ̂D

(such that D[L] = b) and outputs messages {mj}|d|
j=1.

We require anupdatable laconic oblivious transfer to satisfy the following properties.

Correctness: We require that for any database D of size at most M = poly(λ),
any memory location L ∈ [M], any pair of messages (m0,m1) ∈ {0, 1}p(λ)

where p(·) is a polynomial that

Pr

⎡

⎢

⎢

⎣

m = mD[L]

crs ← crsGen(1λ)
(d, ̂D) ← Hash(crs,D)

e ← Send(crs, d, L,m0,m1)
m ← Receive

̂D(crs, e, L)

⎤

⎥

⎥

⎦

= 1,

Correctness of Writes: Let database D be of size at most M = poly(λ) and
let L ∈ [M] be any memory location. Let D∗ be a database that is identical to
D except that D∗[L] = b. For any sequence of messages {mj,0,mj,1}j∈[λ] ∈
{0, 1}p(λ) we require that

Pr

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

m′
j = mj,d∗

j

∀j ∈ [|d|]

crs ← crsGen(1λ)
(d, ̂D) ← Hash(crs,D)

(d∗, ̂D∗) ← Hash(crs,D∗)
ew ← SendWrite

(

crs, d, L, b, {mj,0,mj,1}|d|
j=1

)

{m′
j}|d|

j=1 ← ReceiveWrite
̂D(crs, L, b, ew)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= 1,

Adaptively Secure Garbling with Near Optimal Online Complexity 545

Sender Privacy: There exists a PPT simulator Sim�OT such that the for any
non-uniform PPT adversary A = (A1,A2) there exists a negligible function
negl(·) s.t.,
∣

∣ Pr[SenPrivExptreal(1λ,A) = 1] − Pr[SenPrivExptideal(1λ,A) = 1]
∣

∣ ≤ negl(λ)

where SenPrivExptreal and SenPrivExptideal are described in Fig. 1.
Sender Privacy for Writes: There exists a PPT simulator Sim�OTW such

that the for any non-uniform PPT adversary A = (A1,A2) there exists a
negligible function negl(·) s.t.,
∣∣ Pr[WriSenPrivExptreal(1λ, A) = 1] − Pr[WriSenPrivExptideal(1λ, A) = 1]

∣∣ ≤ negl(λ)

where WriSenPrivExptreal and WriSenPrivExptideal are described in Fig. 2.
Efficiency: The algorithm Hash runs in time |D|poly(log |D|, λ). The algorithms

Send, SendWrite, Receive, ReceiveWrite run in time poly(log |D|, λ).

SenPrivExptreal[1λ, A]

1. crs ← crsGen(1λ).
2. (D, L, m0, m1, st) ← A1(crs).
3. (d, D̂) ← Hash(crs, D).
4. Output

A2(st, Send(crs, d, L, m0, m1)).

SenPrivExptideal[1λ, A]

1. crs ← crsGen(1λ).
2. (D, L, m0, m1, st) ← A1(crs).
3. (d, D̂) ← Hash(crs, D).
4. Output A2(st, Sim�OT(crs, D, L, mD[L])).

Fig. 1. Sender privacy security game

Theorem 3 ([CDG+17,DG17,BLSV18,DGHM18]). Assuming either the Com-
putational Diffie-Hellman assumption or the Factoring assumption or the Learning
with Errors assumption, there exists a construction of updatable laconic oblivious
transfer.

Remark 1. We note that the security requirements given in Definition 1 is
stronger than the one in [CDG+17] as we require the crs to be generated before
the adversary provides the database D and the location L. However, the con-
struction in [CDG+17] already satisfies this definition since in the proof, we can
guess the location by incurring a 1/D loss in the security reduction.

546 S. Garg and A. Srinivasan

WriSenPrivExptreal[1λ, A]

1. crs ← crsGen(1λ).
2. (D, L, b, {mj,0, mj,1}j∈[λ], st) ←

A1(crs).
3. (d, D̂) ← Hash(crs, D).

4. ew ← SendWrite(crs, d, L, b,

{mj,0, mj,1}|d|
j=1)

5. Output A2(st, ew).

WriSenPrivExptideal[1λ, A]

1. crs ← crsGen(1λ).
2. (D, L, b, {mj,0, mj,1}j∈[λ], st) ←

A1(crs).
3. (d, D̂) ← Hash(crs, D).
4. (d∗, D̂∗) ← Hash(crs, D∗) where D∗

be a database that is identical to D
except that D∗[L] = b.

5. ew ← Sim�OTW(crs, D, L, b,
{mj,d∗

j
}j∈[λ])

6. Output A2(st, ew).

Fig. 2. Sender privacy for writes security game

3.3 Somewhere Equivocal Encryption

We now recall the definition of Somewhere Equivocal Encryption from the work
of [HJO+16].

Definition 2 ([HJO+16]). A somewhere equivocal encryption scheme with
block-length s, message length n (in blocks) and equivocation parameter t (all
polynomials in the security parameter) is a tuple of probabilistic polynomial algo-
rithms Π = (KeyGen,Enc,Dec,SimEnc,SimKey) such that:

– key ← KeyGen(1λ) : It is a PPT algorithm that takes as input the security
parameter (encoded in unary) and outputs a key key.

– c ← Enc(key,m1 . . . mn) : It is a PPT algorithm that takes as input a key key
and a vector of messages m = m1 . . . mn with each mi ∈ {0, 1}s and outputs
a ciphertext c.

– m ← Dec(key, c) : It is a deterministic algorithm that takes as input a key key
and a ciphertext c and outputs a vector of messages m = m1 . . .mn.

– (st, c) ← SimEnc((mi)i/∈I , I) : It is a PPT algorithm that takes as input a set
of indices I ⊆ [n] and a vector of messages (mi)i/∈I and outputs a ciphertext
c and a state st.

– key′ ← SimKey(st, (mi)i∈I) : It is a PPT algorithm that takes as input the
state information st and a vector of messages (mi)i∈I and outputs a key key′.

and satisfies the following properties:

Correctness. For every key ← KeyGen(1λ), for every m ∈ {0, 1}s×n it holds that:

Dec(key,Enc(key,m)) = m

Simulation with No Holes. We require that the distribution of (c, key) com-
puted via (st, c) ← SimEnc(m, ∅) and key ← SimKey(st, ∅) to be identical to

Adaptively Secure Garbling with Near Optimal Online Complexity 547

key ← KeyGen(1λ) and c ← Enc(key,m1 . . . mn). In other words, simulation
when there are no holes (i.e., I = ∅) is identical to honest key generation and
encryption.

Security. For any PPT adversary A, there exists a negligible function ν = ν(λ)
such that:

∣

∣ Pr[Expsimenc
A,Π (1λ, 0) = 1] − Pr[Expsimenc

A,Π (1λ, 1) = 1]
∣

∣ ≤ ν(λ)

where the experiment Expsimenc
A,Π is defined as follows:

Experiment Expsimenc
A,Π

1. The adversary A on input 1λ outputs a set I ⊆ [n] s.t. |I| < t, a vector
(mi)i�∈I , and a challenge j ∈ [n] \ I. Let I ′ = I ∪ {j}.

2. – If b = 0, compute c as follows: (st, c) ← SimEnc((mi)i�∈I , I).
– If b = 1, compute c as follows: (st, c) ← SimEnc((mi)i�∈I′ , I ′).

3. Send c to the adversary A.
4. The adversary A outputs the set of remaining messages (mi)i∈I .

– If b = 0, compute key as follows: key ← SimKey(st, (mi)i∈I).
– If b = 1, compute key as follows: key ← SimKey(st, (mi)i∈I′)

5. Send key to the adversary.
6. A outputs b′ which is the output of the experiment.

Theorem 4 ([HJO+16]). Assuming the existence of one-way functions, there
exists a somewhere equivocal encryption scheme for any polynomial message-
length n, black-length s and equivocation parameter t, having key size t·s·poly(λ)
and ciphertext of size n · s · poly(λ) bits.

3.4 Adaptive Garbled Circuits

We provide the definition of adaptive garbled circuits from [HJO+16].

Definition 3. An adaptive garbling scheme for circuits is a tuple of PPT algo-
rithms (AdaGarbleCkt,AdaGarbleInp,AdpEvalCkt) such that:

– (˜C, st) ← AdaGarbleCkt(1λ, C) : It is a PPT algorithm that takes as input the
security parameter 1λ (encoded in unary) and a circuit C : {0, 1}n → {0, 1}m

as input and outputs a garbled circuit ˜C and state information st.
– x̃ ← AdaGarbleInp(st, x) : It is a PPT algorithm that takes as input the state

information st and an input x ∈ {0, 1}n and outputs the garbled input x̃.
– y = AdpEvalCkt(˜C, x̃) : Given a garbled circuit ˜C and a garbled input x̃, it

outputs a value y ∈ {0, 1}m.

Correctness. For every λ ∈ N, C : {0, 1}n → {0, 1}m and x ∈ {0, 1}n it holds
that:

Pr
[
(C̃, st) ← AdaGarbleCkt(1λ, C); x̃ ← AdaGarbleInp(st, x) : C(x) = AdpEvalCkt(C̃, x̃)

]
= 1

548 S. Garg and A. Srinivasan

Adaptive Security. There exists a PPT simulator Sim = (SimC,SimIn) such
that, for any non-uniform PPT adversary A there exists a negligible function ν
such that:

∣

∣Pr[ExpadaptiveA,GC,Sim(1λ, 0) = 1] − Pr[ExpadaptiveA,GC,Sim(1λ, 1) = 1]
∣

∣ ≤ ν(λ)

where the experiment ExpadaptiveA,GC,Sim is defined as follows:

1. The adversary specifies the circuit C and obtains ˜C where ˜C is created as
follows:
– If b = 0: (˜C, st) ← AdaGarbleCkt(1λ, C).
– If b = 1: (˜C, st) ← SimC(1λ, 1|C|).

2. The adversary A specifies the input x and gets x̃ created as follows:
– If b = 0, x̃ ← AdaGarbleInp(st, x).
– If b = 1, x̃ ← SimIn(st, C(x))

3. Finally, the adversary outputs a bit b′, which is the output of the experiment.

Online Complexity. The running time of AdaGarbleInp is called as the
online computational complexity and |x̃| is called as the online communication
complexity.

4 Our Construction

In this section, we provide our construction of adaptive garbled circuits. The
main theorem is:

Theorem 5. Assuming the existence of updatable laconic oblivious transfer,
somewhere equivocal encryption and garbling scheme for circuits with selective
security, there exists a construction of adaptive garbling scheme for circuits. The
online communication complexity of our scheme is n + m + poly(λ, log |C|) and
the online computational complexity is O(n + m + poly(λ, log |C|)).
From Theorems 2, 3, 4 we obtain the following corollary:

Corollary 1. Assuming either the Computational Diffie-Hellman assumption
or the Factoring assumption or the Learning with Errors assumption, there exists
a construction of adaptive garbling scheme for circuits with online communica-
tion complexity of n + m + poly(λ, log |C|) and online computational complexity
of O(n + m + poly(λ, log |C|)).

We start with some notation on how we denote circuits. We choose this
notation to simplify the description of our construction. In the rest of the paper,
whenever we mention a circuit C, we implicitly mean the universal circuit U [C]
with the circuit C hardwired in it. This is done so that the topology of the circuit
U [C] does not reveal anything about C except its size.

Adaptively Secure Garbling with Near Optimal Online Complexity 549

AdaGarbleCkt(1λ, C): On input a circuit C : {0, 1}n → {0, 1}m do:
1. Sample crs ← crsGen(1λ), key ← KeyGen(1λ) and r ← {0, 1}N .
2. For each g ∈ [n+1, N +1], k ∈ [λ] and b ∈ {0, 1} sample labg

k,b ← {0, 1}λ.
(We use {labg

k,b} to denote {labg
k,b}k∈[λ],b∈{0,1}.)

3. for each g from N down to n + 1 do:
(a) Let (i, j) be the description of the gate g.
(b) Compute (where the step-circuit SC is described in Figure 4)

S̃Cg ← GarbleCkt
(
1λ, SC[crs, (ri, rj , rg), (i, j), {labg+1

k,b }, 0], {labg
k,b}

)
.

4. Compute c ← Enc(key, {S̃Cg}g∈[n+1,N]).
5. Output C̃ := (crs, c) and st := (r, key, {labn+1

k,b }).
AdaGarbleInp(st, x) : On input the state st and a string x ∈ {0, 1}n do:

1. Parse st as (r, key, {labn+1
k,b })

2. Set D := r1 ⊕x1‖ . . . ‖rn ⊕xn‖0N−n and compute (d, D̂) := Hash(crs, D).
3. Output x̃ :=

(
{labn+1

k,dk
}k∈[λ], r1 ⊕ x1‖ . . . ‖rn ⊕ xn, key, rN−m+1, . . . , rN

)
.

AdpEvalCkt(C̃, x̃) : On input garbled circuit C̃, and garbled input x̃ do:
1. Parse C̃ as (crs, c) and x̃ as ({labk}k∈[λ], s1, . . . , sn, key, rN−m+1, . . . rN).
2. Set D := s1‖ . . . ‖sn‖0N−n and compute (d, D̂) := Hash(crs, D).
3. Compute {S̃Cg}g∈[n+1,N] := Dec(key, c).
4. Set lab := {labk}k∈[λ].
5. for each g from n + 1 to N do:

(a) Let (i, j) be the description of gate g.
(b) Compute (γ, e) := Receive

̂D(crs,Receive ̂D(crs,EvalCkt(S̃Cg, lab), i), j).
(c) Set lab := ReceiveWrite

̂D(crs, g, γ, e).
6. Recover the contents of the memory D from the final state D̂.
7. Output DN−m+1 ⊕ rN−m+1‖ . . . ‖Dm ⊕ rN .

Fig. 3. Adaptive garbling scheme for circuits

Notation. We model a circuit C : {0, 1}n → {0, 1}m as a set of N − n NAND
gates, each having fan-in 2. We number the gates of the circuit as follows. The
input gates are given the numbers {1, . . . , n}. The intermediate gates are num-
bered {n + 1, n + 2, . . . , N − m} such that a gate that receives its input from
gates i and j is given a number greater than i and j. The output gates are
numbered {N − m + 1, . . . , N}. Each gate g ∈ [n + 1, N] is described by a tuple
(i, j) ∈ [g − 1]2 where outputs of gates i and j serves as inputs to gate g.

Construction. Let (crsGen,Hash,Send,Receive,SendWrite,ReceiveWrite) be an
updatable laconic oblivious transfer scheme, and (GarbleCkt,EvalCkt) be a garbling
scheme for circuits. Moreover, let (KeyGen,Enc,Dec,SimEnc,SimKey) be a some-
where equivocal encryption with the block-length s = |˜SC| (where ˜SC denotes a
garbled version of the step-circuit SC defined in Fig. 4), the message-length equal
to N − n and the equivocation parameter t = log N (the choice of t comes from
the security proof).

550 S. Garg and A. Srinivasan

Step Circuit SC

Input: A digest d.
Hardcoded: The common reference string crs, a triplet of masking bits (ri, rj , rg),
a description (i, j) of gate g, a set of labels {labk,b} and a bit τ (τ = 1 case is only
relevant for the proof).

1. Compute eb ← SendWrite(crs, d, g, b, {labk,0, labk,1}k∈[λ]) for b ∈ {0, 1}.

2. Define for all α, β ∈ {0, 1}, γ(α, β) :=

{
NAND(α ⊕ ri, β ⊕ rj) ⊕ rg if τ = 0
rg if τ = 1

3. Generate

f0 ← Send crs, d, j, (γ(0, 0), eγ(0,0)), (γ(0, 1), eγ(0,1))
)
,

f1 ← Send crs, d, j, (γ(1, 0), eγ(1,0)), (γ(1, 1), eγ(1,1))
)
.

4. Output
Send (crs, d, i, f0, f1)

Fig. 4. Description of the step circuit

The formal description of our adaptive garbling scheme appears in Fig. 3.
In this construction a selective secure garbling scheme is used to garble a step
circuit SC repeatedly. This step circuit is described in Fig. 4. We now provide an
informal overview of this construction. At a high level, the adaptive garbling of
a circuit C simply consists of garbling of the N − n intermediate step circuits
using the standard selectively secure (Yao’s) garbling scheme. The entire N bit
state of the computation is stored in an external memory using laconic OT and
each step circuit accesses two bits in this memory. These garbled step circuits
are encrypted using a somewhere equivocal encryption scheme and the resulting
ciphertext is sent in the offline phase. Later in the online phase, the key for
decrypting this ciphertext is revealed. Note that in our description we use the
string r ∈ {0, 1}N as a one time pad to hide the state of the computation.

Communication Complexity of AdaGarbleInp. It follows from the construc-
tion that the communication complexity of AdaGarbleInp is λ2 + n + m + |key|.
From the parameters used in the somewhere equivocal encryption, we note that
|key| = |˜SC|poly(log N,λ). It follows from the efficiency properties of updatable
laconic oblivious transfer that |SC| is poly(log N,λ). Thus, |key| is poly(log N,λ).

Computational Complexity of AdaGarbleInp. The running time of
AdaGarbleInp described in Fig. 3 grows with the circuit size N . We note that
the running time can be made independent of the circuit size N by analyzing
the specific laconic OT construction of Cho et al. [CDG+17]. The construction
of Cho et al. uses a Merkle tree to hash a large database into a short digest.
Recall that Merkle hash is efficiently updatable. Specifically, let y and y′ be two

Adaptively Secure Garbling with Near Optimal Online Complexity 551

strings given as a sequence of blocks of λ bits and y, y′ differ in only the first k
blocks. Given the Merkle hash on y and a set of log |y| hash values, there is an
efficient procedure running in time O(λ(k + log |y|)) that computes the Merkle
hash on y′. We use this property to reduce the online computational complexity
of our construction.

Recall that in our construction, the contents of the database at the very
beginning of our computation needs to be set to ((r[1,n] ⊕ x)||0N−n) where x is
the n-bit input. However, note that the input x is specified in the online phase.
So the goal is to compute the hash of ((r[1,n] ⊕ x)||0N−n) in the online phase
efficiently. To do this, we compute the hash of 0N in the offline phase and store
the value of this hash along with the specific hash values for updating the first
�n/λ blocks. Once x is specified in the online phase, we use the stored value to
compute the hash on ((r[1,n] ⊕x)||0N−n) by performing the Merkle hash update.
The crucial point is that this update is efficient (i.e. grows only with |x|+log N).

Also, the algorithm AdaGarbleInp does not need the entire input r as
input. It suffices to provide the first n and the last m bits of r (i.e.,
{r1 . . . rn, rN−m+1 . . . rN} as input to AdaGarbleInp.

Correctness. Let Dg∗
be the contents of the database at the end of Step 5.(c) of

AdpEvalCkt in the g∗-th iteration of the for loop. We first argue via an inductive
argument that for each gate g∗ ∈ [1, N], Dg∗

g is the output of gate g masked with
rg for every g ∈ [1, g∗]. Given this, the correctness follows by setting g∗ := N and
observing that the {DN

k }k∈[N−m+1,N] is unmasked using r[N−m+1,N] in Step 7
of AdpEvalCkt.

The base case is g∗ = n which is clearly true since in the beginning Dn

is set as (r[1,n] ⊕ x||0N−n). In order to prove the inductive step for a gate g∗

(with description (i, j)), we now argue that that the γ recovered in Step 4.(b)
of AdpEvalCkt corresponds to NAND(Dg∗−1

i ⊕ ri,D
g∗−1
j ⊕ rj) ⊕ rg∗ which by

inductive hypothesis corresponds to output of the gate g∗ masked with rg∗ . This
is shown as follows.
(γ, e) := Receive

̂D
(crs,Receive

̂D
(crs, EvalCkt(˜SCg, lab), i), j)

= Receive
̂D
(crs,Receive

̂D
(crs, Send (crs, d, i, f0, f1) , i), j)

= Receive
̂D
(crs, f

D
g∗−1
i

, j)

= Receive
̂D

(

crs, Send

(

crs, d, j, (γ(D
g∗−1
i , 0), e

γ(D
g∗−1
i

,0)
), (γ(D

g∗−1
i , 1), e

γ(D
g∗−1
i

,1)
)

)

, j

)

=

(

γ(D
g∗−1
i , D

g∗−1
j), e

γ(D
g∗−1
i

,D
g∗−1
j

)

)

=

(

NAND(D
g∗−1
i ⊕ ri, D

g∗−1
j ⊕ rj) ⊕ rg∗ , e

NAND(D
g∗−1
i

⊕ri,D
g∗−1
j

⊕rj)⊕rg∗

)

5 Proof of Security

In this section, we prove that the construction presented in the previous section
satisfies adaptive security. In Subsect. 5.1, we start by defining circuit configura-
tions. Next, in Subsect. 5.2 we show that both the real and ideal world executions

552 S. Garg and A. Srinivasan

are special cases of this circuit configuration (this will also provide a formal descrip-
tion of our simulator). Finally, in the rest of the subsection we show that the real
and ideal world executions are indistinguishable. The indistinguishability argu-
ment proceeds by a sequence of hybrids over different configurations.

5.1 Circuit Configuration

Our proof of security proceeds via a hybrid argument over different circuit con-
figurations which we describe in this section. A circuit configuration denoted by
conf = (I, {(g,modeg)}g∈[n+1,N]) consists of a set I ⊆ [n + 1, N] and a set of
tuples (g,modeg) where for each gate g ∈ [n+1, N] modeg ∈ {White,Gray,Black}
describes the mode of operation of gate g.

The subset I denotes the set of indices in which there is a “hole” in the
outer encryption layer. At an intuitive level, the White mode corresponds to the
Real Garbling (as is done in the honest execution), the Gray mode corresponds
to the Input Dependent Simulation (where the step circuit for this gate is in
simulation but depends on the input), and the Black mode corresponds to the
Input Independent Simulation (where simulation is done independent of the
input). In other words, White mode matches the real execution, Black mode
matches the ideal execution and Gray mode is an intermediate execution mode.
Looking ahead, initially all the step circuit will be in White mode and the goal
will be to convert all of them to Black in the simulation. Note that we refer to
modes with color names as these modes will coincide with the pebbling game
that we later describe.

Valid configurations. We say that a configuration conf = (I, {(g,
modeg)}g∈[n+1,N]) is valid if and only if:

1. If modeg = Black then for every k > g, modek = Black.
2. If modeg = Gray then g ∈ I.

In other words, if gate g is in Black mode then we require that all the subsequent
gates are also in Black mode. Moreover, if a gate g is in the Gray mode then there
is a hole in positions g in the outer encryption layer.

Simulation in a valid configuration. In Fig. 5 we describe the simulated
circuit garbling SimC and the simulated input garbling SimIn functions for any
given valid configuration conf. Note that these simulated garbling functions take
as input the circuit C and x respective as inputs which the ideal world simulation
does not. We describe our simulator functions with these additional inputs so
that it captures simulation in all of our intermediate hybrids. We note that final
ideal world simulation does not uses these values.

Adaptively Secure Garbling with Near Optimal Online Complexity 553

5.2 Our Hybrids

For every valid circuit configuration conf = (I, {(g,modeg)}g∈[n+1,N]), we define
Hybridconf to be a distribution of ˜C and x̃ as given in Fig. 5. We start by
observing that both real world and ideal distribution from Definition 3 can
be seen as instance of Hybridconf where conf = (∅, {(g,White)}g∈[n+1,N]) and
conf = (∅, {(g,Black)}g∈[n+1,N]), respectively. In other words, the real world dis-
tribution corresponds to having all gates in White mode and the ideal world
distribution corresponds to having all gates in Black mode. The goal is to move
from the real world distribution to the ideal world distribution while minimizing
the maximum number of gates in the Gray mode in any intermediate hybrid.

5.2.1 Rules of Indistinguishability
We will now describe the two rules (we call these rule A and rule B) to move
from one valid circuit configuration conf to another valid configuration conf′

such that Hybridconf is computationally indistinguishable from Hybridconf′ .

Rule A: Very roughly, rule A says that for any valid configuration conf we
can indistinguishably change gate g∗ in White mode to Gray mode if it is
the first gate or if its predecessor is also in Gray mode. More formally, let
conf = (I, {(g,modeg)}g∈[n+1,N]) and conf ′ = (I ′, {(g,mode′

g)}g∈[n+1,N]) be
two valid circuit configurations and g∗ ∈ [n + 1, N] be a gate such that:

– For all g ∈ [n + 1, N] \ g∗ we have that modeg = mode′
g.

– g∗ �∈ I, I ′ = I∪{g∗}, and |I ′| ≤ t (where t is the equivocation parameter).
– Either g∗ = n + 1 or (g∗ − 1,Gray) ∈ conf.
– (g∗,White) ∈ conf and (g∗,Gray) ∈ conf ′.

In Lemma 3 we show that for an valid configurations conf, conf ′ satisfying
the above constraints we have that Hybridconf

c≈ Hybridconf′ . Note that we can
also use this rule to move a gate g∗ from Gray mode to White mode. We refer
to those invocations of the rule as inverse A rule.

Rule B: Very roughly, rule B says that for any configuration for any valid
configuration conf we can indistinguishably change gate g∗ in Gray mode to
Black mode if all gates subsequent to g∗ is in Black mode and the predecessor
is in Gray mode. More formally, let conf = (I, {(g,modeg)}g∈[n+1,N]) and
conf′ = (I ′, {(g,mode′

g)}g∈[n+1,N]) be two valid circuit configurations and
g∗ ∈ [n + 1, N] be a gate such that:

– For all g ∈ [n + 1, N] \ g∗ we have that modeg = mode′
g.

– g∗ ∈ I, I ′ = I \{g∗}, and |I| ≤ t (where t is the equivocation parameter).
– For all g ∈ [g∗ + 1, N] we have that (g,Black) ∈ conf.
– Either g∗ = n + 1 or (g∗ − 1,Gray) ∈ conf.
– (g∗,Gray) ∈ conf and (g∗,Black) ∈ conf ′.

In Lemma 4 we show that for an valid configurations conf, conf ′ satisfying the
above constraints we have that Hybridconf

c≈ Hybridconf′ .

554 S. Garg and A. Srinivasan

SimC(1λ, C): On input a circuit C : {0, 1}n → {0, 1}m do:

1. Sample crs ← crsGen(1λ) and r
$← {0, 1}N .

2. For each g ∈ [n+1, N +1], k ∈ [λ] and b ∈ {0, 1} sample labg
k,b ← {0, 1}λ.

(We use {labg
k,b} to denote {labg

k,b}k∈[λ],b∈{0,1}.)
3. for each g from N down to n + 1 such that g �∈ I do:

(a) Let (i, j) be the description of the gate g.
(b) If modeg = White then compute (where the step-circuit SC is de-

scribed in Figure 4)

S̃Cg ← GarbleCkt
(
1λ, SC[crs, (ri, rj , rg), (i, j), {labg+1

k,b }, 0], {labg
k,b}

)
.

(c) If modeg = Black then compute

S̃Cg ← GarbleCkt
(
1λ, SC[crs, (0, 0, rg), (i, j), {labg+1

k,b }, 1], {labg
k,b}

)
.

4. Compute (st1, c) ← SimEnc(I, {S̃Cg}g �∈I).
5. Output C̃ := (crs, c) and st := (r, st1, {labg

k,b}k,b,g).
SimIn(st, x, y): On input state st = (r, st1, {labg

k,b}k,b,g), a string x ∈ {0, 1}n, and
y ∈ {0, 1}m do:

Notation: For g ∈ [n + 1, N + 1] we let Dg be such that

Dg,w =

⎧⎪⎨⎪⎩
xw ⊕ rw w ≤ n,

Ew ⊕ rw n + 1 ≤ w < g,

0 otherwise,

where Ew is the bit assigned to wire w of the circuit C computed on input x.
Finally, we let dg be the digest of Dg (i.e., (dg, ·) := Hash(crs, Dg)) and dg,k

be the kth bit of dg.
1. for each g from N down to n + 1 such that g ∈ I:

(a) Set e ← Sim�OTW(crs, Dg, g, Dg+1,g, {labg+1
k,dg+1,k

}k∈[λ]).
(b) Set out ← Sim�OT (crs, Dg, i, Sim�OT (crs, Dg, j, e))
(c) Compute S̃Cg ← SimCkt

(
1λ, 1|SC|, out, {labg

k,dg,k
}k∈[λ]

)
.

2. Compute key ← SimKey(st1, {S̃Cg}g∈I).
3. for each g ∈ [N − m + 1, N] do:

(a) If modeg ∈ Black then set r′
g = rg ⊕ yw−N+m.

(b) Else, r′
g = rg.

4. Output x̃ :=
(
{labn+1

k,dn+1,k
}k∈[λ], r1 ⊕ x1‖ . . . ‖rn ⊕ xn,key, r ′

N−m+1 ,N . . . r ′
N

)
.

Fig. 5. Garbling in configuration conf = (I, {(h,modeh)}h∈[n+1,N]).

Adaptively Secure Garbling with Near Optimal Online Complexity 555

5.2.2 Interpreting the Rules of Indistinguishability as a Pebbling
Game

Our sequence of hybrids from the real to the ideal world follow an optimal strat-
egy for the following pebbling game. The two rules described above correspond
to the rules of our pebbling game below.

Consider the positive integer line n + 1, n + 2, . . . N . We are given pebbles of
two colors: gray and black. A black pebble corresponds to a gate in the Black
(i.e., input independent simulation) mode and a gray pebble corresponds to a
gate in the Gray (i.e., input dependent simulation) mode. A position without
any pebble corresponds to real garbling or in the White mode. We can place the
pebbles on this positive integer line according to the following two rules:

Rule A: We can place or remove a gray pebble in position i if and only if there
is a gray pebble in position i − 1. This restriction does not apply to position
n + 1: we can always place or remove a gray pebble at position n + 1.

Rule B: We can replace a gray pebble in position i with a black pebble as long
as all the positions > i have black pebbles and there is a gray pebble in
position i − 1 or if i = n + 1.

Optimization goal of the pebbling game. The goal is to pebble the line
[n + 1, N] such that every position has a black pebble while minimizing the
number of gray pebbles that are present on the line at any point in time.

5.2.3 Optimal Pebbling Strategy
To provide some intuition, we start with the näıve pebbling strategy. The näıve
pebbling strategy involves starting from position n+1 and placing a gray pebble
at every position in [n + 1, N] and then replacing them with black pebbles from
N to n + 1. However, this strategy uses a total of N − n gray pebbles. Using a
more clever strategy it is actually possible to do the same using only log(N −n)
gray pebbles. This is argued in the following lemmas.

Lemma 1. For any integer n + 1 ≤ p ≤ n + 2k − 1, it is possible to make
O((p−n)log2 3) ≈ O((p−n)1.585) moves and get a gray pebble at position p using
k gray pebbles.

Proof. This proof is taken verbatim from [GPSZ17]. First we observe to get a
gray pebble placed at p, for each i ∈ [n + 1, p − 1] there must have been at some
point a gray pebble placed at location i.

Next, we observe that it suffices to show we can get a gray pebble at position
p = n+2k − 1 for every k using O(3k) = O((p−n)log2 3) steps. Indeed, for more
general p, we run the protocol for p′ = n + 2k − 1 where k = �log2(p − n − 1),
but stop the first time we get a gray pebble at position p. Since p′/p ≤ 3, the
running time is at most O((p − n)log2 3).

Now for the algorithm. The sequence of steps will create a fractal pattern,
and we describe the steps recursively. We assume an algorithm Ak−1 using k −1
gray pebbles that can get a gray pebble at position n + 2k−1 − 1. The steps are
as follows:

556 S. Garg and A. Srinivasan

– Run Ak−1. There is now a gray pebble at position n + 2k−1 − 1 on the line.
– Place the remaining gray pebble at position n + 2k−1, which is allowed since

there is a gray pebble at position n + 2k−1 − 1.
– Run Ak−1 in reverse, recovering all of the k − 1 gray pebbles used by A. The

result is that there is a single gray pebble on the line at position n + 2k−1.
– Now associate the portion of the number line starting at n + 2k−1 + 1 with a

new number line. That is, associate n + 2k−1 + a on the original number line
with n′ +a (where n′ = n+2k−1) on the new number line. We now have k−1
gray pebbles, and on this new number line, all of the same rules apply. In
particular, we can always add or remove a gray pebble from the first position
n′ + 1 = n + 2k−1 + 1 since we have left a gray pebble at n + 2k−1. Therefore,
we can run Ak+1 once more on the new number line starting at n′+1. The end
result is a pebble at position n′+2k−1 − 1 = n+2k−1+(2k−1−1) = n+2k −1.

It remains to analyze the running time. The algorithm makes 3 recursive calls
to Ak−1, so by induction the overall running time is O(3k), as desired.

Using the above lemma, we now give an optimal strategy for our pebbling game.

Lemma 2. For any N ∈ N, there exists a strategy for pebbling the line graph
[n + 1, N] according to rules A and B by using at most log N gray pebbles and
making poly(N) moves.

Proof. The strategy is given below. For each g from N down to n + 1 do:

1. Use the strategy in Lemma 1 to place a gray pebble in position g. Note that
there exists a gray pebble in position g − 1 as well.

2. Replace the gray pebble in position g with a black pebble. This replacement
is allowed since all positions > g have black pebbles and there is a gray pebble
in position g − 1.

3. Recover all the gray pebbles by reversing the moves.

The correctness of this strategy follows by inspection and the number of moves
is polynomial in N .

5.2.4 Completing the Hybrids
Using the strategy given in Lemma 2 yields a sequence of configurations
conf0 . . . conf� for an appropriate polynomial 	 with conf0 and conf� being
the real and the ideal world distributions and for each i ∈ [] we have that
Hybridconfi−1

c≈ Hybridconfi either using rule A (i.e., Lemma 3) or using rule B
(i.e., Lemma 4). Finally note that the number of holes in the garbled circuit
needed is the maximum size of I over the sequence of hybrids (i.e. the maximum
number of gray pebbles used). Thus, it suffices to set the equivocation parameter
t for somewhere equivocal encryption scheme to log N . This completes the proof
of security.

Adaptively Secure Garbling with Near Optimal Online Complexity 557

5.3 Proof of Indistinguishability for the Rules

In this subsection, we will use the security of underlying primitives to implement
the two rules.

5.3.1 Implementing Rule A
Lemma 3 (Rule A). Let conf and conf ′ be two valid circuit configurations
satisfying the constraints of rule A, then assuming the security of somewhere
equivocal encryption, garbling scheme for circuits and updatable laconic oblivious
transfer, we have that Hybridconf

c≈ Hybridconf′ .

Proof. We prove this via a hybrid argument.

– Hybridconf : This is our starting hybrid and is distributed as
Hybrid(I,{(g,modeg)}g∈[n+1,N])

.
– Hybrid1 : In this hybrid, we change the configuration to (I ′, {(g,
modeg)}g∈[n+1,N]). This hybrid is distributed as Hybrid(I′,{(g,modeg)}g∈[n+1,N])

.
Computational indistinguishability between hybrid Hybridconf and Hybrid1

reduces directly to the security of somewhere equivocal encryption scheme.
We give a formal reduction in Appendix A

– Hybrid2 : By conditions of Rule A we have that modeg∗−1 = Gray. Thus, we

have that g∗ − 1 ∈ I ′. Therefore, we note that the input labels {labg∗
k,b} are

not used in SimC but only in SimIn where it is used to generate ˜SCg∗−1 and
˜SCg∗ . In this hybrid, we postpone the sampling of {labg∗

k,b} and the generation

of ˜SCg∗ from SimC to SimIn.
The change in hybrid Hybrid2 from Hybrid1 is just syntactic and the dis-

tributions are identical.
– Hybrid3 : In this hybrid, we change the sampling of {labg∗

k,b} and the genera-

tion of ˜SCg∗ . Specifically, we do not sample the entire set of labels {labg∗
k,b}

but a subset namely {labg∗
k,dg∗,k

}k and we generate ˜SCg∗ from the simulated
distribution. (Note that since g∗ − 1 is also in Gray mode. Thus we have that
˜SCg∗−1 is also simulated and only {labg∗

k,dg∗,k
}k are needed for its generation.)

More formally, we generate

˜SCg∗ ← Simckt(1λ, 1|SC|, out, {labg∗
k,dg∗,k

}k∈[λ])

where out ← SC[crs, (ri, rj , rg), (i, j), {labg∗+1
k,b }, 0](dg∗).

The only change in hybrid Hybrid3 from Hybrid2 is in the generation of
the garbled circuit ˜SCg∗ and the security follows directly from the selective
security of the garbling scheme. We show this reduction in Appendix A.

– Hybrid4 : In this hybrid, we change how the output value out hardwired in ˜SCg∗

is generated. Recall that in hybrid Hybrid3 this value is generated by first com-
puting f0 and f1 as in Fig. 4 and then generating out as Send (crs, d, i, f0, f1).

558 S. Garg and A. Srinivasan

In this hybrid, we just generate fDg∗,i
and use the laconic OT simulator to

generate out. More formally, out is generated as

out ← Sim�OT

(

crs,Dg∗ , i, fDg∗,i

)

.

Computational indistinguishability between hybrids Hybrid3 and Hybrid4 fol-
lows directly from the sender privacy of the laconic OT scheme. The reduction
is given in Appendix A.

– Hybrid5 : In this hybrid, we change how the value fDg∗,i
is gener-

ated. Recall from Fig. 4 that fDg∗,i
is set as Send(crs, d, j, (γ(Dg∗,i, 0),

eγ(Dg∗,i,0)), (γ(Dg∗,i, 1), eγ(Dg∗,i,1))). We change the distribution of fDg∗,i
to

Sim�OT(crs,Dg∗ , j, eDg∗+1,g∗), where eDg∗+1,g∗ is sampled as in Fig. 4.
Computational indistinguishability between hybrids Hybrid4 and Hybrid5

follows directly from the sender privacy of the laconic OT scheme. The argu-
ment is analogous to the argument of indistinguishability between Hybrid3 and
Hybrid4.

– Hybrid6 : In this hybrid, we change how eDg∗+1,g∗ is generated. More specifi-
cally, we generate it using the simulator Sim�OTW. In other words, eDg∗+1,g

is
generated as

Sim�OTW(crs,Dg∗ , g∗,Dg∗+1,g∗ , {labg∗+1
k,dg∗+1,k

}k∈[λ]).

Computational indistinguishability between hybrids Hybrid4 and Hybrid5 fol-
lows directly from the sender privacy for writes of the laconic OT scheme.

– Hybrid7 : In this hybrid, we reverse the changes made earlier with respect to

sampling of {labg∗
k,b}. Specifically, we sample all values {labg∗

k,b} and not just

{labg∗
k,dg∗,k

}k. Additionally, this is done in SimC rather than SimIn.
Note that this change is syntactic and the hybrids Hybrid6 to Hybrid7 are

identical. Finally, observe that hybrid Hybrid7 is the same as Hybridconf′ .

This completes the proof of the lemma. We additionally note that the above
sequence of hybrids is reversible. This implies the inverse rule A.

5.3.2 Implementing Rule B
Lemma 4 (Rule B). Let conf and conf ′ be two valid circuit configurations
satisfying the constraints of rule B, then assuming the security of somewhere
equivocal encryption, garbling scheme for circuits and updatable laconic oblivious
transfer, we have that Hybridconf

c≈ Hybridconf′ .

Proof. We prove this via a hybrid argument starting with Hybridconf′ and ending
in hybrid Hybridconf . We follow this ordering of the hybrids as this keeps the
proof very close to the proof of Lemma 3. In particular, we start with hybrid
Hybridconf′ and make changes to get a hybrid Hybrid7 which are almost the same
as the hybrids in Lemma 3. One key difference is that we set the value Dg∗+1,g

differently than how it is set in the execution of SimIn in Fig. 5. Specifically, we set
Dg∗+1,g∗ as rg∗ rather than Eg∗ ⊕rg∗ . Note that this also corresponding changes

Adaptively Secure Garbling with Near Optimal Online Complexity 559

the value of dg∗+1 which is the hash of Dg∗+1. Finally we provide argument that
hybrids Hybrid7 and Hybridconf are identical.

– Hybridconf′ : This is our starting hybrid and is distributed as
Hybrid(I′,{(g,mode′

g)}g∈[n+1,N])
.

– Hybrid1 : In this hybrid, we change the configuration to (I, {(g,

mode′
g)}g∈[n+1,N]). This hybrid is distributed as Hybrid(I,{(g,mode′

g)}g∈[n+1,N])
.

Computational indistinguishability between hybrid Hybridconf′ and Hybrid1
reduces directly to the security of somewhere equivocal encryption.

– Hybrid2 : By conditions of Rule B we have that modeg∗−1 = Gray. Thus, we

have that g∗ − 1 ∈ I ′. Therefore, we note that the input labels {labg∗
k,b} are

not used in SimC but only in SimIn where it is used to generate ˜SCg∗−1 and
˜SCg∗ . In this hybrid, we postpone the sampling of {labg∗

k,b} and the generation

of ˜SCg∗ from SimC to SimIn.
The change in hybrid Hybrid2 from Hybrid1 is just syntactic and the dis-

tributions are identical.
– Hybrid3 : In this hybrid, we change the sampling of {labg∗

k,b} and the genera-

tion of ˜SCg∗ . Specifically, we do not sample the entire set of labels {labg∗
k,b}

but a subset namely {labg∗
k,dg∗,k

}k and we generate ˜SCg∗ from the simulated
distribution. (Note that since g∗ − 1 is also in Gray mode. Thus we have that
˜SCg∗−1 is also simulated and only {labg∗

k,dg∗,k
}k are needed for its generation.)

More formally, we generate

˜SCg∗ ← Simckt(1λ, 1|SC|, out, {labg∗
k,dg∗,k

}k∈[λ])

where out ← SC[crs, (0, 0, rg), (i, j), {labg∗+1
k,b }, 1](dg∗).

The only change in hybrid Hybrid3 from Hybrid2 is in the generation of
the garbled circuit ˜SCg∗ and the security follows directly from the selective
security of the garbling scheme.

– Hybrid4 : In this hybrid, we set change how the output value out hard-

wired in ˜SCg∗ is generated. Recall that in hybrid Hybrid3 this value is gen-
erated by first computing f0 and f1 as in Fig. 4 and then generating out
as Send (crs, d, i, f0, f1). In this hybrid, we just generate fDg∗,i

and use the
laconic OT simulator to generate out. More formally, out is generated as

out ← Sim�OT

(

crs,Dg∗ , i, fDg∗,i

)

.

Computational indistinguishability between hybrids Hybrid3 and Hybrid4 fol-
lows directly from the sender privacy of the laconic OT scheme.

– Hybrid5 : In this hybrid, we change how the how the value fDg∗,i

is generated in hybrid Hybrid4. Recall from Fig. 4 that fDg∗,i
is set

as Send
(

crs, d, j, erg∗ , erg∗
)

. We change the distribution of fDg∗,i
to

Sim�OT

(

crs,Dg, j, erg∗
)

, where erg∗ is sampled as in Fig. 4.

560 S. Garg and A. Srinivasan

Computational indistinguishability between hybrids Hybrid3 and Hybrid4
follows directly from the sender privacy of the laconic OT scheme. The argu-
ment is analogous to the argument of indistinguishability between Hybrid2
and Hybrid3.

– Hybrid6 : In this hybrid, we change how erg∗ is generated. More specifically,
we generate it using the simulator Sim�OTW. In other words, erg∗ is generated
as

Sim�OTW(crs,Dg∗ , g∗, rg∗ , {labg∗+1
k,dg∗+1,k

}k∈[λ]).

Computational indistinguishability between hybrids Hybrid4 and Hybrid5 fol-
lows directly from the sender privacy for writes of the laconic OT scheme.

– Hybrid7 : In this hybrid, we reverse the changes made earlier with respect to

sampling of {labg∗
k,b}. Specifically, we sample all values {labg∗

k,b} and not just

{labg∗
k,dg∗,k

}k. Additionally, this is done in SimC rather than SimIn.
Note that this change is syntactic and the hybrids Hybrid6 to Hybrid7 are

identical.
– Hybridconf : This corresponds to the hybrid Hybrid(I,{(g,modeg)}g∈[n+1,N]

.
Observe that the only difference between Hybrid7 and Hybridconf is how
Dg∗+1,g∗ is set. Namely, in Hybrid7 this value is set to be rg∗ while in Hybridconf
this value is set as rg∗ ⊕ NAND(Dg∗,i ⊕ ri,Dg∗,j ⊕ rj ,). We argue that the
distributions Hybrid7 and Hybridconf are identical. Two cases arise:

• g∗ ≤ N −m: In this case, note that since rg∗ is not anywhere else we have
that the distribution rg∗ and rg∗ ⊕NAND(Dg∗,i ⊕ ri,Dg∗,j ⊕ rj) are both
uniform and identical.

• g∗ > N − m: In this case, we have that rg∗ = yg∗−N+m ⊕ r′
g∗ which is

again identical to the distribution of rg∗ in Hybridconf .

This completes the proof of the lemma.

A Completing Proofs of Lemma 3

Claim. Assuming the security of somewhere equivocal encryption scheme, we
have Hybridconf

c≈ Hybrid1.

Proof. We give a reduction to the security of somewhere equivocal encryption.

Generating the Garbled Circuit. To generate the garbled circuit ˜C:
1. Execute the steps 1, 2, 3 as described in Fig. 5.
2. Interact with the external challenger by giving {˜SCg}g �∈I as the challenge

messages, I as the challenge subset and g∗ as the challenge index. Obtain
c as the challenge ciphertext.

3. Output (crs, c) as the garbled circuit ˜C and (r, st1, {labg
k,b}k,b,g) as the

state st.
Generating the Garbled Input. To generate the garbled input x̃:

1. Execute the steps 1, 2 as described in Fig. 5.

Adaptively Secure Garbling with Near Optimal Online Complexity 561

2. Interact with the external challenger by providing {˜SCg}g∈I as the
remaining messages and obtain key′.

3. Execute the rest of the steps as described in Fig. 5 and output x̃ using
the key key′ obtained from the external challenger.

Notice that if the reduction is playing in the experiment Expsimenc
B,Π (1λ, 0) then

the distribution of inputs to the adversary is identical to Hybridconf . Else, it is
distributed identically to Hybrid1. Thus, the reduction breaks the security of
somewhere equivocal encryption.

Claim. Assuming the selective security of garbling scheme for circuits, Hybrid2
c≈

Hybrid3

Proof. We give a reduction to the security of garbling scheme for circuits.

Generating the Garbled Circuit. For each g ∈ [n + 1, N + 1] \ {g∗}, k ∈ [λ]
and b ∈ {0, 1} sample labg

k,b ← {0, 1}λ. Generate the garbled circuit ˜C as in
Hybrid2. Note that there is a “hole” in position g∗ in the outer encryption
layer and hence {labg∗

k,b} is not needed in the generation of ˜C. Also, recall that
by assumption the gate g∗ − 1 is Gray or g∗ = n + 1.

Generating the Garbled Input: To generate the garbled input x̃ do:
1. Interact with the garbled circuits challenger and give SC[crs,

(ri, rj , rg), (i, j), {labg∗+1
k,b }, 0] (where the description of g∗ is (i, j)) as

the challenge circuit and dg∗ as the challenge input. Obtain ˜SCg∗ and
{labg∗

k,dg∗,k
}k∈[λ].

2. For each g ∈ I ′ \ {g∗}, generate ˜SCg as described in Fig. 5. Note that for
generating ˜SCg∗−1 it is sufficient to only know {labg∗

k,dg∗,k
}k∈[λ].

3. Execute the rest of the steps as described in Fig. 5 and output x̃.

Notice that if the garbling ˜SCg∗ is generated using the honest procedure then
the inputs to the adversary are distributed identically to Hybrid2. Else, they
are distributed identically to Hybrid3. Thus, the reduction breaks the selective
security of garbling scheme for circuits which is a contradiction.

Claim. Assuming the sender privacy of updatable laconic oblivious transfer,
Hybrid3

c≈ Hybrid4

Proof. We show that Hybrid3
c≈ Hybrid4 by giving a reduction to the sender

privacy of updatable laconic oblivious transfer.

Generating the Garbled Circuit. Obtain crs from the external challenger
and generate the garbled circuit ˜C as in Hybrid3.

Generating the Garbled Input:
1. To generate ˜SCg∗ with the description of g∗ equal to (i, j):

(a) Compute e0, e1, f0, f1 as described in Fig. 4.

562 S. Garg and A. Srinivasan

(b) Interact with the laconic OT challenger by giving Dg∗ as the challenge
database, i as the challenge locations and give f0, f1 as the challenge
messages. Obtain the challenge ciphertext out.

(c) Compute ˜SCg∗ ← Simckt(1λ, 1|SC|, out, {labg∗
k,dg∗,k

}k∈[λ])

2. Generate ˜SCg for all g ∈ I ′ \ {g∗} as in Hybrid3.
3. Execute the rest of the steps as described in Fig. 5 to generate the garbled

input x̃.

Note that if out is generated using the honest procedure then the distribution
of inputs to the adversary is identical to Hybrid3. Else, it is identical to Hybrid4.
Thus, the above reduction breaks the sender privacy of updatable laconic obliv-
ious transfer.

Claim. Assuming the sender privacy for writes of updatable laconic oblivious
transfer, Hybrid5

c≈ Hybrid6.

Proof. We give a reduction to the sender privacy for writes of updatable laconic
oblivious transfer.

Generating the Garbled Circuit. Obtain crs from the external challenger
and generate the garbled circuit ˜C as in Hybrid5.

Generating the Garbled Input:
1. To generate ˜SCg∗ with the description of g∗ equal to (i, j):

(a) Interact with the laconic OT challenger by giving Dg∗ as the chal-
lenge database, g∗ as the challenge location, Dg∗+1,g∗ as the challenge
bit and {labg∗+1

k,b } as the sequence of challenge messages. It obtains
eDg∗+1,g∗ as the challenge ciphertext.

(b) Generate fDg∗+1,g∗ and out as in Hybrid5.
(c) Compute ˜SCg∗ ← Simckt(1λ, 1|SC|, out, {labg∗

k,dg∗,k
}k∈[λ])

2. Generate ˜SCg for all g ∈ I ′ \ {g∗} as in Hybrid5.
3. Execute the rest of the steps as described in Fig. 5 to generate the garbled

input x̃.

Note that if eDg∗+1,g∗ is generated using the honest procedure then the dis-
tribution of inputs to A is identical to Hybrid5. Else, it is identical to Hybrid6.
Thus, the reduction breaks the sender privacy for writes of updatable laconic
oblivious transfer.

References

[ABSV15] Ananth, P., Brakerski, Z., Segev, G., Vaikuntanathan, V.: From selective to
adaptive security in functional encryption. In: Gennaro, R., Robshaw, M.
(eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 657–677. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-48000-7 32

[AF90] Abadi, M., Feigenbaum, J.: Secure circuit evaluation. J. Cryptol. 2(1), 1–12
(1990)

https://doi.org/10.1007/978-3-662-48000-7_32

Adaptively Secure Garbling with Near Optimal Online Complexity 563

[AIK04] Applebaum, B., Ishai, Y., Kushilevitz, E.: Cryptography in NC0. In: 45th
Annual Symposium on Foundations of Computer Science, Rome, Italy, 17–
19 October 2004, pp. 166–175. IEEE Computer Society Press (2004)

[AIK05] Applebaum, B., Ishai, Y., Kushilevitz, E.: Computationally private ran-
domizing polynomials and their applications. In: Proceedings of the 20th
Annual IEEE Conference on Computational Complexity, CCC 2005, Wash-
ington, DC, USA, pp. 260–274. IEEE Computer Society (2005)

[AIK10] Applebaum, B., Ishai, Y., Kushilevitz, E.: From secrecy to soundness: effi-
cient verification via secure computation. In: Abramsky, S., Gavoille, C.,
Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010.
LNCS, vol. 6198, pp. 152–163. Springer, Heidelberg (2010). https://doi.
org/10.1007/978-3-642-14165-2 14

[AIKW13] Applebaum, B., Ishai, Y., Kushilevitz, E., Waters, B.: Encoding func-
tions with constant online rate or how to compress garbled circuits keys.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp.
166–184. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
40084-1 10

[App14] Applebaum, B.: Bootstrapping obfuscators via fast pseudorandom func-
tions. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874,
pp. 162–172. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-45608-8 9

[AS16] Ananth, P., Sahai, A.: Functional encryption for turing machines. In:
Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9562, pp. 125–153.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49096-9 6

[Ben89] Bennett, C.H.: Time/space trade-offs for reversible computation. SIAM J.
Comput. 18(4), 766–776 (1989)

[BGG+14] Boneh, D., Gentry, C., Gorbunov, S., Halevi, S., Nikolaenko, V., Segev,
G., Vaikuntanathan, V., Vinayagamurthy, D.: Fully key-homomorphic
encryption, arithmetic circuit abe and compact garbled circuits. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441,
pp. 533–556. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
642-55220-5 30

[BHR12a] Bellare, M., Hoang, V.T., Rogaway, P.: Adaptively secure garbling with
applications to one-time programs and secure outsourcing. In: Wang, X.,
Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 134–153. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-4 10

[BHR12b] Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits.
In: Yu, T., Danezis, G., Gligor, V.D. (eds.) 19th Conference on Computer
and Communications Security, ACM CCS 12, Raleigh, NC, USA, 16–18
October 2012, pp. 784–796. ACM Press (2012)

[BLSV18] Brakerski, Z., Lombardi, A., Segev, G., Vaikuntanathan, V.: Anonymous
IBE, leakage resilience and circular security from new assumptions. In:
Nielsen, J.B., Rijmen, V. (eds.) Eurocrypt 2018. LNCS, vol. 10821, pp.
535–564. Springer, Cham (2018). https://eprint.iacr.org/2017/967

[BMR90] Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure pro-
tocols (extended abstract). In: 22nd Annual ACM Symposium on Theory
of Computing, Baltimore, MD, USA, 14–16 May 1990, pp. 503–513. ACM
Press (1990)

[CDG+17] Cho, C., Döttling, N., Garg, S., Gupta, D., Miao, P., Polychroniadou, A.:
Laconic oblivious transfer and its applications. In: Katz, J., Shacham, H.
(eds.) CRYPTO 2017. LNCS, vol. 10402, pp. 33–65. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-63715-0 2

https://doi.org/10.1007/978-3-642-14165-2_14
https://doi.org/10.1007/978-3-642-14165-2_14
https://doi.org/10.1007/978-3-642-40084-1_10
https://doi.org/10.1007/978-3-642-40084-1_10
https://doi.org/10.1007/978-3-662-45608-8_9
https://doi.org/10.1007/978-3-662-45608-8_9
https://doi.org/10.1007/978-3-662-49096-9_6
https://doi.org/10.1007/978-3-642-55220-5_30
https://doi.org/10.1007/978-3-642-55220-5_30
https://doi.org/10.1007/978-3-642-34961-4_10
https://eprint.iacr.org/2017/967
https://doi.org/10.1007/978-3-319-63715-0_2

564 S. Garg and A. Srinivasan

[DG17] Döttling, N., Garg, S.: Identity-based encryption from the diffie-hellman
assumption. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol.
10401, pp. 537–569. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-63688-7 18

[DGHM18] Döttling, N., Garg, S., Hajiabadi, M., Masny, D.: New constructions of
identity-based and key-dependent message secure encryption schemes. In:
PKC (2018, to appear). https://eprint.iacr.org/2017/978

[FNO15] Frederiksen, T.K., Nielsen, J.B., Orlandi, C.: Privacy-free garbled circuits
with applications to efficient zero-knowledge. In: Oswald, E., Fischlin, M.
(eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 191–219. Springer, Hei-
delberg (2015). https://doi.org/10.1007/978-3-662-46803-6 7

[GGP10] Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable comput-
ing: outsourcing computation to untrusted workers. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 465–482. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-14623-7 25

[GHL+14] Gentry, C., Halevi, S., Lu, S., Ostrovsky, R., Raykova, M., Wichs, D.: Gar-
bled RAM revisited. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT
2014. LNCS, vol. 8441, pp. 405–422. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-642-55220-5 23

[GKP+13] Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.:
Reusable garbled circuits and succinct functional encryption. In: Boneh, D.,
Roughgarden, T., Feigenbaum, J. (eds.) 45th Annual ACM Symposium on
Theory of Computing, Palo Alto, CA, USA, 1–4 June 2013, pp. 555–564.
ACM Press (2013)

[GKR08] Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: One-time programs. In: Wag-
ner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 39–56. Springer, Hei-
delberg (2008). https://doi.org/10.1007/978-3-540-85174-5 3

[GLO15] Garg, S., Lu, S., Ostrovsky, R.: Black-box garbled RAM. In: Guruswami,
V. (ed.) 56th Annual Symposium on Foundations of Computer Science,
Berkeley, CA, USA, 17–20 October 2015, pp. 210–229. IEEE Computer
Society Press (2015)

[GLOS15] Garg, S., Lu, S., Ostrovsky, R., Scafuro, A.: Garbled RAM from one-way
functions. In: Servedio, R.A., Rubinfeld, R. (eds.) 47th Annual ACM Sym-
posium on Theory of Computing, Portland, OR, USA, 14–17 June 2015,
pp. 449–458. ACM Press (2015)

[GPSZ17] Garg, S., Pandey, O., Srinivasan, A., Zhandry, M.: Breaking the sub-
exponential barrier in obfustopia. In: Coron, J.-S., Nielsen, J.B. (eds.)
EUROCRYPT 2017. LNCS, vol. 10212, pp. 156–181. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-56617-7 6

[GS16] Garg, S., Srinivasan, A.: Single-key to multi-key functional encryption with
polynomial loss. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9986,
pp. 419–442. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-53644-5 16

[GVW12] Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption with
bounded collusions via multi-party computation. In: Safavi-Naini, R.,
Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 162–179. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5 11

[HJO+16] Hemenway, B., Jafargholi, Z., Ostrovsky, R., Scafuro, A., Wichs, D.: Adap-
tively secure garbled circuits from one-way functions. In: Robshaw, M.,
Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9816, pp. 149–178. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53015-3 6

https://doi.org/10.1007/978-3-319-63688-7_18
https://doi.org/10.1007/978-3-319-63688-7_18
https://eprint.iacr.org/2017/978
https://doi.org/10.1007/978-3-662-46803-6_7
https://doi.org/10.1007/978-3-642-14623-7_25
https://doi.org/10.1007/978-3-642-55220-5_23
https://doi.org/10.1007/978-3-642-55220-5_23
https://doi.org/10.1007/978-3-540-85174-5_3
https://doi.org/10.1007/978-3-319-56617-7_6
https://doi.org/10.1007/978-3-662-53644-5_16
https://doi.org/10.1007/978-3-662-53644-5_16
https://doi.org/10.1007/978-3-642-32009-5_11
https://doi.org/10.1007/978-3-662-53015-3_6

Adaptively Secure Garbling with Near Optimal Online Complexity 565

[JKK+17] Jafargholi, Z., Kamath, C., Klein, K., Komargodski, I., Pietrzak, K., Wichs,
D.: Be adaptive, avoid overcommitting. In: Katz, J., Shacham, H. (eds.)
CRYPTO 2017. LNCS, vol. 10401, pp. 133–163. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-63688-7 5

[JKO13] Jawurek, M., Kerschbaum, F., Orlandi, C.: Zero-knowledge using garbled
circuits: how to prove non-algebraic statements efficiently. In: Sadeghi, A.-
R., Gligor, V.D., Yung, M. (eds.) 20th Conference on Computer and Com-
munications Security, ACM CCS 13, Berlin, Germany, 4–8 November 2013,
pp. 955–966. ACM Press (2013)

[JSW17] Jafargholi, Z., Scafuro, A., Wichs, D.: Adaptively indistinguishable garbled
circuits. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10678, pp. 40–
71. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70503-3 2

[JW16] Jafargholi, Z., Wichs, D.: Adaptive security of Yao’s garbled circuits. In:
Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9985, pp. 433–458. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53641-4 17

[LM16] Li, B., Micciancio, D.: Compactness vs collusion resistance in functional
encryption. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp.
443–468. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-
53644-5 17

[LO13] Lu, S., Ostrovsky, R.: How to garble RAM programs? In: Johans-
son, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
719–734. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
38348-9 42

[LP09] Lindell, Y., Pinkas, B.: A proof of security of Yao’s protocol for two-party
computation. J. Cryptol. 22(2), 161–188 (2009)

[LV16] Lin, H., Vaikuntanathan, V.: Indistinguishability obfuscation from DDH-
like assumptions on constant-degree graded encodings. In: Dinur, I. (ed.)
57th Annual Symposium on Foundations of Computer Science, New
Brunswick, NJ, USA, 9–11 October 2016, pp. 11–20. IEEE Computer Soci-
ety Press (2016)

[MNPS04] Malkhi, D., Nisan, N., Pinkas, B., Sella, Y.: Fairplay - secure two-party
computation system. In: Proceedings of the 13th USENIX Security Sym-
posium, San Diego, CA, USA, 9–13 August 2004, pp. 287–302 (2004)

[Nie02] Nielsen, J.B.: Separating random oracle proofs from complexity theoretic
proofs: the non-committing encryption case. In: Yung, M. (ed.) CRYPTO
2002. LNCS, vol. 2442, pp. 111–126. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-45708-9 8

[PTC76] Paul, W.J., Tarjan, R.E., Celoni, J.R.: Space bounds for a game on graphs.
Mathe. Syst. Theor. 10(1), 239–251 (1976)

[SS10] Sahai, A., Seyalioglu, H.: Worry-free encryption: functional encryption with
public keys. In: Al-Shaer, E., Keromytis, A.D., Shmatikov, V. (eds.) 17th
Conference on Computer and Communications Security, ACM CCS 10,
Chicago, Illinois, USA, 4–8 October 2010, pp. 463–472. ACM Press (2010)

[Yao82] Yao, A.C.-C.: Protocols for secure computations (extended abstract). In:
23rd Annual Symposium on Foundations of Computer Science, Chicago,
Illinois, 3–5 November 1982, pp. 160–164. IEEE Computer Society Press
(1982)

[Yao86] Yao, A.C.-C.: How to generate and exchange secrets (extended abstract).
In: 27th Annual Symposium on Foundations of Computer Science, Toronto,
Ontario, Canada, 27–29 October 1986, pp. 162–167. IEEE Computer Soci-
ety Press (1986)

https://doi.org/10.1007/978-3-319-63688-7_5
https://doi.org/10.1007/978-3-319-70503-3_2
https://doi.org/10.1007/978-3-662-53641-4_17
https://doi.org/10.1007/978-3-662-53644-5_17
https://doi.org/10.1007/978-3-662-53644-5_17
https://doi.org/10.1007/978-3-642-38348-9_42
https://doi.org/10.1007/978-3-642-38348-9_42
https://doi.org/10.1007/3-540-45708-9_8
https://doi.org/10.1007/3-540-45708-9_8

A New Approach to Black-Box
Concurrent Secure Computation

Sanjam Garg1(B), Susumu Kiyoshima2, and Omkant Pandey3

1 University of California, Berkeley, USA
sanjamg@berkeley.edu

2 NTT Secure Platform Laboratories, Tokyo, Japan
kiyoshima.susumu@lab.ntt.co.jp

3 Stony Brook University, Stony Brook, USA
omkant@cs.stonybrook.edu

Abstract. We consider the task of constructing concurrently compos-
able protocols for general secure computation by making only black-box
use of underlying cryptographic primitives. Existing approaches for this
task first construct a black-box version of CCA-secure commitments
which provide a strong form of concurrent security to the committed
value(s). This strong form of security is then crucially used to construct
higher level protocols such as concurrently secure OT/coin-tossing (and
eventually all functionalities).

This work explores a fresh approach. We first aim to construct a
concurrently-secure OT protocol whose concurrent security is proven
directly using concurrent simulation techniques; in particular, it does
not rely on the usual “non-polynomial oracles” of CCA-secure commit-
ments. The notion of concurrent security we target is super-polynomial
simulation (SPS). We show that such an OT protocol can be constructed
from polynomial hardness assumptions in a black-box manner, and within
a constant number of rounds. In fact, we only require the existence of
(constant round) semi-honest OT and standard collision-resistant hash
functions.

Next, we show that such an OT protocol is sufficient to obtain SPS-
secure (concurrent) multiparty computation (MPC) for general function-
alities. This transformation does not require any additional assumptions;
it also maintains the black-box nature as well as the constant round feature
of the original OT protocol. Prior to our work, the only known black-box
construction of constant-round concurrently composable MPC required
stronger assumptions; namely, verifiable perfectly binding homomorphic
commitment schemes and PKE with oblivious public-key generation.

1 Introduction

Secure multiparty computation (MPC) protocols enable mutually distrustful
parties to compute a joint functionality on their private inputs without com-
promising the correctness of the outputs and the privacy of their inputs. They

c© International Association for Cryptologic Research 2018
J. B. Nielsen and V. Rijmen (Eds.): EUROCRYPT 2018, LNCS 10821, pp. 566–599, 2018.
https://doi.org/10.1007/978-3-319-78375-8_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78375-8_19&domain=pdf

A New Approach to Black-Box Concurrent Secure Computation 567

have been studied in both two-party and multi-party cases. General construc-
tions of such protocols for computing any functionality even when a majority
of players are adversarial have been long known [16,49]. In this work, we are
interested in MPC protocols that only make a black-box use of cryptographic
primitives and maintain security in a concurrent environment with many simul-
taneous executions.

Black-box constructions. General purpose MPC protocols are often non-black-
box in nature. They use the code of the underlying primitives at some stage
of the computation, e.g., an NP reduction for general zero-knowledge proofs.
Such non-black-use of the primitives is generally undesirable since not only it
is computationally expensive, it also renders the protocol useless in situations
where such code is not available (e.g., primitives based on hardware-tokens). One
therefore seeks black-box constructions of such protocols which use the under-
lying primitives only in black-box way (i.e., only through their input/output
interfaces).

Recently, a number of works have studied black-box constructions of general
MPC protocols. Ishai et al. [26] presented the first black-box construction of gen-
eral purpose MPC based on enhanced trapdoor permutations or homomorphic
public-key encryption schemes. Combined with the subsequent work of Haitner
[22] on black-box OT, this gives a black-box construction of general MPC based
assuming only semi-honest OT [23]. Subsequently, Wee [48] reduced the round
complexity of these constructions to O(log∗ n), and Goyal [17] to only constant
rounds. In the two-party setting, black-box construction were obtained by Pass
and Wee [44] in constant-rounds and Ostrovsky et al. [39] in optimal 5-rounds.

Concurrent security. The standard notion of security for MPC, also called stand-
alone security considers only a single execution of this protocol. While this is
sufficient for many applications, other situations (such as protocol executions
over the Internet) require stronger notions of security. Such a more demanding
setting, where there may be many protocols executions at the same time, is called
the concurrent setting. Unfortunately, it is known that stand-alone security does
not necessarily imply security in the concurrent setting [12].

Secure computation in the concurrent setting is quite challenging to define.
Canetti [4] proposed the notion of universally composable (UC) security where
protocols maintain their strong simulation based security guarantees even in
the presence of other arbitrary protocols. Achieving such strong notion of UC-
security turned out to be impossible in the plain model [4,5]. Moreover, Lindell
[34,35] proved that even in the special case where only instantiations of the
same protocol are allowed, standard notion of polynomial-time simulation is
impossible to achieve. (This is “self composition” and corresponds to the setting
we are interested in.)

These strong negative results motivated the study of alternative notions of
security; of these, most relevant to us are super-polynomial simulation (SPS)
[41], angel-based security [6,46], and security with shielded oracles [3].

568 S. Garg et al.

SPS Security. SPS security is similar to UC security except that the simulator
is allowed to run in super-polynomial time. It guarantees that whatever an
adversary can do in the real world can also be done in the ideal world in super-
polynomial time. While SPS-security is a weaker guarantee, it is still meaning-
ful security for many functionalities, and allows concurrent self-composition
in the plain model. (In what follows, by SPS security we mean SPS-security
under concurrent self-composition.) Prabhakaran and Sahai [46] provided
the initial positive result for SPS security. Although, these early results
[2,33,36,46] relied on non-standard/sub-exponential assumptions, Canetti,
Lin and Pass achieved this notion under standard polynomial-time assump-
tions [6] in polynomially many rounds. Soon after, Garg et al. [14] presented a
constant round construction. The works of [6,36,46] actually get angel-based
security, discussed below.

Angel-Based Security. Angel-based UC security is the same as UC security
except that the environment/adversary and the simulator have access to
an additional entity—an angel—that allows some judicious use of super-
polynomial resources. Angel-based UC security, though weaker than UC
security, is meaningful for many settings and implies SPS security. Further-
more, like UC security, it also guarantees composability. As noted above,
the works in [6,36,46] achieve angel-based security, though only [6] relies on
standard polynomial hardness. Subsequently, Goyal et al. [20] presented a
˜O(log n) round construction under the same assumptions.
Black-box constructions of angel-based secure computation were first pre-
sented by Lin and Pass [31] assuming the existence of semi-honest OT, in
O(max(nε, ROT)) rounds, where ε > 0 is an arbitrary constant and ROT is
the round complexity of the underlying OT protocol. (Hence, if the under-
lying OT protocol has only constant round, the round complexity is O(nε).)
Subsequently, Kiyoshima [28] provided a Õ(log2 n)-round construction under
the same assumption.

Security with Shielded Oracles. Security with shielded oracles, proposed
very recently by Broadnax et al. [3], is similar to angel-based security where
the environment and the simulator have access to an additional entity—
a shielded oracle—that can perform some super-polynomial computation.
However, unlike angel-based security, the results of super-polynomial time
computation are “shielded away” from the simulator, in the sense that the
shielded oracle directly interacts with the ideal functionality; the simula-
tor cannot observe their communication. This notion lies strictly between
SPS and angel-based security, and guarantees composability. A constant-
round MPC protocol satisfying this notion were also presented in [3]; one of
their protocol is black-box and relies on standard polynomial hardness. More
specifically, it requires (verifiable perfectly binding) homomorphic commit-
ment schemes and PKE with oblivious public-key generation.

State-of-the-art. All of the constructions of concurrently-secure MPC protocols
we have discussed so far, rely on first constructing non-malleable commitment
schemes with strong concurrent or UC-security properties; in particular (robust)

A New Approach to Black-Box Concurrent Secure Computation 569

“CCA-secure commitments” or “coin tossing” or UC-secure commitments. These
schemes are then used to build higher level protocols such as OT and general
secure computation. However, the concurrent security of these higher level pro-
tocols is proven indirectly, by relying on the strong concurrent security of the
CCA-secure commitments. While this approach leads to (better) angel-based
security, it is quite expensive in terms of rounds, requiring Õ(log2 n) in [28] for
black-box constructions. The work of Broadnax et al. [3] significantly improves
this situation by relaxing the angel-based security requirement to SPS with
shielded-oracles, and obtains a constant round construction. However, it still
needs stronger assumptions (see above) and represents the only approach so far
for obtaining constant round black-box constructions. In contrast, much of the
results that make non-black-box use of the primitives, can rely on the minimal
assumption of semi-honest OT. The approach of Broadnax et al. [3] is still based
on first constructing a sufficiently strong commitment scheme with UC proper-
ties and using it to obtain OT and general functionalities. It is highly desirable
to find new approaches to construct such protocols which have the potential to
rely on minimal assumptions in constant rounds.

1.1 Our Contribution

In this work, we seek new approaches for constructing concurrently-secure black-
box MPC protocols which can lead to qualitative improvements over existing con-
structions, such as minimal underlying assumptions, a constant number of rounds,
and so on. Towards this goal, we deviate from the existing approaches which
focus on incorporating both concurrent security and non-malleability into a single
primitive such as (CCA-secure) commitment schemes or coin-tossing. Instead, we
take a different approach and focus on incorporating concurrent security into the
oblivious transfer functionality. We present a black-box OT protocol satisfying
the SPS notion of concurrent-security. We achieve this by using concurrent sim-
ulation techniques and non-malleable commitments in a somewhat modular way
where (roughly speaking) the former is primarily used for trapdoor extraction/
simulation and the latter for independence of committed values. The protocol has
constant rounds and relies only on the existence of (constant round) semi-honest
OT and standard collision-resistant hash functions (CRHFs).

Having obtained concurrent security for OT, we proceed to construct SPS-
secure MPC protocols for all functionalities. Our method does not require any
additional assumptions, and maintains the black-box and constant round prop-
erties of the original OT protocol. Consequently, we obtain SPS-secure constant-
round black-box MPC under much weaker assumptions than [3]. On the flip side,
our work achieves a weaker security notion than [3].

Theorem 1 (Informal). Assume the existence of constant-round semi-honest
oblivious transfer protocols and collision-resistant hash functions. Then, there
exists a constant-round black-box construction of concurrently secure MPC pro-
tocol that achieve SPS security.

The formal statement is given as Theorem 3 in Sect. 5.

570 S. Garg et al.

1.2 Other Related Work

Other than the works mentioned above, there are several works that study
SPS security/angel-based security. For SPS-security, Pass et al. [43] present a
constant-round non-black-box construction of MPC from constant-round semi-
honest OT. Dachman-Soled et al. and Venkitasubramaniam [11,47] present a
non-black-box construction that satisfies adaptive security. And very recently,
Badrinarayanan et al. [1] present a non-black-box 3-round construction assum-
ing sub-exponential hardness assumptions. For angel-based security, Kiyoshima
et al. [29] present a constant-round black-box construction albeit under a sub-
exponential hardness assumption, and Hazay and Venkitasubramaniam [25]
present a non-black-box construction that achieves adaptive security.

We have not discussed several works that focus on other notions of concur-
rent security such as input-indistinguishable computation, bounded concurrent
composition, and multiple ideal-query model [18,37,42].

Black-box constructions have been extensively explored for several other
primitives such as non-malleable/CCA-secure encryption, non-malleable com-
mitments, zero-knowledge proofs and so on (e.g., [9,10,19,21,40,45]). For con-
current OT, Garay and MacKenzie [13] presented a protocols for independent
inputs under the DDH assumption, and Garg et al. [15] showed the impossibility
of this task for general input distributions.

2 Overview of Our Techniques

We obtain our MPC protocol in two steps. First, we construct a constant-round
black-box construction of a SPS-secure concurrent OT protocol. Second, we com-
pose this OT protocol with an existing constant-round OT-hybrid UC-secure
MPC protocol. We elaborate on each step below.

We remark that we consider concurrent security in the interchangeable-roles
setting. So, in the case of OT, the adversary can participate a session as the
sender while concurrently participating another session as the receiver.

2.1 Constant-Round Black-Box Concurrent OT

Our starting point is the (super-constant-round) black-box concurrent OT pro-
tocol of Lin and Pass [31], which is secure under angel-based security and makes
only black-box use of semi-honest OT protocols. Our approach is to modify their
protocol so that it has only constant number of rounds (while degrading security
from angel-based security to SPS security).

Let us first recall the OT protocol of [31]. At a high level, it uses a semi-
honest OT protocol in the black-box way in a similar manner to the stand-alone
black-box OT of Haitner et al. [23] does. Specifically, the OT protocol of [31]
proceeds roughly as follows.

1. First, the sender S and the receiver R execute many instances of a semi-honest
OT protocol in parallel, where in each instance S and R use the inputs and the

A New Approach to Black-Box Concurrent Secure Computation 571

randomness that are generated by a coin-tossing protocol. (S and R execute
two instances of coin tossing for each instance of OT; the sender obtains
random coin in the first coin tossing and the receiver obtains random coin in
the second coin tossing.)

2. Next, S and R do a simple trick called OT combiner, which allows them to
execute an OT with their real inputs securely when most of the OT instances
in the previous step are correctly executed. To check that most of the OT
instances in the previous step were indeed correctly executed, S and R do
the well-known cut-and-choose trick, where S (resp., R) chooses a constant
fraction of the OT instances randomly and R (resp., S) reveals the input and
randomness that it used in those instances so that S (resp., R) can verity
whether R executed those instances correctly.

(Actually, the underlying OT protocol is required to be secure against malicious
senders, but we ignore this requirement in this overview.)

The OT protocol of [31] has more than constant number of rounds because
it uses CCA-secure commitment schemes [6,7] in the coin-tossing part of the
protocol and existing constructions of CCA-secure commitment schemes have
more than constant number of rounds under standard assumptions.1 Key obser-
vations by the authors of [31] are that CCA-secure commitment schemes can be
used to obtain a “concurrently secure” coin tossing protocol,2 and that their OT
protocol is concurrently secure when its coin-tossing part is concurrently secure.

To obtain a constant-round protocol, we need to remove the CCA-secure
commitments from the protocol of [31]. A naive approach is to simply replace
the CCA-secure commitments with (concurrent) non-malleable commitments,
which provide weaker security than CCA-secure ones but are known to have
a constant-round black-box instantiation under the existence of one-way func-
tions [19]. However, this approach does not work because, as mentioned by Lin
and Pass [31], non-malleable commitment schemes only lead to “parallel secure”
coin tossing protocols3 and the parallel security of the coin tossing protocol is
insufficient for proving the concurrent security of the OT protocol of [31].

At a high level, we remove the CCA-secure commitments from the protocol
of [31] as follows. Our starting idea is to prove the concurrent security of the OT
protocol of [31] without relying on the concurrent security of the coin tossing
part (and therefore without using CCA-secure commitments there). To prove the
concurrent security in this way, we modify the protocol of [31] so that it uses non-
malleable commitments in a similar manner to the constant-round (non-black-
box) SPS-secure concurrent MPC protocol of Garg et al. [14] does. Informally

1 Roughly speaking, CCA-secure commitment schemes guarantee that the hiding prop-
erty holds even when the adversary has access to the committed-value oracle, which
computes the committed value of a given commitment by brute force.

2 Concretely, the resultant coin-tossing protocol satisfies simulation soundness, which
guarantees that any concurrent man-in-the-middle adversary cannot bias the out-
come of a coin-tossing when it concurrently participates in simulated coin tossings.

3 Very roughly speaking, this is because non-malleability allows the man-in-the adver-
sary to obtain replies from the committed-value oracle only in parallel.

572 S. Garg et al.

speaking, the protocol of Garg et al. [14] uses non-malleable commitments when
each party commits to a witness for the fact that the “trapdoor statement” is
false, where the trapdoor statement is a statement about the transcript and it is
guaranteed that any adversary cannot “cheat” in the protocol when the trapdoor
statement is false. With this use of non-malleable commitments, the concurrent
security of the protocol of Garg et al. [14] is proven in two steps:

1. First, it is shown that in the real experiment (where an adversary interacts
with honest parties in multiple sessions of the protocol concurrently), the
non-malleable commitment from the adversary in each session is indeed a
commitment of a valid witness for the fact that the trapdoor statement is
false. (This is guaranteed by a zero-knowledge proof in the protocol).

2. Second, it is shown that if the non-malleable commitment in a session is indeed
a commitment of a valid witness (which implies that the trapdoor statement is
false in that session, which in turn implies that the adversary cannot “cheat”
in that session), it is possible to switch the honest parties in that session with
the simulator in an indistinguishable way, and furthermore this switch does
not affect the non-malleable commitments in the other sessions (i.e., their
committed values remain to be valid witnesses). (The latter is guaranteed by
non-malleability of the non-malleable commitments4.)

3. Now, the concurrent security follows from the above two since the honest
parties can be switched to the simulator in all the sessions by repeatedly
using what is shown in the second part.

Following this approach by Garg et al. [14], we first identify the trapdoor
statement of the OT protocol of Lin and Pass [31] and then add non-malleable
commitments to their protocol in such a way that the trapdoor statement is false
whenever the committed values of the non-malleable commitments satisfy a spe-
cific condition. With this modification, we can prove the concurrent security of
the OT protocol of [31] without relying on the concurrent security of coin tossing
by following the approach of [14] outlined above.

Remark 1. It is not straightforward to use the approach of Garg et al. [14] in the
OT protocol of Lin and Pass [31] since its trapdoor statement does not have a
simple witness for the fact that the statement is false. Because of this difficulty,
we do not use non-malleable commitments to commit to a witness; rather, we
use them in such a way that there exists a condition on the committed values
of the non-malleable commitments such that the trapdoor statement is false as
long as this condition holds. For details, see Sect. 4 (in particular, Definitions 5
and 6 and Claims 3 and 4).

4 Actually, non-malleability w.r.t. other protocols [30] is also required, where non-
malleability w.r.t. a protocol Π guarantees non-malleability against man-in-the-
middle adversaries that participates in the non-malleable commitment in the right
interaction and Π in the left interaction.

A New Approach to Black-Box Concurrent Secure Computation 573

2.2 Composition of OT with OT-Hybrid MPC

We next compose our OT protocol with a OT-hybrid UC-secure MPC protocol
(i.e., replace each invocation of the ideal OT functionality in the latter with
an execution of the former), thereby obtaining a MPC protocol in the plain
model. A problem is that the security of the resultant MPC protocol cannot
be derived trivially from those of the components since SPS security does not
guarantee composability. Hence, we prove the security by analyzing the MPC
protocol directly. In essence, what we do is to observe that the security proof
for our OT protocol (which consists of a hybrid argument from the real world
to the ideal world) still works even after the OT protocol is composed with a
OT-hybrid MPC protocol, and in particular we observe that the condition on
the committed values of the non-malleable commitments (which is mentioned
in Sect. 2.1) remains to hold in each session even after switching the OT-hybrid
MPC protocol in any session to simulation. Fortunately, this can be observed
easily thanks to the non-malleability of the non-malleable commitments, so we
can prove the concurrent security of our MPC protocol under SPS security easily.

3 Preliminaries

We denote the security parameter by n. We assume familiarity with basic cryp-
tographic protocols (e.g., commitment schemes and oblivious transfer protocols).

3.1 Non-malleable Commitment Schemes

We recall the definition of non-malleable commitment schemes from [30]. Let
〈C,R〉 be a tag-based commitment scheme (i.e., a commitment scheme that
takes a n-bit string—a tag—as an additional input). For any man-in-the-middle
adversary M, consider the following experiment. On input security parameter
1n and auxiliary input z ∈ {0, 1}∗, M participates in one left and one right inter-
actions simultaneously. In the left interaction, M interacts with the committer
of 〈C,R〉 and receives a commitment to value v using identity id ∈ {0, 1}n of its
choice. In the right interaction, M interacts with the receiver of 〈C,R〉 and gives
a commitment using identity ˜id of its choice. Let ṽ be the value that M commits
to on the right. If the right commitment is invalid or undefined, ṽ is defined to
be ⊥. If id = ˜id, value ṽ is also defined to be ⊥. Let mim(〈C,R〉,M, v, z) be a
random variable representing ṽ and the view of M in the above experiment.

Definition 1. A commitment scheme 〈C,R〉 is non-malleable if for any ppt
adversary M, the following are computationally indistinguishable.

– {mim(〈C,R〉,M, v, z)}n∈N,v∈{0,1}n,v′∈{0,1}n,z∈{0,1}∗

– {mim(〈C,R〉,M, v′, z)}n∈N,v∈{0,1}n,v′∈{0,1}n,z∈{0,1}∗

The above definition can be generalized naturally so that the adversary gives
multiple commitments in parallel in the right interaction. The non-malleability
in this generalized setting is called parallel non-malleability. (It is known that
this “one-many” definition implies the “many-many” one, where the adversary
receives multiple commitments in the left session [32].)

574 S. Garg et al.

Robust Non-malleability. We next recall the definition of k-robust non-
malleability (a.k.a. non-malleability w.r.t. k-round protocols) [30]. Consider
a man-in-the-middle adversary M that participates in one left interaction—
communicating with a machine B—and one right interaction—communicating
with a receiver a commitment scheme 〈C,R〉. As in the standard definition
of non-malleability, M can choose the identity in the right interaction. We
denote by mimB,M

〈C,R〉(y, z) the random variable consisting of the view of M(z)
in a man-in-the-middle execution when communicating with B(y) on the left
and an honest receiver on the right, combined with the value M(z) commits
to on the right. Intuitively, 〈C,R〉 is non-malleable w.r.t. B if mimB,M

〈C,R〉(y1, z)

and mimB,M
〈C,R〉(y2, z) are indistinguishable whenever interactions with B(y1) and

B(y2) are indistinguishable.

Definition 2. Let 〈C,R〉 be a commitment scheme and B be a ppt ITM. We say
that a commitment scheme 〈C,R〉 is non-malleable w.r.t. B if the following
holds: For every two sequences {y1

n}n∈N and {y2
n}n∈N such that y1

n, y2
n ∈ {0, 1}n,

if it holds that for any ppt ITM A,
{〈B(y1

n),A(z)〉(1n)
}

n∈N,z∈{0,1}∗ ≈ {〈B(y2
n),A(z)〉(1n)

}

n∈N,z∈{0,1}∗ ,

it also holds that for any ppt man-in-the-middle adversary M,
{

mimB,M
〈C,R〉(y1, z)

}

n∈N,z∈{0,1}∗
≈

{

mimB,M
〈C,R〉(y2, z)

}

n∈N,z∈{0,1}∗
.

〈C,R〉 is k-robust if 〈C,R〉 is non-malleable w.r.t. any machine that interacts
with the adversary in k rounds. We define parallel k-robustness naturally.

Black-Box Instantiation. There exists a constant-round black-box construc-
tion of a parallel (actually, concurrent) non-malleable commitment scheme based
on one-way functions [19]. In the full version of this paper, we show that any
parallel non-malleable commitment can be transformed into a parallel k-robust
non-malleable one in the black-box way by using collision-resistant hash func-
tions (more precisely, by using statistically hiding commitment schemes, which
can be constructed from collision-resistant hash functions). If k is constant, the
round complexity increases only by a constant factor in this transformation.

3.2 UC Security and Its SPS Variant

We next recall the definition of UC security [4] and its SPS variant [2,14,46].
A part of the text below is taken from [14]. (We assume that the readers are
familiar with the UC framework. A brief overview can be found in, e.g., [7].)

UC Security. Recall that in the UC framework, the model for protocol execu-
tion consists of the environment Z, the adversary A, and the parties running
protocol π. In this paper, we consider static adversaries and assume the exis-
tence of authenticated communication channels. Let EXECπ,A,Z(n, z) denote

A New Approach to Black-Box Concurrent Secure Computation 575

a random variable for the output of Z on security parameter n ∈ N and input
z ∈ {0, 1}∗ with a uniformly chosen random tape. Let EXECπ,A,Z denote the
ensemble {EXECπ,A,Z(n, z)}n∈N,z∈{0,1}∗ .

The security of a protocol π is defined using the ideal protocol. In the ideal
protocol, all the parties simply hand their inputs to the ideal functionality F ,
which carries out the desired task securely and gives outputs to the parties; the
parties then forward these outputs to Z. The adversary Sim in the execution
of the ideal protocol is often called the simulator. Let π(F) denote the ideal
protocol for functionality F .

We say that a protocol π emulates protocol φ if for any adversary A there
exists an adversary Sim such that no environment Z, on any input, can tell
whether it is interacting with A and parties running π or it is interacting with
Sim and parties running φ. We say that π securely realizes an ideal functionality
F if it emulates the ideal protocol Π(F).

UC Security with Super-Polynomial Simulation. UC-SPS security is a
relaxed notion of UC security where the simulator is given access to super-
polynomial computational resources.

Definition 3. Let π and φ be protocols. We say that π UC-SPS-emulates φ if
for any adversary A there exists a super-polynomial-time adversary Sim such
that for any environment Z that obeys the rules of interaction for UC security,
we have EXECφ,Sim,Z ≈ EXECπ,A,Z .

Definition 4. Let F be an ideal functionality and let π be a protocol. We say
that π UC-SPS-realizes F if π UC-SPS-emulates the ideal process Π(F).

The multi-session extension of an ideal functionality. When showing
concurrent security of a protocol π under SPS security, we need to construct a
simulator in a setting where parties execute π concurrently. To consider the simu-
lator in this setting, we use a multi-session extension of an ideal functionality [8].
Roughly speaking, the multi-session extension F̂ of an ideal functionality F is a
functionally that internally runs multiple copies of F .

4 Our SPS Concurrent OT Protocol

In this section, we prove the following theorem.

Theorem 2. Assume the existence of constant-round semi-honest oblivious
transfer protocols and collision-resistant hash functions. Let FOT be the ideal
oblivious transfer functionality (Fig. 1) and F̂OT be its multi-session extension.
Then, there exists a constant-round protocol that UC-SPS realizes F̂OT , and it
uses the underlying primitives in the black-box way.

576 S. Garg et al.

The ideal OT functionality FOT interacts with a sender S and a receiver R.

– Upon receiving a message (sid, sender, v0, v1) from S, where each vi ∈ {0, 1}n,
store (v0, v1).

– Upon receiving a message (sid, receiver, u) from R, where u ∈ {0, 1}, check if
a (sid, sender, . . .) message was previously sent. If yes, send (sid, vu) to R and
(sid) to the adversary Sim and halt. If not, send nothing to R.

Fig. 1. The oblivious transfer functionality FOT .

4.1 Protocol Description

In our protocol, we use the following building blocks.

– A two-round statistically binding commitment Com and a four-round statis-
tically binding extractable commitment ExtCom, both of which can be con-
structed from one-way functions in the black-box way [24,38,44].

– A O(1)-round OT protocol mS-OT that is secure against malicious senders
and semi-honest receivers.5 As shown in [23], such a OT protocol can be
obtained from any semi-honest one in the black-box way.

– A O(1)-round parallel non-malleable commitment NMCom that is parallel
k-robust for sufficiently large constant k. (Concretely, we require that k is
larger than the round complexity of the above three building blocks.) As
remarked in Sect. 3.1, we show in the full version of this paper that such a
non-malleable commitment scheme can be constructed from collision-resistant
hash functions in the black-box way.

Our OT protocol ΠOT is described below. As explained in Sect. 2.1, (1) our
protocol is based on the OT protocol of Lin and Pass [31], which roughly consists
of coin-tossing, semi-honest OT, OT combiner, and cut-and-choose, and (2) our
protocol additionally uses non-malleable commitments, which will be used in the
security proof to argue that the adversary cannot make the “trapdoor statement”
true even in the concurrent setting. Below, we give intuitive explanations in italic.

Inputs: The input to the sender S is v0, v1 ∈ {0, 1}n. The input to the receiver
R is u ∈ {0, 1}.

Stage 1: (Preprocess for cut-and-choose)

1. S commits to a random subset ΓS ⊂ [11n] of size n by using Com.
2. R commits to a random subset ΓR ⊂ [11n] of size n by using Com.

Comment:As in the OT protocol of Lin and Pass [31], the subsets that will be
used in the cut-and-choose stages are committed in advance to prevent selective
opening attacks.
5 We only requires mS-OT to be secure under a game-based definition (which is pre-

served under parallel composition). For details, see the full version of this paper.

A New Approach to Black-Box Concurrent Secure Computation 577

Stage 2:

1. (Coin tossing for S) S commits to random strings aS = (aS
1 , . . . , aS

11n)
by using Com; let dS

1 , . . . , dS
11n be the decommitments. R then sends ran-

dom strings bS = (bS
1 , . . . , bS

11n) to S. S then defines rS = (rS
1 , . . . , rS

11n)
by rS

i
def= aS

i ⊕ bS
i for each i ∈ [11n] and parses rS

i as si,0 ‖si,1 ‖τS
i for each

i ∈ [11n].
2. (Coin tossing for R) R commits to random strings aR = (aR

1 , . . . , aR
11n)

by using Com; let dR
1 , . . . , dR

11n be the decommitments. S then sends ran-
dom strings bR = (bR

1 , . . . , bR
11n) to R. R then defines rR = (rR

1 , . . . , rR
11n)

by rR
i

def= aR
i ⊕ bR

i for each i ∈ [11n] and parses rR
i as ci ‖ τR

i for each
i ∈ [11n].

Stage 3: (mS-OTs with random inputs)

S and R execute 11n instances of mS-OT in parallel. In the i-th instance, S
uses (si,0, si,1) as the input and τS

i as the randomness, and R uses ci as the
input and τR

i as the randomness, where {si,0, si,1, τ
S
i }i and {ci, τ

R
i }i are the

random coins that were obtained in Stage 2. The output to R is denoted by
s̃1, . . . , s̃11n, which are supposed to be equal to s1,c1 , . . . , s11n,c11n .

Stage 4: (NMCom and ExtCom for checking honesty of R)

1. R commits to (aR
1 , dR

1), . . . (aR
11n, dR

11n) using NMCom. Let eR
1 , . . . , eR

11n be
the decommitments.

2. R commits to (aR
1 , dR

1 , eR
1), . . . (aR

11n, dR
11n, eR

11n) using ExtCom.

