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Preface

The Philosophy of Quantum Physics grew out of an initiative by the Springer
Spektrum publishers, for which we owe particular thanks to Dr. Vera Spillner. The
task of coordinating the cooperation among the various authors and between
authors and publisher was taken on by Cord Friebe—the other authors wish to
express their hearty thanks to him for these sometimes tedious efforts!

Our guiding principle has been to fill a gap in the textbook market which exists
between general introductions to this field and specialized monographs. The large
number of popular articles on the subject documents the great interest shared by a
broad audience in the epistemological and ontological implications of quantum
theory. Our goal was thus to provide a current and well-founded introduction to the
philosophy of quantum theory for advanced students of philosophy with an interest
in physics. At the same time, this book confronts students and practitioners of
physics with the philosophical implications of their field. This book can also serve
to provide new impulses for teacher education in the fields of philosophy and
physics.

That there is a close interrelation between the two fields is well known and needs
no special justification. This relationship always becomes particularly intensive
during periods of rapid scientific development. New physical theories can challenge
the prevailing philosophical view of reality and even cause revisions to it. At the
same time, philosophy can make its contributions to a more precise understanding
and interpretation of the scientific results. The upheavals in physics in the early
twentieth century due to the developments of quantum mechanics and the relativity
theories provide substantial evidence for this.

In the second half of the twentieth century, a new development began, and it led
the philosophy of physics to become a highly professional and very lively branch
of the philosophy of science; it had been dominated earlier by authors in the
Anglo-Saxon world. Motivations coming from the physicists continue to play a
certain role, but the mainstream of research is now carried on by those philosophers
who have solid backgrounds in physics and who concentrate their work on the
fundamental questions and philosophical problems of the respective physical the-
ories. The results of this research are published and discussed in specialized
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journals. This professionalization has led to a situation in which the newer debates
and the results of these discussions are hardly known within physicists’ circles. This
book thus aims to provide an approach to the current state of the important ongoing
discussions.

The professional debates in journals and monographs usually presume that the
reader has detailed mathematical, physical and philosophical foreknowledge. Here,
again, our presentation in this book intends to bridge over this gap, and it pre-
supposes essentially a knowledge of these fields only at the general school level. All
the additional resources and concepts, including those from mathematics, are
introduced at a basic level in the text. Depending on the extent of the reader’s
knowledge, this of course requires active participation and study, especially of the
first two chapters.

It is a typical characteristic of quantum physics that even a century after its initial
development, its consequences for our view of reality are still the subject of con-
troversial discussions. Although the quantum theory permits the description and
predictive calculation of many phenomena to an impressive extent, its relationship
to the “objects” and the “properties” of the world remains unclear, in the sense that
numerous different approaches compete for the exclusive right to explain this
central relationship. This book offers an introduction to the numerous philosophical
challenges provoked by the quantum theory. We retrace the course of various
scientific–philosophical debates and classify them within the context of current
research results. Fundamentally, however, we aim to provide a systematic account
of the field.

The following résumé of the chapters in this book is intended to provide an
orientation for the reader and to clarify the relations between its various parts. The
first chapter provides a systematic access to the central, fundamental concepts of
quantum theory in the sense of the overall conception of the book, including in
particular the notion of “superposition”, and furnishes successively the required
mathematical apparatus. We forgo to a great extent the use of the differential
calculus and differential equations. Instead, we presuppose only the basic funda-
mentals of coordinate geometry, vectors and linear algebra.

Following this introduction to the fundamentals, the second chapter describes the
minimal interpretation and the “Copenhagen interpretation”, which is still held as a
standard by many physicists. The Copenhagen interpretation was, however, never
strictly codified, and it is not without its own problems. In particular, its treatment
of the measurement process and the role of the observer remain controversial even
within this interpretation. Ghirardi, Rimini and Weber thus suggested a modifica-
tion of the theory in 1986. Their interpretation, denoted by an acronym of the names
of its originators as the “GRW approach”, describes a “spontaneous collapse” of the
quantum-mechanical wavefunction, and it is introduced at the end of the second
chapter.

While the first two chapters consider only “single-particle states”, the third
chapter takes up “many-body systems” and their peculiarities. The surprising and
characteristic property of the quantum theory represented by the fact of the
empirical indistinguishability of similar quantum objects plays a decisive role here.
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It leads in particular to quantum statistics, representing a significant revision of
classical statistical mechanics. The empirical indistinguishability of quantum
objects raises deep ontological questions of “identity” and “individuality”, which
have in turn led in recent times to a revival of the debate on the applicability of
Leibniz’s principle in quantum theory.

The fourth chapter treats the broad issues related to “entangled states” and
“non-locality”. Since entanglement involves a relation between two (or more)
quantum systems, this chapter ties in with the concepts which were introduced in
the third chapter. The distinctive feature of these systems lies in the fact that they
apparently influence each other even when they are arbitrarily widely separated in
space. This non-locality of the quantum theory is especially problematic because
such an influence would have to propagate at more than the speed of light, in
contradiction to our understanding of the special theory of relativity.

The discussion surrounding entanglement had its origin in a famous article
published by Einstein, Podolsky and Rosen (EPR) in the year 1935, which made
use of a thought experiment on entangled systems that still shapes today’s dis-
cussions on the subject. EPR used their thought experiment to argue against the
completeness of quantum mechanics, but they made the incorrect assumption that
the quantum world is local. In the early 1960s, John Bell was able to show with his
theorem that the thought experiment of EPR in fact demonstrates the non-locality
of the quantum theory; even the introduction of “hidden variables” to complement
the theory cannot rescue the locality demanded by Einstein. In the meantime, the
EPR “thought” experiment has been carried out in practice in a number of places,
with the result that non-locality is a verified basic feature of the quantum world.
From Bell’s argument, still more far-reaching consequences have been derived, and
the fourth chapter contains a detailed discussion of these relationships and their
justifications. Making use of causal graphs, the abstract discussion around Bell’s
theorem can be made more intuitively accessible.

The catchword “hidden variables” has already been mentioned, and in the first
part of the fifth chapter, the best-known representative of this species of interpre-
tations is introduced in the form of the “de Broglie–Bohm theory”. Here, some
of the more radical of the epistemological and ontological implications of, for
example, the Copenhagen interpretation are avoided: Quantum objects in fact move
along trajectories, according to this interpretation, and thus, in a formal sense, this
theory is indeed deterministic. The price which must be paid for this lies in some of
its properties, whose acceptability is still a matter of controversy. A similar situation
is found in the “many-worlds interpretation” of quantum theory, which is treated in
the second part of the fifth chapter. Its solution of the problem of measurement is as
elegant as are its metaphysical implications extravagant. Both interpretations have
the common feature that they dispense with the “collapse” of the wavefunction, and
this is the reason why they are both treated here within one chapter.

In the sixth chapter, a bridge is built to the (relativistic) quantum field theories.
Particle numbers now become variable (we speak, e.g., of the “creation” and
“annihilation” of particles and quanta). Quantum field theories make it possible to
treat the interactions between radiation and matter within the framework of the
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quantum theory. Thus, old problems such as the wave–particle duality and the
non-locality of the microscopic world can be attacked using new mathematical
tools. To be sure, it becomes especially clear here what has been a source of
difficulties in all the chapters: The question of how the mathematical formalism
of the theory can be brought into coherence with the “real world” no longer admits
of a simple answer, if one goes beyond the mere allocation of possible measured
values to concrete measurement results, i.e. if one is not content with a minimal
interpretation of quantum theory.

Finally, the seventh chapter rounds off the book by presenting a short
chronology of the important steps in the development of quantum theory, in terms
of both its physical–mathematical properties and also its interpretational questions.
The essentially systematic structure of this book is complemented here by this
historical treatment, and one can read the brief explanations of the milestones in the
development of the theory like a glossary. Furthermore, some additional approaches
to the interpretation of quantum theory are mentioned here, which could not be
treated in detail in the rest of this book.

The many intensive discussions within the group of authors have shown that
each of the six authors would have written a different book on the same topic. We
hope that our mutual cooperation has led to the “best of all possible versions”.

Bonn, Germany Cord Friebe
Mainz, Germany Meinard Kuhlmann
Magdeburg, Germany Holger Lyre
Münster, Germany Paul M. Näger
Wuppertal, Germany Oliver Passon
Bremen, Germany Manfred Stöckler
July 2014
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Preface to the English and Second German
Edition

The suggestion of an English and second German edition by Springer has provided
us with a welcome opportunity not only to eliminate various typographical errors
and minor flaws, but also to improve the presentation of the text and to make some
additions to its content. Many helpful comments were made by students in our
seminars in Wuppertal, Mainz, Saarbrücken and Bonn. The inclusion of exercises at
the end of each chapter is intended to provide an aid to self-study as well as
reference points for group discussions. Example solutions to the exercises are given
at the end of this book.

Siegen, Germany Cord Friebe
Mainz, Germany Meinard Kuhlmann
Magdeburg, Germany Holger Lyre
Münster, Germany Paul M. Näger
Wuppertal, Germany Oliver Passon
Bremen, Germany Manfred Stöckler
December 2017
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Chapter 1
Physical and Mathematical Foundations

Cord Friebe

This first chapter on the philosophy of quantum physics1 will treat physical
systems by ignoring their (possible) internal structure. Thus, we firstly consider
single systems, e. g. single silver atoms or single electrons; the latter have in today’s
understanding in fact no internal structure at all. Thereby, we initially leave aside all
those philosophical problems posed by composite or many-body systems: the loss of
“individuality” of similar particles as well as the new kind of relationship between a
whole and its parts, as exemplified in the famous EPR paradox. Both challenges are
discussed later in their own chapters.

However, even a single system, as treated by quantum mechanics, gives rise to
considerable problems of philosophical interpretation That said, we note that even
macroscopic objects in the everyday world or in classical physics are not immune to
philosophical controversies. On the contrary, the theoretical philosophy (epistemolo-
gy, ontology) had its beginnings with Plato and Aristotle precisely in considerations
of everyday objects which can be perceived by our ordinary senses. Numerically
different persons, for example, can all be described as “courageous”, as is done of
Socrates in one of Plato’s early dialogues. Then, one may ask what these persons
have in common—Courageperhaps, i. e. a universal propertywhich canbepossessed,
somehow, by the many? Namely either as a form ante rem from Plato’s heaven, in
which the concrete, individual persons can “participate”, or else as something in re,
which at one and the same time is “instantiated” in both this person and also that
person. The problem of the relationship of an object or a person to its/his/her proper-
ties, which was raised here for the first time, is still a subject of current philosophical
debate—quite independently of the developments of modern physics.

Or, let us take as a second example the early modern British philosopher David
Hume and his sceptical argument against certain notions of causality: If we maintain

1Quantum physics, like classical physics, encompasses more than just mechanics, in particular also
quantum field theory. Insofar as these other subfields are included, we will use the term “quantum
physics”. As a rule, however, this introductory chapter will deal with quantum mechanics.
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that an event such as the motion of a billiard ball was caused by a collision with
another moving billiard ball, then we apparently believe that the colliding projectile
somehow forces the target ball to move, that some sort of power makes it inevitable
that the effect occurs, necessitates its occurrence. What we in fact observe, however,
according to Hume, is merely a temporal sequence and a spatial conjunction of two
motions; simply a factual regularity and not a constraint, not a necessity. Are causal
relations then nothing other than spatiotemporal regularities, or are there in the world
necessary connections between events, over and above themerely observable?Again,
this controversy is still continuing today—quite independently of quantum-physical
phenomena.

A theme of particular importance in this chapter is therefore the following: To
emphasize that a single quantum-mechanical system produces additional difficulties
for every theoretical philosopher—regardless of whether he or she is a (modern)
Aristotelian, a follower of Hume or of Kant: There are empirical phenomena in
the realm of the microscopic, and theoretical consequences of quantum mechanics,
which represent a particular challenge to philosophy, independently of the fundamen-
tal philosophical views of the particular philosopher—and that already considering a
single system. The discussion of these phenomena and consequences can then prove
philosophically fruitful in two ways: either as a fertilization of continuing philosoph-
ical discussions, whereby quantum mechanics is mobilized in support of an existing
position; or else in the sense that it forces us to develop entirely new philosophical
theories.

But taking up the topic in these ways could be considered to be biased: For,
then, quantum mechanics would appear exclusively as a problem for philosophy, in
that apparently only the question is posed as to which philosophical theory might
be compatible with quantum mechanics. Physicists, but also many philosophers of
physics, perhaps see this quite differently: When, for example, the physicist Niels
Bohr introduced the concept of “complementarity” to aid in the interpretation of
quantummechanics, he was pursuing in particular the following goal: “Complemen-
tary”, according to Bohr, are two quantities or two descriptions which on the one
hand are mutually exclusive, but on the other hand complete each other, which may
well seem at first view to be contradictory. However, what Bohr intended was by no
means contradictory, so onemay argue, since the two entities that hewas considering,
mainly the “particle view” and the “wave view”, are classically mutually exclusive
and quantum-mechanically completive. What he meant, accordingly, was the ques-
tion of how quantummechanics fits into the worldview of classical physics.We have
apparently moved on past this question—who is still interested in the “worldview of
classical physics”?—but in Bohr’s sense, one still continues to ask: How is a realistic
interpretation of quantum physics compatible with other parts of current physical
theory, for example with the theory of special relativity? How are the theories of the
microscopic realm related to the intuitive, everyday mesocosmic world (catchword:
the measurement problem)? And how does the microcosm (in particular quantum
field theory, or QFT) relate to the macrocosm (i. e. to the theory of general rela-
tivity, or GRT)? The question is therefore not which philosophical theory is most
plausible in view of the results of modern physics, but rather whether and how quan-
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tum physics can permit a unified theoretical structure of physics as a whole. This
is not necessarily a contradiction, but it is quite a different matter whether one sees
a philosophical problem only where physics itself is (still) inconsistent, as in the
contradiction between QFT and GRT, or, by contrast, also where physics is already
unified and consistent.

The focus of this textbook on the philosophy of quantum physics lies on this latter
problem: In the first instance, we consider phenomena and theoretical consequences
which can be considered in physics to be well established. This is even true of the
next-to-last chapter on QFT, as long as it is not confronted with GRT; in particular,
it holds for the important phenomenon of “indistinguishability” of similar particles
(cf. Chap. 3), which represents a considerable philosophical challenge quite indepen-
dently of the notorious measurement problem. Naturally, the theoretical structure of
physics as a whole also plays an important role here, principally in the form of just
that measurement problem; that is, the relationship between the microscopic and the
macroscopic worlds which is considered in physics itself to be still an open problem.
For its solution (or resolution!), newer theories must be considered—such as the (re-
alistic) collapse interpretation of Ghirardi, Rimini and Weber (GRW; cf. Sect. 2.4),
or the deterministic de Broglie–Bohm theory (cf. Sect. 5.1)—which are considered
within physics to be non-standard. In this first chapter, however, wewill begin by lay-
ing down the physical and mathematical foundations of the usual “standard quantum
mechanics” of single systems.

1.1 Spin and Superposition

Seeing quantum physics at first view as a challenge to philosophical theories2 would
have an immediate consequence (didactically, as well): If we are not so much con-
cerned with the theoretical structure of physics, then an introduction which treats
quantum mechanics as emerging from classical physics and tries to give intuitive
explanations of its unfamiliar phenomena in terms of notions of classical particles or
waves would seem to be inappropriate. The historical context of discovery is perhaps
not systematically relevant, so that we—in contrast tomany popularizations on quan-
tum mechanics—will begin neither with Planck’s radiation quantization (discovered
already in the year 1900), nor with the double-slit experiment or the photoelectric
effect (1905); and thus not with those physical phenomena that suggest, according
to Bohr, the dual nature of quantum systems as particles and waves: views which are
classically mutually exclusive, but are ostensibly complementary within quantum
mechanics.

Instead, we consider the quantum system from the beginning as an object in its
own right, for which we—almost independently of the question as to whether it is

2That is, treating such problems as the relationship of a single object to its properties, or of a whole
to its parts, or the relation between cause and effect and the questionable nature of persistence and
temporal change in quantum systems.
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mainly a classical particle or rather a wave or perhaps both—pose the questions as
to whether it stands in relations of cause and effect, whether it persists over time,
whether it can be individuated by intrinsic properties or merely relationally, etc. We
therefore start with Bohr’s second, quite different understanding of “complementar-
ity”, according to which two quantities such as position and momentum3 rather are
quantum-mechanically exclusive, though classically completive. As we shall see,
this understanding can be precisely expressed within the mathematical formalism of
quantummechanics. And we will therefore begin with an experiment which was first
performed in 1922, when quantum mechanics had thus already been “underway” for
more than 20 years. This experiment demonstrated a property of quantum-physical
systems for which there is absolutely no classical analogy; it can thus stand as a
paradigm for the autonomy of quantum systems. We are referring to the “intrinsic
angular momentum” or spin.4 This spin demonstrates physically what is peculiar
about quantum mechanics, and it directly motivates the vector space formalism of
quantum mechanics which follows.

Awarning is indeed appropriate here: In this treatment, the problem of embedding
quantum mechanics within physical space is downplayed. That is quite appropriate
for standard quantum mechanics. In later sections, however, we will see that this
problem remains on the agenda of (the philosophy of) quantum physics. The spa-
tiotemporal interpretation of quantum objects occupies the focus of the GRW, Bohm,
and QFT approaches.

1.1.1 The Stern–Gerlach Experiment

In February 1922, the experimental physicists Otto Stern andWaltherGerlach carried
out an experiment in Frankfurt am Main that, later, yielded an important theoretical
contribution to the mature, internally consistent quantum mechanics, which was
by that time still a mixture of classical elements and new principles (keyword: the
Bohr model of the atom). Practically, the discovery of the “Raumquantisierung der
magnetischen Momente in Atomen”, as it is called on a plaque at the building of the
Physical Society, has found application, e.g., in magnetic resonance tomography. In
1943, Sternwasgranted theNobel Prize in physics for the discoveryof the (electronic)
spin

Using a small furnace to evaporate the metal, Stern and Gerlach produced a beam
of silver atoms, which was then passed through an inhomogeneous magnetic field.
After passing through this field, the beam was detected by collecting the atoms on a
“screen” (Fig. 1.1).

In fact, they had not expected anything of special importance: All of the atoms
in the beam of silver vapour are of course electrically neutral, so that they do not

3The momentum of an object is its velocity multiplied by its mass.
4Spin is an angular momentum which can be intuitively imagined as a rotation of the object around
itself (which indeed for point-like objects becomes highly non-intuitive).
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Fig. 1.1 The Stern–Gerlach experiment: a beam of silver atoms is split by an inhomogeneous
magnetic field. This can be explained in terms of the electron’s spin

experience a Lorentz force within the magnetic field. They could to be sure have
magnetic moments which might be produced by the orbital motions of the electrons
in the atomic shells. As was already known at that time, the magnetic moments in
filled “energy shells” cancel each other, so that at most the single valence electron of
the silver atoms might contribute. However, it is in the rotationally symmetric (5-)s
orbital, so that its orbital angular momentum is zero—there was thus no magnetic
moment to be expected. Nevertheless, Stern and Gerlach observed a splitting of
the silver beam, leading to two separate silver traces on the screen, indicating that
here a magnetic moment can have two discrete orientations. This could be explained
by assuming that the valence electrons of the silver atoms—and thus electrons in
general—have an additional property, up to that time undiscovered, which behaves
like an intrinsic angular momentum that produces the magnetic moment and has only
two possible values: spin up and spin down.5

In the intervening years, one has also discovered particles whose spin exhibits
more than just two possible orientations. A beam of such particles, electrically
neutralized to avoid additional magnetic or electrostatic forces, would thus show a
splitting into several sub-beams in an inhomogeneous magnetic field. Furthermore,
quantum objects are classified today into those with half-integer spins (“fermions”,
e. g. electrons) and those with integer spins (“bosons”, e. g. photons). The latter clas-
sification will be important in the chapter on “indistinguishable” quantum particles,
and the former should be kept in mind and should give rise to the question at an

5A note for readers with a physics background: Mathematically, the spin should also behave as
an angular momentum; that is, its operators should obey the same commutation relations as those
for the orbital angular momentum. That it behaves not only analogously to an angular momentum,
but indeed is one, is shown by the fact that, in general, the quantum-mechanical orbital angular
momentum is a conserved quantity only when it is coupled together with the spin.
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appropriate point as to how the physics and mathematics of the two-valued spin can
be generalized to higher-valued spin systems. At this point, only the following need
be taken into account: The Stern–Gerlach apparatus always has a certain spatial ori-
entation determined by the direction of its inhomogeneous magnetic field. Therefore,
more precisely speaking, only the projection of the particle spin along a given axis
is measured, and it has only two possible values in the case of electrons. In fact, the
electron (like many other particles) has many other possible spin values, namely (for
the electron) two each in every possible direction in space. Using a Stern–Gerlach
apparatus, however, one can measure the spin of a quantum system at a given mo-
ment along only one spatial direction, which raises the philosophically important
questions as to whether or not (for example) an electron “nevertheless” has at each
moment all of these spin values which cannot be simultaneously measured; and if
not, then what actually occurs in a Stern–Gerlach measurement?

The peculiar characteristics of this new property then become especially apparent
if one carries out several Stern–Gerlach experiments in sequence.6 Initially, fol-
lowing a measurement7 in a certain spatial direction, we could carry out a second
measurement relative to the same direction, which intuitively corresponds to a simple
repetition. Or else we could carry out several spin measurements relative to differ-
ent spatial directions, one after the other, which would perhaps yield unexpected
results. Finally, the most important step would be to investigate what happens when
we “reverse” a measurement which, apparently, has already been carried out: This
leads directly to the principle of superposition of spin states and thus to the vector
space formalism (for the following, cf. Albert (1992), in particular Chap.1).

1.1.2 Sequential Spin Measurements

One of the most important problems in the interpretation of quantum mechanics
is illustrated by properties which are not measured at a particular moment, and of
whichwe cannot saywith certaintywhether they are present or not.We could draw the
anti-realistic conclusion that we should not speak at all of real properties of a single
quantum system, but instead perhaps only of macroscopic measurement apparatus
and measurement outcomes, or only of quantum systems as ensembles, i. e. only of a
large number of quantum particles. However, let us leave these interpretation threads
aside for the moment and try to maintain for as long as possible the concept of a
quantum system as an object which has properties, which persists over time, and thus
can change its properties while maintaining its identity. We shall see how far we can
go with this concept.

6This is of course only possible if one does not collect the particles on a screen.
7Here and in the following, we use the word “measurement” with as few preconceptions as possible.
We neither presume that a macroscopic detector (screen) has to register events irreversibly, nor even
that the quantum-mechanical system in some way “collapses”.



1.1 Spin and Superposition 7

Let us therefore first assume that an electron possesses the property spin up at
a particular time (along the x direction), and at a later time, it has the opposite
property spin down (along the x direction). This changeover of the spin property is
assumed to be caused by an external magnetic field and to be perfectly predictable.
The transition is thus causal and deterministic. Nevertheless, we can already discern
a philosophical problem in it: Changes can in principle only occur continuously, so
that such a discontinuous change could be only a “sideroxylon” or “wooden iron”
(i. e. a contradiction in terms). Nature makes no jumps, as Aristotle already showed
(cf. Aristotle 1988, Physics, Book VI): In the case of a discontinuous change, the
object could be only either still in its initial state, or already in its final state, which
would mean that it would have the change still to come or already past, without ever
actually passing through it. One can react to this objection in two ways: Either one
could demonstrate that Aristotle was in error, that there can indeed be discontinuous
changes; or else one could assert that quantum-mechanical objects cannot actually
change, but rather only being exchanged. For change requires something persistent,
according to Kant (cf. Kant 1781/87, A 187/B pp. 230ff.), something of a self which
survives over time, only whose properties (can) vary; and this is still indisputable
today: “change needs identity as well as difference” (Mellor 1998, 89). Identity over
a period of time, however, is (perhaps) not to be presumed of quantum-theoretical
systems. The old particle may vanish, and the new particle with a different spin
takes its place, perhaps because they are, as claimed by the so-called trope ontology
(compare Sect. 6.5.2), only bundles of (particular) properties. Accordingly, at the one
moment in time, the bundle [electronic charge, electron mass, spin up along the x
direction, etc.] exists, and at a later moment in time, the numerically different bundle
[electronic charge, electron mass, spin down along the x direction, etc.] appears, so
that a discontinuous jump is possible. However that may be: We assume for the time
being that quantum jumps no longer represent a philosophical problem.

The situation becomes truly problematic only when additional spin properties
relative to different spatial directions are considered. If the inhomogeneous magnetic
field of the Stern–Gerlach apparatus is turned, for example, into the y direction, then
we once again have two possible measurement outcomes, which are supposed to
correspond to two additional properties of the silver atoms or their valence electrons:
spin up and spin down along the y direction. Following a measurement of the spin
in the original x direction at a certain time, we now have two possibilities for con-
tinuing: We could on the one hand again measure the spin relative to the x direction,
as shown in Fig. 1.2. It will be seen, as one might probably expect, that indeed every
particle which has been shown to have its spin up (or its spin down) in a previous
measurement must show with certainty the same result in a later measurement, inde-
pendently of how much time has elapsed between the two measurements—as long
as no external influences (such as magnetic fields) perturb the particles. One says
that spin measurements are repeatable.8

8But how do the particles “exhibit” a particular spin value if they are not registered by a detector
(e. g. a screen), showing that they were deflected upwards or downwards?—Those who are already
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Fig. 1.2 Arepeatedmeasurement: 100%of all particleswhich previously exhibited spin downalong
a certain direction again show spin down in later measurements along the same spatial direction

If, on the other hand, we measure the spin relative to the y direction in the sec-
ond measurement, then we find (which is perhaps more unexpected) that the results
are now not predictable with any certainty. Both the spin up particles from the first
measurement, as well as the spin down particles, proportionally show spin up and
spin down along the y direction. In our example of a second measurement along a
direction perpendicular to the first, we find more precisely that, respectively, exactly
50% of the particles will exhibit spin up and 50% spin down. In the case that the pre-
vious measurement had shown, e. g., spin up along the x direction, the change to, for
example, spin up along the y direction takes place apparently non-deterministically.
This is astonishing and should not be confused with a possible indeterminacy in
the original measurement; in that case we would have had no kind of foreknowl-
edge of the precise state of the particle (aside from the fact that it would be a silver
atom or an electron). It was so to speak “a shot in the dark”. In the second mea-
surement, in contrast, we already know that the particles have the property spin up
(or spin down) along the x direction. As we shall see, this information is even al-
ready maximal according to the formalism of quantum mechanics and its standard
interpretation(s)—and thus the indeterminacy of the spin along the y direction with
a given spin value along the x direction is inevitable. Einstein saw a serious problem
here, as expressed in his famous slogan that “God doesn’t play dice”. What would be
the explanation if the second measurement were to yield e. g. spin down along the y
direction? Would the particle have possessed this property already previously to the
second measurement, so to speak the whole time? Then more would be present in the
world than we can maximally know, and the standard quantum mechanics would be
incomplete. In any case, an assumed causal influence by the Stern–Gerlach apparatus
on the particle does not yield a sufficient explanation, for that influence is symmetric,
the opposite result spin up (along the y direction) would have been just as likely.
The measurement along the y direction at most apparently “causes” the spin along

familiar with this problem may well ask this question. We, however, follow the particle in thought
along its “trajectories” and show that this leads inevitably to inconsistencies.
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the y direction to take on a certain value: either spin up or spin down. Or is there a
probabilistic, non-sufficient causality, as is presumed today by many philosophers?

But let us leave aside not only the problem of the quantum jumps, but also that of
the indeterminacy (for the moment). Our story is still far from its end. We have now
carried out two measurements one after the other; first, we determined the spin value
relative to the x direction (measured quantity: Ŝx ), and then we measured its value
relative to the y direction (measured quantity: Ŝy). At a still later moment in time,
we can now either repeat the measurement of Ŝx or once again measure Ŝy Let us
first consider the sequence Ŝx Ŝy Ŝy : The second Ŝy measurement is, independently of
how much time has elapsed since its first one, and as long as no external influences
(magnetic fields) are present, clearly just a repetition of the first. Both Ŝy measure-
ments follow one after the other directly, i. e. there are no further measurements
or similar events between them. We can therefore say with certainty that particles
with spin up (or spin down) along the y direction will again exhibit spin up (or spin
down, respectively) along that same direction. What, however, will occur with the
sequence Ŝx Ŝy Ŝx (compare Fig. 1.3)? Is the second Ŝx measurement now again just
a repetition of its first, so that all those particles which leave the Ŝy apparatus, those
with spin up along the y direction and those with spin down, will again show the
same result as the first Ŝx measurement; those with spin up along the x direction
again with certainty spin up, and those with spin down along the x direction again
with certainty spin down? Do the two Ŝx measurements follow just as directly as
the two Ŝy measurements before, since between them there is “only” a measurement
of Ŝy , that is a measurement of a quite different kind? Quantum mechanics (and of
course the empirical results) say: No! All the particles behave after the Ŝy measure-
ment in such a manner as if the previous Ŝx measurement had never occurred. Both
those particles which originally exhibited spin up along the x direction—and now
(in addition?) either spin up or spin down along the y direction; as well as those that
originally showed spin down along the x direction—and now (in addition?) either
spin up’ or spin down along the y direction, yield in the second Ŝx measurement in
part spin up and in part spin down along the x direction; precisely 50% each of spin
up and spin down. The measurement of Ŝy clearly destroys the results of the previous
Ŝx measurement, so that a further measurement of Ŝx is not a repetition of its first
measurement.

The same conclusion holds in the reversed case, that is for the sequence Ŝy Ŝx Ŝy ;
measurements of Ŝx and Ŝy mutually destroy each other. And all this holds indepen-
dently of the elapsed time between the measurements (other influences are presumed
to be negligible). This means, in particular, that immediately after the second mea-
surement (in the figure: the measurement of Ŝy), the third measurement will yield
50% spin up and 50% spin down, independently of what the first measurement
showed. Neither the time sequence (i. e. whether we consider Ŝx Ŝy Ŝx or Ŝy Ŝx Ŝy),
nor the elapsed time between the measurements has a relevant influence on this
decisive conclusion: the destruction of the result of a spin measurement by the fol-
lowingmeasurement along a different spatial direction. One concludes from this: The



10 1 Physical and Mathematical Foundations

Fig. 1.3 Destruction of the result of a spin measurement of Ŝx by the following measurement along
a different spatial direction, here Ŝy

simultaneousmeasurement of the spin along different spatial directions is impossible
in principle, just as it is impossible in practice to build a Stern–Gerlach apparatus
whose inhomogeneous magnetic field points at the same time in two different spatial
directions. At this point, as we have already remarked, one of the major questions
of the interpretation of quantum mechanics raises its ugly head: Is this only an epis-
temological problem, or is it also an ontological one? Is it simply the case that our
knowledge is (necessarily) limited, so that we will never be in a position to precisely
determine simultaneous spin values in different directions? Or is it the case that the
quantum-mechanical systems themselves cannot possess such properties at the same
time, but rather always only one at a time, that is either only spin up (or spin down)
along the x direction and no spin value along the y direction (and also none along any
other different spatial direction)? At the moment of a spin measurement, e. g. during
the measurement of Ŝy , as a rule a real changeover of properties (e. g. from spin up
along the x direction to spin up along the y direction) would then be produced, and
non-deterministically at that!

1.1.3 The Superposition Principle

We will for the moment also set this problem aside. We simply mention the various
philosophical problems which arise along the way, but in this introduction we are
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initiallymore concernedwith providing amotivation for themathematical formalism
of quantum mechanics. We can fulfil this purpose, most notably, by considering a
further extension of our spinmeasurements on single systems. To this end, we extract
from an original spin measurement, e. g. of Ŝy , all of those particles which have (for
example) their spin up, and send them through another Stern–Gerlach apparatus with
perpendicular spatial direction, an Ŝx apparatus. One can expect that one-half of the
particles will leave this Ŝx apparatus through the spin up exit, and the other half will
leave it through the opposite spin down exit. The particles which have thus been
separated are now passed to a system of “mirrors” and thereby mixed and again
combined into one beam, so that we can no longer distinguish which particle had
taken which path (cf. Albert 1992, pp. 7ff.).

