
Chapter 5
No-Collapse Interpretations of Quantum
Theory

Oliver Passon

In Sect. 2.3.1, the measurement problem was formulated in the form of a trilemma.
In this view, either (i) the wavefunction is not a complete description; or (ii) the time
evolution is not a continuous unitary process; or (iii) measurements do not lead to
well-defined results. The GRW theory described in Sect. 2.3.1 chooses alternative
(ii); it adds a nonlinear term to the Schrödinger equation, which models a physical
mechanism for the “actual” collapse of the wavefunction. The Copenhagen inter-
pretation also denies a continuous time evolution which follows the Schrödinger
equation; in contrast to the GRW theory, this process is however not given a realistic
interpretation.

In this chapter, we treat the most prominent advocates of those strategies which
either deny the completeness of the wavefunction (de Broglie–Bohm theory), or
question the uniqueness of the measurement results (Everett’s or the many-worlds
interpretation). In these theories, the state vector is thus subject to a continuous
unitary time evolution. Their common feature is dispensing with the “collapse” of
the wavefunction; only the appearance of this non-unitary change of state needs to
be justified in these interpretations. Thus, the name no-collapse interpretations has
become common as a generic label for these theories.

5.1 The de Broglie–Bohm Theory

Within the debates over the interpretation of the quantum theory—especially in view
of the measurement problem—the question of whether or not quantum mechanics
in its present form is simply incomplete is immediately raised. The statistical inter-
pretation of quantum mechanics suggests that it must be based on an additional
structure, whose elucidation would give the interpretation of the theory a completely
new direction. Since this additional structure is unknown in the present version of
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180 5 No-Collapse Interpretations of Quantum Theory

quantum mechanics, this research programme was originally called “the search for
‘hidden’ variables”.

In 1952, David Bohm published his article “A Suggested Interpretation of the
Quantum Theory in Terms of ‘Hidden’ Variables” (Bohm 1952). At the time, he was
unaware that Louis de Broglie had introduced a mathematically equivalent formula-
tion of this theory already in 1927 at the 5th SolvayConference (deBroglie 1927). For
this reason, we refer to this interpretation as the “de Broglie–Bohm theory” (DBB
theory).1 de Broglie himself referred to the interpretation as the “theory of pilot
waves” (l’onde pilote). The conference proceedings of the 5th Solvay Conference
have been accessible in English only since 2009 (Bacciagaluppi and Valentini 2009).
Antony Valentini and Guido Bacciagaluppi not only undertook the translation, but
also, in their knowledgeable commentary, they discuss the role of this conference
for the interpretation of the quantum theory in general. According to their analy-
sis, it is misleading to reduce the significance of the 5th Solvay Conference to the
(unquestionably important) debates between Bohr and Einstein. Bacciagaluppi and
Valentini argue in favour of a re-evaluation of the role of de Broglie within the early
interpretation debates, and in that connection, they state:

Today, pilot-wave theory is often characterized as simply adding particle trajectories to the
Schrödinger equation. An understanding of de Broglie’s thought from 1923 to 1927, and of
the role it played in Schrödinger’s work, shows the gross inaccuracy of this characterization:
after all, it was actually Schrödinger who removed the trajectories from de Broglie’s theory
(Bacciagaluppi and Valentini 2009, p. 78).

A discussion of the priorities in the early development of wave mechanics can and
should not be carried out here. We have cited this thought-provoking passage mainly
because it expresses the basic idea of the de Broglie–Bohm theory in such a simple
and clear-cut manner. This is a theory which alleges the incompleteness of the usual
quantum mechanics and adds “particles” in the literal sense to the wavefunction. As
we have already indicated above, the term “hidden variables” has been adopted for
these additional determining quantities. This term is, to be sure, somewhat mislead-
ing, since even the harshest critics cannot deny that particles, and their locations in
particular, are directly observable (and thus in this sense not at all hidden). Instead,
it is simply the wavefunction which is not susceptible to direct observation.2

For reasons which of course must be explained in more detail in the following,
the de Broglie–Bohm theory succeeds in this way in describing the measurement
process as a normal interaction which leads to a uniquely defined final state. At the
same time, it is (in the technical sense) a deterministic theory—while in addition, it
can also reproduce all the predictions of the quantum theory. However, this theory

1Bohm’s lack of knowledge of the earlier work is understandable if one is aware that de Broglie
himself did not develop his theory further, but instead became a supporter of the “conventional”
quantum theory. Only after reading Bohm’s publication of 1952 was his interest in these questions
again aroused.
2We shall see that the lack of knowledge (and control) of the precise initial conditions plays an
important role in the DBB theory. This aspect of the additional variables can indeed be considered
to be “hidden”. Furthermore, the concept of “hidden variables” also refers to the fact that they do
not occur in the standard interpretation.
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makes no new predictions which deviate from those of the quantum theory, so that
experimentally, there is no way to decide between the two.3

In Bohm’s formulation of 1952, we are dealing with an extension of non-
relativistic quantum theory. We will take up the question of a relativistic general-
ization in Sect. 5.1.7. The following description of the theory makes use at various
points of a comparison with the “standard interpretation” or the “usual textbook ver-
sion” of quantum mechanics. These concepts are naturally not strictly defined, and
the reader can think here of the Copenhagen interpretation or a textbook description
of quantum mechanics, which do not deal with the problems treated in this book.

5.1.1 Mathematical Description

The de Broglie–Bohm theory is an extension of the standard quantum theory.
Among the relations which define the theory mathematically, we thus find the usual
Schrödinger equation:

i�
∂ψ

∂t
= −

(
�
2

2m

)
∇2ψ + V (r)ψ . (5.1)

Here, V refers to the potential which characterizes the corresponding system (see
also Eq. (1.39) in Sect. 1.2.4; there, the Schrödinger equation was introduced for only
one spatial dimension). We have chosen the positional representation not by chance,
since it is, as we shall see, in fact distinguished within the de Broglie–Bohm theory.
In the standard interpretation, ψ is presumed to contain the complete description of
the system, and from its absolute square |ψ|2, the probability of observing a particle
by a measurement within a particular spatial region can be obtained. In the standard
interpretation, one however cannot speak of a particle’s trajectory or orbit, i.e. that
which brought it to the position where it was observed.

In the de Broglie–Bohm theory, the concept of “particle” is taken so seriously
that at each moment in time (i.e. even without measurements), it is associated
with a well-defined position. A quantum-mechanical N -particle system is thus no
longer described by the wavefunction alone, but rather by the pair consisting of
the wavefunction and the position coordinates of the particles: (ψ, Q(t)). Here,
Q(t) = (Q1(t), · · · , QN (t)), where Qi : t → R

3 denotes the trajectory of the i th
particle. Q(t) ∈ R

3N is called the configuration of the system, and R
3N is its so-

called configuration space.4

3This statement holds strictly under the so-called quantum equilibrium hypothesis (see Sect. 5.1.2).
Without that assumption, predictions which differ from the ordinary quantum theory may result
(cf. Cushing 1995 and Valentini 2004).
4Configuration space is of central importance even in conventional quantum theory, because the
wavefunction is likewise defined on this space.
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For the particle positions Q(t), one must specify an equation of motion, i.e. a (dif-
ferential) equation which describes the temporal and spatial evolution of the particle
positions under the influence of the given external conditions. This prescription must
reproduce—on average—the statistical predictions of quantum theory. There have
been various suggestions for the motivation of this equation of motion (cf. Passon
2010, pp. 32–36). In the following, we will make use of the analogy between quan-
tum theory and hydrodynamics, which was pointed out as early as 1926 by Erwin
Madelung (cf. Madelung 1926). Let us therefore briefly consider a liquid (or a gas)
with a mass density of ρm . Under the assumption that the mass is a conserved quan-
tity, the mass density within a certain region in space can then change its magnitude
only if fluid flows out of or into that region. In order to describe the flow of the
fluid, we define the “current-density vector” or, for short, the “current density”, as
the product of the mass density and the flow velocity of the fluid: jm = ρmv. The
x component of jm denotes the amount of fluid which flows per unit time through
a unit surface element (perpendicular to the x-axis) and correspondingly for the y
and z components. Then the conservation of mass is represented by the following
mathematical expression:

∂ρm

∂t︸︷︷︸
time rate of change

= −∇ · jm︸ ︷︷ ︸
spatial rate of change

. (5.2)

Here, the symbol “∇” denotes the divergence, i.e. the sum of the spatial changes over
all three directions. This equation of continuity from hydrodynamics expresses—as
explained—the conservation of the fluid mass.

We now turn back to quantum theory, in which likewise an equation of continuity
holds—but now for the “probability density” ρ = |ψ|2. This equation is formally
identical5 to the hydrodynamic equation:

∂ρ

∂t
+ ∇ · j = 0 . (5.3)

At this point, naturally, the mathematical details should not be so much the subject of
our considerations as the structural relations. The decisive point is that this equation
can be derived from the Schrödinger equation, and for the probability current density,
we find the following (somewhat complicated) expression:

j = �

2mi

[
ψ∗(∇ψ) − (∇ψ)ψ∗] . (5.4)

5There is, however, a decisive difference with respect to the hydrodynamic equation of continuity:
While the mass density ρm is defined on real position space, the probability density ρ = |ψ|2 is a
function on configuration space. A naive identification of |ψ|2 with a matter density thus appears
to be impossible.
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In the usual textbook descriptions of quantum theory, the equation of continuity (5.3)
is interpreted as an expression of the “conservation of probability”. Probability (like
mass within hydrodynamics) can be neither “created” nor “destroyed”.

In the de Broglie–Bohm theory, one takes a step further, since the goal is finally
to arrive at an equation of motion for the “Bohmian particles”. The expression ρ in
quantum theory is interpreted as the probability density of the real particle configu-
ration, and we recall that in hydrodynamics, the relation j = ρv holds. If we put in
the corresponding quantum-mechanical expressions for ρ and j (and use the “polar
representation” ψ = Re

i
�

S for the wavefunction), we find, after a simple computa-
tion, the equation of motion for the particle positions Q(t) that we were seeking (for
its velocity, we have of course v = d Q

dt ):

v = j

ρ

d Q

dt
= ∇S

m
. (5.5)

This Eq. (5.5) is called the guidance equation of the de Broglie–Bohm theory. Pic-
torially speaking, the particle trajectories are thus guided by the wavefunction (or
rather by its phase S). Treating a physical problem with the help of the DBB theory
thus means first of all solving the Schrödinger equation (as in the usual quantum
mechanics). In Sect. 5.1.4, we will discuss concrete applications.6

The validity of the equation of continuity (5.3) has still another important conse-
quence for the de Broglie–Bohm theory. It follows from this equation namely that a
configuration once distributed according to |ψ|2 retains this property under Bohmian
dynamics. This observation is the key to the fact that the de Broglie–Bohm theory
reproduces all the predictions of the usual quantum theory, since naturally a differen-
tial equation fixes the motion only through its boundary and initial conditions. If one
now chooses the initial configuration Q(t0) at random according to the probability
distribution |ψt0 |2 for a system that is described by the wavefunction ψ, then the
configuration Q(t)will remain distributed according to |ψt |2 at each later moment in
time, t . In other words, according to Born’s rule, all the predictions of the usual quan-
tum theory will be reproduced.7 This condition is called the “quantum equilibrium
hypothesis”, and we will take a closer look at it in Sect. 5.1.2.

The three relations which define the de Broglie–Bohm theory mathematically are
thus

1. The Schrödinger equation: i� ∂ψ
∂t = −

(
�
2

2m

)
∇2ψ + V (r)ψ

2. The guidance equation: d Q
dt = ∇S

m

6In fact, the condition of being able to reproduce the statistical predictions of quantum mechanics
does not fix the dynamics uniquely. In this sense, there are indeed infinitely many “de Broglie–
Bohm-like” theories. In these theories, the individual trajectories do not follow Eq. (5.5), but they
however reproduce the same statistics (Deotto and Ghirardi 1998).
7The equivalence to quantum mechanics presumes that all predictions can be uniquely described
in terms of position coordinates—e.g. by “pointer positions” of a measurement apparatus.



184 5 No-Collapse Interpretations of Quantum Theory

3. The quantum equilibrium hypothesis: The position distribution ρ of states with
the wavefunction ψ is given by the probability density ρ = |ψ|2.

