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Abstract. Succinct non-interactive arguments (SNARGs) enable ver-
ifying NP computations with significantly less complexity than that
required for classical NP verification. In this work, we focus on simulta-
neously minimizing the proof size and the prover complexity of SNARGs.
Concretely, for a security parameter λ, we measure the asymptotic cost
of achieving soundness error 2−λ against provers of size 2λ. We say a
SNARG is quasi-optimally succinct if its proof length is ˜O(λ), and that
it is quasi-optimal, if moreover, its prover complexity is only polyloga-
rithmically greater than the running time of the classical NP prover. We
show that this definition is the best we could hope for assuming that NP
does not have succinct proofs. Our definition strictly strengthens the pre-
vious notion of quasi-optimality introduced in the work of Boneh et al.
(Eurocrypt 2017).

This work gives the first quasi-optimal SNARG for Boolean circuit sat-
isfiability from a concrete cryptographic assumption. Our construction
takes a two-step approach. The first is an information-theoretic construc-
tion of a quasi-optimal linear multi-prover interactive proof (linear MIP)
for circuit satisfiability. Then, we describe a generic cryptographic com-
piler that transforms our quasi-optimal linear MIP into a quasi-optimal
SNARG by relying on the notion of linear-only vector encryption over
rings introduced by Boneh et al. Combining these two primitives yields
the first quasi-optimal SNARG based on linear-only vector encryption.
Moreover, our linear MIP construction leverages a new robust circuit
decomposition primitive that allows us to decompose a circuit satisfia-
bility instance into several smaller circuit satisfiability instances. This
primitive may be of independent interest.

Finally, we consider (designated-verifier) SNARGs that provide opti-
mal succinctness for a non-negligible soundness error. Concretely, we put
forward the notion of “1-bit SNARGs” that achieve soundness error 1/2
with only one bit of proof. We first show how to build 1-bit SNARGs
from indistinguishability obfuscation, and then show that 1-bit SNARGs
also suffice for realizing a form of witness encryption. The latter result
highlights a two-way connection between the soundness of very succinct
argument systems and powerful forms of encryption.
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1 Introduction

Proof systems are fundamental to modern cryptography. Many works over the
last few decades have explored different aspects of proof systems, including inter-
active proofs [35,48,56], zero-knowledge proofs [35], probabilistically checkable
proofs [2,3,26], and computationally sound proofs [44,49]. In this work, we study
one such aspect: NP proof systems where the proofs can be significantly shorter
than the NP witness and can be verified much faster than the time needed to
check the NP witness. We say that such proof systems are succinct.

In interactive proof systems for NP with statistical soundness, non-trivial sav-
ings in communicationandverification timearehighlyunlikely [16,32,33,65].How-
ever, if we relax the requirements and consider proof systems with computational
soundness, also known as argument systems [17], significant efficiency improve-
ments become possible. Kilian [44] gave the first succinct four-round interactive
argument system for NP based on collision-resistant hash functions and prob-
abilistically checkable proofs (PCPs). Subsequently, Micali [49] showed how to
convert Kilian’s four-round argument into a single-round argument for NP by
applying the Fiat-Shamir heuristic [27] to Kilian’s interactive protocol. Micali’s
“computationally-sound proofs” (CS proofs) represents the first candidate con-
struction of a succinct non-interactive argument (that is, a “SNARG” [30]). In
the standard model, single-round succinct arguments are highly unlikely for suf-
ficiently hard languages [4,65], so we consider the weaker goal of two-message suc-
cinct arguments systems where the initial message from the verifier is independent
of the statement being verified. We refer to this message as the common reference
string (CRS).

In this work, we focus on simultaneously minimizing both the proof size
and the prover complexity of succinct non-interactive arguments. For a security
parameter λ, we measure the asymptotic cost of achieving soundness against
provers of size 2λ with 2−λ error. We say that a SNARG is quasi-optimally
succinct if its proof length is ˜O(λ), and that it is quasi-optimal if in addition,
the prover’s runtime is only polylogarithmically greater than the the running
time of the classical prover. In Sect. 5.1, we show that this notion of quasi-
optimal succinctness is tight (up to polylogarithmic factors): assuming NP does
not have succinct proofs, no succinct argument system can provide the same
soundness guarantees with proofs of size o(λ). Our notion of quasi-optimality is
a strict strengthening of the previous notion from [14], which imposed a weaker
soundness requirement on the SNARG. Notably, under the definition in [14],
we show that it is possible to construct SNARGs with even shorter proofs than
what they consider to be (quasi)-optimally succinct. We discuss the differences
in these notions of quasi-optimality in Sect. 1.1 as well as the full version of this
paper [15].

In this paper, we construct the first quasi-optimal SNARG whose security
is based on a concrete cryptographic assumption similar in flavor to those of
previous works [13,14]. To our knowledge, all previous candidates are either
not quasi-optimal or rely on a heuristic security argument. Similar to previ-
ous works [13,14], we take a two-step approach to construct our quasi-optimal
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SNARGs. First, we construct an information-theoretic proof system that pro-
vides soundness against a restricted class of provers (e.g., linearly-bounded
provers [41]). We then leverage cryptographic tools (e.g., linear-only encryp-
tion [13,14]) to compile the information-theoretic primitive into a succinct argu-
ment system. In this work, the core information-theoretic primitive we use is
a linear multi-prover interactive proof (linear MIP). One of the main contri-
butions in this work is a new construction of a quasi-optimal linear MIP that
can be compiled to a quasi-optimal SNARG using similar cryptographic tools as
those in [14]. We give an overview of our quasi-optimal linear MIP construction
in Sect. 2, and the formal construction in Sect. 4.

Background on SNARGs. We briefly introduce several properties of succinct non-
interactive argument systems. In this work, we focus on constructing SNARGs
for the problem of Boolean circuit satisfiability. (This suffices for building
SNARGs for general RAM computations, cf. [13].) A SNARG is publicly ver-
ifiable if anyone can verify the proofs, and it is designated-verifier if only the
holder of a secret verification state (generated along with the CRS) can verify
proofs. In this work, we focus on constructing quasi-optimal designated-verifier
SNARGs. In addition, we say a SNARG is fully succinct if the setup algorithm
(i.e., the algorithm that generates the CRS, and in the designated-verifier set-
ting, the secret verification state), is also efficient (i.e., runs in time that is only
polylogarithmic in the circuit size). A weaker notion is the concept of a pre-
processing SNARG, where the setup algorithm is allowed to run in time that is
polynomial in the size of the circuit being verified. In this work, we consider pre-
processing SNARGs. We provide additional background on SNARGs and other
related work in Sect. 1.3.

1.1 Quasi-Optimal SNARGs

In this section, we summarize the main results of this work on defining and
constructing quasi-optimal SNARGs. In Sect. 2, we provide a more technical
survey of our main techniques.

Defining quasi-optimality. In this work, we are interested in minimizing the prover
complexity and proof size in succinct non-interactive argument systems. To reiter-
ate, our definition of quasi-optimality considers the prover complexity and proof
size needed to ensure soundness error 2−λ against provers of size 2λ. We say a
SNARG (for Boolean circuit satisfiability) is quasi-optimal if the proof size is ˜O(λ)
and the prover complexity is ˜O(|C|)+poly(λ, log |C|), where C is the Boolean cir-
cuit.1 In Lemma 5.2, we show that this notion of quasi-optimality is the “right” one
in the following sense: assumingNP does not have succinct proofs, the length of any
succinct argument system that provides this soundness guarantee is necessarily
Ω(λ). Thus, SNARG systems with strictly better parameters are unlikely to exist.

1 We write ˜O(·) to suppress factors that are polylogarithmic in the circuit size |C| and
the security parameter λ.
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Our notion is a strict strengthening of the previous notion of quasi-optimality
from [14] which only required soundness error negl(λ) against provers of size 2λ. In
fact, we show in the full version [15] that the previous notion of quasi-optimality
from [14] is not tight. If we only want ρ bits of soundness where ρ = o(λ), it is
possible to construct a designated-verifier SNARG where the proofs are exactly
ρ bits. This means that there exists a designated-verifier SNARG which meet the
soundness requirements in [14], but whose size is strictly shorter than what would
be considered “optimal.”

Previous SNARG constructions. Prior to this work, the only SNARG candi-
date that satisfies our notion of quasi-optimal prover complexity is Micali’s CS
proofs [49]. However, to achieve 2−λ soundness, the length of a CS proof is Ω(λ2),
which does not satisfy our notion of quasi-optimal succinctness. Conversely, if we
just consider SNARGs that provide quasi-optimal succinctness, we have many
candidates [13,14,24,29,37,38,45,46]. With the exception of [14], the SNARG
proof in all of these candidates contains a constant number of bilinear group ele-
ments, and so, is quasi-optimally succinct. The drawback is that to construct the
proof, the prover has to perform a group operation for every gate in the underly-
ing circuit. Since each group element is Ω(λ) bits, the prover overhead is at least
multiplicative in λ. Consequently, none of these existing constructions satisfy
our notion of quasi-optimal prover complexity. The lattice-based construction
in [14] has the same limitation: the prover needs to operate on an LWE cipher-
text per gate in the circuit, which introduces a multiplicative overhead Ω(λ) in
the prover’s computational cost.

Quasi-optimal linear MIPs. This work gives the first construction of a quasi-
optimal SNARG for Boolean circuit satisfiability from a concrete cryptographic
assumption. Following previous works on constructing SNARGs [13,14], our con-
struction can be broken down into two components: an information-theoretic
component (linear MIPs), and a cryptographic component (linear-only vector
encryption). We give a brief description of the information-theoretic primitive
we construct in this work: a quasi-optimal linear MIP. At the end of this section,
we discuss why the general PCPs and linear PCPs that have featured in pre-
vious SNARG constructions do not seem sufficient for building quasi-optimal
SNARGs.

We first review the notion of a linear PCP [13,41]. A linear PCP over a finite
field F is an oracle computing a linear function π : Fm → F. On any query q ∈ F

m,
the linear PCP oracle responds with the inner product q�π = 〈q,π〉 ∈ F. More
generally, if � queries are made to the linear PCP oracle, the � queries can be packed
into the columns of a query matrix Q ∈ F

m×�. In this case, we can express the
response of the linear PCP oracle as the matrix-vector product Q�π.

Linear MIPs are a direct generalization of linear PCPs to the setting where
there are � independent proof oracles (π1, . . . ,π�), each implementing a linear
function πi : Fm → F. In the linear MIP model, the verifier’s queries consist
of a �-tuple (q1, . . . ,q�) where each qi ∈ F

m. For each query qi ∈ F
m to the
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proof oracle πi, the verifier receives the response 〈qi,πi〉. We review the formal
definitions of linear PCPs and linear MIPs in the full version [15].

