
Jesper Buus Nielsen
Vincent Rijmen (Eds.)

 123

LN
CS

 1
08

22

37th Annual International Conference on the Theory
and Applications of Cryptographic Techniques
Tel Aviv, Israel, April 29 – May 3, 2018, Proceedings, Part III

Advances in Cryptology –
EUROCRYPT 2018

Lecture Notes in Computer Science 10822

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7410

Jesper Buus Nielsen • Vincent Rijmen (Eds.)

Advances in Cryptology –

EUROCRYPT 2018
37th Annual International Conference on the Theory
and Applications of Cryptographic Techniques
Tel Aviv, Israel, April 29 – May 3, 2018
Proceedings, Part III

123

Editors
Jesper Buus Nielsen
Aarhus University
Aarhus
Denmark

Vincent Rijmen
University of Leuven
Leuven
Belgium

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-78371-0 ISBN 978-3-319-78372-7 (eBook)
https://doi.org/10.1007/978-3-319-78372-7

Library of Congress Control Number: 2018937382

LNCS Sublibrary: SL4 – Security and Cryptology

© International Association for Cryptologic Research 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by the registered company Springer International Publishing AG
part of Springer Nature
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

Eurocrypt 2018, the 37th Annual International Conference on the Theory and Appli-
cations of Cryptographic Techniques, was held in Tel Aviv, Israel, from April 29 to
May 3, 2018. The conference was sponsored by the International Association for
Cryptologic Research (IACR). Orr Dunkelman (University of Haifa, Israel) was
responsible for the local organization. He was supported by a local organizing team
consisting of Technion’s Hiroshi Fujiwara Cyber Security Research Center headed by
Eli Biham, and most notably by Suzie Eid. We are deeply indebted to them for their
support and smooth collaboration.

The conference program followed the now established parallel track system where
the works of the authors were presented in two concurrently running tracks. Only the
invited talks spanned over both tracks.

We received a total of 294 submissions. Each submission was anonymized for the
reviewing process and was assigned to at least three of the 54 Program Committee
members. Committee members were allowed to submit at most one paper, or two if
both were co-authored. Submissions by committee members were held to a higher
standard than normal submissions. The reviewing process included a rebuttal round for
all submissions. After extensive deliberations, the Program Committee accepted 69
papers. The revised versions of these papers are included in these three-volume pro-
ceedings, organized topically within their respective track.

The committee decided to give the Best Paper Award to the papers “Simple Proofs
of Sequential Work” by Bram Cohen and Krzysztof Pietrzak, “Two-Round Multiparty
Secure Computation from Minimal Assumptions” by Sanjam Garg and Akshayaram
Srinivasan, and “Two-Round MPC from Two-Round OT” by Fabrice Benhamouda
and Huijia Lin. All three papers received invitations for the Journal of Cryptology.

The program also included invited talks by Anne Canteaut, titled “Desperately
Seeking Sboxes”, and Matthew Green, titled “Thirty Years of Digital Currency: From
DigiCash to the Blockchain”.

We would like to thank all the authors who submitted papers. We know that the
Program Committee’s decisions can be very disappointing, especially rejections of very
good papers that did not find a slot in the sparse number of accepted papers. We
sincerely hope that these works eventually get the attention they deserve.

We are also indebted to the members of the Program Committee and all external
reviewers for their voluntary work. The Program Committee work is quite a workload.
It has been an honor to work with everyone. The committee’s work was tremendously
simplified by Shai Halevi’s submission software and his support, including running the
service on IACR servers.

Finally, we thank everyone else — speakers, session chairs, and rump-session
chairs — for their contribution to the program of Eurocrypt 2018. We would also like
to thank the many sponsors for their generous support, including the Cryptography
Research Fund that supported student speakers.

May 2018 Jesper Buus Nielsen
Vincent Rijmen

VI Preface

Eurocrypt 2018

The 37th Annual International Conference
on the Theory and Applications
of Cryptographic Techniques

Sponsored by the International Association for Cryptologic Research

April 29 – May 3, 2018
Tel Aviv, Israel

General Chair

Orr Dunkelman University of Haifa, Israel

Program Co-chairs

Jesper Buus Nielsen Aarhus University, Denmark
Vincent Rijmen University of Leuven, Belgium

Program Committee

Martin Albrecht Royal Holloway, UK
Joël Alwen IST Austria, Austria, and Wickr, USA
Gilles Van Assche STMicroelectronics, Belgium
Paulo S. L. M. Barreto University of Washington Tacoma, USA
Nir Bitansky Tel Aviv University, Israel
Céline Blondeau Aalto University, Finland
Andrey Bogdanov DTU, Denmark
Chris Brzuska TU Hamburg, Germany, and Aalto University, Finland
Jan Camenisch IBM Research – Zurich, Switzerland
Ignacio Cascudo Aalborg University, Denmark
Melissa Chase Microsoft Research, USA
Alessandro Chiesa UC Berkeley, USA
Joan Daemen Radboud University, The Netherlands,

and STMicroelectronics, Belgium
Yevgeniy Dodis New York University, USA
Nico Döttling Friedrich Alexander University Erlangen-Nürnberg,

Germany
Sebastian Faust TU Darmstadt, Germany
Serge Fehr CWI Amsterdam, The Netherlands
Georg Fuchsbauer Inria and ENS, France
Jens Groth University College London, UK
Jian Guo Nanyang Technological University, Singapore

Martin Hirt ETH Zurich, Switzerland
Dennis Hofheinz KIT, Germany
Yuval Ishai Technion, Israel, and UCLA, USA
Nathan Keller Bar-Ilan University, Israel
Eike Kiltz Ruhr-Universität Bochum, Germany
Gregor Leander Ruhr-Universität Bochum, Germany
Yehuda Lindell Bar-Ilan University, Israel
Mohammad Mahmoody University of Virginia, USA
Willi Meier FHNW, Windisch, Switzerland
Florian Mendel Infineon Technologies, Germany
Bart Mennink Radboud University, The Netherlands
María Naya-Plasencia Inria, France
Svetla Nikova KU Leuven, Belgium
Eran Omri Ariel University, Israel
Arpita Patra Indian Institute of Science, India
David Pointcheval ENS/CNRS, France
Bart Preneel KU Leuven, Belgium
Thomas Ristenpart Cornell Tech, USA
Alon Rosen IDC Herzliya, Israel
Mike Rosulek Oregon State University, USA
Louis Salvail Université de Montréal, Canada
Yu Sasaki NTT Secure Platform Laboratories, Japan
Thomas Schneider TU Darmstadt, Germany
Jacob C. N. Schuldt AIST, Japan
Nigel P. Smart KU Leuven, Belgium, and University of Bristol, UK
Adam Smith Boston University, USA
Damien Stehlé ENS de Lyon, France
Björn Tackmann IBM Research – Zurich, Switzerland
Dominique Unruh University of Tartu, Estonia
Vinod Vaikuntanathan MIT, USA
Muthuramakrishnan

Venkitasubramaniam
University of Rochester, USA

Frederik Vercauteren KU Leuven, Belgium
Damien Vergnaud Sorbonne Université, France
Ivan Visconti University of Salerno, Italy
Moti Yung Columbia University and Snap Inc., USA

Additional Reviewers

Masayuki Abe
Aysajan Abidin
Ittai Abraham
Hamza Abusalah

Divesh Aggarwal
Shashank Agrawal
Shweta Agrawal
Thomas Agrikola

Bar Alon
Abdel Aly
Prabhanjan Ananth
Elena Andreeva

VIII Eurocrypt 2018

Daniel Apon
Gilad Asharov
Nuttapong Attrapadung
Benedikt Auerbach
Daniel Augot
Christian Badertscher
Saikrishna

Badrinarayanan
Shi Bai
Josep Balasch
Marshall Ball
Valentina Banciu
Subhadeep Banik
Zhenzhen Bao
Gilles Barthe
Lejla Batina
Balthazar Bauer
Carsten Baum
Christof Beierle
Amos Beimel
Sonia Belaid
Aner Ben-Efraim
Fabrice Benhamouda
Iddo Bentov
Itay Berman
Kavun Elif Bilge
Olivier Blazy
Jeremiah Blocki
Andrey Bogdanov
Carl Bootland
Jonathan Bootle
Raphael Bost
Leif Both
Florian Bourse
Elette Boyle
Zvika Brakerski
Christian Cachin
Ran Canetti
Anne Canteaut
Brent Carmer
Wouter Castryck
Andrea Cerulli
André Chailloux
Avik Chakraborti
Yilei Chen
Ashish Choudhury

Chitchanok
Chuengsatiansup

Michele Ciampi
Thomas De Cnudde
Ran Cohen
Sandro Coretti
Jean-Sebastien Coron
Henry Corrigan-Gibbs
Ana Costache
Geoffroy Couteau
Claude Crépeau
Ben Curtis
Dana Dachman-Soled
Yuanxi Dai
Bernardo David
Alex Davidson
Jean Paul Degabriele
Akshay Degwekar
Daniel Demmler
Amit Deo
Apoorvaa Deshpande
Itai Dinur
Christoph Dobraunig
Manu Drijvers
Maria Dubovitskaya
Léo Ducas
Yfke Dulek
Pierre-Alain Dupont
François Dupressoir
Avijit Dutta
Lisa Eckey
Maria Eichlseder
Maximilian Ernst
Mohammad Etemad
Antonio Faonio
Oriol Farràs
Pooya Farshim
Manuel Fersch
Dario Fiore
Viktor Fischer
Nils Fleischhacker
Christian Forler
Tommaso Gagliardoni
Chaya Ganesh
Juan Garay
Sanjam Garg

Romain Gay
Peter Gaži
Rosario Gennaro
Satrajit Ghosh
Irene Giacomelli
Federico Giacon
Benedikt Gierlichs
Junqing Gong
Dov Gordon
Divya Gupta
Lorenzo Grassi
Hannes Gross
Vincent Grosso
Paul Grubbs
Chun Guo
Siyao Guo
Mohammad Hajiabadi
Carmit Hazay
Gottfried Herold
Felix Heuer
Thang Hoang
Viet Tung Hoang
Akinori Hosoyamada
Kristina Hostáková
Andreas Hülsing
Ilia Iliashenko
Roi Inbar
Vincenzo Iovino
Tetsu Iwata
Abhishek Jain
Martin Jepsen
Daniel Jost
Chiraag Juvekar
Seny Kamara
Chethan Kamath
Bhavana Kanukurthi
Harish Karthikeyan
Suichi Katsumata
Jonathan Katz
John Kelsey
Dakshita Khurana
Eunkyung Kim
Taechan Kim
Elena Kirshanova
Ágnes Kiss
Susumu Kiyoshima

Eurocrypt 2018 IX

Ilya Kizhvatov
Alexander Koch
Konrad Kohbrok
Lisa Kohl
Stefan Kölbl
Ilan Komargodski
Yashvanth Kondi
Venkata Koppula
Thorsten Kranz
Hugo Krawczyk
Marie-Sarah Lacharite
Kim Laine
Virginie Lallemand
Gaëtan Leurent
Anthony Leverrier
Xin Li
Pierre-Yvan Liardet
Benoît Libert
Huijia Lin
Guozhen Liu
Jian Liu
Chen-Da Liu-Zhang
Alex Lombardi
Julian Loss
Steve Lu
Atul Luykx
Vadim Lyubashevsky
Saeed Mahloujifar
Hemanta Maji
Mary Maller
Umberto Martínez-Peñas
Daniel Masny
Takahiro Matsuda
Christian Matt
Patrick McCorry
Pierrick Méaux
Lauren De Meyer
Peihan Miao
Brice Minaud
Esfandiar Mohammadi
Ameer Mohammed
Maria Chiara Molteni
Tal Moran
Fabrice Mouhartem
Amir Moradi
Pratyay Mukherjee

Marta Mularczyk
Mridul Nandi
Ventzislav Nikov
Tobias Nilges
Ryo Nishimaki
Anca Nitulescu
Ariel Nof
Achiya Bar On
Claudio Orlandi
Michele Orrù
Clara Paglialonga
Giorgos Panagiotakos
Omer Paneth
Louiza Papachristodoulou
Kostas Papagiannopoulos
Sunoo Park
Anat Paskin-Cherniavsky
Alain Passelègue
Kenny Paterson
Michaël Peeters
Chris Peikert
Alice Pellet–Mary
Geovandro C. C. F.

Pereira
Leo Perrin
Giuseppe Persiano
Thomas Peters
Krzysztof Pietrzak
Benny Pinkas
Oxana Poburinnaya
Bertram Poettering
Antigoni Polychroniadou
Christopher Portmann
Manoj Prabhakaran
Emmanuel Prouff
Carla Ràfols
Somindu C. Ramanna
Samuel Ranellucci
Shahram Rasoolzadeh
Divya Ravi
Ling Ren
Oscar Reparaz
Silas Richelson
Peter Rindal
Michal Rolinek
Miruna Rosca

Ron Rothblum
David Roubinet
Adeline Roux-Langlois
Vladimir Rozic
Andy Rupp
Yusuke Sakai
Simona Samardjiska
Niels Samwel
Olivier Sanders
Pratik Sarkar
Alessandra Scafuro
Martin Schläffer
Dominique Schröder
Sven Schäge
Adam Sealfon
Yannick Seurin
abhi shelat
Kazumasa Shinagawa
Luisa Siniscalchi
Maciej Skórski
Fang Song
Ling Song
Katerina Sotiraki
Florian Speelman
Gabriele Spini
Kannan Srinathan
Thomas Steinke
Uri Stemmer
Igors Stepanovs
Noah

Stephens-Davidowitz
Alan Szepieniec
Seth Terashima
Cihangir Tezcan
Mehdi Tibouchi
Elmar Tischhauser
Radu Titiu
Yosuke Todo
Junichi Tomida
Patrick Towa
Boaz Tsaban
Daniel Tschudi
Thomas Unterluggauer
Margarita Vald
Kerem Varici
Prashant Vasudevan

X Eurocrypt 2018

Philip Vejre
Daniele Venturi
Benoît Viguier
Fernando Virdia
Damian Vizár
Alexandre Wallet
Michael Walter
Haoyang Wang
Qingju Wang

Hoeteck Wee
Felix Wegener
Christian Weinert
Erich Wenger
Daniel Wichs
Friedrich Wiemer
David Wu
Thomas Wunderer
Sophia Yakoubov

Shota Yamada
Takashi Yamakawa
Kan Yasuda
Attila Yavuz
Scott Yilek
Eylon Yogev
Greg Zaverucha
Mark Zhandry
Ren Zhang

Eurocrypt 2018 XI

Abstract of Invited Talks

Desperately Seeking Sboxes

Anne Canteaut

Inria, Paris, France
anne.canteaut@inria.fr

Abstract. Twenty-five years ago, the definition of security criteria associated to
the resistance to linear and differential cryptanalysis has initiated a long line of
research in the quest for Sboxes with optimal nonlinearity and differential
uniformity. Although these optimal Sboxes have been studied by many cryp-
tographers and mathematicians, many questions remain open. The most
prominent open problem is probably the determination of the optimal values
of the nonlinearity and of the differential uniformity for a permutation depending
on an even number of variables.

Besides those classical properties, various attacks have motivated several
other criteria. Higher-order differential attacks, cube distinguishers and the more
recent division property exploit some specific properties of the representation
of the whole cipher as a collection of multivariate polynomials, typically the fact
that some given monomials do not appear in these polynomials. This type of
property is often inherited from some algebraic property of the Sbox. Similarly,
the invariant subspace attack and its nonlinear counterpart also originate from
specific algebraic structure in the Sbox.

Thirty Years of Digital Currency:
From DigiCash to the Blockchain

Matthew Green

Johns Hopkins University
mgreen@cs.jhu.edu

Abstract. More than thirty years ago a researcher named David Chaum pre-
sented his vision for a cryptographic financial system. In the past ten years this
vision has been realized. Yet despite a vast amount of popular excitement, it
remains to be seen whether the development of cryptocurrencies (and their
associated consensus technologies) will have a lasting positive impact—both on
society and on our research community. In this talk I will examine that question.
Specifically, I will review several important contributions that research cryp-
tography has made to this field; survey the most promising deployed
(or developing) technologies; and discuss the many challenges ahead.

Contents – Part III

Zero-Knowledge

On the Existence of Three Round Zero-Knowledge Proofs 3
Nils Fleischhacker, Vipul Goyal, and Abhishek Jain

Statistical Witness Indistinguishability (and more) in Two Messages 34
Yael Tauman Kalai, Dakshita Khurana, and Amit Sahai

An Efficiency-Preserving Transformation from Honest-Verifier Statistical
Zero-Knowledge to Statistical Zero-Knowledge. 66

Pavel Hubáček, Alon Rosen, and Margarita Vald

Implementing Multiparty Computation

Efficient Maliciously Secure Multiparty Computation for RAM 91
Marcel Keller and Avishay Yanai

Efficient Circuit-Based PSI via Cuckoo Hashing . 125
Benny Pinkas, Thomas Schneider, Christian Weinert, and Udi Wieder

Overdrive: Making SPDZ Great Again . 158
Marcel Keller, Valerio Pastro, and Dragos Rotaru

Non-interactive Zero-Knowledge

Efficient Designated-Verifier Non-interactive Zero-Knowledge
Proofs of Knowledge. 193

Pyrros Chaidos and Geoffroy Couteau

Quasi-Optimal SNARGs via Linear Multi-Prover Interactive Proofs. 222
Dan Boneh, Yuval Ishai, Amit Sahai, and David J. Wu

Anonymous Communication

Untagging Tor: A Formal Treatment of Onion Encryption 259
Jean Paul Degabriele and Martijn Stam

Exploring the Boundaries of Topology-Hiding Computation 294
Marshall Ball, Elette Boyle, Tal Malkin, and Tal Moran

Isogeny

Supersingular Isogeny Graphs and Endomorphism Rings: Reductions
and Solutions . 329

Kirsten Eisenträger, Sean Hallgren, Kristin Lauter, Travis Morrison,
and Christophe Petit

Leakage

On the Complexity of Simulating Auxiliary Input . 371
Yi-Hsiu Chen, Kai-Min Chung, and Jyun-Jie Liao

Key Exchange

Fuzzy Password-Authenticated Key Exchange . 393
Pierre-Alain Dupont, Julia Hesse, David Pointcheval, Leonid Reyzin,
and Sophia Yakoubov

Bloom Filter Encryption and Applications to Efficient Forward-Secret
0-RTT Key Exchange . 425

David Derler, Tibor Jager, Daniel Slamanig, and Christoph Striecks

OPAQUE: An Asymmetric PAKE Protocol Secure Against
Pre-computation Attacks . 456

Stanislaw Jarecki, Hugo Krawczyk, and Jiayu Xu

Quantum

Unforgeable Quantum Encryption . 489
Gorjan Alagic, Tommaso Gagliardoni, and Christian Majenz

Tightly-Secure Key-Encapsulation Mechanism in the Quantum Random
Oracle Model . 520

Tsunekazu Saito, Keita Xagawa, and Takashi Yamakawa

A Concrete Treatment of Fiat-Shamir Signatures in the Quantum
Random-Oracle Model. 552

Eike Kiltz, Vadim Lyubashevsky, and Christian Schaffner

Non-maleable Codes

Non-malleable Randomness Encoders and Their Applications 589
Bhavana Kanukurthi, Sai Lakshmi Bhavana Obbattu, and Sruthi Sekar

Non-malleable Codes from Average-Case Hardness: AC0, Decision Trees,
and Streaming Space-Bounded Tampering . 618

Marshall Ball, Dana Dachman-Soled, Mukul Kulkarni, and Tal Malkin

XVIII Contents – Part III

Provable Symmetric Cryptography

Naor-Reingold Goes Public: The Complexity of Known-Key Security 653
Pratik Soni and Stefano Tessaro

Updatable Encryption with Post-Compromise Security 685
Anja Lehmann and Björn Tackmann

Author Index . 717

Contents – Part III XIX

Zero-Knowledge

On the Existence of Three Round
Zero-Knowledge Proofs

Nils Fleischhacker1,2(B), Vipul Goyal1, and Abhishek Jain2

1 Carnegie Mellon University, Pittsburgh, USA
mail@nilsfleischhacker.de

2 Johns Hopkins University, Baltimore, USA

Abstract. We study the round complexity of zero-knowledge (ZK) proof
systems. While five round ZK proofs for NP are known from standard
assumptions [Goldreich-Kahan, J. Cryptology’96], Katz [TCC’08] proved
that four rounds are insufficient for this task w.r.t. black-box simulation.
In this work, we study the feasibility of ZK proofs using non-black-box
simulation. Our main result is that three round private-coin ZK proofs
for NP do not exist (even w.r.t. non-black-box simulation), under cer-
tain assumptions on program obfuscation. Our approach builds upon
the recent work of Kalai et al. [Crypto’17] who ruled out constant round
public-coin ZK proofs under the same assumptions as ours.

1 Introduction

The notion of zero-knowledge (ZK) proofs [32] is fundamental in cryptography.
Intuitively, ZK proofs allow one to prove a statement without revealing anything
beyond the validity of the statement.

An important measure of efficiency of ZK protocols is round complexity.
Ever since the introduction of ZK proofs nearly three decades ago, an exten-
sive amount of research has been dedicated towards minimizing their round-
complexity. Protocols with smaller round complexity are more desirable so as to
minimize the effect of network latency, which in turn decreases the time com-
plexity of the protocol.

Round-Complexity of ZK. In this work, we study the exact round complexity
of ZK proofs that achieve soundness even against computationally unbounded
adversarial provers (as opposed to arguments that achieve soundness only against
polynomial-time adversarial provers). While initial constructions of ZK proofs
required a polynomial number of rounds, the seminal work of Goldreich and
Kahan [29] constructed a five round ZK proof system for NP based on collision-
resistant hash functions.

N. Fleischhacker and V. Goyal—We acknowledge the generous support of Northrop
Grumman.
N. Fleischhacker and A. Jain—Supported in part by a DARPA/ARL Safeware Grant
W911NF-15-C-0213 and a sub-award from NSF CNS-1414023.

c© International Association for Cryptologic Research 2018
J. B. Nielsen and V. Rijmen (Eds.): EUROCRYPT 2018, LNCS 10822, pp. 3–33, 2018.
https://doi.org/10.1007/978-3-319-78372-7_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78372-7_1&domain=pdf

4 N. Fleischhacker et al.

In the negative direction, two-round ZK arguments for NP were ruled out
by Goldreich and Oren [31]. Later, Goldreich and Krawcyzk [30] ruled out three
round ZK arguments for NP where the ZK property holds w.r.t. a black-box
simulator. More recently, Katz [37] proved that four round ZK proofs with black-
box simulation only exist for languages whose complement is in MA.

The above state of the art motivates the following intriguing question:

Does there exist a three or four round ZK proof system for NP using
non-black-box simulation?

In this work, we investigate precisely this question.

Private-coin vs Public-coin. In the study of ZK proofs, whether or not the
verifier makes its random coins public or keeps them private has a strong bearing
on the round-complexity. Indeed, constructing public-coin ZK proofs is viewed
as a harder task. Very recently, Kalai et al. [36] ruled out constant round public-
coin ZK proof systems for NP, even w.r.t. non-black-box simulation, assuming
the existence of certain kinds of program obfuscation [7]. However, their approach
breaks down in the private coin setting, where a verifier may keep its random
coins used during the protocol private from the prover. This is not surprising,
since five round private-coin ZK proofs are already known [29].

In this work, we investigate the feasibility of constructing private-coin ZK
proofs (via non-black-box techniques) in less than five rounds. We remark that a
candidate construction of three-round (private-coin) ZK proof system was given
by Lepinski [40] based on a highly non-standard “knowledge-type” assumption;
we discuss the bearing of our results on Lepinski’s protocol (and the underlying
assumption) below.

1.1 Our Results

We revisit the round complexity of zero-knowledge proof systems. As our main
result, we rule out the existence of three round private-coin ZK proofs for lan-
guages outside BPP, under certain strong assumptions.

Theorem 1 (Informal). Three round ZK proofs against non-uniform verifiers
and distinguishers only exist for languages in BPP, assuming the following:

– Sub-exponentially secure one-way functions.
– Sub-exponentially secure indistinguishability obfuscation for circuits [7,25].
– Exponentially secure input-hiding obfuscation for multi-bit point functions

[5,11].

Our result relies on the same assumptions as those used in the recent work of
Kalai et al. [36]. In their work, Kalai et al. use these assumptions to instantiate
the Fiat-Shamir heuristic [24] and then rely upon its connection with public-coin
ZK proofs [22] to rule out constant round public-coin ZK proofs. Naturally, this
approach does not extend to the private coin setting. Nevertheless, we are able
to build upon their techniques to obtain our result in Theorem 1.

On the Existence of Three Round Zero-Knowledge Proofs 5

Further, we note that our result contradicts the work of Lepinski [40] and
thus refutes the knowledge-type assumption underlying Lepinski’s protocol. We
further elaborate on this in Sect. 1.3.

On our assumptions. Starting with the work of [25], several candidate con-
structions of indistinguishability obfuscation (iO) have been proposed over
the last few years (see, e.g., [2–4,15,26,27,41–45,47]). During this time, (sub-
exponentially secure) iO has also led to numerous advances in theoretical cryp-
tography (see, e.g., [13,21,25,46]). Nevertheless, no iO scheme whose security is
based on standard cryptographic assumptions is presently known.

Our second assumption on program obfuscation concerns with the notion of
input-hiding obfuscation [5] for the class of multi-bit point functions Iα,β , where
Iα,β(α) = β and 0, otherwise. Roughly speaking, an input-hiding obfuscator for
this family is said to be T -secure, if any PPT adversary can succeed in guessing α
with probability at most T−1. For our purposes, we require T to be exponential
in the security parameter. Candidate constructions of such obfuscation based on
a strong variant of the DDH assumption are known from the works of [11,19]
(see Sect. 2 for a more detailed discussion.)

Pessimistic Interpretation. While it is natural to be somewhat skeptical
about the obfuscation assumptions we make, we note that our result implies
that constructing three-round zero-knowledge proofs would require overcoming
significant technical barriers. In particular, it would require disproving the exis-
tence of sub-exponentially secure iO, or the existence of exponentially secure
input-hiding obfuscation for multi-bit point functions (or, less likely, disproving
the existence of sub-exponentially secure one-way functions).

What about four rounds? Our result in Theorem 1 also extends to a specific
relaxation of ZK, referred to as ε-ZK [14]. In this relaxed notion, the simula-
tor’s running time may grow polynomially with the distinguishing gap, which is
allowed to be an inverse polynomial (unlike standard ZK, where the distinguish-
ing gap must be negligible).

In a recent work, Bitansky et al. [14] construct a four round private coin
ε-ZK proof system for NP, assuming the existence of keyless multi-collision-
resistant hash functions (MCRH) [9,14,39]. Multi-collision-resistant hash func-
tions weaken the standard notion of collision-resistant hash functions by only
guaranteeing that an adversary cannot find many (rather than two) inputs that
map to the same image. Presently, no constructions of keyless MCRH based on
standard assumptions are known; however, unlike collision-resistant hash func-
tions that cannot be secure against non-uniform adversaries in the keyless set-
ting, keyless MCRH are meaningful even in the non-uniform setting if the number
of required collisions are larger than the non-uniform advice to the adversary.

Their result serves as evidence that our techniques are unlikely to extend to
the four round case, since otherwise it would imply the non-existence of keyless
MCRH. While this is not implausible based on current evidence, in our eyes, it
would be a rather surprising outcome.

6 N. Fleischhacker et al.

It is of course possible that while four round private-coin ε-ZK proofs exist,
four round private-coin ZK proofs do not. However, in light of the above, it
seems that ruling out four round private-coin ZK proofs (w.r.t. non-black-box
simulation) would require substantially new techniques.

1.2 Technical Overview

In order to rule out the existence of three-round zero knowledge proofs, we
need to show that for any imaginable three round proof system, there exists a
non-uniform adversarial verifier whose view cannot be efficiently simulated by
any non-black-box simulator. Since a non-black-box simulator has access to the
adversary’s code, an immediate challenge is to “hide” the random coins of the
adversarial verifier from the simulator.

Our starting approach to address this issue is to use program obfuscation.
Let Π be any three-round private-coin proof system. To prove that Π is not ZK,
we construct a “dummy” adversarial verifier V ∗ who receives as auxiliary input
aux, an obfuscation of the next-message function of the honest verifier algorithm
of Π. More concretely, the auxiliary input aux consists of an obfuscated program
that has a key k for a pseudorandom function (PRF) hardwired in its description:

1. Upon receiving a message α from the prover, the program computes a message
β of the honest verifier (as per protocol Π) using randomness r = PRFk(α).1

2. Upon receiving a protocol transcript (α, β, γ), it recomputes the randomness
r used to compute β. Using the randomness r and the transcript, it honestly
computes the verifier’s output (i.e., whether to accept or reject the proof).

The adversarial verifier’s code does not do anything intelligent on its own, and
simply uses its auxiliary input aux to compute its protocol message.

Ruling out Rewinding Simulators. The above strategy for hiding the ran-
dom coins of the verifier runs into the following problem: a simulator may fix the
first two messages (α, β) of the protocol, and then observe the verifier’s output
on many different third messages to learn non-trivial information about the pri-
vate randomness of the verifier. Indeed, it was recently shown in the work of Jain
et al. [35] that in certain protocols, a simulator can learn the verifier’s random
tape by observing whether the verifier accepts or rejects in multiple trials.

A naive approach to address this problem is to simply modify the adversary
and remove the protocol output from adversary’s view. This can be achieved
by deleting the second instruction in the obfuscated program aux. This app-
roach, however, immediately fails because now a simulator can simply simulate
a “rejecting” transcript and succeed in fooling any distinguisher.

We address this problem by using non-uniform distinguishers, in a manner
similar to Goldreich and Oren [31] and the recent work of [1]. Specifically, we
modify the adversarial verifier to be such that it simply outputs the protocol

1 One may notice that this is similar to how protocols secure against “reset attacks”
are constructed [6,20].

On the Existence of Three Round Zero-Knowledge Proofs 7

transcript at the end of the protocol. The revised auxiliary input aux only con-
tains the first instruction described above. The PRF key k used to compute
the verifier’s randomness inside aux is given as non-uniform advice to the dis-
tinguisher. Note that this information is not available to the simulator. Now,
given k and the protocol transcript, the distinguisher can easily decide whether
or not to accept the transcript. Therefore, a simulator can no longer fool the
distinguisher via a rejecting transcript.

How to rule out any Simulator? Of course the main problem remains. While
the above approach constitutes a meaningful first step, we still need to formally
argue that there does not exist any efficient simulator for the aforementioned
adversarial verifier.

In prior works such as [31], this is achieved by showing that any efficient
simulator algorithm can be used by a cheating prover to break the soundness of
candidate protocol, which leads to a contradiction. It is, however, not immedi-
ately clear how to implement this strategy in our setting since a cheating prover
does not have access to the code of the verifier (which is required for running
the simulator algorithm).

We instead show that the existence of an efficient simulator can be used to
disprove the computational soundness of a different protocol that is provably
sound, leading to a contradiction.

Contradiction via Round Compression. We implement a compiler for com-
pressing any three round private coin proof system into a two round argument
system. Our round compression strategy is in fact very similar to the one devel-
oped in the recent work of Kalai et al. [36] in the context of public-coin ZK
proofs. We then show that a simulator for the three round proof w.r.t. the afore-
mentioned non-uniform verifier can be used to construct a cheating prover for
the two round argument system.

We now elaborate on the round compression strategy. Consider the prover
and verifier of the three-round proof to be two-stage algorithms. That is, P1

produces the prover’s first message α, V1 is the verifier’s next message function
that on input α outputs the verifier’s message β, P2 on input β produces the
prover’s second message γ and finally V2 is the decision procedure which uses
the random tape to decide whether (α, β, γ) is an accepting transcript. The
compressed two-round argument works as follows:

1. In the first round, the verifier obfuscates the code of a slightly modified V1

that upon input α, computes its message β using randomness r = PRFk(α)
generated via a hardcoded PRF key k. The verifier then sends the obfuscated
program to the prover.

2. The prover now runs P1 to get α, evaluates the obfuscated program on α to
receive β and finally runs P2 on α, β to get γ. The prover then sends α, β, γ
to the verifier.

3. Finally, the verifier can use k to recompute the random tape PRFk(α) and
run V2 to validate the transcript.

A minor variant of the above strategy was recently used by Kalai et al. [36] in
the case of public-coin ZK proofs. In their case, the obfuscated program simply

8 N. Fleischhacker et al.

corresponds to a PRF algorithm since it suffices to implement the strategy of a
public-coin verifier.2

Now, using the above round compression strategy, we can compress any three-
round proof system Π into a two-round argument system Π ′. Now suppose that
there exists an efficient zero-knowledge simulator Sim for Π w.r.t. the adversarial
verifier V∗ with auxiliary input aux, as described earlier. It is easy to see that
such a simulator Sim can be used to construct an efficient cheating prover P∗ for
Π ′. Indeed, the view of Sim in Π against V∗ with aux is the same as the view of
P∗ against an honest verifier in Π ′.

Thus, the main challenge now is to prove that our round-compression strategy
indeed yields two-round arguments.

How to prove Soundness? To prove computational soundness of the two-
round protocol, we proceed in two main steps:

1. First, we establish that there exists only a very small set of “bad” first mes-
sages α for which the cheating prover can even hope to be successful.

2. Second, we prove that the obfuscation sufficiently hides this small set to
ensure that the cheating prover cannot find such an α.

Below, we elaborate on each of these steps.

Step 1: Upper bounding Bad α’s. Imagine for a moment, that the three-
round proof system is public coin. Then, for any x �∈ L and any α, there can only
exist a negligible fraction of random tapes (and therefore β) for which an accept-
ing γ even exists. This is true because otherwise the computationally unbounded
prover could simply exhaustively search for this γ once they receive β. Now, if
the random tape, as in the two-round argument, is chosen pseudorandomly as
a function of α, then only a very small set of α’s will lead to such bad random
tapes. This is because a distinguisher against the pseudorandom function can
test for bad α’s by exhaustively enumerating γ’s because the PRF is assumed
to be 2n-secure. This small set would then be the set of bad α’s. Clearly any
successful cheating prover must use a bad α, since those are the only ones for
which an accepting γ even exists.

In a private coin protocol, however, this notion of bad α’s does not work. In
fact in a private coin protocol, for any α and any random tape, an accepting
γ may always exist! Indeed, any three-round proof system can be transformed
into another proof system that has this property: the verifier in the new protocol
acts exactly as the original verifier, except that it also chooses a random γ∗ that
it keeps private. Now, once it receives γ from the prover in the third round,
the verifier accepts if either the original verifier accepts or γ = γ∗. Clearly in
this protocol, there always exists an accepting γ but the protocol nevertheless
remains sound. To break soundness, a prover must either break soundness of the
original protocol or guess γ∗ which is only possible with negligible probability,
because the entire transcript is independent of γ∗.

2 In particular, in the public-coin case, the obfuscated program can be interpreted as
an instantiation of the random oracle in the Fiat-Shamir heuristic.

On the Existence of Three Round Zero-Knowledge Proofs 9

This example does not only show that the notion of bad α’s from the public
coin case does not work in the private-coin case, it also helps to illustrate how
we can try to fix it. While an accepting γ may always exist, the prover only
learns β and cannot tell which random tape was used by the verifier, beyond the
obvious fact that it must have been consistent with β. Therefore, the only γ a
prover can hope to use to break the soundness of the protocol are those that,
for a fixed β, are accepted by many consistent random tapes.

We use this key observation to derive our new notion of bad α’s. For any α
there exists only a negligible fraction of random tapes that are consistent with
a β such that there exists a γ that is accepted with high probability over all the
random tapes consistent with β. This is true, because otherwise an unbounded
prover could choose a random α and after receiving β, exhaustively search for all
consistent random tapes and then search for the γ accepted by many of them.
And then again, if the random tape, as is done in the two-round argument, is
chosen pseudorandomly as a function of α, then only a very small set of α’s will
lead to such bad random tapes.

However, must a cheating prover in the two-round protocol necessarily use
such a bad α to convince a verifier? While in the public coin case this was a
trivial fact, this is not at all obvious in the more general private-coin case. Since
even for “good” random tapes accepting γ’s may exist, it is necessary to show
that these remain hidden and cannot be used to cheat.

Here indistinguishability obfuscation comes to the rescue. Using iO and punc-
turable PRFs, we can show that a cheating prover must remain oblivious about
which consistent random tape was used to compute β. This allows us to argue
that a cheating prover cannot make use of γ’s that are only accepting for a small
number of consistent random tapes. Therefore, with overwhelming probability,
a successful cheating prover must use a bad α.

Step 2: Hiding Bad α’s. Now, it remains to argue that this set of bad α
is hidden by the obfuscation. Once we have established that a cheating prover
must output a bad α, the most obvious idea would be to try and lead this
to a contradiction with the soundness of the three-round proof. However, to
translate this into an attack, we need to use the security of the PRF. And while
using iO, that means we need to puncture. Since the puncturing must be done
before we learn α used by the cheating prover, we would incur an exponential
loss in the success probability of the hypothetical three-round cheating prover.
We can therefore only bring this to a contradiction if the three-round proof is
exponentially sound, which would severely weaken the result. Instead, we follow
the same approach as Kalai et al. [36] and “transfer” the exponential loss to
another cryptographic primitive.

The idea is to use the security of another primitive to argue that bad α’s are
hidden. Since the goal is to argue that bad inputs to a circuit remain hidden
a natural candidate for this primitive is input-hiding obfuscation. And indeed,
sufficiently strong input-hiding obfuscation for multibit point functions allows
to lead the existence of a cheating prover to a contradiction. Some technical
issues arise in this proof due to the distribution of bad α’s not being uniform.

10 N. Fleischhacker et al.

However, using a clever trick of a “relaxed” verifier it is possible to show that
the distributions are sufficiently close. In this part of the proof, we are able to
adapt the elegant strategy of Kalai et al. [36] with only minor modifications.

Extension to ε-ZK. To extend our result to also rule out three-round ε-ZK
proofs, we mainly need to argue that the cheating prover we described above
is still successful in breaking soundness of the two-round argument, even if our
starting point is an ε-ZK simulator instead of a regular ZK simulator.

Towards this, we note that the ε-ZK simulator, for every noticeable function
ε, is required to output a distribution that is ε-indistinguishable from the real
distribution. Thus, we can choose any small noticeable function ε, and then this
means that, while the cheating prover against the two-round argument is no
longer successful with all but negligible probability, it is still successful with
probability 1 − ε. This is sufficient to break soundness and our main theorem
therefore extends to ε-ZK proofs.

1.3 Implications to Lepinski’s Protocol

Lepinski’s 3-round ZK proof protocol [40] is based on a clever combination of the
three round honest-verifier ZK protocol of Blum [16] for Hamiltonian Graphs and
a special kind of oblivious transfer. While Lepinski chose to give a more direct
description of his protocol, a more modular high-level construction is implicit in
his thesis. His construction makes use of two building blocks:

1. The three round honest-verifier ZK protocol of Blum for Hamiltonian Graphs.
2. A three round string OT protocol with the following properties:

– The protocol is “delayed input” on the sender’s side. I.e., the first round of
the OT can be computed independently of the sender’s inputs (m0,m1).

– The protocol achieves indistinguishability based security against a com-
putationally unbounded malicious sender.

– The protocol achieves simulation based security against a malicious poly-
nomial time receiver.

Based on these assumptions a three-round ZK proof can be constructed as
described below. In the description we focus on soundness 1/2. For this spe-
cific protocol, smaller soundness error can be achieved by parallel repetition
without affecting the ZK property.

1. In the first round, the prover sets up the OT by sending the first message.
2. In the second round, the verifier sends the OT receiver message corresponding

to their random challenge for Blum’s protocol. I.e. the Blum challenge is used
as the selection bit b in the OT.

3. In the third round the prover sends the first message of Blum’s protocol.
Additionally he sends the sender message of the OT, corresponding to the
two possible prover responses to the (as of yet unknown) challenge. I.e. the
prover sets mb in the OT to be the response to challenge b.

4. Finally the verifier receives the OT message, thus learning mb and verifies
that mb is a valid response in Blum’s protocol.

On the Existence of Three Round Zero-Knowledge Proofs 11

It is easy to verify that this protocol is indeed sound: since the OT is secure
against an unbounded sender, the prover must choose his first message without
knowledge of the challenge and if the graph does not contain a Hamiltonian cycle
then it can only give a valid response to one of the challenges and is thus only
successful with probability 1/2. The soundness of this protocol is uncontested
by our result.

To prove that the above protocol is also zero-knowledge, one can leverage the
simulation-based security of the OT against malicious receivers. In particular,
the ZK simulator uses the OT simulator to learn the OT selection bit, and
then uses it to invoke the honest-verifier ZK simulator for Blum’s protocol. This
part is disputed by our result. Since the security of Blum’s protocol is not in
question, this means that our result disputes the existence of an OT protocol
with the properties described above.

However, Lepinski implicitly gives a number-theoretic construction of such an
OT protocol using a very specific “knowledge-type” assumption that is referred
to as the “proof of knowledge assumption (POKA)” in this thesis. This assump-
tion essentially states that a specific three-round public-coin proof of knowledge
protocol remains a proof of knowledge even if the verifier’s challenge is computed
using a fixed hash function. This assumption is necessary to facilitate extraction
of the receiver’s selection bit in his OT protocol, which is the key to proving
simulation-based security against malicious receivers.

The question, of course, remains how this protocol and the underlying
assumption exactly relate to our impossibility result. For that, we should first
note that Lepinski does not explicitly prove his protocol to be zero-knowledge
relative to non-uniform verifiers. Since our impossibility result only rules out
three-round ZK with non-uniform verifiers, our result – taken literally – does
not directly apply to the protocol as stated. However, it is easy to see that
Lepinski’s protocol does, in fact, achieve ZK against non-uniform verifiers if the
POKA assumption is suitably augmented so that it holds even against provers
with arbitrary auxiliary input. This augmented assumption is therefore what is
specifically refuted by our result.

In a bit more detail, what does it mean exactly to apply our result to Lep-
inski’s protocol? As mentioned earlier, the soundness of the protocol is not in
question. Therefore, the round compression part of our proof works exactly as
stated, i.e., we are able to compress Lepinski’s three-round proof into a two round
argument. It is the second part of our result, where we show that the soundness
of the two round argument and the zero-knowledge property of the three-round
proof contradict each other, where we get the refutation of the POKA assump-
tion.

Essentially, in this part of the proof, we show that in the compressed two-
round argument, a malicious prover is capable of using the ZK-simulator for
the three-round proof to cheat and break soundness. Since the soundness of the
protocol is not in question, this means that we are refuting the existence of
the ZK-simulator and thus, that the 3-round protocol can be zero-knowledge.
In the generalized terms in which we described Lepinski’s protocol above the

12 N. Fleischhacker et al.

ZK-simulator only requires the HVZK-simulator of Blum’s protocol and the OT-
simulator to work. This means that our work specifically refutes the simulation
based receiver-security of the OT protocol. If we look at our result in a bit
more detail, it is also clear why this is the case. Essentially, we are constructing
a malicious prover who is capable of running the ZK-simulator for the 3-round
proof. For Lepinski’s construction to work, this simulator must be able to extract
the selection bit in the OT from the verifier’s message. This means that we are
constructing an algorithm capable of extracting the selection bit of the receiver
while acting as a malicious sender in the OT protocol. Clearly, this immediately
implies that the OT is broken.

1.4 Related Work

There is a large body of work dedicated to the study of round complexity of
zero-knowledge protocols. Below, we provide a brief (and incomplete) summary
of some of the prior work in this area.

ZK Proofs. Five-round ZK proofs are known based on collision-resistant hash
functions [29], and four-round ε-ZK proofs were recently constructed based on
keyless multi-collision-resistant hash functions [14]. Both of these constructions
require the verifier to use private coins. There also exists a candidate for a three-
round ZK proof due to Lepinski [40], which ultimately clashes with our result.
Lepinski’s protocol is based on a highly non-standard knowledge-type assump-
tion which our result refutes. We explain the exact relationship and implications
in Sect. 1.3.

Dwork et al. [22] (and independently, Hada and Tanaka [33]) established an
intimate connection between the Fiat-Shamir paradigm [24] and constant-round
public-coin ZK proofs. Using their result, [36] recently ruled out the existence
of constant-round public-coin ZK proofs, under the same assumptions as in our
work. Previously, such protocols were only ruled out w.r.t. black-box simulation
by [30]. We refer the reader to [36] for further discussion on public-coin ZK
proofs.

ZK Arguments. Four-round ZK arguments are known based on one-way func-
tions [8,23]. Goldreich and Krawcyzk [30] ruled out the existence of three-round
ZK arguments for NP w.r.t. black-box simulation. While three-round ZK argu-
ments with non-black-box simulators were unknown for a long time, some recent
works have studied them w.r.t. weaker adversaries such as uniform provers [10],
or uniform verifiers [12], while finally Bitansky et al. [14] were very recently able
to construct general three round ZK arguments for non-uniform provers and
verifiers based on keyless multi-collision-resistant hash functions.

2 Preliminaries

We denote by n ∈ N the security parameter that is implicitly given as input
to all algorithms in unary representation 1n. We denote by {0, 1}� the set of

On the Existence of Three Round Zero-Knowledge Proofs 13

all bit-strings of length �. For a finite set S, we denote the action of sampling x
uniformly at random from S by x ←$ S, and we denote the cardinality of S by |S|.
Al algorithms are assumed to be randomized, unless explicitly stated otherwise.
An algorithm is efficient or PPT if it runs in time polynomial in the security
parameter. If A is randomized then by y ← A(x; r) we denote that A is run on
input x and with random coins r and produced output y. If no randomness is
specified, then it is assumed that A is run with freshly sampled uniform random
coins, and write this as y ←$ A(x). For a circuit C we denote by |C| the size of
the circuit. A function negl(n) is negligible if for any positive polynomial poly(n),
there exists an N ∈ N, such that for all n > N , negl(n) ≤ 1

poly(n) .

2.1 Interactive Proofs and Arguments

An interactive proof for an NP language L is an interactive protocol between
two parties, a computationally unbounded prover and a polynomial-time verifier.
The two parties receive a common input x and the prover tries to convince the
verifier that x ∈ L. Intuitively the prover should (almost) always be successful
if x is indeed in L, but should be limited in its ability to convince the verifier if
x �∈ L. An interactive proof, as formally introduced by Goldwasser et al. [32] is
defined as follows.

Definition 1 (Interactive Proof). An r-round 2-Party protocol 〈P,V〉
between a polynomial-time verifier V and an unbounded prover P is an interac-
tive proof with soundness error ε for language L if the following two conditions
hold:

1. Completeness: For all x ∈ L it holds that PrP,V [1 ← 〈P(x),V(x)〉] = 1 −
negl(n).

2. Soundness: For all x∗ �∈ L and all computationally unbounded malicious
provers P∗ it holds that PrP∗,V [1 ← 〈P∗,V(x∗)〉] ≤ ε.

An interactive argument is very similar to an interactive proof, except that
soundness is only required to hold relative to polynomial time malicious provers.
Since also the honest prover is required to run in polynomial time, it receives
an NP witness for x as an additional input. Formally, this leads to the following
definition.

Definition 2 (Interactive Argument). An r-round 2-Party protocol 〈P,V〉
between a polynomial-time verifier V and a polynomial-time prover P is an inter-
active argument with soundness error ε for language L with associated relation
R if the following two conditions hold:

1. Completeness: For all (x,w) ∈ R it holds that PrP,V [1 ← 〈P(x,w),V(x)〉] =
1 − negl(n).

2. Soundness: For all x∗ �∈ L and all polynomial-time malicious provers P∗ it
holds that PrP∗,V [1 ← 〈P∗,V(x∗)〉] ≤ ε.

14 N. Fleischhacker et al.

An especially powerful class of interactive proofs and arguments are those
that are zero-knowledge. Intuitively a zero-knowledge proof or argument ensures
that a malicious polynomial time verifier cannot learn anything from an exe-
cution of the protocol, except that x ∈ L. This was first formalized in [32] by
requiring the existence of a polynomial time simulator capable of – without
knowledge of an NP witness for x – simulating any interaction a malicious ver-
ifier might have with the prover. This implies that anything the verifier learns
from a protocol execution it could have also learned without interacting with
the prover. To obtain a contradiction in the main proof in Sect. 3 we will use the
notion of non-uniform zero-knowledge, where both the malicious verifier as well
as the distinguisher may be non-uniform.

Definition 3 (Non-uniform Zero-Knowledge with Auxiliary Input). Let
〈P,V〉 be a 2-Party protocol. 〈P,V〉 is said to be non-uniformly zero-knowledge
with auxiliary input, if for all (possibly malicious) PPT algorithms V∗ there exists
a PPT simulator Sim, such that for all PPT distinguishers D and all auxiliary
inputs aux and aux′, it holds that for all statements x

∣
∣
∣
∣
∣

Pr[D(〈P(x,w),V∗(x, aux)〉 , aux′) = 1]
−Pr[D(Sim(x, aux), aux′) = 1]

∣
∣
∣
∣
∣
≤ negl(n).

2.2 Puncturable Pseudorandom Functions

The notion of puncturable pseudorandom functions was independently intro-
duced in [17,18,38]. A puncturable pseudorandom function allows to puncture a
key k on some fixed input x. This punctured key should still allow to correctly
evaluate the PRF on any input other than x. However, the value of the func-
tion on input x should be indistinguishable from a unform random value, even
given the punctured key. We define a strong notion of puncturable pseudorandom
functions in the following.

Definition 4 (T-Secure Puncturable Pseudorandom Functions). A pair
of probabilistic polynomial time algorithms (PRF,Puncture) is a T -secure punc-
turable pseudorandom function with key length κ(n) input length i(n) and output
length o(n) if the following conditions hold:

1. Functionality Preserved Under Puncturing: For every n ∈ N, every key
k ←$ {0, 1}κ(n), every input x ∈ {0, 1}i(n), every punctured key k{x}, and
every input x′ ∈ {0, 1}i(n) \ {x} it holds that PRFk(x′) = PRFk{x}(x′).

2. Pseudorandomness: For any fixed x ∈ {0, 1}i(n) it holds that for every distin-
guisher D that runs in time at most poly(T (n)) it holds that

∣
∣
∣
∣
∣
∣
∣

Pr
k,Puncture

[D(Puncture(k, x), x,PRFk(x)) = 1]

− Pr
k,Puncture,y

[D(Puncture(k, x), x, y) = 1]

∣
∣
∣
∣
∣
∣
∣

≤ negl(T (n))

On the Existence of Three Round Zero-Knowledge Proofs 15

Our impossibility result uses 22n-secure puncturable pseudorandom func-
tions. Note that these can be constructed using the GGM construction from
any subexponentially secure one-way function [28,34] by for example using keys
length κ(n) = n2.

2.3 Obfuscation

Our impossibility result uses two different kinds of obfuscation, indistinguisha-
bility obfuscation and input-hiding obfuscation for multi-input point functions.
Indistinguishability obfuscation (iO) was first suggested as a notion by Barak
et al. [7] as a weaker form of obfuscation. The security guarantee of iO is that
the obfuscation of two functionally equivalent circuits should result in indistin-
guishable output distributions. That is, any polnomial-time reverse engineering
cannot detect which of two equivalent implementations was the source of an
obfuscated program. This security may seem rather weak at first glance. How-
ever, following the introduction of a first candidate construction by Garg et
al. [25] it has been shown in several works that even this seemingly weak notion
of obfuscation is a very powerful tool. We formally define indistinguishability
obfuscation below.

Definition 5 (T-Secure Indistinguishability Obfuscation). Let C be a
family of polynomial size boolean circuits. Let iO be a probabilistic polynomial
time algorithm, which takes as input a circuit C ∈ C and a security parame-
ter 1n, and outputs a boolean circuit B (not necessarily in C). iO is a T -secure
indistinguishability obfuscator if the following two conditions hold:

1. Correctness: For every n ∈ N, every circuit C ∈ C with input length �,
every obfuscated circuit B ← iO(C, 1n) and every x ∈ {0, 1}� it holds that
B(x) = C(x).

2. Indistinguishability: For every n ∈ N, every pair of circuit C1,C2 ∈ C with
identical input length � and |C1| = |C2|, and every poly(T (n))-time distin-
guisher D it holds that

∣
∣
∣
∣
∣
Pr
iO,D

[D(iO(C1, 1n)) = 1] − Pr
iO,D

[D(iO(C2, 1n)) = 1]

∣
∣
∣
∣
∣
≤ negl(T (n))

Our impossibility result uses a strong notion of 22n-secure indistinguishability
obfuscation for general circuits. This notion is implied by any subexponentially
secure indistinguishability obfuscator by instantiating the security parameter
with κ(n) = n2.

The second form of obfuscation used in our result is input-hiding obfuscation
for multi-bit point functions. The notion of input-hiding obfuscation was first
suggested by Barak et al. in [5]. An input-hiding obfuscator for a family of
circuits C guarantees that, given an obfuscation of a circuit C drawn uniformly
at random from C it is hard for an adversary to find any input on which the
circuit doesn’t output 0.

16 N. Fleischhacker et al.

Definition 6 (T-Secure Input-Hiding Obfuscation). Let C = {Cn}n∈N be
a family of polynomial size boolean circuits, where Cn is a set of circuits operating
on inputs of length n. A polynomial time obfuscator hideO is a T -secure input
hiding obfuscator for C if the following two conditions hold:

1. Correctness: For every n ∈ N, every circuit C ∈ Cn, every obfuscated circuit
B ← iO(C, 1n) and every x ∈ {0, 1}n it holds that B(x) = C(x).

2. Input Hiding: For every n ∈ N, and all probabilistic polynomial time adversary
A it holds that

Pr
C←Cn,hideO,A

[C(A(hideO(C, 1n))) �= 0] ≤ T−1(n).

Note that this security definition differs from previous definitions of T -security
in so far as it requires the adversary to run in polynomial time (in n). Our result
specifically uses input-hiding obfuscation for multi-bit point functions. A multi-
bit point function is characterized by two values x and y and is defined as the
function that on input x outputs y and outputs 0 on all other inputs.

Definition 7 (T-Secure Input-Hiding Obfuscation for Multi-bit Point
Functions). Let Ix,y denote the multi-bit point function with Ix,y(x) = y and
Ix,y(x′) = 0 for all x′ �= x and let k be a function k : N → N. A polynomial time
obfuscator hideO is a T -secure input hiding obfuscator for (n, k)-multi-bit point
functions if it is a T -secure input-hiding obfuscator for all circuit families C for
which the following properties hold.

1. All circuits in C = {Cn}n∈N
describe point functions with n-bit input and

k(n)-bit output. I.e., Cn ⊆ {

Ix,y

∣
∣x ∈ {0, 1}n ∧ y ∈ {0, 1}k(n)

}

.
2. The marginal distribution on x is uniform for a uniformly sampled circuit

Ix,y ←$Cn.

This notion was first studied by Bitansky and Cannetti in [11]. They also showed
that an earlier candidate construction by Cannetti and Dakdouk [19] can be
proven secure in the generic group model based on a strong variant of the DDH
assumption. Our impossibility result requires 2n-secure input hiding obfusca-
tor for multi-bit point functions. This may on first glance seem problematic,
since DDH (and thereby the instantiation due to Cannetti and Dakdouk [19])
can be broken in time less than 2n even in the generic group model. However,
in Definition 6 we explicitly – and in contrast to the other definitions in this
section – require that the adversary runs in polynomial time. And known subex-
ponential time attacks do not imply a polynomial time attack that is successful
with probability greater than poly/2(n).

3 Impossibility of Three-Round Zero-Knowledge Proofs

In this section we will prove our main result, i.e., that under the stated assump-
tions, zero-knowledge 3-round interactive proof systems for non-trivial languages
cannot exist. Our result is formally stated in Theorem 2.

On the Existence of Three Round Zero-Knowledge Proofs 17

Theorem 2. Let Π̂ be a 3-round interactive proof system for a language L �∈
BPP with negligible soundness error μ. Assume the existence of a 22n-secure
puncturable pseudorandom function, a 22n-secure indistinguishability obfuscator,
and a μ · 2npoly(n)-secure input-hiding obfuscator for multi-bit point functions.
Then Π̂ cannot be non-uniformly zero-knowledge with auxiliary input.

Proof (Theorem 2). Let Π̂ = 〈P̂, V̂〉 be a 3-round interactive proof system as
described in Theorem 2. We consider the prover and verifier as two-stage algo-
rithms, V̂ = (V̂1, V̂2), P̂ = (P̂1, P̂2). The first stage of the prover α ← P̂1(x,w; r)
on input the statement x, witness w and random coins r outputs the prover’s
first message α. The first stage of the verifier β ← V̂1(x, α; s) on input the state-
ment x, the prover’s first message α and random coins s outputs the verifier’s
message β. The second stage of the prover γ ← P̂2(x,w, β; r) on input the state-
ment x, witness w, the verifier’s message β and random coins r outputs the
prover’s second message γ. The second stage of the verifier b ← V̂2(x, α, γ; s) on
input the statement x, the prover’s messages α, γ and random coins s outputs a
bit b indicating whether the proof is accepted of not. Note that without loss of
generality we assume that the second stages do not take their own messages as
input and instead recompute them when necessary.

First we slightly modify the protocol Π̂ into the protocol Π = 〈P,V〉. The
protocol behaves exactly as Π̂, except that V1 takes as its random coins s = σ‖ŝ

with |σ| =
⌈

log μ−1
⌉

and after running β̂ ← V1(x, α; ŝ) outputs β := σ‖β̂. The
prover’s second stage P2 then again behaves exactly as P̂2, and ignores σ. The
following claim is immediately apparent.

Claim 3. If Π̂ is a 3-round interactive proof system with negligible soundness
error μ, then Π is also a 3-round interactive proof system for the same language
with the same negligible soundness error μ.

This modification is therefore without loss of generality and will allow us to
cleanly define a relaxed version of the verifier later in the proof, leading to a
much simpler proof.

Now, we use the pseudorandom function PRF the indistinguishability obfus-
cator iO to construct a two-round protocol Π̄ = 〈P̄, V̄〉 as depicted in Fig. 1. The
circuit CV1 is defined as follows:

CV1 [k, x](α)

s := PRFk(α)

β := V1(x, α; s)

return β

To prove Theorem 2 we will now use the following two lemmas proven in
Sects. 3.1 and 3.2 respectively.

18 N. Fleischhacker et al.

P̄(x, w; r) V̄(x)

k ←$ {0, 1}κ(n)

α ← P1(x, w; r) B B ← iO(CV1 [k, x])

β := B(α)

γ ← P2(x, w, β; r) α, γ b ← V2(x, α, γ;PRFk(x, α))

return b

Fig. 1. The two-round argument system Π̄ = 〈P̄, V̄〉 resulting from compressing the
three-round proof system Π = 〈P,V〉 into two rounds. The round compression is
achieved by sending an obfuscated version of the verifier’s own code to the prover as
a first message. This allows the prover to compute the verifier’s response to their first
message without additional interaction. This construction is proven sound in Lemma 4.

Lemma 4. Let Π̂ be a 3-round interactive proof system with negligible sound-
ness error μ as in Theorem 2. Let Π be the modified 3-round interactive proof
system as described above. Assume that PRF is a 22n-secure puncturable pseudo-
random function, and iO is a 22n-secure indistinguishability obfuscator. Further
assume that hideO is a 2n-secure input-hiding obfuscator for multi-bit point func-
tions. Then Π̄, described in Fig. 1 is a 2-round interactive argument system with
negligible soundness error μ̄.

Lemma 5. Let Π be a 3-round interactive proof system for a language L �∈
BPP. Let Π̄ be the transformed 2-round argument system described in Fig. 1 with
soundness error μ̄. If μ̄ ≤ negl(n) then Π is not non-uniformly zero-knowledge
with auxiliary input.

Theorem 2 now follows as a simple corollary from combining Lemmas 4 and
5. By our assumption, Π has a negligibly small soundness error μ, which by
Lemma 4 also implies a negligible soundness error μ̄ for Π̄. Since a negligible
soundness error of Π̄ implies that Π is not non-uniformly zero-knowledge with
auxiliary input, the theorem trivially follows. �

3.1 Proof of Lemma 4

Fix a modified 3-round interactive proof system Π = 〈P,V〉. Let μ ≤ negl(n) be
the soundness error of Π. We assume without loss of generality, that all messages
of the protocol have length n.

Assume towards contradiction that there exists a cheating PPT prover P∗

breaking the soundness of Π̄ for some x∗ �∈ L with probability ν = 1/poly(n).
I.e., we have that

Pr
k,iO,P∗

[V2(x∗, α, γ;PRFk(α)) = 1 : (α, γ) ← P∗(iO(CV1 [k, x]))] ≥ ν. (1)

On the Existence of Three Round Zero-Knowledge Proofs 19

To obtain a contradiction we analyze a variant of the protocol Π that works
with a relaxed verifier V′. The relaxed verifier V′ works exactly as V, except that
in addition to accepting whenever V does, it also accepts if β = 0�log ν/μ�‖β′

for some arbitrary β′. Remember, that β = σ‖β̂ with |σ| =
⌈

log μ−1
⌉

. I.e., V′

also accepts if the first �log ν/μ� bits of σ are zero. In particular since V′ always
accepts if V accepts, it remains true that

Pr
k,iO,P∗

[V′
2(x

∗, α, β;PRFk(α)) = 1 : P∗(iO(CV1 [k, x])) = (α, γ)] ≥ ν. (2)

Further, using a union bound, we can bound the soundness error μ′ of the relaxed
3-round protocol 〈P,V′〉 to be

μ′ ≤ μ + 2−�log ν/μ� ≤ μ +
μ

ν
≤ 2μ

ν
. (3)

In particular, for any negligible μ, μ′ remains negligible.
Let Sα,β = {s|V′

1(x
∗, α; s) = β} denote the set of all random tapes that given

α lead to the second message β. We define the following set of pairs (α, β), for
which a malicious γ exists that will be accepted by the verifier for a large fraction
of the random tapes that given α lead to β.

ACC =

{

(α, β)

∣
∣
∣
∣
∣
∃γ : Pr

s′ ←$ Sα,β

[V′
2(x

∗, α, γ; s′) = 1] ≥ ν

2

}

.

Observe, that membership in ACC can be tested in time 22n · poly(n) = O22n

by enumerating all messages γ and all random tapes s, checking whether β =
V′
1(x

∗, α; s) and V′
2(x

∗, α, γ; s) = 1 and then computing the probability.3 Given
the cheating prover P∗, there exists an efficient algorithm A that outputs α, such
that (α,V′

1(α;PRFk(α))) ∈ ACC with high probability. Formally this is stated in
the following claim that is proven in Sect. 3.1.1.

Claim 6. If there exists a malicious prover P∗ as assumed above, then
for the efficient algorithm A that on input iO(CV1 [k, x∗])| runs (α, γ) ←
P∗(iO(CV1 [k, x∗])), discards γ and outputs α the following holds:

Pr
k,iO,A

[(α,V′
1(x

∗, α;PRFk(α))) ∈ ACC : α ← A(iO(CV1 [k, x∗]))] ≥ ν

2
− 2−n

Now consider the punctured version of the verifier circuit Cpct defined follows:

Cpct[k, α∗, β∗](α)

if α
?
=α∗

β := β∗

else

s := PRFk(α)

β := V′
1(x, α; s)

return β

3 This assumes without loss of generality that |γ| = |s| = n.

20 N. Fleischhacker et al.

We will use the following claim, which essentially states that, when given an
obfuscation of the verifier’s circuit punctured at α∗, the A from Claim 6 will
output α∗ with a probability slightly above random chance. The claim is proven
in Sect. 3.1.2.

Claim 7. If PRF is 22n-secure and iO is 22n-secure, then it must hold that

Pr
k,α∗,s∗,iO,A

[

A
(

iO
(

Cpct[k{α∗}, α∗,V′
1(x

∗, α; s∗)]
))

= α∗
∣
∣
∣

(

α∗,V′
1(x

∗, α; s∗)
)

∈ ACC
]

≥ 1
8

· 2−n · ν2

μ′ .

This property of A contradicts the security of the input hiding obfuscator hideO
as shown in the following. We claim that

Pr
k,α∗,s∗,hideO,iO,A

[

A
(

iO
(

Chide[k, hideO(α∗, s∗)]
))

= α∗
∣
∣
∣

(

α∗,V′
1(x

∗, α; s∗)
)

∈ ACC
]

≥ Pr
k,α∗,s∗,iO,A

[

A
(

iO
(

Cpct[k{α∗}, α∗,V′
1(x

∗, α; s∗)]
))

= α∗
∣
∣
∣

(

α∗,V′
1(x, α; s∗)

)

∈ ACC
]

− Pr
α∗,s∗

[(

α∗,V′
1(x

∗, α; s∗)
)

∈ ACC
]

· negl[22n] (4)

≥ Pr
k,α∗,s∗,iO,A

[

A
(

iO
(

Cpct[k{α∗}, α∗,V′
1(x

∗, α; s∗)]
))

= α∗
∣
∣
∣

(

α∗,V′
1(x, α; s∗)

)

∈ ACC
]

− 2−2n (5)

≥1
8

· 2−n ν2

μ′ − 2−2n ≥ 1
16

· 2−n ν2

μ′ , (6)

where Chide[k,B] is a circuit that defined as follows

Chide[k,B](α∗)

s∗ := B(α∗)

if s∗ = ⊥
s∗ := PRFk(α∗)

β∗ := V′
1(x

∗, α∗; s∗)

return β∗

Equation 4 follows by reduction to the 22n security of the indistinguishability
obfuscator as depicted in Fig. 2. Clearly, the two circuits are functionally equiv-
alent. Further, if it holds that (α∗, β∗) ∈ ACC then the two cases of the secu-
rity definition of indistinguishability obfuscation directly correspond to the two
cases of Eq. 4. The reduction BiO runs in time O22n and therefore, Eq. 4 follows.
Equation 5 then follows simply by upper bounding the probability with 1 and the

On the Existence of Three Round Zero-Knowledge Proofs 21

BiO
1 (1n)

k ←$ {0, 1}κ(n)α∗ ←$ {0, 1}n

s∗ ←$ {0, 1}n

k{α∗} := Puncture(k, α∗)

β∗ := V′
1(x

∗, α∗; s∗)

C0 = Cpct[k{α∗}, α∗, β∗]

C1 = Chide[k, hideO(α∗, s∗)]

return (C0,C1)

BiO
2 (B)

if (α∗, β∗) �∈ ACC

b ←$ {0, 1}
return b

else if A(B) = α∗

return 0

else

return 1

Fig. 2. The reduction from the claim of Eq. 4 to the 22n security of the indistinguisha-
bility obfuscator.

negligible function by 2−2n. Finally Eq. 6 follows directly from Claim 7 and the
last inequality follows by loosely upper bounding the negligible function 2−2n.

Closely following [36], it remains to be shown that the distribution defined
by uniformly sampling (α∗, β∗) from ACC is close to the distribution defined by
uniformly sampling α∗ and then sampling β∗ conditioned on (α∗, β∗) ∈ ACC.

Formally, we define two distributions. Let D0 be the distribution over pairs
(α∗, β∗) defined by uniformly sampling (α∗, β∗) ←$ACC. Let D1 be the distribu-
tion over pairs (α∗, β∗) defined by uniformly sampling α∗ ←$ {0, 1}n and then
uniformly sampling β∗ ←$ {β|(α∗, β) ∈ ACC}. We denote by Db[α∗, β∗] the prob-
ability of the pair (α∗, β∗) by distribution Db.

Claim 8. For any (α∗, β∗) ∈ {0, 1}n × {0, 1}2n it holds that

D1[α∗, β∗] ≥ ν

4
D0[α∗, β∗]

It follows from Claim 8 that by drawing from D1 instead of D0, the probabil-
ity of A outputting α∗ can decrease at most by a multiplicative factor of 4/ν.
Therefore, Claim 8 and Eq. 6 imply that there exists a PPT algorithm A such
that

Pr
(α∗,β∗,hideO,A) ←$D1,hideO,A

[A(hideO(Chide[α∗, β∗])) = α∗]

≥ν

4
· (

1
16

· 2−n · ν2

μ′) =
1
64

2−n · ν3

μ′ ≥ μ−1 · 2−n · ν3

128

Since the distribution of α∗ drawn from D1 is uniform, and ν is an inverse
polynomial, this contradicts the T = μ · 2n · poly(n) security of the input hiding
obfuscator and Lemma 4 follows. �

It remains to show that the various claims used in the above proof actually
hold. The proofs for these claims are detailed in the following sections.

22 N. Fleischhacker et al.

3.1.1 Proof of Claim 6
By definition of A we specifically need to show that

Pr
k,iO,P∗

[(α,V′
1(x

∗, α;PRFk(α))) ∈ ACC : (α, γ) ← P∗(iO(CV1 [k, x∗]))] ≥ ν

2
− 2−n.

To do so, we will use the following claim, stating that if the cheating prover
is successful in getting V′

2 to accept using the random tape PRFk(α), then V′
2

would accept with almost the same probability if the random tape were replaced
with a randomly chosen s ←$ Sα,β .

Claim 9. If PRF is 22n-secure and iO is 22n-secure, then it must hold for any
malicious prover P∗ as assumed above, that
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Pr

k,iO,P∗

[

V′
2(x

∗, α∗, γ∗;PRFk(α∗)) = 1 :
(α∗, γ∗) ← P∗(iO(CV1 [k, x∗]))
β∗ ← V′

1(x
∗, α∗;PRFk(α∗))

]

− Pr

k,s,iO,P∗

⎡

⎣V′
2(x

∗, α∗, γ∗; s′) = 1 :
(α∗, γ∗) ← P∗(iO(CV1 [k, x∗]))
β∗ ← V′

1(x
∗, α∗;PRFk(α∗))

s′ ←$ Sα∗,β∗

⎤

⎦

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

≤ 2−n.

We observe the following

ν = Pr
k,iO,P∗

[V′
2(x

∗, α, γ;PRFk(α)) = 1 : (α, γ) ← P∗(iO(CV1 [k, x∗]))] (7)

≤ Pr

k,s′,iO,P∗

⎡

⎣V′
2(x

∗, α, γ; s′) = 1 :
(α, γ) ← P∗(iO(CV1 [k, x∗])
β ← V′

1(x
∗, α,PRFk(α))

s′ ←$ Sα,β

⎤

⎦ + 2−n (8)

= Pr

k,s′,iO,P∗

⎡

⎣V′
2(x

∗, α, γ; s′) = 1 :
(α, γ) ← P∗(iO(CV1 [k, x∗])
β ← V′

1(x
∗, α,PRFk(α))

s′ ←$ Sα,β

∣
∣
∣
∣
∣
∣

(α, β) ∈ ACC

⎤

⎦

︸ ︷︷ ︸

≤1

· Pr
k,iO,P∗

[(α,V′
1(x

∗, α;PRFk(α))) ∈ ACC : (α, γ) ← P∗(iO(CV1 [k, x∗]))]

+ Pr

k,s′,iO,P∗

⎡

⎣V′
2(x

∗, α, γ; s′) = 1 :
(α, γ) ← P∗(iO(CV1 [k, x∗])
β ← V′

1(x
∗, α,PRFk(α))

s′ ←$ Sα,β

∣
∣
∣
∣
∣
∣

(α, β) �∈ ACC

⎤

⎦

︸ ︷︷ ︸

≤ν/2

· Pr
k,iO,P∗

[(α,V′
1(x

∗, α;PRFk(α))) �∈ ACC : (α, γ) ← P∗(iO(CV1 [k, x∗]))]

︸ ︷︷ ︸

=1−Prk,iO,P∗[(α,V′
1(x

∗,α;PRFk(α)))∈ACC:(α,γ)←P∗(iO(CV1 [k,x∗]))]

+ 2−n

(9)

On the Existence of Three Round Zero-Knowledge Proofs 23

≥
(

1 − ν

2

)

Pr
k,iO,P∗

[(α,V′
1(x

∗, α;PRFk(α))) ∈ ACC : (α, γ) ← P∗(iO(CV1 [k, x∗]))]

+
ν

2
+ 2−n (10)

where Eq. 7 follows from the definition of P∗ and Eq. 8 follows directly from
Claim 9. Equation 9 simply splits the probability into two cases and Eq. 10 upper
bounds the probability of the verifier accepting in the two cases.

The above observation gives us

Pr
k,iO,P∗

[(α,V′
1(x

∗, α;PRFk(α))) ∈ ACC : (α, γ) ← P∗(iO(CV1 [k, x∗]))]

≥ν − ν
2 − 2−n

1 − ν
2

≥ ν − ν

2
− 2−n =

ν

2
− 2−n

as claimed. �
Proof of Claim 9. Let δ be any function such that

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Pr

k,s′,iO,P∗

⎡
⎣V′

2(x
∗, α∗, γ∗;PRFk(α∗)) = 1 :

(α∗, γ∗) ← P∗(iO(CV1 [k, x∗]))
β∗ ← V′

1(x
∗, α∗;PRFk(α∗))

s′ ←$ Sα∗,β∗

⎤
⎦

− Pr

k,s′,iO,P∗

⎡
⎣V′

2(x
∗, α∗, γ∗; s′) = 1 :

(α∗, γ∗) ← P∗(iO(CV1 [k, x∗]))
beta∗ ← V′

1(x
∗, α∗;PRFk(α∗))

s′ ←$ Sα∗,β∗

⎤
⎦

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

> δ(n).

In this case, we also have that for a uniformly chosen value α,
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Pr

k,s′,α,iO,P∗

⎡

⎣
V′
2(x

∗, α∗, γ∗;PRFk(α∗)) = 1
∧ α∗ = α

:
(α∗, γ∗) ← P∗(iO(CV1 [k, x∗]))
β∗ ← V′

1(x
∗, α∗;PRFk(α∗))

s′ ←$ Sα∗,β∗

⎤

⎦

− Pr

k,s′,α,iO,P∗

⎡

⎣
V′
2(x

∗, α∗, γ∗; s′) = 1
∧ α∗ = α

:
(α∗, γ∗) ← P∗(iO(CV1 [k, x∗]))
β∗ ← V′

1(x
∗, α∗;PRFk(α∗))

s ←$ Sα∗,β∗

⎤

⎦

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

> 2−n · δ(n).

Now consider the punctured version of the verifier circuit defined as before.
By the 22n security of the obfuscator, the fact that the two circuits CV1 [k, x∗]
and Cpct[k{α}, α,V′

1(α;PRFk(α))] are functionally equivalent and the fact that
s ←$ Sα∗,β∗ can be sampled in time O(2n), it follows that

24 N. Fleischhacker et al.

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Pr

k,s′,α,iO,P∗

⎡

⎣
V′
2(x

∗, α∗, γ∗;PRFk(α∗)) = 1
∧ α∗ = α

:
β ← V′

1(x
∗, α;PRFk(α))

(α∗, γ∗) ← P∗(iO(Cpct[k{α}, α, β]))
s′ ←$ Sα∗,β

⎤

⎦

− Pr

k,s′,α,iO,P∗

⎡

⎣
V′
2(x

∗, α∗, γ∗; s′) = 1
∧ α∗ = α

:
β ← V′

1(x
∗, α;PRFk(α))

(α∗, γ∗) ← P∗(iO(Cpct[k{α}, α, β]))
s′ ←$ Sα∗,β

⎤

⎦

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

> 2−n · δ(n) − negl[22n].

Further, by the 22n security of the pseudorandom function and the fact that
s ←$ Sα∗,β∗ can be sampled in time O(2n), it follows that

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Pr

k,s,s′,α,iO,P∗

⎡

⎣
V′
2(x

∗, α∗, γ∗; s) = 1
∧ α∗ = α

:
β ← V′

1(x
∗, α; s)

(α∗, γ∗) ← P∗(iO(Cpct[k{α}, α, β]))
s′ ←$ Sα∗,β

⎤

⎦

− Pr

k,s,s′,α,iO,P∗

⎡

⎣
V′
2(x

∗, α∗, γ∗; s′) = 1
∧ α∗ = α

:
β ← V′

1(x
∗, α; s)

(α∗, γ∗) ← P∗(iO(Cpct[k{α}, α, β]))
s′ ←$ Sα∗,β

⎤

⎦

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

≥2−n · δ(n) − negl(22n) − negl(22n) ≥ 2−n · δ(n) − 2−2n,

where the last inequality is obtained by loosely upper bounding the negligible
functions. The circuit Cpct[k{α}, α, β] no longer contains any information about
s besides the fact that s ∈ Sα∗,β∗ . In the case where α∗ = α, s and s′ are,
therefore, distributed identically and the two probabilities must in fact also be
identical. Therefore, 2−n ·δ(n)−2−2n ≤ 0, giving us δ(n) ≤ 2−n. The claim thus
follows. �

3.1.2 Proof of Claim 7
By definition of conditional probability, we have that

Pr
k,α∗,s∗,iO,A

[

A
(

iO
(

Cpct[k{α∗}, α∗,V′
1(x

∗, α; s∗)]
))

= α∗
∣
∣
∣

(

α∗,V′
1(x, α; s∗)

)

∈ ACC
]

=

Prk,α∗,s∗,iO,A

⎡

⎣
A

(

iO
(

Cpct[k{α∗}, α∗,V′
1(x

∗, α; s∗)]
))

= α∗

∧
(

α∗,V′
1(x, α; s∗)

)

∈ ACC

⎤

⎦

Prα∗,s∗
[(

α∗,V′
1(x∗, α; s∗)

)

∈ ACC
] ,

where we can easily bound Prα∗,s∗ [(α∗,V′
1(x

∗, α; s∗)) ∈ ACC] ≤ 2μ′/ν using the
soundness error μ′ of 〈P,V′〉. This is due to the fact that otherwise a (computa-
tionally unbounded) malicious prover could simply send a randomly sampled α∗.
Upon receiving β∗, it would hold that (α∗, β∗) ∈ ACC with probability greater

On the Existence of Three Round Zero-Knowledge Proofs 25

than 2μ′/ν. In this case, the prover could exhaustively search for a message γ∗

that would lead many verifiers to accept. By definition of ACC, such a prover
would win with probability greater than (2μ′/ν) · (ν/2) = μ′, contradicting the
soundness of the underlying protocol. It remains to bound the numerator, which
we will do in two hops.

Pr

k,α∗,s∗,iO,A

[A(iO(Cpct[k{α∗}, α∗,V′
1(x

∗, α; s∗)])) = α∗

∧ (α∗,V′
1(x

∗, α; s∗)) ∈ ACC

]

≥ Pr

k,α∗,iO,A

[A(iO(Cpct[k{α∗}, α∗,V′
1(x

∗, α∗;PRFk(α∗))])) = α∗

∧ (α∗,V′
1(x

∗, α∗;PRFk(α))) ∈ ACC

]

− negl(22n) (11)

≥ Pr

k,α∗,iO,A

[A(iO(CV1 [k, x∗])) = α∗

∧ (α∗,V′
1(x

∗, α∗;PRFk(α∗))) ∈ ACC

]

− negl(22n) − negl(22n) (12)

≥ Pr

k,α∗,iO,A

[A(iO(CV1 [k, x∗])) = α∗

∧ (α∗,V′
1(x

∗, α∗;PRFk(α∗))) ∈ ACC

]

− 2−2n (13)

Equation 11 follows by reduction to the 22n security of the puncturable pseu-
dorandom function as depicted in Fig. 3. Clearly, the two cases of the security
definition for puncturable pseudorandom functions directly map to the two cases
of Eq. 11. Further, the reduction BPRF runs in time O(22n) and therefore, Eq. 11
follows.

BPRF(k{α∗}, s∗)

β∗ := V′
1(x

∗, α; s∗)

B ← iO(Cpct[k{α∗}, α∗, β∗])

if A(B) = α∗ ∧ (α∗, β∗) ∈ ACC

return 1

else return 0

Fig. 3. The reduction from the claim of Eq. 11 to the 22n security of the puncturable
pseudorandom function.

Equation 12 follows by reduction to the 22n security of the indistinguisha-
bility obfuscator as depicted in Fig. 4. Clearly, the two circuits are functionally
equivalent and the two cases of the security definition for puncturable pseudo-
random functions directly map to the two cases of Eq. 11. The reduction BiO

runs in time O(22n) and therefore, Eq. 12 follows. Finally, Eq. 13 then follows
by the fact that the sum of two negligible functions is negligible and by loosely
upper bounding the resulting negligible functions (note that 2−2n is an inverse
polynomial in 22n).

26 N. Fleischhacker et al.

BiO
1 (1n)

k ←$ {0, 1}κ(n), α∗ ←$ {0, 1}n

k{α∗} := Puncture(k, α∗)

β∗ := V′
1(x

∗, α∗;PRFk(α∗))

C0 = Cpct[k{α∗}, α∗, β∗]

C1 = CV1 [k, x∗]

return (C0,C1)

BiO
2 (B)

if A(B) = α∗ ∧ (α∗, β∗) ∈ ACC

return 1

else return 0

Fig. 4. The reduction from the claim of Eq. 12 to the 22n security of the indistinguisha-
bility obfuscator.

Using basic probability theory and Claim 6, we get

Pr
k,α∗,iO,A

[A(iO(CV1 [k, x∗])) = α∗ ∧ (α∗,V′
1(x

∗, α∗;PRFk(α∗))) ∈ ACC]

= Pr

k,α∗,iO,A

[
⋃

α

(A(iO(CV1 [k, x])) = α∗

∧ (α∗,V′
1(x

∗, α∗;PRFk(α∗))) ∈ ACC ∧ α∗ = α

)]

=
∑

α

Pr

k,α∗,iO,A

[A(iO(CV1 [k, x])) = α∗

∧ (α∗,V′
1(x

∗, α∗;PRFk(α∗))) ∈ ACC ∧ α∗ = α

]

=2−n
∑

α

Pr

k,α∗,iO,A

[A(iO(CV1 [k, x])) = α∗

∧ (α∗,V′
1(x

∗, α∗;PRFk(α∗))) ∈ ACC

]

=2−n Pr
k,iO,A

[(α,V′
1(x

∗, α;PRFk(α))) ∈ ACC : α ← A(iO(CV1 [k, x∗]))]

≥2−n ·
(ν

2
− 2−n

)

.

Combining this with Eq. 13, we get

Pr

k,α∗,s∗,iO,A

[A(iO(Cpct[k{α∗}, α∗,V′
1(x

∗, α; s∗)])) = α∗

∧ (α∗,V′
1(x

∗, α; s∗)) ∈ ACC

]

≥2−n
(ν

2
− 2−n

)

− 2−2n = 2−n
(ν

2
− 2−n − 2−n

)

≥ 2−n · ν

4

On the Existence of Three Round Zero-Knowledge Proofs 27

where the last inequality follows by loosely upper bounding the negligible func-
tion 21−n by the inverse polynomial ν/4. Finally Claim 7 follows by

Pr
k,α∗,s∗,iO,A

[

A
(

iO
(

Cpct[k{α∗}, α∗,V′
1(x

∗, α; s∗)]
))

= α∗
∣
∣
∣

(

α∗,V′
1(x

∗, α; s∗)
)

∈ ACC
]

=

Prk,α∗,s∗,iO,A

⎡

⎣
A

(

iO
(

Cpct[k{α∗}, α∗,V′
1(x

∗, α; s∗)]
))

= α∗

∧
(

α∗,V′
1(x

∗, α; s∗)
)

∈ ACC

⎤

⎦

Prα∗,s∗
[(

α∗,V′
1(x∗, α; s∗)

)

∈ ACC
]

≥ 2−n · ν
2

μ′ =
1
2

· 2−n ν

μ′ �

3.1.3 Proof of Claim 8
For any α∗ denote by Bα∗ := {β|(α∗, β) ∈ ACC}. By construction of the relaxed
verifier we have that Bα∗ contains at least a μ/ν fraction of all β. On the other
hand, soundness of the protocol 〈P,V′〉 guarantees, that Bα does not contain
more than a 2μ′/ν ≤ 4μ/ν2 fraction of all β. Thus, we have

μ

ν
≤ |Bα∗ |

22n
≤ 4μ

ν2

In particular, for any α and α∗, we have that

|Bα| ≥ ν

4
|Bα∗ |

which gives us

D0[α∗, β∗] =
1

ACC
=

1
∑

α∈{0,1}n |Bα| ≤ 2
2n · |Bα∗ | =

4
ν
D1[α∗, β∗]. �

3.2 Proof of Lemma 5

Consider the following malicious verifier V∗ = (V∗
1,V

∗
2). The first stage V∗

1 on
input the statement x, the prover’s first message α and auxiliary input aux simply
interprets the auxiliary input as a circuit, evaluates it on x, α, and outputs the
result β ← aux(x, α). The second stage V∗

2 on input the statement x, the prover’s
messages α, γ and auxiliary input aux recomputes β ← aux(x, α) and then simply
outputs α, β, γ.

Now, assume towards contradiction, that Π is zero-knowledge, i.e., in par-
ticular for V∗ as described above there exists a PPT simulator Sim such that for
all PPT distinguishers D, all auxiliary inputs aux and aux′, and all statements x
it holds that

∣
∣
∣
∣
∣

Pr[D(〈P(x,w),V∗(x, aux)〉 , aux′) = 1]
−Pr[D(Sim(x, aux), aux′) = 1]

∣
∣
∣
∣
∣
≤ negl(n).

28 N. Fleischhacker et al.

We will use said simulator to construct a malicious prover P∗ against Π̄ as
follows: On input x and the verifier’s message B = iO(CV1 [k]), P∗ invokes the
simulator Sim on x and auxiliary input B. The simulator will produce a transcript
α, β, γ that P∗ also outputs.

If x ∈ L, then the zero-knowledge property and the completeness guaran-
tee that V̄2 will accept the proof with probability 1 − negl(n), since otherwise
we could easily construct a successful distinguisher against Sim as follows. The
distinguisher D on input (α, β, γ) and auxiliary input aux′ simply runs V̄2 on
(α, γ) and random coins aux′ and outputs b ← V̄2((α, γ); aux′). Further, even if
x �∈ L, V̄2 must still accept with all but negligible probability, since otherwise
the combination of P∗ and V̄ could be used to decide L, implying that L ∈ BPP.

Therefore, P∗ succeeds in convincing V̄ of false statements with all but negli-
gible probability. Since this contradicts the premise that μ̄ ≤ negl(n), Sim cannot
exist and therefore Π is not zero-knowledge. �

4 Extending the Lower Bound to ε-Zero Knowledge

In [14] Bitansky et al. introduced a weaker notion of zero-knowledge they called
ε-zero-knowledge. In this weaker notion, the outputs of the simulator may be
distinguishable with non-negligible probability, but the distinguishing advantage
is upper bounded by any inverse monomial in the length of the statement. In
this section we prove that our lower bound extends to this weaker notion of zero-
knowledge. This is particularly interesting because Bitansky et al. [14] are able to
construct a 4-round ε-zero-knowledge proof protocol from keyless multi-collision-
resistant hash functions (MCRH). This provides evidence that our technique is
unlikely to be extend to the case of 4-round proofs, since that would rule out
MCRHs.

We start by defining ε-zero-knowledge. The definition is almost identical to
regular zero-knowledge, except that the advantage of the distinguisher is not
bounded by a negligible function.

Definition 8 (Non-uniform ε-Zero-Knowledge with Auxiliary Input).
Let 〈P,V〉 be a 2-Party protocol. 〈P,V〉 is said to be non-uniformly ε-zero-
knowledge with auxiliary input, if for all (possibly malicious) PPT algorithms
V∗ there exists a PPT simulator Sim, such that for all PPT distinguishers D and
all auxiliary inputs aux and aux′, it holds that for all statements x with |x| = λ
and every noticeable function ε(λ) = λ−O(1)

∣
∣
∣
∣
∣
∣

Pr[D(〈P(x,w),V∗(x, aux)〉 , aux′) = 1]

− Pr
[

D(Sim(11/ε(λ), x, aux), aux′) = 1
]

∣
∣
∣
∣
∣
∣

≤ ε(λ).

Next, we state our generalized lemma about 3-round ε-zero-knowledge proofs.
This lemma is a straightforward adaption of Lemma 5 to the ε-zero-knowledge
case.

On the Existence of Three Round Zero-Knowledge Proofs 29

Lemma 10. Let Π be a 3-round interactive proof system for a language L �∈
BPP. Let Π̄ be the transformed 2-round argument system described in Fig. 1 with
soundness error μ̄. If μ̄ ≤ negl(n) then Π is not non-uniformly ε-zero-knowledge
with auxiliary input.

From combining Lemmas 4 and 10 a statement equivalent to Theorem 2 for
ε-zero-knowledge follows as a simple corollary.

4.1 Proof of Lemma 10

Just like the lemma itself, the proof is a straightforward adaption of the proof for
Lemma 5. We only need to make sure that the weaker requirement on the simu-
lator does not cause the success probability of the cheating prover to deteriorate
too much.

Consider the following malicious verifier V∗ = (V∗
1,V

∗
2). The first stage V∗

1

on input the statement x, the prover’s first message α and auxiliary input aux
simply interprets the auxiliary input as a circuit, evaluates it on x, α, and outputs
the result β ← aux(x, α). The second stage V∗

2 on input the statement x, the
prover’s messages α, γ and auxiliary input aux recomputes β ← aux(x, α) and
then simply outputs α, β, γ.

Now, assume towards contradiction, that Π is ε-zero-knowledge, i.e., in par-
ticular for V∗ as described above there exists a PPT simulator Sim such that for
all PPT distinguishers D, all auxiliary inputs aux and aux′, all statements x and
all noticeable function ε(λ) = λ−O(1) it holds that

∣
∣
∣
∣
∣
∣

Pr[D(〈P(x,w),V∗(x, aux)〉 , aux′) = 1]

− Pr
[

D(Sim(11/ε(|x|), x, aux), aux′) = 1
]

∣
∣
∣
∣
∣
∣

≤ ε(|x|).

We will use said simulator to construct a malicious prover P∗ against Π̄ as
follows: On input x and the verifier’s message B = iO(CV1 [k]), P∗ invokes the
simulator Sim on 1/ε(λ), x and auxiliary input B. The simulator will produce a
transcript α, β, γ that P∗ also outputs.

If x ∈ L, then the zero-knowledge property guarantees that V̄2 will accept
the proof with probability greater than 1 − |x|−c for any constant c ∈ N, since
otherwise we could easily construct a successful distinguisher against Sim as
follows. The distinguisher D on input (α, β, γ) and auxiliary input aux′ simply
runs V̄2 on (α, γ) and random coins aux′ and outputs b ← V̄2((α, γ); aux′). This
distinguisher would therefore be able to distinguish between a real transcript
and a simulated transcript with probability greater than |x|−c for some constant
c ∈ N, thus clearly clearly contradicting the fact that Sim is a valid simulator.
Further, even if x �∈ L, V̄2 must still accept with probability at least 1 − |x|−c −
negl(n), since otherwise the combination of P∗ and V̄ could be used to decide L,
implying that L ∈ BPP.

Therefore, P∗ succeeds in convincing V̄ of false statements with probability
greater than 1 − |x|−c − negl(n) for any constant c ∈ N, which is clearly non-
negligible. Since this contradicts the premise that μ̄ ≤ negl(n), Sim cannot exist
and therefore Π is not zero-knowledge. �

30 N. Fleischhacker et al.

References

1. Ananth, P., Jain, A.: On secure two-party computation in three rounds. In: Kalai,
Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp. 612–644. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-70500-2 21

2. Ananth, P., Jain, A., Sahai, A.: Indistinguishability obfuscation from functional
encryption for simple functions. Cryptology ePrint Archive, Report 2015/730
(2015). http://eprint.iacr.org/2015/730

3. Ananth, P., Sahai, A.: Projective arithmetic functional encryption and indistin-
guishability obfuscation from degree-5 multilinear maps. In: Coron, J.-S., Nielsen,
J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210, pp. 152–181. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-56620-7 6

4. Applebaum, B., Brakerski, Z.: Obfuscating circuits via composite-order graded
encoding. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 528–
556. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46497-7 21

5. Barak, B., Bitansky, N., Canetti, R., Kalai, Y.T., Paneth, O., Sahai, A.: Obfus-
cation for evasive functions. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp.
26–51. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8 2

6. Barak, B., Goldreich, O., Goldwasser, S., Lindell, Y.: Resettably-sound zero-
knowledge and its applications. In: 42nd Annual Symposium on Foundations of
Computer Science, pp. 116–125. IEEE Computer Society Press, Las Vegas, 14–17
October 2001

7. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S., Yang,
K.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.) CRYPTO
2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001). https://doi.org/10.
1007/3-540-44647-8 1

8. Bellare, M., Jakobsson, M., Yung, M.: Round-optimal zero-knowledge arguments
based on any one-way function. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS,
vol. 1233, pp. 280–305. Springer, Heidelberg (1997). https://doi.org/10.1007/3-
540-69053-0 20

9. Berman, I., Degwekar, A., Rothblum, R.D., Vasudevan, P.N.: Multi collision resis-
tant hash functions and their applications. Cryptology ePrint Archive, Report
2017/489 (2017). http://eprint.iacr.org/2017/489

10. Bitansky, N., Brakerski, Z., Kalai, Y., Paneth, O., Vaikuntanathan, V.: 3-message
zero knowledge against human ignorance. In: Hirt, M., Smith, A. (eds.) TCC 2016.
LNCS, vol. 9985, pp. 57–83. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-53641-4 3

11. Bitansky, N., Canetti, R.: On strong simulation and composable point obfusca-
tion. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 520–537. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-7 28

12. Bitansky, N., Canetti, R., Paneth, O., Rosen, A.: On the existence of extractable
one-way functions. In: Shmoys, D.B. (ed.) 46th Annual ACM Symposium on The-
ory of Computing, pp. 505–514. ACM Press, New York, 31 May–3 June 2014

13. Bitansky, N., Goldwasser, S., Jain, A., Paneth, O., Vaikuntanathan, V., Waters,
B.: Time-lock puzzles from randomized encodings. In: Sudan, M. (ed.) ITCS 2016:
7th Innovations in Theoretical Computer Science, pp. 345–356. Association for
Computing Machinery, Cambridge, 14–16 January 2016

14. Bitansky, N., Kalai, Y.T., Paneth, O.: Multi-collision resistance: a paradigm for
keyless hash functions. Cryptology ePrint Archive, Report 2017/488 (2017). http://
eprint.iacr.org/2017/488

https://doi.org/10.1007/978-3-319-70500-2_21
http://eprint.iacr.org/2015/730
https://doi.org/10.1007/978-3-319-56620-7_6
https://doi.org/10.1007/978-3-662-46497-7_21
https://doi.org/10.1007/978-3-642-54242-8_2
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/3-540-69053-0_20
https://doi.org/10.1007/3-540-69053-0_20
http://eprint.iacr.org/2017/489
https://doi.org/10.1007/978-3-662-53641-4_3
https://doi.org/10.1007/978-3-662-53641-4_3
https://doi.org/10.1007/978-3-642-14623-7_28
http://eprint.iacr.org/2017/488
http://eprint.iacr.org/2017/488

On the Existence of Three Round Zero-Knowledge Proofs 31

15. Bitansky, N., Vaikuntanathan, V.: Indistinguishability obfuscation from functional
encryption. In: Guruswami, V. (ed.) 56th Annual Symposium on Foundations of
Computer Science, pp. 171–190. IEEE Computer Society Press, Berkeley, 17–20
October 2015

16. Blum, M.: How to prove a theorem so no one else can claim it. In: Proceedings of
the International Congress of Mathematicians, vol. 1, p. 2 (1986)

17. Boneh, D., Waters, B.: Constrained pseudorandom functions and their applica-
tions. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8270, pp.
280–300. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42045-
0 15

18. Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom func-
tions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 501–519. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54631-0 29

19. Canetti, R., Dakdouk, R.R.: Obfuscating point functions with multibit output.
In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 489–508. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3 28

20. Canetti, R., Goldreich, O., Goldwasser, S., Micali, S.: Resettable zero-knowledge
(extended abstract). In: 32nd Annual ACM Symposium on Theory of Computing,
pp. 235–244. ACM Press, Portland, 21–23 May 2000

21. Cohen, A., Holmgren, J., Nishimaki, R., Vaikuntanathan, V., Wichs, D.: Water-
marking cryptographic capabilities. In: Wichs, D., Mansour, Y. (eds.) 48th Annual
ACM Symposium on Theory of Computing, pp. 1115–1127. ACM Press, Cam-
bridge, 18–21 June 2016

22. Dwork, C., Naor, M., Reingold, O., Stockmeyer, L.J.: Magic functions. In: 40th
Annual Symposium on Foundations of Computer Science, pp. 523–534. IEEE Com-
puter Society Press, New York, 17–19 October 1999

23. Feige, U., Shamir, A.: Witness indistinguishable and witness hiding protocols. In:
22nd Annual ACM Symposium on Theory of Computing, pp. 416–426. ACM Press,
Baltimore, 14–16 May 1990

24. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

25. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: 54th
Annual Symposium on Foundations of Computer Science, pp. 40–49. IEEE Com-
puter Society Press, Berkeley, 26–29 October 2013

26. Garg, S., Miles, E., Mukherjee, P., Sahai, A., Srinivasan, A., Zhandry, M.: Secure
obfuscation in a weak multilinear map model. In: Hirt, M., Smith, A. (eds.) TCC
2016. LNCS, vol. 9986, pp. 241–268. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-53644-5 10

27. Gentry, C., Lewko, A.B., Sahai, A., Waters, B.: Indistinguishability obfuscation
from the multilinear subgroup elimination assumption. In: Guruswami, V. (ed.)
56th Annual Symposium on Foundations of Computer Science, pp. 151–170. IEEE
Computer Society Press, Berkeley, 17–20 October 2015

28. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J.
ACM 33(4), 792–807 (1986)

29. Goldreich, O., Kahan, A.: How to construct constant-round zero-knowledge proof
systems for NP. J. Cryptol. 9(3), 167–190 (1996)

30. Goldreich, O., Krawczyk, H.: On the composition of zero-knowledge proof systems.
SIAM J. Comput. 25(1), 169–192 (1996)

https://doi.org/10.1007/978-3-642-42045-0_15
https://doi.org/10.1007/978-3-642-42045-0_15
https://doi.org/10.1007/978-3-642-54631-0_29
https://doi.org/10.1007/978-3-540-78967-3_28
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-662-53644-5_10
https://doi.org/10.1007/978-3-662-53644-5_10

32 N. Fleischhacker et al.

31. Goldreich, O., Oren, Y.: Definitions and properties of zero-knowledge proof sys-
tems. J. Cryptol. 7(1), 1–32 (1994)

32. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof-systems (extended abstract). In: 17th Annual ACM Symposium on Theory
of Computing, pp. 291–304. ACM Press, Providence, 6–8 May 1985

33. Hada, S., Tanaka, T.: On the existence of 3-round zero-knowledge protocols. In:
Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 408–423. Springer, Hei-
delberg (1998). https://doi.org/10.1007/BFb0055744

34. H̊astad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator
from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999)

35. Jain, A., Kalai, Y.T., Khurana, D., Rothblum, R.: Distinguisher-dependent simula-
tion in two rounds and its applications. In: Katz, J., Shacham, H. (eds.) CRYPTO
2017, Part II. LNCS, vol. 10402, pp. 158–189. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-63715-0 6

36. Kalai, Y.T., Rothblum, G.N., Rothblum, R.D.: From obfuscation to the security
of Fiat-Shamir for proofs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part II.
LNCS, vol. 10402, pp. 224–251. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63715-0 8

37. Katz, J.: Which languages have 4-round zero-knowledge proofs? In: Canetti, R.
(ed.) TCC 2008. LNCS, vol. 4948, pp. 73–88. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-78524-8 5

38. Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegatable pseu-
dorandom functions and applications. In: Sadeghi, A.R., Gligor, V.D., Yung, M.
(eds.) ACM CCS 2013: 20th Conference on Computer and Communications Secu-
rity, pp. 669–684. ACM Press, Berlin, 4–8 November 2013

39. Komargodski, I., Naor, M., Yogev, E.: Collision resistant hashing for paranoids:
dealing with multiple collisions. Cryptology ePrint Archive, Report 2017/486
(2017). http://eprint.iacr.org/2017/486

40. Lepinski, M.: On the existence of 3-round zero-knowledge proofs. Ph.D. thesis,
Massachusetts Institute of Technology (2002)

41. Lin, H.: Indistinguishability obfuscation from constant-degree graded encoding
schemes. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part I. LNCS,
vol. 9665, pp. 28–57. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-49890-3 2

42. Lin, H.: Indistinguishability obfuscation from SXDH on 5-linear maps and locality-
5 PRGs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp.
599–629. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7 20

43. Lin, H., Tessaro, S.: Indistinguishability obfuscation from trilinear maps and block-
wise local PRGs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part I. LNCS,
vol. 10401, pp. 630–660. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-63688-7 21

44. Lin, H., Vaikuntanathan, V.: Indistinguishability obfuscation from DDH-like
assumptions on constant-degree graded encodings. In: Dinur, I. (ed.) 57th Annual
Symposium on Foundations of Computer Science, pp. 11–20. IEEE Computer Soci-
ety Press, New Brunswick, 9–11 October 2016

45. Pass, R., Seth, K., Telang, S.: Indistinguishability obfuscation from semantically-
secure multilinear encodings. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014,
Part I. LNCS, vol. 8616, pp. 500–517. Springer, Heidelberg (2014). https://doi.
org/10.1007/978-3-662-44371-2 28

https://doi.org/10.1007/BFb0055744
https://doi.org/10.1007/978-3-319-63715-0_6
https://doi.org/10.1007/978-3-319-63715-0_6
https://doi.org/10.1007/978-3-319-63715-0_8
https://doi.org/10.1007/978-3-319-63715-0_8
https://doi.org/10.1007/978-3-540-78524-8_5
https://doi.org/10.1007/978-3-540-78524-8_5
http://eprint.iacr.org/2017/486
https://doi.org/10.1007/978-3-662-49890-3_2
https://doi.org/10.1007/978-3-662-49890-3_2
https://doi.org/10.1007/978-3-319-63688-7_20
https://doi.org/10.1007/978-3-319-63688-7_21
https://doi.org/10.1007/978-3-319-63688-7_21
https://doi.org/10.1007/978-3-662-44371-2_28
https://doi.org/10.1007/978-3-662-44371-2_28

On the Existence of Three Round Zero-Knowledge Proofs 33

46. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryp-
tion, and more. In: Shmoys, D.B. (ed.) 46th Annual ACM Symposium on Theory
of Computing, pp. 475–484. ACM Press, New York, 31 May–3 June 2014

47. Zimmerman, J.: How to obfuscate programs directly. In: Oswald, E., Fischlin,
M. (eds.) EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp. 439–467. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6 15

https://doi.org/10.1007/978-3-662-46803-6_15

Statistical Witness Indistinguishability
(and more) in Two Messages

Yael Tauman Kalai1, Dakshita Khurana2(B), and Amit Sahai2

1 Microsoft Research, Cambridge, USA
yaelism@gmail.com

2 Department of Computer Science, UCLA, Los Angeles, USA
{dakshita,sahai}@cs.ucla.edu

Abstract. Two-message witness indistinguishable protocols were first
constructed by Dwork and Naor (FOCS 2000). They have since proven
extremely useful in the design of several cryptographic primitives. How-
ever, so far no two-message arguments for NP provided statistical privacy
against malicious verifiers. In this paper, we construct the first:

◦ Two-message statistical witness indistinguishable (SWI) arguments
for NP.

◦ Two-message statistical zero-knowledge arguments for NP with
super-polynomial simulation (Statistical SPS-ZK).

◦ Two-message statistical distributional weak zero-knowledge (SwZK)
arguments for NP, where the simulator is a probabilistic polyno-
mial time machine with oracle access to the distinguisher, and the
instance is sampled by the prover in the second round.

These protocols are based on quasi-polynomial hardness of two-message
oblivious transfer (OT), which in turn can be based on quasi-polynomial
hardness of DDH or QR or N th residuosity. We also show how such pro-
tocols can be used to build more secure forms of oblivious transfer.

Along the way, we show that the Kalai and Raz (Crypto 09) transform
compressing interactive proofs to two-message arguments can be gener-
alized to compress certain types of interactive arguments. We introduce
and construct a new technical tool, which is a variant of extractable two-
message statistically hiding commitments, building on the recent work of
Khurana and Sahai (FOCS 17). These techniques may be of independent
interest.

1 Introduction

Witness indistinguishable (WI) protocols [16] allow a prover to convince a veri-
fier that some statement x belongs to an NP language L, with the following pri-
vacy guarantee: If there are two witnesses w1, w2 that both attest to the fact that
x ∈ L, then a computationally bounded verifier should not be able to distinguish
an honest prover using witness w1 from an honest prover using witness w2. WI is
a relaxation of zero-knowledge that has proven to be surprisingly useful. Because
WI is a relaxation, unlike zero-knowledge, there are no known lower bounds on
c© International Association for Cryptologic Research 2018
J. B. Nielsen and V. Rijmen (Eds.): EUROCRYPT 2018, LNCS 10822, pp. 34–65, 2018.
https://doi.org/10.1007/978-3-319-78372-7_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78372-7_2&domain=pdf

Statistical Witness Indistinguishability (and more) in Two Messages 35

the rounds of interaction needed to build WI protocols. Indeed, in an influential
work, Dwork and Naor [14] introduced WI protocols that only require two mes-
sages to be exchanged between the prover and verifier, and these were further
derandomized to non-interactive protocols by [6]. Due to this extremely low level
of interaction, two-message WI protocols have proven to be very useful in the
design of several cryptographic primitives. Later, [4,8,21,23] achieved two mes-
sage or non-interactive WI protocols from other assumptions, namely assump-
tions on bilinear maps, indistinguishability obfuscation, and quasi-polynomial
DDH, respectively.

Two-Message Statistical WI. In this work, we revisit this basic question of
constructing two-message WI protocols, and ask whether it is possible to upgrade
the WI privacy guarantee to hold even against computationally unbounded ver-
ifiers. In other words, can we construct statistical WI (SWI) protocols for NP
that require only two messages to be exchanged? This is the natural analog of
one of the earliest questions studied in the context of zero-knowledge protocols:
Are statistical zero-knowledge arguments [10] possible for NP?

Indeed, statistical security is important because it allows for everlasting pri-
vacy against malicious verifiers, long after protocols have completed execution.
On the other hand, soundness is usually necessary only in an online setting: In
order to convince a verifier of a false statement, a cheating prover must find a
way to cheat during the execution of the protocol.

The critical bottleneck to achieving two-message statistical WI has been
proving soundness. For instance, the Dwork-Naor transformation from a non-
interactive zero-knowledge (NIZK) protocol to two-message WI requires the
underlying NIZK to be a proof system – that is, for the NIZK to be sound against
computationally unbounded cheating provers. Of course, to achieve statistical
privacy, we must necessarily sacrifice soundness against unbounded provers.
Thus, remarkably, 17 years after the introduction of two-message WI proto-
cols, until our work, there has been no construction of two-message statistical
WI arguments. In fact, this question was open even for three-message protocols.

In our first result, we resolve this research question, constructing the first
two-message statistical WI arguments for NP, based on standard cryptographic
hardness assumptions against quasi-polynomial time adversaries (such as quasi-
poly hardness of DDH, or Quadratic Residuosity, or N ’th Residuosity). Because
two-message WI is so widely applicable, and statistical privacy is useful in many
situations where computational privacy does not suffice, we expect our two-
message SWI argument to be a useful new tool in the protocol designer’s toolkit.

Stronger Two-Message Statistically Private Protocols. The techniques
we use to build two-message SWI also allow us to achieve other forms of statis-
tical privacy.

One of the most popular notions of privacy in proof systems is that of zero-
knowledge. This is usually formalized via simulation, by showing the existence
of a polynomial-time simulator that simulates the view of any polynomial size
(malicious) verifier. At an intuitive level, the existence of such a simulator means
that any information that a polynomial size verifier learns from an honest prover,

36 Y. T. Kalai et al.

he could have generated on his own (in and indistinguishable manner), without
access to such a prover. It is known [20] that zero-knowledge is impossible to
achieve in just two messages. However, other weaker variants have been shown
to be achievable in this setting.

Pass [29] was the first to construct a two-message argument with quasi-
polynomial time simulation. In his work, the simulated proofs were indistin-
guishable by distinguishers running in time significantly smaller than that of the
(uniform) simulator. Very recently, [27] constructed the first two-message argu-
ments for NP achieving super-polynomial strong simulation, where the simulated
proofs remain indistinguishable by distinguishers running in time significantly
larger than that of the (uniform) simulator. These capture the intuition that
for any information that a quasi-polynomial size verifier learns from an honest
prover, indistinguishable information could have been generated by the verifier
in a similar amount of time.

An even stronger security property would be super-polynomial statistical
simulation, where the output of the simulator is indistinguishable from real exe-
cutions of the protocol even against distinguishers that run in an unbounded
amount of time. In this paper, we construct the first arguments satisfying this
property in two messages.1 This improves upon the work of [27] by pushing their
privacy guarantees all the way to statistical.

We note that in all these arguments, the simulator works by breaking sound-
ness of the proof, so all of the above two-message arguments are only sound
against provers running in time less than that of the simulator.

Recently, [23] showed that this caveat could be overcome, by weakening the
ZK requirement. Specifically, they constructed two-message arguments in the
delayed-input distributional setting, with distinguisher-dependent polynomial-
time simulation. These protocols only satisfy computational privacy, and a nat-
ural open question was to achieve statistical privacy. We show that our techniques
can be used to get two-message arguments for NP in the delayed-input distri-
butional setting with distinguisher-dependent simulation, where the simulator
runs in polynomial time with oracle access to the distinguisher, and achieving
statistical privacy.

Our Core Technique. Our key technique consists of compressing an interac-
tive protocol into a two-message protocol. Specifically, we start with an interac-
tive argument satisfying honest-verifier statistical zero-knowledge, and compress
it into a two-message argument by proving soundness of the [25] heuristic, which
builds on [7]. Actually, to obtain a two-message protocol with statistically pri-
vacy, it does not suffice to start with an honest-verifier statistical ZK protocol,
but rather we need the ZK property to hold against semi-malicious verifiers.2

We gloss over this detail in this high-level overview.

1 Achieving such two-message arguments was believed to be impossible [12], however
the work of [27] showed that the line of impossibility claims [12] for super-polynomial
simulation was surmountable.

2 A semi-malicious verifier is one who follows the prescribed algorithm but with pos-
sibly malicious randomness.

Statistical Witness Indistinguishability (and more) in Two Messages 37

This heuristic is believed to be insecure when applied generally to interactive
arguments (as opposed to proofs). Nevertheless, we construct a family of 4-
message interactive arguments with statistical hiding guarantees, and prove that
the [25]-heuristic is sound when applied to such protocols.

At the heart of our technique is the following idea: We devise protocols
that are almost always statistically private (and only computationally sound),
but with negligible probability, they are statistically sound. Crucially, we show
that a (computationally bounded) prover cannot distinguish between the case
when the protocol ends up being statistically private (which happens most of
the time), and the case when the protocol ends up being statistically sound
(which happens very rarely). At the heart of our construction is a new special
commitment scheme, which build upon and significantly extend commitment
schemes from [27]. We then show how to leverage this rare statistical soundness
event, to allow the soundness of the the [25]-heuristic to kick in.

This rare event helps us achieve other extraction properties that we require in
our applications. We elaborate on this below in our technical overview, providing
a detailed but still informal overview of our techniques and results. Our protocols
are based on standard cryptographic hardness assumptions with security against
quasi-polynomial time adversaries (such as the quasi-poly hardness of DDH, or
Quadratic Residuosity, or N ’th Residuosity).

New Oblivious Transfer Protocols. Our techniques also have applicabil-
ity to an intriguing question about oblivious transfer (OT): The works of Naor
and Pinkas [28] and Aiello et al. [2] introduced influential two-message protocols
for OT achieving a game-based notion of security, which offers security against
computationally unbounded malicious receivers. A natural question is: Can we
achieve a similar result offering security against computationally unbounded
senders? Note that to achieve such a result, at least three messages must be
exchanged in the OT protocol: Indeed, suppose to the contrary that there was
a two-message OT protocol with security against an unbounded sender. Then
the first message of the protocol sent by the receiver must statistically hide the
choice bit of the receiver in order for this message to provide security against
an unbounded cheating sender. However, a non-uniform cheating receiver could
begin the protocol with non-uniform advice consisting of a valid first message m
together with honest receiver randomness r0 that explains m with regard to the
choice bit b = 0, and honest receiver randomness r1 that explains m with regard
to the choice bit b = 1. Now this receiver would be able to recover both inputs
of the honest sender by using both random values r0 and r1 on the sender’s
response message, violating OT security against a (bounded) malicious receiver.

Again remarkably, this basic question, of constructing a 3-message OT pro-
tocol with security against unbounded sender, has been open since the works
of [2,28] 17 years ago. We resolve this question, by exhibiting such a 3-message
OT protocol, based on standard cryptographic hardness assumptions with secu-
rity against quasi-polynomial time adversaries (same assumptions as before).
Such an OT protocol can also be plugged into the constructions of [23] to achieve

38 Y. T. Kalai et al.

three-message proofs for NP (as opposed to arguments) achieving delayed-input
distributional weak ZK, witness hiding and strong witness indistinguishability.

Our techniques also apply to other well-studied questions about OT, even
in the two-message setting with security against unbounded receivers. It has
long been known that the two-message OT protocols of [2,28] do not rule out
selective failure attacks. For example, if two OTs are run in parallel, we do
not know how to rule out the possibility that the sender can cause the OTs
to abort if and only if the receiver’s two choice bits are equal. Intuitively, this
should not be possible in a secure OT, and the “gold standard” for preventing
all such attacks for OT is to prove security via simulation. For two-message OT
protocols, however, only super-polynomial simulation is possible, and this was
recently formally established in [3] but at the cost of sacrificing security against
unbounded receivers. This sacrifice seems inherent: If an OT protocol has a
super-polynomial simulator, then it seems that an unbounded malicious receiver
can just “run the simulator” to extract the inputs of the sender. This presents
a conundrum; perhaps simulation security and security against an unbounded
malicious receiver cannot be simultaneously achieved.

In fact, we show that it is possible to construct a two-message OT protocol
with both super-polynomial simulation security, and security against unbounded
receivers.

1.1 Summary of Our Results

We construct several protocols with security properties assuming the existence
of a quasi-poly secure OT, which can in turn be instantiated based on quasi-poly
hardness of the DDH assumption [28], or based on the quasi-poly hardness of
QR or the N ’th residuosity assumption [22,24]. We first construct a two-message
argument for NP with the following statistical hiding guarantees:

1. Our two-message argument is statistical witness indistinguishable. We note
that prior to this work, we did not even know how to construct a 3-message
statistical WI scheme.

2. Our two-message argument is statistical zero-knowledge with super-
polynomial time simulation.3

3. Our two-message argument is statistical weak zero-knowledge in the delayed
input setting where the simulator has oracle access to the distinguisher, and
where the instance is sampled from some distribution after the verifier sent
the first message.

We also obtain the following results on oblivious transfer:

1. We construct a three-message OT protocol simultaneously satisfying super-
polynomial simulation security, and security against a computationally
unbounded sender.

3 We note that prior to this work, this was believed to be impossible to achieve via
black-box reductions [12].

Statistical Witness Indistinguishability (and more) in Two Messages 39

2. We construct a two-message OT protocol simultaneously satisfying super-
polynomial simulation security, and security against a computationally
unbounded receiver.

1.2 Other Related Work

Two message statistical witness indistinguishable arguments were constructed
for specific languages admitting hash proof systems, by [18]. However, no two-
message statistical WI arguments were known for all of NP.

Two main approaches for reducing rounds in interactive proof systems have
appeared in the literature. The first is due to Fiat and Shamir [17], and the
second is due to [25] and is based on the [7]-heuristic for converting multi-
prover interactive proofs to two-message arguments. The [25]-heuristic is sound
when applied to a statistically sound interactive proof, assuming the existence
of a super-polynomial OT (or super-polynomially secure computational PIR)
scheme. Very recently, [11,26] showed that the Fiat-Shamir heuristic is also sound
when applied to a statistically sound interactive proof, assuming the existence
of a symmetric encryption scheme where the key cannot be recovered even with
exponentially small probability (even after seeing encryptions of key-dependent
messages).4

The works of [3,23] are closely related to our work. They assume the exis-
tence of a quasi-poly secure oblivious transfer (OT) scheme, and show how to
convert any 3-message public-coin protocol which is zero-knowledge against semi-
malicious verifiers, into a two-message protocol, while keeping (and even improv-
ing) the secrecy guarantees. However, these works do not yield statistical privacy,
which is the focus of the present work. More specifically, these works apply the
[25]-heuristic to 3-message public-coin proofs that are zero-knowledge against
semi-malicious verifiers, to obtain their resulting two-message protocols. We note
that since they start with a statistically sound proof they obtain only compu-
tational hiding guarantees, and after applying the [25]-heuristic, their resulting
two-message protocols are only computationally sound (in addition to being only
computational hiding).

In contrast, in this work we construct two-message arguments with statistical
hiding guarantees. More specifically, we do this by constructing a 4-message
interactive argument with statistical hiding guarantees, and converting it into a
two-message computationally sound protocol by applying the [25]-heuristic to it.

2 Overview of Techniques

Our starting point is the [25]-heuristic, which shows how to compress public
coin interactive proofs into two-message arguments. We note that this heuristic
is based on the heuristic introduced in [7] (and explored in [1]), which converts

4 Their actual assumption is a bit more complex and we refer to [11] for details.

40 Y. T. Kalai et al.

multi-prover interactive proofs into two-message arguments. We note that the
[25]-heuristic is only known to be sound when applies to interactive proofs (and
believed not to be sound when applied to general interactive arguments).

Recently, [3,23] proved that this heuristic also preserves (and even enhances)
privacy. Our strategy will be to follow this blueprint, but in the statistical set-
ting. This becomes quite tricky in the statistical setting because we do not have
interactive proofs for NP with statistical privacy guarantees. In particular, we do
not have an interactive proof for NP which is statistical zero-knowledge against
semi-malicious verifiers (which is the privacy guarantee needed in [3,23], but in
the computational setting).

However, we do have an interactive argument which is statistical zero-
knowledge against semi-malicious verifiers. We construct such an interactive
argument of a specific form, and prove that the [25]-heuristic is sound when
applied to this interactive argument.

We begin by reviewing the techniques from [3,23], where we take as a run-
ning example the Blum protocol for Graph Hamiltonicity, which is known to be
(computational) zero-knowledge against semi-malicious verifiers.

2.1 First Attempt: Compressing the Blum Protocol via OT

In what follows, we recall the two-message protocol from [3,23] (with computa-
tional privacy guarantees), which makes use of the following two components:

◦ A three-message proof for Graph Hamiltonicity, due to Blum [9]. Denote its
three messages by (a, e, z), which can be parsed as a = {ai}i∈[κ], e = {ei}i∈[κ]

and z = {zi}i∈[κ]. Here for each i ∈ [κ], the triplet (ai, ei, zi) are messages
corresponding to an underlying Blum protocol with a single-bit challenge (i.e.,
where ei ∈ {0, 1}). We also denote by f1 and f2 the functions that satisfy
ai = f1(x,w; ri) and zi = f2(x,w, ri, ei), for answers provided by the honest
prover, and where ri is uniformly chosen randomness.

◦ Any two-message oblivious transfer protocol, denoted by (OT1,OT2), which is
secure against malicious PPT receivers, and malicious senders running in time
at most 2|z|. For receiver input b and sender input messages (M0,M1), we
denote the two messages of the OT protocol as OT1(b) and OT2(M0,M1).
We note that OT2(M0,M1) also depends on the message OT1(b) sent by
the receiver. For the sake of simplicity, we omit this dependence from the
notation.

Given these components, the two-message protocol 〈P, V 〉 (from [3,23]) is
described in Fig. 1.

Soundness. It was proven in [3,23,25] that such a transformation from any
public-coin interactive proof to a two-round argument preserves soundness
against adaptive PPT provers, who may choose the instance adaptively depend-
ing upon the message sent by the verifier.

Statistical Witness Indistinguishability (and more) in Two Messages 41

Preliminary Two-Message Protocol from [24,3]

◦ For i ∈ [κ], V picks ei
$← {0, 1}, and sends OT1,i(ei) in parallel. Each ei is

encrypted with a fresh OT instance.
◦ For i ∈ [κ], P computes ai = f1(x, w; ri), z

(0)
i = f2(x, w, ri, 0), z

(1)
i =

f2(x, w, ri, 1). The prover P then sends ai,OT2,i(z
(0)
i , z

(1)
i) in parallel for

all i ∈ [κ].
◦ The verifier V recovers z

(ei)
i from the OT, and accepts if and only if for

every i ∈ [κ], the transcript (ai, ei, z
(ei)
i) is an accepting transcript of the

underlying Σ-protocol.

Fig. 1. Preliminary two-message protocol

Can We Achieve Statistical Privacy Against Malicious Verifiers? Let us
now analyze the privacy of the protocol in Fig. 1. The work of [3,23] showed that
the protocol in Fig. 1 satisfies computational witness indistinguishability, as well
as other stronger (computational) privacy guarantees against malicious verifiers.
Their proofs rely on the security of OT against malicious receivers, as well as
the zero-knowledge property of the underlying Blum proof, when restricted to
semi-malicious verifiers.

As we already described, the focus of this paper is achieving statistical pri-
vacy. To this end, we take a closer look at the Blum protocol.

Background. Recall that in the (parallel repetition of the) Blum protocol,
for each index i ∈ [κ], ai consists of a statistically binding commitment to a
random permutation π and the permuted graph π(G), where G denotes the
input instance with Hamiltonian cycle H. Then, if the verifier challenge ei = 0,
the prover computes zi as a decommitment to (π, π(G)), and the verifier accepts
if and only if the graph G was correctly permuted. On the other hand, if ei = 1,
the prover computes zi as a decommitment only to the edges of the Hamiltonian
Cycle π(H) in π(G), and the verifier accepts if and only if the revealed edges
are indeed a Hamiltonian Cycle.

In an quest for statistical privacy, we notice the following properties about
the protocol in Fig. 1:

1. A single parallel repetition of the underlying Blum proof only satisfies compu-
tational zero-knowledge. This is because it uses a statistically binding, com-
putationally hiding commitment to generate the first message {ai}i∈[κ]. An
unbounded malicious verifier that breaks the commitment in {ai}i∈[κ] can in
fact, extract π, and therefore obtain the witness (i.e., the Hamiltonian cycle)
from any honest prover.

2. The underlying OT protocols [22,28] used in the protocol of Fig. 1 are already
statistically private against malicious receivers. This implies that the messages
{z

(1−ei)
i }i∈[κ] are statistically hidden from any malicious verifier.

42 Y. T. Kalai et al.

As a result of (1) above, the protocol in Fig. 1 is also only computationally
private. At this point, it is clear that the main bottleneck towards achieving sta-
tistical privacy against malicious verifiers, is the computationally hiding com-
mitment in the message {ai}i∈[κ]. A natural first idea is then to replace this
commitment with a statistically hiding commitment.

To this end, we consider a modified version of the underlying Blum pro-
tocol, which is the same as the original Blum protocol, except that it uses a
statistically hiding, computationally binding commitment. Such a commitment
must contain two-messages in order to satisfy binding against non-uniform PPT
provers. Therefore, our modified version of the Blum protocol has four messages,
where in the first message, for i ∈ [κ], the verifier sends the first message qi of
a statistically hiding, computationally binding commitment. Next, the prover
responds with ai consisting of the committer message in response to qi, commit-
ting to values (πi, πi(G)). The next messages {ei}i∈[κ] and {zi}i∈[κ] remain the
same as before. It is not hard to see that the resulting four-message modified
Blum protocol satisfies statistical zero-knowledge against semi-malicious verifiers.

Let us again compress this four-message protocol using the same strat-
egy as before, via two-message OT. That is, the verifier sends in parallel
{qi,OT1,i(ei)}i∈[κ], and the prover responds with {ai,OT2,i(z

(0)
i , z

(1)
i)}i∈[κ]. In

this case, because of the statistical hiding of the commitments and the statisti-
cal sender security of OT, the proof in [3,23] can be easily extended to achieve
statistical witness indistinguishability.

One may now hope that the analysis in [3,23,25] can be used to prove that
the resulting protocol also remains sound against PPT provers. Unfortunately,
as we noted above, the proof of soundness [3,23,25] crucially relies on the fact
that the starting protocol is a proof (as opposed to an argument). More specif-
ically, the soundness proof in previous works goes through as follows: Consider
for simplicity the case of a single repetition, and suppose a cheating prover, on
input the verifier message OT1(e∗), outputs x∗ �∈ L, together with a message
(a∗,OT2(z∗)), such that the verifier accepts with probability 1

2 + 1
poly(κ) . Intu-

itively, since for any x∗ �∈ L and any a∗, there exists at most one unique value
of receiver challenge e∗, for which there exists a z∗ that causes the verifier to
accept, this means that a∗ consists of a commitment that encodes the receiver
challenge e∗. By using an OT scheme that is secure against adversaries that can
break the commitment within a∗, a cheating prover can be used to contradict
receiver security of OT. This proves that a single parallel execution of the proto-
col in Fig. 1 has soundness 1

2 +negl(κ). The same argument can be generalized to
prove that no adaptive PPT prover P ∗ can cheat with non-negligible probability
when we perform κ parallel repetitions. More specifically, the reduction can use
any prover that cheats with non-negligible probability to guess the κ-bit chal-
lenge e with non-negligible probability, contradicting the security of κ parallel
repetitions of OT.

This proof crucially relies on the fact that the commitment is statistically
binding. This is no longer true for the four-message modified version of the Blum
protocol described above. In fact, the problem runs deeper: Note that what we

Statistical Witness Indistinguishability (and more) in Two Messages 43

seem to need for this approach to work is a proof that satisfies statistical ZK
against semi-malicious verifiers, however, such proofs are unlikely to exist for
all of NP (see, e.g. [30]). Therefore, the only remaining option, if we follow this
approach, is to find a way to compress some form of statistical ZK argument
while preserving soundness.

2.2 Compressing Interactive Arguments While Preserving
Soundness

The problem of compressing general interactive arguments while preserving
soundness has been a question of broader interest, even in the context of dele-
gating computation. In this paper, unlike the setting of delegation, we are not
concerned with the succinctness of our arguments. Yet, there are no previously
known approaches to compressing any types of interactive argument systems
that are not also proofs.

In this paper, we develop one such approach. Our high-level idea is as fol-
lows: Since we already ruled out constructing a proof that satisfies statistical
ZK against semi-malicious verifiers, we will instead construct an argument that
satisfies statistical ZK against semi-malicious verifiers. But this argument will
have the property that with a small probability, it will in fact be a proof! Fur-
thermore, no cheating prover will be able to differentiate the case when it is
an argument from the case when it is a proof. In other words, we will ensure
that any cheating prover that outputs x∗ �∈ L together with an accepting proof
with non-negligible probability in the original protocol, will continue to do so
with non-negligible probability even when it is in proof mode. Upon switching to
proof mode, we can apply the techniques of [25] to argue soundness and obtain
a contradiction.

Our main technical tool that will help us realize the above outline will be a
two-message statistically-hiding extractable commitment scheme, which we now
describe.

Main Tool: Statistically Hiding Extractable Commitments. Our con-
struction of statistically hiding, extractable commitments is obtained by building
on the recent work of Khurana and Sahai [27].

They construct an extractable computationally hiding commitment scheme,
which is completely insecure against unbounded malicious receivers. The under-
lying idea behind their work, which we will share, is the following: In their
commitment scheme, with a negligible probability, 2−m for m = Ω(log κ), the
message being committed to is transmitted to the receiver. Otherwise, with
overwhelming probability 1 − 2−m, the receiver obtains an actual (statistically-
binding) commitment to the message. Crucially, the committer does not know
which case occurs – whether its message was transmitted to the receiver or not.
In this way, their commitment can be seen as an unusually noisy erasure channel.

44 Y. T. Kalai et al.

Committer Input: Message M ∈ {0, 1}p, where p = poly(κ).
Commit Stage:
Receiver Message.

◦ Pick challenge string ch
$← {0, 1}.

◦ Compute and send the first OT message OT1(ch, r1) using uniform random-
ness r1.

Committer Message.

◦ Sample a random string r
$← {0, 1}. Set Mr = M, M1−r $← {0, 1}p.

◦ Compute o2 = OT2(M0, M1; r2) with uniform randomness r2.
◦ Send (r, o2).

Reveal Stage: The committer reveals M , and both values (M0, M1) as well as
the randomness r2. The receiver accepts the decommitment to message M if and
only if:

1. o2 = OT2(M0, M1; r2),
2. Mr = M .

Fig. 2. Basic construction of a two-message statistically hiding commitment

Our commitment will work to achieve the same goal, but crucially we will seek
to achieve a statistically hiding commitment.

The reason why the work of [27] was inherently limited to achieving only
computational hiding is because of the way they implement the erasure channel
described above: In their work, this was implemented using a two-message secure
computation protocol, that implemented a coin-flipping procedure to provide
the randomness underlying the erasure channel. Such two-message secure com-
putation protocols only achieve computational hiding. Therefore, in our work,
we must depart fundamentally from this method of implementing the erasure
channel.

Basic Construction. In order to obtain a construction that essentially imple-
ments the erasure channel described above, we go back to the drawing board.
Instead of implementing a sophisticated two-party computation using garbled
circuits, we consider the following basic commitment scheme (Fig. 2) imple-
mented using game-based oblivious transfer [2,22,24,28], with statistical sender
security. We make the following observations about this protocol:

◦ Assuming statistical sender security of OT, this scheme is 1/2-hiding against
malicious receivers (i.e., r �= ch happens with probability 1

2 , and in this case
the message is statistically hidden from any malicious receiver).

◦ Assuming computational receiver security of OT, this scheme is computa-
tionally binding. That is, no malicious PPT committer, upon generating a
commitment transcript, can successfully decommit it to two different values
˜M1 �= ˜M2, except with negligible probability. This is because given such a

Statistical Witness Indistinguishability (and more) in Two Messages 45

committer, the reduction can use this committer to deduce that r �= ch, which
should be impossible except with negligible probability5. A formal analysis
can be found in the full version of the paper.

Our Construction. Recall that we would like a scheme where most transcripts
(1−2−m fraction of them) should be statistically hiding and the message should
be completely lost. Moreover, we would like a 2−m fraction of transcripts to
be statistically binding: in fact, it will suffice to directly reveal the message
being committed in these transcripts to the receiver. Starting with the basic
construction above, a natural way to achieve this is to commit to an XOR secret
sharing of the message M via m parallel executions of the basic scheme described
above. Formally, our construction is described in Fig. 3. This scheme satisfies the
following properties:

◦ It remains computationally binding against malicious PPT committers, just
like the basic scheme.

◦ Because the underlying OT is statistically hiding, our scheme is now (1−2−m)-
statistically hiding against malicious receivers (i.e., it is not statistically hiding
only in the case that r �= ch, which happens with probability 2−m).

◦ Most importantly, because of receiver security of the OT, no malicious PPT
committer can distinguish the case where r = ch from the case where r �= ch.6

Modifying Blum to Use Statistically Hiding Extractable Commit-
ments. Now, instead of plugging in any statistically hiding commitment scheme,
we plug in the extractable statistically hiding commitment scheme of Fig. 3 to
generate messages {qi, ai}i∈[κ], with m = Ω(log κ). This is formally described
in Sect. 5.1. By statistical hiding of the commitment, the resulting protocol is a
statistical ZK argument. On the other hand, by the extractability of the com-
mitment, (more specifically in the case where r = ch), the protocol, in fact,
becomes a proof. Furthermore, no cheating PPT prover can distinguish the case
when r = ch from when r �= ch. Looking ahead, like we already alluded to at the
beginning of the overview, we will compress this while simultaneously ensuring
that any malicious prover outputting an accepting transcript corresponding to
x �∈ L with noticeable probability when r �= ch, must continue to do so even
when r �= ch. We will now analyze the soundness of the resulting protocol.

Arguing Soundness of the Compressed Protocol. We show that the result-
ing protocol remains sound against cheating PPT provers. While we also achieve

5 We note that this is different from guessing ch, which can be done with probability
1
2
: however, a cheating committer can not only guess ch but also certify via two

valid decommitments to different messages that it guessed ch correctly, which is not
allowed except with negligible probability.

6 This requires a more delicate argument, as well as reliance on 2m-security of the OT
to ensure that a PPT cheating committer cannot bias r away from ch all the time.

46 Y. T. Kalai et al.

Fig. 3. Our extractable commitments

a variant of adaptive soundness, for the purposes of this overview we restrict
ourselves to proving soundness against non-adaptive provers that output the
instance x before the start of the protocol.

At a high level, we will begin by noting that a cheating prover that first
outputs x �∈ L together with an accepting proof with probability p = 1

poly(κ) ,
cannot distinguish the case when r = ch from the case when r �= ch by the
property of the extractable commitment. Moreover, such a prover must continue
to generate accepting transcripts for x �∈ L with probability at least 1

poly(κ) even
in case r = ch7. Although the event r = ch only occurs with negligible prob-
ability, we use the extractor of extcom to amplify this probability by making
many queries to the prover. The extractor then outputs a transcript of the proof
(corresponding to r = ch), together with the values committed in all messages
corresponding to the extractable commitment. This requires the oblivious trans-

7 Ensuring this requires the decommit phase of the extractable commitment to be pub-
licly verifiable, without the receiver needing to maintain any state from the commit
phase. This is for technical reasons, specifically, public verifiability of the decommit
phase is required to check whether a transcript is accepting or rejecting even while
obtaining the receiver message for the extractable commitment, externally.

Statistical Witness Indistinguishability (and more) in Two Messages 47

fer used for such compression to be hard against adversaries running in time
large enough to enable extraction from the extcom. Additional details of our
construction can be found in Sect. 5.2.

In fact, we notice that our technique is more generally applicable. In particu-
lar, we focus on applications to some natural questions about oblivious transfer.

2.3 Applications to OT

OT Secure Against Unbounded Senders. While we have long known
two-message OT protocols with game-based security against unbounded mali-
cious receivers and PPT malicious senders [2,22,24,28], the following natural,
extremely related question has remained unanswered so far. Can we construct
three-message oblivious transfer with game-based security against unbounded
malicious senders and non-uniform PPT malicious receivers?

It is clear that a minimum of three rounds is required for this task, since
in any two message protocol in the plain model secure against non-uniform
receivers, the first message must unconditionally bind a malicious receiver to
a single choice bit (as otherwise a cheating receiver may obtain non-uniformly,
a receiver message as well as randomness that allows opening this message to
two different bits). In order to achieve such oblivious transfer, we explore a very
natural approach: [32] suggested the following way to information-theoretically
reverse any ideal OT protocol (with receiver message denoted by OTR and sender
message denoted OTS), by adding single round (Refer to Fig. 4).

If we did manage to somehow reverse the two-message OT protocols
of [2,22,24,28] using such a reversal, then clearly we would obtain a three-
message protocol with game-based security against unbounded senders and mali-
cious PPT receivers. However, surprisingly, proving game-based security of the
protocol obtained by reversing [2,22,24,28] appears highly non-trivial, and in
fact it is not clear if such security can be proven at all. More specifically, the
security reduction against a malicious receiver for the resulting 3 round protocol

Fig. 4. Oblivious transfer reversal

48 Y. T. Kalai et al.

must make use of a cheating receiver to contradict an assumption. To do this,
it must obtain the sender’s first message externally, but since the reduction no
longer knows the randomness used for computing this message, it is unclear how
such a reduction would be able to complete the third message of the protocol
in Fig. 4. Indeed, this problem occurs because the original OT lacks any form of
simulation security against malicious senders.

Our solution is to strengthen security of the underlying OT in order to make
this transformation go through. As we already noted, this also turns out to be
related to the problem of preventing selective failure attacks in 2-message OT.

We construct a two-message simulatable variant of oblivious transfer, with
security against unbounded receivers, as well as (super-polynomial) simulation
security against both malicious senders and malicious receivers8.

Given such a protocol, the security reduction described above is able to use
the underlying simulator to extract the inputs of the adversary, in order to
complete the three-message OT reversal described in Fig. 4.

Simulation-Secure Two-Message Oblivious Transfer. The first question
is, whether it is even possible to obtain two-message oblivious transfer, with
unbounded simulation security against malicious senders as well as malicious
receivers, while preserving security against unbounded malicious receivers. We
will achieve this by bootstrapping known protocols that already satisfy super-
polynomial simulation security against malicious receivers, to also add simulation
security against malicious senders.

At first, such a definition may appear self-contradictory: if there exists a
black-box simulator against that is able to extract both inputs of the malicious
sender, then in a two-message protocol, an unbounded receiver may also be
able to learn both inputs of the sender by running such a simulator – thereby
blatantly violating sender security.

Our key differentiation between the simulator and a malicious receiver, that
will block the above intuition from going through, will again be that the simu-
lator can access the sender superpolynomially many times, while an unbounded
malicious receiver will only be able to participate in (unbounded, but) polyno-
mially many interactions with the sender.

That is, our protocol will be designed such that, with a small probability 2−m,
the sender will be forced to reveal both his inputs to the receiver9. On the other
hand, with probability 1 − 2−m, the sender message that does not correspond
to the receiver’s choice bit, will remain statistically hidden. And again, most
importantly, a malicious sender will not be able to distinguish between the case
where he was forced to reveal both inputs, and the case where he was not.

8 We note that existing two-message protocols [2,22,24,28] with security against
unbounded receivers do not satisfy simulation-based security against malicious
senders.

9 This will be achieved by having the sender send a statistically private argument
described in the previous section, proving that he computed the message correctly.
Such an argument will also enable extraction of the witness with probability 2−m.

Statistical Witness Indistinguishability (and more) in Two Messages 49

As a result, the simulator against a malicious sender will run approximately
2m executions with the malicious senders, waiting for an event where the sender
is forced to reveal both inputs: and it will just use this execution to output the
sender view. We will show, just like the case of statistically hiding extractable
commitments, that a cheating sender will not be able to distinguish such views
from views that did not allow extraction. Finally, when m = Ω(log n), the result-
ing protocol will still satisfy statistical security against unbounded receivers,
while simultaneously allowing approximately 2m-time simulation. Please refer
to Sect. 6 for formal details of our techniques.

2.4 On the Relationship with Non-malleability

Another way to interpret some of our results is via the lens of non-malleability:
in any two-message protocol between Alice and Bob, where Alice sends the first
message and Bob sends the second, we show how to enforce that the input used
by Bob to generate his message remain independent of the input used by Alice.

One way to accomplish such a task is to set parameters so that the security
of Bob’s message is much weaker than that of Alice, in a way that it is possible
to break security of Bob’s message via brute-force, and extract Bob’s input in
time T , while arguing that Alice’s input remained computationally hidden, even
against T -time adversaries. However, this would crucially require Bob’s message
to only be computationally hidden, so that it would actually be recoverable
via brute-force. This was used in several works, including [29] which gave the
first constructions of computational zero-knowledge with superpolynomial time
simulation.

In this paper, building on the recent work of [27], we essentially prove that it
is possible to achieve similar guarantees while keeping Bob’s message statistically
hidden. Indeed, this is the main reason that our proofs of soundness go through.

3 Preliminaries

Notation. Throughout this paper, we will use κ to denote the security parame-
ter, and negl(κ) to denote any function that is asymptotically smaller than 1

poly(κ)

for any polynomial poly(·).
The statistical distance between two distributions D1,D2 is denoted by

Δ(D1,D2) and defined as:

Δ(D1,D2) =
1
2
Σv∈V |Prx←D1 [x = v] − Prx←D2 [x = v]|.

We say that two families of distributions D1 = {D1,κ},D2 = {D2,κ} are statis-
tically indistinguishable if Δ(D1,κ,D2,κ) = negl(κ). We say that two families of

50 Y. T. Kalai et al.

distributions D1 = {D1,κ},D2 = {D2,κ} are computationally indistinguishable
if for all non-uniform probabilistic polynomial time distinguishers D,

∣

∣Prr←D1,κ
[D(r) = 1] − Prr←D2,κ

[D(r) = 1]
∣

∣ = negl(κ).

Let Π denote an execution of a protocol. We use ViewA(Π) to denote the
view, including the randomness and state of party A in an execution Π. We use
OutputA(Π) to denote the output of party A in an execution of Π.

Remark 1. In what follows, we define several 2-party protocols. We note that
in all these protocols both parties take as input the security parameter 1κ. We
omit this from the notation for the sake of brevity.

Definition 1 (Σ-protocols). Let L ∈ NP with corresponding witness relation
RL. A protocol Π = 〈P, V 〉 is a Σ-protocol for relation RL if it is a three-round
public-coin protocol which satisfies:

◦ Completeness: For all (x,w) ∈ RL, Pr[OutputV 〈P (x,w), V (x)〉 = 1] =
1 − negl(κ), assuming P and V follow the protocol honestly.

◦ Special Soundness: There exists a polynomial-time algorithm A that given
any x and a pair of accepting transcripts (a, e, z), (a, e′, z′) for x with the same
first prover message, where e �= e′, outputs w such that (x,w) ∈ RL.

◦ Semi-malicious verifier zero-knowledge: There exists a probabilistic poly-
nomial time simulator SΣ such that for all (x,w) ∈ RL, the distributions
{SΣ(x, e)} and {ViewV 〈P (x,w(x)), V (x, e)〉} are statistically indistinguish-
able, where SΣ(x, e) denotes the output of simulator S upon receiving input x
and the verifier’s random tape, denoted by e.

3.1 Oblivious Transfer

Definition 2 (Oblivious Transfer). Oblivious transfer is a protocol between
two parties, a sender S with input messages (m0,m1) and a receiver R with
input a choice bit b. The correctness requirement is that R obtains output mb at
the end of the protocol (with probability 1). We let 〈S(m0,m1), R(b)〉 denote an
execution of the OT protocol with sender input (m0,m1) and receiver input bit
b. We require OT that satisfies the following properties:

◦ Computational Receiver Security. For any non-uniform PPT sender S∗

and any (b, b′) ∈ {0, 1}, the views ViewS∗(〈S∗, R(b)〉) and ViewS∗(〈S∗, R(b′)〉)
are computationally indistinguishable.
We say that the OT scheme is T -secure if any poly(T)-size malicious
sender S∗ has a distinguishing advantage less than 1

poly(T) .
◦ (1 − δ)-Statistical Sender Security. For any receiver R∗ that out-

puts receiver message mR∗ , there exists bit b such that for all m0,m1,
the distribution ViewR∗〈S(m0,m1), R∗〉 is (1 − δ) statistically close to
ViewR∗〈S(mb,mb), R∗〉.

Statistical Witness Indistinguishability (and more) in Two Messages 51

Such two-message protocols have been constructed based on the DDH
assumption [28], and a stronger variant of smooth-projective hashing, which can
be realized from DDH as well as the N th-residuosity and Quadratic Residuosity
assumptions [22,24]. Such two-message protocols can also be based on witness
encryption or indistinguishability obfuscation (iO) together with one-way per-
mutations [31].

Finally, we define bit OT as oblivious transfer where the sender inputs bits
instead of strings.

Definition 3 (Bit Oblivious Transfer). We say that an oblivious transfer
protocol according to Definition 2 is a bit oblivious transfer if the senders mes-
sages m0,m1 are each in {0, 1}.

3.2 Proof Systems

Delayed-Input Interactive Protocols. An n-message delayed-input interac-
tive protocol for deciding a language L with associated relation RL proceeds in
the following manner:

◦ At the beginning of the protocol, P and V receive the size of the instance and
security parameter, and execute the first n − 1 messages.

◦ Before sending the last message, P receives input (x,w) ∈ RL. P sends x
to V together with the last message of the protocol. Upon receiving the last
message from P , V outputs 1 or 0.

An execution of this protocol with instance x and witness w is denoted by
〈P (x,w), V (x)〉. A delayed-input interactive protocol is a protocol satisfying the
completeness and soundness condition in the delayed input setting. One can
consider both proofs – with soundness against unbounded (cheating) provers,
and arguments – with soundness against computationally bounded (cheating)
provers. In particular, a delayed-input interactive argument satisfies adaptive
soundness against malicious PPT provers. That is, soundness is required to hold
even against PPT provers who choose the statement adaptively (maliciously),
depending upon the first n − 1 messages of the protocol.

Definition 4 (Delayed-Input Interactive Arguments). An n-message
delayed-input interactive protocol (P, V) for deciding a language L is an inter-
active argument for L if it satisfies the following properties:

◦ Completeness: For every (x,w) ∈ RL,

Pr
[

OutputV 〈P (x,w), V (x)〉 = 1
]

= 1 − negl(κ),

where the probability is over the random coins of P and V , and where in the
protocol V receives x together with the last message of the protocol.

52 Y. T. Kalai et al.

◦ Adaptive Soundness: For every (non-uniform) PPT prover P ∗ that given
1κ chooses an input length 1p, and then chooses x ∈ {0, 1}p \ L adaptively,
depending upon the transcript of the first n − 1 messages,

Pr
[

OutputV 〈P ∗, V 〉(x) = 1
]

= negl(κ),

where the probability is over the random coins of V .

Witness Indistinguishability. A proof system is witness indistinguishable if
for any statement with at least two witnesses, proofs computed using different
witnesses are indistinguishable. In this paper, we only consider statistical witness
indistinguishability, which we formally define below.

Definition 5 (Statistical Witness Indistinguishability). A (delayed-
input) interactive argument (P, V) for a language L is said to be statistical
witness-indistinguishable if for every unbounded verifier V ∗, every polynomi-
ally bounded function n = n(κ) ≤ poly(κ), and every (xn, w1,n, w2,n) such that
(xn, w1,n) ∈ RL and (xn, w2,n) ∈ RL and |xn| = n, the following two ensembles
are statistically indistinguishable:

{

ViewV ∗〈P (xn, w1,n), V ∗(xn)〉
}

and
{

ViewV ∗〈P (xn, w2,n), V ∗(xn)〉
}

Delayed-Input Distributional Weak Zero Knowledge. Zero knowledge
(ZK) requires that for any adversarial verifier, there exists a simulator that can
produce a view that is indistinguishable from the real one to every distinguisher.
Weak zero knowledge (WZK) relaxes the standard notion of ZK by reversing the
order of quantifiers, and allowing the simulator to depend on the distinguisher.

We consider a variant of WZK, namely, distributional WZK [15,19], where
the instances are chosen from some distribution over the language. Furthermore,
we allow the simulator’s running time to depend upon the distinguishing proba-
bility of the distinguisher. We refer to this as distributional ε-WZK, which says
that for every TD-time distinguisher D and every distinguishing advantage ε
(think of ε as an inverse polynomial) there exists a simulator, that is an oracle
machine running in time poly(κ, 1/ε) with oracle access to the distinguisher, that
generates a view that D cannot distinguish from the view generated by the real
prover. This notion was previously considered in [13,15,23].

When considering delayed-input interactive protocols it is natural to con-
sider a delayed input version of secrecy. In what follows, we define delayed-input
distributional statistical ε-WZK.

Definition 6 (Delayed-Input Distributional Statistical ε-Weak Zero
Knowledge). A delayed-input interactive argument (P, V) for a language L
is said to be delayed-input distributional statistical ε-weak zero knowledge if for
every polynomially bounded function n = n(κ) ≤ poly(κ), and for every effi-
ciently samplable distribution (Xκ,Wκ) on RL, i.e., Supp(Xκ,Wκ) = {(x,w) ∈
RL : x ∈ {0, 1}n(κ)}, every unbounded verifier V ∗ that obtains the instance from

Statistical Witness Indistinguishability (and more) in Two Messages 53

the prover in the last message of the protocol, every unbounded distinguisher D,
and every ε (which will usually be set to 1/poly(κ) for some polynomial poly(·)),
there exists a simulator S that runs in time poly(κ, 1/ε) and has oracle access to
D and V ∗, such that:

∣

∣

∣

∣

∣

Pr
(x,w)←(Xκ,Wκ)

[

D(x,ViewV ∗ [〈P (x,w), V ∗(x)〉] = 1
]

− Pr
(x,w)←(Xκ,Wκ)

[

D(x,SV ∗,D(x)) = 1
]

∣

∣

∣

∣

∣

≤ ε(κ),

where the probability is over the random choices of (x,w) as well as the random
coins of the parties.

Zero-Knowledge with Super-Polynomial Simulation. We now define
zero-knowledge with super-polynomial simulation in the same way as [29], except
that we define statistical security against malicious verifiers.

Definition 7 (Statistical ZK with Super-polynomial Simulation). We
say that a delayed input two message argument (P, V) for an NP language L is
statistical zero-knowledge with super-polynomial TSim-time simulation, if there
exists a (uniform) simulator S that runs in time TSim, such that for every
polynomial n = n(κ) ≤ poly(κ), and for every (xn, wn) ∈ RL where each
|xn| = n, and every unbounded verifier V ∗, the two distributions SV ∗

(xn) and
ViewV ∗〈P (xn, wn), V ∗(xn)〉 are statistically close.

4 Extractable Commitments

4.1 Definitions

Our notion of extractable commitments tailors the definition in [27] to the setting
of statistically hiding commitments. We begin by (re-)defining the notion of a
commitment scheme. As before, we use κ to denote the security parameter, and
we let p = poly(κ) be an arbitrary fixed polynomial such that the message space
is {0, 1}p.

We restrict ourselves to commitments with non-interactive decommitment,
and where the (honest) receiver is not required to maintain any state at the end of
the commit phase in order to execute the decommit phase. Our construction will
satisfy this property and this will be useful in our applications to constructing
statistically private protocols.

Definition 8 [Statistically Hiding Commitment Scheme]. A commitment 〈C,R〉
is a two-phase protocol between a committer C and receiver R, consisting of a
tuple of algorithms

Commit,Decommit,Verify.

54 Y. T. Kalai et al.

At the beginning of the protocol, C obtains as input a message M ∈ {0, 1}p.
Next, C and R execute the commit phase, and obtain a commitment transcript,
denoted by τ , together with a private state for C, denoted by stateC,τ . We use the
notation

(τ, stateC,τ) ← Commit〈C(M),R〉.
Later, C and R possibly engage in a decommit phase, where the committer

C computes and sends message y = Decommit(τ, stateC,τ) to R. At the end, R
computes Verify(τ, y) to output ⊥ or a message ˜M ∈ {0, 1}p.10

A statistically hiding commitment scheme is required to satisfy three proper-
ties:

◦ (Perfect) Completeness. If C,R honestly follow the protocol, then for every
M ∈ {0, 1}p:

Pr[Verify(τ,Decommit(τ, stateC,τ)) = M] = 1

where the probability is over (τ, stateC,τ) ← Commit〈C(M),R〉.
◦ Statistical Hiding. For every two messages M1,M2 ∈ {0, 1}2p, every

unbounded malicious receiver R∗ and honest committer C, a commitment
is δ(κ)-statistically hiding if the statistical distance between the distributions
ViewR∗(Commit〈C(M1),R∗〉) and ViewR∗(Commit〈C(M2),R∗〉) is at most
δ(κ). The scheme is statistically hiding if δ(κ) ≤ 1

poly(κ) for every polyno-
mial poly(·).

◦ Computational Binding. Consider any non-uniform PPT committer C∗

that produces τ ← Commit〈C∗,R〉, and then outputs y1, y2. Let ˜M1 =
Verify(τ, y1) and ˜M2 = Verify(τ, y2). Then, we require that

Pr
[

(˜M1 �= ⊥) ∧ (˜M2 �= ⊥) ∧ (˜M1 �= ˜M2)] = negl(κ),

over the randomness of sampling τ ← Commit〈C∗,R〉.

In the following, we define a PPT oracle-aided algorithm Samp such that for
all C∗, SampC∗

samples τ ← Commit〈C∗,R〉 generated by a malicious committer
C∗ using uniform randomness for the receiver.

We also define an extractor E that given black-box access to C∗, outputs
some transcript generated by C∗, and then without executing any decommitment
phase with C∗, outputs message ˜Me: we require “correctness” of this extracted
message ˜Me. We also require that for any non-uniform PPT C∗, the distribution
of τ generated by SampC∗

is indistinguishable from the distribution output by
EC∗

. This is formally defined in Definition 9.

Definition 9 [T -Extractable Commitment Scheme]. We say that a statistically
hiding commitment scheme is T -extractable if there exists a T · poly(κ)-time

10 We note that in our definition, R does not need to keep a state from the commitment
phase in order to execute the decommitment phase.

Statistical Witness Indistinguishability (and more) in Two Messages 55

uniform oracle machine E such that the following holds. Let C∗ be any non-
uniform PPT adversarial committer, that before starting the commitment phase,
outputs auxiliary information denoted by z, and at the end of the commitment
phase outputs auxiliary information denoted by aux. Then, the following holds.

◦ There exists a PPT oracle sampling algorithm SampC∗
that samples

(τC∗ , aux) ← Commit〈C∗,R〉. Let ExpSampC∗ = (τC∗ , aux) be the output of
SampC∗

.
◦ EC∗

outputs (τC∗ , aux, ˜M), while only making oracle calls to C∗ during the
commit phase (without ever running the decommit phase). We denote by
ExpEC∗ = (τC∗ , aux).

We require that:

◦ Indistinguishability. The distributions (ExpSampC∗ , z) and (ExpEC∗ , z) are
computationally indistinguishable.

◦ Correctness of Extraction. Consider any non-uniform PPT C∗ and let
(τ, aux, ˜M) denote the output of EC∗

. Then for any string y1, denoting ˜M1 =
Verify(τ, y1),

Pr
[

(˜M �= ⊥) ∧ (˜M1 �= ⊥) ∧ (˜M �= ˜M1)
]

= negl(κ),

where the probability is over (τ, aux, ˜M) ← EC∗
.

4.2 Protocol

In this section, we construct two-message statistically hiding, extractable com-
mitments according to Definition 9. Our construction is described in Fig. 5.

Let OT = (OT1,OT2) denote a two-message string oblivious transfer pro-
tocol according to Definition 2. Let OT1(b; r1) denote the first message of the
OT protocol with receiver input b and randomness r1, and let OT2(M0,M1; r2)
denote the second message of the OT protocol with sender input strings M0,M1

and randomness r2.11

In the full version of this paper, we prove the following main theorem.

Theorem 1. Set T = (2m ·κlog κ). Assuming that the underlying OT protocol is
T -secure against malicious senders, (1 − δOT) secure against malicious receivers
according to Definition 2, the scheme in Fig. 5 is a (1 − 2m − δOT) statistically
hiding, T -extractable commitment scheme according to Definition 9.

We prove this theorem by showing statistical hiding, computational binding,
and extractability. The proof of statistical hiding follows by (1 − δ)-statistical
sender security of the OT. To prove computational binding, we build a reduction
to the receiver security of OT according to Definition 2. The proof of extractabil-
ity follows by building.

56 Y. T. Kalai et al.

Fig. 5. Extractable commitments

Fig. 6. Description of the extractor EC∗

Statistical Witness Indistinguishability (and more) in Two Messages 57

We build the following extractor E for Definition 9, in Fig. 6. In the figure, we
denote the first message of transcript τ by τ1 and the second message by τ2. E
will obtain oracle access to C∗, and the running time of EC∗

will be T = 2m ·κlog κ.
The analysis of the extractor builds on the analysis of [27], and can be found

in the full version of the paper.

5 Two-Message Arguments with Statistical Privacy

5.1 Modified Blum Protocol

We begin by describing a very simple modification to the Blum Σ-protocol for
Graph Hamiltonicity. The protocol we describe will have soundness error 1

2 −
negl(κ) against adaptive PPT provers, and will satisfy statistical zero-knowledge.
Since Graph Hamiltonicity is NP-complete, this protocol can also be used to
prove any statement in NP via a Karp reduction. This protocol is described in
Fig. 7.

We give an overview of the protocol here. Note that the only modification to
the original protocol of Blum [9] is that we use statistically hiding, extractable
commitments instead of statistically binding commitments. The proofs of sound-
ness and statistical zero-knowledge are fairly straightforward. They roughly fol-
low the same structure as [9], replacing statistically binding commitments with
statistically hiding commitments.

In the full version of the paper, we prove that the protocol in Fig. 7 satisfies
soundness against PPT provers that may choose x adaptively in the second
round of the protocol. We also prove that assuming that extcom is statistically
hiding, the protocol in Fig. 7 satisfies statistical zero-knowledge.

5.2 Compressing Four Message Argument to a Two Message
Argument

In Fig. 8, we describe the construction of a two-message argument, using
extractable commitments (with two messages denoted by ext-com1, ext-com2)
according to Definition 9. This essentially consists of compressing the modified
Blum argument from Fig. 7 into a two-message argument.

Let OT = (OT1,OT2) denote a two-message bit oblivious transfer protocol
according to Definition 2. Let OT1(b) denote the first message of the OT protocol
with receiver input b, and let OT2(m0,m1) denote the second message of the OT
protocol with sender input bits m0,m1.

Let Σ = (q, a, e, z) denote the four messages of the modified Blum proto-
col from Fig. 7. Here (q, a) denote the messages of the extractable commitment.
We will perform a parallel repetition of this protocol, thus for each i ∈ [κ],
(qi, ai, ei, zi) are messages corresponding to an underlying modified Blum proto-
col with a single-bit challenge (i.e., where ei ∈ {0, 1}). We denote by f1 and f2
the functions that satisfy ai = f1(x,w; ri) and zi = f2(x,w, ri, ei), where ri is
uniformly chosen randomness.
11 Note that OT2 also depends on OT1. We omit this dependence in our notation for

brevity.

58 Y. T. Kalai et al.

Fig. 7. Modified blum SZK argument

We state our main lemma here, which we prove in the full version of the
paper.

Lemma 1. Assuming that extcom is a 2m·κlog κ-extractable commitment scheme
according to Definition 9 and that OT is 2κm ·κlog κ-secure, the protocol in Fig. 8
satisfies soundness against PPT malicious provers.

Furthermore, assuming that the distributions ExpEC∗ and ExpSampC∗ corre-
sponding to extcom, Definition 9, are indistinguishable by T ′-size distinguishers,
the protocol in Fig. 8 satisfies adaptive soundness against all PPT provers, when
the instance is chosen from a language that is decidable by T ′-size circuits.

Remark 2. Our proof also generalizes to executing only Ω(log κ) parallel execu-
tions of the Blum protocol, while still yeilding negligible soundness error. Fur-
thermore, we will see that statistical privacy guarantees will hold even when
m = Ω(log κ). Therefore, the protocol in Fig. 8 can be realized only relying on
quasi-polynomially secure oblivious transfer according to Definition 2.

Statistical Witness Indistinguishability (and more) in Two Messages 59

Fig. 8. Two message argument system for NP

Similar to the extractability of commitments, we also define an additional
property of two-message arguments, that we call extractability. Roughly, this
property requires the existence of a super-polynomial time uniform oracle
machine E that extracts the witness used by any prover generating accepting
proofs. It is somewhat more subtle to define, and we refer the reader to the
full version for a formal definition. This property is useful in our applications
to obtaining stronger forms of OT, and we believe will also be useful for other
future applications. We show that the scheme in Fig. 8 is also extractable, where
the extractor for the argument can extract a transcript with a witness, from any
prover, by relying the extractor of the commitment scheme extcom.

5.3 Proofs of Privacy

Lemma 2. The protocol in Fig. 8 satisfies statistical zero-knowledge with super-
polynomial simulation, according to Definition 7.

Proof. The simulation strategy is straightforward: the simulator obtains
{qi, o1,i}i∈[κ] externally. It runs in super-polynomial time to break the receiver
message OT1 via brute-force to extract {ei}i∈[κ]. Given {ei}i∈[κ], it runs the
semi malicious verifier ZK simulator for modified Blum on input {ai, ei}i∈[κ]. It
obtains {ai, zi,ei

}i∈[κ] from the semi malicious verifier ZK simulator. Finally, it
sends for i ∈ [κ], ai together with OT2,i(zi,ei

, zi,ei
).

Statistical zero-knowledge then follows because of statistical zero knowledge
of the underlying four-message protocol, and from the statistical security of OT
against unbounded verifiers.

60 Y. T. Kalai et al.

This also yields the following lemma.

Lemma 3. The protocol in Fig. 8 satisfies statistical witness indistinguishability
against all malicious verifiers.

Proof (Sketch). This claim follows by a simple hybrid argument, where in an
intermediate hybrid, the challenger generates the proof via the superpolynomial
simulator of Lemma 2 (without using any witness). By Lemma2, this interme-
diate hybrids is statistically close to any hybrid where a specific witness is used.
This proves witness indistinguishability of the protocol. Refer to [3] for a more
detailed proof.

Lemma 4. The protocol in Fig. 8 satisfies distributional statistical delayed-input
ε-weak zero-knowledge according to Definition 6.

Following [23], we develop an inductive analysis and a simulation strategy that
learns the receiver’s challenge bit-by-bit. The proof follows the strategy in [23],
and can be found in the full version of the paper.

Therefore, we have the following main theorem.

Theorem 2. Assuming quasi-polynomially secure oblivious transfer according
to Definition 2, there exists a two-message argument system that satisfies statis-
tical witness indistinguishability (Definition 5), statististical zero-knowledge with
super-polynomial simulation (Definition 6), and statistical weak distributional ε-
zero-knowledge for delayed-input statements (Definition 7).

We also observe that all our two-message arguments can be made resettable
statistical witness indistinguishable by applying [5].

6 Oblivious Transfer: Stronger Security and Reversal

In this section, we build OT protocols, in the two-message and three-message
setting, that satisfy stronger security properties than previously known. Because
of space restrictions, we only describe the protocols and defer proofs to the full
version of the paper.

6.1 Simulation-Secure Two-Message Oblivious Transfer

We first construct an oblivious transfer protocol with unbounded simulation-
based security against both malicious receivers and malicious senders. We define
this variant below.

Definition 10 (Simulation-Secure Oblivious Transfer). As in Definition 2,
we let 〈S(m0,m1), R(b)〉 denote an execution of the OT protocol with sender input
(m0,m1) and receiver input bit b. We consider OT that satisfies the following prop-
erties (which are both defined using simulation-based security definitions):

Statistical Witness Indistinguishability (and more) in Two Messages 61

◦ Computational Receiver Security. There exists a TSim-time oracle-aided
simulator SimS∗

that interacts with any non-uniform malicious PPT sender
S∗ and outputs View(SimS∗

). It also extracts and sends S∗’s inputs m0,m1

to an ideal functionality Fot, which obtains choice bit b from the honest
receiver R and outputs OutputIdeal = mb to R. Then, we require that for every
non-uniform PPT S∗, the joint distributions (View(SimS∗

),OutputIdeal) and
(ViewS∗〈S∗, R(b)〉,OutputR〈S∗, R(b)〉) are computationally indistinguishable.

◦ Statistical Sender Security. There exists a (possibly unbounded) oracle-
aided simulator SimR∗

that interacts with any unbounded adversarial receiver
R∗, and with an ideal functionality Fot on behalf of R∗. Here Fot is an oracle
that obtains the inputs (m0,m1) from S and b from SimR∗

(simulating the
malicious receiver), and outputs mb to SimR∗

. Then we require that for all
m0,m1, SimR∗

outputs a receiver view that is statistically indistinguishable
from the real view of the malicious receiver ViewR∗〈S(m0,m1, z), R∗〉.

Our construction of two-message OT satisfying Definition 10 is described in
Fig. 9. It uses a two-message OT scheme according to Definition 2, whose mes-
sages are denoted by OT1 and OT2. It also uses a statistical SPS zero-knowledge
stat-sps-zk according to Definition 7, whose first and second messages are denoted
by stat-sps-zk1 and stat-sps-zk2.

Fig. 9. Simulation secure oblivious transfer

6.2 Reversing Oblivious Transfer

We first construct an oblivious transfer protocol with unbounded simulation-
based security against both malicious receivers and malicious senders. We define
this variant below.

Definition 11 (Simulation-Secure Oblivious Transfer Against
Unbounded Senders). As in Definition 2, we let 〈S(m0,m1), R(b)〉 denote an

62 Y. T. Kalai et al.

execution of the OT protocol with sender input (m0,m1) and receiver input bit
b. We consider OT that satisfies the following properties (which are both defined
using real-ideal security definitions):

◦ Computational Sender Security. There exists an oracle-aided simulator
SimR∗

that interacts with any non-uniform malicious PPT receiver R∗ and
interacts with the ideal functionality Fot on behalf of R∗. Here Fot is an ora-
cle that obtains the inputs (m0,m1) from S and b from SimR∗

(simulating the
malicious receiver), and outputs mb to SimR∗

. Then we require that for all
m0,m1, SimR∗

outputs a receiver view that is computationally indistinguish-
able from the real view of the malicious receiver ViewR∗(〈S(m0,m1, z), R∗〉).

◦ Statistical Receiver Security. There exists a (possibly unbounded) oracle-
aided simulator SimS∗

that interacts with any unbounded adversarial sender
S∗, and with an ideal functionality Fot on behalf of S∗. Here Fot is
an oracle that obtains the inputs (m0,m1) from SimS∗

and b from R
and outputs OutputIdeal = mb to R. Then, we require that for every
unbounded S∗, the two joint distributions (View(SimS∗

),OutputIdeal) and
(ViewS∗〈S∗, R(b)〉,OutputS∗〈S∗, R(b)〉) are statistically indistinguishable.

We now describe a three-message (bit) oblivious transfer protocol with
simulation-based security against malicious receivers and unbounded malicious
senders, according to Definition 11.

This is obtained by reversing a two-message (bit) oblivious transfer protocol
with simulation security against unbounded malicious receivers and PPT mali-
cious senders, according to Definition 10, constructed in Fig. 9. Let OTR(b; rR)
denote the receiver message of such an oblivious transfer protocol computed as
a function of input bit b and randomness rR, and let OTS(mR, x0, x1; rS) denote
the sender message of such a protocol computed as a function of receiver mes-
sage mR, sender inputs x0, x1 and randomness rS . Our protocol is described in
Fig. 10.

Fig. 10. Oblivious transfer reversal

Statistical Witness Indistinguishability (and more) in Two Messages 63

Acknowledgements. Research of D. Khurana and A. Sahai supported in part from a
UCLA Dissertation Year Fellowship, a DARPA/ARL SAFEWARE award, NSF Fron-
tier Award 1413955, and NSF grant 1619348, a Xerox Faculty Research Award, a
Google Faculty Research Award, an equipment grant from Intel, and an Okawa Foun-
dation Research Grant. This material is based upon work supported by the Defense
Advanced Research Projects Agency through the ARL under Contract W911NF-15-
C-0205. The views expressed are those of the authors and do not reflect the official
policy or position of the Department of Defense, the National Science Foundation, or
the U.S. Government.

References

1. Aiello, W., Bhatt, S., Ostrovsky, R., Rajagopalan, S.R.: Fast verification of any
remote procedure call: short witness-indistinguishable one-round proofs for NP. In:
Montanari, U., Rolim, J.D.P., Welzl, E. (eds.) ICALP 2000. LNCS, vol. 1853, pp.
463–474. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45022-X 39

2. Aiello, B., Ishai, Y., Reingold, O.: Priced oblivious transfer: how to sell digital
goods. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 119–135.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44987-6 8

3. Badrinarayanan, S., Garg, S., Ishai, Y., Sahai, A., Wadia, A.: Two-message witness
indistinguishability and secure computation in the plain model from new assump-
tions. IACR Cryptology ePrint Archive 2017, 433 (2017). http://eprint.iacr.org/
2017/433

4. Badrinarayanan, S., Goyal, V., Jain, A., Khurana, D., Sahai, A.: Round optimal
concurrent MPC via strong simulation. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017,
Part I. LNCS, vol. 10677, pp. 743–775. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-70500-2 25

5. Barak, B., Goldreich, O., Goldwasser, S., Lindell, Y.: Resettably-sound zero-
knowledge and its applications. In: 42nd Annual Symposium on Foundations of
Computer Science, FOCS 2001, Las Vegas, Nevada, USA, 14–17 October 2001, pp.
116–125 (2001). https://doi.org/10.1109/SFCS.2001.959886

6. Barak, B., Ong, S.J., Vadhan, S.: Derandomization in cryptography. In: Boneh, D.
(ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 299–315. Springer, Heidelberg (2003).
https://doi.org/10.1007/978-3-540-45146-4 18

7. Biehl, I., Meyer, B., Wetzel, S.: Ensuring the integrity of agent-based computations
by short proofs. In: Rothermel, K., Hohl, F. (eds.) MA 1998. LNCS, vol. 1477, pp.
183–194. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0057658

8. Bitansky, N., Paneth, O.: ZAPs and non-interactive witness indistinguishability
from indistinguishability obfuscation. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015,
Part II. LNCS, vol. 9015, pp. 401–427. Springer, Heidelberg (2015). https://doi.
org/10.1007/978-3-662-46497-7 16

9. Blum, M.: How to prove a theorem so no one else can claim it. In: Proceedings of
the International Congress of Mathematicians, Berkeley, CA, pp. 1444–1451 (1986)

10. Brassard, G., Chaum, D., Crépeau, C.: Minimum disclosure proofs of knowledge.
J. Comput. Syst. Sci. 37(2), 156–189 (1988)

11. Canetti, R., Chen, Y., Reyzin, L., Rothblum, R.D.: Fiat-Shamir and correlation
intractability from strong KDM-secure encryption. Cryptology ePrint Archive,
Report 2018/131 (2018). https://eprint.iacr.org/2018/131

12. Chung, K.M., Lui, E., Mahmoody, M., Pass, R.: Unprovable security of two-
message zero knowledge. IACR Cryptology ePrint Archive 2012, 711 (2012)

https://doi.org/10.1007/3-540-45022-X_39
https://doi.org/10.1007/3-540-44987-6_8
http://eprint.iacr.org/2017/433
http://eprint.iacr.org/2017/433
https://doi.org/10.1007/978-3-319-70500-2_25
https://doi.org/10.1007/978-3-319-70500-2_25
https://doi.org/10.1109/SFCS.2001.959886
https://doi.org/10.1007/978-3-540-45146-4_18
https://doi.org/10.1007/BFb0057658
https://doi.org/10.1007/978-3-662-46497-7_16
https://doi.org/10.1007/978-3-662-46497-7_16
https://eprint.iacr.org/2018/131

64 Y. T. Kalai et al.

13. Chung, K.-M., Lui, E., Pass, R.: From weak to strong zero-knowledge and appli-
cations. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part I. LNCS, vol. 9014, pp.
66–92. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46494-6 4

14. Dwork, C., Naor, M.: Zaps and their applications. In: 41st Annual Symposium on
Foundations of Computer Science, FOCS 2000, Redondo Beach, California, USA,
12–14 November 2000, pp. 283–293 (2000)

15. Dwork, C., Naor, M., Reingold, O., Stockmeyer, L.J.: Magic functions. In: 40th
Annual Symposium on Foundations of Computer Science, FOCS 1999, New York,
NY, USA, 17–18 October 1999, pp. 523–534 (1999)

16. Feige, U., Shamir, A.: Witness indistinguishable and witness hiding protocols. In:
Proceedings of the 22nd Annual ACM Symposium on Theory of Computing, Bal-
timore, Maryland, USA, 13–17 May 1990, pp. 416–426 (1990)

17. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

18. Garg, S., Ostrovsky, R., Visconti, I., Wadia, A.: Resettable statistical zero knowl-
edge. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 494–511. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-28914-9 28

19. Goldreich, O.: A uniform-complexity treatment of encryption and zero-knowledge.
J. Cryptology 6(1), 21–53 (1993)

20. Goldreich, O., Oren, Y.: Definitions and properties of zero-knowledge proof sys-
tems. J. Cryptology 7(1), 1–32 (1994)

21. Groth, J., Ostrovsky, R., Sahai, A.: Non-interactive zaps and new techniques for
NIZK. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 97–111. Springer,
Heidelberg (2006). https://doi.org/10.1007/11818175 6

22. Halevi, S., Kalai, Y.T.: Smooth projective hashing and two-message oblivious
transfer. J. Cryptology 25(1), 158–193 (2012). https://doi.org/10.1007/s00145-
010-9092-8

23. Jain, A., Kalai, Y.T., Khurana, D., Rothblum, R.: Distinguisher-dependent simula-
tion in two rounds and its applications. In: Katz, J., Shacham, H. (eds.) CRYPTO
2017, Part II. LNCS, vol. 10402, pp. 158–189. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-63715-0 6

24. Kalai, Y.T.: Smooth projective hashing and two-message oblivious transfer. In:
Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 78–95. Springer,
Heidelberg (2005). https://doi.org/10.1007/11426639 5

25. Kalai, Y.T., Raz, R.: Probabilistically checkable arguments. In: Halevi, S. (ed.)
CRYPTO 2009. LNCS, vol. 5677, pp. 143–159. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03356-8 9

26. Kalai, Y.T., Rothblum, G.N., Rothblum, R.D.: From obfuscation to the security
of Fiat-Shamir for proofs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part II.
LNCS, vol. 10402, pp. 224–251. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63715-0 8

27. Khurana, D., Sahai, A.: Two-message non-malleable commitments from standard
sub-exponential assumptions. IACR Cryptology ePrint Archive 2017, 291 (2017).
http://eprint.iacr.org/2017/291

28. Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: Proceedings of the
Twelfth Annual Symposium on Discrete Algorithms, Washington, DC, USA, 7–9
January 2001, pp. 448–457 (2001)

29. Pass, R.: Simulation in quasi-polynomial time, and its application to protocol com-
position. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 160–176.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9 10

https://doi.org/10.1007/978-3-662-46494-6_4
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-642-28914-9_28
https://doi.org/10.1007/11818175_6
https://doi.org/10.1007/s00145-010-9092-8
https://doi.org/10.1007/s00145-010-9092-8
https://doi.org/10.1007/978-3-319-63715-0_6
https://doi.org/10.1007/978-3-319-63715-0_6
https://doi.org/10.1007/11426639_5
https://doi.org/10.1007/978-3-642-03356-8_9
https://doi.org/10.1007/978-3-319-63715-0_8
https://doi.org/10.1007/978-3-319-63715-0_8
http://eprint.iacr.org/2017/291
https://doi.org/10.1007/3-540-39200-9_10

Statistical Witness Indistinguishability (and more) in Two Messages 65

30. Sahai, A., Vadhan, S.P.: A complete problem for statistical zero knowledge. J.
ACM 50(2), 196–249 (2003). http://doi.acm.org/10.1145/636865.636868

31. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryp-
tion, and more. In: Shmoys, D.B. (ed.) Symposium on Theory of Computing, STOC
2014, New York, NY, USA, 31 May–03 June 2014, pp. 475–484. ACM (2014).
http://doi.acm.org/10.1145/2591796.2591825

32. Wolf, S., Wullschleger, J.: Oblivious transfer is symmetric. In: Vaudenay, S. (ed.)
EUROCRYPT 2006. LNCS, vol. 4004, pp. 222–232. Springer, Heidelberg (2006).
https://doi.org/10.1007/11761679 14

http://doi.acm.org/10.1145/636865.636868
http://doi.acm.org/10.1145/2591796.2591825
https://doi.org/10.1007/11761679_14

An Efficiency-Preserving Transformation
from Honest-Verifier Statistical
Zero-Knowledge to Statistical

Zero-Knowledge

Pavel Hubáček1(B), Alon Rosen2, and Margarita Vald3

1 Computer Science Institute, Charles University, Prague, Czech Republic
hubacek@iuuk.mff.cuni.cz

2 IDC Herzliya, Herzliya, Israel
alon.rosen@idc.ac.il

3 Tel Aviv University, Tel Aviv, Israel
margarita.vald@cs.tau.ac.il

Abstract. We present an unconditional transformation from any
honest-verifier statistical zero-knowledge (HVSZK) protocol to standard
SZK that preserves round complexity and efficiency of both the verifier
and the prover. This improves over currently known transformations,
which either rely on some computational assumptions or introduce signif-
icant computational overhead. Our main conceptual contribution is the
introduction of instance-dependent SZK proofs for NP, which serve as
a building block in our transformation. Instance-dependent SZK for NP
can be constructed unconditionally based on instance-dependent com-
mitment schemes of Ong and Vadhan (TCC’08).

As an additional contribution, we give a simple constant-round SZK
protocol for Statistical-Difference resembling the textbook HVSZK proof
of Sahai and Vadhan (J.ACM’03). This yields a conceptually simple
constant-round protocol for all of SZK.

1 Introduction

Zero-knowledge proof systems, introduced by Goldwasser et al. [9], give any
powerful prover the ability to convince a verifier about validity of a statement
without revealing any additional information other than its correctness. This
power has been extensively exploited in constructions of various cryptographic

P. Hubáček—This work was performed while at the Foundations and Applications
of Cryptographic Theory (FACT) center, IDC Herzliya, Israel. Partially supported
by the PRIMUS grant PRIMUS/17/SCI/9 and by the Center of Excellence – ITI,
project P202/12/G061 of GA ČR.
A. Rosen—Work supported by ISF grant no 1399/17 and by NSF-BSF Cyber Secu-
rity and Privacy grant no. 2014/632.
M. Vald—Work supported by ISF grant no 1399/17 and by Google Europe Doctoral
Fellowship in Security.

c© International Association for Cryptologic Research 2018
J. B. Nielsen and V. Rijmen (Eds.): EUROCRYPT 2018, LNCS 10822, pp. 66–87, 2018.
https://doi.org/10.1007/978-3-319-78372-7_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78372-7_3&domain=pdf

An Efficiency-Preserving Transformation from HVSZK to SZK 67

protocols. Besides the many applications, great effort was invested to improve
our understanding of the limits of zero-knowledge proof systems with respect to
different complexity measures such as round complexity or efficiency of prover
and verifier.

Similarly to the requirement of soundness for interactive proof systems, there
are many natural relaxations of zero-knowledge. In this work we study statisti-
cal zero-knowledge (SZK) proofs. In particular, we revisit the problem of immu-
nizing any honest-verifier statistical zero-knowledge (HVSZK) protocol against
malicious verifiers, while preserving the efficiency of the original protocol. Such
transformation suggests a methodology for constructing zero-knowledge proto-
cols: first construct an efficient proof system for the desired problem where the
zero-knowledge property holds against honest verifiers, and then compile it to a
full-blown zero-knowledge proof against malicious verifiers while preserving the
efficiency.

Bellare et al. [3] initiated the study of general transformations from honest-
verifier zero-knowledge protocols to protocols in which the zero-knowledge prop-
erty holds against arbitrary verifiers. Their work presented such a transformation
under the assumption of intractability of solving the discrete-logarithm problem.
Later, Ostrovsky et al. [15] presented a transformation under a weaker assump-
tion of existence of one-way permutations. Okamoto [13] further weakened the
assumption to existence one-way functions. However, relying on intractability
assumptions prevents the zero-knowledge property to hold against computation-
ally unbounded verifiers which might be a desirable property in some contexts.

Until recently, unconditional transformations of honest-verifier zero-
knowledge to zero-knowledge against malicious verifiers were only known via
public-coin proof system. Under the restriction to constant-round public-coin
protocols [4,5] gave first such unconditional transformations. The restriction
to constant-round was lifted by [7] who gave a transformation achieving general
statistical zero-knowledge starting from any public-coin honest-verifier statistical
zero-knowledge protocol. Combining the transformation of [7] with the private-
coin to public-coin transformation of [8,13] yields a general transformation start-
ing from any honest-verifier protocol. However, it follows from Vadhan [17] that
any transformation from honest-verifier zero-knowledge to general cheating veri-
fier that goes through public-coin protocol must result in a significant blow-up in
the prover’s complexity. Moreover, the private-coin to public-coin transformation
of [8,13] does not preserve the message complexity.

Ong and Vadhan [14] successfully avoided the standard private-coin to public-
coin transformation by relying on their novel construction of a relaxed notion of
commitments, called instance-dependent commitment. Instance-dependent com-
mitments allow the hiding and binding properties of a commitment scheme not to
hold simultaneously but rather to depend on a given instance. Specifically, they
obtained a general transformation from honest-verifier statistical zero-knowledge
to general statistical zero-knowledge by going via the transformation of honest-
verifier statistical zero-knowledge to two-round Arthur-Merlin protocol due to
Aiello and H̊astad [1]. In the resulting statistical zero-knowledge protocol the

68 P. Hubáček et al.

verifier sends the first message of Arthur in the AM protocol and the prover
then gives a statistical zero-knowledge proof for the NP statement of the form:
there exists a message of Merlin that makes Arthur accept. The statistical zero-
knowledge proof for this NP statement can be performed in constant number
of rounds by instantiating known statistical zero-knowledge protocols for NP
using the instance-dependent commitment scheme of Ong and Vadhan [14]. The
transformation in [14] was the first to result in a protocol with constant number
of rounds. However, the [14] transformation, as well as all of the above uncon-
ditional transformations, result in a significant blow-up in the complexity of the
prover compared to the original honest-verifier protocol.

2 Our Results

We present a general efficiency-preserving compiler from any honest-verifier
statistical zero-knowledge proof to a statistical zero-knowledge proof against
malicious verifiers. Our compiler preserves both the round complexity and the
prover’s complexity of the original honest-verifier protocol. Our transformation
yields a very simple constant-round statistical zero-knowledge protocol for every
problem in honest-verifier statistical zero-knowledge.

Theorem 1 (honest-verifier SZK to SZK compiler). For every promise
problem Π ∈ HVSZK, there exists a statistical zero-knowledge proof where the
prover’s complexity and the round complexity match the parameters of the best
honest-verifier statistical zero-knowledge proof for Π.

Applying Theorem1 on the honest-verifier statistical zero-knowledge proto-
col of Sahai and Vadhan [16] for the HVSZK-complete problem Statistical-
Difference yields the following:

Theorem 2 (Constant-round proof for SZK). For every promise problem
Π ∈ HVSZK, there exists a constant-round statistical zero-knowledge proof.

Additionally, we show how to achieve Theorem2 via simple direct construction
for Statistical-Difference. This is shown in Sect. 4.2.

Our transformation follows the classical approach of Goldreich et al. [6] to
immunize protocols against malicious behavior. In the context of zero-knowledge,
an honest verifier follows the protocol specification using a uniformly random
tape. The standard way to preserve zero-knowledge in the presence of a malicious
verifier is to enforce the honest behavior. To this end, we leverage the fact that
the protocol specification is a deterministic function of the verifier’s view; at
each round the verifier’s view consists of its random tape and the messages
received up to this round. Thus, the verifier can give a zero-knowledge proof for
the NP statement attesting that its messages to the prover are indeed computed
according to the specifications of the protocol.

Note that the quality of the employed zero-knowledge proof for NP deter-
mines the quality of the resulting protocol. Specifically, if we use as a building
block a proof for NP that is zero-knowledge against polynomial-time verifiers

An Efficiency-Preserving Transformation from HVSZK to SZK 69

then the resulting protocol will be a zero-knowledge argument. This follows from
the fact that the roles of the prover and verifier are reversed in the intermediate
proof for NP and our compiler cannot guarantee soundness against unbounded
provers unless the simulator for the intermediate proofs can handle unbounded
verifiers. To solve this issue, we use a relaxation of statistical zero-knowledge for
NP that is sufficient for our compiler to result in a statistical zero-knowledge
proof.

Instance-dependent commitment schemes [2,10], in which the properties of
the commitment protocol depend on a given instance of a language, proved to be
useful in constructions of zero-knowledge protocols by Itoh et al. [10]. Recently,
Ong and Vadhan [14] constructed instance-dependent (ID) commitments relative
to all of SZK. The ID commitments of Ong and Vadhan are statistically binding
on Yes instances of the SZK problem and statistically hiding on No instances
(and vice versa due to the fact that SZK is closed under complement).

In this work, we define a relaxation of zero-knowledge proofs, called instance-
dependent zero-knowledge, and show that it suffices for the [6] approach when
constructing a compiler from honest-verifier statistical zero-knowledge to general
statistical zero-knowledge. Analogously to other instance-dependent primitives,
soundness and zero-knowledge do not necessary hold simultaneously in instance-
dependent zero-knowledge proofs but depending on the underlying instance of
the given promise problem. We believe that this primitive is of independent inter-
est and may find further applications beyond our compiler. We instantiate the
instance-dependent zero-knowledge by employing the construction of instance-
dependent commitments [14] in the constant-round zero-knowledge proof of
knowledge for NP of Lindell [11] (see Sect. 4.1 for details). The instantiation
and our compiler do not rely on any intractability assumption.

3 Preliminaries

Throughout the rest of the paper we use the following notation and definitions.
For n ∈ N, let [n] denote the set {1, . . . , n}. A function g : N → R

+ is negligible
if it tends to 0 faster than any inverse polynomial, i.e., for all c ∈ N there exists
kc ∈ N such that for every k > kc it holds that g(k) < k−c. We use neg(·) to
denote a negligible function if we do not need to specify its name.

A random variable X is a function from a finite set S to the nonnegative
reals with the property that

∑
s∈S X(s) = 1. We write x ← X to indicate

that x is selected according to X. We write Un to denote the random variable
that is uniform over {0, 1}n. We use the terms random variable and probability
distribution interchangeably.

A probability ensemble is a set of random variables {Ax}x∈{0,1}∗ , where Ax

takes values in {0, 1}p(|x|) for some polynomial p. We call such an ensemble
samplable if there is a probabilistic polynomial-time algorithm such that for
every x, the output of the algorithm is distributed according to Ax.

70 P. Hubáček et al.

3.1 Interactive Proof Systems

Definition 1 (Interactive proof system). A pair of interactive machines
〈P,V〉 is called an interactive proof system for a language L if V is a PPT
machine and there exists a negligible function neg(·) such that ∀k ∈ N the fol-
lowing holds:

Completeness: For all x ∈ L,

Pr[〈P,V〉(x, 1k) = 1] = 1.

Soundness: For all x /∈ L, and every interactive machine P∗,

Pr[〈P∗,V〉(x, 1k) = 1] ≤ neg(k).

Definition 2 (Proof of knowledge). Let L ∈ NP and let RL be its witness
relation. An interactive proof system 〈P, V 〉 for L is called a proof of knowledge
(PoK) if it satisfies the following property:

Knowledge Soundness: There exists a PPT machine E, called the extractor,
such that for every P∗, for every x ∈ L, auxiliary input z, random tape r,
and k ∈ N

Pr[EP∗
(x, z, r; 1k) = w : (x,w) ∈ RL] ≥ Pr[〈P∗(z; r),V〉(x, 1k) = 1] − neg(k).

If the soundness property (resp. the knowledge soundness) in 〈P,V〉 holds
only with respect to PPT provers, we call it an interactive argument system
(resp. an argument of knowledge).

3.2 Statistical Zero-Knowledge

We use the standard definition of statistical difference of two probability distri-
butions X,Y over universe U, i.e.,

SD (X,Y) = max
S⊂U

|Pr[X ∈ S] − Pr[Y ∈ S]|.

Definition 3 (Promise problems). A promise problem is specified by two
disjoint sets of strings Π = (ΠY,ΠN), where ΠY is the set of YES instances
and ΠN is the set of NO instances. Any promise problem Π is associated with
the following algorithmic task: given an input string that is promised to lie in
ΠY ∪ ΠN, decide whether it is in ΠY or in ΠN.

Recall that the zero-knowledge property is captured via an existence of a
simulator, an entity that simulates the view of the verifier in its interaction with
the prover.

An Efficiency-Preserving Transformation from HVSZK to SZK 71

Definition 4 (View of an interactive protocol). Let 〈A,B〉 be an inter-
active protocol. B’s view of 〈A,B〉 on common input x is the random variable
(A,B)(x) = (m1, . . . , mt; r) consisting of all the messages m1, . . . , mt exchanged
between A and B together with the string r containing all the random bits that
B has read during the interaction.1

Statistical zero knowledge requires that the statistical difference between the
simulator’s output distribution and the verifier’s view is so small that polynomi-
ally many repetitions of the protocol cannot make it noticeable. The definition
allows the simulator to occasionally fail and output fail, and it only measures
the quality of the simulation conditioned on non-failure.

Definition 5 (Honest-Verifier Statistical Zero-Knowledge). An interac-
tive proof system 〈P, V 〉 for a promise problem Π is said to be honest-verifier
statistical zero-knowledge if there exists a PPT S that fails with probability at
most 1/2 and a negligible function neg(·) such that ∀x ∈ ΠY, k ∈ N,

SD
(
S̃(x, 1k), (P,V)(x, 1k)

)
≤ neg(k)

where S̃ is the output distribution of S conditioned on not failing. HVSZK
denotes the class of all promise problems admitting honest-verifier statistical
zero-knowledge proofs.

Zero knowledge against arbitrary verifier is captured by exhibiting a single,
universal simulator S that simulates an arbitrary verifier strategy V∗ by using
V∗ as a subroutine (denoted by SV

∗
). That is, the simulator does not depend

on or use the code of V∗, and instead only has black-box access to V∗. More
formally,

Definition 6 (Statistical Zero-Knowledge). An interactive proof system
〈P, V 〉 for a promise problem Π is said to be statistical zero-knowledge if there
exists a PPT S that fails with probability at most 1/2 such that for every nonuni-
form PPT V∗ it holds that

SD
(
S̃V

∗
(x, 1k), (P,V∗)(x, 1k)

)
≤ neg(k) ∀x ∈ ΠY, k ∈ N,

where S̃ is the output distribution of S conditioned on not failing, and neg(·) is
some negligible function that may depend on V∗. SZK denotes the class of all
promise problems admitting statistical zero-knowledge proofs.

3.3 Instance-Dependent Commitment Schemes

Definition 7 (Instance-dependent commitment schemes). An instance-
dependent commitment scheme is a family of commitment schemes
{Comx}x∈{0,1}∗ with the following properties:

1 Note that equivalently we can define the view to be the messages from A to B and
B’s random bits. This is since the messages sent by B are a deterministic function
of the received messages and the B’s random bits.

72 P. Hubáček et al.

1. Scheme Comx proceeds in two stages: a commit stage and a reveal stage. In
both stages, the sender and receiver receive instance x as common input, and
hence we denote the sender and receiver as Sx and Rx, respectively, and write
Comx = (Sx,Rx,Openx).

2. At the beginning of the commit stage, sender Sx receives a private input b ∈
{0, 1}, which denotes the bit that Sx is supposed to commit to. At the end of
the commit stage, both sender Sx and receiver Rx output a commitment c.

3. In the reveal stage, sender Sx sends a pair (b, d), where d is the decommitment
string for bit b. Receiver Rx outputs Openx(c, b, d) ∈ {accept, reject}.

4. The sender Sx and receiver Rx algorithms are computable in polynomial time
(in |x|), given x as auxiliary input.

5. For every x ∈ {0, 1}∗, Openx(c, b, d) = accept with probability 1 if both sender
Sx and receiver Rx follow their prescribed strategy.

Definition 8 (Statistical hiding). Instance-dependent commitment scheme
Comx = (Sx,Rx,Openx) is statistically hiding on I ⊆ {0, 1}∗ if for every
R∗, the ensembles {viewR∗(Sx(0),R∗)}x∈I and {viewR∗(Sx(1),R∗)}x∈I are sta-
tistically indistinguishable, where the random variable viewR∗(Sx(b),R∗) denotes
the view of R∗ in the commit stage interacting with Sx(b). For a promise prob-
lem Π = (ΠY,ΠN), an instance-dependent commitment scheme Comx for Π is
statistically hiding on the YES instances if Comx is statistically hiding on ΠY.

Definition 9 (Statistical binding). Instance-dependent commitment scheme
Comx = (Sx,Rx,Openx) is statistically binding on I ⊆ {0, 1}∗ if for every S∗,
there exists a negligible function neg such that for all x ∈ I, the malicious sender
S∗ wins in the following game with probability at most neg(|x|).
– S∗ interacts with Rx in the commit stage obtaining commitment c.
– Then S∗ outputs d0 and d1, and it wins if Openx(c, 0, d0) = Openx(c, 1, d1) =

accept.

For a promise problem Π = (ΠY,ΠN), an instance-dependent commitment
scheme Comx for Π is statistically binding on the NO instances if Comx is
statistically binding on ΠN.

Theorem 3 ([14]). Every problem Π = (ΠY,ΠN) ∈ HVSZK has an instance-
dependent commitment scheme that is statistically hiding on the YES instances
and statistically binding on the NO instances. Moreover, the instance-dependent
commitment scheme is public-coin and constant-round.

Since HVSZK is closed under complement, for every Π = (ΠY,ΠN) ∈
HVSZK, we can also obtain instance dependent commitments in which the secu-
rity properties are reversed (i.e., statistically binding on YES instances and sta-
tistically hiding a on NO instances).

4 Constant-Round Statistical Zero-Knowledge Proofs

In this section, we define a relaxation of zero-knowledge called instance-
dependent statistical zero-knowledge proofs. We show that for the class NP it is

An Efficiency-Preserving Transformation from HVSZK to SZK 73

possible to obtain constant-round instance-dependent statistical zero-knowledge
proofs of knowledge without relying on computational assumptions. Next, using
this relaxation of zero-knowledge for NP, we construct a constant-round statis-
tical zero-knowledge proof for any promise problem in HVSZK.

4.1 Instance-Dependent Statistical Zero-Knowledge Proofs

Instance-dependent statistical zero-knowledge proofs are a relaxation of the stan-
dard notion of statistical zero-knowledge proofs that allows the proof to depend
on a specific promise problem Π. Similarly to instance-dependent commitment
schemes [2,10,12], the prover and the verifier receive an instance x of the problem
Π as auxiliary input and a statement ψ to prove. The proof system is required
to be sound proof of knowledge when x ∈ ΠY and zero-knowledge when x ∈ ΠN.

Looking ahead, instance-dependent zero-knowledge proofs will be used as
a sub-protocol within some outer protocol. Note that there are two instances
involved: (1) an instance of the promise problem Π, for which the outer protocol
is constructed and (2) an instance of the language L for which the instance-
dependent proof system is used.

Definition 10 (Instance-dependent statistical zero-knowledge). An
instance-dependent statistical zero-knowledge proof of knowledge for language
L with respect to a promise problem Π = (ΠY,ΠN) is a family of protocols
{〈Px, Vx〉}x∈{0,1}∗ with the following properties:

– 〈Px, Vx〉 is complete on all instances of Π, i.e., for all x ∈ ΠY ∪ ΠN.
– 〈Px, Vx〉 is statistical zero-knowledge on the NO instances, i.e., for all x ∈ ΠN.
– 〈Px, Vx〉 is a sound proof of knowledge on the YES instances, i.e., for all

x ∈ ΠY.

We show that the protocol of Lindell [11] instantiated with the instance-
dependent commitments of Ong and Vadhan [14] gives rise to a constant-round
instance-dependent statistical zero-knowledge proof of knowledge for NP.

Theorem 4. For every promise problem Π = (ΠY,ΠN) ∈ HVSZK and for every
language L ∈ NP, there exists a constant-round instance-dependent statistical
zero-knowledge proof of knowledge for L with respect to Π. Moreover, the zero-
knowledge property holds against unbounded verifiers.

Similarly to instance-dependent commitments, for all Π = (ΠY,ΠN) ∈
HVSZK, we can obtain instance-dependent statistical zero-knowledge with the
security properties reversed, i.e., with knowledge soundness on NO instances and
statistical zero-knowledge on YES instances.

Proof (Proof of Theorem 4). Let Π = (ΠY,ΠN) ∈ HVSZK be some promise
problem and denote by HC the Hamiltonian Cycle language. Let x be an
instance of Π, let Comsb

x be an instance-dependent commitment scheme that
is statistically binding on ΠY and statistically hiding on ΠN. Let Comsh

x be an
instance-dependent commitment scheme that is statistically binding on ΠN and

74 P. Hubáček et al.

statistically hiding on ΠY. The protocol is formally presented in Fig. 1. Since HC
is NP-complete, we obtain a proof system for any language in NP by a standard
reduction.

Fig. 1. The instance-dependent statistical zero-knowledge proof of knowledge 〈Px,Vx〉
for NP-complete problem Hamiltonian Cycle with respect to a promise problem Π ∈
HVSZK. The protocol builds on the constant-round zero-knowledge proof of knowledge
of Lindell [11] which we instantiate with instance-dependent commitments relative to
an instance x of Π.

Lindell [11] showed that if the verifier commits using a statistically hiding
scheme Comsh

x and the prover commits using a statistically binding scheme Comsb
x

then the protocol in Fig. 1 is sound proof of knowledge for HC. Since Comsh
x and

Comsb
x satisfy this requirement on ΠY, we obtain that 〈Px,Vx〉 is sound proof

of knowledge for HC with respect to all x ∈ ΠY. Therefore, it is only left to
show that 〈Px,Vx〉 is statistical zero-knowledge against unbounded verifiers with
respect to all x ∈ ΠN.

An Efficiency-Preserving Transformation from HVSZK to SZK 75

Fig. 2. Simulator for the protocol in Fig. 1.

Note that when x ∈ ΠN, the commitment Comsh
x is statistically binding and

Comsb
x is statistically hiding. In Fig. 2, we present a simulator that produces a

distribution of transcripts which is statistically close to the real distribution of
transcripts.

Lemma 5. For all x ∈ ΠN, every input graph G = (V,E), every security param-
eter k ∈ N, and any verifier V∗, it holds that

Pr[SV
∗
(x,G, 1k) = fail] ≤ neg(k).

Proof. Given x ∈ ΠN, let V∗ be an arbitrary verifier. We get that

Pr[SV
∗
(x,G, 1k) = fail]

≤ Pr[∃c, q1, d1, q
′
1, d

′
1 : Opensh

x (c, q1, d1) = Opensh
x (c, q′

1, d
′
1) = accept]

which is at most negligible in the security parameter since the commitment
scheme Comsh

x is statistically binding for any x ∈ ΠN. �
Note that the simulator S rewinds V∗ such that the initially chosen string q is

the coin-flipping result. In this case, S can decommit appropriately and conclude
the proof. The statistical closeness of the distribution of transcripts produced by
the simulator and the real distribution of transcripts follows from the statistical
hiding of Comsb

x combined with the statistical binding of Comsh
x .

76 P. Hubáček et al.

Due to statistical hiding of Comsb
x , the probability over q2 and r2 that V∗

decommits to c1 in the main thread (before rewinding) is basically equivalent
to the probability that V∗ decommits to c1 in the rewind. Thus, the only differ-
ence between the output distribution generated by S and the output distribution
generated in a real proof is that in the case that q(i) = 1 the unopened commit-
ments in the simulated transcript are all to 0, and not to the rest of the graph
apart from the cycle. However, due to the statistical hiding property of Comsb

x

on x ∈ ΠN, the distributions are statistically close. This completes the proof of
Theorem 4. �

4.2 A Concrete Protocol for a SZK-Complete Problem

In this section, we show that HVSZK ⊆ SZK[c], where SZK[c] is the class
of all promise problems that admit constant-round statistical zero-knowledge
proof. Concretely, in Fig. 3 we present a simple constant-round statistical zero-
knowledge protocol secure against any malicious verifier for a complete prob-
lem in HVSZK, called Statistical-Difference. The constant-round proto-
col for any problem in HVSZK would comprise of a reduction to Statistical-
Difference (which can be performed locally by both P and V) and then running
our protocol.

First, we recall the Statistical-Difference problem which was shown to
be HVSZK-complete by Sahai and Vadhan [16]. In this work we consider the
polarized form of Statistical-Difference, that can be obtained from the
basic definition in polynomial-time.

Definition 11 (Statistical-Difference). Given k ∈ N, the promise problem
Statistical-Difference is SD = (SDY ,SDN), where

SDY = {(X0,X1) : SD (X0,X1) ≥ 1 − 2−k},

SDN = {(X0,X1) : SD (X0,X1) ≤ 2−k}.

Above, X0,X1 are circuits encoding probability distributions.

Given X = (X0,X1), an instance of Statistical-Difference, our proto-
col builds on the standard honest-verifier statistical zero-knowledge proof for
Statistical-Difference of Sahai and Vadhan [16]. To force the verifier to
behave as in the original honest-verifier protocol, we use (1) a constant-round
instance-dependent commitment scheme ComX = (SX ,RX ,OpenX) that is sta-
tistically binding on SDY , and (2) a constant-round instance-dependent statisti-
cal zero-knowledge proof of knowledge 〈PX ,VX〉 for NP that is zero-knowledge
on SDN against any unbounded verifier. These building blocks are provided by
Theorems 3 and 4, respectively. The protocol is formally presented in Fig. 3.

Theorem 6. The protocol presented in Fig. 3 is constant-round statistical zero-
knowledge proof for Statistical-Difference.

By completeness of Statistical-Difference for HVSZK, we obtain a
constant-round protocol secure against any verifier for every problem in the
class.

An Efficiency-Preserving Transformation from HVSZK to SZK 77

Fig. 3. The statistical zero-knowledge proof 〈PSD,VSD〉 for Statistical-Difference.
Our protocol builds on the honest-verifier statistical zero-knowledge proof of Sahai
and Vadhan [16] with the following changes: (1) The verifier’s randomness is picked
mutually by the verifier and the prover (while maintaining the secrecy to the prover). (2)
The verifier is required to provide a proof that it used the mutually chosen randomness.

Corollary 7. There exists a constant-round statistical zero-knowledge proof for
every Π ∈ HVSZK, where the zero-knowledge holds against any malicious veri-
fier.

Proof of Theorem 6. Here we show that the protocol in Fig. 3 is complete, sound
and achieves statistical zero-knowledge.

Completeness. Due to the perfect completeness of the 〈PX ,VX〉 proof, it follows
that the completeness error of our protocol is the same as the completeness error
of the standard protocol for SD of [16], i.e., at most 2−k.

Soundness. We present here a proof sketch. The full proof can be found in Sect. 5,
where we present the general transformation. Given X = (X0,X1) ∈ SDN , a
NO instance of Statistical-Difference, let P∗ be an arbitrary prover. Let
ComX and 〈PX ,VX〉 be as defined above. Finally, let SimX be the statistical
zero-knowledge simulator for 〈PX ,VX〉.

We show that the soundness error in the above protocol is at most negligi-
bly larger than the soundness error in the original honest-verifier protocol. This
follows from the statistical zero-knowledge property against unbounded verifiers

78 P. Hubáček et al.

Fig. 4. Simulator SV∗
SD for protocol 〈PSD,VSD〉. The simulator honestly participates in an

execution with V∗ but instead of sending the last message, it extracts the randomness
of the verifier and uses it to generate the last message.

of 〈PX ,VX〉, and the statistical hiding property of ComX . Specifically, the dis-
tribution of transcripts 〈P∗,VSD〉(X) is statistically close to the distribution of
transcripts where the proof in Step 2b is performed using SimX (this can be
done since V is honest, and proves a true statement). Note that when Step 2b
is performed using SimX , the acceptance probability of V is equivalent to its
acceptance probability in a protocol where the proof of Step 2b is not performed
at all. We can use the statistical hiding property of ComX to argue that the
distribution of transcripts of the protocol without Step 2b is in turn statistically
close to a distribution of transcripts where the verifier commits to a fixed value
(r∗, b∗) and uses uniformly random r0, b0 to compute y = Xb0⊕b1(r0 ⊕ r1). How-
ever, this corresponds exactly to the original honest-verifier protocol of Sahai and
Vadhan [16]. Therefore, the soundness error can be at most negligibly larger.

Statistical Zero-Knowledge. For any V∗, the simulator SSD proceeds as described
in Fig. 4.

Lemma 8. For all PPT V∗, X ∈ SDY , and k ∈ N, it holds that

Pr[SV
∗

SD(X, 1k) = fail] ≤ 1/2.

Proof. Let V∗ be some PPT verifier, let X ∈ SDY be some input, and let k be
the security parameter. Note that SV

∗
SD fails only when V∗ provides an accepting

proof of knowledge of the value committed in c while the extractor fails to extract
this value. Therefore,

Pr[SV
∗

SD(X, 1k) = fail]

≤ Pr[VX(c, r1, b1, y, θ) = accept ∧ EV∗

X
(c, r1, b1, y, θ) = fail],

where (c, r1, b1, y, θ) is the partial transcript produced by SV
∗

SD(X, 1k) in Step 1
of the simulation. Since SV

∗
SD behaves in Step 1 exactly as the honest prover PSD,

An Efficiency-Preserving Transformation from HVSZK to SZK 79

we can switch to (c, r1, b1, y, θ) ← 〈PSD,V∗〉(X, 1k), and obtain the following
series of inequalities.

≤ Pr[VX(c, r1, b1, y, θ) = accept] · (1 − Pr[EV∗
X

(c, r1, b1, y, θ) �= fail])

≤ Pr[VX(c, r1, b1, y, θ) = accept] · (1 − Pr[VX(c, r1, b1, y, θ) = accept] + neg(k))

< 1/2,

where (c, r1, b1, y, θ) ← 〈PSD,V∗〉(X, 1k). �
To complete the proof, we show that conditioned on not outputting fail,

the output distribution of SV
∗

SD is statistically close to the view of V∗. Due to the
statistical binding of ComX , the extracted randomness is distributed statistically
close to the randomness of V∗. Moreover, the simulated transcript in Step 1 is
distributed identically to 〈PSD,V∗〉. Given this observation, it is sufficient to
bound the probability that the last message of the simulated transcript differs
from the last message of the real transcript (the real and the simulated transcript
distributions are otherwise identical).

Lemma 9. For all PPT V∗, X ∈ SDY , and k ∈ N, it holds that

Pr[S̃V
∗

SD(X, c, r1, b1, y, θ) �= b′′] ≤ neg(k),

where (c, r1, b1, y, θ, b′′) ← 〈PSD,V∗〉(X, 1k), and S̃V
∗

SD(X, c, r1, b1, y, θ) denotes
simulator’s message in Step 3 on input X and transcript prefix (c, r1, b1, y, θ),
conditioned on not outputting fail.

Proof. Let V∗ be some PPT verifier, let X ∈ SDY be some input, and let k be
the security parameter. The claim follows from the fact that the transcripts may
differ if either the statistical binding does not hold or the verifier samples a value
from one of the distributions such that the probability of this value in the other
distribution is higher (this event happens with 2−k probability). That is,

Pr[S̃V
∗

SD(X, c, r1, b1, y, θ) �= b′′]

≤ Pr[c is not binding] + Pr[∃r∗
0 , d

∗ : OpenX(c, r∗
0 , 1 − b′′, d∗) = accept]

≤ neg(k),

where (c, r1, b1, y, θ, b′′) ← 〈PSD,V∗〉(X, 1k). �
Lemma 9 completes the proof of Theorem 6. �

5 Efficient Transformation from Honest-Verifier
SZK to SZK

The general transformation takes any honest-verifier statistical zero-knowledge
protocol 〈P,V〉 for promise problem Π = (ΠY,ΠN) ∈ HVSZK, an instance

80 P. Hubáček et al.

x ∈ Π, a constant-round instance-dependent commitment scheme Comx that is
statistically binding on ΠY instances, and a constant-round instance-dependent
statistical zero-knowledge proof of knowledge protocol 〈Px,Vx〉 for NP (from
Theorem 4), and constructs a statistical zero-knowledge proof for Π.

Theorem 10 (Theorem 1 restated). For every promise problem Π ∈ HVSZK,
there exists a statistical zero-knowledge proof where the prover’s complexity and
the round complexity match the parameters of the best honest-verifier statistical
zero-knowledge proof for Π.

The transformation is given in Fig. 5. We establish the proof of Theorem10
by arguing its correctness, soundness, and zero-knowledge property below.

Fig. 5. Compiled protocol 〈P′,V′〉. A compiler from honest-verifier protocol 〈P,V〉 for
promise problem Π to protocol 〈P′,V′〉 that is zero-knowledge against general verifiers.
For a t-round protocol 〈P,V〉 we denote by Vi the next-message function of V in round i
computed on the input, the (i−1)-rounds transcript, and the random tape of V (where
Vt+1 refers to the output of V in the protocol). The next-message function is similarly
defined for P.

Correctness. Correctness of the compiled protocol 〈P′,V′〉 follows directly from
correctness of the building blocks, i.e., the instance-dependent statistical zero-
knowledge proof of knowledge for NP 〈Px,Vx〉 and the honest-verifier statistical
zero-knowledge proof 〈P,V〉.

An Efficiency-Preserving Transformation from HVSZK to SZK 81

Soundness. Soundness of the compiled protocol 〈P′,V′〉 follows from the sound-
ness of the basic honest-verifier protocol 〈P,V〉 combined with the instance-
dependent zero-knowledge proofs for NP being statistical zero-knowledge against
unbounded verifiers on ΠN. Moreover, the statistical hiding property of Comx

on ΠN allows V′ to use random coins distributed almost identically as the ran-
domness of V (the distribution of randomness might be influenced by a cheating
prover only if the hiding property does not hold).

Proposition 11 (Soundness of 〈P′,V′〉). Let Π = (ΠY,ΠN) ∈ HVSZK, and
let 〈P,V〉 be honest-verifier statistical zero-knowledge protocol for Π. For all
x ∈ ΠN, k ∈ N, and P∗, it holds that

Pr[〈P∗, V ′〉(x, 1k) = 1] = η〈P,V〉 + neg(k),

where η〈P,V〉 denotes the soundness error of 〈P,V〉.
Proof. The proof of soundness follows from a series of lemmas. First, we define
protocol 〈Pr,Vr〉 to be the same as the compiled protocol 〈P′,V′〉 but without
the proofs of correctness provided by V′. We use 〈Pr,Vr〉 to argue that the-coin
flipping phase alone increases the soundness error by at most a negligible amount
over η〈P,V〉.

Lemma 12. For all x ∈ ΠN, k ∈ N, and P∗
r, it holds that

Pr[〈P∗
r ,Vr〉(x, 1k) = 1] ≤ η〈P,V〉 + neg(k).

Proof. We consider an intermediate protocol, denoted by 〈P1,V1〉. The protocol
〈P1,V1〉 is the same as 〈Pr,Vr〉 with the difference that V1 commits to 0tV and
uses a uniformly random string independent of rP as its randomness.

First, we show that for all x ∈ ΠN, k ∈ N, and P∗
1, it holds that

Pr[〈P∗
1,V1〉(x, 1k) = 1] ≤ η〈P,V〉.

This is shown by constructing a prover P∗ that wins the security game for 〈P,V〉
with the same probability as P∗

1. The constructed P∗ simulates for P∗
1 the coin-

flipping phase using a commitment to all-zero string, receives rP and answers all
messages from V with messages from P∗

1. It follows from construction of P∗
1 that

Pr[〈P∗
1,V1〉(x, 1k) = 1] = Pr[〈P∗,V〉(x, 1k) = 1] ≤ η〈P,V〉.

Next, we show that for all x ∈ ΠN, k ∈ N, and P∗
r , it holds that

Pr[〈P∗
r ,Vr〉(x, 1k) = 1] ≤ η〈P,V〉 + neg(k).

The bound follows from the statistical hiding property of Comx on NO
instances, i.e., on ΠN. Specifically, the transcripts of the coin-flipping phase
in 〈P∗

r ,Vr〉 and in 〈P∗
r ,V1〉 are statistically indistinguishable. This completes the

proof of Lemma 12. �

82 P. Hubáček et al.

We now define a sequence of hybrid protocols that gradually move between
the interaction in 〈Pr,Vr〉 (where the verifier does not provide any proof of
correctness for its messages) and the interaction in 〈P′,V′〉 (where every message
of V′ is followed by a proof of correctness). Let t be the number of rounds in
〈P,V〉, we define t + 2 protocols as follows:

Protocol 〈P′,V′
0〉 is defined similarly to 〈P′,V′〉, where V′

0 behaves as V′, except
that V′

0 provides simulated proofs using the simulator for 〈Px,Vx〉.
Protocol 〈P′,V′

i〉 is defined for 1 ≤ i ≤ t + 1. The protocol 〈P′,V′
i〉 is the same

as 〈P′,V′
i−1〉, except that V′

i performs the i-th proof using the actual witness
instead of the simulator.

Note that 〈P′,V′
t+1〉 is equivalent to 〈P′,V′〉. Moreover, the soundness error

of 〈P′,V′
0〉 is equal to the soundness error of 〈Pr,Vr〉. This can be seen by

converting any cheating prover P′∗ for 〈P′,V′
0〉 to a cheating prover P∗

r for
〈Pr,Vr〉. Concretely, on input x, the constructed prover P∗

r internally runs P′∗

and provides it with simulated proof after each message from Vr. It follows that
Pr[〈P′∗,V′

0〉(x, 1k) = 1] = Pr[〈P∗
r ,Vr〉(x, 1k) = 1] ≤ η〈P,V〉 + neg(k).

Lemma 13. For all x ∈ ΠN, for every k ∈ N, any prover P′∗, and 1 ≤ i ≤ t+1,
it holds that

SD
(〈P′∗,V′

i〉(x, 1k), 〈P′∗,V′
i−1〉(x, 1k)

) ≤ neg(k).

Proof. The only difference in two consecutive hybrid protocols 〈P′∗,V′
i−1〉 and

〈P′∗,V′
i〉 is the simulated vs. the real proof in the i-th round when executing

〈P′,V′〉. Assume towards a contradiction that there exists x ∈ ΠN, a prover P′∗,
and 1 ≤ j ≤ t + 1 such that for some polynomial p it holds that

SD
(〈P′∗,V′

j〉(x, 1k), 〈P′∗,V′
j−1〉(x, 1k)

) ≥ p(k).

We show that there exists an unbounded verifier V∗
x, and a partial transcript

(c, r, τ, α) up to round j such that (c, r, τ, α) ∈ Lj and

SD
(
(Px,V∗

x)(c, r, τ, α; 1k),SV
∗
x(c, r, τ, α; 1k)

)
≥ p(k).

We define V∗
x and the partial transcript as follows. To obtain the partial tran-

script, run P′∗ and simulate V′ honestly during the first j − 1 rounds of 〈P′,V′〉
and compute the j-th round message α. Let (c, r, τ, α) be the partial transcript
so far. We define V∗

x to be identical to the behavior of P′∗ in the proof of the
j-th round. Note that we can complete the partial transcript to a full transcript
of 〈P′,V′〉 by continuing with the internal run of P′∗ and providing it with sim-
ulated proofs for the remaining rounds j +1, . . . , t+1, as if they were generated
by the honest V′. Thus, if the proof provided at round j is simulated then the
complete transcript is drawn from 〈P′∗,V′

j−1〉(x, 1k) and otherwise it is drawn
from 〈P′∗,V′

j〉(x, 1k). Therefore, we obtain that

SD
(
(Px,V∗

x)(c, r, τ, α; 1k),SV
∗
x(c, r, τ, α; 1k)

)

≥ SD
(〈P′∗,V′

j〉(x, 1k), 〈P′∗,V′
j−1〉(x, 1k)

)
.

An Efficiency-Preserving Transformation from HVSZK to SZK 83

Hence,
SD

(
(Px,V∗

x)(c, r, τ, α; 1k),SV
∗
x(c, r, τ, α; 1k)

)
≥ p(k),

contradicting the statistical zero-knowledge property (against unbounded veri-
fiers) of 〈Px,Vx〉. �

Given that we have polynomially many hybrids and they are all statistically
close, Lemma 13 completes the proof of soundness. �

Statistical zero-knowledge. At a high level, the zero-knowledge property of the
compiled protocol 〈P′,V′〉 follows from the zero-knowledge property of the under-
lying honest-verifier protocol 〈P,V〉. That is, the proofs of correctness provided
at each round by the verifier force the produced transcript to follow the same
distribution as in the execution with an honest verifier, which ensures that the
resulting protocol also achieves zero-knowledge. We formally show that the sim-
ulator given in Fig. 6 satisfies the statistical zero-knowledge requirement.

Fig. 6. Simulator SV∗
for the compiled protocol 〈P′,V′〉. The simulator SV∗

samples a
simulated transcript for the honest-verifier protocol which it uses to provide answers
to V∗ in the honest-verifier protocol execution phase, as well as to force the prover’s
randomness in the coin-flipping phase.

Proposition 14. For all PPT V∗, x ∈ ΠY, and k ∈ N, there exists a negligible
function neg(·) such that

SD
(
S̃V

∗
(x, 1k), (P′,V∗)(x, 1k)

)
≤ neg(k) ,

where S̃V
∗
is the output distribution of SV

∗
conditioned on not outputting fail.

84 P. Hubáček et al.

We prove Proposition 14 via a series of lemmas about the capability of any
malicious verifier to deviate from the honest behavior, both in the real execution
and in the simulated execution. We start by showing that in Step 2 of 〈P′,V′〉
any verifier must produce a transcript distribution that is statistically close to
the transcript distribution of the honest verifier.

Lemma 15. For all PPT V∗, x ∈ ΠY, and k ∈ N, there exists a negligible
function neg(·) such that

Pr[〈P,V(r)〉(x) �= τt ∧ transcript �= ⊥] ≤ neg(k),

where (transcript, r) ← (P′,V∗)(x, 1k), and transcript �= ⊥ denotes that all
the intermediate proofs of correctness in the transcript are accepting, τi is the
projection of transcript on the messages in 〈P,V〉 up to round i (including),
and 〈P,V(r)〉(x) denotes the transcript produced in the honest execution of 〈P,V〉
on input x with verifier’s randomness r.

Proof. For (transcript, r) ← (P′,V∗)(x, 1k), we denote by 〈P,V(r)〉(x)i the
message of V at round i. We denote by αi the message of V∗ and by θi the
transcript of the proof at round i in transcript.

Pr[〈P,V(r)〉(x) �= τt ∧ transcript �= ⊥]

≤ Pr[∃i ∈ [t] : αi �= 〈P,V(r)〉(x)i ∧ θi is accepting]

≤
∑

i∈[t]

Pr[αi �= 〈P,V(r)〉(x)i ∧ θi is accepting]

≤ neg(k),

where (transcript, r) ← (P′,V∗)(x, 1k), and the last inequality follows from
the soundness of 〈Px,Vx〉 using the union bound. �
Lemma 16. For all PPT V∗, x ∈ ΠY, and k ∈ N, there exists a negligible
function neg(·) such that

Pr [V(x, view; r) �= τt ∧ transcript �= ⊥] ≤ neg(k),

where (view, r) ← SV(x, 1k), and transcript is a simulated transcript produced
by S̃V

∗
(x, 1k) using (view, r) as described in Fig. 6. We use transcript �= ⊥

to denote that all the intermediate proofs of correctness in the transcript are
accepting, τi is the projection of transcript on the 〈P,V〉 messages up to round
i (included), and V(x, view; r) denotes the transcript produced by V on input x
with randomness r and receiving messages in view.

An Efficiency-Preserving Transformation from HVSZK to SZK 85

Proof. We denote by V(x, view; r)i the message of V at round i in 〈P,V〉, and
by αi and θi the message and proof of V∗ in transcript at round i. We denote
by c the commitment of V∗ to rV in transcript.

Pr [V(x, view; r) �= τt ∧ transcript �= ⊥]

≤ Pr
[
V(x, view; r) �= τt ∧ transcript �= ⊥ ∧ EV∗ �= fail

]

≤ Pr [c is not binding] + Pr
[∃i∈[t]:αi �=V(x,view;r)i∧θi is accepting ∧
EV∗ �=fail∧∃! r∗,d∗:Openx(c,r∗,d∗)=accept

]

≤ neg(k) +
∑

i∈[t]

Pr
[

αi �=V(x,view;r)i∧θi is accepting ∧
EV∗ �=fail∧∃! r∗,d∗:Openx(c,r∗,d∗)=accept

]

≤ neg(k),

where (view, r) ← SV(x, 1k), and transcript is a simulated transcript produced
by S̃V

∗
(x, 1k) using (view, r) as described in Fig. 6. �

Proof (Proposition 14). For any PPT verifier V∗, conditioned on the simulator
not outputting fail, it follows from the statistical binding of Comx together with
the honest-verifier statistical zero-knowledge property provided by SV that the
distribution of the simulated transcript in the coin-flipping phase produced by
S̃V

∗
is statistically close to the transcript distribution of the coin-flipping phase

in 〈P′,V∗〉. In particular, the produced randomness for V∗ in S̃V
∗

is statistically
close to uniform. From the following facts we obtain the desired:

1. From Lemma 15 it follows that only a neg(k) fraction of 〈P′,V∗〉 transcripts
disagree with 〈P,V〉 and the randomness distribution of 〈P′,V∗〉 is uniform
as in 〈P,V〉.

2. From Lemma 16 it follows that only a neg(k) fraction of transcripts produced
by S̃V

∗
disagree with SV and the randomness distribution of S̃V

∗
is statistically

close to uniform, as in SV.
3. The behavior of S̃V

∗
in all the 〈Px,Vx〉 proofs is identical to the behavior

of P′.

Combining the above we obtain that for all PPT V∗, x ∈ ΠY, and k ∈ N, it
holds that the full transcript distribution of S̃V

∗
(x, 1k) is statistically close to

the transcript distribution of 〈P′,V∗〉(x, 1k). �
We complete the proof of statistical zero-knowledge by bounding the proba-

bility of SV
∗

outputting fail.

Proposition 17. For all PPT V∗, x ∈ ΠY, and k ∈ N, it holds that

Pr[SV
∗
(x, 1k) = fail] ≤ 1/2.

86 P. Hubáček et al.

Proof. Let V ∗ be any PPT verifier and let x ∈ ΠY be some input. Note that
SV

∗
fails only when V∗ provides an accepting proof of knowledge θc of the value

committed in c while the extractor fails to extract this value. That is,

Pr[SV
∗
(x, 1k) = fail] ≤ Pr[Vx(c, θc) = accept ∧ EV∗

(x, c, θc) = fail],

where (c, θc) ← SV
∗
(x, 1k). Since SV

∗
behaves exactly as P′ during the com-

mitment c and the proof θc in Step 2 of the simulation, we can switch to
(c, θc) ← 〈P′,V∗〉(x, 1k) and obtain the following series of inequalities:

≤ Pr[Vx(c, θc) = accept] · (1 − Pr[EV∗
(x, c, θc) �= fail])

≤ Pr[Vx(c, θc) = accept] · (1 − Pr[Vx(c, θc) = accept] + neg(k))
< 1/2,

where (c, θc) ← 〈P′,V∗〉(x, 1k). �

Acknowledgements. We wish to thank Salil Vadhan and the anonymous EURO-
CRYPT 2018 referees for their helpful advice.

References

1. Aiello, W., H̊astad, J.: Statistical zero-knowledge languages can be recognized in
two rounds. J. Comput. Syst. Sci. 42(3), 327–345 (1991)

2. Bellare, M., Micali, S., Ostrovsky, R.: Perfect zero-knowledge in constant rounds.
In: Proceedings of the 22nd Annual ACM Symposium on Theory of Computing,
13–17 May 1990, Baltimore, Maryland, USA, pp. 482–493 (1990)

3. Bellare, M., Micali, S., Ostrovsky, R.: The (true) complexity of statistical zero
knowledge. In: Proceedings of the 22nd Annual ACM Symposium on Theory of
Computing, 13–17 May 1990, Baltimore, Maryland, USA, pp. 494–502 (1990)

4. Damg̊ard, I.B.: Interactive hashing can simplify zero-knowledge protocol design
without computational assumptions. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS,
vol. 773, pp. 100–109. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-
48329-2 9

5. Damg̊ard, I., Goldreich, O., Wigderson, A.: Hashing functions can simplify zero-
knowledge protocol design(too). Technical report RS94-39, BRICS, November 1994

6. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: Proceedings of the 19th
Annual ACM Symposium on Theory of Computing, New York, USA, pp. 218–229
(1987)

7. Goldreich, O., Sahai, A., Vadhan, S.P.: Honest-verifier statistical zero-knowledge
equals general statistical zero-knowledge. In: Proceedings of the Thirtieth Annual
ACM Symposium on the Theory of Computing, 23–26 May 1998, Dallas, Texas,
USA, pp. 399–408 (1998)

8. Goldreich, O., Vadhan, S.P.: Comparing entropies in statistical zero knowledge
with applications to the structure of SZK. In: Proceedings of the 14th Annual
IEEE Conference on Computational Complexity, 4–6 May 1999, Atlanta, Georgia,
USA, p. 54 (1999)

https://doi.org/10.1007/3-540-48329-2_9
https://doi.org/10.1007/3-540-48329-2_9

An Efficiency-Preserving Transformation from HVSZK to SZK 87

9. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

10. Itoh, T., Ohta, Y., Shizuya, H.: A language-dependent cryptographic primitive. J.
Cryptol. 10(1), 37–50 (1997)

11. Lindell, Y.: A note on constant-round zero-knowledge proofs of knowledge. J. Cryp-
tol. 26(4), 638–654 (2013)

12. Micciancio, D., Vadhan, S.P.: Statistical zero-knowledge proofs with efficient
provers: lattice problems and more. In: Boneh, D. (ed.) CRYPTO 2003. LNCS,
vol. 2729, pp. 282–298. Springer, Heidelberg (2003). https://doi.org/10.1007/978-
3-540-45146-4 17

13. Okamoto, T.: On relationships between statistical zero-knowledge proofs. In: Pro-
ceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Com-
puting, 22–24 May 1996, Philadelphia, Pennsylvania, USA, pp. 649–658 (1996)

14. Ong, S.J., Vadhan, S.: An equivalence between zero knowledge and commitments.
In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 482–500. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78524-8 27

15. Ostrovsky, R., Venkatesan, R., Yung, M.: Interactive hashing simplifies zero-
knowledge protocol design. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS,
vol. 765, pp. 267–273. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-
48285-7 23

16. Sahai, A., Vadhan, S.P.: A complete problem for statistical zero knowledge. J.
ACM 50(2), 196–249 (2003)

17. Vadhan, S.P.: On transformation of interactive proofs that preserve the prover’s
complexity. In: Proceedings of the Thirty-Second Annual ACM Symposium on
Theory of Computing, 21–23 May 2000, Portland, OR, USA, pp. 200–207 (2000)

https://doi.org/10.1007/978-3-540-45146-4_17
https://doi.org/10.1007/978-3-540-45146-4_17
https://doi.org/10.1007/978-3-540-78524-8_27
https://doi.org/10.1007/3-540-48285-7_23
https://doi.org/10.1007/3-540-48285-7_23

Implementing Multiparty Computation

Efficient Maliciously Secure Multiparty
Computation for RAM

Marcel Keller1(B) and Avishay Yanai2

1 University of Bristol, Bristol, UK
M.Keller@bristol.ac.uk

2 Bar-Ilan University, Ramat Gan, Israel
Ay.Yanay@gmail.com

Abstract. A crucial issue, that mostly affects the performance of
actively secure computation of RAM programs, is the task of read-
ing/writing from/to memory in a private and authenticated manner.
Previous works in the active security and multiparty settings are based
purely on the SPDZ (reactive) protocol, hence, memory accesses are
treated just like any input to the computation. However, a garbled-
circuit-based construction (such as BMR), which benefits from a lower
round complexity, must resolve the issue of converting memory data bits
to their corresponding wire keys and vice versa.

In this work we propose three techniques to construct a secure mem-
ory access, each appropriates to a different level of abstraction of the
underlying garbling functionality. We provide a comparison between the
techniques by several metrics. To the best of our knowledge, we are the
first to construct, prove and implement a concretely efficient garbled-
circuit-based actively secure RAM computation with dishonest majority.

Our construction is based on our third (most efficient) technique, clev-
erly utilizing the underlying SPDZ authenticated shares (Damg̊ard et al.,
Crypto 2012), yields lean circuits and a constant number of communi-
cation rounds per physical memory access. Specifically, it requires no
additional circuitry on top of the ORAM’s, incurs only two rounds of
broadcasts between every two memory accesses and has a multiplicative
overhead of 2 on top of the ORAM’s storage size.

Our protocol outperforms the state of the art in this settings when
deployed over WAN. Even when simulating a very conservative RTT of
100 ms our protocol is at least one order of magnitude faster than the
current state of the art protocol of Keller and Scholl (Asiacrypt 2015).