What would now happen if we next perform another measurement of Ŝx? “An-
other”, since Ŝx had indeed already been measured once before.9 And since a sys-
tem of mirrors does not represent an additional spin measurement, the second Ŝx

measurement also takes place directly after the first. Then, however, the second Ŝx

measurement must be a repeated measurement, which with certainty (100%) must
show a particular result. On the other hand, one is inclined to assert that 50% of the
particles must show spin up and 50% spin down, since theyweremixed by the system
of mirrors and, therefore, the first Ŝx measurement has been revoked. And in fact, the
second Ŝx measurement does not yield a unique spin projection, but rather one-half
each of spin up and spin down. This seems to be trivial, but it is not completely with-
out problems: It shows namely that “repeatability” cannot be simply assumed as a
characteristic of what we call a measurement. The question of what is allowed to hap-
pen between two successivemeasurements of the same type so that the second counts
as simply a repetition of the first is apparently not so easy to answer. Some physicist-
s and philosophers conclude from this that the characteristic quantum-mechanical
measurement procedure is a fundamentally problematical concept, which should best
be avoided, as e. g. in the GRW approach (compare Sect. 2.4).

One could, however, react in a quite different manner: One could assert that the
essence of a measurement lies not only in repeatability, but rather also encompasses
irreversibility. A measurement would then in fact actually be a measurement only
when it cannot be reversed without leaving traces. Since in the case under discus-
sion, the ostensibly first Ŝx measurement can evidently be reversed by the system
of mirrors, it would then not count as a true measurement, so that an ostensibly
second Ŝx measurement could thus (in a nearly trivial manner) not be a repetition
of the first. However, many people currently would doubt this interpretation, since
with irreversibility one raises a macroscopic quantity to an essential property of a
measurement, and so presupposes an essential difference between the macroscopic
world and the quantum world which, if at all, should become apparent only within
the framework of an adequate interpretation of quantum mechanics.

Quite independently, we see an indisputable result at this point, which must be
taken into account by every interpretation of quantum mechanics, and which can

9At least in the sense that we, in thought, can follow the “paths” of the particles along which it is
supposed to have certain spin values in the x direction.
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Fig. 1.4 The reversal of an (ostensible) spin measurement of Ŝx by remixing the particles

be considered to be the actual peculiarity of a single system, as well as of all other
quantum systems: the possibility of the superposition of different states. Namely,
instead of measuring Ŝx for the (ostensibly) second time as in Fig. 1.4, one could,
after combining and remixing the particle beams, rather measure Ŝy for in fact the
second time. We recall: A first, original Ŝy measurement (not shown in the figure!)
had previously shown spin up in the y direction for all the particles which pass
through the (ostensibly first) Ŝx apparatus and the mirror system. What, then, would
a second Ŝy measurement after the remixing show?Would it show for all the particles
once again with certainty spin up in the y direction?

The following considerations speak against this conclusion: During the passage
through the mirror system, the particles take two separate “paths”, along which they
are supposed to have in each case spin up or spin down along the x direction, since the
ostensibly first Ŝx measurement should at least have this effect and in fact does have
it. Thus, if one were to place an additional Ŝx apparatus into one of these paths, then
that apparatus with its factual second Ŝx measurement would show with certainty
that all the particles have a certain spin—namely either only spin up or only spin
down, depending on which path the second Ŝx apparatus is inserted into. However,
particles which exhibit only spin up (or else spin down) in the x direction show upon
measurement of the spin component along a perpendicular axis just 50% of spin up
and 50% of spin down relative to that new axis. Therefore, if we were to place an Ŝy

apparatus in one of the paths, we would measure 50% each of spin up and spin down
(in the y direction). Within each of the paths, everything thus behaves just as before
with the sequences Ŝx Ŝy Ŝy and Ŝx Ŝy Ŝx , as was to be expected. The result obtained
from the original Ŝy measurement, i. e. spin up in the y direction, is destroyed by
the Ŝx measurement before the mirror system, in favour of a spin value along the x
direction. If this is in fact the case, then after passing through the mirror system, 50%
each of spin up and spin down in the y direction are combined, so that a following
Ŝy measurement should show 50% each of spin up and spin down (Fig. 1.5).

Furthermore, if the Ŝy measurement were to give the same spin value as in the
beginning (spin up in the y direction) after the mixing and with certainty, then
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Fig. 1.5 Will the original Ŝy spin value “also” be restored by the mixing of the particles?

this second Ŝy measurement would be a simple repetition of the first, so that one
would have to say that between the original Ŝy measurement and this second Ŝy

measurement at the end of the whole passage through our system, nothing relevant
had taken place. In particular, the Ŝx measurement before the mirror system would
appear to have no relevant effect, since it is completely plausible to assume that
the “mirrors” have no relevant effect on the spin value of the particles. However, it
cannot be that the Ŝx apparatus also has no effect on the spin value of the particles;
this could be verified by both Ŝy and also Ŝx measurements within the paths! And
yet it is in fact the case that the second Ŝy measurement reproduces with certainty
the result of the original measurement: All the particles after the mixing again show
their original value—spin up along the y direction. One can only conclude from this
that also this effect of an Ŝx measurement—namely the destruction of the spin value
in the y direction—is revoked by the remixing of the particles. But while one can
find an intuitively plausible explanation for the reversal of the Ŝx measurement in the
sense of the destruction of the spin value in the x direction (or one at least believes
that it can be found)—namely the mixing of particles with spin up in the x direction
with particles which show spin down in the x direction—we cannot really understand
how the mixing of the particles can reverse the effect of the Ŝx measurement also
in the sense of the restoration of the original spin value in the y direction. After all,
particles are “mixed” which (would) show along their respective paths one-half each
of spin up and spin down in the y direction!

Both of these phenomena—on the one hand, the fact that in the end a second Ŝx

measurement yields 50% each of spin up and spin down in the x direction, as if the
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first Ŝx measurement had never occurred; and on the other hand, the fact that a second
Ŝy measurement reproduces the result of the first, by yielding 100% spin up in the y
direction, as if there had never been an Ŝx measurement in between—these facts can
apparently be reconciled only by assuming that the Ŝx measurement can have only
one single effect in general. It is simply not so that such a measurement could have
two different effects, which could then be reversed completely independently of each
other: one being that particles assume a particular spin value in the x direction and
the other being that the spin value along any different axis is destroyed. In fact, we
are dealing here with one and the same effect: The assumption of a spin value along
one direction in space is at the same time and not additionally none other than the
destruction of a spin value in all other directions. Since, in our case, the spin value in
the x direction is again destroyed later, the spin value in the y direction is restored.
These effects cannot be separated, because they are the same. One can say that the
state of a particle with a particular spin value in a particular direction in space is at
the same time none other than the superposition of two opposite spin values in some
other direction. This does not mean that e. g. a particle with spin up in the y direction
would have both spin up and also spin down in the x direction; that would be rather
contradictory, especially considering that it would also have to have all the other
spin values in all the other different directions. What is meant instead is unclear:
“Superposition” is at this point simply an expression for something which has not
yet been understood and which represents the main problem for the interpretation
of all of quantum physics.10 What is important at this point is that “superposition”
motivates themathematical formalism of (standard) quantummechanics. It evidently
behaves like the linear combination of vectors—each such linear combination yields
a new vector in the same vector space, and each vector can be represented in infinitely
many ways as a linear combination of other vectors—and this therefore motivates
taking the mathematics of quantum mechanics to be the theory of vector spaces.

1.2 The Mathematical Formalism of Quantum Mechanics

We are seeking a mathematical formalism which is capable of expressing the phe-
nomena described above, and which in particular can reproduce the decisive new
property of the superposition of “states”.11 Such a formalism is presented by the
structure of vector spaces, which we introduce here initially in a purely mathe-
matical form. In order to keep the matter from becoming too abstract, we use an

10In physics, superpositions are also well known from the classical field theory in the addition of
wave phenomena. Historically, the superposition principle was therefore introduced into quantum
mechanics in order to describe the wave character of the particles. Here, however, it serves as a very
abstract principle: Spin states are not waves.
11The concept of “states”will be discussed inmore detail in the various sections on the interpretation
of quantum mechanics. Intuitively, it somehow maps the set of properties which a quantum system
possesses at a particular moment.
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intuitively understandable geometric representation; the intended physical interpre-
tation will also be kept in mind. However, we should note that it is important to
distinguish carefully between the formalism and its application, in order to keep it
clear just what is controversial and what is not, and where precisely the problem-
s of the interpretation of quantum mechanics enter. Furthermore, we should note
that in these introductory sections, we are considering only the standard formalis-
m of ordinary quantum mechanics, as developed in John von Neumann’s founding
work of 1932 (cf. von Neumann 1932). Other descriptions—e.g. those used in the
GRW approach (Sect. 2.4), or in the works of Bohm and of Everett (Chap.5), or in
QFT (Chap.6)—raise additional questions and problems of interpretation. One could
even ask whether such mathematical modifications are really interpretations of the
same quantum physics, or rather already represent alternatives to standard quantum
mechanics. Finally, as we have mentioned, many interpretation problems deal with
“composite systems”, with the “indistinguishability” of similar particles, as well as
with the infamous EPR paradox: Their treatment requires distinctive mathematical
features, which we will discuss later at suitable points in the text. Here, we limit our
considerations again to single systems.

The following discussion is divided into four parts. The first two—“Vectors and
their representation” and “Operators and their eigenvalues”—provide the necessary
prerequisites for an understanding of the philosophical debates around quantum
physics. They relate to school mathematics, expanded in terms of the central con-
cepts of “(Hermitian) operators” (preliminary meaning: measurement apparatus;
observable quantity), “eigenvalues” (measurement outcome; property) and “eigen-
vectors” (eigenstates). The section which follows them—“The Problem of multiple
eigenvalues”—is more complex. It is necessary in particular for a deeper understand-
ing of “indistinguishability” and “EPR/Bell” and can thus be skipped over by readers
who are mainly interested in the chapters on the interpretations of quantum mechan-
ics (“Copenhagen”, GRW, Bohm, Everett). The fourth section, finally, deals with
“special operators”, which, depending on the problem at hand, may be required.
We recommend that readers consult the corresponding subsections when they are
referred to in the text.12

1.2.1 Vectors and Their Representation

A vector space V is a non-empty set whose elements, the vectors, can be added
to one another and be multiplied by (real or complex13) numbers. This definition,

12One more comment:We have chosen the more abstract algebraic approach to quantummechanics
which, in particular, is suited for generalization to QFT. It is computationally less demanding; for
example, no differential equations must be solved. For the (perhaps more intuitive, but computa-
tionally more difficult) calculus approach, we suggest that students of philosophy consult the book
by Nortmann (2008).
13Complex numbers are an extension of the real numbers. The idea here is that quadratic equations
can always be made solvable, i. e. even for negative numbers, by setting the imaginary quantity i
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Fig. 1.6 Vector �c is
generated by taking a linear
combination of the vectors �a
and �b with the extension
factors (coefficients or
amplitudes) ci :
�c = c1�a + c2 �b

which sounds rather abstract, is intended to describe the concept of a vector space
as broadly as possible, so that also non-intuitive spaces are included within it. In the
two-dimensional intuitive space, it simply corresponds to the well-known addition
and elongation/contraction of arrows, as shown in Fig. 1.6.

At the same time, this visualization gives a first impression of how superposition is
expressed mathematically: If quantum-physical states in somemanner correspond to
vectors, then the vector14 |C〉 is a superposition of those states which are represented
by |A〉 and |B〉.15

A vector space is called Euclidian (or when it is complex, unitary) if an inner
product is defined on that space. This means that one can multiply two vectors by
each other. Notation: 〈A|B〉 (referred to as “A times B”). To be sure, we do not obtain
a new vector in this way, but instead simply a real (or complex) number. The intuitive
meaning of the inner product is that it is the geometrical projection of one vector
onto the other (see Fig. 1.7).

An inner product can be employed to determine the lengths of vectors—the norm:
‖�a‖ = √|〈A|A〉|—or to measure the distances and angles between them. In partic-
ular, the inner product of two vectors which are mutually perpendicular is zero:
〈A|B〉 = 0 This makes it possible to define the central concept of an orthonormal

as the solution to x2 = −1 (this simplifies many computations). With the real numbers a and b,
complex numbers in general take on the form a + ib, thus with a real part and an imaginary part, and
they can be graphically represented in a plane, where one coordinate axis is taken to be imaginary.
14Instead of �c, it is convenient in quantummechanics to write |C〉 for a state vector. The dual vector
is written as 〈C |, so that, as we shall soon see, the inner product of two vectors is expressed simply
as 〈A|B〉 (bra-ket notation due to P.A.M. Dirac).
15By addition and extension/contraction, one always obtains new vectors which are also elements
of the same space as the original vectors. The superposition of two possible states of a particular
single physical system is likewise always an additional possible state of the same system. For many
particles of similar type, however, there is an important limitation (keyword: superselection rules;
cf. Chap.3).
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Fig. 1.7 The inner product
〈A|B〉 of two vectors is the
geometrical projection of the
one vector onto the other; it
thus determines the angle
between them

Fig. 1.8 In terms of the
basis {|A1〉, |A2〉}, the vector
|B〉 has the component
representation
|B〉 = 3|A1〉 + 2|A2〉, or

(3
2

)

basis (for short: basis).16 In order to obtain such a basis, we first have to normalize
the corresponding vectors to the same unit length and then choose the maximal num-
ber N of vectors which are pairwise mutually perpendicular. For these vectors, we
have 〈Ai |A j 〉 = 0; i , j are indices which run from 1 to N, with i �= j . In the two-
dimensional intuitive space, there are at most twomutually perpendicular vectors—a
basis there defines a rectilinear coordinate system with two axes; and in general, it is
found that N is precisely the dimensionality of the vector space in question.17 Thus,
every vector in our vector space can be represented in terms of a basis of that space,
as shown in Fig. 1.8.

Thus far, we have considered vectors as abstract objects, for which we simply
wrote |A〉; now we want to be more concrete. A vector is associated with certain
numerical values as components, whose number is equal to the dimensionality of the
vector space; in this way, the intuitive vector can be represented by: |B〉 = (3

2

)
. The

basis vectors themselves can also bewritten in terms of a component representation—
in a real, two-dimensional space, they are

(1
0

)
and

(0
1

)
. And then we can compute the

inner products in a concrete manner, according to the following rule18:

For |A〉 =
⎛

⎜
⎝

ai
...

aN

⎞

⎟
⎠ and |B〉 =

⎛

⎜
⎝

bi
...

bN

⎞

⎟
⎠ , we have

16A set of vectors forms a basis of a vector space when all the other vectors in the space can be
generated as linear combinations of them. We consider only orthonormal bases. It is important to
note that a given vector space has an infinite number of such bases.
17In the extreme case, this dimensionality can be (countably) infinite.
18One can readily verify that the basis vectors given above are indeed normalized to length = 1 and
are orthogonal (mutually perpendicular) to each other, i. e. orthonormal.
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Fig. 1.9 Referred to a different basis {|C1〉, |C2〉}, the same vector has a different representation:
|B〉 = 3.3 |C1〉 + 1.2 |C2〉 (numerical values are chosen so that the norm is conserved)

〈A|B〉 = a1b1 + · · · + aN bN =
N∑

i=1

ai bi . (1.1)

Now there is, to be sure, not just one basis, but rather infinitely many of them.
Referred to each such basis, the vectors have a unique set of components, so that the
concrete numerical representation depends upon which basis is chosen (Fig. 1.9).

One and the same vector thus has infinitely many component representations
which can be computed and converted into one another using so-called basis trans-
formations. This variability of the representation will correspond to the fact that one
and the same quantum-physical state—for example, the state with spin up in the x
direction—is not only a superposition of the states with spin up and spin down in the
y direction, but rather at the same time of infinitely many other superpositions of spin
up and spin down along every other spatial direction. However, we have to remem-
ber that the choice of a particular basis is rather arbitrary: Strictly mathematically,
it is purely conventional, and therefore, the quantities with a physical significance
are rather those which are independent of the choice of basis, that is those which
are invariant under basis transformations—which the components of the vectors are
clearly not. Their lengths and the angles between the vectors should, in contrast, not
depend upon which basis is chosen for their representation; and indeed, the inner
product is an invariant quantity under basis transformations. Not least for this reason,
the inner product has a special significance in physics, as well (Figs. 1.9 and 1.10).

The difference between the vector itself and its representation in terms of a par-
ticular basis can give us a first impression of the fact that the vector space formalism
is basically a very abstract affair. The goal of an empirical theory such as quantum
mechanics, however, is to confront the theory with experiments, i. e. with observa-
tional data. It is finally the success of predictions of the results ofmeasurements that is
the proving ground for empirical science. Formeasurement outcomes, however, there
is only one possiblemathematical representation, namely the real numbers, whichwe
have not obtained here even after choosing a certain basis for the concrete represen-
tation of our vectors. Vectors correspond only to columns of numbers with possibly
even a (countable) infinity of components, and furthermore in quantum mechanics,
these in general are complex numbers. For this reason also, the inner product is
of special significance: The square of its absolute value—|〈A|B〉|2—always yields
usable real numbers, which, as we shall see, are not yet the measured values, but
rather the probabilities of obtaining particular outcomes from a given measurement.
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Fig. 1.10 The operator Ô “causes” a rotation of all vectors through a certain angle

In order to arrive at themeasured values, we need to introduce onemoremathematical
object: the operator.

1.2.2 Operators and Their Eigenvalues

To start with, we make a didactic remark: This section presents the crucial extension
of simple vector algebra to permit its application to quantummechanics. The intended
typical interpretation is suitable for the mathematical description of the experiments
in the preceding subchapter, in particular the repeated measurement (cf. Fig. 1.2) and
the destruction of the results of a spin measurement (cf. Fig. 1.3). We thus intend
to represent a Stern–Gerlach apparatus or an observable quantity such as Ŝy by an
operator, and the eigenvalues of that operator will then represent the measurement
outcomes (or properties), such as spin up along the y-axis. However, not every
mathematical operator is suitable for such a representation, since not every operator
even possesses eigenvalues; thus we have to begin somewhat more generally, that is
more abstractly.

More generally, an operator Ô is a mechanism which maps each vector from
a given vector space to one and only one (as a rule different) other vector in that
same space. We write: Ô|A〉 = |A′〉, and then say that the “application” of Ô to a
given vector |A〉 leads to the vector |A′〉 in V . In the two-dimensional intuitive space,
for example, a rotation through the angle θ around a particular axis of rotation is
a (geometrical) operation, which might be the effect produced by such an opera-
tor. Another example could be the lengthening (or shortening) of each vector by a
factor λ.

In principle, there are a very large number of different operators; some of them
have rather unfavourable computational properties. A class of operators which is
particularly easy to apply are the linear operators. Linearity means mathematically
that superpositions are conserved in the following sense:
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Ô (λ|A〉 + μ|B〉) = λ
(

Ô|A〉
)

+ μ
(

Ô|B〉
)

. (1.2)

Geometrically, we can say that they conserve parallelity, i. e. originally parallel lines
(spanned by vectors) remain parallel.19 Rotations (Fig. 1.10) or parallel shifts are
thus examples of linear operations.

In view of our search for a mathematical representation of quantum-mechanical
measurement outcomes, a further mathematical property of linear operators is help-
ful: Linear operators, which are at first abstract mathematical objects, just like the
vectors themselves, likewise have—in a given basis—a component representation
For this, we require N 2 components, where N is the dimensionality of the vector
space. The component representation is namely the following: 〈Ai |Ô|A j 〉—so that a
linear operator can be represented as a square matrix. The application of an operator
to a vector, i. e. Ô|A〉 = |A′〉, can then be computed as the product of its matrix with
the vector according to the rule (given here for the two-dimensional case):

(
O11 O12

O21 O22

)(
a1

a2

)
=

(
O11a1 + O12a2

O21a1 + O22a2

)
. (1.3)

The rotation operator, which we again take as a concrete example, has the following
matrix representation in two-dimensional space:

(
cos θ − sin θ
sin θ cos θ

)
, (1.4)

so that for an angle of 90◦, applied to a basis vector
(1
0

)
, it yields:

(
0 −1
1 0

) (
1
0

)
=

(
0
1

)
. (1.5)

As expected, the rotation operator projects the one basis vector precisely onto the
other (orthogonal) basis vector in this special case.

Note that the axis of rotation here is perpendicular to the plane of the basis vectors,
and thus lies outside the two-dimensional vector space itself. In view of our next step,
however, it would be advisable to consider a rotation around an axis within the vector
space in question, i. e. perhaps a rotation around the z-axis in the three-dimensional
intuitive space. The corresponding matrix then has the following form:

⎛

⎝
cos θ − sin θ 0
sinθ cos θ 0
0 0 1

⎞

⎠ . (1.6)

19In every interpretation of the formalism, parallel vectors correspond to physically indistinguish-
able states, so that linear operations bring no physical differences into play where none were present
before.
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This operator, which thus “causes” a rotation in a three-dimensional space through
the angle θ around the z-axis, has a characteristic property: It leaves just one (nor-
malized) vector unchanged, namely that vector which spans the axis of rotation. In
general, vectors whose directions are conserved are eigenvectors of the correspond-
ing operator, and the associated amplitude factors are called their eigenvalues. The
operator possesses its eigenvectors and eigenvalues independently of the basis used
to represent thematrix, so that they characterize the operator uniquely. Our rotation in
the three-dimensional space is of course characterized above all by its axis of rotation;
the vector which spans this axis is thus an eigenvector of the rotation operator with the
eigenvalue 1. But take note that by nomeans all operators even have eigenvectors (and
eigenvalues), as is the rule, for example, for the rotation operator in two-dimensional
space, which has no eigenvalues (except for certain angles): It rotates all the vectors
in the same way; i. e. it changes the directions of all vectors. Furthermore, in com-
plex vector spaces—as in the case of quantummechanics—eigenvalues are generally
complex numbers, so that they can serve neither in a geometrically intuitive way as
extension factors (amplitudes), nor physically as measurement outcomes.

Now, however, there is finally a special subclass of linear operators, so-called
self-adjoint or Hermitian operators , whose matrices (making use of complex con-
jugation20) are symmetric. They have, as one can prove mathematically, always the
maximum number—namely N—of eigenvalues, which all are also real. These real
eigenvalues are what will become the mathematical representatives of the quantum-
physical measurement outcomes, and indeed nearly independently of the particular
interpretation of the mathematical formalism of quantum mechanics which may be
proposed. Linear and self-adjoint operators thus represent measuring devices or
observable quantities (property types),21 and their eigenvalues represent the corre-
sponding measurement outcomes, that is experimental data or concrete properties,
whereby here in each case the “or” already suggests a certain leeway for interpreta-
tions. (In Bohm’s interpretation in particular, it will be seen that while spin eigenval-
ues are observable data objects, they do not represent a property of the microsystem.)
Thus, the first task is to solve the eigenvalue problem, namely the equation (where
Ô is self-adjoint):

Ô|A〉 = λ|A〉, (1.7)

which with certainty has real solutions for λ.
Let us consider a computationally simple example.22 We wish to determine the

eigenvalues of the following linear, self-adjoint operator in an abstract (because

20The complex conjugate of z = a + ib is z∗ = a − ib, and z2 = z∗z.
21For single systems, we can say that every self-adjoint operator represents some sort of quantum-
mechanical observable quantity such as spin, energy, even if it is not always easy to identify the
concrete physical realization corresponding to a given mathematical operator. For many-particle
systems, however, not every self-adjoint operator corresponds to an observable quantity (keyword:
superselection rules; cf. Chap. 3).
22The following calculation is intended only to be illustrative. There is a standard mathematical
procedure for calculating the eigenvalues and eigenvectors of self-adjoint matrices. More details
on the mathematics of physics can be found in Räsch (2011), for those who lack experience in this
area.
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complex), two-dimensional vector space:

Ŝ =
(
0 −i
i 0

)
. (1.8)

After inserting into Eq.1.7, we find a first rearrangement:

(−λ −i
i −λ

)(
a1

a2

)
=

(
0
0

)
. (1.9)

Such a system of equations (for a1 and a2!) is solvable, as is found in more-or-less
elementary mathematics, when the so-called determinant of the matrix is 0. This
leads to the following equation for λ:

λ2 + i2 = 0 . (1.10)

The given operator thus has the eigenvalues 1 and −1, which, as one could perhaps
already expect at this point, are supposed to correspond to themeasurement outcomes
of spin up and spin down along a certain spatial direction.23

The associated eigenvectors24 are obtained by inserting the eigenvalues into
Eq.1.9; then, normalized to unit length, they are:

(
1/

√
2

i/
√
2

)
and

(
1/

√
2

−i/
√
2

)
. (1.11)

The inner product between these eigenvectors is 0 (remember complex conjuga-
tion!); i. e., they form an orthonormal basis of the underlying vector space; a result
which can be generalized: Every linear and self-adjoint operator on a vector space of
dimensionality N has on the one hand N (not necessarily different) real eigenvalues
and on the other hand (at least) one basis composed of eigenvectors.

If we now represent the operator in a (here: the) basis composed of its eigen-
vectors—which was up to now not the case in our example—then its matrix becomes
diagonal, and its eigenvalues can be found along the diagonal:

Ŝ =
(
1 0
0 −1

)
. (1.12)

Thus far, i. e. before we put the operator (or its matrix) into diagonal form, it, and its
eigenvectors were represented in a different basis (compare Fig. 1.11).

23For electrons, the spin projectionvalues are of course 1
2 and− 1

2 , but numerical details are irrelevant
here.
24Caution: Normally, each eigenvector has exactly one eigenvalue; while conversely, each eigen-
value belongs to exactly one eigenvector only when it (the eigenvalue) is simple, i. e. it occurs only
once—which is in fact the case here. The problem of multiple eigenvalues will be treated in the
following Sect. 1.2.3.
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Fig. 1.11 Representation of
the eigenvectors of Ŝ
referred to the basis shown in
boldface. They themselves
form the eigenvector basis of
a different operator, Ŝ′

From the perspective of vector space theory, it may seem trivial that there are thus
many more bases than those whose elements are eigenvectors of a given operator.
However, from the viewpoint of their quantum-physical meaning, this is quite re-
markable, since it fundamentally implies the incommensurability of two observable
quantities and the superposition principle. In order to get a feeling for this, we once
again choose the basis in which our operator was first represented: Its elements are
then not eigenvectors of the given operator. However, it is the case that there must be
another linear and self-adjoint operator whose eigenvectors form precisely this basis.
Not only does every such operator have (at least) one basis formed from (some of)
its eigenvectors, but also for every basis, there is an associated operator for which it
is an eigenvector basis.25 That operator which is associated with our basis must have
the diagonal matrix form in that basis, and along the diagonal are its eigenvalues. As
we shall see, it is just this matrix:

Ŝ′ =
(
1 0
0 −1

)
. (1.13)

It should not be confused with the operator given above (cf. the matrix 1.12), whose
(identical) diagonal form occurs in a quite different basis. However, it does naturally
have some common features with our original operator: Both of the real eigenvalues
are likewise 1 and −1, corresponding again to the two (possible) measurement out-
comes spin up and spin down in some particular spatial direction. It is in fact found
that these two operators just correspond to our measurements of the spin along the
x and the y directions.

Let us now again consider the two two-dimensional coordinate systems, or corre-
spondingly, the two bases consisting of these two sets of eigenvectors: One operator
is in each case represented as a diagonal matrix, while the other has a different form.
This result can also be generalized: If two (linear and self-adjoint) operators have no
common basis consisting of (some of) their eigenvectors,26 then their matrices cannot
be simultaneously brought into diagonal form, i. e. not in terms of the same basis
(and vice versa). This formulation suggests that there are indeed different operators
which can be simultaneously brought into diagonal form, because they in fact share

25Also, this holds for many-particle systems only with some limitations.
26Note that two operators can only be different if they have some different eigenvectors, because
an operator is completely characterized by its eigenvectors. In order to have a common basis of
eigenvectors they thus must have (at least) N eigenvectors in common and must have more than N
eigenvectors in total, from which (at least) some are different. For more details see the following
section.
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a common basis of eigenvectors.27 For any two operators which are currently not
represented as diagonal matrices, where therefore the basis has not been chosen to
consist of (some of) their eigenvectors, we can thus ask the instructive question as to
whether they have any common basis of eigenvectors, that is whether their matrices
can be simultaneously brought into diagonal form (“diagonalized”).

In order to answer this question, we require the following purely computational
rule for the multiplication of two matrices (here again in the two-dimensional case):

(
a11 a12

a21 a22

) (
b11 b12
b21 b22

)
=

(
a11b11 + a12b21 a11b12 + a12b22
a21b11 + a22b21 a21b12 + a22b22

)
. (1.14)

The multiplication of two matrices thus yields a matrix of the same dimensionality.
It represents the successive application of two operators,28 which together act as
(another) linear operator: Â B̂|�〉. It is then of central importance that the effect of
the sequential application of operators may depend on the order in which they are
applied.29 The rule for matrix multiplication as defined above is in general namely
not commutative, as our example shows:

(
1 0
0 −1

) (
0 −i
i 0

)
=

(
0 −i
−i 0

)
;

but in contrast30: (
0 −i
i 0

) (
1 0
0 −1

)
=

(
0 i
i 0

)
. (1.15)

It can be shown that the multiplication of two matrices is commutative precisely
when they can be simultaneously diagonalized, that is when the two operators repre-
sented thus have a common basis of eigenvectors. If they in contrast do not commute,
they cannot be simultaneously diagonalized, because they have no common basis of
eigenvectors. Since, as can be shown, the commutator of two matrices Â and B̂,

[ Â, B̂] = Â · B̂ − B̂ · Â (1.16)

is invariant under basis transformations, it is mathematically significant, i. e. the
question of whether two operators have a common basis of eigenvectors and thus are
simultaneously diagonalizable has an unambiguous answer.31 Interpreted physically,

27In the two-dimensional case, this statement is not very rich in content. We will see, however, that
there are very interesting examples of this principle in higher-dimensional vector spaces.
28Casting a glance backwards: Sequential spin measurements are mathematically represented by
successive application of (self-adjoint or Hermitian) operators.
29Consider, for example, two successive rotations in space around two different rotational axes.
30Note that the resulting matrices in this example are not Hermitian; i. e., they do not represent
observable quantities.
31Therefore, in the following, we will speak simply of (non-)commuting operators, when the ma-
trices which represent them (do not) commute.
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the commutator becomes the most important equation in quantum mechanics: If it
is not 0 (or not the null matrix)—as in our example, where it in contrast has the
“value” (

0 −2i
−2i 0

)
, (1.17)

then a measurement of the one quantity destroys the results of a measurement of
the other quantity, as shown in the first section for spin operators referred to dif-
ferent spatial axes; and this is independent of the temporal order in which they are
applied and of the elapsed time between the two measurements. Realistically, we
can choose the interpretation that the quantum-physical system cannot possess the
properties corresponding to the two eigenvalues simultaneously. Non-commuting
matrices (operators) thus form the precise mathematical analogue of incommensu-
rable (or less clearly: complementary) observable quantities. If the commutator of
two matrices is 0, in contrast, then the sequential application of the two operators
they represent is independent of their order, and the physical measurements they
represent do not mutually destroy each other’s results. The properties associated
with the corresponding eigenvalues can be attributed simultaneously, in a realistic
interpretation, to the quantum-physical system.32

With this formulation, we should be aware of a certain ambiguity: It is uncontested
that if the “state” of the quantum-physical system is represented by an eigenvector
of a particular operator, a measurement must yield the associated eigenvalue with
certainty. What is in fact disputable is the converse that when a measurement yields
a certain eigenvalue of a particular operator, the system is then at least immediately
afterwards in the state which is represented by a corresponding eigenvector. To
assert this is equivalent to the assumption of the eigenvalue–eigenvector link (which
is frequently treated in physics as a given)—namely von Neumann’s “projection
postulate”. In philosophy, this link still is controversial (see for example van Fraassen
1991). Therefore, here we state only what is truly uncontested:

1. Every vector in the Hilbert space33 is an eigenvector of some linear and self-
adjoint (“Hermitian”) operator. In relation to such a vector |Ai 〉, the expectation
value of this operator is identical with the associated eigenvalue34:

〈Ai |Ô|Ai 〉 = λi . (1.18)

32Note that the commutation relation is not transitive: It can happen that A in fact commutes with
B, and B with C , but not necessarily A with C .
33In quantummechanics, the unitary vector space of atmost countably infinite dimensionalitywhich
underlies the computations is denoted as the “Hilbert space”.
34The expectation value of an operator is mathematically derived from the usual mean value.
Geometrically, the vector that results from the application of Ô to |A〉 is projected back onto |A〉
Physically, this corresponds (uncontroversially) to just the mean value of numerous measurements
of the observable quantity associated with Ô .
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Since the variance around this mean value is zero,35 we can say that in this state,
the measurement outcome corresponding to the eigenvalue λi will be obtained
with certainty, or that the property corresponding to λi is present with certainty.