In this work, we say that a linear MIP for Boolean circuit satisfiability is
quasi-optimal if the MIP prover (for proving satisfiability of a circuit C) can be
implemented by a circuit of size ˜O(|C|) + poly(λ, log |C|), and the linear MIP
provides soundness error 2−λ. Existing linear PCP constructions [13,14] (which
can be viewed as linear MIPs with a single prover) are not quasi-optimal: they
either require embedding the Boolean circuit into an arithmetic circuit over a
large field [13], or rely on making O(λ) queries, each of length m = O(|C|) [14].

Constructing quasi-optimal linear MIPs. Our work gives the first construction of
a quasi-optimal linear MIP for Boolean circuit satisfiability. We refer to Sect. 2 for
an overview of our construction and to Sect. 4 for the full description. At a high-
level, our quasi-optimal linear MIP construction relies on two key ingredients: a
robust circuit decomposition and a method for enforcing consistency.

Robust circuit decomposition. Our robust decomposition primitive takes a circuit
C and produces from it a collection of constraints f1, . . . , ft, each of which can
be computed by a circuit of size roughly |C| /t. Each constraint reads a subset
of the bits of a global witness (computed based on the statement-witness pair
for C). The guarantee provided by the robust decomposition is that for any false
statement x (that is, a statement x where for all witnesses w, C(x,w) = 0),
no single witness to f1, . . . , ft can simultaneously satisfy more than a constant
fraction of the constraints. Now, to prove satisfiability of a circuit C, the prover
instead proves that there is a consistent witness that simultaneously satisfies
all of the constraints f1, . . . , ft. Each of these proofs can be implemented by a
standard linear PCP. The advantage of this approach is that for a false statement,
only a constant fraction of the constraints can be satisfied (for any choice of
witness), so even if each underlying linear PCP instance only provided constant
soundness, the probability that the prover is able to satisfy all of the instances is
amplified to 2−Ω(t) = 2−Ω(λ) if we let t = Θ(λ). Finally, even though the prover
now has to construct t proofs for the t constraints, each of the constraints can
themselves be computed by a circuit of size ˜O(|C| /t). The robustness property
of our decomposition is reminiscent of the relation between traditional PCPs and
constraint-satisfaction problems, and one might expect that we could instantiate
such a decomposition using PCPs. However, in our settings, we require that the
decomposition be input-independent, which to the best of our knowledge, is not
satisfied by existing (quasilinear) PCP constructions. We discuss this in more
detail in the full version [15].

The robust decomposition can amplify soundness without introducing much
additional overhead. The alternative approach of directly applying a constant-
query linear PCP to check satisfiability of C has the drawback of only providing
1/poly(λ) soundness when working over a small field (i.e., as would be the case
with Boolean circuit satisfiability). We state the formal requirements of our
robust decomposition in Sect. 4.1, and give one instantiation in the full version by
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combining MPC protocols with polylogarithmic overhead [23] with the “MPC-
in-the-head” paradigm [42]. Since the notion of a robust decomposition is a very
natural one, we believe that our construction is of independent interest and will
have applications beyond quasi-optimal linear MIP constructions.

Enforcing consistency. The second ingredient we require is a way for the verifier
to check that the individual proofs the prover constructs (for showing satisfiabil-
ity of each constraint f1, . . . , ft) are self-consistent. Our construction here relies
on constructing randomized permutation decompositions, and we refer to Sect. 2
for the technical overview, and Sect. 4 for the full description.

Preprocessing SNARGs from linear MIPs. To complete our construction of
quasi-optimal SNARGs, we show a generic compiler from linear MIPs to pre-
processing SNARGs by relying on the notion of a linear-only vector encryption
scheme over rings introduced by Boneh et al. [14]. We give our construction in
Sect. 5. Our primary contribution here is recasting the Boneh et al. construc-
tion, which satisfies the weaker notion of quasi-optimality, as a generic frame-
work for compiling linear MIPs into preprocessing SNARGs. Combined with our
information-theoretic construction of quasi-optimal linear MIPs, this yields the
first quasi-optimal designated-verifier SNARG for Boolean circuit satisfiability
in the preprocessing model (Corollaries 5.6 and 5.7).

Why linear MIPs? A natural question to ask is whether our new linear MIP to
preprocessing SNARG compiler provides any advantage over the existing compil-
ers in [13,14], which use different information-theoretic primitives as the under-
lying building block (namely, linear interactive proofs [13] and linear PCPs [14]).
After all, any k-query, �-prover linear MIP with query length m can be trans-
formed into a (k�)-query linear PCP with query length m� by concatenating the
proofs of the different provers together, and likewise, padding the queries accord-
ingly. While this still yields a quasi-optimal linear PCP (with sparse queries),
applying the existing cryptographic compilers to this linear PCP incurs an addi-
tional prover overhead that is proportional to �. In our settings, � = Θ(λ), so the
resulting SNARG is no longer quasi-optimal. By directly compiling linear MIPs
to preprocessing SNARGs, our compiler preserves the prover complexity of the
underlying linear MIP, and so, combined with our quasi-optimal linear MIP
construction, yields a quasi-optimal SNARG for Boolean circuit satisfiability.

Alternatively, one might ask whether a similar construction of quasi-optimal
SNARGs is possible starting from standard PCPs or linear PCPs with quasi-
optimal prover complexity. Existing techniques for compiling general PCPs
[9,10,49] to succinct argument systems all rely on some formof cryptographic hash-
ing to commit to the proof and then open up a small number of bits chosen by the
verifier. In the random oracle model [49], this kind of construction achieves quasi-
optimal prover complexity, but not quasi-optimal succinctness [14, Remark 4.16].
In the standard model [9,11], additional cryptographic tools (notably, a private
information retrieval protocol) are needed in the construction, which do not pre-
serve the prover complexity of the underlying construction.
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If instead we start with linear PCPs and apply the compilers in [13,14], the
challenge is in constructing a quasi-optimal linear PCP that provides soundness
error 2−λ over a small field F. As noted above, existing linear PCP construc-
tions [13,14] are not quasi-optimal for Boolean circuit satisfiability.

1.2 Optimally-Laconic Arguments and 1-Bit SNARGs

More broadly, we can view our quasi-optimal SNARGs in the preprocessing
model as a quasi-optimal interactive argument system with a maximally laconic
prover. Here, we allow the verifier to send an arbitrarily long string (namely,
the CRS), and our goal is to minimize the prover’s computational cost and
the number of bits the prover communicates to the verifier. Our quasi-optimal
SNARG thus gives the first interactive argument system with a quasi-optimal
laconic prover.

Optimally-laconic arguments and 1-bit SNARGs. Independent of our results on
constructing quasi-optimal SNARGs, we also ask the question of what is the
minimal proof length needed to ensure ρ bits of soundness where ρ is a con-
crete soundness parameter. Lemma 5.2 shows that achieving 2−ρ soundness error
only requires proofs of length Ω(ρ). When ρ = Ω(λ), many existing SNARG
candidates, including the one we construct in this paper, are quasi-optimally
succinct [13,14,29,37]. More generally, this question remains interesting when
ρ = o(λ), and even independently of achieving quasi-optimal prover complex-
ity. A natural question to ask is whether there exist SNARGs where the size of
the proofs achieves the lower bound of Ω(ρ) for providing ρ bits of soundness.
Taken to the extreme, we ask whether there exists a 1-bit SNARG with sound-
ness error 1/2 + negl(λ). We note that a 1-bit SNARG immediately implies an
optimally-succinct SNARG for all soundness parameters ρ: namely, to build a
SNARG with soundness error 2−ρ, we concatenate ρ independent instances of a
1-bit SNARG.

In the full version [15], we show that the designated-verifier analog of the
Sahai-Waters [53] construction of non-interactive zero-knowledge proofs from
indistinguishability obfuscation and one-way functions is a 1-bit SNARG. In
the interactive setting, we show that we can construct 1-bit laconic arguments
from witness encryption. We do not know how to build 1-bit SNARGs and 1-bit
laconic arguments for general languages from weaker assumptions,2 and leave
this as an open problem.

The power of optimally-laconic arguments. Finally, we show an intriguing con-
nection between 1-bit laconic arguments and a variant of witness encryption.
Briefly, a witness encryption scheme [28] allows anyone to encrypt a message
m with respect to a statement x in an NP language; then, anyone who holds
a witness w for x is able to decrypt the ciphertext. In the full version [15], we

2 Note that for some special languages such as graph non-isomorphism, we do have
1-bit laconic arguments [31].
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show that a 1-bit laconic argument (or SNARG) for a cryptographically-hard3

language L implies a relaxed form of witness encryption for L where semantic
security holds for messages encrypted to a random false instance (as opposed to
an arbitrary false instance in the standard definition). While this is a relaxation
of the usual notion of witness encryption, it already suffices to realize some of the
powerful applications of witness encryption described in [28]. This implication
thus demonstrates the power of optimally-laconic arguments, as well as some of
the potential challenges in constructing them from simple assumptions.

Our construction of witness encryption from 1-bit arguments relies on the
observation that for a (random) false statement x, any computationally-bounded
prover can only produce a valid proof π ∈ {0, 1} with probability that is neg-
ligibly close to 1/2. Thus, the proof π can be used to hide the message m
in a witness encryption scheme (when encrypting to the statement x). Here,
we implicitly assume that a (random) statement x has exactly one accepting
proof—this assumption holds for any cryptographically-hard language. Essen-
tially, our construction shows how to leverage the soundness property of a
proof system to obtain a secrecy property in an encryption scheme. Previously,
Applebaum et al. [1] showed how to leverage secrecy to obtain soundness, so in
some sense, we can view our construction as a dual of their secrecy-to-soundness
construction. The recent work of Berman et al. [8] also showed how to obtain
public-key encryption from laconic zero-knowledge arguments. While their con-
struction relies on the additional assumption of zero-knowledge, their construc-
tion does not require the argument system be optimally laconic.

We can also view a 1-bit argument for a cryptographically-hard language as
a “predictable argument” (c.f., [25]). A predictable argument is one where there
is exactly one accepting proof for any statement. Faonio et al. [25] show that any
predictable argument gives a witness encryption scheme. In this work, we show
that soundness alone suffices for this transformation, provided we make suitable
restrictions on the underlying language.

1.3 Additional Related Work

Gentry and Wichs [30] showed that no construction of an adaptively-secure
SNARG (for general NP languages) can be proven secure via a black-box
reduction from any falsifiable cryptographic assumption [51].4 As a result,
most existing SNARG constructions (for general NP languages) in the stan-
dard model have relied on non-falsifiable assumptions such as knowledge-
of-exponent assumptions [5,21,24,29,37,39,40,45–47,50], extractable collision-
resistant hashing [9,10,22], extractable homomorphic encryption [12,29], and
linear-only encryption [13,14]. Other constructions have relied on showing secu-
rity in idealized models such as the random oracle model [49,59] or the generic
3 Here, we say a language is cryptographically-hard if there exists a distribution over
yes instances that is computationally indistinguishable from a distribution of no
instances for the language.