The second and the third relations deserve a more careful consideration, since they
signal the differences relative to conventional quantum theory.

5.1.2 The Quantum Equilibrium Hypothesis

According to the quantum equilibrium hypothesis, the positions of the particles of
a state which is described by the wavefunction ψ are distributed in accord with the
probability density |ψ|2. The occupation probability within a spatial region V is
calculated by integration,

∫
V |ψ|2dV ′.

If this initial condition is fulfilled at one time, it follows from the equation of
continuity (5.3) that Born’s rule will remain valid at all later times. Furthermore,
the quantum equilibrium hypothesis guarantees that the particle positions cannot be
more precisely controlled. Bell writes on this topic:

Note that the only use of probability here is, as in classical statistical mechanics, to take
account of uncertainty in initial conditions (Bell 1980, p. 156).

If thus follows that the Heisenberg uncertainty relations can also not be violated
within the de Broglie–Bohm theory! At the same time, one might be tempted to
call the “determinism” of the de Broglie–Bohm theory “fictitious”. In its descriptive
content, the de Broglie–Bohm theory does not differ from the standard interpretation
of quantum mechanics, and it likewise can make only statistical predictions. The
quote from Bell however indicates a conceptual difference. Within the de Broglie–
Bohm theory, the statistical character of the predictions is attributable to our lack
of knowledge and is thus epistemic in nature. Within the standard interpretation of
quantum mechanics, the ignorance interpretation of the probability is not possible;
it is thus an ontic probability.

Let us now turn to the question of how this equilibrium distribution can be justi-
fied. The first attempt dates back to Bohm (cf. Bohm 1953), who gave a dynamical
explanation of the |ψ|2 distribution. His approach was developed further by Valentini
(1991). In Valentini and Westman (2005), one finds for example numerical simula-
tions of systems which, under the dynamics of the guidance equation, lead from a
non-equilibrium distribution to the quantum equilibrium distribution. In the frame-
work of this approach, it would seem reasonable to consider systems in “quantum
non-equilibrium”—together with all possible deviations of the predictions between
conventional quantum mechanics and the de Broglie–Bohm theory (cf. Valentini
2004). Another strategy—for which Bell seems to express support at various times—
consists in simply postulating the quantum equilibrium hypothesis. This would give
it the status of a fundamental law.

In contrast, Dürr et al. (1992) argue that neither postulating the quantum equilib-
rium condition, nor its dynamic justification is reasonable or convincing. At the core,
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the question is namely how—within a deterministic theory—probability statements
can occur at all. This problem is naturally much older than the de Broglie–Bohm
theory, and it has dominated the discussion on the relation between (Newtonian)
statistical mechanics and classical thermodynamics since the nineteenth century. In
their justification of the quantum equilibrium distribution, Dürr et al. therefore hark
back to a concept introduced by Ludwig Boltzmann (1844–1906), namely that of
“being typical” for a physical event. “Being typical” has a terminological meaning
here, namely the appropriateness for the “overwhelming majority” (as defined by
measure theory) of initial configurations (Dürr 2001, pp. 49ff).

The application of this concept to de Broglie–Bohm theory is now carried out in
two steps. First, the authors clarify the question of underwhich conditions subsystems
can be associated with a wavefunction at all. This can naturally not be expected of
arbitrary subsystems, owing to interactions with their environment. In principle, the
de Broglie–Bohm theory thus holds for the wavefunction of the universe, �. The
concept of the “wavefunction of the universe” sounds presumptuous. In fact, it does
not mean that the de Broglie–Bohm theory claims universal validity. Rather, it is the
wavefunction of a system in which probability statements can no longer be explained
in termsof an “external influence”, i.e. by the existenceof a still larger system inwhich
the system considered is embedded. For the fundamental justification of probability
statements, this standpoint thus must be adopted.

For the wavefunction of the universe, however, the assertion that its position
coordinates are distributed according to ρ = |�|2 appears problematic. After all,
there is only one universe,8 and a test of this probability statement by measurements
of relative frequencies of occurrence is impossible. For the wavefunction of the
universe, one cannot ascribe the meaning of a probability density to the expression
|�|2, at least not in an operational sense. Instead, Dürr et al. suggest that we see in it a
measure of what a “typical” initial condition (in Boltzmann’s sense) for the universe
would be like. They justify their choice with the “equivariance” of the distribution,
i.e. with the fact already mentioned that a configuration which at one moment is
distributed according to |ψ|2 will retain this property. The choice of any other (non-
equivariant) distribution as themeasure of “typical” initial configurations would have
to distinguish a particular moment in time, and the moment at which precisely that
distribution was present in an unnatural way.

In addition, there is a class of subsystems which can be described by using “effec-
tive wavefunctions”. This means that the particle dynamics of these subsystems are
almost completely determined by that effective wavefunction.9

8Speculations about “multiverses” change nothing in this situation—for there, also, as a rule any
contact to the other “universes” is forbidden.
9The effective wavefunction ψ(x) of a subsystem with the variables x on configuration space,
which belongs to the overall system �(x, y), is defined as a part of the following decomposition:
�(x, y) = ψ(x)�(y) + �⊥(x, y). Here,� and�⊥ have disjunct carriers, and the configuration of
the environment (Y ) lies in the carrier of �. For the overall system, one could think for example of
subsystem + environment or, concretely, subsystem + measurement apparatus. The above decom-
position occurs namely during a measurement interaction: If the configuration of the measurement
setup corresponds to Y (this could be a particular “pointer position” of the measurement apparatus),
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Finally, Dürr et al. can prove that subsystems with an effective wavefunction ψ
within a “typical” universe fulfil the quantum equilibrium hypothesis. In this sense,
the deterministic de Broglie–Bohm theory obtains the appearance of randomness,
and the empirical distributions correspond to the quantum-mechanical predictions.
If one accepts this “Boltzmann argument”, then the quantum equilibrium condition
becomes even a theorem of the de Broglie–Bohm theory.10

5.1.3 The Guidance Equation

Thus far, we have considered only the single-particle case. The general form of the
guidance equation for an N -particle system is given by11:

d Qi

dt
= �

mi
�∇iψ

ψ
= ∇i S

mi
. (5.6)

Here, mi denotes the mass of the i th particle, � the imaginary part of the following
expression and ∇i is the gradient with respect to the spatial coordinates of the i th
particle. In case the wavefunction is a spinor, i.e. ψ : R

3N → C
2N , the probability

current is changed, so that one obtains the following guidance equation:

d Qi

dt
= �

mi
�ψ∗∇iψ

ψ∗ψ
, (5.7)

whereψ∗ψ is the scalar product onC
2. The latter equation is mentioned here not only

for completeness, but also because it will be used in the treatment of themeasurement
problem in Sect. 5.1.5.

The existence and uniqueness of the solutions of the guidance equation for all the
relevant types of potentials have been demonstrated (see Teufel and Tumulka 2005).
Two points should be emphasized: First, the order of the guidance equation (as well
as the resulting general properties of its solutions); second, its so-called non-locality.
The next two subsections are devoted to these two issues.

the x system is guided by the wavefunction ψ(x). The remaining parts of � are then irrelevant for
the particle dynamics, and in this way, an “effective collapse” is described (cf. Sect. 5.1.5).
10Our treatment here could of course only roughly sketch the train of reasoning, and it suppresses
many mathematical details. Thus, an impression of circularity may have (falsely) arisen: One pos-
tulates the |�|2 distribution of the universe and obtains the |ψ|2 distribution of subsystems. See
Dürr (2001, p. 201) for more on this topic.
11The following is naturally difficult to understand for those readers who are not well versed in
mathematics. The decisive point is that the position (and velocity) of the Bohmian particles are
mathematically determined by the wavefunction.
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General Properties of the Trajectories

Since the guidance equation is a differential equation of first order, one initial con-
dition Q(t0) already determines the trajectories uniquely. In configuration space, the
paths are thus not overlapping. It follows for the single-particle case, in which posi-
tion space and configuration space are identical, that the trajectories within the DBB
theory do not intersect each other. If they are in fact identical at one point, then they
must be identical at all points. In many cases, this information alone allows us to
visualize a qualitative picture of the trajectories.

Non-locality

The guidance equation determines the trajectory of the i th particle essentially by
taking the derivative of the wavefunction (more precisely: by taking its gradient).
The wavefunction is however defined on configuration space and is evaluated at
the position Q(t). In other words, the change of position of each particle at the
time t depends on the positions of all the other particles at the same moment in
time. Since these influences do not propagate through space in the sense of a short-
range interaction, one speaks of a non-local influence, or of the non-locality of the de
Broglie–Bohm theory. However, it is precisely this non-locality which permits the de
Broglie–Bohm theory to violate theBell inequalities (in agreementwith experiments;
see Chap. 4). At the same time, the quantum equilibrium hypothesis guarantees that
this non-locality cannot be used for the transmission of signals, since it is in the end
a question of stochastic events. The evident problem of the relativistic generalization
of this theory will be addressed in Sect. 5.1.7.

5.1.4 Applications of the de Broglie–Bohm Theory

We now turn our attention to the obvious question of which form the particle tra-
jectories take, whose existence distinguishes the de Broglie–Bohm theory from the
usual quantum theory. The guidance equation has in fact been solved numerically for
various problems. For those who favour this theory, the existence of these trajecto-
ries is notably more important than their concrete characteristics or their numerical
simulation. Dürr writes on the question of whether Bohmian trajectories should be
calculated at all:

Roughly speaking, no! Sometimes, however, the asymptotic behaviour of the trajectory –
essentially that of free particles – can be quite useful. [...] All that we learn from the trajecto-
ries is indeed only that at every time t , particles are present whose positions are distributed
according to the quantum equilibrium hypothesis as |ψ(q, t)|2 (Dürr 2001, p. 142).

In the following,we nevertheless consider explicit Bohmian trajectories for the tunnel
effect, for interference from gratings (and from the double slit), as well as for the
hydrogen atom; thus for several examples of quantum phenomenawhich, in the usual
understanding, can not possibly be explained in terms of continuous trajectories.
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The Tunnel Effect

A spectacular prediction of quantum theory is the “tunnel effect”. It consists in
the fact that quantum-mechanically described particles can overcome a potential
barrier, although the energy height of the barrier is greater than the energy of the
particles. Radioactive α decay, as well as nuclear fusion in the interior of the Sun, is
understandable only in terms of the tunnel effect.12 Pictorially speaking, the particles
pass below the barrier—they thus “tunnel” beneath it.13 In an orthodox manner
of speaking, there is a finite probability that the particles will be detected on the
other side of the barrier. Within the de Broglie–Bohm theory, a continuous particle
trajectory must naturally lead from inside the potential barrier to a position outside
the barrier.

Figure 5.1 shows the paths taken by some of these trajectories. The y-axis corre-
sponds to the position coordinate (in arbitrary position units) and the x-axis to the
time coordinate. A Gaussian wave packet ψ was assumed as initial condition, and it
approaches the barrier from below in the figure. This potential barrier is located at
0.72 ≤ y ≤ 0.78, and it is twice as high as the average energy of the wave packet.14

Then the Schrödinger equation is solved numerically and input into the guidance
equation. In this way, the course of the trajectories can be computed. One can first
recognize how all the particles are braked within the barrier (the slopes of the trajec-
tories in Fig. 5.1 correspond to the particles’ velocities). The tunnel effect occurs for
those particles which reach the barrier first, while those arriving later are reflected
earlier and earlier. If this were not the case, the particles’ trajectories could intersect.
Thus, the property of being intersection-free determines the shape of the trajectories
already qualitatively.

This description of the tunnel effect notably opens up the possibility of calculat-
ing the “tunnelling time”. The obvious question of the time required by a particle
in order to overcome the tunnel barrier cannot even be reasonably asked of conven-
tional quantum theory, since time is not an observable. Cushing (1995) discusses the
possibility of an experimental test of the de Broglie–Bohm theory on this basis.