This research was supported by a grant from the Ministry of Science, Technology
and Space, Israel, and the UK Research Initiative in Cyber Security. This work has
been supported in part by EPSRC via grants EP/M012824 and EP/N021940/1, by
the European Research Council under the ERC consolidators grant agreement n.
615172 (HIPS) and by the BIU Center for Research in Applied Cryptography and
Cyber Security in conjunction with the Israel National Cyber Bureau in the Prime
Minister’s Office.

c© International Association for Cryptologic Research 2018
J. B. Nielsen and V. Rijmen (Eds.): EUROCRYPT 2018, LNCS 10822, pp. 91–124, 2018.
https://doi.org/10.1007/978-3-319-78372-7_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78372-7_4&domain=pdf
http://orcid.org/0000-0003-2261-9376
http://orcid.org/0000-0003-4060-0150

92 M. Keller and A. Yanai

1 Introduction

1.1 Background

Actively secure multiparty computation (in the dishonest majority setting)
allows n parties to compute an arbitrary function over their private inputs while
preserving the privacy of the parties and the correctness of the computation even
in the presence of a malicious adversary, who might corrupt an arbitrary strict
subset of the parties.

The field of secure two-party (2PC) and multiparty (MPC) computation has
a rich literature, starting with Yao [40] and Goldreich-Micali-Wigderson [16] and
attracted much interest during the past decade due to advances in efficiency and
fast implementations [8,23,26,37,38]. Nevertheless, almost all previous works
require the parties to first “unroll” the function into an arithmetic or Boolean
circuit representation and then securely evaluate the circuit gate by gate. This
is in contrast to modern design of algorithms of practical interest (e.g., binary
search, Dijkstra’s shortest-path algorithm, Gale-Shapley stable matching, etc.)
that are typically represented as Random Access Machine (RAM) programs that
contain branches, recursions, loops etc., which utilize the O(1) access to memory,
rather than circuits. In the following we provide the necessary overview on the
RAM model of computation and how it is securely realized.

RAM Model of Computation. RAM is classically modeled as a protocol that
is carried out between two entities: CPU and MEMORY, which are essentially
a couple of polynomial time Turing machines, such that their storage capacity
is unbalanced, specifically, the CPU usually stores a small amount of data, cor-
responding to the state of the program, which is logarithmic in the amount of
storage in MEMORY required by the program. We denote the CPU’s storage by
d and the MEMORY’s storage by D such that |D| = N and |d| = O(log N). We
denote a memory block at address i by D[i]. During the program execution CPU
typically chooses to perform one instruction I out of a final instructions set IS.
A program Π and an input x are first loaded into the storage of MEMORY and
then the CPU is being triggered to start working. From that point, CPU and
MEMORY are engaged in a protocol with T rounds where T is the running time
of Π. In the t-th round:

1. CPU computes the CPU-step function:

CCPU(statet, b
read
t) = (statet+1, i

read
t , iwritet , bwritet) (1)

by executing instruction It ∈ IS. The input statet is the current state of
the program (registers etc.), breadt is the block that was most recently loaded
from MEMORY. The outputs of the CPU-step are: The new program’s state
statet+1, the address ireadt in D to read from and the address iwritet in D to
write the block bwritet to.

2. CPU sends (ireadt , iwritet , bwritet) to MEMORY. We define accesst � (ireadt , iwritet).
3. MEMORY sends data block D[ireadt] to CPU and assigns D[iwritet] = bwritet .

Efficient Maliciously Secure Multiparty Computation for RAM 93

In every such a round, CPU is said to make a single request, or logical access,
to MEMORY. The output of the protocol, denoted y = Π(D,x), is the result
of the computation of the program Π on input x and memory D, such that
CPU sets y as the last state of the program, stateT+1. The sequence of accesses
{access1, . . . , accessT } is called the access pattern of Π on input x and memory
D (of size N) and denoted AP(Π,D,x). Similarly, the sequence {I1, . . . , IT } is
called the instruction pattern and denoted IP(Π,D,x).

The general methodology of designing secure multiparty computation
directly to RAM programs is by having the parties take both the role of CPU
and MEMORY and sequentially evaluate sufficiently many copies of the CCPU

function. Upon completing the evaluation of one function, the parties access D
according to CCPU’s output (ireadt , iwritet , bwritet) and obtain the input breadt to the
next function.

Obviously, a secure protocol must not reveal D to the parties, otherwise it
would be possible to learn information about the parties’ inputs. Trivially avoid-
ing this is by embedding two sub-procedures inside CCPU, one to encrypt (and
authenticate) bwrite before it is output and one to decrypt (and verify authentica-
tion of) bread before it is used by CCPU. This enhanced function is denoted CCPU+ .
Let C1

CPU+ , . . . ,CT
CPU+ be garbled versions of CCPU+ . The parties feed their inputs

x = x1, . . . , xn into C1
CPU, taking the place of the wires associated with state1

and sequentially evaluate the garbled circuits to obtain y = stateT+1. This way,
even an adversary who can tap (or even tamper) the memory accesses is unable
to manipulate the program so it operates over forged data (since the data blocks
are authenticated), yet, it might reveal information about the parties’ inputs or
program’s state from the access pattern.

ORAM in Secure RAM Computation. Previous works on 2PC and
MPC for RAM programs [1,11,14,18–20,22,24,28–31,39] use Oblivious RAM
(ORAM) as an important building block. Informally speaking, an ORAM scheme
is a technique to transform a program Π with runtime T and initial storage D
to a new program Π ′ with runtime T ′ and initial storage D′ such that the
access pattern AP(Π ′,D′,x) appears independent of both Π and x, yet, both
programs compute the same function, i.e. Π(D,x) = Π ′(D′,x) for all x. All
ORAM schemes that we know of work by first initializing the storage D and
then online simulate each memory access individually (i.e. we don’t know of a
scheme that simulates a bunch of accesses altogether). It was shown feasible,
since the work of Goldreich and Ostrovsky [17], that the simulation of a single
memory access of Π (which denoted by logical access above) incurs poly(log N)
memory accesses in Π ′, denoted physical accesses, which leads to the same run
time overhead, that is T ′ = T · poly(log N). In addition, we can obtain the same
overhead for memory consumption of Π ′, that is N ′ = N · poly(log N).

The general methodology for secure computation of RAM programs using
an ORAM scheme is by having the parties collaboratively compute an ORAM
transformation of Π and D (via any MPC protocol) to obtain Π ′ and D′. This is
a one-time step that incurs a computational and communication complexity that

94 M. Keller and A. Yanai

is proportional to N ′. Then, they engage in a protocol of T ′ steps to compute
Π ′(D′, x) and, as before, obtain the output as stateT ′+1.

This way, to securely compute a program, it is no longer required to unroll it
to a circuit, rather, it is enough to unroll only the ORAM scheme algorithms and
the CPU-step function. Consequently, this approach may lead to concentrated
research efforts to optimize a specific set of ORAM scheme algorithms instead
of looking for optimizations to the circuit version of each individual program.

Oblivious vs. Non-oblivious Computation. We distinguish between obliv-
ious and non-oblivious computation in the following sense: In oblivious compu-
tation the parties learn nothing about the computation (except its output and
runtime). Specifically, the parties learn nothing about either the program Π,
CPU’s state or the input x. This means that an oblivious computation is appli-
cable for private function evaluation (PFE) in which the function itself is kept
secret. On the other hand, non-oblivious computation allows the parties to learn
which instruction is being computed in which time step, in particular, it rules
out algorithms that branch on secret values (otherwise, information about the
secret values might be leaked). As noted in [28], in order to hide the instruction
being computed - in every time step every possible instruction must be executed.
The only implementation of an oblivious computation with active security that
we know of is by Keller [22]. It has a performance of 41Hz (physical memory
accesses per second) in the online phase with 1024×64 bit memory and 2Hz for
220 × 64 bit memory1 for 2 parties running over a local network. On the other
hand, secure non-oblivious computation (denoted “instruction-trace oblivious”
in [28]) is expected to yield a much better throughput, since the parties can
avoid securely evaluating the universal CPU-step circuit, but can instead simply
evaluate a much smaller circuit corresponding to the current instruction.

Notwithstanding the theoretical results in this paper hold for oblivious com-
putation, the implementation results we report hold only for the non-oblivious
settings. This relaxation is justified by the fact that non-oblivious computation
is applicable for plenty of useful algorithms such as graph and search algorithms.

Achieving Efficient Protocols. To achieve an efficient, actively secure RAM
computation the following crucial issues are to be addressed:

1. Round complexity. As explained above, securely evaluating a program requires
T ′ = T · poly(log N) rounds of interaction between CPU and MEMORY, cor-
responding to the T ′ physical memory accesses. Also note that the access
pattern of a program is determined by the input that it is given. Now, con-
sider the CPU-step at time t from Eq. (1), the parties need to read D[ireadt]
and map it to the input wires associated with breadt . However, they do not
know from ahead (i.e. when garbling) which address ireadt would be accessed
in which timestep and thus cannot map the input wire labels of Ct

CPU to the

1 The decrease in throughput reflects the runtime overhead implied by the ORAM, as
mentioned above, this overhead depends on the memory size N .

Efficient Maliciously Secure Multiparty Computation for RAM 95

right memory location. Therefore, achieving a protocol with round complex-
ity independent in T is much more challenging, in fact, there is a line of works
that proposes constant-round secure RAM computation [7,11–14,19,30], how-
ever, it is highly impractical. A more reasonable path, which we follow in this
paper, is to construct a scheme with a constant number of rounds per any
number of parallel physical memory accesses. Although there exist passively
secure implementations [28,29] that are constant-round per physical memory
access, the actively secure implementations that we know of [22,24] have a
round complexity linear in the depth of the CPU-step circuit (which depends
on the ORAM implementation).

2. Private and authenticated memory. A natural approach suitable for securely
handling memory is to choose an ORAM that encrypts its memory contents.
In this approach, the parties must evaluate CPU-step circuits that include
encryption/decryption and authentication/verification sub-circuits. This is
undesirable since the resulting construction is non black-box in its underly-
ing encryption/authentication primitives and, more practically, embedding
encryption and authentication sub-circuits in every CPU-step circuit adds a
large overhead in terms of computation, communication and space complexi-
ties for garbling and evaluating. This would be especially objectionable when
the original RAM’s behavior is non-cryptographic. The circuitry overhead
when using the sub-circuit approach is demonstrated for several memory sizes
in Table 1 where the circuit size is for a typical instruction that requires mem-
ory access2. Circuit size refers to the number of AND gates in the circuit per-
forming a logical access, read and write are the number of bits being accessed
and encryption/authentication size is the number of AND gates that would
be necessary when incorporating the encryption and authentication proce-
dures inside the CPU-step circuit. We measure the overhead using both our
technique (described in Sect. 4.1) and a trivial solution using the AES block
cipher (with circuit size of 6000 AND gates3), assuming blocks of s = 40 bits.
We can see that even with our improvement (due to SPDZ representation
of memory), securing memory accesses incurs an additional circuitry that is
about 45 times larger than the ORAM circuit itself, therefore, we are highly
motivated to find other techniques for transferring memory from storage to
circuits.

3. Memory consumption. In actively secure BMR-based protocols memory used
for storing the garbled circuit grows linearly with the number of gates and
the number of parties. Let G be the number of AND gates, n the number
of participants and κ the security parameter. In the online phase each party
stores 4 ·G ·n ·κ bits that represent the garbled circuit and additional 2 ·G ·κ
bits that represent its own keys (the latter are needed to verify authenticity
of the keys revealed during the evaluation and deciding which garbled entry
to use next). For example, the SHA1 circuit is composed of ∼236K gates,

2 The amount of memory being accessed to satisfy a CPU instruction depends on the
instruction itself, for instance a SIMD instruction access more data than a SISD
instruction.

3 The state-of-the-art construction of an AES circuits incurs only 5200 AND gates.

96 M. Keller and A. Yanai

among them ∼90K are AND gates. The evaluation of SHA1 with κ = 128 by
3 parties incurs memory of size ∼160 Mb and 0.5 Gb when evaluated by 10
parties. While this amount is manageable for a single execution of a circuit,
it is much harder to be maintained when T garbled circuits are evaluated
sequentially in an online phase, as needed in RAM computation. Thus, new
techniques must be developed to address that issue.

Table 1. Proportion of additional circuitry, counted as the number of additional AND
gates, for the purpose of memory encryption and authentication in a logical memory
access.

Mem size Circuit size Read Write Enc/Auth. via Enc/Auth. via

technique, Sect. 4.1 block cipher (AES)

213 94844 31058 29596 2426160 (2600%) 18192000 (19000%)

217 156990 92568 87634 7208080 (4500%) 54060000 (34400%)

221 269300 158508 147982 12259600 (4500%) 91944000 (34100%)

225 423014 249104 231098 19208080 (4500%) 144060000 (34000%)

1.2 Our Contribution

We construct and implement the first actively secure, garbled-circuit-based
ORAM multiparty protocol. Specifically, we present the following contributions:

1. Efficient Secure Memory Access. We propose and compare three tech-
niques to implement memory access in a secure computation for RAM pro-
grams. We briefly describe them in an increasing order of efficiency:
(a) In the first technique, for each memory data item each party stores a

SPDZ share of that data item. We stress that this technique has nothing
to do with the SPDZ protocol, it only uses SPDZ shares representation
to represent the memory content. In each access the data item is being
re-shared using fresh randomness from the parties. Since SPDZ shares
are also authenticated we achieve an authenticated memory as well. The
re-sharing procedure is implemented as a sub-circuit, using only 2 field
multiplications, which are embedded in every CPU-step circuit. For each
s-bit block being accessed, the parties need to communicate O(sn2κ) bits
(by all parties together) to reveal the appropriate keys for the input wires
in the next CPU-step circuit, where κ and s are the computational and
statistical security parameters respectively, s is also the size of a SPDZ
share. This is because every CPU-step receives n shares, each of size s bits,
and for every bit all parties need to broadcast their keys of size κ bits. The
technique requires two rounds of broadcast per physical memory access,
however, as explained above, embedding encryption and authentication
sub-circuits has theoretical and practical disadvantages.

Efficient Maliciously Secure Multiparty Computation for RAM 97

(b) The second technique is inspired by [1,32], in which the memory is imple-
mented via wire soldering. That is, since every wire already carries a
hidden and authentic value through the key that is revealed to the par-
ties, the key itself could be stored in memory. This way, the parties do not
need to transform wire keys to data items back and forth for every access,
instead, they use wire soldering directly from the “writing circuit” to the
“reading circuit”. This “prunes away” the additional circuitry of the first
technique, with the drawback of having each bit in the ORAM memory
represented using a BMR key, i.e. nκ bits (with n the number of parties
and κ the security parameter). This technique, however, is superior in the
other metrics as well, that is, it requires much less triples to be gener-
ated in the offline phase since it does not need the additional circuitry
(which includes many AND gates) and has 2 communication rounds for
each physical memory access, just like the first technique.
Naively generalizing the soldering of [1] to the multiparty settings requires
each party to commit to its keys to all other parties using a xor-
homomorphic commitment scheme. Instead, in this work we obviate the
need of a commitment scheme and show how to use the readily avail-
able keys’ shares. Moreover, we show how to do that black-box in the
BMR garbling functionality, even when using the Free-XOR optimization
[2], by which different garbled circuits are assigned with different global
differences.

(c) The third technique offers a clever improvement to the soldering in that
we solder only one bit, namely, the real value that passes through a wire,
instead of the whole key that represents that value. As such, the solder-
ing requires no offline overhead at all, that is, in contrast to the second
technique, this technique does not invoke the multiplication command of
the underlying MPC. We utilize the fact that the BMR-evaluation pro-
cedure reveals to the parties the external bit of each output wire (that
is associated with a bit to be written to memory) and the fact that the
permutation bits are already shared. This way the parties could obtain a
share to a single bit which is the XOR (addition in the binary field) of
the external and permutation bits.

Nevertheless the third technique is the most promising for it is the most effi-
cient in all parameters (see Table 2 for a comparison), the first and second
techniques are also beneficial since they work in a higher level of abstraction
and assume less about the circuit-garbling functionality. In particular, the
first technique can be used with any underlying circuit-based protocol for
evaluating the CPU-step circuits. The second technique requires an underly-
ing protocol that relies on the idea of two keys per wire, such as the BMR
construction, however it assumes nothing about the way BMR is implemented
(recall that BMR on its own uses another MPC protocol to garble the gates).
On the contrary, the third technique assumes a specific implementation of
BMR, which shares the wires’ permutation bits among the parties. The SPDZ
protocols family satisfies this last requirement and therefore we use it in our
implementation.

98 M. Keller and A. Yanai

2. Reduced Round and Space Complexities. As opposed to [22,24] that
require communication rounds for every layer of CCPU, and [29] that achieves
only passive security, our protocol is constant round per physical memory
access. As mentioned above, the parties can travel from one CPU-step to the
next by simply performing SPDZ openings, which appears more efficient than
using xor-homomorphic commitment to wire labels in a cut-and-choose based
protocol such as [1] (for 2PC).
We show that by representing memory as a “packed shares” the parties need
to store only 2 bits per bit in the ORAM (that is, to operate an ORAM with
N ′-bit storage the previous parties need to store 2N ′ bits). To the best of our
knowledge this is the best concrete overhead that has been achieved to date.
In contrast, other BMR-based protocols, such as one instantiated using our
second technique, requires each party to store nκ bits per bit in the ORAM.
We further devise a way to shrink the storage required by each party in the
online phase. When using a garbling scheme that produces a garbled circuit
of size independent in the number of parties (as recently proposed [3]) our
optimization leads to a decrease in memory consumption of up to 2. We
stress that this improvement is applicable to all BMR-based constructions.
We present and prove security of it in Sect. 6.

3. Implementation. We have implemented the protocol using our most efficient
memory access technique and obtained experimental access times results in
both LAN and simulated WAN environments for two and three participants.
In addition, we provide a comparison with the previous implementation of
Keller and Scholl [6,24] that is based purely on SPDZ. Our experiments show
that [24] performs better over LAN (up to a factor of two for two parties)
while our work does so over WAN (by one order of magnitude for two par-
ties), justifying our efforts to reduce communication rounds. This supports
the analysis that garbled circuits are more suitable for a setting with high
latency because computation on secret values (after obtaining the garbled
circuit) can be entirely done locally. Note, however, that we still require com-
munication for revealing memory addresses and transferring memory values to
garbled circuit wires. This is not the case for the trivial (asymptotically more
expensive) approach where the whole memory is scanned for every access.
We also implemented the latter and found that our protocol breaks even at
a memory size in the 1’000s for the LAN setting and in the 100’000s for the
WAN setting.

We stress that even though [38] also achieves a constant-round multiparty
protocol for circuit-based computation (i.e. not RAM programs) our third and
most efficient technique is not directly applicable to their construction. In partic-
ular, our technique relies on the fact that all parties can identify the correctness
of wire labels without communication. This is the case for BMR because every
party learns both possibilities for κ bits of every wire label. This is only true
for one of two parties in the above work. We therefore leave it as an open prob-
lem how to combine the two techniques and how a possible combination would
compare to our work.

Efficient Maliciously Secure Multiparty Computation for RAM 99

1.3 Related Work

Gordon et al. [18] (who followed the work of Ostrovsky and Shoup [33] that was
tailored specifically for PIR) designed the first general two-party, semi-honest,
secure computation protocol for RAM. Their work focuses on the client-server
settings, where the client has a small input and the server has a large database,
and require the client to maintain only a small storage (i.e. logarithmic in the
size of the database). Their technique relies on the one-time-initialization of the
ORAM, after which, the server stores an encrypted version of the memory, then
the parties iteratively engage in a traditional, circuit-based, secure two-party
computation for every ORAM instruction.

Garbled RAM, introduced by Lu and Ostrovsky [30], is an analogue object
of garbled circuit with respect to RAM programs. Namely, a user can garble
an arbitrary RAM program directly without converting it into a circuit first.
A garbled RAM scheme can be used to garble the memory, the program and
the input in a way that reveals only the evaluation outcome and nothing else.
The main advantage of garbled RAM is that it leads to a constant-round two-
party or multi-party protocols to both semi-honest and malicious settings. This
is reflected in a series of works on variations of garbled RAM [11–14,19], however
all of these works focused on showing feasibility rather than efficiency and are
impractical.

Afshar et al. [1] presented two actively secure protocols for the two-party
settings: One that works in the offline-online model and one for streaming. The
main idea in both of their schemes is encoding RAM memory via wire labels4.
When the program reads from memory location �, it is possible to reuse the
appropriate output wire labels from the most recent circuit to write to location
� (which is not necessarily the previous circuit). Those protocols require the
parties to coordinate before the evaluation of each CPU-step, either by soldering
techniques that require XOR homomorphic commitments for aligning wire labels
(based on [10,32]) or by invocations of oblivious transfer to allow evaluation of
next garbled circuits, in addition to a large amount of symmetric operations
for garbling, encrypting and decrypting s copies of the circuit (since it uses
the cut-and-choose technique). Overall, this would incur an additional overhead
of O(snκ), since for each input wire, of each of the O(s) garbled circuits, each
party would need to commit and open its XOR homomorphic commitment, with
computational security parameter κ. Moreover, the streaming version requires
both the garbler and the evaluator to maintain O(s) copies of the memory. That
work was followed by [20,31] to achieve a constant round protocol for ZKP of
non-algebraic statements in the RAM model, but not for secure computation.

Keller and Scholl [24], showed how to implement two ORAM variants for the
oblivious array and oblivious dictionary data structures, specifically, they com-
pared their implementation for the binary Tree ORAM [34] and the Path ORAM
4 Encoding the state as wire labels is simpler than encoding the memory since it only

requires matching wire labels of output wires of one CPU-step to the input wires of
the next. This can be done in the offline phase, without knowing the program or the
input.

100 M. Keller and A. Yanai

[35] using various optimizations for many parts of the ORAM algorithms. Their
implementation of secure oblivious array and dictionary are purely based on the
SPDZ protocol, hence, they have no use of the techniques we develop in this
paper because the memory in their work is represented exactly the same as the
secret state of the program is represented. Therefore, there is no requirement of
conversion between those two entities (memory and state). Due to their use of
a secret-sharing based MPC using the SPDZ authenticated shares representa-
tion, evaluation of multiplication gates are performed interactively such that the
product results are immediately authenticated, thus, parties can use the memory
as usual shared secrets and verify authenticity only once, when the evaluation
is finished. The drawback in their approach is the high round complexity that
is implied on top of the ORAM round complexity. In our protocol, multiplica-
tions are evaluated inside a circuit and the authentication of the result is not an
integrated part of the multiplication itself (as in the SPDZ protocol).

Doerner and Shelat [9] recently published a two-party passively secure compu-
tation for RAM programs and reported that it outperforms previous works, even
when implemented using the state-of-the-art ORAM schemes, up to large mem-
ory sizes such as 232 elements of 4 bytes. Their Distributed ORAM scheme (AKA
Floram) is derived from the Function Secret Sharing (FSS) for point functions by
Boyle et al. [4,5], which resembles the trivial ORAM that read/write all memory
addresses for every access in order to hide its access pattern, however, this is
resolved since those O(n) accesses are performed by a highly parallelizable local
computation. The main advantage of Floram is that it has only O(1) commu-
nication rounds for both initialization and memory access and does not require
secure computation at all for the initialization. We remark that even though FSS
is feasible in the multiparty setting, it does not offer the same optimizations as
it does to the two party setting, thus, Floram is currently not suitable for the
multiparty setting. In addition, it is not trivial to lift their scheme to have active
security.

2 Preliminaries

Relying on the notation and description of the RAM model of computation
presented in Sect. 1.1, we directly proceed to the definition of Oblivious RAM:

2.1 Oblivious RAM

A polynomial time algorithm C is an Oblivious RAM (ORAM) compiler with
computational overhead c(·) and memory overhead m(·), if C, when given a
security parameter κ and a deterministic RAM program Π with memory D
of size N , outputs a program Π ′ with memory D′ of size N ′ = m(N) · N ,
such that for every input x ∈ {0, 1}∗ the running time of Π ′(D′, x) is bounded
by T ′ = T · c(N) and there is a negligible function μ such that the following
properties hold:

Efficient Maliciously Secure Multiparty Computation for RAM 101

– Correctness. For every memory size N ∈ N and every input x ∈ {0, 1}∗

with probability at least 1−μ(κ), the output of the compiled program equals
the output of the original program, i.e. Π ′(D′, x) = Π(D,x).

– Obliviousness. For every two programs Π1,Π2, every D1,D2 of size N and
every two inputs x1, x2 ∈ {0, 1}∗, if the running times of Π1(D1, x1) and
Π2(D2, x2) are T , then

AP(C(Π1, κ),D1, x1))
c≡ AP(C(Π2, κ),D2, x2))

where AP(·) is the access pattern as defined in Sect. 1.1.

As reflected from the above definition, our ORAM scheme is required to
hide only the addresses that CPU accesses since we handle the privacy and
authenticity of the contents of the memory using other techniques. Also, note
that the definition does not require to hide the runtime of the program.

2.2 Secure Computation in the RAM Model

Informally, a secure protocol for RAM programs must hide both program’s access
pattern and its memory contents from the parties. In addition, it must keep the
memory “fresh”, that is, it prevents the adversary to plug in an outdated memory
block to the current CPU-step circuit.

Protocols in this model [13,14,19] typically induce two flavors of security
definitions, such that their construction could be modular, i.e. first achieve a
construction for the weaker security notion (usually called Unprotected Memory
Access) and then enhance it with an ORAM to achieve full security. Informally,
the definition of full security requires that the access pattern remains hidden,
that is, the ideal adversary only obtains the runtime T of the program Π and
the computation output y. Given only T and y, the simulator must be able to
produce an indistinguishable access pattern. The weaker notion of security, as
known as Unprotected Memory Access (UMA), leaks the memory contents as
well as the access pattern to the adversary. In fact, UMA-secure protocols only
deal with how to authentically pass a memory block written in the past to a
circuit that needs to read it in a later point in time. In this work we use the
same definition for full security, however, we use a different definition, called
Unprotected Access Pattern (UAP) instead of the UMA. The definition of UAP
is stronger than UMA since it requires the memory contents remain hidden
from the adversary (and only the access pattern is leaked). Recall that since our
construction is for the non-oblivious computation (see Sect. 1.1) in both security
notions the adversary receives the instruction pattern as well.

Obviously, using a standard ORAM scheme we can easily transform a proto-
col that is UAP secure to a protocol that is fully secure [19], therefore, we may
focus on the weaker notion (although our implementation achieves full security).
We proceed to define both notions.

Full Security. Following the simulation paradigm [15, Chap. 7] we present the
ideal and real models of executions of RAM programs.

102 M. Keller and A. Yanai

Fig. 1. Ideal execution of Π(N,x) with abort.

Execution in the ideal model. In an ideal execution FRAM (Fig. 1), the parties
submit their inputs to a trusted party which in turn executes the program and
returns the output. Let Π be a program with memory D of size N , which expects
n inputs x = x1, . . . , xn, let A be a non-uniform PPT adversary and let I ⊂ [n]
be the set of indices of parties that A corrupts; we may refer to the set of
corrupted parties by pI . Denote the ideal execution of Π on x, auxiliary input z
to A and security parameter κ by the random variable IDEALFRAM

A(z),I(κ,Π,D,x),
as the output set of the honest parties and the adversary A.

Execution in the real model. In the real model there is no trusted party and the
parties interact directly. The adversary A sends all messages in place of the cor-
rupted parties, and may follow an arbitrary PPT strategy whereas honest parties
follow the protocol. Let Π,D,A, I be as above and let P be a multiparty protocol
for computing Π. The real execution of Π on input x, auxiliary input z to A and
security parameter κ, denoted by the random variable REALP

A(z),I(κ,Π,D,x),
is defined as the outputs set of the honest parties and the adversary A.

Definition 2.1 (Secure computation). Protocol P is said to securely com-
pute Π with abort in the presence of malicious adversary if for every PPT
adversary A in the real model, there exists a PPT adversary S in the ideal
model, such that for every I ∈ [n], every x, z ∈ {0, 1}∗ and for large enough κ,
the following holds

{
IDEALFRAM

S(z),I(κ,Π,D,x)
}

κ,x,z

c≡
{
REALP

A(z),I(κ,Π,D,x)
}

κ,x,z

Unprotected Access Pattern (UAP) Security. This notion allows the
adversary to further inspect the access pattern. The ideal functionality FUAP

is given in Fig. 2 and realized by protocol PUAP (Fig. 7).

Definition 2.2 (Secure computation in the UAP model). Protocol P
is said to securely compute Π in the UAP model with abort in the presence
of malicious adversary if for every PPT adversary A for the real model, there

Efficient Maliciously Secure Multiparty Computation for RAM 103

Fig. 2. Ideal execution of Π(N, x) in the UAP model.

is a PPT adversary S for the ideal model, such that for every I ∈ [n], every
x, z ∈ {0, 1}∗ and for large enough κ

{
IDEALFUAP

S(z),I(κ,Π,D,x)
}

κ,x,z

c≡
{
REALP

A(z),I(κ,Π,D,x)
}

κ,x,z

The transformation (or compilation) from UAP to full security is not in the
scope of this paper and can be found in previous works [11–14,19]. We follow
that path since it makes the security analysis simpler and modular, rather than
proving full security from scratch. Therefore, functionality FUAP in Fig. 2, which
is realized in protocol PUAP (Fig. 7), reveals the access pattern to the parties.
By incorporating an ORAM scheme on top of our protocol that access pattern
would be of no gain to the adversary for the reason that an access pattern of a
program execution using an ORAM is indistinguishable from an access pattern
of a randomly chosen program with the same runtime.

We note that achieving a UAP-secure protocol may be useful on its own
(i.e. without lifting it up to full security) in cases where the original program
Π is oblivious, that is, when the access pattern is permitted to be leaked to the
parties.

3 Executing RAM Programs Using BMR

Our protocol follows the BMR-SPDZ approach [25,27] and adapts the free-XOR
technique for the BMR garbling scheme [2]. For completeness, in the following
we describe the structure of the actively secure additive secret sharing used in
SPDZ-like protocols and outline the BMR-SPDZ approach.

3.1 SPDZ Secret Sharing

SPDZ-like protocols use actively secure additive secret sharing over a finite field,
combined with information theoretic MACs to ensure active security. A shared
secret x ∈ F is represented by

�x� = ([x], [m(x)], [α]) = (x1, . . . , xn,m(x)1, . . . ,m(x)n, α1, . . . , αn)

104 M. Keller and A. Yanai

where m(x) = x ·α is a MAC on message x using a global key α. Party pi holds:
A uniformly random share xi of x, a uniformly random share m(x)i of m(x) and
a uniformly random share αi of α such that

x =
n∑

i=1

xi, m(x) =
n∑

i=1

m(x)i, α =
n∑

i=1

αi

We denote an additive secret shared value x by [x] and its authenticated shared
version by �x�. We also denote pi’s share by �x�i = (xi,m(x)i).

When opening a shared value �x� the parties first broadcast their shares
xi and compute x. To ensure that x is correct, they then check the MAC by
committing to and opening m(x)i − x · αi and checking these shares sum up to
zero.

3.2 The BMR-SPDZ Protocol

Unlike the two-party settings, in which we have one garbler and one evaluator,
in the multiparty settings all parties are both garblers and evaluators such that
no strict subset of parties can either influence or learn anything about the values
that the wires carry. In the following we present the key points in the BMR-SPDZ
approach:

Keys. Every party chooses a random key for each wire in the circuit, that is,
party pi chooses key ki

w ∈ F2κ for wire w. This key is named “0-key” and
denoted ki

w,0 where ki
w,0 is essentially the i-th coordinate of a full 0-key, kw,0 =

(k1
w,0, . . . , k

n
w,0) ∈ (F2κ)n.

Global difference. To enable free-XOR, each party chooses its own global-
difference, that is, party pi randomly chooses Δi such that the difference between
its 0-key and its 1-key is Δi. Formally, ki

w,1 = ki
w,0 ⊕Δi for every w and i. Simi-

larly Δi is the i-th coordinate of the full difference Δ = (Δ1, . . . ,Δn). The value
Δi is known only to party pi and no strict subset of the parties (that does not
include pi) can learn it. For wire w we get that kw,1 = kw,0⊕Δ where ⊕ operates
component-wise.

Permutation bits. In the course of the evaluation the parties obtain kw,b with
either b = 0 or b = 1 for every wire w. Party pi could easily check whether b = 0
or b = 1 by extracting the ith element from kw,b and compare it to ki

w,0 and ki
w,1.

If b = 0 we say that the external value of wire w, denoted Λw is 0, otherwise, if
b = 1, then Λw = 1. Since the real value that is carried by wire w, denoted by
ρw, must be kept secret, the external value Λw must reveal nothing about it. To
this end, a random permutation bit, λw, is assigned to each wire w in order to
mask ρw by setting Λw = λw ⊕ ρw.

Inputs. Let w be an input wire that is associated with input xi of party pi, then
the parties open λw to party pi only. Then pi broadcasts Λw and ki

w,Λw
where

Efficient Maliciously Secure Multiparty Computation for RAM 105

Λw = ρw ⊕λw and ρw is its input to wire w. Then, party pj , for all j, broadcasts
its Λw-key kj

w,Λw
such that all parties obtain kw,Λw

= (k1
w,Λw

, . . . , kn
w,Λw

).

Outputs. If w is an output wire then the parties open the permutation bit λw to
everyone. This way, upon obtaining key kw,Λw

the parties learn the real value of
w by ρw = Λw ⊕ λw.

Encrypting a key. In the process of garbling, the parties encrypt the key of a
gate’s output wire using the keys of its input wires. Let m = m1, . . . ,mn be the
key to be encrypted and k�, kr with kb = k1

b , . . . , kn
b be encryption keys of the

left and right input wires, where party pi has mi, ki
�, k

i
r. The parties produce the

ciphertext c = c1, . . . , cn as follows: mj is encrypted using k�, kr to result cj such
that even a single missing coordinate of k� and kr prevents one from decrypting
cj . To encrypt mj , party pi provides Fki

�
(j), Fki

r
(j), where F is a pseudorandom

generator and then, using a protocol for secure computation the parties evaluate
and output:

cj = Enck�,kr
(mj) =

(n⊕
i=1

Fki
�
(j)

)
⊕

(n⊕
i=1

Fki
r
(j)

)
⊕ mj

Note that the keys ki
�, k

i
r are necessary for the decryption of cj for every i, j ∈ [n].

Garbled gate. A garbled version of an AND gate g with input wires u, v and
output wire w, is simply a 4-entries table, each entry is an encryption of either
kw,0 or kw,1, this depends on the permutation bits λu, λv and λw. We want to
enable the evaluator, who holds ku,Λu

and kv,Λv
(which are translated to ρu

and ρv respectively) to decrypt the ciphertext in the (2Λu + Λv)-th entry of
the table and obtain kw,Λw

such that ρw = ρu · ρv. That is, we want to have
λw ⊕ Λw = (λu ⊕ Λu) · (λv ⊕ Λv), thus, the (2Λu + Λv)-th entry conceals kw,Λw

where
Λw = (λu ⊕ Λu) · (λv ⊕ Λv) ⊕ λw

and since kw,1 = kw,0 ⊕ Δ we get that the entry conceals

kw,0 + Λw · Δ = kw,0 +
(
(λu ⊕ Λu) · (λv ⊕ Λv) ⊕ λw

) · Δ

We conclude by presenting functionality FBMR (Fig. 3) for a construction of
a garbled circuit. Note that the only difference between FBMR to the standard
description of this functionality [2,25] is that here the functionality lets the
parties learn a share to the permutation bits λw. This is necessary in order to
obtain a neat security proof of the construction. Protocol PBMR (Fig. 5) realizes
FBMR in the FMPC-hybrid model (Fig. 11 in the appendix). Given a garbled circuit
the parties evaluate it using the EBMR procedure described in Fig. 4.

In the presentation of the protocol (Fig. 5) and to the rest of the paper, we
denote by 〈x〉 the handler (varid) of a variable x that is stored by FMPC.

106 M. Keller and A. Yanai

Fig. 3. The BMR functionality.

3.3 Towards RAM Computation

To be able to securely compute RAM programs (in the UAP model) the parties
garble T circuits GC1, . . . , GCT and then evaluate them sequentially. To this
end, we must specify how the parties obtain the keys intended for the input wires
of each garbled circuit (these are the input wires associated with values statet

and breadt). This task is divided in two: First, the input wires of GCt associated
with statet must carry the same values as the output wires associated with statet

in GCt−1. Second, we need to support secure memory access, that is, the input
wires of GCt associated with breadt must carry the same values as the output
wires associated with bwritet′ in GCt′

, where t′ is the most recent timestep in which
address ireadt−1 was modified. The first task could be easily achieved by changing
PBMR to choose the same keys for both output and input wires that are associated
to the same state in every two consecutive garbled circuits, however, this would
be non-black-box in FBMR (since the functionality chooses its keys independently
for every circuit). For a black-box solution we can use the techniques described
in Sects. 4.2 and 4.3. We stress, though, that the two tasks are orthogonal and

Efficient Maliciously Secure Multiparty Computation for RAM 107

Fig. 4. Evaluation of a BMR garbled circuit.

Fig. 5. Realizing FBMR in the FMPC-hybrid model.

the techniques chosen to complete them are independent. Therefore, in the rest
of the presentation we focus on realizing secure memory access (the second task)
while taking for granted the traveling of the CPU’s state (i.e. we may write “the
parties obtain the input wires of statet” without specifying how).

108 M. Keller and A. Yanai

4 Accessing Memory

In this section we present the three techniques to achieve secure memory accesses
and show how to realize FUAP in the FBMR-hybrid model using the third one.
We compare the performance of the techniques in Table 2. The values within the
table are explained alongside the description of the techniques.

In the presentation below, we group some set of input/output wires together,
according to their purpose as follows: Win refers to the input wires of GC1, which
correspond to the parties’ inputs where W i

in,j corresponds to the j-th bit of input
xi. W t

read, W t
write,W

t
addr,rd,W

t
addr,wr refer to the input breadt , output bwritet , addresses

ireadt , iwritet respectively in GCt. In addition, W t
state refers to the input state and

W t
state′ refers to the output state in GCt.

4.1 Memory via Embedded Authentication Sub-circuit

This technique assumes that the values breadt , bwritet are elements from the same
field that SPDZ use as the underlying MPC protocol. This way, if SPDZ statis-
tical parameter is s then the memory is divided into data items of s bits. We
enhance CCPU with two procedures: Verify and AuthShare and denote the result

Table 2. Performance of the three techniques with n parties. κ and s are the compu-
tational and statistical security parameters. The columns specify the following param-
eters: Number of input wires required in the CPU-step circuit for every input bit (of
the ORAM) that is being read by that circuit. Amount of communication required
for each memory access, this is measured in bits per input wire per party. Number of
communication rounds required from the moment the parties obtained keys of output
wires of GCt to the moment they obtain keys to the input wires of GCt+1. Commu-
nication rounds could be used for secret opening, broadcasting a value or performing
multiplication over shares; among the three, only multiplication requires more work to
be done in the offline phase, specifically, multiplication requires sacrificing a multipli-
cation triple. This is reflected in the Triples column, note that we multiply a vector
of n keys rather than a single key. Memory overhead specifies how many bits do we
store in the memory for a single bit of ORAM memory (again, this is per party. The
total memory size that the parties store should be multiplied by n). The last column
specifies whether a change in the garbled circuit is needed.

Input wires Communication Rounds Triples Memory

overhead

Requires change

in CCPU

Embedded

subcircuit

(Sect. 4.1)

4n 4κ 2 O(ns2) 2 +2s2 AND gates

+4sn input

wires per data

item

Soldering

(Sect. 4.2)

1 (3n + 1)κ 2 2n nκ No

Shared bits

(Sect. 4.3)

1 2s 2 0 2 No

Efficient Maliciously Secure Multiparty Computation for RAM 109

Fig. 6. Enhanced CPU-step circuit CCPU+

by CCPU+ (see Fig. 6). Note that each party has 4s input wires for the purpose
of authentication and sharing (assuming that the global MAC key is part of the
state).

Privacy. The parties maintain their memory in the form of SPDZ shares, thus,
to input content from location iread in memory, every party inputs its SPDZ
share of this content from its own storage D[iread]. Then the secret is being
constructed within the CPU-step circuit. Since this is an additive secret sharing
scheme, the content is being constructed using only XOR gates, which requires
no communication.

Verify Authenticity. We enhance the CPU-step with a sub-circuit that verifies
the authenticity of the secret bread, the sub-circuit is denoted Verify(�v�) where
v refers to bread. Party pi inputs (vi,m(v)i, αi) and the sub-circuit computes5:

v =
n∑

i=1

vi, m(v) =
n∑

i=1

m(v)i, α =
n∑

i=1

αi

and outputs ver = 1 if m(v) − (α · v) = 0 (meaning verification succeeded)
and 0 otherwise (meaning verification has not succeeded), which incurs s2 AND
gates for a single multiplication operation in addition to 2s − 1 AND gates for
deciding whether ver is 1 or 0. Note that this multiplication is over a polynomial
ring over F2, thus the addition involves only XOR. Furthermore, we check the
result directly for zero and skip the reduction modulo an irreducible polynomial
(mapping from F2[X] to F2s), hence the 2s − 1 AND gates for comparison.

Security. Obviously, since nothing is revealed except from the fact of the authen-
ticity being correct, the adversary cannot extract any information regarding the
value.
5 Remember that xi denotes the share of party pi and not an exponentiation operation.

110 M. Keller and A. Yanai

Authenticated Share. The CPU-step produces the value bwrite to be written
to the memory, which obviously could not be output in the clear, rather, it is
shared between all parties. The sub-circuit AuthShare(v, [α], [r1], [r2]) is given the
value v to share (which refers to the value bwrite), the global MAC key α and two
freshly chosen r1, r2 ∈ F2s from the parties such that party pi inputs (αi, ri

1, r
i
2).

The circuit computes

r1 =
n∑

i=1

ri
1, r2 =

n∑
i=1

ri
2, α =

n∑
i=1

αi

and outputs val = (v + r1) and mac = (α · v + r2). To obtain the SPDZ sharing
�v�, party p1 stores v1 = (val− r11) and m(v)1 = (mac− r12) and all other parties
pj store vj = (−rj

1) and m(v)j = (−rj
2).

Security. First note that
∑n

i=1 vi = val − r11 − ∑n
j=2 rj

1 = v and
∑n

i=1 m(v)i =
mac−r12−

∑n
j=2 rj

2 = m(v) = α·v as required. The values v and its authentication
m(v) are independently masked using a truly random values and thus are hidden
from any strict subset of parties.

Performance. For every data item in F2s the parties store its MAC as well, which
leads to an overhead of 2 in the memory size. To obtain the key of an input wire
of the next circuit each party needs to broadcast its BMR key, which is of size
κ. Since for every read of data item each party inputs 4 F2s elements (assuming
that the global key α is part of the state), the communication complexity is 4κn
bits per input bit. The additional circuitry for authentication (and verification)
is of size 2s2+2s−1 (for two multiplications of elements from F2s and additional
zero testing), note in Table 2 the required number of multiplications triples is
multiplied by n since each AND gate manipulates keys vectors of n coordinates.
To obtain the keys for the next CPU-step circuit 2 communication rounds are
required, one to broadcast the external value of the input wire (which is done
by the party whose input is associated with) and the other is to broadcast the
appropriate keys by all parties. Note that we cannot save a communication round
by broadcasting the external value when writing (rather than when reading) since
the external value that the parties broadcast depends on the input wire of the
circuit that is going to read it in a later, unknown point in time.

4.2 Memory via Wire Soldering

The General Technique. Wire soldering allows the parties to reuse an out-
put wire key of one gate as an input wire key of another gate even if these
two gates were not meant to be connected in garbling time. The notion of wire
soldering for secure computation was introduced in [32] for the two-party set-
tings and implemented using an additively homomorphic commitment scheme
(com, dec), that is, com(a)+com(b) = com(a+b). Let u and v be wires with keys
ku,0, ku,1, kv,0, kv,1 and permutation bits λu, λv. By soldering v to u we would

Efficient Maliciously Secure Multiparty Computation for RAM 111

like to achieve the following feature: Obtaining key ku,Λu
that carries a real value

ρu = λu ⊕Λu, enables to obtain the key kv,Λv
, which carries the same real value

ρv = λv ⊕ Λv = ρu. It follows that if λu = λv the soldering information reveals
kv,Λu

(i.e. Λu = Λv), otherwise, if Λu 	= Λv, it reveals kv,(1−Λu).
In a circuit-based 2PC (with garbler and evaluator) this is done by having

the garbler send the commitments com(ku,0), com(ku,1), com(kv,0), com(kv,1);
if λu = λv the garbler also sends the decommitments s0 = dec(ku,0 ⊕ kv,0) and
s1 = dec(ku,1⊕kv,1), otherwise (if λu 	= λv) the garbler sends s0 = dec(ku,0⊕kv,1)
and s1 = dec(ku,1⊕kv,0). Given the key ku,Λu

, the evaluator computes ku,Λu
⊕sΛu

to obtain the correct key for wire kv,Λv
. To prove that the garbler hasn’t inverted

the truth value of the wires by choosing the wrong case above, it must also
decommit to the XOR of the permutation bits (λu⊕λv). Note that the evaluator
learns whether Λu = Λv and thus also learns whether λu = λv, however, that
doesn’t reveal anything about the real value ρu = ρv that is carried over those
wires.

Soldering in Our Scheme. When PBMR (Fig. 5) uses SPDZ to garble the
circuit party pi not only obtains its own keys ki

w,b in the clear, but also obtains a
SPDZ sharing for both a whole keys kw,b and the permutation bits λw for every
w ∈ W and b ∈ {0, 1}, thus, the parties could use FMPC to perform arithmetic
operations over them.

Let u and v be wires with keys ku,0, ku,1 = ku,0 ⊕ Δu and kv,0, kv,1 = kv,0 ⊕
Δv and permutation bits λu, λv ∈ {0, 1}. The parties perform the procedure
Solder(u, v) defined as follows: If Λu = 0 the parties collaboratively compute

s0u→v =

(
(λu ⊕ (1 − λv)) · (ku,0 ⊕ kv,0)

)
⊕

(
(λu ⊕ λv) · (ku,0 ⊕ kv,1)

)

and output s0u→v to everyone.
Otherwise, if Λu = 1 the parties collaboratively compute

s1u→v =

(
(λu ⊕ (1 − λv)) · (ku,1 ⊕ kv,1)

)
⊕

(
(λu ⊕ λv) · (ku,1 ⊕ kv,0)

)

and output s1u→v to everyone.
The information sΛu

u→v allows the parties to solder wire v to wire u. Notice
that this technique involves only one multiplication layer, since the parties simul-
taneously compute both multiplications and then locally add results in F2κ .

Observe that our variation of the soldering is applicable to the multiparty set-
tings as well, in addition, due to the already exist SPDZ shares to the full wires’
keys, we don’t need to rely on additional homomorphic commitment scheme and
its expensive overhead. Moreover, the original soldering was thought to be a way
to connect two wires within the same circuit (using a single global difference)
while in here we show that it is applicable for wires of different circuits as well
(that were garbled independently and with two global differences Δu,Δv).

112 M. Keller and A. Yanai

To see why it works, without loss of generality, consider Λu = 0. If λu = λv,
then given key ku,0 that carries value ρu = λu, the parties compute

ku,0 ⊕ s0u→v = ku,0 ⊕ (
1 · (ku,0 ⊕ kv,1)

) ⊕ (
0 · (ku,0 ⊕ kv,0)

)

= kv,0

such that ku,0 and kv,0 encapsulate the same real value as required. If λu 	= λv

we get

ku,0 ⊕ s0u→v = ku,0 ⊕ (
0 · (ku,0 ⊕ kv,0)

) ⊕ (
1 · (ku,0 ⊕ kv,1)

)

= kv,1

such that ku,0 and kv,1 encapsulate the same real value as required. The same
analysis holds when Λu = 1.

Performance. To obtain the key of the next circuit the parties simultaneously
compute 2 multiplications (of n keys) over the shares in one round and then
open the result in the second round, hence 2n multiplication triples are required
in the offline phase. Multiplication requires the communication of 3nκ bits per
party, opening requires κ, a total of (3n + 1)κ per party per input bit.

4.3 Memory via Free Conversion Between Keys and Shared Real
Values

In this section we present a new technique, which outperforms both the embed-
ding and soldering techniques in both the communication and memory size over-
heads. Essentially, it allows to freely convert between BMR wire keys and SPDZ
secret shares of the real values that those keys represent. As before, it is not
necessary to know which SPDZ share to convert from and to in garbling time.
This allows reactive memory accesses in the sense that, during evaluation, the
parties can evaluate previously garbled circuits on values read from memory at
an address that was only just revealed during the evaluation phase. The latter
is crucial for implementing ORAM.

Using this technique the parties need to compute only (local) additions and
some SPDZ openings in order to move from the evaluation of one circuit to the
next. In more detail, converting from wire keys to SPDZ shares can be done
without communication at all, while the other direction requires two rounds
of SPDZ opening. In any case, no multiplication is necessary, hence, no offline
overhead (for triple generation) is implied. Similarly, the information required is
a by-product of the BMR offline phase, hence there is no extra cost there.

When reading a bit from memory the parties need to know the external
value of the wire associated with it. For a circuit-input-wire, which is associated
with a particular party, that party knows the wire’s permutation and external
value, hence, it can broadcast the external value to the parties, who then can
broadcast their appropriate share of the BMR key. In contrast, when reading
from memory, the external value of the wire is shared (it is nobody’s input) and

Efficient Maliciously Secure Multiparty Computation for RAM 113

reconstructed, then the parties broadcast their keys as before. The keys that the
parties broadcast are stored by each party along with the garbled circuit, in the
same streaming manner, and are not part of the program’s memory.

Packing secret bits. Naively storing each external value as a SPDZ secret share
would require s2 bits in memory for every s-bit data block. We can reduce this
overhead by packing s secret shares of bits into an s-bit secret share such that it
requires only 2s bits in memory for every s-bit data block (s bits for the share
itself and another s bits for its MAC). Packing s bits �b0�, . . . , �bs−1� is done
by computing �B� =

∑
i∈[s] bi · 2i where the 2i part is constant, so we obtain

�B� by local computation only. Now, we can make operations over bits easily by
inputting the entire data item and using the specific required bit. “Extracting”
the j-th bit, �bj�, from �B� can be done locally as well as described below.

Writing to Memory. Recall that after issuing the Garble instruction in FBMR

the parties hold shares to all the permutation bits of all wires. Recall that the
wires groups W t

addr,wr and W t
write refer to the wires associated with the address

to be written and the value to be written to that address respectively. In the
protocol, the parties open the permutation bits for wires W t

addr,wr but not for
wires W t

write, this means that they learn iwritet in the clear, but learn nothing about
bwritet , rather, they only obtain the keys and their external values associated with
it. That is, for w ∈ W t

write, the parties obtain kw,Λw
and Λw. To store the real

value that is carried by wire w in memory address i the parties only need to
compute �ρw� = Λw + �λw�. Then pi stores D[i] ← �ρw�i. Furthermore, every
party pi can check whether kw,Λw

is correct because they have obtained both
kw,0 and kw,1 = kw,0 ⊕ Δi during Garble. This is equivalent to checking the
correctness of output wires. In order to achieve optimal memory usage, s bits
w0, . . . , ws−1 can be combined by (locally) computing

∑s−1
i=0 Xi�ρwi

� where X
denotes a generator of the multiplicative group of a field of size 2s.

Reading from Memory. Let ireadt−1 be the address from which the parties are
instructed to read when evaluating GCt−1 and let w ∈ W t

read. We assume for
a moment that secret shares packing technique above has not been applied
when storing. Therefore, D[ireadt−1] contains a share of the bit �ρw′� that was most
recently written to ireadt−1 at a previous timestep t′ with wire w′ ∈ W t′

write. Party pi

holds both ki
w,0 and ki

w,1, but need to broadcast only one of them. Specifically,
broadcast ki

w,Λw
for Λw = ρw ⊕ λw. Now, since we require that ρw = ρw′ then

the parties open Λw = �ρw�+ �λw� = �ρw′�+ �λw� and broadcast kw,Λw
. Finally,

if the parties have stored
∑s−1

i=0 Xi�ρwi
� at a particular memory address, �ρwi

�

can be computed by opening
∑s−1

i=0 Xi�ρwi
�+

∑s−1
i=0 Xi�λwi

�. This works because
any field of size 2s has characteristic two, thus addition corresponds to bitwise
XOR.

114 M. Keller and A. Yanai

5 Realizing Functionality FUAP

Protocol PUAP in Fig. 7 realizes FUAP in the FBMR-hybrid model.

Fig. 7. Realizing FUAP in the FBMR-hybrid model.

5.1 Security of Protocol PUAP

The security of our construction relies on the security of the underlying BMR
and SPDZ protocols and the security of the transformation between the garbled
wires and SPDZ shares. Informally, the latter can be seen as follows: Neither
transformation reveals any secret information because one direction (writing to
memory) is done locally, and the other one (reading form memory) only reveals
an external value and the corresponding wire label, both of which hide the real
value that is carried over the wire according to the security of the BMR protocol.
For malicious security, consider that revealing the external value is done using
SPDZ, which guarantees correctness by checking the MAC. Furthermore, if any

Efficient Maliciously Secure Multiparty Computation for RAM 115

party broadcasts a faulty share of the BMR key, this is guaranteed to lead to an
invalid output key (and thus easy detection by honest parties) by the properties
of the BMR protocol. More formally, we prove the following theorem:

Theorem 5.1. Protocol PUAP (Fig. 7) realizes functionality FUAP (Fig. 2) in the
FBMR-hybrid model.

Proof. Let A be an adversary controlling a subset of the parties, denoted A =
{pi1 , . . . , pic

} and denote by Ā = [n] � A the subset of the honest parties.
We present a simulator S who participates in the ideal execution FUAP by

taking the role of A and in an internal execution of PUAP with A, in which S takes
the role of Ā and the functionality FBMR. The simulator S uses another simulator
SBMR that when given the adversary’s input/output to/from a circuit, and both
keys to all wires in the garbled circuit, produces a view that is indistinguishable
to the view of the adversary’s evaluation of the circuit in the real execution (such
a simulator was presented in [25]).

The simulator S does as follows:

1. Extract A’s inputs
(a) In the internal execution, garble T copies of CCPU exactly as described

in FBMR. In particular, for every input wire w ∈ GC1 associated with a
corrupted party pc ∈ A output λw in the clear to pc.

(b) Upon issuing the Input command in the internal execution, for an input
wire w associated with a corrupted party pc ∈ A, receive pc’s external
value Λw and compute pc’s input to wire w by ρw = Λw ⊕ λw (the
simulator S knows λw because it was garbling the circuit on behalf of
FBMR).

2. Engage in the ideal execution FUAP by inputting the values extracted above as
the corrupted parties’ input and obtain y = Π(D,x) along with AP(Π,D,x).

3. Open all garbled circuits GC1, . . . , GCT toward the adversary.
4. Evaluation

(a) Invoke SBMR with A’s inputs that were extracted earlier, the garbled
circuit GC1 and the adversary’s output from GC1: access1 = (iread1 , iwrite1).6

Output whatever SBMR produced.
(b) Note that A have no inputs to circuits GC2, . . . , GCT , thus, for every

such circuit we invoke SBMR with no inputs at all. Then, for every input
wire of the garbled circuit, S checks which of its keys kw,0 or kw,1 was
produced as the simulated view, and then supply the correct share of the
external value of that key (S can do this since it knows the global MAC
key used for the SPDZ shares). Formally: For t = 2 to T :
i. Output accesst−1 = ireadt−1, i

write
t−1 in the clear.

ii. Invoke SBMR with GCt. If t = T then supply SBMR with y as well.
iii. For every input wire w of GCt, extract from the produced view the

key kw,Λw
used in the evaluation.

6 Note that access1 is the output to all parties, not only the adversary’s, however, for
the simulation purpose we use this as the adversary’s output.

116 M. Keller and A. Yanai

iv. For every input wire w of GCt simulate the opening of �Λw� = �λw ⊕
ρw� (from Step 3 in PUAP) as follows: Let the shares of A be ΛA

w, then
S chooses random shares Λh

w for every honest party ph ∈ Ā such that
Λw = ΛA

w +
∑

h∈Ā Λh
w and use them to open Λw.

v. Output the view produced by SBMR in Step 4(b)ii above.

Claim. For every PPT A and for every x the output of S above is indistinguish-
able to the view of A in the real execution of PUAP.

Proof. We define hybrid Hybt to be as follows: The adversary view in the real
execution of PUAP for timesteps 1, . . . , t, followed by the simulated view for
timesteps t + 1, . . . , T as described in Step 4b of the simulation above. Thus,
HybT is exactly the real execution of PUAP and Hyb0 is exactly the output of
S described above. Assume by contradiction that there exists a PPT D who can
distinguish between HybT and Hyb0 with non negligible probability, then we
construct D′ who distinguishes between a real execution of PBMR to the output
of SBMR (for a single circuit) as follows: By the existence of D it is implied that
there exists t′ for which D distinguishes between Hybt and Hybt+1 with non
negligible probability. Then, given a circuit C and a view V which is either the
view of the adversary in a real execution of PBMR or the output of SBMR, D′

generates a real view of the execution of PUAP for timesteps 1, . . . , t, then plugs
V together with the opening of external values of the input wires of C, and then
complete the simulation according to Step 4b above. Finally, hands the result
view to D and outputs whatever D outputs. Observe that if V is a view of a
real execution then the above is distributed exactly as Hybt, otherwise, it is
distributed exactly as Hybt+1. It follows that D′ distinguishes between the real
execution of PBMR and the output of SBMR with non negligible probability, by
contradiction of the security of PBMR.

6 Optimizing BMR Evaluation

The free-XOR technique of [2] makes space and communication complexities
linear in the number of AND gates (XOR gates are almost for free7). In this
section we show how to further decrease memory consumption in the online
phase by a factor of up to 2. Even though our technique could be applied to a
plain BMR protocol, we present the idea over a scheme that uses the free-XOR.
We stress that it is not limited to secure RAM computation but also applicable
in BMR-based protocols, even with only a single execution.

The Evaluate instruction in FBMR (Fig. 3) that is invoked in the online phase
traverses the circuit in a topological order and obtains a single output key kw ∈
(F2κ)n for every wire w in the circuit, until it reaches the output wires. To check
the authenticity of kw, party pi extracts the ith element, ki

w ∈ F2κ , and verifies
that it is one of the keys given to him by FMPC in the offline phase, that is,
ki

w ∈ {ki
w,0, k

i
w1

}. In case that ki
w 	∈ {k0

w, k1
w} then pi notifies all parties with

7 They require only a simple XOR operation.

Efficient Maliciously Secure Multiparty Computation for RAM 117

regard to the corrupted garbled circuit and aborts. Using our technique, it is
possible for pi to discard its keys {ki

w,0, k
i
w1

} of all wires right after the garbled
circuit construction is complete (in the offline phase), instead, it has to store
only a single bit per wire. Since the garbled gate is of size 4nk and the original
verification procedure requires memory of size 2k (i.e. party pi stores the two
keys of the output wire of the gate), this results with a decrease of memory
consumption by a factor of 1

2n . However, a great improvement is achieved for a
more recent construction [3]. In that construction the size of a garbled gate is
4k (i.e. it is independent of the number of parties n), thus, memory saving is
significant.

Using our technique, the evaluator is saved from loading and comparing 1.5
keys per wire in average (since in half of the wires the verification passes after
the first comparison). This loading8 and comparison time became substantial as
the computation of AES has been considerably improved9.

6.1 The Technique

Circuit garbling is done in the offline phase of the protocol using the FMPC

functionality (Fig. 11). Let lsb(x) denote the least significant bit of x. We instruct
FMPC to choose Δ = (Δ1, . . . ,Δn) such that lsb(Δi) = 1 for every i ∈ [n]. The
result is that lsb(ki

w,0) 	= lsb(ki
w,1) for all w and i. When garbling is completed

using Δ as described, party pi stores the bit δi
w = lsb(ki

w,0) for every wire w. In
addition party pi discards all keys ki

w,0 and ki
w,1 for all but the output wires.

The evaluation of the circuit is done exactly as before, however, instead of
verifying the key validity of the output wire of every gate, this is done only for
output gates. For an inner gate with output wire w, party pi obtains the external
value Λw by computing Λw = lsb(ki

w) ⊕ δi
w. This way the parties learn that the

key ki
w obtained by evaluating a gate is actually the Λ-key. For output gates

(i.e. gates whose output wire is also a circuit-output wire), party pi verifies that
ki

w ∈ {ki
w,0, k

i
w,1} as before.

Forcing the last bit of a random element is featured in SPDZ-like implementa-
tion of FMPC (e.g. [23]) since they are inherently bit wise, so we can generate k − 1
random bits and then compose the field element accordingly so its last bit is 1.

6.2 Security

Notice that we use the exact same garbling procedure as in [2] except that here
the last bit of every Δi is known to the adversary (i.e. lsb(Δi) = 1) whereas in
their scheme all bits of Δ are random. The security of our scheme can be easily
reduced to the security of [2]. Our simulator is the same simulator as in [2].
Let the distinguisher’s advantage in distinguishing between the real execution

8 Loading time depends on the implementation, i.e. whether using dereferences or not.
9 Using the AES-NI instruction set from Intel’s Sandy Bridge microarchitecture and

on, a RoundKey instruction takes a single CPU cycle and latency of 8, that is, one
could reach a throughput of up to 8 RoundKey operations with the same key at the
same CPU cycle [21, Chap. 5.10].

118 M. Keller and A. Yanai

of our scheme to the ideal execution be ε. Then, the advantage of the same
distinguisher in distinguishing between the real execution and the simulation of
[2] is ε′ = ε · 1

2h for h honest parties. This holds because the probability of having
lsb(Δi) = 1 in the free-XOR scheme is 1

2 for an honest party pi. Recall that in
the original scheme, the security depends on h keys of length k. Thus, increasing
the advantage of the adversary by 2h is negligible. Assuming that [2] is secure
we conclude that our scheme is secure as well.

7 Implementation

In this section we report our results of the first (to the best of our knowledge)
implementation of a garbled-circuit-based secure RAM computation for setting
with active security and dishonest majority. We chose to implement our third
technique (Sect. 4.3) as it is the most efficient technique for memory access. We
have combined our new BMR implementation with the existing SPDZ system
[6], and used it to implement an oblivious array10 using Circuit ORAM [36]. The
code is written in C++ using the AES-NI and AVX2 instruction sets.

Experiments. Our timing results below refer to the following experiments:

1. Circuit ORAM [36] using the BMR-SPDZ protocol with the scheme in
Sect. 4.3, labeled as ‘BMR, Circuit ORAM’ in the figures below.

2. Circuit ORAM [36] using a pure SPDZ implementation, labeled as ‘Pure
SPDZ, Circuit ORAM’.

3. Path ORAM [35] using a pure SPDZ implementation [24], labeled as ‘Pure
SPDZ, Path ORAM’.

4. Trivial ORAM, i.e. linear scanning of the entire memory for every access,
labeled as ‘BMR, linear scan’.

The Path ORAM intends to optimize the bandwidth cost and bandwidth
blowup where bandwidth cost refers to the average number of bits transferred
for accessing a single block and bandwidth blowup is defined as bandwidth cost
divided by the block size (i.e., the bit-length of a data block)11. The results by
Keller and Scholl [24] are reported using Path ORAM, which seems preferable
when round complexity is not a concern. For the sake of comparison, we have
also implemented Circuit ORAM using pure SPDZ. Comparing experiments (1),
(2) and (3) in Figs. 8 and 9, our approach outperforms the pure SPDZ when the
parties are connected over a WAN, independently of the choice of the ORAM
scheme. Furthermore, experiment (4) allows to find the breakeven points, that is,

10 “Oblivious array” is the name given in [24] to the basic oblivious random memory
access, which allows reading and writing with a secret index. This is in distinction
to “oblivious dictionary” that allows reading according to a secret ‘key’ in a key-
value (dictionary) data structure, where the key may be larger than the size of the
memory.

11 As defined in [36, A.2] under ORAM metrics.

Efficient Maliciously Secure Multiparty Computation for RAM 119

to figure out up to what memory size the linear scan performs better than apply-
ing an ORAM algorithm. Given the simplicity of a linear scan, it is clear that it
is faster for small enough sizes.

All experiments were performed for both LAN and WAN environment to test
the influence of our approach of reducing the round complexity. We stress that
our implementation is the first in this setting even when considering 2 parties
only. Nevertheless, we report timing results for a protocol with 3 participants as
well.

Parameters. Our security parameters are κ = 128 and s = 40. In all experi-
ments, the oblivious arrays are made up of 32-bit entries, and all figures refer to
the array size as the number of such entries. Therefore, our figures range from
1024 · 32 ≈ 32 kB to 225 · 32 ≈ 1.1 GB.

Our ORAM implementations (Circuit ORAM and Path ORAM) require
up to three recursions such that intermediate ORAMs use 128-bit entries, and
we use a linear scan for less than 256 such entries.

All reported results are measured per logical access to the memory (array),
which, as explained before, may incorporate many physical accesses.

Environment. Our implementations were done using 4th generation Intel Core
i7 with 8 cores running at 3.5 GHz, 16 GB RAM, and SSD (to store the garbled
circuits) connected over a LAN (bandwidth of 1 Gbit/s and RTT of 0.1–0.2 ms).

Furthermore, we have simulated a WAN setting on the same machines by
extending the round trip time to 100 ms and restricting the throughput to
50 Mbit/s. Figure 8 shows our results for the two settings with two parties while
Fig. 9 shows our results for three parties. They confirm that using garbled cir-
cuits (BMR) is beneficial with high network latencies. With BMR, combining
Circuit ORAM with our memory access surpasses linear scanning below a size
of one million.

Offline Cost. Finally, for a more complete picture, we have estimated the offline
cost in the LAN setting. Figure 10 shows the cost for one access of Circuit ORAM

103 104 105 106 107

101

102

Oblivious array size

L
og
ic
al
ac
ce
ss
es

pe
r
se
co
nd

BMR, Circuit ORAM
Pure SPDZ, Path ORAM [24]
Pure SPDZ, Circuit ORAM

BMR, linear scan

103 104 105 106 107
10−2

10−1

100

101

102

Oblivious array size

L
og
ic
al
ac
ce
ss
es

pe
r
se
co
nd

BMR, Circuit ORAM
Pure SPDZ, Path ORAM
Pure SPDZ, Circuit ORAM
BMR, linear scan

Fig. 8. Two parties over LAN (left) and over WAN (right).

120 M. Keller and A. Yanai

103 104 105 106 107

101

102

Oblivious array size

L
og

ic
al
ac
ce
ss
es

pe
r
se
co
nd

BMR, Circuit ORAM
Pure SPDZ, Path ORAM [24]
Pure SPDZ, Circuit ORAM
BMR, linear scan

103 104 105 106 107
10−2

10−1

100

101

102

Oblivious array size

L
og

ic
al
ac
ce
ss
es

pe
r
se
co
nd

BMR, Circuit ORAM
Pure SPDZ, Path ORAM
Pure SPDZ, Circuit ORAM
BMR, linear scan

Fig. 9. Three parties over LAN (left) and over WAN (right).

103 104 105 106 107
10−2

10−1

100

101

102

103

Oblivious array size

Se
co
nd

s
pe
r
lo
gi
ca
la
cc
es
s

Local-AES Online-SPDZ Offline-SPDZ

Fig. 10. Offline time per logical access with Circuit ORAM and BMR.

implemented in BMR. All figures are based on the number of AND gates in
the circuit computing Circuit ORAM because the preprocessing information
required for soldering is essentially a by-product of the circuit generation.

To get a better picture of the offline performance of our protocol, we separated
it into three parts:

– Offline-SPDZ. This is the offline phase of the SPDZ protocol, which is inde-
pendent of the circuit the parties wish to evaluate. In this phase the parties
produce the multiplication triples that would be required for the garbling. The
numbers in this part are based on a production of 4828 triples per second as
reported by Keller et al. [23].

– Local-AES. Local computation of AES ciphers. The parties use the results
of that computation as input to the Online-SPDZ part, which use them in
order to construct the garbled circuit.

Efficient Maliciously Secure Multiparty Computation for RAM 121

– Online-SPDZ. This is the online phase of the SPDZ protocol, in which the
parties evaluate a circuit that garbles the actual circuit they want to evaluate
in the BMR online phase.

In the figure we can easily observe that Offline-SPDZ dominates the cost by
3–4 orders of magnitudes because of the communication cost of MASCOT [23].

A The Generic Reactive MPC Functionality

The following functionality is used by protocols that follow the BMR-SPDZ approach.

Fig. 11. The generic reactive MPC functionality

122 M. Keller and A. Yanai

References

1. Afshar, A., Hu, Z., Mohassel, P., Rosulek, M.: How to efficiently evaluate RAM
programs with malicious security. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT
2015. LNCS, vol. 9056, pp. 702–729. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-46800-5 27

2. Ben-Efraim, A., Lindell, Y., Omri, E.: Optimizing semi-honest secure multiparty
computation for the internet, pp. 578–590 (2016)

3. Ben-Efraim, A., Lindell, Y., Omri, E.: Efficient scalable constant-round MPC via
garbled circuits. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol.
10625, pp. 471–498. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70697-9 17

4. Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing. In: Oswald, E., Fischlin,
M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 337–367. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46803-6 12

5. Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing: improvements and exten-
sions, pp. 1292–1303 (2016)

6. Bristol Cryptography Group: SPDZ software (2016). https://www.cs.bris.ac.uk/
Research/CryptographySecurity/SPDZ/

7. Canetti, R., Holmgren, J.: Fully succinct garbled RAM, pp. 169–178 (2016)
8. Damg̊ard, I., Pastro, V., Smart, N.P., Zakarias, S.: Multiparty computation

from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 38

9. Doerner, J., Shelat, A.: Scaling ORAM for secure computation. In: CCS (2017)
10. Frederiksen, T.K., Jakobsen, T.P., Nielsen, J.B., Nordholt, P.S., Orlandi, C.:

MiniLEGO: efficient secure two-party computation from general assumptions. In:
Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 537–
556. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9 32

11. Garg, S., Gupta, D., Miao, P., Pandey, O.: Secure multiparty RAM computation
in constant rounds. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9985, pp.
491–520. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53641-
4 19

12. Garg, S., Lu, S., Ostrovsky, R.: Black-box garbled RAM, pp. 210–229 (2015)
13. Garg, S., Lu, S., Ostrovsky, R., Scafuro, A.: Garbled RAM from one-way functions,

pp. 449–458 (2015)
14. Gentry, C., Halevi, S., Lu, S., Ostrovsky, R., Raykova, M., Wichs, D.: Garbled

RAM revisited. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS,
vol. 8441, pp. 405–422. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-642-55220-5 23

15. Goldreich, O.: Foundations of Cryptography: Basic Applications, vol. 2. Cambridge
University Press, New York (2004)

16. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a
completeness theorem for protocols with honest majority. In: STOC, pp. 218–229
(1987)

17. Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious
RAMs. J. ACM 43(3), 431–473 (1996)

18. Gordon, S.D., Katz, J., Kolesnikov, V., Krell, F., Malkin, T., Raykova, M., Vahlis,
Y.: Secure two-party computation in sublinear (amortized) time, pp. 513–524
(2012)

https://doi.org/10.1007/978-3-662-46800-5_27
https://doi.org/10.1007/978-3-662-46800-5_27
https://doi.org/10.1007/978-3-319-70697-9_17
https://doi.org/10.1007/978-3-319-70697-9_17
https://doi.org/10.1007/978-3-662-46803-6_12
https://www.cs.bris.ac.uk/Research/CryptographySecurity/SPDZ/
https://www.cs.bris.ac.uk/Research/CryptographySecurity/SPDZ/
https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1007/978-3-642-38348-9_32
https://doi.org/10.1007/978-3-662-53641-4_19
https://doi.org/10.1007/978-3-662-53641-4_19
https://doi.org/10.1007/978-3-642-55220-5_23
https://doi.org/10.1007/978-3-642-55220-5_23

Efficient Maliciously Secure Multiparty Computation for RAM 123

19. Hazay, C., Yanai, A.: Constant-round maliciously secure two-party computation
in the RAM model. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9985, pp.
521–553. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53641-
4 20

20. Hu, Z., Mohassel, P., Rosulek, M.: Efficient zero-knowledge proofs of non-algebraic
statements with sublinear amortized cost. In: Gennaro, R., Robshaw, M. (eds.)
CRYPTO 2015. LNCS, vol. 9216, pp. 150–169. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48000-7 8

21. Intel: Intel 64 and IA-32 Architectures Optimization Reference Manual
(2016). http://www.intel.com/content/www/us/en/architecture-and-technology/
64-ia-32-architectures-optimization-manual.html

22. Keller, M.: The oblivious machine - or: how to put the C into MPC. Cryptology
ePrint Archive, Report 2015/467 (2015). http://eprint.iacr.org/2015/467

23. Keller, M., Orsini, E., Scholl, P.: MASCOT: faster malicious arithmetic secure
computation with oblivious transfer, pp. 830–842 (2016)

24. Keller, M., Scholl, P.: Efficient, oblivious data structures for MPC. In: Sarkar,
P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp. 506–525. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-45608-8 27

25. Lindell, Y., Pinkas, B., Smart, N.P., Yanai, A.: Efficient constant round multi-
party computation combining BMR and SPDZ. In: Gennaro, R., Robshaw, M.
(eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 319–338. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48000-7 16

26. Lindell, Y., Riva, B.: Blazing fast 2PC in the offline/online setting with security
for malicious adversaries. In: CCS, pp. 579–590 (2015)

27. Lindell, Y., Smart, N.P., Soria-Vazquez, E.: More efficient constant-round multi-
party computation from BMR and SHE. In: Hirt, M., Smith, A. (eds.) TCC 2016.
LNCS, vol. 9985, pp. 554–581. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-53641-4 21

28. Liu, C., Huang, Y., Shi, E., Katz, J., Hicks, M.W.: Automating efficient RAM-
model secure computation, pp. 623–638 (2014)

29. Liu, C., Wang, X.S., Nayak, K., Huang, Y., Shi, E.: ObliVM: a programming
framework for secure computation, pp. 359–376 (2015)

30. Lu, S., Ostrovsky, R.: How to garble RAM programs? In: Johansson, T., Nguyen,
P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 719–734. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-38348-9 42

31. Mohassel, P., Rosulek, M., Scafuro, A.: Sublinear zero-knowledge arguments for
RAM programs. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS,
vol. 10210, pp. 501–531. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-56620-7 18

32. Nielsen, J.B., Orlandi, C.: LEGO for two-party secure computation. In: Reingold,
O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 368–386. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-00457-5 22

33. Ostrovsky, R., Shoup, V.: Private information storage (extended abstract), pp.
294–303 (1997)

34. Shi, E., Chan, T.-H.H., Stefanov, E., Li, M.: Oblivious RAM with O((logN)3)
worst-case cost. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol.
7073, pp. 197–214. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-25385-0 11

35. Stefanov, E., van Dijk, M., Shi, E., Fletcher, C.W., Ren, L., Yu, X., Devadas, S.:
Path ORAM: an extremely simple oblivious RAM protocol, pp. 299–310 (2013)

https://doi.org/10.1007/978-3-662-53641-4_20
https://doi.org/10.1007/978-3-662-53641-4_20
https://doi.org/10.1007/978-3-662-48000-7_8
http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-optimization-manual.html
http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-optimization-manual.html
http://eprint.iacr.org/2015/467
https://doi.org/10.1007/978-3-662-45608-8_27
https://doi.org/10.1007/978-3-662-48000-7_16
https://doi.org/10.1007/978-3-662-53641-4_21
https://doi.org/10.1007/978-3-662-53641-4_21
https://doi.org/10.1007/978-3-642-38348-9_42
https://doi.org/10.1007/978-3-319-56620-7_18
https://doi.org/10.1007/978-3-319-56620-7_18
https://doi.org/10.1007/978-3-642-00457-5_22
https://doi.org/10.1007/978-3-642-25385-0_11
https://doi.org/10.1007/978-3-642-25385-0_11

124 M. Keller and A. Yanai

36. Wang, X., Chan, T.-H.H., Shi, E.: Circuit ORAM: On tightness of the Goldreich-
Ostrovsky lower bound, pp. 850–861 (2015)

37. Wang, X., Malozemoff, A.J., Katz, J.: Faster secure two-party computation in the
single-execution setting. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017.
LNCS, vol. 10212, pp. 399–424. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56617-7 14

38. Wang, X., Ranellucci, S., Katz, J.: Authenticated garbling and efficient maliciously
secure two-party computation. In: CCS, pp. 21–37 (2017)

39. Wang, X.S., Gordon, S.D., McIntosh, A., Katz, J.: Secure computation of MIPS
machine code. In: Askoxylakis, I., Ioannidis, S., Katsikas, S., Meadows, C. (eds.)
ESORICS 2016. LNCS, vol. 9879, pp. 99–117. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-45741-3 6

40. Yao, A.C.-C.: How to generate and exchange secrets (extended abstract). In: FOCS,
pp. 162–167 (1986)

https://doi.org/10.1007/978-3-319-56617-7_14
https://doi.org/10.1007/978-3-319-56617-7_14
https://doi.org/10.1007/978-3-319-45741-3_6
https://doi.org/10.1007/978-3-319-45741-3_6

Efficient Circuit-Based PSI
via Cuckoo Hashing

Benny Pinkas1(B), Thomas Schneider2, Christian Weinert2, and Udi Wieder3

1 Bar-Ilan University, Ramat Gan, Israel
benny@pinkas.net

2 TU Darmstadt, Darmstadt, Germany
{thomas.schneider,christian.weinert}@crisp-da.de

3 VMware Research, Palo Alto, USA
udi.wieder@gmail.com

Abstract. While there has been a lot of progress in designing efficient
custom protocols for computing Private Set Intersection (PSI), there
has been less research on using generic Multi-Party Computation (MPC)
protocols for this task. However, there are many variants of the set inter-
section functionality that are not addressed by the existing custom PSI
solutions and are easy to compute with generic MPC protocols (e.g., com-
paring the cardinality of the intersection with a threshold or measuring
ad conversion rates).

Generic PSI protocols work over circuits that compute the intersec-
tion. For sets of size n, the best known circuit constructions conduct
O(n log n) or O(n log n/ log log n) comparisons (Huang et al., NDSS’12
and Pinkas et al., USENIX Security’15). In this work, we propose new
circuit-based protocols for computing variants of the intersection with
an almost linear number of comparisons. Our constructions are based on
new variants of Cuckoo hashing in two dimensions.

We present an asymptotically efficient protocol as well as a protocol
with better concrete efficiency. For the latter protocol, we determine the
required sizes of tables and circuits experimentally, and show that the
run-time is concretely better than that of existing constructions.

The protocol can be extended to a larger number of parties. The proof
technique presented in the full version for analyzing Cuckoo hashing in
two dimensions is new and can be generalized to analyzing standard
Cuckoo hashing as well as other new variants of it.

Keywords: Private set intersection · Secure computation

1 Introduction

Private Set Intersection (PSI) refers to a protocol which enables two parties,
holding respective input sets X and Y , to compute the intersection X ∩ Y with-
out revealing any information about the items which are not in the intersection.
The PSI functionality is useful for applications where parties need to apply a
JOIN operation to private datasets. There are multiple constructions of secure
c© International Association for Cryptologic Research 2018
J. B. Nielsen and V. Rijmen (Eds.): EUROCRYPT 2018, LNCS 10822, pp. 125–157, 2018.
https://doi.org/10.1007/978-3-319-78372-7_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78372-7_5&domain=pdf

126 B. Pinkas et al.

protocols for computing PSI, but there is an advantage for computing PSI by
applying a generic Multi-Party Computation (MPC) protocol to a circuit com-
puting the intersection (see Sect. 1.1). The problem is that a naive circuit com-
putes O(n2) comparisons, and even the most recent circuit-based constructions
require O(n log n) or O(n log n/ log log n) comparisons (see Sect. 1.4).

In this work, we present a new circuit-based protocol for computing PSI
variants. In our protocol, each party first inserts its input elements into bins
according to a new hashing algorithm, and then the intersection is computed by
securely computing a Boolean comparison circuit over the bins. The insertion of
the items is based on new Cuckoo hashing variants which guarantee that if the
two parties have the same input value, then there is exactly one bin to which
both parties map this value. Furthermore, the total number of bins is O(n) and
there are O(1) items mapped to each bin, plus ω(1) items which are mapped to
a special stash. Hence, the circuit that compares (1) for each bin, the items that
the two parties mapped to it, and (2) all stash items to all items of the other
party, computes only ω(n) comparisons.

1.1 Motivation for Circuit-Based PSI

PSI has many applications, as is detailed for example in [42]. Consequently, there
has been a lot of research on efficient secure computation of PSI, as we describe
in Sect. 1.4. However, most research was focused on computing the intersection
itself, while there are interesting applications for the ability to securely compute
arbitrary functions of the intersection. We demonstrate the need for efficient
computation of PSI using generic protocols through the following arguments:

Adaptability. Assume that you are a cryptographer and were asked to propose
and implement a protocol for computing PSI. One approach is to use a specialized
protocol for computing PSI. Another possible approach is to use a protocol for
generic secure computation, and apply it to a circuit that computes PSI. A trivial
circuit performs O(n2) comparisons, while more efficient circuits, described in [26,
39], perform only O(n log n) or O(n log n/ log log n) comparisons, respectively.
The most efficient specialized PSI protocols are faster by about two orders of
magnitude than circuit-based constructions (see [39]), and therefore you will
probably choose to use a specialized PSI protocol. However, what happens if
you are later asked to change the protocol to compute another function of the
intersection? For example, output only the size of the intersection, or output 1
iff the size is greater than some threshold, or output the most “representative”
item that occurs in the intersection (according to some metric). Any change
to a specialized protocol will require considerable cryptographic know-how, and
might not even be possible. On the other hand, the task of writing a new circuit
component that computes a different function of the intersection is rather trivial,
and can even be performed by undergrad students.

Consider the following function as an example of a variant of the PSI func-
tionality for which we do not know a specialized protocol: Suppose that you want
to compute the size of the intersection, but you also wish to preserve the privacy

Efficient Circuit-Based PSI via Cuckoo Hashing 127

of users by ensuring differential privacy. This is done by adding some noise to
the exact count before releasing it. This functionality can easily be computed by
a circuit, but it is unclear how to compute it using other PSI protocols. (See [38]
for constructions that add noise to the results of MPC computation in order to
ensure differential privacy.)

Existing code base. Circuit-based protocols benefit from all the work that
was invested in recent years in designing, implementing, and optimizing very
efficient systems for generic secure computation. Users can download existing
secure computation software, e.g., [13,27], and only need to design the circuit to
be computed and implement the appropriate hashing technique.

Existing applications. There are existing applications that need to com-
pute functions over the results of the set intersection. For example, Google
reported [34,49] a PSI-based application for measuring ad conversion rates,
namely the revenues from ad viewers who later perform a related transaction.
This computation can be done by comparing the list of people who have seen
an ad with those who have completed a transaction. These lists are held by the
advertiser (say, Google or Facebook), and by merchants, respectively. A simple
(non-private) solution is for one side to disclose its list of customers to the other
side, which computes the necessary statistics. Another option is to run a secure
computation over the results of the set intersection. For example, the merchant
inputs pairs of the customer-identity and the value of the transactions made by
this customer, and the computation calculates the total revenue from customers
who have seen an ad, namely customers in the intersection of the sets known
to the advertiser and the merchant. Google reported implementing this compu-
tation using a Diffie-Hellman-based PSI cardinality protocol (for computing the
cardinality of the intersection) and Paillier encryption (for computing the total
revenues) [28]. This protocol reveals the identities of the items in the intersec-
tion, and seems less efficient than our protocol as it uses public key operations,
rather than efficient symmetric cryptographic operations.1

1.2 Our Contributions

This work provides the following contributions:

Circuit-based PSI protocols with almost linear overhead. We show a
new circuit-based construction for computing any symmetric function on top of
PSI, with an asymptotic overhead of only ω(n) comparisons. (More accurately,
for any function f ∈ ω(n), the overhead of the construction is o(f(n)).) This
construction is based on standard Cuckoo hashing.

1 Facebook is running a computation of this type with companies that have trans-
action records for a large part of loyalty card holders in the US. According
to the report in https://www.eff.org/deeplinks/2012/09/deep-dive-facebook-and-
datalogix-whats-actually-getting-shared-and-how-you-can-opt, the computation is
done using an insecure PSI variant based on creating pseudonyms using naive hash-
ing of the items.

https://www.eff.org/deeplinks/2012/09/deep-dive-facebook-and-datalogix-whats-actually-getting-shared-and-how-you-can-opt
https://www.eff.org/deeplinks/2012/09/deep-dive-facebook-and-datalogix-whats-actually-getting-shared-and-how-you-can-opt

128 B. Pinkas et al.

Small constants. Standard measures of asymptotic security are not always a
good reflection of the actual performance on reasonable parameters. Therefore,
in addition to the asymptotic improvement, we also show a concrete circuit-
based PSI construction. This construction is based on a new variant of Cuckoo
hashing, two-dimensional Cuckoo hashing, that we introduce in this work. We
carefully handle implementation issues to improve the actual overhead of our
protocols, and make sure that all constants are small. In particular, we ran
extensive experiments to analyze the failure probabilities of the hashing scheme,
and find the exact parameters that reduce this statistical failure probability to
an acceptable level (e.g., 2−40). Our analysis of the concrete complexities is
backed by extensive experiments, which consumed about 5.5 million core hours
on the Lichtenberg high performance computer of the TU Darmstadt and were
used to set the parameters of the hashing scheme. Given these parameters we
implemented the circuit-based PSI protocol and tested it.

Implementation and experiments. We implemented our protocols using the
ABY framework for secure two-party computation [13]. Our experiments show
that our protocols are considerably faster than the previously best circuit-based
constructions. For example, for input sets of n = 220 elements of arbitrary
bitlength, we improve the circuit size over the best previous construction by
up to a factor of 3.8x.

New Cuckoo hashing analysis. Our two-dimensional Cuckoo hashing is based
on a new Cuckoo hashing scheme that employs two tables and each item is
mapped to either two locations in the first table, or two locations in the second
table. This is a new Cuckoo hashing variant that has not been analyzed before.
In addition to measuring its performance using simulations, we provide a prob-
abilistic analysis of its performance. Interestingly, this analysis can also be used
as a new proof technique for the success probability of standard Cuckoo hashing.

1.3 Computing Symmetric Functions

A trivial circuit for PSI that performs O(n2) comparisons between all pairs of
the input items of the two parties allows the parties to set their inputs in any
arbitrary order. On the other hand, there exist more efficient circuit-based PSI
constructions where each party first independently orders its inputs according
to some predefined algorithm: the sorting network-based construction of [26]
requires each party to sort its input to the circuit, while the hashing-based con-
struction of [39] requires the parties to map their inputs to bins using some public
hash functions. (These constructions are described in Sect. 1.4.) The location of
each input item thus depends on the identity of the other inputs of the input
owner, and must therefore be kept hidden from the other party.

In this work, we focus on constructing a circuit that computes the intersection.
The outputs of this circuit can be the items in the intersection, or some functions
of the items in the intersection: say, a “1” for each intersecting item, or an
arbitrary function of some data associated with the item (for example, if the
items are transactions, we might want to output a financial value associated

Efficient Circuit-Based PSI via Cuckoo Hashing 129

with each transaction that appears in the intersection). On top of that circuit
it is possible to add circuits for computing any function that is based on the
intersection. In order to preserve privacy, the output of that function must be a
symmetric function of the items in the intersection. Namely, the output of the
function must not depend on the order of its inputs. There are many examples
of interesting symmetric functions of the intersection. (In fact, it is hard to come
up with examples for interesting non-symmetric functions of the intersection,
except for the intersection itself.) Examples of symmetric functions include:

– Computing the size of the intersection, i.e., PSI cardinality (PSI-CA).
– Computing a threshold function that is based on the size of the intersection.

For example, outputting “1” if the size of the intersection is greater than
some threshold (PSI-CAT), or outputting a rounded value of the percentage
of items that are in the intersection. An extension of PSI-CAT, where the
intersection is revealed only if the size of the intersection is greater than a
threshold, can be used for privacy-preserving ridesharing [23].

– Computing the size of the intersection while preserving the privacy of users
by ensuring differential privacy [17]. This can be done by adding some noise
to the exact count.

– Computing the sum of values associated with the items in the intersection.
This is used for measuring ad-generated revenue (cf. Sect. 1.1). Similarly, there
could be settings where each party associates a value with each transaction,
and the output is the sum of the differences between these assigned values in
the intersection, or the sum of the squares of the differences, etc.

The circuits for computing all these functions are of size O(n). Therefore, with
our new construction, the total size of the circuits for computing these functions
is ω(n), whereas circuit-based PSI protocols [26,39] had size O(n log n).

If one wishes to compute a function that is not symmetric, or wishes to
output the intersection itself, then the circuit must first shuffle the values in the
intersection (in order to assign a random location to each item in the intersection)
and then compute the function over the shuffled values, or output the shuffled
intersection. A circuit for this “shuffle” step has size O(n log n), as described
in [26]. (It is unclear, though, why a circuit-based protocol should be used for
computing the intersection, since this job can be done much more efficiently by
specialized protocols, e.g., [31,42].)

1.4 Related Work

PSI. Work on protocols for private set intersection was presented as early
as [35,46], which introduced public key-based protocols using commutative cryp-
tography, namely the Diffie-Hellman function. A survey of PSI protocols appears
in [41]. The goal of these protocols is to let one party learn the intersection itself,
rather than to enable the secure computation of arbitrary functions of the inter-
section. Other PSI protocols are based on oblivious polynomial evaluation [20],
blind RSA [11], and Bloom filters [16]. Today’s most efficient PSI protocols are

130 B. Pinkas et al.

based on hashing the items to bins and then evaluating an oblivious pseudo-
random function per bin, which is implemented using oblivious transfer (OT)
extension. These protocols have linear complexity and were all implemented and
evaluated, see, e.g., [31,39,41,42]. In cases where communication cost is a crucial
and computation cost is a minor factor, recent solutions based on fully homo-
morphic encryption represent an interesting alternative [6]. PSI protocols have
also been adapted to the special requirements of mobile devices [4,25,30].

Circuit-based PSI. Circuit-based PSI protocols compute the set intersection
functionality by running a secure evaluation of a Boolean circuit. These protocols
can easily be adapted to compute different variants of the PSI functionality. The
straightforward solution to the PSI problem requires O(n2) comparisons – one
comparison for each pair of items belonging to the two parties. Huang et al. [26]
designed a circuit for computing PSI based on sorting networks, which computes
O(n log n) comparisons and is of size O(σn log n), where σ is the bitlength of the
inputs. A different circuit, based on the usage of Cuckoo hashing by one party
and simple hashing by the other party, was proposed in [39]. The size of that
circuit is O(σn log n/ log log n). In our work we propose efficient circuits for PSI
variants with an asymptotic size of ω(σn) and better concrete efficiency. We give
more details and a comparison of the concrete complexities of circuit-based PSI
protocols in Sect. 6.2.

PSI Cardinality (PSI-CA). A specific interesting function of the intersection
is its cardinality, namely |X ∩Y |, and is referred to as PSI-CA. There are several
protocols for computing PSI-CA with linear complexity based on public key cryp-
tography, e.g., [9] which is based on Diffie-Hellman and is essentially a variant of
the DH-based PSI protocol of [35,46] (see also references given therein for other
less efficient public key-based protocols); or [12] which is based on Bloom filters
and the public key cryptosystem of Goldwasser-Micali. In these protocols, one
of the parties learns the cardinality. As we show in our experiments in Sect. 6.3,
these protocols are slower than our constructions already for relatively small
set sizes (n = 212) in the LAN setting and for large set sizes (n = 220) in the
WAN setting, since they are based on public key cryptography. An advantage of
these protocols is that they achieve the lowest amount of communication, but
it seems hard to extend them to compute arbitrary functions of the intersec-
tion. Protocols for private set intersection and union and their cardinalities with
linear complexity are given in [8]. They use Bloom filters and computationally
expensive additively homomorphic encryption, whereas our protocols can flex-
ibly be adapted to different variants and are based on efficient symmetric key
cryptography.

2 Preliminaries

Setting. We consider two parties, which we denote as Alice and Bob. They
have input sets, X and Y , respectively, which are each of size n and each item

Efficient Circuit-Based PSI via Cuckoo Hashing 131

has bitlength σ. We assume that both parties agree on a symmetric function f
and would like to securely compute f(X ∩ Y). They also agree on a circuit that
receives the items in the intersection as input and computes f .

Security Model. The secure computation literature considers semi-honest
adversaries, which try to learn as much information as possible from a given
protocol execution, but are not able to deviate from the protocol steps, and
malicious adversaries, which are able to deviate arbitrarily from the protocol.
The semi-honest adversary model is appropriate for scenarios where execution
of the intended software is guaranteed via software attestation or business restric-
tions, and yet an untrusted third party is able to obtain the transcript of the
protocol after its execution, either by stealing it or by legally enforcing its dis-
closure. Most protocols for private set intersection, as well as this work, focus
on solutions that are secure against semi-honest adversaries. PSI protocols for
the malicious setting exist, but they are less efficient than protocols for the
semi-honest setting (see, e.g., [7,10,19,20,43,44]).

Secure Computation. There are two main approaches for generic secure two-
party computation with security against semi-honest adversaries that allow to
securely evaluate a function that is represented as a Boolean circuit: (1) Yao’s
garbled circuit protocol [48] has a constant round complexity and with today’s
most efficient optimizations provides free XOR gates [33], whereas securely evalu-
ating an AND gate requires sending two ciphertexts [50]. (2) The GMW protocol
[21] also provides free XOR gates and requires two ciphertexts of communica-
tion per AND gate using OT extension [3]. The main advantage of the GMW
protocol is that all symmetric cryptographic operations can be pre-computed in
a constant number of rounds in a setup phase, whereas the online phase is very
efficient, but requires interaction for each layer of AND gates. In more detail, the
setup phase is independent of the actual inputs and pre-computes multiplication
triples for each AND gate using OT extension in a constant number of rounds
(cf. [3]). The online phase runs from the time the inputs are provided until the
result is obtained and involves sending one message for each layer of AND gates.
A detailed description and a comparison between Yao and GMW is given in [45].

Cuckoo Hashing. In its simplest form, Cuckoo hashing [36] uses two hash
functions h0, h1 to map n elements to two tables T0, T1, each containing (1 +
ε)n bins. Each bin accommodates at most a single element. The scheme avoids
collisions by relocating elements when a collision is found using the following
procedure: Let b ∈ {0, 1}. An element x is inserted into a bin hb(x) in table Tb.
If a prior item y exists in that bin, it is evicted to bin h1−b(y) in T1−b. The
pointer b is then assigned the value 1 − b. The procedure is repeated until no
more evictions are necessary, or until a threshold number of relocations has been
performed. In the latter case, the last element is mapped to a special stash. It
was shown in [29] that, for any constant s, the probability that the size of the

132 B. Pinkas et al.

stash is greater than s is at most O(n−(s+1)). After inserting all items, each item
can be found in one of two locations or in the stash. A lookup therefore requires
checking only O(1) locations.

Many variants of Cuckoo hashing were suggested and analyzed. See [47] for a
thorough discussion and analysis of different Cuckoo hashing schemes. A variant
of Cuckoo hashing that is similar to our constructions was given in [1], although
in a different application domain. It considers a setting with three tables, where
an item must be placed in two out of three tables. The analysis of this con-
struction uses a different proof technique than the one we present in the full
version [40], and we have not attempted to generalize their proof to a general
number of item insertions (as we do for our construction). Furthermore, there is
no tight analysis of the stash size in [1]. The work in [18] builds on the construc-
tion of [1] and proves that the failure probability when using a stash of size s
behaves as Õ(n−s). However, the experiments of [18, Fig. 6] reveal that the size
of the stash is rather large and actually increasing in n within the range of 1 000
to 100 000 elements. For example, for table size 7.1n, a stash of at least size 4
is required for inserting 10 000 elements, whereas a stash of at least size 11 is
required for inserting 100 000 elements. Since each item in the stash must be
compared to all items of the other party, and since these comparisons cannot
use a shorter representation based on permutation-based hashing, the effect of
the stash is substantial, and in the context of circuit-based PSI it is therefore
preferable to use constructions that place very few or no items in the stash.

PSI based on Hashing. Some existing constructions of circuits for PSI require
the parties to reorder their inputs before inputting them to the circuit: The
sorting-network based construction of [26] requires the parties to sort their inputs.
The hashing based construction of [39] requires that each party maps its items to
bins using a hash function. It was observed as early as [20] that if the two parties
agree on the same hash function and use it to map their respective input to bins,
then the items that one party maps to a specific bin need to be compared only to
the items that the other party maps to the same bin. However, the parties must
be careful not to reveal to each other the number of items they mapped to each
bin, since this data leaks information about their other items. Therefore, they
agree beforehand on an upper bound m for the maximum number of items that
can be mapped to a bin (such upper bounds are well known for common hashing
algorithms, and can also be substantiated using simulation), and pad each bin
with random dummy values until it has exactly m items in it. If both parties use
the same hash algorithm, then this approach considerably reduces the overhead
of the computation from O(n2) to O(β · m2), where m is the maximum number
of items mapped to any of the β bins.

When a random hash function h is used to map n items to n bins, where
x is mapped to bin h(x), the most occupied bin has w.h.p. m = lnn

ln lnn (1 +
o(1)) items [22] (a careful analysis shows, e.g., that, for n = 220 and an error
probability of 2−40, one needs to set m = 20). Cuckoo hashing is much more
promising, since it maps n items to 2(1+ε)n bins, where each bin stores at most

Efficient Circuit-Based PSI via Cuckoo Hashing 133

m = 1 items. Cuckoo hashing typically uses two hash functions h0, h1, where
an item x is mapped to one of the two locations h0(x), h1(x), or to a stash of
a small size. It is tempting to let both parties, Alice and Bob, map their items
to bins using Cuckoo hashing, and then only compare the item that one party
maps to a bin with the item that the other party maps to the same bin. The
problem is that Alice might map x to h0(x) whereas Bob might map it to h1(x).
They cannot use a protocol where Alice’s value in bin h0(x) is compared to the
two bins h0(x), h1(x) in Bob’s input, since this reveals that Alice has an item
that is mapped to these two locations. The solution used in [19,39,41] is to let
Alice map her items to bins using Cuckoo hashing, and Bob map his items using
simple hashing. Namely, each item of Bob is mapped to both bins h0(x), h1(x).
Therefore, Bob needs to pad his bins to have m = O(log n/ log log n) items in
each bin, and the total number of comparisons is O(n log n/ log log n).

3 Analyzing the Failure Probability

Efficient cryptographic protocols that are based on probabilistic constructions
are typically secure as long as the underlying probabilistic constructions do not
fail. Our work is based on variants of Cuckoo hashing, and the protocols are
secure as long as the relevant tables and stashes do not overflow. (Specifically,
hashing is computed using random hash functions which are chosen indepen-
dently of the data. If a party observes that these functions cannot successfully
hash its data, it can indeed ask to replace the hash functions, or remove some
items from its input. However, the hash functions are then no longer indepen-
dent of this party’s input and might therefore leak some information about the
input.)

There are two approaches for arguing about the failure probability of cryp-
tographic protocols:

1. For an asymptotic analysis, the failure probability must be negligible in n.
2. For a concrete analysis, the failure probability is set to be smaller than

some threshold, say 2−λ, where λ is a statistical security parameter.
In typical experiments, the statistical security parameter is set to λ = 40.
This means that “unfortunate” events that leak information happen with
a probability of at most 2−40. In particular, λ = 40 was used in all PSI
constructions which are based on hashing (e.g., [16,19,31,39,41]).

With regards to the probabilistic constructions, there are different levels of
analysis of the failure probability:

1. For simple constructions, it is sometimes possible to compute the exact fail-
ure probability. (For example, suppose that items are hashed to a table
using a random hash function, and a failure happens when two items are
mapped to the same location. In this case it is trivial to compute the exact
failure probability.)

134 B. Pinkas et al.

2. For some constructions there are known asymptotic bounds for the failure
probability, but no concrete expressions. (For example, for Cuckoo hashing
with a stash of size s, it was shown in [29] that the overflow probability is
O(n−(s+1)), but the exact constants are unknown.)2

3. For other constructions there is no analysis for the failure probability, even
though they perform very well in practice. For example, Cuckoo hashing
variants where items can be mapped to d > 2 locations, or where each bin
can hold k > 1 items, were known to have better space utilization than
standard Cuckoo hashing, but it took several years to theoretically analyze
their performance [47]. There are also insertion algorithms for these Cuckoo
hashing variants which are known to perform well but which have not yet
been fully analyzed.

3.1 Using Probabilistic Constructions for Cryptography

Suppose that one is using a probabilistic construction (e.g., a hash table) in
the design of a cryptographic protocol. An asymptotic analysis of the crypto-
graphic protocol can be done if the hash table has either an exact analysis or an
asymptotic analysis of its failure probability (items 1 and 2 in the previous list).

If the aim is a concrete analysis of the cryptographic protocol, then exact
values for the parameters of the hash construction must be identified. If an
exact analysis is known (item 1), then it is easy to plug in the desired failure
probability (2−λ) and compute the values for the different parameters. However,
if only an asymptotic analysis or experimental evidence is known (items 2 and
3), then experiments must be run in order to find the parameters that set the
failure probability to be smaller than 2−λ.

We stress that a concrete analysis is needed whenever a cryptographic pro-
tocol is to be used in practice. In that case, even an asymptotic analysis is
insufficient since it does not specify any constants, which are crucial for deriving
the exact parameter values.

3.2 Experimental Parameter Analysis

Verifying that the failure probability is smaller than 2−λ for λ = 40 requires
running many repetitions of the experiments. Furthermore, for large input sizes
(large values of n), each single run of the experiment can be rather lengthy. (And
one could justifiably argue that the more interesting results are for the larger
values of n, since for smaller n we can use less optimal constructions and still
get reasonable performance.)

2 We note though that many probabilistic constructions are analyzed in the algorithms
research literature to have a failure probability of o(1), which is fine for many appli-
cations, but is typically insufficient for cryptographic applications.

Efficient Circuit-Based PSI via Cuckoo Hashing 135

Examining the failure probability for a specific choice of parameters.
For a specific choice of parameters, running 2λ repetitions of an experiment is
insufficient to argue about a 2−λ failure probability, since it might happen that
the experiments were very unlucky and resulted in no failure even though the
failure probability is somewhat larger than 2−λ. Instead, we can argue about a
confidence interval: namely, a confidence interval of 1 − α (say, 95%, or 99.9%)
states that if the failure probability is greater than 2−λ, then we would have
not seen the results of the experiment, except with a probability that is smaller
than α. Therefore, either the experiment was very unlucky, or the failure prob-
ability is sufficiently small. For example, an easy to remember confidence level
used in statistics is the “rule of three”, which states that if an event has not
occurred in 3 · s experiments, then the 95% confidence interval for its rate of
occurrence in the population is [0, 1/s]. For our purposes this means that run-
ning 3·2λ experiments with no failure suffices to state that the failure probability
is smaller than 2−λ with 95% confidence. (We will report experiments in Sect. 6.1
which result in a 99.9% confidence interval for the failure probability.)

Examining the failure probability as a function of n. For large values of n
(e.g., n = 220), it might be too costly to run sufficiently many (more than 240)
experiments. Suppose that the experiments spend just 10 cycles on each item.
This is an extremely small lower bound, which is probably optimistic by orders
of magnitude compared to the actual run-time. Then the experiments take at
least 10 · 260 cycles. This translates to about a million core hours on 3 GHz
machines.

In order to be able to argue about the failure probability for large values of
n, we can run experiments for progressively increasing values of n and identify
how the failure probability behaves as a function of n. If we observe that the
failure probability is decreasing, or, better still, identify the dependence on n,
we can argue, given experimental results for medium-sized n values, about the
failure probabilities for larger values of n.

3.3 Our Constructions

Asymptotic overhead. We present in Sect. 4 a construction of circuit-based
PSI that we denote as the “mirror” construction. This construction uses four
instances of standard Cuckoo hashing and therefore we know that a stash of size s
guarantees a failure probability of O(n−(s+1)) [29]. (Actually, the previously
known analysis was only stated for s = O(1). We show in the full version [40]
that this failure probability also holds for s that is not constant.)

The bound on the failure probability implies that for any constant security
parameter λ, a stash of constant size is sufficient to ensure that the failure
probability is smaller than 2−λ for sufficiently large n. In order to achieve a
failure probability that is negligible in n, we can set the stash size s to be slightly
larger than O(1), e.g., s = log log n, s = log∗ n, or any s = ω(1). The result is
a construction with an overhead of ω(n). (More accurately, the overhead is as
close as desired to being linear: for any f(n) ∈ ω(n), the overhead is o(f(n)).)

136 B. Pinkas et al.

Concrete overhead. In Sect. 5 we present a new variant of Cuckoo hashing
that we denote as two-dimensional (or 2D) Cuckoo hashing. We analyze this
construction in the full version [40] and show that when no stash is used, then
the failure probability (with tables of size O(n)) is O(1/n), as in standard Cuckoo
hashing.

We only have a sketch of an analysis for the size of the stash of the con-
struction in Sect. 5, but we observed that this construction performed much
better than the asymptotic construction. Also, performance was improved with
the heuristic of using half as many bins but letting each bin store two items
instead of one. (This variant is known to perform much better also in the case
of standard Cuckoo hashing, see [47].)

Since we do not have a theoretical analysis of this construction, we ran exten-
sive experiments in order to examine its performance. These experiments follow
the analysis paradigm given in Sect. 3.2, and are described in Sect. 6.1. For a
specific ratio between the table size and n, we ran 240 experiments for n = 212

and found that the failure probability is at most 2−37 with 99.9% confidence.
We also ran experiments for increasing values of n, up to n = 212, and found
that the failure probability has linear dependence on n−3 (an explanation of
this behavior appears in the full version [40]). Therefore, we can argue that for
n ≥ 213 = 2 · 212 the failure probability is at most 2−37 · 2−3 = 2−40.

4 An Asymptotic Construction Through Mirror Cuckoo
Hashing

We show here a construction for circuit-based PSI that has an ω(n) asymptotic
overhead. The analysis in this section is not intended to be tight, but rather
shows the asymptotic behavior of the overhead.

The analysis is based on a construction which we denote as mirror Cuckoo
hashing (as the placement of the hash functions that are used in one side is a
mirror image of the hash functions of the other side). Hashing is computed in a
single iteration. The main advantage of this construction is that it is based on
four copies of standard Cuckoo hashing. Therefore, we can apply known bounds
on the failure probability of Cuckoo hashing. Namely, applying the result of [29]
that the failure probability when using a stash of size s is O(n−(s+1)). Given this
result, a stash of size ω(1) guarantees that the failure probability is negligible
in n (while a constant stash size guarantees that for sufficiently large n the failure
probability is smaller than any constant, and in particular smaller than 2−40).
We note that while the known results about the size of the stash are only stated
for s = O(1), we show in the full version [40] that the O(n−(s+1)) bound on the
failure probability also applies to a non-constant stash size.

4.1 Mirror Cuckoo Hashing

We describe a hashing scheme that uses two sets of tables. A left set including
tables TL, TR, and a right set including tables T ′

L, T ′
R. Each table is also denoted

Efficient Circuit-Based PSI via Cuckoo Hashing 137

TL1: hL1

TL0: hL0

TL

TR1: hR1

TR0: hR0

TR

T ′
L1: h

′
L1 =hR1

T ′
L0: h

′
L0 =hL0

T ′
L

T ′
R1: h

′
R1 =hL1

T ′
R0: h

′
R0 =hR0

T ′
R

Fig. 1. The tables TL, TR and T ′
L, T ′

R. The hash functions in the upper subtables of T ′
L,

T ′
R are the same as in TL, TR, and those in the lower subtables are in reverse order.

as a “column”. Each table has two subtables, or “rows”. So overall there are four
tables (columns), each containing two subtables (rows).

Bob maps each of his items to one subtable in each table, namely to one row
in each column. Alice maps each of her items to the two subtables in one of the
tables, namely to both rows in just one of the columns. These mappings ensure
that for any item x that is owned by both Alice and Bob, there is exactly one
subtable to which it is mapped by both parties.

The tables. The construction uses two sets of tables, TL, TR and T ′
L, T ′

R. Each
table is of size 2(1 + ε)n and is composed of two subtables of size (1 + ε)n (TL

contains the subtables TL0, TL1, etc.). Each subtable is associated with a hash
function that will be used by both parties. E.g., function hL0 will be used for
subtable TL0, etc. The tables and the hash functions are depicted in Fig. 1.

The hash functions. The hash functions associated with the tables are defined
as follows:

– The functions for the left two tables (columns) TL, TR, i.e., hL0, hL1, hR0, hR1,
are chosen at random. Each function maps items to the range [0, (1+ε)n−1],
which corresponds to the number of bins in each of TL0, TL1, TR0, TR1.

– The functions for the two right tables T ′
L, T ′

Rare defined as follows:
• The two functions of the upper subtables are equal to the functions of

the upper subtables on the left. Namely, h′
L0 =hL0 and h′

R0 = hR0.
• The two functions of the lower subtables are the mirror image of the

functions of the lower subtables on the left. Namely, h′
L1, h′

R1 are defined
such that h′

L1 = hR1, and h′
R1 = hL1.

Bob’s insertion algorithm. Bob needs to insert each of his items to one subtable
in each of the tables TL, TR, T ′

L, T ′
R. He can do so by simply using Cuckoo

hashing for each of these tables. For example, for the table TL and its subtables
TL0, TL1, Bob uses the functions hL0, hL1 to insert each input x to either TL0

or TL1. The same is applied to TR, T ′
L, and T ′

R. In addition, Bob keeps a small
stash of size ω(1) for each of the four tables. Overall, based on known properties
of Cuckoo hashing, we can claim that the construction guarantees the following
property:

138 B. Pinkas et al.

Algorithm 1 (Mirror Cuckoo hashing)

1. Alice uses Cuckoo hashing to insert each item x to one of the subtables
TL0, TR0, using the hash functions hL0, hR0.

2. Similarly, Alice uses Cuckoo hashing to insert each item x to one of the
subtables TL1, TR1, using the hash functions hL1, hR1.

3. At this point, Alice observes the result of the first two steps. For some
inputs x it happened that they were mapped to the same “column” in both
of these steps. Namely, x was mapped to both TL0 and TL1, or to both TR0

and TR1. These are the “good” items, since they were mapped to the same
column, as is required for all of Alice’s inputs.

4. The other inputs of Alice, the “bad” items, were mapped to one column
in Step 1 and to the other column in Step 2. Alice applies the following
procedure to these items:
(a) Each “bad” item x is removed from both locations to which it was

mapped in Steps 1 and 2.
(b) x is now inserted in either of T ′

L0, T ′
R0 using the hash functions h′

L0 :=
hL0, h′

R0 := hR0 with the same mapping as in Step 1.
(c) x is also inserted in either of T ′

L1, T ′
R1 using the hash functions h′

L1 :=
hR1, h′

R1 := hL1 with the same mapping as in Step 2.

Claim. With all but negligible probability, it holds that for every input x of Bob,
and for each of the four tables TL, TR, T ′

L, T ′
R, Bob inserts x to exactly one of

the two subtables or to the stash.

Alice’s insertion algorithm. Alice’s operation is a little more complex and is
described in Algorithm 1. Alice considers the two upper subtables on the left,
TL0, TR0, as two subtables for standard Cuckoo hashing. Similarly, she considers
the two lower subtables on the left, TL1, TR1, as two subtables for standard
Cuckoo hashing. In other words, she considers the left top row and the left
bottom row as standard Cuckoo hashing tables.

Alice then inserts each input item of hers to each of these two tables using
standard Cuckoo hashing. (She also uses stashes of size ω(1) to store items which
cannot be placed in the Cuckoo tables.) For some input items x it happens that x
is inserted in the top row to TL0 and in the bottom row to TL1; or x is inserted
in the top row to TR0 and in the bottom row to TR1. Therefore, x is inserted
in two subtables in the same column. (x is denoted as “good” since this is the
outcome that we want.)

Let x′ be one of the other, “bad”, items. Thus, x′ is inserted in the top row
to TL0 and in the bottom row to TR1, or vice versa. In this case, Alice removes
x′ from the tables on the left and inserts it to the tables T ′

L, T ′
R on the right.

Since the hash functions that are used in T ′
L, T ′

R are equal to the functions
used on the left side (where in the bottom row the functions are in reverse
order), Alice does not need to run a Cuckoo hash insertion algorithm on the
right side: Assume that x′ was stored in locations TL0[hL0(x′)] and TR1[hR1(x′)]
on the left. Then Alice inserts it to locations T ′

L0[h
′
L0(x

′)] = T ′
L0[hL0(x′)] and

T ′
L1[h

′
L1(x

′)] = T ′
L1[hR1(x′)] on the right.

Efficient Circuit-Based PSI via Cuckoo Hashing 139

In other words, in a global view, one can see the algorithm as composed of
the following steps: (1) First, all items are placed in the left tables. (2) Each
subtable is divided in two copies, where one copy contains the good items and
the other copy contains the bad items. (3) The subtable copies with the good
items are kept on the left, whereas the copies with the bad items are moved
to the right, where in the bottom row on the right we replace the order of the
subtables.

This algorithm has two important properties: First, all items that were suc-
cessfully inserted in the first step to the left tables will be placed in tables on
either the left or the right hand sides. Moreover, each item will be placed in two
subtables in the same column — the good items happened to initially be placed
in this way in the left tables; whereas the bad items were in different columns
on the left side but were moved to the same column on the right side. Hence, we
can state the following claim:

Claim. With all but negligible probability, Alice inserts each of her inputs either
to two locations in exactly one of TL, TR, T ′

L, T ′
R and to no locations in other

tables, or to a stash.

Tables size. The total size of the tables is 8(1 + ε)n.

Stash size. With regards to stashes, each party needs to keep a stash for each
of the Cuckoo hashing tables that it uses. Since Alice runs the Cuckoo hashing
insertion algorithm only for the left tables and re-uses the mapping for the
right tables, she needs only two stashes. Bob on the other hand runs the Cuckoo
hashing insertion algorithm four times and hence needs four stashes. (In order to
preserve simplicity, we omitted the stashes in Fig. 1 and Algorithm 1.) Given the
result of [29], and our observation in the full version [40] about its applicability to
non-constant stash sizes, it holds that a total stash of size ω(1) elements suffices
to successfully map all items, except with negligible probability. We note that
the size of the stash can be arbitrarily close to constant, e.g., it can be set to be
O(log log n) or O(log∗ n). Essentially, for any function f(n) ∈ ω(n), the size of
the stash can be o(f(n)).

4.2 Circuit-Based PSI from Mirror Cuckoo Hashing

Mirror Cuckoo hashing lets the parties map their inputs to tables of size O(n)
and stashes of size ω(1), with negligible failure probability. It is therefore straight-
forward to construct a PSI protocol based on this hashing scheme:

1. The parties agree on the parameters that define the size of the tables and the
stash for mirror Cuckoo hashing. They also agree on the hash functions that
will be used in each table.

2. Each party maps its items to the tables using the hash functions that were
agreed upon.

3. The parties evaluate a circuit that performs the following operations:
(a) For each bin in the tables, the circuit compares the item that Alice

mapped to the bin to the item that Bob mapped to the same bin.

140 B. Pinkas et al.

(b) Each item that Bob mapped to his stashes is compared with all items of
Alice. Similarly, each item that Alice mapped to her stashes is compared
with all items of Bob.

The properties of mirror Cuckoo hashing ensure: (1) If an item x is in the inter-
section, then there is exactly one comparison in which x is input by both Alice
and Bob. (2) The number of comparisons in Step 3 is ω(n).

5 A Concretely Efficient Construction Through 2D
Cuckoo Hashing

Two-dimensional Cuckoo hashing (a.k.a. 2D Cuckoo hashing) is a new construc-
tion with the following properties:

– It uses overall O(n) memory (specifically, 8(1+ε)n in our construction, where
we set ε = 0.2 in our experiments).

– Both, Alice and Bob, map each of their items to O(1) memory locations
(specifically, to two or four memory locations in our construction).

– If x appears in the input of both parties, then there is exactly one location
to which both Alice and Bob map x.

The construction uses two tables, TL, TR, located on the left and the right
side, respectively. Each of these tables is of size 4(1+ε)n and is composed of two
smaller subtables: TL is composed of the two smaller subtables TL0, TL1, while
TR is composed of the two smaller tables TR0, TR1. The hash functions hL0, hL1,
hR0, hR1 are used to map items to TL0, TL1, TR0, TR1, respectively. The tables
are depicted in Fig. 2.

TL1

TL0

TL

TR1

TR0

TR

Fig. 2. The tables TL and TR, consisting of TL0, TL1 and TR0, TR1, respectively.

Hashing is performed in the following way:

– Alice maps each of her items to all subtables on one of the two sides. Namely,
each item x of Alice is either mapped to both bins TL0[hL0(x)] and TL1[hL1(x)]
on the left side, or to bins TR0[hR0(x)] and TR1[hR1(x)] on the right side. In
other words, ALICE maps each item to ALL subtables on one side.

Efficient Circuit-Based PSI via Cuckoo Hashing 141

Alice Bob

Fig. 3. The possible combinations of locations to which Alice and Bob map their inputs.

– Bob maps each of his items to one subtable on each side. This is done using
standard Cuckoo hashing. Namely, each input x of Bob is mapped to one of
the locations TL0[hL0(x)] or TL1[hL1(x)] on the left side, as well as mapped
to one of the locations TR0[hR0(x)] or TR1[hR1(x)] on the right side. In other
words, BOB maps each item to one subtable on BOTH sides.

The possible options for hashing an item x by both parties are depicted in Fig. 3.
It is straightforward to see that if both parties have the same item x, there is
exactly one table out of TL0, TL1, TR0, TR1 that is used by both Alice and Bob
to store x.

We next describe a construction of 2D Cuckoo hashing, followed by a variant
based on a heuristic optimization that stores two items in each table entry. The
asymptotic behavior of the basic construction is analyzed in the full version [40].
In Sect. 6.1 we describe simulations for setting the parameters of the heuristic
construction in order to reduce the hashing failure probability to below 2−40.

5.1 Iterative 2D Cuckoo Hashing

This construction uses two tables, TL, TR, each of 4(1 + ε)n entries. (In this
construction, there is no need to assume that each table is composed of two
subtables.) The parties associate two hash functions with each table, namely
hL0, hL1 for TL, and hR0, hR1 for TR.

Bob uses Cuckoo hashing to insert each of his items into one location in each
of the tables.

Alice inserts each item x either into the two locations hL0(x) and hL1(x)
in TL, or into the two locations hR0(x) and hR1(x) in TR. This is achieved by
Alice running a modified Cuckoo insertion algorithm that maps an item to two
locations in one table, “kicks out” any item that is currently present in these
locations and also removes the other occurrence of this item from the table, and
then tries to insert this item into its two locations in the other table, and so on.

142 B. Pinkas et al.

Algorithm 2 (Iterative 2D Cuckoo hashing)

1. Alice maps all of her items to table TL, using simple hashing. That is,
each item x is inserted in locations hL0(x), hL1(x). Obviously, there will be
entries in TL that will have more than a single item mapped to them.
Denote TL as the active table.

2. For each entry in the active table with more than one item in it: remove all
items – except for the item that was mapped to this entry most recently
– and move them to the “relocation pool”. For each of the removed items,
remove the item also from its other appearance in the active table. (At
the end of this step, all entries in the active table have at most one entry.
However, there might be items in the relocation pool.)

3. If the relocation pool is empty, then stop (found a successful mapping).
4. Change the designation of the active table to point to the other table.
5. Move each item x from the relocation pool to locations h0(x), h1(x) in

the active table. (For example, if TR is the active table, move x to
hR0(x), hR1(x).)

6. Go to Step 2.

Algorithm 3 (Iterative 2D Cuckoo hashing with bins of size 2)

The algorithm is identical to Algorithm 2, except for the following change in
Step 2:

2. For each entry in the active table with more than two items in it: remove
all items – except for the two items that were mapped to this entry most
recently – and move them to the “relocation pool”. For each of the removed
items, remove the item also from its other appearance in the active table.

This is a new variant of Cuckoo hashing, where inserting an item into a table
might result in four elements that need to be stored in the other table: storing x
in hL0(x), hL1(x) might remove two items, y0, y1, one from each location. These
items are also removed from their other occurrences in TL. They must now be
stored in locations hR0(y0), hR1(y0), hR0(y1), hR1(y1) in TR.

It is not initially clear whether such a mapping is possible (with high proba-
bility, given random choices of the hash functions). We analyze the construction
in the full version [40] and show that it only fails with probability O(1/n). We
ran extensive simulations, showing that the algorithm (when using a stash and a
certain choice of parameters) fails with very small probability, smaller than 2−40.

The insertion algorithm of Alice is described in Algorithm 2. The choice made
in Step 2 of the algorithm, to first remove the oldest items that were mapped to
the entry, is motivated by the intuition that it is more likely that the locations
to which these items are mapped in the other table are free.

Storing two items per bin. It is known that the space utilization of Cuckoo
hashing can be improved by storing more than one item per bin (cf. [15,37] or
the review of multiple choice hashing in [47]). We take a similar approach and

Efficient Circuit-Based PSI via Cuckoo Hashing 143

use two tables of size 2(1 + ε)n where each entry can store two items. (These
tables have half as many entries as before, but each entry can store two items
rather than one. The total size of the tables is therefore unchanged.) The change
to the insertion algorithm is minimal and affects only Step 2. The new algorithm
is defined in Algorithm 3.

Our experiments in Sect. 6.1 show that when using the same amount of space,
then this variant of iterative 2D Cuckoo hashing performs better than the basic
protocol with bins of size one. That is, it achieves a lower probability of hashing
failure, namely of the need to use the stash, and requires less iterations to finish.

5.2 Circuit-Based PSI from 2D Cuckoo Hashing

This section describes how 2D Cuckoo hashing can be used for computing PSI.
In addition, we describe two optimizations which substantially improve the effi-
ciency of the protocol. The first optimization has the parties use permutation-
based hashing [2] (as was done in [39]) in order to reduce the size of the items
that are stored in each bin, and hence reduce the number of gates in the circuit.
The second optimization is based on having each party use a single stash instead
of using a separate stash for each Cuckoo hashing instance.
The PSI protocol is pretty straightforward given 2D Cuckoo hashing:

First, the parties agree on the hash functions to be used in each table.
(These functions must be chosen at random, independently of the inputs, in
order not to disclose any information about the inputs. Therefore, a participant
cannot change the hash functions if some items cannot be mapped, and thus we
seek parameter values that make the hashing failure probability negligible, e.g.,
smaller than 2−40.)

Then, each party maps its items to bins using 2D Cuckoo hashing and the
chosen hash functions. The important property is that if Alice and Bob have
the same input item then there exists exactly one bin into which both parties
map this item (or, alternatively, at least one of them places this item in a stash).
Empty bins are padded with dummy elements. This ensures that no information
is leaked by how empty the tables and stashes are.

Afterwards, the parties construct a circuit that compares, for each bin, the
items that both parties stored in it. In addition, this circuit compares each item
that Alice mapped to the stash with all of Bob’s items, and vice versa. Since the
number of bins is O(n), the number of items in each bin is O(1), and the number
of items in the stash is ω(1), the total size of this circuit is ω(n). The parties
can define another circuit that takes the output of this circuit and computes a
desired function of it, e.g., the number of items in the intersection.

Finally, the parties run a generic MPC protocol that securely evaluates this
circuit (cf. Sect. 6.3 for a concrete implementation and benchmarks).

Permutation-based Hashing. The protocol uses permutation-based hashing
to reduce the bitlength of the elements that are stored in the bins and thus
reduces the size of the circuit comparing them. This idea was introduced in [2]

144 B. Pinkas et al.

and used for PSI in [39]. It is implemented in the following way. The hash
function h that is used to map an item x to one of the β bins is constructed as
follows: Let x = xL|xR where |xL| = log β. We first assume that β is a power
of 2 and then describe the general case. Let f be a random function with range
[0, β − 1]. Then h maps an element x to bin xL ⊕ f(xR) and the value stored
in the bin is xR. The important property is that the stored value has a reduced
bitlength of only |x|−log β, yet there are no collisions (since if x, y are mapped to
the same bin and store the same value, then xR = yR and xL⊕f(xR) = yL⊕f(yR)
and therefore x = y).

In the general case, where β is not a power of two, the output of h is reduced
modulo β and a stored extra bit indicates if the output was reduced or not.

For Cuckoo hashing the protocol uses two hash functions to map the elements
to the bins in one table. To avoid collisions among the two hash functions, a
stored extra bit indicates which hash function was used.

Using a Combined Stash. Recall that Alice uses 2D Cuckoo hashing, for
which we show experimentally in Sect. 6.1 that no stash is needed. Bob, on the
other hand, uses two invocations of standard Cuckoo hashing, and therefore when
he does not succeed in mapping an item to a table, he must store it in a stash and
compare it with all items of Alice. In this case, the parties cannot encode their
items using permutation-based hashing, and therefore these comparisons must
be of the full-length original values and not of the shorter values computed using
permutation-based hashing as described before. Therefore, the size of the circuits
that handle the stash values have a considerable effect on the total overhead of
the protocol.

We observe that, instead of keeping several stashes, Bob can collect all the
values that he did not manage to map to any of the tables in a combined stash.
Suppose that he maps items to c tables and that we have an upper bound s
which holds w.h.p. on the size of each stash. A naive approach would use c
stashes of that size, resulting in a total stash size of c · s. A better approach
would be to use a single stash for all these items, since it is very unlikely that
all stashes will be of maximal size, and therefore we can show that with the
same probability, the size s′ of the combined stash is much smaller than c · s.
To do so, we determine the upper bounds for the combined stash for c = 2:
The probability of having a combined stash of size s′ is

∑s′

i=0 P (i) · P (s′ − i),
where P (i) denotes the probability of having a single stash of size i. The value of
P (i) is O(n−i) − O(n−(i+1)) ≈ O(n−i) [29]. We can estimate the exact values of
these probabilities based on the experiments conducted by [39]: they performed
230 Cuckoo hashing experiments for each n ∈ {211, 212, 213, 214} and counted the
required stash sizes. Using linear regression, we extrapolated the results for larger
sets of 216 and 220 elements. Table 1 shows the required stash sizes when binding
the probability to be below 2−40: it turns out that for 212 and 216 elements the
combined stash should include only one more element compared to the upper
bound for a single stash, whereas for 220 even the same stash size is sufficient.

Efficient Circuit-Based PSI via Cuckoo Hashing 145

Table 1. Stash sizes required for binding the error probability to be below 2−40 when
inserting n ∈ {212, 216, 220} elements into 2.4n bins using Cuckoo hashing.

Number of elements n 212 216 220

Single stash size s (from [39, Table 4]) 6 4 3

Stash size for two separate stashes s′ = 2s 12 8 6

Combined stash size s′ 7 5 3

All in all, when comparing to the naive solution with two separate stashes, the
combined stash size is reduced by almost a factor of 2x.

5.3 Extension to a Larger Number of Parties

Computing PSI between the inputs of more than two parties has received rela-
tively little interest. (The challenge is to compute the intersection of the inputs
of all parties, without disclosing information about the intersection of the inputs
of any subset of the parties.) Specific protocols for this task were given, e.g.,
in [20,24,32]. We note that our 2D Cuckoo hashing can be generalized to m
dimensions in order to obtain a circuit-based protocol for computing the inter-
section of the inputs of m parties. The caveat is that the number of tables grows
to 2m and therefore the solution is only relevant for a small number of parties.

We describe the case of three parties: The hashing will be to a set of eight
tables Tx,y,z, where x, y, z ∈ {0, 1}. Any input item of P1 is mapped to either all
tables T0,0,0, T0,0,1, T0,1,0, T0,1,1, or to all tables T1,0,0, T1,0,1, T1,1,0, T1,1,1. Namely,
the index x is set to either 0 or 1, and the input item is mapped to all tables
with that value of x. Every input of P2 is mapped either to all tables whose y
index is 0, or to all tables where y = 1. Every input of P3 is mapped either to
all tables whose z index is 0, or to all tables where z = 1.

It is easy to see that regardless of the choices of the values of x, y, z, the sets of
tables to which all parties map an item intersect in exactly one table. Therefore,
the parties can evaluate a simple circuit that checks every bin for equality of the
values that were mapped to it by the three parties. It is guaranteed that if the
same value is in the input sets of all parties, then there is exactly one bin to
which this value is mapped by all three parties. If some items are mapped to a
stash by one of the parties, they must be compared with all items of the other
parties, but the overhead of this comparison is ω(n) if the stash is of size ω(1).

The remaining issue is the required size of the tables. In the full version [40]
we show that inserting an item into one of two (big) tables, such that the item is
mapped to k locations in that table, requires tables of size greater than k2(1+ε)n.
When computing PSI between three parties using the method described above,
we have eight (small) tables, where each party must insert its items to four
tables in one plane or to four tables in the other plane. Each such set of four
small tables corresponds to a big table in the analysis and is therefore of size
16(1 + ε)n. The total size of the tables is therefore 32(1 + ε)n.

146 B. Pinkas et al.

5.4 No Extension to Security Against Malicious Adversaries

We currently do not see how to extend our hashing-based protocols to achieve
security against malicious adversaries. As pointed out by [44], it is inherently
hard to extend protocols based on Cuckoo hashing to obtain security against
malicious adversaries. The reason is that the placement of items depends on the
exact composition of the input set, and therefore a malicious party might learn
the placement used by the other party.

Coming up with a similar argument as in [44], assume that in our construction
in Fig. 3, Bob maps an item x to the two upper subtables and Alice maps x to
the two left subtables. Now assume Alice maliciously deviates from the protocol
and places x only in the upper left subtable, but not in the lower left one.
This deviation may allow Alice to learn whether Bob placed x in the upper or
lower subtables: For example, in a PSI-CA protocol Alice could use only dummy
elements and x as an input set and if the cardinality turns out to be 1, then she
knows that Bob placed x in the upper left subtable. However, the locations in
which Bob places an item cannot be simulated in the ideal world as they depend
on other items in his input set. Therefore, we see no trivial way to provide
security against malicious adversaries based on 2D Cuckoo hashing.

6 Evaluation

This section describes extensive experiments that set the parameters for the hash-
ing schemes, the resulting circuit sizes, and the results of experiments evaluating
PSI using these circuits.

6.1 Simulations for Setting the Parameters of 2D Cuckoo Hashing

We experimented with the iterative 2D Cuckoo hashing scheme described in
Sect. 5.1, set concrete sizes for the tables, and examined the failure probabilities
of hashing to the tables.

Our implementation is written in C and available online at http://encrypto.
de/code/2DCuckooHashing. It repeatedly inserts a set of random elements into
two tables using random hash functions. The insertion algorithm is very simple:
All elements are first inserted into the two locations to which they are mapped
(by the hash functions) in the first table. Obviously, many table entries will
contain multiple items. Afterwards, the implementation iteratively moves items
between the tables, in order to reduce the maximum bin occupancy below a
certain threshold (cf. Algorithms 2 and 3 in Sect. 5.1).

Run-time. We report in Sect. 6.3 the results of experiments analyzing the run-
time of the 2D Cuckoo hashing insertion algorithm. Overall, the insertion time
(a few milliseconds) is negligible compared to the run-time of the entire PSI
protocol.

http://encrypto.de/code/2DCuckooHashing
http://encrypto.de/code/2DCuckooHashing

Efficient Circuit-Based PSI via Cuckoo Hashing 147

Hashing to bins of size 1. First, we checked if it is possible to use a maximum
bin occupation of 1. For this, we set the sizes of each of the two tables to be 4.8n
(corresponding to the threshold size of 4(1 + ε)n in the analysis available in
the full version [40], as well as twice the recommended size for Cuckoo hashing,
since all elements are inserted twice). We ran the experiment 100 000 times with
input size n = 212 and bitlength 32. For all except 828 executions it was possible
to reduce the maximum bin occupation to 1 after at least 7 and at most 129
iterations of the insertion algorithm. On average, 20 iterations of the insertion
algorithm were necessary to achieve the desired result. In said 828 cases there
remained at least one bin with more than one item even after 500 iterations of
the insertion algorithm. This implies that iterative 2D Cuckoo hashing works
in principle, but, as standard Cuckoo hashing, requires a stash for storing the
elements of overfull bins.

Hashing to bins of size 2. For PSI protocols it would be desirable to avoid
having an additional stash on Alice’s side. In standard Cuckoo hashing it is
possible to achieve better memory utilization and less usage of the stash by
using fewer bins, where each bin can store two items [47]. Therefore, we changed
the parameters as follows: the table size is halved and reduced to 2.4n, but each
bin is allowed to contain two elements. This way, while consuming the same
amount of memory as before, we try to achieve better utilization. We followed
the paradigm that was described in Sect. 3.2 for the experimental analysis of
the failure probability. Namely, we ran massive sets of experiments to measure
the number of failures for several values of n and several table sizes, and given
this data we (1) found confidence intervals for the failure probability for specific
values of the parameters, and (2) found how the failure probability behaves as
a function of n.

Our first experiment ran 240 tests within ∼2 million core hours on the Licht-
enberg3 high performance computer of the TU Darmstadt for input size n = 212.
We chose input size 212 (instead of larger sizes like 216 or 220) since running
experiments with larger values of n would have taken even more time and would
have simply been impractical. It turned out that the insertion algorithm was
successful in reducing the maximum bin size to 2 (after at most 18 iterations) in
all but one test.

Given this data, we calculated the confidence interval of the failure probabil-
ity p. The probability of observing one failure in N experiments is N ·p·(1−p)N−1,
where in our experiments N = 240. We checked the values of p for which the prob-
ability of this observation is greater than 0.001 and concluded that with 99.9%
confidence, the failure probability for iterative 2D Cuckoo hashing with set
size n = 212 and table size 2.4n lies within

[
2−50, 2−37

]
. (Namely, there is at

most a 0.001 probability that we would have seen one failure in 240 runs if p was
greater than 2−37 or smaller than 2−50.)

3 See http://www.hhlr.tu-darmstadt.de/hhlr/index.en.jsp for details on the hardware
configuration.

http://www.hhlr.tu-darmstadt.de/hhlr/index.en.jsp

148 B. Pinkas et al.

Measuring the dependence on the parameters. To get a better under-
standing on how the failure probability behaves for different input and table
sizes, we performed a set of experiments that required another ∼3.5 million core
hours. Concretely, we ran 240 tests for each set size n ∈ {26, 28, 210} and each
table size in the range 2.2n, 2.4n, and 2.6n. We also tested the table size 3.6n
for n ∈ {26, 28} as well as table sizes 3.0n and 3.2n for n = 210. The results for
all experiments are given in Table 2 and are depicted in Fig. 4.

The results demonstrate that, w.r.t. the dependence on n, for set sizes n ∈
{26, 28, 210} it can be observed that increasing the set size by factor 4x reduces
the failure probability by factor 64x. (For larger set sizes, the number of failures

Table 2. Number of observed stashes for different table sizes and set sizes n when
performing 240 tests of iterative 2D Cuckoo hashing.

Table size Stash size n = 26 n = 28 n = 210 n = 212

2.2n 1 64 020 1 021 16 —

2 154 1 0 —

3 4 0 0 —

2.4n 1 31 033 499 8 1

2 65 0 0 0

2.6n 1 16 014 270 5 —

2 33 0 0 —

3.0n 1 — — 0 —

3.2n 1 — — 0 —

3.6n 1 1 202 17 — —

2.2n 2.4n 2.6n 2.8n 3.0n 3.2n 3.4n 3.6n

20
22
23
24

28
29
210

214
215
216

Table size

#
ob

se
rv
ed

st
as
he
s

n = 26 n = 28

n = 210 n = 212

2.2n 2.4n 2.6n 2.8n 3.0n 3.2n

0

4

8

12

16

Table size

Fig. 4. Number of observed stashes for different table and set sizes when performing 240

tests of iterative 2D Cuckoo hashing.

Efficient Circuit-Based PSI via Cuckoo Hashing 149

is too small to be meaningful.) These experiments also demonstrate that the
dependence of the failure probability on n is O(n−3). An intuitive theoretical
explanation why the probability behaves this way is given in the full version [40].
As for the dependence on the table size, the failure probability decreases by a
factor of 2x when increasing the table size in steps of 0.2n within the tested
range 2.2n to 3.6n.

From these results (a failure probability of at most 2−37 for n = 212 with
table size 2.4n and a dependence of O(n−3) of the failure probability on n)
we conclude that the failure probability for n ≥ 213 and table size 2.4n is at
most 2−40.

In total we spent about 5.5 million core hours on our experiments on the
Lichtenberg high performance computer of the TU Darmstadt.

6.2 Circuit Complexities

We compare the complexities of the different circuit-based PSI constructions for
two sets, each with n elements that have bitlength σ. We consider two possible
bitlengths:

1. Fixed bitlength: Here, the elements have fixed bitlength σ = 32 bits (e.g.,
for IPv4 addresses).

2. Arbitrary bitlength: Here, the elements have arbitrary bitlength and are
hashed to values of length σ = 40 + 2 log2(n) − 1 bits, with a collision proba-
bility that is bounded by 2−40. (See Appendix A of the full version of [41] for
an analysis.) Therefore, we set the bitlength to σ = 40 + 2 log2(n) − 1 bits.

For all protocols we report the circuit size where we count only the number of
AND gates, since many secure computation protocols provide free computation
of XOR gates. We compute the size of the circuits up to the step where single-
bit wires indicate if a match was found for the respective element. We note that
for many circuits computing functions of the intersection, this part of the circuit
consumes the bulk of the total size. For example, computing the Hamming weight
of these bits is equal to computing the cardinality of the intersection (PSI-CA).
The size-optimal Hamming weight circuit of [5] has size x − wH(x) and depth
log2 x, where x is the number of inputs and wH(·) is the Hamming weight. The
size of the Hamming weight circuit is negligible compared to the rest of the
circuit. As another example, if the cardinality is compared with a threshold
(yielding a PSI-CAT protocol), this only adds 3 log2 n AND gates and depth
log2 log2 n using the depth-optimized construction described in [45], which is
also negligible.

The size of the Sort-Compare-Shuffle circuit. The Sort-Compare-Shuffle cir-
cuit [26] has three phases. In the SORT phase, the two sorted lists of inputs
are merged into one sorted list, which takes 2σn log2(2n) AND gates. In the
COMPARE phase, neighboring elements are compared to find the elements in
the intersection, which takes σ(3n − 1) − n AND gates. The SHUFFLE phase

150 B. Pinkas et al.

randomly permutes these values and takes σ(n log2(n) − n + 1) AND gates. To
have a fair comparison with our protocols, we remove the SHUFFLE phase and
let the COMPARE phase output only a single bit that indicates if a match was
found for the respective element or not; this removes n multiplexers of σ-bit
values from the COMPARE phase, i.e., σn AND gates. Hence, the total size is
2σn log2(n) + 2σn − n − σ + 2 AND gates.

The size of the Circuit-Phasing circuit. The Circuit-Phasing circuit [39] has
2.4nm(σ − log2(2.4n) + 1) + sn(σ − 1) AND gates where m is the maximum
occupancy of a bin for simple hashing and s is the size of the stash.

The size of our iterative 2D Cuckoo hashing construction of Sect. 5.2. Each of
the following operations is performed twice for the left and right side: (1) For
each of the 2.4n bins the shortened representation (cf. Sect. 5.2) of the single
item in Bob’s bin is compared with the two elements in the corresponding bin
of Alice. (2) Bob has a stash of size s′. Each item in the stash is compared to
all of Alice’s items (using the full bitlength representation). Hence, the overall
complexity is 4 ·2.4n(σ − log2(2.4n)+1)+ s′n(σ −1) AND gates, where s′ is the
size of the combined stash.

Concrete Circuit Sizes. The Sort-Compare-Shuffle construction [26] has a
circuit of size O(σn log n). The Circuit-Phasing construction [39] has circuit size
O(σn log n/ log log n), while the asymptotic construction we present in this paper
has a size of ω(σn) and the iterative 2D Cuckoo hashing construction has an
even smaller size.

For a comparison of the concrete circuit sizes, we use the parameters from the
analysis in [39]: For n = 212 elements the maximum bin size for simple hashing
is m = 18, for n = 216 we set m = 19, and for n = 220 we set m = 20. We set the
stash size s and the combined stash size s′ according to Table 1 (on page 21).

On the left side of Table 3 we compare the concrete circuit sizes for fixed
bitlength σ = 32 bit. Our best protocol (“Ours Iterative Combined”) improves
over the best previous protocol by factor 2.0x for n = 212 (over [26]), by fac-
tor 2.7x for n = 216 (over [39]), and by factor 3.2x for n = 220 (over [39]).

On the right side of Table 3 we compare the concrete circuit sizes for arbitrary
bitlength σ. Our best protocol (Ours Iterative Combined) improves over the best
previous protocol by factor 1.8x for n = 212 (over [26]), by factor 2.8x for n = 216

(over [26]), and by factor 3.8x for n = 220 (over [39]).
Our constructions always have smaller circuits than both former construc-

tions, and, due to our better asymptotic size, the savings become greater as n
increases.

Circuit Depths. For some protocols, the circuit depth is a relevant metric
(e.g., for the GMW protocol the depth determines the round complexity of the
online phase). Our constructions have the same depth as the Circuit-Phasing
protocol of [39], i.e., log2 σ. This is much more efficient than the depth of the

Efficient Circuit-Based PSI via Cuckoo Hashing 151

Table 3. Concrete circuit sizes in #ANDs for PSI variants on n elements of fixed
bitlength σ = 32 (left) and arbitrary bitlength hashed to σ = 40 + 2 log2(n) − 1
bits (right).

Protocol Fixed bitlength σ = 32 Arbitrary bitlength

n = 212 n = 216 n = 220 n = 212 n = 216 n = 220

Sort-Compare-Shuffle [26] 3 403 746 71 237 602 1 408 237 538 6 705 091 158 138 299 3 478 126 515

Circuit-Phasing [39] 4 254 256 55 155 466 688 258 388 10 501 475 181 928 305 3 201 695 060

Separate stashes s′ = 2s

Ours iterative separate 2 299 801 26 153 770 313 183 300 5 042 482 71 137 681 1 081 999 223

Combined stash s′ (cf. Table 1)

Ours iterative combined 1 664 921 20 058 922 215 665 732 3 772 722 57 375 121 836 632 439

Sort-Compare-Shuffle circuit of [26] which is O(log σ · log n) when using depth-
optimized comparison circuits.

Further Optimizations. So far, we computed the comparisons with a Boolean
circuit consisting of 2-input gates: For elements of bitlength �, the circuit XORs
the elements and afterwards computes a tree of � − 1 non-XOR gates s.t. the
final output is 1 if the elements are equal or 0 otherwise. This circuit allows
to use an arbitrary secure computation protocol based on Boolean gates, e.g.,
Yao or GMW. The recent approach of [14] shows that for security against semi-
honest adversaries the communication can be improved by using multi-input
lookup tables (LUTs). Their best LUT has 7 inputs and requires only 372 bits
of total communication (cf. [14, Table 4]). For computing equality, 6 of the non-
XOR gates in the tree can be combined into one 7-input LUT. This improves
communication of the Circuit-Phasing protocol of [39] and our protocols by fac-
tor 6 · 256/372 = 4.1x.

6.3 Performance

We empirically compare the performance of our iterative 2D Cuckoo hashing
PSI-CAT protocol with a combined stash described in Sect. 5.2 with the Circuit-
Phasing PSI-CAT protocol of [39]. As a baseline, we also compare with the public
key-based PSI-CA protocol of [9,35,46] that leaks the cardinality to one party,
and the currently best specialized PSI protocol of [31] that cannot be easily
modified to compute variants of the set intersection functionality.

Implementation. Pinkas et al. [39] provide the implementation of their Circuit-
Phasing PSI protocol as part of the ABY framework [13]. This framework allows
to securely evaluate the PSI circuit using either Yao’s garbled circuit or the GMW
protocol, both implemented with most recent optimizations (cf. Sect. 2). How-
ever, since the evaluation in [39] showed that using the GMW protocol yields
much better run-times, we focus only on GMW. ABY also implements the LUT-
based evaluation of [14] (cf. Sect. 6.2), which we compare to GMW evaluation.

152 B. Pinkas et al.

For the Circuit-Phasing PSI-CAT protocol, we extended the existing codebase
with the Hamming weight circuit of [5] and the depth-optimized comparison cir-
cuit of [45] to compare the Hamming weight with a threshold. Based on this, we
implemented our iterative 2D Cuckoo hashing PSI-CAT protocol by duplicating
the code for simple hashing and Cuckoo hashing, combining the stashes, and
implementing the iterative insertion algorithm. Our implementation is available
online as part of the ABY framework at http://encrypto.de/code/ABY. For the
DH/ECC-based protocol of Shamir/Meadows/De Cristofaro et al. [9,35,46], we
use the ECC-based implementation of [39] available online at http://encrypto.
de/code/PSI that already supports computing the cardinality (PSI-CA). The
implementation of the special purpose BaRK-OPRF PSI protocol of [31] is taken
from https://github.com/osu-crypto/BaRK-OPRF.

Benchmarking Environment. For our benchmarks we use two machines, each
equipped with an Intel Core i7-4790 CPU @ 3.6 GHz and 16 GB of RAM. The
CPUs support the AES-NI instruction set for fast AES evaluations. We distin-
guish two network settings: a LAN setting and a WAN setting. For the LAN
setting, we restrict the bandwidth of the network interfaces to 1 Gbit/s and
enforce a round-trip time of 1 ms. For the WAN setting, we limit the bandwidth
to 100 Mbit/s and set a round-trip time of 100 ms. We instantiate all protocols
corresponding to a computational security parameter of 128 bit and a statisti-
cal security parameter of 40 bit. All reported run-times are the average of 10
executions with less than 10% variance.

Benchmarking Results. In Table 4, we give the run-times for n ∈
{212, 216, 220} elements4 of bitlength σ = 32 (suitable, e.g., for IPv4 addresses).
The corresponding communication is given in Table 6. We do not use the LUT-
based evaluation in the LAN setting since there is little need for better commu-
nication while the run-times are not competitive. However, to demonstrate the
advantages of the LUT-based evaluation in the WAN setting, we compare the
protocols when running with a single thread and four threads.5

Run-times (Tables 4 and 5). In comparison with the Circuit-Phasing PSI-CAT
protocol of [39] in Table 4, our iterative combined PSI-CAT protocol is faster
by factor 1.4x for n = 212 and up to factor 2.8x for n = 220. This holds when
the circuit is evaluated with GMW in both network settings and for both 1 and
4 threads. With LUT-based evaluation [14], we observe a further improvement
for the circuit-based protocols by about 13% in the WAN setting, but only
for medium set sizes of n = 216 and 4 threads due to the higher computation
complexity.

The circuit-based protocols have two steps: mapping the input items to the
tables, and securely evaluating the circuit. The run-times of the hashing step are

4 Unfortunately, the LUT-based implementation of [14] was not capable of evaluating
the PSI circuits for n = 220 elements.

5 We do not provide benchmarks with multiple threads for the DH/ECC PSI-CA
protocol since the implementation of [39] does not support multi-threading.

http://encrypto.de/code/ABY
http://encrypto.de/code/PSI
http://encrypto.de/code/PSI
https://github.com/osu-crypto/BaRK-OPRF

Efficient Circuit-Based PSI via Cuckoo Hashing 153

shown in Table 5. The times for Cuckoo hashing into two tables in our PSI-CAT
protocol are exactly twice of those for Cuckoo hashing into one table in [39].
Compared to simple hashing, our 2D Cuckoo hashing is slower by factor 1.6x
up to factor 2.1x due to the additional iterations. However, all in all, the hashing
procedures are by 2–3 orders of magnitude faster than the times for securely
evaluating the circuit, and therefore negligible w.r.t. the overall run-time.

In comparison with the DH-based PSI-CA protocol of [9,35,46], our iterative
combined PSI-CAT protocol is faster by factor 1.5x for n = 212 up to factor 91x
for n = 220 in the LAN setting with a single thread. Also in the WAN setting with
a single thread, our protocol is faster (except for small sets with n = 212), despite
the substantially lower communication of the DH-based protocol described below.
In both network settings even the best measured run-times of our PSI-CAT
protocol are between 19x to 36x slower than the BaRK-OPRF specialized PSI
protocol of [31], but our protocols are generic.

Communication (Table 6). The communication given in Table 6 is measured on the
network interface, so these numbers are slightly larger than the theoretical com-
munication (derived from the number of AND gates on the left side in Table 3)
due to TCP/IP headers and padding of messages. The lowest communication is

Table 4. Total run-times in ms for PSI variants on n elements of bitlength σ = 32 bit.

Protocol Network setting LAN WAN

Circuit evaluation protocol GMW [21] GMW [21] LUT [14]

Set size n 212 216 220 212 216 220 212 216

DH/ECC PSI-CA [9,35,46] 3 296 49 010 7 904 054 4 082 51 866 8 008 771 4 082 51 866

BaRK-OPRF PSI [31] 113 295 3 882 540 1 247 14 604 540 1 247

1 Thread

Circuit-Phasing PSI-CAT [39] 3 170 20 401 242 235 15 143 99 433 1 042 712 19 951 117 438

Ours iterative separate PSI-CAT 2 433 11 251 122 008 11 210 57 474 547 950 15 656 70 545

Ours iterative combined PSI-CAT 2 220 9 076 86 648 10 060 45 252 389 891 12 999 56 179

4 Threads

Circuit-Phasing PSI-CAT [39] 2 333 10 600 123 765 12 492 97 480 987 459 15 471 76 184

Ours iterative separate PSI-CAT 1 903 6 273 64 324 9 361 56 141 541 677 11 946 46 797

Ours iterative combined PSI-CAT 1 694 5 177 49 417 8 793 44 596 376 591 9 413 39 272

Table 5. Run-times in ms for hashing n elements of bitlength σ = 32 bit.

Hashing procedure Set size n 212 216 220

Circuit-Phasing PSI-CAT [39]

Simple hashing 3.50 27.96 557.54

Cuckoo hashing 2.43 15.87 391.16

Ours iterative PSI-CAT

2D Cuckoo hashing 6.23 58.90 873.19

Cuckoo hashing (for two tables with a combined stash) 4.85 31.75 782.32

154 B. Pinkas et al.

Table 6. Communication in MB for PSI variants on n elements of bitlength σ = 32
bit.

Protocol Set size n 212 216 220

DH/ECC PSI-CA [9,35,46] 0.4 6.6 106.0

BaRK-OPRF PSI [31] 0.53 8.06 127.20

GMW [21]

Circuit-Phasing PSI-CAT [39] 121.9 1 588.9 20 028.5

Ours iterative separate PSI-CAT 72.3 826.1 9 971.4

Ours iterative combined PSI-CAT 52.7 638.8 6 950.6

LUT [14]

Circuit-Phasing PSI-CAT [39] 32.6 418.1 —

Ours iterative separate PSI-CAT 19.4 221.3 —

Ours iterative combined PSI-CAT 14.3 171.3 —

achieved by the DH-based PSI-CA protocol of [9,35,46] which is in line with the
experiments in [39]. Our best protocol for PSI-CAT has between 132x (for n = 212)
and 66x (for n = 220) more communication than the DH-based PSI-CA protocol
when evaluated with GMW. Recall, however, that our protocol does not leak the
cardinality. Our best protocol improves the communication over the PSI-CAT pro-
tocol of [39] by factor 2.3x (for n = 212) to 2.9x (for n = 220). When using LUT-
based evaluation of [14], we observe that the communication of all circuit-based
PSI-CAT protocols improves over GMW by factor 3.7x which is close to the theo-
retical upper bound of 4.1x (cf. Sect. 6.2). Still, our best LUT-based protocol has
more than 20x higher communication than the BaRK-OPRF specialized PSI pro-
tocol of [31], but it is generic.

Application to privacy-preserving ridesharing. Our PSI-CAT protocol
can easily be extended for the privacy-preserving ridesharing functionality of [23],
where the intersection is revealed only if the size of the intersection is larger
than a threshold. The authors of [23] give a protocol that securely computes this
functionality, but has quadratic computation complexity. By slightly extending
our circuit for PSI-CAT to encapsulate a key that is released only if the size of
the intersection is larger than the threshold and using this key to symmetrically
encrypt the last message in any linear complexity PSI protocol (e.g., [31,39,41,
42]), we get a protocol with almost linear complexity. Our key encapsulation
would take less than 3 s for n = 212 elements (cf. our results for PSI-CAT in
Table 4), whereas the solution of [23] takes 5 627 s, i.e., we improve by factor
1 876x and also asymptotically.

Acknowledgments. We thank Oleksandr Tkachenko for his invaluable help with the
implementation and benchmarking. We also thank Moni Naor for suggesting the appli-
cation to achieve differential privacy. This work has been co-funded by the DFG as
part of project E4 within the CRC 1119 CROSSING and by the German Federal

Efficient Circuit-Based PSI via Cuckoo Hashing 155

Ministry of Education and Research (BMBF), the Hessen State Ministry for Higher
Education, Research and the Arts (HMWK) within CRISP, and the BIU Center for
Research in Applied Cryptography and Cyber Security in conjunction with the Israel
National Cyber Bureau in the Prime Minister’s Office. Calculations for this research
were conducted on the Lichtenberg high performance computer of the TU Darmstadt.

References

1. Amossen, R.R., Pagh, R.: A new data layout for set intersection on GPUs. In:
International Symposium on Parallel and Distributed Processing (IPDPS) (2011)

2. Arbitman, Y., Naor, M., Segev, G.: Backyard cuckoo hashing: constant worst-case
operations with a succinct representation. In: FOCS (2010)

3. Asharov, G., Lindell, Y., Schneider, T., Zohner, M.: More efficient oblivious transfer
and extensions for faster secure computation. In: CCS (2013)

4. Asokan, N., Dmitrienko, A., Nagy, M., Reshetova, E., Sadeghi, A.-R., Schneider, T.,
Stelle, S.: CrowdShare: secure mobile resource sharing. In: Jacobson, M., Locasto,
M., Mohassel, P., Safavi-Naini, R. (eds.) ACNS 2013. LNCS, vol. 7954, pp. 432–440.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38980-1 27

5. Boyar, J., Peralta, R.: Concrete multiplicative complexity of symmetric functions.
In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 179–189.
Springer, Heidelberg (2006). https://doi.org/10.1007/11821069 16

6. Chen, H., Laine, K., Rindal, P.: Fast private set intersection from homomorphic
encryption. In: CCS (2017)

7. Dachman-Soled, D., Malkin, T., Raykova, M., Yung, M.: Efficient robust private set
intersection. In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.)
ACNS 2009. LNCS, vol. 5536, pp. 125–142. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-01957-9 8

8. Davidson, A., Cid, C.: An efficient toolkit for computing private set operations.
In: Pieprzyk, J., Suriadi, S. (eds.) ACISP 2017. LNCS, vol. 10343, pp. 261–278.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59870-3 15

9. De Cristofaro, E., Gasti, P., Tsudik, G.: Fast and private computation of cardinality
of set intersection and union. In: Pieprzyk, J., Sadeghi, A.-R., Manulis, M. (eds.)
CANS 2012. LNCS, vol. 7712, pp. 218–231. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-35404-5 17

10. De Cristofaro, E., Kim, J., Tsudik, G.: Linear-complexity private set intersection
protocols secure in malicious model. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS,
vol. 6477, pp. 213–231. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-17373-8 13

11. De Cristofaro, E., Tsudik, G.: Practical private set intersection protocols with lin-
ear complexity. In: Sion, R. (ed.) FC 2010. LNCS, vol. 6052, pp. 143–159. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-14577-3 13

12. Debnath, S.K., Dutta, R.: Secure and efficient private set intersection cardinality
using bloom filter. In: Lopez, J., Mitchell, C.J. (eds.) ISC 2015. LNCS, vol. 9290, pp.
209–226. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23318-5 12

13. Demmler, D., Schneider, T., Zohner, M.: ABY – a framework for efficient mixed-
protocol secure two-party computation. In: NDSS (2015)

14. Dessouky, G., Koushanfar, F., Sadeghi, A.-R., Schneider, T., Zeitouni, S., Zohner,
M.: Pushing the communication barrier in secure computation using lookup tables.
In: NDSS (2017)

https://doi.org/10.1007/978-3-642-38980-1_27
https://doi.org/10.1007/11821069_16
https://doi.org/10.1007/978-3-642-01957-9_8
https://doi.org/10.1007/978-3-642-01957-9_8
https://doi.org/10.1007/978-3-319-59870-3_15
https://doi.org/10.1007/978-3-642-35404-5_17
https://doi.org/10.1007/978-3-642-35404-5_17
https://doi.org/10.1007/978-3-642-17373-8_13
https://doi.org/10.1007/978-3-642-17373-8_13
https://doi.org/10.1007/978-3-642-14577-3_13
https://doi.org/10.1007/978-3-319-23318-5_12

156 B. Pinkas et al.

15. Dietzfelbinger, M., Weidling, C.: Balanced allocation and dictionaries with tightly
packed constant size bins. Theoret. Comput. Sci. 380(1–2), 47–68 (2007)

16. Dong, C., Chen, L., Wen, Z.: When private set intersection meets big data: an
efficient and scalable protocol. In: CCS (2013)

17. Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener,
I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006).
https://doi.org/10.1007/11787006 1

18. Eppstein, D., Goodrich, M., Mitzenmacher, M., Torres, M.: 2–3 cuckoo filters for
faster triangle listing and set intersection. In: Symposium on Principles of Database
Systems (PODS) (2017)

19. Freedman, M.J., Hazay, C., Nissim, K., Pinkas, B.: Efficient set intersection with
simulation-based security. J. Cryptol. 29(1), 115–155 (2016)

20. Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set intersec-
tion. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027,
pp. 1–19. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-
3 1

21. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: STOC (1987)

22. Gonnet, G.H.: Expected length of the longest probe sequence in hash code search-
ing. J. ACM 28(2), 289–304 (1981)

23. Hallgren, P., Orlandi, C., Sabelfeld, A.: PrivatePool: privacy-preserving ridesharing.
In: Computer Security Foundations Symposium (CSF) (2017)

24. Hazay, C., Venkitasubramaniam, M.: Scalable multi-party private set-intersection.
In: Fehr, S. (ed.) PKC 2017. LNCS, vol. 10174, pp. 175–203. Springer, Heidelberg
(2017). https://doi.org/10.1007/978-3-662-54365-8 8

25. Huang, Y., Chapman, P., Evans, D.: Privacy-preserving applications on smart-
phones. In: Hot Topics in Security (HotSec) (2011)

26. Huang, Y., Evans, D., Katz, J.: Private set intersection: Are garbled circuits better
than custom protocols? In: NDSS (2012)

27. Huang, Y., Evans, D., Katz, J., Malka, L.: Faster secure two-party computation
using garbled circuits. In: USENIX Security (2011)

28. Ion, M., Kreuter, B., Nergiz, E., Patel, S., Saxena, S., Seth, K., Shanahan, D., Yung,
M.: Private intersection-sum protocol with applications to attributing aggregate
ad conversions. Cryptology ePrint Archive, Report 2017/738 (2017)

29. Kirsch, A., Mitzenmacher, M., Wieder, U.: More robust hashing: cuckoo hashing
with a stash. SIAM J. Comput. 39(4), 1543–1561 (2009)

30. Kiss, Á., Liu, J., Schneider, T., Asokan, N., Pinkas, B.: Private set intersection for
unequal set sizes with mobile applications. In: PoPETs, vol. 2017(4) (2017)

31. Kolesnikov, V., Kumaresan, R., Rosulek, M., Trieu, N.: Efficient batched oblivious
PRF with applications to private set intersection. In: CCS (2016)

32. Kolesnikov, V., Matania, N., Pinkas, B., Rosulek, M., Trieu, N.: Practical multi-
party private set intersection from symmetric-key techniques. In: CCS (2017)

33. Kolesnikov, V., Schneider, T.: Improved garbled circuit: free XOR gates and
applications. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5126, pp. 486–498.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70583-3 40

34. Kreuter, B.: Secure multiparty computation at Google. In: Real World Crypto
Conference (RWC) (2017)

35. Meadows, C.: A more efficient cryptographic matchmaking protocol for use in the
absence of a continuously available third party. In: S&P (1986)

https://doi.org/10.1007/11787006_1
https://doi.org/10.1007/978-3-540-24676-3_1
https://doi.org/10.1007/978-3-540-24676-3_1
https://doi.org/10.1007/978-3-662-54365-8_8
https://doi.org/10.1007/978-3-540-70583-3_40

Efficient Circuit-Based PSI via Cuckoo Hashing 157

36. Pagh, R., Rodler, F.F.: Cuckoo hashing. In: European Symposium on Algorithms
(ESA) (2001)

37. Panigrahy, R.: Efficient hashing with lookups in two memory accesses. In: ACM-
SIAM Symposium on Discrete Algorithms (SODA) (2005)

38. Pettai, M., Laud, P.: Combining differential privacy and secure multiparty compu-
tation. In: ACSAC (2015)

39. Pinkas, B., Schneider, T., Segev, G., Zohner, M.: Phasing: private set intersection
using permutation-based hashing. In: USENIX Security (2015)

40. Pinkas, B., Schneider, T., Weinert, C., Wieder, U.: Efficient circuit-based PSI via
cuckoo hashing. In: Cryptology ePrint Archive, Report 2018/120 (2018)

41. Pinkas, B., Schneider, T., Zohner, M.: Faster private set intersection based on OT
extension. In: USENIX Security (2014)

42. Pinkas, B., Schneider, T., Zohner, M.: Scalable private set intersection based on
OT extension. ACM Trans. Priv. Secur. (TOPS) 21(2) (2018)

43. Rindal, P., Rosulek, M.: Improved private set intersection against malicious adver-
saries. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210,
pp. 235–259. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56620-7 9

44. Rindal, P., Rosulek, M.: Malicious-secure private set intersection via dual execution.
In: CCS (2017)

45. Schneider, T., Zohner, M.: GMW vs. Yao? Efficient secure two-party computation
with low depth circuits. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 275–
292. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39884-1 23

46. Shamir, A.: On the power of commutativity in cryptography. In: de Bakker, J., van
Leeuwen, J. (eds.) ICALP 1980. LNCS, vol. 85, pp. 582–595. Springer, Heidelberg
(1980). https://doi.org/10.1007/3-540-10003-2 100

47. Wieder, U.: Hashing, load balancing and multiple choice. Found. Trends Theoret.
Comput. Sci. 12(3–4), 275–379 (2017)

48. Yao, A.C.: How to generate and exchange secrets. In: FOCS (1986)
49. Yung, M.: From mental poker to core business: why and how to deploy secure

computation protocols? In: CCS (2015)
50. Zahur, S., Rosulek, M., Evans, D.: Two halves make a whole: reducing data trans-

fer in garbled circuits using half gates. In: Oswald, E., Fischlin, M. (eds.) EURO-
CRYPT 2015. LNCS, vol. 9057, pp. 220–250. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-46803-6 8

https://doi.org/10.1007/978-3-319-56620-7_9
https://doi.org/10.1007/978-3-642-39884-1_23
https://doi.org/10.1007/3-540-10003-2_100
https://doi.org/10.1007/978-3-662-46803-6_8
https://doi.org/10.1007/978-3-662-46803-6_8

Overdrive: Making SPDZ Great Again

Marcel Keller1(B) , Valerio Pastro2, and Dragos Rotaru1,3

1 University of Bristol, Bristol, UK
{m.keller,dragos.rotaru}@bristol.ac.uk

2 Yale University, New Haven, USA
vpastro86@gmail.com

3 imec-Cosic, Department of Electrical Engineering, KU Leuven, Leuven, Belgium

Abstract. SPDZ denotes a multiparty computation scheme in the pre-
processing model based on somewhat homomorphic encryption (SHE)
in the form of BGV. At CCS ’16, Keller et al. presented MASCOT, a
replacement of the preprocessing phase using oblivious transfer instead
of SHE, improving by two orders of magnitude on the SPDZ implemen-
tation by Damg̊ard et al. (ESORICS ’13). In this work, we show that
using SHE is faster than MASCOT in many aspects:
1. We present a protocol that uses semi-homomorphic (addition-only)

encryption. For two parties, our BGV-based implementation is six
times faster than MASCOT on a LAN and 20 times faster in a WAN
setting. The latter is roughly the reduction in communication.

2. We show that using the proof of knowledge in the original work by
Damg̊ard et al. (Crypto ’12) is more efficient in practice than the one
used in the implementation mentioned above by about one order of
magnitude.

3. We present an improvement to the verification of the aforementioned
proof of knowledge that increases the performance with a growing
number of parties, doubling it for 16 parties.

Keywords: Multiparty computation
Somewhat homomorphic encryption · BGV
Zero-knowledge proofs of knowledge

1 Introduction

Multiparty computation (MPC) allows a set of parties to jointly compute a
function over their inputs while keeping them private. In the last decade MPC

D. Rotaru—The work in this paper was partially supported by EPSRC via grants
EP/M012824 and EP/N021940/1, by the European Union’s H2020 Programme
under grant agreement number ICT-644209, and by the Defense Advanced Research
Projects Agency (DARPA) and Space and Naval Warfare Systems Center, Pacific
(SSC Pacific) under contract No. N66001-15-C-4070. The second author conducted
this work while working as a post-doctoral researcher at Yale University, supported
by NSF grants CNS-1562888, 1565208, and DARPA SafeWare W911NF-15-C-0236.
We would also like to thank the anonymous Eurocrypt reviewers as well as Ivan
Damg̊ard, Peter Scholl, and Nigel Smart for their helpful comments.

c© International Association for Cryptologic Research 2018
J. B. Nielsen and V. Rijmen (Eds.): EUROCRYPT 2018, LNCS 10822, pp. 158–189, 2018.
https://doi.org/10.1007/978-3-319-78372-7_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78372-7_6&domain=pdf
http://orcid.org/0000-0003-2261-9376
http://orcid.org/0000-0002-1767-3725

Overdrive: Making SPDZ Great Again 159

has developed from a largely theoretical field to a practical one where many
applications have been developed on top of it [DES16,GSB+17]. This is mostly
due to the rise of compilers which translate high-level code to secure branching,
additions and multiplications on secret data [BLW08,KSS13,DSZ15,ZE15].

A high number of applications require to evaluate an arithmetic circuit (over
the integers or modulo p) due to the easiness of expressing them rather than
performing bitwise operations in a binary circuit. This is especially true for
linear programming of satellite collisions where fixed and floating point numbers
are intensively used [DDN+16,KW15]. A recent line of work even looked at how
to decrease the amount of storage needed throughout sequential computations
from one MPC engine to another with symmetric key primitives evaluated as
arithmetic circuits [GRR+16,RSS17].

To accomplish MPC one can select between two paradigms: garbled circuits
[GLNP15,RR16,WRK17] or secret sharing [DGKN09,BDOZ11,DPSZ12]. We
will concentrate on the latter because it is currently the most suitable to evaluate
arithmetic circuits although there have been some recent theoretical improve-
ments on garbling modulo p made by Ball et al. [BMR16]. Since our goal in
this paper is to have secure computation within a system that scales with the
number of parties as well as to provide a guarantee against malicious, players
we will focus on SPDZ [DPSZ12,DKL+13].

It is no surprise that homomorphic encryption can help with multiparty
computation. In the presence of malicious adversaries, however, there needs to be
assurances that parties actually encrypt the information that they are supposed
to Zero-knowledge proofs are the essential tool to achieve this, and there exist
compilers to make passive protocols secure against an active adversary. However,
these proofs are relatively expensive, and it is the aim of SPDZ to reduce this
cost by using them as little as possible.

The core idea of SPDZ is that, instead of encrypting the parties’ inputs,
it is easier to work with random data, conduct some checks at the end of the
protocol, and abort if malicious behavior is detected. In order to evaluate a
function with private inputs, the computation is separated in two phases, a
preprocessing or offline phase and an online phase. The latter uses information-
theoretic algorithms to compute the results from the inputs and the correlated
randomness produced by the offline phase.

The correlated randomness consists of secret-shared random multiplication
triples, that is (a, b, ab) for random a and b. In SPDZ, the parties encrypt ran-
dom additive shares of a and b under a global public key, use the homomorphic
properties to sum up and multiply the shares, and then run a distributed decryp-
tion protocol to learn their share of ab. With respect to malicious parties, there
are two requirements on the encrypted shares of a and b. First, they need to be
independent of other parties’ shares, otherwise the sum would not be random,
and second, the ciphertexts have to be valid. In the context of lattice-based
cryptography, this means that the noise must be limited. Both requirements are
achieved by using zero-knowledge proofs of knowledge and bounds of the clear-
text and encryption randomness. It turns out that this is the most expensive
part of the protocol.

160 M. Keller et al.

The original SPDZ protocol [DPSZ12] uses a relatively simple Schnorr-like
protocol [CD09] to prove knowledge of cleartexts and correctness of ciphertexts,
but the later implementation [DKL+13] uses more sophisticated cut-and-choose-
style protocols for both covert and active security. We have found that the sim-
pler Schnorr-like protocol, which guarantees security against active malicious
parties, is actually more efficient than the cut-and-choose proof with covert
security.

Intuitively, it suffices that the encryption of the sum of all shares has to be
correct because only the sum is used in the protocol. We take advantage of this
by replacing the per-party proof with a global proof in Sect. 4. This significantly
reduces the computation because every party only has to check one proof instead
of n − 1. However, the communication complexity stays the same because the
independence requirement means that every party still has to commit to every
other party in some sense. Otherwise, a rushing adversary could make its input
dependent on others, resulting in a predictable triple.

Section 3 contains our largest theoretical contribution. We present a replace-
ment for the offline phase of SPDZ based solely on the additive homomorphism
of BGV. This allows to reduce the communication and computation compared to
SPDZ because the ciphertext modulus can be smaller. At the core of our scheme
is the two-party oblivious multiplication protocol by Bendlin et al. [BDOZ11],
which is based on the multiplication of ciphertexts and constants. Unlike their
work, we assume that the underlying cryptosystem achieves linear targeted mal-
leability introduced by Bitansky et al. [BCI+13], which enables us to avoid the
costliest part of their protocol, the proof of correct multiplication. Instead, we
replace this check by the SPDZ sacrifice, and argue that BGV with increased
entropy in the secret key is a candidate for the above-mentioned assumption.

We do not consider the restriction to BGV to be a loss. Bendlin et al. suggest
two flavors for the underlying cryptosystem: lattice-based and Paillier-like. For
lattice-based cryptosystems, Costache and Smart [CS16] have shown that BGV
is very competitive for large enough cleartext moduli such as needed by our pro-
tocol. On the other hand, Paillier only supports simple packing techniques and
makes it difficult to manipulate individual slots [NWI+13]. Another advantage
of BGV over Paillier is the heavy parallelization with CRT and FFT since in the
lattice-based cryptosystem the ciphertext modulus can be a product of several
primes.

2 Preliminaries

In the following section we define the basic notation and give an overview of the
BGV encryption scheme and the SPDZ protocol.

2.1 Security Model

We use the UC (Universally Composable) framework of Canetti [Can01] to prove
the security of our schemes against malicious, static adversaries, except for proofs

Overdrive: Making SPDZ Great Again 161

of knowledge where we use rewinding to extract inputs from the adversary. Pre-
vious works [BDOZ11,DPSZ12] do this by having all inputs encrypted under a
public key for which the secret key is known to the simulator in the registered
key model. In our Low Gear protocol, this would involve sending extra cipher-
texts not used in the protocol otherwise, which is why we opt for limited UC
security.

Our protocols work with n parties P = {P1, . . . , Pn} where up to n − 1
corruptions can take place before the protocol starts. We say that a protocol
Π implements securely a functionality F if any probabilistic polynomial time
adversary Adv cannot distinguish between a protocol Π and a functionality F
attached to a simulator S with computational security k and statistical secu-
rity sec.

We require the functionality FRand to generate public randomness. When-
ever the functionality is activated by all parties, it outputs a uniformly random
value r

$← F to all parties. FRand can be implemented using commitments of
random values, which are then added. In our experiments, we will use simple
commitments based on the random oracle model.

2.2 BGV

We now give a short overview of the leveled encryption scheme developed by
Brakerski et al. [BGV12] required for our pre-processing phase. Since the proto-
cols used for generating the triples need only multiplication by scalars or cipher-
text addition, the BGV scheme is instantiated with a single level. For completion
we present the details required to understand our paper. The reader can consult
the following papers for further details: [LPR10,BV11,GHS12a,LPR13].

Underlying Algebra. Let R = Z[X]/〈f(x)〉 be a polynomial ring with inte-
ger coefficients modulo f(x). In our case R = Z[x]/〈Φm(X)〉 where Φm(X) =∏

i∈Z∗
m

(X − ωi
m) ∈ Z[X] and ωm = exp(2π/m) ∈ C is a principal m’th complex

root of unity and ωi
m = exp(2π

√
−1/m) ∈ C iterates over all primitive complex

mth roots of unity.
The ring R is also called the ring of algebraic integers of the m’th cyclotomic

polynomial. For example when m ≥ 2 and m is a power of two, the polynomial
Φm(X) = Xm/2 + 1. Notice that the degree of Φm(X) is equal to φ(m), which
makes R a field extension with degree N = φ(m). Next we define Rq = R/qR ∼=
R/〈(Φm(X), q)〉 where q is not necessarily a prime number. The latter will be
used as the ciphertext modulus.

Plaintext Slots. Since triples are generated for arithmetic circuits modulo p,
the plaintext space is the ring Rp = R/pR where for technical reasons p and q
are co-prime. If p ≡ 1 mod m we have that Φm(X) = F1(X) · · · Fl(X) mod p
splits into l irreducible polynomials where each Fi(X) has degree d = φ(m)/l
and Fi(X) ∼= F

d
p. It is useful to think of an element a ∈ Rp as a vector of size

l where each element is (a mod Fi(X))l
i=1. This in turn allows manipulating l

plaintexts at once using SIMD (Single Instruction Multiple Data) operations.

162 M. Keller et al.

Distributions. Throughout the definitions we will refer to a polynomial a ∈ R
as a vector of size N = φ(m). To realize the cryptosystem we need to sample at
various times from different distributions to generate a vector of length N with
coefficients mod p or q (which means an element from Rp or Rq). We will keep
Rq throughout the following definitions:

– U(Rq) is the uniform distribution where each unique polynomial a ∈ Rq has
an equal chance to be drawn. This is achieved by sampling each coefficient of
a uniformly at random (from the integers modulo q).

– DG(σ2, Rq) is the discrete Gaussian with variance σ2. Sampling proceeds
as above except each coefficient a ∈ Rq is generated by calling the normal
Gaussian N (σ2) and rounding it to the nearest integer.

– ZO(0.5) outputs a vector of length N where each entry has values in the set
{−1, 0, 1}. Here, zero appears with a probability 1/2 whereas {−1, 1} each
appear with probability 1/4.

– HWT (h) outputs a random vector of length N where at least h entries are
non-zero and each entry is in the {−1, 0, 1} set.

Ring-LWE. Hardness of the BGV scheme is based on the Ring version of the
Learning with Errors problem [LPR10]. For a secret s ∈ Rp, recall that a Ring-
LWE sample is produced by choosing a ∈ Rq uniformly at random and an error
e ← χ from a special Gaussian distribution, and computing b = a · s + e. It
turns out that, if an adversary manages to break the BGV encryption scheme in
polynomial time, one can also build a polynomial time distinguisher for Ring-
LWE samples and the uniform distribution, namely (a, b = a · s + e) ∼= (a′, b′)

where (a′, b′) $← U(R2
q).

Key-Generation, Encryption and Decryption. The cryptosystem used in
Sect. 3 is identical to the one by Damg̊ard et al. [DKL+13] bar the augmentation
data needed for modulus switching:

– KeyGen(): Sample s ← HWT (h), a ← U(Rq), e ← DG(σ2, Rq) and then
b ← a · s + p · e. Now set the public key pk ← (a, b). Note that pk looks very
similar to a Ring-LWE sample.

– Encpk(m): To encrypt a message m ∈ Rp, sample a small polynomial
with coefficients v ← ZO(0.5), and two Gaussian polynomials e1, e2 ←
DG(σ2, Rq). The ciphertext will be a pair c = (c0, c1) where c0 = b · v +
p · e0 + m ∈ Rq and c1 = a · v + p · e1 ∈ Rq.

– Decsk(c): To decrypt a ciphertext c ∈ R2
q , one can simply compute m′ ←

c0 − s · c1 ∈ Rq and then set m ← m′ mod p to get the original plaintext. The
decryption works only if the noise ν = (m′ mod p) − m associated with c is
less than q/2 such that the ciphertext will not wrap around the modulus Rq.

Overdrive: Making SPDZ Great Again 163

2.3 Zero-Knowledge Proofs

In a typical scenario, a zero-knowledge (ZK) proof allows a verifier to check the
validity of a statement claimed by a prover without revealing anything other that
the claim is true. Previous implementations have used one of two approaches: a
Schnorr-like protocol [CD09,DPSZ12,DKL+12] and cut-and-choose [DKL+13].
We will call SPDZ using either of the two protocols SPDZ-1 and SPDZ-2, respec-
tively. Analysing the communication complexity, we found that the Schnorr-like
protocol is more efficient because it only involves sending two extra ciphertexts
per ciphertext to be proven whereas Damg̊ard et al. [DKL+13] suggest that, for
malicious security, their protocol is most efficient with 32 extra ciphertexts. It is
also worth noting that the Schnorr-like protocol seems to be easier to implement.

The Schnorr-like protocol is based on the following 3-move standard Σ-
protocol. To prove knowledge of x in a field F such that f(x) = y without
revealing x:

1. The prover P sends a commitment a = f(s) for a random s.

2. The verifier V then samples a random e
$← F and sends it to P.

3. P replies with z = s + e · x. Finally V checks whether f(z) = a + e · y.

If f is homomorphic with respect to the field operations, the protocol is
clearly correct. Security of the prover (honest-verifier zero-knowledge) is achieved

by simulating (a, e, z) from any e by sampling z
$← F and computing a = f(z) −

e · y. Security for the verifier (special soundness) allows to extract the secret
from two different transcripts (z, c), (z′, c′) with c
= c′. This can be done by
computing x = (z − z′) · (c − c′)−1, which is possible in a field.

For our setting x is an integer (or a vector thereof), and we would like to prove
that ‖x‖∞ ≤ B for some bound. For this case, Damg̊ard and Cramer [CD09]
have presented an amortized protocol (proving several pre-images at once) where
s has to be chosen in a large enough interval (to statistically hide E · x) and the
challenge E is sampled from a set of matrices such that any (E−E′) is invertible
over Z for any E
= E′. The preimage is now extracted as x = (E−E′)−1(z−z′),
thus a bound on ‖z‖∞ also implies a bound on ‖x‖∞.

However, it is not possible to make these bounds tight. Namely, an honest
prover using ‖x‖∞ ≤ B will achieve that ‖z‖∞ ≤ B′ for some B′ > B. The
quotient between the two bounds is called slack. Damg̊ard et al. [DPSZ12] also
show that in the Fiat-Shamir setting (where the challenge is generated using
a random oracle on a), a technique called rejection sampling can be used to
reduce the slack. This involves sampling different s until the response z achieves
the desired bound. In any case, we will see in Sect. 3.4 that the slack of this proof
is too small to make it worthwhile using the cut-and-choose proof instead.

Figure 1 shows the functionality that the proofs above implement. For a sim-
plified exposition we also assume that FS

ZKPoK generates correct keys. In previous
works this has been done by separate key registration [BDOZ11] or key genera-
tion functionalities [DPSZ12,DKL+13].

164 M. Keller et al.

2.4 Overview of SPDZ

The SPDZ protocol [DPSZ12,DKL+13] can be viewed as a two-phase protocol
where inputs are shared via an additive secret sharing scheme. First there is the
pre-processing phase where triples are generated independent of the inputs to
the computation. The classical way to produce these triples is either by oblivious
transfer or homomorphic encryption. Each has its own advantages and caveats.
In this work, we are only concerned with the homomorphic encryption technique,
where ciphertexts are passed around players. Since we allow parties to deviate
maliciously from the protocol, they could insert too much noise in the encryption
algorithm, which we mitigate by using ZK proofs.

FS
ZKPoK

The functionality generates keys (pk, sk) and sends them both to PA and pk to PB .
If PA is corrupted, the adversary chooses the keys. Then, the following can happen
repeatedly:

1. PA inputs either a vector a or a value a. In the latter case, a is defined to
contain a in all slots.

2. If PA is honest, PB receives Encpk(a), otherwise Enc′
pk(a), where Enc′ has noise

at most S times as much as regular encryption.
3. The adversary can abort any time.

Fig. 1. Proof of knowledge of ciphertext

These random triples are further used in the online phase where parties inter-
act by broadcasting data whenever a value is revealed. Privacy and correctness
are then guaranteed by authenticated shared values with information-theoretic
MACs1 on top of them.

More formally, an authenticated secret value x ∈ F is defined as the following:

�x� = (x(1), . . . , x(n),m(1), . . . ,m(n),Δ(1), . . . ,Δ(n))

where each player Pi holds an additive sharing tuple (x(i),m(i),Δ(i)) such
that:

x =
n∑

i=1

x(i), x · Δ =
n∑

i=1

m(i),Δ =
n∑

i=1

Δ(i).

For the pre-processing phase the goal is to model a Triple command which
generates a tuple (�a�, �b�, �c�) where c = a · b and a, b are uniformly random
from F.

1 These are not be confused with the more common symmetric-key MACs.

Overdrive: Making SPDZ Great Again 165

To open a value �x�, all players Pi broadcast their shares x(i), commit and
then open m(i) − x · Δ(i). Afterwards they check if the sum of the latter is
equal to zero. One can check multiple values at once by taking a random linear
combination of m(i) − x · Δ(i) exactly as in the MAC Check protocol in Fig. 5 in
Sect. 3.

In the online phase the main task is to evaluate an arbitrary circuit with secret
inputs. After the parties have provided their inputs using the Input command,
the next step is to perform addition and multiplication between authenticated
shared values. Since the addition is linear, it can be done via local computation.
However multiplying two values �x�, �y� requires some interaction between the
parties. To compute �x · y� a fresh random triple �a�, �b�, �c� = �ab� has to be
available for Beaver’s trick [Bea92]. It works by opening �x − a� and �x − b� to
get ε and ρ respectively. Then the authenticated product can be obtained by
setting �x · y� ← �c� + ε�b� + ρ�a� + ε · ρ.

Offline Phase. We now outline the core ideas of the preprocessing phase of
SPDZ. Assume that the parties have a global public key and a secret sharing of
the secret key Δ, and that there is a distributed decryption protocol that allows
the parties to decrypt an encryption such that they receive a secret sharing of
the cleartext (see the Reshare procedure by Damg̊ard et al. [DPSZ12] for details).

For passive security only, the parties can simply broadcast encryptions of ran-
domly sampled shares ai, bi and their share of the MAC key Δi. These encryp-
tions can be added up and multiplied to produce encryptions of (a · b, a · Δ, b ·
Δ, a ·b ·Δ) if the encryption allows multiplicative depth two. Distributed decryp-
tion then allows the parties to receive an additive secret sharing of each of those
values, which already is enough for a triple. Since achieving a higher multiplica-
tive depth is relatively expensive, SPDZ only uses a scheme with multiplicative
depth one and extends the distributed decryption to produce a fresh encryption
of a · b, which then can be multiplied with the encryption of Δ.

In the context of an active adversary there are two main issues: First, the
ciphertexts input by corrupted parties have to be correct and independent of
the honest parties’ ciphertexts. This is where zero-knowledge is applied to prove
that certain values lie within a certain bound. Second, the distributed decryption
protocol actually allows the adversary to add an error - that is, the parties can
end up with a triple (a, b, ab + e) with e known to the adversary and where the
MACs have additional errors as well. While an error on a MAC will make the
MAC check fail in any case, the problem of an incorrect triple requires more
attention. This is where the so-called SPDZ sacrifice comes in. Imagine two
triples with potential errors (�a�, �b�, �ab + e�) and (�a′�, �b′�, �a′b′ + e′�), and let
t be a random field element. Then,

t · (ab + e) − (a′b′ + e′) − (ta − a′) · b − a′ · (b − b)′

= tab + te − a′b′ − e′ − tab − a′b − a′b + a′b′

= te − e′,

166 M. Keller et al.

which is 0 with probability negligible in sec for a field of size at least 2sec if either
e
= 0 or e′
= 0. The use of MACs means that the adversary cannot forge the
result of this computation, hence any error will be caught with overwhelming
probability since with the additive secret sharing of our triples the parties have
to reveal �ta − a′� and �b − b′�. Therefore, one of the triples has to be discarded
in order keep the other one “fresh” for use in the online phase. For MASCOT,
Keller et al. [KOS16] found that the sacrifice also works with two triples (a, b, ab)
and (a′, b, a′b), which implies b−b′ = b−b = 0. Such a combined triple is cheaper
to produce (both in MASCOT and SPDZ), and requires less revealing for the
check.

3 Low Gear: Triple Generation Using Semi-homomorphic
Encryption

The multiplication of secret numbers is at the heart of many secret sharing-based
multiparty computation protocols because linear secret sharing schemes make
addition easy, and the two operations together are complete.2 Both Bendlin
et al. [BDOZ11] and Keller et al. [KOS16] have effectively reduced the problem
of secure computation to computing an additive secret sharing of the product of
two numbers known to two different parties. The former uses semi-homomorphic
encryption which allows to add two ciphertexts to get an encryption of the sum
of cleartexts whereas the latter uses oblivious transfer which is known to be
complete for any protocol.

The semi-homomorphic solution works roughly as follows: One party sends an
encryption Enc(a) of their input under their own public key to the other, which
replies by C := b · Enc(a) − Enc(cB), where b denotes the second party’s input,
and cB is chosen at random. Any semi-homomorphic encryption scheme allows
the multiplication of a known value with a ciphertext, hence the decryption of
the second message is cA := b · a − cB , which makes (cA, cB) an additive secret
sharing of a · b. Here the noise of C might reveal information about b but this
can be mitigated by adding random noise from an interval that is sec larger than
the maximum noise of C. This technique, sometimes called “drowning”, is also
used in the distributed decryption of SPDZ.

In the context of a malicious adversary there are two concerns with the above
protocol: Enc(a) might not be a correct encryption and C might not be computed
correctly. In both cases, Bendlin et al. use a zero-knowledge proof of knowledge
to make sure that both parties behave correctly.

To prove the correctness of Enc(a), there are relatively efficient proofs based
on amortized Σ-protocols (reducing the overhead per ciphertext by processing
several ciphertexts at once), but for the proof of correct multiplication amor-
tization this is not possible in our context because the underlying ciphertext
Enc(a) is different in every instance. The main goal of our work in this section

2 This fact is mirrored in the world of garbled circuits, where the free-XOR technique
only requires to garble AND gates, which compute the product of two bits.

Overdrive: Making SPDZ Great Again 167

is therefore to avoid the proof of correct multiplication altogether and delay it
to a later check in the protocol described in the previous section.

Recall that the goal in this family of protocols is to generate random mul-
tiplication triples (a, b, ab). The sacrifice will guarantee that the parties have
shares of correct triples, but there is a possibility of a selective failure attack.
If C was not computed correctly, just the fact that the check passed (otherwise
the parties abort without using their private data) can reveal information meant
to stay private in the protocol. We will show that assuming the enhanced CPA
notion in Sect. 3.1 for the underlying cryptosystem suffices to achieve this.

In Sect. 3.2, we will then use our multiplication protocol a first time to com-
pute SPDZ-style MACs, that is, additive secret sharings of the product of a
value and a global MAC key, which itself is secret-shared additively. It is straight-
forward to compute such a global product from the two-party protocol. Consider
that

∑
i ai ·

∑
i bi =

∑
i,j ai · bj . Every summand in the right-hand side can be

computed either locally or by the two-party protocol, and the additive operation
is trivially commutative with the addition of shares.

Building on the authentication protocol, we present the multiplication triple
generation in Sect. 3.3 using the two-party multiplication protocol once more.
Note that the after-the-fact check of correct multiplication works differently in
the two protocols. In the authentication protocol, we make use of the fact that
changing values are always multiplied with the same share of the MAC key. In
the triple generation, however, both values change from triple to triple, thus we
rely on the SPDZ sacrifice there. For this, we use a trick used by Keller et al.
that reduces the complexity by generating a pair of triples ((a, b, ab), (a′, b, a′b))
for the sacrifice instead of two independent triples.

Finally, we present our choice of BGV parameters in Sect. 3.4, following the
considerations of Damg̊ard et al. [DKL+13], which in turn are based on Gentry
et al. [GHS12b]. We found that the ciphertext modulus is about 100 bits shorter
compared to original SPDZ for fields of size 264 to 2128, which makes a significant
contribution to the reduced complexity of our protocol because SPDZ requires
a modulus of bit length about 300 for 64-bit fields and 40-bit security.

3.1 Enhanced CPA Security

We want to reduce the security of our protocol to an enhanced version of the CPA
game for the encryption scheme. In other words, if the encryption scheme in use
is enhanced-CPA secure, then even a selective failure caused by the adversary
does not reveal private information.

We say that an encryption scheme is enhanced-CPA secure if, for all PPT
adversaries in the game from Fig. 2, Pr[b = b′] − 1/2 is negligible in k.

Achieving Enhanced-CPA Security. The game without zero-checks in step 3
clearly can be reduced to the standard CPA game. Furthermore, we have to make
sure that the oracle queries cannot be used to reveal information about m. The
cryptosystem is only designed to allow affine linear operations limiting the adver-
sary to succeed only with negligible probability due to the high entropy of m.

168 M. Keller et al.

Gcpa+

1. The challenger samples (pk, sk) ← KeyGen(k), sends pk to the adversary.
2. The challenger sends c = Encpk(m) for a random message m.
3. For j ∈ poly(k):

(a) The adversary sends cj to the challenger.
(b) The challenger checks if Decsk(cj) = 0; if this is the case the challenger

sends OK to the adversary; else, the challenger sends FAIL to the adversary
and aborts.

4. The challenger samples b
$← {0, 1} and sends m to the adversary if b = 0 and

a random m′ otherwise.
5. The adversary sends b′ ∈ {0, 1} to the challenger and wins the game if b = b′.

Fig. 2. Enhanced CPA game

However, if the cryptosystem would allow to generate an encryption of a bit of m
from Encpk(m), the adversary could test this bit for zero with success probability
1/2. Therefore, we have to assume that non-linear operations on ciphertexts are
not possible. To this end, Bitansky et al. [BCI+13] have introduced the notion
of linear targeted malleability. A stronger notion thereof, linear-only encryption,
has been conjectured by Boneh et al. [BISW17] to apply to the cryptosystem by
Peikert et al. [PVW08], which is based on the ring learning with errors problem.
The definition by Bitansky et al. is as follows.

Definition 1. An encryption scheme has the linear targeted malleability prop-
erty if for any polynomial-size adversary A and plaintext generator M there is a
polynomial-size simulator S such that, for any sufficiently large λ ∈ N, and any
auxiliary input z ∈ {0, 1}poly(λ), the following two distributions are computation-
ally indistinguishable:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

pk,
a1, . . . , am,
s,
Decsk(c′

1), . . . ,Decsk(c
′
k)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(sk, pk) ← Gen(1λ)
(s, a1, . . . , am) ← M(pk)

(c1, . . . , cm) ← (Encpk(a1), . . . ,Encpk(am))
(c′

1, . . . , c
′
k) ← A(pk, c1, . . . , cm; z)

where
ImVersk(c′

1) = 1, . . . , ImVersk(c′
k) = 1

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

and
⎧
⎪⎪⎨

⎪⎪⎩

pk,
a1, . . . , am,
s,
a′
1, . . . , a

′
k

∣
∣
∣
∣
∣
∣
∣
∣

(sk, pk) ← Gen(1λ)
(s, a1, . . . , am) ← M(pk)

(Π,b) ← S(pk; z)
(a′

1, . . . , a
′
k)� ← Π · (a1, . . . , am)� + b

⎫
⎪⎪⎬

⎪⎪⎭

where Π ∈ F
k×m, b ∈ F

k, and s is some arbitrary string (possibly correlated
with the plaintexts).

In the context of BGV, the definition can easily be extended to vectors of field ele-
ments. Furthermore, verifying whether a ciphertext is the image of the encryption

Overdrive: Making SPDZ Great Again 169

(ImVer) can be trivially done by checking membership in Rq ×Rq, which is possible
without the secret key.

It is straightforward to see that linear targeted malleability allows to reduce
the enhanced-CPA game to a game without a zero-test oracle. We simply replace
the decryption of the adversary’s queries by a′

1, . . . , a
′
k computed using S accord-

ing to the definition, which can be tested for zero without knowing the secret
key. The two games are computationally indistinguishable by definition, and the
modified one can be reduced to the normal CPA game as argued above.

We now argue that BGV as used by us is a valid candidate for linear targeted
malleability. First, the definition excludes computation on ciphertexts other than
affine linear maps. Most notably, this excludes multiplication. Since we do not
generate the key-switching material used by Damg̊ard et al. [DKL+13], there is
no obvious way of computing multiplications or operations of any higher order.

Second, the definition requires the handling of ciphertexts that were gener-
ated by the adversary without following the encryption algorithm. For example,
Decsk(0, 1) = s mod p. The decryption of such ciphertexts can be simulated by
sampling a secret key and computing the decryption accordingly. However, to
avoid a security degradation due to independent consideration of standard CPA
security and linear targeted malleability, we add sec bits of entropy to the secret
key as follows.

The key generation of BGV generates s of length N such that s has h = 64
non-zero entries at randomly chosen places, which are chosen uniformly from
{−1, 1}. The entropy is therefore

log
(

N

h

)

+ h.

It is easy to see that choosing h′ = h+ sec non-zero entries increases the entropy
by sec bits3 for large enough N . Because

(
N
k

)
monotonously increases for k ≤

N/2, (
N

h + sec

)

≥
(

N

h

)

for N ≥ 2 · (h + sec). It follows that

log
(

N

h + sec

)

+ h + sec ≥
(

log
(

N

h

)

+ h

)

+ sec,

which is the desired result. We will later see that N is much bigger than 2·(h+sec)
for h = 64 and sec = 128.

3.2 Input Authentication

As in Keller et al. [KOS16], we want to implement a functionality (Fig. 3) that
commits the parties to secret sharings and that provides the secure computation
3 sec/2 would suffice, but sec does not affect the efficiency and allows for a simpler

analysis.

170 M. Keller et al.

of linear combinations of inputs. However, instead of using oblivious transfer for
the pairwise multiplication of secret numbers we use our building block based
on semi-homomorphic encryption. See Fig. 4 for our protocol.

F

Input: On input (Input, id1, . . . , idl, x1, . . . , xl, Pj) from party Pj and
(Input, id1, . . . , idl, Pj) from all players Pi where i �= j, store Val[idk] ← xk

for all k ∈ [1 . . . l].

Linear Combination: On input (LinComb, id, id1, . . . , idl, c1, . . . , cl, c) from all
parties where idk ∈ Val.Keys() store Val[id] =

∑l
k=1 Val[idk] · ck + c.

Open: On input (Open, id) from all parties, send Val[id] to the adversary; wait for
input x from the adversary and then send x to all parties.

Check: On input (Check, id1, . . . , idl, x1, . . . , xl) from all parties, wait for the
adversary’s input. If the input is OK and Val[idk] = xk for all k ∈ [1 . . . l] then send
OK to every party, otherwise send ⊥ and terminate.

Abort: On input Abort from the adversary send ⊥ to all parties and terminate.

Fig. 3. Functionality F�·�

In case parties Pi and Pj are honest,

Δ(i) · ρ − σ(i) −
m∑

k=1

tk · d(i)
k = Δ(i) · (

m∑

k=1

tk · xk) −
m∑

k=1

tk · e
(i)
k −

m∑

k=1

tk · d(i)
k

=
m∑

k=1

tk · (Δ(i) · xk − e
(i)
k − d(i)

k) = 0

for all i
= j. This means that Pi’s check succeeds in this case. The last equation
follows from the homomorphism of the encryption scheme.

Furthermore, one can check similarly that
∑

i

m
(i)
k = xk ·

∑

i

Δ(i),

which is the desired equation underlying the MAC. If it does not hold because
of Pj ’s behaviour, we would like the check to fail for some honest Pi. Informally,
the fact that Pj cannot predict the coefficients tk makes it impossible for Pj to
provide correct (ρ, σ(i)) to an honest party Pi after computing C(i) incorrectly.
However, this opens the possibility for leakage by a selective failure attack, which
is why we need the underlying cryptosystem to achieve enhanced-CPA security.

The most intricate part of the simulator S�·� (Fig. 6) is simulating the Input
phase for a corrupted Pj while the same phase for honest Pj is straight-forward
given thatEnc′ statistically hides the noise ofx(i) ·Enc(Δ). Note that (xm, e

(i)
m , d

(i)
m)

are only used for the check. This maintains Pj ’s privacy even after sending ρ and
{σ(i)}i�=j .

Overdrive: Making SPDZ Great Again 171

Fig. 4. Protocol for n-party input authentication

172 M. Keller et al.

Fig. 5. Protocol for MAC checking

Fig. 6. Simulator for Π�·�

Overdrive: Making SPDZ Great Again 173

Theorem 1. Π�·� implements F�·� in the FCommit-hybrid model with rewinding
in a presence of a dishonest majority if the underlying cryptosystem achieves
enhanced CPA-security.

Proof (Sketch). We focus on the case of a corrupted Pj in the Input phase
because the adversary has a larger degree of freedom with the encryptions C(i).
However, with rewinding in step 6 we can extract the values used by the adver-
sary. This extraction takes time inversely dependent to the success probability,
as per the soundness argument for Σ-protocols. To see this, consider that the
space of all possible challenges {tk}m

k=1 has size |F|m. The extractor requires the
responses to m linearly independent challenges {tk}m

k=1. The adversary can only
prevent this by restricting the correct responses to an incomplete subspace of
S ⊂ F

m, that is |S| ≤ F
m−1. Such an adversary will succeed with probability at

most |F|m−1/|F|m = |F|−1, which is negligible because we require the size of F to
be exponential in the security parameter. It follows that the soundness extractor
for Σ-protocols by Damg̊ard [Dam02] can be adapted to our case.

After the extraction, it is straightforward to simulate the rest of the protocol
because the Linear Combination phase does not involve communication, and
producing a correct MAC in the Check phase for an incorrect output in the
Open phase is equivalent to extracting Δ. This argument can also be extended
to the random linear combination used in the Check phase similarly to Keller
et al. [KOS16]. It is easy to see that extracting Δ is in turn equivalent to breaking
the security of the underlying cryptosystem.

We therefore construct a distinguisher in the enhanced-CPA security game
from an environment distinguishing between the real and the ideal world. The
difference between Encpkij (Δ

(i)) in the real world and E = Encpkij (x) for random
x in the simulation can trivially be reduced to our CPA security game (using
the encryption as c in the game) because the adversary never receives Δ(i).
Furthermore, x and e(i) extracted from the adversary can be used to compute
C ′ = C(i) − x · E − e(i). Via the check conducted by the honest party Pi, the
adversary learns whether C ′ decrypts to zero. We therefore forward C ′ to the
zero test in our enhanced CPA game.

3.3 Triple Generation

Recall that the goal is to produce random authenticated triples (�a�, �b�, �ab�)
such that a, b are randomly sampled from F as described in Fig. 8. Our protocol
in Fig. 7 is modeled closely after MASCOT [KOS16], replacing oblivious transfer
with semi-homomorphic encryption. The construction of a “global” multiplica-
tion from a two-party protocol works exactly the same way in both cases. The
Sacrifice step is exactly the same as in SPDZ and MASCOT and essentially
guarantees that corrupted parties have used the same inputs in the Multipli-
cation and Authentication steps. This is the only freedom the adversary has
because all other arithmetic is handled by F�·� at this stage.

Theorem 2. ΠTriple implements FTriple in the (F�·�,FRand)-hybrid model with a
dishonest majority of parties.

174 M. Keller et al.

Fig. 7. Protocol for random triple generation

Fig. 8. Functionality for random triple generation.

Proof (Sketch). For the proof we use STriple in Fig. 9. The simulator is based on
two important facts: First, it can decrypt C(ji) for a corrupted party Pj because
it generates the keys emulating FS

ZKPoK. Second, the adversary is committed to
all shares of corrupted parties by the input to F�·� in the Authenticate step.
This allows the simulator to determine exactly whether the Sacrifice step in Π�·�
will fail. Furthermore, the adversary only learns encryptions of honest parties’
shares, corrupted parties’ shares, ρ, and the result of the check. If the check fails,

Overdrive: Making SPDZ Great Again 175

the protocol aborts, ρ is independent of any output information because b̂ and
ĉ are discarded at the end, and finally, an environment deducing information
from the encryptions can be used to break the enhanced-CPA security of the
underlying cryptosystem. In addition, the environment only learns handles to
triples in the Output steps, from which no information can be deduced.

Fig. 9. Simulator for ΠTriple

3.4 Parameter Choice

Since we do not need multiplication of ciphertexts, the list of moduli used in
previous works [DKL+13,GHS12b] collapses to one q (= q1 = q0 = p0 depending
on context). The other main parameter is the number of ciphertext slots denoted
by N = φ(m). Gentry et al. [GHS12b] give the following inequality for the largest
modulus:

N ≥ log(q/σ)(k + 110)
7.2

for a computational security k, which gives

N ≥ log q · 33.1 (1)

for 128-bit security. σ = 3.2 does not make a difference in this inequality.

176 M. Keller et al.

The second constraint on q and φ(m) depends on the noise of the ciphertext
to be decrypted. Damg̊ard et al. compute the bound Bclean on the noise of a
freshly generated ciphertext:

Bclean = N · p/2 + p · σ(16 · N ·
√

n/2 + 6 ·
√

N + 16 ·
√

n · h · N)

p denotes the plaintext modulus, and n denotes the number of parties, which
appears because of the distributed ciphertext generation (the secret is the sum
of n secret keys). Setting n = 1 because we do not use distributed ciphertext
generation, and h = 64 + sec ≤ 192, σ = 3.2 as in the previous works, we get

Bclean ≤ p · (37N + 685
√

N).

In the multiplication protocol, one party multiplies the ciphertext with a
number in Fp, adds a number in Fp, and then “drowns” the noise with statistical
security sec (adding extra noise sampling from an interval that is 2sec larger than
the current noise bound). Furthermore, depending on the proof of knowledge
used, we can only assume that the noise of the ciphertext being sent is S·Bclean for
some soundness slack S ≥ 1. Therefore, the noise before decryption is bounded by

p · S · Bclean · (1 + 2sec),

which must be smaller than q/2 for correct decryption. Hence,

2 · p2 · S ·
(
37N + 685

√
N

)
(1 + 2sec) < q. (2)

Putting things together, (2) implies that, loosely, 120 ≤ log q or 384 ≤ log q
if sec = 40 or sec = 128 and p ≥ 2sec (the latter is a requirement of SPDZ-like
sacrificing). Using this in (1) gives N ≥ 3972 or N ≥ 12711. For both values of
N as well as a ten times larger N ,

log
(
37N + 685

√
N

)
≈ 20 ± 2.

Hence,
log q � 21 + 2 log p + log S + sec ± 2.

The proof of knowledge in the first version of SPDZ [DPSZ12] has the worst
soundness slack with

S = N · sec2 · 2sec /2+8.

Thus,
log S ≤ log N + 2 log sec + sec /2 + 8

and
log q � 29 + 2 log p + 3sec/2 + 2 log sec + log N ± 2.

Note that, even though this estimate is now five years old, we found our
parameters to hold against more recent estimates [APS15] tested using the script

Overdrive: Making SPDZ Great Again 177

that is available online [Alb17]. The main reason is that our parameters have a
considerable margin because we require N to be a power of two.

More recently, Damg̊ard et al. [CDXY17] presented an improved version of
the cut-and-choose proof used in a previous implementation of SPDZ [DKL+13],
but the reduced slack does not justify the increased complexity caused by several
additional ciphertexts being computed and sent in the proof. Consider that, even
for sec = 128 and N = 216 (the latter being typical for our parameters), log S is
about 100, increasing the ciphertext modulus length by less than 25%.

We have calculated the ciphertext modulus q’s bit length for various param-
eters and for our protocol with semi-homomorphic encryption and SPDZ (using
somewhat homomorphic encryption). Then we instantiated both protocols with
several ZK proofs like the Schnorr-like protocol [CD09,DPSZ12] and the recent
cut-and-choose proof [CDXY17]. Table 1 shows the results of our calculation as
well as the results given by Damg̊ard et al. [DKL+13]. One can see that using
cut-and-choose instead of the Schnorr-like protocol does not make any difference
for SPDZ. This is because the scaling (also called modulus switching) involves
the division by a number larger than the largest possible slack of the Schnorr-
like protocol (roughly 2100), hence the slack will be eliminated. For our Low
Gear protocol, the slack has a slight impact, increasing the size of a ciphertext
by up to 25%. However, this does not justify the use of a cut-and-choose proof
because it involves sending seven instead of two extra ciphertexts per proof.

Table 1 also shows Low Gear ciphertexts are about 30% shorter than SPDZ
ciphertexts. Consider that Table 3 in Sect. 5 shows a reduction in the communi-
cation from SPDZ to Low Gear of up to 50%. The main reason for the additional
reduction is the fact that for one guaranteed triple, SPDZ involves producing
two triples (a, b, c), (d, e, f), of which (a, b, d, e) require a zero-knowledge proof.
In Low Gear on the other hand, we produce (a, b, c, b̂, ĉ), of which only a requires
a zero-knowledge proof.

4 High Gear: SPDZ with Global ZKPoK Check

In terms of computation, the most expensive part of SPDZ is anything related
to the encryption scheme, encryption, decryption, and homomorphic opera-
tions. The encryption algorithm is not only used for inputs but also by both
the prover and the verifier in the zero-knowledge proof. Since a non-interactive
zero-knowledge protocol allows the parties to generate only one proof per input,
independently of the number of parties, every party has to verify every other
party’s proof because every other party is assumed to be corrupted. With a
growing number of parties, this is clearly the computational bottleneck of the
protocol. In this section, we present a way to avoid this by summing all proofs
and only checking the sum. This is similar to the threshold proofs presented
by Keller et al. [KMR12]. However, this neither reduces the communication nor
the asymptotic computation because every party still has to send every proof to
every party and then sum all the received proofs. Nevertheless, summing up the
proofs is much cheaper than verifying them individually.

178 M. Keller et al.

Table 1. Ciphertext modulus bit length (log(q)) for two parties.

Low Gear SPDZ sec log(|Fp|)
[CD09] [CDXY17] 1 [DPSZ12] 2 [CDXY17] 2 [DKL+13]

238 199 330 330 332 40 64

367 327 526 526 526 40 128

276 224 378 378 N/A 64 64

406 352 572 572 N/A 64 128

504 418 700 700 N/A 128 128

The High Gear protocol is meant to surpass Low Gear when executed with
a high number of parties. To achieve this we design a new zero-knowledge proof
which scales better when increasing the number of players. One can think of the
High Gear proof of knowledge as a customized interactive proof version from
Damg̊ard et al. [DPSZ12] whereas Low Gear is a protocol ran with the non-
interactive proof. The latter requires knowledge of the first message of the proof
(sometimes called the commitment) to compute the challenge. In the context
of combining the proof with many parties, the first message is the sum of an
input from each party, which means that communication is required in any case.
Therefore, there is less of an advantage in using the non-interactive proof.

Figure 10 shows our adaptation of the zero-knowledge proof in Fig. 9 from
Damg̊ard et al. [DPSZ12]. The main conceptual difference is going from a two-
party to a multi-party protocol. However, we have also simplified the bounds.

In the following we will prove that our protocol achieves the natural extension
of the Σ-protocol properties in the multi-party setting.

Correctness. The equality in step 6 follows trivially from the linearity of the
encryption. It remains to check the probability that an honest prover will fail
the bounds check on ‖z‖∞ and ‖t‖∞ where the infinity norm ‖·‖∞ denotes the
maximum of the absolute values of the components.

Remember that the honestly generated E(i) are (τ, ρ) ciphertexts. The bound
check will succeed if the infinity norm of

∑n
i=1(y

(i)+
∑sec

k=1(Mejk
·x(i))) is at most

2·n·Bplain. This is always true because y(i) is sampled such that ‖y(i)‖∞ ≤ Bplain

and ‖Me · x(i)‖∞ ≤ sec · τ ≤ 2sec · τ = Bplain. A similar argument holds regarding
ρ and Brand.

Special Soundness. To prove this property one must be able to extract the
witness given responses from two different challenges. In this case consider the
transcripts (x,a, e, (z, T)) and (x,a, e′, (z′, T ′)) where e
= e′. Recall that each
party has a different secret x(i). Because both challenges have passed the bound
checks during the protocol, we get that:

(Me − Me′) · Eᵀ = (d − d′)ᵀ

Overdrive: Making SPDZ Great Again 179

Fig. 10. Protocol for global proof of knowledge of a ciphertext

To solve the equation for E notice that Me − Me′ is a matrix with entries
in {−1, 0, 1} so we must solve a linear system where E = Encpk(xk, rk) for
k = 1, . . . , sec. This can be done in two steps: solve the linear system for the
first half: c1, . . . , csec/2 and then for the second half: csec/2+1, . . . , csec. For the
first step identify a square submatrix of sec× sec entries in Me − Me′ which has
a diagonal full of 1’s or −1’s and it is lower triangular. This can be done since
there is at least one component j such that ej
= e′

j . Recall that the plaintexts
zk, z′

k have norms less than Bplain and the randomness used for encrypting them,
tk, t′

k, have norms less than Brand where k ranges through 1, . . . , sec.
Solving the linear system from the top row to the middle row via substitution

we obtain in the worst case: ‖xk‖∞ ≤ 2k ·n·Bplain and ‖yk‖∞ ≤ 2k ·n·Brand where
k ranges through 1, . . . , sec/2. The second step is similar to the first with the
exception that now we have to look for an upper triangular matrix of sec × sec.
Then solve the linear system from the last row to the middle row. In this way
we extract xk, rk which form (2sec/2+1 ·n ·Bplain, 2sec/2+1 ·n ·Brand) or (23sec/2+1 ·
n · τ, 23sec/2+1 · n · ρ) ciphertexts. This means that the slack is 23sec/2+1.

Honest Verifier Zero-Knowledge. Here we give a simulator S for an honest
verifier (each party Pi acts as one at one point during the protocol). The simula-

180 M. Keller et al.

Fig. 11. Functionality for global proof of knowledge of ciphertext

tor’s purpose is to create a transcript with the verifier which is indistinguishable
from the real interaction between the prover and the verifier. To achieve this,
S samples uniformly e $← {0, 1}sec and then creates the transcript accordingly:
sample z(i) such that ‖z(i)‖∞ ≤ Bplain and T (i) such that ‖T (i)‖∞ ≤ Brand and
then fix a(i) = Encpk(z(i), T (i)) − (Me · E(i)), where the encryption is applied
component-wise. Clearly the produced transcript (a(i), e(i), z(i), T (i)) passes the
final checks and the statistical distance to the real one is 2−sec, which is negligible
with respect to sec.

Fig. 12. Simulator for global proof of knowledge of ciphertext

Overdrive: Making SPDZ Great Again 181

Putting Things Together. In the context of our triple generation, we model
ΠgZKPoK as FS

gZKPoK in Fig. 11. We will argue below that ΠgZKPoK implements
FS

gZKPoK with slack S = 23sec/2+1.
FS

gZKPoK does not guarantee the correctness of individual corrupted parties’
ciphertexts but the correctness of the resulting sum. This suffices because only
the latter is used in the protocol. A rewinding simulator still can extract individ-
ual inputs, but there is no guarantee that either they are in fact pre-images of the
encryptions sent by corrupted parties or they are subject to any bounds. Both
properties only hold for the sum. This is modeled by FS

gZKPoK only outputting a
sum, and it is easy to see that this output suffices for SPDZ.

SS
gZKPoK in Fig. 12 describes our simulator. The rewinding technique is the

same as in the soundness simulator for the Σ-protocol and therefore has the
same running time (roughly inverse to the success probability of a corrupted
prover). See Sect. 3 of [Dam02] for details.

5 Implementation

We have implemented all three approaches to triple generation in this paper
and measured the throughputs achieved by them in comparison to previous
results with SPDZ [DKL+12,DKL+13] and MASCOT [KOS16]. We have used
the optimized distributed decryption in the full version [KPR17] for SPDZ-1,
SPDZ-2, and High Gear. Our code is written in C++ and uses MPIR [MPI17] for
arithmetic with large integers.4 We use Montgomery modular multiplication and
the Chinese reminder theorem representation of polynomials wherever beneficial.
See Gentry et al. [GHS12b] for more details.

Note that the parameters chosen by Damg̊ard et al. [DKL+13][Appendix A]
for the non-interactive zero-knowledge proof imply that the prover has to re-
compute the proof with probability 1/32 as part of a technique called rejection
sampling. We have increased the parameters to reduce this probability by up to
220 as long as it would not impact on the performance, i.e., the number of 64-bit
words needed to represent po and p1 would not change.

All previous implementations have benchmarks for two parties on a local
network with 1 Gbit/s throughput on commodity hardware. We have have used
i7-4790 and i7-3770S CPUs with 16 to 32 GB of RAM, and we have re-run and
optimized the code by Damg̊ard et al. [DKL+13] for a fairer comparison. Table 2
shows our results in this setting. SDPZ-1 and SPDZ-2 refer to the two different
proofs for ciphertexts, the Schnorr-like protocol presented in the original paper
[DPSZ12] and the cut-and-choose protocol in the follow-up work [DKL+13], the
latter with either covert or active security. The c-covert security is defined as
a cheating adversary being caught with probability 1/c, and by sec-bit security
we mean a statistical security parameter of sec. Throughout this section, we will
round figures to the two most significant digits for a more legible presentation.

4 We extensively use the function mpn addmul 1, which we found to be 10–20% faster
in MPIR compared to GMP.

182 M. Keller et al.

To allow direct comparisons with previous works, we have benchmarked our
protocols for several choices of security parameters and field size. Note that
the computational security parameter is set everywhere to k = 128 and we
highlight how the statistical parameter impacts the performance. The main dif-
ference between our implementation of SPDZ with the Schnorr-like protocol to
the previous one [DKL+12], is the underlying BGV implementation because the
protocol is the same.

Table 2. Triple generation for 64 and 128 bit prime fields with two parties on a 1
Gbit/s LAN.

Triples/s Security BGV impl. log2(|Fp|)
SPDZ-1 [DKL+12] 79 40-bit active NTL 64

SPDZ-2 [DKL+13] 158 20-covert Specific 64

SPDZ-2 [DKL+13] 36 40-bit active Specific 64

MASCOT [KOS16] 5, 100 64-bit active ⊥ 128

SPDZ-1 (ours) 12, 000 40-bit active Specific 64

SPDZ-1 (ours) 6, 400 64-bit active Specific 128

SPDZ-1 (ours) 4, 200 128-bit active Specific 128

SPDZ-2 (ours) 3, 900 20-covert Specific 64

SPDZ-2 (ours) 1, 100 40-bit active Specific 64

Low Gear (Sect. 3) 59, 000 40-bit active Specific 64

Low Gear (Sect. 3) 30, 000 64-bit active Specific 128

Low Gear (Sect. 3) 15, 000 128-bit active Specific 128

High Gear (Sect. 4) 11, 000 40-bit active Specific 64

High Gear (Sect. 4) 5, 600 64-bit active Specific 128

High Gear (Sect. 4) 2, 300 128-bit active Specific 128

In Table 3 we also analyze the communication per triple of some protocols
with active security and compared the actual throughput to the maximum pos-
sible on a 1 Gbit/s link (network throughput divided by the communication
per triple). The higher the difference between actual and maximum possible,
the more time is spent on computation. The figures show that MASCOT has
very low computation; the actual throughput is more than 90% of the maximum
possible. On the other hand, all BGV-based implementations have a signifi-
cant gap, which is to be expected. Experiments have shown that the relative
gap increases in Low Gear with a growing statistical parameter. This is mostly
because the ciphertexts become larger and 32 GB of memory is not enough for
one triple generator thread per core, hence there is some computation capacity
left unused.

Overdrive: Making SPDZ Great Again 183

Table 3. Communication per prime field triple (one way) and actual vs. maximum
throughput with two parties on a 1 Gbit/s link.

Communication Security log2(Fp|) Triples/s Maximum

SPDZ-2 350 kbit 40 64 1,100 2,900

MASCOT [KOS16] 180 kbit 64 128 5,100 5,600

SPDZ-1 23 kbit 40 64 12,000 44,000

SPDZ-1 32 kbit 64 128 6,400 31,000

SPDZ-1 37 kbit 128 128 4,200 27,000

Low Gear (Sect. 3) 9 kbit 40 64 59,000 110,000

Low Gear (Sect. 3) 15 kbit 64 128 30,000 68,000

Low Gear (Sect. 3) 17 kbit 128 128 15,000 60,000

High Gear (Sect. 4) 24 kbit 40 64 11,000 42,000

High Gear (Sect. 4) 34 kbit 64 128 5,600 30,000

High Gear (Sect. 4) 42 kbit 128 128 2,300 24,000

Table 4. Communication per prime field triple (one way) and actual vs. maximum
throughput with two parties on a 50 Mbit/s link.

Communication Security log2(Fp|) Triples/s Maximum

MASCOT [KOS16] 180 kbit 64 128 214 275

SPDZ-1 23 kbit 40 64 1,800 2,200

SPDZ-1 32 kbit 64 128 1,400 1,600

SPDZ-1 37 kbit 128 128 1,100 1,400

Low Gear (Sect. 3) 9 kbit 40 64 4,500 5,600

Low Gear (Sect. 3) 15 kbit 64 128 3,200 3,400

Low Gear (Sect. 3) 17 kbit 128 128 2,600 3,000

High Gear (Sect. 4) 24 kbit 40 64 1,600 2,100

High Gear (Sect. 4) 34 kbit 64 128 1,300 1,500

High Gear (Sect. 4) 42 kbit 128 128 700 1,200

WAN Setting. For a more complete picture, we have also benchmarked our
protocols in the same WAN setting as Keller et al. [KOS16], restricting the
bandwidth to 50 Mbit/s and imposing a delay of 50 ms to all communication.
Table 4 shows our results in similar manner to Table 3. As one would expect, the
gap between actual throughput and maximum possible is more narrow because
the communication becomes more of a bottleneck, and the performance is closely
related to the required communication.

Fields of Characteristic Two. For a more thorough comparison with MAS-
COT, we have also implemented our protocols for the field of size 240 using

184 M. Keller et al.

Table 5. Triple generation for characteristic two with two parties on a 1 Gbit/s LAN.

Triples/s Security BGV impl. F2n

SPDZ-1 [DKL+12] 16 40-bit active NTL 40

MASCOT [KOS16] 5, 100 64-bit active ⊥ 128

SPDZ-1 (ours) 67 40-bit active Specific 40

SPDZ-2 (ours) 24 20-covert Specific 40

SPDZ-2 (ours) 8 40-bit active Specific 40

Low Gear (Sect. 3) 117 40-bit active Specific 40

High Gear (Sect. 4) 67 40-bit active Specific 40

101 102
104

105

Number of parties

T
hr
ou

gh
pu

t
(T

ri
pl
e/
s)

Low Gear (Section 3)
SPDZ-1
High Gear (Section 4)

Fig. 13. Triple generation for a 128 bit prime field with 64 bit statistical security on
AWS r4.16xlarge instances.

the same approach as Damg̊ard et al. [DKL+12]. Table 5 shows the low perfor-
mance of homomorphic encryption-based protocols with fields of characteristic
two. This has been observed before: in the above work, the performance for F240

is an order of magnitude worse than for Fp with a 64-bit bit prime. The main
reason is that BGV lends itself naturally to cleartexts modulo some integer p.
The construction for F240 sets p = 2 and uses 40 slots to represent an element
whereas an element of Fp for a prime p only requires one ciphertext slot.

More Than Two Parties. Increasing the number of parties, we have bench-
marked our protocols and our implementation of SPDZ with up to 64 r4.16xlarge
instances on Amazon Web Services. Figure 13 shows that both Low and High
Gear improve over SPDZ-1, with High Gear taking the lead from about ten

Overdrive: Making SPDZ Great Again 185

parties. Missing figures do not indicate failed experiments but rather omitted
experiments due to financial constraints.

At the time of writing, one hour on an r4.16xlarge instance in US East costs
$4.256. Therefore, the number of triples per dollar and party varies between 190
million (two parties with Low Gear) and 13 million (64 parties with High Gear).

5.1 Vickrey Auction for 100 Parties

As a motivation for computation with a high number of parties, we have imple-
mented a secure Vickrey second price auction [Vic61], where 100 parties input
one bid each. Table 6 shows our online phase timings for two different Amazon
Web Services instances.

Table 6. Online phase of Vickrey auction with 100 parties, each inputting one bid.

AWS instance Time Cost per party

t2.nano 9.0 s $0.000017

c4.8xlarge 1.4 s $0.000741

The Vickrey auction requires 44,571 triples. In Table 7, we compare the offline
cost of MASCOT and our High Gear protocol on AWS m3.2xlarge instances.

Table 7. Offline phase of Vickrey auction with 100 parties, each inputting one bid.

Time Cost per party

MASCOT [KOS16] 1,300 s $0.190

High Gear (Sect. 4) 98 s $0.014

6 Future Work

Recently, there has been an improved zero-knowledge proof of knowledge of
bounded pre-images for LWE-style one-way functions [BL17]. It reduces the
extra ciphertexts per proven plaintext from two (in our protocol) to any number
larger than one. The technique is dependent on the number of ciphertexts that
are proven simultaneously. More concretely, for u · sec ciphertexts in one proof
(and u ≥ 1), the prover needs to send (u + 1) · sec ciphertexts in the first
round, hence the amortized overhead is (u + 1)/u. This compares to 2u · sec− 1
ciphertexts amortized over 2 − 1/(u · sec) in our scheme. However, we estimate
that the benefits of the newer proof strongly depend on the parameters and
the available memory. For some parameters, we found that our implementation
would exhaust 32 GB of memory with fewer than eight generation threads.

186 M. Keller et al.

We therefore could not exhaust the computational capacity of the CPU. Note
that our implementation stores all necessary information for the proof in memory,
and consider that one ciphertext takes up to 216 · 700 · 2 bits or ≈ 11 MBytes.
This means that, for 128-bit active security, we require about (3sec − 1) · 11
MBytes or ≈ 4.4 GBytes of storage for the ciphertexts alone (not considering
any cleartexts). It would be interesting to see how the newer proof fares and
whether using a solid state disk for storage would improve the performance.