4 In the case of non-adaptive SNARGs, Sahai and Waters give a construction from
indistinguishability obfuscation and one-way functions [53].
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group model [38]. In many of these constructions, the underlying SNARGs also
satisfy a knowledge property, which says that whenever a prover generates an
accepting proof π of a statement x, there is an efficient extractor that can extract
a witness w from π such that C(x,w) = 1. SNARGs with this property are called
SNARGs of knowledge, or more commonly, SNARKs. In many cases, SNARGs
also have a zero-knowledge property [13,24,29,37,39,45–47] which says that the
proof π does not reveal any additional information about the witness w other
than the fact that C(x,w) = 1.

A compelling application of succinct argument systems is to verifiable delega-
tion of computation. Over the last few years, there has been significant progress
in leveraging SNARGs (and their variants) for implementing scalable systems for
verifiable computation both in the interactive setting [19,34,54,55,57,58,60–62]
as well as the non-interactive setting [6,7,18,20,52,63]. We refer to [64] and the
references therein for a more comprehensive survey of this area.

2 Quasi-Optimal Linear MIP Construction Overview

In this section, we give a technical overview of our quasi-optimal linear MIP
construction for arithmetic circuit satisfiability over a finite field F. Combined
with our cryptographic compiler based on linear-only vector encryption over
rings, this gives the first construction of a quasi-optimal SNARG from a concrete
cryptographic assumption.

Robust circuit decomposition. The first ingredient we require in our quasi-
optimal linear MIP construction is a robust way to decompose an arithmetic
circuit C : Fn′ × F

m′ → F
h′

into a collection of t constraint functions f1, . . . , ft,
where each constraint fi : Fn ×F

m → {0, 1} takes as input a common statement
x ∈ F

n and witness w ∈ F
m. More importantly, each constraint fi can be com-

puted by a small arithmetic circuit Ci of size roughly |C| /t. This means that
each arithmetic circuit Ci may only need to read some subset of the components
in x and w. There is a mapping inp : Fn′ → F

n that takes as input a state-
ment x′ for C and outputs a statement x for f1, . . . , ft, and another mapping
wit : Fn′ × F

m′ → F
m that takes as input a statement-witness pair (x′,w′) for

C, and outputs a witness w for f1, . . . , ft. The decomposition must satisfy two
properties: completeness and robustness. Completeness says that whenever a
statement-witness pair (x′,w′) is accepted by C, then fi(x,w) = 1 for all i if we
set x = inp(x′) and w = wit(x′,w′). Robustness says that for a false statement
x′ ∈ F

n′
, there are no valid witnesses w ∈ F

m that can simultaneously sat-
isfy more than a constant fraction of the constraints f1(x, ·), . . . , ft(x, ·), where
x = inp(x′).

Roughly speaking, a robust decomposition allows us to reduce checking sat-
isfiability of a large circuit C to checking satisfiability of many smaller circuits
C1, . . . , Ct. The gain in performance will be due to our ability to check satisfi-
ability of all of the C1, . . . , Ct in parallel. The importance of robustness will be
critical for soundness amplification. We give the formal definition of a robust
decomposition in Sect. 4.1.
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Instantiating the robust decomposition. In the full version [15], we describe one
way of instantiating the robust decomposition by applying the “MPC-in-the-
head” paradigm of [42] to MPC protocols with polylogarithmic overhead [23].
We give a brief overview here. For an arithmetic circuit C : Fn′ × F

m′ → F
h′

,
the encoding of a statement-witness pair (x,w) will be the views of each party
in a (simulated) t-party MPC protocol computing C on (x,w), where the bits
of the input and witness are evenly distributed across the parties. Each of the
constraint functions fi checks that party i outputs 1 in the protocol execution
(indicating an accepting input), and that the view of party i is consistent with
the views of the other parties. This means that the only bits of the encoded
witness that each constraint fi needs to read are those that correspond to mes-
sages that were sent or received by party i. Then, using an MPC protocol where
the computation and communication overhead is polylogarithmic in the circuit
size (c.f., [23]), and where the computational burden is evenly distributed across
the computing parties, each f1, . . . , ft can be implemented by a circuit of size
˜O(|C| /t). Robustness of the decomposition follows from security of the under-
lying MPC protocol. We give the complete description and analysis in the full
version [15].

Blueprint for linear MIP construction. The high-level idea behind our quasi-
optimal linear MIP construction is as follows. We first apply a robust circuit
decomposition to the input circuit to obtain a collection of constraints f1, . . . , ft,
which can be computed by smaller arithmetic circuits C1, . . . , Ct, respectively.
Each arithmetic circuit takes as input a subset of the components of the state-
ment x ∈ F

n and the witness w ∈ F
m. In the following, we write xi and wi to

denote the subset of the components of x and w, respectively, that circuit Ci

reads. We can now construct a linear MIP with t provers as follows. A proof
of a true statement x′ with witness w′ consists of t proof vectors (π1, . . . ,πt),
where each proof πi is a linear PCP proof that Ci(xi, ·) is satisfiable. Then,
in the linear MIP model, the verifier has oracle access to the linear functions
π1, . . . ,πt, which it can use to check satisfiability of Ci(xi, ·). Completeness of
this construction is immediate from completeness of the robust decomposition.

Soundness is more challenging to argue. For any false statement x′, robust-
ness of the decomposition of C only ensures that for any witness w ∈ F

m, at
least a constant fraction of the constraints fi(x,w) will not be satisfied, where
x = inp(x′). However, this does not imply that a constant fraction of the indi-
vidual circuits Ci(xi, ·) is unsatisfiable. For instance, for all i, there could exist
some witness wi such that Ci(xi,wi) = 1. This does not contradict the robust-
ness of the decomposition so long as the set of all satisfying witnesses {wi} con-
tain many “inconsistent” assignments. More specifically, we can view each wi as
assigning values to some subset of the components of the overall witness w, and
we say that a collection of witnesses {wi} is consistent if whenever two witnesses
wi and wj assign a value to the same component of w, they assign the same value.
Thus, robustness only ensures that the prover cannot find a consistent set of wit-
nesses {wi} that can simultaneously satisfy more than a fraction of the circuits Ci.
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Or equivalently, if x is the encoding of a false statement x′, then a constant fraction
of any set of witnesses {wi} where Ci(xi,wi) = 1 must be mutually inconsistent.

The above analysis shows that it is insufficient for the prover to independently
argue satisfiability of each circuit Ci(xi, ·). Instead, we need the stronger require-
ment that the prover uses a consistent set of witnesses {wi} when constructing
its proofs π1, . . . ,πt. Thus, we need a way to bind each proof πi to a specific
witness wi, as well as a way for the verifier to check that the complete set of
witnesses {wi} are mutually consistent. For the first requirement, we introduce
the notion of a systematic linear PCP, which is a linear PCP where the linear
PCP proof vector πi contains a copy of a witness wi where Ci(xi,wi) = 1
(Definition 4.2). Now, given a collection of systematic linear PCP proofs
π1, . . . ,πt, the verifier’s goal is to decide whether the witnesses w1, . . . ,wt

embedded within π1, . . . ,πt are mutually consistent. Since the witnesses wi

are part of the proof vectors πi, in the remainder of this section, we will simply
assume that the verifier has oracle access to the linear function 〈wi, ·〉 for all i
since such queries can be simulated using the proof oracle 〈πi, ·〉.

2.1 Consistency Checking

The robust decomposition ensures that for a false statement x′, any collection of
witnesses {wi} where Ci(xi,wi) = 1 for all i is guaranteed to have many incon-
sistencies. In fact, there must always exists Ω(t) (mutually disjoint) pairs of wit-
nesses that contain some inconsistency in their assignments. Ensuring soundness
thus reduces to developing an efficient method for testing whether w1, . . . ,wt

constitute a consistent assignment to the components of w or not. This is the
main technical challenge in constructing quasi-optimal linear MIPs, and our
construction proceeds in several steps, which we describe below.

Notation. We begin by introducing some notation. First, we pack the different
witnesses w1, . . . ,wt ∈ F

q into the rows of an assignment matrix W ∈ F
t×q.

Specifically, the ith row of W is the witness wi. Next, we define the replication
structure for the circuits C1, . . . , Ct to be a matrix A ∈ [m]t×q. Here, the (i, j)th

entry Ai,j encodes the index in w ∈ F
m to which the jth entry in wi corre-

sponds. With this notation, we say that the collection of witnesses w1, . . . ,wt

are consistent if for all indices (i1, j1) and (i2, j2) where Ai1,j1 = Ai2,j2 , the
assignment matrix satisfies Wi1,j1 = Wi2,j2 .

Checking global consistency. To check whether an assignment matrix W ∈ F
t×q is

consistent with respect to the replication structureA ∈ [m]t×q, we can leverage an
idea from Groth [36], and subsequently used in [14,43] for performing similar kinds
of consistency checks. The high-level idea is as follows. Take any index z ∈ [m]
and consider the positions (i1, j1), . . . , (id, jd) where z appears in A. In this way,
we associate a disjoint set of Hamiltonian cycles over the entries of A, one for
each of the m components of w. Let Π be a permutation over the entries in the
matrix A such that Π splits into a product of the Hamiltonian cycles induced
by the entries of A. In particular, this means A = Π(A), and moreover, W is
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consistent with respect to A if and only if W = Π(W). The insight in [36] is that
the relation W = Π(W) can be checked using two sets of linear queries. First,
the verifier draws vectors r1, . . . , rt

r←− F
q and defines the matrix R ∈ F

t×q to be
the matrix whose rows are r1, . . . , rt. Next, the verifier computes the permuted
matrix R′ ← Π(R). Let r′

1, . . . , r
′
t be the rows of R′. Similarly, let w1, . . . ,wt be

the rows of W. Finally, the verifier queries the linear MIP oracles 〈wi, ·〉 on ri and
r′

i for all i and checks the relation
∑

i∈[t]

〈wi, ri〉 ?=
∑

i∈[t]

〈wi, r′
i〉 ∈ F. (2.1)

By construction of Π, if W = Π(W), this check always succeeds. However,
if W �= Π(W), then by the Schwartz-Zippel lemma, this check rejects with
probability 1/ |F|. When working over a polynomial-size field, this consistency
check achieves 1/poly(λ) soundness (where λ is a security parameter). We can use
repeated queries to amplify the soundness to negl(λ) without sacrificing quasi-
optimality. However, this approach cannot give a linear MIP with 2−λ soundness
and still retain prover overhead that is only polylogarithmic in λ (since we would
require Ω(λ) repetitions). This is one of the key reasons the construction in [14]
only achieves negl(λ) soundness rather than 2−λ soundness. To overcome this
problem, we require a more robust consistency checking procedure.