Two-Slit Interference

Diffraction and interference of an electron beam by a double slit and the pattern
of the typical interference fringes (see Fig. 5.2, left) were successfully observed by
Claus Jönsson in 1959 (see Möllenstedt and Jönsson 1959). Particularly impressive

12In the case of α decay, helium nuclei overcome the potential barrier at the surface of the decaying
nucleus, although their energies, considered classically, are too small to permit this. In the case of
nuclear fusion in the interior of the sun, hydrogen atoms combine to form helium. Here again—
considered classically—the pressure and temperature are too low to overcome the repulsion of the
positively charged hydrogen nuclei.
13This manner of speaking, “tunnelling” or “passing beneath”, is naturally to be understood as
metaphorical, since the “height” of the potential barrier is not a spatial quantity, but rather an
energy.
14The wavefunction is Gaussian, with its centre initially at 0.5 and a width (variance) of 0.05. The
density of the trajectories between 0.66 and 0.68 was increased in order to be able to study the
oscillatory behaviour within the barrier more precisely (see Dewdney and Hiley 1982).
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Fig. 5.1 A numerical simulation of some trajectories in the 1-dimensional tunnel effect (from
Dewdney and Hiley 1982, reprinted with kind permission of the Springer Verlag). The x-axis
corresponds to the time coordinate and the y-axis to the position coordinate

are the experiments in which the particle beam has such a low intensity that the
formation of the interference pattern can be observed over a longer period of time.
Then, point-like detected particles on the detection screen are seen to gradually build
up the interference pattern.

This experiment would appear to illustrate with unusual clarity that the concept
of particle trajectories is not applicable in quantum theory. If—thus runs the usual
argument—the particle trajectories pass through the upper or the lower slit, it should
be irrelevant whether at that moment the other slit were opened or closed. The result
should be that the distribution, after passing through a double slit, should correspond
to the sum of those from each of two single slits.

However, the observed pattern is evidently quite different. Popularizations occa-
sionally claim that the particle has passed “through both slits”. This paradoxical
formulation is apparently intended to suggest that particle trajectories in the classi-
cal sense can no longer be considered to exist.

Within the de Broglie Bohm theory, this problem is resolved in a simple manner.
The particle trajectories naturally each pass through only one of the openings of the
double slit (or of the grating). The trajectories are however led by the wavefunction,
according to the guidance equation. The wavefunction encodes the information on
the slit geometry and steers the trajectories correspondingly towards the interfer-
ence maxima. Here, it becomes clear how within the de Broglie–Bohm theory, the
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Fig. 5.2 Left:Measurement of the interference fringes of electrons from amultiple-slit arrangement
(from Möllenstedt and Jönsson 1959). Right: A numerical simulation of some of the trajectories
through a double slit (from Philippidis et al. 1979). Both of these images are reprinted with the
kind permission of the Springer Verlag

wavefunction no longer represents a “probability wave”, but instead a real physical
effect.15 Every reference to wave–particle dualism thus becomes superfluous.

If the initial values of the particle are distributed according to the quantum equi-
librium hypothesis, the DBB theory exactly reproduces the occurrence frequency
distribution of quantum theory. A numerical simulation of some of the correspond-
ing trajectories can be seen on the right in Fig. 5.2. Again, it can be clearly discerned
that the trajectories do not intersect. At the same time, they exhibit a completely “non-
classical” behaviour, in that they show abrupt changes of direction (in—classically—
“field-free” regions). Here, one can already see that momentum or energy conser-
vation do not hold on the level of individual particles, since they obey Bohmian
mechanics and not Newtonian mechanics. In Sect. 5.1.5 (see also Footnote 19), this
aspect is explained in more detail.

The Hydrogen Atom

The discrete and characteristic spectra of excited atoms provided important impulses
to the early development of the quantum theory. The successful description of the
discrete energy levels of the hydrogen atom belongs among its early triumphs.

The solution of the Schrödinger equation for this problem (i.e. for the potential
V = − e2

r ) is mathematically rather involved and will not be repeated here. The
decisive point is that one is led to eigenstates of the energy forwhich thewavefunction
is a product of a real function and the expression ei(mφ−Et/�). In the ground state,
m (the “magnetic” or “directional” quantum number) is zero, so that the phase is
given by S = −Et . Inserting this expression into the guidance equation (5.5), we
obtain for the velocity field of course everywhere zero; we have computed the spatial

15On the status of the wavefunction; see however Sect. 5.1.7, and also Dürr et al. (1996).
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derivative of an expression which has no spatial dependence. In other words, the
particle in the ground state is at rest, at positions which are distributed according to
the quantum equilibrium condition for the associated wavefunction. One might call
this result counter-intuitive—but it must be admitted that no one has an “intuition”
of the processes within an atom.16

5.1.5 The Solution of the Measurement Problem

At its core, the measurement problem consists in the fact that following a measure-
ment, the measurement apparatus indeed shows a result. After the measurement, the
apparatus should (considered quantum-theoretically) thus be in an eigenstate of the
corresponding operator.

In general, the microscopic state (on which the measurement is carried out) is
described as a superposition of various components, which each correspond to a
different “pointer position” of the measurement apparatus. Under the dynamics of
the linear Schrödinger equation, the measurement apparatus should also take on
a superposition state and not an eigenstate. In reality, however, a superposition of
macroscopic states is neither readily imaginable, nor has one ever been observed.17

The solution of the measurement problem by the de Broglie–Bohm theory can be
illustrated in a completely non-technical and nevertheless appropriate way. It is based
on the idea that it is only the pair consisting of thewavefunction and the configuration
which makes up the complete description of a system and not just the wavefunction
alone. Due to the definite particle positions, every system is in a well-defined state at
every time. This therefore holds also for the measurement apparatus after a measure-
ment has taken place. The different pointer positions of the measurement apparatus
are in the end none other than different configurations, Q(t). In other words, in the
de Broglie–Bohm theory, the “wavefunction of the measurement apparatus” will in
general be in a superposition state. The configuration however indicates the result
of the measurement which is actually realized. That part of the wavefunction which
“guides” the particle(s) can be reasonably termed the effective wavefunction. All the
remaining parts can be ignored, since they are irrelevant for the particle dynamics.
As a result of decoherence effects (see Sect. 5.2.4), the probability that they will
produce interference effects with the effective wavefunction is vanishingly small. In

16In the excited states, where m 
= 0, the azimuthal-angle φ is time-dependent, and the Bohmian
particle orbits around an axis (see Passon 2010, pp. 87f ). Note that also this motion does not
correspond to Bohr’s atomic model, which is well known (and rebutted) in school physics.
17Formally speaking, we are considering here the superposition of several states of the overall
system, consisting of a measurement object (ψ = ∑

ci ψi ) and a measurement apparatus (�i ). In
the case that the measurement apparatus is initially at the position �0, during the measurement
interaction it undergoes a time evolution ψ ⊗ �0 → ∑

ci ψi ⊗ �i . Here, �i denotes the state of
the apparatus after the measurement, on measuring the property which is associated with the state
ψi .
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this sense, the de Broglie–Bohm theory describes an “effective collapse” (see also
Footnote 9). In the words of Dürr:

This ‘collapse’ is not a physical process, but rather an act of convenience. It takes place only
through the choice of description [...] because the price of forgetting about the other, non-
effective parts of the wavefunction is extremely low, since future interferences are practically
excluded (Dürr 2001, p. 160).

This solution of the measurement problem makes an additional tacit assumption:
All the results of measurements must be uniquely characterizable in terms of posi-
tion coordinates. Think for example of the “pointer positions”, or of the positions
of inked pixels on a sheet of paper.18 This however does not mean that only the
measurement of particle positions can be described by the de Broglie–Bohm theory.
Naturally, this solution of the measurement problem applies also to spin, momentum
or the measurement of any other “observable”. Their status is however drastically
re-interpreted in this theory, as is described by the keyword “contextuality”.

Contextuality

Already in Sect. 1.1.1, we dealt with the Stern–Gerlach experiment for the measure-
ment of the spin component of an electron. A beam of silver atoms is passed through
an inhomogeneous magnetic field, so that the spins of their outer electrons lead to a
splitting of the beam.

Here, also, we are dealing with a measurement whose definite result is described
by the de Broglie–Bohm theory. The discussion is made more complicated by the
fact that the Schrödinger equation cannot describe particles with spin. Instead, one
has to resort to the so-called Pauli equation. This modification of the Schrödinger
equation describes spin- 12 particles using a 2-component wavefunction. A guidance
equation for the particles is found analogously to the case of the Schrödinger equation
(this procedure was already described in Sect. 5.1.3, Eq. 5.7). This however yields
no conceptional differences relative to the above discussion. Figure 5.3 gives a naive
representation of how the results of the measurements are determined in the de
Broglie–Bohm theory. If the particle coordinate is above the plane of symmetry
(like the small black dot under the magnifying glass in the figure), a deflection
into the upper branch of the wavefunction occurs (“spin up”), and vice versa. It is
thus the particle’s location which determines the result of a spin measurement! The
property “spin” is not attributed to the particle itself, but instead, it is a property of
the wavefunction.19

18At this point, it again becomes clear that the term “hidden variables” for the particle positions is
misleading. It is just their un-hiddenness which qualifies them to describe the observable results of
a measurement!
19The same is true of all other physical quantities. The particles in the de Broglie–Bohm theory have
no properties besides their positions and their velocities. Even mass, momentum or charge cannot
reasonably be attributed to the particles; think for example of quantum-mechanical interference
experiments in which the influence of gravity or an electromagnetic interaction can (in principle)
modify the wavefunction. Therefore, we have thus far avoided referring to the “Bohmian particles”
as “electrons”, “atoms”, etc. However, in Holland (1993) as well as in Bohm and Hiley (1993), a
possible spin variable is discussed. Our treatment here follows Bell (2001, pp. 5ff) and Dürr (2001).
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Fig. 5.3 Deflection of silver atoms in an atomic beam by an inhomogeneous magnetic field (Stern–
Gerlach experiment). The initial position (indicated by the small dot under the magnifying glass)
is decisive for the result of the spin (-component) measurement in the de Broglie–Bohm theory

We could argue in a similar way about the measurement of energy, momentum
or other observables. For all of these quantities, the de Broglie–Bohm theory thus
introduces no additional “hidden variables” which would describe their actual val-
ues. Instead, their values are determined by the wavefunction, the particle position
and the particular implementation of the measurement. Taking the example of the
Stern–Gerlach experiment, we can illustrate the influence of the particular mea-
surement setup in an intuitively clear manner: If the orientation of the magnetic
field in Fig. 5.3 were reversed, we would measure the opposite spin for the same
particles! The de Broglie–Bohm theory thereby composes a picture in which only
position measurements yield a value that was already present within the system
before the measurement and is thus a property of the particle in the narrow sense.
All other measurements owe their outcomes to the “context” of the implementation
of the measurement. The terms “measurement” and “observable” are rather mislead-
ing here. This property of the de Broglie–Bohm theory is called “contextuality”.
Indeed, this concept has a somewhat more extended meaning in the discussions and
includes thosemutual influences which occur in combinedmeasurements of different
quantities.

The relations treated here can be formulated rather concisely bymaking use of the
terminology which has been developed in philosophy for the description of various
types of properties. The spin, or all other properties aside from the position, are
not categorial properties within the de Broglie–Bohm theory, but rather they are
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dispositions.20 The contextuality of dispositions is however not remarkable; it is
simply a part of their definition (cf. Pagonis and Clifton 1995).

Proofs of the Impossibility of Hidden Variables

This contextuality of the de Broglie–Bohm theory explains why the numerous “no-
go” theorems or “proofs of impossibility” relating to theories with hidden variables
do not apply to it. The best known of these theorems is due to von Neumann. A
generalization was formulated by Kochen and Specker; see Mermin (1990) and the
references there. These theorems are based on the intuition that hidden variables fully
encode the (only apparently) statistical outcome of the measurements. The proofs
demonstrate the impossibility of a mapping which ascribes to every state a unique
value in regard to every possible measurement—indeed, without taking the context
into account. The de Broglie–Bohm theory does not claim even the existence of
actual values in regard to every physical quantity which can be measured; for only
the position is a categorial property of this theory. Think again of the example given
above of the measurement of the spin component: The particle is not associated with
any fixed orientation of its spin, independently of a concrete “measurement”; when
the direction of the magnetic field is changed, the spin can even take on the reversed
value. According to Daumer et al. (1996), the understanding of measurements which
is based for example on such no-go theorems reveals a “naive realism” in relation to
the role of operators. These authors understand this as the usual identification between
operators and observables, bound up with the widespread manner of speaking that
“operators can be measured”. This expression is however highly misleading, since
the influence of the experimental context on a measurement as described above is
not taken into account.