Comment:Roughly, the commitments in this stage, along with the cut-and-
choose in the next stage, will be used in the security proof to argue that even
cheating R must behave honestly in most instances of mS-OT in Stage 3.A key
point is that given the values that are committed to in NMCom or ExtCom in this
stage, one can obtain the random coins that R obtained in Stage 2 and thus can
check whether R behaved honestly in Stage 3.

Stage 5: (Cut-and-choose against R)

1. S reveals ΓS by decommitting the Com commitment in Stage 1-1.
2. For every i ∈ ΓS , R reveals (aR

i , dR
i , eR

i) by decommitting the i-th ExtCom
commitment in Stage 4.

3. For every i ∈ ΓS , S checks the following.

– ((aR
i , dR

i), eR
i) is a valid decommitment of the i-th NMCom commitment

in Stage 4.
– (aR

i , dR
i) is a valid decommitment of the i-th Com commitment in Stage

2-2.
– R executed the i-th mS-OT in Stage 3 honestly using ci ‖ τR

i , which is
obtained from rR

i = aR
i ⊕ bR

i as specified by the protocol.

578 S. Garg et al.

Comment: In other words, for each index that it randomly selected in Stage 1,
Schecks whether R behaved honestly in Stages 3 and 4 on that index.

Stage 6: (OT combiner) Let Δ := [11n]\ΓS .

1. R sends αi := u ⊕ ci to S for every i ∈ Δ.
2. S computes a (6n + 1)-out-of-10n secret sharing of v0, denoted by ρ0 =

(ρ0,i)i∈Δ, and computes a (6n+1)-out-of-10n secret sharing of v1, denoted
by ρ1 = (ρ1,i)i∈Δ. Then, S sends βb,i := ρb,i⊕si,b⊕αi

to R for every i ∈ Δ,
b ∈ {0, 1}.

3. R computes ρ̃i := βu,i ⊕ s̃i for every i ∈ Δ. Let ρ̃ := (ρ̃i)i∈Δ.

Comment: In this stage, S and R execute OT with their true inputs by using
the outputs of mS-OT in Stage 3. Roughly speaking, this stage is secure as long
as most instances of mS-OT in Stage 3 are correctly executed.

Stage 7: (NMCom and ExtCom for checking honesty of S)

1. S commits to (aS
1 , dS

1), . . . (aS
11n, dS

11n) using NMCom. Let eS
1 , . . . , eS

11n be
the decommitments.

2. R commits to (aS
1 , dS

1 , eS
1), . . . (aS

11n, dS
11n, eS

11n) using ExtCom.

Stage 8: (Cut-and-choose against S)

1. R reveals ΓR by decommitting the Com commitment in Stage 1-2.
2. For every i ∈ ΓR, S reveals (aS

i , dS
i , eS

i) by decommitting the i-th ExtCom
commitment in Stage 7.

3. For every i ∈ ΓR, R checks the following.

– ((aS
i , dS

i), eS
i) is a valid decommitment of the i-th NMCom commitment

in Stage 7.
– (aS

i , dS
i) is a valid decommitment of the i-th Com commitment in Stage

2-1.
– S executed the i-th mS-OT in Stage 3 honestly using si,0 ‖ si,1 ‖ τS

i ,
which is obtained from rS

i = aS
i ⊕ bS

i as specified by the protocol.

Output: R outputs Value(ρ̃, ΓR ∩ Δ), where Value(·, ·) is the function that is
defined in Fig. 2.

Comment:As in the OT protocol of Lin and Pass [31], a carefully designed
reconstruction procedure Value(·, ·) is used here so that the simulator can extract
correct implicit inputs from cheating S by obtaining sharing that is sufficiently
“close” to ρ̃.

A New Approach to Black-Box Concurrent Secure Computation 579

Reconstruction procedure Value(·, ·): For a sharing s = (si)i∈Δ and a set Θ ⊂ Δ,
the output of Value(s, Θ) is computed as follows. If s is 0.9-close to a valid codeword
w = (wi)i∈Δ that satisfies si = wi for every i ∈ Θ, then Value(s, Θ) is the value
decoded from w; otherwise, Value(s, Θ) = ⊥.

Fig. 2. The function Value(·, ·).

4.2 Simulator SimOT

To prove the security of ΠOT, we consider the following simulator SimOT. Recall
that our goal is to prove that ΠOT US-SPS realizes the multi-session extension
of FOT . We therefore consider a simulator that works against adversaries that
participate in multiple sessions of ΠOT both as senders and as receivers.

Let Z be any environment, A be any adversary that participates in multiple
sessions of ΠOT. Our simulator SimOT internally invokes A and simulates each
of the sessions for A as follows.

When R is corrupted: In a session where the receiver R is corrupted, SimOT

simulates the sender S for A by extracting the implicit input u∗ ∈ {0, 1} from
A. During the simulation, SimOT extracts the committed subset and random
coins in Stages 1 and 2 by brute force; the former extraction is needed to execute
most instances mS-OT in Stage 3 with true randomness (which is crucial to use
their security in the analysis), and the latter extraction is needed to infer what
information A obtained in the mS-OT instances in Stage 3 (which is crucial to
extract the implicit input u∗ ∈ {0, 1} from A).

Concretely, SimOT simulates S for A as follows. From Stage 1 to Stage 5,
SimOT interacts with A in the same way as an honest S except for the following.

– From the Com commitments from A in Stages 1 and 2, the committed subset
ΓR and the committed strings aR = (aR

1 , . . . , aR
11n) are extracted by brute

force.
SimOT then defines rR = (rR

1 , . . . , rR
11n) by rR

i
def= aR

i ⊕ bR
i for each i ∈ [11n]

and parses rR
i as ci ‖τR

i for each i ∈ [11n]. (Notice that rR is the outcome of
the coin-tossing that A must have obtained.)

– In Stage 3, the i-th mS-OT is executed with a random input and true ran-
domness rather than with (si,0, si,1) and τS

i for every i �∈ ΓR.

In Stage 6, SimOT interacts with A as follows.

1. Receive {αi}i∈Δ from A in Stage 6-1.
2. Determine the implicit input u∗ of A as follows. Let I0, I1 be the sets such

that for b ∈ {0, 1} and i ∈ Δ, we have i ∈ Ib if and only if:
– i ∈ ΓR, or
– A did not execute the i-th mS-OT in Stage 3 honestly using ci ‖ τR

i as
the input and randomness, or

580 S. Garg et al.

– ci = b ⊕ αi, and A executed the i-th mS-OT in Stage 3 honestly using
ci ‖τR

i as the input and randomness.
Then, define u∗ by u∗ def= 0 if |I0| ≥ 6n + 1 and u∗ def= 1 otherwise.
(Roughly, |Ib| is the number of strings that A can obtain out of {si,b⊕αi

}i∈Δ

by requiring S to reveal them in Stage 8, by cheating in mS-OT, or by
executing mS-OT honestly with input b ⊕ αi. We remind the readers that
{si,b⊕αi

}i∈Δ are the strings that are used to mask ρb = (ρb,i)i∈Δ in
Stage 6.)

3. Send u∗ to the ideal functionality and obtains v∗.
4. Subsequently, interact with A in the same way as an honest S assuming that

the inputs to S are vu∗ = v∗ and random v1−u∗ .

From Stage 7 to Stage 8, SimOT interacts with A in the same way as an honest
S except that in Stage 7, an all-zero string is committed in the i-th NMCom
rather than (aS

i , dS
i) for every i �∈ ΓR, and an all-zero string is committed in the

i-th ExtCom rather than (aS
i , dS

i , eS
i) for every i �∈ ΓR.

WhenS is corrupted: In a session where the sender S is corrupted, SimOT

simulates the receiver R for A by extracting the implicit input v∗
0 , v

∗
1 from A.

During the simulation, SimOT extracts the committed subset and random coins
in Stages 1 and 2 by brute force; the former extraction is needed to execute
most instances mS-OT in Stage 3 with true randomness (which is crucial to use
their security in the analysis), and the latter extraction is needed to learn what
input A used in the mS-OT instances in Stage 3 (which is crucial to extract the
implicit input v∗

0 , v
∗
1 from A).

Concretely, SimOT simulates R for A as follows. SimOT interacts with A in
the same way as an honest R in all the stages except for the following.

– From the Com commitment from A in Stage 1, the committed subset ΓS is
extracted by brute force.

– In Stage 3, the i-th mS-OT is executed with a random input and true ran-
domness rather than with ci and τR

i for every i �∈ ΓS .
– In Stage 4, an all-zero string is committed in the i-th NMCom rather than

(aS
i , dS

i) for every i �∈ ΓS , and an all-zero string is committed in the i-th
ExtCom rather than (aS

i , dS
i , eS

i) for every i �∈ ΓS .
– In Stage 6, αi is a random bit rather than αi = u ⊕ ci for every i ∈ Δ, and

ρ̃i is not computed for any i ∈ Δ.

Then, SimOT determines the implicit inputs v∗
0 , v

∗
1 of A as follows.

1. From the Com commitments from A in Stage 2, extract the committed strings
aS = (aS

1 , . . . , aS
11n) by brute force.

2. Define rS = (rS
1 , . . . , rS

11n) by rS
i

def= aS
i ⊕ bS

i for each i ∈ [11n] and parse rS
i

as si,0 ‖ si,1 ‖ τS
i for each i ∈ [11n]. (Notice that rS is the outcome of the

coin-tossing that A must have obtained.)

A New Approach to Black-Box Concurrent Secure Computation 581

3. Define ρext
b = (ρextb,i)i∈Δ for each b ∈ {0, 1} as follows: ρextb,i

def= βb,i ⊕ si,b⊕αi

if A executed the i-th mS-OT in stage 3 honestly using si,0 ‖ si,1 ‖ τS
i , and

ρextb,i
def= ⊥ otherwise.

4. For each b ∈ {0, 1}, define v∗
b

def= Value(ρext
b , ΓR ∩ Δ).

Then, SimOT sends v∗
0 , v

∗
1 to the ideal functionality.

4.3 Proof of Indistinguishability

We show the indistinguishability by using a hybrid argument. Before defining
hybrid experiments, we define special messages, which we use in the definitions
of the hybrid experiments. (Essentially, they are the messages on which the
simulator applies brute-force extractions.)

– first special message is the Com commitment in Stage 1-1.
– second special message is the Com commitment in Stage 1-2.
– third special message is the Com commitments in Stage 2-1.
– fourth special message is the Com commitments in Stage 2-2.

Hybrid Experiments. Now, we define hybrid experiments. Let m denote an
upper bound on the number of the sessions that A starts. Note that the number
of special messages among m sessions can be bounded by 4m. We order those
4m special messages by the order of their appearances; we use SMk to denote
the k-th special messages, and s(k) to denote the session that SMk belongs to.

We define hybrids H0 and Hk:1, . . . , Hk:7 (k ∈ [4m]) as follows. (For conve-
nience, in what follows we occasionally denote H0 as H0:7.)

Remark 2 (Rough idea of the hybrids). In the sequence of the hybrid experi-
ments, we gradually modify the read-world experiment to the ideal-world one.
All the experiments (except for H0) involve super-polynomial-time brute-force
extraction, but we make sure that Hk:i (i ∈ [7]) involves brute-force extraction
only until SMk, and it deviates from the previous hybrid only after SMk. These
properties help us prove the indistinguishability of each neighboring hybrids
because we can think the results of brute-force extraction as non-uniform advice
and use the non-uniform security of the underlying primitives to show the indis-
tinguishability.6 ♦

HybridH0. H0 is the same as the real experiment.

HybridHk:1. Hk:1 is the same as Hk−1:7 except that in session s(k), if S is
corrupted and SMk is first special message,
6 We remark that, unlike Garg et al. [14] (who give a non-black-box constant-round

SPS protocol), we cannot replace brute-force extraction with rewinding extraction
for obtaining polynomial-time hybrids. This is because when considering black-box
constructions, we cannot easily guarantee that brute-force extraction and rewinding
one obtain the same value.

582 S. Garg et al.

– the committed subset ΓS is extracted by brute force in Stage 1-1,
– the value committed to in the i-th NMCom commitment in Stage 4 is switched

to an all-zero string for every i �∈ ΓS , and
– the value committed to in the i-th ExtCom commitment in Stage 4 is switched

to an all-zero string for every i �∈ ΓS .

HybridHk:2. Hk:2 is the same as Hk:1 except that in session s(k), if S is cor-
rupted and SMk is first special message, the i-th mS-OT in Stage 3 is executed
with a random input and true randomness for every i �∈ ΓS .

HybridHk:3. Hk:3 is the same as Hk:2 except that in session s(k), if S is cor-
rupted and SMk is third special message, the following modifications are made.

1. The committed strings aS = (aS
1 , . . . , aS

11n) are extracted by brute force in
Stage 2-1. Define rS = (rS

1 , . . . , rS
11n) by rS

i
def= aS

i ⊕ bS
i for each i ∈ [11n], and

parse rS
i as si,0 ‖ si,1 ‖ τS

i for each i ∈ [11n]. Define ρext
b = (ρextb,i)i∈Δ for each

b ∈ {0, 1} as follows: ρextb,i
def= βb,i ⊕ si,b⊕αi

if A executed the i-th mS-OT in
stage 3 honestly using si,0 ‖si,1 ‖τS

i , and ρextb,i = ⊥ otherwise.
2. R outputs Value(ρext

u , ΓR ∩ Δ) rather than Value(ρ̃, ΓR ∩ Δ). (Recall that u is
the real input to R.)

HybridHk:4. Hk:4 is the same as Hk:3 except that in session s(k), if S is cor-
rupted and SMk is third special message, αi is a random bit rather than αi = u⊕ci

for every i ∈ Δ in Stage 6-1 and ρ̃i is no longer computed for any i ∈ Δ in
Stage 6-3.

HybridHk:5. Hk:5 is the same as Hk:4 except that in session s(k), if R is cor-
rupted and SMk is second special message,

– the committed subset ΓR is extracted by brute force in Stage 1-2,
– the value committed in the i-th NMCom commitment in Stage 7 is switched

to an all-zero string for every i �∈ ΓR, and
– the value committed in the i-th ExtCom commitment in Stage 7 is switched

to an all-zero string for every i �∈ ΓR.

HybridHk:6. Hk:6 is the same as Hk:5 except that in session s(k), if R is cor-
rupted and SMk is second special message, the i-th mS-OT in Stage 3 is executed
with a random input and true randomness for every i �∈ ΓR.

HybridHk:7. Hk:7 is the same as Hk:6 except that in session s(k), if R is cor-
rupted and SMk is fourth special message, the following modifications are made.

1. The committed strings aR = (aR
1 , . . . , aR

11n) are extracted by brute force in
Stage 2-2. Define rR = (rR

1 , . . . , rR
11n) by rR

i
def= aR

i ⊕ bR
i for each i ∈ [11n],

and parse rR
i as ci ‖τR

i for each i ∈ [11n]. Define u∗ as follows. Let I0 and I1
be the set such that for b ∈ {0, 1} and i ∈ Δ, we have i ∈ Ib if and only if:

A New Approach to Black-Box Concurrent Secure Computation 583

– i ∈ ΓR, or
– A did not execute the i-th mS-OT in Stage 3 honestly using ci ‖τR

i as the
input and randomness, or

– ci = b ⊕ αi, and A executed the i-th mS-OT in Stage 3 honestly using
ci ‖τR

i as the input and randomness.

Then, define u∗ by u∗ def= 0 if |I0| ≥ 6n + 1 and u∗ def= 1 otherwise.

2. In Stage 6, ρ1−u∗ is a secret sharing of a random bit rather than that of
v1−u∗ .

We remark that in H4m:7, all the messages from the honest parties and their
output are computed as in SimOT.

Indistinguishability of Each Neighboring Hybrids. Below, we show that
each neighboring hybrids are indistinguishable, and additionally show, for tech-
nical reasons, that an invariant condition holds in each session of every hybrid.

First, we define the invariant condition.

Definition 5 (Invariant Condition (when R is corrupted)). For any ses-
sion in which R is corrupted, we say that the invariant condition holds in that
session if the following holds when the cut-and-choose in Stage 5 is accepted.

1. Let (âR
1 , d̂R

1), . . . (âR
11n, d̂R

11n) be the values that are committed in NMCom in
Stage 4. Let Ibad ⊂ [11n] be the set such that i ∈ Ibad if and only if
(a) (âR

i , d̂R
i) is not a valid decommitment of the i-th Com commitment in

Stage 2-2, or
(b) R does not execute the i-th mS-OT in Stage 3 honestly using ĉi ‖ τ̂R

i as
the input and randomness, where ĉi ‖ τ̂R

i is obtained from r̂R
i = âR

i ⊕ bR
i .

Then, it holds that |Ibad| < n.

Remark 3. Roughly speaking, this condition guarantees that most of the
mS-OTs in Stage 3 are honestly executed using the outcome of the coin tossing,
which in turn guarantees that the cheating receiver’s input can be extracted by
extracting the outcome of the coin tossing. ♦

Remark 4. When Stage 5 is accepted, we also have Ibad ∩ ΓS = ∅ from the
definition of Ibad. ♦

Definition 6 (Invariant Condition (when S is corrupted)). For any ses-
sion in which S is corrupted, we say that the invariant condition holds in that
session if the following hold when the cut-and-choose in Stage 8 is accepted.

1. Let (âS
1 , d̂S

1), . . . (âS
11n, d̂S

11n) be the values that are committed in NMCom in
Stage 7. Let Ibad ⊂ [11n] be the set such that i ∈ Ibad if and only if

(a) (âS
i , d̂S

i) is not a valid decommitment of the i-th Com commitment in Stage
2-1, or

584 S. Garg et al.

(b) S does not execute the i-th mS-OT in Stage 3 honestly using ŝi,0 ‖ ŝi,1 ‖ τ̂S
i

as the input and randomness, where ŝi,0 ‖ ŝi,1 ‖ τ̂S
i is obtained from r̂S

i =
âS

i ⊕ bS
i .

Then, it holds that |Ibad| < 0.1n.

2. For each b ∈ {0, 1}, define ρnm
b = (ρnmb,i)i∈Δ as follows: ρnmb,i

def= βb,i ⊕ ŝi,b⊕αi

if i �∈ Ibad and ρnmb,i
def= ⊥ otherwise. Then, for each b ∈ {0, 1}, ρnmb is either

0.9-close to a valid codeword w = (wi)i∈Δ that satisfies wi = ρnmb,i for every
i ∈ ΓR or 0.15-far from any such valid codeword.

Remark 5. Roughly speaking, this condition guarantees that the cheating
sender’s input can be extracted from the outcome of the coin tossing. In par-
ticular, it guarantees that the sharing that is computed from the outcome of
mS-OTs (i.e., the sharing that is computed by the honest receiver) and the shar-
ing that is computed from the outcome of the coin tossing (i.e., the sharing that
is computed by the simulator) are very “close” (see Claim 3 below). ♦

Remark 6. When Stage 8 is accepted, we also have Ibad ∩ ΓR = ∅ from the
definition of Ibad. ♦

Next, we show that the invariant condition holds in every session in H0

(i.e., the real experiment).

Definition 7. We say that A cheats in a session if the invariant condition
does not hold in that session.

Lemma 1. In H0, A does not cheat in every session except with negligible prob-
ability.

Proof. Assume for contradiction that in H0, A cheats in a session with non-
negligible probability. Since the number of the sessions is bounded by a polyno-
mial, there exists a function i∗(·) and a polynomial p(·) such that for infinitely
many n, A cheats in the i∗(n)-th session with probability at least 1/p(n); fur-
thermore, since A cheats only when either R or S is corrupted, in the i∗(n)-th
session either R is corrupted for infinitely many such n or S is corrupted for
infinitely many such n. In both cases, we derive contradiction by using A to
break the hiding property of Com.

Case 1. R is corrupted in the i∗(n)-th session. We show that when A cheats,
we can break the hiding property of the Com commitment in Stage 1-1 (i.e., the
commitment by which ΓS is committed to). From the definition of the invariant
condition (Definition 5), when A cheats, we have |Ibad| ≥ n even though the
cut-and-choose in Stage 5 is accepting (and hence Ibad ∩ ΓS = ∅ as remarked in
Remark 4), where Ibad ⊆ [11n] is the set defined from the committed values of
the NMCom commitments in Stage 4. If we can compute Ibad efficiently, we can
use it to distinguish ΓS from a random subset of size n (this is because a random

A New Approach to Black-Box Concurrent Secure Computation 585

subset Γ of size n satisfies Ibad ∩ Γ = ∅ only with negligible probability when
|Ibad| ≥ n), so we can use it to break the hiding property of the commitment to
ΓS . However, Ibad is not efficiently computable since the committed values of the
NMCom commitments are not efficiently computable. We thus first show that
we can “approximate” Ibad by extracting the committed values of the ExtCom
commitments in Stage 4. Details are given below.

First, we observe that if we extract the committed values of the ExtCom
commitments in Stage 4 of the i∗(n)-th session, the extracted values,
(âR

1 , d̂R
1 , êR

1), . . . , (âR
11n, d̂R

11n, êR
11n), satisfy the following condition.

– Let Îbad ⊂ [11n] be a set such that i ∈ Îbad if and only if
1. ((âR

i , d̂R
i), êR

i) is not a valid decommitment of the i-th NMCom commit-
ment in Stage 4, or

2. (âR
i , d̂R

i) is not a valid decommitment of the i-th Com commitment in
Stage 2-2, or

3. R does not execute the i-th mS-OT in Stage 3 honestly using ĉi ‖ τ̂R
i as

the input and randomness, where ĉi ‖ τ̂R
i is obtained from r̂R

i = âR
i ⊕ bR

i .
Then, |Îbad| ≥ n and Îbad ∩ ΓS = ∅ with probability at least 1/2p(n).

The extracted values satisfy this condition because when A cheats, we have
|Îbad| ≥ n and Îbad∩ΓS = ∅ except with negligible probability. (We have |Îbad| ≥
n since we have Ibad ⊂ Îbad from the definitions of Ibad, Îbad and the binding
property of NMCom. We have Îbad ∩ ΓS = ∅ since when the cut-and-choose in
Stage 5 is accepting, for every i ∈ ΓS the i-th ExtCom commitment is a valid
decommitment of the i-th NMCom commitment, and Ibad ∩ ΓS = ∅.)

Based on this observation, we derive contradiction by considering the follow-
ing adversary ACom against the hiding property of Com.

ACom receives a Com commitment c∗ in which either Γ 0
S or Γ 1

S is committed,
where Γ 0

S , Γ 1
S ⊂ [11n] are random subsets of size n.

Then, ACom internally executes the experiment H0 honestly except that
in the i∗(n)-th session, ACom uses c∗ as the commitment in Stage 1-1 (i.e.,
as the Com commitment in which S commits to a subset ΓS). When the
experiment H0 reaches Stage 4 of the i∗(n)-th session, ACom extracts the
committed values of the ExtCom commitments in this stage by using its
extractability.7 Let Îbad ⊂ [11n] be the set that is defined as above from
the extracted values. Then, ACom outputs 1 if and only if |Îbad| ≥ n and
Îbad ∩ Γ 1

S = ∅.

If ACom receives a commitment to Γ 1
S , ACom outputs 1 with probability at least

1/2p(n) (this follows from the above observation). In contrast, if ACom receives
a commitment to Γ 0

S , ACom outputs 1 with exponentially small probability (this
is because when no information about Γ 1

S is fed into H0, the probability that
|Îbad| ≥ n but Îbad ∩ Γ 1

S = ∅ is exponentially small). Hence, ACom breaks the
hiding property of Com.
7 This extraction involves rewinding the execution of the whole experiment, i.e., the

executions of the environment, the adversary, and all the other parties.

586 S. Garg et al.

Case 2. S is corrupted in the i∗(n)-th session. The proof for this case is similar
to (but a little more complex than) the one for Case 1. Specifically, we show
that if the invariant condition does not hold, we can break the hiding property
of Com in Stage 1-2 by approximating Ibad using the extractability of ExtCom.
We give a formal proof in the full version of this paper. (A somewhat similar
proof is given as the proof of Claim 4 later.) ��

Finally, we show the indistinguishability between each neighboring hybrids.

Lemma 2. Assume that in Hk−1:7 (k ∈ [4m]), A does not cheat in sessions
s(k), . . . , s(4m) except with negligible probability. Then,

– Hk−1:7 and Hk:1 are indistinguishable, and
– in Hk:1, A does not cheat in sessions s(k), . . . , s(4m) except with negligible

probability.

Proof. We prove the lemma by using a hybrid argument. Specifically, we consider
the following intermediate hybrid H ′

k−1:7.

HybridH ′
k−1:7. H ′

k−1:7 is the same as Hk−1:7 except that in session s(k), if S
is corrupted and SMk is first special message,

– the committed subset ΓS is extracted by brute force in Stage 1-1, and
– the value committed to in the i-th ExtCom commitment in Stage 4 is switched

to an all-zero string for every i �∈ ΓS .

Claim 1. Assume that in Hk−1:7, A does not cheat in sessions s(k), . . . , s(4m)
except with negligible probability. Then,

– Hk−1:7 and H ′
k−1:7 are indistinguishable, and

– in H ′
k−1:7, A does not cheat in sessions s(k), . . . , s(4m) except with negligible

probability.

Proof. We first show the indistinguishability between Hk−1:7 and H ′
k−1:7.

Assume for contradiction that Hk−1:7 and H ′
k−1:7 are distinguishable. From an

average argument, we can fix the execution of the experiment up until SMk

(inclusive) in such a way that even after being fixed, Hk−1:7 and H ′
k−1:7 are

still distinguishable. As remarked in Remark 2, no brute-force extraction is per-
formed after SMk in Hk−1:7 and H ′

k−1:7; hence, by considering the transcript
(including the inputs and randomness of all the parties) and the extracted val-
ues up until SMk as non-uniform advice, we can break the hiding property of
ExtCom as follows.

The adversary AExtCom internally executes Hk−1:7 from SMk using the non-
uniform advice. In Stage 4 of session s(k), AExtCom sends (aR

i , dR
i , eR

i)i	∈ΓS

and (0, 0, 0)i	∈ΓS
to the external committer, receives back ExtCom commit-

ments (in which either (aR
i , dR

i , eR
i)i	∈ΓS

or (0, 0, 0)i	∈ΓS
are committed to),

and feeds them into Hk−1:7. After the execution of Hk−1:7 finishes, AExtCom

outputs whatever Z outputs in the experiment.

A New Approach to Black-Box Concurrent Secure Computation 587

When AExtCom receives commitments to (aR
i , dR

i , eR
i)i	∈ΓS

, the internally
executed experiment is identical with Hk−1:7, whereas when AExtCom

receives a commitments to (0, 0, 0)i	∈ΓS
, the internally executed experi-

ment is identical with H ′
k−1:7. Hence, from the assumption that Hk−1:7 and

H ′
k−1:7 are distinguishable (even after being fixed up until SMk), AExtCom

distinguishes ExtCom commitments.

We next show that in H ′
k−1:7, A does not cheat in sessions s(k), . . . , s(4m).

Assume for contradiction that in H ′
k−1:7, A cheats in one of those sessions, say,

session s(j), with non-negligible probability. Then, from an average argument,
we can fix the execution of the experiment up until SMk (inclusive) in such a
way that even after being fixed, A cheats in session s(j) only with negligible
probability in Hk−1:7 but with non-negligible probability in H ′

k−1:7. Then, by
considering the transcript and the extracted values up until SMk as non-uniform
advice, we can break the robust non-malleability of NMCom as follows. (Note
that the ExtCom commitments in sessions s(k), . . . , s(4m) starts only after SMk.)

The man-in-the-middle adversary ANMCom internally executes Hk−1:7 from
SMk using the non-uniform advice. In Stage 4 of session s(k), ANMCom sends
(aR

i , dR
i , eR

i)i	∈ΓS
and (0, 0, 0)i	∈ΓS

to the external committer, receives back
ExtCom commitments (in which either (aR

i , dR
i , eR

i)i	∈ΓS
or (0, 0, 0)i	∈ΓS

are
committed to), and feeds them into Hk−1:7. Also, in session s(j), ANMCom

forwards the NMCom commitments from A to the external receiver (specif-
ically, the NMCom commitments in Stage 4 if R is corrupted and in Stage 7
if S is corrupted). After the execution of Hk−1:7 finishes, ANMCom outputs
its view.
The distinguisher DNMCom takes as input the view of ANMCom and the
values committed by ANMCom (which are equal to the values committed to
by A in session s(j) in the internally executed experiment). DNMCom then
outputs 1 if and only if A cheated in session s(j). (Notice that given the
committed values of the NMCom commitments, DNMCom can check whether
A cheated or not in polynomial time.)
When ANMCom receives commitments to (aR

i , dR
i , eR

i)i	∈ΓS
, the internally

executed experiment is identical with Hk−1:7, whereas when ANMCom

receives a commitments to (0, 0, 0)i	∈ΓS
, the internally executed experi-

ment is identical with H ′
k−1:7. Hence, from the assumption that A cheats

in session s(j) with negligible probability in Hk−1:7 but with non-negligible
probability in H ′

k−1:7, ANMCom breaks the robust non-malleability of
NMCom.

This completes the proof of Claim 1. ��
Claim 2. Assume that in H ′

k−1:7, A does not cheat in sessions s(k), . . . , s(4m)
except with negligible probability. Then,

– H ′
k−1:7 and Hk:1 are indistinguishable, and

– in Hk:1, A does not cheat in sessions s(k), . . . , s(4m) except with negligible
probability.

588 S. Garg et al.

This claim can be proven very similarly to Claim 1 (the only difference is
that we use the hiding property of NMCom rather than that of ExtCom in the
first part, and use the non-malleability of NMCom rather than its robust non-
malleability in the second part). We give a proof in the full version of this paper.

This completes the proof of Lemma 2. ��
Lemma 3. Assume that in Hk:1 (k ∈ [4m]), A does not cheat in sessions
s(k), . . . , s(4m) except with negligible probability. Then,

– Hk:1 and Hk:2 are indistinguishable, and
– in Hk:2, A does not cheat in sessions s(k), . . . , s(4m) except with negligible

probability.

Recall that hybrids Hk:1,Hk:2 differ only in the input and the randomness that
are used in some of the mS-OTs in Stage 3, where those that are derived from
the outcomes of the coin tossing is used in Hk:1 and random inputs and true
randomness are used in Hk:2. Intuitively, we prove this lemma by using the
security of the coin tossing (which is guaranteed by the hiding property of Com)
because it guarantees that the outcome of the coin tossing is pseudorandom. The
proof is quite similar to the proof of Claim 1 (we use the hiding of Com rather
than that of ExtCom), and given in the full version of this paper.

Lemma 4. Assume that in Hk:2 (k ∈ [4m]), A does not cheat in sessions
s(k), . . . , s(4m) except with negligible probability. Then,

– Hk:2 and Hk:3 are indistinguishable, and
– in Hk:3, A does not cheat in sessions s(k), . . . , s(4m) except with negligible

probability.

Proof. Recall that Hk:2 and Hk:3 differ only in that in session s(k) of Hk:3, if
S is corrupted and SMk is third special message, R outputs Value(ρext

u , ΓR ∩ Δ)
rather than Value(ρ̃, ΓR ∩ Δ).

For proving the lemma, it suffices to show that in Hk:3, we have
Value(ρext

u , ΓR ∩Δ) = Value(ρ̃, ΓR ∩Δ) except with negligible probability. This is
because if Value(ρext

u , ΓR∩Δ) = Value(ρ̃, ΓR∩Δ) holds in Hk:3 except with negli-
gible probability, Hk:2 and Hk:3 are statistically close, which implies that in Hk:3,
A does not cheat in sessions s(k), . . . , s(4m) except with negligible probability.

Hence, we show that in Hk:3, we have Value(ρext
u , ΓR ∩Δ) = Value(ρ̃, ΓR ∩Δ)

except with negligible probability. Since Hk:2 and Hk:3 proceed identically until
the end of session s(k), we have that in Hk:3, A does not cheat in sessions s(k)
except with negligible probability. It thus suffices to show the following two
claims.

Claim 3. For any x = (xi)i∈Δ,y = (yi)i∈Δ and a set Θ, we have Value(x, Θ) =
Value(y, Θ) if the following conditions hold.

1. x and y are 0.99-close, and xi = yi holds for every i ∈ Θ.
2. If xi �= ⊥, then xi = yi.

A New Approach to Black-Box Concurrent Secure Computation 589

3. x is either 0.9-close to a valid codeword w = (wi)i∈Δ that satisfies wi = xi

for every i ∈ Θ or 0.14-far from any such valid codeword.

Claim 4. In Hk:3, if in session s(k) the sender S is corrupted, A does not cheat,
and the session is accepting, the following hold.

1. ρext
u and ρ̃ are 0.99-close, and ρextu,i = ρ̃i holds for every i ∈ ΓR ∩ Δ.

2. If ρextu,i �= ⊥, then ρextu,i = ρ̃i.
3. ρext

u is either 0.9-close to a valid codeword w = (wi)i∈Δ that satisfies wi = ρextu,i

for every i ∈ ΓR ∩ Δ or 0.14-far from any such valid codeword.

We prove each of the claims below.

Proof (of Claim 3). We consider the following two cases.

Case 1. x is 0.9-close to a valid codeword w = (wi)i∈Δ that satisfies
wi = xi for every i ∈ Θ: First, we observe that y is 0.9-close to w. Since w
is a valid codeword, we have wi �= ⊥ for every i ∈ Δ; thus, for every i such
that xi = wi, we have xi �= ⊥. Recall that from the assumed conditions, for
every i such that xi �= ⊥, we have xi = yi. Therefore, for every i such that
xi = wi, we have yi = wi, which implies that y is 0.9-close to w.
Next, we observe that w satisfies wi = yi for every i ∈ Θ. From the assumed
conditions, we have xi = yi for every i ∈ Θ. Also, from the condition of this
case, w satisfies wi = xi for every i ∈ Θ. From these two, we have that w
satisfies wi = yi for every i ∈ Θ.
Now, from the definition of Value(·, ·), we have Value(x, Θ) = Value(y, Θ) =
Decode(w).

Case 2. x is 0.14-far from any valid codeword w = (wi)i∈Δ that satis-
fies wi = xi for every i ∈ Θ: For any valid codeword w′ = (w′

i)i∈Δ that
satisfies w′

i = yi for every i ∈ Θ, we observe that y is 0.1-far from w′. Since
we assume that xi = yi holds for every i ∈ Θ, we have w′

i = xi for every
i ∈ Θ. Therefore, from the assumption of this case, x is 0.14-far from w′.
Now, since we assume that x and y are 0.99-close, y is 0.1-far from w′.
Now, from the definition of Value(·, ·), we conclude that Value(x, Θ) =
Value(y, Θ) = ⊥.

Notice that from the assumed conditions, either Case 1 or Case 2 is true. This
concludes the proof of Claim 3. ��
Proof (of Claim 4). Recall that if A does not cheat in an accepting session in
which S is corrupted, we have the following.

1. Let (âS
1 , d̂S

1), . . . (âS
11n, d̂S

11n) be the values committed in NMCom in Stage 7.
Let Ibad ⊂ [11n] be the set that is defined as follows: i ∈ Ibad if and only if

(a) (âS
i , d̂S

i) is not a valid decommitment of the i-th Com commitment in Stage
2-1, or

590 S. Garg et al.

(b) S does not execute the i-th mS-OT in Stage 3 honestly using ŝi,0 ‖ ŝi,1 ‖
τ̂S
i as the input and randomness, where ŝi,0 ‖ ŝi,1 ‖ τ̂S

i is obtained from
r̂S
i = âS

i ⊕ bS
i .

Then, it holds that |Ibad| < 0.1n.

2. For each b ∈ {0, 1}, define ρnm
b = (ρnmb,i)i∈Δ as follows: ρnmb,i

def= βb,i ⊕ ŝi,b⊕αi

if i �∈ Ibad and ρnmb,i
def= ⊥ otherwise. Then, for each b ∈ {0, 1}, ρnmb is either

0.9-close to a valid codeword w = (wi)i∈Δ that satisfies wi = ρnmb,i for every
i ∈ ΓR or 0.15-far from any such valid codeword.

We show that the above two imply all the three conditions in the claim statement.
First, we show that ρext

u and ρ̃ are 0.99-close and that ρextu,i = ρ̃i holds for every
i ∈ ΓR ∩Δ. From the definition of Ibad, we have ρextu,i = ρ̃i for every i �∈ Ibad (this
is because for every i �∈ Ibad, A executed the i-th mS-OT in Stage 3 honestly
using the coin obtained in Stage 2-1, which implies that the value s̃i that was
obtained from the i-th mS-OT is equal to the value si,ci that was obtained by
extracting the coin in Stage 2-1 by brute-force). Then, since |Ibad| < 0.1n and
Ibad∩ΓR = ∅ (the latter holds since the session would be rejected otherwise), we
have that ρext

u and ρ̃ are 0.99-close and that ρextu,i = ρ̃i holds for every i ∈ ΓR ∩Δ.
Next, we show that if ρextu,i �= ⊥ then ρextu,i = ρ̃i. From the definition of ρext

u , if
ρextu,i �= ⊥, A executed the i-th mS-OT in Stage 3 honestly using the coin obtained
in Stage 2-1, so we have ρextu,i = ρ̃i from the argument same as above.

Finally, we show that ρext
u is either 0.9-close to a valid codeword w = (wi)i∈Δ

that satisfies wi = ρextu,i for every i ∈ ΓR ∩ Δ or 0.14-far from any such valid
codeword. From the assumption that A does not cheat, it suffices to consider
the following two cases.

Case 1. ρnm
u is 0.9-close to a valid codeword w = (wi)i∈Δ that satisfies

wi = ρnmb,i for every i ∈ ΓR ∩ Δ: In this case, ρext
u is 0.9-close to w, and

wi = ρextb,i holds for every i ∈ ΓR. This is because for every i such that
ρnmu,i = wi, we have ρnmu,i �= ⊥ and thus we have ρnmu,i = ρextu,i from the definition
of ρnm

u .
Case 2. ρnm

u is 0.15-far from any valid codeword w = (wi)i∈Δ that sat-
isfies wi = ρnmb,i for every i ∈ ΓR ∩Δ: In this case, ρext

u is 0.14-far from any
valid codeword w′ that satisfies w′

i = ρextb,i for every i ∈ ΓR ∩ Δ. This can be
seen by observing the following: (1) for every i ∈ ΓR ∩ Δ, we have i �∈ Ibad
(this is because the session is accepting) and hence ρextu,i = ρnmu,i; (2) therefore,
for any valid codeword w′ that satisfies w′

i = ρextb,i for every i ∈ ΓR ∩ Δ, we
have that w′ also satisfies w′

i = ρnmb,i for every i ∈ ΓR ∩ Δ; (3) then, from the
assumption of this case, ρnm

u is 0.15-far from w′; (4) now, since ρnm
u and ρext

u

are 0.99-close, ρext
u is 0.14-far from w′.

This concludes the proof of Claim 4. ��
This concludes the proof of Lemma 4. ��

A New Approach to Black-Box Concurrent Secure Computation 591

Lemma 5. Assume that in Hk:3 (k ∈ [4m]), A does not cheat in sessions
s(k), . . . , s(4m) except with negligible probability. Then,

– Hk:3 and Hk:4 are indistinguishable, and
– in Hk:4, A does not cheat in sessions s(k), . . . , s(4m) except with negligible

probability.

Recall that Hk:3 and Hk:4 differ only in that in session s(k) of Hk:4, if S
is corrupted and SMk is third special message, αi is a random bit rather than
αi = u⊕ ci for every i ∈ Δ in Stage 6-1. Intuitively, we can prove this lemma by
using the security of mS-OT: For every i �∈ ΓS , the choice bit ci of the i-th mS-
OT in Stage 3 is hidden from A and hence αi = u⊕ci in Hk:3 is indistinguishable
from a random bit. Formally, we prove this Lemma in the same way as we do
for Claim 1 (we use the security of mS-OT rather than the hiding of ExtCom);
the proof is given in the full version of this paper.

Lemma 6. Assume that in Hk:4 (k ∈ [4m]), A does not cheat in sessions
s(k), . . . , s(4m) except with negligible probability. Then,

– Hk:4 and Hk:5 are indistinguishable, and
– in Hk:5, A does not cheat in sessions s(k), . . . , s(4m) except with negligible

probability.

Since hybrids Hk:4,Hk:5 differ only in the values committed to in NMCom and
ExtCom for the indices outside of ΓR, this lemma can be proven identically with
Lemma 2. We give a prof in the full version of this paper.

Lemma 7. Assume that in Hk:5 (k ∈ [4m]), A does not cheat in sessions
s(k), . . . , s(4m) except with negligible probability. Then,

– Hk:5 and Hk:6 are indistinguishable, and
– in Hk:6, A does not cheat in sessions s(k), . . . , s(4m) except with negligible

probability.

Since hybrids Hk:5,Hk:6 differ only in the inputs and the randomness that
are used in some of the mS-OTs in Stage 3, this lemma can be proven identically
with Lemma 3 (which in turn can be proven quite similarly to Lemma 2). We
give a prof in the full version of this paper.

Lemma 8. Assume that in Hk:6 (k ∈ [4m]), A does not cheat in sessions
s(k), . . . , s(4m) except with negligible probability. Then,

– Hk:6 and Hk:7 are indistinguishable, and
– in Hk:7, A does not cheat in sessions s(k), . . . , s(4m) except with negligible

probability.

Proof. We prove the lemma by considering the following intermediate hybrids
H ′

k:6, H ′′
k:6, and H ′′′

k:6.

592 S. Garg et al.

HybridH ′
k:6. H ′

k:6 is the same as Hk:6 except that in session s(k), if R is cor-
rupted and SMk is fourth special message, the following modifications are made.

1. As in Hk:7, the committed strings aR = (aR
1 , . . . , aR

11n) are extracted by brute
force in Stage 2-2, rR = (rR

1 , . . . , rR
11n) is defined by rR

i
def= aR

i ⊕ bR
i for each

i ∈ [11n], and rR
i is parsed as ci ‖ τR

i for each i ∈ [11n]. Also, I0, I1, and u∗

are defined as in Hk:7.
2. In Stage 6, βb,i is a random bit rather than βb,i = ρb,i ⊕ si,b⊕αi

for every
b ∈ {0, 1} and i ∈ Δ\Ib. (Recall that, roughly, Ib ⊂ Δ is the set of indices on
which A could have obtained si,b⊕αi

.)

HybridH ′′
k:6. H ′′

k:6 is the same as H ′
k:6 except that in session s(k), if R is cor-

rupted and SMk is fourth special message, the following modification is made.

1. In Stage 6, ρ1−u∗ = {ρ1−u∗,i}i∈Δ is a secret sharing of a random bit rather
than that of v1−u∗ .

HybridH ′′′
k:6. H ′′′

k:6 is the same as H ′′
k:6 except that in session s(k), if R is cor-

rupted and SMk is fourth special message, the following modification is made.

1. In Stage 6, βb,i is βb,i = ρb,i ⊕ si,b⊕αi
rather than a random bit for every

b ∈ {0, 1} and i ∈ Δ\Ib.

Notice that H ′′′
k:6 is identical with Hk:7.

Claim 5. Assume that in Hk:6, A does not cheat in sessions s(k), . . . , s(4m)
except with negligible probability. Then,

– Hk:6 and H ′
k:6 are indistinguishable, and

– in H ′
k:6, A does not cheat in sessions s(k), . . . , s(4m) except with negligible

probability.

Recall that Hk:6 and H ′
k:6 differ only in that in session s(k) of H ′

k:6, if R is
corrupted and SMk is fourth special message, βb,i is a random bit rather than
βb,i = ρb,i ⊕ si,b⊕αi

for every b ∈ {0, 1} and i ∈ Δ\Ib. Intuitively, we can prove
this claim by using the security of mS-OT: For every i ∈ Δ\Ib, A executed the
i-th mS-OT honestly with choice bit (1 − b) ⊕ αi, and the sender’s input and
randomness of this mS-OT are not revealed in Stage 8; therefore, the value of
si,b⊕αi

is hidden from A and thus βb,i = ρb,i ⊕si,b⊕αi
is indistinguishable from a

random bit. Formally, we prove this claim in the same way as we do for Claim 1
(we use the security of mS-OT rather than the hiding of ExtCom); a formal
proof is given in the full version of this paper.

Claim 6. Assume that in H ′
k:6, A does not cheat in sessions s(k), . . . , s(4m)

except with negligible probability. Then,

– H ′
k:6 and H ′′

k:6 are indistinguishable, and
– in H ′′

k:6, A does not cheat in sessions s(k), . . . , s(4m) except with negligible
probability.

A New Approach to Black-Box Concurrent Secure Computation 593

Proof. Recall that hybrids H ′
k:6,H

′′
k:6 differ only in that in Stage 6, ρ1−u∗ =

{ρ1−u∗,i}i∈Δ is a secret sharing of a random bit rather than that of v1−u∗ .
For proving the lemma, it suffices to show that we have |I1−u∗ | ≤ 6n in H ′

k:6

except with negligible probability. This is because if |I1−u∗ | ≤ 6n in H ′
k:6, then

β1−u∗,i is a random bit on at least 4n indices and thus ρ1−u∗,i is hidden on at least
4n indices, which implies that H ′

k:6 and H ′′
k:6 are statistically indistinguishable.

(Statistical indistinguishability between H ′
k:6 and H ′′

k:6 implies that in H ′′
k:6, A

does not cheat in sessions s(k), . . . , s(4m) except with negligible probability.)
Hence, we show that we have |I1−u∗ | ≤ 6n in H ′

k:6 except with negligible
probability. Since we assume that A does not cheat in session s(k) except with
negligible probability, it suffices to show that we have either |I0| ≤ 6n or |I1| ≤ 6n
whenever A does not cheat in session s(k). Assume that A does not cheat in
session s(k). Then, since |ΓR| = n and the number of indices on which A does
not execute mS-OT using the outcome of coin-tossing is at most n, we have
|I0 ∩ I1| ≤ 2n. Now, since I0, I1 ⊂ Δ and thus |I0 ∪ I1| ≤ |Δ| = 10n, we have
|I0| + |I1| ≤ 12n, and hence, we have either |I0| ≤ 6n or |I1| ≤ 6n. ��
Claim 7. Assume that in H ′′

k:6, A does not cheat in sessions s(k), . . . , s(4m)
except with negligible probability. Then,

– H ′′
k:6 and H ′′′

k:6 are indistinguishable, and
– in H ′′′

k:6, A does not cheat in sessions s(k), . . . , s(4m) except with negligible
probability.

Proof. This claim can be proven identically with Claim 5. ��
This completes the proof of Lemma 8. ��

From Lemmas 2–8, we conclude that the output of H0 and that of H4m:7 are
indistinguishable, i.e., the output of the real world and that of the ideal world
are indistinguishable. This concludes the proof of Theorem 2.

5 Our SPS Concurrent MPC Protocol

In this section, we prove the following theorem.

Theorem 3. Assume the existence of constant-round semi-honest oblivious
transfer protocols and collision-resistant hash functions. Let F be any well-
formed functionality and F̂ be its multi-session extension. Then, there exists
a constant-round protocol that UC-SPS realizes F̂ , and it uses the underlying
primitives in the black-box way.

We focus on the two-party case below (the MPC case is analogues).

594 S. Garg et al.

Protocol Description. Roughly speaking, we obtain our SPS 2PC protocol
by composing our SPS OT protocol in Sect. 4 with a UC-secure OT-hybrid 2PC
protocol. Concretely, let ΠOT be our SPS OT protocol in Sect. 4, and ΠFOT

2PC

be a UC-secure OT-hybrid 2PC protocol with the following property: The two
parties use the OT functionality FOT only at the beginning of the protocol, and
they send only randomly chosen inputs to FOT . Then, we obtain our SPS 2PC
protocol Π2PC by replacing each invocation of FOT in ΠFOT

2PC with an execution
of ΠOT (i.e., the two parties execute ΠOT instead of calling to FOT), where all
the executions of ΠOT are carried out in a synchronous manner, i.e., in a manner
that the first message of all the executions are sent before the second message
of any execution is sent etc.

As the UC-secure OT-hybrid 2PC protocol, we use the constant-round 2PC
(actually, MPC) protocol of Ishai et al. [27], which makes only black-box use of
pseudorandom generators (which in turn can be obtained in the black-box way
from any semi-honest OT protocol). (The protocol of Ishai et al. [27] itself does
not satisfy the above property, but it can be modified easily to satisfy them; see
the full version of this paper.) Since the OT-hybrid protocol of Ishai et al. [27] is
a black-box construction and has only constant number of rounds, our protocol
Π2PC is also a black-box construction and has only constant number of rounds.

Simulator Sim. As in Sect. 4.2, we consider a simulator that works against
adversaries that participate in multiple sessions of Π2PC. Let Z be any environ-
ment, A be any adversary that participates in multiple sessions of Π2PC. Our
simulator SimOT internally invokes the adversary A, and simulates each of the
sessions by using the simulator of ΠOT (Sect. 4.2) and that of ΠFOT

2PC as follows.

1. In each execution of ΠOT at the beginning of Π2PC, Sim simulates the honest
party’s messages for A in the same way as SimOT.
Recall that SimOT makes a query to FOT during the simulation. When
SimOT makes a query to FOT , Sim sends those queries to the simulator of
ΠFOT

2PC in order to simulate the answer from FOT . (Recall that the simulator
of ΠFOT

2PC simulates FOT for the adversary.)
2. In the execution of ΠFOT

2PC during Π2PC, Sim simulates the honest party’s
messages for A by using the simulator of ΠFOT

2PC , who obtained the queries to
FOT as above.

We remark that here we use the simulator of ΠFOT
2PC in the setting where multiple

sessions of ΠFOT
2PC are concurrently executed and some super-polynomial-time

computation is performed. However, the use of it in this setting does not cause
any problem because it runs in the black-box straight-line manner.

Proof of Indistinguishability. We show that the output of the environment
in the real world and that in the ideal world are indistinguishable. The proof
proceeds very similarly to the proof for our SPS OT protocol (Sect. 4). To sim-
plify the exposition, below we assume that ΠFOT

2PC makes only a single call to

A New Approach to Black-Box Concurrent Secure Computation 595

FOT . (The proof can be modified straightforwardly when ΠFOT
2PC makes multiple

calls to FOT .)
Recall that Π2PC is obtained by composing our OT protocol ΠOT with a OT-

hybrid 2PC protocol ΠFOT
2PC . Roughly, we consider a sequence of hybrid experi-

ments in which:

– Each execution of ΠOT is gradually changed to simulation as in the sequence
of hybrid experiments that we considered in the proof of ΠOT (Sect. 4.3).

– Once the execution of ΠOT in a session of Π2PC is changed to simulation
completely, the execution of ΠFOT

2PC in that session is changed to simulation.

More concretely, we consider hybrids H0 and Hk:1, . . . , Hk:9 (k ∈ [4m]), where
H0 and Hk:1, . . . , Hk:7 are defined as in Sect. 4.3, and Hk:8 and Hk:9 are defined
as follows.

HybridHk:8. Hk:8 is the same as Hk:7 except that in session s(k), if S is cor-
rupted and SMk is third special message, all the messages of ΠFOT

2PC from R are
generated by the simulator of ΠFOT

2PC . More concretely, the messages of ΠFOT
2PC

from R are generated as follows. Recall that from the definition of Hybrid Hk:3,
the implicit input v∗

b
def= Value(ρext

b , ΓR ∩ Δ) (b ∈ {0, 1}) to ΠOT is extracted
from the adversary in session s(k) (as ρext

b are computed for both b ∈ {0, 1}).
Now, the messages of ΠFOT

2PC from R are simulated by feeding those extracted
implicit input and the subsequent messages to the simulator of ΠFOT

2PC .

HybridHk:9. Hk:9 is the same as Hk:8 except that in session s(k), if R is cor-
rupted and SMk is fourth special message, all the messages of ΠFOT

2PC from S are
generated by the simulator of ΠFOT

2PC .

Lemma 9. Assume that in Hk:7 (k ∈ [4m]), A does not cheat in sessions
s(k), . . . , s(4m) except with negligible probability. Then,

– Hk:7 and Hk:8 are indistinguishable, and
– in Hk:8, A does not cheat in sessions s(k), . . . , s(4m) except with negligible

probability.

Lemma 10. Assume that in Hk:8 (k ∈ [4m]), A does not cheat in sessions
s(k), . . . , s(4m) except with negligible probability. Then,

– Hk:8 and Hk:9 are indistinguishable, and
– in Hk:9, A does not cheat in sessions s(k), . . . , s(4m) except with negligible

probability.

Lemma 10 can be proven identically with Lemma 9, and Lemma 9 can be
proven quite similarly to Claim 1 (Sect. 4.3); the only difference is that we use the
security of ΠFOT

2PC rather than the hiding of ExtCom. We give a proof of Lemma 9
in the full version of this paper.

By combining Lemmas 9 and 10 with Lemmas 2–8 in Sect. 4.3, we conclude
that the output of H0 and that of H4m:9 are indistinguishable, i.e., the output of
the real world and that of the ideal world are indistinguishable. This concludes
the proof of Theorem 3.

596 S. Garg et al.

References

1. Badrinarayanan, S., Goyal, V., Jain, A., Khurana, D., Sahai, A.: Round opti-
mal concurrent MPC via strong simulation. Cryptology ePrint Archive, Report
2017/597 (2017), http://eprint.iacr.org/2017/597

2. Barak, B., Sahai, A.: How to play almost any mental game over the net - concurrent
composition via super-polynomial simulation. In: 46th FOCS, pp. 543–552. IEEE
Computer Society Press, October 2005

3. Broadnax, B., Döttling, N., Hartung, G., Müller-Quade, J., Nagel, M.: Concur-
rently composable security with shielded super-polynomial simulators. In: Coron,
J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210, pp. 351–381.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56620-7 13

4. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society Press, October
2001

5. Canetti, R., Kushilevitz, E., Lindell, Y.: On the limitations of universally com-
posable two-party computation without set-up assumptions. In: Biham, E. (ed.)
EUROCRYPT 2003. LNCS, vol. 2656, pp. 68–86. Springer, Heidelberg (2003).
https://doi.org/10.1007/3-540-39200-9 5

6. Canetti, R., Lin, H., Pass, R.: Adaptive hardness and composable security in the
plain model from standard assumptions. In: 51st FOCS, pp. 541–550. IEEE Com-
puter Society Press, October 2010

7. Canetti, R., Lin, H., Pass, R.: Adaptive hardness and composable security in
the plain model from standard assumptions. SIAM J. Comput. 45(5), 1793–1834
(2016)

8. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-
party and multi-party secure computation. In: 34th ACM STOC, pp. 494–503.
ACM Press, May 2002

9. Choi, S.G., Dachman-Soled, D., Malkin, T., Wee, H.: A black-box construction of
non-malleable encryption from semantically secure encryption. J. Cryptol. (2017)

10. Cramer, R., Hanaoka, G., Hofheinz, D., Imai, H., Kiltz, E., Pass, R., Shelat, A.,
Vaikuntanathan, V.: Bounded CCA2-secure encryption. In: Kurosawa, K. (ed.)
ASIACRYPT 2007. LNCS, vol. 4833, pp. 502–518. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-76900-2 31

11. Dachman-Soled, D., Malkin, T., Raykova, M., Venkitasubramaniam, M.: Adaptive
and concurrent secure computation from new adaptive, non-malleable commit-
ments. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8269, pp.
316–336. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42033-
7 17

12. Feige, U., Shamir, A.: Witness indistinguishable and witness hiding protocols. In:
22nd ACM STOC, pp. 416–426. ACM Press, May 1990

13. Garay, J.A., MacKenzie, P.D.: Concurrent oblivious transfer. In: 41st FOCS, pp.
314–324. IEEE Computer Society Press, November 2000

14. Garg, S., Goyal, V., Jain, A., Sahai, A.: Concurrently secure computation in con-
stant rounds. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS,
vol. 7237, pp. 99–116. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-29011-4 8

http://eprint.iacr.org/2017/597
https://doi.org/10.1007/978-3-319-56620-7_13
https://doi.org/10.1007/3-540-39200-9_5
https://doi.org/10.1007/978-3-540-76900-2_31
https://doi.org/10.1007/978-3-642-42033-7_17
https://doi.org/10.1007/978-3-642-42033-7_17
https://doi.org/10.1007/978-3-642-29011-4_8
https://doi.org/10.1007/978-3-642-29011-4_8

A New Approach to Black-Box Concurrent Secure Computation 597

15. Garg, S., Kumarasubramanian, A., Ostrovsky, R., Visconti, I.: Impossibility results
for static input secure computation. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 424–442. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 25

16. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: Aho, A. (ed.) 19th ACM
STOC, pp. 218–229. ACM Press, May 1987

17. Goyal, V.: Constant round non-malleable protocols using one way functions. In:
Fortnow, L., Vadhan, S.P. (eds.) 43rd ACM STOC, pp. 695–704. ACM Press, June
2011

18. Goyal, V., Jain, A.: On concurrently secure computation in the multiple ideal
query model. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS,
vol. 7881, pp. 684–701. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-38348-9 40

19. Goyal, V., Lee, C.K., Ostrovsky, R., Visconti, I.: Constructing non-malleable com-
mitments: a black-box approach. In: 53rd FOCS, pp. 51–60. IEEE Computer Soci-
ety Press, October 2012

20. Goyal, V., Lin, H., Pandey, O., Pass, R., Sahai, A.: Round-efficient concurrently
composable secure computation via a robust extraction lemma. In: Dodis, Y.,
Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9014, pp. 260–289. Springer, Heidel-
berg (2015). https://doi.org/10.1007/978-3-662-46494-6 12

21. Goyal, V., Ostrovsky, R., Scafuro, A., Visconti, I.: Black-box non-black-box zero
knowledge. In: Shmoys, D.B. (ed.) 46th ACM STOC, pp. 515–524. ACM Press,
May/June 2014

22. Haitner, I.: Semi-honest to malicious oblivious transfer—the black-box way. In:
Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 412–426. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78524-8 23

23. Haitner, I., Ishai, Y., Kushilevitz, E., Lindell, Y., Petrank, E.: Black-box construc-
tions of protocols for secure computation. SIAM J. Comput. 40(2), 225–266 (2011)

24. H̊astad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator
from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999)

25. Hazay, C., Venkitasubramaniam, M.: Composable adaptive secure protocols with-
out setup under polytime assumptions. In: Hirt, M., Smith, A. (eds.) TCC 2016.
LNCS, vol. 9985, pp. 400–432. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-53641-4 16

26. Ishai, Y., Kushilevitz, E., Lindell, Y., Petrank, E.: Black-box constructions for
secure computation. In: Kleinberg, J.M. (ed.) 38th ACM STOC, pp. 99–108. ACM
Press, May 2006

27. Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer
– efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5 32

28. Kiyoshima, S.: Round-efficient black-box construction of composable multi-party
computation. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS,
vol. 8617, pp. 351–368. Springer, Heidelberg (2014). https://doi.org/10.1007/
s00145-018-9276-1

29. Kiyoshima, S., Manabe, Y., Okamoto, T.: Constant-round black-box construction
of composable multi-party computation protocol. In: Lindell, Y. (ed.) TCC 2014.
LNCS, vol. 8349, pp. 343–367. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-642-54242-8 15

30. Lin, H., Pass, R.: Non-malleability amplification. In: Mitzenmacher, M. (ed.) 41st
ACM STOC, pp. 189–198. ACM Press, May/June 2009

https://doi.org/10.1007/978-3-642-32009-5_25
https://doi.org/10.1007/978-3-642-38348-9_40
https://doi.org/10.1007/978-3-642-38348-9_40
https://doi.org/10.1007/978-3-662-46494-6_12
https://doi.org/10.1007/978-3-540-78524-8_23
https://doi.org/10.1007/978-3-662-53641-4_16
https://doi.org/10.1007/978-3-662-53641-4_16
https://doi.org/10.1007/978-3-540-85174-5_32
https://doi.org/10.1007/s00145-018-9276-1
https://doi.org/10.1007/s00145-018-9276-1
https://doi.org/10.1007/978-3-642-54242-8_15
https://doi.org/10.1007/978-3-642-54242-8_15

598 S. Garg et al.

31. Lin, H., Pass, R.: Black-box constructions of composable protocols without set-up.
In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 461–
478. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5 27

32. Lin, H., Pass, R., Venkitasubramaniam, M.: Concurrent non-malleable commit-
ments from any one-way function. In: Canetti, R. (ed.) TCC 2008. LNCS, vol.
4948, pp. 571–588. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-78524-8 31

33. Lin, H., Pass, R., Venkitasubramaniam, M.: A unified framework for concurrent
security: universal composability from stand-alone non-malleability. In: Mitzen-
macher, M. (ed.) 41st ACM STOC, pp. 179–188. ACM Press, May/June 2009

34. Lindell, Y.: Bounded-concurrent secure two-party computation without setup
assumptions. In: 35th ACM STOC, pp. 683–692. ACM Press, June 2003

35. Lindell, Y.: Lower bounds for concurrent self composition. In: Naor, M. (ed.) TCC
2004. LNCS, vol. 2951, pp. 203–222. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-24638-1 12

36. Malkin, T., Moriarty, R., Yakovenko, N.: Generalized environmental security
from number theoretic assumptions. In: Halevi, S., Rabin, T. (eds.) TCC 2006.
LNCS, vol. 3876, pp. 343–359. Springer, Heidelberg (2006). https://doi.org/10.
1007/11681878 18

37. Micali, S., Pass, R., Rosen, A.: Input-indistinguishable computation. In: 47th
FOCS, pp. 367–378. IEEE Computer Society Press, October 2006

38. Naor, M.: Bit commitment using pseudorandomness. J. Cryptol. 4(2), 151–158
(1991)

39. Ostrovsky, R., Richelson, S., Scafuro, A.: Round-optimal black-box two-party
computation. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol.
9216, pp. 339–358. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-48000-7 17

40. Ostrovsky, R., Scafuro, A., Venkitasubramanian, M.: Resettably sound zero-
knowledge arguments from OWFs - the (semi) black-box way. In: Dodis, Y.,
Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9014, pp. 345–374. Springer, Heidel-
berg (2015). https://doi.org/10.1007/978-3-662-46494-6 15

41. Pass, R.: Simulation in quasi-polynomial time, and its application to protocol com-
position. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 160–176.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9 10

42. Pass, R.: Bounded-concurrent secure multi-party computation with a dishonest
majority. In: Babai, L. (ed.) 36th ACM STOC, pp. 232–241. ACM Press, June
2004

43. Pass, R., Lin, H., Venkitasubramaniam, M.: A unified framework for UC from only
OT. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 699–
717. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-4 42

44. Pass, R., Wee, H.: Black-box constructions of two-party protocols from one-way
functions. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 403–418. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-00457-5 24

45. Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. SIAM J.
Comput. 40(6), 1803–1844 (2011)

46. Prabhakaran, M., Sahai, A.: New notions of security: achieving universal compos-
ability without trusted setup. In: Babai, L. (ed.) 36th ACM STOC, pp. 242–251.
ACM Press, June 2004

https://doi.org/10.1007/978-3-642-32009-5_27
https://doi.org/10.1007/978-3-540-78524-8_31
https://doi.org/10.1007/978-3-540-78524-8_31
https://doi.org/10.1007/978-3-540-24638-1_12
https://doi.org/10.1007/978-3-540-24638-1_12
https://doi.org/10.1007/11681878_18
https://doi.org/10.1007/11681878_18
https://doi.org/10.1007/978-3-662-48000-7_17
https://doi.org/10.1007/978-3-662-48000-7_17
https://doi.org/10.1007/978-3-662-46494-6_15
https://doi.org/10.1007/3-540-39200-9_10
https://doi.org/10.1007/978-3-642-34961-4_42
https://doi.org/10.1007/978-3-642-00457-5_24

A New Approach to Black-Box Concurrent Secure Computation 599

47. Venkitasubramaniam, M.: On adaptively secure protocols. In: Abdalla, M., De
Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642, pp. 455–475. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-10879-7 26

48. Wee, H.: Black-box, round-efficient secure computation via non-malleability ampli-
fication. In: 51st FOCS, pp. 531–540. IEEE Computer Society Press, October 2010

49. Yao, A.C.C.: How to generate and exchange secrets (extended abstract). In: 27th
FOCS, pp. 162–167. IEEE Computer Society Press, October 1986

https://doi.org/10.1007/978-3-319-10879-7_26

Obfuscation

Obfustopia Built on Secret-Key
Functional Encryption

Fuyuki Kitagawa1(B), Ryo Nishimaki2 , and Keisuke Tanaka1

1 Tokyo Institute of Technology, Tokyo, Japan
{kitagaw1,keisuke}@is.titech.ac.jp

2 Secure Platform Laboratories, NTT Corporation, Tokyo, Japan
nishimaki.ryo@lab.ntt.co.jp

Abstract. We show that indistinguishability obfuscation (IO) for all
circuits can be constructed solely from secret-key functional encryption
(SKFE). In the construction, SKFE need to be able to issue a-priori
unbounded number of functional keys, that is, collusion-resistant. Our
strategy is to replace public-key functional encryption (PKFE) in the
construction of IO proposed by Bitansky and Vaikuntanathan (FOCS
2015) with puncturable SKFE. Bitansky and Vaikuntanathan introduced
the notion of puncturable SKFE and observed that the strategy works.
However, it has not been clear whether we can construct puncturable
SKFE without assuming PKFE. In particular, it has not been known
whether puncturable SKFE is constructed from ordinary SKFE. In this
work, we show that a relaxed variant of puncturable SKFE can be con-
structed from collusion-resistant SKFE. Moreover, we show that the
relaxed variant of puncturable SKFE is sufficient for constructing IO.

In addition, we also study the relation of collusion-resistance and suc-
cinctness for SKFE. Functional encryption is said to be weakly-succinct
if the size of its encryption circuit is sub-linear in the size of functions.
We show that collusion-resistant SKFE can be constructed from weakly-
succinct SKFE supporting only one functional key.

By combining the above two results, we show that IO for all cir-
cuits can be constructed from weakly-succinct SKFE supporting only
one functional key.

1 Introduction

1.1 Backgrounds

Program obfuscation is now one of the central topics in cryptography. Program
obfuscation aims to turn programs “unintelligible” while preserving its func-
tionality. The theoretical study of program obfuscation was initiated by Barak
et al. [12]. They introduced virtual-black-box obfuscation as a formal defini-
tion of obfuscation. The definition of virtual black-box obfuscation is intuitive
and naturally captures the requirement that obfuscators hide information about
programs. However, Barak et al. showed that it is impossible to achieve virtual

c© International Association for Cryptologic Research 2018
J. B. Nielsen and V. Rijmen (Eds.): EUROCRYPT 2018, LNCS 10821, pp. 603–648, 2018.
https://doi.org/10.1007/978-3-319-78375-8_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78375-8_20&domain=pdf
http://orcid.org/0000-0002-5144-4619

604 F. Kitagawa et al.

black-box obfuscation for all circuits. In order to avoid the impossibility result,
they also defined an weaker variant of obfuscation called indistinguishability
obfuscation (IO). Impossibility of IO for all circuits is not known.

Garg et al. [33] proposed the first candidate construction of IO for all circuits.
Subsequently, many works have shown that IO is powerful enough in the sense that
we can achieve a wide variety of cryptographic primitives based on IO though it is
weaker than virtual-black-box obfuscation [14,16,18,26,29,33,39,40,49,62].

While we know the usefulness of IO well, we know very little about how
to achieve IO. Although the first candidate construction was demonstrated, we
are still at the embryonic stage for constructing IO. All known constructions
of IO are based on a little-studied cryptographic tool called multi-linear maps
[4,5,8,10,11,24,32–34,51,52,56,60,65]. Moreover, security flaws were discovered
in some IO constructions [7,28,30,31,58].

Thus, constructing IO based on a standard assumption is still standing as a
major open question in the study of cryptography. As a stepping-stone for solving
the question, it is important to find a seemingly weaker primitive that implies
IO. As such a cryptographic primitive, we already have functional encryption.

Functional encryption is one of the most advanced cryptographic primitives
which enable a system having flexibility in controlling encrypted data [20,59,63].
In functional encryption, an owner of a master secret key MSK can generate a
functional decryption key skf for a function f belonging to a function family
F . By decrypting a ciphertext of a message m using skf , a holder of skf can
learn only a value f(m). No information about x except f(m) is revealed from
the ciphertext of m. This feature enables us to construct a cryptographic system
with fine-grained access control. In addition, it is known that functional encryp-
tion is a versatile building block to construct other cryptographic primitives. In
particular, we can construct IO for all circuits by using functional encryption
that satisfies certain security notions and efficiency requirements [2,3,15,17].

Bitansky and Vaikuntanathan [17] and Ananth and Jain [2] independently
showed that we can construct IO based on public-key functional encryption
(PKFE) which supports a single functional key and whose encryption circuit
size is sub-linear in the size of functions. A functional encryption scheme that
supports a single key is called a single-key scheme. A functional encryption
scheme that satisfies the efficiency property above is said to be weakly-succinct.

Bitansky et al. [15] subsequently showed that collusion-resistant secret-key
functional encryption (SKFE) is powerful enough to yield IO if we additionally
assume plain public key encryption. Collusion-resistant functional encryption
is functional encryption that can securely issue a-priori unbounded number of
functional keys.

From these results, we see that the combination of functional encryption with
some property and a public-key cryptographic primitive is sufficient for achieving
IO. This fact is a great progress as a stepping-stone for achieving IO based on a
standard assumption.

Obfustopia Built on SKFE 605

However, one natural question arises for this situation. The question is
whether we really need public-key primitives to construct IO or not. In other
words, we have the following fundamental question:

Is it possible to achieve IO for all circuits based solely on secret-key prim-
itives?

SKFE is the best possible candidate for a secret-key cryptographic primitive
that gives an affirmative answer to this question. However, Asharov and Segev [9]
gave a somewhat negative answer to the question. Their result can be seen as a
substantial evidence that SKFE is somewhat unlikely to imply IO as long as we
use black-box techniques.1 Although Komargodski and Segev [48] already showed
that we can construct IO for somewhat restricted class of circuits based on SKFE
via non-black-box construction, it is still open whether we can construct IO for
all circuits from SKFE bypassing the barrier with a non-black-box technique.

The real power of IO appears in the fact that it can transform secret-key
primitives into public-key ones. Therefore, solving the above problem is a key
advancement to discover the exact requirements for achieving IO.

1.2 Our Results

We give an affirmative answer to the question above. More precisely, we prove
the following theorem.

Theorem 1 (Informal). Assuming there exists sub-exponentially secure
collusion-resistant SKFE for all circuits. Then, there exists IO for all circuits.

Since our construction of IO is non-black-box, we can circumvent the impos-
sibility result shown by Asharov and Segev [9].

The security loss of our construction of IO is exponential in the input length
of circuits, but is independent of the size of circuits. Thus, if the input length
of circuits is poly-logarithmic in the security parameter, our construction of
IO incurs only quasi-polynomial security loss regardless of the size of circuits.
Therefore, we can obtain IO for circuits of polynomial size with input of poly-
logarithmic length from quasi-polynomially secure collusion-resistant SKFE for
all circuits. This is an improvement over the IO construction by Komargodski
and Segev [48]. They showed that IO for circuits of sub-polynomial size with
input of poly-logarithmic length is constructed from quasi-polynomially secure
collusion-resistant SKFE for all circuits.

We show Theorem 1 by using puncturable SKFE. The notion of puncturable
SKFE was introduced by Bitansky and Vaikuntanathan [17]. They showed that
in their construction of IO, the building block PKFE can be replaced with punc-
turable SKFE. However, it has been an open issue whether we can achieve punc-
turable SKFE without assuming the existence of PKFE.
1 More precisely, Asharov and Segev [9] introduced an extended model for black-box

reductions to include a limited class of non-black-box reductions into their impossi-
bility results.

606 F. Kitagawa et al.

We show how to construct puncturable SKFE that is sufficient for constructing
IO, based solely on SKFE. More precisely, we show the following theorem.

Theorem 2 (Informal). Assuming there exists collusion-resistant SKFE for
all circuits. Then, there exists single-key weakly-succinct puncturable SKFE for
all circuits.

Note that our definition of puncturable SKFE is slightly different from that
proposed by Bitansky and Vaikuntanathan. Our requirement for puncturable
SKFE looks weaker than that of Bitansky and Vaikuntanathan. However, they
are actually incomparable. In fact, we show that puncturable SKFE defined in
this paper is also sufficient for a building block of IO. See Sect. 2 for the details
of the notion of puncturable SKFE and the difference between our definition and
that of Bitansky and Vaikuntanathan.

This result makes a progress on the study of IO and functional encryption
as we note in the next paragraph.

Impacts on the hierarchy of cryptographic primitives. It is known that we can
classify cryptographic primitives into two hierarchies Minicrypt and Crypto-
mania since the beautiful work of Impagliazzo and Rudich [42] showed that
public-key encryption is not implied by one-way functions via black-box reduc-
tions. The terminologies, Minicrypt and Cryptomania, were introduced by
Impagliazzo [41]. In Minicrypt, one-way functions exist, but public-key encryp-
tion does not. In Cryptomania, public-key encryption also exists.

We have recently started to consider a new hierarchy called Obfustopia.
Garg et al. [35] introduced the term Obfustopia, which seems to indicate the
“world” where there exists IO. Garg et al. did not give a formal definition of
Obfustopia. In this paper, we explicitly define Obfustopia as the “world”
where there exists efficient IO for all circuits and one-way functions.2 It is known
that we can construct almost all existing cryptographic primitives which are
stronger than public-key encryption by using IO. This is the reason why we
consider the new hierarchy beyond Cryptomania.3

The landscape of Obfustopia is not clear while those of Minicrypt and
Cryptomania are. In particular, we do not know how to construct IO based
on standard assumptions. There has been significant effort to find out crypto-
graphic primitives that are in Obfustopia. That is, we have been asking what
kind of cryptographic primitive implies the existence of IO. We know that sub-
exponentially-secure succinct PKFE exists in Obfustopia [2,17].
2 Komargodski et al. [47] proved that IO implies one-way functions under a mild

complexity theoretic assumption. More specifically, the complexity assumption is
NP �⊆ io-BPP, where io-BPP is the class of languages that is decided by probabilistic
polynomial-time algorithms for infinitely many input sizes. Therefore, under the
assumption, we say that Obfustopia is the complexity spectrum where efficient IO
for all circuits exists.

3 Strictly speaking, it was known that there are stronger primitives than public-key
encryption before the candidate of obfuscation appeared. For example, public-key
encryption does not imply identity-based encryption [19].

Obfustopia Built on SKFE 607

It is natural to ask whether SKFE is also in Obfustopia or not since SKFE
seems to be a strong primitive as PKFE. Asharov and Segev [9] gave a somewhat
negative answer to this question. They showed that SKFE is unlikely to imply
IO as long as we use black-box techniques. They also showed that SKFE does
not imply any primitive in Cryptomania via black-box reductions. Moreover,
it was not known whether SKFE implies any primitive outside Minicrypt even
if we use it in a non-black-box manner before the work of Bitansky et al. [15].

Bitansky et al. showed that the combination of sub-exponentially secure
collusion-resistant SKFE and exponentially secure one-way functions implies
quasi-polynomially secure public-key encryption. This also implies that the above
combination yields quasi-polynomially secure succinct PKFE from their main
result showing that the combination of collusion-resistant SKFE and public-key
encryption implies succinct PKFE.

Komargodski and Segev [48] showed that quasi-polynomially secure IO for
circuits of sub-polynomial size with input of poly-logarithmic length can be
constructed from quasi-polynomially secure collusion-resistant SKFE for all cir-
cuits. In addition, they showed that by combining quasi-polynomially secure
collusion-resistant SKFE and sub-exponentially secure one-way functions, we
can construct quasi-polynomially secure succinct PKFE. However, in this con-
struction, the resulting PKFE supports only circuits of sub-polynomial size with
input of poly-logarithmic length though the building block SKFE supports all
polynomial size circuits.

These two results surely demonstrated that SKFE is stronger than we
thought. Nevertheless, we see that both two results involve degradation of secu-
rity level or functionality. Thus, it is still open whether SKFE implies a cryp-
tographic primitive other than those in Minicrypt without such degradation,
and especially SKFE is in Obfustopia or not.

We gives an affirmative answer to this question. More concretely, we can con-
struct sub-exponentially secure IO for all circuits from sub-exponentially secure
collusion-resistant SKFE for all circuits through our transformation by set-
ting security parameter appropriately. This result means that sub-exponentially
secure collusion-resistant SKFE exists in Obfustopia. In addition, by combin-
ing this result and the result by Garg et al. [33], we see that the existence of
sub-exponentially secure collusion-resistant PKFE for all circuits is equivalent
to that of sub-exponentially secure collusion-resistant SKFE for all circuits.

Collusion-resistance versus succinctness for SKFE. We also study the relation
of collusion-resistance and succinctness for SKFE.

Collusion-resistance and succinctness for functional encryption are seemingly
incomparable notions and implications between them are non-trivial. Therefore,
it is also a major concern whether we can transform a scheme satisfying one of
the two properties into a collusion-resistant and succinct one.

Such a transformation is already known for PKFE. Ananth et al. [3] showed
how to construct collusion-resistant and succinct PKFE from collusion-resistant
one. In addition, Garg and Srinivasan [36] and Li and Micciancio [50] showed a
transformation from single-key weakly-succinct PKFE to collusion-resistant one

608 F. Kitagawa et al.

with polynomial security loss. Their transformations preserve succinctness of the
building block scheme.4 From these results, collusion-resistance and succinctness
are equivalent for PKFE.

On the other hand, the situation is different for SKFE. While we know how
to construct collusion-resistant and succinct schemes from collusion-resistant
ones [3] similarly to PKFE, we do not know how to construct such schemes from
succinct ones even if sub-exponential security loss is permitted.

As stated above, some recent results including Theorem 1 show that SKFE is
a strong cryptographic primitive beyond Minicrypt if we consider non-black-
box reductions. However, one natural question arises for this situation. All of
those results assume collusion-resistant SKFE as a building block. Thus, while we
see that collusion-resistant SKFE is outside Minicrypt, it is still open whether
succinct SKFE is also a strong cryptographic primitive beyond Minicrypt since
we do not know how to construct collusion-resistant SKFE from succinct one.

Succinctness seems to be as powerful as collusion-resistance from the equiv-
alence of them in the PKFE setting. Therefore, it is natural to ask whether
succinct SKFE is also outside Minicrypt. If we have a transformation from suc-
cinct SKFE to collusion-resistant one without assuming public-key primitives,
we can solve the question affirmatively. Solving the question is an advancement
to understand the complexity of SKFE.

We solve the question by showing the following result.

Theorem 3 (Informal). Assume that there exists quasi-polynomially (resp.
sub-exponentially) secure single-key weakly-succinct SKFE for all circuits. Then,
there also exists quasi-polynomially (resp. sub-exponentially) secure collusion-
resistant SKFE for all circuits.

We note that our transformation incurs quasi-polynomial security loss. How-
ever, we can transform any quasi-polynomially secure single-key weakly-succinct
SKFE into quasi-polynomially secure collusion-resistant one, if we know the
security bound of the underlying single-key SKFE. In addition, if the under-
lying single-key scheme is sub-exponentially secure, then so does the resulting
collusion-resistant one.5

Our transformation preserves the succinctness of the underlying scheme. In
other words, if the building block single-key scheme is succinct (resp. weakly
succinct), the resulting collusion-resistant scheme is also succinct (resp. weakly
succinct).

Analogous to PKFE, we can transform collusion-resistant SKFE into
collusion-resistant and succinct one [3]. From this fact and Theorem 3, we dis-
cover that the existence of collusion-resistant SKFE and that of succinct one

4 The resulting scheme of the transformation proposed by Garg and Srinivasan is suc-
cinct even if the building block scheme is only weakly-succinct. The transformation
proposed by Li and Micciancio preserves succinctness of the building block scheme.

5 When transforming a sub-exponentially secure scheme, our transformation incurs
sub-exponentially security loss. However, we can transform any sub-exponentially
secure single-key scheme into a sub-exponentially secure collusion-resistant one.

Obfustopia Built on SKFE 609

are actually equivalent if we allow quasi-polynomial security loss. Due to this
equivalence, we see that succinct SKFE is also a strong cryptographic primitive
beyond Minicrypt similarly to collusion-resistant SKFE. Especially, we obtain
the following corollary from Theorems 1 and 3.

Corollary 1 (Informal). Assume that there exists sub-exponentially secure
single-key weakly-succinct SKFE for all circuits. Then, there exists IO for all
circuits.

From this result, we can remove the learning with errors (LWE) assumption
from recent state-of-the-art constructions of IO based on multi-linear maps and
(block-wise) local pseudorandom generators [52,55].

These works first construct single-key weakly-succinct SKFE based on multi-
linear maps and (block-wise) local pseudorandom generators. Then, assuming the
LWE assumption, they transform it into IO using the result by Bitansky et al. [15].
By relying on Corollary 1 instead of the result by Bitansky et al. [15] in their con-
struction, we can obtain IO based only on multi-linear maps and (block-wise) local
pseudorandom generators.

1.3 Organization

We provide the overview of this work using the majority of the remaining part
of this paper. For Theorem 1, we show only constructions and omit its security
proofs. See [45] for those omitted proofs. For Theorem 3, we provide only the
overview. See [44] for details of this result. The detailed organization is as follows.

In Sect. 2, we provide the overview of our construction of IO based on
collusion-resistant SKFE via puncturable SKFE. In Sect. 3, we also provide
the overview of how collusion-resistant SKFE is constructed based on weakly-
succinct SKFE. In Sect. 4, we provide notations and definitions of cryptographic
primitives. In Sect. 5, we formally define puncturable SKFE, and introduce secu-
rity and efficiency notions for it. We also discuss the difference between our
definition of puncturable SKFE and that of Bitansky and Vaikuntanathan [17]
in Sect. 5. In Sect. 6, we show the construction of single-key non-succinct punc-
turable SKFE. In Sect. 7, we show how to transform single-key non-succinct
puncturable SKFE into single-key weakly-succinct one. In Sect. 8, we then show
how to construct IO based on SKFE.

2 Overview: IO from Collusion-Resistant SKFE

We give an overview of our construction of IO based on SKFE in this section.
Our basic strategy is to replace PKFE in the construction of Bitansky and

Vaikuntanathan [17] with puncturable SKFE. Bitansky and Vaikuntanathan
observed that this strategy works. However, it is not known whether puncturable
SKFE is constructed from cryptographic primitives other than PKFE or IO.

In this work, we show that we can construct a relaxed variant of puncturable
SKFE that is a single-key scheme and weakly-succinct from collusion-resistant

610 F. Kitagawa et al.

SKFE. Moreover, we show that such a relaxed variant of puncturable SKFE is
sufficient for constructing IO.

We give an overview of the construction of Bitansky and Vaikuntanathan [17]
in Sect. 2.1 and explain why SKFE must be “puncturable” when we replace
PKFE with SKFE in their construction in Sect. 2.2. Next, we give an overview
of how to construct our puncturable SKFE scheme and IO in Sects. 2.3 and 2.4,
respectively.

2.1 Construction of IO Based on PKFE

The main idea of Bitansky and Vaikuntanathan is to design an obfuscator iOi

for circuits with i-bit input from an obfuscator iOi−1 for circuits with (i−1)-bit
input. If we can design such a bit extension construction, for any polynomial n,
we can construct an obfuscator iOn for circuits with n-bit input since we can
easily achieve iO1 for circuits with 1-bit input by outputting an entire truth
table of a circuit with 1-bit input. If you are familiar with the construction of
Bitansky and Vaikuntanathan [17], then you can skip this section.

When we construct IO based on the bit extension construction above, it is
important to avoid a circuit-size blow-up of circuits to be obfuscated at each
recursive step. In fact, if we allow a circuit-size blow-up, we can obtain the bit
extension construction by defining

iOi(C(x1 · · · xi)) := iOi−1(C(x1 · · · xi−1‖0))‖iOi−1(C(x1 · · · xi−1‖1)) .

However, this construction obviously incurs an exponential blow-up and thus
we cannot rely on this solution. Bitansky and Vaikuntanathan showed how to
achieve the bit extension construction without an exponential blow-up using
weakly-succinct PKFE.

In their construction, a functional key of PKFE should hide information
about the corresponding circuit. Such security notion is called function privacy.
However, it is not known how to achieve function private PKFE. Then, Bitansky
and Vaikuntanathan explicitly accommodated the technique for function private
SKFE used by Brakerski and Segev [25] to their IO construction based on PKFE.

We review their construction based on PKFE. For simplicity, we ignore the
issue of the randomness for encryption algorithms. It is generated by puncturable
pseudorandom function (PRF) in the actual construction.

iOi based on iOi−1 and PKFE works as follows. The construction addition-
ally uses plain secret key encryption (SKE) to implement the technique used
by Brakerski and Segev [25]. To obfuscate a circuit C with i-bit input, it first
generates a key pair (PKi,MSKi) of PKFE. Then, using MSKi, it generates a
functional key skC∗ tied to the following circuit C∗. C∗ has hardwired two SKE
ciphertexts CTske

0 and CTske
1 of plaintext C under independent keys K0 and K1,

respectively. C∗ expects as an input not only an i-bit string xi but also an SKE
key Kb. On those inputs, C∗ first obtains C by decrypting CTske

b by Kb and
outputs U(C,xi) = C(xi), where U(·, ·) is an universal circuit. Finally, the con-
struction obfuscates the following encryption circuit Ei−1 by iOi−1. Ei−1 has

Obfustopia Built on SKFE 611

hardwired PKi and Kb. On input (i − 1)-bit string xi−1, it outputs ciphertexts
Enc(PKi, (xi−1‖0,Kb)) and Enc(PKi, (xi−1‖1,Kb)), where Enc is the encryption
algorithm of PKFE. The resulting obfuscation of C is a tuple (skC∗ , iOi−1(Ei−1)).
Note that we always set the value of b as 0 in the actual construction. We set b
as 1 only in the security proof.

// Description of (simplified) C∗

Hard-Coded Constants: CTske
0 , CTske

1 .
Input: xi, Kb

1. Compute C = D(Kb,CTske
b).

2. Return U(C,xi).

// Description of (simplified) Ei−1
Hard-Coded Constants: PKi, Kb.
Input: xi−1 ∈ {0, 1}i−1

1. Compute CTi,xi

r←− Enc(PKi, (xi−1‖xi, Kb)).

2. Output CTi,0 and CTi,1.

When evaluating the obfuscated C on input xi = x1 · · · xi−1xi ∈ {0, 1}i,
we first invoke iO(Ei−1) on input xi−1 = x1 · · · xi−1 and obtain Enc(PKi,
(xi−1‖0,Kb)) and Enc(PKi, (xi−1‖1,Kb)). Then, by decrypting Enc(PKi,
(xi−1‖xi,Kb)) using skC∗ , we obtain C(xi).

Consequently, by using this bit extension construction, the obfuscation of a
circuit C with n-bit input consists of n functional keys sk1, · · · , skn each of which
is generated under a different master secret key MSKi, and pair of ciphertexts
of 0 and 1 under PK1 corresponding to MSK1. For any xn = x1 · · · xn ∈ {0, 1}n,
we can first compute a ciphertext of xn by repeatedly decrypting a ciphertext
of xi−1 = x1 · · · xi−1 by ski−1 and obtaining a ciphertext of xi = x1 · · · xi for
every i ∈ {2, · · · , n}. We can finally obtain C(xn) by decrypting the ciphertext
of xn by skn.

In this construction, each instance of PKFE needs to issue only one functional
key. This is a minimum requirement for functional encryption. However, for
efficiency, PKFE in the construction above should satisfy a somewhat strong
requirement, that is, weak-succinctness to avoid a circuit-size blow-up of circuits
to be obfuscated at each recursive step. Therefore, we need to use a single-key
weakly-succinct PKFE scheme in the IO construction above.

We can prove the security of the construction recursively. More precisely, we
can prove the security of iOi based on those of iOi−1, PKFE, and SKE. Note that
it is sufficient that PKFE satisfies a mild selective-security to complete the proof.
Their security proof relies on the argument of probabilistic IO formalized by
Canneti et al. [27], and thus the security loss of each recursive step is exponential
in i, that is 2i. This is the reason their building block PKFE must be sub-
exponentially secure.

2.2 Replacing PKFE with SKFE: Need of Puncturable SKFE

The security proof of Bitansky and Vaikuntanathan relies on the fact that we can
use the security of PKFE even when its encryption circuit is publicly available.
Concretely, PKi is hardwired into obfuscated encryption circuit iOi−1(Ei−1) and
this encryption circuit is public when we use the security of PKFE under the
key pair (PKi,MSKi).

612 F. Kitagawa et al.

The above security argument might not work if ordinary SKFE is used
instead of PKFE. This intuition comes from the impossibility result shown by
Barak et al. [12]. In fact, Bitansky and Vaikuntanathan showed that it is impos-
sible to instantiate their IO by using SKFE. More precisely, they showed that
there exists a secure SKFE scheme such that their transformation results in
insecure IO if the SKFE scheme is used as the building block. This is why they
adopted PKFE as their building block. Therefore, in order to replace PKFE with
SKFE in the construction above, we need SKFE whose security holds even when
its encryption circuit is publicly available. As one of such primitives, Bitansky
and Vaikuntanathan proposed puncturable SKFE.

In puncturable SKFE defined by Bitansky and Vaikuntanathan, there are
a puncturing algorithm Punc and a punctured encryption algorithm PEnc in
addition to algorithms of ordinary SKFE. We can generate a punctured master
secret key MSK∗{m0,m1} at two messages m0 and m1 from a master secret key
MSK by using Punc. Puncturable SKFE satisfies the following two properties:
functionality preserving under puncturing and semantic security at punctured
point. Functionality preserving under puncturing requires that

Enc(MSK,m; r) = PEnc(MSK∗{m0,m1},m; r)

holds for any message m other than m0 and m1 and for any randomness r.
Semantic security at punctured point requires that

(MSK∗{m0,m1},Enc(MSK,m0)
c≈ (MSK∗{m0,m1},Enc(MSK,m1))

holds for all adversaries, where
c≈ denotes computational indistinguishability.

Bitansky and Vaikuntanathan showed that single-key weakly-succinct punc-
turable SKFE is also a sufficient building block for their IO construction
while ordinary SKFE is not. Note that weak-succinctness of puncturable SKFE
requires that not only the encryption circuit but also the punctured encryp-
tion circuit should be weakly-succinct. However, as stated earlier, there was no
instantiation of puncturable SKFE other than regarding PKFE as puncturable
SKFE at that point. In particular, it was not clear whether we can construct
puncturable SKFE based on ordinary SKFE.

2.3 Puncturable SKFE from SKFE

In this work, we show we can construct single-key weakly-succinct puncturable
SKFE from collusion-resistant SKFE. More specifically, we show the following
two results. First, we show how to construct single-key non-succinct puncturable
SKFE based only on one-way functions. In addition, we show that we can
transform it into single-key weakly-succinct one using collusion-resistant SKFE.
Our formalization of puncturable SKFE is different from that of Bitansky and
Vaikuntanathan [17] in several aspects. Nevertheless, we show that our punc-
turable SKFE is also sufficient for constructing IO.

Below, we give the overview of these two constructions.

Obfustopia Built on SKFE 613

Single-Key Non-Succinct Puncturable SKFE Based on One-Way
Functions. Our starting point is the SKFE variant of the single-key non-
succinct PKFE scheme proposed by Sahai and Seyalioglu [61]. It is constructed
from garbled circuit and SKE, which are implied by one-way functions. Their
construction is as follows.

Setup: A master secret key consists of 2s secret keys {Kj,α}j∈[s],α∈{0,1} of SKE,
where s is the length of a binary representation of functions supported by the
resulting SKFE scheme.

Enc: When we encrypt a message m, we first generates a garbled circuit ˜Um

with labels {Lj,α}j∈[s],α∈{0,1} by garbling an universal circuit U(·,m) into
which m is hardwired. Then, we encrypt Lj,α under Kj,α and obtain an SKE
ciphertext cj,α for every j ∈ [s] and α ∈ {0, 1}. The resulting ciphertext of
the scheme is (˜Um, {cj,α}j∈[s],α∈{0,1}).

KeyGen: A functional key skf for a function f consists of {Kj,f [j]}j∈[s], where
f [1] · · · f [s] is the binary representation of f and each f [j] is a single bit.

Dec: A decryptor who has a ciphertext (˜Um, {cj,α}j∈[s],α∈{0,1}) and a func-
tional key {Kj,f [j]}j∈[s] can compute {Lj,f [j]}j∈[s] by decrypting each cj,f [j]

by Kj,f [j] and obtain ˜Um({Lj,f [j]}j∈[s]) = U(f,m) = f(m).