2. Everyvector can at the same timebe represented as a superpositionof eigenvectors
of a different operator Ô ′ that does not commute with Ô36:

|A〉 =
∑

i

ai |Bi 〉 . (1.19)

Referred to |A〉, the expectation value of this other operator is not identical with
one of its own eigenvalues μi (and, also, its variance is not zero!):

〈A|Ô ′|A〉 = (
∑

i

a∗
i 〈Bi |)Ô ′(

∑

i

ai |Bi 〉) =
∑

i

μi |ai |2 . (1.20)

For each vector, there are thus operators corresponding to observable quantities
whose measurement outcomes spread. They then do not yield a particular mea-
sured value which corresponds to one of the eigenvalues with certainty, but only
with a certain probability. Every state thus has properties of the quantum-physical
system for which it is not guaranteed that they will result from a measurement;
there are only certain probabilities for their occurrences.

Thus far, the eigenvalues of a given operator were supposed not only to be all real, but
also all different. Each such eigenvaluewas associatedwith precisely one eigenvector.
However, this is not necessary, and when an eigenvalue occurs more than once,
interesting difficulties arise. The problem of multiple eigenvalues deserves its own
section

1.2.3 The Problem of Multiple Eigenvalues

Multiple eigenvalues provide instructive peculiarities which are frequently neglected
in the physical-philosophical literature. This correspondingly difficult section is di-
rected in the main at students of philosophy or physics with ambitions to delve more
deeply into the field of the philosophy of physics. In particular, it can be skipped over
if the interest of the reader or the subject of the seminar is mainly directed towards
the chapters on the interpretation of quantum mechanics.

Let us consider the following matrix in terms of the two-dimensional intuitive
space: (

5 0
0 5

)
. (1.21)

35The variance (here: the standard deviation) is calculated from �Ô = 〈A|Ô2|A〉 − |〈A|Ô|A〉|2,
which here yields zero.
36This representation is not unique; there are infinitely many such different representations.
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It is diagonal; that is, it is in a basis consisting of eigenvectors of the operator that
it represents, and as a result, it contains N—namely 2—real eigenvalues along its
diagonal. In contrast to the matrices we have considered thus far, however, these two
eigenvalues are not different, which in this two-dimensional example reflects the
rather uninteresting fact that this operator, interpreted physically, measures nothing.
It is mathematically in fact the operation which simply extends every vector by a
factor of 5, so that in this special case, every vector is an eigenvector of this operator—
it thus does not differentiate in any manner.37

If, on the other hand, in spaces of higher dimensionality there are multiple, but not
all equal eigenvalues—for example two out of three in the three-dimensional case—
then there are rather important and interesting consequences.We can say initially that
a multiple eigenvalue is always an indication that the corresponding measurement
outcome is not yet sufficiently differentiated. Mathematically, a multiple eigenvalue
in fact does not belong simply to one (normalized) eigenvector, but rather to a whole
subspace of the corresponding dimensionality; that is, for a double eigenvalue in
a three-dimensional space, the subspace is a two-dimensional plane, within which
every vector is an eigenvector with this double value as eigenvalue. Looking ahead,
we therefore have already mentioned that every linear and self-adjoint operator has
at least one basis composed of eigenvectors; we can now make this more precise:
It has exactly one basis composed of its eigenvectors if all of its eigenvalues are
different; and when some eigenvalues occur multiply, it has—not arbitrarily many—
but yet infinitely many such different bases. This leeway indicates that in the case of
multiple eigenvalues, there is (at least) one more, genuinely different operator which
commutes with the given operator, and that there is, as a result, (at least) one more
meaningful measurement device or observable quantity which can simultaneously be
measured, so that—in an appropriate interpretation—the quantum-physical system
has (at least) one additional property of a distinct kind at the same time.

In a two-dimensional space, however, apart from the trivial case of a uniform
length change, all the operators have different eigenvalues and thus each one has just
one basis consisting of its eigenvectors. There are thus no more genuinely different
operators which commute with a given operator, which would then both have a
common basis of eigenvectors (that could be only the one common basis). And
therefore, a single electron cannot have two spin values of different types (i. e. along
different spatial directions) simultaneously.38

Now, in contrast, let us consider the first excited state of the hydrogen atom, or the
second energy level of the orbital model, which we all know from chemistry classes.
As you may remember, one distinguishes there essentially between four different
states, namely a state of spherical symmetry, the s orbital, and three “dumbbells”,
the p orbitals. They correspond to the eigenvalues of the orbital angular momentum
operator L̂2: the s orbital to the eigenvalue 0 and the p orbitals to the eigenvalue 1.

37This has as its consequence that in every physical interpretation of the formalism, two vectors
which differ only in their lengths correspond to physically indistinguishable states.
38As already stated, this last formulation is indeed standard, but nevertheless subject to different
interpretations.
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The eigenvalue 1 is thus threefold; it belongs to a three-dimensional subspace which
contains all three p orbitals (and still more). Theremust therefore be still (at least) one
more substantial operator which commutes with L̂2 We still lack one simultaneously
observable quantity, one more measurement outcome, which (among others) can
differentiate among the three p orbitals. Such an operator is (for example) L̂ z , the
component of orbital angular momentum along the z direction. It has three different
eigenvalues, namely 1, −1 and 0 (twice!).

Since L̂2 and L̂ z must commute, they can be simultaneously diagonalized, so that
along their diagonals, their eigenvalues are found—according to their multiplicities:

L̂2 =

⎛

⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

⎞

⎟⎟
⎠ and L̂ z =

⎛

⎜⎜
⎝

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −1

⎞

⎟⎟
⎠ . (1.22)

They have one common basis of eigenvectors, which, represented in intuitive s-
pace, correspond to the four orbitals. The quantum-physical system—in a realistic
interpretation—thus obtains two qualitatively different properties, for example the
pair of values (0, 0) for the s orbital or (1,−1) for one of the p orbitals. Note that
in fact, it has two more values (or properties), namely an energy eigenvalue (which
was already mentioned as the “first excited state”), and a spin value of the bound
electron along a particular spatial direction.39

The important question then arises as to how many pairs of mutually commuting
operators are at most present in a given situation; howmany observable quantities (or
properties) are at most simultaneously guaranteed in a particular quantum-physical
system. And it is still more important to constantly remind oneself that this maximal
number can never mean all in quantum mechanics; that there are always still other
operators which do not commute with (at least) one of the set of maximal pairs of
mutually commuting operators, so that there is always (at least) one more basis of
the vector space which is not an eigenvector basis of the given operators—and that
therefore (according to the standard interpretation), the quantum-physical system
does not always have an observable value corresponding to every type of property
for which there is in principle an eigenvalue. In this example, such a quantity is,
for instance, the position: A bound electron, like that in the hydrogen atom, has no
well-defined position!

Therefore, multiple eigenvalues open the path to common observable quantities or
the presence of qualitatively different properties. The example shows in addition that
one must be very careful: We said that commuting matrices can be simultaneously
diagonalized and that the operators they represent thus have (at least) one common
basis of eigenvectors. Furthermore, it holds conversely that non-commuting matrices
cannot be simultaneously diagonalized and the operators they represent have no

39If we wished to take these additional variables into account at the same time, we would have to
base our calculations on a space with still more dimensions than the four-dimensional vector space
considered here.
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common basis consisting of eigenvectors. One could thus think that on the one hand,
commuting operators would have all of their eigenvectors in common, and that on the
other hand, non-commuting operators would have no common eigenvectors at all.
In fact, this holds only in the case that all of their eigenvalues occur singly. Multiple
eigenvalues imply, in contrast:

1. Commuting operators indeed have a common basis of eigenvectors, but by no
means all of their eigenvectors are shared. Rather, an operator may well have
many eigenvectors which are not eigenvectors of a certain other operator with
which it commutes, “although” their observable quantities are commensurable.
Thus, for example, L̂2 in the three-dimensional eigenspace of its threefold eigen-
value 1 has elements (i.e. eigenvectors) which instead of being eigenvectors of L̂ z

are instead eigenvectors of L̂ x , the component of the orbital angular momentum
in the x direction, which do not commute with L̂ z One could say that the mea-
surement outcome 1 of the operator L̂2 means something different, depending
on which other commuting operator it is connected with, so that sometimes the
properties of quantum-physical systems are context-dependent. But that is the
subject of a more extended philosophical interpretation.

2. Non-commuting operators indeed have no common basis of eigenvectors, but
they may well “nevertheless” have some common eigenvectors.
Thus, for example, the s orbital—due to its spherical symmetry—is not only a
common eigenvector (or rather its intuitive representation) of the commuting op-
erators L̂2 and L̂ z with the eigenvalue pair (0, 0)The eigenvector which geometri-
cally represents the s orbital is also in addition an eigenvector of the quantities L̂ x

and L̂ y , which are neither commensurable with L̂ z nor with each other—likewise
with their (also double) eigenvalue 0 According to the standard reading, there
is thus a special state in which the quantum-physical system has not only two
values—as would correspond to the maximal40 number of pairwise commuting
operators—but instead four qualitatively different observable quantities (proper-
ties) at the same time. These are indeed numerically all equal—namely all 0—but
qualitatively, they must be distinguished.

These facts—that therefore, commuting operators “nevertheless” may have non-
common eigenvectors, and that incommensurable observable quantities “indeed”
may have some common eigenvectors—should be kept in mind; in particular when
considering the EPRparadox (cf. Chap.4). The two-particle system that is considered
there as a rule has a total spin of 0. However, the associated eigenvector, which is
employed over and over—namely the so-called singlet vector—represents a very
special state: On the one hand, it is a common eigenvector of the spin projection
operators Ŝx , Ŝy and Ŝz , which are not mutually commuting, with the eigenvalues
(0, 0, 0). And on the other hand, it is not an eigenvector of the single spin operators,
which (depending on the spatial direction) do commute with these. What follows
philosophically from this mathematical peculiarity of the singlet state?

40Energy and spin values are left out of consideration here.
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1.2.4 Special Operators and the Position Space
Representation

With the above, we have sketched out the mathematical formalism of ordinary quan-
tum mechanics of single systems in its basic aspects. As we have already indicated
with a view to further developments, the next major difficulty to be overcome arises
in the transition to many-particle systems; their mathematical fundamentals will be
presented at an appropriate point. In this section, we want to introduce some spe-
cial operators which play a particular role for certain purposes. They are (with one
important exception) all linear and self-adjoint and thus have a maximum number
of eigenvalues which are all real and therefore can be interpreted physically as ob-
servable values. These operators are “special” in particular through their physical
meanings, which we can therefore not leave unmentioned here, but also for their
mathematical properties. They are characterized in addition to their linearity and
symmetry41 by (at least) one further, characteristic mathematical property.

These special operators become important in the context of specific problems,
such as the statistical operator for the mathematical description of the measurement
problem and of many-particle systems. In a first reading of this book, one could
therefore skip over this section and then refer back to the corresponding subsections
as they are referenced in other chapters. Those who are particularly interested in the
problem of the spatiotemporal embedding of quantum objects can skip immediately
to “time-evolution operators” and the “position representation”.

Projection operators. Projection operators have the additional mathematical prop-
erty of “idempotence”, i. e. their repeated application to a previously projected vector
has no further effect42: P̂ P̂ = P̂ It follows from this that their only eigenvalues are 1
and 0. If P̂|�〉 = λ|�〉, then P̂ P̂|�〉 = P̂(λ|�〉) = λ2|�〉 and thus λ2|�〉 = λ|�〉.
These eigenvalues can be understood as answers to a yes/no question: Is a certain
measured value (or a certain property) present or not?

One can therefore associate a projection operator P̂λi with every eigenvalue λi of
an arbitrary Hermitian operator Ô . If λi is a single eigenvalue, then this holds also
for the eigenvalue 1 of the corresponding projection operator; it thus projects
onto the eigenvector |�i 〉 with eigenvalue λi and can then be written as P̂λi =
|�i 〉〈�i |. If the quantum-physical system is associated with this eigenvector, then
the expectation value of this projection operator is of course 1; for every other vector
|�〉 = ∑

i ci |�i 〉, it holds that:

〈�|P̂λi |�〉 = |〈�i |�〉|2 = |ci |2 . (1.23)

41Keep complex conjugation in mind!
42This property should not be confused with the requirement of repeatability of a measurement.
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One says that the expectation value of the projection operator of the eigenvalue λi

simply gives the probability that a measurement of Ô will yield this eigenvalue as
its measured result.43

When all of the eigenvalues ai of a given operator Â are single, then it can be
expressed as a sum of projection operators:

Â =
∑

i

ai |Ai 〉〈Ai | . (1.24)

Two operators Â and B̂ then commute if and only if the underlying projection oper-
ators P̂ Â and P̂ B̂ commute pairwise for all of their eigenvalues.

This can be generalized to multiple eigenvalues. In such a case, the eigenvalue 1
of the projection operator is also multiple, so that it no longer projects onto just
one eigenvector, but instead onto a subspace of corresponding dimensionality. The
question of when projection operators commute, if they project onto such multi-
dimensional spaces, is non-trivial. The necessary condition is that the intersection
set not be empty: Thus, the projection operator of Ŝ2 with eigenvalue 0 projects
onto the singlet vector which lies in the plane onto which the projection operator
of Ŝz with eigenvalue 0 also projects. This shows that the commutation relation is
not transitive: In contrast to Ŝ2, Ŝz commutes with the single spin operator for the
same spatial direction; the separable product vectors also lie in its subspace with
eigenvalue 0. However, this condition is not sufficient: The singlet vector also lies
in the intersection of the planes of Ŝx and Ŝy with eigenvalue 0, “although” they
commute neither with each other nor with Ŝz Subspaces onto which the commuting
projection operators project must obey certain orthogonality conditions.

The Statistical operator (the Density matrix). Projection operators possess the
mathematical property that their eigenvalues are non-negative—namely 0 and 1. In
the special case of one-dimensional projection operators,44 in addition the sum of
their eigenvalues is 1. These properties can be generalized as follows: A linear and
self-adjoint operator is called “positive” when it has no negative eigenvalues, and it
is called a statistical operator (or a density matrix) when in addition the trace of its
matrix45 is equal to 1. For its eigenvalues pi , we thus have:

0 ≤ pi ≤ 1 and
∑

i

pi = 1, (1.25)

43Note that, as always, the vector |�〉 is normalized to unit length, so that for its components, we
find

∑
i |ci |2 = 1.

44“One-dimensional” refers to projection operators which project onto just one (normalized) vector,
whose eigenvalue 1 is thus single.
45The “trace” (symbol: Tr) of a matrix is the sum of its diagonal elements. It is invariant under
basis transformations, so that with a basis composed of eigenvectors, the trace is just the sum of the
eigenvalues.
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which justifies its interpretation as a “statistical” operator: Its eigenvalues behave
like probabilities.

A statistical operator ρ̂ can now be written as a weighted sum over projection
operators as follows:

ρ̂ =
∑

i

pi |�i 〉〈�i | . (1.26)

In the case that all the pi are zero except for one, the statistical operator is simply the
same as the corresponding projection operator, so that one-dimensional projection
operators are special statistical operators. This suggests that statistical operators are
correlated with the “state” of the quantum-physical system; in the special case with
a “pure state”, and in general with a “mixed state”. The expectation value of an
operator Ô relative to a pure state (cf. Eq.1.20)46:

〈�|Ô|�〉 =
∑

i

λi |〈�i |�〉|2 =
∑

i

λi |ci |2 = Tr (P̂|�〉 Ô) (1.27)

can be generalized to a mixed state as follows:

〈Ô〉ρ̂ = Tr (ρ̂ Ô) . (1.28)

The convergence of pure andmixed states suggested by this, however, is problematic;
in any case, it is at oddswith the standard interpretation of anoperator as anobservable
quantity. Then namely the statistical operator would represent an observable quantity
or a measurement apparatus, with its eigenvalues as possible measurement results. It
should be especially noted that in contrast to a pure state, which is correlated with the
eigenvector of the corresponding projection operator and its (single) eigenvalue 1, a
“mixed state” does not correspond to any vector in the Hilbert space. For example,
in a two-dimensional space—with the eigenvectors |up〉 and |down〉 of a given spin
operator—the so-called mixed state

ρ̂ = 1

2
|up〉〈up| + 1

2
|down〉〈down| (1.29)

is not to be confused with the superposition of “spin up” and “spin down”

|�〉 = 1√
2
|up〉 + 1√

2
|down〉 , (1.30)

which corresponds instead to a pure state.
One may have the impression that a “mixed state” is in fact a mixture of (pure)

states, and that therefore the probabilities pi simply correspond to our subjective
lack of knowledge of the actual pure state. But this is certainly not the case: This

46With Eq.1.24, we have Ô = ∑
i λi |�i 〉〈�i |.
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ignorance interpretation of the probabilities which occur as the eigenvalues of the
statistical operator is namely inapplicable precisely where it would find its principal
usage: for composite systems. As we shall see, parts of a whole—as, for exam-
ple, in the EPR paradox, or in the measurement problem—are described as mixed
states, in particular even when the whole can be considered to be in a pure state. One
then often says that through neglecting the other parts—for example the measuring
device—information has been lost. As we will discuss in more detail later, this is
perhaps to some extent correct, in that the interference terms in expectation values
and measurement probabilities which are characteristic of superpositions no longer
occur for mixed states. It would be incorrect, however, to say that a subjective lack of
knowledge now plays a role when it was previously not present. For if we consider,
e. g., the statistical operator in Eq.1.29, which comes into play in a similar way when
the second particle in the EPR case is neglected, we see that it has a double eigenval-
ue, i. e. the given representation is not unique. This statistical operator has not only
two, but in fact infinitely many eigenvectors which all belong to the same eigenvalue
1
2 ; this reduces the ignorance interpretation ad absurdum.47

Unitary operators. The Time-evolution operator. Everything we have said thus
far has been completely timeless. In all of the questions we have raised—whether
an operator has real eigenvalues or not, which concrete values its eigenvalues and
eigenvectors have, and whether operators commute pairwise—time has played no
role. It was quite irrelevant atwhich time a quantum-physical systemwas investigated
and how it evolves in time. This is indeed rather astounding, since it apparently
implies that the mathematical formalism of quantum mechanics leaves a quantity
more or less “by the wayside” which was and is of central importance for classical
theories, including the theories of relativity: the time evolution and dynamics of
physical systems.

If we now seek a mathematical operation which describes the dynamics of
quantum-physical systems in Hilbert space, we must evidently require that all
the relations described so far—e.g. those between a Hermitian operator and its
eigenvectors—remain unchanged by the time evolution. We thus in particular must
require that orthonormalized bases remain orthonormalized bases, and that in gen-
eral the inner product of two vectors must be invariant; that is, the lengths of vec-
tors and the angles between them remain unchanged. Operators which conserve the
inner product “cause” (imaginary) rotations and are called unitary. Mathematically,
a unitary operator Û is characterized by

Û ∗Û = 1̂ , (1.31)

where Û ∗ is derived from Û by exchanging rows and columns (transposition)
accompanied by complex conjugation.48

47For a discussion of these problems, see in particular van Fraassen (1991) (pp. 157ff. and pp. 206/7).
48In the bra-ket notation, Ô∗ is always the operator which “acts” to the left, so that for unitary
operators, we have: 〈�|Û∗Û |�〉 = 〈�|�〉 – as desired.
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We can now show that with a continuous parameter t , a Hermitian operator Ĥ
exists, and it characterizes the quantum system physically, so that the unitary time-
evolution operator can be expressed as follows.49:

Ût = exp

(
− i

�
t Ĥ

)
, (1.32)

and thus:
|�〉t = e− i

�
t Ĥ |�〉0 . (1.33)

With this, we find a differential equation of first order in the variable time for the time
evolution of the quantum-physical system. It is the famous Schrödinger equation
if we choose the operator Ĥ suitably to represent the observable quantity energy
(Ĥ = Êkinetic + Ê potential ):

i�
d

dt
|�(t)〉 = Ĥ |�(t)〉 . (1.34)

This Schrödinger equation has aunique mathematical solution for a given initial value
|�(0)〉, and—keeping complex conjugation in mind—it is invariant under reversal
of the direction of the time axis (t → −t). It is thus deterministic and time-reversal
invariant, just like the fundamental equations of classical physics, that is Newtonian
mechanics and Maxwellian electrodynamics. It may therefore seem surprising that
in our representation—and in contrast to what is stated in many introductory physics
textbooks—it is not at the centre of the theory or the mathematical formalism of
quantum mechanics. Indeed, the commutation relation of Hermitian operators—
[ Â, B̂] = Â · B̂ − B̂ · Â—has become the central point, and quite rightly so: For we
must remember that the unitary time-evolution operator is not self-adjoint (only Ĥ
in the exponent of Û is self-adjoint). Similarly to the rotational matrices in the three-
dimensional intuitive spacewhichwe have described above (cf. Equation/matrix 1.6),
this rotation in a complex space in general does not have a maximal number of
eigenvalues, and sometimes none of them are real. Therefore, the time-evolution
operator does not correspond to a measurement device or to an observable quantity;
the time evolution of the quantum-physical system that it describes cannot be directly
observed. It indeed perhaps occurs only in the abstract Hilbert space—whatever
that might mean, and although it has an effect on the probabilities of measurement
outcomes.

A directly observable time evolution of the quantum-mechanical system rather
takes place at most during the so-called measurement process. However, a measure-
ment, which is frequently referred to as a “second dynamics”, is in the first instance
not described by the formalism of quantum mechanics—that is the reason for the
notorious measurement problem of quantum physics, which will often demand our
attention in the following chapters. In themeantime,many scientists have adopted the
(controversial) position that it is best to do without such a second dynamics, which is

49The complex exponential function is periodic, so that Û is analogous to a rotation matrix. � is the
universal quantum-mechanical constant, the (reduced) Planck’s constant.
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in the end not describable mathematically; that is, there is nothing at all special about
measurements (e. g. the physicists Ghirardi, Rimini andWeber; see Sect. 2.4). At this
point, in any case, we can state: The mathematically describable time evolution of a
quantum-mechanical system is not directly observable, and the directly observable
dynamics during a measurement is not mathematically describable—a challenge for
the interpretation of quantum mechanics!

Position and momentum operators. Both in philosophy as well as in classical
physics, not only do the time, and changes of perceptible objects in time, play a
central role, but so does space; their geometric form and their motions through
space. Macroscopic objects, such as are dealt with in classical mechanics, occupy at
everymoment in time a certain spatial region, or as idealized “point-like particles”, an
exact position in space. Furthermore, at everymoment in time they have an observable
velocity or a certain momentum, so that they move along trajectories—for example
the orbits of the planets—and thus mathematically along continuously differentiable
curves in the three-dimensional intuitive space.

In quantum mechanics, this is quite different: Initially, the position and momen-
tum operators are simply two particular operators among many; indeed, they are
mathematically rather inelegant—and they are thus mentioned here only in this last
subsection on “special operators”. The three-dimensional intuitive space also no
longer plays its previously distinguished role. Above all, position and momentum
are incommensurable quantities in the sense that the more precisely the position of a
particle has been determined, the less precisely is its momentum knowable (or vice
versa): The position operator and themomentumoperator do not commute! It follows
in the usual way that quantum-mechanical objects do not move along trajectories;
their “motion” in space is discontinuous, it occurs as a series of jumps, if they can
be considered to be moving objects at all.50

Mathematically, the position and the momentum operators are problematic for
another reason: If we proceed as we have so far, then for the position operator
Q̂—and analogously for the momentum operator51 P̂—an eigenvalue equation must
hold:

Q̂|q〉 = x |q〉 , (1.35)

where “x” denotes the possible position coordinates of the particles. In contrast to
whatwe have thus far described, however, the eigenvalues are all real numbers.While
we have assumed up to now that the eigenvalues of self-adjoint operators were finite
in number, or at least countably many—which corresponds to the idea of “quantum
jumps”—the eigenvalues of the position operator are continuous, corresponding to

50In non-standard interpretations of quantummechanics, however, one disagrees: Thus, for example,
in the GRW variation, the spatial behaviour is eminently important, and in Bohm’s mechanics,
particles (again) move along trajectories.
51Strictly speaking, the position and themomentum operators of single particles naturally each have
three components (which mutually commute). We neglect this fact here and in the following.
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the intuitively understandable continuum of space.52 However, this means that the
basis consisting of eigenvectors of the operator must likewise be continuous, and
this makes it hard to comprehend intuitively as an orthonormalized basis. And such
eigenvectors pose problems in the realm of precise mathematics, as well: As we may
remember, an eigenvector represented in “its own” eigenvector basis takes on the
form of a (possibly infinitely long) column vector in which all the elements are 0
except for one, and this single component is 1. If we now make the transition to the
continuum, then a “function” results, whose value is zero everywhere except for one
point, where it is infinite—which is really no longer a well-behaved function.53 And
indeed, the Hilbert space of quantum mechanics is bounded and separable, which,
put briefly, means that neither such operators nor such eigenvectors can occur within
it; it has at most a countably infinite dimensionality.

Leaving aside such concerns for the moment, one usually continues by general-
izing the representation of some arbitrary vector |�〉 in terms of a discrete basis of
eigenvectors of some operator—namely |�〉 = ∑

i ci |�i 〉—to a continuum, by let-
ting the sum become an integral and the expansion coefficients become continuous
variables:

|�(x)〉 =
∫

ψ(x ′)δ(x − x ′)dx ′ . (1.36)

This is the “position representation” of a vector in Hilbert space, and thus its most
concrete representation, in terms of the eigenvector basis of the position operator.54 It
corresponds to the wavefunction in the Schrödinger formulation of wave mechanics.

In the position representation, the position operator “acts” simply like multi-
plication by real numbers, the position coordinates: Q̂x = x . And the momentum
operator acts like the derivative with respect to position55: P̂x = −i� ∂

∂x . Then, a
basis-independent commutation relation holds56:

52Since the time of Cantor, one distinguishes (at least) two types of infinite sets: those whose
elements can be counted, which are thus no larger than the infinite set of the natural numbers or
the set of the rational numbers; and those which are no longer countable, which thus appear to be
greater, of higher cardinality, such as the real numbers. A continuum then forms a set of points
which are more than countably infinite, and are in addition dense. More details can be found in the
appropriate textbooks on calculus.
53In physics, such quantities are called “δ functions”.
54Note that this “position space” corresponds to the ordinary three-dimensional intuitive space
only for a single-particle system. In many-particle systems, we must in contrast operate in a 3N -
dimensional configuration space, corresponding to the particle number N ; and it is no longer
intuitively comprehensible. But our conclusion remains (for the time being): Only the eigenvalues
(here: of the position operator) correspond to real observable values or to real properties of real
quantum-physical systems.
55In the position representation, the eigenvectors of the momentum operator are found (after a short
computation) to be plane waves, which could correspond in an intuitivemanner to a complete spatial
delocalization of the particle accompanying a precise value for its momentum.
56In the position representation, the commutation relation is found from [x,−i d

dx ] f (x) =
−i(x f ′(x)) − d

dx (x f (x)) = i f (x).
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[Q̂, P̂] = i�1̂ , (1.37)

from which Heisenberg’s uncertainty relation between the position and the momen-
tum results:

�x · �px ≥ �/2 . (1.38)

It expresses a relation between the variance of measurement outcomes of the position
and the momentum, from which (according to the standard interpretation) it then
follows that quantum objects cannot move along trajectories in the usual sense.

With Êkin = −( �
2

2m ) ∂2

∂x2 and Ê pot = V (x), it follows in general for the time evo-
lution57 that

i�
∂

∂t
ψ(x, t) = −

(
�
2

2m

)
∂2

∂x2
ψ(x, t) + V (x)ψ(x, t) , (1.39)

which is the (perhaps more familiar) time-dependent Schrödinger equation in the
position representation.

The problems mentioned for operators with a continuous spectrum of eigenvalues
and a continuous basis of eigenvectors are now indeed no longer simply mathemat-
ical: If we postulate the eigenvalue–eigenvector link, then the quantum-mechanical
system must be in a state following a precise measurement of its position which can
be represented by an eigenvector of the position operator, i. e. by a δ function. Due to
Heisenberg’s uncertainty relation, in this state the momentum is maximally undeter-
mined, which has the result that the δ function immediately spreads out and “melts
away”. This is verified by the time evolution according to the Schrödinger equation.
It is even found that already for a second positionmeasurement immediately after the
first, the probability of finding the particle very distant from its originally measured
position is, although small, in fact not zero. This subverts once again, and indeed
definitively, the criterion of the repeatability of a measurement. In addition, it also
calls into question the philosophically widespread concept of persistence, that is of
an identity over time: It would appear as though the particle cannot be recognized
and is thus not perseverant, as Kant would say. There is apparently no temporal
identity that survives the change of position coordinates (and other properties). The
time evolution of a quantum-physical system again proves to require interpretation
to a severe extent.

But with that remark, we have already entered deeply into the philosophical inter-
pretation debate; and many other problems of interpretation were already foreshad-
owed in the course of this mathematical introduction, so that it is now time for a first
chapter on the interpretations of quantum mechanics.

57It holds furthermore that Ĥ = Êkin + Ê pot , where V (x) is a potential that depends only on the
position, such as the Coulomb potential in a hydrogen atom (and m is the mass of the particle).
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Exercises

1. Niels Bohr introduced the concept of “complementarity” into the interpretation
of quantum mechanics. Distinguish two readings of how it is to be understood.

2. In sequential spin measurements, we apparently distinguished finally between
two effects which could be reversed by mixing the particles. Describe these two
ostensible effects and explain why they are in fact only a single effect. What can
we deduce from this?

3. Consider the expectation values of operators in regard to whether the physical
system is represented by an eigenvector of the given operator or not. Compute the
expectation values of the spin operators discussed earlier, relative to the various
vectors described there. Explain the results by referring to the figures showing a
repeated and a destructive measurement.

4. What does vonNeumann’s projectionpostulate state?Explain in particular towhat
extent this postulate goes beyond what we have considered to be well established
in connection with expectation values.