5.1.6 The Schools of the de Broglie–Bohm Theory

TheCompendium of Quantum Physics (Greenberger et al. 2009) contains two entries
on the subject of this chapter. One of them is entitled the “Bohm Interpretation of
Quantum Mechanics”, while the other is called simply “Bohmian Mechanics”. One
is left with the suspicion that “Bohmian mechanics” is not identical to “Bohm’s
interpretation of quantum theory”. This impression is correct and deserves a closer
look—even if only to facilitate the orientation of the reader in studying the relevant
literature.

The article on “Bohmian Mechanics” was written by Detlef Dürr, Sheldon
Goldstein, Roderich Tumulka and Nino Zanghì. This group supports a version of
the theory which was formulated by John Bell, beginning in the 1960s. Our own
treatment is closely related to this version. At its centre stand the guidance equation
and the re-interpretation of the concept of observables (keyword: “contextuality”).

20While categorial properties are associated with an object without any reference to its environment
(e.g. “being round”), dispositions describe those properties which manifest themselves only in
certain special contexts (e.g. “being fragile”).
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The author of the article “Bohm Interpretation of Quantum Mechanics” is Basil
Hiley. He was a colleague and close coworker of David Bohm at Birkbeck Col-
lege; and together with Chris Dewdney, Chris Philippidis and others, this “English
group” strongly supports Bohm’s formulation of the theory from 1952. Bohm and his
coworkers referred (or refer) to this theory notably as an “ontological” or a “causal”
interpretation of the quantum theory. In this variant of the theory, the concept of
the “quantum potential” plays a central role. Let us consider the derivation of the
guidance equation in this respect, as it was given by David Bohm in 1952. He chose a
path for the derivation which invokes an analogy to the Hamilton–Jacobi equation of
classical mechanics. In the classical case, the Hamilton–Jacobi theory contains the
relation p = ∇S (with the momentum p = mv and the action S). Bohm could show
in his work that a similar relation holds in quantum theory, if the action is replaced
by the phase S of the wavefunction. This then led him to the well-known guidance
equation, v = d Q

dt = ∇S
m . Indeed, this theory can then be represented in such a way

that it appears to be a modification of Newtonian mechanics:

m
d2Q(t)

dt2
= −∇(V + Uquant) (5.8)

with the classical potential V and the additional quantum potential

Uquant = −�
2∇2|ψ|
2m|ψ| . (5.9)

Note, however, that in contrast to Newtonian physics, the velocity is already fixed
via the guidance equation. The representation in terms of a second-order differential
equation is thus misleading, since it suggests that position and momentum may be
chosen independently.

In fact, the quantum potential has completely non-classical properties, which
allow the adherents of this “causal viewpoint” to justify the uniqueness of quantum
phenomena. They find for example that wavefunctions which differ only through a
complex factor lead to the same quantum potential, since in Uquant, the wavefunction
enters both into the denominator and the numerator. Here, Bohm and Hiley (1993,
p. 31) introduce the concept of “active information”, and theyfind in it the justification
for a new kind of “holism” (see also Hiley 1999).

Although these two readings of the de Broglie–Bohm theory are mathematically
equivalent, and the real contradiction between the usual quantum theory and these
variants of the DBB theory holds for both of them, the rivalry of these schools is
considerable. Hiley writes:

It should be noted that the views expressed in our book (Bohm and Hiley 1993) differ very
substantially from those of Dürr et al. (1992), who have developed an alternative theory. It
was very unfortunately that they chose the term ‘Bohmianmechanics’ to describe their work.
When Bohm first saw the term he remarked, ‘Why do they call it ‘Bohmian mechanics’?
Have they not understood a thing that I havewritten’?Hewas referring [...] to a footnote in his
book Quantum Theory, in which he writes, ‘This means that the term ‘quantum mechanics’
is a misnomer. It should, perhaps, be better called quantum nonmechanics.’ It would have
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been far better if Dürr et al. had chosen the term ‘Bell mechanics’. That would have reflected
the actual situation far more accurately. (Hiley 1999, p. 119)

The acrimony in this dispute is essentially due to the fact that the “ontological inter-
pretation” associates far-reaching natural-philosophical speculations to its concept
of the quantum potential, while supporters of “Bohmian mechanics” see the strength
of the theory in its being able to eliminate philosophical speculations from the formu-
lation of the theory. Characteristically, the title of an article by Dürr and Lazarovici
(2012) is “Quantum physics without quantum philosophy”.

5.1.7 Criticism of the de Broglie–Bohm Theory

John Bell, who, beginning in the 1960s contributed to the popularization of the de
Broglie–Bohm theory with a number of articles, writes concerning the topic of this
section:

It is easy to find good reasons for disliking the de Broglie–Bohm picture. Neither de Broglie
nor Bohm liked it very much; for both of them, it was only a point of departure. Einstein
also did not like it very much. He found it ‘too cheap’, although, as Born remarked, ‘it was
quite in line with his own ideas’. But like it or lump it, it is perfectly conclusive as a counter
example to the idea that vagueness, subjectivity, or indeterminism are forced on us by the
experimental facts covered by nonrelativistic quantum mechanics (Bell 2001, p. 152).

According to Bell, all the counter arguments cannot reduce the importance of the
theory in principle. Nevertheless, in the following we will take a closer look at some
of those arguments. Heisenberg expresses the opinion that the identical descriptive
content of the theory (relative to standard quantum mechanics) disqualifies it as an
independent theory. He writes (Heisenberg 1959, p. 106):

From a strictly positivistic point of view, one could even say that we are dealing here not
with an alternative suggestion to the Copenhagen interpretation, but instead with an exact
repetition of it, only with different terminology.

In the face of the conceptional differences between the de Broglie–Bohm theory and
the usual quantum theory, this statement would seem to be overly strong. Further-
more, Heisenberg naturally presumes here that the Copenhagen interpretation offers
a convincing solution to the measurement problem. Closely related are references to
“Ockham’s razor”. According to the prevailing opinion, when two theories are equiv-
alent, the onewhich requires the lesser number of premises should be preferred. Does
Ockham’s razor thus “cut off” the guidance equation as superfluous ballast from a
theory which offers no additional predictions? This demand fails to notice that the
additional equation in the de Broglie–Bohm theory renders unnecessary all of the
postulates concerning the outcome of a measurement and the interpretation of the
wavefunction.

While the previous arguments take the considerable similarity of the DBB theory
to the quantum theory as an object of criticism, others see the reason to repudiate the
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DBB theory in their radical dissimilarity. They find fault with the explicit distinction
of the position, and the lack of symmetry between, e.g., the position and the momen-
tum spaces (see the objection of Pauli in Myrvold 2003). In the DBB theory, with
its first-order equation of motion, momentum and energy at the level of individual
particles are however no longer conserved quantities. The justification of the demand
for symmetry between position and momentum can thus be reasonably questioned.

Still other critics are bothered by the (double) role of the wavefunction: It fixes
the particle dynamics and is at the same time (i.e. its absolute square) a measure for
the equilibrium distribution. In addition, it acts upon the particle’s motion without
any back-reaction effects. Another point of criticism refers to the fact that according
to the de Broglie–Bohm theory, the world is populated by innumerable “empty”
wavefunctions. This is indeed somewhat inelegant.

The role or the status of the wavefunction is also the object of a discussion among
those scientists who work with the DBB theory. Originally, the wavefunction was
taken to represent a real, physical field. Dürr et al. (1996) suggest, in contrast, that
it should play a “nomological” role (i.e. with a law-like character). The wavefunc-
tion would then more closely correspond to, e.g., the Hamilton function in classical
mechanics than to the usual type of physical field. This could reduce the weight
of the criticisms of the lack of reaction effects and of the “empty” wavefunctions.
While the interested reader can find a more detailed discussion of the criticisms of
the DBB theory in Passon (Passon 2010, pp. 117ff), we will now turn to the principal
objection against it: The question of the possibility of a relativistic generalization of
the theory.

The particle dynamics of the de Broglie–Bohm theory connects positions at arbi-
trary distances. This non-locality would appear to violate Einstein’s postulate of the
speed of light as an upper limiting velocity. However, the DBB theory discussed so
far is an extension of non-relativistic quantummechanics. The allusion to the fact that
it is not compatible with the requirements of the special theory of relativity is thus
not really a criticism, but rather simply a statement of fact. This rejoinder is however
too superficial, since it is indeed just the non-local dynamics which allows the de
Broglie–Bohm theory to explain the violation of the Bell inequalities (cf. Chap. 4,
and there in particular Sect. 4.4).

As a rule, the criticism of the non-locality of the DBB theory is primarily associ-
ated with doubts as to whether or not the theory can be relativistically generalized.
At the same time, there is an orthodox relativistic quantum theory (the Dirac theory)
and a relativistic quantum field theory (see Chap. 6), so that the final (and nega-
tive) judgment about the DBB theory seems to be passed. However, this argument
would be significantly more convincing if those (orthodox) relativistic theories had
no measurement problem. But there, also, e.g. the question of definite measurement
outcomes is controversially debated.

Thus, the development of a “Bohm-like” relativistic quantum theory (and quantum
field theory) without the foundational problems of the conventional formulation is
part of the current research program of scientists who work in this field. Some of the
approaches discussed there apply notably not particle ontologies, but instead field
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ontologies. Furthermore, some of the relativistic generalizations dispense even with
a deterministic description.21

It turns out that not only the dynamics of a generalized guidance equation pose a
problem for a relativistic generalization, but also the (generalized) quantum equilib-
rium distribution. This requirement distinguishes a frame of reference, namely that
in which the distribution is determined. The equivalence of all inertial systems is,
however, at the very core of special relativity, according to the usual understanding.
There are some approaches in which the “distinguished” frame of reference has no
experimentally accessible influence and which can reproduce all the predictions of
relativistic quantum theory. A new evaluation of the relationship between quantum
theory and relativity is however certainly bound up in such approaches. The support-
ers of theDBB theory recall in this connection quite rightly that (asmentioned above)
it is precisely this non-locality, as expressed in the violation of the Bell inequalities,
which is also a part of conventional quantum mechanics and quantum field theory.
Therefore, from the viewpoint of many adherents of the DBB theory, the conven-
tional interpretations of quantum mechanics and quantum field theory likewise have
this same problem, but they mask it by their vague formulations (cf. also Bricmont
2016, pp. 169–173) for more on this topic).

We shall now leave the de Broglie–Bohm theory for a while and turn to Everett’s
work, another controversially discussed interpretationof quantum theory. InSect. 5.3,
we will then come back to the DBB theory within the framework of a comparison
between various interpretation approaches.

5.2 Everett’s Interpretation

In 1957, the American physicist Hugh Everett III (1930–1982) published his “rel-
ative state” formulation of quantum mechanics (see Everett 1957). It contains the
results of his doctoral thesis, mentored by John A. Wheeler at Princeton University.
Its goal was a re-formulation of the theory, in which the discontinuous change of
state (“collapse”) would be superfluous, and instead, a unitary time evolution of the
wavefunction would hold throughout. In contrast to the de Broglie–Bohm theory,
however, the completeness of the quantum-mechanical description is asserted, and
thus the third statement ofMaudlin’s trilemma (Sect. 2.3.1) is denied: Measurements
appear to have only one definite outcome in Everett’s approach, although in fact the
wavefunction (with its superposition states) contains a complete description.

Everett’s guiding concept was to derive the interpretation from the mathematical
formalism.22 He was motivated explicitly by the measurement problem, or by the
distinction of an external observer in the usual formulation:

21The existing approaches and attempts to find a Lorentz-invariant generalization of the DBB theory
are discussed in Passon (2006) and in Tumulka (2007).
22Everett himself writes of his methodology: “The wavefunction is taken as the basic physical
entity with no a priori interpretation. Interpretation comes only after an investigation of the logical
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No way is evident to apply the conventional formulation of quantum mechanics to a system
that is not subject to external observation. The whole interpretive scheme of that formalism
rests upon the notion of external observation (Everett 1957, p. 455).