In the construction above, we observe that if we use puncturable PRF instead of
SKE, the resulting scheme is puncturable in some sense. More specifically, a master
secret key now consists of 2s puncturable PRF keys {Sj,α}j∈[s],α∈{0,1}. When we
encrypt a message m, we first generate (˜Um, {Lj,α}j∈[s],α∈{0,1}) and encrypt each
label by using a puncturable PRF value. That is, cj,α ← Lj,α ⊕ FSj,α

(tag), where
F is puncturable PRF and tag is a public tag chosen in some way.

In this case, we can generate a punctured master secret key MSK∗{tag} at
a tag tag. Thus, we define an encryption algorithm in a tag-based manner. The
encryption algorithm Enc, givenMSK, tag, and m, outputs a ciphertext of m under
the tag tag. That is, Enc(MSK, tag,m) = (˜Um, {Lj,α ⊕ FSj,α

(tag)}j∈[s],α∈{0,1}).
A punctured master secret key MSK∗{tag} consists of 2s puncturable PRF keys
{S∗

j,α{tag}}j∈[s],α∈{0,1} all of which are punctured at tag.
By using MSK∗{tag}, we can generate a ciphertext of any message m under

a tag tag′ different from tag, that is, PEnc(MSK∗{tag}, tag′,m) = (˜Um, {Lj,α ⊕
FS∗

j,α{tag}(tag′)}j∈[s],α∈{0,1}). Then, we have

Enc(MSK, tag′,m; r) = PEnc(MSK∗{tag}, tag′,m; r)

for any tag tag and tag′ such that tag �= tag′, message m, and randomness r
due to the functionality preserving property of puncturable PRF. Namely, this
scheme satisfies functionality preserving under puncturing.

In addition, we can prove that Enc(MSK, tag,m0) and Enc(MSK, tag,m1) are
indistinguishable for adversaries that have MSK∗{tag} based on the security of
puncturable PRF. In other words, it satisfies semantic security at punctured tag.

This formalization is different from that proposed by Bitansky and
Vaikuntanathan. Nevertheless, our formalization of puncturable SKFE is suf-
ficient for constructing IO. In fact, when we construct IO, we set the tag same

614 F. Kitagawa et al.

as the message to be encrypted itself. Then, our formalization is conceptually
the same as that of Bitansky and Vaikuntanathan. Our tag-based definition is
well-suited for our constructions.

Achieving Weak-Succinctness via Collusion-Succinctness. We cannot
directly use the puncturable SKFE scheme above as a building block of IO since
it is non-succinct. We need to transform it into an weakly-succinct scheme while
preserving security and functionality.

We extend the work by Kitagawa et al. [46] that showed how to transform non-
succinct PKFE into weakly-succinct one using collusion-resistant SKFE. They
accomplished the transformationvia a collusion-succinct scheme.We try to accom-
modate their transformation techniques into the context of puncturable SKFE.

Collusion-succinctness requires that each size of the encryption circuit and
punctured encryption circuit is sub-linear in the number of functional keys that
the scheme can issue. Note that when we consider collusion-succinctness, the
size of these circuits can be polynomial of the size of functions.

We first show that we can construct collusion-succinct puncturable SKFE
based on single-key non-succinct puncturable SKFE and collusion-resistant
SKFE. Then, we transform the collusion-succinct scheme into an weakly-succinct
scheme via a transformation based on decomposable randomized encoding. The
latter transformation based on decomposable randomized encoding is similar
to that proposed by Bitansky and Vaikuntanathan [17] and that proposed by
Ananth et al. [3]. We give an illustration of our construction path in Fig. 1.

The general picture is similar to that of Kitagawa et al. [46] and we can
accomplish the latter transformation based on a known technique, but there is
a technical hurdle in the former transformation. The most biggest issue is how
to define punctured master secret keys and the punctured encryption algorithm.
We show the overview of the former transformation and explain the technical
hurdle below.

Construction of collusion-succinct scheme. Our goal of this step is to construct a
collusion-succinct scheme, that is, a scheme which supports q functional keys and
the size of whose encryption and punctured encryption circuits are sub-linear in
q, where q is an a-priori fixed polynomial. The key tool for achieving this goal
is strong exponentially-efficient IO (SXIO) proposed by Lin et al. [53].

SXIO is a relaxed variant of IO. SXIO is required that, given a circuit C
with n-bit input, it runs in 2γn · poly(λ, |C|)-time, where γ is a constant smaller
than 1, poly is some polynomial, and λ is the security parameter. We call γ the
compression factor since it represents how SXIO can compress the truth table of
the circuit to be obfuscated. SXIO with arbitrarily small constant compression
factor can be constructed from collusion-resistant SKFE [15].

We show how to construct collusion-succinct puncturable SKFE from single-
key non-succinct one and SXIO. To achieve a collusion-succinct scheme, we need
to increase the number of functional keys to some polynomial q while compressing
the size of its encryption circuits into sub-linear in q.

Obfustopia Built on SKFE 615

Fig. 1. Illustration of our construction path. pSKFE denotes puncturable SKFE.
Dashed lines denote known or trivial implications. White boxes denote our ingredi-
ents or goal. Purple boxes denote our core schemes. A transformation from an object
in a rectangle to one in a rectangle incurs only polynomial security loss. A transforma-
tion from an object in a rectangle to one in a circle incurs super-polynomial security
loss. (Color figure online)

The most naive way to increase the number of functional keys is to run
multiple instances of the single-key scheme. If we have q master secret keys
MSK1, · · · ,MSKq, we can generate q functional keys since we can generate one
functional key under each master secret key. In this case, to ensure that we can
decrypt a ciphertext using every functional key under different master secret keys
MSKi for every i ∈ [q], a ciphertext should be composed of q ciphertexts each of
which is generated under MSKi for every i ∈ [q]. In addition, when we generate a
punctured master secret key punctured at tag, we generate q punctured master
secret keys MSK∗

i {tag} for every i ∈ [q] all of which are punctured at tag.
In the naive construction above, we see that if the single-key scheme satisfies

functionality preserving under puncturing and semantic security at punctured
tag, then so does the resulting scheme since a ciphertext of the resulting scheme
consists of only those of the single-key scheme. However, if a ciphertext of the
resulting scheme consists of q ciphertexts of the single-key scheme, the encryption
time is obviously at least linear in q. Therefore, we cannot construct a collusion-
succinct scheme based on this naive idea.

We then consider to compress the encryption time by using SXIO. We extend
the technique used in some previous results [15,46,53]. Let sxiO be SXIO. We set
a ciphertext as a circuit computing q ciphertexts obfuscated by sxiO instead of
setting it as q ciphertexts themselves. Concretely, we obfuscate the following cir-
cuit E1Key using sxiO. E1Key has hardwired message m, tag tag, and puncturable
PRF key S, and on input i ∈ [q], it first generates MSKi pseudorandomly from
S and i, and then outputs a ciphertext of m under MSKi and tag. Note that
the master secret key of this scheme is now one puncturable PRF key S. In
other words, the scheme generates q master secret keys of the single-key scheme
from one puncturable PRF key. For the formal description of E1Key, see Fig. 4 in
Sect. 7.1.

616 F. Kitagawa et al.

Hard-Coded Constants: S, tag, m. // Description of (simplified) E1Key

Input: i ∈ [q]

1. Compute ri
Setup ← FS(i).

2. Compute MSKi ← Setup(1λ; ri
Setup).

3. Return CTi ← Enc(MSKi, tag, m).

The size of E1Key is independent of q since E1Key consists of one PRF evalu-
ation and setup and encryption procedure of the single-key scheme.6 Therefore,
the time needed to compute sxiO(E1Key) is bounded by 2γ log q · poly(λ, |m|) =
qγ · poly(λ, |m|) for some constant γ < 1 and polynomial poly, that is, sub-
linear in q. Namely, we succeeds in reducing the encryption time from linear to
sub-linear in q.

However, we need more complicated structure to compress the running-time
of a punctured encryption algorithm into sub-linear in q. The main reason is
that we cannot give master secret key S in the clear in the punctured encryption
circuit to reduce the security to that of the building block single-key scheme.

We first argue how to set a punctured master secret key. We cannot rely on
the trivial way that sets q punctured master secret keys of the single-key scheme
as a punctured master secret key since the size of the punctured encryption
circuit becomes linear in q in this trivial way.

Our solution is to set a punctured master secret key as also an obfuscated
circuit under SXIO. More precisely, we obfuscate the following circuit P1Key.
P1Key has hardwired tag tag and puncturable PRF key S. Note that S is the
master secret key thus is the same puncturable PRF key as that hardwired into
E1Key. On input i ∈ [q], P1Key first generates MSKi pseudorandomly from S and
i, and then outputs a punctured master secret key MSK∗

i {tag} of the single-key
scheme. For the formal description of P1Key, see Fig. 5 in Sect. 7.1.

// Description of (simplified) P1Key

Hard-Coded Constants: S, tag.
Input: i ∈ [q]

1. Compute ri
Setup ← FS(i).

2. Compute MSKi ← Setup(1λ; ri
Setup).

3. Return MSK∗
i {tag} ← Punc(MSKi, tag).

// Description of (simplified) PE1Key

Hard-Coded Constants: MSK∗{tag}, tag′, m.
Input: i ∈ [q]

1. Parse sxiO(P1Key) ← MSK∗{tag}.

2. Compute MSK∗
i {tag} ← sxiO(P1Key)(i).

3. Return CTi ← PEnc(MSK∗
i {tag}, tag′, m).

In addition, we define the punctured encryption algorithm as follows. On input
MSK∗{tag} that is sxiO(P1Key), tag tag′, and message m, the punctured encryp-
tion algorithm obfuscates the following circuit PE1Key using sxiO and outputs the
obfuscated circuit. PE1Key has hardwired MSK∗{tag}, tag′, and m, and on input

6 Strictly speaking, the domain of PRF is [q], and thus the size of E1Key depends on q
in logarithmic. However, it does not matter since logarithmic factor is absorbed by
sub-linear factor. We ignore this issue here for simplicity.

Obfustopia Built on SKFE 617

i ∈ [q], it first generates the i-th punctured key MSK∗
i {tag} by feeding i into

MSK∗{tag} = sxiO(PE1Key), and then outputs a ciphertext of m underMSK∗
i {tag}

and tag′ using the punctured encryption algorithm of the single-key scheme. If the
compression factor of sxiO is sufficiently small, we ensure that the running time of
this punctured encryption algorithm is sub-linear in q. For the formal description
of PE1Key, see Fig. 6 in Sect. 7.1.

We can prove the semantic security at punctured tag by the punctured pro-
gramming technique proposed by Sahai and Waters [62]. However, the construc-
tion above does not satisfy functionality preserving under puncturing. This is
because ciphertexts output by the encryption and punctured encryption algo-
rithms are different. The ciphertexts are obfuscation of different circuits E1Key

and PE1Key, respectively.
In fact, it seems difficult to avoid this problem as long as we use SXIO to

gain succinctness. To the best of our knowledge, how to achieve succinctness in
a generic way without using SXIO is not known.

Indistinguishability of functionality under puncturing. To overcome the problem
above, we introduce a relaxed variant functionality preserving property that is
compatible with the construction based on SXIO. We call it indistinguishability
of functionality under puncturing. Informally speaking, the property requires that

(MSK,MSK∗{tag},Enc(MSK, tag′,m))
c≈ (MSK,MSK∗{tag},PEnc(MSK∗{tag}, tag′,m))

holds for any tag tag and tag′ such that tag �= tag′, and message m, where
c≈

denotes computational indistinguishability. In other words, it requires that no
distinguisher can distinguish ciphertexts output by Enc and PEnc even given
both the master secret key and punctured master secret key.

We see that the collusion-succinct construction based on SXIO above satis-
fies indistinguishability of functionality under puncturing. This comes from the
security guarantee of SXIO and the fact that E1Key and PE1Key are functionally
equivalent as long as the above tag and tag′ are different.

Overall, we can construct collusion-succinct puncturable SKFE with indis-
tinguishability of functionality under puncturing from a single-key non-succinct
scheme and SXIO.

Transforming into an weakly-succinct scheme. As stated earlier, we can in turn
transform a collusion-succinct scheme into an weakly-succinct one using decom-
posable randomized encoding. This transformation is based on those proposed
by Bitansky and Vaikuntanathan [17] and Ananth et al. [3].

In this transformation, a ciphertext of the weakly-succinct scheme is a cipher-
text of the collusion-succinct scheme itself. Thus, if the collusion-succinct scheme
satisfies semantic security at punctured tag and indistinguishability of function-
ality under puncturing, then so does the weakly-succinct scheme. Therefore,
we can construct a single-key weakly-succinct puncturable SKFE with indistin-
guishability of functionality under puncturing.

618 F. Kitagawa et al.

Indistinguishability of functionality under puncturing looks to be insufficient
for constructing IO. Nevertheless, we show that we can replace PKFE in the con-
struction of IO proposed by Bitansky and Vaikuntanathan with our puncturable
SKFE that satisfies only indistinguishability of functionality under puncturing
if we allow more but asymptotically the same security loss.

2.4 IO from Puncturable SKFE

Finally, we give an overview of our IO construction below.
The construction of IO based on puncturable SKFE is almost the same as

that based on PKFE proposed by Bitansky and Vaikuntanathan [17]. It does not
depend on which functionality preserving property puncturable SKFE satisfies.
Recall that, in their construction, a key pair (PKi,MSKi) of PKFE is generated
and the circuit Ei−1 that has hardwired PKi is obfuscated at every recursive step.
In our construction based on puncturable SKFE, a master secret key MSKi of
puncturable SKFE is generated and Ei−1 that has hardwired MSKi is obfus-
cated at each recursive step. Concretely, we construct Ei−1 as a circuit that has
hardwired MSKi and an SKE key K, and on (i − 1)-bit input xi−1, it outputs
a ciphertext of (xi−1‖xi,K) for xi ∈ {0, 1} under MSKi and a tag xi−1, that
is, Enc (MSKi,xi−1, (xi−1‖xi,K)) for xi ∈ {0, 1}. In the proof, we replace MSKi

hardwired into Ei−1 with the tuple of a punctured master secret key MSK∗
i {j}

punctured at j ∈ {0, 1}i−1 and a ciphertext of (j‖xi,K) for xi ∈ {0, 1}, where
j is a string in {0, 1}i−1 that we focus on at that time.

Outline of Security Proof. We give an overview of the security proof of IO
based on puncturable SKFE. If the building block puncturable SKFE satisfies
functionality preserving under puncturing, the security proof is almost the same
as that of Bitansky and Vaikuntanathan. However, our puncturable SKFE satis-
fies only indistinguishability of functionality under puncturing, and thus we need
more complicated arguments. The first half of the following overview is similar to
that of Bitansky and Vaikuntanathan. The rest is an overview of proofs that we
additionally need due to indistinguishability of functionality under puncturing.

Analogous to IO based on PKFE, we can accomplish this proof recursively.
More precisely, we can prove the security of iOi based on those of iOi−1, punc-
turable SKFE, and plain SKE. We proceed the proof as follows. Note again that,
we ignore the issue of the randomness for the encryption algorithm and punc-
tured encryption algorithm for simplicity. It is generated by puncturable PRF
in the actual construction.

Suppose that we have two functionally equivalent circuits C0 and C1 both
of which expect an i-bit input. We show that no efficient distinguisher D can
distinguish iOi(C0) and iOi(C1). We consider the following sequence of hybrid
experiments. Below, for two hybrids H and H′, we write H ∼ H′ to denote that
the behavior of D does not change between H and H′.

In the first hybrid H0, D is given iOi(C0). Recall that iOi(C0) consists of skC∗

and iOi−1(Ei−1). C∗ has hardwired two SKE ciphertexts CTske
0 and CTske

1 of C0

Obfustopia Built on SKFE 619

under independent keys K0 and K1. On i-bit input xi and SKE key Kb, C∗ first
obtains C by decrypting CTske

b by Kb and outputs C(xi).
In the next hybrid H1, we change howCTske

1 hardwired in C∗ is generated. Con-
cretely, we generate CTske

1 as a ciphertext of C1 under the key K1. It holds that
H0 ∼ H1 due to the security of SKE.Then, in thenext hybridH2, we change the cir-
cuit Ei−1 so that, on (i−1)-bit inputxi−1, it outputs a ciphertext of (xi−1‖xi,K1)
instead of (xi−1‖xi,K0) for xi ∈ {0, 1} under MSKi and a tag xi−1.

If we prove H1 ∼ H2, we also prove H0 ∼ H2 and almost complete the secu-
rity proof. This is because we can argue that the behavior of D does not change
between H2 and the hybrid where D is given iOi(C1) by a similar argument for
H0 ∼ H2.

Therefore, the main part of the proof is how we change the circuit Ei−1

from encrypting K0 in H1 to encrypting K1 in H2. As mentioned earlier, we
accomplish this task by relying on the argument of probabilistic IO formalized
by Canneti et al. [27].

Concretely, we consider 2i−1 + 1 intermediate hybrid experiments H1,j for
j ∈ {0, · · · , 2i−1} between H1 and H2. Between H1,j and H1,j+1, we change
Ei−1 so that on input j ∈ {0, 1}i−1, it outputs ciphertexts of (j‖xi,K1) instead
of (j‖xi,K0) for xi ∈ {0, 1}, where j is the binary representation of j. More
precisely, we construct Ei−1 in H1,j as follows. Ei−1 has hardwired MSKi, K0,
and K1. On (i − 1)-bit input xi−1,

– if xi−1 < j, it outputs a ciphertext of (xi−1‖xi,K1) for xi ∈ {0, 1} under
MSKi and a tag xi−1.

– Otherwise, it outputs a ciphertext of (xi−1‖xi,K0) for xi ∈ {0, 1} under MSKi

and a tag xi−1.

We see that Ei−1 in H1 has the same functionality as Ei−1 in H1,0. In addition,
Ei−1 in H2 has the same functionality as Ei−1 in H1,2i−1 . Therefore, we have
H1 ∼ H1,0 and H2 ∼ H1,2i−1 from the security guarantee of iOi−1.

We show how to prove H1,j ∼ H1,j+1. For simplicity, we first assume that
puncturable SKFE satisfies functionality preserving under puncturing. In this
case, we show H1,j ∼ H1,j+1 by the following three steps.

(1) In the first step, we hardwire ciphertexts of (j‖xi,K0) under MSKi and a
tag j for xi ∈ {0, 1} in Ei−1. In addition, we replace hardwired MSKi in Ei−1

with MSK∗
i {j} that is a master secret key punctured at a tag j. On (i−1)-bit

input xi−1,
– if xi−1 = j, Ei−1 outputs hardwired ciphertexts of (j‖xi,K0) for xi ∈

{0, 1}.
– if xi−1 �= j, it generates ciphertexts of (xi−1‖xi,Kβ) under MSK∗

i {j}
and a tag xi−1 and outputs them, where β = 1 if xi−1 < j and β = 0
otherwise.

We see that this change does not affect the functionality of Ei−1 if puncturable
SKFE satisfies functionality preserving under puncturing. Thus, this step is
done by the security of iOi−1.

620 F. Kitagawa et al.

(2) In the second step, we change the hardwired ciphertexts to ciphertexts of
(j‖xi,K1) for xi ∈ {0, 1}. This is done by the semantic security at punctured
tag of puncturable SKFE.

(3) In the final step, we change Ei−1 so that it does not have hardwired cipher-
texts of (j‖xi,K1) for xi ∈ {0, 1}. Moreover, we change Ei−1 so that Ei−1 has
hardwired MSKi and use it to generate the output ciphertexts. This change
also does not affect the functionality of Ei−1, and thus we can accomplish this
step by relying on the security of iOi−1 again.

From the above, if puncturable SKFE satisfies functionality preserving under
puncturing, we have H1,j ∼ H1,j+1 for every j ∈ {0, · · · , 2i−1−1}. By combining
H1 ∼ H1,0 and H1,2i−1 ∼ H2, we obtain H1 ∼ H2.

Therefore, we complete the entire proof. In fact, in this case, the proof is
essentially the same as that for the case where PKFE is used as a building block
shown by Bitansky and Vaikuntanathan.

Additional hybrids for the case of indistinguishability of functionality under punc-
turing. Recall that our puncturable SKFE satisfies only indistinguishability of
functionality under puncturing. Thus, the above argument for steps 1 and 3 do
not work straightforwardly. This is because if puncturable SKFE satisfies only
indistinguishability of functionality under puncturing, the functionality of Ei−1

might change at each step of 1 and 3. Therefore, we cannot directly use the
security of iOi−1.

Nevertheless, even if puncturable SKFE satisfies only indistinguishability of
functionality under puncturing, we can proceed steps 1 and 3 by introducing
more additional hybrids. Since steps 1 and 3 are symmetric, we focus on pro-
ceeding the step 1. We can apply the following argument for the step 3. Below,
we let H0

1,j denote the hybrid experiment after applying the step 1 to H1,j .
To accomplish the step 1, we introduce the additional intermediate hybrids

H1,j,k for every k ∈ {0, · · · , 2i−1} \ {j} between H1,j and H0
1,j . Between H1,j,k

and H1,j,k+1, we change Ei−1 so that, on input k ∈ {0, 1}i−1, it outputs cipher-
texts under MSK∗

i {j} instead of ciphertexts under MSKi, where k is the binary
representation of k. More precisely, we construct Ei−1 in H1,j,k as follows. Ei−1

has hardwired MSK∗
i {j} in addition to MSKi, K0, and K1. On (i − 1)-bit input

xi−1, it runs as follows.

– If xi−1 < j, it sets β = 1 and β = 0 otherwise.
– If xi−1 < k and xi−1 �= j, it outputs a ciphertext of (xi−1‖xi,Kβ) under
MSK∗

i {j} and a tag xi−1, that is, PEnc (MSK∗
i {j},xi−1, (xi−1‖xi,Kβ)) for

xi ∈ {0, 1}.
– Otherwise (xi−1 ≥ k or xi−1 = j), it outputs a ciphertext of (xi−1‖xi,Kβ)

under MSKi and a tag xi−1, that is, Enc (MSKi,xi−1, (xi−1‖xi,Kβ)) for xi ∈
{0, 1}.

We see that Ei−1 in H1,j and H0
1,j have the same functionality as that in H1,j,0

and H1,j,2i−1 , respectively. In addition, Ei−1 in H1,j,j has the same functionality

Obfustopia Built on SKFE 621

as that in H1,j,j+1. Therefore, we have H1,j ∼ H1,j,0, H0
1,j ∼ H1,j,2i−1 , and

H1,j,j ∼ H1,j,j+1 from the security guarantee of iOi−1.
We can prove H1,j,k ∼ H1,j,k+1 for every k ∈ {0, · · · , 2i−1} \ {j} by three

steps again based on indistinguishability of functionality under puncturing.

(1) We hardwire ciphertexts of (k‖xi,Kβ) under MSKi and a tag k, that is,
Enc(MSKi,k, (k‖xi,Kβ)) for xi ∈ {0, 1} in Ei−1 in the first step. In addition,
we change Ei−1 so that it outputs the hardwired ciphertext of (k‖xi,K0) for
xi ∈ {0, 1} if the input is k. We see that this change does not affect the
functionality of Ei−1. Thus, this step is done by the security of iOi−1.

(2) In the second step, we change the hardwired ciphertexts to a cipher-
text of (k‖xi,Kβ) under MSK∗

i {j}, that is PEnc(MSK∗
i {j},k, (k‖xi,Kβ)) for

xi ∈ {0, 1}. This is done by the indistinguishability of functionality under
puncturing of puncturable SKFE.

(3) In the final step, we change Ei−1 so that it does not have hardwired cipher-
texts of (k‖xi,K1) for xi ∈ {0, 1}. Namely, we change Ei−1 so that on input
k, Ei−1 generates ciphertexts of k under MSK∗

i {j} and outputs them. This
change does not affect the functionality of Ei−1, and thus we can accomplish
this step by relying on the security of iOi−1 again.

From these, H1,j,k ∼ H1,j,k+1 holds for every k ∈ {0, · · · , 2i−1} \ {j}. By
combining H1,j ∼ H1,j,0, H0

1,j ∼ H1,j,2i−1 , and H1,j,j ∼ H1,j,j+1, we obtain
H1,j ∼ H0

1,j .
Therefore, we obtain H1,j ∼ H0

1,j even if puncturable SKFE satisfies only
indistinguishability of functionality under puncturing. Overall, we can complete
the entire security proof.

We note that our security proof incurs more security loss than those of
Bitansky and Vaikuntanathan [17] and the case where puncturable SKFE satis-
fies functionality preserving under puncturing. Our security proof incurs roughly
22·i security loss while the latter proofs incurs 2i security loss when we prove
the security of iOi based on that of iOi−1. Nevertheless, this difference is not an
issue in the sense that if the building block primitives are roughly 2Ω(n2)-secure,
we can prove the security of our indistinguishability obfuscator, where n is the
input length of circuits to be obfuscated. This requirement is the same as that
of Bitansky and Vaikuntanathan.

3 Overview: Collusion-Resistant SKFE
from Weakly-Succinct One

In this section, we give a high-level overview of our technique for increasing the
number of functional decryption keys that an SKFE scheme supports. The basic
idea behind our proposed construction is that we combine multiple instances of a
functional encryption scheme and use functional decryption keys tied to a function
that outputs a re-encrypted ciphertext under a different encryption key. Several re-
encryption techniques have been studied in the context of functional encryption [2,
17,23,36,50], but we cannot directly use such techniques as we see below.

622 F. Kitagawa et al.

3.1 First Attempt: Applying Re-encryption Techniques
in the Public-Key Setting

It is natural to try using the techniques in the public-key setting. In particular,
it was shown that single-key weakly succinct PKFE implies collusion-resistant
PKFE by Garg and Srinivasan [36] and Li and Micciancio [50]. Their techniques
are different, but the core idea seems to be the same. Both techniques use func-
tional decryption keys for a re-encryption function that outputs a ciphertext
under a different encryption key.

We give more details of the technique by Li and Micciancio since it is our
starting point. It is unclear whether the technique by Garg and Srinivasan is
applicable in the secret-key setting since it seems that they use plain public-key
encryption in an essential way.

The main technical tool of Li and Micciancio is the PRODUCT construction.
Given two PKFE schemes, the PRODUCT construction combines them into a
new PKFE scheme. The most notable feature of the PRODUCT construction
is that the number of functional decryption keys of the resulting scheme is the
product of those of the building block schemes. For example, if we have a λ-key
PKFE scheme, by combining two instances of it via the PRODUCT construction,
we can construct a λ2-key PKFE scheme, where λ is the security parameter.

By applying the PRODUCT construction k times iteratively, we can con-
struct a λk-key PKFE scheme from a λ-key PKFE scheme. Note that we can in
turn construct a λ-key PKFE scheme by simply running λ instances of a single-
key PKFE scheme in parallel. Moreover, if the underlying single-key scheme
is weakly succinct, the running time of the λk-key scheme depends only on k
instead of λk. Thus, by setting k = ω(1), we can construct a λω(1)-key PKFE
scheme and achieve collusion-resistance from a single-key weakly succinct one.

Li and Micciancio proceeded with the above series of transformations via a
stateful variant of PKFE, and thus the resulting collusion-resistant scheme is also
a stateful scheme. Therefore, after achieving collusion-resistance, they converted
the stateful PKFE scheme into a standard PKFE scheme. For simplicity, we
ignore the issue here.

One might think that we can construct a collusion-resistant SKFE scheme
from a single-key SKFE scheme by using the PRODUCT construction. However,
we encounter several difficulties in the SKFE setting.

The PRODUCT construction involves the chaining of re-encryption by func-
tional decryption keys used in many previous works [2,17,23,36]. This technique
causes several difficulties when we adopt the PRODUCT construction in the
SKFE setting. This is also the reason why the building block single-key PKFE
scheme must satisfy (weak) succinctness property.

We now look closer at the technique of Li and Micciancio to see difficulties in the
SKFE setting. Let PKFE be a 2-key PKFE scheme. As stated above, for functional
key generation in this construction, we need state information called index, which
indicates how many functional keys generated so far and which master secret and
public key should be used to generate the next functional key. A simplified version
of the PRODUCT construction proposed by Li and Micciancio is as follows.

Obfustopia Built on SKFE 623

(2 × 2)-key scheme from 2-key scheme.

Setup: Generates PKFE key pairs (MPK,MSK) ← Setup(1λ) and (MPKi,MSKi)
← Setup(1λ) for i ∈ [2]. MPK is the master public key and (MSK,MSK1,
MSK2,MPK1,MPK2) is the master secret key of this scheme, respectively. In
the actual construction, we maintain (MPKi,MSKi) for i ∈ [2] as one PRF
key to avoid blow-ups.7

Functional Key: For n-th functional key generation, a positive integer n ∈ [4]
is interpreted as a pair of index (i, j) ∈ [2]× [2]. Generates two keys ski

E[MPKi]

← KG(MSK, E [MPKi], i) and sk
(i,j)
f ← KG(MSKi, f, j) where E is a re-

encryption circuit described below. A functional key is (ski
E[MPKi], sk

(i,j)
f).

Encryption: A ciphertext is ctpre ← Enc(MPK,m).
Decryption: First, applies the decryption algorithm with MPK, that is,

ctpost ← Dec(ski
E[MPKi], ctpre). Next, applies it with MPKi, f(m) ←

Dec(sk(i,j)
f , ctpost).

The description of E defined at the functional key generation phase is as in the
figure below. Re-encryption circuit E [MPKi] takes as an input a message m and
outputs ctpost ← Enc(MPKi,m) by using a hard-wired master public-key MPKi.

Hard-Coded Constants: MPKi. // Description of (simplified) E
Input: m

1. Return ctpost ← Enc(MPKi, m).

Using the master secret-key MSK1, we can generate two functional keys
sk1,1

f1
, sk1,2

f2
since PKFE is a 2-key scheme. Similarly, we can generate two func-

tional keys using MSK2. Moreover, since MSK is also a master secret-key of
the 2-key scheme, we can generate two functional keys skE[MPK1] and skE[MPK2]

using MSK at the functional key generation step. By these combinations, we can
generate 2 × 2 keys

(skE[MPK1], sk
1,1
f1

), (skE[MPK1], sk
1,2
f2

), (skE[MPK2], sk
2,1
f3

), (skE[MPK2], sk
2,2
f4

).

This is generalized to the case where the underlying schemes are a p-key
scheme and q-key scheme for any p and q. That is, for n-th functional key
generation where n ≤ p · q, n is interpreted as (i, j) ∈ [p]× [q]. Thus, by applying
the PRODUCT construction to a λ-key scheme k times iteratively, we can obtain
a λk-key scheme. Note again that we can construct a λ-key weakly succinct SKFE
scheme from a single-key weakly succinct one by simple parallelization.

7 In fact, (MPKi,MSKi) for i ∈ [2] are generated at the functional key generation
phase by computing ri ← PRF(K, i) and (MPKi,MSKi) ← Setup(1λ; ri), where K is
a PRF key and is stored as a part of the master secret key.

624 F. Kitagawa et al.

While such a re-encryption technique is widely used in the context of PKFE,
it is difficult to use it directly in the SKFE setting. The main cause of the
difficulty is the fact that we have to release a functional key implementing the
encryption circuit in which a master secret key of an SKFE scheme is hardwired
to achieve the re-encryption by functional decryption keys. The fact seems to be
a crucial problem for the security proof since skf might leak information about
f . In the PKFE setting, this issue does not arise since an encryption key is
publicly available.

3.2 Second Attempt: Applying Techniques in a Different Context
of SKFE

To solve the above issue, we try using a technique in the secret-key setting but
in a different context from the collusion-resistance.

Brakerski et al. [23] introduced a new re-encryption technique by functional
decryption keys in the context of multi-input SKFE [38]. They showed that
we can overcome the difficulty above by using the security notion of function
privacy [25].

By function privacy, we can hide the information about a master-secret key
embedded in a re-encryption circuit E [MSK∗]. With their technique, we embed a
post-re-encrypted ciphertext ctpost as a trapdoor into a pre-re-encrypted cipher-
text ctpre in advance in the simulation for the security proof. By embedding
this trapdoor, we can remove MSK∗ from the re-encryption circuit E when we
reduce the security of the resulting scheme to that of the underlying scheme
corresponding to MSK∗.

Their technique is useful, but it incurs a polynomial blow-up of the running
time of the encryption circuit for each application of a construction with the re-
encryption procedure by a functional decryption key. This is because it embeds
a ciphertext into another ciphertext (we call this nested-ciphertext-embedding).

Such a nest does not occur with the technique of Li and Micciancio in the
PKFE setting since a post-re-encrypted ciphertext as a trapdoor is embedded in
a functional decryption key. One might think we can avoid the issue of nested-
ciphertext embedding by embedding ciphertexts in a functional key. However,
this is not the case because the number of ciphertext queries is not a-priori
bounded in the secret-key setting.

In fact, we obtain a new PRODUCT construction by accommodating the
function privacy and nested-ciphertext-embedding technique to the PRODUCT
construction of Li and Micciancio. However, if we use our new PRODUCT con-
struction in a naive way, each application of the new PRODUCT construction
incurs a polynomial blow-up of the encryption time. In general, k applications
of our new PRODUCT construction with nested-ciphertext-embedding incur a
double exponential blow-up λ2O(k)

.
Thus, in a naive way, we can apply our new PRODUCT construction iteratively

only constant times. This is not sufficient for our goal since we must apply our new
PRODUCT construction ω(1) times to achieve collusion-resistant SKFE.

Obfustopia Built on SKFE 625

3.3 Our Solution: Sandwiched Size-Shifting

To solve the difficulty of size blow-up, we propose a new construction tech-
nique called “sandwiched size-shifting”. In this new technique, we use a hybrid
encryption methodology to reduce the exponential blow-up of the encryption time
caused by our new PRODUCT construction with nested-ciphertext-embedding.

A hybrid encryption methodology is used in many encryption schemes. In
particular, Ananth et al. [1] showed that a hybrid encryption construction is use-
ful in designing adaptively secure functional encryption from selectively secure
one without any additional assumption. In fact, Brakerski et al. [23] also used a
hybrid encryption construction to achieve an input aggregation mechanism for
multi-input SKFE.

In this study, we propose a new hybrid encryption construction for functional
encryption to reduce the encryption time of a functional encryption scheme with-
out any additional assumption. Our key tool is a single-ciphertext collusion-
resistant SKFE scheme called 1CT, which is constructed only from one-way
functions. The notable features of 1CT are as follows.

1. The size of a master secret key of 1CT is independent of the length of a
message to be encrypted.

2. The encryption is fully succinct.
3. The size of a functional decryption key is only linear in the size of a function.

The drawback of 1CT is that we can release only one ciphertext. However, this
is not an issue for our purpose since a master secret key of 1CT is freshly chosen
at each ciphertext generation in our hybrid construction.

1CT is based on a garbled circuit [64]. A functional decryption key is a
garbled circuit of f with encrypted labels by a standard secret-key encryption
scheme.8 A ciphertext consists of a randomly masked message and keys of the
secret-key encryption scheme that corresponds to the randomly masked message.
Thus, we can generate only one ciphertext since if two ciphertexts are generated,
then labels for both bits are revealed and the security of the garbled circuit is
completely broken. Note that 1CT is selectively secure. In fact, this construction
is a flipped variant of the single-key SKFE by Sahai and Seyalioglu [61].

We then modify the SKFE variant of the hybrid construction proposed by
Ananth et al. [1].9 We use 1CT as data encapsulation mechanism and a q-key
weakly succinct SKFE scheme SKFE as key encapsulation mechanism. In our
hybrid construction, the encryption algorithm of SKFE encrypts only short values
(concretely, a one-time master secret-key of 1CT), which are independent of the
length of a message to be encrypted. A one-time encryption key (short and fixed
length) of 1CT is encrypted by SKFE.

8 Each pair of labels is shuffled by a random masking.
9 Their goal is to construct an adaptively secure scheme. They used adaptively secure

single-ciphertext functional encryption that is non-succinct as data encapsulation
mechanism.

626 F. Kitagawa et al.

That is, by this hybrid construction, a real message part is shifted onto
1CT, whose ciphertext has the full succinctness property. In other words, we can
separate the blow-up due to recursion from nested-ciphertext-embedding part.
Therefore, we call our new hybrid construction technique “size-shifting”.

The third property of 1CT is also important. The size of a functional key
of 1CT affects the encryption time of the hybrid construction. This is because
a functional key for f of the hybrid construction consists of a functional key
of SKFE for a function G, which generates a functional key of 1CT for f . A
simplified description of G is below. Due to the third property of 1CT, the
hybrid construction preserves weak succinctness.

Hard-Coded Constants: f . // Description of (simplified) G
Input: 1CT.MSK

1. Return 1CT.skf ← 1CT.KG(1CT.MSK, f).

Moreover, from the above construction of the key generation algorithm, the
number of issuable functional keys of the resulting scheme is minimum of those
of building block SKFE and 1CT. Therefore, since 1CT is collusion-resistant, if
SKFE supports q functional keys, then so does the resulting scheme, where q is
any fixed polynomial of λ.

Thus, we can apply the hybrid construction after each application of our new
PRODUCT construction, preserving the weak succinctness and the number of
functional keys that can be released.

The size-shifting procedure is “sandwiched” by each our new PRODUCT
construction. As a result, we can reduce the blow-up of the encryption time after
k iterations to k · λO(1) if the underlying single-key scheme is weakly succinct
while the naive k iterated applications of our new PRODUCT construction incurs
λ2O(k)

size blow-up. Therefore, we can iterate our new PRODUCT construction
ω(1) times via the size-shifting and construct a collusion-resistant SKFE scheme
based only on a single-key (weakly) succinct SKFE scheme.10

Our analysis is highly non-trivial though our transformation consists of rela-
tively simple transformations. We believe that it is better to achieve non-trivial
results by using simple techniques than complex ones.

Figure 2 illustrates how to construct our building blocks. An illustration of
our sandwiched size-shifting procedure is described in Fig. 3.

10 While we can reduce the blow-up of the encryption time, we cannot reduce the
security loss caused by each iteration step. As a result, λω(1) security loss occurs after
ω(1) times iterations. This is the reason our transformation incurs quasi-polynomial
security loss.

Obfustopia Built on SKFE 627

Fig. 2. Our building blocks. Green boxes denote our core schemes used in our iterated
construction in Fig. 3. (Color figure online)

4 Preliminaries

We define some notations and cryptographic primitives.

4.1 Notations

We write x
r←− X to denote that an element x is chosen from a finite set X

uniformly at random and y ← A(x; r) to denote that the output of an algorithm
A on an input x and a randomness r is assigned to y. When there is no need to
write the randomness explicitly, we omit it and simply write y ← A(x).

Throughout this paper, λ denotes a security parameter. poly denotes an
unspecified polynomial. A function f(λ) is a negligible function if f(λ) tends to
0 faster than 1

λc for every constant c > 0. We write f(λ) = negl(λ) to denote

Fig. 3. An illustration of our iteration technique, in which our size-shifting proce-
dure is sandwiched. For k-th iteration, first, we apply the size-shifting procedure to a
λk−1-key weakly succinct SKFE scheme with expanded ciphertexts incurred by nested-
ciphertext-embedding (the result of (k − 1)-th iteration). Second, we apply our new
PRODUCT construction to increase the number of issuable keys.

628 F. Kitagawa et al.

that f(λ) is a negligible function. PPT stands for probabilistic polynomial time.
Let [�] denote the set of integers {1, · · · , �}.

4.2 Standard Cryptographic Tools

In this section, we review standard cryptographic tools, pseudorandom function
(PRF), puncturable PRF, secret-key encryption (SKE), garbling scheme, and
decomposable randomized encoding.

Definition 1 (Pseudorandom functions). For sets D and R, let {FS(·) :
D → R|S ∈ {0, 1}λ} be a family of polynomially computable functions. We say
that F is pseudorandom if for any PPT adversary A, it holds that

AdvprfF,A(λ) = |Pr[AFS(·)(1λ) = 1 : S
r←− {0, 1}λ]

− Pr[AR(·)(1λ) = 1 : R r←− U]| = negl(λ) ,

where U is the set of all functions from D to R. Moreover, for some concrete
negligible function ε(·), we say that F is ε-secure if for any PPT A the above
indistinguishability gap is smaller than ε(λ)Ω(1).

Theorem 4 ([37]). If one-way functions exist, then for all efficiently com-
putable functions n(λ) and m(λ), there exists a pseudorandom function that
maps n(λ) bits to m(λ) bits (i.e., D := {0, 1}n(λ) and R := {0, 1}m(λ)).

Definition 2 (Puncturable pseudorandom function). For sets D and R,
a puncturable pseudorandom function PPRF consists of a tuple of algorithms
(F,Punc) that satisfies the following two conditions.

Functionality preserving under puncturing: For all polynomial size sub-
set {xi}i∈[k] of D, and for all x ∈ D \ {xi}i∈[k], we have Pr[FS(x) = FS∗(x) :
S ← {0, 1}λ, S∗ ← Punc(S, {xi}i∈[k])] = 1.

Pseudorandomness at punctured points: For all polynomial size subset
{xi}i∈[k] of D, and any PPT adversary A, it holds that

Pr[A(S∗, {FS(xi)}i∈[k]) = 1] − Pr[A(S∗, Uk) = 1] = negl(λ) ,

where S
r←− {0, 1}λ, S∗ ← Punc(S, {xi}i∈[k]), and U denotes the uniform

distribution over R.
Moreover, for some concrete negligible function ε(·), we say that PPRF is ε-
secure if for any A the above indistinguishability gap is smaller than ε(λ)Ω(1).

Theorem 5 ([21,22,37,43]). If one-way functions exist, then for all efficiently
computable functions n(λ) and m(λ), there exists a puncturable pseudoran-
dom function that maps n(λ) bits to m(λ) bits (i.e., D := {0, 1}n(λ) and
R := {0, 1}m(λ)).

Definition 3 (Secret key encryption). An SKE scheme SKE is a two tuple
(E,D) of PPT algorithms.

Obfustopia Built on SKFE 629

– The encryption algorithm E, given a key K ∈ {0, 1}λ and a message m ∈ M,
outputs a ciphertext c, where M is the plaintext space of SKE.

– The decryption algorithm D, given a key K and a ciphertext c, outputs a
message m̃ ∈ {⊥} ∪ M. This algorithm is deterministic.

Correctness: We require D(K,E(K,m)) = m for every m ∈ M and key K ∈
{0, 1}λ.

CPA security: We define the security game between a challenger and an adver-
sary A as follows.
1. The challenger generates K

r←− {0, 1}λ and chooses the challenge bit b
r←−

{0, 1}. Then, the challenger sends 1λ to A.
2. A may make polynomially many encryption queries adaptively. A sends

(m0,m1) ∈ M × M to the challenger. Then, the challenger returns c ←
E(K,mb).

3. A outputs b′ ∈ {0, 1}.
In this game, we define the advantage of the adversary A as

AdvcpaSKE,A(λ) = 2|Pr[b = b′] − 1
2
| = |Pr[b′ = 1|b = 0] − Pr[b′ = 1|b = 1]| .

For a negligible function ε(·), We say that SKE is ε-secure if for any PPT A,
we have AdvcpaSKE,A(λ) < ε(λ)Ω(1).

Theorem 6 ([54]). If there exist one-way functions, there exists CPA-secure
SKE.

Definition 4 (Garbling scheme). Let {Cn}n∈N be a family of circuits where
each circuit in Cn takes an n-bit input. A circuit garbling scheme GC is a two
tuple (Grbl,Eval) of PPT algorithms.

– The garbling algorithm Grbl, given a security parameter 1λ and a circuit C ∈
Cn, outputs a garbled circuit ˜C, together with 2n labels {Lj,α}j∈[n],α∈{0,1}.

– The evaluation algorithm, given a garbled circuit ˜C and n labels {Lj}j∈[n],
outputs y.

Correctness: We require Eval(˜C, {Lj,xj
}j∈[n]) = C(x) for every n ∈ N, C ∈ Cn,

and x ∈ {0, 1}n, where (˜C, {Lj,α}j∈[n],α∈{0,1}) ← Grbl(1λ, C) and xj is the
j-th bit of x for every j ∈ [n].

Security: Let Sim be a PPT simulator. We define the following game between
a challenger and an adversary A as follows.
1. The challenger chooses the challenge bit b

r←− {0, 1} and sends security
parameter 1λ to A.

2. A sends a circuit C ∈ Cn and an input x ∈ {0, 1}n for the challenger.
3. If b = 0, the challenger computes (˜C, {Lj,α}j∈[n],α∈{0,1}) ← Grbl(1λ, C)

and returns (˜C, {Lj,xj
}j∈[n]) to A. Otherwise, the challenger returns

(˜C, {Lj}j∈[n]) ← Sim(1λ, |C|, C(x)).
4. A outputs b′ ∈ {0, 1}.

630 F. Kitagawa et al.

In this game, we define the advantage of A as

AdvgcGC,A,Sim(λ) = 2|Pr[b = b′] − 1
2
| = |Pr[b′ = 1|b = 0] − Pr[b′ = 1|b = 1]| .

For a concrete negligible function ε(·), We say that GC is ε-secure if there
exists a PPT Sim such that for any PPT A, we have AdvgcGC,A,Sim(λ) <

ε(λ)Ω(1).

Theorem 7 ([13,57,64]). If there exist one-way functions, there exists secure
garbling scheme for any polynomial size circuits.

Definition 5 (Decomposable randomized encoding). Let c ≥ 1 be an inte-
ger constant. A c-local decomposable randomized encoding RE, given security
parameter 1λ and a function f of size s and n-bit input, outputs a function
̂f : {0, 1}n × {0, 1}ρ → {0, 1}μ with the following properties. ρ and μ are polyno-
mials bounded by s · polyRE(λ, n), where polyRE is a fixed polynomial.

Correctness: There is a polynomial time decoder that, given ̂f(x; r), outputs
f(x) for any x ∈ {0, 1}n and r ∈ {0, 1}ρ.

Decomposability: Computation of ̂f can be decomposed into computation of
μ functions. That is, there exist μ functions ̂f1, · · · , ̂fμ such that ̂f(x; r) =
(̂f1(x; r), · · · , ̂fμ(x; r)). Each ̂fi depends on a single bit of x at most and c

bits of r. We write ̂f(x; r) = (̂f1(x; rS1), · · · , ̂fμ(x; rSμ
)), where Si denotes

the subset of bits of r that ̂fi depends on.
Security: Let Sim be a PPT simulator. We define the following game between

a challenger and an adversary A as follows.
1. The challenger chooses a bit b

r←− {0, 1} and sends security parameter 1λ

to A.
2. A sends a function f of size s and n-bit input and an input x ∈ {0, 1}n

to the challenger.
3. If b = 0, the challenger computes ̂f ← RE(1λ, f), generates r ←

{0, 1}ρ, and returns ̂f(x; r) to A. Otherwise, the challenger returns
Sim(1λ, s, f(x)).

4. A outputs b′ ∈ {0, 1}.
In this game, we define the advantage of A as

AdvreRE,Sim,A(λ) = |Pr[b′ = 1|b = 0] − Pr[b′ = 1|b = 1]| .

For a negligible function ε(·), we say that RE is ε-secure if there exists a PPT
Sim such that for any PPT A, we have AdvreRE,Sim,A(λ) < ε(λ)Ω(1).

It is known that a decomposable randomized encoding can be based on one-
way functions.

Theorem 8 ([6,64]). If there exist one-way functions, there exists secure
decomposable randomized encoding for all polynomial size functions.

Obfustopia Built on SKFE 631

4.3 Secret-Key Functional Encryption

We review the definition of ordinary secret-key functional encryption (SKFE).

Definition 6 (Secret-key functional encryption). An SKFE scheme SKFE
is a four tuple of PPT algorithms (Setup,KG,Enc,Dec). Below, let M and F be
the message space and function space of SKFE, respectively.

– The setup algorithm Setup, given a security parameter 1λ, outputs a master
secret key MSK.

– The key generation algorithm KG, given a master secret key MSK and a func-
tion f ∈ F , outputs a functional decryption key skf .

– The encryption algorithm Enc, given a master secret key MSK and a message
m ∈ M, outputs a ciphertext CT.

– The decryption algorithm Dec, given a functional decryption key skf and a
ciphertext CT, outputs a message m̃ ∈ {⊥} ∪ M.

Correctness: We require Dec(KG(MSK, f),Enc(MSK,m)) = f(m) for every
m ∈ M, f ∈ F , and MSK ← Setup(1λ).

Next, we introduce selective-message message privacy for SKFE schemes.

Definition 7 (Selective-message message privacy). Let SKFE be an SKFE
scheme whose message space and function space are M and F , respectively. Let
q be a polynomial of λ. We define the selective-message message privacy game
between a challenger and an adversary A as follows.

1. The challenger generates a master secret key MSK ← Setup(1λ) and chooses
the challenge bit b

r←− {0, 1}. Then, the challenger sends security parameter
1λ to A.

2. A sends {(m�
0,m

�
1)}�∈[p] to the challenger, where p is an a-priori unbounded

polynomial of λ.
3. The challenger generates ciphertexts CT(�) ← Enc(MSK,m�

b)(� ∈ [p]) and
sends them to A.

4. A may adaptively make key queries q times at most. For a key query f ∈ F
from A, the challenger generates skf ← KG(MSK, f), and returns skf to A.
Here, f needs to satisfy f(m�

0) = f(m�
1) for all � ∈ [p].

5. A outputs b′ ∈ {0, 1}.

In this game, we define the advantage of A as

Advsm-mp
SKFE,A(λ) = 2|Pr[b = b′] − 1

2
| = |Pr[b′ = 1|b = 0] − Pr[b′ = 1|b = 1]| .

A is said to be valid if each function query f made by A satisfies that f(m�
0) =

f(m�
1) for all � ∈ [p] in the above game. For a negligible function ε(·), We say

that SKFE is (q, ε)-selective-message message private if for any valid PPT A, we
have Advsm-mp

SKFE,A(λ) < ε(λ)Ω(1).

632 F. Kitagawa et al.

We further say that an SKFE scheme is ε-secure collusion-resistant SKFE if
it is (q, ε)-selective-message message private for any polynomial q.

Next, we define the succinctness for SKFE.

Definition 8 (Succinctness). Let F be a function family. Let s and n be the
maximum size and input length of functions contained in F , respectively. We
say that SKFE for F is weakly succinct if the size of the encryption circuit is
bounded by sγ · poly(λ, n), where γ < 1 is a fixed constant.

4.4 Indistinguishability Obfuscation

We review the definition of indistinguishability obfuscation (IO).

Definition 9 (Indistinguishability obfuscation). A PPT algorithm iO is
an indistinguishability obfuscator (IO) for a circuit class {Cλ}λ∈N if it satisfies
the following two conditions.

Functionality: for all security parameters λ ∈ N, for all C ∈ Cλ, for all inputs
x, we have that Pr[C ′(x) = C(x) : C ′ ← iO(1λ, C)] = 1.

Indistinguishability: for any PPT distinguisher D, there exists a negligible
function negl(·) such that the following holds: for all security parameters λ ∈
N, for all pairs of circuits C0, C1 ∈ Cλ of the same size and such that C0(x) =
C1(x) for all inputs x, then

|Pr
[

D(iO(1λ, C0)) = 1
]

− Pr
[

D(iO(1λ, C1)) = 1
]

| = negl(λ) .

We further say that iO is ε-secure, for some concrete negligible function ε(·),
if for any PPT distinguisher the above advantage is smaller than ε(λ)Ω(1).

4.5 Strong Exponentially-Efficient Indistinguishability Obfuscation

We next define strong exponentially-efficient IO (SXIO).

Definition 10 (Strong exponentially-efficient indistinguishability
obfuscation). Let γ < 1 be a constant. A PPT algorithm sxiO is a γ-
compressing strong exponentially-efficient indistinguishability obfuscator (SXIO)
for a circuit class {C}λ∈N if it satisfies the functionality and indistinguishability
in Definition 9 and the following efficiency requirement:

Non-trivial time efficiency We require that the running time of sxiO on input
(1λ, C) is at most 2nγ · poly(λ, |C|) for every λ ∈ N and circuit C ∈ {Cλ}λ∈N

with input length n.

We have the following theorem.

Theorem 9 ([15]). Assuming there exists ε-secure collusion-resistant SKFE for
all circuits, where ε(·) is a negligible function. Then, for any constant γ < 1, there
exists ε-secure γ-compressing SXIO for polynomial-size circuits with logarithmic
size input.

Obfustopia Built on SKFE 633

5 Puncturable Secret-Key Functional Encryption

We introduce puncturable secret-key functional encryption (puncturable SKFE).
The notion of puncturable SKFE was introduced by Bitansky and

Vaikuntanathan [17]. They showed that in their construction of IO, the building
block PKFE can be replaced with puncturable SKFE. However, it has been open
whether we can achieve puncturable SKFE without assuming PKFE.

In this work, we answer the question affirmatively. We show how to construct
a relaxed variant of puncturable SKFE scheme that is single-key weakly-succinct.
Our relaxed variant is sufficient for constructing IO. Our construction consists
of two steps.

1. We prove that a single-key non-succinct puncturable SKFE scheme is con-
structed only from one-way functions.

2. We prove that we can transform the non-succinct scheme into an weakly-
succinct one by using SXIO.

We can construct SXIO based on standard (i.e., not puncturable) SKFE by
Theorem 9. Thus, we can construct our puncturable SKFE from standard SKFE.

5.1 Syntax

Our definition of puncturable SKFE introduced below is slightly different from
that proposed by Bitansky and Vaikuntanathan [17]. However, we show that
puncturable SKFE defined in this paper is also a sufficient building block of IO.
We state differences between our definition and theirs after describing the syntax
and security of our puncturable SKFE.

Definition 11 (Puncturable secret-key functional encryption). A punc-
turable SKFE scheme pSKFE is a tuple (Setup,KG,Enc,Dec,Punc,PEnc) of six
PPT algorithms. Below, let M, F , and T be the message space, function space,
and tag space of pSKFE, respectively. In addition, let q be a polynomial denoting
the upper bound of the number of issuable functional keys.

– The setup algorithm Setup, given a security parameter 1λ, outputs a master
secret key MSK.

– The key generation algorithm KG, given a master secret key MSK, function
f ∈ F , and an index i ∈ [q], outputs a functional key skf .

– The encryption algorithm Enc, given a master secret key MSK, a tag tag, and
a message m ∈ M, outputs a ciphertext CT.

– The decryption algorithm Dec, given a functional key skf , a tag tag, and a
ciphertext CT, outputs a message m̃ ∈ {⊥} ∪ M.

– The puncturing algorithm Punc, given a master secret key MSK and a tag tag,
outputs a punctured master secret key MSK∗{tag}

– The punctured encryption algorithm PEnc, given a punctured master secret
key MSK∗, a tag tag′, and a message m, outputs a ciphertext CT.

Correctness: For every m ∈ M, f ∈ F , i ∈ [q], tag ∈ T , andMSK ← Setup(1λ),
we require that Dec (KG (MSK, f, i) , tag,Enc (MSK, tag,m)) = f(m).

634 F. Kitagawa et al.

5.2 Security

In this section, we introduce two variants of security. Their difference is the
functionality of punctured encryption algorithms.

Definition 12 (Secure puncturable SKFE). Let pSKFE = (Setup,KG,Enc,
Dec,Punc,PEnc) be puncturable SKFE. Below, let M, F , and T be the message
space, function space, and tag space of pSKFE, respectively. In addition, let q
be a polynomial denoting the upper bound of the number of issuable functional
keys. We say that pSKFE is secure puncturable SKFE if it satisfies the following
properties.

Functionality preserving under puncturing:
For every m ∈ M, (tag, tag′) ∈ T × T such that tag �= tag′, randomness
r, MSK ← Setup(1λ), and MSK∗{tag} ← Punc(MSK, tag), it holds that

PEnc(MSK∗{tag}, tag′,m; r) = Enc(MSK, tag′,m; r) .

Semantic security at punctured tag: We define punctured semantic secu-
rity game between a challenger and an adversary A as follows.
1. The challenger generates a master secret key MSK ← Setup(1λ) and

chooses a challenge bit b
r←− {0, 1}. The challenger sends security param-

eter 1λ to A.
2. A sends (m0,m1) ∈ M × M, tag ∈ T , and {fi}i∈[q] ∈ Fq to the chal-

lenger. We require that for every i ∈ [q] it holds that fi(m0) = fi(m1).
3. The challenger computes CT ← Enc(MSK, tag,mb), skfi

← KG(MSK,
fi, i) for every i ∈ [q], and MSK∗{tag} ← Punc(MSK, tag).
Then, the challenger returns (MSK∗{tag},CT, {skfi

}i∈[q]) to A.
4. A outputs b′ ∈ {0, 1}.

In this game, we define the advantage of the adversary A as

AdvsspSKFE,A(λ) = 2|Pr[b = b′] − 1
2
| = |Pr[b′ = 1|b = 0] − Pr[b′ = 1|b = 1]| .

A is said to be valid if fi(m0) = fi(m1) holds for every i ∈ [q] in the above
game. We say that pSKFE satisfies semantic security at punctured tag if for
any valid PPT A, we have AdvsspSKFE,A(λ) = negl(λ).
We further say that pSKFE satisfies ε-semantic security at punctured tag,
for some concrete negligible function ε(·), if for any valid PPT A the above
advantage AdvsspSKFE,A(λ) is smaller than ε(λ)Ω(1).

In addition, we say that pSKFE is ε-secure puncturable SKFE if it satisfies func-
tionality preserving under puncturing and ε-semantic security at punctured tag.

Instead of functionality preserving under puncturing, we can consider a
relaxed variant which we call indistinguishability of functionality under punc-
turing. This property requires that any PPT distinguisher cannot distinguish
ciphertexts output by Enc and PEnc even given both master secret key and
punctured master secret key. The formal definition is as follows.

Obfustopia Built on SKFE 635

Definition 13 (Indistinguishability of functionality under puncturing).
Let pSKFE = (Setup,KG,Enc,Dec,Punc,PEnc) be puncturable SKFE whose mes-
sage space and tag space are M and T , respectively. We define indistinguisha-
bility of functionality game between a challenger and an adversary A as follows.

1. The challenger generates a master secret key MSK ← Setup(1λ) and chooses
a challenge bit b

r←− {0, 1}. The challenger sends security parameter 1λ to A.
2. A sends m ∈ M and (tag, tag′) ∈ T ×T such that tag �= tag′ to the challenger.
3. The challenger first computes MSK∗{tag} ← Punc(MSK, tag). Then, the

challenger computes CT ← Enc(MSK, tag′,m) if b = 0, and otherwise
CT ← PEnc(MSK∗{tag}, tag′,m).
Then, the challenger returns (MSK,MSK∗{tag},CT) to A.

4. A outputs b′ ∈ {0, 1}.

In this game, we define the advantage of the adversary A as

AdvifpSKFE,A(λ) = 2|Pr[b = b′] − 1
2
| = |Pr[b′ = 1|b = 0] − Pr[b′ = 1|b = 1]| .

We say that pSKFE satisfies indistinguishability of functionality under punctur-
ing if for any PPT A, we have AdvifpSKFE,A(λ) = negl(λ).

We further say that pSKFE satisfies ε-indistinguishability of functionality
under puncturing, for some concrete negligible function ε(·), if for any PPT
A the above advantage AdvifpSKFE,A(λ) is smaller than ε(λ)Ω(1).

Definition 14 (Secure puncturable SKFE with indistinguishability of
functionality). Let pSKFE be puncturable SKFE. Let ε1(·) and ε2(·) be some
negligible functions. If pSKFE satisfies ε1-semantic security at punctured tag and
ε2-indistinguishability of functionality under puncturing, then we say that pSKFE
is (ε1, ε2)-secure puncturable SKFE with indistinguishability of functionality.

5.3 Efficiency

We introduce the notion of succinctness for puncturable SKFE.

Definition 15 (Succinctness). Let F be a function family. Let s and n be the
maximum size and input length of functions contained in F , respectively.

Weakly-succinct: Puncturable SKFE for F is said to be weakly-succinct if
the size of both the encryption circuit and punctured encryption circuit are
bounded by sγ · poly(λ, n), where γ < 1 is a fixed constant. We call γ the
compression factor.

Collusion-succinct: Puncturable SKFE for F is said to be collusion-succinct
if the size of both the encryption circuit and punctured encryption circuit are
bounded by qγ ·poly(n, λ, s), where q is the upper bound of issuable functional
decryption keys and γ < 1 is a fixed constant. We call γ the compression
factor.

636 F. Kitagawa et al.

5.4 Difference from the Definition of Bitansky and Vaikuntanathan

There are three main differences between our definition of puncturable SKFE
and that of Bitansky and Vaikuntanathan [17]. Two are about syntax. The other
is about security.

Syntactical differences are as follows.

Tag-based encryption and decryption: In the definition of Bitansky and
Vaikuntanathan, a master secret key is punctured at two messages. Their
semantic security requires that no PPT adversary can distinguish ciphertexts
of these two messages given the punctured master secret key.
We adopt the tag based syntax for the encryption and decryption algo-
rithms while Bitansky and Vaikuntanathan do not. A tag-based definition is
well-suited for our non-succinct puncturable SKFE scheme. When our non-
succinct scheme encrypts a message, it generates a garbled circuit of an uni-
versal circuit into which the message is hardwired, and then masks labels of
the garbled circuit by a string generated by puncturable PRF. A tag fed to
the encryption algorithm is used as an input to puncturable PRF. See Sect. 6
for details.
In our construction of IO in Sect. 8, we use an input to an obfuscated circuit
as a tag for ciphertexts of puncturable SKFE. Therefore, our IO construction
is not significantly different from the IO construction based on puncturable
SKFE by Bitansky and Vaikuntanathan from the syntactical point of view
though ours is based on tag-based puncturable SKFE.

Index based key generation: We define the key generation algorithm as a
stateful algorithm. In other words, for the i-th invocation, we need to feed
an index i to the key generation algorithm in addition to a master secret
key and a function. This is because we transform a non-succinct scheme into
an weakly-succinct one via a collusion-succinct scheme whose key generation
algorithm is stateful in Sect. 7.
We note that our stateful collusion-succinct scheme is just an intermediate
scheme to achieve IO. We also emphasize the fact that the index-based key
generation is not an issue to construct IO because our main building block
is a single-key weakly-succinct puncturable SKFE scheme. For a single-key
scheme, we do not need any state for key generation because it can issue only
a single functional key.
Below, we omit the index of single-key schemes in the syntax for simplicity.

Functionality under puncturing. In addition to the syntactic differences above,
there is a difference about security. We defined indistinguishability of functional-
ity under puncturing in Definition 13. The reason why we introduce the relaxed
notion of functionality preserving property is that our weakly-succinct scheme
does not satisfy functionality preserving under puncturing in Definition 12 but
the relaxed one. Our non-succinct scheme satisfies functionality preserving under
puncturing.

Obfustopia Built on SKFE 637

One might think that puncturable SKFE satisfying indistinguishability of
functionality under puncturing is not sufficient to construct IO. This is not the
case. We show that indistinguishability of functionality under puncturing suffices
for constructing IO and our weakly-succinct scheme satisfies the property.

6 Single-Key Non-Succinct Puncturable SKFE

We show we can construct a single-key (non-succinct) puncturable SKFE scheme
assuming only one-way functions. This construction is similar to that of single-
key non-succinct PKFE proposed by Sahai and Seyalioglu [61]. Their construc-
tion is based on garbling scheme and public-key encryption. In our construc-
tion, we use puncturable PRF instead of public-key encryption, and, as a result,
achieve the puncturable property. We recall that we can realize both garbling
scheme and puncturable PRF assuming only one-way functions. We give the
construction below.

Let GC = (Grbl,Eval) be garbling scheme, and PPRF = (F,PuncF) be
puncturable PRF. Using GC and PPRF, we construct puncturable SKFE
OneKey = (1Key.Setup, 1Key.KG, 1Key.Enc, 1Key.Dec, 1Key.Punc, 1Key.PEnc)
supporting only one functional key as follows. Note that the tag space of OneKey
is the same as the domain of PPRF. In addition, the index space of OneKey is
[1], and thus we omit the index from the description by assuming the index is
always fixed to 1. Below, we assume that we can represent every function f by
an s-bit string (f [1], · · · , f [s]).

Construction. The scheme consists of the following algorithms.

1Key.Setup(1λ) :
– Generate Sj,α

r←− {0, 1}λ for every j ∈ [s] and α ∈ {0, 1}.
– Return MSK ← {Sj,α}j∈[s],α∈{0,1}.

1Key.KG(MSK, f) :
– Parse {Sj,α}j∈[s],α∈{0,1} ← MSK and (f [1], · · · , f [s]) ← f .
– Return skf ← (f, {Sj,f [j]}j∈[s]).

1Key.Enc(MSK, tag,m) :
– Parse {Sj,α}j∈[s],α∈{0,1} ← MSK.
– Compute (˜U, {Lj,α}j∈[s],α∈{0,1}) ← Grbl(1λ, U(·,m)).
– For every j ∈ [s] and α ∈ {0, 1}, compute Rj,α ← F(Sj,α, tag) and cj,α ←

Lj,α ⊕ Rj,α.
– Return CT ← (˜U, {cj,α}j∈[s],α∈{0,1}).

1Key.Dec(skf , tag,CT) :
– Parse (f, {Sj}j∈[s]) ← skf and (˜U, {cj,α}j∈[s],α∈{0,1}) ← CT.
– For every j ∈ [s], compute Rj ← F(Sj , tag) and Lj ← cj,f [j] ⊕ Rj .
– Return y ← Eval(˜U, {Lj}j∈[s]).

1Key.Punc(MSK, tag) :
– Parse {Sj,α}j∈[s],α∈{0,1} ← MSK.
– For every j ∈ [s] and α ∈ {0, 1}, compute S∗

j,α{tag} ← PuncF(Sj,α, tag).
– Return MSK∗{tag} ← {S∗

j,α{tag}}j∈[s],α∈{0,1}.

638 F. Kitagawa et al.

1Key.PEnc(MSK∗, tag′,m)
– Parse {S∗

j,α}j∈[s],α∈{0,1} ← MSK∗.
– Compute (˜U, {Lj,α}j∈[s],α∈{0,1}) ← Grbl(1λ, U(·,m)).
– For every j ∈ [s] and α ∈ {0, 1}, compute Rj,α ← FS∗

j,α
(tag′) and cj,α ←

Lj,α ⊕ Rj,α.
– Return CT ← (˜U, {cj,α}j∈[s],α∈{0,1}).

Then, we have the following theorem.

Theorem 10. Let GC be δ-secure garbling scheme, and PPRF δ-secure punc-
turable PRF, where δ(·) is some negligible function. Then, OneKey is δ-secure
single-key puncturable SKFE.

See [45] for the formal proof of this theorem.

7 From Non-Succinct Puncturable SKFE
to Weakly-Succinct One

In this section, we show how to transform single-key non-succinct puncturable
SKFE into single-key weakly-succinct one using SXIO. Note that the resulting
scheme satisfies only indistinguishability of functionality under puncturing prop-
erty even if we start the transformation with a non-succinct scheme satisfying
functionality preserving under puncturing property.

The transformation consists of 2 steps. First, we show how to construct
collusion-succinct puncturable SKFE from single-key non-succinct puncturable
SKFE and SXIO. Then, we give the transformation from collusion-succinct punc-
turable SKFE to weakly-succinct one.

In fact, the intermediate collusion-succinct scheme satisfies only indistin-
guishability of functionality under puncturing property. This is because we adopt
a construction technique similar to that proposed by Lin et al. [53] (and extended
by Bitansky et al. [15] and Kitagawa et al. [46]), and thus we use an obfuscated
encryption circuit of the building block scheme by SXIO as a ciphertext of the
resulting scheme. This fact is the reason the resulting weakly-succinct scheme
satisfies only indistinguishability of functionality under puncturing property.

7.1 From Non-Succinct to Collusion-Succinct by Using SXIO

For any q which is a fixed polynomial of λ, we show how to construct a punc-
turable SKFE scheme whose index space is [q] based on a single-key puncturable
SKFE scheme. The resulting scheme is collusion-succinct, that is, the running
time of both the encryption algorithm and the punctured encryption algorithm
are sub-linear in q. We show the construction below.

Let OneKey = (1Key.Setup, 1Key.KG, 1Key.Enc, 1Key.Dec, 1Key.Punc,
1Key.PEnc) be puncturable SKFE that we constructed in Sect. 6. Let sxiO be SXIO
andPPRF = (F,PuncF) puncturable PRF. UsingOneKey, sxiO, andPPRF, we con-
struct puncturable SKFE CollSuc = (CS.Setup,CS.KG,CS.Enc,CS.Dec,CS.Punc,
CS.PEnc) as follows. We again note that q is a fixed polynomial of λ. Let the tag
space of CollSuc be T . Then, the tag space of OneKey is also T .

Obfustopia Built on SKFE 639

Construction. The scheme consists of the following algorithms.

CS.Setup(1λ) :
– Generate S

r←− {0, 1}λ and return MSK ← S.
CS.KG(MSK, f, i) :

– Parse S ← MSK.
– Compute ri

Setup ← FS(i) and MSKi ← 1Key.Setup(1λ; ri
Setup).

– Compute 1Key.skf ← 1Key.KG(MSKi, f) and return skf ← (i, 1Key.skf).
CS.Enc(MSK, tag,m) :

– Parse S ← MSK.
– Generate SEnc

r←− {0, 1}λ and return CT ← sxiO(E1Key[S, SEnc, tag,m]).
The circuit E1Key is defined in Fig. 4.

CS.Dec(skf , tag,CT) :
– Parse (i, 1Key.skf) ← skf .
– Compute CTi ← CT(i) and return y ← 1Key.Dec(1Key.skf , tag,CTi).

CS.Punc(MSK, tag) :
– Parse S ← MSK.
– Generate SPunc

r←− {0, 1}λ and compute ˜P ← sxiO(P1Key[S, SPunc, tag]).
The circuit P1Key is defined in Fig. 5.

– Return MSK∗{tag} ← ˜P.
CS.PEnc(MSK∗, tag′,m) :

– Parse ˜P ← MSK∗.
– Generate SEnc

r←− {0, 1}λ and return CT ← sxiO(PE1Key[˜P, SEnc, tag
′,m]).

The circuit PE1Key is defined in Fig. 6.

Fig. 4. The description of E1Key.

Then, we have the following theorem.

Theorem 11. Let δ(·) be some negligible function. Let OneKey be δ-secure
single-key puncturable SKFE constructed in Sect. 6. Let sxiO be δ-secure γ-
compressing SXIO, where γ is a sufficiently small constant such that γ < 1. Let
PPRF be δ-secure puncturable PRF. Then, CollSuc is (δ, δ)-secure puncturable
SKFE with indistinguishability of functionality that is collusion-succinct with
compression factor γ̂, which is a constant smaller than 1.

640 F. Kitagawa et al.

Fig. 5. The description of P1Key.

Fig. 6. The description of PE1Key.

See [45] for the formal proof of this theorem.
The requirement for γ and the concrete value of γ̂ is determined in the

efficiency analysis in the proof of Theorem 11. We can make γ̂ smaller than 1 by
using SXIO with sufficiently small compression factor γ as the building block.
Such SXIO is constructed from collusion-resistant SKFE [15].

7.2 From Collusion-Succinct to Weakly-Succinct

In this section, we show how to construct a single-key weakly-succinct punc-
turable SKFE scheme from a collusion-succinct one.

This transformation is based on those proposed by Bitansky and
Vaikuntanathan [17] and Ananth et al. [3], and thus utilizes a decomposable ran-
domized encoding. The difference is that we must consider puncturing and punc-
tured encryption algorithms since we construct a puncturable SKFE scheme.
In fact, we show their construction works for puncturable SKFE schemes. In
addition, we consider semantic security defined in the weakly selective security
manner while they considered selective security. Below, we give the construction.

Obfustopia Built on SKFE 641

We construct single-key puncturable SKFE WeakSuc = (WS.Setup,WS.KG,
WS.Enc,WS.Dec,WS.Punc,WS.PEnc). Let s and n be the maximum size and
input length of functions supported by WeakSuc. Let RE be c-local decompos-
able randomized encoding, where c is a constant. We suppose that the number
of decomposed encodings of RE for a function of size s is μ. Then, μ is a poly-
nomial bounded by s · polyRE(λ, n), where polyRE(λ, n) is a fixed polynomial.
We also suppose that the randomness space of RE is {0, 1}ρ, where ρ is a poly-
nomial bounded by s · polyRE(λ, n). Let CollSuc = (CS.Setup,CS.KG,CS.Enc,
CS.Dec,CS.Punc,CS.PEnc) be puncturable SKFE whose index space and tag
space are [μ] and T , respectively. Let SKE = (E,D) be SKE and PRF PRF. In
the scheme, we use PRF : {0, 1}λ × ({0, 1}λ × [ρ]) → {0, 1}. Using CollSuc, RE,
SKE, and PRF, we construct WeakSuc as follows. The tag space of WeakSuc is T .

WS.Setup(1λ) :
– Return MSK ← CS.Setup(1λ).

WS.KG(MSK, f) :
– Generate K

r←− {0, 1}λ and t ← {0, 1}λ.
– Compute ̂f ← RE(1λ, f) and decomposed encodings ̂f1, · · · ̂fμ together

with sets of integers (R1, · · · , Rμ). Ri indicates which bit of a randomness
̂fi depends on for every i ∈ [μ]. Note that Ri ⊆ [ρ] and |Ri| = c for every
i ∈ [μ].

– Generate CTske
i ← E(K, 0| ̂fi(·,·)|), and compute skEni

← CS.KG(MSK,

Endre[̂fi, Ri, t,CT
ske
i], i) for every i ∈ [μ]. Endre defined in Fig. 7.

– Return skf ← (skEn1 , · · · , skEnμ
).

WS.Enc(MSK, tag,m) :
– Generate Sencd ← {0, 1}λ.
– Return CT ← CS.Enc(MSK, tag, (m,Sencd,⊥)).

WS.Dec(skf , tag,CT) :
– Parse (skEn1 , · · · , skEnμ

) ← skf .
– For every i ∈ [μ], compute ei ← CS.Dec(skEni

, tag,CT).
– Decode y from (e1, · · · , eμ).
– Return y.

WS.Punc(MSK, tag) :
– Return MSK∗{tag} ← CS.Punc(MSK, tag).

WS.PEnc(MSK∗, tag′,m) :
– Generate Sencd ← {0, 1}λ.
– Return CT ← CS.PEnc(MSK∗, tag′, (m,Sencd,⊥)).

Then, we have the following theorem.

Theorem 12. Let δ(·) be negligible function. Let CollSuc be (δ, δ)-secure punc-
turable SKFE with indistinguishability of functionality that can issue μ functional
keys and is collusion-succinct with compression factor γ, where γ < 1 is a con-
stant. Let RE, SKE, and PRF be δ-secure decomposable randomized encoding,
SKE, and PRF, respectively. Then, WeakSuc be (δ, δ)-secure single-key punc-
turable SKFE with indistinguishability of functionality that is weakly-succinct
with compression factor γ′, where γ′ is a constant such that γ < γ′ < 1.

See [45] for the formal proof of this theorem.

642 F. Kitagawa et al.

Fig. 7. The description of Endre.

8 Indistinguishability Obfuscation from SKFE

We show how to obtain IO based on SKFE via puncturable SKFE.

8.1 IO from Collusion-Resistant SKFE

We construct IO from puncturable SKFE satisfying only indistinguishability of
functionality under puncturing. Formally, we have the following theorem.

Theorem 13. Let δ(λ) = 2−λε

, where ε < 1 is a constant. Assuming there
exists (δ, δ)-secure single-key weakly-succinct puncturable SKFE with indistin-
guishability of functionality for all circuits. Then, there exists secure IO for all
circuits.

We omit the formal proof of it. See Sect. 2.4 for the overview of it. In [45], we
formally prove it by first providing the construction of IO based on puncturable
SKFE, and then analyzing its security and efficiency.

In addition, by combining Theorems 9, 10, 11, and 12, we also obtain the
following theorem.

Theorem 14. Assuming there exists δ-secure collusion-resistant SKFE for all
circuits, where δ(·) is a negligible function. Then, there exists (δ, δ)-secure single-
key weakly-succinct puncturable SKFE with indistinguishability of functionality
for all circuits.

In order to obtain Theorem 14, we also use δ-secure PRF, puncturable PRF,
plain SKE, garbling scheme, and decomposable randomized encoding as building
blocks. From Theorems 4, 5, 6, 7, and 8, all of these primitives are implied by
δ-secure one-way functions thus implied by δ-secure collusion-resistant SKFE for
all circuits.

From Theorems 13 and 14, we obtain the following main theorem.

Obfustopia Built on SKFE 643

Theorem 15. Let δ(λ) = 2−λε

, where ε < 1 is a constant. Assuming there exists
δ-secure collusion-resistant SKFE for all circuits. Then, there exists secure IO
for all circuits.

Remark 1 (IO for circuits with input of poly-logarithmic length). The security
loss of our IO construction is exponential in the input length of circuits, but is
independent of the size of circuits. Thus, if the input length of circuits is poly-
logarithmic in the security parameter, our IO construction incurs only quasi-
polynomial security loss regardless of the size of circuits. Therefore, we can
obtain IO for circuits of polynomial size with input of poly-logarithmic length
from quasi-polynomially secure collusion-resistant SKFE for all circuits. This is
an improvement over the IO construction by Komargodski and Segev [48]. They
showed that IO for circuits of sub-polynomial size with input of poly-logarithmic
length is constructed from quasi-polynomially secure collusion-resistant SKFE
for all circuits.

Komargodski and Segev also showed that the combination of their IO and
sub-exponentially secure one-way functions yields succinct and collusion-resistant
PKFE for circuits of sub-polynomial size with input of poly-logarithmic length. We
observe that our IO for circuits of polynomial size with input of poly-logarithmic
length leads to succinct and collusion-resistant PKFE for circuits of polynomial
size with input of poly-logarithmic length by combining sub-exponentially secure
one-way functions from the result of Komargodski and Segev.

8.2 Collusion-Resistant SKFE from Weakly-Succinct One

We also show that collusion-resistant SKFE is constructed from single-key
weakly-succinct SKFE. Formally, we have the following theorem.

Theorem 16. Let δ(λ) = λ−ζ , where ζ = ω(1). Assuming there exists (1, δ)-
selective-message message private SKFE for all circuits that is weakly succinct.
Then, there exists δ′-secure collusion-resistant SKFE for all circuits, where
δ′(λ) = λ−ζ1/2

.11

In [44], we formally showTheorem16. See Sect. 3 for the overview for this result.
Theorem 16 states that if the underlying single-key scheme is sub-exponentially

secure, then so is the resulting scheme. Therefore, from Theorems 15 and 16, we
have the following corollary.

Corollary 2. Assuming there exists sub-exponentially secure single-key weakly-
succinct SKFE for all circuits. Then, there exists IO for all circuits.

Acknowledgement. The first and third authors are supported by NTT Secure
Platform Laboratories, JST CREST JPMJCR14D6, JST OPERA, JSPS KAKENHI
JP16H01705, JP16J10322, JP17H01695.

11 We can slightly generalize the result. By setting η = ζ1/c in the construction for any

constant c > 1, we can achieve δ′(λ) = λ−ζ1/c

.

644 F. Kitagawa et al.

References

1. Ananth, P., Brakerski, Z., Segev, G., Vaikuntanathan, V.: From selective to
adaptive security in functional encryption. In: Gennaro, R., Robshaw, M. (eds.)
CRYPTO 2015. LNCS, vol. 9216, pp. 657–677. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48000-7 32

2. Ananth, P., Jain, A.: Indistinguishability obfuscation from compact functional
encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol.
9215, pp. 308–326. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-47989-6 15

3. Ananth, P., Jain, A., Sahai, A.: Indistinguishability obfuscation from functional
encryption for simple functions. Cryptology ePrint Archive, Report 2015/730

4. Ananth, P., Sahai, A.: Projective arithmetic functional encryption and indis-
tinguishability obfuscation from degree-5 multilinear maps. In: Coron, J.-S.,
Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210, pp. 152–181. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-56620-7 6

5. Ananth, P.V., Gupta, D., Ishai, Y., Sahai, A.: Optimizing obfuscation: avoiding
Barrington’s theorem. In: ACM CCS 2014, pp. 646–658 (2014)

6. Applebaum, B., Ishai, Y., Kushilevitz, E.: Computationally private randomizing
polynomials and their applications. Comput. Complex. 15(2), 115–162 (2006)

7. Apon, D., Döttling, N., Garg, S., Mukherjee, P.: Cryptanalysis of indistinguisha-
bility obfuscations of circuits over GGH13. In: 44rd International Colloquium on
Automata, Languages, and Programming, ICALP 2017, Warsaw, Poland, 10–14
July 2017 (2017, to appear)

8. Applebaum, B., Brakerski, Z.: Obfuscating circuits via composite-order graded
encoding. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 528–
556. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46497-7 21

9. Asharov, G., Segev, G.: Limits on the power of indistinguishability obfuscation
and functional encryption. In: 56th FOCS, pp. 191–209 (2015)

10. Badrinarayanan, S., Miles, E., Sahai, A., Zhandry, M.: Post-zeroizing obfuscation:
new mathematical tools, and the case of evasive circuits. In: Fischlin, M., Coron, J.-S.
(eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 764–791. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-49896-5 27

11. Barak, B., Garg, S., Kalai, Y.T., Paneth, O., Sahai, A.: Protecting obfuscation
against algebraic attacks. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 221–238. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-642-55220-5 13

12. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S., Yang,
K.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.) CRYPTO
2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001). https://doi.org/10.
1007/3-540-44647-8 1

13. Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits. In: ACM
CCS 2012, pp. 784–796 (2012)

14. Bitansky, N., Garg, S., Lin, H., Pass, R., Telang, S.: Succinct randomized encodings
and their applications. In: 47th ACM STOC, pp. 439–448 (2015)

https://doi.org/10.1007/978-3-662-48000-7_32
https://doi.org/10.1007/978-3-662-47989-6_15
https://doi.org/10.1007/978-3-662-47989-6_15
https://doi.org/10.1007/978-3-319-56620-7_6
https://doi.org/10.1007/978-3-662-46497-7_21
https://doi.org/10.1007/978-3-662-49896-5_27
https://doi.org/10.1007/978-3-642-55220-5_13
https://doi.org/10.1007/978-3-642-55220-5_13
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/3-540-44647-8_1

Obfustopia Built on SKFE 645

15. Bitansky, N., Nishimaki, R., Passelègue, A., Wichs, D.: From cryptomania to
obfustopia through secret-key functional encryption. In: Hirt, M., Smith, A. (eds.)
TCC 2016. LNCS, vol. 9986, pp. 391–418. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-53644-5 15

16. Bitansky, N., Paneth, O., Wichs, D.: Perfect structure on the edge of chaos.
In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9562, pp. 474–502.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49096-9 20

17. Bitansky, N., Vaikuntanathan, V.: Indistinguishability obfuscation from functional
encryption. In: 56th FOCS, pp. 171–190 (2015)

18. Boneh, D., Gupta, D., Mironov, I., Sahai, A.: Hosting services on an untrusted
cloud. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057,
pp. 404–436. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-
46803-6 14

19. Boneh, D., Papakonstantinou, P.A., Rackoff, C., Vahlis, Y., Waters, B.: On the
impossibility of basing identity based encryption on trapdoor permutations. In:
49th FOCS, pp. 283–292 (2008)

20. Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges.
In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-19571-6 16

21. Boneh, D., Waters, B.: Constrained pseudorandom functions and their appli-
cations. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8270,
pp. 280–300. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
42045-0 15

22. Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom func-
tions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 501–519. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54631-0 29

23. Brakerski, Z., Komargodski, I., Segev, G.: Multi-input functional encryption in the
private-key setting: stronger security from weaker assumptions. In: Fischlin, M.,
Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 852–880. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5 30

24. Brakerski, Z., Rothblum, G.N.: Virtual black-box obfuscation for all circuits
via generic graded encoding. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349,
pp. 1–25. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-
8 1

25. Brakerski, Z., Segev, G.: Function-private functional encryption in the private-key
setting. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 306–324.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46497-7 12

26. Canetti, R., Holmgren, J., Jain, A., Vaikuntanathan, V.: Succinct garbling
and indistinguishability obfuscation for RAM programs. In: 47th ACM STOC,
pp. 429–437 (2015)

27. Canetti, R., Lin, H., Tessaro, S., Vaikuntanathan, V.: Obfuscation of probabilistic
circuits and applications. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS,
vol. 9015, pp. 468–497. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46497-7 19

28. Chen, Y., Gentry, C., Halevi, S.: Cryptanalyses of candidate branching program
obfuscators. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol.
10212, pp. 278–307. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
56617-7 10

https://doi.org/10.1007/978-3-662-53644-5_15
https://doi.org/10.1007/978-3-662-53644-5_15
https://doi.org/10.1007/978-3-662-49096-9_20
https://doi.org/10.1007/978-3-662-46803-6_14
https://doi.org/10.1007/978-3-662-46803-6_14
https://doi.org/10.1007/978-3-642-19571-6_16
https://doi.org/10.1007/978-3-642-42045-0_15
https://doi.org/10.1007/978-3-642-42045-0_15
https://doi.org/10.1007/978-3-642-54631-0_29
https://doi.org/10.1007/978-3-662-49896-5_30
https://doi.org/10.1007/978-3-642-54242-8_1
https://doi.org/10.1007/978-3-642-54242-8_1
https://doi.org/10.1007/978-3-662-46497-7_12
https://doi.org/10.1007/978-3-662-46497-7_19
https://doi.org/10.1007/978-3-662-46497-7_19
https://doi.org/10.1007/978-3-319-56617-7_10
https://doi.org/10.1007/978-3-319-56617-7_10

646 F. Kitagawa et al.

29. Cohen, A., Holmgren, J., Nishimaki, R., Vaikuntanathan, V., Wichs, D.: Water-
marking cryptographic capabilities. In: 48th ACM STOC, pp. 1115–1127 (2016)

30. Coron, J.-S., Gentry, C., Halevi, S., Lepoint, T., Maji, H.K., Miles, E., Raykova, M.,
Sahai, A., Tibouchi, M.: Zeroizing without low-level zeroes: new MMAP attacks
and their limitations. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS,
vol. 9215, pp. 247–266. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-47989-6 12

31. Coron, J.-S., Lee, M.S., Lepoint, T., Tibouchi, M.: Zeroizing attacks on indis-
tinguishability obfuscation over CLT13. In: Fehr, S. (ed.) PKC 2017. LNCS, vol.
10174, pp. 41–58. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-
54365-8 3

32. Fernando, R., Rasmussen, P.M.R., Sahai, A.: Preventing CLT attacks on obfusca-
tion with linear overhead. Cryptology ePrint Archive, Report 2016/1070

33. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: 54th
FOCS, pp. 40–49 (2013)

34. Garg, S., Miles, E., Mukherjee, P., Sahai, A., Srinivasan, A., Zhandry, M.: Secure
obfuscation in a weak multilinear map model. In: Hirt, M., Smith, A. (eds.) TCC
2016. LNCS, vol. 9986, pp. 241–268. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-53644-5 10

35. Garg, S., Pandey, O., Srinivasan, A., Zhandry, M.: Breaking the sub-exponential
barrier in obfustopia. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017.
LNCS, vol. 10212, pp. 156–181. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56617-7 6

36. Garg, S., Srinivasan, A.: Single-key to multi-key functional encryption with poly-
nomial loss. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 419–442.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53644-5 16

37. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J.
ACM 33(4), 792–807 (1986)

38. Goldwasser, S., Gordon, S.D., Goyal, V., Jain, A., Katz, J., Liu, F.-H., Sahai, A.,
Shi, E., Zhou, H.-S.: Multi-input functional encryption. In: Nguyen, P.Q., Oswald,
E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 578–602. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-642-55220-5 32

39. Hofheinz, D., Jager, T., Khurana, D., Sahai, A., Waters, B., Zhandry, M.: How
to generate and use universal samplers. In: Cheon, J.H., Takagi, T. (eds.) ASI-
ACRYPT 2016. LNCS, vol. 10032, pp. 715–744. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53890-6 24

40. Hohenberger, S., Sahai, A., Waters, B.: Replacing a random oracle: full domain
hash from indistinguishability obfuscation. In: Nguyen, P.Q., Oswald, E. (eds.)
EUROCRYPT 2014. LNCS, vol. 8441, pp. 201–220. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-642-55220-5 12

41. Impagliazzo, R.: A personal view of average-case complexity. In: Proceedings of
the Tenth Annual Structure in Complexity Theory Conference, Minneapolis, Min-
nesota, USA, 19–22 June 1995, pp. 134–147 (1995)

42. Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way per-
mutations. In: 21st ACM STOC, pp. 44–61 (1989)

43. Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegatable pseu-
dorandom functions and applications. In: ACM CCS 2013, pp. 669–684 (2013)

44. Kitagawa, F., Nishimaki, R., Tanaka, K.: From single-key to collusion-resistant
secret-key functional encryption by leveraging succinctness. Cryptology ePrint
Archive, Report 2017/638

https://doi.org/10.1007/978-3-662-47989-6_12
https://doi.org/10.1007/978-3-662-47989-6_12
https://doi.org/10.1007/978-3-662-54365-8_3
https://doi.org/10.1007/978-3-662-54365-8_3
https://doi.org/10.1007/978-3-662-53644-5_10
https://doi.org/10.1007/978-3-662-53644-5_10
https://doi.org/10.1007/978-3-319-56617-7_6
https://doi.org/10.1007/978-3-319-56617-7_6
https://doi.org/10.1007/978-3-662-53644-5_16
https://doi.org/10.1007/978-3-642-55220-5_32
https://doi.org/10.1007/978-3-662-53890-6_24
https://doi.org/10.1007/978-3-642-55220-5_12

Obfustopia Built on SKFE 647

45. Kitagawa, F., Nishimaki, R., Tanaka, K.: Indistinguishability obfuscation for all
circuits from secret-key functional encryption. Cryptology ePrint Archive, Report
2017/361

46. Kitagawa, F., Nishimaki, R., Tanaka, K.: Simple and generic constructions of
succinct functional encryption. Cryptology ePrint Archive, Report 2017/275 (to
appear in PKC 2018)

47. Komargodski, I., Moran, T., Naor, M., Pass, R., Rosen, A., Yogev, E.: One-way
functions and (im)perfect obfuscation. In: 55th FOCS, pp. 374–383 (2014)

48. Komargodski, I., Segev, G.: From minicrypt to obfustopia via private-key func-
tional encryption. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS,
vol. 10210, pp. 122–151. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-56620-7 5

49. Koppula, V., Lewko, A.B., Waters, B.: Indistinguishability obfuscation for turing
machines with unbounded memory. In: 47th ACM STOC, pp. 419–428 (2015)

50. Li, B., Micciancio, D.: Compactness vs collusion resistance in functional encryption.
In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 443–468. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53644-5 17

51. Lin, H.: Indistinguishability obfuscation from constant-degree graded encoding
schemes. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665,
pp. 28–57. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-
3 2

52. Lin, H.: Indistinguishability obfuscation from SXDH on 5-linear maps and locality-
5 PRGs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp.
599–629. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7 20

53. Lin, H., Pass, R., Seth, K., Telang, S.: Indistinguishability obfuscation with non-
trivial efficiency. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.)
PKC 2016. LNCS, vol. 9615, pp. 447–462. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49387-8 17

54. Luby, M., Rackoff, C.: How to construct pseudorandom permutations from pseu-
dorandom functions. SIAM J. Comput. 17(2), 373–386 (1988)

55. Lin, H., Tessaro, S.: Indistinguishability obfuscation from trilinear maps and block-
wise local PRGs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol.
10401, pp. 630–660. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63688-7 21

56. Lin, H., Vaikuntanathan, V.: Indistinguishability obfuscation from DDH-like
assumptions on constant-degree graded encodings. In: 57th FOCS, pp. 11–20 (2016)

57. Lindell, Y., Pinkas, B.: A proof of security of yao’s protocol for two-party compu-
tation. J. Cryptol. 22(2), 161–188 (2009)

58. Miles, E., Sahai, A., Zhandry, M.: Annihilation attacks for multilinear maps: crypt-
analysis of indistinguishability obfuscation over GGH13. In: Robshaw, M., Katz, J.
(eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 629–658. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53008-5 22

59. O’Neill, A.: Definitional issues in functional encryption. Cryptology ePrint Archive,
Report 2010/556 (2010)

60. Pass, R., Seth, K., Telang, S.: Indistinguishability obfuscation from semantically-
secure multilinear encodings. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014.
LNCS, vol. 8616, pp. 500–517. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-662-44371-2 28

61. Sahai, A., Seyalioglu, H.: Worry-free encryption: functional encryption with public
keys. In: ACM CCS 2010, pp. 463–472 (2010)

https://doi.org/10.1007/978-3-319-56620-7_5
https://doi.org/10.1007/978-3-319-56620-7_5
https://doi.org/10.1007/978-3-662-53644-5_17
https://doi.org/10.1007/978-3-662-49890-3_2
https://doi.org/10.1007/978-3-662-49890-3_2
https://doi.org/10.1007/978-3-319-63688-7_20
https://doi.org/10.1007/978-3-662-49387-8_17
https://doi.org/10.1007/978-3-662-49387-8_17
https://doi.org/10.1007/978-3-319-63688-7_21
https://doi.org/10.1007/978-3-319-63688-7_21
https://doi.org/10.1007/978-3-662-53008-5_22
https://doi.org/10.1007/978-3-662-44371-2_28
https://doi.org/10.1007/978-3-662-44371-2_28

648 F. Kitagawa et al.

62. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryp-
tion, and more. In: 46th ACM STOC, pp. 475–484 (2014)

63. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). https://
doi.org/10.1007/11426639 27

64. Yao, A.C.-C.: How to generate and exchange secrets (extended abstract). In: 27th
FOCS, pp. 162–167 (1986)

65. Zimmerman, J.: How to obfuscate programs directly. In: Oswald, E., Fischlin, M.
(eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 439–467. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46803-6 15

https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/978-3-662-46803-6_15

Limits on Low-Degree Pseudorandom
Generators (Or: Sum-of-Squares Meets

Program Obfuscation)

Boaz Barak1(B), Zvika Brakerski2, Ilan Komargodski3,
and Pravesh K. Kothari4,5

1 Harvard University, Cambridge, MA, USA
b@boazbarak.org

2 Weizmann Institute of Science, Rehovot, Israel
zvika.brakerski@weizmann.ac.il
3 Cornell Tech, New York, NY, USA

komargodski@cornell.edu
4 Princeton University, Princeton, NJ, USA

kothari@cs.princeton.edu
5 IAS, Princeton, NJ, USA

Abstract. An m output pseudorandom generator G : ({±1}b)n →
{±1}m that takes input n blocks of b bits each is said to be �-block
local if every output is a function of at most � blocks. We show that
such �-block local pseudorandom generators can have output length at
most Õ(2�bn��/2�), by presenting a polynomial time algorithm that dis-
tinguishes inputs of the form G(x) from inputs where each coordinate is
sampled from the uniform distribution on m bits.