References

[Alb17] Albrecht, M.R.: LWE estimator (2017). https://bitbucket.org/malb/lwe-
estimator. Accessed September 2017

[APS15] Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning
with errors. J. Math. Cryptol. 9(3), 169–203 (2015)

[BCI+13] Bitansky, N., Chiesa, A., Ishai, Y., Paneth, O., Ostrovsky, R.: Succinct non-
interactive arguments via linear interactive proofs. In: Sahai, A. (ed.) TCC
2013. LNCS, vol. 7785, pp. 315–333. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-36594-2 18

[BDOZ11] Bendlin, R., Damg̊ard, I., Orlandi, C., Zakarias, S.: Semi-homomorphic
encryption and multiparty computation. In: Paterson, K.G. (ed.) EURO-
CRYPT 2011. LNCS, vol. 6632, pp. 169–188. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-20465-4 11

[Bea92] Beaver, D.: Efficient multiparty protocols using circuit randomization.
In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420–432.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1 34

[BGV12] Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomor-
phic encryption without bootstrapping. In: Goldwasser, S. (ed.) ITCS 2012,
pp. 309–325. ACM, January 2012

[BISW17] Boneh, D., Ishai, Y., Sahai, A., Wu, D.J.: Lattice-based SNARGs and their
application to more efficient obfuscation. In: Coron, J.-S., Nielsen, J.B.
(eds.) EUROCRYPT 2017. LNCS, vol. 10212, pp. 247–277. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-56617-7 9

[BL17] Baum, C., Lyubashevsky, V.: Simple amortized proofs of shortness for lin-
ear relations over polynomial rings. Cryptology ePrint Archive, Report
2017/759 (2017). http://eprint.iacr.org/2017/759

[BLW08] Bogdanov, D., Laur, S., Willemson, J.: Sharemind: a framework for fast
privacy-preserving computations. In: Jajodia, S., Lopez, J. (eds.) ESORICS
2008. LNCS, vol. 5283, pp. 192–206. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-88313-5 13

[BMR16] Ball, M., Malkin, T., Rosulek, M.: Garbling gadgets for boolean and arith-
metic circuits. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers,
A.C., Halevi, S. (eds.) ACM CCS 2016, pp. 565–577. ACM Press, October
2016

[BV11] Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption
from (standard) LWE. In: Ostrovsky, R. (ed.) 52nd FOCS, pp. 97–106.
IEEE Computer Society Press, October 2011

[Can01] Canetti, R.: Universally composable security: a new paradigm for crypto-
graphic protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society
Press, October 2001

https://bitbucket.org/malb/lwe-estimator
https://bitbucket.org/malb/lwe-estimator
https://doi.org/10.1007/978-3-642-36594-2_18
https://doi.org/10.1007/978-3-642-36594-2_18
https://doi.org/10.1007/978-3-642-20465-4_11
https://doi.org/10.1007/3-540-46766-1_34
https://doi.org/10.1007/978-3-319-56617-7_9
http://eprint.iacr.org/2017/759
https://doi.org/10.1007/978-3-540-88313-5_13
https://doi.org/10.1007/978-3-540-88313-5_13

Overdrive: Making SPDZ Great Again 187

[CD09] Cramer, R., Damg̊ard, I.: On the amortized complexity of zero-knowledge
protocols. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp.
177–191. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-
03356-8 11

[CDXY17] Cramer, R., Damg̊ard, I., Xing, C., Yuan, C.: Amortized complexity of zero-
knowledge proofs revisited: achieving linear soundness slack. In: Coron, J.-
S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210, pp. 479–500.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56620-7 17

[CS16] Costache, A., Smart, N.P.: Which ring based somewhat homomorphic
encryption scheme is best? In: Sako, K. (ed.) CT-RSA 2016. LNCS, vol.
9610, pp. 325–340. Springer, Cham (2016). https://doi.org/10.1007/978-3-
319-29485-8 19

[Dam02] Damg̊ard, I.: On Σ-protocols (2002). http://www.daimi.au.dk/∼Eivan/
Sigma.pdf. Accessed September 2017

[DDN+16] Damg̊ard, I., Damg̊ard, K., Nielsen, K., Nordholt, P.S., Toft, T.: Confi-
dential benchmarking based on multiparty computation. In: Grossklags,
J., Preneel, B. (eds.) FC 2016. LNCS, vol. 9603, pp. 169–187. Springer,
Heidelberg (2017). https://doi.org/10.1007/978-3-662-54970-4 10

[DES16] Doerner, J., Evans, D., Shelat, A.: Secure stable matching at scale. In:
Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.)
ACM CCS 2016, pp. 1602–1613. ACM Press, October 2016

[DGKN09] Damg̊ard, I., Geisler, M., Krøigaard, M., Nielsen, J.B.: Asynchronous mul-
tiparty computation: theory and implementation. In: Jarecki, S., Tsudik,
G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 160–179. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-00468-1 10

[DKL+12] Damg̊ard, I., Keller, M., Larraia, E., Miles, C., Smart, N.P.: Implement-
ing AES via an actively/covertly secure dishonest-majority MPC proto-
col. In: Visconti, I., De Prisco, R. (eds.) SCN 2012. LNCS, vol. 7485, pp.
241–263. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
32928-9 14

[DKL+13] Damg̊ard, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.:
Practical covertly secure MPC for dishonest majority - or: breaking the
SPDZ limits. In: Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS
2013. LNCS, vol. 8134, pp. 1–18. Springer, Heidelberg (2013)

[DPSZ12] Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation
from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R.
(eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-32009-5 38

[DSZ15] Demmler, D., Schneider, T., Zohner, M.: ABY - a framework for efficient
mixed-protocol secure two-party computation. In: NDSS 2015. The Internet
Society, February 2015

[GHS12a] Gentry, C., Halevi, S., Smart, N.P.: Fully homomorphic encryption with
polylog overhead. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT
2012. LNCS, vol. 7237, pp. 465–482. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-29011-4 28

[GHS12b] Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES
circuit. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol.
7417, pp. 850–867. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-32009-5 49

https://doi.org/10.1007/978-3-642-03356-8_11
https://doi.org/10.1007/978-3-642-03356-8_11
https://doi.org/10.1007/978-3-319-56620-7_17
https://doi.org/10.1007/978-3-319-29485-8_19
https://doi.org/10.1007/978-3-319-29485-8_19
http://www.daimi.au.dk/~Eivan/Sigma.pdf
http://www.daimi.au.dk/~Eivan/Sigma.pdf
https://doi.org/10.1007/978-3-662-54970-4_10
https://doi.org/10.1007/978-3-642-00468-1_10
https://doi.org/10.1007/978-3-642-32928-9_14
https://doi.org/10.1007/978-3-642-32928-9_14
https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1007/978-3-642-29011-4_28
https://doi.org/10.1007/978-3-642-29011-4_28
https://doi.org/10.1007/978-3-642-32009-5_49
https://doi.org/10.1007/978-3-642-32009-5_49

188 M. Keller et al.

[GLNP15] Gueron, S., Lindell, Y., Nof, A., Pinkas, B.: Fast garbling of circuits under
standard assumptions. In: Ray, I., Li, N., Kruegel, C. (eds.) ACM CCS
2015, pp. 567–578. ACM Press, October 2015

[GRR+16] Grassi, L., Rechberger, C., Rotaru, D., Scholl, P., Smart, N.P.: MPC-
friendly symmetric key primitives. In: Weippl, E.R., Katzenbeisser, S.,
Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM CCS 2016, pp. 430–443.
ACM Press, October 2016

[GSB+17] Gascón, A., Schoppmann, P., Balle, B., Raykova, M., Doerner, J., Zahur,
S., Evans, D.: Privacy-preserving distributed linear regression on high-
dimensional data. Proc. Priv. Enhancing Technol. 4, 248–267 (2017)

[KMR12] Keller, M., Mikkelsen, G.L., Rupp, A.: Efficient threshold zero-knowledge
with applications to user-centric protocols. In: Smith, A. (ed.) ICITS 2012.
LNCS, vol. 7412, pp. 147–166. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-32284-6 9

[KOS16] Keller, M., Orsini, E., Scholl, P.: MASCOT: faster malicious arithmetic
secure computation with oblivious transfer. In: Weippl, E.R., Katzen-
beisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM CCS 2016,
pp. 830–842. ACM Press, October 2016

[KPR17] Keller, M., Pastro, V., Rotaru, D.: Overdrive: making SPDZ great again.
Cryptology ePrint Archive, Report 2017/1230 (2017). https://eprint.iacr.
org/2017/1230

[KSS13] Keller, M., Scholl, P., Smart, N.P.: An architecture for practical actively
secure MPC with dishonest majority. In: Sadeghi, A.-R., Gligor, V.D.,
Yung, M. (eds.) ACM CCS 2013, pp. 549–560. ACM Press, November 2013

[KW15] Kamm, L., Willemson, J.: Secure floating point arithmetic and private
satellite collision analysis. Int. J. Inf. Secur. 14(6), 531–548 (2015)

[LPR10] Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning
with errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 1–23. Springer, Heidelberg (2010). https://doi.org/10.1007/
978-3-642-13190-5 1

[LPR13] Lyubashevsky, V., Peikert, C., Regev, O.: A toolkit for ring-LWE cryptog-
raphy. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS,
vol. 7881, pp. 35–54. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-38348-9 3

[MPI17] MPIR team: Multiple precision integers and rationals (2017). https://www.
mpir.org. Accessed September 2017

[NWI+13] Nikolaenko, V., Weinsberg, U., Ioannidis, S., Joye, M., Boneh, D., Taft,
N.: Privacy-preserving ridge regression on hundreds of millions of records.
In: 2013 IEEE Symposium on Security and Privacy, pp. 334–348. IEEE
Computer Society Press, May 2013

[PVW08] Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and
composable oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS,
vol. 5157, pp. 554–571. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-85174-5 31

[RR16] Rindal, P., Rosulek, M.: Faster malicious 2-party secure computation with
online/offline dual execution. In: USENIX Security Symposium, pp. 297–
314 (2016)

[RSS17] Rotaru, D., Smart, N.P., Stam, M.: Modes of operation suitable for com-
puting on encrypted data. IACR Trans. Symm. Cryptol. 2017(3), 294–324
(2017)

https://doi.org/10.1007/978-3-642-32284-6_9
https://doi.org/10.1007/978-3-642-32284-6_9
https://eprint.iacr.org/2017/1230
https://eprint.iacr.org/2017/1230
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-3-642-38348-9_3
https://doi.org/10.1007/978-3-642-38348-9_3
https://www.mpir.org
https://www.mpir.org
https://doi.org/10.1007/978-3-540-85174-5_31
https://doi.org/10.1007/978-3-540-85174-5_31

Overdrive: Making SPDZ Great Again 189

[Vic61] Vickrey, W.: Counterspeculation, auctions, and competitive sealed tenders.
J. Finance 16(1), 8–37 (1961)

[WRK17] Wang, X., Ranellucci, S., Katz, J.: Authenticated garbling and effi-
cient maliciously secure two-party computation. In: Thuraisingham, B.M.,
Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017, pp. 21–37. ACM
Press, October/November 2017

[ZE15] Zahur, S., Evans, D.: Obliv-C: a language for extensible data-oblivious
computation. Cryptology ePrint Archive, Report 2015/1153 (2015). http://
eprint.iacr.org/2015/1153

http://eprint.iacr.org/2015/1153
http://eprint.iacr.org/2015/1153

Non-interactive Zero-Knowledge

Efficient Designated-Verifier
Non-interactive Zero-Knowledge

Proofs of Knowledge

Pyrros Chaidos1(B) and Geoffroy Couteau2

1 National and Kapodistrian University of Athens, Athens, Greece
pchaidos@di.uoa.gr

2 Karsruhe Institute of Technology, Karlsruhe, Germany

Abstract. We propose a framework for constructing efficient designated-
verifier non-interactive zero-knowledge proofs (DVNIZK) for a wide class of
algebraic languages over abelian groups, under standard assumptions. The
proofs obtained via our framework are proofs of knowledge, enjoy statisti-
cal, and unbounded soundness (the soundness holds even when the prover
receives arbitrary feedbacks on previous proofs). Previously, no efficient
DVNIZK system satisfying any of those three properties was known. Our
framework allows proving arbitrary relations between cryptographic prim-
itives such as Pedersen commitments, ElGamal encryptions, or Paillier
encryptions, in an efficient way. For the latter, we further exhibit the first
non-interactive zero-knowledge proof system in the standard model that
is more efficient than proofs obtained via the Fiat-Shamir transform, with
still-meaningful security guarantees and under standard assumptions. Our
framework has numerous applications, in particular for the design of effi-
cient privacy-preserving non-interactive authentication.

Keywords: Zero-knowledge proofs · Non-interactive proofs

1 Introduction

Zero-knowledge proof systems allow a prover to convince someone of the truth
of a statement, without revealing anything beyond the fact that the statement
is true. After their introduction in the seminal work of Goldwasser, Micali, and
Rackoff [34], they have proven to be a fundamental primitive in cryptography.
Among them, non-interactive zero-knowledge proofs (NIZK proofs), where the
proof consists of a single flow from the prover to the verifier, are of particular
interest, in part due to their tremendous number of applications in cryptographic
primitives and protocols, and in part due to the theoretical and technical chal-
lenges that they represent.

G. Couteau—Part of this work was made while the second author was at École
Normale Supérieure de Paris, France.

c© International Association for Cryptologic Research 2018
J. B. Nielsen and V. Rijmen (Eds.): EUROCRYPT 2018, LNCS 10822, pp. 193–221, 2018.
https://doi.org/10.1007/978-3-319-78372-7_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78372-7_7&domain=pdf

194 P. Chaidos and G. Couteau

For almost two decades after their introduction in [10], NIZKs coexisted in
two types: inefficient NIZKs secure under standard assumptions (such as doubly
enhanced trapdoor permutations [30]) in the common reference string model, and
practically efficient NIZKs built from the Fiat-Shamir heuristic [31,47], which
are secure in the random oracle model [6] (hence only heuristically secure in
the standard model). This state of affairs changed with the arrival of pairing-
based cryptography, from which a fruitful line of work (starting with the work
of Groth, Ostrovsky, and Sahai [37,38]) introduced increasingly more efficient
NIZK proof systems in the standard model. That line of work culminated with the
framework of Groth-Sahai proofs [39], which provided an efficient framework of
pairing-based NIZKs for a large class of useful languages. Yet, one decade later,
pairing-based NIZKs from the Groth-Sahai framework remain the only known
efficient NIZK proof system in the standard model. Building efficient NIZKs in the
standard model, without pairing-based assumptions, is a major open problem,
and research in this direction has proven elusive.

1.1 Designated-Verifier Non-interactive Zero-Knowledge

Parallel to the research on NIZKs, an alternative promising line of research
has focused on designated-verifier non-interactive zero-knowledge proof systems
(DVNIZKs). A DVNIZK retains most of the security properties of a NIZK, but
is not publicly verifiable: only the owner of some secret information (the desig-
nated verifier) can check the proof. Nevertheless, DVNIZKs can replace publicly
verifiable NIZKs in a variety of applications. In addition, unlike their publicly-
verifiable counterpart, it is known that efficient DVNIZKs secure in the standard
model for rich classes of languages can be constructed without pairing-based
assumptions [17,23,43,49]. However, to date, research in DVNIZKs has attracted
less attention than NIZKs, the previously listed papers being (to our knowledge)
the only existing works on this topic, and several important questions have been
left open. We list the main open questions below.

Proofs Versus Arguments. A non-interactive zero-knowledge argument sys-
tem is a NIZK in which the soundness property is only required to hold against
computationally bounded adversaries. In a NIZK proof system, however, sound-
ness is required to hold even against unbounded adversaries.

Currently, while several DVNIZK argument systems have been designed in
the standard model without pairing-based assumptions, efficient DVNIZK proof
systems without pairings remain an open question. In fact, to our knowledge,
the only known constructions of (possibly inefficient) DVNIZK proofs rely on
publicly-verifiable NIZK proofs.

Soundness Versus Knowledge Extraction. A non-interactive zero-
knowledge proof (or argument) system is a NIZK of knowledge if it guarantees
that, when the prover succeeds in convincing the verifier, he must know a wit-
ness for the truth of the statement. This is in constrast with the standard sound-
ness notion, which only guarantees that the statement is true. Formally, this is

Efficient DVNIZK Proofs of Knowledge 195

ensured by requiring the existence of an efficient simulator that can extract a
witness from the proof.

Non-interactive zero-knowledge proofs of knowledge are more powerful than
standard NIZKs, and the knowledge-extractability property is crucial in many
applications. In particular, they are necessary for the very common task of prov-
ing relations between values committed with a perfectly hiding commitment
scheme, and they are a core component in privacy-preserving authentication
mechanisms [4]. Currently, all known DVNIZK argument systems are not argu-
ments of knowledge. Designing efficient DVNIZKs of knowledge without pairing-
based assumptions remains an open question.

Bounded Soundness Versus Unbounded Soundness. The classical sound-
ness security notion for non-interactive zero-knowledge proof systems states that
if the statement is not true, no malicious prover can possibly convince the ver-
ifier of the truth of the statement with non-negligible probability. While this
security notion is sufficient for publicly-verifiable NIZKs, it turns out to be insuf-
ficient when considering designated-verifier NIZKs, and corresponds only to a
passive type of security notion. Indeed, the verification of a DVNIZK involves a
secret value, known to the verifier. The fact that a DVNIZK satisfies the stan-
dard soundness notion does not preclude the possibility for a malicious prover to
learn this secret value, e.g. by submitting a large number of proofs and receiving
feedback on whether the proof was accepted or not. Intuitively, this is the same
type of issue as for encryption schemes indistinguishable against chosen-plaintext
attacks, which can be broken if the adversary is given access to a decryption ora-
cle, or for signature schemes secure against key-only or known-message attacks,
which can be broken if the adversary is given access to a signing oracle. Here, an
adversary could possibly break the soundness of a DVNIZK if it is given access
to a verification oracle.

In practice, this means that as soon as a proof system with bounded sound-
ness is used for more than a logarithmic number of proofs, the soundness property
is no longer guaranteed to hold. This calls for a stronger notion of soundness,
unbounded soundness, which guarantees security even against adversaries that
are given arbitrary access to a verification oracle.

Designing a DVNIZK with unbounded soundness has proven to be highly
non-trivial. In fact, apart from publicly-verifiable NIZKs (which can be seen as
particular types of DVNIZKs where the secret key of the verifier is the empty
string), the only known construction of DVNIZK claiming to satisfy unbounded
soundness is the construction of [23], where the claim is supported by a proof of
security in an idealized model. However, we found this claim to be flawed: there
is an explicit attack against the unbounded soundness of any protocol obtained
using the compiler of [23], which operates by using slightly malformed proofs
to extract the verification key. In the full version of this work [16], we describe
our attack, and identify the flaw in the proof of Theorem 5 in [23, Appendix A].
We have notified the authors of our finding and will update future versions
of this work with their reply. To our knowledge, in all current constructions,

196 P. Chaidos and G. Couteau

the common reference string and the public key must be refreshed after a loga-
rithmic number of proofs.

1.2 Our Contribution

In this work,we first introduce a framework for designated-verifierNIZKs on group-
dependent languages, in the spirit of the Groth-Sahai framework forNIZKs on lan-
guages related to pairing-friendly elliptic curves. Our framework only requires that
the underlying abelian group on which it is instantiated has order M , where ZM

is the plaintext-space of an homomorphic cryptosystem with specific properties,
and allows to prove a wide variety statements formulated in terms of the oper-
ation associated to this abelian group. In particular, we do not need to rely on
pairings. The DVNIZKs obtained with our framework are efficient, as they only
require a few group elements and ciphertexts. The zero-knowledge property of our
schemes reduces to the IND-CPA security of the underlying encryption scheme.
Additionally, our DVNIZKs enjoy the following properties: they are (adaptively)
knowledge-extractable; their knowledge-extractability holds statistically ; their
knowledge-extractability is unbounded. We stress that previously, no efficient con-
struction of DVNIZK in the standard model satisfying any of the above properties
was known. The third property, unbounded soundness, was only claimed to hold
for the construction of [23], and this claim was formalized with a proof in an ideal-
ized model, but as previously mentioned, we found this claim to be flawed. We also
point out that in the Groth-Sahai framework, witness extraction is limited either
to statements about group elements, or to statements about exponents committed
in a bit-by-bit fashion (making the proof highly inefficient). In contrast, our proof
system allows to efficiently extract large exponents, without harming the efficiency
of the proof. In addition to the above properties, our DVNIZKs satisfy some other
useful properties: they are multi-theorem [30], randomizable [3], and same-string
zero-knowledge [27] (i.e., the common reference string used by the prover and the
simulator are the same).

Second, our framework comes with a dual variant, where the role of the
encryption scheme and the abelian group are reversed, to prove statements, not
about elements of the abelian group, but about the underlying homomorphic
encryption scheme. This dual variant leads to DVNIZKs satisfying adaptive sta-
tistical unbounded soundness, but not knowledge-extractability (i.e. the dual
variant does not give proofs of knowledge).

Third, we show that if one is willing to give up unbounded soundness for
efficiency, our techniques can be used to construct extremely efficient DVNIZKs
with bounded-soundness. The DVNIZKs that we obtain this way are more effi-
cient than any previously known construction of non-interactive zero-knowledge
proofs, even when considering NIZKs in the random oracle model using the Fiat-
Shamir transform: the proofs we obtain are shorter than the proofs obtained via
the Fiat-Shamir transform by almost a factor two. To our knowledge, this is the
first example of a NIZK construction in the standard model which (conditionally)
improves on the Fiat-Shamir paradigm.

Efficient DVNIZK Proofs of Knowledge 197

Instantiating the Encryption Scheme. Informally, the security properties
we require from the underlying scheme are the following: it must be additively
homomorphic, with plaintext space ZM , random source ZR, and gcd(M,R) = 1,
and it must be decodable, which means that a plaintext m can be efficiently
recovered from an encryption of m with random coin 0. A natural candidate for
the above scheme is the Paillier encryption scheme [45] (and its variants, such
as Damg̊ard-Jurik [26]). This gives rise to efficient DVNIZK proofs of knowledge
over abelian groups of composite order (e.g. subgroups of F∗

p, with order a prime
p = k · n + 1 for a small k and an RSA modulus n, or composite-order ellip-
tic curves), as well as efficient DVNIZKs for proving relations between Paillier
ciphertexts (using the dual variant of our framework). Alternatively, the scheme
can also be instantiated with the more recent Castagnos-Laguillaumie encryption
scheme [15] to get DVNIZKs over prime-order abelian groups.

Our framework captures many useful zero-knowledge proofs of knowledge
that are commonly used in cryptography. This includes DVNIZK proofs of knowl-
edge of a discrete logarithm, of correctness of a Diffie-Hellman tuple, of multi-
plicative relationships between Pedersen commitments or ElGamal ciphertexts
(or variants thereof), among many others. Our results show that, in the settings
where a designated-verifier is sufficient, one can build efficient non-interactive
zero-knowledge proofs of knowledge for most statements of interest, under well-
known assumptions and with strong security properties, without having to rely
on pairing-friendly groups.

1.3 Our Method

It is known that linear relations (i.e., membership in linear subspaces) can be
non-interactively verified, using the homomorphic properties of cryptographic
primitives over abelian groups. Indeed, DVNIZK proofs for linear languages can
be constructed, e.g., from hash proof systems [33,41]. In [39], pairings provide
exactly the additional structure needed to evaluate degree-two relations, which
can be easily generalized to arbitrary relations.

An alternative road was taken in [23] and subsequent works, to obtain
non-interactive zero-knowledge proofs for a wide variety of relations, in the
designated-verifier setting. To illustrate, let us consider a prover interacting
with a verifier, with a common input (g1, g2, h1, h2) ∈ G

4 in some group G

of order p, where p is a λ-bit prime. The prover wants to show that (h1, h2)
have the same discrete logarithm in the basis (g1, g2), i.e., there exists x such
that (h1, h2) = (gx

1 , gx
2). The standard interactive zero-knowledge proof for this

statement proceeds as follows:1

1. The prover picks r
$← {0, 1}3λ, and sends (a1, a2) ← (gr

1, g
r
2).

2. The verifier picks and sends a uniformly random challenge e
$← Zp.

3. The prover computes and sends d ← e · x + r. The verifier accepts the proof
if and only if (gd

1 , gd
2) = (he

1a1, h
e
2a2).

1 More formally, this proof only satisfies zero-knowledge against honest verifiers, but
this property is sufficient for the construction of [23].

198 P. Chaidos and G. Couteau

The idea of [23] is to squash this interactive protocol into a (designated-verifier)
non-interactive proof, by giving the challenge to the prover in advance. As know-
ing the challenge before sending the first flow gives the prover the ability to
cheat, the challenge is encrypted with an additively homomorphic encryption
scheme. That way, the prover cannot see the challenge; yet, he can still compute
an encryption of the value d homomorphically, using the encryption of e. The
verifier, who is given the secret verification key, can decrypt the last flow and
perform the above check. Thus, the proof is a tuple (a1, a2, cd), where cd is an
encryption of d computed from (x, r) and an encryption ce of the challenge e.

Although natural, this intuitive approach has proven quite tough to analyze.
In [23], the authors had to rely on a new complexity-leveraging-type assumption
tailored to their scheme, which (informally) states that the simulator cannot
break the security of the encryption scheme, even if he is powerful enough to
break the problem underlying the protocol (in the above example, the discrete
logarithm problem over G). Even in the bounded setting, analyzing the sound-
ness guarantees of the protocols obtained by this compilation technique (and
its variants) is non-trivial, and it has been the subject of several subsequent
works [17,43,49]. Additionally, in the unbounded setting, where we must give
an efficient simulator that can successfully answer to the proofs submitted by
any malicious prover, this compilation technique breaks down. Furthermore, for
DVNIZKs constructed with this method, soundness holds only computationally,
and security does not guarantee that the simulator can extract a witness for the
statement.

Our core idea to overcome all of the above issues is to implement the same
strategy in a slightly different way: rather than encrypting the challenge e as the
plaintext of an homomorphic encryption scheme, we encrypt it as the random
coin of an encryption scheme which is also homomorphic over the coins. To
understand how this allows us to improve over all previous constructions, suppose
that we have an encryption scheme Enc which is homomorphic over both the
plaintext and the random coins, with plaintext space ZM and random source
ZR, and that M is coprime to R. Consider the previously described protocol
for proving equality of two discrete logarithms. Given an encryption Enc(0; e) of
0, where the challenge is the random coin, a prover holding (x, r) can compute
and send Enc(x; ρ) and Enc(r;−eρ), for some random ρ. This allows the verifier,
who knows e, to compute Enc(x · e + r; 0), from which she can extract d =
x · e + r mod M (note that the verifier only needs to know e; unlike in previous
work, she does not need to know the decryption key of Enc). Observe that the
extracted value depends only on e modulo M . At the same time, however, the
ciphertext E(0; e) only leaks e modulo R, even to an unbounded adversary. By
picking e to be sufficiently large (e > MR), as M is coprime to R, the verifier can
ensure that this leaks no information (statistically) about e mod M . Therefore,
we can use a statistical argument to show that the prover cannot cheat when the
verification using d succeeds. To allow for efficient simulation of the verifier, we
simply give to the simulator the secret key of the scheme, which will allow him to
extract all encrypted values, and to check the validity of the equations, without

Efficient DVNIZK Proofs of Knowledge 199

knowing e mod M . As the simulator is able to extract the values encrypted
with Enc, the scheme can be proven to be (statistically) knowledge-extractable.
Contrary to previous constructions, the verification key is a random coin rather
than the secret key of an encryption scheme. The secret key is only used to
extract information in the simulated game.

Example: DVNIZK Proof of Knowledge of a Discrete Logarithm. We
illustrate our method with the classical example of proving knowledge of a dis-
crete logarithm. For concreteness, we describe an explicit protocol using the
Paillier encryption scheme; therefore, this section assumes some basic knowl-
edge of the Paillier encryption scheme. All necessary preliminaries can be found
in Sect. 2. Let G be a group of order n, where n = p · q is an RSA modulus (i.e.,
a product of two strong primes). Let g be a generator of G, and let T be a group
element. A prover P wishes to prove to a verifier V that he knows a value t ∈ Zn

such that gt = T .
Let h ← un mod n2, where u denotes an arbitrary generator of Jn, the sub-

group of elements of Z∗
n with Jacobi symbol 1. The Paillier encryption of a mes-

sage m ∈ Zn with randomness r ∈ Zϕ(n)/2 is Enc(m; r) = (1 + n)mhr mod n2.
The public key of the DVNIZK is E = he ∈ Z

∗
n2 , for a random e � n · ϕ(n)/2;

observe that this is exactly Enc(0; e). The secret key is e. The DVNIZK proceeds
as follows:

The prover P picks x
$← Zn and a Paillier random coin r, and computes

X ← gx, T ′ ← (1 + n)thr mod n2, and X ′ ← (1 + n)xE−r mod n2. The verifier
V computes D ← T eX mod n2 and D′ ← (T ′)eX ′ mod n2. Then, she checks
that D′ is of the form (1+n)d mod n2. If so, V computes d mod n from D′, and
checks that D = gd. V accepts iff both checks succeeded.

Let us provide an intuition of the security of this scheme. Correctness fol-
lows easily by inspection. Zero-knowledge comes from the fact that T ′ hides t,
under the IND-CPA security of Paillier. For statistical knowledge extractability,
note E only reveals e mod ϕ(n) to an unbounded adversary, which leaks (sta-
tistically) no information on e mod n as ϕ(n) is coprime to n. This ensures the
value t′ encrypted in T ′ must be equal to t, otherwise the verification equations
would uniquely define e mod n, which is statistically unknown to the prover. The
simulator knows ϕ(n) (but not e mod n) and gets t by decrypting T ′.

1.4 Applications

A natural application of non-interactive zero-knowledge proofs of knowledge is
the design of privacy-preserving non-interactive authentication schemes. This
includes classical authentication protocols, but also P-signatures [4] and their
many applications, such as anonymous credentials [4], group signatures [20],
electronic cash [19], or anonymous authentication [48]. Our framework can lead
to a variety of efficient new constructions of designated-verifier variants for the
above applications without pairings, whereas all previous constructions either

200 P. Chaidos and G. Couteau

had to rely on the random oracle model, or use pairing-based cryptography.2 In
many scenarios of non-interactive authentication, the designated-verifier prop-
erty is not an issue.

In addition, the aforementioned applications build upon the Groth-Sahai
framework for NIZKs. However, Groth-Sahai NIZKs only satisfy a restricted
notion of extractability, called f -extractability in [4]. As a result, construc-
tions of privacy-preserving authentication mechanisms from Groth-Sahai NIZKs
require a careful security analysis. Our framework leads to fully extractable
zero-knowledge proofs, which could potentially simplify this. We note that our
DVNIZKs are additionally randomizable, which has applications for delegatable
anonymous credential schemes [3].

Other potential applications of our framework include round-efficient two-
party computation protocols secure against malicious adversaries, electronic
voting (see e.g. [17]), as well as designated-verifier variants of standard crypto-
graphic primitives, such as verifiable encryption [13], or verifiable pseudorandom-
functions [5]. Potential applications to the construction of adaptive oblivious
transfers can also be envisioned: in [35], the authors mention that an adap-
tive oblivious transfer protocol can be designed by replacing the interactive
zero-knowledge proofs of the protocol of [14] by non-interactive one. They raise
two issues to this approach, namely, that Groth-Sahai proofs are only witness-
indistinguishable for the required class of statements, and that they only satisfy
a weak form of extractability. None of these restrictions apply to our DVNIZK
constructions.

1.5 Related Work

Non-interactive zero-knowledge proofs were first introduced in [10]. Efficient
publicly-verifiable non-interactive zero-knowledge proofs can be constructed in
the random oracle model [31,32,47], or in the non-programmable random oracle
model [42] (using a common reference string in addition). The latter construction
was improved in [21]. In the standard model, the main construction of efficient
publicly-verifiable NIZKs is the Groth-Sahai framework [39].

Designated-verifier non-interactive zero-knowledge arguments where first
introduced in [46], where it was shown that the existence of semantically secure
encryption implies the existence of DVNIZK arguments with bounded soundness;
however, the construction is highly inefficient and therefore only of theoretical
interest. Furthermore, even putting aside efficiency consideration, the construc-
tion is inherently limited to arguments (as opposed to proofs) with bounded
soundness (as opposed to unbounded soundness).

2 These applications typically require a proof-friendly signature scheme, but
designated-verifier variants of such scheme can easily be constructed (without pair-
ings) from algebraic MACs [18,40], by committing to the secret key of the MAC
and proving knowledge of the committed value with a DVNIZK; such statements are
naturally handled by our framework.

Efficient DVNIZK Proofs of Knowledge 201

Designated-verifier NIZKs for linear languages can be constructed from hash
proof systems [22,33,41]. Such NIZKs are perfectly zero-knowledge and statis-
tically adaptively sound, but are not proofs of knowledge and are restricted to
very specific statements, captured by linear equations.

Efficient designated-verifier NIZKs for more general statements were first
described in [23]. The authors describe a general compiler that converts any
three-round (honest-verifier) zero-knowledge protocol satisfying some (mild)
requirements into a DVNIZK. However, the construction has several drawbacks:
the soundness only holds under a very specific complexity-leveraging assump-
tion, and only against adversaries making at most O(log λ) proofs (as already
mentioned, the paper claims that the construction enjoy unbounded soundness
as well, but this claim is flawed, see the full version [16]). In addition, the proofs
obtained with this compiler are not proofs of knowledge.

In subsequent works [17,49], variations of the compilation technique of [23]
are described, where the complexity-leveraging assumption was replaced by more
standard assumptions (although achieving a more restricted type of soundness)
by relying on encryption schemes with additional properties. Eventually, [43]
removes some of the constraints of the constructions of [17], and provides new
protocols that can be compiled using the transformation. However, all the con-
structions obtained in these papers are only computationally sound, do not enjoy
unbounded soundness, and are not proofs of knowledge; this strongly limits their
scope, and in particular, prevents them from being used in the previously dis-
cussed applications.

1.6 Organization

In Sect. 2, we introduce our notation, and necessary primitives. We refer the
reader to the full version of this work [16] for classical preliminaries on com-
mitments and cryptosystems. Section 2 also describes the notion of a DVNIZK-
friendly encryption scheme, which is central to our framework. In Sect. 3, we
introduce our framework for building DVNIZKs of knowledge over an abelian
group, illustrate it with practical examples, and prove its security. In Sect. 4, we
describe the dual variant of our framework for proving statements over plaintexts
of a DVNIZK-friendly encryption scheme. In the full version of this work [16],
we additionally describe optimizations on the efficiency of DVNIZKs for rela-
tions between plaintexts of a DVNIZK-friendly scheme, by eschewing unbounded
soundness, as well as our attack on the unbounded soundness of [23].

2 Preliminaries

Throughout this paper, λ denotes the security parameter. A probabilistic poly-
nomial time algorithm (PPT, also denoted efficient algorithm) runs in time
polynomial in the (implicit) security parameter λ. A positive function f is neg-
ligible if for any polynomial p there exists a bound B > 0 such that, for any

202 P. Chaidos and G. Couteau

integer k ≥ B, f(k) ≤ 1/|p(k)|. An event depending on λ occurs with over-
whelming probability when its probability is at least 1 − negl(λ) for a negligible
function negl. Given a finite set S, the notation x

$← S means a uniformly ran-
dom assignment of an element of S to the variable x. We represent adversaries
as interactive probabilistic Turing machines; the notation A O indicates that the
machine A is given oracle access to O. Adversaries will sometime output an
arbitrary state st to capture stateful interactions.

Abelian Groups and Modules. We use additive notation for groups for
convenience, and write (G,) for an abelian group of order k. When it is clear
from the context, we denote 0 its neutral element (otherwise, we denote it 0G).
We denote by • the scalar-multiplication algorithm (i.e. for any (x,G) ∈ Zk ×G,
x • G = G G . . . G, where the sum contains x terms). Observe that we can
naturally view G as a Zk-module (G, , •), for the ring (Zk,+, ·). For simplicity,
we write G for (−1) • G. We use lower case to denote elements of Zk, upper
case to denote elements of G, and bold notations to denote vectors. We extend
the notations (,) to vectors and matrices in the natural way, and write x•G
to denote the scalar product x1 • G1 . . . xt • Gt (where x,G are vectors of
the same length t). For a vector v, we denote by vᵀ its transpose. By GGen(1λ),
we denote a probabilistic efficient algorithm that, given the security parameter
λ, generates an abelian group G such that the best known algorithm for solving
discrete logs in G takes time 2λ. In the following, we write (G, k) $← GGen(1λ).
Additionally, we denote by GGen(1λ, k) a group generation algorithm that allows
us to select the order k beforehand.

RSA Groups. A strong prime is a prime p = 2p′ + 1 such that p′ is also
a prime. We call RSA modulus a product n = pq of two strong primes. We
denote by ϕ Euler’s totient function; it holds that ϕ(n) = (p − 1)(q − 1). We
denote by Jn the cyclic subgroup of Z∗

n of elements with Jacobi symbol 1 (the
order of this group is ϕ(n)/2), and by QRn the cyclic subroup of squares of Z∗

n

(which is also a subgroup of Jn and has order ϕ(n)/4). By Gen(1λ), we denote a
probabilistic efficient algorithm that, given the security parameter λ, generates a
strong RSA modulus n and secret parameters (p, q) where n = pq, such that the
best known algorithm for factoring n takes time 2λ. In the following, we write
(n, (p, q)) $← Gen(1λ).

2.1 Encryption Schemes

The formal definition of an IND-CPA-secure public-key encryption scheme is
recalled in the full version [16], but in short, a public-key encryption scheme S is
a triple of PPT algorithms (S.KeyGen, S.Enc, S.Dec), where S.KeyGen generates
a pair (ek, dk) with an encryption key and a decryption key, decryption (with dk,
deterministically) is the reverse operation of encryption (with ek, randomized),
and no adversary can distinguish encryptions of one of two messages of its choice
(IND-CPA security).

Efficient DVNIZK Proofs of Knowledge 203

In this work, we will focus on additively homomorphic encryption schemes,
which are homomorphic for both the message and the random coin. More for-
mally, we require that the message space M and the random source R are
integer sets (ZM ,ZR) for some integers (M,R), and that there exists an effi-
cient operation ⊕ such that for any (ek, sk) $← KeyGen(1λ), any (m1,m2) ∈ Z

2
M

and (r1, r2) ∈ Z
2
R, denoting (Ci)i≤2 ← (S.Encek(mi; ri))i≤2, it holds that

C1 ⊕ C2 = S.Encek(m1 + m2 mod M ; r1 + r2 mod R). We say an encryption
scheme is strongly additive if it satisfies these requirements. Note that the exis-
tence of ⊕ implies (via a standard square-and-multiply method) the existence
of an algorithm that, on input a ciphertext C = S.Encek(m; r) and an integer
ρ ∈ Z, outputs a ciphertext C ′ = S.Encek(ρm mod M ; ρr mod R). We denote
by ρ � C the external multiplication of a ciphertext C by an integer ρ, and by
	 the operation C ⊕ (−1) � C ′ for two ciphertexts (C,C ′). We will sometimes
slightly abuse these notations, and write C ⊕ m (resp. C 	 m) for a plaintext m
to denote C ⊕ S.Encek(m; 0) (resp. C 	 S.Encek(m; 0)).

A simple observation on strongly additively homomorphic encryption
schemes is that IND-CPA security implies that R must either be equal to 0
mod M , or unknown given ek. Otherwise, an IND-CPA adversary would set
(m0,m1) = (0, 1) and check if R � C equals S.Encek(0; 0) or S.Encek(R; 0).

The Paillier Encryption Scheme. The Paillier encryption scheme [45] is
a well-known additively homomorphic encryption scheme over Zn for an RSA
modulus n. We describe here a standard variant [25,43], where the random coin
is an exponent over Jn rather than a group element. Note that the exponent
space of Jn is Zϕ(n)/2, which is a group of unknown order; however, it suffices
to draw exponents at random from Zn/2 to get a distribution statistically close
from uniform over Zϕ(n)/2.

– KeyGen(1λ): run (n, (p, q)) $← Gen(1λ), pick g
$← Jn, set h ← gn mod n2,

and compute δ ← n−1 mod ϕ(n) (n and ϕ(n) are relatively prime). Return
ek = (n, h) and dk = δ;

– Enc(ek,m; r): given m ∈ Zn, for a random r
$← Zn/2, compute and output

c ← (1 + n)m · hr mod n2;
– Dec(dk, c): compute x ← cdk mod n and c0 ← [c · x−n mod n2]. Return m ←

(c0 − 1)/n.

Note that knowing dk is equivalent to knowing the factorization of n. The
IND-CPA security of the Paillier encryption scheme reduces to the decisional
composite residuosity (DCR) assumption, which states that it is computationally
infeasible to distinguish random n’th powers over Z

∗
n2 from random elements of

Z
∗
n2 .3 It is also strongly additive, where the homomorphic addition of ciphertexts

is the multiplication over Z
∗
n2 .

3 In the variant we consider here, we must restrict our attention to elements of Z
∗
n2

which have Jacobi symbol 1 when reduced modulo n as g ∈ Jn, but this can be
checked in polynomial time anyway.

204 P. Chaidos and G. Couteau

The ElGamal Encryption Scheme. We recall the additive variant of the
famous ElGamal cryptosystem [28], over an abelian group (G,) of order k.

– KeyGen(1λ): pick G
$← G, pick s

$← Zk, set G ← s•G, and return ek = (G,H)
and dk = s;

– Enc(ek,m; r): given m ∈ Zk, for a random r
$← Zk, output C ← (r • G, (m •

G) (r • H));
– Dec(dk,C): parse C as (C0, C1), and compute M ← C1 (dk • C0). Compute

the discrete logarithm m of M in base G, and return m.

The IND-CPA security of the ElGamal encryption scheme reduces to the
decisional Diffie-Hellman (DDH) assumption over G, which states that it is com-
putationally infeasible to distinguish tuples of the form (G,H, x • G, x • H) for
random x from uniformly random 4-tuples over G. It is also strongly additive
(and the homomorphic operation is the vector addition over G). However, the
decryption procedure is not efficient in general, as it requires to compute a dis-
crete logarithm. For the decryption process to be efficient, the message m must
be restricted to come from a subset of Zk of polynomial size.

DVNIZK-Friendly Encryption Scheme. We say that a strongly additive
encryption scheme is DVNIZK -friendly, when it satisfies the following additional
properties:

– Coprimality Property: we require that the size M of the plaintext space and
the size R of the random source are coprime4, i.e., gcd(M,R) = 1;

– Decodable: for any (ek, sk) $← KeyGen(1λ), the function fek : m
→ Encek(m; 0)
must be efficiently invertible (i.e., there is a PPT algorithm, which is given
ek, computing f−1

ek on any value from the image of fek).

One can observe that the Paillier cryptosystem is DVNIZK-friendly
(gcd(n, ϕ(n)) = 1, and any message m can be efficiently recovered from
Encek(m; 0) = (1 + n)m mod n2), while the ElGamal cryptosystem is not (it
satisfies none of the above properties). Other DVNIZK-friendly cryptosystems
include variants of the Paillier cryptosystem [12,22,24–26], and the more recent
Castagnos-Laguillaumie cryptosystem [15], with prime-order plaintext space. For
simplicity, we will also assume that all prime factors of the size M of the plain-
text space of a DVNIZK-friendly cryptosystem are of superpolynomial size; our
results can be extended to cryptosystems with a small plaintext space (or a
plaintext space with small prime factors), but at a cost in efficiency. Note that
by the homomorphic property, the decodability property implies that a plaintext
can always be recovered from a ciphertext if the random coin is known.

2.2 Non-interactive Zero-Knowledge Proof Systems

In the definitions below, we focus on proof systems for NP-languages that admit
an efficient (polynomial-time) prover. For an NP-language L , we denote RL

4 In view of our previous observation on IND-CPA security for strongly additive cryp-
tosystems, this implies that R is secret.

Efficient DVNIZK Proofs of Knowledge 205

its associated relation, i.e., a polynomial-time algorithm which satisfies L =
{x | ∃w, |w|= poly(|x|) ∧ RL (x,w) = 1}. It is well known that non-interactive
proof systems cannot exist for non-trivial languages in the plain model [44]; our
constructions will be described in the common reference string model. For concise-
ness, the common reference string is always implictly given as input to all algo-
rithms. We note that all of our constructions can be readily adapted to work in the
registered public-key model as well, a relaxation of the common reference string
model introduced by Barak et al in [2].

While languages are naturally associated to statements of membership, the
constructions of this paper will mainly consider statements of knowledge. We
write St(x) = K{w : R(x,w) = 1} to denote the statement “I know a witness
w such that R(x,w) = 1” for a word x and a polytime relation R. Similarly,
we write St(x) = ∃{w : R(x,w) = 1} to denote the existential statement “there
exists a witness w such that R(x,w) = 1”.

Definition 1 (Non-Interactive Zero-Knowledge Proof System). A non-
interactive zero-knowledge (NIZK) proof system Π between for a family of lan-
guages L = {Lcrs}crs is a quadruple of probabilistic polynomial-time algorithms
(Π.Setup,Π.KeyGen,Π.Prove,Π.Verify) such that

– Π.Setup(1λ), outputs a common reference string crs (which specifies the lan-
guage Lcrs),

– Π.KeyGen(1λ), outputs a public key pk and a verification key vk,
– Π.Prove(pk, x, w), on input the public key pk, a word x ∈ Lcrs, and a witness

w, outputs a proof π,
– Π.Verify(pk, vk, x, π), on input the public key pk, the verification key vk, a word

x, and a proof π, outputs b ∈ {0, 1},
which satisfies the completeness, zero-knowledge, and soundness properties
defined below.

We assume for simplicity that once it is generated, the common ref-
erence string crs is implicitly passed as an argument to the algorithms
(Π.KeyGen,Π.Prove,Π.Verify). In the above definition of NIZK proof systems, we
let the key generation algorithm generate a verification key vk which is used by
the verifier to check the proofs. We call publicly verifiable non-interactive zero-
knowledge proof system a NIZK proof system in which vk is set to the empty
string (or, equivalently, in which vk is made part of the public key). Otherwise,
we call it a designated-verifier non-interactive zero-knowledge proof system.

Definition 2 (Completeness). A NIZK proof system Π = (Π.Setup,Π.KeyGen,
Π.Prove,Π.Verify) for a family of languages L = {Lcrs}crs with relations Rcrs

satisfies the (perfect, statistical) completeness property if for crs
$← Π.Setup(1λ),

for every x ∈ Lcrs and every witness w such that Rcrs(x,w) = 1,

Pr
[
(pk, vk) $← Π.KeyGen(1λ),
π ← Π.Prove(pk, x, w)

: Π.Verify(pk, vk, x, π) = 1
]

= 1 − μ(λ)

where μ(λ) = 0 for perfect completeness, and μ(λ) = negl(λ) for statistical
completeness.

206 P. Chaidos and G. Couteau

We now define the zero-knowledge property.

Definition 3 (Composable Zero-Knowledge). A NIZK proof system Π =
(Π.Setup,Π.KeyGen,Π.Prove,Π.Verify) for a family of languages L = {Lcrs}crs
with relations Rcrs satisfies the (perfect, statistical) composable zero-knowledge
property if for any crs

$← Π.Setup(1λ), there exists a probabilistic polynomial-time
simulator Sim such that for any stateful adversary A ,

∣∣∣∣∣∣Pr

⎡
⎣ (pk, vk) $← Π.KeyGen(1λ),

(x,w) ← A (pk, vk), : (Rcrs(x,w) = 1) ∧ (A (π) = 1)
π ← Π.Prove(pk, x, w)

⎤
⎦ −

Pr

⎡
⎣ (pk, vk) $← Π.KeyGen(1λ),

(x,w) ← A (pk, vk), : (Rcrs(x,w) = 1) ∧ (A (π) = 1)
π ← Sim(pk, vk, x)

⎤
⎦

∣∣∣∣∣∣ ≤ μ(λ)

where μ(λ) = 0 for perfect composable zero-knowledge, and μ(λ) = negl(λ) for
statistical composable zero-knowledge. If the composable zero-knowledge property
holds against efficient (PPT) verifiers, the proof system satisfies computational
composable zero-knowledge.

The composable zero-knowledge property was first introduced in [36]. It
strenghtens the standard zero-knowledge definition, in that it explicitly states
that the trapdoor of the simulator is exactly the verification key vk of the veri-
fier. This strong security property guarantees that the same common reference
string can be used for many different proofs, as the same trapdoor is used for
simulating all proofs, which enhances the proof system with composability prop-
erties. We note that [36] additionally required indistinguishability between real
and simulated common reference string; in our constructions, this will be triv-
ially satisfied, as the simulated crs will be exactly the real one. We define below
the notion of (bounded) adaptive soundness, which allows the input to be adver-
sarially picked after the public key is fixed.

Definition 4 (Bounded Adaptive Soundness). A NIZK proof system Π =
(Π.Setup,Π.KeyGen,Π.Prove,Π.Verify) for a family of languages L = {Lcrs}crs
with relations Rcrs satisfies the bounded adaptive soundness property if for
crs

$← Setup(1λ), for every adversary A ,

Pr
[
(pk, vk) $← Π.KeyGen(1λ),
(π, x) ← A (pk)

: x /∈ Lcrs ∧ Π.Verify(pk, vk, x, π)
]

= negl(λ).

Definition 4 is formulated with respect to arbitrary adversaries A , which
leads to a statistical notion of soundness. A natural relaxation of this require-
ment is to consider only efficient (PPT) adversarial provers. We denote by com-
putational soundness this relaxed notion of soundness. Computationally sound
proof systems are called argument systems.

Efficient DVNIZK Proofs of Knowledge 207

Unbounded Soundness. Definition 4 corresponds to a bounded notion of
soundness, in the sense that soundness is only guaranteed to hold when the
prover tries to forge a single proof of a wrong statement, right after the setup
phase. However, if the prover is allowed to interact polynomially many times
with the verifier before trying to forge a proof, sending proofs and receiving
feedback on whether the proof was accepted, the previous definition provides no
security guarantees.

Intuitively, in this situation, the distinction between bounded and unbounded
soundness is comparable to the distinction between security against chosen plain-
text attacks and security against chosen ciphertext attacks for cryptosystems.
We define unbounded soundness in a similar fashion, by giving the prover access
to a verification oracle Ovk[pk] (with crs implicitly given as parameter) which,
on input (x, π), returns b ← Verify(pk, vk, x, π).

Definition 5 (Q-bounded Adaptive Soundness). A NIZK proof system Π =
(Π.Setup,Π.KeyGen,Π.Prove,Π.Verify) for a family of languages L = {Lcrs}crs
with relations Rcrs satisfies the Q-bounded adaptive soundness property if for
crs

$← Π.Setup(1λ), and every adversary A making at most Q queries to Ovk[pk],
it holds that

Pr
[
(pk, vk) $← Π.KeyGen(1λ),
(π, x) ← A Ovkpk

: x /∈ Lcrs ∧ Π.Verify(pk, vk, x, π)
]

= negl(λ).

Alternatively, the above definition can be formulated with respect to
polynomial-time adversarial provers, leading to computational Q-bounded adap-
tive soundness. Note that the answers of the oracle are bits; therefore, if a
NIZK proof system satisfies the bounded adaptive soundness property of Def-
inition 4, it also satisfies the above Q-bounded adaptive soundness property for
any Q = O(log λ). Indeed, if Q is logarithmic, one can always guess in advance
the answers of the verification oracle with non-negligible (inverse polynomial)
probability. We say that a NIZK proof system which is Q-bounded adaptively
sound for any Q = poly(λ) satisfies unbounded adaptive soundness.

Eventually, we define (unbounded) knowledge-extractability, a strenghten-
ing of the soundness property which guarantees that if the prover produces an
accepting proof, then the simulator can actually extract a witness for the state-
ment. To this aim, we extend the syntax of the Setup algorithm to also output
a trapdoor τ , used by the extractor. The knowledge-extractibility guarantee is
stronger than soundness, in that the proof guarantees not only that there exists
a witness, but also that the prover must know that witness. A NIZK satisfying
knowledge-extractability is called a NIZK proof of knowledge.

Definition 6 (Q-bounded Knowledge-Extractability). A NIZK proof system Π =
(Π.Setup,Π.KeyGen,Π.Prove,Π.Verify) for a family of languages L = {Lcrs}crs
with relations Rcrs satisfies the Q-bounded knowledge-extractability property if
for (crs, τ) $← Π.Setup(1λ), and every adversary A making at most Q queries to

208 P. Chaidos and G. Couteau

Ovk[pk], there is an efficient extractor Ext such that

Pr

⎡
⎣(pk, vk) $← Π.KeyGen(1λ),

(π, x) ← A Ovkpk,
w ← Ext(π, x, τ),

: Rcrs(x,w) iff Π.Verify(pk, vk, x, π)

⎤
⎦ ≈ 1.

3 A Framework for Designated-Verifier Non-interactive
Zero-Knowledge Proofs of Knowledge

In this section, we let k be an integer, (G,) be an abelian group of order k, and
(α, β, γ) be three integers. We will describe a framework for proving statements
of knowledge over a wide variety of algebraic relations over G, in the spirit of
the Groth-Sahai framework for NIZK proofs over bilinear groups. To describe the
relations handled by our framework, we describe languages of algebraic relations
via linear maps. While this system was previously used to describe membership
statements [7–9], we adapt it to statements of knowledge. As previously observed
in [7], this system encompasses a wider class of languages than the Groth-Sahai
framework.

3.1 Statements Defined by a Linear Map over G

Let G ∈ G
α denote a vector of public parameters, and let C ∈ G

β denote a
public word. We will consider statements StΓ(G,C) defined by a linear map
Γ : (Gα,Gβ)
→ G

γ×β as follows:

StΓ(G,C) = K{x ∈ Z
γ
k | x • Γ(G,C) = C} (1)

That is, the prover knows a witness-vector x ∈ Z
γ
k such that the equation

x • Γ(G,C) = C holds. This abstraction captures a wide class of statements.
Below, we describe two examples of statements that can be handled by our
framework. They aim at clarifying the way the framework can be used, illustrat-
ing its power, as well as providing useful concrete instantiations. The examples
focus on the most standard primitives (Pedersen commitments, ElGamal cipher-
texts), but the reader will easily recognize they can be naturaly generalized to
all standard variants of these primitives (e.g., variants of ElGamal secure under
t-linear assumptions [11], or under assumptions from the matrix Diffie-Hellman
family of assumptions [29]).

Example 1: Knowledge of Opening to a Pedersen Commitment. We
consider statements of knowledge of an opening (m, r) to a Pedersen commit-
ment C.

– Public Parameters: (G,H) ∈ G
2;

– Word: C ∈ G;
– Witness: a pair (m, r) ∈ Z

2
k such that C = m • G r • H;

– Linear Map: ΓPed : (G,H,C)
→ (G,H)ᵀ;
– Statement: StΓPed

(G,H,C) = K{(m, r) ∈ Z
2
k | (m, r) • (G,H)ᵀ = C}.

Efficient DVNIZK Proofs of Knowledge 209

Example 2: Multiplicative Relationship Between ElGamal Cipher-
texts. This type of statement is of particular interest, as it can be generalized
to arbitrary (polynomial) relationships between plaintexts.

– Public Parameters: (G,H) ∈ G
2;

– Word: C = ((Ui, Vi)0≤i≤2) ∈ G
6;

– Witness: a 5-tuple x = (m0, r0,m1, r1, r2) ∈ Z
5
k such that Ui = ri • G and

Vi = mi •G r•H for i = 0, 1, and U2 = m1 •U0 r2 •G, V2 = m1 •V0 r2 •H;
– Linear Map:

ΓEM : (G,H,C)
→

⎛
⎜⎜⎜⎜⎝

0 G 0 0 0 0
G H 0 0 0 0
0 0 0 G U0 V0

0 0 G H 0 0
0 0 0 0 G H

⎞
⎟⎟⎟⎟⎠ ;

– Statement: StΓEM
(G,H,C) = K{x ∈ Z

5
k | x • ΓEM(G,H,C) = C}.

Conjunction of Statements. The above framework naturally handles conjuc-
tions. Consider two statements (StΓ0(G0,C0),StΓ1(G1,C1)), defined by linear
maps (Γ0,Γ1), with public parameters (G1,G1), words (C0,C1), and witnesses
(x0,x1). Let G ← (G1,G1), C ← (C0,C1), and x ← (x0,x1). We construct
the linear map Γ associated to StΓ(G,C) as Γ ← ((Γ0, 0)ᵀ, (0,Γ1)ᵀ). One can
immediatly observe that StΓ(G,C) = StΓ0(G0,C0) ∧ StΓ1(G1,C1). The frame-
work handles disjunction of statements as well, as observed in [1]; we omit the
details.

3.2 A Framework for DVNIZK Proofs of Knowledge

We now introduce our framework for constructing designated-verifier non-
interactive zero-knowledge proofs of knowledge for statements defined by a linear
map over G. Let S = (S.KeyGen, S.Enc, S.Dec) denote a DVNIZK-friendly encryp-
tion scheme with plaintext space Zk. We construct a DVNIZK of knowledge
ΠK = (ΠK.Setup,ΠK.KeyGen,ΠK.Prove,ΠK.Verify) for a statement StΓ(G,C)
over a word C ∈ G

β , with public parameters G ∈ G
α, defined by a linear

map Γ : (Gα,Gβ)
→ G
γ×β . Our construction proceeds as follows:

– ΠK.Setup(1λ) : compute (ek, dk) $← S.KeyGen(1λ). Output crs ← ek. Note that
ek defines a plaintext space Zk and a random source ZR. As the IND-CPA and
strong additive properties of S require R to be unknown, we assume that a
bound B on R is publicly available. We denote � ← 2λkB.

– ΠK.KeyGen(1λ): pick e ← Z�, set pk ← S.Encek(0; e) and vk ← e.
– ΠK.Prove(pk,C,x): on a word C ∈ Z

β
k , with witness x for the statement

StΓ(G,C), pick x′ $← Z
γ
k , r

$← Z
γ
2λB

, compute

X ← S.Encek(x, r), X′ ← S.Encek(x′, 0) 	 (r � pk), C′ ← x′ • Γ(G,C),

and output π ← (X,X′,C′).

210 P. Chaidos and G. Couteau

– ΠK.Verify(pk, vk,C,π): parse π as (X,X′,C′). Check that e � X ⊕ X′ is
decodable, and decode it to a vector d ∈ Z

γ
k . Check that

d • Γ(G,C) = e • C C′.

If all checks succeeded, accept. Otherwise, reject.

The proof π consists of 2γ ciphertexts of S, and β elements of G. Below, we
illustrate our construction of DVNIZK on the examples of statements given in
the previous section. For the sake of concreteness, we instantiate the DVNIZK-
friendly encryption scheme S with Paillier (hence the operation is instantiated
as the multiplication modulo n2), so that the message space is Zn and the ran-
domizer space is Zϕ(n)/2 for an RSA modulus n. In the examples, we use a bound
B = n and draw Paillier random coins from Z2λB , following our generic frame-
work. However, observe that in the case of Paillier, we can also draw the coins
from Zn/2 to get a distribution statistically close to uniform over Zϕ(n)/2, which
is more efficient.

Example 1: Knowledge of Opening to a Pedersen Commitment.

– ΠPed.Setup(1λ) : Compute ((n, h), δ) = (ek, dk) $← S.KeyGen(1λ). Output
crs ← ek. Let � ← 2λn2. Let G

$← GGen(1λ, n), (G,H) $← G
2.

– ΠPed.KeyGen(1λ): pick e
$← Z�, set pk ← he mod n2 and vk ← e.

– ΠPed.Prove(pk, C,x): on a word C ∈ G, with witness x = (m, r) ∈ Z
2
n for

the statement StΓPed
(G,C), pick x′ $← Z

2
n, ρ

$← Z
2
2λB, compute X ← (1 +

n)xhρ mod n2,X′ ← (1 + n)x′
pk−ρ mod n2,C′ ← x′ • (G,H)ᵀ, and output

π ← (X,X′,C′).
– ΠPed.Verify(pk, vk,C,π): parse π as (X,X′,C′). Check that XeX′ is of the

form (1 + n)d , and recover the vector d ∈ Z
2
n. Check that d • (G,H)ᵀ =

e • C C′.

Example 2: Multiplicative Relationship Between ElGamal Cipher-
texts.

– ΠEM.Setup(1λ) as ΠPed.Setup(1λ).
– ΠEM.KeyGen(1λ) as ΠPed.KeyGen(1λ).
– ΠEM.Prove(pk,C,x): on a word C ∈ G

6, with witness x =
(m0, r0,m1, r1, r2) ∈ Z

5
n for the statement StΓEM

(G,C), pick x′ $← Z
5
n, ρ

$←
Z

5
2λB , compute X ← (1 + n)xhρ mod n2,X′ ← (1 + n)xpk−ρ mod n2,C′ ←

x′ • ΓEM(G,C), and output π ← (X,X′,C′).
– ΠEM.Verify(pk, vk,C,π): parse π as (X,X′,C′). Check that XeX′ is of the

form (1 + n)d , and recover the vector d ∈ Z
5
n. Check that d • ΓEM(G,C) =

e • C C′.

3.3 Security Proof

We now prove the generic DVNIZK construction from Sect. 3.2 is secure.

Efficient DVNIZK Proofs of Knowledge 211

Perfect Completeness. It follows from straighforward calculations: e � X ⊕
X′ = S.Encek(e · x + x′; e · r − e · r) = S.Encek(e · x + x′; 0) is decodable and
decodes to d = e · x + x′ mod k. Then, d • Γ(G,C) = e • (x • Γ(G,C)) x′ •
Γ(G,C) = e • C C′ by the correctness of the statement (x • Γ(G,C) = C)
and by construction of C′.

Composable Zero-Knowledge. We prove the following theorem:

Theorem 7 (Zero-Knowledge of ΠK). If the encryption scheme S is
IND-CPA secure, the DVNIZK scheme ΠK is composable zero-knowledge.

We describe a simulator Sim(C, pk, vk) producing proofs computationally
indistinguishable from those produced by an honest prover on true statements.
The simulator operates as follows: let d

$← Z
γ
k , and C′ ← d • Γ(G,C) e • C.

Sample x
$← Z

γ
k , r

$← Z
γ
2λB

, and compute X ← S.Encek(x, r),X′ ←
S.Encek(d − e · x,−e · r). Output πs = (X,X′,C′).

Let A be an adversary that can distinguish Sim from Prove. We will build a
reduction against the IND-CPA security of S. The reduction obtains C,x from
A , samples x̃ ← Z

γ
k , sends (x, x̃) to the IND-CPA game and sets X to be the

challenge from the IND-CPA game. Now, the reduction samples d ← Z
γ
k and sets

X′ := S.Encek(d; 0)	X �e. Finally, the reduction sets C′ := d•Γ(G,C) e•C.
Send π∗ = (X,X′,C) to A .

Direct calculation shows that if the IND-CPA game outputs an encryption of
X̃, then X,X′,C are distributed as those produced by Sim, whereas when it
outputs an encryption of X then π∗ is distributed identical to a real proof. Thus,
whatever advantage A has in distinguishing Sim from Prove is also achieved by
the reduction against IND-CPA. Note that for simplicity, our proof assume that
the IND-CPA game is directly played over vectors, but standard methods allow
to reduce this to the classical IND-CPA game with a single challenge ciphertext.

Adaptive Unbounded Knowledge-Extractability. We start by showing
that ΠK satisfies statistical adaptive unbounded knowledge-extractability. More
precisely, we prove the following theorem:

Theorem 8 (Soundness of ΠK). There is an efficient simulator Sim such that
for any (possibly unbounded) adversary A that outputs an accepting proof π with
probability ε on an arbitrary word C after making at most Q queries to the oracle
Ovk[pk], Sim extracts a valid witness for the statement StΓ(G,C) with probability
at least ε − (Q + 1)β/pk, where pk is the smallest prime factor of k.

The proof describes an efficient simulator Sim that correctly emulates the
verifier, without knowing vk mod k. The simulation is done as follows:

– Sim.Setup(1λ) : compute (ek, dk) $← S.KeyGen(1λ). Output crs ← ek. The
encryption key ek defines a plaintext space Zk and a random source ZR with
bound B. Let � ← 2λkB.

212 P. Chaidos and G. Couteau

– Sim.KeyGen(1λ): compute (pk, vk) $← ΠK.KeyGen(1λ), output pk, store eR ←
vk mod R, and erase vk.

– Sim.Verify(pk, dk, eR,C,π): parse π as (X,X′,C′). Using the secret key dk
of S, decrypt X to a vector x, and X′ to a vector x′. Check that (−eR) �
(X 	x) = X′ 	x′. Check that x•Γ(G,C) = C, and that x′ •Γ(G,C) = C′.
If all checks succeeded, accept. Otherwise, reject.

The simulator Sim first calls Sim.Setup(1λ) to generate the common reference
string (note that our simulator generates the common reference string honestly,
hence the simulation of Setup cannot be distinguished from an honest run of
Setup), and stores dk. Each time the adversary A sends a query (C,π) to the
oracle Ovk[pk], Sim simulates Ovk[pk] (without knowing vk mod k) by running
Sim.Verify(pk, dk, eR,C,π), and accepts or rejects accordingly. When A outputs
a final answer (C,π), Sim computes a witness x for StΓ(G,C) by decrypting C
with dk.

Observe that the distribution {(pk, vk) $← ΠK.KeyGen(1λ), ek ← vk mod k :
(pk, ek)} is statistically indistinguishable from the distribution {(pk, vk) $←
ΠK.KeyGen(1λ), ek

$← Zk : (pk, ek)}. Put otherwise, the distribution of vk mod k
is statistically indistinguishable from random, even given pk. Indeed, as S is a
DVNIZK-friendly encryption scheme, it holds by definition that gcd(k,R) = 1.
As � = 2λBk ≥ 2λRk, the distribution {e

$← Z�, ek ← e mod k, eR ← e mod R :
(ek, eR)} is statistically indistinguishable from the uniform distribution over
Zk × ZR, and the value pk only leaks eR, even to an unbounded adversary
(as S.Encek(0; e) = S.Encek(0; e mod R)). We now prove the following claim:

Claim. For any public parameters G and word C, it holds that

Pr

⎡
⎣ (pk, vk) $← ΠK.KeyGen(1λ),

b ← Sim.Verify(pk, dk,C,π), : b′ = b
b′ ← ΠK.Verify(pk, vk,C,π)

⎤
⎦ ≥ 1 − β/pk,

where pk is one of the prime factors of k.

Proof. First, we show that if b = 1, then b′ = 1. Indeed, let us denote (x,x′)
the plaintexts associated to (X,X′). Let (r, r′) be the random coins of the
ciphertexts (X,X′). Observe that, by the homomorphic properties of S, the
equation (−eR) � (X 	 x) = X′ 	 x′ is equivalent to S.Encek(0;−eR · r) =
S.Encek(0; r′), which is equivalent to e�X ⊕X′ = S.Enc(e ·x+x′ mod k; e ·r+
r′ mod R) = S.Enc(e·x+x′ mod k; 0) as e = eR mod R. Therefore, the verifier’s
check that e � X ⊕ X′ is decodable succeeds if and only if Sim’s first check
succeeds, and the decoded value d ∈ Z

γ
k satisfies d = e ·x+x′ mod k. Moreover,

if the equations x • Γ(G,C) = C and x′ • Γ(G,C) = C′ are both satisfied
(i.e. Sim’s other checks succeed), then it necessarily holds that d • Γ(G,C) =
(e · x + x′) • Γ(G,C) = e • (x • Γ(G,C)) x′ • Γ(G,C) = e • C C′. This
concludes the proof that, conditioned on Sim’s checks succeeding, the verifier’s
checks necessarily succeed.

Efficient DVNIZK Proofs of Knowledge 213

Now, assume for the sake of contradiction that the converse is not true:
suppose that Sim rejected the proof, while the verifier accepted. We already
showed that the equation (−eR)�(X	x) = X′	x′ is equivalent to the equation
e�X ⊕X′ = S.Enc(e ·x+x′ mod k; 0); therefore, if e�X ⊕X′ is decodable (it
has random coin 0), then Sim’s check that (−eR)� (X 	x) = X′ 	x′ succeeds.
As we assumed that Sim rejects the proof, this means that at least one of Sim’s
last checks must fail: either x •Γ(G,C) �= C, or x′ •Γ(G,C) �= C′. By the first
check of the verifier, it holds that e � X ⊕ X′ is decodable; denoting (x,x′) the
plaintexts associated to (X,X′), it therefore decodes to d = e · x + x′ mod k.
By the second check of the verifier, it holds that d•Γ(G,C) = e•C C′, which
implies e•(x•Γ(G,C)) x′•Γ(G,C) = e•C C′. This last equation rewrites to

e • (x • Γ(G,C) C) = C′ x′ • Γ(G,C) (2)

Now, recall that by assumption, either x • Γ(G,C) �= C, or x′ • Γ(G,C) �= C′.
Observe that Eq. 2 further implies, as e �= 0 (with overwhelming probability),
that x′ • Γ(G,C) C′ �= 0 if and only if x • Γ(G,C) C �= 0. Therefore, condi-
tioned on Sim rejecting the proof, it necessarily holds that x • Γ(G,C) C �= 0
and x′ • Γ(G,C) C′ �= 0. Let (μi, νi) be two non-zero entries of the vectors
(x•Γ(G,C) C,C′ x′ •Γ(G,C)) at the same position i ≤ β; by Eq. 2, it holds
that e = νi · μ−1

i mod p for at least one of the prime factors p of k. However,
recall that the value e mod k is statistically hidden to the prover (and therefore,
so is the value e mod p), hence the probability of this event happening can be
upper-bounded by β/p ≤ β/pk. This concludes the proof of the claim. ��

Now, consider an adversary A that outputs an accepting proof (C,π) with
probability at least ε after a polynomial number Q of interactions with the
oracle Ovk[pk]. By the above claim and a union bound, it necessarily holds that
A outputs an accepting proof (C,π) with probability at least ε − Qβ/pk after
interacting Q times with Sim.Verify(pk, dk, eR, ·, ·); moreover, with probability at
least 1−βpk, this proof is also accepted by Sim’s verification algorithm. Overall,
Sim obtains a proof accepted by his verification algorithm with probability at
least ε − (Q + 1)β/pk. In particular, this implies that the vector x extracted by
Sim from π satisfies x • Γ(G,C) = C with probability at least ε − (Q + 1)β/pk.
Therefore, Sim extracts a valid witness for the knowledge statement StΓ(G,C)
with probability at least ε − (Q + 1)β/pk. As the size k of a DVNIZK-friendly
cryptosystem has only superpolynomially large prime-factors, it holds that pk

is superpolynomially large. As (Q + 1)β is polynomial, we conclude that if A
outputs an accepting proof with non-negligible probability, then Sim extracts a
valid witness with non-negligible probability.

4 Dual Variant of the Framework

In the previous section, we described a framework for constructing efficient
DVNIZKs of knowledge for relations between words defined over an abelian group

214 P. Chaidos and G. Couteau

(G,), using a cryptosystem with specific properties as the underlying commit-
ment scheme for the proof system. In this section, we show that the framework
can also be used in a dual way, by considering languages of relations between the
plaintexts of the underlying encryption scheme – we call this variant ‘dual vari-
ant’ of the framework, as the roles of the underlying encryption scheme (which
is used as a commitment scheme for the proof) and of the abelian group (which
contains the words on which the proof is made) are partially exchanged. This
allows for example to handle languages of relations between Paillier ciphertexts.
To instantiate the framework, it suffices to have any perfectly binding commit-
ment scheme defined over G. This dual variant leads to efficient DVNIZK proofs
for relations between, e.g., Paillier ciphertexts, whose zero-knowledge property
reduces to the binding property of the commitment scheme over G (e.g. the
DDH assumption, or its variants), and with statistical (unbounded, adaptive)
soundness.

4.1 Perfectly Binding Commitment over G

Suppose that we are given a perfectly binding homomorphic commitment C =
(C.Setup, C.Com, C.Verify), where C.Com : Zk × Zk
→ G

∗. Assume further that
C.Setup generates a public vector of parameters G ∈ G

∗, and that there is a
linear map ΓC associated to this commitment such that for all (m, r) ∈ Z

2
k,

C.Com(m, r) = (m, r) • ΓC(G). Note this implies the commitment scheme is
homomorphic over G. ElGamal (Sect. 2.1), can be used as a commitment scheme
satisfying these properties, is hiding under the DDH assumption and perfectly
binding. We do so by using KeyGen(1λ) in place of Setup(1λ) to generate group
elements (G,H) (the public key of the encryption scheme), and commit (i.e
encrypt) via ΓC(G,H) = ((0, G)ᵀ, (G,H)ᵀ). We generalize this to commitments
to length-t vectors as follow: we let ΓC,t denote the extended matrix such that
C.Com(m, r) = (m, r) • ΓC,t(G), where (m, r) are vectors of length t (ΓC,t is
simply the block-diagonal matrix whose t blocks are all equal to ΓC). Consider
now the following statement, where the word is a vector C of commitments:

StΓC,t
(G,C) = K{(m, r) | (m, r) • ΓC,t(G) = C}

= K{(m, r) | C.Com(m, r) = C}.

One can immediatly observe that this statement (which is a proof of knowledge
of openings to a vector of commitments with C) is handled by the framework
of Sect. 3.

4.2 Equality of Plaintexts Between C and S

In this section, we describe a simple method to convert a DVNIZK on the
statement StΓC,t

(G,C) = K{(m, r) | C.Com(m, r) = C} into a DVNIZK on
the statement St′(G,C,Xm) = ∃{(m,ρm , r) | Xm = S.Encek(m,ρm) ∧ C =
C.Com(m, r)} for a length-t vector C of commitments with a commitment
scheme over G satisfying the requirements defined in the previous section, and a

Efficient DVNIZK Proofs of Knowledge 215

length-t vector of DVNIZK-friendly ciphertexts Xm . Instantiating the framework
of Sect. 3 for the statement StΓC,t

(G,C), we get the following DVNIZK Π:

– Π.Setup(1λ) : compute (ek, dk) $← S.KeyGen(1λ). Output crs ← ek. Note that
ek defines the plaintext space Zk and the random source ZR with bound B.
We denote � ← 2λkB.

– Π.KeyGen(1λ): pick e ← Z�, set pk ← S.Encek(0; e) and vk ← e.
– Π.Prove(pk,C, (m, r)): on a word C ∈ Z

t
k, with witness (m, r) for the state-

ment StΓC,t
(G,C) (where G

$← C.Setup(1λ)), pick random (m′, r′), random
coins (ρm ,ρr) for S, and compute

Xm ← S.Encek(m,ρm), Xr ← S.Encek(r,ρr),
X′

m ← S.Encek(m′, 0) 	 (ρm � pk), X′
r ← S.Encek(r′, 0) 	 (ρr � pk),

C′ ← (m′, r′) • ΓC,t(G,C),

and output π ← (Xm ,X′
m ,Xr ,X′

r ,C′).
– ΠK.Verify(pk, vk,C,π): parse π as (Xm ,X′

m ,Xr ,X′
r ,C′). Check that e �

Xm ⊕ X′
m and e � Xr ⊕ X′

r are decodable, and decode them to vectors
(dm ,dr) ∈ (Zt

k)2. Check that (dm ,dr) • ΓC,t(G,C) = e • C C′.

By the result of Sect. 3, this is an unbounded statistical adaptive knowledge-
extractableDVNIZK of knowledge of an opening forC. Suppose now thatwemodify
the above scheme as follow: we let Xm be part of theword on which the proof is exe-
cuted, rather than being computed as part of the proof by the algorithm Π.Prove.
That is, we consider words of the form (C,Xm) with witness (m, r,ρm) such that
(C,Xm) = (C.Com(m; r), S.Encek(m,ρm)). Let Π′ denote the modified proof,
in which Xm is part of the word and (X′

m ,Xr ,X′
r ,C′) are computed as in Π.

Observe that the proof of security of our framework immediatly implies that Π′ is
a secure DVNIZK for plaintext equality between commitments with C and encryp-
tionswithS: our statistical argument shows that a (possibly unbounded) adversary
has negligible probability of outputting a word C together with an accepting proof
π = (Xm ,X′

m ,Xr ,X′
r ,C′) where the plaintext extracted by the simulator from

Xm is not also the plaintext of C. Hence, it is trivial that the probability of out-
putting a word (C,Xm) and an accepting proof π′ = (X′

m ,Xr ,X′
r ,C′) where

the plaintext extracted by the simulator from Xm is not also the plaintext of C is
also negligible. Thus, we get:

Theorem 9. The proof system Π′ is an adaptive unbounded statistically sound
proof for equality between plaintexts of C and plaintexts of S, whose composable
zero-knowledge property reduces to the IND-CPA security of S.

Note that the proof Π′ is no longer a proof of knowledge: while the simulator
can extract (m, r) from the prover, he cannot necessarily extract the random
coins ρm of Xm , which are now part of the witness. Therefore, for the protocol
to make sense, it is important that C is perfectly binding.

216 P. Chaidos and G. Couteau

4.3 A Framework for Relations Between Plaintexts of S

The observations of the above section suggest a very natural way for designing
DVNIZKs for relations between plaintexts m ∈ Z

∗
k of the encryption scheme

S, which intuitively operates in two steps: first, we create commitments to the
plaintexts m over G using C and prove them consistent with the encrypted
values using the method described in the previous section. Then, we are able to
use the framework of Sect. 3 to demonstrate the desired relation holds between
the commited values (this is a statement naturally captured by the framework).
More formally, on input a vector of ciphertexts Xm encrypting plaintexts m
with random coins ρm ,

– Pick r and compute C ← C.Com(m, r).
– Construct a DVNIZK for the statement St′(G,C,Xm) with witness

(m,ρm , r), using the method described in Sect. 4.2.
– Construct a DVNIZK for the statement StΓ(G,C) with witness (m, r), using

the framework of Sect. 3.

The correctness of this approach is immediate: the second DVNIZK guaran-
tees that the appropriate relation is satisfied between the plaintexts of the com-
mitments, while the first one guarantees that the ciphertexts indeed encrypt the
committed values. This leads to a DVNIZK proof of relation between plaintexts
of S, with unbounded adaptive statistical soundness. Regarding zero-knowledge,
as the proof starts by committing to m with C, we must in addition assume
that the commitment scheme is hiding (the security analysis is straightforward).

Theorem 10. The above system is an adaptive unbounded statistically sound
proof for relations of plaintexts of S, whose composable zero-knowledge reduces
to the IND-CPA security of S and the hiding property of C.

We note that we can also obtain a variant of Theorem 10, where zero-knowledge
only relies on the IND-CPA of S, and hiding of C implies the soundness property,
using commitment schemes a la Groth-Sahai where the crs can be generated in
two indistinguishable ways, one leading to a perfectly hiding scheme, and one
leading to a perfectly binding scheme (such commitments are known, e.g., from
the DDH assumption).

Example: Multiplicative Relationship Between Paillier Ciphertexts.
We focus now on the useful case of multiplicative relationship between plaintexts
of Paillier ciphertexts. We instantiate S with the Paillier encryption scheme over
an RSA group Zn, with a public key (n, h) (h = gn mod n2 for a generator g
of Jn), and the commitment scheme C with the ElGamal encryption scheme
over a group G of order n, with public key (G,H). Let (P0, P1, P2) ∈ (Z∗

n2)3

be three Paillier ciphertexts, and let (m0,m1,m2, ρ0, ρ1, ρ2) be such that m2 =
m0m1 mod n, and P0 = (1 + n)m0hρ0 mod n2, P1 = (1 + n)m1hρ1 mod n2, P2 =
(1 + n)m2hρ2 mod n2. Let E = he mod n2 denote the public key of the verifier.
The designated-verifier NIZK for proving that P2 encrypts m0m1 proceeds as
follows:

Efficient DVNIZK Proofs of Knowledge 217

– Committing over G: pick (r0, r1, r2) and send (Ui, Vi)0≤i≤2 ← (ri • G, ri •
H mi • G)0≤i≤2 (which are commitments with ElGamal to (m0,m1,m2)
over G).

– Proof of Plaintext Equality: pick (m′
i, r

′
i, ρ

′
i)0≤i≤2

$← (Zn × Zn × Zn/2)3,
and send for i = 0 to 2, Xi ← (1 + n)rihρ′

i mod n2,X ′
i ← (1 + n)r′

iE−ρ′
i mod

n2, P ′
i ← (1 + n)m′

iE−ρi mod n2, and (U ′
i , V

′
i) ← (r′

i • G, r′
i • H m′

i • G).
– Proof of Multiplicative Relationship Between the Committed
Values: apply the proof system of Example 2 from Sect. 3 to the
word (Ui, Vi)0≤i≤2, with public parameters (G,H), and the witness x =
(m0, r0,m1, r1, r2 − r0m1) which satisfies (U0, V0) = (r0 • G, r0 • H m0 •
G), (U1, V1) = (r1 • G, r1 • H m1 • G), and (U2, V2) = ((r2 − r0m1) • G m1 •
U0, (r2 − r0m1) • H m1 • V0).

– Proof Verification: upon receving (Ui, Vi,Xi,X
′
i, P

′
i , U

′
i , V

′
i)0≤i≤2 together

with the proof of multiplicative relationship between the values committed
with (Ui, Vi)i, the verifier with verification key vk = e checks that e � Pi ⊕ P ′

i

and e � Xi ⊕ X ′
i successfully decode (respectively) to values pi, xi, and that

e • Ui U ′
i = xi • G and e • Vi V ′

i = xi • H pi • G, for i = 0 to 2. The verifier
additionally checks the multiplicative proof, as in Example 4 from Sect. 3. She
accepts iff all checks succeed.

The proof for the multiplicative statement involves 10 Paillier ciphertexts and 3
ElGamal ciphertexts. Overall, the total proof involves 20 Paillier ciphertexts, and
9 ElGamal ciphertexts. However, this size is obtained by applying the framework
naively; in this situation, it introduces a lot of redudancy. For instance, instead
of computing Paillier encryptions of (m0, r0,m1, r1) in the third phase, one can
simply reuse the word (P0, P1) and the ciphertexts (X0,X1), as well as reusing
(P ′

i ,X
′
i)i for the corresponding masks (m′

i, r
′
i)i, saving 8 Paillier ciphertexts;

similar savings can be obtained for the ElGamal ciphertexts, leading to a proof
of total size 12 Paillier ciphertexts + 7 ElGamal ciphertexts.

Furthermore, if we eschew unbounded soundness and accept bounds on mi

we are able to produce a much shorter proof, comprising only two Paillier cipher-
texts, outperforming even Fiat-Shamir. We detail this in the full version [16].

Acknowledgements. We thank Jens Groth for insightful discussions and contribu-
tions to early versions of this work. The first author was supported by EU Horizon 2020
grant 653497 (project PANORAMIX). The second author was supported by ERC grant
339563 (project CryptoCloud) and ERC grant 724307 (project PREP-CRYPTO).

References

1. Abdalla, M., Benhamouda, F., Pointcheval, D.: Disjunctions for hash proof sys-
tems: new constructions and applications. In: Oswald, E., Fischlin, M. (eds.)
EUROCRYPT 2015. LNCS, vol. 9057, pp. 69–100. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46803-6 3

2. Barak, B., Canetti, R., Nielsen, J.B., Pass, R.: Universally composable protocols
with relaxed set-up assumptions. In: 45th FOCS, pp. 186–195. IEEE Computer
Society Press, October 2004

https://doi.org/10.1007/978-3-662-46803-6_3

218 P. Chaidos and G. Couteau

3. Belenkiy, M., Camenisch, J., Chase, M., Kohlweiss, M., Lysyanskaya, A., Shacham,
H.: Randomizable proofs and delegatable anonymous credentials. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 108–125. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03356-8 7

4. Belenkiy, M., Chase, M., Kohlweiss, M., Lysyanskaya, A.: P-signatures and non-
interactive anonymous credentials. In: Canetti, R. (ed.) TCC 2008. LNCS, vol.
4948, pp. 356–374. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-78524-8 20

5. Belenkiy, M., Chase, M., Kohlweiss, M., Lysyanskaya, A.: Compact e-cash and sim-
ulatable VRFs revisited. In: Shacham, H., Waters, B. (eds.) Pairing 2009. LNCS,
vol. 5671, pp. 114–131. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-03298-1 9

6. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: Ashby, V. (ed.) ACM CCS 1993, pp. 62–73. ACM Press,
November 1993

7. Benhamouda, F., Blazy, O., Chevalier, C., Pointcheval, D., Vergnaud, D.: New
techniques for SPHFs and efficient one-round PAKE protocols. In: Canetti, R.,
Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 449–475. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-40041-4 25

8. Benhamouda, F., Couteau, G., Pointcheval, D., Wee, H.: Implicit zero-knowledge
arguments and applications to the malicious setting. In: Gennaro, R., Robshaw, M.
(eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 107–129. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48000-7 6

9. Benhamouda, F., Pointcheval, D.: Trapdoor smooth projective hash functions.
Cryptology ePrint Archive, Report 2013/341 (2013). http://eprint.iacr.org/2013/
341

10. Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its appli-
cations (extended abstract). In: 20th ACM STOC, pp. 103–112. ACM Press, May
1988

11. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-28628-8 3

12. Bresson, E., Catalano, D., Pointcheval, D.: A simple public-key cryptosystem with
a double trapdoor decryption mechanism and its applications. In: Laih, C.-S.
(ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 37–54. Springer, Heidelberg (2003).
https://doi.org/10.1007/978-3-540-40061-5 3

13. Camenisch, J., Damg̊ard, I.: Verifiable encryption, group encryption, and their
applications to separable group signatures and signature sharing schemes. In:
Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 331–345. Springer,
Heidelberg (2000). https://doi.org/10.1007/3-540-44448-3 25

14. Camenisch, J., Neven, G., Shelat, A.: Simulatable adaptive oblivious transfer. In:
Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 573–590. Springer, Hei-
delberg (2007). https://doi.org/10.1007/978-3-540-72540-4 33

15. Castagnos, G., Laguillaumie, F.: Linearly homomorphic encryption from DDH. In:
Nyberg, K. (ed.) CT-RSA 2015. LNCS, vol. 9048, pp. 487–505. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-16715-2 26

16. Chaidos, P., Couteau, G.: Efficient designated-verifier non-interactive zero-
knowledge proofs of knowledge. Cryptology ePrint Archive, Report 2017/1029
(2017). http://eprint.iacr.org/2017/1029

https://doi.org/10.1007/978-3-642-03356-8_7
https://doi.org/10.1007/978-3-540-78524-8_20
https://doi.org/10.1007/978-3-540-78524-8_20
https://doi.org/10.1007/978-3-642-03298-1_9
https://doi.org/10.1007/978-3-642-03298-1_9
https://doi.org/10.1007/978-3-642-40041-4_25
https://doi.org/10.1007/978-3-662-48000-7_6
http://eprint.iacr.org/2013/341
http://eprint.iacr.org/2013/341
https://doi.org/10.1007/978-3-540-28628-8_3
https://doi.org/10.1007/978-3-540-28628-8_3
https://doi.org/10.1007/978-3-540-40061-5_3
https://doi.org/10.1007/3-540-44448-3_25
https://doi.org/10.1007/978-3-540-72540-4_33
https://doi.org/10.1007/978-3-319-16715-2_26
http://eprint.iacr.org/2017/1029

Efficient DVNIZK Proofs of Knowledge 219

17. Chaidos, P., Groth, J.: Making sigma-protocols non-interactive without random
oracles. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 650–670. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2 29

18. Chase, M., Meiklejohn, S., Zaverucha, G.: Algebraic MACs and keyed-verification
anonymous credentials. In: ACM CCS 2014, pp. 1205–1216. ACM Press (2014)

19. Chaum, D., Fiat, A., Naor, M.: Untraceable electronic cash. In: Goldwasser, S.
(ed.) CRYPTO 1988. LNCS, vol. 403, pp. 319–327. Springer, New York (1990).
https://doi.org/10.1007/0-387-34799-2 25

20. Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT
1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991). https://doi.org/
10.1007/3-540-46416-6 22

21. Ciampi, M., Persiano, G., Siniscalchi, L., Visconti, I.: A transform for NIZK almost
as efficient and general as the fiat-shamir transform without programmable random
oracles. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9563, pp. 83–
111. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49099-0 4

22. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-46035-7 4

23. Damg̊ard, I., Fazio, N., Nicolosi, A.: Non-interactive zero-knowledge from homo-
morphic encryption. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876,
pp. 41–59. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878 3

24. Damg̊ard, I., Jurik, M.: A length-flexible threshold cryptosystem with applications.
In: Safavi-Naini, R., Seberry, J. (eds.) ACISP 2003. LNCS, vol. 2727, pp. 350–364.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-45067-X 30

25. Damg̊ard, I., Jurik, M., Nielsen, J.B.: A generalization of paillier’s public-key sys-
tem with applications to electronic voting. Int. J. Inf. Secur. 9(6), 371–385 (2010)

26. Damg̊ard, I., Jurik, M.: A generalisation, a simpli.cation and some applications
of paillier’s probabilistic public-key system. In: Kim, K. (ed.) PKC 2001. LNCS,
vol. 1992, pp. 119–136. Springer, Heidelberg (2001). https://doi.org/10.1007/3-
540-44586-2 9

27. De Santis, A., Di Crescenzo, G., Ostrovsky, R., Persiano, G., Sahai, A.: Robust non-
interactive zero knowledge. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139,
pp. 566–598. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8
33

28. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196,
pp. 10–18. Springer, Heidelberg (1985). https://doi.org/10.1007/3-540-39568-7 2

29. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework
for diffie-hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013.
LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40084-1 8

30. Feige, U., Lapidot, D., Shamir, A.: Multiple non-interactive zero knowledge proofs
based on a single random string (extended abstract). In: 31st FOCS, pp. 308–317.
IEEE Computer Society Press, October 1990

31. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification
and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7
12

https://doi.org/10.1007/978-3-662-46447-2_29
https://doi.org/10.1007/0-387-34799-2_25
https://doi.org/10.1007/3-540-46416-6_22
https://doi.org/10.1007/3-540-46416-6_22
https://doi.org/10.1007/978-3-662-49099-0_4
https://doi.org/10.1007/3-540-46035-7_4
https://doi.org/10.1007/3-540-46035-7_4
https://doi.org/10.1007/11681878_3
https://doi.org/10.1007/3-540-45067-X_30
https://doi.org/10.1007/3-540-44586-2_9
https://doi.org/10.1007/3-540-44586-2_9
https://doi.org/10.1007/3-540-44647-8_33
https://doi.org/10.1007/3-540-44647-8_33
https://doi.org/10.1007/3-540-39568-7_2
https://doi.org/10.1007/978-3-642-40084-1_8
https://doi.org/10.1007/978-3-642-40084-1_8
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12

220 P. Chaidos and G. Couteau

32. Fischlin, M.: Communication-efficient non-interactive proofs of knowledge with
online extractors. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 152–
168. Springer, Heidelberg (2005). https://doi.org/10.1007/11535218 10

33. Gay, R., Hofheinz, D., Kiltz, E., Wee, H.: Tightly CCA-secure encryption without
pairings. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665,
pp. 1–27. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-
3 1

34. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

35. Green, M., Hohenberger, S.: Universally composable adaptive oblivious transfer.
In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 179–197. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-89255-7 12

36. Groth, J.: Simulation-sound NIZK proofs for a practical language and constant size
group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284,
pp. 444–459. Springer, Heidelberg (2006). https://doi.org/10.1007/11935230 29

37. Groth, J., Ostrovsky, R., Sahai, A.: Non-interactive zaps and new techniques for
NIZK. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 97–111. Springer,
Heidelberg (2006). https://doi.org/10.1007/11818175 6

38. Groth, J., Ostrovsky, R., Sahai, A.: Perfect non-interactive zero knowledge for NP.
In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 339–358. Springer,
Heidelberg (2006). https://doi.org/10.1007/11761679 21

39. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups.
In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3 24

40. Kiltz, E., Pan, J., Wee, H.: Structure-preserving signatures from standard assump-
tions, revisited. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol.
9216, pp. 275–295. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-48000-7 14

41. Kiltz, E., Wee, H.: Quasi-adaptive NIZK for linear subspaces revisited. In: Oswald,
E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 101–128. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6 4

42. Lindell, Y.: An efficient transform from sigma protocols to NIZK with a CRS
and non-programmable random oracle. In: Dodis, Y., Nielsen, J.B. (eds.) TCC
2015. LNCS, vol. 9014, pp. 93–109. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-46494-6 5

43. Lipmaa, H.: Optimally sound sigma protocols under DCRA. Cryptology ePrint
Archive, Report 2017/703 (2017). http://eprint.iacr.org/2017/703

44. Oren, Y.: On the cunning power of cheating verifiers: some observations about
zero knowledge proofs (extended abstract). In: 28th FOCS, pp. 462–471. IEEE
Computer Society Press, October 1987

45. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X 16

46. Pass, R., Shelat, A., Vaikuntanathan, V.: Construction of a non-malleable encryp-
tion scheme from any semantically secure one. In: Dwork, C. (ed.) CRYPTO 2006.
LNCS, vol. 4117, pp. 271–289. Springer, Heidelberg (2006). https://doi.org/10.
1007/11818175 16

47. Pointcheval, D., Stern, J.: Security proofs for signature schemes. In: Maurer, U.
(ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 387–398. Springer, Heidelberg
(1996). https://doi.org/10.1007/3-540-68339-9 33

https://doi.org/10.1007/11535218_10
https://doi.org/10.1007/978-3-662-49890-3_1
https://doi.org/10.1007/978-3-662-49890-3_1
https://doi.org/10.1007/978-3-540-89255-7_12
https://doi.org/10.1007/11935230_29
https://doi.org/10.1007/11818175_6
https://doi.org/10.1007/11761679_21
https://doi.org/10.1007/978-3-540-78967-3_24
https://doi.org/10.1007/978-3-662-48000-7_14
https://doi.org/10.1007/978-3-662-48000-7_14
https://doi.org/10.1007/978-3-662-46803-6_4
https://doi.org/10.1007/978-3-662-46494-6_5
https://doi.org/10.1007/978-3-662-46494-6_5
http://eprint.iacr.org/2017/703
https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.1007/11818175_16
https://doi.org/10.1007/11818175_16
https://doi.org/10.1007/3-540-68339-9_33

Efficient DVNIZK Proofs of Knowledge 221

48. Teranishi, I., Furukawa, J., Sako, K.: k -times anonymous authentication (extended
abstract). In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 308–322.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30539-2 22

49. Ventre, C., Visconti, I.: Co-sound zero-knowledge with public keys. In: Preneel, B.
(ed.) AFRICACRYPT 2009. LNCS, vol. 5580, pp. 287–304. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-02384-2 18

https://doi.org/10.1007/978-3-540-30539-2_22
https://doi.org/10.1007/978-3-642-02384-2_18

Quasi-Optimal SNARGs via Linear
Multi-Prover Interactive Proofs

Dan Boneh1,4(B), Yuval Ishai2,3,4, Amit Sahai3,4, and David J. Wu1,4

1 Stanford University, Stanford, USA
dabo@cs.stanford.edu
2 Technion, Haifa, Israel

3 UCLA, Los Angeles, USA
4 Center for Encrypted Functionalities, Los Angeles, USA

Abstract. Succinct non-interactive arguments (SNARGs) enable ver-
ifying NP computations with significantly less complexity than that
required for classical NP verification. In this work, we focus on simulta-
neously minimizing the proof size and the prover complexity of SNARGs.
Concretely, for a security parameter λ, we measure the asymptotic cost
of achieving soundness error 2−λ against provers of size 2λ. We say a
SNARG is quasi-optimally succinct if its proof length is ˜O(λ), and that
it is quasi-optimal, if moreover, its prover complexity is only polyloga-
rithmically greater than the running time of the classical NP prover. We
show that this definition is the best we could hope for assuming that NP
does not have succinct proofs. Our definition strictly strengthens the pre-
vious notion of quasi-optimality introduced in the work of Boneh et al.
(Eurocrypt 2017).

This work gives the first quasi-optimal SNARG for Boolean circuit sat-
isfiability from a concrete cryptographic assumption. Our construction
takes a two-step approach. The first is an information-theoretic construc-
tion of a quasi-optimal linear multi-prover interactive proof (linear MIP)
for circuit satisfiability. Then, we describe a generic cryptographic com-
piler that transforms our quasi-optimal linear MIP into a quasi-optimal
SNARG by relying on the notion of linear-only vector encryption over
rings introduced by Boneh et al. Combining these two primitives yields
the first quasi-optimal SNARG based on linear-only vector encryption.
Moreover, our linear MIP construction leverages a new robust circuit
decomposition primitive that allows us to decompose a circuit satisfia-
bility instance into several smaller circuit satisfiability instances. This
primitive may be of independent interest.

Finally, we consider (designated-verifier) SNARGs that provide opti-
mal succinctness for a non-negligible soundness error. Concretely, we put
forward the notion of “1-bit SNARGs” that achieve soundness error 1/2
with only one bit of proof. We first show how to build 1-bit SNARGs
from indistinguishability obfuscation, and then show that 1-bit SNARGs
also suffice for realizing a form of witness encryption. The latter result
highlights a two-way connection between the soundness of very succinct
argument systems and powerful forms of encryption.

The full version of this paper is available at https://eprint.iacr.org/2018/133.pdf.

c© International Association for Cryptologic Research 2018
J. B. Nielsen and V. Rijmen (Eds.): EUROCRYPT 2018, LNCS 10822, pp. 222–255, 2018.
https://doi.org/10.1007/978-3-319-78372-7_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78372-7_8&domain=pdf
https://eprint.iacr.org/2018/133.pdf

Quasi-Optimal SNARGs via Linear Multi-Prover Interactive Proofs 223

1 Introduction

Proof systems are fundamental to modern cryptography. Many works over the
last few decades have explored different aspects of proof systems, including inter-
active proofs [35,48,56], zero-knowledge proofs [35], probabilistically checkable
proofs [2,3,26], and computationally sound proofs [44,49]. In this work, we study
one such aspect: NP proof systems where the proofs can be significantly shorter
than the NP witness and can be verified much faster than the time needed to
check the NP witness. We say that such proof systems are succinct.

In interactive proof systems for NP with statistical soundness, non-trivial sav-
ings in communicationandverification timearehighlyunlikely [16,32,33,65].How-
ever, if we relax the requirements and consider proof systems with computational
soundness, also known as argument systems [17], significant efficiency improve-
ments become possible. Kilian [44] gave the first succinct four-round interactive
argument system for NP based on collision-resistant hash functions and prob-
abilistically checkable proofs (PCPs). Subsequently, Micali [49] showed how to
convert Kilian’s four-round argument into a single-round argument for NP by
applying the Fiat-Shamir heuristic [27] to Kilian’s interactive protocol. Micali’s
“computationally-sound proofs” (CS proofs) represents the first candidate con-
struction of a succinct non-interactive argument (that is, a “SNARG” [30]). In
the standard model, single-round succinct arguments are highly unlikely for suf-
ficiently hard languages [4,65], so we consider the weaker goal of two-message suc-
cinct arguments systems where the initial message from the verifier is independent
of the statement being verified. We refer to this message as the common reference
string (CRS).

In this work, we focus on simultaneously minimizing both the proof size
and the prover complexity of succinct non-interactive arguments. For a security
parameter λ, we measure the asymptotic cost of achieving soundness against
provers of size 2λ with 2−λ error. We say that a SNARG is quasi-optimally
succinct if its proof length is ˜O(λ), and that it is quasi-optimal if in addition,
the prover’s runtime is only polylogarithmically greater than the the running
time of the classical prover. In Sect. 5.1, we show that this notion of quasi-
optimal succinctness is tight (up to polylogarithmic factors): assuming NP does
not have succinct proofs, no succinct argument system can provide the same
soundness guarantees with proofs of size o(λ). Our notion of quasi-optimality is
a strict strengthening of the previous notion from [14], which imposed a weaker
soundness requirement on the SNARG. Notably, under the definition in [14],
we show that it is possible to construct SNARGs with even shorter proofs than
what they consider to be (quasi)-optimally succinct. We discuss the differences
in these notions of quasi-optimality in Sect. 1.1 as well as the full version of this
paper [15].

In this paper, we construct the first quasi-optimal SNARG whose security
is based on a concrete cryptographic assumption similar in flavor to those of
previous works [13,14]. To our knowledge, all previous candidates are either
not quasi-optimal or rely on a heuristic security argument. Similar to previ-
ous works [13,14], we take a two-step approach to construct our quasi-optimal

224 D. Boneh et al.

SNARGs. First, we construct an information-theoretic proof system that pro-
vides soundness against a restricted class of provers (e.g., linearly-bounded
provers [41]). We then leverage cryptographic tools (e.g., linear-only encryp-
tion [13,14]) to compile the information-theoretic primitive into a succinct argu-
ment system. In this work, the core information-theoretic primitive we use is
a linear multi-prover interactive proof (linear MIP). One of the main contri-
butions in this work is a new construction of a quasi-optimal linear MIP that
can be compiled to a quasi-optimal SNARG using similar cryptographic tools as
those in [14]. We give an overview of our quasi-optimal linear MIP construction
in Sect. 2, and the formal construction in Sect. 4.

Background on SNARGs. We briefly introduce several properties of succinct non-
interactive argument systems. In this work, we focus on constructing SNARGs
for the problem of Boolean circuit satisfiability. (This suffices for building
SNARGs for general RAM computations, cf. [13].) A SNARG is publicly ver-
ifiable if anyone can verify the proofs, and it is designated-verifier if only the
holder of a secret verification state (generated along with the CRS) can verify
proofs. In this work, we focus on constructing quasi-optimal designated-verifier
SNARGs. In addition, we say a SNARG is fully succinct if the setup algorithm
(i.e., the algorithm that generates the CRS, and in the designated-verifier set-
ting, the secret verification state), is also efficient (i.e., runs in time that is only
polylogarithmic in the circuit size). A weaker notion is the concept of a pre-
processing SNARG, where the setup algorithm is allowed to run in time that is
polynomial in the size of the circuit being verified. In this work, we consider pre-
processing SNARGs. We provide additional background on SNARGs and other
related work in Sect. 1.3.

1.1 Quasi-Optimal SNARGs

In this section, we summarize the main results of this work on defining and
constructing quasi-optimal SNARGs. In Sect. 2, we provide a more technical
survey of our main techniques.

Defining quasi-optimality. In this work, we are interested in minimizing the prover
complexity and proof size in succinct non-interactive argument systems. To reiter-
ate, our definition of quasi-optimality considers the prover complexity and proof
size needed to ensure soundness error 2−λ against provers of size 2λ. We say a
SNARG (for Boolean circuit satisfiability) is quasi-optimal if the proof size is ˜O(λ)
and the prover complexity is ˜O(|C|)+poly(λ, log |C|), where C is the Boolean cir-
cuit.1 In Lemma 5.2, we show that this notion of quasi-optimality is the “right” one
in the following sense: assumingNP does not have succinct proofs, the length of any
succinct argument system that provides this soundness guarantee is necessarily
Ω(λ). Thus, SNARG systems with strictly better parameters are unlikely to exist.

1 We write ˜O(·) to suppress factors that are polylogarithmic in the circuit size |C| and
the security parameter λ.

Quasi-Optimal SNARGs via Linear Multi-Prover Interactive Proofs 225

Our notion is a strict strengthening of the previous notion of quasi-optimality
from [14] which only required soundness error negl(λ) against provers of size 2λ. In
fact, we show in the full version [15] that the previous notion of quasi-optimality
from [14] is not tight. If we only want ρ bits of soundness where ρ = o(λ), it is
possible to construct a designated-verifier SNARG where the proofs are exactly
ρ bits. This means that there exists a designated-verifier SNARG which meet the
soundness requirements in [14], but whose size is strictly shorter than what would
be considered “optimal.”

Previous SNARG constructions. Prior to this work, the only SNARG candi-
date that satisfies our notion of quasi-optimal prover complexity is Micali’s CS
proofs [49]. However, to achieve 2−λ soundness, the length of a CS proof is Ω(λ2),
which does not satisfy our notion of quasi-optimal succinctness. Conversely, if we
just consider SNARGs that provide quasi-optimal succinctness, we have many
candidates [13,14,24,29,37,38,45,46]. With the exception of [14], the SNARG
proof in all of these candidates contains a constant number of bilinear group ele-
ments, and so, is quasi-optimally succinct. The drawback is that to construct the
proof, the prover has to perform a group operation for every gate in the underly-
ing circuit. Since each group element is Ω(λ) bits, the prover overhead is at least
multiplicative in λ. Consequently, none of these existing constructions satisfy
our notion of quasi-optimal prover complexity. The lattice-based construction
in [14] has the same limitation: the prover needs to operate on an LWE cipher-
text per gate in the circuit, which introduces a multiplicative overhead Ω(λ) in
the prover’s computational cost.

Quasi-optimal linear MIPs. This work gives the first construction of a quasi-
optimal SNARG for Boolean circuit satisfiability from a concrete cryptographic
assumption. Following previous works on constructing SNARGs [13,14], our con-
struction can be broken down into two components: an information-theoretic
component (linear MIPs), and a cryptographic component (linear-only vector
encryption). We give a brief description of the information-theoretic primitive
we construct in this work: a quasi-optimal linear MIP. At the end of this section,
we discuss why the general PCPs and linear PCPs that have featured in pre-
vious SNARG constructions do not seem sufficient for building quasi-optimal
SNARGs.

We first review the notion of a linear PCP [13,41]. A linear PCP over a finite
field F is an oracle computing a linear function π : Fm → F. On any query q ∈ F

m,
the linear PCP oracle responds with the inner product q�π = 〈q,π〉 ∈ F. More
generally, if � queries are made to the linear PCP oracle, the � queries can be packed
into the columns of a query matrix Q ∈ F

m×�. In this case, we can express the
response of the linear PCP oracle as the matrix-vector product Q�π.

Linear MIPs are a direct generalization of linear PCPs to the setting where
there are � independent proof oracles (π1, . . . ,π�), each implementing a linear
function πi : Fm → F. In the linear MIP model, the verifier’s queries consist
of a �-tuple (q1, . . . ,q�) where each qi ∈ F

m. For each query qi ∈ F
m to the

226 D. Boneh et al.

proof oracle πi, the verifier receives the response 〈qi,πi〉. We review the formal
definitions of linear PCPs and linear MIPs in the full version [15].

In this work, we say that a linear MIP for Boolean circuit satisfiability is
quasi-optimal if the MIP prover (for proving satisfiability of a circuit C) can be
implemented by a circuit of size ˜O(|C|) + poly(λ, log |C|), and the linear MIP
provides soundness error 2−λ. Existing linear PCP constructions [13,14] (which
can be viewed as linear MIPs with a single prover) are not quasi-optimal: they
either require embedding the Boolean circuit into an arithmetic circuit over a
large field [13], or rely on making O(λ) queries, each of length m = O(|C|) [14].

Constructing quasi-optimal linear MIPs. Our work gives the first construction of
a quasi-optimal linear MIP for Boolean circuit satisfiability. We refer to Sect. 2 for
an overview of our construction and to Sect. 4 for the full description. At a high-
level, our quasi-optimal linear MIP construction relies on two key ingredients: a
robust circuit decomposition and a method for enforcing consistency.

Robust circuit decomposition. Our robust decomposition primitive takes a circuit
C and produces from it a collection of constraints f1, . . . , ft, each of which can
be computed by a circuit of size roughly |C| /t. Each constraint reads a subset
of the bits of a global witness (computed based on the statement-witness pair
for C). The guarantee provided by the robust decomposition is that for any false
statement x (that is, a statement x where for all witnesses w, C(x,w) = 0),
no single witness to f1, . . . , ft can simultaneously satisfy more than a constant
fraction of the constraints. Now, to prove satisfiability of a circuit C, the prover
instead proves that there is a consistent witness that simultaneously satisfies
all of the constraints f1, . . . , ft. Each of these proofs can be implemented by a
standard linear PCP. The advantage of this approach is that for a false statement,
only a constant fraction of the constraints can be satisfied (for any choice of
witness), so even if each underlying linear PCP instance only provided constant
soundness, the probability that the prover is able to satisfy all of the instances is
amplified to 2−Ω(t) = 2−Ω(λ) if we let t = Θ(λ). Finally, even though the prover
now has to construct t proofs for the t constraints, each of the constraints can
themselves be computed by a circuit of size ˜O(|C| /t). The robustness property
of our decomposition is reminiscent of the relation between traditional PCPs and
constraint-satisfaction problems, and one might expect that we could instantiate
such a decomposition using PCPs. However, in our settings, we require that the
decomposition be input-independent, which to the best of our knowledge, is not
satisfied by existing (quasilinear) PCP constructions. We discuss this in more
detail in the full version [15].

The robust decomposition can amplify soundness without introducing much
additional overhead. The alternative approach of directly applying a constant-
query linear PCP to check satisfiability of C has the drawback of only providing
1/poly(λ) soundness when working over a small field (i.e., as would be the case
with Boolean circuit satisfiability). We state the formal requirements of our
robust decomposition in Sect. 4.1, and give one instantiation in the full version by

Quasi-Optimal SNARGs via Linear Multi-Prover Interactive Proofs 227

combining MPC protocols with polylogarithmic overhead [23] with the “MPC-
in-the-head” paradigm [42]. Since the notion of a robust decomposition is a very
natural one, we believe that our construction is of independent interest and will
have applications beyond quasi-optimal linear MIP constructions.

Enforcing consistency. The second ingredient we require is a way for the verifier
to check that the individual proofs the prover constructs (for showing satisfiabil-
ity of each constraint f1, . . . , ft) are self-consistent. Our construction here relies
on constructing randomized permutation decompositions, and we refer to Sect. 2
for the technical overview, and Sect. 4 for the full description.

Preprocessing SNARGs from linear MIPs. To complete our construction of
quasi-optimal SNARGs, we show a generic compiler from linear MIPs to pre-
processing SNARGs by relying on the notion of a linear-only vector encryption
scheme over rings introduced by Boneh et al. [14]. We give our construction in
Sect. 5. Our primary contribution here is recasting the Boneh et al. construc-
tion, which satisfies the weaker notion of quasi-optimality, as a generic frame-
work for compiling linear MIPs into preprocessing SNARGs. Combined with our
information-theoretic construction of quasi-optimal linear MIPs, this yields the
first quasi-optimal designated-verifier SNARG for Boolean circuit satisfiability
in the preprocessing model (Corollaries 5.6 and 5.7).

Why linear MIPs? A natural question to ask is whether our new linear MIP to
preprocessing SNARG compiler provides any advantage over the existing compil-
ers in [13,14], which use different information-theoretic primitives as the under-
lying building block (namely, linear interactive proofs [13] and linear PCPs [14]).
After all, any k-query, �-prover linear MIP with query length m can be trans-
formed into a (k�)-query linear PCP with query length m� by concatenating the
proofs of the different provers together, and likewise, padding the queries accord-
ingly. While this still yields a quasi-optimal linear PCP (with sparse queries),
applying the existing cryptographic compilers to this linear PCP incurs an addi-
tional prover overhead that is proportional to �. In our settings, � = Θ(λ), so the
resulting SNARG is no longer quasi-optimal. By directly compiling linear MIPs
to preprocessing SNARGs, our compiler preserves the prover complexity of the
underlying linear MIP, and so, combined with our quasi-optimal linear MIP
construction, yields a quasi-optimal SNARG for Boolean circuit satisfiability.

Alternatively, one might ask whether a similar construction of quasi-optimal
SNARGs is possible starting from standard PCPs or linear PCPs with quasi-
optimal prover complexity. Existing techniques for compiling general PCPs
[9,10,49] to succinct argument systems all rely on some formof cryptographic hash-
ing to commit to the proof and then open up a small number of bits chosen by the
verifier. In the random oracle model [49], this kind of construction achieves quasi-
optimal prover complexity, but not quasi-optimal succinctness [14, Remark 4.16].
In the standard model [9,11], additional cryptographic tools (notably, a private
information retrieval protocol) are needed in the construction, which do not pre-
serve the prover complexity of the underlying construction.

228 D. Boneh et al.

If instead we start with linear PCPs and apply the compilers in [13,14], the
challenge is in constructing a quasi-optimal linear PCP that provides soundness
error 2−λ over a small field F. As noted above, existing linear PCP construc-
tions [13,14] are not quasi-optimal for Boolean circuit satisfiability.

1.2 Optimally-Laconic Arguments and 1-Bit SNARGs

More broadly, we can view our quasi-optimal SNARGs in the preprocessing
model as a quasi-optimal interactive argument system with a maximally laconic
prover. Here, we allow the verifier to send an arbitrarily long string (namely,
the CRS), and our goal is to minimize the prover’s computational cost and
the number of bits the prover communicates to the verifier. Our quasi-optimal
SNARG thus gives the first interactive argument system with a quasi-optimal
laconic prover.

Optimally-laconic arguments and 1-bit SNARGs. Independent of our results on
constructing quasi-optimal SNARGs, we also ask the question of what is the
minimal proof length needed to ensure ρ bits of soundness where ρ is a con-
crete soundness parameter. Lemma 5.2 shows that achieving 2−ρ soundness error
only requires proofs of length Ω(ρ). When ρ = Ω(λ), many existing SNARG
candidates, including the one we construct in this paper, are quasi-optimally
succinct [13,14,29,37]. More generally, this question remains interesting when
ρ = o(λ), and even independently of achieving quasi-optimal prover complex-
ity. A natural question to ask is whether there exist SNARGs where the size of
the proofs achieves the lower bound of Ω(ρ) for providing ρ bits of soundness.
Taken to the extreme, we ask whether there exists a 1-bit SNARG with sound-
ness error 1/2 + negl(λ). We note that a 1-bit SNARG immediately implies an
optimally-succinct SNARG for all soundness parameters ρ: namely, to build a
SNARG with soundness error 2−ρ, we concatenate ρ independent instances of a
1-bit SNARG.

In the full version [15], we show that the designated-verifier analog of the
Sahai-Waters [53] construction of non-interactive zero-knowledge proofs from
indistinguishability obfuscation and one-way functions is a 1-bit SNARG. In
the interactive setting, we show that we can construct 1-bit laconic arguments
from witness encryption. We do not know how to build 1-bit SNARGs and 1-bit
laconic arguments for general languages from weaker assumptions,2 and leave
this as an open problem.

The power of optimally-laconic arguments. Finally, we show an intriguing con-
nection between 1-bit laconic arguments and a variant of witness encryption.
Briefly, a witness encryption scheme [28] allows anyone to encrypt a message
m with respect to a statement x in an NP language; then, anyone who holds
a witness w for x is able to decrypt the ciphertext. In the full version [15], we

2 Note that for some special languages such as graph non-isomorphism, we do have
1-bit laconic arguments [31].

Quasi-Optimal SNARGs via Linear Multi-Prover Interactive Proofs 229

show that a 1-bit laconic argument (or SNARG) for a cryptographically-hard3

language L implies a relaxed form of witness encryption for L where semantic
security holds for messages encrypted to a random false instance (as opposed to
an arbitrary false instance in the standard definition). While this is a relaxation
of the usual notion of witness encryption, it already suffices to realize some of the
powerful applications of witness encryption described in [28]. This implication
thus demonstrates the power of optimally-laconic arguments, as well as some of
the potential challenges in constructing them from simple assumptions.

Our construction of witness encryption from 1-bit arguments relies on the
observation that for a (random) false statement x, any computationally-bounded
prover can only produce a valid proof π ∈ {0, 1} with probability that is neg-
ligibly close to 1/2. Thus, the proof π can be used to hide the message m
in a witness encryption scheme (when encrypting to the statement x). Here,
we implicitly assume that a (random) statement x has exactly one accepting
proof—this assumption holds for any cryptographically-hard language. Essen-
tially, our construction shows how to leverage the soundness property of a
proof system to obtain a secrecy property in an encryption scheme. Previously,
Applebaum et al. [1] showed how to leverage secrecy to obtain soundness, so in
some sense, we can view our construction as a dual of their secrecy-to-soundness
construction. The recent work of Berman et al. [8] also showed how to obtain
public-key encryption from laconic zero-knowledge arguments. While their con-
struction relies on the additional assumption of zero-knowledge, their construc-
tion does not require the argument system be optimally laconic.

We can also view a 1-bit argument for a cryptographically-hard language as
a “predictable argument” (c.f., [25]). A predictable argument is one where there
is exactly one accepting proof for any statement. Faonio et al. [25] show that any
predictable argument gives a witness encryption scheme. In this work, we show
that soundness alone suffices for this transformation, provided we make suitable
restrictions on the underlying language.

1.3 Additional Related Work

Gentry and Wichs [30] showed that no construction of an adaptively-secure
SNARG (for general NP languages) can be proven secure via a black-box
reduction from any falsifiable cryptographic assumption [51].4 As a result,
most existing SNARG constructions (for general NP languages) in the stan-
dard model have relied on non-falsifiable assumptions such as knowledge-
of-exponent assumptions [5,21,24,29,37,39,40,45–47,50], extractable collision-
resistant hashing [9,10,22], extractable homomorphic encryption [12,29], and
linear-only encryption [13,14]. Other constructions have relied on showing secu-
rity in idealized models such as the random oracle model [49,59] or the generic
3 Here, we say a language is cryptographically-hard if there exists a distribution over
yes instances that is computationally indistinguishable from a distribution of no
instances for the language.

4 In the case of non-adaptive SNARGs, Sahai and Waters give a construction from
indistinguishability obfuscation and one-way functions [53].

230 D. Boneh et al.

group model [38]. In many of these constructions, the underlying SNARGs also
satisfy a knowledge property, which says that whenever a prover generates an
accepting proof π of a statement x, there is an efficient extractor that can extract
a witness w from π such that C(x,w) = 1. SNARGs with this property are called
SNARGs of knowledge, or more commonly, SNARKs. In many cases, SNARGs
also have a zero-knowledge property [13,24,29,37,39,45–47] which says that the
proof π does not reveal any additional information about the witness w other
than the fact that C(x,w) = 1.

A compelling application of succinct argument systems is to verifiable delega-
tion of computation. Over the last few years, there has been significant progress
in leveraging SNARGs (and their variants) for implementing scalable systems for
verifiable computation both in the interactive setting [19,34,54,55,57,58,60–62]
as well as the non-interactive setting [6,7,18,20,52,63]. We refer to [64] and the
references therein for a more comprehensive survey of this area.

2 Quasi-Optimal Linear MIP Construction Overview

In this section, we give a technical overview of our quasi-optimal linear MIP
construction for arithmetic circuit satisfiability over a finite field F. Combined
with our cryptographic compiler based on linear-only vector encryption over
rings, this gives the first construction of a quasi-optimal SNARG from a concrete
cryptographic assumption.

Robust circuit decomposition. The first ingredient we require in our quasi-
optimal linear MIP construction is a robust way to decompose an arithmetic
circuit C : Fn′ × F

m′ → F
h′

into a collection of t constraint functions f1, . . . , ft,
where each constraint fi : Fn ×F

m → {0, 1} takes as input a common statement
x ∈ F

n and witness w ∈ F
m. More importantly, each constraint fi can be com-

puted by a small arithmetic circuit Ci of size roughly |C| /t. This means that
each arithmetic circuit Ci may only need to read some subset of the components
in x and w. There is a mapping inp : Fn′ → F

n that takes as input a state-
ment x′ for C and outputs a statement x for f1, . . . , ft, and another mapping
wit : Fn′ × F

m′ → F
m that takes as input a statement-witness pair (x′,w′) for

C, and outputs a witness w for f1, . . . , ft. The decomposition must satisfy two
properties: completeness and robustness. Completeness says that whenever a
statement-witness pair (x′,w′) is accepted by C, then fi(x,w) = 1 for all i if we
set x = inp(x′) and w = wit(x′,w′). Robustness says that for a false statement
x′ ∈ F

n′
, there are no valid witnesses w ∈ F

m that can simultaneously sat-
isfy more than a constant fraction of the constraints f1(x, ·), . . . , ft(x, ·), where
x = inp(x′).

Roughly speaking, a robust decomposition allows us to reduce checking sat-
isfiability of a large circuit C to checking satisfiability of many smaller circuits
C1, . . . , Ct. The gain in performance will be due to our ability to check satisfi-
ability of all of the C1, . . . , Ct in parallel. The importance of robustness will be
critical for soundness amplification. We give the formal definition of a robust
decomposition in Sect. 4.1.

Quasi-Optimal SNARGs via Linear Multi-Prover Interactive Proofs 231

Instantiating the robust decomposition. In the full version [15], we describe one
way of instantiating the robust decomposition by applying the “MPC-in-the-
head” paradigm of [42] to MPC protocols with polylogarithmic overhead [23].
We give a brief overview here. For an arithmetic circuit C : Fn′ × F

m′ → F
h′

,
the encoding of a statement-witness pair (x,w) will be the views of each party
in a (simulated) t-party MPC protocol computing C on (x,w), where the bits
of the input and witness are evenly distributed across the parties. Each of the
constraint functions fi checks that party i outputs 1 in the protocol execution
(indicating an accepting input), and that the view of party i is consistent with
the views of the other parties. This means that the only bits of the encoded
witness that each constraint fi needs to read are those that correspond to mes-
sages that were sent or received by party i. Then, using an MPC protocol where
the computation and communication overhead is polylogarithmic in the circuit
size (c.f., [23]), and where the computational burden is evenly distributed across
the computing parties, each f1, . . . , ft can be implemented by a circuit of size
˜O(|C| /t). Robustness of the decomposition follows from security of the under-
lying MPC protocol. We give the complete description and analysis in the full
version [15].

Blueprint for linear MIP construction. The high-level idea behind our quasi-
optimal linear MIP construction is as follows. We first apply a robust circuit
decomposition to the input circuit to obtain a collection of constraints f1, . . . , ft,
which can be computed by smaller arithmetic circuits C1, . . . , Ct, respectively.
Each arithmetic circuit takes as input a subset of the components of the state-
ment x ∈ F

n and the witness w ∈ F
m. In the following, we write xi and wi to

denote the subset of the components of x and w, respectively, that circuit Ci

reads. We can now construct a linear MIP with t provers as follows. A proof
of a true statement x′ with witness w′ consists of t proof vectors (π1, . . . ,πt),
where each proof πi is a linear PCP proof that Ci(xi, ·) is satisfiable. Then,
in the linear MIP model, the verifier has oracle access to the linear functions
π1, . . . ,πt, which it can use to check satisfiability of Ci(xi, ·). Completeness of
this construction is immediate from completeness of the robust decomposition.

Soundness is more challenging to argue. For any false statement x′, robust-
ness of the decomposition of C only ensures that for any witness w ∈ F

m, at
least a constant fraction of the constraints fi(x,w) will not be satisfied, where
x = inp(x′). However, this does not imply that a constant fraction of the indi-
vidual circuits Ci(xi, ·) is unsatisfiable. For instance, for all i, there could exist
some witness wi such that Ci(xi,wi) = 1. This does not contradict the robust-
ness of the decomposition so long as the set of all satisfying witnesses {wi} con-
tain many “inconsistent” assignments. More specifically, we can view each wi as
assigning values to some subset of the components of the overall witness w, and
we say that a collection of witnesses {wi} is consistent if whenever two witnesses
wi and wj assign a value to the same component of w, they assign the same value.
Thus, robustness only ensures that the prover cannot find a consistent set of wit-
nesses {wi} that can simultaneously satisfy more than a fraction of the circuits Ci.

232 D. Boneh et al.

Or equivalently, if x is the encoding of a false statement x′, then a constant fraction
of any set of witnesses {wi} where Ci(xi,wi) = 1 must be mutually inconsistent.

The above analysis shows that it is insufficient for the prover to independently
argue satisfiability of each circuit Ci(xi, ·). Instead, we need the stronger require-
ment that the prover uses a consistent set of witnesses {wi} when constructing
its proofs π1, . . . ,πt. Thus, we need a way to bind each proof πi to a specific
witness wi, as well as a way for the verifier to check that the complete set of
witnesses {wi} are mutually consistent. For the first requirement, we introduce
the notion of a systematic linear PCP, which is a linear PCP where the linear
PCP proof vector πi contains a copy of a witness wi where Ci(xi,wi) = 1
(Definition 4.2). Now, given a collection of systematic linear PCP proofs
π1, . . . ,πt, the verifier’s goal is to decide whether the witnesses w1, . . . ,wt

embedded within π1, . . . ,πt are mutually consistent. Since the witnesses wi

are part of the proof vectors πi, in the remainder of this section, we will simply
assume that the verifier has oracle access to the linear function 〈wi, ·〉 for all i
since such queries can be simulated using the proof oracle 〈πi, ·〉.

2.1 Consistency Checking

The robust decomposition ensures that for a false statement x′, any collection of
witnesses {wi} where Ci(xi,wi) = 1 for all i is guaranteed to have many incon-
sistencies. In fact, there must always exists Ω(t) (mutually disjoint) pairs of wit-
nesses that contain some inconsistency in their assignments. Ensuring soundness
thus reduces to developing an efficient method for testing whether w1, . . . ,wt

constitute a consistent assignment to the components of w or not. This is the
main technical challenge in constructing quasi-optimal linear MIPs, and our
construction proceeds in several steps, which we describe below.

Notation. We begin by introducing some notation. First, we pack the different
witnesses w1, . . . ,wt ∈ F

q into the rows of an assignment matrix W ∈ F
t×q.

Specifically, the ith row of W is the witness wi. Next, we define the replication
structure for the circuits C1, . . . , Ct to be a matrix A ∈ [m]t×q. Here, the (i, j)th

entry Ai,j encodes the index in w ∈ F
m to which the jth entry in wi corre-

sponds. With this notation, we say that the collection of witnesses w1, . . . ,wt

are consistent if for all indices (i1, j1) and (i2, j2) where Ai1,j1 = Ai2,j2 , the
assignment matrix satisfies Wi1,j1 = Wi2,j2 .

Checking global consistency. To check whether an assignment matrix W ∈ F
t×q is

consistent with respect to the replication structureA ∈ [m]t×q, we can leverage an
idea from Groth [36], and subsequently used in [14,43] for performing similar kinds
of consistency checks. The high-level idea is as follows. Take any index z ∈ [m]
and consider the positions (i1, j1), . . . , (id, jd) where z appears in A. In this way,
we associate a disjoint set of Hamiltonian cycles over the entries of A, one for
each of the m components of w. Let Π be a permutation over the entries in the
matrix A such that Π splits into a product of the Hamiltonian cycles induced
by the entries of A. In particular, this means A = Π(A), and moreover, W is

Quasi-Optimal SNARGs via Linear Multi-Prover Interactive Proofs 233

consistent with respect to A if and only if W = Π(W). The insight in [36] is that
the relation W = Π(W) can be checked using two sets of linear queries. First,
the verifier draws vectors r1, . . . , rt

r←− F
q and defines the matrix R ∈ F

t×q to be
the matrix whose rows are r1, . . . , rt. Next, the verifier computes the permuted
matrix R′ ← Π(R). Let r′

1, . . . , r
′
t be the rows of R′. Similarly, let w1, . . . ,wt be

the rows of W. Finally, the verifier queries the linear MIP oracles 〈wi, ·〉 on ri and
r′

i for all i and checks the relation
∑

i∈[t]

〈wi, ri〉 ?=
∑

i∈[t]

〈wi, r′
i〉 ∈ F. (2.1)

By construction of Π, if W = Π(W), this check always succeeds. However,
if W �= Π(W), then by the Schwartz-Zippel lemma, this check rejects with
probability 1/ |F|. When working over a polynomial-size field, this consistency
check achieves 1/poly(λ) soundness (where λ is a security parameter). We can use
repeated queries to amplify the soundness to negl(λ) without sacrificing quasi-
optimality. However, this approach cannot give a linear MIP with 2−λ soundness
and still retain prover overhead that is only polylogarithmic in λ (since we would
require Ω(λ) repetitions). This is one of the key reasons the construction in [14]
only achieves negl(λ) soundness rather than 2−λ soundness. To overcome this
problem, we require a more robust consistency checking procedure.

Checking pairwise consistency. The consistency check described above and used
in [14,36,43] is designed for checking global consistency of all of the assignments
in W ∈ F

t×q. The main disadvantage of performing the global consistency check
in Eq. (2.1) is that it only provides soundness 1/ |F|, which is insufficient when
F is small (e.g., in the case of Boolean circuit satisfiability). One way to amplify
soundness is to replace the single global consistency check with t/2 pairwise con-
sistency checks, where each pairwise consistency check affirms that the assign-
ments in a (mutually disjoint) pair of rows of W are self-consistent. Specifically,
each of the t/2 checks consists of two queries (ri, rj) and (r′

i, r
′
j) to 〈wi, ·〉 and

〈wj , ·〉, constructed in exactly the same manner as in the global consistency
check, except specialized to only checking for consistency in the assignments to
the variables in rows i and j. Since all of the pairwise consistency checks are
independent, if there are Ω(t) pairs of inconsistent rows, the probability that
all t/2 checks pass is bounded by 2−Ω(t). This means that for the same cost
as performing a single global consistency check, the verifier can perform Ω(t)
pairwise consistency checks. As long as many of the pairs of rows the verifier
checks contain inconsistencies, we achieve soundness amplification.

Recall from earlier that our robust decomposition guarantees that whenever
x1, . . . ,xt correspond to a false statement, any collection of witnesses {wi} where
Ci(xi,wi) is satisfied for all i necessarily contains many pairs wi and wj that
are inconsistent. Equivalently, many pairs of rows in the assignment matrix W
contain inconsistencies. Now, if the verifier knew which pairs of rows of W are
inconsistent, then the verifier can apply a pairwise consistency check to detect
an inconsistent W with high probability. The problem, however, is that the

234 D. Boneh et al.

verifier does not know a priori which pairs of rows in W are inconsistent, and
so, it is unclear how to choose the rows to check in the pairwise consistency test.
However, if we make the stronger assumption that not only are there many pairs
of rows in W that contain inconsistent assignments, but also, that most of these
inconsistencies appear in adjacent rows, then we can use a pairwise consistency
test (where each test checks for consistency between an adjacent pair of rows)
to decide if W is consistent or not. When the assignment matrix W has many
inconsistencies in pairs of adjacent rows, we say that the inconsistency pattern
of W is “regular,” and can be checked using a pairwise consistency test.

Regularity-inducing permutations. To leverage the pairwise consistency check,
we require that the assignment matrix W has a regular inconsistency structure
that is amenable to a pairwise consistency check. To ensure this, we introduce the
notion of a regularity-inducing permutation. Our construction relies on the obser-
vation that the assignment matrix W is consistent with a replication structure
A if and only if Π(W) is consistent with Π(A), where Π is an arbitrary permu-
tation over the entries of a t-by-q matrix. Thus, if we want to check consistency
of W with respect to A, it suffices to check consistency of Π(W) with respect to
Π(A). Then, we say that a specific permutation Π is regularity-inducing with
respect to a replication structure A if whenever W has many pairs of inconsis-
tent rows with respect to A (e.g., W is a set of accepting witnesses to a false
statement), then Π(W) has many inconsistencies in pairs of adjacent rows with
respect to Π(A). In other words, a regularity-inducing permutation shuffles the
entries of the assignment matrix such that any inconsistency pattern in W maps
to a regular inconsistency pattern according to the replication structure Π(A).
In the construction, instead of performing the pairwise consistency test on W,
which can have an arbitrary inconsistency pattern, we perform it on Π(W),
which has a regular inconsistency pattern. We define the notion more formally
in Sect. 4.2 and show how to construct regularity-inducing permutations in the
full version.

Decomposing the permutation. Suppose Π is a regularity-inducing permutation
for the replication structure A associated with the circuits C1, . . . , Ct from the
robust decomposition of C. Robustness ensures that for any false statement
x′, for all collections of witnesses {wi} where Ci(xi,wi) = 1 for all i, and x =
inp(x′), the permuted assignment matrix Π(W) has inconsistencies in Ω(t) pairs
of adjacent rows with respect to Π(A). This can be detected with probability
1−2−Ω(t) by performing a pairwise consistency test on the matrix W′ = Π(W).
The problem, however, is that the verifier only has oracle access to 〈wi, ·〉, and
it is unclear how to efficiently perform the pairwise consistency test on the
permuted matrix W′ given just oracle access to the rows wi of the unpermuted
matrix. Our solution here is to introduce another set of t linear MIP provers for
each row w′

i of W′ = Π(W). Thus, the verifier has oracle access to both the
rows of the original assignment matrix W, which it uses to check satisfiability
of Ci(xi, ·), as well as the rows of the permuted assignment matrix W′, which
it uses to check consistency of the assignments in W. The verifier accepts only

Quasi-Optimal SNARGs via Linear Multi-Prover Interactive Proofs 235

if both sets of checks pass. The problem with this basic approach is that there
is no reason the prover chooses the matrix W′ so as to satisfy the relation
W′ = Π(W). Thus, to ensure soundness from this approach, the verifier needs
a mechanism to also check that W′ = Π(W), given oracle access to the rows of
W and W′.

To facilitate this check, we decompose the permutation Π into a sequence
of α permutations (Π1, . . . , Πα) where Π = Πα ◦ · · · ◦ Π1. Moreover, each of
the intermediate permutations Πi has the property that they themselves can be
decomposed into t/2 independent permutations, each of which only permutes
entries that appear in 2 distinct rows of the matrix. This “2-locality” property
on permutations is amenable to the linear MIP model, and we show in Con-
struction 4.8 a way for the verifier to efficiently check that two matrices W and
W′ (approximately) satisfy the relation W = Πi(W′), where Πi is 2-locally
decomposable. To complete the construction, we have the prover provide not
just the matrix W and its permutation W′, but all of the intermediate matrices
Wi = (Πi◦Πi−1◦· · ·◦Π1)(W) for all i = 1, . . . , α. Since each of the intermediate
permutations applied are 2-locally decomposable, there is an efficient procedure
for the prover to check each relation Wi = Πi(Wi−1), where we write W0 = W
to denote the original assignment matrix. If each of the intermediate permuta-
tions are correctly implemented, then the verifier is assured that W′ = Π(W),
and it can apply the pairwise consistency check on W′ to complete the verifi-
cation process. We use a Beneš network to implement the decomposition. This
ensures that the number of intermediate permutations required is only logarith-
mic in t, so introducing these additional steps only incurs logarithmic overhead,
and does not compromise quasi-optimality of the resulting construction.

Randomized permutation decompositions. There is one additional complication
in that the intermediate consistency checks W′ ?= Πi(W) are imperfect. They
only ensure that most of the rows in W′ agree with the corresponding rows in
Πi(W). What this means is that when the prover crafts its sequence of permuted
assignment matrices W = W0,W1, . . . ,Wα, it is able to “correct” a small num-
ber of inconsistencies that appear in W in each step. Thus, we must ensure that
for the particular inconsistency pattern that appears in W, the prover is not
able to find a sequence of matrices W1, . . . ,Wα, where each of them approxi-
mately implements the correct permutation at each step, but at the end, is able
to correct all of the inconsistencies in W. To achieve this, we rely on a random-
ized permutation decomposition, where the verifier samples a random sequence
of intermediate permutations Π1, . . . , Πα that collectively implement the target
regularity-inducing permutation Π. There are a number of technicalities that
arise in the construction and its analysis, and we refer to the full version [15] for
the full description.

Putting the pieces together. To summarize, our quasi-optimal linear MIP for
circuit satisfiability consists of two key components. First, we apply a robust
decomposition to the circuit to obtain many constraints with the property that

236 D. Boneh et al.

for a false statement, a malicious prover either cannot satisfy most of the con-
straints, or if it does satisfy all of the constraints, it must have used an assignment
with many inconsistencies. The second key ingredient we introduce is an efficient
way to check if there are many inconsistencies in the prover’s assignments in the
linear MIP model. Our construction here relies on first constructing a regularity-
inducing permutation to enable a simple method for consistency checking, and
then using a randomized permutation decomposition to enforce the consistency
check. We give the formal description and analysis in Sect. 4.

3 Preliminaries

We begin by defining some notation. For an integer n, we write [n] to denote the
set of integers {1, . . . , n}. We use bold uppercase letters (e.g., A,B) to denote
matrices and bold lowercase letters (e.g., x,y) to denote vectors. For a matrix
A ∈ F

t×q over a finite field F, we write A[i1,i2] (where i1, i2 ∈ [t]) to denote the
sub-matrix of A containing rows i1 through i2 of A (inclusive). For i ∈ [t] and
j ∈ [q], we use Ai,j and A[i, j] to refer to the entry in row i and column j of A.

For a graph G with n nodes, labeled with the integers 1, . . . , n, a matching
M is a set of edges (i, k) ∈ [n] × [n] with no common vertices. For a finite set
S, we write x

r←− S to denote that x is drawn uniformly at random from S.
For a distribution D, we write x ← D to denote a draw from distribution D.
Unless otherwise noted, we write λ to denote the security parameter. We say
that a function f(λ) is negligible in λ if f(λ) = o(1/λc) for all c ∈ N. We write
f(λ) = poly(λ) to denote that f is bounded by some (fixed) polynomial in λ,
and f = polylog(λ) if f is bounded by a (fixed) polynomial in log λ. We say that
an algorithm is efficient if it runs in probabilistic polynomial time in the length
of its input.

For a Boolean circuit C : {0, 1}n × {0, 1}m → {0, 1}, the Boolean
circuit satisfaction problem is defined by the relation RC =
{(x,w) ∈ F

n × F
m : C(x,w) = 1}. We refer to x ∈ {0, 1}n as the statement

and w ∈ {0, 1}m as the witness. We write LC to denote the language associ-
ated with RC : namely, the set of statements x ∈ {0, 1}n for which there exists
a witness w ∈ {0, 1}m such that C(x,w) = 1. In many cases in this work, it
will be more natural to work with arithmetic circuits. For an arithmetic circuit
C : Fn × F

m → F
h over a finite field F, we say that C is satisfied if on an input

(x,w) ∈ F
n ×F

m, all of the outputs are 0. Specifically, we define the relation for
arithmetic circuit satisfiability to be RC =

{

(x,w) ∈ F
n × F

m : C(x,w) = 0h
}

.
We include additional preliminaries in the full version [15].

4 Quasi-Optimal Linear MIPs

In this section, we present our core information-theoretic construction of a linear
MIP with quasi-optimal prover complexity. We refer to Sect. 2 for a high-level
overview of the construction. In Sects. 4.1 and 4.2, we introduce the key building

Quasi-Optimal SNARGs via Linear Multi-Prover Interactive Proofs 237

blocks underlying our construction. We give the full construction of our quasi-
optimal linear MIP in Sect. 4.3. We show how to instantiate our core building
blocks in the full version [15].

4.1 Robust Decomposition for Circuit Satisfiability

In this section, we formally define our notion of a robust decomposition of an
arithmetic circuit. We refer to the technical overview in Sect. 2 for a high-level
description of how we implement our decomposition by combining the MPC-in-
the-head paradigm [42] with robust MPC protocols with polylogarithmic over-
head [23]. We provide the complete description in the full version [15].

Definition 4.1 (Quasi-Optimal Robust Decomposition). Let C : Fn′ ×
F

m′ → F
h′

be an arithmetic circuit of size s over a finite field F, RC be its
associated relation, and LC ⊆ F

n′
be its associated language. A (t, δ)-robust

decomposition of C consists of the following components:

– A collection of functions f1, . . . , ft where each function fi : Fn ×F
m → {0, 1}

can be computed by an arithmetic circuit Ci of size ˜O(s/t) + poly(t, log s).
Note that a function fi may only depend on a (fixed) subset of its input
variables; in this case, its associated arithmetic circuit Ci only needs to take
the (fixed) subset of dependent variables as input.

– An efficiently-computable mapping inp : Fn′ → F
n that maps between a state-

ment x′ ∈ F
n′

for C to a statement x ∈ F
n for f1, . . . , ft.

– An efficiently-computable mapping wit : Fn′ × F
m′ → F

m that maps between
a statement-witness pair (x′,w′) ∈ F

n′ × F
m′

to C to a witness w ∈ F
m for

f1, . . . , ft.

Moreover, the decomposition must satisfy the following properties:

– Completeness: For all (x′,w′) ∈ RC , if we set x = inp(x′) and w =
wit(x′,w′), then fi(x,w) = 1 for all i ∈ [t].

– δ-Robustness: For all statements x′ /∈ LC , if we set x = inp(x′), then it
holds that for all w ∈ F

m, the set of indices Sw = {i ∈ [t] : fi(x,w) = 1} sat-
isfies |Sw| < δt. In other words, any single witness w can only simultaneously
satisfy at most a δ-fraction of the constraints.

– Efficiency: The mappings inp and wit can be computed by an arithmetic
circuit of size ˜O(s) + poly(t, log s).

Systematic linear PCPs. Recall from Sect. 2 that our linear MIP for checking
satisfiability of a circuit C begins by applying a robust decomposition to the
circuit C. The MIP proof is comprised of linear PCP proofs π1, . . . ,πt to show
that each of the circuits C1(x1, ·), . . . , Ct(xt, ·) in the robust decomposition of
C is satisfiable. Here, xi denotes the bits of the statement x that circuit Ci

reads. To provide soundness, the verifier needs to perform a sequence of con-
sistency checks to ensure that the proofs π1, . . . ,πt are consistent with some
witness w. To facilitate this, we require that the underlying linear PCPs are

238 D. Boneh et al.

systematic: namely, each proof πi contains a copy of some witness wi where
(xi,wi) ∈ RCi

. The consistency check then affirms that the witnesses w1, . . . ,wt

associated with π1, . . . ,πt are mutually consistent. We give the formal definition
of a systematic linear PCP below, and then describe one such instantiation by
Ben-Sasson et al. [6, Appendix E].

Definition 4.2 (Systematic Linear PCPs). Let (P,V) be an input-oblivious
k-query linear PCP for a relation RC where C : Fn × F

m → F
h. We say that

(P,V) is systematic if the following conditions hold:

– On input a statement-witness pair (x,w) ∈ F
n × F

m the prover’s output of
P(x,w) has the form π = [w,p] ∈ F

d, for some p ∈ F
d−m. In other words,

the witness is included as part of the linear PCP proof vector.
– On input a statement x and given oracle access to a proof π∗ = [w∗,p∗], the

knowledge extractor Eπ∗
(x) outputs w∗.

Fact 4.3 ([6, Claim E.3]). Let C : Fn × F
m → F

h be an arithmetic circuit of
size s over a finite field F where |F| > s. There exists a systematic input-oblivious
5-query linear PCP (P,V) for RC over F with knowledge error O(s/ |F|) and
query length O(s). Moreover, letting V = (Q,D), the prover and verifier algo-
rithms satisfy the following properties:

– the prover algorithm P is an arithmetic circuit of size ˜O(s);
– the query-generation algorithm Q is an arithmetic circuit of size O(s);
– the decision algorithm D is an arithmetic circuit of size O(n).

4.2 Consistency Checking

As described in Sect. 2, in our linear MIP construction, we first apply a robust
decomposition to the input circuit C to obtain smaller arithmetic circuits
C1, . . . , Ct, each of which depends on some subset of the components of a witness
w ∈ F

m. The proof then consists of a collection of systematic linear PCP proofs
π1, . . . ,πt that C1, . . . , Ct are individually satisfiable. The second ingredient we
require is a way for the verifier to check that the prover uses a consistent wit-
ness to construct the proofs π1, . . . ,πt. In this section, we formally introduce
the building blocks we use for the consistency check. We refer to Sect. 2.1 for
an overview of our methods. We begin by defining the notion of a replication
structure induced by the decomposition C1, . . . , Ct, and what it means for a
collection of assignments to the circuit C1, . . . , Ct to be consistent.

Definition 4.4 (Replication Structures and Inconsistency Matrices).
Fix integers m, t, q ∈ N. A replication structure is a matrix A ∈ [m]t×q. We say
that a matrix W ∈ F

t×q is consistent with respect to a replication structure A
if for all i1, i2 ∈ [t] and j1, j2 ∈ [q], whenever Ai1,j1 = Ai2,j2 , Wi1,j1 = Wi2,j2 .
If there is a pair of indices (i1, j1) and (i2, j2) where this relation does not hold,
then we say that there is an inconsistency in W (with respect to A) at locations
(i1, j1) and (i2, j2). For a replication structure A ∈ [m]t×q and a matrix of values

Quasi-Optimal SNARGs via Linear Multi-Prover Interactive Proofs 239

W ∈ F
t×q, we define the inconsistency matrix B ∈ {0, 1}t×q where Bi,j = 1 if

and only if there is an inconsistency in W at location (i, j) with respect to the
replication structure A. In the subsequent analysis, we will sometimes refer to
an arbitrary inconsistency matrix B ∈ {0, 1}t×q (independent of any particular
set of values W or replication structure A).

Definition 4.5 (Consistent Inputs to Circuits). Let C1, . . . , Ct be a col-
lection of circuits where each Ci : Fm → F

h only depends on at most q ≤ m

components of an input vector w ∈ F
m. For each i ∈ [t], let a

(i)
1 , . . . , a

(i)
q ∈ [m]

be the indices of the q components of the input w on which Ci depends. The repli-
cation structure of C1, . . . , Ct is the matrix A ∈ [m]t×q, where the ith row of A
is the vector a

(i)
1 , . . . , a

(i)
q (namely, the subset of indices on which Ci depends).

We say that a collection of inputs w1, . . . ,wt ∈ F
q to C1, . . . , Ct is consistent if

the assignment matrix W, where the ith row of W is wi for i ∈ [t], is consistent
with respect to the replication structure A.

To simplify the analysis, we introduce the notion of an inconsistency graph
for an assignment matrix W ∈ F

t×q with respect to a replication structure
A ∈ [m]t×q. At a high level, the inconsistency graph of W with respect to A is
a graph with t nodes, one for each row of W, and there is an edge between two
nodes i, j ∈ [t] if assignments wi and wj (in rows i and j of W, respectively)
contain an inconsistent assignment with respect to A.

Definition 4.6 (Inconsistency Graph). Fix positive integers m, t, q ∈ N and
take a replication structure A ∈ [m]t×q. For any assignment matrix W ∈ F

t×q,
we define the inconsistency graph GW,A of W with respect to A as follows:

– Graph GW,A is an undirected graph with t nodes, with labels in [t]. We asso-
ciate node i ∈ [t] with the ith row of A.

– Graph GW,A has an edge between nodes i1 and i2 if there exists j1, j2 ∈ [q]
such that Ai1,j1 = Ai2,j2 but Wi1,j1 �= Wi2,j2 . In other words, there is an
edge in GW,A whenever there is an inconsistency in the assignments to rows
i1 and i2 in W (with respect to the replication structure A).

Definition 4.7 (Regular Matchings). Fix integers m, t, q ∈ N where t is
even, and take any replication structure A ∈ [m]t×q and assignment matrix W ∈
F

t×q. We say that the inconsistency graph GW,A contains a regular matching of
size s if GW,A contains a matching M of size s, where each edge (v1, v2) ∈ M
satisfies (v1, v2) = (2i − 1, 2i) for some i ∈ [t/2]. In other words, all matched
edges are between nodes corresponding to adjacent rows in W.

Having defined these notions, we can reformulate the guarantees provided
by the (t, δ)-robust decomposition (Definition 4.1). For a constant δ > 0, let
(f1, . . . , ft, inp,wit) be a (t, δ)-robust decomposition of a circuit C. Let A be the
replication structure of the circuits C1, . . . , Ct computing f1, . . . , ft. Take any
statement x′ /∈ LC , and consider any collection of witnesses w1, . . . ,wt where
Ci(xi,wi) = 1 for all i ∈ [t]. As usual, xi denotes the bits of x = inp(x′) that Ci

240 D. Boneh et al.

reads. Robustness of the decomposition ensures that no single w can be used to
simultaneously satisfy more than a δ-fraction of the constraints. In particular,
this means that there must exist Ω(t) pairs of witnesses wi and wj which are
inconsistent. Equivalently, we say that the inconsistency graph GW,A contains a
matching of size Ω(t). We prove this statement formally in the full version [15].

Approximate consistency check. By relying on the robust decomposition, it suf-
fices to construct a protocol where the verifier can detect whether the inconsis-
tency graph GW,A of the prover’s assignments W with respect to a replication
structure A contains a large matching. To facilitate this, we first describe an
algorithm to check whether two assignment matrices W,W′ ∈ F

t×q (approxi-
mately) satisfy the relation W′ = Π(W) in the linear MIP model, where Π is a
2-locally decomposable permutation. This primitive can then be used directly to
detect whether an inconsistency graph GW,A contains a regular matching (Corol-
lary 4.11). Subsequently, we show how to permute the entries in W according
to a permutation Π ′ so as to convert an arbitrary matching in GW,A into a
regular matching in GΠ′(W),Π′(A). Our construction of the approximate consis-
tency check is a direct generalization of the pairwise consistency check procedure
described in Sect. 2.1.

Construction 4.8 (Approximate Consistency Check). Fix an even inte-
ger t ∈ N, and let P1, . . . , Pt, P ′

1, . . . , P
′
t be a collection of 2 · t provers in a linear

MIP system. For i ∈ [t], let πi ∈ F
d be the proof vector associated with prover

Pi and π′
i ∈ F

d be the proof vector associated with prover P ′
i . We can associate

a matrix W ∈ F
t×d with provers (P1, . . . , Pt), where the ith row of W is πi. Sim-

ilarly, we associate a matrix W′ with provers (P ′
1, . . . , P

′
t). Let Π be a 2-locally

decomposable permutation on the entries of a t-by-d matrix. Then, we describe
the following linear MIP verification procedure for checking that W′ ≈ Π(W).

– Verifier’s query algorithm: The verifier chooses a random matrix R r←−
F

t×d, and sets R′ ← Π(R). Let ri and r′
i denote the ith row of R and R′,

respectively. The query algorithm outputs the query ri for prover Pi and the
query r′

i to prover P ′
i .

– Verifier’s decision algorithm: Since Π is 2-locally decomposable, we can
decompose Π into t′ = t/2 independent permutations, Π1, . . . , Πt′ , where
each Πi only operates on a pair of rows (j2i−1, j2i), for all i ∈ [t′]. Given
responses yi = 〈πi, ri〉 ∈ F and y′

i = 〈π′
i, r

′
i〉 ∈ F for i ∈ [t], the verifier

checks that the relation

yj2i−1 + yj2i

?= y′
j2i−1

+ y′
j2i

,

for all i ∈ [t′]. The verifier accepts if the relations hold for all i ∈ [t′]. Other-
wise, it rejects.

By construction, we see that if W′ = Π(W), then the verifier always accepts.

Lemma 4.9 (Consistency Check Soundness). Define t, Π, W, and W′

as in Construction 4.8. Then, if the matrix W′ disagrees with Π(W) on κ rows,
the verifier in Construction 4.8 will reject with probability at least 1 − 2−Ω(κ).

Quasi-Optimal SNARGs via Linear Multi-Prover Interactive Proofs 241

Proof. Consider the event where W′ disagrees with Ŵ = Π(W) on κ rows. We
show that the probability of the verifier accepting in this case is bounded by
2−Ω(κ). In the linear MIP model, the verifier’s decision algorithm corresponds
to checking the following relation:

〈

πj2i
, rj2i

〉

+
〈

πj2i+1 , rj2i+1

〉 ?=
〈

π′
j2i

, r′
j2i

〉

+
〈

π′
j2i+1

, r′
j2i+1

〉

. (4.1)

By assumption, there are at least κ/2 indices i ∈ [t] where W′
[j2i−1,j2i]

�=
Ŵ[j2i−1,j2i]. By the Schwartz-Zippel lemma, for the indices i ∈ [t] where
W′

[j2i,j2i+1]
�= Ŵ[j2i,j2i+1], the relation in Eq. (4.1) holds with probability at most

1/ |F| (over the randomness used to sample rj2i−1 and rj2i
) Since there are at least

κ/2 such indices, the probability that Eq. (4.1) holds for all i ∈ [t′] is at most
(1/ |F|)κ/2 = 2−Ω(κ). Hence, the verifier rejects with probability 1 − 2−Ω(κ). �

The approximate consistency check from Construction 4.8 immediately gives
a way to check whether an inconsistency graph GW,A contains a regular match-
ing of size Ω(t). To show this, it suffices to exhibit a 2-locally decomposable
permutation Π where the assignment matrix W is consistent on adjacent pairs
of rows if and only if W = Π(W). The construction can be viewed as com-
posing many copies of the global consistency check permutation used in [36]
(and described in Sect. 2.1), each applied to a pair of adjacent rows. We give the
construction below.

Construction 4.10 (Pairwise Consistency in Adjacent Rows). Fix inte-
gers m, t, q ∈ N with t even, and let A ∈ [m]t×q be a replication structure. Let
t′ = t/2. For each i ∈ [t′], let Πi be a permutation over 2-by-q matrices such
that Πi splits into a disjoint set of Hamiltonian cycles based on the entries of
A[2i−1,2i]. Define a permutation Π on t-by-q matrices where the action of Π on
rows 2i−1 and 2i is given by Πi for all i ∈ [t′]. By construction, the permutation
Π is 2-locally decomposable, and moreover, W ∈ F

t×q is pairwise consistent on
adjacent rows with respect to A if and only if W = Π(W).

Corollary 4.11. Fix integers m, t, q ∈ N with t even. Let A ∈ [m]t×q be a
replication structure, and Π be the pairwise consistency test permutation for A
from Construction 4.10. Then, for any assignment matrix W ∈ F

t×q where the
inconsistency graph GW,A contains a regular matching of size Ω(t), the verifier

Construction 4.8 will reject the relation W ?= Π(W) with probability 1−2−Ω(t).

Proof. Since GW,A contains a regular matching of size Ω(t), there are inconsisten-
cies in Ω(t) pairs of adjacent rows of W. By construction of Π, this means that
W and Π(W) differ on Ω(t) rows. The claim then follows by Lemma 4.9. �

Regularity-inducing permutations. Recall that our objective in the consistency
check is to give an algorithm that detects whether an inconsistency graph GW,A

contains a matching of size Ω(t). Corollary 4.11 gives a way to detect if the incon-
sistency graph GW,A contains a regular matching of size Ω(t) with soundness

242 D. Boneh et al.

error 2−Ω(t). Thus, to perform the consistency check, we first construct a permu-
tation Π on W such that whenever GW,A contain a matching of size Ω(t), the
inconsistency graph GΠ(W),Π(A) contains a regular matching of similar size Ω(t).
We say that such permutations are regularity-inducing. While we are not able to
construct a single permutation Π that is regularity-inducing for all assignment
matrices W, we are able to construct a family of permutations (Π1, . . . , Πz) for
a fixed replication structure A such that for all assignment matrices W ∈ F

t×q,
there is at least one β ∈ [z] where GΠβ(W),Πβ(A) contains a regular matching of
size Ω(t).

Definition 4.12 (Regularity-Inducing Permutations). Fix integers
m, t, q ∈ N, and let A ∈ [m]t×q be a replication structure. Let Π be a permutation
on t-by-q matrices and W ∈ F

t×q be a matrix such that the inconsistency graph
GW,A contains a matching M of size s. We say that Π is ρ-regularity-inducing
for W with respect to A if the inconsistency graph GΠ(W),Π(A) contains a regular
matching M ′ of size at least s/ρ. Moreover, there is a one-to-one correspondence
between the edges in M ′ and a subset of the edges in M (as determined by Π).
We say that (Π1, . . . , Πz) is a collection of ρ-regularity-inducing permutations
with respect to a replication structure A if for all W ∈ F

t×q, there exists β ∈ [z]
such that Πβ is ρ-regularity-inducing for W.

In this work, we will construct regularity-inducing permutations where
ρ = O(1). To simplify the following description, we will implicitly assume that
ρ = O(1). Given an assignment matrix W and a collection of ρ-regularity-
inducing permutations (Π1, . . . , Πz) for a replication structure A, we can affirm
that the inconsistency graph GW,A does not contain a matching of size Ω(t)
by checking that each of the graphs GΠβ(W),Πβ(A) does not contain a regular
matching of size Ω(t/ρ) = Ω(t) for all β ∈ [z] and assuming ρ = O(1). By Corol-
lary 4.11, each of these checks can be implemented in the linear MIP model using
Construction 4.8. However, to apply the protocol in Construction 4.8 to Πβ(W),
the verifier requires oracle access to the individual rows of Πβ(W). Thus, in the
linear MIP construction, in addition to providing oracle access to the rows of the
assignment matrix W, we also provide the verifier oracle access to the rows of
Πβ(W) for all β ∈ [z]. Of course, a malicious MIP prover may provide the rows
of a different matrix W′ ∈ F

t×q (so as to pass the consistency check). Thus, the
final ingredient we require is a way for the verifier to check that two matrices
W,W′ ∈ F

t×q satisfy the relation W′ = Πβ(W). Note that Construction 4.8
does not directly apply because the permutation Πβ is not necessarily 2-locally
decomposable.

Decomposing the permutation. To complete the description, we now describe
a way for the verifier to check that two matrices W,W′ ∈ F

t×q satisfy the
relation W′ = Π(W), for an arbitrary permutation Π. We assume that the
verifier is given oracle access to the rows of W and W′ in the linear MIP model.
Construction 4.8 provides a way to check the relation whenever Π is 2-locally
decomposable, so a natural starting point is to decompose the permutation Π

Quasi-Optimal SNARGs via Linear Multi-Prover Interactive Proofs 243

into a sequence of 2-locally-decomposable permutations Π1, . . . , Πα, where Π =
Πα ◦· · ·◦Π1. Then, the linear MIP proof consists of the initial and final matrices
W and W′, as well as the intermediate matrices Wi = (Πi ◦ · · · ◦ Π1)(W).
The linear MIP proof would consist of the rows of all of the matrices W =
W0,W1, . . . ,Wα = W′, and the verifier would apply Construction 4.8 to check
that for all � ∈ [α], Wi = Πi(Wi−1).

While this general approach seems sound, there is a subtle problem. The
soundness guarantee for the consistency check in Construction 4.8 only states
that on input W,W′ and a permutation Π, the verifier will only reject with
probability 1 − 2Ω(t) when W′ and Π(W) differ on Ω(t) rows. This means that
a malicious prover can provide a sequence of matrices W,W1, . . . ,Wα where
each W� differs from Π�(W�−1) on a small number of rows (e.g., o(t) rows), and
in doing so, correct all of the inconsistent assignments that appear in the final
matrix Wα.

Randomizing the decomposition. Abstractly, we can view the problem as follows.
Let B ∈ {0, 1}t×q be the inconsistency matrix for W with respect to A (Defini-
tion 4.4). In other words, Bi,j = 1 whenever Wi,j encodes a value that is incon-
sistent with another assignment elsewhere in W. Since GW,A contains a matching
of size Ω(t), we know that there are at least Ω(t) rows in B that contain a 1. The
permutation Π is chosen so that Π(W) has a regular matching of size Ω(t) with
respect to Π(A). In particular, this means that the permuted inconsistency matrix
Π(B) contains a 1 in Ω(t) adjacent pairs of rows.

Consider the sequence of matrices W1, . . . ,Wα chosen by the prover. Using
the approximate pairwise consistency check, we can ensure that Wi agrees with
Πi(Wi−1) on all but some κ1 rows. Now suppose that there exists some � ∈ [α]
where B� = (Π� ◦ · · · ◦ Π1)(B) has the property that all of the locations with
a 1 in B appear in just κ1 rows of B�. If this happens, then the malicious
prover can construct W1, . . . ,W�−1 honestly, and then choose W� such that
W� = Π�(W�−1) on all rows where B� does not contain a 1, and set the values
in the rows where B� does contain a 1 to be consistent with the other rows
of W. Notably, all the entries in W� are now consistent, and moreover, W�

differs from Π�(W�−1) on at most κ1 rows (and so, will not be detected with
high probability by the pairwise consistency check). This means that from the
verifier’s perspective, the final matrix Π(W) has no inconsistencies, and thus,
the verifier’s final pairwise consistency check passes with probability 1 (even
though the original inconsistency graph GW,A contains a matching of size Ω(t)).
Thus, we require a stronger property on the permutation decomposition. It is
not sufficient that there is a matching of size Ω(t) in the starting and ending
configurations W and W′. Rather, we need that the size of the matching in
every step of the decomposition cannot shrink by too much, or equivalently, the
intermediate permutations Π1, . . . , Πα cannot “concentrate” all of the inconsis-
tencies in W into a small number of rows (which the malicious prover can fix
without being detected). We say permutation decompositions with this property
are non-concentrating. We now formally define the notion of a non-concentrating

244 D. Boneh et al.

permutation decomposition and what it means for a collection of permutation
sequences to be non-concentrating.

Definition 4.13 (Non-concentrating Permutations). Fix positive integers
t, q ∈ N, and let Γ = (Π1, . . . , Πα) be a sequence of permutations over t-by-q
matrices. Let B ∈ {0, 1}t×q be an inconsistency matrix. For � ∈ [α], define B� =
(Π� ◦ · · · ◦ Π1)(B). We say that Γ is a sequence of (κ1, κ2)-non-concentrating
permutations with respect to B if for all � ∈ [α], the inconsistency matrix B�

has the property that no subset of κ1 rows contains more than κ2 inconsistencies
(indices where the value is 1). Next, we say a collection of permutation sequences
Γ (1), . . . , Γ (γ) where each Γ (j) =

(

Π
(j)
1 , . . . , Π

(j)
α

)

is (κ1, κ2)-non-concentrating
for a set B ⊆ {0, 1}t×q of inconsistency matrices if for all B ∈ B, there is some
j ∈ [γ] such that Γ (j) is (κ1, κ2)-non-concentrating with respect to B.

Putting the pieces together. To summarize, the goal of the consistency check is
to decide whether the inconsistency graph GW,A of some assignment matrix W
with respect to a replication structure A contains a matching of size Ω(t). Our
strategy relies on the following:

– Let (Π1, . . . , Πz) be a collection of regularity-inducing permutations with
respect to A.

– For each β ∈ [z], let Γ
(1)
β , . . . , Γ

(γ)
β be a collection of non-concentrating per-

mutations that implement Πβ , where Γ
(j)
β = (Π(j)

β,1, . . . , Π
(j)
β,α) for all j ∈ [γ],

and each of the intermediate permutations Π
(j)
β,� are 2-locally decomposable

for all j ∈ [γ], β ∈ [z], and � ∈ [α].

The proof then consists of the initial assignment matrix W in addition to all of
the intermediate matrices W(j)

β,� = Π
(j)
β,�(W

(j)
β,�−1), where we define W(j)

β,0 = W
for all j ∈ [γ], β ∈ [z]. The verifier checks consistency of all of the interme-
diate matrices using Construction 4.8, and applies a pairwise consistency test
(Construction 4.10) to each of W(j)

β,α for all j ∈ [γ] and β ∈ [z]. The soundness
argument then proceeds roughly as follows:

– Since (Π1, . . . , Πz) is regularity-inducing, there is some β ∈ [z] where
GΠβ(W),Πβ(A) contains a regular matching.

– Since Γ
(1)
β , . . . , Γ

(γ)
β is a collection of non-concentrating permutations that

implement Πβ , and all of the intermediate consistency checks pass, then there
must be some j ∈ [γ] such that G

W
(j)
β,α,Πβ(A)

contains a regular matching of

size Ω(t). The verifier then rejects with exponentially-small probability (in t)
by soundness of the pairwise consistency test.

Finally, in our concrete instantiation (described in the full version [15]), we
show how to construct our collection of regularity-inducing permutations and
non-concentrating permutations sequences where z = O(1), γ = O(log3 t), α =
Θ(log t). For this setting of parameters, the overall consistency check only incurs
polylogarithmic overhead to the prover complexity and the proof size. In Sect. 4.3,
we give the formal description and analysis of our linear MIP construction.

Quasi-Optimal SNARGs via Linear Multi-Prover Interactive Proofs 245

4.3 Quasi-Optimal Linear MIP Construction

In this section, we describe our quasi-optimal linear MIP for circuit satisfiability.
We give our construction (Construction 4.14) but defer the security theorem and
analysis to the full version. By instantiating Construction 4.14 with the appro-
priate primitives, we obtain the first quasi-optimal linear MIP (Theorem 4.15).

Construction 4.14 (Linear MIP). Fix parameters t, δ, k, ε, d, ρ, κ1, κ2, and
let C be an arithmetic circuit of size s over a finite field F. The construction
relies on the following ingredients:

– Let (f1, . . . , ft, inp,wit) be a quasi-optimal (t, δ)-robust decomposition of C.
Let Ci be the arithmetic circuit that computes each constraint fi : Fn×F

m →
{0, 1}.

– Let (P1,V1), . . . , (Pt,Vt) be k-query systematic linear PCP systems for cir-
cuits C1, . . . , Ct, respectively, with knowledge error ε and query length d.

– Let A ∈ [m]t×q be the replication structure of C1, . . . , Ct (where q is a bound
on the number of indices in a witness w ∈ F

m on which each circuit depends).
Let Π1, . . . , Πz be a collection of ρ-regularity-inducing permutations on t-by-q
matrices with respect to the replication structure A (Definition 4.12).

– For β ∈ [z], let Bβ ⊆ {0, 1}t×q be the set of inconsistency patterns where B
and Πβ(B) have at most one inconsistency in each row. Let Γ

(1)
β , . . . , Γ

(γ)
β be

a collection of permutation sequences implementing Πβ that is (κ1, κ2)-non-
concentrating for Bβ (Definition 4.13). In particular, each Γ

(j)
β is a sequence of

α permutations
(

Π
(j)
β,1, . . . , Π

(j)
β,α

)

, where each intermediate permutation Π
(j)
β,�

is 2-locally decomposable.

The linear MIP with t ·(1+αγz) provers and query length d is defined as follows:

– Syntax: The linear MIP consists of t ·(1+αγz) provers. We label the provers
as Pi and P

(j)
β,�,i for i ∈ [t], j ∈ [γ], β ∈ [z], and � ∈ [α]. To simplify the

description, we will often pack the proof vectors from different provers into
the rows of a matrix. To recall, when we say we associate a matrix Ŵ ∈
F

t×d with provers (P1, . . . , Pt), we mean that the ith row of Ŵ is the proof
vector assigned to prover Pi for all i ∈ [t]. Similarly, when we say the verifier
distributes a query matrix Q ∈ F

t×d to provers (P1, . . . , Pt), we mean that it
submits the ith row of Q as a query to Pi for all i ∈ [t].

– Prover’s algorithm: On input the statement x′ ∈ F
n′

and witness w′ ∈ F
m′

,
the prover prepares the proof vectors as follows:

• Linear PCP proofs. First, the prover computes x ← inp(x′) and w ←
wit(x′,w′). For each i ∈ [t], it computes a proof πi ← Pi(xi,wi), where
xi and wi denote the bits of the statement x and witness w on which
circuit Ci depends, respectively. Since (Pi,Vi) is a systematic linear PCP,
we can write πi = [wi,pi] where wi ∈ F

q and pi ∈ F
d−q. For i ∈ [t], the

prover associates the vector πi with Pi.

246 D. Boneh et al.

• Consistency proofs. Let W ∈ F
t×q be the matrix where the ith row

is the vector wi. Now, for all j ∈ [γ], β ∈ [z], and � ∈ [α], let W(j)
β,� =

(

Π
(j)
β,� ◦Π

(j)
β,�−1 ◦ · · · ◦Π

(j)
β,1

)

(W). Let Ŵ(j)
β,� =

[

W(j)
β,�,0

t×(d−q)
]

. The prover

associates Ŵ(j)
β,� with provers (P (j)

β,�,1, . . . , P
(j)
β,�,t).

– Verifier’s query algorithm: To simplify the description, we will sometimes
state the query vectors the verifier submits to each prover Pi and P

(j)
β,�,i rather

than the explicit query matrices. The verifier’s queries are constructed as
follows:

• Linear PCP queries. For i ∈ [t], the verifier invokes the query genera-
tion algorithm Qi for each of the underlying linear PCP instances (Pi,Vi)
to obtain a query matrix Qi ∈ F

d×k and some state information sti. The
verifier gives Qi to prover Pi, and saves the state st = (st1, . . . , stt).

• Routing consistency queries. For all j ∈ [γ], β ∈ [z], and � ∈ [α],
the verifier invokes the query generation algorithm of Construction 4.8
on permutation Π

(j)
β,� to obtain two query matrices R(j)

β,� and S(j)
β,� ∈ F

t×q.

The verifier pads the matrices to obtain R̂(j)
β,� =

[

R(j)
β,�,0

t×(d−q)
]

and

Ŝ(j)
β,� =

[

S(j)
β,�,0

t×(d−q)
]

. There are two cases:

* If � = 1, the verifier distributes the queries R̂(j)
β,� to provers

(P1, . . . , Pt).
* If � > 1, the verifier distributes the queries R̂(j)

β,� to provers
(

P
(j)
β,�−1,1, . . . , P

(j)
β,�−1,t

)

.

In addition, the verifier distributes the queries Ŝ(j)
β,� to provers

(

P
(j)
β,�,1, . . . , P

(j)
β,�,t

)

. Intuitively, the verifier is applying the approximate

consistency check from Construction 4.8 to every permutation Π
(j)
β,�.

• Pairwise consistency queries. For each β ∈ [z], let Aβ = Πβ(A), and
let Π ′

β be the pairwise consistency test matrix for Aβ (Construction 4.10).
The verifier invokes the query generation algorithm of Construction 4.8
on permutation Π ′

β to obtain two query matrices Rβ and Sβ ∈ F
t×q. It

pads the matrices to obtain R̂β = [Rβ ,0t×(d−q)] and Ŝβ = [Sβ ,0t×(d−q)].
Next, it distributes R̂β and Ŝβ to (P (j)

β,α,1, . . . , P
(j)
β,α,t) for all j ∈ [γ]. In

this step, the verifier is checking pairwise consistency of the permuted
assignment matrices W(j)

β,α for all j ∈ [γ] and β ∈ [z].
In total, the verifier makes a total of k + αγz queries to each prover Pi for
i ∈ [t]. It makes O(1) queries to the other provers.

– Verifier’s decision algorithm: First, the verifier computes the statement
x ← inp(x′). For i ∈ [t], let xi denote the bits of x on which circuit Ci depends.
The verifier processes the responses from each set of queries as follows:

• Linear PCP queries. For i ∈ [t], let yi ∈ F
k be the response of prover

Pi to the linear PCP queries. For i ∈ [t], the verifier invokes the decision
algorithm Di for each of the underlying linear PCP instances (Pi,Vi) on
the state sti, the statement xi, and the response yi. It rejects the proof
if Di(sti,xi,yi) = 0 for any i ∈ [t].

Quasi-Optimal SNARGs via Linear Multi-Prover Interactive Proofs 247

• Consistency queries. For each set of routing consistency query
responses (for checking consistency of the intermediate permutations
Π

(j)
β,�), and for each set of pairwise consistency query responses (for check-

ing consistency of the final configurations Π ′
β), the verifier applies the

decision algorithm from Construction 4.8, and rejects if any check fails.
If all of the checks pass, then the verifier accepts the proof.

Instantiating the construction. We defer the security analysis of Construc-
tion 4.14 to the full version [15]. In the full version, we additionally show how
to instantiate the robust decomposition, the regularity-inducing permutations,
and the non-concentrating permutation sequences needed to apply Construc-
tion 4.14. Combining Construction 4.14 with our concrete instantiations, we
obtain a quasi-optimal linear MIP. We state the formal theorem below, and give
the proof in the full version.

Theorem 4.15 (Quasi-Optimal Linear MIP). Fix a security parameter λ.
Let C : Fn ×F

m → F
h be an arithmetic circuit of size s over a poly(λ)-size finite

field F where |F| > s. Then, there exists an input-oblivious k-query linear MIP
(P,V) with � = ˜O(λ) provers for RC with soundness error 2−λ, query length
˜O(s/λ) + poly(λ, log s), and k = polylog(λ). Moreover, letting V = (Q,D), the
prover and verifier algorithms satisfy the following properties:

– the prover algorithm P is an arithmetic circuit of size ˜O(s) + poly(λ, log s);
– the query-generation algorithm Q is an arithmetic circuit of size ˜O(s) +

poly(λ, log s);
– the decision algorithm D is an arithmetic circuit of size ˜O(λn).

Remark 4.16 (Soundness Against Affine Provers). To leverage our linear MIP
to construct a SNARG, we often require that the linear MIP provide soundness
against affine provers. We note that Construction 4.14 inherits this property as
long as the underlying linear PCPs and approximate consistency check primi-
tives provide soundness against affine strategies. It is straightforward to see that
Construction 4.8 remains sound even against affine adversarial strategies, and in
the full version, we show how the underlying linear PCPs can be made robust
against affine strategies with minimal overhead. Importantly, these modifications
do not increase the asymptotic complexity of Construction 4.14.

5 Quasi-Optimal SNARGs

In this section, we formally introduce the notion of a quasi-optimal SNARG.
Next, in Sect. 5.2, we show how to compile a linear MIP into a designated-
verifier SNARG in the preprocessing model using the notion of a linear-only
vector encryption over rings introduced in [14]. Combined with our quasi-optimal
linear MIP from Sect. 4, this yields a quasi-optimal designated-verifier SNARG
for Boolean circuit satisfiability in the preprocessing model. We refer to the
full version [15] for the formal definition of a succinct non-interactive argument

248 D. Boneh et al.

(SNARG) and for the definitions of a linear-only vector encryption that we use
in our construction. We also introduce the notion of a 1-bit SNARG in the full
version.

5.1 Defining Quasi-Optimality

In this section, we formally define our notion of a quasi-optimal SNARG. Then, in
the full version, we compare our notion to the previous notion of quasi-optimality
introduced in [14], as well as describe a heuristic approach for instantiating quasi-
optimal SNARGs.

Definition 5.1 (Quasi-Optimal SNARG). Let ΠSNARG = (Setup,Prove,
Verify) be a SNARG for a family of Boolean circuits C = {Cn}n∈N

. Then, ΠSNARG

is quasi-optimal if it achieves 2−λ soundness error against provers of size 2λ and
satisfies the following properties:

– Prover Complexity: The running time of Prove is ˜O(|Cn|) + poly(λ,
log |Cn|).

– Succinctness: The length of the proof output by Prove is ˜O(λ).

Next, in Lemma 5.2, we show that our notion of quasi-optimality is tight in
the following sense: assuming NP does not have succinct proofs, any argument
system for NP that provides soundness error 2−λ must have proofs of length
Ω(λ). We state the lemma below and give the proof in the full version [15].

Lemma 5.2. Let C = {Cn}n∈N
be a family of Boolean circuits for some lan-

guage L =
⋃

n∈N
LCn

, where Cn : {0, 1}n × {0, 1}m(n) → {0, 1} for all n ∈ N.
Fix a soundness parameter ρ and a security parameter λ. Let ΠSNARG =
(Setup,Prove,Verify) be a SNARG for C with soundness 2−ρ against provers of
size poly(λ). If LCn

�⊆ DTIME(2o(n)), then the length �(ρ) of an argument in
ΠSNARG is Ω(ρ).

5.2 Quasi-Optimal SNARGs from Quasi-Optimal Linear MIPs

In this section, we show how to combine a linear MIPs with linear-only vector
encryption over rings to obtain a quasi-optimal SNARG. We refer to the full
version for the definition of a linear-only vector encryption from [14]. We describe
the construction and state its security theorems here, but defer the security
proofs to the full version [15].

Construction 5.3 (SNARG from Linear MIP). Fix a prime p and let
C = {Cn}n∈N

be a family of arithmetic circuits over Fp. Let RC be the rela-
tion associated with C. Let (P,V) be a k-query linear MIP with � provers and
query length d for the relation RC . Let Πvenc = (KeyGen,Encrypt,Decrypt) be a
secret-key vector encryption scheme over Rk where R ∼= F

�
p. Our single-theorem,

designated-verifier SNARG ΠSNARG = (Setup,Prove,Verify) in the preprocessing
model for RC is given below:

Quasi-Optimal SNARGs via Linear Multi-Prover Interactive Proofs 249

– Setup(1λ, 1n) → (σ, τ): On input the security parameter λ and the circuit
family parameter n, the setup algorithm does the following:
1. Invoke the query-generation algorithm Q for the linear MIP to obtain a

tuple of query matrices Q1, . . . ,Q� ∈ F
d×k
p and state information st.

2. Generate a secret key sk ← KeyGen(1λ, 1�) for the vector encryption
scheme.

3. Pack the � query matrices Q1, . . . ,Q� into a single query matrix Q ∈ Rd×k

(recall that the ring R splits into � isomorphic copies of Fp).
4. Encrypt each row of Q (an element of Rk) using the vector encryption

scheme. In other words, for i ∈ [d], let qi ∈ Rd be the ith row of Q. In this
step, the setup algorithm computes ciphertexts cti ← Encrypt(sk,qi).

5. Output the common reference string σ = (ct1, . . . , ctd) and the verifica-
tion state τ = (sk, st).

– Prove(σ,x,w) → π. On input the common reference string σ = (ct1, . . . , ctd),
a statement x, and a witness w, the prover’s algorithm works as follows:
1. For each i ∈ [�], invoke the linear MIP prover algorithm Pi on input x

and w to obtain a proof πi ← Pi(x,w) ∈ F
d
p.

2. Pack the � proof vectors π1, . . . ,π� ∈ F
d
p into a single proof vector π ∈

Rd. Then, viewing the ciphertexts ct1, . . . , ctm as vector encryptions of
the rows of the query matrix Q ∈ Rd×k, homomorphically compute an
encryption of the matrix-vector product Q�π ∈ Rk. In particular, the
prover homomorphically computes the sum ct′ =

∑

i∈d πi · cti.
3. Output the proof ct′.

– Verify(τ,x,π) → {0, 1}: On input the verification state τ = (sk, st), the state-
ment x, and the proof π = ct′, the verifier does the following:
1. Decrypt the proof ct′ using the secret key sk to obtain the prover’s

responses y ← Decrypt(sk, ct′). If y = ⊥, the verifier terminates with
output 0.

2. The verifier decomposes y ∈ Rk into vectors y1, . . . ,y� ∈ F
k
p. It

then invokes the linear MIP decision algorithm D on the statement
x, the responses y1, . . . ,y�, and the verification state st and outputs
D(st,x,y1, . . . ,y�).

Theorem 5.4. Fix a security parameter λ and a prime p. Let C = {Cn}n∈N

be a family of arithmetic circuits over Fp, RC be the relation associated with
C, and (P,V) be a k-query linear MIP with � provers, query length d, and
soundness error ε(λ) against affine provers for the relation RC. Let Πvenc =
(KeyGen,Encrypt,Decrypt) be a vector encryption scheme over a ring R ∼= F

�
p

with linear targeted malleability. Then, applying Construction 5.3 to (P,V) and
Πvenc yields a non-adaptive designated-verifier preprocessing SNARG with sound-
ness error 2 · ε(λ) + negl(λ).

250 D. Boneh et al.

Theorem 5.5. Fix a security parameter λ and a prime p. Let C = {Cn}n∈N

be a family of arithmetic circuits over Fp, RC be the relation associated with
C, and (P,V) be a k-query linear MIP with � provers, query length d, and
soundness error ε(λ) against affine provers for the relation RC. Let Πvenc =
(KeyGen,Encrypt,Decrypt) be a linear-only vector encryption scheme. Then,
applying Construction 5.3 to (P,V) and Πvenc yields an adaptive designated-
verifier preprocessing SNARG with soundness error ε(λ) + negl(λ).

Instantiating the Construction. To conclude this section, we show that com-
bining the candidate vector encryption scheme Πvenc over polynomial rings Rk,
where R ∼= F

�
p from [14, Sect. 4.4] with our quasi-optimal linear MIP construc-

tion from Theorem 4.15 yields a quasi-optimal SNARG from linear-only vector
encryption. We first recall from [14, Sect. 4.4] that the candidate vector encryp-
tion scheme Πvenc has the following properties:

– When k = polylog(λ), � = ˜O(λ), and |F| = poly(λ), each ciphertext encrypt-
ing an element of Rk has length ˜O(λ).

– Scalar multiplication and homomorphic addition of two ciphertexts can be
performed in time ˜O(λ).

When we apply Construction 5.3 to the linear MIP from Theorem 4.15 and Πvenc,
the prover complexity and proof sizes are then as follows (targeting soundness
error 2−λ):

– Prover complexity: The SNARG prover first invokes the underlying linear
MIP prover to obtain proofs π1, . . . ,π� for each of the � = ˜O(λ) provers. From
Theorem 4.15, this step requires time ˜O(s)+poly(λ, log s), where s is the size
of the circuit. To construct the proof, the prover has to perform d homomor-
phic operations, where d = ˜O(s/λ) + poly(λ, log s) is the query length of the
construction from Theorem 4.15. Since each homomorphic operation can be
computed in ˜O(λ) time, the overall prover complexity is ˜O(s) + poly(λ, log s).

– Proof size: The proof in Construction 5.3 consists of a single ciphertext,
which for our parameter settings, have length ˜O(λ).

From this analysis, we obtain the following quasi-optimal SNARG instantiations:

Corollary 5.6. Assuming the vector encryption scheme Πvenc from [14,
Sect. 4.4] satisfies linear targeted malleability (with exponential security), then
applying Construction 5.3 to the quasi-optimal linear MIP from Theorem 4.15
and Πvenc yields a non-adaptive designated-verifier quasi-optimal SNARG for
Boolean circuit satisfiability in the preprocessing model.

Corollary 5.7. Assuming the vector encryption scheme Πvenc from [14,
Sect. 4.4] (with the “double-encryption” transformation described in [14, Remark
C.4]) is linear-only (with exponential security), then applying Construction 5.3
to the quasi-optimal linear MIP from Theorem 4.15 and Πvenc yield an adaptive
designated-verifier quasi-optimal SNARG for Boolean circuit satisfiability in the
preprocessing model.

Quasi-Optimal SNARGs via Linear Multi-Prover Interactive Proofs 251

Construction 5.3 gives a construction of a single-theorem SNARG from any lin-
ear MIP system. In the full version [15], we discuss some of the challenges in
extending our construction to provide multi-theorem security.

Remark 5.8 (Multi-theorem SNARGs). Construction 5.3 gives a construction
of a single-theorem SNARG from any linear MIP system. The works of [13,14]
show how to construct multi-theorem designated-verifier SNARGs by relying on
a stronger notion of soundness at the linear PCP level coupled with a stronger
interactive linear-only encryption assumption. While we could rely on the same
type of cryptographic assumption as in [14], our linear MIP from Sect. 4 does
not satisfy the notion of “reusable” or “strong” soundness from [13]. Strong
soundness essentially says that for all proofs, the probability that the verifier
accepts or that it rejects is negligible close to 1 (where the probability is taken
over the randomness used to generate the queries). In particular, whether the
verifier decides to accept or reject should be uncorrelated with the randomness
associated with its secret verification state. In our linear MIP model, we operate
over a polynomial-size field, so a prover making a local change will cause the
verifier’s decision procedure to change with noticeable probability. This reveals
information about the secret verification state, which can enable the malicious
prover to break soundness. We leave it as an open problem to construct a quasi-
optimal linear MIP that provides strong soundness. Such a primitive would be
useful in constructing a quasi-optimal multi-theorem SNARGs.

Acknowledgments. We thank the anonymous reviewers for helpful feedback on the
presentation. D. Boneh and D. J. Wu are supported by NSF, DARPA, a grant from
ONR, and the Simons Foundation. Y. Ishai and A. Sahai are supported in part from a
DARPA/ARL SAFEWARE award, NSF Frontier Award 1413955, NSF grants 1619348,
1228984, 1136174, and 1065276, BSF grant 2012378, NSF-BSF grant 2015782, a Xerox
Faculty Research Award, a Google Faculty Research Award, an equipment grant from
Intel, and an Okawa Foundation Research Grant. Y. Ishai is additionally supported
by ISF grant 1709/14 and ERC grant 742754. This material is based upon work sup-
ported by the Defense Advanced Research Projects Agency through the ARL under
Contract W911NF-15-C-0205. The views expressed are those of the authors and do
not reflect the official policy or position of the Department of Defense, the National
Science Foundation, or the U.S. Government.

References

1. Applebaum, B., Ishai, Y., Kushilevitz, E.: From secrecy to soundness: efficient
verification via secure computation. In: Abramsky, S., Gavoille, C., Kirchner, C.,
Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp.
152–163. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14165-
2 14

2. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and
the hardness of approximation problems. J. ACM 45(3), 501–555 (1998)

3. Babai, L., Fortnow, L., Levin, L.A., Szegedy, M.: Checking computations in poly-
logarithmic time. In: STOC (1991)

https://doi.org/10.1007/978-3-642-14165-2_14
https://doi.org/10.1007/978-3-642-14165-2_14

252 D. Boneh et al.

4. Barak, B., Pass, R.: On the possibility of one-message weak zero-knowledge. In:
Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 121–132. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-24638-1 7

5. Bellare, M., Palacio, A.: The knowledge-of-exponent assumptions and 3-round zero-
knowledge protocols. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp.
273–289. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-
8 17

6. Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: SNARKs for
C: verifying program executions succinctly and in zero knowledge. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 90–108. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1 6

7. Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Succinct non-interactive zero
knowledge for a Von Neumann architecture. In: USENIX Security Symposium
(2014)

8. Berman, I., Degwekar, A., Rothblum, R., Vasudevan, P.N.: From laconic zero-
knowledge to public-key cryptography. In: Electronic Colloquium on Computa-
tional Complexity (ECCC) (2017)

9. Bitansky, N., Canetti, R., Chiesa, A., Goldwasser, S., Lin, H., Rubinstein, A.,
Tromer, E.: The hunting of the SNARK. J. Cryptol. 30(4), 989–1066 (2017)

10. Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: From extractable collision resis-
tance to succinct non-interactive arguments of knowledge, and back again. In: ITCS
(2012)

11. Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: Recursive composition and boot-
strapping for SNARKS and proof-carrying data. In: STOC (2013)

12. Bitansky, N., Chiesa, A.: Succinct arguments from multi-prover interactive proofs
and their efficiency benefits. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO
2012. LNCS, vol. 7417, pp. 255–272. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-32009-5 16

13. Bitansky, N., Chiesa, A., Ishai, Y., Paneth, O., Ostrovsky, R.: Succinct non-
interactive arguments via linear interactive proofs. In: Sahai, A. (ed.) TCC 2013.
LNCS, vol. 7785, pp. 315–333. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-36594-2 18

14. Boneh, D., Ishai, Y., Sahai, A., Wu, D.J.: Lattice-based SNARGs and their appli-
cation to more efficient obfuscation. In: Coron, J.-S., Nielsen, J.B. (eds.) EURO-
CRYPT 2017. LNCS, vol. 10212, pp. 247–277. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-56617-7 9

15. Boneh, D., Ishai, Y., Sahai, A., Wu, D.J.: Quasi-optimal SNARGs via linear multi-
prover interactive proofs. IACR Cryptology ePrint Archive (2018). https://eprint.
iacr.org/2018/133.pdf

16. Boppana, R.B., H̊astad, J., Zachos, S.: Does co-NP have short interactive proofs?
Inf. Process. Lett. 25(2), 127–132 (1987)

17. Brassard, G., Chaum, D., Crépeau, C.: Minimum disclosure proofs of knowledge.
J. Comput. Syst. Sci. 37(2), 156–189 (1988)

18. Braun, B., Feldman, A.J., Ren, Z., Setty, S.T.V., Blumberg, A.J., Walfish, M.:
Verifying computations with state. In: SOSP (2013)

19. Cormode, G., Mitzenmacher, M., Thaler, J.: Practical verified computation with
streaming interactive proofs. In: ITCS (2012)

20. Costello, C., Fournet, C., Howell, J., Kohlweiss, M., Kreuter, B., Naehrig, M.,
Parno, B., Zahur, S.: Geppetto: versatile verifiable computation. In: IEEE SP
(2015)

https://doi.org/10.1007/978-3-540-24638-1_7
https://doi.org/10.1007/978-3-540-28628-8_17
https://doi.org/10.1007/978-3-540-28628-8_17
https://doi.org/10.1007/978-3-642-40084-1_6
https://doi.org/10.1007/978-3-642-32009-5_16
https://doi.org/10.1007/978-3-642-32009-5_16
https://doi.org/10.1007/978-3-642-36594-2_18
https://doi.org/10.1007/978-3-642-36594-2_18
https://doi.org/10.1007/978-3-319-56617-7_9
https://doi.org/10.1007/978-3-319-56617-7_9
https://eprint.iacr.org/2018/133.pdf
https://eprint.iacr.org/2018/133.pdf

Quasi-Optimal SNARGs via Linear Multi-Prover Interactive Proofs 253

21. Damg̊ard, I.: Towards practical public key systems secure against chosen ciphertext
attacks. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 445–456.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1 36

22. Damg̊ard, I., Faust, S., Hazay, C.: Secure two-party computation with low com-
munication. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 54–74. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-28914-9 4

23. Damg̊ard, I., Ishai, Y., Krøigaard, M.: Perfectly secure multiparty computation and
the computational overhead of cryptography. In: Gilbert, H. (ed.) EUROCRYPT
2010. LNCS, vol. 6110, pp. 445–465. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-13190-5 23

24. Danezis, G., Fournet, C., Groth, J., Kohlweiss, M.: Square span programs with
applications to Succinct NIZK arguments. In: Sarkar, P., Iwata, T. (eds.) ASI-
ACRYPT 2014. LNCS, vol. 8873, pp. 532–550. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-45611-8 28

25. Faonio, A., Nielsen, J.B., Venturi, D.: Predictable arguments of knowledge. In:
Fehr, S. (ed.) PKC 2017. LNCS, vol. 10174, pp. 121–150. Springer, Heidelberg
(2017). https://doi.org/10.1007/978-3-662-54365-8 6

26. Feige, U., Goldwasser, S., Lovász, L., Safra, S., Szegedy, M.: Approximating clique
is almost NP-complete (preliminary version). In: FOCS (1991)

27. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

28. Garg, S., Gentry, C., Sahai, A., Waters, B.: Witness encryption and its applications.
In: STOC (2013)

29. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and
Succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-38348-9 37

30. Gentry, C., Wichs, D.: Separating Succinct non-interactive arguments from all
falsifiable assumptions. In: STOC (2011)

31. Goldreich, O.: The Foundations of Cryptography, Basic Techniques, vol. 1.
Cambridge University Press, Cambridge (2001)

32. Goldreich, O., H̊astad, J.: On the complexity of interactive proofs with bounded
communication. Inf. Process. Lett. 67(4), 205–214 (1998)

33. Goldreich, O., Vadhan, S., Wigderson, A.: On interactive proofs with a Laconic
prover. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS,
vol. 2076, pp. 334–345. Springer, Heidelberg (2001). https://doi.org/10.1007/3-
540-48224-5 28

34. Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating computation: interactive
proofs for muggles. In: STOC (2008)

35. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof-systems. In: STOC (1985)

36. Groth, J.: Linear algebra with sub-linear zero-knowledge arguments. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 192–208. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03356-8 12

37. Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In: ASI-
ACRYPT (2010)

38. Groth, J.: On the size of pairing-based non-interactive arguments. In: EURO-
CRYPT (2016)

https://doi.org/10.1007/3-540-46766-1_36
https://doi.org/10.1007/978-3-642-28914-9_4
https://doi.org/10.1007/978-3-642-13190-5_23
https://doi.org/10.1007/978-3-642-13190-5_23
https://doi.org/10.1007/978-3-662-45611-8_28
https://doi.org/10.1007/978-3-662-54365-8_6
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/3-540-48224-5_28
https://doi.org/10.1007/3-540-48224-5_28
https://doi.org/10.1007/978-3-642-03356-8_12

254 D. Boneh et al.

39. Groth, J., Maller, M.: Snarky signatures: minimal signatures of knowledge from
simulation-extractable SNARKs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017.
LNCS, vol. 10402, pp. 581–612. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63715-0 20

40. Hada, S., Tanaka, T.: On the existence of 3-round zero-knowledge protocols. In:
Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 408–423. Springer,
Heidelberg (1998). https://doi.org/10.1007/BFb0055744

41. Ishai, Y., Kushilevitz, E., Ostrovsky, R.: Efficient arguments without short PCPs.
In: CCC (2007)

42. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from secure
multiparty computation. In: STOC (2007)

43. Ishai, Y., Prabhakaran, M., Sahai, A.: Secure arithmetic computation with no
honest majority. In: TCC (2009)

44. Kilian, J.: A note on efficient zero-knowledge proofs and arguments. In: STOC
(1992)

45. Lipmaa, H.: Progression-free sets and sublinear pairing-based non-interactive zero-
knowledge arguments. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 169–
189. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28914-9 10

46. Lipmaa, H.: Succinct non-interactive zero knowledge arguments from span pro-
grams and linear error-correcting codes. In: Sako, K., Sarkar, P. (eds.) ASI-
ACRYPT 2013. LNCS, vol. 8269, pp. 41–60. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-42033-7 3

47. Lipmaa, H.: Prover-efficient commit-and-prove zero-knowledge SNARKs. In:
Pointcheval, D., Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2016. LNCS, vol.
9646, pp. 185–206. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
31517-1 10

48. Lund, C., Fortnow, L., Karloff, H.J., Nisan, N.: Algebraic methods for interactive
proof systems. In: FOCS (1990)

49. Micali, S.: Computationally sound proofs. SIAM J. Comput. 30(4), 1253–1298
(2000)

50. Mie, T.: Polylogarithmic two-round argument systems. J. Math. Cryptology 2(4),
343–363 (2008)

51. Naor, M.: On cryptographic assumptions and challenges. In: Boneh, D. (ed.)
CRYPTO 2003. LNCS, vol. 2729, pp. 96–109. Springer, Heidelberg (2003). https://
doi.org/10.1007/978-3-540-45146-4 6

52. Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: nearly practical verifi-
able computation. In: IEEE Symposium on Security and Privacy (2013)

53. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryp-
tion, and more. In: STOC (2014)

54. Setty, S.T.V., McPherson, R., Blumberg, A.J., Walfish, M.: Making argument sys-
tems for outsourced computation practical (sometimes). In: NDSS (2012)

55. Setty, S.T.V., Vu, V., Panpalia, N., Braun, B., Blumberg, A.J., Walfish, M.: Taking
proof-based verified computation a few steps closer to practicality. In: USENIX
Security Symposium (2012)

56. Shamir, A.: IP=PSPACE. In: FOCS (1990)
57. Thaler, J.: Time-optimal interactive proofs for circuit evaluation. In: Canetti,

R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 71–89. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1 5

58. Thaler, J., Roberts, M., Mitzenmacher, M., Pfister, H.: Verifiable computation with
massively parallel interactive proofs. In: HotCloud (2012)

https://doi.org/10.1007/978-3-319-63715-0_20
https://doi.org/10.1007/978-3-319-63715-0_20
https://doi.org/10.1007/BFb0055744
https://doi.org/10.1007/978-3-642-28914-9_10
https://doi.org/10.1007/978-3-642-42033-7_3
https://doi.org/10.1007/978-3-642-42033-7_3
https://doi.org/10.1007/978-3-319-31517-1_10
https://doi.org/10.1007/978-3-319-31517-1_10
https://doi.org/10.1007/978-3-540-45146-4_6
https://doi.org/10.1007/978-3-540-45146-4_6
https://doi.org/10.1007/978-3-642-40084-1_5

Quasi-Optimal SNARGs via Linear Multi-Prover Interactive Proofs 255

59. Valiant, P.: Incrementally verifiable computation or proofs of knowledge imply
time/space efficiency. In: TCC (2008)

60. Vu, V., Setty, S.T.V., Blumberg, A.J., Walfish, M.: A hybrid architecture for inter-
active verifiable computation. In: IEEE SP (2013)

61. Wahby, R.S., Howald, M., Garg, S.J., Shelat, A., Walfish, M.: Verifiable ASICs. In:
IEEE Symposium on Security and Privacy (2016)

62. Wahby, R.S., Ji, Y., Blumberg, A.J., Shelat, A., Thaler, J., Walfish, M., Wies, T.:
Full accounting for verifiable outsourcing. In: ACM CCS (2017)

63. Wahby, R.S., Setty, S.T.V., Ren, Z., Blumberg, A.J., Walfish, M.: Efficient RAM
and control flow in verifiable outsourced computation. In: NDSS (2015)

64. Walfish, M., Blumberg, A.J.: Verifying computations without reexecuting them.
Commun. ACM 58(2), 74–84 (2015)

65. Wee, H.: On round-efficient argument systems. In: Caires, L., Italiano, G.F., Mon-
teiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp.
140–152. Springer, Heidelberg (2005). https://doi.org/10.1007/11523468 12

https://doi.org/10.1007/11523468_12

Anonymous Communication

Untagging Tor: A Formal Treatment
of Onion Encryption

Jean Paul Degabriele1(B) and Martijn Stam2

1 Department of Computer Science, TU Darmstadt, Darmstadt, Germany
jeanpaul.degabriele@cryptoplexity.de

2 Department of Computer Science, University of Bristol, Bristol, UK
martijn.stam@bristol.ac.uk

Abstract. Tor is a primary tool for maintaining anonymity online.
It provides a low-latency, circuit-based, bidirectional secure channel
between two parties through a network of onion routers, with the aim of
obscuring exactly who is talking to whom, even to adversaries controlling
part of the network. Tor relies heavily on cryptographic techniques, yet
its onion encryption scheme is susceptible to tagging attacks (Fu and Ling
2009), which allow an active adversary controlling the first and last node
of a circuit to deanonymize with near-certainty. This contrasts with less
active traffic correlation attacks, where the same adversary can at best
deanonymize with high probability. The Tor project has been actively
looking to defend against tagging attacks and its most concrete alter-
native is proposal 261, which specifies a new onion encryption scheme
based on a variable-input-length tweakable cipher.

We provide a formal treatment of low-latency, circuit-based onion
encryption, relaxed to the unidirectional setting, by expanding existing
secure channel notions to the new setting and introducing circuit hiding
to capture the anonymity aspect of Tor. We demonstrate that circuit
hiding prevents tagging attacks and show proposal 261’s relay protocol
is circuit hiding and thus resistant against tagging attacks.

Keywords: Anonymity · Onion routing · Secure channels · Tor
Tagging attacks

1 Introduction

Anonymity as a separate security goal to confidentiality and integrity was rec-
ognized early on. Chaum [14] provided a number of suggestions for anonymous
communication, of which his mix-nets later evolved into onion routing. Onion
routing protocols come in a variety of flavours, depending on whether they are
low-latency or not, whether they are circuit-oriented or ciphertext-oriented, the
TCP/IP layer at which they operate, and a number of other factors. Exam-
ples include I2P [27], Mixminion [16], MorphMix [38] and Tarzan [23], but the
best known and most widely used onion routing solution is Tor [20]. Tor is a

c© International Association for Cryptologic Research 2018
J. B. Nielsen and V. Rijmen (Eds.): EUROCRYPT 2018, LNCS 10822, pp. 259–293, 2018.
https://doi.org/10.1007/978-3-319-78372-7_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78372-7_9&domain=pdf

260 J. P. Degabriele and M. Stam

low-latency, circuit-oriented onion routing protocol operating at the transport
layer. Its original architecture was laid out in a quick succession of articles by
Goldschlag et al. [25,37,42]. The extent to which Tor and its brethren defend
against (mostly) passive traffic correlation analysis has been an active research
area [13,28,29,33,40], yet the impact of active attacks against the core cryp-
tographic components on anonymity remains relatively unexplored. Indeed, it
is not even clear what the formal design desiderata would be to provide any
meaningful form of provable anonymity.

When talking about anonymity, it is worth bearing in mind the original goal
set for Tor [25]: “The goal of onion routing is not to provide anonymous com-
munication. Parties are free to (and usually should) identify themselves within a
message. But the use of a public network should not automatically give away the
identity and locations of the communication parties” (emphasis ours). In prac-
tice, an onion routing network (see Fig. 1) enables two parties Anna (A) and
Xavier (X) to route their communication through various intermediate nodes.
As a result, there is no longer a direct link of communication between Anna and
Xavier to observe and the hope is that their traffic gets lost in the masses. Ide-
ally, even the intermediate nodes in direct contact with Anna and Xavier cannot
link Anna and Xavier together.

A

B

C

1

2

3

4

5

6

7

8

9

X

Y

Z

Fig. 1. Onion routing in a nutshell. Nodes A, B, and C are the onion proxies; nodes
1 to 9 are the onion routers making up the network; finally nodes X, Y, and Z are
the destinations. User A created the dark blue circuit 1–7–8, using exit node 8 to
communicate with destinations X and Z, whereas user B created the dark red circuit
2–7–9 and using its exit node 9 to communicate with destinations Y and Z. (Color
figure online)

The core components of Tor are the link protocol, the circuit extend protocol,
the relay protocol, and the stream protocol. Any communication between any
pair of interacting parties is secured by the link layer, which uses TLS, and
all communication occurs on top of it. The circuit extend protocol establishes

Untagging Tor: A Formal Treatment of Onion Encryption 261

multi-hop tunnels called circuits between the sender and the receiver. In essence
it uses public-key cryptography to exchange key material between nodes for
onion encryption. The relay protocol is the component that actually handles the
onion encryption and will be our main focus. The stream protocol operates over
the relay protocol and is used to establish TCP connections, send data, etc.

At a very high level, the relay protocol operates as follows. The sender, which
shares a symmetric key with every other node on the circuit, encrypts a message
by applying multiple layers of encryption in succession, one for each node along
the circuit. Specifically, a message is first encoded with a two-byte field of zeros
and a SHA1 digest truncated to four bytes, and each layer of encryption then
consists of 128-bit AES in counter mode. The resulting ciphertext, or cell in
Tor’s terminology, is then passed by the sender to the first node in the circuit.
Each node in turn strips off one layer of encryption and either forwards the cell
to the next node in the circuit or acts on that cell itself if it determines that
it is the intended recipient. Note that only the final node in the circuit checks,
and can check, the integrity by considering the redundancy introduced by the
sender’s encoding.

The combination of the final-node integrity check and the high level of
malleability of counter-mode encryption leave Tor’s relay protocol susceptible
to the following tagging attack [24]. Assume an adversary controls the first and
last nodes in a circuit. It can then ‘tag’ a cell c during the first hop by xoring
it with some pattern δ, i.e. it sends c ⊕ δ instead of c. If an honest exit node
receives the corresponding cell, the integrity check will very likely fail, and the
honest exit node will reject it. However, if the adversary controls the exit node,
it can check for an invalid received cell c′ that c′ ⊕ δ does pass the integrity
check. Thus, the adversary has established that the two nodes are on the same
circuit, and thereby linked the user (known to the first node) to its activities, as
seen by the last node.

Superficially, tagging attacks expose a similar vulnerability as traffic correla-
tion attacks by adversaries controlling both the first and last node of a circuit.
Moreover, as Tor is a low-latency system, it cannot adequately protect against
these passive traffic correlation attacks, which begs the question what active
tagging attacks add to an adversary’s arsenal. Indeed, back in 2004 when Tor
was conceived [20], its authors already “accepted that our design is vulnerable
to end-to-end timing attacks; so tagging attacks performed within the circuit
provide no additional information to the attacker”. Thus the choice for low
latency—a compromise trading stronger security for usability—appeared to ren-
der tagging attacks redundant or even irrelevant, as seemingly equally powerful
traffic correlation attacks are possible.

This perception changed around 2012, following an anonymous post on the
Tor developers’ mailing list by The23rd Raccoon, pointing out that tagging
attacks are considerably more potent than traffic correlation attacks [36]: a suc-
cessful tagging attack gives an adversary certainty when linking a circuit’s entry
and exit node, whereas for traffic correlation attacks a degree of uncertainty
remains, including false positives where two nodes are incorrectly assumed to

262 J. P. Degabriele and M. Stam

be on the same circuit. Consequently, tagging attacks scale better and with
increased severity compared to traffic correlation attacks. We expand on these
observations in Sect. 2.2, where we also address why detection (of the active
tagging) does not lead to a satisfactory defense mechanism.

All in all, the Tor project has reversed its position and is currently seeking
alternative onion encryption schemes that do protect against tagging attacks [31].
Whereas traffic correlation attacks cannot be prevented by cryptographic means
(without sacrificing low latency), conceivably protection against tagging attacks
without significant performance penalty is achievable.

Taking a broader perspective, we observe that while there has been ample
work focusing on anonymity, circuit-based onion encryption as a cryptographic
primitive has been largely overlooked. Yet in onion routing networks, anonymity
is achieved through a combination of factors, such as the number of users in
the system, the amount of traffic, and cryptographic mechanisms like onion
encryption. The aforementioned tagging attacks against Tor clearly indicate that
the latter is not well understood: it is unclear what properties the cryptographic
component should provide, let alone how to do so.

Our Contribution. Our aim is exactly this, to characterise what security
properties should and can be expected from an onion encryption scheme. While
we try to maintain as much generality as possible, our attention is focused on
the setting typified by Tor. That is, we consider onion encryption for the case
of low-latency and circuit-oriented systems, operating on top of a link protocol,
like TLS, that secures communication between adjacent nodes. Tarzan and Mor-
phmix, like Tor, fall within this category and are also captured by our models.

Our three design choices change the landscape quite significantly compared
to high-latency mix-nets or public key ciphertext-oriented onion routing. In par-
ticular, requiring low-latency precludes the possibility of shuffling cells as in the
case of mix-nets. A circuit-oriented architecture assumes the existence of a com-
plementary protocol (in the case of Tor the circuit extend protocol) that sets up
circuits across the network on which cells can be transmitted. Thus cells must
follow predefined paths. In contrast, in a ciphertext-oriented architecture (as
in I2P and Mixminion), each ciphertext can specify and follow a distinct path.
This dichotomy corresponds quite closely to the distinction between symmetric
and public-key onion encryption. One benefit of a circuit-oriented architecture is
that, being stateful, it can protect against replay and reordering attacks. Finally,
because the onion encryption operates on top of a link protocol, the adversary
can only access the onion encryption if it controls some subset of the nodes in the
network. We exploit this fact in our circuit hiding definition, but we don’t make
use of it in other security definitions as we can achieve the stronger definition
with little effort or added complexity.

Clearly we would like an onion encryption scheme to provide confidentiality,
integrity, and anonymity, ideally even if a subset of the nodes are under adversar-
ial control. After establishing a syntax of circuit-based onion routing in Sect. 3,
we adapt the end-to-end security notions for confidentiality and integrity of a

Untagging Tor: A Formal Treatment of Onion Encryption 263

secure unidirectional channel to the context of onion routing in Sect. 4, before
tackling the most challenging and novel part, namely anonymity, in Sect. 5.

Anonymity in low-latency onion routing is never absolute and relies crucially
on non-cryptographic factors—beyond what can be guaranteed by a suitable
choice of onion encryption—such as the network size, its number of active users
and the amount of traffic flowing through the network. Accordingly we do not
aim for a full-blown definition of anonymity, but instead aim for a more refined
security goal that can be achieved purely by cryptographic means (assuming
ideal traffic conditions). Our proposed notion is that of circuit hiding, which
roughly states that an adversary should not be able to learn any information
about the circuits’ topology in the network beyond what is inevitably leaked
through the nodes that it controls. In particular this should hold even when the
adversary is allowed to choose the messages that get encrypted and is able to
re-order, inject, and manipulate ciphertexts on the network. Indeed the latter
is exactly how tagging attacks operate, and consequently these are captured by
our model.

Following on from the two potential directions to thwart tagging attacks [31],
the only concrete proposal to date is Tor proposal 261 [32]. Our second contri-
bution is a security analysis of the onion encryption scheme specified therein.
Proposal 261 is based on AEZ [26] (see Sect. 6 for more details), but it could be
instantiated with any other variable-input-length (VIL) tweakable cipher, such
as Farfalle [9] or HHFHFH [8] which have both been suggested as alternatives to
AEZ. Indeed, our analysis is general enough to apply to any such instantiation
and thus its scope surpasses proposal 261.

Security in our framework guarantees protection from tagging attacks, but
also ensures that it is not done at the detriment of some other security aspect.
For instance, a naive solution to stop tagging attacks would be to extend Tor’s
counter mode AES with a MAC in an encrypt-then-MAC configuration. While
this fix might foil tagging attacks, it would not suffice to guarantee circuit hiding,
as the length of a circuit and a node’s relative position within a circuit can now
be inferred from the size of a cell. This is another instance of leakage on the
circuits’ topology that is captured by our notion.

We emphasize however that our analysis is limited in scope. In particular we
only consider static node corruptions that are chosen by the adversary but fixed
before it can interact with the network. Furthermore, we assume that circuits
have already been established in a secure and anonymous way and we do not
study how circuits should be chosen either.

Related Work. Camenisch and Lysyanskaya [11] gave a formal security defi-
nition of public-key onion routing in the Universal Composability (UC) frame-
work, as well as an alternative, compound game-based definition. For the latter
they identify three core properties: correctness, integrity, and security. Combined
with secure point-to-point channels these three imply the UC security notion.
However their security model focuses on ciphertext-oriented architectures, where
onion routers are stateless, and is therefore not applicable to Tor. For instance,

264 J. P. Degabriele and M. Stam

their security definition does not and cannot capture circuits or provide protec-
tion against replay and reordering attacks.

Feigenbaum et al. [21] provide a black-box probabilistic analysis of onion
routing based on a very high-level idealised functionality. Here an adversary is
allowed to statically corrupt a fraction of the routers, so when a user selects a
destination (for a circuit), the functionality randomly selects a path from the
user to the destination and thereby determines whether the nodes adjacent to
the user, resp. the destination, are corrupt or not. For corrupt adjacent nodes,
the adversary will learn the user, resp. the destination, connected to it. In par-
ticular, if both adjacent nodes are corrupt, then the adversary will learn that
a circuit has been established between the user and its destination. This model
is useful for analysing the overall effect of traffic correlation attacks under the
assumption that an adversary is capable to link traffic flowing in and out of the
honest routers [43]. However, when considering how the cryptographic compo-
nent affects this traffic linking assumption, their model is unsuitable.

Motivated by Tor, Backes et al. [3] propose another security definition for
onion encryption in the UC framework. They consider a combined ideal func-
tionality closely mirroring Tor’s syntax, incorporating both the circuit estab-
lishment protocol and the onion encryption component. Meeting their security
notion relies on the onion encryption being predictably malleable. Unfortunately,
this predictable malleability is exactly what enables tagging attacks. In other
words, schemes secure in their framework are guaranteed to be insecure against
tagging attacks.

Danezis and Goldberg [17] propose Sphinx, a cryptographic packet format
for relaying anonymized messages within high latency mix networks. It improves
over prior constructions by being more space efficient, in part by replacing RSA
encryption with elliptic curve cryptography. Sphinx is designed to protect against
tagging attacks, but as it follows a ciphertext oriented architecture, is inappli-
cable to Tor.

In concurrent work, Rogaway and Zhang provide an independent treatment
of onion encryption [39], see our full version [18] for a comparison.

2 Background and Preliminaries

2.1 An Overview of Tor

We now give a brief overview of how Tor works. A more detailed description
can be found in Tor’s introduction [20] or its protocol specification [19]; for a
comparison of Tor with other anonymous communication systems see Danezis
et al. [15].

In Tor, an end-to-end overlay network is formed wherein participating nodes,
called onion routers (OR), relay messages across the overlay network. Users can
run an onion proxy (OP) to access the Tor network (though we will use the
terms sender, user, and onion proxy interchangeably). Onion routers maintain
TLS connections with each other and onion proxies join the Tor network by
establishing a TLS connection to one or more onion routers (the link protocol).

Untagging Tor: A Formal Treatment of Onion Encryption 265

All peer-to-peer communication occurs over these TLS connections. The aim
of the network is to prevent outsiders or participating nodes from linking the
recipient of a message to its source.

A user’s application data is routed over fixed paths called circuits. A circuit
is a path within the Tor network consisting of two or more ORs; the default is
three. At the start of the circuit is an onion proxy which transmits data over
the circuit, though Tor does not consider the OP to be part of the circuit. The
exit node is the onion router responsible for delivering application data to the
intended recipient (who may well reside outside the network). By default, the
last node in a circuit acts as an exit node, but other nodes in the circuit may
also act as exit nodes—a feature sometimes referred to as “leaky pipes”. These
variable exit nodes are supported in Tor by allowing multiple streams to run
over the same circuit; for the most part we will ignore this complication and
assume the exit node will be the last node of the circuit.

An onion proxy is responsible for establishing its circuits. To this end, it will
select a sequence of onion routers in the circuit, where each node can appear only
once. The proxy establishes a symmetric key with each of the routers in sequence
using the circuit extend protocol: at each step the circuit is extended by one hop
in a telescopic fashion, so the key agreement with the i + 1th node in the circuit
runs over the current, partial circuit with the ith node temporarily taking on the
role of exit node. Circuit establishment in Tor enables a bidirectional channel
between the onion proxy and the exit node.

Once a circuit is established, the OP shares a symmetric key with each node
in that circuit. Furthermore, each OR shares a distinct circuit identifier with
each node that is adjacent to it in the circuit. The circuit is then used by the OP
to instruct the exit node to establish a TCP connection to a specific address and
port (the stream protocol). Data intended for this stream is then encapsulated
in relay cells, and the relay protocol protects each cell with a checksum and
multiple layers of encryption: the OP adds a layer of encryption (128-bit AES
in counter mode) for each OR in the circuit. Upon receiving a relay cell, an OR
looks up the cell’s circuit identifier and uses the corresponding key to remove a
layer of encryption. If the cell is headed away from the OP, the OR then checks
whether the resulting cell has a valid checksum. The checksum is composed of
two all-zero bytes and a four-byte digest computed through a seeded running
hash over the data. If valid, the OR interprets the relay cell to be intended for
itself (any node in the circuit can act as an exit node). Otherwise it looks up
the circuit identifier and the OR for the next hop in the circuit, replaces the
circuit identifier, and forwards the relay cell to the next OR in the circuit. If
the OR at the end of the circuit received an unrecognised relay cell, an error
has occurred and the circuit is torn down. An OP treats incoming relay cells
similarly: it iteratively removes an encryption layer for each OR on the circuit
from closest to farthest. If at any point the checksum is valid, the cell must have
originated at the OR whose layer has just been removed.

In Tor, all data exchanged between nodes is encapsulated in cells. In the
majority of cases, cells are of a fixed size. In version 4 and higher, fixed-size cells

266 J. P. Degabriele and M. Stam

are 514 bytes long and consist of a header and a payload portion. The header is
composed of a four-byte circuit identifier id, and a single-byte command field cmd
indicating what to do with the cell’s payload. Circuit identifiers are connection-
specific, so as a cell travels along a circuit it will have a different circuit identifier
on each OP/OR and OR/OR connection that it traverses. The cell’s payload is
protected using onion encryption, where each cell is additionally TLS encrypted
on its OP/OR, resp. OR/OR connection. Based on their command field, cells
are either control cells to be interpreted by the node that receives them, or relay
cells which carry end-to-end stream data. Control cells serve to create, maintain
and tear down circuits. Relay cells have an additional relay header located at
the front of the payload composed of a two-byte stream identifier, a six-byte
checksum, a two-byte length field, and a single-byte relay command field. The
stream identifier allows multiple stream traffic to be multiplexed over the same
circuit. The checksum is used by ORs to determine whether they are the intended
recipient of the cell, while the length field specifies the size of the relay payload
in bytes. Relay commands are exchanged between the Onion Proxy and the exit
node to manage TCP streams, such as for instance to instruct an exit node to
open a TCP connection to some destination specified in the relay payload.

Our focus is on the onion encryption component of Tor, which means we will
abstract away most of the details of how an onion proxy initially connects to
the Tor network, how it chooses which circuit to create, and how the telescopic
key agreement operates. Instead, we will assume that all necessary keys have
already been established in a secure manner and that secure channels between
nodes (e.g. based on TLS) are readily available. We collapse the stream and the
relay protocols and only directly consider sending arbitrary length messages,
thus ignoring complications arising from treating data as a stream [22].

2.2 On the Relative Severity of Tagging Attacks

We have already alluded to the similarity between tagging attacks and traffic
correlation attacks, which in turn raises the question as to why should we bother
with tagging attacks at all when seemingly equally powerful attacks are possible.
There is indication however that tagging attacks can be significantly more dam-
aging than traffic correlation attacks. The arguments in support of this claim
stem from the analysis in two anonymous posts on the Tor developers’ mailing
list by The23rd Raccoon from 2008 and 2012 [35,36]. In turn these observations
prompted the Tor project to reverse its decision and seek to protect against tag-
ging attacks [31,32]. We here attempt to give some insight into this rationale
but refer the reader to the actual posts for further details.

The main distinctive advantage of tagging attacks over traffic correlation
attacks is that a circuit can be confirmed with a zero chance of a false positive
(i.e. two end points being categorised as belonging to the same circuit when in
reality they do not). In contrast, traffic correlation techniques inevitably incur
false positives with non-zero probability. Moroever, the base rate fallacy implies
that even a relatively small false positive rate severely reduces the overall efficacy
of traffic correlation attacks as the network size increases [35]. While the original

Untagging Tor: A Formal Treatment of Onion Encryption 267

post [35] did not make any mention of tagging attacks it is easy to see that
tagging attacks are immune to this phenomenon and therefore scale much better
than traffic correlation attacks.

Another argument in support of the severity of tagging attacks is their inher-
ent “amplification” effect as described by The23rd Raccoon in 2012 [36]. (Perhaps
amplification is not the most appropriate term but to avoid confusion we stick with
The23rd Raccoon’s choice.) The amplification relies on the tear down of circuits as
soon as a tagged cell is not untagged at the exit of the network (and similarly, when-
ever cells that were not previously tagged are “untagged”). The immediate effect is
that uncompromised circuits will be automatically filtered out and the adversary
does not have to dedicate further resources to them. A secondary effect is that,
when the OP attempts to re-establish a circuit using a new path, with some prob-
ability both entry and exit routers will be under adversarial control. Thus tagging
attacks bias the creation of more compromised circuits. In principle, this ampli-
fication could be simulated using a traffic correlation attack by actively tearing
down uncorrelated circuits, though again, false positives limit the efficacy of this
approach [36].

Regrettably, tagging attacks cannot easily be prevented by detection and
subsequent eviction of dishonest routers. For instance, although tagging attacks
have been known since at least 2004, in 2014 they were successfully deployed
against Tor without being noticed until months later [2]. Secondly, a client can
only detect modification as a circuit failure but the natural failure rate in the Tor
network is high enough to complicate timely detection of an attack. Moreover,
even if a circuit failure is correctly classified as an attack, identifying the mali-
cious onion routers is far from obvious. It requires independent onion routers to
collaborate, including a mechanism to resolve disputes as misbehaving routers
could manipulate the evidence in order to shift the blame on other routers.
Such collaboration is further hampered as the required exchange of informa-
tion should not allow the reconstruction of the affected circuits as it would de-
anonymise their users in the process—precisely what we are trying to prevent in
the first place. Finally, an attacker in full control of the exit nodes through which
the tagged traffic flows can avoid detection altogether. Using tagging attack in
conjunction with preliminary traffic analysis could realistically lead to such a
scenario.

2.3 Notation

If S is a finite set then |S| denotes its size, and y ←$ S denotes the process of
selecting an element from S uniformly at random and assigning it to y. An oracle
may return the special symbol � to suppress output; in contrast ⊥ denotes an
error message that is output by some scheme.

We denote vectors in bold letters or explicitly by listing their components
in between []. For any vector v, we denote its ith component by v[i], its size
by |v| and we endow it with a function v.append(e) that extends v with a new
component of value e. We use [e]n1 to denote a vector of size n whose entries
are all set to e. We also make use of queue structures, where for any queue Q

268 J. P. Degabriele and M. Stam

the function calls Q.enqueue() and Q.dequeue() bear their usual meaning. Unless
otherwise specified, all vectors and queues are initially empty.

3 Modelling Onion Routing Networks

Ultimately, our goal is to quantify how well the cryptologic component of cell
creation and processing provides security and anonymity, even against adaptive
adversaries. Our model abstracts away certain aspects that are highly relevant
in practice (e.g. key management and traffic analysis), but that are to a large
extent orthogonal to the cryptographic channel security. To ensure our formalism
reasonably matches intuition, we embedded some Tor specific design choices
into our syntax, yet our syntax is considerably more general in order to capture
alternative cryptographic solutions as well. As a result, we strike a balance to
avoid needless complexity as much as possible.

We consider two types of roles, corresponding to Tor’s onion proxies and
onion routers, respectively. The onion routers and proxies are modelled by nodes
in a graph, with the (directed) edges representing possible direct communica-
tion. Our assumption is that each directed edge corresponds to an independent,
unidirectional secure channel, and that the graph is a complete directed graph,
allowing any party to communicate securely and directly (but not anonymously!)
with any other party. If desired, one could consider other graphs to represent
topological restrictions. All parties have a unique, publicly known identifier, and
can take on the role of both proxy and router—even though we often write as if
these are completely different entities.

As in Tor, the onion proxies are responsible for initializing circuits and for
encrypting messages to a circuit, which we assume is used for unidirectional
anonymous communication. A circuit consists of an onion proxy and a path p
through the graph of onion routers. The path should be acyclic and its length is
denoted �. The circuit is then represented as a vector of nodes p[1], . . . ,p[�] where
we abuse p[0] to refer to the circuit’s onion proxy so p allows the identification
of not only the � routers, but also the proxy. By convention, we set p[� + 1] = �
to indicate the end of a circuit, where the symbol � is reserved solely for this
purpose and cannot be assigned to any node. For any circuit, we use the terms
sending node, receiving node and forwarding nodes to refer respectively to the
OP, the path’s last node p[�] and intermediate nodes p[1], . . . ,p[� − 1] in the
path. Note that our receiving node corresponds to Tor’s exit node, whereas the
party outside the network with which the exit node communicates is beyond the
scope of our formalism.

Both onion proxies and onion routers maintain a vector of states, containing a
state for each of the circuits they are involved with. There is a notable difference
in their use, as proxies use their state for encryption and will know which circuit
it is for (and therefore which ‘state’ to use), whereas for routers, upon receipt of
a cell they will first have to figure out which of its circuits it is intended for, if
any. Accordingly, we split decryption into two separate stages, D and D̄, where D
is responsible for figuring out the relevant circuit and D̄ for the proper processing

Untagging Tor: A Formal Treatment of Onion Encryption 269

of the cell. Note that the identity of the cell’s sender can be used to help identify
the circuit, though not necessarily uniquely as multiple circuits could be routed
along the same edge.

We require that a node maintains its individual decryption states in two
separate state vectors τ and τ̄ , relevant for D and D̄, respectively. Each time
a new circuit is created, every forwarding and receiving node in that path will
append a new component to its decryption state vectors τ and τ̄ .

Our two-stage model (D, D̄) for the processing of cells, is very much a choice
for which level of generality to strive for. On the one hand, it reflects practical
protocol designs such as Tor, without being overly prescriptive on quite how
routing has to work. On the other hand, our model is evidently less general
than a single stage model, that might allow arbitrary changes to its state. Our
split in two stages, coupled with the restrictions on how the state looks and can
be affected, guarantees that the processing of cells for one circuit cannot unduly
influence the later processing of a cell associated to a different circuit. This guar-
anteed robustness significantly simplifies the definition of security games later
on, as all circuits which the adversary has not interacted with, will still behave
correctly. For a more general syntax, robustness does not follow automatically
and would have to be modelled separately.

3.1 Onion Encryption

A (symmetric) onion encryption scheme OE = (G,E,D, D̄) is a quadruple of
algorithms (see Fig. 2) to which we associate a message space MsgSp ⊆ {0, 1}∗

and a cell space CelSp ⊆ {0, 1}∗.

– The stateful circuit creation algorithm G is an abstraction of how cir-
cuits are created (which in reality is more likely to be an interactive pro-
cess). It takes as input a path p that is not allowed to loop (by using
the same router multiple times) and includes the proxy p[0]. It updates
its own state � (initially � = ε) and returns an initial encryption state

p G

�

t, t̄
σ

m E

σ[w]

c, d

c, s

τ

D

⊥

D̄

τ̄ [w]
d, c

�, m

�, ⊥

Fig. 2. Our syntax illustrated, showing the various possible outcomes during decryp-
tion. The end-of-circuit symbol � indicates that the current node is the intended recip-
ient; the loops above algorithms indicate a state update.

270 J. P. Degabriele and M. Stam

σ (given to p[0]) and two vectors, t and t̄, of initial decryption state
components, one for each router in the path, so |t| = |t̄| = |p|. Upon
receipt of their respective entries of t and t̄, the routers append these
entries to their decryption state pair (τ , τ̄). That is, if p = [a, b, c, d, e], we
update the individual decryption states by the following sequence of oper-
ations: τ b.append(t[1]), τ̄ b.append(t̄[1]), . . . , τ e.append(t[4]), τ̄ e.append(t̄[4]).
Similarly the proxy’s encryption state vector is updated by σa.append(σ).
As shown above, we will indicate the identity of the node to which a state
vector or state variable belongs through its subscript. See also Add(p) (Fig. 3)
for G in action.

– The algorithm E is used by a proxy to send messages to one of its circuits.
Given the current encryption state σ[w] for a circuit indexed locally by w
and a message m ∈ MsgSp, the algorithm E updates the encryption state and
returns an initial cell c ∈ CelSp as well as the identity d of the router to which
the cell has to be forwarded to.

– The deterministic algorithms D and D̄ are jointly responsible for processing
an incoming cell c by a router. In the first stage, D associates the cell c to
one of its circuits, where it can also use the identity of the source node s from
which it received the cell. Importantly, D takes as additional input the node’s
entire first decryption state τ , but without the possibility to change this state.
It returns a ‘local’ index w indicating to which circuit it has associated the
cell and hence which component of the second decryption state τ̄ should be
used by D̄ to process the cell. The symbol ⊥ indicates that the cell could not
be associated to a circuit.
In the second stage, D̄ takes the state component τ̄ [w], as well as the source
node and cell. It can update the decryption state component (though not any
other part of the state) and return an output string x and a destination node
d. The value d indicates the node to which the string x is to be forwarded,
where x ∈ CelSp. Alternatively, if d = �, the router knows it is the intended
recipient, in which case x ∈ MsgSp ∪ {⊥}.

A Cell’s Trajectory and Lifecycle. Once E has output a cell c and an initial
router d, we could start following that cell through the network: present the cell
c to d, receiving new cell c′ and destination d′, so forward c′ to d′, etc. until a
router either outputs ⊥ or d′ = �. This process determines the trajectory of the
cell, namely the chronological sequence of routers that process it, as well as the
lifecycle of the cell, namely the sequence of cells that is input to routers during
this processing.

In the description above, we implicitly assumed that the routers on the cell’s
trajectory were exclusively processing the cells in its lifecycle. In reality there
will be much more traffic that the routers will process. This additional processing
can affect the routers’ states and consequently change the real-life trajectory and
lifecycle of a cell. Our syntactical choices, such as deterministic processing by
D̄, ensure that the lifecycle of a cell is fixed, as long as the real-life trajectory
matches the path corresponding to the cell’s intended circuit (cf. the security

Untagging Tor: A Formal Treatment of Onion Encryption 271

notion trajectory integrity, see the full version [18]). The ability to effectively
predetermine a cell’s lifecycle will turn out crucial when defining the security
notion circuit hiding (Definition 4); it was exploited using a slightly different
formalism in the context of public key, circuitless onion routing [11].

Local Versus Global Perspective. A key goal of onion routing is to ensure
that routers are unable to link the recipient of a message to the proxy from
which it originated, unless all the routers on a circuit collude. This necessitates
that the router’s view of a circuit is local: it knows which of its own circuits a
cell belongs to (D’s output), but otherwise a router should only be aware of the
nodes that are directly adjacent to it.

Yet, when formalizing security notions (or correctness), we will need a global
view and a way to move effortlessly from a router’s local perspective to a more
global view. To this end, we associate a global circuit index to each circuit upon
creation and define the function map that takes a global circuit index and router
index on the corresponding circuit and maps it to the node identifier and local
circuit index. We allow the router index to be 0, so for instance (v, w) = map(i, 0)
indicates that v = pi[0] is the proxy for the circuit with global index i. The
partial inverse map map−1 takes a node’s identifier (which cannot be �) and its
local circuit index, and maps it back to the global view: which circuit is this and
how far along the circuit does v occur. Both map and map−1 are dynamically
defined (as new circuits can be created) and both are only ever called on their
proper domains (values for which the functions are by then well-defined), with
the convention that map(i, |pi| + 1) and map(i,−1) are set to (�, 0).

3.2 Correctness

Correctness guarantees that honestly generated cells are routed correctly and
decrypt to the original messages at their intended destination in the same order
as they were sent. Correctness should hold regardless of which circuits are created
when, or the order in which cells are processed, as long as the order of cells
belonging to the same circuit is preserved.

We formulate correctness through a game (see Fig. 3) whereby a scheduler is
allowed to create circuits, choose the messages to be sent by the sending nodes,
and determine the order in which individual routers process cells across different
circuits. Reordering of cells belonging to different circuits models unpredictabil-
ity of delays across the physical network, as well as the router’s (limited) liberty
to mix up the processing of cells to hamper traffic analysis. The scheduler how-
ever is not allowed to tamper with cells.

Concretely, for each circuit i we maintain a list mi of the messages being sent
through that circuit (using Enc), and check at the router’s end (Pass) whether
the messages arrive in order (the counter ctri indicates the next message on mi

that should be received). Moreover, for each circuit i and each of the |pi| routers
on its path (counted using j), we maintain a queue Qi

j to keep track of the cells
that are waiting to be processed by that router. Thus processing a cell by a

272 J. P. Degabriele and M. Stam

forwarding router results in dequeuing for the current router and circuit, and
enqueuing for its successor router.

Definition 1 (Correctness). An onion encryption scheme OE is said to be
correct if for all scheduling algorithms S (including computationally unbounded
ones) it holds that:

Pr
[
TRANSMITS

OE ⇒ true
]

= 0,

where the game TRANSMIT is given in Fig. 3.

Game TRANSMITS
OE

� ← ε; n ← 0

win ← false

SAdd,Enc,Pass

return win

Pass(i, j)

if ¬(0 < j ≤ �i) ∨ Qi
j = []

return

c ← Qi
j .dequeue()

s ← pi[j − 1]

(v, w′) ← map(i, j)

w ← D(τ v, s, c)

if w �= w′

win ← true

return ⊥
(τ̄ v[w], d, x) ← D̄(τ̄ v[w], s, c)

if j < �i ∧ d = pi[j + 1]

Qi
j+1.enqueue(x)

elseif j = �i ∧ d = � ∧ x = mi[ctri]

ctri ← ctri + 1

else win ← true

return (d, x)

Enc(i, m)

(v, w) ← map(i, 0)

mi.append(m)

(σv[w], d, c) ← E(σv[w], m)

if d �= pi[1]

win ← true

else

Qi
1.enqueue(c)

return (d, c)

Add(p)

if |p| ≥ 1

n ← n + 1

pn ← p; �n ← |p|
ctrn ← 1

(�, σ, t, t̄) ← G(�,p)

if |t| �= �n ∨ |t̄| �= �n

win ← true

σp[0].append(σ)

for j = 1 to �n

v ← p[j]

τ v.append(t[j])

τ̄ v.append(t̄[j])

return n

Fig. 3. The TRANSMIT game used to define correctness for onion encryption schemes.

Untagging Tor: A Formal Treatment of Onion Encryption 273

3.3 Security

Onion routing networks should satisfy a range of security notions. In Sect. 5
we will deal with anonymity (in the form of circuit-hiding), and in Sect. 4 we
concentrate on integrity and confidentiality, where the goal is that every circuit
should implement a secure channel, even if the adversary has full control of the
intermediate routers. Though we cannot give full control to an adversary in the
anonymity setting, our security definitions in both sections share a number of
modelling choices, as explained below.

Firstly, all our security notions are game-based where we simply define an
adversary’s advantage, without making an explicit and precise statement of what
constitutes “secure”. This concrete security approach is gaining traction for real
world cryptosystems and would be harder to achieve in for instance an asymp-
totic UC framework. Secondly, all our formal definitions are multi-user definitions
in the context of the entire routing network. For simplicity and wherever possible,
our intuitive explanations only address what happens for a single circuit.

The customary threat model is to protect against adversaries who can
“observe some fraction of network traffic; who can generate, modify, delete, or
delay traffic; who can operate onion routers of their own; and who can compro-
mise some fraction of the onion routers.” [20]. When we map this threat model to
our formal model, we first need to factor in the effect of the secure, unidirectional
node-to-node communication. On a single edge, a passive outside adversary will
be able to see the timing and volume of traffic. While this is extremely potent
information to perform traffic analysis, our focus on the core cryptographic com-
ponent renders this information largely out of scope. An active outside adversary
can delay traffic on an edge (or delete all future traffic), but the edge’s chan-
nel security will prevent it from inserting, modifying (including reordering and
replaying), or deleting any of these cells. However, if a router is set to receive
two cells from different routers, the adversary could control which one will arrive
first. Fortunately, our two-stage approach to decryption with the router’s state
update restricted to a single circuit, makes the order in which cells associated
to different circuits are processed irrelevant. Thus, for circuit hiding (Sect. 5) we
restrict the adversary to the network interface it obtains from the compromised
onion routers. For channel security we expand the adversary’s power slightly (see
Sect. 4).

The operation and compromise of routers is modelled by selective corrup-
tions, where the adversary has to specify the set C of nodes it wishes to corrupt
at the outset. For corrupted nodes, an adversary will learn the state of the router
(incl. future updates), have access to all incoming cells to that router, and have
full control over the cells being sent out to other routers. Recalling that circuit
creation G outputs the triple (σ, t, t̄) encoding the state updates of the proxy
and routers on the circuit’s path, we denote with (σ, t, t̄)|C those state updates
that are associated with corrupted nodes.