5. In contrast to the general opinion of many philosophical schools of thought, and
also of some alternative physical interpretations (e. g. GRW, Bohm), (intuitive or
physical) space is not at the centre of standard quantum mechanics. Discuss this
hypothesis, first informally and then by referring to the particular mathematical
characteristics of the position operator.
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Chapter 2
The Measurement Problem. Minimal
and Collapse Interpretations

Cord Friebe

Not only in philosophy, but even in physics itself, one depends on interpretations.
Mathematical formalisms such as the one presented in basic form in the previous
chapter are in themselves rather abstract; they say nothing about concrete reality.
They require an interpretation, initially in the sense that the mathematical symbols
and operations must be associated with elements of physical reality. While, how-
ever, in classical physics —that is in Newtonian mechanics, just as in Maxwellian
electrodynamics—such an interpretation was fundamentally apparent, considerable
difficulties appeared right from the beginning in the case of quantum mechanics.
Hilbert space is, in contrast to, for example, the phase space of classical mechanics,
a completely abstract vector space, whose vectors and operators cannot be automat-
ically assigned to something in the real world. In quantum mechanics, there is much
more freedom for interpretation than in classical physics: a wide spectrum, ranging
from constructions which are very close to the usual von Neumann formalism, to
far-reaching interpretations whose interventions into the mathematical apparatus are
indeed dramatic.

If one tries to proceed systematically, then it is expedient to begin with an inter-
pretation upon which everyone can agree, that is with an instrumentalist minimal
interpretation. In such an interpretation, Hermitian operators represent macroscopic
measurement apparatus, and their eigenvalues indicate the measurement outcomes
(pointer positions) which can be observed, while inner products give the probabil-
ities of obtaining particular measured values. With such a formulation, quantum
mechanics remains stuck in the macroscopic world and avoids any sort of ontolog-
ical statement about the (microscopic) quantum-physical system itself. Going one
step further, we come to the ensemble interpretation: Here, the mathematical sym-
bols indeed refer to microscopic objects, but only to a very large number of such
systems. According to this view, quantum mechanics is a kind of statistical the-
ory whose laws are those of large numbers. In regard to a particular system, this
interpretation remains agnostic. This is not true of the “Copenhagen interpretation”:
The physicists Niels Bohr and Werner Heisenberg were the first to presume that
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the formalism refers to particular quantum systems. This, however, caused a serious
problem, since the question arose as to what would happen to such a system during
a measurement. While Bohr remained reticent on this point and avoided discussing
the details of the measurement process, Heisenberg emphasized the embedding of
the measurement apparatus within an environment containing the observer as an
essential element. At this point, the infamous collapse of the wavefunction comes
into play; however, according to the Copenhagen interpretation, it is either merely
methodological, or explicitly epistemological, but in any case not to be understood as
ontological. Finally, then, the Copenhagen interpretation remains agnostic, or even
anti-realistic, on a crucial point. In the meantime, in particular in quantum philoso-
phy, several realistic collapse interpretations are therefore being taken very seriously,
for example the one developed in 1986 by the physicists GianCarlo Ghirardi, Alberto
Rimini and TullioWeber. This GRW theory is also the first interpretation that we will
introduce here that intervenes in the mathematical apparatus, in that it replaces the
linear Schrödinger equation by nonlinear temporal dynamics.1

Step by step, we will thus become more and more “realistic” in the sense that
more and more mathematical symbols and operations will be associated with real
processes in the world. The philosophical interpretation goes as a rule even further,
by asking whether, as a result of the so-called loss of individuality of similar quantum
systems, the concept of “substance” in philosophy is not rendered obsolete—whether
quantum-physical systems persist at all, i.e. whether they have an identity over time,
and how the relationship of a whole to its parts can be determined in the light of the
“entanglement” of states. But these problems will be taken up only in later chapters.

2.1 The Minimal Interpretation

We start by taking a look back at classical mechanics: We suppose that there is a
system of N particles, each of which has 3 sharply measurable and existing com-
ponents of position and of momentum. Classical mechanics at this point defines a
“state space”, namely a phase space of dimensionality 6N : a set of points whose
elements (q, p) can be interpreted directly as the positions and momenta of the N
particles. Some sort of forcesmay act between the particles and can produce accelera-
tions, and the particles have properties such as, for example, a certain kinetic energy
or a certain angular momentum. All this has an apparent mathematical correlate:
Functions which associate real numbers to the points in phase space—that is to the
positions and momenta—correspond to measurable quantities, and the values of the
functions—the associated real numbers—correspond to the respective measurement
outcomes, which at the same time are considered to be properties of the physi-
cal system. Thus, for a single free particle, the function f (�q, �p) = 1

2m |�p|2 gives its
kinetic energy. In general, certain relations hold between the functions, in particular

1For overviews of the situation regarding interpretations of QM, see, e.g., Stöckler (2007); Esfeld
(2012).
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Hamilton’s equations of motion, which are equivalent to the well-known Newtonian
equation of motion �F = m�a. As mentioned at the outset, philosophy naturally also
treats classical objects historically as well as systematically; problems of persistence,
of causality, etc., arise not only in relation to quantum-physical systems. However,
the particular problem of interpretation—the problem of whether we can associate
mathematical symbols with reality at all, is quite simple to resolve classically, so that
no philosophical discussions have arisen around it.

In quantum mechanics, the situation is quite different: Its state space, the Hilbert
space, is considerably more abstract than phase space; its vectors and operators do
not correspond in any simple way to elements of physical reality. One could indeed
presume that, for example, the vector |up〉x indicates a physical system (a particle)
which has the property spin up along the x direction. But as we know, each such
vector can be represented in an infinite number of ways as linear combinations of
other vectors —what, however, does such a representation signify? Does the particle
perhaps possess not only the property spin up along the x direction, but also in addition
some sort of superpositions of numerous other spin values? Should we in fact try to
interpret such superpositions in a realisticmanner?Not everymathematical operation
in this vector space is automatically associated with a real correlate! Furthermore,
to be consistent, a particle with the property spin up along the y direction should be
represented by the vector |up〉y , and ameasurement of its spin along the y direction—
which indeed destroys its spin value along the x direction—should produce a change
in the spin value. But what corresponds mathematically to this transition? Do we
perhaps need an operator which maps |up〉x onto |up〉y in 50% of the cases (and in
the other 50% onto |down〉y , i.e. spin down in the y direction)? Such an operator
clearly does not exist. Not every process in the real world appears to be representable
mathematically!

In the introductory chapter, however, it became clear what we can all agree upon:
The real eigenvalues of Hermitian operators indeed represent the measurement out-
comes in an uncontroversial way, where the term “measured outcome” here initially
implies something like the pointer positions of macroscopic measurement apparatus,
and not at the same time the properties ofmicroscopic quantum-mechanical systems;
this already would again be controversial. The operators whose eigenvalues repre-
sent measurement outcomes correspond to the measurable quantities, where again
“measurable quantities” are understood initially simply as macroscopic measure-
ment setups, such as, e.g., a Stern–Gerlach apparatus, and are not at the same time
types of properties of microscopic systems such as, e.g., the spin of a particle along a
certain spatial direction. This interpretation is accompanied by a serious limitation:
In the Hilbert space, there are in fact many more operators than those that can be
associated with measurable quantities. There are non-self-adjoint operators whose
eigenvalues, if they have any at all, are not all real and can thus not represent mea-
surement outcomes. And there are even nonlinear operators which very certainly
do not correspond to anything physical. Such mathematical objects indeed occur
in Hilbert spaces, but physically, they represent nothing—in the opinion of essen-
tially all physicists. With this background in mind, it is already a strong hypothesis
that now, however, all Hermitian operators are presumed to represent some sort of
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measurement apparatus, even if one has no concrete information about how a the-
oretically prescribed operator might be realized in practice.2 However, if we now
assume that a certain Hermitian operator represents a realizable measurement setup,
then all of its eigenvalues indicate physically possible, measurable values (pointer
positions).

A further limitation can be seen immediately: The eigenvalue equation Ô|�〉 =
λ|�〉 likewise does not correspond to any physical process; it serves merely to com-
pute the eigenvalues and the eigenvectors. This is remarkable, since one could imag-
ine that it would represent mathematically the measurement process in which these
eigenvalues are observed as measurement outcomes. However, this cannot be the
case: If operators are “applied” to vectors in Hilbert space—just as, for example, in
the above eigenvalue equation—then this does not mean as a rule (perhaps with the
exception of the application of the unitary time-evolution operator; cf. Sect. 1.2.4)
that thereby some sort of real physical process was described. Let us consider, for
example, the following operation:

(
0 −i
i 0

) (
1
0

)
= i

(
0
1

)
. (2.1)

It is the representation of Ŝx |up〉y = i |down〉y in the eigenvector basis of Ŝy . The
operator of the observable spin along the x direction is thus applied to the eigenvector
with eigenvalue spin up along the y direction and maps it onto the eigenvector with
the opposite eigenvalue, spin down along the y direction. Is this supposed tomean that
the Stern–Gerlach apparatus in x direction produces a spin flip from spin up (along
the y direction) to spin down (along the y direction)? But certainly not: Instead, it has
the effect that the system exhibits either spin up or spin down along the x direction!

Hermitian operators therefore simply correspond to measurable quantities or
measurement setups; their operations in Hilbert space, however, do not represent a
measurement process in the real world. In addition to their eigenvalues, there is
according to the instrumentalist minimal interpretation in fact only one other mathe-
matical operation which refers to reality: the inner product, with which the measure-
ment probability can be calculated. We assume that the quantum-physical system is
correlated with the vector |�〉, and the observable quantity Ô with eigenvectors |�i 〉
is to be measured. We then define, using3 |�〉 = ∑

i ci |�i 〉:
Born’s Rule: In the state |�〉, the probability of obtaining the outcome λi in a

measurement of Ô is given by

ProbÔ
|�〉 = |〈�i |�〉|2 = |ci |2 . (2.2)

2In fact, this holds for many-particle systems only with certain reservations.
3As already mentioned in Sect. 1.2.4, the measurement probability is identical to the expectation
value of the corresponding projection operator. We likewise saw there how this can be generalized
to mixed states.
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This is the generalization of an interpretation of the wavefunction which was given
by the theoretical physicist Max Born, i.e. of the vector |�〉, in the position repre-
sentation. It can also be seen that this is in fact a convention and not a property which
could straightforwardly be read off directly from the formalism. Thus, the function
�(�x, t) was originally understood—for example by Erwin Schrödinger himself—as
a delocalized mass or charge density; this proved to be problematic for many-particle
systems, since the function does not actually describe a field in the three-dimensional
intuitive space, but rather one in an abstract, generally higher-dimensional configu-
ration space.4 Born’s interpretation of the function being the probability density was
then (at least for the time being) generally accepted, with |�(�x, t)|2 as the probabil-
ity with which a position measurement at the time t would indicate the particle to
be at the position �x. We can now generalize and state that if the quantum-physical
system is represented by the vector |�〉 at the time t , then a measurement of Ô car-
ried out immediately thereafter would yield the measurement outcome λi with the
probability |ci |2. In the special case that the system is already represented before the
measurement by the corresponding eigenvector |�i 〉, then λi will be measured with
certainty, and for every other eigenvector of Ô , the probability of measuring this
eigenvalue λi is zero—as could be expected. If the system is in contrast described
by a superposition of the eigenvectors of Ô , then the probability of observing each
eigenvalue of Ô is neither 0 nor 1, but rather a precise value between those limits,
so that the measurement outcomes will spread. Thus, Born’s rule reflects essential
features of the general understanding of the mathematical formalism of quantum
mechanics.

The equation given above, however, notably permits—like the eigenvalue equa-
tion mentioned previously—only the computation of the measurement probability.
It therefore by no means reflects the real process in which the physical system was
projected from its one (initial) state |�〉 onto another (final) state |�i 〉. In contrast to
the eigenvalue equation, which reflects a real process in none of the interpretations, at
this point there has repeatedly been the temptation to interpret the geometric projec-
tion of the one vector onto the other as the collapse of the quantum-physical system.
One is tempted also to say—above and beyond Born’s rule —that if conversely a
certain eigenvalue of a particular operator was in fact5 measured, then the system
must be correlated with the corresponding eigenvector at later times. However, the
minimal interpretation which we have described here is agnostic in this respect; for
it, the vectors of the Hilbert space have only an operational significance as quantities
for carrying out computations. In order to be able to apply Born’s rule, one must
know the appropriate state vector, which is supposed to be “present” immediately
before the measurement, and thus, one continues to calculate, for simplicity, with the
“associated” eigenvector after a previous measurement; between the measurements,
it follows the unitary time evolution |�〉t = e− i

�
t Ĥ |�〉0.

4For a discussion, see the historical articles, collected in Baumann and Sexl (1984).
5That is, in a repeatable and irreversible manner?
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But these are only computational procedures, which need not be understood
as describing real processes. Something real are (perhaps: merely) macroscopic
measurement setups and measurement outcomes as well as measurement proba-
bilities: a concept which appears to be excessively minimalistic to the majority of
physicists. In particular, such a minimal interpretation says nothing at all about the
significance of the measurement probabilities. Do they merely express a subjec-
tive lack of knowledge? Or do they refer to objective facts, relative frequencies for
example or objective tendencies as dispositional properties of the quantum-physical
system itself? Finding definite answers to these questions means that we have to go
beyond this minimal interpretation.

2.2 The Ensemble Interpretation and the Copenhagen
Interpretation

The first stage of interpretation of the mathematical formalism establishes the con-
nection to the empirical world as far as needed for everyday physics in the laboratory
or at the particle collider. Born’s rule allows a precise prediction of the probabilities
of observing particular outcomes in real, macroscopic measurements. The fact that
this minimal interpretation makes statements only about macroscopic, empirically
directly accessible entities such as measurement setups, particle tracks in detectors
or pulses from a microchannel plate may be quite adequate for those who see the
goal of the theory within an experimental science such as physics as being simply the
ability to provide empirically testable predictions. For the metaphysics of science,
this is not sufficient, and most physicists would also prefer to have some idea of what
is behind those measurements and observational data, i.e. just how the microscopic
world which produces such effects is really structured. In contrast to the instrumen-
talist minimal interpretation, however, every additional assumption whichmight lead
to a further-reaching interpretation remains controversial.

The principal problem can be immediately recognized if one considers Born’s
rule somewhat more carefully (cf. also Held 2012):

|〈�i |�〉|2 is the probability of obtaining the measurement outcome λi in a
measurement of Ô, presuming that the system is correlated with the state vector

|�〉.

The question then arises as to whether or not the reference to a measurement at this
point is really essential. If not, then Born’s rule becomes “simply”:

|〈�i |�〉|2 is the probability that Ô has the value λi , presuming
that the system is correlated with |�〉.
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This latter formulation suggests that the microscopic quantum system possesses a
property corresponding to the eigenvalue λi—indeed, independently of whether that
value is measured or not, and in particular, independently of any human observer.
Correspondingly, the probability notion expresses a subjective ignorance, and as a
result, quantummechanics in the form it has assumed up to nowmust be incomplete.
For only in the case that the system was already correlated with an eigenvector of Ô
canwe saywith certaintywhich property the quantum system has in fact. Only then is
the expectation value of the given operator sharply determined, and 〈�i |Ô|�i 〉 = λi .
In all other cases, the epistemic knowledge necessarily lags behind the ontological
reality.

Let us once again consider our example in Fig. 1.11, the bisecting line(s) in a two-
dimensional coordinate systemwhich is generated by the eigenvectors of the operator
Ŝx . The angle bisectors themselves are then spanned by eigenvectors of the operator
Ŝy , which does not commute with Ŝx , the measuring setup or property type of the
spin along the y direction. Let us now assume that the system is correlated with one
of these eigenvectors of Ŝy—however we might know that—then it follows that its
state relative to the eigenvectors and eigenvalues of Ŝx superposes. The inner product
(or rather its absolute square) of an eigenvector |up/down〉y with an eigenvector
|up/down〉x is in every case 1

2 , so that according to Born’s rule, the probability

that the system has the property that corresponds to an eigenvalue of Ŝx—i.e. spin
up or spin down along the x direction—is 50% for each case. Now, in the Hilbert
space, no eigenvector of Ŝy coincides with an eigenvector of Ŝx , so that within the
frameworkof this formalism, no suchvector is conceivablewhichwouldbe correlated
with the system in such a manner that we could predict the measurement outcomes
of both observables with certainty. In other words, under the assumption that the
expression “measurement” adds nothing essential to Born’s rule, the microscopic
quantum system would have more properties than could be predicted with certainty
using the resources of the mathematical formalism. Ontologically—in the sense that
real properties do in fact exist in the world—more would be present than could
be determined epistemologically by making use of the vectors in the Hilbert space.
Quantummechanics would then be incomplete. This is the motivation of a number of
physicists andphilosopherswhowouldprefer tomodify standardquantummechanics
in the spirit of David Bohm, so that so-called hidden variables could be presumed
to exist. Quantum physics would then be a kind of statistical mechanics with merely
epistemological probabilities within an ontologically thoroughly determined and
deterministic world (see Sect. 5.1 for Bohm’s mechanics).6

If, in contrast, it is assumed to be essential to add the codicil in a measurement
to Born’s rule, then this could evidently mean that as a rule, the microscopic quan-
tum system would by no means have had the corresponding property λi already at
a time before the measurement of Ô; instead, it would have acquired it only during

6However, one should note that in Bohmian mechanics, only the positions of the particles are
introduced as additional properties, and not, for example, local spin values for the particles, as one
might think at this point.
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the measurement. In general, therefore, the quantum system will be changed by its
interactions with the measurement apparatus, and this furthermore in a probabilis-
tic fashion: A particle which, for example, exhibits spin up along the y direction,
and thus(?) is describable by |up〉y , acquires either the property spin up along the x
direction or else spin down on interacting with Ŝx—in either case with 50% probabil-
ity. The problem is then that we do not actually know of any such interaction within
physics: Electromagnetic, gravitational and nuclear forces act deterministically. Fur-
thermore, such interactions, produced, for example, by magnetic fields, indeed enter
into the continuous and deterministic Schrödinger equation7; they are thus already
included within the time evolution which a vector in the Hilbert space undergoes
when the unitary time-evolution operator is applied to it. But the discontinuous and
indeterministic transition from an eigenvalue (and eigenvector?) of Ŝy to an eigen-
value (and eigenvector?) of Ŝx cannot be represented in this manner, since linear
operators preserve superpositions in the sense of Eq. 1.2. The measurement process
must therefore be different from all such continuous and deterministic time evolu-
tions and thus from all those interactions which enter into the Schrödinger equation
in such a way. The question is merely, How is it different?

Are there physical criteria for distinguishing ameasurement from some other arbi-
trary interaction? We have already seen that; e.g., “repeatability” and “irreversibil-
ity” are highly problematic as candidates for such criteria: the latter presumes from
the outset that there is a fundamental difference—still to be explained—between
the microscopic and the macroscopic worlds, since irreversibility cannot occur
in the quantum realm (the Schrödinger equation is invariant under time reversal).
And the former has been found to be somewhat vague: What can be allowed to
happen between two measurements of the same kind and what is not allowed, if the
two measurements are still to be considered to follow each other immediately, and
thus, the second counts as a repetition of the first? If, beyond what we have said so
far, we treat the special case of a position measurement, then we must even insist
that position measurements would not be measurements at all if they were required
to be repeatable; for, as we have shown, the position operator in particular does
not commute with the momentum operator, so that from Heisenberg’s uncertainty
relation, it follows not only that particles like electrons do not move along classical
trajectories, but also that following a precise measurement of their positions—due to
the resulting large uncertainty in their momenta —the correlated wavefunction (i.e.
the corresponding eigenvector in the position representation) disperses very rapidly:
every position measurement which follows immediately, even after a very short time,
no longer leads with certainty to the same position as before (nor even a neighbour-
ing position). There remains a certain (although small) probability for detecting the
particle at a considerable distance from its previous position. Position measurements
are thus in principle not repeatable.

Then, however, there is apparently no criterion for just what characterizes a mea-
surement physically. The quantum-mechanical concept of measurement evidently

7namely within the potential V (x) in Ĥ = −( �
2

2m ) ∂2

∂x2
+ V (x)
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requires a peculiar reference to a (non-physical, subjective) observer (see (Held
2012), p. 77). Only such a subject, who is capable of registering the pointer posi-
tions (or the like), seems to make it possible to distinguish the measurement process
reliably from other interactions. Physics, which attempts to objectivize every knowl-
edge, would thus have arrived at an insurmountable barrier, that is seen by many as
an extremely unsatisfactory situation. However that may be: In the Hilbert space, in
any case, such a measurement process does not occur, so that every interpretation
which deems the reference to a measurement in Born’s rule to be essential must then
assume that there is an additional and primarily indeterministic dynamics, which is
in the final analysis not described by standard quantum mechanics.

2.2.1 The Ensemble Interpretation

All of this would seem to become relatively harmless if one does not try to apply the
realistic interpretation to particular systems, but instead only to a sufficiently large
number of such systems, as is done in the Ensemble Interpretation.8 A majority of
physicists would no doubt accept this interpretation. It goes beyond the minimal
interpretation in particular by giving a certain special meaning to the concept of
probability as it occurs in Born’s rule—just like Bohm’s theory, as mentioned above.
While according to Bohm, however, standard quantum mechanics is incomplete;
that is, there are more properties of quantum-physical systems in the world than
can be determined by the methods of the usual Hilbert-space formalism, so that
the inevitable probability statements are epistemological in nature—in the ensemble
interpretation, in contrast, the probabilities take on an ontological significance. They
are now relative frequencies of occurrence.9

Casting a look back at the spin experiments discussed in the introductory chapter,
and choosing, for example, the sequence Ŝx Ŝy Ŝx—that is initially a spinmeasurement
along the x direction, then following it a second measurement along the y direction,
and finally another spin measurement along the x direction: All of the particles
(electrons or silver atoms) which showed spin up (or spin down) along the x-axis
after Ŝx should in the following Ŝy measurement show 50% of spin up and 50% of
spin down along the y-axis. Finally, upon a renewed Ŝx measurement, half will show
spin up and half spin down along the x-axis, so that the result of the first Ŝx will
have been destroyed. As long as we consider a large number of particles, this result

8According to the ensemble interpretation, the state vector |�〉 describes a large number of similarly
prepared systems. Independently of this, and distinct from it, is the question ofwhether |�〉 describes
single- or many-particle systems. The version of the ensemble interpretation which has been most
thoroughly worked out can be found in ((Ballentine 1998), Chap. 9).
9Caution: This contrast to Bohm’s theory exists only when one holds quantum mechanics to be
complete and at the same time does not wish to apply it to particular systems. In a certain sense,
every type of Bohm’s theory is an ensemble interpretation in its statistical part; we are, however,
not referring to this when we speak of the “ensemble interpretation” here.
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would appear to be relatively unproblematic: Out of perhaps 1 million electrons
which exhibited spin up (or spin down) after the first Ŝx , one-half, i.e. ca. 500000,
give spin up along the y-axis in the following Ŝy measurement, etc. The number of
positive results divided by the total number of particles is about 1

2 , that is a relative
frequency of 50%, which is supposed to be the objective quantity in the world that
is represented by the probability concept in Born’s rule.

In fact, this interpretation is only relatively unproblematic; as we can see, its
conclusions are only roughly valid: Only roughly half of all the particles exhibit
the result sought, and not exactly half. One could of course presume that such a
possible imprecision could be controlled by applying the law of large numbers. With
an increasingly larger number of particles, the fraction of positive results would
approach the value of 50% more and more closely, so that to a good approximation,
the exact value predicted by quantum mechanics would finally be obtained. But,
strictly speaking, even this conclusion holds only with a very high probability, but
never with certainty. It is not impossible that in a real experiment, markedly different
values would be obtained “by chance”; in an extreme case, it could happen that the
first 1 million particles all indicated spin up along y-axis. One would then have
to wait for a considerable time before the calculated result would be obtained on
average. What is important here: In the interpretation of probability as objective in
the sense of relative frequencies of occurrence, we have obviously not gotten rid
of the reference to probability— which we should however do, since the intention
here was to assert that probabilities are nothing other than just relative frequencies.
However, they recur on the next-higher level in the form of that “highly probable”
over and over again and thus cannot be reduced to simply factual circumstances, as
desired. In philosophy, still more objections of this kind are taken very seriously as
arguments against the interpretation of objective probabilities as relative frequencies
(see, e.g., (Rosenthal 2003)), so that we must say that the ensemble interpretation,
regarded philosophically, is rather unsatisfactory.

But also among physicists, many find this interpretation to be dissatisfying: First
of all, one finds that the interpretation neither describes the measurement process,
nor does it explain why precisely the observed relative frequencies occur. That might
be acceptable as long as the ensemble interpretation is considered to be preliminary.
In this view, quantum mechanics is not a fundamental theory, but is analogous to
phenomenological thermodynamics, with the Schrödinger equation thus analogous
to the ideal gas law; it does not hold for particular atoms or molecules. We still
have to wait for the actual fundamental theory with which the relative frequencies
can be explained. However, it threatens to become completely unacceptable if we
expect the ensemble interpretation to be an interpretation of quantum mechanics
as a fundamental theory. Then, one has to consider it to be a serious defect when
such a physical theory describes only a large number of similar systems and takes a
completely agnostic position with regard to particular systems. Correspondingly, it
would be quite absurd to even ask the question as towhich property—whether spin up
or spin downalong the x or the y direction—is possessed by a single arbitrarily chosen
electron (or silver atom). Quantummechanics, so understood, would appear to be in a
much poorer position than the rest of physics, which indeed makes statements about
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particular systems. Furthermore, this would also hold true when, for example, in a
“repeated measurement”—i.e. after a measurement of Ŝx Ŝx—all the particles which
previously were found to have spin up along the x-axis would again exhibit spin up in
the x direction. Onemight think that it should be possible at least in this case to assert
that each particular particle has the property spin up along x-axis—and not just the
whole ensemble to the extent of 100%. If the ensemble interpretation, however, were
to accept such a statement, it could no longer so readily reject as meaningless the
question of what happens to this single particle —which presently exhibits spin up
along the x-axis— when it later passes through a Stern–Gerlach apparatus oriented
in the y direction. The consequence is that the ensemble interpretation of a complete
and fundamental quantum mechanics in fact refers strictly only to a large number of
microsystems. Ontologically, it takes the position that there are only ensembles in
the world, and no particular systems, of which in fact such ensembles must consist.
And this is in the end not a very convincing position.

2.2.2 The Copenhagen Interpretation(s)

Let us therefore consider a first interpretation, which focuses its attention onto partic-
ular microscopic quantum systems and insists upon the completeness of the Hilbert-
space formalism (and thus upon the objective character of the probabilities in Born’s
rule). This is the Copenhagen interpretation. It dates back to the pioneering work of
the quantum theoreticians Niels Bohr and Werner Heisenberg, and for a long time, it
was considered to be the standard view of the physics community. It is, however, not
quite clear just precisely what this interpretation states, so that our treatment here is
itself an interpretation.

In the literature, there is controversy over whether the “Copenhagen interpreta-
tion” is even a unified point of view at all. In particular, a conflict between Bohr’s
and Heisenberg’s views themselves has been emphasized10; it is supposed to con-
sist in the fact that Heisenberg, but not Bohr, assumed a “second dynamics” of the
measurement process, consisting of the notorious observer-induced “collapse of the
wavefunction”. In contrast, Bohr avoided considering the details of the measurement
process at all; he set the limits of what could be known and explained more narrowly
than Heisenberg did. Bohr thus maintained a sort of non-instrumentalist minimal
interpretation and therefore an interpretation in which vectors and operators could
indeed be associated with real properties of particular quantum-mechanical systems,
but it remains open how the definite values come about. With an intentional refer-
ence to von Neumann’s theory of measurement,11 Heisenberg, in a (later) article in
1959with the eponymous title “TheCopenhagen Interpretation ofQuantumTheory”,
established the concept that no isolated process can be a measurement, but instead
only processes which are embedded in an environment to which the observer belongs

10See, e.g., Faye (2008).
11For this theory, see the section below on the “measurement problem”.



50 2 The Measurement Problem. Minimal and Collapse Interpretations

in an essential way.12 It is this variant which in the following will be discussed as
the actual Copenhagen interpretation—with the didactic goal of dissociating it from
realistic collapse interpretations.

The following three hypotheses appear to have played a central role for Bohr:

1. There is an ineluctable relationship between the microsystem and the measure-
ment apparatus.

2. All experiments must be described in the language of classical physics.
3. “Complementarity” holds between spatiotemporal and causal descriptions, or

among thedescriptions of various experimental arrangements of non-commuting
operators.

In contrast to the instrumentalist minimal interpretation on the one hand, and to
the non-Bohmian ensemble interpretation on the other hand, this Copenhagen inter-
pretation imputes a certain reality to the particular quantum-mechanical systems.
However, their independent reality is contested, since the macroscopic measurement
apparatus participates in the production of the quantum phenomena. It is then prob-
lematic as to just how definite measurement outcomes come about: Why, then, does
not the entangled composed system remain in a superposition, as we will show in
more detail below? For the dependence of the quantum-mechanical microsystem on
the classical macrosystem (measurement setup), as maintained by Bohr, is indeed
not to be confused with the recognized necessity of explaining classical phenom-
ena on the basis of quantum phenomena. Whoever insists (cf. (Esfeld 2012), p. 89)
that the macroscopic systems which surround us have well-defined positions and are
composed of microscopic quantum systems, which as a rule do not have such well-
defined positions, has the problem of explaining how this classical world emerges
from such a quantum world—an apparently quite general question. According to
Bohr, however, there are no quantum systems which exist independently of macro-
scopic systems and which make up those macroscopic objects around us. They—the
quantum systems—exist and possess their properties on the contrary only in relation
to a certain experimental setup and therefore only in relation to something macro-
scopic, which indeed for its own part, independently of the quantum systems, must
have been real all along. The reference to the measurement, which according to Bohr
is an essential part of Born’s rule, evidently implies ontologically that the measured
quantum systems and their properties are not fundamental, but instead depend onto-
logically on the macroscopic measurement apparatus. The measurement apparatus
appears to create them, and not the converse: that the quantum systems produce the
measurement apparatus which is composed of them.

Do we not overshoot our goal with this assertion? It does not seem to be in
Bohr’s sense, in any case. However, consider hypothetically a particular electron,
whose spin component in the y direction is to be measured, and furthermore, we
assume that Born’s rule again yields a probability of 50% that spin up along the

12“For the measurement setup is worthy of that name only when it is in intimate contact with the rest
of the world, when there is a physical interaction between the measurement setup and the observer”
((Heisenberg 1959), p. 41).
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y-axis will be observed. According to Bohr, it cannot be the case that this electron
possesses the corresponding property already before the Ŝy measurement, since then
the information contained in the (fromwherever) given state vector, and which enters
into Born’s rule, would be incomplete. It allows in fact only the prediction that the
spin up property will be found with a probability of 50%. Attempting to apply Born’s
rule to particular quantum systems and at the same timemaintaining that the reference
to the measurement in the rule is essential—both of which are apparently done also
by Bohr— leads inevitably to the conclusion that the particular particles do not by
any means already have the relevant property, but rather acquire it only during or as
a result of the measurement (cf. (Held 2012), p. 83), and indeed in an indeterministic
manner. So far, so good; that is, so far, so more-or-less uncontroversial as an analysis
of the Copenhagen interpretation. But does it follow from this that independently of
the measurement, there exists no quantum system at all, as we have formulated it
above?

One can namely object to this statement by pointing out that it does indeed depend
on themeasurement setupwhich properties are attributable to amicroscopic quantum
system and that, therefore, a particular quantum system changes during or even in
virtue of a measurement in a characteristic manner, but that not necessarily the
very existence of the quantum system is therefore dependent on the macroscopic
measurement apparatus.And itwould appear to be evidently correct that the existence
of the particular electron does not depend on this particular Ŝy measurement which
was carried out here and now; after all, it was previously—for example by means of
an earlier Ŝx measurement—found to be in a state with spin up (or spin down) along
the x-axis and thus to have that property. As we see from this example, however, we
cannot so easily get rid of the reference to some sort ofpreviousmeasurement—so that
it becomes more plausible that every variant of the Copenhagen interpretation in fact
implies the assertion that the microscopic quantum system depends ontologically—
i.e. in terms of its reality status—on the macroscopic world.