But at the latest when considering cosmological problems, the standpoint of an
external observer can no longer be reasonably assumed, and the applicability of the
quantum theory would appear to be frustrated by that fact.

Along with the justification for how—in view of the superposition states—the
appearance of definitemeasurement outcomes is produced, Everettmust furthermore
explain how and why the statistics of those measurement results follows Born’s rule
(i.e. |ci |2 corresponds to the probability of occurrence of the given outcome). Now,
Everett’s work has itself become the object of an interpretation debate. Jeffrey Barrett
writes on this subject:

The fact that most no-collapse theories have at one time or another been attributed to Everett
shows how much the no-collapse tradition owes to him, but it also shows how hard it is to
say what he actually had in mind (Barrett 1999, pp. 90f).

In the following, we will trace roughly how the open technical and conceptional
questions relating to the 1957 article have led to the development of variants and
modifications. We begin however with a description of Everett’s basic idea.

5.2.1 The Basic Idea

Everett’s re-interpretation of the measurement problem is just as surprising as it is
brilliant. This problem results, as is well known, from the application of the quantum
theory to the measurement process. In general, a superposition state results from this
process, consisting of, e.g., different “pointer states”, while our experience tells us
that measurements lead to unique results. Superposition states appear under these
circumstances not to give an appropriate description of the physical situation. The
drastic consequences which result (“either the Schrödinger equation is false or it is
not complete” (Bell 2001, p. 173)) are avoided byEverett with the aid of the following
consideration: Under the premise that the quantum theory is applicable also to the
observation process, the observer must therefore also enter into a “superposition
state”—and this superposition undermines the reliability of the judgement that caused
us to doubt the appropriateness of superposition states as a description in the first
place! Instead, Everett suggests that we identify every term of the superposition with
an (equally weighted) state of the observer.23 The evolution of measurements (or
observations) can then be described as follows:

structure of the theory. Here as always the theory itself sets the framework for its interpretation”
(Everett 1957, p. 455).
23He models the “observer” by a physical system, in the concrete case a machine which has access
to sensors and storage media.
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We thus arrive at the following picture: Throughout all of a sequence of observation processes
there is only one physical system representing the observer, yet there is no single unique
state of the observer (...). Nevertheless, there is a representation in terms of a superposition,
each element of which contains a definite observer state and a corresponding system state.
Thus with each succeeding observation (or interaction), the observer state ‘branches’ into a
number of different states. (...) All branches exist simultaneously in the superposition after
any given sequence of observations (Everett 1957, p. 459).

In which sense Everett can still consider just one observer (“one physical system
representing the observer”), who is simultaneously in the multiplicity of states as
described, is initially unclear. The various different answers to this question lead
essentially to the different variants of theEverett interpretationwhichwerementioned
in the above quote from Barrett.

5.2.2 The Many-Worlds Interpretation

Bryce DeWitt and Neil Graham (1973) popularized the Everett theory through their
anthology “The Many-Worlds Interpretation of Quantum Mechanics” and coined
the catchy name with their choice for its title. They interpret the branching of the
wavefunction mentioned in the Everett quote above in a completely realistic manner,
as a real splitting into different “worlds”, and write24:

The universe is constantly splitting into a stupendous number of branches, all resulting
from the measurement-like interactions between its myriads of components. Moreover, any
quantum transition taking place on every star, in every galaxy, in every remote corner of the
universe is splitting our local world on earth into myriads of copies of itself (DeWitt and
Graham 1973, p. 161).

“World” means here the totality of all the (macroscopic) objects, and the human
observer likewise is subject to this splitting into a manifold of “copies”.

DavidWallace (Wallace 2010, p. 4) illustrates this astounding idea bymeans of an
analogy with classical electrodynamics. Imagine an electromagnetic configuration
F1(r, t) which describes a pulse of light that is propagating from the Earth to the
Moon. A second configuration F2(r, t) could describe a light pulse underway from
Venus to Mars. How, asks Wallace, should one now interpret the configuration

24It is very questionable as to what extent this suggestion corresponds to Everett’s own under-
standing of the theory. Since Everett worked in the strategic planning department of the Pentagon
after finishing his doctorate, and published no more work on quantum theory, this question can
be answered only by consulting his sporadic correspondence and papers from his estate. These
sources give the impression that Everett did not have a splitting up into different “worlds” in mind,
whose definition would seem to make a connection with classical concepts. In some respects, the
current version of the many-worlds interpretation, which we will discuss more detail in the fol-
lowing sections, appears to be more similar to Everett’s original conception. However, he did not
categorically reject the language of DeWitt—especially since he was very grateful to the latter for
the popularization of his ideas. See Barrett (2011), and the essay by Peter Byrne in Saunders et al.
(2010), for more on this subject.
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F(r, t) = 1

2
· F1(r, t) + 1

2
· F2(r, t) ? (5.10)

Does it describe a light pulse which is moving simultaneously between the Earth and
theMoon as well as betweenVenus andMars, since it occurs as a superposition? This
is of course nonsense; instead, Eq. (5.10) does not describe a “strange” light pulse
in a superposition state, but rather two “ordinary” light pulses at different locations.
Wallace continues:

And this, in a nutshell, is what the Everett interpretation claims about macroscopic quantum
superpositions: they are just states of the world in which more than one macroscopically def-
inite thing is happening at once. Macroscopic superpositions do not describe indefiniteness,
they describe multiplicity (Wallace 2010, p. 5).

Here, however, we are not dealing with a spatial separation (as in the example from
electrodynamics), but instead—asWallace expresses it—with a dynamic separation.
This means that the parallel worlds have no mutual interactions, i.e. described picto-
rially, they are “transparent” to one another. The innumerable “worlds” are located
unperturbed in the same, single spacetime region.25

The interpretation of Everett’s construction given by DeWitt and Graham has
entered into the popular-scientific literature and has since ignited the fantasy of
(not only) laypersons interested in physics and science fiction authors. In an obvi-
ous sense, the measurement problem is resolved by this construction, since in each
“world”, an eigenstate of the measurement apparatus in fact exists. Whether this
condition suffices for a complete resolution of the measurement problem is how-
ever questioned by Maudlin (2010). In Sect. 5.2.6, we will discuss this criticism
of Everett’s interpretation. The situation regarding the question of non-locality is
similar: While Bacciagaluppi (2002) supports the view that the violation of Bell’s
inequality (see Chap. 4) can be explained here without action at-a-distance, Allori
et al. (2011) argue that the many-worlds interpretation produces this appearance of
locality only because of its imprecise formulation. In Allori et al. (2011), a modifica-
tion of the many-worlds interpretation is suggested, which likewise contains action
at-a-distance (cf. Sect. 5.2.6).

In the version that we have thus far sketched, the theory however does not appear
to be complete. Leslie Ballentine has pointed out that the meaning of probability
statements within the Everett interpretation is unclear. Finally, all possible events
do actually occur (see Ballentine 1971, pp. 233–235). Furthermore, the branching
is subject to an ambiguity with respect to the choice of basis. This problem of the
“preferred” basis will be discussed first, in the following section.

25This spacetime is subject to splitting only when the many-worlds idea is applied to theories of
quantum gravitation.
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5.2.3 The Problem of the Preferred Basis

Let us consider a typical example of the superposition of various spin states (e.g. those
of a silver atom): |�〉 = 1√

2
(| ↑x 〉 + | ↓x 〉). If one wishes to determine the orien-

tation of the spin along the x direction, one would investigate this state using a
correspondingly oriented Stern–Gerlach magnet. At the end of the measurement, the
state

|�〉 = 1√
2

(| ↑x 〉|M↑x 〉 + | ↓x 〉|M↓x 〉
)

(5.11)

is present. This state thus describes—according to the many-worlds interpretation—
two “worlds”, in which the x component of the spin is either ↑x or ↓x . The decom-
position into basis vectors is however in general not unique and could be just as well
carried out with eigenvectors with respect to some other measurable quantity. For
example, the following linear combination could be considered26:

| ↑z〉 = 1√
2
(| ↑x 〉 + | ↓x 〉) | ↓z〉 = 1√

2
(| ↑x 〉 − | ↓x 〉)

|M↑z 〉 = 1√
2
(|M↑x 〉 + |M↓x 〉) |M↓z 〉 = 1√

2
(|M↑x 〉 − |M↓x 〉) .

With respect to this basis, the state (5.11) now has the following representation:

|�〉 = 1√
2

(| ↑z〉|M↑z 〉 + | ↓z〉|M↓z 〉
)

. (5.12)

If the two “worlds” branch in terms of these basis vectors, the spin along the x
direction would not have a well-defined value, and instead, its z component27 would
be well defined. The choice of a basis within the quantum theory is to be sure purely
conventional and should have no physical relevance. A factual difference between the
representations in (5.11) and (5.12) must therefore be separately justified. In other
words, the choice of a “preferred basis” is necessary. One might object at this point
that the choice of a specific measurement setup leads to precisely such a distinction
of the pointer basis (5.11). In the other basis (5.12), in contrast, in every term there
is a superposition of the various states of the x measurement apparatus. The non-
occurrence (or rather the non-observability) of superpositions of macroscopically
different states was however just what we were trying to explain with the Everett
interpretation—it should thus not be a precondition of the investigation. Furthermore,
such a distinction of a particular basis for the measurement process contradicts the

26The ambiguity of the representation is the subject of the “biorthogonal decomposition theorem”
(cf. Bub 1997, p. 151). The decomposition is unique if and only if all the components have different
and nonzero coefficients.
27Note that there are no common eigenvectors of σx and σz .
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spirit of an interpretation which merely wishes to let the formalism remain valid and
in which the observation plays no fundamental role.28

In today’s view, the suggestions for solving this problem fall into two classes:
The older ones, which do not refer to decoherence, and those which make use of
the mechanism of decoherence. A brief treatment of those Everett variants which
are currently considered to be obsolete since the advent of the approaches based on
decoherence is desirable with a view to the discussion of the concept of probability
(Sect. 5.2.5). We will therefore first cast a brief glance at these older approaches
before considering the role of decoherence theory in Sect. 5.2.4.

David Deutsch’s Variant of Everett’s Interpretation

David Deutsch, in his early works, suggested a mechanism for distinguishing a basis
(cf. Deutsch 1985).29 He extends the quantum-theoretical formalism in terms of an
algorithm which produces the corresponding basis. This depends (without going
into the details here) only on the corresponding physical state and its dynamics.
The choice is limited by the requirement that in the case of “measurements”, the
relevant basis in fact corresponds to the “pointer basis”. This guarantees that after a
measurement, a unique result is in fact obtained (Deutsch 1985, pp. 22f).

Wallace (2010, p. 7) calls this variant of the Everett interpretation the “many-
exact-worlds” interpretation. In Sect. 5.2.4, we will see that in the meantime, there
are more promising candidates for the solution of the problem of the preferred basis,
and David Deutsch himself has also rejected this interpretation since the end of the
1990s. First, however, we will consider yet another variant.

The Many-Minds Interpretation

The many-worlds interpretation includes the act of observation within the physical
description. This apparently presumes thatmental states are also a part of the physical
world and are subject to the laws of quantum theory.30

In this sense, a many-worlds interpretation appears to always imply a theory of
branching consciousness states (the exception will be discussed below). This evident
significance is however notmeant when one speaks of themany-minds interpretation.

28The problem treated here thus occurs in other interpretations of quantum mechanics as well, and
it shows that the measurement problem actually consists of two sub-problems: (i) The problem of
the preferred basis and (ii) the problem of the definite outcome of a measurement. Within, e.g.,
the Copenhagen interpretation, however, (i) can be resolved by specifying the measurement setup
(choice of direction).
29Deutsch mentions here (on p. 2) that he has taken up an idea of Everett’s, based on private
conversations with him.
30This position is called “physicalism”. Physicalism (expressed in simplified form) asserts the
metaphysical hypothesis that everything which exists is physical. It can be understood as a further
development ofmaterialism. In particular, it rejects any kind of dualismbetween physical andmental
(“mind”) states. The relation between physical and mental states is not necessarily an identity,
however. In the philosophy of the mind, the viewpoint is widespread that these two property areas
are connected through a “supervenience relation”. The supervenience of A over B is understood to
mean that (in “slogan” form) “no change in A is possible without a change in B”. This also permits
speculations on a possibly non-reductionistic physicalism.
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A prominent suggestion of this variant is due to Albert and Loewer (1988). They
were motivated by the problem of the preferred basis, as well as the difficulty of
understanding the significance of probability statements within the many-worlds
interpretation (this problem will be treated in more detail in Sect. 5.2.5).