Our choice for selective corruptions only is informed by the often unfore-
seen complications that adaptive corruptions bring with them (see for instance
selective opening attacks [4] and non-committing encryption [34]). Moreover,

274 J. P. Degabriele and M. Stam

formalizing secure channels in a multi-user setting is relatively uncommon
(cf. [30]) and introducing adaptive corruptions is, as far as we are aware of,
unexplored.

4 Channel Security

We model channel security by considering both integrity and confidentiality,
where we concentrate on the end-to-end effect (so plaintext integrity instead
of ciphertext integrity and left-or-right indistinguishability instead of ciphertext
indistinguishability). Moreover, we consider a slightly stronger threat model as
the one alluded to above: even if an adversary has not corrupted a node, we will
allow the adversary full control over its incoming and outgoing edges. Thus the
end-to-end channel security of a circuit established by Tor should rely purely
on its two end points not being compromised. Consequently, the unidirectional
node-to-node security provided by TLS is of no use to establish channel security.

Plaintext Integrity. Plaintext integrity guarantees that, even in the presence
of an adversary with almost full knowledge of all states and full control of the
network, an honest receiving node can be reassured that the messages it outputs
correspond to those being sent (assuming the sending node is uncompromised).
This captures the inability for an adversary to inject, modify, reorder, or replay
messages.

The game PINT (Fig. 4) models plaintext integrity. For each circuit with an
honest proxy, we maintain a list mi to check whether messages arrive unmod-
ified and in the correct order at the honest receiver. The oracle Proc(s, v, c)
models node v’s processing of cell c received from s. We do not insist that s is
corrupt, thus we allow an adversary to inject cells even on edges for which it
does not control the sending node, notwithstanding our assumption on secure
node-to-node communication. This modest strengthening of the notion results
in a slightly cleaner game.

Mirroring the correctness game, the counter ctrn indicates the next message
on mn that should be received. As one would when defining plaintext integrity
for ordinary channels, if the honest receiver accepts a message that wasn’t sent
(in that order), the adversary wins. Additionally—and this concept appears
unique for routing networks—if an intermediate forwarding router believes a
cell contains a valid message intended for it, the adversary wins. This win is a
consequence of our choice not to allow “leaky pipes”[20].

Also note that indexing a vector component that does not exist is assumed
to return a special symbol outside the set {0, 1}∗. That is, for any vector m and
any k > 0, if |m| = t then m[t + k]
= ε. In particular if the onion encryption
scheme allows ‘dummy’ cells that decrypt to the empty string, an adversary that
is able to forge such a dummy cell is deemed successful in the game PINT.

Definition 2. The plaintext integrity advantage of adversary A against OE is
defined by

AdvPINT
OE (A) = Pr

[
PINTA

OE ⇒ true
]
,

where the game PINT is given in Fig. 4.

Untagging Tor: A Formal Treatment of Onion Encryption 275

Game PINTA
OE

� ← ε; n ← 0

win ← false

(C, st) ← A1

AAdd,Enc,Proc
2 (st)

return win

Add(p)

if |p| ≥ 1

n ← n + 1

pn ← p; �n ← |p|
ctrn ← 1; syncn ← true

(�, σ, t, t̄) ← G(�,p)

σp[0].append(σ)

for j = 1 to �n

v ← p[j]

τ v.append(t[j])

τ̄ v.append(t̄[j])

return (σ, t, t̄)|C

Enc(i, m)

(v, w) ← map(i, 0)

if v ∈ C
return

mi.append(m)

(σv[w], d, c) ← E(σv[w], m)

return (d, c)

Proc(s, v, c)

if v ∈ C
return

w ← D(τ v, s, c)

if w =⊥
return ⊥

(i, j) ← map−1(v, w)

(τ̄ v[w], d, x) ← D̄(τ̄ v[w], s, c)

if d = � ∧ x �=⊥
if j = �i ∧ x = mi[ctri]

ctri ← ctri + 1

else

win ← true

return (d, x)

Fig. 4. The PINT game used to define plaintext integrity for onion encryption schemes.
The syncn flags in the Add(p) oracle are used in later games.

Confidentiality. Confidentiality guarantees that an adversary gains no knowl-
edge about the content of messages being sent on a circuit, as long as both
the receiving and sending nodes are uncompromised. Otherwise, the adversary
may have full knowledge of all states (except �) and full control of the network.
As usual for confidentiality, it is possible to provide both a passive ‘CPA’ and
an active ‘CCA’ variant. Our game (Fig. 5) captures ‘chosen cell attacks’; for
the weaker chosen plaintext attack variant simply remove adversarial access to
Proc.

The mechanism to define chosen cell attacks is an adaptation of left-or-
right CCA indistinguishability for stateful encryption [6], combined with the
plaintext-oriented suppression of ‘decryption’ queries as introduced in the con-
text of RCCA security [12]. (The ‘R’ from RCCA for replayable has become a

276 J. P. Degabriele and M. Stam

misnomer in our context.) In our view, a plaintext-oriented CCA notion better
matches the philosophy of end-to-end security (like plaintext integrity), making
it cleaner to define and less dependent on assumptions how the channel is imple-
mented. We opted for left-or-right over real-or-random as the former in general
appears slightly more robust in a multi-user setting [7], despite their fairly tight
equivalence for a single-instance.

The lists mi are as before, though as we are considering a left-or-right notion,
they will either contain all the ‘left’ or all the ‘right’ messages. The Proc ora-
cle plays the role of decryption oracle, which would result in trivial wins if an
adversary were allowed to learn the decryption result of the final cell. As long
as the receiving router is in-sync with the proxy, the message to be output will
be suppressed from the adversary (by returning � instead). Once a single mes-
sage deviates (which includes the error symbol ⊥) the receiving node is deemed
out-of-sync and henceforth its output will no longer be suppressed. Intermediate
nodes are deemed out-of-sync from the get go, so their output will never be sup-
pressed; of course an adversary might well have corrupted all forwarding nodes
in the circuit.

Definition 3. The plaintext confidentiality advantage of adversary A against
OE is defined by

AdvLOR
OE (A) = 2 · Pr

[
LORA

OE ⇒ true
] − 1,

where the game LOR is given in Fig. 5.

Trajectory Integrity. If all behaviour is honest, a cell is guaranteed by cor-
rectness to follow its intended trajectory. However, an adversary could interfere
by injecting and modifying traffic potentially affecting the routing of cells. We
provide a formal definition of inconsistent routing in the full version [18] under
the name (cell) trajectory integrity. We assume an adversary has full control over
the network and it knows all the parties’ secrets, notwithstanding we assume all
parties will still honestly process cells using the Proc(s, v, c) oracle. Both D and
D̄ could lead to inconsistent routing, where a cell’s trajectory does not match
the path of a single circuit, or does not match the path of the circuit originally
used by the proxy to create the cell (modelled by the Enc(i,m) oracle).

5 Anonymity

Overview. In an onion routing network, anonymity relies on a number of
factors, such as the size of the network, the amount of traffic, the length
of the anonymous channels (circuits), etc. Anonymity services such as sender
anonymity and unlinkability can only be attained if the topology of the network
of circuits remains hidden. We investigate how the cryptographic properties of an
onion encryption scheme can contribute towards hiding the network’s topology
from an adversary.

Untagging Tor: A Formal Treatment of Onion Encryption 277

Game LORA
OE

� ← ε; n ← 0

win ← false

b ←$ {0, 1}
(C, st) ← A1

b′ ← AAdd,Enc,Proc
2 (st)

return b = b′

Enc(i, m0, m1)

(v, w) ← map(i, 0)

if v ∈ C ∨ pi[�i] ∈ C ∨ |m0| �= |m1|
return ³

mi.append(mb)

(σv[w], d, c) ← E(σv[w], mb)

return (d, c)

Proc(s, v, c)

if v ∈ C
return

w ← D(τ v, s, c)

if w =⊥
return ⊥

(i, j) ← map−1(v, w)

(τ̄ v[w], d, x) ← D̄(τ̄ v[w], s, c)

if j = �i ∧ d = �
if c = mi[ctri] ∧ synci = true

ctri ← ctri + 1

return

else

synci ← false

return (d, x)

Fig. 5. The LOR game used to define left-or-right indistinguishability for onion encryp-
tion schemes. For the Add(p) oracle refer to Fig. 4.

Our starting point is an indistinguishability game where the adversary gets
to interact with one of two possible networks of his choice, and is required to
guess which network it is interacting with. The adversary’s interaction with and
view of the network is facilitated by the nodes of the network it has corrupted
and thus controls. An adversary controlling part of the network will inevitably
gain partial information about that network, in particular about the topology
of its circuits. For instance, for a corrupted node, an adversary will always be
able to learn the previous and subsequent nodes of each of the corrupted node’s
circuits. For a circuit being routed through a contiguous sequence of corrupted
nodes, the adversary can piece together the directed subcircuit as formed by
those corrupted nodes and their adjacent honest nodes. The restrictions on an
adversary’s behaviour to avoid ‘trivial’ wins (e.g. if these observable, directed
subcircuits differ between the two worlds) form a critical component of our circuit
hiding game C-HIDE.

In the first stage of this game (see Fig. 7), the adversary A1 specifies a pair
of vectors of circuits W0 and W1, and a set of corrupted nodes C. Subject to a
number of checks to avoid trivial wins (implemented by the predicate Valid as
explained below), the game uses the procedure Init-Circ to initialize either the
W0 or W1 network. The adversary is given τC containing the states of corrupted
nodes, but with a twist: after all circuits have been created by Init-Circ, the
router’s decryption-state vectors are all shuffled (and the map function will refer
to the state post-shuffle). The shuffling reflects a secure implementation that

278 J. P. Degabriele and M. Stam

avoids “order” correlation attacks by linking traffic through the order in which
circuits were set up. For further justification on why this shuffling is necessary,
we refer the reader to the full version of this paper [18]. Without this shuffling,
security against active attacks appears a lot harder to achieve in the absence of
very strong cell integrity.

In addition, the adversary is given access to the network by means of two
oracles. The encryption oracle Enc can be used to trigger honest proxies to
encrypt any message for one of its circuits. The network oracle Net provides
collective and suitably restricted access to the honest routers in the network, as
explained below. The goal of the adversary it to guess which of the two networks
(W0 or W1) it is interacting with.

Below we will often refer to segments of a circuit. A circuit segment is defined
to be a maximal subpath of a circuit such that its constituent nodes are either
all honest or all corrupt. Thus any circuit uniquely decomposes into multiple
segments (alternating honest and corrupt) and we can refer to, say, the first
honest segment or the second corrupted segment in a circuit. Here the order of
segments is understood to start from and include the proxy.

Challenge Validity (W0,W1, C). The predicate Valid(W0,W1, C) checks
that the adversary’s choice of networks does not allow a trivial win. A fair number
of conditions are checked for this purpose, where we additionally disallow some
settings where, without loss of generality, an adversary could achieve the same
advantage while adhering to our restrictions (if corruptions were adaptive, these
simplifications would be less clean). We list the conditions and their justifications
below.

1. The two circuit vectors W0 and W1 contain the same number of
circuits, i.e. |W0| = |W1|.

The interface which we provide to the adversary for interacting with the network
allows it to easily infer the number n of circuits present in the network; mainly
through its oracles and by inspecting the states of the nodes that it controls.
While for sufficiently large networks this may be hard to determine in practice,
we do not aim to conceal this information through cryptographic means.

2. Every circuit in W0 and W1 contains at most two corrupted seg-
ments.

This restriction keeps the complexity of the security definition manageable. The
consequence of this assumption is that the most complicated honest–corrupt
configuration for a circuit will be two corrupted segments and up to three hon-
est segments, with one of these honest segments sandwiched between the corrupt
nodes. This middle honest segment will play an import role. For circuits consist-
ing of a proxy and three routers—the default circuit length in Tor and sufficient
for a minimal working example of the tagging attack [24]—the restriction is
without loss of generality.

Untagging Tor: A Formal Treatment of Onion Encryption 279

3. For each i, circuits W0[i] and W1[i] share a subpath [v1, v2, . . . ,
vm−1, vm] where v2 is the first corrupted node in either circuit,
nodes v2 . . . , vm−1 are corrupted, and either vm is honest or it is
the last node in both W0[i] and W1[i].

When we introduce the Enc oracle, an adversary will be able to select a cir-
cuit with an honest proxy and ask for a message to be encrypted. The resulting
ciphertext will be processed by the honest routers before a cell is handed to one
of the routers under adversarial control. While the specific path a circuit index
points to depends on which network the adversary is interacting with, this con-
dition ensures that a message encrypted for circuit i will reach the adversary on
the same edge and, where applicable, reenters the honest component identically,
irrespective of the challenge bit b.

4. For a given circuit vector consider the multiset of subpaths
[v1, v2, . . . , vm−1, vm] where nodes v1 and vm are honest and nodes
v2 . . . , vm−1 are corrupted. Then the corresponding multisets for W0

and W1 should be identical.

An adversary can always infer the directed subcircuits overlapping with the
nodes it has corrupted, by observing to which state component (w) a cell gets
associated to at each corrupted node. Thus the two networks are required to
match on these directed subcircuits, including the adjacent honest nodes.

5. For all i, if either W0[i][0] ∈ C or W1[i][0] ∈ C then W0[i] = W1[i].

If a circuit’s proxy is corrupted in either of the two worlds, then the corresponding
circuit must be the same in both networks. The rationale is that we assume that
a proxy’s state reveals the entire path of routers for each of the circuits it is
involved in.

Altogether the conditions so far ensure that any information that is inevitably
leaked through the corrupted nodes is identical in both worlds; the final two
conditions are simplifying conditions.

6. For all i there exists j > 0 such that W0[i][j]
∈ C.

Every circuit must contain at least one honest router. If all routers in a cir-
cuit were corrupted (possibly with an honest proxy), by condition 3 the circuit
(including the proxy) must be identical in both networks. The inclusion of such
circuits does not benefit the adversary, as can be shown by a straightforward
reduction, so for simplicity we assume that every circuit includes at least one
honest router.

7. Every circuit in W0 and W1 contains at least one router in C.
An adversary has very little control over a circuit consisting entirely of hon-
est nodes: while it could trigger the encryption oracle, it wouldn’t actually be
able to observe any of the cells travelling on that circuit (as all the connections
between honest nodes are protected). Moreover, for schemes that satisfy trajec-
tory integrity, the creation and operation of honest circuits has no influence on

280 J. P. Degabriele and M. Stam

the rest of the network (cryptographically speaking). Therefore, without loss of
generality, we assume that the network does not contain all-honest circuits.

As each circuit has to contain at least one honest node and one corrupt node,
for all circuits p in the C-HIDE game we will have that |p| ≥ 2.

W0 1

2
3 4

5

6 7

8

9
10

11

12 13

14
15

W1 1

2
3 4

5

6 7

8

9
10

11

12 13

14
15

Fig. 6. An example of a valid challenge, where W0 = [[2, 6, 9, 13], [1, 3, 6, 10,
12, 15], [4, 7, 10, 13, 14], [5, 8, 11, 13]], W1 = [[2, 6, 9, 13, 14], [3, 6, 10], [1, 4, 7, 10, 12, 15],
[5, 8, 11, 13]], and C = {5, 6, 7, 14, 15} (marked in red). (Color figure online)

An example of a valid challenge for the circuit-hiding game is depicted in
Figure 6. Both circuit vectors contain 4 circuits, each of which contain at most
two corrupted segments. In this particular case the proxy of circuit [5, 8, 11, 13]
is corrupt and accordingly it is identical in both worlds. The encryption oracle
can be queried on any of the first three circuits (i.e. i ∈ {1, 2, 3}), as their proxies
are honest. In W0 the onion proxies corresponding to the three indices are 2,
1, and 4, whereas in W1 they are 2, 3, and 1. However in either case the corre-
sponding cells are returned on the same edges, i.e. (2, 6), (3, 6), (4, 7). The Net
oracle consists of the subgraph containing the nodes 8, 9, 10, 11, 12, 13 and can
be accessed through four input edges (6, 9), (6, 10), (7, 10), (5, 8) and two output
edges (12, 15), (13, 14). Note that while the internal structure of this subgraph
differs between the two cases, the interface that the adversary sees, i.e. the set
of input and output edges, is identical in both worlds, as required.

The Init-Circ Procedure. For each circuit in Wb this procedure calls G to
create initial states for the proxy and routers involved. Additionally some book-
keeping is performed similar to prior games. Novel are the two sets of circuit
indices, Ien and Inop, that Init-Circ keeps track of, for later use by the Net
oracle.

The set Ien contains the indices of all circuits which have an honest proxy
and contain an entry edge (the predicate en returns true), namely an edge from
a corrupt node to an honest node.

Untagging Tor: A Formal Treatment of Onion Encryption 281

Fig. 7. The C-HIDE game used to define circuit-hiding security for onion encryption.

282 J. P. Degabriele and M. Stam

The set Inop is a subset of Ien. It contains those circuits in Ien for which the
adversary is unable to observe an output. Specifically, the predicate nop returns
true iff after the first entry edge the circuit contains no corrupted nodes, i.e. the
circuit contains only one corrupted segment. Thus an adversary may inject cells
into these circuits through the entry edge, but lacking a later corrupted segment,
it is unable to ‘catch’ the processed cells. Note however that such circuits are
still highly relevant in the C-HIDE game as the adversary should not be able to
infer which cells produce no output.

The Enc Oracle. This oracle allows the adversary to encrypt a message m
under any circuit i whose proxy is honest. As the adversary can only observe
edges where one of the constituent nodes is corrupted, it will only get the cipher-
text as output by the proxy if it happens to control the node which the proxy
forwards it to. Otherwise we need to progress the ciphertext through the hon-
est part of the circuit, until hitting a corrupted router. The first while loop
takes care of this progression, resulting in a cell c∗ and edge (v∗, d∗) that will be
returned to the adversary.

However, before doing so, there is some further bookkeeping to be done on
behest of the Net oracle. Recall that we allow up to two corrupt segments per
circuit, so presumably after the corrupt segment starting with d∗ the circuit can
turn honest, and then corrupt again. In other words, there will be an honest
middle segment. The Net oracle will allow the adversary to query these honest
middle segments for all circuits simultaneously. Clearly, given Enc’s interface,
the adversary will know what messages are concealed across the various cells.
Then it can always forward these to the Net oracle, where the cells it returns (at
the interface between the honest segments and the second corrupt component)
will correspond to a subset of the original set of messages. However, the adversary
does not know which messages reside in which cells, though figuring this out
would trivially identify the circuit over which the cell was sent (e.g. by embedding
i in the message). To prevent trivial wins when an adversary also controls exit
nodes (and is therefore able to recover plaintext) the Net oracle will suppress
certain queries, based on the bookkeeping that Enc is about to do.

In the second while loop, the cell c∗ is progressed further along the corrupted
segment until the first honest node is encountered. Here the premise is that the
nodes in the corrupted segment behave honestly (where the cells are processed
using the routers’ original state variables τ̄ v[w] as the adversary has its own
separate states).

This process allows us to predetermine the cell c that the first honest node
d will receive from the corrupted segment. Unless we already reached the end of
the circuit (in which case d = �), we add this cell to a queue Qi corresponding
to the circuit i. The queue will be used by the Net oracle to detect when cells
sent by corrupt routers digress from these stored values. Once this happens, an
adversary has become active with respect to that circuit.

Untagging Tor: A Formal Treatment of Onion Encryption 283

The Net Oracle. Finally, we give the adversary oracle access to the honest
component of the network that it can inject traffic into. These are the honest
circuit segments that are preceded by corrupted nodes. In turn these honest
circuit segments may lead into a second corrupted segment or remain honest
until the end. Hence, the Net oracle may return less cells than it receives in
its input. Circuits with a corrupted proxy are also accessible through the Net
oracle, but since they must be identical in both worlds, their corresponding
output edges will be known to the adversary.

We will impose a number of restrictions on the Net oracle. After all, if the
adversary could query each honest circuit segment individually, it could distin-
guishing the two networks simply by observing on which edge the corresponding
cell is received. For this reason, the adversary can only query the honest circuit
segments in parallel, so the sandwiched honest component behaves a little like
a mix net.

Moreover, as already mentioned when discussing Enc, if the adversary is able
to forward the cells obtained from Enc straight into Net (without modification),
decryption of the resulting cells (using corrupted routers) would again allow to
distinguish the two networks. Accordingly we restrict the oracle to only return
an output when all honest circuit segments are queried in parallel and are all out
of sync. The flag synci keeps track of whether circuit i is still in sync or whether
it has gone out of sync. The exact meaning of a circuit being in or out of sync
will be explained shortly.

Throughout, the adversary may query an honest circuit segment individually,
but the output will be suppressed. This allows the adversary to progress the
states of the routers along a particular circuit, prior to making the next ‘parallel’
query.

After intercepting cells through the Enc oracle, the adversary can manipu-
late, replay and re-order these cells and re-inject them into the honest part of
the network through the Net oracle. As its input it takes a vector z of triples,
each identifying a cell together with the edge on which it is incident. The first
for loop verifies that this input satisfies two conditions. The first is that all
cells be incident on an edge which the adversary has access to, that is, an entry
edge. The other condition is that all cells must be associated to some circuit (i.e.
w
=⊥) by the honest node of the entry edge on which they are incident. If both
checks are successful, the second for loop progresses each cell through the honest
segments of their respective trajectories. In every iteration it stores the initial
cell c∗ and the circuit index i to which c∗ was associated by the first processing
node v. Every cell is progressed along its trajectory until it reaches a corrupted
node or its destination. If the cell has reached a corrupted node, the cell and the
corresponding output edge are stored in the output vector x. In addition if the
cell has reached a corrupted node or the circuit produces no output (i ∈ Inop),
the assc and sync variables for the associated circuit are updated. The variable
assci keeps track of how many ciphertexts are associated to circuit i in a single
oracle call. On the other hand, synci keeps track of whether the adversary has
become active with respect to circuit i. This is determined by comparing c∗ with

284 J. P. Degabriele and M. Stam

W0

n1 n2

n3 n4

n5

n6 n7

W1

n1 n2

n3 n4

n5

n6 n7

Fig. 8. The challenge used in the tagging attack example of Sect. 5.1, where W0 =
[[n1, n3, n5, n6], [n2, n4, n5, n7]], W1 = [[n1, n3, n5, n7], [n2, n4, n5, n6]], and C =
{n3, n4, n6, n7} (marked in red). (Color figure online)

the next available ciphertext in the queue corresponding to circuit i. If these
don’t match, synci is set to false, indicating that the circuit went out of sync.
Once a circuit goes out of sync, it stays out of sync.

It is important to note the conditions under which we update these variables.
In particular, if a circuit contains two entry edges, a cell will only affect these
variables if it has been injected through the first entry edge of that circuit. Clearly
cells injected through the second entry edge will produce no output either.

An output is returned to the adversary only if every circuit in the set Ien

has exactly one cell in z associated to it and is out of sync. The first condition
stops the adversary from correlating the endpoints merely through the number
of cells that are input and output at each end. The latter condition is analogous
to the suppression of output in stateful security definitions [1,5,10,22]. On the
other hand, circuits that have a corrupted proxy or whose routers are either all
corrupted or all honest are excluded from this requirement (since we quantify
over Ien).

Finally, before returning the output to the adversary we sort its components
lexicographically to prevent the adversary from correlating the outputs with the
inputs based on the ordering in which they have been processed by Net.

Definition 4. The circuit hiding advantage of adversary A against OE is
defined by

AdvC-HIDE
OE (A) = 2 · Pr

[
C-HIDEA

OE ⇒ true
] − 1,

where the game C-HIDE is given in Fig. 7.

5.1 Capturing Tagging Attacks

One of our main goals was to arrive to an anonymity definition that captures tag-
ging attacks, we now confirm that this is indeed the case. Consider Tor’s current
onion encryption scheme, based on counter-mode AES, described in Sect. 2.1. This

Untagging Tor: A Formal Treatment of Onion Encryption 285

scheme is not C-HIDE secure as evidenced by the following attack. The adversary
outputs the challenge described in Fig. 8. For any arbitrary message m it makes
two encryptionqueries, (1,m) and (2,m), obtaining in return the respective replies,
(n1, n3, c1) and (n2, n4, c2). The adversary progresses these cells past nodes n3 and
n4 respectively, using its own copy of the nodes’ states, to obtain the respective cells
c3 and c4. It then tags both cells by flipping the last bit and last two bits of each cell
respectively, that is, it queries [(n3, n5, c3 ⊕1), (n4, n5, c4 ⊕11)] to theNet oracle.
Since the cells’ headers are unchanged each circuit will have exactly one cell associ-
ated to it, in addition both circuits will be out of sync because both cells have been
modified by the adversary. Thus the oracle’s output will not be suppressed and it
will be of the form [(n5, n6, c5), (n5, n7, c′

5)]. At this point the adversary attempts
to untag the cells and process them at their respective exit nodes, i.e. c5⊕1 at node
n6 and c′

5 ⊕ 11 at node n7. If both decrypt correctly the adversary outputs 0 as its
guess and 1 otherwise. It is easy to see that the adversary’s advantage is very close
to 1; the only time it fails is when both c5 ⊕10 and c′

5 ⊕10 decrypt correctly, which
happens with low probability.

6 Preventing Tagging Attacks

On an intuitive level it is evident that tagging attacks in Tor are enabled by
the inherent malleability of counter-mode encryption which carries on across
multiple layers of encryption. Proposal 202 [31] identified two potential ways
of addressing this. One approach would be to borrow from mix-net designs by
appending a MAC tag to each encryption layer, where after tag verification
each node would re-pad the cell to its original length [16,17]. The other was to
replace counter mode encryption with a Variable-Input-Length (VIL) tweakable
cipher, as used in disk encryption, which impedes malleability without incurring
any ciphertext expansion. Clearly the increased space efficiency of this latter
approach is a huge bonus, but back in 2012 all known VIL tweakable cipher con-
structions were significantly slower than counter mode encryption. This changed
however with the advent of AEZ [26] whose efficiency is comparable to that of
counter mode AES, albeit at the expense of a more heuristic security analy-
sis. Now having a viable instantiation, the Tor project put forward a concrete
design for a new onion encryption scheme in proposal 261 [32]. We will refer to
the onion encryption scheme described therein as Tor261. We emphasize that a
VIL tweakable cipher is only a building block, and constructing a secure onion
encryption scheme from it is substantially non-trival. The rest of this section
is devoted to put the security of Tor261 on firm grounds, but we first describe
Tor261 in more detail.

6.1 VIL Tweakable Ciphers and AEZ

As the name suggests, a VIL tweakable cipher is a tweakable cipher that can
operate over inputs of varying length. More precisely it is a pair of deterministic
algorithms (Π,Π−1) each of which takes a key K, a tweak tw and a string x,

286 J. P. Degabriele and M. Stam

respectively y, to return a string y, respectively x, where |x| = |y| and for all
K and tw, Π(K, tw, ·) is a permutation and Π−1(K, tw, ·) is its inverse. Recall
that in Tor the cell size is fixed to 509 bytes and it would therefore suffice to
have a tweakable cipher that can handle inputs of this length. Accordingly the
term wide-block tweakable cipher is often used instead, but in reality all known
constructions admit inputs of varying length. In terms of security, a tweakable
cipher is expected to be a (strong) tweakable pseudorandom permutation. We
refer the reader to [41] for an up-to-date introduction to VIL tweakable ciphers.

Technically, AEZ embodies a different primitive called Robust Authenticated
Encryption (RAE) [26]. An RAE is a pair of deterministic algorithms (Π,Π−1)
where Π takes a key K, a nonce no, associated data ad, a message x and a
stretch τ to return a ciphertext y of length |x| + τ . The decryption algorithm
Π−1 inverts this operation, taking a K, a nonce no, associated data ad and a
ciphertext y to return either a message x, if y was generated honestly, or the
special symbol ⊥ indicating that y is invalid. When the key is chosen uniformly
at random security requires that for any nonce and associated data, (Π,Π−1)
should behave as a pseudorandom injection, and its inverse, from binary strings
to τ -bit longer ones. It is easy to see that if we set τ = 0 RAE collapses to a
VIL tweakable cipher, where the nonce and the associated data, collectively play
the role of the tweak. Indeed in Tor proposal 261 τ is set to zero and we will
therefore treat AEZ as a VIL tweakable cipher where the tweak is represented
by the pair (no, ad).

6.2 Tor261: The Onion Encryption Scheme in Tor Proposal 261

The onion encryption scheme Tor261 is obtained by instantiating the Tor relay
protocol [19] with the layer encryption described in [32]. Note that proposal
261 only affects the relay protocol and in particular the cryptography used in
the circuit extend protocol is unaffected. A pseudocode description of Tor261 is
displayed in Fig. 9.

In addition to a VIL tweakable cipher, the scheme also makes use of a block
cipher BC (instantiated with AES) in a Davies-Meyer-type configuration to com-
pute a chain value h (by means of a separate chain key L) that is included in the
tweak of every layer of encryption, i.e. Π evaluation. It is intended to provide for-
ward security rather than anonymity or standard channel security, consequently
it does not surface in our analysis. In addition, the tweak also contains the xor of
the input and output strings from the previous layer encryption call. Intuitively
this serves to create a domino effect whereby the corruption of any cell will
corrupt all subsequent cells. The no component of the tweak is composed of a
counter ctr and two binary flags, fwd and early, encoded as single-byte strings.
These indicate respectively the direction of travel of the cell with respect to the
direction in which the circuit was established, and whether the cell is of the type
RELAY or RELAYEARLY (the two cell types handled by the relay protocol).
Whether a cell is of type RELAY or RELAYEARLY is indicated in the com-
mand field (cmd) in the cell header, through byte values 3 and 9 respectively.
Thus during decryption the early flag is set according to the value described in

Untagging Tor: A Formal Treatment of Onion Encryption 287

algorithm G(�,p)

� ← |p|, ctr ← 0, c0 ← [ε]�1
(v∗, d∗) ← (p[0],p[1])

do ido ←$ {0, 1}32 until (v∗, d∗, ido) �∈ �

� ← � ∪ {(v∗, d∗, ido)}
id∗

o ← ido

for j = 1 to �

(s, v, d) ← (p[j − 1],p[j],p[j + 1])

K[j] ←$ {0, 1}k

L[j] ←$ {0, 1}256

h[j] ←$ {0, 1}128

idi ← ido

do ido ←$ {0, 1}32 until (v, d, ido) �∈ �

� ← � ∪ {(v, d, ido)}
t[j] ← (s, idi)

t̄[j] ← (v,K[j],L[j],h[j], ctr, ε, ε, d, ido)

σ ← (�,K,L,h, ctr, c0, d∗, id∗
o)

return (�, σ, t, t̄)

algorithm E(σ, m)

early ← 0

parse σ as (�,K,L,h, ctr, c0, d, ido)

c1[�] ← encode(m)

for j = � to 1

no ← 〈ctr〉64 ‖ 〈fwd〉8 ‖ 〈early〉8
h[n] ← BC(L[j],h[j]) ⊕ h[j]

ad ← (c0[j] ⊕ c0[j − 1]) ‖ h[j]

c1[j − 1] ← Π(K[j], (no, ad), c1[j])

if early = 1 : cmd ← 〈9〉8
else : cmd ← 〈3〉8
ĉ ← (ido, cmd, c1[0])

ctr ← ctr + 1

σ ← (�,K,L,h, ctr, c1, d, ido)

return (σ, d, ĉ)

algorithm D(τ , s, ĉ)

parse ĉ as (idi, cmd, c)

if cmd �= 〈3〉8
return ⊥

for w = 1 to |τ |
if (s, idi) = τ [w]

return w

return ⊥

algorithm D̄(τ̄ [w], s, ĉ)

parse τ̄ [w]

as (v, K, L, h, ctr, c0, c
′
0, d, ido)

parse ĉ as (idi, cmd, c1)

if cmd = 〈9〉8 : early ← 1

else : early ← 0

no ← 〈ctr〉64 ‖ 〈fwd〉8 ‖ 〈early〉8
h ← BC(L, h) ⊕ h

ad ← (c0 ⊕ c′
0) ‖ h

c′
1 ← Π−1(K, (no, ad), c1)

ctr ← ctr + 1

if chkzeros(c′
1) ∧ d �=⊥

x ← decode(c′
1); d∗ ← �

else

if d ∈ {⊥, �}
d ←⊥; d∗ ← �; x ←⊥

else

d∗ ← d

x ← (ido, cmd, c′
1)

τ̄ [w] ← (K, L, h, ctr, c1, c
′
1, d, ido)

return (τ̄ [w], d∗, x)

Fig. 9. The Onion Encryption Scheme Tor261 and its variant Tor261. Scheme Tor261
includes the shaded code but Tor261 does not.

288 J. P. Degabriele and M. Stam

the cell’s command field. In all other cases we treat fwd and early as internal
variables set in accordance with the context in which encryption and decryption
are operating. Since we only consider unidirectional anonymous channels in the
forward direction, fwd = 1, always.

In our modelling of the Tor relay protocol we make the following assumptions
and simplifications. We assume a version 4 or higher cell format with a total cell
size of 514 bytes. In addition to the cell header relay cells include a payload
header and proposal 261 alters the format of the payload header. However the
only cryptographic processing of this header is limited to checking that the
redundancy in certain fields is correctly formatted. Specifically it identifies 55
bits that should be verified to contain zeros upon decryption, but suggests that
this verification could be extended to other fields for added security. We model
the processing of a message by padding it and prepending the relay header
through an encode function. Similarly during the decryption we will employ a
decode function to reverse this process and a function chkzeros to verify that
the relevant fields contain zeros. For generality, in our analysis we assume the
number of bits set to zero by encode and later verified by chkzeros is r.

As before, a node determines to which circuit it should associate a cell from
the circuit identifier id in the cell header as described in Sect. 2.1. Circuit identi-
fiers are chosen during circuit establishment by the various nodes involved, which
we abstracted in the circuit creation algorithm G. Except for a mechanism to
avoid collisions, the Tor specification does not specify how circuit identifiers are
to be chosen. Since it is not particularly relevant for our analysis, for simplicity
we assume these are sampled by G uniformly at random without replacement
with respect to every edge. In particular, G maintains a state � comprised of a
set of triples (a, b, id) to keep track that the circuit identifier id is in use on edge
(a, b) and thereby avoid collisions.

The Tor specification allows for certain messages to be delivered to nodes in
the circuit other than the last one. As far as we are aware, this functionality is
not actually used in the relay protocol in practice. Our syntax does not allow
an onion proxy to specify cells for an intermediate node, but intermediate nodes
may nonetheless recognise a cell as being intended for them in Tor261. Thus
from the perspective of an intermediate node a cell is either recognised or else
it is forwarded along the circuit, but it is never deemed invalid. On the other
hand, if the last node in a circuit receives a cell which it does not recognise,
it declares the cell as invalid and the circuit is torn down [20]. To model this
behaviour we overload the semantics of the variable d in the node’s decryption
state component. For any circuit, it is intended to store the next hop in the
circuit with respect to the current node and is set to � if the node is last in the
circuit. When the last node detects an invalid cell it sets d ←⊥ to indicate such
an event, and returns an error for that cell and any subsequent ones. However
the other nodes in the circuit are unaffected since the adversary may be able to
block the cells instructing the circuit teardown.

Untagging Tor: A Formal Treatment of Onion Encryption 289

6.3 Circuit Hiding

As described in Sect. 6.2 the relay protocol supports two types of cells, RELAY
and RELAYEARLY. The sole purpose of RELAYEARLY cells is to enable a
mechanism for limiting the length of circuits in Tor, see [19]. While the details
of this mechanism are beyond our scope, partly because it extends over to the
circuit extend protocol, the support of RELAYEARLY cells in Tor261 exposes
it to tagging attacks. In essence an adversary can tag a cell by flipping the cmd
field in its header which will then propagate along the circuit unaltered. As an
example consider the challenge depicted in Fig. 8. After making two Enc queries,
one on each circuit, the adversary forges a RELAY cell on (n3, n5) and a RELAY
EARLY cell on (n4, n5), and submits both as a single Net query. If the cell
output on (n5, n7) is RELAYEARLY it knows it is interacting with W1.

Tagging attacks manipulating the cmd field were already exploited in the
infamous 2014 incident [2], and as such this vulnerability is a real concern and
not just an artifact of our security definition. Interestingly, Tor261 appears to
attempt to protect against this by including the early flag in the nonce no but
as we just pointed out this does not prevent the attack. It could be argued
however that this attack is somewhat limited in practice since it only admits
one type of tag. On the other hand, the current onion encryption scheme allows
an adversary to tag each cell with a unique mark allowing it to de-anonymise
multiple circuits in parallel. This limitation could potentially be overcome by
instead tagging a unique mark in a sequence of cells. However this possibility
is limited by the fact that in Tor honest nodes are required to tear down the
circuit if they observe more than eight RELAYEARLY cells. Moreover, in a
typical setting three RELAYEARLY cells would already have been used up
during circuit establishment. Thus in practice an adversary would have at most
25 unique tags at its disposal. On the one hand, this improves significantly over
Tor’s current state of affairs but it still falls short of the best possible security.

Unable to prove Tor261 secure we consider its variant Tor261, also described
in Fig. 9, which supports only RELAY cells and prove that it meets our cir-
cuit hiding notion. This serves to show that the above attack is the only way
of mounting tagging attacks on Tor261, which could possibly be prevented by
adopting an alternative mechanism, not involving RELAYEARLY cells, for lim-
iting circuit size or mitigated further by reducing the maximum circuit size.
Informally, Theorem 1 states that Tor261 is circuit hiding as long as (Π,Π−1)
is a secure VIL tweakable cipher in the ±p̃rp sense [26,41], and m and r are
sufficiently large.

Theorem 1. (Tor261 is Circuit Hiding). Let Tor261 be the scheme described
in Fig. 9 composed of a VIL tweakable cipher (Π,Π−1) and an encoding scheme
encode that prepends messages with r zeros. Then for any circuit hiding adver-
sary A = (A1,A2) running in time t, making qe queries to Enc and qn queries
to Net, there exists a ±p̃rp adversary B running in time t′ and making qf and
qi queries to its forward and inverse oracles, such that:

AdvC-HIDE
Tor261

(A) ≤ |Ien|
(

2Adv±p̃rp
Π,Π−1(B) + 2−r+1 + min(qe, qn) 2−m+1

)
,

290 J. P. Degabriele and M. Stam

where Ien is the set of circuits with an honest proxy that the adversary can
inject cells into (i.e. circuits containing an entry edge). Furthermore we have
that qf ≤ qe, qi ≤ qn, and t′ ≤ t + qe�maxT + qn|Ien|(�max − 1)T where �max is
the maximum length of a circuit and T is the maximum time needed to evaluate
Π or Π−1.

The full proof of Theorem 1 can be found in the full version [18]. Below we
outline the main intuition.

Proof outline. We prove the theorem through a standard game-hopping
technique. We start with the C-HIDE game instantiated with Tor261 and focus
on the honest node in the entry edge (if any) of each circuit. We then replace the
VIL tweakable cipher instance corresponding to that node with a truly random
permutation. We gradually chop parts of the circuits until we eventually end up
with a game that depends solely the state information pertaining to those sub-
paths that are required (by Valid) to be common to both worlds (corresponding
to the two possible values of b). It can then be shown that for Tor261 the state
information corresponding to these subpaths is identically distributed in either
world. Thus we eventually end up with a game that is independent of the bit b
in which case the adversary can do no better than guess the bit b.

7 Conclusion

Motivated by Tor’s susceptibility to tagging attacks and the ongoing effort in the
Tor community to thwart them, we initiated a formal treatment of circuit-based
onion encryption. In our treatment, we opted for a level of abstraction that is
closer to practice than previous works. For instance, we explicitly included the
routing functionality that characterizes onion routing. While this choice arguably
complicates security definitions and analysis, we believe it provides for a more
informative model, allowing us to expose certain hitherto unsuspected conflicts
between routing and security. One illustration is the potential for correlating
traffic between onion router based on the seniority of circuit, which has impli-
cations for the data structure used to store a router’s full decryption state.

We analysed Tor’s new proposal Tor261, intended to prevent tagging attacks,
using our new framework. Our analysis confirms that its overall design is sound,
yet also exposes that its support of RELAYEARLY cells still enables tagging
attacks. Presently, we focused on the circuit-hiding property of the proposed
scheme, leaving open the analysis of Tor261’s end-to-end channel security.

Finally, unidirectional channels are only a first step in the formal analysis
of Tor and related onion routing protocols. Marson and Poettering [30] recently
exposed important challenges when composing ordinary unidirectional secure
channels and it is unclear how those challenges affect anonymous channels. (This
cautionary remark does not refer to any specific issue that we identified, rather it
delineates our analysis.) Furthermore, extending our analysis to include dynamic
circuit establishment and deal with adaptive corruptions, are challenging open
problems.

Untagging Tor: A Formal Treatment of Onion Encryption 291

Acknowledgments. We would like to thank Matthew Green for suggesting this prob-
lem to us and Jonathan Katz for helpful initial discussions. We are indebted to Nick
Matthewson for clarifying certain historical and practical aspects of Tor. We also thank
the anonymous reviewers for their constructive feedback.

Degabriele was supported in part by EPSRC grant EP/M013472/1 (UK Quan-
tum Technology Hub for Quantum Communications Technologies) and in part by the
German Federal Ministry of Education and Research (BMBF) within CRISP.

References

1. Albrecht, M.R., Degabriele, J.P., Hansen, T.B., Paterson, K.G.: A surfeit of SSH
cipher suites. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi,
S., (eds.) ACM CCS 2016, pp. 1480–1491. ACM Press, October 2016

2. Dingledine (arma), R.: Tor security advisory: “relay early” traffic confirmation
attack, July 2014. https://blog.torproject.org/blog/tor-security-advisory-relay-
early-traffic-confirmation-attack

3. Backes, M., Goldberg, I., Kate, A., Mohammadi, E.: Provably secure and practical
onion routing. In: CSF, pp. 369–385. IEEE Computer Society (2012)

4. Bellare, M., Hofheinz, D., Yilek, S.: Possibility and impossibility results for encryp-
tion and commitment secure under selective opening. In: Joux, A. (ed.) EURO-
CRYPT 2009. LNCS, vol. 5479, pp. 1–35. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-01001-9 1

5. Bellare, M., Kohno, T., Namprempre, C.: Authenticated encryption in SSH: prov-
ably fixing the SSH binary packet protocol. In: Atluri, V. (ed.) ACM CCS 2002,
pp. 1–11. ACM Press, November 2002

6. Bellare, M., Namprempre, C.: Authenticated encryption: relations among notions
and analysis of the generic composition paradigm. In: Okamoto, T. (ed.) ASI-
ACRYPT 2000. LNCS, vol. 1976, pp. 531–545. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-44448-3 41

7. Bellare, M., Ristenpart, T., Tessaro, S.: Multi-instance security and its application
to password-based cryptography. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO
2012. LNCS, vol. 7417, pp. 312–329. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-32009-5 19

8. Daniel, J.: Bernstein, Mridul Nandi, and Palash Sarkar. HHFHFH, Dagstuhl (2016)
9. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G., Van Keer, R.: Farfalle: paral-

lel permutation-based cryptography. Cryptology ePrint Archive, Report 2016/1188
(2016). http://eprint.iacr.org/2016/1188

10. Boldyreva, A., Degabriele, J.P., Paterson, K.G., Stam, M.: Security of symmet-
ric encryption in the presence of ciphertext fragmentation. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 682–699. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4 40

11. Camenisch, J., Lysyanskaya, A.: A formal treatment of onion routing. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 169–187. Springer, Heidelberg (2005).
https://doi.org/10.1007/11535218 11

12. Canetti, R., Krawczyk, H., Nielsen, J.B.: Relaxing chosen-ciphertext security.
In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 565–582. Springer,
Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4 33

https://blog.torproject.org/blog/tor-security-advisory-relay-early-traffic-confirmation-attack
https://blog.torproject.org/blog/tor-security-advisory-relay-early-traffic-confirmation-attack
https://doi.org/10.1007/978-3-642-01001-9_1
https://doi.org/10.1007/978-3-642-01001-9_1
https://doi.org/10.1007/3-540-44448-3_41
https://doi.org/10.1007/978-3-642-32009-5_19
https://doi.org/10.1007/978-3-642-32009-5_19
http://eprint.iacr.org/2016/1188
https://doi.org/10.1007/978-3-642-29011-4_40
https://doi.org/10.1007/11535218_11
https://doi.org/10.1007/978-3-540-45146-4_33

292 J. P. Degabriele and M. Stam

13. Chakravarty, S., Barbera, M.V., Portokalidis, G., Polychronakis, M., Keromytis,
A.D.: On the effectiveness of traffic analysis against anonymity networks using flow
records. In: Faloutsos, M., Kuzmanovic, A. (eds.) PAM 2014. LNCS, vol. 8362, pp.
247–257. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-04918-2 24

14. Chaum, D.: Untraceable electronic mail, return addresses, and digital pseudonyms.
Commun. ACM 24(2), 84–88 (1981)

15. Danezis, G., Diaz, C., Syverson, P.: Systems for anonymous communication. In:
CRC Handbook of Financial Cryptography and Security, p. 61 (2009)

16. Danezis, G., Dingledine, R., Mathewson, N.: Mixminion: design of a type III anony-
mous remailer protocol. In: 2003 IEEE Symposium on Security and Privacy, pp.
2–15. IEEE Computer Society Press, May 2003

17. Danezis, G., Goldberg, I.: Sphinx: a compact and provably secure mix format. In:
2009 IEEE Symposium on Security and Privacy, pp. 269–282. IEEE Computer
Society Press, May 2009

18. Degabriele, J.P., Stam, M.: Untagging Tor: a formal treatment of onion encryption.
Cryptology ePrint Archive, Report 2018/162 (2018). https://eprint.iacr.org/2018/
162

19. Dingledine, R., Mathewson, N.: Tor protocol specification. https://gitweb.
torproject.org/torspec.git/plain/tor-spec.txt

20. Dingledine, R., Mathewson, N., Syverson, P.F.: Tor: the second-generation onion
router. In: USENIX Security Symposium, pp. 303–320. USENIX (2004)

21. Feigenbaum, J., Johnson, A., Syverson, P.F.: Probabilistic analysis of onion routing
in a black-box model. ACM Trans. Inf. Syst. Secur. 15(3), 14:1–14:28 (2012)

22. Fischlin, M., Günther, F., Marson, G.A., Paterson, K.G.: Data is a stream: security
of stream-based channels. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015.
LNCS, vol. 9216, pp. 545–564. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-48000-7 27

23. Freedman, M.J., Morris, R.: Tarzan: a peer-to-peer anonymizing network layer. In:
Atluri, V. (ed.) ACM CCS 2002, pp. 193–206. ACM Press, November 2002

24. Fu, X., Ling, Z.: One cell is enough to break Tor’s anonymity. In: Proceedings of
Black Hat DC 2009, p. 10 (2009)

25. Goldschlag, D.M., Reed, M.G., Syverson, P.F.: Hiding routing information. In:
Anderson, R. (ed.) IH 1996. LNCS, vol. 1174, pp. 137–150. Springer, Heidelberg
(1996). https://doi.org/10.1007/3-540-61996-8 37

26. Hoang, V.T., Krovetz, T., Rogaway, P.: Robust authenticated-encryption AEZ and
the problem that it solves. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015.
LNCS, vol. 9056, pp. 15–44. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-46800-5 2

27. The invisible internet project (I2P). https://geti2p.net
28. Johnson, A., Wacek, C., Jansen, R., Sherr, M., Syverson, P.F.: Users get routed:

traffic correlation on Tor by realistic adversaries. In: Sadeghi, A.-R., Gligor, V.D.,
Yung, M. (eds.) ACM CCS 2013, pp. 337–348. ACM Press, November 2013

29. Levine, B.N., Reiter, M.K., Wang, C., Wright, M.: Timing attacks in low-latency
mix systems. In: Juels, A. (ed.) FC 2004. LNCS, vol. 3110, pp. 251–265. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-27809-2 25

30. Marson, G.A., Poettering, B.: Security notions for bidirectional channels. IACR
Trans. Symm. Cryptol. 2017(1), 405–426 (2017)

31. Mathewson, N.: Proposal 202: two improved relay encryption protocols for
Tor cells, June 2012. https://lists.torproject.org/pipermail/tor-dev/2012-June/
003649.html

https://doi.org/10.1007/978-3-319-04918-2_24
https://eprint.iacr.org/2018/162
https://eprint.iacr.org/2018/162
https://gitweb.torproject.org/torspec.git/plain/tor-spec.txt
https://gitweb.torproject.org/torspec.git/plain/tor-spec.txt
https://doi.org/10.1007/978-3-662-48000-7_27
https://doi.org/10.1007/978-3-662-48000-7_27
https://doi.org/10.1007/3-540-61996-8_37
https://doi.org/10.1007/978-3-662-46800-5_2
https://doi.org/10.1007/978-3-662-46800-5_2
https://geti2p.net
https://doi.org/10.1007/978-3-540-27809-2_25
https://lists.torproject.org/pipermail/tor-dev/2012-June/003649.html
https://lists.torproject.org/pipermail/tor-dev/2012-June/003649.html

Untagging Tor: A Formal Treatment of Onion Encryption 293

32. Mathewson, N.: Proposal 261: AEZ for relay cryptography, December 2015.
https://lists.torproject.org/pipermail/tor-dev/2015-December/010080.html

33. Murdoch, S.J., Zieliński, P.: Sampled traffic analysis by internet-exchange-level
adversaries. In: Borisov, N., Golle, P. (eds.) PET 2007. LNCS, vol. 4776, pp. 167–
183. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75551-7 11

34. Nielsen, J.B.: Separating random Oracle proofs from complexity theoretic proofs:
the non-committing encryption case. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 111–126. Springer, Heidelberg (2002). https://doi.org/10.1007/3-
540-45708-9 8

35. The23rd Raccoon. How I learned to stop ph34ring NSA and love the base rate fal-
lacy, September 2008. http://archives.seul.org/or/dev/Sep-2008/msg00016.html

36. The23rd Raccoon. Analysis of the relative severity of tagging attacks, March 2012.
http://archives.seul.org/or/dev/Mar-2012/msg00019.html

37. Reed, M.G., Syverson, P.F., Goldschlag, D.M.: Proxies for anonymous routing. In:
ACSAC 1996, pp. 95–104. IEEE Computer Society (1996)

38. Rennhard, M., Plattner, B.: Practical anonymity for the masses with MorphMix.
In: Juels, A. (ed.) FC 2004. LNCS, vol. 3110, pp. 233–250. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-27809-2 24

39. Rogaway, P., Zhang, Y.: Onion-AE: foundations of nested encryption. Cryptology
ePrint Archive, Report 2018/126 (2018). https://eprint.iacr.org/2018/126

40. Serjantov, A., Sewell, P.: Passive attack analysis for connection-based anonymity
systems. In: Snekkenes, E., Gollmann, D. (eds.) ESORICS 2003. LNCS, vol.
2808, pp. 116–131. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-
540-39650-5 7

41. Shrimpton, T., Terashima, R.S.: A modular framework for building variable-input-
length Tweakable ciphers. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS,
vol. 8269, pp. 405–423. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-42033-7 21

42. Syverson, P.F., Goldschlag, D.M., Reed, M.G.: Anonymous connections and onion
routing. In: 1997 IEEE Symposium on Security and Privacy, pp. 44–54. IEEE
Computer Society Press (1997)

43. Syverson, P., Tsudik, G., Reed, M., Landwehr, C.: Towards an analysis of onion
routing security. In: Federrath, H. (ed.) Designing Privacy Enhancing Technologies.
LNCS, vol. 2009, pp. 96–114. Springer, Heidelberg (2001). https://doi.org/10.1007/
3-540-44702-4 6

https://lists.torproject.org/pipermail/tor-dev/2015-December/010080.html
https://doi.org/10.1007/978-3-540-75551-7_11
https://doi.org/10.1007/3-540-45708-9_8
https://doi.org/10.1007/3-540-45708-9_8
http://archives.seul.org/or/dev/Sep-2008/msg00016.html
http://archives.seul.org/or/dev/Mar-2012/msg00019.html
https://doi.org/10.1007/978-3-540-27809-2_24
https://eprint.iacr.org/2018/126
https://doi.org/10.1007/978-3-540-39650-5_7
https://doi.org/10.1007/978-3-540-39650-5_7
https://doi.org/10.1007/978-3-642-42033-7_21
https://doi.org/10.1007/978-3-642-42033-7_21
https://doi.org/10.1007/3-540-44702-4_6
https://doi.org/10.1007/3-540-44702-4_6

Exploring the Boundaries of Topology-Hiding
Computation

Marshall Ball1,2(B), Elette Boyle2, Tal Malkin1, and Tal Moran2

1 Columbia University, New York, USA
{marshall,tal}@cs.columbia.edu

2 IDC Herzliya, Herzliya, Israel
{elette.boyle,talm}@idc.ac.il

Abstract. Topology-hiding computation (THC) is a form of multi-party compu-
tation over an incomplete communication graph that maintains the privacy of the
underlying graph topology. In a line of recent works [Moran, Orlov & Richelson
TCC’15, Hirt et al. CRYPTO’16, Akavia & Moran EUROCRYPT’17, Akavia
et al. CRYPTO’17], THC protocols for securely computing any function in the
semi-honest setting have been constructed. In addition, it was shown by Moran
et al. that in the fail-stop setting THC with negligible leakage on the topology is
impossible.

In this paper, we further explore the feasibility boundaries of THC.
– We show that even against semi-honest adversaries, topology-hiding broad-

cast on a small (4-node) graph implies oblivious transfer; in contrast, trivial
broadcast protocols exist unconditionally if topology can be revealed.

– We strengthen the lower bound of Moran et al. identifying and extending a
relation between the amount of leakage on the underlying graph topology
that must be revealed in the fail-stop setting, as a function of the number of
parties and communication round complexity: Any n-party protocol leaking
δ bits for δ ∈ (0, 1] must have Ω(n/δ) rounds.

We then present THC protocols providing close-to-optimal leakage rates, for
unrestricted graphs on n nodes against a fail-stop adversary controlling a dis-
honest majority of the n players. These constitute the first general fail-stop THC
protocols. Specifically, for this setting we show:

– A THC protocol that leaks at most one bit and requires O(n2) rounds.

M. Ball—Supported in part by the Defense Advanced Research Project Agency (DARPA)
and Army Research Office (ARO) under Contract #W911NF-15-C-0236, NSF grants
#CNS1445424 and #CCF-1423306, ISF grant no. 1790/13, and the Check Point Institute for
Information Security.
E. Boyle—Supported in part by ISF grant 1861/16, AFOSR Award FA9550-17-1-0069, and
ERC Grant no. 307952.
T.Malkin—Supported in part by the Defense Advanced Research Project Agency (DARPA)
and Army Research Office (ARO) under Contract #W911NF-15-C-0236, NSF grants
#CNS1445424 and #CCF-1423306, and the Leona M. & Harry B. Helmsley Charitable Trust.
Any opinions, findings and conclusions or recommendations expressed are those of the authors
and do not necessarily reflect the views of the Defense Advanced Research Projects Agency,
Army Research Office, the National Science Foundation, or the U.S. Government.
T. Moran—Supported in part by ISF grant no. 1790/13 and by the Bar-Ilan Cyber-center.

c© International Association for Cryptologic Research 2018
J. B. Nielsen and V. Rijmen (Eds.): EUROCRYPT 2018, LNCS 10822, pp. 294–325, 2018.
https://doi.org/10.1007/978-3-319-78372-7_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78372-7_10&domain=pdf

Exploring the Boundaries of Topology-Hiding Computation 295

– A THC protocol that leaks at most δ bits for arbitrarily small non-negligible
δ, and requires O(n3/δ) rounds.

These protocols also achieve full security (with no leakage) for the semi-honest
setting. Our protocols are based on one-way functions and a (stateless) secure
hardware box primitive. This provides a theoretical feasibility result, a heuris-
tic solution in the plain model using general-purpose obfuscation candidates,
and a potentially practical approach to THC via commodity hardware such as
Intel SGX. Interestingly, even with such hardware, proving security requires
sophisticated simulation techniques.

1 Introduction

Secure multiparty computation (MPC) is a fundamental research area in cryptogra-
phy. Seminal results, initiated in the 1980s [8,18,33,56], and leading to a rich field of
research which is still flourishing, proved that mutually distrustful parties can compute
arbitrary functions of their input securely in many settings. Various adversarial models,
computational assumptions, complexity measures, and execution environments have
been studied in the literature. However, until recently, almost the entire MPC literature
assumed the participants are connected via a complete graph, allowing any two players
to communicate with each other.

Recently, Moran et al. [52] initiated the study of topology-hiding computation
(THC). THC addresses settings where the network communication graph may be par-
tial, and the network topology itself is sensitive information to keep hidden. Here, the
goal is to allow parties who see only their immediate neighborhood, to securely com-
pute arbitrary functions (that may depend on their secret inputs and/or on the secret
underlying communication graph). In particular, the computation should not reveal any
information about the graph topology beyond what is implied by the output.

Topology-hiding computation is of theoretical interest, but is also motivated by real-
world settings where it is desired to keep the underlying communication graph private.
These include social networks, ISP networks, vehicle-to-vehicle communications, wire-
less and ad-hoc sensor networks, and other Internet of Things networks. Examples indi-
cating interest in privacy of the network graph in these application domains include the
project diaspora* [1], which aims to provide a distributed social network with privacy
as an important goal; works such as [16,54] which try to understand the internal ISP
network topology despite the ISP’s wish to hide them; and works such as [25,45] that
try to protect location privacy in sensor network routing, among others.

There are only a few existing THC constructions, and they focus mostly on the
semi-honest adversarial setting, where the adversary follows the prescribed protocol.
In particular, for the semi-honest setting, the work of Moran et al. [52] achieves THC
for network graphs with a logarithmic diameter in the number of players, from the

296 M. Ball et al.

assumptions of oblivious transfer (OT) and PKE.1 Hirt et al. [42] improve these results,
relying on the DDH assumption, but still requiring the graph to have logarithmic diame-
ter. Akavia and Moran [3] achieve THC for other classes of graphs, in particular graphs
with small circumference. Recently, this was extended by Akavia et al. [2] to DDH-
based THC for general graphs.

In the fail-stop setting, where an adversary may abort at any point but otherwise
follows the protocol, the only known construction is one from [52], where they achieve
THC for a very limited corruption and abort pattern: the adversary is not allowed to
corrupt a full neighborhood (even a small one) of any honest party, and not allowed
an abort pattern that disconnects the graph. This result is matched with a lower bound,
proving that THC in the fail-stop model is impossible (the proof utilizes an adversary
who disconnects the graph using aborts).

In this paper, we further explore the feasibility boundaries of THC. In the semi-
honest model, we study the minimal required computational assumptions for THC, and
in the fail-stop model we study lower and upper bounds on the necessary leakage. All
our upper bounds focus on THC for arbitrary graphs with arbitrary corruption patterns
(including dishonest majority). The security notion in the fail-stop setting is one of
“security with abort”, in which the adversary is allowed to abort honest parties after
receiving the protocol’s output.

1.1 Our Results

We will often describe our results in terms of the special case of Topology-Hiding
Broadcast (THB), where one party is broadcasting an input to all other parties. We
note that all our results apply both to THB and to THC (for arbitrary functionalities).
In general, THB can be used to achieve THC for arbitrary functions using standard
techniques, and for our upper bound protocols in particular the protocols can be easily
changed to directly give THC of any functionality instead of broadcast.

Lower Bounds. We first ask what is the minimal assumption required to achieve THB
in the semi-honest model. Our answer is that at the very least, OT is required (and this
holds even for small graphs). Specifically, we prove:

Theorem (informal): If there exists a 4-party protocol realizing topology-hiding
broadcast against a semi-honest adversary, then there exists a protocol for Obliv-
ious Transfer.

Note that without the topology-hiding requirement, it is trivial to achieve broad-
cast unconditionally in the semi honest case, as well as the fail-stop case with security
with abort. Indeed, the trivial protocol (sometimes referred to as “flooding”) consists
of propagating everything you received from your neighbors in the previous round, and
then aborting if there is any inconsistency, for sufficiently many rounds (as many as the
diameter of the graph).

1 Alternatively, the [52] results can be interpreted as results for arbitrary graphs, but where the
adversary is limited in its corruption pattern, and not allowed to corrupt any k-neighborhoods
where k depends on the graph.

Exploring the Boundaries of Topology-Hiding Computation 297

We mentioned above the result of [52], who prove that THC in the fail-stop model
is impossible to achieve, since any protocol in the fail-stop model must have some non-
negligible leakage. We next refine their attack to characterize (and amplify) the amount
of leakage required, as a function of the number of parties n and communication rounds
r of the protocol. We model the leakage of a protocol by means of a leakage oracle
L evaluated on the parties’ inputs (including graph topology) made available to the
ideal-world simulator, and say that a protocol has (δ,L)-leakage if the simulator only
accesses L with probability δ over its randomness.2

In particular, we demonstrate the following:

Theorem (informal): For an arbitrary leakage oracle L (even one which com-
pletely reveals all inputs), the existence of r-round, n-party THB with (δ,L)-
leakage implies δ ∈ Ω(n/r).

The theorem holds even if all parties are given oracle access to an arbitrary functionality,
as is the case with the secure hardware box assumption mentioned below. This improves
over the bound of [52], which corresponds to δ ∈ Ω(1/r) when analyzed in this fashion.

Upper Bounds. We start by noting that a modification of the construction in [52] gives
a scheme achieving TH computation in the semi-honest setting, for log-diameter graphs
from OT alone (rather than OT + PKE as in the original work). This matches our lower
bound above, showing THC if and only if OT, in the case of low diameter graphs.

Our main upper bound result is a THC construction for arbitrary graph structures
and corruptions, in the fail-stop, dishonest majority setting, and (since leakage is nec-
essary), with almost no leakage.

We have two versions of our scheme. The first is a scheme in O(n2) rounds (where
n is a bound on the number of parties), which leaks at most one bit about the graph
topology (i.e., simulatable given a single-output-bit leakage oracle L). The leaked bit
is information about whether or not one given party has aborted at a given time in the
computation. This information may depend on the graph topology.

We then extend the above to a randomized scheme with arbitrarily small inverse
polynomial leakage δ, in O(n3/δ) rounds; more specifically, (δ,L)-leakage for single-
bit-output oracleL. Here the leakage fromL also consists of information about whether
or not one given party has aborted at a given time in the computation. However, roughly
speaking, the protocol is designed so that this bit depends on the graph topology only if
the adversary has chosen to obtain this information in a specific “lucky” round, chosen
at random (and kept hidden during the protocol), and thus happens with low probability.

We also point out that a simpler version of our scheme achieves full security (with
no leakage) in the semi-honest model (for arbitrary graphs and arbitrary corruption pat-
tern). Moreover, we leverage our stronger assumption to achieve essentially optimal
round complexity in the semi-honest model—the protocol runs in O(diam(G)) rounds
(where diam(G) is a bound on the diameter of the communication graph G) and can
directly compute any functionality (any broadcast protocol must have at least diam(G)

2 Interestingly, this formalization is not equivalent to (and slightly weaker than) Lδ-leakage for
respective functionality Lδ that provides the output of L only with probability δ; see the full
version for details(Note that ruling out a weaker notion means a stronger lower bound.)

298 M. Ball et al.

rounds, otherwise the information might not reach all of the nodes in the graph). In con-
trast, the only previous THC protocol for general graphs [2] requires Ω(n3) rounds for a
single broadcast; computing more complex functionalities requires composing this with
another layer of MPC on top.

Our schemes relies on the existence of one-way functions (OWF), as well as a secure
hardware box, which is a stateless “black box”, or oracle, with a fixed secret program,
given to each participant before the protocol begins. We next discuss the meaning and
implications of this underlying assumption, but first we summarize our main upper
bound results:

Theorem (informal): If OWF exist and given a secure hardware box, for any
n-node graph G and poly-time computable function f ,

– There exists an efficient topology-hiding computation protocol for f against
poly-time fail-stop adversaries, which leaks at most one bit of information
about G, and requires O(n2) rounds.

– For any inverse polynomial δ, there exists an efficient topology-hiding com-
putation protocol for f against poly-time fail-stop adversaries, which leaks
at most δ bits of information about G, and requires O(n3/δ) rounds.

We remark that the first result gives an n-party, r-round protocol with (O(n2/r),L)-
leakage, in comparison to our lower bound that shows impossibility of (o(n/r),L)-
leakage. Closing this gap is left as an intriguing open problem.

On Secure Hardware Box Assumption. A secure hardware box is an oracle with a
fixed, stateless secret program. This bears similarity to the notion of tamper-proof hard-
ware tokens, introduced by Katz [46] to achieve UC secure MPC, and used in many fol-
lowup works in various contexts, both with stateful and stateless tokens (cf. [15,20,37]
and references within).

A hardware box is similar to a stateless token, but is incomparable in terms of the
strength of the assumption. On one hand, a hardware box is worse, as we assume an
honest setup of the box (by a party who does not need to know the topology of the
graph, but needs to generate a secret key and embed the right program), while hardware
tokens are typically allowed to be generated maliciously (although other notions of
secure hardware generated honestly have been considered before, e.g. [19,43]). On the
other hand, a hardware box is better, in that, unlike protocols utilizing tokens, it does
not need to be passed around during the protocol, and the players do not need to embed
their own program in the box: there is a single program that is written to all the boxes
before the start of the protocol.

Unlike previous uses of secure hardware in the UC settings (where we know some
setup assumption is necessary for security), we do not have reason to believe that strong
setup (much less a hardware oracle) is necessary to achieve THC. However, we believe
many of the core problems of designing a THC protocol remain even given a secure
hardware oracle. For example, the lower bounds on leakage hold even in this setting. In
particular, our hardware assumption does not make the solution trivial (in fact, in some
senses the proofs become harder, since even a semi-honest adversary may query the ora-
cle “maliciously”). Our hope is that the novel techniques we use in constructing the pro-
tocol, and in proving its correctness, will be useful in eventually constructing a protocol

Exploring the Boundaries of Topology-Hiding Computation 299

in the standard model. We note that this paradigm is a common one in cryptography:
protocols are first constructed using a helpful “hardware’ oracle”, and then ways are
found to replace the hardware assumption with a more standard one. Examples include
the ubiquitous “random oracle”, but also hardware assumptions much more similar to
ours, such as the Signature Card assumption first used to construct Proof-Carrying Data
(PCD) schemes [19]. (Signature cards contain a fixed program and a secret key, and can
be viewed as a specific instance of our secure hardware assumption.)

Thus, one way to think of our upper bound result is as a step towards a protocol in
the standard model.

At the same time, our phrasing of the assumption as “secure hardware” is inten-
tional, and physical hardware may turn out to be the most practical approach to actually
implementing a THC protocol. Because our functionality is fixed, stateless, and identi-
cal for all parties, our secure hardware box can be instantiated by a wide range of physi-
cal implementations, including general-purpose “trusted execution environments”, that
are becoming widespread in commodity hardware (for example, both ARM (TrustZone)
and Intel (SGX) have their own flavors implemented in their CPUs). We discuss a poten-
tially practical approach to THC through the use of SGX secure hardware in the full
version of this paper.

Future directions. Our work leaves open many interesting directions to further pursue,
such as the following.

– Obtain better constructions for the case of honest majority.
– Obtain THC in the fail-stop model from standard cryptographic assumptions. In

particular, can THC be achieved from OT alone, matching our lower bound?
– The results for THC in the fail-stop setting are in some ways reminiscent of the

results for optimally fair coin tossing. In particular, in both cases there is an impos-
sibility result if no leakage or bias is allowed, and there are lower bounds and upper
bounds trading off the amount of leakage with the number of rounds (cf. [22–
24,51]). It would be interesting to explore whether there is a formal connection
between THC and fair coin tossing, and whether such a connection can yield tighter
bounds for THC.

– THC with security against malicious adversaries is an obvious open problem, with
no prior work addressing it (to the best of our knowledge). Could our results be
extended to achieve security in the malicious settings? More generally, could a
secure hardware box be useful towards maliciously secure THC?

1.2 Technical Overview

A starting point for our upper bound protocol is the same starting point underlying
the previous THB constructions [3,42,52]: Consider the trivial flooding protocol that
achieves broadcast with no topology hiding, by propagating the broadcasted bit to all
the neighbors repeatedly until it reaches everyone. One problem with this protocol is
that the messages received by a node leak a lot of information about the topology of the
graph (e.g., the distance to the broadcaster). Previous works mitigate that by encrypting

300 M. Ball et al.

the communication, and also requiring all nodes to send a bit in every round: the broad-
caster sends its bit, and the other nodes send a 0; each node then ORs all the incoming
bits, and forwards to its neighbors in the next round. However, this leaves the question
of how the bit will be decrypted to obtain the final result. This is where previous works
differ in their techniques to address this issue (using nested MPC, homomorphic encryp-
tion, ideas inspired by mix-nets or onion routing to allow gradual decryption, etc.), and
the different techniques imply different limitations on the allowed graph topology (or
corruption patterns) that support the solution.

We also begin with the same starting point of trying to implement flooding. We
then use the secure hardware box, which will contain a relevant secret key that allows
it to process encrypted inputs (partial transcripts propagated from different parts of the
graph) and produce an encrypted output to propagate further in the next round, as well
as decrypting the output at the end. However, we have several new technical challenges
that arise, both because of the fail-stop setting, and because of the existence of the box
itself.

First, the fail-stop setting presents a significant challenge (indeed, provably neces-
sitating some leakage). Intuitively, abort behavior by the adversary will influence the
behavior of honest parties (e.g., if an honest party is isolated by aborts in their immedi-
ate neighborhood, they would not be able to communicate and will have to abort rather
than output something; aborting behavior of honest parties can in turn provide informa-
tion to the adversary about the graph topology). The hardware box will help in checking
consistency of partial transcripts, and helping honest parties manage when and how they
disclose their plan to output abort at the end of the protocol.

A second source of difficulty stems from having the secure hardware box at the
disposal of the adversary. This allows to inject a malicious aspect to the adversary’s
behavior, even in a fail-stop (or even semi-honest) setting. Indeed, since each player has
their own box, and the box is stateless, the adversary can run the boxes with arbitrary
inputs, providing different partial transcripts, abort or non-abort behavior, etc., in order
to try and learn information about the graph topology. This presents challenges that
make the proof of security much more involved and quite subtle.

Overview of our solution. Recall the core source of information leakage is from the
abort-or-not values of various parties, as a function of fail-stop aborts caused by the
adversary. The first idea of our construction is to limit the amount of leakage to a sin-
gle bit by ensuring that for any fail-stop abort strategy, the abort-or-not value of only
a single party will be topology dependent. This is achieved by designating a special
“threshold” round Ti for each party: if the party Pi learns of an abort somewhere in
the graph before round Ti, he will output abort at the conclusion of the protocol, and
if he only learns of an abort after this round he will output the correct bit value. By
sufficiently separating these threshold rounds, and leveraging the fact that an abort will
travel to all nodes within n rounds (independent of the graph topology), we can guaran-
tee that any given abort structure will either reach before or after the threshold round of
a single party in a manner dependent on the topology.

Note that in the above, if the threshold rounds Ti are known, then there exists an
adversarial strategy which indeed leaks a full bit on the topology. To obtain arbitrarily

Exploring the Boundaries of Topology-Hiding Computation 301

small leakage δ, we modify the above protocol by expanding the “zone” of each party
into a collection of O(n/δ) possible threshold rounds. The value of the true threshold
for each party is determined (pseudo-)randomly during protocol execution and is hidden
from the parties themselves (who see only encrypted state vectors from their respective
secure hardware boxes). Because of this, the probability that an adversary will be able to
successfully launch a leakage attack on any single party’s threshold round will drop by
a factor of δ/n; because this attack can be amplified by attacking across several parties’
zones, the overall winning probability becomes comparable to δ. Note that such an
increase in rounds to gain smaller leakage is to be expected, based on our leakage lower
bound.

The more subtle and complex portion of our solution comes in the simulation strat-
egy, in particular for simulating the output of the hardware box on arbitrary local queries
by adversarial parties. At a high level, the simulator will maintain a collection of graph
structures corresponding to query sequences to the boxes (where outputs from previous
box queries are part of input to a later box query), and will identify a specific set of
conditions in which a query to the leakage oracle must be made. See below for a more
detailed description.

Overview of simulation strategy. Simulation consists almost entirely of answering
queries to the hardware box. As intermediate outputs from the box are encrypted, the
chief difficulty lies in determining what output to give to queries corresponding to the
final round of the protocol: either ⊥ (abort); the broadcast bit; or something else, given
partial leakage information about the graph and only the local neighborhood of the
corrupted parties.

The simulator uses a data structure to keep track of the relationship between queries
to the hardware box and outputs from previous queries. In the real world, this rela-
tionship is enforced by the unforgeability of the authenticated encryption scheme. The
simulator can use this data structure to determine whether a query is “derived,” in part,
from ‘honest’ (simulated) messages, and additionally, what initializations were used for
the non-honest parties connected to the node expecting output.

One of the major difficulties is that even a semi-honest adversary can locally query
his hardware box in malicious ways: combining new initializations in novel ways with
pieces of the honest transcript, or aborting in multiple different patterns. The bulk of the
proof is devoted to showing that all of these cases can be simulated.

One key fact utilized in this process is that if the protocol gives any output at all, then
all honest nodes must have encrypted states at round n (the maximum diameter of the
graph) that contain a complete picture of the graph, inputs, session keys, etc. Therefore,
the real hardware box will not give plaintext output if such an honest state is mixed with
states in a manner that deviates from the real protocol evaluation significantly.

An added wrinkle is that the hardware box, by virtue of the model, is required
to handle a variety of abort sequences. Moreover, the kind of output received after
certain abort timing inherently leaks information about the topology. Yet, the simulator
must decide output behavior without additional leakage queries. Here again the honest
messages will essentially “lock” an adversary into aborts that are “consistent” with the
aborts in the real protocol evaluation. (For example, an adversary can “fast-forward” a
node after the nodes output is guaranteed by pretending all of its neighbors aborted.)

302 M. Ball et al.

The honest messages also aid in replay attacks as they allow the simulator to only
consider connected groups of corrupt nodes. If two nodes are separated by honest nodes
in the real world, then in their replay attack no new abort information will be transmitted
from one to the other if the protocol is replayed in a locally consistent manner (modulo
aborts). (If the protocol is not locally consistent no descendent of that query will yield
plaintext output.)

Finally, if a query doesn’t have any honest ancestors, the simulator can simulate
output trivially as it knows all of the initialization information.

In short, the difficulties in the proof come from the fact that output depends on
topology and abort structure, and a fail-stop adversary can use his box to essentially
simulate malicious runs of the protocol after its completion to attempt to gain more
leakage on the topology. However, the simulator can only query the leakage oracle at
most once. Accordingly, the specific timing of its query in protocol evaluation is very
delicate: if it is too early the adversary can abort other nodes to change output behavior
in an unsimulatable manner, if it is too late then the adversary can fast-forward to get
output in an unsimulatable manner. Moreover, output behavior must be known for all
replay attacks where the simulator has incomplete initialization information (pieces of
the honest transcript are used). As a consequence, we are forced to consider elaborate
consistency conditions to bind the adversary to a specific evaluation (modulo aborts),
and prove that these conditions achieve bind the adversary while still allowing him the
freedom to actively attack the protocol using the hardware.

1.3 Related Work

We have already discussed above the prior works on topology-hiding computation in
the computational setting [3,42,52], which are the most relevant to our work.

Topology-hiding computation was also considered earlier in the information-
theoretic setting, by Hinkelmann and Jakoby [41]. They provide an impossibility result,
proving that any information-theoretic THC protocol leaks information to an adver-
sary (roughly, when two nodes who are not neighbors communicate across the graph,
some party will be able to learn that it is on the path between them). They also provide
an upper bound, achieving information theoretic THC that leaks a routing table of the
network, but no other information about the graph.

There are several other lines of work that are related to communication over incom-
plete networks, but in different contexts, not with the goal of hiding the topology.
For example, a line of work studied the feasibility of reliable communication over
(known) incomplete networks (cf. [4,5,7,10,14,26–28,48]). More recent lines of work
study secure computation with restricted interaction patterns in a few settings, moti-
vated by improving efficiency, latency, scalability, usability, or security. Examples
include [6,11,13,36,38,39]. Some of these works utilize a secret communication sub-
graph of the complete graph that is available to the parties as a tool to achieve their goal
(e.g. [11,13] use this idea in order to achieve communication locality).

An early use of a hidden communication graph which is selected as a subgraph of
an available known larger graph, is in the context of anonymous communication and
protection against traffic analysis. Particularly noteworthy are the mix-net and onion

Exploring the Boundaries of Topology-Hiding Computation 303

routing techniques ([17,53,55] and many follow up works), which also inspired some
of the recent THC techniques.

There is a long line of work related to the use of secure hardware in cryptography,
in various flavors with or without assuming honest generation, state, complete tamper
proofness, etc. This could be dated back to the notion of oblivious RAM ([34] and
many subsequent works). Katz [46] introduced the notion of a hardware token in the
context of UC-secure computation, and this notion has been used in many followup
works (e.g. [15,20,37] and many others). Variations on the hardware token, where the
hardware is generated honestly by a trusted setup, include signature cards [43], trusted
smartcards [40], and so called non-local-boxes [9]. The latter are similar to global hard-
ware boxes that are generated honestly and take inputs and output from multiple parties
(in contrast to our notion of a hardware box, which is local). Other variations and relax-
ations include tamper-evident seals [50], one time programs [35], and various works
allowing some limited tampering ([31,44] and subsequent works). Finally, there is a line
of works using other physical tools to perform cryptographic tasks securely, including
[29,30,32].

2 Preliminaries

2.1 Secure Hardware

We model our secure hardware box as an ideal oracle, parameterized by a stateless pro-
gram Π . The oracle query O(Π)(x) returns the value Π(x). Our definition is much sim-
pler than the standard secure hardware token definitions, since all parties have access to
the same program, and it is stateless—there is no need for a more complex functionality
that keeps track of the “physical location” of the token or its internal state.

2.2 Topology Hiding Computation

The work of [52] put forth two formal notions of topology hiding: a simulation-based
definition, and a weaker indistinguishability-based definition. In this work, we primarily
focus on the simulation-based definition, given below. However, some of our lower
bounds apply also to the indistinguishability-based notion.

The definition of [52] works in the Fgraph-hybrid model, for Fgraph functionality
(shown in Fig. 1) that takes as input the network graph from a special “graph party”
Pgraph and returns to each other party a description of their neighbors. It then handles
communication between parties, acting as an “ideal channel” functionality allowing
neighbors to communicate with each other without this communication going through
the environment.

In a real-world implementation, Fgraph models the actual communication network;
i.e., whenever a protocol specifies a party should send a message to one of its neighbors
using Fgraph, this corresponds to the real-world party directly sending the message over
the underlying communication network.

304 M. Ball et al.

Fig. 1. The functionality Fgraph.

Since Fgraph provides local information about the graph to all corrupted parties, any
ideal-world adversary must have access to this information as well (regardless of the
functionality we are attempting to implement). To capture this, we define the function-
ality FgraphInfo, that is identical to Fgraph but contains only the initialization phase. For
any functionality F , we define a “composed” functionality (FgraphInfo||F) that adds the
initialization phase of Fgraph to F . We can now define topology-hiding MPC in the UC
framework:

Definition 1 (Topology Hiding (Simulation-Based)). We say that a protocol Π
securely realizes a functionality F hiding topology if it securely realizes (FgraphInfo||F)
in the Fgraph-hybrid model.
Note that this definition can also capture protocols that realize functionalities depending
on the graph (e.g., find a shortest path between two nodes with the same input, or count
the number of triangles in the graph).

2.3 Extended Definitions of THC

We extend the simulation definition of Topology-Hiding Computation beyond the semi-
honest model, capturing fail-stop corruptions, and formalizing a measure of leakage of
a protocol.

Topology Hiding with Leakage

We consider a weakened notion of topology hiding with partial information leakage.
This is modeled by giving the ideal-world simulator access to a reactive functionality
leakage oracleL, where the type/amount of leakage revealed by the protocol is captured
by the choice of the leakage oracle L. For example, we will say a protocol “leaks a

Exploring the Boundaries of Topology-Hiding Computation 305

single bit” about the topology if it is topology hiding for some oracle L which outputs
at most 1 bit throughout the simulation.3

Definition 2 (Topology Hiding with L-Leakage). We say that a protocol Π securely
realizes a functionality F hiding topology withL-leakage if it realizes (FgraphInfo||F ||L)
in the Fgraph-hybrid model, where L is treated as an ideal (possibly reactive) function-
ality which outputs only to corrupt parties.

Note that the above functionality (FgraphInfo||F ||L) is not a “well-formed” function-
ality in the sense of [12], as the output of the functionality depends on the set of cor-
rupt parties. However, this is limited to additional information given to corrupt parties,
which does not run into the simple impossibilities mentioned in [12] (indeed, it is easier
to securely realize than (FgraphInfo||F)). The definition also extends directly to topology
hiding within different adversarial models, by replacing Fgraph with the corresponding
functionality (such as Fgraph-failstop for fail-stop adversaries; see below).

It will sometimes be convenient when analyzing lower bounds and considering frac-
tional bits of leakage to consider the following restricted notion of (δ,L)-leakage, for
probability δ ∈ [0, 1]. Loosely, a (δ,L)-leakage simulator is restricted to only utiliz-
ing the leakage oracle L with probability δ over the choice of its random coins. Note
that this notion is closely related toLδ-leakage for the oracleLδ which internally tosses
coins and decides with probability δ to respond with the output ofL. Interestingly, how-
ever, the two notions are not equivalent: in the full version of this paper we show that
there exist choices of F , δ ∈ [0, 1], oracle L, and protocols Π for which Π is a (δ,L)-
leakage secure protocol, but not Lδ-leakage secure. For our purposes, (δ,L)-leakage
will be more convenient.

Definition 3 (Topology Hiding with (δ,L)-Leakage). Let δ ∈ [0, 1] and L a leakage
oracle functionality. We say that a protocol Π securely realizes a functionality F hiding
topology with (δ,L)-leakage if it realizes (FgraphInfo||F ||L) in the Fgraph-hybrid model
with the following property: For any adversarial environment Z, it holds with proba-
bility (1 − δ) over the random coins of the simulator S, that S does not make any call
to L.

In the full version of this paper we show that this notion of (δ,L)-leakage provides
a natural form of composability.

Topology Hiding in the Fail-Stop Model
We now define security for the case that the adversary must follow the protocol (as in
the semi-honest case), but may fail nodes. Consider the functionality Fgraph-failstop given
in Fig. 2, which serves as the analog of Fgraph in the semi-honest model.

As the initialization phase (and ideal-world-counterpart) of Fgraph-failstop is identical
to that of Fgraph, we denote it the same: FgraphInfo. As before, the communication phase
consists of repeated invocation of Fgraph-failstop. The fail input in the communication
phase represents failing a node, as such, it should only be invoked adversarially (not
part of normal protocol operation).

3 Note that this is related to, but a different setting than leakage-resilient protocols, where the
model considers leakage information to the adversary in the real-world execution.

306 M. Ball et al.

Fig. 2. The functionality Fgraph-failstop.

Topology-hiding security-with-abort. As is the case for standard (non-topology-
hiding) MPC, when we allow active adversaries we relax the security definition to
security-with-abort. However, there are wrinkles specific to the topology-hiding setting
that make our security-with-abort definition slightly different.

In the standard extension of simulation-based security to security-with-abort, we
add a special abort command to the ideal functionality; when invoked by the ideal-
world simulator, all the honest parties’ outputs are replaced by ⊥. When the commu-
nication graph is complete, this extra functionality is trivial to add to any protocol: an
honest party will output ⊥ if it receives an abort message from any party (since honest
parties will never send abort, this allows the adversary to abort any honest party, but
does not otherwise change the protocol).

In the topology-hiding setting, this extra functionality—by itself—might already be
too strong to realize, since, depending on when the abort occurs, the “signal” might not
have time to reach all honest parties. (In fact, this is essentially the crux of the fail-stop
impossibility result of [52] and of our leakage lower bound in Sect. 3.2).

Thus, when we define security-with-abort for topology-hiding computation, we aug-
ment the ideal functionality with a slightly more complex abort command: it now
receives list of parties as input (the “abort vector”); only the outputs of those parties
will be replaced with ⊥, while the rest of the parties will output as usual.

Note that in the UC model, the environment sees the outputs of all parties, including
the honest parties. Hence, to securely realize a functionality-with-abort, the simulator
must ensure that the simulation transcript, together with the honest parties’ output, is
indistinguishable in the real and ideal worlds. In the topology-hiding case, this means
that the set of aborting parties must also be indistinguishable. Since whether or not a
party aborts during protocol execution depends on the topology of the graph, in order

Exploring the Boundaries of Topology-Hiding Computation 307

to determine the abort vector the simulator may require the aid of the leakage oracle (in
our case, this is actually the only use of the leakage oracle).

Definition 4 (Fail-stop Topology Hiding). We say that a protocol Π securely real-
izes a functionality F hiding topology against fail-stop adversaries if it realizes
(FgraphInfo||F) with abort in the Fgraph-failstop-hybrid model.

Recall that general topology hiding computation against fail-stop adversaries is
impossible [52]; we thus consider the notion of topology hiding against fail-stop with
(δ,L)-leakage.

Definition 5 (Fail-stop Topology Hiding with Leakage). We say that a protocol Π
securely realizes a functionality F hiding topology against fail-stop adversaries with
(δ,L)-leakage if it realizes (FgraphInfo||F ||L) with abort in the Fgraph-failstop-hybrid model,
with the following property: For any adversarial environment Z, it holds with proba-
bility (1 − δ) over the random coins of the simulator S, that S does not make any call
to L.

3 Lower Bounds

We begin by exploring lower bounds on the feasibility of topology-hiding computation
protocols. In this direction, we present two results.

First, we demonstrate that topology hiding is inherently a non-trivial cryptographic
notion, in the sense that even for semi-honest adversaries and the simple goal of broad-
cast (achievable trivially when topology hiding is not a concern), topology-hiding pro-
tocols imply the existence of oblivious transfer.

We then shift to the fail-stop model, and provide a lower bound on the amount of
leakage that must be revealed by any protocol achieving broadcast, as a function of the
number of rounds and number of parties. This refines the lower bound of [52], which
shows only that non-negligible leakage must occur.

Both results rely only on the correctness guarantee of the broadcast protocol in
the “legal” setting, where a single broadcaster sends a valid message. We make no
assumptions as to what occurs in the protocol if parties supply an invalid set of inputs.
(In particular, this behavior will not be need to be encountered within our lower bounds.)

More formally, our lower bounds apply to THC protocols achieving any functional-
ity F that satisfies the following single-broadcaster-correctness property:

Definition 6 (Single-Broadcaster Correctness). An ideal n-party functionality F :
{0, 1,⊥}n → {0, 1,⊥}n will be said to satisfy single-broadcaster correctness if for any
input vector (b1, . . . , bn) ∈ {0, 1,⊥}n in which a single input b := bi is non-⊥, the
functionality F outputs b to all parties within the connected component of Pi (and no
output to all other parties).

3.1 Semi-honest Topology-Hiding Broadcast Implies OT

Consider the task of broadcast on a given communication graph. If parties are semi-
honest, and no topology hiding is required, then such a protocol is trivial: In each round,

308 M. Ball et al.

every party simply passes the broadcast value to each of his neighbors; within n rounds,
all parties are guaranteed to learn the value. However, such a protocol leaks information
about the graph structure. For instance, the round in which a party receives the broadcast
bit is precisely the distance of this party to the broadcaster. It is not clear at first glance
whether this approach could be adapted unconditionally, or perhaps enhanced by tools
such as symmetric-key encryption, in order to hide the topology.

We demonstrate that such an approach will not be possible. Namely, we show that
even semi-honest topology-hiding broadcast (THB) implies the existence of oblivious
transfer. This holds even for the weaker notion of indistinguishability-based (IND-
CTA) topology-hiding security [52] which directly implies the same lower bound for
the simulation-based definition. As described above, our bound applies to protocols for
any functionality which satisfies single-broadcaster correctness.

Theorem 1 (THB implies OT). If there exists an n-party protocol for n ≥ 4 achieving
IND-CTA topology hiding against a semi-honest adversary, for any functionalityF with
single-broadcaster correctness, then there exists a protocol for oblivious transfer.

We note that, because both the following protocol and proof are black box with
respect to the IND-CTA topology-hiding broadcast protocol, the proof holds in the pres-
ence of secure hardware.

Proof. We present a protocol for semi-honest secure 2-party computation of the OR
functionality given such a semi-honest topology-hiding broadcast protocol for n = 4
parties. This implies existence of oblivious transfer [21,47,49].

First, observe that in the semi-honest setting, topology-hiding broadcast of mes-
sages of any length (even of a single bit) directly implies topology-hiding broadcast of
arbitrary-length messages, by sequential repetition.

In a secure OR computation protocol, two parties A, B begin with inputs xA, xB ∈
{0, 1}, and must output (xA ∨ xB). In our construction, each party A, B will emulate two
parties in an execution of the 4-party topology-hiding broadcast protocol Psh-broadcast for
messages of length λ: namely, A emulates PA

0 , P
A
1 , and B emulates PB

0 , P
B
1 , where PA

0 , P
B
0

are connected as neighbors and PA
1 , P

B
1 are similarly neighbors. Each of the parties A, B

will emulate an edge between its own pair of parties if and only if its protocol input bit
xA, xB ∈ {0, 1} is 1. More formally, the secure 2-party OR protocol is given in Fig. 3.

We now demonstrate a simulator for the secure 2-party computation protocol. The
simulator receives as input the security parameter 1λ, the corrupted party C’s input xC
(where C ∈ {A, B}), the final output b ∈ {0, 1}, equal to the OR of xC with the (secret)
honest party input bit, and auxiliary input z. As its output, SA(1λ, xC , b, z) simulates
an execution of POR interacting with the adversary A while emulates the role of the
uncorrupted party C′ � C ∈ {A, B}, but using input b in the place of the (unknown)
input xC′ .

Denote by viewPOR
A (1λ, (xA, xB), z) the (real) view of the adversary A within the

protocol POR on inputs xA, xB, when given auxiliary input z.

Claim. For every xA, xB ∈ {0, 1}, non-uniform polynomial-time adversary A, and aux-
iliary input z, it holds that

(xA, xB, b, view
POR
A (1λ, (xA, xB), z))

c
� (xA, xB, b,SA(1λ, xC , b, z)).

Exploring the Boundaries of Topology-Hiding Computation 309

Fig. 3. Secure 2-party OR protocol POR from semi-honest THB

Proof. First observe that output correctness of POR holds, as follows. By single-
broadcaster correctness of Psh-broadcast (note that indeed there is a single broadcaster),
all parties in the connected component of the broadcaster PA

0 within the emulated exe-
cution will output the string R. In particular, this includes PB

0 : i.e., outB0 = R. In contrast,
any party outside the connected component of PA

0 will have a view in the emulated THB
protocol that is information theoretically independent of the choice of R, and thus will
output R with negligible probability. This means outA1 and outB1 will equal R precisely
when there exists an edge between x0

D and x1
D for at least one D ∈ {A, B}: that is, iff

(xA ∨ xB) = 1.
In the case of b = 0, the simulation is perfect. In the case of b = 1, indistinguishabil-

ity of the above real-world and ideal-world distributions follows directly by the indistin-
guishability under chosen topology attack (IND-CTA) security of Psh-broadcast. Namely,
the simulation corresponds to execution of Psh-broadcast on the graph G with an edge
between the two uncorrupted parties PC′

0 , P
C′
1 , whereas depending on the value of the

honest input xC′ , the real distribution is an execution on either this graph G or the graph
G′ with this edge removed. A successful distinguisher thus breaks IND-CTA for the
challenge graphs G,G′.

3.2 Lower Bound on Information Leakage in Fail-Stop Model

The work of [52] demonstrated that non-negligible leakage on the graph topology must
occur in any broadcast protocol in the presence of fail-stop corruptions. In what follows,
we extend this lower bound, quantifying and amplifying the amount of information
revealed.

310 M. Ball et al.

Roughly, we prove that any protocol realizing broadcast with abort must leak
Ω(n/R) bits of information on the graph topology, where n is the number of parties, and
R is the number of rounds of interaction of the protocol.4 More formally, we demon-
strate an attack that successfully distinguishes between two different honest party graph
structures with advantage Ω(n/R). This, in particular, rules out the existence of (δ,L)-
leakage topology hiding for δ ∈ o(n/R), for any leakage oracle L. We compare this to
our protocol construction in Sect. 4.2, which achieves (δ,L)-leakage in this model for a
single-output-bit L and δ ∈ O(n2/R). We leave open the intriguing question of closing
this gap.

The proof follows an enhanced version of the attack approach of [52], requiring the
adversary to control only 4 parties, and perform only 2 fail-stop aborts. At a high level,
parties are arranged in a chain with a broadcaster at one end, 2 aborting parties in the
middle, and an additional corrupted party who is either on the same side or opposite
side of the chain as the broadcaster. In the attack, one of the 2 middle parties aborts in
round i, and the second aborts in round i+d as soon as the first’s abort message reaches
him. Parties on one end of the chain thus see a single abort at round i, whereas parties
on the other end see only an abort at round i + d. In [52] it is shown that the view of a
party given an abort in round i versus i+1 can be distinguished with advantage Ω(1/R),
where R is the number of rounds.

We improve over [52] by separating the two aborting parties by a distance of Θ(n),
instead of distance 1. Roughly, the corrupted party’s view in the two positions will be
consistent with either an abort in round i or round i+Θ(n) of the protocol, (versus i and
i + 1 in [52]), which can be shown to yield distinguishing advantage Θ(n) better than
in [52].

As in Sect. 3.1, our attack does not leverage any behavior outside the scope of a sin-
gle broadcaster, and thus applies to any functionality F satisfying single-broadcaster
correctness. Further, the proof only requires that the protocol is correct and that infor-
mation is required to travel over the network topology: that is, each node can only
transmit information to adjacent nodes in any given round. Therefore the theorem holds
in the presence of secure hardware (which is only held locally and cannot be jointly
accessed by different parties).

Theorem 2. Let L be an arbitrary leakage oracle. Then no R-round n-party protocol
can securely emulate broadcast (with abort) in the fail-stop model while hiding topology
with (δ,L)-leakage for any δ ∈ o(n/R).

Proof. Let P be an arbitrary protocol which achieves broadcast with abort as above.
We demonstrate a pair of graphs G0,G1 and an attack strategy A such that A can
distinguish with advantage Ω(n/R) the executions of P within G0 versus G1. We then
prove this suffices to imply the theorem.

Both graphs G0,G1 are line graphs on n nodes. In graph G0, the parties appear
in order (i.e., the neighbors of Pi are Pi−1 and Pi+1). In graph G1, the parties appear
in order, except with the following change: The location of parties P3, P4, P5 (in nodes

4 For simplicity we consider a fixed number of rounds R; however, the techniques can be
extended to probabilistic R as well.

Exploring the Boundaries of Topology-Hiding Computation 311

3, 4, 5 ofG0) are now in nodes n−2, n−1, and n, respectively; in turn, parties Pn−2, Pn−1,
and Pn (in nodes n − 2, n − 1, and n of G0) are now in nodes 3, 4, 5.

The adversaryA will corrupt: party P1 (always at position 1 in both graphs), which
we will denote as B the broadcaster; party P4 (who is in position 4 of G0 and position
n − 1 in G1), which we will denote as D the “detective” party; and parties P7 and Pn−4

(in fixed positions 7, n − 4) who we will denote as A1 and A2 the aborting parties. For
simplicity of notation, in the following analysis, we will denote the two nodes 4, n−1 in
which D can be located as v, v′. We will further denote the distance (n− 4)− 7 between
the aborting parties A1 and A2 as m; note that m ∈ Θ(n).

Note that the neighbors of all corrupted parties are the same across G0 and G1 (this
is the purpose of moving the uncorrupted parties P3, P5 in addition to P3, as well as
maintaining a gap between the collections of relevant corrupted parties).

We define two events:

Ei := Event that the first abort occurs in round i, by either A1 or A2

Hv,b := Event that the party at node v outputs the correct broadcast bit b

(note that this depends on the protocol and the graph on which it is run)

By (single-broadcaster) correctness of P, it must hold for every broadcast bit b that
Pr[Hv,b|ER] = 1: that is, if node A1 or A2 aborts in the final round, then the news of the
abort will not reach node v, in which case the corresponding party must output in the
same (correct) fashion as if no abort occurred.

By an information argument, it must be the case for v′ that for some choice of
b ∈ {0, 1}, it holds that Pr[Hv′

�
,b|E1] ≤ 1/2. Recall that v′� lies on the opposite end of the

aborting parties compared to the broadcasting node B.
Combining the above two statements, it holds that ∃b ∈ {0, 1} such that we have

Pr[Hv,b|ER] − Pr[Hv′,b|E1] ≥ 1/2.
By telescoping and the pigeonhole principle, there must exist some m-step of rounds

between R and 1 which contains at least (m/R) of this mass:

∃b ∈ {0, 1},∃ j∗ ∈
[⌊R
m

⌋]
s.t.

⎧⎪⎪⎨⎪⎪⎩
Pr[Hv�,b|E j∗m] − Pr[Hv′

�
,b|E(j∗−1)m] ≥ m

2R , or

Pr[Hv′
�
,b|E j∗m] − Pr[Hv�,b|E(j∗−1)m] ≥ m

2R .
(1)

We now leverage these facts to describe an attack.
The Attack. Consider a non-uniform adversaryA hardcoded with: the b ∈ {0, 1} and

j∗ ∈ [�R/m] from Eq. (1), and whether we are in the top or the bottom of the two cases
(in which the roles of v and v′ are reversed). Suppose temporarily that we are the first
case.A proceeds as follows:

1. Corrupt the set of parties {B, A1, A2,D} from the set of n parties.
2. Execute an honest execution of protocol P up to round (j∗ − 1)m. In the execution,

party B is initialized with input broadcast bit b, and all other emulated parties with
input ⊥ (i.e., not broadcasting).

3. At round (j∗ − 1)m, abort party A2. Continue honestly simulating all other corrupted
parties for m rounds.

4. At round j∗m, abort party A1.

312 M. Ball et al.

5. Continue honestly simulating all other corrupted parties until the conclusion of the
protocol. Denote by outD the protocol output of the “detective” party D.

6. A outputs outD ⊕ b.

If we are instead in the setting of case 2 in Eq. (1), then the attack is identical, except
that the roles of A1 and A2 in Step 2 are swapped.

Claim. A distinguishes between the execution of P on graphs G0 and G1 with advan-
tage Ω(n/R).

Proof. This argument follows a similar structure as that of [52]. Suppose wlog we are
in Case 1 of Eq. (1). (Case 2 is handled in an identical symmetric manner.) Recall that
the aborting parties A1, A2 are distance m from one another. This means that A1 aborts at
some round (j∗ −1)m, then the view of parties to his left (in particular, the party at node
v = 4) is as in the event E(j∗−1)m. However, information of this abort must take at least
m rounds in order to reach any parties to the right of A2; thus, since A2 aborts already
at this round j∗m, A1’s abort is never seen by parties to the right of A2 (in particular, the
party at node v′ = m − 1), who will have view consistent with event E j∗m.

If the execution took place onG0, then D is at node v, otherwise it is at node v′. Thus,
the advantage of the adversaryA is precisely Pr[Hv�,b|E j∗m] − Pr[Hv′

�
,b|E(j∗−1)m] ≥ m

2R .

Now, suppose that P securely realizes F sh
BC hiding topology with (δ,L)-leakage, for

some leakage oracle L. Consider the distribution S′ generated by running the (δ,L)-
leakage simulator S, but aborting and outputting ⊥ in the event that the randomness
of S indicates it will query the leakage oracle. By construction, the statistical distance
between S′ and the properly simulated distribution S with access to leakage L for any
fixed choice of real inputs (i.e., honest graph) is bounded by δ. In particular, S′ is within
δ statistical distance from both SL(G0) and SL(G1) (denoting oracle access to leakage on
the respective graphs G0,G1). By the assumed (δ,L)-leakage simulation security of the
protocol, for both b = 0, 1 it holds that SL(Gb) is computationally indistinguishable from
the adversarial view of execution of P on Gb. Combining these steps, we see that no
efficient adversary can distinguish between the executions of P on graphs G0 and G1

with advantage non-negligibly better than δ.
Therefore, combined with Claim 3.2 it follows that δ must be bounded below by

δ ∈ Ω(n/R).

4 Upper Bounds

In this section, we observe that oblivious transfer implies semi-honest topology-hiding
computation on small diameter graphs, and then present two constructions of topology-
hiding broadcast with security against fail-stop adversaries from secure hardware.

The construction of semi-honest THC for graphs with small diameter follows is a
modified variant of the protocol given in [52].

The first fail-stop secure topology-hiding broadcast protocol leaks at most one bit in
the presence of aborts, by exploiting a stratified structure where the protocol is broken

Exploring the Boundaries of Topology-Hiding Computation 313

into epochs corresponding to the parties playing. If at the end of an epoch the commu-
nication network is still intact, the corresponding party will receive output at the end
of the protocol. If the network is not intact, the party will not receive the broadcast bit.
Aborting during a given an epoch may leak a bit about the distance from some aborting
party to the one corresponding to the epoch. But by the next epoch all parties (or rather,
their secure hardware) will be aware that the network has been disrupted and no future
epochs will yield output to their corresponding parties.

The second protocol is a simple modification of the first which extends each epoch
into many smaller eras. The era that actually determines the party’s output is randomly
(and secretly) chosen by the secure hardware. So, unless the first abort occurs in this era
(leaking a single bit), all parties (namely, their secure hardware) will reach consensus
about the network being disrupted and what their output is, independently of the net-
work topology. Thus a bit is only leaked with probability that degrades inversely with
the number of eras.

4.1 OT Implies Semi-honest THC (for Small-Diameter Graphs)

Semi-Honest THC for small-diameter graphs is, in fact, equivalent to OT. This follows
from a minor modification to the MPC-based protocol of [52]. Recall, the high-level
approach of [52] is a recursive construction:

– At the base level, nodes run the (insecure) OR-and-forward protocol, except that
every node has a key pair for a PKE scheme, and every message to node i from one
of its neighbors is encrypted under pki.

– The recursion step is to replace every node by an MPC protocol in its local neigh-
borhood (the node and all its immediate neighbors), such that its internal state is
revealed only if the entire neighborhood colludes.
The communication pattern for each of these MPCs is a star. Since leaf nodes can’t
communicate directly, they must pass messages through the center. In order to sim-
ulate private channels the leaf nodes first exchange PKE public keys (we are in the
semi-honest model, so man-in-the-middle attacks are not relevant) and then use the
PKE scheme to encrypt messages between them.
Note that the MPC simulates the node’s next-message function. All nodes receive as
input a secret-share of the state from the previous round, and output a secret share
of the updated state. In addition, the input of the central node contains the list of
messages received from its neighbors in the previous round, and its output contains
the list of messages to send to its neighbors in this round. At the end of the MPC
execution, the central node sends the messages to its neighbors (who will then use
them as part of their input in MPC executions in the next round).
This structure is the reason for requiring the messages to a node at the base level
to be encrypted—the MPC doesn’t hide the messages themselves from the central
node, hence privacy would be lost if they were unencrypted.

We will replace the PKE scheme with a key-agreement protocol and a symmetric
encryption scheme. Since the existence of OT implies both of these primitives, the
resulting protocol can be build from OT (we note that, unlike the construction of OT

314 M. Ball et al.

from THB, this construction is not black-box in the OT primitive—the recursion step
will require non-black-box access to the OT).

For the base step, instead of using a PKE scheme, every node will perform a key-
agreement protocol with all of its neighbors. Henceforth, messages from pi to a direct
neighbor pj will be encrypted under their shared key (using the symmetric encryption
scheme). This ensures that to an adversary that does not have access to the state of either
pi or p j messages between the two are indistinguishable from random.

For the recursion step, we do the same thing except with the leaf nodes. That is,
every pair of leaf nodes pi, p j will execute the key agreement protocol, using the cen-
tral node to pass messages. Henceforth, the private channel between them in the MPC
protocol will be simulated by encrypting messages using their shared key and passing
the messages via the central node.

4.2 Constructions for Fail-Stop Adversaries

Both fail-stop protocols presented in this section achieve a standard notion of broadcast.
The broadcast functionalities considered previously were defined with respect to the
network topology, particularly its connected components. Forthwith, we will assume
the network (before failures) is fully connected.

Definition 7 (FBC). The ideal n-party broadcast functionality FBC is defined by the
following output behavior on input bi ∈ {0, 1,⊥} from every party Pi: if a exactly one
b := bi is non-⊥, then FBC outputs b to all parties; otherwise, all outputs are ⊥.

Protocol with One Bit of Leakage
We present a topology-hiding broadcast protocol secure against fail-stop adversaries

making static corruptions given one bit of leakage. We assume a secure hardware box
and one-way functions. We also note that the protocol presented here is secure against
semi-honest adversaries without any leakage.

In what follows we consider parties to correspond to their node in the set of all
network nodes, [n].

Our protocol has two major phases:

1. Graph Collection: Collect a description of the graph, inputs, and aliases. This phase
runs for a number of rounds proportional to the network diameter. Any abort seen
during this phase by any party will cause that part to abort in the final round.

2. Consistency Checking and Abort Segregation: Checking consistency and out-
putting. This phase has a number of subphases corresponding to the number of par-
ties, n.
Each subphase runs for a number of rounds proportional to the size of the network.
During subphase i, party i will no longer abort if the first abort it sees takes place dur-
ing that subphase or later. However, an abort seen by any party in {i+ 1, i+ 2, . . . , n}
will still cause that party to abort in the final round. The intuition is that if any party
aborts in a subphase, all non-aborted parties are guaranteed to know that an abort
has occurred by the end of next subphase.

Exploring the Boundaries of Topology-Hiding Computation 315

By subphase n, if no abort has been seen, all honest parties will output correctly,
regardless of subsequent abort behaviors.

The hardware box, aside from initialization and final output, will take as input and
output authenticated-encryptions of the player’s current “state.” The plaintext state of a
party Pu with session key ku after round i, denoted siu, contains the following informa-
tion:

– The party’s alias: idu, a random λ-length string chosen at outset.
– The round number: iu.
– Current “knowledge” of the graph: Gi

u.
– Current “knowledge” of inputs: mu,i = (mu,i

1 , . . . ,m
u,i
n).

– Current “knowledge” of session keys: sku,i = (sku,i
1 , . . . , sku,i

n).
– First round an abort was seen: aiu.
– Indicator of whether or not a neighbor has aborted in a previous round: biu :=

(biv1
, . . . , bivd). (This information is not strictly necessary, but convenient when prov-

ing security.)
– abort flag: α.

We now define the Cfs functionality that is embedded in the hardware box. As stated
above, we take network locations (typically denoted u or v) to be elements of [n]. State
information is represented as vectors over the alphabet Σ = {0, 1, ?,⊥}. We take ei(x)
to be the vector of all ?s with x ∈ {0, 1,⊥} in the ith position (the length of the vector
should be clear from context, unless otherwise specified). If the vector is in fact an m×n-
matrix, we take ei(x) to denote the vector with ?n in all rows, except i which contains
x ∈ Σn. The network (graph) is represented as an adjacency matrix, with ?s denoting
what is unknown and⊥s representing errors, or inconsistencies. In particular, the closed
neighborhood of u, N[u], is the n × n matrix with the adjacency vector of u in the uth
row and ?s elsewhere. Let H : 2Σ

m → Σm denote the component-wise “accumulation”
operator where the ith output symbol, for i ∈ [m], is as defined as follows:

HiX :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 if ∃x ∈ X ∈ [k] : xi = 1, and ∀y ∈ X : yi ∈ {1, ?}
0 if ∃x ∈ X : xi = 0, and ∀y ∈ X : xi ∈ {0, ?}
? if ∀x ∈ X : xi =?
⊥ otherwise

Finally, let R = n(n + 2) + 1 (final number of rounds) (Fig. 4).
Let L denote the class of efficient leakage functions that leak one bit about the

topology of the network.

Theorem 3. The protocol Ffs-broadcast topology hiding realizes broadcast with L leak-
age with respect to static corruptions.

Remark 1. By observing that the leakage oracle is only used by the simulator in the
event of an abort, the protocol Ffs-broadcast is secure against probabilistic polynomial
time semi-honest adversaries without leakage.

316 M. Ball et al.

Fig. 4. The functionality Cfs (Part 1: continued in Fig. 5).

Correctness. Assuming there are no aborts, correctness follows by induction on the
rounds. By inspection, local consistency checks will pass under honest evaluation if
there are no aborts. Clearly, at the end of round i, the encrypted broadcast message will
have reached all parties whose distance is at most i from the broadcaster. So by round
n + 1, all parties will have the message. Similarly, by round n + 1, all local descriptions
of the network and aliases will have reached all parties. Moreover, no abort flags will
be triggered. Thus, the global consistency checks will pass in the final round, R, and all
parties will receive the broadcast message.

By inspection, it is easy to see that if evaluation is semi-honest with possible aborts
each party will either output the unique non-⊥ input, or abort (Fig. 6).

Security. We start with a rough overview of simulation and why it works, with the full
proof of security given in the full version.

Crucially, the authenticated encryption of internal states makes it infeasible for an
adversary to either forge states, or glean any information about their contents. As the
simulator may have incomplete information about the graph topology, this allows it to
send fake states and simply output consistently with the real protocol. Moreover, the
unforgeability gives the simulator full knowledge of any initial information used when
querying the box, and, importantly, how these queries relate to one another (especially
whether or not they are consistent).

Exploring the Boundaries of Topology-Hiding Computation 317

Fig. 5. The functionality Cfs (Part 2)

318 M. Ball et al.

Fig. 6. The protocol Ffs-broadcast in Fgraph-hybrid model.

The difficulty in the proof is in dealing with “replay” attacks, where the adversary
combines information from the honest nodes in malicious ways with other initializa-
tions. The session keys aid in this by rendering it infeasible for the adversary to replay
as an uncorrupted party with a modified local topology. Additionally, the collection
phase implies that honest nodes have complete information about topology and initial-
ization information used in execution by round n. Thus, when this information is later
combined with initializations that do not match the execution exactly, the only plaintext
output such a malicious adversary will receive is ⊥. Together this means the simula-
tor only has to provide output when query structure matches execution almost exactly
(up to somewhat local aborts). The upshot being that the simulator can provide output
identical to a real execution, even though it has incomplete knowledge of the network
topology.

One of the dangers in simulation is if an adversary corrupts all the nodes within a
distance r of a given node, it has enough information to “fast forward” the node to get
its program outputs for the next r+ 1-rounds. Additionally, after its threshold round has
occurred, an adversary can abort all the neighbors of a node, and iterate the remaining
rounds by itself to get output. However, we show that the simulator will always have
enough information to fool such adversaries.

• For each party, Pu, generate (n + 2)n random encryptions of 0. These will constitute
the messages sent by honest parties to corrupted parties, and the output of the oracle
for queries consistent with semi-honest evaluation.
• The simulated oracle will remember all queries from the adversary in a data struc-

ture, the outputs given, and how they relate to one another (as we explain in the full
version). The idea is that “valid” inputs will return more encryptions of 0 until the
last “round.” Then, the simulator will use the data structure to determine the appro-
priate output given the initialization queries used in conjunction with the single bit
of leakage (supposing there was an Abort in the execution, described below). We
describe the simulation of the hardware box program in more detail below in the full

Exploring the Boundaries of Topology-Hiding Computation 319

version.
Any query which isn’t an initialization input or a concatenation of previous queries
will immediately return⊥. Likewise, any combination of previous queries that corre-
spond to locally inconsistent topologies or round numbers. Moreover, after n rounds
any queries that yield an inconsistent topology (the combined the base initializations
of all queries, and the previous queries they depend on, does not yield a single con-
sistent graph) will be recognized in the real world. Thus the simulator need only
give output in the final round if all queries, including their ancestors, correspond to
consistent graph initialization.
If the first abort occurred in round i, the simulator will query to determine if the real
encrypted state of party j = �i/n + 2 contained information “witnessed” the abort
after round (j + 2)n. If so, the queries corresponding to the final round of execution
for parties P1, P2, . . . , Pj will return the broadcast message, and Abort to all other
parties. If Pj “witnessed” the abort on or before round (j + 2)n, then the query cor-
responding to Pj’s final input to the black box program will return Abort as well
(all other outputs for “final” queries are unchanged from the previous case). The
simulator uses the single bit of leakage to determine if an abort reach Pj in time.
• When the adversary corrupts a party once the protocol is underway, first choose a

random sk. Then, fix the oracle to yield pre-determined ciphertexts corresponding
to the honest initialization and pre-determined messages from its neighborhood.

We refer the reader to the full version of this paper for a complete description of the
simulator and hybrids.

Protocol with Arbitrarily Low Leakage
This protocol is only a slight modification of the previous one. To achieve δ leakage,
each party is not associated with a single subphase, but instead a sequence of n�/δ�
subphases of a zone. At the outset, parties provide randomness (which can be drawn
from the session keys), which will assist in selecting one of these subphases to be the
true one. Thus, the probability of an aborting adversary successfully hitting any sub-
subphase with its first abort is dependent on the graph structure is < 1/δ.

The state is identical to the previous, with one additional parameter, t, encoding the
threshold round.

The protocol here is the same as before, except now R = n(n2�1/δ� + 2) + 1.
We now define Crand-fs functionality. We take notation to be consistent with the

previous construction, Cfs, where not otherwise specified (Fig. 7).

Theorem 4. For any δ = 1/poly(λ, n), the protocol Ffs-broadcast, when Cfs is replaced
with Crand-fs(δ), topology hiding realizes broadcast with (δ,L) leakage with respect to
static corruptions.

Correctness. The proof here is nearly identical to the preceding one.

Security. Here the simulator is nearly identical to the previous, except it chooses each
location’s random threshold itself, and only queries the leakage oracle if when the first
real abort occurs in chosen block. Here, it queries more-or-less identically to before.
For all other nodes it outputs according to whether the threshold has already occurred

320 M. Ball et al.

Fig. 7. The functionality Crand-fs (Part 1: continued in Fig. 8).

or not. The leakage oracle itself will represent an identical functionality to the previous
case.

Because the distribution of thresholds is computationally indistinguishable in simu-
lated case from the real one, an adversary will be unable to distinguish. As many of the
lemmas from the previous construction hold here, we will simply bound the probability
that the leakage oracle is called (and hence, the leakage itself).

The Simulator. As before the first the simulator first generates a non-aborting execution
for each corrupt component, which will form the basis of the messages from honest
parties. Additionally, in this case, the simulator selects a threshold block uniformly for
each party’s zone. Having chosen thresholds and an execution, simulation of Crand-fs

proceeds identically to the previous protocol.

Lemma 1. For any probabilistic poly-time adversary, the simulator only needs to query
the leakage oracle with probability at most δ.

Proof. Recall that the simulator only needs to query the leakage oracle with respect to
at most one party.

For any fixed network location, we will bound the probability that the simulator
needs to call the leakage oracle for that location by δ/n. Then by a union bound, the
probability that the simulator needs to call the leakage oracle for any node.

Exploring the Boundaries of Topology-Hiding Computation 321

Fig. 8. The functionality Crand-fs (Part 2)

322 M. Ball et al.

In the full version we show that any non-aborting query graph induced by a thresh-
old node must match the non-aborting execution exactly. As a consequence to get non-
aborting output, the adversary must have run the protocol up to at least r + 1 rounds
before the node’s threshold. Thus, anything that happens before such a time will give
no information about the threshold round (beyond whether it has or has not occurred
yet). Additionally, by the time an adversary can learn whether the threshold follows
its current block, it will be to late to execute a non-simulatable abort (outside of the
corruption radius of the node).

If the first abort occurs in the i-th block of a location’s zone, then the probability the
adversary hits the chosen block is:

(
1 − i − 1

n/δ

)

︸�������︷︷�������︸
prob. threshold hasn’t occured

·
(

1
n/δ − (i − 1)

)

︸������������︷︷������������︸
cond. prob. of hitting relevant block

=
1
n/δ
=
δ

n

References

1. diaspora*: The online social world where you are in control
2. Akavia, A., LaVigne, R., Moran, T.: Topology-hiding computation on all graphs. In: Katz, J.,

Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 447–467. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-63688-7 15

3. Akavia, A., Moran, T.: Topology-hiding computation beyond logarithmic diameter. In:
Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10212, pp. 609–637.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56617-7 21

4. Beimel, A.: On private computation in incomplete networks. Distrib. Comput. 19(3),
237–252 (2007)

5. Beimel, A., Franklin, M.K.: Reliable communication over partially authenticated networks.
Theor. Comput. Sci. 220(1), 185–210 (1999)

6. Beimel, A., Gabizon, A., Ishai, Y., Kushilevitz, E., Meldgaard, S., Paskin-Cherniavsky, A.:
Non-interactive secure multiparty computation. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO
2014. LNCS, vol. 8617, pp. 387–404. Springer, Heidelberg (2014). https://doi.org/10.1007/
978-3-662-44381-1 22

7. Beimel, A., Malka, L.: Efficient reliable communication over partially authenticated net-
works. Distrib. Comput. 18(1), 1–19 (2005)

8. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for noncryptographic
fault-tolerant distributed computations. In: Proceedings of the 20th Annual ACM Sympo-
sium on Theory of Computing (STOC), pp. 1–10 (1988)

9. Bhurman, H., Christandl, M., Unger, F., Wehner, S., Winter, A.: Implications of superstrong
nonlocality for cryptography. Proc. R. Soc. A 462(2071), 1919–1932 (2006)

10. Bläser, M., Jakoby, A., Liskiewicz, M., Manthey, B.: Private computation: k-connected ver-
sus 1-connected networks. J. Cryptol. 19(3), 341–357 (2006)

11. Boyle, E., Goldwasser, S., Tessaro, S.: Communication locality in secure multi-party com-
putation: how to run sublinear algorithms in a distributed setting. In: Sahai, A. (ed.) TCC
2013. LNCS, vol. 7785, pp. 356–376. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-36594-2 21

https://doi.org/10.1007/978-3-319-63688-7_15
https://doi.org/10.1007/978-3-319-56617-7_21
https://doi.org/10.1007/978-3-662-44381-1_22
https://doi.org/10.1007/978-3-662-44381-1_22
https://doi.org/10.1007/978-3-642-36594-2_21
https://doi.org/10.1007/978-3-642-36594-2_21

Exploring the Boundaries of Topology-Hiding Computation 323

12. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-party and
multi-party secure computation. In: Reif, J.H. (ed.) Proceedings on 34th Annual ACM Sym-
posium on Theory of Computing, 19–21 May 2002, Montréal, Québec, Canada, pp. 494–503.
ACM (2002)

13. Chandran, N., Chongchitmate, W., Garay, J.A., Goldwasser, S., Ostrovsky, R., Zikas, V.: The
hidden graph model: communication locality and optimal resiliency with adaptive faults. In:
Proceedings of the 2015 Conference on Innovations in Theoretical Computer Science, ITCS
2015, pp. 153–162. ACM, New York (2015)

14. Chandran, N., Garay, J.A., Ostrovsky, R.: Edge fault tolerance on sparse networks. In:
Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012. LNCS, vol. 7392,
pp. 452–463. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31585-5 41

15. Chandran, N., Goyal, V., Sahai, A.: New constructions for UC secure computation
using tamper-proof hardware. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965,
pp. 545–562. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3 31

16. Chang, H., Govindan, R., Jamin, S., Shenker, S.J., Willinger, W.: Towards capturing repre-
sentative AS-level Internet topologies. Comput. Netw. 44(6), 737–755 (2004)

17. Chaum, D.: Untraceable electronic mail, return addresses, and digital pseudonyms. Com-
mun. ACM 24(2), 84–88 (1981)

18. Chaum, D., Crepeau, C., Damgard, I.: Multiparty unconditionally secure protocols. In: Pro-
ceedings of the 20th Annual ACM Symposium on Theory of Computing (STOC), pp. 11–19
(1988)

19. Chiesa, A., Tromer, E.: Proof-carrying data and hearsay arguments from signature cards. In:
Yao, A.C. (ed.) Proceedings of the Innovations in Computer Science – ICS 2010, Tsinghua
University, Beijing, China, 5–7 January 2010, pp. 310–331. Tsinghua University Press
(2010)

20. Choi, S.G., Katz, J., Schröder, D., Yerukhimovich, A., Zhou, H.-S.: (Efficient) universally
composable oblivious transfer using a minimal number of stateless tokens. In: Lindell, Y.
(ed.) TCC 2014. LNCS, vol. 8349, pp. 638–662. Springer, Heidelberg (2014). https://doi.
org/10.1007/978-3-642-54242-8 27

21. Chor, B., Kushilevitz, E.: A zero-one law for boolean privacy. SIAM J. Discrete Math. 4(1),
36–47 (1991)

22. Cleve, R.: Limits on the security of coin flips when half the processors are faulty (extended
abstract). In: STOC, pp. 364–369 (1986)

23. Cleve, R., Impagliazzo, R.: Martingales, collective coin flipping and discrete control pro-
cesses (1993, unpublished)

24. Dachman-Soled, D., Lindell, Y., Mahmoody, M., Malkin, T.: On the black-box complexity
of optimally-fair coin tossing. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 450–467.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19571-6 27

25. Deng, J., Han, R., Mishra, S.: Decorrelating wireless sensor network traffic to inhibit traffic
analysis attacks. Pervasive Mob. Comput. 2(2), 159–186 (2006)

26. Dolev, D.: The Byzantine generals strike again. J. Algorithms 3(1), 14–30 (1982)
27. Dolev, D., Dwork, C., Waarts, O., Yung, M.: Perfectly secure message transmission. J. ACM

40(1), 17–47 (1993)
28. Dwork, C., Peleg, D., Pippenger, N., Upfal, E.: Fault tolerance in networks of bounded

degree. SIAM J. Comput. 17(5), 975–988 (1988)
29. Fisch, B., Freund, D., Naor, M.: Physical zero-knowledge proofs of physical properties. In:

Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8617, pp. 313–336. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-44381-1 18

30. Fisch, B.A., Freund, D., Naor, M.: Secure physical computation using disposable circuits.
In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9014, pp. 182–198. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46494-6 9

https://doi.org/10.1007/978-3-642-31585-5_41
https://doi.org/10.1007/978-3-540-78967-3_31
https://doi.org/10.1007/978-3-642-54242-8_27
https://doi.org/10.1007/978-3-642-54242-8_27
https://doi.org/10.1007/978-3-642-19571-6_27
https://doi.org/10.1007/978-3-662-44381-1_18
https://doi.org/10.1007/978-3-662-46494-6_9

324 M. Ball et al.

31. Gennaro, R., Lysyanskaya, A., Malkin, T., Micali, S., Rabin, T.: Algorithmic Tamper-Proof
(ATP) security: theoretical foundations for security against hardware tampering. In: Naor,
M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 258–277. Springer, Heidelberg (2004). https://doi.
org/10.1007/978-3-540-24638-1 15

32. Glaser, A., Barak, B., Goldston, R.: A zero-knowledge protocol for nuclear warhead verifi-
cation. Nature 510, 497–502 (2004)

33. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a completeness
theorem for protocols with honest majority. In: STOC, pp. 218–229. ACM (1987)

34. Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious rams. J. ACM
43(3), 431–473 (1996)

35. Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: One-time programs. In: Wagner, D. (ed.)
CRYPTO 2008. LNCS, vol. 5157, pp. 39–56. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-85174-5 3

36. Gordon, S.D., Malkin, T., Rosulek, M., Wee, H.: Multi-party computation of polynomials
and branching programs without simultaneous interaction. In: Johansson, T., Nguyen, P.Q.
(eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 575–591. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-38348-9 34

37. Goyal, V., Ishai, Y., Sahai, A., Venkatesan, R., Wadia, A.: Founding cryptography on tamper-
proof hardware tokens. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 308–326.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11799-2 19

38. Halevi, S., Ishai, Y., Jain, A., Kushilevitz, E., Rabin, T.: Secure multiparty computation with
general interaction patterns. In: Proceedings of the 2016 ACM Conference on Innovations in
Theoretical Computer Science, ITCS 2016, pp. 157–168. ACM, New York (2016)

39. Halevi, S., Lindell, Y., Pinkas, B.: Secure computation on the web: computing without simul-
taneous interaction. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 132–150.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9 8

40. Hazay, C., Lindell, Y.: Constructions of truly practical secure protocols using standardsmart-
cards. In: Ning, P., Syverson, P.F., Jha, S. (eds.) Proceedings of the 2008 ACM Conference
on Computer and Communications Security, CCS 2008, Alexandria, Virginia, USA, 27–31
October 2008, pp. 491–500. ACM (2008)

41. Hinkelmann, M., Jakoby, A.: Communications in unknown networks: preserving the secret
of topology. Theoret. Comput. Sci. 384(2–3), 184–200 (2007). Structural Information and
Communication Complexity (SIROCCO 2005)

42. Hirt, M., Maurer, U., Tschudi, D., Zikas, V.: Network-hiding communication and appli-
cations to multi-party protocols. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS,
vol. 9815, pp. 335–365. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-
53008-5 12

43. Hofheinz, D., Muller-Quade, J., Unruh, D.: Universally composable zero-knowledge argu-
ments and commitments from signature cards. In: 5th Central European Conference on Cryp-
tology (2005)

44. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against probing attacks.
In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481. Springer, Heidelberg
(2003). https://doi.org/10.1007/978-3-540-45146-4 27

45. Kamat, P., Zhang, Y., Trappe, W., Ozturk, C.: Enhancing source-location privacy in sen-
sor network routing. In: 25th International Conference on Distributed Computing Systems
(ICDCS 2005), 6–10 June 2005, Columbus, OH, USA, pp. 599–608 (2005)

46. Katz, J.: Universally composable multi-party computation using tamper-proof hardware. In:
Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 115–128. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-72540-4 7

https://doi.org/10.1007/978-3-540-24638-1_15
https://doi.org/10.1007/978-3-540-24638-1_15
https://doi.org/10.1007/978-3-540-85174-5_3
https://doi.org/10.1007/978-3-540-85174-5_3
https://doi.org/10.1007/978-3-642-38348-9_34
https://doi.org/10.1007/978-3-642-11799-2_19
https://doi.org/10.1007/978-3-642-22792-9_8
https://doi.org/10.1007/978-3-662-53008-5_12
https://doi.org/10.1007/978-3-662-53008-5_12
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/978-3-540-72540-4_7

Exploring the Boundaries of Topology-Hiding Computation 325

47. Kilian, J.: A general completeness theorem for two-party games. In: Koutsougeras, C., Vitter,
J.S. (eds.) Proceedings of the 23rd Annual ACM Symposium on Theory of Computing, 5–8
May 1991, New Orleans, Louisiana, USA, pp. 553–560. ACM (1991)

48. Kumar, M.V.N.A., Goundan, P.R., Srinathan, K., Rangan, C.P.: On perfectly secure commu-
nication over arbitrary networks. In: PODC, pp. 193–202 (2002)

49. Kushilevitz, E.: Privacy and communication complexity. SIAM J. Discrete Math. 5(2),
273–284 (1992)

50. Moran, T., Naor, M.: Basing cryptographic protocols on tamper-evident seals. Theor. Com-
put. Sci. 411(10), 1283–1310 (2010)

51. Moran, T., Naor, M., Segev, G.: An optimally fair coin toss. J. Cryptol. 29(3), 491–513 (2016)
52. Moran, T., Orlov, I., Richelson, S.: Topology-hiding computation. In: Dodis, Y., Nielsen, J.B.

(eds.) TCC 2015. LNCS, vol. 9014, pp. 159–181. Springer, Heidelberg (2015). https://doi.
org/10.1007/978-3-662-46494-6 8

53. Reiter, M.K., Rubin, A.D.: Anonymous web transactions with crowds. Commun. ACM
42(2), 32–38 (1999)

54. Spring, N.T., Mahajan, R., Wetherall, D.: Measuring ISP topologies with Rocketfuel. In:
Proceedings of SIGCOMM 2002 (2002)

55. Syverson, P.F., Goldschlag, D.M., Reed, M.G.: Anonymous connections and onion routing.
In: 1997 IEEE Symposium on Security and Privacy, 4–7 May 1997, Oakland, CA, USA, pp.
44–54 (1997)

56. Yao, A.C.: Protocols for secure computations. In: Proceedings of the 23rd IEEE Symposium
on Foundations of Computer Science (FOCS), pp. 160–164 (1982)

https://doi.org/10.1007/978-3-662-46494-6_8
https://doi.org/10.1007/978-3-662-46494-6_8

Isogeny

Supersingular Isogeny Graphs
and Endomorphism Rings: Reductions

and Solutions

Kirsten Eisenträger1(B), Sean Hallgren2, Kristin Lauter3, Travis Morrison1,
and Christophe Petit4

1 Department of Mathematics, The Pennsylvania State University,
University Park, USA

eisentra@math.psu.edu
2 Department of Computer Science and Engineering,

The Pennsylvania State University, University Park, USA
3 Microsoft Research, Redmond, USA

4 University of Birmingham, Birmingham, UK

Abstract. In this paper, we study several related computational prob-
lems for supersingular elliptic curves, their isogeny graphs, and their
endomorphism rings. We prove reductions between the problem of path
finding in the �-isogeny graph, computing maximal orders isomorphic
to the endomorphism ring of a supersingular elliptic curve, and com-
puting the endomorphism ring itself. We also give constructive versions
of Deuring’s correspondence, which associates to a maximal order in a
certain quaternion algebra an isomorphism class of supersingular elliptic
curves. The reductions are based on heuristics regarding the distribution
of norms of elements in quaternion algebras.

We show that conjugacy classes of maximal orders have a representa-
tive of polynomial size, and we define a way to represent endomorphism
ring generators in a way that allows for efficient evaluation at points
on the curve. We relate these problems to the security of the Charles-
Goren-Lauter hash function. We provide a collision attack for special
but natural parameters of the hash function and prove that for general
parameters its preimage and collision resistance are also equivalent to
the endomorphism ring computation problem.

This paper is the result of a merge of [EHM17,PL17].
The first author was partially supported by National Science Foundation awards
DMS-1056703 and CNS-1617802, and by the National Security Agency (NSA) under
Army Research Office (ARO) contract number W911NF-12-1-0541.
The second author was partially supported by National Science Foundation awards
CNS-1617802 and CCF-1618287, and by the National Security Agency (NSA) under
Army Research Office (ARO) contract number W911NF-12-1-0541.
The fourth author was partially supported by National Science Foundation grants
DMS-1056703 and CNS-1617802.

c© International Association for Cryptologic Research 2018
J. B. Nielsen and V. Rijmen (Eds.): EUROCRYPT 2018, LNCS 10822, pp. 329–368, 2018.
https://doi.org/10.1007/978-3-319-78372-7_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78372-7_11&domain=pdf

330 K. Eisenträger et al.

1 Introduction

The recent search for new “post-quantum” cryptographic primitives and the
ongoing international PQC competition sponsored by NIST has motivated a
new era of research in the mathematics of cryptography. Ideas for cryptographic
primitives based on hard mathematical problems are being actively proposed and
examined. This paper focuses on supersingular isogeny-based cryptography, and
in particular on the hardness of computing endomorphism rings of supersingular
elliptic curves and its possible applications in cryptography.

In 2006, Charles et al. [CGL06,CGL09] introduced the hardness of finding
paths in Supersingular Isogeny Graphs into cryptography and used it for con-
structing cryptographic hash functions. In the CGL hash function, preimage
resistance relies on the hardness of computing certain �-power isogenies (for
� a small prime) between supersingular elliptic curves. Since then, this prob-
lem and related hard problems have been used as the basis for key exchange
protocols [JDF11], signature schemes [YAJ+17,GPS17], and public key encryp-
tion [DFJP14]. There is also a submission [ACC+17] to the PQC standardiza-
tion competition based on supersingular isogeny problems. While polynomial-
time quantum algorithms are known for attacking widely deployed public key
cryptosystems such as RSA and Elliptic Curve Cryptography (ECC), there are
currently no known subexponential quantum attacks against these supersingular
isogeny graph-based schemes.

In the supersingular case three problems have emerged as potential computa-
tional hardness assumptions related to the above systems. The first is computing
isogenies between supersingular elliptic curves, the second one is computing the
endomorphism ring of a supersingular elliptic curve, and the third is to compute
a maximal order isomorphic to the endomorphism ring of a supersingular elliptic
curve. In order to develop confidence that these new systems are secure against
quantum computers, it is important to understand these problems, their relation-
ships, and how they relate to the cryptosystems. The natural way to do this is to
give polynomial-time reductions between the problems when possible, and there
are heuristics for doing this [Koh96,KLPT14].However, one quickly runs into prob-
lems when attempting to find efficient reductions. For example, the main param-
eter for these problems is a large prime p, and it is not obvious that the endomor-
phism ring of an elliptic curve even has a basis with a representation size that is
polynomial in log p. The same problem exists for maximal orders.

The computational hardness assumption introduced in [CGL09] which under-
lies the security of Supersingular Isogeny Graph-based cryptography can be equiv-
alently described as finding paths in the isogeny graph or as producing an �-power
isogeny (for � a small prime) between two given supersingular elliptic curves. How-
ever, there exists another language to describe this problem, thanks to Deuring’s
correspondence [Deu41], which establishes (non-constructively) a one-to-one cor-
respondence between supersingular j-invariants and maximal orders in a quater-
nion algebra, up to some equivalence relations. Following this correspondence,
path-finding in the Supersingular Isogeny Graph can be translated, in theory,
into a problem involving maximal orders in quaternion algebras which was solved

Supersingular Isogeny Graphs and Endomorphism Rings 331

in [KLPT14]. So this motivates the problemof finding explicit versions of Deuring’s
correspondence, namely constructive, efficient algorithms to translate j-invariants
into maximal orders in the quaternion algebra and conversely.

1.1 Contributions

Section 2 introduces preliminary material on supersingular elliptic curves and
the arithmetic of quaternion algebras, and we recall some well-known facts from
[Mes86,Piz80,Wat69], with an emphasis on explicit computations and represen-
tations. We state several problems for supersingular elliptic curves in Sect. 3.
In Sect. 4, we show that an isomorphism class of maximal orders in a quater-
nion algebra has at least one representative of polynomial size. Since computing
maximal orders is one of the central problems we consider, such a theorem is nec-
essary to have meaningful polynomial-time reductions. The results in Sect. 4 are
conditional on GRH but do not use any heuristics. In Sect. 6.4, we construct the
quaternion algebra analogue of a factorization of an isogeny of �-power degree
into degree � isogenies. The results in that section do not use any heuristics
and are unconditional. The construction of Sect. 6.4 is used in our reductions
between algorithms involving maximal orders and paths in the �-isogeny graph
in Sects. 5 and 6.

Section 5 reduces three hard problems in supersingular graphs to each other:
a constructive version of Deuring’s correspondence from j-invariants to maxi-
mal orders in Bp,∞ (Problem 2); the endomorphism ring computation problem
(Problem 3); and the preimage and collision resistance of the Charles-Goren-
Lauter hash function, for a randomly chosen initial vertex. These reductions
rely on various heuristic assumptions underlying the quaternion �-isogeny algo-
rithm of [KLPT14] and its powersmooth version described explicitly in [GPS17],
along with new heuristics about using loops in the isogeny graph to generate
endomorphism rings.

Section 6 shows that constructing paths in the �-isogeny graph reduces to
a different type of endomorphism ring computation. However, instead of just
requiring an algorithm for computing the maximal order, one also needs to know
how the generators of the order act on the �-torsion of the curve. Thus this section
contains a reduction to a harder problem. On the other hand, this section removes
some of the heuristics used in Sect. 5. More precisely, the reductions in Sect. 5 use
both the quaternion �-isogeny algorithm and its powersmooth version, whereas
the reductions in Sect. 6 only use the quaternion �-isogeny algorithm [KLPT14].

Intuitively these heuristics say that numbers generated by the norm form of a
quaternion algebra in the algorithm behave in the same way as random numbers
of the same size, with respect to their factorization patterns.

Section 7 provides a (heuristic) probabilistic polynomial-time algorithm for
computing the Deuring correspondence in one direction, and a partial attack on
a special case of the Charles-Goren-Lauter hash function. In Sect. 8, we start
by defining the notion of a compact representation of an endomorphism, which
has as a requirement that it has size polynomial in log p. We prove that every
endomorphism ring has a basis specified by compact representations, and that

332 K. Eisenträger et al.

we can evaluate the endomorphism at points using the representation. We then
show that the endomorphism problem reduces to computing a maximal order
and the Action-on-�-Torsion problem.

1.2 Related Work

The endomorphism ring computation problem and constructive versions of Deur-
ing’s correspondence have been studied in the past independently of their crypto-
graphic applications, and all known algorithms for these problems have required
exponential time. Computing the endomorphism ring of a supersingular elliptic
curve was first studied by Kohel [Koh96, Theorem 75], who gave an approach
for finding four linearly independent endomorphisms, generating a finite-index
subring of End(E). The algorithm was based on finding loops in the �-isogeny
graph of supersingular elliptic curves, and the running time of the probabilis-
tic algorithm is O(p1+ε). Another problem that has been considered is to list
all isomorphism classes of supersingular elliptic curves together with a descrip-
tion of the maximal order in a quaternion algebra that is isomorphic to End(E).
This was done in [Cer04,LM04] and improved in [CG14, Sect. 5.2]. However, this
approach is necessarily exponential in log p because there are roughly �p/12� iso-
morphism classes of supersingular elliptic curves.

The problem of computing isogenies between supersingular elliptic curves
has also been studied, both in the classical setting [DG16, Sect. 4] where the
complexity of the algorithm is Õ(p1/2), and in the quantum setting [BJS14],
where the complexity is Õ(p1/4).

A signature scheme based on endomorphism ring computation is given in
[GPS17, Sect. 4], where the secret key is a maximal order isomorphic to the endo-
morphism ring of a supersingular elliptic curve. While the scheme in [DFJP14]
had to reveal auxiliary points, this is not necessary in this scheme.

Recently there have been several partial attacks on isogeny-based protocols
(see [GPST16,Ti17,GW17]). These attacks target the key exchange protocol of
Jao-De Feo [JDF11] in specific attack models, such as fault attacks, and are
complementary to our work.

2 Preliminaries

2.1 Background on Elliptic Curves

Elliptic Curves and Isogenies. By an elliptic curve E over a field k of char-
acteristic p > 3 we mean a curve with equation E : y2 = x3 + Ax + B for
some A,B ∈ k satisfying 4A3 + 27B2 �= 0. The points of E are the points (x, y)
satisfying the curve equation, together with the point at infinity. These points
form an abelian group. The j-invariant of an elliptic curve given as above is
j(E) = 256 · 27 · A3

4A3 +27B2 . Two elliptic curves E,E′ defined over a field k have the same
j-invariant if and only if they are isomorphic over the algebraic closure of k.

Supersingular Isogeny Graphs and Endomorphism Rings 333

We write j(E) for the j-invariant of E. Given a j-invariant j �= 0, 1728, we write
E(j) for the curve defined by the equation

y2 + xy = x3 − 36
j − 1728

x − 1
j − 1728

.

Such a curve can be put into a short Weierstrass equation y2 = x3 + Ax + B.
We also write E(0) and E(1728) for the curves with equations y2 = x3 + 1 and
y2 = x3 + x respectively.

Let E1 and E2 be elliptic curves defined over a field k of positive characteristic
p. An isogeny ϕ : E1 → E2 defined over k is a non-constant rational map defined
over k which is also a group homomorphism from E1(k) to E2(k) [Sil09, III.4].
The degree of an isogeny is its degree as a rational map. When the degree d
of the isogeny ϕ is coprime to p, then ϕ is separable and the kernel of ϕ is a
subgroup of the points on E1 of size d. Every isogeny of degree n greater than
one can be factored into a composition of isogenies of prime degrees such that
the product of the degrees equals n. If ψ : E1 → E2 is an isogeny of degree d,
the dual isogeny of ψ is the unique isogeny ̂ψ : E2 → E1 satisfying ψ ̂ψ = [d],
where [d] : E1 → E1 is the multiplication-by-d map.

We can describe an isogeny via its kernel. Given an elliptic curve E and a
finite subgroup H of E, there is, up to isomorphism a unique isogeny ϕ : E → E′

having kernel H (see [Sil09, III.4.12]). Hence we can describe an isogeny of E to
some other elliptic curve by giving its kernel. We can compute equations for the
isogeny from its kernel by using Vélu’s formula [Vél71].

Endomorphisms and Supersingular Versus Ordinary Curves. An
isogeny of an elliptic curve E to itself is called an endomorphism of E. If E
is defined over some finite field Fq, then an endomorphism of E will be defined
over a finite extension of Fq. The set of endomorphisms of E defined over Fq

together with the zero map form a ring under the operations addition and com-
position. It is called the endomorphism ring of E, and is denoted by End(E).
When E is defined over a finite field, then End(E) is isomorphic either to an
order in a quadratic imaginary field or to an order in a quaternion algebra.
In the first case we call E an ordinary elliptic curve. An elliptic curve whose
endomorphism ring is isomorphic to an order in a quaternion algebra is called
a supersingular elliptic curve. Every supersingular elliptic curve over a field of
characteristic p has a model that is defined over Fp2 because the j-invariant of
such a curve is in Fp2 .

�-Power Isogenies Between Supersingular Elliptic Curves. Let E,E′ be
two supersingular elliptic curves defined over Fp2 . It is a fact that for each prime
� �= p, E and E′ are connected by a chain of isogenies of degree � [Mes86].
By [Koh96, Theorem 79], E and E′ can be connected by m isogenies of degree �,
where m = O(log p). So any two supersingular elliptic curves can be connected
by an isogeny of degree �m with m = O(log p). If � = O(log p) is a fixed prime,

334 K. Eisenträger et al.

then any �-isogeny in the chain above can either be specified by rational maps or
by giving the kernel of the isogeny, and both of these representations will have
polynomial size in log p. By Vélu’s formula, and since � = O(log p), there is an
efficient way to go back and forth between these two representations.

2.2 Quaternion Algebras, Bp,∞ and the Deuring Correspondence

Quaternion Algebras. For a, b ∈ Q
×, let H(a, b) denote the quaternion alge-

bra over Q with basis 1, i, j, ij such that i2 = a, j2 = b and ij = −ji. That is,

H(a, b) = Q + Q i + Q j + Q ij.

It is a fact that any quaternion algebra over Q can be written in this form.
Now let Bp,∞ be the unique quaternion algebra over Q that is ramified exactly
at p and ∞. Then Bp,∞ is a definite quaternion algebra, so Bp,∞ = H(a, b) for
some a, b ∈ Q

×, and one can show a and b can be chosen to be negative integers.
For example, when p ≡ 3 (mod 4), then Bp,∞ = H(−p,−1).

There is a canonical involution on Bp,∞ which sends an element α = a1 +
a2i + a3j + a4ij to α := a1 − a2i − a3j − a4ij. Define the reduced trace of an
element α as above to be

Trd(α) = α + α = 2a1,

and the reduced norm to be

Nrd(α) = αα = a2
1 − aa2

2 − ba2
3 + aba2

4.

We say that Λ is a lattice in Bp,∞ if Λ = Zx1 + · · · + Zx4 and the elements
x1, . . . , x4 are a vector space basis for Bp,∞.

If I ⊆ Bp,∞ is a lattice, the reduced norm of I, Nrd(I), is the positive gen-
erator of the fractional Z-ideal generated by {Nrd(α) : α ∈ I}. The quaternion
algebra Bp,∞ is an inner product space with respect to the bilinear form

〈x, y〉 =
Nrd(x + y) − Nrd(x) − Nrd(y)

2
.

The basis {1, i, j, ij} is an orthogonal basis with respect to this inner product.

Orders in Bp,∞ and Representation of Elements in Bp,∞. An order O
of Bp,∞ is a subring of Bp,∞ which is also a lattice, and if O is not properly
contained in any other order, we call it a maximal order. For a lattice I ⊆ Bp,∞
we define

OR(I) := {x ∈ Bp,∞ : Ix ⊆ I}
to be the right order of the lattice I, and we similarly define its left order OL(I).
If O is a maximal order in Bp,∞ and I ⊆ O is a left ideal of O, then OR(I) is

Supersingular Isogeny Graphs and Endomorphism Rings 335

also a maximal order. Given any two maximal orders O,O′, there is a lattice
I ⊆ Bp,∞ such that OL(I) = O and OR(I) = O′; we say that I connects O
and O′.

An element β ∈ Bp,∞ is represented as a coefficient vector (a1, a2, a3, a4) in
Q

4 such that β = a1 +a2i+a3j +a4ij in terms of the basis {1, i, j, ij} for Bp,∞.
This will be used for specifying basis elements of maximal orders O and elements
of left ideals I of O.

The Deuring Correspondence and Describing Isogenies via Kernel Ide-
als. For a detailed overview of the information in this section, see Chap. 42 in
[Voi]. Let E be a supersingular elliptic curve defined over Fp2 . In [Deu41] Deur-
ing proved that the endomorphism ring of E is isomorphic to a maximal order in
Bp,∞. Under this isomorphism, degrees and traces of endomorphisms correspond
to norms and traces of quaternions. The correspondence between isomorphism
classes of supersingular elliptic curves and maximal orders is often referred to as
Deuring’s correspondence.

Fix E, a supersingular elliptic curve over Fp2 . We can associate to each
pair (E′, φ) with φ an isogeny E → E′ of degree n a left End(E)-ideal I =
Hom(E′, E)φ of norm n, and it was shown in [Koh96, Sect. 5.3] that every left
End(E)-ideal arises in this way. We now describe how to construct an isogeny
from a left End(E)-ideal.

Let I be a nonzero integral left ideal of End(E). Define E[I] to be the scheme-
theoretic intersection

E[I] =
⋂

α∈I

ker(α).

Thus to each left ideal I of End(E) there is an associated isogeny φI : E →
E/E[I]. If Nrd(I) is coprime to p, then

E[I] = {P ∈ E(Fp2) : α(P) = 0 ∀α ∈ I}.

2.3 Supersingular Isogeny Graphs

For any prime � �= p, one can construct a so-called �-isogeny graph, where each
vertex is associated to a supersingular j-invariant, and an edge between two
vertices is associated to a degree � isogeny between the corresponding curves.
Isogeny graphs are regular with regularity degree �+1; they are directed graphs
(unless p ≡ 1 (mod 12)). Isogeny graphs are Ramanujan, i.e. they are optimal
expander graphs, with the consequence that random walks on the graph quickly
reach the uniform distribution [HLW06].

2.4 The Charles-Goren-Lauter Hash Function

The first cryptographic construction based on supersingular isogeny problems is
a hash function proposed by Charles, Goren and Lauter [CGL09]. The security

336 K. Eisenträger et al.

of this construction relies on the hardness of computing some isogenies of special
degrees between two supersingular elliptic curves.

More precisely, consider an �-isogeny graph over Fp2 , where p is a “large”
prime and � is a “small” prime. The authors suggest to take p ≡ 1 (mod 12)
to avoid some annoying backtracking issues. The message is first mapped into
{0, . . . , � − 1}∗, with some padding if necessary. At each vertex, a deterministic
ordering of the edges is fixed (this can be done by sorting the j-invariants of the
� + 1 neighbors). An initial vertex j0 is also fixed, as well as an initial incoming
direction.

Given a message (m1,m2, . . . ,mN) ∈ {0, . . . , � − 1}∗, an edge adjacent to
j0 (excluding the incoming edge) is first chosen according to the value of m1,
and the corresponding neighbor E1 is computed. Then an edge of j1 (excluding
the edge between j0 and j1) is chosen according to the value of m2, and the
corresponding neighbor j2 is computed, etc. The final invariant jN reached by
this computation is mapped to {0, 1}n in some deterministic way (here n ≈ log p)
and the value obtained is returned as the output of the hash function.

Clearly the function is preimage resistant if and only if, given two supersin-
gular j-invariants j1 and j2, it is computationally hard to compute a positive
integer e and an isogeny ϕ : E(j1) → E(j2) of degree �e.

In this paper we give two new results on the security of this construction. On
the one hand (Sect. 5.5), we show that for a randomly chosen starting point j0
the function is preimage and collision resistant if and only if the endomorphism
ring computation problem is hard: loosely speaking this means computing some
endomorphisms of E(j) but not necessarily of the correct norms. The interest of
this result lies in that computing endomorphisms of elliptic curves is a natural
problem to consider from an algorithmic number theory point of view, and it has
indeed been studied since Kohel’s thesis in 1996. On the other hand (Sect. 7.2),
we also show that the collision resistance problem is easy for some particular
starting points.

2.5 Isogeny-Based Cryptography

A few years after Charles, Goren and Lauter designed their hash function, Jao
and De Feo proposed a variant of the Diffie-Hellman protocol based on super-
singular isogeny problems, which is now known as the supersingular isogeny
key exchange protocol [JDF11]. We briefly describe it here in a way to encom-
pass both the original parameters and the generalization recently suggested by
Petit [Pet17].

The parameters include a large prime p, a supersingular curve E, and two
coprime integers NA and NB . Alice and Bob select cyclic subgroups of E of order
NA and NB , respectively; they compute the corresponding isogenies and they
exchange the values of the end vertices, which are E/GA and E/GB , respectively.
The shared key is the value j(E/〈GA, GB〉). This shared key could a priori not
be computed by any party from E/GA, E/GB and their respective secret keys
only, so Alice (resp. Bob) additionally sends the images of a basis of E[NB] by
φA (resp. a basis of E[NA] by φB).

Supersingular Isogeny Graphs and Endomorphism Rings 337

Jao-De Feo suggested to use NA = 2eB ≈ p1/2 ≈ NB = 3eB such that
(p − 1)/NANB is a small integer for efficiency reasons; in [Pet17] Petit argued
that choosing NA ≈ NB ≈ p2 both powersmooth numbers is a priori better
from a security point of view while preserving polynomial-time complexity for
the protocol execution. It was shown by Gabraith-Petit-Shani-Ti [GPST16] that
computing the endomorphism ring of E and EA is sufficient to break the key
exchange for the parameters suggested by Jao-De Feo. The argument uses the
fact that isogenies generated for Jao-De Feo’s parameters are of relatively small
degree, and this does not seem to apply to Petit’s parameters.

The security of Jao-De Feo’s protocol relies on the hardness of computing
isogenies of a given degree between two given curves, when provided in addition
with the action of the isogeny on a large torsion group. This problem is not
known to be equivalent to the endomorphism ring computation problem. Recent
results by Petit [Pet17] show that revealing the action of isogenies on a torsion
group does make some isogeny problems easier to solve, though at the moment
his techniques do not apply to Jao-De Feo’s original parameters. We believe
that the security of the key exchange protocol lies between these hard and easy
problems, but leave its study to future work.

The interest in isogeny-based cryptography has recently increased in the con-
text of NIST’s call for post-quantum cryptography algorithms [NIS16], and a
submitted proposal was based on isogeny-based cryptography [ACC+17]. At the
moment the best algorithms to solve supersingular isogeny problems all require
exponential time in the security parameter, even when including quantum algo-
rithms. Besides the hash function and the key exchange protocols, there are now
constructions based on isogeny problems for public key encryption, identification
protocols and signatures [DFJP14,YAJ+17,GPS17]. Constructions in the first
two papers build on the key exchange protocol and rely on similar assumptions.
The second signature scheme in [GPS17], however, only relies on the endomor-
phism computation problem.

3 Problem Statements and Heuristics

3.1 The Deuring Correspondence

The Deuring correspondence states that

{O ⊆ Bp,∞ maximal} /� ↔ {

j ∈ Fp2 : E(j) supersingular
}

/Gal(Fp2/Fp)

is a bijective correspondence, given by associating a supersingular j-invariant to
a maximal order in Bp,∞ isomorphic to End(E(j)).

In this paper we will be interested in constructing Deuring’s correspondence
for arbitrary maximal orders and supersingular j-invariants. This could a priori
have different meanings, given by Problems 1 and 2 below.

Problem 1 (Constructive Deuring Correspondence). Given a maximal
order O ⊂ Bp,∞, return a supersingular j-invariant such that the endomorphism
ring of E(j) is isomorphic to O.

338 K. Eisenträger et al.

We refer to the problem of computing a maximal order isomorphic to
End(E(j)) for given a supersingular j-invariant as Problem MaxOrder or the
“Inverse Deuring Correspondence.”

Problem 2 (MaxOrder). Given p, the standard basis for Bp,∞, and a super-
singular elliptic curve E defined over Fp2 , output vectors β1, β2, β3, β4 ∈ Bp,∞
that form a Z-basis of a maximal order O in Bp,∞ such that End(E) ∼= O. In
addition, the output basis is required to have representation size polynomial in
log p.

The j-invariant is naturally represented as an element of Fp2 , and it is unique
up to Galois conjugation. The maximal order is unique up to conjugation by an
invertible quaternion element, and it can be described by a Z-basis, namely four
elements 1, ω2, ω3, ω4 ∈ Bp,∞ such that O = Z + ω2Z + ω3Z + ω4Z. Choosing a
Hermite basis makes this description unique.

In this paper we will provide a polynomial-time algorithm for Problem1
(Sect. 7.1). We will also provide explicit connections between Problem 1 and the
endomorphism ring computation problem, where instead of a maximal order in
Bp,∞ one needs to output a basis for End(E(j)).

3.2 The Endomorphism Ring Computation Problem

Given an elliptic curve, it is natural to ask to compute its endomorphism ring.

Problem 3 (Endomorphism ring computation problem). Given p and a
supersingular j-invariant j, compute the endomorphism ring of E(j).

The endomorphism ring can be returned as four rational maps that form a
Z-basis with respect to scalar multiplication (in fact 3 maps, since one of these
maps can always be chosen equal to the identity map). The maps themselves
can usually not be returned in their canonical expression as rational maps, as in
general this representation will require a space larger than the degree, and the
degrees can be as big as p.

Various representations of the maps are a priori possible. We believe that
any valid representation should be concise and useful, in the sense that it must
require a space polynomial in log p to store, and it must allow the evaluation of
the maps at arbitrary elliptic curve points in a time polynomial in both log p
and the space required to store those points. To the best of our knowledge these
two conditions are sufficient for all potential applications of Problem3. When
its degree is a smooth number, an endomorphism can be efficiently represented
as a composition of small degree isogenies. In Sect. 5.1 we will consider a more
general representation.

A first approximation to a solution to Problem3 was provided by Kohel in his
PhD thesis [Koh96], and later improved by Galbraith [Gal99] using a birthday
argument. The resulting algorithm explores a tree in an �-isogeny graph (for some
small integer �) until a collision is found, corresponding to an endomorphism. The
expected cost of this procedure is O(

√
p) times a polynomial in log p. Repeating

Supersingular Isogeny Graphs and Endomorphism Rings 339

this procedure a few times, possibly with different values of �, we obtain a set
of endomorphisms which generate a subring of the whole endomorphism ring.
The endomorphism ring computation problem was also considered in [DG16]
for curves defined over Fp. The identification protocol and signature schemes
developed in [GPS17] explicitly rely on its potential hardness for security.

We observe that Problems 2 and 3 take the same input, and their outputs are
also “equal” in the sense they are isomorphic. For this reason the two problems
have sometimes been referred to interchangeably. In particular, a solution to
Problem 2 does not a priori provide a useful description of the endomorphism
ring so that one can evaluate endomorphisms at given points. Similarly, a solution
to Problem 2 does not a priori provide a Z-basis for an order in Bp,∞, and this
is necessary to apply the algorithms of [KLPT14].

It turns out that the two problems are equivalent: in Sects. 5.1 and 5.4, we
provide efficient algorithms to go from a representation of the endomorphism
ring as a Z basis over Q to a representation as rational maps and conversely.

In Sects. 6 and 8, our reductions will involve the following problem.

Problem 4 (Action-on-�-Torsion). Given p, a supersingular elliptic curve E
defined over Fp2 , and four elements {β1, β2, β3, β4} in a maximal order O of Bp,∞
such that there exists an isomorphism ι : End(E) → O, output eight pairs of
points on E, (P1, Q1r), (P2, Q2r) (r = 1, . . . , 4) such that P1, P2 form a basis for
the �-torsion E[�] of E, and such that Q1r = ι−1(βr)(P1) and Q2r = ι−1(βr)(P2)
for r = 1, . . . , 4.

The combination of this problem with Problem MaxOrder is, intuitively, to ask
for both the algebraic structure of End(E) (by asking for generators in Bp,∞
for a maximal order O � End(E), along with a small amount of geometric
information, meaning asking for how those generators act as endomorphisms on
E[�].

Finally, we will be relating these various endomorphism ring problems to
pathfinding in the �-isogeny graph, which we often refer to as preimage resistance
for the Charles-Goren-Lauter has function or Problem �-PowerIsogeny.

Problem 5 (�-PowerIsogeny). Given a prime p, along with two supersingular
elliptic curves E and E′ over Fp2 , output an isogeny from E to E′ represented
as a chain of k isogenies whose degrees are �.

Since E is given as y2 = x3 + ax + b with a, b ∈ Fp2 , the input size for this
problem is O(log p). By Sect. 2.1, the representation size of the output is also
polynomial in log p, if � ∈ O(log p) and the isogenies are represented by rational
maps.

Below we map out the various reductions in this paper. An arrow represents
the reduction from one problem to another, and its label indicates the algorithm
or theorem giving that reduction.

340 K. Eisenträger et al.

Pathfinding in
�-isogeny graph

Endomorphism
Ring Max Order

Max Order and
Action on �-Torsion

Max Order and
Action on �-Torsion

Algorithm 7

Algorithm 9

Algorithm 6

Algorithm 8

Theorem 16

Algorithm 4

3.3 Heuristics

Our reductions require several heuristics related to the distribution of numbers
represented by certain quadratic forms and on isogeny graphs. When we refer to
plausible heuristic assumptions, we mean one or more of the following:

1. We assume the heuristics used in [KLPT14], which can be summarized as
saying that the distribution of outputs of quadratic forms arising from the
norm form of a maximal order in Bp,∞ is approximately like the uniform
distribution on numbers of the same size.

2. We also assume the heuristics used in [GPS17] on representing powersmooth
numbers by these quadratic forms.

3. We assume that the endomorphism ring of an elliptic curve can be generated
by endomorphisms arising from loops in the �-isogeny graph. In particular,
we assume that given a suborder O′ of a maximal order O such that O′ is
generated by loops in an �-isogeny graph, the probability that a randomly
generated loop in the graph is in O′ is inversely proportional to [O : O′].

4 Efficient Computations with Maximal Orders
and Their Ideals

One of the main problems we consider in this paper is computing a maximal order
associated to an elliptic curve E. The following sections will show that computing
isogenies and computing endomorphisms reduces to computing maximal orders,
together with a problem about �-torsion action. In this section we show that
maximal orders have polynomial-representation size, so that the reductions are
meaningful. We will also show that the representation size of ideals inside these
orders is related to their norms. Maximal orders are inside the algebra Bp,∞, so
we start with that.

Let p be a prime. In Proposition 5.1 of [Piz80] it is shown that Bp,∞ =
H(−1,−1) if p = 2, Bp,∞ = H(−1,−p) if p ≡ 3 (mod 4), Bp,∞ = H(−2,−p) if
p ≡ 5 (mod 8), and Bp,∞ = H(−q,−p) if p ≡ 1 (mod 8), where q ≡ 3 (mod 4)
is prime and p is not a square modulo q.

So given p, we choose a and b as above (depending on the congruence class
of p) such that Bp,∞ = H(a, b). We obtain a basis 1, i, j, ij for Bp,∞ such that
i2 = a and j2 = b. We refer to this as the standard basis of Bp,∞. As stated in
Sect. 2.2, we represent elements of Bp,∞ as their coefficient vectors in Q

4 with
respect to the standard basis.

Supersingular Isogeny Graphs and Endomorphism Rings 341

To reduce problems to Problem MaxOrder in polynomial time, one require-
ment is that in every conjugacy class there is a maximal order that has a basis
with representation size that is polynomial in log p. Since a prime p is given, and
E is given as y2 = x3 + ax + b with a, b ∈ Fp2 , the input size for this problem is
O(log p).

To show that there is a maximal order that has a polynomial representation
size, we first show this is true for a special maximal order O0 and then express
all other classes of maximal orders as right orders OR(I) for a left ideal I of O0.
Since every left ideal class of O0 contains an ideal whose reduced norm is O(p2),
it will follow that in each conjugacy class of maximal orders, there is one with
polynomial representation size.

As mentioned above, Pizer [Piz80] gave the following explicit description of
Bp,∞ for all p along with a basis for one maximal order.

Proposition 1. Let p > 2 be a prime. Then we can define Bp,∞ and a maximal
order O0 as follows:

p (a, b) O0

3 (mod 4) (−p, −1) 〈1, j, j+k
2

, 1+i
2

〉
5 (mod 8) (−p, −2) 〈1, j, 2−j+k

4
, −1+i+j

2
〉

1 (mod 8) (−p, −q) 〈 1+j
2

, i+k
2

, j+ck
q

, k〉

where in the last row q ≡ 3 (mod 4), (p/q) = −1 and c is some integer with
q|c2p+1. Assuming that the generalized Riemann hypothesis is true, there exists
q = O(log2 p) satisfying these conditions.

Proof. The information in the table follows from [Piz80, pp. 368–369]. The only
thing we need to prove is the statement that when p ≡ 1 (mod 8) there exists a
prime q ≡ 3 (mod 4) such that

(

p
q

)

= −1. Equivalently, we require that q be an

unramified prime which does not split in either K1 = Q(
√

p) or K2 = Q(
√−1).

This is equivalent to the condition that the Frobenius of q in Gal(K1K2/Q)
is the unique automorphism which restricts to the nontrivial automorphisms of
Gal(K1/Q) and Gal(K2/Q). By [LO77], there is a prime q of size O((log |D|)2)
whose Frobenius is this element, where D is the absolute discriminant of the
compositum K1K2/Q. The absolute discriminant of K1/Q is p since p ≡ 1
(mod 4), and the absolute discriminant of K2/Q is −4. Because (4, p) = 1,
we have that OK1K2 = OK1OK2 , and using this, a computation shows that
D = Disc(K1K2/Q) = 42p2. Hence q = O(log2 p), as desired. ��
We stress that in all cases the maximal orders O0 given by Proposition 1 contain
〈1, i, j, k〉 as a small index subring.

For the remainder of this section, fix such an order O0 together with the
small basis {b1, . . . , b4} as in Proposition 1. We will now show that ideals of O0

of norm N have representations of size polynomial in log(N) in terms of the
basis {b1, . . . , b4}.

342 K. Eisenträger et al.

Lemma 1. Let I be a left ideal of O0. Then there is a Z-basis {α1, . . . , α4} of
I, consisting of elements αi ∈ O0, such that the coefficients of the αi expressed,
in terms of the basis {b1, b2, b3, b4} of O0, are bounded by Nrd(I)2.

Proof. Let {γ1, . . . , γ4} be a Z-basis of I and write γi as γi =
∑

j aijbj . Let
A = (aij) be the matrix whose rows are the coefficients of γi. Let H = UA
where H is the (row-)Hermite normal form of A and U ∈ SL4(Z). Then the rows
of H correspond to elements of O0 which generate I as a Z-basis. Additionally,
H is upper triangular, its diagonal elements satisfy 0 < hii, and hij < hjj for
i < j. We have Nrd(I)2 = det(A) =

∏

hii and hence all hij < Nrd(I)2. This
gives us the desired basis {α1, . . . , α4}. ��

We will now prove that every conjugacy class of maximal orders has a repre-
sentative whose basis has representation size O(log p) when written in terms of
the standard basis 1, i, j, ij for Bp,∞.

For this, we will show that the reduced norm Nrd is the Euclidean norm on
Bp,∞ = H(−q,−p) considered as a lattice in R

4. (Here q = 1, 2 or a prime ≡ 3
(mod 4) that is not a square modulo p, depending on the congruence class of p.)
We can view orders O in Bp,∞ as lattices in R

4, and we will relate the covolume
of a lattice to its discriminant. This is similar to the number field case. Together
with Minkowski’s Theorem, this will give us the desired result.

Note that Bp,∞ ⊗ R is isomorphic to H, the Hamiltonians. Let 1, i′, j′, i′j′ be
the basis of H with i′2 = j′2 = −1. Let

f : Bp,∞ ⊗ R
�→ H,

and let the isomorphism be given by i �→ √
qi′, j �→ √

pj′. Then the norm on H,
which is the (square of) the standard Euclidean norm on R

4, is just the reduced
norm on the image of Bp,∞ in H under the isomorphism f . Let Λ ⊆ R

n be a
lattice. Define its covolume, denoted Covol(Λ), to be

√

det(LT L) for any matrix
L consisting of a basis for Λ. If O ⊆ Bp,∞ is a lattice, define its covolume to be
Covol(f(O)).

If a lattice O ⊆ Bp,∞ has generators β1, . . . , β4, its discriminant, denoted
Disc(O), is det((Trd(βiβj))). If a lattice O is a maximal order in Bp,∞, then
Disc(O) = p2.

Proposition 2. Let O be a lattice in Bp,∞. Then Covol(O)2 = 1
16 Disc(O).

Proof. This is Eq. 2.2 of [CG14]. ��
We need the notion of a Minkowski-reduced basis. A basis {v1, . . . , vn} of a

lattice Λ ⊆ R
n is Minkowski-reduced if for 1 ≤ k ≤ n,

||vk||2 ≤
∣

∣

∣

∣

∣

n
∑

i=1

xi||vi||2
∣

∣

∣

∣

∣

,

whenever x1, . . . , xn are coprime integers. Here ||·||2 denotes the Euclidean norm.
Given a lattice Λ in R

n, define the ith successive minimum of Λ, λi(Λ), to be the

Supersingular Isogeny Graphs and Endomorphism Rings 343

smallest nonnegative, real number r such that there are i linearly independent
lattice vectors of Λ contained in the closed ball of radius r centered at the origin.
So λ1(Λ) is the length of a shortest nonzero vector of Λ. For n ≤ 4, there is a basis
v1, . . . , vn of Λ such that ||vi||2 = λi(Λ); see [NS09]. Such a basis is Minkowski-
reduced. When we refer to a Minkowski-reduced basis, we will always assume
we choose such a basis.

Theorem 1 (Minkowski’s second theorem). Let V denote the volume of
the n-dimensional unit ball of R

n. Then

2n

n!
Covol(Λ)

V
≤

n
∏

i=1

λi(Λ) ≤ 2n

V
Covol(Λ).

Corollary 1. Let p be a prime, and let O0 be the maximal order of Bp,∞ as
above. Let I ⊆ O0 be a left ideal and let O := OR(I). Let α1, . . . , α4 be a basis
of O such that ||αi||2 = λi(O) for i = 1, . . . , 4. Then

4
∏

i=1

Nrd(αi) ≤ Disc(O) = p2.

Proof. We use Minkowski’s second theorem applied to O, and the fact that
by Proposition 2, Covol(O)2 = Disc(O)/16. These two facts, together with
Nrd(α) = ||f(α)||22 give us that

∏

Nrd(αi) =
∏

λi(O)2 ≤ 16
π4/4

Disc(O) ≤ p2.

��
Now we prove the main theorem on representation sizes of maximal orders:

Theorem 2. Every conjugacy class of maximal orders in Bp,∞ has a Z-basis
x1, . . . , x4 with Nrd(xi) ∈ O(p2). If we express xr (for 1 ≤ r ≤ 4) as a coefficient
vector in terms of 1, i, j, ij, then the rational numbers appearing have numerators
and denominators whose representation size are polynomial in log p.

Proof. The map [I] → [OR(I)] is a surjection from left ideal classes of O0 to iso-
morphism classes of maximal orders of Bp,∞; see [Gro87], page 116. Every left
ideal class of O0 contains an ideal I with Nrd(I) ∈ O(p2); see [Vig80, Proposi-
tion 17.5.6]. Set O = OR(I) and let 〈1, x2, x3, x4〉 be a Minkowski-reduced Z-basis
of O. By Corollary 1, Nrd(xi) ≤ p2, since each xi is integral. Since O = OR(I),
it follows that xi Nrd(I) ∈ I. This implies that if we express xi as a Q-linear
combination of the elements 1, i, j, ij, then the denominators of the coefficients
are divisors of Nrd(I) · 4q where q = Nrd(j). The numerator of each coefficient
is then bounded by 8pq Nrd(I): indeed, if a/b is a coefficient of xr, (1 ≤ r ≤ 4),
then (a/b)2 ≤ Nrd(xr) ≤ p2. Then

|a| ≤ pb ≤ 4pq Nrd(I).

��

344 K. Eisenträger et al.

5 Equivalent Hard Problems in Supersingular
Isogeny Graphs

In this section we consider the following problems:

– A constructive version of Deuring’s correspondence, from j-invariants to max-
imal orders in Bp,∞ (Problem 2).

– The endomorphism ring computation problem (Problem3).
– The preimage and collision resistance of the Charles-Goren-Lauter hash func-

tion, for a randomly chosen initial vertex.

We show that all these problems are heuristically equivalent, in the sense
that there exist efficient reductions from one problem to another under plausible
heuristics assumptions.

The first two problems have the same inputs and in a sense their outputs are
also equal, so it is perhaps no surprise to the reader that they are equivalent.
However, the two problems differ in the way the output should be represented: as
a maximal order in Bp,∞ for Problem2, and as four rational maps for Problem3.
Sections 5.1 and 5.4 below clarify the steps from one representation to the other.

It should also be clear intuitively that (heuristically at least) an algorithm
to find preimages or collisions for the hash function can be used to compute
endomorphism rings. The other implication is perhaps not as intuitive, and our
solution crucially requires the tools developed in [KLPT14]. These reductions
are discussed in Sect. 5.5 below.

5.1 Endomorphism Ring Computation Is not Harder than Inverse
Deuring Correspondence

When p ≡ 3 (mod 4) the curve y2 = x3 + x is supersingular with invariant j =
1728. This curve corresponds to a maximal order O0 with Z-basis {1, i, 1+k

2 , i+j
2 }

under Deuring’s correspondence, and there is an isomorphism of quaternion
algebras θ : Bp,∞ → End(E0) ⊗ Q sending (1, i, j, k) to (1, φ, π, πφ) where
π : (x, y) → (xp, yp) is the Frobenius endomorphism, and φ : (x, y) → (−x, ιy)
with ι2 = −1. More generally, it is easy to compute j-invariants corresponding
to the maximal orders given by Proposition 1.

Proposition 3. There is a polynomial-time algorithm that given a prime p > 2,
computes a supersingular j-invariant j0 ∈ Fp such that End(E(j0)) ∼= O0 (where
O0 is as given by Proposition 1 together with a map φ ∈ End(E(j0))) such that
θ : Bp,∞ → End(E(j0)) ⊗ Q : (1, i, j, k) → (1, φ, π, πφ) is an isomorphism of
quaternion algebras.

Proof. Let q be chosen such that Bp,∞ = H(−q,−p) as in Proposition 1 and
let R be the ring of integers of Q(

√−q). Consider Algorithm 3 below. Step 1
can be executed in time polynomial in log p using a modification of Bröker’s
Algorithm 2.4 in [Brö09]: the cardinality of J := {j ∈ Fp2 : R ⊆ End(E(j))}
is equal to the class number h−q of R, and this is bounded by q. To see this

Supersingular Isogeny Graphs and Endomorphism Rings 345

requires a surjectivity and injectivity argument. Suppose j ∈ Fp2 is a super-
singular j-invariant such that R embeds into End(E(j)). Then if R = Z[α], by
Deuring’s Lifting Theorem [Lan87, Theorem 14, p. 184] applied to E(j) and α,
there is an elliptic curve Ẽ/C such that End(Ẽ) � R and a prime p of R dividing
p such that Ẽ (mod p) = E(j). Since Ẽ has complex multiplication by R, j(Ẽ)
is a root of the Hilbert class polynomial of Q(

√−q). Because E(j) is supersin-
gular, p is inert in R and p = pR. We see that the map is injective because
principal prime ideals of R split completely in H, and so the Hilbert class poly-
nomial will have h−q distinct roots modulo p. To compute φ in Step 3 one can
simply compute all isogenies of degree q using Vélu’s formulae and identify the
one corresponding to an endomorphism. The map φ defines an isomorphism of
quaternion algebras θ : Bp,∞ → End(E(j0)) ⊗ Q : (1, i, j, k) → (1, φ, π, πφ). To
perform the check in Step 4, one applies θ to the numerators of O0 basis ele-
ments, and check whether the resulting maps annihilate the D torsion, where D
is the denominator. ��
Algorithm 3. Computing the Deuring correspondence for special orders
Input: A prime p.
Output: A supersingular j-invariant j0 ∈ Fp such that O0

∼= End(E(j0)), and
an endomorphism φ ∈ End(E(j0)) such that Nrd(φ) = q and Trd(φ) = 0.

1. Compute J , a set of supersingular j-invariants such that for j ∈ J , R−q

embeds into End(E(j)), where R−q is the integer ring of Q(
√−q).

2. For j ∈ J :
(a) Compute φ, an endomorphism of degree q of E(j).
(b) If End(E(j)) ∼= O0:

i. Return j and φ.

5.2 Quaternion �-Isogeny Algorithm

The quaternion �-isogeny problem was introduced and solved in [KLPT14] as a
step forward in the cryptanalysis of the Charles-Goren-Lauter hash function.

We refer to [KLPT14,GPS17] for a full description of the algorithm and its
powersmooth version as well as their analysis. For our purposes the following
proposition will be sufficient.

Lemma 2 [KLPT14,GPS17]. Under various heuristic assumptions, there exist
two polynomial-time algorithms that given I a left ideal of O0, returns J another
left ideal of O0 in the same class as I of norm N such that N ≈ p7/2. Moreover
for the first algorithm we have N =

∏

pei
i with pei

i < log p and for the second
algorithm we have N = �e for some integer e and some small prime �.

Interestingly, [GPS17] also proves that (after a minor tweak) the outputs of
these algorithms only depend on the ideal class of their inputs and not on the
particular ideal class representative.

Many of our algorithms and reductions below will use these algorithms as
black boxes. Their correctness will therefore rely on the same heuristics, and
possibly some more.

346 K. Eisenträger et al.

5.3 Translating O0-Ideals to Isogenies

Let O0 be the maximal order given by Proposition 1, let E0 be a correspond-
ing supersingular elliptic curve, and let I be a left O0-ideal of norm N such
that I is not contained in O0m for any m ∈ N. This ideal corresponds to an
isogeny φ : E0 → E1 of degree N . This isogeny is uniquely defined by its kernel,
which is a cyclic subgroup of order N in E0 by Proposition 10. Following Water-
house [Wat69] one can identify the correct subgroup by evaluating the maps
corresponding to an O0-basis at a generator of each subgroup. Moreover when
N is composite, the kernel can be represented more efficiently as a product of
cyclic subgroups whose orders are powers of primes, and similarly the isogenies
are represented more efficiently as a composition of prime degree isogenies. The
details of such an algorithm can be found in [GPS17], which also analyzes its
complexity. The following proposition will be sufficient for our purposes.

Proposition 4. There exists an algorithm which, given an O0 left ideal I of
norm N =

∏

i pei
i , returns an isogeny φ : E0 → E1 corresponding to this ideal

through Deuring’s correspondence. Moreover the complexity of this algorithm is
polynomial in maxi pei

i .

We stress that this translation algorithm requires us to know the endomorphism
ring of E0, and that it is only efficient when maxi pei

i is small.
Let us first assume that we have an efficient algorithm for Problem2, return-

ing a Z basis for a maximal order as discussed above. Algorithm 4 below uses
this algorithm to solve Problem3.

Algorithm 4. Reduction from Problem 3 to Problem 2
Input: A supersingular j-invariant j.
Output: Four maps that generate End(E(j)).

1. Use an algorithm for Problem 2 to obtain a maximal order O � End(E(j)).
2. Compute an ideal I connecting O0 and O.
3. Compute an ideal J with powersmooth norm in the same class as I.
4. Translate the ideal J into an isogeny ϕ : E0 → E.
5. Let N be the norm of J .
6. Let 1, φ2, φ3, φ4 generate End(E(j0)).
7. Let 1, ω2, ω3, ω4 generate O, and let 1, ω2,0, ω3,0, ω4,0 ∈ O0 correspond to

1, φ2, φ3, φ4.
8. Find integers cij such that ωi =

∑
j cijωj,0

N .

9. Return N , ϕ, cij implicitly representing the maps
∑4

i=1 cij ϕ̂φiϕ

N for each i.

The maps returned by Algorithm 4 are of the form φ =
∑4

i=1 cij ϕ̂φiϕ

N where
N is a smooth number, cij ∈ Z, {φi}i=1,2,3,4 form a basis for the endomorphism
ring of a special curve E0, and ϕ : E0 → E(j) is an isogeny of degree N ,
given as a composition of isogenies of low degree. In Sect. 8 we define compact
representations of endomorphisms, and the data given by Algorithm4 define four
compact representations. This is arguably not the most natural representation

Supersingular Isogeny Graphs and Endomorphism Rings 347

of endomorphisms, but it still allows to efficiently evaluate them at arbitrary
points, as shown by Algorithm5 and Lemma 3 below. See Sect. 8 for a detailed
definition of how to represent the output of this algorithm.

Algorithm 5. Endomorphism evaluation
Input: A curve E, an isogeny ϕ : E0 → E with powersmooth degree N , and
integers a, b, c, d defining an endomorphism φ = ϕ(a+ bφ2 + cφ3 + dφ4)ϕ̂

N ∈ End(E).
Input: A point P ∈ E.
Output: φ(P).

1. Let N =
∏

i pi
ei and let mi = N/pei

i .
2. For all i:

(a) Compute Qi such that pei
i Qi = P .

(b) Compute Si = ϕ(a + bφ2 + cφ3 + dφ4)ϕ̂(Qi)
3. Compute S such that Si = miS for all i.
4. Return S.

Lemma 3. Let P ∈ E(K) with K an extension of Fp2 . Assume that log N and
maxi pei

i are polynomial in log p. Then Algorithm5 computes φ(P) and can be
implemented to run in time polynomial in log |K|.
Proof. We will first prove the correctness of the above algorithm. Let γ := ϕ(a+
bφ2 + cφ3 + dφ4)ϕ̂, so [N] ◦ φ = γ. While the choice of Qi in Step 2a is not
unique, in Step 2b the point Si is independent of the choice of Qi, because of
the calculation

Si = γ(Qi) = ([N] ◦ φ)(Qi) = ([mi] ◦ φ)(P).

We now show that the S in Step 3 exists, is unique, and equals φ(P). The
above calculation showed φ(P) satisfies miφ(P) = Si. On the other hand, the
point S also satisfies miS = Si for all i, so φ(P) − S ∈ E[mi] for all i. Since
gcd({m1, . . . ,mk}) = 1, we have

⋂k
i=1 E[mi] = {0}. This implies that S = φ(P).

We can efficiently compute S in Step 3 as follows. Since the greatest
common divisor of {m1, . . . ,mk} is 1, there are integers a1, . . . , ak such that
∑k

j=1 ajmj = 1. These integers can be efficiently computed with the extended

Euclidean algorithm since k = O(log p). Define S :=
∑k

i=1 aiSi. Observe that
for i �= j, we have

miSj =
N

pei
i p

ej

j

p
ej

j Sj =
N

pei
i p

ej

j

p
ej

j γ(Qj) =
N

pei
i p

ej

j

γ(P) =
N

pei
i p

ej

j

γ(pei
i Qi) = mjS.

This implies that miSj = mjSi. Now we calculate

miS = mi

k
∑

j=1

ajSj = Si −
⎛

⎝

∑

j �=i

ajmjSi

⎞

⎠ +
∑

j �=i

miajSj = Si.

Although Q may lie in a very large extension of Fp2 , each of the Qi lies in a
reasonably small extension, namely the extension degree is polynomial in log p.

348 K. Eisenträger et al.

Note that S lies in an extension of K of degree at most 6 by Theorem 4.1 of
[Wat69], so Step 3 is efficient. Step 2a involves some univariate polynomial fac-
torization, a task that is polynomial in both the degree of the polynomial and
the logarithm of the field size. In Step 2b the isogeny ϕ and its dual can be
evaluated stepwise, and evaluating the map a + bφ2 + cφ3 + dφ4 at an arbitrary
point involves 4 scalar multiplications, three additions and the evaluation of the
maps φi ∈ End(E(j0)) at certain points. ��
Proposition 5. Under plausible heuristic assumptions, the reduction in
Algorithm4 from Problem3 to Problem 2 can be implemented to run in time
polynomial in log p.

Proof. By Theorem 2, we may assume that the maximal order isomorphic to
End(E(j)) has size polynomial in log p. In Step 2, the ideal I can be computed
with Algorithm 3.5 of [KV10]. This can be done in time polynomial in log p since
O0 and O have size polynomial in log p. By Lemma 2 the output of Step 3 is
an ideal of norm N =

∏

pei
i such that S = maxi pei

i = O(log p). The translation
algorithm runs in a time polynomial in S, hence in log p. The other steps also
run in polynomial time. ��

5.4 Inverse Deuring Correspondence Is not Harder
than Endomorphism Ring Computation

Let us now assume that we have an efficient algorithm for Problem 3, returning
four maps generating the endomorphism ring, in some format that allows efficient
evaluation of the maps at arbitrary points. Algorithm6 below uses this algorithm
and then constructs a sequence of linear transformations that map 1, α, β, γ to
four orthogonal maps 1, ι, λ, ιλ corresponding to 1, i, j, k ∈ Bp,∞. Composing the
inverses of these maps then gives a Z-basis for O.

Algorithm 6. Reduction from Problem 2 to Problem 3
Input: A supersingular j-invariant j.
Output: A maximal order O ⊂ Bp,∞ such that End(E(j)) � O.

1. Use an algorithm for Problem 3 to obtain four maps 1, α, β, γ which gener-
ate End(E(j)), in a format that allows efficient evaluation at elliptic curve
points.

2. Compute the Gram matrix associated to the sequence (1, α, β, γ).
3. Find a rational invertible linear transformation sending (1, α, β, γ) to some

(1, α′, β′, α′β′), where 1, α′, β′, α′β′ generate an orthogonal basis for Bp,∞
over Q.

4. If the numerators and denominators of Nrd(α′) and Nrd(β′) are not easy to
factor:

(a) Apply a random invertible linear transformation to (α, β, γ).
(b) Go to Step 3.

5. Find a, b, c ∈ Q such that Nrd(ι) = q, where ι = aα′ + bβ′ + cα′β′.

Supersingular Isogeny Graphs and Endomorphism Rings 349

6. Find a rational invertible linear transformation sending (1, α′, β′, α′β′) to
(1, ι, δ, ιδ) for some δ ∈ Bp,∞ where 1, ι, δ, ιδ generate an orthogonal basis
for Bp,∞ over Q.

7. If the numerator and denominator of Nrd(δ) is not easy to factor:
(a) Apply a random invertible linear transformation to (α, β, γ).
(b) Go to Step 3.

8. Find a, b ∈ Q such that Nrd(δ)(a2 + b2q) = p. Let λ = aδ + bιδ.
9. Compute a rational invertible linear transformation sending (1, ι, δ, ιδ) to

(1, ι, λ, ιλ).
10. Invert and compose all linear transformations to express 1, α, β, γ in the

basis (1, ι, λ, ιλ), and deduce a basis of O in Bp,∞.
11. Return the basis of O.

Let B be a bound on the degrees of the maps α, β, γ returned in Step 1 of
Algorithm 6. We analyze the complexity of the algorithm through the following
lemmas and proposition.

Lemma 4. There exists an algorithm for Step 2 that runs in time polynomial
in log p and log B.

Proof. Given two endomorphisms α, β, one can compute their inner product
〈α, β〉 = αβ̄ + βᾱ ∈ Z by evaluating it on an appropriate set of torsion points of
small prime order, and then applying the Chinese Remainder Theorem, following
a strategy similar to Schoof’s point counting algorithm (see [Koh96, Theorem 81]).
Applying this algorithm to every pair of maps from (1, α, β, γ) gives the result. ��
Lemma 5. There exists an algorithm for Steps 3 and 6 that runs in time poly-
nomial in log p and log B.

Proof. We focus on Step 3, and Step 6 is similar. Given the Gram matrix one
can apply the Gram-Schmidt orthogonalization process to obtain a new basis
(1, α′, β′, γ′). It remains to show that α′β′ is a scalar multiple of γ′ so that we
can normalize γ′ to obtain the result. It suffices to show that α′β′ is orthogonal
to 1, α′ and β′. Indeed we have 〈α′β′, 1〉 = α′β′ + β̄′ᾱ′ = 〈α′, β̄′〉 = −〈α′, β̄′〉 =
0; we have 〈α′β′, α′〉 = α′β′ᾱ′ + α′β̄′ᾱ′ = Nrd(α′)Trd(β′) = 0; and similarly
〈α′β′, β′〉 = α′β′β̄′ + β′β̄′ᾱ′ = Nrd(β′)Trd(α′) = 0. ��
Lemma 6. Given the factorizations of the numerators and denominators of both
Nrd(α′) and Nrd(β′), there exists an algorithm for Step 5 that runs in time
polynomial in log p and log B.

Proof. Finding such a, b, c ∈ Q satisfying the condition amounts to finding
a′, b′, c′, d ∈ Z such that a′2 Nrd(α′) + b′2 Nrd(β′) + c′2 Nrd(α′)Nrd(β′) = d2q.
According to Simon [Sim05, Sect. 8] there is an algorithm to solve this Diophan-
tine equation in polynomial time. ��
Lemma 7. Given the factorizations of the numerator and of the denominator
of Nrd(δ), there exists an algorithm for Step 8 that runs in time polynomial in
log p and log B.

350 K. Eisenträger et al.

Proof. Note that 〈δ, ιδ〉 is by construction the orthogonal space of 〈1, ι〉, and
this space must contain an element of norm p, so the equation has a solution.
Given factorizations for both the numerator and the denominator of δ one can
use Cornacchia’s algorithm [Cor08] to solve Step 8. ��
Proposition 6. Under plausible heuristic assumptions, the reduction provided
by Algorithm6 can be implemented to run in polynomial time.

Proof. In Steps 4 and 7 the algorithm requires that some numbers are easy to
factor. In Step 4 we may expect these numbers to behave like random numbers of
the same sizes. In Step 7, p must divide the numerator of Nrd(δ). We may expect
that both the numerator and the denominator factor like random numbers of the
same size. One can require all those numbers to be large primes, or a product
of large primes and small cofactors, two properties that will be satisfied with
a probability inversely proportional to a polynomial function of log p. Steps 4a
and 7a randomize α, β, γ so that we expect the conditions to be satisfied after a
number of steps that is polynomial in log p. By the four lemmas before we then
expect that the whole reduction runs in a time polynomial in log p. ��

The reduction provided by Algorithm6 and its runtime analysis relies on
several heuristics, namely the probability to obtain suitable norms in Steps 4
and 7 as discussed in the above proposition, and the runtime assumption of
Simon’s algorithm for Step 5.

5.5 Preimage and Collision Resistance of the CGL Hash Function

In this section we show that the hardness of the endomorphism ring computation
problem is equivalent to the security of the Charles-Goren-Lauter hash function.

Proposition 7. Assume there exists an efficient algorithm for the endomor-
phism ring computation problem. Then there is an efficient algorithm to solve
the preimage and collision problems for the Charles-Goren-Lauter hash function.

Proof. By standard arguments on hash functions it is enough to focus on preim-
age resistance. Our reduction of this problem to the endomorphism ring com-
putation problem is given in Algorithm7. Besides two black box calls to an
algorithm for the endomorphism ring computation problem, it uses other effi-
cient algorithms described in this paper, including Algorithm4 to translate a
description of an endomorphism ring as rational maps into a description of a
maximal order in Bp,∞, both the �-power and the powersmooth versions of the
quaternion isogeny algorithm, and the translation algorithm from ideals to iso-
genies. All these routines are efficient by the lemmas and propositions of this
paper. By the results in Sect. 6.4, the algorithm is correct. ��
Algorithm 7. Reduction from preimage resistance to endomorphism ring com-
putation
Input: Two supersingular j-invariants js, jt ∈ Fp2 .
Output: A sequence of j-invariants js = j0, j1, . . . , je = jt such that for any i
there exists an isogeny of degree � from E(ji) to E(ji+1).

Supersingular Isogeny Graphs and Endomorphism Rings 351

1. Compute End(E(js)) and End(E(jt)).
2. Compute Os � End(E(js)) and Ot � End(E(jt)) with Algorithm4.
3. Compute ideals Is and It connecting O0 respectively to Os and Ot.
4. Compute ideals Js = Ooαs + O0�

es and Jt = O0αt + O0�
et with norm �es , �et

for some es, et, in the same classes as Is and It respectively.
5. For r = s, t and corresponding E = E(jr):

(a) Compute a sequence of ideals Jr,i = O0αr + O0�
i for i = 0, . . . , er

(b) For 0 ≤ i ≤ er:
(c) Compute Kr,i with powersmooth norm in the same class as Jr,i.
(d) Translate Kr,i into an isogeny ϕr,i : E0 → Er,i.
(e) Deduce a sequence (j0, j(Er,1), j(Er,2), . . . , j(Er,e) = j(E)).

6. Return (j(Es), . . . , j0, . . . , j(Et)) the concatenation of both paths.

The reverse direction may a priori look easier. By standard arguments on
hash functions it is sufficient to prove the claim with respect to a collision algo-
rithm. A collision for the Charles-Goren-Lauter hash function gives a non-scalar
endomorphism of the curve; four linearly independent endomorphisms give a
full rank subring of the endomorphism ring; and heuristically one expects that
a few such maps will be sufficient to generate the whole ring. To compute the
endomorphism ring one would therefore call the collision finding algorithms mul-
tiple times until the resulting maps generate the full endomorphism ring. This
strategy, however, has a potential caveat: the collision algorithm might be such
that it always returns the same endomorphism. In Algorithm8 we get around
this problem by performing a random walk from the input invariant j, calling
the collision algorithm on the end-vertex of the random walk, and concatenating
paths to form endomorphisms of E(j).

Proposition 8. Assume there exists an efficient preimage or collision algo-
rithm for the Charles-Goren-Lauter hash function. Then under plausible heuris-
tic assumptions there is an efficient algorithm to solve the endomorphism ring
computation problem.

Proof. The reduction algorithm for collision resistance is given by Algorithm8
below. Note that in Step 7 the discriminant can be computed from the Gram
matrix, which by Lemma 4 can be efficiently computed. Heuristically, one expects
that the loop will be executed at most O(log p) times. Indeed let us assume that
after adding some elements to the subring we have a subring of index N . Then we
can heuristically expect any new randomly generated endomorphism to lie in this
subring with probability only 1/N . Moreover when it does not lie in the subring,
the element will decrease the index by a non trivial integer factor of N . ��
Algorithm 8. Reduction from endomorphism ring computation to collision
resistance
Input: A supersingular j-invariant j ∈ Fp2 .
Output: The endomorphism ring of E(j).

352 K. Eisenträger et al.

1. Let R = 〈1〉 ⊂ End(E(j)).
2. While disc(R) �= 4p2:
(a) Perform a random walk in the graph, leading to a new vertex j′.
(b) Apply a collision finding algorithm on j′, leading to an endomorphism of

E(j′).
(c) Deduce an endomorphism φ of E(j) by concatenating paths.
(d) Set R ← 〈R, φ〉.
(e) Compute the discriminant of R.

3. Return a Z-basis for R.

6 �-PowerIsogeny Reduces to MaxOrder
and Action-on-�-Torsion

In this section we show that computing an �-isogeny between two supersingular
elliptic curves reduces to computing maximal orders of elliptic curves and solving
the Action-on-�-Torsion Problem.

6.1 Outline of Reduction

Given two supersingular elliptic curves E,E′ over Fp2 , and oracles for the prob-
lems Action-on-�-Torsion and MaxOrder, we will construct an �-power isogeny
E → E′ by constructing a chain of �-isogenies through intermediate curves. First,
the oracle will give us two maximal orders O,O′ ⊆ Bp,∞ with O � End(E) and
O′ � End(E′). We then compute a connecting ideal, meaning a left ideal of
O, whose left order is O and right order is O′. Next we use the main algo-
rithm of [KLPT14] to compute an equivalent ideal I whose norm is �e for some
e = O(log p). The isogeny φI : E → E′ corresponding to I has degree �e, so the
representation size of the isogeny is exponential. To remedy this we will, given
I, compute a chain of �-isogenies ψ1, . . . , ψe such that φI = ψe ◦ · · · ◦ ψ1. Since
ψ1, . . . , ψe have degree �, they are of polynomial representation size as rational
maps. To obtain the ψi we will first show that there is a factorization of the ideal
I. The proper notion here is that of a filtration of ideals, namely a sequence

I = Ie ⊆ Ie−1 ⊆ · · · ⊆ I1 ⊆ I0 = O
such that the isogeny corresponding to Ik is a map φk from E to some interme-
diate curve Ek. The factorization of φI gives us a path starting at E and ending
at E′ of length e in the graph of isogenies of degree �, and the filtration of I
leads to a corresponding “path” between maximal orders in Bp,∞. The maximal
orders that appear in this path are OR(Ik) and the ideal connecting OR(Ik) to
OR(Ik+1) is Jk := I−1

k−1Ik. These paths are given in the following diagrams:

E

E1 E2 · · · Ee = E′

φ1=ψ1
φ2

φ3

φe

ψ2 ψ3 ψe

Supersingular Isogeny Graphs and Endomorphism Rings 353

O

OR(I1) OR(I2) · · · OR(Ie) = O′

I1=J1 I2
I3

Ie

J2 J3 Je

For each k, the isogeny φk : E0 → Ek has degree �k, and so corresponds to a
left O-ideal Ik of norm �k. We will show that Ik = I+O�k is the desired ideal. As
k grows, these ideals will have norms which are too big to find the corresponding
isogenies, so we will compute the maps ψk : Ek−1 → Ek which correspond to left
ideals Jk of OR(Ik−1) of norm �. Suppose we have computed ψk, the curve Ek,
and Jk+1 as above. We can use the oracle for MaxOrder to identify generators
of Jk+1 with endomorphisms of Ek. On the other hand, Jk+1 corresponds to the
isogeny ψk+1, whose kernel we compute using the information from the oracle
Action-on-�-Torsion. Using Vélu’s formula, we can compute ψk+1 from its kernel.
This procedure iteratively computes the desired maps ψ1, ψ2, . . . , ψe.

6.2 Reduction from �-PowerIsogeny to MaxOrder
and Action-on-�-Torsion

In this section, we give the reduction from �-Power Isogeny to the problems
MaxOrder and Action-on-�-Torsion.

Algorithm 9. Reduction from �-PowerIsogeny to MaxOrder and Action-on-�-
Torsion
Input: E,E′ supersingular elliptic curves over Fp2 , a prime � �= p.
Output: a chain of �-isogenies connecting E and E′.

1. Compute a basis 〈1, i, j, ij〉 for Bp,∞.
2. Call oracle MaxOrder on p, 〈1, i, j, ij〉, E, resulting in α1, α2, α3, α4 where

End(E) � O := 〈α1, α2, α3, α4〉 ⊆ Bp,∞.
3. Call oracle MaxOrder on p, 〈1, i, j, ij〉, E′, resulting in α′

1, α
′
2, α

′
3, α

′
4 where

End(E′) � O′ := 〈α′
1, α

′
2, α

′
3, α

′
4〉 ⊆ Bp,∞.

4. Compute connecting ideal: use α1, . . . , α4 and α′
1, . . . , α

′
4 to compute a left

ideal I of O such that OR(I) = O′ and Nrd(I) = �e with e = O(log p). Adjust
I so that I �⊆ �k · O for any positive integer k.

5. For 0 ≤ k ≤ e :
(a) Compute Ik := I+O�k. This is a left ideal of O of norm �k. Also compute

its right order OR(Ik).
(b) Compute a Z-basis γ1, γ2, γ3, γ4 for the ideal Jk+1 := I−1

k Ik+1 of OR(Ik).
6. Set E0 := E.
7. For 0 ≤ k ≤ e − 1:

(a) Compute a basis {P1, P2} for Ek[�].
(b) Call oracle MaxOrder with p, 〈1, i, j, ij〉, Ek, resulting in β1, β2, β3, β4

that generate Ok ⊆ Bp,∞.
(c) Call oracle Action-on-�-Torsion with parameters p, P1, P2, 〈1, i, j, ij〉, Ek,

β1, β2, β3, β4 resulting in Qst = ι−1
k (βs)(Pt) for s = 1, . . . , 4, t = 1, 2.

Here, ιk : End(Ek) → 〈β1, . . . , β4〉 is an isomorphism.

354 K. Eisenträger et al.

(d) Compute v ∈ Bp,∞ such that vOR(Ik)v−1 = Ok.
(e) Compute crs such that vγrv

−1 =
∑

s crsβs.
(f) Find x, y ∈ Z/�Z, not both 0, such that

∑

s crs(xQs1 + yQs2) = 0 for
r = 1, . . . , 4.

(g) Compute ψk+1 and its image Ek+1 corresponding to the kernel subgroup
〈xP1 + yP2〉 = Ek[ι−1

k (Jk+1)] using Vélu’s formula
8. Return ψ1, ψ2, . . . , ψe.

Theorem 10. �-PowerIsogeny efficiently reduces to MaxOrder and Action-on-
�-Torsion. In particular, given a prime p, a prime � �= p, and supersingular
elliptic curves E, E′ over Fp2 , Algorithm9 returns isogenies ψ1, . . . , ψe of degree
� whose composition is an isogeny ψ := ψe ◦ · · · ◦ ψ1 of degree �e from E to E′.
Assuming � is of size O(log p), Algorithm9 runs in time polynomial in log p and
makes O(log p) queries of MaxOrder and Action-on-�-Torsion.

Proof. By Theorem 2, the oracle returns a basis for O and for O′ of polynomial
size. To do Step 4, we first compute an arbitrary connecting ideal for O and
O′ in polynomial time using Algorithm 3.5 of [KV10]. An equivalent connecting
ideal of norm �e, where e = O(log p), can be computed in polynomial time as
claimed in [KLPT14].

Define Ek := E/E[Ik] (here by E[Ik] we mean the subgroup E[ι−1(Ik)], where
ι : End(E) → O is an isomorphism). We need to show that Ik has norm �k and
that the left OR(Ik)-ideal Jk+1 corresponds to the isogeny ψk+1 : Ek → Ek+1

in the factorization φk = ψk ◦ φk−1; this is proved in Theorem11. Right orders
and products of ideals can be computed efficiently with linear algebra over Z,
hence Step 4 is efficient; see [Rón92], Theorem 3.2 for the statement on right
orders. Inverses can be computed from the formula I−1 = 1

Nrd(I)I. We make
e calls to the oracle for generators of End(Ek) and their action on �-torsion. If
O � Ok, we can compute v such that vOkv−1 = O in polynomial time by Lemma
2.5, Corollary 3.6, and Proposition 6.9 of [KV10]. By Theorem 11, the isogeny
corresponding to I factors as the product of the isogenies corresponding to Jk,
k = 1, . . . , e, all of which have degree �. Now compute the kernel of ψk using Jk

and the action of End(Ek−1) on the �-torsion of Ek−1; see Proposition 9. Since �
is O(log p), rational maps for ψk from its kernel can be efficiently computed. ��

6.3 Going from an Ideal of Norm � to a Corresponding Subgroup
of Order �

At the beginning of Step 7 of the algorithm, we have an isogeny Ek−1 → Ek

represented by a left OR(Ik−1)-ideal Jk. We wish to specify the subgroup of Ek−1

which is the kernel of this isogeny. If ˜Jk ⊆ End(Ek−1) is the ideal isomorphic to
Jk, recall from Sect. 2.2 that

Ek−1[˜Jk] =
⋂

γ∈J̃k

ker(γk),

Supersingular Isogeny Graphs and Endomorphism Rings 355

and it suffices to compute ker(γ1) ∩ · · · ∩ ker(γ4), where γ1, . . . , γ4 are a Z-basis
of ˜Jk. Once we have Ek−1[˜Jk], we can use Vélu’s formula to compute ψk.

Step 7 in our algorithm computes Ek−1[J̃k] and is similar to Algorithm 2 in
[GPS17]. In our version, we are working with ideals in consecutive endomorphism
rings, rather than in the endomorphism ring of the starting curve, and we give
proofs of correctness along with analysis of input size of left ideals of a maximal
order.

Proposition 9. Let E be a supersingular elliptic curve over Fp2 , and assume ι :
End(E) → O ⊆ Bp,∞ is an isomorphism, where O has a basis of size polynomial
in log p. Let I ⊆ O be an ideal of norm �e for a prime � �= p with � = O(log p).
For k = 1, . . . , e, define Ik := I + O · �k and Jk = I−1

k−1Ik ⊆ OR(Ik−1) and
Ek := E/E[ι−1(Ik)] as in Theorem11. Then if we are given ιk−1(End(Ek−1))
in Bp,∞ where ιk−1 : End(Ek−1) ⊗ Q → Bp,∞ is an isomorphism of quaternion
algebras, along with the action of End(Ek−1) on Ek−1[�], we can compute the
kernel of the isogeny corresponding to ι−1

k−1(Jk) in time polynomial in log p.

Proof. We wish to determine Ek−1[ι−1
k−1(Jk)] so that we can compute the corre-

sponding isogeny ψk : Ek−1 → Ek. If Jk has a Z-basis γ1, . . . , γ4 ∈ OR(Ik−1), we
need to understand how the γi act as endomorphisms of Ek−1. Suppose we are
given the action of generators φ1, . . . , φ4 of End(Ek−1) on Ek−1[�] and the image
of an embedding ιk−1 : End(Ek−1) → Bp,∞. Set Ok−1 := ιk−1(End(Ek−1)); then
we can compute v ∈ B×

p,∞ such that Ok−1 = vOR(Ik−1)v−1 in polynomial time
by [KV10]. By expressing vγiv

−1 in terms of ιk−1(φj), say

vγrv
−1 =

∑

s

crsιk−1(φs),

we discern the kernel of the isogeny corresponding to Jk as follows. We require
a nonzero point P ∈ Ek−1[�] such that for all r = 1, . . . , 4,

∑

s

crsφs(P) = 0.

Because we assume that we are given φs(P) for s = 1, . . . , 4 and P ∈ Ek−1[�],
we can find such a P by just calculating the sum for all r = 1, . . . , 4 and P �=
0 ∈ Ek−1[�]. ��

6.4 Isogeny Paths and Corresponding Filtrations of Left Ideals

Let E,E′/Fp2 be supersingular elliptic curves. We now prove the correctness of
our earlier claims on how an �-isogeny path between E and E′ corresponds to a
sequence of ideals of norm � in End(E) ⊗ Q. In particular, suppose φ : E → E′

has degree �e for some prime � �= p. Then the kernel ideal I of φ in End(E)
has degree �e. There is a factorization φ = ψe ◦ · · · ◦ ψ1 with deg(ψk) = �, and
by setting φk := ψk ◦ · · · ◦ ψ1, there is a corresponding ideal Ik of End(E) of
norm �k. Additionally, there is an ideal Jk of OR(Ik−1) which corresponds to the

356 K. Eisenträger et al.

factorization of the isogeny φk = ψk ◦ ψk−1; in this section, we construct Ik and
Jk from I. Let I be a left ideal of End(E) of norm �e such that I �⊆ End(E) · �m

for any positive integer m. In this section, we prove that for k = 0, . . . , e, Ik =
I + End(E) · �k is an ideal of norm �k and that

I = Ie ⊆ Ie−1 ⊆ · · · ⊆ I1 ⊆ I0 = End(E).

We first establish when an ideal corresponds to an isogeny with cyclic kernel.

Proposition 10. Suppose I ⊆ End(E) is a left ideal with Nrd(I) coprime to
p. Then I is not contained in End(E) · m for any m ∈ N if and only if E[I] is
cyclic.

Proof. Suppose that I ⊆ End(E) · m. Then E[I] ⊃ E[End(E) · m] = E[m] and
thus m|deg(φI). Since p does not divide deg(φI), it also does not divide m, so
E[m] �= 0 and has rank two as a Z/mZ-module. Hence E[I] is not cyclic. For the
other direction, suppose that E[I] is not cyclic. Then, by the structure theorem
of abelian groups,

E[I] �
j

⊕

i=1

Z/kiZ

and we can choose the ki uniquely such that ki|ki+1. Since E[I] is not cyclic,
j �= 1 and hence E[I] has two elements of order k1 which are linearly independent.
Thus E[k1] ⊆ E[I] and hence I ⊃ End(E) · k1. ��
Proposition 11. Suppose I ⊆ End(E) and N := Nrd(I) is coprime to p. Also
suppose M |N , and that I is not contained in End(E) · m for any m ∈ N. Then
I + End(E) · M has norm M .

Proof. We claim that

E[I + MO] = E[I] ∩ E[M].

Indeed, for an arbitrary left ideal J of End(E) with Nrd(J) coprime to p, E[J] is
the intersection of the kernels of a generating set of J , and for two left End(E)-
ideals J, J ′, J + J ′ is generated by J ∪ J ′. Since E[I] is cyclic by Proposition 10,
there is some Q ∈ E[N] so that E[I] = 〈Q〉. Then E[I] ∩ E[M] = 〈[N/M]Q〉, a
group of order M as desired. ��

6.5 Matching up a Filtration of an Ideal with a Factorization
of an Isogeny

In this section, we show that the definition of Jk in Algorithm 9 gives us the ideal
which corresponds to the isogeny Ek−1 → Ek of degree �. To do this, it suffices
to understand the horizontal isogeny and corresponding ideal in the following
diagram:

Supersingular Isogeny Graphs and Endomorphism Rings 357

E

Ek−1 := E/E[Ik−1] Ek := E/E[Ik]

Ik−1

Ik

Jk

We will describe the relationship between the horizontal isogeny and its kernel
ideal for two arbitrary left ideals I, I ′ of End(E) satisfying I ′ ⊆ I, so in the above
picture, we replace Ik−1 with I and Ik with I ′. The goal is to find, given I ′ ⊆ I,
the horizontal isogeny EI → EI′ by first computing its corresponding ideal J̃ in
the following diagram:

E

EI := E/E[I] EI′ := E/E[I ′]

I
I′

J̃

Let φI : E → EI := E/E[I] and φI′ : E → EI′ := E/E[I ′] be the corre-
sponding isogenies; then E[I] ⊆ E[I ′] and hence φI′ factors as φI′ = ψφI for
some isogeny ψ : EI → EI′ . We wish to view the kernel of ψ as EI [J̃] for some
left ideal J̃ of End(EI). We make this idea precise in the following proposition.

Proposition 12. Let I ′ ⊆ I be two left End(E)-ideals whose norms are coprime
to p. Then there exists a separable isogeny ψ : EI → EI′ such that φI = ψ ◦ φI′ ,
and a left ideal J̃ of End(EI) with EI [J̃] = ker(ψ) such that J = ι(J̃) = I−1I ′,
where ι : End(EI) → End(E) ⊗ Q is the map in Lemma 9 below.

To prove this, we need the following three lemmas:

Lemma 8. For a left ideal I of End(E), the map

φ∗
I : Hom(EI , E) → I

ψ �→ ψφI

is an isomorphism of left End(E)-modules.

Proof. This is Lemma 42.2.6 of [Voi]. It also follows from Proposition 48 of
[Koh96]. ��
Lemma 9. Set B = End(E) ⊗ Q. The map

ι : End(EI) → B

β �→ 1
deg(φI)

̂φIβφI

is injective, and its image is OR(I).

Proof. This is Lemma 42.2.8 of [Voi] or Proposition 3.9 of [Wat69]. ��

358 K. Eisenträger et al.

Lemma 10. We have a bijection

g : Hom(EI′ , EI) → I−1I ′

ψ �→ 1
deg(φI)

̂φIψφI′ .

Proof. This is Lemma 42.2.19 of [Voi]. ��
Now we can prove the proposition.

Proof (Proof of Proposition 12). We have that I−1 = 1
Nrd(I)I. Consider an ele-

ment x ∈ I−1I ′ of the form

x =
1

deg(φI)
̂α′β′,

where α′ ∈ I, β′ ∈ I ′. Then by Lemma 8, there exists α ∈ Hom(EI , E) and
β ∈ Hom(EI′ , E) with

α′ = αφI , β
′ = βφI′ .

Thus
x =

1
deg(φI)

̂φI α̂βφI′ = g(α̂β),

where g : Hom(EI′ , EI) → I−1I ′ is the map in Lemma 10. Since E[I] ⊆ E[I ′],
and φI , φI′ are separable, by Corollary III.4.11 of [Sil09] there exists a unique
separable isogeny ψ : EI → EI′ such that φI′ = ψ ◦ φI . Then define

J̃ := {α ∈ End(E1) : α(P) = 0 ∀P ∈ ker(ψ)}.

Now map g−1(x) = α̂β ∈ Hom(EI′ , EI) to an element of J̃ using ψ∗: α̂βψ =
ψ∗(α̂β) ∈ J̃ . Finally, compute

x =
1

deg(φI)
̂φI α̂βφI′

=
1

deg(φI)
̂φI α̂βψφI

= ι(α̂βψ)
= ι(ψ∗(α̂β))

= (ι ◦ ψ∗ ◦ g−1)(x).

In other words, we have
g = ι ◦ ψ∗.

From this, we conclude that the left ideal of OR(I1) corresponding to J̃ indeed
is I−1I ′. ��

Combining the above results, we have our main theorem on matching up
filtrations of ideals with factorizations of isogenies:

Supersingular Isogeny Graphs and Endomorphism Rings 359

Theorem 11. Suppose that I ⊆ End(E) satisfies Nrd(I) = �e where � �= p is a
prime and I �⊂ End(E) · �k for any k ∈ N. Then there exists a filtration

I = Ie � Ie−1 � . . . � I1 � I0 = End(E)

and a chain of isogenies

E = E0 E1 · · · Ee−1 Ee = E′ψ1 ψ2 ψe−2 ψe

such that if we set φk : E → E/E[Ik], then φk+1 = ψkφk. Moreover, for k =
0, . . . , e − 1, the map ψk+1 : Ek → Ek+1 has degree �, and its kernel ideal in
End(Ek) is isomorphic to I−1

k Ik+1 ⊆ OR(Ik) under the map

ιk : End(Ek) → OR(Ik)

ρ �→ 1
deg(φk)

φ̂kρφ.

Proof. For k = 0, 1, . . . , e, define Ik := I + End(E) · �k. By Proposition 11,
Nrd(Ik) = �k. Let φI : E → Ee := E/E[Ie] = E/E[I] be the isogeny cor-
responding to I = Ie. Set Ok := OR(Ik) ⊆ End(E) ⊗ Q, and Jk := I−1

k−1Ik.
Then Nrd(Jk) = �. Let Ek := E/E[Ik]. From the ideals Jk, we have isogenies
ψk : Ek−1 → Ek such that

φ = ψe ◦ · · · ◦ ψ1

by Proposition 12 applied inductively to the ideals Ik+1 � Ik. ��

7 Some Easy Problems in Supersingular Isogeny Graphs

The previous sections relied heavily on the quaternion �-isogeny algorithm of
[KLPT14] to derive the computational equivalence of several problems. In this
section, we provide two additional applications of this algorithm. First, we give
an algorithm for constructing the Deuring correspondence from maximal orders
in Bp,∞ to supersingular j-invariants. Second, we give a polynomial-time collision
algorithm against the Charles-Goren-Lauter hash function when a special curve
is chosen as the initial point.

7.1 Constructive Deuring Correspondence, from Quaternion Orders
to j-invariants

In this section we provide an efficient algorithm to solve Problem 1. Algorithm 12
first computes an ideal connecting O0 to O. Then it uses the quaternion �-isogeny
algorithm from [KLPT14] (or rather, its powersmooth version) to compute
another ideal in the same class but with a norm N =

∏

pei
i such that maxi pei

i

is small. It finally translates that ideal into an isogeny φ : E0 → E1 that corre-
sponds to it via Deuring’s correspondence.

360 K. Eisenträger et al.

Algorithm 12. Constructive Deuring correspondence, from maximal orders to
j-invariants.
Input: Maximal order O ⊂ Bp,∞.
Output: Supersingular j-invariant j such that End(E(j)) � O.

1. Compute an ideal I that is a left ideal of O0 and a right ideal of O.
2. Compute an ideal J in the same class as I but with powersmooth norm.
3. Compute an isogeny φ : E0 → EI that corresponds to J via Deuring’s corre-

spondence.
4. Return j(EI).

Let 〈1, ω2, ω2, ω3〉 be a basis for O, and let M ∈ GL(4, Q) be such that
(1, ω2, ω2, ω3) = M(1, i, j, k). Let B be a bound on the numerators and denomi-
nators of all the coefficients of M .

Proposition 13. (Constructive Deuring Correspondence). Under plau-
sible heuristic assumptions, Algorithm12 can be implemented to run in time
polynomial in both log B and log p.

Proof. The analysis is similar to the proof of Proposition 5. ��
We remark that this algorithm is implicitly used in the recent identification

protocol of Galbraith, Silva and Petit [GPS17].

7.2 An Attack on the CGL Hash Function

It was shown in [CGL09] that computing collisions or preimages for the Charles-
Goren-Lauter hash function amounts to computing large �-power degree isoge-
nies between two (possibly isomorphic) elliptic curves. The hardness arguments
for these problems then essentially relied on the following arguments:

1. In general, these isogenies must have a degree so large that they cannot be
efficiently computed with current algorithms.

2. The best known algorithms for these problems were variants that used
birthday arguments, with an exponential complexity in the parameter’s
size [Gal99].

Paradoxically, the quaternion �-isogeny algorithm [KLPT14] leads to both the
security arguments of Sect. 5.5 and to a partial attack against the hash function.
More precisely, in this section we present a collision attack for the hash function
when the initial point used in the random walk is the special elliptic curve E0

as constructed in Algorithm 3.
Our attack is summarized by Algorithm 13 below. We first compute α ∈

〈1, i, j, k〉 ⊂ O0 with Nrd(α) = �e for some e, which defines a sequence of ideals
Ii corresponding to a loop starting and ending at O0. To ensure there is no
backtracking in the loop (and moreover, that α �= �e/2), we require that for any
natural number k, �−kα �∈ O0. Applying the translation algorithm directly to this
sequence of ideals would have a prohibitive cost because �e is larger than p. As

Supersingular Isogeny Graphs and Endomorphism Rings 361

in Algorithm 7, we first replace each ideal in the sequence by another ideal in the
same class but with powersmooth norm, and we apply the translation algorithm
to each of them individually to obtain corresponding isogenies. The end vertices
of these isogenies form a sequence of j-invariants that define a collision for the
original elliptic curve version of the Charles-Goren-Lauter hash function.

Algorithm 13. Collision attack on CGL hash function for special initial points
Input: Special j0 and O0 from Algorithm3.
Output: A sequence of j-invariants j0, j1, . . . , je = j0 such that for any i there
exists an isogeny of degree � from E(ji) to E(ji+1).

1. Compute e ∈ N and α ∈ 〈1, i, j, k〉 ⊂ O0 with Nrd(α) = �e.
2. Compute a sequence of ideals Ii = O0q + O0�

i.
3. For all i:

(a) Compute Ji with powersmooth norm in the same class as Ii.
(b) Translate Ji into an isogeny ϕi : E0 → Ei.

4. Return (j0, j(E1), j(E2), . . . , j(Ee) = j0).

To obtain an element whose norm is a power of � in Step 1, we fix e large
enough, then pick random values of y and z until the equation w2 + qx2 =
�e − p(y2 + qz2) can be solved with Cornacchia’s algorithm. This solution is
described in Algorithm 14.

Algorithm 14. �-power norm element in O0

Input: Maximal order O0 ⊂ Bp,∞ as defined in Proposition 1.
Output: e ∈ N and α ∈ O0 with Nrd(α) = �e.

1. Let e = �2 log p�.
2. Choose random y, z smaller than

√

p/q.
3. Let N ← �e − p(y2 + qz2).
4. Find w, x ∈ Z such that w2 + qx2 = N if there are some, otherwise go to

Step 2.
5. Return α = w + xi + yj + zk.

Proposition 14. There exists an algorithm that computes a collision for the
Charles-Goren-Lauter hash function when the initial vertex is a special curve in
time polynomial in log p.

Proof. In Algorithm 14 we expect that the equation in Step 4 will have a solution
for 1/2q log p of the random choices (y, z), so we expect this algorithm to run
in time polynomial in log p. Note that e = �2 log p�, and that Steps 4 and 5 in
Algorithm 13 both run in time polynomial in log p. We conclude that the runtime
of Algorithm 13 is also polynomial in log p. To ensure there is no backtracking in
the loop in the isogeny graph, we require that the ideal O0α satisfies O0α �⊂ O0�

k

for any k. ��

362 K. Eisenträger et al.

We remark that we described our attack only for the maximal orders O0

defined in Proposition 1, but it can be extended to other maximal orders as long
as the corresponding curve is known or can be computed, and as long as elements
of norm a power of � can be found in the order. This is the case for “special”
orders, as defined in [KLPT14].

The attack provided by Algorithm13 can be extended into a “backdoor
attack” where an entity in charge of deciding the initial vertex for the hash
function plays the role of the attacker. This entity could take a random walk
from j0 to another curve E and publish this j(E) as the initial vertex for the hash
function. Due to the random walk the vertex j(E) will be uniformly distributed,
hence the function will be collision resistant based on the assumption that the
endomorphism ring computation problem is hard (see Proposition 8). However,
the entity can concatenate the path from j0 to j and the collision which begins
and ends at j0 to obtain a collision which begins and ends at j.

To the best of our knowledge, there exists no efficient algorithm to sample
supersingular j-invariants that does not involve this random walk procedure, so
the backdoor attack cannot really be avoided. On the other hand, by inspecting
such a collision, it is easy to recover a path to O0 and that will reveal that a
backdoor was inserted. In that sense, the backdoor mechanism may not be too
much of an issue in practice.

8 The EndomorphismRing Problem

In this section we provide an alternative study of the computational hardness of
computing endomorphism rings of supersingular elliptic curves. The inputs are p
and the curve, and so the running time must be polynomial in log p. This brings
up two important questions: (1) Does the endomorphism ring of an elliptic curve
have a polynomial representation size? And (2) If it does, can the endomorphisms
be evaluated in polynomial time? To have any meaningful efficient reduction, or
to analyze how hard it is to compute the endomorphism ring, we need to know
what the representation size of an endomorphism ring is. In particular, we need
to discuss what we mean by computing the endomorphism ring.

We will define a compact representation of endomorphisms which has poly-
nomial size, and show that the endomorphism ring of any supersingular elliptic
curve has a basis of such representations. This answers question 1. We also
show that these representations can be evaluated efficiently at arbitrary points,
answering question 2. We then define the problem EndomorphismRing in terms
of this new definition, and show that it efficiently reduces to MaximalOrder and
Action-on-�-Torsion for � = 2, 3. Our definition of compact representations is
implicitly used in Algorithm4. We also identify another problem that it reduces
to, which is related to computing isogenies.

8.1 Representation Size of Endomorphism Rings

There are two typical ways to represent the endomorphism ring of E. The first is
to give rational functions F1(x, y), . . . , F4(x, y) and G1(x, y), . . . , G4(x, y) such

Supersingular Isogeny Graphs and Endomorphism Rings 363

that φi : (x, y) �→ (Fi(x, y), Gi(x, y)) (i = 1, . . . , 4) are endomorphisms of E that
form a basis for End(E). The second is to give the kernel of the maps φi, which
in general is not good enough for computations. However, it is not known if a
basis for End(E) exists in either representation that is of polynomial size. For
example, the basis may contain an endomorphism of exponential degree, where
exponentially many coefficients would be needed to describe it in general. For
the case of using the kernel, the generators may lie in a finite field of exponential
degree over the base field, and there will be exponentially many points in the
kernel.

8.2 Compact Representations of Endomorphisms

We will now show that the endomorphism ring End(E) of any supersingular
elliptic curve E/Fp2 has compact representations if p ≡ 3 (mod 4). The proof
will require a special curve E0 for which a basis of the endomorphism ring is
known; such a curve exists if p �≡ 1 (mod 12).

For simplicity, we will focus on the case where p ≡ 3 (mod 4) is a prime and
let E0 : y2 = x3+x. Let π : E0 → E0 denote the Frobenius map, and let φ : E0 →
E0 be the map (x, y) �→ (−x,

√−1y). The maps 1+φπ and φ+π both have kernels
containing E[2], so they factor through the map [2] : E0 → E0. Let (1 + φπ)/2
and (φ + π)/2 represent the maps in these factorizations. It can be shown that
1, φ, (1 + φπ)/2, (φ + π)/2 form a basis for End(E0), see [GPS17]. As rational
maps, the size of this basis may not be polynomial in log p, but the description
as rational linear combinations of 1, φ, π, φπ uniquely identifies them, and so it is
enough that φ and π have polynomial size. This representation allows for efficient
evaluation at points P of E0 by writing P = [2]Q and then evaluating linear
combinations of 1, φ, π, φπ at Q. Define [β1, β2, β3, β4] := [1, φ, (1 + φπ)/2, (φ +
π)/2]. We will use β1, β2, β3, β4 in our definition of compact representatives of
endomorphisms for all other supersingular elliptic curves E/Fp2 .

Definition 1 (Compact representation of an endomorphism). Let p ≡ 3
(mod 4) be a prime, let E0 : y2 = x3 +x, and β1, . . . , β4 := 1, φ, (1+φπ)/2, (φ+
π)/2 be the endomorphisms of E0 as above. Let E/Fp2 be another supersingular
elliptic curve, and let ρ ∈ End(E). Define a compact representation of ρ to be a
list

[d, [c1, . . . , c4], [φ1, . . . , φm], [̂φ1, . . . , ̂φm]],

where c1, . . . , c4, d ∈ Z, φi are isogenies on a path from E0 to E, the total size
of the list

log(|d|) + log(|c1|) + · · · + log(|c4|) +
m

∑

i=1

log(deg(φm))

is at most polynomial in log p, and

ρ =
1
d

(

φm ◦ · · · ◦ φ1 ◦
(

4
∑

i=1

ciβi

)

◦ ̂φ1 ◦ · · · ◦ ̂φm

)

.

364 K. Eisenträger et al.

Theorem 15. Let p ≡ 3 (mod 4) and let E/Fp2 be a supersingular elliptic
curve. Then there exist two lists of four compact representatives of endomor-
phisms of E, such that each list represents a Z-basis of End(E).

Moreover, assume ρ ∈ End(E) is a linear combination of the endomorphisms
corresponding to one such basis, and assume that its coefficient vector in terms
of this basis is of size polynomial in log p. Using the two lists, we can evaluate ρ
at arbitrary points of E in time polynomial in log p and the size of the point P .

Proof. Let O0 be the maximal order in Bp,∞ with basis

b1, . . . , b4 := 1, i, (1 + ij)/2, (i + j)/2.

Then O0
∼= End(E0) and b1, . . . , b4 correspond to β1, . . . , β4 under an isomor-

phism. There exist chains of isogenies φ1, . . . , φm and ψ1, . . . , ψn between E0

and E with deg(φk) = 2 and deg(ψk) = 3, and with m,n = O(log p). Set
φ = φm ◦ · · · ◦ φ1 and ψ = ψn ◦ · · · ◦ ψ1. Let I ⊆ O0 and J ⊆ O0 be the left
O0-ideals corresponding to φ and ψ respectively.

There exist rational numbers cI
rs whose denominators are divisors of 2Nrd(I)

and rational numbers cJ
rs whose denominators are divisors of 2Nrd(J) such that

γI
r :=

∑

s

cI
rsbs, 1 ≤ r ≤ 4

is a a Minkowski-reduced basis of OR(I), and

γJ
r :=

∑

s

cJ
rsbs, 1 ≤ r ≤ 4

is a Minkowski-reduced basis of OR(J). This follows from Theorem 2 and its
proof. We can also efficiently find v ∈ Bp,∞ such that vOR(I)v−1 = OR(J), see
[KV10].

Then ρJ
r := 1

2m φγI
r
̂φ and ρI

r := 1
3n ψγJ

r
̂ψ (r = 1, . . . , 4) each form a basis for

End(E). Then our compact representations are, for r = 1, . . . , 4,

[Nrd(I), cI
r1, . . . , c

I
r4, [φ1, . . . , φm,], [̂φ1, . . . , ̂φm]],

[Nrd(J), cJ
r1, . . . , c

J
r4, [ψ1, . . . , ψn], [̂ψ1, . . . , ̂ψn]].

Observe that we can efficiently evaluate ρJ
r at any point P of E whose order is

coprime to 2. This is because [2m]ρI
r can be evaluated at P as it is a composition

of the ̂φk, an integer linear combination of the βk and then φk, all of which we
can efficiently evaluate in terms of the size of P . Set Q = [2m]ρI

r(P). Let N be
the inverse of 2m modulo the order of P . Then [N]Q = ρI

r(P).
If we want to evaluate ρI

r at a point P with P ∈ E[2f], we will instead
express vρI

rv
−1 as an integral linear combination of ρJ

1 , . . . ρJ
4 . We can evaluate

each ρJ
1 , . . . , ρJ

4 at any point of order coprime to 3 by the same argument.
Thus we can evaluate at arbitrary points P : if P has order 2fM with (2,M) =

1, then we can write P as a sum of a point P2 of order 2f and PM of order M .
We can then evaluate at P by evaluating it at each summand with the two above
strategies. ��

Supersingular Isogeny Graphs and Endomorphism Rings 365

Computing compact representations of endomorphisms which can be evaluated
at points of E and which generate End(E) is a natural interpretation of the
problem of computing endomorphism rings, so we formally state it here before
relating it to other isogeny problems.

Problem 6 (EndomorphismRing). Given a prime p and a supersingular
elliptic curve E/Fp2 , find a list of total length bounded by O(log p) of compact
representations of endomorphisms of E such that using this list, we can evaluate
the corresponding endomorphisms at points of E, and such that the corresponding
endomorphisms generate End(E) as a Z-module.

In the next section, we will discuss two reductions from EndomorphismRing.

8.3 EndomorphismRing Reduces to MaxOrder
and Action-on-2-Torsion and Action-on-3-Torsion

In Algorithm 9, we used embeddings of endomorphism rings in Bp,∞, together
with their action on �-torsion, to construct an �-isogeny.

Theorem 16. If p ≡ 3 (mod 4), EndomorphismRing reduces to MaxOrder and
Action-on-�-Torsion for � = 2 and 3.

Proof. Let E be a supersingular elliptic curve. Let E0 be the curve y2 = x3 + x
and let O0 be the order isomorphic to End(E0). By Theorem 15, the necessary
data to give compact representations of generators of End(E) is a 2-power and
3-power isogeny from E0 to E, and a basis for the right orders of the ideals
which correspond to these isogenies in Bp,∞. In the proof of Theorem10, note
that all of this data is constructed using the oracles for MaxOrder, and Problems
Action-on-2-Torsion and Action-on-3-Torsion. ��

8.4 EndomorphismRing Reduces to an Isogeny Problem

We can also reduce the problem EndomorphismRing to a variant of the �-Isogeny
Problem, where we require the �-power isogeny to be represented both by a chain
of �-isogenies and by a left ideal in a maximal order.

Problem 7 (FindKernelIdeal). Given a prime p and a sequence of super-
singular elliptic curves E0, . . . , Em−1 and �-isogenies φk : Ek−1 → Ek, k =
1, . . . ,m, with m = O(log p), along with a maximal order O0 ⊆ Bp,∞ iso-
morphic to End(E0), compute the ideal I of O0 ⊆ Bp,∞ corresponding to
φm ◦ · · · ◦ φ1 : E0 → Em.

Theorem 17. Problem EndomorphismRing reduces in polynomial time to Prob-
lems �-PowerIsogeny and FindKernelIdeal.

366 K. Eisenträger et al.

Proof. Let E be a supersingular elliptic curve. Assume we are given φ1, . . . , φm

and ψ1, . . . , ψn whose compositions are 2m- and 3n-isogenies E0 → E and m,n
are O(log p). Also assume we are given ideals A and B of O0 such that A is
the kernel ideal of φ := φm ◦ · · · φ1 : E0 → E and B is the kernel ideal of
ψ := ψm ◦ · · · ◦ ψ1. Then we can compute Z-bases of OR(A) and OR(B). The
sequences {φr} and {ψs} for r = 1, . . . , m and s = 1, . . . , n, along with Z-bases of
OR(A) and OR(B), give us the compact representations of generators of End(E)
constructed in the proof of Theorem15. ��

Acknowledgments. We thank John Voight for many helpful discussions regarding
orders in quaternion algebras and their connection with supersingular elliptic curves.
We would also like to thank the anonymous referees for their helpful suggestions and
corrections.