What would be the alternative?We could at this point recall Aristotle, who distin-
guished between Socrates’ being human as his essential property on the one hand,
and his having snub nose as a merely accidental property on the other. Then, we
could point out that quantummechanics also distinguishes between properties which,
for example, an electron must possess in principle and temporally varying state-
dependent properties. Its charge, its mass and the fact that its spin component can
have only one of two values are in this view essential properties of an electron—
without them, no electron exists. Certain values of momentum, spin projection or
kinetic energy are in contrast properties that are merely accidental and can thus vary
with time and sometimes are not even present in quantum mechanics. The electron,
defined in terms of its essential properties, charge, mass, and spin, is then a quantum
system which has existed from the beginning, while in a measurement, “merely” its
state-dependent properties are created. However, as will be shown in the chapter on
the indistinguishability of similar quantum particles, electrons can neither be enu-
merated nor recognized through their “essential properties” alone; they are neither
particulars nor are they individuals, characterized by state-independent properties
alone. Then, however, the presumed bearer of the accidental properties by no means
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fulfils its traditional functions. Furthermore, such a bearer is, considered by itself,
completely counterintuitive, indeed anti-empirical: for an electron which is deter-
mined merely by its charge, mass and spin is neither spatially delocalized—as it is,
rather, when its momentum is sharply determined—nor spatially localized—as it is,
rather, when its position is sharply determined. Consequently, independently of its
accidental properties, it is nothing at all spatially, which renders this interpretation
rather unconvincing.

What is important here: If, with Bohr, we leave the details of the apparently so
essential measurement process out of consideration, then the reality status of the
quantum system in the end remains unclear. Furthermore, many interesting ques-
tions remain unanswered which arise in relation to a particular quantum-mechanical
system that should be representable by mathematical symbols. Therefore, in the
sense of the Copenhagen interpretation, Heisenberg goes beyond Bohr’s explanation
boundary and draws the consequence explicitly that the eigenvalues of Hermitian
operators represent real properties of particular quantum systems. This evidently
leads, together with the simultaneous assumption of the completeness of quantum
mechanics and thus of an essential role of the measurement in Born’s rule, to the
conclusion that such properties are changed or newly created in a discontinuous and
non-deterministic manner during or by the measurement itself; for composite and
“entangled” systems, as in the EPR case, even over large distances. Going beyond
Born’s rule, Heisenberg in addition advances von Neumann’s projection postulate,
namely the eigenvalue–eigenvector link, so that temporally immediately after a mea-
surement, the quantum-mechanical system is correlated with the eigenvector which
“belongs” to the observed eigenvalue.13 According to Heisenberg’s Copenhagen
interpretation, there are namely two temporal dynamics:

1. A continuous, deterministic and temporally reversible unitary time evolution of
the vector |�〉 governed by the Schrödinger equation, i� d

dt |�(t)〉 = Ĥ |�(t)〉.
2. A discontinuous, non-deterministic and temporally irreversible time evolution

of |�〉 into an eigenvector |�i 〉 onmeasurement of Ô with themeasurement out-
come λi , i.e. a projection or a collapse with the objective probability |〈�i |�〉|2
according to Born’s rule.

But just as the Schrödinger time evolution occurs only in the abstract Hilbert space—
since the time-evolution operator is not Hermitian—the mathematically unspecified
collapse is also not a real process in the world, according to Heisenberg.14 That is
namely contradicted by the fact that the position representation of |�〉 is not given
in the three-dimensional intuitive or physical space, but rather in the abstract 3N -
dimensional configuration space. In addition, it is apparently contradicted by the

13Caution in the case of multiple eigenvalues, where (possibly several) other measurable quantities
must first be determined.
14While that “which happens in an atomic process”, namely the change of eigenvalues as properties,
is supposed to be physical, for the state vector it is asserted that “the discontinuous change in the
probability function occurs to be sure through the act of observation; for here, we are dealing with
the discontinuous change of our knowledge at the moment of observation” ((Heisenberg 1959),
p. 38). |�〉 is thus construed epistemologically.



2.2 The Ensemble Interpretation and the Copenhagen Interpretation 53

fact that the presumably spatial collapse of the wavefunction would have to occur
instantaneously over large distances, which of course contradicts the principles of
special relativity.15

Therefore, Heisenberg’s Copenhagen interpretation, for its part, is now faced
with a whole series of difficulties, which cause many physicists and philosophers
to lean towards a realistic conception of the collapse, as maintained, for example,
by the GRW theory which will be introduced later. The first problem concerns the
status of the probability concept in Born’s rule: Due to the essential reference to
measurements—and thus16 to the completeness of the formalism—an interpretation
of the probabilities as subjective degrees of belief can be eliminated for all intents
and purposes. The interpretation as objective relative frequencies of occurrence—
as applied in the ensemble interpretation—can also not be considered, since the
Copenhagen interpretation expressly intends to apply the probability statements of
quantum mechanics to particular systems. As a result, they can be objectively only
something likepropensities, i.e. objective tendencies as real properties of the quantum
system.However, this could, considered by itself, be regarded as all toometaphysical,
since modal properties which are interpreted in such a realistic manner can no longer
be distinguished from non-modal properties. In addition, one can ask towards what
in the world these propensities tend, if the resulting collapse is in any case not real
or will not be real, as it is to be understood as merely epistemological.17

The principal difficulty with Heisenberg’s interpretation lies however elsewhere,
given the general unease with it: In the spirit of the formalism of quantummechanics,
in the (indeed essential) measurement process, the observed quantum system and the
macroscopic system that carries out the measurement must form a composite whole
(cf. below, Sect. 2.3.1). If then the quantum system is represented by a superposition
|�〉 = ∑

i ci |�i 〉 of eigenvectors of the observable Ô which is to be measured, then
after its interaction with the measurement apparatus, the overall system is linked to
a superposition. What we measure, however, is a sharply defined value which corre-
sponds to a particular eigenvalue λi of the operator Ô . This can apparently only be
includedwithin the Copenhagen interpretation if it carries out a so-calledHeisenberg
cut, i.e. determines an (objective?) boundary between the object measured and the
measurement system. As is supposed to be shown by the popular thought exper-
iments on Schrödinger’s cat and Wigner’s friend (cf. (Audretsch 2002; Baumann
and Sexl 1984), Chap. 7), however, it is obviously arbitrary where precisely the
cut lies: between Wigner’s friend and the cat, or already between the cat and the

15Take note, however, of Maudlin’s Lorentz-invariant realistic collapse interpretation, according to
which the wavefunctions are hyperplane-dependent in four-dimensional spacetime; cf. ((Maudlin
1994), Chap. 7).
16Permitting ourselves a previewof theGRWtheory,wenote here that in that theory,Born’s rule does
not hold: In that theory, a (modified) quantum mechanics is complete, and there is “nevertheless”
no measurement process—which is excluded with Born’s rule.
17The currently favoured Bayesian interpretation of quantum mechanics is consistent, because it
is consequently epistemological; see, for example, Fuchs and Peres (2000) and the critical balance
given in Friederich (2011).
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radioactive substance? Between the microscopic and the macroscopic system, one
would perhaps say—but how many particles must it include for a system to become
a macrosystem? The answer that a system is a macro (micro)-system when it follows
the laws of classical (quantum) physics would in any case appear to be circular. No,
unquestionably: There is no physical criterion which allows us to determine where
the cut between the measured and the measuring systems must be made. The laws
of physics and in particular the standard formalism of quantum mechanics give us
no indication of where the distinction must lie.18

Now, however, we have already discussed at length the fact that there is no physi-
cal criterion such as, e.g., “repeatability” which can distinguish a measurement pro-
cess physically from other (continuous and deterministic) interactions. And we have
already noted there that a reliable (apparently non-physical!), strictly distinguishing
criterion brings a conscious, perceiving observer into play, who reads off the results
of the measurements.19 Could we thus not argue along with Heisenberg that pre-
cisely at this point, physics or the mathematical expressibility of nature reaches its
boundary, which perhaps forms a Kantian Subject? Could we not defend the Copen-
hagen interpretation (namely Heisenberg and Bohr) with Kant and say that nature
has two sides: an appearance side that is experimentally, empirically accessible and
physically mathematically understandable; and a way in which nature as a whole is
in itself which cannot be captured mathematically and which ultimately refers to the
Subject?

Thus far, however, it is not necessary to accept that there is a limit to what can be
describedmathematically, as will be seen from further developments, to be described
below. The basis for any solution or dissolution of the measurement problem is today
the so-called decoherence, which has finally taken an important step beyond the
Copenhagen interpretation. But the question of how we in the end arrive at definite
measurement outcomes cannot be answered by this programme either, so that the
essential problem of interpretation still persists. Following a brief discussion of the
decoherence programme,we nextmove on to realistic collapse interpretations, taking
as an example the GRW theory, first published in 1986. Non-collapse interpretations
are then treated in a later chapter.

2.3 The Measurement Problem and Decoherence

Many standard textbooks on physics, and probably all popular-scientific treat-
ments of the philosophy of quantum physics, come to a stop at the Copenhagen

18Within the formalism of quantummechanics, one can even demonstratemathematically that under
the assumption that a (real) collapse takes place, one can in principle not determine when it occurs,
and thus where the (objective) cut must lie; see (Albert (1992), p. 91).
19Such formulations often produce abstruse misunderstandings: It is naturally not meant here that
the “subject-independent”, objective world is in a superposition so long and to such an extent (that
is as a whole) until a transcendental ego “views” it from “outside”.
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interpretation.20 That interpretation, however, is by no means still standard within
the professional philosophy of science community, so that even an introductory book
on the philosophy of quantum physics should go beyond the Copenhagen interpre-
tation.

Let us recapitulate here the alleged flaws of that interpretation oncemore in differ-
ent terms: If we place (a generalized version of) Born’s rule—that is the probability
interpretation of the vectors in Hilbert space, or the identification of their inner prod-
ucts as (conditional) probabilities—at the centre of the interpretation problem, then
we can discern a conflict between completeness and realism. If it is not essential to
include “in a measurement” within Born’s rule, then we can apply a realistic inter-
pretation which attributes all of its possible properties at all times to the quantum-
physical system and presumes that the system evolves deterministically over time.
Then, however, standard quantum mechanics must be incomplete, since there is evi-
dently ontologically more at hand than can be determined epistemologically, and the
formalism must be extended to include hidden variables. This, however, is not so
simple, since following von Neumann (1932), via Bell (1964) and Kochen-Specker
(1967) (see Chaps. 4 and 7), again and again so-called No-go theorems have been
proposed. We shall see to what extent the de Broglie–Bohm theory can resist these
theorems (cf. Sect. 5.1).

If, on the other hand, in Born’s rule the codicil “in a measurement” is taken to be
essential, we can maintain the completeness of standard quantum mechanics. How-
ever, if no more properties are ontologically present than can be epistemologically
predicted with certainty, then clearly a second dynamics is needed, which in contrast
to the first, i.e. the Schrödinger dynamics, is discontinuous, indeterministic, tem-
porally irreversible, and not mathematically describable: the measurement process.
Thus, with von Neumann’s projection postulate, one has to accept the collapse of the
state vector, which, however, according to Heisenberg and his followers occurs not
in the world, but rather is supposed to take place only abstractly or epistemologically.
No ontological significance is attributed to the vectors in Hilbert space.

One should emphasize, to be sure, that Heisenberg’s Copenhagen interpretation
is after all also realistic to the extent that it clearly attributes objective properties to
particular microscopic systems, which they acquire, however, as a rule only during
a measurement. If a quantum-mechanical system is correlated with an eigenvalue of
a certain Hermitian operator, then that eigenvalue is given a realistic interpretation
as an objective property of the particular object. More is not necessary in order to
judge quantum mechanics to be complete—and thus epistemically on a par with
other physical theories.21 An undesirable anti-realism in Heisenberg’s Copenhagen

20Everett’s many-worlds interpretation is to be sure also popular; it lies mathematically very close
to the standard formalism and is, in contrast to (Heisenberg’s) Copenhagen interpretation, realistic.
For Everett’s theory, see Sect. 5.2.
21That the eigenvectors—in contrast to the eigenvalues—are not given a reality status is also not
really a defect of this version of the Copenhagen interpretation, since in mathematical theories, such
as in particular the Hilbert space formalism, there are many more symbols and operations which
have been interpreted as at most instrumental, without anyone complaining.
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interpretation is instead seen in the fact that the dependence on the measurement
process is in the end a dependence on the observer or subject. Since a (discontinuous,
indeterministic and irreversible) measurement cannot be identified by mathematical
physical means as the special interaction that it must be, one must finally fall back
on the observer who reads off the results of the measurements. In this subject depen-
dence, an undesirable anti-realism is seen, because apparently only that can be real
which is independent of a subject. However, this too is not automatically the case,
or not automatically a defect of the theory, since being dependent on a subject must
not immediately mean being subjective. Thus, Heisenberg and others were by no
means proponents of subjectivism.22 The principal problem is therefore evident that
this subject dependence cannot be described by mathematical physics.23 Getting rid
of it, while maintaining the completeness of quantum mechanics, requires designing
a unified temporal dynamics and thus setting up an alternative to the Schrödinger
equation, so that the (macroscopic) measurement process could be made obsolete as
the second dynamics. This was the goal of GianCarlo Ghirardi, Alberto Rimini and
Tullio Weber, who claimed to have dissolved the notorious measurement problem
with their theory, known in themeantime as theGRW theory. It presents an alternative
to standard quantum mechanics.

2.3.1 The Quantum-Mechanical Measurement Problem

Let us first take a more precise look at the problem of the measurement process,
which we wish to (dis)solve: According to Maudlin (1995), it essentially consists in
the following trilemma:

1. Quantum mechanics is complete; i.e., the vector |�〉 with which the quantum-
mechanical system is correlated determines all the objective properties of the
system being considered.

2. Vectors in Hilbert space are always subject to a linear temporal dynamics,
namely (e.g.) that provided by the Schrödinger equation.

3. Measurements yield definite, well-defined results. Following a measurement,
the apparatus thus indicates exactly one of the possible outcomes which are
given by the eigenvalues of the corresponding operator.

We can see that the conjunction of these three assertions is inconsistent, so that a
solution to the measurement problem must require refuting (at least) one of the three
statements. Rejecting the first assertion implies, as indicated, that hidden variables

22Especially since the question of which properties the quantum-physical system acquires in a
concrete case does not depend on the observer.
23Which in turn is a common feature with Bohr’s Copenhagen interpretation, in the sense that Bohr
avoids a description of the (physical) measurement process in terms of mathematical physics.
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must be introduced, as inBohm’smechanics.24 The third assertion can be refuted only
if one can tell a plausible story about why it appears to us as though measurements
have definite results. We can understand the many-worlds interpretation (1957) of
the American physicist Hugh Everett III in this sense. According to it, a measure-
ment yields not only the particular result that we apparently register, but also all the
other possible measurement outcomes—the others in different “worlds”, which also
contain us, or “copies” of us, each of whom then registers one of the other results;
an interpretation which is in the meantime quite seriously supported. The second
assertion, finally, can be refuted in one of two possible ways: on the one hand, by
Heisenberg’s Copenhagen interpretation, in which the linear Schrödinger evolution
is complemented by an additional, second dynamics of the measurement process;
and on the other hand, by GRW, in which the Schrödinger equation is replaced by
a nonlinear time evolution. These two interpretations imply a collapse of the state
vector— “Copenhagen” a methodological collapse brought about by the measure-
ment process and GRW a realistic, spontaneous collapse. Maudlin’s trilemma thus
points up the spectrum of all the interpretation variants of quantummechanics which
are still being discussed today (and each of them has its place in this book: Bohm,
the Copenhagen interpretation, GRW and Everett).25

GRW is thus “also” a collapse interpretation, but unlikeHeisenberg’s Copenhagen
interpretation, it is a realistic one. In order to understandwhat is necessary to construct
such a theory, we will have to investigate the precise reason why one cannot assume
a unified time evolution according to (Bohr and) Heisenberg. To that end, we will
try to describe the measurement process somewhat more formally: We thus assume
that the measurement setup, for example a Stern–Gerlach apparatus, is describable
with the methods of quantum mechanics.26 In its initial state, i.e. at a time before
the interaction with the quantum object that we wish to measure, the apparatus
indicates “neutral”, which is represented by a vector in some Hilbert space simply as
|M0〉. Furthermore, we presume that the quantity to be measured (of the quantum-
mechanical system) can take on precisely two possible values, like our favourite
example of the spin of an electron. Now, it must hold that if the quantum object
was previously correlated with an eigenvector of the corresponding operator—thus
either with |up〉 or with |down〉—then the measurement apparatus, at a time after the
interaction with the quantum object, must show the value +1 (or−1)with certainty.27

24There is still another interpretation which also refutes assertion 1, but without assuming the
existence of hidden variables. It is themodal interpretation of quantummechanics (see (van Fraassen
1991), Chap. 9). However, its main problem—namely how to explain why repeated measurements
(e.g. of the spin) lead with certainty again to the same result, although there has been no collapse
nor have hidden variables guaranteed the result—has not been solved in a convincing way.
25Note that in this description of the measurement problem, we have not referred again to Born’s
rule. In fact, this probability interpretation of the state vectors holds neither in GRW theory nor in
Everett’s theory.
26Making this assumption means that we cannot balk here and like Bohr asserts dogmatically that
macroscopic measurement apparatus is in any case only classically describable.
27Apart from the fact that real measurement apparatus also has a nonzero error rate.
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We can therefore say that it is then in a state indicated by |M1〉 (or by |M−1〉). All
together, the process can then be schematically represented as follows:

|M0〉|up〉 −→ |M1〉|up〉

or
|M0〉|down〉 −→ |M−1〉|down〉 . (2.3)

While the measurement apparatus still indicates “neutral” in the initial state, it then
apparently adapts itself to the quantum-mechanical object via the interaction: Its
pointer position in the final state corresponds to the then actually existing property
of the quantum object, as should be expected of a valid measurement.28 “Measuring”
means in this case establishing macroscopic determinacy, which is thus perceivable
for us, without changing the quantum object in the process,29 i.e. only that kind of
macroscopic determinacy which is in accord with a temporally immediately preced-
ing microscopic determinacy.

As a rule, however, the object to be measured is not already correlated with one
of the eigenvectors of the chosen operator, but rather with a superposition of these,
so that the initial state of the composite system is rather the following:

|M0〉(c1|up〉 + c2|down〉) . (2.4)

Now, the question arises as to which final state is to be expected with the methods
of the standard formalism in this usual case. To be consistent, one would have to
evolve this initial state with the temporal dynamics of the unitary time-evolution
operator Ût = e− i

�
t Ĥ . This appears at first to be technically unpromising, since the

Hermitian Hamiltonian operator Ĥ which enters the unitary operator here represents
the total energy of the composite system and is therefore hopelessly complex. That
is because the measurement apparatus, supposing that it can be described by quan-
tum mechanics at all, consists of an enormous number of particles, which must all
be taken into account. But we can convince ourselves that precisely this time evo-
lution converts the (previous) initial state |M0〉|up〉 into |M1〉|up〉30—and likewise
|M0〉|down〉 into |M−1〉|down〉—so that the situation is considerably simplified: For
in standard quantum mechanics, everything is indeed linear, and therefore, we can
rearrange the initial state in the form:

28Caution: Tacitly, we have introduced here mathematically a product between vectors in different
Hilbert spaces, which we had previously not discussed. In fact, the measurement apparatus and the
quantumobject forma composite system, whichwill be treated in detail only in the following chapter.
Such a (pure) product, such as |M−1〉|down〉, in any case reflects rather classically a whole whose
properties are completely determined by its parts. One says that the state of thewhole is separable, in
that here the particle (quantum object) and themeasurement apparatus each individually indicate+1
(the fact that they in the end always point in the same direction is a result of their interaction).
29In the ideal case! There are of course measurements which inevitably destroy the quantum object,
even when it was already in an eigenstate of the corresponding observable.
30Otherwise, the measurement apparatus from the outset cannot accomplish what it is supposed to.
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c1|M0〉|up〉 + c2|M0〉|down〉 , (2.5)

and finally—due to the linearity of the unitary time-evolution operator—we find for
the final state:

|� f inal〉 = c1|M1〉|up〉 + c2|M−1〉|down〉 . (2.6)

A fatal result: because now the final state of the composite system consisting of
the measurement apparatus and the quantum object is in a superposition of different
macroscopically perceivable states. Whatever the summation symbol in Eq. 2.6 may
mean,31 macroscopic definiteness with respect to the chosen observable has in any
case not been achieved. |� f inal〉 is, as the sum of two pure product states, namely
measurably distinct from these.32 In fact, we nevertheless obtain either the measured
value+1, with a probability of |c1|2, or the value−1, with a probability of |c2|2; mea-
surements yield definite outcomes!33 The standard formalism of quantummechanics
thus leads to a contradiction with experience, since it predicts superpositions for
macroscopic entities that we clearly do not observe.

At this point, one has often been tempted to adopt the following strategy: After
the interaction, the overall system is in a pure state, which is given by the projection
operator P̂ = |� f inal〉〈� f inal | and thus represents the undesired superposition; this
is undoubted. For composite systems, however,34 it holds that even when they are
in a pure state, their subsystems are as a rule mostly in mixed states. If one then
considers the subsystems by themselves—and, thus, “tracing out” mathematically
the neglected part—one arrives at the statistical operator (density matrix) for the
quantum-mechanical object:

ρ̂quant = |c1|2|up〉〈up| + |c2|2|down〉〈down| (2.7)

as well as for the measurement apparatus:

ρ̂meas = |c1|2|M1〉〈M1| + |c2|2|M−1〉〈M−1| . (2.8)

Through the interaction with the measurement apparatus, the quantum object has
thus been changed, as was to be expected for this normal case; because before
the interaction, the quantum object was correlated with a projection operator and,
immediately thereafter, with the (diagonal) statistical operator, which physically

31The overall system is in no case in a state in which the measurement apparatus would indicate
both 1 and −1, which would be contradictory.
32The superposition is itself instead the eigenvector of a different, incommensurable operator,
analogously to the situation in two-dimensional spin space, even though here— in the macroscopic
world—it is not so simple to specify the operator explicitly.
33A circumstance which Bohr avoided explaining right from the start.
34More details will follow in later chapters.
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represents a different state.35 The measurement apparatus for its part is now also in a
mixed state, so that its components, which are those of a statistical operator, could be
directly construed as probabilities. One is then tempted to say, “The quantum system
itself is indeed either in the state |up〉, or in the state |down〉, and correspondingly,
the measurement apparatus itself is in fact either in the state |M1〉, or in the state
|M−1〉—since the probabilities that occur in the statistical operator are only subjective
degrees of belief, i.e. they reflect only our lack of knowledge about the true state of
the quantum object”.

However, as already indicated in Sect. 1.2.4 on the statistical operator, the igno-
rance interpretation of its eigenvalues is, precisely at this point, not tenable; one can
also say that the statistical operator here describes only an “improper” mixture. For if
we assume (see (van Fraassen 1991), p. 207) that the real state of the quantum object
were given by |up〉, what then excludes the possibility, on the basis of the ignorance
interpretation—and it is to be excluded—that in the mixture of the apparatus, |M−1〉
indicates the true state? And: Whence come the interference terms for the overall
system, on the basis of the ignorance interpretation?Why is thus the whole (compos-
ite system) not also describable by a statistical operator? But without the ignorance
interpretation, the entire measurement process is more like a step backwards; the
determinacy which we wished to obtain has not yet been realized, due to the change
of the quantum object— i.e. due to the transition from a pure (superposition) state to
a mixed state. Instead, only the previously existing pure state has been destroyed.36!

2.3.2 The Decoherence Programme

By comparison, the programme of decoherence represents real progress.37 Origi-
nally, it was even associated with the hope that the interpretation problem of quan-
tum physics could be solved, and in fact, it delivers (at least locally) a physical
explanation for the absence of superpositions of macroscopically distinguishable

35The corresponding projection operator would not be in diagonal form: P̂ f inal = (c1|up〉 +
c2|down〉)(c2〈down| + c1〈up|) = |c1|2|up〉〈up| + |c2|2|down〉〈down| + c1c2∗|up〉〈down| +
c1∗c2|down〉〈up|. This has the effect that the expectation values of operators, 〈� f inal |Ô|� f inal 〉 =
Tr(P̂ f inal Ô), in general contain interference terms (cross terms, which exhibit intuitively the
wave character of particles, as for example in the two-slit experiment). These are lacking in
〈Ô〉ρ̂ = Tr(ρ̂quant Ô).
36The original (superposition) vector was, like every vector of a pure state, indeed an eigenvector
of a different (incommensurable) operator. Referring to the statistical operator that we have now
obtained, the expectation value of every operator, however, is no longer the (former) eigenvalue and
no longer free of variance.
37“Coherent”, i.e. “interrelated”, is the classical term for the condition which must be fulfilled by
waves in order that they exhibit interference. Thus, one can also refer to quantum-mechanical super-
positions as “coherent states”. The decoherence approach then attempts to clarify the conditions
under which a classical world, in which precisely such superpositions no longer occur, can emerge
on the basis of quantum mechanics.
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states.38 The measurement problem is nevertheless not really solved. The decoher-
ence programme, however, represents an important supplement of all the interpre-
tation options which are still under discussion. Its details are mathematically quite
involved, so that here, we can give only an indication of what progress it has brought
and where its limits lie.

The fundamental idea is that the composite system consisting of the quantum
object and the measurement apparatus is no longer to be treated as a closed system,
as had been assumed previously. Instead, it is now taken into account that this system
interacts with its environment in many ways—for example in that the measurement
apparatus is constantly reflecting light. The actual final state is thus amuch larger one
which includes the entire surroundings E (the environment), namely (for example)
a state like this one:

|� f inal〉 = c1|E1〉|M1〉|up〉 + c2|E−1〉|M−1〉|down〉 . (2.9)

If one could then succeed in showing that not merely neglect, but rather precisely
the influence of the environment leads to the reduction, then the open, composite
system consisting of the quantum object and the measurement apparatus would be
released for physical reasons from its entanglement with its environment and would
be converted to a mixed state:

ρ̂ = |c1|2|up, M1〉〈M1, up| + |c2|2|down, M−1〉〈M−1, down| . (2.10)

The various macroscopically perceivable states then no longer interfere with each
other. The difference from the previous situation could be that at this point, the igno-
rance interpretation of the probabilities of the statistical operator is indeed appro-
priate; that thus, due to the decoherence, a “proper” mixture is in fact obtained.
Apparently, van Fraassen’s arguments no longer hold: The environment includes
here everything possible, so that it is not really important that orthogonal environ-
ment vectors |E1〉 and |E−1〉 be exactly correlated with the quantum-measurement
apparatus system. There is in any case no measurable difference whether |� f inal〉
is described as in Eq. 2.9 as a pure state, or itself is already a mixture, because it
refers to a much-too-large system. If this is convincing, then one can now say that at
times after the interaction between the quantum object and the measurement setup,
in fact either the macroscopic state which is indicated by |up, M1〉 is present, or
else the state which is represented mathematically by |down, M−1〉, which is per-
ceptibly different—as desired. This would provide a physical explanation for the
fact that we do not perceive macroscopic systems whose states are superpositions
(“environment-induced decoherence”).

However, as self-critical physicists admit (cf. (Schlosshauer 2007), pp. 49 and 69),
the ignorance interpretation of the statistical operator is at this point still not appro-
priate. Globally, coherence with the environment still holds, and is even amplified,

38Pioneering works are those by Zeh (1970); Zurek (1981); for the more recent state of the art, see
Schlosshauer (2007).
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Fig. 2.1 The time evolution of the state (in the position representation) due to the influence of the
environment: locally, the interference terms vanish (figure taken from (Schlosshauer 2007), p. 149)

so that in this case, also, the interferences disappear only because we intentionally
avoid considering the environmental contributions. At least, however, the interfer-
ence terms become significantly smaller locally, and this indeed for physical reasons,
as shown in Fig. 2.1. Thus, we can at least explain why no superpositions appear to
us as local observers.

Furthermore, a problem has been solved which we have thus far treated rather
casually. For the measurement problem in fact has two parts, corresponding roughly
to the observer in Heisenberg’s Copenhagen interpretation, who plays two roles:
Before he or she can register ameasurement outcome, ameasurement setupmust first
be chosen. Mathematically, the previous state vector could indeed be represented in
infinitelymanyways as a superposition—every different basis representation ismath-
ematically equivalent. In the (mathematical) treatment of the measurement problem,
however, we have represented the initial state from the beginning in the eigenvector
basis of the quantity that was to be measured. What justifies physically this special
status for the so-called pointer basis?Copenhagen “solves” this problemby appealing
to an influence of the observer, which is unacceptable for many: A basis is selected
by the choice of the measurement setup. Without a physical solution of the preferred
basis problem, for example, Everett’s many-worlds interpretation would be destined
to fail. In this sense, it is an important result that the decoherence approach has actu-
ally solved this part of the measurement problem: According to the “tri-orthogonal
uniqueness theorem” (cf. (Elby and Bub 1994)), the decomposition into orthogonal
states of a threefold product space such as the one that encompasses the quantum
system, the measurement apparatus and their environment is unique.

The dynamical distinction of a basis and the physical explanation of why we
do not observe superpositions in the macroscopic world are thus the two areas of
progress which have been achieved by the decoherence programme. But they on
the one hand only determine the type of properties objectively and on the other
hand only clarify that we cannot perceive superpositions. However, it is evidently
important that no superpositions exist, but instead a (new) pure state. So, it must still
be explained that in a measurement, we find a definite value of a property. Since we
have not overcome superpositions ontologically, we are quite possibly still dependent
on von Neumann’s projection postulate. Furthermore: Even if the interference terms
were all to disappear physically, and (therefore) the ignorance interpretation of the
statistical operator were to be appropriate, we would still have obtained only an
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(to be sure classically understandable) either-or situation, and thus, we would still
have a case of indeterminacy. Even a “proper” mixture, to which the decoherence
programme could have hypothetically led, fails to solve the measurement problem.
There would then namely be subjective probabilities on a fundamental theoretical
level. The ignorance interpretation indeedmeans that ontologically, there is a definite
(new) pure state present, but that epistemologically, we do not know which state it
is. The mathematical description ended with a mixture; objectively, however, there
should be a pure state (or rather its corresponding eigenvalue): Then either standard
quantummechanics would be incomplete, or else one would have to turn to Everett’s
many-worlds interpretation; we would thus have to refute assertion 3 of Maudlin’s
trilemma.39

What is important here: If one does notwish to interpret superpositions in the sense
of Everett, and does not accept a subject dependence of reality as with Heisenberg
et al., then there is obviously no path leading to definitemeasured outcomes that could
be described by the methods of the standard formalism of quantummechanics. What
the attempts to get a grip mathematically on the measurement process then should
show us is that one canmake a plausible case that the cause of this failure could be the
linearity of quantum mechanics—and that the latter can be overcome only by taking
the mathematical description of the time evolution to be explicitly nonlinear. This,
in any case, was the basic idea of the GRW theory: to replace the linear Schrödinger
dynamics with nonlinear dynamics.

2.4 The Realistic Collapse Interpretation: GRW

The goal of the theory developed by Ghirardi, Rimini and Weber in 1986 was to find
a unified dynamics for the microscopic and the macroscopic worlds and thereby to
overcome the Copenhagen schism, thus resolving the measurement problem. This
GRW theory is mathematically rather complex and has up to now not been treated in
physics textbooks. Immediately after its publication, however, it was enthusiastically
greeted by Bell (1987). In the philosophy of physics, it has been rather popular since
its reception by Albert (1992). The debate surrounding the adequate GRW ontology
has continued up to the present.

2.4.1 Nonlinear Dynamics

Already in the introductory sections, we pointed out that linear mappings preserve
superpositions in the following sense:

39The significance of decoherence theory for Everett’s interpretation is discussed in Sect. 5.2.4.
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Ô (a|A〉 + b|B〉) = a
(

Ô|A〉
)

+ b
(

Ô|B〉
)

. (2.11)

We can now state that a nearly instantaneous, discontinuous transition from a super-
position of the eigenvectors of a particular operator to one certain eigenvector—as
required by vonNeumann’s projection postulate—is possible only when the linearity
of quantum mechanics is breached at a relevant point. Achieving this in a unified
form, that is in a mathematically coherently describable manner, requires that the
unitary Schrödinger evolution be replaced by a new, nonlinear equation.