As a corollary, we refute some conjectures recently made in the con-
text of constructing provably secure indistinguishability obfuscation (iO).
This includes refuting the assumptions underlying Lin and Tessaro’s [47]
recently proposed candidate iO from bilinear maps. Specifically, they
assumed the existence of a secure pseudorandom generator G : {±1}nb →
{±1}2cbn as above for large enough c > 3 and � = 2. (Following this

B. Barak—Supported by NSF awards CCF 1565264 and CNS 1618026, and the
Simons Foundation. Work done while the author visited Weizmann Institute of Sci-
ence during Spring 2017.
Z. Brakerski—Supported by the Israel Science Foundation (Grant No. 468/14) and
Binational Science Foundation (Grants No. 2016726, 2014276), ERC Project 756482
REACT and European Union PROMETHEUS Project (Horizon 2020 Research and
Innovation Program, Grant 780701).
I. Komargodski—Supported in part by a Packard Foundation Fellowship and
AFOSR grant FA9550-15-1-0262. Most work done while the author was a Ph.D.
student at the Weizmann Institute of Science, supported in part by a grant from the
Israel Science Foundation (no. 950/16) and by a Levzion Fellowship.
P. K. Kothari—Work done while the author visited Weizmann Institute of Science
in March 2017.

c© International Association for Cryptologic Research 2018
J. B. Nielsen and V. Rijmen (Eds.): EUROCRYPT 2018, LNCS 10821, pp. 649–679, 2018.
https://doi.org/10.1007/978-3-319-78375-8_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78375-8_21&domain=pdf

650 B. Barak et al.

work, and an independent work of Lombardi and Vaikuntanthan [49],
Lin and Tessaro retracted the bilinear maps based candidate from their
manuscript.)

Our results actually hold for the much wider class of low-degree, non-
binary valued pseudorandom generators: if every output of G : {±1}n →
R

m (R = reals) is a polynomial (over R) of degree at most d with at
most s monomials and m ≥ Ω̃(sn�d/2�), then there is a polynomial time
algorithm for distinguishing the output G(x) from z where each coordi-
nate zi is sampled independently from the marginal distribution on Gi.
Furthermore, our results continue to hold under arbitrary pre-processing
of the seed. This implies that any such map G, with arbitrary seed pre-
processing, cannot be a pseudorandom generator in the mild sense of
fooling a product distribution on the output space. This allows us to rule
out various natural modifications to the notion of generators suggested
in other works that still allow obtaining indistinguishability obfuscation
from bilinear maps.

Our algorithms are based on the Sum of Squares (SoS) paradigm, and
in most cases can even be defined more simply using a canonical semidef-
inite program. We complement our algorithm by presenting a class of
candidate generators with block-wise locality 3 and constant block size,
that resists both Gaussian elimination and sum of squares (SOS) algo-
rithms whenever m = n1.5−ε. This class is extremely easy to describe:
Let G be any simple non-abelian group with the group operation “∗”, and
interpret the blocks of x as elements in G. The description of the pseu-
dorandom generator is a sequence of m triples of indices (i, j, k) chosen
at random and each output of the generator is of the form xi ∗ xj ∗ xk.

1 Introduction

Understanding how “simple” a pseudorandom generator can be has been of
great interest in cryptography and computational complexity. In particular,
researchers have studied the question of whether there exist pseudorandom gen-
erators with constant input locality, in the sense that every output bit only
depends on a constant number of the input bits. Applebaum et al. [9] showed
that, assuming the existence of one-way functions computable by log-depth cir-
cuits, there is such a generator mapping n bits to n+nε bits for a small constant
ε > 0. Goldreich [36] gave a candidate pseudorandom generator of constant local-
ity that could potentially have even polynomially large stretch (e.g. map n bits
to ns bits for some s > 1).1 The possibility of such “ultra simple” high-stretch
pseudorandom generators has attracted significant attention recently with appli-
cations including:

– Public key cryptography from “combinatorial” assumptions [8].
– Highly efficient multiparty computation [40].

1 While Goldreich originally only conjectured that his function is a one-way function,
followup work has considered the conjecture that it is a pseudorandom generator,
and also linked the two questions (see e.g., [6,11]; see also Applebaum’s survey [7]).

Limits on Low-Degree Pseudorandom Generators 651

– Reducing the assumptions needed for constructing indistinguishability obfus-
cators (iO) [4,5,45–48].

The last application is perhaps the most exciting, as it represents the most
promising pathway for basing this important cryptographic primitive on more
standard assumptions. Furthermore, this application provides motivation for
considering qualitatively different notions of “simplicity” of a generator. For
example, it is possible to relax the condition of having small input locality to
that of just having small algebraic degree (over the rationals), as well as allow
other features such as preprocessing of the input and admitting non-Boolean
outputs.

At the same time, the application to obfuscation emphasizes a fine-grained
understanding of the quantitative relationship between the “simplicity” of a
generator (such as its locality, or algebraic degree) and its stretch (i.e., ratio
of output and input lengths). For example, works of Lin and Ananth and Sahai
[5,46] show that a generator mapping n bits to n1+ε bits with locality 2 implies an
obfuscation candidate based on standard cryptographic assumptions – a highly
desired goal, but it is known that it is impossible to achieve super-linear stretch
with locality four (let alone two) generator [52].

Very recently, Lin and Tessaro [47] proposed bypassing this limitation by
considering a relaxation of locality to a notion they referred to as block locality.
They also proposed a candidate generator with the required properties. If such
secure PRGs exist, this would imply obfuscators whose security is based on
standard cryptographic assumptions, a highly desirable goal. Ananth et al. [3]
observed that the conditions can be relaxed further to allow generators without a
block structure, and even allow non-Boolean outputs, but their method requires
(among other restrictions) that each output is computed by a sparse polynomial
of small degree.

In this paper we give strong limitations on this approach, in particular giving
negative answers to some of the questions raised in prior works. While a priori,
questions of algebraic flavor, such as the difference between the power of bilinear
vs trilinear maps, and those of combinatorial essence such as the difficulty of
refuting random constraint satisfaction instances might seem unrelated, it turns
out that techniques useful in the study of CSP refutation yield a barrier that,
somewhat surprisingly, seems to exactly correspond to what is needed to bypass
the “trilinear map barrier” for obfuscation constructions.

We complement our negative results with a simple construction of a candidate
degree three pseudorandom generator which resists known attacks (Gaussian
elimination and sum-of-squares algorithms) even for output length n1+Ω(1).

1.1 Our Results

To state our results, let us define the notion of the image refutation problem for
a map G that takes n inputs into m outputs (e.g., a purported pseudorandom

652 B. Barak et al.

generator). Looking ahead, we will allow maps to have non-Boolean outputs.2

Informally, the image refutation problem asks for a efficiently computable cer-
tificate for a random string not being in the image of a purported generator G.

Definition 1.1 (Refutation problem). Let G : {±1}n → R
m and Z be a dis-

tribution over R
m. An algorithm A is said to solve the G-image refutation prob-

lem w.r.t Z if on input z ∈ R
m, A outputs either “refuted” or “?” and satisfies:

– If z = G(x) for some x ∈ {±1}n then A(z) =“?”.
– Pz∼Z [A(z) =“refuted”] ≥ 0.5

Note that in particular if Z is the uniform distribution over {0, 1}m, then the
existence of an efficient algorithm that solves the G image refutation problem
with respect to Z means that G is not a pseudorandom generator - in fact, an
image refutation algorithm, with probability at least 1/2, shows that a random
string from {±1}m is not in the image of G.

Remark 1.2 (Refutation vs Distinguishing). It is instructive to contrast the algo-
rithmic tasks of image refutation with the easier task of distinguishing the output
of a pseudorandom generator from a uniformly random string. In the latter case,
we are typically concerned with distinguishing the output distribution of a gen-
erator G : {±1}n → {±1}m when the input is chosen according to the uniform
distribution on {±1}m. It’s easy to see that a refutation algorithm immediately
yields a distinguisher. In general, refutation, however can be more powerful.
For example, a refutation algorithm can distinguish between the uniform dis-
tribution on {±1}m from the output distribution of the generator even under
arbitrary distributions on the seed. Thus, an image refutation algorithm rules
out not only the natural PRG construction but also natural modifications that
involve using some non-trivial pre-processing on the seed before inputting it into
the generator, thus modifying the input distribution. Such modifications were in
fact suggested for candidate constructions of iO from bilinear maps in the con-
current work of [49]. While a distinguisher for the original PRG may fail after
this modification, a refutation algorithm continues to work. As we discuss later,
this is one of the key differences in our approach from that of [49].

Our first result is a limitation on generators with “block locality” two:

Theorem 1.3 (Limitations of two block local generators). For every n,
b, let G : {±1}nb → {±1}m be such that, if we partition the input into n blocks of
size b, then every output of G depends only on variables inside two blocks. Then,
there is an absolute constant K such that if m > K · 22bn log2 n, then there
is an efficient algorithm for the G-image-refutation problem w.r.t. the uniform
distribution over {±1}m.
2 Allowing non-Boolean output can make a significant difference. For example, [50,

Theorem 6.1] show that every degree two Boolean-valued function on {±1}n depends
on at most four variables, which in particular means that it cannot be used as the
basis for a pseudorandom generator with super-linear output length. It also allows
us to consider polynomials that only take the values in {±1} on a subset of their
inputs.

Limits on Low-Degree Pseudorandom Generators 653

Theorem 1.3 yields an attack on the aforementioned candidate pseudorandom
generator proposed by Lin and Tessaro [47] towards basing indistinguishability
obfuscator on bilinear maps, as well as any other candidate of block-locality 2
compatible with their construction.

A special case that has been of considerable interest in literature is one where
all outputs of the PRG are computed by the same two-block-local predicate
P : {±1}b → {±1}b → {±1}. For this case, we give an image refutation algorithm
that works whenever the stretch m = Ω̃(n2b).3

Theorem 1.4 (Limitations of two block local generators with a single
predicate, Theorem 5.3). For every n, b, let G : {±1}nb → {±1}m be such
that, if we partition the input into n blocks of size b, then every output of G is the
same predicate P applied to two b-bit blocks. Then, there is an absolute constant
K such that if m > K · 2bn log2 n, then there is an efficient algorithm for the
G-image-refutation problem w.r.t. the uniform distribution over {±1}m.

Yet another special case of interest is where the candidate generator obtained
is chosen at random: that is, the m pairs of blocks used to compute the output
are chosen at random and, further, each predicate computing an output is chosen
randomly and independently conditioned on being balanced. For this case, we
show (in Theorem 5.4, Sect. 5.3) that we can again improve our bound on the
output length from Õ(22bn) to Õ(2bn):

Our next result applies to any degree d map, and even allows maps with
non-Boolean output. For the refutation problem to make sense, the probabil-
ity distribution Z must be non-degenerate or have large entropy, as otherwise
it may well be the case that z ∼ Z is in the image of G with high probabil-
ity. For real-valued distributions, a reasonable notion of non-degeneracy is that
the distribution does not fall inside any small interval with high probability.
Specifically, if we consider normalized product distributions (where EZi = 0 and
EZ2

i = 1 for every i and the Zi are independent), then we say that Z is c-spread
(see Definition 4.1) if it is a product distribution and P[Zi �∈ I] ≥ 0.1 for every
interval I ⊆ R of length at most 1/c (where we can think of c as a large constant
or even a poly-logarithmic or small polynomial factor).

If Z is supposed to be indistinguishable from G(U), where U is the uni-
form distribution over {±1}n, then these two distributions should agree on the
marginals and in particular at least on their first and second moments. Hence,
we can assume that the map G has the same normalization as Z, meaning that
EG(U)i = 0 and EG(U)2i = 1.4 Our result for general low degree generators is
the following:

Theorem 1.5 (Limitations on degree d generators). Suppose that
G : {±1}n → R

m is such that for every i ∈ [m] the map x �→ G(x)i is a nor-
malized polynomial of degree at most d with at most s monomials. Let Z be a
3 Unlike the other results in this paper, Theorem 1.4 builds upon the concurrent work

[49]. See Sect. 1.3 for a detailed comparison between this work and [49].
4 We say that G is normalized if it satisfies these conditions. Clearly, any map can be

normalized by appropriate shifting and scaling.

654 B. Barak et al.

c-spread product distribution over R
m. Then, there is some absolute constant K

such that if m ≥ Kc2sn�d/2� log2 n, then there is an efficient algorithm for the
G-image-refutation problem w.r.t. Z.

We believe the dependence on the degree d can be improved in the odd case
from 	d/2
 to d/2. Resolving this is related to some problems raised in the CSP
refutation literature (e.g., see [60, Questions 5.2.3, 5.2.7, 5.2.8]).

While for arbitrary polynomials we do not know how to remove the restriction
on sparsity (i.e., number of non-zero monomials s), we show in Sect. 4 that
we can significantly relax it in several settings. Moreover, the applications to
obfuscation require generators that are both low degree and sparse; see Sect. 2.
Nevertheless, we view eliminating the dependence on the sparsity as the main
open question left by this work. We conjecture that this can be done, at least in
the pseudorandom generator setting, as paradoxically, it seems that the only case
where our current algorithm fails is when the pseudorandom generator exhibits
some “non-random” behavior. Improving this is related to obtaining better upper
bound on the stretch of block-local generators.

Up to the dependence on sparsity, Theorem 1.5 answers negatively a question
of Lombardi and Vaikuntanathan [50, Question 7.2], who asked whether it is

possible to have a degree d pseudorandom generator with stretch n� 34d�+ε. It
was already known by the work of Mossel et al. [52] that such output length
cannot be achieved by d-local generators; our work shows that, at least for no(1)-
sparse polynomials, relaxing locality to the notion of algebraic degree does not
help achieve a better dependency.

All of our results are based on the same algorithm: the sum of squares (SOS)
semidefinite program ([44,55,59]; see the lecture notes [16]). This is not surpris-
ing as for refuting CSPs, semidefinite programs in general and the sum-of-squares
semi-definite programming hierarchy in particular are the strongest known gen-
eral tools [43,56]. This suggests that for future candidate generators, it will be
useful to prove resilience at least with respect to this algorithm. Fortunately,
there is now a growing body of techniques to prove such lower bounds.

Here, we establish that the sum-of-squares algorithm cannot be used to give
an attack on PRGs with stretch O(n2b). Note that the sum of squares algorithm
captures all the techniques in literature for efficiently refuting (non-linear) ran-
dom CSPs including the algorithms in this paper and the work of [49]. Our lower
bound on the sum of squares algorithm below shows that using such techniques,
one cannot hope to attack two-block-local PRGs with stretch at most O(n2b) -
for the case of identical predicates computing all outputs of the generator, this,
in particular, establishes the optimality of our analyis of any technique captured
by the sum of squares framework.

Concretely, in Sect. 6, we show that there is a natural sum-of-squares resistant
construction with a stretch of Θ̃(n2b). We stress that this PRG is only secure
against a sum-of-square algorithm, and is actually insecure outside the sum-of-
squares framework.

Limits on Low-Degree Pseudorandom Generators 655

Theorem 1.6 (See Theorem 6.1 for a formal version). For any b ≥
10 log log (n), there is a construction of a two-block-local PRG G : ({±1}b)n →
{±1}m for m = Ω(n2b) such that degree-Θ(n/24b) sum of squares algorithm
cannot solve the refutation problem for G.

For example, for b < ε/4 log (n), the above results rules out an attack on Ω(n2b)-
stretch PRGs using SoS algorithm that runs in time ∼ 2n1−ε

.
While our results give strong barriers for degree two pseudorandom genera-

tors, they do not rule out a degree three pseudorandom generator with output
length n1+Ω(1). Indeed, we show a very simple candidate generator that might
satisfy this property. This is the generator G mapping G

n to G
m where G is

some finite non-abelian simple group (e.g., the size 60 group A5), where for
every � ∈ [m], the �th output of G(x) is obtained as

G(x)� = xi ∗ xj ∗ xk

for randomly chosen indices i, j, k and ∗ is the group operation. This generator
has block locality three with constant size blocks and also (using the standard
representation of group elements as matrices) has algebraic degree three as well.
Yet, it is a hard instance for the SOS algorithm which encapsulates all the
techniques used in this paper. While more study of this candidate’s security is
surely needed, there are results suggesting that it resists algebraic attacks such
as Gaussian elimination [35]. See Sect. 7 for details.

1.2 Prior Work

Most prior work on limitations of “simple” pseudorandom generators focused
on providing upper bounds on the output length in terms of the locality. Cryan
and Miltersen [27] observe that there is no PRG with locality 2 and proved that
there is no PRG with locality 3 achieving super linear stretch (i.e., having input
length n and output length n + ω(n) bits). Mossel, Shpilka, and Trevisan [52]
extended this result to locality 4 PRGs and constructed (non-cryptographic)
small-biased locality 5 generators with linear stretch and exponentially-small
bias. They also showed that a k local generator cannot have output length
better than O(2kn�k/2�). Applebaum, Ishai, and Kushilevitz [9] showed that,
under standard cryptographic assumptions, there are locality 4 PRGs with
sublinear-stretch. Applebaum and Raykov [6,11] related the pseudorandomness
and one-wayness of Goldreich’s proposed one-way function [36] in some regime of
parameters.

We focus on (algebraic) degree instead of locality of the predicate that is
used. There were few works in the past with this property (for example [10,
31]). Apart from this, another feature that distinguishes our work from much
of the prior works on pseudorandom generators is the focus on the refutation
problem (certifying that a random string is not in the image of the generator)
as opposed to the decision problem (given the output of a uniformly random
seed, distinguish from a random string) or the search problem (given the output

656 B. Barak et al.

of a uniformly random seed, recover the seed). This is important for us since we
do not want to make the typical assumption that the input (i.e., seed) to the
pseudorandom generator is uniformly distributed, as to allow the possibility of
preprocessing for it.

The refutation problem was extensively studied in the context of random
constraint satisfaction problems (CSPs). The refutation problem for a k-local
generator with n inputs and m outputs corresponds to refuting a CSP with n
variables and m constraints. Thus, the study of limitations for local generators
is tightly connected to the study of refutation algorithm for CSPs. Most well
studied in this setting is the problem of refuting random CSPs - given a random
CSP instance with a predicate P , certify that it is far from satisfiable with high
probability. There is a large body of works on the study of refuting random and
semirandom CSPs, starting with the work of Feige [28].5

In particular, we now know tight relations between the arity (or locality) of
the predicates and the number of constraints required to refute random instances
[1,43,56] using the sum-of-squares semidefinite programming hierarchy - the
algorithm of choice for the problem.

Most relevant to the current paper are works from this literature that deal
with predicates that have large arity but have small degree d (or the related
notion of not supporting (d+1)-wise independent distribution). Allen, O’Donnell,
and Witmer [1] showed that random instances of such predicates can be refuted
when the number of constraints m is larger than Õ(kdnd/2). In his thesis pro-
posal, Witmer [60] sketched how to generalize this to the semirandom setting,
though only for the case of even degree d. This is related to the questions consid-
ered in this work for higher degree, though our model is somewhat more general,
considering not just CSPs but arbitrary low-degree maps.

The notion of � block locality is equivalent to the notion of CSPs of arity �
over a large alphabet (specifically, exponential in the block size). Though much of
the CSP refutation and approximation literature deals with CSPs over a binary
alphabet, there have been works dealing with larger alphabet (see e.g., [1]). The
work of [15] gives an SOS based algorithm for 2-local CSPs over large alphabet
(or equivalently, 2 block-local CSPs) as long as the underlying constraint graph
is a sufficiently good expander. However, their algorithm (at least their analysis)
has an exponential dependence in the running time on the alphabet size which
is unsuitable for our applications.

The main technical difference between our work and prior results in the CSP
literature, is that since for CSPs we often think as the arity as constant, these
works often had poor dependence on this parameter, whereas we want to handle
the case that it can be as large as nε or in some cases even unrestricted. Another
difference is that in the cryptographic setting, we wish to allow the designer of a
pseudorandom generator significant freedom, and this motivates studying more

5 In a random CSP the graph of dependence between variables and constraints is
random, and we also typically consider adding a random pattern of negations or
shifts to either the inputs or the outputs of the predicates. In semirandom instances
[29,30], the graph is arbitrary and only this pattern of negations or shifts is random.

Limits on Low-Degree Pseudorandom Generators 657

challenging semirandom models than those typically used in prior works. We
discuss these technical issues in more depth in Sect. 3.

The algorithms in almost all the refutation works in the CSP literature can be
encapsulated by the sum of squares semidefinite programming hierarchy. Some
lower bounds for this hierarchy, showing tightness of these analysis, were given
in [13,43,54]. For the alphabet-size sensitive setting of block-local PRGs, we give
a lower bound in Sect. 6.

1.3 Comparison with [49]

In a concurrent and independent work, Lombardi and Vaikuntanathan [49] also
analyzed the possibility of a secure block-wise local PRG motivated by the work
of Lin and Tessaro [47]. They show that there exists an efficient polynomial-
time distinguisher with the following property: for any m ≥ Ω̃(n2b) and any
predicate P : {±1}b × {±1}b → {±1} in two blocks of size b, there’s an efficient
distinguishing algorithm for the following two distributions over {±1}m: (1) the
uniform distribution on {±1}m and (2) the output distribution of Goldreich’s
PRG GH : ({±1}b)n → {0, 1}m instantiated with a random graph H and the
single predicate P computing all m outputs when given a uniformly random nb
bit string as input.6

We point out the major differences between our results on block-local PRGs
and that of [49] here.

1. Distinguishing vs Refutation: As discussed in Remark 1.2, our approach yields
the stronger refutation guarantees while that of [49] yields a distinguisher.
This allows us to show that reinforcing the block-local (or low-degree, more
generally) PRGs by allowing arbitrary input preprocessing cannot lead to a
larger stretch. This is important, as preprocessing is OK to do in the context
of the applications for obfuscation, and in fact this was one of the avenues
suggested for bypassing these general type of negative results.

2. Single Predicates vs Multiple Predicates: The work of [49] only applies to
the PRGs where each output is computed using the same predicate. Our
approach shows that block-local (or low-degree) PRGs cannot achieve large
enough stretch even if each output is computed using a different predicate -
a priori, one could hope that using different predicates for different outputs
could add significantly to the stretch of the PRG. This bottleneck is in fact
inherent in the technical approach of [49]. In particular, our approach allows
us to analyze the natural candidate for 2-block-local generator obtained by
applying independently chosen multiple random predicates to randomly cho-
sen pairs of input blocks and yields an Õ(2bn) upper bound on their stretch,
see Sect. 5.3.

3. Random Graph vs Arbitrary Graphs: The work of [49] only handles block-
local PRGs when the underlying graph G defining the generator is chosen

6 We learned that in an updated version of [49], they use a refutation algorithm from
our work to extend their distinguisher to the case when the graph H is arbitrarily
chosen.

658 B. Barak et al.

at random. This was because [49] relied on CSP refutation results that work
under the assumption of the instance being random.

4. Special Case of Single Predicate Block-Local PRGs: For the PRGs with all
outputs computed by a single predicate, [49] show a distinguisher that works
whenever the stretch of the PRG is Ω(n2b). For this case, we show that our
algorithm in fact guarantees image refutation at the same stretch requirement.
(A previous version of our work didn’t include this result on PRGs with single
predicate.) Our refutation algorithm (Theorem1.4) is in fact inspired by the
application of the Chor-Goldreich Lemma in the work of [49].

We note that the three first differences: image refutation as opposed to dis-
tinguishing, allowing different predicates as opposed to a single predicate, and
using arbitrary graphs as opposed to random graphs, exactly correspond to the
open questions raised by [49].7 Thus, our results block all the approaches that
[49] identified as potential strategies for repairing the iO candidate. This sug-
gests that, rather than a “patchable problem”, there is perhaps a fundamental
barrier to this approach of obtaining iO from bilinear maps.

1.4 Paper Organization

Section 2 explains the connection between simple generators and the construc-
tion of indistinguishability obfuscator. This explanation allows us to draw the
conclusion that our algorithm renders recently proposed methods ineffective for
constructing obfuscation from standard cryptographic assumptions. For those
interested in additional details, the full version [12, Appendix B] contains more
information about constructing obfuscators and in particular on the result of [47].
In Sect. 3, we provide a high level overview of our algorithmic techniques.
Section 4 contains our main algorithm and analysis, and in particular proves
Theorem 1.5. We use standard tools from the SDP/SOS literature that can be
found in Appendix A. In Sect. 5 we focus our attention on pseudorandom gen-
erators with small block-locality and show tighter results than those achieved
by our general analysis, in particular we prove Theorem 1.3 as well as an even
tighter result for generators with single predicates (Theorem 5.3) and random
two-block-local PRGs (Theorem 5.4). In Sect. 6, we show that sum-of-squares
algorithm cannot be used to prove sharper upper bounds on the stretch than
∼n2b. Finally, in Sect. 7 we present our class of candidate block-local generators.

2 Relating Simple Generators and Program Obfuscators

A program obfuscator [14,38] is a compiler that given a program (say represented
as a Boolean circuit) transforms it into another “scrambled” program which
is functionally equivalent but its implementation details are “hidden”, making
it hard to reverse-engineer. The study of indistinguishability obfuscation (iO)
stands at the forefront of cryptographic research in recent years due to two
7 See Sect. 5 on page 12 of https://eprint.iacr.org/2017/301/20170409:183008.

https://eprint.iacr.org/2017/301/20170409:183008

Limits on Low-Degree Pseudorandom Generators 659

main developments. Firstly, Garg et al. [33] suggested that this notion might
be achievable given sufficiently strong cryptographic multilinear maps, for which
a candidate construction was given by [32]. Secondly, it was shown by Sahai
and Waters [58] and numerous follow-up works that iO is extremely useful for
constructing a wide variety of cryptographic objects, many of which are unknown
to exist under any other assumption.

A fundamental question in the construction of iO from multilinear maps is the
level of multilinearity. Without going into details, this essentially corresponds to
the highest degree of polynomials that can be evaluated by this object. Whereas
multilinear maps of level 2, a.k.a bilinear maps, can be constructed based on pair-
ing on elliptic curves [17,41] and have been used in cryptographic literature for
over 15 years, the first obfuscation candidates required polynomial level (in the
“security parameter” of the scheme). Proposed constructions of multilinear maps
for level >2 have only started to emerge recently [25,26,32,34] and their security
is highly questionable. Indeed, many concrete security assumptions were shown to
be broken w.r.t all known candidates with level >2 [18,20–22,24,39,51].

A beautiful work of Lin [45], followed by [5,46,48], showed that the required
level of multilinearity can be reduced to a constant (ultimately 5 in [5,46]).
These works show a relation between the required multilinearity level and the
existence of “simple” pseudorandom generators (PRGs). At a rudimentary level,
the PRGs are used to “bootstrap” simple obfuscation-like objects into full-
fledged obfuscators. This approach requires PRGs mapping {0, 1}n to {0, 1}m

with m = n1+Ω(1), which can be represented as low-degree polynomials over R.
More accurately, for a security parameter λ and large enough n, the required

output length is m = n1+ε · poly(λ), for some fixed polynomial poly(·) which
is related to the computational complexity of evaluating the underlying crypto-
graphic primitives. One can ensure this condition as long as the output length is
at least n1+Ω(1) by setting n to be a sufficiently large polynomial in λ. The sit-
uation complicates further when trying to optimize the concrete constant corre-
sponding to the level of multilinearity by means of preprocessing as in [5,46,47].
The stretch bound needs to hold even with respect to the preprocessed seed
length (see the full version [12, Appendix B] for more details).

Lin [46] and Ananth and Sahai [5] instantiated this approach with locality-5
PRGs, which can trivially be represented as degree 5 polynomials. Their main
insight was that for constant locality PRGs, preprocessing only blows up the
seed by a constant factor. However, even so, the required stretch is impossible
to achieve with locality smaller than 5 [52].

Implications of Our Work to Candidate Bilinear-Maps-Based Constructions. Very
recently, Lin and Tessaro [47] proposed an approach to overcome the locality bar-
rier and possibly get all the way to an instantiation of iO based on bilinear maps.
This could be a major breakthrough in cryptographic research, allowing to base
“fantasy” cryptography on well studied hardness assumptions. Lin and Tessaro
showed that it is sufficient if the PRG has low block-wise locality for blocks of loga-
rithmic size. Namely, if we consider the seed of the PRG as an b × n matrix for
b = O(log n), then each output bit can be allowed to depend on � columns of

660 B. Barak et al.

this matrix. The required output length is m = 2c·bn1+Ω(1) for some constant c. An
explicit value for c is not given, but the construction requires c > 3 which seems
to be essential for this approach (see the full version [12, Appendix B]). Block-
wise locality allows a possible way to bypass the impossibility results for standard
(i.e., bitwise) locality, and indeed Lin and Tessaro conjectured that there is a pseu-
dorandom generator with output length n1+Ω(1) and block-wise locality � = 2, and
proposed a candidate construction.

Theorem 1.3 shows that generators with block-wise locality 2 cannot have
the stretch required by the [47] construction, thus suggesting that their current
techniques are insufficient for achieving obfuscation from bilinear maps. While
our worst-case result leaves a narrow margin for possible improvement of the
obfuscation reduction to work with 1 < c < 2, our improved analysis for random
graphs and predicates (see Theorem 5.4 in Sect. 5.3) suggests that our methods
may be effective, at least heuristically, for generators with any c > 1.

Ananth et al. [3] observed that there is a way to generalize the [47] approach,
so that it is sufficient that the range of the PRG is not {0, 1}, but rather some
small specified set, so long as the degree (as a polynomial over the rationals) is
bounded by the level of multilinearity. Furthermore, pseudorandomness was no
longer a requirement, but rather it is only required that the output of the gener-
ator is indistinguishable from some product distribution (in particular, the one
where each output entry is distributed according to its marginal). This suggests
that perhaps a broader class of generators than ones that have been considered
in the literature so far are useful for reducing the degree of multilinearity. How-
ever, their approach imposes a number of restrictions on such generators in order
to be effective. In particular, it requires preprocessing which increases the seed
length by a factor of sc, for some c > 1, where s is the number of monomials in
each output coordinate of the generator. Therefore, Theorem 1.5 rules out the
applicability of this technique for degree 2 generators, as well.

Supporting Evidence for Block-Wise Locality 3. We show that while the Lin-
Tessaro approach might not yet bring us all the way to level 2, it is quite
plausible that it implies a construction from tri-linear maps. Namely, that any
improvement on the state of the art would imply full-fledged program obfusca-
tors. Specifically, as explained in Sect. 1.1, we present a candidate generator of
block-wise locality 3, with constant size blocks. We show that this candidate is
robust against algorithms such as ours, as well as other algorithmic methods.
See Sect. 7 for more details.

3 Our Techniques

In this section we give an informal overview of the proof of our main result,
Theorem 1.5 (i.e., limitations of low degree generators), focusing mostly on the
degree two case, and making some simplifying assumptions. For the full proof
see Sect. 4. We also describe at a high level, the ideas involved in the improved
algorithm for the special cases of single-predicate generators (Theorem 1.4),
random block-local generators (Theorem 5.4) and sum-of-squares lower bound

Limits on Low-Degree Pseudorandom Generators 661

(Theorem 1.6) that shows a generator with stretch m = Ω(n2b) that is resis-
tant to sum-of-squares based attacks (an algorithm that encapsulates all our
techniques).

As we observe in Sect. 3.1 below, Theorem 1.5 can be used in a black-box
way to obtain a slightly weaker variant of Theorem 1.3, showing limitations of
two block-local (and more generally � block-local) generators. The full proof of
Theorem 1.3, with the stated parameters, appears in Sect. 5.

Our work builds on some of the prior tools used for analyzing local pseudoran-
dom generators and refuting constraint satisfaction problems, and in particular
relies on semidefinite programming. The key technical difference is that while
prior work mostly focused on generators/predicates with constant input locality
or arity, we consider functions that could have much larger input locality, but
have small degree. The fact that (due to our motivations in the context of obfus-
cation) we consider mappings with non-Boolean output also induces an extra
layer of complexity.

We now describe our results in more detail. For simplicity, we focus on the
degree two case, which is the case that is of greatest interest in the application
for obfuscation. Recall that a degree-two map of R

n to R
m is a tuple of m

degree two polynomials p̄ = (p1, . . . , pm). We will assume that the polynomials
are normalized in the sense that Epi(U) = 0 and Epi(U)2 = 1 for every i. Let
Z be some “nice” (e.g., O(1)-spread) distribution over R

m. (For starters, one
can think of the case that Z is the uniform distribution over {±1}n, though we
will want to consider more general cases as well.) The image refutation problem
for the map p̄ and the distribution Z is the task of certifying, given a random
element z from Z, that z �∈ p̄({±1}n).

A natural approach is to use an approximation or refutation algorithm for the
constraint satisfaction problem obtained from the constraints {pi(x) = zi} for
every i. The problem in our case is that while each of these predicates is “simple”
in the sense of having quadratic degree, it can have very large locality or arity.
In particular, the locality can be as large as s— the number of monomials of
pi— which we typically think of as equal to nε for some small ε > 0.

Much of the CSP refutation literature (e.g., see [1]) followed the so called
“XOR principle” which reduces the task of refuting a CSP with arbitrary pred-
icates, to the task of refuting a CSP where all constraints involve XORs (or
products, when the input is thought of as ±1 valued) of the input variables.
Generally, applying this principle to arity s predicates leads to a 2s multiplica-
tive loss in the number of constraints, and also yields XORs that can involve
up to s variables, which is unacceptable in our setting. However, as shown by
[1], the situation is much better when the original predicate has small degree d
(which, in particular, means it does not support a (d + 1)-wise-independent dis-
tribution). In this case, utilizing the XOR principle results in a d-XOR instance,
and only yields roughly an sd loss in the number of constraints.

However, there are two issues with this approach. First, this reduction is
not directly applicable in the non-Boolean setting, which is relevant to potential
applications in obfuscation. Second, reducing to an XOR inherently leads to a

662 B. Barak et al.

loss in the output length that is related to the sparsity s, while, as we’ll see, it
may be sometimes possible to avoid losing such factors altogether.

Thus, our algorithm takes a somewhat different approach. Given the variables
z1, . . . , zm, we consider the quadratic program

max
x∈{±1}n

m∑

i=1

zipi(x). (3.1)

The value of this program can be approximated to within a O(log n) factor using
semidefinite relaxation via the symmetric Grothendieck inequality of Charikar
and Wirth [19]. Thus, it is sufficient to show a gap in the value of this program
between the “planted” case, where there is some x such that pi(x) = zi for every
i, and the case where the values zi are sampled from Z.

If there is some x such that pi(x) = zi for every i, then the value of the
program (3.1) is at least

∑m
i=1 z2i which (using the fact that Ez2i = 1 and standard

concentration bounds) we can assume to be very close to m.8

On the other hand, consider the case where (z1, . . . , zm) is chosen from Z.
For every fixed x ∈ {±1}n, we can define m random variables Y x

1 , . . . , Y x
m such

that Y x
i = zipi(x) and let Y x =

∑m
i=1 Y x

i . Since Z is a product distribution,
the random variables Y x

i are independent, and hence we can use the Chernoff
bound to show that with all but 0.01 · 2−n probability, the value of Y x will be
at most O(

√
nBm), where B is a bound on the magnitude of zipi(x). We can

then apply the union bound over all possible x’s to show that the value of the
quadratic program (3.1) is at most O(

√
nBm) with probability 0.99.

For example, if each zi is a uniform element in {±1}, and |pi(x)| ≤ O(1) for
every x (as is the case when pi is a predicate), then B = O(1) and so in this
case the value of (3.1) will be at most m/c as long as m � c2n. Setting c to the
aforementioned approximation factor O(log n), we get a successful refutation.

The resulting algorithm does the following. On input z1, . . . , zm, run the SDP
relaxation for (3.1) and if the value is smaller than m/2, then output “refuted”
and declare that z is not in the image of G. In the case where z = G(x) the value
of the quadratic program, and so also its SDP relaxation, will be at least 0.9m.9

On the other hand, if m = ω(n log n), then with high probability the value of
the quadratic program will be o(m/ log n) and hence the relaxation will have
value o(m).

In the discussion above we made two key assumptions:

– |pi(x)| ≤ O(1) for every x ∈ {±1}n

– |zi| ≤ O(1) for x ∈ {±1}n

In general both of these might be false. If pi has at most s non-zero monomi-
als, and satisfies Epi(U)2 = 1, then we can show that |pi(x)| ≤ √

s for every x,
8 Formally, in the case that pi(x) = zi we do not assume anything about the distribu-

tion of z. However, if
∑m

i=1 z2
i < 0.9m, we can simply choose to output “?”.

9 We ignore here the case where
∑

z2
i < 0.9m, in which case our algorithm will halt

with the output “?”.

Limits on Low-Degree Pseudorandom Generators 663

using the known relations between the �1 and �2 norms of pi’s Fourier transform.
The second condition can be a little more tricky. If the zi’s are subgaussian, then
we can use Hoeffding’s inequality in place of the Chernoff bound, but in general
we cannot assume that this is the case. Luckily, it turns out that in our appli-
cation we can use a simple trick of rejecting outputs in which zi has unusually
large magnitude to reduce to the bounded case. The bottom line is that we get
an efficient algorithm for the image-refutation problem of an s-sparse quadratic
map whenever m � sn log n.

The higher degree case reduces to the degree 2 by “quadratisizing”
polynomials. That is, we can consider a degree d polynomial on n variables
as a degree 2 polynomial on the n�d/2� variables obtained by considering all
degree 	d/2
 monomials. Using this approach, we can generalize our results (at
a corresponding loss in the bound on the output) to higher degree maps.

3.1 Distinguishing Generators with Block-Locality 2

A priori the notions of block locality and algebraic degree seem unrelated to one
another. After all, a two block local generator on size b blocks could have degree
that is as large as 2b. However, we can pre-process a length bn input x ∈ {±1}bn,
by mapping it to an input x′ ∈ {±1}n′

for n′ = 2bn where for every i ∈ [n], the
ith block of x′ will consist of the values of all the 2b monomials on the ith block
of x. Note that a map of block locality � in x becomes a map of degree � in x′.
Moreover, since every output bit depends on at most � blocks, each containing
2b variables, the number of monomials in this degree � polynomial is at most 2�b.

In this way, we can transform a candidate two block-local pseudorandom
generator G : {±1}bn → {±1}m into a degree-2 sparsity-22b map G′ : {±1}n′ →
R

m. Note that even if G is a secure pseudorandom generator, it is not necessarily
the case that G′ is also a pseudorandom generator, as the uniform distribution
on x ∈ {±1}bn does not translate to the uniform distribution over x′ ∈ {±1}2bn.
However, the image of G′ contains the image of G, and hence if we can solve the
image refutation problem for G′, then we can do so for G as well. Applying the
above result as a black-box gives an efficient algorithm to break a two block-local
generator of block size b as long as the output length m satisfies

m � 22bn′ log2 n = 23bn log2 n .

This is already enough to break the concrete candidate of Lin and
Tessaro [47], but a more refined analysis shows that we can improve the 23b

factor to 22b. Furthermore, if we initialize the construction with a random predi-
cate on an expanding constraint graph we can bring this factor down to 2b. Both
improvements still use the same algorithm, only providing a tighter analysis of
it in these cases. We do not know if our analysis can be improved even further.
Mapping out the various trade-offs for block-local generators (or, equivalently,
refuting very large alphabet CSPs), is a very interesting open question.

The first improvement, described in Sect. 5.1, yields a better bound on the
output of any two-block-wise generator. As mentioned above, it uses the same

664 B. Barak et al.

algorithm. That is, we take a candidate two-block-local generator G : {±1}bn →
{±1}m and transform it into a degree two mapping G′ : {±1}2bn → R

m by
“expanding out” the monomials in each block. We then run the same algorithm
as before on the generator G′, but the key idea is that because G′ arose out
of the expansion of a two-block-local generator, we can show a better upper
bound on the objective value of the quadratic program (3.1). Specifically, we
can express each of these polynomials as a function of the Fourier transform
of the predicate that the original block local generator applied to each pair of
blocks. We can then change the order of summations, which enables us to reduce
bounding (3.1) to bounding 22b “simpler” sums, for which we able to obtain, in
the random case, tighter bounds with sufficiently high probability that allows to
take a union bound over these 22b options. See Sect. 5.1 for the full detail.

3.2 Improving the Stretch to n2b for the Single Predicate Case

The second improvement (Theorem 5.3), considers the special case where each
output of the generator is computed using the same predicate (as discussed
before, this case is the principle focus of [49]). In this case, we show that our
image refutation algorithm works whenever m (the number of outputs) of the
generator satisfies m = Ω̃(n2b). This matches the stretch required for the dis-
tinguisher of [49] to work.

We now describe at a high level, how our refutation algorithm works. The
refutation algorithm is given a string z ∈ {±1}m and description of the gen-
erator G that includes the underlying graph G on n vertices and the predicate
P : {±1}b ×{±1}b → {±1}. As a first step, we will reduce the problem of image
refuting G to image refuting a somewhat simpler G′ where the predicate P will
be replaced by a “product-predicate” P ′. A predicate P ′ : [q] × [q] → {±1} is a
product predicate if it can be written as a product of two functions f : [q] → {±1}
and g : [q] → {±1} applied to each of the inputs to P . In the second step, we
will give an efficient algorithm for image-refuting two-block-local, single product
predicate PRG.

We now describe the first step. Here, the algorithm wishes to certify that
there’s no x ∈ ({±1}b)n such that G(x) = z. Fix any x ∈ ({±1}b)n. For this
fixed x, consider the distribution D on inputs to P , generated by taking a random
edge {i, j} in G and outputting (xi, xj). We will show, using a result of Linial
and Schraibman shown in the context of relating marginal complexity to various
measures of communication complexity, that on D (more generally, any distri-
bution on inputs to P), there’s a product predicate F (α, β) = f(α) · g(β) such
that E(α,β)∼D[P (α, β) · F (α, β)] ≥ Θ(2−b/2). Thus, if there is an x ∈ ({±1}b)n

such that G(x) = z, then for the same x, Ei∼[m][G′(x)i · zi] ≥ Θ(2−b/2). If we
can now certify an upper bound of � 2−b/2 on Ei∼[m][G′(x)i · zi] for every x
and with high probability over the draw of z, we’d obtain an image refutation
algorithm. This latter question turns out to be simpler because of the product
nature of the predicate defining G′.

Limits on Low-Degree Pseudorandom Generators 665

This step in our algorithm is inspired by the use of a result of Chor-Goldreich
in the work of [49]. This lemma says10 that for the uniform distribution on
the inputs to P , there’s a product predicate that has a correlation of Θ(2−b/2)
with P . In the work of [49] this observation is used to replace P by a constant-
alphabet predicate (obtained by massaging the constituents of the product pred-
icate given by Chor-Goldreich lemma above) to obtain a simplified PRG on
constant-alphabet size such that when the seed is chosen according to the uni-
form distribution on ({±1}b)n, the modified PRG’s output distribution correlates
well with that of the original one. Thus, a strong enough refutation algorithm
(they use one due to [1]) applied to the modified PRG is enough to give a distin-
guisher. Observe that this approach doesn’t give a refutation algorithm because
the key step of replacing P with f ·g relies on x being drawn uniformly from [q]n.

Instead of using off-the-shelf refutation algorithms (such as that of [2]), we
solve the image refutation problem for single product predicate block-local PRGs
by giving a direct, simple algorithm – this algorithm crucially works without the
knowledge of the product predicate itself or even the block size parameter b. This
is important, as our argument that obtains G′ is not constructive, in particular,
the distribution that the product predicate approximates P on is a complicated
function of the (purported) arbitrary assignment x and the graph G. Thus, our
product-predicate refutation algorithm must work without the explicit knowl-
edge of the underlying product predicate.

Indeed, we show (in the full version [12]) that given a graph G on n vertices
with m � n edges and any string z, we can (in one shot) show that z (w.h.p) is
not in the image of any of the (infinitely many!) generators obtained by using
any two-block-local product predicate of arbitrarily large block size with the
same underlying graph G. In particular, our refutation algorithm does not need
to know the predicate itself or even the number of bits in each block of the seed
for the generator!

3.3 Random Block Local Generators

We analyze the natural candidate of multiple-predicate, block-local generators,
where both the underlying graph and each of the predicates are chosen uni-
formly at random (conditioned on the predicates being balanced), and show (see
Sect. 5.3) that our refutation algorithm works whenever m = Ω(n2b). As before,
our idea to consider the problem of maximizing the polynomial

∑
i zipi(x). We

work with the matrix M such that our target polynomial
∑

i zipi(x) is a bilinear
form of M . To obtain a certificate for the upper bound on the polynomial, it
then suffices to show a strong enough upper bound on the spectral norm of the
matrix M – which we show is small enough (w.h.p) because of the randomness
involved in defining the generator. M has some dependencies between its various
entries that preclude the use of standard bounds to upper bound the spectral
norm. So we compute an upper bound on the spectral norm using the standard

10 We use a somewhat different way to describe the use Chor-Goldreich lemma by [49]
in order to show how it inspires our approach.

666 B. Barak et al.

trace method that reduces the problem to some combinatorial properties that
are simple to reason about.

4 Image Refutation for Low Degree Maps

In this section we will prove our main technical theorem, which is an algo-
rithm for the image refutation problem for every low degree map and “nice” or
“non-degenerate” product distributions. We start by defining the notion of non-
degenerate distributions, which amounts to distributions that do not put almost
all their probability mass on a small (compared to their standard deviation)
interval.

Definition 4.1 (c-spread distributions). Let Z be a product distribution
over R

m with EZi = 0 and EZ2
i = 1 for every i. We say that Z is c-spread if

for every interval I ⊆ R of length 1/c, the probability that Zi ∈ I is at most 0.9.

Normalized low-degree maps are polynomials over {±1}n - we use the stan-
dard Fourier basis (e.g., see [53]) to represent them:

Definition 4.2 (Fourier notation). For any S ⊆ [n], let χS(x) = Πi∈Sxi

for any x ∈ {±1}n. A function p : {±1}n → R can be uniquely expanded as∑
S⊆[n] p̂(S)χS where the “Fourier coefficients” p̂(S) = Ex∼{±1}n [χS(x)p(x)]

and the expectation is over the uniform distribution over the hypercube
{±1}n. Fourier coefficients satisfy the Parseval’s theorem: Ex∼{±1}np(x)2 =∑

S⊆[n] p̂(S)2.

We define a normalized degree d map to be a collection of degree d poly-
nomials p̄ = (p1, . . . , pm) mapping {±1}n to R

m such that Epi(U) = 0 and
Epi(U)2 = 1 for every i where U is the uniform distribution.11

Our main technical theorem is the following:

Theorem 4.3 (Main theorem). There is an efficient algorithm that solves
the refutation problem for every normalized degree d map p̄ and c-spread proba-
bility distribution Z as long as

m > K · c2s(p̄)n�d/2� log2(n) (4.1)

for some global constant K.

To state the result in a stronger form, we use a somewhat technical
definition for the parameter s(p̄), which is deferred till later (see Eq. (4.5) and
Definition 4.9 below). However, one important property of it is that for every

11 Note that we are using the same normalization for the Zi’s and pi(U), which makes
sense in the context of a pseudorandom generator applied to the uniform distribution
over the seed. If we wanted to consider other distributions D over the seed, we would
need to require that Epi(D)2 is not much smaller than Epi(U)2. This condition is
satisfied by many natural distributions.

Limits on Low-Degree Pseudorandom Generators 667

normalized polynomial map p̄ = (p1, . . . , pm), s(p̄) is smaller than the maximum
sparsity (i.e., number of monomials) of the polynomials. Hence, Theorem 4.3
implies Theorem 1.5 from Sect. 1.1. The fact that we only require a factor of
s(p̄) as opposed to the sparsity makes our result stronger, and in some cases this
difference can be very significant.

The algorithm for proving Theorem 4.3 is fairly simple:

Refutation algorithm
Input: z ∈ R

m, p1, . . . , pm normalized polynomials of degree d in {±1}n.
Output: “refuted” or “?”.
Operation:

1. Let I = {i ∈ [m] : z2i ≤ 100}. Let μi be the conditional expectation of zi

conditioned on z2i ≤ 100.
2. If

∑
i∈I(zi − μi)2 < m/(10c) return “?”.

3. Let θ be the value of the degree 	d/2
 SOS relaxation for the degree d
polynomial optimization problem

max
x∈{±1}n

∑

i∈I

(zi − μi)pi(x) (4.2)

4. Return “refuted” if θ −∑
i∈I μi(zi −μi) < m/(10c) otherwise return “?”.

The degree d sum of squares program is a semidefinite programming relax-
ation to a polynomial optimization problem, which means that the value θ is
always an upper bound on (4.2). The most important fact we will use about this
program is the symmetric Grothendieck Inequality of Charikar and Wirth [19],
which states that in the important case where d = 2, the integrality gap of this
program (i.e., ratio between its value and the true maximum) is O(log n).

For this case, where d = 2, this program is equivalent to the semidefinite
program known as the basic SDP relaxation for the corresponding quadratic
program. This means that θ can also be computed as

max
X∈R

(n+1)×(n+1)

X	0, Xii=1 ∀i

tr(A · X) , (4.3)

where A is an (n+1)× (n+1) matrix that represents the quadratic polynomial∑
i∈I(zi − μi)pi, in the sense that for every i, j ∈ [n], Ai,j corresponds to the

coefficient of xixj in this polynomial, and for every i ∈ [n], Ai,n+1 = An+1,i is
the coefficient of xi.

We now turn to proving Theorem 4.3. We start by showing the case that
d = 2. The proof for general degree will follow by a reduction to that case.

4.1 Degree 2 Image Refutation

In this section, we prove Theorem 4.3 for the case d = 2, which is restated below
as the following lemma:

668 B. Barak et al.

Lemma 4.4 (Image refutation for degree 2). There is an efficient algo-
rithm that solves the refutation problem for every normalized degree 2 map p̄ and
c-spread probability distribution Z as long as

m > K · c2s(p̄)n log2 n (4.4)

for some absolute constant K > 0.

In this case, the parameter s(p̄) is defined as follows:

s(p1, . . . , pm) = 1
m max

x∈{±1}n

m∑

i=1

pi(x)2 (4.5)

By expanding each pi in the Fourier basis as pi =
∑

p̂i(S)χS , we can see
that maxx∈{±1}n |pi(x)| ≤ ∑ |p̂i|. Hence, in particular, s(p̄) is smaller than the
average of the �1 norm squared of the pi’s Fourier coefficients. Using the fact
that Epi(U)2 = 1, and the standard relations between the �1 and �2 norms,
we can see that if every one of the pi polynomials has at most s monomials
(i.e., non-zero Fourier coefficients), then s(p̄) ≤ s.

We now prove Lemma 4.4. To do so, we need to show two statements:

– If z = p̄(x), then the algorithm will never output “refuted”.
– If z is chosen at random from Z, then the algorithm will output “refuted”

with high probability.

We start with the first and easiest fact, which in fact holds for every degree d.

Lemma 4.5. Let z ∈ R
m be such that there exists an x∗ such that pi(x∗) = zi.

Then, the algorithm does not output “refuted”.

Proof. Suppose otherwise. We can assume that
∑

i∈I(zi−μi)2 ≥ m/(10c) as oth-
erwise we will output “?”. Since the SDP is a relaxation, in particular, the value
θ is larger than

∑
i∈I(zi − μi)pi(x∗) =

∑
i∈I(zi − μi)zi under our assumption.

Hence, θ − ∑
i∈I(zi − μi)μi ≥ ∑

i∈I(zi − μi)2 ≥ m/(10c).

We now turn to the more challenging part, which is to show that the algo-
rithm outputs “refuted” with high probability when z is sampled from Z. We
start by observing that by Markov’s inequality, for every i, the probability that
z2i > 100Ez2i = 100 is at most 0.99. Hence, the expected size of the set I defined
by the algorithm is at least 0.99m and using Chernoff’s bound it follows with
very high probability that |I| > 0.9m. Let Z ′

i be the random variable Zi con-
ditioned on the (probability ≥ 0.99) event that Z2

i ≤ 100, and μi = EZ ′
i. Note

that by definition (Z ′
i)

2 ≤ 100 with probability 1, i.e. |Z ′
i| ≤ 10 with probability

1, which in turn implies that |μi| ≤ 10. By the “spread-out-ness” condition on
Zi and the union bound, P[Z ′

i �∈ [μi − 1
2c , μi + 1

2c] ≥ 0.1 − 0.01 and hence, in
particular, E[(Z ′

i − μi)2] ≥ 1
500c2 .

We can consider the process of sampling the zi values from the algorithm as
being obtained by first choosing the set I, and then sampling zi independently

Limits on Low-Degree Pseudorandom Generators 669

from the random variable Z ′
i for every coordinate i ∈ I. The following lemma

says that there will not be an integral (i.e., {±1}-valued) solution to the SDP
with large value.

Lemma 4.6. With probability at least 0.99 it holds that for every x ∈ {±1}n,
∑

i∈I

(z′
i − μi)pi(x) ≤ O(

√
nms(p̄)) (4.6)

Proof. We use the union bound. For every fixed x ∈ {±1}n, we let αi = pi(x).
We know that

∑
i∈I α2

i ≤ ∑m
i=1 α2

i ≤ maxx∈{±1}n

∑
pi(x)2 = ms(p̄). Since

|z′
i − μi| ≤ 20, it follows that (z′

i − μi) is sub-gaussian with constant standard
deviation. Therefore,

∑
i∈I(z

′
i−μi)αi is sub-gaussian with zero expectation stan-

dard deviation O(
√

ms(p̄)). Therefore, there exists a value O(
√

nms(p̄)) s.t. the
probability that

∑
i∈I(z

′
i −μi)αi exceeds it is smaller than 0.001 · 2−n. Applying

the union bound implies the lemma.

Lemma 4.4 will follow from Lemma 4.6 using the fact that the SDP gives
O(log n) approximation factor for true maximum. In particular the symmet-
ric version of Grothendieck inequality shown by [19] implies that the value θ
computed by the algorithm is at most a factor of O(log n) larger than the true
maximum of the integer program (4.2), see Theorem A.3 in Appendix A.

To finish the proof, we need to ensure that (after multiplying by O(log n))
the bound on the RHS of (4.6) will be smaller than m/(100c)+

∑
i∈I(zi −μi)μi.

Indeed, since |μi| ≤ 10, with high probability over the choice of the zi’s (which
are chosen from Z ′

i), the quantity
∑

i(zi − μi)μi is at most, say, 10 times the
standard deviation, which is O(

√
m) � m/c. (Here no union bound is needed.)

So, by plugging in (4.6) what we really need is to ensure that

m/(20c log n) ≥ O(
√

nms(p̄))

or that
m ≥ O(ns(p̄)c2 log2 n)

which exactly matches the conditions of Lemma 4.4 hence concluding its proof
(and hence the proof Theorem 4.3 for the d = 2 case).

4.2 Refutation for d > 2

In this section, we show how to reduce the general degree d case to the case
d = 2, hence completing the proof of Theorem 4.3. The main tool we use is
the notion of “quadratizing” a polynomial. That is, we can convert a degree
d polynomial p on n variables into a degree two polynomial p̃ on (n + 1)�d/2�

variables by simply encoding every monomial of degree up to 	d/2
 of the input
as a separate variable.

670 B. Barak et al.

Definition 4.7 (Quadratization). Let p be a degree d polynomial on R
n which

we write in Fourier notation (see Definition 4.2) as p =
∑

|S|≤d p̂(S)χS. Let
d′ = 	d/2
 Then the quadratization of p is the degree two polynomial q on

(
n

≤d′
)

variables defined as:
q(y) =

∑

S,T

p̂(S ∪ T)ySyT ,

where the elements of the
(

n
≤d′

)
dimensional vector y are indexed by sets of size at

most d′, and this sum is taken over all sets S, T ⊆ [n] of size at most d′ such that
every element in S is smaller than every element of T , |S| = max{|S ∪ T |, d′}.

The following simple properties ensured by quadratization are easy to verify:

Lemma 4.8. Let q be the quadratization of a degree d polynomial p on
(

n
≤d′

)

variables for d′ = 	d/2
. Then,

1. For any x ∈ {±1}n there exists y ∈ {±1}(n
≤d′) such that q(y) = p(x).

2.
∑

S,S′ q̂({S, S′})2 =
∑

T p̂(T)2.
3. max

y∈{±1}(
n

≤d′) q(y) ≤ ∑
|T |≤d |p̂(T)|.

Proof (sketch). For 1, we let yS = χS(x) for every |S| ≤ d′. For 2 and 3, we note
that the set of nonzero Fourier coefficients of p and q is identical because for every
set |U | ≤ d there is a unique way to split it into disjoint sets S, T of size at most
d′ where S is the first min{|U |, d′} coordinates of U , and q̂({S, T}) = Û . For all
other pairs S, T that do not arise in this manner, it will hold that q̂({S, T}) = 0.
This means that both the �1 and �2 norms of the vector q̂ are the same as that
of the vector p̂, implying both 2 and 3.

We define the complexity of the degree d normalized map p̄ as the complexity
of the degree 2 normalized map of the quadratizations of pis:

Definition 4.9 (Complexity of degree d normalized maps). Let p̄ be a
normalized degree d map and let q̄ be its quadratization. Then, we define s(p̄) as
s(q̄) from (4.5).

Remark 4.10. Part 2 of Lemma 4.8 shows that if p̄ is normalized the so is its
quadratization q̄. Part 3 of Lemma 4.8 shows that s(p̄) ≤ sparsity(p) for any
normalized degree d map p.

We can now complete the proof of Theorem 4.3.

Proof (of Theorem 4.3). Let p̄ = (p1, . . . , pm) be a normalized degree d polyno-
mial map and let z1, . . . , zm be the inputs given to the algorithm. If there is an
x such that pi(x) = zi for every i, then by Lemma 4.5 (which did not assume
that d = 2), the algorithm will return “?”.

Limits on Low-Degree Pseudorandom Generators 671

Suppose otherwise, that z1, . . . , zm are chosen from the distribution Z. Recall
that our algorithm computes θ to be the value of the degree 2d′ SOS relaxation
for the quadratic program (4.2). This value satisfies

θ = max
μ(x)

Ẽμ

[
∑

i∈I

(zi − μi)pi(x)

]
,

where the maximum is over all degree 2d′ pseudo-distributions satisfying
{x2

i = 1} for every i ≤ n.
If μ is a degree 2d′ pseudodistribution over {±1}n then we can define a degree

2 pseudodistribution μ′ over {±1}(n
d′) by having y ∼ μ be defined as yS = χS(x)

for x ∼ μ.12 Let q̄ = (q1, . . . , qm) be the quadratization of p̄ = (p1, . . . , pm).
Then the distribution μ′ above demonstrates that θ ≤ θ′ where

θ′ = max
μ′(y)

Ẽμ′

[
∑

i∈I

(zi − μi)qi(x)

]
.

But since this is the value of a degree two SDP relaxation for a quadratic
program, we know by Theorem A.3 that it provides an O(log n) approximation
factor, or in other words that

θ′ ≤ O(log n) max
y∈{±1}(

n
d′)

∑

i∈I

(zi − μi)qi(y) . (4.7)

Since the qi’s are degree two polynomials over O(nd′
) variables, Lemma 4.6

implies that when z1, . . . , zm are randomly chosen from Z, w.h.p. the RHS of
(4.7) is at most O((log n)

√
nd′ms(q̄)) = O((log n)

√
nd′ms(p̄)). Setting this to

be smaller than (m/10c2) recovers Theorem 4.3.

5 Block Local Generators

Recall that a map G : {±1}bn → {±1}m is � block-local if the input can be
separated into n blocks of b bits each13, such that every output of G depends on
at most � blocks.

In this section we will show tighter bounds for block-local generators than
those derived from the theorem in Sect. 4. Of particular interest is the case of
block-locality 2 due to its applications for obfuscation from bilinear maps. In
Sect. 5.1 we show a tighter analysis of our algorithm from Sect. 4 for any block-
local generator. This yields a distinguisher for any block-locality 2 generator
with m � 22bn log n. In Sect. 5.3, we analyze a particularly natural instantiation
12 While it is clear that this operation makes sense for actual distributions, it turns out

to be not hard to verify that it also holds for pseudodistributions, see the lecture
notes [16].

13 Our algorithm works even if the blocks intersect arbitrarily. The construction in [47]
uses only non-intersecting blocks.

672 B. Barak et al.

for 2-block-local PRGs - a random predicate and random constraint graph and
show that our distinguisher works for an even smaller m � 2bn. In fact, we
show that one can even use a simpler distinguisher that computes the largest
singular value of a certain matrix arising out of the input instead of running a
semidefinite program.

5.1 Bounds on General Block-Local Generators

In this subsection we prove the following result:

Theorem 5.1 (Limitations of block local generators). For every �-block-
local G : {±1}bn → {±1}m there is an efficient algorithm for the G image refu-
tation problem w.r.t. the uniform distribution over {±1}m as long as

m > (K log n)2�b(n + 2�b)��/2�,

where K is a constant depending only on �.
If � is constant and b = o(n) (as is mostly the case), the above translates to

refutation for m > (K log n)2�bn��/2�.

The proof of this theorem can be found in the full version [12].
Theorem 1.3 from the introduction is the special case of Theorem 5.1 for

the case � = 2, and so in particular Theorem 5.1 breaks any 2 block local
pseudorandom generator with stretch Ω̃(n22b) to instantiate the bilinear-map
based construction of iO of [47].

Remark 5.2. A slightly weaker bound can be obtained by a direct application of
Theorem 4.3. We sketch the argument in the full version [12].

5.2 Sharper Bounds on the Stretch of Block-Local PRGs
with a Single Predicate

Next, we prove a tighter upper bound of Θ̃(n2b) on the stretch of a block local
PRGs with a single predicate P (instead of a different predicate for each output)
with block-locality 2. The following is the main result of this section:

Theorem 5.3. For b ∈ N, let G : {±1}bn → {±1}m be a two block-local PRG
defined by an instance graph G([n], E) with m = |E| edges and an arbitrary
predicate P : {±1}b → {±1}b → {±1} such that for any seed x ∈ ({±1}b)n, for
every e ∈ E, Ge = P (xe1 , xe2). Let z ∈ {±1}m.

Then, for any m > O(log2 (n))n2b, there exists a poly(m,n) time algorithm
that takes input G, z and P and outputs “refuted” or “?” with the following
guarantees:

1. If the output is “refuted”, then,

max
x∈({±1}b)n

∑

(i,j)∈E

P (xe1 , xe2)ze < 0.99m.

2. When z ∈ {±1}m is chosen uniformly at random, then P[Algorithm outputs
“refuted”] > 1 − 1/n.

The proof of this theorem can be found in the full version [12].

Limits on Low-Degree Pseudorandom Generators 673

5.3 Image Refutation for Random Block-Local PRGs

A particularly appealing construction of block local PRGs is obtained by instan-
tiating them with a random graph with ∼m edges and a random and indepen-
dent predicate for every edge. A priori, the randomness in this construction could
appear to aid the security of the PRG. Indeed, such instantiations are in fact
suggested by [47]. We show that in this case, as in the previous section where
all predicates are identical, we can show a stronger upper bound on the stretch
of the local PRG in terms of the block size b. Whereas in Sect. 5.1, for general
block-local PRGs with non-identical predicates, we lost a factor of 22b log(n) in
the output length, for the special case of a random graphs and random, inde-
pendent predicates, this can be improved to Θ(2b) as we show in this section.
We note that the only property of random graphs that we use is expansion.

More concretely, in this section, we analyze the stretch of the following can-
didate construction of a block-local PRG.

– We choose a graph G([n], q) where every edge is present in G with probability
q = m

(n
2)

. Thus, with high probability, the number of edges in the graph is

m ± √
m.

– For every edge {i, j} in G, we choose a uniformly random pred-
icate Pi,j(x, y) = ±1 conditioned on Pi,js being balanced, i.e.
Ex,y∼{±1}bPi,j(x, y) = 0.

– On input (seed) x ∈ {±1}bn, which we think of as partitioned into blocks
x1, . . . , xn ∈ {±1}b, the generator outputs hi,j(xi, xj) for every edge (i, j) of
G.

Theorem 5.4 (Limitations of random block-local generators). There
is some constant K such that if G : {±1}bn → {±1}m is a generator sampled
according to the above model and m ≥ K2bn log3 (n), then w.h.p. there is a
polynomial-time algorithm for the G image refutation problem w.r.t. the uniform
distribution over {±1}m.

The proof of this theorem can be found in the full version [12].

6 Lower Bound for Refuting Two-Block-Local PRGs

In this section, we establish that if b > 10 log log (n), then there’s no 2O(n/24b)-
time algorithm for image refutation of block-local PRG of stretch Ω(n2b) based
on the sum-of-squares method.

The main goal of this section is summarized in the following theorem.

Theorem 6.1. For any b > 10 log log (n), there’s a construction G : {±1}n →
{±1}m for m = Ω(n2b) such that for any z ∈ {±1}m, there’s a feasible solution
for the degree Θ(n/24b) sum-of-squares relaxation of the constraints {Gi = zi}.
In particular, sum of squares algorithm of degree Θ(n/24b) cannot accomplish
image refutation for G.

The proof of this theorem can be found in the full version [12].

674 B. Barak et al.

7 A Class of Block-Local Candidate Pseudorandom
Generators

In this section we outline a simple candidate pseudorandom generator of degree d
that has potentially output length as large as nd/2−ε. We have not conducted an
extensive study of this candidate’s security, but do believe it’s worthwhile exam-
ple as a potential counterpoint to our results on limitations for pseudorandom
generator, demonstrating that they might be tight.

The idea is simple: for a finite group G that does not have any abelian
quotient group (for example, a non-abelian simple group will do), we choose dm
random indices {ij,k}j∈[m],k∈[d] and let G be the generator mapping G

n to G
m

where
G(x)j = xij,1 ∗ xij,2 ∗ · · · ∗ xij,d

(7.1)

If want to output m bits rather than m elements of G, then we use a group G

of even order and apply to each coordinate some balanced map f : G → {0, 1}.
For every group element g ∈ G, the predicate

x1 ∗ · · · ∗ xd = g (7.2)

supports a d − 1 wise independent distribution. Hence, using the results of [43]
we can show that as long m < nd/2−ε, for a random z ∈ G

m, the SOS algorithm
cannot be used to efficiently refute the statement that z = G(x) for some x.

Ruling out Gaussian-elimination type attacks is trickier. For starters, solving
a linear system over a non-abelian group is NP-hard [35,42]. Also, Applebaum
and Lovett [10, Theorem 5.5] showed that at least for the large d case, because
the predicate (7.2) has rational degree d, the image-refutation problem for this
generator is hard with respect to algebraic attacks (that include Gaussian elim-
ination) for m = nΩ(d). Nevertheless, there are non trivial algorithms in the
group theoretic settings (such as the low index subgroup algorithm, see [23] and
[57, Sect. 6]). A more extensive study of algebraic attacks against this predicate
is needed to get better justifications of its security, and we leave such study for
future work.

We remark that the condition that the group G does not have abelian normal
subgroups is crucial. Otherwise, we can write G as the direct product H × H

′

where H is abelian, and project all equations to their component in H. We will
get m random equations in n variables over the abelian group H, and hence we
can use Gaussian elimination to refute those.

Acknowledgements. We thank Prabhanjan Ananth, Dakshita Khurana and Amit
Sahai for discussions regarding the class of generators needed for obfuscation. Thanks
to Rachel Lin and Stefano Tessaro for discussing the parameters of their construction
with us. We thank Avi Wigderson and Andrei Bulatov for references regarding Gaussian
elimination in non-abelian groups.

Limits on Low-Degree Pseudorandom Generators 675

A Analysis of the Basic SDP Program

The degree d SOS program [16] for a polynomial optimization problem of the
form

max
x∈{±1}n

p(x)

corresponds to

max Ẽ
μ
p

where Ẽ ranges over the set of degree d expectation operators that satisfy the
constraints {x2

i = 1}n
i=1. These are defined as follows:

Definition A.1 (Pseudo-expectation). Let Pn,d denote the space of all
degree ≤ d polynomials on n variables. A linear operator Ẽ : Pn,d is a degree
d pseudo-expectation if it satisfies the following conditions:

1. Ẽ[1] = 1.
2. Ẽ[p2] ≥ 0 for every polynomial p of degree at most d/2.

A pseudo-expectation is said to satisfy a constraint {q = 0} if for every poly-
nomial p of degree at most d − deg(q), Ẽ[pq] = 0. We say that Ẽ satisfies the
constraint {q ≥ 0} if for every polynomial p of degree at most d/2 − deg(q)/2,
Ẽ[p2q] ≥ 0.

If μ is any distribution on R
n, then the associated expectation is a pseudo-

expectation operator of all degrees. The above definition can be thought of as a
relaxation of the notion of an actual expectation.

Key to the utility of the definition above is the following theorem that shows
one can efficiently search over the space of all degree d pseudo-expectations.

Theorem A.2 ([44,55,59]). For any n, and integer d, the following set has an
nO(d) time weak separation oracle (in the sense of [37]):

{Ẽ[(1, x1, x2, . . . , xn,)⊗d] | Ẽ is a degree d pseudo-expectation}

In this appendix we expand on how Charikar and Wirth’s work [19] implies
the the following theorem:

Theorem A.3. For every degree two polynomial p : Rn → R with no constant
term, the value of the degree two SOS program for

max
x∈{±1}n

p(x) (A.1)

is larger than the true value of (A.1) by a factor of at most O(log n).

Theorem A.3 is a direct implication of the following result of [19]:

676 B. Barak et al.

Theorem A.4 (Symmetric Grothendieck Inequality, [19], Theorem 1).
Let A be any m × m matrix such that Ai,i = 0 for every i. Then,

max
X	0,Xi,i=1∀i

Tr(AX) ≤ O(log n) max
x∈{±1}n

x�Ax

Proof (of Theorem A.3 from Theorem A.4). Suppose that there is a degree
2 pseudo-distribution {x} such that Ẽp(x) ≥ θ, and let X be the n + 1 ×
n + 1 matrix corresponding to Ẽ(x, 1)(x, 1)�. That is, Xi,j = Ẽxixj and
Xn+1,i = Xi,n+1 = Ẽxi. Note that X is a psd matrix with 1’s on the diagonal.

Then Tr(AX) ≥ θ if A be the (n + 1) × (n + 1) matrix that represents the
polynomial p. In this case Theorem A.4 implies that there is an n+1 dimensional
vector (x, σ) ∈ {±1}n+1 such that (x, σ)�A(x, σ) ≥ Ω(θ/ log n). If we write
p(x) = q(x) + l(x), where q is the homogeneous degree two and l is linear, then
we can see by direct inspection that

(x, σ)�A(x, σ) = q(x) + σl(x) = p(σx)

with the last equality following from the fact that q(−x) = q(x) and l(−x) =
−l(x). Hence the vector σx ∈ {±1}n demonstrates that the value of (A.1) is at
least Ω(θ/ log n).

References

1. Allen, S.R., O’Donnell, R., Witmer, D.: How to refute a random CSP. In: FOCS,
pp. 689–708. IEEE Computer Society (2015)

2. Allen, S.R., O’Donnell, R., Witmer, D.: How to refute a random CSP. In: 2015
IEEE 56th Annual Symposium on Foundations of Computer Science—FOCS 2015,
pp. 689–708. IEEE Computer Society, Los Alamitos, CA (2015)

3. Ananth, P., Brakerski, Z., Khurana, D., Sahai, A.: Private communication (2017)
4. Ananth, P., Jain, A., Sahai, A.: Indistinguishability obfuscation from functional

encryption for simple functions. IACR Cryptology ePrint Archive 2015, 730 (2015)
5. Ananth, P., Sahai, A.: Projective arithmetic functional encryption and indistin-

guishability obfuscation from degree-5 multilinear maps. In: Coron, J.-S., Nielsen,
J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210, pp. 152–181. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-56620-7 6

6. Applebaum, B.: Pseudorandom generators with long stretch and low locality from
random local one-way functions. SIAM J. Comput. 42(5), 2008–2037 (2013)

7. Applebaum, B.: Cryptographic hardness of random local functions - survey. Com-
put. Complex. 25(3), 667–722 (2016)

8. Applebaum, B., Barak, B., Wigderson, A.: Public-key cryptography from different
assumptions. In: Proceedings of the 42nd ACM Symposium on Theory of Com-
puting, STOC, pp. 171–180. ACM (2010)

9. Applebaum, B., Ishai, Y., Kushilevitz, E.: Cryptography in NC0. SIAM J. Comput.
36(4), 845–888 (2006)

10. Applebaum, B., Lovett, S.: Algebraic attacks against random local functions and
their countermeasures. In: STOC, pp. 1087–1100. ACM (2016)

11. Applebaum, B., Raykov, P.: Fast pseudorandom functions based on expander
graphs. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9985, pp. 27–56.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53641-4 2

https://doi.org/10.1007/978-3-319-56620-7_6
https://doi.org/10.1007/978-3-662-53641-4_2

Limits on Low-Degree Pseudorandom Generators 677

12. Barak, B., Brakerski, Z., Komargodski, I., Kothari, P.K.: Limits on low-degree
pseudorandom generators (or: Sum-of-squares meets program obfuscation). IACR
Cryptology ePrint Archive 2017, 312 (2017)

13. Barak, B., Chan, S.O., Kothari, P.K.: Sum of squares lower bounds from pairwise
independence [extended abstract]. In: Proceedings of the 2015 ACM Symposium
on Theory of Computing, STOC 2015, pp. 97–106. ACM, New York (2015)

14. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S., Yang,
K.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.) CRYPTO
2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001). https://doi.org/10.
1007/3-540-44647-8 1

15. Barak, B., Raghavendra, P., Steurer, D.: Rounding semidefinite programming hier-
archies via global correlation. In: 2011 IEEE 52nd Annual Symposium on Foun-
dations of Computer Science, FOCS 2011, pp. 472–481. IEEE Computer Society,
Los Alamitos, CA (2011). http://dx.doi.org/10.1109/FOCS.2011.95

16. Barak, B., Steurer, D.: Proofs, beliefs, and algorithms through the lens of sum-of-
squares (2017). http://sumofsquares.org

17. Boneh, D., Franklin, M.K.: Identity-based encryption from the weil pairing. SIAM
J. Comput. 32(3), 586–615 (2003)

18. Brakerski, Z., Gentry, C., Halevi, S., Lepoint, T., Sahai, A., Tibouchi, M.: Crypt-
analysis of the quadratic zero-testing of GGH. Cryptology ePrint Archive, Report
2015/845 (2015)

19. Charikar, M., Wirth, A.: Maximizing quadratic programs: extending grothendieck’s
inequality. In: FOCS, pp. 54–60. IEEE Computer Society (2004)

20. Cheon, J.H., Fouque, P.-A., Lee, C., Minaud, B., Ryu, H.: Cryptanalysis of the
new CLT multilinear map over the integers. In: Fischlin, M., Coron, J.-S. (eds.)
EUROCRYPT 2016. LNCS, vol. 9665, pp. 509–536. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-49890-3 20

21. Cheon, J.H., Han, K., Lee, C., Ryu, H., Stehlé, D.: Cryptanalysis of the multilinear
map over the integers. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015.
LNCS, vol. 9056, pp. 3–12. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-46800-5 1

22. Cheon, J.H., Jeong, J., Lee, C.: An algorithm for NTRU problems and cryptanal-
ysis of the GGH multilinear map without an encoding of zero. Cryptology ePrint
Archive, Report 2016/139 (2016)

23. Conder, M., Dobcsányi, P.: Applications and adaptations of the low index sub-
groups procedure. Math. Comput. 74(249), 485–497 (2005)

24. Coron, J.-S., et al.: Zeroizing without low-level zeroes: new MMAP attacks and
their limitations. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS,
vol. 9215, pp. 247–266. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-47989-6 12

25. Coron, J.-S., Lepoint, T., Tibouchi, M.: Practical multilinear maps over the inte-
gers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp.
476–493. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-
4 26

26. Coron, J.-S., Lepoint, T., Tibouchi, M.: New multilinear maps over the integers. In:
Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 267–286.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47989-6 13

27. Cryan, M., Miltersen, P.B.: On pseudorandom generators in NC0. In: Sgall, J.,
Pultr, A., Kolman, P. (eds.) MFCS 2001. LNCS, vol. 2136, pp. 272–284. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-44683-4 24

https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/3-540-44647-8_1
http://dx.doi.org/10.1109/FOCS.2011.95
http://sumofsquares.org
https://doi.org/10.1007/978-3-662-49890-3_20
https://doi.org/10.1007/978-3-662-46800-5_1
https://doi.org/10.1007/978-3-662-46800-5_1
https://doi.org/10.1007/978-3-662-47989-6_12
https://doi.org/10.1007/978-3-662-47989-6_12
https://doi.org/10.1007/978-3-642-40041-4_26
https://doi.org/10.1007/978-3-642-40041-4_26
https://doi.org/10.1007/978-3-662-47989-6_13
https://doi.org/10.1007/3-540-44683-4_24

678 B. Barak et al.

28. Feige, U.: Relations between average case complexity and approximation complex-
ity. In: Proceedings of the Thirty-Fourth Annual ACM Symposium on Theory
of Computing, pp. 534–543. ACM, New York (2002). http://dx.doi.org/10.1145/
509907.509985. (electronic)

29. Feige, U.: Refuting smoothed 3CNF formulas. In: FOCS, pp. 407–417. IEEE Com-
puter Society (2007)

30. Feige, U., Ofek, E.: Easily refutable subformulas of large random 3CNF formulas.
Theory Comput. 3, 25–43 (2007). https://doi.org/10.4086/toc.2007.v003a002

31. Feldman, V., Perkins, W., Vempala, S.: On the complexity of random satisfiability
problems with planted solutions. In: STOC, pp. 77–86. ACM (2015)

32. Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
1–17. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9 1

33. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: 54th
Annual IEEE Symposium on Foundations of Computer Science, FOCS 2013, pp.
40–49 (2013). http://dx.doi.org/10.1109/FOCS.2013.13

34. Gentry, C., Gorbunov, S., Halevi, S.: Graph-induced multilinear maps from lat-
tices. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 498–527.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46497-7 20

35. Goldmann, M., Russell, A.: The complexity of solving equations over finite groups.
Inf. Comput. 178(1), 253–262 (2002). https://doi.org/10.1006/inco.2002.3173

36. Goldreich, O.: Candidate one-way functions based on expander graphs. In: Elec-
tronic Colloquium on Computational Complexity (ECCC), vol. 7, no. 90 (2000)

37. Grötschel, M., Lovász, L., Schrijver, A.: The ellipsoid method and its consequences
in combinatorial optimization. Combinatorica 1(2), 169–197 (1981). https://doi.
org/10.1007/BF02579273

38. Hada, S.: Zero-knowledge and code obfuscation. In: Okamoto, T. (ed.) ASI-
ACRYPT 2000. LNCS, vol. 1976, pp. 443–457. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-44448-3 34

39. Hu, Y., Jia, H.: Cryptanalysis of GGH map. In: Fischlin, M., Coron, J.-S. (eds.)
EUROCRYPT 2016. LNCS, vol. 9665, pp. 537–565. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-49890-3 21

40. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Prabhakaran, M., Sahai, A.: Efficient
non-interactive secure computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011.
LNCS, vol. 6632, pp. 406–425. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-20465-4 23

41. Joux, A.: A one round protocol for tripartite Diffie–Hellman. In: Bosma, W. (ed.)
ANTS 2000. LNCS, vol. 1838, pp. 385–393. Springer, Heidelberg (2000). https://
doi.org/10.1007/10722028 23

42. Kĺıma, O., Tesson, P., Thérien, D.: Dichotomies in the complexity of solving sys-
tems of equations over finite semigroups. Theory Comput. Syst. 40(3), 263–297
(2007)

43. Kothari, P.K., Mori, R., O’Donnell, R., Witmer, D.: Sum of squares lower bounds
for refuting any CSP. In: Proceedings of the 49th Annual ACM SIGACT Sympo-
sium on Theory of Computing, STOC, pp. 132–145. ACM (2017)

44. Lasserre, J.B.: New positive semidefinite relaxations for nonconvex quadratic pro-
grams. In: Hadjisavvas, N., Pardalos, P.M. (eds.) Advances in Convex Analysis
and Global Optimization. Nonconvex Optimization and Its Applications, vol. 54,
pp. 319–331. Kluwer Academic Publishers, Dordrecht (2001). https://doi.org/10.
1007/978-1-4613-0279-7 18. (Pythagorion, 2000)

http://dx.doi.org/10.1145/509907.509985
http://dx.doi.org/10.1145/509907.509985
https://doi.org/10.4086/toc.2007.v003a002
https://doi.org/10.1007/978-3-642-38348-9_1
http://dx.doi.org/10.1109/FOCS.2013.13
https://doi.org/10.1007/978-3-662-46497-7_20
https://doi.org/10.1006/inco.2002.3173
https://doi.org/10.1007/BF02579273
https://doi.org/10.1007/BF02579273
https://doi.org/10.1007/3-540-44448-3_34
https://doi.org/10.1007/978-3-662-49890-3_21
https://doi.org/10.1007/978-3-642-20465-4_23
https://doi.org/10.1007/978-3-642-20465-4_23
https://doi.org/10.1007/10722028_23
https://doi.org/10.1007/10722028_23
https://doi.org/10.1007/978-1-4613-0279-7_18
https://doi.org/10.1007/978-1-4613-0279-7_18

Limits on Low-Degree Pseudorandom Generators 679

45. Lin, H.: Indistinguishability obfuscation from constant-degree graded encoding
schemes. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665,
pp. 28–57. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-
3 2

46. Lin, H.: Indistinguishability obfuscation from SXDH on 5-Linear maps and locality-
5 PRGs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp.
599–629. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7 20

47. Lin, H., Tessaro, S.: Indistinguishability obfuscation from bilinear maps and block-
wise local PRGs. IACR Cryptology ePrint Archive, p. 250 (2017)

48. Lin, H., Vaikuntanathan, V.: Indistinguishability obfuscation from DDH-like
assumptions on constant-degree graded encodings. In: IEEE 57th Annual Sym-
posium on Foundations of Computer Science, FOCS, pp. 11–20. IEEE Computer
Society (2016)

49. Lombardi, A., Vaikuntanathan, V.: Limits on the locality of pseudorandom gener-
ators and applications to indistinguishability obfuscation. In: Kalai, Y., Reyzin, L.
(eds.) TCC 2017. LNCS, vol. 10677, pp. 119–137. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-70500-2 5

50. Lombardi, A., Vaikuntanathan, V.: Minimizing the complexity of Goldreich’s pseu-
dorandom generator. IACR Cryptology ePrint Archive, p. 277 (2017)

51. Miles, E., Sahai, A., Zhandry, M.: Annihilation attacks for multilinear maps: crypt-
analysis of indistinguishability obfuscation over GGH13. In: Robshaw, M., Katz, J.
(eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 629–658. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53008-5 22

52. Mossel, E., Shpilka, A., Trevisan, L.: On epsilon-biased generators in NC0. Random
Struct. Algorithms 29(1), 56–81 (2006)

53. O’Donnell, R.: Analysis of Boolean Functions. Cambridge University Press, Cam-
bridge (2014)

54. O’Donnell, R., Witmer, D.: Goldreich’s PRG: evidence for near-optimal polynomial
stretch. In: IEEE 29th Conference on Computational Complexity–CCC 2014, pp.
1–12. IEEE Computer Society, Los Alamitos, CA (2014). http://dx.doi.org/10.
1109/CCC.2014.9

55. Parrilo, P.A.: Structured semidefinite programs and semialgebraic geometry meth-
ods in robustness and optimization. Ph.D. thesis, Citeseer (2000)

56. Raghavendra, P., Rao, S., Schramm, T.: Strongly refuting random CSPs below the
spectral threshold. In: Proceedings of the 49th Annual ACM SIGACT Symposium
on Theory of Computing, STOC 2017, pp. 121–131. ACM (2017)

57. Rozenman, E., Shalev, A., Wigderson, A.: Iterative construction of cayley expander
graphs. Theory Comput. 2(5), 91–120 (2006)

58. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryp-
tion, and more. In: Symposium on Theory of Computing, STOC, pp. 475–484.
ACM (2014)

59. Shor, N.Z.: Quadratic optimization problems. Izv. Akad. Nauk SSSR Tekhn. Kiber-
net. 222(1), 128–139 (1987)

60. Witmer, D.: On refutation of random constraint satisfaction problems (thesis pro-
posal) (2017). http://www.cs.cmu.edu/∼dwitmer/papers/proposal.pdf

https://doi.org/10.1007/978-3-662-49890-3_2
https://doi.org/10.1007/978-3-662-49890-3_2
https://doi.org/10.1007/978-3-319-63688-7_20
https://doi.org/10.1007/978-3-319-70500-2_5
https://doi.org/10.1007/978-3-319-70500-2_5
https://doi.org/10.1007/978-3-662-53008-5_22
http://dx.doi.org/10.1109/CCC.2014.9
http://dx.doi.org/10.1109/CCC.2014.9
http://www.cs.cmu.edu/~dwitmer/papers/proposal.pdf

Symmetric Cryptanalysis

Boomerang Connectivity Table:
A New Cryptanalysis Tool

Carlos Cid1(B), Tao Huang2(B), Thomas Peyrin2,3,4(B), Yu Sasaki5(B),
and Ling Song2,3,6(B)

1 Information Security Group,
Royal Holloway, University of London, Egham, UK

carlos.cid@rhul.ac.uk
2 School of Physical and Mathematical Sciences,

Nanyang Technological University, Singapore, Singapore
{huangtao,thomas.peyrin}@ntu.edu.sg

3 Temasek Laboratories, Nanyang Technological University, Singapore, Singapore
4 School of Computer Science and Engineering,

Nanyang Technological University, Singapore, Singapore
5 NTT Secure Platform Laboratories, Tokyo, Japan

sasaki.yu@lab.ntt.co.jp
6 State Key Laboratory of Information Security, Institute of Information

Engineering, Chinese Academy of Sciences, Beijing, China
songling@iie.ac.cn

Abstract. A boomerang attack is a cryptanalysis framework that
regards a block cipher E as the composition of two sub-ciphers E1 ◦ E0

and builds a particular characteristic for E with probability p2q2 by com-
bining differential characteristics for E0 and E1 with probability p and
q, respectively. Crucially the validity of this figure is under the assump-
tion that the characteristics for E0 and E1 can be chosen independently.
Indeed, Murphy has shown that independently chosen characteristics
may turn out to be incompatible. On the other hand, several researchers
observed that the probability can be improved to p or q around the
boundary between E0 and E1 by considering a positive dependency of the
two characteristics, e.g. the ladder switch and S-box switch by Biryukov
and Khovratovich. This phenomenon was later formalised by Dunkelman
et al. as a sandwich attack that regards E as E1 ◦ Em ◦ E0, where Em

satisfies some differential propagation among four texts with probabil-
ity r, and the entire probability is p2q2r. In this paper, we revisit the
issue of dependency of two characteristics in Em, and propose a new
tool called Boomerang Connectivity Table (BCT), which evaluates r in
a systematic and easy-to-understand way when Em is composed of a
single S-box layer. With the BCT, previous observations on the S-box
including the incompatibility, the ladder switch and the S-box switch are
represented in a unified manner. Moreover, the BCT can detect a new
switching effect, which shows that the probability around the bound-
ary may be even higher than p or q. To illustrate the power of the

c© International Association for Cryptologic Research 2018
J. B. Nielsen and V. Rijmen (Eds.): EUROCRYPT 2018, LNCS 10821, pp. 683–713, 2018.
https://doi.org/10.1007/978-3-319-78375-8_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78375-8_22&domain=pdf

684 C. Cid et al.

BCT-based analysis, we improve boomerang attacks against Deoxys-BC,
and disclose the mechanism behind an unsolved probability amplifica-
tion for generating a quartet in SKINNY. Lastly, we discuss the issue of
searching for S-boxes having good BCT and extending the analysis to
modular addition.

Keywords: Boomerang attack · Differential distribution table
S-box · Incompatibility · Ladder switch · S-box switch · Deoxys
SKINNY

1 Introduction

Differential cryptanalysis, proposed by Biham and Shamir in the early 1990s
[BS93], remains one of the most fundamental cryptanalytic approaches for assess-
ing the security of block ciphers. For iterated ciphers based on predefined sub-
stitution tables (S-box), resistance against differential cryptanalysis is highly
dependent on the non-linearity features of the S-box.

For an n-bit S-box S : {0, 1}n �→ {0, 1}n, the properties for differential propa-
gations of S are typically represented in the 2n×2n table T , called the Difference
Distribution Table (DDT). For any pair (Δi,Δo), the value

#{x ∈ {0, 1}n|S(x) ⊕ S(x ⊕ Δi) = Δo}

is stored in the corresponding entry T (Δi,Δo) of the DDT, representing that
the input difference Δi propagates to the output difference Δo with probability

T (Δi,Δo)
2n

. (1)

The maximum entry in the table T (outside the first row and column) is called
the differential uniformity of S.

As an example, the DDT for the 4-bit S-box used in PRESENT [BKL+07]
and LED [GPPR11] is shown in Table 1. We can observe that the differential
uniformity of the S-box is 4.

While Eq. (1) represents the differential propagation property for a single S-
box, in order to derive the differential properties of the entire cipher, a trail of
high-probability differentials is searched through the cipher iteration, by assum-
ing that the S-boxes and other operations applied in different rounds behave
independently.