References

[ACC+17] Azarderakhsh, R., Campagna, M., Costello, C., De Feo, L., Hess, B.,
Jalali, A., Jao, D., Koziel, B., LaMacchia, B., Longa, P., Naehrig,
M., Renes, J., Soukharev, V., Urbanik, D.: Supersingular isogeny
key encapsulation. Submission to the NIST Post-Quantum Stan-
dardization Project (2017). https://csrc.nist.gov/Projects/Post-Quantum-
Cryptography/Round-1-Submissions

[BJS14] Biasse, J.-F., Jao, D., Sankar, A.: A quantum algorithm for computing
isogenies between supersingular elliptic curves. In: Meier, W., Mukhopad-
hyay, D. (eds.) INDOCRYPT 2014. LNCS, vol. 8885, pp. 428–442. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-13039-2 25

[Brö09] Bröker, R.: Constructing supersingular elliptic curves. J. Comb. Number
Theory 1(3), 269–273 (2009)

[Cer04] Cerviño, J.M.: Supersingular elliptic curves and maximal quaternionic
orders. Mathematisches Institut. Georg-August-Universität Göttingen:
Seminars Summer Term 2004, pp. 53–60. Universitätsdrucke Göttingen,
Göttingen (2004)

[CG14] Chevyrev, I., Galbraith, S.D.: Constructing supersingular elliptic curves
with a given endomorphism ring. LMS J. Comput. Math. 1(suppl. A), 71–
91 (2014)

[CGL06] Charles, D., Goren, E., Lauter, K.: Cryptographic hash functions from
expander graphs. Cryptology ePrint Archive, Report 2006/021 (2006).
https://eprint.iacr.org/2006/021

[CGL09] Charles, D.X., Goren, E.Z., Lauter, K.: Cryptographic hash functions from
expander graphs. J. Cryptol. 22(1), 93–113 (2009)

[Cor08] Cornacchia, G.: Su di un metodo per la risoluzione in numeri interi dell’
equazione

∑n
h=0 chxn−hyh = p. Giornale di Matematiche di Battaglini 46,

33–90 (1908)
[Deu41] Deuring, M.: Die Typen der Multiplikatorenringe elliptischer Funktio-

nenkörper. Abh. Math. Sem. Univ. Hambg. 14(1), 197–272 (1941)
[DFJP14] De Feo, L., Jao, D., Plût, J.: Towards quantum-resistant cryptosystems

from supersingular elliptic curve isogenies. J. Math. Cryptol. 3(3), 209–247
(2014)

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
https://doi.org/10.1007/978-3-319-13039-2_25
https://eprint.iacr.org/2006/021

Supersingular Isogeny Graphs and Endomorphism Rings 367

[DG16] Delfs, C., Galbraith, S.D.: Computing isogenies between supersingular ellip-
tic curves over Fp. Des. Codes Cryptogr. 78(2), 425–440 (2016)

[EHM17] Eisenträger, K., Hallgren, S., Morrison, T.: On the hardness of comput-
ing endomorphism rings of supersingular elliptic curves. Cryptology ePrint
Archive, Report 2017/986 (2017). https://eprint.iacr.org/2017/986

[Gal99] Galbraith, S.D.: Constructing isogenies between elliptic curves over finite
fields. LMS J. Comput. Math. 2, 118–138 (1999)

[GPS17] Galbraith, S.D., Petit, C., Silva, J.: Identification protocols and signature
schemes based on supersingular isogeny problems. In: Takagi, T., Peyrin,
T. (eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 3–33. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-70694-8 1

[GPST16] Galbraith, S.D., Petit, C., Shani, B., Ti, Y.B.: On the security of super-
singular isogeny cryptosystems. In: Cheon, J.H., Takagi, T. (eds.) ASI-
ACRYPT 2016, Part I. LNCS, vol. 10031, pp. 63–91. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53887-6 3

[Gro87] Gross, B.H.: Heights and the special values of L-series. In: Number Theory,
Montreal, QC, 1985. CMS Conference Proceedings, vol. 7, pp. 115–187.
American Mathematical Society, Providence (1987)

[GW17] Gélin, A., Wesolowski, B.: Loop-abort faults on supersingular isogeny cryp-
tosystems. In: Lange, T., Takagi, T. (eds.) PQCrypto 2017. LNCS, vol.
10346, pp. 93–106. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-59879-6 6

[HLW06] Hoory, S., Linial, N., Wigderson, A.: Expander graphs and their applica-
tions. Bull. Amer. Math. Soc. (N.S.) 43(4), 439–561 (2006)

[JDF11] Jao, D., De Feo, L.: Towards quantum-resistant cryptosystems from super-
singular elliptic curve isogenies. In: Yang, B.-Y. (ed.) PQCrypto 2011.
LNCS, vol. 7071, pp. 19–34. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-25405-5 2

[KLPT14] Kohel, D., Lauter, K., Petit, C., Tignol, J.-P.: On the quaternion �-isogeny
path problem. LMS J. Comput. Math. 17, 418–432 (2014)

[Koh96] Kohel, D.: Endomorphism rings of elliptic curves over finite fields. Ph.D.
thesis, University of California, Berkeley (1996)

[KV10] Kirschmer, M., Voight, J.: Algorithmic enumeration of ideal classes for
quaternion orders. SIAM J. Comput. 39(5), 1714–1747 (2010)

[Lan87] Lang, S.: Elliptic Functions. Graduate Texts in Mathematics, vol. 112, 2nd
edn. Springer, New York (1987). https://doi.org/10.1007/978-1-4612-4752-
4. With an appendix by J. Tate

[LM04] Lauter, K., McMurdy, K.: Explicit generators of endomorphism rings of
supersingular elliptic curves. Preprint (2004)

[LO77] Lagarias, J.C., Odlyzko, A.M.: Effective versions of the Chebotarev density
theorem. In: Algebraic Number Fields: L-functions and Galois Properties:
Proceedings of Symposium, Durham University, Durham, 1975, pp. 409–
464. Academic Press, London (1977)

[Mes86] Mestre, J.-F.: La méthode des graphes. Exemples et applications. In: Pro-
ceedings of the International Conference on Class Numbers and Fundamen-
tal Units of Algebraic Number Fields, Katata, 1986, pp. 217–242. Nagoya
University, Nagoya (1986)

[NIS16] NIST: Post-quantum cryptography (2016). http://csrc.nist.gov/Projects/
Post-Quantum-Cryptography. Accessed 30 Sept 2017

[NS09] Nguyen, P.Q., Stehlé, D.: Low-dimensional lattice basis reduction revisited.
ACM Trans. Algorithms 5(4), 48 (2009). Article No. 46

https://eprint.iacr.org/2017/986
https://doi.org/10.1007/978-3-319-70694-8_1
https://doi.org/10.1007/978-3-662-53887-6_3
https://doi.org/10.1007/978-3-319-59879-6_6
https://doi.org/10.1007/978-3-319-59879-6_6
https://doi.org/10.1007/978-3-642-25405-5_2
https://doi.org/10.1007/978-3-642-25405-5_2
https://doi.org/10.1007/978-1-4612-4752-4
https://doi.org/10.1007/978-1-4612-4752-4
http://csrc.nist.gov/Projects/Post-Quantum-Cryptography
http://csrc.nist.gov/Projects/Post-Quantum-Cryptography

368 K. Eisenträger et al.

[Pet17] Petit, C.: Faster algorithms for isogeny problems using torsion point images.
In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10625,
pp. 330–353. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70697-9 12

[Piz80] Pizer, A.: An algorithm for computing modular forms on Γ0(N). J. Algebra
64(2), 340–390 (1980)

[PL17] Petit, C., Lauter, K.: Hard and easy problems for supersingular isogeny
graphs. Cryptology ePrint Archive, Report 2017/962 (2017). https://eprint.
iacr.org/2017/962

[Rón92] Rónyai, L.: Algorithmic properties of maximal orders in simple algebras
over Q. Comput. Complex. 2(3), 225–243 (1992)

[Sil09] Silverman, J.H.: The Arithmetic of Elliptic Curves. Springer, New York
(2009). https://doi.org/10.1007/978-0-387-09494-6

[Sim05] Simon, D.: Quadratic equations in dimensions 4, 5 and more. Preprint
(2005)

[Ti17] Ti, Y.B.: Fault attack on supersingular isogeny cryptosystems. In: Lange,
T., Takagi, T. (eds.) PQCrypto 2017. LNCS, vol. 10346, pp. 107–122.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59879-6 7

[Vél71] Vélu, J.: Isogénies entre courbes elliptiques. C. R. Acad. Sci. Paris Sér. A-B
273, A238–A241 (1971)

[Vig80] Vignéras, M.-F.: Arithmétique des Algèbres de Quaternions. LNM, vol. 800.
Springer, Heidelberg (1980). https://doi.org/10.1007/BFb0091027

[Voi] Voight, J.: Quaternion Algebras. Version v0.9.7, 3 September 2017
[Wat69] Waterhouse, W.C.: Abelian varieties over finite fields. Ann. Sci. École

Norm. Sup. 4(2), 521–560 (1969)
[YAJ+17] Yoo, Y., Azarderakhsh, R., Jalali, A., Jao, D., Soukharev, V.: A post-

quantum digital signature scheme based on supersingular isogenies. In:
Kiayias, A. (ed.) FC 2017. LNCS, vol. 10322, pp. 163–181. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-70972-7 9

https://doi.org/10.1007/978-3-319-70697-9_12
https://doi.org/10.1007/978-3-319-70697-9_12
https://eprint.iacr.org/2017/962
https://eprint.iacr.org/2017/962
https://doi.org/10.1007/978-0-387-09494-6
https://doi.org/10.1007/978-3-319-59879-6_7
https://doi.org/10.1007/BFb0091027
https://doi.org/10.1007/978-3-319-70972-7_9

Leakage

On the Complexity of Simulating
Auxiliary Input

Yi-Hsiu Chen1(B), Kai-Min Chung2(B), and Jyun-Jie Liao2(B)

1 Harvard John A. Paulson School of Engineering and Applied Sciences,
Harvard University, Cambridge, USA

yihsiuchen@g.harvard.edu
2 Institute of Information Science, Academia Sinica, Taipei, Taiwan

{kmchung,jjliao}@iis.sinica.edu.tw

Abstract. We construct a simulator for the simulating auxiliary input
problem with complexity better than all previous results and prove the
optimality up to logarithmic factors by establishing a black-box lower
bound. Specifically, let � be the length of the auxiliary input and ε be
the indistinguishability parameter. Our simulator is Õ(2�ε−2) more com-
plicated than the distinguisher family. For the lower bound, we show the
relative complexity to the distinguisher of a simulator is at least Ω(2�ε−2)
assuming the simulator is restricted to use the distinguishers in a black-
box way and satisfy a mild restriction.

1 Introduction

In the simulating auxiliary inputs problem [JP14], a joint distribution (X,Z) over
{0, 1}n×{0, 1}� is given. the goal is to find a “low complexity” simulator function
h : {0, 1}n → {0, 1}� such that (X,Z) and (X,h(X)) are indistinguishable by
a family of distinguishers. The non-triviality comes from the “low complexity”
requirement. Otherwise, one can simply hardcode the distributions Z|X=x for
each x to approximate Z. We call the lemma that addresses this problem Leakage
Simulation Lemma.

Theorem 1 (Leakage Simulation Lemma, informal). Let F be a family of
deterministic distinguishers from {0, 1}n × {0, 1}�. For every joint distribution
(X,Z) over {0, 1}n × {0, 1}�, There exists a simulator function h : {0, 1}n →
{0, 1}� with complexity poly(2�, ε−1) relative to F such that for all f ∈ F ,

∣
∣
∣Pr [f(X,Z) = 1] − Pr [f(X,h(X))] = 1

∣
∣
∣ ≤ ε.

The “relative complexity” means if we have oracle gates that compute func-
tions in F , then what is the circuit complexity of h when considering those oracle

Y.-H. Chen—Supported by NSF grant CCF-1749750.
K.-M. Chung—This research is partially supported by the 2016 Academia Sinica
Career Development Award under Grant no. 23-17 and Ministry of Science and
Technology, Taiwan, under Grant no. MOST 106-2628-E-001-002-MY3.

c© International Association for Cryptologic Research 2018
J. B. Nielsen and V. Rijmen (Eds.): EUROCRYPT 2018, LNCS 10822, pp. 371–390, 2018.
https://doi.org/10.1007/978-3-319-78372-7_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78372-7_12&domain=pdf

372 Y.-H. Chen et al.

gates [JP14]. A typical choice of a family of distinguishers is a set of all circuits
of size s. In that case, we can get a simulator of size s · poly(2�, ε−1).

The Leakage Simulation Lemma implies many theorems in computational
complexity and cryptography. For instance, Jetchev and Pietrzak [JP14] used
the lemma to give a simpler and quantitatively better proof for the leakage-
resilient stream-cipher [DP08]. Also, Chung et al. [CLP15] apply the lemma1

to study connections between various notions of Zero-Knowledge. Moreover, the
leakage simulation lemma can be used to deduce the technical lemma of Gentry
and Wichs [GW11] (for establishing lower bounds for succinct arguments) and
the Leakage Chain Rule [JP14] for relaxed-HILL pseudoentropy [HILL99,GW11].

Before Jetchev and Pietrzak described the Leakage Simulation Lemma as in
Theorem 1, Trevisan, Tulsiani and Vadhan proved a similar lemma called Reg-
ularity Lemma [TTV09], which can be viewed as a special case of the Leakage
Simulation Lemma by restricting the family of distinguishers in certain forms.
In [TTV09], they also showed that all Dense Model Theorem [RTTV08], Impagli-
azzo Hardcore Lemma [Imp95] and Weak Szemerédi Regularity Lemma [FK99]
can be derived from the Regularity Lemma. That means the Leakage Simulation
Lemma also implies all those theorems.

As the Leakage Simulation Lemma has many implications, achieving the bet-
ter complexity bound in poly(ε−1, 2�) is desirable. Notably, in certain parameter
settings, the provable security level of a leakage-resilient stream-cipher can be
improved significantly if we can prove the better bound for the Leakage Simula-
tion Lemma with better complexity bound. (See the next section for a concrete
example). Therefore, an interesting question is what is the optimal parameter
complexity bound we can get for the Leakage Simulation Lemma? In this paper,
we provide an improved upper bound and also show the bound is “almost”
optimal.

1.1 Upper Bound Results

Previous Results. In [TTV09], they provided two different approaches for prov-
ing the Regularity Lemma. One is by the min-max theorem, and another one
is via boosting-type of proof. Although it is not known whether the Regularity
Lemma implies the Leakage Simulation Lemma directly, [JP14] adopted both
techniques and used them to show the Leakage Chain Rule with complexity
bound Õ(24�ε−4).2 On the other hand, Vadhan and Zheng derived the Leak-
age Simulation Lemma [VZ13, Lemma 6.8] using so-called “uniform min-max
theorem”, which is proved via multiplicative weight update (MWU) method
incorporating with KL-projections. The circuit complexity of the simulator they
got is Õ(s · 2�ε−2 + 2�ε−4) where s is the size of the distinguisher circuits.
Recently, Skórski also used the boosting-type method to achieve the bound
Õ(25�ε−2) [Skó16a], then later improved it to Õ(23�ε−2) by incorporating the

1 They also consider the interactive version.
2 In the original paper, they claimed to achieve the bound Õ(23�ε−2). However, Skórski

pointed out some analysis flaws [Skó16a].

On the Complexity of Simulating Auxiliary Input 373

subgradient method [Skó16b]. Note that the complexity bound in [VZ13] has an
additive term, so their result is incomparable to the others.

Our Results. In this paper, we achieve the bound Õ(2�ε−2) for relative com-
plexity, which contains the best components out of three complexity bounds
mentioned above. The algorithm we use is also of multiplicative weight update
(MWU) method as in [VZ13] but without going through the uniform min-max
theorem argument. The additive term 2�ε−4 in [VZ13] is due to the precision
issue when performing multiplication of “real numbers”. The saving of the addi-
tive term is based on the observation mentioned in [VZ13] – the KL-projection
step in their MWU algorithm is not needed when proving the Leakage Simula-
tion Lemma. Thus we can potentially simplify the circuit construction. Indeed,
we prove that certain level of truncation on weights does not effect the accuracy
too much but helps us reducing the circuit complexity. In Table 1, we list out
and compare all previous results to ours.

Table 1. Summary of existing upper bound results and our results.

Paper Techinque Complexity of simulator

[JP14] Min-max/Boosting Õ(s · 24�ε−4)

[VZ13] Boosting with KL-projection Õ(s · 2�ε−2 + 2�ε−4)

[Skó16a] Boosting with self-defined projection Õ(s · 25�ε−2)

[Skó16b] Boosting with subgradient method Õ(s · 23�ε−2)

This work Boosting O(s · �2�ε−2)

Black-box lower bound Ω(s · 2�ε−2)

Implication of Our Results. As mentioned before, our result yields a proof of
better security in leakage-resilient stream-cipher. All previous results suffer from
the term ε−4 [JP14,VZ13]3 or the 23� multiplicative factor [Skó16b] in the com-
plexity bound. In particular, Skórski’s gave legitimate examples [Skó16a] where
the bounds in [JP14] and [VZ13] only guarantee trivial security bounds when ε is
set to be 2−40. On the other hand, the factor 23� (or even 25�) is significant and
makes the guaranteed security bound trivial when the leakage is more than few
bits. Therefore, in some reasonable parameter settings, our bound is the only
one that can achieve a useful security. Here is a concrete example. If we con-
sider the stream cipher in [JP14] and follow the settings in [Skó16a, Sect. 1.6]:
The underlying weak PRF has 256 bits security, the target cipher security is
ε′ = 2−40 and the round is 16. If the leakage is λ = 17 per rounds, then using
our bound, we can guarantee the security against 250-size circuit but all the
analyses in [JP14,VZ13,Skó16a] guarantee nothing.

3 It appears as an additive complexity in [VZ13] and/or a multiplicative term in [JP14].

374 Y.-H. Chen et al.

1.2 Lower Bound Results

Our Results. We show that the simulator must have a “relative complexity”
Ω(2�ε−2) to the distinguisher family by establishing a black-box lower bound,
where a simulator can only use the distinguishers in a black-box way. Our lower
bound requires an additional mild assumption that the simulator on a given
input x, does not make a query an x′ �= x to distinguishers.4 Querying at points
different from the input seems not helpful, but that makes the behaviors on
different inputs not completely independent, which causes a problem in analysis.
Indeed, all the known upper bound algorithms (including the one in this work)
satisfy the assumptions we made. Still, we leave it as an open problem to close
this gap completely.

Comparison to Related Results. In [JP14], they proved a Ω(2�) lower bound
for relative complexity under a hardness assumption for one-way functions.
Besides, there are also lower bound results on the theorems that implied by the
Leakage Simulation Lemma, including Regularity Lemma [TTV09], Hardcore
Lemma [LTW11], Dense Model Theorem [Zha11], Leakage Chain Rule [PS16]
and Hardness Amplification [SV10,AS11]. The best lower bound one can obtain
before this work is Ω(ε−2) (from [LTW11,SV10,Zha11]) or Ω(2�ε−1) (from
[PS16]). Thus our lower bound is the first tight lower bound Ω(2�ε−2) for Leakage
Simulation Lemma. See Sect. 4.2 for more detailed comparison.

Proof Overview. We define an oracle and a joint distribution (X,Z) ∈ {0, 1}n ×
{0, 1}�. Considering a family of the distinguishers that each of them makes a
single query to the oracle, the simulator has to query the oracle at least Ω(2�ε−2)
times to fool all the distinguishers in the family. Therefore, if the only way to
access the oracle is through the distinguishers, the simulator must use at least
Ω(2�ε−2) distinguishers.

We can treat Z as a randomized function of X. That is, if can define g :
{0, 1}n → {0, 1}� such that Pr[g(x) = z] = Pr[Z = z|X = x], then (X,Z) =
(X, g(X)). The distribution we consider is that the function g is deterministic,
but the images are “hidden” from the simulator. Note that it is impossible for
a simulator to hardwire all 2n images. If the oracle receives a query (x, z) ∈
{0, 1}n × {0, 1}� with z = g(x), it returns an answer based on the distribution
Bern(1/2 + ε). Otherwise, use the distribution Bern(1/2). Intuitively, the goal
of the simulator is to find g(x) for a given input x. For each z, due to the anti-
concentration bound, it has to make Ω(ε−2) many queries to check if g(x) = z.
And if it has to check a constant fraction of all z ∈ {0, 1}n, then the total query
complexity is Ω(2�ε−2).

4 Many black-box lower bounds in related contexts [LTW11,Zha11,PS16] (implicitly)
make the same mild assumption. See Sect. 4.2 for more details.

On the Complexity of Simulating Auxiliary Input 375

2 Preliminaries

2.1 Basic Definitions

Notations. For a natural number n, [n] denotes the set {1, 2, . . . , n} and Un

denotes the uniform distribution over {0, 1}n. For a finite set X , |X | denotes its
cardinality, and UX denotes the uniform distribution over X . For a distribution
X over X , x ← X means x is a random sample drawn from X. Bern(p) denotes
the Bernoulli distribution with parameter 0 ≤ p ≤ 1. For any function f , Õ(f)
means O(f logk f) and Ω̃(f) means Ω(f/ logk f) for some constant k > 0.

Definition 1 (Statistical Distance). Let X and Y be two random variables.
The statistical distance (or total variation) between X and Y is denoted as

Δ(X,Y) =
∑

x

1
2

∣
∣
∣Pr [X = x] − Pr [Y = x]

∣
∣
∣ .

Also, we say X and Y are ε-close if Δ(X,Y) ≤ ε.

Definition 2 (Indistinguishability). Let X,Y be distributions over {0, 1}n.
We say X and Y are (s, ε)-indistinguishable if for every circuit f : {0, 1}n →
{0, 1} of size s,

∣
∣
∣
∣ E
x←X

[f(x)] − E
y←Y

[f(y)]
∣
∣
∣
∣
≤ ε.

2.2 Multiplicative Weight Update

Consider the following prediction game. In each round, a predictor makes a pre-
diction and receive a payoff. There are N experts that the predictor can refer to.
That is, the predictor can (randomly) choose an expert to follow. The goal of the
predictor is to minimize total payoff in many rounds. We called the difference
between the total payoff of predictor and of the best expert regret, which is the
criterion we use to measure the performance of the predictor. The Multiplica-
tive weight update (MWU) algorithm provides a good probabilistic strategy for
prediction. The overview of the algorithm is as follows. In the first round, the pre-
dictor simply chooses an expert uniformly at random. In the following rounds,
the predictor updates the probabilities of choosing experts “multiplicatively”
according to their performances in the previous round. The formal algorithm
and the guarantees by the MWU algorithm is stated below.

Lemma 1 (Multiplicative weight update [AHK12]). Consider a T -round
game such that in t-th round, the predictor chooses a distribution Dt over [N],
and obtains a payoff according to the function ft : [N] → [0, 1]. Let 0 < η ≤ 1/2
be an update rate. If player 1 chooses Dt as in Algorithm1, then for every i ∈ [N],

T∑

t=1

E
j←Dt

[ft(j)] ≤
T∑

t=1

ft(i) +
log N

η
+ Tη.

376 Y.-H. Chen et al.

In particular, if we set η =
√

log N/T , we have

T∑

t=1

E
j←Dt

[ft(j)] ≤
T∑

t=1

ft(i) + O
(√

T log N
)

Algorithm 1. Multiplicative weight update
1 For all i ∈ [N] set wi := 1.
2 for t := 1 to T do
3 Choose Dt such that Dt(i) ∝ wi.
4 for i := 1 to N do

5 wi := wi · (1 − η)ft(i);

As the regret grows sub-linearly to T , the predictor can achieve δ average
regret when T is large enough.

Corollary 1. There exists T = O
(
lnN
ε2

)

such that for all i ∈ [N],

1
T

∑

t

E
j←Dt

[ft(j)] ≤ 1
T

∑

t

ft(i) + ε.

Freund and Schapire discovered the connection between MWU algorithm and
zero sum game [FS96] by treating the best response of Player 2 as the payoff
function. MWU algorithm not only gives a new proof of von Neumanns Min-
Max Theorem, but also provides a way to “approximate” the universal strategy
obtained by the Min-Max Theorem5.

Lemma 2 ([FS96]). Consider a zero-sum game between Player 1 and Player 2
whose (pure) strategy spaces are P and Q, respectively, and |P| = N . The payoff
to Player 2 is defined by the function u : P × Q → [0, 1]. We apply the MWU
algorithm (Algorithm1) in the following way to get the mixed strategy P ∗ and Q∗.

1. Treat each pure strategy in |P| as an expert. Let Pt denote the mixed strategy
described by Dt (the i-th pure strategy is chosen with probability Dt(i)).

2. Let Qt denote the best response of Player 2 to Pt. Namely

Qt = min
Q

E
p←Pt,q←Q

f(p, q)

3. Set the payoff function in the MWU algorithm as ft(·) = M(·, Qt).
4. Let P ∗ = 1

T

∑

t Pt and Q∗ = 1
T

∑

t Qt.

5 It is called Non-uniform Min-Max Theorem in [VZ13].

On the Complexity of Simulating Auxiliary Input 377

If we conduct the above procedure for T = O(log N/ε2) rounds, the mixed strate-
gies P ∗, Q∗ are almost the equilibrium strategies. That is

max
q

E
p←P ∗

[u(p, q)] − ε ≤ max
Q

min
P

E
p←P,q←Q

[u(p, q)]

= min
P

max
Q

E
p←P,q←Q

[u(p, q)] ≤ min
p

E
q←Q∗

[u(p, q)] + ε.

3 Simulating Auxiliary Inputs

The formal description of Leakage Simulation Lemma with our improved param-
eters is as follows.

Theorem 2 (Leakage Simulation Lemma). Let n, � ∈ N, ε > 0 and F be
a collection of deterministic distinguishers f : {0, 1}n × {0, 1}� → {0, 1}. For
every distribution (X,Z) over {0, 1}n × {0, 1}�, there exists a simulator circuit
h : {0, 1}n → {0, 1}� such that

1. h has complexity Õ(2�ε−2) relative to F . i.e., h can be computed by an oracle-
aided circuit of size Õ(2�ε−2) with oracle gates are functions in F .

2. (X,Z) and (X,h(X)) are indistinguishable by F . That is, for every f ∈ F ,
∣
∣
∣
∣ E
(x,z)←(X,Z)

[f(x, z)] − E
h,x←X

[f(x, h(x))]
∣
∣
∣
∣
≤ ε.

Set F to be a set of Boolean circuits of size at most s, we immediate have
the following corollary.

Corollary 2. Let s, n, � ∈ N and ε > 0. For every distribution (X,Z) over
{0, 1}n × {0, 1}�, there exists a simulator circuit of size s′ = Õ(s · 2�ε−2) such
that (X,Z) and (X,h(X)) are (s, ε)-indistinguishable.

3.1 Boosting

There are numbers of proof of Leakage Simulation Lemma as discussed in the
introduction. We focus on the “boosting” type of proof as it usually gives us
better circuit complexity. The boosting framework has the following structure:

1. Choose a proper initial simulator h.
2. If h satisfies the constraint above, return h. Otherwise, find f ∈ F ′ which

violates the constraint.
3. Update h with f and repeat.

Previous proofs in the framework are different in how they update h and cor-
respondingly how they prove the convergence. If the algorithm converges fast and
each update does not take too much time, we can get an efficient simulator. Start-
ing from [TTV09], then followed [JP14] and [Skó16a], they use additive update
on the probability mass function of each h(x). However, additive update may

378 Y.-H. Chen et al.

cause negative weights, so they need an extra efforts (Both algorithm-wise and
complexity-wise) to fix it. Vadhan and Zheng use multiplicative weight update
instead [VZ13], which not only avoids the issue above but also converges faster.
However, the number of bits to represent weights increases drastically after mul-
tiplications, and that causes the O(2�ε−4) additive term in the complexity. Since
the backbone of our algorithm is same as in [VZ13], we review their idea first
in the next section, and then show how the additive term can be eliminated in
Sect. 3.3.

3.2 Simulate Leakage with MWU

In this section, we show how MWU algorithm helps in simulating auxiliary inputs
and why we can achieve the low round complexity. It is convenient to think Z
as a randomized function of X. That is, we can define g : {0, 1}n → {0, 1}� such
that Pr[g(x) = z] = Pr[Z = z|X = x], then (X,Z) = (X, g(X)). Essentially, the
goal is to find an “efficient function” h to simulate g.

Now we show that how the simulation problem problem is related to a zero-
sum game, thus can be solved via MWU algorithm. The first step is to remove the
one-sided error constraint. Let F ′ denote the closure of F under complement,
namely, F ′ = {f, 1 − f : f ∈ F}. Then the indistinguishability constraint is
equivalent to

∀f ∈ F ′ , E
h,x←X

[f(x, h(x))] − E
g,x←X

[f(x, g(x))] ≤ ε.

Then consider the following zero-sum game: Player 1 choose a simulator h, Player
2 choose a distinguisher f , and the payoff to Player 2 is

E
h,x←X

[f(x, h(x))] − E
g,x←X

[f(x, g(x))] .

One can get a bounded relative complexity of g by simply applying Lemma2
with treating all functions from {0, 1}n to {0, 1}� as pure strategies of Player 1.
However, relative complexity is O(s · 2n�ε−2) and hence is inefficient. To solve
the above issue, Vadhan and Zheng observed that the marginal distribution of
X-part is fixed. Thus we can consider the MWU algorithm for every X = x,
where in each run of MWU, the Player 1 strategy space is simply a distribution
over {0, 1}�, hence the round complexity is merely O(�/ε2).

While the framework Vadhan and Zheng’s considered is more general, the
proof is also more complicated. Below we give a simpler proof which only uses
the no-regret property of MWU.6 Note that any no-regret algorithms for expert
learning will work for this proof. Indeed, by applying online gradient descent
instead of MWU we will get an additive boosting simulator. Nevertheless, multi-
plicative weight update is optimal in expert learning, which explains why MWU
converges faster than additive boosting proofs.
6 We say an online decision-making algorithm is no-regret if the average regret tends

to zero as T approaches infinity. See, e.g., [Rou16].

On the Complexity of Simulating Auxiliary Input 379

Algorithm 2. Construction of Simulator h

1 Input: x ∈ {0, 1}n

2 Parameter: ε > 0

3 Let T = O(n/ε2), η =
√

log N/T .

4 For all z ∈ {0, 1}�, set wx(z) = 1.
5 Let h0 be a randomized function such that Pr [h0(x) = z] ∝ wx(z).
6 for t = 1 → T do
7 Letft ∈ F ′ = arg maxf∈F′ Eht−1,x←X [f(x, ht−1(x))] − Eg,x←X [f(x, g(x))].

8 if Eht−1,x←X [f(x, ht−1(x))] − Eg,x←X [f(x, g(x))] ≤ ε then
9 Return ht−1(x) as the output h(x)

10 For all z ∈ {0, 1}�, set wx(z) = wx(z) · (1 − η)ft(x,z)

11 Let ht be a randomized function such that Pr [ht(x) = z] ∝ wx(z).

12 Return hT (x) as the output h(x)

Lemma 3. Let X be a distribution over {0, 1}n and g : {0, 1}n → {0, 1}� be a
randomized function. For a given error parameter ε, the function h defined by
Algorithm2 satisfies

∀f ∈ F ′ , E
x←X

[f(x, h(x))] − E
x←X

[f(x, g(x))] ≤ ε.

Proof. For a fixed x, if there exists f ∈ F ′ such that

E
h

[f(x, h(x))] − E
g

[f(x, g(x))] > ε,

then the algorithm returns at the line 12. That means for all t ∈ [T], we have

E
ht−1

[ft(x, ht−1(x))] − E
g

[ft(x, g(x))] > ε, (1)

and so

1
T

T∑

t=1

E
ht−1

[ft(x, ht−1(x))] − 1
T

T∑

t=1

E
g

[ft(x, g(x))] > ε, (2)

However, by Corollary 1, for every z ∈ {0, 1}�,

1
T

T∑

t=1

E
ht−1

[ft(x, ht−1(x))] ≤ 1
T

T∑

t=1

ft(x, z) + ε.

By taking z over g(x), we get a contradiction. Therefore, for all f ∈ F ,

E
h

[f(x, h(x))] − E
g

[f(x, g(x))] > ε.

Take the expectation of x over X, we conclude the lemma.

380 Y.-H. Chen et al.

3.3 Efficient Approximation

Algorithm 2 provides a simulator which fools all distinguishers in F by error
up to ε. However, we have only proved a bound for the number of iterations,
but not for the complexity of hT itself. Actually, the circuit complexity of a
naive implementation of Algorithm2 is not better than using additive boosting.
Nevertheless, we will show that there exists an efficient way to implement hT

approximately, of which the complexity is not much larger than evaluating the
distinguishers T times.

In below, we assume all functions f ∈ F has circuit complexity at most s.
From Algorithm 2, we can see hT (x) returns z with probability proportional to
(1−η)

∑
i fi(x,z). A natural way to approximate hT is to compute (1−η)

∑
i fi(x,z)

for each z and apply a rejection sampling. Without loss of generality, we can
assume that (1 − η) can be represented in O(log 1

η) bits, and thus, it takes at
most O(k log 1

η) to represent (1 − η)k for k ∈ N. Since
∑

i fi(x, z) is at most
T , it takes O(Ts + T 2 log2 1

η) complexity to compute (1 − η)
∑

i fi(x,z) by naive
multiplication, or O(Ts+T 2 log T log 1

η) via lookup table. Therefore there exists
an approximation of hT of size O((T 2 log2 1

η + Ts) · 2�), which is Õ(s · 2�ε−2 +
2�ε−4)) after expanding T and η. This is the complexity claimed in [VZ13]. As
mentioned in [Skó16a], the Õ(2�ε−4) term may dominate in some settings, so
the bound in [VZ13] is not always better.

Now we state the idea of approximating normalized weights efficiently.
Observe that weights are of the form (1−η)

∑
i fi(x,z). If the total weight is guar-

anteed to be at least 1, then intuitively, truncating the weight at each z ∈ {0, 1}�

a little amount does not influence the result distribution too much. Hopefully, if
the truncated values can be stored with a small number of bits, a lookup table
which maps

∑

i fi(x, z) to the truncated value of (1 − η)
∑

i fi(x,z) is affordable.
In the lemma below we formalize the above intuition.

Lemma 4. Suppose there are two sequences of positive real numbers {γi}i∈[n],
{wi}i∈[n] such that ∀i ∈ [n], γi ≤ wi. Let r =

∑

i γi/
∑

i wi and X,X ′ be a
distribution over [n] such that Pr [X = i] ∝ wi and Pr [X ′ = i] ∝ (wi − γi),
respectively. Then Δ(X,X ′) ≤ r

1−r .

Proof.

Δ(X,X ′) =
1
2

∑

z

∣
∣
∣
∣

wz
∑

i wi
− wz − γz

∑

i(wi − γi)

∣
∣
∣
∣

=
1
2

∑

z

∣
∣
∣
∣

γz

∑

i wi − wz

∑

i γi

(
∑

i wi)2(1 − r)

∣
∣
∣
∣

≤ 1
2

∑

z

wz

∑

i γi + γz

∑

i wi

(
∑

i wi)2(1 − r)

=
∑

i wi

∑

i γi

(
∑

i wi)2(1 − r)
=

r

1 − r

where the inequality follows from the triangle inequality.

On the Complexity of Simulating Auxiliary Input 381

Corollary 3. Let h′ : {0, 1}n → {0, 1}� be a function which satisfies

Pr[h′(x) = z] =
(1 − η)

∑
i fi(x,z) − γx,z

∑

z′
(

(1 − η)
∑

i fi(x,z′) − γx,z′
)

where

γx,z ≤ min

{

(1 − η)
∑

i fi(x,z) ,
η

2�(1 + η)
·
∑

z′
(1 − η)

∑
i fi(x,z′)

}

.

Then for any x ∈ X , h′(x) is η-close to hT (x).

By the above corollary, the following procedure gives a good approximation
of hT .

1. For every z ∈ {0, 1}�, compute Adv(x, z) =
∑

i fi(x, z) − minz′(
∑

i fi(x, z′)).
This can be done by a circuit of size O(2� · (sT + T log T)).

2. Because there is z0 such that Adv(x, z0) = 0, we have
∑

z(1 − η)Adv(x,z) ≥ 1.
Let k = O(� log(1/δ)) be the smallest integer which satisfies 2−k ≤ η

2�(1+η)
.

By Corollary 3, if we truncate (1 − η)Adv(x,z) down to the closest multiple of
2−k, the corresponding distribution is still η-close to hT (x). Let h′(x) denote
the truncated distribution.

3. Observe that the truncated value is positive only if Adv(x, z) is less than
some threshold t = O(k/η). Therefore we can build a lookup table consists of
the truncated value of (1 − η)j for j ∈ [t]. Such table is of size O(t log t · k).
With this table we can query truncated value of (1 − η)Adv(x,z) for each z.

4. By rejection sampling, we can sample a η-approximation of h′(x) in at most
O(2� log(1/δ)) rounds, and each round takes only O(k) time.

Let h∗ be the circuit which uses above steps to approximate hT . Since η = O(ε)
and h(x) is 2η-close to hT (x), we have

E
h,x←X

[f(x, h(x))] − E
g,x←X

[f(x, g(x))] ≤ ε + 2η = O(ε)

for any f ∈ F ′. (Note that we can always rescale ε to make the final gap is at
most ε.) Since the complexity of the first step dominates all other steps, h is of
complexity O(2� · (sT + T log T)) = Õ(s · 2�ε−2).

4 Lower Bound for Leakage Simulation

We have seen that there exists an MWU algorithm which combines only O(�ε−2)
distinguishers to make a good simulator h. Besides, for every chosen distinguisher
f the algorithm queries f(x, z) for every z ∈ {0, 1}� when computing h(x). There-
fore the algorithm makes O(�2�ε−2) queries in total. In the previous section, we
also showed that evaluating the O(�ε−2) chosen distinguishers is the bottleneck
of the simulation. Then a natural question arises: can we construct a simulator

382 Y.-H. Chen et al.

which makes fewer queries? It might be possible to find a boosting procedure
using fewer distinguishers, or maybe we can skip some z ∈ {0, 1}� when querying
f(x, z) for some f . However, in this section we will show that the MWU app-
roach is almost optimal: any black-box simulator which satisfies an independence
restriction has to make Ω(2�ε−2) queries to fool the distinguishers.

4.1 Black-Box Model

To show the optimality of the MWU approach, we consider black-box simulation,
which means we only use only the distinguishers as black-box and does not rely
on how they are implemented. Note that all known results of leakage simulation
([JP14,Skó16a,VZ13]) are black-box. Indeed, all the leakage simulation results are
in the following form: first learn a set of distinguishers {f1, . . . , fq′} which is com-
mon for each x, then query fi(x, z) for each z ∈ {0, 1}� and i ∈ [q′], and finally com-
bine them to obtain the distribution of h(x). The model we consider is more general
than this form, so it also rules out some other possible black-box approaches.

Definition 3 (Simulator). Given a function g : {0, 1}n → {0, 1}�, a distribu-
tion X over {0, 1}n and a set F of functions {0, 1}n+� → {0, 1}, we say function
h : {0, 1}n → {0, 1}� is an (ε,X,F)-simulator of g if

∀f ∈ F ,

∣
∣
∣
∣ E
g,x←X

[f(x, g(x))] − E
h,x←X

[f(x, h(x))]
∣
∣
∣
∣
≤ ε.

Definition 4 (Black-Box Simulator). Let �,m, a ∈ N and ε > 0. We say
an oracle-aid simulation circuit D(·) which takes two inputs x ∈ {0, 1}n and
α ∈ {0, 1}a is a black-box (ε, �,m, a)-simulator with query complexity q if it
satisfies the follows. For every function g : {0, 1} → {0, 1}�, distribution X over
{0, 1}n and a set of distinguishers F with |F| ≤ m, there exists α ∈ {0, 1}a

(which we call “advice string”) such that DF (·, α) is an (ε,X,F)-simulator for
g and D uses at most q oracle gates.

We say a black-box simulator is a same-input black-box simulator if for every
f ∈ F , D only queries f(x, ·) when computing on input x. We say a black-box
simulator is non-adaptive if the choice of the oracle queries (including the choice
of f and query input) does not depend on any response of the oracle.

Remark 1. A reasonable range of parameters are ε−1, 2�, log |F| < 2o(n) since
all the simulations we know is of complexity poly(ε−1, 2�, log |F|). Note that
when we consider F to be the set of every distinguisher of size at most s,
log |F| = O(s log s). Besides, we also assume a = 2o(n) so that the simulator
cannot trivially take α as an expression of g.

The lower bound we prove in this paper is for same-input black-box simulator.
The same-input assumption is also made in related works including [LTW11,
Zha11,PS16]. See the next section for more discussions about the black-box
models in related results.

It is not hard to see that all the boosting approaches we mentioned above
are in this model: the advice α is of length O(q log |F|) and stands for “which

On the Complexity of Simulating Auxiliary Input 383

distinguishers should be chosen”, and D queries every chosen distinguisher f
with input (x, z) for every z ∈ {0, 1}� when computing DF,α(x). Moreover,
these simulation algorithms are non-adaptive. We can write the MWU approach
as the following corollary:

Corollary 4. For every 0 < ε < 1
2 , �,m ∈ N, there exists an non-adaptive

same-input black-box (ε, �,m, a)-simulator with query complexity q = O(�2�ε−2)
and a = Õ(q log |F|).
Besides capturing all known simulators, our lower bound also rules out the adap-
tive approaches. Whether there exists a faster simulation not satisfying the same-
input restriction is left open, but it is hard to imagine how querying different
input is useful.

4.2 Main Theorem and Related Results

Theorem 3. For every 2−o(n) < ε < 0.001, � = o(n), ω(2�/ε3) < m < 22
o(n)

and a = 2o(n), a same-input black-box (ε, �,m, a)-simulator must have query
complexity q = Ω(2�ε−2).

Remark 2. For ε we require it to be smaller than some constant so that Bern(12 +
Θ(ε)) is well defined. Besides, we also require the size of distinguisher set m to
be large enough to guarantee that the simulator must “simulate” the function
instead of fooling distinguishers one by one. As we saw in Remark 1, the range
of parameters here is reasonable.

Before this paper, there were some lower bounds either for Leakage Simu-
lation Lemma itself or for its implications. We classify these results by their
models as follows.

– Non-Adaptive Same-Input Black-Box Lower Bounds. Recall that
Leakage Simulation implies Hardcore Theorem and Dense Model Theorem.
Lu et al. [LTW11] proved an Ω(log(1δ)/ε2) lower bound for query complexity
in Hardcore Lemma proof where δ denotes the density of the hardcore set.
By taking δ = Θ(1) we can obtain an Ω(1/ε2) lower bound for query com-
plexity of Leakage Simulation. Similarly, Zhang [Zha11] proved a lower bound
for query complexity in Dense Model Theorem proof which implies the same
Ω(1/ε2) lower bound.7 Besides, Pietrzak and Skórski [PS16] proved a Ω(2�/ε)
lower bound for leakage chain rule, which also implies a Ω(2�/ε) lower bound
for Leakage Simulation. These lower bounds assume both the non-adaptivity
and the independence of inputs.8

7 The black-box model these results considered is more restricted. Actually, the black-
box model in [LTW11] does not contain Holenstein’s proof [Hol05]. Nevertheless,
their proof for query lower bound also works for the model we define here.

8 Interestingly, in the reduction from Leakage Chain Rule to Leakage Simulation,
there exists a distinguisher in the reduction which only need to be queried on one
adaptively chosen input. In this case non-adaptivity causes a 2� additive loss. This
can be viewed as an evidence that adaptivity might be useful.

384 Y.-H. Chen et al.

– Non-Adaptive Black-Box Lower Bounds. Impagliazzo [Imp95] proved
that the Hardcore Lemma implies Yao’s XOR Lemma [GNW95,Yao82], which
is an important example of hardness amplification. Since the reduction is
black-box, it is not hard to see that the Ω(log(1δ)/ε2) lower bound for hard-
ness amplification proved by Shaltiel and Viola [SV10] is also applicable to
Hardcore Lemma. Similarly, by setting δ = Θ(1) we get a Ω(1/ε2) lower
bound for Leakage Simulation. Moreover, this lower bound does not require
the same-input assumption.9 Nevertheless, the proof highly relies on non-
adaptivity.

– General Black-Box Lower Bounds. Artemenko and Shaltiel [AS11]
proved an Ω(1/ε) lower bound for a simpler type of hardness amplifica-
tion, and removed the non-adaptivity. Their result implies a general black-
box lower bound for Leakage Simulation, but the lower bound is far from
optimal.

– Non-Black-Box Lower Bounds. Trevisan, Tulsiani and Vadhan show that
the simulator cannot be much more efficient than the distinguishers [TTV09,
Remark 1.6]. Indeed, for any large enough s ∈ N they construct a function g
such that any simulator h of complexity s can be distinguished from g by a
distinguisher of size Õ(ns). Jetchev and Pietrzak [JP14] also show an Ω(2� ·s)
lower bound under some hardness assumptions for one-way functions.

None of the existing results imply an optimal lower bound for Leakage Sim-
ulation. However, proving a lower bound for Leakage Simulation might be a
simpler task, and it turns out that we can prove a lower bound of Ω(2�ε−2).
The basic ideas is as follows, and would be further explained in the proof. To
capture the 2� factor, for each distinguisher f and input x we hide information
at f(x, z) for a random z, similar to the proof in [PS16]. Then checking all z
over {0, 1}� is necessary. Although the claim seems trivial, the analysis would be
more complicated in our adaptive model. To capture the ε−2 factor, we utilize
the anti-concentration of almost uniform Bernoulli distribution Bern(12 + Θ(ε)),
so that Ω(1/ε2) samples are needed to distinguish it from uniform distribu-
tion with constant probability. A similar concept can be found for example in
[Fre95,LTW11,PS16]. Note that in [PS16] they only require an advantage of ε
when distinguishing such Bernoulli distribution from uniform, which causes an
O(1/ε) loss in complexity.

4.3 Proof of Theorem 3

Overview. We would like to show that there exists a function g and a set of dis-
tinguisher F such that any simulator h with limited queries to F cannot approx-
imate g well. Since |F| is much larger than the number of queries, there exist
some distinguishers which can distinguish g and any bad simulator h “fairly”,
i.e. these distinguishers are independent of h. Therefore more queries are required
to successfully simulate g and fool F . We will prove the existence of g and F by
probabilistic argument.

9 Actually, such assumption is not even natural in hardness amplification.

On the Complexity of Simulating Auxiliary Input 385

To make the simulation task as hard as possible, let g be a random function.
Besides, for any distinguisher f ∈ F , let f(x, z) be a random bit drawn from
Bern(12+c1ε) for some constant c1 if z = g(x), or from Bern(12) otherwise, so that
a query to f provides least possible information.10 To understand such setting,
we can imagine that there exists a random oracle O which takes input (x, z) and
only return biased bit at z = g(x) for each x. Then g(x) is considered as the key to
the oracle, and our goal is to find out the correct key. Each f ∈ F can be viewed
as a collection of samples from the oracle with certain randomness. Intuitively,
since f(x, g(x)) is only Θ(ε) away from uniform, f can distinguish g and any
bad simulator h which does not approximate g with constant probability. To
approximate g well, we need to test all 2� keys to find the correct one. Besides,
it requires Ω(1/ε2) samples to distinguish Bern(12 + Θ(ε)) and Bern(12) with
constant probability, so Ω(1/ε2) queries are required for each key to make sure
we can distinguish the real key from other fake keys. Therefore a successful
simulator h should make at least Ω(ε−22�) queries.

Now we proceed to the formal proof. Assume for contradiction that D is
a black-box (ε, �,m, a)-simulator with query complexity q ≤ c2(2�ε−2), where
c2 = 1

360000 . Let g : {0, 1}n → {0, 1}� be a random function such that for every
x ∈ {0, 1}n, g(x) is chosen uniformly at random from {0, 1}�. Let F be a set
of random function defined in previous paragraph, and we specify that c1 = 30.
First we prove that given any fixed advice string α, the decision function DF (, α)
cannot guess g correctly with high enough probability over the choice of F and g.

Lemma 5. Fix α and let h = DF,α. For any x ∈ {0, 1}n, we have Pr[h(x) =
g(x)] ≤ 1 − 3

c1
, where the probability is taken over the choice of g(x), f(x, ·) for

every f ∈ F (abbreviated as F(x)), and the randomness of h.

Proof. Without loss of generality, assume that h has no randomness other than
oracle queries. (We can obtain the same bound for probabilistic h by taking aver-
age over deterministic circuits.) We also assume that h always make q different
queries by adding dummy queries.

Consider h as a decision tree where queries are the nodes and different
answers represent different branches. For every fixed g(x) and F(x), the com-
putation of h(x) corresponds to a root-to-leaf path denoted as t = {a1, . . . , aq}
where ai is the answer to the i-th query, and we call t transcript. Let T be a ran-
dom variable over {0, 1}q which represents such transcript. Note that the output
of h(x) is uniquely determined by its transcript. Let Dec : {0, 1}q → {0, 1}�

denote the corresponding decision function from transcript to output. Then we
have

Pr[h(x) = g(x)] = Pr[Dec(T) = g(x)] =
∑

t,k

Pr[T = t, g(x) = k,Dec(t) = k].

10 Note that F should be able to distinguish g from easy functions with advantage ε,
otherwise the simulation is trivial.

386 Y.-H. Chen et al.

To prove the upper bound for Pr[h(x) = g(x)], first we consider an ideal case such
that each function in F is an uniform random function. In this case, for every
(t, k) ∈ {0, 1}q × {0, 1}�, Pr[T ∗ = t, g(x) = k] = 2−(q+�) where T ∗ is the ideal
transcript, i.e., uniform distribution over {0, 1}q. Since for each t there exists a
unique k where Dec(t) = k, only 2q pairs (t, k) are correct (i.e. Dec(t) = k).
In such ideal case, we have Pr[h∗(x) = g(x)] = 2−� where h∗ denotes the ideal
variant of h. In the real case, Pr[T = t, g(x) = k] can be at most 2−�(12 + c1ε)q,
in the case that h queries with correct key in every query and all the responses
are 1. However, there does not exist too many extreme cases like this. Besides,
we have seen that most of the pairs (t, k) over {0, 1}q × {0, 1}� do not satisfy
Dec(t) = k. Therefore we can expect that a large fraction of pairs are normal
(i.e. chosen with probability Θ(2−(q+�))) and wrong (i.e. Dec(t) �= k). Such
statement implies a lower bound for Pr[h(x) �= g(x)].

Next we formally prove the statement above. Consider any transcript t =
{a1, a2, . . . , aq}. Recall that the queries made by h are uniquely determined by
t: the first query is fixed, the second query is determined by the first bit of t,
and so on. Let {z1, z2, . . . , zq} be the sequence of key such that the i-th query is
fi(x, zi) for some fi ∈ F . For any k ∈ {0, 1}�, t ∈ {0, 1}q, let ui denote the index
of the i-th useful query, which means the i-th index satisfying zui

= k. Then
we define Nb(t, k) =

∑

i[aui
= b] for b ∈ {0, 1}, which represents the number

of useful queries with response b. Besides, let N(t, k) = N0(t, k) + N1(t, k) and
NΔ(t, k) = N0(t, k) − N1(t, k). Similarly, for j ≤ N(t, k), we define Nb(t, k, j) =
∑j

i=1[aui
= b] for b ∈ {0, 1} and NΔ(t, k, j) = N0(t, k, j)−N1(t, k, j), which only

consider the first j useful queries. Recall that for any f ∈ F , f(x, z) is uniform
when z �= g(x) and biased when z = g(x). For any fixed (t, k),

Pr[g(x) = k, T = t] =
(

1
2

)(�+q−N(t,k)) (
1
2

− c1ε

)N0(t,k) (
1
2

+ c1ε

)N1(t,k)

=
(

1
2

)(�+q)

(1 − 2c1ε)
NΔ(t,k) (

1 − 4c21ε
2
)N1(t,k)

≥
(

1
2

)(�+q)

(1 − 2c1ε)
NΔ(t,k) (

1 − 4c21ε
2
)N(t,k)

(3)

Therefore a pair (t, k) is normal if NΔ(t, k) = O(1/ε) and N(t, k) = O(1/ε2).
We claim that a large enough fraction of pairs over {0, 1}q × {0, 1}� are wrong
and normal as following:

Claim. Let q′ = 5q/2� ≤ 5c2ε
−2. Then for at least 1

5 fraction of pairs (t, k) over
{0, 1}q × {0, 1}� satisfies the following conditions:

1. Dec(t) �= k.
2. N(t, k) < q′.
3. NΔ(t, k) <

√
5q′.

Proof. We will prove upper bounds for correct pairs and extreme cases to make
sure a large fraction of normal and wrong pairs are left. More precisely, we prove
upper bound for the contrary of each condition one by one.

On the Complexity of Simulating Auxiliary Input 387

1. Only 2−� of pairs are correct:
This obviously holds because (t, k) is correct only when Dec(t) = k.

2. At most 1
5 of pairs (t, k) satisfy N(t, k) ≥ q′:

For any t we have Ek←U�
[N(t, k)] = q

2� . By Markov’s inequality, at most
q

2�q′ = 1
5 of pairs satisfy N(t, k) ≥ q′.

3. For at most 1
10 of pairs (t, k), N(t, k) < q′ and NΔ(t, k) >

√
5q′:

Fix k. Let T ∗ be a random transcript which is uniform over {0, 1}q. Consider
a sequence of random variable {Yj} depending on T ∗ such that

Yj =

{

NΔ(T ∗, k, j), if j < N(T ∗, k)
NΔ(T ∗, k), otherwise.

It’s not hard to see that {Yi} is a martingale with difference at most 1. By
Azuma’s inequality, we have Pr[Yq′ ≥ √

5q′] ≤ e−5q′/2q′
< 0.1. Since T ∗ is

uniform, the statement above is the same as saying for at most 0.1 fraction
of t ∈ {0, 1}q, Yq′(t) ≥ √

5q′. When restricted to t satisfying N(t, k) < q′ we
have NΔ(t, k) = Yq′(t) ≥ √

5q′.

By union bound, all three conditions in the claim hold simultaneously for at
least 1

5 of pairs over {0, 1}q × {0, 1}�.

Now consider any pair (t, k) which satisfies condition 2 and 3 in the claim
above, in other word a normal pair. By inequality (3), we have

Pr[g(x) = k, T = t] ≥ (1/2)(�+q) (1 − 2c1ε)NΔ(t,k)(1 − 4c21ε
2)N(t,k)

≥ (1/2)(�+q) (1 − 2c1ε)
√
5q′

(1 − 4c21ε
2)q′

(4)

= (1/2)(�+q) (1 − 2c1ε)5
√

c2ε−1
(1 − 4c21ε

2)5c2ε−2

≥ (1/2)(�+q) (0.3)10c1
√

c2(0.3)20c21c2 (5)

≥ (1/2)(�+q) · 0.5 (6)

The inequality (5) holds because (1 − δ)1/δ ≥ 0.3 for any 0 < δ ≤ 0.1. Since 1
5

of pairs satisfy the conditions above, we have

Pr[h(x) �= g(x)] =
∑

k,t

[g(x) = k, T = t,Dec(t) �= k] ≥ 0.1. (7)

Therefore Pr[h(x) = g(x)] ≤ 0.9 = 1 − 3
c1

.
With the lemma above, we can finish the proof simply with a concentra-

tion bound and probabilistic method. Consider the probabilistic distinguisher
fR which is a uniform distribution over all distinguishers in F . Fix any advice
α and consider h(·) = DF (·, α). For any x ∈ {0, 1}n, f ∈ F such that f is not
queried by h(x), we have E [f(x, h(x))] = 1

2 + Pr[h(x) = g(x)] · c1ε by definition

of f . Since h makes at most q query when computing h(x), fR chooses a query

388 Y.-H. Chen et al.

coincident with queries in h with probability q
m . Even in the worst case that fR

returns 1 in all these cases, we still have

E [fR(x, g(x))] ≤ 1
2

+ Pr[g(x) = h(x)] · c1ε +
q

m
(8)

≤ 1
2

+ (c1 − 2)ε (9)

because m is large enough. Also we have E [fR(x, g(x))] = 1
2 + c1ε by definition.

Therefore, E [fR(x, g(x)) − fR(x, h(x))] ≥ 2ε. Let X be the uniform distribution.

Note that for different x, g(x) and F(x) are chosen independently. Therefore
E
h

[fR(x, g(x)) − fR(x, h(x))]11 for each x are independent random variables since

it is only influenced by randomness of g(x) and F(x). By Chernoff-Hoeffding
bound, Ex←X [fR(x, g(x)) − fR(x, h(x))] < ε holds with probability 2−Ω(ε22n)

over the choice of F and g. By taking union bound over α, we have

∀α ∈ {0, 1}2o(n)
, E

x←X

[

fR(x, g(x)) − fR(x,DF (x, α))
] ≤ ε (10)

with probability 2−Ω(ε22n)+2o(n)
, which is less than 1 for large enough n. By the

probabilistic argument there exists a function g and a set F such that

E
x←X

[fR(x, g(x)) − fR(x,DF (x, α))] > ε. (11)

By averaging argument, for any α, there exists f ∈ F such that f can distinguish
(X,DF (X,α)) and (X, g(X)). Therefore the simulation fails no matter what α
is, which contradicts to our assumption. Thus there is no simulator with query
complexity c2(2�ε−2).

To summarize, we proved an Ω(2�ε−2) lower bound for black-box (ε, �, k, a)-
simulator, while the upper bound is only O(�2�ε−2). Note that in order to apply
Chernoff bound, we need the same-input assumption (i.e. D(x) cannot query
F(x′) for x′ �= x) to guarantee the independence of different x, even though
querying with different input seems useless. A general black-box tight lower
bound is left for future work.

References

[AHK12] Arora, S., Hazan, E., Kale, S.: The multiplicative weights update method:
a meta-algorithm and applications. Theory Comput. 8(1), 121–164 (2012)

[AS11] Artemenko, S., Shaltiel, R.: Lower bounds on the query complexity of non-
uniform and adaptive reductions showing hardness amplification. In: Gold-
berg, L.A., Jansen, K., Ravi, R., Rolim, J.D.P. (eds.) APPROX/RANDOM
-2011. LNCS, vol. 6845, pp. 377–388. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-22935-0 32

11 The expectation is taken over the local randomness of h, which does not need to be
considered in the probabilistic argument.

https://doi.org/10.1007/978-3-642-22935-0_32
https://doi.org/10.1007/978-3-642-22935-0_32

On the Complexity of Simulating Auxiliary Input 389

[CLP15] Chung, K.-M., Lui, E., Pass, R.: From weak to strong zero-knowledge and
applications. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9014,
pp. 66–92. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-
46494-6 4

[DBL08] 49th Annual IEEE Symposium on Foundations of Computer Science, FOCS
2008, Philadelphia, PA, USA, 25–28 October 2008. IEEE Computer Society
(2008)

[DP08] Dziembowski, S., Pietrzak, K.: Leakage-resilient cryptography. In: 49th
Annual IEEE Symposium on Foundations of Computer Science, FOCS
2008, Philadelphia, PA, USA, 25–28 October 2008 [DBL08], pp. 293–302

[FK99] Frieze, A.M., Kannan, R.: Quick approximation to matrices and applica-
tions. Combinatorica 19(2), 175–220 (1999)

[Fre95] Freund, Y.: Boosting a weak learning algorithm by majority. Inf. Comput.
121(2), 256–285 (1995)

[FS96] Freund, Y., Schapire, R.E.: Game theory, on-line prediction and boosting.
In: Blum, A., Kearns, M. (eds.) Proceedings of the Ninth Annual Conference
on Computational Learning Theory, COLT 1996, Desenzano del Garda,
Italy, 28 June–1 July 1996, pp. 325–332. ACM (1996)

[GNW95] Goldreich, O., Nisan, N., Wigderson, A.: On Yao’s XOR-lemma. In: Elec-
tronic Colloquium on Computational Complexity (ECCC), vol. 2, no. 50
(1995)

[GW11] Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from
all falsifiable assumptions. In: Fortnow, L., Vadhan, S.P. (eds.) Proceedings
of the 43rd ACM Symposium on Theory of Computing, STOC 2011, San
Jose, CA, USA, 6–8 June 2011, pp. 99–108. ACM (2011)

[HILL99] H̊astad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom gener-
ator from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999)

[Hol05] Holenstein, T.: Key agreement from weak bit agreement. In: Gabow, H.N.,
Fagin, R. (eds.) Proceedings of the 37th Annual ACM Symposium on The-
ory of Computing, Baltimore, MD, USA, 22–24 May 2005, pp. 664–673.
ACM (2005)

[HS16] Hirt, M., Smith, A. (eds.): TCC 2016-B. LNCS, vol. 9985. Springer, Hei-
delberg (2016). https://doi.org/10.1007/978-3-662-53641-4

[Imp95] Impagliazzo, R.: Hard-core distributions for somewhat hard problems. In:
36th Annual Symposium on Foundations of Computer Science, Milwau-
kee, Wisconsin, 23–25 October 1995, pp. 538–545. IEEE Computer Society
(1995)

[JP14] Jetchev, D., Pietrzak, K.: How to fake auxiliary input. In: Lindell, Y. (ed.)
TCC 2014. LNCS, vol. 8349, pp. 566–590. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-642-54242-8 24

[LTW11] Lu, C.-J., Tsai, S.-C., Wu, H.-L.: Complexity of hard-core set proofs. Com-
put. Complex. 20(1), 145–171 (2011)

[PS16] Pietrzak, K., Skórski, M.: Pseudoentropy: lower-bounds for chain rules and
transformations. In: Hirt and Smith [HS16], pp. 183–203

[Rou16] Roughgarden, T.: No-Regret Dynamics, pp. 230–246. Cambridge University
Press, Cambridge (2016)

[RTTV08] Reingold, O., Trevisan, L., Tulsiani, M., Vadhan, S.P.: Dense subsets of
pseudorandom sets. In: 49th Annual IEEE Symposium on Foundations of
Computer Science, FOCS 2008, Philadelphia, PA, USA, 25–28 October 2008
[DBL08], pp. 76–85

https://doi.org/10.1007/978-3-662-46494-6_4
https://doi.org/10.1007/978-3-662-46494-6_4
https://doi.org/10.1007/978-3-662-53641-4
https://doi.org/10.1007/978-3-642-54242-8_24

390 Y.-H. Chen et al.

[Skó16a] Skórski, M.: Simulating auxiliary inputs, revisited. In: Hirt and Smith
[HS16], pp. 159–179

[Skó16b] Skórski, M.: A subgradient algorithm for computational distances and appli-
cations to cryptography. IACR Cryptology ePrint Archive, 2016:158 (2016)

[SV10] Shaltiel, R., Viola, E.: Hardness amplification proofs require majority. SIAM
J. Comput. 39(7), 3122–3154 (2010)

[TTV09] Trevisan, L., Tulsiani, M., Vadhan, S.P.: Regularity, boosting, and effi-
ciently simulating every high-entropy distribution. In: Proceedings of the
24th Annual IEEE Conference on Computational Complexity, CCC 2009,
Paris, France, 15–18 July 2009, pp. 126–136. IEEE Computer Society (2009)

[VZ13] Vadhan, S., Zheng, C.J.: A uniform min-max theorem with applications
in cryptography. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS,
vol. 8042, pp. 93–110. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-40041-4 6

[Yao82] Yao, A.C.-C.: Theory and applications of trapdoor functions (extended
abstract). In 23rd Annual Symposium on Foundations of Computer Sci-
ence, Chicago, Illinois, USA, 3–5 November 1982, pp. 80–91. IEEE Com-
puter Society (1982)

[Zha11] Zhang, J.: On the query complexity for showing dense model. In: Electronic
Colloquium on Computational Complexity (ECCC), vol. 18, p. 38 (2011)

https://doi.org/10.1007/978-3-642-40041-4_6
https://doi.org/10.1007/978-3-642-40041-4_6

Key Exchange

Fuzzy Password-Authenticated
Key Exchange

Pierre-Alain Dupont1,2,3(B) , Julia Hesse4, David Pointcheval2,3 ,
Leonid Reyzin5, and Sophia Yakoubov5

1 DGA, Paris, France
2 DIENS, École Normale Supérieure, CNRS, PSL University, Paris, France

{pierre-alain.dupont,david.pointcheval}@ens.fr
3 INRIA, Paris, France

4 Technische Universität Darmstadt, Darmstadt, Germany
julia.hesse@ens.fr

5 Boston University, Boston, USA
reyzin@cs.bu.edu, sonka@bu.edu

Abstract. Consider key agreement by two parties who start out know-
ing a common secret (which we refer to as “pass-string”, a generalization
of “password”), but face two complications: (1) the pass-string may come
from a low-entropy distribution, and (2) the two parties’ copies of the
pass-string may have some noise, and thus not match exactly. We pro-
vide the first efficient and general solutions to this problem that enable,
for example, key agreement based on commonly used biometrics such as
iris scans.

The problem of key agreement with each of these complications indi-
vidually has been well studied in literature. Key agreement from low-
entropy shared pass-strings is achieved by password-authenticated key
exchange (PAKE), and key agreement from noisy but high-entropy shared
pass-strings is achieved by information-reconciliation protocols as long as
the two secrets are “close enough.” However, the problem of key agree-
ment from noisy low-entropy pass-strings has never been studied.

We introduce (universally composable) fuzzy password-authenticated
key exchange (fPAKE), which solves exactly this problem. fPAKE does
not have any entropy requirements for the pass-strings, and enables
secure key agreement as long as the two pass-strings are “close” for some
notion of closeness. We also give two constructions. The first construction
achieves our fPAKE definition for any (efficiently computable) notion of
closeness, including those that could not be handled before even in the
high-entropy setting. It uses Yao’s garbled circuits in a way that is only
two times more costly than their use against semi-honest adversaries,
but that guarantees security against malicious adversaries. The second
construction is more efficient, but achieves our fPAKE definition only
for pass-strings with low Hamming distance. It builds on very simple
primitives: robust secret sharing and PAKE.

J. Hesse—Work done while at École Normale Supérieure.

c© International Association for Cryptologic Research 2018
J. B. Nielsen and V. Rijmen (Eds.): EUROCRYPT 2018, LNCS 10822, pp. 393–424, 2018.
https://doi.org/10.1007/978-3-319-78372-7_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78372-7_13&domain=pdf
http://orcid.org/0000-0001-8722-5007
http://orcid.org/0000-0002-6668-683X
http://orcid.org/0000-0001-7958-8537

394 P.-A. Dupont et al.

Keywords: Authenticated key exchange · PAKE
Hamming distance · Error correcting codes · Yao’s garbled circuits

1 Introduction

Consider key agreement by two parties who start out knowing a common secret
(which we refer to as “pass-string”, a generalization of “password”). These
parties may face several complications: (1) the pass-string may come from a
non-uniform, low-entropy distribution, and (2) the two parties’ copies of the
pass-string may have some noise, and thus not match exactly. The use of such
pass-strings for security has been extensively studied; examples include
biometrics and other human-generated data [15,23,29,39,46,49,66], physically
unclonable functions (PUFs) [30,52,57,58,64], noisy channels [61], quantum
information [9], and sensor readings of a common environment [32,33].

The Noiseless Case. When the starting secret is not noisy (i.e., the same for both
parties), existing approaches work quite well. The case of low-entropy secrets is
covered by password-authenticated key exchange (PAKE) (a long line of work, with
first formal models introduced in [7,14]). A PAKE protocol allows two parties to
agree on a shared high-entropy key if and only if they hold the same short pass-
word. Even though the password may have low entropy, PAKE ensures that off-line
dictionary attacks are impossible. Roughly speaking, an adversary has to partici-
pate in one on-line interaction for every attempted guess at the password. Because
key agreement is not usually the final goal, PAKE protocols need to be composed
with whatever protocols (such as authenticated encryption) use the output key.
This composability has been achieved by universally composable (UC) PAKE
defined by Canetti et al. [20] and implemented in several follow-up works.

In the case of high-entropy secrets, off-line dictionary attacks are not a con-
cern, which enables more efficient protocols. If the adversary is passive, ran-
domness extractors [51] do the job. The case of active adversaries is covered
by the literature on so-called robust extractors defined by Boyen et al. [13]
and, more generally, by many papers on privacy amplification protocols secure
against active adversaries, starting with the work of Maurer [45]. Composability
for these protocols is less studied; in particular, most protocols leak information
about the pass-string itself, in which case reusing the pass-string over multiple
protocol executions may present problems [12] (with the exception of [19]).

The Noisy Case. When the pass-string is noisy (i.e., the two parties have slightly
different versions of it), this problem has been studied only for the case of high-
entropy pass-strings. A long series of works on information-reconciliation pro-
tocols started by Bennett et al. [9] and their one-message variants called fuzzy
extractors (defined by Dodis et al. [26], further enhanced for active security
starting by Renner and Wolf [54]) achieves key agreement when the pass-string
has a lot of entropy and not too much noise. Unfortunately, these approaches do
not extend to the low-entropy setting and are not designed to prevent off-line
dictionary attacks.

Fuzzy Password-Authenticated Key Exchange 395

Constructions for the noisy case depend on the specific noise model. The case
of binary Hamming distance—when the n pass-string characters held by the two
parties are the same at all but δ locations—is the best studied. Most existing
constructions require, at a minimum, that the pass-string should have at least δ
bits of entropy. This requirement rules out using most kinds of biometric data
as the pass-string—for example, estimates of entropy for iris scans (transformed
into binary strings via wavelet transforms and projections) are considerably lower
than the amount of errors that need to be tolerated [11, Sect. 5]. Even the PAKE-
based construction of Boyen et al. [13] suffers from the same problem.

One notable exception is the construction of Canetti et al. [19], which does not
have such a requirement, but places other stringent limitations on the probability
distribution of pass-strings. In particular, because it is a one-message protocol,
it cannot be secure against off-line dictionary attacks.

1.1 Our Contributions

We provide definitions and constant-round protocols for key agreement from
noisy pass-strings that:

– Resist off-line dictionary attacks and thus can handle low-entropy pass-
strings,

– Can handle a variety of noise types and have high error-tolerance, and
– Have well specified composition properties via the UC framework [17].

Instead of imposing entropy requirements or other requirements on the distri-
bution of pass-strings, our protocols are secure as long as the adversary cannot
guess a pass-string value that is sufficiently close. There is no requirement, for
example, that the amount of pass-string entropy is greater than the number of
errors; in fact, one of our protocols is suitable for iris scans. Moreover, our proto-
cols prevent off-line attacks, so each adversarial attempt to get close to the correct
pass-string requires an on-line interaction by the adversary. Thus, for example,
our protocols can be meaningfully run with pass-strings whose entropy is only 30
bits—something not possible with any prior protocols for the noisy case.

New Models. Our security model is in the Universal Composability (UC) Frame-
work of Canetti [17]. The advantage of this framework is that it comes with a
composability theorem that ensures that the protocol stays secure even running
in arbitrary environments, including arbitrary parallel executions. Composabil-
ity is particularly important for key agreement protocols, because key agreement
is rarely the ultimate goal. The agreed-upon key is typically used for some sub-
sequent protocol—for example, a secure channel. Further, this framework allows
to us to give a definition that is agnostic to how the initial pass-strings are
generated. We have no entropy requirements or constraints on the pass-string
distribution; rather, security is guaranteed as long as the adversary’s input to
the protocol is not close enough to the correct pass-string.

As a starting point, we use the definition of UC security for PAKE from
Canetti et al. [20]. The PAKE ideal functionality is defined as follows: the secret

396 P.-A. Dupont et al.

pass-strings (called “passwords” in PAKE) of the two parties are the inputs to the
functionality, and two random keys, which are equal if and only if the two inputs
are equal, are the outputs. The main change we make to PAKE is enhancing the
functionality to give equal keys even if the two inputs are not equal, as long
as they are close enough. We also relax the security requirement to allow one
party to find out some information about the other party’s input—perhaps even
the entire input—if the two inputs are close. This relaxation makes sense in
our application: if the two parties are honest, then the differences between their
inputs are a problem rather than a feature, and we would not mind if the inputs
were in fact the same. The benefit of this relaxation is that it permits us to
construct more efficient protocols. (We also make a few other minor changes
which will be described in Sect. 2.) We call our new UC functionality “Fuzzy
Password-Authenticated Key Exchange” or fPAKE.

New Protocols. The only prior PAKE-based protocol for the noisy setting by
Boyen et al. [13], although more efficient than ours, does not satisfy our goal. In
particular, it is not composable, because it reveals information about the secret
pass-strings (we demonstrate this formally in the full version of this paper [28]).
Because some information about the pass-strings is unconditionally revealed,
high-entropy pass-strings are required. Thus, in order to realize our definition
for arbitrary low-entropy pass-strings, we need to construct new protocols.

Realizing our fPAKE definition is easy using general two-party computation
techniques for protocols with malicious adversaries and without authenticated
channels [4]. However, we develop protocols that are considerably more effi-
cient: our definitional relaxation allows us to build protocols that achieve secu-
rity against malicious adversaries but cost just a little more than the generic
two-party computation protocols that achieve security only against honest-but-
curious adversaries (i.e., adversaries who do not deviate from the protocol, but
merely try to infer information they are not supposed to know).

Our first construction uses Yao’s garbled circuits [6,63] and oblivious transfer
(see [21] and references therein). The use of these techniques is standard in
two-party computation. However, by themselves they give protocols secure only
against honest-but-curious adversaries. In order to prevent malicious behavior of
the players, one usually applies the cut-and-choose technique [42], which is quite
costly: to achieve an error probability of 2−λ, the number of circuits that need to
be garbled increases by a factor of λ, and the number of oblivious transfers that
need to be performed increases by a factor of λ/2. We show that for our special
case, to achieve malicious security, it suffices to repeat the honest-but-curious
protocol twice (once in each direction), incurring only a factor of 2 overhead over
the semi-honest case.1 Mohassel and Franklin [48] and Huang et al. [34] suggest

1 Gasti et al. [31] similarly use Yao’s garbled circuits for continuous biometric user
authentication on a smartphone. Our approach can eliminate the third party in
their application, at the cost of requiring two garbled circuits instead of one. As far
as we know, ours is the first use of garbled circuits in the two-party fully malicious
setting without calling on an expensive transformation.

Fuzzy Password-Authenticated Key Exchange 397

a similar technique (known as “dual execution”), but at the cost of leaking a bit
of the adversary’s choice to the adversary. In contrast, our construction leaks
nothing to the adversary at all (as long as the pass-strings are not close). This
construction works regardless of what it means for the two inputs to be “close,”
as long as the question of closeness can be evaluated by an efficient circuit.

Our second construction is for the Hamming case: the two n-character pass-
strings have low Hamming distance if not too many characters of one party’s
pass-string are different from the corresponding characters of the other’s pass-
string. The two parties execute a PAKE protocol for each position in the string,
obtaining n values each that agree or disagree depending on whether the char-
acters of the pass-string agree or disagree in the corresponding positions. It is
important that at this stage, agreement or disagreement at individual positions
remains unknown to everyone; we therefore make use of a special variant of
PAKE which we call implicit-only PAKE (we give a formal UC security defini-
tion of implicit-only PAKE and show that it is realized by the PAKE protocol
from [1,8]). This first step upgrades Hamming distance over a potentially small
alphabet to Hamming distance over an exponentially large alphabet. We then
secret-share the ultimate output key into n shares using a robust secret sharing
scheme, and encrypt each share using the output of the corresponding PAKE
protocol.

The second construction is more efficient than the first in the number of
rounds, communication, and computation. However, it works only for Hamming
distance. Moreover, it has an intrinsic gap between functionality and security:
if the honest parties need to be within distance δ to agree, then the adversary
may break security by guessing a secret within distance 2δ. See Fig. 10 for a
comparison between the two constructions.

The advantages of our protocols are similar to the advantages of UC PAKE:
They provide composability, protection against off-line attacks, the ability to
use low-entropy inputs, and handle any distribution of secrets. And, of course,
because we construct fuzzy PAKE, our protocols can handle noisy inputs—
including many types of noisy inputs that could not be handled before. Our first
protocol can handle any type of noise as long as the notion of “closeness” can be
efficiently computed, whereas most prior work was for Hamming distance only.
However, these advantages come at the price of efficiency. Our protocols require
2–5 rounds of interaction, as opposed to many single-message protocols in the
literature [19,25,60]. They are also more computationally demanding than most
existing protocols for the noisy case, requiring one public-key operation per input
character. We emphasize, however, that our protocols are much less computa-
tionally demanding than the protocols based on general two-party computation,
as already discussed above, or general-purpose obfuscation, as discussed in [10,
Sect. 4.3.4].

2 Security Model

We now present a security definition for fuzzy password-authenticated key
exchange (fPAKE). We adapt the definition of PAKE from Canetti et al. [20]

398 P.-A. Dupont et al.

to work for pass-strings (a generalization of “passwords”) that are similar, but
not necessarily equal. Our definition uses measures of the distance d(pw, pw′)
between pass-strings pw, pw′ ∈ F

n
p . In Sects. 3.3 and 4, Hamming distance is

used, but in the generic construction of Sect. 3, any other notion of distance can
be used instead. We say that pw and pw′ are “similar enough” if d(pw, pw′) ≤ δ
for a distance notion d and a threshold δ that is hard-coded into the functionality.

To model the possibility of dictionary attacks, the functionality allows the
adversary to make one pass-string guess against each player (P0 and P1). In the
real world, if the adversary succeeds in guessing (a pass-string similar enough
to) party Pi’s pass-string, it can often choose (or at least bias) the session key
computed by Pi. To model this, the functionality then allows the adversary to
set the session key for Pi.

As usual in security notions for key exchange, the adversary also sets the
session keys for corrupted players. In the definition of Canetti et al. [20], the
adversary additionally sets Pi’s key if P1−i is corrupted. However, contrarily to
the original definition, we do not allow the adversary to set Pi’s key if P1−i is
corrupted but did not guess Pi’s pass-string. We make this change in order to
protect an honest Pi from, for instance, revealing sensitive information to an
adversary who did not successfully guess her pass-string, but did corrupt her
partner.

Another minor change we make is considering only two parties—P0 and P1—
in the functionality, instead of considering arbitrarily many parties and enforcing
that only two of them engage the functionality. This is because universal com-
posability takes care of ensuring that a two-party functionality remains secure
in a multi-party world.

As in the definition of Canetti et al. [20], we consider only static corruptions
in the standard corruption model of Canetti [17]. Also as in their definition,
we chose not to provide the players with confirmation that key agreement was
successful. The players might obtain such confirmation from subsequent use of
the key.

By default, in the fPAKE functionality the TestPwd interface provides the
adversary with one bit of information—whether the pass-string guess was correct
or not. This definition can be strengthened by providing the adversary with no
information at all, as in implicit-only PAKE (FiPAKE, Fig. 7), or weakened by
providing the adversary with extra information when the adversary’s guess is
close enough.

To capture the diversity of possibilities, we introduce a more general TestPwd
interface, described in Fig. 2. It includes three leakage functions that we will
instantiate in different ways below—Lc if the guess is close-enough to succeed,
Lf if it is too far. Moreover, a third leakage function—Lm for medium distance—
allows the adversary to get some information even if the adversary’s guess is only
somewhat close (closer than some parameter γ ≥ δ), but not close enough for
successful key agreement. We thus decouple the distance needed for functionality
from the (possibly larger) distance needed to guarantee security; the smaller the
gap between these two distances, the better, of course.

Fuzzy Password-Authenticated Key Exchange 399

Fig. 1. Ideal functionality fPAKE

Fig. 2. A modified TestPwd interface to allow for different leakage

Below, we list the specific leakage functions Lc, Lm and Lf that we consider
in this work, in order of decreasing strength (or increasing leakage):

1. The strongest option is to provide no feedback at all to the adversary. We
define fPAKEN to be the functionality described in Fig. 1, except that TestPwd
is from Fig. 2 with

LN
c (pwi, pw

′
i) = LN

m(pwi, pw
′
i) = LN

f (pwi, pw
′
i) = ⊥ .

400 P.-A. Dupont et al.

2. The basic functionality fPAKE, described in Fig. 1, leaks the correctness of
the adversary’s guess. That is, in the language of Fig. 2,

Lc(pwi, pw
′
i) = “correct guess”,

and Lm(pwi, pw
′
i) = Lf (pwi, pw

′
i) = “wrong guess”.

The classical PAKE functionality from [20] has such a leakage.
3. Assume the two pass-strings are strings of length n over some finite alphabet,

with the jth character of the string pw denoted by pw[j]. We define fPAKEM

to be the functionality described in Fig. 1, except that TestPwd is from Fig. 2,
with Lc and Lm that leak the indices at which the guessed pass-string differs
from the actual one when the guess is close enough (we will call this leakage
the mask of the pass-strings). That is,

LM
c (pwi, pw

′
i) = ({j s.t.pwi[j] = pw′

i[j]}, “correct guess”),

LM
m (pwi, pw

′
i) = ({j s.t.pwi[j] = pw′

i[j]}, “wrong guess”)

and LM
f (pwi, pw

′
i) = “wrong guess”.

4. The weakest definition—or the strongest leakage—reveals the entire actual
pass-string to the adversary if the pass-string guess is close enough. We define
fPAKEP to be the functionality described in Fig. 1, except that TestPwd is
from Fig. 2, with

LP
c (pwi, pw

′
i) = LP

m(pwi, pw
′
i) = pwi and LP

f (pwi, pw
′
i) = “wrong guess”.

Here, LP
c and LP

m do not need to include “correct guess” and “wrong guess”,
respectively, because this is information that can be easily derived from pwi

itself.

The first two functionalities are the strongest, but there are no known con-
structions that realize them, other than through generic two-party computation
secure against malicious adversaries, which is an inefficient solution. The last two
functionalities, though weaker, still provide meaningful security, especially when
γ = δ. Intuitively, this is because strong leakage only occurs when an adversary
guesses a “close” pass-string, which enables him to authenticate as though he
knows the real pass-string anyway.

In Sect. 3, we present a construction satisfying fPAKEP for any efficiently
computable notion of distance, with γ = δ (which is the best possible). We
present a construction for Hamming distance satisfying fPAKEM in Sect. 4, with
γ = 2δ.

3 General Construction Using Garbled Circuits

In this section, we describe a protocol realizing fPAKEP that uses Yao’s gar-
bled circuits [63]. We briefly introduce this primitive in Sect. 3.1 and refer to
Yakoubov [62] for a more thorough introduction.

Fuzzy Password-Authenticated Key Exchange 401

The Yao’s garbled circuit-based fPAKE construction has two advantages:

1. It is more flexible than other approaches; any notion of distance that can
be efficiently computed by a circuit can be used. In Sect. 3.3, we describe a
suitable circuit for Hamming distance. The total size of this circuit is O(n),
where n is the length of the pass-strings used. Edit distance is slightly less
efficient, and uses a circuit whose total size is O(n2).

2. There is no gap between the distances required for functionality and
security—that is, there is no leakage about the pass-strings used unless they
are similar enough to agree on a key. In other words, δ = γ.

Informally, the construction involves the garbled evaluation of a circuit that
takes in two pass-strings as input, and computes whether their distance is less
than δ. Because Yao’s garbled circuits are only secure against semi-honest gar-
blers, we cannot simply have one party do the garbling and the other party
do the evaluation. A malicious garbler could provide a garbling of the wrong
function—maybe even a constant function—which would result in successful key
agreement even if the two pass-strings are very different. However, as suggested
by Mohassel and Franklin [48] and Huang et al. [34], since a malicious evaluator
(unlike a malicious garbler) cannot compromise the computation, by performing
the protocol twice with each party playing each role once, we can protect against
malicious behavior. They call this the dual execution protocol.

The dual execution protocol has the downside of allowing the adversary to
specify and receive a single additional bit of leakage. It is important to note
that because of this, dual execution cannot directly be used to instantiate
fPAKE, because a single bit of leakage can be too much when the entropy of
the pass-strings is low to begin with—a few adversarial attempts will uncover
the entire pass-string. Our construction is as efficient as that of Mohassel et al.
and Huang et al., while guaranteeing no leakage to a malicious adversary in the
case that the pass-strings used are not close. We describe how we achieve this in
Sect. 3.1.3.

3.1 Building Blocks

In Sect. 3.1.1, we briefly review oblivious transfer. In Sect. 3.1.2, we review Yao’s
Garbled Circuits. In Sect. 3.1.3, we describe in more detail our take on the dual
execution protocol, and how we avoid leakage to the adversary when the pass-
strings used are dissimilar.

3.1.1 Oblivious Transfer (OT)
Informally, 1-out-of-2 Oblivious Transfer (see [21] and citations therein) enables
one party (the sender) to transfer exactly one of two secrets to another party
(the receiver). The receiver chooses (by index 0 or 1) which secret she wants.
The security of the OT protocol guarantees that the sender does not learn this
choice bit, and the receiver does not learn anything about the other secret.

402 P.-A. Dupont et al.

3.1.2 Yao’s Garbled Circuits (YGC)
Next, we give a brief introduction to Yao’s garbled circuits [63]. We refer to Yak-
oubov [62] for a more detailed description, as well as a summary of some of the
Yao’s garbled circuits optimizations [3,5,38,40,53,65]. Informally, Yao’s garbled
circuits are an asymmetric secure two-party computation scheme. They enable
two parties with sensitive inputs (in our case, pass-strings) to compute a joint
function of their inputs (in our case, an augmented version of similarity) without
revealing any additional information about their inputs. One party “garbles” the
function they wish to evaluate, and the other evaluates it in its garbled form.

Below, we summarize the garbling scheme formalization of Bellare et al. [6],
which is a generalization of YGC.

Functionality. A garbling scheme G consists of four polynomial-time algorithms
(Gb,En,Ev,De):

1. Gb(1λ, f) → (F, e, d). The garbling algorithm Gb takes in the security param-
eter λ and a circuit f , and returns a garbled circuit F , encoding information
e, and decoding information d.

2. En(e, x) → X. The encoding algorithm En takes in the encoding information
e and an input x, and returns a garbled input X.

3. Ev(F,X) → Y . The evaluation algorithm Ev takes in the garbled circuit F
and the garbled input X, and returns a garbled output Y .

4. De(d, Y) → y. The decoding algorithm De takes in the decoding information
d and the garbled output Y , and returns the plaintext output y.

A garbling scheme G = (Gb,En,Ev,De) is projective if encoding information e
consists of 2n wire labels (each of which is essentially a random string), where
n is the number of input bits. Two wire labels are associated with each bit of
the input; one wire label corresponds to the event of that bit being 0, and the
other corresponds to the event of that bit being 1. The garbled input includes
only the wire labels corresponding to the actual values of the input bits. In
projective schemes, in order to give the evaluator the garbled input she needs
for evaluation, the garbler can send her all of the wire labels corresponding to
the garbler’s input. The evaluator can then use OT to retrieve the wire labels
corresponding to her own input.

Similarly, we call a garbling scheme output-projective if decoding information
d consists of two labels for each output bit, one corresponding to each possible
value of that bit. The garbling schemes used in this paper are both projective
and output-projective.

Correctness. Informally, a garbling scheme (Gb,En,Ev,De) is correct if it always
holds that De(d,Ev(F,En(e, x))) = f(x).

Security. Bellare et al. [6] describe three security notions for garbling schemes:
obliviousness, privacy and authenticity. Informally, a garbling scheme G =
(Gb,En,Ev,De) is oblivious if a garbled function F and a garbled input X do

Fuzzy Password-Authenticated Key Exchange 403

not reveal anything about the input x. It is private if additionally knowing the
decoding information d reveals the output y, but does not reveal anything more
about the input x. It is authentic if an adversary, given F and X, cannot find a
garbled output Y ′ �= Ev(F,X) which decodes without error.

In the full version of this paper [28], we define a new property of output-
projective garbling schemes called garbled output randomness. Informally, it
states that even given one of the output labels, the other should be indistin-
guishable from random.

3.1.3 Malicious Security: A New Take on Dual Execution
with Privacy-Correctness Tradeoffs

While Yao’s garbled circuits are naturally secure against a malicious evaluator,
they have the drawback of being insecure against a malicious garbler. A gar-
bler can “mis-garble” the function, either replacing it with a different function
entirely or causing an error to occur in an informative way (this is known as
“selective failure”).

Typically, malicious security is introduced to Yao’s garbled circuits by using
the cut-and-choose transformation [35,41,43]. To achieve a 2−λ probability of
cheating without detection, the parties need to exchange λ garbled circuits [41].2

Some of the garbled circuits are “checked”, and the rest of them are evaluated,
their outputs checked against one another for consistency. Because of the factor
of λ computational overhead, though, cut-and-choose is expensive, and too heavy
a tool for fPAKE. Other, more efficient transformations such as LEGO [50] and
authenticated garbling [59] exist as well, but those rely heavily on pre-processing,
which cannot be used in fPAKE since it requires advance interaction between the
parties.

Mohassel and Franklin [48] and Huang et al. [34] suggest an efficient trans-
formation known as “dual execution”: each party plays each role (garbler and
evaluator) once, and then the two perform a comparison step on their outputs
in a secure fashion. Dual execution incurs only a factor of 2 overhead over semi-
honest garbled circuits. However, it does not achieve fully malicious security. It
guarantees correctness, but reduces the privacy guarantee by allowing a malicious
garbler to learn one bit of information of her choice. Specifically, if a malicious
garbler garbles a wrong circuit, she can use the comparison step to learn one
bit about the output of this wrong circuit on the other party’s input. This one
extra bit of information could be crucially important, violating the privacy of
the evaluator’s input in a significant way.

We introduce a tradeoff between correctness and privacy for boolean func-
tions. For one of the two possible outputs (without loss of generality, ‘0’), we
restore full privacy at the cost of correctness. The new privacy guarantee is that
if the correct output is ‘0’, then a malicious adversary cannot learn anything
beyond this output, but if the correct output is ‘1’, then she can learn a single
bit of her choice. The new correctness guarantee is that a malicious adversary
2 There are techniques [44] that improve this number in the amortized case when many

computations are done—however, this does not fit our setting.

404 P.-A. Dupont et al.

can cause the computation that should output ‘1’ to output ‘0’ instead, but not
the other way around.

The main idea of dual execution is to have the two parties independently
evaluate one another’s circuits, learn the output values, and compare the output
labels using a secure comparison protocol. In our construction, however, the par-
ties need not learn the output values before the comparison. Instead, the parties
can compare output labels assuming an output of ‘1’, and if the comparison
fails, the output is determined to be ‘0’.

More formally, let d0[0], d0[1] be the two output labels corresponding to P0’s
garbled circuit, and d1[0], d1[1] be the two output labels corresponding to P1’s
circuit. Let Y0 be the output label learned by P1 as a result of evaluation, and
Y1 be the label learned by P0. The two parties securely compare (d0[1], Y1) to
(Y0, d1[1]); if the comparison succeeds, the output is “1”.

Our privacy–correctness tradeoff is perfect for fPAKE. If the parties’ inputs
are similar, learning a bit of information about each other’s inputs is not prob-
lematic, since arguably the small amount of noise in the inputs is a bug, not
a feature. If the parties’ inputs are not similar, however, we are guaranteed to
have no leakage at all. We pay for the lack of leakage by allowing a malicious
party to force an authentication failure even when authentication should succeed.
However, either party can do so anyway by providing an incorrect input.

In Sect. 3.2.2, we describe our Yao’s garbled circuit-based fPAKE protocol.
Note that in this protocol, we omit the final comparison step; instead, we use
the output lables ((d0[1], Y1) and (Y0, d1[1])) to compute the agreed-upon key
directly.

3.2 Construction

Building a fPAKE from YGC and OT is not straightforward, since all construc-
tions of OT assume authenticated channels, and fPAKE (or PAKE) is designed
with unauthenticated channels in mind. We therefore follow the framework of
Canetti et al. [18], who build a UC secure PAKE protocol using OT. We first
build our protocol assuming authenticated channels, and then apply the generic
transformation of Barak et al. [4] to adapt it to the unauthenticated channel
setting. More formally, we proceed in three steps:

1. First, in Sect. 3.2.1, we define a randomized fuzzy equality-testing functional-
ity FRFE, which is analogous to the randomized equality-testing functionality
of Canetti et al.

2. In Sect. 3.2.2, we build a protocol that securely realizes FRFE in the OT-hybrid
model, assuming authenticated channels.

3. In Sect. 3.2.3, we apply the transformation of Barak et al. to our protocol.
This results in a protocol that realizes the “split” version of functionality
FP

RFE, which we show to be enough to implement to fPAKEP . Split function-
alities, which were introduced by Barak et al., adapt functionalities which
assume authenticated channels to an unauthenticated channels setting. The
only additional ability an adversary has in a split functionality is the ability
to execute the protocol separately with the participating parties.

Fuzzy Password-Authenticated Key Exchange 405

Fig. 3. Ideal functionality FP
RFE for randomized fuzzy equality

3.2.1 The Randomized Fuzzy Equality Functionality
Figure 3 shows the randomized fuzzy equality functionality FP

RFE, which is essen-
tially what FP

fPAKE would look like assuming authenticated channels. The primary
difference between FP

RFE and FP
fPAKE is that the only pass-string guesses allowed

by FP
RFE are the ones actually used as protocol inputs; this limits the adversary

to guessing by corrupting one of the participating parties, not through man in
the middle attacks. Like FP

fPAKE, if a pass-string guess is “similar enough”, the
entire pass-string is leaked. This leakage could be replaced with any other leak-
age from Sect. 2; FRFE would leak the correctness of the guess, FM

RFE would leak
which characters are the same between the two pass-strings, etc.

Note that, unlike the randomized equality functionality in the work of
Canetti et al. [18], FP

fPAKE has a TestPwd interface. This is because NewKey does
not return the necessary leakage to an honest user. So, an interface enabling the
adversary to retrieve additional information is necessary.

3.2.2 A Randomized Fuzzy Equality Protocol
In Fig. 4 we introduce a protocol ΠRFE that securely realizes FP

RFE using Yao’s
garbled circuits. Garbled circuits are secure against a malicious evaluator,
but only a semi-honest garbler; however, we obtain security against malicious

406 P.-A. Dupont et al.

Fig. 4. A protocol ΠRFE realizing FP
RFE using Yao’s garbled circuits and an Ideal OT

Functionality. If at any point an expected message fails to arrive (or arrives malformed),
the parties output a random key. Subscripts are used to indicate who produced the
object in question. If a double subscript is present, the second subscript indicates whose
data the object is meant for use with. For instance, a double subscript 0, 1 denotes that
the object was produced by party P0 for use with P1’s data; e0,1 is encoding information
produced by P0 to encode P1’s pass-string. Note that we abuse notation by encoding
inputs to a single circuit separately; the input to P0’s circuit corresponding to pw0 is
encoded by P0 locally, and the input corresponding to pw1 is encoded via OT. For any
projective garbling scheme, this is not a problem.

adversaries by having each party play each role once, as describe in Sect. 3.1.3.
In more detail, both parties Pi ∈ {P0,P1} proceed as follows:

1. Pi garbles the circuit f that takes in two pass-strings pw0 and pw1, and
returns ‘1’ if d(pw0, pw1) ≤ δ and ‘0’ otherwise. Section 3.3 describes how f
can be designed efficiently for Hamming distance. Instead of using the output
of f (‘0’ or ‘1’), we will use the garbled output, also referred to as an output
label in an output-projective garbling scheme. The possible output labels are
two random strings—one corresponding to a ‘1’ output (we call this label
ki,correct), and one corresponding to a ‘0’ output (we call this label ki,wrong).

2. Pi uses OT to retrieve the input labels from P1−i’s garbling that correspond
to Pi’s pass-string.

3. Pi sends P1−i her garbled circuit, together with the input labels from her
garbling that correspond to her own pass-string. After this step, Pi should
have P1−i’s garbled circuit and a garbled input consisting of input labels
corresponding to the bits of the two pass-strings.

Fuzzy Password-Authenticated Key Exchange 407

4. Pi evaluates P1−i’s garbled circuit, and obtains an output label Y1−i.
5. Pi outputs ki = ki,correct ⊕ Y1−i.

The natural question to ask is why ΠRFE only realizes FP
RFE, and not a stronger

functionality with less leakage. We argue this assuming (without loss of general-
ity) that P1 is corrupted. ΠRFE cannot realize a functionality that leaks less than
the full pass-string pw0 to P1 if d(pw0, pw1) ≤ δ; intuitively, this is because if P1

knows a pass-string pw1 such that d(pw0, pw1) ≤ δ, P1 can extract the actual
pass-string pw0, as follows. If P1 plays the role of OT receiver and garbled circuit
evaluator honestly, P0 and P1 will agree on k0,correct. P1 can then mis-garble a
circuit that returns k1,correct if the first bit of pw0 is 0, and k1,wrong if the first
bit of pw0 is 1. By testing whether the resulting keys k0 and k1 match (which
P1 can do in subsequent protocols where the key is used), P1 will be able to
determine the actual first bit of pw0. P1 can then repeat this for the second bit,
and so on, extracting the entire pass-string pw0. Of course, if P1 does not know
a sufficiently close pw1, P1 will not be able to perform these tests, because the
keys will not match no matter what circuit P1 garbles.

More formally, if P1 knows a pass-string pw1 such that d(pw0, pw1) ≤ δ
and carries out the mis-garbling attack described above, then in the real world,
the keys produced by P0 and P1 either will or will not match based on some
predicate p of P1’s choosing on the two pass-strings pw0 and pw1. Therefore, in
the ideal world, the keys should also match or not match based on p(pw0, pw1);
otherwise, the environment will be able to distinguish between the two worlds.
In order to make that happen, since the simulator does not know the predicate
p in question, the simulator must be able to recover the entire pass-string pw0

(given a sufficiently close pw1) through the TestPwd interface.

Theorem 1. If (Gb,En,Ev,De) is a projective, output-projective and garbled-
output random secure garbling scheme, then protocol ΠRFE with authenticated
channels in the FOT-hybrid model securely realizes FP

RFE with respect to static
corruptions for any threshold δ, as long as the pass-string space and notion of
distance are such that for any pass-string pw, it is easy to compute another
pass-string pw′ such that d(pw, pw′) > δ.

Proof (Sketch). For every efficient adversary A, we describe a simulator SRFE

such that no efficient environment can distinguish an execution with the real
protocol ΠRFE and A from an execution with the ideal functionality FP

RFE and
SRFE. SRFE is described in the full version of this paper. We prove indistinguisha-
bility in a series of hybrid steps. First, we introduce the ideal functionality as a
dummy node. Next, we allow the functionality to choose the parties’ keys, and
we prove the indistinguishability of this step from the previous using the garbled
output randomness property of our garbling scheme Next, we simulate an hon-
est party’s interaction with another honest party without using their pass-string,
and prove the indistinguishability of this step from the previous using the obliv-
iousness property of our garbling scheme. Finally, we simulate an honest party’s
interaction with a corrupted party without using the honest party’s pass-string,

408 P.-A. Dupont et al.

and prove the indistinguishability of this step from the previous using the privacy
property of our garbling scheme.

We give a more formal proof of Theorem 1 in the full version of this paper [28].

3.2.3 From Split Randomized Fuzzy Equality to fPAKE

The Randomized Fuzzy Equality (RFE) functionality FP
RFE assumes authenti-

cated channels, which an fPAKE protocol cannot do. In order to adapt RFE to our
setting, we use the split functionality transformation defined by Barak et al. [4].
Barak et al. provide a generic transformation from protocols which require
authenticated channels to protocols which do not. In the “transformed” pro-
tocol, an adversary can engage in two separate instances of the protocol with
the sender and receiver, and they will not realize that they are not talking to
one another. However, it does guarantee that the adversary cannot do anything
beyond this attack. In other words, it provides “session authentication”, meaning
that each party is guaranteed to carry out the entire protocol with the same part-
ner, but not “entity authentication”, meaning that the identity of the partner is
not guaranteed.

Barak et al. achieve this transformation in three steps. First, the parties
generate signing and verification keys, and send one another their verification
keys. Next, the parties sign the list of all keys they have received (which, in a two-
party protocol, consists of only one key), sign that list, and send both list and
signature to all other parties. Finally, they verify all of the signatures they have
received. After this process—called “link initialization”—has been completed,
the parties use those public keys they have exchanged to authenticate subsequent
communication.

We describe the Randomized Fuzzy Equality Split Functionality in Fig. 5. It
is simplified from Fig. 1 in Barak et al. [4] because we only need to consider two
parties and static corruptions.

It turns out that sFP
RFE is enough to realize FP

fPAKE. In fact, the protocol ΠRFE

with the split functionality transformation directly realizes FP
fPAKE. In the full

version of this paper [28], we prove that this is the case.

3.3 An Efficient Circuit f for Hamming Distance

The Hamming distance of two pass-strings pw, pw′ ∈ F
n
p is equal to the number of

locations at which the two pass-strings have the same character. More formally,

d(pw, pw′) := | {j | pw[j] �= pw′[j], j ∈ [n]} |.
We design f for Hamming distance as follows:

1. First, f XORs corresponding (binary) pass-string characters, resulting in a
list of bits indicating the (in)equality of those characters.

2. Then, f feeds those bits into a threshold gate, which returns 1 if at least
n−δ of its inputs are 0, and returns 0 otherwise. f returns the output of that
threshold gate, which is 1 if and only if at least n − δ pass-string characters
match.

Fuzzy Password-Authenticated Key Exchange 409

Fig. 5. Functionality sFP
RFE

Fig. 6. The f circuit

This circuit, illustrated in Fig. 6, is very efficient to garble; it only requires
n ciphertexts. Below, we briefly explain this garbling. Our explanation assumes
familiarity with YGC literature [62, and references therein]. Briefly, garbled gad-
get labels [3] enable the evaluation of modular addition gates for free (there is no
need to include any information in the garbled circuit to enable this addition).
However, for a small modulus m, converting the output of that addition to a

410 P.-A. Dupont et al.

binary decision requires m − 1 ciphertexts. We utilize garbled gadgets with a
modulus of n + 1 in our efficient garbling as follows:

1. The input wire labels encode 0 or 1 modulo n+1. However, instead of having
those input wire labels encode the characters of the two pass-strings directly,
they encode the outputs of the comparisons of corresponding characters. If the
jth character of Pi’s pass-string is 0, then Pi puts the 0 label first; however,
if the jth character of Pi’s pass-string is 1, then Pi flips the labels. Then,
when P1−i is using oblivious transfer to retrieve the label corresponding to
her jth pass-string character, she will retrieve the 0 label if the two characters
are equal, and the 1 label otherwise. (Note that this pre-processing on the
garbler’s side eliminates the need to send X0,0 and X1,1 in Fig. 4.)

2. Compute a n-input threshold gate, as illustrated in Fig. 6 of Yakoubov [62].
This gate returns 0 if the sum of the inputs is above a certain threshold (that
is, if at least n − δ pass-string characters differ), and 1 otherwise. This will
require n ciphertexts.

Thus, a garbling of f consists of n ciphertexts. Since fPAKE requires two such
garbled circuits (Fig. 4), 2n ciphertexts will be exchanged.

Larger Pass-string Characters. If larger pass-string characters are used, then
Step 1 above needs to change to check (in)equality of the larger characters instead
of bits. Step 2 will remain the same. There are several ways to perform an
(in)equality check on characters in Fp for p ≥ 2:

1. Represent each character in terms of bits. Step 1 will then consist of XORing
corresponding bits, and taking an OR or the resulting XORs of each character
to get negated equality. This will take an additional n log(p) ciphertexts for
every pass-string character.

2. Use garbled gadget labels from the outset. We will require a larger OT
(1-out-of-p instead of 1-out-of-2), but nothing else will change.

4 Specialized Construction for Hamming Distance

In the full version of this paper [28], we show that it is not straightforward
to build a secure fPAKE from primitives that are, by design, well-suited for
correcting errors. However, PAKE protocols are appealingly efficient compared
to the garbled circuits used in the prior construction. In this section, we will see
whether the failed approach can be rescued in an efficient way, and we answer
this question in the affirmative.

4.1 Building Blocks

4.1.1 Robust Secret Sharing
We recall the definition of a robust secret sharing scheme, slightly simplified for
our purposes from Cramer et al. [22]. For a vector c ∈ F

n
q and a set A ⊆ [n], we

denote with cA the projection F
n
q → F

|A|
q , i.e., the sub-vector (ci)i∈A.

Fuzzy Password-Authenticated Key Exchange 411

Definition 2. Let Fq be a finite field and n, t, r ∈ N with t < r ≤ n. An
(n, t, r) robust secret sharing scheme (RSS) consists of two probabilistic algo-
rithms Share : Fq → F

n
q and Reconstruct : Fn

q → Fq with the following properties:

– t-privacy: for any s, s′ ∈ Fq, A ⊂ [n] with |A| ≤ t, the projections cA of
c

$← Share(s) and c′
A of c′ $← Share(s′) are identically distributed.

– r-robustness: for any s ∈ Fq, A ⊂ [n] with |A| ≥ r, any c output by Share(s),
and any c̃ such that cA = c̃A, it holds that Reconstruct(c̃) = s.

In other words, an (n, t, r)-RSS is able to reconstruct the shared secret even if
the adversary tampered with up to n − r shares, while each set of t shares is
distributed independently of the shared secret s and thus reveals nothing about
it. We note that we allow for a gap, i.e., r ≥ t + 1. Schemes with r > t + 1 are
called ramp RSS.

4.1.2 Linear Codes
A linear q-ary code of length n and rank k is a subspace C with dimension k of the
vector space F

n
q . The vectors in C are called codewords. The size of a code is the

number of codewords it contains, and is thus equal to qk. The weight of a word
w ∈ F

n
q is the number of its non-zero components, and the distance between two

words is the Hamming distance between them (equivalently, the weight of their
difference). The minimal distance d of a linear code C is the minimum weight of
its non-zero codewords, or equivalently, the minimum distance between any two
distinct codewords.

A code for an alphabet of size q, of length n, rank k, and minimal distance d
is called an (n, k, d)q-code. Such a code can be used to detect up to d − 1 errors
(because if a codeword is sent and fewer than d − 1 errors occur, it will not get
transformed to another codeword), and correct up to �(d−1)/2 errors (because
for any received word, there is a unique codeword within distance �(d − 1)/2).
For linear codes, the encoding of a (row vector) word W ∈ F

k
q is performed by an

algorithm C.Encode : Fk
q → F

n
q , which is the multiplication of W by a so-called

“generating matrix” G ∈ F
k×n
q (which defines an injective linear map). This

leads to a row-vector codeword c ∈ C ⊂ F
n
q .

The Singleton bound states that for any linear code, k + d ≤ n + 1, and
a maximum distance separable (or MDS) code satisfies k + d = n + 1. Hence,
d = n − k + 1 and MDS codes are fully described by the parameters (q, n, k).
Such an (n, k)q-MDS code can correct up to �(n − k)/2 errors; it can detect if
there are errors whenever there are no more than n − k of them.

For a thorough introduction to linear codes and proof of all statements in
this short overview we refer the reader to [55].

Observe that a linear code, due to the linearity of its encoding algorithm, is
not a primitive designed to hide anything about the encoded message. However,
we show in the following lemma how to turn an MDS code into a RSS scheme.

Lemma 3. Let C be a (n + 1, k)q-MDS code. We set L to be the last column
of the generating matrix G of the code C and we denote by C ′ the (n, k)q-MDS

412 P.-A. Dupont et al.

code whose generating matrix G′ is G without the last column. Let Share and
Reconstruct work as follows:

– Share(s) for s ∈ Fq first chooses a random row vector W ∈ F
k
q such that

W · L = s, and outputs c ← C ′.Encode(W) (equivalently, we can say that
Share(s) chooses a uniformly random codeword of C whose last coordinate is
s, and outputs the first n coordinates as c).

– Reconstruct(w) for w ∈ F
n
q first runs C ′.Decode(w). If it gets a vector W ′,

then output s = W ′ · L, otherwise output s
$← Fq.

Then Share and Reconstruct form a (n, t, r)-RSS for t = k−1 and r = �(n+k)/2�.
Proof. Let us consider the two properties from Definition 2.

– t-privacy: Assume |A| = t (privacy for smaller A will follow immediately by
adding arbitrary coordinates to it to get to size t). Let J = A ∪ {n + 1};
note that |J | = t + 1 = k. Note that for the code C, any k coordinates
of a codeword determine uniquely the input to Encode that produces this
codeword (otherwise, there would be two codewords that agreed on k elements
and thus had distance n − k + 1, which is less than the minimum distance
of C). Therefore, the mapping given by EncodeJ : F

k
q → F

|J|
q is bijective;

thus coordinates in J are uniform when the input to Encode is uniform. The
algorithm Share chooses the input to Encode uniformly subject to fixing the
coordinate n+1 of the output. Therefore, the remaining coordinates (i.e., the
coordinates in A) are uniform.

– r-robustness: Note that C has minimum distance n − k + 2, and therefore C ′

has minimum distance n − k + 1 (because dropping one coordinate reduces
the distance by at most 1). Therefore, C ′ can correct �(n − k)/2 = n − r
errors. Since cA = c̃A and |A| ≥ r, there are at most n − r errors in c̃, so
the call to C ′.Decode(c′) made by Reconstruct(c′) will output W ′ = W . Then
Reconstruct(c′) will output s = W ′ · L = W · L.

Note that the Shamir’s secret sharing scheme is exactly the above construction
with Reed-Solomon codes [47].

4.1.3 Implicit-Only PAKE

PAKE protocols can have two types of authentication: implicit authentication,
where at the end of the protocol the two parties share the same key if they
used the same pass-string and random independent keys otherwise; or explicit
authentication where, in addition, they actually know which of the two situations
they are in. A PAKE protocol that only achieves implicit authentication can
provide explicit authentication by adding key-confirmation flows [7].

The standard PAKE functionality FpwKE from [20]is designed with explicit
authentication in mind, or at least considers that success or failure will later be
detected by the adversary when he will try to use the key. Thus, it reveals to the
adversary whether a pass-string guess attempt was successful or not. However,

Fuzzy Password-Authenticated Key Exchange 413

some applications could require a PAKE that does not provide any feedback, and
so does not reveal the situation before the keys are actually used. Observe that,
regarding honest players, already FpwKE features implicit authentication since
the players do not learn anything but their own session key.

Definition of implicit-only PAKE. Hence, we introduce a new notion, called
implicit-only PAKE or iPAKE (see Fig. 7). This ideal functionality is designed
to implement implicit authentication also with respect to an adversary, namely
by not providing him with any feedback upon a dictionary attack. Of course, in
many cases, the parties as well as the adversary can later check whether their
session keys match or not, and so whether the pass-strings were the same or not.
We stress that this is not a leakage from the PAKE protocol itself, but from the
global system.

In terms of functionalities, there are two differences from FpwKE to FiPAKE.
First, the TestPwd query only silently updates the internal state of the record
(from fresh to either compromised or interrupted), meaning that its outcome
is not given to the adversary S. Second, the NewKey query is modified so that
the adversary gets to choose the key for a non-corrupted party only if it uses the

Fig. 7. Functionality FiPAKE

414 P.-A. Dupont et al.

correct pass-string (corruption of the other party is no longer enough), as already
discussed earlier. Without going too much into the details, it is intuitively clear
that simulation of an honest party is hard if the simulator does not know whether
it should proceed the simulation with a pass-string extracted from a dictionary
attack or not. Regarding the output, i.e., the question whether the session keys
computed by both parties should match or look random, the simulator thus gets
help from our functionality by modifying the NewKey queries.

We further alter this functionality to allow for public labels, as shown in the
full version of this paper [28]. The resulting functionality F�-iPAKE idealizes what
we call labeled implicit-only PAKE (or �-iPAKE for short), resembling the notion
of labeled public key encryption as formalized in [56]. In a nutshell, labels are
public authenticated strings that are chosen by each user individually for each
execution of the protocol. Authenticated here means that tampering with the
label can be efficiently detected. Such labels can be used to, e.g., distribute pub-
lic information such as public keys reliably over unauthenticated channels.

A UC -Secure �-iPAKE Protocol . In the seminal paper by Bellovin and
Merritt [8], the Encrypted Key Exchange protocol (EKE) is proposed, which
is essentially a Diffie-Hellman [24] key exchange. The two flows of the proto-
col are encrypted using the pass-string as key with an appropriate symmetric
encryption scheme. The EKE protocol has been further formalized by Bellare
et al. [7] under the name EKE2. We present its labeled variant in Fig. 8. The
idea of appending the label to the symmetric key is taken from [1]. We prove
security of this protocol in the FRO,FIC,FCRS-hybrid model. That is, we use an
ideal random oracle functionality FRO to model the hash function, and ideal
cipher functionality FIC to model the encryption scheme and assume a publicly
available common reference string modeled by FCRS. Formal definitions of these
functionalities are given in the full version of this paper [28].

Fig. 8. Protocol EKE2, in a group G = 〈g〉 of prime order P , with a hash function
H : G3 → {0, 1}k and a symmetric cipher E , D onto G for keys in Fp × L, where L is
the label space.

Fuzzy Password-Authenticated Key Exchange 415

Theorem 4. If the CDH assumption holds in G, the protocol EKE2 depicted in
Fig. 8 securely realizes F�-iPAKE in the FRO,FIC,FCRS-hybrid model with respect
to static corruptions.

We note that this result is not surprising, given that other variants of EKE2 have
already been proven to UC-emulate FpwKE. Intuitively, a protocol with only two
flows not depending on each other does not leak the outcome to the adversary
via the transcript, which explains why EKE2 is implicit-only. Hashing of the
transcript keeps the adversary from biasing the key unless he knows the correct
pass-string or breaks the ideal cipher. For completeness, we include the full proof
in the full version of this paper [28].

4.2 Construction

We show how to combine an RSS with a signature scheme and an �-iPAKE to
obtain an fPAKE. The high-level idea is to fix the issue that arose in the protocol
from the full version of this paper [28] due to pass-strings being used as one-
time pads. Instead, we first expand the pass-string characters to session keys with
large entropy using �-iPAKE. The resulting session keys are then used as a one-
time pad on the entirety of shares of a nonce. We also apply known techniques
from the literature, such as executing the protocol twice with reversed roles to
protect against malicious parties, and adding signatures and labels to prevent
man-in-the-middle attacks. Our full protocol is depicted in Fig. 9. It works as
follows:

1. In the first phase, the two parties aim at enhancing their pass-strings to a
vector of session keys with good entropy. For this, pass-strings are viewed as
vectors of characters. The parties repeatedly execute a PAKE on each of these
characters separately. The PAKE will ensure that the key vectors held by the
two parties match in all positions where their pass-strings matched, and are
uniformly random in all other positions.

2. In the second phase, the two parties exchange nonces of their choice, in such
a way that the nonce reaches the other party only if enough of the key vector
matches. This is done by applying an RSS to the nonce, and sending it to
the other party using the key vector as a one time pad. Both parties do this
symmetrically, each using half of the bits of the key vector. The robustness
property of the RSS ensures that a few non-matching pass-string characters
do not prevent both parties from recovering the other party’s nonce. The final
key is then obtained by adding the nonces (again, as a one-time pad): this is
a scalar in Fq.

When using the RSS from MDS codes described in Lemma 3, the one-time pad
encryption of the shares (which form a codeword) can be viewed as the code-offset
construction for information reconciliation (aka secure sketch) [27,36] applied to
the key vectors. While our presentation goes through RSS as a separate object,
we could instead present this construction using information reconciliation. The
syndrome construction of secure sketches Lemma 3 can also be used here instead
of the code-offset construction.

416 P.-A. Dupont et al.

Fig. 9. Protocol fPAKERSS where q ≈ 2λ is a prime number and + denotes the group
operation in F

n
q . (Share,Reconstruct) is a Robust Secret Sharing scheme with Share :

Fq → F
n
q , and (SigGen → VK × SK, Sign,Vfy) is a signature scheme. The parties

repeatedly execute a labeled implicit-only PAKE protocol with label space VK and key
space F

2
q, which takes inputs from Fp. If at any point an expected message fails to

arrive (or arrives malformed), the parties output a random key.

4.3 Security of fPAKERSS

We show that our protocol realizes functionality FM
fPAKE in the F�-iPAKE-hybrid

model. In a nutshell, the idea is to simulate without the pass-strings by adjusting
the keys outputted by F�-iPAKE to the mask of the pass-strings, which is leaked
by FM

fPAKE.

Theorem 5. If (Share : Fq → F
n
q ,Reconstruct : Fn

q → Fq) is an (n, t, r) RSS and
(SigGen,Sign,Vfy) is an EUF-CMA secure one-time signature scheme, protocol
fPAKERSS securely realizes FM

fPAKE with γ = n − t − 1 and δ = n − r in the
F�-iPAKE-hybrid model with respect to static corruptions.

In particular, if we wish key agreement to succeed as long as there are fewer
than δ errors, we instantiate RSS using the construction of Lemma 3 based on a
(n + 1, k)q MDS code, with k = n − 2δ. This will give r = �(n + k)/2� = n − δ,
so δ will be equal to n − r, as required. It will also give γ = n − t − 1 = 2δ.

We thus obtain the following corollary:

Corollary 6. For any δ and γ = 2δ, given an (n + 1, k)q-MDS code for k =
n−2δ (with minimal distance d = n−k +2) and an EUF-CMA secure one-time
signature scheme, protocol fPAKERSS securely realizes FM

fPAKE in the F�-iPAKE-
hybrid model with respect to static corruptions.

Fuzzy Password-Authenticated Key Exchange 417

Proof sketch of Theorem 5. We start with the real execution of the protocol and
indistinguishably switch to an ideal execution with dummy parties relaying their
inputs to and obtaining their outputs from FM

fPAKE. To preserve the view of the
distinguisher, the environment Z, a simulator S plays the role of the real world
adversary by controlling the communication between FM

fPAKE and Z. During the
proof, we built FM

fPAKE and S by subsequently randomizing pass-strings (since
the final simulation has to work without them) and session keys (since FM

fPAKE

hands out random session keys in certain cases). We have to tackle the following
difficulties, which we will describe in terms of attacks.

– Passive attack: in this attack, Z picks two pass-strings and then observes the
transcript and outputs of the protocol, without having access to any internal
state of the parties. We show that Z cannot distinguish between transcript
and outputs that were either produced using Z’s pass-strings or random pass-
strings. Regarding the outputs, we argue that even in the real execution the
session keys were chosen uniformly at random (with Z not knowing the coins
consumed by this choice) as long as the distance check is reliable. Using prop-
erties of the RSS, we show that this is the case with overwhelming probability.
Regarding the transcript, randomization is straightforward using properties
of the one-time pad.

– Man-in-the-middle attack: in this attack, Z injects a malicious message into
a session of two honest parties. There are several ways to secure protocols
that have to run in unauthenticated channels and are prone to this attack.
Basically, all of them introduce methods to bind messages together to prevent
the adversary from injecting malicious messages. To do this, we need the
labeled version of our iPAKE and a one-time signature scheme3. Unless Z is
able to break a one-time-signature scheme, this attack always results in an
abort.

– Active attack: in this attack, Z injects a malicious message into a session with
one corrupted party, thereby knowing the internal state of this party. We show
how to produce transcript and outputs looking like in a real execution, but
without using the pass-strings of the honest party. Since Z can now actually
decrypt the one-time pad and therefore the transcript reveals the positions
of the errors in the pass-strings, S has to rely on FM

fPAKE revealing the mask
of the pass-strings used in the real execution. If, on the other hand, the pass-
strings are too far away from each other, we show that the privacy property
of the RSS actually hides the number and positions of the errors. This way,
S can use a random pass-string to produce the transcript in that case.

One interesting subtlety that arises is the usage of the iPAKE. Observe that
the UC security notion for a regular PAKE as defined in [20] and recalled in
the full version of this paper [28] provides an interface to the adversary to test

3 Instead of labels and one-time signature, one could just sign all the messages, as
would be done using the split-functionality [4], but this would be less efficient. This
trade-off, with labels, is especially useful when we use a PAKE that admits adding
labels basically for free, as it is the case with the special PAKE protocol we use.

418 P.-A. Dupont et al.

a pass-string once and learn whether it is right or wrong. Using this notion,
our simulator would have to answer to such queries from Z. Since this is not
possible without FM

fPAKE leaking the mask all the time, it is crucial to use the
iPAKE variant that we introduced in Sect. 4.1.3. Using this stronger notion, the
adversary is still allowed one pass-string guess which may affect the output, but
the adversary learns nothing more about the outcome of his guess than he can
infer from whatever access he has to the outputs alone. Since our protocol uses
the outputs of the PAKE as one-time pad keys, it is intuitively clear that by
preventing Z from getting additional leakage about these keys, we protect the
secrets of honest parties.

4.4 Further Discussion

4.4.1 Adaptive Corruptions
Adaptive security of our protocol is not achievable without relying on additional
assumptions. To see this, consider the following attack: Z starts the protocol
with two equal pass-strings and, without corrupting anyone, silently observes
the transcript produced by S using random pass-strings. Afterwards, Z corrupts
both players to learn their internal state. S may now choose a value K. This also
fixes L′ = K since the pass-strings were equal. Now note that S is committed
to E,F since signatures are not equivocable. Since perfect shares are sparse in
F

n
q , the probability that there exists a K such that E − K and F − K are both

perfect shares is negligible. Thus, there do not exist plausible values U, V ′ that
explain the transcript4.

4.4.2 Removing Modeling Assumptions
All modeling assumptions of our protocol come from the realization of the ideal
F�-iPAKE functionality. E.g., the �-iPAKE protocol from Sect. 4.1.3 requires a ran-
dom oracle, an ideal cipher and a CRS. We note that we can remove everything
up to the CRS by, e.g., taking the PAKE protocol introduced in [37]. This proto-
col also securely realizes our F�-iPAKE functionality5. However, it is more costly
than our �-iPAKE protocol since both messages each contain one non-interactive
zero knowledge proof.
4 We note that additional assumptions like assuming erasures can enable an adaptive

security proof.
5 In a nutshell, their protocol is implicit-only for the same reason as the �-iPAKE

protocol we use here: there are only two flows that do not depend on each other,
so the transcript cannot reveal the outcome of a guess unless it reveals the pass-
string to anyone. Regarding the session keys, usage of a hash function takes care
of randomizing the session key in case of a failed dictionary attack. Furthermore,
the protocol already implements labels. A little more detailed, looking at the proof
in [37], the simulator does not make use of the answer of TestPwd to simulate any
messages. Regarding the session key that an honest player receives in an corrupted
session, they are chosen to be random in the simulation (in Expt3). Letting this
happen already in the functionality makes the simulation independent of the answer
of TestPwd also regarding the computation of the session keys.

Fuzzy Password-Authenticated Key Exchange 419

Since fPAKE implies a regular PAKE (simply set δ = 0), [20] gives strong
evidence that we cannot hope to realize FfPAKE without a CRS.

5 Comparison of fPAKE Protocols

In this section, we give a brief comparison of our fPAKE protocols. First, in
Fig. 10, we describe the assumptions necessary for the two constructions, and
the security parameters that they can achieve.

Then, in Fig. 11, we describe the efficiency of the constructions when concrete
primitives (OT/�-iPAKE) are used to instantiate them. fPAKERSS is instantiated
as the construction in Fig. 9 with the �-iPAKE in Fig. 8 and an RSS. fPAKEYGC is
instantiated as the construction in Fig. 4 with the UC-secure oblivious transfer
protocol of Chou and Orlandi [21], with the garbling scheme of Bal et al. [3], and
with the split functionality transformation of Barak et al. [4]. Though fPAKEYGC

can handle any efficiently computable notion of distance, Fig. 11 assumes that
both constructions use Hamming distance (and that, specifically, fPAKEYGC uses
the circuit described in Fig. 6). We describe efficiency in terms of sub-operations
(per-party, not in aggregate).

Fig. 10. Assumptions, distance thresholds and functionality/security gaps achieved by
the two schemes. fPAKERSS is the construction in Fig. 9. fPAKEYGC is the construction
in Fig. 4 with the split functionality transformation of Barak et al. [4].

Fig. 11. Efficiency (in terms of sub-operations) of the two constructions. fPAKERSS is
the construction in Fig. 9 instantiated with the �-iPAKE in Fig. 8. fPAKEYGC is the con-
struction in Fig. 4 instantiated with the UC-secure oblivious transfer protocol of Chou
and Orlandi [21], the garbling scheme of Bal et al. [3], and with the split functionality
transformation of Barak et al. [4].

420 P.-A. Dupont et al.

Note that these concrete primitives each have their own set of required
assumptions. Specifically, the �-iPAKE in Fig. 8 requires a random oracle (RO),
ideal cipher (IC) and common reference string (CRS). The oblivious transfer pro-
tocol of Chou and Orlandi [21] requires a random oracle. The garbling scheme of
Bal et al. [3] requires a mixed modulus circular correlation robust hash function,
which is a weakening of the random oracle assumption.

For fPAKERSS, the factor of n arises from the n times EKE2 is executed.
For fPAKEYGC, the factor of n comes from the garbled circuit. Additionally, in
fPAKEYGC, three rounds of communication come from OT. The last of these is
combined with sending the garbled circuits. Two additional rounds of communi-
cation come from the split functionality transformation. The need for signatures
also arises from the split functionality transformation.
Efficiency Optimizations to fPAKEYGC. We can make several small efficiency
improvements to the fPAKEYGC construction which are not reflected in Fig. 11.
First, instead of using the split functionality transformation of Barak et al. [4],
we can use the split functionality of Camenisch et al. [16]. It uses a split key
exchange functionality to establish symmetric keys, and then uses those to sym-
metrically encrypt and authenticate each flow. While this does not save any
rounds, it does reduce the number of public key operations needed. Second, if
the pass-strings are more than λ bits long (where λ is the security parameter),
OT extensions that are secure against malicious adversaries [2] can be used. If
the pass-strings are fewer than λ bits long, then nothing is to be gained from
using OT extensions, since OT extensions require λ “base OTs”. However, if
the pass-strings are longer—say, if they are some biometric measurement that is
thousands of bits long—then OT extensions would save on the number of public
key operations, at the cost of an extra round of communication.

Acknowledgments. We thank Ran Canetti for guidance on the details of UC key
agreement definitions, and Adam Smith for discussions on coding and information
reconciliation.

This work was supported in part by the European Research Council under the Euro-
pean Community’s Seventh Framework Programme (FP7/2007-2013 Grant Agreement
no. 339563 – CryptoCloud). Leonid Reyzin gratefully acknowledges the hospitality of
École Normale Supérieure, where some of this work was performed. He was supported,
in part, by US NSF grants 1012910, 1012798, and 1422965.

References

1. Abdalla, M., Catalano, D., Chevalier, C., Pointcheval, D.: Efficient two-party
password-based key exchange protocols in the UC framework. In: Malkin, T. (ed.)
CT-RSA 2008. LNCS, vol. 4964, pp. 335–351. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-79263-5 22

2. Afshar, A., Hu, Z., Mohassel, P., Rosulek, M.: How to efficiently evaluate RAM
programs with malicious security. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT
2015, Part I. LNCS, vol. 9056, pp. 702–729. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-46800-5 27

https://doi.org/10.1007/978-3-540-79263-5_22
https://doi.org/10.1007/978-3-540-79263-5_22
https://doi.org/10.1007/978-3-662-46800-5_27
https://doi.org/10.1007/978-3-662-46800-5_27

Fuzzy Password-Authenticated Key Exchange 421

3. Ball, M., Malkin, T., Rosulek, M.: Garbling gadgets for boolean and arithmetic
circuits. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S.
(eds.) ACM CCS 2016, pp. 565–577. ACM Press, New York (2016)

4. Barak, B., Canetti, R., Lindell, Y., Pass, R., Rabin, T.: Secure computation without
authentication. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 361–377.
Springer, Heidelberg (2005). https://doi.org/10.1007/11535218 22

5. Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols
(extended abstract). In: 22nd ACM STOC, pp. 503–513. ACM Press, May 1990

6. Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits. In: Yu,
T., Danezis, G., Gligor, V.D. (eds.) ACM CCS 2012, pp. 784–796. ACM Press,
New York (2012)

7. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure
against dictionary attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol.
1807, pp. 139–155. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-
45539-6 11

8. Bellovin, S.M., Merritt, M.: Encrypted key exchange: password-based protocols
secure against dictionary attacks. In: 1992 IEEE Symposium on Security and Pri-
vacy, pp. 72–84. IEEE Computer Society Press, May 1992

9. Bennett, C.H., Brassard, G., Robert, J.M.: Privacy amplification by public discus-
sion. SIAM J. Comput. 17(2), 210–229 (1988)

10. Bitansky, N., Canetti, R., Kalai, Y.T., Paneth, O.: On virtual grey box obfuscation
for general circuits. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II.
LNCS, vol. 8617, pp. 108–125. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-662-44381-1 7

11. Blanton, M., Hudelson, W.M.P.: Biometric-based non-transferable anonymous cre-
dentials. In: Qing, S., Mitchell, C.J., Wang, G. (eds.) ICICS 2009. LNCS, vol.
5927, pp. 165–180. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-11145-7 14

12. Boyen, X.: Reusable cryptographic fuzzy extractors. In: Atluri, V., Pfitzmann, B.,
McDaniel, P. (eds.) ACM CCS 2004, pp. 82–91. ACM Press, New York (2004)

13. Boyen, X., Dodis, Y., Katz, J., Ostrovsky, R., Smith, A.: Secure remote authen-
tication using biometric data. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS,
vol. 3494, pp. 147–163. Springer, Heidelberg (2005). https://doi.org/10.1007/
11426639 9

14. Boyko, V., MacKenzie, P., Patel, S.: Provably secure password-authenticated key
exchange using Diffie-Hellman. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 156–171. Springer, Heidelberg (2000). https://doi.org/10.1007/3-
540-45539-6 12

15. Brostoff, S., Sasse, M.A.: Are passfaces more usable than passwords? A field trial
investigation. In: McDonald, S., Waern, Y., Cockton, G. (eds.) People and Com-
puters XIV – Usability or Else!, pp. 405–424. Springer, London (2000). https://
doi.org/10.1007/978-1-4471-0515-2 27

16. Camenisch, J., Casati, N., Gross, T., Shoup, V.: Credential authenticated identifi-
cation and key exchange. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp.
255–276. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-
7 14

17. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society Press, October
2001

https://doi.org/10.1007/11535218_22
https://doi.org/10.1007/3-540-45539-6_11
https://doi.org/10.1007/3-540-45539-6_11
https://doi.org/10.1007/978-3-662-44381-1_7
https://doi.org/10.1007/978-3-662-44381-1_7
https://doi.org/10.1007/978-3-642-11145-7_14
https://doi.org/10.1007/978-3-642-11145-7_14
https://doi.org/10.1007/11426639_9
https://doi.org/10.1007/11426639_9
https://doi.org/10.1007/3-540-45539-6_12
https://doi.org/10.1007/3-540-45539-6_12
https://doi.org/10.1007/978-1-4471-0515-2_27
https://doi.org/10.1007/978-1-4471-0515-2_27
https://doi.org/10.1007/978-3-642-14623-7_14
https://doi.org/10.1007/978-3-642-14623-7_14

422 P.-A. Dupont et al.

18. Canetti, R., Dachman-Soled, D., Vaikuntanathan, V., Wee, H.: Efficient password
authenticated key exchange via oblivious transfer. In: Fischlin, M., Buchmann, J.,
Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 449–466. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-30057-8 27

19. Canetti, R., Fuller, B., Paneth, O., Reyzin, L., Smith, A.: Reusable fuzzy extractors
for low-entropy distributions. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT
2016, Part I. LNCS, vol. 9665, pp. 117–146. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49890-3 5

20. Canetti, R., Halevi, S., Katz, J., Lindell, Y., MacKenzie, P.: Universally com-
posable password-based key exchange. In: Cramer, R. (ed.) EUROCRYPT 2005.
LNCS, vol. 3494, pp. 404–421. Springer, Heidelberg (2005). https://doi.org/10.
1007/11426639 24

21. Chou, T., Orlandi, C.: The simplest protocol for oblivious transfer. In: Lauter, K.,
Rodŕıguez-Henŕıquez, F. (eds.) LATINCRYPT 2015. LNCS, vol. 9230, pp. 40–58.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22174-8 3

22. Cramer, R., Damg̊ard, I.B., Döttling, N., Fehr, S., Spini, G.: Linear secret sharing
schemes from error correcting codes and universal hash functions. In: Oswald, E.,
Fischlin, M. (eds.) EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp. 313–336.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6 11

23. Daugman, J.: How iris recognition works. IEEE Trans. Circuits Syst. Video Tech-
nol. 14(1), 21–30 (2004)

24. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Inf. The-
ory 22(6), 644–654 (1976)

25. Dodis, Y., Kanukurthi, B., Katz, J., Reyzin, L., Smith, A.: Robust fuzzy extrac-
tors and authenticated key agreement from close secrets. IEEE Trans. Inf. Theory
58(9), 6207–6222 (2012). https://doi.org/10.1109/TIT.2012.2200290

26. Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy extractors: how to generate
strong keys from biometrics and other noisy data. SIAM J. Comput. 38(1), 97–139
(2008)

27. Dodis, Y., Reyzin, L., Smith, A.: Fuzzy extractors: how to generate strong keys
from biometrics and other noisy data. In: Cachin, C., Camenisch, J.L. (eds.)
EUROCRYPT 2004. LNCS, vol. 3027, pp. 523–540. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24676-3 31

28. Dupont, P.A., Hesse, J., Pointcheval, D., Reyzin, L., Yakoubov, S.: Fuzzy authenti-
cated key exchange. Cryptology ePrint Archive, Report 2017/1111 (2017). https://
eprint.iacr.org/2017/1111

29. Ellison, C., Hall, C., Milbert, R., Schneier, B.: Protecting secret keys with personal
entropy. Future Gener. Comput. Syst. 16(4), 311–318 (2000)

30. Gassend, B., Clarke, D.E., van Dijk, M., Devadas, S.: Silicon physical random
functions. In: Atluri, V. (ed.) ACM CCS 2002, pp. 148–160. ACM Press, New
York (2002)

31. Gasti, P., Sedenka, J., Yang, Q., Zhou, G., Balagani, K.S.: Secure, fast, and energy-
efficient outsourced authentication for smartphones. Trans. Info. For. Sec. 11(11),
2556–2571 (2016). https://doi.org/10.1109/TIFS.2016.2585093

32. Han, J., Chung, A., Sinha, M.K., Harishankar, M., Pan, S., Noh, H.Y., Zhang, P.,
Tague, P.: Do you feel what I hear? Enabling autonomous IoT device pairing using
different sensor types. In: IEEE Symposium on Security and Privacy (2018)

33. Han, J., Harishankar, M., Wang, X., Chung, A.J., Tague, P.: Convoy: physical
context verification for vehicle platoon admission. In: 18th ACM International
Workshop on Mobile Computing Systems and Applications (HotMobile) (2017)

https://doi.org/10.1007/978-3-642-30057-8_27
https://doi.org/10.1007/978-3-662-49890-3_5
https://doi.org/10.1007/978-3-662-49890-3_5
https://doi.org/10.1007/11426639_24
https://doi.org/10.1007/11426639_24
https://doi.org/10.1007/978-3-319-22174-8_3
https://doi.org/10.1007/978-3-662-46803-6_11
https://doi.org/10.1109/TIT.2012.2200290
https://doi.org/10.1007/978-3-540-24676-3_31
https://eprint.iacr.org/2017/1111
https://eprint.iacr.org/2017/1111
https://doi.org/10.1109/TIFS.2016.2585093

Fuzzy Password-Authenticated Key Exchange 423

34. Huang, Y., Katz, J., Evans, D.: Quid-Pro-Quo-tocols: strengthening semi-honest
protocols with dual execution. In: 2012 IEEE Symposium on Security and Privacy,
pp. 272–284. IEEE Computer Society Press, May 2012

35. Huang, Y., Katz, J., Evans, D.: Efficient secure two-party computation using sym-
metric cut-and-choose. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II.
LNCS, vol. 8043, pp. 18–35. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-40084-1 2

36. Juels, A., Wattenberg, M.: A fuzzy commitment scheme. In: ACM CCS 1999, pp.
28–36. ACM Press, November 1999

37. Katz, J., Vaikuntanathan, V.: Round-optimal password-based authenticated key
exchange. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 293–310. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-19571-6 18

38. Kolesnikov, V., Mohassel, P., Rosulek, M.: FleXOR: flexible garbling for XOR
gates that beats free-XOR. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014,
Part II. LNCS, vol. 8617, pp. 440–457. Springer, Heidelberg (2014). https://doi.
org/10.1007/978-3-662-44381-1 25

39. Kolesnikov, V., Rackoff, C.: Password mistyping in two-factor-authenticated
key exchange. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp.
702–714. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70583-
3 57

40. Kolesnikov, V., Schneider, T.: Improved garbled circuit: free XOR gates and
applications. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp.
486–498. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70583-
3 40

41. Lindell, Y.: Fast cut-and-choose based protocols for malicious and covert adver-
saries. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043,
pp. 1–17. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-
1 1

42. Lindell, Y., Pinkas, B.: Secure two-party computation via cut-and-choose oblivious
transfer. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 329–346. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-19571-6 20

43. Lindell, Y., Pinkas, B.: An efficient protocol for secure two-party computation in
the presence of malicious adversaries. J. Cryptol. 28(2), 312–350 (2015)

44. Lindell, Y., Riva, B.: Cut-and-choose Yao-based secure computation in the
online/offline and batch settings. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO
2014, Part II. LNCS, vol. 8617, pp. 476–494. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-662-44381-1 27

45. Maurer, U.: Information-theoretically secure secret-key agreement by NOT authen-
ticated public discussion. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233,
pp. 209–225. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-69053-
0 15

46. Mayrhofer, R., Gellersen, H.: Shake well before use: intuitive and secure pairing of
mobile devices. IEEE Trans. Mob. Comput. 8(6), 792–806 (2009)

47. McEliece, R.J., Sarwate, D.V.: On sharing secrets and Reed-Solomon codes. Com-
mun. ACM 24(9), 583–584 (1981). http://doi.acm.org/10.1145/358746.358762

48. Mohassel, P., Franklin, M.: Efficiency tradeoffs for malicious two-party com-
putation. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006.
LNCS, vol. 3958, pp. 458–473. Springer, Heidelberg (2006). https://doi.org/10.
1007/11745853 30

https://doi.org/10.1007/978-3-642-40084-1_2
https://doi.org/10.1007/978-3-642-40084-1_2
https://doi.org/10.1007/978-3-642-19571-6_18
https://doi.org/10.1007/978-3-662-44381-1_25
https://doi.org/10.1007/978-3-662-44381-1_25
https://doi.org/10.1007/978-3-540-70583-3_57
https://doi.org/10.1007/978-3-540-70583-3_57
https://doi.org/10.1007/978-3-540-70583-3_40
https://doi.org/10.1007/978-3-540-70583-3_40
https://doi.org/10.1007/978-3-642-40084-1_1
https://doi.org/10.1007/978-3-642-40084-1_1
https://doi.org/10.1007/978-3-642-19571-6_20
https://doi.org/10.1007/978-3-662-44381-1_27
https://doi.org/10.1007/978-3-662-44381-1_27
https://doi.org/10.1007/3-540-69053-0_15
https://doi.org/10.1007/3-540-69053-0_15
http://doi.acm.org/10.1145/358746.358762
https://doi.org/10.1007/11745853_30
https://doi.org/10.1007/11745853_30

424 P.-A. Dupont et al.

49. Monrose, F., Reiter, M.K., Wetzel, S.: Password hardening based on keystroke
dynamics. Int. J. Inf. Secur. 1(2), 69–83 (2002)

50. Nielsen, J.B., Orlandi, C.: LEGO for two-party secure computation. In: Reingold,
O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 368–386. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-00457-5 22

51. Nisan, N., Zuckerman, D.: More deterministic simulation in logspace. In: 25th ACM
STOC, pp. 235–244. ACM Press, May 1993

52. Pappu, R., Recht, B., Taylor, J., Gershenfeld, N.: Physical one-way functions.
Science 297(5589), 2026–2030 (2002)

53. Pinkas, B., Schneider, T., Smart, N.P., Williams, S.C.: Secure two-party compu-
tation is practical. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
250–267. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-
7 15

54. Renner, R., Wolf, S.: The exact price for unconditionally secure asymmetric cryp-
tography. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol.
3027, pp. 109–125. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-
540-24676-3 7

55. Roth, R.: Introduction to Coding Theory. Cambridge University Press, New York
(2006)

56. Shoup, V.: A proposal for an ISO standard for public key encryption. Cryptology
ePrint Archive, Report 2001/112 (2001). http://eprint.iacr.org/2001/112

57. Suh, G.E., Devadas, S.: Physical unclonable functions for device authentication
and secret key generation. In: Proceedings of the 44th Annual Design Automation
Conference, pp. 9–14. ACM (2007)

58. Tuyls, P., Schrijen, G.-J., Škorić, B., van Geloven, J., Verhaegh, N., Wolters, R.:
Read-proof hardware from protective coatings. In: Goubin, L., Matsui, M. (eds.)
CHES 2006. LNCS, vol. 4249, pp. 369–383. Springer, Heidelberg (2006). https://
doi.org/10.1007/11894063 29

59. Wang, X., Ranellucci, S., Katz, J.: Authenticated garbling and efficient maliciously
secure two-party computation. In: Thuraisingham, B.M., Evans, D., Malkin, T.,
Xu, D. (eds.) ACM CCS 2017, pp. 21–37. ACM Press, New York (2017)

60. Woodage, J., Chatterjee, R., Dodis, Y., Juels, A., Ristenpart, T.: A new
distribution-sensitive secure sketch and popularity-proportional hashing. In: Katz,
J., Shacham, H. (eds.) CRYPTO 2017, Part III. LNCS, vol. 10403, pp. 682–710.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63697-9 23

61. Wyner, A.D.: The wire-tap channel. Bell Syst. Tech. J. 54, 1355–1387 (1975)
62. Yakoubov, S.: A gentle introduction to Yao’s garbled circuits (2017). http://web.

mit.edu/sonka89/www/papers/2017ygc.pdf
63. Yao, A.C.C.: How to generate and exchange secrets (extended abstract). In: 27th

FOCS, pp. 162–167. IEEE Computer Society Press (Oct 1986)
64. Yu, M.D.M., Devadas, S.: Secure and robust error correction for physical unclon-

able functions. IEEE Des. Test 27(1), 48–65 (2010)
65. Zahur, S., Rosulek, M., Evans, D.: Two halves make a whole: reducing data trans-

fer in garbled circuits using half gates. In: Oswald, E., Fischlin, M. (eds.) EURO-
CRYPT 2015, Part II. LNCS, vol. 9057, pp. 220–250. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46803-6 8

66. Zviran, M., Haga, W.J.: A comparison of password techniques for multilevel
authentication mechanisms. Comput. J. 36(3), 227–237 (1993)

https://doi.org/10.1007/978-3-642-00457-5_22
https://doi.org/10.1007/978-3-642-10366-7_15
https://doi.org/10.1007/978-3-642-10366-7_15
https://doi.org/10.1007/978-3-540-24676-3_7
https://doi.org/10.1007/978-3-540-24676-3_7
http://eprint.iacr.org/2001/112
https://doi.org/10.1007/11894063_29
https://doi.org/10.1007/11894063_29
https://doi.org/10.1007/978-3-319-63697-9_23
http://web.mit.edu/sonka89/www/papers/2017ygc.pdf
http://web.mit.edu/sonka89/www/papers/2017ygc.pdf
https://doi.org/10.1007/978-3-662-46803-6_8

Bloom Filter Encryption
and Applications to Efficient

Forward-Secret 0-RTT Key Exchange

David Derler1(B), Tibor Jager2, Daniel Slamanig3, and Christoph Striecks3

1 Graz University of Technology, Graz, Austria
david.derler@tugraz.at

2 Paderborn University, Paderborn, Germany
tibor.jager@upb.de

3 AIT Austrian Institute of Technology, Vienna, Austria
{daniel.slamanig,christoph.striecks}@ait.ac.at

Abstract. Forward secrecy is considered an essential design goal of
modern key establishment (KE) protocols, such as TLS 1.3, for exam-
ple. Furthermore, efficiency considerations such as zero round-trip time
(0-RTT), where a client is able to send cryptographically protected pay-
load data along with the very first KE message, are motivated by the
practical demand for secure low-latency communication.

For a long time, it was unclear whether protocols that simultaneously
achieve 0-RTT and full forward secrecy exist. Only recently, the first
forward-secret 0-RTT protocol was described by Günther et al. (Euro-
crypt 2017). It is based on Puncturable Encryption. Forward secrecy
is achieved by “puncturing” the secret key after each decryption opera-
tion, such that a given ciphertext can only be decrypted once (cf. also
Green and Miers, S&P 2015). Unfortunately, their scheme is completely
impractical, since one puncturing operation takes between 30 s and sev-
eral minutes for reasonable security and deployment parameters, such
that this solution is only a first feasibility result, but not efficient enough
to be deployed in practice.

In this paper, we introduce a new primitive that we term Bloom Fil-
ter Encryption (BFE), which is derived from the probabilistic Bloom fil-
ter data structure. We describe different constructions of BFE schemes,
and show how these yield new puncturable encryption mechanisms with
extremely efficient puncturing. Most importantly, a puncturing opera-
tion only involves a small number of very efficient computations, plus
the deletion of certain parts of the secret key, which outperforms pre-
vious constructions by orders of magnitude. This gives rise to the first
forward-secret 0-RTT protocols that are efficient enough to be deployed
in practice. We believe that BFE will find applications beyond forward-
secret 0-RTT protocols.

Keywords: Bloom Filter Encryption · Bloom filter · 0-RTT
Forward secrecy · Key exchange · Puncturable encryption

The full version of this paper is available in the IACR Cryptology ePrint archive.

c© International Association for Cryptologic Research 2018
J. B. Nielsen and V. Rijmen (Eds.): EUROCRYPT 2018, LNCS 10822, pp. 425–455, 2018.
https://doi.org/10.1007/978-3-319-78372-7_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78372-7_14&domain=pdf

426 D. Derler et al.

1 Introduction

One central ingredient to secure today’s Internet are key exchange (KE) proto-
cols with the most prominent and widely deployed instantiations thereof in the
Transport Layer Security (TLS) protocol [15]. Using a KE protocol, two parties
(e.g., a server and a client) are able to establish a shared secret (session key)
which afterwards can be used to cryptographically protect data to be exchanged
between those parties. The process of arriving at a shared secret requires the
exchange of messages between client and server, which adds latency overhead to
the protocol. The time required to establish a key is usually measured in round-
trip times (RTTs). A novel design goal, which was introduced by Google’s QUIC
protocol and also adopted in the upcoming version of TLS 1.3, aims at develop-
ing zero round-trip time (0-RTT) protocols with strong security guarantees. So
far, quite some effort was made in the cryptographic literature, e.g. [21,31], and,
indeed, 0-RTT protocols are probably going to be used heavily in the future
Internet as TLS version 1.3 [28] is approaching fast. Already today, Google’s
QUIC protocol [29] is used on Google webservers and within the Chrome and
Opera browsers to support 0-RTT. Unfortunately, none of the above mentioned
protocols are enjoying 0-RTT and full forward secrecy at the same time. Only
recently, Günther, Hale, Jager, and Lauer (GHJL henceforth) [20] made progress
and proposed the first 0-RTT key exchange protocol with full forward secrecy
for all transmitted payload messages. However, although their 0-RTT protocol
offers the desired features, their construction is not yet practical.

In more detail, GHJL’s forward-secure 0-RTT key-exchange solution is based
on puncturable encryption (PE), which they showed can be constructed in a
black-box way from any selectively secure hierarchical identity-based encryption
(HIBE) scheme. Loosely speaking, PE is a public-key encryption primitive which
provides a Puncture algorithm that, given a secret key and ciphertext, produces
an updated secret key that is able to decrypt all ciphertexts except the one it has
been punctured on. PE has been introduced by Green and Miers [19] (GM hence-
forth) who provide an instantiation relying on a binary-tree encryption (BTE)
scheme—or selectively secure HIBE—together with a key-policy attribute-based
encryption (KP-ABE) [18] scheme for non-monotonic (NM) formulas with spe-
cific properties. In particular, the KP-ABE needs to provide a non-standard
property to enhance existing secret keys with additional NOT gates, which is
satisfied by the NM KP-ABE in [27]. Since then, PE has proved to be a valu-
able building block to construct public-key watermarking schemes [13], forward-
secret proxy re-encryption [14], or for achieving chosen-ciphertext security for
fully-homomorphic encryption [11]. However, the mentioned PE instantiations
from [11,13] are based on indistinguishability obfuscation and, thus, do not yield
practical schemes at all while [14] uses the same techniques as in GHJL.

When looking at the two most efficient PE schemes available, i.e., GM and
GHJL, they still come with severe drawbacks. In particular, puncturing in GHJL
is highly inefficient and takes several seconds to minutes on decent hardware
for reasonable deployment parameters. In the GM scheme, puncturing is more
efficient, but the cost of decryption is very significant and increases with the

Bloom Filter Encryption and Applications 427

number of puncturings. More precisely, cost of decryption requires a number of
pairing evaluations that depends on the number of puncturings, and can be in
the order of 210 to 220 for realistic deployment parameters. These issues make
both of them especially unsuitable for the application in forward-secret 0-RTT
key exchange in a practical setting.

Contributions. In this paper, we introduce Bloom filter encryption (BFE),
which can be considered as a variant of PE [11,13,19,20]. The main difference
to other existing PE constructions is that in case of BFE, we tolerate a non-
negligible correctness error.1 This allows us to construct PE and in particular
puncturable key encapsulation (PKEM) schemes with highly efficient puncturing
and in particular where puncturing only requires a few very efficient operations,
i.e., to delete parts of the secret key, but no further expensive cryptographic oper-
ations. Altogether, this makes BFE a very suitable building block to construct
practical forward-secret 0-RTT key exchange. In more detail, our contributions
are as follows:

– We formalize the notion of BFE by presenting a suitable security model.
The intuition behind BFE is to provide a highly efficient decryption and
puncturing. Interestingly, puncturing mainly consists of deleting parts of the
secret key. This approach is in contrast to existing puncturable encryption
schemes, where puncturing and/or decryption is a very expensive operation.

– We propose efficient constructions of BFE. First, we present a direct con-
struction which uses ideas from the Boneh-Franklin identity-based encryption
(IBE) scheme [9]. Additionally, we present a black-box construction from a
ciphertext-policy attibute-based encryption (CP-ABE) scheme that only ne-
eds to be small-universe (i.e., bounded) and support threshold policies, which
allows us to achieve compact ciphertexts. To improve efficiency, we finally
provide a time-based BFE (TB-BFE) from selectively-secure HIBEs.

– To achieve CCA security, we adopt the Fujisaki-Okamoto (FO) transforma-
tion [16] to the BFE setting. This is technically non-trivial, and therefore
we consider it as another interesting aspect of this work. In particular, the
original FO transformation [16] works only for schemes with perfect correct-
ness. Recently, Hofheinz et al. [23] described a variant which works also for
schemes with negligible correctness error. We adopt the FO transformation
to BFE and PKEMs with non-negligible correctness error respectively. To
this end, we formalize additional properties of the PKEM that are required
to apply the FO transform to BFE schemes, and show that our CPA-secure
constructions satisfy them. This serves as a template that allows an easy
application of the FO transform in a black-box manner to BFE schemes.

– We provide a construction of a forward-secret 0-RTT key exchange protocol
(in the sense of GHJL) from TB-BFE. Furthermore, we give a detailed com-
parison of (TB-)BFE with other PE schemes and discuss the efficiency in the
context of the proposed application to forward-secret 0-RTT key exchange.

1 We discuss below why this is not only tolerable, but actually a very reasonable
approach for applications like 0-RTT key exchange.

428 D. Derler et al.

In particular, our construction of forward-secret 0-RTT key-exchange from
TB-BFE has none of the drawbacks mentioned in the introduction (at the
cost of a somewhat larger secret key, that, however, shrinks with the number
of puncturings). Consequently, our forward-secret 0-RTT key exchange can
be seen as a significant step forward to construct very practical forward-secret
0-RTT key exchange protocols.

On tolerating a non-negligible correctness error for 0-RTT. The huge
efficiency gain of our construction stems partially from the relaxation of allowing
a non-negligible correctness error, which, in turn, stems from the potentially non-
negligible false-positive probability of a Bloom filter. While this is unusual for
classical public-key encryption schemes, we consider it as a reasonable approach
to accept a small, but non-negligible correctness error for the 0-RTT mode of a
key exchange protocol, in exchange for the huge efficiency gain.

For example, a 1/10000 chance that the key establishment fails allows to use
0-RTT in 9999 out of 10000 cases on average, which is a significant practical
efficiency improvement. Furthermore, the communicating parties can implement
a fallback mechanism which immediately continues with running a standard 1-
RTT key exchange protocol with perfect correctness, if the 0-RTT exchange fails.
Thus, the resulting protocol can have the same worst-case efficiency as a 1-RTT
protocol, while most of the time 0-RTT is already sufficient to establish a key
and full forward secrecy is always achieved.

Compared to other practical 0-RTT solutions, note that both TLS 1.3 [28]
and QUIC [29] have similar fallback mechanisms. Furthermore, in order to
achieve at least a very weak form of forward secrecy, they define so called tick-
ets [28] or server configuration (SCFG) messages [29], which expire after a cer-
tain time. Forward secrecy is only achieved after the ticket/SCFG message has
expired and the associated secrets have been erased. Therefore the lifetime should
be kept short. If a client connects to a server after the ticket/SCFG message has
expired, then the fallback mechanism is invoked and a full 1-RTT handshake is
performed. In particular, for settings where a client connects only occasionally
to a server, and for reasonably chosen parameters and a moderate life time of
the ticket/SCFG message, which at least guarantees some weak form of forward
secrecy, this requires a full handshake more often than with our approach.

Finally, note that puncturable encryption with perfect (or negligible) cor-
rectness error inherently seems to require secret keys whose size at least grows
linearly with the number of puncturings. This is because any such scheme inher-
ently must (implicitly or explicitly) encode information about the list of punc-
tured ciphertexts into the secret key, which lower-bounds the size of the secret
key. By tolerating a non-negligible correctness error, we are also able to restrict
the growth of the secret key to a limit which seems tolerable in practice.

2 Bloom Filter Encryption

The key idea behind Bloom Filter Encryption (BFE) is that the key pair of such
a scheme is associated to a Bloom filter (BF) [7], a probabilistic data structure

Bloom Filter Encryption and Applications 429

for the approximate set membership problem with a non-negligible false-positive
probability in answering membership queries. The initial secret key sk output
by the key generation algorithm of a BFE scheme corresponds to an empty BF
where all bits are set to 0. Encryption takes a message M and the public key pk,
samples a random element s (acting as a tag for the ciphertext) corresponding
to the universe U of the BF and encrypts a message using pk with respect to
the k positions set in the BF by s. A ciphertext is then basically identified by
s and decryption works as long as at least one index pointed to by s in the BF
is still set to 0. Puncturing the secret key with respect to a ciphertext (i.e., the
tag s of the ciphertext) corresponds to inserting s in the BF (i.e., updating the
corresponding indices to 1 and deleting the corresponding parts of the secret
key). This basically means updating sk such that it no longer can decrypt any
position indexed by s.

2.1 Formal Definition of Bloom Filters

A Bloom filter (BF) [7] is a probabilistic data structure for the approximate set
membership problem. It allows a succinct representation T of a set S of elements
from a large universe U . For elements s ∈ S a query to the BF always answers
1 (“yes”). Ideally, a BF would always return 0 (“no”) for elements s �∈ S, but
the succinctness of the BF comes at the cost that for any query to s �∈ S the
answer can be 1, too, but only with small probability (called the false-positive
probability).

We will only be interested in the original construction of Bloom filters by
Bloom [7], and omit a general abstract definition. Instead we describe the con-
struction from [7] directly. For a general definition refer to [26].

Definition 1 (Bloom Filter). A Bloom filter B for set U consists of algorithms
B = (BFGen,BFUpdate,BFCheck), which are defined as follows.

BFGen(m, k): This algorithm takes as input two integers m, k ∈ N. It first sam-
ples k universal hash functions H1, . . . , Hk, where Hj : U → [m], defines
H := (Hj)j∈[k] and T := 0m (that is, T is an m-bit array with all bits set to
0), and outputs (H,T).

BFUpdate(H,T, u): Given H = (Hj)j∈[k], T ∈ {0, 1}m, and u ∈ U , this algo-
rithm defines the updated state T ′ by first assigning T ′ := T . Then, writing
T ′[i] to denote the i-th bit of T ′, it sets T ′[Hj(u)] := 1 for all j ∈ [k], and
finally returns T ′.

BFCheck(H,T, u): Given H = (Hj)j∈[k], T ∈ {0, 1}m where we write T [i] to
denote the i-th bit of T , and u ∈ U , this algorithm returns a bit b :=∧

j∈[k] T [Hj(u)]

Relevant properties of Bloom filters. Let us summarize the properties of
Bloom filters relevant to our work.

Perfect completeness. A Bloom filter always “recognizes” elements that have
been added with probability 1. More precisely, let S = (s1, . . . , sn) ∈ Un be

430 D. Derler et al.

any vector of n elements of U . Let (H,T0) ←$ BFGen(m, k) and define

Ti = BFUpdate(H,Ti−1, si) for i ∈ [n].

Then for all s∗ ∈ S and all (H,T0) ←$ BFGen(m, k) with m, k ∈ N, it holds
that

Pr [BFCheck(H,Tn, s∗) = 1] = 1.

Compact representation of S. Independent of the size of the set S ⊂ U and
the representation of individual elements of U , the size of representation T is a
constant number of m bits. A larger size of S increases only the false-positive
probability, as discussed below, but not the size of the representation.

Bounded false-positive probability. The probability that an element which
has not yet been added to the Bloom filter is erroneously “recognized” as
being contained in the filter can be made arbitrarily small, by choosing m
and k adequately, given (an upper bound on) the size of S.
More precisely, let S = (s1, . . . , sn) ∈ Un be any vector of n elements of U .
Then for any s∗ ∈ U \ S, we have

Pr [BFCheck(H,Tn, s∗) = 1] ≈ (1 − e−kn/m)k,

where (H,T0) ←$ BFGen(m, k), Ti = BFUpdate(H,Ti−1, si) for i ∈ [n], and
the probability is taken over the random coins of BFGen.

Discussion on the choice of parameters. In order to provide a first intuition
on the choice of parameters n,m and k for the use of BFs within BFE, we
subsequently discuss some reasonable choices. Let us assume that we want to
have n = 220, which amounts to adding for a full year every day about 212

elements to the BF. Then, assuming the optimal number of hash functions k,
and tolerating a false-positive probability of p = 10−3, we obtain a size of the
BF given by m = −n ln p/(ln 2)2, as m ≈ 15Mb ≈ 2MB. The optimal number of
hash functions k is given by k = m/n ln 2, and we will instantiate Bloom filters
with

k := �m/n ln 2	 .

This yields a correctness error p ≈ (1− e−kn/m)k = (1− e−n/m·�m
n 	 ln 2)k ≤ 2−k.

For above parameters n,m and p we obtain k = 10.
Looking ahead to the BFE construction in Sect. 2.5, at a 120-bit security

level (using the pairing-friendly BLS12-381 curve), this choice of parameters
would yield ciphertexts of size < 720 B and public as well as secret keys of
size < 100 B and ≈ 700 MB respectively. Thereby, we need to emphasize that
initially the secret key (representing the empty BF) has its maximum size, but
every puncturing (i.e., addition of an element to the BF), reduces the size of the
secret key. Moreover, we stress that the false-positive probability represents an
upper bound as it assumes that all n = 220 elements are already added to the BF,
i.e., the secret key has already been punctured with respect to 220 ciphertexts.
Finally, when we use our time-based BFE approach (TB-BFE) from Sect. 2.7,
we can even reduce the secret key size by reducing the maximum number of
puncturings at the cost of switching the time intervals more frequently.

Bloom Filter Encryption and Applications 431

2.2 Formal Model of BFE

Subsequently, we introduce the formal model for BFE which essentially is a
variant of puncturable encryption (PE) [11,13,19,20] with the only difference
that with BFE we tolerate a non-negligible correctness error. Thus, although we
are speaking of BFE, we choose to introduce a formal model for PE with a relaxed
correctness definition2 and treat BFE as an instantiation of PE. Consequently,
our Definition 2 below is a variant of the one in [20], with the only difference
that we allow the key generation to take the additional parameters m and k (of
the BF) as input, which specify the correctness error.

For 0-RTT key establishment, our prime application in this paper, we do not
need a full-blown encryption scheme, but only a key-encapsulation mechanisms
(KEM) to transport a symmetric encryption key. Consequently, we chose to
present our definitions by means of a puncturable KEM (PKEM). We stress that
defining PKEM instead of PE does not represent any limitation, as any KEM can
generically be converted into a secure full-blown encryption scheme [16]. Con-
versely, any secure encryption scheme trivially yields a secure KEM. Nonetheless,
for completeness, we give stand-alone definitions of PE tolerating a non-negligible
correctness error in the full version.

Definition 2 (PKEM). A puncturable key encapsulation (PKEM) scheme
with key space K is a tuple (KGen,Enc,Punc,Dec) of PPT algorithms:

KGen(1λ,m, k) : Takes as input a security parameter λ, parameters m and k and
outputs a secret and public key (sk, pk) (we assume that K is implicit in pk).

Enc(pk) : Takes as input a public key pk and outputs a ciphertext C and a sym-
metric key K.

Punc(sk, C) : Takes as input a secret key sk, a ciphertext C and outputs an
updated secret key sk′.

Dec(sk, C) : Takes as input a secret key sk, a ciphertext C and outputs a sym-
metric key K or ⊥ if decapsulation fails.

Correctness. We start by defining correctness of a PKEM scheme. Basically,
here one requires that a ciphertext can always be decapsulated with unpunc-
tured secret keys. However, we allow that if punctured secret keys are used for
decapsulation then the probability that the decapsulation fails is bounded by
some non-negligible function in the scheme’s parameters m, k.

Definition 3 (Correctness). For all λ,m, k,∈ N, any (sk, pk) ←$ KGen(1λ,m,
k) and (C,K) ←$ Enc(pk), we have that Dec(sk, C) = K. Moreover, for any (arbi-
trary interleaved) sequence i = 1, . . . , � (where � is determined by m, k) of invoca-
tions of sk′ ←$ Punc(sk, C ′) for any C ′ �= C it holds that Pr

[
Dec(sk′, C) = ⊥] ≤

μ(m, k), where μ(·) is some (possibly non-negligible) bound.

2 This moreover allows to compactly present our construction of forward-secret 0-RTT
key exchange as this then essentially follows the argumentation in [20].

432 D. Derler et al.

2.3 Additional Properties of a PKEM

In this section, we will define additional properties of a PKEM. One will be
necessary for the application to 0-RTT key exchange from [20]. The others are
required to construct a CCA-secure PKEM via the Fujisaki-Okamoto (FO) trans-
formation, as described in Sect. 2.6. We will show below that our constructions
of CPA-secure PKEMs satisfy these additional properties, and thus are suitable
for our variant of the FO transformation, and to construct 0-RTT key exchange.
Extended correctness. Intuitively, we first require an extended variant of cor-
rectness which demands that (1) decapsulation yields a failure when attempting
to decapsulate under a secret key previously punctured for that ciphertext. This
is analogous to [20]. Second, we additionally demand that (2) decapsulating an
honest ciphertext with the unpuctured key does always succeed and (3) if decryp-
tion does not fail, then the decapsulated value must match the key returned by
the Enc algorithm, for any key sk′ obtained from applying any sequence of punc-
turing operations to the initial secret key sk.

Definition 4 (Extended Correctness). For all λ,m, k, � ∈ N, any (sk, pk)
←$ KGen(1λ,m, k) and (C,K) ←$ Enc(pk) and any (arbitrary interleaved and pos-
sibly empty) sequence C1, . . . , C� of invocations of sk′ ←$ Punc(sk, Ci) it holds
that:

1. Impossibility of false-negatives:
Dec(sk′, Ci) = ⊥ for all i ∈ [�].

2. Perfect correctness of the initial, non-punctured secret key:
If (C,K) ←$ Enc(pk) then Dec(sk, C) = K, where sk is the initial, non-punc-
tured secret key.

3. Semi-correctness of punctured secret keys:
If Dec(sk′, C) �= ⊥ then Dec(sk′, C) = Dec(sk, C).

Separable randomness. We require that the encapsulation algorithm Enc
essentially reads the key K in (C,K) ←$ Enc(pk) directly from its random input
tape. Intuitively, this will later enable us to make the randomness r used by the
encapsulation algorithm Enc dependent on the key K computed by Enc.

Definition 5 (Separable Randomness). Let PKEM = (KGen,Enc,Punc,Dec)
be a PKEM. We say that PKEM has separable randomness, if one can equivalently
write the encapsulation algorithm Enc as

(C,K) ←$ Enc(pk) = Enc(pk; (r,K)),

for uniformly random (r,K) ∈ {0, 1}ρ+λ, where Enc(·; ·) is a deterministic algo-
rithm whose output is uniquely determined by pk and the randomness (r,K) ∈
{0, 1}ρ+λ.

Remark. We note that one can generically construct a separable PKEM from
any non-separable PKEM. Given a non-separable PKEM with encapsulation
algorithm Enc, a separable PKEM with encryption algorithm Enc′ can be
obtained as follows:

Bloom Filter Encryption and Applications 433

Enc′(pk; (r,K′)) : Run (C,K) ←$ Enc(pk; r), set C ′ := (C,K⊕K′) return (C ′,K′).

We need separability in order to apply our variant of the FO transformation,
which is the reason why we have to make it explicit. Alternatively, we could
have started from a non-separable PKEM and applied the above construction.
However, this adds an additional component to the ciphertext, while the con-
struction given in Sect. 2.5 will already be separable, such that we can avoid this
overhead.

Publicly-checkable puncturing. Finally, we need that it is efficiently check-
able whether the decapsulation algorithm outputs ⊥ = Dec(sk, C), given not the
secret key sk, but only the public key pk, the ciphertext C to be decrypted, and
the sequence C1, . . . , Cw at which the secret key sk has been punctured.

Definition 6 (Publicly-Checkable Puncturing). Let Q = (C1, . . . , Cw) be
any list of ciphertexts. We say that PKEM allows publicly-checkable puncturing,
if there exists an efficient algorithm CheckPunct with the following correctness
property.

1. Run (sk, pk) ←$ KGen(1λ,m, k).
2. Compute Ci ←$ Enc(pk) and sk = Punc(sk, Ci) for i ∈ [w].
3. Let C be any string. We require that

⊥ = Dec(sk, C) ⇐⇒ ⊥ = CheckPunct(pk,Q, C).

From a high-level perspective, this additional property will be necessary to sim-
ulate the decryption oracle properly in the CCA security experiment when our
variant of the FO transformation is applied. Together with the second and third
property of Definition 4, it replaces the perfect correctness property required in
the original FO transformation.

Min-entropy of ciphertexts. Following [23], we require that ciphertexts of a
randomness-separable PKEM have sufficient min-entropy, even if K is fixed:

Definition 7 (γ-Spreadness). Let PKEM = (KGen,Enc,Punc,Dec) be a ran-
domness-separable PKEM with ciphertext space C. We say that PKEM is γ-
spread, if for any honestly generated pk, any key K and any C ∈ C

Pr
r ←$ {0,1}ρ [C = Enc(pk; (r,K))] ≤ 2−γ .

2.4 Security Definitions

We define three notions of security for PKEMs. The two “standard” security
notions are indistinguishability under chosen-plaintext (IND-CPA) and chosen-
ciphertext (IND-CCA) attacks. We also consider one-wayness under chosen-plain-
text attacks (OW-CPA). The latter is the weakest notion among the ones consid-
ered in this paper, and implied by both IND-CPA and IND-CCA, but sufficient
for our generic construction of IND-CCA-secure PKEMs.

434 D. Derler et al.

Indistinguishability-based security. Figure 1 defines the IND-CPA and
IND-CCA experiments for PKEMs. The experiments are similar to the secu-
rity notions for conventional KEMs, but the adversary can arbitrarily puncture
the secret key via the Punc oracle and retrieve the punctured secret key via the
Corr oracle, once it has been punctured on the challenge ciphertext C∗.

Fig. 1. Indistinguishability-based security for PKEMs.

Definition 8 (Indistinguishability-Based Security of PKEM). For
T ∈ {IND-CPA, IND-CCA}, we define the advantage of an adversary A in the
T experiment ExpT

A,PKEM(λ,m, k) as

AdvT
A,PKEM(λ,m, k) :=

∣
∣
∣
∣Pr

[
ExpT

A,PKEM(λ,m, k) = 1
]

− 1
2

∣
∣
∣
∣ .

A puncturable key-encapsulation scheme PKEM is T ∈ {IND-CPA, IND-CCA}
secure, if AdvT

A,PKEM(λ,m, k) is a negligible function in λ for all m, k > 0 and
all PPT adversaries A.
One-wayness under chosen-plaintext attack. Figure 2 defines the OW-CPA
experiment. The experiment is similar to the IND-CPA experiment, except that
the goal of the adversary is to recover the encapsulated key, given a random
challenge ciphertext.

Fig. 2. OW-CPA security for PKEMs.

Bloom Filter Encryption and Applications 435

Definition 9 (One-Wayness Under Chosen-Plaintext Attack). We
define the advantage of an adversary A in experiment ExpOW-CPA

A,PKEM(λ,m, k) as

AdvOW-CPA
A,PKEM(λ,m, k) := Pr

[
ExpOW-CPA

A,PKEM(λ,m, k) = 1
]
.

A PKEM is OW-CPA secure, if AdvOW-CPA
A,PKEM(λ,m, k) is a negligible function in λ

for all m, k > 0 and all PPT adversaries A.

2.5 Basic Bloom Filter Encryption

Bilinear maps and notation. In the sequel, let BilGen be an algorithm that,
on input a security parameter 1λ, outputs (p, e, G1, G2, GT , g1, g2) ←$ BilGen(1λ),
where G1, G2, GT are groups of prime order p with bilinear map e : G1 × G2 →
GT and generators gi ∈ Gi for i ∈ {1, 2}.

Construction. In the sequel, let Params := (p, e, G1, G2, GT , g1, g2) ←$ BilGen(
1λ), and gT = e(g1, g2). We will always assume that all algorithms described
below implicitly receive these parameters as additional input. Let B = (BFGen,
BFUpdate,BFCheck) be a Bloom filter for set G1. Furthermore, let G : N → G2

and G′ : GT → {0, 1}λ be cryptographic hash functions (which will be modelled
as random oracles [5] in the security proof).

Let PKEM = (KGen,Enc,Punc,Dec) be defined as follows.

KGen(1λ,m, k) : This algorithm first generates a Bloom filter instance by run-
ning (H,T) ←$ BFGen(m, k). Then it chooses α ←$

Zp, and computes and
returns

sk := (T, (G(i)α)i∈[m]) and pk := (gα
1 ,H).

Remark. The reader familiar with the Boneh-Franklin IBE scheme [9] may
note that the secret key contains m elements of G2, each essentially being a
secret key of the Boneh-Franklin scheme for “identity” i, i ∈ [m], with respect
to “master public-key” gα

1 .

Enc(pk) : This algorithm takes as input a public key pk of the above form. It
samples a uniformly random key K ←$ {0, 1}λ and exponent r ←$

Zp. Then it
computes ij := Hj(gr

1) for (Hj)j∈[k] := H, then yj = e(gα
1 , G(ij))r for j ∈ [k],

and finally
C :=

(
gr
1, (G

′(yj) ⊕ K)j∈[k]

)
.

It outputs (C,K) ∈ (G1 × {0, 1}kλ) × {0, 1}λ.
Remark. Note that for each j ∈ [k], the tuple (gr

1, G
′(yj) ⊕ K) is essentially

a “hashed Boneh-Franklin IBE” ciphertext, encrypting K for “identity” ij =
Hj(gr

1) and with respect to master public key gα
1 , where the identity is derived

deterministically from a “unique” (with overwhelming probability) ciphertext
component gr

1. Thus, the ciphertext C essentially consists of k Boneh-Franklin
ciphertexts that share the same randomness r, each encrypting the same key
K for an “identity” derived deterministically from gr

1.

436 D. Derler et al.

Note also that this construction of Enc satisfies the requirement of separable
randomness from Definition 5. Furthermore, ciphertexts are γ-spread according
to Definition 7 with γ = log2 p, because gr

1 is uniformly distributed over G1.

Punc(sk, C) : Given a ciphertext C :=
(
gr
1, (G

′(yj) ⊕ K)j∈[k]

)
and secret key sk =

(T, (sk[i])i∈[m]), the puncturing algorithm first computes T ′ = BFUpdate(H,
T, gr

1). Then, for each i ∈ [m] it defines

sk′[i] :=

{
sk[i] if T ′[i] = 0, and
⊥ if T ′[i] = 1,

where T ′[i] denotes the i-th bit of T ′. Finally, this algorithm returns

sk′ := (T ′, (sk′[i])i∈[m]).

Remark. Note that the above procedure is correct even if the procedure
is applied repeatedly with different ciphertexts C, since the BFUpdate algo-
rithm only changes bits of T from 0 to 1, but never from 1 to 0. So we can
delete a secret key element sk[i] once T ′[i] has been set to 1. Furthermore,
we have sk′[i] = ⊥ ⇐⇒ T ′[i] = 1. Intuitively, this will ensure that we can
use this key to decrypt a ciphertext C :=

(
gr
1, (G

′(yj) ⊕ K)j∈[k]

)
if and only

if BFCheck(H,T, gr
1) = 0, where (H,T) is the Bloom filter instance contained

in the public key. Note also that the puncturing algorithm essentially only
evaluates k universal hash functions H = (Hj)j∈[k] and then deletes a few
secret keys, which makes this procedure extremely efficient. Finally, observe
that the filter state T can be efficiently re-computed given only public infor-
mation, namely the list of hash functions H contained in pk and the sequence
of ciphertexts C1, . . . , Cw on which a secret key has been punctured. This
yields the existence of an efficient CheckPunct according to Definition 6.

Dec(sk, C) : Given a secret key sk = (T, (sk[i])i∈[m]) and a ciphertext C :=
(C[0], C[i1], . . . , C[ik]) it first checks whether BFCheck(H,T,C[0]) = 1, and
outputs ⊥ in this case. Otherwise, note that BFCheck(H,T,C[0]) = 0 implies
that there exists at least one index i∗ with sk[i∗] �= ⊥. It picks the smallest
index i∗ ∈ {i1, . . . , ik} such that sk[i∗] = G(i∗)α �= ⊥, computes

yi∗ := e(gr
1, G(i∗)α),

and returns K := C[i∗] ⊕ G′(yi∗).
Remark. If BFCheck(H,Tn, C[0]) = 0, then the decryption algorithm per-
forms a “hashed Boneh-Franklin” decryption with a secret key for one of the
identities. Note that Dec(skn, C) �= ⊥ ⇐⇒ BFCheck(H,T,C[0]) = 0, which
guarantees the first extended correctness property required by Definition 4. It
is straightforward to verify that the other two extended correctness properties
of Definition 4 hold as well.

Bloom Filter Encryption and Applications 437

Design choices. We note that we have chosen to base our Bloom filter encryp-
tion scheme on hashed Boneh-Franklin IBE instead of standard Boneh-Franklin
for two reasons. First, it allows us to keep ciphertexts short and independent of
the size of the binary representation of elements of GT . This is useful, because the
recent advances for computing discrete logarithms in finite extension fields [24]
apply to the target group of state-of-the-art pairing-friendly elliptic curve groups.
Recent assessments of the impact of these advances by Menezes et al. [25] as well
as Barbulescu and Duquesne [2] suggest that for currently used efficient curve
families such as BN [4] or BLS [3] curves a conservative choice of parameters for
the 128 bit security level yields sizes of GT elements of ≈ 4600–5500 bits. The
hash function allows us to “compress” these group elements in the ciphertext
to 128 bits. Even if future research enables the construction of bilinear maps
where elements of GT can be represented by 2λ bits for λ-bit security (which
is optimal), it is still preferable to hash group elements to λ bits to reduce the
ciphertext by a factor of about 2. Second, by modelling G′ as a random oracle,
we can reduce security to a weaker complexity assumption.

Correctness error of this scheme. We will now explain that the correctness
error of this scheme is essentially identical to the false-positive probability of
the Bloom filter, up to a statistically small distance which corresponds to the
probability that two independent ciphertexts share the same randomness r.

For m, k ∈ N, let (sk0, pk) ←$ KGen(1λ,m, k), let U := {C :
(C,K) ←$ Enc(pk)} denote the set of all valid ciphertext with respect to pk. Let
S = (C1, . . . , Cn) be a list of n ciphertexts, where (Ci,Ki) ←$ Enc(pk), and run
ski = Punc(ski−1, Ci) for i ∈ [n] to determine the secret key skn obtained from
puncturing sk0 iteratively on all ciphertexts Ci ∈ S.

Now let us consider the probability

Pr [Dec(skn, C∗) �= K∗ : (C∗,K∗) ←$ Enc(pk), C∗ �∈ S]

that a newly generated ciphertext C∗ �∈ S is not correctly decrypted by skn.
To this end, let C∗[0] = gr∗

1 denote the first component of ciphertext C∗ =
(gr∗

1 , C∗
1 , . . . , C∗

k), and likewise let Ci[0] denote the first component of ciphertext
Ci for all Ci ∈ S. Writing skn = (Tn, (skn[i])i∈[m]) and pk = (gα

1 ,H), one can now
verify that we have Dec(skn, C∗) �= K∗ ⇐⇒ BFCheck(H,Tn, C∗[0]) = 1, because
BFCheck(H,Tn, C∗[0]) = 0 guarantees that there exists at least one index j
such that skn[Hj(C∗[0])] �= ⊥, so correctness of decryption follows essentially
from correctness of the Boneh-Franklin scheme. Thus, we have to consider the
probability that BFCheck(H,Tn, C∗[0]) = 1. We distinguish between two cases:

1. There exists an index i ∈ [n] such that C∗[0] = Ci[0]. Note that this implies
immediately that BFCheck(H,Tn, C∗[0]) = 1. However, recall that C∗[0] =
gr∗
1 is a uniformly random element of G1. Therefore the probability that this

happens is upper bounded by n/p, which is negligibly small.
2. C∗[0] �= Ci[0] for all i ∈ [n]. In this case, as explained in Sect. 2.1, the sound-

ness of the Bloom filter guarantees that Pr[BFCheck(H,Tn, C∗[0]) = 1] ≈ 2−k.

438 D. Derler et al.

In summary, the correctness error of this scheme is approximately 2−k + n/p.
Since n/p is negligibly small, this essentially amounts to the correctness error of
the Bloom filter, which in turn depends on the number of ciphertexts n, and the
choice of parameters m, k.

Flexible instantiability of this scheme. Our scheme is highly parameteriz-
able in the sense that we can adjust the size of keys and ciphertexts by adjusting
the correctness error (determined by the choice of parameters m, k that in turn
determine the false-positive probability of the Bloom filter) of our scheme.

Additional properties. As already explained in the remarks after the descrip-
tion of the individual algorithms of PKEM, the scheme satisfies the requirements
of Definitions 4, 5, 6, and 7.

IND-CPA-security. We base IND-CPA-security on a bilinear computational
Diffie-Hellman variant in the bilinear groups generated by BilGen.

Definition 10 (BCDH). We define the advantage of adversary A in solving
the BCDH problem with respect to BilGen as

AdvBCDH
A,BilGen(λ) := Pr [e(g1, h2)rα ←$ A(Params, gr

1, g
α
1 , gα

2 , h2)] ,

where Params = (p, e, G1, G2, GT , g1, g2) ←$ BilGen(1λ), and (gr
1, g

α
1 , gα

2 , h2) ←$

G
2
1 × G2.

Theorem 1. From each efficient adversary B that issues q queries to random
oracle G′ we can construct an efficient adversary A with

AdvBCDH
A,BilGen(λ) ≥ AdvIND-CPA

B,PKEM (λ,m, k)
kq

.

Proof. Algorithm A receives as input a BCDH-challenge tuple (gr
1, g

α
1 , gα

2 , h2). It
runs adversary B as a subroutine by simulating the ExpIND-CPA

B,PKEM(λ,m, k) experi-
ment, including random oracles G and G′, as follows.

First, it defines Q := ∅, runs (H,T) ←$ BFGen(m, k), and defines the pub-
lic key as pk := (gα

1 ,H). Note that this public key is identically distributed
to a public key output by KGen(1λ,m, k). In order to simulate the challenge
ciphertext, the adversary chooses a random key K ←$ {0, 1}λ and k uniformly
random values Yj ←$ {0, 1}λ, j ∈ [k], and defines the challenge ciphertext as
C∗ := (gr

1, (Yj)j∈[k]). Finally, it outputs (pk, C∗,K) to B.
Whenever B queries Punc(sk, ·) on input C = (C[0], . . .), then A updates T

by running T = BFUpdate(H,T,C[0]), and Q ← Q ∪ {C}.
Whenever a random oracle query to G : N → G2 is made (either by A or B),

with input � ∈ N, then A responds with G(�), if G(�) has already been defined.
If not, then A chooses a random integer r� ←$

Zp, and returns G(�), where

G(�) :=

{
h2 · gr�

2 if � ∈ {Hj(gr
1) : j ∈ [k]}, and

gr�
2 otherwise.

Bloom Filter Encryption and Applications 439

This definition of G allows A to simulate the Corr oracle as follows. When B
queries Corr, then it first checks whether C∗ ∈ Q, and returns ⊥ if this does
not hold. Otherwise, note that we must have ∀j ∈ [k] : T [Hj(gr

1)] = 0, where
H = (Hj)j∈[k] and T [�] denotes the �-th bit of T . Thus, by the simulation of
G described above, A is able to compute and return G(�)α = (gr�

2)α = (gα
2)r�

for all � with � �∈ {Hj(gr
1) : j ∈ [k]}, and therefore in particular for all � with

T [�] = 1. This enables the perfect simulation of Corr.
Finally, whenever B queries random oracle G′ : GT → {0, 1}λ on input y,

then A responds with G′(y), if G′(y) has already been defined. If not, then A
chooses a random string Y ←$ {0, 1}λ, assigns G′(y) := Y , and returns G′(y).
Now we have to distinguish between two types of adversaries.

1. A Type-1 adversary B never queries G′ on input of a value y, such that there
exists j ∈ [k] such that y = e(gα

1 , G(Hj(gr
1)))

r. Note that in this case the value
Y ′

j := G′(e(gα
1 , G(Hj(gr

1)))) remains undefined for all j ∈ [k] throughout
the entire experiment. Thus, information-theoretically, a Type-1 adversary
receives no information about the key encrypted in the challenge ciphertext
C∗, and thus can only have advantage AdvIND-CPA

B,PKEM(λ,m, k) = 0, in which case
the theorem holds trivially.

2. A Type-2 adversary queries G′(y) such that there exists j ∈ [k] with y =
e(gα

1 , G(Hj(gr
1)))

r. A uses a Type-2 adversary to solve the BCDH challenge
as follows. At the beginning of the game, it picks two indices (q∗, j∗) ←$ [q] ×
[k] uniformly random. When B outputs y in its q∗-th query to G′, then A
computes and outputs W := y · e(gα

1 , gr
2)

−r� . Since B is a Type-2 adversary,
we know that at some point it will query G′(y) with y = e(gα

1 , G(Hj(gr
1)))

r

for some j ∈ [k]. If this is the q∗-th query and we have j = j∗, which happens
with probability 1/(qk), then we have

W = y · e(gα
1 , gr

2)
−r� = e(gα

1 , G(Hj(gr
1)))

r · e(gα
1 , gr

2)
−r�

= e(gα
1 , h2 · gr�

2)r · e(gα
1 , gr

2)
−r� = e(gα

1 , h2)r · e(gα
1 , gr�

2)r · e(gα
1 , gr

2)
−r�

and thus W is a solution to the given BCDH instance. ��

OW-CPA-Security. The following theorem can either be proven analogous to
Theorem 1, or based on the fact that IND-CPA-security implies OW-CPA-security.
Therefore we give it without proof.

Theorem 2. From each efficient adversary B that issues q queries to random
oracle G′ we can construct an efficient adversary A with

AdvBCDH
A,BilGen(λ) ≥ AdvOW-CPA

B,PKEM(λ,m, k)
kq

.

Remark 1. The construction presented above allows to switch the roles of G1

and G2, i.e., to switch all elements in G1 to G2 and vice versa. This might be
beneficial regarding the size of the secret key when instantiating our construction
using a bilinear group where the representation of elements in G2 requires more
space than the representation of elements in G1.

440 D. Derler et al.

2.6 CCA-Security via Fujisaki-Okamoto

We obtain a CCA-secure PKEM by adopting the Fujisaki-Okamoto (FO) trans-
formation [16] to the PKEM setting. Since the FO transformation does not work
generically for any KEM, we have to use the additional requirements on the
underlying PKEM that have been defined in Sect. 2.3. These additional prop-
erties enable us to overcome the difficulty that the original Fujisaki-Okamoto
transformation from [16] requires perfect correctness, what no puncturable KEM
can provide. We note that Hofheinz et al. [23] give a new, modular analysis of
the FO transformation, which also works for public key encryption schemes with
negligible correctness error, however, it is not applicable to PKEMs with non-
negligible correctness error because the bounds given in [23] provide insufficient
security in this case.

Construction. Let PKEM = (KGen,Enc,Punc,Dec) be a PKEM with separable
randomness according to Definition 5. Recall that this means that we can write
Enc equivalently as (C,K) ←$ Enc(pk) = Enc(pk; (r,K)) for uniformly random
(r,K) ←$ {0, 1}ρ+λ. In the sequel, let R be a hash function (modeled as a random
oracle in the security proof), mapping R : {0, 1}∗ → {0, 1}ρ+λ. We construct a
new scheme PKEM′ = (KGen′,Enc′,Punc′,Dec′) as follows.

KGen′(1λ,m, k) : This algorithm is identical to KGen.
Enc′(pk) : Algorithm Enc′ samples K ←$ {0, 1}λ. Then it computes (r,K′) :=

R(K) ∈ {0, 1}ρ+λ, runs (C,K) ←$ Enc(pk; (r,K)), and returns (C,K′).
Punc′(sk, C) : This algorithm is identical to Punc.
Dec′(sk, C) : This algorithm first runs K ←$ Dec(sk, C), and returns ⊥ if K =

⊥. Otherwise, it computes (r,K′) = R(K), and checks consistency of the
ciphertext by verifying that (C,K) = Enc(pk; (r,K)). If this does not hold,
then it outputs ⊥. Otherwise it outputs K′.

Correctness error and extended correctness. Both the correctness error
and the extended correctness according to Definition 4 are not affected by the
Fujisaki-Okamoto transform. Therefore these properties are inherited from the
underlying scheme. The fact that the first property of Definition 4 is satisfied
makes the scheme suitable for the application to 0-RTT key establishment.

IND-CCA-security. The security proof reduces security of our modified scheme
to the OW-CPA-security of the scheme from Sect. 2.5.

Theorem 3. Let PKEM = (KGen,Enc,Punc,Dec) be a BFKEM scheme that
satisfies the additional properties of Definitions 4 and 6, and which is γ-spread
according to Definition 7. Let PKEM′ = (KGen′,Enc′,Punc′,Dec′) be the scheme
described in Sect. 2.6. From each efficient adversary A that issues at most qO
queries to oracle O and qR queries to random oracle R, we can construct an
efficient adversary B with

AdvOW-CPA
B,PKEM(λ,m, k) ≥ AdvIND-CCA

A,PKEM′(λ,m, k) − qO/2γ

qR
.

Bloom Filter Encryption and Applications 441

Proof. We proceed in a sequence of games. In the sequel, Oi is the implementa-
tion of the decryption oracle in Game i.

Game 0. This is the original IND-CCA security experiment from Definition 8,
played with the scheme described above. In particular, the decryption oracle O0

is implemented as follows:

O0(C)

K ←$ Dec(sk, C)
If K = ⊥ then return ⊥
(r,K′) = R(K)
If (C,K) �= Enc(pk; (r,K)) then return ⊥
Return K′

Recall that K0 denotes the encapsulated key computed by the IND-CCA
experiment. K0 is uniquely defined by the challenge ciphertext C∗ via K0 :=
Dec(sk0, C∗), where sk0 is the initial (non-punctured) secret key, since the scheme
satisfies extended correctness (Definition 4, second property). Let Q0 denote the
event that A ever queries K0 to random oracle R. Note that A has zero advan-
tage in distinguishing K′ from random, until Q0 occurs, because R is a random
function. Thus, we have Pr[Q0] ≥ AdvIND-CCA

A,PKEM′(λ,m, k). In the sequel, we denote
with Qi the event that A ever queries K0 to random oracle R in Game i.

Game 1. This game is identical to Game 0, except that after computing
K ←$ Dec(sk, C) and checking whether K �= ⊥, the experiment additionally checks
whether the adversary has ever queried random oracle R on input K, and returns
⊥ if not. More precisely, the experiment maintains a list

LR = {(K, (r,K′)) : A queried R(K) = (r,K′)}
to record all queries K made by the adversary to random oracle R, along with
the corresponding response (r,K′) = R(K). The decryption oracle O1 uses this
list as follows (boxed statements highlight changes to O0):

O1(C)

K ←$ Dec(sk, C)
If �(r,K′) : (K, (r,K′)) ∈ LR then return ⊥
(r,K′) = R(K)
If (C,K) �= Enc(pk; (r,K)) then return ⊥
Return K′

Note that Games 0 and 1 are perfectly indistinguishable, unless A ever out-
puts a ciphertext C with O1(C) = ⊥, but O0(C) �= ⊥. Note that this happens if
and only if A outputs C such that C = Enc(pk; (r,K)), where r is the randomness
defined by (r,K′) = R(K), but without prior query of R(K).

442 D. Derler et al.

The random oracle R assigns a uniformly random value r ∈ {0, 1}ρ to each
query, so, by the γ-spreadness of PKEM, the probability that the ciphertext C
output by the adversary “matches” the ciphertext produced by Enc(pk; (r,K)) is
2−γ . Since A issues at most qO queries to O1, this yields Pr[Q1] ≥ Pr[Q0]−qO/2γ .

Game 2. We make a minor conceptual modification. Instead of computing
(r,K′) = R(K) by evaluating R, O2 reads (r,K′) from list LR. More precisely:

O2(C)

K ←$ Dec(sk, C)
If �(r,K′) : (K, (r,K′)) ∈ LR then return ⊥
Define (r,K′) to be the unique tuple such that (K, (r,K′)) ∈ LR.
If (C,K) �= Enc(pk; (r,K)) then return ⊥
Return K′

By definition of LR it always holds that (r,K′) = R(K) for all (K, (r,K′)) ∈
LR. Indeed (r,K′), is uniquely determined by K, because (r,K′) = R(K) is a
function. Since R is only evaluated by O1 if there exists a corresponding tuple
(K, (r,K′)) ∈ LR anyway, due to the changes introduced in Game 1, oracle O2 is
equivalent to O1 and we have Pr[Q2] = Pr[Q1].

Game 3. This game is identical to Game 2, except that whenever A queries a
ciphertext C to oracle O3, then O3 first runs the CheckPunct algorithm associated
to PKEM (cf. Definition 6). If CheckPunct(pk,Q, C) = ⊥, then it immediately
returns ⊥. Otherwise, it proceeds exactly like O2. More precisely:

O3(C)

If CheckPunct(pk,Q, C) = ⊥ then return ⊥
K ←$ Dec(sk, C)
If �(r,K′) : (K, (r,K′)) ∈ LR then return ⊥
Define (r,K′) to be the unique tuple such that (K, (r,K′)) ∈ LR.
If (C,K) �= Enc(pk; (r,K)) then return ⊥
Return K′

Recall that by public checkability (Definition 6) we have ⊥ = Dec(sk, C) ⇐⇒
⊥ = CheckPunct(pk,Q, C). Therefore the introduced changes are conceptual,
and Pr[Q3] = Pr[Q2].

Game 4. We modify the secret key used to decrypt the ciphertext. Let sk0
denote the initial secret key generated by the experiment (that is, before any
puncturing operation was performed). O4 uses sk0 to compute K ←$ Dec(sk0, C)
instead of K ←$ Dec(sk, C), where sk is a possibly punctured secret key. More
precisely:

Bloom Filter Encryption and Applications 443

O4(C)

If CheckPunct(pk,Q, C) = ⊥ then return ⊥
K ←$ Dec(sk0, C)
If �(r,K′) : (K, (r,K′)) ∈ LR then return ⊥
Define (r,K′) to be the unique tuple such that (K, (r,K′)) ∈ LR.
If (C,K) �= Enc(pk; (r,K)) then return ⊥
Return K′

For indistinguishability from Game 3, we show that O4(C) = O3(C) for
all ciphertexts C. Let us first consider the case Dec(sk, C) = ⊥. Then pub-
lic checkability guarantees that O4(C) = O3(C) = ⊥, due to the fact that
Dec(sk, C) = ⊥ ⇐⇒ CheckPunct(pk,Q, C) = ⊥.

Now let us consider the case Dec(sk, C) �= ⊥. In this case, the semi-correctness
of punctured keys (3rd requirement of Definition 4) guarantees that Dec(sk, C) =
Dec(sk0, C) = K �= ⊥.

After computing Dec(sk0, C), O4 performs exactly the same operations as
O3 after computing Dec(sk, C). Thus, in this case both oracles are perfectly
indistinguishable, too. This yields that the changes introduced in Game 4 are
purely conceptual, and we have Pr[Q4] = Pr[Q3].

Remark. Due to the fact that we are now using the initial secret key to decrypt
C, we have reached a setting where, due to the perfect correctness of the initial
secret key sk0, essentially a perfectly-correct encryption scheme is used – except
that the decryption oracle implements a few additional abort conditions. Thus,
we can now basically apply the standard Fujisaki-Okamoto transformation, but
we must show that we are also able to simulate the additional abort imposed
by the additional consistency checks properly. To this end, we first replace these
checks with equivalent checks before applying the FO transformation.

Game 5. We replace the consistency checks performed by O4 with an equivalent
check. More precisely, O5 works as follows:

O5(C)

If CheckPunct(pk,Q, C) = ⊥ then return ⊥
K ←$ Dec(sk0, C)
If �(r,K′) : ((K, (r,K′)) ∈ LR ∧ (C,K) = Enc(pk; (r,K))) then return ⊥
Return K′ such that (K, (r,K′)) ∈ LR ∧ (C,K) = Enc(pk; (r,K))

This is equivalent, so that we have Pr[Q5] = Pr[Q4].

Game 6. Observe that in Game 5 we check whether there exists a tuple (r,K′)
with (K, (r,K′)) ∈ LR and (C,K) = Enc(pk; (r,K), where K must match the
secret key computed by K ←$ Dec(sk0, C).

444 D. Derler et al.

In Game 6, we relax this check. We test only whether there exists any tuple
(K̃, (r̃, K̃′)) ∈ LR such that (C, K̃) = Enc(pk; (r̃, K̃) holds. Thus, it is not explic-
itly checked whether K̃ matches the value K ←$ Dec(sk0, C). Furthermore, the
corresponding value K̃′ is returned. More precisely:

O6(C)

If CheckPunct(pk,Q, C) = ⊥ then return ⊥
K ←$ Dec(sk0, C)

If �(r̃, K̃′) : ((K̃, (r̃, K̃′)) ∈ LR ∧ (C, K̃) = Enc(pk; (r̃, K̃))) then return ⊥
Return K̃′ such that (K̃, (r̃, K̃′)) ∈ LR ∧ (C, K̃) = Enc(pk; (r̃, K̃))

By the perfect correctness of the initial secret key sk0, we have

(C, K̃) = Enc(pk; (r̃, K̃)) =⇒ Dec(sk0, C) = K̃,

so that we must have K = K̃. O6 is equivalent to O5, and Pr[Q6] = Pr[Q5].

Game 7. This game is identical to Game 6, except that we change the decryp-
tion oracle again. Observe that the value K computed by K ←$ Dec(sk0, C) is
never used by O6. Therefore the computation of K ←$ Dec(sk0, C) is obsolete,
and we can remove it. More precisely, O7 works as follows.

O7(C)

If CheckPunct(pk,Q, C) = ⊥ then return ⊥
If �(r̃, K̃′) : ((K̃, (r̃, K̃′)) ∈ LR ∧ (C, K̃) = Enc(pk; (r̃, K̃))) then return ⊥
Return K̃′ such that (K̃, (r̃, K̃′)) ∈ LR ∧ (C, K̃) = Enc(pk; (r̃, K̃))

We have only removed an obsolete instruction, which does not change the output
distribution of the decryption oracle. Therefore O7 simulates O6 perfectly, and
we have Pr[Q7] = Pr[Q6].

Reduction to OW-CPA-security. Now we are ready to describe the OW-CPA-
adversary B. B receives (pk, C∗). It samples a uniformly random key K′ ←$ {0, 1}λ

and runs the IND-CCA-adversary A as a subroutine on input (pk, C∗,K′).
Whenever A issues a Punc- or Corr-query, then B forwards this query to the
OW-CPA-experiment and returns the response. In order to simulate the decryp-
tion oracle O, adversary B implements the simulated oracle O7 from Game 7
described above. When A terminates, then B picks a uniformly random entry
(K̂, (r̂, K̂′)) ←$ LR, and outputs K̂.

Analysis of the reduction. Let Q̂ denote the event that A ever queries K0 to
random oracle R. Note that B simulates Game 7 perfectly until Q7 occurs, thus

Bloom Filter Encryption and Applications 445

we have Pr[Q̂] ≥ Pr[Q7]. Summing up, the probability that the value K̂ output
by B matches the key encapsulated in C∗ is therefore at least

Pr[Q̂]
qR

≥ AdvIND-CCA
A,PKEM′(λ,m, k) − qO/2γ

qR
.

��
Remark on the tightness. Alternatively, we could have based the security of
our IND-CCA-secure scheme on the IND-CPA (rather than OW-CPA) security of
PKEM′. In this case, we would have achieved a tighter reduction, as we would
have been able to avoid guessing the index (K̂, (r̂, K̂′)) ←$ LR, at the cost of
requiring stronger security of the underlying scheme.

From IND-CCA-secure KEMs to IND-CCA-secure encryption. It is well-
known that one can generically transform an IND-CCA-secure KEM into an
IND-CCA-secure encryption scheme, by combining it with a CCA-secure sym-
metric encryption scheme [16]. This construction applies to PKEMs as well.

2.7 Time-Based Bloom Filter Encryption

For a standard BFE scheme we have to update the public key after the secret
key has been punctured n-times, because otherwise the false-positive probability
would exceed an acceptable bound. In this section, we describe a construction of a
scheme where the lifetime of the public key is split into time slots. Ciphertexts are
associated with time slots, which assumes loosely synchronized clocks between
sender and receiver of a ciphertext. The main advantage is that for a given
bound on the correctness error, we are able to handle about the same number
of puncturings per time slot as the basic scheme during the entire life time of
the public key. We call this approach time-based Bloom filter encryption. It is
inspired by the time-based approach used to construct puncturable encryption
in [19,20], which in turn is inspired by the construction of forward-secret public-
key encryption by Canetti et al. [10].

Note that a time-based BFE scheme can trivially be obtained from any BFE
scheme, by assigning an individual public/secret key pair for each time slot.
However, if we want to split the life time of the public key into, say, 2t time
slots, then this would of course increase the size of keys by a factor 2t. Since we
want to enable a fine-grained use of time slots, to enable a very large number
of puncturings over the entire lifetime of the public key without increasing the
false positive probability beyond an unacceptable bound, we want to have 2t

as large as possible, but without increasing the size of the public key beyond
an acceptable bound. To this end, we give a direct construction which increases
the size of secret keys only by an additive amount of additional group elements,
which is only logarithmic in the number of time slots. Thus, for 2t time slots we
have to add merely about t elements to the secret key, while the size of public
keys remains even constant.

446 D. Derler et al.

Formal definition. Likewise to considering our Bloom filter KEMs as an
instantiation of a puncturable KEM with non-negligible correctness error, we
can view the time-based approach analogously as an instantiation of a punc-
turable forward-secret KEM (PFSKEM) [20] with non-negligible correctness
error. Consequently, we also chose to stick with the existing formal framework
for PFSKEM, which we present subsequently. It is essentially our BFKEM Def-
inition 2, augmented by time slots and an additional algorithm PuncInt that
allows to puncture a secret key not with respect to a given ciphertext in a given
time slot, but with respect to an entire time slot.

Definition 11 (PFSKEM [20]). A puncturable forward-secret key encapsula-
tion (PFSKEM) scheme is a tuple of the following PPT algorithms:

KGen(1λ,m, k, t) : Takes as input a security parameter λ, parameters m and k
for the Bloom filter, and a parameter t specifying the number of time slots. It
outputs a secret and public key (sk, pk), where we assume that the key-space
K is implicit in pk.

Enc(pk, τ) : Takes as input a public key pk and a time slot τ and outputs a
ciphertext C and a symmetric key K.

PuncCtx(sk, τ, C) : Takes as input a secret key sk, a time slot τ , a ciphertext C
and outputs an updated secret key sk′.

Dec(sk, τ, C) : Takes as input a secret key sk, a time slot τ , a ciphertext C and
outputs a symmetric key K or ⊥ if decapsulation fails.

PuncInt(sk, τ) : Takes as input a secret key sk, a time slot τ and outputs an
updated secret key sk′ for the next slot τ + 1.

Due to the lack of space, we postpone the presentation of correctness, the
additional properties (which are rather straightforward adaptions of the ones
of a PKEM introduced in Sect. 2.3), as well as the IND-CPA/IND-CCA security
notions to the full version.

Hierarchical IB-KEMs. We recall the basic definition of hierarchical identity-
based key encapsulation schemes (HIB-KEMs) and their security.

Definition 12. A (t+1)-level hierarchical identity-based key encapsulation sch-
eme (HIB-KEM) with identity space D = D1 × · · · × Dt+1, ciphertext space C,
and key space K consists of the following four algorithms:

HIBGen(1λ) : Takes as input a security parameter and outputs a key pair (mpk,
sk0). We say that mpk is the master public key, and sk0 is the level-0 secret
key.

HIBDel(ski−1, d) : Takes as input a level-i − 1 secret key ski−1 with i ∈ [t] and
an element d ∈ Di and outputs a level-i secret key ski.

HIBEnc(mpk,d) : Takes as input the master public key mpk and an identity d ∈
D and outputs a ciphertext C ∈ C and a key K ∈ K.

HIBDec(sk�, C) : Takes as input a level-t secret key skt and a ciphertext C, and
outputs a value K ∈ K ∪ {⊥}, where ⊥ is a distinguished error symbol.

Bloom Filter Encryption and Applications 447

Fig. 3. OW-sID-CPA security for HIB-KEMs.

Security definition. We will require only the very weak notion of one-wayness
under selective-ID and chosen-plaintext attacks (OW-sID-CPA) where the cor-
responding experiment is defined in Fig. 3.

Definition 13 (OW-sID-CPA Security of HIB-KEM). We define the
advantage of an adversary A in the OW-sID-CPA experiment ExpOW-sID-CPA

A,HIB-KEM (λ)
as

AdvOW-sID-CPA
A,HIB-KEM (λ) := Pr

[
ExpOW-sID-CPA

A,HIB-KEM (λ) = 1
]
.

We call a HIB-KEM OW-sID-CPA secure, if AdvOW-sID-CPA
A,HIB-KEM (λ) is a negligible

function in λ for all PPT adversaries A.

Time slots. We will construct a Bloom filter encryption scheme that allows to
use 2t time slots. We associate the i-th time slot with the string in {0, 1}t that
corresponds to the canonical t-bit binary representation of integer i.

Following [10,19,20], each time slot forms a leaf of an ordered binary tree
of depth t. The root of the tree is associated with the empty string ε. We asso-
ciate the left-hand descendants of the root with bit string 0, and the right-hand
descendant with 1. Continuing this way, we associate the left descendant of node
0 with 00 and the right descendant with 01, and so on. We continue this proce-
dure for all nodes, until we have constructed a complete binary tree of depth t.
Note that two nodes at level t′ of the tree are siblings if and only if their first
t′ − 1 bits are equal, and that each bit string in {0, 1}t is associated with a leaf
of the tree. Note also that the tree is ordered, in the sense that the leftmost leaf
is associated with 0t, its right neighbour with 0t−11, and so on.

Intuition of the construction. The basic idea behind the construction com-
bines the binary tree approach of [10,19,20] with the Bloom filter encryption
construction described in Sect. 2.5. We use a HIB-KEM with identity space

D = D1 × · · · × Dt+1 = {0, 1} × · · · × {0, 1}
︸ ︷︷ ︸

t times

×[m].

Each bit vector τ ∈ D1 × · · · × Dt = {0, 1}t corresponds to one time slot, and
we set Dt+1 = [m], where m is the size of the Bloom filter. The hierarchical key
delegation property of the HIB-KEM enables the following features:

448 D. Derler et al.

First, given a HIB-KEM key skτ for some “identity” (= time slot) τ ∈ {0, 1}t,
we can derive keys for all Bloom filter bits from skτ by computing

skτ |d ←$ HIBDel(skτ , d) for all d ∈ [m].

Second, in order to advance from time slot τ − 1 to τ , we first compute

skτ |d ←$ HIBDel(skτ , d) for all d ∈ [m].

As soon as we have computed all Bloom filter keys for time slot τ , we “puncture”
the tree “from left to right”, such that we are able to compute all skτ ′ with τ ′ > τ ,
but not any skτ ′ with τ ′ ≤ τ . Here, we proceed exactly as in [10,19,20]. That is,
in order to puncture at time slot τ , we first compute the HIB-KEM secret keys
associated to all right-hand siblings of nodes that lie on the path from node τ to
the root, and then we delete all secret keys associated to nodes that lie on the
path from node τ to the root, including skτ itself. This yields a new secret key,
which contains m level-(t + 1) HIB-KEM secret keys plus at most t HIB-KEM
secret keys for levels ≤ t, even though we allow for 2t time slots.

Construction. Let (HIBGen,HIBDel,HIBEnc,HIBDec) be a HIB-KEM with key
space K and identity space D = D1 × · · · × Dt+1, where D1 = · · · = Dt =
{0, 1}, Dt+1 = [m], and m is the size of the Bloom filter. Since we will only
need selective security, one can instantiate such a HIB-KEM very efficiently, for
example in bilinear groups based on the Boneh-Boyen-Goh [8] scheme, or based
on lattices [1]. In the sequel, we will write {0, 1}t shorthand for D1×· · ·×Dt, but
keep in mind that the HIB-KEM supports more fine-grained key delegation. Let
B = (BFGen,BFUpdate,BFCheck) be a Bloom filter for set {0, 1}λ. Furthermore,
let G′ : K → {0, 1}λ be a hash function (which will be modeled as a random
oracle [5] in the security proof).

We define PKEM = (KGen,Enc,PuncCtx,Dec,PuncInt) as follows.
KGen(1λ,m, k, 2t) : This algorithm first runs ((Hj)j∈[k], T) ←$ BFGen(m, k) to
generate a Bloom filter, and (mpk, skε) ←$ HIBGen(1λ) to generate a key pair.
Finally, the algorithm generates the keys for the first time slot. To this end, it
first computes the HIB-KEM key for identity 0t by recursively computing

sk0d ←$ HIBDel(sk0d−1 , 0) for all d ∈ [t].

Then it computes the m Bloom filter keys for time slot 0t by computing

sk0t|d ←$ HIBDel(sk0t , d) for all d ∈ [m],

and setting skBloom := (sk0t|d)d∈[m]. Finally, it punctures the secret key skε at
position 0t, by computing

sk0d−11 ←$ HIBDel(sk0d−1 , 1) for all d ∈ [t],

and setting sktime := (sk0d−1|1)d∈[t]. The algorithm outputs

sk := (T, skBloom, sktime) and pk := (mpk, (Hj)j∈[k]).

Bloom Filter Encryption and Applications 449

Enc(mpk, τ) : On input mpk and time slot identifier τ ∈ {0, 1}t, this algorithm
first samples a random string c ←$ {0, 1}λ and a random key K ←$ {0, 1}λ. Then
it defines k HIB-KEM identities as d j := (τ,Hj(c)) ∈ D for j ∈ [k], and
generates k HIB-KEM key encapsulations as

(Cj ,Kj) ←$ HIBEnc(mpk,d j) for j ∈ [k].

Finally, it outputs the ciphertext C := (c, (Cj , G
′(Kj) ⊕ K)j∈[k]).

Note that the ciphertexts essentially consists of k + 1 elements of {0, 1}λ,
plus k elements of C, where k is the Bloom filter parameter.
PuncCtx(sk, C) : Given a ciphertext C := (c, (Cj , G

′(Kj)⊕K)j∈[k]), and secret key
sk = (T, skBloom, sktime) where skBloom = (skτ |d)d∈[m], the puncturing algorithm
first computes T ′ = BFUpdate((Hj)j∈[k], T, c). Then, for each i ∈ [m], it defines

sk′
τ |i :=

{
skτ |i if T ′[i] = 0, and
⊥ if T ′[i] = 1,

where T ′[i] denotes the i-th bit of T ′. Finally, this algorithm sets sk′
Bloom =

(sk′
τ |d)d∈[m] and returns sk′ = (T ′, sk′

Bloom, sktime).

Remark. We note again that the above procedure is correct even if the proce-
dure is applied repeatedly, with the same arguments as for the construction from
Sect. 2.5. Also, the puncturing algorithm essentially only evaluates k universal
hash functions and then deletes a few secret keys, which makes this procedure
extremely efficient.

Dec(sk, C) : Given sk = (T, skBloom, sktime) where skBloom = (skτ |d)d∈[m] and
ciphertext C := (c, (Cj , Gj)j∈[k]). If skτ |Hj(c) = ⊥ for all j ∈ [k], then it outputs
⊥. Otherwise, it picks the smallest index j such that skτ |Hj(c) �= ⊥, computes

Kj = HIBDec(skτ |Hj(c), Cj),

and returns K = Gj ⊕ G′(Kj).

Remark. Again we have Dec(sk, C) �= ⊥ ⇐⇒ BFCheck(H,T, c) = 0, which
guarantees extended correctness in the sense of Definition 4.

PuncInt(sk, τ) : Given a secret key sk = (T, skBloom, sktime) for time interval τ ′ < τ ,
the time puncturing algorithm proceeds as follows. First, it resets the Bloom filter
by setting T := 0m. Then it uses the key delegation algorithm to first compute
skτ . This key can be computed from the keys contained in sktime, because sk is
a key for time interval τ ′ < τ . Then it computes

skτ |d ←$ HIBDel(skτ , d) for all d ∈ [m],

and redefines skBloom := (skτ |d)d∈[m]. Finally, it updates sktime by computing the
HIB-KEM secret keys associated to all right-hand siblings of nodes that lie on
the path from node τ to the root and adds the corresponding keys to sktime.
Then it deletes all keys from sktime that lie on the path from τ to the root.

450 D. Derler et al.

Remark. Note that puncturing between time intervals may become relatively
expensive. Depending on the choice of Bloom filter parameters, in particular on
m, this may range between 215 and 225 HIBE key delegations. However, the main
advantage of Bloom filter encryption over previous constructions of puncturable
encryption is that these computations must not be performed “online”, during
puncturing, but can actually be computed separately (for instance, parallel on
a different computer, or when a server has low workload, etc.).

Correctness error of this scheme. With exactly the same arguments as for
the scheme from Sect. 2.5, one can verify that the correctness error of this scheme
is essentially identical to the false positive probability of the Bloom filter, unless
a given ciphertext C = (c, (Cj , Gj)j∈[k]) has a value of c which is identical to
the value of c of any previous ciphertext. Since c is uniformly random in {0, 1}λ,
this probability is approximately 2−k + n · 2−λ.

Extended correctness. It is straightforward to verify that the scheme satisfies
extended correctness in the sense of Definition 4.

CPA Security. Below we state theorem for CPA security of our scheme.

Theorem 4. From each efficient adversary B that issues q queries to random
oracle G′ we can construct an efficient adversary A with

AdvOW-sID-CPA
A,HIB-KEM (λ) ≥ Advs-CPA

B,PFSKEM(λ,m, k)
qk

.

The proof is almost identical to the proof of Theorem 1 and a straightforward
reduction to the security of the underlying HIB-KEM. We sketch it in the full
version.

CCA Security. In order to apply the Fujisaki-Okamoto [16] transform in the
same way as done in Sect. 2.6 to achieve CCA security, we need to show that
the time based variants of the properties presented in Sect. 2.3 are satisfied (for
the formal definitions of those properties we refer the reader to the full version).
First, using a full-blown HIBE as a starting point yields a separable HIB-KEM
as discussed in Sect. 2.3. Hence, the separable randomness is satisfied. More-
over, the publicly-checkable puncturing is given by construction (as in Sect. 2.5).
Regarding extended correctness, the impossibility of false-negatives is given by
construction, the perfect correctness of the non-punctured secret key is given by
the perfect correctness of the HIBE and the semi-correctness of punctured secret
keys is given by construction. Finally, γ-spreadness is also given by construction:
the ciphertext component c is chosen uniformly at random from {0, 1}λ. Con-
sequently, all properties are satisfied. We note that one could omit c in the
ciphertext if the concretely used HIBE ciphertexts are already sufficiently ran-
dom. Considering the HIBE of Boneh-Boyen-Goh [8], HIBE ciphertexts are of
the form (gr, (hI1

1 · · · hIt
t · h0)r,H(e(g1, g2)r) ⊕ K), for honestly generated fixed

group elements g, g1, g2, h0, . . . , ht, universal hash function H, fixed K and fixed

Bloom Filter Encryption and Applications 451

integers I1, . . . , It. Consequently, we have that the ciphertext has at least min-
entropy log2 p with p being the order of the groups. We want to mention that
also many other HIBE construction satisfy the required properties, including,
for example [12,17,30].

Remark on CCA Security. Alternatively to applying the FO transform to a
PFSKEM satisfying the additional properties of extended correctness, separable
randomness, publicly checkable puncturing and γ-spreadness to obtain CCA
security, we can add another HIBE level to obtain IND-CCA security via the
CHK transform [10] in the standard model, and thus to avoid random oracles if
required.

3 Forward-Secret 0-RTT Key Exchange

In [20], GHJL provide a formal model for forward-secret one-pass key exch-
ange (FSOPKE) by extending the one-pass key exchange [22] by Halevi and
Krawczyk. They provide a security model for FSOPKE which requires both
forward secrecy and replay protection from the FSOPKE protocol and captures
unilateral authentication of the server and mutual authentication simultaneously.
We recap the definition of FSOPKE with a slightly adapted correctness notion
in the full version.

Construction. The construction in [20] builds on puncturable forward-secret
key encapsulation (PFSKEM), and we can now directly plug our construction
of time-based BFE (PFSKEM) as defined in Definition 11 into the construction
of [20, Definition 12], yielding a forward-secret 0-RTT key exchange protocols
with non-negligible correctness error:

FSOPKE.KGen(1λ, r, τmax) : Outputs (pk, sk) as follows: if r = server, then
obtain (PK,SK) ← KGen(1λ,m, k, t) (for suitable choices of m, k and t)
and set pk := (PK, τmax) and sk := (SK, τ, τmax), for τ := 1. If r = client,
then set (pk, sk) := (⊥, τ), for τ := 1.

FSOPKE.RunC(sk, pk) : Outputs (sk′,K,M) as follows: for sk = τ and pk =
(PK, τmax), if τ > τmax, then set (sk′,K,M) := (sk,⊥,⊥), otherwise obtain
(C,K) ← Enc(pk, τ) and set (sk′,K,M) := (τ + 1,K, C).

FSOPKE.RunS(sk, pk,M) : Outputs (sk′,K) as follows: for sk = (SK, τ, τmax)
and pk = ⊥, if SK = ⊥ or τ > τmax, then set (sk′,K) := (sk,⊥) and abort.
Obtain K ← Dec(SK, τ,M). If K = ⊥, then set (sk′,K) = (sk,⊥), otherwise
obtain SK ′ ← PuncCtx(SK, τ,M) and set (sk′,K) = ((SK ′, τ, τmax),K).

FSOPKE.TimeStep(sk, r) : Outputs sk′ as follows: if r = server, then for sk =
(SK, τ, τmax): if τ ≥ τmax, then set sk′ := (⊥, τ+1, τmax) and abort, otherwise
obtain SK ′ ← PuncInt(SK, τ) and set sk′ := (SK ′, τ + 1, τmax) and abort. If
r = client, then for sk = τ , set sk′ := τ + 1.

Correctness of the FSOPKE follows from the (extended) correctness property
of the underlying PFSKEM and security guarantees hold due to [20, Theorem
2]. We state the following corollary:

452 D. Derler et al.

Corollary 1. When instantiated with the PFSKEM from Sect. 2.7, the above
FSOPKE construction is a correct and secure FSOPKE protocol (with unilateral
authentication).

3.1 Analysis

In Table 1, we provide an overview of all existing practically instantiable
approaches to construct forward-secret (time-based) PKEM with the one pro-
posed in this paper.3 We compare all schemes for an arbitrary number � of
time slots, where for sake of simplicity we assume � = 2w for some integer w,
(corresponding to our time-based BFE/BFKEM) and only count the expensive
cryptographic operations, i.e., such as group exponentiations and pairings.

Table 1. Overview of the existing approaches to PFSKEM. We denote by p the num-
ber a secret key is already punctured, and � the maximum number of time slots. We
consider the GHJL [20] instantiation with the BKP-HIBE of [6], the GM [19] and
our instantiations with the BBG-HIBE [8], though other HIBE schemes may lead to
different parameters. Finally, note that p ≤ 220, k and m refer to the parameters in
the Bloom filter, where k is some orders of magnitude smaller than λ, i.e., k = 10 vs.
λ = 128, and |Gi| denotes the bitlength of an element from Gi.

Scheme |pk| |sk| |C| Dec PuncCtx PuncInt

� = 2w time slots (PFSKEM)

GM (w + 5)|G1| (2w + 3p + 5)|G2| 3|G1| + |GT | O(p) O(1) O(w2)
GHJL (w + 35)|G2| ≤ 3(p · 2λ + w)|G2| 6|G1| + 2|Zp| O(λ2) O(λ2) O(w2)

Ours (w + 4)|G2| (2me−kp/m + w(2 + w))|G2| 2|G1| + (4k + 2)λ O(k) O(k) O(w2 + m)

To quickly summarize the schemes: The most interesting characteristic of our
approach compared to previous approaches is that our scheme allows to offload
all expensive operation to an offline phase, i.e., to the puncturing of time inter-
vals. Here, in addition to the O(w2) operations which are common to all existing
approaches, we have to generate a number of keys, linear in the size m of the
Bloom filter. We believe that accepting this additional overhead in favor of blaz-
ing fast online puncturing and decryption operations is a viable tradeoff. For the
online phase, our approach has a ciphertext size depending on k (where k = 10
is a reasonable choice), decryption depends on k, the secret key shrinks with
increasing amount of puncturings and one does only require to securely delete
secret keys during puncturing (note that all constructions have to implement a
secure-delete functionality for secret keys within puncturing anyways). In con-
trast, decryption and puncturing in GHJL is highly inefficient and takes several
seconds to minutes on decent hardware for reasonable deployment parameters as
it involves a large amount of O(λ2) HIBE delegations and consequently expen-
sive group operations. In the GM scheme4, puncturing is efficient, but the size of
3 We consider all but the PE schemes from indistinguishability obfuscation [11,13].
4 Although GM supports an arbitrary number d of tags in a ciphertext, we consider

the scheme with only using a single tag (which is actually favourable for the scheme)
to be comparable to GHJL as well as our approach.

Bloom Filter Encryption and Applications 453

the secret key and thus cost of decryption grows in the number of puncturings p.
Hence, it gets impractical very soon. More precisely, cost of decryption requires
a number of pairing evaluations that depends on the number of puncturings, and
can be in the order of 220 for realistic deployment parameters.

4 Conclusion

In this paper we introduced the new notion of Bloom filter encryption (BFE) as
a variant of puncturable encryption which tolerates a non-negligible correctness
error. We presented various BFKEM constructions. The first one is a simple
and very efficient construction which builds upon ideas known from the Boneh-
Franklin IBE. The second one, which is presented in the full version, is a generic
construction from CP-ABEs which achieves constant size ciphertexts. Further-
more, we extended the notion of BFE to the forward-secrecy setting and also
presented a construction of what we call a time-based BFE (TB-BFE). This
construction is based on HIBEs and in particular can be instantiated very effi-
ciently using the Boneh-Boyen-Goh Tiny HIBE [8]. Our time-based BFKEM can
directly be used to instantiate forward-secret 0-RTT key exchange (fs 0-RTT KE)
as in [20].

From a practical viewpoint, our motivation stems from the observation that
forward-secret 0-RTT KE requires very efficient decryption and puncturing. Our
framework—for the first time—allows to realize practical forward-secret 0-RTT
KE, even for larger server loads: while we only require to delete secret keys upon
puncturing, puncturing in [20] requires, besides deleting secret-key components,
additional computations in the order of seconds to minutes on decent hardware.
Likewise, when using [19] in the forward-secret 0-RTT KE protocol given in [20],
one requires computations in the order of the current number of puncturings
upon decryption, while we achieve decryption to be independent of this number.
Finally, we believe that BFE will find applications beyond forward-secret 0-RTT
KE protocols.

Acknowledgments. This research was supported by H2020 project Prismacloud,
grant agreement n◦644962, H2020 project Credential, grant agreement n◦653454, and
the German Research Foundation (DFG), project JA 2445/2-1. We thank Kai Gellert
and all anonymous reviewers for their valuable comments.

References

1. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 28

2. Barbulescu, R., Duquesne, S.: Updating key size estimations for pairings. Cryptol-
ogy ePrint Archive, Report 2017/334 (2017). http://eprint.iacr.org/2017/334

3. Barreto, P.S.L.M., Lynn, B., Scott, M.: Constructing elliptic curves with prescribed
embedding degrees. In: Cimato, S., Persiano, G., Galdi, C. (eds.) SCN 2002. LNCS,
vol. 2576, pp. 257–267. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-36413-7 19

https://doi.org/10.1007/978-3-642-13190-5_28
http://eprint.iacr.org/2017/334
https://doi.org/10.1007/3-540-36413-7_19
https://doi.org/10.1007/3-540-36413-7_19

454 D. Derler et al.

4. Barreto, P.S.L.M., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In:
Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer,
Heidelberg (2006). https://doi.org/10.1007/11693383 22

5. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: Ashby, V. (ed.) ACM CCS 1993, Fairfax, Virginia, USA, pp.
62–73. ACM Press, 3–5 November 1993

6. Blazy, O., Kiltz, E., Pan, J.: (Hierarchical) identity-based encryption from affine
message authentication. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS,
vol. 8616, pp. 408–425. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-44371-2 23

7. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun.
ACM 13(7), 422–426 (1970)

8. Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption with con-
stant size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494,
pp. 440–456. Springer, Heidelberg (2005). https://doi.org/10.1007/11426639 26

9. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44647-8 13

10. Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme.
In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 255–271. Springer,
Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9 16

11. Canetti, R., Raghuraman, S., Richelson, S., Vaikuntanathan, V.: Chosen-ciphertext
secure fully homomorphic encryption. In: Fehr, S. (ed.) PKC 2017. LNCS, vol.
10175, pp. 213–240. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-
662-54388-7 8

12. Chen, J., Wee, H.: Fully, (almost) tightly secure IBE and dual system groups.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 435–460.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1 25

13. Cohen, A., Holmgren, J., Nishimaki, R., Vaikuntanathan, V., Wichs, D.: Water-
marking cryptographic capabilities. In: Wichs, D., Mansour, Y. (eds.) 48th ACM
STOC, Cambridge, MA, USA, pp. 1115–1127. ACM Press, 18–21 June 2016

14. Derler, D., Krenn, S., Lorünser, T., Ramacher, S., Slamanig, D., Striecks, C.: Revis-
iting proxy re-encryption: forward secrecy, improved security, and applications. In:
Abdalla, M., Dahab, R. (eds.) PKC 2018. LNCS, vol. 10769, pp. 219–250. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-76578-5 8

15. Dierks, T.: The Transport Layer Security (TLS) Protocol Version 1.2. RFC 5246,
August 2008. https://rfc-editor.org/rfc/rfc5246.txt

16. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-
tion schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–554.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1 34

17. Gentry, C., Silverberg, A.: Hierarchical ID-based cryptography. In: Zheng, Y. (ed.)
ASIACRYPT 2002. LNCS, vol. 2501, pp. 548–566. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-36178-2 34

18. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: Juels, A., Wright, R.N., Vimercati,
S. (eds.) ACM CCS 2006, Alexandria, Virginia, USA, pp. 89–98. ACM Press, 30
October –3 November 2006. Cryptology ePrint Archive Report 2006/309

19. Green, M.D., Miers, I.: Forward secure asynchronous messaging from puncturable
encryption. In: 2015 IEEE Symposium on Security and Privacy, San Jose, CA,
USA, pp. 305–320. IEEE Computer Society Press, 17–21 May 2015

https://doi.org/10.1007/11693383_22
https://doi.org/10.1007/978-3-662-44371-2_23
https://doi.org/10.1007/978-3-662-44371-2_23
https://doi.org/10.1007/11426639_26
https://doi.org/10.1007/3-540-44647-8_13
https://doi.org/10.1007/3-540-39200-9_16
https://doi.org/10.1007/978-3-662-54388-7_8
https://doi.org/10.1007/978-3-662-54388-7_8
https://doi.org/10.1007/978-3-642-40084-1_25
https://doi.org/10.1007/978-3-319-76578-5_8
https://rfc-editor.org/rfc/rfc5246.txt
https://doi.org/10.1007/3-540-48405-1_34
https://doi.org/10.1007/3-540-36178-2_34

Bloom Filter Encryption and Applications 455

20. Günther, F., Hale, B., Jager, T., Lauer, S.: 0-RTT key exchange with full for-
ward secrecy. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS,
vol. 10212, pp. 519–548. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-56617-7 18

21. Hale, B., Jager, T., Lauer, S., Schwenk, J.: Simple security definitions for and
constructions of 0-RTT key exchange. In: Gollmann, D., Miyaji, A., Kikuchi, H.
(eds.) ACNS 2017. LNCS, vol. 10355, pp. 20–38. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-61204-1 2

22. Halevi, S., Krawczyk, H.: One-pass HMQV and asymmetric key-wrapping. In:
Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol.
6571, pp. 317–334. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-19379-8 20

23. Hofheinz, D., Hövelmanns, K., Kiltz, E.: A modular analysis of the fujisaki-okamoto
transformation. Cryptology ePrint Archive, Report 2017/604 (2017). http://eprint.
iacr.org/2017/604

24. Kim, T., Barbulescu, R.: Extended tower number field sieve: a new complexity for
the medium prime case. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS,
vol. 9814, pp. 543–571. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53018-4 20

25. Menezes, A., Sarkar, P., Singh, S.: Challenges with assessing the impact of NFS
advances on the security of pairing-based cryptography. IACR Cryptology ePrint
Archive 2016, 1102 (2016). http://eprint.iacr.org/2016/1102

26. Naor, M., Yogev, E.: Bloom filters in adversarial environments. In: Gennaro, R.,
Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 565–584. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-7 28

27. Ostrovsky, R., Sahai, A., Waters, B.: Attribute-based encryption with non-
monotonic access structures. In: Ning, P., di Vimercati, S.D.C., Syverson, P.F.
(eds.) ACM CCS 2007, Alexandria, Virginia, USA, pp. 195–203. ACM Press, 28–
31 October 2007

28. Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.3. Internet-
Draft draft-ietf-tls-tls13-20, Internet Engineering Task Force, April 2017. Work in
Progress. https://datatracker.ietf.org/doc/html/draft-ietf-tls-tls13-20

29. Thomson, M., Iyengar, J.: QUIC: A UDP-Based Multiplexed and Secure Trans-
port. Internet-Draft draft-ietf-quic-transport-02, Internet Engineering Task Force,
March 2017. Work in Progress. https://datatracker.ietf.org/doc/html/draft-ietf-
quic-transport-02

30. Waters, B.: Dual system encryption: realizing fully secure IBE and HIBE under
simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–
636. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8 36

31. Wu, D.J., Taly, A., Shankar, A., Boneh, D.: Privacy, discovery, and authentication
for the internet of things. In: Askoxylakis, I., Ioannidis, S., Katsikas, S., Meadows,
C. (eds.) ESORICS 2016. LNCS, vol. 9879, pp. 301–319. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-45741-3 16

https://doi.org/10.1007/978-3-319-56617-7_18
https://doi.org/10.1007/978-3-319-56617-7_18
https://doi.org/10.1007/978-3-319-61204-1_2
https://doi.org/10.1007/978-3-319-61204-1_2
https://doi.org/10.1007/978-3-642-19379-8_20
https://doi.org/10.1007/978-3-642-19379-8_20
http://eprint.iacr.org/2017/604
http://eprint.iacr.org/2017/604
https://doi.org/10.1007/978-3-662-53018-4_20
https://doi.org/10.1007/978-3-662-53018-4_20
http://eprint.iacr.org/2016/1102
https://doi.org/10.1007/978-3-662-48000-7_28
https://datatracker.ietf.org/doc/html/draft-ietf-tls-tls13-20
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-02
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-02
https://doi.org/10.1007/978-3-642-03356-8_36
https://doi.org/10.1007/978-3-319-45741-3_16

OPAQUE: An Asymmetric PAKE
Protocol Secure Against
Pre-computation Attacks

Stanislaw Jarecki1(B), Hugo Krawczyk2, and Jiayu Xu1

1 University of California, Irvine, USA
stasio@ics.uci.edu, jiayux@uci.edu

2 IBM Research, Yorktown Heights, USA
hugo@ee.technion.ac.il

Abstract. Password-Authenticated Key Exchange (PAKE) protocols
allow two parties that only share a password to establish a shared key
in a way that is immune to offline attacks. Asymmetric PAKE (aPAKE)
strengthens this notion for the more common client-server setting where
the server stores a mapping of the password and security is required even
upon server compromise, that is, the only allowed attack in this case is
an (inevitable) offline exhaustive dictionary attack against individual
user passwords. Unfortunately, most suggested aPAKE protocols (that
dispense with the use of servers’ public keys) allow for pre-computation
attacks that lead to the instantaneous compromise of user passwords
upon server compromise, thus forgoing much of the intended aPAKE
security. Indeed, these protocols use – in essential ways – deterministic
password mappings or use random “salt” transmitted in the clear from
servers to users, and thus are vulnerable to pre-computation attacks.