Checking pairwise consistency. The consistency check described above and used
in [14,36,43] is designed for checking global consistency of all of the assignments
in W ∈ F

t×q. The main disadvantage of performing the global consistency check
in Eq. (2.1) is that it only provides soundness 1/ |F|, which is insufficient when
F is small (e.g., in the case of Boolean circuit satisfiability). One way to amplify
soundness is to replace the single global consistency check with t/2 pairwise con-
sistency checks, where each pairwise consistency check affirms that the assign-
ments in a (mutually disjoint) pair of rows of W are self-consistent. Specifically,
each of the t/2 checks consists of two queries (ri, rj) and (r′

i, r
′
j) to 〈wi, ·〉 and

〈wj , ·〉, constructed in exactly the same manner as in the global consistency
check, except specialized to only checking for consistency in the assignments to
the variables in rows i and j. Since all of the pairwise consistency checks are
independent, if there are Ω(t) pairs of inconsistent rows, the probability that
all t/2 checks pass is bounded by 2−Ω(t). This means that for the same cost
as performing a single global consistency check, the verifier can perform Ω(t)
pairwise consistency checks. As long as many of the pairs of rows the verifier
checks contain inconsistencies, we achieve soundness amplification.

Recall from earlier that our robust decomposition guarantees that whenever
x1, . . . ,xt correspond to a false statement, any collection of witnesses {wi} where
Ci(xi,wi) is satisfied for all i necessarily contains many pairs wi and wj that
are inconsistent. Equivalently, many pairs of rows in the assignment matrix W
contain inconsistencies. Now, if the verifier knew which pairs of rows of W are
inconsistent, then the verifier can apply a pairwise consistency check to detect
an inconsistent W with high probability. The problem, however, is that the
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verifier does not know a priori which pairs of rows in W are inconsistent, and
so, it is unclear how to choose the rows to check in the pairwise consistency test.
However, if we make the stronger assumption that not only are there many pairs
of rows in W that contain inconsistent assignments, but also, that most of these
inconsistencies appear in adjacent rows, then we can use a pairwise consistency
test (where each test checks for consistency between an adjacent pair of rows)
to decide if W is consistent or not. When the assignment matrix W has many
inconsistencies in pairs of adjacent rows, we say that the inconsistency pattern
of W is “regular,” and can be checked using a pairwise consistency test.

Regularity-inducing permutations. To leverage the pairwise consistency check,
we require that the assignment matrix W has a regular inconsistency structure
that is amenable to a pairwise consistency check. To ensure this, we introduce the
notion of a regularity-inducing permutation. Our construction relies on the obser-
vation that the assignment matrix W is consistent with a replication structure
A if and only if Π(W) is consistent with Π(A), where Π is an arbitrary permu-
tation over the entries of a t-by-q matrix. Thus, if we want to check consistency
of W with respect to A, it suffices to check consistency of Π(W) with respect to
Π(A). Then, we say that a specific permutation Π is regularity-inducing with
respect to a replication structure A if whenever W has many pairs of inconsis-
tent rows with respect to A (e.g., W is a set of accepting witnesses to a false
statement), then Π(W) has many inconsistencies in pairs of adjacent rows with
respect to Π(A). In other words, a regularity-inducing permutation shuffles the
entries of the assignment matrix such that any inconsistency pattern in W maps
to a regular inconsistency pattern according to the replication structure Π(A).
In the construction, instead of performing the pairwise consistency test on W,
which can have an arbitrary inconsistency pattern, we perform it on Π(W),
which has a regular inconsistency pattern. We define the notion more formally
in Sect. 4.2 and show how to construct regularity-inducing permutations in the
full version.

Decomposing the permutation. Suppose Π is a regularity-inducing permutation
for the replication structure A associated with the circuits C1, . . . , Ct from the
robust decomposition of C. Robustness ensures that for any false statement
x′, for all collections of witnesses {wi} where Ci(xi,wi) = 1 for all i, and x =
inp(x′), the permuted assignment matrix Π(W) has inconsistencies in Ω(t) pairs
of adjacent rows with respect to Π(A). This can be detected with probability
1−2−Ω(t) by performing a pairwise consistency test on the matrix W′ = Π(W).
The problem, however, is that the verifier only has oracle access to 〈wi, ·〉, and
it is unclear how to efficiently perform the pairwise consistency test on the
permuted matrix W′ given just oracle access to the rows wi of the unpermuted
matrix. Our solution here is to introduce another set of t linear MIP provers for
each row w′

i of W′ = Π(W). Thus, the verifier has oracle access to both the
rows of the original assignment matrix W, which it uses to check satisfiability
of Ci(xi, ·), as well as the rows of the permuted assignment matrix W′, which
it uses to check consistency of the assignments in W. The verifier accepts only
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if both sets of checks pass. The problem with this basic approach is that there
is no reason the prover chooses the matrix W′ so as to satisfy the relation
W′ = Π(W). Thus, to ensure soundness from this approach, the verifier needs
a mechanism to also check that W′ = Π(W), given oracle access to the rows of
W and W′.

To facilitate this check, we decompose the permutation Π into a sequence
of α permutations (Π1, . . . , Πα) where Π = Πα ◦ · · · ◦ Π1. Moreover, each of
the intermediate permutations Πi has the property that they themselves can be
decomposed into t/2 independent permutations, each of which only permutes
entries that appear in 2 distinct rows of the matrix. This “2-locality” property
on permutations is amenable to the linear MIP model, and we show in Con-
struction 4.8 a way for the verifier to efficiently check that two matrices W and
W′ (approximately) satisfy the relation W = Πi(W′), where Πi is 2-locally
decomposable. To complete the construction, we have the prover provide not
just the matrix W and its permutation W′, but all of the intermediate matrices
Wi = (Πi◦Πi−1◦· · ·◦Π1)(W) for all i = 1, . . . , α. Since each of the intermediate
permutations applied are 2-locally decomposable, there is an efficient procedure
for the prover to check each relation Wi = Πi(Wi−1), where we write W0 = W
to denote the original assignment matrix. If each of the intermediate permuta-
tions are correctly implemented, then the verifier is assured that W′ = Π(W),
and it can apply the pairwise consistency check on W′ to complete the verifi-
cation process. We use a Beneš network to implement the decomposition. This
ensures that the number of intermediate permutations required is only logarith-
mic in t, so introducing these additional steps only incurs logarithmic overhead,
and does not compromise quasi-optimality of the resulting construction.

Randomized permutation decompositions. There is one additional complication
in that the intermediate consistency checks W′ ?= Πi(W) are imperfect. They
only ensure that most of the rows in W′ agree with the corresponding rows in
Πi(W). What this means is that when the prover crafts its sequence of permuted
assignment matrices W = W0,W1, . . . ,Wα, it is able to “correct” a small num-
ber of inconsistencies that appear in W in each step. Thus, we must ensure that
for the particular inconsistency pattern that appears in W, the prover is not
able to find a sequence of matrices W1, . . . ,Wα, where each of them approxi-
mately implements the correct permutation at each step, but at the end, is able
to correct all of the inconsistencies in W. To achieve this, we rely on a random-
ized permutation decomposition, where the verifier samples a random sequence
of intermediate permutations Π1, . . . , Πα that collectively implement the target
regularity-inducing permutation Π. There are a number of technicalities that
arise in the construction and its analysis, and we refer to the full version [15] for
the full description.

Putting the pieces together. To summarize, our quasi-optimal linear MIP for
circuit satisfiability consists of two key components. First, we apply a robust
decomposition to the circuit to obtain many constraints with the property that
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for a false statement, a malicious prover either cannot satisfy most of the con-
straints, or if it does satisfy all of the constraints, it must have used an assignment
with many inconsistencies. The second key ingredient we introduce is an efficient
way to check if there are many inconsistencies in the prover’s assignments in the
linear MIP model. Our construction here relies on first constructing a regularity-
inducing permutation to enable a simple method for consistency checking, and
then using a randomized permutation decomposition to enforce the consistency
check. We give the formal description and analysis in Sect. 4.

3 Preliminaries

We begin by defining some notation. For an integer n, we write [n] to denote the
set of integers {1, . . . , n}. We use bold uppercase letters (e.g., A,B) to denote
matrices and bold lowercase letters (e.g., x,y) to denote vectors. For a matrix
A ∈ F

t×q over a finite field F, we write A[i1,i2] (where i1, i2 ∈ [t]) to denote the
sub-matrix of A containing rows i1 through i2 of A (inclusive). For i ∈ [t] and
j ∈ [q], we use Ai,j and A[i, j] to refer to the entry in row i and column j of A.

For a graph G with n nodes, labeled with the integers 1, . . . , n, a matching
M is a set of edges (i, k) ∈ [n] × [n] with no common vertices. For a finite set
S, we write x

r←− S to denote that x is drawn uniformly at random from S.
For a distribution D, we write x ← D to denote a draw from distribution D.
Unless otherwise noted, we write λ to denote the security parameter. We say
that a function f(λ) is negligible in λ if f(λ) = o(1/λc) for all c ∈ N. We write
f(λ) = poly(λ) to denote that f is bounded by some (fixed) polynomial in λ,
and f = polylog(λ) if f is bounded by a (fixed) polynomial in log λ. We say that
an algorithm is efficient if it runs in probabilistic polynomial time in the length
of its input.

For a Boolean circuit C : {0, 1}n × {0, 1}m → {0, 1}, the Boolean
circuit satisfaction problem is defined by the relation RC =
{(x,w) ∈ F

n × F
m : C(x,w) = 1}. We refer to x ∈ {0, 1}n as the statement

and w ∈ {0, 1}m as the witness. We write LC to denote the language associ-
ated with RC : namely, the set of statements x ∈ {0, 1}n for which there exists
a witness w ∈ {0, 1}m such that C(x,w) = 1. In many cases in this work, it
will be more natural to work with arithmetic circuits. For an arithmetic circuit
C : Fn × F

m → F
h over a finite field F, we say that C is satisfied if on an input

(x,w) ∈ F
n ×F

m, all of the outputs are 0. Specifically, we define the relation for
arithmetic circuit satisfiability to be RC =

{

(x,w) ∈ F
n × F

m : C(x,w) = 0h
}

.
We include additional preliminaries in the full version [15].

4 Quasi-Optimal Linear MIPs

In this section, we present our core information-theoretic construction of a linear
MIP with quasi-optimal prover complexity. We refer to Sect. 2 for a high-level
overview of the construction. In Sects. 4.1 and 4.2, we introduce the key building
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blocks underlying our construction. We give the full construction of our quasi-
optimal linear MIP in Sect. 4.3. We show how to instantiate our core building
blocks in the full version [15].

4.1 Robust Decomposition for Circuit Satisfiability

In this section, we formally define our notion of a robust decomposition of an
arithmetic circuit. We refer to the technical overview in Sect. 2 for a high-level
description of how we implement our decomposition by combining the MPC-in-
the-head paradigm [42] with robust MPC protocols with polylogarithmic over-
head [23]. We provide the complete description in the full version [15].

Definition 4.1 (Quasi-Optimal Robust Decomposition). Let C : Fn′ ×
F

m′ → F
h′

be an arithmetic circuit of size s over a finite field F, RC be its
associated relation, and LC ⊆ F

n′
be its associated language. A (t, δ)-robust

decomposition of C consists of the following components:

– A collection of functions f1, . . . , ft where each function fi : Fn ×F
m → {0, 1}

can be computed by an arithmetic circuit Ci of size ˜O(s/t) + poly(t, log s).
Note that a function fi may only depend on a (fixed) subset of its input
variables; in this case, its associated arithmetic circuit Ci only needs to take
the (fixed) subset of dependent variables as input.