This will not be possible without far-reaching effects. In Sect. 1.2.2, we further-
more stated that linear mappings imply mathematically that parallel lines (vectors)
remain parallel. Since parallel vectors in Hilbert space are correlated with identical
physical states, linear mappings imply physically that no physical difference can
come into play where there was none “before”. Applying this to the time evolution,
we can deduce that it is deterministic when it is linear. A nonlinear temporal dynam-
ics as expressed by the GRW equation (which replaces the Schrödinger equation) at
least offers the possibility of an objective, lawlike indeterminism: Now, in the course
of time, a physical difference can come into play where at previous times none was
present. One physical state “splits” off by evolving nonlinearly in such a manner
that at a later time, it has either already collapsed, or still not yet.40 The nonlinear
dynamics is then not only discontinuous, but also indeterministic. Finally, everything
points to the fact that this process would also be irreversible; and thus that it would
be considerably more improbable that two initial states which thus far correspond to
the two (possible) final states, would evolve into the one final state (the initial state
thus far). Indeed: The GRW dynamics is (sometimes) discontinuous, indeterministic
and temporally irreversible.

This is naturally just what was wanted! The nonlinearity, however, has still other
effects: Many characteristics of standard quantummechanics are based on the linear-
ity of the theory, for example the fact that the choice of a basis is simply a matter of
convention, and thus that a vector in Hilbert space can be represented in (infinitely)
many ways as a superposition (a linear combination) of other vectors. GRW, in
contrast, distinguishes one basis as preferred: the position representation.41 Further-
more, we had already found that, for example, the question of which eigenvalues
(physically possible measurement outcomes) a given Hermitian operator has, and
what its eigenvector basis (or bases) might be, is determined independently of time.
From this, we deduced that the (measurement-independent) time evolution must be
unitary, and thus in any case linear. If, however, the time evolution is now supposed
to be nonlinear, this has repercussions for the concept of a quantum-mechanical

40An initial state can thus have two possible final states: Going in one direction of time, towards
the future(?), the state can split apart.
41How does distinguishing this particular basis relate to the decoherence programme, one of whose
steps forward consists in the fact that indeed one basis is dynamically distinguished? There is at
least some tension between “decoherence” and GRW when it turns out that the special basis in
certain situations is not the position representation. Concerning this problem, see (Schlosshauer
2007, pp. 349f.).
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observable. No doubt: The GRW theory is a quite different theory from standard
quantum mechanics.42 In any case, with GRW, the time evolution again stands at the
centre, namely at the beginning of the theory, on which, for example, the concept of
observables or measurable quantities depends—while in standard quantum mechan-
ics, in contrast, the time evolution is a consequence of fundamentally time-indepen-
dent characteristics of operators, eigenvalues, and eigenvectors. The time evolution
of the wavefunction, that is of a vector in the position representation, is thus the
fundamental object of the GRW theory.43

How does this equation look explicitly? The idea is (cf. (Bell 1987)) that the
wavefunction of N particles, that is

|�〉 = ψ(t, �x1, �x2, ..., �xN ) , (2.12)

which would otherwise continue to evolve according to the usual Schrödinger equa-
tion dynamics, will collapse from time to time, as follows:

1. Spontaneously, i.e. not caused by some sort of external interaction such as in
particular by a measurement which would require an observer;

2. Stochastically, both in terms of when the collapse occurs and also where it
occurs;

3. And this finally in such a manner that with only a few particles, a collapse is
very, very rare, while with a very large number of particles, a collapse occurs
practically immediately. This guarantees that on the one hand, an isolated, single
quantum system can evolve for quite a long time according to the Schrödinger
equation, while macroscopically, practically no superpositions are present.

In order to achieve both features, two new constants of nature must be introduced;
namely on the one hand, a constant with the unit of (inverse) time:

N

τ
; N is the particle number and τ = 1015s . (2.13)

This quotient expresses the probability per time of a quantum jumpoccurring; clearly,
it is very small for small numbers N of particles, but becomes very large for macro-
scopic particle numbers of the order of 1023—as intended.

We can already see here a crucial difference from the usual quantum mechanics:
While there, according toBorn’s rule, the wavefunction, or rather its absolute square,
is understood to represent the (measurement) probability, here a newly introduced
parameter carries the probability information. In this way, the probability is no longer
conditional, especially not one which dependent on a measurement. Furthermore,
it can be applied to single events without difficulties and thus to a single collapse.
Therefore, in the literature, there is general agreement that the GRW probabilities

42It is perhaps even the case that GRWmakes some predictionswhich deviate from those of standard
quantum mechanics, so that future experiments might “prove” that GRW is also empirically more
realistic—but they could also falsify the GRW theory!
43This is a common feature with Bohm’s mechanics (which, however, is deterministic).
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do not represent subjective degrees of belief, but rather objective chances (cf. (Frigg
and Hoefer 2007), p. 376).

To answer the question of howandwhere a collapse occurs, a localization operator
is introduced:

L̂ =
(

α

π

) 3
4

exp[−α

2
(q̂k − x)2] . (2.14)

It has the shape of a Gaussian curve with a randomly chosen centre around the
position (operator) of the kth particle. The degree of localization, that is the width of
the Gauss curve, determines the second new constant of nature, which has the unit
of a length:

α = 10−5cm . (2.15)

Essentially, structurally,44 the GRW equation then consists in adding a term to the
Schrödinger equation which applies this Gaussian localization operator to the wave-
function. It then produces a so-called hit, i.e. a spontaneous localization around the
randomly “chosen” centre, having the probability N

τ
with respect to time.

Let us now consider again our measurement problem, or else Schrödinger’s living
and/or dead cat: The problem consisted of the fact that with the methods of the
standard formalism, two macroscopically–perceivably different states would have to
be in a superposition, contradicting the empirical result, whereby we do not observe
such superpositions:

|� f inal〉 = c1|M1〉|up〉 + c2|M−1〉|down〉 . (2.16)

If we now, however, consider the components of the state of the measurement appa-
ratus (or of the macroscopic components in the case of the cat) more carefully, i.e.
remembering that the measurement apparatus (the cat) is composed of trillions of
microscopic particleswhich are each—pointer position+1 compared to pointer posi-
tion −1 (alive vs. dead)—located at significantly different positions, then the state
can be written mathematically as follows:

|� f inal〉 = c1(|x1〉1|x1〉2...)|up〉 + c2(|x−1〉1|x−1〉2...)|down〉 . (2.17)

Each of the summands now contains essentially coupled wavefunctions which repre-
sent positions of the particles that suit themacroscopic pointer position+1 (or−1). If
we then apply the GRWmechanism, the second particle, for example, could collapse
to the state |x−1〉2—as “chosen” randomly. As a result of the coupling, then the over-
all state collapses—with a probability of |c2|2—to the macroscopically perceivable
state:

|� f inal〉 = |M−1〉|down〉 . (2.18)

44The fundamental GRW equation is better represented by referring to the density matrix; compare
((Frigg and Hoefer 2007), p. 374).
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The extremely large number N of particles guarantees—together with the new con-
stants of nature—that such a collapse occurs almost immediately, so that macro-
scopically, nearly always one of the two product states is found and nearly never
the superposition state, and this corresponds to our experience. We emphasize that
this description, if it is convincing, indeed represents the resolution of the measure-
ment problem: For with a very high probability, a single-particle state collapses—
and therefore the overall state collapses—so that macroscopic determinacy is in fact
obtained (and not, e.g., only an either-or situation, aswith the decoherence approach).
And this is independent of whether or not an observer registers the result.

From the viewpoint of the philosophy of science, however, an objection can be
raised against this GRW approach, in that the introduction of new constants of nature
was an ad hocmanoeuver: The values of those constantswere chosen just so that—for
a single-particle system as well as for themacroscopic whole—the right probabilities
emerge. There is no independent procedure by which we could determine the values
of α and τ empirically. They have furthermore not yet led to any new predictions;
they serve only to explain the results of measurements which we already know in the
context of conventional quantum physics. For comparison, we could consider, for
example, the constant of the vacuum velocity of light c, which plays a decisive role
in the theories of relativity: Quite independently of Einstein’s theories, there are—
indeed a number of—empirical methods for determining the precise quantitative
value of c. In addition, it also plays a role in other physical theories. This is not the
case for α and τ : Their values were fixed for no purpose other than the resolution of
the measurement problem of quantum mechanics. Just such a procedure is termed
an “ad hoc manoeuver” in the philosophy of science.

In addition, it should be borne inmind that theGRWmechanism is dependent upon
the fact that macroscopically perceivable different states are always accompanied by
different spatial positions. Only when the spatial locations of the particles which
reflect macroscopically different states are significantly different does the argument
function properly, stating that, owing to the coupling of the particle positions, the
very probable collapse of just a few single-particle states will lead immediately to a
perceivable, determined macrostate. However, one could perhaps invent experiments
inwhich perceivablemeasurement outcomes are not associatedwithmacroscopically
differing spatial locations (see (Albert 1992), p. 103). Leaving such objections aside,
we are philosophically interested above all in the ontological consequences of the
GRW theory.

2.4.2 GRW Ontologies and Their Criticisms

The special status for the position basis and the fundamental character of the time
evolution make GRW prima facie philosophically–ontologically more acceptable
than standard quantum mechanics: If we agree that one goal of modern metaphysics
of science is to treat—and ideally to solve—the conflict between our (thoroughly
enlightened) everyday worldview and the pictures drawn by the most current scien-
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tific theories such as quantum physics, then the prominence of spatial location and
time should evidently be welcomed. By no means simply naive intuitions clearly
support the view that relationships in space and evolutions in time belong to the fun-
damental phenomena of the world in which we live, so that a scientific theory which
places them at its centre will tend to reduce the conflict of worldviews. Standard
quantum mechanics, in contrast, with its abstract Hilbert space in which on the one
hand the position operator is only one amongmany, and in addition a mathematically
unlovely one; and on the other hand, time evolution is not an observable— is obvi-
ously further removed from our intuitions, which also should always be kept in view
by the metaphysics of science.

Nevertheless, it should be emphasized that GRWclaims to give a unified dynamics
for microscopic as well as for macrophysical phenomena, so that the fundamental
wavefunction is as a rule not that of a single quantum system, but rather that of
a very large number of particles. The “position” space which seems to be distin-
guished here ontologically is thus not simply that of the three-dimensional intuitive
space, but instead the 3N -dimensional “configuration space”, where N is the particle
number. This space thus has an extremely high dimensionality and is correspond-
ingly counterintuitive. In spite of this, serious support (cf. (Albert 1992), pp. 92f.,
and the criticisms in (Maudlin 2010; Monton 2006)) have been given to the notion
that physical reality in fact takes place within this configuration space, so that the
wavefunction and especially its collapse would represent real objects and events in
configuration space—and that as a result, our intuitive understanding of a merely
three-dimensional space is deceptive. Conversely, it has also been maintained again
and again (see, e.g., (Bell 1987), pp. 204f.) that configuration space is simply an
abstract, mathematical construction which must be distinguished from a physically
real space. But we can very well ask, Why, actually? Must physical reality be at all
different from its mathematical representation? And if so, whereof does their well-
justified difference consist? One should not forget that the realism defended here is
marshalled against “Copenhagen” and thus in particular against the idea that physical
reality could depend upon the subject as ameasuring observer. Every reference to our
experience, which is presumed to play a constitutive role in distinguishing physics
from mathematics, is thus inappropriate. Therefore, this notion of “the realism of
configuration space”, referred to as “wavefunction ontology”, may well be the first
fully valid variant of the GRW ontology.

Every other variant answers the question of how to overcome the direct, literal
interpretation of the GRW equation as the equation of motion of a field in configu-
ration space, in order to make our way out of that mathematical space and into the
unique, physically real intuitive space. This includes in particular Bell’s classical
interpretation of the local beables (see (Bell 1987), p. 205): Bell supports the posi-
tion that the wavefunction itself indeed “lives” only in that mathematical space and
is thus not a real physical field, but that a GRW jump is centred on a normal space-
time point (�x, t). Whenever a collapse takes place, something therefore occurs in
our intuitive space, or in spacetime. A macroscopic object is then “a galaxy of such
events” ((Bell 1987), p. 205). This ontology of galaxies of flashes remains today
the most promising variant (cf. (Maudlin 2010), p. 139), especially because it, in
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contrast to the competing third variant—the density-of-stuff ontology45—appears to
be generalizable to the relativistic case.46 The main problem with Bell’s ontology
is apparently that47 the flashes cannot be fundamental; they depend after all on the
wavefunction in configuration space, so that in our real, physical world such events
would occur discontinuously—and basically inexplicably, in any case not explained
by anything which exists in our world. As long as, and always, when the wavefunc-
tion has not collapsed and is in a superposition, precisely nothing exists physically,
but rather only something mathematical in the 3N -dimensional configuration space.
As a result, Bell has inherited an anti-realistic touch from “Copenhagen”, to the
discomfort of those who share the hope that GRW can deliver a universal realism.

Thus, it has recently been suggested (cf. (Dorato and Esfeld 2010)) that a real,
spatiotemporal foundation should be provided to Bell’s stochastic events. The “spa-
tial” superpositions in configuration space thereby represent dispositional properties
in the real physical spacetime, produced causally by the spontaneous Bell flashes.
According to Dorato/Esfeld, this could take us out of the mathematical abstract and
into the physical concrete realm by giving superpositions a modal character and con-
struing them as metaphysical powers. The fundamental idea originates from an—in
the meantime well-established— position from the philosophical debate over the
status of natural laws: Hume’s conception according to which natural laws super-
vene over certain regularities of categorial (purely qualitative) properties without
modal capacities is opposed by the position that fundamental properties in physics
(charge, mass) are essentially dispositional (modal-causal) properties.48 This posi-
tion, which would appear to be excessively metaphysical, can be defended by saying
that it is not possible to distinguish physical structures from mathematical struc-
tures without the interpretation of properties as modal or dispositional. In any case,
Dorato/Esfeld argue in this way in relation to the GRW theory. If their argument
is found to be convincing, it will provide a real spatiotemporal, causal foundation
for Bell’s flashes, which certainly appears to be desirable. The problem, however,
is that dispositions—such as, e.g., the solubility of sugar in water—usually require
an external trigger before they manifest themselves; they must be set off from out-
side the system. However, GRW localizations are spontaneous; the GRW collapse
characteristically requires no external interactions (in particular, no measurement). It
follows for its realistic interpretation that the superpositions represent spatiotempo-
ral, dispositional properties, which “manifest themselves spontaneously” ((Dorato
and Esfeld 2010), p. 44); this apparently recalls a spontaneous causa sui. In inter-
mediate phases, real properties of spatiotemporal quantum systems would have no
definite values, but they would be “mind-independently and probabilistically dis-

45In this approach, a continuous “material” field in concrete spacetime corresponds to the wave-
function in configuration space. It is supported by Ghirardi himself, among others.
46Physical difficulties of the GRW theory relate to the “indistinguishability” of similar particles, the
treatment of counterfactual dependencies in the EPR problem, and in particular its compatibility
with the theory of (special) relativity. This last topic is also problematic for Bohm’s mechanics.
47In the literature, a so-called counting anomaly has also been discussed, which, however, we need
not consider here.
48A Hume interpretation of GRW is defended by Frigg and Hoefer (2007).
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posed to become definite” ((Dorato and Esfeld 2010), p. 45): During the collapse,
they give themselves their own values by self-acting, although probabilistically. One
gains the impression that the subject, as a measuring observer, can be eliminated
using GRW only animistically, in that now the world as a whole realizes (“mani-
fests”) itself spontaneously, like a subject. The alternative is wavefunction ontology
and thus the identification of the physical with some segment of the mathematical.

With this, we have arrived at the end of this first chapter on the interpretations
of quantum physics. It dealt with uncontroversial but inadequate interpretations (the
minimal interpretation and the ensemble interpretation), as well as with the more
controversial collapse interpretations (Copenhagen, GRW). Before we discuss the
no-collapse variants (Bohm, Everett) in a further chapter on interpretations, we first
treat the two most important special problems of quantum mechanics: similar parti-
cles and their “indistinguishability”, and the EPR paradox. Individuation of objects
and the relationship of a whole to its parts belong among the prominent topics of
ontology,which in this regard is facedwith quite unique andnewchallenges—already
from standard quantum mechanics.

Exercises

1. Distinguish between two readings of Born’s rule, depending upon whether the
reference to a measurement in it is essential or not.

2. According to the Copenhagen interpretation (in Heisenberg’s version), there
are two temporal dynamics of the state vector. Describe them in your own
words. How is the second dynamics related to Born’s rule and to vonNeumann’s
projection postulate? What is problematic about it?

3. The interpretation problem in quantum mechanics may be regarded as a
trilemma. Explain the three statements and show that they are inconsistent
when taken together. What is the advantage of this description as compared
to the conventional one, which is guided by Born’s rule?

4. The decoherence programme is an essential step forward. Highlight the ways
in which all the interpretation variants could profit from it. Why, however, can
the programme not solve the measurement problem in the end?

5. Formulate in your own words what is accomplished by the GRW theory (in the
opinion of its supporters). Defend the standard view of physics against it.
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Chapter 3
Quantum Identity and
Indistinguishability

Holger Lyre

This chapter stands conceptually between Chaps. 1 and 6. In Chap.1, we introduced
single-particle quantum mechanics in a Hilbert space H, while the present chapter
treats n particles in a many-particle Hilbert spaceHn; and Chap.6 deals with variable
particle numbers using creation and annihilation operators in a Fock space HF =
⊕Hn . The present chapter consists of two parts, of which Sect. 3.1 is more physical,
while Sect. 3.2 has a stronger philosophical orientation.

3.1 The Quantum Theory of Similar Objects

3.1.1 Statistical Mechanics

Quantum theory has its historical origins in large part in thermodynamics. The prob-
lem of black-body radiation motivated Max Planck in 1900 to formulate a new ad
hoc rule for the energy distribution of the radiation field of a black body as a func-
tion of the radiation frequency, and thereby to introduce his “quantum of action”
(Planck’s constant) as a new constant of nature. This achievement is generally con-
sidered to represent the birth of quantum theory, and one can say that the problem of
black-body radiation could be seen as an anomaly for classical physics (in the sense
that the classical Rayleigh–Jeans radiation law leads to an infinite radiation energy
density with increasing frequency, known as the “ultraviolet catastrophe”). Another
anomaly was presented by the entropy of mixing of identical gases—and it leads us
to the topic of this chapter: Are physical objects individuals, i.e. do they possess both
a diachronic identity which persists over time, and also a synchronic identity in the
sense of being distinguishable from other objects at a particular moment in time?
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Consider two vessels filled with gas and separated by an (impermeable) mem-
brane. Pressure and temperature are assumed to be the same in both vessels. When
the membrane is removed, the gases mix, but the internal energy of the overall
system remains constant. If the two gases are chemically different, the process is
irreversible, and the entropy, a measure of the number of microstates in a given
macrostate, increases.1 A mixture of identical gases should, however, not lead to
any increase in the entropy, since the membrane can again be inserted reversibly.
This result is in accord with the macroscopic view of phenomenological thermo-
dynamics. But from the microscopic viewpoint of the kinetic theory of gases, or
of statistical thermodynamics, the gas consists of molecules, its entropy is derived
from Maxwell–Boltzmann statistics, and it depends upon the number of microstates
within the macrostate. When two gases are mixed, it is evidently microscopically
irrelevant whether or not themolecules belong to different chemical species; in either
case, the molecules are individually mixed. According to this viewpoint, one should
obtain an increase in the overall entropy due to the entropy of mixing, even when
both vessels initially contained chemically identical gases—this however contradicts
the result expected from phenomenological thermodynamics. This was first pointed
out by Josiah Willard Gibbs near the end of the nineteenth century; the problem is
thus known as the Gibbs paradox.

Formally, the contradiction can be resolved by using the so-called Gibbs
correction factor 1

N ! when counting the microstates (whereby N denotes the number
of particles). Evidently, this factor signifies that the number of microstates must be
divided by the number of their possible permutations, which means that the impos-
sibility of capturing individual microstates must be accounted for.

This can be illustrated in an intuitive manner: Consider the combinatorially pos-
sible distributions of two particles a and b over two states, e. g. states of different
energies, represented here as boxes:

(1) ab
(2) ab
(3) a b
(4) b a

(3.1)

In the first and second cases, both particles are in the same energy state, while in
the third and fourth cases, they have differing energies. Counting the occupation
possibilities now depends on how we weight cases (3) and (4). If, as is suggested
by the Gibbs correction factor, the objects a and b can be determined only up to a
permutation, then cases (3) and (4) are not distinguishable. Weighting with 1

2! , they

1The macroscopic characterization of the state of a gas is defined by the state parameters pressure,
volume and temperature; amicroscopic description requires, in principle, knowledge of the positions
and momenta of all of the individual molecules.
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contribute on average only one state to the count. All together, instead of the four
possibilities in (3.1), there are then only three possible occupations:

(1) ••
(2) ••
(3) • •

. (3.2)

The notation • indicates that the previously suggested unique identification of the
two objects a and b has been abandoned. This means de facto that the two objects are
empirically indistinguishable (at least for purposes of counting physical occupation
possibilities).

Applying the Gibbs correction factor was found to be necessary in all areas of
statistical mechanics in the following years, in order to obtain results which were
in agreement with experiments. In particular, it was found to be necessary for con-
structing the quantum mechanics of many particles in the 1920s to propose an indis-
tinguishability postulate of the following form:

The application of particle permutations to a many-particle state leads formally to a state
which is physically indistinguishable from the original state.

Themathematical implementation of this postulate is realized by requiring symmetry
under permutations for all quantum-mechanical states. We will consider this further
in the following two sections.

3.1.2 Many-Particle Tensor Products

In Chap.1, we treated the quantum mechanics of a single particle, or more generally,
of one object. We now consider the generalization to systems of arbitrarily many
objects. We will concentrate our attention on particles of the same kind, such as a
quantity of electrons or photons, or of comparable objects. In general, the states of
a quantum-mechanical object with n eigenstates can be represented by vectors in an
n-dimensional Hilbert space. If an n- and an m-dimensional object are composed
into a larger object, a compound system, then the larger object generally has states
defined on an n·m-dimensional Hilbert space.Wewant to understand the peculiarities
of this composition.2

We first consider the composition or combination of objects in classical physics.
Here, the state space of one object is a six-dimensional phase space. It is isomorphic
toR6 and is spanned by three position and three momentum coordinates. The phase
space of a system consisting of two objects is correspondingly 12-dimensional and
is given by the direct product R6 × R6 = R12. In set theory, the direct product

2The presentation in the following two paragraphs is taken up again in Sect. 6.3.3 and extended
there. For the purposes of the present chapter, the introduction of the permutation operator (3.4) is
especially relevant.
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corresponds to a Cartesian product, i. e. to the set of all ordered pairs: A × B =
{(a, b) | a ∈ A ∧ b ∈ B}. For a finite number of vector spaces, the direct product is
the same as the direct sum of the vector spaces: Rn ⊕ Rm = Rn+m . This illustrates
that the vectors from the individual subspaces of the product space are independent
of each other and not correlated. Precisely this is different in a quantum-mechanical
composite system.

In quantum mechanics, the combination of systems is described by the tensor
product of their Hilbert spaces. Let {�ei } and {�h j } be basis systems of two n- and
m-dimensional Hilbert spaces, Hn and Hm ; then the expression Hn ⊗ Hm denotes
the tensor product of these two vector spaces. The product space Hn·m , in contrast
to classical physics, has the dimensionality n ·m, and is spanned by the basis vectors
�ei ⊗ �h j . The crucial point is that a general vector �ψ = ∑

i, j αi j �ei ⊗ �h j of a tensor-pro-

duct space is not written as the product of the basis vectors �ei and �h j , but rather only
as a linear superposition of them. In combining the subsystems to give a composite
system via the tensor product, there are therefore relationships between the states
of the subsystems, so-called correlations, which occur due to the superposition of
the product states of the parts of the compound. This particular feature of quantum
mechanics is called entanglement, and it leads to numerous unusual phenomena
which will be treated in particular in Chap. 4. The present chapter focuses on the
construction of many-particle states.

From what was said thus far, we can see immediately that an n-dimensional
Hilbert space can be written as a tensor product of one-dimensional Hilbert spaces.
The state space of n particles in quantum mechanics is thus the tensor product of n
single-particle Hilbert spaces, H:

Hn = H1 ⊗ H2 ⊗ ... ⊗ Hn =
n⊗

i=1

Hi . (3.3)

The simplest basis vectors ψ ∈ Hn of an n-particle Hilbert space can be written as

ψ = ψ(1, 2, 3...n) = ψ1 ⊗ ψ2 ⊗ ... ⊗ ψn, ψi ∈ Hi .

Because of the indistinguishability postulate introduced in Sect. 3.1.1 and justified
heuristically there, it now holds that every permutation of identical particles in a
many-particle state leads to a state which is physically indistinguishable from the
original one. If P̂i j denotes exchange of the particles i and j , then the state

P̂i jψ(1, 2, ...i, ... j, ...n) = ψ(1, 2, ... j, ...i, ...n) (3.4)
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cannot be physically distinguished from the state ψ(1, 2, ...i, ... j, ...n).3 Due to the
non-commutativity of the tensor product, the state of a many-particle system must
have the general form

�(1, 2, ..n) =
∑

P

C(n)√
n! ψ(1, 2, ...n) ,

where on the right-hand side, the sum is taken over n! permutations (with a factor
C(n), which we shall not specify in detail here; it depends on the type of particles
and may be a complex number).

The set of all permutations of an ordered set with n elements of dimensionality
n! is called the symmetric group Sn , or also the permutation group. The invariance
of a state under the permutation group indicates that every physical observable Ô
commutes with every permutation operator P̂; no physically measurable quantity
or observable can thus distinguish between a permuted and a non-permuted state.
Formally, this means that

〈ψ|Ô|ψ〉 = 〈P̂ψ|Ô|P̂ψ〉 = 〈ψ|P̂−1 Ô P̂|ψ〉 , or [Ô, P̂] = 0. (3.5)

3.1.3 Quantum Statistics

As suggested in Sect. 3.1.1, the Maxwell–Boltzmann statistics of classical statisti-
cal mechanics must be replaced by a new kind of quantum statistics that takes the
indistinguishability postulate into account. At the level of elementary particles, this
requirement is realized in two ways—depending upon whether the particles have
half-integer or integer spins.

In 1924, the Indian physicist Satyendranath Bose succeeded in deriving Planck’s
formula for the energy density of black-body radiation without referring to classi-
cal electrodynamics (in contrast to Planck himself), but instead based only on the
assumption of light quanta with phase-space volumes of h3 (cf. Darrigol 1991). He
made use of the Gibbs correction factor in computing the occupation numbers of
the states. Bose asked Einstein, who had introduced the light-quantum hypothesis in
1905, for help in publishing his results. Einstein recognized the significance of Bose’s
work and added some extensions to it. Following the introduction of Schrödinger’s
wave mechanics in 1926, the generality of the resulting Bose–Einstein statistics
for many-particle wavefunctions was recognized; it describes particles with inte-
ger spins. Formally, Bose–Einstein statistics is based upon the indistinguishability
postulate, which leads to the permutation invariance of bosonic states under the
transformation (3.4).

3The permutation operator P̂i j is self-adjoint and has the special property that its eigenvalues are 1
and −1 (compare, analogously, Sect. 1.2.4).
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Since not ψ, but rather |ψ|2 is related to observable quantities, the wavefunction
is determined only up to a phase factor. Furthermore, for the permutation operator, it
holds that P̂2

i j = 1; it thus has eigenvalues±1 (see Footnote 3). Along with (3.4), this
allows for the possibility that a permutation, in contrast to (3.4), leads to a change of
sign and is thus antisymmetric:

P̂i jψ(1, 2, ...i, ... j, ...n) = −ψ(1, 2, ... j, ...i, ...n). (3.6)

It is again found empirically that antisymmetric wavefunctions belong to a particular
sort of particles, namely those with half-integer spins. In order to give a quantum-
mechanical explanation of atomic structure, Wolfgang Pauli in 1925 stated that no
two electrons within an atom can have identical values of all four quantum numbers
(which serve to define the state of an orbital electron). This so-called Pauli exclusion
principle leads, together with the indistinguishability postulate, to the requirement
that the many-electron wavefunction be antisymmetric under exchange of two elec-
trons, as in (3.6).

The generalization of this requirement to arbitrary particles of half-integer spin,
so-called fermions, leads to Fermi–Dirac statistics. It implies that for instance in
the case of a system of two similar particles only the third possible state in (3.2) is
allowed, whereby the wavefunction is to be written in antisymmetric form:

�A = 1√
2

(
ψaψb − ψbψa

)
. (3.7)

In contrast, Bose–Einstein statistics allows all three possibilities in the form of sym-
metrized wavefunctions:

�
(1)
S = ψaψa, (3.8)

�
(2)
S = 1√

2

(
ψaψb + ψbψa

)
, (3.9)

�
(3)
S = ψbψb . (3.10)

Bose–Einstein and Fermi–Dirac statistics are the two new types of quantum statis-
tics which are needed for the computation of occupation numbers for quantum-
mechanical systems; they replace the classical Maxwell–Boltzmann statistics. Here,
we make two additional remarks: First, the requirement that exchange of two par-
ticles in a many-particle wavefunction be either symmetric (3.4) or antisymmetric
(3.6) does not imply that all possible two-particle transpositions within a many-
particle state occur only either symmetrically or antisymmetrically. In a purely formal
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manner, we could consider also mixed-symmetric permutations, i.e. those in which
some particles transform symmetrically, and others antisymmetrically. This leads to
so-called parastatistics (cf. Messiah and Greenberg 1964). Such mixed-symmetric
representations of the permutation group are, however, not realized in nature. The
possibility of parastatistical states will therefore not be pursued further here; a many-
particle wavefunction will be written in either totally symmetrized or else in totally
antisymmetrized form.

Secondly, it can be seen—likewise purely empirically—that as in (3.4), sym-
metrized state functions describe particles with integer spins, that is bosons, and as
in (3.6), antisymmetrized functions describe particles with half-integer spins, that is
fermions. A more fundamental, theoretical justification of the connection between
spins and statistics was given only at the end of the 1930s by Fierz and Pauli, in the
form of the spin statistics theorem (and was later derived in different versions by
various authors). The proofs are typically based on very general assumptions of rela-
tivistic quantum field theory such as locality and positive definiteness of the energy,
which go beyond the present context (see Chap. 6).

The empirical relevance of Fermi–Dirac and Bose–Einstein statistics is demon-
strated tangibly in scattering experiments with particles, as was shown in an intu-
itively clear manner by Feynman in his famous Lectures (Feynman et al. 1964,
Chap.4). Consider two empirically distinguishable particles a and b. Particle a scat-
ters in direction 1 with an amplitude of a1 = 〈a|1〉, while particle b scatters in
direction 2 with an amplitude b2 = 〈b|2〉. The probability for the mutual double
scattering is the product of the individual probabilities, |a1|2|b2|2. If, conversely, par-
ticle a scatters in direction 2 and b in direction 1, we would obtain |a2|2|b1|2, and
for the overall probability

P = |a1|2|b2|2 + |a2|2|b1|2 .

Now we assume that the directions 1 and 2 approach each other; then the above
expression is reduced using a = a1 = a2 and b = b1 = b2 to

P = 2|a|2|b|2 .

When a and b are indistinguishable bosons, we cannot distinguish experimentally
between the double scattering process a in direction 1, b in direction 2; and the
exchanged process a in direction 2, b in direction 1. We then obtain (following the
rule “sum before you square”)

Pb = |a1b2 + a2b1|2 = 4|a|2|b|2 ,
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i. e. a probability which is twice as large as in the case of distinguishable particles.
For fermions, on the other hand, the total transition amplitude must be taken to be
antisymmetrized,

a1b2 − a2b1 ,

so that in the case when directions 1 and 2 have approached closely, it follows that

Pf = 0 .