We initiate the study of Strong aPAKE protocols that are secure as
aPAKE’s but are also secure against pre-computation attacks. We formal-
ize this notion in the Universally Composable (UC) settings and present
two modular constructions using an Oblivious PRF as a main tool. The
first builds a Strong aPAKE from any aPAKE (which in turn can be con-
structed from any PAKE [18]) while the second builds a Strong aPAKE
from any authenticated key-exchange protocol secure against reverse
impersonation (a.k.a. KCI). Using the latter transformation, we show a
practical instantiation of aUC-secure Strong aPAKE in theRandomOracle
model. The protocol (“OPAQUE”) consists of 2 messages (3 with mutual
authentication), requires 3 and 4 exponentiations for server and client,
respectively (2 to 4 ofwhich canbefixed-base depending on optimizations),
provides forward secrecy, is PKI-free, supports user-side hash iterations,
and allows a user-transparent server-side threshold implementation.

1 Introduction

Passwords constitute the most ubiquitous form of authentication in the Internet,
from the most mundane to the most sensitive applications. The almost universal

Extended version available from IACR Cryptology ePrint Archive 2018:163.

c© International Association for Cryptologic Research 2018
J. B. Nielsen and V. Rijmen (Eds.): EUROCRYPT 2018, LNCS 10822, pp. 456–486, 2018.
https://doi.org/10.1007/978-3-319-78372-7_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78372-7_15&domain=pdf

OPAQUE: An Asymmetric PAKE Protocol Secure 457

password authentication method in practice relies on TLS/SSL and consists of
the user sending its password to the server under the protection of a client-to-
server confidential TLS channel. At the server, the password is decrypted and
verified against a one-way image typically computed via hash iterations applied
to the password and a random “salt” value. Both the password image and salt
are stored for each user in a so-called “password file.” In this way, an attacker
who succeeds in stealing the password file is forced to run an exhaustive offline
dictionary attack to find users’ passwords given a set (“dictionary”) of candidate
passwords. The two obvious disadvantages of this approach are: (i) the password
appears in cleartext at the server during login; and (ii) security breaks if the TLS
channel is established with a compromised server’s public key (a major concern
given today’s too-common PKI failures1).

Password protocols have been extensively studied in the crypto literature –
including in the above client-server setting where the user is assumed to possess
an authentic copy of the server’s public key [19,20], but the main focus has been
on password-only protocols where the user does not need to rely on any outside
keying material (such as public keys). The basic setting considers two parties
that share the same low-entropy password with the goal of establishing shared
session keys secure against offline dictionary attacks, namely, against an active
attacker that possesses a small dictionary from which the password has been
chosen. The only viable option for the attacker should be the inevitable online
impersonation attack with guessed passwords. Such model, known as password-
authenticated key exchange (PAKE), was first studied by Bellovin and Merritt [5]
and later formalized by Bellare et al. [4] in the game-based indistinguishability
approach. Canetti et al. [12] formalized PAKE in the Universally Composable
(UC) framework [11], which better captures PAKE security issues such as the
use of arbitrary password distributions, the inputting of wrong passwords by the
user, and the common use in practice of related passwords for different services.

Whereas the cryptographic literature on PAKE’s focuses on the above basic
setting, in practice the much more common application of password protocols is
in the client-server setting. However, sharing the same password between user
and server would mean that a break to the server leaks plaintext passwords
for all its users. Thus, what’s needed is that upon a server compromise, and
the stealing of the password file, an attacker is forced to perform an exhaustive
offline dictionary attack as in the above TLS scenario. No other attack, except
for an inevitable online guessing attack, should be feasible. In particular, the
two main shortcomings of password-over-TLS mentioned earlier - reliance on
public keys and exposure of the password to the server - need to be eliminated.
This setting, known as aPAKE, for asymmetric PAKE (also called augmented
or verifier-based), was introduced by Bellovin and Merrit [6], later formalized in
the simulation-based approach by Boyko et al. [10], and in the UC framework by

1 PKI failures include stealing of server private keys, software that does not verify
certificates correctly, users that accept invalid or suspicious certificates, certificates
issued by rogue CAs, rogue CAs accepted as roots of trust, servers that share their
TLS keys with others, e.g. CDN providers or security monitoring software; and more.

458 S. Jarecki et al.

Gentry et al. [18]. Early protocols proven in the simulation-based model include
[10,28,29]. Later, Gentry et al. [18] presented a compiler that transforms any UC-
PAKE protocol into a UC-aPAKE (adding an extra round of communication and
a client’s signature). This was followed by [24] who show the first simultaneous
one-round adaptive UC-aPAKE protocol. In addition, several aPAKE protocols
targeting practicality have been proposed, most with ad-hoc security arguments,
and some have been (and are being) considered for standardization (see below).

A common unfortunate property of all these aPAKE protocols, including
those being proposed for practical use and regardless of their underlying for-
malism, is that they are all vulnerable to pre-computation attacks. Namely, the
attacker A can pre-compute a table of values based on a passwords dictionary D,
so as soon as A succeeds in compromising a server it can instantly find a user’s
password. This significantly weakens the benefits of security against server com-
promise that motivate the aPAKE notion in the first place. Moreover, while
current definitions require that the attacker cannot exploit a server compromise
without incurring a workload proportional to the dictionary size |D|, these def-
initions allow all this workload to be spent before the actual server compromise
happens. Indeed, this weakening in the existing aPAKE security definition [18]
is needed to accommodate aPAKE protocols that store a one-way deterministic
mapping of the user’s password at the server, say H(pw). Such protocols triv-
ially fall to a pre-computation attack as the attacker A can build a table of
(H(pw), pw) pairs for all pw ∈ D, and once it compromises the server, it finds
the value H(pw) associated with a user and immediately, in log(|D|) time, finds
that user’s password. Such devastating attack can be mitigated by “personaliz-
ing” the password map, e.g., hashing the password together with the user id. This
forces A to pre-compute separate tables for individual users, yet all this effort
can still be spent before the actual server compromise. Note that in the case of
passwords transmitted over TLS, pre-computation is prevented since password
are hashed with a random salt visible to the server only. In contrast, existing
aPAKE protocols that do not rely on PKI, either don’t use salt or if they do, the
salt is transmitted from server to user during login in the clear2. Given that pass-
word stealing via server compromise is the main avenue for collecting billions of
passwords by attackers, the above vulnerability of existing aPAKE protocols to
pre-computation attacks is a serious flaw, and in this aspect password-over-TLS
is more secure than all known aPAKE schemes.

Our Contributions

We initiate the study of Strong aPAKE (SaPAKE) protocols that strengthen
the aPAKE security notion by disallowing pre-computation attacks. We formalize
this notion in the Universally Composable (UC) model by modifying the aPAKE
functionality from [18] to eliminate an adversarial action which allowed such pre-
computation attacks. As we explain above, allowing pre-computation attacks was
indeed necessary to model the security of existing aPAKE protocols.
2 While aPAKE protocols are not intended to run over TLS, we point out that even in

such a case, the transmitted salt would be open to a straightforward active attack.

OPAQUE: An Asymmetric PAKE Protocol Secure 459

The next contribution is building Strong aPAKE (SaPAKE) protocols. For
this we present two generic constructions. The first builds the SaPAKE protocol
from any aPAKE protocol (namely one that satisfies the original definition from
[18]) so that one can “salvage” existing aPAKE protocols. To do so we resort
to Oblivious PRF (OPRF) functions [17,22], namely, a PRF with an associated
two-party protocol that in our case is run between a server S that stores a PRF
key k and a user U with a password pw. At the end of the interaction, U learns the
PRF output Fk(pw) and S learns nothing (in particular, nothing about pw). We
show that by preceding any aPAKE protocol with an OPRF interaction in which
U computes the value rw = Fk(pw) with the help of S and uses rw as the password
in the aPAKE protocol, one obtains a Strong aPAKE protocol. We show that if
the OPRF and the given aPAKE protocol are, respectively, UC realizations of
the OPRF functionality (defined in [22]) and the original aPAKE functionality
from [18], the resultant scheme realizes our UC functionality FSaPAKE.

Our second transformation consists of the composition of an OPRF as above
with a regular authenticated key exchange protocol AKE. We require UC secu-
rity for the AKE protocol as well as a property known as resistance to KCI
attacks. The latter means that an attacker that learns the secret keys of one
party P, but does not actively control P, cannot use this information to imper-
sonate another party P′ to P. KCI resistance is a common property of most
AKE protocols. In our SaPAKE construction, U first runs the OPRF with S to
compute rw = Fk(pw); then it runs the AKE protocol with S using a private key
stored, encrypted using an authenticated encryption under rw, at S who sends it
to U. Crucial to the security of the protocol is the use of authenticated encryp-
tion with a “random-key robustness” property, which is achieved naturally by
some schemes or otherwise can be easily ensured, e.g., by adding an HMAC
to a symmetric encryption scheme. Under these conditions we show that the
composed scheme realizes our UC functionality FSaPAKE.

Next, we use the above second transformation to instantiate a Strong aPAKE
protocol with a very efficient OPRF and any efficient AKE with the KCI prop-
erty. The OPRF scheme we use, essentially a Chaum-type blinded DH compu-
tation, has been proven UC-secure by Jarecki et al. [21,22]. We show that this
OPRF scheme, which we call DH-OPRF (called 2HashDH in [21,22]), remains
secure in spite of changes to the OPRF functionality that we introduce for sup-
porting a stronger OPRF notion needed in our setting. We call the result of this
instantiation, the OPAQUE protocol.

OPAQUE combines the best properties of existing aPAKE protocols and
of the standard password-over-TLS. As any aPAKE-secure protocol, it offers
two fundamental advantages over the TLS-based solution: It does not rely on
PKI and the plaintext password is never in the clear at the server. The only
way for an attacker that observes (or actively controls) a session at a server to
learn the password is via an exhaustive offline dictionary attack. Watching or
participating in a session with the user does not help the attacker. At the same
time, OPAQUE resolves the major flaw of existing aPAKE protocols relative to
password-over-TLS, namely, their vulnerability to pre-computation attacks.

460 S. Jarecki et al.

In addition to the above fundamental properties, OPAQUE enjoys impor-
tant properties for use in practice. Its modularity allows for its use with differ-
ent key-exchange schemes that can provide different features and performance
tradeoffs. When implemented with a 2-message implicit-authentication KE pro-
tocol (e.g., HMQV [27]), OPAQUE takes only 2 messages (or 3 with mutual
explicit authentication). The computational cost (using the DH-OPRF scheme
from AppendixA) is one exponentiation for the server and two for the client3 in
addition to the KE protocol cost (with HMQV, this cost is 2.17 exponentiations
per party). OPAQUE offers forward secrecy (a particularly crucial property for
password protocols) if the KE does. OPAQUE further supports password harden-
ing for increasing the cost of offline dictionary attacks (upon server compromise)
through user-side iterated hashing without the need to transmit salt from S to
U. In Fig. 7 in Sect. 6 we show an instantiation of OPAQUE in the RO model
with HMQV as the AKE.

Compared to the practical aPAKE protocols that have been and are being
considered for standardization (cf., [1,32]), OPAQUE fares clearly better on the
security side as the only scheme that offers resistance to pre-computation attacks
while all others are vulnerable. Performance-wise, OPAQUE is competitive with
the more efficient among these protocols (see Sect. 6). Additional advantages of
OPAQUE include its ability to store and retrieve user’s secrets such as a bitcoin
wallet, authentication credentials, encrypted backup keys, etc., and to support a
user-transparent server-side threshold implementation [23] (where the only expo-
sure of the user password - or any stored secrets - is in case a threshold of servers
is compromised and even then a full dictionary attack is required). Finally, we
comment that while OPAQUE can completely replace password authentication
in TLS, it can also be used in conjunction with TLS, either for bootstrapping
client authentication (via an OPAQUE-retrieved client signing key) or as an
hedge against PKI failures. In other words, while we are accustomed to use TLS
to protect passwords, OPAQUE can be used to protect TLS.

We stress that variants of OPAQUE have been studied in prior work in several
settings but none of these works presents a formal analysis of the protocol as
an aPAKE, let alone as a Strong aPAKE, a notion that we introduce here for
the first time. While our treatment frames OPAQUE in the context of Oblivious
PRFs [21,22], its design can be seen as an instantiation of the Ford-Kaliski
paradigm for password hardening and credential retrieval using Chaum’s blinded
exponentiation. Boyen [9] specifies and studies the protocol (called HPAKE) in
the setting of client-side halting KDF [8]. Jarecki et al. [21,22] study a threshold
version (also using the OPRF abstraction) in the context of password-protected
secret sharing (PPSS) protocols. Because of the relation between PPSS and
Threshold PAKE protocols [21], this analysis implies security of OPAQUE as
a PAKE protocol in the BPR model [4] but not as an aPAKE (let alone as a
strong aPAKE).

3 A variant of the protocol discussed in Sect. 6.2 allows one or both of the client’s
exponentiations to be fixed-base and offline.

OPAQUE: An Asymmetric PAKE Protocol Secure 461

2 The Strong aPAKE Functionality

We present the ideal UC Strong aPAKE functionality, FSaPAKE, that will serve
as our definition of Strong aPAKE security; namely, we call a protocol a secure
Strong aPAKE if it realizes FSaPAKE. Functionality FSaPAKE is a simple but sig-
nificant variant of the UC aPAKE functionality FaPAKE from [18] (it was denoted
FapwKE in [18]) which we recall in Fig. 1.

The aPAKE functionality of [18] is based on the UC PAKE functionality from
[12], and it includes extensions needed for taking care of the asymmetric nature
of the aPAKE setting. First, in an aPAKE scheme the server and the user run dif-
ferent programs: The user runs an aPAKE session on a password (via command
UsrSession) while the server runs it on a “password file” file[sid] that represents
server’s user-specific state corresponding to the user’s password, e.g., a password
hash, which the server creates on input the user’s password during aPAKE ini-
tialization, via command StorePwdFile. Furthermore, FaPAKE models a pos-
sible compromise of a server, via command StealPwdFile, from which the
attacker obtains file[sid]. Such compromise subsequently allows the attacker to
(1) impersonate the server to the user, via command Impersonate, and (2) find
the password via an offline dictionary attack, via command OfflineTestPwd.
The way functionality FaPAKE of [18] handles the offline dictionary attack is the
focus of the Strong aPAKE functionality we propose, and we discuss them below.

Strong aPAKE vs. aPAKE. Our functionality FSaPAKE is almost identical
to FaPAKE except that the text with the gray background in Fig. 1 is omitted.
That is, the only difference between FSaPAKE and FaPAKE are in the actions
upon the stealing of the password file; specifically, FSaPAKE omits recording
the (offline, pw) pairs and does not allow for OfflineTestPwd queries
made before the StealPwdFile query. Let us explain. Let’s consider first
the definition of FSaPAKE, i.e., with the gray text omitted. In this case, the
actions upon server compromise, i.e., StealPwdFile, are simple. First, a flag
is defined to mark that the password file has been compromised. Second, once
this event happens, the adversary is allowed to submit password guesses and be
informed if a guess was correct. Note that each guess “costs” the attacker one
OfflineTestPwd query. This together with the restriction that these queries
can only be made after the password file is compromised ensure that shortcuts
in finding the password after such compromise are not possible, namely that the
attacker needs to pay with one OfflineTestPwd query for each password it
wants to test. Thus, pre-computation attacks are made infeasible.

Now, consider the FaPAKE functionality from [18] which includes the text in
gray too. This functionality allows the attacker, via (offline, pw) records, to
make guess queries against the password even before the password file is compro-
mised. The restriction is that the responses to whether a guess was correct or not
are provided to the attacker only after a StealPwdFile event. But note that if
one of these guesses was correct, the attacker learns it immediately upon server
compromise. This provision was necessary in [18] because the file[sid] in their
aPAKE construction contains a deterministic publicly-computable hash of the

462 S. Jarecki et al.

Fig. 1. Functionalities FaPAKE (full text) and FSaPAKE (shadowed text omitted)

OPAQUE: An Asymmetric PAKE Protocol Secure 463

password, thus allowing for a pre-computation attack which lets the adversary
instantaneously identify the password with a single table lookup upon server
compromise. Indeed, one can think of the pairs (offline, pw) in the original
FaPAKE functionality as a pre-computed table that the attacker builds overtime
and which it can use to identify the password as soon as the server is compro-
mised. By eliminating the ability to get guesses (offline, pw) answered before
server compromise in our FSaPAKE functionality, we make such pre-computation
attacks infeasible in the case of a Strong aPAKE.

Modeling Server Compromise and Offline Dictionary Queries. As in
[18], we specify that StealPwdFile and OfflineTestPwd messages from
A∗ to FSaPAKE are accounted for by the environment. This is consistent with the
UC treatment of adaptive corruption queries and is crucial to our modeling. Note
that if the environment does not observe adaptive corruption queries then the
ideal model adversary, i.e., the simulator, could immediately corrupt all parties
at the beginning of the protocol, learning their private inputs and thus making
the work of simulation easier. By making the player-corruption queries, modeled
by StealPwdFile command in our context, observable by the environment,
we ensure that the environment’s view of both the ideal and the real execution
includes the same player-corruption events. This way we keep the simulator
“honest,” because it can only corrupt a party if the environment accounts for it.

The same concern pertains to offline dictionary queries OfflineTestPwd,
because if they were not observable by the environment, the ideal adversary
could make such queries even if the real adversary does not. In particular, with-
out environmental accounting for these queries the FaPAKE and FSaPAKE func-
tionalities would be equivalent because the simulator could internally gather all
the offline dictionary attack queries made by the real-world adversary before
server corruption, and it would send them all via the OfflineTestPwd query
to FSaPAKE after server corruption via the StealPwdFile query. Such sim-
ulator would make the ideal-world view indistinguishable from the real-world
view to the environment if the environment does not observe the sequence of
OfflineTestPwd and StealPwdFile queries.

Finally, we note that the functionality FSaPAKE, like FaPAKE, has effectively
two separate notions of a server corruption. Formally, it considers a static adver-
sarial model where all entities, including users and servers, are either honest
or corrupt throughout the life-time of the scheme. In addition, it allows for an
adaptive server compromise of an honest server, via the StealPwdFile, which
leaks to the adversary the server’s private state corresponding to a particular
password file, but it does not give the adversary full control over the server’s
entity. In particular, the accounts on the same server for which the adversary
does not explicitly issue the StealPwdFile command must remain unaffected.
We adopt this convention from [18] and we call a server “corrupted” if it is
(statically) corrupt and adversarially controlled, and we call an aPAKE instance
“compromised” if the adversary steals its password file from the server.

Non-black-box Assumptions. Note that the aPAKE functionality requires
the simulator, playing the role of the ideal-model adversary, to detect offline

464 S. Jarecki et al.

password guesses made by the real-world adversary. As pointed out by [18], this
seems to require a non-black-box hardness assumption on some cryptographic
primitive, e.g., the Random Oracle Model (ROM), which would allow the sim-
ulator to extract a password guess from adversary’s local computation, e.g., a
local execution of aPAKE interaction on a password guess and a stolen password
file.

Server Initialization. We note that while FaPAKE defines password registration
as an internal action of server S, with the user’s password as a local input, one
can modify it to support an interactive procedure between user and server, e.g.,
to prevent S from ever learning the plaintext password. To that end one needs
to assume that during the Password Registration phase there is an authenticated
channel from server to user, so the user can verify that it is registering the
password with the correct server. (Functionality FaPAKE effectively also assumes
such authenticated channel because otherwise the user’s password cannot be
safely transported to S.) In practice, the server also needs to verify the user’s
identity, and the password file could be created by the user and transported to
the server. However, this is beyond the scope of the formal aPAKE functionality.

Fig. 2. Functionality FOPRF with adaptive compromise

OPAQUE: An Asymmetric PAKE Protocol Secure 465

3 Oblivious Pseudorandom Function

Oblivious Pseudorandom Functions (OPRF) are a central tool in all our con-
structions. An OPRF consists of a pseudorandom function family F with an
associated two-party protocol run between a server that holds a key k for F
and a user with an input x. At the end of the interaction, the user learns the
PRF output Fk(x) and nothing else, and the server learns nothing (in partic-
ular, nothing about x). The notion of OPRF was introduced in [17]. The first
UC formulation of it was given in [21], including a verifiability property that lets
the user check the correct behavior of the server during the OPRF execution.
Later [22] gave an alternative UC definition of OPRF which dispensed with the
verifiability property, allowing for more efficient instantiations. The main idea
in the OPRF formulations of [21,22] is the use of a ticketing mechanism tx(·)
that ensures that the number of input values on which anyone can compute the
OPRF on a key held by an honest server S is no more than the number of exe-
cutions of the OPRF recorded by S. This mechanism dispenses with the need
to extract users’ inputs as is typically needed in UC simulations and it leads to
much more efficient OPRF instantiations.

Here we adopt the formulation from [22] as the basis for our definition of
functionality FOPRF presented in Fig. 2. We refer to [22] for detailed rationale,
but we note that it requires PRF outputs to be pseudorandom even to the
owner of the PRF key k. This does not seem achievable under non-black-box
assumptions, but it is achievable, indeed very efficiently, in the Random Oracle
Model (ROM). Note that the reliance on non-black-box assumptions like ROM
is called for in the aPAKE context, see Sect. 2.

Changes from OPRF Functionality of [22]. To use UC OPRF in our appli-
cation(s) we need to make some changes to the way functionality FOPRF was
defined in [22], as described below. Changes (2), (3) and (4) are essentially syn-
tactic and require only cosmetic changes in the security argument. Change (1)
is the only one which influences the security argument in a more essential way.
Fortunately, the DH-OPRF protocol that we use for OPRF instantiation in our
protocols, shown in [22] to realize their version of the OPRF functionality FOPRF,
also realizes our modified FOPRF functionality. We recall the DH-OPRF protocol
in Fig. 9 in AppendixA, adapting its syntax to our changes in FOPRF, and we
argue that the security proof of [22] which shows that it realizes FOPRF defined
by [22] extends to the modified functionality FOPRF presented here.

(1) We extend the OPRF functionality to allow the adaptive compromise of
a server holding the PRF key via a Compromise message. Such action
is needed in the aPAKE setting where the attacker A∗ can compromise a
server’s password file that contains the server’s OPRF key. After the com-
promise, A∗ is allowed to compute that server’s PRF function by itself on
any value of its choice using OfflineEval and without the restrictions of
the ticketing mechanism. We note that functionality FOPRF distinguishes
between (statically) corrupted servers and (adaptively) compromised ses-
sions (the latter representing different OPRF keys at the same server).

466 S. Jarecki et al.

This distinction allows for a granular separation between compromised and
uncompromised OPRF keys held by the same server. We adopt this dis-
tinction for consistency with the aPAKE functionality from Fig. 1 that
distinguishes between an entirely corrupted server and particular aPAKE
instances that can be adaptively compromised by an adversary.

(2) We change the SndrComplete message such that it is sent from S instead
of A, thus restricting the number of OPRF invocations per ssid to one. This
enforces a single password guess per aPAKE sub-session which is crucial for
aPAKE security.

(3) We change the session-id syntax used in [22] to model the use of multiple
OPRF keys by the same server. In the formulation of [22] each PRF key
was identified with a server identity making a one-to-one correspondence
between OPRF keys and servers. Here, we allow multiple OPRF keys to be
associated with one server. Each such key is identified with a tag sid and
a server can be associated with multiple such tags. In the context of our
application to aPAKE protocols, each aPAKE session is associated with a
unique OPRF key used by the server for a particular user, so the session-
id sid corresponds to a user account at that server. Any sid can include
sub-sessions, denoted by ssid , corresponding to different runs of the OPRF
protocol between a user and a server.

(4) We add an Initialization phase to the functionality, which models a server
picking an OPRF key and, in addition, computing the OPRF value on any
input. This interface simplifies the usage of OPRF in our applications to
aPAKE, where the server will pick an OPRF key for a new user and evaluate
the OPRF on the user’s password (for generating an encryption key). This
modeling differs from [22] who framed OPRF initialization as an interactive
procedure through an Eval call while here it is performed locally by the
server.

4 A Compiler from aPAKE to Strong aPAKE via OPRF

In Fig. 3 we specify a compiler that transforms any OPRF and any aPAKE into
a Strong aPAKE protocol. In UC terms the Strong aPAKE protocol is defined in
the (FOPRF,FaPAKE)-hybrid world, for FOPRF with the output length parameter
� = 2τ . The compiler is simple. First, the user transforms its password pw into a
randomized value rw by interacting with the server in an OPRF protocol where
the user inputs pw and the server inputs the OPRF key. Nothing is learned at the
server about pw (i.e., rw is indistinguishable from random as long as the input
pw is not queried as input to the OPRF). Next, the user sets rw as its password
in the given aPAKE protocol. Note that since the password rw is taken from a
pseudorandom set, then even if the size of this set is the same as the original
dictionary D from which pw was taken, the pseudorandom set is unknown to the
attacker (the attacker can only learn this set via OPRF queries which require an
online dictionary attack). Thus, any previous ability to run a pre-computation
attack against the aPAKE protocol based on dictionary D is now lost.

OPAQUE: An Asymmetric PAKE Protocol Secure 467

We assume that A always simultaneously sends queries (Compromise, sid)
and (StealPwdFile, sid) for the same sid , resp. to FOPRF to FaPAKE, because
in any instantiation of this scheme the server’s OPRF-related state and aPAKE-
related state would be part of the same file[sid]. Consequently, for a single sid ,
S’s status (compromised or not) in FOPRF and FaPAKE is always the same.

Fig. 3. Strong aPAKE protocol in the (FOPRF,FaPAKE)-hybrid world

4.1 Proof of Security

Theorem 1. The protocol in Fig. 3 UC-realizes the FSaPAKE functionality
assuming access to the OPRF functionality FOPRF and aPAKE functionality
FaPAKE.

Concretely, for any adversary A against the protocol, there is a simulator
SIM that produces a view in the simulated ideal world (henceforth simulated
world) such that the advantage that an environment has in distinguishing between
this view and the view in the (FOPRF,FaPAKE)-hybrid real world (henceforth real
world) is no more than (q2F +2qO +6)/22τ+1, where τ is the security parameter,
qF is the number of Eval and OfflineEval messages aimed at FOPRF from A,
and qO is the number of OfflineTestPwd messages aimed at FaPAKE from A.
(In the real world, A sends the messages to FOPRF and FaPAKE. In the simulated
world, A sends the messages to SIM acting as both FOPRF and FaPAKE.)

Due to lack of space, we leave the proof to the full version of this paper.

468 S. Jarecki et al.

5 A Compiler from AKE-KCI to Strong aPAKE
via OPRF

Our second transformation for building a Strong aPAKE protocol composes an
OPRF with an Authenticated Key Exchange (AKE) protocol, “glued” together
using authenticated encryption. We require the AKE to be secure in the UC
model, namely, to realize the UC KE functionality of [14], but we also require
it to be “KCI secure,” a property which we call here “security against reverse
impersonation.” The notion of AKE-KCI security has been formalized with a
game-based approach in [27], but to the best of our knowledge it was not for-
malized in UC setting, and we present such formalization in Sect. 5.1.

5.1 UC Definition of AKE-KCI

The KCI notion for KE protocols, which stands for “key-compromise imperson-
ation,” captures the property we call “security against reverse impersonation,”
which concerns an attacker A who learns party P’s long-term keys but otherwise
does not actively control P. Resistance to KCI attacks, or “KCI security” for
short, postulates that even though A can impersonate P to other parties, ses-
sions which P itself runs with honest peers need to remain secure. A game-based
definition of this notion appears in [27], and here we formalize it in the UC model
through functionality FAKE−KCI presented in Fig. 4. We specialize functionality
FAKE−KCI to our user-server setting where only servers can be compromised, but
it can be extended to allow for compromise of any protocol party.

Functionality FAKE−KCI extends the standard KE functionality of [14] with
two adversarial actions. The first, Compromise, is targeted at a server and cap-
tures the compromise of the server’s keys. The second is Impersonate which is
borrowed from the aPAKE functionality of [18] shown in Fig. 1. This action can
only be targeted at users’ sessions, and only for sessions with servers compro-
mised via the Compromise action, and it marks such session as compromised,
which implies that the attacker can determine the session key this session out-
puts, via the NewKey action. This models the fact that user’s sessions with a
compromised S as a peer cannot be assumed to be secure since they could have
been run with the adversary who has stolen S’s keys. However, sessions at S itself
must not be affected by the Impersonate action, and they remain secure. All
other elements in FAKE−KCI are the same as in the basic UC KE functionality,
except of some syntactic specialization to the user-server setting.

AKE-KCI Security of HMQV. A concrete instantiation of protocol
OPAQUE shown in Fig. 7 in Sect. 6, which instantiates the generic Strong
aPAKE protocol shown in Sect. 5.2 below, using HMQV [27] as the AKE-KCI
protocol. The KCI property of HMQV was proved in [27] in the game-based
Canetti-Krawczyk model [13] extended to include KCI security. Here we require
UC security, namely, a protocol that realizes functionality FAKE−KCI. Fortunately,
[14] proves the equivalence of the game-based definition of [13] and their UC AKE
formulation. Thanks to this equivalence, HMQV, as a basic KE, is secure in the

OPAQUE: An Asymmetric PAKE Protocol Secure 469

Fig. 4. Functionality FAKE−KCI

UC model. More precisely, this applies to the three-message HMQV with client
authentication (which satisfies the “ACK” property required for the equivalence
in [14]). For the 2-message version of HMQV, the equivalence still holds using
the notion of non-information oracle [14] that holds for HMQV under Compu-
tational Diffie-Hellman (CDH) assumption in the RO model. For our purposes,
however, we need HMQV to realize the extended AKE-KCI functionality of
Fig. 4. Luckily, the equivalence with the game-based definition extends to this
case. Indeed, since the original equivalence from [14] holds even in the case of
adaptive party corruptions, the Compromise and Impersonate actions intro-
duced here – which constitute a limited form of adaptive corruptions – follow as a
special case. Finally, we note that the equivalence between the above models also
preserves forward secrecy, so this property (proved in the game-based Canetti-
Krawczyk model in [27]) holds in the UC too. We note that by the results in
[27], the 3-message HMQV enjoys full PFS while the 2-message only weak PFS
(against passive attackers only). The above security of HMQV (without includ-
ing security against the leakage of ephemeral exponents) is based on the CDH
assumption in the RO model [27].

5.2 Strong aPAKE Construction from OPRF and AKE-KCI

Our Strong aPAKE protocol based on OPRF and AKE-KCI is shown in Fig. 5.
The protocol uses the same OPRF tool as the Strong aPAKE construction of
Sect. 4, for length parameter � = 2τ , which defines the “randomized password”

470 S. Jarecki et al.

Fig. 5. Strong aPAKE based on AKE-KCI in the FOPRF-hybrid world

value rw = Fk(pw) for user U’s password pw and OPRF key k held by server S.
We assume that in the AKE-KCI protocol Π each party holds a (private, public)
key pair, and that the each party runs the Login subprotocol using its key pair
and the public key of the counterparty as inputs. In Password Registration phase,
server S generates the user U’s keys, and S’s password file contains S’s key pair
ps, Ps; U’s public key Pu; and a ciphertext c of U’s private key pu, and the
public keys Pu and Ps created using an Authenticated Encryption scheme using
rw = Fk(pw) as the key. After creating the password file, value pu is erased
at S. In Login phase, S runs OPRF with U, which lets U compute rw = Fk(pw),
it sends c to U, who can decrypt it under rw and retrieves its key-pair pu, Pu

together with the server’s key Ps, at which point both parties have appropriate
inputs to the AKE-KCI protocol Π to compute the session key.

Role of Authenticated Encryption. The Strong aPAKE protocol of Fig. 5
utilizes an Authenticated Encryption scheme AE = (AuthEnc,AuthDec) to
encrypt and authenticate U’s AKE “credential” m = (pu, Pu, Ps). We encrypt the
whole payload m for simplicity, because unlike U’s private key pu, values Pu, Ps

OPAQUE: An Asymmetric PAKE Protocol Secure 471

could be public and need to be only authenticated, not encrypted. However, the
authentication property of AE must apply to the whole payload. Intuitively, U
must authenticate S’s public key Ps, but if U derived even its key pair (pu, Pu)
using just the secrecy of rw = Fk(pw), e.g., using rw as randomness in a key gen-
eration, and U then executed AKE on such (pu, Pu) pair, the resulting protocol
would already be insecure. To see an example, if an AKE leaks U’s public key
input Pu (note that AKE does not guarantee privacy of the public key) then an
adversary A who engages U in a single protocol instance can find U’s password
pw via an offline dictionary attack by running the OPRF with U on some key
k∗, and then given Pu leaked in the subsequent AKE it finds pw s.t. the key
generation outputs Pu as a public key on randomness rw = Fk∗(pw).

Thus the role of the authentication property in authenticated encryption is
to commit A to a single guess of rw and consequently, given the OPRF key
k∗, to a single guess pw. (Note that our UC OPRF notion implies that F is
collision-resistant.) To that end we need the authenticated encryption to satisfy
the following property which we call random-key robustness:4 For any efficient
algorithm A there is a negligible probability that A on input (k1, k2) for two
random keys k1, k2 outputs c s.t. AuthDeck1(c) �= ⊥ and AuthDeck2(c) �= ⊥. In
other words, it must be infeasible to create an authenticated ciphertext that
successfully decrypts under two different randomly generated keys. This property
can be achieved in the standard model using e.g. encrypt-then-MAC with a
MAC that is collision resistant with respect to the message and key, a property
enjoyed by HMAC with full hash output. In the RO model used by our aPAKE
application one can also enforce it for any authenticated encryption scheme by
attaching to its ciphertext c a hash H(k, c) for a RO hash H with 2τ -bit outputs.

Note on Not Utilizing FAKE−KCI. In Fig. 5 we abstract the OPRF protocol
as functionality FOPRF, but we use the real-world AKE-KCI protocol Π, rather
than functionality FAKE−KCI. The reason for this presentation is that in the KE
functionality of [14], of which FAKE−KCI is an extension, it is not clear how to
support a usage of the KE protocol on keys which are computed via some other
mechanism than the intended KE key generation. The KE functionality of [14]
assumes that each entity keeps its private key as a permanent state, authenticates
to a counterparty given its identity, and a KE party cannot specify any bitstring
as one’s own private key and a counterparty’s public key. This is not how we
use AKE in our Strong aPAKE of Fig. 5 precisely because U does not keep state
and has to reconstruct its keys from a password (via OPRF). However, we can
still use the real-world protocol Π, which UC-realizes FAKE−KCI, giving it the
OPRF-computed information as input. In the proof of security we utilize the
simulator SIMAKE, which shows that Π UC-realizes FAKE−KCI, in our simulator
construction, but we rely on its correctness only if U runs Π on the correctly
reconstructed (pu, Ps, Ps), and if the adversary causes U to reconstruct a different
string we interpret this as a successful attack on U’s login session.

4 This notion is a weakening of full robustness (FROB) from [16] where the attacker is
allowed to choose k1, k2 (in our case these keys are random). An even weaker notion,
Semi-FROB, is defined in [16] where k1, k2 are random but only k1 is provided to A.

472 S. Jarecki et al.

5.3 Proof of Security

In Theorem 2 below we state security of the Strong aPAKE protocol of Fig. 5.

Theorem 2. If protocol Π UC-realizes functionality FAKE−KCI then protocol in
Fig. 5 UC-realizes functionality FSaPAKE in the FOPRF-hybrid model.

Concretely, suppose that there is a simulator SIMAKE such that the distin-
guishing advantage of an environment Z between the real execution of Π and
Z’s interaction with SIMAKE is at most AdvDIST

SIMAKE,Z(τ), where τ is the security
parameter. Then for any adversary A with running time T against the protocol,
there is a simulator SIM that produces a view in the simulated world such that the
advantage that Z has in distinguishing between this view and the view in the real
world is no more than AdvAUTH

AE,T (τ) + q2F · AdvRK−RBST
AE,T (τ) + 2AdvDIST

SIMAKE,Z(τ),
where qF is the number of Eval and OfflineEval messages aimed at FOPRF

from A, and AdvAUTH
AE,T (τ) and AdvRK−RBST

AE,T (τ) are the probabilities that any
algorithm in running time T breaks the authenticity of AE and the random-key
robustness of AE, respectively.

Proof. For any adversary A, we construct a simulator SIM as in Fig. 6. While
interacting with SIMAKE, SIM plays the role of both FAKE−KCI and A.

Following [11], without loss of generality, we may assume that A is a
“dummy” adversary that merely passes all its messages and computations to
the environment Z. We omit all interactions with corrupted U and S where SIM
acts as FOPRF, since the simulation is trivial (SIM gains all information needed
and simply follows the code of FOPRF). To keep notation brief we denote func-
tionality FSaPAKE as F .

In order to account for the advantage of the environment Z in distinguishing
between its views in the real world and the simulated world, we compare between
these two settings in the different simulator actions and derive the distinguishing
advantages in cases where the simulation is not perfect. Below we assume that

OPAQUE: An Asymmetric PAKE Protocol Secure 473

Fig. 6. The simulator SIM

474 S. Jarecki et al.

Z issues the (StorePwdFile, sid ,U, pw) command to S for some pw; otherwise
any subsequent server-side commands of Z will not have any effect.

– file[sid] = 〈ps, Ps, Pu, c〉 (from A): In both worlds, Z receives this message
after A sends (Compromise, sid) aimed at FOPRF and (StealPwdFile, sid)
to S, provided that Z input (StorePwdFile, sid ,U, pw) to S previously.

In both worlds, ps, Ps and Pu are generated in the same way, and c is
computed as AuthEncrw(pu, Pu, Ps). The only difference is that rw is Fsid,S(pw)
in the real world, while it is chosen from random in the simulated world.
There is no way for Z to distinguish unless and until it queries Fsid,S(pw)
by letting A send (OfflineEval, sid ,S, pw) aimed at FOPRF. However, once
A sends such message, SIM sets Fsid,S(pw) to rw. Therefore, in both worlds,
Fsid,S(pw) = rw and Z cannot distinguish.

– (OfflineEval, sid , ρ) (from A): In both worlds, Z receives this message after
A sends (OfflineEval, sid ,S, x) to FOPRF, provided that S is corrupted or
marked compromised. The selection of ρ is the same in the two worlds,
except that in the simulated world, if x = pw, ρ is set to rw which was chosen
from random in advance, while in the real world, ρ is always chosen from
random directly. There is no way to distinguish between these two cases.

– (Eval, sid , ssid ,U,S) (from A): In both worlds, Z receives this message after
inputting (UsrSession, sid , ssid ,S, pw′) to U.

– c and (SndrComplete, sid , ssid ,S) (from A): In both worlds, Z receives
these two messages after inputting (SvrSession, sid , ssid) to S. As argued
above, Z cannot distinguish the two c’s in the two worlds.

– (abort, sid , ssid) (from U): In both worlds, Z may receive this message after
A sends (RcvComplete, sid , ssid ,S∗) aimed at FOPRF and c′ aimed at U,
provided that (i) there is a record 〈ssid ,U,S, pw′〉 in FOPRF (or a record
〈ssid ,U,S, ·〉 in SIM), (ii) if S is honest and not marked compromised, then
S∗ = S, and (iii) tx(sid ,S∗) > 0.

Note that Z may see a halt message from SIM at this time. halt occurs
when there exists x1 �= x2 such that AuthDecy1(c

′) �=⊥ and AuthDecy2(c
′) �=⊥,

where y1 = Fsid,S∗(x1) and y2 = Fsid,S∗(x2). Since Fsid,S∗(·) is a random func-
tion onto {0, 1}2τ , y1 and y2 are independent random strings in {0, 1}2τ ; thus,
for fixed y1 and y2, the probability that A finds c′ such that AuthDecy1(c

′) �=⊥
and AuthDecy2(c

′) �= ⊥ is at most AdvRK−RBST
AE,T (τ) due to the random-key

robustness of AE. Since A queries F qF times, there are qF independent y’s;
using a polynomial reduction, we have Pr[halt] ≤ q2F · AdvRK−RBST

AE,T (τ).
Next we assume that halt does not occur. In the real world, Z receives

(abort, sid , ssid) from U if and only if AuthDecrw′(c′) =⊥; that is, Z does
not receive this message if and only if AuthDecrw′(c′) �= ⊥. There are only
three possibilities:
(1) (pw′,S∗, c′) = (pw,S, c): Then rw′ = rw = Fsid,S(pw), thus AuthDecrw′(c′)

= AuthDecrw(c) = (pu, Pu, Ps).
(2) A queries rw′ = Fsid,S∗(pw′) previously, and AuthDecrw′(c′) �= ⊥: If A

learns rw′, then it can compute an AuthEnc instance on rw′ and any
message to find a c′ such that AuthDecrw′(c′) �=⊥.

OPAQUE: An Asymmetric PAKE Protocol Secure 475

(3) Other cases where A finds a c′ such that AuthDecrw′(c′) �= ⊥, while rw′

is independently random of everything else in Z’s view (since A does
not query Fsid,S∗(pw′)), and Z does not query AuthEncrw′(p′

u, P ′
u, P ′

s) (Z
queries AuthEncrw′(p′

u, P ′
u, P ′

s) by setting pw′ = pw [thus making rw′ = rw]
and receiving c = AuthEncrw(pu, Pu, Ps) from S). Since AE is an authen-
ticated encryption, the probability of (3) is at most AdvAUTH

AE,T (τ).
In the simulated world, Z does not receive this message if and only if either
of the following two conditions holds:
(1) c′ = c, S∗ = S and F returns Succ on (TestAbort, sid , ssid ,U)

from SIM. The last condition holds if and only if there are two records
〈ssid ,U,S, pw′〉 and 〈ssid ,S,U, pw′′〉, the former marked fresh and pw′ =
pw′′. Note that no TestPwd, Impersonate or NewKey message has
been issued yet, so the record must be fresh. According to the syntax of
SvrSession, we have pw′′ = pw. Therefore, the last condition is equiv-
alent to pw′ = pw, thus this case is equivalent to case (1) in the real
world.

(2) There exists x s.t. y = Fsid,S∗(x) is defined in SIM, AuthDecy(c′) �=⊥ and
F returns “correct guess” on (TestPwd, sid , ssid , x) from SIM. The last
condition is equivalent to x = pw′; thus, the three conditions combined are
equivalent to rw′ = Fsid,S∗(pw′) is defined in SIM and AuthDecrw′(c′) �=⊥.
SIM defines Fsid,S∗(pw′) only when receiving (OfflineEval, sid ,S∗, pw′)
from A. Therefore, this case is equivalent to case (2) in the real world.

Hence, Z receives this message in the two worlds under the same conditions,
except for case (3) in the real world.

– Messages sent from U and S while executing Π (in the real world), or messages
sent from SIM (in the simulated world) (from A): In case (1) and messages
sent from S in case (2), they are simulated by SIM who in turn receives them
from SIMAKE. Since SIMAKE generates A’s view indistinguishable from A’s
view in the real world, SIM, who merely passes messages between SIMAKE

and A, can also achieve that; the distinguishing advantage of Z is at most
AdvDIST

SIMAKE,Z(τ). For messages sent from U in case (2), they are the results of
Πu on (p′

u, P ′
u, P ′

s), and are simulated perfectly.
– (sid , ssid , SK ′) (from U): In both worlds, Z receives this message when Π is

completed and sends output to U. In the real world, there are two cases:
• (p′

u, P ′
u, P ′

s) = (pu, Pu, Ps), i.e., the input of U to Π is correct. This cor-
responds to case (1) above. There are two subcases regarding Π:

∗ S is not compromised. Then according to the syntax of FAKE−KCI,
SK ′ is a random string in {0, 1}τ (independent of everything else,
or the same with S’s output if S already output previously). In the
simulated world, the record 〈ssid ,U,S, pw′〉 in F is marked fresh, so
SK ′ is also a random string in {0, 1}τ .

∗ S is compromised (then A may impersonate S while interacting with
U in the execution of Π and set U’s output). In the simulated
world, SIMAKE sends (Impersonate, sid , ssid) to SIM, who transfers
this message to F , which makes the record 〈ssid ,U,S, pw′〉 marked

476 S. Jarecki et al.

compromised (note that we have pw′ = pw here since this is a con-
dition of case (1)). Therefore, SK ′ chosen by SIMAKE (which is the
same with the SK ′ output by Π in the real world except for proba-
bility at most AdvDIST

SIMAKE,Z(τ)) is the value output to U.
• (p′

u, P ′
u, P ′

s) �= (pu, Pu, Ps), i.e., the input of U to Π is incorrect. This may
occur only in cases (2) and (3) above. As argued above, the probability
of (3) is at most AdvAUTH

AE,T (τ).
(2) is equivalent to case (2) in the simulated world, where SIM sends

(TestPwd, sid , ssid ,U, x) to F and F returns “correct guess” (mean-
ing that x = pw′). After this, the record 〈ssid ,U,S, pw′〉 is marked
compromised. Therefore, SK ′, which is computed by SIM as Πu’s out-
put on (p′

u, P ′
u, P ′

s), is the value output to U. In the real world, U also
outputs SK ′.

– (sid , ssid , SK) (from S): In both worlds, Z receives this message when Π is
completed and sends output to S.

In the real world, SK is always a random string in {0, 1}τ (independent of
everything else, or the same with U’s output if U already output previously).
Note that in the simulated world, the record 〈ssid ,S,U, pw′〉 is always marked
fresh. Therefore, SK is also random string in {0, 1}τ .

It remains to show that SIMAKE’s view while interacting with SIM is the
same as interacting with FAKE−KCI and A. When SIM acts as A, the interaction
is trivial since SIM merely passes messages between SIMAKE and the real A.
Consider when SIM acts as FAKE−KCI, and note that SIM engages with SIMAKE

only in cases (1) and (2):

(1) U’s input is correct: Same effect as honest U and S executing Π;
(2) U’s input is incorrect: Same effect as corrupted U and honest S executing

Π. Note that SIM engages with SIMAKE on the side of S only, so SIMAKE’s
view is again the same.

We conclude that Z’s view in the real world and the simulated world
is the same, except for (1) (abort, sid , ssid) or halt after A sends
(RcvComplete, sid , ssid ,S∗) and c′, (2) messages sent during the execution
of Π, and (3) (sid , ssid , SK ′) output from U. The probabilities that (1), (2)
and (3) are different in the two worlds are no more than AdvAUTH

AE,T (τ) +
q2F · AdvRK−RBST

AE,T (τ), AdvDIST
SIMAKE,Z(τ) and AdvDIST

SIMAKE,Z(τ), respectively. Using a
hybrid argument, we can see that Z’s advantage is no more than AdvAUTH

AE,T (τ)+
q2F · AdvRK−RBST

AE,T (τ) + 2AdvDIST
SIMAKE,Z(τ).

6 OPAQUE: A Strong Asymmetric PAKE Instantiation

Figure 7 shows OPAQUE, a concrete instantiation of the generic OPRF+AKE
protocol from Fig. 5. An illustration is presented in Fig. 8.

The OPRF is instantiated with the DH-OPRF scheme from [22] recalled in
AppendixA, while the AKE protocol can be instantiated with any UC-secure

OPAQUE: An Asymmetric PAKE Protocol Secure 477

2-message implicitly-authenticated AKE-KCI; in Fig. 7 this is illustrated with
HMQV [27]. Fortunately, the two messages of DH-OPRF and the two messages
from HMQV (or a similar protocol) can be run “in parallel” hence obtaining a
2-message SaPAKE.

By Theorem 2 on the security of the generic OPRF+AKE construction, by
Lemma 1 in AppendixA on the security of DH-OPRF, and by security of HMQV
(see below), we get that protocol OPAQUE realizes functionality FSaPAKE, hence
it is a provably-secure Strong aPAKE, under the One-More Diffie-Hellman
assumption [3,22] in ROM.

6.1 Protocol Details and Properties

We expand on the specification of OPAQUE and the protocol’s properties.
• Password registration. Password registration is the only part of the protocol
assumed to run over secure channels where parties can authenticate each other.
We note that while OPAQUE is presented with S doing all the registration oper-
ations, in practice one may want to avoid that. Instead, we can let S choose an
OPRF key ks and U choose pw, and then run the OPRF protocol between U
and S so only U learns its secrets (pw, rw, pu) and only S learns ps. A problem
arises with this approach if S’s policy is to check the user’s password for com-
pliance with some rules. A possible workaround is to adapt techniques from [26]
that present zero-knowledge proofs for proving compliance without disclosing
the password.
• Authenticated encryption. As specified in Sect. 5.2, the scheme AuthEnc used
in the protocol needs to satisfy the key-committing property defined there. In
practice, using an encrypt-then-mac scheme with HMAC-256 (or larger) as the
MAC provides this property (if a scheme does not have this property then adding
on top of it such a HMAC computed on the scheme’s ciphertext will ensure this
property).
• Key exchange. The generic AKE representation via the KE formula applies
to any protocol whose session key is computed as a function of the long-term
private-public key pair of each party and ephemeral session-specific private-
public values. These values are represented as (ps, Ps, xs,Xs) for the server and
(pu, Pu, xu,Xu) for the user. We note that while more general key-exchange pro-
tocols can be used with OPAQUE, this representation applies to many such
protocols and, in particular, to HMQV [27] which we use here as our main
instantiation.
• Explicit mutual authentication. The protocol as illustrated takes just two mes-
sages but does not provide explicit user authentication. With a third message
the protocol achieves mutual authentication by simply adding the value fK(1)
to the server’s message and adding a third message where U sends fK(2) to S.
Each party verifies that the value received from the other is computed correctly
and if not it aborts.
• Use of HMQV. Recall that the security of OPAQUE depends on the KE pro-
tocol being AKE-secure in the UC model with the additional KCI property;

478 S. Jarecki et al.

Fig. 7. Protocol OPAQUE

OPAQUE: An Asymmetric PAKE Protocol Secure 479

Fig. 8. Schematic representation of OPAQUE (see Fig. 7 for the details)

namely, it should realize the AKE-KCI UC functionality from Fig. 4. As argued
in Sect. 5.1, HMQV indeed realizes this functionality (under the CDH assump-
tion in the RO model), hence it is appropriate for use in OPAQUE. Moreover,
HMQV enjoys forward secrecy. Specifically, the 2-message protocol provides weak
forward secrecy (i.e., forward secrecy is guaranteed for sessions where the user’s
message delivered to the server came from the real U) while the 3-message variant
with explicit client authentication provides full forward secrecy, namely, against
arbitrary active attacks [27].
• Forward secrecy. This property (or lack of it) is inherited by OPAQUE from the
key exchange component KE. In the case of HMQV, forward secrecy is achieved as
stated above. One cannot overstate the importance of forward secrecy in password
protocols: it guarantees that past session keys remain secure upon the compromise
of a user’s password (or server’s information).
• User iterated hashing. OPAQUE can be strengthened by increasing the cost of
a dictionary attack in case of server compromise. This is done by changing the
computation of rw to rw = Hn(Fk(pw)), that is, the client applies n iterations of
the function H on top of the result of the OPRF value Fk(pw). In practice, the
iterations Hn would be replaced with one of the standard password-based KDFs,
such as PBKDF2 [25] or bcrypt [31]. This forces an attacker that compromises

480 S. Jarecki et al.

the password file at the server to compute for each candidate password pw′ the
function Fk(pw′) as well as the additional n hash iterations. Note that n needs
not be remembered by the user; it can be sent from S to U in the server’s message.
Furthermore, one can follow Boyen’s design and apply the probabilistic Halting
KDF function [8] as used in [9] so that the iterations count is hidden from the
attacker and even from the server.
• Performance. OPAQUE takes two messages (three with explicit mutual
authentication); one exponentiation for S, two and a hashing-into-G for U, plus
the cost of KE. With HMQV, the latter cost is one offline fixed-base exponenti-
ation and one multi-exponentiation (at the cost of 1.16 regular exponentiations)
per party (about three exponentiations in total for the server and four for the
user). All exponentiations are in regular DH groups, hence accommodating the
fastest elliptic curves (e.g., no pairings). It is common in PAKE protocols to
count number of group elements transmitted between the parties. In OPAQUE,
U sends two while S sends three (one, Pu, can be omitted at the cost of one
fixed-based exponentiation at the client).
• Performance comparison. The introduction presents background on OPAQUE
and other password protocols. Here we provide a comparison with the more
efficient among these protocols, particularly those that are being, or have been,
considered for standardization. Clearly, OPAQUE is superior security-wise as
the only one not subject to pre-computation attacks, but it also fares well in
terms of performance.

AugPAKE [33,34], is computationally very efficient with only 2.17 exponen-
tiations per party; however, it uses 4 messages and does not provide forward
secrecy. In addition, the protocol has only been analyzed as a PAKE protocol,
not aPAKE [34]. Another proposed aPAKE protocol, SPAKE2+ [2,15], uses
two messages only and 3 multi-exponentiations (or about 3.5 exponentiations)
per party which is similar to OPAQUE cost. The security of the protocol has
only been informally argued in [15] and to the best of our knowledge no formal
analysis has appeared. We also mention SRP which has been included in TLS
ciphersuites in the past but is considered outdated as it does not have an instan-
tiation that works over elliptic curves (the protocol is defined over rings and
uses both addition and multiplication). Its implementations over RSA moduli is
therefore less efficient than those over elliptic curve; it also takes 4 messages.

We also mention two very recent schemes that have been formally analyzed
as aPAKE protocols but, as the rest, are vulnerable to pre-computation. The
protocol VTBPEKE in [30] uses 3 messages and 4 exponentiations per party
and was proven secure in the non-UC aPAKE model of [7], while [24] shows a
simultaneous one-round scheme that they prove secure in the UC aPAKE model
of [18] augmented with adaptive security. The protocol works over bilinear groups
and its computational cost includes 4 exponentiations and 3 pairing per party.
We note that all of the above protocols require an initial message from server to
user in order to transmit salt, which results in one or two added messages to the
above message counts (except for VTBPEKE which already includes the salt

OPAQUE: An Asymmetric PAKE Protocol Secure 481

transmission in its 3 messages). Also, all these protocols, like OPAQUE, work in
the RO model.
• Threshold implementation. We comment on a simple extension of OPAQUE
that can be very valuable in large deployments, namely, the ability to implement
the OPRF phase as a Threshold OPRF [23]. In this case, an attacker needs to
break into a threshold of servers to be able to impersonate the servers to the user
or to run an offline dictionary attack. Such an implementation requires no user-
side changes, i.e., the user does not need to know if the system is implemented
with one or multiple servers.
• Secret retrieval and hedging TLS. Additional features of OPAQUE include the
ability to store and retrieve user’s secrets (such as a bitcoin wallet, authentication
credentials, encrypted backup keys, etc.) as part of the information encrypted
and authenticated at the server under ciphertext c. In one particular use case
such secret can be a client signature key for TLS. In this case, the key exchange
part of OPAQUE can reuse that of TLS and a server’s certificate can be replaced
with the server’s public key stored under the client-authenticated ciphertext c.

6.2 An OPAQUE Variant: Multiplicative Blinding

A variant of OPAQUE is obtained by replacing the user’s exponential blinding
operation α := (H ′(pw))r with α := (H ′(pw)) ·gr. The server responds as before
with β = αks . Assuming that U knows the value y = gks (previously stored
or received from S), it can compute the same “hashed Diffie-Hellman” value
(H ′(pw))ks as β/yr. The advantage of this variant is that while the number
of client exponentiations remains the same, one is fixed-base (gr) and the other
(yr) can also be fixed-base if U caches y, a realistic possibility for accounts where
the user logs in frequently (e.g., a personal email or social network). Computing
yr can also be done while waiting for the server’s response to reduce latency.
Moreover, both exponentiations can be done offline although only short-term
storage is recommended as the leakage of r exposes H ′(pw). If U does not store
y, it needs to be transmitted to U by S together with the response β. This still
allows for fixed-base optimization for computing gr but not for yr.

However, it turns out that this multiplicative mechanism results in an OPRF
protocol that does not realize our OPRF functionality FOPRF. Thus, our anal-
ysis here does not imply the security of the multiplicative OPAQUE variant in
general. If rw is redefined as rw := H(pw, y,H ′(pw)ks), i.e. if y is included under
the hash, then the resulting OPRF does realize our functionality, and OPAQUE
remains secure as SaPAKE under both blinding variants. This change, however,
introduces a (slight) overhead of having to transmit y even if it is not strictly
needed, e.g. if the client implements the exponential blinding operation. An
alternative approach would be to replace the OPRF functionality FOPRF with
a weaker form F ′

OPRF and to show that (i) F ′
OPRF is realized by the multiplica-

tive variant (even without hashing y) and (ii) F ′
OPRF is sufficient for proving

Theorem 2 hence implying the security of OPAQUE as SaPAKE. We intend to
investigate this weakening of FOPRF.

482 S. Jarecki et al.

A The DH-OPRF Protocol Realizing Revised FOPRF

Figure 9 shows the DH-OPRF protocol of [22] (who calls it 2HashDH), syntac-
tically modified to realize functionality FOPRF, see Fig. 2 in Sect. 3. Recall that
the FOPRF functionality we show in Sect. 3 is a revision of the OPRF functional-
ity defined in [22], with the most important difference being modeling adaptive
corruptions. The protocol shown below is essentially the same as in [22], and
requires the same One-More Diffie-Hellman assumption [3,22] for security.

Fig. 9. Protocol DH-OPRF (for PRF output length �)

We defer the proof of the following Lemma1 to the full version because it is
very similar to the proof of security given in [22].

Lemma 1. The DH-OPRF protocol shown in Fig. 9 UC-realizes the OPRF
functionality FOPRF under the One-More Diffie Hellman assumption in ROM.

Modifications in the Proof of [22]. We briefly discuss how our modifications
to FOPRF influence the security proof, and leave the detailed proof to the full
version of this paper.

Since no message is sent to A∗ in the Initialization phase, adding Initial-
ization has no impact on simulation. Allowing for sub-sessions (identified by
ssid) results in adding ssid in the simulator whenever appropriate. The impact
of changing SndrComplete messages as sent from Z, instead of from A∗, is
that no such messages are sent from SIM any more in steps 6 and 7; however,
this does not influence the reduction that Pr[halt] is negligible, since the only
SndrComplete messages which count are those in step 5, which are still there

OPAQUE: An Asymmetric PAKE Protocol Secure 483

Fig. 10. The simulator SIM for the DH-OPRF protocol (FOPRF denoted F)

(the only difference is that their issuers become Z instead of SIM, but they still
have the effect of increasing the tx value).

The remaining change is that A may compromise a server (for a specific
sid) at any time; after that, A can compute the server’s function value on any
valid input. SIM is able to simulate this by sending OfflineEval messages to
F . Furthermore, note that halt may only occur on servers who is not marked
compromised at that time; therefore, the argument upper-bounding Pr[halt]
(in the setting where a server cannot be compromised) is not influenced.

484 S. Jarecki et al.

References

1. CFRG: Crypto Forum Research Group. https://datatracker.ietf.org/rg/cfrg/
documents/

2. Abdalla, M., Pointcheval, D.: Simple password-based encrypted key exchange pro-
tocols. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 191–208. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-30574-3 14

3. Bellare, M., Namprempre, C., Pointcheval, D., Semanko, M.: The one-more-RSA-
inversion problems and the security of Chaum’s blind signature scheme. J. Cryptol.
16(3), 185–215 (2003)

4. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure
against dictionary attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol.
1807, pp. 139–155. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-
45539-6 11

5. Bellovin, S.M., Merritt, M.: Encrypted key exchange: Password-based protocols
secure against dictionary attacks. In: IEEE Computer Society Symposium on
Research in Security and Privacy – S&P 1992, pp. 72–84. IEEE (1992)

6. Bellovin, S.M., Merritt, M.: Augmented encrypted key exchange: a password-based
protocol secure against dictionary attacks and password file compromise. In: ACM
Conference on Computer and Communications Security - CCS 1993, pp. 244–250.
ACM (1993)

7. Benhamouda, F., Pointcheval, D.: Verifier-based password-authenticated key
exchange: New models and constructions. IACR Cryptology ePrint Archive,
2013:833 (2013)

8. Boyen, X.: Halting password puzzles. In: USENIX Security Symposium – SECU-
RITY 2007, pp. 119–134. The USENIX Association (2007)

9. Boyen, X.: HPAKE: password authentication secure against cross-site user imper-
sonation. In: Garay, J.A., Miyaji, A., Otsuka, A. (eds.) CANS 2009. LNCS, vol.
5888, pp. 279–298. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-10433-6 19

10. Boyko, V., MacKenzie, P., Patel, S.: Provably secure password-authenticated key
exchange using Diffie-Hellman. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 156–171. Springer, Heidelberg (2000). https://doi.org/10.1007/3-
540-45539-6 12

11. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: IEEE Symposium on Foundations of Computer Science – FOCS 2001,
pp. 136–145. IEEE (2001)

12. Canetti, R., Halevi, S., Katz, J., Lindell, Y., MacKenzie, P.: Universally com-
posable password-based key exchange. In: Cramer, R. (ed.) EUROCRYPT 2005.
LNCS, vol. 3494, pp. 404–421. Springer, Heidelberg (2005). https://doi.org/10.
1007/11426639 24

13. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for
building secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol.
2045, pp. 453–474. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-
44987-6 28

14. Canetti, R., Krawczyk, H.: Universally composable notions of key exchange and
secure channels. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp.
337–351. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7 22

https://datatracker.ietf.org/rg/cfrg/documents/
https://datatracker.ietf.org/rg/cfrg/documents/
https://doi.org/10.1007/978-3-540-30574-3_14
https://doi.org/10.1007/3-540-45539-6_11
https://doi.org/10.1007/3-540-45539-6_11
https://doi.org/10.1007/978-3-642-10433-6_19
https://doi.org/10.1007/978-3-642-10433-6_19
https://doi.org/10.1007/3-540-45539-6_12
https://doi.org/10.1007/3-540-45539-6_12
https://doi.org/10.1007/11426639_24
https://doi.org/10.1007/11426639_24
https://doi.org/10.1007/3-540-44987-6_28
https://doi.org/10.1007/3-540-44987-6_28
https://doi.org/10.1007/3-540-46035-7_22

OPAQUE: An Asymmetric PAKE Protocol Secure 485

15. Cash, D., Kiltz, E., Shoup, V.: The twin Diffie-Hellman problem and applications.
In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 127–145. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3 8

16. Farshim, P., Orlandi, C., Rosie, R.: Security of symmetric primitives under incor-
rect usage of keys. IACR Trans. Symmetric Cryptol. 2017(1), 449–473 (2017)

17. Freedman, M.J., Ishai, Y., Pinkas, B., Reingold, O.: Keyword search and oblivious
pseudorandom functions. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 303–
324. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30576-7 17

18. Gentry, C., MacKenzie, P., Ramzan, Z.: A method for making password-based
key exchange resilient to server compromise. In: Dwork, C. (ed.) CRYPTO 2006.
LNCS, vol. 4117, pp. 142–159. Springer, Heidelberg (2006). https://doi.org/10.
1007/11818175 9

19. Gong, L., Lomas, M.A., Needham, R.M., Saltzer, J.H.: Protecting poorly chosen
secrets from guessing attacks. IEEE J. Sel. Areas Commun. 11(5), 648–656 (1993)

20. Halevi, S., Krawczyk, H.: Public-key cryptography and password protocols. ACM
Trans. Inf. Syst. Secur. (TISSEC) 2(3), 230–268 (1999)

21. Jarecki, S., Kiayias, A., Krawczyk, H.: Round-optimal password-protected secret
sharing and T-PAKE in the password-only model. In: Sarkar, P., Iwata, T. (eds.)
ASIACRYPT 2014. LNCS, vol. 8874, pp. 233–253. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-45608-8 13

22. Jarecki, S., Kiayias, A., Krawczyk, H., Xu, J.: Highly-efficient and composable
password-protected secret sharing (or: how to protect your bitcoin wallet online).
In: IEEE European Symposium on Security and Privacy - EuroS&P 2016, pp.
276–291. IEEE (2016)

23. Jarecki, S., Kiayias, A., Krawczyk, H., Xu, J.: TOPPSS: cost-minimal password-
protected secret sharing based on threshold OPRF. In: Gollmann, D., Miyaji,
A., Kikuchi, H. (eds.) ACNS 2017. LNCS, vol. 10355, pp. 39–58. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-61204-1 3

24. Jutla, C.S., Roy, A.: Smooth NIZK arguments with applications to asymmetric
UC-PAKE. IACR Cryptology ePrint Archive 2016:233 (2016)

25. Kaliski, B.: PKCS #5: password-based cryptography specification version 2.0
(2000)

26. Kiefer, F., Manulis, M.: Zero-knowledge password policy checks and verifier-based
PAKE. In: Kuty�lowski, M., Vaidya, J. (eds.) ESORICS 2014. LNCS, vol. 8713, pp.
295–312. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11212-1 17

27. Krawczyk, H.: HMQV: a high-performance secure Diffie-Hellman protocol. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546–566. Springer, Hei-
delberg (2005). https://doi.org/10.1007/11535218 33

28. MacKenzie, P.: More efficient password-authenticated key exchange. In: Naccache,
D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 361–377. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45353-9 27

29. MacKenzie, P., Patel, S., Swaminathan, R.: Password-authenticated key exchange
based on RSA. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp.
599–613. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44448-3 46

30. Pointcheval, D., Wang, G.: VTBPEKE: verifier-based two-basis password exponen-
tial key exchange. In: ACM Asia Conference on Computer and Communications
Security – AsiaCCS 2017, pp. 301–312. ACM (2017)

31. Provos, N., Mazieres, D.: A future-adaptable password scheme. In: USENIX
Annual Technical Conference, FREENIX Track, pp. 81–91 (1999)

https://doi.org/10.1007/978-3-540-78967-3_8
https://doi.org/10.1007/978-3-540-30576-7_17
https://doi.org/10.1007/11818175_9
https://doi.org/10.1007/11818175_9
https://doi.org/10.1007/978-3-662-45608-8_13
https://doi.org/10.1007/978-3-319-61204-1_3
https://doi.org/10.1007/978-3-319-11212-1_17
https://doi.org/10.1007/11535218_33
https://doi.org/10.1007/3-540-45353-9_27
https://doi.org/10.1007/3-540-44448-3_46

486 S. Jarecki et al.

32. Schmidt, J.: Requirements for password-authenticated key agreement (PAKE)
schemes. Technical report (2017)

33. Shin, S., Kobara, K.: Augmented password-authenticated key exchange (Aug-
PAKE). draft-irtf-cfrg-augpake-08

34. Shin, S., Kobara, K., Imai, H.: Security proof of AugPAKE. IACR Cryptology
ePrint Archive 2010:334 (2010)

Quantum

Unforgeable Quantum Encryption

Gorjan Alagic1,2(B), Tommaso Gagliardoni3, and Christian Majenz4,5

1 Joint Center for Quantum Information and Computer Science,
University of Maryland, College Park, MD, USA

galagic@umd.edu
2 National Institute of Standards and Technology,

Gaithersburg, MD, USA
3 IBM Research, Zurich, Switzerland

tog@zurich.ibm.com
4 Institute for Logic, Language and Computation, University of Amsterdam,

Amsterdam, Netherlands
c.majenz@uva.nl

5 Centrum for Wiskunde en Informatica, Amsterdam, Netherlands

Abstract. We study the problem of encrypting and authenticating
quantum data in the presence of adversaries making adaptive chosen
plaintext and chosen ciphertext queries. Classically, security games use
string copying and comparison to detect adversarial cheating in such sce-
narios. Quantumly, this approach would violate no-cloning. We develop
new techniques to overcome this problem: we use entanglement to detect
cheating, and rely on recent results for characterizing quantum encryp-
tion schemes. We give definitions for (i) ciphertext unforgeability, (ii)
indistinguishability under adaptive chosen-ciphertext attack, and (iii)
authenticated encryption. The restriction of each definition to the clas-
sical setting is at least as strong as the corresponding classical notion:
(i) implies INT-CTXT, (ii) implies IND-CCA2, and (iii) implies AE. All
of our new notions also imply QIND-CPA privacy. Combining one-time
authentication and classical pseudorandomness, we construct symmetric-
key quantum encryption schemes for each of these new security notions,
and provide several separation examples. Along the way, we also give
a new definition of one-time quantum authentication which, unlike all
previous approaches, authenticates ciphertexts rather than plaintexts.

1 Introduction

Given the rapid development of quantum information processing, it is reason-
able to conjecture that future communication networks will include at least
some large-scale quantum computers and high-capacity quantum channels. What
will secure communication look like on the resulting “quantum Internet”? For
instance, how will we transmit quantum messages securely over a completely
insecure channel? One approach is via interactive and information-theoretically
secure methods, e.g., combining entanglement distillation with teleportation.

c© International Association for Cryptologic Research 2018
J. B. Nielsen and V. Rijmen (Eds.): EUROCRYPT 2018, LNCS 10822, pp. 489–519, 2018.
https://doi.org/10.1007/978-3-319-78372-7_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78372-7_16&domain=pdf

490 G. Alagic et al.

In this work, we will instead consider the non-interactive, highly efficient app-
roach which dominates the current classical Internet. A natural goal here is to
achieve, in the quantum setting, all the basic features that are enjoyed by classical
encryption: (i) a single small key suffices for transmitting an essentially unlim-
ited amount of data, (ii) these keys can be exchanged over public channels, and
(iii) the security guarantees are as strong as possible. Previous work has shown
how to achieve both (i) and (ii), but only for secrecy against chosen-plaintext
and non-adaptive chosen-ciphertext attacks [3,14]. Authentication or adaptive
chosen-ciphertext security for such schemes has, as yet, not been considered. In
fact, at the time of writing, there is not even a definition for two-time quantum
authentication, much less for quantum analogues of EUF-CMA or IND-CCA2. The
aim of this work is to address this problem.

The security definitions we seek do not yet exist due to a number of technical
obstacles, all of which can be traced to quantum no-cloning and the destructive-
ness of quantum measurements. These obstacles make it difficult even just to
formulate the basic security notion, much less to prove reductions or to construct
secure schemes. In unforgeability, for example, no-cloning makes it impossible
to record the adversary’s queries and check whether the final output is a fresh
forgery. In adaptive chosen-ciphertext security, no-cloning makes it impossible
to record the challenge ciphertext and ensure that the adversary doesn’t “cheat”
by simply decrypting it (and thus win against any scheme). Moreover, due to the
destructiveness of quantum measurement, it is unclear if one can both perform
cheat-detection and answer non-cheating queries correctly.

In this work, we overcome these obstacles, and present the first definitions
of multiple-query unforgeability and adaptive chosen-ciphertext indistinguisha-
bility for quantum encryption schemes, thereby solving a longstanding open
problem [3,12,20]. While our definitions are inherently quantum in nature, we
are able to show that they are in fact natural analogues of well-known classical
security definitions, such as INT-CTXT and IND-CCA2. The strongest security
notion we define is called quantum authenticated encryption (or QAE) and corre-
sponds to the strongest form of security normally studied in the classical setting.
A secret-key scheme satisfying QAE is unforgeable and indistinguishable even
against adversaries that can make adaptive encryption and decryption queries.

In an effort to explore this new landscape, we prove several theorems which
relate our new notions to each other and to established quantum and classical
security definitions. We also show how to satisfy each of our new security notions
with explicit, efficient constructions. In particular, we show that combining a
post-quantum secure pseudorandom function with a unitary 2-design yields the
strongest form of secret-key quantum encryption defined thus far, i.e., QAE.

Related Work. Computationally-secure quantum encryption has garnered sig-
nificant interest in the past few years, beginning with basic security notions
like QIND-CPA and QIND-CCA1 [3,14], and then with more advanced concepts
such as quantum fully-homomorphic encryption (QFHE) [14,17]. For authenti-
cation, uncloneability, and non-malleability, the one-time setting has received

Unforgeable Quantum Encryption 491

considerable attention (see, e.g., [5,6,15,19,21,23,24,27].) We will make use
of the authentication definition of [19], a characterization lemma of [5], and a
simulation adversary of [15]. For classical notions of unforgeability and chosen-
ciphertext security, see e.g. [25].

1.1 Our Approach

The Problem. We begin by outlining the technical difficulties in some further
detail. Let us consider many-time authentication for symmetric-key encryption
schemes first. In the classical setting, secure many-time authentication is defined
in terms of unforgeability. A scheme is unforgeable if no adversary, even if granted
the black-box power to authenticate with our secret key, can generate a fresh
and properly authenticated message (i.e., a forgery). Translating this idea to
the quantum setting presents immediate technical difficulties. First, no-cloning
prevents us from recording the adversary’s previous queries. Second, even if the
first problem is surmounted, the nature of measurement might make it difficult
to reliably identify whether the adversary’s output is indeed fresh. For example,
we might need many copies of the adversary’s query, as well as many copies of
their final output.

A similar problem occurs for secrecy. The current state-of-the-art is the so-
called QIND-CCA1 model. In this model, the transmitted state (the “challenge”)
remains secret even to adversaries with the black-box power to both encrypt
and non-adaptively decrypt with our secret key. Our experience in the classical
world tells us that this model is too weak, because real-world adversaries can
sometimes gain adaptive access to decryption (e.g., in WEP and early versions
of SSL [8]). Classically, this is addressed using the so-called IND-CCA2 model,
where the adversary is allowed adaptive decryption queries but cannot use them
on the challenge (without this caveat, security becomes impossible). Here again,
the quantum setting presents numerous technical difficulties: no-cloning prevents
us from recording the challenge, and the nature of measurement makes it difficult
to tell if the adversary is attempting to decrypt the challenge.

Recall that the strongest form of classical security, so-called “authenticated
encryption” (or AE) is defined to be IND-CCA2 together with unforgeability of
ciphertexts [25]. Achieving a comparable quantum notion thus seems to require
solving all of the above problems.

Using classical intuition, one might attempt a solution as follows: consider
only pure-state plaintexts, and demand that the final forgery is orthogonal to
the previous queries (or, in CCA2, that decryption queries are orthogonal to the
challenge). This may seem promising at first, but a closer look reveals numerous
issues; for example: (i) quantum states are in general not pure, and may include
side registers kept by the adversary, (ii) this idea charges the adversary with
adhering to very strict demands, contrary to good theory practice, (iii) checking
whether a particular adversary satisfies the demands cannot be done efficiently.

A Promising Approach. We now describe a more promising solution, begin-
ning with unforgeability. We will express security in terms of the performance

492 G. Alagic et al.

of adversaries A in two games: (1) F-Real, where A gets oracle access to Enck

and wins if he outputs any valid ciphertext, and (2) F-Cheat, where we attempt
to ascertain if A is cheating by feeding us an output of the oracle. How do we
detect this kind of cheating? Recall that, even in the one-time setting, quantum
authentication implies indistinguishability of ciphertexts. A consequence of this
is that, whenever A performs an encryption query on a certain plaintext state,
we are free to respond with an encryption of a different state – for example,
half of a maximally-entangled state. This will be our approach: we prepare an
entangled pair |φ+〉MM ′ , apply Enck to register M , give the resulting ciphertext
register to A, and keep M ′. When the game ends, we decrypt the output of A
into a register O, and then perform the measurement {Πφ+ ,1− Πφ+} on OM ′.
We then declare that A is cheating if and only if the first outcome is recorded.

This idea can also be applied to the multiple-query setting. There, we respond
to the jth query with an encryption of register M of |φ+〉MMj

, and save Mj ; at
the end of the game, we perform the aforementioned measurement on OMj for
all j and declare that A cheated if any of them return the first outcome.

To define a quantum analogue of IND-CCA2, we can try a similar strategy. We
again compare the performance of A in two games: (1) C-Real, which is just like
the classical IND-CCA2 game, except with no restrictions on A’s use of the Deck

oracle, and (2) C-Cheat, where we again attempt to detect cheating. In C-Cheat,
when the adversary sends us the challenge plaintext, we discard it and respond
with the ciphertext register of (Enck ⊗ 1M ′)|φ+〉MM ′ instead, while keeping M ′

to ourselves. Whenever A queries the decryption oracle, we first apply Deck and
place the resulting plaintext in a register O. Then we apply the measurement
{Πφ+ ,1 − Πφ+} to OM ′ to see if the adversary is cheating. If we get the first
outcome, we declare that A cheated.

The above ideas do lead to reasonable security definitions, which (at least
partly) fulfill our original goals. However, they suffer from a number of draw-
backs. First, repeated measurement of the plaintext requires the use of a so-called
“gentle measurement lemma” [29], and thus can only apply to large plaintext
spaces (e.g., nc qubits for c > 0). Second, they only offer plaintext authenti-
cation and a kind-of plaintext CCA security ; modification of ciphertexts (that
does not also modify the underlying plaintext) cannot be detected. Our classical
experience tells us that this is insufficient, and that we should demand impossi-
bility of any ciphertext manipulation whatsoever. Addressing these problems is
where many of our new technical contributions (in addition to the above ideas)
are needed. While our actual approach will be different, and more sophisticated
techniques are required, we will still follow the spirit of the idea outlined above.

1.2 Summary of Results

Recall that, in the setting of quantum data, copying is impossible and authen-
tication implies encryption [9]. In particular, there is no direct quantum ana-
logue of a MAC. As a result, the central objects of study in our work will be
symmetric-key quantum encryption schemes, or SKQES for short, but our results
on quantum CCA2 security carry over to the public-key setting as well.

Unforgeable Quantum Encryption 493

Quantum Ciphertext Authentication. All previous definitions of authenti-
cation for quantum data allow manipulation of the ciphertext (see Sect. 2), thus
only authenticating the plaintext state. In our first main contribution, we solve
this problem, laying the necessary groundwork for our remaining results.

• We give a new definition: information-theoretic quantum one-time ciphertext
authentication (QCA), inspired by ideas of [5,15].

• We prove that QCA is a strengthening of “DNS”-authentication [19].

Theorem 1 (informal). If a SKQES authenticates ciphertexts (QCA), then it
also authenticates plaintexts (DNS); in particular, it satisfies secrecy (QIND).

• We define computational-security (one-time) analogues: cQCA and cDNS.

Quantum Unforgeability. In this setting, the adversary is granted access to
an encryption oracle, and must generate a valid “fresh” ciphertext.

• We give a new definition: quantum unforgeability (QUF), combining ideas
of Sect. 1.1 and [5]. We also define a bounded-query analogue (t-QUF).

• We show that UF, the classical analogue of QUF, is remarkably strong.

Theorem 2 (informal). For classical schemes, UF ⇐⇒ AE.

Quantum Chosen-Ciphertext Security. We address the longstanding prob-
lem of defining quantum security under adaptive chosen-ciphertext attack [3,12,
20]; the state of the art was previously the non-adaptive QIND-CCA1 [3].

• We give a new definition: quantum indistinguishability under adaptive chosen-
ciphertext attack
(QIND-CCA2), using all of the aforementioned ideas.

• We relate QIND-CCA2 to existing security notions.

Theorem 3 (informal).

1. For quantum schemes, QIND-CCA2 =⇒ QIND-CCA1.
2. The classical analogue of QIND-CCA2 is equivalent to classical IND-CCA2.

Quantum Authenticated Encryption. In our main contribution, we define
a natural quantum analogue of the classical concept of authenticated encryp-
tion (AE). All previous quantum security notions lacked both unforgeability and
adaptive chosen-ciphertext security.

• We give a new definition: quantum authenticated encryption (QAE), combin-
ing the ideas of Sect. 1.1, the notion of QCA, and a real/ideal approach [28].

• We give evidence that QAE is indeed the correct quantum analogue of AE.

Theorem 4 (informal).

1. Unforgeability and secure authentication: QAE =⇒ QUF ∧ cQCA.
2. Chosen-ciphertext security: QAE =⇒ QIND-CCA2.
3. The classical analogue of QAE is equivalent to classical AE.

The new notions and connections we develop are summarized in Fig. 1.

494 G. Alagic et al.

Fig. 1. Implications between quantum security notions

Constructions and Separations. Our new constructions combine a SKQES Π
with a classical keyed function family f to build a new SKQES Πf , as follows. In
Πf , key generation outputs a key for f ; to encrypt a state �, we generate a ran-
dom r and output (r,EncΠ

fk(r)
(�)). For example, if Π is the quantum one-time pad

and f is a pqPRF (i.e., a post-quantum-secure pseudo-random function), then
Πf is the IND-CCA1-secure scheme from [3]. We will also need the standard one-
time authentication scheme 2desTag, defined by Enck : � �→ Ck(� ⊗ |0n〉〈0n|)C†

k

where C is an (exact or approximate) unitary two-design.

Theorem 5 (informal). Let Π be a 2desTag scheme, let f be a pqPRF, and
let g be a t-wise independent classical function family. Then

1. Π is one-time ciphertext authenticating (QCA).
2. Πg is t-time quantum unforgeable (t-QUF).
3. Πf satisfies quantum authenticated encryption (QAE); in particular, it is

quantum unforgeable (QUF) and chosen-ciphertext secure (QIND-CCA2).

Theorem 6 (informal).

1. There exists an SKQES which is QIND-CCA1 but not QIND-CCA2.
2. There exists an SKQES which is QIND-CCA2 but not QAE.

Our Choice of Primitives. The reader may wonder why our constructions
do not need “quantum-oracle-secure” primitives (e.g., QPRFs for unforgeability
and 2t-wise independence for t-time security, as in the quantum-secure classical
setting of [11]). In our work, the classical portion of the ciphertext is generated
by honest parties during encryption, and measured during decryption. As a
result, oracle access to Enck and Deck (as CPTP maps) never grants quantum
oracle access to the underlying classical primitive. Of course, one could grant
the adversary more powerful oracles that do grant this kind of access, and then
quantum-oracle-secure primitives (such as QPRFs) would indeed be required.

Unforgeable Quantum Encryption 495

A Remark on Applicability. While all of our definitions apply to arbitrary
quantum encryption schemes, security reductions sometimes require the follow-
ing additional condition. As discussed in Sect. 3, all quantum encryption algo-
rithms can be characterized as (1) drawing a random pure state from a proba-
bility distribution, (2) attaching it to the plaintext, and (3) applying a unitary
operator. For the implication QAE ⇒ cQCA of Theorem 4 to hold, it is required
that (1), (2) and (3) are efficiently implementable. This condition holds for all
schemes known to us. However, it is in principle possible that there are schemes
for which Enck is efficiently implementable, but the particular implementation
“(1), then (2), then (3)” is not. We leave this as an open problem.

2 Preliminaries

Basic Notation and Conventions. In the rest of this work, we use “classi-
cal” to denote “non-quantum”, “iff” for “if and only if”, and n to denote the
security parameter. A function ε(n) is negligible (denoted ε(n) ≤ negl(n)) if
it is asymptotically smaller than 1/p(n) for every polynomial function p. The
notation x $←−X means that x is a sample from the uniform distribution over the
set X. By “PPT” we mean a polynomial-time uniform family of probabilistic
circuits, and by “QPT” we mean a polynomial-time uniform family of quan-
tum circuits. We will frequently give such algorithms names like “adversary” or
“challenger,” but this is only to help remember the role of the algorithm.

For notation and conventions regarding quantum information, we refer the
reader to [26]. We recall a few basics here. We denote by HM a complex Hilbert
space with label M and finite dimension dimM . We use the standard bra-ket
notation to work with pure states |ϕ〉 ∈ HM . The class of positive, Hermitian,
trace-one linear operators on HM is denoted by D(HM). A quantum register is
a physical system whose set of valid states is D(HM); in this case we label by
M the register itself. We reserve the notation τM for the maximally mixed state
(i.e., uniform classical distribution) 1/dim M on M .

In a typical cryptographic scenario, a “quantum register M” is in fact an
infinite family of registers {Mn}n∈N consisting of p(n) qubits, where p is some
fixed polynomial. This family is parameterized by n, which is typically also the
security parameter. We will consider completely positive (CP), trace-preserving
(TP) maps (i.e., quantum channels) when describing quantum algorithms. To
indicate that Φ is a channel from register A to B, we will write ΦA→B . When it
helps to clarify notation, we will use ◦ to denote composition of operators. We
will also often drop tensor products with the identity, e.g., given a map ΨBC→D,
we will write Ψ ◦ Φ to denote the map Ψ ◦ (Φ ⊗ 1C) from AC to D.

The support of a quantum state � is its cokernel (as a linear operator).
Equivalently, this is the span of the pure states making up any decomposition of �
as a convex combination of pure states. We will denote the orthogonal projection
operator onto this subspace by P�. The two-outcome projective measurement (to
test if a state has the same or different support as �) is then {P�,1 − P�}.

496 G. Alagic et al.

Next, we single out some unitary operators that will appear frequently. First,
the group of n-qubit operators generated by Paulis I,X, Y, Z (applied to individ-
ual qubits) is a well-known unitary one-design. The Clifford group on n qubits
is defined to be the normalizer of the Pauli group inside the unitary group. It
can also be seen as the group generated by the gate set (H,P,CNOT) [22]; it is
also a unitary two-design [16].

A unitary t-design (for a fixed t) is an infinite collection U = {U (n) : n ∈ N},
where U (n) forms an n-qubit unitary t-design in the standard sense, i.e.,

1
|U (n)|

∑

U ∈ U(n)

U⊗tX
(
U†)⊗t

=
∫

U⊗tX
(
U†)⊗t

dU . (1)

In the above, the integral is taken over the n-qubit unitary group according to the
Haar measure. We assume that there is an explicit polynomial function m(n) and
a deterministic polynomial-time algorithm which, given 1n and k $←− {0, 1}m(n),
produces a circuit for a unitary operator Uk,n which is distributed uniformly at
random in U (n). We will not refer to this algorithm explicitly and will simply
write {Uk,n : k ∈ {0, 1}m(n)} for the resulting distribution on unitary operators;
we will also frequently suppress one index and write Uk when n is clear from
context. We refer to the polynomial m as the key length of the t-design. Standard
examples are: (i) the Pauli one-design (where we apply XaZb to each qubit for
random a, b ∈ {0, 1}) is a unitary one-design on n qubits with key length 2n;
(ii) the Clifford group (where we apply a uniformly random element of the n-
qubit Clifford group, efficiently generated via the Gottesman-Knill theorem [1])
is a unitary 3-design, and therefore in particular a unitary 2-design, on n qubits
with key length O(n2); (iii) random poly(t, n)-size quantum circuits, randomly
generated from a universal gate set, are approximate t-designs on n qubits [13].

In this work, we will only require one-designs and two-designs, and we will
assume for simplicity that the designs are exact. While approximate designs
would also suffice, some additional (but straightforward) analysis would be
required.

Quantum Encryption. We will follow the conventions set in [3]; the exception
is that decryption can reject by outputting a special symbol ⊥.

Definition 1. A symmetric-key quantum encryption scheme (or SKQES) is a
triple of QPT algorithms:

1. (key generation)1 KeyGen : on input 1n, outputs k $←−K
2. (encryption) Enc : K × D(HM) → D(HC)
3. (decryption) Dec : K × D(HC) → D(HM ⊕ |⊥〉〈⊥|)
such that ‖Deck ◦ Enck − 1M ⊕ 0⊥‖� ≤ negl(n) for all k ∈ supp KeyGen(1n).

1 A more general definition uses arbitrary key generation algorithms. We assume a
uniform key in this paper for technical and notational convenience.

Unforgeable Quantum Encryption 497

It is implicit that the key space K is classical and of size poly(n); likewise,
the registers C and M are quantum registers of at most poly(n) qubits. We will
only consider SKQES of fixed-length, meaning that the number of qubits in M is
a fixed function of the security parameter n. We assume that honest parties will
apply the measurement {Π⊥,1 − Π⊥} (where Π⊥ = |⊥〉〈⊥|) immediately after
decryption. This allows us to write, e.g., Deck(�) �= ⊥ to mean that decryption
(followed by this measurement) successfully produced a valid plaintext.

We will often combine quantum schemes with classical (keyed) function fam-
ilies. A keyed function family consists of functions f : {0, 1}p(n) × {0, 1}q(n) →
{0, 1}s(n) where p, q, s are polynomials in n. In typical usage, we sample a
key k $←−{0, 1}p(n) and then consider the restricted function fk : {0, 1}q(n) →
{0, 1}s(n) defined by fk(x) = f(k, x). All keyed function families are assumed to
be computable by a deterministic polynomial-time uniform classical algorithm.

Definition 2. Let Π = (KeyGenΠ ,EncΠ ,DecΠ) be a SKQES, and f :
{0, 1}p(n) × {0, 1}q(n) → {0, 1}s(n) a classical keyed function family. Define a
new SKQES Πf = (KeyGen,Enc,Dec) as follows:

1. KeyGen : on input 1n, outputs k $←− {0, 1}p(n);
2. Enck : on input �, outputs |r〉〈r| ⊗ EncΠ

fk(r)
(�), where r $←−{0, 1}q(n);

3. Deck : |s〉〈s| ⊗ σ �→ DecΠ
fk(s)

(σ).

We extend Deck to arbitrary inputs by postulating that it begins by measuring
the first register in the computational basis. Note that Πf has plaintext length
t(s(n)) where t(.) is the plaintext length of Π as a function of Π’s key length.
This construction can be extended to schemes Π with a non-uniform key by
using the output of the keyed function family as a random tape for KeyGenΠ .

Quantum Secrecy. The literature contains a number of information-theoretic
definitions of quantum secrecy (see, e.g., [3,6,7,14]). It is well-known that a
unitary one-design (e.g., the Pauli group) is an information-theoretically secret
scheme. In this work, however, we focus on the computational setting [3,14].

Definition 3 (QIND). A SKQES Π = (KeyGen,Enc,Dec) has indistinguishable
encryptions (or is QIND) if for every QPT adversary A = (M,D) we have:
∣
∣
∣Pr

[D{

(Enck ⊗ 1E)�ME

}

= 1
] − Pr

[D{

(Enck ⊗ 1E)(|0〉〈0|M ⊗ �E)
}

= 1
]
∣
∣
∣ ≤ negl(n),

where �ME ← M(1n), �E = TrM (�ME), and the probabilities are taken over
k ← KeyGen(1n) and the coins and measurements of Enc, M, D. We also define:

• QIND-CPA: In addition to the above, M and D have oracle access to Enck.
• QIND-CCA1: In addition to QIND-CPA, M has oracle access to Deck.

Recall that a pqPRF (post-quantum pseudorandom function) is a classical,
deterministic, efficiently computable keyed function family {fk}k which appears
random to QPT algorithms with classical oracle access to fk for uniformly ran-
dom k. The strongest notion (QIND-CCA1) is satisfied by Πf where Π is a
one-design and f is a pqPRF [3]. We let 1desPRF denote such schemes.

498 G. Alagic et al.

One-Time Authentication. We recall quantum authentication as defined by
Dupuis et al. [19], and adapt it to our conventions. Given an attack map ΛCB→CB̃

on a scheme Π = (KeyGen,Enc,Dec) (where the adversary holds B and B̃), we
define the “averaged effective plaintext map” (or just “effective map”) as follows.

ΛΠ
MB→MB̃

:= E k←KeyGen(1n) [Deck ◦ Λ ◦ Enck] .

We then require that, conditioned on acceptance, this map is the identity on M .

Definition 4 ([19]). A SKQES Π = (KeyGen,Enc,Dec) is DNS-authenticating
if, for any CP-map ΛCB→CB̃, there exist CP-maps Λacc

B→B̃
and Λrej

B→B̃
that sum

to a TP map, such that
∥∥∥ΛΠ

MB→MB̃
−

(
idM ⊗ Λacc

B→B̃
+ |⊥〉〈⊥|M ⊗ Λrej

B→B̃

)∥∥∥
�

≤ negl(n) . (2)

An important observation is that this definition only provides for authenti-
cation of the plaintext state. To see that this cannot be “ciphertext authentica-
tion,” simply take a scheme which is DNS and change it so that (i) an extra bit
is added to the ciphertext during encryption, and (ii) that same bit is ignored
during decryption. The resulting scheme still satisfies DNS, but the adversary
can clearly forge ciphertexts by flipping the extra bit. A perhaps more com-
pelling example just adds encoding (in some QEC code) after encryption, and
decoding prior to decryption. The adversary is then free to modify ciphertexts
with correctable errors without violating DNS. We remark that, in this respect,
the recent strengthening of DNS due to Garg et al. [21] is no different: a scheme
secure according to this stronger notion of authentication can be modified in the
same way without losing security.

Next, we recall a standard one-time authentication scheme. We encrypt by
appending n “tag” qubits in the fixed state |0〉 and then applying a random
element of a 2-design. Decryption first undoes the 2-design, then outputs the
plaintext iff all tag qubits measure to 0; otherwise it outputs ⊥.

Scheme 1. The scheme family 2desTag is defined as follows. Select a unitary
2-design U with key length m(·), and define algorithms:

1. KeyGen: on input 1n, output k $←− {0, 1}m(2n);
2. Enck: on input �M , output Uk(�M ⊗ |0n〉〈0n|T)U†

k

3. Deck: on input σMT , output

〈0n|T U†
kσMT Uk|0n〉T + Tr

[
(1 − |0n〉〈0n|T)U†

kσMT Uk

] |⊥〉〈⊥|M .

We chose 2desTag to have plaintext and tag length n. It is well-known that,
for plaintexts of at most polynomial length and tags of length at least nc, these
schemes are DNS-authenticating [2,19].

Unforgeable Quantum Encryption 499

3 One-Time Ciphertext Authentication

One-time quantum authentication has been extensively studied [5,9,15,18,19,
21]. As we observed above, all of these works concern plaintext authentication,
which ensures that manipulated ciphertexts decrypt to either the original plain-
text or the reject symbol. Classical MACs, on the other hand, provide cipher-
text authentication, which ensures that any ciphertext manipulation whatsoever
will result in rejection. This distinction is important; for instance, in classical
IND-CCA2, the adversary can defeat plaintext-authenticating schemes by invok-
ing the decryption oracle on a modified challenge ciphertext.

In this section we show how to define and construct ciphertext authentication
in the quantum setting. These ideas will be crucial to defining more advanced
notions (such as ciphertext unforgeability and adaptive chosen-ciphertext secu-
rity) later in the paper. We start with the information-theoretical security set-
ting, and then we discuss how to apply these notions to the computational
setting.

A Characterization of Encryption Schemes. We recall a lemma from [5]
stating that all SKQES encrypt by (i) attaching some (possibly key-dependent)
auxiliary state, and (ii) applying a unitary2 operator. Decryption undoes the
unitary, and then checks if the support of the state in the auxiliary register has
changed. We emphasize that this characterization follows from correctness only,
and thus applies to all schemes.

Lemma 1 (Lemma B.9 in [5], restated). Let Π = (KeyGen,Enc,Dec) be a
SKQES. Then Enc and Dec have the following form:

Enck(XM) = Vk (XM ⊗ (σk)T) V †
k

Deck(YC) = TrT

[
P σk

T

(
V †

k YCVk

)
P σk

T

]
+ D̂k

[
P̄ σk

T

(
V †

k YCVk

)
P̄ σk

T

]
.

Here, σk is a state on register T , P σk

T and P̄ σk

T are the orthogonal projectors
onto the support of σ(k) (see Sect. 2) and its complement (respectively), Vk is a
unitary operator, and D̂k is a channel.

In practice, D̂k (i.e., the map that is applied to any ciphertext outside of the
range of Enck) will just discard the state and replace it with ⊥. Let us explain
how the schemes we have seen so far fit into this characterization. For 2desTag, σk

is simply the (key-independent) pure state |0n〉〈0n|T , Vk is the unitary operator
of the two-design corresponding to key k, P σk = |0n〉〈0n|, and D̂k replaces
the state with ⊥. For 1desPRF, σk is the maximally mixed state τ (i.e., the
classical randomness r from Definition 2), and Vk is the controlled-unitary which
applies a quantum one-time pad on the first register, controlled on the contents
of the second register (using the pqPRF f), i.e., |x〉|r〉 �→ Pfk(r)|x〉|r〉. Decryption

2 If the dimension of the plaintext space does not divide the dimension of the ciphertext
space, then we may need an isometry. In our case, all spaces are made up of qubits.

500 G. Alagic et al.

undoes the controlled unitary and never rejects, i.e., P σk = 1. This corresponds
to the fact that τ has full support.

By considering the spectral decomposition of the state σk from Lemma 1,
it is straightforward to show that encryption can always be implemented using
unitary operators and only classical randomness. We state this fact as follows.

Corollary 1. Let Π = (KeyGen,Enc,Dec) be a SKQES. Then for every k, there
exists a probability distribution pk : {0, 1}t → [0, 1] and a family of quantum
states |ψ(k,r)〉T such that Enck is equivalent to the following algorithm:

1. sample r ∈ {0, 1}t according to pk;
2. apply the following map: Enck;r(XM) = Vk

(
XM ⊗ |ψ(k,r)〉〈ψ(k,r)|T

)
V †

k .

Here Vk and T are defined as in Lemma 1, and t is the number of qubits in T .

For example, in the case of 2desTag, the distribution is a point distribution and
|ψ(k,r)〉 = |0t〉. In 1desPRF, the distribution is uniform and |ψ(k,r)〉 = |r〉.

It is important to remark here that, even if Enck is a polynomial-time algo-
rithm, the functionally-equivalent algorithm provided by Corollary 1 may not
be. We thus define the following.

Condition 1. Let Π be a SKQES, and let pk, |ψ(k,r)〉 and Vk be as given in
Corollary 1. We say that Π satisfies Condition 1 if there exist efficient quantum
algorithms for (i) sampling from pk, (ii) preparing |ψ(k,r)〉, and (iii) implement-
ing Vk, and this holds for all but a negligible fraction of k and r.

We are not aware of any examples of SKQES that violate Condition 1. In
fact, in all schemes we will consider (including all schemes constructed via Def-
inition 2), the distribution pk and the states |ψ(k,r)〉 are trivial to prepare, and
the unitaries Vk are implementable by poly-size quantum circuits. In any case,
when Condition 1 is required for a particular result, we will state this explicitly.

Defining Ciphertext Authentication. We begin by outlining our approach.
Fix an encryption scheme Π with plaintext register M and ciphertext register
C. Let ΛCB→CB̃ be an attack map. Intuitively, we would like to decide whether
to accept or reject conditioned on whether Λ has changed the ciphertext. A
possible approach would be to use the simulator from Theorem 5.1 in [15]: in
the case of acceptance, this simulator3 ensures that Λ is equivalent to 1C ⊗ Φ
for some side-information map ΦB→B̃ . While this approach is on the right track,
it is unnecessarily strong as a definition of security: it prevents the adversary
from even looking at (or copying) classical parts of the ciphertext! This would
place strange requirements on encryption. It would disallow constant classical
messages (e.g., “begin PGP message”) accompanying ciphertexts. It would also
disallow a large class of natural schemes, including all schemes Πf from Sect. 2.

3 In [15], this simulator was used to prove DNS security of the 2desTag scheme. Here,
we consider whether that simulator can be used to define secure authentication.

Unforgeable Quantum Encryption 501

This class has many schemes that (intuitively speaking) should be adequate for
authenticating poly-many quantum ciphertexts, such as the case where Π applies
a random unitary and f is a random function.

The key to finding the middle ground lies in Corollary 1: any scheme can be
decomposed in a way that enables us to check separately whether the identity has
been applied to the quantum part, and whether the classical register has changed.
In effect, this will amount to an additional constraint over DNS-authentication4

(Definition 4), demanding extra structure from the simulator.
Recall that an attack ΛCB→CB̃ on the scheme Π defines the averaged effective

plaintext map ΛΠ
MB→MB̃

= Ek[Deck ◦ Λ ◦ Enck]. We define ciphertext authenti-
cation as follows, using notation from Lemma 1 and Corollary 1.

Definition 5. A SKQES Π = (KeyGen,Enc,Dec) is ciphertext authenticating,
or QCA, if for all CP-maps ΛCB→CB̃, there exists a CP-map Λrej

B→B̃
such that:

∥∥∥ΛΠ
MB→MB̃

−
(
idM ⊗ Λacc

B→B̃
+ |⊥〉〈⊥|M ⊗ Λrej

B→B̃

)∥∥∥
�

≤ negl(n), (3)

and Λacc
B→B̃

+ Λrej

B→B̃
is TP. Here Λacc

B→B̃
is given by:

Λacc
B→B̃

(ZB) = Ek,r

[
〈Φk,r|V †

k Λ
(
Enck;r

(
φ+

MM ′ ⊗ ZB

))
Vk|Φk,r〉

]
(4)

where |Φk,r〉 = |φ+〉MM ′ ⊗ |ψ(k,r)〉T .

Condition (3) is simply DNS. It ensures that, in the accept case, the adversary
performs the identity on the plaintext. Condition (4) demands that the rest of
the action (i.e., on the side-information) is well-simulated by the following:

1. prepare a maximally entangled state φ+
MM ′ and attach it to the input B;

2. run encryption, saving the classical randomness r used (meaning that the tag
register T was prepared in the state |ψ(k,r)〉);

3. apply decryption while conditioning on (i) the plaintext still being maximally
entangled with M ′, and (ii) register T still containing |ψ(k,r)〉;

4. output the contents of B̃.

Note that this definition only adds further constraints to DNS. Recalling that
DNS implies QIND [9,21], we thus have the following.

Theorem 7. If a SKQES is QCA, then it is also DNS; in particular, it is QIND.

It is not difficult to see that the security proof in Theorem 5.1 of [15] (for
establishing DNS of the Clifford scheme) actually applies to arbitrary 2-designs,
and in fact proves QCA and not only DNS. We thus have that the scheme 2desTag
fulfills ciphertext authentication. For details on the separation between QCA and
DNS, see the appendix of the full version of this paper [4].

4 One might also start from the authentication definitions of [21,27] rather than DNS.
However, this is not necessary: these definitions’ advantage over DNS is in key recy-
cling; our setting is non-interactive and has no back-channel for key recycling.

502 G. Alagic et al.

Computational-Security Variant. We now briefly record a computational-
security variant of one-time ciphertext authentication, which simply requires
that all elements in Definition 5 are efficient.

Definition 6. A SKQES Π = (KeyGen,Enc,Dec) is computationally cipher-
text authenticating (cQCA) if, for any efficiently implementable attack map
ΛCB→CB̃, the effective attack Λ̃MB→MB̃ is computationally indistinguishable
from the simulator:

Λsim
MB→MB̃

= idM ⊗ Λacc
B→B̃

+ |⊥〉〈⊥|M ⊗ Λreject

B→B̃
. (5)

Here the simulator is given by:

Λacc
B→B̃

= Ek,r

[
〈Φk,r|V †

k Λ
(
Enck;r

(
φ+

MM ′ ⊗ (·)B

))
Vk|Φk,r〉

]
and

Λreject

B→B̃
= Ek,r

[
Tr (1 − |Φk,r〉〈Φk,r|) V †

k Λ
(
Enck;r

(
φ+

MM ′ ⊗ (·)B

))
Vk

]
, (6)

where: |Φk,r〉 = |φ+〉MM ′ ⊗ |ψ(k,r)〉T .

Because we fix the form of the simulator in the reject case, the simulator is
efficiently implementable just as in [15] for schemes that satisfy Condition 1. It is
straightforward to define a computational variant of DNS [15], which we denote
by cDNS. Given that Theorem 7 only talks about computationally bounded
quantum adversaries, it also applies to cDNS. In particular we have the following.

Proposition 1. If a SKQES is cQCA, then it is also cDNS; in particular, it
satisfies QIND.

4 Quantum Unforgeability

Translating the standard classical intuition of ciphertext unforgeability to the
quantum setting appears nontrivial. As we develop our approach, it will be useful
to keep in mind a “prototype” scheme that should (intuitively) satisfy quantum
unforgeability against a polynomial-time adversary making an arbitrary number
of queries. This is the scheme 2desTagPRF, which encrypts via:

Enck(�) = Ufk(r) (� ⊗ |0n〉〈0n|) U†
fk(r)

⊗ |r〉〈r|
where k is a key for the pqPRF f and r is randomness selected freshly for each
encryption. This scheme is characterized (via Lemma 1) by the key-independent
“tag state” |0n〉〈0n| ⊗ τ (where τ is the maximally mixed state) and the unitary
Vk which applies Ufk(·) on the first two registers, controlled on the third register
(i.e., the randomness r).

To see why this scheme should be unforgeable, assume for the moment that
Us is a Haar-random unitary and fk is a perfectly random function. Intuitively,
from the point of view of the adversary, each plaintext is mapped into a subspace
which is fresh, independent, random, and exponentially-small as a fraction of
the total dimension (of the ciphertext space). Security should then reduce to the
security of multiple uses of a QCA one-time scheme, each time with a freshly
generated key. We will carefully formalize this intuition in a later section.

Unforgeable Quantum Encryption 503

Formal Definitions. Our definition will compare the performance of an adver-
sary in two games: an unrestricted forgery game, and a cheat-detecting game. Fix
an SKQES Π = (KeyGen,Enc,Dec) and let A be an adversary in the following.

Experiment 1. The QUF-Forge(Π,A, n) experiment:
1: k ← KeyGen(1n);
2: if Deck(AEnck(1n)) �= ⊥, output win; otherwise output reject.

We will think about this experiment as taking place between the adversary A
and a challenger C, who generates the key k, answers the queries of A, and then
decrypts to see the outcome of the game.

We now consider a different experiment where C attempts to check A for
cheating. We will make use of the maximally entangled state |φ+〉M ′M ′′ on two
copies (M ′ and M ′′) of the plaintext register, and the corresponding measure-
ment {Π+

M ′M ′′ ,1 − Π+
M ′M ′′}. We will also need a measurement that will help

C identify previously generated ciphertexts. Recall from Sect. 3 that correctness
implies that Enc can be written in the form Enck(X) = Vk

(
XM ⊗ σk

)
V †

k where
σ
(k)
T =

∑
r pk(r)Πk,r and Πk,r = |ψ(k,r)〉〈ψ(k,r)|T . This also defines, for each

(k, r), the two-outcome measurement {Πk,r,1−Πk,r}. In all these two-outcome
measurements, we denote the first outcome by 0 and the second outcome by 1.
Notice that these projectors commute, as |ψ(k,r)〉T are elements of an orthonor-
mal basis of eigenvectors.

Experiment 2. The QUF-Cheat(Π,A, n) experiment:
1: C runs k ← KeyGen(1n);
2: A receives 1n and oracle access to Ek (controlled by C), defined as follows:

(1) A sends plaintext register M to C;
(2) C discards M and prepares |φ+〉M ′M ′′ ;
(3) C applies Enck to M ′ using fresh randomness r, sends result C to A;
(4) C stores (M ′′, r) in a set M.

3: A sends final output register Cout to C;
4: C applies V †

k to Cout, places results in MT ;
5: for each (M ′′, r) ∈ M do
6: C applies {Πk,r,1 − Πk,r} to T ;
7: if outcome is 0 then:
8: C applies {Π+,1 − Π+} to MM ′′;
9: if outcome is 0: output cheat; end if

10: end if
11: end for
12: output reject.

Note that the experiment always outputs reject if A makes no queries. We
emphasize that C is a fixed algorithm defined by the security game and the
properties of Π. The challenger is efficient if the states |ψ(k,r)〉〈ψ(k,r)| and the
unitary Vk are efficiently implementable and the probability distribution pk is
efficiently sampleable. We believe this is not a significant constraint. It is easily

504 G. Alagic et al.

satisfied in all schemes we are aware of. Moreover, in light of Lemma1, it seems
unlikely that any reasonable form of ciphertext unforgeability can be defined
without this requirement. We are now ready to define security.

Definition 7. A SKQES Π has unforgeable ciphertexts (or is QUF) if, for all
QPT adversaries A, it holds:

|Pr[QUF-Forge(Π,A, n) → win] − Pr[QUF-Cheat(Π,A, n) → cheat]| ≤ negl(n) .

It is straightforward to adapt the above definition to the bounded-query
setting, where we fix some positive integer t (at scheme design time) and demand
that adversaries can make no more than t queries. We call the resulting notion
QUFt. One then has the obvious implications QUF ⇒ QUFt ⇒ QUFt−1∀ t ∈ N.

Let us briefly discuss a potential concern with these definitions. Consider the
repeated measurements applied to the adversary’s final output Cout (Line 6 and
Line 8) in QUF-Cheat. The first measurement simply compares the randomness
of Cout to that of previously generated ciphertexts. Such measurements will not
disturb properly-formed ciphertexts at all, and malformed ones will not affect
our security definition. The second measurement actually measures the plaintext
register M , and thus might (a priori) appear to be concerning. Indeed, if multi-
ple such measurements are applied to M , this might open up a vulnerability to
attacks. As it turns out, this is not a problem. We will shortly show (see The-
orem 8 below) that QUF implies QIND-CPA. For QIND-CPA schemes, any given
random string r is only chosen with negligible probability at encryption time (if
not, querying the encryption oracle a polynomial number of times with the chal-
lenge plaintext would be enough to compromise security). It follows that, with
overwhelming probability, the random strings chosen in the different oracle calls
in QUF-Cheat are pairwise distinct. This, in turn, implies that the measurement
in Line 8 is applied at most once in a given run of the experiment.

Relationship to Other Security Notions. It is well-known that even one-
time quantum authentication implies QIND secrecy [9]. As we now show, QUF
implies an even stronger notion of secrecy, QIND-CPA. This is a significant depar-
ture from classical unforgeability, which is completely independent of secrecy.

Theorem 8. If a SKQES satisfies QUF, then it also satisfies QIND-CPA.

Proof. Let Π be a SKQES, and let A be an adversary winning QIND-CPA with
non-negligible advantage ν over guessing, with pre-challenge algorithm A1 and
post-challenge algorithm A2. We will build an adversary B with black-box oracle
access to A, able to distinguish between the QUF-Forge game and the QUF-Cheat
game with non-negligible advantage over guessing, as follows:

1. B runs A1(1n), answering its queries using his own oracle O;
2. get registers M (challenge plaintext) and B (side information) from A1;
3. choose a random bit b $←−{0, 1}; if b = 1, then replace contents of M with a

maximally-mixed state;

Unforgeable Quantum Encryption 505

4. invoke oracle O on M and place result in register C;
5. run A2 on registers C and B, receiving output b′ ∈ {0, 1};
6. if b = b′, then output real; else output real or ideal with equal probability.

Note that, if B is playing QUF-Forge, then O = Enck and we are faithfully
simulating the QIND-CPA game for A. It follows that b = b′ with probability
at least 1/2 + ν. If B is playing QUF-Cheat instead, O discards its input (and
replaces it with half of a maximally-entangled state) on every call. In that case,
all inputs to A1 and A2 are completely uncorrelated with b, so that b′ = b with
probability 1/2. Therefore, A′ will correctly guess the game it is playing in with
non-negligible advantage.

Now it is easy to see how to use B to violate the main condition in the
definition of QUF with the same distinguishing advantage. First, query the oracle
once and store the output in register C. Next, run B. If B outputs real, then
output the contents of C (achieving win in QUF-Forge). Otherwise, output a
random state in the ciphertext register (achieving reject in QUF-Cheat). ��

We also study the restriction of the quantum notion QUF to the classical case,
i.e., classical symmetric-key encryption schemes (SKES) vs classical adversaries.
We denote this classical restriction by UF. In this notion, the classical unre-
stricted forgery game UF-Forge is defined precisely as in Experiment 1. Regard-
ing the quantum game QUF-Cheat, notice that, in any classical scheme, one can
apply ciphertext verification to a string c as follows: (i) make a copy c′ of c, (ii)
decrypt c, (iii) if decryption rejected, output reject, and otherwise output c′. In
other words, all classical encryption schemes automatically satisfy Condition 1.
The appropriate classical restriction UF-Cheat of this game thus proceeds as
Experiment 2, with two modifications: (i) in step 2:, C replaces the plaintext in
register Mj by a random plaintext, encrypts it, and stores a copy of the resulting
ciphertext in Cj ; and (ii) in step 4:, without decrypting, the game outputs cheat
if the challenge ciphertext C equals any one of the saved Cj ’s. We then have the
following.

Definition 8. A SKES Π has unforgeable ciphertexts (or is UF) if, for all PPT
adversaries A,

|Pr[UF-Forge(Π,A, n) → win] − Pr[UF-Cheat(Π,A, n) → cheat]| ≤ negl(n) .

The proof of Theorem8 carries over easily to the classical case. Moreover, one
can show how UF implies the classical security notion of integrity of ciphertexts
INT-CTXT [10], which states that no bounded adversary with oracle access to
an encryption oracle can produce a ciphertext which is at the same time (i)
valid, and (ii) fresh, i.e., never output by the oracle. Recall that, classically, it
is known [10] that INT-CTXT plus IND-CPA defines authenticated encryption
AE. Therefore, the notion of unforgeability of ciphertexts, when restricted to the
classical case, is at least as strong as authenticated encryption. However, one
can also show the converse, i.e., AE implies UF.

506 G. Alagic et al.

Theorem 9. UF ⇐⇒ AE.

Proof. The first non-trivial part to prove is UF =⇒ INT-CTXT. Let Π be an
INT-CTXT insecure SKES. Then there exists an adversary A with oracle access
to Enck which, with non-negligible probability ν, outputs a ciphertext c which
was never output by the encryption oracle. Define a PPT algorithm B with oracle
access to Enck, as follows. First, B executes A and records a list L of all Enck’s
answers cj output to A. When A outputs a ciphertext c, if c ∈ L, B outputs a
random ciphertext c′; else it outputs c. For B, the success probabilities in the
games defining UF are as follows:

• in the UF-Forge experiment, since c is a fresh ciphertext with non-negligible
probability ν, B wins UF-Forge with probability at least ν.

• In UF-Cheat instead, whenever the ciphertext is not fresh, B replaces it with
a random one, and hence only wins UF-Cheat with negligible probability.

The fact that a random ciphertext is invalid with overwhelming probability
follows by considering an adversary that does not make any queries. So we have:

|Pr[UF-Forge(Π,A′, n) → win] − Pr[UF-Cheat(Π,A′, n) → cheat]| ≥ ν,

and hence Π cannot be UF.
The other direction to prove is AE =⇒ UF. For this, we will use an equiv-

alent characterization of AE, also known in the literature as IND-CCA3 [28]. In
this definition, the adversary’s goal is to distinguish whether he’s playing in the
AE-Real world, or in the AE-Ideal world. In the AE-Real world, the adversary
can interact freely with an encryption oracle Enck, and with a restricted decryp-
tion oracle Deck which always rejects (⊥) decryption queries over any ciphertext
which was output by Enck. In the AE-Ideal world, instead, the adversary is inter-
acting with an oracle Enck($) (which ignores the input query, and always returns
the encryption of a fresh random plaintext), and a constant ⊥ oracle (which sim-
ulates the decryption oracle but always rejects any query). A scheme Π is AE
secure iff, for any adversary A it holds:

|Pr [AE-Real(Π,A, n) → 1] − Pr [AE-Ideal(Π,A, n) → 1]| ≤ negl(n) .

Now, let A be a PPT adversary breaking UF for a scheme Π. This means that
there exists a non-negligible function ν such that:

|Pr[UF-Forge(Π,A, n) → win] − Pr[UF-Cheat(Π,A, n) → cheat]| ≥ ν(n) .

We use A to build an adversary B able to distinguish AE-Real from AE-Ideal.
The new adversary B runs A and forwards all of A’s encryption queries to his
own encryption oracle. Finally, when A outputs a ciphertext c, B queries his own
decryption oracle on c, and looks at the oracle’s response. If the response is not
⊥, then B returns real, otherwise returns real or ideal with equal chance.

It is easy to see that B distinguishes AE-Ideal from AE-Real with non-
negligible advantage at least ν/2 over guessing. The reason is as follows. If B is

Unforgeable Quantum Encryption 507

in the AE-Real world (probability 1/2), then he is correctly simulating for A the
UF-Forge game. Since A breaks UF by assumption, it means that, with proba-
bility at least ν, his output c will be a fresh valid ciphertext; in that case, also
B wins. On the other hand, if the world is AE-Ideal, B still wins with probability
1/2. ��

This means that UF is actually another characterization of authenticated
encryption. This is an interesting observation, given that UF comes from the
classical restriction of a quantum notion “merely” concerning the unforgeability
of ciphertexts. However, we stress that this equivalence only holds at the classical
level, and that this is insufficient evidence to declare that UF serves the same
purpose quantumly as AE does classically. In fact, in Sect. 6 we introduce a
quantum analogue of AE which we call QAE, and provide stronger evidence that
the latter is in fact the correct analogue.

5 Quantum IND-CCA2

Next, we move to the problem of defining adaptive chosen-ciphertext security for
quantum encryption. In the usual classical formulation (IND-CCA2), the adver-
sary A receives both an encryption oracle and a decryption oracle for the entire
duration of the indistinguishability game. To eliminate the trivial strategy, we
do not permit A to query the decryption oracle on the challenge ciphertext.
This last condition does not make sense in the quantum setting, for a number of
reasons we’ve seen before: no-cloning prevents us from storing a copy of the chal-
lenge, measurement may destroy the states involved, and so on. However, our
approach to defining unforgeability can be adapted to this case. The resulting
notion of quantum indistinguishability under adaptive chosen-ciphertext attacks
(QIND-CCA2) can also be recast in the public-key quantum encryption setting.

Formal Definition. As before, we will compare the performance of the adver-
sary in two games. In each case, the adversary A = (A1,A2) consists of two
parts (pre-challenge and post-challenge), and is playing against the challenger
C, which is a fixed algorithm determined only by the security game and the
scheme.

Experiment 3. The QCCA2-Test(Π,A, n) experiment:
1: C runs k ← KeyGen(1n) and flips a coin b $←−{0, 1};
2: A1 receives 1n and access to oracles Enck and Deck;
3: A1 prepares a side register S, and sends C a challenge register M ;
4: C puts into C either Enck(M) (if b = 0) or Enck(τM) (if b = 1);
5: A2 receives registers C and S and oracles Enck and Deck;
6: A2 outputs a bit b′. If b′ = b, output win; otherwise output fail.

Notice that in this game there are no restrictions on the use of Deck by A2. In
particular, A2 is free to decrypt the challenge. In the second game, the challenge
plaintext is replaced by half of a maximally entangled state, and A only gains
an advantage over guessing if he cheats, i.e., if he tries to decrypt the challenge.

508 G. Alagic et al.

Experiment 4. The QCCA2-Fake(Π,A, n) experiment:
1: C runs k ← KeyGen(1n);
2: A1 receives 1n and access to oracles Enck and Deck;
3: A1 prepares a side register S, and sends C a challenge register M ;
4: C discards M , prepares |φ+〉M ′M ′′ and fresh randomness r, and stores

(M ′′, r); then C encrypts the M ′ register and sends the resulting ciphertext
C ′ to A2;

5: A2 receives registers C ′ and S and oracles Enck and Dk, where Dk is defined
as follows. On input a register C:
(1) C applies V †

k to C, places results in MT ;
(2) C applies {Πk,r,1 − Πk,r} to T ;
(3) if outcome is 0 then:
(4) C applies {Π+,1 − Π+} to MM ′′;
(5) if outcome is 0: output cheat;
(6) end if
(7) return M ;

6: C draws a bit b at random. If b = 1, output cheat; if b = 0 output reject.

We now define quantum IND-CCA2 in terms of the advantage gap of adver-
saries between the above two games.5

Definition 9. A SKQES Π is QIND-CCA2 if, for all QPT adversaries A,

Pr[QCCA2-Test(Π,A, n) → win]−Pr[QCCA2-Fake(Π,A, n) → cheat] ≤ negl(n) .

The omission of absolute values in the above is intentional. Indeed, an adver-
sary can artificially inflate his cheating probability by querying the decryption
oracle on the challenge and then ignoring the result. What he should not be
able to do (against a secure scheme) is make his win probability larger than his
cheating probability. We note that QIND-CCA2 clearly implies QIND-CCA1.

Proposition 2. QIND-CCA2 =⇒ QIND-CCA1.

Proof. Suppose we have a scheme Π which is not QIND-CCA1, i.e., there exists
an adversary A which wins the usual QIND-CCA1 game with non-negligible
advantage ν over guessing. Clearly A can also play the games QCCA2-Test and
QCCA2-Fake, but will not query the decryption oracle post-challenge. Note that
A wins QCCA2-Test with probability 1/2 + ν, but is declared as cheating in
QCCA2-Fake with probability exactly 1/2. Hence Π is not QIND-CCA2. ��

Next, we show that the classical restriction of QIND-CCA2 is equivalent to
the classical security notion IND-CCA2. We denote the classical restriction of
QIND-CCA2 by IND-CCA2′. This is defined by adapting the replacement and
verification procedure of the challenger in QCCA2-Test in the same way as when
defining UF. We denote the classical versions of the games QCCA2-Test and
QCCA2-Fake by CCA2-Test and CCA2-Fake, respectively.
5 The interface that the two games provide to the adversary differ slightly in that the

adversary is not asked to output a bit in the end of the QCCA2-Fake game. This is
not a problem as the games have the same interface until the second one terminates.

Unforgeable Quantum Encryption 509

Theorem 10. A SKES Π is IND-CCA2′ iff it is IND-CCA2.

Proof. Suppose first that A is an adversary breaking IND-CCA2′, i.e., winning
CCA2-Test with non-negligible advantage ν over the probability of winning
CCA2-Fake. We construct an adversary A′, that runs A, keeps a copy of the
challenge ciphertext and aborts by giving a random answer whenever A is about
to query the decryption oracle with the challenge ciphertext. Note that A′ wins
CCA2-Fake with probability exactly 1/2. We call A′ the self-checking version of
A. It is easy to show that A′ wins the CCA2-Test game with probability at least
1/2 + ν:

Pr [A′ wins CCA2-Test]

= Pr [A wins CCA2-Test ∧ A does not cheat] +
1
2

Pr [A cheats]

≥ Pr [A wins CCA2-Test] − 1
2

Pr [A cheats]

≥ Pr [A wins CCA2-Fake] +
1
ν

− 1
2

Pr [A cheats] =
1
2

+ ν .

The first inequality is Pr[A ∧ B] ≥ Pr[A] − Pr[¬B] and the second inequality
is the assumption. But the CCA2-Test and IND-CCA2 games are identical for
adversaries that do not query the challenge, and A′ has been constructed not
to, i.e., A′ wins the IND-CCA2 game with probability 1/2 + ν.

For the other direction, let A be an adversary that wins the IND-CCA2 game
with non-negligible advantage. Let A′ be the self-checking version of A. Note
that A and A′ behave the same in both the IND-CCA2 and CCA2-Test games, as
A never submits the challenge ciphertext there by assumption. In the CCA2-Fake
game, however, A could, in principle, query the oracle with the challenge cipher-
text, which is why we have to resort to the use of A′. The latter is a successful
adversary for IND-CCA2′: It wins the CCA2-Test game with non-negligible advan-
tage over random guessing by assumption, but it wins the CCA2-Fake game with
probability exactly 1

2 . ��

6 Quantum Authenticated Encryption

In the classical setting, authenticated encryption (AE) is defined as IND-CCA2
and unforgeability of ciphertexts (see Definition 4.17 in [25]) or, equivalently,
IND-CPA and unforgeability of ciphertexts [10]. A third equivalent formulation
due to Shrimpton [28] defines AE in terms of a real vs ideal scenario. According to
this definition, a classical scheme Π = (KeyGen,Enc,Dec) is AE if no adversary,
given oracles E and D, can distinguish these two scenarios:

• AE-Real: (E,D) is (Enck,Deck) with k ← KeyGen;
• AE-Ideal: E discards the input and returns Enck(m) for random m, and D

always rejects; here again k ← KeyGen;

This is not yet enough, because the adversary A can always distinguish real from
ideal by composing E with D. To patch this problem, we can (i) demand that

510 G. Alagic et al.

A cannot do that, as in [28], or (ii) add the condition D ◦ E = 1 to the ideal
case6. We will take the latter approach.

Motivated by this formulation of AE and our general strategy so far, we will
define quantum authenticated encryption by comparing the performance of the
adversary in a real world and an ideal world. In the real world, the adversary gets
unrestricted access to Enck and Deck. In the ideal world, the challenger C stores
the Enck queries, replacing them with halves of maximally-entangled states;
when a Deck query is detected as corresponding to a particular earlier Enck

query, C replies with the contents of the stored register; otherwise Deck rejects.
Cheat detection is performed just as in the unforgeability game QUF-Cheat.

Formal Definition. We now formally define the two worlds: the real world
QAE-Real, and the ideal (or cheat-detecting) world QAE-Ideal. In both cases, the
adversary A receives two oracles and then outputs a single bit.

Experiment 5. The QAE-Real(Π,A, n) experiment:
1: k ← KeyGen(1n);
2: output AEnck,Deck(1n).

In the ideal setting, it will be convenient to describe the experiment in terms
of an interaction between A and the challenger C, a fixed algorithm determined
only by the security game and the properties of Π.

Experiment 6. The QAE-Ideal(Π,A, n) experiment:
1: C runs k ← KeyGen(1n);
2: initialize oracles EM→C and DC→M :

• E is defined as follows. On input a register M :
(1) C prepares |φ+〉M ′M ′′ , and generates fresh randomness r;
(2) C stores (r,M ′′,M) in a set M;
(3) C applies Enck to M ′ using randomness r; return result to A.

• D is defined as follows. On input a register C:
(1) C applies V †

k to C, places results in M ′T ;
(2) for each (r,M ′′,M) ∈ M do:
(3) C applies {Πk,r,1 − Πk,r} to T ;
(4) if outcome is 0 then:
(5) C applies {Π+,1 − Π+} to M ′M ′′;
(6) if outcome is 0: return M ;
(7) end if
(8) end for
(9) return |⊥〉〈⊥|;

3: output AE,D(1n).

Note that, as before, we number the measurement outcomes by 0 (the first
outcome) and 1 (the second outcome). With the above games defined, we can
now set down our definition of quantum authenticated encryption.
6 More precisely, the ideal world maintains a list of all queries that A makes to E,

and ensures that D will respond correctly if queried on an output of E.

Unforgeable Quantum Encryption 511

Definition 10. A SKQES Π = (KeyGen,Enc,Dec) is an authenticated quantum
encryption scheme (or is QAE) if, for all QPT adversaries A:

|Pr [QAE-Real(Π,A, n) → real] − Pr [QAE-Ideal(Π,A, n) → real]| ≤ negl(n).

Relationship to Other Security Notions. Next, we give evidence that QAE
is indeed the correct formalization of a quantum analogue of AE, by showing
that it implies all of the quantum security notions defined thus far. We begin
with adaptive chosen-ciphertext security.

Theorem 11. QAE =⇒ QIND-CCA2.

Proof. The proof is similar to that of Theorem 8. For a scheme Π, let A be an
adversary against QIND-CCA2, e.g., let us say that:

Pr [QCCA2-Test(Π,A, n) → win] = Pr [QCCA2-Fake(Π,A, n) → cheat] + ν(n) ,

for non-negligible ν. We then show how to build another adversary B with black-
box access to A, able to distinguish QAE-Real from QAE-Ideal.

B runs A, and forwards all of A’s queries to his own oracles. When eventually
A outputs a challenge plaintext state, B flips a random bit b. If b = 0, then B
forwards the challenge plaintext to his encryption oracle as usual. Otherwise,
if b = 1, B replaces the challenge with a totally mixed plaintext state before
relaying it to the oracle. After that, B continues to answer A’s queries during
the second quantum CCA phase as before, by forwarding all the queries to his
oracles, until A produces an output bit b′. Finally, if b = b′, then B outputs real,
otherwise he outputs ideal.

Now notice the following: If we are in the QAE-Real environment (that is, B
has unrestricted Enc and Dec oracles), then B is faithfully simulating for A the
QCCA2-Test game, which means that the probability of B correctly outputting
real is exactly the same probability of A of winning QCCA2-Test.

If we are in the QAE-Ideal world, instead, B is playing in a “malformed”
game, where all his encryption queries are replaced by random plaintexts before
encryption. This means that the best A could do in order to guess the secret
bit b is guessing at random, unless A uses a “cheating decryption query” on
the challenge ciphertext (in this case the modified decryption oracle of the
game QAE-Ideal would actually return the encrypted plaintext). Looking at the
description of the QCCA2-Fake game, it is clear that this is exactly the same as
Pr[QCCA2-Fake(Π,A, n) → cheat]. So, summing up:

∣∣∣ Pr [QAE-Real(Π,B, n) → Real] − Pr [QAE-Ideal(Π,B, n) → Real]
∣∣∣

=
∣∣∣ Pr [QCCA2-Test(Π,A, n) → win] − Pr [QCCA2-Fake(Π,A, n) → cheat]

∣∣∣ = ν ,

which concludes the proof. ��
In terms of authentication security, we can show that QAE implies cQCA

(computational one-time ciphertext authentication), and hence also cDNS.

512 G. Alagic et al.

Theorem 12. Let Π = (KeyGen,Enc,Dec) be a SKQES that is QAE secure and
satisfies Condition 1. Then it is cQCA.

Proof. Assume Π is not cQCA. Then there exists an algorithm A = (A1,A2,A3)
that achieves the following. A1 gets an input 1n and outputs registers M (the
plaintext register) and B. A2 implements a map ΛCB→CB̃ on two registers C
(the ciphertext register) and B. A3 is a distinguisher between the two states
resulting from applying Λ̃CB→CB̃ or the corresponding simulator according to
Eqs. (5) and (6) to the output of A1.

The crucial observation is, that the map on registers MB resulting from
sending M to the challenger C′

ideal as an encryption query in the ideal QAE game,
applying ΛCB→CB̃ to the output and sending the resulting C-register to C′

ideal as
a decryption query, is exactly the simulator defined in Eqs. (5) and (6). Thus,
the adversary that runs A1, queries the encryption oracle, runs A2, queries the
decryption oracle and finally runs A3 is a successful QAE adversary. ��
In addition, QAE implies quantum unforgeability.

Theorem 13. QAE =⇒ QUF.

Proof. For a scheme Π, let A be an adversary against QUF, e.g., let us say that:

Pr [QUF-Forge(Π,A, n) → win] = Pr [QUF-Cheat(Π,A, n) → cheat] + ν ,

where ν is non-negligible. We then build another adversary B with black-box
access to A, able to distinguish QAE-Real from QAE-Ideal with non-negligible
advantage. B runs A, and forwards all of A’s queries to his own encryption
oracle. When eventually A outputs a forgery, B sends it for decryption to his
own decryption oracle. If the decryption succeeds (that is, the oracle does not
return |⊥〉〈⊥|), then B outputs real, otherwise he outputs ideal.

The idea is the following: suppose the decryption of the forgery state succeeds
(i.e., it does not decrypt to |⊥〉〈⊥|). This can happen in two cases:

1. we are in the QAE-Real game, and A produced a valid forgery (i.e., he won
the QUF-Forge game); or

2. we are in the QAE-Ideal game, and A cheated by replaying an output of the
encryption oracle (i.e., he won the QUF-Cheat game).

Recall that, by assumption, A produces a valid forgery with probability at least
ν over cheating. Therefore the case 2. above happens with noticeable less prob-
ability than case 1., which is in fact the one B “bets” on. Analogously, suppose
the decryption fails. This can happen in two cases:

1. we are in the QAE-Real game, but A produced an invalid forgery (i.e., he lost
the QUF-Forge game); or

2. we are in the QAE-Ideal game, and A did not cheat (i.e., he lost QUF-Cheat).

Unforgeable Quantum Encryption 513

For the same reasoning as above, 2. is noticeably more likely than 1., which is
in fact B’s bet. More in detail, we have:

∣∣∣ Pr [B(QAE-Real) → Real] − Pr [B(QAE-Ideal) → Real]
∣∣∣

=
∣∣∣ Pr [QAE-Real] · Pr [A(QUF-Forge) → win]

− Pr [QAE-Ideal] · Pr [A(QUF-Cheat) → cheat]
∣∣∣

=
1
2

∣∣∣ Pr [A(QUF-Forge) → win] − (
Pr [A(QUF-Forge) → win] − ν

)∣∣∣ =
ν

2
,

which is non-negligible. ��
Finally, we consider the classical restriction AE′ of QAE.

Proposition 3. AE′ ⇐⇒ AE.

Proof. The security notion AE’ is given in terms of two experiments which are
like the AE-Real and AE-Ideal experiments in Shrimpton’s formulation of AE
security, with the following difference:

1. in the modified AE-Real experiment, the decryption oracle does not reject
non-fresh ciphertexts, i.e. it is unrestricted; and

2. in the modified AE-Ideal experiment, the decryption oracle does not always
return ⊥: in case it is queried on a non-fresh ciphertext, it decrypts correctly.

Since classically we can store and compare plaintexts and ciphertexts, it is easy
to construct an efficient simulator able to switch between the experiments of AE
and AE′, by inspecting A’s decryption queries and reacting accordingly. Namely:

1. to switch from AE to AE′, record A’s plaintexts and ciphertexts during encryp-
tion queries, and reply with the right plaintext whenever A asks to decrypt a
non-fresh ciphertext (otherwise, just send the query to the decryption oracle);
and

2. to switch from AE′ to AE, record A’s received ciphertexts during encryption
queries, and reply with ⊥ whenever A asks to decrypt a non-fresh ciphertext
(otherwise, just send the query to the decryption oracle).

This concludes the proof, as it shows the two cases to be equivalent. ��
In particular, AE′ is equivalent to UF. We provide evidence that a quantum

analogue of this statement does not hold in the next section.

7 Constructions and Separations

In this section we exhibit constructions of SKQES that fulfill and separate the
different security notions presented in the preceding sections. We begin by show-
ing that augmenting a one-time scheme by a (perfectly) random function family
using the construction in Definition 2 turns a QCA secure scheme into a QAE
secure scheme. Then we will move on to show how to satisfy QAE with an effi-
ciently implementable scheme. Recall that efficient QCA-secure SKQES can be
constructed, e.g., from unitary two-designs like the Clifford group.

514 G. Alagic et al.

Theorem 14. Let Π be a QCA-secure SKQES, and let f : K×{0, 1}n → {0, 1}m

be a random function family. Then the scheme Πf in Definition 2 is QAE secure.

Proof. We let Π = (KeyGen,Enc,Dec) and ΠF = (KeyGen′,Enc′,Dec′) where

1. KeyGen′(1n) outputs a random function F from {0, 1}n to {0, 1}m;
2. Enc′

F (XM) outputs |s〉〈s|R ⊗ EncF (s)(X)C , where s $←− {0, 1}n;
3. Dec′

F (YRC) first measures the R register to get outcome s′; then it runs
DecF (s′) on register C and outputs the result.

Suppose A is a QAE adversary against ΠF , i.e., a QPT algorithm with oracle
access to Enc′

k and Dec′
k. Suppose A makes �(n) queries to the oracle, where

� is some polynomial function of n. We assume that the randomnesses si and
the keys F (si) used for the scheme Π in the different encryption queries (for
i = 1, . . . , �(n)) are all distinct; this is true except with negligible probability.

Let us first analyze what happens in the QAE-Real experiment. Consider the
i-th decryption oracle call. The decryption begins with a measurement of the R
register, yielding some outcome s and thereby a key k̄ = F (s). We can analyze
the situation for each outcome s that occurs with non-negligible probability,
separately. This is because if an adversary is successful, it is easy to see that there
is also a modified successful adversary, that submits only decryption queries with
a fixed string s in the randomness register.

Suppose first that k̄ = F (s) �= F (si) for all i. In this case, the Π-encrypted
part of the forgery candidate gets decrypted with a key different from all the
ones used for encryption. We analyze the attack map Λ = Ã(1n)TrC against the
QCA scheme Π, where Ã is defined to first run A until the ith decryption query,
while answering each encryption query by sampling a fresh key for the scheme
Π. Note that Λ does not use initial side information, therefore σacc := Λacc and
σrej := Λrej are just positive semidefinite matrices whose trace sums to one.

According to Eq. (4) in the definition of QCA, the trace of σacc is the proba-
bility that the simulator applies the identity to the plaintext. The output of the
attack map Λ does not depend on it’s input, i.e. the same holds for the effective
map ΛΠ and hence for (1 − |⊥〉〈⊥|)ΛΠ(·)(1 − |⊥〉〈⊥|). Any such map is far
from any non-negligible multiple of the identity channel so the trace of σacc is
negligible according to Eq. 3. We have hence shown that the decryption oracle
returns ⊥ with overwhelming probability, so we can take σcrej = TrCÃ(1n).

Let now s′ = rj , and write A = A1Enck̂A0, splitting the adversary into two
parts before and after the j-th encryption query. Let (Ã1)CE1→CE2 be defined
analogous to Ã. E1 and E2 are the internal memory registers of A at the time
of the j-th encryption query and the i-th decryption query, respectively. Π is
QCA secure, implying that ÃΠ

1 = Ek̄

[
Deck ◦ Ã1 ◦ Enck̄

]
fulfills:

‖(ÃΠ
1)ME1→ME2 − idM ⊗ (Ãacc

1)E1→E2 − ⊥ ⊗ (Ãrej
1)E1→E2‖� ≤ negl(n), (7)

where (using Pinv = 1 − |Φk̄,r̄〉〈Φk̄,r̄|):

Unforgeable Quantum Encryption 515

Ãacc
1 = Ek̄,r̄

[
〈Φk̄,r̄|V †

k̄
Ãacc

1

(
Enck̄;r̄

(
φ+

MM ′
) ⊗ (·)E1

)
Vk̄|Φk̄,r̄〉

]
and

Ãrej
1 = Ek̄,r̄

[
TrMM ′T PinvV

†
k̄
Ãacc

1

(
Enck̄;r̄

(
φ+

MM ′
) ⊗ (·)E1

)
Vk̄

]
. (8)

The form of the simulator in the reject case follows by using that the maximally
entangled state is a point in the optimization defining the diamond norm in (3)
and using the monotonicity of the trace norm under partial trace.

We now show indistinguishability of the real and ideal experiments by induc-
tion over the decryption queries. Since QCA implies IND, the two are indistin-
guishable before the first decryption query. Assume now that the two exper-
iments cannot be distinguished using an algorithm that makes at most i − 1
decryption queries. Consider A running in the ideal experiment until right before
the (i + 1)-th decryption query (or until the end, if i = �). We make the same
case distinction as before. In the first case the measurement in line (3) in the
ideal decryption oracle in Experiment 5 never returns 0, i.e. the output is always
reject. Therefore we can replace the i-th decryption oracle by the constant reject
function, thereby reducing the number of decryption oracle calls of to i − 1.
By the induction hypothesis, the contents of the internal register are therefore
indistinguishable whether in the QAE-Real or in the QAE-Ideal experiment.

Turning to the second case, we make a very similar argument. We have
s = sj , i.e. the only encryption query where the measurement from line (3) in
the definition of the ideal decryption oracle in Experiment 5 can possibly return
0 is the j-th. Here it is left to observe that the rest of the ideal decryption
oracle implements exactly the same map as in the ideal world, i.e. the ones
from Eqs. (7) and (8). Replacing the j-th encryption and the i-th decryption
oracle call by this map, and using the induction hypothesis, we get that A run
until before the i+1-th decryption oracle call cannot distinguish QAE-Real from
QAE-Ideal. This ends the proof by induction. ��

We now show how to satisfy QAE efficiently, by means of a post-quantum-
secure pseudorandom function.

Corollary 2. Let Π be a QCA-secure SKQES that satisfies Condition 1, and let
f be a pqPRF. Then the scheme Πf (from Definition 2) satisfies QAE.

Proof. As a contradiction, suppose there exists a QPT algorithm A that distin-
guishes QAE-Real from QAE-Ideal. We claim that this also holds if f is replaced
with a completely random function family F . If A cannot break the random
scheme ΠF , then we can build a distinguisher for f versus F , as follows. What
we would like to do is the following. Given an oracle O, we:

1. choose a random bit b $←− {0, 1};
2. if b = 0, we simulate the QAE-Real(ΠO,A, n) experiment using our oracle;
3. if b = 1, we simulate the QAE-Ideal(ΠO,A, n) experiment using our oracle;
4. output b ⊕ s where s is the output of A.

This may at first not seem possible using the classical oracle we are provided
with, as the ideal decryption oracle has to implement the unitary V †

k , which

516 G. Alagic et al.

seems to require superposition access to the random/pseudorandom function.
However, observe that steps 5–11 of Experiment 2 commute with a measurement
of the randomness register R in the computational basis, and afterwards this
register is discarded. Therefore the outcome of the experiment is not changed
by first measuring the register R, which yields an outcome r. Then the modified
challenger can use classical oracle access to the random/pseudorandom function
to implement V †

k on the measured input state.
Note that, if ΠO is secure, then b and s are independent (up to negligible

terms) and b ⊕ s is a fair coin. If ΠO is insecure, then it deviates from uniform
by the QUF distinguishing advantage of A. This yields a distinguisher between
the case O = f and O = F . The claim then follows from Theorem 14. ��

In particular, the scheme family 2desTagpqPRF is sufficient for QAE. We
remark that the proof uses the fact that, given classical oracle access to f , the
scheme Πf is efficiently implementable in the sense of Condition 1 – regardless
of the nature of the family f . Of course, in the special case where f is a pqPRF,
then Πf simply satisfies Condition 1 without any need for oracles.

As QAE implies both QUF and QIND-CCA2 (see Theorems 11 and 13), we
have the following corollary.

Corollary 3. Let Π be a QCA-secure SKQES that satisfies Condition 1, and
let f be a pqPRF. Then the scheme Πf (from Definition 2) satisfies QUF and
QIND-CCA2.

We can also show how to satisfy bounded-query unforgeability, i.e., QUFt.
Recall that a t-wise independent function is a deterministic, efficiently com-
putable keyed function family {fk}k which appears random to any algorithm
(of unbounded computational power) which gets classical oracle access to fk for
uniformly random k, and can make at most t queries. One can apply the proof
technique of Corollary 2 and Theorem 14 to obtain the following.

Corollary 4. Let Π be a QCA-secure SKQES, and let f be a t-wise independent
function family. Then the scheme Πf (as defined in Definition 2) satisfies QUFt.

Proof (Sketch). If there exists a QPT A which can break QUFt for Πf using
t-many queries, then it also breaks ΠF where F is a random function. If not,
we construct an oracle distinguisher for O = f versus O = F which simulates A
in one of the two games (each with probability 1/2) and outputs a bit which is
biased depending on O. Note that we only need t queries to do this, since we only
run one of the games (and not both). It then remains to invoke Theorem14, and
observe that Theorem 13 holds in the case of a bounded number of queries. ��

Separations. While QAE implies QIND-CCA2 according to Theorem 11, the
converse does not hold. In fact, consider any QAE secure scheme and modify
the decryption function by replacing the reject symbol by a fixed plaintext, e.g.
the all zero state. Such a scheme is certainly still QIND-CCA2 secure, as any
adversary against it can be used against the original scheme by simulating the

Unforgeable Quantum Encryption 517

modified one. The modified scheme is, however, manifestly not QAE as it never
outputs ⊥. The same reasoning works for QUF in place of QAE.

Proposition 4. QIND-CCA2 �⇒ QUF, and therefore QIND-CCA2 �⇒ QAE.

Finally, we turn to the relationship of QAE and QUF, and propose a sepa-
ration as follows. Let Π be a scheme that fulfills cQCA (Definition 6) for trivial
register B̃, but can be broken using an efficient attack with nontrivial B̃. For
any PRF f , Πf is clearly QUF, as the security notion ignores side information.
It can however not be QAE, as QAE implies cQCA.

8 Discussion

In this work, we presented four new security notions for symmetric key quantum
encryption: QCA, QUF, QIND-CCA2 and QAE. While we have already made
significant progress on understanding these notions, a number of open questions
remain. A few are as follows. Does an encryption scheme as discussed below
Proposition 4 exist, proving QUF �⇒ QAE? If so, does QUF imply QIND-CCA2
or QIND-CCA1? Classically, unforgeability and IND-CCA2 imply AE; does this
hold quantumly as well? Finally, is there a scheme that satisfies QIND-CCA2 but
cannot be upgraded to QAE by simply modifying the decryption function?

Acknowledgements. The authors would like to thank Anne Broadbent, Frédéric
Dupuis, Yfke Dulek, Alex Russell, Christian Schaffner, and Fang Song for insightful dis-
cussions about the problems solved in this work. Part of this work was done while T.G.
was supported by the TU Darmstadt. Part of this work was done while G.A. and C.M.
were at QMATH, University of Copenhagen. Part of this work was sponsored by the
COST CryptoAction IC1306. T.G. acknowledges financial support from the European
Commissions PERCY grant (agreement 321310). G.A. and C.M. acknowledge financial
support from the European Research Council (ERC Grant Agreement no 337603), the
Danish Council for Independent Research (Sapere Aude) and VILLUM FONDEN via
the QMATH Centre of Excellence (Grant No. 10059). This work is part of the research
programme “Cryptography in the Quantum Age” with project number 639.022.519,
which is financed by the Netherlands Organisation for Scientific Research (NWO).

References

1. Aaronson, S., Gottesman, D.: Improved simulation of stabilizer circuits. CoRR,
quant-ph/0406196 (2004)

2. Aharonov, D., Ben-Or, M., Eban, E.: Interactive proofs for quantum computations.
In: Proceedings of the Innovations in Computer Science - ICS 2010, Tsinghua
University, Beijing, China, 5–7 January 2010, pp. 453–469 (2010)

3. Alagic, G., Broadbent, A., Fefferman, B., Gagliardoni, T., Schaffner, C., St.
Jules, M.: Computational security of quantum encryption. In: Nascimento, A.C.A.,
Barreto, P. (eds.) ICITS 2016. LNCS, vol. 10015, pp. 47–71. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-49175-2 3

4. Alagic, G., Gagliardoni, T., Majenz, C.: Unforgeable quantum encryption. Cryp-
tology ePrint Archive, Report 2017/960 (2017). https://eprint.iacr.org/2017/960

https://doi.org/10.1007/978-3-319-49175-2_3
https://eprint.iacr.org/2017/960

518 G. Alagic et al.

5. Alagic, G., Majenz, C.: Quantum non-malleability and authentication. In: Katz,
J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10402, pp. 310–341. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-63715-0 11

6. Ambainis, A., Bouda, J., Winter, A.: Non-malleable encryption of quantum infor-
mation. J. Math. Phys. 50(4), 042106 (2009)

7. Ambainis, A., Mosca, M., Tapp, A., de Wolf, R.: Private quantum channels. In: 41st
Annual Symposium on Foundations of Computer Science, FOCS 2000, Redondo
Beach, California, USA, 12–14 November 2000, pp. 547–553 (2000)

8. Barak, B.: Cs127 course notes, Chap. 6. http://www.boazbarak.org/cs127/chap06
CCA.pdf. Accessed 7 Sept 2017

9. Barnum, H., Crépeau, C., Gottesman, D., Smith, A.D., Tapp, A.: Authentication
of quantum messages. In: Proceedings of the 43rd Symposium on Foundations of
Computer Science (FOCS 2002), Vancouver, BC, Canada, 16–19 November 2002,
pp. 449–458 (2002)

10. Bellare, M., Namprempre, C.: Authenticated encryption: relations among notions
and analysis of the generic composition paradigm. In: Okamoto, T. (ed.) ASI-
ACRYPT 2000. LNCS, vol. 1976, pp. 531–545. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-44448-3 41

11. Boneh, D., Zhandry, M.: Quantum-secure message authentication codes. In:
Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
592–608. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-
9 35

12. Boneh, D., Zhandry, M.: Secure signatures and chosen ciphertext security in a
quantum computing world. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013.
LNCS, vol. 8043, pp. 361–379. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40084-1 21

13. Brandão, F.G.S.L., Harrow, A.W., Horodecki, M.: Local random quantum cir-
cuits are approximate polynomial-designs. Commun. Math. Phys. 346(2), 397–434
(2016)

14. Broadbent, A., Jeffery, S.: Quantum homomorphic encryption for circuits of low
T-gate complexity. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS,
vol. 9216, pp. 609–629. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-48000-7 30

15. Broadbent, A., Wainewright, E.: Efficient simulation for quantum message authen-
tication. In: Nascimento, A.C.A., Barreto, P. (eds.) ICITS 2016. LNCS, vol. 10015,
pp. 72–91. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49175-2 4

16. DiVincenzo, D.P., Leung, D.W., Terhal, B.M.: Quantum data hiding. IEEE Trans.
Inf. Theory 48(3), 580–598 (2002)

17. Dulek, Y., Schaffner, C., Speelman, F.: Quantum homomorphic encryption for
polynomial-sized circuits. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS,
vol. 9816, pp. 3–32. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-53015-3 1

18. Dupuis, F., Nielsen, J.B., Salvail, L.: Secure two-party quantum evaluation of uni-
taries against specious adversaries. In: Rabin, T. (ed.) CRYPTO 2010. LNCS,
vol. 6223, pp. 685–706. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-14623-7 37

19. Dupuis, F., Nielsen, J.B., Salvail, L.: Actively secure two-party evaluation of any
quantum operation. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS,
vol. 7417, pp. 794–811. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-32009-5 46

https://doi.org/10.1007/978-3-319-63715-0_11
http://www.boazbarak.org/cs127/chap06_CCA.pdf
http://www.boazbarak.org/cs127/chap06_CCA.pdf
https://doi.org/10.1007/3-540-44448-3_41
https://doi.org/10.1007/978-3-642-38348-9_35
https://doi.org/10.1007/978-3-642-38348-9_35
https://doi.org/10.1007/978-3-642-40084-1_21
https://doi.org/10.1007/978-3-642-40084-1_21
https://doi.org/10.1007/978-3-662-48000-7_30
https://doi.org/10.1007/978-3-662-48000-7_30
https://doi.org/10.1007/978-3-319-49175-2_4
https://doi.org/10.1007/978-3-662-53015-3_1
https://doi.org/10.1007/978-3-662-53015-3_1
https://doi.org/10.1007/978-3-642-14623-7_37
https://doi.org/10.1007/978-3-642-14623-7_37
https://doi.org/10.1007/978-3-642-32009-5_46
https://doi.org/10.1007/978-3-642-32009-5_46

Unforgeable Quantum Encryption 519

20. Gagliardoni, T., Hülsing, A., Schaffner, C.: Semantic security and indistinguisha-
bility in the quantum world. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016.
LNCS, vol. 9816, pp. 60–89. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-53015-3 3

21. Garg, S., Yuen, H., Zhandry, M.: New security notions and feasibility results for
authentication of quantum data. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017.
LNCS, vol. 10402, pp. 342–371. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63715-0 12

22. Gottesman, D.: The Heisenberg representation of quantum computers. arXiv
quant-ph/9807006 (1998)

23. Gottesman, D.: Uncloneable encryption. Quantum Inf. Comput. 3(6), 581–602
(2003)

24. Hayden, P., Leung, D.W., Mayers, D.W.: The universal composable security of
quantum message authentication with key recyling. arXiv quant-ph/1610.09434
(2016)

25. Katz, J., Lindell, Y.: Introduction to Modern Cryptography, 2nd edn. CRC Press,
Boca Raton (2014)

26. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information:
10th Anniversary Edition, 10th edn. Cambridge University Press, New York (2011)

27. Portmann, C.: Quantum authentication with key recycling. In: Coron, J.-S.,
Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10212, pp. 339–368. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-56617-7 12

28. Shrimpton, T.: A characterization of authenticated-encryption as a form of chosen-
ciphertext security. IACR Cryptology ePrint Archive 2004:272 (2004)

29. Winter, A.J.: Coding theorem and strong converse for quantum channels. IEEE
Trans. Inf. Theory 45(7), 2481–2485 (1999)

https://doi.org/10.1007/978-3-662-53015-3_3
https://doi.org/10.1007/978-3-662-53015-3_3
https://doi.org/10.1007/978-3-319-63715-0_12
https://doi.org/10.1007/978-3-319-63715-0_12
https://doi.org/10.1007/978-3-319-56617-7_12

Tightly-Secure Key-Encapsulation
Mechanism in the Quantum Random

Oracle Model

Tsunekazu Saito(B), Keita Xagawa(B) , and Takashi Yamakawa(B)

NTT Secure Platform Laboratories, 3-9-11, Midori-cho,
Musashino-shi, Tokyo 180-8585, Japan

{saito.tsunekazu,xagawa.keita,yamakawa.takashi}@lab.ntt.co.jp

Abstract. Key-encapsulation mechanisms secure against chosen cipher-
text attacks (IND-CCA-secure KEMs) in the quantum random ora-
cle model have been proposed by Boneh, Dagdelen, Fischlin, Lehmann,
Schafner, and Zhandry (CRYPTO 2012), Targhi and Unruh (TCC 2016-
B), and Hofheinz, Hövelmanns, and Kiltz (TCC 2017). However, all are
non-tight and, in particular, security levels of the schemes obtained by
these constructions are less than half of original security levels of their
building blocks.

In this paper, we give a conversion that tightly converts a weakly secure
public-key encryption scheme into an IND-CCA-secure KEM in the quan-
tum random oracle model. More precisely, we define a new security notion
for deterministic public key encryption (DPKE) called the disjoint simu-
latability, and we propose a way to convert a disjoint simulatable DPKE
scheme into an IND-CCA-secure key-encapsulation mechanism scheme
without incurring a significant security degradation. In addition, we give
DPKE schemes whose disjoint simulatability is tightly reduced to post-
quantum assumptions. As a result, we obtain IND-CCA-secure KEMs
tightly reduced to various post-quantum assumptions in the quantum ran-
dom oracle model.

Keywords: Tight security · Chosen-ciphertext security
Post-quantum cryptography · KEM

1 Introduction

1.1 Background

Indistinguishability against chosen ciphertext attacks (IND-CCA-security) is
considered to be a de facto standard security notion of a public key encryption
(PKE) and a key encapsulation mechanism (KEM). For constructing efficient
IND-CCA-secure PKEs and KEMs, an idealized model called the random ora-
cle model (ROM) [BR93] is often used. In the ROM, a hash function is ide-
alized to be a publicly accessible oracle that simulates a truly random func-
tion. There are many known generic constructions of efficient IND-CCA-secure
c© International Association for Cryptologic Research 2018
J. B. Nielsen and V. Rijmen (Eds.): EUROCRYPT 2018, LNCS 10822, pp. 520–551, 2018.
https://doi.org/10.1007/978-3-319-78372-7_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78372-7_17&domain=pdf
http://orcid.org/0000-0002-6832-9940

Tightly-Secure Key-Encapsulation Mechanism 521

PKE/KEM in the ROM; Bellare-Rogaway (BR) [BR93], OAEP [BR95,FOPS04],
REACT [OP01], GEM [CHJ+02], Fujisaki-Okamoto (FO) [FO99,FO13], etc.
KEM variants of these constructions were studied by Dent [Den03], which is
summarized in Fig. 10 in Sect. B.

Quantum Random Oracle Model. Though the ROM has been
widely used to heuristically analyze security of cryptographic primitives,
Boneh et al. [BDF+11] pointed out that the ROM is rather problematic when
considering a quantum adversary. The problem is that in the ROM, an adversary
is only given a classical access to a random oracle. Since a random oracle is an
idealization of a real hash function, a quantum adversary should be able to quan-
tumly compute it. On the basis of this observation, they proposed a new model
called the quantum random oracle model (QROM) where an adversary can quan-
tumly access a random oracle. Since many techniques used in the ROM including
adaptive programmability or extractability cannot be directly translated into the
ones in the QROM, proving security in the QROM often requires different tech-
niques from proofs in the ROM (see [BDF+11] for more details). Nonetheless,
some above mentioned IND-CCA-secure PKE/KEMs in the ROM (and their
variants) can be shown to also be secure in the QROM: Boneh et al. [BDF+11]
proved that a variant of Bellare-Rogaway is IND-CCA-secure in the QROM.
Targhi and Unruh [TU16] proposed variants of the Fujisaki-Okamoto and OAEP
and proved that they are IND-CCA-secure in the QROM.

Tight Security. When proving the security of a primitive P under the hardness
of a problem S, we usually construct a reduction algorithm R that uses an
adversary A against the security of P as a subroutine and solves the problem S.
Let (T, ε) and (T ′, ε′) denote running times and success probabilities of A and R,
respectively. We say that a reduction is tight if we have T ′ ≈ T and ε′ ≈ ε. Tight
security is desirable since it ensures that breaking the security of P is as hard as
solving an underlying hard problem S. Conversely, if a security reduction is non-
tight, we cannot immediately conclude that breaking the security of a primitive
P is hard even if an underlying problem S is hard. For example, Menezes [Men12]
shows an example of a provably secure primitive with non-tight security that is
insecure with a realistic parameter setting. Therefore, tight security is important
to ensure the real security of a primitive.

From that perspective, the above mentioned IND-CCA-secure PKE/KEMs
in the QROM do not serve as satisfactory solutions for constructing post-
quantum IND-CCA-secure PKE/KEMs because they are non-tight. To clar-
ify this, we give more details on these results below, where (T, ε) and (T ′, ε′)
denote running times and success probabilities of an adversary and a reduction
algorithm, respectively, qH denotes the number of random oracle queries, and
tRO denotes the time needed to simulate one evaluation of a random oracle (for
further explanation of tRO, see Subsect. 2.2).

522 T. Saito et al.

– Boneh et al. [BDF+11] proved that a KEM variant of Bellare-Rogaway based
on a one-way trapdoor function is IND-CCA-secure in the QROM.1 Accord-
ing to their security proof, we have T ′ ≈ T + qH · tF + (qH + qDec) · tRO
and ε′ ≈ ε2/q2

H where tF denotes the time needed for evaluating an under-
lying one-way trapdoor function and qDec denotes the number of decryption
queries.

– Targhi and Unruh [TU16] proposed a variant of Fujisaki-Okamoto and proved
that their construction is secure in the QROM assuming OW-CPA security
of an underlying PKE scheme. According to their security proof, we have
T ′ ≥ T + O(q2

H) and ε′ ≈ ε4/q6
H. We note that Hofheinz et al. [HHK17]

subsequently gave a modular analysis for the conversion but did not improve
the tightness.

– Targhi and Unruh [TU16] proposed a variant of OAEP and proved that
their construction is secure in the QROM assuming a partial domain one-
way function. According to their security proof, we have T ′ ≥ T + O(q2

H) and
ε′ ≈ ε8/poly(qH).

As seen above, known constructions of IND-CCA-secure PKE/KEMs in
the QROM incur at least quadratic security loss, and their security degrades
rapidly as qH grows. For example, in the Bellare-Rogaway KEM, if we start from
a trapdoor function with 128-bit security (i.e., ε′ = 2−128) and set qH = 260,
then the bound given by Boneh et al. [BDF+11] only ensures 4-bit security (i.e.,
ε = 2−4) for a resulting KEM. Conversely, if we want to ensure 128-bit security
(i.e., ε = 2−128) for a resulting KEM, we have to start from a trapdoor function
with 376-bit security (ε′ = 2−376) which incurs significant blowup of parameters.
The other two constructions are even worse in regard to tightness. Therefore, to
obtain an efficient construction of post-quantum IND-CCA-secure PKE/KEM,
we need a construction with tighter security reduction that does not incur a
quadratic security loss.

1.2 Our Contributions

In this paper, we give a construction of an IND-CCA-secure KEM based on
a deterministic PKE (DPKE) scheme that satisfies a newly introduced security
notion that we call the disjoint simulatability. Our security reduction is much
tighter than those of existing constructions of IND-CCA-secure PKE schemes
and does not incur quadratic security loss. By using the same notations as in the
previous subsection, we have T ′ ≈ T +qH · tEnc+(qH+qDec) · tRO and ε′ ≈ ε where
tEnc denotes a time needed for encryption of an underlying DPKE scheme. We
note that tEnc is a fixed polynomial of the security parameter, and thus we believe
that this blowup is much less significant than the quadratic (or quartic/octic)
blowup for ε as in the previous constructions.
1 More precisely, they proved that a hybrid encryption variant of the Bellare-Rogaway

PKE scheme based on a one-way trapdoor function plus a CCA-secure symmetric-
key encryption scheme is IND-CCA-secure in the QROM. Their proof is easily
turned into the proof for the KEM variant of the Bellare-Rogaway conversion.

Tightly-Secure Key-Encapsulation Mechanism 523

Fig. 1. Transformations among PKE, DPKE and KEM in the QROM: D-LWE and
S-LWE denote the decisional and search learning-with-errors assumptions; P-LWE
denotes the polynomial-LWE assumption; DSPR denotes the decisional small poly-
nomial ratio assumption; LPN denotes the learning-parity-with-noise assumption;
McEliece KI and Niederreiter KI denote the McEliece-key-indistinguishability and
Niederreiter-key-indistinguishability assumptions, respectively; NTRU OW, McEliece
OW, and Niederreiter OW denote onewayness of the NTRU, McEliece encryption,
and Niederreiter encryption, respectively; OW-CPA, OW-PCA, IND-CPA, and IND-
CCA denote onewayness under chosen-plaintext attacks, onewayness under plaintext-
checking attacks, indistinguishability under chosen-plaintext attacks, and indistin-
guishability under chosen-ciphertext attacks, respectively; SPR denotes the sparse
pseudorandomness; and DS denotes the disjoint simulatability. Solid arrows indicate
quantum tight reductions, dashed arrows indicate quantum non-tight reductions, thin
arrows indicate existing reductions, thick arrows indicate our new reductions, and gray
arrows indicate trivial implications.

Moreover, we construct some DPKE schemes whose disjoint simulatabili-
ties are tightly reduced to some post-quantum assumptions like learning with
errors (LWE) and some other assumptions related to NTRU, the McEliece PKE,
and the Niederreiter PKE. As a result, we obtain the first IND-CCA-secure
KEMs that do not incur a quadratic security loss in the QROM based on these
assumptions. We also construct a disjoint simulatable DPKE scheme from any
IND-CPA-secure PKE scheme on an exponentially large message space with
quadratic security loss. This gives a construction of an IND-CCA-secure KEM
based on an IND-CPA-secure PKE scheme on an exponentially large message
space with quadratic (rather than quartic as in previous works) security loss.
Our results are summarized in Fig. 1.

We implement an instantiation based on NTRU-HRSS [HRSS17] on a desk-
top PC and a RasPi. Assuming that NTRU-HRSS is disjoint simulatable, the
obtained KEM is CCA secure in the QROM. See Sect. 5.

524 T. Saito et al.

1.3 Technical Overview

Here, we give a technical overview of our results.

Disjoint Simulatability and Sparse Pseudorandomness. Let DM be a
distribution over a message space M. We say that a DPKE scheme is DM-
disjoint simulatable if a ciphertext of a message that is distributed according
to DM can be simulated by a simulator that does not know a message, and
simulated ciphertext is invalid (i.e., out of the range of an encryption algorithm)
with overwhelming probability. For an intermediate step to construct a disjoint
simulatable DPKE scheme, we consider another security notion that we call
sparse pseudorandomness and show that this is a sufficient condition for disjoint
simulatability. We say that a DPKE scheme is DM-sparse pseudorandom if a
ciphertext of a message that is distributed according to DM is pseudorandom
and the range of an encryption algorithm is sparse in a ciphertext space. The
DM-sparse pseudorandomness implies the DM-disjoint simulatability because if
the sparse pseudorandomness is satisfied, then a simulator that simply outputs
a random element of a ciphertext space suffices for the disjoint simulatability2.

Instantiations of Disjoint Simulatable DPKE. We construct DPKE
schemes based on the concepts of the Gentry–Peikert–Vaikuntanathan
(GPV) trapdoor function for LWE [GPV08], NTRU [HPS98], the McEliece
PKE [McE78], and the Niederreiter PKE [Nie86] and prove that they are sparse
pseudorandom (and thus disjoint simulatable) w.r.t. a certain message distribu-
tion under the LWE assumption, or other related assumptions to an underlying
PKE scheme. Moreover, the reductions are tight. See Subsect. 3.3 for details of
instantiations from concrete assumptions

We also construct a disjoint simulatable DPKE scheme based on any
IND-CPA-secure PKE scheme with an exponentially large message space in the
QROM. Unfortunately, this reduction is not tight and incurs a square security
loss. See Subsect. 3.4 for details.

Previous Construction: BR-KEM. Before describing our construction,
we review the construction and security proof of the Bellare-Rogaway
KEM (BR-KEM), which was proven IND-CCA-secure in the QROM by
Boneh et al. [BDF+11] because our construction is based on their idea. BR-KEM
is a construction of an IND-CCA-secure KEM based on a one-way trapdoor
function with an efficiently recognizable range3. For compatibility with ours, we
treat a one-way trapdoor function as a perfectly correct OW-CPA-secure DPKE
scheme by considering a function and an inversion to be an encryption and a

2 In fact, we have to additionally assume that a ciphertext space is efficiently sam-
pleable.

3 The efficient recognizability of a range was not explicitly assumed in [BDF+11] but
is actually needed for their proof.

Tightly-Secure Key-Encapsulation Mechanism 525

decryption, respectively. Let (Gen,Enc,Dec) denote algorithms of an underlying
DPKE scheme. Then BR-KEM = (GenBR,EncBR,DecBR) is described as follows:

– GenBR is exactly the same as Gen.
– EncBR, given a public key ek as an input, chooses a randomness m from a

message space uniformly at random, computes a ciphertext C := Enc(ek ,m)
and a key K := H(m) where H is a hash function modeled as a random oracle,
and outputs (C,K).

– DecBR, given a ciphertext C and a decryption key dk as an input, checks if C
is in the valid ciphertext space and returns ⊥ if not. Otherwise it computes
K := H(Dec(dk , C)) and returns K.

In the security proof in the QROM, we first replace a random oracle H with
Hq ◦ Enc(ek ,) where Hq is another random oracle that is not given to an adver-
sary. Since Enc(ek , ·) is injective due to its perfect correctness, Hq◦ Enc(ek , ·) still
works as a random oracle from the view of an adversary. After this replacement,
we notice that a decryption oracle can be simulated by using Hq without the help
of a decryption key because we have H(Dec(dk , c)) = Hq ◦ Enc(ek ,Dec(dk , c)) =
Hq(c). For proving IND-CCA security, we have to prove that Hq(c∗) is pseu-
dorandom from the view of an adversary. If we were in a classical world, then
this could be proven quite easily: the only way for an adversary to obtain any
information of Hq(c∗) is to query m∗ such that c∗ = Enc(ek ,m∗), in which case
the adversary breaks the OW-CPA security of an underlying DPKE scheme. In
a quantum world, things do not go as easily because even if an adversary queries
a quantum state whose magnitude on m∗ is large, a reduction algorithm cannot
notice that immediately. Nonetheless, by using the One-Way to Hiding (OW2H)
lemma proven by Unruh [Unr15] (Lemma 2.1), we can show that the advantage
for an adversary to distinguish Hq(c∗) from a truly random string is at most a
square root of the probability that measurement of a randomly chosen adver-
sary’s query to H is equal to m∗. Hence, we can reduce the IND-CCA security
of BR-KEM to the OW-CPA security of the underlying DPKE scheme with a
quadratic security loss. On the other hand, to avoid the quadratic security loss,
it seems that we have to avoid the usage of the OW2H lemma because the lemma
inherently incurs a quadratic security loss.

Our Conversion, SXY. In the above proof, we used the fact that the only way
for an adversary to obtain any information of Hq(c∗) is to query m∗ to H such that
c∗ = Enc(ek ,m∗). Our key idea is based on the observation that if such m∗ does
not exist, i.e., c∗ is out of the range of Enc(ek , ·), then it is information-theoretically
impossible for an adversary to obtain any information of Hq(c∗). Indeed, though
c∗ is in the range of Enc(ek , ·) in the real game, if we choose an encryption random-
ness m according to a distribution DM, then we can replace c∗ with a simulated
ciphertext that is out of the range of Enc(ek , ·) by using the DM-disjoint simulata-
bility. After replacing c∗ with a simulated one, we can information-theoretically
bound an adversary’s advantage and need not use the OW2H lemma. This seems
to simply resolve the problem, and we obtain an IND-CCA-secure KEM without
a quadratic security loss. However, another problem arises here: a valid ciphertext

526 T. Saito et al.

space of a disjoint simulatable DPKE scheme is inherently not efficiently recogniz-
able (otherwise real and simulated ciphertexts are easy to distinguish), whereas the
simulation of decryption algorithm has to first verify if a given ciphertext is valid or
not. To resolve the problem, we modify the decryption algorithm so that if a cipher-
text is invalid, then it returns a random value rather than ⊥. In the security proof
of BR-KEM, a decryption oracle is simulated just by evaluating a random oracle
Hq for a ciphertext, and this enables a reduction algorithm to simulate a decryp-
tion oracle for both valid and invalid ciphertexts even though it cannot determine
if a given ciphertext is valid. Hence, we can reduce the IND-CCA-security of the
resultingKEMwithout using theOW2H lemmaand thuswithout a quadratic secu-
rity loss.

Curiously, this conversion is essentially the same asU�⊥
m in [HHK17]. This means

that we can remove an “additional” hash fromQU�⊥
m assuming a stronger underlying

DPKE in the QROM. In addition, this means that the obtained KEM is tightly
secure assuming that the underlying DPKE is OW-CPA secure in the ROM as
shown in [HHK17].

1.4 Related Work

In a concurrent and independent work, Jiang, Zhang, Chen, Wang, and
Ma [JZC+17] proposed two new constructions of an IND-CCA-secure KEMbased
on a OW-CPA-secure PKE scheme with quadratic security loss. However, both
constructions incur quadratic security loss.

2 Preliminaries

2.1 Notation

A security parameter is denoted by κ. We use the standard O-notations: O, Θ,
Ω, and ω. DPT and PPT stand for deterministic polynomial time and probabilis-
tic polynomial time. A function f(κ) is said to be negligible if f(κ) = κ−ω(1).
We denote a set of negligible functions by negl(κ). For two finite sets X and Y,
Map(X ,Y) denote a set of all functions whose domain is X and codomain is Y.

For a distribution χ, we often write “x ← χ,” which indicates that we take a
sample x from χ. For a finite set S, U(S) denotes the uniform distribution over S.
We often write “x ← S” instead of “x ← U(S).” For a set S and a deterministic
algorithm A, A(S) denotes the set {A(x) | x ∈ S}.

If inp is a string, then “out ← A(inp)” denotes the output of algorithm A when
run on input inp. IfA is deterministic, then out is a fixed value and we write “out :=
A(inp).” We also use the notation “out := A(inp; r)” to make the randomness r
explicit.

For the Boolean statement P , boole(P) denotes the bit that is 1 if P is true, and
0 otherwise. For example, boole(b′ ?= b) is 1 if and only if b′ = b.

2.2 Quantum Computation

We refer to [NC00] for basic of quantum computation.

Tightly-Secure Key-Encapsulation Mechanism 527

Quantum Random Oracle Model. Roughly speaking, the quantum random
oracle model (QROM) is an idealized model where a hash function is modeled
as a publicly and quantumly accessible random oracle. See [BDF+11] for a more
detailed description of the model.

Lemmas. We review some useful lemmas regarding the quantum random ora-
cles. The first one is called the oneway-to-hiding (OW2H) lemma, which is proven
by Unruh [Unr15, Lemma 6.2]. Roughly speaking, the lemma states that if any
quantum adversary issuing at most q queries to a quantum random oracle H can
distinguish (x,H(x)) from (x, y), where y is chosen uniformly at random, then we
can find x by measuring one of the adversary’s queries even it causes a quadratic
security loss. The lemma of the following form is taken from [HHK17].

Lemma 2.1 (AlgorithmicOneway toHiding [Unr15,HHK17]). LetH : X →
Y be a quantum randomoracle, and letA be an adversary issuing atmost q queries to
H that on input (x, y) ∈ X ×Y outputs either 0/1. For all (probabilistic) algorithms
F whose input space is X ×Y and which do not make any hash queries toH, we have

∣
∣
∣
∣

Pr[AH(inp) → 1 | x ← X ; inp ← F(x,H(x))]
− Pr[AH(inp) → 1 | (x, y) ← X × Y; inp ← F(x, y)]

∣
∣
∣
∣

≤ 2q ·
√

Pr[EXTA,H(inp) → x | (x, y) ← X × Y; inp ← F(x, y)],

where EXT picks i ← {1, . . . , q}, runs AH(inp) until i-th query |x̂〉 toH, and returns
x′ := Measure(|x̂〉) (when A makes fewer than i queries, EXT outputs ⊥ �∈ X).

(Unruh’s original statement is recovered by letting F be an identity function.)
The second one claims that a random oracle can be used as a pseudorandom

function even in the quantum setting.

Lemma 2.2. Let � be an integer. Let H : {0, 1}� × X → Y and H′ : X → Y be two
independent random oracles. If an unbounded time quantum adversary A makes a
query to H at most qH times, then we have

∣
∣
∣Pr[AH,H(s,·)() → 1 | s ← {0, 1}�] − Pr[AH,H′

() → 1]
∣
∣
∣ ≤ qH · 2

−�+1
2

where all oracle accesses of A can be quantum.

Though this seems to be a folklore, we give a proof of this lemma in Sect. C for
completeness.4

Simulation of Random Oracle. In the original quantum random oracle model
introduced by Boneh et al. [BDF+11], they do not allow a reduction algorithm to
access a random oracle, so it has to simulate a random oracle by itself. In contrast,
in this paper, we give a random oracle access to a reduction algorithm. We remark
that this is just a convention and not a modification of the model since we can
simulate a random oracle against quantum adversaries in several ways.
4 Jiang et al. [JZC+17] also gave a proof of an essentially identical lemma.

528 T. Saito et al.

1. The first way is a simulation by a 2q-wise independent hash function, where q
denotes the number of random oracle queries by an adversary, as introduced
by Zhandry [Zha12b]. The simulation is perfect, that is, no adversary can dis-
tinguish the real QRO from the simulated one. A drawback of this simulation
is a O(q2) blowup for a running time of a reduction algorithm since it has to
compute a 2q-wise independent hash function for each random oracle query.

2. The second way is a simulation by a quantumly secure PRF as used in
[BDF+11]. If we use this simulation, then the blowup of a running time of a
reduction algorithm is O(q · tPRF) where tPRF is the time needed for evaluating a
PRF, which is usually much smaller than O(q2). However, we have to addition-
ally assume the existence of a quantumly secure PRF, which is known to exist
if a quantumly secure one-way function exists [Zha12a].

3. The third way is a simulation by a real hash function like SHA-2 and to think
that this is a “random oracle.” Since we adopt the QROM, we idealize a real hash
function as a random oracle in the construction of primitives. Thus, it may be
natural to assume the same thing even in a reduction, that is, the reduction
algorithm implements the random oracle by a concrete hash function. If we use
this simulation, then the blowup of a running time of a reduction algorithm is
O(q · thash) where thash denotes a time to evaluate a hash function. This gives a
tightest reduction at the expense of additional idealization of a hash function.
We note that a similar convention is also used by Kiltz et al. [KLS17].
We finally note that this way strengthens the assumption, that is, we need to
assume that some problem is hard in the QROM.

We use tRO to denote a time needed to simulate a random oracle. We have tRO =
O(q), tPRF, or thash, if we use the first, second, or third way, respectively. We note
that in the proof of quantum variants of Fujisaki-Okamoto and OAEP [TU16,
HHK17], we have to simulate a random oracle in the 1st way, because a simula-
tor has to “invert” a random oracle in a simulation.

2.3 Public-Key Encryption

The model for PKE schemes is summarized as follows:

Definition 2.1. A PKE schemePKE consists of the following triple of polynomial-
time algorithms (Gen,Enc,Dec).

– Gen(1κ; rg) → (ek , dk): a key-generation algorithm that on input 1κ, where κ is
the security parameter, outputs a pair of keys (ek , dk). ek and dk are called the
encryption key and decryption key, respectively.

– Enc(ek ,m; re) → c: an encryption algorithm that takes as input encryption key
ek and message m ∈ M and outputs ciphertext c ∈ C.

– Dec(dk , c) → m/⊥: a decryption algorithm that takes as input decryption key
dk and ciphertext c and outputs message m ∈ M or a rejection symbol ⊥ �∈ M.

Definition 2.2. We say a PKE scheme PKE is deterministic if Enc is determinis-
tic. DPKE stands for deterministic public key encryption.

Tightly-Secure Key-Encapsulation Mechanism 529

Definition 2.3 (Correctness). We say PKE = (Gen,Enc,Dec) has perfect cor-
rectness if for any (ek , dk) generated by Gen and for any m ∈ M, we have that

Pr[Dec(dk , c) = m | c ← Enc(ek ,m)] = 1.

An additional property, γ-spread, is in Sect. A

Security: Here, we define onewayness under chosen-plaintext attacks (OW-CPA),
indistinguishability under chosen-plaintext attacks (IND-CPA), and indistin-
guishability under chosen-ciphertext attacks (IND-CCA) for a PKE.

Definition 2.4 (Securitynotions forPKE).For any adversaryA, we define its
OW-CPA, IND-CPA, and IND-CCA advantages against a PKE scheme PKE =
(Gen,Enc,Dec) as follows:

Advow-cpa
A,PKE (κ) := Pr[Exptow-cpa

PKE,A (κ) = 1],

Advind-cpa
PKE,A (κ) :=

∣
∣
∣2Pr[Exptind-cpa

PKE,A (κ) = 1] − 1
∣
∣
∣ ,

Advind-cca
PKE,A (κ) :=

∣
∣
∣2Pr[Exptind-cca

PKE,A (κ) = 1] − 1
∣
∣
∣ ,

where Exptow-cpa
PKE,A (κ), Exptind-cpa

PKE,A (κ), and Exptind-cca
PKE,A (κ) are experiments described

in Fig. 2. For GOAL-ATK ∈ {OW-CPA, IND-CPA, IND-CCA}, we say that
PKE is GOAL-ATK-secure if Advgoal-atk

A,PKE (κ) is negligible for any PPT adversary A.

Additional definitions are in Sect. A

Fig. 2. Games for PKE schemes

530 T. Saito et al.

2.4 Key Encapsulation

The model for KEM schemes is summarized as follows:

Definition 2.5. A KEM scheme KEM consists of the following triple of
polynomial-time algorithms (Gen,Encaps,Decaps):

– Gen(1κ; rg) → (ek , dk): a key-generation algorithm that on input 1κ, where κ is
the security parameter, outputs a pair of keys (ek , dk). ek and dk are called the
encapsulation key and decapsulation key, respectively.

– Encaps(ek ; re) → (c,K): an encapsulation algorithm that takes as input encap-
sulation key ek and outputs ciphertext c ∈ C and key K ∈ K.

– Decaps(dk , c) → K/⊥: a decapsulation algorithm that takes as input decapsula-
tion key dk and ciphertext c and outputs key K or a rejection symbol ⊥ �∈ K.

Definition 2.6 (Correctness). We say KEM = (Gen,Encaps,Decaps) has per-
fect correctness if for any (ek , dk) generated by Gen, we have that

Pr[Decaps(dk , c) = K : (c,K) ← Encaps(ek)] = 1.

Security: We define indistinguishability under chosen-plaintext and chosen-
ciphertext attacks (denoted by IND-CPA and IND-CCA) for KEM, respectively.

Definition 2.7. For any adversary A, we define its IND-CPA and IND-CCA
advantages against a KEM scheme KEM = (Gen,Encaps,Decaps) as follows:

Advind-cpa
KEM,A (κ) :=

∣
∣
∣2Pr[Exptind-cpa

KEM,A (κ) = 1] − 1
∣
∣
∣ ,

Advind-cca
KEM,A(κ) :=

∣
∣
∣2Pr[Exptind-cca

KEM,A(κ) = 1] − 1
∣
∣
∣ ,

where Exptind-cpa
KEM,A (κ) and Exptind-cca

KEM,A(κ) are experiments described in Fig. 3.

Fig. 3. Games for KEM schemes

Tightly-Secure Key-Encapsulation Mechanism 531

ForATK ∈ {CPA,CCA}, we say thatKEM is IND-ATK-secure ifAdvind-atk
A,PKE (κ)

is negligible for any PPT adversary A.

2.5 eXtendable-Output Functions

An eXtendable-Output Function (XOF) is a function on input bit strings in
which the output can be extended to an arbitrary desired length. An XOF is
denoted by XOF(X,L), where X is the input bit string and L is the desired output
length. We modeled the XOF as a quantumly-accessible random oracle. We employ
SHAKE256, standardized as an XOF by NIST [NIS15].

2.6 Assumptions

Preliminaries: Let ρs(x) = exp(−π‖x‖2/s2) for x ∈ R
n be a Gaussian function

scaled by a factor s. For any real s > 0 and latticeΛ, we define the discreteGaussian
distribution DΛ,s over Λ with parameter s by

DΛ,s(x) = ρs(x)/ρs(Λ) for x ∈ Λ,

where ρs(Λ) =
∑

x∈Λ ρs(x). The following norm bound is useful.

Lemma 2.3 (Adapted version of [MR07, Lemma 4.4]). For σ = ω(
√

log(n)),
it holds that

Pr
e←DZn,σ

[‖e‖ > σ
√

n] ≤ 2−n+1.

LWE and its variants: We review the assumptions for lattice-based PKEs.
The most basic one is the learning-with-errors (LWE) assumption [Reg09],
which is a generalized version of the learning-parity-with-noise assumption
[BFKL93,KSS10].

Definition 2.8 (LWE assumption in matrix form). For all κ, let n = n(κ)
and q = q(κ) be integers and let χ be a distribution over Z.

The decisional learning-with-errors (LWE) assumption LWEn,q states that, for
any m = poly(κ),

the following two distributions are computationally hard to distinguish:

– A, sA + e, where A ← Z
n×m
q , s ← Z

n
q , and e ← χm

– A, u, where A ← Z
n×m
q and u ← Z

m
q .

Wealso review its polynomial version [LPR10,BV11].Wehere use theHermite-
normal form of the assumption [ACPS09,LPR10,BV11], where secret s is chosen
from the noise distribution.

Definition 2.9 (Poly-LWE assumption – Hermite normal form). For all
κ, let Φ(x) = Φκ(x) ∈ Z[x] be a polynomial of degree n = n(κ), let q = q(κ)
be an integer, let R := Z[x]/(Φ(x)) and Rq := Zq[x]/(Φ(x)), and let χ denote a
distribution over the ring R.

532 T. Saito et al.

The decisional polynomial learning-with-errors (Poly-LWE) assumption
PolyLWEΦ,q,χ states that, for any � = poly(κ), the following two distributions are
hard to distinguish:

– {(ai, ais + ei)}i=1,...,�, where ai ← Rq, s, ei ← χ
– {(ai, ui)}i=1,...,�, where ai, ui ← Rq.

Next, we recall the decisional small polynomial ratio (DSPR) assumption
defined by López-Alt, Tromer, and Vaikuntanathan [LTV12]. We here employ an
adapted version of the DSPR assumption.

Definition 2.10 (DSPR assumption). For all κ, let Φ(x) = Φκ(x) ∈ Z[x]
be a polynomial of degree n = n(κ), let q = q(κ) be a positive integer, let R :=
Z[x]/(Φ(x)) and Rq := Zq[x]/(Φ(x)), and let χ denote a distribution over the
ring R.

The decisional small polynomial ratio (DSPR) assumption DSPRΦ,q,χg,χf
says

that the following two distributions are hard to distinguish:

– a polynomial h := g · f−1 ∈ Rq, where g ← χg and f ← χf .
– a polynomial u ← Rq.

Remark 2.1. Stehlé and Steinfeld [SS11] showed that DSPRΦ,q,χ is statistically
hard ifn is a power of two,Φ(x) = xn+1, andχg = χf = DZn,r for r >

√
q·poly(κ).

3 Disjoint Simulatability of Deterministic PKE

Here, we define a new security notion, disjoint simulatability, for DPKE. We also
define another security notion called sparse pseudorandomness and prove that it
implies the disjoint simulatability. Then we give some instantiations of sparse pseu-
dorandom (and thus disjoint simulatable) deterministic PKE schemes based on the
LWEassumption or various assumptions related toNTRU, theMcEliecePKE, and
the Niederreiter PKE with tight reductions. We also construct a disjoint simulat-
able DPKE scheme from any IND-CPA-secure PKE scheme with a sufficiently
large message space in the QROM, though the reduction is non-tight.

3.1 Definition

We define a new security notion, disjoint simulatability, for DPKE. Intuitively, a
deterministic PKE scheme is disjoint simulatable if there exists a simulator that
is only given a public key and generates a “fake ciphertext” that is indistinguish-
able from a real ciphertext of a random message. Moreover, we require that a fake
ciphertext falls in a valid ciphertext space with negligible probability. The formal
definition is as follows.

Tightly-Secure Key-Encapsulation Mechanism 533

Definition 3.1 (Disjoint simulatability). Let DM denote an efficiently
sampleable distribution on a set M. A deterministic PKE scheme PKE =
(Gen,Enc,Dec) with plaintext and ciphertext spaces M and C is DM-disjoint simu-
latable if there exists a PPT algorithm S that satisfies the following.

– (Statistical disjointness:)

DisjPKE,S(κ) := max
(ek ,dk)∈Gen(1κ;R)

Pr[c ∈ Enc(ek ,M) | c ← S(ek)]

is negligible, where R denotes a randomness space for Gen.
– (Ciphertext-indistinguishability:) For any PPT adversary A,

Advds-ind
PKE,DM,A,S(κ) :=

∣
∣
∣
∣
∣
∣
∣

Pr
[

A(ek , c∗) → 1
∣
∣
∣
∣

(ek , dk) ← Gen(1κ);m∗ ← DM;
c∗ := Enc(ek ,m∗)

]

−Pr
[
A(ek , c∗) → 1 | (ek , dk) ← Gen(1κ); c∗ ← S(ek)

]

∣
∣
∣
∣
∣
∣
∣

is negligible.

3.2 Sufficient Condition: Sparse Pseudorandomness

Here,we define another security notion forDPKEcalled sparse pseudorandomness,
which is a sufficient condition to be disjoint simulatable. Intuitively, a deterministic
PKE scheme is sparse pseudorandom if valid ciphertexts are sparse in a ciphertext
sparse and pseudorandom when a message is randomly chosen. In other words, an
encryption algorithm can be seen as a pseudorandom generator (PRG). The formal
definition is as follows.

Definition 3.2 (Sparse pseudorandomness). Let DM denote an efficiently
sampleable distribution on a set M. A deterministic PKE scheme PKE =
(Gen,Enc,Dec) with plaintext and ciphertext spaces M and C is DM-sparse pseu-
dorandom if the following two properties are satisfied.

– (Sparseness:)

SparsePKE(κ) := max
(ek ,dk)∈Gen(1κ;R)

|Enc(ek ,M)|
|C|

is negligible where R denotes a randomness space for Gen.
– (Pseudorandomness:) For any PPT adversary A,

Advpr
PKE,DM,A(κ) :=

∣
∣
∣
∣
∣
∣

Pr
[

A(ek , c∗) → 1
∣
∣
∣
∣

(ek , dk) ← Gen(1κ);m∗ ← DM;
c∗ := Enc(ek ,m∗)

]

−Pr
[
A(ek , c∗) → 1 | (ek, dk) ← Gen(1κ), c∗ ← C

]

∣
∣
∣
∣
∣
∣

is negligible.

Then we prove that the sparse pseudorandomness implies the disjoint simulata-
bility if a ciphertext space is efficiently sampleable.

534 T. Saito et al.

Lemma 3.1. If a deterministicPKEschemePKE = (Gen,Enc,Dec)with plaintext
and ciphertext spaces M and C is DM-sparse pseudorandom and C is efficiently
sampleable, then PKE is also DM-disjoint simulatable. In particular, there exists a
PPT simulator S such that DisjPKE,S(κ) = SparsePKE(κ) and Advds-ind

PKE,DM,A,S(κ) =
Advpr

PKE,DM,A(κ).

Proof. Let S be an algorithm that outputs a random element of C. Then we clearly
have DisjPKE,S(κ) = SparsePKE(κ) and Advds-ind

PKE,DM,A,S(κ) = Advpr
PKE,DM,A(κ). ��

3.3 Instantiations

Here, we give examples of a DPKE scheme that is disjoint simulatable. In partic-
ular, we construct a DPKE scheme that has the sparse pseudorandomness based
on the LWE assumption or some other assumptions related to NTRU. (We fur-
ther construct them based on the McEliece PKE and the Niederreiter PKE in the
full version.) We remark that the reductions are tight. By combining those with
Lemma 3.1, we obtain disjoint simulatable DPKE schemes based on any of these
assumptions with tight security.

LWE-based DPKE. We review the GPV trapdoor function for LWE [GPV08,
Pei09,MP12]. The LWE assumption (in matrix form) states that (A, sA + e) and
(A, u) are computationally indistinguishable, where A ← Z

n×m
q , s ← Z

n
q , e ← χm,

and u ← Z
m
q . The GPV trapdoor function for LWE exploited that if we have a

“short” matrix T satisfying AT ≡ O mod q, we can retrieve s and e from c = sA+e.
The trapdoor T for A is generated by an algorithm TrapGen:

Theorem 3.1 ([Ajt99,AP11]). For any positive integers n and q ≥ 3, any δ > 0
and m ≥ (2 + δ)n lg q, there is a probabilistic polynomial-time algorithm TrapGen
that outputs a pair T ∈ Z

m×m and A ∈ Z
n×m
q such that: the distribution of A

is within a negligible statistical distance of uniform over Zn×m
q , T is non-singular

(over the rationals), ‖ti‖ ≤ L = O(m lg m) for every column vector ti of T , and
AT ≡ O (mod q).

Let us construct a DPKE scheme PKE = (Gen,Enc,Dec) as follows:

Parameters: We require several parameters: the dimension n = n(κ), the mod-
ulus q = q(κ), and m = m(κ). We also employ L = O(m lg m), σ = ω(

√
lg n),

β = σ
√

n.
We require that βL < q/2 and qm � qn · (2β + 1)m.
– The plaintext space M := Z

n
q × Bm(β), where Bm(β) := {e ∈ Z

m |
‖e‖ ≤ β}.

– The sampler DM samples s ← Z
n
q and e ← DZm,σ conditioned on ‖e‖ ≤ β.

– The ciphertext space C := Z
m
q

Key Generation: Gen(1κ) invokes TrapGen(1n, 1m, q) and obtains A ∈ Z
n×m
q

and T ∈ Z
m×m. It outputs ek = A and dk = (A, T).

Tightly-Secure Key-Encapsulation Mechanism 535

Encryption: Enc(ek , (s, e)) outputs c = sA + e mod q.
Decryption: Dec(dk , c) computes e = (c · T mod q) · T−1 and s = (c − e) ·

A+ mod q, where A+ := A	 · (A · A) ∈ Z
m×n
q , the left inverse of A.

The properties of PKE are summarized as follows:

Perfect Correctness: We know c · T ≡ sAT + eT ≡ eT (mod q). If ‖eT‖∞ <
q/2, then c · T mod q = eT ∈ Z

m holds and e is recovered by e = (c · T mod
q) · T−1. Once correct e is obtained, s is recovered by (c − e) · A+ ∈ Z

n
q . The

condition ‖eT‖∞ < q/2 is satisfied because ‖eT‖∞ ≤ maxi ‖e‖ · ‖ti‖ ≤ βL <
q/2, where ti is the column vectors of T .

Sparseness: |C| = qm and |Enc(ek ,M)| ≤ M = |Zn
q × Bm(β)| ≤ qn · (2β + 1)m.

Sparseness follows from the fact qm � qn · (2β + 1)m.
Pseudorandomness: We consider the following hybrid games:

– (Original game 1:) The adversary is given (A, c∗), where (A, T) ←
TrapGen(1n, 1m, q), (s, e) ← DM, and c∗ ← Z

m
q .

– (Hybrid game 1:) Let us replace the public key A.We consider (A, c∗), where
A ← Z

n×m
q , (s, e) ← DM, and c∗ := sA + e mod q. This change is justified

by Theorem 3.1.
– (Hybrid game 2:) Let us replace the sampler DM. We consider (A, c∗), where

A ← Z
n×m
q , (s, e) ← U(Zn

q)×DZm,σ, and c∗ := sA+e mod q. This replace-
ment is justified by Lemma 2.3.

– (Hybrid game 3:) We next replace the ciphertext c∗. We consider (A, c∗),
where A ← Z

n×m
q and c∗ ← Z

m
q . This game is computationally indistin-

guishable from the previous game under the LWE assumption LWEn,q,DZ,σ
.

– (Original game 2:) We replace the public key A. We consider (A, c∗), where
(A, T) ← TrapGen(1n, 1m, q) and c∗ := sA + e mod q. This change is justi-
fied by Theorem 3.1.

Remark 3.1. For simplicity, we employ the simple version of the GPV trapdoor
function for LWE. Further improvements are available, e.g., [MP12, Section 5].

NTRU-based DPKE. We next review the original version of NTRUEn-
crypt [HPS98]. Let Φ(x) = xn − 1 ∈ Z[x], let p < q be positive integers with
gcd(p, q) = 1, and let R := Z[x]/(Φ(x)) and Rq := Zq[x]/(Φ(x)). We often set
p = 3 and q = 2k for some k. Let T be a set of ternary-coefficient polynomials in
R, that is, T := {t =

∑n−1
i=0 tix

i ∈ R | ti ∈ {−1, 0,+1}}. Let Lf ,Lg,Lr,Lm ⊆ T .
The public key is h = g/f , where f ← Lf , g ← Lg with f has inverses in Rp

and Rq. The the ciphertext of m ∈ Lm with randomness r ∈ Lr is c = prh + m.
Roughly speaking, we can retrieve m if we know f ; cf = prg + mf ∈ Rq and it
holds in R.

Parameters: We require that ‖prg + mf mod q‖∞ < q/2 for any g, f,m, r in
their domains, where, for t =

∑n−1
i=0 tix

i ∈ R, we define ‖t‖∞ := maxi|ti|. For
simplicity, we assume that Lm = Lr.
– The plaintext space is M := Lm × Lr.

536 T. Saito et al.

– The sampler DM samples (m, r) ← Lm × Lr.
– The ciphertext space is C := Rq.

Key Generation: Gen() chooses g ← Lg and f ← Lf until f is invertible in Rq

and Rp. It outputs ek = h = g/f ∈ Rq and dk = (h, f).
Encryption: Enc(ek , (m, r)) outputs c = prh + m ∈ Rq.
Decryption: Dec(sk , c) computes m := (fc mod q) · f−1 mod p and r := (c −

m) · (ph)−1 mod q.

The properties of this DPKE are summarized as follows:

Perfect correctness: Note that fc ≡ prg + mf (mod q). Since ‖prg + mf mod
q‖∞ < q/2 from our requirement, we have (fc mod q) = prg+mf ∈ R. Hence,
we have (fc mod q) · f−1 ≡ (prg + mf) · f−1 ≡ m (mod p) as we wanted. r is
also recovered because (c − m) · (ph)−1 ≡ prh · (ph)−1 ≡ r (mod q).

Sparseness: Sparseness follows from |C| = qn � 32n = |T 2| ≥ |Lm × Lr| =
|Enc(ek ,M)|.

Pseudorandomness: What we want to show is

(h, c = prh + m) ≈c (h, u),

where h = g/f is a public key with f ← Lf , g ← Lg with condition f has
inverses Rp and Rq, (m, r) ← Lm × Lr, and u ← Rq. Let χg := U(Lg)
and χf := U(Lf ∩ R∗

p ∩ R∗
q), where R∗

k for k ∈ {p, q} denotes {f ∈ R |
f has an inverse in Rk}. Let χ := U(Lm) = U(Lr).
– We first replace h = g/f with random h′, which is justified by the DSPR

assumption DSPRΦ,q,χf ,χg
.

– We next replace c = prh′ + m with random c′, which is justified by the
Poly-LWE assumption PolyLWEΦ,q,χ; Given h̃ and c = rh̃ + m or random,
we convert them into h′ = p−1h̃ and c. Since p is co-prime to q, h′ is truly
random. If c = rh̃ + e, then c = pr · p−1h̃ + e = prh′ + e as we wanted.

– We then go backward by replacing random h′ with h = g/f , which is justi-
fied by the DSPR assumption DSPRΦ,q,χf ,χg

again.

3.4 Generic Conversion from IND-CPA-Secure PKE

Here, we show that any perfectly-correct IND-CPA-secure PKE whose plain-
text space is sufficiently large can be converted into a disjoint-simulatable DPKE
scheme in the quantum random oracle model. We note that the conversion is non-
tight.

Intuitively, we replace randomness of an underlying IND-CPA-secure PKE
scheme with a hash value of a message similarly to the conversion T given in
[HHK17] (which is in turn based on the Fujisaki-Okamoto conversion). The dif-
ference from the conversion T is that we “puncture” a message space by 05. That
is, if a message space of an underlying IND-CPA-secure PKE scheme is M, then
5 We assume that 0 ∈ M. In fact, we can replace 0 with an arbitrary message in M. We

assume that 0 ∈ M for notational simplicity.

Tightly-Secure Key-Encapsulation Mechanism 537

Fig. 4. PKE1 = (Gen1,Enc1,Dec1) = TPunc[PKE,G] with simulator S.

a message space of the resulting scheme is M′ := M\{0}. In this meaning, we call
our conversion TPunc. We give the concrete description of the conversion TPunc
below.

Let M and R be the message and randomness spaces of PKE, respectively, and
let M′ := M \ {0}. Then the resulting DPKE scheme PKE1 = TPunc[PKE,G] is
described in Fig. 4 where G : M → R denotes a random oracle. Here, we remark
that the message space of PKE1 is restricted to M′ := M \ {0}. The security of
PKE1 is stated as follows.

Theorem 3.2 (Security ofTPunc). Let S be the algorithm described in Fig. 4. If
PKE is perfectly correct, then we have DisjPKE1,S(κ) = 0. Moreover, for any quan-
tum adversary A against PKE1 issuing at most qG quantum queries to G, there exist
quantum adversaries B and C against IND-CPA security of PKE such that

Advds-ind
PKE1,UM′ ,A,S(κ) ≤ 2qG

√

Advind-cpa
PKE,B (κ) +

2
|M| + Advind-cpa

PKE,C (κ)

where UM′ denotes the uniform distribution on M′, and Time(B) ≈ Time(C) ≈
Time(A) + qG · tRO.

Security Proof. We obviously have DisjPKE1,S(κ) = 0 since PKE is perfectly
correct.

To prove the rest of the theorem, we consider the following sequence of games.
See Table 1 for the summary of games and justifications.
Game0: This game is defined as follows:

(ek , dk) ← Gen(1κ);m∗ ← M′; r∗ ← G(m∗); c∗ := Enc(ek ,m∗; r∗);

b′ ← AG(·)(ek , c∗); return b′.

Game1: This game is the same as Game0 except that a randomness to generate a
challenge ciphertext is freshly generated:

(ek , dk) ← Gen(1κ);m∗ ← M′; r∗ ← R; c∗ := Enc(ek ,m∗; r∗);
b′ ← AG(·)(ek , c∗); return b′.

538 T. Saito et al.

Table 1. Summary of games for the security proof of Theorem 3.2

Game m∗ r∗ c∗ Justification

Game0 M′ G(m∗) Enc(ek , m∗; r∗) = Enc1(ek , m∗)

Game1 M′ r∗ Enc(ek , m∗; r∗) OW-CPA security of PKE
and the OW2H lemma

Game2 0 r∗ Enc(ek , 0; r∗) = S(ek) IND-CPA security of PKE

Fig. 5. Adversary B and Algorithm F

Game2: This game is the same as Game1 except that a challenge ciphertext is
generated by Enc(ek ,m∗; r∗), where m∗ := 0 rather than m∗ ← M′:

(ek , dk) ← Gen(1κ); r∗ ← R; c∗ := Enc(ek , 0; r∗); b′ ← AG(·)(ek , c∗); return b′.

This completes the descriptions of games. It is easy to see that we have

Advds-ind
PKE1,UM′ ,A,S(κ) = |Pr[Game0 = 1] − Pr[Game2 = 1]| .

We give an upperbound for this by the following lemmas.

Lemma 3.2. There exists an adversary B such that

|Pr[Game0 = 1] − Pr[Game1 = 1]| ≤ 2qG

√

Advind-cpa
PKE,B (κ) +

2
|M|

and Time(B) ≈ Time(A) + qG · tRO.

Proof. Let F be an algorithm described in Fig. 5. It is easy to see that Game0
can be restated as

m∗ ← M′; r∗ ← G(m∗); inp := F(ek ,m∗; r∗); b′ ← AG(·)(inp); return b′.

and Game1 can be restated as

m∗ ← M′; r∗ ← R; inp := F(ek ,m∗; r∗); b′ ← AG(·)(inp); return b′.

Tightly-Secure Key-Encapsulation Mechanism 539

Then applying the Algorithmic-OW2H lemma (Lemma 2.1) with X = M′,
Y = R, x = m∗, y = r∗, and algorithms A and F, we have

|Pr[Game0 = 1] − Pr[Game1 = 1]| ≤ 2qG

√

Pr[m∗ ← BG(ek, c∗)].

where BG is an algorithm described in Fig. 5, (ek, dk) ← Gen(1κ), m∗ ← M′,
r∗ ← R, and c∗ := Enc(ek,m∗, r∗). Since the statistical distance between uni-
form distributions on M and M′ is 1

|M| , we have Pr[m∗ ← BG(ek, c∗)] ≤
Advow-cpa

PKE,B (κ) + 1
|M| where the probability in the left-hand side is taken as in

the above. (Note that additional 1
|M| appears because m∗ is taken from M′ =

M \ {0} in the left-hand side probability.) Moreover, we have Advow-cpa
PKE,B (κ) ≤

Advind-cpa
PKE,B (κ) + 1

|M| in general. By combining these inequalities, the lemma is
proven. ��

Lemma 3.3. There exists an adversary C such that |Pr[Game1 = 1]−
Pr[Game2 = 1]| ≤ Advind-cpa

PKE,C (κ) and Time(C) ≈ Time(A) + qG · tRO.

Proof. We construct an adversary C against the IND-CPA security of PKE as
follows.

CG(ek): It chooses m0 ← M′ and sets m1 := 0. Then it queries (m0,m1) to
its challenge oracle and obtains c∗ ← Enc(ek ,m∗; r∗), where m∗ is mb for
a random bit b chosen by the challenger. It invokes b′ ← AG(ek , c∗) and
outputs b′.

This completes the description of C. It is obvious that C perfectly simulates
Gameb+1 depending on the challenge bit b ∈ {0, 1}. Therefore, we have

Advind-cpa
PKE,C (κ) = |2Pr[b′ = b] − 1|

= |(1 − Pr[b′ = 1 | b = 0]) + Pr[b′ = 1 | b = 1] − 1|
= |1 − Pr[Game1 = 1] + Pr[Game2 = 1] − 1|
= |Pr[Game2 = 1] − Pr[Game1 = 1]|

as we wanted. ��

4 Conversion from Disjoint Simulatability to IND-CCA

In this section, we convert a disjoint simulatable DPKE scheme into an
IND-CCA-secure KEM. Let PKE1 = (Gen1,Enc1,Dec1) be a deterministic PKE
scheme and let H : M → K and H′ : {0, 1}� × C → K be random oracles. Our
conversion SXY is described in Fig. 6. The securities of our conversion can be
stated as follows.

Theorem 4.1 (Security of SXY in the ROM (an adapted version
of [HHK17, Theorem 3.6])). Let PKE1 be a perfectly correct DPKE scheme.

540 T. Saito et al.

Fig. 6. KEM := SXY[PKE1,H,H′].

For any IND-CCA adversary A against KEM issuing qH and qH′ quantum ran-
dom oracle queries to H and H′ and qDec decryption queries, there exists an
OW-CPA adversary B against PKE1, such that

Advind-cca
KEM,A(κ) ≤ Advow-cpa

PKE1,B(κ) + qH′ · 2−�

and Time(B) ≈ Time(A) + qH ·Time(Enc1) + (qH + qH′ + qDec) · tCRO, where tCRO
is the running time to simulate the classical random oracle.

Theorem 4.2 (Security of SXY in the QROM). Let PKE1 be a perfectly
correct DPKE scheme that satisfies the DM-disjoint simulatability with a simu-
lator S. For any IND-CCA quantum adversary A against KEM issuing qH and
qH′ quantum random oracle queries to H and H′ and qDec decryption queries,
there exists an adversary B against the disjoint simulatability of PKE1 such that

Advind-cca
KEM,A(κ) ≤ Advds-ind

PKE1,DM,S,B(κ) + DisjPKE1,S(κ) + qH′ · 2
−�+1

2

and Time(B) ≈ Time(A) + qH · Time(Enc1) + (qH + qH′ + qDec) · tRO.

The proof of Theorem 4.2 follows.

Remark 4.1. We also note that our reduction enables the decapsulation oracle
Dec to quantumly queried.

Security Proof. We use game-hopping proof. The overview of all games is
given in Table 2.

Game0: This is the original game, Exptind-cca
KEM,A(κ).

Game1: This game is the same as Game0 except that H′(s, c) in the decryption
oracle is replaced with Hq(c) where Hq : C → K is another random oracle. We
remark that A is not given direct access to Hq.
Game1.5: This game is the same as Game1 except that the random oracle H(·) is
simulated by H′

q(Enc1(ek , ·)) where H′
q is yet another random oracle. We remark

that a decryption oracle and generation of K∗
0 also use H′

q(Enc1(ek , ·)) as H(·)
and that A is not given direct access to H′

q.
Game2: This game is the same as Game1.5 except that the random oracle H(·)
is simulated by Hq(Enc1(ek , ·)) instead of H′

q(Enc1(ek , ·)). We remark that a
decryption oracle and generation of K∗

0 also use Hq(Enc1(ek , ·)) as H(·).

Tightly-Secure Key-Encapsulation Mechanism 541

Table 2. Summary of games for the proof of Theorem4.2

Game H c∗ K∗
0 K∗

1 Decryption of Justification

valid c invalid c

Game0 H(·) Enc1(ek
′, m∗) H(m∗) random H(m) H′(s, c)

Game1 H(·) Enc1(ek
′, m∗) H(m∗) random H(m) Hq(c) Lemma 2.2

Game1.5 H′
q(Enc1(ek

′, ·)) Enc1(ek
′, m∗) H(m∗) random H(m) Hq(c) Perfect correctness

Game2 Hq(Enc1(ek
′, ·)) Enc1(ek

′, m∗) H(m∗) random H(m) Hq(c) Conceptual

Game3 Hq(Enc1(ek
′, ·)) Enc1(ek

′, m∗) Hq(c
∗) random Hq(c) Hq(c) Perfect correctness

Game4 Hq(Enc1(ek
′, ·)) S(ek′) Hq(c

∗) random Hq(c) Hq(c) DS-IND

Game3: This game is the same as Game2 except that K∗
0 is set as Hq(c∗) and the

decryption oracle always returns Hq(c) as long as c �= c∗. We denote the modified
decryption oracle by Dec

′
.

Game4: This game is the same as Game3 except that c∗ is set as S(ek ′).

The above completes the descriptions of games. We clearly have

Advind-cca
KEM,A(κ) = |2Pr[Game0 = 1] − 1|

by the definition. We upperbound this by the following lemmas.

Lemma 4.1. We have

|Pr[Game0 = 1] − Pr[Game1 = 1]| ≤ qH′ · 2
−�+1

2 .

Proof. This is obvious from Lemma 2.2. ��

Lemma 4.2. We have

Pr[Game1 = 1] = Pr[Game1.5 = 1].

Proof. Since we assume that PKE1 has a perfect correctness, Enc1(ek ′, ·) is injec-
tive. Therefore, if H′

q(·) is a random function, then H′
q(Enc1(ek , ·)) is also a

random function. Remarking that access to H′
q is not given to A, it causes no

difference from the view of A if we replace H(·) with H′
q(Enc1(ek , ·)). ��

Lemma 4.3. We have

Pr[Game1.5 = 1] = Pr[Game2 = 1].

Proof. We call a ciphertext c valid if we have Enc1(ek ′,Dec1(dk′, c)) = c and
invalid otherwise. We remark that Hq is used only for decrypting an invalid
ciphertext c as Hq(c) in Game1.5. This means that a value of Hq(c) for a valid
c is not used at all in Game1.5. On the other hand, any output of Enc1(ek ′, ·) is
valid due to the perfect correctness of PKE1. Since H′

q is only used for evaluating
an output of Enc(ek ′, ·), a value of Hq(c) for a valid c is not used at all in Game1.5.
Hence, it causes no difference from the view of A if we use the same random
oracle Hq instead of two independent random oracles Hq and H′

q. ��

542 T. Saito et al.

Lemma 4.4. We have

Pr[Game2 = 1] = Pr[Game3 = 1].

Proof. Since we set H(·) := Hq(Enc1(ek ′, ·)), for any valid c and m :=
Dec1(dk′, c), we have H(m) = Hq(Enc1(ek ′,m)) = Hq(c). Therefore, responses
of the decryption oracle are unchanged. We also have H(m∗) = Hq(c∗) for a
similar reason. ��

Lemma 4.5. There exists an adversary B such that

|Pr[Game3 = 1] − Pr[Game4 = 1]| ≤ Advds-ind
PKE1,DM,S,B(κ).

and Time(B) ≈ Time(A) + qH · Time(Enc1) + (qH + qH′ + qDec) · tRO.

Proof. We construct an adversary B, which is allowed to access two random
oracles Hq and H′, against the disjoint simulatability as follows6.

BHq,H′
(ek ′, c∗) : It picks b ← {0, 1}, sets K∗

0 := Hq(c∗) and K∗
1 ← K, and invokes

b′ ← AH,H′,Dec
′
(ek ′, c∗,K∗

b) where A′s oracles are simulated as follows.
– H(·) is simulated by Hq(Enc1(ek ′, ·)).
– H′ can be simulated because B has access to an oracle H′.
– Dec

′
(·) is simulated by forwarding to Hq(·).

Then B returns boole(b ?= b′).

This completes the description of B. It is easy to see that B perfectly simulates
Game3 if c∗ = Enc1(ek ,m∗) and Game4 if c∗ = S(ek ′). Therefore, we have

|Pr[Game3 = 1] − Pr[Game4 = 1]| ≤ Advds-ind
PKE1,DM,S,B(κ)

as wanted. Since B invokes A once, H is simulated by one evaluation of Enc1
plus one evaluation of a random oracle, and H′ and Dec

′
are simulated by one

evaluation of random oracles, we have Time(B) ≈ Time(A) + qH · Time(Enc1) +
(qH + qH′ + qDec) · tRO. ��

Lemma 4.6. We have

|2Pr[Game4 = 1] − 1| ≤ DisjPKE1,S(κ).

Proof. Let Bad denote an event in which c∗ ∈ Enc1(ek ′,M) in Game4. It is easy
to see that we have

Pr[Bad] ≤ DisjPKE1,S(κ).

When Bad does not occur, i.e., c∗ /∈ Enc1(ek ′,M), A obtains no information
about K∗

0 = Hq(c∗). This is because queries to H only reveal Hq(c) for c ∈
Enc1(ek ′,M), and Dec

′
(c) returns ⊥ if c = c∗. Therefore, we have

Pr[Game4 = 1 | Bad] = 1/2.

6 We allow a reduction algorithm to access the random oracles. See Subsect. 2.2 for
details.

Tightly-Secure Key-Encapsulation Mechanism 543

Combining the above, we have

|2Pr[Game4 = 1] − 1|
=

∣
∣Pr[Bad] · (2Pr[Game4 = 1 | Bad] − 1) + Pr[Bad]

·(2Pr[Game4 = 1 | Bad] − 1)
∣
∣

≤ Pr[Bad] +
∣
∣2Pr[Game4 = 1 | Bad] − 1

∣
∣

≤ DisjPKE1,S(κ)

as we wanted. ��

5 Implementation

We report the implementation results on a desktop PC and on a RasPi, which
are based on the previous implementation of a variant of NTRU [HRSS17].

5.1 NTRU-HRSS

We review a variant of NTRU, which we call NTRUHRSS17, developed by Hülsing,
Rijneveld, Schanck, and Schwabe [HRSS17].

Let Φm(x) ∈ Z[x] be the m-th cyclotomic polynomial. We have Φ1 = x−1. If
m is prime, then we have Φm = 1 + x + · · · + xm−1. Define Sn := Z[x]/(Φn) and
Rn := Z[x]/(xn − 1). For prime n, we have xn − 1 = Φ1Φn and Rn � S1 × Sn.
We define Liftp : Sn/(p) → Rn as

Liftp(v) :=
[

Φ1[v/Φ1](p,Φn)

]

(xn−1)
.

By definition, we have Liftp(v) ≡ 0 (mod Φ1) and Liftp(v) ≡ v (mod (p,Φn)).
Let p = (p,Φn) and q = (q, xn − 1). Let

T := {a ∈ Z[x] : a = [a]p} = {a ∈ Z[x] : ai ∈ (p) and deg(a) < deg(Φn)},

T+ := {a ∈ T : 〈xa, a〉 ≥ 0}.

The definition of NTRUHRSS17 is in Fig. 7. Note that all ciphertexts are equiv-
alent to 0 modulo (q,Φ1), which prevents a trivial distinguishing attack.

Fig. 7. NTRUHRSS17

544 T. Saito et al.

Fig. 8. Our modification NTRUHRSS17
′

Hülsing et al. choose (n, p, q) = (701, 3, 8192): The scheme is perfectly cor-
rect, and they claimed 128-bit post-quantum security of this parameter set.
The implementation of NTRUHRSS17 and QFO⊥[NTRUHRSS17,G,H,H′] is reported
in [HRSS17].

Our Modification: We want PKE1 to be deterministic. Hence, we consider a
pair of (m, r) as a plaintext and make the decryption algorithm output (m, r)
rather than m. The modification NTRUHRSS17

′ is summarized in Fig. 8.
The properties of this DPKE are summarized as follows:

Perfect Correctness: This follows from the perfect correctness of the original
PKE.

Sparseness: This follows from the parameter setting of the original PKE.
Pseudorandomness: We assume that the modified PKE NTRUHRSS17

′ satisfies
pseudorandomness.

We also implement SXY[NTRUHRSS17
′,H,H′], where H and H′ are imple-

mented by SHAKE256. We define

H(m, r) := XOF
(

(r,m, 0), 256
)

and H′(s, c) := XOF
(

(c, (s‖00 · · · 00), 1), 256
)

,

where we treat r ∈ Rn/(q) and the last bit is the context string.
To avoid the inversion of polynomials in decapsulation, we add f−1 modulo

p to dk as Hüsling et al. did [HRSS17]. This requires 139 extra bytes. In
addition, we put (ph)−1 modulo q in dk , which requires 1140 extra bytes. Thus,
our decapsulation key is 2557 bytes long.

5.2 Experimental Results

We preform the experiment with

– one core of an Intel Core i7-6700 at 3.40GHz on a desktop PC with 8GB
memory and Ubuntu16.04 and

– a RasPi3 with 32-bit Rasbian.

We use gcc to compile the programs with option -O3. We generate
200 keys and ciphertexts to estimate the running time of key genera-
tion, encryption, and decryption. The experimental results are summarized

Tightly-Secure Key-Encapsulation Mechanism 545

Table 3. Experimental results: We have |ek | = 1140 bytes, |dk | = 2557 bytes, and
|c| = 1140 bytes.

in Table 3. (Gen1,Enc1,Dec1) and (Gen,Enc,Dec) indicate NTRUHRSS17
′ and

SXY[NTRUHRSS17
′]. The results reflect Hüsling et al.’s constant-time implementa-

tion and ours. Our conversion adds only small extra costs for hashing in encryp-
tion and adds about TEnc1 for re-encrypting in decryption.

Note that our implementations are for reference and we did not
optimize them. Further optimizations will speed up the algorithms as
Hüsling et al. did [HRSS17]. The source code is available at https://info.isl.
ntt.co.jp/crypt/eng/archive/contents.html#sxy.

Acknolwedgements. We would like to thank anonymous reviewers of Euro-
crypt 2018, Eike Kiltz, Daniel J. Bernstein, Edoardo Persichetti, and Joost Rijneveld
for their insightful comments.

A Missing Definitions

Definition A.1 (γ-spread). Let PKE = (Gen,Enc,Dec) be a PKE scheme.
We say PKE is γ-spread if for every (ek , dk) generated by Gen(1κ) and for any
m ∈ M, we have that

− lg
(

max
c∈C

Pr
r←R

[c = Enc(ek ,m; r)]
)

≥ γ.

(In other words, the min entropy of Enc(ek ,m;U(R)) is at least γ.) We say PKE
is well-spread in κ if γ = γ(κ) = ω(lg κ).

We additionally review the definitions of onewayness under validity-checking
attacks (OW-VA), onewayness under plaintext-checking attacks (OW-PCA), and
onewayness under plaintext and validity checking attacks (OW-PCVA) for PKE.

Definition A.2 (Security notions for PKE). Let PKE = (Gen,Enc,Dec) be
a PKE scheme with message space M. For any adversary A and for ATK ∈

https://info.isl.ntt.co.jp/crypt/eng/archive/contents.html#sxy
https://info.isl.ntt.co.jp/crypt/eng/archive/contents.html#sxy

546 T. Saito et al.

Fig. 9. Games for PKE schemes

{VA,PCA,PCVA}, we define the experiments Exptow-va
PKE,A(κ), Exptow-pca

PKE,A (κ), and
Exptow-pcva

PKE,A (κ) as in Fig. 9, where

OATK :=

⎧

⎪⎨

⎪⎩

Cvo(·) (ATK = VA)
Pco(·, ·) (ATK = PCA)
Cvo(·),Pco(·, ·) (ATK = PCVA).

For any adversary A, we define its OW-VA, OW-PCA, and OW-PCVA advantages
as follows:

Advow-va
A,PKE(κ) := Pr[Exptow-va

PKE,A(κ) = 1],

Advow-pca
A,PKE (κ) := Pr[Exptow-pca

PKE,A (κ) = 1],

Advow-pcva
A,PKE (κ) := Pr[Exptow-pcva

PKE,A (κ) = 1].

For ATK ∈ {VA,PCA,PCVA}, we say that PKE is OW-ATK-secure if
Advow-atk

A,PKE(κ) is negligible for any PPT adversary A.

B Transformations in the Random Oracle Model

We summarize transformations among PKE, DPKE and KEM in the ROM in
Fig. 10.

GOAL-ATTACKg indicate the class of PKEs that is GOAL-ATTACK-secure
and 2−ω(lg κ)-uniformity [FO00,FO99], or equivalently ω(lg κ)-spreading [FO13].
Solid arrows indicate tight reductions, dashed arrows indicate non-tight reduc-
tions, thin arrows indicate trivial reductions, thick black arrows indicate reduc-
tions in [FO00], thick green arrows indicate reductions in [Den03], and thick blue
arrows indicate reductions in [HHK17].

– The transformation R is in [FO00, Remark 5.5]; R converts PKE =
(Gen,Enc,Dec) with randomness space R into PKE′ = (Gen′,Enc′,Dec′) with
randomness space R × R′. They defined Gen′ := Gen, Enc′(ek , x; (r, r′)) :=
(Enc(ek , x; r), r′) and Dec′(dk , (c, r′)) := Dec(dk , c). This change amplifies
γ-uniformity of PKE into (γ/ |R′|)-uniformity.

Tightly-Secure Key-Encapsulation Mechanism 547

Fig. 10. Transformations in the ROM. GOAL-ATTACKg indicates the class of PKEs
that is GOAL-ATTACK-secure and 2−ω(lg κ)-uniformity [FO00,FO99], or equivalently
ω(lg κ)-spreading [FO13]. Solid arrows indicate tight reductions, dashed arrows indicate
non-tight reductions, thin arrows indicate trivial reductions, thick black arrows indicate
reductions in [FO00], thick green arrows indicate reductions in [Den03], and thick blue
arrows indicate reductions in [HHK17]. The transformation R is in [FO00, Remark 5.5].
The transformations Dent1, Dent2, Dent3, Dent4, and Dent5 are given in [Den03]. The
transformations S�, T, U⊥, U�⊥, U⊥

m, U�⊥
m, and QU⊥

m are given in [HHK17]. (Color figure
online)

– The transformations Dent1, Dent2, Dent3, Dent4, and Dent5 are given
in [Den03].

– The transformations S�, T, U⊥, U�⊥, U⊥
m, U�⊥

m, and QU⊥
m are given in [HHK17].

Note that Dent1 ≈ U⊥
m, which is a KEM variant of BR93; Dent2 ≈ U⊥, which

is a KEM variant of REACT/GEM; Dent4 ≈ QU⊥
m; Dent5 ≈ FO⊥

m = U⊥
m ◦ T,

which is a KEM variant of FO.
Albrecht, Orsini, Paterson, Peer, and Smart [AOP+17] gave the tight security

proof for Dent5 when the underlying PKE is a certain Ring-LWE-based PKE
scheme. We also observe that Dent5 is decomposed into U⊥

m ◦ T. Thus, starting
from IND-CPAg-secure PKE, we obtain the similar proof by combining reductions
in [HHK17].

C Omitted Proofs

C.1 Proof of Lemma 2.2

Here, we prove Lemma 2.2. Before proving the lemma, we introduce another
lemma, which gives a lower bound for a decisional variant of Grover’s search
problem.

548 T. Saito et al.

Lemma C.1 ([SY17, Lemma C.1]). Let gs : {0, 1}� → {0, 1} denotes a function
defined as gs(s) := 1 and gs(s′) := 0 for all s′ �= s, and g⊥ : {0, 1}� → {0, 1}
denotes a function that returns 0 for all inputs. Then for any unbounded time
adversary A that issues at most q quantum queries to its oracle, we have

Pr[1 ← Ags() | s ← {0, 1}�] − Pr[1 ← Ag⊥()] ≤ q · 2
−�+1

2 .

Then we prove Lemma 2.2 relying on the above lemma.

Proof. (of Lemma 2.2) To prove the theorem, we consider the following sequence
of games for an algorithm A.

Game 0: This game returns as AH,H(s,·)() outputs, where s ← {0, 1}� and H :
{0, 1}� × X → Y are random functions.

Game 1: This game returns as AO[s,H0,H1],H1(·)() outputs, where s ← {0, 1}�,
H0 : {0, 1}� × X → Y and H1 : X → Y are independent random functions,
and O[s,H0,H1] is a function defined as

O[s,H0,H1](s′, x) :=

{

H0(s′, x) if s′ �= s,

H1(x) if s′ = s.
(1)

Game 2: This game returns as AH0,H1() outputs, where H0 : {0, 1}� ×X → Y and
H1 : X → Y are independent random functions.

This completes the descriptions of games. We want to prove that |Pr[Game2 =
1]−Pr[Game0 = 1]| ≤ qH · 2−�+1

2 . It is easy to see that we have Pr[Game0 = 1] =
Pr[Game1 = 1]. What is left is to prove that |Pr[Game2 = 1] − Pr[Game1 = 1]| ≤
qH ·2−�+1

2 . We prove this by a reduction to Lemma C.1. We consider the following
algorithm B that has access to g that is gs for randomly chosen s ← {0, 1}� or
g⊥ where gs and g⊥ are as defined in Lemma C.1.

Bg: It picks two random functions H0 : {0, 1}� × X → Y and H1 : X → Y, and
runs AO,H1 where B simulates O as follows: If A queries (s′, x) to O, B
queries s′ to its own oracle g to obtain a bit b. If b = 0, then B returns
H0(s′, x) to A and if b = 1, then B returns H1(x′) to A.

This completes the description of B. It is easy to see that if g = gs for randomly
chosen s ← {0, 1}�, then B perfectly simulates Game1, and if g = g⊥, then B
perfectly simulates Game2. Therefore, we have

|Pr[Game1 = 1] − Pr[Game2 = 1]| =
∣
∣
∣Pr[1 ← Bgs() | s ← {0, 1}�] − Pr[1 ← Bg⊥()]

∣
∣
∣ .