– An efficiently-computable mapping inp : Fn′ → F
n that maps between a state-

ment x′ ∈ F
n′

for C to a statement x ∈ F
n for f1, . . . , ft.

– An efficiently-computable mapping wit : Fn′ × F
m′ → F

m that maps between
a statement-witness pair (x′,w′) ∈ F

n′ × F
m′

to C to a witness w ∈ F
m for

f1, . . . , ft.

Moreover, the decomposition must satisfy the following properties:

– Completeness: For all (x′,w′) ∈ RC , if we set x = inp(x′) and w =
wit(x′,w′), then fi(x,w) = 1 for all i ∈ [t].

– δ-Robustness: For all statements x′ /∈ LC , if we set x = inp(x′), then it
holds that for all w ∈ F

m, the set of indices Sw = {i ∈ [t] : fi(x,w) = 1} sat-
isfies |Sw| < δt. In other words, any single witness w can only simultaneously
satisfy at most a δ-fraction of the constraints.

– Efficiency: The mappings inp and wit can be computed by an arithmetic
circuit of size ˜O(s) + poly(t, log s).

Systematic linear PCPs. Recall from Sect. 2 that our linear MIP for checking
satisfiability of a circuit C begins by applying a robust decomposition to the
circuit C. The MIP proof is comprised of linear PCP proofs π1, . . . ,πt to show
that each of the circuits C1(x1, ·), . . . , Ct(xt, ·) in the robust decomposition of
C is satisfiable. Here, xi denotes the bits of the statement x that circuit Ci

reads. To provide soundness, the verifier needs to perform a sequence of con-
sistency checks to ensure that the proofs π1, . . . ,πt are consistent with some
witness w. To facilitate this, we require that the underlying linear PCPs are
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systematic: namely, each proof πi contains a copy of some witness wi where
(xi,wi) ∈ RCi

. The consistency check then affirms that the witnesses w1, . . . ,wt

associated with π1, . . . ,πt are mutually consistent. We give the formal definition
of a systematic linear PCP below, and then describe one such instantiation by
Ben-Sasson et al. [6, Appendix E].

Definition 4.2 (Systematic Linear PCPs). Let (P,V) be an input-oblivious
k-query linear PCP for a relation RC where C : Fn × F

m → F
h. We say that

(P,V) is systematic if the following conditions hold:

– On input a statement-witness pair (x,w) ∈ F
n × F

m the prover’s output of
P(x,w) has the form π = [w,p] ∈ F

d, for some p ∈ F
d−m. In other words,

the witness is included as part of the linear PCP proof vector.
– On input a statement x and given oracle access to a proof π∗ = [w∗,p∗], the

knowledge extractor Eπ∗
(x) outputs w∗.

Fact 4.3 ([6, Claim E.3]). Let C : Fn × F
m → F

h be an arithmetic circuit of
size s over a finite field F where |F| > s. There exists a systematic input-oblivious
5-query linear PCP (P,V) for RC over F with knowledge error O(s/ |F|) and
query length O(s). Moreover, letting V = (Q,D), the prover and verifier algo-
rithms satisfy the following properties:

– the prover algorithm P is an arithmetic circuit of size ˜O(s);
– the query-generation algorithm Q is an arithmetic circuit of size O(s);
– the decision algorithm D is an arithmetic circuit of size O(n).

4.2 Consistency Checking

As described in Sect. 2, in our linear MIP construction, we first apply a robust
decomposition to the input circuit C to obtain smaller arithmetic circuits
C1, . . . , Ct, each of which depends on some subset of the components of a witness
w ∈ F

m. The proof then consists of a collection of systematic linear PCP proofs
π1, . . . ,πt that C1, . . . , Ct are individually satisfiable. The second ingredient we
require is a way for the verifier to check that the prover uses a consistent wit-
ness to construct the proofs π1, . . . ,πt. In this section, we formally introduce
the building blocks we use for the consistency check. We refer to Sect. 2.1 for
an overview of our methods. We begin by defining the notion of a replication
structure induced by the decomposition C1, . . . , Ct, and what it means for a
collection of assignments to the circuit C1, . . . , Ct to be consistent.

Definition 4.4 (Replication Structures and Inconsistency Matrices).
Fix integers m, t, q ∈ N. A replication structure is a matrix A ∈ [m]t×q. We say
that a matrix W ∈ F

t×q is consistent with respect to a replication structure A
if for all i1, i2 ∈ [t] and j1, j2 ∈ [q], whenever Ai1,j1 = Ai2,j2 , Wi1,j1 = Wi2,j2 .
If there is a pair of indices (i1, j1) and (i2, j2) where this relation does not hold,
then we say that there is an inconsistency in W (with respect to A) at locations
(i1, j1) and (i2, j2). For a replication structure A ∈ [m]t×q and a matrix of values
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W ∈ F
t×q, we define the inconsistency matrix B ∈ {0, 1}t×q where Bi,j = 1 if

and only if there is an inconsistency in W at location (i, j) with respect to the
replication structure A. In the subsequent analysis, we will sometimes refer to
an arbitrary inconsistency matrix B ∈ {0, 1}t×q (independent of any particular
set of values W or replication structure A).

Definition 4.5 (Consistent Inputs to Circuits). Let C1, . . . , Ct be a col-
lection of circuits where each Ci : Fm → F

h only depends on at most q ≤ m

components of an input vector w ∈ F
m. For each i ∈ [t], let a

(i)
1 , . . . , a

(i)
q ∈ [m]

be the indices of the q components of the input w on which Ci depends. The repli-
cation structure of C1, . . . , Ct is the matrix A ∈ [m]t×q, where the ith row of A
is the vector a

(i)
1 , . . . , a

(i)
q (namely, the subset of indices on which Ci depends).

We say that a collection of inputs w1, . . . ,wt ∈ F
q to C1, . . . , Ct is consistent if

the assignment matrix W, where the ith row of W is wi for i ∈ [t], is consistent
with respect to the replication structure A.

To simplify the analysis, we introduce the notion of an inconsistency graph
for an assignment matrix W ∈ F

t×q with respect to a replication structure
A ∈ [m]t×q. At a high level, the inconsistency graph of W with respect to A is
a graph with t nodes, one for each row of W, and there is an edge between two
nodes i, j ∈ [t] if assignments wi and wj (in rows i and j of W, respectively)
contain an inconsistent assignment with respect to A.

Definition 4.6 (Inconsistency Graph). Fix positive integers m, t, q ∈ N and
take a replication structure A ∈ [m]t×q. For any assignment matrix W ∈ F

t×q,
we define the inconsistency graph GW,A of W with respect to A as follows:

– Graph GW,A is an undirected graph with t nodes, with labels in [t]. We asso-
ciate node i ∈ [t] with the ith row of A.

– Graph GW,A has an edge between nodes i1 and i2 if there exists j1, j2 ∈ [q]
such that Ai1,j1 = Ai2,j2 but Wi1,j1 �= Wi2,j2 . In other words, there is an
edge in GW,A whenever there is an inconsistency in the assignments to rows
i1 and i2 in W (with respect to the replication structure A).

Definition 4.7 (Regular Matchings). Fix integers m, t, q ∈ N where t is
even, and take any replication structure A ∈ [m]t×q and assignment matrix W ∈
F

t×q. We say that the inconsistency graph GW,A contains a regular matching of
size s if GW,A contains a matching M of size s, where each edge (v1, v2) ∈ M
satisfies (v1, v2) = (2i − 1, 2i) for some i ∈ [t/2]. In other words, all matched
edges are between nodes corresponding to adjacent rows in W.

Having defined these notions, we can reformulate the guarantees provided
by the (t, δ)-robust decomposition (Definition 4.1). For a constant δ > 0, let
(f1, . . . , ft, inp,wit) be a (t, δ)-robust decomposition of a circuit C. Let A be the
replication structure of the circuits C1, . . . , Ct computing f1, . . . , ft. Take any
statement x′ /∈ LC , and consider any collection of witnesses w1, . . . ,wt where
Ci(xi,wi) = 1 for all i ∈ [t]. As usual, xi denotes the bits of x = inp(x′) that Ci
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reads. Robustness of the decomposition ensures that no single w can be used to
simultaneously satisfy more than a δ-fraction of the constraints. In particular,
this means that there must exist Ω(t) pairs of witnesses wi and wj which are
inconsistent. Equivalently, we say that the inconsistency graph GW,A contains a
matching of size Ω(t). We prove this statement formally in the full version [15].

Approximate consistency check. By relying on the robust decomposition, it suf-
fices to construct a protocol where the verifier can detect whether the inconsis-
tency graph GW,A of the prover’s assignments W with respect to a replication
structure A contains a large matching. To facilitate this, we first describe an
algorithm to check whether two assignment matrices W,W′ ∈ F

t×q (approxi-
mately) satisfy the relation W′ = Π(W) in the linear MIP model, where Π is a
2-locally decomposable permutation. This primitive can then be used directly to
detect whether an inconsistency graph GW,A contains a regular matching (Corol-
lary 4.11). Subsequently, we show how to permute the entries in W according
to a permutation Π ′ so as to convert an arbitrary matching in GW,A into a
regular matching in GΠ′(W),Π′(A). Our construction of the approximate consis-
tency check is a direct generalization of the pairwise consistency check procedure
described in Sect. 2.1.

Construction 4.8 (Approximate Consistency Check). Fix an even inte-
ger t ∈ N, and let P1, . . . , Pt, P ′

1, . . . , P
′
t be a collection of 2 · t provers in a linear

MIP system. For i ∈ [t], let πi ∈ F
d be the proof vector associated with prover

Pi and π′
i ∈ F

d be the proof vector associated with prover P ′
i . We can associate

a matrix W ∈ F
t×d with provers (P1, . . . , Pt), where the ith row of W is πi. Sim-

ilarly, we associate a matrix W′ with provers (P ′
1, . . . , P

′
t ). Let Π be a 2-locally

decomposable permutation on the entries of a t-by-d matrix. Then, we describe
the following linear MIP verification procedure for checking that W′ ≈ Π(W).

– Verifier’s query algorithm: The verifier chooses a random matrix R r←−
F

t×d, and sets R′ ← Π(R). Let ri and r′
i denote the ith row of R and R′,

respectively. The query algorithm outputs the query ri for prover Pi and the
query r′

i to prover P ′
i .

– Verifier’s decision algorithm: Since Π is 2-locally decomposable, we can
decompose Π into t′ = t/2 independent permutations, Π1, . . . , Πt′ , where
each Πi only operates on a pair of rows (j2i−1, j2i), for all i ∈ [t′]. Given
responses yi = 〈πi, ri〉 ∈ F and y′

i = 〈π′
i, r

′
i〉 ∈ F for i ∈ [t], the verifier

checks that the relation

yj2i−1 + yj2i

?= y′
j2i−1

+ y′
j2i

,

for all i ∈ [t′]. The verifier accepts if the relations hold for all i ∈ [t′]. Other-
wise, it rejects.