It is impossible to observe two indistinguishable fermions in the same final scattering
state!

A further notable consequence of Fermi–Dirac statistics is that due to the exclusion
principle, one can derive the so-called Fermi pressure or degeneracy pressure of a
fermion gas at a high density. In a white dwarf star, this Fermi pressure opposes
further compression by gravitational forces and thereby stabilizes the star. At least
two interesting physical-philosophical questions can be posed in this connection,
which we can only mention here without giving their answers. First: In what manner
is the Fermi pressure really a pressure (in themechanical sense)? Its origins lie finally
in a symmetry requirement, not in the existence of an explicit interaction (in contrast
to e. g. gravitational pressure). And secondly: To what extent could this already point
to an ontological difference between fermions and bosons?

3.1.4 Symmetric Group

This section is directed at mathematically interested readers and can be skipped over
in a first reading. Its principal purpose is to characterize our considerations thus far
in terms of group theory.

The indistinguishability postulate acts as a “superselection rule” on the state space
(3.3) of similar objects. It states that Hn decomposes into subspaces or sectors cor-
responding to the representations of the permutation group. In the interplay with
the two previous empirical remarks, the indistinguishability postulate leads to the
following symmetrization postulate (cf. Messiah 1979, Chap. 14):

The state space (3.3) in the quantum theory of n identical objects decomposes into the
subspaces of either all completely symmetric, bosonic state functions or of all completely
antisymmetric, fermionic state functions.
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Group Representations and Selection Rules

The vector space-representation of a group G refers to a homomorphic
mapping of G onto an automorphism group of non-singular operators on a
vector space V. Under the action of the group, V decomposes into invariant
subspaces (sectors), which means that the application of the group operators
on states which span the representation space does not lead out of that space;
thus the states transform only among themselves. There are therefore no
possible state transitions from one sector to another. The representation (or the
representation space) is called irreducible if no other subspaces exist which
are invariant under the action of the group (except for the null vector and V
itself, as trivial subspaces).

If the representation space is degenerate, it is called a multiplet. A state is
degenerate when one eigenvalue of the Hamiltonian belongs to more than one
eigenfunction. A multiplet is thus a set of degenerate states with the same
energy eigenvalue. The degree of degeneracy corresponds to the dimension-
ality of the representation. The Hamiltonian is then invariant under the group,
i. e. it commutes with all the operators in the group. For the permutation group,
we have already seen this at the end of Sect. 3.1.2.

Selection rules tell us whether or not particular transitions between states
are allowed. Forbidden transitions correspond to vanishingly small transition
probabilities for the corresponding perturbation operators Â:

〈ψ| Â|φ〉 = 〈φ| Â|ψ〉 = 0.

Hindrance of state transitions can be due to the fact that the state space
obeys certain symmetries and is thus characterized by conservation laws. For
example, conservation of the angular momenta and spins of atoms determines
the various selection rules for computing the strengths of spectral lines in
atomic physics. Selection rules thus also characterize the decomposition of
the Hilbert space into incoherent sectors, whose states cannot form superpo-
sitions. When such rules apply not just to certain operators, but instead to all
the measurable observables Â, they are called superselection rules. Supers-
election rules apply to strictly conserved quantum numbers – in the case of
permutation symmetry, the boson and fermion numbers. In the framework of
supersymmetry, these quantum numbers are abandoned and, instead, transi-
tions between bosons and fermions are postulated. This is, however, thus far
only a hypothetical symmetry.
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Compact explanations of group representations and selection rules are given in the
grey box on p. 81. Here, we consider a simple example: Since a quantum object with
only two states corresponds to an irreducible representation of the group SU (2),
the states (3.7) and (3.8)–(3.10) span the subspaces of the tensor product of two
irreducible SU (2) representations. One can then see that the tensor-product space
decomposes into a one-dimensional and a three-dimensional, irreducible subspace.
Or, expressed differently, the tensor product of two fundamental SU (2) represen-
tations is decomposed into the direct sum of a singlet and a triplet, schematically
denoted as

(2) ⊗ (2) = (1) ⊕ (3) .

Now, we are interested here in the representations of Sn; they are related to
SU (n). While (3.7) forms a one-dimensional (antisymmetric) representation of S2,
(3.8)–(3.10) span a three-dimensional (symmetric) representation space. The latter is
reducible, since each of the states (3.8)–(3.10) corresponds to a one-dimensional irre-
ducible representation. In general, it holds that all of the totally symmetric and totally
antisymmetric irreducible representations of Sn are one-dimensional (in our exam-
ple, the application of the permutation operator to each of the states (3.7)–(3.10) does
not lead out of the one-dimensional ray cψ, whereψ is one of the states (3.7)–(3.10)).
In contrast, the irreducible mixed-symmetric representations which occur from S3
on are higher-dimensional. Thus, S3 decomposes the space of states H3 of three
particles irreducibly into one each of a totally symmetric and a totally antisymmetric
representation, as well as two two-dimensional mixed-symmetric representations,
that is doublets (which we will not consider further here).4

What is suggested here using the example of the connection between S2 and
SU (2) holds quite generally: The multiplicity of an irreducible representation of Sn

is equal to the dimensionality of the irreducible representation of SU (n), and vice
versa.5 The representations of Sn and SU (n) can be elegantly illustrated graphically
by so-called Young schemata (or Young tableaux; the interested reader is referred
to Messiah 1979, Appendix D.4, and also Weyl 1950, Chap.V, Sect. 13).

3.2 Ontology of Quantum Theory

In Sect. 3.1, the consequences of the empirical fact of the physical indistinguishabil-
ity of particles or objects for the formal apparatus of quantum theory were treated.
Now, we want to discuss the implications of that fact in regard to ontology (or also

4See Exercise 1.
5Here are some additional examples without further comments: The tensor product of three fun-
damental SU (2) doublets decomposes into a doublet and a quartet: (2) ⊗ (2) ⊗ (2) = (2) ⊕ (4).
The tensor product of two fundamental SU (3) triplets decomposes into a triplet and a sextet:
(3) ⊗ (3) = (3) ⊕ (6). And for the tensor product of three fundamental SU (3) triplets, we obtain:
(3)⊗(3)⊗(3) = (1)⊕(8)⊕(8)⊕(10). Correspondingly, S3 has 1 one-dimensional antisymmetric, 8
two-dimensional mixed-symmetric and 10 one-dimensional symmetric irreducible representations.
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contemporary metaphysics). Ontology is that branch of philosophy which investi-
gates the nature of Being and its basic categories; that is, what exists, and in what
modes and manners does it exist.6

3.2.1 Identity and Leibniz’s Principle

3.2.1.1 Identity and Individuality

At the centre of ontology are questions of identity and individuality7; not a few
philosophers even link the very possibility of an ontology quite closely to the question
of identity, or of how entities can be individuated. In this connection, Willard van
OrmanQuine’s well-known dictum, “No entity without identity” (Quine 1969, p. 23)
is notorious.

As a preliminary, we make a few remarks on the terminology: An entity denotes
in philosophy any sort of form of being, whether concrete or abstract.8 For physi-
cists, it is often of primary importance to describe physical systems. The term system
is mostly used in this connection in the sense that a system can consist of subsys-
tems. Elementary systems which cannot be further decomposed are, for example,
elementary particles. If one wishes to avoid adopting a particle ontology from the
beginning, then it is better to speak more generally of physical objects. The ques-
tion treated in the present chapter, quite generally expressed, is what comprises the
numerical distinctness of quantum objects, and how they can be individuated.

Wemust also be mindful of the usage of the concept identity. In physics texts, one
often sees the term identical particles instead of indistinguishable particles. Such a
manner of speaking is confusing, for if several particles are identical, then we are
dealing not with several, but rather with one particle. David Lewis expresses this
very concisely in his inimitable manner:

Identity is utterly simple and unproblematic. Everything is identical to itself; nothing is
ever identical to anything else except itself. There is never any problem about what makes
something identical to itself; nothing can ever fail to be. And there is never any problem
about what makes two things identical; two things never can be identical. (Lewis 1986,
pp. 192–193)

6See Loux (1998), a highly recommendable introduction to modern ontology, Castellani (1998) as
a useful collection of texts, and especially French and Krause (2006), a comprehensive account of
the questions of quantum ontology which are treated in the following sections.
7These two concepts are used here as synonyms to a great extent (however, caution is recommended
for interpreting the quotes in Sect. 3.2.2).
8Entities are termed concreta or particularia when they are localizable in spacetime; this includes in
particular all of the everyday objects around us, as well as other physical things. Abstracta, in con-
trast, do not exist in space and time, and typically are causally inert. Among the standard examples,
we could mention sets, numbers, propositions, possible worlds or abstract concepts such as love,
God or the Good. But also properties, insofar as they are conceived as universalia, are abstract. They
however possess the possibility of being realized at locations in spacetime (i. e. “instantiated”).



84 3 Quantum Identity and Indistinguishability

In this sense, we are concerned with empirically indistinguishable objects and the
related concept of object-identity—speaking of similar objects is therefore more
accurate, although unfortunately less commonly used.

There are three modes of individuation of physical objects, namely by means of

(1) sets of properties;
(2) spatiotemporal localization, or spacetime trajectories;
(3) primitive (irreducible) metaphysical identity.

Now let us consider two particles a and b, with spacetime trajectories γa and
γb, respectively, within a given volume of space. If these particles are of differ-
ent species, i. e. they are of different types, then there is at least one property with
respect to which they differ.9 In order to avoid difficulties with composite properties
or those derived from more elementary properties, we can concentrate here on the
fundamental properties of elementary particles, i. e. rest mass, charge and spin. Dis-
tinguishing, let us say, electrons from photons presents no difficulties owing to their
different fundamental properties; this would be an example of individuation in the
sense of (1).

What, however, is the situation when a and b are similar, i. e. for example two
electrons?We can then try to make use of their spatiotemporal localization to achieve
a synchronic differentiation. Individuation in the sense of (2) signifies that the space-
time trajectory can serve to establish diachronic identity. Schopenhauer spoke, fol-
lowing Kant, of space as principium individuationis. But Kant himself already noted
that spatiotemporal individuation presupposes a further assumption, namely that of
the impenetrability of the objects considered.10

9Properties are to be understood here initially as empirically accessible in principle (although not
necessarily directly observable). In an empirical science such as physics, it appears ostensibly
that only and always such properties are meant; in metaphysics, however, properties can be more
fundamentally distinguished, beyond their empirical nature, as for example the distinction between
properties as universalia and as tropes indicates – this will be treated more thoroughly later on.
Initially, however, properties in the sense of physics are understood to be universalia which are
instantiated at spatiotemporal points, that is in re. By way of explanation: Since universalia, as
emphasized in footnote 8, are abstracta, then in principle also non-instantiated properties, so-called
universalia ante rem, can also be considered. The property of being a unicorn would be an example.
Strict universalia-realists incorporate such properties into their ontology (for reasons which we
cannot discuss here). But in this chapter, we will refrain from considering such possibilities.
10In his Lectures on Metaphysics (1790), Kant writes about space as an individuation principle:
“Objects in space are therefore already plura, because they are in space” (28:569–570; Cambridge
edition, edited and translated by K. Ameriks and S. Naragon). This is followed by the consideration
of two droplets of water, which can also be found in the Supplement on the “Amphiboly of Concepts
of Reflection” in Kant’s Critique of pure Reason (A 1781/B 1787):

...the difference of the places of these appearances at the same time is still an adequate ground
for the numerical difference of the object (of the senses) itself. Thus, in the case of two drops
of water one can completely abstract from all inner difference (of quality and quantity), and
it is enough that they be intuited in different places at the same time in order for them to
be held to be numerically different. (A263–264/B319–320; Cambridge edition, edited and
translated by P. Guyer and A. W. Wood)
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Let us assume that the objects a and b could completely interpenetrate each other,
so that they would henceforth occupy the same position in spacetime, or, in the case
of extended objects, the same spacetime region (cf. also Della Rocca 2005). Call the
entity in this position or region X . What justification would we then have to say of X
that it consists of two objects, and not of one—or else a thousand—objects? If we
individuate exclusively in the sense of (2), we would have to say, strictly speaking,
that a and b have lost their identities at the moment of complete interpenetration,
and instead the new object X was created at that moment. We could avoid this only
by requiring impenetrability of the objects in addition to (2). That furthermore the
topology of the spacetime also plays a role, or conventionalist elements related to the
basis of physical topology and geometry, will be treated at the end of the following
section.

3.2.1.2 Leibniz’s Principle

One could raise the objection that locations and distances, that is the localization of
an object in space, belong as well to the properties of the object. Individuation in the
sense of (2) would then be reduced to individuation in the sense of (1). We therefore
want to look into the idea that identity can be determined by the equivalence of
properties in more detail. This idea forms the basis of Gottfried Wilhelm Leibniz’s
well-known principle of the identity of indiscernibles (usually abbreviated as PII:
principium identitatis indiscernibilium)11:

If, for all properties F, object x has property F if and only if object y has F, then x and y are
identical.

In formal notation, the PII reads:

To be sure,Kant’s position can be understood in detail only in terms of his transcendental philosophy,
which we cannot discuss further here, and according to which physics does not refer to things-
in-themselves, but rather to their appearances on the basis of space and time as pure forms of
intuitions and the categories of understanding. On the topic of impenetrability, one finds in Kant’s
Metaphysical Foundations of Natural Science from 1786 the following Proposition 3 in the second
part on dynamics:“Matter can be compressed to infinity, but can never be penetrated by a matter,
no matter how great the compressing force of the latter may be” (AA IV:501; Cambridge edition,
edited and translated by M. Friedman).
11In his Primae veritates, Leibniz writes: “Sequitur etiam hinc non dari posse duas res singulares
solo numero differentes” (it follows even that there can be no two individual things which aremerely
numerically distinct). The continuation of this quote shows immediately that Leibniz considered
his PII to be a consequence of what he held to be a still more fundamental principle, the Principle
of sufficient reason: “utique enim oportet rationem reddi posse cur sint diversae, quae ex aliqua
in ipsis differentia petenda est” (for it must be possible to state a reason why they are distinct,
which must be sought in some sort of difference between them). The significance of the PII was
illustrated by Leibniz as he related it in a quite intuitive way to the ladies of the Herrenhausen
Palace by challenging them to find two identical leaves, which they could not do (cf. C.I. Gerhardt
(ed.), Gottfried Wilhelm Leibniz: Philosophische Schriften. 7 volumes, Berlin 1875–1890. Reprint
by Olms, Hildesheim, 1960, p. 214).
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∀x, y : (∀F : Fx ↔ Fy) ⇒ (x = y). (3.11)

Leibniz understood his principle in such a way that the properties which serve
to quantify the objects are monadic and intrinsic. A property is intrinsic when it is
attributable to anobject independently of the existence of other objects andproperties;
in the converse case, it is extrinsic. Generic (although by no means uncontroversial)
candidates for intrinsic properties are the masses, charges and spins of elementary
particles. Extrinsic or relational properties, briefly: relations, depend on more than
one entity and are therefore many-place (n-adic or n-ary). The relations “larger than”
or “brother of” are paradigmatic examples of binary relations; “lies between” is
ternary. Monadic properties, in contrast, are one-place or unary.

In the light of the above quote from Lewis, there is an air of paradox in our
formulation of the PII, since initially we speak of two objects x and y, which are then
asserted to be identical. The PII should therefore rather be expressed in its logically
equivalent, contrapositive formulation of the dissimilarity of the diverse:

Objects x and y are distinct in the case that x possesses at least one property which y does
not possess, or vice versa.

Or still more simply: No two objects share all their properties; formally:

/∃x, y : (x �= y) ∧ (∀F : Fx ↔ Fy), (3.12)

which is equivalent to (3.11).12

The question now arises as to what extent the PII represents a self-evident and
possibly a priori comprehensible metaphysical posit. It is instructive in this con-
nection to take a look at the logical converse of the PII, i. e. the principle of the
indiscernibility of identicals: ∀x, y : (x = y) ⇒ (∀F : Fx ↔ Fy), or

∀x, y : (∀F : Fx /↔Fy) ⇒ (x �= y) . (3.13)

In words: Discernable things can never be identical. This requirement seems indeed
to be evident. It is hard to imagine or construct possible worlds which violate it.13 It

12This can be shown as follows:

¬∃x, y : ¬(x = y) ∧ (∀F : Fx ↔ Fy)

⇐⇒ ∀x, y : ¬(¬(x = y) ∧ (∀F : Fx ↔ Fy)
)

⇐⇒ ∀x, y : (x = y) ∨ ¬(∀F : Fx ↔ Fy)

⇐⇒ ∀x, y : (∀F : Fx ↔ Fy) ⇒ (x = y)

.

13David Lewis, in his modal realism regarding possible worlds, maintains the view that in other
such worlds there are “counterparts” to the entities in our world (e. g. to every reader of this book).
Unlike, for instance, Plantinga, he therefore denies trans-world identity, the view that, e. g., a person
in our world is identical with persons in other possible worlds (of which we are speaking when we
say things like, “I was almost hit, but I managed to jump to one side at the very last moment”).
Counterparts can be arbitrarily similar to each other, but not identical. Supporters of trans-world
identity, according to Lewis, violate the principle of the indiscernibility of identicals (see Lewis
1986, pp. 198ff; Loux 1998, pp. 166ff).
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thus represents a candidate of a principle which is valid in all metaphysically possible
worlds.

This seems however not to hold for the PII, since it is quite possible to describe
worlds in which the PII is violated. Such a world, a counterexample to PII, was
discussed by Max Black using a well-known scenario (which in effect is a variation
of Kant’s water droplets; see Footnote 10). In Black’s own words:

Isn’t it logically possible that the universe should have contained nothing but two exactly
similar spheres? We might suppose that each was made of chemically pure iron, had a
diameter of one mile, that they had the same temperature, colour, and so on, and that nothing
else existed. Then every quality and relational characteristic of the one would also be a
property of the other (Black 1952, p. 156).

Black’s scenario begins with the assumption that spacetime locations cannot be
used for the individuation of the two spheres. Such an assumption is fulfilled for
example in a world in which space is relational. Relationalism about space holds that
space is nothing more than the set of all possible relations between bodies, and that
therefore, empty space is impossible. The opposite view, substantivalism, considers
space or its constituents to be entities sui generis. In a relational space, locations and
distances represent relational properties of the objects within it; in contrast, a point
in substantivalist (absolute) space possesses its location intrinsically. In principle,
there thus exists an absolute frame of reference in such a space.14

As already indicated at the end of the previous section, still another subfield of the
philosophy of spacetime is associated with our topic: Spacetime conventionalism.
The idea is that the geometry (and possibly also the topology) of the physical world
are not empirical facts in themselves, but only the conjunction of spacetime geometry
and the set of all physical laws. In order to determine the empirical geometry, we
have to stipulate first certain conventions about the behaviour of measuring rods and
clocks upon transport through spacetime. A given convention (e. g. the assumption
that measuring rods act as rigid bodies with constant lengths) can, in principle, be
replaced by any other convention, as long as corresponding adjustments are made
in other parts of physics (e.g. in optics and electrodynamics concerning the paths
of light). Thus, spacetime geometry is empirically underdetermined, and only the
combination of geometry plus laws of nature is subject to empirical test.

Hacking (1975) points out that by making a suitable choice of the spatiotemporal
structure, the PII can be defended against Kant’s water droplets and Black’s spheres.
Black’sworld indeed allows only the following description: One spherewith intrinsic
properties Q is given; from it, a sphere with properties Q at a distance of z sphere-
diameters can be reached along a straight line. This scenario can now be described
either by a world which contains two spheres within a Euclidean space, or else by a
world which contains one sphere within a cylindrical space with a circumference of z
(cf. Adams 1979, p. 15). Black’s scenario of two spheres can thus be reinterpreted qua
suitable convention into a scenario with only a single Leibniz-individuated sphere.
Hacking claims that every objection to the PII can be reinterpreted such that the PII
is in fact fulfilled.

14For an introduction to the philosophy of spacetime theories, see Dainton (2001).
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In the following, we dispense with conventionalist provisos (see French 1975 for
an explicit criticism of Hacking). Black’s thought experiment then undermines the
PII as a fundamental metaphysical principle for defining identity. Onemight concede
that he considers only an imaginable world, but not the actual world. But even if it
were true thatwithin our actualworld, no two things can be foundwhich share all their
intrinsic properties (which is precisely the essential point of the indistinguishability
postulate of quantum theory, as we shall see in the next section); still, even the mere
conceivability of such a scenario threatens the claim of the PII to being a fundamental
metaphysical principle. A world in which a fundamental metaphysical principle is
violated should not be conceivable at all, i. e. it should not be a logically possible
world. Black’s spheres, however, seem to be perfectly possible.

3.2.1.3 Bundle Ontology, Trope Ontology and Haecceitism

However, not only Leibniz’s PII, but along with it a prominent account of an object
ontology, the so-called bundle ontology, is threatened here, since it appears to be
dependent on the PII. Bundle ontology maintains that objects are nothing other than
bundles of properties. For the individuation of an object as a bundle of properties,
the advocate of this position may refer to nothing more than just precisely those
properties. In addition to it, properties such as “a is identical with itself” should be
excluded as question-begging.

So far we have taken properties to be universalia. As noted in Footnote 9, this
is however not imperative. A prominent opposing position considers properties as
tropes, i. e. as particularized and individuated. Proponents of a trope ontology, espe-
cially nominalists, try to avoid a characteristic of universalia which they see as
obscure: namely their abstractness or, in the case of instantiated universalia, their
multiple localizability. For tropes are not only particular, but also numerically dis-
tinct, that is they are already individuated in an ontologically primitive sense. Tropes
are property individuals. Thus, no one electron would have the same charge trope
as any other electron, but only a precisely similar one. Since advocates of trope
ontology typically propound a bundle theory as well, they conceive of things as
bundles of tropes. Leibniz’s principle is thereby trivially fulfilled: Since tropes are
property individuals, no two things possess the same tropes (cf. also Sect. 6.5.2 on
the trope-ontological interpretation of QFT).

Some manifest advantages and disadvantages of tropist and universalist ontolo-
gies stand in direct opposition to each other. In the framework of trope ontology,
it is a disadvantage that, for example, the fact that every electron in the universe
carries precisely the same charge as every other is inexplicable and therefore must
be regarded as an ontological factum brutum; while universalists may see a natural
explanation of this fact in the participation of every electron in the same charge uni-
versal. The price for this is paid by the universalist theory in assuming the existence
of abstract entities with ominous instantiation conditions.

As we have seen, both conceptions of properties can be combined with a notion
of bundles. A concrete physical thing, a particular, is then simply the bundle of all
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its properties. For proponents of the trope theory, this option is virtually mandatory,
since each individual trope can already be regarded as a particular. Basically, the
theory of bundles must then consider the fact that at a point in spacetime (or within
a very small and compact region of spacetime), numerous properties must evidently
always be co-present and co-localized, in order to constitute an object bundle, as
a factum brutum (e. g. in the case of the trope-bundle theory, the presence of the
elementary-charge trope, the spin 1

2 trope, and the electron-mass trope at the location
of each electron). This is one of the reasons why in ontology, within the counter-
position to bundle theory, particularity—and with it, and at the same time, identity,
at least in the sense of numerical distinctness—is ascribed to the presence of a
propertyless carrier, i. e. in substance or substrate theory (this carrier “bears” the
properties of each concrete object and holds them together). In the philosophical
tradition, numerous terms have been coined in order to address this position. It is
sometimes referred to as haecceitism. The term haecceitas (from Latin haec: this)
can be translated as “thisness”, and is due to Duns Scotus. Other terms are “Lockean
substance” (cf. French 1989), “primitive thisness” or “primitive identity” (Adams
1979), “transcendental individuality” (Post 1963), or simply “bare particular”.

Using Black’s spheres as an example, we can illustrate this idea. Since the spheres
exhibit no intrinsic differences, but are nevertheless two spheres rather than one,
they would seem to possess their identities solo numero: We can attribute to them a
multiplicity or a cardinality, even though the spheres are not individually numerable,
so that they have no ordinality. Another common example is the set of points of
a spatiotemporal manifold. Manifold substantivalism is a variant of spatiotemporal
substantivalism according to which the ontological constituents of spacetime are the
points within the spatiotemporal manifold. As points, they themselves have no sort
of properties; they are completely homogeneous. For their individuation, manifold-
substantivalists therefore consider spacetime points as haecceistic entities.15

Haecceitism represents the third option in the framework of the above list (p. 84).
Individuation in the sense of (1) and (2) turned out to be problematic, as we have
seen. In both cases, the attempt is made to reduce identity to other quantities such
as sets of properties, or spatiotemporal behaviour. Individuation in the sense of (3)
sees identity as ontologically irreducible and primitive. From an haecceitist point
of view, it is reasonable to ask whether or not a certain individual exists in another
possible world, without referring to properties or spatiotemporal behaviour; and thus
without reducing individuality to (1) or (2). Haecceistic differences between possible
worlds are therefore differences which are not based upon distinctions in properties
or behaviour. But precisely this aspect makes haecceitism appear rather obscure to
every empirically orientedmetaphysicist. In any case, it seems, the concept of identity
has its price.16

15Leibniz argued precisely against this view in his well-known debate with Clarke (and Newton),
appealing to the PII, and thereby to the overriding authority of the Principle of sufficient reason.
16In the light of trope ontology, it is seen that along with property individuation in the sense of (1),
whereby properties are to be understood as universalia, and haecceistic individuation in the sense
of (3), a third option arises: that is individuation via tropes. Evidently, it is a kind of combination
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3.2.2 Leibniz’s Principle and Quantum Theory

Let us consider once more the example given above of the individuation of two parti-
cles a and b with spacetime trajectories γa and γb, respectively. We wish in addition
to assume that the spatiotemporal behaviour of the particles is chaotic; i. e. that the
trajectories γa and γb are thus practically unpredictable. Let us also assume that the
locations of the particles are accessible to the observer only at discrete time intervals,
then there is evidently no chance of recognizing a and b again. Numerous interpreta-
tions of quantum theory, most prominently the Copenhagen interpretation, deny the
existence of well-defined spacetime trajectories.17 For quantum objects, neither an
individuation in the sense of (1) nor in the sense of (2) seems to be possible.

Such an argumentation scheme can still be found today in numerous quantum
mechanics textbooks; for example, such influential authors as Landau and Lifschitz
write:

In classical mechanics, identical particles (electrons, say) do not lose their ‘individuality’,
despite the identity of their physical properties. [...]

In quantummechanics the situation is entirely different...We have alreadymentioned several
times that, by virtue of the uncertainty principle, the concept of the path of an electron ceases
to have any meaning. If the position of an electron is exactly known at a given instant, its
co-ordinates have no definite values even at an infinitely close subsequent instant. Hence,
by localising and numbering the electrons at some instant, we make no progress towards
identifying them at subsequent instants; if we localise one of the electrons, at some other
instant, at some point in space, we cannot say which of the electrons has arrived at this point.

Thus, in quantum mechanics, there is in principle no possibility of separately following
each of a number of similar particles and thereby distinguishing them. We may say that,
in quantum mechanics, identical particles entirely lose their ‘individuality’. (Landau and
Lifschitz 1965, p. 209).

It is decisive that the argumentative focus lies here not on the question of the simulta-
neous distinguishability of similar particles, but instead on their recognizability over
time. In a systematic sense, we can distinguish between synchronic identity (at a cer-
tain moment in time) and diachronic identity, that is the persistence of an object over
time. This distinction is tentatively based upon the alternative of an individuation in
the sense of (1) as opposed to (2). The problem of re-recognizability was discov-
ered early on by the founding fathers of quantum theory; an explicit connection with
Leibniz’s principle was made by Hermann Weyl, in particular. His discussions of

of (1) and (3), since tropes are on the one hand properties, but on the other they are irreducible
and primitive. Astoundingly, this option is not considered in the debate on quantum identity and
Leibniz’s principle explicitly anywhere in the literature. The reason is no doubt that differences in
similar types of tropes—for instance the elementary-charge tropes of two electrons—represent not
empirical, but merely metaphysical differences (similarly to haecceities).
17In Bohm’s theory, the situation is different, as shown by Brown et al. (1999). To be sure, here
the possibility of maintaining individuation in the sense of (2) comes at the price of building the
topologies of non-crossing spacetime trajectories directly into the structure of the configuration
space and of Bohm’s guidance equation. The requirement of mutual impenetrability is in this sense
ontologically primitive.
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this topic are at first glance somewhat enigmatic; Muller and Saunders (2008) also
stumble over them. If one traces these discussions historically, it becomes clear how
the view of Leibniz’s principle in relation to quantum mechanics changed over time.
In his Theory of Groups and Quantum Mechanics (German original from 1928),
Weyl argues:

...the possibility that one of the identical twins Mike and Ike is in the quantum state E1
and the other in the quantum state E2 does not include two differentiable cases which are
permuted on permutingMike and Ike; it is impossible for either of these individuals to retain
his identity so that one of them will always be able to say “I’m Mike” and the other “I’m
Ike.” Even in principle one cannot demand an alibi of an electron. In this way the Leibnizian
principle of coincidentia indiscernibilium holds in quantum mechanics (Weyl 1950, p. 241).

The conclusion reached in the last sentence initially appears unintelligible: If Mike
and Ike are indeed indistinguishable and “it is impossible for either of these individ-
uals to retain his identity”, and we are nevertheless dealing with two individuals, is
then Leibniz’s principle not violated? If we look at later publications, this confusion
seems even to increase; in 1949, Weyl writes:

The upshot of it all is that the electrons satisfy Leibniz’s principium identitatis indiscerni-
bilium, or that the electronic gas is a ‘monomial aggregate’ (Fermi–Dirac statistics). In a
profound and precise sense physics corroborates theMutakallimūn; neither to the photon nor
to the (positive and negative) electron can one ascribe individuality. As to the Leibniz–Pauli
exclusion principle, it is found to hold for electrons but not for photons (Weyl 1949, pp. 247).

A confirmation of Leibniz’s principle is again mentioned, this time however with the
remark that the electron gas (and, based on the preceding passages, in a similar sense
the photon gas as well) forms a “monomial aggregate”, that is, a whole. In addition,
Weyl’s use of the term “Leibniz-Pauli exclusion principle” is remarkable (we take
up this topic in more detail below).

We can however indeed find a consistent reading of these passages.Weyl evidently
does not have Black’s scenario (as a counterexample to PII) in mind; rather, he is
considering the question of re-recognizability over time, in a similar manner to that
of Landau and Lifschitz later; he thus discusses the diachronic identity in contrast
to the synchronic identity. Now, the two scenarios of Mike and Ike before and after
their exchange are empirically indistinguishable, and therefore they must be counted
physically as a single scenario—in the sense of the PII.