On the other hand, by Lemma C.1, we have
∣
∣Pr[1 ← Bgs() | s ← {0, 1}�] − Pr[1 ← Bg⊥()]

∣
∣ ≤ qH · 2

−�+1
2 ,

since the number of B’s queries to its own oracle is exactly the same as the
number of A’s queries to O, which is equal to qH. This completes the proof of
Lemma 2.2. ��

Tightly-Secure Key-Encapsulation Mechanism 549

References

[ACPS09] Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic prim-
itives and circular-secure encryption based on hard learning problems. In:
Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8_35

[Ajt99] Ajtai, M.: Generating hard instances of the short basis problem. In: Wie-
dermann, J., van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS,
vol. 1644, pp. 1–9. Springer, Heidelberg (1999). https://doi.org/10.1007/
3-540-48523-6_1

[AOP+17] Albrecht, M.R., Orsini, E., Paterson, K.G., Peer, G., Smart, N.P.: Tightly
secure ring-LWE based key encapsulation with short ciphertexts. In: Foley,
S.N., Gollmann, D., Snekkenes, E. (eds.) ESORICS 2017. LNCS, vol.
10492, pp. 29–46. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-66402-6_4

[AP11] Alwen, J., Peikert, C.: Generating shorter bases for hard random lat-
tices. Theory Comput. Syst. 48(3), 535–553 (2011). A preliminary versions
appeared in STACS 2009 (2009)

[BDF+11] Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C.,
Zhandry, M.: Random oracles in a quantum world. In: Lee, D.H., Wang,
X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 41–69. Springer, Hei-
delberg (2011). https://doi.org/10.1007/978-3-642-25385-0_3

[BFKL93] Blum, A., Furst, M., Kearns, M., Lipton, R.J.: Cryptographic primitives
based on hard learning problems. In: Stinson, D.R. (ed.) CRYPTO 1993.
LNCS, vol. 773, pp. 278–291. Springer, Heidelberg (1994). https://doi.org/
10.1007/3-540-48329-2_24

[BR93] Bellare, M., Rogaway, P.: Random oracle are practical: a paradigm for
designing efficient protocols. In: CCS 1993, pp. 62–73. ACM (1993)

[BR95] Bellare, M., Rogaway, P.: Optimal asymmetric encryption. In: De Santis,
A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 92–111. Springer, Hei-
delberg (1995). https://doi.org/10.1007/BFb0053428

[BV11] Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from
ring-LWE and security for key dependent messages. In: Rogaway, P. (ed.)
CRYPTO 2011. LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-22792-9_29

[CHJ+02] Jean-Sébastien, C., Handschuh, H., Joye, M., Paillier, P., Pointcheval, D.,
Tymen, C.: GEM: a generic chosen-ciphertext secure encryption method.
In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 263–276. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-45760-7_18

[Den03] Dent, A.W.: A designer’s guide to KEMs. In: Paterson, K.G. (ed.) Cryp-
tography and Coding 2003. LNCS, vol. 2898, pp. 133–151. Springer, Hei-
delberg (2003). https://doi.org/10.1007/978-3-540-40974-8_12

[FO99] Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric
encryption schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666,
pp. 537–554. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-
48405-1_34

[FO00] Fujisaki, E., Okamoto, T.: How to enhance the security of public-key
encryption at minimum cost. IEICE Trans. Fundam. Electron. Commun.
Comput. Sci. 83(1), 24–32 (2000). A preliminary version appeared in PKC
1999 (1999)

https://doi.org/10.1007/978-3-642-03356-8_35
https://doi.org/10.1007/3-540-48523-6_1
https://doi.org/10.1007/3-540-48523-6_1
https://doi.org/10.1007/978-3-319-66402-6_4
https://doi.org/10.1007/978-3-319-66402-6_4
https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1007/3-540-48329-2_24
https://doi.org/10.1007/3-540-48329-2_24
https://doi.org/10.1007/BFb0053428
https://doi.org/10.1007/978-3-642-22792-9_29
https://doi.org/10.1007/3-540-45760-7_18
https://doi.org/10.1007/978-3-540-40974-8_12
https://doi.org/10.1007/3-540-48405-1_34
https://doi.org/10.1007/3-540-48405-1_34

550 T. Saito et al.

[FO13] Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric
encryption schemes. J. Cryptol. 26(1), 80–101 (2013)

[FOPS04] Fujisaki, E., Okamoto, T., Pointcheval, D., Stern, J.: RSA-OAEP is secure
under the RSA assumption. J. Cryptol. 17(2), 81–104 (2004)

[GPV08] Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices
and new cryptographic constructions. In: Dwork, C. (ed.) STOC 2008, pp.
197–206. ACM (2008). https://eprint.iacr.org/2007/432

[HHK17] Hofheinz, D., Hövelmanns, K., Kiltz, E.: A modular analysis of the fujisaki-
okamoto transformation. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part I.
LNCS, vol. 10677, pp. 341–371. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-70500-2_12

[HPS98] Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key
cryptosystem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–
288. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054868

[HRSS17] Hülsing, A., Rijneveld, J., Schanck, J., Schwabe, P.: High-speed key encap-
sulation from NTRU. In: Fischer, W., Homma, N. (eds.) CHES 2017.
LNCS, vol. 10529, pp. 232–252. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-66787-4_12

[JZC+17] Jiang, H., Zhang, Z., Chen, L., Wang, H., Ma, Z.: Post-quantum IND-CCA-
secure KEM without additional hash. IACR Cryptology ePrint Archive
2017/1096 (2017)

[KLS17] Kiltz, E., Lyubashevsky, V., Schaffner, C.: A concrete treatment of fiat-
shamir signatures in the quantum random-oracle model. IACR Cryptology
ePrint Archive 2017/916 (2017)

[KSS10] Katz, J., Shin, J.S., Smith, A.: Parallel and concurrent security of the HB
and HB+ protocols. J. Cryptology 23(3), 402–421 (2010)

[LPR10] Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning
with errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 1–23. Springer, Heidelberg (2010). https://doi.org/10.1007/
978-3-642-13190-5_1

[LTV12] López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty com-
putation on the cloud via multikey fully homomorphic encryption. In:
Karloff, H.J., Pitassi, T. (eds.) STOC 2012, pp. 1219–1234. ACM (2012)

[McE78] McEliece, R.J.: A public key cryptosystem based on algebraic coding the-
ory. Technical report, DSN progress report (1978)

[Men12] Menezes, A.: Another look at provable security. In: Pointcheval, D., Johans-
son, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, p. 8. Springer, Hei-
delberg (2012). https://doi.org/10.1007/978-3-642-29011-4_2

[MP12] Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster,
smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-29011-4_41

[MR07] Micciancio, D., Regev, O.: Worst-case to average-case reductions based on
gaussian measures. SIAM J. Comput. 37(1), 267–302 (2007). A preliminary
version appeared in FOCS 2004 (2004)

[NC00] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Infor-
mation. Cambridge University Press, Cambridge (2000)

[Nie86] Niederreiter, H.: Knapsack-type cryptosystems and algebraic coding the-
ory. Probl. Control Inf. Theory 15, 159–166 (1986)

https://eprint.iacr.org/2007/432
https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1007/BFb0054868
https://doi.org/10.1007/978-3-319-66787-4_12
https://doi.org/10.1007/978-3-319-66787-4_12
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-3-642-29011-4_2
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-642-29011-4_41

Tightly-Secure Key-Encapsulation Mechanism 551

[NIS15] Fips 202: Sha-3 standard: Permutation-based hash and extendable-output
functions. U.S.Department of Commerce/National Institute of Standards
and Technology (2015)

[OP01] Okamoto, T., Pointcheval, D.: REACT: rapid enhanced-security asymmet-
ric cryptosystem transform. In: Naccache, D. (ed.) CT-RSA 2001. LNCS,
vol. 2020, pp. 159–174. Springer, Heidelberg (2000). https://doi.org/10.
1007/3-540-45353-9_13

[Pei09] Peikert, C.: Public-key cryptosystems from the worst-case shortest vector
problem: extended abstract. In: Mitzenmacher, M. (ed.) STOC 2009, pp.
333–342. ACM (2009)

[Reg09] Regev, O.: On lattices, learning with errors, random linear codes, and cryp-
tography. J. ACM 56(6), Article 34 (2009). A preliminary version appeared
in STOC 2005 (2005)

[SS11] Stehlé, D., Steinfeld, R.: Making NTRU as secure as worst-case problems
over ideal lattices. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS,
vol. 6632, pp. 27–47. Springer, Heidelberg (2011)

[SY17] Song, F., Yun, A.: Quantum security of NMAC and related construc-
tions. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10402,
pp. 283–309. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63715-0_10

[TU16] Targhi, E.E., Unruh, D.: Post-quantum security of the fujisaki-okamoto
and OAEP transforms. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS,
vol. 9986, pp. 192–216. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-53644-5_8

[Unr15] Unruh, D.: Revocable quantum timed-release encryption. J. ACM 62(6),
No. 49 (2015). The preliminary version appeared in EUROCRYPT 2014.
https://eprint.iacr.org/2013/606

[Zha12a] Zhandry, M.: How to construct quantum random functions. In: 53rd
Annual IEEE Symposium on Foundations of Computer Science, FOCS
2012, New Brunswick, pp. 679–687, 20–23 October 2012

[Zha12b] Zhandry, M.: Secure identity-based encryption in the quantum random ora-
cle model. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS,
vol. 7417, pp. 758–775. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-32009-5_44

https://doi.org/10.1007/3-540-45353-9_13
https://doi.org/10.1007/3-540-45353-9_13
https://doi.org/10.1007/978-3-319-63715-0_10
https://doi.org/10.1007/978-3-319-63715-0_10
https://doi.org/10.1007/978-3-662-53644-5_8
https://doi.org/10.1007/978-3-662-53644-5_8
https://eprint.iacr.org/2013/606
https://doi.org/10.1007/978-3-642-32009-5_44
https://doi.org/10.1007/978-3-642-32009-5_44

A Concrete Treatment of Fiat-Shamir
Signatures in the Quantum

Random-Oracle Model

Eike Kiltz1(B), Vadim Lyubashevsky2, and Christian Schaffner3

1 Ruhr Universität Bochum, Bochum, Germany
eike.kiltz@rub.de

2 IBM Research – Zurich, Zurich, Switzerland
vad@zurich.ibm.com

3 QuSoft and ILLC, University of Amsterdam, Amsterdam, The Netherlands
c.schaffner@uva.nl

http://www.qusoft.org/

Abstract. The Fiat-Shamir transform is a technique for combining a
hash function and an identification scheme to produce a digital signature
scheme. The resulting scheme is known to be secure in the random ora-
cle model (ROM), which does not, however, imply security in the scenario
where the adversary also has quantum access to the oracle. The goal of
this current paper is to create a generic framework for constructing tight
reductions in the QROM from underlying hard problems to Fiat-Shamir
signatures.

Our generic reduction is composed of two results whose proofs, we
believe, are simple and natural. We first consider a security notion (UF-
NMA) in which the adversary obtains the public key and attempts to cre-
ate a valid signature without accessing a signing oracle. We give a tight
reduction showing that deterministic signatures (i.e., ones in which the
randomness is derived from the message and the secret key) that are UF-
NMA secure are also secure under the standard chosen message attack
(UF-CMA) security definition. Our second result is showing that if the
identification scheme is “lossy”, as defined in (Abdalla et al. Eurocrypt
2012), then the security of the UF-NMA scheme is tightly based on the
hardness of distinguishing regular and lossy public keys of the identifica-
tion scheme.This latter distinguishing problem is normally exactly the def-
inition of some presumably-hard mathematical problem. The combination
of these components gives our main result.

As a concrete instantiation of our framework, we modify the recent
lattice-based Dilithium digital signature scheme (Ducas et al., TCHES
2018) so that its underlying identification scheme admits lossy public keys.
The original Dilithium scheme, which is proven secure in the classical ROM
based on standard lattice assumptions, has 1.5 KB public keys and 2.7 KB
signatures. The new scheme, which is tightly based on the hardness of
the Module-LWE problem in the QROM using our generic reductions, has
7.7 KB public keys and 5.7 KB signatures for the same security level. Fur-
thermore, due to our proof of equivalence between the UF-NMA and UF-
CMA security notions of deterministic signature schemes, we can formu-

c© International Association for Cryptologic Research 2018
J. B. Nielsen and V. Rijmen (Eds.): EUROCRYPT 2018, LNCS 10822, pp. 552–586, 2018.
https://doi.org/10.1007/978-3-319-78372-7_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78372-7_18&domain=pdf
http://orcid.org/0000-0002-1754-1415

A Concrete Treatment of Fiat-Shamir Signatures 553

late a new non-interactive assumption under which the original Dilithium
signature scheme is also tightly secure in the QROM.

1 Introduction

Fiat-Shamir Signatures from Identification Protocols. A canonical
identification scheme [2] is a three-move authentication protocol ID of a specific
form. The prover (holding the secret-key) sends a commitment W to the verifier.
The verifier (holding the public-key) returns a random challenge c. The prover
sends a response Z. Finally, using the verification algorithm, the verifier accepts
if the transcript (W, c, Z) is correct. The Fiat-Shamir transformation [2,20] com-
bines a canonical identification scheme ID and a hash function H to obtain a dig-
ital signature scheme FS = FS[ID,H]. The signing algorithm first iteratively gen-
erates a transcript (W, c, Z), where the challenge c is derived via c := H(W ‖ M).
Signature σ = (W,Z) is valid if the transcript (W, c := H(W ‖ M), Z) makes
the verification algorithm accept. Lyubashevsky [26] further generalized this to
the “Fiat-Shamir with aborts” transformation to account for aborting provers.

Security of Fiat-Shamir Signatures in the ROM. Security of FS[ID,H]
in the ROM can be proved in two steps. Firstly, if the underlying identi-
fication scheme has statistical Honest-Verifier Zero-Knowledge (HVZK), then
UnForgeability against Chosen Message Attack (UF-CMA) and UnForgeability
against No Message Attack (UF-NMA) are tightly equivalent (UF-NMA security
means that the adversary is not allowed to make any signing queries). Secondly,
the Forking Lemma [9,34] (based on a technique called “rewinding”) is used
to prove UF-NMA security in the random-oracle model (ROM) [11] from com-
putational Special Soundness (SS). The latter part of the security reduction is
non-tight and the loss in tightness is known to be inherent (e.g., [24,32]).

Lossy Identification schemes. With the goal of constructing signature
schemes with a tight security reduction and generalizing a signature scheme
by Katz and Wang [22], AFLT [3] introduced the new concept of lossy iden-
tification schemes and proved that Fiat-Shamir transformed signatures have a
tight security reduction in the ROM. A lossy identification scheme comes with
an additional lossy key generator that produces a lossy public key, computation-
ally indistinguishable from a honestly generated public key. Further, relative to

Fig. 1. Known security results of Fiat-Shamir signatures FS = FS[ID,H] in the ROM.
Solid arrows denote tight reductions, dashed arrows non-tight reductions.

554 E. Kiltz et al.

a lossy public key the identification scheme has statistical soundness, i.e., not
even an unbounded adversary can successfully impersonate a prover. Figure 1
summarizes the known security results of Fiat-Shamir signatures in the ROM.

Quantum Random-Oracle Model. Recently, NIST announced a competi-
tion with the goal to standardize new asymmetric encryption and signature
schemes [1] with security against quantum adversaries, i.e., adversaries equipped
with a quantum computer. There exists a number of (sometimes only implicitly
defined) canonical identification schemes (e.g., [3,5,7,16,23,26]) whose security
relies on the hardness of certain problems over lattices and codes, which are gen-
erally believed to resist quantum adversaries. Quantum computers may execute
all “offline primitives” such as the hash function on arbitrary superpositions,
which motivated the introduction of the quantum (accessible) random-oracle
model (QROM) [13]. That is, in the UF-CMA security experiment for signatures
in the QROM, an adversary has quantum access to a perfect hash function H
and classical access to the signing oracle. Aiding in the construction of UF-CMA
secure signatures with provable (post-quantum) security in the QROM is the
main motivation of this paper.

Security of Fiat-Shamir signatures in the QROM. A number of recent
works considered the security of Fiat-Shamir transformed signatures in the
QROM. [13] proved a general result showing that if a reduction in the classical
ROM is history-free, then it can also be carried out in the QROM. History-
free reductions basically determine random oracle answers independently of the
history of previous queries. For reductions that are not history-free, adaptive
re-programming of the quantum random oracle is required which is problematic
in the QROM: with one single quantum query to all inputs in superposition, an
adversary might learn a superposition of all possible random oracle values which
essentially means the reduction has to provide plausible values for the whole
random oracle at this point. Hence, adaptive reprogramming in the QROM is
difficult (but not impossible e.g., [12,18,36]).

Unfortunately, the known random-oracle proofs of Fiat-Shamir signatures
[3,24,34] are not history-free. Beyond the general problem of adaptive re-
programming, the classical proof [34] uses rewinding and the Forking Lemma, a
technique that we currently do not know how to extend to the quantum setting.
Even worse, Ambanis et al. [6] proved that Fiat-Shamir signatures cannot be
proven secure in a black-box way by just assuming computational special sound-
ness and HVZK (these two conditions are, on the other hand, sufficient for a
proof in the classical ROM).

To circumvent the above negative result, Unruh [36] proposed an alternative
Fiat-Shamir transformation with provable QROM security but the resulting sig-
natures are considerably less efficient as they require multiple executions of the
underlying identification scheme.

Alkim et al. [5] gave a concrete tight security reduction for a signature
scheme, TESLA, in the QROM. TESLA is a concrete lattice-based digital signa-
ture scheme implicitly derived via the Fiat-Shamir transformation. Their QROM

A Concrete Treatment of Fiat-Shamir Signatures 555

proof from the learning with errors (LWE) assumption adaptively re-programs
the quantum random oracle using a technique from [12] and seems tailored to
their particular identification protocol. As described in [5], the intuition behind
the QROM security proof for TESLA comes from the fact that the underly-
ing identification scheme is lossy. They leave it as an open problem to prove
Fiat-Shamir signatures generically secure from lossy identification schemes.

Unruh [37] could prove (among other things) that identification schemes with
HVZK and statistical soundness yield UF-CMA secure Fiat-Shamir signatures in
the QROM when additionally assuming a “dual-mode hard instance generator”
for generating key pairs of the identification scheme. The latter dual mode hard
instance generator is very similar to lossy identification schemes. Whereas the
original publication [37] only contains asymptotic proofs, a recently updated
version of the full version [38] also provides concrete security bounds. Below, in
Sect. 1.2, we will compare them with our bounds.

1.1 Our Results

This work contains a simple and modular security analysis in the QROM of sig-
natures FS[ID,H] obtained via the Fiat-Shamir transform with aborts [26] from
any lossy identification scheme ID. We also consider the security of a determin-
istic variant DFS[ID,H,PRF] with better tightness. DFS derives the randomness
for signing deterministically using a pseudo-random function PRF. Our main
security statements are summarized in Fig. 2. Most importantly, if ID is a lossy
identification scheme and has HVZK, then DFS[ID,H,PRF] is tightly UF-CMA
secure and FS[ID,H] is (non-tightly) UF-CMA secure in the QROM. Our results
suggest to prefer DFS[ID,H,PRF] over FS[ID,H].

The main component of our proof is a tweak to the AFLT Fiat-Shamir proof
[3] that makes it history-free. Together with the general result of [13], one can
immediately obtain asymptotic (i.e., non-concrete) versions of our QROM proof
as a simple corollary. In this work, we instead give direct proofs with concrete,
tight security bounds.

To demonstrate the efficacy of our generic framework, we construct a lattice-
based signature scheme. The most compact lattice-based schemes, in terms of
public key and signature sizes, crucially require sampling from a discrete Gaus-
sian distribution [15,17]. Such schemes, however, have been shown to be par-
ticularly vulnerable to side-channel attacks (c.f. [14,19]), and it therefore seems
prudent to consider schemes that only require simple uniform sampling over
the integers. Of those, the most currently efficient one is the Dilithium signature
scheme [16]. This signature scheme is proved secure based on the MSIS (Module-
SIS) and the MLWE (Module-LWE) assumptions in the ROM implicitly using
the framework from Fig. 1.

In this paper, we provide a practical instantiation of a lossy identification
scheme to obtain a new digital signature scheme, Dilithium-QROM, with a tight
security reduction in the QROM from the MLWE problem, derived using our
new framework from Fig. 2. Dilithium-QROM is essentially a less compact vari-
ant (≈3X larger) of Dilithium with modified parameters to allow the underlying

556 E. Kiltz et al.

Fig. 2. Security of standard Fiat-Shamir signatures FS = FS[ID,H] and deterministic
Fiat-Shamir signatures DFS = DFS[ID,H,PRF] in the QROM. Solid arrows denote
tight reductions, dashed arrows non-tight reductions. The considered security notions
are: UF-CMA (unforgeability against chosen-message attack), UF-CMA1 (unforgeability
against one-query-per-message chosen-message attack), and UF-NMA (unforgeability
against no-message attack).

identification scheme to admit a lossy mode. We additionally prove the secu-
rity of the original Dilithium scheme in the QROM based on MLWE and another
non-interactive assumption.

Security of Fiat-Shamir Signatures. Security of deterministic Fiat-Shamir sig-
natures DFS[ID,H,PRF] in the QROM is proved in two independent steps, see
Fig. 2.

Step 1: LOSSY =⇒ UF-NMA. We sketch an adaptation of the standard history-
free proof implicitly contained in [3]. By the security properties of the lossy
identification scheme, the public key can be set in lossy mode which remains
unnoticed by a computationally bounded quantum adversary. Further, breaking
the signature scheme in lossy mode with at most QH queries to the quantum
random oracle essentially requires to solve the generic quantum search prob-
lem, whose complexity is Θ(Q2

H · εls) [21,39], where εls is the statistical sound-
ness parameter of ID in lossy mode. A similar argument is implicitly contained
in [5,37].

Step 2: UF-NMA =⇒ UF-CMA. We will now sketch a history-free proof of
UF-NMA ⇒ UF-CMA1, where (compared to UF-CMA security) UF-CMA1 security
limits the number of queried signatures per message M to one. We then apply a
standard (history-free, tight) reduction to show that UF-CMA1 secure signatures
de-randomized with a PRF yield UF-CMA secure signatures with deterministic
signing [10].

The standard ROM proof of UF-NMA ⇒ UF-CMA (implicitly contained in
[3]) works as follows: one uses the HVZK property of ID to show that the sign-
ing oracle can be efficiently simulated only knowing the public-key. Concretely,
the HVZK simulator generates a transcript (W, c, Z) and later “patches” the
random oracle by defining H(W ‖ M) := c to make (W,Z) a valid signature.
The problem is that the random oracle patching (i.e., defining H(W ‖ M) := c)
can only be done after the signing query on M because only then W and c
are known. This renders the AFLT standard reduction non history-free. In our

A Concrete Treatment of Fiat-Shamir Signatures 557

history-free UF-NMA ⇒ UF-CMA1 proof, we resolve this problem as follows. We
use the HVZK property to generate the transcript (WM , cM , ZM) determinis-
tically using message-dependent randomness. Hence, for each message M , the
transcript (WM , cM , ZM) is unique and can be computed at any time. This
uniqueness allows us to patch the random oracle H(W ‖ M) to cM at any time
of the proof (i.e., iff W = WM), even before the adversary has established a
signing query on message M . This trick makes the proof history-free, see Theo-
rem 3.2. Clearly, this only works if the adversary receives at most one signature
for each messages M , which is guaranteed by the UF-CMA1 experiment.

In order to deal with (full) UF-CMA security of probabilistic Fiat-Shamir
signatures FS[ID,H], the above trick can be adapted to also obtain a history-
free reduction, see Theorem 3.3. However, the proof is less tight as the reduction
suffers from a quadratic blow-up in its running time.

Our results furthermore prove strong unforgeability if the identification
scheme satisfies an additional property called computational unique response
(CUR). CUR essentially says that it is hard to come up with two accepting tran-
scripts with the same commitment and challenge but different responses.

Dilithium-QROM: A signature scheme with provable security in the QROM. The
digital signature scheme Dilithium [16] is constructed from a canonical identifi-
cation scheme using the Fiat-Shamir with aborts approach [26]. In the ROM,
its security is based (via non-tight reductions) on the hardness of the MSIS and
MLWE problems. We show that by increasing the size of the modulus and the
dimension of the public key matrix, the resulting identification scheme admits a
lossy mode such that distinguishing real from lossy keys is based on the hardness
of MLWE. We can then apply our main reduction to conclude that the resulting
digital signature scheme is based on the hardness of the MLWE problem.

In order to construct an identification scheme with a lossy mode, in addition
to increasing the size of the modulus and the overall dimension, we also choose
our prime modulus q so that the underlying ring Zq[X]/(Xn+1) has the property
that all elements with coefficients less than

√
q/2 have an inverse [29] – having all

small elements be invertible is crucial to having lossiness.1 For the same security
levels as Dilithium, the total size of the public key and signature is increased by
a factor of a little over 3.

Revisiting the Security of Dilithium. Due to the way the parameters are set, the
underlying identification scheme of the original Dilithium scheme does not have
a lossy mode, and so we cannot apply Theorem 3.4 in the reduction sequence
in Fig. 2. Nevertheless, the reduction from Theorem 3.2 is still applicable. In the
classical ROM, one then obtains a reduction from MSIS to the UF-NMA scheme
via the forking lemma (see Fig. 1).

The main downside of this last step is that the reduction is inherently non-
tight. In practice, however, parameters are set based on the hardness of the
underlying MSIS problem and the non-tightness of the reduction is ignored.

1 There do not exist q for which Zq[X]/(Xn + 1) is a field.

558 E. Kiltz et al.

This is not just the case in lattice-based schemes, but is the prevalent practice
for every signature scheme built via the Fiat-Shamir transform. The implicit
assumption is, therefore, that the UF-NMA scheme is exactly as secure as MSIS
(assuming that H is secure). We point out that the assumption that the UF-NMA
scheme is secure is a non-interactive assumption that is reasonably simple to
state, and so the fact that several decades of cryptanalysis haven’t produced any
improved attacks against schemes whose parameters ignore the non-tightness of
the reduction, gives us confidence that equating the hardness of the UF-NMA
scheme with the hardness of the underlying problem is very reasonable.

In Sect. 4.5, we formulate the security of the UF-NMA scheme as a “convolu-
tion” of a lattice/hash function problem, which we call SelfTargetMSIS, and then
show that based on the hardness of MLWE and SelfTargetMSIS, the determin-
istic version of the Dilithium scheme is (tightly) UF-CMA secure in the QROM.
In other words, we show that the security of the tight version of the signature
scheme is based on exactly the same assumptions in the ROM and the QROM.

Other Instantiations. Our framework can be applied to obtain a security proof
in the QROM for a number of existing Fiat-Shamir signature schemes that are
similar to Dilithium (e.g., [3,5,7,26]) and those that have a somewhat different
structure and possibly based on different assumptions (e.g., [23]). Our rationale
for setting the parameters in Dilithium-QROM was to minimize the total sum
of the public key and the signature. If one, on the other hand, wished to only
minimize the signature size, one could create a public key whose “height” is
larger than its “width” (e.g., as in [5]). For optimal efficiency, this may possibly
require working over polynomial rings Zq[X]/(f(x)) which are finite fields.

1.2 Concrete Bounds and Comparison with Unruh [37,38]

Ignoring all constants and the computational term accounting for the pseudo-
random function, our concrete bound for the UF-CMA security of deterministic
Fiat-Shamir signatures DFS in the QROM is

AdvUF-CMA
DFS (A) ≤ AdvLOSS

ID (B) + Q2
H · εls + QS · εzk + 2−α, Time(B) ≈ Time(A) (1)

where AdvLOSS
ID (B) is the lossyness advantage of ID, εls is the statistical soundness

parameter of ID in lossy mode, α is the min-entropy of ID’s commitments, and
εzk is the HVZK parameter of ID.

From Unruh [38] one can derive the following concrete bound which even
holds for (standard) probabilistic Fiat-Shamir signatures FS.

AdvUF-CMA
FS (A) ≤ AdvLOSS

ID (B) + Q2
H · εls + QS · εzk + QSQ

1/2
H · 2−α/4,

Time(B) ≈ Time(A) + QHQS .
(2)

Compared to (1), bound (2) has two sources of non-tightness.
The first source of non-tightness in (2) is the term QSQ

1/2
H ·2−α/4 which stems

from a generic re-programming technique from [36]. In most practical lattice-
based schemes the commitment’s min-entropy α is large enough not to make a big

A Concrete Treatment of Fiat-Shamir Signatures 559

impact on the worse bounds. However, this term puts a lower bound on the min-
entropy of commitments which translates to an unnatural lower bound on the
size of quantum-resistant Fiat-Shamir signatures. Furthermore, it is sometimes
not that easy to exactly compute the min-entropy α. Further, simple techniques
to get a “good-enough” bound (as we did for regular Dilithium when we obtained
α = 255) would no longer result in something meaningful when used with (2).

The second and more important sources of non-tightness in (2) is the
quadratic (in the number of queries) blow-up in the running time Time(B) ≈
Time(A) + QHQS which renders the reduction non-tight in all practical aspects.
Interestingly, our proof for the security of probabilistic Fiat-Shamir signatures
(Theorem 3.3) introduces the same source of non-tightness. However, under the
assumption that superposition queries to classical data can be performed in a
single time step (denoted by QRAM in [38]), the running time in (2) drops to
Time(B) ≈ Time(A) and hence the reduction is tight again. We leave it as an
open problem to come up with a tight reduction for probabilistic Fiat-Shamir
signatures in the QROM without using QRAM.

2 Preliminaries

For n ∈ N, let [n] := {1, . . . , n}. For a set S, |S| denotes the cardinality of
S. For a finite set S, we denote the sampling of a uniform random element x
by x ← S, while we denote the sampling according to some distribution D by
x ← D. By �B� we denote the bit that is 1 if the Boolean Statement B is true,
and 0 otherwise.

Algorithms. Let A be an algorithm. Unless stated otherwise, we assume all our
algorithms to be probabilistic. We denote by y ← A(x) the probabilistic compu-
tation of algorithm A on input x. If A is deterministic, we write y := A(x). The
notation y ∈ A(x) is used to indicate all possible outcomes y of the probabilistic
algorithm A on input x. We can make any probabilistic A deterministic by run-
ning it with fixed randomness. We write y := A(x; r) to indicate that A is run
on input x with randomness r. Finally, the notation A(x) ⇒ y denotes the event
that A on input x returns y.

Games. We use code-based games. We implicitly assume boolean flags to be
initialized to false, numerical types to 0, sets to ∅, and strings to the empty string
ε. We make the convention that a procedure terminates once it has returned an
output.

2.1 Quantum Computation

Quantum States. The state of a qubit |φ〉 is described by a two-dimensional
complex vector |φ〉 = α|0〉 + β|1〉 where {|0〉, |1〉} form an orthonormal basis of
C

2 and α, β ∈ C with |α|2 + |β|2 = 1 are called the complex amplitudes of |φ〉.
The qbit |φ〉 is said to be in superposition if 0 < |α| < 1. A classical bit b ∈ {0, 1}
is naturally encoded as state |b〉 of a qubit.

560 E. Kiltz et al.

The state |ψ〉 of n qubits can be expressed as |ψ〉 =
∑

x∈{0,1}n αx|x〉 ∈
C

2n

where {αx}x∈{0,1}n is a set of 2n complex amplitudes such that∑
x∈{0,1}n |αx|2 = 1. As for one qubit, the standard orthonormal or compu-

tational basis is given by {|x〉}x∈{0,1}n . When the quantum state |ψ〉 is mea-
sured in the computational basis, the outcome is the classical string x ∈ {0, 1}n

with probability |αx|2 and the quantum state collapses to what is observed,
namely |x〉.

The evolution of a quantum system in state |ψ〉 can be described by a linear
length-preserving transformation U : C

2n → C
2n

. Such transformations cor-
respond to unitary matrices U of size 2n by 2n, i.e. U has the property that
UU† = 1, where U† is the complex-conjugate transpose of U .

For further details about basic concepts and notation of quantum computing,
we refer to the standard text book by Nielsen and Chuang [31].

Quantum oracles and quantum adversaries. For a classical oracle func-
tion O : {0, 1}n → {0, 1}m, we follow the standard approach as in [8,13] to make
the execution of the classical function O a reversible unitary transformation. We
model quantum access to O by

UO : |x〉|y〉
→ |x〉|y ⊕ O(x)〉,

where x ∈ {0, 1}n and y ∈ {0, 1}m. Note that due to the XOR function in
the second register, UO is its own inverse, i.e. executing UO twice results in the
identity for any function O.2 Quantum oracle adversaries A|O〉 can access O in
superposition by applying UO. The quantum time it takes to apply UO is linear
in the time it takes to evaluate O classically. We write A|O〉 to indicate that
an oracle is quantum-accessible, contrary to oracles which can only be accessed
classically which are denoted by AO. We also abuse notation and use |O〉 to
denote the oracle that is quantumly accessible.

Quantum random-oracle model. We consider security games in the quan-
tum random-oracle model (QROM) [13] like their counterparts in the classical
random-oracle model [11], with the difference that we consider quantum adver-
saries that are given quantum access to the random oracles involved, and clas-
sical access to all other oracles (e.g., the signing oracle). Zhandry [40] proved
that no quantum algorithm A|H〉, issuing at most Q quantum queries to |H〉, can
distinguish between a random function H : {0, 1}m → {0, 1}n and a 2Q-wise
independent function f2Q. For concreteness, we view f2Q : {0, 1}m → {0, 1}n as
a random polynomial of degree 2Q over the finite field F2n . The running time
to evaluate f2Q is linear in Q.

In this article, we will use this observation in the context of security reduc-
tions, where quantum adversary B simulates quantum adversary A|H〉 which

2 Together with the observation that taking the conjugate-complex and transposing
UO do not change UO, we obtain U†

O = UO, and hence, UOU†
O = U2

O = 1, showing
that UO is indeed a unitary transformation.

A Concrete Treatment of Fiat-Shamir Signatures 561

Fig. 3. The generic search game GSPBλ with bounded maximal Bernoulli parameter
λ ∈ [0, 1].

makes at most Q queries to |H〉. Hence, the running time of B is Time(B) =
Time(A)+q ·Time(H), where Time(H) is the time it takes to simulate |H〉. Using
the observation above, B can use a 2Q-wise independent function in order to
(information-theoretically) simulate |H〉 and we obtain that the running time of
B is Time(B) = Time(A) + Q · Time(f2Q), and the time Time(f2Q) to evaluate
f2Q is linear in Q. The second term of this running time (quadratic in Q) can
be further reduced to linear in Q in the quantum random-oracle model where B
can simply use another random oracle to simulate |H〉. Assuming evaluating the
random oracle takes one time unit, we write Time(B) = Time(A) + Q which is
approximately Time(A).

Generic Quantum Search. For λ ∈ [0, 1] let Bλ be the Bernoulli distribution,
i.e., Pr[b = 1] = λ for the bit b ← Bλ. Let X be some finite set. The generic
quantum search problem GSP [21,39] is to find an x ∈ X satisfying g(x) = 1
given quantum access to an oracle g : X → {0, 1}, such that for each x ∈ X, g(x)
is distributed according to Bλ. We will need the following slight variation of GSP.
The Generic quantum Search Problem with Bounded probabilities GSPB is like
the quantum search problem with the difference that the Bernoulli parameter
λ(x) may (adversarially) depend on x but it is upper bounded by a global λ.

Lemma 2.1. (Generic Search Problem with Bounded Probabilities). Let λ ∈
[0, 1]. For any (unbounded, quantum) algorithm A issuing at most Q quantum
queries to |g〉, Pr[GSPBA

λ ⇒ 1] ≤ 8 · λ · (Q + 1)2, where Game GSPBλ is defined
in Fig. 3.

The bound on GSPB can be reduced to the known bound on GSP [21,39] by
artificially increasing the Bernoulli parameter to obtain the dependence on each
x ∈ X.

2.2 Pseudorandom Functions

A pseudorandom function PRF is a mapping PRF : K×{0, 1}n → {0, 1}k, where
K is a finite key space and n, k are integers. To a quantum adversary A and PRF
we associate the advantage function

AdvPR
PRF(A) :=

∣∣ Pr[APRF(K,·) ⇒ 1 | K ← K] − Pr[ARF(·) ⇒ 1]
∣∣,

562 E. Kiltz et al.

where RF : {0, 1}n → {0, 1}k is a perfect random function. We note that while
adversary A is quantum, it only gets classical access to the oracles PRF(K, ·) and
RF(·).

2.3 Canonical Identification Schemes

A canonical identification scheme ID is a three-move protocol of the form
depicted in Fig. 4. The prover’s first message W is called commitment, the veri-
fier selects a uniform challenge c from set ChSet, and, upon receiving a response
Z from the prover, makes a deterministic decision.

Definition 2.2 (Canonical Identification Scheme). A canonical identifica-
tion scheme ID is defined as a tuple of algorithms ID := (IGen,P,ChSet,V).

– The key generation algorithm IGen takes system parameters par as input and
returns public and secret key (pk , sk). We assume that pk defines ChSet
(the set of challenges), WSet (the set of commitments), and ZSet (the set
of responses).

– The prover algorithm P = (P1,P2) is split into two algorithms. P1 takes as
input the secret key sk and returns a commitment W ∈ WSet and a state St;
P2 takes as input the secret key sk, a commitment W , a challenge c, and a
state St and returns a response Z ∈ ZSet ∪ {⊥}, where ⊥ �∈ ZSet is a special
symbol indicating failure.

– The verifier algorithm V takes the public key pk and the conversation tran-
script as input and outputs a deterministic decision, 1 (acceptance) or 0
(rejection).

We make a couple of useful definitions. A transcript is a three-tuple
(W, c, Z) ∈ WSet × ChSet × ZSet ∪ {⊥,⊥,⊥}. It is called valid (with respect
to public-key pk) if V(pk ,W, c, Z) = 1. In Fig. 5 we also define a transcript ora-
cle Trans that returns a real interaction (W, c, Z) between prover and verifier as
depicted in Fig. 4, with the important convention that the transcript is defined
as (⊥,⊥,⊥) if Z = ⊥.

Definition 2.3 (Correctness Error). Identification scheme ID has correct-
ness error δ if for all (pk , sk) ∈ IGen(par) the following holds:

– All possible transcripts (W, c, Z) satisfying Z �= ⊥ are valid, i.e., for all
(W,St) ∈ P1(sk), all c ∈ ChSet and all Z ∈ P2(sk ,W, c,St) with Z �= ⊥,
we have V(pk ,W, c, Z) = 1.

Fig. 4. A canonical identification scheme and its transcript (W, c, Z).

A Concrete Treatment of Fiat-Shamir Signatures 563

Fig. 5. An honestly generated transcript (W, c, Z) output by the transcript oracle
Trans(sk).

– The probability that an honestly generated transcript (W, c, Z) contains Z = ⊥
is bounded by δ, i.e., Pr[Z = ⊥ | (W, c, Z) ← Trans(sk)] ≤ δ.

Definition 2.4. We call ID commitment-recoverable, if for any (pk , sk) ∈
IGen(par), c ∈ ChSet, and Z ∈ ZSet, there exists a unique W ∈ WSet such
that V(pk ,W, c, Z) = 1. This unique W can be publicly computed using a com-
mitment recovery algorithm as W := Rec(pk , c, Z).

We define no-abort honest-verifier zero-knowledge, a weak variant of honest-
verifier zero-knowledge that requires the transcript (as generated by Trans(sk))
to be publicly simulatable, conditioned on Z �= ⊥.

Definition 2.5 (No-Abort Honest-verifier Zero-knowledge). A canoni-
cal identification scheme ID is said to be εzk-perfect naHVZK (no-abort honest-
verifier zero-knowledge) if there exists an algorithm Sim that, given only the
public key pk, outputs (W, c, Z) such that the following conditions hold:

– The distribution of (W, c, Z) ← Sim(pk) has statistical distance at most εzk
from (W ′, c′, Z ′) ← Trans(sk), where Trans is defined in Fig. 5.

– The distribution of c from (W, c, Z) ← Sim(pk) conditioned on c �= ⊥ is
uniform random in ChSet.

Note that if ID is commitment-recoverable, then we can abandon the W in
the output of Trans and Sim since W can be publicly computed from (c, Z).

Definition 2.6 (Min-Entropy). If the most likely value of a random variable
W that is chosen from a discrete distribution D occurs with probability 2−α,
then we say that min-entropy(W | W ← D) = α. We will say that a canonical
identification scheme ID has α bits of min-entropy, if

Pr
(pk ,sk)←IGen(par)

[min-entropy(W | (W,St) ← P1(sk)) ≥ α] ≥ 1 − 2−α.

In other words, except with probability 2−α over the choice of (pk , sk), the min-
entropy of W will be at least α.

An identification scheme has unique responses if for all W and c there exists
at most one Z to make the verifier accept, i.e., V(pk ,W, c, Z) = 1. We relax
this property to computational unique response (CUR) for which we require it to
be computationally difficult to come up with (W, c, Z, Z ′) with V(pk ,W, c, Z) =
V(pk ,W, c, Z ′) = 1 and Z ′ �= Z.

564 E. Kiltz et al.

Definition 2.7 (Computational Unique Response). To an adversary A we
associate the advantage function

AdvCUR
ID (A) := Pr

[
V(pk ,W, c, Z) = 1
V(pk ,W, c, Z ′) = 1 ∧ Z �= Z ′

∣∣∣∣
(pk , sk) ← IGen(par);
(W, c, Z, Z ′) ← A(pk)

]
.

Lossy Identification schemes. We now recall lossy identification schemes [3].

Definition 2.8. An identification scheme ID = (IGen,P,ChSet,V) is lossy if
there exists a lossy key generation algorithm LossyIGen that takes system param-
eters par as input and returns public key pk ls (and no secret key sk).

We refer to LID = (IGen, LossyIGen,P,ChSet,V) as a lossy identification scheme.
We now define two security properties of a lossy identification scheme LID.

The first property says that public keys generated with the real key genera-
tor IGen are indistinguishable from ones generated by the lossy key generator
LossyIGen. Concretely, we define the LOSS advantage function of a quantum
adversary A against ID as

AdvLOSS
LID (A) :=

∣∣ Pr[A(pk ls) ⇒ 1 | pk ls ← LossyIGen(par)]

− Pr[A(pk) ⇒ 1 | (pk , sk) ← IGen(par)]
∣∣.

The second security property is statistical and says that relative to a lossy key
pk ls, not even an unbounded quantum adversary can impersonate the prover. We
say that ID has εls-lossy soundness if for every (possibly unbounded, quantum)
adversary C, Pr[LOSSY-IMPC ⇒ 1] ≤ εls, where game LOSSY-IMP is defined in
Fig. 6.

Since C is unbounded, we can upper bound Pr[LOSSY-IMPC ⇒ 1] as

Pr[LOSSY-IMPC ⇒ 1]
≤ E [maxW∈WSet (Prc←ChSet[∃Z ∈ ZSet : V(pk ls,W, c, Z) = 1])] ,

(3)

where the expectation is taken over pk ls ← LossyIGen(par). Note that equality
in Eq. (3) is achieved for the “optimal” adversary C which on the “easiest”
commitment W ∈ WSet and a random challenge c ← ChSet finds a response
Z ∈ ZSet that the verifier accepts.

Fig. 6. The lossy impersonation game LOSSY-IMP.

A Concrete Treatment of Fiat-Shamir Signatures 565

2.4 Digital Signatures

We now define syntax and security of a digital signature scheme. Let par be
common system parameters shared among all participants.

Definition 2.9 (Digital Signature). A digital signature scheme SIG is defined
as a triple of algorithms SIG = (Gen,Sign,Ver).

– The key generation algorithm Gen(par) returns the public and secret keys
(pk , sk). We assume that pk defines the message space MSet.

– The signing algorithm Sign(sk ,M) returns a signature σ.
– The deterministic verification algorithm Ver(pk ,M, σ) returns 1 (accept) or

0 (reject).

Signature scheme SIG has correctness error γ if for all (pk , sk) ∈ Gen(par), all
messages M ∈ MSet, we have Pr[Ver(pk ,M,Sign(sk ,M)) = 0] ≤ γ.

Security. We define the UF-CMA (unforgeability against chosen-message
attack), UF-CMA1 (unforgeability against one-per-message chosen-message
attack), and UF-NMA (unforgeability against no-message attack) advantage
functions of a quantum adversary A against SIG as AdvUF-CMA

SIG (A) :=
Pr[UF-CMAA ⇒ 1], AdvUF-CMA1

SIG (A) := Pr[UF-CMA1
A ⇒ 1], and

AdvUF-NMA
SIG (A) := Pr[UF-NMAA ⇒ 1], where the games UF-CMA, UF-CMA1, and

UF-NMA are given in Fig. 7. We also consider strong unforgeability where the
adversary may return a forgery on a message previously queried to the sign-
ing oracle, but with a different signature. In the corresponding experiments
sUF-CMA and sUF-CMA1, the set M contains tuples (M,σ) and for the win-
ning condition it is checked that (M∗, σ∗) �∈ M.

Any UF-CMA1 (sUF-CMA1) secure signature scheme can be combined with a
pseudo-random function PRF to obtain an UF-CMA (sUF-CMA) secure signature
scheme by defining Sign′((sk ,K),M) := Sign(sk ,M ;PRFK(M)), where K is a
secret PRF key which is part of the secret key. This construction is well known
in the classical setting [10], and the same proof works in the quantum setting.
Here PRF only has to provide security against quantum adversaries where the
access to PRF is classical.

Fig. 7. Games UF-CMA, UF-CMA1, and UF-NMA.

566 E. Kiltz et al.

3 Fiat-Shamir in the Quantum Random-Oracle Model

3.1 Signatures from Identification Schemes

Let ID := (IGen,P,ChSet,V) be a canonical identification scheme, let κm be a
positive integer, and let H : {0, 1}∗ → ChSet be a hash function. The following
signature scheme SIG := (Gen = IGen,Sign,Ver) is obtained by the Fiat-Shamir
transformation with aborts FS[ID,H, κm] [26].

Sign(sk , M)
01 κ := 0
02 while Z = ⊥ and κ ≤ κm do
03 κ := κ + 1
04 (W,St) ← P1(sk)
05 c = H(W ‖ M)
06 Z ← P2(sk , W, c, St)
07 if Z = ⊥ return σ = ⊥
08 return σ = (W, Z)

Ver(pk , M, σ)
09 Parse σ = (W, Z) ∈ WSet × ZSet
10 c = H(W ‖ M)
11 return V(pk , W, c, Z) ∈ {0, 1}

We make the convention that if σ = (W,Z) is not in WSet × ZSet, then
Ver(pk ,M, σ) returns 0 (reject). Clearly, if ID has correctness error δ, then SIG
has correctness error γ = δκm .

Fiat-Shamir for Commitment-Recoverable Identification. For
commitment-recoverable ID (see Definition 2.4), we can define an alternative
Fiat-Shamir transformation SIG′ = FS′[ID,H, κm] := (Gen = IGen,Sign′,Ver′).
Algorithm Sign′(sk ,M) is defined as Sign(sk ,M) with the modified output
σ′ = (c, Z). Algorithm Ver′(pk ,M, σ′) first parses σ′ = (c, Z), then recomputes
the commitment as W ′ := Rec(pk , c, Z), and finally returns 1 iff H(W ′ ‖ M) = c.

Sign′(sk , M)
01 κ := 0
02 while Z = ⊥ and κ ≤ κm do
03 κ := κ + 1
04 (W,St) ← P1(sk)
05 c = H(W ‖ M)
06 Z ← P2(sk , W, c,St)
07 if Z = ⊥ return σ′ = ⊥
08 return σ′ = (c, Z)

Ver′(pk , M, σ′)
09 Parse σ′ = (c, Z) ∈ ChSet × ZSet
10 W ′ := Rec(pk , c, Z)
11 return �H(W ′ ‖ M) = c�

Since σ = (W,Z) can be publicly transformed into σ′ = (c, Z) and vice versa,
SIG and SIG′ are equivalent in terms of security. The alternative Fiat-Shamir
transform yields shorter signatures if c ∈ ChSet has a smaller representation size
than the commitment W ∈ WSet.

Main Security Statement. The following is our main security statement for
SIG := FS[ID,H, κm] in the QROM.

A Concrete Treatment of Fiat-Shamir Signatures 567

Theorem 3.1. Assume the identification scheme ID is lossy, εzk-perfect
naHVZK, has α bits of min entropy, and is εls-lossy sound. For any quantum
adversary A against UF-CMA1 (sUF-CMA1) security that issues at most QH

queries to the quantum random oracle |H〉 and QS classical queries to the signing
oracle Sign1, there exists a quantum adversary B (and a quantum adversary C
against CUR)such that

AdvUF-CMA1
SIG (A) ≤ AdvLOSS

ID (B) + 8(QH + 1)2 · εls + κmQS · εzk + 2−α+1,

AdvsUF-CMA1
SIG (A) ≤ AdvLOSS

ID (B) + 8(QH + 1)2 · εls + κmQS · εzk + 2−α+1

+AdvCUR
ID (C),

and Time(B) = Time(C) = Time(A) + κmQH ≈ Time(A).

Note that with this observation the bound of Theorem3.1 is tight, i.e., the
computational advantages appear with a constant factor (one). In the classical
ROM setting, the only difference is that the bound depends linearly on QH,
instead of quadratic.

Deterministic Fiat-Shamir. Let PRF be a pseudo-random function. Consider
a deterministic variant DSIG := DFS[ID,H,PRF, κm] = (Gen,DSign,Ver) of FS
where lines 04 and 06 of Sign is derandomized using the PRF, where the random
key K is part of the secret key.

DSign((sk , K), M)
01 κ := 0
02 while Z = ⊥ and κ ≤ κm do
03 κ := κ + 1
04 (W,St) := P1(sk ;PRFK(0 ‖ m ‖ κ))
05 c = H(W ‖ M)
06 Z := P2(sk , W, c, St ;PRFK(1 ‖ m ‖ κ))
07 if Z = ⊥ return σ = ⊥
08 return σ = (W, Z)

As discussed at the end of Sect. 2.4, the UF-CMA (sUF-CMA) security of
DSIG is implied by the UF-CMA1 (sUF-CMA1) security of FS. Concretely the
advantages are upper bounded by the same terms as in Theorem3.1 plus an
additional term AdvPR

PRF(D) accounting for the quantum security of the PRF.

3.2 Security Proof

The proof of Theorem 3.1 is modular. First, in Theorem3.2 we prove that
UF-NMA security plus naHVZK implies UF-CMA1 security. Second, in Theo-
rem 3.4 we prove that a lossy identification scheme is always UF-NMA secure.

Theorem 3.2. Assume the identification scheme ID is εzk-perfect naHVZK and
has α bits of min entropy. For any UF-CMA1 (sUF-CMA1) quantum adversary
A that issues at most QH queries to the quantum random oracle |H〉 and QS

568 E. Kiltz et al.

(classical) queries to the signing oracle Sign1, there exists a quantum adversary
B against UF-NMA security making QH queries to its own quantum random
oracle (and a quantum adversary C against CUR) such that

AdvUF-CMA1
SIG (A) ≤ AdvUF-NMA

SIG (B) + 2−α+1 + κmQS · εzk

AdvsUF-CMA1
SIG (A) ≤ AdvUF-NMA

SIG (B) + 2−α+1 + AdvCUR
ID (C) + κmQS · εzk,

and Time(B) = Time(C) = Time(A) + κm(QH + QS) ≈ Time(A).

Proof (of Theorem 3.2). We first prove standard unforgeability (UF-CMA1 secu-
rity) and then show how the proof can be modified to obtain strong unforgeabil-
ity (sUF-CMA1 security). Let A be a quantum adversary against the UF-CMA1

security of SIG, issuing at most QH queries to |H〉 and at most QS queries to
Sign1. Consider the games given in Fig. 8. Recall that A has classical access
to the signing oracle Sign1 and quantum access to the random oracle H. The
quantum random oracle H is called with |W ‖ M〉 and returns |H(|W ‖ M〉)〉.
The games in Fig. 8 describe the computation that is performed for any W ‖ M
that has a non-zero amplitude in |W ‖ M〉.
Game G0. Note that game G0 is the original UF-CMA1 game. The signing ora-
cle Sign1 produces a signature using internal deterministic algorithm GetTrans
which, in lines 10 and 12, derives the randomness of P1 and P2 using a perfect
random function RF that cannot be accessed by A. Since in the UF-CMA1 game
only one single signing query is allowed per message,

Pr[GA
0 ⇒ 1] = AdvUF-CMA1

SIG (A).

Fig. 8. Games G0, G1, G2 for the proof of Theorem 3.2. Here RF and H′ are perfect
random function that cannot be accessed by A. Deterministic algorithm GetTrans(M)
is only used internally and cannot be accessed by A.

A Concrete Treatment of Fiat-Shamir Signatures 569

Game G1. This game computes the signatures on M using the naHVZK simu-
lation algorithm Sim and patches the quantum random oracle H accordingly.

Concretely, consider a classical query Sign1(M) and let κM be the smallest
integer 1 ≤ κ ≤ κm satisfying (W, c, Z) := Sim(pk ;RF(M ‖ κ)) and Z �= ⊥. If
no such integer exists, then we define κM := ⊥. It deterministically computes

(WM , cM , ZM) := GetTrans(M) =

{
Sim(pk ;RF(M ‖ κM)) 1 ≤ κM ≤ κm

(⊥,⊥,⊥) κM = ⊥ (4)

The signature on M is returned as

σM := (WM , ZM).

By the naHVZK property and the union bound, the distribution of each σM has
statistical distance at most κmεzk from one computed in game G0. To ensure
that σM is a valid signature on M , in line 20 the random oracle is patched
such that H(WM ‖ M) = cM holds. Concretely, a query W ‖ M to quantum
random oracle H with non-zero amplitude is patched with H(W ‖ M) := cM

iff W = WM , where cM and WM are computed by GetTrans(M), see Eq. (4).
Note that the output distribution of the random oracle H in this game remains
unchanged since cM generated by the naHVZK simulator Sim is required to be
uniformly distributed.

Overall, by a union bound we obtain

|Pr[GA
1 ⇒ 1] − Pr[GA

0 ⇒ 1]| ≤ κmQS · εzk.

Game G2. This game returns 0 in line 05 if c∗ �= H′(W ∗ ‖ M∗). Games G1 and
G2 can only differ if WM∗ = W ∗ and M∗ �∈ M. (In that case G2 returns 0 and
G1 returns 1.) Since M∗ �∈ M, the random variable WM∗ was not yet revealed
as part of an established signature and is completely hidden from the view of the
adversary. It has α bits of min-entropy, meaning we have Pr[WM∗ = W ∗] ≤ 2−α.
We obtain

|Pr[GA
2 ⇒ 1] − Pr[GA

1 ⇒ 1]| ≤ 2−α+1.

Consider adversary B against the UF-NMA game from Fig. 9 having quantum
access to random oracle H′. It perfectly simulates A’s view in game G2, using
its own random oracle H′ to simulate H′ and perfectly simulating the random
function RF with a 2κmQH-wise independent hash function. Assume A’s forgery
(M∗, σ∗) is valid in game G2, i.e., M∗ �∈ M and V(pk ,W ∗, c∗, Z∗) = 1, where
c∗ = H(W ∗ ‖ M∗). If H(W ∗ ‖ M∗) = H′(W ∗ ‖ M∗), then (M∗, σ∗) is also a valid
forgery in the UF-NMA game, i.e., V(pk ,W ∗, c∗, Z∗) = 1, where c∗ = H′(W ∗ ‖
M∗). Hence,

Pr[GA
2 ⇒ 1] = AdvUF-NMA

SIG (B).

The proof of UF-CMA1 security follows by collecting the probabilities. The
running time Time(B) of adversary B is given by the time Time(A) to run A as a

570 E. Kiltz et al.

Fig. 9. Adversary B against UF-NMA security of SIG with quantum access to random
oracle H′. The oracles Sign1 and H simulated by B are defined as in game G2 of Fig. 8.

blackbox in game G2 where in every of the QH oracle- and QS signature-queries,
at most O(κm) computations need to be performed.

Strong unforgeability. For sUF-CMA1 security we consider exactly the same
games with the difference that in all games the winning condition in line 06 is
changed to �(M∗, σ∗) �∈ M� ∧ V(pk ,W ∗, c∗, Z∗) to account for strong unforg-
erability, where M now records all tuples (M,σM) of previously established
messages/signature pairs.

The difference between games G1 and G2 is that game G2 returns 0 in line 05
if c∗ �= H′(W ∗ ‖ M∗), i.e., if H(W ∗ ‖ M∗) was previously patched in line 20
with H(W ∗ ‖ M∗) := cM∗ . Games G1 and G2 can only differ if WM∗ = W ∗,
(M∗, σ∗) �∈ M, and V(pk ,W ∗, c∗, Z∗) = 1. (In that case G2 returns 0 and G1

returns 1.)
We distinguish two cases. If (M∗, ·) �∈ M then we are in the situation that the

adversary did not query a signature on M∗ and we can use the same argument
as in standard unforgeability to argue |Pr[GA

2 ⇒ 1] − Pr[GA
1 ⇒ 1]| ≤ 2−α+1.

It leaves to handle the case (M∗, ·) ∈ M, i.e., the adversary obtained a sig-
natures σM∗ = (WM∗ , ZM∗) on message M∗ and submits a correct forgery
σ∗ = (W ∗, Z∗) satisfying W ∗ = WM∗ and Z∗ �= ZM∗ . The problem of find-
ing values (W ∗, c∗, ZM∗ , Z∗) with two accepting transcripts (W ∗, c∗, Z∗) and
(W ∗, c∗, ZM∗) is exactly bounded by the advantage of an adversary C against
the CUR experiment, i.e., |Pr[GA

2 ⇒ 1] − Pr[GA
1 ⇒ 1]| ≤ AdvCUR

ID (C).
In combination this proves

|Pr[GA
2 ⇒ 1] − Pr[GA

1 ⇒ 1]| ≤ 2−α+1 + AdvCUR
ID (C).

Finally, a straightforward modification of adversary B against UF-NMA security
to account for the strong unforgerability check proves

Pr[GA
2 ⇒ 1] = AdvUF-NMA

SIG (B)

and completes proof of sUF-CMA1 security.
The running times Time(B) and Time(C) can be derived as above. ��
The following theorem shows that we can also prove directly UF-CMA security

of SIG, but (in terms of the running time) the reduction is less tight than the
one of Theorem 3.2.

A Concrete Treatment of Fiat-Shamir Signatures 571

Theorem 3.3. Assume the identification scheme ID is εzk-perfect naHVZK and
has α bits of min entropy. For any UF-CMA (sUF-CMA) quantum adversary
A that issues at most QH queries to the quantum random oracle |H〉 and QS

classical queries to the signing oracle Sign, there exists a quantum adversary B
against UF-NMA security making QH queries to its own quantum random oracle
(and a quantum adversary C against CUR) such that

AdvUF-CMA
SIG (A) ≤ AdvUF-NMA

SIG (B) + QS · 2−α+1 + κmQS · εzk,

AdvsUF-CMA
SIG (A) ≤ AdvUF-NMA

SIG (B) + QS · 2−α+1 + κmQS · εzk + AdvCUR
ID (C),

and Time(B) = Time(C) = Time(A) + κmQHQS.

The proof of Theorem3.3 is similar to the one of Theorem 3.2 and appears
in the full version.

Theorem 3.4. Assume the identification scheme is lossy and εls-lossy sound.
For any UF-NMA quantum adversary A that issues at most QH queries to the
quantum random oracle |H〉, there exists a quantum adversary B against LOSS
such that

AdvUF-NMA
SIG (A) ≤ AdvLOSS

ID (B) + 8(QH + 1)2 · εls,

and Time(B) = Time(A) + QH ≈ Time(A).

Proof. Let A be an adversary against the UF-NMA security of SIG, issuing at
most QH quantum queries to |H〉. Consider the games given in Fig. 10.

Game G0. Since game G0 is the original UF-NMA game,

Pr[GA
0 ⇒ 1] = AdvUF-NMA

SIG (A).

Game G1. In this game, the public key pk is changed to lossy mode. Clearly, there
exists an adversary B simulating H by a 2QH-wise independent hash function
such that

|Pr[GA
1 ⇒ 1] − Pr[GA

0 ⇒ 1]| ≤ AdvLOSS
ID (B).

Finally, we will reduce a successful A in game G1 to the generic search prob-
lem GSPB to show

Pr[GA
1 ⇒ 1] ≤ 8(QH + 1)2εls. (5)

Fig. 10. Games G0-G1 for the proof of Theorem 3.4.

572 E. Kiltz et al.

Fig. 11. Adversary C = (C1,C2) in game GSPB for the proof of Theorem 3.4. The set
of good challenges ChGOODpk (W) is defined in Eq. (6).

For a finite set S, let Uni(S) be a probabilistic algorithm that returns uni-
form x ← S and recall that x := Uni(S; r) denotes the deterministic execution
of Uni(S) using explicitly given random tape r. To prove Eq. (5), consider the
unbounded adversary C = (C1,C2) defined in Fig. 11 that is executed in the
generic search game GSPB, making at most QH quantum queries to the oracle
|g(·)〉. First note that computing the probabilities λpk (W ‖ M) = λpk (W) in
line 05 for all W ∈ WSet and M ∈ MSet may take exponential time but since C
is computationally unbounded it does not matter.

To analyze C’s success probability in game GSPB, we first fix a public-
key pk . Now consider some W ‖ M with non-zero amplitude as part of a
query to quantum random oracle H. Set ChGOODpk (W) of “good challenges” is
defined as

ChGOODpk (W) := {c ∈ ChSet | ∃Z ∈ ZSet : V(pk ,W, c, Z) = 1}. (6)

That is, the set ChGOODpk (W) contains all challenges c for which there exists a
possible response Z to make (W, c, Z) a valid transcript (with respect to pk). By
definition of GSPB, each query to oracle g(W ‖ M) returns y = 1 with probability
λpk (W ‖ M) = |ChGOODpk (W)|/|ChSet|. Hence, the output distribution of
H(W ‖ M) sampled in lines 14 and 15 is uniform over ChSet, as in game G1.
Consistency of H is assured by deriving the randomness to sample c in case y = 0
(lines 14 and 15) using fixed random coins f2QH

(W ‖ M), derived by a 2QH-wise
independent hash function f2QH

(which looks like a perfectly random function
to A).

Now consider A’s forgery σ∗ = (W ∗, Z∗) on message M∗ and define c∗ :=
H(W ∗ ‖ M∗). If the signature is valid (i.e., V(pk ,W ∗, c∗, Z∗) = 1), then clearly
c∗ is a good challenge from set ChGOODpk (W ∗) which implies g(W ∗ ‖ M∗) = 1.
This proves

Pr[G1 ⇒ 1 | pk] = Pr[GSPBC
λpk

⇒ 1 | pk] ≤ 8(QH + 1)2λpk , (7)

A Concrete Treatment of Fiat-Shamir Signatures 573

where
λpk = max

W∈WSet,M∈MSet
λpk (W ‖ M)

Averaging Eq. (7) over pk ← LossyIGen we finally obtain

Pr[G1 ⇒ 1] ≤ 8(QH + 1)2 · Epk [λpk] ≤ 8(QH + 1)2εls,

where the last inequality uses Eq. (3) for the optimal adversary. ��

4 Dilithium-QROM

In this section, we present a modification of the Dilithium digital signature scheme
[16] whose security is based on MLWE in the QROM. We also present a new
security proof of the original Dilithium that shows it to be tightly-secure in the
QROM based on a different non-interactive assumption. Since Dilithium is a
highly-optimized version of a scheme constructed via the “Fiat-Shamir with
Aborts” framework [26], its details may be somewhat overwhelming to readers
who are not already comfortable with such constructions. For this reason, we
present a much simpler version of the signature scheme without any optimiza-
tions in the full version of this paper.

4.1 Preliminaries

Rings and Distributions. We let R and Rq respectively denote the rings
Z[X]/(Xn + 1) and Zq[X]/(Xn + 1), for an integer q. We will assume that
q ≡ 5(mod8), as such a choice of q ensures that all polynomials in Rq with
coefficients less than

√
q/2 have an inverse in the ring [29, Lemma 2.2]. This

property is crucial to our security proof. Regular font letters denote elements
in R or Rq (which includes elements in Z and Zq) and bold lower-case letters
represent column vectors with coefficients in R or Rq. By default, all vectors will
be column vectors. Bold upper-case letters are matrices.

Modular reductions. For an even (resp. odd) positive integer α, we define
r′ = r mod± α to be the unique element r′ in the range −α

2 < r′ ≤ α
2 (resp.

−α−1
2 ≤ r′ ≤ α−1

2) such that r′ = r mod α. We will sometimes refer to this as a
centered reduction modulo q. For any positive integer α, we define r′ = r mod+α
to be the unique element r′ in the range 0 ≤ r′ < α such that r′ = r mod α.
When the exact representation is not important, we simply write r mod α.

Sizes of elements. For an element w ∈ Zq, we write ‖w‖∞ to mean
|w mod± q|. We now define the �∞ and �2 norms for w = w0 + w1X + . . . +
wn−1X

n−1 ∈ R:

‖w‖∞ = max
i

‖wi‖∞, ‖w‖ =
√

‖w0‖2∞ + . . . + ‖wn−1‖2∞.

574 E. Kiltz et al.

Similarly, for w = (w1, . . . , wk) ∈ Rk, we define

‖w‖∞ = max
i

‖wi‖∞, ‖w‖ =
√

‖w1‖2 + . . . + ‖wk‖2.

We will write Sη to denote all elements w ∈ R such that ‖w‖∞ ≤ η.

Extendable output function. Suppose that Sam is an extendable output
function, that is a function on bit strings in which the output can be extended
to any desired length. If we would like Sam to take as input x and then produce
a value y that is distributed according to distribution S (or uniformly over a set
S), we write y ∼ S := Sam(x). It is important to note that this procedure is
completely deterministic: a given x will always produce the same y. For simplicity
we assume that the output distribution of Sam is perfect, whereas in practice
Sam will be implemented using random oracles and produce an output that is
statistically close to the perfect distribution. If K is a secret key, then Sam(K‖x)
is a pseudo-random function from {0, 1}∗ → {0, 1}∗.

The Challenge Space. The challenge space in our identification and signature
schemes needs to be a subset of the ring R, have size a little larger than 2256,
and consist of polynomials with small norms. In this paper, the dimension n of
the ring R will be taken to be 512,3 and so we will define the challenge space
accordingly as

ChSet := {c ∈ R | ‖c‖∞ = 1 and ‖c‖ =
√

46}. (8)

In other words, ChSet consists of elements in R with −1/0/1 coefficients that
have exactly 46 non-zero coefficients. The size of this set is

(
n
46

) · 246, which for
n = 512 is greater than 2265.

The MLWE Assumption. For integers m, k, and a probability distribution D :
Rq → [0, 1], we say that the advantage of algorithm A in solving the decisional
MLWEm,k,D problem over the ring Rq is

AdvMLWE
m,k,D :=

∣∣Pr[A(A, t) ⇒ 1 |A ← Rm×k
q ; t ← Rm

q]

− Pr[A(A,As1 + s2) ⇒ 1 |A ← Rm×k
q ; s1 ← Dk; s2 ← Dm]

∣∣ .

The MLWE assumption states that the above advantage is negligible for all
polynomial-time algorithms A. This assumption was introduced in [25], and is
generalization of the LWE assumption from [35]. The Ring-LWE assumption [30]
is a special case of MLWE where k = 1. Analogously to LWE and Ring-LWE, it
was shown in [25] that solving the MLWE problem for certain parameters is as
hard as solving certain worst-case problems in certain algebraic lattices.

Summary of Supporting Algorithms. To reduce the size of the public key,
we will need some simple algorithms that extract “higher-order” and “lower-
order” bits of elements in Zq. The goal is that when given an arbitrary element
3 In Sect. 4.5, we will also discuss a scheme where n = 256. For that scheme the

challenge space consists of 60 ±1’s.

A Concrete Treatment of Fiat-Shamir Signatures 575

Fig. 12. Supporting algorithms for Dilithium and Dilithium-QROM.

r ∈ Zq and another small element z ∈ Zq, we would like to be able to recover
the higher order bits of r + z without needing to store z. We therefore define
algorithms that take r, z and produce a 1-bit hint h that allows one to compute
the higher order bits of r + z just using r and h. This hint is essentially the
“carry” caused by z in the addition. The algorithms are exactly as in [16], and we
repeat them for convenience in Fig. 12. The algorithms are described as working
on integers modulo q, but are extended to polynomials in Rq by simply being
applied individually to each coefficient.

The below Lemmas recall the crucial properties of these supporting algo-
rithms that are necessary for the correctness and security of our scheme.

Lemma 4.1. Suppose that q and α are positive integers satisfying q > 2α, q ≡ 1
(mod α) and α even. Let r and z be vectors of elements in Rq where ‖z‖∞ ≤ α/2,
and let h,h′ be vectors of bits. Then the HighBitsq, MakeHintq, and UseHintq
algorithms satisfy the following properties:

1. UseHintq(MakeHintq(z, r, α), r, α) = HighBitsq(r + z, α).
2. Let v1 = UseHintq(h, r, α). Then ‖r − v1 · α‖∞ ≤ α + 1.
3. For any h,h′, if UseHintq(h, r, α) = UseHintq(h′, r, α), then h = h′.

Lemma 4.2. If ‖s‖∞ ≤ β and ‖LowBitsq(r, α)‖∞ < α/2 − β, then

HighBitsq(r, α) = HighBitsq(r + s, α).

4.2 The Identification Protocol

The constituting algorithms of our identification protocol ID = (IGen,P1,P2,V)
are described in Fig. 13 with the concrete parameters par = (q, n, k, �, d, γ,
γ′, η, β) given later in Table 1.

576 E. Kiltz et al.

Fig. 13. Our ID scheme – a concrete instantiation based on the hardness of the MLWE
problem of the commitment-recoverable (Definition 2.4) canonical identification scheme
in Fig. 4. The t0 part of the public key is assumed to be known by the adversary in
the security proofs, but is not needed by the verifier for verification. Thus in the real
scheme, t0 would not be included as part of the public key.

Key Generation. The key generation proceeds by choosing a random 256-
bit seed ρ and expanding into a matrix A ∈ Rk×�

q by an extendable output
function Sam modeled as a random oracle. The secret keys (s1, s2) ∈ S�

η × Sk
η

have uniformly random coefficients between −η and η (inclusively). The value
t = As1 + s2 is then computed. The public key that is needed for verification is
(ρ, t1) with t1 output by the Power2Roundq(t, d) algorithm in Fig. 12 (we have
t = t1 · 2d + t0 for some small t0), while the secret key is (ρ, s1, s2, t0).

While the verifier never needs the value t0 (and thus it does not need to be
included in the public key of the actual scheme), we do need this value in order
to simulate transcripts (see Sect. 4.3). Thus the security of our scheme is based
on the fact that the adversary gets t1 and t0, whereas in reality he only gets t1.

The set ChSet is defined as in Eq. (8), and ZSet = S�
γ′−β−1 × {0, 1}k. The

set of commitments WSet is defined as WSet = {w1 : ∃y ∈ S�
γ′−1 s.t. w1 =

HighBitsq(Ay, 2γ)}.

Protocol Execution. The prover starts the identification protocol by recon-
structing A from the random seed ρ. The next step has the prover sample
y ← S�

γ′−1 and then compute w = Ay. He then writes w = 2γ · w1 + w0,
with w0 between −γ and γ (inclusively), and then sends w1 to the verifier. The
verifier generates a random challenge c ← ChSet and sends it to the prover. The
prover computes z = y + cs. If z /∈ S�

γ′−β−1, then the prover sets his response
to ⊥. He also replies with ⊥ if LowBitsq(w− cs2, 2γ) /∈ Sk

γ−β−1. This part of the
protocol is necessary for security – it makes sure that z does not leak anything
about the secret key s1, s2.

A Concrete Treatment of Fiat-Shamir Signatures 577

If the checks pass and a ⊥ is not sent, then it can be shown (see Sect. 4.3)
that HighBitsq(Az − ct, 2γ) = w1. At this point, if the verifier knew the entire
element t and (z, c), he could have recovered w1 and checked that ‖z‖∞ < γ′ −β
and that the high-order bits of Az − ct are indeed w1. However, since we want
to compress the size of the public key, the verifier only knows t1. Hence, the
signer needs to provide a “hint” h which will allow the verifier to compute
HighBitsq(Az − ct, 2γ).

The verifier checks whether ‖z‖∞ < γ′ − β and that Az − ct1 · 2d together
with the hint h allow him to reconstruct w1. We should point out that in the
identification scheme it is actually not necessary for the verifier to be able to
recover exactly w1. He could have simply checked that Az − ct1 · 2d ≈ w1 and
this would be good enough for security. The reason that we want the verifier to
be able to exactly recover w1 is to make the ID scheme commitment-recoverable
and be able to reduce the communication size in the Fiat-Shamir transform (see
Sect. 3.1).

4.3 Security Properties

In this section we analyze the security of ID. Most of the proofs are postponed
to the full version.

Non Abort Honest Verifier Zero-Knowledge. In this section, we will
show that ID is perfectly naHVZK, i.e., the distribution of the output of the
Trans algorithm (Fig. 14, left) that uses the secret key as input is exactly that of
the Sim algorithm (Fig. 14, right) that uses only the public key as input.

Lemma 4.3. If β ≥ maxs∈Sη,c∈ChSet ‖cs‖∞, then ID is perfectly naHVZK.

Correctness. In this section, we compute the probability that the Prover does
not send ⊥ and then show that the verification procedure will always accept a
transcript when the Prover does not send ⊥.

Lemma 4.4. If β ≥ maxs∈Sη,c∈ChSet ‖cs‖∞ then ID has correctness error δ ≈
1 − exp (−βn · (k/γ + �/γ′)).

Fig. 14. Left: a real transcript output by the transcript algorithm Trans(sk); Right: a
simulated transcript output by the Sim(pk) algorithm.

578 E. Kiltz et al.

Fig. 15. The lossy instance generator LossyIGen.

Lossyness. In this section, we analyze the scheme in which the public key is
generated uniformly at random, as in algorithm LossyIGen of Fig. 15, rather than
as in IGen of Fig. 13. Our goal is to show that even if the prover is computationally
unbounded, he only has approximately a 1/|ChSet| probability of making the
verifier accept during each run of the identification scheme. This will show that
the probability in Eq. (3) is upper-bounded by approximately 1/|ChSet|.

By observing that the output of LossyIGen is uniformly random over Rk×�
q ×

Rk
q and the output of IGen in Fig. 13 is (A,As1 + s2) where A ← Rk×�

q and
(s1, s2) ← S�

η × Sk
η , we have that

AdvLOSS
ID (A) = AdvMLWE

k,�,D (A),

where D is the uniform distribution over Sη.

Lemma 4.5. If 4γ + 2, 2γ′ <
√

q/2 and γ′ < γβ, and � ≤ k, then ID has
εls-lossy soundness for

εls ≤ 1
|ChSet| + 2 · |ChSet|2 ·

(
32γγ′

q

)nk

.

Our proof follows the framework from [3,22]. Then to prove Lemma 4.5, we
show that if C, who outputs the first message (w1,St) in the LOSSY-IMP game
(see Fig. 16) is able to correctly respond to more than one random challenge c,
then the previously mentioned linear equation will have a solution, which with
high probability is not possible. Therefore we conclude that for virtually all
A, t output by LossyIGen, there exists (at most) only one challenge for which the
prover can respond to, and therefore his success probability is at most 1/|ChSet|.
Min Entropy. In Lemma 4.6 we will prove that the w1 sent by the honest
prover in the first step is extremely likely to be distinct for every run of the
protocol.

Lemma 4.6. If 2γ, 2γ′ <
√

q/2 and � ≤ k, then the identification scheme ID
in Fig. 13 has

α > n� · log
(

min
{

q

(4γ + 1)(4γ′ + 1)
, 2γ′ − 1

})

bits of min-entropy (as in Definition 2.6).

A Concrete Treatment of Fiat-Shamir Signatures 579

Fig. 16. The lossy impersonation game LOSSY-IMP in case of Dilithium.

Computational Unique Response. In this section we state that our scheme
satisfies the Computational Unique Response (CUR) property required for
strong-unforgeability of the signature scheme.

Lemma 4.7. If 4γ + 2, 2γ′ <
√

q/2 and γ′ < γβ, and � ≤ k (i.e. the same

conditions as in Lemma 4.5), then AdvCUR
ID (A) <

(
32γγ′

q

)nk

for every (even
unbounded) adversary A.

4.4 The Dilithium-QROM Signature Scheme and Concrete
Parameters

In this section, we describe the signature scheme Dilithium-QROM (Fig. 17) which
is obtained via the Fiat-Shamir transform from the scheme ID of Fig. 13 and using
Sam(K ‖ ·) as a pseudorandom function. We then instantiate it with concrete
parameters (Table 1) and compare them for the same security level with those
in [16].

The parameters for our scheme are dictated by the requirements for the
scheme to be strongly-unforgeable in Theorem 3.1 which gives an upper bound
on AdvsUF-CMA

Dilithium-QROM(A). Following [24], for “κ bits of quantum security” for
Dilithium-QROM we require that for all quantum adversaries A running in time
at most 2κ,

AdvUF-CMA
Dilithium-QROM(A)/Time(A) ≤ 2−κ. (9)

To this end, we need to put bounds on the parameters εls, εzk, and α.
Lemma 4.3 tells us that

εzk = 0.

To lower-bound α, note that in the parameters, we always have 2γ = 2γ′ <√
q/2, and using a lemma in the full version of the paper, we can conclude that

α is greater than 2900. Thus the 2−α term has absolutely no practical effect in
Theorem 3.1 for the parameters in Sect. 4.4.

Lemma 4.7 states that as long as 4γ + 2 and 2γ′ <
√

q/2, we will have

AdvCUR
ID (C) <

(
32γγ′

q

)nk

. The parameters in Table 1 indeed satisfy the precon-

ditions, and so AdvCUR
ID (C) <

(
32γγ′

q

)nk

< 2−865.

580 E. Kiltz et al.

We finally turn to bounding εls. Notice that Lemma 4.5 directly implies that

εls ≤ 1
|ChSet| + 2 · |ChSet|2 ·

(
32γγ′

q

)nk

.

The size of the challenge set ChSet defined in Eq. (8) is larger than 2265, and so
the above is at most

εls ≤ 2−265 + 2−334 ≤ 2−264.

Plugging everything into the equation at the end of Sect. 3.1, we obtain

AdvUF-CMA
Dilithium-QROM(A) ≤ AdvLOSS

ID (B) + AdvCUR
ID (C) + 8 · (QH + 1)2 · εls

+ AdvPR
Sam(D) +

200
(1 − δ)

· QS · εzk + 2−α

< AdvMLWE
ID (B) + Q2

H · 2−261 + AdvPR
Sam(D).

Table 1 also shows that the parameters of the MLWE problem are chosen
such that it provides 128 bits of quantum security (using the same metric as
was used in the original Dilithium scheme [16].) Assuming Sam provides 128
bits security when used as a pseudorandom function, we conclude that for all

Fig. 17. Our signature scheme Dilithium-QROM := DFS[ID]. The key generation algo-
rithm is IGen from Fig. 13, where the secret key also contains a random key K for the
pseudorandom function Sam(K ‖ ·). The bound 200/(1 − δ) on κ can be ignored as
there is only a δ200/(1−δ) < exp(−200) chance that it will be reached in any call to the
signing procedure. Its presence is for consistency with the generic signing algorithm in
Sect. 3.1.

A Concrete Treatment of Fiat-Shamir Signatures 581

Table 1. Parameters for Dilithium-QROM and Dilithium. The security analysis for the
MLWE and MSIS problems is as described in [16].

Dilithium-QROM Dilithium [16]

Recomm. Very high Recomm. Very high

q (ring modulus) 245 − 21283 245 − 21283 223 − 8191 223 − 8191

n (ring dimension) 512 512 256 256

(k, �) (dimension of matrix A) (4, 4) (5, 5) (5, 4) (6, 5)

d (dropped bits from t) 15 15 14a 14

of ±1’s in c ∈ ChSet 46 46 60 60

γ s.t 2γ | q − 1 905679 905679 261888 261888

γ′ (≈ max. sig. coefficient) 905679 905679 523776 523776

η (maximum coefficient of s1, s2) 7 3 5 3

β (= η·(# of ±1’s in c)) 322 138 275b 175

pk size (bytes) 7712 9632 1472 1760

Sig size (bytes) 5690 7098 2701 3366

Exp. repeats (1/(1 − δ) from Lemma 4.4) 4.3 2.2 6.6 4.3

BKZ block-size to break LWE 480 600 485 595

Best known classical bit-cost 140 175 141 174

Best known quantum bit-cost 127 159 128 158

BKZ block-size to break SIS NA NA 475 605

Best known classical bit-cost NA NA 138 176

Best known quantum bit-cost NA NA 125 160
aFor added compactness of the public key, the size of d (i.e. the amount of bits that one can drop

from t) can be such that the necessary condition ‖ct0‖∞ < γ is not always satisfied. This would

invalidate the correctness of the scheme – in particular the proof of Lemma 4.4. Nevertheless, if

this condition is satisfied most of the time and the signer simply checks whether ‖ct0‖∞ < γ

before sending the signature (and aborts the signing attempt otherwise), then the scheme retains

its correctness property. Since for security, we assumed that t0 is known to the adversary, this

check does not affect security. In the Dilithium scheme, this check is performed at the end of the

while loop of the signing algorithm.
bThe β values for Dilithium were chosen such that Prs←Sη,c←ChSet[‖sc‖∞ > β] is very close to 0.

Increasing/decreasing the value of β changes the value δ, which has an effect on the run-time of

the scheme.

quantum adversaries running in time at most 2128 and making 1 ≤ QH ≤ 2128

(quantum) queries to H, and we have

AdvUF-CMA
Dilithium-QROM(A)
Time(A)

≤ AdvMLWE
ID (B)

Time(B)
+

AdvPR
Sam(D)

Time(D)
+ QH · 2−261 ≤ 2−128

The signature size in Dilithium-QROM is (n ·� ·(�log(2γ)�)+nk+46 ·(log(n)+
1))/8 bytes, while the public key is (n · k · (�log(q)� − d) + 256)/8 bytes.

In Table 1, we compare the parameters from the current scheme, which can
be proved secure based on the hardness of MLWE in the QROM, to those of the
original Dilithium scheme from [16], which only has a classical security reduction
from the combination of MLWE and MSIS (we introduce this latter problem in
the next section). One can see that the sum of the public key and signature sizes
are approximately 3.2 times larger in Dilithium-QROM than in Dilithium.

582 E. Kiltz et al.

4.5 Security Assumptions for Non-lossy Schemes

The reduction from the MLWE problem to the hardness of the Dilithium-QROM
scheme was a direct consequence of Theorem 3.1, which is itself a combination
of Theorems 3.2 and 3.4. In this section, we consider the security of schemes for
which Theorem 3.4 is inapplicable. In particular, in these schemes it is no longer
true that a computationally-unbounded adversary cannot win the LOSSY-IMP
game. The reason that one would like to use schemes constructed in such a
manner is because they turn out to be more efficient. In particular, the original
Dilithium scheme4 [16], which is virtually identical to the Dilithium-QROM pre-
sented in this paper except for the parameter sizes, has outputs (of the public
key plus signature) that are smaller by a factor of a little over 3 (see Table 1).

But while the Dilithium scheme has a security reduction from standard lattice
problems in the classical random-oracle model, there is no such reduction in the
quantum random-oracle model. Nevertheless, it is unclear whether this lack of
reduction implies any weakness against quantum attacks. It would therefore
be useful to understand exactly what assumptions the more efficient scheme is
relying on in the quantum random-oracle model.

Let us suppose that the parameters for the Dilithium scheme are set such that
Theorem 3.2 is still applicable. That is, suppose that εzk = 0, α is very large, and
the scheme is commitment-recoverable. In this case, ignoring the 2−α+1 term,
Theorem 3.2 states that the security of the full signature scheme is exactly the
security of the UF-NMA signature scheme in the quantum random-oracle model.
Since the adversary does not obtain any valid signatures in the UF-NMA security
game, the security assumption of such signatures is non-interactive.

Below, we recall the standard MSIS assumption and then define a new
assumption, SelfTargetMSIS, upon which the security of Dilithium is based. We
also point out that in the classical random-oracle model, there is a (non-tight)
reduction from the MSIS to the SelfTargetMSIS problem. Then we show that the
Dilithium scheme for which Theorem 3.4 is not necessarily applicable, still has a
security reduction from the combination of MLWE and SelfTargetMSIS problems.

The MSIS and SelfTargetMSIS Problems. The MSIS problem [25] is a general-
ization of the SIS [4] and Ring-SIS [28,33] problems in the same way that MLWE
is a generalization of LWE and Ring-LWE. To an algorithm A we associate the
advantage function AdvMSIS

m,k,γ(A) to solve the (Hermite Normal Form) MSISm,k,γ

problem over the ring Rq as

AdvMSIS
m,k,γ(A) := Pr

[
0 < ‖y‖∞ ≤ γ ∧ [I |A] · y = 0 | A ← Rm×k

q ;y ← A(A)
]
.

As for SIS and Ring-SIS, it was shown that solving MSIS for certain parame-
ters is as hard as worst-case instances of lattice problems over algebraic lattices
of a certain form [25].

4 We refer to the deterministic version of the scheme.

A Concrete Treatment of Fiat-Shamir Signatures 583

Suppose that H : {0, 1}∗ → ChSet is a cryptographic hash function. To an
algorithm A we associate the advantage function AdvSelfTargetMSIS

H,m,k,γ (A) to solve the
SelfTargetMSISH,m,k,γ problem over the ring Rq as

AdvSelfTargetMSIS
H,m,k,γ (A)

:= Pr
[‖y‖∞ ≤ γ

∧H([I |A] · y ‖ M) = c

∣∣∣∣A ← Rm×k
q ;

(
y :=

[
r
c

]
,M

)
← A|H〉(A)

]
.

If A only has classical access to H, then there is a reduction, using the forking

lemma [9,34], to prove that AdvSelfTargetMSIS
H,m,k,γ (B) ≈

√
AdvMSIS

m,k,2γ(A)/QH, where QH

is the number of classical queries to H.5 This reduction is standard and is implicit
in the (classical) security proofs of digital signatures based on the hardness of
the SIS problem (cf. [16,27]).

Security based on MLWE, MSIS, and SelfTargetMSIS in the QROM. The
QROM security of (deterministic) Dilithium can be expressed as

AdvsUF-CMA
Dilithium (A) ≤ AdvMLWE

k,�,D (B) + AdvSelfTargetMSIS
H,k,�+1,ζ (C) (10)

+ AdvPR
Sam(D) + AdvMSIS

k,�,ζ′(E) + 2−α+1, (11)

for D a uniform distribution over Sη,

ζ = max{γ′ − β, 2γ + 1 + 2d−1 · ρ}, (12)

where ρ is the number of ±1’s in the challenge set ChSet, and

ζ ′ = max{2(γ′ − β), 4γ + 2}. (13)

The proof that the min-entropy α is greater than 255, and the proof for strong
unforgeability appears in the full version of the paper. The bound in Eq. (10) is
then obtained by combining Theorem3.2 with results from Sect. 4.3.

Acknowledgments. Eike Kiltz was supported in part by ERC Project ERCC
(FP7/615074) and by DFG SPP 1736 Big Data. Vadim Lyubashevsky was sup-
ported by the SNSF ERC Transfer Starting Grant CRETP2-166734-FELICITY and
the H2020 Project SAFEcrypto. Christian Schaffner was supported by a NWO VIDI
grant (639.022.519). The authors are grateful to Dominique Unruh and the anonymous
reviewers for comments and discussions.

5 This can be improved to QHAdvSelfTargetMSIS
H,m,k,γ (B)/Time(B) ≈ AdvMSIS

m,k,2γ(A)/Time(A).

584 E. Kiltz et al.

References

1. NIST Special Publication 800–165 Computer Security Division 2012 Annual
Report, p. 39, June 2013. https://csrc.nist.gov/Projects/Post-Quantum-Crypto
graphy. Accessed 30 Jan 2014. 554

2. Abdalla, M., An, J.H., Bellare, M., Namprempre, C.: From identification to sig-
natures via the Fiat-Shamir transform: minimizing assumptions for security and
forward-security. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332,
pp. 418–433. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-
7 28. 553

3. Abdalla, M., Fouque, P.-A., Lyubashevsky, V., Tibouchi, M.: Tightly-secure sig-
natures from lossy identification schemes. In: Pointcheval, D., Johansson, T. (eds.)
EUROCRYPT 2012. LNCS, vol. 7237, pp. 572–590. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-29011-4 34. 553, 554, 555, 556, 558, 564, 578

4. Ajtai, M.: Generating hard instances of lattice problems (extended abstract). In:
28th ACM STOC, pp. 99–108. ACM Press, May 1996. 582

5. Alkim, E., Bindel, N., Buchmann, J., Dagdelen, Ö., Eaton, E., Gutoski, G.,
Krämer, J., Pawlega, F.: Revisiting TESLA in the quantum random oracle model.
In: Lange, T., Takagi, T. (eds.) PQCrypto 2017. LNCS, vol. 10346, pp. 143–162.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59879-6 9. 554, 555,
556, 558

6. Ambainis, A., Rosmanis, A., Unruh, D.: Quantum attacks on classical proof sys-
tems: the hardness of quantum rewinding. In: 55th FOCS, pp. 474–483. IEEE
Computer Society Press, October 2014. 554

7. Bai, S., Galbraith, S.D.: An improved compression technique for signatures based
on learning with errors. In: Benaloh, J. (ed.) CT-RSA 2014. LNCS, vol. 8366, pp.
28–47. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-04852-9 2. 554,
558

8. Beals, R., Buhrman, H., Cleve, R., Mosca, M., Wolf, R.: Quantum lower bounds by
polynomials. In: 39th FOCS, pp. 352–361. IEEE Computer Society Press, Novem-
ber 1998. 560

9. Bellare, M., Neven, G.: Multi-signatures in the plain public-key model and a general
forking lemma. In: Juels, A., Wright, R.N., Vimercati, S. (eds.) ACM CCS 2006,
pp. 390–399. ACM Press, October/November 2006. 553, 583

10. Bellare, M., Poettering, B., Stebila, D.: From identification to signatures, tightly: a
framework and generic transforms. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT
2016, Part II. LNCS, vol. 10032, pp. 435–464. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-53890-6 15. 556, 565

11. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: Ashby, V. (ed.) ACM CCS 1993, pp. 62–73. ACM Press,
November 1993. 553, 560

12. Bennett, C.H., Bernstein, E., Brassard, G., Vazirani, U.V.: Strengths and weak-
nesses of quantum computing. SIAM J. Comput. 26(5), 1510–1523 (1997). 554,
555

13. Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.:
Random oracles in a quantum world. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT
2011. LNCS, vol. 7073, pp. 41–69. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-25385-0 3. 554, 555, 560

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://doi.org/10.1007/3-540-46035-7_28
https://doi.org/10.1007/3-540-46035-7_28
https://doi.org/10.1007/978-3-642-29011-4_34
https://doi.org/10.1007/978-3-319-59879-6_9
https://doi.org/10.1007/978-3-319-04852-9_2
https://doi.org/10.1007/978-3-662-53890-6_15
https://doi.org/10.1007/978-3-662-53890-6_15
https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1007/978-3-642-25385-0_3

A Concrete Treatment of Fiat-Shamir Signatures 585

14. Groot Bruinderink, L., Hülsing, A., Lange, T., Yarom, Y.: Flush, gauss, and
reload – a cache attack on the BLISS lattice-based signature scheme. In: Gierlichs,
B., Poschmann, A.Y. (eds.) CHES 2016. LNCS, vol. 9813, pp. 323–345. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53140-2 16. 555

15. Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures and
bimodal Gaussians. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I.
LNCS, vol. 8042, pp. 40–56. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-40041-4 3. 555

16. Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schwabe, P., Seiler, G., Stehlé,
D.: CRYSTALS-Dilithium: a lattice-based digital signature scheme. IACR Trans.
Cryptogr. Hardw. Embed. Syst. 2018(1), 238–268 (2018). 554, 555, 557, 573, 575,
579, 580, 581, 582, 583

17. Ducas, L., Lyubashevsky, V., Prest, T.: Efficient identity-based encryption over
NTRU lattices. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part II. LNCS,
vol. 8874, pp. 22–41. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-45608-8 2. 555, 554

18. Eaton, E., Song, F.: Making existential-unforgeable signatures strongly unforge-
able in the quantum random-oracle model. In: 10th Conference on the Theory of
Quantum Computation, Communication and Cryptography, TQC 2015, Brussels,
Belgium, pp. 147–162, 20–22 May 2015. 554

19. Espitau, T., Fouque, P., Gérard, B., Tibouchi, M.: Side-channel attacks on BLISS
lattice-based signatures - exploiting branch tracing against strongSwan and electro-
magnetic emanations in microcontrollers. IACR Cryptology ePrint Archive 2017,
505 (2017). http://eprint.iacr.org/2017/505. 555

20. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12.
553

21. Hülsing, A., Rijneveld, J., Song, F.: Mitigating multi-target attacks in hash-based
signatures. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC
2016, Part I. LNCS, vol. 9614, pp. 387–416. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49384-7 15. 556, 561

22. Katz, J., Wang, N.: Efficiency improvements for signature schemes with tight secu-
rity reductions. In: Jajodia, S., Atluri, V., Jaeger, T. (eds.) ACM CCS 2003, pp.
155–164. ACM Press, October 2003. 553, 578

23. Kawachi, A., Tanaka, K., Xagawa, K.: Concurrently secure identification schemes
based on the worst-case hardness of lattice problems. In: Pieprzyk, J. (ed.)
ASIACRYPT 2008. LNCS, vol. 5350, pp. 372–389. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-89255-7 23. 554, 558

24. Kiltz, E., Masny, D., Pan, J.: Optimal security proofs for signatures from identifi-
cation schemes. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part II. LNCS,
vol. 9815, pp. 33–61. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-53008-5 2. 554, 579

25. Langlois, A., Stehlé, D.: Worst-case to average-case reductions for module lattices.
Des. Codes Cryptogr. 75(3), 565–599 (2015). 574, 582

26. Lyubashevsky, V.: Fiat-Shamir with aborts: applications to lattice and factoring-
based signatures. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
598–616. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-
7 35. 553, 554, 555, 557, 558, 566, 573

https://doi.org/10.1007/978-3-662-53140-2_16
https://doi.org/10.1007/978-3-642-40041-4_3
https://doi.org/10.1007/978-3-642-40041-4_3
https://doi.org/10.1007/978-3-662-45608-8_2
https://doi.org/10.1007/978-3-662-45608-8_2
http://eprint.iacr.org/2017/505
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-662-49384-7_15
https://doi.org/10.1007/978-3-662-49384-7_15
https://doi.org/10.1007/978-3-540-89255-7_23
https://doi.org/10.1007/978-3-662-53008-5_2
https://doi.org/10.1007/978-3-662-53008-5_2
https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/978-3-642-10366-7_35

586 E. Kiltz et al.

27. Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4 43. 583

28. Lyubashevsky, V., Micciancio, D.: Generalized compact knapsacks are collision
resistant. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP
2006, Part II. LNCS, vol. 4052, pp. 144–155. Springer, Heidelberg (2006). https://
doi.org/10.1007/11787006 13. 582

29. Lyubashevsky, V., Neven, G.: One-shot verifiable encryption from lattices. In:
Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part I. LNCS, vol. 10210, pp.
293–323. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56620-7 11.
557, 573

30. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 1. 574

31. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information.
Cambridge University Press, Cambridge (2000). 560

32. Paillier, P., Vergnaud, D.: Discrete-log-based signatures may not be equiva-
lent to discrete log. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp.
1–20. Springer, Heidelberg (2005). https://doi.org/10.1007/11593447 1. 553

33. Peikert, C., Rosen, A.: Efficient collision-resistant hashing from worst-case assump-
tions on cyclic lattices. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876,
pp. 145–166. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878 8. 582

34. Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind sig-
natures. J. Cryptol. 13(3), 361–396 (2000). 553, 554, 583

35. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC, pp. 84–93. ACM Press,
May 2005. 574

36. Unruh, D.: Non-interactive zero-knowledge proofs in the quantum random oracle
model. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part II. LNCS,
vol. 9057, pp. 755–784. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46803-6 25. 554, 558

37. Unruh, D.: Post-quantum security of Fiat-Shamir. In: Takagi, T., Peyrin, T. (eds.)
ASIACRYPT 2017, Part I. LNCS, vol. 10624, pp. 65–95. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-70694-8 3. 555, 556, 558

38. Unruh, D.: Post-quantum security of fiat-shamir. Cryptology ePrint Archive,
Report 2017/398 (2017). http://eprint.iacr.org/2017/398. 555, 558, 559

39. Zhandry, M.: How to construct quantum random functions. In: 53rd FOCS, pp.
679–687. IEEE Computer Society Press, October 2012. 561, 556

40. Zhandry, M.: Secure identity-based encryption in the quantum random oracle
model. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp.
758–775. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-
5 44. 560

https://doi.org/10.1007/978-3-642-29011-4_43
https://doi.org/10.1007/11787006_13
https://doi.org/10.1007/11787006_13
https://doi.org/10.1007/978-3-319-56620-7_11
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/11593447_1
https://doi.org/10.1007/11681878_8
https://doi.org/10.1007/978-3-662-46803-6_25
https://doi.org/10.1007/978-3-662-46803-6_25
https://doi.org/10.1007/978-3-319-70694-8_3
http://eprint.iacr.org/2017/398
https://doi.org/10.1007/978-3-642-32009-5_44
https://doi.org/10.1007/978-3-642-32009-5_44

Non-maleable Codes

Non-malleable Randomness Encoders
and Their Applications

Bhavana Kanukurthi1(B), Sai Lakshmi Bhavana Obbattu1(B),
and Sruthi Sekar2(B)

1 Department of Computer Science and Automation, Indian Institute of Science,
Bangalore, India

bhavana@iisc.ac.in, oslbhavana@gmail.com
2 Department of Mathematics, Indian Institute of Science, Bangalore, India

sruthi.sekar1@gmail.com

Abstract. Non-malleable Codes (NMCs), introduced by Dziembowski,
Peitrzak and Wichs (ITCS 2010), serve the purpose of preventing
“related tampering” of encoded messages. The most popular tampering
model considered is the 2-split-state model where a codeword consists of
2 states, each of which can be tampered independently. While NMCs in
the 2-split state model provide the strongest security guarantee, despite
much research in the area we only know how to build them with poor
rate (Ω(1

logn
), where n is the codeword length). However, in many appli-

cations of NMCs one only needs to be able to encode randomness i.e.,
security is not required to hold for arbitrary, adversarially chosen mes-
sages. For example, in applications of NMCs to tamper-resilient security,
the messages that are encoded are typically randomly generated secret
keys. To exploit this, in this work, we introduce the notion of “Non-
malleable Randomness Encoders” (NMREs) as a relaxation of NMCs in
the following sense: NMREs output a random message along with its
corresponding non-malleable encoding.

Our main result is the construction of a 2-split state, rate- 1
2
NMRE.

While NMREs are interesting in their own right and can be directly used
in applications such as in the construction of tamper-resilient crypto-
graphic primitives, we also show how to use them, in a black-box manner,
to build a 3-split-state (standard) NMCs with rate 1

3
. This improves both

the number of states, as well as the rate, of existing constant-rate NMCs.

1 Introduction

How do we protect sensitive data from being tampered? Can we ensure that tam-
pering of the data is detected? These are precisely the kind of questions answered
in the rich area of Coding Theory. Encoding data using an error correcting code
ensures that data stays the same so long as the errors introduced are appropri-
ately limited. Dziembowski et al. [DPW10], introduced an important variant of

B. Kanukurthi—Research supported in part by Department of Science and Technol-
ogy Inspire Faculty Award.

c© International Association for Cryptologic Research 2018
J. B. Nielsen and V. Rijmen (Eds.): EUROCRYPT 2018, LNCS 10822, pp. 589–617, 2018.
https://doi.org/10.1007/978-3-319-78372-7_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78372-7_19&domain=pdf

590 B. Kanukurthi et al.

ECCs based on the well-established intuition in eryptography that, often times,
tampering data into something independent doesn’t threaten the security of the
underlying cryptosystem. (For example, an adversary who obtains signatures on
an independently generated signing key, will not be able to forge signatures with
respect to the original secret key.) Specifically, they introduced Non-malleable
Codes which provide a guarantee that an adversary cannot tamper the codeword
of message m into the codeword of a related message m′.

As observed in [DPW10], it is impossible to build NMCs secure against all
functions. Therefore, NMCs are defined with respect to a family of tampering
functions. A natural class of tampering functions that have been considered is
the t-split state model where a codeword consists of t states, each of which is
tampered independently by the adversary. An important parameter of interest
for NMCs is its Rate = k

n where k = message length and n = codeword length.
Prior to this work, the best known results for various t-state tampering mod-

els were given in Table 1.

Table 1. Prior work

Result States Rate

[CG14b] n 1

[KOS17] 4 1/3

[Li17] 2 Ω(1
logn

)

As we can see, while 2-split-state NMCs provide the strongest security guar-
antee, despite significant effort in this direction, we only know how to build
them with poor rate of Ω(1

logn). An important observation about the definition
of non-malleable codes is that they ensure non-malleability of the codeword of
any message, even adversarially chosen ones. However, in most applications of
non-malleable codes, such as tamper-resilient security, the message is not adver-
sarially controlled. In fact, it is typically a randomly chosen secret key. With
that in mind, in this work, we ask the following question:

Is there any advantage in non-malleably encoding randomness?

With this question in mind, we introduce “Non-malleable Randomness
Encoders” (NMRE) as objects which allow you to generate randomness along
with its corresponding non-malleable encoding. We then go on to show that
NMREs can, infact, be built efficiently and with interesting parameters: Specif-
ically, we build a 2-state, rate- 12 Non-malleable Randomness Encoder.
Given the major open problem in this area of NMCs i.e., of building an explicit
2-state, constant-rate non-malleable code, we propose NMREs as a useful alter-
native to NMCs in applications where they suffice, of which we give some
examples.

Non-malleable Randomness Encoders and Their Applications 591

Application of NMREs. Consider the key generation process of symmetric key
cryptosystems. These processes typically use uniform randomness r to generate a
secret key k. Using NMREs we can generate r along with its non-malleable encod-
ing C. Instead of storing the secret key k directly, we store C in the secret state.
The advantage is that this secret state is now resilient to tampering attacks. Of
course, this will require us to decode C and regenerate the secret key k whenever
we need to use it. Therefore, the applicability of NMREs is for scenarios where
key generation is an efficient process.

As another application of NMREs, we show that NMREs can be used, in
a black-box, to improve the current state of the art of standard non-malleable
codes. Specifically, we build 3-state Non-malleable Codes with a rate of 1

3 .

1.1 Prior Work

We now survey the main results in the area of Non-malleable Codes. For the
sake of completeness, we may revisit some of the terminology introduced in the
previous section. Informally, a non-malleable code (NMC) [DPW10] provides the
following guarantee – a codeword of message m, if tampered, will decode to one
of the following:

– ⊥ i.e., it detects tampering.
– the original message m itself i.e., the tampering did not change the message.
– something independent of m.

While each of these cases may occur with varying probabilities (for example,
a tampering function that maps codeword to identity always results in Case 2),
the probability with which these cases occur need to be independent of the
underlying message. In [DPW10], the authors observe that it is impossible to
build NMCs which are secure against unrestricted tampering. Specifically, a
function f(c) def= Enc(Dec(c) + 1) clearly tampers m = Dec(c) into a related
m + 1. This necessitates the need to define non-malleable codes with respect
to the class of functions they protect against. ([DPW10] show the existence of
non-malleable codes w.r.t tampering families of size less than 22

n

, where n is the
codeword length.)

Tampering Families and Rate. One family that has been considered in several
works is that of t-state tampering families: here, a codeword consists of t blocks
or states and the adversary tampers each of these independently. The family of
functions F therefore consists of t-functions f1, . . . , ft. For t = n, the model is
referred to as the bit-wise tampering model. Dziembowski et al. [DPW10] con-
structed non-malleable codes resilient against this family. In addition to the
class of tampering functions, another important parameter is that of Rate =
message length
codeword length they achieve. Cheraghchi and Guruswami [CG14b] built an explicit
construction of an optimal rate NMC in the bit-wise tampering model. While
building NMCs for this model is technically challenging, a disadvantage is that,
from a practical stand point, requiring each bit of the codeword to be stored in an

592 B. Kanukurthi et al.

independent state makes the model less desirable. Indeed, the best possible t-split
state model would be where t = 2. On this front, the first efficient solution was
obtained for 1-bit messages by Dziembowski et al. [DKO13]. The first construc-
tion for encoding arbitrary-length messages, was an Ω(n−6/7)-rate construction
due to Aggarwal et al. [ADL14]. At the same time, in [CG14a], Cheraghchi and
Guruswami show a 1 − 1/t upper bound on best achievable rate for the t-split
state family (and, specifically, 1/2 when t = 2). The first constant rate con-
struction for any t = o(n), was due to Chattopadhyay and Zuckerman [CZ14].
Specifically, they build a constant rate, 10-state NMC. Recently, Kanukurthi
et al. [KOS17] obtained a 4–state construction (i.e., t = 4) with rate 1

3 . For
t = 2, the current best known construction is due to Li [Li17] with a rate of
Ω(1/ log n). In other results, Aggarwal et al. [ADKO15] demonstrated connec-
tions between various split-state models and Agrawal et al. [AGM+15] build
optimal NMCs which are simultaneously resilient to permutation attacks as well
as bit-wise tampering attacks. On the computational front, there are construc-
tions in the 2-split-state model such as [LL12] and the optimal construction
of [AAG+16].

Variants of Non-malleable Codes. Since the introduction of Non-malleable codes
several variants of Non-malleable codes have been considered. Some of them
are Continuous NMCs [FMNV14,JW15,AKO15,DNO17], Locally updatable and
decodable NMCs [DLSZ14,DKS17,CKR16].

1.2 Our Results

In this work, we introduce Non-malleable Randomness Encoders. Informally,
NMREs allow for the generation of randomness r along with its correspond-
ing non-malleable encoding C. The non-malleability is, as for standard NMCs,
defined with respect to F , a family of tampering functions. Note that any non-
malleable code NMC is, by default, a secure NMRE (simply generate randomness
r at random and let the codeword be the output of NMC). The main challenge
is in building a rate-optimal, state-optimal NMRE. We give an overview
of our construction which uses Information-theoretic one-time message authen-
tication codes (MACs) as well as Randomness Extractors.

Randomness extractors Ext are objects that allow us to generate random-
ness from a source W with a Min-entropy guarantee using a short seed (s) of
true randomness. Message authentication codes MAC = (Tag,Vrfy) are secret
key primitives which guarantee that even given Tag(m; k), an adversary cannot
generate m′, t′ such that m′ �= m and Vrfy(m′, t′) = 1. Our construction makes
a black-box use of a 2-split-state non-malleable code NMEnc.

Recall that our goal is to construct a 2-state NMRE with constant rate. For
now, consider a 3-state codeword C = W ||L||R where (L,R) ← NMC(s) where
W is the source of the extractor and s is a randomly chosen seed. We can see
that this is a three-state NMRE resilient to fID, f2, f3 where fID is the identity
function, f2 and f3 are arbitrary functions. The idea is that since L,R is the
output of an NMC, any independent tampering of L,R respectively renders a

Non-malleable Randomness Encoders and Their Applications 593

tampered s′, if not ⊥, to be independent of s. From here, extractor security can
be used– recall that W remains unchanged by our choice of the function family –
to argue non-malleability. (This argument isn’t trivial. Particularly, to complete
it, we must show how Ext(W ; s′) can be simulated to complete the proof of
non-malleability. While we don’t go into the details, it can be done.) Note also
that this argument crucially relies on f1 being fID. Indeed, if we let W to be
tampered to W ′, then there is no extractor security. (One can come up with
concocted constructions of randomness extractors such that tampering w′ to a
related w and keeping s the same, can result in a related extractor output.) To
prevent tampering of W , we use a one-time message authentication code: we let
(L,R) ← NMC(s, k,Tagk(W)). This gives us a 3-split-state construction (C =
W ||L||R), i.e., one that is resilient to (f1, f2, f3) where each fi acts independently
on each state.

We note that our techniques are similar in spirit to those of [KOS17]’s 4-state
NMC. However, our goal here is to build 2-state NMREs. So, on the one hand, we
can leverage the fact that the security we are trying to achieve is weaker. On the
other hand, the task of bringing down the number of states to 3 while retaining
good rate is challenging. To bring down the number of states in our current
proposed 3-state NMRE, we wish to explore possibility of combining two of the
states. Can we combine W with, say, L? Without going into too much detail
regarding the definition of a NMC, an adversary breaking non-malleability can
be viewed as consisting of two parts: one that specifies the tampering functions
and the other that actually distinguishes the output of the tampering experiment
from the simulated experiment.

When we combine W with L, to use the underlying NMC, we would need
to be able to do two things: (a) specify the tampering functions that act on L
and R and (b) use the distinguisher of the NMRE to build a distinguisher for
the NMC. Indeed, the former can be done by merely hardwiring the value of
W . Unfortunately, we will not be able to use the distinguisher for the NMRE
for the simple reason that we won’t know how W was tampered. It is for this
reason that we require our NMCs to satisfy a stronger property of “augmented
non-malleability”. An augmented nonmalleable code is one that remains non-
malleable even when the adversary, after specifying the tampering function, addi-
tionally obtains one of the states along with the decoded (tampered) message.
In our proof, we carefully use the augmented non-malleability of the underlying
NMC to argue non-malleability of 2-split state NMRE.

The question still remains of how to instantiate the underlying augmented
NMC. We note that the Augmented Non-malleable Codes due to [ADL14] would,
asymptotically, indeed give us a constant-rate solution. However, the parame-
ters would be less desirable in terms of tradeoffs between the error and the rate.
(Given that this isn’t our final construction, a more detailed parameter calcu-
lation would be tedious.) To overcome these shortcomings, we instead resort to
Li’s 2-state construction which has the so-far best-known rate. Since Li only
proves the standard non-malleability of his scheme, in Appendix A, we give a
proof that it is indeed augmented non-malleable. (This follows by revisiting the

594 B. Kanukurthi et al.

connection between seedless non-malleable extractors and non-malleable codes
due to [CG14b] and reproving it to achieve augmented non-malleability from
strong NME.) Combining this with the outline laid out above, we get our final
NMRE construction.

Building NMCs from NMRE as a Black-Box. Our next goal is to use NMREs
in a black-box to build NMCs for arbitrary messages m. To do so, we use the
“random message” encoded as a part of the NMRE to both compute the cipher-
text (using a one-time pad) c = Encke

(m) as well as authenticate the ciphertext
i.e., compute t = Tagk2(Encke(m)). In order to build it in a black-box using the
NMRE, it is important that we do not use anything pertaining to the message
m in our underlying NMRE. The codeword now needs to have the codeword of
NMRE and, additionally, c, t. In the proof, we show that the non-malleability of
ka, ke essentially suffices to argue the over-all non-malleability and achieve con-
stant rate. Further we show that c, t can stored jointly in a single state giving
us a 3-state NMC for arbitrary messages with rate 1/3.

1.3 Organization of the Paper

We write preliminaries and building blocks in Sects. 2 and 3. We give definition
of NMRE in Sect. 4.1, an explicit construction of NMRE in Subsect. 4.3, security
proof of the construction in Sect. 4.4, instantiate it and analyze rate and error
in rest of the Sect. 4. We show how to build a 3-state augmented non-malleable
code from an NMRE, prove security, instantiate and analyze in Sects. 5.1, 5.2
and 5.3 respectively. We add concluding remarks in Sect. 6. Appendix B gives
details about [Li17]’s 2-state NMC being augmented.

2 Preliminaries

Notation. κ denotes security parameter throughout. s ∈R S denotes uniform
sampling from set S. x ← X denotes sampling from a probability distribution X.
x||y represents concatenation of two binary strings x and y. |x| denotes length
of binary string x. Ul denotes the uniform distribution on {0, 1}l. All logarithms
are base 2.

Statistical Distance and Entropy. Let X1,X2 be two probability distributions
over some set S. Their statistical distance is

SD (X1,X2)
def= max

T⊆S
{Pr[X1 ∈ T] − Pr[X2 ∈ T]} =

1
2

∑

s∈S

∣∣∣∣Pr
X1

[s] − Pr
X2

[s]
∣∣∣∣

(they are said to be ε-close if SD (X1,X2) ≤ ε and denoted by X1 ≈ε X2). The
min-entropy of a random variable W is H∞(W) = − log(maxw Pr[W = w]). For
a joint distribution (W,E), define the (average) conditional min-entropy of W
given E [DORS08] as

H̃∞(W | E) = − log(E
e←E

(2−H∞(W |E=e)))

Non-malleable Randomness Encoders and Their Applications 595

(here the expectation is taken over e for which Pr[E = e] is nonzero). For
a random variable W over {0, 1}n, W |E is said to be an (n, t) - source if
H̃∞(W |E) ≥ t.

We now state some Lemmata about statistical distance and average
entropy loss.

Proposition 1. Let A1, ..., An be mutually exclusive and exhaustive events.
Then, for probability distributions X1,X2 over some set S, we have:

SD (X1,X2) ≤
n∑

i=1

Pr[Ai].SD (X1|Ai,X2|Ai)

where Xj |Ai is the distribution of Xj conditioned on the event Ai.

Lemma 1. For any random variables A,B,C if (A,B) ≈ε (A,C), then B ≈ε C.

Lemma 2. For any random variables A,B if A ≈ε B, then for any function f,
f(A) ≈ε f(B).

Lemma 3 [KOS17]. Let A,B be correlated random variables over A,B. For
randomized functions F : A → X , G : A → X (randomness used is independent
of B) if ∀ a ∈ A, F (a) ≈ε G(a), then (B,A, F (A)) ≈ε (B,A,G(A)).

Lemma 4 [DORS08]. If B has at most 2λ possible values, then H̃∞(A | B) ≥
H∞(A,B) − λ ≥ H∞(A) − λ. and, more generally, H̃∞(A | B,C) ≥ H̃∞(A,B |
C) − λ ≥ H̃∞(A | C) − λ.

2.1 Definitions

Definition 1. A (possibly randomized) function Enc : {0, 1}l → {0, 1}n and a
deterministic function Dec : {0, 1}n → {0, 1}l∪{⊥} is said to be a coding scheme
if ∀ m ∈ {0, 1}l, Pr[Dec(Enc(m)) = m] = 1. l is called the message length and
n is called the block length or the codeword length. Rate of a coding scheme is

given by
l

n
.

We now state the definition of non-malleable codes, as given in [CG14b].

Definition 2. A coding scheme (Enc,Dec) with message and codeword spaces as
{0, 1}l, {0, 1}n respectively, is ε- non-malleable with respect to a function family
F ⊆ {f : {0, 1}n → {0, 1}n} if ∀ f ∈ F , ∃ a distribution Simf over {0, 1}l ∪
{same∗,⊥} such that ∀ m ∈ {0, 1}l

Tampermf ≈ε Copy
m
Simf

where Tampermf denotes the distribution Dec(f(Enc(m))) and Copym
Simf

is
defined as

m̃ ← Simf

Copym
Simf

=

{
m if m̃ = same∗

m̃ otherwise

Simf should be efficiently samplable given oracle access to f(.).

596 B. Kanukurthi et al.

We now generalize the definition of 2-state augmented-NMC as defined in
[AAG+16], to a j-augmented NMC for t-split state family, i.e., j of the t-states
is also simulatable independent of the message (where j < t).

Definition 3. A coding scheme (Enc,Dec) with message and codeword spaces
as {0, 1}α, ({0, 1}β)t respectively, is [ε, j]-augmented-non-malleable (where j < t)
with respect to the function family F = {(f1, · · · , ft) : fi : {0, 1}β → {0, 1}β}
if ∀ (f1, · · · , ft) ∈ F , ∃ a distribution Simf1,··· ,ft

over ({0, 1}β)j × ({0, 1}α ∪
{same∗,⊥}) such that ∀ m ∈ {0, 1}α

Tampermf1,··· ,ft
≈ε Copy

m
Simf1,··· ,ft

where Tampermf,g denotes the distribution (Xi1 , · · · ,Xij
,Dec(f1(X1), · · · ,

ft(Xt))), where Enc(m) = (X1, · · · ,Xt) and (Xi1 , · · · ,Xij
) represents some j

states of the total t states. Copym
Simf1,··· ,ft

is defined as

(Xi1 , · · · , Xij , m̃) ← Simf1,··· ,ft

Copym
Simf1,··· ,ft

=

{
(Xi1 , · · · , Xij , m) if (Xi1 , · · · , Xij , m̃) = (Xi1 , · · · , Xij , same∗)

(Xi1 , · · · , Xij , m̃) otherwise

Simf1,··· ,ft
should be efficiently samplable given oracle access to (f1, · · · , ft)(.).

3 Building Blocks

We use information-theoretic message authentication codes, strong average case
extractor and an augmented non-malleable code for 2-split-state family, as build-
ing blocks to our construction. We define these building blocks below.

3.1 One-Time Message Authentication Codes

A family of pair of functions {Tagka
: {0, 1}γ → {0, 1}δ, Vrfyka

: {0, 1}γ ×
{0, 1}δ → {0, 1}}ka∈{0,1}τ is said to be a μ − secure one time MAC if

1. For ka ∈R {0, 1}τ , ∀ m ∈ {0, 1}γ , Pr[Vrfyka
(m,Tagka

(m)) = 1] = 1
2. For any m �= m′, t, t′, Pr

ka

[Tagka
(m) = t|Tagka

(m′) = t′] ≤ μ for ka ∈R {0, 1}τ

3.2 Average-Case Extractors

Definition 4 [DORS08, Sect. 2.5]. Let Ext : {0, 1}n × {0, 1}d → {0, 1}l

be a polynomial time computable function. We say that Ext is an efficient
average-case (n, t, d, l, ε)-strong extractor if for all pairs of random variables
(W, I) such that W is an n-bit string satisfying H̃∞(W |I) ≥ t, we have
SD ((Ext(W ;X),X, I), (U,X, I)), where X is uniform on {0, 1}d.

Non-malleable Randomness Encoders and Their Applications 597

4 Non-malleable Randomness Encoders

We now formally define non-malleable randomness encoding and give a construc-
tion for the same.

4.1 Definition

We first formalize the definition of a non-malleable randomness encoder. The
goal is to argue that the original message looks random, even given the modified
message. But, here the message and the codeword are both generated within
the tampering experiment and the experiment outputs the message along with
the modified message. This is where the non-malleability definition will defer
from the regular NMC Definition 2. We capture the goal by saying that, we are
able to simulate the modified message, such that its joint distribution with a
message chosen independently uniformly at random is statistically close to the
tampering experiment’s output. The case where the simulator outputs same∗ is
a technicality, which we address in the definition below.

Definition 5. Let (NMREnc,NMRDec) be s.t. NMREnc : {0, 1}r → {0, 1}k ×
({0, 1}n1 × {0, 1}n2) is defined as NMREnc(r) = (NMREnc1(r),NMREnc2(r)) =
(m, (x, y)) and NMRDec : {0, 1}n1 × {0, 1}n2 → {0, 1}k.

We say that (NMREnc,NMRDec) is a ε-non-malleable randomness encoder
with message space {0, 1}k and codeword space {0, 1}n1 × {0, 1}n2 , for the dis-
tribution R on {0, 1}r with respect to the 2-split-state family F if the following
is satisfied:

– Correctness:

Pr
r←R

[NMRDec(NMREnc2(r)) = NMREnc1(r)] = 1

– Non-malleability: For each (f, g) ∈ F , ∃ a distribution NMRSimf,g over
{0, 1}k ∪ {same∗,⊥} such that

NMRTamperf,g ≈ε Copy(Uk,NMRSimf,g)

where NMRTamperf,g denotes the distribution (NMREnc1(R),NMRDec((f, g)
(NMREnc2(R)))1 and Copy(Uk,NMRSimf,g) is defined as:

u ← Uk; m̃ ← NMRSimf,g

Copy(u, m̃) =

{
(u, u), if m̃ = same∗

(u, m̃), otherwise

NMRSimf,g should be efficiently samplable given oracle access to (f, g)(.).

Further, the rate of this code is defined as k/(n1 + n2).
1 Here (f, g)(NMREnc2(R)) just denotes the tampering by the split-state tampering
functions f and g on the corresponding states.

598 B. Kanukurthi et al.

While the non-malleability condition above, in flavor, resembles the seedless non-
malleable extractors (the decoder function in the above protocol behaves like a
seedless non-malleable extractor), the key difference is that, here the two states
being tampered are correlated (through the encoder), while in a 2-source seedless
NME, the sources need to be independent.

4.2 Notation

– NMEnc,NMDec be an [ε1, 1]-augmented-non-malleable code for 2-split state
family over message and codeword spaces as {0, 1}α, {0, 1}β1×{0, 1}β2 respec-
tively (as in Definition 3), with the message length α and the length of the 2
states, β1, β2, respectively. NMTampermf,g,NMSimf,g denote the tampered mes-
sage distribution of m and the simulator of NMEnc,NMDec with respect to
tampering functions (f, g).

– Tag′,Vrfy′ be an information theoretic ε2-secure one time MAC over key, mes-
sage, tag spaces as {0, 1}τ1 , {0, 1}n, {0, 1}δ1 respectively.

– Ext be an (n, t, d, l + τ, ε3) average case strong extractor.

The parameters will be chosen such that α = τ1 + δ1 + d and n > 2 + l + τ + t.
(Refer to Sect. 4.5 for details).

4.3 Construction Overview

We now build a non-malleable randomness encoder, where the randomness is
generated as the output of an extractor. To encode the seed, we use a regular
2-state aug-NMC. As mentioned in the introduction, in order to ensure that the
source is not modified, when the seed is the same, we authenticate it using a
MAC and encode the MAC key and tag along with the seed. In addition, to obtain
a 2-state code, we combine the source with one of the states of the underlying
aug-NMC.

NMREnc(r) :

– Parse r as s||w||ka1

– ke||ka2 = Ext(w; s)
– t1 = Tag′

ka1
(w)

– (L,R) ← NMEnc(ka1 ||t1||s)
– O/P: (ke||ka2 , (L||w,R))

NMRDec(L||w,R) :

– ka1 ||t1||s = NMDec(L,R)
– If ka1 ||t1||s = ⊥ output ⊥
– else if Vrfy′

ka1
(w, t1) = 1

Output Ext(w, s)
else Output ⊥

Theorem 1. Let NMEnc,NMDec be an [ε1, 1]-augmented-non-malleable code for
the 2-split state family, Tag′,Vrfy′ be an information theoretic ε2-secure one time
MAC given above. Let Ext be an (n, t, d, l + τ, ε3) average case strong extractor.
Let α = τ1 + δ1 + d and n > 2 + l + τ + t.

Then (NMREnc,NMRDec) is a non-malleable randomness encoding for the
uniform distribution on {0, 1}d+n+τ1 , with respect to the 2-split-state family.

Further, the above construction can be instantiated, as in Sect. 4.5, to achieve a

constant rate of
1

2 + ζ
, for any ζ > 0 and an error of 2−Ω(l/ logρ+1 l), for any ρ > 0.

Non-malleable Randomness Encoders and Their Applications 599

Proof. We give the proof in two steps. Firstly, we prove that the proposed con-
struction is a non-malleable randomness encoding scheme (Sect. 4.4). Secondly,
we set the parameters to achieve the desired rate and error (Sect. 4.5).

4.4 Security Proof

Define the 2-split-state tampering family for the above construction as

F = {(f, g) : f : {0, 1}β1 × {0, 1}n → {0, 1}β1 × {0, 1}n, g : {0, 1}β2 → {0, 1}β2}

Correctness of the construction follows by its definition.
To show that (NMREnc,NMRDec) satisfies non-malleability, we need to show

that ∀ (f, g) ∈ F , ∃ NMRSimf,g such that

NMRTamperf,g ≈ε Copy(Uk,NMRSimf,g).

Let f, g ∈ F . We define the simulator NMRSimf,g as follows:

NMRSimf,g :

1. w ∈R {0, 1}n

2. (L, ˜ka1 ||t̃1||s̃) ← NMSimfw,g

// where fw is the function f with w hardcoded.//
3. w̃ = fL(w)

// where fL is the function f with L hardcoded.//
4. If ˜ka1 ||t̃1||s̃ = same∗:

• If w̃ = w output same∗

• else output ⊥
5. Else if Vrfy′

˜ka1
(w̃, t̃1) = 1 output Ext(w̃; s̃)

6. Else output ⊥
We now prove the closeness of NMRTamperf,g and Copy(Uk,NMRSimf,g)

through a sequence of hybrids:
NMRTamperf,g:

1. r ∈R {0, 1}d+n+τ1 ;
Parse r as s||w||ka1

2. t1 = Tag′
ka1

(w)

3. (L, ˜ka1 ||t̃1||s̃) ← NMTamper
ka1 ||t1||s
fw,g

4. w̃ = fL(w)
5. ke||ka2 = Ext(w; s)
6. If Vrfy′

˜ka1
(w̃, t̃1) = 1

output ke||ka2 ,Ext(w̃; s̃)
7. Else output ke||ka2 ,⊥.

Hybrid1f,g:

1. r ∈R {0, 1}d+n+τ1

Parse r as s||w||ka1

2. t1 = Tag′
ka1

(w)

3. (L, ˜ka1 ||t̃1||s̃) ← NMSimfw,g

If ˜ka1 ||t̃1||s̃ = same∗,
set ˜ka1 ||t̃1||s̃ = ka1 ||t1||s

4. w̃ = fL(w)
5. ke||ka2 = Ext(w; s)
6. If Vrfy′

˜ka1
(w̃, t̃1) = 1

output ke||ka2 ,Ext(w̃; s̃)
Else output ke||ka2 ,⊥.

600 B. Kanukurthi et al.

Hybrid2f,g:

1. s||w ∈R {0, 1}d+n

2. (L, ˜ka1 ||t̃1||s̃) ← NMSimfw,g

3. w̃ = fL(w)
4. ke||ka2 = Ext(w; s)
5. If ˜ka1 ||t̃1||s̃ = same∗:

• If w̃ = w
output ke||ka2 , ke||ka2

• else output ke||ka2 ,⊥
Else if Vrfy′

˜ka1
(w̃, t̃1) = 1

output ke||ka2 ,Ext(w̃; s̃)
Else output ke||ka2 ,⊥

Hybrid3f,g:

1. w ∈R {0, 1}n

2. (L, ˜ka1 ||t̃1||s̃) ← NMSimfw,g

3. w̃ = fL(w)
4. ke||ka2 ∈R {0, 1}l+τ

5. If ˜ka1 ||t̃1||s̃ = same∗:
• If w̃ = w

output ke||ka2 , ke||ka2

• else output ke||ka2 ,⊥
Else if Vrfy′

˜ka1
(w̃, t̃1) = 1

output ke||ka2 ,Ext(w̃; s̃)
Else output ke||ka2 ,⊥

Claim 1. If (NMEnc,NMDec) is a ε1-augmented-non-malleable code, then
NMRTamperf,g ≈ε1 Hybrid1f,g.

Proof. By augmented non-malleability of (NMEnc,NMDec), we get

NMTamper
ka1 ||t1||s
fw,g ≈ε1 Copy

ka1 ||t1||s
NMSimfw,g

By using Lemma 3, we get

w, ka1 ||t1||s,NMTamper
ka1 ||t1||s
fw,g ≈ε1 w, ka1 ||t1||s, Copy

ka1 ||t1||s
NMSimfw,g

Now, the outputs of NMRTamperf,g and Hybrid1f,g are deterministic functions
of above random variables. Hence, by Lemma 2, we get

NMRTamperf,g ≈ε1 Hybrid1f,g

Claim 2. If (Tag′,Vrfy′) is an information theoretic ε2-secure one time MAC,
then Hybrid1f,g ≈ε2 Hybrid2f,g.

Proof. If same∗ is not the value sampled from NMSimh1,h2 , then the output
of the two hybrids are identical. Therefore, the statistical distance is zero in
this case. When same∗ is sampled, the key difference between Hybrid1f,g and
Hybrid2f,g is that, corresponding to this case, we remove the two verify checks
in Hybrid2f,g and simply replace it with the equality checks. Intuitively, in this
case, the statistical closeness would hold due to unforgeability of MAC. The full
proof can be found in Appendix A.1.

Claim 3. If Ext is an (n, t, d, l+τ, ε3) average case extractor, then Hybrid2f,g ≈ε3

Hybrid3f,g.2

2 We refer the reader to Appendix A.2 for an alternate proof of this claim.

Non-malleable Randomness Encoders and Their Applications 601

Proof. We first consider the following random variables, which capture the aux-
iliary information. We then use extractor security and Lemma 2 to prove the
closeness of the two hybrids.

We consider the output of NMSimfw,g, which is (L, ˜ka1 ||t̃1||s̃) and define the
following random variables, dependent on this:

We start with bsame∗ , which indicates whether NMSimfw,g has output same∗

or not

bsame∗ =

{
1 if ˜ka1 ||t̃1||s̃ = same∗

0 otherwise

Further, b⊥ is an indicator of whether NMSimfw,g output ⊥ or not.

b⊥ =

{
1 if ˜ka1 ||t̃1||s̃ = ⊥
0 otherwise

We also have:

eq(w) =

{
0 if fL(w) �= w

1 if fL(w) = w

which is an indicator of whether w̃ is modified or not. And,

V erify(w) = Vrfy′
˜ka1

(fL(w), t̃1)

which is the indicator of the MAC verification bit.
Further define:

Y (w, b1, b2) :=

⎧
⎪⎨

⎪⎩

eq(w) if b1 = 1
(V erify(w),Ext(w̃; s̃)) if b1 = 0 ∧ b2 = 0
⊥ otherwise

We now define the auxiliary information by Ê = (bsame∗ , b⊥, Y (W, bsame∗ , b⊥)).
We now define the following function

G(e, k):

– Parse e = (bsame∗ , b⊥, y = Y (w, bsame∗ , b⊥))3.
– If bsame∗ = 1:

• If y = 1, output (k, k)
• Else output (k,⊥)

– Else:
• If b⊥ = 1, output (k,⊥).
• Else parse y = (V erify(w),Ext(w̃; s̃)).

∗ if V erify(w) = 1 output (k,Ext(w̃; s̃))
∗ else output (k,⊥)

3 Here, we abuse the notation: bsame∗ and b⊥ represent the particular values taken by
the corresponding random variables.

602 B. Kanukurthi et al.

The outputs of Hybrid2f,g and Hybrid3f,g are G(Ê,Ext(W ;S)) and G(Ê, Ul+τ)
respectively, where G is deterministic. So, to prove this claim it suffices to show

Ê,Ext(W ;S) ≈ε3 Ê, Ul+τ (1)

Observe that Ê depends on NMSimfw,g and w, which are independent of the
seed s. Therefore it can be captured as auxiliary information. Ê takes at most
23+l+τ possible values. Hence, H̃∞(W |Ê) ≥ H∞(W)−(3+l+τ) = n−(3+l+τ),
by Lemma 4. As n−(3+l+τ) > t (due to the way we set parameters in Sect. 4.5),
by security of average case extractor, Eq. 1 holds. This proves the claim.

From above Claims 1, 2 and 3, we get:

NMRTamperf,g ≈ε1 Hybrid1f,g ≈ε2 Hybrid2f,g ≈ε3 Hybrid3f,g ≡ Copy(Uk,NMRSimf,g)

i.e., NMRTamperf,g ≈ε1+ε2+ε3 Copy(Uk,NMRSimf,g)

4.5 Rate and Error Analysis

We now present the details of the rate of the code as well as the error it achieves.
We instantiate the above construction using specific MAC construction, average
case extractor Ext and non-malleable code (NMEnc,NMDec), as given in the
lemmata below.

As we are encoding the seed of the extractor using the underlying non-
malleable code, it is important that the strong extractor we use has short seed
length. This is guaranteed by the following lemma.

Lemma 5 [GUV07]. For every constant ν > 0 all integers n ≥ t and all ε ≥ 0,
there is an explicit (efficient) (n, t, d, l, ε)–strong extractor with l = (1 − ν)t −
O(log(n) + log(

1
ε
)) and d = O(log(n) + log(

1
ε
)).

Now, as we give some auxiliary information about the source, we require the
security of the extractor to hold, even given this information. Hence, we use
average case extractors, given in the following lemma.

Lemma 6 [DORS08]. For any μ > 0, if Ext is a (worst case)(n, t, d, l, ε)–

strong extractor, then Ext is also an average-case (n, t+log(
1
μ

), d, l, ε+μ) strong

extractor.

We now combine the Lemmata 5 and 6 to get an average case extractor with
optimal seed length.

Corollary 1. For any μ > 0 and every constant ν > 0 all integers n ≥ t and all

ε ≥ 0, there is an explicit (efficient) (n, t+log(
1
μ

), d, l, ε+μ)– average case strong

extractor with l = (1 − ν)t − O(log(n) + log(
1
ε
)) and d = O(log(n) + log(

1
ε
)).

Non-malleable Randomness Encoders and Their Applications 603

Now, we also encode the authentication keys and tags using the underlying non-
malleable code. Hence, we require them to have short lengths. This is guaranteed
by the following lemma [JKS93]:

Lemma 7. For any n′, ε2 > 0 there is an efficient ε2–secure one time MAC

with δ ≤ (log(n′) + log(
1
ε2

)), τ ≤ 2δ, where τ, n′, δ are key, message, tag length

respectively.

Further, we use the 2-split-state non-malleable code by [Li17] to instantiate our
construction.

Lemma 8 [Li17, Theorem 7.12]. For any β ∈ N there exists an explicit non-
malleable code with efficient encoder/decoder in 2-split state model with block

length 2β, rate Ω

(
1

log β

)
and error = 2

−Ω

⎛
⎝ β

log β

⎞
⎠

.

Further, we show in Appendix B (Corollary 2) that the construction correspond-
ing to Lemma 8 is in fact an [2−Ω(β/log β), 1]-augmented-non-malleable code for
the two split-state family with the same rate as above.

4.5.1 Setting parameters
We instantiate our construction using (NMEnc,NMDec) as in Corollary 2, strong
average case extractors, as in Corollary 1 and one time information theoretic
MAC, as in Lemma 7.

– We set the error parameters as ε, μ, ε1, ε2 = 2−λ and ε3 = ε + μ.
– The message length and codeword length in the construction of

(NMREnc,NMRDec) above, are l + τ and 2β + n respectively. Here we take
ka2 to be of size τ = O(log l + λ).

– We estimate the length of the source (n). As we saw in the Claim 3 of the proof
(Sect. 4.4), we leak auxiliary information of length at most 3 + l + τ . Hence,
by Lemma 4, the average entropy of the source, given auxiliary information
is ≥ n − (3 + l + τ).

To use extractor security, we require that the average entropy is at least
the entropy threshold t + log(1

μ), i.e., n − (3 + l + τ) ≥ t + log(1
μ).

By Corollary 1 (with output length of extractor l + τ), we have

t = (l + τ + O(log(n) + log(
1
ε
)))

1
1 − ν

.

Hence, taking ν as a very small constant close to 0, we get: for some
constant ζ close to 0

n = (2 + ζ)l + O(log l + λ) (2)

– We now estimate the codeword length 2β, of the underlying NMC.
The message size for this codeword is α = τ1 + δ1 + d. By Lemma 7 and

Corollary 1, we get α = O(log(l) + λ).
By using the rate in Lemma 8, we get:

β = O((log(l))2 + λ log(λ) + 2λ log(l)) (3)

604 B. Kanukurthi et al.

4.5.2 Rate
The rate of our construction of non-malleable randomness encoding is:

R =
l + τ

2β + n

By substituting n and β from Eqs. 2 and 3, respectively and τ as described above,
we get:

R =
l + O(log l + λ)

O((log(l))2 + λ log(λ) + 2λ log(l)) + (2 + ζ)l + O(log l + λ)

For large l, and taking λ = o(l
log l), we get

R ≥ 1
2 + ζ

Hence, the construction given achieves rate atleast 1
2+ζ , for some ζ close to 0.

4.5.3 Error
Error of the protocol, as seen in the proof, is ε1 + ε2 + ε3 = 4(2−λ). Since,

λ = o(l
log l), the error will be at least 2− l

log l . For any ρ > 0, fixing λ =
l

logρ+1 l
,

the error would be at most 4.2
−

l

logρ+1 l . Setting κ = λ − log 5 the error would
be 2−κ = 2−Ω(l/ logρ+1 l).

5 Non-malleable Codes from Non-malleable Randomness
Encoders

As an application of non-malleable randomness encoding, we build a 3-state
1-augmented-non-malleable code, using non-malleable randomness encoding in
black-box. For achieving an explicit constant rate and a specific error, we instan-
tiate the construction using the construction in Sect. 4.

5.1 Construction Overview

To encode the message, we first hide the message using one part of the random-
ness generated in the underlying NMRE. To ensure that this ciphertext is not
modified, we authenticate it using a MAC. We show that we can use NMRE’s
“random messages” as the keys for encryption as well authentication. The fact
that the tag t does not need to be non-malleably encoded, and can instead be
combined with c, is what allows us to get a 3-state NMC construction while only
making a black-box use of the underlying NMRE. Details follow.

Non-malleable Randomness Encoders and Their Applications 605

AEnc(m)

– r ∈R {0, 1}r′

– (ka||ke, y1, y2) ← NMREnc(r)
– c = m ⊕ ke

– t = Tagka
(c)

– Output (y1, y2, c||t)

ADec(ỹ1, ỹ2, c̃||t̃)
– k̃e||k̃a = NMRDec(ỹ1, ỹ2)
– If Vrfyk̃a

(c̃, t̃) = 1
Output c̃ ⊕ k̃e

else Output ⊥

Theorem 2. Let (NMREnc,NMRDec) be a 2-state ε1-non-malleable randomness
encoding scheme for the uniform distribution on {0, 1}r′

, for messages in {0, 1}l+τ

and (Tag,Vrfy) be an information theoretic ε2-secure one-time MAC with key, mes-
sage and tag spaces being {0, 1}τ , {0, 1}l, {0, 1}δ. Then (AEnc,ADec), as defined
above, is a 3-state [ε1 + ε2, 1]-augmented non-malleable code for messages of length
l(with the augmented state being c||t).

Further, instantiating the constructionwith (NMREnc,NMRDec) achieving rate
and error, as in Sect. 4.5, we can achieve a constant rate of 1

3+ζ , for any ζ > 0 and

an error of 2−Ω(l/ logρ+1 l), for any ρ > 0.

5.2 Security Proof

Let (f1, f2, g) ∈ F3(3-split state tampering family) where f1 : {0, 1}β1 →
{0, 1}β1 , f2 : {0, 1}β2 → {0, 1}β2 , g : {0, 1}l+δ → {0, 1}l+δ. We propose the
following distribution as simulator for (AEnc,ADec).

ASimf1,f2,g

– ke||ka ∈R {0, 1}l+τ

– k̃e||k̃a ← NMRSimf1,f2

– c = 0 ⊕ ke

– t = Tagka
(c)

– c̃||t̃ = g(c||t)
– If k̃e||k̃a = same∗

If c̃ = c, Output c, t, same∗

Else output c, t,⊥
Else if Vrfyk̃a

(c̃, t̃) = 1
Output c, t, c̃ ⊕ k̃e

Else Output c, t,⊥
We prove that ASimf1,f2,g is the simulator of (AEnc,ADec) through a sequence
of hybrids.

Claim 1. If (NMREnc,NMRDec) is a non-malleable randomness encoding
scheme, then ATampermf1,f2,g ≈ε1 Hybrid1m

f1,f2,g.

606 B. Kanukurthi et al.

Proof. By non-malleability of (NMREnc,NMRDec), we have

NMRTamperf1,f2
≈ε1 Copy(Uk,NMRSimf1,f2)

As m is independent we have

m,NMRTamperf1,f2
≈ε1 m,Copy(Uk,NMRSimf1,f2)

By Lemma 2 we have,

m, c, t,NMRTamperf1,f2
≈ε1 m, c, t, Copy(Uk,NMRSimf1,f2)

The outputs of ATampermf1,f2,g,Hybrid1
m
f1,f2,g are determined by a deterministic

function of above distributions. Therefore by Lemma 2 we have

m,ATampermf1,f2,g ≈ε1 m,Hybrid1m
f1,f2,g

ATampermf1,f2,g

– ke||ka, k̃e||k̃a ← NMRTamperf1,f2

– c = m ⊕ ke

– t = Tagka
(c)

– c̃||t̃ = g(c||t)
– If Vrfyk̃a

(c̃, t̃) = 1
Output c, t, c̃ ⊕ k̃e

Else Output c, t,⊥

Hybrid1m
f1,f2,g

– ke||ka ∈R {0, 1}l+τ

– k̃e||k̃a ← NMRSimf1,f2

– If k̃e||k̃a = same∗

set k̃e||k̃a = ke||ka

– c = m ⊕ ke

– t = Tagka
(c)

– c̃||t̃ = g(c||t)
– If Vrfyk̃a

(c̃, t̃) = 1
Output c, t, c̃ ⊕ k̃e

Else Output c, t,⊥
Hybrid2m

f1,f2,g

– ke||ka ∈R {0, 1}l+τ

– k̃e||k̃a ← NMRSimf1,f2

– c = m ⊕ ke

– t = Tagka
(c)

– c̃||t̃ = g(c||t)
– If k̃e||k̃a = same∗

set k̃e||k̃a = ke||ka

– If Vrfyk̃a
(c̃, t̃) = 1

Output c, t, c̃ ⊕ k̃e

Else Output c, t,⊥

Hybrid3m
f1,f2,g

– ke||ka ∈R {0, 1}l+τ

– k̃e||k̃a ← NMRSimf1,f2

– c = m ⊕ ke

– t = Tagka
(c)

– c̃||t̃ = g(c||t)
– If k̃e||k̃a = same∗

If c̃ = c Output c, t,m
Else output c, t,⊥

Else if Vrfyk̃a
(c̃, t̃) = 1

Output c, t, c̃ ⊕ k̃e

Else Output c, t,⊥

Non-malleable Randomness Encoders and Their Applications 607

Hybrid4m
f1,f2,g

– ke||ka ∈R {0, 1}l+τ

– k̃e||k̃a ← NMRSimf1,f2

– c = 0 ⊕ ke

– t = Tagka
(c)

– c̃||t̃ = g(c||t)
– If k̃e||k̃a = same∗

If c̃ = c Output c, t,m
Else output c, t,⊥

Else if Vrfyk̃a
(c̃, t̃) = 1

Output c, t, c̃ ⊕ k̃e

Else Output c, t,⊥

Claim 2. Hybrid1m
f1,f2,g ≡ Hybrid2m

f1,f2,g.

Proof. The claim trivially follows because Hybrid2m
f1,f2,g is rewriting of

Hybrid1m
f1,f2,g.

ke, ka,NMRSimf1,f2 ≡ ke, ka,NMRSimf1,f2

m, c, t, ke, ka,NMRSimf1,f2 ≡ m, c, t, ke, ka,NMRSimf1,f2

m,Hybrid1m
f1,f2,g ≡ m,Hybrid2m

f1,f2,g

All equations follow by Lemma 2.

Claim 3. If (Tag,Vrfy) is an ε2 IT-secure-One-time Mac, then
Hybrid2m

f1,f2,g ≈ε2 Hybrid3m
f1,f2,g.

Proof. Let E denote the event k̃e, k̃a �= same∗, and Ẽ, its compliment. Given E,
both the hybrids are identical. Given Ẽ the statistical distance of the hybrids is
at most

Pr
ka

[Vrfyka
(c̃, t̃) = 1|t = Tagka

(c), c̃||t̃ = f(c||t)] ≤ ε2

Therefore claim follows.

Claim 4. By semantic security of One Time Pad encryption

Hybrid3m
f1,f2,g ≡ Hybrid4m

f1,f2,g

608 B. Kanukurthi et al.

Proof. By semantic security,

m,m ⊕ ke ≡ m, 0 ⊕ ke

m, t,m ⊕ ke, ka ≡ m, t, 0 ⊕ ke, ka

The outputs of the hybrids 3 and 4 are a randomized function of above distri-
butions. Therefore

Hybrid3m
f1,f2,g ≡ Hybrid4m

f1,f2,g ≡ Copym
Asimf1,f2,g

Combining the above Claims 1, 2, 3 and 4, we have

ATampermf1,f2,g ≈ε1+ε2 Copym
Asimf1,f2,g

5.3 Rate and Error Analysis

From Sect. 4.5, we have a non-malleable randomness encoding (NMREnc,

NMRDec) with a constant rate of R ≥ 1
2 + ζ

, for any ζ > 0 and an error of

ε1 = 2−Ω(l/ logρ+1 l), for any ρ > 0.

5.3.1 Rate
The rate of (AEnc,ADec) is:

R′ =
l

1
R .(l + τ) + l + δ

=
l

(2 + ζ).(l + τ) + l + δ

where, δ is size of tag t. Hence,

R′ =
l

(3 + ζ)l + (2 + ζ)τ + δ

By using Lemma 7, we know that for λ = o(l/ log l), we get τ + δ ≤ 3(log l +
o(l/ log l)). Hence, we get, for large l:

R′ ≥ 1
3 + ζ

5.3.2 Error
By setting ε2 = 2−λ, we get that the error of (AEnc,ADec) is ε1 + ε2 =
2−Ω(l/ logρ+1 l), for any ρ > 0.

Non-malleable Randomness Encoders and Their Applications 609

6 Conclusion

In this work, we introduced Non-malleable Randomness Encoders as a relaxation
of NMCs, applicable in settings where randomness is encoded. We built a 1/2-
rate, 2-state NMRE. In cases where NMREs suffice, this presents a significant
advantage over using a poor-rate 2-state NMC. It would be interesting to find
other applications of NMREs in addition to the ones presented in this paper
i.e., to tamper-resilient security and to building 3-state (standard) with rate 1

3
in a black-box. (Infact, our techniques can be generalized to show that (t + 1)-
state augmented NMCs can be constructed from t-state NMREs in black box
manner.) While we know that the optimal achievable rate for 2-state NMCs is
1/2, it would be interesting to see what the optimal achievable rate for 2-state
NMREs is and, more generally, for t-state NMREs. Of course, the crux of this
long, compelling line of research, which is to build constant rate efficient 2-state
NMCs, still remains open and would be fascinating to solve.

Acknowledgement. We thank Eshan Chattopadhyay for helpful discussions on con-
nections between non-malleable codes and extractors. We also thank the reviewers of
Eurocrypt for their useful comments.

A Proofs of Claims 2 and 3 in Sect. 4.4

A.1 Proof of Claim 2 in Sect. 4.4

We define the following events:

– Let E be the event that same∗ is sampled from NMSimfw,g and Ẽ be its
compliment.

– Let F be the event that w̃ = w and F̃ its complement.

By Proposition 1 we get:

SD
(
Hybrid1f,g;Hybrid2f,g

)
= Pr[E] · SD (

Hybrid1f,g|E;Hybrid2f,g|E
)

+ Pr[Ẽ] · SD
(
Hybrid1f,g|Ẽ;Hybrid2f,g|Ẽ

)

︸ ︷︷ ︸
=0 The hybrids are identical in “not same∗”case

So, now remains the case when NMSimfw,g outputs same∗. By using unforge-
ability of (Tag′,Vrfy′) we show the that two hybrids are statistically close.

610 B. Kanukurthi et al.

2.Pr[E].SD
(
Hybrid1f,g|E;Hybrid2f,g|E

)

=
∑

m∈{0,1}l+τ

m̃∈{0,1}l+τ ∪{⊥}

Pr[E]|Pr[Hybrid1f,g = (m, m̃)|E] − Pr[Hybrid2f,g = (m, m̃)|E]|
= Pr[E]

∑
m∈{0,1}l+τ

m̃∈{0,1}l+τ ∪{⊥}

|Pr[F |E].

(Pr[Hybrid1f,g = (m, m̃)|E, F] − Pr[Hybrid2f,g = (m, m̃)|E, F]︸ ︷︷ ︸
=0 as given E and F both the hybrids are identical

)+ Pr[F̃ |E].

(Pr[Hybrid1f,g = (m, m̃)|E, F̃] − Pr[Hybrid2f,g = (m, m̃)|E, F̃])|
= Pr[E]

∑
m∈{0,1}l+τ

m̃∈{0,1}l+τ ∪{⊥}

Pr[F̃ |E](|Pr[Hybrid1f,g = (m, m̃)|E, F̃]

− Pr[Hybrid2f,g = (m, m̃)|E, F̃]|)
= Pr[E] Pr[F̃ |E](∑

m∈{0,1}l+τ

m̃∈{0,1}l+τ

|Pr[Hybrid1f,g = (m, m̃)|E, F̃]

− Pr[Hybrid2f,g = (m, m̃)|E, F̃]︸ ︷︷ ︸
= 0 as given E,F̃ Hybrid 2 outputs ⊥ as second component

|
+

∑
m∈{0,1}l+τ

|Pr[Hybrid1f,g = (m, ⊥)|E, F̃] − Pr[Hybrid2f,g = (m, ⊥)|E, F̃]|)
= Pr[F̃](1 +

∑
m∈{0,1}l+τ

((∑
m̃∈{0,1}l+τ

Pr[Hybrid1f,g = (m, m̃)|E, F̃])

− Pr[Hybrid1f,g = (m, ⊥)|E, F̃]))

= 2Pr[F̃](Pr[Second component of output of Hybrid1f,g �= ⊥|E, F̃])

= 2Pr[F̃] Pr[Vrfy ˜ka1
(w̃, t̃1) = 1 ∧ t1 = Tagka1

(w)|E, F̃]

Non-malleable Randomness Encoders and Their Applications 611

= 2Pr[F̃] Pr[Vrfyka1
(w̃, t1) = 1 ∧ t1 = Tagka1

(w)|F̃]

≤ 2(ε2)

∴ Hybrid1f,g ≈ε2 Hybrid2f,g

A.2 Alternate proof of Claim 3 in Sect. 4.4

Claim 3. If Ext is an (n, t, d, l + τ, ε3) average case extractor, then
Hybrid2f,g ≈ε3 Hybrid3f,g.

Proof. As the function modifying the state L, fw, is dependent on W , hence
NMSimfw,g is also dependent on W . Hence, before analyzing the auxiliary infor-
mation leaked in each case, corresponding to the value of NMSimfw,g, we define
the following indicator random variables, which are also auxiliary information,
w.r.t. to the source W :

bsame∗ =

{
1 if ˜ka1 ||t̃1||s̃ = same∗

0 otherwise

b⊥ =

{
1 if ˜ka1 ||t̃1||s̃ = ⊥
0 otherwise

By Proposition 1, we get:
SD

(
Hybrid2f,g,Hybrid3f,g

)

≤ Pr[bsame∗ = 1] SD
(
Hybrid2f,g|bsame∗ = 1,Hybrid3f,g|bsame∗ = 1

)

+ Pr[bsame∗ = 0 ∧ b⊥ = 1] SD
(
Hybrid2f,g;Hybrid3f,g

∣∣∣∣bsame∗ = 0 ∧ b⊥ = 1
)

+ Pr[bsame∗ = 0 ∧ b⊥ = 0] SD
(
Hybrid2f,g;Hybrid3f,g

∣∣∣∣bsame∗ = 0 ∧ b⊥ = 0
)

(4)
Now, in order to analyze the auxiliary information leaked in each of the three
cases, and use the extractor security, we first consider the conditional distribu-
tion on W , when conditioned on each of the three cases. We denote the three
conditional distributions by: W1 := W |bsame∗ = 1, W2 := W |bsame∗ = 0∧b⊥ = 1
and W3 := W |bsame∗ = 0 ∧ b⊥ = 0. By [Lemma 2.2a, [DORS08]], we get:

Pr[H∞(W1) ≥ H̃∞(W |bsame∗) − λ] ≥ 1 − 2−λ

which by [Lemma 2.2b, [DORS08]] further gives:

Pr[H∞(W1) ≥ n − 1 − λ] ≥ 1 − 2−λ

Similarly, we get

Pr[H∞(W2) ≥ n − 2 − λ] ≥ 1 − 2−λ

Pr[H∞(W3) ≥ n − 2 − λ] ≥ 1 − 2−λ

612 B. Kanukurthi et al.

Now, we analyze the additional auxiliary information in each subcase:
Case1 : bsame∗ = 1
In this case, the additional auxiliary information just includes a single bit, indi-
cating whether w is modified or remains the same. So, we first define this indi-
cator function:

eq(w) =

{
0 if fL(w) �= w

1 if fL(w) = w

Let the auxiliary information be denoted by E1 ≡ eq(W). E1 is independent of
S because E1 is determined given W and W is independent of S. Now, E1 and
W are correlated and E1 can take at most two possible values.

Hence, H̃∞(W1|E1) ≥ H∞(W1) − 1 ≥ n − 1 − λ − 1 w.p. ≥ 1 − 2−λ. Let
G1 denote the event H̃∞(W1|E1) ≥ n − λ − 2. As n − λ − 2 > t, by security of
average case extractor, we get:

E1,Ext(W1;S)|G1 ≈ε3 E1, Ul|G1

Now, clearly, in this case, the output of Hybrid2f,g and Hybrid3f,g are functions
of above random variables. Hence, by Lemma 2, we get:

Hybrid2f,g|bsame∗ = 1, G1 ≈ε3 Hybrid3f,g|bsame∗ = 1, G1

Hence, by further using Proposition 1, as Pr[Gc
1] ≤ 2−λ, we get:

Hybrid2f,g|bsame∗ = 1 ≈ε3+2−λ Hybrid3f,g|bsame∗ = 1 (5)

Case2 : bsame∗ = 0
This case is further divided into two mutually exclusive events of Case2.
Case2a : b⊥ = 1
Now, let G2 denote the event H∞(W2) ≥ n − 2 − λ. Then as Pr[Gc

2] ≤ 2−λ and
using extractor security, we get:

SD
(
Hybrid2f,g|bsame∗ = 0 ∧ b⊥ = 1,Hybrid2f,g|bsame∗ = 0 ∧ b⊥ = 1

) ≤ ε3 +2−λ

(6)
Case2b : b⊥ = 0
In this case, the additional auxiliary information consists of an indicator of ver-
ification of w̃ and the extractor output on modified source and seed. We first
define the indicator of verification bit:

V erify(w) = Vrfy′
˜ka1

(fL(w), t̃1)

Now, let the auxiliary information be denoted by E2 ≡ (V erify(W),Ext(W̃ ; S̃)),
where K̃a1 , T̃1, S̃ denote the distributions on the authentication key, tag spaces
and the seed, when sampled from the simulator conditioned on the event Case2b.
E2 is clearly a deterministic function of K̃a1 , W̃ , T̃1, S̃, all of which are indepen-
dent of S (as we use the simulator). Hence, E2 is independent of S. Now, E2

and W are correlated. E2 can take at most 21+l+τ possible values.

Non-malleable Randomness Encoders and Their Applications 613

Hence, H̃∞(W3|E2) ≥ H∞(W3) − (1 + l + τ) ≥ n − 2 − λ − (1 + l + τ)
w.p. ≥ 1 − 2−λ. Let G3 denote the event H̃∞(W3|E2) ≥ n − (3 + λ + l + τ).
As n − (3 + λ + l + τ) > t (if we set parameters appropriately), by security of
average case extractor and using Proposition 1, we get:

E2,Ext(W ;S)|G3 ≈ε3 E2, Ul|G3

Now, clearly, in this case, the output of Hybrid2f,g and Hybrid3f,g are functions
of above random variables. Hence, by Lemma 2, we get:

Hybrid2f,g|bsame∗ = 0 ∧ b⊥ = 0, G3 ≈ε3 Hybrid3f,g|bsame∗ = 0 ∧ b⊥ = 0, G3

Further, since Pr[Gc
3] ≤ 2−λ, using Proposition 1, we get

Hybrid2f,g|bsame∗ = 0 ∧ b⊥ = 0 ≈ε3+2−λ Hybrid3f,g|bsame∗ = 0 ∧ b⊥ = 0 (7)

Hence, by Proposition 1, Eqs. 4, 5, 6 and 7 give:

Hybrid2f,g ≈ε3+2−λ Hybrid3f,g

B Appendix: From t-source Strong Non-malleable
Extractors to t-state 1-augmented NMC

We generalize the connection known between seedless non-malleable extractors
for t independent sources and non-malleable codes for the t-split-state fam-
ily ([CG14b]), to establish a connection between strong seedless non-malleable
extractors for t independent sources and augmented non-malleable codes for
t-split-state family. We first define strong seedless non-malleable t-source
extractor.

Definition 6 [Li17]. A function nmExt : ({0, 1}n)t → {0, 1}m is a (k, ε)-
seedless strong non-malleable extractor for t independent sources w.r.t. family
F = {(f1, · · · ft) : fi : {0, 1}n → {0, 1}n}, if it satisfies the following property:
Let X1, · · · ,Xt be t independent (n, k)-sources and (f1, · · · , ft) ∈ F be t arbitrary
functions such that there exists an fj with no fixed points, then for every i:

(nmExt(X1, · · · ,Xt), nmExt(f1(X1), · · · , ft(Xt)),Xi)
≈ε (Um, nmExt(f1(X1), · · · , ft(Xt)),Xi)

Now, we formulate an alternate definition of a t-source relaxed strong non-
malleable extractor, generalizing the definition of seedless relaxed non-malleable
extractors in [CG14b]. This definition captures the property that the output of
non-malleable extractor on the modified sources along with one of the source,
is simulatable independent of the output of non-malleable extractor on original
sources.

614 B. Kanukurthi et al.

Definition 7. A function nmExt : ({0, 1}n)t → {0, 1}m is a (k, ε)-
seedless relaxed strong non-malleable extractor for t independent sources w.r.t.
family F = {(f1, · · · ft) : fi : {0, 1}n → {0, 1}n and ∃ at least one j s.t.
fj has no fixed point}, if it satisfies the following property: Let X1, · · · ,Xt be
t independent (n, k)-sources and (f1, · · · , ft) ∈ F , then the following hold:

– nmExt is a t-source extractor for (X1, · · · ,Xt), i.e., nmExt(X1, · · · ,Xt) ≈ε

Um.
– There exists a distribution D over {0, 1}n × ({0, 1}m ∪ {same∗}) s.t. for an

independent (X1, Y) ∼ D,

(nmExt(X1, · · · ,Xt),X1, nmExt(f1(X1), · · · , ft(Xt)))
≈ε (nmExt(X1, · · · ,Xt), copy((X1, Y), (X1, nmExt(X1, · · · ,Xt))))

Remark 1. It is clear that the non-malleability condition in Definition 6 (for
i = 1) is sufficient for the conditions in Definition 7 to be satisfied.

But then, this relaxed notion of strong non-malleable extractor is equivalent
to the following general notion of strong non-malleable extractor (where, the
tampering functions can have fixed points) upto a slight loss of parameters.
(This proof follows from [Lemma 5.6, [CG14b]]).

Definition 8. A function nmExt : ({0, 1}n)t → {0, 1}m is a (k, ε)-seedless
strong non-malleable extractor for t independent sources w.r.t. family F =
{(f1, · · · ft) : fi : {0, 1}n → {0, 1}n}, if it satisfies the following property: Let
X1, · · · ,Xt be t independent (n, k)-sources and (f1, · · · , ft) ∈ F , then the fol-
lowing hold:

– nmExt is a t-source extractor for (X1, · · · ,Xt), i.e., nmExt(X1, · · · ,Xt) ≈ε

Um.
– There exists a distribution D over {0, 1}n × ({0, 1}m ∪ {same∗}) s.t. for an

independent (X1, Y) ∼ D,

(nmExt(X1, · · · ,Xt),X1, nmExt(f1(X1), · · · , ft(Xt)))
≈ε (nmExt(X1, · · · ,Xt), copy((X1, Y), (X1, nmExt(X1, · · · ,Xt))))

Hence, we take the above Definition 8 for strong non-malleable extractors and
prove the following theorem.

Proposition 2. Let nmExt : ({0, 1}n)t → {0, 1}k be a (n, ε)-seedless strong
non-malleable extractor for t independent sources (by Definition 8). Define a
coding scheme (Enc,Dec) with message length k and block length tn as follows.
The decoder Dec is defined by

Dec(x1, · · · , xt) = nmExt(x1, · · · , xt)

The encoder Enc is defined as:

Enc(m) :=

{
x1, · · · , xt

$←− nmExt−1(m)
o/p : (x1, · · · , xt)

Non-malleable Randomness Encoders and Their Applications 615

Then, (Enc,Dec) is a [ε′, 1]-augmented non-malleable code with error ε′ =
ε(2k + 1) for the t-split state family and with rate = k

tn .

Proof. Let m ∈ {0, 1}k and f = (f1, · · · , ft) ∈ F , the t-split-state family be arbi-
trary. Since Dec = nmExt is a strong non-malleable extractor, by Definition 8,
∃ a distribution D s.t. for (X1, Y) ∼ Df1,··· ,ft

, we have:

(nmExt(X1, · · · , Xt), X1, nmExt(f1(X1), · · · , ft(Xt)))

≈ε (nmExt(X1, · · · , Xt), copy((X1, Y), (X1, nmExt(X1, · · · , Xt)))) (8)

Claim. Enc(Uk) is ε-close to uniform.

Proof. By extractor security, we have:

Dec(Utn) ≈ε Uk

Further, as Enc(.) samples uniformly random element of nmExt−1(.), it follows
that

Enc(Dec(Utn)) = Utn

Hence, we get Enc(Uk) ≈ε Enc(Dec(Utn)) = Utn.

Thus, at cost of ε increase in error, we assume codeword is of uniform
distribution.

Let (X1, Y) ∼ Df1,··· ,ft
. Now by Eq. 8, just by substitution, we get:

(M,X1,Dec(f(Enc(M))) ≈ε (M, copy((X1, Y), (X1,M)))

Now, for the arbitrary m that we chose, we get:

(m,X1,Dec(f(Enc(m))) ≈ε2k (m, copy((X1, Y), (X1,m)))

which proves the theorem.
Augmented-non-malleability of 2-state Construction in [Li17]

Corollary 2. For any β ∈ N there exists an explicit augmented-non-malleable
code with efficient encoder/decoder in 2-split state model with block length 2β,

rate Ω

(
1

log β

)
and error = 2

−Ω

⎛
⎝ β

log β

⎞
⎠

.

Proof. As proved in [Theorem 7.9, [Li17]], the seedless 2 source non-malleable
extractor constructed in [Li17] satisfies: For any (f, g) in 2-split-state family,
such that atleast one of f or g has no fixed point, we have:

nmExt(X,Y),X, nmExt(f(X), g(Y)) ≈ε Um,X, nmExt(f(X), g(Y))

which, by Remark 1, is sufficient to imply the conditions in Definition 7. Hence,
by Proposition 2, it is proved that the 2-split-state construction given in [Li17]
is actually a 2-split-state augmented-non-malleable code.

Further, the specific non-malleable extractor of [Li17] gives error and rate
parameters for the augmented-non-malleable code, exactly as obtained in
Lemma 8.

616 B. Kanukurthi et al.

References

[AAG+16] Aggarwal, D., Agrawal, S., Gupta, D., Maji, H.K., Pandey, O., Prab-
hakaran, M.: Optimal computational split-state non-malleable codes. In:
Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9563, pp.
393–417. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-
49099-0 15

[ADKO15] Aggarwal, D., Dodis, Y., Kazana, T., Obremski, M.: Non-malleable reduc-
tions and applications. In: Proceedings of the Forty-Seventh Annual ACM
on Symposium on Theory of Computing, STOC 2015, Portland, OR, USA,
14–17 June 2015, pp. 459–468 (2015)

[ADL14] Aggarwal, D., Dodis, Y., Lovett, S.: Non-malleable codes from additive
combinatorics. In: Symposium on Theory of Computing, STOC 2014,
New York, NY, USA, 31 May–03 June 2014, pp. 774–783 (2014)

[AGM+15] Agrawal, S., Gupta, D., Maji, H.K., Pandey, O., Prabhakaran, M.: A rate-
optimizing compiler for non-malleable codes against bit-wise tampering
and permutations. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS,
vol. 9014, pp. 375–397. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46494-6 16

[AKO15] Aggarwal, D., Kazana, T., Obremski, M.: Inception makes non-malleable
codes stronger. IACR Cryptology ePrint Archive, 2015:1013 (2015)

[CG14a] Cheraghchi, M., Guruswami, V.: Capacity of non-malleable codes. In: Inno-
vations in Theoretical Computer Science, ITCS 2014, Princeton, NJ, USA,
12–14 January 2014, pp. 155–168 (2014)

[CG14b] Cheraghchi, M., Guruswami, V.: Non-malleable coding against bit-wise
and split-state tampering. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349,
pp. 440–464. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
642-54242-8 19

[CKR16] Chandran, N., Kanukurthi, B., Raghuraman, S.: Information-theoretic
local non-malleable codes and their applications. In: Kushilevitz, E.,
Malkin, T. (eds.) TCC 2016. LNCS, vol. 9563, pp. 367–392. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49099-0 14

[CZ14] Chattopadhyay, E., Zuckerman, D.: Non-malleable codes against constant
split-state tampering. In: 55th IEEE Annual Symposium on Foundations
of Computer Science, FOCS 2014, Philadelphia, PA, USA, 18–21 October
2014, pp. 306–315 (2014)

[DKO13] Dziembowski, S., Kazana, T., Obremski, M.: Non-malleable codes from
two-source extractors. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013.
LNCS, vol. 8043, pp. 239–257. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-40084-1 14

[DKS17] Dachman-Soled, D., Kulkarni, M., Shahverdi, A.: Tight upper and
lower bounds for leakage-resilient, locally decodable and updatable non-
malleable codes. IACR Cryptology ePrint Archive, 2017:15 (2017)

[DLSZ14] Dachman-Soled, D., Liu, F.-H., Shi, E., Zhou, H.-S.: Locally decodable and
updatable non-malleable codes and their applications. IACR Cryptology
ePrint Archive, 2014:663 (2014)

[DNO17] Döttling, N., Nielsen, J.B., Obremski, M.: Information theoretic contin-
uously non-malleable codes in the constant split-state model. Electronic
Colloquium on Computational Complexity (ECCC) 24:78 (2017)

https://doi.org/10.1007/978-3-662-49099-0_15
https://doi.org/10.1007/978-3-662-49099-0_15
https://doi.org/10.1007/978-3-662-46494-6_16
https://doi.org/10.1007/978-3-662-46494-6_16
https://doi.org/10.1007/978-3-642-54242-8_19
https://doi.org/10.1007/978-3-642-54242-8_19
https://doi.org/10.1007/978-3-662-49099-0_14
https://doi.org/10.1007/978-3-642-40084-1_14
https://doi.org/10.1007/978-3-642-40084-1_14

Non-malleable Randomness Encoders and Their Applications 617

[DORS08] Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy extractors: how
to generate strong keys from biometrics and other noisy data. SIAM J.
Comput. 38(1), 97–139 (2008). arXiv:cs/0602007

[DPW10] Dziembowski, S., Pietrzak, K., Wichs, D.: Non-malleable codes. In: Pro-
ceedings of Innovations in Computer Science - ICS 2010, Tsinghua Univer-
sity, Beijing, China, 5–7 January 2010, pp. 434–452 (2010)

[FMNV14] Faust, S., Mukherjee, P., Nielsen, J.B., Venturi, D.: Continuous non-
malleable codes. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp.
465–488. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-
54242-8 20

[GUV07] Guruswami, V., Umans, C., Vadhan, S.P.: Unbalanced expanders and ran-
domness extractors from Parvaresh-Vardy codes. In: IEEE Conference on
Computational Complexity, pp. 96–108 (2007)

[JKS93] Johansson, T., Kabatianskii, G., Smeets, B.: On the relation between
a-codes and codes correcting independent errors. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 1–11. Springer, Heidelberg
(1994). https://doi.org/10.1007/3-540-48285-7 1

[JW15] Jafargholi, Z., Wichs, D.: Tamper detection and continuous non-malleable
codes. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9014, pp.
451–480. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-
46494-6 19

[KOS17] Kanukurthi, B., Obbattu, S.L.B., Sekar, S.: Four-state non-malleable codes
with explicit constant rate. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017.
LNCS, vol. 10678, pp. 344–375. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-70503-3 11

[Li17] Li, X.: Improved non-malleable extractors, non-malleable codes and inde-
pendent source extractors. In: Symposium on Theory of Computing, STOC
2017, Montreal, Canada, 19–23 June 2017 (2017)

[LL12] Liu, F.-H., Lysyanskaya, A.: Tamper and leakage resilience in the split-
state model. IACR Cryptology ePrint Archive, 2012:297 (2012)

http://arxiv.org/abs/cs/0602007
https://doi.org/10.1007/978-3-642-54242-8_20
https://doi.org/10.1007/978-3-642-54242-8_20
https://doi.org/10.1007/3-540-48285-7_1
https://doi.org/10.1007/978-3-662-46494-6_19
https://doi.org/10.1007/978-3-662-46494-6_19
https://doi.org/10.1007/978-3-319-70503-3_11
https://doi.org/10.1007/978-3-319-70503-3_11

Non-malleable Codes from Average-Case
Hardness: AC0, Decision Trees,

and Streaming Space-Bounded Tampering

Marshall Ball1(B), Dana Dachman-Soled2, Mukul Kulkarni2, and Tal Malkin1

1 Columbia University, New York, USA
{marshall,tal}@cs.columbia.edu

2 University of Maryland, College Park, USA
danadach@ece.umd.edu, mukul@umd.edu

Abstract. We show a general framework for constructing non-malleable
codes against tampering families with average-case hardness bounds. Our
framework adapts ideas from the Naor-Yung double encryption paradigm
such that to protect against tampering in a class F , it suffices to have
average-case hard distributions for the class, and underlying primitives
(encryption and non-interactive, simulatable proof systems) satisfying
certain properties with respect to the class.

We instantiate our scheme in a variety of contexts, yielding efficient,
non-malleable codes (NMC) against the following tampering classes:

– Computational NMC against AC0 tampering, in the CRS model,
assuming a PKE scheme with decryption in AC0 and NIZK.

– Computational NMC against bounded-depth decision trees (of depth
nε, where n is the number of input variables and constant 0 < ε < 1),
in the CRS model and under the same computational assumptions
as above.

– Information theoretic NMC (with no CRS) against a streaming,
space-bounded adversary, namely an adversary modeled as a read-
once branching program with bounded width.

Ours are the first constructions that achieve each of the above in an
efficient way, under the standard notion of non-malleability.

1 Introduction

Non-malleable codes, introduced in the seminal work of Dziembowski et al. [31],
are an extension of error-correcting codes. Whereas error-correcting codes pro-
vide the guarantee that (if not too many errors occur) the receiver can recover the
original message from a corrupted codeword, non-malleable codes are essentially
concerned with security. In other words, correct decoding of corrupted codewords
is not guaranteed (nor required), but it is instead guaranteed that adversarial
corruptions cannot influence the output of the decoding in a way that depends
on the original message: the decoding is either correct or independent of the
original message.

c© International Association for Cryptologic Research 2018
J. B. Nielsen and V. Rijmen (Eds.): EUROCRYPT 2018, LNCS 10822, pp. 618–650, 2018.
https://doi.org/10.1007/978-3-319-78372-7_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78372-7_20&domain=pdf

Non-malleable Codes from Average-Case Hardness 619

The main application of non-malleable codes is in the setting of tamper-
resilient computation (although non-malleable codes have also found connections
in other areas of cryptography [22,23,36] and theoretical computer science [18]).
Indeed, as suggested in the initial work of Dziembowski et al. [31], non-malleable
codes can be used to encode a secret state in the memory of a device such
that a tampering adversary interacting with the device does not learn anything
more than the input-output behavior. Unfortunately, it is impossible to construct
non-malleable codes secure against arbitrary tampering, since the adversary can
always apply the tampering function that decodes the entire codeword to recover
the message m and then re-encodes a related message m′. Thus, non-malleable
codes are typically constructed against limited classes of tampering functions
F . Indeed, given this perspective, error correcting codes can be viewed as a
special case of non-malleable codes, where the class of tampering functions, F ,
consists of functions which can only modify some fraction of the input symbols.
Since non-malleable codes have a weaker guarantee than error correcting codes,
there is potential to achieve non-malleable codes against much broader classes
of tampering functions F (including tampering that modifies every bit).

Exploring rich classes of tampering functions. Several works construct non-
malleable codes (NMC) against general tampering classes of bounded size, but
with non-explicit, existential, or inefficient constructions (cf. [19,31,35]). For effi-
cient and explicit constructions, a large body of works construct NMC against
bit-wise tampering (cf. [10,21,31]), and more generally split-state tampering
(cf. [1–3,15,19,20,30,39,40,44,47]), where the adversary can tamper each part
of the codeword independently of other parts, as well as NMC against permuta-
tions, flipping, and setting bits [5].

A recent line of works is shifting towards considering the construction of NMC
against tampering classes F that correspond to well-studied complexity-theoretic
classes, and may also better correspond to tampering attacks in practice. Specif-
ically, Ball et al. [7] construct NMC against local tampering functions including
NC0, and Chattopadhyay and Li [16] construct NMC against AC0 tampering, but
inefficiently (with super-poly size codewords). Additionally, NMC with weaker
notions of security are constructed by Faust et al. [32] against space-bounded
tampering (in the random-oracle model), and by Chandran et al. [12] for block-
wise tampering (where the adversary receives the message in a streaming fashion,
block-by-block). We discuss these works in Sect. 1.3.

In this work, we continue this line of research and consider constructing non-
malleable codes against various complexity classes, including: (1) AC0 tampering,
where the tampering function is represented by a polynomial size constant-depth,
unbounded fan-in/fan-out circuit, (2) tampering with bounded-depth decision
trees, where the tampering function is represented by a decision tree with n
variables and depth nε for ε < 1, (3) streaming tampering with quadratic space,
where the tampering function is represented by a read-once, bounded-width
(2o(n2)) branching program, (4) small threshold circuits: depth d circuits of
majority gates with a quasilinear number of wires, (5) fixed polynomial time
tampering: randomized turing machines running in time O(nk) for any fixed k.

620 M. Ball et al.

Constructing non-malleable codes against a wide array of complexity classes is
desirable since in practice, the capabilities of a tampering adversary are uniquely
tied to the computational setting under consideration and/or the physical device
being used. For example, our motivation for studying AC0 stems from a setting
wherein an attacker has limited time to tamper, since the tampering function
must complete before race conditions take effect (e.g. before the end of a clock-
cycle in a synchronous circuit). AC0 circuits, which are constant-depth circuits,
model such attackers since the propagation delay of a circuit is proportional to
the length of the longest path from input to output.

1.1 Our Results

We present general frameworks for constructing non-malleable codes for encod-
ing one and multi-bits against various tampering classes F for which average
case hardness results are known. Our frameworks (one for single-bit and one for
multi-bit) include both a generic construction, which requires that certain under-
lying primitives are instantiated in a suitable way, as well as a proof “template.”
Our frameworks are inspired by the well-known double-encryption paradigm
for constructing CCA2-secure public key encryption schemes [45,48,50]. And
although we rely on techniques that are typically used in the cryptographic set-
ting, we instantiate our framework for particular tampering classes F in both
the computational setting and in the information theoretic one. For the com-
putational setting, our results rely on computational assumptions, and require
a common-reference string (CRS), which the adversary can see before selecting
the tampering function (as typical in other NMC works using CRS or random
oracles). For the information theoretic setting, our results do not require CRS
nor any computational assumption (as the primitives in our framework can be
instantiated information theoretically). Our general theorem statements provide
sufficient conditions for achieving NMC against a class F . Somewhat informally,
the main such condition, especially for the one-bit framework, is that there are
sufficiently strong average-case hardness results known for the class F . In par-
ticular, we obtain the following results, where all the constructions are efficient
and, for the multi-bit NMC, the achieved rate is 1/poly(m) where m is the
length of the message being encoded.

– Constructions for AC0 tampering: We obtain computational NMC in
the CRS model against AC0 tampering. Our constructions require public
key encryption schemes with decryption in AC0, which can be constructed
e.g. from exponential hardness of learning parity with noise [9], as well as
non-interactive zero knowledge (NIZK), which can be constructed in the CRS
model from enhanced trapdoor permutations.
Previous results by Chattopadhyay and Li [16] achieve NMC for AC0 with
information theoretic security (with no CRS), but are inefficient, with super-
polynomial rate.

– Constructions for bounded-depth decision trees: We obtain computa-
tional NMC in the CRS model against tampering with bounded-depth deci-
sion trees. Our construction requires the same computational assumptions as

Non-malleable Codes from Average-Case Hardness 621

the AC0 construction above. The depth of the decision tree we can handle is
nε, where n is the number of bits being encoded, and ε is any constant. No
results for this class were previously known.

– Constructions for streaming, space-bounded tampering: We obtain
unconditional non-malleable codes against streaming, space-bounded tamper-
ing, where the tampering function is represented by a read-once, bounded-
width branching program. Our construction does not require CRS or compu-
tational assumptions.
No NMC results for this standard complexity theoretic class were previously
known. However, this tampering class can be viewed as a subset (or the inter-
section) of the space bounded class considered by Faust et al. [32] (who don’t
limit the adversary to be streaming), and the block-wise tampering class
considered by Chandran et al. [12] (who don’t bound the adversary’s space,
but don’t give security in the event that decoding fails). In both cases there
cannot be NMC with the standard notion of security, and so those previous
works must relax the security requirement (and [32] also relies on a random
oracle). In contrast, we achieve standard (in fact, even stronger) notion of
NMC, without random oracle (nor CRS, nor any computational assumption)
for our class.

– Additional Constructions: We also briefly note two additional applications
of our paradigm as proof of concept. Both complexity classes can be repre-
sented circuits of size O(nc) for some fixed c, a class which [35] provide non-
malleable codes for in the CRS model, without computational assumptions.
We include these results here, merely to show the applicability of our frame-
work to general correlation bounds; for example strong correlation bounds
against ACC0[p] or TC0 are likely immediately lead to non-malleable codes
against the same classes using our framework.
1. Under the same assumptions invoked in the constructions against AC0

and bounded-depth decision trees we obtain computational NMC in the
CRS model against tampering with small threshold circuits: threshold
circuits with depth d and n1+ε wires.

2. Assuming any public key encryption scheme and zk-SNARKs, we obtain
computational NMC in the CRS model against tampering by Turing
Machines running in time O(nk), where k is a constant. However, we
should note that these codes have weak tampering guarantees: tamper-
ing experiments with respect to different messages are only polynomially
close to one another.

1.2 Technical Overview

We begin by describing our computational NMC construction (in the CRS
model) for one-bit messages secure against tampering in AC0, which will give
the starting point intuition for our results. We then show how the AC0 con-
struction can be modified to derive a general template for constructing NMC
for one-bit messages secure against a wider range of tampering classes F , and
discuss various classes F for which the template can be instantiated. We then

622 M. Ball et al.

discuss how the template can be extended to achieve NMC for multi-bit mes-
sages secure against a wide range of tampering classes F . Finally, we discuss
some particular instantiations of our multi-bit template, including our construc-
tions of computational NMC (in the CRS model) against tampering in AC0 and
against bounded-depth decision trees, as well as our unconditional NMC (with
no CRS) against streaming tampering adversaries with bounded memory.

The starting point: Computational NMC against AC0 for one-bit messages. The
idea is to use a very similar paradigm to the Naor and Yung paradigm for
CCA1 encryption [48] (later extended to achieve CCA2 [45,50]), using double
encryption with simulation-sound NIZK. The main observation is that using
the tableau method, we can convert any NIZK proof system with polynomial
verification into a NIZK proof system with a verifier in AC0.

We also need a PKE scheme with perfect correctness and decryption in
AC0(this can be constructed using the transformation of Dwork et al. [29] on
top of the scheme of Bogdanov and Lee [9]).

We now sketch (a slightly simplified version of) the NM encoding scheme:
The CRS will contain a public key pk for an encryption scheme E =

(Gen,Encrypt,Decrypt) as above, and a CRS crs for a NIZK. For b ∈ {0, 1},
Let Db denote the distribution over x1, . . . , xn ∈ {0, 1}n such that x1, . . . , xn are
uniform random, conditioned on the parity of the bits being equal to b.

To encode a bit b:

1. Randomly choose bits x1, . . . , xn from Db.
2. Compute c1 ← Encryptpk(x1), . . . , cn ← Encryptpk(xn) and c ← Encryptpk(b).
3. Compute n NIZK proofs π1, . . . , πn that c1, . . . , cn are encryptions of bits

x1, . . . , xn.
4. Compute a NIZK proof π that there exists a bit b′ such that the plaintexts

underlying c1, . . . , cn are in the support of Db′ and b′ is the plaintext under-
lying c.

5. Compute tableaus T1, . . . , Tn of the computation of the NIZK verifier on
π1, . . . , πn.

6. Compute a tableau T of the computation of the NIZK verifier on proof π.
7. Output (c1, . . . , cn, c, T, (x1, T1), . . . , (xn, Tn)).

To decode (c1, . . . , cn, c, T, (x1, T1), . . . , (xn, Tn)):

1. Check the tableaus T1, . . . , Tn, T .
2. If they all accept, output the parity of x1, . . . , xn.

In the proof we will switch from an honest encoding of b to a simulated
encoding and from an honest decoding algorithm to a simulated decoding algo-
rithm. At each point we will show that the decodings of tampered encodings
stay the same. Moreover, if, in the final hybrid, decodings of tampered encod-
ings depend on b, we will use this fact to build a circuit in AC0, whose output is
correlated with the parity of its input, reaching a contradiction. In more detail,
in the first hybrid we switch to simulated proofs. Then we switch c1, . . . , cn, c,

Non-malleable Codes from Average-Case Hardness 623

in the “challenge” encoding to encryptions of garbage c′
1, . . . , c

′
n, c′, and next we

switch to an alternative decoding algorithm in AC0, which requires the trapdoor
sk (corresponding to the public key pk which is contained in the CRS).

Alternative Decoding Algorithm:

To decode (c1, . . . , cn, c, T, (x1, T1), . . . , (xn, Tn)):

1. check the tableaus T1, . . . , Tn, T
2. If it accepts, output the decryption of c using trapdoor sk.

In the final hybrid, the simulator will not know the parity of x1, . . . , xn in the
challenge encoding and will have received precomputed T 0

1 , T 1
1 , . . . , T 0

n , T 1
n , T as

non-uniform advice, where T is a simulated proof of the statement “the plain-
texts underlying c′

1, . . . , c
′
n and the plaintext underlying c′ have the same parity”

and for i ∈ [n], β ∈ {0, 1}, T β
i is a simulated proof of the statement “c′

i is an
encryption of the bit β”.

We will argue by contradiction that if the decoding of the tampered encoding
is correlated with the parity of x1, . . . , xn then we can create a circuit whose
output is correlated with the parity of its input in AC0. Specifically, the AC0

circuit will have the crs, sk, precomputed c′
1, . . . , c

′
n, c′, T, T 0

1 , T 1
1 , . . . , T 0

n , T 1
n and

adversarial tampering function f hardwired in it. It will take x1, . . . , xn as input.
It will compute the simulated encoding in AC0 by selecting the correct tableaus:
T x1
1 , . . . , T xn

n according to the corresponding input bit. It will then apply the
adversarial tampering function (in AC0), perform the simulated decoding (in
AC0) and output a guess for the parity of x1, ..xn based on the result of the
decoding. Clearly, if the decoding in the final hybrid is correlated with parity,
then we have constructed a distribution over AC0 circuits such that w.h.p. over
choice of circuit from the distribution, the output of the circuit is correlated
with the parity of its input. This contradicts known results on the hardness of
computing parity in AC0.

A general template for one-bit NMC. The above argument can be used to derive
a template for the construction/security proof of NMC against more general
classes F . The idea is to derive a high-level sequence of hybrid distributions
and corresponding minimal requirements for proving the indistinguishability
of consecutive hybrids. We can now instantiate the tampering class F , “hard
distributions” (D0,D1), encryption scheme and NIZK proof in any way that
satisfies these minimal requirements. Note that each hybrid distribution is a
distribution over the output of the tampering experiment. Therefore, public key
encryption and NIZK against arbitrary PPT adversaries may be too strong of a
requirement. Indeed, it is by analyzing the exact security requirements needed to
go from one hybrid to the other that (looking ahead) we are able to remove the
CRS and all computational assumptions from our construction of NMC against
streaming adversaries with bounded memory. In addition, we can also use our
template to obtain constructions (in the CRS model and under computational
assumptions) against other tampering classes F .

624 M. Ball et al.

Extending the template to multi-bit NMC. The construction for AC0 given above
and the general template do not immediately extend to multi-bit messages. In
particular, encoding m bits by applying the parity-based construction bit-by-bit
fails, even if we use the final proof T to “wrap together” the encodings of multiple
individual bits. The problem is that the proof strategy is to entirely decode the
tampered codeword and decide, based on the results, whether to output 0 or
1 as the guess for the parity of some x1, . . . , xn. But if we encode many bits,
b1, . . . , bm, then the adversary could maul in such a way that the tampered
codeword decodes to b′

1, . . . , b
′
m where each of b′

i is individually independent
of the parity of the corresponding xi

1, . . . , x
i
n, but taken as a whole, the entire

output may be correlated. As a simple example, the attacker might maul the
codeword so that it decodes to b′

1, . . . , b
′
m that are uniform subject to satisfying

b′
1 ⊕ · · · ⊕ b′

m = b1 ⊕ · · · ⊕ bm. Clearly, there is a correlation here between the
input and output, but we cannot detect this correlation in AC0, since detecting
the correlation itself seems to require computing parity!

In the case of parity (and the class AC0), the above issue can be solved by
setting m sufficiently small (but still polynomial) compared to n. We discuss
more details about the special case of parity below. However, we would first
like to explain how the general template must be modified for the multi-bit case,
given the above counterexample. Specifically, note that the difficulty above comes
into play only in the final hybrid. Thus, we only need to modify the final hybrid
slightly and require that for any Boolean function F over m variables, it must
be the case that the composition of F with the simulated decoding algorithm is
in a computational class that still cannot distinguish between draws x1, . . . , xn

from D0 or D1. While the above seems like a strong requirement, we show that
by setting m much smaller than n, we can still obtain meaningful results for
classes such as AC0 and bounded-depth decision trees.

Multi-bit NMC against AC0. If we want to encode m bits, for each of the under-
lying encodings i ∈ [m], we will use n :≈ m3 bits: x i = xi

1, . . . , x
i
n. To see

why this works, we set up a hybrid argument, where in each step we will fix all
the underlying encodings except for a single one: x = x1, . . . , xn, which we will
switch from having parity 0 to having parity 1. Therefore, we can view C—the
function computing the output of the tampering experiment in this hybrid—to
be a function of variables x = x1, . . . , xn only (everything else is constant and
“hardwired”). For i ∈ [m], let Ci denote the i-th output bit of C. We use PAR(x)
to denote the parity of x .

Now, for any Boolean function F over m variables, consider F (C1(x),
C2(x), . . . , Cm(x)), where we are simply taking an arbitrary Boolean func-
tion F of the decodings of the individual bits. Our goal is to show that
F (C1(x), C2(x), . . . , Cm(x)) is not correlated with parity of x . Consider the
Fourier representation of F (y1, . . . , ym). This is a linear combination of pari-
ties of the input variables y1, . . . , ym, denoted χS(y1, . . . , ym), for all subsets
S ∈ {0, 1}m. (See here [26]).

On the other hand, F (C1(x), C2(x), . . . , Cm(x)) is a Boolean function over
n ≈ m3 variables (i.e. a linear combination over parities of the input variables

Non-malleable Codes from Average-Case Hardness 625

x1, . . . , xn, denoted χS′(x1, . . . , xn), for all subsets S′ ∈ {0, 1}n). A represen-
tation of F (C1(x), C2(x), . . . , Cm(x)) can be obtained by taking each term
F̂ (S)χS(y1, . . . , ym) in the Fourier representation of F and composing with
C1, . . . , Cm to obtain the term F̂ (S)χS(C1(x), C2(x), . . . , Cm(x)). Since, by
well-known properties of the Fourier transform, |F̂ (S)| ≤ 1, we can get an
upper bound on the correlation of F (C1(x), C2(x), . . . , Cm(x)) and PAR(x),
by summing the correlations of each function χS(C1(x), C2(x), . . . , Cm(x)) and
PAR(x). Recall that the correlation of a Boolean function g with PAR(x) is by
definition, exactly the Fourier coefficient of g corresponding to parity function
χ[n]. Thus, to prove that the correlation of χS(C1(x), C2(x), . . . , Cm(x)) and
PAR(x) is low, we use the fact that χS(C1(x), C2(x), . . . , Cm(x)) can be com-
puted by a (relatively) low depth circuit. To see this, note that each Ci is in
AC0 and so has low depth, moreover, since S has size at most m, we only need
to compute parity over m variables, which can be done in relatively low depth
when m � n. We now combine the above with Fourier concentration bounds
for low-depth circuits [51]. Ultimately, we prove that for each S, the correlation
of χS(C1(x), C2(x), . . . , Cm(x)) and PAR(x), is less than 1/2m(1+δ), where δ is
a constant between 0 and 1. This means that we can afford to sum over all 2m

terms in the Fourier representation of F and still obtain negligible correlation.

Multi-bit NMC against bounded-depth decision trees. Our result above extends to
bounded-depth decision trees by noting that (1) If we apply a random restriction
(with appropriate parameters) to input x1, . . . , xn then, w.h.p. the AC0 circuit
used to compute the output of the tampering experiment collapses to a bounded-
depth decision tree of depth mε − 1; (2) on the other hand, again choosing
parameters of the random restriction appropriately, PAR(x1, . . . , xn) collapses
to parity over at least m1+ε variables; (3) any Boolean function over m variables
can be computed by a decision tree of depth m; (4) the composition of a depth-
mε − 1 decision tree and depth-m decision tree yields a decision tree of depth at
most (mε − 1)(m) < m1+ε. Finally, we obtain our result by noting that decision
trees of depth less than m1+ε are uncorrelated with parity over m1+ε variables.

Unconditional NMC (with no CRS) against bounded, streaming tampering.
Recently, Raz [49] proved that learning parity is hard for bounded, streaming
adversaries. In particular, this gives rise to hard distributions Db, b ∈ {0, 1} such
that no bounded, streaming adversary can distinguish between the two. Db corre-
sponds to choosing a random parity χS , outputting random examples (x , χS(x))
and then outputting x ∗ such that χS(x ∗) is equal to b. The above also yields
an unconditional, “parity-based” encryption scheme against bounded, streaming
adversaries. Note, however, that in order to decrypt (without knowledge of the
secret key), we require space beyond the allowed bound of the adversary. Given
the above, we use Db, b ∈ {0, 1} as the hard distributions in our construction and
use the parity-based encryption scheme as the “public key encryption scheme”
in our construction. Thus, we get rid of the public key in the CRS (and the
computational assumptions associated with the public key encryption scheme).

626 M. Ball et al.

To see why this works, note that in the hybrid where we require semantic
security of the encryption scheme, the decryption algorithm is not needed for
decoding (at this point the honest decoding algorithm is still used). So essentially
we can set the parameters for the encryption scheme such that the output of
the Tampering experiment in that hybrid (which outputs the decoded value
based on whether x1, .., xn is in the support of D0 or D1) can be computed in
a complexity class that is too weak to run the decryption algorithm. On the
other hand, we must also consider the later hybrid where we show that the
output of the tampering experiment can be computed in a complexity class that
is too weak to distinguish D0 from D1. In this hybrid, we do use the alternate
decoding procedure. But now it seems that we need decryption to be contained
in a complexity class that is too weak to decide whether x1, . . . , xn is in the
support of D0 or D1, while previously we required exactly the opposite! The key
insight is that since we are in the streaming model and since (1) the simulated
ciphertexts (c′

1, . . . , c
′
n, c′) in this hybrid contain no information about x1, . . . , xn

and (2) the simulated ciphertexts precede x1, . . . , xn, the output of the tampering
function in blocks containing ciphertexts does not depend on x1, . . . , xn at all. So
the decryption of the tampered ciphertexts can be given as non-uniform advice,
instead of being computed on the fly, and we avoid contradiction.

In order to get rid of the CRS and computational assumption for the NIZK,
we carefully leverage some additional properties of the NMC setting and the
streaming model. First, we consider cut-and-choose based NIZK’s (based on
MPC-in-the-head), where the Verifier is randomized and randomly checks certain
locations or “slots” in the proof to ensure soundness. Specifically, given a Circuit-
SAT circuit C and witness w, the prover will secret share w := w1 ⊕· · ·⊕w� and
run an MPC protocol among � parties (for constant �), where party Pi has input
wi and the parties are computing the output of C(w1 ⊕ · · · ⊕ w�). The prover
will then “encrypt” each view of each party in the MPC protocol, using the
parity-based encryption scheme described above and output this as the proof.
This is then repeated λ times (where λ is security parameter). The Verifier will
then randomly select two parties from each of the λ sets, decrypt the views and
check that the views correspond to the output of 1 and are consistent internally
and with each other.

We next note that in our setting, the NIZK simulator can actually know
the randomness used by the Verifier. This is because the simulated codeword
and the decoding are done by the same party in the NMC security experiment.
Therefore, the level of “zero-knowledge” needed from the simulation of the NIZK
is in-between honest verifier and malicious. This is because the adversary can
still use the tampering function to “leak” information from the unchecked slots
of the proof to the checked slots, while a completely honest verifier would learn
absolutely nothing about the unchecked slots. In order to switch from a real proof
to a simulated proof, we fill in unchecked slots one-by-one with parity-based
encryptions of garbage. We must rely on the fact that a bounded, streaming
adversary cannot distinguish real encryptions from garbage encryptions in order
to argue security. Specifically, since we are in the bounded streaming model, we

Non-malleable Codes from Average-Case Hardness 627

can argue that the adversary can only “leak” a small amount of information from
the unchecked slots to the checked slots. This means that the entire output of the
experiment can be simulated by a bounded, streaming adversary, which in turn
means that the output of the experiment must be indistinguishable when real,
unchecked encodings are replaced with encodings of garbage. Arguing simulation
soundness, requires a similar argument, but more slots are added to the proof
and slots in an honest proof are only filled if the corresponding position in the
bit-string corresponding to the statement to be proven is set to 1. We encode
the statement in such a way that if the statement changes, the adversary must
switch an unfilled slot to a filled slot. Intuitively, since the bounded streaming
attacker can only carry over a small amount of information from previous slots,
this will be as difficult as constructing a new proof from scratch.

1.3 Related Work

The notion of NMC was formalized by Dziembowski et al. [31]. Split state
classes of tampering functions introduced by Liu and Lysyanskaya [47], have
subsequently received much attention with a sequence of improvements achiev-
ing reduced number of states, improved rate, or other desirable features [1–3,6,
15,17,30,39–41,44]. Recently [5,7] gave efficient constructions of non-malleable
codes for “non-compartmentalized” tampering function classes.

Faust et al. [35] presented a construction of efficient NMC in CRS model,
for tampering function families F with size |F| ≤ 2poly(n), where n is the length
of codeword. The construction is based on t-wise independent hashing for t
proportional to log |F|. This gives information-theoretically secure NMC resilient
to tampering classes which can be represented as poly-size circuits. While [35]
construction allows adaptive selection of tampering function f ∈ F after the
t-wise independent hash function h (CRS) is chosen, the bound on the size
of F needs to be fixed before h is chosen. In particular, this means that the
construction does not achieve security against the tampering functions f ∈ AC0

in general, since AC0 contains all poly-size and constant depth circuit families,
but rather provides tamper resilience against specific families in AC0 (ACC0, etc.)
Cheraghchi and Guruswami [19] in an independent work showed the existence
of information theoretically secure NMC against tampering families F of size
|F| ≤ 22

αn

with optimal rate 1 − α. This paper gave the first characterization
of the rate of NMC, however the construction of [19] is inefficient for negligible
error.

Ball et al. [7] gave a construction of efficient NMC against nδ-local tampering
functions, for any constant δ > 0. Notably, this class includes NC0 tampering
functions, namely constant depth circuits with bounded fan-in. It should be
noted however, that the results of [7] do not extend to tampering adversaries in
AC0, since even for a low depth circuit in AC0, any single output bit can depend
on all input bits, thus violating the nδ-locality constraint.

In a recent work, Chattopadhyay and Li [16] gave constructions of NMC
based on connections between NMC and seedless non-malleable extractors.

628 M. Ball et al.

One of their results is an efficient NMC against t-local tampering functions,
where the decoding algorithm for the NMC is deterministic (in contrast, the
result in [7] has randomized decoding). The locality parameters of the NMC in
[16] are not as good as the one in [7], but better than the deterministic-decoding
construction given in the appendix of the full version of [7]. Additionally, [16] also
present a NMC against AC0 tampering functions. However, this NMC results in
a codeword that is super-polynomial in the message length, namely inefficient.

A recent work by Faust et al. [32] considered larger tampering classes by
considering space bounded tampering adversaries in random oracle model. The
construction achieves a new notion of leaky continuous non-malleable codes,
where the adversary is assumed to learn some bounded log(|m|) bits of infor-
mation about the underlying message m. However, this result is not directly
comparable to ours as the adversarial model we consider is a that of stan-
dard non-malleability (without leakage), and for a subset of this tampering class
(streaming space-bounded adversary) we achieve information theoretic security
without random oracles.

Chandran et al. [12] considered another variant of non-malleable codes, called
block-wise non-malleable codes. In this model, the codeword consists of number
of blocks and the adversary receives the codeword block-by-block. The tamper-
ing function also consists of various function fis, where each fi can depend on
codeword blocks c1, . . . , ci and modifies ci to c′

i. It can be observed that standard
non-malleability cannot be achieved in this model since, the adversary can sim-
ply wait to receive all the blocks of the codeword and then decode the codeword
as part of last tampering function. Therefore, [12] define a new notion called
non-malleability with replacement which relaxes the non-malleability require-
ment and considers the attack to be successful only if the tampered codeword is
valid and related to the original message.

Other works on non-malleable codes include [2,4,11,13,14,20,24,25,28,33,
34,37,41]. We guide the interested reader to [38,47] for a discussion of various
models for tamper and leakage resilience.

2 Definitions

Where appropriate, we interpret functions f : S → {±1} as boolean functions
(and vice-versa) via the mapping: 0 ↔ 1 and 1 ↔ −1. The support of vector x
is the set of indices i such that xi
= 0. A bipartite graph is an undirected graph
G = (V,E) in which V can be partitioned into two sets V1 and V2 such that
(u, v) ∈ E implies that either u ∈ V1 and v ∈ V2 or v ∈ V1 and u ∈ V2.

Non-malleable Codes. In this section we define the notion of non-malleable
codes and its variants. In this work, we assume that the decoding algorithm of
the non-malleable code may be randomized and all of our generic theorems are

Non-malleable Codes from Average-Case Hardness 629

stated for this case. Nevertheless, only our instantiation for the streaming adver-
sary (refer Sect. 7 in full version [8]) requires a randomized decoding algorithm,
while our other instantiations enjoy deterministic decoding. We note that the
original definition of non-malleable codes, given in [31], required a deterministic
decoding algorithm. Subsequently, in [7], an alternative definition that allows
for randomized decoding was introduced. We follow here the definition of [7].
Please see [7] for a discussion on why deterministic decoding is not necessarily
without loss of generality in the non-malleable codes setting and for additional
motivation for allowing randomized decoding.

Definition 1 (Coding Scheme). Let Σ, ̂Σ be sets of strings, and κ, κ̂ ∈ N be
some parameters. A coding scheme consists of two algorithms (E,D) with the
following syntax:

– The encoding algorithm (perhaps randomized) takes input a block of message
in Σ and outputs a codeword in Σ̂.

– The decoding algorithm (perhaps randomized) takes input a codeword in Σ̂
and outputs a block of message in Σ.

We require that for any message m ∈ Σ, Pr[D(E(m)) = m] = 1, where the
probability is taken over the choice of the encoding algorithm. In binary settings,
we often set Σ = {0, 1}κ and ̂Σ = {0, 1}κ̂.

We next provide definitions of non-malleable codes of varying levels of secu-
rity. We present general, game-based definitions that are applicable even for
NMC that are in a model with a CRS, or that require computational assump-
tions. The corresponding original definitions of non-malleability, appropriate for
an unconditional setting without a CRS, can be obtained as a special case of
our definitions when setting crs = ⊥ and taking G to include all computable
functions. These original definitions are also presented in Appendix A.1 of the
full version [8].

Definition 2 (Non-malleability). Let Π = (CRSGen,E,D) be a coding
scheme. Let F be some family of functions. For each attacker A, m ∈ Σ, define
the tampering experiment TamperΠ,F

A,m(n) (Fig. 1):

1. Challenger samples crs ← CRSGen(1n) and sends crs to A.
2. Attacker A sends the tampering function f ∈ F to the challenger.
3. Challenger computes c ← E(crs, m).
4. Challenger computes the tampered codeword c̃ = f(c) and computes

m̃ = D(crs, c̃).
5. Experiment outputs m̃.

Fig. 1. Non-malleability experiment TamperΠ,F
A,m(n)

630 M. Ball et al.

We say the coding scheme Π = (CRSGen,E,D) is non-malleable against tam-
pering class F and attackers A ∈ G, if for every A ∈ G there exists a PPT
simulator Sim such that for any message m ∈ Σ we have,

TamperΠ,F
A,m(n) ≈ IdealSim,m(n)

where IdealSim,m(n) is an experiment defined as follows (Fig. 2),

1. Simulator Sim has oracle access to adversary A and outputs m̃ ∪
{same∗} ← SimA(·)(n).

2. Experiment outputs m if Sim outputs same∗ and outputs m̃ otherwise.

Fig. 2. Non-malleability experiment IdealSim,m(n)

Definition 3 (Strong Non-malleability). Let Π = (CRSGen,E,D) be a cod-
ing scheme. Let F be some family of functions. For each attacker A ∈ G, m ∈ Σ,
define the tampering experiment StrongTamperΠ,F

A,m(n) (Fig. 3):

1. Challenger samples crs ← CRSGen(1n) and sends crs to A.
2. Attacker A sends the tampering function f ∈ F to the challenger.
3. Challenger computes c ← E(crs, m).
4. Challenger computes the tampered codeword c̃ = f(c).
5. Compute m̃ = D(crs, c̃).
6. Experiment outputs same∗ if c̃ = c, and m̃ otherwise.

Fig. 3. Strong non-malleability experiment StrongTamperΠ,F
A,m(n)

We say the coding scheme Π = (CRSGen,E,D) is strong non-malleable
against tampering class F and attackers A ∈ G if we have

StrongTamperΠ,F
A,m0

(n) ≈ StrongTamperΠ,F
A,m1

(n)

for any A ∈ G, m0,m1 ∈ Σ.

We now introduce an intermediate variant of non-malleability, called Medium
Non-malleability, which informally gives security guarantees “in-between” strong
and regular non-malleability. Specifically, the difference is that the experiment
is allowed to output same∗ only when some predicate g evaluated on (c, c̃) is set
to true. Thus, strong non-malleability can be viewed as a special case of medium
non-malleability, by setting g to be the identity function. On the other hand,
regular non-malleability does not impose restrictions on when the experiment
is allowed to output same∗. Note that g cannot be just any predicate in order
for the definition to make sense. Rather, g must be a predicate such that if g
evaluated on (c, c̃) is set to true, then (with overwhelming probability over the
random coins of D) D(c̃) = D(c).

Non-malleable Codes from Average-Case Hardness 631

Definition 4 (Medium Non-malleability). Let Π = (CRSGen,E,D) be a
coding scheme. Let F be some family of functions.

Let g(·, ·, ·, ·) be a predicate such that, for each attacker A ∈ G, m ∈ Σ,
the output of the following experiment, ExptΠ,F

A,m,g(n) is 1 with at most negligible
probability (Fig. 4):

1. Challenger samples crs ← CRSGen(1n) and sends crs to A.
2. Attacker A sends the tampering function f ∈ F to the challenger.
3. Challenger computes c ← E(crs, m).
4. Challenger computes the tampered codeword c̃ = f(c).
5. Challenger samples r ← U�.
6. Experiment outputs 1 if ([g(crs, c, c̃, r) = 1] ∧ [D(crs, c̃; r) �= m]).

Fig. 4. The experiment corresponding to the special predicate g

For g as above, each m ∈ Σ, and attacker A ∈ G, define the tampering
experiment

MediumTamperΠ,F
A,m,g(n) as shown in Fig. 5:

1. Challenger samples crs ← CRSGen(1n) and sends crs to A.
2. Attacker A sends the tampering function f ∈ F to the challenger.
3. Challenger computes c ← E(crs, m).
4. Challenger computes the tampered codeword c̃ = f(c).
5. Challenger samples r ← U� and computes m̃ = D(crs, c̃, r).
6. Experiment outputs same∗ if g(crs, c, c̃, r) = 1, and m̃ otherwise.

Fig. 5. Medium non-malleability experiment MediumTamperΠ,F
A,m,g(n)

We say the coding scheme Π = (CRSGen,E,D) is medium non-malleable
against tampering class F and attackers A ∈ G if we have

MediumTamperΠ,F
A,m0,g(n) ≈ MediumTamperΠ,F

A,m1,g(n)

for any A ∈ G, m0,m1 ∈ Σ.

We next recall some standard definitions of public-key encryption (PKE),
pseudorandom generator (PRG), and non-interactive zero knowledge proof sys-
tems with simulation soundness in Sects. 2.2 and 2.3 of the full version [8].

Definition 5 (Non-interactive Simulatable Proof System). A tuple of
probabilistic polynomial time algorithms ΠNI = (CRSGenNI,PNI,VNI,SimNI) is
a non-interactive simulatable proof system for language L ∈ NP with witness
relation W if (CRSGenNI,PNI,VNI,SimNI) have the following syntax:

632 M. Ball et al.

– CRSGenNI is a randomized algorithm that outputs (crsNI, τsim).
– On input crs, x ∈ L and witness w such that W (x,w) = 1, PNI(crs, x, w)

outputs proof π.
– On input crs, x, π, VNI(crs, x, π) outputs either 0 or 1.
– On input crs, τsim and x ∈ L, SimNI(crs, τsim, x) outputs simulated proof π′.

Completeness: We require the following completeness property: For all x ∈ L,
and all w such that W (x,w) = 1, for all strings crsNI of length poly(|x|), and for
all adversaries A we have

Pr

[

(crsNI, τSim) ← CRSGenNI(1n); (x,w) ← A(crsNI);

π ← PNI(crsNI, x, w) : VNI(crsNI, x, π) = 1

]

≥ 1 − negl(n)

Soundness: We say that ΠNI enjoys soundness against adversaries A ∈ G if: For
all x /∈ L, and all adversaries A ∈ G:

Pr

[

(crsNI, τSim) ← CRSGenNI(1n);

(x, π) ← A(crsNI) : VNI(crsNI, x, π) = 0

]

≥ 1 − negl(n)

The security properties that we require of ΠNI will depend on our particular
non-malleable code construction as well as the particular class, F , of tampering
functions that we consider. The exact properties needed are those that will arise
from Theorems 2 and 4. In subsequent sections, we will show how to construct
non-interactive simulatable proof systems satisfying these properties.

Proof Systems for Circuit SAT. We now consider proof of knowledge sys-
tems for Circuit SAT, where the prover and/or verifier have limited computa-
tional resources.

Definition 6 (Proof of Knowledge Systems for Circuit SAT with Com-
putationally Bounded Prover/Verifier). For a circuit C, let L(C) denote
the set of strings x such that there exists a witness w such that C(x,w) = 1. For
a class C, let L(C) denote the set {L(C) | C ∈ C}. Π = (P,V) is a Circuit SAT
proof system for the class L(C) with prover complexity D and verifier complexity
E if the following are true:

– For all C ∈ C and all valid inputs (x,w) such that C(x,w) = 1, P(C, ·, ·) can
be computed in complexity class D.

– For all C ∈ C, V(C, ·, ·) can be computed in complexity class E.
– Completeness: For all C ∈ C and all (x,w) such that C(x,w) = 1, we have

V(C, x,P(C, x,w)) = 1.
– Extractability: For all (C, x, π), if Prr[V(C, x, π; r) = 1] is non-negligible, then

given (C, x, π) it is possible to efficiently extract w such that C(x,w) = 1.

Non-malleable Codes from Average-Case Hardness 633

We construct Circuit SAT proof systems for the class L(P/poly) with verifier
complexity AC0 in Sect. 2.4 of full version [8]. We also construct Circuit SAT
proof systems for the class. L(P/poly) with streaming verifier in Sect. 2.4 of full
version [8].

Given the above, we have the following theorem:

Theorem 1. Assuming the existence of same-string, weak one-time simulation
sound NIZK with deterministic verifier, there exists same-string, weak one-time
simulation sound NIZK with verifier in AC0.

We also recall some definitions and results related to boolean analysis and
present them next. in Sect. 2.5 of full version [8].

Computational Model for Streaming Adversaries. In this section we dis-
cuss the computational model used for analysis of the streaming adversaries.
This model is similar to the one used in [49].

General Streaming Adversaries. The input is represented as a stream S1, . . . , S�,
where for i ∈ [�], each Si ∈ {0, 1}B , where B is the block length. We model the
adversary by a branching program. A branching program of length � and width w,
is a directed acyclic graph with the vertices arranged in �+1 layers such that no
layer contains more than w vertices. Intuitively, each layer represents a time step
of computation whereas, each vertex in the graph corresponds to the potential
memory state learned by the adversary. The first layer (layer 0) contains a single
vertex, called the start vertex, which represents the input. A vertex is called leaf
if it has out-degree 0, and represents the output (the learned value of x) of the
program. Every non-leaf vertex in the program has exactly 2B outgoing edges,
labeled by elements S ∈ {0, 1}B , with exactly one edge labeled by each such S,
and all the edges from layer j − 1 going to vertices in layer j. Intuitively, these
edges represent the computation on reading Si as streaming input. The stream
S1, . . . , S�, therefore, define a computation-path in the branching program.

We discuss the streaming branching program adversaries, and streaming
adversaries for learning parity in Sect. 2.6 of full version [8].

3 Generic Construction for One-Bit Messages

In this section we present the generic construction for encoding a single bit.
Let Ψ(p, c, x, y, r, z) be defined as a function that takes as input a predicate

p, and variables c, x, y, r, z. If p(c, x, y, r) = 1, then Ψ outputs 0. Otherwise, Ψ
outputs z.

Theorem 2. Let (E,D), E1, E2, Ext, D′ and g be as defined in Figs. 6, 7, 8,
9, 10 and 11. Let F be a computational class. If, for every adversary A ∈ G
outputting tampering functions f ∈ F , all of the following hold:

634 M. Ball et al.

– Lβ
i : For i ∈ [n], β ∈ {0, 1}, s := (k̂, c, c) ∈ Lβ

i iff the i-th ciphertext
ci := ki ⊕ β (where c = c1, . . . , cn) and the i-th encryption k̂i (where
k̂ = k̂1, . . . , k̂n+1) is an encryption of ki under pk (where pk is
hardwired into the language).

– L: s := (k̂, c, c) ∈ L iff (x1, . . . , xn) is in the support of Db where:
1. For i ∈ [n], xi := ci ⊕ ki

2. b := c ⊕ kn+1
3. k̂ is an encryption of k1, . . . , kn+1 under pk (where pk is

hardwired into the language).

E(crs, b):

1. Sample x ← Db, where x = x1, . . . , xn.
2. Choose an n+1-bit key k = k1, . . . , kn, k uniformly at random. For i ∈

[n], compute k̂i ← Encryptpk(ki) and compute k̂n+1 ← Encryptpk(k).
Let k̂ := k̂1, . . . , k̂n+1.

3. Compute c1 := k1 ⊕ x1, . . . , cn := kn ⊕ xn. Let c := c1, . . . , cn.
4. Compute c := b ⊕ k.
5. For i ∈ [n], compute a non-interactive, simulatable proof Ti proving

s := (k̂, c, c) ∈ Lxi
i relative to crsNI

i .
6. Compute a non-interactive, simulatable proof T proving s :=

(k̂, c, c) ∈ L relative to crsNI
0 .

7. Output CW := (k̂, c1, . . . , cn, c, T, x1, T1, .., xn, Tn).

D(crs,CW):

1. Parse CW := (k̂, c1, . . . , cn, c, T, x1, T1, .., xn, Tn)
2. Check that VNI outputs 1 on all proofs T1, .., Tn, T , relative to the

corresponding CRS.
3. If yes, output b such that x1...xn is in the support of Db. If not,

output 0.

Let E = (Gen,Encrypt,Decrypt) be a public key encryption scheme
with perfect correctness (see Definition 7 in [8]). Let ΠNI =
(CRSGenNI,PNI,VNI,SimNI) be a non-interactive simulatable proof system
with soundness against adversaries A ∈ G (see Definition 5). Note that in
the CRS model, we implicitly assume that all algorithms take the CRS
as input, and for simplicity of notation, sometimes do not list the CRS
as an explicit input.

CRSGen(1n):

1. Choose (pk, sk) ← Gen(1n).
2. Choose [(crsNI

i , τ i
sim)]i∈{0,...n} ← CRSGenNI(1n). Let −→crsNI :=

[crsNI
i]i∈{0,...n} and let τ sim := [τ i

sim]i∈{0,...n}
3. Output crs := (pk,−→crsNI).

Languages. We define the following languages:

Fig. 6. Non-malleable code (CRSGen,E,D), secure against F tampering.

Non-malleable Codes from Average-Case Hardness 635

E1(crs,−→τ sim, r, b):

1. Sample x ← Db, where x = x1, . . . , xn.
2. Choose an n+1-bit key k = k1, . . . , kn, k uniformly at random. For i ∈

[n], compute k̂i ← Encryptpk(ki) and compute k̂n+1 ← Encryptpk(k).
Let k̂ := k̂1, . . . , k̂n+1.

3. Compute c1 := k1 ⊕ x1, . . . , cn := kn ⊕ xn. Let c := c1, . . . , cn.
4. Compute c := b ⊕ k.
5. For i ∈ [n], use τ i

sim and r to simulate a non-interactive proof T ′
i prov-

ing (k̂, c, c) ∈ Lxi
i , relative to crsNIi .

6. Use τ0
sim and r to simulate a non-interactive proof T ′ proving

(k̂, c, c) ∈ L, relative to crsNI0 .
7. Output CW := (k̂, c1, . . . , cn, c, T ′, x1, T

′
1, .., xn, T ′

n).

Fig. 7. Encoding algorithm with simulated proofs.

E2(crs,−→τ sim, r, b):

1. Sample x ← Db, where x = x1, . . . , xn.
2. Choose c′

1, . . . , c
′
n uniformly at random. Let c′ := c′

1, . . . , c
′
n.

3. Choose c′ uniformly at random.
4. Set k′ = c′

1, . . . , c
′
n, c′. For i ∈ [n], compute k̂′

i ← Encryptpk(k′
i) and

compute k̂′
n+1 ← Encryptpk(k′). Let k̂

′
:= k̂′

1, . . . , k̂
′
n+1.

5. For i ∈ [n], use τ i
sim and r to simulate a non-interactive proof T ′

i

proving (k̂′, c′, c) ∈ Lxi
i , relative to crsNI

i .
6. Use τ0

sim and r to simulate a non-interactive proof T ′ proving
(k̂′, c′, c) ∈ L, relative to crsNI0 .

7. Output CW := (k̂
′
, c′

1, . . . , c
′
n, c′, T ′, x1, T

′
1, .., xn, T ′

n).

Fig. 8. Encoding algorithm with simulated proofs and encryptions.

Ext(crs, sk,CW):

1. Parse CW := (k̂, c1, . . . , cn, c, T, x1, T1, .., xn, Tn),
2. Output Decryptsk(k̂n+1).

Fig. 9. Extracting procedure Ext.

636 M. Ball et al.

D′(crs, k,CW):

1. Parse CW := (k̂, c1, . . . , cn, c, T, x1, T1, .., xn, Tn),
2. Check that VNI outputs 1 on all proofs T1, .., Tn, T , relative to the

corresponding CRS,
3. If not, output 0. Otherwise, output b := k ⊕ c.

Fig. 10. Alternate decoding procedure D′, given additional extracted key k as input.

g(crs,CW,CW∗, r):

1. Parse CW = (k̂, c, c, T, x1, T1, .., xn, Tn), CW∗ =
(k̂

∗
, c∗, c∗, T ∗, x∗

1, T
∗
1 , .., x∗

n, T ∗
n) .

2. If (1) VNI outputs 1 on all proofs T ∗, T ∗
1 , .., T ∗

n , relative to the
corresponding CRS; and (2) (k̂, c, c) = (k̂

∗
, c∗, c∗), then output 1.

Otherwise output 0.

Fig. 11. The predicate g(crs,CW,CW∗, r).

Simulation of proofs.
1. Pr[g(crs,CW0, f(CW0), r0) = 1] ≈ Pr[g(crs,CW1, f(CW1), r1) = 1],
2. Ψ(g, crs,CW0, f(CW0), r0,D(crs, f(CW0); r0)) ≈ Ψ(g, crs,CW1, f(CW1),

r1,D(crs, f(CW1); r1)),
where (crs, sk,−→τ sim) ← CRSGen(1n), f ← A(crs), r0, r1 are sampled uni-
formly at random, CW0 ← E(crs, 0) and CW1 ← E1(crs,−→τ sim, r1, 0).

Simulation of Encryptions.
1. Pr[g(crs,CW1, f(CW1), r1) = 1] ≈ Pr[g(crs,CW2, f(CW2), r2) = 1],
2. Ψ(g, crs,CW1, f(CW1), r1,D(crs, f(CW1); r1)) ≈ Ψ(g, crs,CW2, f(CW2),

r2,D(crs, f(CW2); r2)),
where (crs, sk,−→τ sim) ← CRSGen(1n), f ← A(crs), r1, r2 are sampled
uniformly at random, CW1 ← E1(crs,−→τ sim, r1, 0) and CW2 ← E2(crs,−→τ sim, r2, 0).

Simulation Soundness.

Pr

[

D(crs, f(CW2); r2)
= D′(crs,Ext(crs, sk, f(CW2)), f(CW2); r2)
∧ g(crs,CW2, f(CW2), r2) = 0

]

≤ negl(n),

where (crs, sk,−→τ sim) ← CRSGen(1n), f ← A(crs), r2 is sampled uniformly
at random and CW2 ← E2(crs,−→τ sim, r, 0).

Non-malleable Codes from Average-Case Hardness 637

Hardness of Db relative to Alternate Decoding.
1. Pr[g(crs,CW2, f(CW2), r2) = 1] ≈ Pr[g(crs,CW3, f(CW3), r3) = 1],
2. D′(crs,Ext(sk, f(CW2)), f(CW2); r2) ≈ D′(crs,Ext(sk, f(CW3)), f(CW3);

r3),
where (crs, sk,−→τ sim) ← CRSGen(1n), f ← A(crs), r2, r3 are sam-
pled uniformly at random, CW2 ← E2(crs,−→τ sim, r2, 0) and CW3 ←
E2(crs,−→τ sim, r3, 1).

Then the construction presented in Fig. 6 is a non-malleable code for class
F against adversaries A ∈ G.

Proof (Proof of Theorem 2). We take g to be the predicate that is used in the
MediumTamperΠ,F

A,m,g(n) tampering experiment. We must argue that for every
m ∈ {0, 1} and every attacker A ∈ G the output of the experiment ExptΠ,F

A,m,g(n)
is 1 with at most negligible probability.

Assume towards contradiction that for some A ∈ G the output of the exper-
iment is 1 with non-negligible probability. Then this means that the proba-
bility in the last line of experiment ExptΠ,F

A,m,g(n) that g(crs,CW,CW∗, r) =
1∧D(crs,CW∗; r)
= m is non-negligible. Parse CW = (k̂ , c, c, T, x1, T1, .., xn, Tn),
CW∗ = (k̂

∗
, c∗, c∗, T ∗, x∗

1, T
∗
1 , .., x∗

n, T ∗
n).

Recall that D(crs,CW; r) = m. Thus, if the above event occurs, it means that
D(crs,CW; r)
= D(crs,CW∗; r). But since g(crs,CW,CW∗, r) = 1, it means that
VNI outputs 1 on all proofs T ∗, [T ∗

i]i∈[n] and (k̂ , c, c) = (k̂
∗
, c∗, c∗).

This, in turn, means that there must be some bit xi, x
∗
i that CW and CW∗

differ on. But note that by assumption ci = c∗
i . Due to the fact that CW is

well-formed and perfect correctness of the encryption scheme, it must mean that
c∗
i /∈ Lx∗

i
i . But recall that by assumption, proof T ∗

i verifies correctly. This means
that soundness is broken by A ∈ G. This contradicts the security of the proof
system ΠNI.

Next, recall that we wish to show that for any adversary A ∈ G outputting
tampering function {MediumTamperΠ,F

A,0,g}k∈N ≈ {MediumTamperΠ,F
A,1,g}k∈N

To do so we consider the following hybrid argument:

Hybrid 0: The real game, MediumTamperΠ,F
A,0,g, relative to g, where the real

encoding CW0 ← E(crs, 0) and the real decoding oracle D are used.
Hybrid 1: Replace the encoding from the previous game with CW1 ←
E1(crs,−→τ sim, r1, 0) where r1 is chosen uniformly at random and g, D use ran-
dom coins r1.
Hybrid 2: Replace the encoding from the previous game with CW2 ←
E2(crs,−→τ sim, r2, 0), where r2 is chosen uniformly at random and g, D use
random coins r2.
Hybrid 3: Replace the decoding from the previous game, with
D′(crs,Ext(crs, sk, f(CW2)), f(CW2); r2). where r2 is chosen uniformly at ran-
dom and g, E2 use random coins r2.

638 M. Ball et al.

Hybrid 4: Same as Hybrid 3, but replace the encoding with CW3 ←
E2(crs,−→τ sim, r3, 1), where r3 is chosen uniformly at random and g, D′ use
random coins r3.

Now, we prove our hybrids are indistinguishable.

Claim. Hybrid 0 is computationally indistinguishable from Hybrid 1.

Proof. The claim follows immediately from the Simulation of proofs property
in Theorem 2.

Claim. Hybrid 1 is computationally indistinguishable from Hybrid 2.

Proof. The claim follows immediately from the Simulation of Encryptions
property in Theorem 2.

Claim. Hybrid 2 is computationally indistinguishable from Hybrid 3.

Proof. This claim follows from the fact that (1) if g(crs,CW,CW∗, r) = 1, then
the experiment outputs same∗ in both Hybrid 2 and Hybrid 3; and (2) the
probability that g(crs,CW,CW∗, r) = 0 and the output of the experiment is
different in Hybrid 2 and Hybrid 3 is at most negligible, due to the Simulation
Soundness property in Theorem 2.

Claim. Hybrid 3 is computationally indistinguishable from Hybrid 4.

Proof. This follows from the fact that (1) for γ ∈ {2, 3} if g(crs,CW2,
f(CW2), r2) = 1 then D′(crs,Ext(crs, sk, f(CWγ)), f(CWγ); rγ) always outputs
0 and so

D′(crs,Ext(crs, sk, f(CWγ)), f(CWγ); rγ)
≡ Ψ(g, crs,CWγ , f(CWγ), rγ ,D′(crs,Ext(crs, sk, f(CWγ)), f(CWγ); rγ));

and (2) the Hardness of Db relative to Alternate Decoding property in
Theorem 2.

4 One-Bit NMC for AC0

In this section, we show that our generic construction yields efficient NMC for
AC0 in the CRS model, when each of the underlying primitives is appropriately
instantiated.

Theorem 3. Π = (CRSGen,E,D) (presented in Fig. 6) is a one-bit, computa-
tional, non-malleable code in the CRS model, secure against every PPT adver-
sary A outputting tampering functions f ∈ AC0, if the underlying components
are instantiated in the following way:

– E := (Gen,Encrypt,Decrypt) is a public key encryption scheme with perfect
correctness and decryption in AC0.

Non-malleable Codes from Average-Case Hardness 639

– ΠNI := (CRSGenNI,PNI,VNI,SimNI) is a same-string, weak one-time
simulation-sound NIZK with verifier in AC0.

– For b ∈ {0, 1}, Db is the distribution that samples bits x1 . . . xn uniformly at
random, conditioned on x1 ⊕ · · · ⊕ xn = b.

Note that given Theorem 1, proof systems ΠNI as above exist, under the
assumption that same-string, weak one-time simulation-sound NIZK with (arbi-
trary polynomial-time) deterministic verifier exists. Such NIZK can be con-
structed in the CRS model from enhanced trapdoor permutations [50]. Public key
encryption with perfect correctness and decryption in AC0 can be constructed
by applying the low-decryption-error transformation of Dwork et al. [29] to the
(reduced decryption error) encryption scheme of Bogdanov and Lee [9]. Refer to
Sect. 4 of the full version [8] for additional details.

Proof (Proof of Theorem 3). To prove the theorem, we need to show that for
every PPT adversary A outputting tampering functions f ∈ F , the necessary
properties from Theorem 2 hold. We next go through these one by one.

Simulation of proofs.
1. Pr[g(crs,CW0, f(CW0), r0) = 1] ≈ Pr[g(crs,CW1, f(CW1), r1) = 1],
2. Ψ(g, crs,CW0, f(CW0), r0,D(crs, f(CW0); r0)) ≈ Ψ(g, crs,CW1, f(CW1),

r1,D(crs, f(CW1); r1)),
where (crs, sk,−→τ sim) ← CRSGen(1n), f ← A(crs), r0, r1 are sampled
uniformly at random, CW0 ← E(crs, 0) and CW1 ← E1(crs,−→τ sim, r1, 0).
This follows immediately from the zero-knowledge property of ΠNI =
(CRSGenNI,PNI,VNI,SimNI).

Simulation of Encryptions.
1. Pr[g(crs,CW1, f(CW1), r1) = 1] ≈ Pr[g(crs,CW2, f(CW2), r2) = 1],
2. Ψ(g, crs,CW1, f(CW1), r1,D(crs, f(CW1); r1)) ≈ Ψ(g, crs,CW2, f(CW2),

r2,D(crs, f(CW2); r2)),
where (crs, sk,−→τ sim) ← CRSGen(1n), f ← A(crs), r1, r2 are sam-
pled uniformly at random, CW1 ← E1(crs,−→τ sim, r1, 0) and CW2 ←
E2(crs,−→τ sim, r2, 0). This follows immediately from the fact that c, c and
c′, c′ are identically distributed when generated by E1 versus E2 and
from the semantic security of the public key encryption scheme E =
(Gen,Encrypt,Decrypt).

Simulation Soundness.

Pr

[

D(crs, f(CW2); r2)
= D′(crs,Ext(crs, sk, f(CW2)), f(CW2); r2)
∧ g(crs,CW2, f(CW2), r2) = 0

]

≤ negl(n),

where (crs, sk,−→τ sim) ← CRSGen(1n), f ← A(crs), r2 is sampled uniformly
at random and CW2 ← E2(crs,−→τ sim, r, 0).

Note that g(crs,CW2, f(CW2), r2) = 0 only if either of the following is
true: (1) VNI did not output 1 on all tampered proofs T ∗, T ∗

1 , . . . , T ∗
n in

640 M. Ball et al.

f(CW2); or (2) the first 3 elements of CW2 and f(CW2) are not identical
(i.e., (k̂ , c, c)
= (k̂∗, c∗, c∗)). Now in case (1), both D(crs, f(CW2); r2), and
D′(crs,Ext(crs, sk, f(CW2)), f(CW2); r2) output 0. This is contradiction to
the claim that D(crs, f(CW2); r2)
= D′(crs,Ext(crs, sk, f(CW2)), f(CW2); r2).
In case (2), the extractor Ext(crs, sk, f(CW2)) outputs k∗

n+1 :=
Decryptsk(k̂∗

n+1) and D′(crs,Ext(crs, sk, f(CW2)), f(CW2); r2) outputs
b∗ = c∗ ⊕ k∗

n+1. Now, if D(crs, f(CW2); r2)
= D′(crs,Ext(crs, sk, f(CW2)),
f(CW2); r2) but VNI outputs 1 on all tampered proofs T ∗, T ∗

1 , . . . , T ∗
n in

f(CW2) then one-time simulation soundness of ΠNI = (CRSGenNI,PNI,
VNI,SimNI) does not hold.

Hardness of Db relative to Alternate Decoding.
1. Pr[g(crs,CW2, f(CW2), r2) = 1] ≈ Pr[g(crs,CW3, f(CW3), r3) = 1],
2. D′(crs,Ext(crs, sk, f(CW2)), f(CW2); r2) ≈ D′(crs,Ext(crs, sk, f(CW3)),

f(CW3); r3),
where (crs, sk,−→τ sim) ← CRSGen(1n), f ← A(crs), r2, r3 are sam-
pled uniformly at random, CW2 ← E2(crs,−→τ sim, r2, 0) and CW3 ←
E2(crs,−→τ sim, r3, 1).
Let X denote a random variable where X is sampled from D0 with proba-
bility 1/2 and X is sampled from D1 with probability 1/2 and let random
variable CW denote the output of E2 when X replaces x .
To show (1), assume Pr[g(crs,CW2, f(CW2), r2) = 1] and Pr[g(crs,CW3,
f(CW3), r3) = 1] differ by a non-negligible amount. This implies that takes
as input X , hardwires all other random variables, and outputs 1 in the case
that g(crs,CW, f(CW), r) = 1 and 0 otherwise, implying that it has non-
negligible correlation to the parity of its input X . We will show that the
above can be computed by an AC0 circuit with input X , thus contradicting
Theorem 2 from [8] which says that an AC0 circuit has at most negligible
correlation with parity of its input X , denoted P(X).
We construct the distribution of circuits C1

F , and C ∼ C1
F is drawn as:

1. Sample (crs, sk,−→τ sim) ← CRSGen(1n).
2. Sample tampering function f ← A(crs).
3. Sample c′, c′ uniformly at random.
4. Set k ′ = c′

1, . . . , c
′
n, c. For i ∈ [n], compute k̂′

i ← Encryptpk(k′
i) and com-

pute k̂′
n+1 ← Encryptpk(k′).