The point of departure of the many-minds interpretation is the statement that
mental states can never be in superpositions, according to our introspective experi-
ence. Loewer and Albert reason from this that mental states (i.e. beliefs, intentions,
memories, etc.) are not physical.31

They then postulate that every observer is outfitted with an infinite number of
“minds”. While in the case of a measurement or an interaction, the physical brain
states take on a superposition state, a probabilistic time evolution leads to a state in
which a certain portion of these minds corresponds in each case to the perception of
one single outcome for the experiment. This process takes place within one world.

Now, how does this interpretation deal with the problem of the “preferred basis”?
In an evident sense, the choice of basis vectors for the evolution of a state has no
physical significance, since in themany-minds interpretation, there is only oneworld.
An ambiguity with respect to the splitting into “many worlds” thus cannot arise here.
However, Barrett (1999, p. 195) has pointed out that the “basis” of the consciousness
states plays a comparable role.32

Both in the many-minds interpretation and also in the interpretation of Deutsch
(1985), a preferred basis must thus be postulated. This common strategy is accom-
panied by a common difficulty: All attempts to introduce a preferred basis ad hoc
must postulate properties which should in fact be explained in a fundamental theory
(cf. Wallace 2010, p. 8). In the next section, we will treat the theory of decoherence.
With it, one associates the hope that a convincing solution of the problem of the
preferred basis can be found, since it does without such ad hoc assumptions.

5.2.4 The Role of Decoherence Theory

As a rule, physics investigates “isolated systems”, i.e. it considers the influence
of the “environment” to be a negligible perturbation and, above all, an unneces-
sary complication. We now find that within the quantum theory, precisely the inclu-
sion of the interactions with the environment can lead to conceptional progress in
describing measurements, as well as the classical limits of the theory. The research
which has been accomplished since the early 1970s in this field has not been asso-
ciated with any particular interpretation of quantum theory and makes use simply
of the mathematical properties of the standard formalism. Pioneers in this field of

31One may consider the astute self-observation on which this conclusion is based not to be a
particularly powerful tool for philosophical reflection. But for questions involving our conscious
minds, it is however our only tool!
32Just how Barrett means this for a non-physicalistic conception of the mind remains unclear.
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“decoherence”33 were Zeh (1970) and Zurek (1981). Already in Sect. 2.3, we have
discussed the decoherence programme. We make use here of the concepts intro-
duced there, amplify them, and codify the results within the context of the Everett
interpretation.

In Sect. 5.2.3, we have already explained how the decomposition of a state into
its basis vectors can be ambiguous. The decompositions (5.11) and (5.12) are math-
ematically equivalent—their physical differences must therefore be justified.

The first step towards the resolution of this problem can now be accomplished
through a purely mathematical consideration: If we look at the entanglement with
a third system E (the environment, in our example likewise represented by a two-
dimensional Hilbert space with states |ei 〉), we will be led to a state of the form

|�〉 = 1√
2
| ↑x 〉|M↑x 〉|e↑x 〉 + 1√

2
| ↓x 〉|M↓x 〉|e↓x 〉 . (5.13)

Andrew Elby and Jeffrey Bub (1994) were able to show that this decomposition
into orthogonal states on a triple product space is unique.34 It thus eliminates the
ambiguity in the choice of a basis, in a formal sense (and also that of the associated
physical measurand). Naturally, this purely mathematical argument as yet yields
no indication of which basis is to be distinguished—especially since the extremely
detailed states of the environment are unobservable. In this situation, physical criteria
for the identification of this unique (“preferred”) basis must still be developed, as
Schlosshauer mentions:

The decoherence programme has attempted to define such a criterion based on the interac-
tion with the environment and the idea of robustness and preservation of correlations. The
environment thus plays a double role in suggesting a solution to the preferred-basis problem:
it selects a preferred pointer basis, and it guarantees its uniqueness via the tridecompositional
uniqueness theorem (Schlosshauer 2005, p. 1279).

These criteria were thus not postulated, but rather they follow from the quantum-
theoretical investigation of the dynamic influence of the environment. For this pur-
pose, one treats complicated models of the environment. The interactions between
it and the measurement apparatus take place as a rule via force laws which contain
powers of the spatial distance (e.g. the Coulomb force ∝ r−2). It follows that the
unique decomposition as a rule distinguishes the basis of positional space, and in
the case of a measurement, the “pointer basis” is the relevant basis. Schlosshauer
summarizes this approach, called environment-induced superselection, as follows:

33The adjective “coherent” in the general vocabulary means “connected”. The physical-
terminological expression “coherent” is usually applied to optics, and it describes, roughly speaking,
the precondition that must be fulfilled by different wavetrains in order that they may be able to inter-
fere with each other. Expressed non-technically, the decoherence program thus attempts to clarify
the conditions and preconditions under which quantum states lose this “non-classical” property.
34This tridecompositional uniqueness theorem is valid under rather general conditions. The exis-
tence of the decomposition is by the way not guaranteed. The proof of this theorem can also be
found in (Bub 1997, Sect. 5.5).
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The clear merit of the approach of environment-induced superselection lies in the fact that
the preferred basis is not chosen in an ad hoc manner simply to make our measurement
records determinate or to match our experience of which physical quantities are usually per-
ceived as determinate (for example, position). Instead the selection is motivated on physical,
observer-free grounds, that is, through the system-environment interaction Hamiltonian. The
vast space of possible quantum-mechanical superpositions is reduced so much because the
laws governing physical interactions depend only on a few physical quantities (position,
momentum, charge, and the like), and the fact that precisely these are the properties that
appear determinate to us is explained by the dependence of the preferred basis on the form
of the interaction. The appearance of classicality is therefore grounded in the structure of the
physical laws – certainly a highly satisfying and reasonable approach (Schlosshauer 2005,
pp. 14f).

This quote once again emphasizes that the results of decoherence are not tied to any
particular interpretation of the quantum theory, i.e. that they can be applied within
every interpretation.35

Since the interaction with the environment is described quantum-mechanically
(i.e. via a unitary time evolution), the combination of the [object + measurement
apparatus + environment] remains in a so-called pure state. This overall state will
in general contain both a superposition of various “pointer positions” and also inter-
ference terms. The exact state of the environment is not only not susceptible to
influences, but as a rule also not to observation. If one computes the predictions
for the real observables in the subsystem [object + measurement apparatus], one
obtains a result in which there are practically no more interference terms.36 This part
of the programme is termed the environment-induced decoherence and consists—in
summary—in the fact that from a coherent superposition (a “pure state”), an inco-
herent (or “decoherent”—thus the name) superposition with respect to a uniquely
defined basis emerges. Due to an apparent reason, this process alone does not consti-
tute a solution to themeasurement problem, for it still cannot explainwhich branch of
this now decoherent superposition corresponds to the outcome of the measurement.
In Footnote 28, the measurement problem was divided up into two sub-problems: (i)
“Preferred basis” and (ii) “definite outcome”. The decoherence theory thus merely
solves the first sub-problem.

For the Everett interpretation, this question is naturally not relevant: In its context,
the basis which is preferred in this manner defines the splitting into independent
“worlds”. These are however not “exact” (as, e.g., in the suggestion ofDeutsch 1985),
but are rather merely approximations. In the end, the preferred basis is approximately
distinguished by a dynamic process.

According to David Wallace (2010, p. 11), since the mid-1990s there has been a
broad consensus among physicists that the problem of the preferred basis has been
solved by environment-induced decoherence. Only in some areas of the philosophy
of science is there still criticism of the fact that the approximate dynamic process of

35For the adherents of the de Broglie–Bohm theory, the results of decoherence, for example, permit
a more exact justification of the so-called effective collapse of the wavefunction (cf. Sect. 5.1.5).
36Expressed technically, one takes the trace of the density matrix over the degrees of freedom of
the environment. This makes it (in the preferred basis) approximately diagonal. The off-diagonal
elements are however just what give rise to the interference effects.
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decoherence is used to define objects which one then “takes seriously in the ontolog-
ical sense”. In Wallace’s opinion, the quasi-classical branches of the wavefunction
are “emergent structures”, whose ontological status corresponds, for example, to
that of the temperature in statistical mechanics (see the essay byWallace in Saunders
et al. 2010, p. 53).

The Everett interpretation has experienced a considerable revival through these
results, since the decoherence-based modification is ontologically certainly less
extravagant than the versions of DeWitt and Graham (1973), Deutsch (1985) or
Albert andLoewer (1988).37 The definition of the“worlds” is based here on a dynamic
process which can be analysed using the methods of the standard formalism. Fur-
thermore, this approach can be relativistically generalized in a manifest way. The
significant open questionwhich remains is that of the status of probability statements,
to which we will now turn our attention.

5.2.5 Probability in Everett’s Interpretation

Within the Copenhagen interpretation, if we consider a state |�〉 = ∑
i ci |ψi 〉, the

square of the amplitude |ci |2 denotes the probability of obtaining the state |ψi 〉 as
the result of a measurement of the corresponding observable on the system |�〉. In
the de Broglie–Bohm theory, the same is true – but there, on the grounds that the
configuration of the particle selects out this part of the wavefunction. In the GRW
theory, finally, this is the probability that the dynamic collapse of the wavefunction
of the measurement apparatus will lead to this state. In all of these cases, there are
two preconditions for the practicable application of the probability concept: Various
possible outcomes and the lack of knowledge of the actual result. Within the many-
worlds interpretation, however, all of the results will occur with certainty. It thus
initially appears unclear just what the probability statements could refer to in this
connection (the “incoherence problem”)—not to mention why these probabilities
should correspond to |ci |2 (the “quantitative problem”). Precisely these two aspects
(which are however closely related) are singled out in the discussion of the probability
problem.

The status of probability statements within the Everett interpretation has led to
a technically and conceptionally highly complex debate. Some of the important
contributions to this discussion will be treated in the following. Here, again, it is
seen that the advent of the decoherence theory marked a division point within the
overall debate.

The Incoherence Problem

Naturally, the square of the amplitude |ci |2 still retains the mathematical properties
within the Everett interpretation that qualified it to be a measure of probability (over

37Now and then at scientific conferences, surveys are conducted (not always with complete seri-
ousness) about which interpretation of quantum theory is favoured by the conference attendees.
Tegmark (1998) reports the result of such a survey at a workshop on quantum theory; it found that
the Everett interpretation was the preferred alternative to the Copenhagen interpretation.
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the set of all branchings). However, the ci are just “branching amplitudes”, and every
branch claims the same reality in this interpretation. Both Everett, as well as later
DeWitt and Graham, appear to have appreciated this difference insufficiently, since
they claimed that they could even derive Born’s rule:

The conventional probability interpretation of quantum mechanics thus emerges from the
formalism itself (DeWitt and Graham 1973, p. 163).

This claim is supported by DeWitt and Graham on the basis of the following math-
ematical result38: If one considers a series of N measurements of a superposition
state with coefficients ci , then in the limit N → ∞, the state of the overall sys-
tem (= N measurement apparatus + N systems) converges towards an eigenstate
of the so-called relative frequency operator for the measured value i . This operator
measures—as its name implies—just the relative frequency with which the experi-
ment yields the outcome i . The associated eigenvalue is then indeed given by |ci |2.
However, to see a proof of Born’s rule in this fact is a failure to recognize that in
real experiments, the value of N must always remain finite, and therefore, branches
occur with statistical deviations. Now, one can justifiably expect that their squared
amplitudes remain “small”. The assertion that these events thus also occur with small
probabilities is however correct only if the squares of the branching amplitudes are
indeed identifiable with probabilities. This however renders the argument circular,
for just this identification is what was supposed to be justified (cf. Barrett 1999,
p. 163; Deutsch 1985, p. 20; or Ballentine 1971, p. 234).