In many cases, it may not be possible to find a high-probability trail for
the entire cipher. In such cases, the Boomerang attack framework, proposed
by Wagner [Wag99], may be applied to exploit the differential properties of
different segments of the cipher. In a boomerang attack, the target cipher E
is regarded as a composition of two sub-ciphers E0 and E1, i.e. E = E1 ◦ E0.
Then suppose that the input difference α is propagated to the difference β by
E0 with probability p, while the difference γ is propagated to δ by E1 with

Boomerang Connectivity Table: A New Cryptanalysis Tool 685

Table 1. Difference Distribution Table (DDT) of the PRESENT S-box

Δo

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 4 0 0 0 4 0 4 0 0 0 4 0 0
2 0 0 0 2 0 4 2 0 0 0 2 0 2 2 2 0
3 0 2 0 2 2 0 4 2 0 0 2 2 0 0 0 0
4 0 0 0 0 0 4 2 2 0 2 2 0 2 0 2 0
5 0 2 0 0 2 0 0 0 0 2 2 2 4 2 0 0
6 0 0 2 0 0 0 2 0 2 0 0 4 2 0 0 4

Δi 7 0 4 2 0 0 0 2 0 2 0 0 0 2 0 0 4
8 0 0 0 2 0 0 0 2 0 2 0 4 0 2 0 4
9 0 0 2 0 4 0 2 0 2 0 0 0 2 0 4 0
a 0 0 2 2 0 4 0 0 2 0 2 0 0 2 2 0
b 0 2 0 0 2 0 0 0 4 2 2 2 0 2 0 0
c 0 0 2 0 0 4 0 2 2 2 2 0 0 0 2 0
d 0 2 4 2 2 0 0 2 0 0 2 2 0 0 0 0
e 0 0 2 2 0 0 2 2 2 2 0 0 2 2 0 0
f 0 4 0 0 4 0 0 0 0 0 0 0 0 0 4 4

Fig. 1. Boomerang attack Fig. 2. Sandwich attack Fig. 3. Computation of r
when Em is an S-box layer

probability q. The boomerang attack exploits the expected probability of the
following differential (depicted in Fig. 1):

Pr
[
E−1

(
E(x) ⊕ δ

)
⊕ E−1

(
E(x ⊕ α) ⊕ δ

)
= α

]
= p2q2. (2)

Then, on making around (pq)−2 adaptive chosen plaintext/ciphertext queries,
E can be distinguished from an ideal cipher.

686 C. Cid et al.

Variants of the boomerang attack were later proposed: the amplified
boomerang attack (also called ‘the rectangle attack’) works in a chosen-plaintext
scenario and a right quartet is expected to be obtained with probability p2q22−n

[KKS00]. Further, it was pointed out in [BDK01,BDK02] that any values of β
and γ are allowed as long as β �= γ. As a result, the probability of the right quar-

tet increases to 2−np̂2q̂2, where p̂ =
√

ΣiPr2(α −→ βi) and q̂ =
√

ΣjPr2(γj −→ δ).
In boomerang-style attacks, the most important part of the attack is selecting

suitable differential characteristics for E0 and E1. Initially, the standard assump-
tion used in boomerang-style attacks was that two characteristics independently
chosen for E0 and E1 could be used; as a result the typical attacker’s strategy
was to optimise the best characteristics independently for the sub-ciphers E0 and
E1. However, Murphy [Mur11] pointed out that, for S-box based ciphers, two
independently chosen characteristics can be incompatible, thus the probability
of generating a right quartet can be zero. He also showed that the dependency
between two characteristics could give advantages for the attacker, giving an
example that the probability of generating a quartet was pq instead of p2q2

when E0 and E1 are composed of a single S-box. The same phenomenon was
observed by Biryukov et al. as the middle round S-box trick [BCD03].

Another improvement, proposed by Biryukov and Khovratovich [BK09], was
named the boomerang switch. Suppose that the cipher state is composed of sev-
eral words (typically 8 bits or 4 bits) and the round function applies S-boxes
to each word in parallel. The main observation in [BK09] is that the boundary
of E0 and E1 does not need to be defined on a state. Instead, a state can be
further divided into words, and some words can be in E0 and others can be in
E1. Suppose that half of the state is active only in E0 and the other half is active
only in E1. Then, by regarding the former as a part of E1 and the latter as a
part of E0, the probability on all the active S-boxes becomes 1. This technique is
called ladder switch. Another switching technique in [BK09], is the S-box switch.
When both the characteristics for E0 and E1 activate the same S-box with an
identical input difference and an identical output difference, the probability of
this S-box to generate a quartet is p instead of p2.

Those observations were later formalised by Dunkelman et al. as the sand-
wich attack [DKS10,DKS14] depicted in Fig. 2, that regards E as E1 ◦ Em ◦ E0,
where Em is a relatively short operation satisfying some differential propagation
among four texts with probability r, and the entire probability is p2q2r. Let
(x1, x2, x3, x4) and (y1, y2, y3, y4) be input and output quartet values for Em,
where yi = Em(xi). The differential characteristics for E0 specify the input dif-
ferences α to Em, namely x1 ⊕ x2 = x3 ⊕ x4 = α, and E1 specifies the output
differences β to each S-box, namely y1⊕y3 = y2⊕y4 = β. Dunkelman et al. define
r as follows [DKS10, Eq. (4)].

r = Pr
[
(x3 ⊕ x4) = β|(x1 ⊕ x2 = β) ∧ (y1 ⊕ y3 = γ) ∧ (y2 ⊕ y4 = γ)

]
(3)

Boomerang-style attacks have become an ever more popular cryptanalytic
method for assessing the security of block ciphers. Yet, considering the research
results above, we note the following questions that arise in their context:

Boomerang Connectivity Table: A New Cryptanalysis Tool 687

• the probability r of the middle part Em is for a quartet. Then, how can we
evaluate r in an efficient and systematic way? The only known approach is
to run experiments as in [DKS10,DKS14,BDK01,KHP+12].

• are there other switching techniques that can be used to improve boomerang-
style attacks? In particular, can we find switching techniques that connect
two characteristics with even higher probability than the S-box switch and
Murphy’s examples?

Answer to these questions would be of course of great interest to researchers
working on block cipher cryptanalysis, but also significant to provide a deeper
understanding of the subtleties of boomerang-style attacks. Besides, it also con-
tributes to block ciphers designers by taking into account this property as a
criterion to choose a good S-box.

Our Contributions. This paper positively answers the above questions by
proposing a new tool for evaluating the probability that boomerang-style quar-
tets are generated. While we focus mainly on explaining the effects against
ciphers employing S-boxes, we also present the extension to analyse ciphers based
on modular addition.

Suppose that the middle layer Em of the sandwich attack is composed of a
single S-box layer. Then, for a given pair of (Δi,∇o), the probability that a right
quartet is generated in each S-box in the middle S-box layer is given by:

#{x ∈ {0, 1}n|S−1(S(x) ⊕ ∇o) ⊕ S−1(S(x ⊕ Δi) ⊕ ∇o) = Δi}
2n

, (4)

where S : {0, 1}n �→ {0, 1}n is an n-bit to n-bit S-box and S−1 is its inverse.
What Eq. (4) evaluates is illustrated in Fig. 3, which is exactly r in Eq. (3) when
Em is a single S-box layer. Note that the differences for E0 and E1 are defined
between different paired values, thus we use Δ and ∇ to denote the differences of
E0 and E1, respectively. We also note that in the figures we mainly use red and
blue colours to describe Δ and ∇, respectively. The denominator is 2n instead
of 22n, which shows the implication of the sandwich attack that the probability
r of generating a right quartet in Em is at least 2−n (if not 0).

Similar to the DDT, we can of course evaluate Eq. (4) for all pairs of (Δi,∇o),
storing the results (in fact the numerator) in a table. We call this table the
Boomerang Connectivity Table (BCT). The BCT for the PRESENT S-box is
shown in Table 2.

The BCT represents the observations by [Mur11,BK09] in a unified manner.

Incompatibility. (Δi,∇o) is incompatible when the corresponding entry in the
BCT is 0.

Ladder switch. It corresponds to the first row and the first column of the
BCT, in which either one of the input or output difference is zero, while the
other is non-zero. As suggested by Table 2, Eq. (4) gives probability 1.

S-box switch. It corresponds to the claim that a DDT entry with non-zero
value v would imply that the corresponding BCT entry is v. While this is

688 C. Cid et al.

Table 2. Boomerang Connectivity Table (BCT) of the PRESENT S-box

∇o

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16
1 16 0 4 4 0 16 4 4 4 4 0 0 4 4 0 0
2 16 0 0 6 0 4 6 0 0 0 2 0 2 2 2 0
3 16 2 0 6 2 4 4 2 0 0 2 2 0 0 0 0
4 16 0 0 0 0 4 2 2 0 6 2 0 6 0 2 0
5 16 2 0 0 2 4 0 0 0 6 2 2 4 2 0 0
6 16 4 2 0 4 0 2 0 2 0 0 4 2 0 4 8

Δi 7 16 4 2 0 4 0 2 0 2 0 0 4 2 0 4 8
8 16 4 0 2 4 0 0 2 0 2 0 4 0 2 4 8
9 16 4 2 0 4 0 2 0 2 0 0 4 2 0 4 8
a 16 0 2 2 0 4 0 0 6 0 2 0 0 6 2 0
b 16 2 0 0 2 4 0 0 4 2 2 2 0 6 0 0
c 16 0 6 0 0 4 0 6 2 2 2 0 0 0 2 0
d 16 2 4 2 2 4 0 6 0 0 2 2 0 0 0 0
e 16 0 2 2 0 0 2 2 2 2 0 0 2 2 0 0
f 16 8 0 0 8 0 0 0 0 0 0 8 0 0 8 16

correct in some cases, as it can be observed from the two tables, we show that
the value of the BCT can in fact be larger than v owing to the new switching
effect. However, at least the effect of S-box switch is always guaranteed.

Study of the BCT can also present more advantages to the attacker com-
pared to the previously known switching techniques. With respect to versatility,
the BCT shows that the switching effect can be applied even when Δi cannot
be propagated to Δo in the DDT. With respect to strength, the maximum prob-
ability in the BCT is usually higher than that of the DDT. For example, the
DDT in Table 1 has entry 0 for (Δi,Δo) = (1, 5), while the BCT in Table 2 for
(Δi,∇o) = (1, 5) gives us probability 1. As far as the authors are aware, such an
event has never been pointed out in previous works, and we expect that many
existing boomerang attacks can be improved by considering superior switching
effects represented in the BCT. To illustrate this point, we show in this paper
how to improve the boomerang attack against 10-round Deoxys-BC-384 which
was recently presented [CHP+17]. We also use the BCT with related-tweakey
boomerang characteristics of SKINNY-64 and SKINNY-128 presented by [LGL17].
The BCT allows us to accurately evaluate the amplification of the probability
of forming distinguishers. As a result, we detect flaws on the experimentally
evaluated probability in [LGL17], and probabilities for SKINNY-64 are improved.

To better understand the relationship between the DDT and the BCT, we
consider the problem of finding an S-box such that the maximum probability in
the BCT is the same as one in the DDT. We show that while 2-uniform DDT
always derives 2-uniform BCT, finding such an S-box with 4-uniform DDT is

Boomerang Connectivity Table: A New Cryptanalysis Tool 689

hard especially when the size of the S-box increases. Finally, we discuss the
application of our idea to the modular addition operation. We show that the
ladder switch observed for the S-box based designs can be applied to the modular
addition, while the S-box switch cannot be applied. We also find a new switching
mechanism called MSB-switch for modular addition which generates a right
quartet with probability 1.

Finally, we would like to emphasise that the BCT should not be considered
only from the attackers’ point-of-view. One major feature of our approach is
that the BCT can (and should) also be considered by designers. A block-cipher
designer need to evaluate many S-box choices according to various criteria. The
simple form of the BCT, which allows one to measure the strength of the S-box
against boomerang-style attacks independently from the other components (not
too dissimilar to the relation between differential cryptanalysis and an S-box
DDT) will be of great benefit to designers as well.

Outline. In Sect. 2, we give a brief overview of related work. Section 3 introduces
the boomerang connectivity table as a new method to evaluate the probability
of two differential characteristics, and explains the mechanisms based on which
our improved switching technique can work. The BCT is applied to Deoxys
and SKINNY in Sects. 4 and 5. We then discuss difficulties in finding 4-uniform
BCT and extends the analysis to modular addition in Sect. 6. We present our
conclusions in Sect. 7.

2 Previous Work

The boomerang attack, originally proposed by Wagner [Wag99], was extended to
the related-key setting and was formalised in [BDK05] by using four related-key
oracles K1, K2 = K1 ⊕ ΔK, K3 = K1 ⊕ ∇K and K4 = K1 ⊕ ΔK ⊕ ∇K.

Let EK(P) and DK(C) denote the encryption of P and the decryption of
C under a key K, respectively. In the framework, a pair (P1, P2) with plaintext
difference Δi is first queried to EK1 and EK2 to produce (C1, C2). Then (C3, C4)
is computed from (C1, C2) by xoring ∇o, and queried to decryption oracles DK3

and DK4 to produce (P3, P4). With probability p2q2, where p2q2 > 2−n, the
pair (P3, P4) will have difference Δi, and the cipher may be distinguished. The
pseudo-code of the related-key boomerang attack is given below.
1. κ1 ← random(), κ2 ← κ1 ⊕ ΔK,κ3 ← κ1 ⊕ ∇K,κ4 ← κ1 ⊕ ΔK ⊕ ∇K.
2. Repeat the following steps N times, where N ≥ (pq)−2.
3. P1 ← random() and P2 ← P1 ⊕ ΔP .
4. C1 ← Eκ1(P1) and C2 ← Eκ2(P2).
5. C3 ← C1 ⊕ ∇C and C4 ← C2 ⊕ ∇C .
6. P3 ← Dκ3(C3) and P4 ← Dκ4(C4).
7. Check if P3 ⊕ P4 = ΔP .

Boomerang-style attacks have been widely considered in symmetric-key
cryptanalysis, and thus we refrain from providing a complete list of previous
works that apply the technique. A few noticeable examples of boomerang-style
attacks against block ciphers include [BDK05,BK09,LGL17,CHP+17].

690 C. Cid et al.

3 BCT – Boomerang Connectivity Table

In this section we introduce our novel idea, the Boomerang Connectivity Table
(BCT), which can be used to more accurately evaluate the probability of gener-
ating a right quartet in boomerang-style attacks. As briefly explained in Sect. 1,
the BCT is constructed by directly computing the probabilities for generating
boomerang quartets at the local level (Eq. 4), and thus provides more useful
information for boomerang attacks when compared to the DDT, which was typ-
ically used in previous works.

3.1 Definition of the BCT

As illustrated in Fig. 3, we consider the case where the input difference to the
S-box, Δi, is defined by the sub-cipher E0 and the output difference from the
S-box, ∇o, is defined by E1. The important observation is that when one of
the input values to the S-box is fixed, all the values in the quartet are fixed.
Hence, the generation of the right quartet is a probabilistic event, which we can
compute as:

#{x ∈ {0, 1}n|S−1(S(x) ⊕ ∇o) ⊕ S−1(S(x ⊕ Δi) ⊕ ∇o) = Δi}
2n

.

The table that stores the results of this equation for all (Δi,∇o) is useful
in the analysis of the target cipher. We call it “Boomerang Connectivity Table
(BCT)”.

Definition 3.1 (Boomerang Connectivity Table). Let S : {0, 1}n →
{0, 1}n be an invertible function, and Δi,∇o ∈ {0, 1}n. The Boomerang Con-
nectivity Table (BCT) of S is given by a 2n × 2n table T , in which the entry for
the (Δi,∇o) position is given by

T (Δi,∇o) = #{x ∈ {0, 1}n|S−1(S(x) ⊕ ∇o) ⊕ S−1(S(x ⊕ Δi) ⊕ ∇o) = Δi}.

The BCT for the PRESENT S-box is shown in Table 2. We note that the com-
plexity for generating the BCT for an n-bit to n-bit S-box is O(23n), which is
higher than O(22n) for the DDT.

The BCT provides a unified representation of existing observations on quar-
tet generation/probabilities for boomerang-style attacks, which can be easily
detected on analysis of the cipher’s S-box BCT.

Incompatibility. In previous works, the compatibility or incompatibility of
(Δi,∇o) noted in [Mur11] would be typically checked experimentally. This
can however be observed directly in the BCT: the difference pair (Δi,∇o) is
incompatible if the corresponding entry of the BCT is 0.

Ladder switch. The value in any entry in the first row and the first column
of the BCT is 2n. This corresponds to the ladder switch proposed in [BK09].
This probability 1 transition can also be explained in the way of Fig. 3.

Boomerang Connectivity Table: A New Cryptanalysis Tool 691

Fig. 4. Illustration of the ladder switch Fig. 5. Illustration of the S-box switch

The case with Δi �= 0 and ∇o = 0 is illustrated in Fig. 4. As we can observe,
for any choice of x1 and x2(= x1 ⊕ Δi), we have their images y1 and y2 after
the S-box application. Now since ∇o = 0, no modification is made to create
y3 and y4, and thus after S−1 is applied, the paired values get back to (x1, x2)
with probability 1, and the second pair will always satisfy Δi. The same holds
when Δi = 0 and ∇o �= 0.

S-box switch. The S-box switch can be explained in the context of the BCT as
follows: if the DDT entry for (Δi,Δo) is non-zero, then by setting ∇o = Δo,
the BCT entry for (Δi,∇o) will take the same value. The mechanism of the
S-box switch is the same as explained in [BK09], but here we explain it in the
way of Fig. 3, which will be useful to understand our new switching effects
presented later. As illustrated in Fig. 5, suppose that two input values x1

and x2(= x1 ⊕ Δi) are mapped to y1 and y2 satisfying y1 ⊕ y2 = Δo with
probability p. By setting ∇o = Δo, y3 and y4 are computed by y1 ⊕ Δo and
y2 ⊕Δo. This merely switches y1 and y2, and after S−1 is applied, the paired
values become (x2, x1) with probability 1, and thus the second pair always
satisfies Δi.

The above analysis, especially for the S-box switch, can be summarised as
the following lemma about the relationship between the DDT and the BCT.

Lemma 1. For any choice of (Δi,Δo), the value in the BCT is greater than or
equal to the one in the DDT.

Proof. The lemma is trivially valid when the value in the DDT is 0, or when
(Δi,Δo) = (0, 0). For the other non-zero DDT entries, the lemma follows from
the discussion for the S-box switch above. �

BCT of the AES S-box. Because the PRESENT S-box does not offer the
strongest resistance against maximum differential and linear probabilities, it may
be interesting to study the properties of the BCT of the AES S-box, for example.

692 C. Cid et al.

The AES S-box is an 8-bit S-box, and thus the size of its DDT is 256×256. The
properties of its DDT are well known: each column and row contain one entry
with ‘4’, 126 entries with ‘2’, and the remaining is ‘0’ (apart from the zero input
and zero output differences). Hence in the entire DDT, the number of entries
with ‘256’, ‘4’, ‘2’ and ‘0’ are 1, 255, 32130 and 33150, respectively.

In the BCT of the AES S-box, all entries for zero input difference (the first
row) and zero output difference (the first column) are ‘256’ owing to the ladder
switch effect (similar to the BCT for the PRESENT S-box in Table 2). For the
other entries, the maximum value of BCT is ‘6’. The number of entries with
‘256’, ‘6’, ‘4’, ‘2’ and ‘0’ are 511, 510, 255, 31620 and 32640, respectively; these
are summarised in Table 3. We also list the analysis of several other S-boxes
having the same DDT structure in Table 3. Those include S-boxes of Camellia
[AIK+00], TWINE [SMMK12], and Lilliput [BFMT16].

Table 3. Number of entries for each value for the DDT and BCT for the S-boxes in
AES, Camellia, TWINE and Lilliput

Cipher Table 256 6 4 2 0

AES
DDT 1 - 255 32130 33150
BCT 511 510 255 31620 32640

Camellia
DDT 1 - 255 32130 33150
BCT 511 510 255 31620 32640

Cipher Table 16 6 4 2 0

TWINE
DDT 1 - 15 90 150
BCT 31 30 15 60 120

Lilliput
DDT 1 - 15 90 150
BCT 31 30 15 60 120

In Table 3, the following two facts deserve careful attention.

• The maximum non-trivial value in the BCT is ‘6’, which is higher than the
one in DDT. It means that for some Δi and Δo = ∇o, generating a right
quartet against an S-box can be easier than satisfying a differential transition
for a pair.

• The number of zero entries in the BCT is smaller than in DDT. This means
that even if DDT for (Δi,Δo) is 0, by setting ∇o = Δo, a right quartet can
be generated with (Δi,∇o).

The mechanisms behind these properties will be explained in the next subsection.

3.2 Increased Probability with Generalized Switching Effect

As shown in Lemma 1, each BCT entry may have a higher value than the
corresponding entry in the DDT. This is caused by a new switching effect, but
can be easily detected by considering the BCT.

Boomerang Connectivity Table: A New Cryptanalysis Tool 693

Let us focus on the DDT entry for (Δi,Δo) whose value is ‘4,’ namely Δi

is propagated to Δo with probability 2−n+2. In this case, there are two paired
values such that the input difference is Δi and the difference after the S-box
is Δo. This situation is illustrated in Fig. 6.

Fig. 6. Generalized switching effect: S-box switch and new switch

Let XDDT (Δi,Δo) and YDDT (Δi,Δo) be a set of paired values satisfying the
differential transition from Δi to Δo.

XDDT(Δi, Δo) � {(a, b) ∈ {0, 1}n × {0, 1}n : S(a) ⊕ S(b) = Δo, a ⊕ b = Δi},

YDDT(Δi, Δo) � {(S(a), S(b)) ∈ {0, 1}n × {0, 1}n : S(a) ⊕ S(b) = Δo, a ⊕ b = Δi}.

In the example in Fig. 6, we have XDDT(Δi,Δo) = {(x1, x2), (x3, x4)} and
YDDT(Δi,Δo) = {(y1, y2), (y3, y4)}.

Recall the strategy of the S-box switch, which sets ∇o = Δo. Then for any
YDDT(Δi,Δo), YDDT ⊕ ∇o = YDDT. Thus after the application of the inverse
S-box, they will map back to XDDT(Δi,Δo). The essence of the S-box switch is
finding a ∇o for which YDDT ⊕ ∇o = YDDT. Our observation of the generalized
switching effect is that from two pairs in YDDT(Δi,Δo), there are three ways to
define such ∇o:

∇o ∈ {y1 ⊕ y2, y1 ⊕ y3, y1 ⊕ y4}. (5)

While one corresponds to the known S-box switch, the other two are new. Those
choices of ∇o are illustrated in Fig. 6.

Thus, one entry of value ‘4’ for Δi in the DDT will increase the value of two
entries in the BCT, namely (Δi, y1 ⊕ y3) and (Δi, y1 ⊕ y4) by 4. Note that the
BCT entry for (Δi, y1 ⊕y2) becomes ‘4’, but the DDT of this entry is already ‘4’
and we do not get an increase by 4. Let ynew ∈ {y3, y4} and 	 be a non-negative
integer. The generalized switching effect can thus be summarised as follows:

DDT for (Δi, y1 ⊕ ynew) is 2	 ⇒ BCT for (Δi, y1 ⊕ ynew) is 2	 + 4.

From the above analysis, we obtain the following lemma about the relation-
ship between the DDT and the BCT of an S-box.

694 C. Cid et al.

Lemma 2. For any fixed Δi, for each entry with ‘4’ in the DDT, the value of
two positions in the BCT will increase by 4.

We omit the proof (it follows from the discussion above). We use instead the
examples below to illustrate the lemma.

Example 1. The row for Δi = 2 in the DDT in Table 1 contains an entry with
‘4.’ This increases two entries of the BCT for Δi = 2. In fact, values for Δo = 3
and Δo = 6 in the BCT increase by 4 from the DDT, while the other non-trivial
entries for Δi = 2 are exactly the same between the DDT and the BCT.

Example 2. The row for Δi = 9 in the DDT in Table 1 contains two entries
with ‘4.’ Values for Δo = 1 and Δo = b in the BCT increase by 4 from the DDT.
The value for Δo = f is affected by both, thus increases by 8 from the DDT. The
other non-trivial entries for Δi = 9 are exactly the same between the DDT and
BCT.

Note that Lemma 2 is about fixed Δi, but considering the symmetry, the same
applies to any fixed ∇o. In this paper, we omit lemmas for fixed ∇o.

For 4-bit S-boxes, we propose a sufficient condition such that the S-box is
free (has probability 1) with non-zero input and output differences using BCT.

Lemma 3. For any 4-bit S-box, if the DDT has a row for some input difference
Δi such that there are 4 entries of ‘4’, then there exists an output difference ∇o,
such that (Δi,∇o) has probability 1 in the boomerang switch of this 4-bit S-box.

Proof. Since the DDT has a row with 4 entries of ‘4’ for some input difference Δi,
we divide the input values into 4 sets Vj = {aj , bj , cj , dj}, s.t. aj ⊕bj = cj ⊕dj =
Δi and S(aj) ⊕ S(bj) = S(cj) ⊕ S(dj) for j = 1, 2, 3, 4. Each Vj corresponds to
a boomerang quartet. Let Tj = {xj , yj , zj , wj} for j = 1, 2, 3, 4 be the sets of
output after S-box corresponding to Vj . Then xj ⊕ yj = zj ⊕ wj = Δo,j holds.
Note that the row for Δi of DDT will have 4 non-zero entries in the columns for
Δo,j for j = 1, 2, 3, 4. We define the 4 sets Dj = {xj ⊕ yj , xj ⊕ zj , xj ⊕ wj} for
j = 1, 2, 3, 4 to store the XOR difference of Tj . Set ∇o = D1∩D2∩D3∩D4. Then
if ∇o �= ∅, (Δi,∇o) generates a quartet with probability 1. In fact, for any input
value x ∈ Vj with difference (Δi,∇o), we can verify that the second pair in the
quartet will be exactly Vj . For example, suppose that the input pair (x, x ⊕ Δi)
is (a1, b1), the output will be (x1, y1). When ∇o is applied, (x1, y1) must be
changed to one of the {(y1, x1), (z1, w1), (w1, z1)}, which will have difference Δi

after inverse S-box.
Then we only need to prove that ∇o �= ∅ under the assumption that the DDT

has 4 entries of ‘4’ for Δi. Here we prove it experimentally as the mathematical
proof is not trivial. While the number of all possible output of 4-bit bijective
S-box is 16!, only those satisfying the condition imposed on Tj need to be checked.
This greatly reduces the search space. We first choose 4 numbers from 0 to 15 as
{x1, y1, z1, w1}. There are Perm(16, 4) = 43680 possible choices. But only 3360
choices satisfy x1 ⊕ y1 = z1 ⊕ w1, which are the valid choices of T1. Similarly
we can generate Tj for j = 2, 3, 4. The total number of valid (T1, ..., T4) is

Boomerang Connectivity Table: A New Cryptanalysis Tool 695

around 230. Then we can compute Dj for j = 1, 2, 3, 4 and verify if ∇o is empty.
It takes less than 1 hour on a desktop to check all possible valid (T1, ..., T4). The
result confirms that ∇o is always non-empty. Therefore, we can conclude that
the (Δi,∇o) has probability 1 with the generalized switching effect. �

Lemma 3 implies that having a row with four entries of ‘4’ in the DDT
may increase the power of the boomerang attack on those designs. This is an
important observation since 4-bit S-boxes are widely used in lightweight designs.

Another observation is that the mechanism of the generalized switching effect
requires the existence of a differential transition through the S-box with proba-
bility 2−n+2 or higher. In other words, the generalized switching effect does not
exist in any 2-uniform DDT, which results in the following lemma.

Lemma 4. For any S-box with 2-uniform DDT, the BCT is the same as the
DDT but for the first row and the first column.

We again omit the proof, and provide several examples.

Example 3. The row for Δi = e in the DDT in Table 1 does not contain any
entries with ‘4.’ All the non-trivial entries for Δi = e are exactly the same
between the DDT and BCT.

Example 4. When n is an odd number, n-bit S-boxes achieving 2-uniformity
can be found easily. An example of such a 3-bit S-box is S(3) =
[1, 7, 6, 3, 0, 2, 5, 4]. The DDT and the BCT of S(3) are shown in Tables 4 and
5, respectively, which clearly shows that besides the ladder switch, no generalized
switching effect is available.

Table 4. 2-uniform DDT of S(3)

Δo

0 1 2 3 4 5 6 7

0 8 0 0 0 0 0 0 0
1 0 2 2 0 0 2 2 0
2 0 0 0 0 2 2 2 2

Δi 3 0 2 2 0 2 0 0 2
4 0 2 0 2 0 2 0 2
5 0 0 2 2 0 0 2 2
6 0 2 0 2 2 0 2 0
7 0 0 2 2 2 2 0 0

Table 5. 2-uniform BCT of S(3)

∇o

0 1 2 3 4 5 6 7

0 8 8 8 8 8 8 8 8
1 8 2 2 0 0 2 2 0
2 8 0 0 0 2 2 2 2

Δi 3 8 2 2 0 2 0 0 2
4 8 2 0 2 0 2 0 2
5 8 0 2 2 0 0 2 2
6 8 2 0 2 2 0 2 0
7 8 0 2 2 2 2 0 0

3.3 Extension of Generalized Switching Effect to General DDT

The analysis in Sect. 3.2 applies only for the DDT whose maximum value is ‘4.’
Although most of the existing S-boxes used in block ciphers were designed to
satisfy this criterion, there has been a recent trend to weaken this criterion in
order to achieve higher efficiency. For example, the 4-bit S-box of GIFT [BPP+17]

696 C. Cid et al.

and the 8-bit S-box of SKINNY [BJK+16] have DDT whose maximum entry is
higher than ‘4.’ Motivated by these designs, we further extend the analysis in
Sect. 3.2 to any 2	-uniform DDT for a non-negative integer 	.

Recall that in the previous section, we explained that from one quartet there
are two new ways to define ∇o such that the BCT entry for (Δi,∇o) is higher
than the corresponding one in the DDT by 4. When the DDT contains an entry of
2	, where 	 ≥ 2, there are 	 paired values that satisfy the differential propagation.
Then,

(
�
2

)
distinct quartets can be constructed from 	 paired values, which is

illustrated in Fig. 7 for 	 = 3.

Fig. 7. Generalization of new switching effect. In total
(
3
2

)
= 3 distinct quartets are

defined: y1y2y3y4 in blue, y1y2y5y6 in yellow, and y3y4y5y6 in green. Each quartet
produces two new ways to define ∇o. (Color figure online)

Each of the
(

�
2

)
quartets gives two new ways to define ∇o such that the BCT

entry for (Δi,∇o) is higher than the DDT by 4. Thus Lemma 2 is generalised
as follows.

Lemma 5. For any fixed Δi, for each entry with ‘2	’ in the DDT, the value of
2 ·

(
�
2

)
non-trivial positions in the BCT increase by 4.

Example 5. A single row Δi = 4 of the DDT and BCT for the GIFT S-box
is shown in Table 6. The DDT contains a single entry of ‘6’ and ‘4’. Lemma 5
can be used to predict the sum of all the entries of the same row in the BCT.
Namely, ‘6’ in the DDT increases the sum in the BCT by 4 · 2 ·

(
3
2

)
= 24 and ‘4’

in the DDT increases the sum in the BCT by 4 ·2 ·
(
2
2

)
= 8. Along with the ladder

switch for the first column, the sum of entries for the BCT should be higher than
the one in the DDT by 48(= 24 + 8 + 16), which matches the actual BCT.

Example 6. Application of Lemma 5 to the 8-bit S-box of SKINNY-128 is dis-
cussed in Appendix A.

Boomerang Connectivity Table: A New Cryptanalysis Tool 697

Table 6. DDT and BCT of the GIFT S-box for Δi = 4

Δo

0 1 2 3 4 5 6 7 8 9 a b c d e f sum
DDT 0 0 0 2 0 4 0 6 0 2 0 0 0 2 0 0 16

BCT 16 4 4 10 4 8 8 6 0 2 0 0 0 2 0 0 64

Lemma 5 shows that the impact from the DDT entry with ‘x’ to the BCT
is large, on the order of x2. Thus block-cipher designers adopting S-boxes with
weak differential resistance need to be careful about how their choice will impact
the corresponding BCT.

4 Applications to Deoxys-BC

In this section, we apply our BCT-based analysis to improve the recently pro-
posed related-tweakey boomerang attacks against Deoxys-BC [CHP+17]. The
specification of Deoxys-BC is briefly given in Sect. 4.1. The improved boomerang
distinguishers are presented in Sect. 4.2, and the results of our experimental
verification are reported in Sect. 4.3.

4.1 Specification

Deoxys-BC is an AES-based tweakable block cipher [JNPS16], which is based on
the TWEAKEY framework [JNP14]. It is the underlying tweakable block cipher of
the Deoxys authenticated encryption scheme submitted to the CAESAR com-
petition (and one of the 15 candidates still being considered in the competition’s
third round). The Deoxys authenticated encryption scheme makes use of two ver-
sions of the cipher as its internal primitive: Deoxys-BC-256 and Deoxys-BC-384.
Hereafter, we mainly focus on the specification of Deoxys-BC-384, which is a tar-
get in this paper. Deoxys-BC is a dedicated 128-bit tweakable block cipher which
besides the two standard inputs, a plaintext P (or a ciphertext C) and a key K,
also takes an additional input called a tweak T . The concatenation of the key and
tweak states is called the tweakey state. For Deoxys-BC-384 the tweakey size is
384 bits. We assume that the reader is familiar with the AES block cipher [Nat01].

The round function of Deoxys-BC is exactly the same as that of the AES,
except that the operation AddRoundKey is renamed as AddRoundTweakey. The
internal state is viewed as a 4 × 4 matrix of bytes, and is updated by applying
the following round function 14 times and 16 times for Deoxys-BC-256 and
Deoxys-BC-384, respectively.

• AddRoundTweakey – XOR the 128-bit round subtweakey to the state.
• SubBytes – Apply the AES S-box S to each byte of the state.
• ShiftRows – Rotate the 4-byte in the i-th row left by i positions.
• MixColumns – Multiply the state by the 4 × 4 MDS matrix of AES.

After the last round, a final AddRoundTweakey operation is performed to produce
the ciphertext.

698 C. Cid et al.

Subtweakeys. The size of tweakey for Deoxys-BC-384 is 384 bits. Those are
separated into three 128-bit words, and loaded into the initial tweakey states
TK1

0 , TK2
0 , and TK3

0 . The 128-bit subtweakey used in the AddRoundTweakey
operation is extracted from three tweakey states as STKi = TK1

i ⊕ TK2
i ⊕

TK3
i ⊕ RCi, where RCi is a round constant. Here, we omit the details of RCi.

Please refer to the original design document [JNPS16] for the exact specification.
In each round, the 128-bit words TK1

i , TK2
i , TK3

i are updated with the
tweakey schedule algorithm, which is defined as

TK1
i+1 = h(TK1

i),

TK2
i+1 = h(LFSR2(TK2

i)),

TK3
i+1 = h(LFSR3(TK3

i)),

where the byte permutation h is
(

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 6 11 12 5 10 15 0 9 14 3 4 13 2 7 8

)
,

with the 16 bytes numbered by the usual AES byte ordering.
The LFSR2 and LFSR3 functions are simply the application of an LFSR to

each on the 16 bytes of a 128-bit tweakey word. The two LFSRs used are given
in Table 7 (x0 stands for the LSB of the cell).

Table 7. The two LFSRs used in Deoxys-BC tweakey schedule

LFSR2 (x7||x6||x5||x4||x3||x2||x1||x0) → (x6||x5||x4||x3||x2||x1||x0||x7 ⊕ x5)

LFSR3 (x7||x6||x5||x4||x3||x2||x1||x0) → (x0 ⊕ x6||x7||x6||x5||x4||x3||x2||x1)

A schematic diagram of the instantiation of the TWEAKEY framework for
Deoxys-BC-384 is shown in Fig. 8.

Fig. 8. A schematic diagram of Deoxys-BC-384 with TWEAKEY framework

Boomerang Connectivity Table: A New Cryptanalysis Tool 699

4.2 Improved 10-Round Boomerang Attack

Cid et al. have recently presented in [CHP+17] several boomerang attacks in the
related-tweakey setting, including 8-round, 9-round and 10-round boomerang
distinguishers against Deoxys-BC-384 having probability 2−6, 2−18, and 2−42,
respectively. They proposed an MILP-based automated search method of differ-
ential characteristics that takes into account linear incompatibility in truncated
differentials and the ladder switch effect in the boomerang attack. Among all the
possible differential characteristics, the authors chose the ones that exploit the
S-box switch effect. Owing to the very detailed and careful optimisation, it
seemed very unlikely that one could improve their proposed boomerang attacks;
in other words, Cid et al. [CHP+17] picked the optimal choice under their
assumptions on the search range.

However, our novel idea to use the BCT in boomerang-style attacks moti-
vated us to improve their attacks by enlarging the search space when taking
into account the generalised switching effect observed in the BCT of the AES
S-box. In particular, their 8-round distinguisher includes only one active S-box
that exploits the S-box switch effect, and hence an improvement by using BCT
should be observed very clearly.

Our Goal. Recall that the maximum differential probability of the AES S-box
is 2−6, which is a reason why the probability of the 8-round distinguisher in
[CHP+17] is 2−6. As shown in Table 3, we observed in the BCT that the max-
imum probability of generating a quartet is 6/256 ≈ 2−5.4 for the AES S-box.
Hence, our goal here is to search for differential characteristics that achieve
the probability of 2−5.4 and experimentally verify the correctness of the theory
explained in Sect. 3.

In our analysis, we noticed that the authors of [CHP+17] interpreted the
byte permutation h in the reverse order, thus their original analysis and results
are in fact for a Deoxys-BC variant. Because our purpose here is demonstrate
the possibility of improving existing attacks by use of the BCT, we analyse the
same Deoxys-BC variant as in [CHP+17].

Searching for Differential Characteristics. We borrow the idea of the dif-
ferential characteristic search proposed in [CHP+17]. Because the main focus of
this paper is the generalised switching effect, we only briefly explain the search
method.

The search in [CHP+17] is a two-stage approach. The first stage is searching
for truncated differentials with the minimum number of active S-boxes using
MILP. At this stage, there is no guarantee that each discovered truncated differ-
entials can be instantiated with actual differences. Here, the authors in [CHP+17]
introduced two levels of tradeoff between the accuracy of truncated differentials
and the assumption of the search range:

1. It only assumed independence between subtweakeys in different rounds, while
the real different tweakeys are linearly related in the real cipher’s algorithm,

700 C. Cid et al.

thus the truncated differentials detected in this approach may contain con-
tradiction (often called “linear incompatibility”).

2. Degrees of freedom (the number of differences that can be chosen indepen-
dently of the other part of the trail) and the number of constraints for a
valid trail (e.g. linear relations between subtweakeys mentioned above) were
counted, and it was assumed that truncated differentials could be instantiated
only if the degrees of freedom were higher than the degrees of consumption.
Instead, truncated differentials that are detected in this way do not include
contradiction about the linear incompatibility.

We refer to [CHP+17] for the exact MILP modelling for searching truncated
differentials.

The second stage is searching for differences satisfying the given active-byte
positions. This is done by listing all linear constraints in the truncated differential
to build a system of linear equations, and by solving the system. We again refer
to [CHP+17] for the exact method for generating the system.

The 10-round boomerang attack against Deoxys-BC-384 uses 5-round differ-
ential characteristics for both E0 and E1. Active byte positions are chosen so
that the ladder switch effect can be optimally exploited in the middle two rounds.
Then the differential value is fixed to one of E0 and E1 and finally the differen-
tial value for the other half is fixed to exploit the S-box switch. The 10-round
distinguisher [CHP+17] is given in Table 8. Cid et al. showed the differential
propagation of E0 in round 6 and of E1 in round 5 to explicitly show that the
ladder switch is applied. Both characteristics activate the S-box at position (1,1)
in round 6 and both characteristics specify the same input and output difference
(from 9e to 68), namely Δo = ∇o, which is the condition to apply the S-box
switch. The S-box is highlighted in red in Table 8. Note that in the DDT of the
AES S-box, 9e propagates to 68 with the highest probability of 2−6.

We now replace the differential characteristic for the attack. Because of the
optimisations done in [CHP+17], we use exactly the same differential character-
istic for E1, and only replace the difference of E0. The characteristic for E1 fixes
the ∇o of the target S-box to 68. We confirmed that there exist two choices of Δi

such that the BCT entry for (Δi, 68) is ‘6.’ Those Δi are 2a and b4. Hence, we
added the linear equation Δi = 2a or Δi = b4 to the system of linear equations
and solved the system to obtain the corresponding characteristics. The obtained
differential characteristic for E0 with Δi = 2a is shown in Table 9.

4.3 Experimental Verification and Summary

As done in [CHP+17], we drop the first round and the last round of the 10-round
boomerang characteristic, which leads to the 8-round boomerang characteristic
only with a single active S-box now with the generalised switching effect. Our
experiments clearly verify this effect.

Let κi, where i ∈ {1, 2, 3, 4}, be a 384-bit master tweakey for the first, second,
third, and fourth oracles, respectively. Our experiments follow the pseudo-code
in Sect. 2. The exact value of the master tweakey difference for E1 denoted
by ∇K is given in [CHP+17, Table 6]. We set N to 215 and the number of

Boomerang Connectivity Table: A New Cryptanalysis Tool 701

Table 8. 10-round distinguisher of Deoxys-BC-384 [CHP+17]. † denotes the probability
of the rounds that are evaluated for the boomerang switch. The probability is counted
in the other half of the characteristic, thus the probability with † can be ignored.

rounds initial Δ tweakey Δ before SB after SR pr

1

00 00 8e 00 00 00 8e 00 00 00 00 00 00 00 00 00

(2−6)2
a3 00 00 10 00 00 00 10 a3 00 00 00 00 00 00 69
9e 00 00 00 9e 00 00 00 00 00 00 00 00 00 00 00
00 8e 00 00 00 8e 00 00 00 00 00 00 00 00 00 00

2

00 00 00 bb 00 00 00 bb 00 00 00 00 00 00 00 00

100 00 00 d2 00 00 00 d2 00 00 00 00 00 00 00 00
00 00 00 69 00 00 00 69 00 00 00 00 00 00 00 00
00 00 00 69 00 00 00 69 00 00 00 00 00 00 00 00

3

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

100 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

4

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

100 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

5

00 00 00 00 69 00 00 00 69 00 00 00 ** 00 00 00

100 00 00 00 00 bb 00 00 00 bb 00 00 ** 00 00 00
00 00 00 00 00 00 d2 00 00 00 d2 00 ** 00 00 00
00 00 00 00 00 00 00 69 00 00 00 69 ** 00 00 00

6

** 00 00 00 00 10 00 00 ** 10 00 00 ** ** 00 00

2−6** 00 00 00 00 9e 00 00 ** 9e 00 00 68 00 00 **
** 00 00 00 00 8e 00 00 ** 8e 00 00 00 00 ** **
** 00 00 00 00 8e 00 00 ** 8e 00 00 00 ** ** 00

5

00 ** ** ** 00 ee 00 00 00 ** ** ** 00 ** ** **

1 †** 00 ** ** 00 00 00 00 ** 00 ** ** 00 ** ** **
** ** 00 ** 00 00 00 00 ** ** 00 ** 00 ** ** **
** ** ** ** 00 00 00 11 ** ** ** 00 00 ** ** **

6

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

2−6 †00 9e 00 00 00 00 00 00 00 9e 00 00 68 00 00 00
00 0a ab 00 00 0a 00 00 00 00 ab 00 01 00 00 00
00 00 93 7a 00 00 93 00 00 00 00 7a b9 00 00 00

7

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

16a 00 00 00 6a 00 00 00 00 00 00 00 00 00 00 00
ba 00 00 00 ba 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

8

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

100 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

9

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

100 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

10

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

(2−12)2
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 6a 00 00 00 6a 00 61 00 00
00 00 00 00 ba 00 00 00 ba 00 00 00 00 97 00 00

attempts satisfying the last equation is counted. The test was iterated for 1,000
randomly chosen tweakeys; the average number of successes was 763. Hence,
the probability of generating a right quartet is 763/215 ≈ 2−5.42, which closely
matches and confirms the generalised switching effect.

702 C. Cid et al.

Table 9. Improved differential characteristic for E0 of Deoxys-BC-384.

rounds initial Δ tweakey Δ before SB after SR pr

1

00 00 15 00 00 00 15 00 00 00 00 00 00 00 00 00

(2−6)2
b3 00 00 3f 00 00 00 3f b3 00 00 00 00 00 00 0e
2a 00 00 00 2a 00 00 00 00 00 00 00 00 00 00 00
00 15 00 00 00 15 00 00 00 00 00 00 00 00 00 00

2

00 00 00 12 00 00 00 12 00 00 00 00 00 00 00 00

100 00 00 1c 00 00 00 1c 00 00 00 00 00 00 00 00
00 00 00 0e 00 00 00 0e 00 00 00 00 00 00 00 00
00 00 00 0e 00 00 00 0e 00 00 00 00 00 00 00 00

3

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

100 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

4

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

100 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

5

00 00 00 00 0e 00 00 00 0e 00 00 00 ** 00 00 00

100 00 00 00 00 12 00 00 00 12 00 00 ** 00 00 00
00 00 00 00 00 00 1c 00 00 00 1c 00 ** 00 00 00
00 00 00 00 00 00 00 0e 00 00 00 0e ** 00 00 00

6

** 00 00 00 00 3f 00 00 ** 3f 00 00 ** ** 00 00

2−5.4** 00 00 00 00 2a 00 00 ** 2a 00 00 68 00 00 **
** 00 00 00 00 15 00 00 ** 15 00 00 00 00 ** **
** 00 00 00 00 15 00 00 ** 15 00 00 00 ** ** 00

Master tweakey differences (ΔK)
00 00 ac 00 00 00 00 f4 58 00 00 00 00 ac 00 00
00 00 66 00 00 00 00 ab cd 00 00 00 00 66 00 00
00 00 df 00 00 00 00 60 bf 00 00 00 00 df 00 00

We also derived the differential characteristic for Δi = b4 and implemented
the 8-round distinguisher for verification. In the experiments, the average number
of successes over 1,000 different choices of keys was 775/215 ≈ 2−5.40, which again
demonstrates the validity of the generalised switching effect.

Thus using the BCT for the AES S-box and the generalised switching effect,
we were able to improve the probability of the boomerang distinguishers against
Deoxys-BC-384 by a factor of 2−0.6; namely to 2−5.4, 2−17.4, and 2−41.4 for 8
rounds, 9 rounds and 10 rounds, respectively. Although the improved factor in
this particular case is small, the relevant point is that the effect of the generalised
switch represented by the BCT could be experimentally verified against the AES
S-box. This indicates that the probability of boomerang distinguishers presented
in previous works, which did not make use of the BCT, is unlikely to be optimal.

5 Applications to SKINNY

In [LGL17] Liu et al. proposed related-tweakey rectangle attacks against the
SKINNY tweakable block cipher. The attacks evaluated the probability of gener-
ating a right quartet by taking into account the amplified probability, but did
not consider the boomerang switch effect. In this section, we accurately evaluate
the probability of generating the right quartet by applying the BCT. By doing

Boomerang Connectivity Table: A New Cryptanalysis Tool 703

so, we detect flaws in the experimentally evaluated probability in [LGL17] and
show that the actual probabilities are higher than reported in [LGL17]. We first
briefly review the specification of SKINNY in Sect. 5.1. The previous distinguishers
and improved probabilities are then presented in Sects. 5.2 and 5.3, respectively.

5.1 Specification of SKINNY-128

SKINNY [BJK+16] is another family of lightweight tweakable block ciphers, based
on the TWEAKEY framework [JNP14], which was introduced by Beierle et al. at
CRYPTO 2016. The block size can be n ∈ {64, 128} and the tweakey size can be
t ∈ {n, 2n, 3n}. The 64-bit block version adopts a nibble-oriented SPN structure
and is called SKINNY-64, while the 128-bit block version adopts a byte-oriented
SPN structure and is called SKINNY-128.

An n-bit plaintext is loaded into the state represented by a 4 × 4-cell array,
and the round function is then applied Nr times, where Nr is 40, 48 and 56 for
n-bit, 2n-bit and 3n-bit tweakeys, respectively.

The round function consists of five operations: SubCells, AddRoundConstant,
AddRoundTweakey, ShiftRowsand MixColumns.

SubCells. A 4-bit (resp. 8-bit) S-box whose maximum differential probability is
2−2 is applied to all cells in SKINNY-64 (resp. SKINNY-128).

AddRoundConstant. A 7-bit constant updated by an LFSR in every round
is added to three cells of the state. Details of the LFSR can be found
in [BJK+16].

AddRoundTweakey. A n/2-bit value is extracted from the n, 2n or 3n-bit tweakey
state, and is XORed to the upper half of the state. We omit the details of the
tweakey schedule.

ShiftRows. Each cell in row j is rotated to the right (i.e. opposite to AES) by j
positions.

MixColumns. Four cells in each column are multiplied by a binary matrix M.
When (i0, i1, i2, i3) is the 4-cell value input to M, the output (o0, o1, o2, o3)
is computed by o0 = i0 ⊕ i2 ⊕ i3, o1 = i0, o2 = i1 ⊕ i2, and o3 = i0 ⊕ i2. This
is illustrated in Fig. 9.

Fig. 9. A schematic representation of MixColumns of SKINNY

704 C. Cid et al.

5.2 Previous Related-Tweakey Rectangle Attacks

Liu et al. [LGL17], among several cryptanalytic results, proposed 17-round, 18-
round, 22-round and 23-round boomerang distinguishers against SKINNY-64-128,
SKINNY-64-192, SKINNY-128-256, and SKINNY-128-384, respectively. The proba-
bilities of those distinguishers are however too small to practically implement the
verification experiments. Instead, the authors of [LGL17] implemented only the
middle two rounds, the last round of E0 and the first round of E1, to experimen-
tally verify that the proposed characteristics did not contain an incompatibility
as pointed out by Murphy [Mur11]. If only the middle two rounds are evaluated,
the probability including the amplified effect is calculated by 2−8.42, 2−16.30,
2−15.98 and 2−19.04 for the above four targets respectively, while their experi-
mental verification implied that the probability should be 2−4.01, 2−7.53, 2−1.86,
and 2−4.89, respectively. Those probabilities are summarised in Table 10.

Table 10. Previous boomerang distinguishers on SKINNY and our correction

Versions (p̂q̂)2 Probability by Experiment Our Corrected Probability
SKINNY-64-128 2−8.42 2−4.01 2−2

SKINNY-64-192 2−16.30 2−7.53 2−5.31

SKINNY-128-256 2−15.98 2−1.86 2−1.86

SKINNY-128-384 2−19.04 2−4.89 0

Liu et al. mentioned in [LGL17] that one reason why the probabilities
observed were higher than expected may be that some active Sboxes can be
“saved”, as the authors of [BK09] explained (the ladder switch and the S-box
switch). They concluded that it is unlikely for the authors to overestimate the
probability of the distinguishers.

This motivates us to apply the generalized switching effect of the BCT to
explain the reasons behind their experimental results, and to improve their p̂2q̂2

probabilities to match the experimentally observed ones. We show that, while
their experimental results cannot be explained only with the ladder switch and
S-box switch from [BK09], they can be explained rigorously by using the BCT
along with the analysis for dependent S-boxes in [CLN+17].1

5.3 Precise Probability Evaluation of Boomerang Distinguishers

To explain the observed probabilities, we will use the attack against SKINNY-64-
128. The last round (round 8) of E0 and the first round (round 9) of E1 are
shown in Fig. 10.
1 Our experiments and theoretical explanation discovered different probabilities from

the experiments by Liu et al. [LGL17]. We contacted the authors and confirmed that
our evaluation is correct.

Boomerang Connectivity Table: A New Cryptanalysis Tool 705

Fig. 10. Two rounds of 18-round distinguishers against SKINNY-64-128. Round 8 is
covered by the characteristic in E0 and round 9 is covered by the characteristic in E1.

E0 starts with three active nibbles with difference 1. Those will change into
some difference in {0, 1}4 denoted by β. Then the difference c is introduced from
the subtweakey difference.

In E1, the differential propagation through the linear computations after the
S-box is established with probability 1, thus omitted from Fig. 10. In the end,
E1 consists only of a single S-box layer. It specifies that there is only one active
S-box in round 9, with the output difference of the S-box 3 and the input differ-
ence that can be some value in {0, 1}4 denoted by γ.

In the straightforward evaluation with amplified probability, p̂ is computed
as

(
4 · (2−2)2

)3 = 2−6, while q̂ is calculated as 2 · (2−2)2 + 4 · (2−3)2 ≈ 2−2.42.
Thus p̂q̂ ≈ 2−8.42 which matches the evaluation by the authors of [LGL17].

A careful analysis shows that the active S-boxes from E0 in round 9 and
the active S-boxes from E1 in round 9 overlap each other in only one byte. E0

specifies that the input difference Δi to the active S-box is β, while E1 specifies
that the output difference ∇o from the S-box is 3. This is exactly the situation
in which the BCT can be applied to evaluate the probability of the active S-box
and the other active S-boxes can be satisfied with probability 1 thanks to the
ladder switch. Hence, we compute the probability of those two rounds as

∑

β∈{0,1}4,β �=0

(TDDT(1, β)
16

)2

· TBCT(β, 3)
16

, (6)

where TDDT(Δi,Δo) and TBCT(Δi,∇o) are the values of the DDT and the BCT
for the input difference Δi and the output difference Δo or ∇o, respectively.
Those values for SKINNY’s 4-bit S-box are summarised below.

706 C. Cid et al.

β 1 2 3 4 5 6 7 8 9 a b c d e f

TDDT(1, β) 0 0 0 0 0 0 0 4 4 4 4 0 0 0 0

TBCT(β, 3) 0 8 0 0 0 2 2 4 4 4 4 0 0 2 2

Hence, the probability can be calculated as 4 · (1/4)2 · (1/4) = 2−4.
The above evaluation using the BCT generally derives an approximated value

under the assumption that the DDT and the BCT in consecutive two rounds
can be evaluated independently. Given that the AddRoundTweakey operation
updates only a half of the state, such an independent assumption cannot be
established and the mechanism behind the experimental result is more complex.

Analysis Including Dependency of Consecutive S-box Applications.
Here, an analysis involving several dependent S-boxes in [CLN+17] can be
applied. By following [CLN+17] we introduce the notation:

XDDT(Δi,Δo) � {x : S(x) ⊕ S(x ⊕ Δi) = Δo},

YDDT(Δi,Δo) � {S(x) : S(x) ⊕ S(x ⊕ Δi) = Δo}.

And similarly for the BCT:

XBCT(Δi,∇o) �{x : S−1(S(x) ⊕ ∇o) ⊕ S−1(S(x ⊕ ∇i) ⊕ ∇o) = Δi},

DXBCT(Δi,∇o) �{x ⊕ S−1(S(x) ⊕ ∇o) :

S−1(S(x) ⊕ ∇o) ⊕ S−1(S(x ⊕ Δi) ⊕ ∇o) = Δi}.

In the first S-box in round 8, the input difference 1 can change into one of
{8, 9, a, b} with equal probability. We first consider the case for 8.

Case 1: 1 → 8.

YDDT(1, 8) = {5, 7, d, f}, XBCT(8, 3) = {4, 6, c, e}, DXBCT(8, 3) = {2}.

After the first S-box application in round 8, the paired values can take {5, 7, d, f}.
They change to {4, 6, c, e} with probability 2−2 after AddRoundTweakey and
MixColumns. Here the source of randomness are subtweakey values xored to 8
nibbles of the state and other nibble values during the MixColumns operation.
Then, after going through the propagation of the BCT with probability 1, the
paired values S−1(C3) and S−1(C4) become 2⊕{4, 6, c, e} = {4, 6, c, e}. This is
a heavily S-box-dependent feature that the set of paired values does not change
after the application of BCT.

During the backward computation for the second pair, ∇o only impacts to
one active nibble value, but as explained above, the set of possible values does
not change. Thus during the inverse of MixColumns, the source of randomness
does not change from the first pair. Hence all the values can return to the paired
values with the same difference as the first pair with probability 1. In summary,
in Case 1 a right quartet is generated with probability 2−2.

Boomerang Connectivity Table: A New Cryptanalysis Tool 707

Other cases. The analysis for the other three cases is similar.

Case 2 : XBCT(9, 3) = {1, 3, 8, a},DXBCT(9, 3) = {b}.
Case 3 : XBCT(a, 3) = {4, 6, c, e},DXBCT(a, 3) = {2}.
Case 4 : XBCT(b, 3) = {1, 3, 8, a},DXBCT(b, 3) = {b}.

Thus, for any β : T (1, β) �= 0, u ∈ XBCT(β, 3) and v ∈ DXBCT(β, 3), the
core property that u ⊕ v ∈ XBCT(β, 3) is established. Hence after falling into
each case, a right quartet is generated with probability 2−2.

Finally, considering that each case occurs with probability 1
4 , the entire prob-

ability of generating a right quartet is 4 · 1
4 · 2−2 = 2−2. We implemented those

two rounds and verified that the results match the above theory.
A similar analysis can be applied to other members of the SKINNY family to

verify the experimental results in Table 10. We omit the details of those evalua-
tion in this paper.

6 Discussion

The paper has so far mainly focused on the use of the BCT to improve previously
proposed boomerang attacks. In this section, we considered further properties
and aspects of the BCT. The hardness of finding S-boxes achieving 4-uniform
BCT is explained in Sect. 6.1. Moreover, the boomerang switch for modular
addition is discussed in Sect. 6.2, where we show that the switching effect is
quite different for that operation.

6.1 Difficulties of Achieving 4-Uniform BCT

If the BCT provides the opportunity for attackers to improve their attack, as
shown earlier in this paper, a natural question is therefore whether it is possi-
ble to find an S-box with minimum boomerang switching effect. As discussed
in Example 4, finding such S-boxes for n-bit to n-bit S-box is easy when n is
odd, while in practice n = 4 and n = 8 are the most popular choices. In par-
ticular, most differentially strong S-boxes are designed to have 4-uniform DDT.
Hence it is interesting to investigate whether 4-uniform DDT and BCT can be
achieved simultaneously. Unfortunately, as we argue below, achieving 4-uniform
BCT appears to be hard, especially as the size of the S-box increases, e.g. 8 bits.

Here, it is assumed that the differential spectrum of an AES-like S-box is
used, i.e. the analysed S-box is an n-bit to n-bit S-box, and for each input and
output difference of its DDT, there exist exactly one entry of ‘4’ and (2n/2) − 2
entries of ‘2.’

As in Lemma 2, each entry of ‘4’ in the DDT increases two positions in the
BCT for the same input or output difference by 4. To generate a 4-uniform
BCT, the increased entries would have to have ‘0’ in the DDT. Assume that the
increased positions are chosen uniformly at random from all but zero. Then, the
probability that the maximum value of the BCT in that row or column is ‘4’ is

2n/2
2n − 1

· 2n/2 − 1
2n − 2

=
2n−2

2n − 1
, (7)

708 C. Cid et al.

where the first term is the probability that the first increased position is chosen
from ‘0’ entries in the DDT, and the second term is for the second increased
position. This must hold for 2n − 1 non-zero input or output differences, thus
the probability is

(2n−2

2n − 1

)2n−1

. (8)

By setting n = 4 and 8, the probabilities that a randomly chosen S-box with
a 4-uniform DDT simultaneously achieves 4-uniform BCT for 4-bit S-box and
8-bit S-box are (4/15)15 ≈ 2−28.6 and (64/255)255 ≈ 2−508.6, respectively.

For n = 4, if we consider the number of all 4-bit S-boxes with the optimal
differential spectrum like the AES S-box, then it is unlikely that we find one
that also achieves a 4-uniform BCT. Regarding n = 8, such an S-box may exist,
but it is computationally hard to search for it.

6.2 Boomerang Switch for Modular Addition

The early analysis in this paper considers the BCT for S-boxes. A natural exten-
sion is to study how to apply a BCT-type analysis to other non-linear operations.
In this section, we consider the boomerang switch for modular addition.

While an S-box is an n-bit to n-bit mapping, modular addition maps 2n-bit
inputs to n-bit outputs. Thus the previous definition of BCT cannot be directly
applied to modular addition, and we need a different way to define the BCT for
modular addition.

Suppose that the target cipher is divided into E0, a middle modular addition
step, and E1. Let ((x1, x

′
1), (x2, x

′
2), (x3, x

′
3), (x4, x

′
4)) be a quartet of modular

addition inputs, and (y1, y2, y3, y4) be the corresponding output quartet. In order
to make the modular addition invertible, one of the addends needs to be fixed.
Here we let x′

i for i = 1, ..., 4 be the fixed addends of the quartet. Thus x′
1 = x′

3

and x′
2 = x′

4. The input difference of modular addition specified by E0 is (Δi,Δ
′
i),

namely x1⊕x2 = x3⊕x4 = Δi and x′
1⊕x′

2 = x′
3⊕x′

4 = Δ′
i. The output difference

specified by E1 is ∇o, namely y1 ⊕ y3 = y2 ⊕ y4 = ∇o. Figure 11 shows a valid
boomerang quartet for modular addition.

Fig. 11. A valid boomerang quartet for modular addition. Note that x′
3 = x′

1, x′
4 = x′

2.

Boomerang Connectivity Table: A New Cryptanalysis Tool 709

The BCT for modular addition counts the number of inputs (xi, x
′
i) such that

the corresponding quartet with input difference (Δi,Δ
′
i) and output difference

∇o is valid. Let ‘�’ denote the modular addition and ‘�’ the modular subtrac-
tion. The BCT for modular addition can then be defined in Eq. (9). Tables 11
and 12 give an example of the DDT and BCT for 3-bit modular addition when
Δi is set to 0.

T (Δi,Δ
′
i,∇o) =#

{
(x, x′) ∈

(
{0, 1}n, {0, 1}n

)
|
(
(x � x′) ⊕ ∇o � x′)

⊕
((

(x ⊕ Δi) � (x′ ⊕ Δ′
i) ⊕ ∇o

)
� (x′ ⊕ Δ′

i)
)

= Δi

}
(9)

Like the BCT for an S-box, it is easy to verify that the BCT for modular
addition has a similar property in representing the ladder switch (see the first
row and the first column in Table 12). Moreover, another interesting property,
which we call most significant bit (MSB) switch, can also be observed for modular
addition.

MSB switch. Suppose the output difference ∇o specified by E1 is on the most
significant bit. Then the modular addition, with probability 1, generates a
right boomerang quartet. This property can be derived by replacing the ‘xor’
of ∇o with ‘modular addition’ in Eq. (9). It can be observed in the column
∇o = 4 in Table 12.

Table 11. DDT of 3-bit modular addi-
tion with Δi = 0

Δo

0 1 2 3 4 5 6 7

0 64 0 0 0 0 0 0 0
1 0 32 0 16 0 0 0 16
2 0 0 32 0 0 0 32 0

Δ′
i 3 0 16 0 16 0 16 0 16
4 0 0 0 0 64 0 0 0
5 0 0 0 16 0 32 0 16
6 0 0 32 0 0 0 32 0
7 0 16 0 16 0 16 0 16

Table 12. BCT of 3-bit modular addi-
tion with Δi = 0

∇o

0 1 2 3 4 5 6 7

0 64 64 64 64 64 64 64 64
1 64 0 32 0 64 0 32 0
2 64 64 0 0 64 64 0 0

Δ′
i 3 64 0 32 0 64 0 32 0
4 64 64 64 64 64 64 64 64
5 64 0 32 0 64 0 32 0
6 64 64 0 0 64 64 0 0
7 64 0 32 0 64 0 32 0

On the other hand, the S-box switch does not work for modular addition. We
can observe that in Table 11 the entry (1, 1) is 32 while the corresponding entry
in Table 12 is 0, which contradicts the result of S-box switch (Lemma 1).

710 C. Cid et al.

The reason is that in the S-box switch, when the first pair of values are
(x1, x2), the condition ∇o = Δo implies the S-box output (y1, y2) are swapped
to (y2, y1). The paired output (y2, y1) are exactly the input of the inverse S-box
to compute the second pair. However, for the modular addition with first pair
of input ((x1, x

′
1), (x2, x

′
2)), although the output of modular addition (y1, y2) are

swapped to (y2, y1) under the condition ∇o = Δo, the values x′
1 and x′

2 are
not swapped. Thus, ((y2, x′

1), (y1, x
′
2)) will be the input of the inverse modular

addition. Since y2 and x′
1 are not related, the original input difference is not

guaranteed by the S-box switch.

Applications in Actual Ciphers. The analysis in Fig. 11 can be directly
applied to particular differential trails in ARX ciphers. As an example, we show
the application in the SPECK32/64 cipher [BSS+13], in which the internal state
in round i is composed of two 16-bit words li−1 and ri−1 and the round function
updates those values as li ← (li−1 ≫ 7) � ri−1 ⊕ ki and ri ← (ri−1 ≪ 2) ⊕ li.
Then, the above BCT corresponds to the probability of the modular addition in
a single round of SPECK with Δli−1 = 0, Δri−1 = Δ′

i, and Δli = ∇o (as shown
in Fig. 12). Note that the ladder switch can be applied to the right word as long
as active bit positions in Δri−1 ≪ 2 and Δri ⊕ Δli do not overlap.

Fig. 12. Application of BCT for SPECK

For example, with Δri−1 = 8000 and with any choice of Δli and Δri such
that (Δli ⊕ Δri) ∧ 0002 = 0, the MSB switch is applied to the modular addi-
tion and the ladder switch is applied to the right word. Hence, the probabil-
ity r for one middle round is 1. Similarly, incompatible choices of (Δri−1,Δli)
with respect to the modular addition can be easily checked by using the
BCT.

Boomerang Connectivity Table: A New Cryptanalysis Tool 711

7 Concluding Remarks

In this paper, we introduced the BCT as a generalised method to analyse the
dependency of two differential characteristics in boomerang distinguishers. The
BCT includes the existing observations of incompatibility between two charac-
teristics, as well as the ladder switch and the S-box switch. Moreover, the BCT
offers stronger switching effect than previous ones, and we analysed the mecha-
nism why such an effect is generated. The larger the bias in the DDT becomes,
the more advantages the BCT provides. Future primitive designers who wish to
adopt differentially weak S-boxes should take into account the impact of their
choices on the BCT.

The effect of the BCT-based analysis was demonstrated by improving the
boomerang attacks against Deoxys-BC and by precisely evaluating the probabil-
ity of previous boomerang distinguishers against SKINNY.

We also discussed the issue of searching for S-boxes having good BCT, and
showed that the S-boxes having 2-uniform DDT always have 2-uniform BCT,
while S-boxes having 4-uniform DDT usually cannot ensure 4-uniform BCT.
Lastly, we extended the analysis to modular addition along with an application
to SPECK, and explained the different behaviours between the BCT for a S-box
and the BCT for the modular addition.

Acknowledgements. We thank the anonymous reviewers for their valuable com-
ments. We also thank attendees of the 2018 Dagstuhl seminar for Symmetric Cryp-
tography, who provided us with various comments. The last author is supported by
the Fundamental Theory and Cutting Edge Technology Research Program of Institute
of Information Engineering, CAS (Grant No. Y7Z0341103), Youth Innovation Promo-
tion Association CAS and the National Natural Science Foundation of China (Grants
No. 61472415, 61732021 and 61772519). We also thank the ASK2016 organisers for
providing us an opportunity for the initial discussion.

References

[AIK+00] Aoki, K., Ichikawa, T., Kanda, M., Matsui, M., Moriai, S., Nakajima, J.,
Tokita, T.: Camellia: a 128-bit block cipher suitable for multiple platforms
— design and analysis. In: Stinson, D.R., Tavares, S. (eds.) SAC 2000.
LNCS, vol. 2012, pp. 39–56. Springer, Heidelberg (2001). https://doi.org/
10.1007/3-540-44983-3 4

[BCD03] Biryukov, A., De Cannière, C., Dellkrantz, G.: Cryptanalysis of Safer++.
In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 195–211. Springer,
Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4 12

[BDK01] Biham, E., Dunkelman, O., Keller, N.: The rectangle attack—rectangling
the serpent. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045,
pp. 340–357. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-
44987-6 21

https://doi.org/10.1007/3-540-44983-3_4
https://doi.org/10.1007/3-540-44983-3_4
https://doi.org/10.1007/978-3-540-45146-4_12
https://doi.org/10.1007/3-540-44987-6_21
https://doi.org/10.1007/3-540-44987-6_21

712 C. Cid et al.

[BDK02] Biham, E., Dunkelman, O., Keller, N.: New results on boomerang and
rectangle attacks. In: Daemen, J., Rijmen, V. (eds.) FSE 2002. LNCS,
vol. 2365, pp. 1–16. Springer, Heidelberg (2002). https://doi.org/10.1007/
3-540-45661-9 1

[BDK05] Biham, E., Dunkelman, O., Keller, N.: Related-key boomerang and rect-
angle attacks. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol.
3494, pp. 507–525. Springer, Heidelberg (2005). https://doi.org/10.1007/
11426639 30

[BFMT16] Berger, T.P., Francq, J., Minier, M., Thomas, G.: Extended generalized
feistel networks using matrix representation to propose a new lightweight
block cipher: Lilliput. IEEE Trans. Comput. 65(7), 2074–2089 (2016)

[BJK+16] Beierle, C., Jean, J., Kölbl, S., Leander, G., Moradi, A., Peyrin, T., Sasaki,
Y., Sasdrich, P., Sim, S.M.: The SKINNY family of block ciphers and its low-
latency variant MANTIS. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016.
LNCS, vol. 9815, pp. 123–153. Springer, Heidelberg (2016). https://doi.
org/10.1007/978-3-662-53008-5 5

[BK09] Biryukov, A., Khovratovich, D.: Related-key cryptanalysis of the full AES-
192 and AES-256. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol.
5912, pp. 1–18. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-10366-7 1

[BKL+07] Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A.,
Robshaw, M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: an ultra-
lightweight block cipher. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007.
LNCS, vol. 4727, pp. 450–466. Springer, Heidelberg (2007). https://doi.
org/10.1007/978-3-540-74735-2 31

[BPP+17] Banik, S., Pandey, S.K., Peyrin, T., Sasaki, Y., Sim, S.M., Todo, Y.: GIFT:
A small present - towards reaching the limit of lightweight encryption.
Cryptology ePrint Archive, Report 2017/622 (2017)

[BS93] Biham, E., Shamir, A.: Differential Cryptanalysis of the Data Encryp-
tion Standard. Springer, New York (1993). https://doi.org/10.1007/978-1-
4613-9314-6

[BSS+13] Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers,
L.: The simon and speck families of lightweight block ciphers. Cryptology
ePrint Archive, Report 2013/404 (2013)

[CHP+17] Cid, C., Huang, T., Peyrin, T., Sasaki, Y., Song, L.: A security analysis of
deoxys and its internal tweakable block ciphers. IACR Trans. Symmetric
Cryptol. 2017(3), 73–107 (2017)

[CLN+17] Canteaut, A., Lambooij, E., Neves, S., Rasoolzadeh, S., Sasaki, Y., Stevens,
M.: Refined probability of differential characteristics including dependency
between multiple rounds. IACR Trans. Symmetric Cryptol. 2017(2), 203–
227 (2017)

[DKS10] Dunkelman, O., Keller, N., Shamir, A.: A practical-time related-key attack
on the KASUMI cryptosystem used in GSM and 3G telephony. In: Rabin,
T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 393–410. Springer, Heidel-
berg (2010). https://doi.org/10.1007/978-3-642-14623-7 21

[DKS14] Dunkelman, O., Keller, N., Shamir, A.: A practical-time related-key attack
on the KASUMI cryptosystem used in GSM and 3G telephony. J. Cryp-
tology 27(4), 824–849 (2014)

https://doi.org/10.1007/3-540-45661-9_1
https://doi.org/10.1007/3-540-45661-9_1
https://doi.org/10.1007/11426639_30
https://doi.org/10.1007/11426639_30
https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.1007/978-3-642-10366-7_1
https://doi.org/10.1007/978-3-642-10366-7_1
https://doi.org/10.1007/978-3-540-74735-2_31
https://doi.org/10.1007/978-3-540-74735-2_31
https://doi.org/10.1007/978-1-4613-9314-6
https://doi.org/10.1007/978-1-4613-9314-6
https://doi.org/10.1007/978-3-642-14623-7_21

Boomerang Connectivity Table: A New Cryptanalysis Tool 713

[GPPR11] Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.: The LED block cipher.
In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp.
326–341. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-
23951-9 22

[JNP14] Jean, J., Nikolić, I., Peyrin, T.: Tweaks and keys for block ciphers: the
TWEAKEY framework. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014.
LNCS, vol. 8874, pp. 274–288. Springer, Heidelberg (2014). https://doi.
org/10.1007/978-3-662-45608-8 15

[JNPS16] Jean, J., Nikolić, I., Peyrin, T., Seurin, Y.: Deoxys v1.41. Submitted to
CAESAR, October 2016

[KHP+12] Kim, J., Hong, S., Preneel, B., Biham, E., Dunkelman, O., Keller, N.:
Related-key boomerang and rectangle attacks: theory and experimental
analysis. IEEE Trans. Inf. Theor. 58(7), 4948–4966 (2012)

[KKS00] Kelsey, J., Kohno, T., Schneier, B.: Amplified boomerang attacks against
reduced-round MARS and serpent. In: Goos, G., Hartmanis, J., van
Leeuwen, J., Schneier, B. (eds.) FSE 2000. LNCS, vol. 1978, pp. 75–93.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44706-7 6

[LGL17] Liu, G., Ghosh, M., Ling, S.: Security analysis of SKINNY under related-
tweakey settings (long paper). IACR Trans. Symmetric Cryptol. 2017(3),
37–72 (2017)

[Mur11] Murphy, S.: The return of the cryptographic boomerang. IEEE Trans. Inf.
Theor. 57(4), 2517–2521 (2011)

[Nat01] National Institute of Standards and Technology. Federal Information Pro-
cessing Standards Publication 197: Advanced Encryption Standard (AES).
NIST, November 2001

[SMMK12] Suzaki, T., Minematsu, K., Morioka, S., Kobayashi, E.: TWINE : a
lightweight block cipher for multiple platforms. In: Knudsen, L.R., Wu,
H. (eds.) SAC 2012. LNCS, vol. 7707, pp. 339–354. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-35999-6 22

[Wag99] Wagner, D.: The boomerang attack. In: Knudsen, L. (ed.) FSE 1999.
LNCS, vol. 1636, pp. 156–170. Springer, Heidelberg (1999). https://doi.
org/10.1007/3-540-48519-8 12

A Demonstration of Lemma 5 for SKINNY-128

The size of the DDT for the 8-bit S-box of SKINNY-128 is 256× 256. Each entry
can take one of 13 different values but for 0 and 256: 2, 4, 6, 8, 12, 16, 20, 24, 28,
32, 40, 48 and 64. Hence, the impact to the BCT is much bigger than for many
other S-boxes, making it a good target for verifying the correctness of Lemma 5.

Each row of Table 13 shows the number of entries with the designated value
in the DDT. For example, when Δi = 01, there are 6, 3 and 1 entries that take
16, 32 and 64, respectively. The column of “sum” shows the sum of the values of
the BCT entries that were computed experimentally. The column of “Lemma 5”
shows that value calculated by applying Lemma 5. Due to the limited space we
only list the data for Δi = 1 to 100.

As in Table 13, for any Δi, the relationships between the DDT and the BCT
are correctly simulated by Lemma 5.

https://doi.org/10.1007/978-3-642-23951-9_22
https://doi.org/10.1007/978-3-642-23951-9_22
https://doi.org/10.1007/978-3-662-45608-8_15
https://doi.org/10.1007/978-3-662-45608-8_15
https://doi.org/10.1007/3-540-44706-7_6
https://doi.org/10.1007/978-3-642-35999-6_22
https://doi.org/10.1007/3-540-48519-8_12
https://doi.org/10.1007/3-540-48519-8_12

714 C. Cid et al.

Table 13. Relationships between the DDT and the BCT simulated by Lemma 5

Δi 2 4 6 8 12 16 20 24 28 32 40 48 64 sum Lem. 5 Δi 2 4 6 8 12 16 20 24 28 32 40 48 64 sum Lem. 5
01 0 0 0 0 0 6 0 0 0 3 0 0 1 8704 8704 33 0 24 0 14 0 3 0 0 0 0 0 0 0 2048 2048
02 0 0 0 0 0 0 0 0 0 4 0 0 2 12288 12288 34 0 16 0 16 0 4 0 0 0 0 0 0 0 2304 2304
03 0 0 0 18 0 5 0 0 0 1 0 0 0 3456 3456 35 0 0 0 16 0 8 0 0 0 0 0 0 0 3072 3072
04 0 0 0 12 0 2 0 0 0 2 0 0 1 7424 7424 36 0 24 0 14 0 3 0 0 0 0 0 0 0 2048 2048
05 0 0 0 0 0 8 0 0 0 2 0 0 1 8192 8192 37 0 32 0 16 0 0 0 0 0 0 0 0 0 1536 1536
06 0 0 0 6 0 7 0 0 0 3 0 0 0 5248 5248 38 0 12 0 10 0 8 0 0 0 0 0 0 0 2880 2880
07 0 0 0 12 0 6 0 0 0 2 0 0 0 4352 4352 39 0 12 0 10 0 8 0 0 0 0 0 0 0 2880 2880
08 0 0 0 6 0 3 0 0 0 3 0 0 1 8320 8320 3a 0 12 0 16 0 1 0 0 0 2 0 0 0 3520 3520
09 0 0 0 6 0 3 0 0 0 3 0 0 1 8320 8320 3b 0 12 0 14 0 4 0 0 0 1 0 0 0 3136 3136
0a 0 0 0 12 0 2 0 0 0 2 0 0 1 7424 7424 3c 16 16 0 20 0 0 0 0 0 0 0 0 0 1600 1600
0b 0 0 0 6 0 9 0 0 0 2 0 0 0 4736 4736 3d 16 16 0 20 0 0 0 0 0 0 0 0 0 1600 1600
0c 0 12 0 12 0 5 0 0 0 1 0 0 0 3264 3264 3e 16 32 0 4 0 4 0 0 0 0 0 0 0 1856 1856
0d 0 12 0 12 0 5 0 0 0 1 0 0 0 3264 3264 3f 16 32 0 4 0 4 0 0 0 0 0 0 0 1856 1856
0e 0 12 0 12 0 5 0 0 0 1 0 0 0 3264 3264 40 0 0 0 4 0 4 0 0 0 3 0 0 1 8448 8448
0f 0 12 0 12 0 5 0 0 0 1 0 0 0 3264 3264 41 0 8 0 16 0 6 0 0 0 0 0 0 0 2688 2688
10 0 0 0 0 0 4 0 0 0 2 0 0 2 11264 11264 42 0 8 0 8 0 5 0 0 0 1 0 1 0 5248 5248
11 0 0 0 12 0 6 0 0 0 2 0 0 0 4352 4352 43 16 27 0 11 1 1 0 0 0 0 0 0 0 1600 1600
12 0 0 0 16 0 8 0 0 0 0 0 0 0 3072 3072 44 0 27 0 9 1 2 0 0 0 1 0 0 0 2688 2688
13 0 24 0 14 0 3 0 0 0 0 0 0 0 2048 2048 45 0 16 0 16 0 2 0 0 0 1 0 0 0 2816 2816
14 0 16 0 16 0 4 0 0 0 0 0 0 0 2304 2304 46 16 20 0 11 0 2 0 1 0 0 0 0 0 2176 2176
15 0 0 0 16 0 8 0 0 0 0 0 0 0 3072 3072 47 16 23 0 10 1 1 0 1 0 0 0 0 0 2048 2048
16 0 24 0 14 0 3 0 0 0 0 0 0 0 2048 2048 48 8 20 0 14 0 3 0 0 0 0 0 0 0 2016 2016
17 0 32 0 16 0 0 0 0 0 0 0 0 0 1536 1536 49 8 20 0 14 0 3 0 0 0 0 0 0 0 2016 2016
18 0 12 0 14 0 2 0 0 0 2 0 0 0 3648 3648 4a 8 15 0 13 1 4 0 0 0 0 0 0 0 2272 2272
19 0 12 0 14 0 2 0 0 0 2 0 0 0 3648 3648 4b 8 20 0 11 0 1 0 1 0 1 0 0 0 2912 2912
1a 0 12 0 12 0 7 0 0 0 0 0 0 0 2752 2752 4c 35 22 1 8 1 1 0 0 0 0 0 0 0 1440 1440
1b 0 12 0 10 0 8 0 0 0 0 0 0 0 2880 2880 4d 35 22 1 8 1 1 0 0 0 0 0 0 0 1440 1440
1c 16 32 0 4 0 4 0 0 0 0 0 0 0 1856 1856 4e 27 30 1 6 1 1 0 0 0 0 0 0 0 1408 1408
1d 16 32 0 4 0 4 0 0 0 0 0 0 0 1856 1856 4f 27 30 1 6 1 1 0 0 0 0 0 0 0 1408 1408
1e 16 16 0 20 0 0 0 0 0 0 0 0 0 1600 1600 50 0 0 0 4 0 4 0 0 0 3 0 0 1 8448 8448
1f 16 16 0 20 0 0 0 0 0 0 0 0 0 1600 1600 51 0 8 0 16 0 6 0 0 0 0 0 0 0 2688 2688
20 0 0 0 0 0 0 0 0 0 4 0 0 2 12288 12288 52 0 8 0 8 0 5 0 0 0 1 0 1 0 5248 5248
21 0 0 0 0 0 6 0 0 0 3 0 0 1 8704 8704 53 16 27 0 11 1 1 0 0 0 0 0 0 0 1600 1600
22 0 0 0 0 0 16 0 0 0 0 0 0 0 4096 4096 54 0 27 0 9 1 2 0 0 0 1 0 0 0 2688 2688
23 0 0 0 18 0 5 0 0 0 1 0 0 0 3456 3456 55 0 16 0 16 0 2 0 0 0 1 0 0 0 2816 2816
24 0 0 0 12 0 10 0 0 0 0 0 0 0 3328 3328 56 16 20 0 11 0 2 0 1 0 0 0 0 0 2176 2176
25 0 0 0 8 0 10 0 0 0 1 0 0 0 4096 4096 57 16 23 0 10 1 1 0 1 0 0 0 0 0 2048 2048
26 0 0 0 22 0 3 0 0 0 1 0 0 0 3200 3200 58 8 20 0 14 0 3 0 0 0 0 0 0 0 2016 2016
27 0 0 0 28 0 2 0 0 0 0 0 0 0 2304 2304 59 8 20 0 14 0 3 0 0 0 0 0 0 0 2016 2016
28 0 0 0 18 0 5 0 0 0 1 0 0 0 3456 3456 5a 8 15 0 13 1 4 0 0 0 0 0 0 0 2272 2272
29 0 0 0 18 0 5 0 0 0 1 0 0 0 3456 3456 5b 8 20 0 11 0 1 0 1 0 1 0 0 0 2912 2912
2a 0 0 0 24 0 4 0 0 0 0 0 0 0 2560 2560 5c 35 22 1 8 1 1 0 0 0 0 0 0 0 1440 1440
2b 0 0 0 18 0 5 0 0 0 1 0 0 0 3456 3456 5d 35 22 1 8 1 1 0 0 0 0 0 0 0 1440 1440
2c 0 28 0 16 0 1 0 0 0 0 0 0 0 1728 1728 5e 27 30 1 6 1 1 0 0 0 0 0 0 0 1408 1408
2d 0 28 0 16 0 1 0 0 0 0 0 0 0 1728 1728 5f 27 30 1 6 1 1 0 0 0 0 0 0 0 1408 1408
2e 0 28 0 16 0 1 0 0 0 0 0 0 0 1728 1728 60 0 0 0 4 0 8 0 0 0 3 0 0 0 5376 5376
2f 0 28 0 16 0 1 0 0 0 0 0 0 0 1728 1728 61 0 8 0 16 0 6 0 0 0 0 0 0 0 2688 2688
30 0 0 0 0 0 4 0 0 0 2 0 0 2 11264 11264 62 0 8 0 16 0 6 0 0 0 0 0 0 0 2688 2688
31 0 0 0 12 0 6 0 0 0 2 0 0 0 4352 4352 63 16 27 0 11 1 1 0 0 0 0 0 0 0 1600 1600
32 0 0 0 16 0 8 0 0 0 0 0 0 0 3072 3072 64 0 27 0 17 1 0 0 0 0 0 0 0 0 1664 1664

Correlation Cube Attacks:
From Weak-Key Distinguisher

to Key Recovery

Meicheng Liu(B), Jingchun Yang, Wenhao Wang, and Dongdai Lin

State Key Laboratory of Information Security, Institute of Information Engineering,
Chinese Academy of Sciences, Beijing 100093, People’s Republic of China

meicheng.liu@gmail.com

Abstract. In this paper, we describe a new variant of cube attacks called
correlation cube attack. The new attack recovers the secret key of a cryp-
tosystem by exploiting conditional correlation properties between the
superpoly of a cube and a specific set of low-degree polynomials that we
call a basis, which satisfies that the superpoly is a zero constant when all
the polynomials in the basis are zeros. We present a detailed procedure of
correlation cube attack for the general case, including how to find a basis
of the superpoly of a given cube. One of the most significant advantages
of this new analysis technique over other variants of cube attacks is that it
converts from a weak-key distinguisher to a key recovery attack.

As an illustration, we apply the attack to round-reduced variants of
the stream cipher Trivium. Based on the tool of numeric mapping intro-
duced by Liu at CRYPTO 2017, we develop a specific technique to effi-
ciently find a basis of the superpoly of a given cube as well as a large set
of potentially good cubes used in the attack on Trivium variants, and
further set up deterministic or probabilistic equations on the key bits
according to the conditional correlation properties between the super-
polys of the cubes and their bases. For a variant when the number of
initialization rounds is reduced from 1152 to 805, we can recover about
7-bit key information on average with time complexity 244, using 245

keystream bits and preprocessing time 251. For a variant of Trivium
reduced to 835 rounds, we can recover about 5-bit key information on
average with the same complexity. All the attacks are practical and fully
verified by experiments. To the best of our knowledge, they are thus far
the best known key recovery attacks for these variants of Trivium, and
this is the first time that a weak-key distinguisher on Trivium stream
cipher can be converted to a key recovery attack.

Keywords: Cryptanalysis · Cube attack · Numeric mapping
Stream cipher · Trivium

This work was supported by the National Natural Science Foundation of China
(Grant No. 61672516), the Strategic Priority Research Program of the Chinese
Academy of Sciences (Grant No. XDA06010701), and the Fundamental Theory and
Cutting Edge Technology Research Program of Institute of Information Engineering,
CAS (Grant No. Y7Z0331102).

c© International Association for Cryptologic Research 2018
J. B. Nielsen and V. Rijmen (Eds.): EUROCRYPT 2018, LNCS 10821, pp. 715–744, 2018.
https://doi.org/10.1007/978-3-319-78375-8_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78375-8_23&domain=pdf

716 M. Liu et al.

1 Introduction

In recent years, cube attacks [11] and their variants [2,12,18] have been
proven powerful in the security analysis of symmetric cryptosystems, such as
Trivium [2,8,11,15], Grain-128 [9,12,16] and Keccak sponge function
[3,10,18], producing the best cryptanalytic results for these primitives
up to the present. Cube attacks were introduced by Dinur and Shamir at
EUROCRYPT 2009 [11]. They are a generalization of chosen IV statistical
attacks on stream ciphers [13,14,27], as well as an extension of higher order
differential cryptanalysis [21] and AIDA [32]. The attacks treat a cryptosystem
as a black-box polynomial. An attacker evaluates the sum of the output of poly-
nomials system with a fixed private key over a subset of public variables, called a
cube, in the hope of finding a linear coefficient of the term with maximum degree
over the cube, referred to as a superpoly. The basic idea of cube attacks is that
the symbolic sum of all the derived polynomials obtained from the black-box
polynomial by assigning all the possible values to the cube variables is exactly
the superpoly of the cube. The target of cube attacks is to find a number of
linear superpolys on the secret variables and recover the secret information by
solving a system of linear equations. In [11], the techniques was applied to a
practical full key recovery on a variant of Trivium reduced to 767 rounds.

Since the seminal work of Dinur and Shamir, several variants of cube attacks
have been proposed, including cube testers [2], dynamic cube attacks [12] and
conditional cube attacks [18]. A cube tester [2] can detect the nonrandomness in
cryptographic primitives by extracting the testable properties of the superpoly,
such as unbalance, constantness and low degree, with the help of property testers.
However a cube tester does not directly lead to key recovery attacks. Dynamic
cube attacks [12] improve upon cube testers by introducing dynamic variables.
When a set of conditions involving both the key bits and the dynamic variables
are satisfied, the intermediate polynomials can be simplified, and cube testers
(with assigned values to satisfy the conditions) are used to extract the nonran-
domness of the cipher output. In this respect, a system of equations in the key
bits and the dynamic variables are established. The discovery of the conditions
mostly attributes to the manual work of analyzing the targeted cipher structure.
Conditional cube attacks [18] work by introducing conditional cube variables and
imposing conditions to restrain the propagation of conditional cube variables.
Similar to dynamic cube attacks, the conditions used in conditional cube attacks
are required to be dependent on both public bits and secret bits.

A key step to a successful cube-like attack is the search of good cubes and the
corresponding superpolys during a precomputation phase. When such cubes are
found, the attacker simply establishes and solves a polynomial system regarding
the private key during the online phase. When cube attacks were first introduced
in [11], the cryptosystems were regarded as black-box, and the authors used
random walk to search for cubes experimentally. As the sum over a cube of
size d involves 2d evaluations under the fixed key, the search of cubes is time-
consuming and the size of the cube is typically around 30, which restricts the
capability of the attacker for better cubes. In [1] Aumasson et al. proposed an

Correlation Cube Attacks: From Weak-Key Distinguisher to Key Recovery 717

evolutionary algorithm to search for good cubes. Greedy bit set algorithm was
applied by Stankovski in [28] to finding cubes in distinguishers of stream ciphers.
The authors of [15] and [23] both used the union of two subcubes to generate
larger cube candidates. With the improved cubes of size between 34 and 37, a
key recovery attack on Trivium reduced to 799 rounds [15] and a distinguisher
on Trivium reduced to 839 rounds [23] are proposed.

Recently two works on cube attacks using large cubes of size greater than
50 were presented at CRYPTO 2017. Both of them treat the cryptosystems as
non-blackbox polynomials. The one by Todo et al. [30] uses the propagation of
the bit-based division property (see also [29,31]) of stream ciphers, and presents
possible key recovery attacks on 832-round Trivium, 183-round Grain-128a and
704-round ACORN with the cubes of sizes 72, 92 and 64 respectively. The other
one by Liu [22] uses numeric mapping to iteratively obtain the upper bound
on the algebraic degree of an NFSR-based cryptosystem. Based on the tool
of numeric mapping, cube testers are found for 842-round Trivium, 872-round
Kreyvium, 1035-round TriviA-SC (v1) and 1047-round TriviA-SC (v2) with
the cubes of sizes 37, 61, 63 and 61 resepectively [22].

Our Contributions. In this paper, we propose a new variant of cube attacks,
named correlation cube attack. The general idea of this new attack is to exploit
conditional correlation properties between the superpoly of a cube and a specific
set of low-degree polynomials that we call a basis. The basis satisfies that the
superpoly is a zero constant when all the polynomials in the basis are zeros. If
the basis involves secret bits and has non-zero correlation with the superpoly,
we can recover the secret information by solving probabilistic equations.

The attack consists of two phases: the preprocessing phase and online phase.
The preprocessing phase tries to find a basis of a superpoly and its conditional
correlation properties with the superpoly. The online phase targets at recovering
the key by setting up and solving systems of probabilistic equations. We give a
detailed procedure of both phases for the general case, including how to find a
basis of the superpoly of a given cube.

As an illustration, we apply the attack to two reduced variants of the well-
known stream cipher Trivium [8], and obtain the best known key recovery
results for these variants. Trivium uses an 80-bit key and an 80-bit initial
value (IV). We present two attacks for a variant of Trivium when the num-
ber of initialization rounds is reduced from 1152 to 805. The first attack recovers
about 7 equations on the key bits by 24 trials on average, i.e., 3-bit key informa-
tion, using 237-bit operations and 237-bit data, at the expense of preprocessing
time 247. In the second attack, we can recover about 14 equations on the key bits
by 27 trials on average, i.e., 7-bit key information, with time complexity 244 and
245 keystream bits, at the expense of preprocessing time 251. For a variant of
Trivium reduced to 835 rounds, we can recover about 11 equations by 26 trials
on average with the same complexity, that is, we can recover about 5-bit key
information on average. The equations we recovered are linear or quadratic, and
the quadratic ones can be easily linearized after guessing a few bits of the key.

718 M. Liu et al.

All the attacks are directly valid for more than 30% of the keys in our experi-
ments, and it also works for most of the other keys at the cost of recovering less
key information.