By construction, we see that if W′ = Π(W), then the verifier always accepts.

Lemma 4.9 (Consistency Check Soundness). Define t, Π, W, and W′

as in Construction 4.8. Then, if the matrix W′ disagrees with Π(W) on κ rows,
the verifier in Construction 4.8 will reject with probability at least 1 − 2−Ω(κ).
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Proof. Consider the event where W′ disagrees with Ŵ = Π(W) on κ rows. We
show that the probability of the verifier accepting in this case is bounded by
2−Ω(κ). In the linear MIP model, the verifier’s decision algorithm corresponds
to checking the following relation:

〈

πj2i
, rj2i

〉

+
〈

πj2i+1 , rj2i+1

〉 ?=
〈

π′
j2i

, r′
j2i

〉

+
〈

π′
j2i+1

, r′
j2i+1

〉

. (4.1)

By assumption, there are at least κ/2 indices i ∈ [t] where W′
[j2i−1,j2i]

�=
Ŵ[j2i−1,j2i]. By the Schwartz-Zippel lemma, for the indices i ∈ [t] where
W′

[j2i,j2i+1]
�= Ŵ[j2i,j2i+1], the relation in Eq. (4.1) holds with probability at most

1/ |F| (over the randomness used to sample rj2i−1 and rj2i
) Since there are at least

κ/2 such indices, the probability that Eq. (4.1) holds for all i ∈ [t′] is at most
(1/ |F|)κ/2 = 2−Ω(κ). Hence, the verifier rejects with probability 1 − 2−Ω(κ). �


The approximate consistency check from Construction 4.8 immediately gives
a way to check whether an inconsistency graph GW,A contains a regular match-
ing of size Ω(t). To show this, it suffices to exhibit a 2-locally decomposable
permutation Π where the assignment matrix W is consistent on adjacent pairs
of rows if and only if W = Π(W). The construction can be viewed as com-
posing many copies of the global consistency check permutation used in [36]
(and described in Sect. 2.1), each applied to a pair of adjacent rows. We give the
construction below.

Construction 4.10 (Pairwise Consistency in Adjacent Rows). Fix inte-
gers m, t, q ∈ N with t even, and let A ∈ [m]t×q be a replication structure. Let
t′ = t/2. For each i ∈ [t′], let Πi be a permutation over 2-by-q matrices such
that Πi splits into a disjoint set of Hamiltonian cycles based on the entries of
A[2i−1,2i]. Define a permutation Π on t-by-q matrices where the action of Π on
rows 2i−1 and 2i is given by Πi for all i ∈ [t′]. By construction, the permutation
Π is 2-locally decomposable, and moreover, W ∈ F

t×q is pairwise consistent on
adjacent rows with respect to A if and only if W = Π(W).

Corollary 4.11. Fix integers m, t, q ∈ N with t even. Let A ∈ [m]t×q be a
replication structure, and Π be the pairwise consistency test permutation for A
from Construction 4.10. Then, for any assignment matrix W ∈ F

t×q where the
inconsistency graph GW,A contains a regular matching of size Ω(t), the verifier

Construction 4.8 will reject the relation W ?= Π(W) with probability 1−2−Ω(t).

Proof. Since GW,A contains a regular matching of size Ω(t), there are inconsisten-
cies in Ω(t) pairs of adjacent rows of W. By construction of Π, this means that
W and Π(W) differ on Ω(t) rows. The claim then follows by Lemma 4.9. �


Regularity-inducing permutations. Recall that our objective in the consistency
check is to give an algorithm that detects whether an inconsistency graph GW,A

contains a matching of size Ω(t). Corollary 4.11 gives a way to detect if the incon-
sistency graph GW,A contains a regular matching of size Ω(t) with soundness
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error 2−Ω(t). Thus, to perform the consistency check, we first construct a permu-
tation Π on W such that whenever GW,A contain a matching of size Ω(t), the
inconsistency graph GΠ(W),Π(A) contains a regular matching of similar size Ω(t).
We say that such permutations are regularity-inducing. While we are not able to
construct a single permutation Π that is regularity-inducing for all assignment
matrices W, we are able to construct a family of permutations (Π1, . . . , Πz) for
a fixed replication structure A such that for all assignment matrices W ∈ F

t×q,
there is at least one β ∈ [z] where GΠβ(W),Πβ(A) contains a regular matching of
size Ω(t).

Definition 4.12 (Regularity-Inducing Permutations). Fix integers
m, t, q ∈ N, and let A ∈ [m]t×q be a replication structure. Let Π be a permutation
on t-by-q matrices and W ∈ F

t×q be a matrix such that the inconsistency graph
GW,A contains a matching M of size s. We say that Π is ρ-regularity-inducing
for W with respect to A if the inconsistency graph GΠ(W),Π(A) contains a regular
matching M ′ of size at least s/ρ. Moreover, there is a one-to-one correspondence
between the edges in M ′ and a subset of the edges in M (as determined by Π).
We say that (Π1, . . . , Πz) is a collection of ρ-regularity-inducing permutations
with respect to a replication structure A if for all W ∈ F

t×q, there exists β ∈ [z]
such that Πβ is ρ-regularity-inducing for W.

In this work, we will construct regularity-inducing permutations where
ρ = O(1). To simplify the following description, we will implicitly assume that
ρ = O(1). Given an assignment matrix W and a collection of ρ-regularity-
inducing permutations (Π1, . . . , Πz) for a replication structure A, we can affirm
that the inconsistency graph GW,A does not contain a matching of size Ω(t)
by checking that each of the graphs GΠβ(W),Πβ(A) does not contain a regular
matching of size Ω(t/ρ) = Ω(t) for all β ∈ [z] and assuming ρ = O(1). By Corol-
lary 4.11, each of these checks can be implemented in the linear MIP model using
Construction 4.8. However, to apply the protocol in Construction 4.8 to Πβ(W),
the verifier requires oracle access to the individual rows of Πβ(W). Thus, in the
linear MIP construction, in addition to providing oracle access to the rows of the
assignment matrix W, we also provide the verifier oracle access to the rows of
Πβ(W) for all β ∈ [z]. Of course, a malicious MIP prover may provide the rows
of a different matrix W′ ∈ F

t×q (so as to pass the consistency check). Thus, the
final ingredient we require is a way for the verifier to check that two matrices
W,W′ ∈ F

t×q satisfy the relation W′ = Πβ(W). Note that Construction 4.8
does not directly apply because the permutation Πβ is not necessarily 2-locally
decomposable.

Decomposing the permutation. To complete the description, we now describe
a way for the verifier to check that two matrices W,W′ ∈ F

t×q satisfy the
relation W′ = Π(W), for an arbitrary permutation Π. We assume that the
verifier is given oracle access to the rows of W and W′ in the linear MIP model.
Construction 4.8 provides a way to check the relation whenever Π is 2-locally
decomposable, so a natural starting point is to decompose the permutation Π
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into a sequence of 2-locally-decomposable permutations Π1, . . . , Πα, where Π =
Πα ◦· · ·◦Π1. Then, the linear MIP proof consists of the initial and final matrices
W and W′, as well as the intermediate matrices Wi = (Πi ◦ · · · ◦ Π1)(W).
The linear MIP proof would consist of the rows of all of the matrices W =
W0,W1, . . . ,Wα = W′, and the verifier would apply Construction 4.8 to check
that for all � ∈ [α], Wi = Πi(Wi−1).

While this general approach seems sound, there is a subtle problem. The
soundness guarantee for the consistency check in Construction 4.8 only states
that on input W,W′ and a permutation Π, the verifier will only reject with
probability 1 − 2Ω(t) when W′ and Π(W) differ on Ω(t) rows. This means that
a malicious prover can provide a sequence of matrices W,W1, . . . ,Wα where
each W� differs from Π�(W�−1) on a small number of rows (e.g., o(t) rows), and
in doing so, correct all of the inconsistent assignments that appear in the final
matrix Wα.

Randomizing the decomposition. Abstractly, we can view the problem as follows.
Let B ∈ {0, 1}t×q be the inconsistency matrix for W with respect to A (Defini-
tion 4.4). In other words, Bi,j = 1 whenever Wi,j encodes a value that is incon-
sistent with another assignment elsewhere in W. Since GW,A contains a matching
of size Ω(t), we know that there are at least Ω(t) rows in B that contain a 1. The
permutation Π is chosen so that Π(W) has a regular matching of size Ω(t) with
respect to Π(A). In particular, this means that the permuted inconsistency matrix
Π(B) contains a 1 in Ω(t) adjacent pairs of rows.

Consider the sequence of matrices W1, . . . ,Wα chosen by the prover. Using
the approximate pairwise consistency check, we can ensure that Wi agrees with
Πi(Wi−1) on all but some κ1 rows. Now suppose that there exists some � ∈ [α]
where B� = (Π� ◦ · · · ◦ Π1)(B) has the property that all of the locations with
a 1 in B appear in just κ1 rows of B�. If this happens, then the malicious
prover can construct W1, . . . ,W�−1 honestly, and then choose W� such that
W� = Π�(W�−1) on all rows where B� does not contain a 1, and set the values
in the rows where B� does contain a 1 to be consistent with the other rows
of W. Notably, all the entries in W� are now consistent, and moreover, W�

differs from Π�(W�−1) on at most κ1 rows (and so, will not be detected with
high probability by the pairwise consistency check). This means that from the
verifier’s perspective, the final matrix Π(W) has no inconsistencies, and thus,
the verifier’s final pairwise consistency check passes with probability 1 (even
though the original inconsistency graph GW,A contains a matching of size Ω(t)).
Thus, we require a stronger property on the permutation decomposition. It is
not sufficient that there is a matching of size Ω(t) in the starting and ending
configurations W and W′. Rather, we need that the size of the matching in
every step of the decomposition cannot shrink by too much, or equivalently, the
intermediate permutations Π1, . . . , Πα cannot “concentrate” all of the inconsis-
tencies in W into a small number of rows (which the malicious prover can fix
without being detected). We say permutation decompositions with this property
are non-concentrating. We now formally define the notion of a non-concentrating
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permutation decomposition and what it means for a collection of permutation
sequences to be non-concentrating.

Definition 4.13 (Non-concentrating Permutations). Fix positive integers
t, q ∈ N, and let Γ = (Π1, . . . , Πα) be a sequence of permutations over t-by-q
matrices. Let B ∈ {0, 1}t×q be an inconsistency matrix. For � ∈ [α], define B� =
(Π� ◦ · · · ◦ Π1)(B). We say that Γ is a sequence of (κ1, κ2)-non-concentrating
permutations with respect to B if for all � ∈ [α], the inconsistency matrix B�

has the property that no subset of κ1 rows contains more than κ2 inconsistencies
(indices where the value is 1). Next, we say a collection of permutation sequences
Γ (1), . . . , Γ (γ) where each Γ (j) =

(

Π
(j)
1 , . . . , Π

(j)
α

)

is (κ1, κ2)-non-concentrating
for a set B ⊆ {0, 1}t×q of inconsistency matrices if for all B ∈ B, there is some
j ∈ [γ] such that Γ (j) is (κ1, κ2)-non-concentrating with respect to B.