5. Sample r uniformly at random.
6. Sample simulated proofs [T

′β
i]β∈{0,1},i∈[n] and T ′ (as described in Fig. 8).

7. Output the following circuit C that has the following structure:
• hardwired variables: crs, sk, f , k̂

′
, c′, c′, r, [T

′β
i]β∈{0,1},i∈[n].

• input: X .
• computes and outputs: g(crs,CW, f(CW), r).

Note that given all the hardwired variables, computing CW is in AC0 since
all it does is, for i ∈ [n], select the correct simulated proof T

′xi
i based on

the corresponding input bit xi. Additionally, f in AC0 and g in AC0, since
bit-wise comparison is in AC0 and V SAT is in AC0. Thus, the entire circuit
is in AC0.

Non-malleable Codes from Average-Case Hardness 641

To show (2), assume D′(crs,Ext(crs, sk, f(CW2)), f(CW2); r2) and D′(crs,
Ext(crs, sk, f(CW3)), f(CW3); r3) have non-negligible statistical distance.
This implies that a circuit that takes as input X , hardwires all
other random variables, and outputs D′(crs,Ext(crs, sk, f(CW)), f(CW); r2)
has non-negligible correlation to the parity of X . We will show that
D′(crs,Ext(crs, sk, f(CW)), f(CW); r2) can be computed by an AC0 circuit
with input X , thus contradicting Theorem 2 from [8], which says that an
AC0 circuit has at most negligible correlation with the parity of its input X ,
denoted P(X).

We construct the distribution of circuits C2
F , and C ∼ C2

F is drawn as:
1. Sample (crs, sk,−→τ sim) ← CRSGen(1n).
2. Sample tampering function f ← A(crs).
3. Sample c′, c′ uniformly at random.
4. Set k ′ = c′

1, . . . , c
′
n, c. For i ∈ [n], compute k̂′

i ← Encryptpk(k′
i) and com-

pute k̂′
n+1 ← Encryptpk(k′).

5. Sample r uniformly at random.
6. Sample simulated proofs [T

′β
i]β∈{0,1},i∈[n] and T ′ (as described in Fig. 8).

7. Output the following circuit C that has the following structure:
• hardwired variables: crs, sk, f , k̂

′
, c′, c′, r, [T

′β
i]β∈{0,1},i∈[n].

• input: X .
• computes and outputs: D′(crs,Ext(crs, sk, f(CW)), f(CW); r2).

Note that Ext ∈ AC0 since decryption for E := (Gen,Encrypt,Decrypt) in
AC0. Moreover, as above, given all the hardwired variables, computing
CW is in AC0 since all it does is, for i ∈ [n], select the correct simulated
proof T

′xi
i based on the corresponding input bit xi. Additionally, f in

AC0 and D′ is in AC0, since xor of two bits is in AC0 and V SAT is in AC0.
Thus, the entire circuit is in AC0.

Analysis for more tampering classes is presented in Sect. 4.1 of full version [8]

5 Construction for Multi-bit Messages

The construction for encoding multi-bit messages is similar to that for encoding
a single bit, presented in Sect. 3. The construction repeats the procedure for
encoding single bit m times, for encoding m-bit messages and binds it with a
proof T .

Let Ψ(p, c, x, y, r, z) be defined as a function that takes as input a predicate
p, and variables c, x, y, r, z. If p(c, x, y, r) = 1, then Ψ outputs the m-bit string 0 .
Otherwise, Ψ outputs z.

Theorem 4. Let (E,D), E1, E2, Ext, D′ and g be as defined in Figs. 12, 13,
14, 15, 16 and 17. Let F be a computational class. If, for every pair of m-bit
messages b0, b1 and if, for every adversary A ∈ G outputting tampering functions
f ∈ F , all of the following hold:

642 M. Ball et al.

Let E = (Gen,Encrypt,Decrypt) be a public key encryption scheme
with perfect correctness (see Definition 7 in [8]). Let ΠNI =
(CRSGenNI,PNI,VNI,SimNI) be a non-interactive simulatable proof system
with soundness against adversaries A ∈ G (see Definition 5). Note that in
the CRS model, we implicitly assume that all algorithms take the CRS
as input, and for simplicity of notation, sometimes do not list the CRS
as an explicit input.

CRSGen(1n):

1. Choose (pk, sk) ← Gen(1n).
2. Choose [crsNIi,j , τ

i,j
sim](i,j)=(0,0),i∈[m],j∈[n] ← CRSGenNI(1n). Let −→crsNI :=

[crsNI
i,j](i,j)=(0,0),i∈[m],j∈[n] and let τ sim := [τ i,j

sim](i,j)=(0,0),i∈[m],j∈[n]

3. Output crs := (pk,−→crsNI).

Languages. We define the following languages:

– Lβ
i,j : For i ∈ [m], j ∈ [n], β ∈ {0, 1}, s := ([k̂

i
]i∈[m], c, c) ∈ Lβ

i,j iff
the (i, j)-th ciphertext ci

j := ki
j ⊕β (where c = [ci

j]i∈[m],j∈[n]) and the

(i, j)-th encryption k̂i
j (where k̂

i
= k̂i

1, . . . , k̂
i
n+1) is an encryption of

ki
j under pk (where pk is hardwired into the language).

– L: s := ([k̂
i
]i∈[m], c, c) ∈ L iff For each i ∈ [m], (xi

1, . . . , x
i
n) is in the

support of Dbi where:
1. For i ∈ [m], j ∈ [n], xi

j := ci
j ⊕ ki

j

2. bi := ci ⊕ ki
n+1 (where c := c1, . . . , cm)

3. k̂
i

is an encryption of ki
1, . . . , k

i
n+1 under pk (where pk is

hardwired into the language).

E(crs, b := b1, . . . , bm):

1. Sample x := x1, . . . ,xm ← Db, where for i ∈ [m], xi = xi
1, . . . , x

i
n.

2. Choose an m · (n + 1)-bit key k := [ki]i∈[m] = [ki
1, . . . , k

i
n, ki]i∈[m]

uniformly at random. For i ∈ [m], j ∈ [n + 1], compute k̂i
j ←

Encrypt(pk, ki
j). For i ∈ [m], let k̂

i
:= k̂i

1, . . . , k̂
i
n+1.

3. For i ∈ [m], j ∈ [n], compute ci
j := ki

j ⊕ xi
j . Let c := [ci

j]i∈[m],j∈[n].
4. For i ∈ [m], compute ci := ki ⊕ bi. Let c := [ci]i∈[m].
5. For i ∈ [m], j ∈ [n], compute a non-interactive, simulatable proof T i

j

proving ([k̂
i
]i∈[m], c, c) ∈ Lxi

j

i,j relative to crsNI
i,j .

6. Compute a non-interactive, simulatable proof T proving
([k̂

i
]i∈[m], c, c) ∈ L relative to crsNI0,0.

7. Output CW := ([k̂
i
]i∈[m], c, c, T, [(xi

j , T
i
j)]i∈[m],j∈[n]).

D(crs,CW):

1. Parse CW := ([k̂
i
]i∈[m], c, c, T, [(xi

j , T
i
j)]i∈[m],j∈[n])

2. Check that VNI outputs 1 on all proofs [T i
j]i∈[m],j∈[n], T , relative to

the corresponding CRS.
3. If yes, output [bi]i∈[m] such that xi

1...x
i
n is in the support of Dbi . If

not, output 0.

Fig. 12. Non-malleable code (CRSGen,E,D), secure against F tampering.

Non-malleable Codes from Average-Case Hardness 643

E1(crs,−→τ sim, r, b := b1, . . . , bm):

1. Sample x := x1, . . . ,xm ← Db, where for i ∈ [m], xi = xi
1, . . . , x

i
n.

2. Choose an m · (n + 1)-bit key k := [ki]i∈[m] = [ki
1, . . . , k

i
n, ki]i∈[m]

uniformly at random. For i ∈ [m], j ∈ [n + 1], compute k̂i
j ←

Encrypt(pk, ki
j). For i ∈ [m], let k̂

i
:= k̂i

1, . . . , k̂
i
n+1.

3. For i ∈ [m], j ∈ [n], compute ci
j := ki

j ⊕ xi
j . Let c := [ci

j]i∈[m],j∈[n].
4. For i ∈ [m], compute ci := ki ⊕ bi. Let c := [ci]i∈[m].
5. For i ∈ [m], j ∈ [n], simulate, using τ i,j

sim and r, a non-interactive proof

T
′i
j proving s := ([k̂

i
]i∈[m], c, c) ∈ Lxi

j

i,j , relative to crsNI
i,j .

6. Simulate, using τ0,0
sim and r, a non-interactive proof T ′ proving

s := ([k̂
i
]i∈[m], c, c) ∈ L, relative to crsNI0,0.

7. Output CW := ([k̂
i
]i∈[m], c, c, T

′, [(xi
j , T

′i
j)]i∈[m],j∈[n]).

Fig. 13. Encoding algorithm with simulated proofs.

E2(crs,−→τ sim, r, b := b1, . . . , bm):

1. Sample x := x1, . . . ,xm ← Db, where for i ∈ [m], xi = xi
1, . . . , x

i
n.

2. Choose [c
′i
j]i∈[m],j∈[n] uniformly at random. Let c′ := [c

′i
j]i∈[m],j∈[n].

3. Choose [c
′i]i∈[m] uniformly at random. Let c′ := [c

′i]i∈[m].
4. Set the m · (n + 1)-bit key k′ := [k

′i]i∈[m] = [c
′i
1 , . . . , c

′i
n , c

′i]i∈[m]. For
i ∈ [m], j ∈ [n + 1], compute k̂

′i
j ← Encrypt(pk, k

′i
j). For i ∈ [m], let

k̂
′i

:= k̂
′i
1 , . . . , k̂

′i
n+1.

5. For i ∈ [m], j ∈ [n], simulate, using τ i,j
sim and r, a non-interactive proof

T
′i
j proving s := ([k̂

i
]i∈[m], c, c) ∈ Lxi

j

i,j , relative to crsNI
i,j .

6. Simulate, using τ0,0
sim and r, a non-interactive proof T ′ proving s :=

([k̂
i
]i∈[m], c, c) ∈ L, relative to crsNI0,0.

7. Output CW := ([k̂
′i
]i∈[m], c

′, c′, T ′, [(xi
j , T

′i
j)]i∈[m],j∈[n]).

Fig. 14. Encoding algorithm with simulated proofs and encryptions.

Simulation of proofs.
1. Pr[g(crs,CW0, f(CW0), r0) = 1] ≈ Pr[g(crs,CW1, f(CW1), r1) = 1],
2. Ψ(g, crs,CW0, f(CW0), r0,D(crs, f(CW0); r0)) ≈ Ψ(g, crs,CW1, f(CW1),

r1,D(crs, f(CW1); r1)),
where (crs, sk,−→τ sim) ← CRSGen(1n), f ← A(crs), r0, r1 are sampled uni-
formly at random, CW0 ← E(crs, b0) and CW1 ← E1(crs,−→τ sim, r1, b0).

644 M. Ball et al.

Ext(crs, sk,CW):

1. Parse CW := ([k̂
i
]i∈[m], c, c, T, [(xi

j , T
i
j)]i∈[m],j∈[n]),

2. Output [Decrypt(sk, k̂i
n+1)]i∈[m].

Fig. 15. Extracting procedure Ext.

D′(crs, [ki]i∈[m],CW):

1. Parse CW := ([k̂
i
]i∈[m], , c, c, T, [(xi

j , T
i
j)]i∈[m],j∈[n]),

2. Check that VNI outputs 1 on all proofs [T i
j]i∈[m],j∈[n], T , relative to

the corresponding CRS,
3. For i ∈ [m], output bi := ki ⊕ ci.

Fig. 16. Alternate decoding procedure D′, given additional extracted key [ki]i∈[m] as
input.

g(crs,CW,CW∗, r):

1. Parse CW = ([k̂
i
]i∈[m], c, c, T, [(xi

j , T
i
j)]i∈[m],j∈[n]), CW∗ =

([k̂
∗i

]i∈[m], c
∗, c∗, T ∗, [(x∗i

j , T ∗i
j)]i∈[m],j∈[n]).

2. If (1) VNI outputs 1 on all proofs T ∗, [T ∗i
j)]i∈[m],j∈[n], relative to the

corresponding CRS; and (2) ([k̂
i
]i∈[m], c, c) = ([k̂

∗i
]i∈[m], c

∗, c∗), then
output 1. Otherwise output 0.

Fig. 17. The predicate g(crs,CW,CW∗, r).

Simulation of Encryptions.
1. Pr[g(crs,CW1, f(CW1), r1) = 1] ≈ Pr[g(crs,CW2, f(CW2), r2) = 1],
2. Ψ(g, crs,CW1, f(CW1), r1,D(crs, f(CW1); r1)) ≈ Ψ(g, crs,CW2, f(CW2),

r2,D(crs, f(CW2); r2)),
where (crs, sk,−→τ sim) ← CRSGen(1n), f ← A(crs), r1, r2 are sam-
pled uniformly at random, CW1 ← E1(crs,−→τ sim, r1, b0) and CW2 ←
E2(crs,−→τ sim, r2, b0).

Non-malleable Codes from Average-Case Hardness 645

Simulation Soundness.

Pr

[

D(crs, f(CW2); r2)
= D′(crs,Ext(crs, sk, f(CW2)), f(CW2); r2)
∧ g(crs,CW2, f(CW2), r2) = 0

]

≤ negl(n),

where (crs, sk,−→τ sim) ← CRSGen(1n), f ← A(crs), r2 is sampled uniformly
at random and CW2 ← E2(crs,−→τ sim, r, b0).

Hardness of Db relative to Alternate Decoding.
1. Pr[g(crs,CW2, f(CW2), r2) = 1] ≈ Pr[g(crs,CW3, f(CW3), r3) = 1],
2. For every Boolean function, represented by a circuit F over m vari-

ables, F◦D′(crs,Ext(crs, sk, f(CW2)), f(CW2); r2) ≈ F◦D′(crs,Ext(crs, sk,
f(CW3)), f(CW3); r3),

where (crs, sk,−→τ sim) ← CRSGen(1n), f ← A(crs), r2, r3 are sampled uni-
formly at random, CW2 ← E2(crs,−→τ sim, r2, b0) and CW3 ← E2(crs,−→τ sim,
r3, b1).

Then the construction presented in Fig. 12 is a non-malleable code for class
F against adversaries A ∈ G.

We present the proof of Theorem 4 in Sect. 5.1 of the full version [8]

6 Efficient, Multi-bit NMC for AC0

Theorem 5. Π = (CRSGen,E,D) (presented in Fig. 12) is an m-bit, compu-
tational, non-malleable code in the CRS model against tampering by depth-
(mlogδ m/2− c) circuits with unbounded fan-in and size δ · log m

log log m − p(n) (where
c is constant and p(·) is a fixed polynomial), and m is such that n = m3+5δ, if
the underlying components are instantiated in the following way:

– E := (Gen,Encrypt,Decrypt) is a public key encryption scheme with perfect
correctness and decryption in AC0.

– ΠNI := (CRSGenNI,PNI,VNI,SimNI) is a same-string, weak one-time
simulation-sound NIZK with verifier in AC0.

– For b ∈ {0, 1}, Db is the distribution that samples bits x1 . . . xn uniformly at
random, conditioned on x1 ⊕ · · · ⊕ xn = b.

For as in the one-bit case, given Theorem 1, proof systems ΠNI as above exist,
under the assumption that same-string, weak one-time simulation-sound NIZK
with (arbitrary polynomial-time) deterministic verifier exists. Refer to Sect. 4 of
the full version [8] for a discussion of how such NIZK and public key encryp-
tion can be instantiated. The proof of the Theorem 5, is presented as proof for
Theorem 11 in [8], followed by the analysis for tampering with decision trees in
Sect. 6.1.

646 M. Ball et al.

7 One-Bit NMC Against Streaming Adversaries

In this section, we show that our generic construction yields efficient uncondi-
tional NMC resilient against the tampering class F corresponding to streaming
adversaries with memory o(n′′).

Let n be the parameter for the hard distribution described below, n′ be the
parameter for the semantically secure parity based encryption scheme against
streaming adversaries with o(n′) storage (described in Sect. 7.2 of [8]), and n′′ be
the parameter for the non-interactive simulatable proof system with streaming
verifier (described in Sect. 7.4 of [8]). Such that n ∈ ω(n′′) and n′ ∈ ω(n).

The Hard Distribution Db (parameter n). Let n = (μ + 1)2 − 1. For
b ∈ {0, 1}, a draw from the distribution Db is defined as follows: Choose a parity
χS uniformly at random from the set of all (non-zero) parities over μ variables
(∅
= S ⊆ [μ]). Choose y1, . . . , yμ ∼ {0, 1}μ uniformly at random. Choose y
uniformly at random, conditioned on χS(y) = b. Output the following n-bit
string: [(yi, χS(yi)]i∈[μ]||y.

The proof of the hardness of Db described above, along with the details of the
parity-based encryption scheme, and non-interactive simulatable proof system
with streaming verifier are described in Sects. 7.1, 7.2, and 7.4 of [8] respectively.

Theorem 6. Π = (E,D) (presented in Fig. 6) is a one-bit, unconditional non-
malleable code against streaming adversaries with space o(n′′), if the underlying
components are instantiated in the following way:

– E := (Encrypt,Decrypt) is the parity based encryption scheme (with parameter
n′ := n′(n)).

– ΠNI := (PNI,VNI,SimNI) the simulatable proof system with streaming verifier
with parameter n′′ := n′′(n).

– For b ∈ {0, 1}, Db is the distribution described above (with parameter n).

We wish to emphasize that no CRS or computational assumptions are needed
for this result. Therefore, we can assume that the adversary A outputting tam-
pering function f is computationally unbounded. Moreover, the result extends
trivially for any number m of bits and all other parameters (n, n′, n′′) can remain
the same and do not need to be increased. To see this, note that the only one
additional property that needs to be proved in the multi-bit case (regarding
hardness of Db relative to alternate decoding in Theorem 4. But in the bounded,
it can be achieved without requiring any additional memory beyond what is
required in the one-bit case. We refer the interested readers to Sect. 7.5 of [8] for
further details.

Acknowledgments. Weare grateful toBenjaminKuykendall for his helpful comments.
The first and fourth authors are supported in part by the Defense Advanced Research

Project Agency (DARPA) and Army Research Office (ARO) under Contract #W911NF-
15-C-0236, and NSF grants #CNS-1445424 and #CCF-1423306 and the Leona M. &
Harry B. Helmsley Charitable Trust. The second and third authors are supported in part
by an NSF CAREER Award #CNS-1453045, by a research partnership award from Cisco

Non-malleable Codes from Average-Case Hardness 647

and by financial assistance award 70NANB15H328 from the U.S. Department of Com-
merce, National Institute of Standards and Technology. This work was performed, in
part, while the first author was visiting IDC Herzliya’s FACT center and supported in
part by ISF grant no. 1790/13 and the Check Point Institute for Information Security.
Any opinions, findings and conclusions or recommendations expressed are those of the
authors and do not necessarily reflect the views of the the Defense Advanced Research
Projects Agency, Army Research Office, the National Science Foundation, or the U.S.
Government.

References

1. Aggarwal, D., Agrawal, S., Gupta, D., Maji, H.K., Pandey, O., Prabhakaran, M.:
Optimal computational split-state non-malleable codes. In: [43], pp. 393–417

2. Aggarwal, D., Dodis, Y., Kazana, T., Obremski, M.: Non-malleable reductions
and applications. In: Servedio, R.A., Rubinfeld, R. (eds.) 47th ACM STOC, pp.
459–468. ACM Press, June 2015

3. Aggarwal, D., Dodis, Y., Lovett, S.: Non-malleable codes from additive combi-
natorics. In: Shmoys, D.B. (ed.) 46th ACM STOC, pp. 774–783. ACM Press,
May/June 2014

4. Aggarwal, D., Dziembowski, S., Kazana, T., Obremski, M.: Leakage-resilient non-
malleable codes. In: [27], pp. 398–426

5. Agrawal, S., Gupta, D., Maji, H.K., Pandey, O., Prabhakaran, M.: Explicit non-
malleable codes against bit-wise tampering and permutations. In: Gennaro, R.,
Robshaw, M. (eds.) CRYPTO 2015, Part I. LNCS, vol. 9215, pp. 538–557. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-47989-6 26

6. Agrawal, S., Gupta, D., Maji, H.K., Pandey, O., Prabhakaran, M.: A rate-
optimizing compiler for non-malleable codes against bit-wise tampering and per-
mutations. In: [27], pp. 375–397

7. Ball, M., Dachman-Soled, D., Kulkarni, M., Malkin, T.: Non-malleable codes for
bounded depth, bounded fan-in circuits. In: Fischlin, M., Coron, J.-S. (eds.) EURO-
CRYPT 2016, Part II. LNCS, vol. 9666, pp. 881–908. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-49896-5 31

8. Ball, M., Dachman-Soled, D., Kulkarni, M., Malkin, T.: Non-malleable codes from
average-case hardness: AC0, decision trees, and streaming space-bounded tamper-
ing. Cryptology ePrint Archive, Report 2017/1061 (2017). http://eprint.iacr.org/
2017/1061

9. Bogdanov, A., Lee, C.H.: Homomorphic evaluation requires depth. In: [42], pp.
365–371

10. Chabanne, H., Cohen, G.D., Flori, J., Patey, A.: Non-malleable codes from the
wire-tap channel. CoRR abs/1105.3879 (2011)

11. Chandran, N., Goyal, V., Mukherjee, P., Pandey, O., Upadhyay, J.: Block-wise
non-malleable codes. Cryptology ePrint Archive, Report 2015/129 (2015). http://
eprint.iacr.org/2015/129

12. Chandran, N., Goyal, V., Mukherjee, P., Pandey, O., Upadhyay, J.: Block-wise non-
malleable codes. In: Chatzigiannakis, I., Mitzenmacher, M., Rabani, Y., Sangiorgi,
D. (eds.) ICALP 2016. LIPIcs, vol. 55, pp. 31:1–31:14. Schloss Dagstuhl, July 2016

13. Chandran, N., Kanukurthi, B., Ostrovsky, R.: Locally updatable and locally decod-
able codes. In: [46], pp. 489–514

14. Chandran, N., Kanukurthi, B., Raghuraman, S.: Information-theoretic local non-
malleable codes and their applications. In: [43], pp. 367–392

https://doi.org/10.1007/978-3-662-47989-6_26
https://doi.org/10.1007/978-3-662-49896-5_31
http://eprint.iacr.org/2017/1061
http://eprint.iacr.org/2017/1061
http://eprint.iacr.org/2015/129
http://eprint.iacr.org/2015/129

648 M. Ball et al.

15. Chattopadhyay, E., Goyal, V., Li, X.: Non-malleable extractors and codes, with
their many tampered extensions. In: [52], pp. 285–298

16. Chattopadhyay, E., Li, X.: Non-malleable codes and extractors for small-depth
circuits, and affine functions. In: Hatami, H., McKenzie, P., King, V. (eds.) 49th
ACM STOC, pp. 1171–1184. ACM Press, June 2017

17. Chattopadhyay, E., Zuckerman, D.: Non-malleable codes against constant split-
state tampering. In: 55th FOCS, pp. 306–315. IEEE Computer Society Press,
October 2014

18. Chattopadhyay, E., Zuckerman, D.: Explicit two-source extractors and resilient
functions. In: [52], pp. 670–683

19. Cheraghchi, M., Guruswami, V.: Capacity of non-malleable codes. In: Naor, M.
(ed.) ITCS 2014, pp. 155–168. ACM, January 2014

20. Cheraghchi, M., Guruswami, V.: Non-malleable coding against bit-wise and split-
state tampering. In: [46], pp. 440–464

21. Choi, S.G., Kiayias, A., Malkin, T.: BiTR: built-in tamper resilience. In: Lee,
D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 740–758. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0 40

22. Coretti, S., Dodis, Y., Tackmann, B., Venturi, D.: Non-malleable encryption: sim-
pler, shorter, stronger. In: [42], pp. 306–335

23. Coretti, S., Maurer, U., Tackmann, B., Venturi, D.: From single-bit to multi-bit
public-key encryption via non-malleable codes. In: [27], pp. 532–560

24. Dachman-Soled, D., Kulkarni, M., Shahverdi, A.: Tight upper and lower bounds for
leakage-resilient, locally decodable and updatable non-malleable codes. In: Fehr,
S. (ed.) PKC 2017, Part I. LNCS, vol. 10174, pp. 310–332. Springer, Heidelberg
(2017). https://doi.org/10.1007/978-3-662-54365-8 13

25. Dachman-Soled, D., Liu, F.H., Shi, E., Zhou, H.S.: Locally decodable and updat-
able non-malleable codes and their applications. In: [27], pp. 427–450

26. De Wolf, R.: A brief introduction to fourier analysis on the boolean cube. Theory
Comput. Grad. Surv. 1, 1–20 (2008)

27. Dodis, Y., Nielsen, J.B. (eds.): TCC 2015, Part I. LNCS, vol. 9014. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46494-6

28. Döttling, N., Nielsen, J.B., Obremski, M.: Information theoretic continuously non-
malleable codes in the constant split-state model. Cryptology ePrint Archive,
Report 2017/357 (2017). http://eprint.iacr.org/2017/357

29. Dwork, C., Naor, M., Reingold, O.: Immunizing encryption schemes from decryp-
tion errors. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 342–360. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-24676-3 21

30. Dziembowski, S., Kazana, T., Obremski, M.: Non-malleable codes from two-source
extractors. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS,
vol. 8043, pp. 239–257. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-40084-1 14

31. Dziembowski, S., Pietrzak, K., Wichs, D.: Non-malleable codes. In: Yao, A.C.C.
(ed.) ICS 2010, pp. 434–452. Tsinghua University Press, January 2010

32. Faust, S., Hostáková, K., Mukherjee, P., Venturi, D.: Non-malleable codes for
space-bounded tampering. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part
II. LNCS, vol. 10402, pp. 95–126. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63715-0 4

33. Faust, S., Mukherjee, P., Nielsen, J.B., Venturi, D.: Continuous non-malleable
codes. In: [46], pp. 465–488

https://doi.org/10.1007/978-3-642-25385-0_40
https://doi.org/10.1007/978-3-662-54365-8_13
https://doi.org/10.1007/978-3-662-46494-6
http://eprint.iacr.org/2017/357
https://doi.org/10.1007/978-3-540-24676-3_21
https://doi.org/10.1007/978-3-540-24676-3_21
https://doi.org/10.1007/978-3-642-40084-1_14
https://doi.org/10.1007/978-3-642-40084-1_14
https://doi.org/10.1007/978-3-319-63715-0_4
https://doi.org/10.1007/978-3-319-63715-0_4

Non-malleable Codes from Average-Case Hardness 649

34. Faust, S., Mukherjee, P., Nielsen, J.B., Venturi, D.: A tamper and leakage resilient
von Neumann architecture. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp.
579–603. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-
2 26

35. Faust, S., Mukherjee, P., Venturi, D., Wichs, D.: Efficient non-malleable codes and
key-derivation for poly-size tampering circuits. In: Nguyen, P.Q., Oswald, E. (eds.)
EUROCRYPT 2014. LNCS, vol. 8441, pp. 111–128. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-642-55220-5 7

36. Goyal, V., Pandey, O., Richelson, S.: Textbook non-malleable commitments. In:
[52], pp. 1128–1141

37. Jafargholi, Z., Wichs, D.: Tamper detection and continuous non-malleable codes.
In: [27], pp. 451–480

38. Kalai, Y.T., Kanukurthi, B., Sahai, A.: Cryptography with tamperable and leaky
memory. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 373–390.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9 21

39. Kanukurthi, B., Obbattu, S.L.B., Sekar, S.: Four-state non-malleable codes with
explicit constant rate. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part II. LNCS,
vol. 10678, pp. 344–375. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-70503-3 11

40. Kanukurthi, B., Obbattu, S.L.B., Sekar, S.: Non-malleable randomness encoders
and their applications. Cryptology ePrint Archive, Report 2017/1097 (2017).
https://eprint.iacr.org/2017/1097

41. Kiayias, A., Liu, F.H., Tselekounis, Y.: Practical non-malleable codes from l-more
extractable hash functions. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers,
A.C., Halevi, S. (eds.) ACM CCS 2016, pp. 1317–1328. ACM Press, October 2016

42. Kushilevitz, E., Malkin, T. (eds.): TCC 2016, Part I. LNCS, vol. 9562. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49096-9

43. Kushilevitz, E., Malkin, T. (eds.): TCC 2016, Part II. LNCS, vol. 9563. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49099-0

44. Li, X.: Improved two-source extractors, and affine extractors for polylogarithmic
entropy. In: Dinur, I. (ed.) 57th FOCS, pp. 168–177. IEEE Computer Society Press,
October 2016

45. Lindell, Y.: A simpler construction of CCA2-secure public-key encryption under
general assumptions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp.
241–254. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9 15

46. Lindell, Y. (ed.): TCC 2014. LNCS, vol. 8349. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-642-54242-8

47. Liu, F.-H., Lysyanskaya, A.: Tamper and leakage resilience in the split-state model.
In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 517–
532. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5 30

48. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen
ciphertext attacks. In: 22nd ACM STOC, pp. 427–437. ACM Press, May 1990

49. Raz, R.: Fast learning requires good memory: A time-space lower bound for parity
learning. CoRR abs/1602.05161 (2016)

50. Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In: 40th FOCS, pp. 543–553. IEEE Computer Society Press,
October 1999

https://doi.org/10.1007/978-3-662-46447-2_26
https://doi.org/10.1007/978-3-662-46447-2_26
https://doi.org/10.1007/978-3-642-55220-5_7
https://doi.org/10.1007/978-3-642-22792-9_21
https://doi.org/10.1007/978-3-319-70503-3_11
https://doi.org/10.1007/978-3-319-70503-3_11
https://eprint.iacr.org/2017/1097
https://doi.org/10.1007/978-3-662-49096-9
https://doi.org/10.1007/978-3-662-49099-0
https://doi.org/10.1007/3-540-39200-9_15
https://doi.org/10.1007/978-3-642-54242-8
https://doi.org/10.1007/978-3-642-54242-8
https://doi.org/10.1007/978-3-642-32009-5_30

650 M. Ball et al.

51. Tal, A.: Tight bounds on the fourier spectrum of AC0. In: O’Donnell, R. (ed.) 32nd
Computational Complexity Conference, CCC 2017, Riga, Latvia, 6–9 July 2017.
LIPIcs, vol. 79, pp. 15:1–15:31. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik
(2017)

52. Wichs, D., Mansour, Y. (eds.): 48th ACM STOC. ACM Press, June 2016

Provable Symmetric Cryptography

Naor-Reingold Goes Public:
The Complexity of Known-Key Security

Pratik Soni(B) and Stefano Tessaro

University of California, Santa Barbara, USA
{pratik soni,tessaro}@cs.ucsb.edu

Abstract. We study the complexity of building secure block ciphers in
the setting where the key is known to the attacker. In particular, we
consider two security notions with useful implications, namely public-
seed pseudorandom permutations (or psPRPs, for short) (Soni and Tes-
saro, EUROCRYPT ’17) and correlation-intractable ciphers (Knudsen
and Rijmen, ASIACRYPT ’07; Mandal, Seurin, and Patarin, TCC ’12).

For both these notions, we exhibit constructions which make only two
calls to an underlying non-invertible primitive, matching the complex-
ity of building a pseudorandom permutation in the secret-key setting.
Our psPRP result instantiates the round functions in the Naor-Reingold
(NR) construction with a secure UCE hash function. For correlation
intractability, we instead instantiate them from a (public) random func-
tion, and replace the pairwise-independent permutations in the NR con-
struction with (almost) O(k2)-wise independent permutations, where k
is the arity of the relations for which we want correlation intractability.

Our constructions improve upon the current state of the art, requir-
ing five- and six-round Feistel networks, respectively, to achieve psPRP
security and correlation intractability. To do so, we rely on techniques
borrowed from Impagliazzo-Rudich-style black-box impossibility proofs
for our psPRP result, for which we give what we believe to be the first
constructive application, and on techniques for studying randomness with
limited independence for correlation intractability.

Keywords: Foundations · Known-key security · Pseudorandomness
psPRPs · Correlation-intractability · Limited independence

1 Introduction

1.1 Overview and Motivation

Block ciphers are traditionally used within modes of operation where they are
instantiated under a secret key. Provable security results typically assume them
to be good pseudorandom permutations (PRPs). This has motivated a large body
of theoretical works on building PRPs from weaker or less structured compo-
nents, e.g., through the Feistel construction and its variants [24,28,33].

Block ciphers are however also frequently used in settings where the key is
fixed, or at least known. We refer to this as the known-key setting. For instance,
c© International Association for Cryptologic Research 2018
J. B. Nielsen and V. Rijmen (Eds.): EUROCRYPT 2018, LNCS 10822, pp. 653–684, 2018.
https://doi.org/10.1007/978-3-319-78372-7_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78372-7_21&domain=pdf

654 P. Soni and S. Tessaro

it is common to rely on permutations1 or (equivalently) fixed-key ciphers to build
hash functions [12,35], authenticated encryption [3], PRNGs [13,23], and even
more involved objects, such as garbling schemes [8].

As there is no secret key to rely upon, it is less clear what kind of security
properties block ciphers should satisfy in this setting. Hence, security proofs
typically assume the cipher to behave like an ideal random permutation on each
key. A number of design paradigms for block ciphers (cf. e.g. [1,17–19,21,25] to
mention a few results) are therefore analyzed in terms of indifferentiability [31],
an ideal-model property which implies that for single-stage security games, the
cipher inherits all properties of an ideal cipher. Still, the resulting proofs are
notoriously involved, and the constructions more complex than seemingly nec-
essary for the applications in which they are used. This is in sharp contrast with
hash functions, where indifferentiability has helped shaping real-world designs.

Our contributions. The only two exceptions to the above indifferentiability-
based approach we are aware of are the notions of a public-seed pseudorandom
permutation (psPRP) [37] and of correlation-intractable block ciphers [27,29].
Block ciphers satisfying variants of both have been shown to be sufficient to
instantiate several schemes that otherwise only enjoyed security proofs assuming
the cipher is ideal. Yet, the complexity of actually building these primitives from
simpler objects is not understood.

In this work, we present constructions for each of the notions which only
make two calls to an underlying non-invertible round function. All of our con-
structions are instantiations of the Naor-Reingold construction [33], which is the
most efficient known approach to build a secure PRP, and we thus show that it
retains meaningful properties when the seed is made public under appropriate
assumptions on the round functions. The previously known best constructions
require Feistel networks with five rounds (for psPRPs) [37] and six rounds (for
correlation intractability) [29], and in both cases the security proofs relied indi-
rectly on (weakened) forms of indifferentiability, inheriting seemingly unneces-
sary complexity. Here, we introduce substantially different techniques to bypass
limitations of existing proofs, borrowing from areas such as black-box separations
and applications of limited-independence.

We stress that our focus here is on foundations, and more specifically, break-
ing complexity barriers. While we follow the good practice of giving concrete
bounds, we make no claims that these are suitable for practical applications. We
hope however to spur quantitative research in this direction.

1.2 Public-Seed Pseudorandomness via the NR Construction

We start with our results on public-seed pseudorandom permutations (or psPRPs,
for short), a notion recently introduced in [37], which considers a family of per-
mutations E on n-bit strings, indexed by a seed s. (This could be obtained from
a block cipher.) Ideally, we would like Es(·) and E−1

s (·) to be indistinguishable
1 Permutations, as in the sponge construction, correspond to the extreme case where

there is only one possible key to choose from.

Naor-Reingold Goes Public: The Complexity of Known-Key Security 655

from ρ and ρ−1 (for a random permutation ρ), even if the seed s is known to the
distinguisher. This is obviously impossible, yet an approach to get around this
borrowed from the UCE framework [6] is to split the distinguisher into two stages.
A first stage, called the source S, gets access to either (Es,E

−1
s) or (ρ, ρ−1), but

does not know s, and then passes on some leakage L to a second-stage PPT D,
the distinguisher, which learns s, but has no access to the oracle any more. If E
is indeed secure, D will not be able to guess which one of the two oracles S had
access to. This is very similar to the security definition of a UCE H, the only
difference is that there the source accesses either Hs or a random function f .

Clearly, nothing is gained if L is unrestricted, and thus restrictions on S are
necessary. Two classes of sources were in particular considered in [37], unpre-
dictable and reset-secure sources, inspired by analogous notions for UCEs. The
former demands that when the source S accesses ρ and ρ−1, an (unbounded)2

predictor P given the leakage L cannot then guess any of S’s queries (and
their inverses). In contrast, the latter notion demands that a computationally
unbounded distinguisher R, given L cannot tell apart whether it is given oracle
access to the same permutation ρ, or an independent one, within a polynomial
number of queries. Being a psPRP for all unpredictable sources is a potentially
weaker assumption than being a psPRP for reset-secure sources, since every
unpredictable source is reset-secure, but not vice versa.

Applications. PsPRPs for such restricted source classes are a versatile
notion. For example, a psPRP for all reset-secure sources can be used to
instantiate the permutation within permutation-based hash functions admitting
indifferentiability-based security proofs, such as the sponge construction [12]
(which underlies SHA-3), turning them into a UCE-secure hash function suf-
ficient for a number of applications, studied in multiple works [5,6,11,20,30].
Also, [37] shows that psPRPs for unpredictable sources are sufficient to instan-
tiate garbling schemes obtained from fixed-key blocks ciphers [8].

Constructing psPRPs: Previous work. But do psPRPs exist at all? Soni
and Tessaro [37] show that they are implied by sufficiently strong UCEs:

Theorem (Informal) [37]. The five-round Feistel construction, with round
functions instantiated from a UCE H for reset-secure sources, is a psPRP for
reset-secure sources.

This left two obvious questions open, however: (1) Whether the number
of rounds can be reduced, and (2) whether the same holds for unpredictable
sources, too. The techniques of [37], based on proving a weaker notion of indif-
ferentiability for five-round Feistel, fail to help answering both questions.

Our contributions. We solve both questions, and even more in fact, show-
ing that the Naor-Reingold (NR) construction [33] solves both (1) and (2). In

2 Computational versions of these notions can be defined, but the resulting notions
can easily be shown impossible under the assumption that IO exists [14], and are
ignored in this paper.

656 P. Soni and S. Tessaro

particular, let H be a family of functions from n + 1 bits to n, and let P be a
family of permutations on 2n bit strings. Then, the NR construction on seed
s = (s, sin, sout) and input u ∈ {0, 1}2n, outputs v ∈ {0, 1}2n, where

x0 ‖x1 ← Psin(u) , x2 ← Hs(0 ‖x1) ⊕ x0,

x3 ← Hs(1 ‖x2) ⊕ x1 , v ← P−1
sout(x3 ‖x2).

The key point here is that P only needs to satisfy a weak non-cryptographic
property, namely that for a random s and for any distinct u �= u′, the right
halves of Ps(u) and Ps(u′) only collide with negligible probability. Therefore,
only two calls to a “cryptographically hard” round function H are made. Naor
and Reingold [33] showed that NR is a (strong) PRP whenever H is a pseudo-
random function. Here, we show the following public-seed counterparts:

Theorems 1 and 2 (Informal). The NR construction, with round functions
instantiated with a UCE H for X-sources, is a psPRP for X-sources, where
X ∈ {reset-secure, unpredictable}.

A detailed overview of our techniques is given below in Sect. 1.4. We remark
here that such UCEs are of course strong, and the question of basing these on
simpler assumptions is wide open. Still, we believe such results to be very impor-
tant: First off, they show relations among notions, and getting a UCE (without
any injectivity structure) is possibly simpler in practice than in theory (i.e., using
the compression function of SHA-256). Second, even if we instantiate H from a
random oracle (which gives a good UCE [6]), the result is useful, as this would
give us a simple instantiation of a (seeded) permutation in applications which
are not even known to follow from full-fledged indifferentiability, as discussed by
Mittelbach [32].

1.3 Correlation Intractability

The notion of correlation intractability (CI) of hash functions was introduced by
Canetti et al. [15] as a weakening of a random oracle. CI naturally extends to
permutations and block ciphers [27,29]: Given the seed s, an adversary should
not be able to find an input-output pair (u, v) such that Es(u) = v and such that
(u, v) ∈ R, where R is a hard-to-satisfy relation for a truly random permutation,
a so-called evasive relation. This, in turn, can be generalized to k-ary relations,
where k input-output pairs are to be provided. CI is well-known not to hold in
the standard model for arbitrary evasive relations.3 Therefore, here, we target
constructions in ideal models.

Applications. CI has important applications – for example, let E be a permu-
tation family on 2n-bit strings. Then, for n < m < 2n, consider the function
family H from m bits to n bits such that

Hs(x) = Es(x ‖ 02n−m)[1 . . . n],
3 Though, of course, it could be true for specific interesting relations.

Naor-Reingold Goes Public: The Complexity of Known-Key Security 657

i.e., this outputs the first n bits of Es(x ‖ 02n−m). Then, it is not too hard
to show that if E satisfies CI for evasive binary relations, then H is collision
resistant – indeed, a collision yields two distinct pairs (u1, v1), (u2, v2) where
u1[m + 1 . . . 2n] = u2[m + 1 . . . 2n] = 02n−m, whereas v1[1 . . . n] = v2[1 . . . n].
Along similar lines, one can prove that H can be used to instantiate the Fiat-
Shamir transform [22] whenever E satisfies CI for unary relations. And so on.

Correlation intractability for Feistel networks. Indifferentiability is
easily seen to imply CI, and therefore, by [19], the Feistel construction with
8 rounds is correlation intractable. In fact, Mandal et al. [29] observed that a
weaker notion of indifferentiability, called sequential indifferentiability, is suffi-
cient for CI, and could show that 6 rounds are enough. It is known that the
5-round Feistel construction is not correlation intractable for evasive 4-ary rela-
tions (an attack was given in [29]). Other weaker notions of indifferentiability are
known to imply CI, but do no appear to lead to any complexity improvements
for constructions from non-invertible primitives [2,16].

Our results. We study the correlation intractability of the NR construction
described above where the two calls to H are replaced by two calls to (seedless)
public random function f from n + 1 to n bits, and the seed of the construction
only consists of the seeds for P. (This is similar to the model of Ramzan and
Reyzin [34], although they consider PRP security, and secret seeds.)

In general, this basic form of the NR construction cannot be correla-
tion intractable – indeed, P can be instantiated by one-round Feistel with a
pairwise-independent round function, and generic attacks against the correla-
tion intractability of four-round Feistel would still apply. We show however the
following result:

Theorem 3 (Informal). For any constant k = O(1), if P−1 is an almost
O(k2)-wise independent permutation, then the NR construction is correlation
intractable for every k-ary evasive relation.

For unary relations (i.e., k = 1), we can in fact show that instantiating P with
one-round Feistel using a 10-wise independent round function suffices. As this
is effectively a four-round Feistel network, this confirms that no generic attacks
exist for unary relations. Our result extends to non-constant k, however under
some restrictions on the class of evasive relations for which we can prove corre-
lation intractability. We believe an important part of our result is the technique
we use, which gives a surprising paradigm to amplify CI unconditionally which
we discuss below in Sect. 1.5.

Limitations. In contrast to existing 6-round results, our result is weaker in
that it only covers evasive relations fully if k = O(1). We are not aware of
counter examples showing attacks for larger k’s, but our proof inherently fails.
We note however that most applications of correlation intractability only require
constant arity, and we leave the question of assessing whether six calls to a
random function are necessary for arbitrary arity for future work.

658 P. Soni and S. Tessaro

1.4 Technical Overview – psPRPs

Let us briefly recall the setting: For some PPT source S, which queries a per-
mutation oracle on 2n-bit strings to produce a leakage L, we need to show that
any PPT distinguisher D which learns L and s = (s, sin, sout) cannot tell apart
whether S was accessing NR using a UCE H (with seed s) or a truly random
permutation. We assume S is either (statistically) unpredictable (in Theorem 1)
or reset-secure (in Theorem 2).

The source S. The natural approach we follow is to build another source, S
from S, for which H should be a secure UCE. This source thus accesses an oracle
O implementing a function from n + 1 to n bits. It first samples seeds sin, sout

for P, and then simulates an execution of S. The oracle calls by the latter are
processed by evaluating the NR construction using sin, sout, and the oracle O(·)
in lieu of H(s, ·). Finally, when S produces its output L, S outputs (L, sin, sout).
We will show the following two facts:

– Fact 1. If S is unpredictable (w.r.t. the psPRP notion), then S is unpre-
dictable (w.r.t. the UCE notion).

– Fact 2. If S is reset-secure (w.r.t. the psPRP notion), then S is reset-secure
(w.r.t. the UCE notion).

Theorems 1 and 2 follow from Facts 1 and 2, respectively, by a fairly straight-
forward application of the (classical) indistinguishability of the NR construction
with random round functions.4

The unpredictable case. Our approach to establish Fact 1 is inspired by an
elegant proof of secure domain extension for UCEs via Wegman-Carter MACs [7].
(The case of reset-secure sources will be more involved and use new techniques.)

Assume, towards a contradiction, that S is not unpredictable; then there
exists a strategy (not necessarily efficient) that given L and sin and sout, guesses
one of the inner oracle queries of S with non-negligible probability ε, when
S’s oracle is a random function from n + 1 to n bits. Imagine now that given
(L, sin, sout) from S, we resample an execution of S (which in particular means
re-sampling the oracle used by it) consistent with outputting (L, sin, sout), and
look at the inner oracle queries in this virtual, re-sampled execution. Then, one
can show that the real and the virtual executions are likely to share an oracle
query, with probability roughly at least ε2, for our strategy to guess a query
must be equally successful on the virtual execution.

We exploit this idea to build a predictor for the original source S, contra-
dicting our hypothesis it is unpredictable. Note that S runs with a random
permutation as its oracle, and produces leakage L. Imagine now we sample fresh
seeds sin, sout for P, and for each permutation query by S defining an input-
output pair (u, v), we define “fake” inputs x0, x1 from x0 ‖x1 = Psin(u) and

4 A minor caveat is that we need indistinguishability even when sin and sout are revealed
at the end of the interaction. We will show this to be true.

Naor-Reingold Goes Public: The Complexity of Known-Key Security 659

x3 ‖x2 = Psout(v). Then, the indistinguishability of the NR construction from
a random permutation, and the construction of S, implies that if we resample
a virtual execution of S consistent with leakage L, and compute the resulting
fake inputs using sin and sout, then the real and the re-sampled execution will
share a fake input with probability approx. ε2. The properties imposed on P then
imply that with probability roughly ε2 the real and the re-sampled execution
must share the input (or output) of a permutation query. This leads naturally
to a predictor that just re-samples an execution consistent with the leakage, and
picks them as its prediction.

Reset-security. The case of reset-security is somewhat harder. Here we start
from the premise that S is not reset-secure: Hence, there exists an adversary
R which receives L, sin, sout from S, and can distinguish (with non-negligible
advantage ε) being given access to the same random f : {0, 1}n+1 → {0, 1}n

used by S from being given access to an independent f ′. From this, we would
like to build an adversary R which receives L from S, and can distinguish the
setting where R and S are given access to the same random permutation ρ, from
a setting where they access independent permutations ρ, ρ′.

The challenge here is that we want to simulate R correctly, by using a per-
mutation oracle ρ/ρ′ rather than f/f ′. To better see why this is tricky, say S
is the source that queries its permutation oracle on a random 2n-bit string u,
obtaining output v, and leaks L = (u, v). (This defines the corresponding S.)5

A clever R on input (L = (u, v), sin, sout) could do the following: It computes
x0 ‖x1 ← P(sin, u) and x3 ‖x2 ← P(sout, v). Then, it queries x1 to its oracle,
and outputs 1 iff the output equals x0 ⊕ x2. This should always be true when R
accesses f , and almost never when it accesses f ′.

The natural proof approach would now attempt to build R which runs R
accessing a simulated oracle consistent with the NR construction on the permu-
tation queries made by S. However, the problem is that generically R does not
know which queries S has made. Previous work [37] handled this by requiring the
construction to satisfy a weaker notion of indifferentiability, called CP-sequential
indifferentiability, which essentially implies that there exists a simulator that can
simulate f consistently by accessing ρ and ρ−1 only, and only needs to know the
queries R makes to f . This would not work with NR and our R, as the query x1

is actually uniformly random, and the simulator would likely fail to set x0 ⊕ x2

as the right output. This is why the approach of [37] ends up using the 5-round
Feistel construction, as here R’s attempt to evaluate the construction are readily
detected, and answered consistently.

Our proof strategy via heavy-query sampling. Our main observation
is that indifferentiability is an overkill in this setting. There is no reason R
should act adversarially to the simulator. Even more so, we can use everything
R knows, namely L, to our advantage! To do this, we use techniques borrowed

5 The reader should not be confused: S is clearly not reset-secure, but remember we
are in the setting of a proof by contradiction, so the reduction must work here, too.

660 P. Soni and S. Tessaro

from impossibility proofs in the random oracle model [4,26]. Namely, R, on input
L from S, first performs a number of permutation queries which are meant to
include all of S’s likely queries to its oracle, at least when R and S are run
with the same permutation oracle ρ. To do this, R samples executions of S
consistent with L, and the partial knowledge of the oracle ρ acquired so far.
Each time such a partial execution is sampled, all queries contained in it are
made to ρ, and the process is repeated a number of times polynomial in 1/ε.
Then, R samples sin, sout, and internally defines an oracle f : {0, 1}n+1 → {0, 1}n

that will be used to simulate an execution of R
f
(L, sin, sout). To do this, R goes

through all input-output pairs (u, v) for queries to ρ it has done while simulating
executions of S,6 and defines

f(0 ‖x1) ← x0 ⊕ x2 , f(1 ‖x2) ← x1 ⊕ x3,

where x0 ‖x1 ← Psin(u) and x3 ‖x2 ← Psout(v). Then, f is defined to be random
on every other input (this can be simulated via lazy sampling). The final output
of the simulated R is then R’s final output.

The core of our proof will show that when S and R share access to ρ, then
the probability that R’s output is one is similar to that of R outputting one
when it accesses the same oracle as S. This will combine properties of the NR
construction (allowing us to switch between f and ρ), and similar arguments
as those used in [26] to prove that R ensures consistency on all queries that
matter.7

1.5 Technical Overview – Correlation Intractability

Our approach towards achieving CI is based on the following blueprint. Let R
be a relation which is evasive for permutations on 2n-bit strings, and let π, σ
be permutations sampled from some given distribution (this will be meant to be
instantiated unconditionally below). Then, we create a new relation Rπ,σ such
that (u, v) ∈ R iff (π(u), σ(v)) ∈ Rπ,σ. The hope is to show that if R is an
evasive relation, then Rπ,σ is hard to satisfy for a given construction E which
is only correlation-intractable for a subset of all evasive relations. Then, a new
composed construction E′ which outputs σ−1(Es(π(u))) on input u would be
correlation intractable for all evasive relations, since satisfying R for E′ implies
satisfying Rπ,σ for E.

Two-round Feistel. In our context, we instantiate E from a two-round Feistel
network. That is, on input x = x0 ‖x1, the two-round Feistel construction out-
puts x2 ‖x3, where x2 ← f(0 ‖x1) ⊕ x0 and x3 ← f(1 ‖x2) ⊕ x1. In a model (as
the one where we consider) where f is a random function to which the adversary

6 The actual simulation will be slightly more involved, for the benefit of simplifying
the analysis.

7 We believe we could adapt our proof to use the better strategy of [4] to get slightly
better concrete parameters, yet we found adapting it to our setting not immediate.

Naor-Reingold Goes Public: The Complexity of Known-Key Security 661

is given access, this construction is not correlation intractable. For instance, take
the (unary) relation which is satisfied by all input-output pairs (x0 ‖x1, x2 ‖x3)
where x1 = x2. This is clearly evasive, but trivial to satisfy for two-round Feistel.
Worse is possible with k-ary relations.

However, many relations are hard, even for two-round Feistel. Take for
instance any relation R with the property that for all x0, x1, x2, x3, the number
of x∗’s such that (x∗ ‖x1, x2 ‖x3) ∈ R or (x0 ‖x1, x2 ‖x∗) ∈ R is at most δ · 2n,
for some negligible function δ. No adversary A making a polynomial number of
queries to f will satisfy R, except with negligible probability. Indeed, when A
queries (say) y2 ← f(1 ‖x2) for some x2, the only chance to produce a pair that
satisfies R is y1 ← f(0 ‖x1) was previously queried for some x1, and additionally,
(x2 ⊕ y1 ‖x1, x2 ‖x1 ⊕ y2) ∈ R. But because y2 is being set randomly, x1 ⊕ y2
is also random, this can only hold with probability at most δ by our assumption
on δ. Thus, the probability that this pair satisfies R is negligible, and the union
bound over all pairs of queries shows A is unlikely to ever satisfy R.

Where does amplification come from? Let R be a unary evasive relation.
Now, imagine, again for the sake of an oversimplified illustration, that π and
σ are random permutations. Then, we want to show that with high probabil-
ity over the choice of π and σ, the relation Rπ,σ is hard for two-round Feistel,
even if the adversary learns the entire description of π and σ. Indeed, find any
x0, x1, x2, fix π, and fix u = π−1(x0 ‖x1). Because R is evasive, there exists at
most δ · 22n v’s (for some negligible δ) such that (u, v) ∈ R – call the set of
such v’s Ru. Because σ is random, the probability that σ−1(x2 ‖ z) ∈ Ru is at
most δ, and thus the expected number of z such that (x0 ‖x1, x2 ‖ z) ∈ Rπ,σ is
at most δ ·2n, by linearity of expectation. A concentration bound will show that
the probability that we are far from this expectation is indeed small, say at most
2−4n. Taking a union bound over all x0, x1, x2 shows that the probability this
is true for any x0, x1, x2 is at most 2−n. (The symmetric argument when fixing
x1, x2, x3 can be handled analogously.) Thus, we have just argued that with high
probability over the choice of π and σ, Rπ,σ is hard for two-round Feistel!

Challenges. But obviously, this is not very useful– random permutations π, σ
are inefficient to sample and describe. Also, the above result only holds for unary
relations, and it is interesting to extend this to k-ary relations.

Our first insight is that the above argument only requires a bounded degree
of randomness, and that (almost) t-wise independent permutations for a suffi-
ciently small t are sufficient. We prove this using techniques for bounding sums
of random variables with bounded independence [10,36], though this will require
significant adaptation because almost t-wise independent permutations do not
quite produce outputs which are t-wise independent, as they are required to be
distinct, and also, only approximate a random permutation. We will instanti-
ate these by using Feistel networks with sufficiently many rounds, and t-wise
independent round functions, using bounds from [24]. In fact, for the case of

662 P. Soni and S. Tessaro

unary relations, we will show that we can instantiate these permutations from
one single Feistel round with a 10-wise independent round function.

Moving on to k-ary relations presents even more challenges. Our approach is
inherently combinatorial, whereas evasiveness is defined indirectly through the
inability of an adversary to win a security game. For this reason, our result will
only deal with relations R that satisfy a more structured notion of evasiveness,
which we refer to as strongly evasive. Most relations of interest that we are aware
of are strongly evasive, but evasiveness does not always imply strong evasiveness.
However, as a result of independent interest, we show that strong evasiveness
and evasiveness are related, and asymptotically equivalent when k is a constant.

2 Preliminaries

Notational preliminaries. Throughout this paper, we denote by Funcs(X,Y)
the set of functions X → Y , and in particular use the shorthand Funcs(m,n)
whenever X = {0, 1}m and Y = {0, 1}n. We also denote by Perms(X) the set of
permutations on the set X, and analogously, Perms(n) denotes the special case
where X = {0, 1}n. For n ∈ N, we let [n] denote the set {1, . . . , n}.

Our security definitions and proofs will often use games, as formalized by
Bellare and Rogaway [9]. Typically, our games will have boolean outputs – that
is, either true or false – and we use the shorthand Pr [G] to denote the probability
that a certain game outputs the value true, or occasionally 1 (when the output
is binary, rather than boolean). Most results in this paper will be concrete, but
natural asymptotic statements can be made by allowing all parameters to be
functions of the security parameter.

A function family with input set X and output set Y is a pair of algorithms
F = (F.Kg,F.Eval), where the randomized key (or seed) generation algorithm
F.Kg outputs a seed s, and the deterministic evaluation algorithm F.Eval takes
as inputs a valid seed s and an input x ∈ X, and returns F.Eval(s, x) ∈ Y .
If X = {0, 1}m and Y = {0, 1}n, we say that F is a family of functions from
m-bits to n-bits. We usually write F(s, ·) = F.Eval(s, ·). A permutation family
P = (P.Kg,P.Eval) on n bits is the special case where X = {+, -} × {0, 1}n

and Y = {0, 1}n, and for every s, there exists a permutation πs such that
P.Eval(s, (+, x)) = πs(x) and P.Eval(s, (-, y)) = π−1

s (y). We usually write
P(s, ·) = P(s, (+, ·)) and P−1(s, ·) = P(s, (-, ·)).

2.1 UCEs and psPRPs

We review the UCE notion introduced in [6], and the psPRP notion [37]. As
explained in the latter work, they can be seen as instantiations of a general
paradigm. Yet, we consider separate security games for better readability.

Concretely, let H be function family from m-bits to n-bits. Let S be an
adversary called the source and D an adversary called the distinguisher. We
associate with them the game UCES,D

m,n,H depicted in Fig. 1. For a family E of
permutations on n-bits, the psPRP-security game psPRPS,D

n,E differs in that O

Naor-Reingold Goes Public: The Complexity of Known-Key Security 663

Fig. 1. Games to define UCE and psPRP security. Here, S is the source and D is the
distinguisher. Boxed statements are only executed in the corresponding game.

allows for inverse queries, and the ideal object is a random permutation. The
corresponding advantage metrics for an (S,D) are defined as

Advucem,n,H(S,D) = 2Pr
[
UCES,D

m,n,H

]
− 1

Advpsprpn,E (S,D) = 2Pr
[
psPRPS,D

n,E

]
− 1.

(1)

Note that we adopt the multi-key versions of UCE and psPRP security, as
they are the most general, and they are not known to follow from the single-key
case. Our treatment scales down to the single-key version by forcing the source
to always choose r = 1.

We say that H is UCE-secure for a class of sources S if Advucem,n,H(S,D) is
negligible for all PPT D and all sources S ∈ S. Similarly, E is psPRP secure for
S if Advpsprpn,E (S,D) is negligible for all PPT D and all sources S ∈ S It is known
that S cannot contain all PPT algorithms for security to be attainable. Next,
we discuss two important classes of restrictions – unpredictable and reset-secure
sources – considered in the literature [6,7,37].

Unpredictable Sources. Let S be a source and P be an adversary called
the predictor. We associate with them games f-PredP

m,n,S and p-PredP
n,S of Fig. 2

which capture the fact that P cannot predict any of the queries of S (or their
inverses), when the latter interacts with a random function from m bits to n
bits, or respectively a random permutation on n-bit strings. The corresponding
advantage metrics are

Advf-predm,n,S(P) = Pr
[
f-PredP

m,n,S

]
, Advp-predn,S (P) = Pr

[
p-PredP

n,S

]
. (2)

We say S is statistically unpredictable if Advf-predm,n,S(P) (respectively, Advp-predn,S (P))
is negligible for all predictors P outputting a set Q′ of polynomial size.

664 P. Soni and S. Tessaro

Fig. 2. Games to define unpredictability (left) and reset-security (right) of sources.
Here, S is the source, P is the predictor and R is the reset-adversary. Boxed statements
are only executed in the corresponding game.

An analogous notion of computational unpredictability can be defined, but it
is unachievable if IO exists [14], and is usually not needed for applications. We
also note that what we formalize here is the notion of simple unpredictability
– P is not permitted to query the underlying primitive. The notion was proved
equivalent (asymptotically) for UCEs [6] to a version where we give P access to
the primitive. A similar proof follows for psPRPs. (We omit it due to lack of
space.)

Reset-secure Sources. Let S be a source and R be an adversary called the
reset-adversary. We associate to them the games f-ResetRm,n,S and p-ResetRn,S of
Fig. 2 which formalize the reset-security of S against a random function and a
random permutation, respectively. The idea here is that R should not be able
to tell apart whether S is accessing the same set of oracles it accesses, or not.
This is captured via the advantage metrics

Advf-resetm,n,S(R) = 2Pr
[
f-ResetRm,n,S

]
− 1, Advp-resetn,S (R) = 2Pr

[
p-ResetRn,S

]
− 1.

Naor-Reingold Goes Public: The Complexity of Known-Key Security 665

We say S is statistically reset-secure if the corresponding advantage is negligible
for all reset-adversaries R making a polynomial number of queries to their oracle,
but which are otherwise computationally unrestricted. It is known that a (sta-
tistically) unpredictable source is (statistically) reset-secure, for both UCEs [6]
and psPRPs [37]. The converse is not true – S may query a fixed known input,
and let L be the empty string. S is reset-secure in the strongest sense, while
being easily predictable.

2.2 Evasive Relations, Correlation Intractability

In the following, a k-ary relation R over X × Y is a set of subsets S ⊆ X × Y ,
where 1 ≤ |S| ≤ k.8 We are going to consider relations which are evasive with
respect to a random permutation.

Evasive relations. Given a relation R over {0, 1}m ×{0, 1}m, we consider the
following advantage metric, involving an adversary A:

AdvevpR,m(A) = Pr
π

[
S

$← Aπ,π−1
: S ∈ R ∧ ∀(u, v) ∈ S : π(u) = v

]
,

where π
$← Perms(m). We say that a relation R is (q, δ)-evasive for a random

permutation if AdvevpR,m(A) ≤ δ for all adversaries making q queries.

Correlation intractability. Let Mf be a permutation family on m-bits
which makes oracle calls to a function f from n bits to � bits, to be modeled as a
random function. Let R be a k-ary relation. Let A be any (possibly unbounded)
adversary. We associate to A, M and R the following cri-advantage metric:

AdvcriR,M(A) = Pr
s,f

[
S

$← Af (s) : S ∈ R ∧ ∀(u, v) ∈ S : Mf (s, u) = v
]
,

where f
$← Funcs(n, �) and s

$← M.Kg.

3 Public-Seed Pseudorandomness of Naor-Reingold

This section revisits the Naor-Reingold construction [33] in the public-seed set-
ting. We prove that it transforms a UCE into a psPRP, for both unpredictable
(Sect. 3.2) and reset-secure sources (Sect. 3.3). Before turning to these results,
however, Sect. 3.1 reviews the construction and proves a strong statement about
its indistinguishability.

8 We think of the elements as sets, rather than tuples – this is because looking ahead,
it only makes sense in the context of correlation intractability to consider symmetric
relation, as an adversary can always re-order its outputs.

666 P. Soni and S. Tessaro

3.1 The NR Construction and Its Indistinguishability

Let P be a permutation family on the 2n-bit strings. We say that P is α-right-
universal if Pr

s
$←P.Kg

[P1(s, u) = P1(s, u′)] ≤ α for all distinct u, u′ ∈ {0, 1}2n,
where P1 denote the second n-bit half of the output of P. Note that a pairwise-
independent permutation is a good candidate of P, but a simpler approach is to
employ one-round of Feistel with a pairwise independent hash function H as the
round function, i.e., P(s, (u0, u1)) = (u1,H(s, u1) ⊕ u0).

The Naor-Reingold (NR) Construction. Let H be a function family from
n+1 bits to n bits. We define the permutation family NR = NR[P,H] on the 2n-
bit strings, where NR.Kg outputs (s, sin, sout) such that s

$← H.Kg and sin, sout
$←

P.Kg. Further, forward evaluation proceeds as follows (the inverse is obvious):

Proc. NR((s, sin, sout), U):
x0 ‖x1 ← P(sin, U), x2 ← H(s, 0 ‖x1) ⊕ x0,
x3 ← H(s, 1 ‖x2) ⊕ x1, V ← P−1(sout, x3 ‖x2),
return V

Naor and Reingold [33] proved that the NR construction with random round
functions is indistinguishable from a random permutation under chosen cipher-
text attacks. We will need a stronger result, which we prove here, that this is
true even when the seed of P is given to the adversary after it stops making
queries, and when the adversary can make queries to multiple instances of the
construction. It will be convenient to re-use the notation already in place for the
psPRP framework, and we denote by Advpsprp

+

2n,NR[P,F](S,D) the advantage obtained

by (S,D) in the psPRPS,D
2n,NR[P,F] game, with the modification that D is not given

the seed for F, only the seeds used by the permutation P.

Proposition 1 (Indistinguishability of the NR construction). Let F =
F[n + 1, n] be the family of all functions from n + 1 to n bits, equipped with the
uniform distribution. Further, let P be α-right-universal. For all S,D, where S

makes q queries, Advpsprp
+

2n,NR[P,F](S,D) ≤ q2 · (
2α + 1

22n

)
.

The proof of Proposition 1 can be found in the full version [38, App. A.1].

3.2 The Case of Unpredictable Sources

We first prove that the NR construction transforms a UCE function family for
statistically unpredictable sources into a psPRP for statistically unpredictable
sources. Our proof uses a technique inspired from that of Bellare et al. [7], given
originally in the setting of UCE domain extension. Concretely, we prove the
following.

Theorem 1 (NR security for unpredictable sources). Let P be a α-right
universal family of permutations on 2n-bit strings. Let H be a family of functions

Naor-Reingold Goes Public: The Complexity of Known-Key Security 667

from n + 1 bits to n bits. Then, for all distinguishers D and sources S making
overall q queries to their oracle, there exists D and S such that

Advpsprp2n,NR[P,H](S,D) ≤ Advucen+1,n,H(S,D) + q2
(

2α +
1

22n

)
. (3)

Here, D and D are roughly as efficient, and S and S are similarly as efficient.
In particular, S makes 2q queries. Moreover, for every predictor P , there exists
a predictor P such that

Advf-pred
n+1,n,S

(P) ≤ q2 ·
(

2α +
1

22n

)
+ p ·

√
2q2α + Advp-pred2n,S (P), (4)

where p is a bound on the size of the set output by P .

The asymptotic interpretation is that if n = ω(log(λ)) and α is negligible, if
S is (statistically) unpredictable, then so is S. Further, if H is a UCE for all
unpredictable sources, then NR is a psPRP for all statistically unpredictable
sources.

We stress that the predictor P built in the proof does not preserve the effi-
ciency of P , which is not a problem, as we only consider statistical notions.
While we do not elaborate in the proof, it turns out that the running time of
P is exponential in the length of S’s leakage, thus the statement carries over to
computational unpredictability if L = O(log λ).

Proof. We first consider three games, G0,G1, and G2. Game G0 is the game
psPRPS,D

2n,NR[P,F] in the case b = 1, and modified to return true if b′ = 1. Game

G2 is the game psPRPS,D
2n,NR[P,F] in the case b = 0, and modified to return true

if b′ = 1. The intermediate game G1 is obtained by modifying G0 as follows:
Initially, r random functions f1, . . . , fr

$← Funcs(n+1, n) are sampled, and when
evaluating the NR construction within O queries, the evaluation of H(si, b ‖x) is
replaced by an evaluation of the random function fi(b ‖x). Then,

Advpsprp2n,NR[P,H](S,D) = (Pr [G0] − Pr [G1]) + (Pr [G1] − Pr [G2]) .

Wecandirectly getPr [G1]−Pr [G2] ≤ q2
(
2α + 1

22n

)
as a corollary of Proposition 1,

since neither of G1 and G2 uses the seeds generated by H.Kg.
Going on, let us consider the new source S which simulates an execution of

S, and uses access to an oracle O(i,X), implementing for each i a function from
n + 1 bits to n bits, to internally simulate the round functions NR construction
used to answer S’s queries. A formal description is in Fig. 3. Also consider the
distinguisher D such that

D(L′ = (L, s in, sout), s) = D(L, (s , s in, sout)),

where s = (s1, . . . , sr), s in = (sin1 , . . . , sinr), and sout = (sout1 , . . . , soutr) Therefore,
G0 and G1 behave exactly as UCES,D

n+1,n,H with challenge bits b = 1 and b = 0,

668 P. Soni and S. Tessaro

Fig. 3. The source S in the proof of Theorems 1 and 2.

respectively, with the only difference of outputting true whenever the distin-
guisher’s output is b′ = 1. Consequently, Advucen+1,n,H(S,D) = Pr [G0] − Pr [G1].

The remainder of the proof relates the unpredictability of S and that of S,
establishing (4) in the theorem statement. For lack of space, the argument is
deferred to the full version [38, App. A.2]. �

3.3 The Case of Reset-Secure Sources

Theorem 1’s importance stems mostly from the fact that it establishes the equiv-
alence of psPRPs and UCEs for the case of (statistically) unpredictable sources.
The question was left open in [37]. Many applications (e.g., instantiating the
permutation within sponges, or any other indifferentiable hash construction)
however require the stronger notion of reset-security. For this, [37] show that the
five-round Feistel construction suffices, using a weaker variant of indifferentia-
bility, and left open the question of whether four-rounds suffice.

We do better here: we prove that the NR construction transforms a UCE for
statistically reset-secure sources into a psPRP for the same class of sources. The
proof starts as the one of Theorem 1, but then shows that the source S built
therein is in fact statistically reset-secure whenever S is. This step will resort to
a variant of the heavy-query sampling method of Impagliazzo and Rudich [26] to
simulate a random oracle from the leakage which captures “relevant correlations”
with what is learnt by the source.

Theorem 2 (NR security for reset-secure sources). Let P be a α-right
universal family of permutations on 2n-bit strings, and let H be a function family
from n + 1 bits to n bits. Then, for all distinguishers D and sources S making
overall q queries to their oracle, there exists D and S such that

Advpsprp2n,NR[P,H](S,D) ≤ Advucen+1,n,H(S,D) + q2
(

2α +
1

22n

)
. (5)

Naor-Reingold Goes Public: The Complexity of Known-Key Security 669

Here, D and D are roughly as efficient, and S and S are similarly as efficient.
In particular, S makes 2q queries. Moreover, for every reset-adversary R making
p queries, there exists a reset-adversary R such that

Advf-reset
n+1,n,S

(R) ≤ 2Advp-reset2n,S (R) + 4
(

q +
8qp2

ε
ln(4p/ε)

)2 (
2α +

1
22n

)
, (6)

where ε := Advf-reset
n+1,n,S

(R). In particular, R makes 4qp2/ε · ln(4p/ε) queries to
its oracle.

Asymptotically, (6) implies that if R exists making p = poly(λ) queries, and
achieving non-negligible advantage ε, then R makes also a polynomial number
of queries, and achieves non-negligible advantage, as long as α is negligible, and
n = ω(log λ). Thus, reset-security of R yields reset-security of R.

We also believe that the technique of Barak and Mahmoody [4] can be used
to reduce the 8qp2/ε term to O(qp)/ε. We did not explore this avenue here, as
the proof approach of [26] is somewhat easier to adapt to our setting.

Proof. The setup of the proof is identical to that in Theorem 1, in particular the
construction of S from S (and of D from D.) The difference is in relating the
reset-security of S and S. In particular, let

ε := Advf-reset
n+1,n,S

(R) = Pr
[
f-ResetR

n+1,n,S

∣∣ b = 0
]

− Pr
[
¬f-ResetR

n+1,n,S

∣∣ b = 1
]
.

The RHS is the difference of the probabilities of R outputting 0 in the cases
b = 0 and b = 1 respectively. We are going to build a new adversary R against S
which satisfies (6). We assume without loss of generality that R is deterministic,
and makes exactly p distinct queries to its oracle.

We start the proof with some game transitions that will lead naturally to the def-
inition of the adversary R. Formal descriptions are found in our full version [38,
Figs. 7 and 8] – our description here is self-contained.

The initial game G1 is simply f-ResetR
S

with the bit b = 0, i.e., S and R

access the same functions f1, . . . , fr here. Further, G1 returns true iff R returns
0. Thus, Pr [G1] = Pr

[
f-ResetR

S

∣∣ b = 0
]
. Game G2 slightly changes G1: It keeps

track (in a set QP) of the triples (i, U, V) describing O queries made by the
simulated S within S; i.e., either S queried (i, (+, U)), and obtained V , or queries
(i, (-, V)), and obtained U . After S terminates with leakage (L, s), where s =
(sin1 , sout1 , . . . , sinr , soutr), for every (i, U, V) ∈ QP we compute x0 ‖x1 ← P(sini , U)
and x3 ‖x2 ← P(souti , V), and define table entries

T [i, 0 ‖x1] ← x0 ⊕ x2 , T [i, 1 ‖x2] ← x1 ⊕ x3 .

For later reference, we denote by X the set of pairs (i, x) for which we set T [i, x]
using QP and s. We then run R(L, s), and answer its oracle queries (i, x) using
T [i, x]. If the entry is undefined, then we return a random value. (As we assumed

670 P. Soni and S. Tessaro

all of R’s queries are distinct, we do not need to remember the output.) As before,
G2 outputs true iff R outputs 0.

Note that we always have T [i, x] = fi(x) for very (i, x) such that fi(x) was
queried by S, and re-sampling values un-queried by S upon R’s queries does not
change the distribution of R’s output, and hence Pr [G1] = Pr [G2].

The intersection sampler. The game G3 generates a surrogate for QP. This
is the output of an algorithm Sam which, after S terminates with output (L, s),
takes as input the leakage L (crucially, not s!) and an iteration parameter η =
4p/ε ln(4p/ε) (we let also τ = p · η). Sam queries the very same O implemented
by S to answer S’s queries (which internally simulates the NR construction using
S’s own oracle), and returns a set Q̃P of 4-tuples (i, U, V, j) such that j ∈ [p],
and (i, U, V) is such that O(i, (+, U)) would return V (or equivalently O(i, (-, V))
would return U). Internally, Sam will make calls to another (randomized) sub-
procedure Q which takes as input the leakage L, as well as a set Q of tuples
(i, U, V, j) consistent with O, and returns a set Δ of at most q tuples (i, U, V),
which are not necessarily consistent with O. We will specify in detail later below
what Q exactly does, as some further game transitions will come handy to set
up proper notation. For now, a generic understanding will suffice. In particular,
given such Q, Sam operates as in Fig. 4. As we can see, for each (i, U, V, j) ∈ Q̃P,
j indicates the outer iteration in which this query was added to Q̃P. Using
this information, for every j ∈ [p], and every 4-tuple (i, U, V, j) we compute
x0 ‖x1 ← P(sini , U) and x3 ‖x2 ← P(souti , V), define

T̃ [i, 0 ‖x1] ← x0 ⊕ x2 , T̃ [i, 1 ‖x2] ← x1 ⊕ x3,

and add (i, 0 ‖x1), (i, 1 ‖x2) to the set X̃j . A for now irrelevant caveat is that if
one of the entries in T̃ is already set, then we do not overwrite it.9

Fig. 4. Description of algorithm Sam.

9 This does not matter here, as an entry can only be overwritten with the same value;
below, we will change the experiment in a way that overwrites may be inconsistent,
and we want to ensure we agree to keep the first value.

Naor-Reingold Goes Public: The Complexity of Known-Key Security 671

Then, after all of this, G3 resumes by executing R(L, s). For R’s j-th query
(i, x) we do the following:

1. If (i, x) ∈ X̃j′
for some j′ ≤ j, then we respond with T̃ [i, x].

2. Otherwise, if (i, x) ∈ X, but the first condition was not met, we respond with
T [i, x].

3. Finally, if neither of the above is true, we respond randomly.

As before, G3 outputs true iff R outputs 0. For now, all modifications are
syntactical. Indeed, up to the point we start R, we satisfy the invariant that
T [i, x] = fi(x) or T̃ [i, x] = fi(x) whenever these are defined, because O behaves
according to the NR construction using s. On the other hand, if during the exe-
cution R(L, s) we respond randomly, we know for sure fi(x) was not queried by
S, and thus we can re-sample it. Thus, Pr [G3] = Pr [G2] = Pr [G1].

Moving to G4, we now answer O queries by S (within S) and by Sam using
random permutations π1, . . . πr, instead of simulating the NR construction using
f1, . . . , fr, i.e., O(i, (+, U)) = πi(U) and O(i, (-, V)) = π−1

i (V). The seeds s
are now independent of O. We do not change anything else. We note that the
indistinguishability of G3 and G4 directly reduces to a suitable distinguisher for
Proposition 1, as only Sam and S (within S) make queries to O, but they do
not get the keys s, which are used only after all queries to O have been made to
define X and X̃. Therefore,

Pr [G1] = Pr [G3] ≤ Pr [G4] + (q + 2qτ)2
(

2α +
1

22n

)
, (7)

where we have used the fact that Sam makes 2qτ = 2pqη queries.
The final game is G5 is identical to G4, except that in the process of answering

R’s queries, if case 2 happens, we also set answer randomly. However, should such
situation occur, a bad flag is set in G5, and since up to the point this flag is set,
the behavior of G4 and G5 is identical,

Pr [G4] − Pr [G5] ≤ Pr [G5 sets bad] .

To analyze the probability on the RHS, we need to specify Q(L, Q̃) used by
Sam here. (Note all statements so far were independent of it.) For a given L
which appears with positive probability in G5, consider the distribution of the
input-output pairs QP defined by the interaction of S with O, conditioned on
the leakage being L, and π1, . . . , πr being consistent with the triples defined by
Q̃. Then, Q(L, Q̃) outputs a sample of QP according to this distribution. Using
this, we prove the following lemma in our full version [38, App. A.4], which uses
ideas similar to those from [26], with some modifications due to the setting (and
the fact that R makes p queries).

672 P. Soni and S. Tessaro

Lemma 1. Pr [G5 sets bad] ≤ ε/2

Fig. 5. Adversary R in the proof of Theorem 2.

Given this, we are now ready to give our adversary R, which we build from
R and Sam as described in Fig. 5. By a purely syntactical argument,

Pr [G5] = Pr
[
p-ResetRS

∣∣ b = 0
]
, (8)

recalling that the case b = 0 is the one where both S and R access the same
permutations π1, . . . , πr. Therefore, we have established, combining (8), (7),
Lemma 1,

Pr
[
p-ResetRS

∣∣ b = 0
]

≥ Pr
[
f-ResetR

S

∣∣ b = 0
]
− ε

2
− (q + 2qτ)2

(
2α +

1
22n

)
. (9)

In the full version [38, App. A.5] we also prove formally that in the case b = 1,
R in the game p-ResetRS almost perfectly simulates an execution of f-ResetR

S
, or

more formally,

Pr
[
¬p-ResetRS

∣∣ b = 1
]

≤ Pr
[
¬f-ResetR

S

∣∣ b = 1
]

+ (q + 2qτ)2
(

2α +
1

22n

)
. (10)

We can combine (10) and (9) to obtain, with Δ = 2(q + 2qτ)2
(
2α + 1

22n

)
,

Advp-reset2n,S (R) = Pr
[
p-ResetRS

∣∣ b = 0
]

− Pr
[
¬p-ResetRS

∣∣ b = 1
]

≥ Pr
[
f-ResetR

S

∣∣ b = 0
]

− Pr
[
¬f-ResetR

S
)
∣∣ b = 1

]
− ε

2
− Δ

≥ ε/2 − Δ .

This concludes the proof. �

Naor-Reingold Goes Public: The Complexity of Known-Key Security 673

4 Correlation Intractability of Public-Seed Permutations

In this section, we study the correlation intractability (CI) of the NR construc-
tion against k-ary evasive relations. Firstly, in Sect. 4.1, we define a stronger
notion of evasiveness – strong evasiveness – and show that evasiveness and strong
evasiveness are asymptotically equivalent when k = O(1). In Sect. 4.2 we study
the relations that are hard for two-round Feistel. In Sect. 4.3 we show that for
k = O(1) the NR construction where P−1 is a family of almost O(k2)-wise inde-
pendent permutations is correlation intractable against k-ary evasive relations.
In the special case of unary evasive relations (k = 1), we show that (see [38,
App. B.6]) P instead can be instantiated from one-round Feistel with a 10-wise
independent round function.

4.1 Strong Evasiveness

Evasiveness is defined through the hardness of winning a security game. For our
results, we need instead a combinatorial understanding of evasive relations. To
this end, we will rely on the following notion of evasiveness, which, as we show
below, is generally implied by evasiveness if k = O(1).

Definition 1 (Strongly evasive relations). Let R be a k-ary relation over
X × X and δ ∈ [0, 1]. We say that R is δ-strongly evasive if the following are
true for all 0 ≤ j < k′ ≤ k:

– For all distinct u1, . . . ,uk′ ∈ X, all v1, . . . ,vj ∈ X, we have

|{(vj+1, . . . ,vk′) : {(u1,v1), . . . , (uk′ ,vk′)} ∈ R}| ≤ δ ·
k′−1∏
i=j

(|X| − i).

– For all distinct v1, . . . ,vk′ ∈ X, all u1, . . . ,uj ∈ X, we have

|{(uj+1, . . . ,uk′) : {(u1,v1), . . . , (uk′ ,vk′)} ∈ R}| ≤ δ ·
k′−1∏
i=j

(|X| − i).

It is not hard to see that if a relation is δ-strongly evasive, then it is also
evasive, in the sense that it is (q, qkδ)-evasive. In particular, qkδ is negligible
whenever δ is negligible, q polynomial, and k = O(1).

We remark that there are relations R which are evasive, yet not strongly
evasive. Consider for example the relation which contains {(02n, 02n), (u,v)} for
all u,v �= 02n. This relation is obviously evasive to start with – satisfying it
requires π(02n) = 02n, which will happen with probability 2−2n only, yet for
u1 = v1 = 02n, and u2 �= 02n, all strings v2 make {(u1,v1), (u2,v2)} valid. Still,
somehow, the intuition is that the core of R is the relation R∗ = {{(02n, 02n)}},
which is strongly evasive, with δ = 2−2n. Indeed, an attacker that satisfies the
original relation R, can directly satisfy R∗, thus the fact that R∗ is evasive (and
in particular, strongly evasive) implies that R is evasive.

674 P. Soni and S. Tessaro

The following lemma generalizes this, and implies e.g. that for δ = negl(λ)
and k = O(1), evasiveness and strong evasiveness are (qualitatively) equivalent.
The proof is found in the full version [38, App. B.1].

Lemma 2 (Normalization of evasive relations). Let δ > 0, and let R be a
k-ary (k2, δk)-evasive relation on X × X for random permutations. Then, there
exists a relation R∗ which is δ-strongly evasive for random permutations, and
moreover, for every S ∈ R, there exists ∅ �= S∗ ⊆ S such that S∗ ∈ R∗.

Lemma 2 now is all we need. Say E is correlation intractable for all k-ary strongly
evasive relations (for some negligible δ), where k = O(1). Then, E must be
correlation intractable for any (k2, δ)-evasive relation R, too. Were it not, we
could take an adversary A breaking the CI for R with non-negligible advantage,
and use it to break CI of R∗. To this end, we simply run A, and when it outputs
S ∈ R, we outputs the corresponding S∗ ∈ R∗ guaranteed by Lemma 2. (As
k = O(1), a random subset of S will do with constant loss in the advantage.)
But since R∗ is k

√
δ-strongly evasive, this contradicts our assumption on E.

Clearly, the equivalence is merely asymptotic. If one is interested in concrete
security, the best approach to use our results below is to directly assess the δ for
which a specific relation R is δ-strongly evasive.

4.2 Partial Correlation Intractability of Two-Round Feistel

The two-round Feistel construction Feif2 , is a permutation on 2n-bit strings that
makes calls to an oracle f : {0, 1}n+1 → {0, 1}n. In particular, on input x =
x0 ‖x1, where x0, x1 ∈ {0, 1}n, running Feif2 (x) outputs y = x2 ‖x3, where

x2 ← x0 ⊕ f(0 ‖x1) ;x3 ← x1 ⊕ f(1 ‖x2).

Symmetrically, upon an inverse query, Feif2
−1

(y = x2 ‖x3) simply computes the
values backwards, and outputs x = x0 ‖x1.

In this section, we discuss relations R on 2n-bit strings that are hard for
two-round Feistel when instantiated with a random function. In particular, we
will give a combinatorial characterization which is sufficient to achieve this.

Feistel evasiveness. We first note that in a relation R, certain sets
S ∈ R can never be satisfied by the two-round Feistel construction out
of structural constraints. In particular, if we have two input-output pairs
(x1[0] ‖x1[1],x1[2] ‖x1[3]) and (x2[0] ‖x2[1],x2[2] ‖x2[3]) with x1[2] = x2[2] in
the same set S ∈ R, then we must have x1[3] ⊕ x2[3] = x1[1] ⊕ x2[1]. Symmet-
rically, if x1[1] = x2[1], then we must have x1[0] ⊕ x2[0] = x1[2] ⊕ x2[2]. It will
thus be convenient to define the following.

Definition 2. For every k-ary relation R on 2n-bit strings, we define the rela-
tion R ⊆ R that only contains S ∈ R if for every (x1[0] ‖x1[1],x1[2] ‖x1[3]),
(x2[0] ‖x2[1],x2[2] ‖x2[3]) ∈ S, the following is true:

Naor-Reingold Goes Public: The Complexity of Known-Key Security 675

– If x1[2] = x2[2], then x1[3] ⊕ x2[3] = x1[1] ⊕ x2[1].
– If x1[1] = x2[1], then x1[0] ⊕ x2[0] = x1[2] ⊕ x2[2].

Clearly, the significance of this is that when assessing whether R is correla-
tion intractable for two-round Feistel, it suffices to prove that R is correlation
intractable, as S ∈ R \ R can never be satisfied. We are now ready to state
the following combinatorial requirement on relations, which we will prove to be
evasive for two-round Feistel below.

Definition 3 (δ-2-Feistel evasive relations). Let R be a k-ary relation over
{0, 1}2n, and δ ∈ [0, 1]. We say that R is δ-2-Feistel evasive if the following are
true for all 0 ≤ j < k′ ≤ k:

– For all distinct x1, . . . ,xk′ ∈ {0, 1}2n, distinct y1, . . . ,yj ∈ {0, 1}2n, and
y∗ ∈ {0, 1}n s.t. xj+1[1], . . . ,xk′ [1] are distinct and y∗ /∈ {y1[0], . . . ,yj [0]},

∣∣∣{(yj+1, . . . , yk′)} : {(x1,y1), . . . , (xj ,yj),

(xj+1, y
∗ ‖ yj+1), . . . , (xk′ , y∗ ‖ yk′)} ∈ R′

∣∣∣ ≤ δ′ · 2n . (11)

– For all distinct y1, . . . ,yk′ ∈ {0, 1}2n, distinct x1, . . . ,xj ∈ {0, 1}2n, and
x∗ ∈ {0, 1}n s.t. yj+1[0], . . . ,yk′ [0] are distinct and x∗ /∈ {x1[1], . . . ,xj [1]},

∣∣∣{(xj+1, . . . , xk′)} : {(x1,y1), . . . , (xj ,yj),

(xj+1 ‖x∗,yj+1), . . . , (xk′ ‖x∗,yk′)} ∈ R′
∣∣∣ ≤ δ′ · 2n . (12)

Also, we let FEv(k, δ) denote the set of all k-ary δ-2-Feistel evasive relations.

Feistel correlation intractability. We now prove that for all relations
satisfying Definition 3, two-round Feistel is indeed correlation intractable in the
model where both round functions are independent random functions, to which
the adversary is given oracle access.

Proposition 2 (CI of Two-round Feistel). For δ ∈ [0, 1] and k ≥ 1 be an
integer, let R ∈ FEv(k, δ). For any (unbounded) adversary A making at most q
queries to f , Advcri

R,Feif2
(A) ≤ 2kδ · q2k+1.

The proof of Proposition 2 can be found in the full version [38, App. B.2].

Remark 1. For the special case of k = 1, that is, unary relations, one can adapt
the above proof and show that Advcri

R,Feif2
(A) ≤ δ · q2 where A makes q queries to

f and R ∈ FEv(1, δ).

676 P. Soni and S. Tessaro

4.3 Correlation Intractability of the NR Construction

In this section we view the NR construction as a family NRf [P] that makes oracle
calls to f : {0, 1}n+1 → {0, 1}n and P is a family of permutations on 2n-bits.
The key generation algorithm NR.Kg now just outputs a tuple (sin, sout) where
sin, sout

$← P.Kg and the evaluation algorithm NR.Eval proceeds as before but
instead makes calls to f for evaluating the round function.

We show that NRf [P], where P−1 is a family of almost O(k2)-wise inde-
pendent permutations, is correlation intractable against strongly evasive k-ary
relations when the adversary is given the seed (sin, sout) of the NR construction
and only oracle access to f . The proof of CI proceeds by showing that P trans-
forms a strongly evasive relation R into a 2-Feistel evasive relation Rπ,σ (see
Fig. 6) and hence for the adversary to break the CI of NRf [P] it needs to break
the CI of two-round Feistel against Rπ,σ which was studied in Sect. 4.2.

p-wise independent permutations. For any ε ∈ [0, 1] and p ≥ 1, we say
that a family of permutations P on m-bit strings is (ε, p)-wise independent if for
all distinct u1, . . . , up ∈ {0, 1}m, the distributions of P(s, u1), . . . ,P(s, up) (for
s

$← P.Kg) and of ρ(u1), . . . , ρ(up) (for ρ
$← Perms(m)) are at most ε-apart in

statistical distance.

Fig. 6. The NR construction instantiated with a permutation family P on 2n-bits such
that P−1 is (ε, k · t)-wise independent where π = P(sin, ·) and σ = θ(P(sout, ·)) for
sin, sout ← P.Kg. Here, θ is a permutation on 2n-bits such that for all x ∈ {0, 1}2n we
have θ(x = x0||x1) = x1||x0. For some k-ary strongly-evasive relation R, we construct
a 2-Feistel evasive relation Rπ,σ by transforming every (u,v) ∈ S where S ∈ R, by
applying π to u and σ to v.

Naor-Reingold Goes Public: The Complexity of Known-Key Security 677

From Strongly Evasive Relation to 2-Feistel-Evasive Relation. Let
R be a k-ary relation over {0, 1}2n × {0, 1}2n. For sin, sout

$← P.Kg, let π =
P(sin, ·) and σ = θ(P(sout, ·)), where θ is a permutation on 2n-bits such that
for x ∈ {0, 1}2n we have θ(x = x0||x1) = x1||x0

10. We define a relation Rπ,σ

which is a result of transforming {(u1,v1), . . . , (uk′ ,vk′))} ∈ R via π and σ in
the following way,

Rπ,σ = {{(π(u1), σ(v1)), . . . , (π(uk′), σ(vk′))} | {(u1,v1), . . . , (uk′ ,vk′)} ∈ R}.

Then, for every δ-strongly evasive k-ary relation R we show that Rπ,σ ∈
FEv(k, δ′) for some δ′ larger than δ, except with small probability, where the
probability is taken over the random choice of (π, σ). This is more formally
captured in the following:

Proposition 3 (CI Amplification). For δ ∈ [0, 1) and an integer k ≥ 1, let
R be a k-ary δ-strongly evasive relation over {0, 1}2n. For an even integer t ≥ 2,
let P be a family of permutations such that P−1 is (ε, k · t)-wise independent.
Then, for δ′ ∈ [0, 1] such that δ′ > δ,

Pr
π,σ

[Rπ,σ /∈ FEv(k, δ′)] ≤ 12k2

(
1

δ′ − δ

)t

2(4k−1)n

[
Ct ·

(
4δ∗t
2n

)t/2

+ ε · (1 + δ)t

]
,

where Ct = 2e1/6t
√

πt
(

5
2e

)t/2, δ∗ = max
(
δ, t·2k

2n

)
, π = P(sin, ·) and σ =

θ(P(sout, ·)) for sin, sout
$← P.Kg.

Now, Proposition 3 can be combined with Proposition 2 to establish the corre-
lation intractability of NR against strongly evasive relations (Theorem 3).

Theorem 3 (CI of NR). For δ ∈ [0, 1) and an integer k ≥ 1, let R be a k-ary δ-
strongly evasive relation over {0, 1}2n. Further, let P be a family of permutations
on 2n-bits such that P−1 is (ε, 10k2)-wise independent where ε ≤ 1/25kn. Then
for any (potentially unbounded) adversary A making q queries,

AdvcriR,NRf [P](A) ≤ 24k2 · (40kδ∗)5k + 12k2 · (1 + δ)10k

24kn/9
+ 2kδ′ · q2k+1, (13)

where δ′ = δ + 2−n/18 and δ∗ = max
(
δ, 10k·2k

2n

)
.

The proof of Theorem 3 can be found in the full version [38, App. B.3]. The
asymptotic interpretation of Eq. (13) is that when n = ω(log λ), k = O(1),
δ = negl(λ) and q = poly(λ), NRf [P] is correlation intractable for k-ary strongly
evasive relations. Combining this with Lemma 2, the CI then extends to any k-
ary evasive relation. We also remark that Theorem 3 extends to the setting of

10 It is easy to see that θ = θ−1 hence σ−1 = P−1(sout, θ(·)). We note that θ is intro-
duced to ensure consistency with the definition of the NR construction as P−1(sout)
operates on y[1]||y[0] where y is the output of the underlying two-round feistel.

678 P. Soni and S. Tessaro

multi-key correlation intractability introduced in [16], but to avoid notational
overhead we limit ourselves to the single-key setting for this version.

On instantiating P−1 from Theorem 3. We detail the construction of (ε, p)-
wise permutations in the full version [38, App. B.5] and show that an O(k)-round
Feistel construction with 10k2-wise independent round functions can instantiate
the permutation family P−1. We refer the reader to the full version for more
details.

4.4 Proof of Proposition 3

We will show that for every 0 ≤ j < k′ ≤ k the following hold,

1. For all distinct x1, . . . ,xk′ , distinct y1, . . . ,yj and y∗ ∈ {0, 1}n such that
xj+1[1], . . . ,xk′ [1] are distinct and y∗ /∈ {y1[0], . . . ,yj [0]},

Pr[Eq. (11) does not hold for Rπ,σ] ≤ e1(k′, j) + ε · e2(k′, j). (14)

2. For all distinct y1, . . . ,yk′ , all x1, . . . ,xj and all x∗ ∈ {0, 1}n such that
yj+1[0], . . . ,yk′ [0] are distinct and x∗ /∈ {x1[1], . . . ,xj [1]},

Pr[Eq. (12) does not hold for Rπ,σ] ≤ e1(k′, j) + ε · e2(k′, j), (15)

where the probability is taken over the random choice of (π, σ) and

e1(k′, j) = 3 · Ct

(
1

δ′ − δ

)t (
2δ∗t
2n

)t/2

2(k
′−j)(t/2+1),

e2(k′, j) = 2
(

1 + δ

δ′ − δ

)t

2k′−j .

Given that the above hold, we then take appropriate union bounds (for Eq. (14))
over all y1, . . . ,yk′ , x1, . . . ,xj and x∗ and then over all j, k′. Symmetrically, we
take union bounds (for Eq. (15)). Then the following holds and this concludes
the proof of Theorem 3.

Pr[Rπ,σ /∈ FEv(k, δ′)]

≤ 2
k∑

k′=1

k′−1∑
j=0

2n(2k′+2j+1) · (e1(j, k′) + ε · e2(j, k′))

≤ 12k2

(
1

δ′ − δ

)t

2(4k−1)n

[
Ct ·

(
4δ∗t
2n

)t/2

+ ε · (1 + δ)t

]
.

From now on we focus on showing Eq. (15) and the analysis for Eq. (14) is sym-
metrical.

Naor-Reingold Goes Public: The Complexity of Known-Key Security 679

Establishing Equation (15). Let us fix some arbitrary k′ and j such that
0 ≤ j < k′ ≤ k. Let us also fix some distinct y1, . . . ,yk′ ∈ {0, 1}2n, dis-
tinct x1, . . . ,xj and x∗ ∈ {0, 1}n such that yj+1[0], . . . ,yk′ [0] are distinct and
x∗ /∈ {x1[0], . . . ,xj [0]}. Then, we are interested in counting the number of
tuples ((u1,v1), . . . , (uk′ ,vk′)) in R that on applying π and σ transform to
((x1,y1), . . . , (xj ,yj), (· ‖x∗,yj+1), . . . , (· ‖x∗,yk′)). Let us fix σ and this defines
vi = σ−1(yi) for every i ∈ [k′] allowing us to focus only on the following set U
of tuples.

U = {(u1, . . . ,uk′) | {(u1,v1), . . . , (uk′ ,vk′)} ∈ R}.

Then, we are interested in counting the number of tuples U = (u1, . . . ,uk′) in
U that satisfy,

1. π(u1) = x1, π(u2) = x2, . . . , π(uj) = xj .
2. π1(uj+1) = π1(uj+2) . . . = π1(uk′) = x∗.
3. For every i ∈ {j + 1, . . . , k′}, π0(ui) ⊕ π0(uj+1) = Δi, where Δi = yj+1[0] ⊕

yi[0]11,

where π0(u) and π1(u) denote the first n-bits and last n-bits of π(u). Or equiv-
alently, count the number of U’s such that π(U)12 falls in X where,

X = {(x1, . . . ,xj , x ⊕ Δj+1 ‖x∗, . . . , x ⊕ Δk′ ‖x∗) | x ∈ {0, 1}n}.

Note that every element X of X is completely described by an n-bit string x.
Now for U = (u1, . . . ,uk′) ∈ U , let IU be an indicator random variable,

IU =

{
1 if (π(u1), . . . , π(uk′)) ∈ X ,

0 otherwise.

Then it suffices to prove that,

Pr
π

[∑
U∈U

IU > δ′ · 2n

]
≤ e1(k′, j) + ε · e2(k′, j).

Instead of looking at the sum
∑

IU, we look at an equivalent sum
∑

Ix of, albeit,
different indicator random variables Ix’s, which will be convenient to analyse.
For x ∈ {0, 1}n we define an indicator random variable Ix which is 1 if π−1

transforms X ∈ X (that corresponds to x) into some U ∈ U . More formally,

Ix =

{
1 if (π−1(x1), . . . , π−1(x ⊕ Δj+1||x∗), . . . , π−1(x ⊕ Δk′ ||x∗)) ∈ U ,

0 otherwise.
(16)

11 As the definition of δ′-2-Feistel evasiveness concerns itself with Rπ,σ.
12 By π(U) we mean the tuple (π(u1), . . . , π(uk′)).

680 P. Soni and S. Tessaro

Then, it is easy to see that counting the number of U ∈ U such that IU = 1 (or
π(U) ∈ X) is the same as counting the number of x ∈ {0, 1}n such that Ix = 1
(or π−1(X) ∈ U). Therefore,

∑
U∈U

IU =
∑

x∈{0,1}n

Ix and we aim to show that,

Pr
π

⎡
⎣ ∑

x∈{0,1}n

Ix > δ′ · 2n

⎤
⎦ ≤ e1(k′, j) + ε · e2(k′, j). (17)

Partitioning {0, 1}n. We would like to use concentration bounds for the sum
of random variables Ix’s. But note that they are not independent as they may
depend on the output of π−1 on the same input. Therefore, as a first step towards
constructing independent random variables, we partition {0, 1}n into subsets
which will allow us to break the sum

∑
Ix into sums over these subsets.

Let us consider the following relation on {0, 1}n × {0, 1}n. For any x, x′ ∈
{0, 1}n, we say that x is related to x′ (denoted as x ∼ x′) if there exists an index
set B ⊆ {j + 1, . . . , k′} where such that,

x = x′ ⊕
⊕
i∈B

Δi.

It is easy to see that the relation ∼ is an equivalence relation. Then, for any x ∈
{0, 1}n, let EQx denote its equivalence class, that is, EQx = {x′ ∈ {0, 1}n |x ∼
x′}. Let |EQx| = l and it is easy to see that l ≤ 2k′−j . Let {EQi}M

i=1 be the
M equivalence classes of ∼ where |EQi| = l and M · l = 2n. Furthermore, let
EQi = {xi

1, x
i
2, . . . , x

i
l} be an enumeration of EQi where xi

q is the qth member of
the ith equivalence class EQi. Then, we can break the sum of Ix’s into,

∑
x∈{0,1}n

Ix =
M∑
i=1

l∑
q=1

Ixi
q

=
l∑

q=1

M∑
i=1

Ixi
q
.

For q ∈ [l], let Xq =
M∑
i=1

Ixi
q
. In other words, Xq is the sum of qth member of

each equivalence class EQi. We are going to show that for every q ∈ [l],

Pr[Xq > δ′ · M] ≤ 3Ct · 1
(δ′ − δ)t

(
2tδ∗

2n

)t/2

lt/2 + 2ε ·
(

1 + δ

δ′ − δ

)t

(18)

Taking union bound over all q ∈ [l] and using l ≤ 2k′−j , we have that Eq. (17)
holds.

Bounding the subsum Xq. From now on, we will focus on analysing one of
the subsums Xq and the other subsums can be analogously handled. Fix some
q and let X = Xq. Let the corresponding set of x’s be {x1, . . . , xM} where each
xi comes from a different equivalence class EQi. For every i1 �= i2 ∈ [M],

Naor-Reingold Goes Public: The Complexity of Known-Key Security 681

– Firstly, Δj+1, . . . ,Δk′ are distinct as yj+1[0], . . . ,yk′ [0] are distinct. There-
fore, xi1 ⊕ Δj+1, . . . , x

i1 ⊕ Δk′ are distinct.
– Secondly for any index set B ⊆ {j + 1, . . . , k′},

xi1 �= xi2 ⊕
⊕
i∈B

Δi. (19)

This implies that for any Ixi1 and Ixi2 , {xi1
j+1 ⊕ Δj+1, . . . , x

i1
k′ ⊕ Δk′} and

{xi2
j+1⊕Δj+1, . . . , x

i2
k′ ⊕Δk′} are disjoint. Therefore, except the first j (values

that correspond to π−1(xi) for i ∈ [j]), the remaining set of values in the
output of π−1 that each Ixi1 and Ixi2 depend on are disjoint.

We will crucially exploit these two properties of Ixi ’s to show that the following:

Lemma 3. For X (as defined above), there exists a random variable Z with
expectation μ = E [Z] ≤ δ · M where Z is a sum of M independent indicator
random variables, such that for any integer a > 0,

Pr[|X − μ| > a] ≤ 3 · E [(Z − μ)t]
at

+ 2ε · (M + μ)t

at
.

For each indicator random variable Ixi , we first define another indicator random
variable Iρ

xi where the only difference is that we replace the k·t- wise independent
permutation π−1 with a random permutation ρ. Note that the resulting Iρ

xi are
still not independent as they depend on the output of ρ. So, we then define a
sequence of random variable I∗

xi that have the same marginal distribution as that
of Iρ

xi but are independent. Then, we show a domination argument that relates
the t-th moment of (Y −μ) with the t-th moment of (Z −μ) where Y and Z are
the sum of Iρ

xi and I∗
xi respectively. The proof of Lemma 3 can be found in the

full version [38, App. B.4]. Next, we apply the following concentration bound
due to [10] to the random variable Z.

Lemma 4 (A.4. from [10]). Let t ≥ 2 be an even integer. Suppose Z1, . . . , Zn

are independent random variables taking values in [0, 1]. Let Z = Z1 + . . . + Zn

and μ = E [Z]. Then,

E
[
(Z − μ)t

] ≤ Ct · (tμ + t2)t/2.

Then as μ ≤ δ · M we have,

Pr[X > δ · M + a] ≤ Pr[X > μ + a] ≤ 3Ct ·
(

tμ + t2

a2

)t/2

+ 2ε ·
(

M + μ

a

)t

,

Now let a = (δ′ − δ) ·M and using M · l = 2n and δ∗ = max(δ, t ·2k/2n), we have

Pr[X > δ′ · M] ≤ 3Ct · 1
(δ′ − δ)t

(
2tδ∗

2n

)t/2

lt/2 + 2ε ·
(

1 + δ

δ′ − δ

)t

which establishes that Eq. (18) holds (which establishes that Eq. (15) holds) and
thereby concludes the proof of Proposition 3. �

682 P. Soni and S. Tessaro

Acknowledgments. The authors were supported by NSF grants CNS-1553758
(CAREER), CNS-1423566, CNS-1719146, CNS-1528178, and IIS-1528041, and by a
Sloan Research Fellowship.

References

1. Andreeva, E., Bogdanov, A., Dodis, Y., Mennink, B., Steinberger, J.P.: On the
indifferentiability of key-alternating ciphers. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013. LNCS, vol. 8042, pp. 531–550. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40041-4 29

2. Andreeva, E., Bogdanov, A., Mennink, B.: Towards understanding the known-
key security of block ciphers. In: Moriai, S. (ed.) FSE 2013. LNCS, vol. 8424,
pp. 348–366. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-
43933-3 18

3. Aumasson, J.-P., Jovanovic, P., Neves, S.: NORX8 and NORX16: authenticated
encryption for low-end systems. Cryptology ePrint Archive, Report 2015/1154
(2015). http://eprint.iacr.org/2015/1154

4. Barak, B., Mahmoody-Ghidary, M.: Merkle puzzles are optimal — an O(n2)-query
attack on any key exchange from a random oracle. In: Halevi, S. (ed.) CRYPTO
2009. LNCS, vol. 5677, pp. 374–390. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-03356-8 22

5. Bellare, M., Hoang, V.T.: Resisting randomness subversion: fast deterministic and
hedged public-key encryption in the standard model. In: Oswald, E., Fischlin, M.
(eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 627–656. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46803-6 21

6. Bellare, M., Hoang, V.T., Keelveedhi, S.: Instantiating random oracles via UCEs.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 398–415.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1 23

7. Bellare, M., Hoang, V.T., Keelveedhi, S.: Cryptography from compression func-
tions: the UCE bridge to the ROM. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO
2014. LNCS, vol. 8616, pp. 169–187. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-662-44371-2 10

8. Bellare, M., Hoang, V.T., Keelveedhi, S., Rogaway, P.: Efficient garbling from a
fixed-key blockcipher. In: 2013 IEEE Symposium on Security and Privacy, pp.
478–492. IEEE Computer Society Press, May 2013

9. Bellare, M., Rogaway, P.: The security of triple encryption and a framework
forcode-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT 2006.
LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006). https://doi.org/10.
1007/11761679 25

10. Bellare, M., Rompel, J.: Randomness-efficient oblivious sampling. In: 35th FOCS,
pp. 276–287. IEEE Computer Society Press, November 1994

11. Bellare, M., Stepanovs, I.: Point-function obfuscation: a framework and generic
constructions. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol.
9563, pp. 565–594. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-49099-0 21

12. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: On the indifferentiability
of the sponge construction. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol.
4965, pp. 181–197. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-78967-3 11

https://doi.org/10.1007/978-3-642-40041-4_29
https://doi.org/10.1007/978-3-662-43933-3_18
https://doi.org/10.1007/978-3-662-43933-3_18
http://eprint.iacr.org/2015/1154
https://doi.org/10.1007/978-3-642-03356-8_22
https://doi.org/10.1007/978-3-642-03356-8_22
https://doi.org/10.1007/978-3-662-46803-6_21
https://doi.org/10.1007/978-3-642-40084-1_23
https://doi.org/10.1007/978-3-662-44371-2_10
https://doi.org/10.1007/978-3-662-44371-2_10
https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/978-3-662-49099-0_21
https://doi.org/10.1007/978-3-662-49099-0_21
https://doi.org/10.1007/978-3-540-78967-3_11
https://doi.org/10.1007/978-3-540-78967-3_11

Naor-Reingold Goes Public: The Complexity of Known-Key Security 683

13. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Sponge-based pseudo-
random number generators. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010.
LNCS, vol. 6225, pp. 33–47. Springer, Heidelberg (2010). https://doi.org/10.1007/
978-3-642-15031-9 3

14. Brzuska, C., Farshim, P., Mittelbach, A.: Indistinguishability obfuscation and
UCEs: the case of computationally unpredictable sources. In: Garay, J.A.,
Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 188–205. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2 11

15. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited
(preliminary version). In: 30th ACM STOC, pp. 209–218. ACM Press, May 1998

16. Cogliati, B., Seurin, Y.: Strengthening the known-key security notion for block
ciphers. In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 494–513. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-52993-5 25

17. Coron, J.-S., Patarin, J., Seurin, Y.: The random oracle model and the ideal cipher
model are equivalent. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp.
1–20. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5 1

18. Dachman-Soled, D., Katz, J., Thiruvengadam, A.: 10-Round feistel is indifferen-
tiable from an ideal cipher. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT
2016. LNCS, vol. 9666, pp. 649–678. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-49896-5 23

19. Dai, Y., Steinberger, J.: Indifferentiability of 8-round feistel networks. In:
Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp. 95–120.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-4 4

20. Dodis, Y., Ganesh, C., Golovnev, A., Juels, A., Ristenpart, T.: A formal treat-
ment of backdoored pseudorandom generators. In: Oswald, E., Fischlin, M. (eds.)
EUROCRYPT 2015. LNCS, vol. 9056, pp. 101–126. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46800-5 5

21. Dodis, Y., Stam, M., Steinberger, J., Liu, T.: Indifferentiability of confusion-
diffusion networks. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS,
vol. 9666, pp. 679–704. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-49896-5 24

22. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

23. Gaži, P., Tessaro, S.: Provably robust sponge-based PRNGs and KDFs. In: Fischlin,
M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 87–116. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-3 4

24. Hoang, V.T., Rogaway, P.: On generalized feistel networks. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 613–630. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-14623-7 33

25. Holenstein, T., Künzler, R., Tessaro, S.: The equivalence of the random oracle
model and the ideal cipher model, revisited. In: Fortnow, L., Vadhan, S.P. (eds.)
43rd ACM STOC, pp. 89–98. ACM Press, June 2011

26. Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way per-
mutations. In: 21st ACM STOC, pp. 44–61. ACM Press, May 1989

27. Knudsen, L.R., Rijmen, V.: Known-key distinguishers for some block ciphers. In:
Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 315–324. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-76900-2 19

28. Luby, M., Rackoff, C.: How to construct pseudorandom permutations from pseu-
dorandom functions. SIAM J. Comput. 17(2), 373–386 (1988)

https://doi.org/10.1007/978-3-642-15031-9_3
https://doi.org/10.1007/978-3-642-15031-9_3
https://doi.org/10.1007/978-3-662-44371-2_11
https://doi.org/10.1007/978-3-662-52993-5_25
https://doi.org/10.1007/978-3-540-85174-5_1
https://doi.org/10.1007/978-3-662-49896-5_23
https://doi.org/10.1007/978-3-662-49896-5_23
https://doi.org/10.1007/978-3-662-53018-4_4
https://doi.org/10.1007/978-3-662-46800-5_5
https://doi.org/10.1007/978-3-662-49896-5_24
https://doi.org/10.1007/978-3-662-49896-5_24
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-662-49890-3_4
https://doi.org/10.1007/978-3-642-14623-7_33
https://doi.org/10.1007/978-3-540-76900-2_19

684 P. Soni and S. Tessaro

29. Mandal, A., Patarin, J., Seurin, Y.: On the public indifferentiability and correlation
intractability of the 6-round feistel construction. In: Cramer, R. (ed.) TCC 2012.
LNCS, vol. 7194, pp. 285–302. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-28914-9 16

30. Matsuda, T., Hanaoka, G.: Chosen ciphertext security via UCE. In: Krawczyk, H.
(ed.) PKC 2014. LNCS, vol. 8383, pp. 56–76. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-642-54631-0 4

31. Maurer, U., Renner, R., Holenstein, C.: Indifferentiability, impossibility results on
reductions, and applications to the random oracle methodology. In: Naor, M. (ed.)
TCC 2004. LNCS, vol. 2951, pp. 21–39. Springer, Heidelberg (2004). https://doi.
org/10.1007/978-3-540-24638-1 2

32. Mittelbach, A.: Salvaging indifferentiability in a multi-stage setting. In: Nguyen,
P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 603–621.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5 33

33. Naor, M., Reingold, O.: On the construction of pseudo-random permutations:
Luby-Rackoff revisited (extended abstract). In: 29th ACM STOC, pp. 189–199.
ACM Press, May 1997

34. Ramzan, Z., Reyzin, L.: On the round security of symmetric-key cryptographic
primitives. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 376–393.
Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44598-6 24

35. Rogaway, P., Steinberger, J.: Security/efficiency tradeoffs for permutation-based
hashing. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 220–236.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3 13

36. Schmidt, J.P., Siegel, A., Srinivasan, A.: Chernoff-hoeffding bounds for applications
with limited independence. In: Ramachandran, V. (ed.), 4th SODA, pp. 331–340.
ACM-SIAM, January 1993

37. Soni, P., Tessaro, S.: Public-seed pseudorandom permutations. In: Coron, J.-S.,
Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10211, pp. 412–441. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-56614-6 14

38. Soni, P., Tessaro, S.: Naor-reingold goes public: The complexity of known-key secu-
rity. Cryptology ePrint Archive, Report 2018/137 (2018). https://eprint.iacr.org/
2018/137

https://doi.org/10.1007/978-3-642-28914-9_16
https://doi.org/10.1007/978-3-642-28914-9_16
https://doi.org/10.1007/978-3-642-54631-0_4
https://doi.org/10.1007/978-3-642-54631-0_4
https://doi.org/10.1007/978-3-540-24638-1_2
https://doi.org/10.1007/978-3-540-24638-1_2
https://doi.org/10.1007/978-3-642-55220-5_33
https://doi.org/10.1007/3-540-44598-6_24
https://doi.org/10.1007/978-3-540-78967-3_13
https://doi.org/10.1007/978-3-319-56614-6_14
https://eprint.iacr.org/2018/137
https://eprint.iacr.org/2018/137

Updatable Encryption
with Post-Compromise Security

Anja Lehmann(B) and Björn Tackmann

IBM Research – Zurich, Rüschlikon, Switzerland
{anj,bta}@zurich.ibm.com

Abstract. An updatable encryption scheme allows to periodically
rotate the encryption key and move already existing ciphertexts from
the old to the new key. These ciphertext updates are done with the help
of a so-called update token and can be performed by an untrusted party,
as the update never decrypts the data. Updatable encryption is partic-
ularly useful in settings where encrypted data is outsourced, e.g., stored
on a cloud server. The data owner can produce an update token, and the
cloud server can update the ciphertexts.

We provide a comprehensive treatment of ciphertext-independent
schemes, where a single token is used to update all ciphertexts. We show
that the existing ciphertext-independent schemes and models by Boneh
et al. (CRYPTO’13) and Everspaugh et al. (CRYPTO’17) do not guaran-
tee the post-compromise security one would intuitively expect from key
rotation. In fact, the simple scheme recently proposed by Everspaugh
et al. allows to recover the current key upon corruption of a single old
key. Surprisingly, none of the models so far reflects the timely aspect of
key rotation which makes it hard to grasp when an adversary is allowed
to corrupt keys. We propose strong security models that clearly capture
post-compromise and forward security under adaptive attacks. We then
analyze various existing schemes and show that none of them is secure
in this strong model, but we formulate the additional constraints that
suffice to prove their security in a relaxed version of our model. Finally,
we propose a new updatable encryption scheme that achieves our strong
notions while being (at least) as efficient as the existing solutions.

1 Introduction

In data storage, key rotation refers to the process of (periodically) exchanging
the cryptographic key material that is used to protect the data. Key rotation is
considered good practice as it hedges against the impact of cryptographic keys
being compromised over time. For instance, the Payment Card Industry Data
Security Standard (PCI DSS) [24], which specifies how credit card data must be
stored in encrypted form mandates key rotation, meaning that encrypted data
must regularly be moved from an old to a fresh key. Many cloud storage providers
that implement data-at-rest encryption, such as Google and Amazon, employ
a similar feature [15]. The trivial approach to update an existing ciphertext
c© International Association for Cryptologic Research 2018
J. B. Nielsen and V. Rijmen (Eds.): EUROCRYPT 2018, LNCS 10822, pp. 685–716, 2018.
https://doi.org/10.1007/978-3-319-78372-7_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78372-7_22&domain=pdf

686 A. Lehmann and B. Tackmann

towards a new key is to decrypt the ciphertext and re-encrypt the underlying
plaintext from scratch using the fresh key. Implementing this approach for secure
cloud storage applications where the data owner outsources his data in encrypted
form to a potentially untrusted host is not trivial, though: Either the owner has
to download, re-encrypt and upload all ciphertexts, which makes outsourcing
impractical, or the encryption keys have to be sent to the host, violating security.

Updatable Encryption. A better solution for updating ciphertexts has been pro-
posed by Boneh et al. [10]: in what they call an updatable encryption scheme, the
data owner can produce a short update token that allows the host to re-encrypt
the data himself, while preserving the security of the encryption, i.e., the token
allows to migrate ciphertexts from an old to a new key, but does not give the
host an advantage in breaking the confidentiality of the protected data. Boneh
et al. also proposed a construction (BLMR) based on key-homomorphic PRFs,
which essentially is a symmetric proxy re-encryption scheme (PRE) where one
sequentially re-encrypts data from one epoch to the next.

While being somewhat similar in spirit, PRE and updatable encryption do
have different security requirements: PRE schemes often keep parts of the cipher-
texts static throughout re-encryption, as there is no need to make a re-encrypted
ciphertexts independent from the original ciphertext it was derived from. In
updatable encryption, however, the goal should be that an updated ciphertext
is as secure as a fresh encryption; in particular, it should look like an indepen-
dently computed ciphertext even given previous ones. Thus, any scheme that
produces linkable ciphertexts, such as the original BLMR construction, cannot
guarantee such a security notion capturing post-compromise security of updated
ciphertexts.

Ciphertext-Independence vs. Ciphertext-Dependence. In the full version of their
paper, Boneh et al. [9] provide security notions for updatable encryption, which
aim to cover the desired indistinguishability of updated ciphertexts. To sat-
isfy that notion, they have to remove the linkability from the BLMR scheme,
which they achieve by moving to the setting of ciphertext-dependent updates.
In ciphertext-dependent schemes, the owner no longer produces a single token
that can update all ciphertexts, but produces a dedicated token for each cipher-
text. Therefore, the owner has to download all outsourced ciphertexts, compute
a specific token for every ciphertext, and send all tokens back to the host.

Clearly, ciphertext-dependent schemes are much less efficient and more cum-
bersome for the data owner than ciphertext-independent ones. They also increase
the complexity of the update procedure for the host, who has to ensure that it
applies the correct token for each ciphertext—any mistake renders the updated
ciphertexts useless. Another, more subtle disadvantage of ciphertext-dependent
schemes is that they require the old and new keys to be present together for a
longer time, as the owner needs both keys to derive the individual tokens for all
of his ciphertexts. Deleting the old key too early might risk losing the ability
of decrypting ciphertexts that have not been upgraded yet, whereas keeping the
old key too long makes an attack at that time more lucrative—the adversary

Updatable Encryption with Post-Compromise Security 687

obtains two keys at the same time. In a ciphertext-independent scheme, the old
key can and should be deleted immediately after the token has been derived.

In a recent work [15], Everspaugh et al. provide a systematic treatment for
such ciphertext-dependent schemes and observe that computing the token often
does not require access to the full ciphertext, but only to a short ciphertext
header, which allows to moderately improve the efficiency of this approach.
Everspaugh et al. also show that the security notions from [9] do not cover
the desired property of post-compromise security of updated ciphertexts. They
provide two new security notions and propose schemes that can provably satisfy
them. As a side-result, they also propose a security definition for ciphertext-
independent schemes and suggest a simple xor-based scheme (XOR-KEM) for
this setting.

Ambiguity of Security Models. Interestingly, both previous works phrase the
algorithms and security models for updatable encryption in the flavor of normal
proxy re-encryption. That leads to a mismatch of how the scheme is used and
modeled—in practice, an updatable encryption scheme is used in a clear sequen-
tial setting, updating ciphertexts as the key progresses. The security model offers
more and unrealistic flexibility, though: it allows to rotate keys and ciphertexts
across arbitrary epochs, jumping back in forth in time. This flexibility gives the
adversary more power than he has in reality and, most importantly, makes the
security that is captured by the model hard to grasp, as it is not clear when the
adversary is allowed to corrupt keys.

Non-intuitive security definitions increase the risk that proofs are flawed or
that schemes are unintentionally used outside the security model. And in fact,
the way that Everspaugh et al. [15] define security for (ciphertext-independent)
schemes is ambiguous, and only the weaker interpretation of their model allows
their scheme XOR-KEM to be proven secure. However, this weaker interpretation
does not guarantee any confidentiality after a secret key got compromised, as it
allows key corruption only after the challenge epoch. Thus, an updatable scheme
that is secure only in such a weak model does not provide the intuitive security
one would expect from key rotation: namely that after migrating to the new
key, the old one becomes useless and no longer of value to the adversary. To the
contrary, all previous keys still require strong protection or secure deletion.

Importance of Post-Compromise Security. Realizing secure deletion in practice
is virtually impossible, as keys may be copied or moved across the RAM, swap
partitions, and SSD memory blocks, and thus we consider post-compromise secu-
rity an essential property of updatable schemes. Avoiding the assumption of
securely deleted keys and re-gaining security after a temporary corruption has
recently inspired numerous works on how to achieve post-compromise security
in other encryption settings [6,13,14,16]. Note that an updatable encryption
scheme that is not post-compromise secure can even reduce the security com-
pared with a scheme where keys are never rotated: as one expects old keys to be
useless after rotation, practitioners can be misled to reduce the safety measures
for “expired” keys, which in turn makes key compromises more likely. For the

688 A. Lehmann and B. Tackmann

example of Everspaugh et al. simple XOR-KEM scheme [15], a compromised old
key allows to fully recover the fresh key.

This leaves open the important question how to design a ciphertext-indepen-
dent scheme that achieves post-compromise security, capturing the full spirit of
updatable encryption and key rotation.

Our Contributions. In this work we provide a comprehensive treatment for
ciphertext-independent updatable encryption schemes that have clear advantages
in efficiency and ease-of-deployment over the ciphertext-dependent solutions. We
model updatable encryption and its security in the natural sequential manner
that is inherent in key rotation, avoiding the ambiguity of previous works, and
clearly capturing all desired security properties. We also analyze the (in)security
of a number of existing schemes and finally propose a construction that provably
satisfies our strong security notions.

Strong Security Models. We define updatable encryption in its natural form
where keys and ciphertexts sequentially evolve over time epochs. To capture
security, we allow the adversary to adaptively corrupt secret keys, update tokens
and ciphertexts in any combination of epochs as long as this does not allow him
to trivially decrypt a challenge ciphertext. In our first notion, indistiguishability
of encryptions (IND-ENC), such a challenge ciphertext will be a fresh encryption
Cd of one of two messages m0,m1 under the current epoch key, and the task of
the adversary is to guess the bit d. This is the standard CPA game adapted to
the updatable encryption and adaptive corruption setting. Our second notion,
indistiguishability of updates (IND-UPD), returns as a challenge the re-encryption
C ′

d of a ciphertext either C0 or C1, and an adversary again has to guess the bit d.
We stress that this second property is essential for the security of updat-

able encryption schemes, as it captures confidentiality of updated encryptions,
whereas IND-ENC only guarantees security for ciphertexts that originate from a
fresh encryption. While IND-ENC is similar to the security of symmetric proxy
re-encryption schemes, IND-UPD is a property that is special to the context of
key rotation. And thus, contrary to a common belief, a symmetric PRE scheme
cannot directly be used for secure updatable encryption [10,15,22]!

In the ciphertext-independent setting, capturing the information that the
adversary can infer from a certain amount of corrupted tokens, keys and cipher-
texts is a delicate matter, as, e.g., an update token allows the adversary to
move any ciphertext from one epoch to the next. We observe that all existing
constructions leak more information than necessary. Instead of hard-coding the
behavior of the known schemes into the security model, we propose a set of
leakage profiles, and define both the optimal and currently achievable leakage.

We then compare our model to the existing definition for encryption indistin-
guishability by Everspaugh et al. [15]. We argue that their definition can be inter-
preted in two ways: the weaker interpretation rules out post-compromise security,
but allows the XOR-KEM construction to be secure, whereas the stronger inter-
pretation is closer to our IND-ENC model. However, in their stronger version,

Updatable Encryption with Post-Compromise Security 689

as well as in our IND-ENC notion, we show that XOR-KEM cannot be secure by
describing a simple attack that allows to recover the challenge secret key after
compromising one old key. We further show that IND-ENC is strictly stronger
than the weak interpretation of [15], but incomparable to the stronger one, due
to the way both models handle adversarial ciphertexts.

Provably Secure Constructions. We further analyze several schemes according
to the new definitions (Sect. 5), the results are summarized in Table 1. First, we
consider a simple construction (called 2ENC) that is purely based on symmetric
primitives. Unfortunately, the scheme cannot satisfy our strong security notions.
Yet, instead of simply labeling this real-world solution as insecure, we formulate
the additional constraints on the adversarial behavior that suffice to prove its
security in relaxed versions of our IND-ENC and IND-UPD models.

Table 1. Overview of results in this work. (Corruption of secret keys in challenge epochs
is forbidden by the IND-ENC and IND-UPD definitions. The symbol (✓) denotes that a
schemes requires additional constraints on the tokens that can be corrupted to achieve
the security notion.)

SE-KEM 2ENC BLMR BLMR+ RISE

IND-ENC (✓) (✓) ✓ ✓ ✓

No token near a
challenge

Either token near
challenge, or secret key

IND-UPD ✘ (✓) ✘ (✓) ✓

No token near a
challenge

At most one token

We then turn our attention to less efficient but more secure schemes, starting
with the BLMR construction by Boneh et al. [10] that uses key-homomorphic
PRFs. We show that the original BLMR scheme does satisfy our IND-ENC notion
but not IND-UPD, and also propose a slight modification BLMR+ that improves
the latter and achieves a weak form of update indistinguishability. While BLMR
seems to be a purely symmetric solution on the first glance, any instantiation of
the underlying key-homomorphic PRFs so far requires modular exponentiations
or is built from lattices. The same holds for the recent ciphertext-dependent
construction by Everspaugh et al. [15] that also relies on key-homomorphic PRFs
and suggests a discrete-logarithm based instantiation.

Acknowledging that secure updatable encryption schemes seem to inherently
require techniques from the public-key world, we then build a scheme that omits
the intermediate abstraction of using key-homomorphic PRFs which allows us to
take full advantage of the underlying group operations. Our construction (RISE,
for Re-randomizable ciphertext-Independent Symmetric Elgamal) can be seen as
the classic ElGamal-based proxy re-encryption scheme combined with a fresh re-
randomization upon each re-encryption. We prove that this scheme fully achieves
both of our strong security definitions.

690 A. Lehmann and B. Tackmann

We compare the schemes in terms of efficiency in Table 2. The costs for
encryption and updates of our most secure RISE scheme are—on the owner
side—even lower than the costs in the less secure BLMR scheme and the recent
ciphertext-dependent scheme ReCrypt by Everspaugh et al. [15]. The solution by
Everspaugh et al. shifts significantly many expensive update operations to the
data owner, who has to compute two exponentiation for each ciphertext (block)
that shall be updated, whereas our scheme requires the owner to compute only
a single exponentiation for the update of all ciphertexts.

In Appendix A, we additionally analyze a “hybrid-encryption” scheme
SE-KEM that is widely used in practical data-at-rest protection, where the
encrypted plaintext is stored together with the encryption key wrapped under
an epoch key. The scheme provides rather weak guarantees when viewed as an
updatable encryption scheme, but may still be useful in certain scenarios due to
the efficient key update.

Table 2. Comparison of computational efficiency measured by the most expensive
operations for short (one-block) ciphertexts (exponentiation, symmetric cryptography).
Note that the ciphertext-dependent BLMR’ variant of [9] is unlikely to have a security
proof [15], and BLMR and BLMR+ achieve significantly weaker security than RISE.
(SE-KEM and 2ENC are omitted here as they are purely symmetric solutions.)

Ciphertext
independent

Encryption Token derivation Update of n
Ciphertexts

BLMR’ [9] 2 exp. 2n sym. 2n exp.

ReCrypt [15] 2 exp. 2n exp. 2n exp.

BLMR [10] ✔ 2 exp. 2 exp. 2n exp.

BLMR+ (this work) ✔ 2 exp. 2 exp. 2n exp.

RISE (this work) ✔ 2 exp. 1 exp. 2n exp.

Other Related Work. Beyond the previous work on updatable encryption
[9,10,15] that we already discussed above, the most closely related line of work
is on (symmetric) proxy re-encryption (PRE) [2,3,7,8,12,17,20–22]. Notably,
the recent work of Berners-Lee [7] builds on the work of Everspaugh et al. [15]
and views the concept of ciphertext-dependent updates as a desirable secu-
rity feature of PRE in general, as it reduces the freedom of a possibly
untrusted proxy. The recent work of Myers and Shull [22] studies hybrid PRE
schemes aiming at efficient solutions for key rotation and access revocation.
As stressed before, however, while being similar in the sense that PRE allows
a proxy to move ciphertexts from one key to another, the desired security
guarantees have subtle differences and the security property of IND-UPD that
is crucial for updatable encryption is neither covered nor needed by PRE.

Updatable Encryption with Post-Compromise Security 691

While this means that a secure PRE does not automatically yield a secure
updatable encryption scheme, it does not prevent PREs from being secure in the
updatable encryption sense as well—but this has to be proven from scratch. In
fact, our schemes are strongly inspired by proxy re-encryption: For the simple
double-encryption scheme discussed by Ivan and Dodis [18], we show that a
weak form of security can be proven, and our most secure scheme RISE combines
the ElGamal-based PRE with re-randomization of ciphertexts. We also observe
similar challenges in designing schemes that limit the “power” of the token,
which is related to the long-standing problem of constructing efficient PRE’s
that are uni-directional, multi-hop and collusion-resistant.

In the context of tokenization, which is the process of consistently replacing
sensitive elements, such as credit card numbers, with non-sensitive surrogate val-
ues, the feature of key rotation has recently been studied by Cachin et al. [11].
Their schemes are inherently deterministic, and thus their results are not applica-
ble to the problem of probabilistic encryption, but we follow their formalization
of modeling key rotation in a strictly sequential manner.

Finally, a recent paper of Ananth et al. [1] provides a broader perspective on
updatable cryptography, but targets generic and rather complex schemes with
techniques such as randomized encodings. The definitions in their work have
linkability hardcoded, as randomness has to remain the same across updates,
which is in contrast to our goal of achieving efficient unlinkable schemes for the
specific case of updatable encryption.

2 Preliminaries

Symmetric Encryption. A symmetric encryption scheme SE consists of a key
space K and three polynomial-time algorithms SE.kgen, SE.enc, SE.dec satisfying
the following conditions:

SE.kgen: The probabilistic key generation algorithm takes as input a security
parameter and produces an encryption key k ∈ K. That is, k

r← SE.kgen(λ).
SE.enc: The probabilistic encryption algorithm takes a key k ∈ K and a message

m ∈ M and returns a ciphertext C, written as C
r← SE.enc(k,m).

SE.dec: The deterministic decryption algorithm SE.dec takes a key k ∈ K and a
ciphertext C to return a message (M ∪ {⊥}) � m ← SE.dec(k,C)

For correctness we require that for any key k ∈ K, any message m ∈ M and
any ciphertext C

r← SE.enc(k,m), we have m ← SE.dec(k,C).

Chosen-Plaintext Security. The IND-CPA security of a symmetric encryption
scheme SE is defined through the following game GameIND-CPA(A) with adver-
sary A. Initially, choose b

r← {0, 1} and k
r← SE.kgen(λ). Run adversary A

with oracle Oenc(m), which computes C
r← SE.enc(k,m) and returns C. When

A outputs two messages m0,m1 with |m0| = |m1| and a state state, compute
C̃

r← SE.enc(k,mb) and run A(C̃, state), again with access to oracle Oenc. When
A outputs a bit b̃, the game is won if b = b̃. The IND-CPA advantage of A is
defined as |2Pr[GameIND-CPA(A) won] − 1|, and SE is called IND-CPA-secure if
for all efficient adversaries A the advantage is negligible in λ.

692 A. Lehmann and B. Tackmann

Decisional Diffie-Hellman Assumption. Our final construction requires a group
(G, g, p) as input where G denotes a cyclic group G = 〈g〉 of order p in which the
Decisional Diffie-Hellman (DDH) problem is hard w.r.t. λ, i.e., p is a λ-bit prime.
More precisely, a group (G, g, p) satisfies the DDH assumption if for any efficient
adversary A the probability

∣
∣Pr[A(G, p, g, ga, gb, gab)] − Pr[A(G, p, g, ga, gb, gc)]

∣
∣

is negligible in λ, where the probability is over the random choice of p, g, the
random choices of a, b, c ∈ Zp, and A’s coin tosses.

3 Formalizing Updatable Encryption

We now present our formalization of updatable encryption and its desired secu-
rity features, and discuss how our security model captures these properties.

An updatable encryption scheme contains algorithms for a data owner and a
host. The owner encrypts data using the UE.enc algorithm, and then outsources
the ciphertexts to the host. To this end, the data owner initially runs an algo-
rithm UE.setup to create an encryption key. The encryption key evolves with
epochs, and the data is encrypted with respect to a specific epoch e, starting
with e = 0. When moving from epoch e to epoch e + 1, the owner invokes an
algorithm UE.next to generate the key material ke+1 for the new epoch and an
update token Δe+1. The owner then sends Δe+1 to the host, deletes ke and
Δe+1 immediately, and uses ke+1 for encryption from now on. After receiving
Δe+1, the host first deletes Δe and then uses an algorithm UE.upd to update all
previously received ciphertexts from epoch e to e+1, using Δe+1. Hence, during
some epoch e, the update token from e − 1 to e is available at the host, but
update tokens from earlier epochs have been deleted. (The host could already
delete the token when all ciphertexts are updated, but as this is hard to model
in the security game, we assume the token to be available throughout the full
epoch.)

Definition 1 (Updatable Encryption). An updatable encryption scheme UE
for message space M consists of a set of polynomial-time algorithms UE.setup,
UE.next, UE.enc,UE.dec, and UE.upd satisfying the following conditions:

UE.setup: The algorithm UE.setup is a probabilistic algorithm run by the owner.
On input a security parameter λ, it returns a secret key k0

r← UE.setup(λ).
UE.next: This probabilistic algorithm is also run by the owner. On input a secret

key ke for epoch e, it outputs a new secret key ke+1 and an update token
Δe+1 for epoch e + 1. That is, (ke+1,Δe+1)

r← UE.next(ke).
UE.enc: This probabilistic algorithm is run by the owner, on input a message

m ∈ M and key ke of some epoch e returns a ciphertext Ce
r← UE.enc(ke,m).

UE.dec: This deterministic algorithm is run by the owner, on input a ciphertext
Ce and key ke of some epoch e returns {m′/⊥} ← UE.dec(ke, Ce).

UE.upd: This either probabilistic or deterministic algorithm is run by the host.
On input a ciphertext Ce from epoch e and the update token Δe+1, it returns
the updated ciphertext Ce+1 ← UE.upd(Δe+1, Ce).

Updatable Encryption with Post-Compromise Security 693

Correctness. The correctness condition of an updatable encryption scheme
ensures that an update of a valid ciphertext Ce from epoch e to e + 1 leads
again to a valid ciphertext Ce+1 that can be decrypted under the new epoch key
ke+1. More precisely, we require that for any m ∈ M, for any k0

r← UE.setup(λ),
for any sequence of key/update token pairs (k1,Δ1), . . . , (ke,Δe) generated
as (kj+1,Δj+1)

r← UE.next(kj) for j = 0, . . . , e − 1 through repeated appli-
cations of the key-evolution algorithm, and for any C0

r← UE.enc(k0,m),
it holds that m = UE.dec(ke, Ce) where Ce is recursively obtained through
Cj+1

r← UE.upd(kj+1, Cj).

3.1 Security Properties

The main goal of updatable encryption is twofold: First, it should enable efficient
updates by a potentially corrupt host, i.e., the update procedure and compromise
of the update tokens must not reduce the standard security of the encryption.
Second, the core purpose of key rotation is to reduce the risk and impact of
key exposures, i.e., confidentiality should be preserved or even re-gained in the
presence of temporary key compromises, which can be split into forward and
post-compromise security. Furthermore, we aim for security against adaptive
and retroactive corruptions, modeling that any key or token from a current or
previous epoch can become compromised.

Token Security: The feature of updating ciphertexts should not harm the stan-
dard IND-CPA security of the encryption scheme. That is, seeing updated
ciphertexts or even the exposure of all tokens does not increase an adver-
sary’s advantage in breaking the encryption scheme.

Forward Security: An adversary compromising a secret key in some epoch e∗

does not gain any advantage in decrypting ciphertexts he obtained in epochs
e < e∗ before that compromise.

Post-Compromise Security: An adversary compromising a secret key in some
epoch e∗ does not gain any advantage in decrypting ciphertexts he obtained
in epochs e > e∗ after that compromise.

Adaptive Security: An adversary can adaptively corrupt keys and tokens of
the current epoch and all previous ones.

Given that updatable encryption schemes can produce ciphertexts in two
ways—either via a direct encryption or an update of a previous ciphertext—we
require that the above properties must hold for both settings. This inspires our
split into two indistinguishability-based security notions, one capturing security
of direct encryptions (IND-ENC) and one ruling out attacks against updated
ciphertexts (IND-UPD). Both security notions are defined through experiments
run between a challenger and an adversary A. Depending on the notion, the
adversary may issue queries to different oracles, defined in the next section. At
a high level, A is allowed to adaptively corrupt arbitrary choices of secret keys
and update tokens, as long as they do not allow him to trivially decrypt the
challenge ciphertext.

694 A. Lehmann and B. Tackmann

The Importance of Post-Compromise Security. We have formalized updatable
encryption in the strict sequential setting it will be used in, and in particular
modeled key derivation of a new key ke+1 as a sequential update (ke+1,Δe+1)

r←
UE.next(ke) of the old key ke. Previous works [10,15] instead model key rotation
by generating fresh keys via a dedicated ke+1

r← UE.kgen(λ) algorithm at each
epoch and deriving the token as Δe+1

r← UE.next(ke, ke+1).
One impact of our sequential model is that post-compromise security becomes

much more essential, as this property intuitively ensures that new keys are
independent of the old ones (which is directly ensured in the previous formal-
ization where keys where generated independently). Without requiring post-
compromise security, UE.next(ke) could generate the new key by hashing the old
one: ke+1 ← H(ke). If H is modeled as a random oracle, this has no impact for
standard or forward security, but any scheme with such a key update loses all
security in the post-compromise setting. An adversary compromising a single
secret key ke can derive all future keys himself.

What we do not Model. The focus of this work is to obtain security against arbi-
trary key compromises, i.e., an adversary can steal secret keys, update tokens,
and outsourced ciphertexts at any epoch. We do not consider attacks where an
adversary fully takes over the owner or host and starts manipulating ciphertexts,
e.g., providing adversarially generated ciphertexts to the host, or tampering with
the update procedure. Thus, we model passive CPA attacks but not active CCA
ones, and assume that all ciphertexts and updates are honestly generated. We
believe this still captures the main threat in the context of updatable encryption,
namely smash-and-grab attacks aiming at compromising the key material.

In fact, this restriction to passive attacks allows us to be more generous
when it comes to legitimate queries towards corrupted epochs, as we can distin-
guish challenge from non-challenge ciphertexts and only prohibit the ones that
allow trivial wins. Interestingly, Everspaugh et al. [15] use a similar approach in
their stronger CCA-like security notion for ciphertext-dependent schemes where
they are able to recognize whether a ciphertext is derived from the challenge
and prevent these from being updated towards a corrupt key. They are able to
recognize challenge ciphertexts as all keys are generated honestly, i.e., they are
known to the challenger, and updates are required to be deterministic. The latter
allows the challenger to trivially keep track of the challenge ciphertext, but it
also makes misuse of the schemes more likely: if a scheme is implemented with
probabilistic updates—which intuitively seems to only increase security—then
one steps outside of the model and loses all security guarantees. In our model,
we allow updates to be probabilistic, and in fact, the security of our strongest
construction crucially relies on the re-randomization of updated ciphertexts.

3.2 Definition of Oracles

During the interaction with the challenger in the security definitions, the adver-
sary may access oracles for encryption, for moving the key to the next epoch, for
corrupting the token or secret key, and for updating ciphertexts into the current

Updatable Encryption with Post-Compromise Security 695

epoch. In the following description, the oracles may access the state of the chal-
lenger during the experiment. The challenger initializes a UE scheme with global
state (ke,Δe,S, e) where k0 ← UE.setup(λ), Δ0 ← ⊥, and e ← 0, and S consists
of initially empty sets L, L̃, C,K and T . Furthermore, let ẽ denote the challenge
epoch, and eend denote the final epoch in the game.

The sets L, L̃, C,K and T are used to keep track of the generated and updated
ciphertexts, and the epochs in which A corrupted a secret key or token, or learned
a challenge-ciphertext (Fig. 1):

L List of non-challenge ciphertexts (Ce, e) produced by calls to the Oenc or Oupd oracle.
Oupd only updates ciphertexts contained in L.

L̃ List of updated versions of the challenge ciphertext. L̃ gets initialized with the
challenge ciphertext (C̃, ẽ). Any call to the Onext oracle automatically updates the
challenge ciphertext into the new epoch, which A can fetch via a OupdC̃ call.

C List of all epochs e in whichA learned an updated version of the challenge ciphertext.

K List of all epochs e in which A corrupted the secret key ke.

T List of all epochs e in which A corrupted the update token Δe.

Fig. 1. Summary of lists maintained by the challenger.

Oenc(m): On input a message m ∈ M, compute C
r← UE.enc(ke,m) where ke

is the secret key of the current epoch e. Add C to the list of ciphertexts
L ← L ∪ {(C, e)} and return the ciphertext to the adversary.

Onext: When triggered, this oracle updates the secret key, produces a new
update value as (ke+1,Δe+1)

r← UE.next(ke), and updates the global state
to (ke+1,Δe+1,S, e + 1). If the challenge query was already made, this call
will also update the challenge ciphertext into the new epoch, i.e., it runs
C̃e+1

r← UE.upd(Δe+1, C̃e) for (C̃e, e) ∈ L̃ and sets L̃ ∪ {(C̃e+1, e + 1)}.
Oupd(Ce−1): On input a ciphertext Ce−1, check that (Ce−1, e − 1) ∈ L (i.e., it

is an honestly generated ciphertext of the previous epoch e − 1), compute
Ce

r← UE.upd(Δe, Ce−1), add (Ce, e) to the list L and output Ce to A.
Ocorrupt({token, key}, e∗): This oracle models adaptive corruption of the host and

owner keys, respectively. The adversary can request a key or update token
from the current or any of the previous epochs.
– Upon input token, e∗ ≤ e, the oracle returns Δe∗ , i.e., the update token

is leaked. Calling the oracle in this mode sets T ← T ∪ {e∗}.
– Upon input key, e∗ ≤ e, the oracle returns ke∗ , i.e., the secret key is

leaked. Calling the oracle in this mode sets K ← K ∪ {e∗}.
OupdC̃: Returns the current challenge ciphertext C̃e from L̃. Note that the chal-

lenge ciphertext gets updated to the new epoch by the Onext oracle, whenever
a new key gets generated. Calling this oracle sets C ← C ∪ {e}.

696 A. Lehmann and B. Tackmann

Fine-grained corruption modeling. Note that in the case of key-corruption in an
epoch e∗, the oracle Ocorrupt(key, e∗) only reveals the secret key ke∗ , but not the
update token of the epoch. This assumes erasure of the token as an ephemeral
value on the owner side. If the adversary also wants to learn the token, he can
make a dedicated query for token-corruption in the same epoch. This allows to
capture more fine-grained corruption settings.

Moreover, we have chosen to give the adversary a dedicated challenge-update
oracle OupdC̃ that simply returns the updated challenge ciphertext of the current
epoch, i.e., it does not require knowledge of the challenge ciphertext from the
previous epoch. This gives the adversary more power compared with the defini-
tion in earlier models [10,15]: Therein, an adversary wanting to know an updated
version of the challenge ciphertext for some epoch e′ > ẽ (with ẽ denoting the
challenge epoch) had to make update queries in all epochs from ẽ to e′, which
in turn is only allowed if A has not corrupted any secret key between ẽ and
e′. Consequently, A could not receive an updated challenge ciphertext after a
single key corruption, which we consider too restrictive. Therefore, we internally
update the challenge ciphertext with every key rotation and allow the adversary
to selectively receive an updated version at every epoch of his choice. Thus, in
every epoch after ẽ, the adversary A can choose whether he wants to learn the
secret key or an updated version of the challenge ciphertext.

3.3 “Leakage” Profiles

The main benefit of ciphertext-independent updatable encryption schemes is that
a single token can be used to update all ciphertexts from one epoch to the next.
However, the generality of the token also imposes a number of challenges when
modeling the knowledge of the adversary after he has corrupted a number of
keys, tokens and updated challenge ciphertexts. For instance, if the adversary
knows a challenge ciphertext C̃ from epoch ẽ and an update token for epoch
ẽ + 1, he can derive an updated version of C̃ himself, which is not captured in
the set C that only reflects the challenge ciphertexts that A has directly received
from the challenger. This inference of updated ciphertexts via an update token
is clearly inherent in ciphertext-independent schemes.

Practical schemes often enable the adversary to derive even more information,
e.g., a token might allow not only to update but also to “downgrade” a ciphertext
into the previous epoch, i.e., the updates are bi-directional, or even allow to
update and downgrade a secret key via a token. While these features are present
in all current solutions, we do not see a reason why they should be inherent
in updatable encryption in general. Thus, we model different inference options
outside of the game by defining extended sets T ∗, C∗ and K∗ that capture the
information an adversary can infer from the directly learned tokens, ciphertexts
or keys. In the security games defined in the next section, we will require the
intersection of the extended sets of known challenge ciphertexts C∗ and known
secret keys K∗ to be empty, i.e., there must not exist a single epoch where the
adversary knows both the secret key and the (updated) challenge. We give an
example of such direct and inferable information in Fig. 2.

Updatable Encryption with Post-Compromise Security 697

Note that such inference is less an issue for ciphertext-dependent schemes
where the owner has to a derive a dedicated token for each ciphertext. This
naturally limits the power of the token to the ciphertext it was derived for, and
prevents the adversary from using the token outside of its original purpose.

keys:

token:

challenge:

e − 3 e − 2 e − 1 e e + 1 e + 2 e + 3

ke−3 ke−2 ke−1 ke ke+1 ke+2 ke+3

Δe−2 Δe−1 Δe Δe+1 Δe+2 Δe+3

C̃e−3 C̃e−2 C̃e−1 C̃e C̃e+1 C̃e+2 C̃e+3

epoch:

Fig. 2. Example of direct and indirect knowledge of an adversary. The boxed values
denote A’s directly received information as captured in K, T and C, whereas the circled
ones denote the inferable values for a scheme with token-inference and bi-directional
updates of ciphertexts and keys.

Capturing Key Updates. In many schemes (in fact all the ones we will
consider), an update token does not only allow to update ciphertexts, but also
the secret key itself. That is, if an adversary has learned a key ke of epoch e and
the update token Δe+1 of the following epoch, then he can also derive the new
key ke+1. If that is the only possible derivation, we call this an uni-directional
key update. If in addition also key downgrades are possible, i.e., a key ke can be
derived from ke+1 and Δe+1, we call this bi-directional key updates.

In the context of proxy re-encryption, a similar property is known as “collu-
sion-resistance”. So far only uni-directional and single-hop schemes satisfy this
property, though [2,3,12,17,20,21], indicating that preventing keys to be updat-
able in a more flexible setting is a challenging property.

For defining uni- and bi-directional key updates we use the information con-
tained in K and T to derive the inferable information. Recall that K denotes the
set of epochs in which the adversary has obtained the secret key. The sets K∗

uni

and K∗
bi are then defined via the recursive predicate corrupt-key as follows:

Uni-directional key updates:
K∗

uni ← {e ∈ {0, . . . , eend} | corrupt-key(e) = true}
and true ← corrupt-key(e) iff:

(e ∈ K) ∨ (corrupt-key(e − 1) ∧ e ∈ T)

Bi-directional key updates:
K∗

bi ← {e ∈ {0, . . . , eend} | corrupt-key(e) = true}
and true ← corrupt-key(e) iff:

(e ∈ K) ∨ (corrupt-key(e − 1) ∧ e ∈ T)
∨ (corrupt-key(e + 1) ∧ e + 1 ∈ T)

698 A. Lehmann and B. Tackmann

Capturing Token Inference from Subsequent Secret Keys. The second
indirect knowledge we model is the derivation of an update token from two sub-
sequent secret keys. This is possible in all existing schemes where a token Δe+1

is deterministically derived from the keys ke and ke+1. In fact, all previous def-
initions explicitly model the token computation as an algorithm that receives
both keys as input, instead of using an algorithm that updates the key and pro-
duces an update token at the same time. While the former is clearly a necessary
design choice for proxy re-encryption, it is less so for updatable encryption where
keys are generated in a strictly sequential order. Yet, if such token inference is
possible, we define an extended set T ∗ that contains all update tokens that the
adversary has either obtained directly or derived himself from corrupted keys.

More, precisely, for schemes with token-inference, the adversary can derive
from any two subsequent keys ke and ke+1 the update token Δe+1 from epoch e
to e+1. We capture this by defining T ∗ via the sets T of corrupted token epochs
and K∗ denoting the extended set of corrupted key epochs as defined above.

T ∗ ← {e ∈ {0, . . . , eend} | (e ∈ T) ∨ (e ∈ K∗ ∧ e − 1 ∈ K∗)}

On a first glance it might look like we could run into a definitional loop
between inferred tokens and keys, as the extended set T ∗ based on K∗ could
now also impact the definition of K∗ (which we build from T). This is not the
case though: the additional epochs e that will be contained in T ∗ are epochs
where the adversary already knew ke and ke−1. Thus the additional tokens Δe

where e ∈ T ∗\T would have no impact on a (re-definition) of K∗ as all inferable
keys from Δe are already in K∗.

Capturing Challenge Ciphertext Updates. For capturing all the epochs
in which the adversary knows a version of the challenge ciphertext, we define
the set C∗ containing all challenge-equal epochs. Informally, a challenge-equal
epoch is every epoch in which the adversary knows a current version of the
challenge ciphertext. This can be either obtained via a direct call to the challenge-
ciphertext oracle OupdC̃, or by the adversary computing it himself via a (sequence
of) updates. We have to distinguish between two cases, depending on whether
the updates are uni- or bi-directional. In schemes with uni-directional updates,
an update token Δe can only move ciphertexts from epoch e − 1 into epoch e,
but not vice versa. Note that uni-directional updates are by definition possible
in all ciphertext-independent schemes. A scheme where a token Δe also allows
to downgrade ciphertexts from epoch e to e − 1, is called bi-directional.

Clearly, for security, uni-directional schemes are desirable, as the bi-direc-
tional property does not provide additional useful features but only allows the
adversary to trivially derive more information. However, bi-directional schemes
are easier to build, as this is related to the problem of designing uni-directional
and multi-hop proxy re-encryption schemes, for which a first (compact) lattice-
based solution was proposed only recently [25].

In both cases, we define C∗
uni and C∗

bi by using the information contained in C,
T ∗ and ẽ to derive the inferable information. Recall that ẽ denotes the challenge

Updatable Encryption with Post-Compromise Security 699

epoch, C denotes the set of epochs in which the adversary has obtained an
updated version of the ciphertext (via OupdC̃), and T ∗ is the augmented set
of tokens known to the adversary. The sets C∗

uni and C∗
bi of all challenge-equal

ciphertexts are then defined via the recursive predicate challenge-equal as follows:

Uni-directional ciphertext updates:
C∗
uni ← {e ∈ {0, . . . , eend} | challenge-equal(e) = true}

and true ← challenge-equal(e) iff:
(e = ẽ) ∨ (e ∈ C) ∨ (challenge-equal(e − 1) ∧ e ∈ T ∗)

Bi-directional ciphertext updates:
C∗
bi ← {e ∈ {0, . . . , eend} | challenge-equal(e) = true}

and true ← challenge-equal(e) iff:
(e = ẽ) ∨ (e ∈ C)
∨ (challenge-equal(e − 1) ∧ e ∈ T ∗)
∨ (challenge-equal(e + 1) ∧ e + 1 ∈ T ∗)

Optimal Leakage. The optimal leakage, capturing only the inference mini-
mally necessary to perform ciphertext-independent updates would be T ∗ = T ,
K∗ = K and C∗ = C∗

uni. That is, there is no token inference, keys cannot be
updated via a token and ciphertext updates are only uni-directional. All our
schemes have leakage (T ∗, C∗

bi,K∗
bi), and we leave it as an interesting open prob-

lem whether efficient schemes with less leakage exist. Interestingly, the extended
set of corrupted tokens T ∗ does not give the adversary more power in our
IND-ENC and IND-UPD definitions, compared with definitions that are based
only on T .

3.4 Security Notions for Updatable Encryption

We are now ready to formally define the security notions for updatable encryp-
tion schemes in the remainder of this section. We propose two indistinguisha-
bility-based notions—the first capturing the security of fresh encryptions in the
presence of key evolutions and adaptive corruptions, and the second defining the
same security for updated ciphertexts.

Adaptive Encryption Indistinguishability (IND-ENC). Our IND-ENC
notion ensures that ciphertexts obtained from the UE.enc algorithm do not reveal
any information about the underlying plaintexts even when A adaptively com-
promises a number of keys and tokens before and after the challenge epoch. Thus
this definition captures forward and post-compromise security.

Definition 2 (IND-ENC). An updatable encryption scheme UE is said to be
IND-ENC-secure if for all probabilistic polynomial-time adversaries A it holds
that |Pr[ExpIND-ENC

A,UE (λ) = 1] − 1/2| ≤ ε(λ) for some negligible function ε.

700 A. Lehmann and B. Tackmann

Experiment ExpIND-ENC
A,UE (λ):

k0
r← UE.setup(λ)

e ← 0; ẽ ← ⊥; L ← ∅ // these variables are updated by the oracles
(m0,m1, state) r← AOenc,Onext,Oupd,Ocorrupt(λ)
proceed only if |m0| = |m1|
ẽ ← e; d

r← {0, 1}
C̃

r← UE.enc(kẽ,md), L̃ ← {(C̃, ẽ)}
d′ r← AOenc,Onext,Oupd,Ocorrupt,OupdC̃(C̃, state)
return 1 if d′ = d and the following condition holds:

A has not learned ke∗ in any challenge-equal epoch e∗, i.e., let C∗ denote
the set of all challenge-equal epochs and K∗ the set of epochs in which A
learned the secret key, then it must hold that C∗ ∩ K∗ = ∅

This experiment follows the typical IND-CPA definition, but additionally
grants the adversary access to the Onext, Oupd, Ocorrupt and OupdC̃ oracles defined
in Sect. 3.2. To exclude trivial wins, we require that A has not learned the secret
key in any challenge-equal epoch. Recall that a “challenge-equal” epoch is every
epoch in which the adversary knows a current version of the challenge ciphertext.
This can be either obtained via a direct call to the challenge-ciphertext oracle
or by the adversary computing it himself via a (sequence of) updates. The exact
set of challenge-equal epochs (C∗) and secret keys that are known to the adver-
sary (K∗) depends on the leakage profile, which has to specified when proving
IND-ENC security. For all schemes proven secure in this work, the leakage profile
is the one defined in Sect. 3.3.

Insufficiency of IND-ENC for Full Post-Compromise Security. It is often claimed
that symmetric proxy re-encryption (PRE) can be used for updatable encryp-
tion, indicating that security of symmetric PRE is sufficient for the security of
key-evolving schemes [10,15,22]. In fact, the security definition for ciphertext-
independent schemes given by Boneh et al. [10] and Everspaugh et al. [15] coin-
cides with the security of symmetric PRE. Our IND-ENC definition can be seen as
a strengthened version (as it allows adaptive corruptions) of such PRE security
adapted to the sequential setting of an updatable encryption scheme. However,
an updatable scheme only satisfying IND-ENC would not necessarily provide the
security properties one expects. Note that in the IND-ENC definition above, the
challenge is a fresh encryption of one of the two challenge messages m0,m1,
but not an updated ciphertext. Thus, IND-ENC security cannot guarantee any-
thing about the security of updates. In fact, a scheme where the update algorithm
UE.upd includes all the old ciphertexts C0, . . . Ce in the updated ciphertext Ce+1

could be considered IND-ENC secure, but clearly lose all security if a single old
key gets compromised.

We therefore also propose a second definition that requires indistinguisha-
bility of updates, and in combination with IND-ENC guarantees the security
properties one expects from updatable encryption.

Updatable Encryption with Post-Compromise Security 701

Adaptive Update Indistinguishability (IND-UPD). The IND-UPD notion
ensures that an updated ciphertext obtained from the UE.upd algorithm does not
reveal any information about the previous ciphertext, even when A adaptively
compromises a number of keys and tokens before and after the challenge epoch.
Thus this definition again captures forward and post-compromise security in an
adaptive manner. We will informally refer to this notion also as unlinkability.

Definition 3 (IND-UPD). An updatable encryption scheme UE is said to be
IND-UPD-secure if for all probabilistic polynomial-time adversaries A it holds
that |Pr[ExpIND-UPD

A,UE (λ) = 1] − 1/2| ≤ ε(λ) for some negligible function ε.

Experiment ExpIND-UPD
A,UE (λ):

k0
r← UE.setup(λ)

e ← 0; ẽ ← ⊥; L ← ∅ // these variables are updated by the oracles

(C0, C1, state) r← AOenc,Onext,Oupd,Ocorrupt(λ)
proceed only if (C0, ẽ − 1) ∈ L and (C1, ẽ − 1) ∈ L and |C0| = |C1|
ẽ ← e; d

r← {0, 1}
C̃

r← UE.upd(Δẽ, Cd), L̃ ← {(C̃, ẽ)}
d′ r← AOenc,Onext,Oupd,Ocorrupt,OupdC̃(C̃, state)
return 1 if d′ = d and all of the following conditions hold

1) A has not learned Δẽ, i.e., ẽ /∈ T ∗

2) A has not learned ke∗ in any challenge-equal epoch e∗, i.e., let C∗ denote
the set of all challenge-equal epochs and K∗ the set of epochs in which A
learned the secret key, then it must hold that C∗ ∩ K∗ = ∅

3) if UE.upd is deterministic, then A has neither queried Oupd(C0)
nor Oupd(C1) in epoch ẽ

This experiment is similar to IND-ENC, but instead of requiring a fresh
encryption to be indistinguishable, we let the adversary provide two ciphertexts
C0 and C1 and return the update C̃ of one of them. The task of the adversary
is to guess which ciphertext got updated. Note that the adversary is allowed to
corrupt the secret key kẽ−1, i.e., from right before the challenge epoch. Similar as
in IND-ENC we exclude trivial wins where the adversary learned the secret key
of a challenge-equal epoch. Moreover, if the update algorithm is deterministic,
A is also not allowed to update any of the two challenge ciphertexts into the
challenge epoch himself.

4 Comparison with Existing Models

We now compare our security notion with the definition proposed by Everspaugh
et al. [15], which in turn builds upon the work by Boneh et al. [9]. We also discuss
the XOR-KEM scheme that was claimed to be a secure ciphertext-independent
scheme [15]. Note that, for ciphertext-independent schemes, only the property of
encryption indistinguishability (UP-IND-BI in [15]) was previously defined but

702 A. Lehmann and B. Tackmann

not the additional update indistinguishability, and thus our comparison focuses
on IND-ENC.

The UP-IND-BI definition by Everspaugh et al. [15] is ambiguous, and we
show that one can either interpret the model such that it excludes any key
compromises before the challenge (i.e., it does not cover post-compromise secu-
rity), or it is closer to our model and allows a restricted form of key corrup-
tions before the challenge. We refer to the former as weakUP-IND-BI and to
the latter as strongUP-IND-BI model. We stress that neither weakUP-IND-BI nor
strongUP-IND-BI used in our comparison is the verbatim definition presented
in [15]. Both are adaptions of the UP-IND-BI model to the sequential setting
that we use in our work and in which updatable schemes are naturally used.
This adaptation revealed an ambiguity in the UP-IND-BI model w.r.t. whether
it allows key corruptions before the challenge.

One reason for the ambiguity is that the XOR-KEM scheme, which is claimed
secure, is secure only in the weakUP-IND-BI model, but not in strongUP-IND-BI:
we show that it loses all security if the adversary can corrupt an old key, which
is allowed in the stronger model, as well as in our IND-ENC game.

Overall we show the following:

Theorem 1. IND-ENC =⇒ weakUP-IND-BI, IND-ENC �⇐⇒ strongUP-IND-BI.

4.1 weakUP-IND-BI vs. strongUP-IND-BI

The key reason for the ambiguity of the security definition by Everspaugh
et al. [15] is that the security game does not convey the notion of epochs and
thus it is not clear when the adversary is allowed to corrupt secret keys. The
definition considers static corruptions, and assumes a known threshold t that
separates honest from corrupted keys. That is, all keys k1, . . . , kt are assumed to
be uncorrupted, whereas the keys kt+1, . . . , kκ are considered corrupted and are
given to the adversary. Jumping ahead, the security notion then allows challenge
queries for all keys ki where i ≤ t and disallows any update or token corruption
queries towards a corrupt key kj , i.e., where j > t.

One interpretation is that the threshold t strictly separates honest from cor-
rupt epochs, i.e., the uncorrupted keys k1, . . . , kt belong to the first t epochs in
which the adversary can request the challenge. We call this the weakUP-IND-BI
model, as all corrupted keys kt+1, . . . , kκ must occur after the challenge epoch(s).

The second interpretation is that k1, . . . , kt merely refer to some t honest
keys, but not necessarily to the first t epochs. That is, the corrupt keys could
belong to arbitrary epochs, and key compromises before the challenge epoch(s)
would be allowed. We call this the strongUP-IND-BI model.

Honest vs. Adversarial Ciphertexts. The weakUP-IND-BI and strongUP-IND-BI
definitions do not distinguish between challenge and non-challenge ciphertexts
in the responses to the update oracle, and allow Oupd to be called with arbi-
trary ciphertexts. Thus, in contrast to our definition that only allows updates
of honestly generated ciphertexts, the oracle Oupd(Ce) omits the check whether

Updatable Encryption with Post-Compromise Security 703

(Ce, e) ∈ L and simply returns the updated ciphertext for any input. Con-
sequently, the adversary is not allowed to make any update query towards
a corrupted epoch, as the query could be the challenge ciphertext. We show
that for strongUP-IND-BI security, this difference of updating also adversarially
crafted ciphertexts prevents our IND-ENC notion to be strictly stronger than
strongUP-IND-BI. For weakUP-IND-BI this does not give the adversary any addi-
tional advantage though.

The weakUP-IND-BI Model. We follow the original definition by Everspaugh
et al. [15] (in its weaker sense) and adopt it to our notation. As our scheme is
strictly sequential, we cannot give the adversary all corrupted keys kt+1, . . . , kκ

already at the beginning of the game, but rather let A corrupt them via the
Ocorrupt(key, ·) oracle. Further, we consider a single challenge query in some epoch
ẽ ≤ t, whereas [15] granted the adversary a dedicated left-or-right oracle for all
keys before t.

Experiment ExpweakUP-IND-BI
A,UE (λ):

k0
r← UE.setup(λ)

e ← 0; ẽ ← ⊥ // these variables are updated by the oracles
(m0,m1, state) r← AOenc,Onext,Oupd,Ocorrupt(λ)
proceed only if ẽ ≤ t and |m0| = |m1|
ẽ ← e; d

r← {0, 1}
C̃

r← UE.enc(kẽ,md)
d′ r← AOenc,Onext,Oupd,Ocorrupt(C̃, state)
return 1 if d′ = d and the following condition holds:

1) no query Ocorrupt(key, e′) was made where e′ < t + 1
2) no query Ocorrupt(token, t + 1) was made in epoch t + 1
3) no query Oupd(·) was made in epoch t + 1

The winning condition requires that A does not learn the update token
towards the first corrupted epoch et+1, nor makes any update query in et+1,
as both would enable the adversary to update the challenge ciphertext into a
corrupted epoch.

This weaker interpretation does not guarantee any confidentiality after a
secret key got compromised, as it allows key corruption only after the challenge
epoch. Thus, an updatable scheme that is secure only in the weakUP-IND-BI
model does not provide the intuitive security one would expect from key rotation:
namely that after migrating to the new key, the old one becomes useless and no
longer of value to the adversary. To the contrary, all previous keys still require
strong protection or secure deletion.

The strongUP-IND-BI Model. In the stronger interpretation, A can corrupt
a set of arbitrary epochs, i.e., also before he makes the challenge query, but has
to commit to them upfront. Whereas Everspaugh et al. [15] hand the adver-
sary all keys already at the beginning, we let A retrieve them sequentially via

704 A. Lehmann and B. Tackmann

the Ocorrupt(key, ·) oracle in all epochs that he announced as corrupted in the
beginning of the game.

Experiment ExpstrongUP-IND-BI
A,UE (λ):

k0
r← UE.setup(λ)

e ← 0; ẽ ← ⊥ // these variables are updated by the oracles

(K∗, state) r← A(λ)
(m0,m1, state) r← AOenc,Onext,Oupd,Ocorrupt(state)
proceed only if ẽ /∈ K∗ and |m0| = |m1|
ẽ ← e; d

r← {0, 1}
C̃

r← UE.enc(kẽ,md)
d′ r← AOenc,Onext,Oupd,Ocorrupt(C̃, state)
return 1 if d′ = d and the following condition holds:

1) no query Ocorrupt(key, e) was made where e /∈ K∗

2) no query Ocorrupt(token, e′) was made where e′ ∈ K∗ or e′ − 1 ∈ K∗

3) no query Oupd(·) was made in an epoch e′′ where e′′ ∈ K∗

The second winning condition forbids the adversary to receive any token that
is connected to an epoch where A knows the secret key. This can be seen as the
bi-directionality of key updates hard-coded in the experiment, which is captured
in our IND-ENC definition via the definition of K∗

bi. The third condition forbids
any ciphertext updates towards a corrupted epoch.

4.2 Insecurity of XOR-KEM in the strongUP-IND-BI and IND-ENC
Model

Everspaugh et al. [15] proposed a simple construction, termed XOR-KEM, as a
secure ciphertext-independent updatable encryption scheme. We now show that
this scheme is neither secure in the stronger interpretation of their model nor in
our IND-ENC definition.

The XOR-KEM scheme relies on a standard symmetric encryption scheme
SE which it uses in a simple hybrid construction. Therein, every message gets
encrypted under a fresh key x and x gets xor’d under the epoch key ke. For
updating a ciphertext, only the part depending on ke gets updated via the token
Δe+1 ← (ke ⊕ ke+1).

XOR-KEM.setup(λ): return k0
r← SE.kgen(λ)

XOR-KEM.next(ke): ke+1
r← SE.kgen(λ), Δe+1 ← (ke ⊕ ke+1), return

(ke+1,Δe+1)
XOR-KEM.enc(ke,m): x

r← SE.kgen(λ), return Ce ← ((ke ⊕ x),SE.enc(x,m))
XOR-KEM.upd(Δe+1, Ce): parse Ce = (C1, C2), return Ce+1 ← ((C1 ⊕
Δe+1), C2)
XOR-KEM.dec(ke, Ce): parse Ce = (C1, C2), return SE.dec(ke ⊕ C1, C2)

Updatable Encryption with Post-Compromise Security 705

Attack againstXOR-KEM. We now present a simple attack against the XOR-KEM
scheme, for which we only require the adversary to learn one key in some epoch
before the challenge epoch. Let this epoch be e < ẽ, to which A commits before
the game starts. In epoch e, A requests the secret key ke via Ocorrupt(key, e).
and also makes a standard encryption query Oenc(m) receiving a ciphertext
Ce = ((ke ⊕ x),SE.enc(x,m)). The adversary then computes x ← C1

e ⊕ ke,
where C1

e denotes the first part (ke ⊕ x) of the ciphertext. Then, in all epochs
from e to ẽ, the adversary requests an updated version of Ce via Oupd(·). Note
that strongUP-IND-BI forbids updates only towards but not from a corrupt key,
and thus these queries are legitimate. Finally, in the challenge epoch ẽ, A uses
the updated (non-challenge) ciphertext Cẽ = ((kẽ ⊕ x),SE.enc(x,m)) and its
previously computed x to derive the secret key kẽ of the challenge epoch. Clearly,
he can now trivially win the strongUP-IND-BI game, and did not violate any of
the winning restrictions. The same attack applies in our IND-ENC game.

In the weakUP-IND-BI game, however, this attack is not possible, as A does
not see a secret key before the challenge epoch, and is also not allowed to update
any ciphertext into a corrupt epoch (i.e., he cannot perform the same attack by
updating a non-challenge ciphertext into a corrupt epoch after ẽ).

Weakening the strongUP-IND-BI Model. A tempting easy “fix” would be to forbid
any updates from a corrupted epoch into an honest epoch in the strongUP-IND-BI
model. This would allow the XOR-KEM scheme to be proven secure, and at the
same time preserve A’s capability of corrupting keys before the challenge epoch.

However, this “fix” would significantly weaken the guaranteed security, as it
essentially disallows the adversary to see any updated ciphertexts after an attack.
For instance, the following attack would be excluded by the model: Assume the
adversary at some epoch e corrupts the secret key ke and one ciphertext Ce from
a large set of outsourced ciphertexts. Then, the key gets rotated into ke+1 and all
ciphertexts get re-encrypted to the new key. In that new epoch e+1, the adver-
sary learns neither ke+1 nor the update token, but steals all ciphertexts from
the database. Intuitively, confidentiality of these updated ciphertexts should be
guaranteed, as the adversary never compromised the key and all ciphertexts in
the same epoch. This attack would not be covered by the model though, and
the XOR-KEM scheme becomes entirely insecure if such an attack happens, as
it allows the adversary to decrypt all re-encrypted ciphertexts even though he
never corrupted ke+1.

4.3 IND-ENC vs. strongUP-IND-BI (and weakUP-IND-BI)

XOR-KEM serves as a separating example between the weakUP-IND-BI and
the two stronger strongUP-IND-BI, IND-ENC models, and both models are in
fact strictly stronger than weakUP-IND-BI. Such a strict relation does not exist
between strongUP-IND-BI and IND-ENC though: we show that both models are
incomparable. Below we give the high-level ideas for the two separating exam-
ples, and refer to the full version [19] for their detailed descriptions as well as
for the argumentation why IND-ENC implies weakUP-IND-BI.

706 A. Lehmann and B. Tackmann

Separating Example I (strongUP-IND-BI �=⇒ IND-ENC). The first sepa-
rating example exploits the fact that in strongUP-IND-BI, the adversary is not
allowed to update any ciphertext into a corrupt epoch, whereas IND-ENC allows
such updates for non-challenge ciphertexts. We derive a scheme UE′ from a secure
UE where we let the token Δe+1 also contain an encryption Ckey of the old key
ke under the new key ke+1. Further, when updating, UE′ appends Ckey to the
updated ciphertext.

In the strongUP-IND-BI game, this change cannot increase A’s advantage
as he is not allowed to see any token towards a corrupt epoch e∗, nor make
any updates towards e∗. In all other epochs, Ckey is an encryption under a key
unknown to the adversary. However, in the IND-ENC game, A can corrupt the
secret key kẽ+1 in the epoch after he makes the challenge query, and update an
arbitrary non-challenge ciphertext from ẽ to ẽ + 1 using the Oupd oracle. From
there he extracts Ckey , decrypts kẽ and can now trivially win the IND-ENC game
as he knows the secret key of the challenge epoch.

Separating Example II (IND-ENC �=⇒ strongUP-IND-BI). Our model is
not strictly stronger than strongUP-IND-BI, due to fact that we are more restric-
tive for ciphertexts that can be updated. Whereas we only allow honestly gener-
ated ciphertexts Ce to be updated (which is enforced by Oupd checking whether
Ce ∈ L), strongUP-IND-BI is more generous and returns the update of any cipher-
text (as they aim for authenticated encryption). This can be exploited to turn a
secure scheme UE into UE′′ that is secure in our IND-ENC model, but insecure
according to strongUP-IND-BI. The idea is to modify the update algorithm, such
that it returns the update token when it gets invoked with a special ciphertext,
that would never occur for an honest encryption.

In the strongUP-IND-BI game, the update oracle then enables the adversary to
obtain tokens in epochs where he would not be allowed to learn a token directly,
leading to trivial wins without violating the winning condition. An adversary
in our IND-ENC game cannot benefit from this modification, as it cannot poke
the update oracle on the adversarially crafted ciphertext. We explain in the full
version of this paper why the same idea does not apply for the weakUP-IND-BI
model, which is in fact strictly weaker than IND-ENC.

4.4 IND-UPD vs. UP-REENC

Our IND-UPD definition is similar in spirit to the re-encryption indistinguishabil-
ity notion UP-REENC by Everspaugh et al. [15], which captures post-compromise
security of updates as well. However, the UP-REENC notion was only proposed
for ciphertext-dependent schemes. Note that the difference between ciphertext-
dependent and independent schemes has a significant impact on the achievable
security: a single update token in the ciphertext-independent setting has much
more functionality than in ciphertext-dependent schemes, which in turn gives the
adversary more power when he compromises such tokens. Thus, no ciphertext-
independent scheme can satisfy the UP-REENC definition. Our IND-UPD defini-
tion formalizes this extra power in ciphertext-independent schemes in a way that

Updatable Encryption with Post-Compromise Security 707

carefully excludes trivial wins but still captures strong post-compromise guaran-
tees. The aspect that IND-UPD allows adaptive corruptions, whereas UP-REENC
only considers static ones, makes both definitions incomparable.

Interestingly, in the ciphertext-dependent setting, this property has a some-
what “esoteric” flavor as it got motivated by an exfiltration attack where the
adversary fully breaks into both the host and owner, compromising all cipher-
texts and keys but is only able to extract a small amount of information at that
time. The re-encryption indistinguishability should then guarantee that when
the key gets rotated and the adversary compromises all the updated ciphertexts
again (but not the new key), the previously extracted information becomes use-
less. This seems to be a somewhat contrived attack scenario, and might lead
to the impression that such update indistinguishability is rather an optional
feature. This is not the case for ciphertext-independent schemes: without the
dedicated IND-UPD property an updatable encryption scheme does not guaran-
tee any security of the updated ciphertexts when an old key gets compromised!

5 Constructions

We analyze several constructions of updatable encryption with respect to our
security notions of indistinguishability of encryptions (IND-ENC) and updates
(IND-UPD). First, we analyze the simple double-encryption construction that is
purely based on symmetric primitives (Sect. 5.1). Unfortunately, the scheme can-
not satisfy our strong security notions. We formulate the additional constraints
on the adversarial behavior that suffices to prove its security in relaxed versions
of our IND-ENC and IND-UPD models.

We then proceed to less efficient but more secure schemes, starting with
the BLMR construction by Boneh et al. [10] based on key-homomorphic PRFs
(Sect. 5.2). We show that the original BLMR scheme satisfies IND-ENC but not
IND-UPD, and also propose a slight modification BLMR+ that improves the
latter and achieves a weak form of update indistinguishability.

In Sect. 5.3, we introduce a new ElGamal-based scheme RISE and show that it
fully achieves both of our strong security definitions. While proposing a “public-
key solution” for a symmetric key primitive might appear counter-intuitive at
first, we stress that the efficiency is roughly comparable to that of BLMR under
known instantiations for the key-homomorphic PRF (same number of exponen-
tiations). Also, taking advantage of the underlying group operations allows us
to get full IND-UPD security.

All of our schemes allow to infer token from two subsequent keys and
bi-directional updates of the ciphertexts and keys. Thus, all theorems are with
respect to the leakage profile (T ∗,K∗

bi, C∗
bi) as defined in Sect. 3.3.

In the Appendix A, we additionally describe and analyze a symmetric KEM
construction SE-KEM, which is widely used in practice since it does not require an
(expensive) re-encryption of the payload data upon key rotation. This scheme is,
however, better suited for deployment within the cloud infrastructure, because it
requires the encryption keys to be sent to the host performing the re-encryption.

708 A. Lehmann and B. Tackmann

Furthermore, the fact that the data is not re-encrypted makes ciphertexts fully
linkable. We therefore show only basic encryption security and under a weak
adversary model.

5.1 Double Encryption (2ENC)

An approach that is based only on symmetric encryption is to first encrypt the
plaintext under an “inner key,” and subsequently encrypt the resulting cipher-
text under a second, “outer key.” In each epoch, the outer key is changed, and
the ciphertext is updated by decrypting the outer encryption and re-encrypting
under the new key. This scheme has been proposed by Ivan and Dodis [18] as
symmetric uni-directional proxy re-encryption.1 It has also appeared in other
contexts, such as so-called “over-encryption” for access revocation in cloud stor-
age systems [4]. More formally, this scheme can be phrased as an updatable
encryption scheme 2ENC as follows.

2ENC.setup(λ): ko
0

r← SE.kgen(λ), ki r← SE.kgen(λ), return k0 ← (ko
0, k

i)
2ENC.next(ke): parse ke = (ko

e , ki), create ko
e+1

r← SE.kgen(λ),
Δe+1 ← (ko

e , ko
e+1), ke+1 ← (ko

e+1, k
i),

return (ke+1,Δe+1)
2ENC.enc(ke,m): parse ke = (ko

e , ki) ← ke,
return Ce ← SE.enc(ko

e ,SE.enc(ki,m))
2ENC.upd(Δe+1, Ce): parse Δe+1 = (ko

e , ko
e+1),

return Ce+1 ← SE.enc(ko
e+1,SE.dec(ko

e , Ce))
2ENC.dec(ke, Ce): parse ke = (ko

e , ki), return SE.dec(ko
e ,SE.dec(ki, C))

Clearly this scheme does not achieve our desired IND-ENC security: A cipher-
text can be decrypted if an adversary sees the secret key of some epoch and one
of the tokens relating to the epoch where he learned the ciphertext. However, we
show that this is the only additional attack, i.e., if the adversary never sees such
a combination of tokens and keys, then the scheme is secure, which is formalized
by the following theorem.

Theorem 2 (2ENC is weakly IND-ENC secure). Let SE be an IND-CPA-secure
encryption scheme, then 2ENC is (weakly) IND-ENC-secure if the following addi-
tional condition holds: If A makes any query to Ocorrupt(key, ·), then, for any
challenge-equal epoch e ∈ C∗, A must not call Ocorrupt(token, ·) for epochs e or
e + 1.

The proof of this theorem turns out to be surprisingly subtle and is provided
in the full version [19]. As intuitively expected, it consists of two reductions to
the IND-CPA security of SE, but the reduction for the outer encryption part is
complicated by the fact that A may call either Ocorrupt or OupdC̃ adaptively and
in multiple epochs. Instead of guessing all epochs, which would lead to a large

1 It is uni-directional in a proxy re-encryption scheme; the proxy removes the outer
layer. As an updatable scheme, which replaces the outer layer, it is bi-directional.

Updatable Encryption with Post-Compromise Security 709

loss in tightness, we devise a specific hybrid argument and formalize the intuition
that only epochs with a query to OupdC̃ can help A in gaining advantage.

It is also easy to see that the double encryption scheme is not IND-UPD
secure: The inner ciphertext remains static and an adversary seeing tokens that
allow him to unwrap the outer encryption can trivially link ciphertexts across
epochs. But we again show that this is the only attack, i.e., 2ENC achieves a
weak form of IND-UPD security if the adversary is restricted to learn at most
one update token Δe for an epoch e for which he also obtained the challenge
ciphertext in epochs e or e − 1.

Theorem 3 (2ENC is weakly IND-UPD secure). Let SE be an IND-CPA-secure
encryption scheme, then 2ENC is (weakly) IND-UPD-secure if the following addi-
tional condition holds: For any challenge-equal epoch e ∈ C∗, A must not call
Ocorrupt(token, ·) for epochs e or e + 1.

The proof follows along the lines of that for Theorem 2, with the main dif-
ference that we have to distinguish between the cases where the single special
query Ocorrupt(token, e) occurs before or after the challenge epoch ẽ. The proof is
given in the full version of this paper [19].

5.2 Schemes from Key-Homomorphic PRFs (BLMR and BLMR+)

Boneh et al. [10] proposed an updatable encryption scheme based on key-ho-
momorphic pseudorandom functions, to which we will refer to as BLMR-scheme.
We first recall the notion of key-homomorphic PRFs and then present the BLMR
and our improved BLMR+ scheme.

Definition 4 (Key-homomorphic PRF [9]). Consider an efficiently com-
putable function F : K × X → Y such that (K,⊕) and (Y,⊗) are both groups.
We say that F is a key-homomorphic PRF if the following properties hold:

1. F is a secure pseudorandom function.
2. For every k1, k2 ∈ K, and every x ∈ X : F(k1, x) ⊗ F(k2, x) = F((k1 ⊕ k2), x)

A simple example of a secure key-homomorphic PRF is the function F(k, x) =
H(x)k where Y = G is an additive group in which the DDH assumption holds,
and H is a random oracle [23].

Based on such a key-homomorphic PRF F, the BLMR construction is
described as the following scheme:

BLMR.setup(λ): compute k0
r← F.kgen(λ), return k0

BLMR.next(ke): ke+1
r← F.kgen(λ), return (ke+1, (ke ⊕ ke+1))

BLMR.enc(ke,m): N
r← X , return ((F(ke, N) ⊗ m), N)

BLMR.dec(ke, Ce): parse Ce = (C1, N), return m ← C1 ⊗ F(ke, N).
BLMR.upd(Δe+1, Ce): parse Ce = (C1, N), return ((C1 ⊗ F(Δe+1, N)), N)

Indeed, the subsequent theorem shows that BLMR is IND-ENC-secure.

710 A. Lehmann and B. Tackmann

Theorem 4 (BLMR is IND-ENC-secure). Let F be a key-homomorphic PRF
where F.kgen(λ) returns uniformly random elements from K, then BLMR is
IND-ENC-secure.

The proof uses an alternative characterization of PRF (as in the original
proof in [10]) together with the techniques already used in the proofs of the
2ENC scheme. The proof is given in the full paper [19]. The BLMR scheme
does not achieve the notion IND-UPD of update-indistinguishability though, as
the second part of the ciphertext remains static throughout the updates. This
might have inspired the change to the ciphertext-dependent setting in the full
version of Boneh et al.’s paper [9]. Ciphertext-dependent updates, however, have
the disadvantage that the key owner must produce one update token for each
ciphertext to be updated. We show that a mild form of IND-UPD security can
be achieved in the ciphertext-independent setting via a simple modification to
the BLMR scheme.

The BLMR+ scheme. The BLMR+ scheme follows the basic structure of BLMR,
but additionally encrypts the nonce. In more detail, in every epoch the owner
also generates a second key k′

e
r← SE.kgen(λ) of a symmetric encryption scheme

and encrypts the nonce-part N of each ciphertext under that key. In BLMR+,
we simply include the old and new symmetric key into the update token and let
the host re-encrypt the nonce.

The choice to simply reveal both keys might seem odd, but (in certain attack
scenarios) it does not reveal more information to a corrupt host than what every
updatable encryption scheme leaks anyway. Looking at two consecutive epochs,
a corrupt host knows which updated and old ciphertext belong together – as he
generated them – and thus letting him re-encrypt a static nonce does not reveal
any additional information. The main advantage of BLMR+ over BLMR is that
an adversary seeing only (updated) ciphertexts of different epochs cannot tell
anymore which of them belong together. Clearly, this unlinkability is limited,
though, as an adversary can still link ciphertexts whenever he also learned a
related token which allows him to decrypt the static nonce.

In more detail, this modification results in the following scheme BLMR+:

BLMR+.setup(λ): k1
0

r← F.kgen(λ), k2
0

r← SE.kgen(λ), return k0 ← (k1
0, k

2
0)

BLMR+.next(ke): parse ke = (k1
e , k2

e),
create k1

e+1
r← F.kgen(λ), k2

e+1
r← SE.kgen(λ),

ke+1 ← (k1
e+1, k

2
e+1), Δe+1 ← (k1

e ⊕ k1
e+1, (k

2
e , k2

e+1)),
return (ke+1,Δe+1)

BLMR+.enc(ke,m): parse ke = (k1
e , k2

e), draw N
r← X ,

C1 ← F(k1
e , N) ⊗ m, C2 r← SE.enc(k2

e , N), return Ce ← (C1, C2)
BLMR+.dec(ke, Ce): parse ke = (k1

e , k2
e) and Ce = (C1, C2),

N ← SE.dec(k2
e , C2), return m ← C1 ⊗ F(k1

e , N)
BLMR+.upd(Δe+1, Ce): parse Δe+1 = (Δ′

e+1, (k
2
e , k2

e+1)) and Ce = (C1
e , C2

e),
N ← SE.dec(k2

e , C2), C1
e+1 ← C1

e ⊗ F(Δ′
e+1, N), C2

e+1
r← SE.enc(k2

e+1, N),
return Ce+1 ← (C1

e+1, C
2
e+1)

Updatable Encryption with Post-Compromise Security 711

We first state the following corollary as an easy extension of Theorem 4 on
BLMR. The encryption of the nonce can be easily simulated in the reduction.

Corollary 1. The BLMR+ scheme is IND-ENC secure.

We then prove that the modified BLMR+ scheme described above indeed
achieves a weak form of IND-UPD security. The intuition behind the level of
security specified in the following theorem is that knowing either a token or
the key of the ciphertexts later used in the challenge in a round before the
challenge allows the adversary to decrypt the nonce. Also, obtaining the challenge
ciphertext and a related token after the challenge query allows the adversary to
decrypt the nonce. To obtain unlinkability, we cannot allow the adversary to
access the nonce both before and after the challenge query in epoch ẽ. The
theorem formalizes that we have security unless the adversary gains this access.

Theorem 5 (BLMR+ is weakly IND-UPD secure). Let F be a key-homomor-
phic PRF, and assume that all elements of X are encoded as strings of the same
length. Let SE be a IND-CPA-secure symmetric encryption scheme. Then, the
scheme BLMR+ is (weakly) IND-UPD-secure if the following additional condition
holds: Let efirst denote the epoch in which the first ciphertext that is later used
as challenge C0 or C1 was encrypted. If there exist some e∗ ∈ {efirst, . . . , ẽ − 1}
where e∗ ∈ K∗ ∪ T ∗, i.e., A knows the secret key ke∗ or token Δe∗ , then for any
challenge-equal epoch e ∈ C∗, A must not call Ocorrupt(token, ·) for epochs e or
e + 1.

The proof of this theorem is essentially a combination of the techniques used
in the proofs of Theorems 3 and 4. It is provided in the full version [19].

5.3 Updatable Encryption Based on ElGamal (RISE)

We finally present a scheme that achieves both strong notions of indistinguisha-
bility of encryptions (IND-ENC) and updates (IND-UPD). This scheme uses the
classical proxy re-encryption idea based on ElGamal that was originally pro-
posed by Blaze et al. [8], but uses it in the secret-key setting. This alone would
not be secure though, as parts of the ciphertext would remain static. What we
additionally exploit is that ElGamal ciphertexts can be re-randomized by know-
ing only the public key. Thus, we add the “public-key” element of the epoch to
the token and perform a re-randomization whenever a ciphertext gets updated.
This makes it the first of the considered schemes where the update algorithm
is probabilistic. Interestingly, probabilistic updates are not allowed in the work
by Everspaugh et al. [15] which require updates to be deterministic such that
the challenger in the security game can keep track of the challenge ciphertexts.
Further, in the security proof we also rely on the key anonymity property [5] of
ElGamal, which guarantees that ciphertexts do not leak information about the
public key under which they are encrypted.

The use of public-key techniques for secret-key updatable encryption may
appear unnecessary. We emphasize, however, that previous constructions are

712 A. Lehmann and B. Tackmann

based on key-homomorphic PRFs, all instantiations of which are based on such
techniques as well. By contrast, the direct use of the group structure without
the intermediate abstraction allows us to implement the re-randomization and
thereby achieve full IND-UPD security.

In fact, in terms of exponentiations, an encryption in our RISE scheme is as
efficient as in BLMR and in Everspaugh et al.’s. ReCrypt scheme [15], whereas
the computations of update tokens and ciphertext updates are even more efficient
than in [15] due to the ciphertext-independent setting of our work.

Let (G, g, q) be system parameters available as CRS such that the DDH
problem is hard w.r.t. λ, i.e., q is a λ-bit prime. The scheme RISE is described
as follows.

RISE.setup(λ): x
r← Z

∗
q , set k0 ← (x, gx), return k0

RISE.next(ke): parse ke = (x, y), draw x′ r← Z
∗
q ,

ke+1 ← (x′, gx′
), Δe+1 ← (x′/x, gx′

) return (ke+1,Δe+1)
RISE.enc(ke,m): parse ke = (x, y), r

r← Zq , return Ce ← (yr, grm)
RISE.dec(ke, Ce): parse ke = (x, y) and Ce = (C1, C2), return m′ ← C2 · C

−1/x
1

RISE.upd(Δe+1, Ce): parse Δe+1 = (Δ, y′) and Ce = (C1, C2),
r′ r← Zq , C ′

1 ← CΔ
1 · y′r′

, C ′
2 ← C2 · gr′

, return Ce+1 ← (C ′
1, C

′
2)

The keys x for the encryption scheme are chosen from Z
∗
q instead of Zq as

usual. The reason is that the update is multiplicative, and this restriction makes
sure that each key is uniformly random in Z

∗
q . As this changes the distribution

only negligibly, the standard Diffie-Hellman argument still applies. (However,
the adaptation simplifies the security proof.)

The detailed proofs of the following theorems are provided in the full version
of this paper [19].

Theorem 6 (RISE is IND-ENC secure). The updatable encryption scheme
RISE is IND-ENC secure under the DDH assumption.

On a high-level, the proof exploits two properties of ElGamal encryption.
First, a re-randomized ciphertext has the same distribution as a fresh encryp-
tion of the same plaintext. Second, as ElGamal encryption is key-anonymous [5],
i.e., encryptions under two different public keys are indistinguishable, the adver-
sary cannot distinguish between encryptions under the actual round key and
encryptions under an independent, random key. These observations are used in
game hops to make the challenge ciphertext independent from the information
that the adversary learns by querying the other oracles. The remainder is a
reduction to the DDH assumption, which underlies the security of ElGamal.

We also show that the scheme RISE is unlinkable. This property is mainly
achieved by the re-randomization of the updates, but also leverages the key
anonymity of ElGamal ciphertexts.

Theorem 7 (RISE is IND-UPD secure). The updatable encryption scheme
RISE is IND-UPD secure under the DDH assumption.

Updatable Encryption with Post-Compromise Security 713

The proof follows roughly along the same lines as that of Theorem 6. It is
complicated a bit by the fact that, in contrast to IND-ENC, non-updated versions
of the challenge-ciphertexts exist in the game even prior to the actual challenge
epoch, which means that in the reduction we have to guess certain parameters,
such as the epochs directly preceding the challenge epoch in which the adver-
sary obtains update tokens, to keep the simulation consistent. Nevertheless, we
show that, with a proper construction of the hybrid argument, the loss remains
polynomial.

One might wonder whether one could more generally build a secure updatable
encryption scheme from any secure symmetric proxy re-encryption with key-
anonymity that additionally allows public re-randomization of ciphertexts. For
that analysis one would need a security notion for such a primitive schemes that
also allows adaptive corruptions as in our models. However, so far, even for plain
(symmetric) proxy re-encryption adaptive corruptions have only been considered
for schemes that are uni-directional and single-hop, i.e., where the re-encryption
capabilities would not be sufficient for updatable encryption.

6 Conclusion and Open Problems

We have provided a comprehensive model for ciphertext-independent updatable
encryption schemes, complementing the recent work of Everspaugh et al. [15]
that focuses on ciphertext-dependent schemes. Ciphertext-independent schemes
are clearly superior in terms of efficiency and ease-of-use when key rotation is
required for large volumes of ciphertexts, whereas ciphertext-dependent solutions
give a more fine-grained control over the updatable information.

We formalized updatable encryption and its desired properties in the strict
sequential manner it will be used, avoiding the ambiguity of previous security
models. Our two notions IND-ENC and IND-UPD guarantee that fresh encryp-
tions and updated ciphertext are secure even if an adversary can adaptively
corrupt several keys and tokens before and after learning the ciphertexts.

Somewhat surprisingly, and contradictory to the claim in [15], we have shown
that the XOR-KEM scheme is not a secure ciphertext-independent schemes in
such a strong sense. For the (existing) schemes 2ENC, BLMR, BLMR+, and
SE-KEM, we formalized the security of the schemes by specifying precisely the
conditions on the adversary under which a weak form of IND-ENC and IND-UPD
security is achieved. We also specified a scheme that builds on ElGamal encryp-
tion. By additionally exploiting the algebraic structure of the underlying groups,
instead of using the key-homomorphic PRF abstraction as in previous works, we
were able to build a scheme that fully achieves our strong security notions while
being at least as efficient as existing schemes that are either weaker or require
ciphertext-dependent tokens.

All schemes we analyze allow to infer tokens from keys, and enable bi-
directional updates of ciphertexts and keys, whereas an ideal updatable encryp-
tion scheme should only allow uni-directional updates of ciphertexts. Building
such an ideal scheme is related to the open challenge of building proxy re-
encryption schemes that are uni-directional, multi-hop and collusion-resistant.

714 A. Lehmann and B. Tackmann

Yet, while most proxy re-encryption work is in the public-key setting, updatable
encryption has secret keys, so the construction of schemes with similar properties
may be easier and is an interesting and challenging open problem.

Acknowledgments. This work has been supported in part by the European
Commission through the Horizon 2020 Framework Programme (H2020-ICT-2014-1)
under grant agreements number 644371 WITDOM and 644579 ESCUDO-CLOUD,
and through the Seventh Framework Programme under grant agreement number
321310 PERCY, and in part by the Swiss State Secretariat for Education, Research
and Innovation (SERI) under contract numbers 15.0098 and 15.0087.

A Symmetric Key-Encapsulation (SE-KEM)

We additionally analyze a scheme that can be considered as a symmetric key-
encapsulation mechanism (KEM) together with a standard symmetric encryp-
tion scheme. The KEM has one key ke per epoch e, and for each ciphertext it
wraps an “inner” key x under which the actual message is encrypted. During an
update, where the token is given by two keys (ke, ke+1) of subsequent epochs,
all inner keys are simply un-wrapped using ke and re-wrapped under the new
key ke+1.

This scheme is used in practical data-at-rest protection at cloud storage
providers. The keys are, however, managed within the cloud storage systems.
Not all nodes are equal; there are nodes that have access to the keys, and nodes
that store the encrypted data.2 In this scenario, it is acceptable to have the
proxy nodes perform the updates. We stress that the scheme is not applicable
for outsourcing encrypted data, as it fully reveals the secret keys in the update
procedure!

We describe the algorithms in a slightly different way to consider SE-KEM
as a ciphertext-independent updatable encryption scheme. The algorithms are
described in more detail as the scheme SE-KEM as follows.

SE-KEM.setup(λ): return k0
r← SE.kgen(λ)

SE-KEM.next(ke): ke+1
r← SE.kgen(λ), Δe+1 ← (ke, ke+1), return (ke+1,Δe+1)

SE-KEM.enc(ke,m): x
r← SE.kgen(λ), return Ce ← (SE.enc(ke, x),SE.enc(x,m))

SE-KEM.upd(Δe+1, Ce): parse Ce = (C1, C2), and Δe+1 = (ke, ke+1), return
Ce+1 ← (SE.enc(ke+1,SE.dec(ke, C

1)), C2)
SE-KEM.dec(ke, Ce): parse Ce = (C1, C2), return SE.dec(SE.dec(k,C1), C2)

While this scheme is very similar to the hybrid AE as described by
Everspaugh el al. [15], our description differs in that the token is independent of
the ciphertext, and consists of the keys (ke, ke+1) used for encryption in epochs
e and e + 1. In cloud storage systems where the keys for data-at-rest encryption
are managed within the cloud, this is a faithful description of the real behavior.

2 In OpenStack Swift, for instance, the “proxy server” nodes have access to the keys,
whereas the role of the “object server” nodes is to store the ciphertext.

Updatable Encryption with Post-Compromise Security 715

The security that can be offered by such a solution is necessarily limited.
First, if the adversary obtains a challenge in epoch e and also sees one of the
tokens in epochs e or e + 1, the IND-ENC security is immediately broken. Fur-
thermore, as the ciphertext update does not re-encrypt the second component,
the ciphertexts are linkable through the epochs, i.e., SE-KEM cannot achieve
any form of IND-UPD security. Still, we show that under the described (strict)
constraints, the scheme guarantees a mild form of IND-ENC security.

Theorem 8 (SE-KEM is weakly IND-ENC secure). Let SE be an IND-CPA-
secure encryption scheme, then SE-KEM is (weakly) IND-ENC-secure if the fol-
lowing additional condition holds: For any challenge-equal epoch e ∈ C∗, A must
not call Ocorrupt(token, ·) for epochs e or e + 1.

The proof is very similar to the one of Theorem 2 and is provided in the full
paper [19].

References

1. Ananth, P., Cohen, A., Jain, A.: Cryptography with updates. In: Coron, J.-S.,
Nielsen, J.B. (eds.) EUROCRYPT 2017, Part II. LNCS, vol. 10211, pp. 445–472.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56614-6 15

2. Ateniese, G., Benson, K., Hohenberger, S.: Key-private proxy re-encryption. In:
Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 279–294. Springer, Heidel-
berg (2009). https://doi.org/10.1007/978-3-642-00862-7 19

3. Ateniese, G., Fu, K., Green, M., Hohenberger, S.: Improved proxy re-encryption
schemes with applications to secure distributed storage. ACM Trans. Inf. Syst.
Secur. 9(1), 1–30 (2006)

4. Bacis, E., De Capitani di Vimercati, S., Foresti, S., Paraboschi, S., Rosa, M., Sama-
rati, P.: Access control management for secure cloud storage. In: Deng, R., Weng,
J., Ren, K., Yegneswaran, V. (eds.) SecureComm 2016. LNICST, vol. 198, pp.
353–372. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59608-2 21

5. Bellare, M., Boldyreva, A., Desai, A., Pointcheval, D.: Key-privacy in public-key
encryption. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 566–582.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45682-1 33

6. Bellare, M., Singh, A.C., Jaeger, J., Nyayapati, M., Stepanovs, I.: Ratcheted
encryption and key exchange: the security of messaging. In: Katz, J., Shacham, H.
(eds.) CRYPTO 2017, Part III. LNCS, vol. 10403, pp. 619–650. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-63697-9 21

7. Berners-Lee, E.: Improved security notions for proxy re-encryption to enforce access
control. Cryptology ePrint Archive, Report 2017/824 (2017). http://eprint.iacr.
org/2017/824

8. Blaze, M., Bleumer, G., Strauss, M.: Divertible protocols and atomic proxy cryp-
tography. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 127–144.
Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054122

9. Boneh, D., Lewi, K., Montgomery, H., Raghunathan, A.: Key homomorphic PRFs
and their applications. Cryptology ePrint Archive, Report 2015/220 (2015). http://
eprint.iacr.org/2015/220

https://doi.org/10.1007/978-3-319-56614-6_15
https://doi.org/10.1007/978-3-642-00862-7_19
https://doi.org/10.1007/978-3-319-59608-2_21
https://doi.org/10.1007/3-540-45682-1_33
https://doi.org/10.1007/978-3-319-63697-9_21
http://eprint.iacr.org/2017/824
http://eprint.iacr.org/2017/824
https://doi.org/10.1007/BFb0054122
http://eprint.iacr.org/2015/220
http://eprint.iacr.org/2015/220

716 A. Lehmann and B. Tackmann

10. Boneh, D., Lewi, K., Montgomery, H., Raghunathan, A.: Key homomorphic PRFs
and their applications. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part
I. LNCS, vol. 8042, pp. 410–428. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40041-4 23

11. Cachin, C., Camenisch, J., Freire-Stoegbuchner, E., Lehmann, A.: Updatable tok-
enization: Formal definitions and provably secure constructions. Cryptology ePrint
Archive, Report 2017/695 (2017). http://eprint.iacr.org/2017/695

12. Chow, S.S.M., Weng, J., Yang, Y., Deng, R.H.: Efficient unidirectional proxy re-
encryption. In: Bernstein, D.J., Lange, T. (eds.) AFRICACRYPT 2010. LNCS,
vol. 6055, pp. 316–332. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-12678-9 19

13. Cohn-Gordon, K., Cremers, C., Dowling, B., Garratt, L., Stebila, D.: A formal
security analysis of the signal messaging protocol. In: EuroS&P (2017)

14. Cohn-Gordon, K., Cremers, C., Garratt, L.: On post-compromise security. Cryp-
tology ePrint Archive, Report 2016/221 (2016). http://eprint.iacr.org/2016/221

15. Everspaugh, A., Paterson, K., Ristenpart, T., Scott, S.: Key rotation for authenti-
cated encryption. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part III. LNCS,
vol. 10403, pp. 98–129. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63697-9 4

16. Günther, F., Mazaheri, S.: A formal treatment of multi-key channels. In: Katz,
J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10403, pp. 587–618. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-63697-9 20

17. Hohenberger, S., Rothblum, G.N., shelat, A., Vaikuntanathan, V.: Securely obfus-
cating re-encryption. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 233–
252. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70936-7 13

18. Ivan, A., Dodis, Y.: Proxy cryptography revisited. In: NDSS 2003. The Internet
Society, February 2003

19. Lehmann, A., Tackmann, B.: Updatable encryption with post-compromise security.
Cryptology ePrint Archive, Report 2018/118 (2018). http://eprint.iacr.org/2018/
118

20. Libert, B., Vergnaud, D.: Multi-use unidirectional proxy re-signatures. In: Ning, P.,
Syverson, P.F., Jha, S. (eds.) ACM CCS 2008, pp. 511–520. ACM Press, October
2008

21. Libert, B., Vergnaud, D.: Tracing malicious proxies in proxy re-encryption. In:
Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS, vol. 5209, pp. 332–
353. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85538-5 22

22. Myers, S., Shull, A.: Efficient hybrid proxy re-encryption for practical revocation
and key rotation. Cryptology ePrint Archive, Report 2017/833 (2017). http://
eprint.iacr.org/2017/833

23. Naor, M., Pinkas, B., Reingold, O.: Distributed pseudo-random functions and
KDCs. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 327–346.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X 23

24. PCI Security Standards Council: Requirements and security assessment proce-
dures. PCI DSS v3.2 (2016)

25. Polyakov, Y., Rohloff, K., Sahu, G., Vaikuntanthan, V.: Fast proxy re-encryption
for publish/subscribe systems. Cryptology ePrint Archive, Report 2017/410 (2017).
http://eprint.iacr.org/2017/410

https://doi.org/10.1007/978-3-642-40041-4_23
https://doi.org/10.1007/978-3-642-40041-4_23
http://eprint.iacr.org/2017/695
https://doi.org/10.1007/978-3-642-12678-9_19
https://doi.org/10.1007/978-3-642-12678-9_19
http://eprint.iacr.org/2016/221
https://doi.org/10.1007/978-3-319-63697-9_4
https://doi.org/10.1007/978-3-319-63697-9_4
https://doi.org/10.1007/978-3-319-63697-9_20
https://doi.org/10.1007/978-3-540-70936-7_13
http://eprint.iacr.org/2018/118
http://eprint.iacr.org/2018/118
https://doi.org/10.1007/978-3-540-85538-5_22
http://eprint.iacr.org/2017/833
http://eprint.iacr.org/2017/833
https://doi.org/10.1007/3-540-48910-X_23
http://eprint.iacr.org/2017/410

Author Index

Alagic, Gorjan III-489
Alwen, Joël II-99
Applebaum, Benny II-261

Badertscher, Christian II-34
Ball, Marshall III-294, III-618
Barak, Boaz II-649
Barthe, Gilles II-354
Beimel, Amos II-287
Belaïd, Sonia II-354
Benhamouda, Fabrice II-500
Berman, Itay II-133
Berndt, Sebastian I-29
Bhattacharya, Srimanta I-387
Blocki, Jeremiah II-99
Bloem, Roderick II-321
Boneh, Dan III-222
Bose, Priyanka I-468
Boyle, Elette III-294
Brakerski, Zvika I-535, II-649

Camenisch, Jan I-280
Canetti, Ran I-91
Castryck, Wouter I-338
Chaidos, Pyrros III-193
Chen, Hao I-315
Chen, Jie I-503
Chen, Yi-Hsiu III-371
Chen, Yilei I-91
Cheon, Jung Hee I-360
Chung, Kai-Min III-371
Cid, Carlos II-683
Cohen, Bram II-451
Coretti, Sandro I-227
Corrigan-Gibbs, Henry II-415
Couteau, Geoffroy III-193

Dachman-Soled, Dana III-618
David, Bernardo II-66
Degabriele, Jean Paul III-259
Degwekar, Akshay II-133
Derler, David III-425
Dinur, Itai I-413

Dodis, Yevgeniy I-227
Drijvers, Manu I-280
Ducas, Léo I-125
Dupont, Pierre-Alain III-393

Eisenträger, Kirsten III-329
Espitau, Thomas II-354

Farràs, Oriol I-597
Fleischhacker, Nils III-3
Fouque, Pierre-Alain II-354

Gagliardoni, Tommaso I-280, III-489
Garay, Juan II-34
Garg, Sanjam II-468, II-535, II-566
Gay, Romain II-230
Gaži, Peter II-66
Genise, Nicholas I-174
Gong, Junqing I-503
Goyal, Vipul III-3
Grégoire, Benjamin II-354
Gross, Hannes II-321
Grosso, Vincent II-385
Guo, Siyao I-227

Hallgren, Sean III-329
Han, Kyoohyung I-315, I-360
Hanaoka, Goichiro I-61
Hesse, Julia III-393
Hoang, Viet Tung I-468
Hofheinz, Dennis II-230
Hohenberger, Susan II-197
Holenstein, Thomas II-261
Huang, Tao II-683
Hubáček, Pavel III-66

Iliashenko, Ilia I-338
Ishai, Yuval III-222
Iusupov, Rinat II-321

Jager, Tibor III-425
Jain, Abhishek III-3
Jarecki, Stanislaw III-456

Kaced, Tarik I-597
Kalai, Yael Tauman III-34
Kanukurthi, Bhavana III-589
Keller, Marcel III-91, III-158
Khurana, Dakshita III-34
Kiayias, Aggelos II-66
Kiltz, Eike III-552
Kim, Andrey I-360
Kim, Miran I-360
Kitagawa, Fuyuki II-603
Kiyoshima, Susumu II-566
Kogan, Dmitry II-415
Kohl, Lisa II-230
Komargodski, Ilan I-259, II-162, II-649
Könighofer, Bettina II-321
Kothari, Pravesh K. II-649
Kowalczyk, Lucas I-503
Krawczyk, Hugo III-456
Kulkarni, Mukul III-618
Kushilevitz, Eyal II-287

Lauter, Kristin III-329
Lehmann, Anja I-280, III-685
Leurent, Gaëtan II-745
Liao, Jyun-Jie III-371
Lin, Dongdai II-715
Lin, Huijia II-500
Liśkiewicz, Maciej I-29
Liu, Meicheng II-715
Liu, Tianren I-567
Lombardi, Alex I-535
Luykx, Atul I-445
Lyubashevsky, Vadim I-204, III-552

Majenz, Christian III-489
Malkin, Tal III-294, III-618
Mangard, Stefan II-321
Martín, Sebastià I-597
Matsuda, Takahiro I-61
Maurer, Ueli II-34
Meier, Willi II-771
Micciancio, Daniele I-3, I-174
Mishra, Manoj II-261
Moran, Tal III-294
Morrison, Travis III-329

Nandi, Mridul I-387
Naor, Moni II-162
Neven, Gregory I-280

Nishimaki, Ryo II-603
Nissim, Pnina II-287

Obbattu, Sai Lakshmi Bhavana III-589

Padró, Carles I-597
Pan, Jiaxin II-230
Pandey, Omkant II-566
Pass, Rafael II-3
Pastro, Valerio III-158
Petit, Christophe III-329
Peyrin, Thomas II-683
Pietrzak, Krzysztof II-99, II-451
Pinkas, Benny III-125
Pointcheval, David III-393
Preneel, Bart I-445

Reyzin, Leonid I-91, III-393
Rosca, Miruna I-146
Rosen, Alon III-66
Rossi, Mélissa II-354
Rotaru, Dragos III-158
Rothblum, Ron D. I-91, II-133
Russell, Alexander II-66

Sahai, Amit III-34, III-222
Saito, Tsunekazu III-520
Sasaki, Yu II-683
Schaffner, Christian III-552
Schneider, Thomas III-125
Segev, Gil I-535
Seiler, Gregor I-204
Sekar, Sruthi III-589
Shayevitz, Ofer II-261
Shi, Elaine II-3
Sibleyras, Ferdinand II-745
Slamanig, Daniel III-425
Song, Ling II-683
Song, Yongsoo I-360
Soni, Pratik III-653
Srinivasan, Akshayaram II-468, II-535
Stam, Martijn III-259
Standaert, François-Xavier II-385
Stehlé, Damien I-146
Steinberger, John I-227
Striecks, Christoph III-425

Tackmann, Björn III-685
Tanaka, Keisuke I-61, II-603

718 Author Index

Tessaro, Stefano I-468, III-653
Tibouchi, Mehdi II-354
Tschudi, Daniel II-34

Vaikuntanathan, Vinod I-535, I-567
Vald, Margarita III-66
Vasudevan, Prashant Nalini II-133
Vercauteren, Frederik I-338

Wallet, Alexandre I-146
Walter, Michael I-3
Wang, Wenhao II-715
Wang, Yuyu I-61
Waters, Brent II-197
Wee, Hoeteck I-503, I-567
Weinert, Christian III-125
Wieder, Udi III-125

Winter, Johannes II-321
Wu, David J. III-222

Xagawa, Keita III-520
Xu, Chao II-771
Xu, Jiayu III-456

Yakoubov, Sophia III-393
Yamakawa, Takashi III-520
Yanai, Avishay III-91
Yang, Jingchun II-715
Yogev, Eylon I-259, II-162

Zhang, Bin II-771
Zikas, Vassilis II-34

Author Index 719

	Preface
	Eurocrypt 2018 The 37th Annual International Conference on the Theory and Applications of Cryptographic Techniques
	Abstract of Invited Talks
	Desperately Seeking Sboxes
	Thirty Years of Digital Currency: From DigiCash to the Blockchain
	Contents -- Part III
	Zero-Knowledge
	On the Existence of Three Round Zero-Knowledge Proofs
	1 Introduction
	1.1 Our Results
	1.2 Technical Overview
	1.3 Implications to Lepinski's Protocol
	1.4 Related Work

	2 Preliminaries
	2.1 Interactive Proofs and Arguments
	2.2 Puncturable Pseudorandom Functions
	2.3 Obfuscation

	3 Impossibility of Three-Round Zero-Knowledge Proofs
	3.1 Proof of Lemma 4
	3.2 Proof of Lemma 5

	4 Extending the Lower Bound to -Zero Knowledge
	4.1 Proof of Lemma 10

	References

	Statistical Witness Indistinguishability (and more) in Two Messages
	1 Introduction
	1.1 Summary of Our Results
	1.2 Other Related Work

	2 Overview of Techniques
	2.1 First Attempt: Compressing the Blum Protocol via OT
	2.2 Compressing Interactive Arguments While Preserving Soundness
	2.3 Applications to OT
	2.4 On the Relationship with Non-malleability

	3 Preliminaries
	3.1 Oblivious Transfer
	3.2 Proof Systems

	4 Extractable Commitments
	4.1 Definitions
	4.2 Protocol

	5 Two-Message Arguments with Statistical Privacy
	5.1 Modified Blum Protocol
	5.2 Compressing Four Message Argument to a Two Message Argument
	5.3 Proofs of Privacy

	6 Oblivious Transfer: Stronger Security and Reversal
	6.1 Simulation-Secure Two-Message Oblivious Transfer
	6.2 Reversing Oblivious Transfer

	References

	An Efficiency-Preserving Transformation from Honest-Verifier Statistical Zero-Knowledge to Statistical Zero-Knowledge
	1 Introduction
	2 Our Results
	3 Preliminaries
	3.1 Interactive Proof Systems
	3.2 Statistical Zero-Knowledge
	3.3 Instance-Dependent Commitment Schemes

	4 Constant-Round Statistical Zero-Knowledge Proofs
	4.1 Instance-Dependent Statistical Zero-Knowledge Proofs
	4.2 A Concrete Protocol for a SZK-Complete Problem

	5 Efficient Transformation from Honest-Verifier SZK to SZK
	References

	Implementing Multiparty Computation
	Efficient Maliciously Secure Multiparty Computation for RAM
	1 Introduction
	1.1 Background
	1.2 Our Contribution
	1.3 Related Work

	2 Preliminaries
	2.1 Oblivious RAM
	2.2 Secure Computation in the RAM Model

	3 Executing RAM Programs Using BMR
	3.1 SPDZ Secret Sharing
	3.2 The BMR-SPDZ Protocol
	3.3 Towards RAM Computation

	4 Accessing Memory
	4.1 Memory via Embedded Authentication Sub-circuit
	4.2 Memory via Wire Soldering
	4.3 Memory via Free Conversion Between Keys and Shared Real Values

	5 Realizing Functionality .
	5.1 Security of Protocol .

	6 Optimizing BMR Evaluation
	6.1 The Technique
	6.2 Security

	7 Implementation
	A The Generic Reactive MPC Functionality
	References

	Efficient Circuit-Based PSIpg via Cuckoo Hashing
	1 Introduction
	1.1 Motivation for Circuit-Based PSI
	1.2 Our Contributions
	1.3 Computing Symmetric Functions
	1.4 Related Work

	2 Preliminaries
	3 Analyzing the Failure Probability
	3.1 Using Probabilistic Constructions for Cryptography
	3.2 Experimental Parameter Analysis
	3.3 Our Constructions

	4 An Asymptotic Construction Through Mirror Cuckoo Hashing
	4.1 Mirror Cuckoo Hashing
	4.2 Circuit-Based PSI from Mirror Cuckoo Hashing

	5 A Concretely Efficient Construction Through 2D Cuckoo Hashing
	5.1 Iterative 2D Cuckoo Hashing
	5.2 Circuit-Based PSI from 2D Cuckoo Hashing
	5.3 Extension to a Larger Number of Parties
	5.4 No Extension to Security Against Malicious Adversaries

	6 Evaluation
	6.1 Simulations for Setting the Parameters of 2D Cuckoo Hashing
	6.2 Circuit Complexities
	6.3 Performance

	References

	Overdrive: Making SPDZ Great Again
	1 Introduction
	2 Preliminaries
	2.1 Security Model
	2.2 BGV
	2.3 Zero-Knowledge Proofs
	2.4 Overview of SPDZ

	3 Low Gear: Triple Generation Using Semi-homomorphic Encryption
	3.1 Enhanced CPA Security
	3.2 Input Authentication
	3.3 Triple Generation
	3.4 Parameter Choice

	4 High Gear: SPDZ with Global ZKPoK Check
	5 Implementation
	5.1 Vickrey Auction for 100 Parties

	6 Future Work
	References

	Non-interactive Zero-Knowledge
	Efficient Designated-Verifier Non-interactive Zero-Knowledge Proofs of Knowledge
	1 Introduction
	1.1 Designated-Verifier Non-interactive Zero-Knowledge
	1.2 Our Contribution
	1.3 Our Method
	1.4 Applications
	1.5 Related Work
	1.6 Organization

	2 Preliminaries
	2.1 Encryption Schemes
	2.2 Non-interactive Zero-Knowledge Proof Systems

	3 A Framework for Designated-Verifier Non-interactive Zero-Knowledge Proofs of Knowledge
	3.1 Statements Defined by a Linear Map over G
	3.2 A Framework for DVNIZK Proofs of Knowledge
	3.3 Security Proof

	4 Dual Variant of the Framework
	4.1 Perfectly Binding Commitment over G
	4.2 Equality of Plaintexts Between C and S
	4.3 A Framework for Relations Between Plaintexts of S

	References

	Quasi-Optimal SNARGs via Linear Multi-Prover Interactive Proofs
	1 Introduction
	1.1 Quasi-Optimal SNARGs
	1.2 Optimally-Laconic Arguments and 1-Bit SNARGs
	1.3 Additional Related Work

	2 Quasi-Optimal Linear MIP Construction Overview
	2.1 Consistency Checking

	3 Preliminaries
	4 Quasi-Optimal Linear MIPs
	4.1 Robust Decomposition for Circuit Satisfiability
	4.2 Consistency Checking
	4.3 Quasi-Optimal Linear MIP Construction

	5 Quasi-Optimal SNARGs
	5.1 Defining Quasi-Optimality
	5.2 Quasi-Optimal SNARGs from Quasi-Optimal Linear MIPs

	References

	Anonymous Communication
	Untagging Tor: A Formal Treatment of Onion Encryption
	1 Introduction
	2 Background and Preliminaries
	2.1 An Overview of Tor
	2.2 On the Relative Severity of Tagging Attacks
	2.3 Notation

	3 Modelling Onion Routing Networks
	3.1 Onion Encryption
	3.2 Correctness
	3.3 Security

	4 Channel Security
	5 Anonymity
	5.1 Capturing Tagging Attacks

	6 Preventing Tagging Attacks
	6.1 VIL Tweakable Ciphers and AEZ
	6.2 Tor261: The Onion Encryption Scheme in Tor Proposal 261
	6.3 Circuit Hiding

	7 Conclusion
	References

	Exploring the Boundaries of Topology-Hiding Computation
	1 Introduction
	1.1 Our Results
	1.2 Technical Overview
	1.3 Related Work

	2 Preliminaries
	2.1 Secure Hardware
	2.2 Topology Hiding Computation
	2.3 Extended Definitions of THC

	3 Lower Bounds
	3.1 Semi-honest Topology-Hiding Broadcast Implies OT
	3.2 Lower Bound on Information Leakage in Fail-Stop Model

	4 Upper Bounds
	4.1 OT Implies Semi-honest THC (for Small-Diameter Graphs)
	4.2 Constructions for Fail-Stop Adversaries

	References

	Isogeny
	Supersingular Isogeny Graphs and Endomorphism Rings: Reductions and Solutions
	1 Introduction
	1.1 Contributions
	1.2 Related Work

	2 Preliminaries
	2.1 Background on Elliptic Curves
	2.2 Quaternion Algebras, Bp, and the Deuring Correspondence
	2.3 Supersingular Isogeny Graphs
	2.4 The Charles-Goren-Lauter Hash Function
	2.5 Isogeny-Based Cryptography

	3 Problem Statements and Heuristics
	3.1 The Deuring Correspondence
	3.2 The Endomorphism Ring Computation Problem
	3.3 Heuristics

	4 Efficient Computations with Maximal Orders and Their Ideals
	5 Equivalent Hard Problems in Supersingular Isogeny Graphs
	5.1 Endomorphism Ring Computation Is not Harder than Inverse Deuring Correspondence
	5.2 Quaternion -Isogeny Algorithm
	5.3 Translating O0-Ideals to Isogenies
	5.4 Inverse Deuring Correspondence Is not Harder than Endomorphism Ring Computation
	5.5 Preimage and Collision Resistance of the CGL Hash Function

	6 -PowerIsogeny Reduces to MaxOrder and Action-on–Torsion
	6.1 Outline of Reduction
	6.2 Reduction from -PowerIsogeny to MaxOrder and Action-on–Torsion
	6.3 Going from an Ideal of Norm to a Corresponding Subgroup of Order
	6.4 Isogeny Paths and Corresponding Filtrations of Left Ideals
	6.5 Matching up a Filtration of an Ideal with a Factorization of an Isogeny

	7 Some Easy Problems in Supersingular Isogeny Graphs
	7.1 Constructive Deuring Correspondence, from Quaternion Orders to j-invariants
	7.2 An Attack on the CGL Hash Function

	8 The EndomorphismRing Problem
	8.1 Representation Size of Endomorphism Rings
	8.2 Compact Representations of Endomorphisms
	8.3 EndomorphismRing Reduces to MaxOrder and Action-on-2-Torsion and Action-on-3-Torsion
	8.4 EndomorphismRing Reduces to an Isogeny Problem

	References

	Leakage
	On the Complexity of Simulating Auxiliary Input
	1 Introduction
	1.1 Upper Bound Results
	1.2 Lower Bound Results

	2 Preliminaries
	2.1 Basic Definitions
	2.2 Multiplicative Weight Update

	3 Simulating Auxiliary Inputs
	3.1 Boosting
	3.2 Simulate Leakage with MWU
	3.3 Efficient Approximation

	4 Lower Bound for Leakage Simulation
	4.1 Black-Box Model
	4.2 Main Theorem and Related Results
	4.3 Proof of Theorem 3

	References

	Key Exchange
	Fuzzy Password-Authenticated Key Exchange
	1 Introduction
	1.1 Our Contributions

	2 Security Model
	3 General Construction Using Garbled Circuits
	3.1 Building Blocks
	3.2 Construction
	3.3 An Efficient Circuit f for Hamming Distance

	4 Specialized Construction for Hamming Distance
	4.1 Building Blocks
	4.2 Construction
	4.3 Security of fPAKE RSS
	4.4 Further Discussion

	5 Comparison of fPAKE Protocols
	References

	Bloom Filter Encryption and Applications to Efficient Forward-Secret 0-RTT Key Exchange
	1 Introduction
	2 Bloom Filter Encryption
	2.1 Formal Definition of Bloom Filters
	2.2 Formal Model of BFE
	2.3 Additional Properties of a PKEM
	2.4 Security Definitions
	2.5 Basic Bloom Filter Encryption
	2.6 CCA-Security via Fujisaki-Okamoto
	2.7 Time-Based Bloom Filter Encryption

	3 Forward-Secret 0-RTT Key Exchange
	3.1 Analysis

	4 Conclusion
	References

	OPAQUE: An Asymmetric PAKE Protocol Secure Against Pre-computation Attacks
	1 Introduction
	2 The Strong aPAKE Functionality
	3 Oblivious Pseudorandom Function
	4 A Compiler from aPAKE to Strong aPAKE via OPRF
	4.1 Proof of Security

	5 A Compiler from AKE-KCI to Strong aPAKE via OPRF
	5.1 UC Definition of AKE-KCI
	5.2 Strong aPAKE Construction from OPRF and AKE-KCI
	5.3 Proof of Security

	6 OPAQUE: A Strong Asymmetric PAKE Instantiation
	6.1 Protocol Details and Properties
	6.2 An OPAQUE Variant: Multiplicative Blinding

	A The DH-OPRF Protocol Realizing Revised FOPRF
	References

	Quantum
	Unforgeable Quantum Encryption
	1 Introduction
	1.1 Our Approach
	1.2 Summary of Results

	2 Preliminaries
	3 One-Time Ciphertext Authentication
	4 Quantum Unforgeability
	5 Quantum IND-CCA2
	6 Quantum Authenticated Encryption
	7 Constructions and Separations
	8 Discussion
	References

	Tightly-Secure Key-Encapsulation Mechanism in the Quantum Random Oracle Model
	1 Introduction
	1.1 Background
	1.2 Our Contributions
	1.3 Technical Overview
	1.4 Related Work

	2 Preliminaries
	2.1 Notation
	2.2 Quantum Computation
	2.3 Public-Key Encryption
	2.4 Key Encapsulation
	2.5 eXtendable-Output Functions
	2.6 Assumptions

	3 Disjoint Simulatability of Deterministic PKE
	3.1 Definition
	3.2 Sufficient Condition: Sparse Pseudorandomness
	3.3 Instantiations
	3.4 Generic Conversion from IND-CPA-Secure PKE

	4 Conversion from Disjoint Simulatability to IND-CCA
	5 Implementation
	5.1 NTRU-HRSS
	5.2 Experimental Results

	A Missing Definitions
	B Transformations in the Random Oracle Model
	C Omitted Proofs
	C.1 Proof of Lemma2.2

	References

	A Concrete Treatment of Fiat-Shamir Signatures in the Quantum Random-Oracle Model
	1 Introduction
	1.1 Our Results
	1.2 Concrete Bounds and Comparison with Unruh AC:Unruh17,cryptoeprint:2017:398

	2 Preliminaries
	2.1 Quantum Computation
	2.2 Pseudorandom Functions
	2.3 Canonical Identification Schemes
	2.4 Digital Signatures

	3 Fiat-Shamir in the Quantum Random-Oracle Model
	3.1 Signatures from Identification Schemes
	3.2 Security Proof

	4 Dilithium-QROM
	4.1 Preliminaries
	4.2 The Identification Protocol
	4.3 Security Properties
	4.4 The Dilithium-QROM Signature Scheme and Concrete Parameters
	4.5 Security Assumptions for Non-lossy Schemes

	References

	Non-maleable Codes
	Non-malleable Randomness Encoders and Their Applications
	1 Introduction
	1.1 Prior Work
	1.2 Our Results
	1.3 Organization of the Paper

	2 Preliminaries
	2.1 Definitions

	3 Building Blocks
	3.1 One-Time Message Authentication Codes
	3.2 Average-Case Extractors

	4 Non-malleable Randomness Encoders
	4.1 Definition
	4.2 Notation
	4.3 Construction Overview
	4.4 Security Proof
	4.5 Rate and Error Analysis

	5 Non-malleable Codes from Non-malleable Randomness Encoders
	5.1 Construction Overview
	5.2 Security Proof
	5.3 Rate and Error Analysis

	6 Conclusion
	A Proofs of Claims 2 and 3 in Sect.4.4
	A.1 Proof of Claim 2 in Sect.4.4
	A.2 Alternate proof of Claim 3 in Sect.4.4

	B Appendix: From t-source Strong Non-malleable Extractors to t-state 1-augmented NMC
	References

	Non-malleable Codes from Average-Case Hardness: AC0, Decision Trees, and Streaming Space-Bounded Tampering
	1 Introduction
	1.1 Our Results
	1.2 Technical Overview
	1.3 Related Work

	2 Definitions
	3 Generic Construction for One-Bit Messages
	4 One-Bit NMC for AC0
	5 Construction for Multi-bit Messages
	6 Efficient, Multi-bit NMC for AC0
	7 One-Bit NMC Against Streaming Adversaries
	References

	Provable Symmetric Cryptography
	Naor-Reingold Goes Public: The Complexity of Known-Key Security
	1 Introduction
	1.1 Overview and Motivation
	1.2 Public-Seed Pseudorandomness via the NR Construction
	1.3 Correlation Intractability
	1.4 Technical Overview – psPRPs
	1.5 Technical Overview – Correlation Intractability

	2 Preliminaries
	2.1 UCEs and psPRPs
	2.2 Evasive Relations, Correlation Intractability

	3 Public-Seed Pseudorandomness of Naor-Reingold
	3.1 The NR Construction and Its Indistinguishability
	3.2 The Case of Unpredictable Sources
	3.3 The Case of Reset-Secure Sources

	4 Correlation Intractability of Public-Seed Permutations
	4.1 Strong Evasiveness
	4.2 Partial Correlation Intractability of Two-Round Feistel
	4.3 Correlation Intractability of the NR Construction
	4.4 Proof of Proposition 3

	References

	Updatable Encryption with Post-Compromise Security
	1 Introduction
	2 Preliminaries
	3 Formalizing Updatable Encryption
	3.1 Security Properties
	3.2 Definition of Oracles
	3.3 ``Leakage'' Profiles
	3.4 Security Notions for Updatable Encryption

	4 Comparison with Existing Models
	4.1 weakUPINDBI vs. strongUPINDBI
	4.2 Insecurity of XORKEM in the strongUPINDBI and INDENC Model
	4.3 INDENC vs. strongUPINDBI (and weakUPINDBI)
	4.4 INDUPD vs. UPREENC

	5 Constructions
	5.1 Double Encryption (2ENC)
	5.2 Schemes from Key-Homomorphic PRFs (BLMR and BLMR+)
	5.3 Updatable Encryption Based on ElGamal (RISE)

	6 Conclusion and Open Problems
	A Symmetric Key-Encapsulation (SEKEM)
	References

	Author Index