A genuine solution to the incoherence problem was suggested by David Deutsch
in the same article in which he also treated the question of the preferred basis. It
is based on the intuition that the most probable outcome should also be the most
frequent. While with DeWitt, individual worlds branch off, Deutsch postulates an
(uncountable) infinity of identical copies of the same world (see Axiom 8 in Deutsch
1985, p. 20). In the case of a measurement (with i possible measured values), a
relative fraction pi branches off into worlds with the corresponding experimental
outcome. This fraction then corresponds to the probability of occurrence of the event
i (in “my” world). Deutsch thus solves the incoherence problem by means of an
extension of the “ontology” of the theory.

The many-minds interpretation of Albert and Loewer (1988) proceeds identically
in a structural sense. As we have seen, there also, each observer state is associated
with infinitely many minds. In the case of a measurement (with i possible measured
values), these are supposed to assume the “consciousness content” that “the event
has occurred”, likewise with the fractional weight pi .

If we now set this fraction pi of the minds or the worlds (Deutsch), respectively,
equal to the squared amplitude |ci |2, we also obtain an (ad hoc) solution to the
quantitative problem.39

38This theorem was discovered by Neil Graham in 1970, during his doctoral work which was
mentored by DeWitt. Already in 1968, James Hartle had proved an equivalent result (Hartle 1968).
39The many-minds interpretation buys the solution to the probability problem at the price of a
substance dualism, which is accepted in modern philosophy of the mind by only a small minority
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These two suggestions are of course based on special solutions of the problem of
the preferred basis (cf. Sect. 5.2.3), which at latest since the advent of decoherence-
based approaches is regarded as obsolete. We thus find here the curious situation
that precisely the most convincing solution (in the eyes of many physicists) to the
problem of the preferred basis leads to the result that the concept of probability once
again appears to be a “foreign body” within the Everett interpretation.

Now, there exist various approaches which—as escape routes out of this
dilemma—attempt to justify a concept of “uncertainty” or “indeterminacy” within
the Everett interpretation. This concept appears to many authors to be a necessary
condition for making it possible that probability statements can reasonably be made
at all.

Vaidman (1998) undertook such an attempt. He considers a measurement whose
possible outcomes are denoted as A and B. It is true, maintains Vaidman, that in
the world A, the probability for the occurrence of the outcome could be trivially
A = 1; however, it could also be that an experimenter in the world A might have no
knowledge of this circumstance—for example as long as that observer in world A
had not yet read off the result from the measurement apparatus. See also Vaidman
et al. (2008)

Whether this type of “lack of knowledge” suffices to give the concepts of “prob-
ability” and “chance” a reasonable meaning however remains unclear. David Albert
(see Albert 2010, pp. 367f) objects that this uncertainty is on the one-hand avoidable,
and on the other, it occurs only after the experiment has been carried out.

Simon Saunders has developed a stronger version of this “subjective indetermi-
nacy”, which according to its claims can also be applied to situations before a mea-
surement has been carried out. He argues that the branching into different worlds
occurs in a way that is subjectively indeterministic. On the basis of a specific defi-
nition of “personal identity”, Saunders sees in every “copy” of the observer a future
self of the original observer. In this sense, the person should experience uncertainty
before a measurement as to which person he or she will become after the measure-
ment (cf. Saunders 1998). Another justification of subjective indeterminacy in the
Everett interpretation is due to DavidWallace, who makes the semantics of probabil-
ity statements his starting point (cf. Wallace 2005). These results however remain the
objects of a controversial debate (see, e.g., Greaves 2004 for a criticism of these posi-
tions). At the end of the next subsection, we will meet up with one more suggestion
for treating the incoherence problem.

The Quantitative Problem

Let us postpone for the moment the incoherence problem and turn to the question
of why probability statements within the Everett interpretation should obey Born’s
rule in particular. The thought offers itself that when a splitting into N worlds has
occurred, each branch should be associated with the same probability, 1

N . After all,

of philosophers. This problem motivated Lockwood (1996) to suggest a variant of the many-minds
interpretation, which dispenses with dualism and a probabilistic dynamics. Ironically, it is however
controversial as to whether or not Lockwood’s theory permits a plausible probability interpretation
at all (see Barrett 1999, pp. 206–211).
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their “reality” is alleged to be equivalent. This strategy is however not allowed in
the decoherence-based Everett interpretation, since no counting arguments can be
utilized for the dynamically and only approximately defined worlds.

Some authors however challenge the justification of demanding a positive sub-
stantiation of Born’s rule in the Everett interpretation (see Saunders 1998, p. 384, as
well as the contribution by Papineau in Saunders et al. 2010). Born’s rule should be
able to be postulated here just as in conventional quantum theory (and like analogous
propositions in other theories)—the status of probability statements would then be
just as secure (or insecure) as in other areas of physics.

A completely new twist was given to this discussion by the publication of Deutsch
(1999) (later, his approach was rendered more precise by Wallace (2003)). In this
article, David Deutsch transferred the methods and results of decision theory to a
quantum-theoretical context, and even claimed that he could derive Born’s rule.

The (classical) decision theory models decision processes which are carried out
by “rational agents” in uncertain situations. Probabilities are thus construed here as
functional, namely as factors which guide behaviour. The fundamental concepts of
this theory are “states of the world” (si ∈ S), “actions” (A, B, . . .), their “conse-
quences” (C), as well as “preferences”, which an agent ascribes to possible actions.
These preferences define an ordering within the set of actions: A ≥ B ≥ C · · · (in
words: “action A is preferred relative to B; both are preferred over C , etc.”).

Formally, actions are mappings between the states of the world and the conse-
quences (A(s) ∈ C). The agent considered has only incomplete knowledge of the
actual state of the world—and therefore of the consequences of his or her actions.
Decision theory can now prove the so-called representation theorem: If the prefer-
ences for actions are subject to so-called rationality conditions,40 those preferences
can be expressed in terms of a unique utility function U for the consequences, as
well as a probability measure p for the states:

EU (A) =
∑
si ∈S

p(si ) · U (A(si )) . (5.14)

In this expression, EU (A) stands for the expected utility of the action, and the
preference of action A over action B as chosen by the agent is translated into the
condition EU (A) > EU (B). Greaves summarizes this relation as follows:

This result guarantees an operational role for subjective probability: any rational agent will
(at least) act as if she ismaximizing expected utility with respect to some probabilitymeasure
(Greaves 2007, p. 113).

These relations are often illustrated in an economic context, for example, as the
rational behaviour for choosing how to bet a sum of money in a wager.

40The concept of “rationality” is used here in a very narrow or weak sense. Decision theory inves-
tigates logical limitations of the preferences and makes no claim to determine them with regard to
content. A typical rationality requirement is the transitivity of preferences: If I prefer action A over
action B, and B over C , then A must be preferred over C .
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David Deutsch and David Wallace were able to prove an analogous result for
the Everett interpretation by utilizing the following correspondences: “states of the
world” correspond to the number of branchings after carrying out a particular mea-
surement; “actions” correspond to the wagers on particular measurement outcomes
(in a “quantum game”); and “consequences” correspond to the winnings (or losses)
in the case that a certain single event occurs. Making use of analogous “rational-
ity conditions”, it was then possible to prove a representation theorem like that in
Eq. (5.14). For the probability measure, one finds just the squares of the ampli-
tudes, pi = |ci |2. The rational agent will thus behave in such a way as if the multiple
branchings represented alternatives whose occurrence frequency is given by Born’s
probability rule.41

In the eyes of the supporters of this position, the probability concept is even better
accommodated within the Everett interpretation than in all other physical theories.
Instead of posing a special problem, the role of probability would now even represent
a strong argument in favour of the many-worlds interpretation.

This result however by nomeans ended the discussion, since there is no unanimity
over the question of how conclusively the premises for the proof can be justified.
Some authors doubt that in fact only non-probabilistic parts of decision and quantum
theories enter into the proof. That would of course invalidate the alleged proof of the
probability rule (cf. Hemmo and Pitowsky 2007).

Likewise problematic is the fact that decision theory investigates actions “in uncer-
tain situations”. Its applicability thus depends again on the question of whether
“uncertainty” is present or not in the Everett interpretation (or whether its subjective
appearance can be conclusively justified). This is at its core of course simply once
again the incoherence problem of the previous section. Here, Hilary Greaves now
takes a radical position: She admits freely that genuine probability and subjective
uncertainty indeed have no place within the Everett interpretation. She adopts the
position (Greaves 2004) that in the framework of the decision-theoretical programme,
this is not at all necessary, and she argues that the rationality conditions can also be
justified in the context of (deterministically) branching worlds. The associated mea-
sure p(si ) cannot however be reasonably called “probability” here. Greaves suggests
instead the term caring measure and describes its meaning as follows:

We might instead call it the agent’s ‘caring measure’, since the measure quantifies the extent
to which (for decision-making purposes) the agent cares about what happens on any given
branch (Greaves 2007, p. 118).

The rational agent thus behaves in such a way that the expected utility is maximized
over all the branches of the wavefunction with respect to the |ci |2 measure, because
he or she knows that all the results will in fact occur.

A further objection to the decision-theoretical justification of probability relates to
the fact that this programme presupposes that the rational agent accepts the validity

41Therefore, the Everett variant of the representation theorem makes an even stronger statement
than its counterpart in classical decision theory. The latter determines the probability measure only
relative to the corresponding preferences of the agent. There are however several such preferences
which fulfil the rationality conditions!
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of the Everett interpretation. Which arguments speak for it? This question refers to
the so-called evidence problem of the Everett interpretation, that is, the question of
how a verification of this theory could be obtained from measurements. Within the
Everett interpretation, a series of measurements leads to a splitting into branches of
the wavefunction which correspond to every arbitrary statistical distribution of the
measured values. The occurrence of a distribution which deviates strongly from the
Born prediction would thus not represent a reason for doubting the quantum theory;
instead, it would be rather expected. A suggestion for solving this problemwas made
by Greaves and Myrvold (see Saunders et al. 2010, pp. 264ff). According to those
authors, the decision-theoretically justified “branching weights”42 would likewise
play a confirmation-theoretical role.

5.2.6 Criticism of Everett’s Interpretation

The problematic status of probability statementswithin the Everett interpretationwas
already discussed in the previous section. Let us now turn directly to another obvious
objection to the interpretation, namely its extravagance. David Wallace notes at the
end of his essay on the Everett interpretation:

I have left undiscussed the often-unspoken, often-felt objection to the Everett interpretation:
that it is simply unbelievable. This is because there is little to discuss: that a scientific theory
is wildly unintuitive is no argument at all against it, as twentieth century physics proved time
and again (Wallace 2010, p. 23).

Against this succinct remark, we could answer that the Everett interpretation carries
its application of “scientific realism” further than other theories in modern physics.
The scientific realist supports the view that the success of a scientific theory can
best be explained by assuming that the objects and properties that it postulates do
in fact exist (cf. Bartels 2007). This hypothesis thus refers expressly to not-directly-
observable objects such as quarks or black holes.43 The adherents of the Everett
interpretation reason in precisely the sense that the branching of the wavefunction
implies the existence of parallel worlds. This circumstance is described with notable
accuracy by Ballentine:

Rather than deny that a state vector can be a complete model of the real world, Everett and
DeWitt choose to redefine ‘the real world’ so that a state vector [...] can be a model of it
(Ballentine 1971, p. 232).

Themodern (decoherence-based) approaches would seem however to havemarkedly
improved the ontological status of the many-worlds interpretation. The almost arbi-
trary and unlimited multiplication of universes (or minds) within the earlier variant

42The concept of “probability” is thus again avoided here.
43In fact, variants of scientific realism are also possible which attribute a valid claim of truthfulness
to certain theories, while the entities in question are not considered to be realistic (see Russell’s
position in Hacking 1983, p. 27).
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of David Deutsch, or the many-minds interpretation of Albert and Loewer, become
superfluous in these newer approaches.

The solution of the measurement problem in the many-worlds interpretation is
based on an additional strong metaphysical assumption: In order to eliminate an
“external observer”, the measurements and observations are referred to the worlds
which are continually branching off. This presumes that the mental states of the
observer can likewise be described quantum-theoretically.44 This physicalism is
indeed a widespread position, but it is controversial within the philosophy of the
mind as to whether it provides a solid basis for explaining the qualia problem or
the typical intentionality of mental states. Tying the solution of the measurement
problem to this precondition would seem to be maladroit, at the very least.