Putting the pieces together. To summarize, the goal of the consistency check is
to decide whether the inconsistency graph GW,A of some assignment matrix W
with respect to a replication structure A contains a matching of size Ω(t). Our
strategy relies on the following:

– Let (Π1, . . . , Πz) be a collection of regularity-inducing permutations with
respect to A.

– For each β ∈ [z], let Γ
(1)
β , . . . , Γ

(γ)
β be a collection of non-concentrating per-

mutations that implement Πβ , where Γ
(j)
β = (Π(j)

β,1, . . . , Π
(j)
β,α) for all j ∈ [γ],

and each of the intermediate permutations Π
(j)
β,� are 2-locally decomposable

for all j ∈ [γ], β ∈ [z], and � ∈ [α].

The proof then consists of the initial assignment matrix W in addition to all of
the intermediate matrices W(j)

β,� = Π
(j)
β,�(W

(j)
β,�−1), where we define W(j)

β,0 = W
for all j ∈ [γ], β ∈ [z]. The verifier checks consistency of all of the interme-
diate matrices using Construction 4.8, and applies a pairwise consistency test
(Construction 4.10) to each of W(j)

β,α for all j ∈ [γ] and β ∈ [z]. The soundness
argument then proceeds roughly as follows:

– Since (Π1, . . . , Πz) is regularity-inducing, there is some β ∈ [z] where
GΠβ(W),Πβ(A) contains a regular matching.

– Since Γ
(1)
β , . . . , Γ

(γ)
β is a collection of non-concentrating permutations that

implement Πβ , and all of the intermediate consistency checks pass, then there
must be some j ∈ [γ] such that G

W
(j)
β,α,Πβ(A)

contains a regular matching of

size Ω(t). The verifier then rejects with exponentially-small probability (in t)
by soundness of the pairwise consistency test.

Finally, in our concrete instantiation (described in the full version [15]), we
show how to construct our collection of regularity-inducing permutations and
non-concentrating permutations sequences where z = O(1), γ = O(log3 t), α =
Θ(log t). For this setting of parameters, the overall consistency check only incurs
polylogarithmic overhead to the prover complexity and the proof size. In Sect. 4.3,
we give the formal description and analysis of our linear MIP construction.
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4.3 Quasi-Optimal Linear MIP Construction

In this section, we describe our quasi-optimal linear MIP for circuit satisfiability.
We give our construction (Construction 4.14) but defer the security theorem and
analysis to the full version. By instantiating Construction 4.14 with the appro-
priate primitives, we obtain the first quasi-optimal linear MIP (Theorem 4.15).

Construction 4.14 (Linear MIP). Fix parameters t, δ, k, ε, d, ρ, κ1, κ2, and
let C be an arithmetic circuit of size s over a finite field F. The construction
relies on the following ingredients:

– Let (f1, . . . , ft, inp,wit) be a quasi-optimal (t, δ)-robust decomposition of C.
Let Ci be the arithmetic circuit that computes each constraint fi : Fn×F

m →
{0, 1}.

– Let (P1,V1), . . . , (Pt,Vt) be k-query systematic linear PCP systems for cir-
cuits C1, . . . , Ct, respectively, with knowledge error ε and query length d.

– Let A ∈ [m]t×q be the replication structure of C1, . . . , Ct (where q is a bound
on the number of indices in a witness w ∈ F

m on which each circuit depends).
Let Π1, . . . , Πz be a collection of ρ-regularity-inducing permutations on t-by-q
matrices with respect to the replication structure A (Definition 4.12).

– For β ∈ [z], let Bβ ⊆ {0, 1}t×q be the set of inconsistency patterns where B
and Πβ(B) have at most one inconsistency in each row. Let Γ

(1)
β , . . . , Γ

(γ)
β be

a collection of permutation sequences implementing Πβ that is (κ1, κ2)-non-
concentrating for Bβ (Definition 4.13). In particular, each Γ

(j)
β is a sequence of

α permutations
(

Π
(j)
β,1, . . . , Π

(j)
β,α

)

, where each intermediate permutation Π
(j)
β,�

is 2-locally decomposable.

The linear MIP with t ·(1+αγz) provers and query length d is defined as follows:

– Syntax: The linear MIP consists of t ·(1+αγz) provers. We label the provers
as Pi and P

(j)
β,�,i for i ∈ [t], j ∈ [γ], β ∈ [z], and � ∈ [α]. To simplify the

description, we will often pack the proof vectors from different provers into
the rows of a matrix. To recall, when we say we associate a matrix Ŵ ∈
F

t×d with provers (P1, . . . , Pt), we mean that the ith row of Ŵ is the proof
vector assigned to prover Pi for all i ∈ [t]. Similarly, when we say the verifier
distributes a query matrix Q ∈ F

t×d to provers (P1, . . . , Pt), we mean that it
submits the ith row of Q as a query to Pi for all i ∈ [t].

– Prover’s algorithm: On input the statement x′ ∈ F
n′

and witness w′ ∈ F
m′

,
the prover prepares the proof vectors as follows:

• Linear PCP proofs. First, the prover computes x ← inp(x′) and w ←
wit(x′,w′). For each i ∈ [t], it computes a proof πi ← Pi(xi,wi), where
xi and wi denote the bits of the statement x and witness w on which
circuit Ci depends, respectively. Since (Pi,Vi) is a systematic linear PCP,
we can write πi = [wi,pi] where wi ∈ F

q and pi ∈ F
d−q. For i ∈ [t], the

prover associates the vector πi with Pi.
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• Consistency proofs. Let W ∈ F
t×q be the matrix where the ith row

is the vector wi. Now, for all j ∈ [γ], β ∈ [z], and � ∈ [α], let W(j)
β,� =

(

Π
(j)
β,� ◦Π

(j)
β,�−1 ◦ · · · ◦Π

(j)
β,1

)

(W). Let Ŵ(j)
β,� =

[

W(j)
β,�,0

t×(d−q)
]

. The prover

associates Ŵ(j)
β,� with provers (P (j)

β,�,1, . . . , P
(j)
β,�,t).

– Verifier’s query algorithm: To simplify the description, we will sometimes
state the query vectors the verifier submits to each prover Pi and P

(j)
β,�,i rather

than the explicit query matrices. The verifier’s queries are constructed as
follows:

• Linear PCP queries. For i ∈ [t], the verifier invokes the query genera-
tion algorithm Qi for each of the underlying linear PCP instances (Pi,Vi)
to obtain a query matrix Qi ∈ F

d×k and some state information sti. The
verifier gives Qi to prover Pi, and saves the state st = (st1, . . . , stt).

• Routing consistency queries. For all j ∈ [γ], β ∈ [z], and � ∈ [α],
the verifier invokes the query generation algorithm of Construction 4.8
on permutation Π

(j)
β,� to obtain two query matrices R(j)

β,� and S(j)
β,� ∈ F

t×q.

The verifier pads the matrices to obtain R̂(j)
β,� =

[

R(j)
β,�,0

t×(d−q)
]

and

Ŝ(j)
β,� =

[

S(j)
β,�,0

t×(d−q)
]

. There are two cases:

* If � = 1, the verifier distributes the queries R̂(j)
β,� to provers

(P1, . . . , Pt).
* If � > 1, the verifier distributes the queries R̂(j)

β,� to provers
(

P
(j)
β,�−1,1, . . . , P

(j)
β,�−1,t

)

.

In addition, the verifier distributes the queries Ŝ(j)
β,� to provers

(

P
(j)
β,�,1, . . . , P

(j)
β,�,t

)

. Intuitively, the verifier is applying the approximate

consistency check from Construction 4.8 to every permutation Π
(j)
β,�.

• Pairwise consistency queries. For each β ∈ [z], let Aβ = Πβ(A), and
let Π ′

β be the pairwise consistency test matrix for Aβ (Construction 4.10).
The verifier invokes the query generation algorithm of Construction 4.8
on permutation Π ′

β to obtain two query matrices Rβ and Sβ ∈ F
t×q. It

pads the matrices to obtain R̂β = [Rβ ,0t×(d−q)] and Ŝβ = [Sβ ,0t×(d−q)].
Next, it distributes R̂β and Ŝβ to (P (j)

β,α,1, . . . , P
(j)
β,α,t) for all j ∈ [γ]. In

this step, the verifier is checking pairwise consistency of the permuted
assignment matrices W(j)

β,α for all j ∈ [γ] and β ∈ [z].
In total, the verifier makes a total of k + αγz queries to each prover Pi for
i ∈ [t]. It makes O(1) queries to the other provers.

– Verifier’s decision algorithm: First, the verifier computes the statement
x ← inp(x′). For i ∈ [t], let xi denote the bits of x on which circuit Ci depends.
The verifier processes the responses from each set of queries as follows:

• Linear PCP queries. For i ∈ [t], let yi ∈ F
k be the response of prover

Pi to the linear PCP queries. For i ∈ [t], the verifier invokes the decision
algorithm Di for each of the underlying linear PCP instances (Pi,Vi) on
the state sti, the statement xi, and the response yi. It rejects the proof
if Di(sti,xi,yi) = 0 for any i ∈ [t].
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• Consistency queries. For each set of routing consistency query
responses (for checking consistency of the intermediate permutations
Π

(j)
β,�), and for each set of pairwise consistency query responses (for check-

ing consistency of the final configurations Π ′
β), the verifier applies the

decision algorithm from Construction 4.8, and rejects if any check fails.
If all of the checks pass, then the verifier accepts the proof.

Instantiating the construction. We defer the security analysis of Construc-
tion 4.14 to the full version [15]. In the full version, we additionally show how
to instantiate the robust decomposition, the regularity-inducing permutations,
and the non-concentrating permutation sequences needed to apply Construc-
tion 4.14. Combining Construction 4.14 with our concrete instantiations, we
obtain a quasi-optimal linear MIP. We state the formal theorem below, and give
the proof in the full version.

Theorem 4.15 (Quasi-Optimal Linear MIP). Fix a security parameter λ.
Let C : Fn ×F

m → F
h be an arithmetic circuit of size s over a poly(λ)-size finite

field F where |F| > s. Then, there exists an input-oblivious k-query linear MIP
(P,V) with � = ˜O(λ) provers for RC with soundness error 2−λ, query length
˜O(s/λ) + poly(λ, log s), and k = polylog(λ). Moreover, letting V = (Q,D), the
prover and verifier algorithms satisfy the following properties:

– the prover algorithm P is an arithmetic circuit of size ˜O(s) + poly(λ, log s);
– the query-generation algorithm Q is an arithmetic circuit of size ˜O(s) +

poly(λ, log s);
– the decision algorithm D is an arithmetic circuit of size ˜O(λn).