Our results are summarized in Table 1 with the comparisons of the previous
key recovery attacks on Trivium. In this table, by “Time” we mean the time
complexity of a full key recovery. The attack time 299.5 [24] of the full cipher is
measured by bit operations, while the others are measured by cipher operations.
The previous best known practical partial key recovery is applicable to a variant
of Trivium reduced to 799 rounds, proposed by Fouque and Vannet [15]. The
previous best known impractical (and possible) partial key recovery that is faster
than an exhaustive search is applicable to a variant of Trivium reduced to 832
rounds, presented by Todo et al. [30]. This was shown by recovering the superpoly
of a cube of size 72 with preprocessing time 277. It is possible to extract at most
one key bit expression (if the superpoly depends on the key). At the same time,
it is also possible that it is a distinguisher rather than a key recovery (when
the superpoly does not depend on the key). In this paper, we convert from a
practical weak-key distinguisher to a practical partial key recovery attack, which
is applicable to a variant of Trivium reduced to 835 rounds.

Table 1. Key recovery attacks on round-reduced Trivium

#Rounds Preproc Data Time Ref

576 - 212 233 [32]

672 - 215 255 [14]

735 - 229 230 [11]

767 - 234 236 [11]

784 - 239 238 [15]

799 - 240 262 [15]

805 247 237 277 Section 4.3

805 251 244 273 Section 4.5

832 277 272 N.A [30]

835 251 244 275 Section 4.4

Full - 261.5 299.5 [24]

Full - - 280 Brute Force

The first and most critical steps in our attack are how to find good cubes and
their bases. Benefited from the tool of numeric mapping [22], one can evaluate
an upper bound on the algebraic degree of internal state of Trivium in linear
running time. Based on this tool, we specialize the techniques to efficiently find
a basis of the superpoly of a given cube as well as a large set of potentially good
cubes. After this, we evaluate the conditional probability Pr(g = 0|fc(key, ·) ≡ 0)
and Pr(g = 1|fc(key, ·) �≡ 0) for a random fixed key, where g is a function

Correlation Cube Attacks: From Weak-Key Distinguisher to Key Recovery 719

depending on key bits in the basis of the superpoly fc of a cube c and fc(key, ·)
denotes the function fc restricted at a fixed key. Finally, we record all the equa-
tions with high probability, and use them to recover the key. In the attacks,
we use up to 54 cubes of sizes 28, 36 or 37. While we have found a thousand
potentially favorite cubes with sizes 36 and 37 for Trivium reduced to from 833
to 841 rounds, we can only make use of a small number of them in our attacks
due to a limited computation resource.

Besides, we also partially apply our techniques to the stream ciphers TriviA-
SC [5,6] and Kreyvium [4]. We have found some cubes whose superpolys after
1047 and 852 rounds have a low-degree basis with a few elements for TriviA-SC
and Kreyvium respectively. The cubes for TriviA-SC have size larger than 60,
and for Kreyvium the size is at least 54. Though we are unable to fully verify
the validity of the attack on TriviA-SC and Kreyvium, we believe that there
is a high chance of validness due to their similar structures with Trivium.

Related Work. Similar to dynamic cube attacks and conditional cube attacks,
correlation cube attacks recover the key by exploiting cube testers with con-
straints. Dynamic cube attacks [9,12] was applied to the full Grain-128 [16],
while conditional cube attacks [18] was applied to round-reduced variants of
Keccak sponge function [3]. Unlike these attacks, however, the new attacks
do not require the conditions to be dependent on public bits. The conditions
imposed on conditional cube variables in conditional cube attacks also form a
basis of the superpoly of a cube. Therefore, correlation cube attacks can be
considered as a generalization of conditional cube attacks.

Actually, the idea of assigning (dynamic) constraints to public variables and
using them to recover key bits was earlier appeared in conditional differential
attacks, which was introduced by Knellwolf, Meier and Naya-Plasencia at ASI-
ACRYPT 2010 [19]. The authors classified the conditions into three types:

– Type 0 conditions only involve public bits;
– Type 1 conditions involve both public bits and secret bits;
– Type 2 conditions only involve secret bits.

They exploited type 2 conditions to derive key recovery attacks based on hypoth-
esis tests, as well as type 1 conditions to recover the key in another different way.
This technique was applied to reduced variants of a few ciphers, including Grain-
v1 [17], Grain-128 [16] and the block cipher family KATAN/KTANTAN [7].
Correlation cube attacks also exploit type 1 and type 2 conditions to derive key
recovery attacks, while the underlying idea is very different from the work of [19].
Our techniques for finding a basis of the superpoly of a cube are more related to
the automatic strategies for analyzing the conditions of higher order derivatives
[20], which were exploited to derive weak-key distinguishing attacks on reduced
variants of Trivium. Nevertheless, the ideas are still different, and our strategies
are more customized and suitable for key recovery attacks.

720 M. Liu et al.

Organization. The rest of this paper is structured as follows. In Sect. 2, the
basic definitions, notations, and background are provided. Section 3 shows the
general framework of correlation cube attack, while its applications to Trivium
are given in Sect. 4. Section 5 concludes the paper.

2 Preliminaries

Boolean Functions and Algebraic Degree. Let F2 denote the binary field
and F

n
2 the n-dimensional vector space over F2. An n-variable Boolean function

is a mapping from F
n
2 into F2. Denote by Bn the set of all n-variable Boolean

functions. An n-variable Boolean function f can be uniquely represented as a
multivariate polynomial over F2,

f(x1, x2, · · · , xn) =
⊕

c=(c1,··· ,cn)∈Fn
2

ac

n∏

i=1

xci
i , ac ∈ F2,

called the algebraic normal form (ANF). The algebraic degree of f , denoted by
deg(f), is defined as max{wt(c) | ac �= 0}, where wt(c) is the Hamming weight of c.

Decomposition and Basis of Boolean Functions. Given a Boolean function
f , we call f =

⊕u
i=1 gi ·fi a decomposition of f , and G = {g1, g2, · · · , gu} a basis

of f . It is clear that g =
∏u

i=1(gi + 1) is an annihilator of f , that is, g · f = 0.

Cube Attacks and Cube Testers. Given a Boolean function f and a term
tI containing variables from an index subset I that are multiplied together, the
function can be written as the sum of terms which are supersets of I and terms
that miss at least one variable from I,

f(x1, x2, · · · , xn) = fS(I) · tI ⊕ q(x1, x2, · · · , xn),

where fS(I) is called the superpoly of I in f . The basic idea of cube attacks
[11] and cube testers [2] is that the symbolic sum of all the derived polynomials
obtained from the function f by assigning all the possible values to the subset of
variables in the term tI is exactly fS(I). The target of cube attacks is finding a
set of linear (or low-degree) functions fS ’s on the secret key and recovering the
key by solving this linear (or low-degree) system. Cube testers work by evaluating
superpolys of carefully selected terms tI ’s which are products of public variables
(e.g., IV bits), and trying to distinguish them from a random function. Especially,
the superpoly fS(I) is equal to a zero constant, if the algebraic degree of f in
the variables from I is smaller than the size of I.

NumericMapping. Let f(x) =
⊕

c=(c1,··· ,cn)∈Fn
2

ac

∏n
i=1 xci

i be a Boolean func-
tion on n variables. The numeric mapping [22], denoted by DEG, is defined as

DEG : Bn × Z
n → Z,

(f,D) �→ max
ac �=0

{
n∑

i=1

cidi},

Correlation Cube Attacks: From Weak-Key Distinguisher to Key Recovery 721

where D = (d1, d2, · · · , dn) and ac’s are coefficients of the ANF of f . Let
gi(1 ≤ i ≤ m) be Boolean functions on m variables, and denote deg(G) =
(deg(g1),deg(g2), · · · ,deg(gn)) for G = (g1, g2, · · · , gn). The numeric degree of
the composite function h = f ◦G is defined as DEG(f,deg(G)), denoted by DEG(h)
for short. The algebraic degree of h is always less than or equal to the numeric
degree of h. The algebraic degrees of the output bits and the internal states
can be estimated iteratively for NFSR-based cryptosystems by using numeric
mapping [22].

3 Correlation Cube Attacks

In this section, we propose a new model for cube attacks, called correlation
cube attack. It is a hybrid of correlation attacks [25] and cube attacks [11]. The
attacked cryptosystem is supposed to be a modern symmetric-key cryptosystem.
The general idea is to find a low-degree decomposition of the superpoly over a
given cube, evaluate the correlation relations between the low-degree basis and
the superpoly, and recover the key by solving systems of probabilistic equations.
The low-degree decomposition is based on an upper bound on the algebraic
degree and determines whether the superpoly is a zero constant when imposing
some conditions.

The attack consists of two phases, the preprocessing phase and online phase.
The preprocessing phase tries to find a basis of a superpoly and its correlation
properties with the superpoly. The online phase targets at recovering the key by
setting up and solving systems of probabilistic equations. In the following, we
will give the details of the attack.

3.1 Preprocessing Phase

The procedure of preprocessing phase of the attack is depicted as Algorithm 1.
In this phase, we can choose the input to the cipher, including the secret and
public bits. First we generate a set of cubes which are potentially good in the
attacks. Then for each cube c, we use a procedure Decomposition to find a low-
degree basis of the superpoly fc of c in the output bits of the cipher. The details
of this procedure will be discussed later. If a basis of fc is found, we calculate
the conditional probability Pr(g = b|fc) for each function g in the basis. More
exactly, we compute the values of the superpoly fc by choosing random keys
and random values of free non-cube public bits, and evaluate the conditional
probability Pr(g = 0|fc(key, ·) ≡ 0) and Pr(g = 1|fc(key, ·) �≡ 0) for a random
key, where fc(key, ·) denotes the function fc restricted at a fixed key. Finally,
we record the set of (c, g, b) that satisfies Pr(g = b|fc) > p, i.e.,

Ω = {(c, g, b)|Pr(g = b|fc) > p}.

Note that if g depends on both key bits and public bits, the attack will
become more efficient, at least not worse, than the case that g depends only

722 M. Liu et al.

on key bits (which can naturally be used to mount weak-key distinguishing
attacks). A distinguishing attack is a much weaker attack compared to a key
recovery attack, while a weak-key distinguishing attack is even weaker than
a normal distinguishing attack. To illustrate how to convert from a weak-key
distinguishing attack to a key recovery attack, we assume the weak case: g only
depends on key bits (if not, we can set the public bits in g to constants).

Algorithm 1. Correlation Cube Attacks (Preprocessing Phase)
1: Generate a cube set C;
2: For each cube c in C do:
3: Qc ← Decomposition(c), and goto next c if Qc is empty; /* try to find a

basis of the superpoly fc of c in the output bits of the cipher */

4: Estimate the conditional probability Pr(g = b|fc) for each function g in the
basis Qc of the superpoly fc, and select (c, g, b) that satisfies Pr(g = b|fc) > p.

Example 1. Given a Boolean polynomial f on five public variables v =
(v1, v2, v3, v4, v5) and five secret variables x = (x1, x2, x3, x4, x5),

f(v, x) = f7(v5, x)v1v2v3v4 + f6(v5, x)v1v2v4
+ f5(v5, x)v2v3v4 + f4(v5, x)v1v4
+ f3(v5, x)v2v4 + f2(v5, x)v3
+ f1(v5, x)v4 + f0(v5, x)

and
f7(v5, x) = h1(v5, x2, x3, x4, x5)x1 + h2(v5, x1, x2, x3, x4)x5,

where h1, h2 and fi(0 ≤ i ≤ 6) are arbitrary Boolean functions. We can build
a weak-key cube tester for the polynomial f , by using the cube {v1, v2, v3, v4}
under the conditions x1 = x5 = 0, while it seems to be immune to cube or
dynamic cube attacks. To convert from a weak-key cube tester to a key recovery,
we test the correlation properties between the superpoly f7 and its basis {x1, x5}.
We observe the values of f7(v5, x) for v5 = 0, 1, and estimate the conditional
probability

Pr(xi = 0|f7(0, x) = f7(1, x) = 0)

and
Pr(xi = 1|f7(0, x) �= 0 or f7(1, x) �= 0)

for i = 1, 5. Noting that (x1 + 1)(x5 + 1)f7 = 0, we also have

(x1 + 1)(x5 + 1) = 0 if f7(0, x) �= 0 or f7(1, x) �= 0.

This allows us to derive information regarding the secret key.

Correlation Cube Attacks: From Weak-Key Distinguisher to Key Recovery 723

Now we explain how to find a basis of the superpoly fc for a given cube c. The
procedure Decomposition is described in Algorithm 2. The main idea is to make
use of the coefficients Qt of the terms with maximum degree on cube variables in
the bits st of the internal state at the first rounds of the attacked cipher (t ≤ N0).
Note that it is highly possible that fc depends on these coefficients. To find a set
Q such that fc =

⊕
g∈Q g · fg, we first annihilate all the coefficients in Qt with

1 �∈ Qt for all t ≤ N0, and then determine whether fc is a zero constant. Once
we detect that the algebraic degree of an output bit on cube variables is less
than the size of c, which implies fc = 0, we obtain a basis Q =

⋃
t≤N0|1 �∈Qt

Qt

for fc. Then we minimize the number of elements in Q by removing redundant
equations one by one. Finally, the procedure returns the minimum basis Q.

Algorithm 2. Decomposition
Require: a cube c of size n
1: Set Q to the empty set and X to the variable set {xi|i ∈ c};

/∗ find a basis Q ∗/

2: For t from 0 to N0 do:

3: Compute the ANF of st and set dt = deg(st, X);
4: Set Qt to the set of the coefficients of all the terms with degree dt in the

ANF of st;

5: If dt ≥ 1 and 1 �∈ Qt, then set Q = Q ∪ Qt and dt = deg(s′
t, X), where s′

t is
the function formed by removing all the terms with degree dt from st;

6: Given {dt} and under the conditions that g = 0 for each g ∈ Q, find an upper
bound d(Q) on the degree of the N -round output bit;

7: If d(Q) ≥ n, then return ∅;
/∗ minimize the basis Q ∗/

8: Minimize N0 such that d(Q) < n, and generate a new Q;
9: For each g in Q do:

10: Set Q′ = Q \ {g};

11: For t ≤ N0, if zero(Q′) ⊆ zero(Qt) then set dt = deg(s′
t, X), otherwise set

dt = deg(st, X), where zero(Q) is the solution set of {g = 0|g ∈ Q};
12: If d(Q′) < n, then set Q = Q′;
13: return Q.

For explanation of Algorithm 2, we give an example on a nonlinear feedback
shift register (NFSR) in the following.

Example 2. Let st = st−6st−7 + st−8 be the update function of an NFSR with
size 8. Let (s0, s1, · · · , s7) = (x1, x2, x3, x4, v1, v2, v3, 0), and X = {v1, v2, v3} be
the cube variables. Taking t = 10 for example, we compute s10 = s4s3 + s2 =
v1x4 + x3, then have d10 = 1, Q10 = {x4} and s′

10 = x3. Since 1 �∈ Q10, we set
Q = Q ∪ Q10 and d10 = 0. After computations for t ≤ N0 = 17, we obtain

Q = Q10 ∪ Q16 ∪ Q17 = {x4, x2x4 + x3x4, x3 + x4},

(d0, d1, · · · , d17) = (0, 0, 0, 0, 1, 1, 1,−∞, 0, 0, 0, 2, 2, 1, 1, 0, 0, 1).

724 M. Liu et al.

For N = 29, we find an upper bound d(Q) = 2 on the algebraic degree of sN

by applying the numeric mapping. We can check that 17 is the minimum N0 such
that d(Q) < n = 3. After minimizing the basis Q, we obtain Q = {x4, x3 + x4}.

Actually, the ANF of s29 is v1v2v3(x2x3x4 + x1x3 + x1x4 + x2x4)
+v1v3(x2x3x4 +x1x4)+v3(x2x3x4 +x1x2)+v2, and the coefficient of the maxi-
mum term v1v2v3 is fc = x2x3x4+x1x3+x1x4+x2x4, which will be annihilated
when x4 = x3 + x4 = 0. We can see that Q is a basis of the superpoly fc.

Complexity. It is hard to evaluate the complexity of the step for generating
good cubes. How to find favorite cubes is still an intractable problem in cube
attacks. The time complexity of Decomposition is TN0 + nQ · TN , where nQ is
the size of the primary basis

⋃
t≤N0|1 �∈Qt

Qt, TN0 is the time for computing this
basis (Line 2–5 in Algorithm 2), and TN is the time complexity of finding an
upper bound on the algebraic degree of the N -round output bits. The estimation
of the conditional probability Pr(g = b|fc) for a cube c of size n needs about
α · 2n cipher encryption operations, when using α values of fc in the estimation.
The total time complexity of preprocessing phase is thus about

nC(TN0 + nQ · TN + α · 2n),

where nC is the number of cubes in C, not taking into account the time for
generating the cube set C.

3.2 Online Phase

The procedure of online phase of the attack is depicted in Algorithm3. In the
online phase, the key is unknown, and we can only control the public bits. We
first derive two sets of probabilistic equations according to the ciphertexts (or
keystream bits), and then repeatedly solve a system consisting of a part of these
equations until the correct key is found. In preprocessing phase, we have obtained
a set Ω of (c, g, b) that satisfies Pr(g = b|fc) > p. In online phase, for each cube
c, we test whether its superpoly fc is a zero constant by computing α values of fc

over the cube with different non-cube public bits. If fc is not a zero constant, we
derive new equations g = 1 with (c, g, 1) ∈ Ω; otherwise, we record the equations
g = 0 with (c, g, 0) ∈ Ω. After all the cubes are handled, we derive two sets of
equations, G0 = {g = 0|(c, g, 0) ∈ Ω, fc = 0} and G1 = {g = 1|(c, g, 1) ∈ Ω, fc �=
0}. For the case that {g|g = 0 ∈ G0 and g = 1 ∈ G1} is not empty, we can use
the one with higher probability between g = 0 and g = 1 or neither of them.
We then randomly choose r0 equations from G0 and r1 equations from G1, solve
these r0 + r1 equations and check whether the solutions are correct. Repeat this
step until the correct key is found.

Complexity. The loop for deriving the equation sets G0 and G1 requires at
most nCα2n bit operations, where nC is the number of cubes in C. Step 7 runs
in time 2�key−(r0+r1), where �key is the size of the key, when the equations are

Correlation Cube Attacks: From Weak-Key Distinguisher to Key Recovery 725

Algorithm 3. Correlation Cube Attacks (Online Phase)
Require: a cube set C and Ω = {(c, g, b)| Pr(g = b|fc) > p}
1: Set G0 and G1 to empty sets;
2: For each cube c in C do:
3: Randomly generate α values from free non-cube public bits, and request

α2n keystream bits (or ciphertexts) corresponding to the cube c of size n and
these non-cube public values;

4: Compute the α values of the superpoly fc over the cube c;
5: If all the values of fc equal 0, then set G0 = G0 ∪ {g = 0|(c, g, 0) ∈ Ω},

otherwise set G1 = G1 ∪ {g = 1|(c, g, 1) ∈ Ω};
6: Deal with the case that {g|g = 0 ∈ G0 and g = 1 ∈ G1} is not empty;
7: Randomly choose r0 equations from G0 and r1 equations from G1, solve these

r0 + r1 equations and check whether the solutions are correct;
8: Repeat Step 7 if none of the solutions is correct.

balanced and easy to be solved. We can estimate the probability q > p(r0+r1)

that a trial successes, so the expected number of trials is q−1 < p−(r0+r1). Here
we require that the total number of equations in G0 and G1 is greater than
p−(r0+r1). The expected time of online phase is thus less than

nCα2n + p−(r0+r1)2�key−(r0+r1).

3.3 Discussion

The crux point of the attack is finding a low-degree basis of the superpoly over
a given cube, that is, finding Q with low degree such that

fc =
⊕

g∈Q

g · fg.

Theoretical Bound on the Probability. We first discuss the conditional
probability Pr(g = 1|fc �= 0), i.e., for the case that fc is not a zero constant
for a fixed key. For any x such that fc(x) �= 0, there is at least one g such that
g(x) = 1, that is,

∏
g∈Q(g(x)+ 1) = 0. Specially, if Q contains only one function

g, then g(x) = 1 holds with probability 1. If Q contains two functions g1 and g2,
then we have g1(x) = 1 or g2(x) = 1, and thus at least one of them holds with
probability ≥ 2

3 . Generally, if Q contains nQ functions, then there is at least one
g(x) = 1 that holds with probability ≥ 2nQ−1

2nQ−1
, under the condition fc �= 0.

The conditional probability p0 = Pr(g = 0|fc = 0) can be computed
according to p1 = Pr(g = 1|fc �= 0) and the probability γ that fc �= 0, i.e.,
p0 =

1
2−(1−p1)γ

1−γ .
When the upper bound d(Q) on algebraic degree of fc restricted to {g =

0|g ∈ Q} is tight in Algorithm 2, we expect that fg is not a zero constant for
g ∈ Q. If all the functions fg’s depend on the free non-cube bits, then fc is

726 M. Liu et al.

a zero constant for a fixed key if and only if g = 0 holds with probability 1
(or close to 1) for all g ∈ Q.

Assuming that the event of (g, f1) and the event of (g, f2) are statistically
independent, we have

Pr(g = b|f1, f2) =
Pr(g = b, f1, f2)

Pr(g = b, f1, f2) + Pr(g = b + 1, f1, f2)

=
Pr(g = b, f1) Pr(g = b, f2)

Pr(g = b, f1) Pr(g = b, f2) + Pr(g = b + 1, f1) Pr(g = b + 1, f2)

=
Pr(g = b|f1) Pr(g = b|f2)

Pr(g = b|f1) Pr(g = b|f2) + Pr(g = b + 1|f1) Pr(g = b + 1|f2) .

Denote by ε1 and ε2 the correlation coefficients of g = b given f1 and f2 respec-
tively, i.e., Pr(g = b|fi) = 1

2 (1 + εi) for i = 1, 2. Then

ε =
ε1 + ε2
1 + ε1ε2

is the correlation coefficient of the event that g = b given both f1 and f2.
Specially, if ε1 and ε2 have the same sign, then

|ε| = | ε1 + ε2
1 + ε1ε2

| ≥ max{|ε1|, |ε2|}.

Our experiments on Trivium show that the assumption is reasonable. In
fact, we do not expect that the assumption is perfectly true. The independence
assumption is used to guarantee a bound on correlation coefficient. We believe
the bound is sound, at least for the case that the correlations have the same
sign, even if the assumption is not true in general.

Modifications of the Attack. We may slightly modify the online phase of
the attack if necessary. As mentioned above, for the case that fc is not a zero
constant for a fixed key, we have

∏
g∈Q(g(x) + 1) = 0. We may make use of

this kind of equations at Step 7 in Algorithm 3. Another modification is to use
two different threshold probabilities separately for the equation sets G0 and G1

rather than the same one p.

4 Applications to Trivium Stream Cipher

In this section, we first give a brief description of the stream cipher Trivium [8],
as well as recall the technique for estimating the degree of Trivium based on
numeric mapping, and then apply the correlation cube attack to two variants of
Trivium when the number of initialization rounds is reduced from 1152 to 805
and 835. At the end of this section, we will discuss the possible improvements,
and partially apply our analysis techniques to the stream ciphers TriviA-SC
[5,6] and Kreyvium [4].

Correlation Cube Attacks: From Weak-Key Distinguisher to Key Recovery 727

4.1 Description of Trivium

A Brief Description of Trivium-Like Ciphers. Let A, B and C be three
registers with sizes of nA, nB and nC , denoted by At, Bt and Ct their corre-
sponding states at clock t,

At = (xt, xt−1, · · · , xt−nA+1), (1)
Bt = (yt, yt−1, · · · , yt−nB+1), (2)
Ct = (zt, zt−1, · · · , zt−nC+1), (3)

and respectively updated by the following three quadratic functions,

xt = zt−rC
· zt−rC+1 + �A(s(t−1)), (4)

yt = xt−rA
· xt−rA+1 + �B(s(t−1)), (5)

zt = yt−rB
· yt−rB+1 + �C(s(t−1)), (6)

where 1 ≤ rλ < nλ for λ ∈ {A,B,C} and �A, �B and �C are linear functions. We
denote At[i] = xi, Bt[i] = yi and Ct[i] = zi, and define g

(t)
A = zt−rC

· zt−rC+1,
g
(t)
B = xt−rA

·xt−rA+1 and g
(t)
C = yt−rB

· yt−rB+1. The internal state, denoted by
s(t) at clock t, consists of the three registers A,B,C, that is, s(t) = (At, Bt, Ct).
Let f be the output function. After an initialization of N rounds, in which the
internal state is updated for N times, the cipher generates a keystream bit by
f(s(t)) for each t ≥ N .

The stream ciphers Trivium (designed by De Cannière and Preneel [8]) and
TriviA-SC (designed by Chakraborti et al. [5,6]) exactly fall into this kind of
ciphers. Kreyvium [4] is a variant of Trivium with 128-bit security, designed by
Canteaut et al. at FSE 2016 for efficient homomorphic-ciphertext compression.
Compared with Trivium, Kreyvium uses two extra registers (K∗, V ∗) without
updating but shifting, i.e., s(t) = (At, Bt, Ct,K

∗, V ∗), and add a single bit of
(K∗, V ∗) to each of �A and �B , where K∗ and V ∗ only involve the key bits and
IV bits respectively. Trivium uses an 80-bit key and an 80-bit initial value (IV),
while Kreyvium and TriviA-SC both use a 128-bit key and a 128-bit IV. All
these ciphers have 1152 rounds.

A Brief Description of Trivium. Trivium contains a 288-bit internal state
with three NFSRs of different lengths. The key stream generation consists of
an iterative process which extracts the values of 15 specific state bits and uses
them both to update 3 bits of the state and to compute 1 bit of key stream. The
algorithm is initialized by loading an 80-bit key and an 80-bit IV into the 288-bit
initial state, and setting all remaining bits to 0, except for three bits. Then, the
state is updated for 4 × 288 = 1152 rounds, in the same way as explained above,
but without generating key stream bits. This is summarized in the pseudo-code
below.

728 M. Liu et al.

(x0, x−1, · · · , x−92) ← (k0, k1, · · · , k79, 0, · · · , 0)
(y0, y−1, · · · , y−83) ← (iv0, iv1, · · · , iv79, 0, · · · , 0)
(z0, z−1, · · · , z−110) ← (0, · · · , 0, 1, 1, 1)
for i from 1 to N do

xi = zi−66 + zi−111 + zi−110 · zi−109 + xi−69

yi = xi−66 + xi−93 + xi−92 · xi−91 + yi−78

zi = yi−69 + yi−84 + yi−83 · yi−82 + zi−87

if N > 1152 then

ksi−1152 = zi−66 + zi−111 + xi−66 + xi−93 + yi−69 + yi−84

end if

end for

4.2 Degree Estimation of TRIVIUM

In this section, we recall the algorithm proposed by Liu [22] for estimating alge-
braic degree of the output of f after N rounds for a Trivium-like cipher, as
described in Algorithm 4.

This algorithm first computes the exact algebraic degrees of the internal
states for the first N0 rounds, where the degrees of the functions g

(t)
A , g

(t)
B and g

(t)
C

are also recorded, then iteratively compute D(t) for t = N0+1, N0+2, · · · , N , and
finally apply the numeric mapping to calculate an estimated degree for the first
bit of the keystream. In Algorithm 4, three sequences, denoted by dA, dB and dC ,
are used to record the estimated degrees of the three registers A,B,C. In each
step of a Trivium-like cipher, three bits are updated. Accordingly, the estimated
degrees for these three bits in each step t are calculated, denoted by d

(t)
A , d

(t)
B

and d
(t)
C . Then update D(t) from D(t−1). For estimating the algebraic degrees of

xt, yt, zt, the two procedures DegMul∗ and DEG deal with their “quadratic” and
“linear” parts separately. The procedure DegMul∗ is used to compute an upper
bound on the algebraic degree of g

(t)
A = zt−rC

· zt−rC+1, g
(t)
B = xt−rA

· xt−rA+1

and g
(t)
C = yt−rB

·yt−rB+1. It has been demonstrated in [22] that for all t with 1 ≤
t ≤ N the estimated degrees d

(t)
A , d

(t)
B , d

(t)
C for xt, yt, zt are greater than or equal

to their corresponding algebraic degrees, and therefore the output DEG(f,D(N))
of Algorithm 4 gives an upper bound on algebraic degree of the N -round output
bit of a Trivium-like cipher.

The algorithm has a linear time and space complexity on N , if we do not
take into account the time and memory used for computing the exact algebraic
degrees of the internal states for the first N0 rounds.

Correlation Cube Attacks: From Weak-Key Distinguisher to Key Recovery 729

4.3 The Attack on 805-Round Trivium

Generating a Candidate Set of Favorite Cubes. A favorite cube of size
37 was found in [22] for distinguishing attacks on Trivium. We exhaustively
search the subcubes with size 28 of this cube, and pick up the subcubes such
that the corresponding superpolys after 790 rounds are zero constants (i.e., the
output bits after 790 rounds do not achieve maximum algebraic degree over the
subcube variables), by using Algorithm 4 with N0 = 0. Then we find 5444 such
subcubes.

Algorithm 4. Estimation of Degree of Trivium-Like Ciphers [22]
Require: Given the ANFs of all internal states (At, Bt, Ct) with t ≤ N0, and

the set of variables X.
1: For λ in {A, B, C} do:
2: For t from 1 − nλ to 0 do:
3: d

(t)
λ ← deg(λ0[t], X); // Ai[t] = xt, Bi[t] = yt and Ci[t] = zt

4: D(0) ← (d
(1−nA)
A , · · · , d

(0)
A , d

(1−nB)
B , · · · , d

(0)
B , d

(1−nC)
C , · · · , d

(0)
C);

/* Compute the exact algebraic degrees of the internal states

for the first N0 rounds */

5: For t from 1 to N0 do:
6: For λ in {A, B, C} do:

7: dm
(t)
λ ← deg(g

(t)
λ , X);

8: d
(t)
λ ← deg(λt[t], X);

9: D(t) ← (d
(t−nA+1)
A , · · · , d

(t)
A , d

(t−nB+1)
B , · · · , d

(t)
B , d

(t−nC+1)
C , · · · , d

(t)
C);

/* Iteratively compute the upper bounds on algebraic degrees of

the internal states for the remaining rounds */

10: For t from N0 + 1 to N do:
11: For λ in {A, B, C} do:

12: dm
(t)
λ ← DegMul∗(g(t)

λ);

13: d
(t)
λ ← max{dm

(t)
λ , DEG(�λ, D(t−1))};

14: D(t) ← (d
(t−nA+1)
A , · · · , d

(t)
A , d

(t−nB+1)
B , · · · , d

(t)
B , d

(t−nC+1)
C , · · · , d

(t)
C);

15: return DEG(f, D(N)).

/* Description of the procedure DegMul∗(g(t)
λ) for λ ∈ {A, B, C} */

procedure DegMul∗(g(t)
λ)

16: t1 ← t − rρ(λ); // ρ(A) = C, ρ(C) = B, ρ(B) = A
17: If t1 ≤ 0 then:

return d
(t1)
ρ(λ) + d

(t1+1)

ρ(λ) .
18: t2 ← t1 − rρ2(λ);

19: d1 ← min{d
(t2)

ρ2(λ)
+ dm

(t1+1)

ρ(λ) , d
(t2+2)

ρ2(λ)
+ dm

(t1)
ρ(λ), d

(t2)

ρ2(λ)
+ d

(t2+1)

ρ2(λ)
+ d

(t2+2)

ρ2(λ)
};

20: d2 ← DEG(�ρ(λ), D
(t1)) + dm

(t1)
ρ(λ);

21: d3 ← DEG(�ρ(λ), D
(t1−1)) + d

(t1+1)

ρ(λ) ;

22: d ← max{d1, d2, d3};
23: return d.

end procedure

730 M. Liu et al.

Finding the Basis and Free Non-cube IV Bits. We apply the procedure
Decomposition to each cube c from the 5444 candidates, setting all the non-
cube IV bits to zeros. Note here that we use Algorithm 4 in the procedure
Decomposition to find an upper bound d(Q) on the algebraic degree. Once a
non-trivial basis of fc is found, we set one of the non-cube IV bits to a parameter
variable, and apply Decomposition again. This bit is considered as a free IV bit
if it does not affect the basis, and otherwise we set it to 0. Then we add another
non-cube IV bit to be a parameter variable, and do this again. By this way, we
obtain a set of free non-cube IV bits.

Using this method, we get 47 cubes of size 28 satisfying that a basis of the
superpoly after 805 rounds can be found. To make the attack more efficient,
we further search the cubes whose superpolys after 805 rounds have a basis
containing at most two elements. Once such cubes are found, we modify them
by randomly shifting and changing some indexes, and test them by the same
method. After computations within a dozen hours on a desktop computer, we
are able to find more than 100 cubes whose superpolys after 805 rounds have a
basis with one or two elements.

Computing the Probability. We test 32 out of these cubes, each of which has
a different basis after 805 rounds, according to Step 4 of Algorithm 1. In each
test, we compute the values of the superpoly fc for 1000 random keys and at
most α = 16 non-cube IVs for each key, and evaluate the conditional probability
Pr(g = 0|fc(key, ·) ≡ 0) and Pr(g = 1|fc(key, ·) �≡ 0) for a random fixed key,
where g is a function depending on key bits in the basis of fc and fc(key, ·)
denotes the function fc restricted at a fixed key. Our experiment shows that all
the computations need about 13.5 · 1000 · 32 · 228 ≈ 247 cipher operations. We
remind the readers that, in our experiment, we take all the possible values of
the first log2(α) = 4 free non-cube IV bits and set random values for the other
free non-cube IV bits. Once we observe a non-zero value of the superpoly fc, we
skip the remaining IVs and continue to compute for the next key. On average,
we need to compute 13.5 IVs for each key.

The results are listed in Table 3 in Appendix, together with the cubes, free
non-cube IV bits and the equations. Note that 4 out of the 32 cubes are excluded
from the table due to their little impact in our attack. In Table 3, by p(0|0)
(resp., p(1|1)) we mean the conditional probability of g = 0 (resp., g = 1)
when the superpoly fc is a zero constant (resp., not a zero constant) for a
fixed key, by pfc �=0 we denote the probability that the superpoly fc is not a
zero constant for a fixed key, and #Rds is the number of rounds. We set the

estimate threshold value of the probability to σ = 1+
√

10/Ns

2 , where Ns is the
number of the samples, and set the attack threshold value of the probability,
i.e., the minimum probability used in the attack, to p0 = 0.6 and p1 = 0.7 for
Pr(g = 0|fc = 0) and Pr(g = 1|fc �= 0) respectively. The probability below the
estimate threshold value σ is marked with slash throughs, e.g., 0.514//////, and will
never be used in the attack. The probability with a strikethrough, e.g., 0.568,

Correlation Cube Attacks: From Weak-Key Distinguisher to Key Recovery 731

is below the attack threshold value p0 or p1. From the experimental results,
we derive two sets

Ω0 = {(c, g, 0)|Pr(g = 0|fc = 0) > p0}
and

Ω1 = {(c, g, 1)|Pr(g = 1|fc �= 0) > p1}.

All the functions g’s are either linear or quadratic. We also record all the equa-
tions with probability 1,

Λ = {(c, g, b)|Pr(g = b|fc = 0) = 1 or Pr(g = b|fc �= 0) = 1}.

As shown in Table 3, there are 11 cubes with a basis that contains only one
linear or quadratic function. As discussed in Sect. 3.3, if their superpolys are not
zero constants for a fixed key, then the sole function in the basis is always equal
to one. In addition, for the 19th cube in the table, we observe that one of the
functions in its basis is always equal to one given fc �= 0, i.e., the conditional
probability Pr(g4 = 1|fc �= 0) = 1. The remaining 16 cubes have a basis that
contains two linear or quadratic functions. The number of rounds ranges from
805 to 808.

We have also verified for 100 random keys, each with 16 IVs, that the super-
polys of the cubes listed in the table are zero constants when imposing all the
functions in their bases to zeros.

Recovering the Key in Online Phase. In this phase, we set C to the set
of the 28 cubes listed in Table 3, Ω = Ω0 ∪ Ω1, and α = 16. Then execute
Algorithm 3 as described in Sect. 3.2. For avoidance of repetition, here we only
show some necessary details that are not included in Algorithm 3. Remind that,
in Step 3 of the algorithm, we take all the possible values of the first log2(α) = 4
free non-cube IV bits, and set the other free non-cube IV bits to random values.
The non-free non-cube IV bits are set to zeros. In Step 5, we update the equation
sets G0 and G1 according to the values of fc, and use an extra set E to collect
the equations with probability 1 according to Λ. In Step 6, for the case that
{g|g = 0 ∈ G0 and g = 1 ∈ G1} is not empty, we retain the one with higher
probability between g = 0 and g = 1, and remove the other one. Meanwhile, we
remove the equations in E from G0 and G1. In Step 7, we set ri to the maximum
ri such that p−ri

i <
(|Gi|

ri

)
, where |Gi| is the cardinality of Gi, i = 0, 1. Then

randomly choose r0 equations from G0 and r1 equations from G1, solve these
r0 + r1 equations together with E and check whether the solutions are correct.

Note that all the equations are linearly independent and can be linearized
after guessing the values of some key bits. The expected time complexity of the
online phase is less than

28 × 13.5 × 228 + p−r0
0 p−r1

1 280−(r0+r1+|E|) ≈ 237 + 280−(1
4 r0+

1
2 r1+|E|).

As shown in Table 3, the probability pfc �=0 of non-zero superpoly ranges
from 0.036 to 0.113 for the 12 cubes that can generate deterministic equations.

732 M. Liu et al.

Our experiments show that, for about 45% keys, there is at least one cube c out
of these 12 cubes such that fc �= 0. For such 45% keys, the average number of
such non-zero superpolys is around 2, and the maximum number is 7. In our
experiments for 1000 keys, the average values of r0 and r1 are respectively 3.8
and 2.4, and the average value of 1

4r0 + 1
2r1 + |E| is about 3. In other words, we

can recover 7 equations on key bits by 24 trials on average. The average attack
time is thus around 277, using 237 keystream bits and at the expense of prepro-
cessing time 247. The attack time on 805-round Trivium can be cut down by
using more cubes and at the expense of more preprocessing time and higher data
complexity. Our attack is valid for more than half of 1000 random keys in our
experiments. The attack fails when none of the systems of r0+r1+ |E| equations
derived from G0 and G1 are correct. We stress here that the success probability
of the attack can be increased by using smaller systems of equations (smaller r0
and r1) or larger probability thresholds (larger p0 and p1), at the cost of more
attack time.

Next we give an example of the attack procedure. Note here that in the
example the time complexity is better than the average case.

Example 3. Given that the 80-bit secret key is 71 DB 8B B3 21 CD AE F9 97 84
in hexadecimal, where the most significant bit is k0 and the least significant bit
is k79. For each of the 28 cubes in Table 3, we generate 16 different non-cube IVs
according to its free IV bits, and request 16×228 keystream bits corresponding to
this cube and the non-cube IVs, then compute the values of its superpoly. Taking
the 8-th cube as an instance, we set the four free IV bits 0, 8, 53, 54 to all possible
values, the other free IV bits to random values, and the remaining non-cube IV
bits to zeros; we then request 232 keystream bits of 806 rounds accordingly, and
sum these bits over the cube (module 2); finally we find a non-zero sum and get
a deterministic equation g6 = k63 = 1. We request 28×16×228 ≈ 237 keystream
bits in total, and find that there are 9 cubes having zero superpolys,

1, 2, 4, 10, 11, 16, 19, 24, 25,

and 19 cubes whose superpolys are not zero constants,

3, 5, 6, 7, 8, 9, 12, 13, 14, 15, 17, 18, 20, 21, 22, 23, 26, 27, 28.

From Table 3, we obtain 6 deterministic equations by the cubes 3, 5, 6, 7, 8, 9.

E = {gi = 1|i ∈ {2, 6, 7, 11, 12, 13}},

where
g2 = k59,
g6 = k63,
g7 = k64,
g11= k66 · k67 + k41 + k68,
g12= k67 · k68 + k42 + k69,
g13= k68 · k69 + k43 + k70.

Correlation Cube Attacks: From Weak-Key Distinguisher to Key Recovery 733

Further, we derive two equation sets G0 and G1

G0 = {g5 = k63 = 0}, G1 = {gi = 1|i ∈ {3, 4, 8, 14}},

where

g3 = k60,
g4 = k61,
g8 = k34 · k35 + k9 + k36,
g14= k69 · k70 + k44 + k71.

We can see that all the equations are linear after guessing the values of three
bits k35, k67 and k69. The equation g5 = 0 in G0 holds with probability 0.643,
and the equations gi = 1 in G1 hold with probability 0.888, 0.735, 0.907, 0.799
respectively for i = 3, 4, 8, 14. Accordingly, we have r0 = 0 and r1 = 3. Then
we randomly choose 3 equations from G1, solve a system of 3 + 6 equations
(together with the 6 equations in E), and repeat this step until the correct
solution is found. In theory, the expected number of trials for finding the correct
solution is less than 3. As a matter of fact, all the equations in G1 but g4 = 1
are true for the secret key, which means that we could find the correct key by
at most 4 trials of solving a system of 9 equations. Therefore we can recover the
key with time complexity of 237 + 4 × 271 ≈ 273. The time complexity can be
cut down to 272 if we set r0 + r1 = 4 and exploit the equations in G0 and G1

together.

4.4 The Attack on 835-Round Trivium

Generating a Candidate Set of Favorite Cubes. In [22], an exhaustive
search was done on the cubes of size 37 ≤ n ≤ 40 that contain no adjacent
indexes, by using a simplified version of Algorithm 4. Similarly, we exhaustively
search the cubes of size 36 ≤ n ≤ 40 that contain no adjacent indexes, and pick
up the cubes such that the corresponding superpolys after 815 rounds are zero
constants. Then we find 37595 and 3902 cubes of sizes 36 and 37 respectively
that satisfy the requirement. There are also a number of such cubes of size higher
than 37. This step is done in a few hours on a desktop computer.

Finding the Basis and Free Non-cube IV Bits. As done before, we apply
the procedure Decomposition to each cube c from the candidate set, and also
obtain a set of free non-cube IV bits. We then get 1085 and 99 cubes of sizes
36 and 37 such that a basis of the superpoly after 833 rounds can be found.
The maximum number of rounds after which we can still find a basis is 841. No
basis is found for the superpoly after 833 rounds of the cubes with size higher
than 37 in the candidate set. The results are found in several hours on a desktop
computer.

734 M. Liu et al.

Computing the Probability. Computing the value of the superpoly fc over
a big cube is time consuming. We test 13 cubes of size 37 and 28 cubes of
size 36, each of which has a different basis with less than 8 elements after 835
rounds. In each test, we compute the values of the superpoly fc for 128 random
keys with at most α = 8 non-cube IVs, and evaluate the conditional probability
Pr(g = 0|fc(key, ·) ≡ 0) and Pr(g = 1|fc(key, ·) �≡ 0) for a random fixed key. The
values of non-cube IVs are taken in the same manner as done in Sect. 4.3. Our
experiment shows that all the computations need about 6·128·(13·237+28·236) ≈
251 cipher operations. On average, we need to compute 6 IVs for each key.

The results are listed in Tables 4 and 5 in Appendix, together with the cubes,
free non-cube IV bits and the equations. We set the attack threshold value of the
probability to p = 2

3 for both Pr(g = 0|fc = 0) and Pr(g = 1|fc �= 0). The
probability below the estimate threshold value σ is marked with slash throughs,
e.g., 0.514//////, and will never be used in the attack. The probability with a
strikethrough, e.g., 0.654, is below the attack threshold value p. From the experi-
mental results, we derive one set

Ω = {(c, g, b)|Pr(g = b|fc = 0) > p or Pr(g = b|fc �= 0) > p}.

All the functions g’s are either linear or quadratic. We also record all the equa-
tions with probability 1,

Λ = {(c, g, b)|Pr(g = b|fc = 0) = 1 or Pr(g = b|fc �= 0) = 1}.

As shown in Table 4 for the cubes of size 37, there are 2 cubes having a basis
that contains only one function, while there are 5 cubes from which it is possible
to set up an equation with probability 1. The third and 11-th cubes have no
qualified equations, and will be discarded in online phase. The 13-th and 14-th
cubes are the same, while the keystream bits of two different numbers of rounds,
835 and 840, are used.

The results for the cubes of size 36 are listed in Table 5, and there are 7 cubes
that have no qualified equations and will be discarded in online phase.

We have also verified for 32 random keys, each with 4 IVs, that the superpolys
of the cubes listed in the table sum to zeros when imposing all the functions in
their bases to zeros.

Recovering the Key in Online Phase. In this phase, we set α = 8, and then
execute Algorithm 3. Remind that, in Step 3 of the algorithm, we take all the
possible values of the first log2(α) = 3 free non-cube IV bits, and set the other
free non-cube IV bits to random values. The non-free non-cube IV bits are set
to zeros. In Step 5, we update the equation sets G = G0 ∪ G1 according to the
values of fc, and use an extra set E to collect the equations with probability 1
according to Λ. In Step 6, if G has two incompatible equations g = 0 and g = 1,
we remove them both from G. Meanwhile, we remove the equations in E from G.
In Step 7, we set r to the maximum r such that p−r <

(|G|
r

)
. Then randomly

Correlation Cube Attacks: From Weak-Key Distinguisher to Key Recovery 735

choose r equations from G, solve these r equations together with E and check
whether the solutions are correct.

Note that all the equations are linearly independent and can be linearized
after guessing the values of some key bits. The expected time complexity of this
phase is less than

6 × (12 × 237 + 21 × 236) + p−r280−(r+|E|) ≈ 244 + 280−(2
5 r+|E|).

As shown in Table 4, the probability for the 5 cubes that can generate equa-
tions with probability 1 ranges from 0.008 to 0.297. Our experiments show that,
for about half keys, we can generate from one to three equations with probability
1. In our experiments for 128 random keys, the average values of r is larger than
10, and the average value of 2

5r + |E| is about 5. In other words, we can recover
11 equations on key bits by 26 trials on average. The average attack time is thus
around 275, using 8 × (12 × 237 + 21 × 236) ≈ 245 keystream bits and at the
expense of preprocessing time 251. The attack is valid for more than 44% out of
128 random keys in our experiments. The attack time can be cut down by using
more cubes and at the expense of more preprocessing time and more data. On
the other hand, the success probability of the attack can be increased at the cost
of more attack time.

4.5 Discussion

Improvements of the Attack. A natural method to cut down the attack time
is to use more cubes with keystream bits of different numbers of rounds. While
we have found a thousand potentially favorite cubes for Trivium reduced to
from 833 to 841 rounds, we can make use of a small number of them due to a
limited computation resource. Increasing the number α in online phase gives a
higher chance to find deterministic equations. Testing more random keys with
larger α in preprocessing phase gives a more accurate estimate of the conditional
probability Pr(g|fc), as well as generates more valid probabilistic equations. One
may also exploit one of the two equations g = 0 and g = 1 by carefully computing
the probability Pr(g = b|f1, f2) as discussed in Sect. 3.3, when both of them
appear in the equation set G.

For the attack on Trivium reduced to less than 835 rounds, it is possible
to cut down the attack time by using cubes of size less than 36 and combining
the equations retrieved in Sect. 4.4. For instance, using 54 out of the 69 cubes in
Tables 3, 4 and 5 gives an improved key recovery attack on 805-round Trivium.
In this improved attack, we adopt the same strategy that was used for analysis
of 835-round Trivium, and find that we can recover 14 equations by 27 trials
on average. Thus the attack on 805-round Trivium is faster than an exhaustive
search by a factor of around 27, using 245 keystream bits and at the expense of
preprocessing time 251. The attack is directly valid for 31% out of 128 random
keys in our experiments. The attack also works for most of the remaining keys
after increasing the probability threshold p and repeating the attack again.

736 M. Liu et al.

Table 2. Success probability of the attack

805 rounds: #key bits 7.2 6.9 6.5 6.1 5.7

Success rate 31% 60% 77% 86% 93%

835 rounds: #key bits 5.0 4.6 4.2 3.8 3.4

Success rate 44% 72% 83% 95% 98%

Success Probability of the Attack. In the above attack, we maximize the
system of probabilistic equations. This is achieved by setting r to the maximum
r such that p−r <

(|G|
r

)
in Algorithm 3. The attack works for more keys when

a smaller system with fewer equations is used, i.e., a smaller r is adopted. We
have verified this by supplementary experiments on round-reduced Trivium.

As shown in Table 2, for 805-round variant of Trivium, we can deduce 7.2,
6.9, 6.5, 6.1 and 5.7 key bits on average for 31%, 60%, 77%, 86% and 93% of
the keys, respectively; and for 835-round variant, we can deduce 5.0, 4.6, 4.2,
3.8 and 3.4 key bits on average for 44%, 72%, 83%, 95% and 98% of the keys,
respectively. Actually, our experiments for 128 random keys show that we can
always set up equations. As shown in Tables 3 and 4, there are many cubes (e.g.,
Cube 5 in Table 3) such that we can set up probabilistic equations from both
sides, which implies that the attack works for a random key.

Applications to TriviA-SC and Kreyvium. We apply our techniques to
TriviA-SC and Kreyvium, and can find some cubes whose superpolys after
1047 and 852 rounds have a low-degree basis with a few elements for TriviA-SC
and Kreyvium respectively. The cubes for TriviA-SC have size larger than 60,
and for Kreyvium the size is at least 54. Computing the conditional probability
Pr(g|fc) for such large cubes is infeasible for us. Though we are unable to fully
verify the validity of the attack on TriviA-SC and Kreyvium, we believe that
there is a high chance of validness due to their similar structures with Trivium.

5 Conclusions

In this paper, we have shown a general framework of a new model of cube attacks,
called correlation cube attack. It is a generalization of conditional cube attack,
as well as a variant of conditional differential attacks. As an illustration, we
applied it to Trivium stream cipher, and gained the best key recovery attacks
for Trivium. To the best of our knowledge, this is the first time that a weak-
key distinguisher on Trivium stream cipher can be converted to a key recovery
attack. We believe that this new cryptanalytic tool is useful in both cryptanalysis
and design of symmetric cryptosystems. In the future, it is worthy of working
on its applications to more cryptographic primitives, such as the Grain family
of stream ciphers, block cipher Simon and hash function Keccak.

Acknowledgments. We are grateful to the anonymous reviewers for their valuable
comments.

Correlation Cube Attacks: From Weak-Key Distinguisher to Key Recovery 737

A The Cubes, Equations and Probabilities

Table 3. The cubes, equations and probabilities in the attack on 805-round Trivium
(16 IVs and 1000 keys for cube size 28)

No. Cube Indexes Free IV bits Eqs. p(0|0) p(1|1) pfc �=0 #Rds

1
2, 4, 6, 8, 10, 12, 14, 17, 19, 21,
23, 25, 27, 29, 32, 34, 36, 38, 40,
42, 44, 47, 49, 51, 53, 57, 62, 79

0, 1, 9, 54, 55, 58, 59,
60, 64, 65, 66, 67, 68,

69, 72, 73, 74, 77
g14 335.0 ////// 1 0.078 805

2
2, 4, 6, 8, 10, 12, 14, 17, 19, 21,
23, 25, 27, 29, 32, 34, 36, 38, 40,
42, 44, 47, 49, 51, 53, 62, 73, 79

0, 9, 54, 55, 56, 64, 65,
66, 67, 68, 69, 70, 71,

75, 77
g3 435.0 ////// 1 0.036 805

3
2, 4, 6, 8, 10, 12, 14, 17, 19, 21,
23, 25, 27, 29, 32, 34, 36, 38, 40,
42, 44, 47, 49, 51, 53, 62, 77, 79

0, 1, 9, 54, 55, 56, 57,
58, 59, 60, 63, 64, 65,
66, 67, 68, 69, 70, 71,

72, 73, 74

g7 805.0 ////// 1 0.071 805

4
1, 3, 5, 7, 9, 11, 13, 16, 18, 20,
22, 24, 26, 28, 31, 33, 35, 37, 39,
41, 43, 46, 48, 50, 52, 61, 74, 78

53, 54, 55, 56, 57, 63,
64, 65, 66, 67, 68, 69,

70, 71, 76
g4 055.0 ////// 1 0.061 805

5
1, 3, 5, 7, 9, 11, 13, 16, 18, 20,
22, 24, 26, 28, 31, 33, 35, 37, 39,
41, 43, 46, 48, 50, 52, 56, 61, 78

0, 8, 53, 54, 57, 58, 59,
63, 64, 65, 66, 67, 68,

71, 72, 73, 76
g13 435.0 ////// 1 0.093 806

6
1, 3, 5, 7, 9, 11, 13, 16, 18, 20,
22, 24, 26, 28, 31, 33, 35, 37, 39,
41, 43, 46, 48, 50, 52, 54, 61, 78

0, 8, 55, 56, 57, 58, 59,
62, 63, 64, 65, 66, 69,

70, 71, 72, 73, 76
g11 415.0 ////// 1 0.056 806

7
1, 3, 5, 7, 9, 11, 13, 16, 18, 20,
22, 24, 26, 28, 31, 33, 35, 37, 39,
41, 43, 46, 48, 50, 52, 61, 72, 78

8, 53, 54, 55, 63, 64,
65, 66, 67, 68, 69, 70,

74, 76
g2 905.0 ////// 1 0.041 806

8
1, 3, 5, 7, 9, 11, 13, 16, 18, 20,
22, 24, 26, 28, 31, 33, 35, 37, 39,
41, 43, 46, 48, 50, 52, 61, 76, 78

0, 8, 53, 54, 55, 56, 57,
58, 59, 62, 63, 64, 65,
66, 67, 68, 69, 70, 71,

72, 73

g6 745.0 ////// 1 0.080 806

9
0, 2, 4, 6, 8, 10, 12, 15, 17, 19,
21, 23, 25, 27, 30, 32, 34, 36, 38,
40, 42, 45, 47, 49, 51, 55, 60, 79

7, 52, 53, 56, 57, 58,
61, 62, 64, 65, 66, 67,

70, 71, 72, 75, 76
g12 0.568 1 0.113 807

10
0, 2, 4, 6, 8, 10, 12, 15, 17, 19,
21, 23, 25, 27, 30, 32, 34, 36, 38,
40, 42, 45, 47, 49, 51, 53, 60, 79

7, 54, 55, 56, 57, 58,
61, 62, 64, 65, 68, 69,

70, 71, 72, 75, 76
g10 025.0 ////// 1 0.061 807

11
0, 2, 4, 6, 8, 10, 12, 15, 17, 19,
21, 23, 25, 27, 30, 32, 34, 36, 38,
40, 42, 45, 47, 49, 51, 60, 75, 79

7, 52, 53, 54, 55, 56,
57, 58, 61, 62, 64, 65,
66, 67, 68, 69, 70, 71,

72, 76

g5 0.556 1 0.097 807

12
2, 6, 8, 10, 12, 14, 17, 19, 21, 23,
25, 27, 29, 32, 34, 36, 38, 40, 42,
44, 47, 49, 51, 53, 57, 62, 77, 79

0, 1, 3, 4, 9, 54, 55,
58, 59, 60, 64, 65, 66,
67, 68, 69, 72, 73, 74

g7
g14

0.594
0.587

0.832
0.748 0.286 805

13
2, 4, 8, 10, 12, 14, 17, 19, 21, 23,
25, 27, 29, 32, 34, 36, 38, 40, 42,
44, 47, 49, 51, 53, 55, 57, 62, 79

0, 1, 5, 6, 9, 58, 59,
60, 64, 65, 66, 67, 70,

72, 73, 74, 77

g12
g14

0.575
0.621

0.654
0.799 0.309 805

14
2, 6, 8, 10, 12, 14, 17, 19, 21, 23,
25, 27, 29, 32, 34, 36, 38, 40, 42,
44, 47, 49, 51, 53, 55, 62, 77, 79

0, 1, 3, 4, 9, 56, 57, 58,
59, 60, 63, 64, 65, 66,
67, 70, 71, 72, 73, 74

g7
g12

0.573
0.587

0.803
0.721 0.269 805

15
1, 5, 7, 9, 11, 13, 16, 18, 20, 22,
24, 26, 28, 31, 33, 35, 37, 39, 41,
43, 46, 48, 50, 52, 61, 72, 74, 78

2, 3, 53, 54, 55, 56, 57,
63, 64, 65, 66, 67, 68,

69, 70, 76

g2
g4

335.0 ///////
0.573

0.708
0.735 0.185 805

16
2, 4, 6, 8, 10, 12, 15, 17, 19, 21,
23, 25, 27, 30, 32, 34, 36, 38, 40,
42, 45, 47, 49, 51, 60, 62, 75, 79

0, 1, 9, 52, 53, 54, 55,
56, 57, 58, 64, 65, 66,
67, 68, 69, 70, 71, 72,

77

g5
g16

0.558
225.0 ///////

0.902
326.0 /////// 0.122 805

17
1, 5, 7, 9, 11, 13, 16, 18, 20, 22,
24, 26, 28, 31, 33, 35, 37, 39, 41,
43, 46, 48, 50, 52, 56, 61, 76, 78

0, 2, 3, 8, 53, 54, 57,
58, 59, 63, 64, 65, 66,

67, 68, 71, 72, 73

g6
g13

0.622
0.580

0.778
0.744 0.297 806

18
1, 3, 7, 9, 11, 13, 16, 18, 20, 22,
24, 26, 28, 31, 33, 35, 37, 39, 41,
43, 46, 48, 50, 52, 54, 56, 61, 78

0, 4, 5, 8, 57, 58, 59,
63, 64, 65, 66, 69, 71,

72, 73, 76

g11
g13

0.580
0.635

0.697
0.805 0.343 806

738 M. Liu et al.

Table 3. (continued)

No. Cube Indexes Free IV bits Eqs. p(0|0) p(1|1) pfc �=0 #Rds

19
1, 3, 5, 7, 9, 11, 14, 16, 18, 20,

22, 24, 26, 29, 31, 33, 35, 37, 39,
41, 44, 46, 48, 50, 61, 70, 74, 78

0, 8, 51, 52, 53, 59, 62,
63, 64, 65, 66, 67, 68,

72, 76

g1
g4

105.0 ///////
0.568

115.0 ///////
1 0.092 806

20
1, 5, 7, 9, 11, 13, 16, 18, 20, 22,
24, 26, 28, 31, 33, 35, 37, 39, 41,
43, 46, 48, 50, 52, 54, 61, 76, 78

0, 2, 3, 8, 55, 56, 57,
58, 59, 62, 63, 64, 65,
66, 69, 70, 71, 72, 73

g6
g11

0.607
745.0 ///////

0.792
0.692 0.260 806

21
0, 3, 5, 7, 9, 11, 13, 16, 18, 20,

22, 24, 26, 28, 31, 33, 35, 37, 39,
41, 43, 46, 48, 50, 52, 54, 61, 78

1, 8, 14, 55, 56, 57, 58,
59, 62, 63, 64, 65, 66,
69, 70, 71, 72, 73, 76

g8
g11

0.694
245.0 ///////

0.907
0.629 0.334 806

22
2, 4, 6, 8, 10, 12, 15, 17, 19, 21,
23, 25, 27, 30, 32, 34, 36, 38, 40,
42, 45, 47, 49, 51, 55, 60, 75, 79

0, 7, 52, 53, 56, 57, 58,
61, 62, 64, 65, 66, 67,

70, 71, 72, 73, 76

g5
g12

0.660
0.705

0.691
0.742 0.450 807

23
2, 4, 6, 8, 10, 12, 15, 17, 19, 21,
23, 25, 27, 30, 32, 34, 36, 38, 40,
42, 45, 47, 49, 51, 53, 55, 60, 79

0, 7, 56, 57, 58, 61, 62,
64, 65, 68, 70, 71, 72,

73, 74, 75, 76

g10
g12

0.636
0.762

0.665
0.762 0.492 807

24
2, 4, 6, 8, 10, 12, 15, 17, 19, 21,
23, 25, 27, 30, 32, 34, 36, 38, 40,
42, 45, 47, 49, 51, 53, 60, 75, 79

0, 7, 54, 55, 56, 57, 58,
61, 62, 64, 65, 66, 67,
68, 69, 70, 71, 72, 76

g5
g10

0.643
855.0 ///////

0.815
0.669 0.308 807

25
0, 2, 4, 6, 8, 10, 12, 15, 17, 19,

21, 23, 25, 27, 30, 32, 34, 36, 38,
40, 42, 45, 47, 49, 51, 60, 64, 79

7, 52, 53, 54, 55, 56,
57, 58, 61, 62, 65, 66,
67, 68, 69, 70, 71, 72,

75, 76

g17
g18

355.0 ///////
694.0 ///////

0.801
585.0 /////// 0.246 807

26
0, 2, 4, 6, 8, 10, 13, 15, 17, 19,

21, 23, 25, 28, 30, 32, 34, 36, 38,
40, 43, 45, 47, 49, 58, 60, 73, 79

7, 50, 51, 52, 53, 54,
55, 56, 61, 62, 64, 65,
66, 67, 68, 69, 70, 75,

76

g3
g15

0.592
994.0 ///////

0.888
0.650 0.160 807

27
1, 3, 5, 7, 9, 11, 14, 16, 18, 20,

22, 24, 26, 29, 31, 33, 35, 37, 39,
41, 44, 46, 48, 50, 54, 59, 74, 78

6, 51, 52, 55, 56, 57,
60, 61, 63, 64, 65, 66,

69, 70, 71, 72, 75

g4
g11

0.652
0.696

0.641
0.760 0.463 808

28
1, 3, 5, 7, 9, 11, 14, 16, 18, 20,

22, 24, 26, 29, 31, 33, 35, 37, 39,
41, 44, 46, 48, 50, 52, 54, 59, 78

6, 55, 56, 57, 60, 61,
63, 64, 67, 69, 70, 71,

72, 73, 74, 75

g9
g11

0.644
0.766

0.636
0.787 0.508 808

g1 =k57
g2 =k59
g3 =k60
g4 =k61
g5 =k62
g6 =k63
g7 =k64
g8 =k34 · k35 + k9 + k36
g9 =k64 · k65 + k39 + k66
g10=k65 · k66 + k40 + k67
g11=k66 · k67 + k41 + k68
g12=k67 · k68 + k42 + k69
g13=k68 · k69 + k43 + k70
g14=k69 · k70 + k44 + k71
g15=k70 · k71 + k45 + k72
g16=k72 · k73 + k47 + k74
g17=k76 · k77 + k51 + k78
g18=k67 · k68 + k76 · k77 + k0 + k42 + k51 + k68 + k78

Correlation Cube Attacks: From Weak-Key Distinguisher to Key Recovery 739

Table 4. The cubes, equations and probabilities in the attack on 835-round Trivium
(8 IVs and 128 keys for cube size 37)

No. Cube Indexes Free IV bits Eqs. p(0|0) p(1|1) pfc �=0 #Rds

1

2, 4, 6, 8, 10, 12, 14, 17, 19, 21,
23, 25, 27, 29, 32, 34, 36, 38, 40,
42, 44, 47, 49, 51, 53, 55, 57, 59,
62, 64, 66, 68, 70, 72, 74, 77, 79

0, 1, 3, 5, 7, 9 g16 274.0 ////// 1 0.008 836

2

1, 3, 5, 7, 9, 11, 13, 16, 18, 20,
22, 24, 26, 28, 31, 33, 35, 37, 39,
41, 43, 46, 48, 50, 52, 54, 56, 58,
61, 63, 65, 67, 69, 71, 73, 76, 78

0, 2, 4, 6, 8, 79 g15 425.0 ////// 1 0.016 837

3

0, 2, 4, 7, 9, 11, 13, 15, 17, 19,
22, 24, 26, 28, 30, 32, 34, 37, 39,
41, 43, 45, 47, 49, 52, 54, 56, 58,
60, 62, 64, 67, 69, 71, 73, 75, 79

1, 3, 5, 6, 8, 10, 77 g5
g47

455.0 ///////
0.653

417.0 ///////
758.0 /////// 0.055 835

4

0, 2, 4, 6, 8, 11, 13, 15, 17, 19,
21, 23, 26, 28, 30, 32, 34, 36, 38,
41, 43, 45, 47, 49, 51, 53, 56, 58,
60, 62, 64, 66, 68, 71, 73, 75, 79

1, 3, 5, 7, 9, 10, 77 g24
g26

005.0 ///////
954.0 ///////

766.0 ///////
1 0.047 835

5

1, 3, 5, 7, 10, 12, 14, 16, 18, 20,
22, 25, 27, 29, 31, 33, 35, 37, 40,
42, 44, 46, 48, 50, 52, 55, 57, 59,
61, 63, 65, 67, 70, 72, 74, 76, 78

0, 2, 4, 6, 8, 9, 11
g17
g25
g27

0.696
874.0 ///////
345.0 ///////

0.972
444.0 ///////
496.0 ///////

0.281 835

6

0, 2, 4, 6, 9, 11, 13, 15, 17, 19,
21, 24, 26, 28, 30, 32, 34, 36, 39,
41, 43, 45, 47, 49, 51, 54, 56, 58,
60, 62, 64, 66, 69, 71, 73, 75, 79

1, 3, 5, 7, 8, 10, 77
g16
g24
g26

0.667
874.0 ///////
983.0 ///////

1
474.0 ///////
744.0 ///////

0.297 836

7

0, 2, 5, 7, 9, 11, 13, 15, 17, 20,
22, 24, 26, 28, 30, 32, 34, 37, 39,
41, 43, 45, 47, 49, 52, 54, 56, 58,
60, 62, 64, 67, 69, 71, 73, 75, 79

1, 3, 4, 6, 8, 10, 33,
76, 77

g31
g33
g46
g47
g49

0.962
0.962

516.0 ///////
808.0 ///////
643.0 ///////

726.0 ///////
726.0 ///////
925.0 ///////
224.0 ///////
084.0 ///////

0.797 835

8

0, 2, 4, 7, 9, 11, 13, 15, 17, 19,
21, 24, 26, 28, 30, 32, 34, 36, 39,
41, 43, 45, 47, 49, 51, 54, 56, 58,
60, 62, 64, 66, 69, 71, 73, 75, 79

1, 3, 5, 6, 8, 10, 20, 77

g20
g21
g33
g35
g36

0.968
0.968

914.0 ///////
254.0 ///////
914.0 ///////

916.0 ///////
0.691

584.0 ///////
584.0 ///////
515.0 ///////

0.758 835

9

0, 2, 4, 6, 9, 11, 13, 15, 17, 19,
22, 24, 26, 28, 30, 32, 34, 37, 39,
41, 43, 45, 47, 49, 52, 54, 56, 58,
60, 62, 64, 67, 69, 71, 73, 75, 79

3, 5, 7, 8, 10, 20, 76,
77

g31
g33
g35
g36
g46
g47

016.0 ///////
446.0 ///////
726.0 ///////
854.0 ///////
294.0 ///////

0.729

495.0 ///////
836.0 ///////
906.0 ///////
225.0 ///////
394.0 ///////
464.0 ///////

0.539 835

10

0, 2, 5, 7, 9, 11, 13, 15, 17, 19,
22, 24, 26, 28, 30, 32, 34, 37, 39,
41, 43, 45, 47, 49, 52, 54, 56, 58,
60, 62, 64, 67, 69, 71, 73, 75, 79

3, 4, 6, 8, 10, 18, 76,
77

g20
g31
g33
g35
g36
g46
g47

0.716
795.0 ///////
285.0 ///////
216.0 ///////
225.0 ///////
735.0 ///////

0.776

986.0 ///////
706.0 ///////
706.0 ///////
326.0 ///////
095.0 ///////
145.0 ///////
145.0 ///////

0.477 835

11

0, 2, 4, 7, 9, 11, 13, 15, 17, 20,
22, 24, 26, 28, 30, 32, 34, 37, 39,
41, 43, 45, 47, 49, 52, 54, 56, 58,
60, 62, 64, 67, 69, 71, 73, 75, 79

5, 6, 8, 10, 18, 33, 76,
77

g19
g20
g31
g33
g46
g47
g49

865.0 ///////
307.0 ///////
307.0 ///////
307.0 ///////
684.0 ///////
037.0 ///////
684.0 ///////

484.0 ///////
945.0 ///////
285.0 ///////
395.0 ///////
594.0 ///////
814.0 ///////
615.0 ///////

0.711 835

12

2, 4, 6, 8, 10, 12, 15, 17, 19, 21,
23, 25, 27, 30, 32, 34, 36, 38, 40,
42, 45, 47, 49, 51, 53, 55, 57, 60,
62, 64, 66, 68, 70, 72, 75, 77, 79

0, 1, 3, 5, 7, 13

g8
g10
g12
g14
g16
g18
g45

965.0 ///////
835.0 ///////
585.0 ///////
006.0 ///////
805.0 ///////

0.708
516.0 ///////

175.0 ///////
306.0 ///////
156.0 ///////
916.0 ///////
175.0 ///////

0.778
425.0 ///////

0.492 839

740 M. Liu et al.

Table 4. (continued)

No. Cube Indexes Free IV bits Eqs. p(0|0) p(1|1) pfc �=0 #Rds

13 1, 3, 5, 7, 9, 11, 14, 16, 18, 20,
22, 24, 26, 29, 31, 33, 35, 37, 39,
41, 44, 46, 48, 50, 52, 54, 56, 59,
61, 63, 65, 67, 69, 71, 74, 76, 78

0, 2, 4, 6, 8, 12 g15
g17

905.0 ///////
085.0 ///////

834.0 ///////
1 0.125 835

14 0, 2, 4, 6, 12

g7
g9
g13
g15
g17
g44
g50

165.0 ///////
236.0 ///////
416.0 ///////

0.754
0.754

165.0 ///////
946.0 ///////

606.0 ///////
394.0 ///////
535.0 ///////
676.0 ///////

0.690
705.0 ///////
125.0 ///////

0.555 840

g1 =k54
g2 =k55
g3 =k56
g4 =k57
g5 =k58
g6 =k59
g7 =k61
g8 =k62
g9 =k63
g10=k64
g11=k65
g12=k78 · k79 + k53
g13=k30 · k31 + k5 + k32
g14=k31 · k32 + k6 + k33
g15=k32 · k33 + k7 + k34
g16=k33 · k34 + k8 + k35
g17=k34 · k35 + k9 + k36
g18=k35 · k36 + k10 + k37
g19=k38 · k39 + k13 + k40
g20=k40 · k41 + k15 + k42
g21=k42 · k43 + k17 + k44
g22=k44 · k45 + k19 + k46
g23=k45 · k46 + k20 + k47
g24=k46 · k47 + k21 + k48
g25=k47 · k48 + k22 + k49

g26=k48 · k49 + k23 + k50
g27=k49 · k50 + k24 + k51
g28=k50 · k51 + k25 + k52
g29=k51 · k52 + k26 + k53
g30=k52 · k53 + k27 + k54
g31=k53 · k54 + k28 + k55
g32=k54 · k55 + k29 + k56
g33=k55 · k56 + k30 + k57
g34=k56 · k57 + k31 + k58
g35=k57 · k58 + k32 + k59
g36=k59 · k60 + k34 + k61
g37=k61 · k62 + k36 + k63
g38=k62 · k63 + k37 + k64
g39=k63 · k64 + k38 + k65
g40=k64 · k65 + k39 + k66
g41=k65 · k66 + k40 + k67
g42=k66 · k67 + k41 + k68
g43=k67 · k68 + k42 + k69
g44=k68 · k69 + k43 + k70
g45=k69 · k70 + k44 + k71
g46=k72 · k73 + k47 + k74
g47=k74 · k75 + k49 + k76
g48=k75 · k76 + k50 + k77
g49=k76 · k77 + k51 + k78
g50=k77 · k78 + k52 + k79

Table 5. The cubes, equations and probabilities in the attack on 835-round Trivium
(8 IVs and 128 keys for cube size 36)

No. Cube Indexes Free IV bits Eqs. p(0|0) p(1|1) pfc �=0 #Rds

1

1, 3, 5, 7, 9, 11, 13, 16, 18, 20,
22, 24, 26, 28, 31, 33, 35, 37, 39,
41, 43, 46, 48, 50, 52, 54, 56, 58,

61, 63, 65, 67, 69, 71, 76, 78

0, 2, 4, 6, 73 g3
g5

035.0 ///////
036.0 ///////

635.0 ///////
687.0 /////// 0.219 835

2

1, 3, 5, 7, 9, 11, 13, 16, 18, 20,
22, 24, 26, 28, 31, 33, 35, 37, 41,
43, 46, 48, 50, 52, 54, 56, 58, 61,

63, 65, 67, 69, 71, 73, 76, 78

0, 2, 4, 6, 8, 38, 39

g1
g3
g5
g50

134.0 ///////
356.0 ///////
936.0 ///////
655.0 ///////

573.0 ///////
166.0 ///////
985.0 ///////
644.0 ///////

0.438 836

3

1, 3, 5, 7, 9, 11, 13, 16, 18, 20,
22, 24, 26, 28, 31, 33, 35, 37, 39,
41, 43, 46, 48, 50, 52, 54, 56, 58,

61, 63, 65, 67, 69, 73, 76, 78

0, 2, 4, 6, 8, 71

g1
g3
g40
g50

325.0 ///////
0.698

535.0 ///////
395.0 ///////

005.0 ///////
0.857

916.0 ///////
425.0 ///////

0.328 836

4

1, 3, 5, 7, 9, 11, 13, 16, 18, 20,
22, 24, 26, 28, 31, 33, 35, 37, 39,
41, 43, 46, 48, 50, 52, 54, 56, 58,

61, 63, 65, 69, 71, 73, 76, 78

0, 2, 4, 6, 8, 67

g3
g5
g40
g50

075.0 ///////
616.0 ///////
325.0 ///////
506.0 ///////

595.0 ///////
916.0 ///////
595.0 ///////
845.0 ///////

0.328 836

5

0, 2, 4, 6, 8, 10, 12, 15, 17, 19,
21, 23, 25, 27, 30, 32, 34, 36, 40,
42, 45, 47, 49, 51, 53, 55, 57, 60,

62, 64, 66, 68, 70, 72, 75, 79

1, 3, 5, 7, 37, 38, 77

g2
g4
g12
g49

455.0 ///////
585.0 ///////
134.0 ///////
294.0 ///////

0.762
386.0 ///////
294.0 ///////
425.0 ///////

0.492 837

Correlation Cube Attacks: From Weak-Key Distinguisher to Key Recovery 741

Table 5. (continued)

No. Cube Indexes Free IV bits Eqs. p(0|0) p(1|1) pfc �=0 #Rds

6

0, 2, 4, 6, 8, 10, 12, 15, 17, 19,
21, 23, 25, 27, 30, 32, 34, 36, 38,
40, 42, 45, 47, 49, 51, 53, 55, 57,

60, 62, 66, 68, 70, 72, 75, 79

1, 3, 5, 7, 64, 77

g2
g4
g12
g39

005.0 ///////
455.0 ///////
374.0 ///////
684.0 ///////

0.741
586.0 ///////
735.0 ///////
846.0 ///////

0.422 837

7

0, 2, 4, 6, 8, 10, 12, 15, 17, 19,
21, 23, 25, 27, 30, 32, 34, 36, 38,
40, 42, 45, 47, 49, 51, 53, 55, 57,

60, 62, 64, 68, 70, 72, 75, 79

1, 3, 5, 7, 66, 77

g2
g4
g39
g49

705.0 ///////
375.0 ///////
394.0 ///////
084.0 ///////

0.755
717.0 ///////
066.0 ///////
905.0 ///////

0.414 837

8

0, 2, 4, 6, 8, 10, 12, 15, 17, 19,
21, 23, 25, 27, 30, 32, 34, 36, 38,
40, 42, 45, 47, 49, 51, 53, 55, 57,

60, 62, 64, 66, 68, 72, 75, 79

1, 3, 5, 7, 70, 77

g2
g12
g39
g49

316.0 ///////
084.0 ///////
084.0 ///////
335.0 ///////

0.906
745.0 ///////
246.0 ///////
585.0 ///////

0.414 837

9

0, 2, 4, 6, 8, 10, 12, 15, 17, 19,
21, 23, 25, 27, 30, 32, 34, 36, 38,
40, 42, 45, 47, 49, 51, 53, 55, 57,

60, 62, 64, 66, 70, 72, 75, 79

1, 3, 5, 7, 68, 77

g4
g12
g39
g49

206.0 ///////
774.0 ///////
984.0 ///////
664.0 ///////

0.875
055.0 ///////
007.0 ///////
574.0 ///////

0.312 837

10

1, 3, 5, 7, 9, 11, 13, 16, 18, 20,
22, 24, 26, 28, 31, 33, 35, 37, 39,
41, 43, 46, 48, 50, 52, 56, 58, 61,

63, 65, 67, 69, 71, 73, 76, 78

0, 2, 4, 6, 8, 54

g1
g3
g5
g40
g44

324.0 ///////
146.0 ///////
146.0 ///////
835.0 ///////
465.0 ///////

043.0 ///////
086.0 ///////
026.0 ///////
006.0 ///////
045.0 ///////

0.391 836

11

0, 4, 6, 8, 10, 12, 15, 17, 19, 21,
23, 25, 27, 30, 32, 34, 36, 38, 40,
42, 45, 47, 49, 51, 53, 55, 57, 60,

62, 64, 66, 68, 70, 72, 75, 79

1, 2, 3, 5, 7, 77

g2
g4
g12
g39
g49

394.0 ///////
565.0 ///////
604.0 ///////
705.0 ///////
635.0 ///////

0.712
876.0 ///////
854.0 ///////
166.0 ///////
675.0 ///////

0.461 837

12

0, 2, 4, 6, 8, 10, 15, 17, 19, 21,
23, 25, 28, 30, 32, 34, 36, 38, 40,
43, 45, 47, 49, 51, 53, 55, 58, 60,

62, 64, 66, 68, 70, 73, 75, 79

1, 3, 5, 11, 12, 13, 77

g2
g12
g37
g47
g49

925.0 ///////
885.0 ///////
144.0 ///////
885.0 ///////
445.0 ///////

0.750
766.0 ///////
385.0 ///////
333.0 ///////
385.0 ///////

0.469 839

13

2, 6, 8, 10, 12, 14, 17, 19, 21, 23,
25, 27, 29, 32, 34, 36, 38, 40, 42,
44, 47, 49, 51, 53, 55, 57, 59, 62,

64, 66, 68, 70, 72, 74, 77, 79

0, 1, 3, 4, 5, 7, 9

g2
g4
g6
g41
g43
g45

354.0 ///////
265.0 ///////
265.0 ///////
875.0 ///////
656.0 ///////
146.0 ///////

656.0 ///////
656.0 ///////

0.703
0.703

265.0 ///////
745.0 ///////

0.500 835

14

1, 4, 6, 8, 10, 12, 14, 16, 19, 21,
23, 25, 27, 29, 31, 34, 36, 38, 40,
42, 44, 49, 51, 53, 55, 57, 59, 62,

64, 66, 68, 70, 72, 74, 77, 79

0, 2, 3, 5, 7, 9, 45, 46,
47

g2
g4
g6
g12
g34
g41

364.0 ///////
386.0 ///////

0.780
884.0 ///////
237.0 ///////
165.0 ///////

236.0 ///////
556.0 ///////

0.736
045.0 ///////

0.678
126.0 ///////

0.680 835

15

0, 2, 4, 7, 9, 11, 13, 15, 17, 19,
22, 24, 26, 28, 30, 32, 34, 37, 39,
41, 43, 45, 47, 49, 52, 54, 56, 58,

60, 62, 67, 69, 71, 73, 75, 79

5, 6, 8, 10, 63, 64, 76

g11
g33
g35
g36
g46
g47

0.821
296.0 ///////
296.0 ///////
014.0 ///////
465.0 ///////

0.795

0.753
695.0 ///////
485.0 ///////
605.0 ///////
825.0 ///////
944.0 ///////

0.695 835

16

0, 2, 4, 6, 8, 10, 13, 15, 17, 19,
21, 23, 25, 28, 30, 32, 36, 38, 40,
43, 45, 47, 49, 51, 53, 55, 58, 60,

62, 64, 66, 68, 70, 73, 75, 79

1, 3, 5, 7, 9, 11, 33,
34, 77

g2
g4
g12
g26
g28
g30

095.0 ///////
095.0 ///////
817.0 ///////
516.0 ///////
784.0 ///////
784.0 ///////

0.685
706.0 ///////
046.0 ///////
046.0 ///////
485.0 ///////
605.0 ///////

0.695 835

17

0, 2, 4, 6, 8, 10, 13, 15, 17, 19,
21, 23, 25, 28, 30, 32, 34, 36, 38,
43, 45, 47, 49, 51, 53, 55, 58, 60,

62, 64, 66, 68, 70, 73, 75, 79

1, 3, 5, 7, 9, 11, 39,
40, 41, 77

g2
g4
g12
g24
g26
g28

335.0 ///////
335.0 ///////
335.0 ///////
007.0 ///////
337.0 ///////
766.0 ///////

346.0 ///////
175.0 ///////
155.0 ///////
175.0 ///////
356.0 ///////
336.0 ///////

0.766 835

742 M. Liu et al.

Table 5. (continued)

No. Cube Indexes Free IV bits Eqs. p(0|0) p(1|1) pfc �=0 #Rds

18

0, 2, 4, 6, 8, 10, 13, 15, 17, 19,
21, 23, 25, 28, 30, 32, 34, 36, 40,
43, 45, 47, 49, 51, 53, 55, 58, 60,

62, 64, 66, 68, 70, 73, 75, 79

1, 3, 5, 7, 9, 11, 37,
38, 77

g2
g4
g12
g24
g26
g30

924.0 ///////
595.0 ///////
346.0 ///////
916.0 ///////
417.0 ///////
346.0 ///////

616.0 ///////
616.0 ///////
616.0 ///////
075.0 ///////

0.698
185.0 ///////

0.672 835

19

0, 2, 4, 6, 8, 10, 13, 15, 17, 19,
21, 23, 25, 28, 30, 32, 34, 36, 38,
40, 43, 45, 47, 49, 51, 53, 55, 58,

60, 62, 64, 68, 70, 73, 75, 79

1, 3, 5, 7, 9, 11, 66, 77

g2
g4
g24
g26
g28
g30

155.0 ///////
964.0 ///////
295.0 ///////
295.0 ///////
135.0 ///////
356.0 ///////

0.696
755.0 ///////
075.0 ///////
856.0 ///////
026.0 ///////
806.0 ///////

0.617 835

20

0, 2, 4, 6, 8, 10, 13, 15, 17, 19,
21, 23, 25, 28, 30, 32, 34, 36, 38,
40, 43, 45, 47, 49, 51, 53, 55, 58,

60, 62, 64, 66, 68, 73, 75, 79

1, 3, 5, 7, 9, 11, 70, 77

g2
g12
g24
g26
g28
g30

465.0 ///////
835.0 ///////
516.0 ///////
296.0 ///////
465.0 ///////
146.0 ///////

0.674
265.0 ///////
265.0 ///////

0.674
816.0 ///////
375.0 ///////

0.695 835

21

0, 3, 5, 7, 9, 11, 13, 15, 18, 20,
22, 24, 26, 28, 30, 33, 35, 37, 39,
41, 43, 48, 50, 52, 54, 56, 58, 61,

63, 65, 67, 69, 71, 73, 76, 78

1, 2, 4, 6, 8, 44, 45,
46, 79

g1
g3
g5
g33
g40
g50

684.0 ///////
926.0 ///////
417.0 ///////

0.829
415.0 ///////
756.0 ///////

374.0 ///////
725.0 ///////
725.0 ///////
436.0 ///////
725.0 ///////
484.0 ///////

0.727 836

22

2, 4, 6, 8, 10, 12, 14, 17, 19, 21,
23, 25, 27, 29, 32, 34, 36, 38, 40,
42, 47, 49, 51, 53, 55, 57, 60, 62,

64, 66, 68, 70, 72, 75, 77, 79

0, 1, 3, 5, 7, 43, 44, 45

g2
g4
g12
g32
g39
g49

026.0 ///////
026.0 ///////
083.0 ///////
027.0 ///////
044.0 ///////
005.0 ///////

0.744
456.0 ///////
474.0 ///////
146.0 ///////
775.0 ///////
625.0 ///////

0.609 837

23

1, 3, 5, 7, 9, 11, 13, 16, 18, 20,
22, 24, 26, 28, 31, 33, 35, 37, 39,
41, 46, 48, 50, 52, 54, 56, 59, 61,

63, 65, 67, 69, 71, 74, 76, 78

0, 2, 4, 6, 42, 43, 44

g1
g3
g31
g38
g48
g50

376.0 ///////
907.0 ///////

0.818
285.0 ///////
634.0 ///////
636.0 ///////

306.0 ///////
036.0 ///////

0.740
394.0 ///////
483.0 ///////
705.0 ///////

0.570 838

24

0, 2, 4, 6, 8, 10, 12, 15, 17, 19,
21, 23, 25, 27, 30, 32, 34, 36, 38,
40, 45, 47, 49, 51, 53, 55, 58, 60,

62, 64, 66, 68, 70, 73, 75, 79

1, 3, 5, 41, 42, 43, 76

g2
g12
g30
g37
g47
g49

095.0 ///////
516.0 ///////
447.0 ///////
784.0 ///////
296.0 ///////
315.0 ///////

0.685
695.0 ///////
816.0 ///////
695.0 ///////
404.0 ///////
825.0 ///////

0.695 839

25

0, 4, 6, 8, 10, 13, 15, 17, 19, 21,
23, 25, 28, 30, 32, 34, 36, 38, 40,
43, 45, 47, 49, 51, 53, 55, 58, 60,

62, 64, 66, 68, 70, 73, 75, 79

1, 2, 3, 5, 7, 9, 11, 77

g2
g4
g12
g24
g26
g28
g30

225.0 ///////
225.0 ///////
345.0 ///////
906.0 ///////
565.0 ///////
345.0 ///////
256.0 ///////

176.0 ///////
585.0 ///////
375.0 ///////
375.0 ///////
436.0 ///////
226.0 ///////
895.0 ///////

0.641 835

26

1, 5, 7, 9, 11, 14, 16, 18, 20, 22,
24, 26, 29, 31, 33, 35, 37, 39, 41,
44, 46, 48, 50, 52, 54, 56, 59, 61,

63, 65, 67, 69, 71, 74, 76, 78

0, 3, 4, 6, 8, 12

g23
g25
g27
g29
g31
g42
g44

775.0 ///////
436.0 ///////
535.0 ///////
125.0 ///////
394.0 ///////
535.0 ///////
125.0 ///////

695.0 ///////
766.0 ///////
695.0 ///////
194.0 ///////
194.0 ///////
654.0 ///////
474.0 ///////

0.445 835

27

0, 2, 4, 7, 9, 11, 13, 15, 17, 19,
22, 24, 26, 28, 30, 32, 34, 37, 39,
41, 43, 45, 47, 49, 52, 54, 56, 58,

60, 62, 64, 67, 69, 71, 73, 79

3, 5, 6, 8, 75, 77

g20
g21
g31
g33
g35
g36
g44

295.0 ///////
155.0 ///////
295.0 ///////

0.837
0.755

804.0 ///////
295.0 ///////

915.0 ///////
285.0 ///////
755.0 ///////

0.722
856.0 ///////
494.0 ///////
915.0 ///////

0.617 835

28

0, 2, 4, 6, 8, 11, 13, 15, 17, 19,
21, 23, 26, 28, 30, 32, 34, 36, 38,
41, 43, 45, 47, 49, 51, 53, 56, 58,

60, 62, 64, 66, 68, 71, 73, 79

1, 3, 5, 7, 9, 75, 77

g2
g12
g22
g24
g26
g28
g49

185.0 ///////
845.0 ///////
017.0 ///////

0.839
316.0 ///////
185.0 ///////
185.0 ///////

066.0 ///////
755.0 ///////
765.0 ///////
916.0 ///////
916.0 ///////
806.0 ///////
645.0 ///////

0.758 837

Correlation Cube Attacks: From Weak-Key Distinguisher to Key Recovery 743

References

1. Aumasson, J., Dinur, I., Henzen, L., Meier, W., Shamir, A.: Efficient FPGA imple-
mentations of high-dimensional cube testers on the stream cipher Grain-128. IACR
Cryptology ePrint Archive 2009:218 (2009)

2. Aumasson, J.-P., Dinur, I., Meier, W., Shamir, A.: Cube testers and key recovery
attacks on reduced-round MD6 and Trivium. In: Dunkelman, O. (ed.) FSE 2009.
LNCS, vol. 5665, pp. 1–22. Springer, Heidelberg (2009)

3. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: The Keccak reference, Jan-
uary 2011. http://keccak.noekeon.org, Version 3.0

4. Canteaut, A., Carpov, S., Fontaine, C., Lepoint, T., Naya-Plasencia, M., Pail-
lier, P., Sirdey, R.: Stream ciphers: a practical solution for efficient homomorphic-
ciphertext compression. In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 313–
333. Springer, Heidelberg (2016)

5. Chakraborti, A., Chattopadhyay, A., Hassan, M., Nandi, M.: TriviA: a fast and
secure authenticated encryption scheme. In: Güneysu, T., Handschuh, H. (eds.)
CHES 2015. LNCS, vol. 9293, pp. 330–353. Springer, Heidelberg (2015)

6. Chakraborti, A., Nandi, M.: TriviA-ck-v2. CAESAR Submission (2015). http://
competitions.cr.yp.to/round2/triviackv2.pdf

7. De Cannière, C., Dunkelman, O., Knežević, M.: KATAN and KTANTAN — a
family of small and efficient hardware-oriented block ciphers. In: Clavier, C., Gaj,
K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 272–288. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-04138-9 20

8. De Cannière, C., Preneel, B.: Trivium. In: Robshaw, M., Billet, O. (eds.) New
Stream Cipher Designs. LNCS, vol. 4986, pp. 244–266. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-68351-3 18

9. Dinur, I., Güneysu, T., Paar, C., Shamir, A., Zimmermann, R.: An experimentally
verified attack on Full Grain-128 using dedicated reconfigurable hardware. In: Lee,
D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 327–343. Springer,
Heidelberg (2011)

10. Dinur, I., Morawiecki, P., Pieprzyk, J., Srebrny, M., Straus, M.: Cube attacks and
cube-attack-like cryptanalysis on the Round-Reduced Keccak Sponge Function. In:
Oswald and Fischlin [26], pp. 733–761

11. Dinur, I., Shamir, A.: Cube attacks on tweakable black box polynomials. In: Joux,
A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 278–299. Springer, Heidelberg
(2009)

12. Dinur, I., Shamir, A.: Breaking Grain-128 with dynamic cube attacks. In: Joux,
A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 167–187. Springer, Heidelberg (2011)

13. Englund, H., Johansson, T., Sönmez Turan, M.: A framework for chosen IV statis-
tical analysis of stream ciphers. In: Srinathan, K., Rangan, C.P., Yung, M. (eds.)
INDOCRYPT 2007. LNCS, vol. 4859, pp. 268–281. Springer, Heidelberg (2007)

14. Fischer, S., Khazaei, S., Meier, W.: Chosen IV statistical analysis for key recovery
attacks on stream ciphers. In: Vaudenay, S. (ed.) AFRICACRYPT 2008. LNCS,
vol. 5023, pp. 236–245. Springer, Heidelberg (2008)

15. Fouque, P.-A., Vannet, T.: Improving key recovery to 784 and 799 rounds of Triv-
ium using optimized cube attacks. In: Moriai, S. (ed.) FSE 2013. LNCS, vol. 8424,
pp. 502–517. Springer, Heidelberg (2014)

16. Hell, M., Johansson, T., Maximov, A., Meier, W.: A stream cipher proposal: grain-
128. In: 2006 IEEE International Symposium on Information Theory, pp. 1614–
1618. IEEE (2006)

http://keccak.noekeon.org
http://competitions.cr.yp.to/round2/triviackv2.pdf
http://competitions.cr.yp.to/round2/triviackv2.pdf
https://doi.org/10.1007/978-3-642-04138-9_20
https://doi.org/10.1007/978-3-540-68351-3_18

744 M. Liu et al.

17. Hell, M., Johansson, T., Maximov, A., Meier, W.: The grain family of stream
ciphers. In: Robshaw, M., Billet, O. (eds.) New Stream Cipher Designs. LNCS,
vol. 4986, pp. 179–190. Springer, Heidelberg (2008)

18. Huang, S., Wang, X., Xu, G., Wang, M., Zhao, J.: Conditional cube attack
on reduced-round Keccak sponge function. In: Coron, J.-S., Nielsen, J.B. (eds.)
EUROCRYPT 2017. LNCS, vol. 10211, pp. 259–288. Springer, Cham (2017)

19. Knellwolf, S., Meier, W., Naya-Plasencia, M.: Conditional differential cryptanalysis
of NLFSR-based cryptosystems. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol.
6477, pp. 130–145. Springer, Heidelberg (2010)

20. Knellwolf, S., Meier, W., Naya-Plasencia, M.: Conditional differential cryptanalysis
of Trivium and KATAN. In: Miri, A., Vaudenay, S. (eds.) SAC 2011. LNCS, vol.
7118, pp. 200–212. Springer, Heidelberg (2012)

21. Lai, X.: Higher order derivatives and differential cryptanalysis. In: Proceedings
Symposium in Communications, Coding Cryptography, pp. 227–233. Kluwer Aca-
demic Publishers (1994)

22. Liu, M.: Degree evaluation of NFSR-based cryptosystems. In: Katz, J., Shacham,
H. (eds.) CRYPTO 2017. LNCS, vol. 10403, pp. 227–249. Springer, Cham (2017)

23. Liu, M., Lin, D., Wang, W.: Searching cubes for testing Boolean functions and its
application to Trivium. In: IEEE International Symposium on Information Theory,
ISIT 2015, Hong Kong, China, 14–19 June 2015, pp. 496–500. IEEE (2015)

24. Maximov, A., Biryukov, A.: Two trivial attacks on Trivium. In: Adams, C., Miri,
A., Wiener, M. (eds.) SAC 2007. LNCS, vol. 4876, pp. 36–55. Springer, Heidelberg
(2007)

25. Meier, W., Staffelbach, O.: Fast correlation attacks on certain stream ciphers. J.
Cryptol. 1(3), 159–176 (1989)

26. Oswald, E., Fischlin, M. (eds.): EUROCRYPT 2015. LNCS, vol. 9056. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5

27. Saarinen, M.O.: Chosen-IV statistical attacks on estream ciphers. In: Malek, M.,
Fernández-Medina, E., Hernando, J. (eds.) SECRYPT 2006, Proceedings of the
International Conference on Security and Cryptography, Setúbal, Portugal, 7–10
August 2006, SECRYPT is part of ICETE - The International Joint Conference
on e-Business and Telecommunications, pp. 260–266. INSTICC Press (2006)

28. Stankovski, P.: Greedy distinguishers and nonrandomness detectors. In: Gong, G.,
Gupta, K.C. (eds.) INDOCRYPT 2010. LNCS, vol. 6498, pp. 210–226. Springer,
Heidelberg (2010)

29. Todo, Y.: Structural evaluation by generalized integral property. In: Oswald and
Fischlin [26], pp. 287–314

30. Todo, Y., Isobe, T., Hao, Y., Meier, W.: Cube attacks on non-blackbox polynomials
based on division property. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS,
vol. 10403, pp. 250–279. Springer, Cham (2017)

31. Todo, Y., Morii, M.: Bit-based division property and application to Simon family.
In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 357–377. Springer, Heidelberg
(2016)

32. Vielhaber, M.: Breaking ONE.FIVIUM by AIDA an algebraic IV differential
attack. IACR Cryptology ePrint Archive, 2007:413 (2007)

https://doi.org/10.1007/978-3-662-46800-5

The Missing Difference Problem,
and Its Applications to Counter

Mode Encryption

Gaëtan Leurent(B) and Ferdinand Sibleyras(B)

Inria, Paris, France
{gaetan.leurent,ferdinand.sibleyras}@inria.fr

Abstract. The counter mode (CTR) is a simple, efficient and widely
used encryption mode using a block cipher. It comes with a security
proof that guarantees no attacks up to the birthday bound (i.e. as long
as the number of encrypted blocks σ satisfies σ � 2n/2), and a matching
attack that can distinguish plaintext/ciphertext pairs from random using
about 2n/2 blocks of data.