A still much more fundamental criticism was expressed by Tim Maudlin
(cf. Maudlin 2010). He doubts that the Everett interpretation in fact offers a solution
to the measurement problem. According to the usual view (e.g. according toMaudlin
1995!), the measurement problem consists essentially in interpreting the superpo-
sition of macroscopically different states (i.e. different pointer positions, living and
dead cats, etc). From this reading, a measurement on an eigenstate would be unprob-
lematic. Let |M0〉 be the state of a measurement apparatus before the measurement,
and |ψ1〉 the eigenstate of a system relative to the quantity which is to be measured
by M . Then after its measurement, the overall state |M1〉|ψ1〉 is found. Maudlin now
expresses doubt as to the alleged simplicity of this special case and poses the question
of in which sense a state (e.g. |M1〉) in a high-dimensional vector space can at all
represent the well-defined spatial state of a measurement apparatus, e.g. “pointer at
the position 1”. He criticizes the usual manner of speaking, according to which the
wavefunction is defined on the configuration space, since the “spatial configuration”
of all the parts that are represented by a point within this configuration space is not
at all a component of all the interpretations of the quantum theory. While the spatial
configuration of all the parts on R

3 is an explicit component of the description in
the de Broglie–Bohm theory, in a “wavefunction-monistic” theory, in contrast, this
concept can not even be referred to (see Maudlin 2010, pp. 126f). The adherents of
the Everett interpretation (and the same applies to some variants of the GRW theory)
thus, according to Maudlin, lack the resources that would be required to establish a
connection to the localized objects of our four-dimensional spacetime:

For if the result of a measurement consists in, say, a pointer pointing a certain way, and if
a pointer is made of particles, then if there are no particles there is no pointer and hence no
outcome. All of this talk of a wavepacket ‘representing’ an outcome is unfortunate: what
the wavefunction monist has to defend is that the outcome just is the wavefunction taking a
certain form (in some high-dimensional space) (Maudlin 2010, p. 130).

According to Maudlin, the technical discussions about the concept of probability
within the Everett interpretation thus obscure a decisive point: The probabilities
sought after must not only be probabilities for the occurrence of physical events,
but also of the right physical events. “Right” refers here of course to the ability

44Albert and Loewer (1988) formulate, in contrast, a dualistic position in their many-minds inter-
pretation.
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to establish a connection to elements of our everyday physical world in the sense
described above.

In fact, the work of Allori et al. (2011) provides a variant of the many-worlds
interpretation which takes Maudlin’s objection into account (although, curiously,
Maudlin’s work has not been cited). As we shall however see, this modification dis-
penses with the fundamental assumption of previous many-worlds interpretations
that a physical system is to be described by the wavefunction alone. But since it is
this formal simplicity which is emphasized by the supporters of the many-worlds
interpretation as its principal distinctive characteristic, the Allori suggestion is nat-
urally not considered from their perspective to be an alternative which can be taken
seriously.45

Let us take a brief look at this work, which also makes use of an interesting
scientific-historical allusion. At the beginning of the work of Allori et al. (2011), the
original suggestion of Schrödinger (1926) of interpreting the wavefunction “real-
istically” is namely analysed. In that view, in the single-electron case, the charge
density is given by the expression e · |ψ|2. For the many-electron case, Schrödinger
formulates a prescription which involves integration over the additional coordinates
in configuration space. Then, as is well known, the dynamics of the Schrödinger
equation leads in general to a spreading of this charge density over a large region of
space within a short time. This is also the reason why Schrödinger rapidly discarded
this interpretation of the wavefunction.46 Allori et al. however apparently find this
step to have been premature, for while Schrödinger’s idea indeed stands in contra-
diction to point-like charges within a “one-world” theory, it can be re-interpreted
in an evident way in terms of a many-worlds theory. Instead of the charge density,
Allori et al. notably make use of the mass density m(x, z) for technical reasons (see
Footnote 1 on p. 4 in their article):

m(x, t) =
N∑

i=1

mi

∫
d3x1 · · · d3xN δ(x − xi )|ψ(x1, · · · , xN )|2 . (5.15)

The mass density at a point x is thus obtained by integrating the probability density
|ψ|2 over all of the rest of the configuration space (this is quite analogous to the
prescription of Schrödinger 1926). The many-worlds character of this theory is now
obvious: If, for example, the wavefunction of Schrödinger’s cat branches into the
disjunctive parts ψalive and ψdead, then (5.15) will lead to interaction-free mass den-
sities malive and mdead. The objects described by these mass densities can, pictorially
speaking, be considered to be “reciprocally transparent” (Allori et al. 2011, p. 7).

Allori et al. refer to the additionally introduced mass density m(x, t) (in compar-
ison to the usual many-worlds interpretation) as the primitive ontology (PO) of their

45Thus, we have here a conceptional similarity to the de Broglie–Bohm theory, which is not sur-
prising if one casts a glance at the list of authors: with Valia Allori, Sheldon Goldstein, Roderich
Tumulka and Nino Zanghì, we find here several prominent supporters of Bohmian mechanics.
46This difficulty was pointed out to Schrödinger by Hendrik Antoon Lorentz in a letter fromMarch,
1926 (Jammer 1974, p. 31).
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theory. They point out the necessity of such a structure, in order (as in Maudlin’s
argument) to describe material objects in real space via a physical theory.47 As men-
tioned at the outset, the guiding idea of Everett’s, of working with the wavefunction
alone, is intentionally disregarded in this theory. While thus Maudlin’s criticism of
the many-worlds interpretation is formally invalidated by this variant, it aims in its
content at the converse, for there is now no reason to prefer this interpretation over
the de Broglie–Bohm theory.

5.3 The Relation Between the Various Interpretations

We conclude this chapter with a brief summary, which in particular establishes some
relations among Bohm, Everett, and the interpretations introduced in Chap. 2 (the
ensemble and the Copenhagen interpretations).

Both the de Broglie–Bohm theory and the Everett interpretation of quantum
mechanics dispense with a discontinuous change of state (“collapse”) of the wave-
function. Both interpretations thus in fact contain all the branches of the wavefunc-
tion which accumulate through splitting off as a result of every interaction. The
non-observability of superpositions of macroscopically different states (e.g. during
the act of measurement—but a measurement is of course a typical example of an
interaction with a macroscopic object) must be explained in both interpretations.
They however choose different strategies for solving this problem.

The “Bohmian solution” of the measurement problem consists in the fact that the
additional spatial configuration of the “Bohmian particle” distinguishes precisely that
part of the wavefunction which corresponds to the output of the measurement appa-
ratus.48 There can thus be no ambiguity in the “pointer position”, since each state of a
measurement apparatus is characterized by a unique configuration of these Bohmian
particles. Applying suitable initial conditions, this allows the theory to reproduce all
of the statistical predictions of quantum mechanics. In this sense, the de Broglie–
Bohm theory complements the ensemble interpretation of quantum mechanics by a
mechanism which describes the behaviour of the members of the ensemble.

With the exception of position measurements, however, one finds here no prop-
erties of the quantum objects which were already present before the measurement.
In a way, this form of contextuality could be seen as the detailed development of a
remark of Bohr’s, which can be found for example within the following quote: “The
procedure of measurement has an essential influence on the conditions on which the

47In Sect. 5.2.2, we have already mentioned that this variant of the many-worlds interpretation is
non-local. The problem of the preferred basis and the role of probability statements can likewise be
treated differently in this theory.
48The description of the “effective collapse” of the wavefunction in addition profits from the results
of the work on decoherence.



216 5 No-Collapse Interpretations of Quantum Theory

very definition of the physical quantities in question rests” (Bohr 1935, p. 1025).49

The “production” or “establishment” of the result through and in the act of measur-
ing is likewise part of the Copenhagen interpretation. In contrast to the Copenhagen
interpretation, the de Broglie–Bohm theory however offers a physical mechanism
which explains this process realistically. That naturally says nothing yet about the
plausibility of this mechanism.

On a quite different level, we can establish a parallel between the de Broglie–
Bohm theory and the Copenhagen interpretation: A characteristic of the de Broglie–
Bohm theory is its description of physical reality in terms of the pair consist-
ing of the wavefunction and the configuration (formally: (ψ, Q)). As we have
mentioned in Sect. 2.2.2, the Copenhagen interpretation claims that there is an
“indissoluble connection” between the microscopic system and the measurement
apparatus (i.e. the macroworld). In this sense, the Copenhagen interpretation thus
also describes the physical world in terms of a pair—expressed formally, for exam-
ple, as (ψ, ‘macroworld’).50 In the de Broglie–Bohm theory, the second element of
this pair is therefore replaced by the objects which according to this theory represent
the constituents of the macroscopic world.

In the case of the Everett interpretation, all the possible outcomes of a measure-
ment are realized in fact. This however is not subject to observations, since each
observer is likewise subject to the splitting up of the worlds. The integration of a
plausible concept of probability and the justification of Born’s rule (i.e. the observ-
able relative frequencies of occurrence) remain problematic, as we have discussed in
Sect. 5.2.5.However, the results of decoherence theory havemade it plausible how the
pointer basis of ameasurement apparatus is in fact distinguished. This “decoherence-
based” version of the many-worlds interpretation thus dispenses with a good deal of
ontological ballast which had been held against its earlier formulations.

The splitting into infinitely many worlds of course still appears radical and eccen-
tric. With this background, one may tend to prefer the de Broglie–Bohm theory, at
least with reference to the solution of the measurement problem. Numerous authors
have however pointed out that the latter likewise contains all of the branches of the
wavefunction which split off with every interaction. A more plausible resolution of
the measurement problem is thus only then possible within the de Broglie–Bohm
theory if it defines the ontological status of the wavefunction in a correspondingman-
ner. In Brown and Wallace (2005), the question is discussed as to which difficulties
are faced by this strategy. The suggestion of Dürr et al. (1996), already mentioned
in Sect. 5.1.7, that the wavefunction should be seen as nomological, is criticized

49Bohr however saw no sort of causal relationship here; instead, he compared the influence of amea-
surement on its outcome with the connection between the frame of reference and the observations
within the special theory of relativity.
50This “pairing” is intended to illustrate that even within the Copenhagen interpretation, a complete
description of the physical world with reference to the wavefunction alone is not possible. The
classic textbook of Landau and Lifschitz formulates this relation in a particularly pointed way:
“Quantum mechanics thus occupies a rather remarkable position among physical theories: It con-
tains classical mechanics as a limiting case, and at the same time, it requires this limiting case for
its own justification” (Landau and Lifschitz 2011, p. 3).
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for depending in a speculative manner on cosmological considerations. According
to Brown and Wallace, the “empty wavefunctions” in the de Broglie–Bohm theory
likewise correspond to real worlds—the solution of the measurement problem in the
de Broglie–Bohm theory therefore must (and can) make no decisive reference at all
to the particle and is congruent with that in the many-worlds interpretation. Brown
and Wallace thereby emphasize the dictum of David Deutsch, who characterizes the
guidance-field theories as “parallel-universe theories in a state of chronical denial”
(Deutsch 1996, p. 225). A reply to this accusation is to be found, for example, in
Maudlin (2010). In the section on criticisms of the Everett interpretation (Sect. 5.2.6),
we have already cited this work, which casts doubt on the possibility of finding a
solution to the measurement problem at all, as long as the spatial configuration is
not taken into account. This points out an important and still open problem for the
de Broglie–Bohm theory: The status of the wavefunction is not completely clarified
in that theory either, and this signals a further line of separation between various
schools within the de Broglie–Bohm theory (cf. Sect. 5.1.6).

Exercises

1. The de Broglie–Bohm theory is frequently called a theory of “hidden variables”.
This term implies the criticism that the theory introduces in principle unobservable
quantities into its description. Write a brief dialogue between an advocate of
the de Broglie–Bohm theory and a supporter of the Copenhagen interpretation,
in which the former defends the theory against this criticism and accuses the
“Copenhagen” advocate of actually making this error herself. In the course of
this debate, additional arguments pro and contra could be introduced!

2. Explain why within the de Broglie–Bohm theory, the uncertainty relation �x ·
�p ≥ �

2 is not violated!
3. Compare the solutions to the measurement problem in the de Broglie–Bohm and

theEverett interpretations.Give examples of structural similarities anddifferences
between them.
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