Remark 4.16 (Soundness Against Affine Provers). To leverage our linear MIP
to construct a SNARG, we often require that the linear MIP provide soundness
against affine provers. We note that Construction 4.14 inherits this property as
long as the underlying linear PCPs and approximate consistency check primi-
tives provide soundness against affine strategies. It is straightforward to see that
Construction 4.8 remains sound even against affine adversarial strategies, and in
the full version, we show how the underlying linear PCPs can be made robust
against affine strategies with minimal overhead. Importantly, these modifications
do not increase the asymptotic complexity of Construction 4.14.

5 Quasi-Optimal SNARGs

In this section, we formally introduce the notion of a quasi-optimal SNARG.
Next, in Sect. 5.2, we show how to compile a linear MIP into a designated-
verifier SNARG in the preprocessing model using the notion of a linear-only
vector encryption over rings introduced in [14]. Combined with our quasi-optimal
linear MIP from Sect. 4, this yields a quasi-optimal designated-verifier SNARG
for Boolean circuit satisfiability in the preprocessing model. We refer to the
full version [15] for the formal definition of a succinct non-interactive argument
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(SNARG) and for the definitions of a linear-only vector encryption that we use
in our construction. We also introduce the notion of a 1-bit SNARG in the full
version.

5.1 Defining Quasi-Optimality

In this section, we formally define our notion of a quasi-optimal SNARG. Then, in
the full version, we compare our notion to the previous notion of quasi-optimality
introduced in [14], as well as describe a heuristic approach for instantiating quasi-
optimal SNARGs.

Definition 5.1 (Quasi-Optimal SNARG). Let ΠSNARG = (Setup,Prove,
Verify) be a SNARG for a family of Boolean circuits C = {Cn}n∈N

. Then, ΠSNARG

is quasi-optimal if it achieves 2−λ soundness error against provers of size 2λ and
satisfies the following properties:

– Prover Complexity: The running time of Prove is ˜O(|Cn|) + poly(λ,
log |Cn|).

– Succinctness: The length of the proof output by Prove is ˜O(λ).

Next, in Lemma 5.2, we show that our notion of quasi-optimality is tight in
the following sense: assuming NP does not have succinct proofs, any argument
system for NP that provides soundness error 2−λ must have proofs of length
Ω(λ). We state the lemma below and give the proof in the full version [15].

Lemma 5.2. Let C = {Cn}n∈N
be a family of Boolean circuits for some lan-

guage L =
⋃

n∈N
LCn

, where Cn : {0, 1}n × {0, 1}m(n) → {0, 1} for all n ∈ N.
Fix a soundness parameter ρ and a security parameter λ. Let ΠSNARG =
(Setup,Prove,Verify) be a SNARG for C with soundness 2−ρ against provers of
size poly(λ). If LCn

�⊆ DTIME(2o(n)), then the length �(ρ) of an argument in
ΠSNARG is Ω(ρ).

5.2 Quasi-Optimal SNARGs from Quasi-Optimal Linear MIPs

In this section, we show how to combine a linear MIPs with linear-only vector
encryption over rings to obtain a quasi-optimal SNARG. We refer to the full
version for the definition of a linear-only vector encryption from [14]. We describe
the construction and state its security theorems here, but defer the security
proofs to the full version [15].

Construction 5.3 (SNARG from Linear MIP). Fix a prime p and let
C = {Cn}n∈N

be a family of arithmetic circuits over Fp. Let RC be the rela-
tion associated with C. Let (P,V) be a k-query linear MIP with � provers and
query length d for the relation RC . Let Πvenc = (KeyGen,Encrypt,Decrypt) be a
secret-key vector encryption scheme over Rk where R ∼= F

�
p. Our single-theorem,

designated-verifier SNARG ΠSNARG = (Setup,Prove,Verify) in the preprocessing
model for RC is given below:



Quasi-Optimal SNARGs via Linear Multi-Prover Interactive Proofs 249

– Setup(1λ, 1n) → (σ, τ): On input the security parameter λ and the circuit
family parameter n, the setup algorithm does the following:
1. Invoke the query-generation algorithm Q for the linear MIP to obtain a

tuple of query matrices Q1, . . . ,Q� ∈ F
d×k
p and state information st.

2. Generate a secret key sk ← KeyGen(1λ, 1�) for the vector encryption
scheme.

3. Pack the � query matrices Q1, . . . ,Q� into a single query matrix Q ∈ Rd×k

(recall that the ring R splits into � isomorphic copies of Fp).
4. Encrypt each row of Q (an element of Rk) using the vector encryption

scheme. In other words, for i ∈ [d], let qi ∈ Rd be the ith row of Q. In this
step, the setup algorithm computes ciphertexts cti ← Encrypt(sk,qi).

5. Output the common reference string σ = (ct1, . . . , ctd) and the verifica-
tion state τ = (sk, st).

– Prove(σ,x,w) → π. On input the common reference string σ = (ct1, . . . , ctd),
a statement x, and a witness w, the prover’s algorithm works as follows:
1. For each i ∈ [�], invoke the linear MIP prover algorithm Pi on input x

and w to obtain a proof πi ← Pi(x,w) ∈ F
d
p.

2. Pack the � proof vectors π1, . . . ,π� ∈ F
d
p into a single proof vector π ∈

Rd. Then, viewing the ciphertexts ct1, . . . , ctm as vector encryptions of
the rows of the query matrix Q ∈ Rd×k, homomorphically compute an
encryption of the matrix-vector product Q�π ∈ Rk. In particular, the
prover homomorphically computes the sum ct′ =

∑

i∈d πi · cti.
3. Output the proof ct′.

– Verify(τ,x,π) → {0, 1}: On input the verification state τ = (sk, st), the state-
ment x, and the proof π = ct′, the verifier does the following:
1. Decrypt the proof ct′ using the secret key sk to obtain the prover’s

responses y ← Decrypt(sk, ct′). If y = ⊥, the verifier terminates with
output 0.

2. The verifier decomposes y ∈ Rk into vectors y1, . . . ,y� ∈ F
k
p. It

then invokes the linear MIP decision algorithm D on the statement
x, the responses y1, . . . ,y�, and the verification state st and outputs
D(st,x,y1, . . . ,y�).

Theorem 5.4. Fix a security parameter λ and a prime p. Let C = {Cn}n∈N

be a family of arithmetic circuits over Fp, RC be the relation associated with
C, and (P,V) be a k-query linear MIP with � provers, query length d, and
soundness error ε(λ) against affine provers for the relation RC. Let Πvenc =
(KeyGen,Encrypt,Decrypt) be a vector encryption scheme over a ring R ∼= F

�
p

with linear targeted malleability. Then, applying Construction 5.3 to (P,V) and
Πvenc yields a non-adaptive designated-verifier preprocessing SNARG with sound-
ness error 2 · ε(λ) + negl(λ).
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Theorem 5.5. Fix a security parameter λ and a prime p. Let C = {Cn}n∈N

be a family of arithmetic circuits over Fp, RC be the relation associated with
C, and (P,V) be a k-query linear MIP with � provers, query length d, and
soundness error ε(λ) against affine provers for the relation RC. Let Πvenc =
(KeyGen,Encrypt,Decrypt) be a linear-only vector encryption scheme. Then,
applying Construction 5.3 to (P,V) and Πvenc yields an adaptive designated-
verifier preprocessing SNARG with soundness error ε(λ) + negl(λ).

Instantiating the Construction. To conclude this section, we show that com-
bining the candidate vector encryption scheme Πvenc over polynomial rings Rk,
where R ∼= F

�
p from [14, Sect. 4.4] with our quasi-optimal linear MIP construc-

tion from Theorem 4.15 yields a quasi-optimal SNARG from linear-only vector
encryption. We first recall from [14, Sect. 4.4] that the candidate vector encryp-
tion scheme Πvenc has the following properties:

– When k = polylog(λ), � = ˜O(λ), and |F| = poly(λ), each ciphertext encrypt-
ing an element of Rk has length ˜O(λ).

– Scalar multiplication and homomorphic addition of two ciphertexts can be
performed in time ˜O(λ).

When we apply Construction 5.3 to the linear MIP from Theorem 4.15 and Πvenc,
the prover complexity and proof sizes are then as follows (targeting soundness
error 2−λ):

– Prover complexity: The SNARG prover first invokes the underlying linear
MIP prover to obtain proofs π1, . . . ,π� for each of the � = ˜O(λ) provers. From
Theorem 4.15, this step requires time ˜O(s)+poly(λ, log s), where s is the size
of the circuit. To construct the proof, the prover has to perform d homomor-
phic operations, where d = ˜O(s/λ) + poly(λ, log s) is the query length of the
construction from Theorem 4.15. Since each homomorphic operation can be
computed in ˜O(λ) time, the overall prover complexity is ˜O(s) + poly(λ, log s).

– Proof size: The proof in Construction 5.3 consists of a single ciphertext,
which for our parameter settings, have length ˜O(λ).

From this analysis, we obtain the following quasi-optimal SNARG instantiations:

Corollary 5.6. Assuming the vector encryption scheme Πvenc from [14,
Sect. 4.4] satisfies linear targeted malleability (with exponential security), then
applying Construction 5.3 to the quasi-optimal linear MIP from Theorem 4.15
and Πvenc yields a non-adaptive designated-verifier quasi-optimal SNARG for
Boolean circuit satisfiability in the preprocessing model.

Corollary 5.7. Assuming the vector encryption scheme Πvenc from [14,
Sect. 4.4] (with the “double-encryption” transformation described in [14, Remark
C.4]) is linear-only (with exponential security), then applying Construction 5.3
to the quasi-optimal linear MIP from Theorem 4.15 and Πvenc yield an adaptive
designated-verifier quasi-optimal SNARG for Boolean circuit satisfiability in the
preprocessing model.
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Construction 5.3 gives a construction of a single-theorem SNARG from any lin-
ear MIP system. In the full version [15], we discuss some of the challenges in
extending our construction to provide multi-theorem security.

Remark 5.8 (Multi-theorem SNARGs). Construction 5.3 gives a construction
of a single-theorem SNARG from any linear MIP system. The works of [13,14]
show how to construct multi-theorem designated-verifier SNARGs by relying on
a stronger notion of soundness at the linear PCP level coupled with a stronger
interactive linear-only encryption assumption. While we could rely on the same
type of cryptographic assumption as in [14], our linear MIP from Sect. 4 does
not satisfy the notion of “reusable” or “strong” soundness from [13]. Strong
soundness essentially says that for all proofs, the probability that the verifier
accepts or that it rejects is negligible close to 1 (where the probability is taken
over the randomness used to generate the queries). In particular, whether the
verifier decides to accept or reject should be uncorrelated with the randomness
associated with its secret verification state. In our linear MIP model, we operate
over a polynomial-size field, so a prover making a local change will cause the
verifier’s decision procedure to change with noticeable probability. This reveals
information about the secret verification state, which can enable the malicious
prover to break soundness. We leave it as an open problem to construct a quasi-
optimal linear MIP that provides strong soundness. Such a primitive would be
useful in constructing a quasi-optimal multi-theorem SNARGs.
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