The main goal of this paper is to study attacks against the counter
mode beyond this simple distinguisher. We focus on message recovery
attacks, with realistic assumptions about the capabilities of an adversary,
and evaluate the full time complexity of the attacks rather than just the
query complexity. Our main result is an attack to recover a block of
message with complexity Õ(2n/2). This shows that the actual security of
CTR is similar to that of CBC, where collision attacks are well known to
reveal information about the message.

To achieve this result, we study a simple algorithmic problem related
to the security of the CTR mode: the missing difference problem. We give
efficient algorithms for this problem in two practically relevant cases:
where the missing difference is known to be in some linear subspace, and
when the amount of data is higher than strictly required.

As a further application, we show that the second algorithm can also
be used to break some polynomial MACs such as GMAC and Poly1305,
with a universal forgery attack with complexity Õ(22n/3).

Keywords: Modes of operation · CTR · GCM · Poly1305
Cryptanalysis

1 Introduction

Block ciphers (such as DES or the AES) are probably the most widely used
cryptographic primitives. Formally, a block cipher is just a keyed family of per-
mutations over n-bit blocks, but when combined with a mode of operation, it can
provide confidentiality (e.g. using CBC, or CTR), authenticity (e.g. using CBC-
MAC, CMAC, or GMAC), or authenticated encryption (e.g. using GCM, CCM,
or OCB). A mode of operation defines how to divide a message into blocks, and
how to process the blocks one by one with some chaining rule.
c© International Association for Cryptologic Research 2018
J. B. Nielsen and V. Rijmen (Eds.): EUROCRYPT 2018, LNCS 10821, pp. 745–770, 2018.
https://doi.org/10.1007/978-3-319-78375-8_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78375-8_24&domain=pdf

746 G. Leurent and F. Sibleyras

The security of block ciphers is studied with cryptanalysis, with classical
techniques such as differential [8] and linear [27] cryptanalysis, dedicated tech-
niques like the SQUARE attack [9], and ad-hoc improvements for specific targets.
This allows to evaluate the security margin of block ciphers, and today we have a
high confidence that AES or Blowfish are as secure as a family of pseudo-random
permutations with the same parameters (key size and block size).

On the other hand, modes of operation are mostly studied with security
proofs, in order to determine conditions where using a particular mode of oper-
ation is safe. However, exceeding those conditions doesn’t imply that there is an
attack, and even when there is one, it can range from a weak distinguisher to
a devastating key recovery. In order to get a better understanding of the secu-
rity of modes of operations, we must combine lower bound on the security from
security proofs, and upper bounds from attacks.

In particular, most of the modes used today are sensible to birthday attacks
because of collisions; those attacks can even be practical with 64-bit block
ciphers, as shown in [7], but security proofs don’t tell us how dangerous the
attacks are. For instance, the CBC and CTR modes have been proven secure
against chosen plaintext attacks up to σ � 2n/2 blocks of encrypted data [5,35].
Formally, the security statements bound the maximum advantage of an attacker
against the modes as follows:

AdvCPA
CBC−E ≤ Advprp

E + σ2/2n,

AdvCPA
CTR−E ≤ Advprp

E + σ2/2n+1.

Both statement are essentially the same, and become moot when σ reaches 2n/2,
but attacks can actually be quite different.

More precisely, the CBC mode is defined as ci = E(mi⊕ci−1), with E a block
cipher. A collision between two ciphertext blocks ci = cj is expected after 2n/2

blocks, and reveals the xor of two plaintext blocks: mi⊕mj = ci−1⊕cj−1. On the
other hand, the counter mode is defined as ci = E(i)⊕mi. There are no collisions
in the inputs/outputs of E, but this can actually be used by a distinguisher.
Indeed, if an adversary has access to 2n/2 known plaintext/ciphertext pairs, he
can recover E(i) = ci ⊕mi and detect that the values are unique (because E is a
permutation), while collisions would be expected with a random ciphertext. Both
attacks have the same complexity, and show that the corresponding proofs are
tight. However, the loss of security is quite different: the attack against CBC lets
an attacker recover message blocks from collisions (as shown in practice in [7]),
but the attack against the counter mode hardly reveals any useful information.

In general, there is a folklore belief that the leakage of the CTR mode is not
as bad as the leakage of the CBC mode. For instance, Ferguson et al. wrote [15,
Sect. 4.8.2] (in the context of a 128-bit block cipher):

CTR leaks very little data. [...] It would be reasonable to limit the cipher
mode to 260 blocks, which allows you to encrypt 264 bytes but restricts
the leakage to a small fraction of a bit.
When using CBC mode you should be a bit more restrictive. [...] We
suggest limiting CBC encryption to 232 blocks or so.

The Missing Difference Problem, and Its Applications 747

Our Contribution. The main goal of this paper is to study attacks against the
counter mode beyond the simple distinguisher given above. This is an important
security issue, because uses of the CTR mode with 64-bit block ciphers could be
attacked in practice. We consider generic attacks that work for any instance of
the block cipher E, and assume that E behaves as a pseudo-random permutation.
The complexity of the attacks will be determined by the block size n, rather
than the key size, and we focus on the asymptotic complexity, using the Big-O
notation O(), and the Soft-O notation Õ() (ignoring logarithmic factors).

We consider message recovery attacks, where an attacker tries to recover
secret information contained in the message, rather than recovering the encryp-
tion key k. Following recent attacks against HTTPS [2,7,12], we assume that
a fixed message containing both known blocks and secret blocks is encrypted
multiple times (this is common with web cookies, for instance). As shown by
McGrew [28], this kind of attack against the CTR mode can be written as a
simple algorithmic problem: the missing difference problem, defined as follows:
given two functions f, g : X → {0, 1}n, with the promise that there exists a
unique S ∈ {0, 1}n such that ∀(x, y), f(x) ⊕ g(y) �= S, recover S. We further
assume that f and g behave like random functions, and that we are given a set
S ⊆ {0, 1}n, such that S ∈ S (S represents prior knowledge about the secret). In
an attack against the counter mode, f outputs correspond to known keystream
blocks, while g outputs correspond to encryptions of S.

In the information theoretic setting, this problem can be solved with Õ(2n/2)
queries for any set S, and requires at least Ω(2n/2) queries when |S| ≥ 2. How-
ever, the analysis is more complex when taking into account the cost of the
computations required to recover S. McGrew introduces two algorithms for this
problem: a sieving algorithm with Õ(2n/2) queries and time Õ(2n), and a search-
ing algorithm that can be optimized to time and query complexity Õ(2n/2

√|S|).
Our main contribution is to give better algorithms for this problem:

1. An algorithm with Õ(2n/2) queries and time Õ(2n/2 + 2dim〈S〉), in the case
where S is (a subset of) a linear subspace of {0, 1}n. In particular, when S
is a linear subspace of dimension n/2, we reach a time and query complexity
of Õ(2n/2), while the searching algorithm of McGrew has a time and query
complexity of Õ(23n/4).

2. An algorithm with time and query complexity Õ(22n/3) for any S. In partic-
ular, with S = {0, 1}n, the best previous algorithm had a time complexity
of Õ(2n).

We also show new applications of these algorithms. The first algorithm leads
to an efficient message recovery attack with complexity Õ(2n/2) against the
CTR mode, assuming that the adversary can control the position of the secret,
by splitting it across block boundaries (following ideas of [12,32]). The second
algorithm can be used to recover the polynomial key in some polynomial based
MACs such as GMAC and Poly1305, leading to a universal forgery attack with
complexity Õ(22n/3). As far as we know, this is the first universal forgery attack
against those MACs with complexity below 2n.

748 G. Leurent and F. Sibleyras

Related Works. There are several known results about the security of mode
of operation beyond the birthday bound, when the proof is not applicable. For
encryption modes, the security of the CBC mode beyond the birthday bound is
well understood: collision attacks reveal the XOR of two message blocks, and
can exploited in practice [7]. Other modes that allow collisions (eg. CFB) have
the same properties. The goal of this paper is to study the security of modes
that don’t have collisions, to get a similar understanding of their security.

Many interesting attacks have also been found against authentication modes.
In 1995, Preneel and van Oorschot [31] gave a generic collision attack against
all deterministic iterated message authentication codes (MACs), leading to exis-
tential forgeries with complexity O(2n/2). Later, a number of more advanced
generic attacks have been described, with stronger outcomes than existen-
tial forgeries, starting with a key-recovery attack against the envelop MAC
by the same authors [32]. In particular, a series of attack against hash-based
MAC [11,18,25,30] led to universal forgery attacks against long challenges, and
key-recovery attacks when the hash function has an internal checksum (like the
GOST family). Against PMAC, Lee et al. showed a universal forgery attack in
2006 [24]. Later, Fuhr et al. gave a key-recovery attack against the PMAC variant
used in AEZv3 [17]. Issues with GCM authentication with truncated tags were
also pointed out by Ferguson [14].

None of these attacks contradict the proof of security of the scheme they
target, but they are important results to understand the security degradation
after the birthday bound.

Organization of the Paper. We introduce the CTR mode and the missing
difference problem in Sect. 2, and present our algorithmic contributions in Sect. 3.
Then we describe concrete attacks against the CTR mode in Sect. 4, and attacks
against Carter-Wegman MACs in Sect. 5. At last we show detailed proofs and
simulation results in Sect. 6.

2 Message Recovery Attacks on CTR Mode

The CTR mode was first proposed by Diffie and Hellman in 1979 [10]. It was not
included in the first series of standardized modes by NIST [16], but was added
later [13]. The CTR mode essentially turns a block cipher into a stream cipher, by
encrypting some non-repeating counter. It is now a popular mode of operation,
thanks to its parallelizability, speed, and simple design. This led Phillip Rogaway
to write in an evaluation of different privacy modes of operation talking about
CTR [35]: “Overall, usually the best and most modern way to achieve privacy-
only encryption”. In particular, CTR is used as the basic of the authenticated
encryption mode GCM, the most widely used mode in TLS today.

The Missing Difference Problem, and Its Applications 749

0

Ek

m0

c0

m1

c1

Ek

1

m2

c2

Ek

2

m3

c3

Ek

3

Fig. 1. CTR mode

2.1 Setting and Notations

In the following we assume that the counter mode is implemented such that the
input to the block cipher never repeats. For simplicity we consider a stateful
variant of the counter mode with a global counter that is maintained across
messages and initialized as 0 (as shown in Fig. 1):

ci = Ek(i) ⊕ mi,

where Ek is an n-bit block cipher, mi an n-bit block of plaintext and ci an n-bit
block of ciphertext.

Our attacks do not depend on the details of how the input to the block cipher
is constructed, and can also be applied to nonce-based variants1; we only require
that all inputs are different. Note that some variants of the counter mode can
have repetitions in the block cipher input2, but this gives easy attacks because
repetitions leak the xor of two plaintext blocks (as in the CBC mode).

We consider a message recovery attack, where the attacker tries to recover
some secret message block S. Throughout the attack, the key k will be invariant
so we will write Ek(i) as ai to represent the ith block of CTR keystream. We can
immediately notice that if we have partial knowledge of the plaintext, for every
known block mi we can recover the associated ai as ci ⊕mi = ai. Assume further
that we have access to the repeated encryption bj of the secret S so that bj =
aj ⊕ S. The first property of the CTR mode is that Ek(·) being a permutation,
the keystream ai never repeats, thus we have the following inequalities:

i �= j ⇒ ai �= aj ⇒ ai ⊕ aj ⊕ S �= S ⇒ ai ⊕ bj �= S.

From now on we will always assume that we can observe and collect lists of
many ai and bj and use them with the previous inequality to recover S. This
setting is similar to the practical attack Sweet32 on the CBC mode mounted by
Bhargavan and Leurent, using repeated encryptions of an authentication token
to obtain many different ciphertext blocks for the same secret information [7].

1 For instance, GCM concatenates a per-message nonce and a counter within a message.
2 For instance, the treatment of non-default-length nonces in GCM can lead to colli-

sions [23].

750 G. Leurent and F. Sibleyras

Formally, let A ⊆ {0, 1}n be the set of observed keystream blocks, B ⊆
{0, 1}n the set of observed encryptions and S ⊆ {0, 1}n the set of possible
secrets (corresponding to some already known information about S). We define
the missing difference algorithmic problem in terms of set:

Definition 1 (Missing Difference Problem). Given two sets A and B, and
a hint S, find the value S ∈ S such that:

∀(a, b) ∈ A × B, S �= a ⊕ b.

Alternatively, we can consider that the attacker is given oracle access to A and
B though some functions f and g, so that its running time includes calls to f
and g, and computations to recover S. This presentation corresponds to a more
active attack, where the adversary can optimize the size of the sets.

Definition 2 (Missing Difference Problem with Functions). Given two
functions f, g : X → {0, 1}n, and a hint S, find the value S ∈ S such that:

∀(x, y), S �= f(x) ⊕ g(y).

2.2 Previous Work

An attack can only be carried to the end if the secret S is the only value in S
such that ∀(a, b) ∈ A×B, S �= a⊕ b, or else it will be indistinguishable from the
other values that satisfy the same condition (those values could have produced
the same sets with same probability). The coupon collector’s problem predicts
that N out of N different coupons are found after N · HN � N ln N draws
(with HN the N -th harmonic number), assuming uniform distribution of the
draws. In our case we will assume that all the differences a ⊕ b are independent
and uniformly distributed over {0, 1}n \ S, which is a reasonable approximation
validated by our experiments. To carry the attack to the end we require to
collect N = |S|−1 differences thus we will need O(|S| ln |S|) “draws”. A draw is
a couple (a, b) s.t. a⊕b ∈ |S|, otherwise we discard it; it happens with probability
(|S| − 1)/(2n − 1). Therefore we need to observe enough data to have |A| · |B|
in the order of O(2n ln |S|); this may be achieved by having both sets in the
order of O(2n/2

√
ln |S|). This size of the observed sets can be understood as

the query complexity, that is the number of encrypted messages the attacker
will have to intercept in order to carry out the attack. Notice that even for
|S| = O(2n), |A| = |B| = O(

√
n · 2n/2) is quite close to the theoretical lower

bound of O(2n/2) given by the distinguishing attack and the security proof for
the CTR mode. Therefore, message recovery attacks are possible with an (almost)
optimal data complexity. The next question is to study the time complexity, i.e.
how to efficiently recover S.

A first approach consists in computing all the impossible values of S from the
large set of A × B and discard any new value we encounter as impossible until
there’s only one possible plaintext left. This is Algorithm 1. This approach works
but requires to actually compute O(2n ln |S|) values and maintain in memory a

The Missing Difference Problem, and Its Applications 751

Algorithm 1. Simple sieving algorithm
Input: A, B, S
Output: {s ∈ S | ∀(a, b) ∈ A × B, a ⊕ b �= s}

for a in A do
for b in B do

Remove (a ⊕ b) from S;
end for

end for
return S

Algorithm 2. Searching algorithm
Input: A, B, S
Output: {s ∈ S | ∀(a, b) ∈ A × B, a ⊕ b �= s}

Store B so that operation ∈ is efficient.
for s in S do

for a in A do
if (s ⊕ a) ∈ B then

Remove s from S;
end if

end for
end for
return S

sieve of size |S|. In the case where the key size is equal to the block size n, like
AES-128, this attack is actually worse than a simple exhaustive search of the key.
In a 2012 work, McGrew [28] described this sieving algorithm and noticed that
when the set S is small, the sieving wastes a lot of time computing useless values.
Therefore he proposed a second algorithm, Algorithm 2, to test and eliminate
values of S one by one. This algorithm loops over S and A to efficiently test
whether s ⊕ a ∈ B; if yes then we sieve the value s out of S.

Both algorithms act on a sieving set S to reduce it, so McGrew proposed a
hybrid algorithm switching from one algorithm to the other in order to reduce
the searching space as quickly as possible. This improves the attack when A and
B are fixed, but if the adversary can choose the sizes of A and B (in particular,
if he actually has oracle access to functions f and g), then the searching algo-
rithm allows better trade-offs. Indeed, the searching algorithm has a complexity
of O(|B| + |A| · |S|), and is successful as soon as |A| · |B| = Ω(2n ln |S|). To
optimize the complexity, we use |B| = |A| · |S| to obtain an overall complexity
of O(2n/2

√|S| ln |S|) in both time and queries. In particular for small S (of size
polynomial in n) this algorithm is (almost) optimal, reaching the birthday bound
Õ(2n/2).

Starting from these observations we will show improved algorithms to recover
a block of secret information without big exhaustive searches in the next section.

752 G. Leurent and F. Sibleyras

3 Efficient Algorithms for the Missing Difference
Problem

We now propose two new algorithms to solve the missing difference algorithmic
problem more efficiently in two practically relevant different settings. Our first
algorithm requires that the set S — or its linear span 〈S〉 — is a vector space
of relatively small dimension, and has complexity Õ(2n/2 + |〈S〉|). The second
algorithm uses a larger query complexity of Õ(22n/3), to reduce the computation
and memory usage to Õ(22n/3).

3.1 Known Prefix Sieving

In many concrete attack scenarios, an attacker knows some bits of the secret mes-
sage in advance. For instance, an HTTP cookie typically uses ASCII printable
characters, whose high order bit is always set to zero. More generally, we assume
that S is (included in) an affine subspace of {0, 1}n of dimension n − z for some
natural z < n. In order to simplify the attack, we use a bijective affine function
φ that maps S unto {0}z × {0, 1}n−z, and rewrite the problem as follows:

S �= a ⊕ b ⇔ φ(S) �= φ(a ⊕ b), as φ is a bijection.

⇔ φ(S) �= φ(a) ⊕ φ(b) ⊕ φ(0), as φ is affine

Therefore, we can reduce the missing difference problem on A, B, S with
dim(〈S〉) = n − z to the missing difference problem on A′, B′, S ′, where the
secret is known to start with z zeroes:

S ′ := {0}z × {0, 1}n−z

A′ := {φ(a) | a ∈ A}
B′ := {φ(b) ⊕ φ(0) | b ∈ B}

We now introduce a known prefix sieving algorithm (Algorithm 3) to solve this
problem efficiently. The algorithm is quite straightforward; it looks for a prefix
collision before sieving in the same way as before to recover S. The complexity
depend on the dimension n−z; the sieving requires O(2n−z) memory and O((n−
z) · 2n−z) XOR computations in expectation, while looking for collisions only
requires to store the prefix keys and to go through one of the set. Looking for
collisions allows us to skip the computations of many pairs (a, b) that would be
irrelevant as a ⊕ b /∈ S.

The expected number of collisions required to isolate the secret is given by
the coupon collector problem as ln(2n−z)2n−z = ln 2 · (n − z) · 2n−z. Therefore
the total optimized complexity (with balanced sets A and B) to recover an n−z
bits secret with this algorithm is:

O (√
n − z · 2n/2

)
queries

O (
2n−z + n

√
n − z · 2n/2

)
bits of memory (sieving & queries)

O (
(n − z) · 2n−z +

√
n − z · 2n/2

)
operations (sieving & collisions searching)

The Missing Difference Problem, and Its Applications 753

As we can see from the complexity, when z = 0 this is the naive algorithm
with its original complexity. When z nears n, this performs similarly to McGrew’s
searching algorithm i.e. the cost of looking for collisions (or storing B so that
the search is efficient) will dominate the overall cost of the algorithm therefore
the time and query complexity will match. Actually, this algorithm improves
over previous works for intermediate values of z. With z = n/2, we have an
algorithm with complexity Õ(2n/2), while McGrew’s searching algorithm would
require Õ(23n/4) computations in the same setting. The complexity therefore
becomes tractable and we could implement and run this algorithm for n = 64
bits with success, as shown in Sect. 6.2.

Algorithm 3. Known prefix sieving algorithm
Input: n, z < n, A, B, S ⊆ {0}z × {0, 1}n−z

Output: {s ∈ S | ∀(a, b) ∈ A × B, a ⊕ b �= s}
hB ← Empty hash table.
for b in B do

hB [b[0...(z−1)]]
∪← {b[z...(n−1)]}

end for

for a in A do
va ← a[z...(n−1)]

for vb in hB [a[0...(z−1)]] do
Remove 0 ‖ (va ⊕ vb) from S;

end for
end for
return S

3.2 Fast Convolution Sieving

Alternatively, we can reduce the complexity of the sieving algorithm by using
sets A and B of size 2m � 2n/2, rather than Õ(2n/2) as required to uniquely
identify S. If we consider all the values a ⊕ b for (a, b) in A × B, we expect that
they are close to uniformly distributed over {0, 1}n\S, so that every value except
S is reached about 22m−n times, while S is never hit. Increasing m makes the
gap more visible than with sets of size only Õ(2n/2). Therefore, we can consider
buckets of several candidates s, and accumulate the number of a ⊕ b in each
bucket. If we consider buckets of 2t values, each bucket receives 22m+t−n values
on average, but the bucket containing S receives only 22m+t−n −22m−n values. If
we model this number with random variables following a binomial distribution,
the variance σ2 is about 2m+t/2−n/2. Therefore, the bias will be detectable when:
σ � 22m−n, i.e. when t � 2m − n.

Concretely, we use a truncation function T that keeps only n − t bits of an
n-bit word. We consider the values T (a⊕b) for all (a, b) ∈ A×B, and count how
many times each value is reached. If m is large enough, the value with the lowest
counter corresponds to T (S). This attack does not require any prior information

754 G. Leurent and F. Sibleyras

on the secret; it can be used with S = {0, 1}n, and once T (S) is known, we can
use known-prefix sieving to recover the remaining bits (looking for S in an affine
space of dimension t).

We now show an algorithm to quickly count the number of occurrences for
each combination. For a given multi-set X , we consider an array of counters CX ,
to represent how many times each value T (x) is reached:

CX [i] =
∣∣{x ∈ X ∣∣ T (x) = i

}∣∣.

Our goal is to compute CA⊕B efficiently from A and B, where A ⊕ B is the
multi-set {a ⊕ b | (a, b) ∈ A × B}. We observe that:

CA⊕B[i] = |{(a, b) ∈ A × B | T (a ⊕ b) = i}|
=

∑

a∈A
|{b ∈ B | T (a ⊕ b) = i}|

=
∑

a∈A
|{b ∈ B | T (b) = i ⊕ T (a)}|

=
∑

a∈A
CB[i ⊕ T (a)]

=
∑

j∈{0,1}n−t

CA[j]CB[i ⊕ j]

This is a form of convolution that can be computed efficiently only using the
Fast Walsh-Hadamard Transform (Algorithm 4), in the same way we use the Fast
Fourier Transform to compute circular convolutions (see Algorithm 5). Therefore
the full attack (shown in Algorithm 6) takes time Õ(2n−t) using lists of size 2m

with m � (n + t)/2 and a sieve of 2n−t elements.
In order to optimize the attack, we select t = n/3 such that the time com-

plexity, data complexity, and memory usage are all roughly 22n/3. A detailed
analysis in Sect. 6.1 shows that we reach a constant success rate with t = n/3
using lists of size O(

√
n · 22n/3). This gives the following complexity for the full

attack:

O(
√

n · 22n/3) queries
O(n · 22n/3) + O(n

√
n · 2n/2) bits of memory (counters + sieving)

O(n · 22n/3) + O(n
√

n · 2n/2) computations (fast Walsh-Hadamard + sieving)

As seen in Sect. 6.1, we performed experiments with n = 12, 24, 48, and the cor-
rect S was found with the lowest counter in at least 70% of our experiments,
using list of size

√
n22n/3. This validates our approach and shows that the con-

stant in the O notation is small. We could run this algorithm over n = 48 bits
in a matter of minutes.

Optimizations. In order to increase the success rate of the algorithm, one
can test several candidates for T (S) (using the lowest remaining counters), and

The Missing Difference Problem, and Its Applications 755

Algorithm 4. Fast Walsh-Hadamard Transform
Input: CA, |CA| = 2m

Output: The Walsh-Hadamard transform of CA
for d = m downto 0 do

for i = 0 to 2m−d do
for j = 0 to 2d−1 do

CA[i · 2d + j] ← CA[i · 2d + j] + CA[i · 2d + j + 2d−1]
CA[i · 2d + j + 2d−1] ← CA[i · 2d + j] − 2 · CA[i · 2d + j + 2d−1]

end for
end for

end for
return CA

Algorithm 5. Fast convolution
Input: CA, CB
Output: CA⊕B

{Perform fast Walsh-Hadamard transform in-place}
FWHT(CA); FWHT(CB);
for c = 0 to 2n−t do

CA⊕B[c] ← CA[c] · CB[c]
end for
{Perform fast Walsh-Hadamard transform in-place}
FWHT(CA⊕B);
return CA⊕B

Algorithm 6. Sieving with fast convolution
Input: A, B, t ≤ n
Output: S s.t. ∀(a, b) ∈ A × B, a ⊕ b �= S

CA, CB, CA⊕B ← arrays of 2n−t integers initialized to 0;
for a in A do

Increment CA[a0..(n−t−1)]
end for
for b in B do

Increment CB[b0..(n−t−1)]
end for
CA⊕B ← FastConvolution(CA, CB)
u ← argminiCA⊕B[i]
Run known prefix sieving (Algorithm 3), knowing that T (S) = u

use the known-prefix sieving to detect whether the candidate is correct. Another
option is to run multiple independent runs of the algorithm with different choices
of the n/3 truncated bits. This would avoid some bad cases we have observed in
simulations, where the right counter grows abnormally high and gets hidden in
all of the other counters.

For the memory complexity, notice that we don’t need to store all the data
but simply to increment a counter. We only need to keep enough blocks for the

756 G. Leurent and F. Sibleyras

second part of the algorithm so that the sieving yields a unique result. Initially
the counters for CA and CB are quite small,

√
n in expectation. However, CA⊕B

will have much bigger entries, n ·22n/3 in expectation, so that we need O(n) bits
to store each entry.

4 Application to the CTR Mode

We know show how to mount attacks against the counter mode using the new
algorithms for the missing difference problem.

4.1 Attack Using Fast Convolution

Use of the fast convolution algorithm to recover one block of CTR mode plaintext
is straightforward. The attacker is completely passive and observes encryptions
of S (gathered in set B), and keystream blocks recovered from the encryption of
known message blocks (gathered in set A). When the lists are large enough, he
runs the fast convolution algorithm on A and B to recover S.

4.2 Attacks Using Known Prefix Sieving

Direct Attack. There are many settings where unknown plaintext will natu-
rally lie in some known affine subspace, and the known prefix sieving algorithm
can be used directly. For instance a credit card number (or any number) could
be encoded in 16 bytes of ASCII then encrypted. Because in ASCII the encoding
of any digit starts by 0x3 (0x30 to 0x39), we know half of the bits of the plain-
text, and we can use the known-prefix sieving with z = n/2. Other examples are
information encoded by uuencode that uses ASCII values 0x20 to 0x5F (corre-
sponding to two known bits) or HTML authentication cookies that are typically
encoded to some subset of ASCII numbers and letters3.

Block Splitting. We often assume that the secret is encrypted in its own
block, but when the secret is part of the message, it can also be split across
block boundaries, depending on how the plaintext is constructed and encrypted
by the protocol. In particular, if a message block contains both known bytes and
secret bytes, we can apply the known prefix sieving algorithm to this block and
recover the secret bytes.

In many protocols, messages start with some low entropy header that can be
guessed by an attacker. Moreover, the attacker often has some degree of control
over those headers. For instance, in the BEAST attack [12] against HTTPS, an
attacker uses Javascript code to generate HTTPS requests, and he can choose
the URL corresponding to the requests. Using this control of the length of the
header, block splitting attacks have been shown in the BEAST model [12,20].

3 For example, wikipedia.org encodes cookies with lower case letters and digits, this
corresponds to two known bits.

http://wikipedia.org

The Missing Difference Problem, and Its Applications 757

Table 1. Example of an attack on two blocks secret S = S1‖S2‖S3‖S4. Each step
performs the known prefix sieving algorithm. Known information in blue, unknown
information in red, attacked information in yellow.

Queries Q1 with half-block header H1 S1 S2 S3 S4

Queries Q2 with full-block header H1 H2 S1 S2 S3 S4

Reuse Q1 with known S1, S2 H1 S1 S2 S3 S4

Reuse Q2 with known S1, S2, S3 H1 H2 S1 S2 S3 S4

The attacker starts with a header length so that a small chunk of the secret
message is encrypted together with known information, and recovers this secret
chunk. Then he changes the length of the header to recover a second chunk of
the message, using the fact that the first chunk is now known. Eventually, the
full secret can be recovered iteratively.

In our case, the easiest choice is to recover chunks of n/2 bits of secret one by
one, using the known-prefix sieving algorithm with z = n/2. We illustrate this
attack in Table 1, assuming a two-block secret S = S1‖S2‖S3‖S4, and a protocol
that lets the adversary query an encryption of the secret with an arbitrary chosen
prefix:

1. The attacker makes two kind of queries
– Q1 with a known half-block header H1 (E([H1‖S1]‖[S2‖S3]‖[S4]));
– Q2 with a known full-block header H1‖H2 (E([H1‖H2]‖[S1‖S2]‖[S3‖S4])).

2. He first recovers S1 using the known-prefix sieving with the first block of each
type of query. More precisely, he uses A = {E(H1‖H2)} and B = {E(H1‖S1)},
so that the missing difference is 0 ‖ (S1 ⊕ H2).

3. When S1 is known, he can again use known prefix sieving to recover S2,
with the first and second blocks of Q2 queries: A = {E(H1‖H2)} and B =
{E(S1‖S2)}, so that the missing difference is (S1⊕H1)‖(S2⊕H2). To improve
the success rate of this step, he can also consider the first block of Q1 queries
as known keystream.

4. When S2 is known, another round of known prefix sieving reveals S3, e.g.
with A = {E(H1‖H2)} and B = {E(S2‖S3)}, the missing difference is (S2 ⊕
H1)‖(S3 ⊕ H2).

5. Finally, S4 is recovered with a last round of known prefix sieving using
A = {E(H1‖H2)} and B = {E(S3‖S4)}, with missing difference is (S3 ⊕
H1)‖(S4 ⊕ H2).

This gives an algorithm with query complexity of O(
√

n2n/2) to recover repeated
encryption of a secret over multiple blocks in the BEAST attacker model. In
Sect. 6.2, we analyze the constants in the O() and run experiments with n = 64
using locally encrypted data. In particular, we have a success probability higher
than 80% using two lists of 5 × 232 queries with n = 64.

758 G. Leurent and F. Sibleyras

More generally, we show that for n ≥ 32 the success probability of this attack
is at least 99% with lists of size

√
n/2 ·2n/2. With a one block secret, an optimal

attack uses two lists of
√

n/2 · 2n/2 two-block queries: queries [H1‖S1]‖[S2] with
a half-block header, and queries [H1‖H2]‖[S1‖S2] with a full-block header. This
translates to a data complexity of 4

√
n/2·2n/2 blocks. For comparison, an attack

against the CBC mode requires on average 2·2n/2 blocks of data in the ideal case.
Alternatively, an attacker could recover the secret bit by bit. This leads

to a more complex attack in practice, but the complexity is similar, and this
variant could use McGrew’s searching algorithm instead of our known-prefix
sieving algorithm (because in this scenario, we have |S| = 2). We show a detailed
analysis of this variant in Sect. 6.2, taking into account the n steps necessary for
this attack.

4.3 Use of CTR Mode in Communication Protocols

The CTR mode is widely used in internet protocols, in particular as part of
the GCM authenticated encryption mode [29], with the AES block cipher. For
instance, Mozilla telemetry data show that more than 90% of HTTPS connec-
tions from Firefox 58 use AES-GCM4. While attacks against modes with a 128-
bit block cipher are not practical yet, it is important to limit the amount of
data processed with a given key, in order to keep the probability of a successfull
attack negligible, following the guidelines of Luykx and Paterson [26].

Surprisingly, there are also real protocols that use 64-bit block ciphers with
the CTR mode (or variants of the CTR mode), as shown below. Attacks against
those protocols would be (close to) practical, assuming a scenario where an
attacker can generate the encryption of a large number of messages with some
fixed secret.

SSH. Ciphersuites based on the CTR mode were added to SSHv2 in 2006 [4].
In particular, 3DES-CTR is one of the recommended ciphers, but actual usage of
3DES-CTR seems to be rather low [1]. In practice, 3DES-CTR is optionally sup-
ported by the dropbear server, but it is not implemented in OpenSSH. According
to a scan of the full IPv4 space by Censys.io5, around 9% of SSH servers support
3DES-CTR, but actual usage is hard to estimate because it depends on client
configuration.

The SSH specification requires to rekey after 1 GB of data, but an attack is
still possible, although the complexity increases.

3G Telephony. The main encryption algorithm in UMTS telephony is based
on the 64-bit blockcipher Kasumi. The mode of operation, denoted as f8, is
represented in Fig. 2. While this mode in not the CTR mode and was designed
to avoid its weaknesses, our attack can be applied to the first block of ciphertext.

4 https://mzl.la/2GY53Mc, accessed February 8, 2018.
5 https://censys.io/data/22-ssh-banner-full ipv4, scan performed July 5, 2017.

https://mzl.la/2GY53Mc
https://censys.io/data/22-ssh-banner-full_ipv4

The Missing Difference Problem, and Its Applications 759

Indeed the first block of message i is encrypted as ci,0 = mi,0⊕Ek(Ek′(i)), where
the value Ek(Ek′(i)) is unique for all the messages encrypted with a given key.

There is a maximum of 232 messages encrypted with a given key in 3G, but
this only has a small effect on the complexity of attacks.

i

Ek′

0

Ek

mi,0

ci,0

1

Ek

mi,1

ci,1

2

Ek

mi,2

ci,2

Fig. 2. f8 mode (i is a message counter)

Because of the low usage of 3DES-CTR in SSH, and the difficulty of mounting
an attack against 3G telephony in practice, we did not attempt to demonstrate
the attack in practice, but the setting and complexity of our attacks are compa-
rable to recent results on the CBC mode with 64-bit ciphers [7].

4.4 Counter-Measures

As for many modes of operation, the common wisdom to counter this kind of
attacks asks for rekeying before the birthday bound, i.e. before 2n/2 blocks.
However rekeying too close to the birthday bound may not be enough. For
example let’s consider an implementation of a CTR based mode of operation that
rekeys every 2n/2 blocks, Using the same model as previously, and a one-block
secret, an optimal attack uses queries [H1‖S1]‖[S2] with a half-block header, and
queries [H1‖H2]‖[S1‖S2] with a full-block header, where rekeying occurs after
2n/2−2 queries of each type. To recover S1, we use the known prefix sieving
algorithm as previously, but we can only use relations between ciphertext blocks
encrypted with the same key. In each session of 2n/2 blocks, we consider 2n−4

pairs of ciphertext blocks; on average there are 2n/2−4 pairs with the correct
prefix used for sieving. Since we need n/2 · 2n/2 draws to reduce the sieve to a
single element with high probability, we use 8n sessions, i.e. 8n · 2n/2 blocks of
data in total. The same data can be reused to recover S2 when S1 is known.
This should be compared with the previous data complexity of 4

√
n/2 · 2n/2 in

the absence of rekeying.

760 G. Leurent and F. Sibleyras

However, rekeying every 2n/2−16 blocks makes the data complexity goes up to
235n sessions or n · 219+n/2 blocks to recover the secret block. Notice that the
security gain of rekeying is comparable with what is gained in CBC, where rekey-
ing every 2n/2−16 blocks forces increases the data complexity from 2 · 2n/2 to
218 · 2n/2.

5 Application to Wegman-Carter MACs

Because the fast convolution algorithm requires fewer assumptions, it can be
adapted to other modes of operation based on CTR and particularly to Wegman-
Carter type of constructions for MAC. Wegman-Carter MACs use a keyed per-
mutation E and a keyed universal hash function h, with k1 and k2 two private
keys. The input is a message M and a nonce N , and the MAC is defined as:

MAC(N,M) = hk1(M) + Ek2(N)

Again, the construction requires that all block cipher inputs are different. To
apply our attack, we use two fixed message M and M ′, and we capture many
values MAC(N,M) in a list A and values MAC(N ′,M ′) in a list B, all using
unique nonces. Then we solve the missing difference problem to recover hk1(M)−
hk1(M ′) as we know that ∀N �= N ′ : Ek2(N)−Ek2(N ′) �= 0. It is often sufficient
to know this difference and the two messages M and M ′ to recover the key k1.
We give two examples with concrete MAC algorithms.

Galois/Counter Mode. GCM is an authenticated encryption mode with asso-
ciated data, combining the CTR mode for encryption and a Wegman-Carter
MAC based on polynomial evaluation in a Galois field for authentication. It
takes as input a message M that is encrypted and authenticated, and some
associated data A that is authenticated but not encrypted. When used with an
empty message, the resulting MAC is known as GMAC. In our attack, we use
an empty message with one block of authenticated data A, so that the tag is
computed as:

MAC(N,A) = A · H2 ⊕ H ⊕ Ek(N),

with H the hash key and (·) the multiplication in a Galois Field defined by a
public polynomial. So, for two different blocks of authenticated data A and A′

we collect O(
√

n · 22n/3) MACs and perform the fast convolution algorithm to
recover A · H2 ⊕ H ⊕ A′ · H2 ⊕ H = (A ⊕ A′) · H2. We known A ⊕ A′ and the
field is known so we invert that value and recover H2 then compute the square
root and recover the hash key H.

Comparison with previous attacks against GMAC. There are several
known attacks against GCM and GMAC, but none of them seems to allow univer-
sal forgery with just 22n/3 blocks of data and 22n/3 computations. In particular,
Handschuh and Preneel [19] gave a weak-key attack, that can also be used to

The Missing Difference Problem, and Its Applications 761

recover the hash key without weak key assumptions, using roughly 2n/2 mes-
sages of 2n/2 blocks. Later work extended these weak key properties [33,36] but
an attack still requires about 2n blocks in total when no assumptions are made
about the key. We also note that these attacks require access to a verification
oracle, while our attack only uses a MAC oracle.

Some earlier attacks use specific options of the GCM specifications to reach
a lower complexity, but cannot be applied with standard-length IV, and tag:
Ferguson [14] showed an attack when the tag is truncated, and Joux [23] gave
an attack based on non-default IV lengths.

Poly1305. Poly1305 [6] is a MAC scheme following the Wegman-Carter con-
struction, using polynomial evaluation modulo the prime number 2130 − 5. It
uses a keyed 128-bit permutation (usually AES), and the hash function key, r,
has 106 free bits (22 bits of the key are set to 0, including in particular the 4
most significant ones). The message blocks are first padded to 129-bit values ci.
Then the MAC of a q-block message M with nonce N is defined as:

T (M,N) = (((c1rq + c2r
q−1 + ... + cqr) mod 2130 − 5) + Ek(N)) mod 2128.

With the same strategy as above, using two different messages M and M ′ we
recover the missing difference

(((c1 − c′
1)r

q + (c2 − c′
2)r

q−1 + ... + (cq − c′
q)r) mod 2130 − 5) mod 2128.

Moreover, we chose M and M ′ such that ci − c′
i = 0 and cq − c′

q = 1; since by
design, r < 2124 the value recovered is simply the hash key r.

Notice that Poly1305 doesn’t use the XOR operation but a modular addition,
and we have to adapt our algorithms to this case. Luckily, the fast convolution
algorithm can easily be tweaked. First, we keep the 2n/3 least significant bits to
avoid issues the carry, something the XOR operation doesn’t have. Then, when
the lists of counters are up, we need to compute their cyclic convolution, which
is done with a fast convolution algorithm based on the fast Fourier transform
(instead of fast Walsh-Hadamard). Then we verify the value suggested by the
lowest counter by running the known prefix algorithm looking for collisions on the
least significant bits and sieving the modular subtraction of the most significant
bits. This adaptation has similar complexities and proofs than the one described
earlier. Moreover, in the case of Poly1305, one can further adapt the algorithms
to take into account the fact that 22 bits of the key r are fixed at 0 effectively
reducing the dimension of S.

6 Proofs and Simulations

In this section we give some theoretical and simulation results that further sup-
port the claims we made thus far.

762 G. Leurent and F. Sibleyras

6.1 About the Fast Convolution Algorithm

Proof of query complexity for the claim made in Sect. 3.2. Consider, without
loss of generality and for blocks of size n, that we possess a · 22n/3 blocks of
keystream and the same number of blocks of encrypted secret S with a a function
of n. So in this setting we have a2 ·24n/3 different XORed-values possible between
the two lists, that we will consider as independent and uniformly distributed over
2n − 1 values. We will then focus on the 2n/3 bits truncation, T (·), and ignore
the rest. We count the number of occurrences for every truncated values and
store them in two lists of size 22n/3. Using the fast Walsh-Hadamard transform
3 times, Algorithm 5, we can therefore compute the same counters but for all
the XORed-values. We hope that the counter for T (S), the good counter, will
be lower than all of the other counters, the bad counters, with probability Ω(1).
In which case we say the algorithm succeeds.

Let Xc
i represents the fact that the ith value truncates to c, so that Xc

i follows

a Bernoulli distribution and any counter can be written as Xc =
∑a224n/3

i=1 Xc
i .

Now we have to discriminate between the distributions of the good and bad
counters:

Good case c = T (S): Pr(XT (S)
i = 1) = (2n/3 − 1)/2n = 2−2n/3 − 2−n

=⇒ E[XT (S)] = 22n/3a2 − 2n/3a2

Bad case c �= T (S): Pr(Xc
i = 1) = (2n/3)/2n = 2−2n/3

=⇒ E[Xc] = 22n/3a2

Now we are interested by the probability that a bad counter gets a value
below E[XT (S)] as a measure of how distinct the distributions are. Using Chernov
Bound we get for all c �= T (S):

Pr(Xc < E[XT (S)]) = Pr(Xc < (1 − 2−n/3)22n/3a2)

= Pr(Xc < (1 − 2−n/3)E[Xc])

≤ e−((2−n/3)2·22n/3a2)/2) = e−a2/2

And to compute the probability that no bad counter gets below E[XT (S)] we
will have to assume their independence, which is wrong, but we will come back
later to discuss this assumption.

Pr(∀c �= T (S) : Xc ≥ E[XT (S)]) =
∏

c �=T (S)

(
1 − Pr(Xc < E[XT (S)])

)

≥
(
1 − e−a2/2

)22n/3

The Missing Difference Problem, and Its Applications 763

To conclude, we need to find an a = a(n) such that this probability remains
greater than some positive value as n grows. This is clearly achieved with a =
O(

√
n) as for example taking a = 2

√
n√

3·log2(e)
� 0.96

√
n we get:

Pr(∀c �= T (S) : Xc ≥ E[XT (S)]) ≥ (1 − e−a2/2)2
2n/3

≥ (1 − 2−2n/3)2
2n/3

≥ 0.25, ∀n ≥ 3/2

Therefore we can bound the probability of success by the events ‘XT (S) <
E[XT (S)]’, probability � 1/2, and ‘∀c �= T (S) : Xc ≥ E[XT (S)]’, probability at
least 1/4. Then we indeed have a probability of at least 1/8 of having a successful
algorithm. We can conclude that with O(n · 24n/3) XORed-values the algorithm
has probability Ω(1) of succeeding.

Notice that this requires lists of size O(
√

n · 22n/3) but for the proof we
only need the total number of pairs between the two lists. So we can break the
requirement that the two lists are of comparable sizes as long as the product of
their sizes sum up to the order of required values.

On the independence of the counters, this is obviously wrong as they are
bound by the relation

∑
c Xc = a224n/3. However this relation becomes looser

and looser as n grows so the approximation obtained should still be correct
asymptotically. Moreover, the covariances implied are negative i.e. knowing one
draw is big makes the other draws smaller in expectation to compensate. Small
negative covariances will make the distribution look more evenly distributed
in the sense that we can’t observe too many extreme events in a particular
direction which is good for the success rate of the algorithm. So the assumption
of independence may be a conservative one for this complexity analysis.

Simulation Results. We ran simulations for block sizes n = 12, 24, 32 and 48
bits, so that we could do some statistical estimations of the success probability
for this attack. We first create two lists of same size, one of raw keystream output
and one XORed with an n-bit secret S. Then we pass the two lists in Algorithm 5
counting over n′ = 2n/3 bits (unless specified otherwise) to get a list of counters
for each possible XOR outputs on those n′ bits. Then the expected behaviour of
the attack would be to look for a solution whose n′ first bits correspond to the
position of the lowest counter and test this hypothesis with Algorithm 3. If it
returns a unique value then this is S and we are done, if it returns an empty set
then test with the position of the second lowest counter, etc. We can therefore
know the number of key candidates that would be required to recover S and,
over many trials, have an estimation of the probability of success after a given
number of candidates in these parameters.

For block sizes of 12 and 24 we simulated a permutation simply by shuffling
a range into a list. For bigger sizes of 32 and 48 we used the Simon lightweight
cipher from the NSA [3] as that is one of the rare block cipher who can act on
48-bit blocks. We could quickly gather 10 000 runs for each setting except for
the 48-bit blocks simulation where we gathered 756 runs.

764 G. Leurent and F. Sibleyras

20 23 26 29
0

0.2

0.4

0.6

0.8

1

Number of key candidates

P
r(
su
cc
es
s)

n = 12 bits
n = 24 bits

Fig. 3. Results for lists size of 3 · 22n/3

20 23 26 29
0

0.2

0.4

0.6

0.8

1

Number of key candidates
P
r(
su
cc
es
s)

� 4.9 · 22n/3 data
3 · 22n/3 data

Fig. 4. Results for n = 24 bits

20 23 26 29
0

0.2

0.4

0.6

0.8

1

Number of key candidates

P
r(
su
cc
es
s)

counting over 22 bits
counting over 21 bits

Fig. 5. Results for n = 32 bits;√
n22n/3 � 5.66 · 22n/3 data

20 23 26 29
0

0.2

0.4

0.6

0.8

1

Number of key candidates

P
r(
su
cc
es
s)

n = 12
n = 24
n = 48

Fig. 6. Results for
√

n22n/3 data; counting
over 2n/3 bits

In general we observe in Fig. 6 that the algorithm has a good chance of success
with the first few candidates when using the suggested parameters. Moreover the
sensibility with respect to the data complexity (Fig. 4) and to the number of bits
counted over (Fig. 5) is fairly high. These results back up our complexity analysis
and are a good indication that no big constant is ignored by the O() notation.

On the speed at which the probability increases we realized that, despite the
log scale on the x axis, the curves take a straight (Fig. 3) or concave shape (Figs. 5
and 6). That means that the probability of success with the next key candidate

The Missing Difference Problem, and Its Applications 765

decreases very quickly with the number of key candidates already tested and
proved wrong. For example for n = 48 bits (Fig. 6) over 756 trials the right key
candidate was in the 2048 lowest counters in 98.1% of the time but the worst
case found was 1 313 576 and these “very bad” cases push the mean rank of the
right key candidate to 2287 and its sample variance to 2 336 937 008.

For n = 48 bits, one simulation took us 40 min over 10 cores (each step is
highly parallelizable), and 64 gibibytes of RAM for the counters lists.

6.2 About the Known Prefix Sieving Algorithm

We consider two particular settings for the known prefix sieving algorithm and
the corresping block splitting attack, with z = n/2 and z = 1.

Theoretical Bound. We first give a theoretical lower bound to the probability
of success of the sieving when dim(S) = n/2 (i.e. z = n/2), depending on the
query complexity. Every partial collision found helps us to sieve. After collecting
many blocks of keystream and encryption of S let |A| · |B| =: α2n for some α.
Thus we get α2n/2n/2 = α2n/2 partial collisions in expectation. More precisely,
the Chernoff bound gives us a lower bound for the probability of finding at least
(1 − δ)α2n/2 collisions:

p ≥ 1 −
(

e−δ

(1 − δ)(1−δ)

)α2n/2

for any δ > 0.
We see one partial collision as a draw in the coupon collector problem. One

can use the formula in [34] for the tail of coupon collector problem probability
distribution to estimate the chance of success after obtaining β · 2n/2 partial
collisions:

p ≥ 1 − 2−β/ ln(2)+n/2

which is positive whenever β ≥ n/2 · ln(2).
Therefore we bound the probability of success when collecting |A| · |B| =

α2n pairs as the probability of obtaining at least (1 − δ)α2n/2 partial collisions
multiplied by the probability of success after sieving (1 − δ)α2n/2 values:

p ≥
(

1 −
(

e−δ

(1 − δ)(1−δ)

)α2n/2)

·
(

1 − 2−(1−δ)·α/ ln(2)+n/2

)

In particular, with two lists of size
√

n/2 · 2n/2 (i.e. α = n/2), we get p ≥ 0.99
as long as n ≥ 32 (using δ = 2−8).

Simulation Results. We ran simulations with a block size n = 64 bits, and a
secret S of size n/2 = 32 bits, using the Tiny Encryption Algorithm (TEA [37])

766 G. Leurent and F. Sibleyras

20 21 22 23 24 25 26 27 28 29 30 31
0

0.2

0.4

0.6

0.8

1

Number of iterations

P
r(
su
cc
es
s)

Theoretical lower bound with δ = 2−16

Observed among 3700 simulations.

Fig. 7. Probability of success of the known prefix sieving knowing 232 encryptions of a
32-bit secret against the number of chunks of 232 keystream blocks of size n = 64 bits
used.

in CTR mode to encrypt the data. We create two lists, the keystream output list
ai ∈ A, and the encryptions bj = aj ⊕ (0̄‖S) ∈ B. We first produce and sort a
list B with 232 elements then produce, sort and sieve iteratively several lists A
with 232 elements, until the secret S is the only one remaining in the sieve.

One simulation runs in around 20 min over 36 cores, as every steps are
trivially parallelizable: encryption, sorting and sieving. We ran 3700 simula-
tions and tracked how many chunks of 2n/2 = 232 keystream outputs were
needed for sieving. The coupon collector problem predicts that one will need
on average n/2 · ln(2) · 2n/2 partial collisions which will be obtained after
n/2 · ln(2) � 22.18 < 23 rounds in expectation. And indeed the simulations
showed a 64.5% probability of success after 23 iterations. Figure 7 shows the
convergence between the theoretical lower bound and the simulated probabili-
ties. We also noticed that the discrepancy in the number of rounds required is
largely due to the last few candidates remaining in the sieve. If we decided the
attack is successful when we are left with less than 1000 potential candidates for
the secret then the algorithm successfully finishes after 16 rounds every time. In
fact after 16 rounds the number of candidates left varies from 419 to 560 in all
the simulations we have run.

Bit by Bit Secret Recovery. We also want to study the complexity of recov-
ering the secret S bit by bit as an extreme case of the block splitting scenario
described in Sect. 4.2. For simplicity, we consider a setting where one query
returns a block of keystream and the encryption of 0 ‖si with an unknown bit
si. We are interested in the query complexity for recovering n bits of secret one
bit at a time; that is we need to know the first bit to ask for the second one, etc.

The Missing Difference Problem, and Its Applications 767

Clearly this can be done in O(n · 2n/2) queries by repeating n times the attack
on one bit. But the intuition is that we may need less and less queries to uncover
the next bit as we go forward and accumulate blocks of keystream.

Let:

Ui ←The expected number of encryption of 0 ‖si to recover si.

Ki ←The expected number of raw keystream outputs to recover si.

From the definition of a query, the above description and because each time we
find a bit of secret we can deduce a range of keystream blocks for the next step
we have the relations:

K1 = U1 (1)
Ki+1 = Ki + Ui + Ui+1 for i ≥ 1 (2)

Ki · Ui = 2n (in expectation) (3)

We consider the following proposition:

Pi : Ui = 2n/2(
√

i − √
i − 1),

and, using (2), when Pk true for all k ≤ i we have:

Ki = 2
i−1∑

k=1

Uk + Ui = 2n/2(
√

i +
√

i − 1).

Moreover (1) and (3) imply K1 = U1 = 2n/2 so P1 is true. Now suppose Pk true
for all k ≤ i, let’s prove it holds for Pi+1:

Ki+1 · Ui+1 = 2n by (3)

=⇒ U2
i+1 + (Ki + Ui) · Ui+1 − 2n = 0 by (2)

=⇒ U2
i+1 + 2n/2 · 2

√
i · Ui+1 − 2n = 0 byPi

=⇒ Ui+1 = 2n/2(
√

i + 1 −
√

i) as Ui+1 ≥ 0
=⇒ Pi+1 is true.

Now that we have a closed form for Ui we can deduce the expected number of
queries needed to recover n bits of secret by summing over as

∑n
i=1 Ui = 2n/2

√
n.

Therefore the query complexity is really O(
√

n · 2n/2) ignoring a constant
depending on the length of a query. Notice that this complexity is the same as
when sieving S as a whole showing that we don’t grow the query complexity by
more than a constant with this strategy.

7 Conclusion

In this work, we have studied the missing difference problem and its relation
to the security of the CTR mode. We have given efficient algorithms for the

768 G. Leurent and F. Sibleyras

missing difference problem in two practically relevant cases: with an arbitrary
missing difference, and when the missing difference is known to be in some
low-dimension vector space. These algorithms lead to a message-recovery attack
against the CTR mode with complexity Õ(2n/2), and a universal forgery attack
against some Carter-Wegman MACs with complexity Õ(22n/3).

In particular, we show that message-recovery attacks against the CTR mode
can be mounted with roughly the same requirements and the same complexity as
attacks against the CBC mode. While both modes have similar security proofs,
there was a folklore assumption that the security loss of the CTR mode with
large amounts of data is slower than in the CBC mode, because the absence
of collision in the CTR keystream is harder to exploit than CBC collisions [15,
Sect. 4.8.2]. Our results show that this is baseless, and use of the CTR mode with
64-bit block ciphers should be considered unsafe (unless strict data limits are
in place). As a counter-measure, we recommend to use larger block sizes, and
to rekey well before 2n/2 blocks of data. Concrete guidelines for 128-bit block
ciphers have been given by Luykx and Paterson [26]. Alternatively, if the use of
small block is required, we suggest using a mode with provable security beyond
the birthday bound, such as CENC [21,22].

Our missing difference attacks against CTR and the collision attacks against
CBC are two different possible failure of block cipher modes beyond the birth-
day bound. They exploit different properties of the modes but result in similar
attacks. These techniques can be used against other modes of operations (OFB,
CFB, . . .), and most of them will be vulnerable to at least one the attacks, unless
they have been specially designed to provide security beyond the birthday bound.

Acknowledgement. Part of this work was supported by the French DGA, and the
authors are partially supported by the French Agence Nationale de la Recherche
through the BRUTUS project under Contract ANR-14-CE28-0015.

References

1. Albrecht, M.R., Degabriele, J.P., Hansen, T.B., Paterson, K.G.: A surfeit of SSH
cipher suites. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi,
S. (eds.) ACM CCS 2016, pp. 1480–1491. ACM Press, October 2016

2. AlFardan, N.J., Bernstein, D.J., Paterson, K.G., Poettering, B., Schuldt, J.C.N.:
On the security of RC4 in TLS. In: King, S.T. (ed.) USENIX Security 2013, pp.
305–320. USENIX Association (2013)

3. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.:
SIMON and SPECK: Block ciphers for the internet of things. Cryptology ePrint
Archive, Report 2015/585 (2015). http://eprint.iacr.org/2015/585

4. Bellare, M., Kohno, T., Namprempre, C.: The Secure Shell (SSH) Transport Layer
Encryption Modes. IETF RFC 4344 (2006)

5. Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A concrete security treatment of
symmetric encryption. In: 38th FOCS, pp. 394–403. IEEE Computer Society Press,
October 1997

6. Bernstein, D.J.: The Poly1305-AES message-authentication code. In: Gilbert, H.,
Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 32–49. Springer, Heidelberg
(2005). https://doi.org/10.1007/11502760 3

http://eprint.iacr.org/2015/585
https://doi.org/10.1007/11502760_3

The Missing Difference Problem, and Its Applications 769

7. Bhargavan, K., Leurent, G.: On the practical (in-)security of 64-bit block ciphers:
collision attacks on HTTP over TLS and OpenVPN. In: Weippl, E.R., Katzen-
beisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM CCS 2016, pp. 456–467.
ACM Press, October 2016

8. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. J.
Cryptol. 4(1), 3–72 (1991). https://doi.org/10.1007/BF00630563

9. Daemen, J., Knudsen, L., Rijmen, V.: The block cipher Square. In: Biham, E. (ed.)
FSE 1997. LNCS, vol. 1267, pp. 149–165. Springer, Heidelberg (1997). https://doi.
org/10.1007/BFb0052343

10. Diffie, W., Hellman, M.E.: Privacy and authentication: an introduction to cryp-
tography. Proc. IEEE 67(3), 397–427 (1979)

11. Dinur, I., Leurent, G.: Improved generic attacks against hash-based MACs and
HAIFA. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol.
8616, pp. 149–168. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-44371-2 9

12. Duong, T., Rizzo, J.: Here come the ⊕ ninjas (2011)
13. Dworkin, M.: Recommendation for Block Cipher Modes of Operation: Methods and

Techniques. NIST Special Publication 800–38A, National Institute for Standards
and Technology, December 2001

14. Ferguson, N.: Authentication weaknesses in GCM. Comment to NIST (2005).
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/comments/CWC-
GCM/Ferguson2.pdf

15. Ferguson, N., Schneier, B., Kohno, T.: Cryptography Engineering: Design Princi-
ples and Practical Applications. Wiley, New York (2011)

16. DES Modes of Operation. NIST Special Publication 81, National Institute for
Standards and Technology, December 1980

17. Fuhr, T., Leurent, G., Suder, V.: Collision attacks against CAESAR candidates.
In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015, Part II. LNCS, vol. 9453, pp.
510–532. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48800-
3 21

18. Guo, J., Peyrin, T., Sasaki, Y., Wang, L.: Updates on generic attacks against
HMAC and NMAC. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I.
LNCS, vol. 8616, pp. 131–148. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-662-44371-2 8

19. Handschuh, H., Preneel, B.: Key-recovery attacks on universal hash function based
MAC algorithms. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 144–
161. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5 9

20. Hoang, V.T., Reyhanitabar, R., Rogaway, P., Vizár, D.: Online authenticated-
encryption and its nonce-reuse misuse-resistance. In: Gennaro, R., Robshaw, M.
(eds.) CRYPTO 2015, Part I. LNCS, vol. 9215, pp. 493–517. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-47989-6 24

21. Iwata, T.: New blockcipher modes of operation with beyond the birthday bound
security. In: Robshaw, M. (ed.) FSE 2006. LNCS, vol. 4047, pp. 310–327. Springer,
Heidelberg (2006). https://doi.org/10.1007/11799313 20

22. Iwata, T., Mennink, B., Vizár, D.: CENC is optimally secure. Cryptology ePrint
Archive, Report 2016/1087 (2016). http://eprint.iacr.org/2016/1087

23. Joux, A.: Authentication failures in NIST version of GCM. Comment to NIST
(2006). http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/comments/800-
38 Series-Drafts/GCM/Joux comments.pdf

https://doi.org/10.1007/BF00630563
https://doi.org/10.1007/BFb0052343
https://doi.org/10.1007/BFb0052343
https://doi.org/10.1007/978-3-662-44371-2_9
https://doi.org/10.1007/978-3-662-44371-2_9
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/comments/CWC-GCM/Ferguson2.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/comments/CWC-GCM/Ferguson2.pdf
https://doi.org/10.1007/978-3-662-48800-3_21
https://doi.org/10.1007/978-3-662-48800-3_21
https://doi.org/10.1007/978-3-662-44371-2_8
https://doi.org/10.1007/978-3-662-44371-2_8
https://doi.org/10.1007/978-3-540-85174-5_9
https://doi.org/10.1007/978-3-662-47989-6_24
https://doi.org/10.1007/11799313_20
http://eprint.iacr.org/2016/1087
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/comments/800-38_Series-Drafts/GCM/Joux_comments.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/comments/800-38_Series-Drafts/GCM/Joux_comments.pdf

770 G. Leurent and F. Sibleyras

24. Lee, C., Kim, J., Sung, J., Hong, S., Lee, S.: Forgery and key recovery attacks
on PMAC and Mitchell’s TMAC variant. In: Batten, L.M., Safavi-Naini, R. (eds.)
ACISP 2006. LNCS, vol. 4058, pp. 421–431. Springer, Heidelberg (2006). https://
doi.org/10.1007/11780656 35

25. Leurent, G., Peyrin, T., Wang, L.: New generic attacks against hash-based MACs.
In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270, pp.
1–20. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42045-0 1

26. Luykx, A., Paterson, K.G.: Limits on authenticated encryption use in TLS, March
2016. http://www.isg.rhul.ac.uk/∼kp/TLS-AEbounds.pdf

27. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994).
https://doi.org/10.1007/3-540-48285-7 33

28. McGrew, D.: Impossible plaintext cryptanalysis and probable-plaintext collision
attacks of 64-bit block cipher modes. Cryptology ePrint Archive, Report 2012/623.
Accepted to FSE 2013 (2012). http://eprint.iacr.org/2012/623

29. McGrew, D.A., Viega, J.: The security and performance of the Galois/counter
mode (GCM) of operation. In: Canteaut, A., Viswanathan, K. (eds.) INDOCRYPT
2004. LNCS, vol. 3348, pp. 343–355. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-30556-9 27

30. Peyrin, T., Wang, L.: Generic universal forgery attack on iterative hash-based
MACs. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol.
8441, pp. 147–164. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
642-55220-5 9

31. Preneel, B., van Oorschot, P.C.: MDx-MAC and building fast MACs from hash
functions. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 1–14.
Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-44750-4 1

32. Preneel, B., van Oorschot, P.C.: On the security of two MAC algorithms. In: Mau-
rer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 19–32. Springer, Heidelberg
(1996). https://doi.org/10.1007/3-540-68339-9 3

33. Procter, G., Cid, C.: On weak keys and forgery attacks against polynomial-based
MAC schemes. J. Cryptol. 28(4), 769–795 (2015)

34. Rajeev, M., Prabhakar, R.: Randomized Algorithms. Cambridge University Press,
New York (1995)

35. Rogaway, P.: Evaluation of some blockcipher modes of operation (2011)
36. Saarinen, M.-J.O.: Cycling attacks on GCM, GHASH and other polynomial MACs

and hashes. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol. 7549, pp. 216–225.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34047-5 13

37. Wheeler, D.J., Needham, R.M.: TEA, a tiny encryption algorithm. In: Preneel,
B. (ed.) FSE 1994. LNCS, vol. 1008, pp. 363–366. Springer, Heidelberg (1995).
https://doi.org/10.1007/3-540-60590-8 29

https://doi.org/10.1007/11780656_35
https://doi.org/10.1007/11780656_35
https://doi.org/10.1007/978-3-642-42045-0_1
http://www.isg.rhul.ac.uk/~kp/TLS-AEbounds.pdf
https://doi.org/10.1007/3-540-48285-7_33
http://eprint.iacr.org/2012/623
https://doi.org/10.1007/978-3-540-30556-9_27
https://doi.org/10.1007/978-3-540-30556-9_27
https://doi.org/10.1007/978-3-642-55220-5_9
https://doi.org/10.1007/978-3-642-55220-5_9
https://doi.org/10.1007/3-540-44750-4_1
https://doi.org/10.1007/3-540-68339-9_3
https://doi.org/10.1007/978-3-642-34047-5_13
https://doi.org/10.1007/3-540-60590-8_29

Fast Near Collision Attack on the Grain v1
Stream Cipher

Bin Zhang1,2,3,4(B), Chao Xu1,2, and Willi Meier5

1 TCA Laboratory, SKLCS, Institute of Software,
Chinese Academy of Sciences, Beijing, China

{zhangbin,xuchao}@tca.iscas.ac.cn
2 State Key Laboratory of Cryptology, P.O. Box 5159, Beijing 100878, China

3 University of Chinese Academy of Sciences, Beijing 100049, China
4 State Key Laboratory of Information Security, Institute of Information

Engineering, Chinese Academy of Sciences, Beijing, China
5 FHNW, Windisch, Switzerland

willi.meier@fhnw.ch

Abstract. Modern stream ciphers often adopt a large internal state to
resist various attacks, where the cryptanalysts have to deal with a large
number of variables when mounting state recovery attacks. In this paper,
we propose a general new cryptanalytic method on stream ciphers, called
fast near collision attack, to address this situation. It combines a near
collision property with the divide-and-conquer strategy so that only sub-
sets of the internal state, associated with different keystream vectors, are
recovered first and merged carefully later to retrieve the full large internal
state. A self-contained method is introduced and improved to derive the
target subset of the internal state from the partial state difference effi-
ciently. As an application, we propose a new key recovery attack on Grain
v1, one of the 7 finalists selected by the eSTREAM project, in the single-
key setting. Both the pre-computation and the online phases are tailored
according to its internal structure, to provide an attack for any fixed IV
in 275.7 cipher ticks after the pre-computation of 28.1 cipher ticks, given
228-bit memory and about 219 keystream bits. Practical experiments on
Grain v1 itself whenever possible and on a 80-bit reduced version con-
firmed our results.

Keywords: Cryptanalysis · Stream ciphers · Grain · Near collision

1 Introduction

As a rule of thumb, the internal state size of modern stream ciphers is at least
twice as large as the key size, e.g., all the eSTREAM finalists follow this princi-
ple, which considerably complicates cryptanalysis. As a typical case, Grain v1,
designed by Hell et al. [8,10], has an internal state size of 160 bits with a 80-bit
key. Grain v1 has successfully withstood huge cryptanalytic efforts thus far in
the single key model [2,5,15,18].
c© International Association for Cryptologic Research 2018
J. B. Nielsen and V. Rijmen (Eds.): EUROCRYPT 2018, LNCS 10821, pp. 771–802, 2018.
https://doi.org/10.1007/978-3-319-78375-8_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78375-8_25&domain=pdf

772 B. Zhang et al.

In this paper, we propose a general new cryptanalytic framework on stream
ciphers, called fast near collision attack (FNCA). Given a keystream prefix,
finding a corresponding internal state of the stream cipher that generates it is
equivalent to determining a preimage of the output of a specific function F . For
our purpose, it is assumed that each component function of F can be rewrit-
ten in a way that depends on only few variables or combinations of the original
variables, which is indeed the case for many stream ciphers. The new strategy is
based on a combination of the birthday paradox with respect to near collisions
and local differential properties of the component functions. To deal with the
situation that F has a large number of variables, the near collision property is
combined with a divide-and-conquer strategy so that only subsets of the internal
state, associated with different keystream vectors, are restored first and merged
carefully later to retrieve the full large internal state. The subset of the internal
state associated with a specified keystream vector is called the restricted internal
state of the corresponding keystream vector. It is observed that the keystream
segment difference (KSD) of a given keystream vector only depends on the inter-
nal state difference (ISD) and the value of the restricted internal state, i.e., only
the differences and the values in the restricted internal state can affect the KSD
of a specified keystream vector, whatever the difference distribution and state
values in the other parts of the full internal state. Thus, we could apply the near
collision idea to this restricted internal state, rather than to the whole internal
state. Then a self-contained method [16] is introduced and improved to derive
the target subset of the internal state from the partial state difference efficiently.
The observation here is that instead of collecting two keystream vector sets to
find a near collision state pair, we only collect one set and virtualize the other
by directly computing it. An efficient distilling technique is suggested to prop-
erly maintain the size of the candidates subset so that the correct candidate
is contained in this subset with a higher probability than in a purely random
situation. The attack consists of two phases. In the pre-computation phase, we
prepare a list of differential look-up tables which are often quite small because
of the local differential properties of F . Thus the preprocessing complexity is
significantly reduced due to the relatively small number of involved variables.
These small tables are carefully exploited in the online phase to determine a
series of local candidate sets, which are merged carefully to cover a larger partial
state. From this partial state, we aim to recover the full internal state according
to the concrete structure of the primitive.

As our main application, we mount a fast near collision attack against Grain
v1, one of the 3 finalists selected by the eSTREAM project for restricted hard-
ware environments. In addition to the above general strategies, we further reduce
the number of variables associated with a specified keystream vector by rewrit-
ing variables according to the internal structure of Grain v1 and making some
state variables linearly dependent on the others, similar to the linear enumera-
tion procedure in the BSW sampling in [4]. We first focus on the state recovery
of the LFSR together with some partial information on the NFSR. Then a new
property in the keystream generation of Grain v1 is exploited in the proposed

Fast Near Collision Attack on the Grain v1 Stream Cipher 773

Z-technique: given the keystream and the LFSR, it is possible to construct a
number of keystream chains to efficiently find out some linear equations on the
original NFSR variables, which further reduce the number of unknown vari-
ables in the NFSR initial state. Given the LFSR part, Grain v1 degrades into
a dynamically linearly filtered NFSR in forward direction and a pure linearly
filtered NFSR in backward direction. In both cases, all the NFSR internal state
variables can be formally expressed as a linear combination of the initial state
variables and of some keystream bits [3]. Taking into account that the best linear
approximation of the NFSR feedback function in Grain v1 has a bias of 41

512 , we
could construct a system of parity-checks of weight 2 on an even smaller number
of the initial NFSR variables with a low complexity. These parity-checks need
not to be solved, but can be used as a distinguisher via the Fast Walsh Trans-
form (FWT), called the Walsh distinguisher. The correct LFSR candidate could
be identified directly from a glance at the distribution of the Walsh spectrum.
Thus, we determine the LFSR part in Grain v1 independent of the NFSR state,
which releases the complexity issue if the whole internal state is treated together.
Finally, the left NFSR state could be restored easily by an algebraic attack with
a complexity much lower than the above dominated step and the list of remain-
ing candidates could be tested with the consistency of the available keystream
to yield the correct one. As a result, both the pre-computation and the online
attack phases are tailored to provide a state/key recovery attack1 on Grain v1
in the single-key setting with an arbitrary known IV in 275.7 cipher ticks after
a pre-computation of 28.1 cipher ticks, given 228-bit memory and around 219

keystream bits, which is the best key recovery attack against Grain v1 so far
and manages to remove the two unresolved assumptions in complexity manip-
ulation in the previous near collision attack at FSE 2013. This attack is about
211.7 times faster than the exhaustive search2. Our results have been verified
both on Grain v1 itself whenever possible and on a reduced version of Grain
v1 with a 40-bit LFSR and a 40-bit NFSR in experiments. A comparison of our
attack with the exhaustive search is depicted in Table 1. In summary, though the
whole structure of Grain v1 is sound, here we list some properties that facilitate
our attack.

– The state size is exactly 160 bits with respect to the 80-bit security.
– The whole system will degrade into a linearly filtered NFSR after knowing

the LFSR.
– There is a good linear approximation of the updating function of the NFSR.
– The 2-bit keystream vector depends on a relatively small number of variables

after rewriting variables.

1 Due to the invertible state updating, a state recovery attack on Grain v1 could be
converted into a key recovery attack directly.

2 The brute force attack with an expected complexity of 287.4 cipher ticks is shown in
[18]. Besides, NCA-2.0 [18] requires a huge pre-computation and memory complex-
ities; while NCA-3.0 [18] is based on two assumptions which remains to be verified
on Grain v1 itself.

774 B. Zhang et al.

Table 1. Comparison with the best previous attack on the full Grain v1

Attack Complexities

Pre-comp Data Memory Time

Brute force - 27.4 27.4 287.4

NCA-2.0 [18] 283.4 262 265.9 276.1

This paper 28.1 219 228 275.7

The time complexity unit here is 1 cipher tick as in
[18] and the data/memory complexity unit is 1 bit.

Outline. A brief description of the Grain v1 stream cipher is presented in Sect. 2.
Then, some preliminaries relevant to our work are presented in Sect. 3 together
with a brief review of the previous near collision attack in [18]. The framework of
FNCA is established with the theoretical analysis in Sect. 4 and then applied to
Grain v1 in Sect. 5, respectively. In Sect. 6, practical simulations both on Grain
v1 itself and on the reduced version are provided. Finally, some conclusions are
drawn and future work is pointed out in Sect. 7.

2 Description of Grain v1

Grain v1 is a bit-oriented stream cipher, which consists of a pair of linked 80-
bit shift registers, one is a linear feedback shift register (LFSR) and another
is a non-linear feedback shift register (NFSR), whose states are denoted by
(li, li+1, ..., li+79) and (ni, ni+1, ..., ni+79) respectively. The updating function of
the LFSR is li+80 = li+62 ⊕ li+51 ⊕ li+38 ⊕ li+23 ⊕ li+13 ⊕ li and the updating
function of the NFSR is

ni+80 = li ⊕ ni+62 ⊕ ni+60 ⊕ ni+52 ⊕ ni+45 ⊕ ni+37 ⊕ ni+33 ⊕ ni+28 ⊕ ni+21

⊕ni+14 ⊕ ni+9 ⊕ ni ⊕ ni+63ni+60 ⊕ ni+37ni+33 ⊕ ni+15ni+9

⊕ni+60ni+52ni+45 ⊕ ni+33ni+28ni+21 ⊕ ni+63ni+45ni+28ni+9

⊕ni+60ni+52ni+37ni+33 ⊕ ni+63ni+60ni+21ni+15

⊕ni+63ni+60ni+52ni+45ni+37 ⊕ ni+33ni+28ni+21ni+15ni+9

⊕ni+52ni+45ni+37ni+33ni+28ni+21.

The keystream generation phase, shown in Fig. 1, works as follows. The com-
bined NFSR-LFSR internal state is filtered by a non-linear boolean function
h(x) = x1⊕x4⊕x0x3⊕x2x3⊕x3x4⊕x0x1x2⊕x0x2x3⊕x0x2x4⊕x1x2x4⊕x2x3x4,
which is chosen to be balanced and correlation immune of the first order with
the variables x0, x1, x2, x3 and x4 corresponding to the tap positions li+3, li+25,
li+46, li+64 and ni+63 respectively. The output zi is taken as zi =

⊕
k∈A ni+k ⊕

h(li+3, li+25, li+46, li+64, ni+63), where A = {1, 2, 4, 10, 31, 43, 56}. The details of
the initialization phase are omitted here, the only property relevant to our work
is that the initialization phase is invertible.

Fast Near Collision Attack on the Grain v1 Stream Cipher 775

Fig. 1. Keystream generation of Grain v1

3 Preliminaries

In this section, some basic definitions and lemmas are presented with a brief
review of the previous near collision attack on Grain v1 in [18]. The following
notations are used hereafter.

– wH(·): the Hamming weight of the input argument.
– d: the Hamming weight of the internal state difference (ISD).
– l: the bit length of the keystream vector.
– n: the bit length of the internal state, whether restricted or not.
– Δx: the value of the ISD, whether restricted or not.
– V (n, d): the total number of the ISDs with wH(Δx) ≤ d.
– Ω: the number of CPU-cycles to generate 1 bit keystream in Grain v1 in

software.

3.1 Basic Conceptions and Lemmas

Let Bd = {Δx ∈ F
n
2 |wH(Δx) ≤ d} = {Δx1,Δx2, ...,ΔxV (n,d)} and |Bd| =

V (n, d) =
∑d

i=0

(
n
i

)
, where | · | denotes the cardinality of a set. Two n-bit strings

s, s′ are said to be d-near-collision, if wH(s⊕s′) ≤ d holds. Similar to the birthday
paradox, which states that two random subsets of a space with 2n elements are
expected to intersect when the product of their sizes exceeds 2n, we present the
following generalized lemma, which includes the d-near-collision Lemma in [18]
as a special case.

Lemma 1. Given two random sets A and B consisting of n-bit elements and
a condition set D, then there exists a pair (a, b) ∈ A × B satisfying one of the
conditions in D if

|A| · |B| ≥ c · 2n

|D| (1)

holds, where c is a constant that determines the existence probability of one good
pair (a, b).

Proof. We regard each ai ∈ A and bj ∈ B as an uniformly distributed random
variable with the realization values in F

n
2 . Let A = {a1, a2, ..., a|A|} and B =

776 B. Zhang et al.

{b1, b2, ..., b|B|}, we represent the event that a pair (ai, bj) ∈ A × B satisfies one
of the conditions in D briefly as (ai, bj) ∈ D. Let φ be the characteristic function
of the event φ((ai, bj) ∈ D), i.e.,

φ((ai, bj) ∈ D) =
{

1 if (ai, bj) ∈ D
0 otherwise.

For 1 ≤ i ≤ |A| and 1 ≤ j ≤ |B|, the number NA,B(D) of good pairs (ai, bj)
satisfying (ai, bj) ∈ D is NA,B(D) =

∑|A|
i=1

∑|B|
j=1 φ((ai, bj) ∈ D). Thus, the

expected value of NA,B(D) of the pairwise independent random variables can be
computed as E(NA,B(D)) = |A| · |B| · |D|

2n . Therefore, if we choose the sizes of A
and B satisfying Eq. (1), the expected number of good pairs is at least c. ��
While when D = Bd, Lemma 1 reduces to the d-near-collision Lemma in [18],
Lemma 1 itself is much more general in the sense that D could be an arbi-
trary condition set chosen by the adversary, which provides a lot of freedom for
cryptanalysis. Another issue is the choice of c. In [16], the relation between the
choice of the constant c and the existence probability of a d-near-collision pair
is illustrated as follows for random samples:

Pr(d-near-collision) =

⎧
⎨

⎩

0.606 if c = 1
0.946 if c = 3
0.992 if c = 5.

As stated in [16], these relations are obtained from the random experiments with
a modest size, i.e., for each c value, 100 strings of length 40 to 49 for d-values
from 10 to 15 are generated, not in a real cipher setting.

Remarks. In a concrete primitive scenario, it is found that the constant c some-
times needs to be even larger to assure a high existence probability of near colli-
sion good pairs. In our experiments, we find that the above relation does not hold
for Grain v1 and its reduced versions. In these cases, we have to set c = 8 or even
c = 10 to have an existence probability as high as desirable for the subsequent
attack procedures. We believe that for each cipher, the choice of the constant c
and its correspondence to the existence probability of a near collision pair is a
fundamental measure related to the security of the primitive. The following fact
is used in our new attack.

Corollary 1. For a specified cipher and a chosen constant c, let A and B be
the internal state subsets associated with the observable keystream vectors, where
each element of A and B is of n-bit length. If we choose |A| = 1 and |B| ≥ c · 2n

|D| ,
then there exists an element bi ∈ B such that the pair (a, bi) with the only element
a ∈ A forms a d-near collision pair with a probability dependent on c.

Note that in the near collision setting, the bits in the restricted internal state
may be nonadjacent. These bit positions are determined by the tap positions of
the composition mapping of the output function if only a short prefix is chosen
by the adversary and also dependent on the state updating function, whether

Fast Near Collision Attack on the Grain v1 Stream Cipher 777

linear or non-linear, if some inconsecutive, or even far away, keystream bits are
chosen to be considered together.

In [18], the two sets A and B are chosen to be of equal size, i.e., |A| = |B| to
minimize the data complexity, in which case the adversary has to deal with all
the candidate state positions one-by-one. Instead, Corollary 1 is used in our new
attack on Grain v1 via the self-contained method introduced later in Sect. 4.3, to
restore the restricted internal state defined below, at a specified chosen position
along the keystream segment under consideration.

Definition 1. For a specified cipher, the subset x = (xi0 , xi1 , . . . , xin−1) of the
full internal state associated with a given keystream vector z = (zj0 , zj1 , . . . , zjl−1)
is called the restricted internal state associated with z.

We choose the following definition of the restricted BSW sampling resistance in
stream ciphers.

Definition 2. Let z = (zj0 , zj1 , . . . , zjl−1) be the known keystream vector
selected by the adversary, if l internal state bits in the restricted internal state
x associated with z could be represented explicitly by z and the other bits in x, l
is called the restricted BSW sampling resistance corresponding to (x, z).

It is well known that Grain v1 has a sampling resistance of at least 18 [18],
thus from Definition 2, we have l ≤ 18. Actually, we prefer to consider small
values of l in our analysis to reduce the memory complexity and to facilitate the
verification of theoretical predictions. Note that here the indices j0, j1, . . . , jl−1,
either consecutive or inconsecutive, could be chosen arbitrarily by the adver-
sary. The restricted BSW sampling inherits the linear enumeration nature of the
classical BSW sampling in [4], but unlike the classical BSW sampling, the new
sampling does not try to push this enumeration procedure as far as possible, it
just enumerates a suitable number of steps and then terminates.

3.2 The Previous Near Collision Attack

At FSE 2013, a near collision attack on Grain v1 was proposed in [18], trying
to identify a near collision in the whole internal state at different time instants
and to restore the two involved states accordingly. For such an inner state pair,
the keystream prefixes they generate will be similar to each other and the dis-
tribution of the KSDs are non-uniform.

The adversary first intends to store the mapping from the specific KSDs to the
possible ISDs of the full inner state with the sorted occurring probabilities in the
pre-computed tables. Then in the online phase, he/she tries to recover the cor-
rect ISD by utilizing the pre-computed tables, then the two internal states from
the determined ISD. The crucial problem here is to examine a large number of
possible pairs whether they are truly near collision or not. In this process, strong
wrong-candidate filter with a low complexity is needed, while in its form in [18],
the reducing effect is not so satisfactory. In order to overcome this problem, the
BSW sampling property and the special table techniques are briefly outlined

778 B. Zhang et al.

based on two assumptions, which are essential for the complexity manipula-
tion from the 64-bit reduced version experiments to the full version theoretical
attack. In [18], the examination of the candidate state pairs is executed by first
recovering the two internal states from the specified ISD. For the LFSR part,
this is of no problem since the LFSR updates independently; but for the NFSR
part, it is really a problem in [18]. Though the adversary knows the two specified
keystream vectors and their corresponding ISD, it is still difficult to restore the
full 80-bit NFSR state in such an efficient way that this routine could be invoked
a large number of times. Besides, the special table technique assumes that about
50% of all the possible ISDs could be covered on average, which is very hard to
verify for the full Grain v1, thus the successful probability of this attack cannot
be guaranteed.

In the following, we will show that the adversary need not to recover the full
internal state at once when making the examination, actually specified subsets
of the internal state could be restored more efficiently than previously thought to
be possible, thus the time/memory complexities of the new attack can be consid-
erably reduced with an assured success probability and without any assumption
in the complexity manipulation.

4 Fast Near Collision Attacks

In this section, we will describe the new framework for fast near collision attacks,
including both the pre-computation phase and the online attack phase, with the
theoretical justifications.

4.1 General Description of Fast Near Collision Attacks

The new framework is based on the notion of the restricted internal state corre-
sponding to a fixed keystream vector, which is presented in Definition 1 above.
Given z = (zj0 , zj1 , . . . , zjl−1) with zji

(0 ≤ i ≤ l − 1) not necessarily being con-
secutive in the real keystream, the corresponding restricted internal state x for z
is determined by the output function f together with its tap positions, and the
state updating function g of the cipher, i.e., induced by the intrinsic structure
of the cipher. Besides, from the keystream vector z, it is natural to look at the
augmented function for z.

Definition 3. For a specified cipher with the output function f and the state
updating function g, which outputs one keystream bit in one tick, the lth-order
augmented function Af : F|x|

2 → F
l
2 for a given (x, z) pair is defined as Af(x) =

(f(x), f(gi1(x)), . . . , f(gil−1(x))).

Note that the definition of the augmented function here is different from the
previous ones in [1,11]. In Definition 3, the augmented function is defined on a
subset of the whole internal state; while in [1,11], similar functions are usually
defined on the full internal state. As can be seen later, this difference will make
sense in launching a near collision attack, i.e., we need not target the full internal

Fast Near Collision Attack on the Grain v1 Stream Cipher 779

state, which is usually quite large, at once any more, now we just look for near
collision in the sub-states chosen by the attacker. A high-level description of fast
near collision attack is depicted in Algorithm 1.

Algorithm 1. FNCA

Parameters: index: the concrete value of a KSD
prefix: the concrete value of a keystream vector

Offline: for each combination of (index, prefix) do
Construct the table T[index, prefix], projecting from the KSD
index to all the possible ISDs sorted by the occurring rates

end for
Input: A keystream segment ztotal = (zj0 , zj1 , . . . , zjl−1 , zjl , . . . , zjl+γ)
Online: Recover the full internal state xfull matching with ztotal

1: Divide ztotal into α overlapping parts zi (1 ≤ i ≤ α) and a suffix zµ

2: for i = 1 to α do
3: get the candidates list Li of the restricted internal state xi for zi

4: end for
5: Merge Lis to get a candidate list for the possible partial state xmerge

6: for each candidate of xmerge do
7: restore xfull and test the consistency with the suffix zµ

The following proposition provides new insights on what influence the whole
internal state size has on the feasibility of a near collision attack.

Proposition 1. For a specified cipher and two keystream vectors z and z′, the
KSD Δz = z ⊕ z′ only depends on the ISD Δx = x ⊕ x′ and the values of x
and x′, whatever the difference and the values in x̄, the other parts of the whole
internal state.

Proof. It suffices to see the algebraic expressions of the keystream bits under
consideration. By taking a look at the input variables, we have the claim. ��
Offline. Proposition 1 makes the pre-computation phase in FNCA quite differ-
ent from and much more efficient than that in the previous NCA in [18]. Now
we need not to exhaustively search through all the possible ISDs over the full
internal state, which is usually quite large, instead we just search through all the
possible ISDs over a specified restricted internal state corresponding to a given
keystream vector, which is usually much shorter compared to the full internal
state. In Algorithm 1, we use two parameters index and prefix to charac-
terise this difference with index being the KSD and prefix being the value
of one of the two specified keystream vectors. For each possible combination
of (index, prefix), we construct an individual table for the pair. Thus, many
relatively small tables are built instead of one large pre-computed table, which
greatly reduces the time/memory complexities of the offline phase, improves the
accuracy of the pre-computed information, and finally assures a high success
rate of the new attack.
Online. With the differential tables prepared in the offline phase, the adversary
first tries to get some candidates of the target restricted internal state x1 and

780 B. Zhang et al.

to filter out as much as possible wrong candidates of x1 in a reasonable time
complexity. Then he/she moves to another restricted internal state x2, possibly
overlapped with x1, but not coincident with x1, and get some candidates of
x2. This process is repeated until enough internal state bits are recovered in an
acceptable time/memory complexities and merge the candidate lists Li together
to get a candidate list of possible partial state xmerge. Finally, from xmerge,
he/she tries to retrieve the full internal state and check the candidates by using
the consistency with the keystream segment.

There are three essential problems that have to be solved in this process. The
first one is how to efficiently get the candidates for each restricted internal state and
further to filter out those wrong values as much as possible in each case? The second
is how to efficiently merge these partial states together without the overflowing of
the number of possible internal state candidates, i.e., we need to carefully control
the increasing speed of the possible candidates during the merging phase. At last,
we need to find some very efficient method to restore the other parts of the full
internal state given xmerge, which lies at the core of the routine. We will provide
our solutions to these problems in the following sections.

4.2 Offline Phase: Parameterizing the Differential Tables

Now we explain how to pre-compute the differential tables T[index, prefix],
conditioned on the event that the value of one of the two keystream vectors is
prefix when the KSD is index. Let x = (xi0 , xi1 , . . . , xin−1) be the restricted
internal state associated with z = (zj0 , zj1 , . . . , zjl−1), for such a chosen (x, z)
pair, Algorithm 2 fulfills this task. Algorithm 2 is the inner routine of the pre-
computation phase of FNCA in the general case, where N1 and N2 are the
two random sampling sizes when determining whether a given ISD Δx of the
restricted internal state x could generate the KSD index and what the occurring
probability is. Algorithm 2 is interesting in its own right, though not adopted in
the state recovery attack on Grain v1 in Sect. 5. It can be applied in the most
general case with the theoretical justification when dedicated pre-computation
is impossible.

Algorithm 2. Constructing the differential table T[index, prefix]

1: for each ISD Δx s.t. wH(Δx) ≤ d do
2: for i = 1 to N1 do
3: determine whether Δx could generate the specified KSD index

4: if yes then
5: for j = 1 to N2 do
6: generate random x s.t. Af(x) = prefix and form the pair (x,x ⊕ Δx)
7: compute z = Af(x) and z′ = Af(x ⊕ Δx)
8: count the number of times counter that Δz = z ⊕ z′ = index

9: store the ratio counter/N2 with Δx in T[index, prefix]
10: Sort the ISDs according to the occurring rates

From V (n, d) =
∑d

i=0

(
n
i

)
, the time complexity of Algorithm 2 is P = 2 ·

V (n, d) · (N1 + N2 · (jl−1 + 1)) cipher ticks and the memory requirement is at

Fast Near Collision Attack on the Grain v1 Stream Cipher 781

most V (n, d) · (log2n
 · d + (7+ 7)) bits, where a 14 = 7+ 7-bit string is used to
store the percentage number, e.g., for 76.025%, we use 7 bits to store the integer
part 76 < 128 and another 7 bits to save the fractional part 0.025 as 0.0000011.
In Table 2, the global information of the 16 T tables for Grain v1 with the 23
original variables when l = 2 is shown, where Prdivs is defined as follows.

Table 2. The summary of the pre-computation phase of Grain v1 for 2-bit keystream
vector with the 23 original variables

(index, prefix) |T| Prdivs (index, prefix) |T| Prdivs

(0x0, 0x0) 16126 0.314426 (0x2, 0x0) 16106 0.319008

(0x0, 0x1) 16126 0.314434 (0x2, 0x1) 16106 0.318892

(0x0, 0x2) 16126 0.314504 (0x2, 0x2) 16106 0.318934

(0x0, 0x3) 16126 0.314504 (0x2, 0x3) 16106 0.318955

(0x1, 0x0) 16106 0.318958 (0x3, 0x0) 16044 0.311827

(0x1, 0x1) 16106 0.319050 (0x3, 0x1) 16044 0.311839

(0x1, 0x2) 16106 0.318896 (0x3, 0x2) 16044 0.311979

(0x1, 0x3) 16106 0.318928 (0x3, 0x3) 16044 0.311833

Definition 4. For each T[index, prefix], let |T| be the number of ISDs in the
table, the diversified probability of this table is defined as Prdivs =

∑
Δx∈T PrΔx

|T | ,
where Δx ranges over all the possible ISDs in the table.

The diversified probability of a T[index, prefix] table measures the average
reducing effect of this table that for a random restricted internal state x such
that Af(x) = prefix, flip the bits in x according to a Δx ∈ T and get x′, then
with probability Prdivs, Af(x ⊕ Δx) = prefix⊕ index. From Definition 4, the
success rate of the new FNCA is quite high, for we have taken each possible ISD
into consideration in the attack.

Corollary 2. From Table 2, if the index is fixed, then the 4 Prdivss correspond-
ing to different prefixes are approximately the same, i.e., the 4 T tables have
almost the same reducing effect for filtering out wrong candidates.

Corollary 2 is the basis of the merging operation in the online attack phase, which
assures that with the restricted BSW sampling resistance of Grain v1 and the
self-contained method introduced later, the partial state recovery procedure will
not be affected when the keytream vector under consideration has changed its
value along the actual keystream. If the keystream vector under consideration has
the value prefix, the adversary uses the value prefix⊕index in the computing
stage of the self-contained method to have the KSD remaining the same.

782 B. Zhang et al.

4.3 Online Phase: Restoring and Distilling the Candidates

Now we come to the online phase of FNCA. The aim is to restore the overlapping
restricted internal states one-by-one, merge them together, and finally from the
already covered state xmerge to retrieve the correct full internal state. For a
chosen (x, z) pair, the refined self-contained method is depicted in Algorithm 3.

Algorithm 3. The refined self-contained method

1: Initialize i = 0

2: while i ≤ c · 2n

|D| do

3: load x with a new random value so that it generates z ⊕ index

4: for each possible ISD Δx in T[index, z ⊕ index] do
5: compute x′ = x ⊕ Δx
6: if x′ generates z then
7: put x′ into the candidates list L
8: end if
9: end for
10: i = i + 1
11: end while

The original self-contained method was proposed in [16], whose idea is to make
a tradeoff between the data and the online time complexity in such a way that
the second set B of keystream vectors in Lemma 1 is generated by the adversary
himself, thus he also knows the actual value of the corresponding internal state
that generates the keystream vector. Therefore, given the ISD from the pre-
computed tables, the adversary could just xor the ISD with the internal state
matching with the keystream vector in B to get the candidate internal state for
the keystream vectors in A. In Algorithm 3, it is quite possible that although
obtained from a different new starting value for the restricted internal state x,
some candidates x′ will collide with the already existing element in the list, thus
the final number of hitting values in the list is not so much as the number of
invoking times c · 2n

|D| . The following theorem gives the expected value of the
actual hitting numbers.

Theorem 1. Let b be the number of all the values that can be hit and a =
c · 2n

|D| · |T | · Pdivs, then after one invoking of Algorithm 3, the mathematical
expectation of the final number r of hitting values in the list is

E[r] =
a∑

r=1

(
b
r

) · r! · {
a
r

} · r

ba
, (2)

where
{

a
r

}
is the Stirling number of the second kind,

(
b
r

)
is the binomial coefficient

and r! is the factorial.

Proof. Note that the Stirling number of the second kind [17]
{

a
r

}
counts the

number of ways to partition a set of a objects into r non-empty subsets, i.e.,
each way is a partition of the a subjects, which coincides with our circumstance.
Thus we can model the process of Algorithm 3 as follows.

Fast Near Collision Attack on the Grain v1 Stream Cipher 783

We throw a balls into b different boxes, and we want to know the probability
that there are exactly r boxes having some number of balls in. From this converted
model, we can see that the size of the total sample space is ba, while the number of
samples in our expected event can be calculated in the following steps.

1. Choose r boxes to hold the thrown balls, there are
(

b
r

)
ways to fulfill this step.

2. Permute these r boxes, there are r! ways to fulfill this step.
3. Partition the a balls into r non-empty sets, this is just the Stirling number

of the second kind
{

a
r

}
.

Following the multiplication principle in combinatorics, the size of our expected
event is just the product of the above three. This completes the proof. ��
We have made extensive experiments to verify Theorem 1 and the simulation
results match the theoretical predictions quite well. Back to the self-contained
method setting, a is just the number of valid candidates satisfying the conditions
that the KSD is index and one of the keystream prefix is prefix, of which some
may be identical due to the flipping according to the ISDs in T.

In general, the opponent can build a table for the function f , mapping the
partial sub-states to the keystream vector z, to get a full list of inputs that map to
a given z. In order to reduce the candidate list size in a search, he may somehow
choose a smaller list of inputs that map to z, and hope that the correct partial
state is still in the list with some probability p, depending on the size of the
list. The aim of the distilling phase is to exploit the birthday paradox regarding
d-near collisions, local differential properties of f , and the self-contained method
to derive smaller lists of input sub-states so that the probability that the correct
state is in the list is at least p. From Lemma 1, with a properly chosen constant
c, the correct internal state x will be in the list L with a high probability, e.g.,
0.8 or 0.95. For a chosen (x, z) pair, the candidates reduction process is depicted
in Algorithm 4.

Algorithm 4. Distilling the candidates

Parameter: a well chosen constant β
1: for i = 1 to β do
2: run Algorithm 3 to get the candidates list Li

3: end for
4: Initialize a list U and let U = L1

5: for i = 2 to β do
6: intersect U with Li, i.e., U ← U ∩ Li

The next theorem characterizes the number of candidates passing through the
distilling process in Algorithm 4.

Theorem 2. The expected number of candidates in the list U in Algorithm 4
after β − 1 steps of intersection is |U1| · (E[r]

b)β−1, where |U1| = |L1| is the
number of candidates present in the first list L1 and E[r] is the expected number
of hitting values in one single invoking of Algorithm 3.

784 B. Zhang et al.

Proof. For simplicity, let |Ui| = fi denote the cardinality of the candidates list
after i − 1 steps of intersection for 1 ≤ i ≤ β − 1. Note that in the intersection
process, if there are fi candidates in the current list U , then at the next inter-
section operation, an element in U has the probability E[r]

b to remain, and the
probability 1 − E[r]

b to be filtered out.
Let fi → fi+1 denote the event that there are fi+1 elements left after one

intersection operation on the fi elements in the current U . The expected value
of fi+1 is E[fi+1] =

∑fi

j=0

(
fi

j

) · (E[r]
b)j · (1− E[r]

b)fi−j · j = fi · E[r]
b . Thus we have

the following recursion

fβ−1 = fβ−t−1 ·
t∏

i=1

(
E[r]

b
) = |U1| · (E[r]

b
) · (

E[r]
b

) · · · · · (
E[r]

b
)

︸ ︷︷ ︸
β−1

= |U1| · (E[r]
b

)β−1,

which completes the proof. ��
Algorithm 5. Improving the existence probability of the correct x

Parameter: a well chosen constant γ
1: for i = 1 to γ do
2: run Algorithm 4 to get the candidates list Ui

3: end for
4: Initialize a list V and let V = U1

5: for i = 2 to γ do
6: union V with Ui, i.e., V ← V ∪ Ui

Theorem 2 partially characterizes the distilling process in theory. Now the crucial
problem is what the reduction effect of this process is, which is determined by the
choice of the constant c intrinsic to each primitive and the number of variables
involved in the current augmented function. From the cryptanalyst’s point of
view, the larger β is, the lower the probability that the correct x is involved in
each generated list, thus it is better for the adversary to make some tradeoff
between β and this existence probability. Algorithm 5 provides a way to exploit
this tradeoff to get some higher existence probability of the correct restricted
internal state x.

In Algorithm 5, several candidate lists are first generated by Algorithm 4
with a number of intersection operations for each list, then these lists are unified
together to form a larger list so that the existence probability of the correct x
becomes higher compared to that of each component list.

Theorem 3. Let the expected number of candidates in list V in Algorithm 5
after i (1 ≤ i ≤ γ) steps of union be Fi, then the following relation holds

Fi+1 = Fi + |Ui+1| −
|Ui+1|∑

j=0

(
Fi

j

) · (Fi+1−Fi

|Ui+1|−j

)

(Fi+1
|Ui+1|

) · j , 1 ≤ i ≤ γ − 1 (3)

where |F1| = |U1|.

Fast Near Collision Attack on the Grain v1 Stream Cipher 785

Proof. Note that when a new Ui+1 is unified into V , we have Fi+1 = Fi+|Ui+1|−
|Fi∩Ui+1|. It suffices to note that Eq.(3) can be derived from the hypergeometric
distribution for the |Fi ∩ Ui+1| part, which completes the proof. ��
Theorem 3 provides a theoretical estimate of |V |, which is quite close to the
experimental results. After getting V for x1, we move to the next restricted inter-
nal state x2, as depicted in Algorithm 1 until we recovered all the α restricted
internal states. Then we merge the restored partial states xi for 1 ≤ i ≤ α to
cover a larger part of the full internal state. We have to recover the full internal
state conditioned on xmerge. The next theorem describes the reduction effect
when merging the candidate lists of two restricted internal states.

Theorem 4. Let the candidates list for xi be Vi, then when merging the can-
didates list Vi for xi and Vi+1 for xi+1 to cover an union state xi ∪ xi+1, the
expected number of candidates for the union state xi ∪ xi+1 is

E[|Vxi∪xi+1 |] =
|Vi| · |Vi+1|
|Vi ∩ Vi+1| ,

where Vxi∪xi+1 is the candidates list for the union state xi ∪ xi+1.

Proof. Denote the bits in xi ∩ xi+1 by I = I0, I1, · · · , I|xi∩xi+1|−1 when merging
the two adjacent restricted internal states xi and xi+1, then we can group Vi

and Vi+1 according to the |xi ∩ xi+1| concrete values of I. For the same value
pattern of the common bits in I, we can just merge the two states xi and xi+1

by concatenating the corresponding candidate states together directly. Thus, the
expected number of candidates for the union state is

E[|Vxi∪xi+1 |] =
|Vi|

|Vi ∩ Vi+1| · |Vi+1|
|Vi ∩ Vi+1| · |Vi ∩ Vi+1| =

|Vi| · |Vi+1|
|Vi ∩ Vi+1| ,

which completes the proof. ��
Corollary 3. In the merging process of Algorithm 1, let MA and MB be two
partial internal states, each merged from possibly several restricted internal states
respectively, then when merging MA and MB together, the expected number of
candidates for the union state MA ∪ MB is E[|MA ∪ MB |] = |MA|·|MB |

|MA∩MB | .

Proof. It suffices to note the statistical independence of each invoking of Algo-
rithm 5 and Theorem4. ��
Finally, we present the theorem on the success probability of Algorithm 5.

Theorem 5. Let the probability that the correct value of the restricted internal
state x will exist in V be Prx, then we have Prx = 1 − (1 − (Pc)β)γ , where Pc is
the probability that the correct value of the restricted internal state x exist in U
for one single invoking of Algorithm 3.

Proof. From Algorithms 4 and 5, the probability that for all the γ Uis, the correct
value of x does not exist in the list is (1 − (Pc)β)γ , thus the opposite event has
the probability given above. This completes the proof. ��

786 B. Zhang et al.

Based on the above theoretical framework of FNCA, we will develop a state
recovery attack against Grain v1 in the next section, taking into account the
dedicated internal structure of the primitive.

5 State Recovery Attack on Grain v1

Now we demonstrate a state recovery attack on the full Grain v1. The new attack
is based on the FNCA framework described in Sect. 4 with some techniques to
control the attack complexities.

5.1 Rewriting Variables and Parameter Configuration

From the keystream generation of Grain v1, we have zi =
⊕

k∈A ni+k ⊕
h(li+3, li+25, li+46, li+64, ni+63), where A = {1, 2, 4, 10, 31, 43, 56}, i.e., one
keystream bit zi is dependent on 12 binary variables, of which 7 bits from the
NFSR form the linear masking bit

⊕
k∈A ni+k, 4 bits from the LFSR and ni+63

from the NFSR are involved in the filter function h.
For a straightforward FNCA on Grain v1, even considering two consecutive

keystream bits, we have to deal with 23 binary variables simultaneously at the
beginning of the attack. Thus the number of involved variables will grow rapidly
with the running of the attack, and probably overflow at some intermediate
point. To overcome this difficulty, we introduce the following two techniques to
reduce the number of free variables involved in the keystream vectors.

Let xi = ni+1 ⊕ ni+2 ⊕ ni+4 ⊕ ni+10 ⊕ ni+31 ⊕ ni+43 ⊕ ni+56, then we have

zi = xi ⊕ h(li+3, li+25, li+46, li+64, ni+63). (4)

There are only 6 binary variables xi, li+3, li+25, li+46, li+64, ni+63 involved in
Eq.(4) and if we consider a keystream vector z = (zi, zi+1), there are only 12
variables now, almost reduced by half compared to the previous number 23.
Note that the rewriting technique is known to be useful in [9] before in algebraic
attacks on stream ciphers.

Besides, we can still use the linear enumeration procedure as in the BSW
sampling case to reduce the variables further. Precisely, from Eq.(4), we have
xi = zi ⊕ h(li+3, li+25, li+46, li+64, ni+63), thus for the above keystream vector
z = (zi, zi+1), we could actually deal with 10 binary variables only, making xi

and xi+1 dependent on the other 10 variables and (zi, zi+1).

Algorithm 6. The pre-computation after rewriting variables

Parameter: matrix P1 of size 2l × V (n, d) with P1[i][j] �= 0 if the ISD
j could generate the KSD i and 0 otherwise

1: Initialize the table T[index, prefix]
2: for each possible value of x do
3: for each ISD Δx s.t. wH(Δx) ≤ d do
4: determine whether fsr(x) = prefix and fsr(x ⊕ Δx) = prefix ⊕ index

5: if yes then P1[index][Δx] = P1[index][Δx] + 1
6: for each ISD Δx s.t. wH(Δx) ≤ d do
7: set P1[index][Δx]/|x| as the occurring rate of Δx
8: Sort the ISDs according to the occurring rates

Fast Near Collision Attack on the Grain v1 Stream Cipher 787

There is an extra advantage of the above strategy. That is we could now
exhaustively search the full input variable space when preparing the differential
tables T[index, prefix] for the chosen attack parameters shown in Algorithm 6,
which results in the accurately computed occurring probabilities compared to
Algorithm 2 in Sect. 4.2, where fsr(·) is the evaluation of the underlying stream
cipher. The complete pre-computation table of Grain v1 is listed in Table 3 for
d = 3, where ∗ indicates that the prefix could take any value from 0x0 to 0x3
due to the same distribution for different prefix values and number denotes the
number of ISDs having the corresponding occurring probability.

Table 3. The full pre-computation information of Grain v1 after rewriting variables
when d = 3

(index, prefix) (0x0, ∗) (0x1, ∗) (0x2, ∗) (0x3, ∗)

prob. 1 1
2

1
4

1
8

1
16

3
4

1
2

3
8

1
4

3
16

1
8

9
16

3
8

1
4

number 1 44 69 54 8 3 22 27 63 8 27 8 54 63

From Table 3 and Definition 4, we have the following corollary on the diver-
sified probabilities of different pre-computed tables.

Corollary 4. For the pre-computation table of Grain v1 after rewriting vari-
ables, we have

Prdivs =

⎧
⎪⎪⎨

⎪⎪⎩

0.269886, if index=0x0
0.293333, if index=0x1
0.293333, if index=0x2
0.324000, if index=0x3.

Proof. From Definition 4, we have Prdivs =
∑

Δx∈T PrΔx

|T | , it suffices to substitute
the variables with the values from Table 3 to get the results. ��
From Corollary 4, we choose the KSD to be 0x0 in our attack, for in this case the
reduction effect is maximized with the minimum Prdivs. Under this condition, we
have run extensive experiments to determine the constant c for Grain v1, which is
shown in the following table, where Pc is the probability that the correct value of
the restricted internal state exists in the resultant list after one single invoking of

Table 4. The correspondence between the constant c and the existence probability for
index = 0x0

c 5 6 7 8 9 10

Pc 0.757137 0.816551 0.860638 0.89502 0.92114 0.94644

c 11 12 13 14 15 16

Pc 0.95423 0.96573 0.97567 0.98021 0.985524 0.989411

788 B. Zhang et al.

Algorithm 3. Based on Table 4, we have run a number of numerical experiments
to determine the appropriate configuration of attack parameters and found that
c = 10 provides a balanced tradeoff between various complexities.

Precisely, under the condition that c = 10 and the l = 2-bit keystream
vector with 12 variables (either consecutive or non-consecutive to construct the
augmented function Af), we find that if β = 21 and γ = 6, then we get Prxi

=
1 − (1 − 0.9464421)6 = 0.896456 from Theorem 5. We have tested this fact in
experiments for 106 times, and found that the average value of the success rate
well matches to the theoretical prediction. Besides, we have also found that
under this parameter configuration, the number of candidates in the list V for
the current restricted internal state x is 848 ≈ 29.73, which is also quite close to
the theoretical value 29.732 got from Theorem 3.

Corollary 5. For Grain v1 when c = 10 and l = 2, the configuration that the
resultant candidate list V is of size 848 with the average probability of 0.896456
for the correct restricted internal state being in V is non-random.

Proof. Note that in the pure random case, the list V should have a size of
210 · 0.896456 = 917.971 with the probability 0.896456; now in Grain v1, we get
a list V of size 848 with the same probability. In the pure random case, we have

E[|V |] = μ = 210 · 0.896456 = 917.971, σ =

√

210 · 1
4

· 3
4

= 13.8564.

Further, μ−848
σ = 917.971−848

13.8564 = 5.0497; from Chebyshev’s inequality, the configu-
ration (848, 0.896456) is far from random with the probability around 0.99. ��
Now we are ready to describe the attack in details based on the above attack
parameter configuration.

5.2 Concrete Attack: Strategy and Profile

First note that if we just run Algorithm 1 along a randomly known keystream
segment to retrieve the overlapping restricted internal states one-by-one without
considering the concrete internal structure of Grain v1, then we will probably
meet the complexity overflow problem in the process when the restored internal
state xmerge does not cover a large enough internal state, and at the same time,
the number of candidates and the complexity needed to check these candidates
will exceed the security bound already. Instead, we proceed as follows to have
a more efficient attack. First observe that if we target the keystream vector
z = (zi, zi+1) through rewriting variables in Table 5 and restore the variables
therein by our method, then for such a 2-bit keystream vector, we can obtain 8
LFSR variables involved in the h function and 2 NFSR bits ni+63, ni+64, together
with 2 linear equations xi =

⊕
k∈A ni+k and xi+1 =

⊕
k∈A ni+k+1 on the NFSR

variables. If we repeat this procedure for the time instants from 0 to 19, then from
zi = xi ⊕ h(li+3, li+25, li+46, li+64, ni+63), we will have li+3+j , li+25+j , li+46+j ,
li+64+j and ni+63+j for 0 ≤ j ≤ 19 involved in Table 5.

Fast Near Collision Attack on the Grain v1 Stream Cipher 789

Table 5. The target keystream equations first exploited in our attack

output output

eqns. 1 : x0 ⊕ h(l3, l25, l46, l64, n63) = z0 2 : x1 ⊕ h(l4, l26, l47, l65, n64) = z1

3 : x2 ⊕ h(l5, l27, l48, l66, n65) = z2 4 : x3 ⊕ h(l6, l28, l49, l67, n66) = z3

5 : x4 ⊕ h(l7, l29, l50, l68, n67) = z4 6 : x5 ⊕ h(l8, l30, l51, l69, n68) = z5

7 : x6 ⊕ h(l9, l31, l52, l70, n69) = z6 8 : x7 ⊕ h(l10, l32, l53, l71, n70) = z7

9 : x8 ⊕ h(l11, l33, l54, l72, n71) = z8 10 : x9 ⊕ h(l12, l34, l55, l73, n72) = z9

11 : x10 ⊕ h(l13, l35, l56, l74, n73) = z10 12 : x11 ⊕ h(l14, l36, l57, l75, n74) = z11

13 : x12 ⊕ h(l15, l37, l58, l76, n75) = z12 14 : x13 ⊕ h(l16, l38, l59, l77, n76) = z13

15 : x14 ⊕ h(l17, l39, l60, l78, n77) = z14 16 : x15 ⊕ h(l18, l40, l61, l79, n78) = z15

17 : x16 ⊕ h(l19, l41, l62, l80, n79) = z16 18 : x17 ⊕ h(l20, l42, l63, l81, n80) = z17

19 : x18 ⊕ h(l21, l43, l64, l82, n81) = z18 20 : x19 ⊕ h(l22, l44, l65, l83, n82) = z19

Let x∗ be the restricted internal state consisting of the input variables
involved in Table 5, the details of how to restore the restricted internal state
x∗ is presented in the following Tables 6 and 7. We first use FNCA to restore x∗,
then we know nearly 80 bits of the LFSR internal state with the corresponding
positions, from which we can easily recover the initial internal state of the LFSR
with a quite low complexity. Algorithm 7 presents the sketch of our online attack
against Grain v1.

Algorithm 7. The online attack on the full Grain v1

1: Apply FNCA to x∗ to restore the input variables
2: for each candidate of x∗ do
3: use the statistical test in Section 5.4 to check the candidate
4: for the passed ones do
5: recover the remaining NFSR state, shown in Section 5.4
6: for each candidate of xfull do
7: check the consistency with the available keystream

After knowing the LFSR part and more than half of the NFSR, we could first
identify the correct LFSR state by the Walsh distinguisher, then the remaining
NFSR state could easily be retrieved with an algebraic attack, both shown in
the following Sect. 5.4. Note that in Tables 6 and 7, the list size for each merging
operation is listed in the middle column, based on Theorem4 and Corollary 3.
For example, let us look at the 1st step. The reason that 25 is used instead
of 26 in denominator is that the xi variables are not freely generated random
variables, for we have made them linearly dependent on the 5 variables in h
function and the corresponding keystream bits to fulfill our criterion on the
pre-computed tables. 214.4558 is the list size when merging the two restricted
internal states corresponding to (z0, z1) and (z1, z2), respectively. After merg-
ing (z0, z1) and (z1, z2), we get a list for the restricted internal state of the 3-bit
keystream vector (z0, z1, z2). Now we further invoke the self-contained method for
the keystream vector (z0, z2), which consists of only z0 and the non-consecutive
z2. Since there are now 10 free common variables between the restricted

790 B. Zhang et al.

internal state of (z0, z1, z2) and that of (z0, z2), thus the denominator becomes
210. During this merging procedure, we use 3 keystream vectors (z0, z1), (z1, z2)
and (z0, z2), and 3 times of the union result to form 3 independent candidate lists
of size 848 with the probability 0.896456 that the corresponding correct partial
state is indeed therein. Thus we have the probability 0.8964563. The subsequent
procedures in Tables 6 and 7 are deduced in a similar way as the above. The
key point here is to the count the number of freely chosen variables between
the corresponding internal state subsets, not including the linearly dependent
variables. This process is repeated until merging the 20th equation in Table 5.

Table 6. The attack process for recovering x∗ (1)

z List merging Probability

1. (z0, z1) 848·848
25 = 214.4558

(z1, z2) 0.8964563 = 2−0.473086

(z0, z2) 848·214.4558
210 = 214.1837

2. (z1, z2) 214.1837·214.1837
210 = 218.3674

(z2, z3) 0.8964562·3+1 = 2−1.10387

(z1, z3) 218.3674·848
210 = 218.0953

3. (z0, · · · , z3) 218.0953·218.0953
215 = 221.1906

(z1, · · · , z4) 0.8964562·7+1 = 2−2.36543

(z0, z4) 221.1906·848
210 = 220.9185

4. (z0, · · · , z4) 220.9185·220.9185
220 = 221.837

(z1, · · · , z5) 0.8964562·15+1 = 2−4.88855

(z0, z5) 221.837·848
210 = 221.5649

5. (z0, · · · , z5) 221.5649·221.5649
225 = 218.1298

(z1, · · · , z6) 0.8964562·31+1 = 2−9.93481

(z0, z6) 218.1298·848
210 = 217.8577

6. (z0, · · · , z6) 217.8577·217.8577
230 = 25.7154

(z1, · · · , z7) 0.8964562·63+1 = 2−20.0273

(z0, z7) 25.7154·848
210 = 25.44332

7. (z0, · · · , z7) 25.44332·221.5649
225 = 22.00822

(z3, · · · , z8) 0.896456127+31+1 = 2−25.0736

(z0, z8) 22.00822·848
210 = 21.73614

8. (z0, · · · , z8) 21.73614·221.5649
225 = 2−1.69896

(z4, · · · , z9) 0.896456159+31+1 = 2−30.1198

(z0, z9) 2−1.69896·848
210 = 2−1.97104

9. (z0, · · · , z9) 2−1.97104·221.5649
225 = 2−5.40614

(z5, · · · , z10) 0.896456191+31+1 = 2−35.1661

(z0, z10) 2−5.40614·848
210 = 2−5.67822

Fast Near Collision Attack on the Grain v1 Stream Cipher 791

Table 7. The attack process for recovering x∗ (2)

z List merging Probability

10. (z0, · · · , z10) 2−5.67262·221.5649
225 = 2−9.11332

(z6, · · · , z11) 0.896456223+31+1 = 2−40.2123

(z0, z11) 2−9.11332·848
210 = 2−9.3854

11. (z0, · · · , z11) 2−9.3854·220.9185
220 = 2−8.4669

(z8, · · · , z12) 0.896456255+15+1 = 2−42.7354

(z0, z12) 2−8.4669·848
210 = 2−8.73898

12. (z0, · · · , z12) 2−8.73898·220.9185
220 = 2−7.82048

(z9, · · · , z13) 0.896456271+15+1 = 2−45.2586

(z0, z2) 2−7.82048·848
210 = 2−8.09256

13. (z0, · · · , z13) 2−8.09256·220.9185
220 = 2−7.17406

(z10, · · · , z14) 0.896456287+15+1 = 2−47.7817

(z0, z14) 2−7.17406·848
210 = 2−7.44614

14. (z0, · · · , z14) 2−7.44614·218.0953
215 = 2−4.35084

(z12, · · · , z15) 0.896456303+7+1 = 2−49.0432

(z0, z15) 2−4.35084·848
210 = 2−4.62292

15. (z0, · · · , z15) 2−4.62292·218.0953
215 = 2−1.52762

(z13, · · · , z16) 0.896456311+7+1 = 2−50.3048

(z0, z16) 2−1.52762·848
210 = 2−1.7997

16. (z0, · · · , z16) 2−1.7997·218.0953
215 = 21.2956

(z14, · · · , z17) 0.896456319+7+1 = 2−51.5664

(z0, z17) 21.2956·848
210 = 21.02352

17. (z0, · · · , z17) 21.02352·218.0953
215 = 24.11882

(z15, · · · , z18) 0.896456327+7+1 = 2−52.8279

(z0, z18) 24.11882·848
210 = 23.84674

18. (z0, · · · , z18) 23.84674·218.0953
215 = 26.94204

(z16, · · · , z19) 0.896456335+7+1 = 2−54.0895

(z0, z19) 26.94204·848
210 = 26.66996

5.3 Restoring the Internal State of the LFSR

From Table 5, x∗ involves 78 LFSR bits in total, it seems that we need to guess
2 more LFSR bits to have a linear system covering the 80 initial LFSR variables.
To have an efficient attack, first note that both l64 and l65 are used 2 times in
these equations, thus the candidate values should be consistent on l64 and l65,
which will provide a reduction factor of 1

22 = 1
4 on the total number of candidates.

Further, from l83 = l65⊕l54⊕l41⊕l26⊕l16⊕l3, we have a third linear consistency
check on the candidates. Hence, the number of candidates after going through
Tables 6 and 7 is 1

2−54.0895 ·26.66996 ·2−3 = 257.7595. By guessing 2 more bits l0, l1,
we can get l23, l24 from the recursion l80+j = l62+j⊕l51+j⊕l38+j⊕l23+j⊕l13+j⊕lj
for j = 0, 1. In addition, we can derive l2 from l82 = l64 ⊕ l53 ⊕ l40 ⊕ l25 ⊕ l15 ⊕ l2.

792 B. Zhang et al.

Note that the LFSR updates independently in the keystream generation
phase and we also know the positions of the restored LFSR bits either from
FNCA or from guessing, thus we could make a pre-computation to store the
inverse of the corresponding linear systems with an off-line complexity of 802.8

Ω

cipher ticks and a online complexity of 802

Ω to find the corresponding unique solu-
tion, where 2.8 is the exponent for Gauss reduction. This complexity is negligible
compared to those of the other procedures. The total number of candidates for
the LFSR part and the accompanying partial NFSR state, 22 ·257.7595 = 259.7595,
will dominate the complexity.

Remarks. Note that the gain in our attack mainly comes from the following two
aspects. First, we exploit the first 20-bit keystream information in this procedure
in a probabilistic way, not in a deterministic way, which is depicted later in
Theorem 7. Now we target 78 + 20 + 20 = 118 variables, not 160 variables, in a
tradeoff-like manner. Here only 98 variables can be freely chosen. This cannot
be interpreted in a straightforward information-theoretical way, which is usually
evaluated in a deterministic way. Second, we use the pre-computed tables which
also contain quite some information on the internal structure of Grain v1 in an
implicit way in the attack.

5.4 Restoring the Internal State of the NFSR

After obtaining the candidate list for the LFSR part, the adversary could run
the LFSR individually forwards and backwards to get all the necessary values
and thus peel off the non-linearity of the h function. Now there are 2 choices
in front of us, one is to efficiently restore the 80 NFSR variables with a low
complexity that allows to be invoked many times, for there are probably many
candidates of the restricted internal state x∗ to be checked; the other is to check
the correctness of the LFSR candidate first, then the NFSR could be restored
afterwards independently. Fortunately, we find the latter way feasible in this
scenario, which is shown below.

From the above step, the FNCA method has provided the adversary with the
NFSR bits n63+i and xi = ni+1 ⊕ ni+2 ⊕ ni+4 ⊕ ni+10 ⊕ ni+31 ⊕ ni+43 ⊕ ni+56

for 0 ≤ i ≤ 19, i.e., now there are 20 + 20 = 40-bit information available on the
NFSR initial state. We proceed as follows to get more information.

Collecting More Linear Equations on NFSR. First note that if we go back
1 step, we get x−1 = n0⊕n1⊕n3⊕n9⊕n30⊕n42⊕n55, i.e., we get 1 more linear
equation for free. If we go back further, we could get a series of variables that can
be expressed as the linear combination of the known values and the target initial
NFSR state variables. On the other side, if we go forwards and take a look at the
coefficient polynomial of x4 in the h function, i.e., 1 ⊕ x3 ⊕ x0x2 ⊕ x1x2 ⊕ x2x3,
we find it is a balanced Boolean function. Thus, the n82+i variables have a
probability of 0.5 to vanish in the resultant keystream bit and the adversary
could directly collect a linear equation through the corresponding x20+i variable
at the beginning time instants from 20.

Fast Near Collision Attack on the Grain v1 Stream Cipher 793

To get more linear equations on the NFSR initial state, we can use the
following Z-technique, which is based on the index difference of the involving
variables in the keystream bit. Precisely, if n82+i appears at the z19+i position,
let us look at the end of the keystream equation z26+i to see whether n82+i exists
there or not. If it is not there, then this will probably give us one more linear
equation on the NFSR initial variables due to the index difference 56 − 43 =
13 > 7; if it is there, we could just xor the two keystream equations to cancel
out the n82+i variable to get a linear equation on the NFSR initial variables.
Then increase i by 1 and repeat the above process for the new i. Since the trace of
the equations looks like the capital letter ‘Z’, we call this technique Z-technique.
An illustrative example is provided in AppendixA.

It can be proved by induction that the Z-technique can also be used to express
the newly generated NFSR variables as linear combinations of the keystream bits
and of the initial state variables in forward direction. In backward direction, it is
trivial to do the same task. We have run extensive experiments to see the average
number of linear equations that the adversary could collect using the Z-technique,
it turns out that the average number is 8, i.e., we could reduce the number of
unknown variables in the initial NFSR state to around 80 − 40 − (8 − 3) = 35,
which facilitates the following linear distinguisher.

The Walsh Distinguisher. First note that the NFSR updating function in
Grain v1 has a linear approximation with bias 41

512 , shown below.

n80+i = n62+i ⊕ n60+i ⊕ n52+i ⊕ n45+i ⊕ n37+i ⊕ n28+i ⊕ n21+i ⊕ n14+i ⊕ ni ⊕ e,

where e is the binary noise variable satisfying Pr(e = 0) = 1
2 + 41

512 . Since
now there are only around 35 unknown variables left, we could collect a system
of probabilistic linear equations on the left 35 NFSR variables by iteratively
expressing the NFSR variables with indices larger than 80 by the corresponding
linear combinations of keystream bits and the known information from the LFSR
part and the partial NFSR state. If there are δ NFSR variables represented in
this process, the complexity is just 35 · δ. As a result, we have a system of the
following form

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

c00ni0 ⊕ c01ni1 ⊕ · · · ⊕ c034ni34 = kz0 ⊕ e0
c10ni0 ⊕ c11ni1 ⊕ · · · ⊕ c134ni34 = kz1 ⊕ e1

...
...

...
cδ−1
0 ni0 ⊕ cδ−1

1 ni1 ⊕ · · · ⊕ cδ−1
34 ni34 = kzδ−1 ⊕ eδ−1,

(5)

where ci
j ∈ F2 for 0 ≤ i ≤ δ−1 and 0 ≤ j ≤ 34 is the coefficient of the remaining

NFSR variable nij
(0 ≤ j ≤ 34), kzi (0 ≤ i ≤ δ − 1) is the accumulated linear

combination of the keystream bits and the known information from the LFSR
part and the partial NFSR state derived before and ei (0 ≤ i ≤ δ − 1) is the
binary noise variable with the distribution Pr(ei = 0) = 1

2 + 41
512 .

To further reduce the number of unknown NFSR variables, we construct the
parity checks of weight 2 from the above system as follows. First note that the
bias of the parity checks is 2 ·(41

512)2 = 2−6.2849 from the Piling-up lemma in [14].

794 B. Zhang et al.

Second, this problem is equivalent to the LF2 reduction in LPN solving problems
[12], which can be solved in a sort-and-merge manner with a complexity of at
most δ using pre-computed small tables. We have tuned the attack parameters
in this procedure and found that if δ = 219 and y = 15, we could collect

(
219−15

2

) ·
215 = 221.9069 parity-checks on 35 − y = 20 NFSR variables of the bias 2−6.2849.
Note that we could further cancel out 4 more NFSR variables in these parity-
checks by only selecting those equations that the corresponding coefficient of the
assigned variable is 0, in this way we could easily get 221.9069

24 = 217.9069 parity-
checks on 20 − 4 = 16 NFSR variables. On the other side, from the unique
solution distance in correlation attacks [6,13], we have

8 · 16 · ln2
1 − h(p)

= 217.5121 < 217.9069,

where p = 1
2 + 2−6.2849 and h(p) = −p · logp − (1 − p) · log(1 − p) is the binary

entropy function. Thus, we can have the success probability very close to 1 given
217.9069 parity-checks to identify the correct value of the 16 NFSR variables
under consideration. That is, we reach the following theorem.

Theorem 6. If both the LFSR candidate and the partial NFSR state are correct,
we can distinguish the correct value of the remaining 16 NFSR variables from
the wrong ones with a success probability very close to 1.

Proof. It suffices to note that if either the LFSR or the partial NFSR state
is wrong, there exists no bias in the system (5), thus following the classical
reasoning from correlation attacks in [6,13], we have the claim. ��
Precisely, for each parity-check of weight 2 for the system (3), we have

(cj1
0 ⊕ cj2

0)ni0 ⊕ (cj1
1 ⊕ cj2

1)ni1 ⊕· · ·⊕ (cj1
34−y ⊕ cj2

34−y)ni0 =
2⊕

t=1

kzjt
⊕

2⊕

t=1

ejt
. (6)

Let (n′
i0

, n′
i1

, · · · , n′
i34−y

) be the guessed value of (ni0 , ni1 , · · · , ni34−y
), we rewrite

Eq.(6) as follows.

2⊕

t=1

kzjt
⊕

34−y⊕

t=1

(cj1
t ⊕ cj2

t)n′
it

=
34−y⊕

t=1

(cj1
t ⊕ cj2

t)(n′
it

⊕ nit
) ⊕

2⊕

t=1

ejt
. (7)

From (7), let Δ(j1, j2) =
⊕34−y

t=1 (cj1
t ⊕ cj2

t)(n′
it

⊕ nit
) ⊕ ⊕2

t=1 ejt
, it is obvi-

ous if (n′
i0

, n′
i1

, · · · , n′
i34−y

) coincides with the correct value, we get Δ(j1, j2) =
⊕2

t=1 ejt
; otherwise, we have Δ(j1, j2) =

⊕
t:n′

it
⊕nit=1(c

j1
t ⊕ cj2

t) ⊕ ⊕2
t=1 ejt

.

Since cj1
t ⊕ cj2

t is the xor of 2 independent uniformly distributed variables, we have
Pr(cj1

t ⊕ cj2
t = 0) = 1

2 . Hence, when (n′
i0

, n′
i1

, · · · , n′
i34−y

) is wrongly guessed,
Δ(j1, j2) has the distribution Pr(Δ(j1, j2) = 0) = 1

2 , which is quite different
from the correct case, i.e., Pr(Δ(j1, j2) = 0) = 1

2 + 2−6.2849. For 217.9069 such

Fast Near Collision Attack on the Grain v1 Stream Cipher 795

parity-checks of the system (3),
∑217.9069

t=1 (Δ(j1, j2)⊕1) should follow the binomial
distribution (217.9069, 1

2 + 2−6.2849) if (n′
i0

, n′
i1

, · · · , n′
i34−y

) is correctly guessed;
otherwise this sum should have the binomial distribution (217.9069, 1

2). Now the
situation is the same as that in binary correlation attacks. Thus, we can use the
FWT technique to speed up the whole process as follows. Denote the set of the
constructed parity-checks by Pt. First regroup the 217.9069 parity-checks accord-
ing to the pattern of x = (cj1

0 ⊕ cj2
0 , cj1

1 ⊕ cj2
1 , · · · , cj1

34−y ⊕ cj2
34−y) and define

fNFSR(x) =
∑

(c
j1
0 ⊕c

j2
0 ,c

j1
1 ⊕c

j2
1 ,··· ,c

j1
34−y⊕c

j2
34−y)

(−1)kzj1⊕kzj2 for all the values of the

coefficient vector appearing in the 217.9069 parity-checks; if some value of (cj1
0 ⊕

cj2
0 , cj1

1 ⊕ cj2
1 , · · · , cj1

34−y ⊕ cj2
34−y) is not hit in these equations, just let fNFSR = 0

at that point. For this well-defined function fNFSR, consider the Walsh transform
F (ω) =

∑
x∈F

35−y
2

fNFSR(x) · (−1)ω·x =
∑

Pt
(−1)kzj1⊕kzj2⊕⊕34−y

t=0 ωt(c
j1
t ⊕c

j2
t) =

F0 − F1, where ω = (ω0, ω1, · · · , ω34−y) ∈ F
35−y
2 , F0 and F1 are the number

of 0s and 1s, respectively. It is easy to see that if ω = (ni0 , ni1 , · · · , ni34−y
),

we have
∑217.9069

t=1 (Δ(j1, j2) ⊕ 1) = F (ω)+F1
2 . If we set a threshold value T and

accept only those guesses of x satisfying F (ω)+F1
2 ≥ T , then the probability that

the correct value of (cj1
0 ⊕ cj2

0 , cj1
1 ⊕ cj2

1 , · · · , cj1
34−y ⊕ cj2

34−y) will pass the test is

P1 =
∑217.9069

t=T

(
217.9069

t

)
(12 + 2−6.2849)t(12 − 2−6.2849)2

17.9069−t and the probabil-

ity that a wrong guess will be accepted is P2 =
∑217.9069

t=T

(
217.9069

t

)
(12)2

17.9069
. Set

T = 216.9306, we find thatP1 = 0.999996 andP2 ≈ 2−53, i.e., the correct LFSRcan-
didate and the correct partial NFSR state will pass almost certainly; while about
259.7595 · 2−53 = 26.7595 wrong cases will survive in the above statistical test.

Hence, the time complexity of this Walsh distinguisher for one invoking is
219·35+219+217.9069+216·16

Ω = 224.2656

Ω cipher ticks. Hence, by observing the Walsh
spectrum of the function, the adversary could identify the correct LFSR and the
correct partial NFSR states if they survived through the first step.

Restoring the Remaining NFSR State. After the Walsh distinguisher step,
we could use an algebraic attack as that in [3] to restore the remaining NFSR
state, which has a complexity much lower than the previous step. Precisely, the
adversary could exploit the non-linear feedback function, say g, of the NFSR in
Grain v1 to establish algebraic equations. Note that the algebraic degree of g
in Grain v1 is 6 and the multiple (n28 ⊕ 1)(n60 ⊕ 1) · g has the algebraic degree
4, thus if the linearization method is adopted for solving the algebraic system,
there are now

∑4
i=0

(
35
i

) ≈ 215.8615 monomials in the system. If we take the
same complexity metric as that in [7] in complexity estimate and taking into
account that we have to repeat the solving routine for restoring the remaining
NFSR state for each candidate survived through the above statistical test, the

time complexity of this step is Tsolving = 26.7595· 7·(215.8615)log27

64
Ω

.= 248.0957

Ω cipher
ticks. Finally, the overall time complexity of all the procedures in Sect. 5.4 is
259.7595 · 224.2656

Ω + 248.0957

Ω cipher ticks.

796 B. Zhang et al.

5.5 Final Complexity Analysis

Now we analyze the final complexity of the above attack against Grain v1. First
note that quite some complexity analysis have already been involved in the
above sections, here we just focus on the total complexity, which is stated in the
following theorem.

Theorem 7. Let TAlg5 and λAlg5 be the time complexity and the number of
invoking times of Algorithm 5, then the time complexity of our attack is

TAlg6+ξ ·(1
PrλAlg5

x

·(TAlg5 ·λAlg5+
18∑

i=1

T i
merg)+

|L18|
PrλAlg5

x

·Twalsh +Tsolving +Tcst)

cipher ticks, where TAlg6 is the pre-computation complexity of Algorithm 6, T i
merg

(1 ≤ i ≤ 18) is the list merging complexity at step i in Tables 6 and 7, Twalsh is
the complexity for the Z-technique and Walsh distinguisher in Sect. 5.4, Tsolving

is the complexity for restoring the remaining NFSR state in Sect. 5.4, Tcst is
the complexity of the final consistency examination and we repeat the online
attack ξ times to ensure a high success probability. The memory complexity of
our attack is at most 22l · V (n, d) · (log2n
 · d + 14) + max1≤i≤18|Li| bits, where
Li (1 ≤ i ≤ 18) are the lists generated during the process in Tables 6 and 7, and
the data complexity is 219 + 20 + 160 = 219.0005 keystream bits.

Proof. Note that in our attack, to assure the existence of each correct restricted
internal state in the corresponding candidate list, we have to assure its existence
in the generated list when invoking Algorithm 5. This contributes to the factor

1

Pr
λAlg5
x

since our attack is a dynamically growing process with the assumption

that the probability Prx is stable. TAlg5 ·λAlg5 stands for the complexity of invok-
ing Algorithm 5 during the evolution process in Tables 6 and 7 and

∑18
i=1 T i

merg

comes from the sorting and merging complexities when merging the candidate
lists for the steps from 1 to 18 in Tables 6 and 7. When the adversary goes out of
all the steps in Tables 6 and 7, there exists only a resultant list L18 for each time,
all the other lists generated in the intermediate process have been erased and
overwritten. Thus, the total number of candidates for the LFSR part and partial
NFSR state is |L18|

Pr
λAlg5
x

, and we have to use the Z-technique and Walsh distin-

guisher in Sect. 5.4 to check the correctness of these candidates. Since we could
identify the correct LFSR candidate and the partial NFSR state with high prob-
ability independent of the remaining unknown NFSR state, the factor Tsolving is
added in, not multiplied by. Finally, we have to find out the real correct internal
state by the consistency test with the available keystream.

For the memory complexity, we invoke Algorithm 6 in the pre-processing
phase with the l-bit KSD/keystream prefix, thus the factor 22l comes. That is,
the adversary constructed 22l relatively small pre-computed tables, each of which
consists of at most V (n, d) items. Among all these tables, the adversary chooses
one to be used in the online phase. It is worth noting that we could pre-compute
the most inner routine of the self-contained method by storing all the possible

Fast Near Collision Attack on the Grain v1 Stream Cipher 797

xors between all the ISDs and each value of the restricted internal state. Taking
into account on the concrete storage data structure in Sect. 4.2 of each item, we
have the first item in the expression. During the process illustrated in Tables 6
and 7, we only have to allocate a memory space that fits the largest memory
consumption among all the intermediate lists Li for 1 ≤ i ≤ 18. By checking the
list sizes in Tables 6 and 7 and the corresponding number of variables in Table 5,
we have 2 ·221.5649 ·42 < 228. For different iterations, the same memory is reused.

For the data complexity, only the first 20 keystream bits are exploited when
recovering the LFSR and the partial NFSR state. Note that 215.8615 < 219 and
219 keystream bits are used by the Walsh distinguisher in Sect. 5.4. The last 160
bits are needed in consistency test for the surviving candidates. ��
Since our attack is dynamically executed, the above formula can also depict
the time consuming in the intermediate process. Here the dominated factors are
the complexity cost by the invoking of Algorithm 5 and that of checking the
surviving candidates. When l = 2, n = 10, c = 10 and d = 3 with the chosen
pre-computed Table of size |T[0x0, prefix]| = 176, the time complexity can be
computed as

(343 · 220.3436

Ω
· 254.0895 + 259.7595 · 224.2656

Ω
+

248.0957

Ω

+ 254.0895 ·
∑18

i=1 T i
merg

Ω
+ Tcst) · 22 ≈ 275.7

cipher ticks, where 21·6·60·176
Ω = 220.3436

Ω is the complexity for one invoking of

Algorithm 5 and
∑18

i=1 T i
merg

Ω is the sorting and merging complexity in Tables 6
and 7. If we adopt the same Ω = 210.4 as that in [18] and let ξ = 22 to sta-
bilize a success rate higher than 0.9, we have the above result. The memory
complexity is around 2 · 221.5649 · 42 ≈ 228 bits. The pre-computation complexity
is 210·176·2+24·176·2

Ω = 218.4818

Ω = 28.1 cipher ticks.

Remarks. First note that the time complexity actually depends on the param-
eter Ω, which may be different for different implementations. Second, in the
existence of a faster hardware implementation of Grain v1 that could generate
16 keystream bits in one cipher tick, our attack still holds, for such a hardware
will also speed up the attack 16 times.

6 Experimental Results

6.1 The Experiments on Grain v1

Note that a large proportion of practical experiments are already presented in
the previous sections, here we just provide the remaining simulations. We have
run extensive experiments on Grain v1 to check the correctness of our attack.
Since the total complexity is too large to be implemented on a single PC, we
have verified the beginning steps of Tables 6 and 7 practically. Note that the

798 B. Zhang et al.

remaining steps in the evolution process are just the repetition process of the
first ones, we have enough confidence that the whole process for recovering the
inner state of the LFSR part is correct.

The profile of our experiments is as follows. We first generate the inner
states of the LFSR and NFSR in Grain v1 randomly. Here the RC4 stream
cipher is adopted by discarding the first 8192 output bytes as the main random
source. Then we run the cipher forwards from this random state and generate
the corresponding keystream. After that, we apply the FNCA to generate the
possible states following the steps in Tables 6 and 7. At each step, we use the
concrete data from simulations to verify the complexity and probability predic-
tions in the Tables. We have done a large number of experiments to recover the
restricted internal state corresponding to the keystream segment (z0, z1, · · · , z6),
and almost all the experimental results conform to our theoretical predictions
in Table 6. For example, if the states of the LFSR and NFSR in Grain v1
are 0xB038f07C133370269B6C and 0xC7F5B36FF85C13249603, respectively, then
the first 20-bit keystream are (z0, z1, · · · , z19) = 11100000111000000100. Set
l = 2, d ≤ 3 and c = 10, let β = 21 and γ = 6, run Algorithm 5 to gen-
erate the union list of size 848. In 106 repetitions, the average probability of
the correct restricted internal state being in the final list is quite close to the
theoretical value 0.896456, which confirmed the correctness of the theoretical
prediction. We also verified the list merging procedure of FNCA in experiments
in the beginning steps 1 to 5 of Table 6, though the complexity of this procedure
does not dominate. In general, the list sizes got in simulations match well with
the theoretical estimates when represented in terms of the power of 2. Further,
we have implemented the Walsh distinguisher to check its validity and got the
confirmed results as well.

6.2 Simulations on the Reduced Version

For the reduced version of Grain v1 in AppendixB, we rewrite the keystream
bit as z′

i = xi ⊕ h(l′i+1, l
′
i+21, n

′
i+23), where xi = n′

i+1 ⊕ n′
i+7 ⊕ n′

i+15. We have
established a similar evolution process for restoring the restricted internal state of
(z0, z1, · · · , z19), which consists of 40 LFSR state bits, 20 NFSR variables ni+23

and 20 xi variables for (0 ≤ i ≤ 19). In simulations, we first randomly loaded
the internal states of the LFSR and NFSR as 0x9b97284782 and 0xb20027ea7d,
respectively. Then we got the first 20-bit keystream, 00010010010000 001100.
Let l = 2, d ≤ 2 and c = 8, the probability that the correct inner state is in
the candidate list is 0.923 after one call of Algorithm 3. Now we adopt a group
of attack parameters similar to the case of Grain v1 in the distilling phase.
We invoked the Algorithm 3 10 times to generate the corresponding 10 lists,
and then intersect these lists to have a smaller list. Repeat this process 4 times
to acquire 4 similar intersection lists. At last, combine these 4 lists to form
the union list and the existence probability of the correct state in the list is
around 0.91. For (z0, z1), we can recover an 8-bit restricted internal state, i.e.,
(n22, l1, l21, n23, l2, l22, x0, x1). Note that there are 6 free variables in this case
and 64 possibilities in total. After distilling, the candidate number of this partial

Fast Near Collision Attack on the Grain v1 Stream Cipher 799

inner state is reduced to 50, while the value of expectation in theory is 53. Next,
for (z1, z2), we got 51 candidates. Since the inner states of (z0, z1) and (z1, z2)
have 3 common free variables, the expected number of inner states of (z0, z1, z2)
is 50 · 51/23 ≈ 319. In the experiments, the practical number is 308. The same
method can also be applied to (z1, z2, z3) to recover the candidates list of size
312. There are 6 common free variables between the inner state of (z0, z1, z2)
and that of (z1, z2, z3). We can reduce the number of inner states associated
with (z0, z1, z2, z3) to 308 · 319/26 ≈ 210.9, and the number got in experiments is
1921 ≈ 210.9. We continue this process to z19 until we have recovered the target
inner state. In the experiments, we repeat the above whole process for 224.26

times until the correct inner state is indeed in the candidate list of size 212.01. In
theory, we need about 223.94 repetitions of the whole process and get a list with
211.64 candidates. Therefore, on average we could restore the internal state with
a complexity of about 237.58 reduced version cipher ticks, and currently, it took
several hours for our non-optimized C implementation to have the candidate list
with the correct candidate in, which verified the theoretical analysis of FNCA.
For the reduced version, there is no need to use the Z-technique and Walsh
distinguisher to deal with the LFSR independently. The codes for the reduced
version experiments are available via https://github.com/martinzhangbin/nca
reducedversion.

7 Conclusions

In this paper, we have tried to develop a new cryptanalytic method, called fast
near collision attack, on modern stream ciphers with a large internal state. The
new attack utilizes the basic, yet often ignored fact in the primitives that each
keystream vector actually depends on only a subset of the internal state bits, not
on the full internal state. Thus it is natural to combine the near collision property
with the divide-and-conquer strategy to mount the new kind of state recovery
attacks. In the process, a self-contained method is introduced and improved to
derive the partial internal state from the partial state difference efficiently. After
the recovery of certain subsets of the whole internal state, a careful merging
and further retrieval step is conducted to restore the full large internal state. As
an application of the new methodology, we demonstrated a key recovery attack
against Grain v1, one of the 7 finalists in the European eSTREAM project.
Combined with the rewriting variables technique, it is shown that the internal
state of Grain v1, thus the secret key, can be reliably restored in 275.7 cipher ticks
after the pre-computation of 28.1 cipher ticks, given 228-bit memory and around
219 keystream bits in the single key model, which is the best key recovery attack
against Grain v1 so far. It is suggested to strengthen Grain v1 with a new NFSR
that eliminates the existence of good linear approximations for the feedback
function. It is our future work to study fast near collision attacks against other
NFSR-based primitives.

Acknowledgements. We would like to thank the anonymous reviewers for very help-
ful comments. This work is supported by the National Key R&D Research programm

https://github.com/martinzhangbin/nca_reducedversion
https://github.com/martinzhangbin/nca_reducedversion

800 B. Zhang et al.

(Grant No. 2017YFB0802504), the program of the National Natural Science Foundation
of China (Grant No. 61572482), National Cryptography Development Fund (Grant No.
MMJJ20170107) and National Grand Fundamental Research 973 Programs of China
(Grant No. 2013CB338002).

A An Example to Illustrate the Z-technique

Example 1. Assume the adversary collects the following linear equations of z20+i

for i ≥ 0. Now he could use the Z-technique as follows to derive more linear
equations on the initial NFSR state.

1 : z20 = n21 ⊕ n22 ⊕ n24 ⊕ n30 ⊕ n51 ⊕ n63 ⊕ n76 ⊕ n83

2 : z21 = n22 ⊕ n23 ⊕ n25 ⊕ n31 ⊕ n52 ⊕ n64 ⊕ n77 ⊕ n84

3 : z22 = n23 ⊕ n24 ⊕ n26 ⊕ n32 ⊕ n53 ⊕ n65 ⊕ n78

4 : z23 = n24 ⊕ n25 ⊕ n27 ⊕ n33 ⊕ n54 ⊕ n66 ⊕ n79

5 : z24 = n25 ⊕ n26 ⊕ n28 ⊕ n34 ⊕ n55 ⊕ n67 ⊕ n80 ⊕ n87

6 : z25 = n26 ⊕ n27 ⊕ n29 ⊕ n35 ⊕ n56 ⊕ n68 ⊕ n81

7 : z26 = n27 ⊕ n28 ⊕ n30 ⊕ n36 ⊕ n57 ⊕ n69 ⊕ n82

8 : z27 = n28 ⊕ n29 ⊕ n31 ⊕ n37 ⊕ n58 ⊕ n70 ⊕ n83

9 : z28 = n29 ⊕ n30 ⊕ n32 ⊕ n38 ⊕ n59 ⊕ n71 ⊕ n84 ⊕ n91

10 : z29 = n30 ⊕ n31 ⊕ n33 ⊕ n39 ⊕ n60 ⊕ n72 ⊕ n85 ⊕ n92

11 : z30 = n31 ⊕ n32 ⊕ n34 ⊕ n40 ⊕ n61 ⊕ n73 ⊕ n86 ⊕ n93

12 : z31 = n32 ⊕ n33 ⊕ n35 ⊕ n41 ⊕ n62 ⊕ n74 ⊕ n87 ⊕ n94

13 : z32 = n33 ⊕ n34 ⊕ n36 ⊕ n42 ⊕ n63 ⊕ n75 ⊕ n88 ⊕ n95

14 : z33 = n34 ⊕ n35 ⊕ n37 ⊕ n43 ⊕ n64 ⊕ n76 ⊕ n89

15 : z34 = n35 ⊕ n36 ⊕ n38 ⊕ n44 ⊕ n65 ⊕ n77 ⊕ n90

16 : z35 = n36 ⊕ n37 ⊕ n39 ⊕ n45 ⊕ n66 ⊕ n78 ⊕ n91

17 : z36 = n37 ⊕ n38 ⊕ n40 ⊕ n46 ⊕ n67 ⊕ n79 ⊕ n92

18 : z37 = n38 ⊕ n39 ⊕ n41 ⊕ n47 ⊕ n68 ⊕ n80 ⊕ n93 ⊕ n100

19 : z38 = n39 ⊕ n40 ⊕ n42 ⊕ n48 ⊕ n69 ⊕ n81 ⊕ n94 ⊕ n101

20 : z39 = n40 ⊕ n41 ⊕ n43 ⊕ n49 ⊕ n70 ⊕ n82 ⊕ n95 ⊕ n102

21 : z40 = n41 ⊕ n42 ⊕ n44 ⊕ n50 ⊕ n71 ⊕ n83 ⊕ n96

22 : z41 = n42 ⊕ n43 ⊕ n45 ⊕ n51 ⊕ n72 ⊕ n84 ⊕ n97 ⊕ n104

23 : z42 = n43 ⊕ n44 ⊕ n46 ⊕ n52 ⊕ n73 ⊕ n85 ⊕ n98

24 : z43 = n44 ⊕ n45 ⊕ n47 ⊕ n53 ⊕ n74 ⊕ n86 ⊕ n99

25 : z44 = n45 ⊕ n46 ⊕ n48 ⊕ n54 ⊕ n75 ⊕ n87 ⊕ n100

26 : z45 = n46 ⊕ n47 ⊕ n49 ⊕ n55 ⊕ n76 ⊕ n88 ⊕ n101

27 : z46 = n47 ⊕ n48 ⊕ n50 ⊕ n56 ⊕ n77 ⊕ n89 ⊕ n102

Fast Near Collision Attack on the Grain v1 Stream Cipher 801

From Eqs.1 ⇀ 8, z20 ⊕ z27 is a linear equation on the initial NFSR state. From
Eqs.2 ⇀ 9 ⇀ 16, z21 ⊕ z28 ⊕ z35 is also a linear equation on the initial NFSR
state. Eqs.3 and 4 provide 2 more such equations directly. From Eqs.5 ⇀ 12 ⇀
19 ⇀ 26 ⇀ 13 ⇀ 20 ⇀ 27 ⇀ 14, another linear equation on the initial NFSR
state is established. Finally, as n80, n81 and n82 are known from the previous
step, Eqs.6 and 7 are also linear equations on the initial NFSR state. Thus,
the adversary could collect 7 linear equations in forwards direction and 1 linear
equation in backwards direction. In total, he could collect 8 linear equations on
the initial NFSR state with a negligible complexity. ��

B The Reduced Version of Grain v1

This reduced cipher generates the keystream from a 40-bit key and a 32-bit
IV. Precisely, let f ′(x) = 1 + x7 + x22 + x31 + x40 be the primitive polynomial
of degree 40, then the updating function of the LFSR is defined as l′i+40 =
l′i+33 + l′i+18 + l′i+9 + l′i for i ≥ 0. Similar to the original Grain v1, the updating
function of the NFSR is

n′
i+40 = l′i ⊕ n′

i+33 ⊕ n′
i+29 ⊕ n′

i+23 ⊕ n′
i+17 ⊕ n′

i+11 ⊕ n′
i+9 ⊕ n′

i+33n
′
i+29

⊕n′
i+23n

′
i+17 ⊕ n′

i+33n
′
i+9 ⊕ n′

i+33n
′
i+29n

′
i+23 ⊕ n′

i+29n
′
i+23n

′
i+17

⊕n′
i+33n

′
i+29n

′
i+23n

′
i+17 ⊕ n′

i+29n
′
i+23n

′
i+17n

′
i+11n

′
i+9.

The filter function h′(x) is defined as h′(x) = x1 ⊕ x0x2 ⊕ x1x2 ⊕ x0x1x2 with
the different tap positions, which are provided below. The output function is
z′
i =

∑
k∈A′ n′

i+k ⊕h′(l′i+1, l
′
i+21, n

′
i+22), where A′ = {1, 7, 15}. Its key/IV initial-

ization is similar to that of Grain v1 with 80 initialization rounds. The actual
complexity of the brute force attack for a fixed IV on the reduced version is
(240 − 1) · (80 +

∑40
i=1 i · 1

2i−1) ≈ 246 cipher ticks.

References

1. Anderson, R.: Searching for the optimum correlation attack. In: Preneel, B. (ed.)
FSE 1994. LNCS, vol. 1008, pp. 137–143. Springer, Heidelberg (1995). https://doi.
org/10.1007/3-540-60590-8 11

2. Berbain, C., Gilbert, H., Maximov, A.: Cryptanalysis of grain. In: Robshaw, M.
(ed.) FSE 2006. LNCS, vol. 4047, pp. 15–29. Springer, Heidelberg (2006). https://
doi.org/10.1007/11799313 2

3. Berbain, C., Gilbert, H., Joux, A.: Algebraic and correlation attacks against lin-
early filtered non linear feedback shift registers. In: Avanzi, R.M., Keliher, L., Sica,
F. (eds.) SAC 2008. LNCS, vol. 5381, pp. 184–198. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-04159-4 12

4. Biryukov, A., Shamir, A.: Cryptanalytic time/memory/data tradeoffs for stream
ciphers. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 1–13.
Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44448-3 1

5. De Cannière, C., Küçük, Ö., Preneel, B.: Analysis of grain’s initialization algo-
rithm. In: Vaudenay, S. (ed.) AFRICACRYPT 2008. LNCS, vol. 5023, pp. 276–289.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68164-9 19

https://doi.org/10.1007/3-540-60590-8_11
https://doi.org/10.1007/3-540-60590-8_11
https://doi.org/10.1007/11799313_2
https://doi.org/10.1007/11799313_2
https://doi.org/10.1007/978-3-642-04159-4_12
https://doi.org/10.1007/3-540-44448-3_1
https://doi.org/10.1007/978-3-540-68164-9_19

802 B. Zhang et al.

6. Chepyzhov, V.V., Johansson, T., Smeets, B.: A simple algorithm for fast correlation
attacks on stream ciphers. In: Goos, G., Hartmanis, J., van Leeuwen, J., Schneier,
B. (eds.) FSE 2000. LNCS, vol. 1978, pp. 181–195. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44706-7 13

7. Courtois, N.T., Meier, W.: Algebraic attacks on stream ciphers with linear feed-
back. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 345–359.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9 21

8. http://www.ecrypt.eu.org/stream/e2-grain.html
9. Hawkes, P., Rose, G.G.: Rewriting variables: the complexity of fast algebraic

attacks on stream ciphers. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol.
3152, pp. 390–406. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-
540-28628-8 24

10. Hell, M., Johansson, T., Meier, W.: Grain: a stream cipher for constrained envi-
ronments. Int. J. Wirel. Mob. Comput. (IJWMC) 2(1), 86–93 (2007)

11. Fischer, S., Meier, W.: Algebraic immunity of S-boxes and augmented functions. In:
Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 366–381. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-74619-5 23

12. Guo, Q., Johansson, T., Löndahl, C.: Solving LPN using covering codes. In: Sarkar,
P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 1–20. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-8 1

13. Lu, Y., Vaudenay, S.: Faster correlation attack on bluetooth keystream generator
E0. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 407–425. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-8 25

14. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994).
https://doi.org/10.1007/3-540-48285-7 33

15. Knellwolf, S., Meier, W., Naya-Plasencia, M.: Conditional differential cryptanalysis
of NLFSR-based cryptosystems. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol.
6477, pp. 130–145. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-17373-8 8

16. Koch, P.C.: Cryptanalysis of stream ciphers-analysis and application of the near
collision attack for stream ciphers, Technical University of Denmark, Master
Thesis-Supervisor: Christian Rechberger, November 2013

17. http://en.wikipedia.org/wiki/Stirling numbers of the second kind
18. Zhang, B., Li, Z., Feng, D., Lin, D.: Near collision attack on the grain v1 stream

cipher. In: Moriai, S. (ed.) FSE 2013. LNCS, vol. 8424, pp. 518–538. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-43933-3 27

https://doi.org/10.1007/3-540-44706-7_13
https://doi.org/10.1007/3-540-39200-9_21
http://www.ecrypt.eu.org/stream/e2-grain.html
https://doi.org/10.1007/978-3-540-28628-8_24
https://doi.org/10.1007/978-3-540-28628-8_24
https://doi.org/10.1007/978-3-540-74619-5_23
https://doi.org/10.1007/978-3-662-45611-8_1
https://doi.org/10.1007/978-3-540-28628-8_25
https://doi.org/10.1007/3-540-48285-7_33
https://doi.org/10.1007/978-3-642-17373-8_8
https://doi.org/10.1007/978-3-642-17373-8_8
http://en.wikipedia.org/wiki/Stirling_numbers_of_the_second_kind
https://doi.org/10.1007/978-3-662-43933-3_27

Author Index

Alagic, Gorjan III-489
Alwen, Joël II-99
Applebaum, Benny II-261

Badertscher, Christian II-34
Ball, Marshall III-294, III-618
Barak, Boaz II-649
Barthe, Gilles II-354
Beimel, Amos II-287
Belaïd, Sonia II-354
Benhamouda, Fabrice II-500
Berman, Itay II-133
Berndt, Sebastian I-29
Bhattacharya, Srimanta I-387
Blocki, Jeremiah II-99
Bloem, Roderick II-321
Boneh, Dan III-222
Bose, Priyanka I-468
Boyle, Elette III-294
Brakerski, Zvika I-535, II-649

Camenisch, Jan I-280
Canetti, Ran I-91
Castryck, Wouter I-338
Chaidos, Pyrros III-193
Chen, Hao I-315
Chen, Jie I-503
Chen, Yi-Hsiu III-371
Chen, Yilei I-91
Cheon, Jung Hee I-360
Chung, Kai-Min III-371
Cid, Carlos II-683
Cohen, Bram II-451
Coretti, Sandro I-227
Corrigan-Gibbs, Henry II-415
Couteau, Geoffroy III-193

Dachman-Soled, Dana III-618
David, Bernardo II-66
Degabriele, Jean Paul III-259
Degwekar, Akshay II-133
Derler, David III-425
Dinur, Itai I-413

Dodis, Yevgeniy I-227
Drijvers, Manu I-280
Ducas, Léo I-125
Dupont, Pierre-Alain III-393

Eisenträger, Kirsten III-329
Espitau, Thomas II-354

Farràs, Oriol I-597
Fleischhacker, Nils III-3
Fouque, Pierre-Alain II-354

Gagliardoni, Tommaso I-280, III-489
Garay, Juan II-34
Garg, Sanjam II-468, II-535, II-566
Gay, Romain II-230
Gaži, Peter II-66
Genise, Nicholas I-174
Gong, Junqing I-503
Goyal, Vipul III-3
Grégoire, Benjamin II-354
Gross, Hannes II-321
Grosso, Vincent II-385
Guo, Siyao I-227

Hallgren, Sean III-329
Han, Kyoohyung I-315, I-360
Hanaoka, Goichiro I-61
Hesse, Julia III-393
Hoang, Viet Tung I-468
Hofheinz, Dennis II-230
Hohenberger, Susan II-197
Holenstein, Thomas II-261
Huang, Tao II-683
Hubáček, Pavel III-66

Iliashenko, Ilia I-338
Ishai, Yuval III-222
Iusupov, Rinat II-321

Jager, Tibor III-425
Jain, Abhishek III-3
Jarecki, Stanislaw III-456

Kaced, Tarik I-597
Kalai, Yael Tauman III-34
Kanukurthi, Bhavana III-589
Keller, Marcel III-91, III-158
Khurana, Dakshita III-34
Kiayias, Aggelos II-66
Kiltz, Eike III-552
Kim, Andrey I-360
Kim, Miran I-360
Kitagawa, Fuyuki II-603
Kiyoshima, Susumu II-566
Kogan, Dmitry II-415
Kohl, Lisa II-230
Komargodski, Ilan I-259, II-162, II-649
Könighofer, Bettina II-321
Kothari, Pravesh K. II-649
Kowalczyk, Lucas I-503
Krawczyk, Hugo III-456
Kulkarni, Mukul III-618
Kushilevitz, Eyal II-287

Lauter, Kristin III-329
Lehmann, Anja I-280, III-685
Leurent, Gaëtan II-745
Liao, Jyun-Jie III-371
Lin, Dongdai II-715
Lin, Huijia II-500
Liśkiewicz, Maciej I-29
Liu, Meicheng II-715
Liu, Tianren I-567
Lombardi, Alex I-535
Luykx, Atul I-445
Lyubashevsky, Vadim I-204, III-552

Majenz, Christian III-489
Malkin, Tal III-294, III-618
Mangard, Stefan II-321
Martín, Sebastià I-597
Matsuda, Takahiro I-61
Maurer, Ueli II-34
Meier, Willi II-771
Micciancio, Daniele I-3, I-174
Mishra, Manoj II-261
Moran, Tal III-294
Morrison, Travis III-329

Nandi, Mridul I-387
Naor, Moni II-162
Neven, Gregory I-280

Nishimaki, Ryo II-603
Nissim, Pnina II-287

Obbattu, Sai Lakshmi Bhavana III-589

Padró, Carles I-597
Pan, Jiaxin II-230
Pandey, Omkant II-566
Pass, Rafael II-3
Pastro, Valerio III-158
Petit, Christophe III-329
Peyrin, Thomas II-683
Pietrzak, Krzysztof II-99, II-451
Pinkas, Benny III-125
Pointcheval, David III-393
Preneel, Bart I-445

Reyzin, Leonid I-91, III-393
Rosca, Miruna I-146
Rosen, Alon III-66
Rossi, Mélissa II-354
Rotaru, Dragos III-158
Rothblum, Ron D. I-91, II-133
Russell, Alexander II-66

Sahai, Amit III-34, III-222
Saito, Tsunekazu III-520
Sasaki, Yu II-683
Schaffner, Christian III-552
Schneider, Thomas III-125
Segev, Gil I-535
Seiler, Gregor I-204
Sekar, Sruthi III-589
Shayevitz, Ofer II-261
Shi, Elaine II-3
Sibleyras, Ferdinand II-745
Slamanig, Daniel III-425
Song, Ling II-683
Song, Yongsoo I-360
Soni, Pratik III-653
Srinivasan, Akshayaram II-468, II-535
Stam, Martijn III-259
Standaert, François-Xavier II-385
Stehlé, Damien I-146
Steinberger, John I-227
Striecks, Christoph III-425

Tackmann, Björn III-685
Tanaka, Keisuke I-61, II-603

804 Author Index

Tessaro, Stefano I-468, III-653
Tibouchi, Mehdi II-354
Tschudi, Daniel II-34

Vaikuntanathan, Vinod I-535, I-567
Vald, Margarita III-66
Vasudevan, Prashant Nalini II-133
Vercauteren, Frederik I-338

Wallet, Alexandre I-146
Walter, Michael I-3
Wang, Wenhao II-715
Wang, Yuyu I-61
Waters, Brent II-197
Wee, Hoeteck I-503, I-567
Weinert, Christian III-125
Wieder, Udi III-125

Winter, Johannes II-321
Wu, David J. III-222

Xagawa, Keita III-520
Xu, Chao II-771
Xu, Jiayu III-456

Yakoubov, Sophia III-393
Yamakawa, Takashi III-520
Yanai, Avishay III-91
Yang, Jingchun II-715
Yogev, Eylon I-259, II-162

Zhang, Bin II-771
Zikas, Vassilis II-34

Author Index 805

	Preface
	Eurocrypt 2018 The 37th Annual International Conference on the Theory and Applications of Cryptographic Techniques
	Abstract of Invited Talks
	Desperately Seeking Sboxes
	Thirty Years of Digital Currency: From DigiCash to the Blockchain
	Contents -- Part II
	Blockchain
	Thunderella: Blockchains with Optimistic Instant Confirmation
	1 Introduction
	1.1 The Thunderella Paradigm

	2 Definitions
	2.1 Classical, Sleepy, and Permissionless Models
	2.2 State Machine Replication
	2.3 Abstract Blockchain Protocols
	2.4 Preliminaries: Responsiveness

	3 Basic Thunderella Protocol with a Static Committee
	3.1 Our Basic Protocol in a Nutshell
	3.2 Detailed Protocol Description

	4 Related Work
	References

	But Why Does It Work? A Rational Protocol Design Treatment of Bitcoin
	1 Introduction
	2 Preliminaries
	2.1 The RPD Framework
	2.2 A Composable Model for Blockchain Protocols

	3 Rational Protocol Design of Ledgers
	3.1 Extending the RPD Framework
	3.2 Bitcoin in the RPD Framework
	3.3 Attack-Payoff Security and Incentive Compatibility

	4 Analysis of Bitcoin Without Transaction Fees
	4.1 Attack-Payoff Security of Bitcoin (Without Fees)
	4.2 Incentive Compatibility of Bitcoin (Without Fees)

	5 Analysis of Bitcoin with Transaction Fees
	5.1 Utility Functions with Fees
	5.2 Analysis of Bitcoin (with Fees)

	References

	Ouroboros Praos: An Adaptively-Secure, Semi-synchronous Proof-of-Stake Blockchain
	1 Introduction
	2 Preliminaries
	2.1 Transaction Ledger Properties
	2.2 The Semi-synchronous Model

	3 The Static Stake Protocol
	3.1 Forward Secure Signatures and Ffwsig
	3.2 UC-VRFs with Unpredictability Under Malicious Key Generation
	3.3 Oblivious Leader Selection
	3.4 The Protocol in the FINIT-Hybrid Model

	4 Combinatorial Analysis of the Static Stake Protocol
	4.1 Chains, Forks and Divergence
	4.2 The Semisynchronous to Synchronous Reduction
	4.3 The Dominant Characteristic Distribution
	4.4 Common Prefix, Chain Growth, and Chain Quality
	4.5 Adaptive Adversaries
	4.6 The Resettable Protocol

	5 The Full Protocol
	5.1 The Dynamic Stake Case with a Resettable Leaky Beacon
	5.2 Instantiating FRLB,r

	References

	Sustained Space Complexity
	1 Introduction
	1.1 Moderately-Hard Functions
	1.2 High Level Description of Our Construction and Proof

	2 Preliminaries
	2.1 Notation
	2.2 Graphs
	2.3 Pebbling Models

	3 A Graph with Optimal Sustained Space Complexity
	4 Better Depth-Robustness
	4.1 Additional Applications of Extremely Depth Robust Graphs

	5 A Pebbling Reduction for Sustained Space Complexity
	5.1 Defining Sustained Memory Hard Functions
	5.2 The Construction
	5.3 The Pebbling Reduction

	6 Open Questions
	A Missing Proofs
	References

	Multi-collision Resistance
	Multi-Collision Resistant Hash Functions and Their Applications
	1 Introduction
	1.1 Our Results
	1.2 Related Works
	1.3 Our Techniques
	1.4 Organization

	2 Preliminaries
	2.1 Many-Wise Independent Hashing
	2.2 Load Balancing

	3 Constructing MCRH Families
	3.1 Entropy Approximation
	3.2 The Construction

	4 Constant-Round Statistically-Hiding Commitments
	References

	Collision Resistant Hashing for Paranoids: Dealing with Multiple Collisions
	1 Introduction
	2 Our Techniques
	2.1 The Main Commitment Scheme
	2.2 Separating Multi-CRH from Standard CRH

	3 Preliminaries
	3.1 Limited Independence
	3.2 Randomness Extractors
	3.3 List-Recoverable Codes
	3.4 Cryptographic Primitives
	3.5 Commitment Schemes
	3.6 Fully Black-Box Constructions

	4 Multi-Collision-Resistant Function Families
	5 Tree Commitments from Multi-CRH
	5.1 A Computationally-Binding Scheme
	5.2 Getting Statistical-Hiding Generically

	6 Four-Round Short Commitments from Multi-CRH
	7 Separating Multi-CRH from CRH
	8 UOWHFs, MCRHs and Short Commitments
	References

	Signatures
	Synchronized Aggregate Signatures from the RSA Assumption
	1 Introduction
	2 Scheme Specifications and Definitions of Security
	3 Number Theoretic Assumptions and Related Lemmas
	4 A Base Scheme for Aggregation from RSA
	4.1 Proof of Security

	5 Trading Off Signing Time with Storage
	6 Obtaining O(lg(T)) Signing Time and Private Key Size
	6.1 Storage Algorithms
	6.2 Analysis
	6.3 Using the Storage Primitives and Optimizations

	7 Identity-Based Aggregation from RSA
	8 Performance Evaluation
	A Sample Snapshot of Storage for Sect.6 Scheme
	References

	More Efficient (Almost) Tightly Secure Structure-Preserving Signatures
	1 Introduction
	1.1 Our Contribution
	1.2 Related Work and Efficiency Comparison

	2 Preliminaries
	2.1 Notation
	2.2 Pairing Groups and Matrix Diffie-Hellman Assumptions
	2.3 Signature Schems and Message Authentication Codes
	2.4 Non-interactive Zero-Knowledge Proof (NIZK)
	2.5 NIZK for Our OR-language

	3 Tightly Secure Message Authentication Code Scheme
	4 Tightly Secure Signature Scheme
	5 Tightly Secure Structure-Preserving Signature Scheme
	References

	Private Simultaneous Messages
	The Communication Complexity of Private Simultaneous Messages, Revisited
	1 Introduction
	1.1 A Minimal Model for Secure Computation
	1.2 Revisiting the FKN Lower-Bound
	1.3 Fixing the PSM Lower-Bound
	1.4 Applications to Conditional Disclosure of Secrets

	2 Preliminaries
	3 A Counterexample to the FKN Lower-Bound
	3.1 f Satisfies the FKN Properties (Proof of Lemma 1)
	3.2 PSM for f (Proof of Lemma 2)

	4 Lower Bound for Perfect PSM Protocols
	4.1 Proof of the Key Lemma (Lemma 4)

	5 Lower Bounds for Imperfect PSM Protocols
	6 Imperfect PSM Lower-Bounds for Random and Explicit Functions
	6.1 Lower Bounds for Random Functions (Proof of Theorem 12)
	6.2 Explicit Lower-Bound (Proof of Theorem 13)

	7 Lower-Bounds for Conditional Disclosure of Secrets
	References

	The Complexity of Multiparty PSM Protocols and Related Models
	1 Introduction
	1.1 Our Results
	1.2 Applications
	1.3 Discussion

	2 Preliminaries
	2.1 Private Simultaneous Messages Protocols
	2.2 A PSM Protocol for the Index Function
	2.3 A PSM Protocol for S{x}

	3 A 3-Party PSM Protocol for an Arbitrary Function
	3.1 The Cube Approach
	3.2 A 2-Party PSM Protocol
	3.3 A 3-Party PSM Protocol

	4 A k-Party PSM Protocol for an Arbitrary Function and Some Extensions
	4.1 PSM Protocols for 4 and 5 Parties

	5 PSM Protocols with Inputs of Different Sizes
	5.1 2-Party PSM Protocols
	5.2 3-Party PSM Protocols

	6 A PSM for k Parties from a PSM for t Parties
	7 Applications
	7.1 t-robust NIMPC Protocols
	7.2 Ad-hoc PSM Protocols and Homogeneous Distribution Designs
	7.3 Conditional Disclosure of Secrets and Secret-Sharing Schemes for Uniform Access Structures

	References

	Masking
	Formal Verification of Masked Hardware Implementations in the Presence of Glitches
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Masking and the Probing Model
	5 Our Verification Approach for Stable Signals
	5.1 Labeling
	5.2 Propagation Rules
	5.3 Verification

	6 Modeling Transient Timing Effects
	6.1 Glitches
	6.2 Formalization of Probing Security with Glitches
	6.3 Modeling Information from Multiple Clock Cycles

	7 Extending the Verification Approach to Transient Signals
	8 SAT Based Circuit Verification
	9 Practical Results
	9.1 Verification of First-Order Masked Implementations
	9.2 Verification of Higher-Order Masked Implementations

	10 Conclusions
	A Proof of Lemma 2
	B Proof of the Stable Verification Approach
	C Proof of the Transient Verification Approach
	D Proof of the SAT Based Verification for Stable Signals
	E Proof of the SAT Based Approach for Transient Signals
	F Example for the SAT Encoding
	References

	Masking the GLP Lattice-Based Signature Scheme at Any Order
	1 Introduction
	2 The GLP Signature Scheme
	2.1 Parameters and Security
	2.2 The Signature Scheme
	2.3 Security Proof of the r-GLP Variant

	3 Threshold Probing Model with Public Outputs
	3.1 Threshold Probing Model
	3.2 Threshold Probing Model with Public Outputs

	4 Masked Algorithm
	4.1 Overall Structure
	4.2 Masked Gadgets
	4.3 Proofs of Composition

	5 Implementation of the Countermeasure
	6 Conclusion
	References

	Masking Proofs Are Tight and How to Exploit it in Security Evaluations
	1 Introduction
	2 Cautionary Remarks
	3 Background
	3.1 S-box Implementations
	3.2 Mutual Information Metric

	4 Unprotected Implementations
	5 Masked Implementations
	5.1 Exhaustive Approach
	5.2 Reducing Dimensionality with the IOL Assumption
	5.3 The Dependent Noise Issue
	5.4 Secure Multiplication Leakages
	5.5 Reducing Cardinality with the ISL Assumption

	6 Fast and Sound Leakage Assessment
	6.1 Putting Things Together
	6.2 A Real-World Case Study
	6.3 Exploiting Computational Power
	6.4 Conclusions

	A Algorithms for the Masked S-box
	B Additional Figures
	C Metric-Based Bound for the Key Rank
	References

	Best Young Researcher Paper Award
	The Discrete-Logarithm Problem with Preprocessing
	1 Introduction
	1.1 Our Results
	1.2 Our Techniques
	1.3 Related Work

	2 Background
	3 Lower Bound for Discrete Logarithms
	3.1 Proof of Lemma4
	3.2 Discrete Logarithms in Short Intervals
	3.3 The Computational Diffie-Hellman Problem
	3.4 Lower Bounds for Families of Groups

	4 Lower Bound for Computing Many Discrete Logarithms
	5 The Decisional Diffie-Hellman Problem
	6 Lower Bounds with Limited Preprocessing
	7 Preprocessing Attacks on Discrete-Log Problems
	7.1 The Existing Discrete-Log Algorithm with Preprocessing
	7.2 Multiple Discrete Logarithms with Preprocessing
	7.3 Distinguishers with Preprocessing

	8 Conclusion
	References

	Best Paper Awards
	Simple Proofs of Sequential Work
	1 Introduction
	1.1 Proofs of Sequential Work (PoSW)
	1.2 PoSW Definition
	1.3 The ITCS:MahMorVad13 and our Construction in a Nutshell
	1.4 More Related Work
	1.5 Basic Notation

	2 Building Blocks
	2.1 Graphs Basics
	2.2 Random Oracles Basics

	3 The ITCS:MahMorVad13 Construction
	4 Definition and Properties of the DAG GPoSWn
	5 Our Construction
	5.1 Parameters
	5.2 The PoSW,open and verify Algorithms
	5.3 Security
	5.4 Efficiency
	5.5 Verifier Efficiency

	6 Conclusions and Open Problems
	References

	Two-Round Multiparty Secure Computation from Minimal Assumptions
	1 Introduction
	1.1 Our Result

	2 Technical Overview
	3 Preliminaries
	3.1 Garbled Circuits
	3.2 Universal Composability Framework
	3.3 Oblivious Transfer

	4 Conforming Protocols
	4.1 Specifications for a Conforming Protocol
	4.2 Transformation for Making a Protocol Conforming

	5 Two-Round MPC: Semi-honest Case
	5.1 Our Compiler
	5.2 Correctness
	5.3 Simulator
	5.4 Proof of Indistinguishability
	5.5 Extensions

	6 Two-Round MPC: Malicious Case
	6.1 Our Compiler
	6.2 Simulator
	6.3 Proof of Indistinguishability
	6.4 Extensions

	References

	k-Round Multiparty Computation from k-Round Oblivious Transfer via Garbled Interactive Circuits
	1 Introduction
	1.1 Our Contributions
	1.2 Organization
	1.3 Concurrent Work

	2 Overview
	2.1 Round-Collapsing via Obfuscation
	2.2 Garbled Interactive Circuits
	2.3 Constructing GIC from Witness Selector
	2.4 Round-Collapsing via Garbled Interactive Circuits
	2.5 Functional Commitment with Witness Selector from OT
	2.6 Semi-Malicious and Malicious Security in the CRS Model
	2.7 Malicious Security in the Plain Model

	3 Preliminaries
	4 Definition of Garbled Interactive Circuit Schemes
	4.1 Interactive Circuits
	4.2 Garbling Interactive Circuits

	5 2-Round Semi-Honest MPC Protocols
	5.1 New Tool: Functional Commitment
	5.2 Construction of 2-Round Semi-Honest MPC

	6 Garbled Interactive Circuit from Witness Selector
	6.1 Witness Selector
	6.2 Garbled Interactive Circuit from Witness Selector

	References

	Theoretical Multiparty Computation
	Adaptively Secure Garbling with Near Optimal Online Complexity
	1 Introduction
	1.1 Our Contributions
	1.2 Applications

	2 Our Techniques
	2.1 Our Approach: ``Linearizing'' the Garbled Circuit

	3 Preliminaries
	3.1 Garbled Circuits
	3.2 Updatable Laconic Oblivious Transfer
	3.3 Somewhere Equivocal Encryption
	3.4 Adaptive Garbled Circuits

	4 Our Construction
	5 Proof of Security
	5.1 Circuit Configuration
	5.2 Our Hybrids
	5.3 Proof of Indistinguishability for the Rules

	A Completing Proofs of Lemma 3
	References

	A New Approach to Black-Box Concurrent Secure Computation
	1 Introduction
	1.1 Our Contribution
	1.2 Other Related Work

	2 Overview of Our Techniques
	2.1 Constant-Round Black-Box Concurrent OT
	2.2 Composition of OT with OT-Hybrid MPC

	3 Preliminaries
	3.1 Non-malleable Commitment Schemes
	3.2 UC Security and Its SPS Variant

	4 Our SPS Concurrent OT Protocol
	4.1 Protocol Description
	4.2 Simulator SimOT
	4.3 Proof of Indistinguishability

	5 Our SPS Concurrent MPC Protocol
	References

	Obfuscation
	Obfustopia Built on Secret-Key Functional Encryption
	1 Introduction
	1.1 Backgrounds
	1.2 Our Results
	1.3 Organization

	2 Overview: IO from Collusion-Resistant SKFE
	2.1 Construction of IO Based on PKFE
	2.2 Replacing PKFE with SKFE: Need of Puncturable SKFE
	2.3 Puncturable SKFE from SKFE
	2.4 IO from Puncturable SKFE

	3 Overview: Collusion-Resistant SKFE from Weakly-Succinct One
	3.1 First Attempt: Applying Re-encryption Techniques in the Public-Key Setting
	3.2 Second Attempt: Applying Techniques in a Different Context of SKFE
	3.3 Our Solution: Sandwiched Size-Shifting

	4 Preliminaries
	4.1 Notations
	4.2 Standard Cryptographic Tools
	4.3 Secret-Key Functional Encryption
	4.4 Indistinguishability Obfuscation
	4.5 Strong Exponentially-Efficient Indistinguishability Obfuscation

	5 Puncturable Secret-Key Functional Encryption
	5.1 Syntax
	5.2 Security
	5.3 Efficiency
	5.4 Difference from the Definition of Bitansky and Vaikuntanathan

	6 Single-Key Non-Succinct Puncturable SKFE
	7 From Non-Succinct Puncturable SKFE to Weakly-Succinct One
	7.1 From Non-Succinct to Collusion-Succinct by Using SXIO
	7.2 From Collusion-Succinct to Weakly-Succinct

	8 Indistinguishability Obfuscation from SKFE
	8.1 IO from Collusion-Resistant SKFE
	8.2 Collusion-Resistant SKFE from Weakly-Succinct One

	References

	Limits on Low-Degree Pseudorandom Generators (Or: Sum-of-Squares Meets Program Obfuscation)
	1 Introduction
	1.1 Our Results
	1.2 Prior Work
	1.3 Comparison with LombardiV17a
	1.4 Paper Organization

	2 Relating Simple Generators and Program Obfuscators
	3 Our Techniques
	3.1 Distinguishing Generators with Block-Locality 2
	3.2 Improving the Stretch to n2b for the Single Predicate Case
	3.3 Random Block Local Generators

	4 Image Refutation for Low Degree Maps
	4.1 Degree 2 Image Refutation
	4.2 Refutation for d>2

	5 Block Local Generators
	5.1 Bounds on General Block-Local Generators
	5.2 Sharper Bounds on the Stretch of Block-Local PRGs with a Single Predicate
	5.3 Image Refutation for Random Block-Local PRGs

	6 Lower Bound for Refuting Two-Block-Local PRGs
	7 A Class of Block-Local Candidate Pseudorandom Generators
	A Analysis of the Basic SDP Program
	References

	Symmetric Cryptanalysis
	Boomerang Connectivity Table: A New Cryptanalysis Tool
	1 Introduction
	2 Previous Work
	3 BCT – Boomerang Connectivity Table
	3.1 Definition of the BCT
	3.2 Increased Probability with Generalized Switching Effect
	3.3 Extension of Generalized Switching Effect to General DDT

	4 Applications to Deoxys-BC
	4.1 Specification
	4.2 Improved 10-Round Boomerang Attack
	4.3 Experimental Verification and Summary

	5 Applications to SKINNY
	5.1 Specification of SKINNY-128
	5.2 Previous Related-Tweakey Rectangle Attacks
	5.3 Precise Probability Evaluation of Boomerang Distinguishers

	6 Discussion
	6.1 Difficulties of Achieving 4-Uniform BCT
	6.2 Boomerang Switch for Modular Addition

	7 Concluding Remarks
	References
	A Demonstration of Lemma 5 for SKINNY-128

	Correlation Cube Attacks: From Weak-Key Distinguisher to Key Recovery
	1 Introduction
	2 Preliminaries
	3 Correlation Cube Attacks
	3.1 Preprocessing Phase
	3.2 Online Phase
	3.3 Discussion

	4 Applications to Trivium Stream Cipher
	4.1 Description of Trivium
	4.2 Degree Estimation of TRIVIUM
	4.3 The Attack on 805-Round Trivium
	4.4 The Attack on 835-Round Trivium
	4.5 Discussion

	5 Conclusions
	A The Cubes, Equations and Probabilities
	References

	The Missing Difference Problem, and Its Applications to Counter Mode Encryption
	1 Introduction
	2 Message Recovery Attacks on CTR Mode
	2.1 Setting and Notations
	2.2 Previous Work

	3 Efficient Algorithms for the Missing Difference Problem
	3.1 Known Prefix Sieving
	3.2 Fast Convolution Sieving

	4 Application to the CTR Mode
	4.1 Attack Using Fast Convolution
	4.2 Attacks Using Known Prefix Sieving
	4.3 Use of CTR Mode in Communication Protocols
	4.4 Counter-Measures

	5 Application to Wegman-Carter MACs
	6 Proofs and Simulations
	6.1 About the Fast Convolution Algorithm
	6.2 About the Known Prefix Sieving Algorithm

	7 Conclusion
	References

	.26em plus .1em minus .1emFast Near Collision Attack on the Grain v1 Stream Cipher
	1 Introduction
	2 Description of Grain v1
	3 Preliminaries
	3.1 Basic Conceptions and Lemmas
	3.2 The Previous Near Collision Attack

	4 Fast Near Collision Attacks
	4.1 General Description of Fast Near Collision Attacks
	4.2 Offline Phase: Parameterizing the Differential Tables
	4.3 Online Phase: Restoring and Distilling the Candidates

	5 State Recovery Attack on Grain v1
	5.1 Rewriting Variables and Parameter Configuration
	5.2 Concrete Attack: Strategy and Profile
	5.3 Restoring the Internal State of the LFSR
	5.4 Restoring the Internal State of the NFSR
	5.5 Final Complexity Analysis

	6 Experimental Results
	6.1 The Experiments on Grain v1
	6.2 Simulations on the Reduced Version

	7 Conclusions
	A An Example to Illustrate the Z-technique
	B The Reduced Version of Grain v1
	References

	Author Index