The numerical distinctness of the electrons at a certain moment in time, i. e. their
synchronic identity, is not at all questioned by Weyl. Perhaps he has tacitly assumed
an haecceistic position; this remains open in the passages quoted. In his later book
“Symmetry”, in 1952, he writes:

I told you that Leibniz had given the geometric notion of similarity this philosophical twist:
Similar, he said, are two things which are indiscernible when each is considered by itself.
Thus two squares in the same plane may show many differences when one regards their
relation to each other; for instance, the sides of the one may be inclined by 34◦ against the
sides of the other. But if each is taken by itself, any objective statement made about one
will hold for the other; in this sense they are indiscernible and hence similar (Weyl 1952,
pp. 127–128).
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Once again: The two squares can indeed be distinguished relationally insofar as they
are two; in view of their “squareness”, however, they are essentially similar, that is
indistinguishable. If Weyl had followed up the question of the relational distinction
of the squares, if he had thus shifted the focus onto their synchronic identity, then he
would quite possibly have arrived at considerations which closely approach those of
the later debates, such as those described in Sect. 3.2.3. Instead, in the early debates
on quantum identity, the emphasis lies on a holistic aspect which consists in the
fact that a multiplicity of similar quantum objects forms a “monomial aggregate”, in
the sense that no physical distinction can be made between the state |Mike〉 + |Ike〉
and its permutation |Ike〉 + |Mike〉; and they therefore, according to Leibniz, form a
whole. Correspondingly, any physically reasonable talk about the (individual) parts
of such wholes is prohibited. Max Born in 1927 writes that particles “[are] in many
cases not identifiable at all as individuals, e. g. when they combine into an atomic
union” (Born 1927, p. 240). Ernst Cassirer takes this theme up in 1937:

The impossibility of delimiting different electrons from one another, and of ascribing to each
of theman independent ‘individuality’, has been brought into clear light through the evolution
of the modern quantum theory, and particularly through the considerations connected with
the ‘Pauli exclusion principle’. Considered solely from the standpoint of its methodological
significance in the construction of the quantum theory, Pauli’s exclusion principle is strangely
analogous to the general principle introduced into philosophy by Leibniz under the name of
principium identitatis indiscernibilium. This principle states that there cannot be two objects
which completely correspond to each other in every determining characteristic, and thus are
indistinguishable except by mere number. There are no things that differ from each other
‘solo numero’; rather every true difference must be definable as a qualitative difference, a
distinction of the attributes and conditions that constitute the object. The Pauli principle is,
as it were, the principium identitatis indiscernibilium of quantum theory. It characterizes
every electron within the atom by a definite complex of conditions, by ascribing to it four
quantum numbers that completely determine its orbit. Furthermore it states the conclusion
that electrons that show no differences in this respect are to be regarded as a single physical
entity. (Cassirer 1956, p. 184–185, Footnote 17; German original 1937).

Just like Weyl, Cassirer finds an analogy between the principles of Leibniz and
Pauli. According to the Pauli principle, no two fermions can have precisely the same
quantum numbers, i. e. properties. This looks like an analogy to the PII—and indeed,
also in the sense of synchronic identity. Since however a similar exclusion principle
does not hold for bosons, wemust make a distinction here. The quoted passages, both
of Weyl and also of Cassierer, are unsatisfying in this regard. This is related not only
to the distinction between fermions and bosons, but also to the question of whether
we can apply Leibniz’s principle to diachronic or to synchronic individuation. In the
further course of the debate, the latter shifts into the centre of the discussions, with
the result that now, to some extent contradictory consequences are drawn (at least in
a literal interpretation of the statements made).

Henry Margenau, in 1944, speaks explicitly of a contradiction between the Pauli
principle and Leibniz’s principle, and of a violation of the latter. He first says:

This conclusion recalls Leibnitz’ principle of the identity of indiscernibles; indeed physicists
have occasionally thought that theE.P. [exclusion principle] implies this principlewith regard
to elementary particles of the same species.
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Unfortunately, Margenau leaves open the question of which physicists he is referring
to (but it ismost likely that hewas thinking among others ofWeyl). He then continues:

... the E.P., so far as it goes, contradicts Leibnitz [...] two particles, as we have seen, differ
in no observable respect. Nevertheless quantum mechanics would lead to entirely erroneous
results if they were treated as a single entity. The particles, though they can not be labelled
individually, can be counted. If and only if identity were understood as not implying numer-
ical identity, then two electrons in an atom could be said to be identical (Margenau 1944,
p. 202).

Clearly, the synchronic question is finally addressed, and with it the question of
how it is possible that two particles, although they differ “in no observable respect”
(i.e. they are empirically indistinguishable), nevertheless are still two particles. This
apparently admits of only one conclusion: In synchronic terms, the PII is violated.

In the following years, precisely this viewpoint—especially within the philoso-
phy of science—finds an increasing number of adherents (see e. g. Post 1963, Cortes
1976, Teller 1983, French and Redhead 1988 and Butterfield 1993). Castellani and
Mittelstaedt write: “[I]t is also commonly held that a form of the principle of the iden-
tity of indiscernibles is valid in the domain of classical physics, while the principle is
inapplicable in the quantum case”; and they add in a footnote: “This is undoubtedly
the prevailing position in the literature” (Castellani and Mittelstaedt 2000, p. 1589).
In this respect, we must agree with Steven French when he refers to the violation
of Leibniz’s principle in quantum theory in his encyclopaedia article on “Identity
and Individuality in Quantum Theory” (French 2011) as a “received view” (for the
continuation of the discussion of this problem complex in QFT, see 6.4.2).

If, however, the PII is violated in quantum theory, what follows from this? A series
of questions has to be dealt with separately, among others:

1. In which sense can quantum objects (not) be individuals?
2. Do quantum objects violate Leibniz’s principle?
3. Is there an ontological difference between fermions and bosons?
4. In which sense does a many-particle state consist de facto of many particles (or

must it not be regarded instead as a whole)?

Themotivation for these questions appears in various forms in the confusing interplay
of the quotes given above. They will be treated in more detail in the following. In
connectionwith the third question,we also return inSect. 3.2.3 to the secondquestion.
They will be affirmed only provisionally here. The fourth question is taken up again
in Sect. 3.2.4. Let us initially turn to the first question.

Are quantum objects non-individuals? What is that supposed to mean? Indeed,
quantum theory would seem to let Black’s scenario become reality: Similar quan-
tum objects possess a cardinality, but no ordinality. This is a direct consequence of
the postulate of indistinguishability—quantum objects of the same type are in states
for which it is possible to know the overall number of objects, although the objects
themselves are empirically indistinguishable. To use a didactic picture: The amount
of change in my pocket is Leibniz-individuated in terms of the individual coins of
various denominations. This, however, does not hold for the same sum of money in
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my bank account.18 It remains unclear whether this is a permissible analogy or not;
whether mathematical conditions can be mapped onto the world (see also Sect. 3.2.4
on this question), and whether we have captured the essence of cardinality in this
way. Quantum objects would appear to possess a kind of distinctness solo numero—
in contradiction to Leibniz’s principle. Does it follow from this that quantum theory
verifies haecceitism? Do quantum objects then possess a primitive identity, which
can be expressed neither in terms of their spatiotemporal history nor in terms of their
properties? Interestingly, only a few authors have explicitly drawn this conclusion,
although the conviction that quantum mechanics violates the PII has become pre-
dominant (cf. French and Redhead 1988). In recent times, several authors have even
turned to a revision of logic, or to set theory (see Sect. 3.2.4).

3.2.3 Weak Discernability

Both Weyl and Cassirer have indicated an analogy between the principles of Leibniz
and of Pauli. Pauli himself was by nomeans in agreement with this; in 1949, hewrites
to Fierz correspondingly, that Leibniz’s principle, as ametaphysical principle, indeed
can have no empirical consequences; and then, literally:

That would indeed be a curious principle in the philosophy of Leibniz, which doesn’t hold
for all objects (e. g. not for photons, as expressly emphasized by Weyl), but instead only for
some objects.19

Weyl also receives a letter from Pauli. The letters in fact show that Pauli was not
very well informed about the PII, but he touches upon the important question dealt
with above, whether there is a difference between bosons and fermions in regard to
the PII and to ontology. This point deserves a more detailed treatment.

The Pauli principle states that no two fermions can be in precisely the same
state, that they thus must differ in at least one of their quantum numbers (i. e. in at
least one property). Thus, it seems that Leibniz’s principle is obeyed by fermions.
Why, then, do Margenau and the “received view” come to the opposite conclusion?
The application of a permutation operator to a fermion state (3.6) leads merely to a
change of sign; otherwise it is similar to the application to a boson state (3.4). Since

18Schrödinger made use of this illustration in 1949: “... the shillings and pennies in your bank
account are not individuals”. (quoted after French and Krause 2006, p. 122), and Mary Hesse
writes:

With pounds, shillings, and pence in a bank balance, however, it is not merely the case that
we cannot in practice re-identify a given pound appearing in the credit column, but that there
is no sense in speaking of the self-identity of this pound, and of asking where it reappears
in another column or whether it is the pound paid over the counter yesterday (Hesse 1966,
p. 49–50).

19Translated fromvonMeyenn (1987); see in particular the second section on the exclusion principle
and on the discernability of particles.
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furthermore every physical observable Ô commutes with every permutation operator
P̂ (3.5), the expectation values of all operators for a single fermion in amany-fermion
state are the same. In this regard, there is no difference between fermions and bosons:
empirically, we can neither distinguish between single bosons in a many boson-state
nor between single fermions in a many-fermion-state.

In spite of this at first apparently convincing argumentation in support of the
“received view”, the debate over the status of Leibniz’s principle in quantum theory
has received quite unexpectedly a new thrust in the early 21st century. A decisive
impulse was given by Simon Saunders (2003, 2006). Saunders takes up earlier work
of Quine on weak discernability. So far, the assumption has been made that, in
the PII, one should quantify over monadic, intrinsic properties. This is, however, an
unnecessarily stringent requirement. Relaxing this requirement, the Leibniz principle
can be formulated with varying degrees of strength, depending upon what sort of
properties serve for the quantification. Besides intrinsic properties, we could also
consider relational properties, whereby in particular ordering relations and irreflexive
relations lead to interesting extensions of the concept of indiscernability.

According to Quine (1976), we can characterize three kinds of discernability:
absolute, relative and weak discernability. They are defined as follows:

• Absolutely discernable objects differ in at least one of their monadic properties.
• Relatively discernable objects are different with respect to at least one ordering
relation.

• Weakly discernable objects are different with respect to at least one irreflexive
relation.

Some paradigmatic examples: The natural numbers are absolutely discernable. In
contrast, the moments in time along the time axis (the “arrow of time”) are in fact
intrinsically equivalent, and thus not absolutely discernable, but rather relatively
discernable with respect to an “earlier–later” relation. Weakly discernable objects
require irreflexive relations, whose definition we first give here:

A relation R is reflexive, if for all x in the domain, R(x, x) holds. In the case that ¬R(x, x)

holds, R is irreflexive.

Black’s spheres at a distance d define an irreflexive distance relation: Every sphere
is at a distance d from the other, but not from itself.

The various forms of discernability can also be illustrated by using graphs: In the
simplest case of a “labelled graph” with two nodes and an edge

a •·······• b , (3.14)

the two nodes are absolutely discernable. Here, “······” can be either a directed or an
undirected edge. The unlabelled and directed graph

•−→−−• (3.15)
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represents an example of relative discernability of the nodes; the unlabelled and
undirected graph

•−−−−• (3.16)

is an example of weakly discernable nodes. In contrast, the two nodes of the edgeless
graph

• • (3.17)

are not even weakly individuated.
The three variants of discernability illustrated above correspond to three forms of

Leibniz’s principle (with differing degrees of strength; each one is formulated in the
contrapositive form employed above):

Strong PII: There exist no two individuals which are not absolutely discernable.
Moderate PII: There exist no two individualswhich are not relatively discernable.
Weak PII: There exist no two individuals which are not weakly discernable.

In the previous sections, Leibniz’s principle was considered in the strong sense
only. Saunders (2006) and Muller and Saunders (2008) now show that fermions
indeed violate the strong PII, but not the weak PII. Consider for example the anti-
symmetrized state function (3.6) of two fermions; in this concrete example, it could
represent a spin singlet of two electrons, which otherwise share all their remaining
quantum numbers,20 with the spin orientations |↑〉 and |↓〉

|�〉 = 1√
2

(
|↑〉|↓〉 − |↓〉|↑〉

)
. (3.18)

The two electrons obey the irreflexive relation R = “possess spins oriented oppositely
to each other, but not to themselves”. According to Saunders, the electrons, or more
generally, fermions, are therefore weakly discernable; their identity is grounded in
R via the weak PII.

If one follows this argumentation, then fermions are weakly discernable in the
same way as Black’s spheres; but not bosons. Saunders holds this to be unproblem-
atic, since the most elementary fermions—leptons and quarks—are the fundamental
matter particles, while elementary bosons appear only as gauge particles and as the
Higgs boson. As such, they should be regarded not as objects, but rather only as
excitation modes of quantum fields: “We went wrong in thinking the excitation num-
bers of the mode, because differing by integers, represented a count of things; the

20Such a state represents a didactic simplification, which is indeed commonly used, but which
can lead to false conclusions. In particular, antisymmetry and EPR entanglement should not be
confused. For the complete description of the state of an electron must also include the spatial
degrees of freedom in addition to the spin degrees of freedom; otherwise, the state (3.18) could be
misunderstood to imply that the two spins are located at the same point in space, which is obviously
impossible for electrons. For particles, the complete state is a wavefunction in spin+position space.
There, however, states which are formed by direct antisymmetrization of product states are not yet
EPR entangled (in the sense of Chap. 4). Antisymmetry and EPR entanglement must be separated
from each other conceptionally, as shown in detail by Ghirardi et al. (2002) and Friebe (2014).
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real things are the modes” (Saunders 2006, p. 60). It is however questionable as to
what extent such a separation of fermions and bosons is ontologically plausible; it is
also questionable whether gauge bosons (in both massless and massive forms) and
Higgs bosons are ontologically on a par, since the Higgs does not play the role of an
intermediary field for the fundamental interactions.

But we need not delve into such questions, if we follow the argumentation of
Muller and Seevinck (2009); they show that Saunders’ result can be extended to
bosons and, in fact, to all quantum objects. The basic idea is that quantum objects
in a many-object state must necessarily obey certain Heisenberg commutation rela-
tions, e. g. the irreflexive relation “to have mutually complementary positions and
momenta”, or more generally “to contain canonically conjugated variables”, as a
result of the non-commutative algebra structure of quantum theory. Hence, it plays
no role whether we consider fermions or bosons; all quantum objects obey the weak
PII (see also Huggett and Norton 2014 for a refinement of these arguments).

Thepublications of Saunders andofMuller onweakdiscernability have stimulated
anew the discussion of the status of the PII, and more generally of the ontology of
quantum theory; but they have not been without controversy. This leads us over to
the next section.

3.2.4 Outlook

Let us briefly recapitulate: The empirical result of the physical indistinguishability of
the application of a particle permutation to a many-particle state, in the sense of the
indistinguishability postulate, is beyond dispute. Likewise its formal consequences
within the mathematical apparatus in the form of the symmetrization postulate and
permutation invariance. In the discussion around Leibniz’s principle, Weyl and Cas-
sirer found it initially to be verified in diachronic terms, while followingMargenau, it
was generally agreed that in synchronic terms, the (strong) PII is violated in quantum
theory. The work of Saunders and Muller rehabilitated Leibniz’s principle, even in
synchronic terms, but not in its strong form; instead, only as the weak PII. But these
conclusions are not uncontroversial, as we shall finally discuss.

The idea of grounding identity or individuality with the help of Leibniz’s principle
via properties can be seen as reductionistic. Identity supervenes on properties and is
thus a derived concept. Haecceitism, in contrast, is an anti-reductionistic or primi-
tive form of identity grounding. In the case of weakly discernable objects, identity
reduces to purely relational properties. Since, however, the concept of a “relation”
also presupposes that of “relata”, we are threatened here with a certain circularity.
Katherine Hawley (2009) argues that weak discernability is grounded in the fact
that the objects considered are already distinct, i. e. different, and that one therefore
cannot conversely regard discernability as the basis of their distinctness. In brief: no
relations without relata. It would seem that the debate between reductionism and
anti-reductionism of identity has reached a stalemate. Dorato and Morganti (2013)
even suggest a pluralistic strategy.
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A different type of critique of the rehabilitation of the weak PII in quantum
theory by Saunders and Muller was presented by Dieks and Versteegh (2008). These
authors emphasize the manifest differences between the classical and the quantum
world. They agree that Black’s spheres are weakly discernable, but they reject a
straightforward application of this scenario to the quantum case. In their view, a
“many-particle state” in quantum theory must not be seen as consisting of actually
individual objects—but rather as indicating potentially possible measurements. In
the words of the authors:

There is no sign within the standard interpretation of quantum mechanics that ‘identical
fermions’ are things at all; there is no ground for the supposition that the quantum relations
‘between fermions’ connect any actual physical objects. The irreflexivity of these relations
does not help us here. Quantum relations have a standard interpretation not in terms of what
is actual, but rather via what could happen in case of a measurement (Dieks and Versteegh
2008, p. 934).

The supporters of the weak quantum PII could, as a countermove, point out that
the question remains as to why it is quantum-theoretically possible to attribute a
particle number to a many-particle state, if indeed the parts do not actually exist (see
also Ladyman and Bigaj 2010 for a reaction to Dieks). On the other hand, it seems
remarkable that the difference between classical and quantum physics should play
no role in questions of individuation.

On at least four points, the debate over quantum ontology touches in a remarkable
way with the debate on structural realism, a moderate variant of scientific realism
with an overriding bearing on modern physics (cf. also Sect. 6.5.1 for the struc-
tural realist interpretation of QFT). Structural realists, especially ontic structural
realists, consider the fundamental entities of the world as structurally individuated.
Precisely how this should be understood is the subject of continuing discussions and
can be only implicitly clarified in the following (cf. Lyre 2010 and French 2014 for
comprehensive accounts). Steven French (1989) argues that the quantum theory is
compatible with both the assumption that quantum objects are not individuals (in the
sense of Leibniz, owing to the violation of the strong PII), as well aswith the contrary
assumption that they are individuals in the haecceistic sense. We are thus dealing
with an underdetermination of metaphysics itself. According to French and Lady-
man (2003), this metaphysical underdetermination indicates that an object-oriented
ontology is doomed to failure and should be replaced by a structural metaphysics.

French and Krause (2006) go still further and try to develop a revised set theory
for quasi-objects. This is the second point of contact between quantum ontology and
structural realism. A third point of contact is connected with the observation that the
permutation invariance of quantum theory has a corresponding invariance in general
relativity in the form of diffeomorphism invariance; more precisely: According to
John Stachel (2002), both invariances aim at the abstract property of certain theories
of being generally permutable. A theory T is generally permutable if models of T
can be regarded as equivalent which differ only in the question of which objects take
on which positions or roles in a network of relations. In general relativity, diffeomor-
phism invariance refers to the general permutability of spacetime points; for quantum
theory, Caulton and Butterfield (2012) argue that it is generally permutable if one
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considers the full symmetric group, i. e. including the mixed-symmetric representa-
tions or parastatistics. Whether such objects in fact occur in nature is secondary; it is
decisive only that the indistinguishability and symmetrization postulates of quantum
theory allow for this possibility.

Fourthly, the weak PII seems to be perfectly compatible with structural realism:
Objects or relata are individuated merely up to irreflexive relations. The above prob-
lem of relations not grounded in relata can be construed by structuralists such that
either relations and their relata stand ontologically on a par, or else that the relata
are merely nodes within a network of relations. Structuralism (both in physics and
in mathematics) is in fact best defined as a position that grounds the individuality or
cardinality (i.e. numerical distinctness) of objects in their positions or roles within a
structure or network of relational properties. Thus, the projects of structural realism
and the defence of the weak PII meet up precisely at the point where a grounding of
relations is sought, which leads neither to a strong object conception as stipulated by
the strong PII, nor to an haecceitism or even eliminativism (in the sense of relations
without relata), but instead gets by with a thin conception of objects or relata in the
sense of primitive numerical distinctness (“thin objects”; cf. French and Ladyman
2011).21

The debate over the ontology of quantum theory shows in an exemplary manner
how progress in philosophy is frequently achieved: New insights are gained and the
discussion is raised to a higher and more abstract level. But no less dodgy questions
result, and the debates remain open. Just how open the debate remains in the case of
quantum ontology has been demonstrated by this final outlook.

Exercises

1. Construct the fully symmetrized basis functions in the state space of three sim-
ilar objects a, b and c (Hint: As presented in Sect. 3.1.4, these are the one-
dimensional irreducible representations of S3).

2. What is the content of the Leibniz PII in the contrapositive formulation?
3. To what extent is a bundle ontology naturally associated with PII?
4. What do the concepts of “synchronic” and “diachronic identity” refer to?
5. Define the three types of discernability according to Quine.
6. Discuss to what extent both the weak PII and structural realism lead to related

object conceptions.

21According to Leitgeb and Ladyman (2008), the world could correspond to an edgeless graph,
without this leading to haecceitism, but rather still in agreement with structuralism. In terms of
graph theory, an edgeless graph (3.17), just like its counterpart with edges (3.16), obeys the same
non-trivial automorphisms; both are structural invariants under node permutation. Nevertheless,
the distinctness of the nodes in (3.17) is not grounded in any sort of relations, not even by weakly
discernible, irreflexive relations.
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Chapter 4
Entanglement and Non-locality: EPR,
Bell and Their Consequences

Paul M. Näger and Manfred Stöckler

4.1 Introduction and Overview

The problems that we shall discuss in this chapter formally originate in the way in
which composite systems are described by quantum theory (cf. Sect. 3.1.2). In such
descriptions, there are, on the one hand, product states, e. g.

|φ〉 = |↑z〉1|↓z〉2 . (4.1)

This state describes a system composed of two objects, which are of different kinds.
The indices 1 and 2 outside the brackets indicate the subsystem to which the state in
the brackets corresponds. For example, |↑z〉1 means that subsystem 1 is in the state
spin up relative to the spatial direction z; |↓z〉1 means correspondingly that it is in
the state spin down along that direction. Analogously to classical physics and to our
intuition, one can uniquely assign a state to each of the subsystems.

In quantum physics, however, one cannot generally characterize composite sys-
tems through product states alone, but only by superpositions of product states
instead, i. e. by so-called “entangled states”, such as

|ψ−〉 = 1√
2

(
|↑z〉1|↓z〉2 − |↓z〉1|↑z〉2

)
. (4.2)

In Sect. 4.2.4, we analyse such state vectors in more detail, including their formal
aspects, whereas in this introduction, we first give an intuitive overview. A state such
as (4.2) describes an overall system which one can consider to be composed of two
subsystems (as indicated by the indices). In contrast to a product state, it cannot,
however, be brought into product form. This means that when a state |ψ−〉 is present,
one can neither uniquely assign a spin state to system 1 nor to system 2. That is, the
individual subsystems 1 and 2 can neither be described correctly by the state spin up,
nor by the state spin down, nor by a superposition state of these two. The composite
state (4.2) does not specify the states of the subsystems.
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If, however, one measures the quantity spin on the systems 1 and 2, one finds
statistically distributed but definite outcomes in terms of spin up and spin down, and
in particular, also correlations between these outcomes: If the measurement yields
that system 1 is in the state |↑z〉1, then the measurement on system 2 will result in
state |↓z〉2 with certainty (and vice versa); likewise, |↓z〉1 and |↑z〉2 are perfectly
correlated. According to quantum mechanics, these correlations are still found when
the measurement apparatuses are at great distance from each other; indeed, even then
when the spatiotemporal order of events is such that not even a signal travelling at the
speed of light could have produced the correlations. Entanglement establishes a spe-
cial connection between the subsystems, which ignores all the usual spatiotemporal
limitations.

Such entangled systems are the reason behind nearly all of the central problems
of the interpretation of quantum theory. We have already met up with them in the
discussion of the measurement process (Sect. 2.3.1) and of the quantum-mechanical
description of indistinguishable particles (Chap. 3). Erwin Schrödinger called the
possibility of entangled systems the characteristic feature of the quantum theory,
which forces a decisive deviation from classical thinking in physics (Schrödinger
1935b, p. 555).

In this chapter, we concentrate on the correlations, and thus on a particular con-
sequence of the existence of entangled systems, which was emphasized for the first
time in a famous thought experiment by Albert Einstein, Boris Podolsky, and Nathan
Rosen (1935). (The acronym of their last names, “EPR”, became the eponym for the
whole thematic area connected with this approach to entanglement.) The situation
that EPR describe is often called the “EPR paradox”, since the correlations due
to an entangled state are classically quite unexpected. The article in which they
describe the paradox gave rise to a conspicuously large number of publications.1

Einstein and his co-authors in particular intended to show, in opposition to Niels
Bohr, that quantum mechanics is still incomplete; i. e. it does not describe all proper-
ties of a system that are present in the physical world. In the ensuing discussions, the
philosophical analyses—especially after a pioneering article by John Stewart Bell in
1964—concentrated on the specific non-locality which is characteristic of quantum
mechanics. Entangled systems, which are discussed as a result of the EPR article,
appear to imply that physical systems can still influence each other when they are
separated in such a way that they could only be connected by signals faster than
light. This, however, seems to contradict a fundamental principle of the theory of
relativity.

We first cast a view onto the beginnings of the debate over entangled states
(Sect. 4.2). In later sections, we will then describe the current debate on entan-
glement and non-locality, which is based for the most part on Bell’s proof and the
relevant experiments. Bell’s argument shows that at least one of the ontological and
methodological principles onwhich classical physics is basedwould have to be aban-
doned (Sect. 4.3). Indeed, quantum mechanics predicts the correlations arising due

1For the controversies of the first 50 years after theEPRpaper, see Stöckler (1984); for contemporary
discussions, see Fine (2013).
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to entanglement, but their generation cannot be causally explained in the usual sense.
We will investigate which of these classical principles on which such explanations
are based can plausibly be considered to be violated. In particular, we will concern
ourselves with the question of what it couldmean that we abandon the central locality
assumption, and whether or not non-locality is compatible with relativity (Sect. 4.4).
Finally, we will discuss what consequences a violation of the other principles might
entail (Sect. 4.5).

We remark for the reader who is pressed for time that there are several possi-
bilities for taking shortcuts in this not-very-brief chapter. The EPR argument, seen
historically, was at the origin of the debates over entangled states, but today, it is
hardly viewed as a convincing argument. Whoever is less interested in the historical
sources of the current systematic discussion can therefore skip over Sect. 4.2 (on the
EPR argument). (For those who do address this section, we mention that Sect. 4.2.4
is mainly intended for friends of formal considerations, and can be initially skipped
over by all others.) The systematic centre of this chapter consists of the Sects. 4.3
(on Bell’s theorem) and 4.4 (on non-locality). (Readers without a formal mathemat-
ical background can leave out Bell’s original proof in Sect. 4.3.2 and concentrate on
the somewhat more intuitive description as a strategy game in Sect. 4.3.3; readers
with mathematical skills may want to follow the inverse route.) The discussion of
alternative solutions in Sect. 4.5 completes the systematic treatment, but is of mainly
supplementary character.

4.2 The EPR Argument and Its Consequences

4.2.1 The EPR Argument: An Overview

The original formulation of the EPR argument was part of the debates between
Bohr and Einstein on the status of quantum mechanics (“Bohr–Einstein debates”).
Einstein, Podolsky and Rosen intended to show in their 1935 article that quantum
mechanics is incomplete; i. e. there are properties within physical reality which have
no corresponding quantities in the theory. EPR were less interested here in introduc-
ing completely new properties than in asserting that properties such as position and
momentum, which due to Heisenberg’s uncertainty relations cannot simultaneously
have precise values according to quantum physics, are in fact simultaneously present
with sharply defined values. Einstein, in particular, was not content with the new
quantum mechanics, because it had broken with some of the central assumptions of
classical physics. Only by assuming that the indeterminate properties (according to
quantum mechanics) must in reality have clearly defined values, can one think of the
apparently indeterministic quantum-mechanical processes as in fact deterministic
(compare Bohm’s theory; see Sect. 5.1); and the apparently non-local occurrences
during collapse of the wavefunctions can be seen to be merely changes of knowledge
(instead of real physical processes).
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For the position that there are such additional properties or a more precise deter-
mination of the values of properties (“hidden variables”), which are not described
by quantum mechanics, the concept of “realism” is often used in the context of the
EPR debate (and in combination with the assumption of locality, it is called “local
realism”)—but this is misleading. Since “realism” can have a number of different
meanings, we need to make clear here that EPR are referring to what philosophers
call “metaphysical realism”: Physical objects exist and their properties are clearly
determined, independently of what human observers may know or think about them.
While different variations of metaphysical realism are conceivable, the term “real-
ism” in the EPR debate is to be understood as the position that—in contrast to what
is suggested by quantum mechanics—properties which are found in a superposition
are not indeterminate, but instead, through the hidden variables, they in fact always
have certain, uniquely determined values. “Metaphysical”, by theway, does notmean
here that the properties are not accessible to physical measurements; rather, a typi-
cal assumption of realists in this context is that measurements reveal the previously
determined values of the properties. Instead, “metaphysical” is used here as opposed
to “epistemic”: “Epistemic realism” denotes the claim that we conceive of the world
(approximately) as it in fact is.

The assertion that our best scientific theories describe the world in an approxi-
mately correct manner is called “scientific realism” and requires both metaphysical
realism and epistemic realism with respect to these best theories. In particular, scien-
tific realism demands that the central concepts of the theory correspond to something
within (mind-independent) reality.A realistic interpretation of quantum theorywould
then be an interpretation in which the wavefunction represents an existing physical
object (cf. the GRW theory, Sect. 2.4), in contrast to anti-realistic or instrumentalistic
interpretations, in which the wavefunction is merely a useful instrument for carrying
out computations, but corresponds to nothing in physical reality (cf. epistemic inter-
pretations and quantum-Bayesian theories, Sect. 7.3). In the former case, changes
in the wavefunction describe physical processes; in the latter case, they represent
merely changes in the state of our knowledge. EPR are thus aiming at ametaphysical
realism (since they hold the existence and especially the properties of fundamental
objects to be clearly defined facts at each moment, independently of our knowledge
of them), but they also aim at an epistemic / scientific anti-realism in reference to
the quantum theory (because they do not wish to understand the wavefunction as
describing a real physical object).

EPR’s argument is based on a thought experiment in which they consider a system
composed of two entangled objects. In contrast to later presentations, they did not
contemplate spin states, in particular not the state (4.2), but instead an entangled state
in position space:

ψ(x1, x2) =
∫

ei(x1−x2+x0)p/� dp . (4.3)

Such a situation occurs when two systems interact with each other over a certain
time and are then separated and can (presumably) no longer affect each other. EPR
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now ask the question of what will happen when one measures the position or the
momentum of the particles when they are separated at a great distance. Making use
of the theory describing composite systems which von Neumann had published for
his analysis of themeasurement process (cf. Sect. 2.3), Einstein, Podolsky and Rosen
presume that as a result of the entanglement of the wavefunctions, a position or a
momentum measurement on particle 1 allows the corresponding state of particle 2
to be determined. If one measures a certain momentum for particle 1, then one
can immediately predict the momentum of particle 2 with certainty. If one finds
particle 1 at a certain location, one can immediately predict the position of particle 2
with certainty.

Since, as EPR assume, the measurement on particle 1 cannot change the state of
particle 2 (the measurements might take place at a large distance and their temporal
succession could be arranged such that not even an influence travelling at the speed
of light could connect the two), particle 2 must be ascribed with both a well-defined
momentum and a well-defined position. This, however, is not represented in the
quantum-mechanical description of the entangled state, from which it follows that
quantum mechanics must be incomplete.

Einstein and his co-authors understand the measurement epistemically, i. e. as a
change in our knowledge of the system:

We see therefore that, as a consequence of two different measurements performed upon the
first system, the second system may be left in states with two different wavefunctions. On
the other hand, since at the time of measurement the two systems no longer interact, no real
change can take place in the second system in consequence of anything that may be done to
the first system.

(Einstein, Podolsky and Rosen 1935, p. 779)

EPR thus presume that the two separated subsystems can have no further physical
effects on each other (which can be seen as a sort of locality assumption). This is
clearly stated in a letter from Einstein to Karl Popper, dated 11.9.1935:

Now it is unreasonable to assume that the physical state of B may depend upon some mea-
surement carried out upon a system Awhich by now is separated from B [so that it no longer
interacts with B] and this means that two different ψ-functions belong to one and the same
physical state of B. Since a complete description of a physical state must necessarily be an
unambiguous description […], it is therefore not possible to regard the ψ-function as the
complete description of the state of the system […].
One can therefore hardly avoid the conclusion that the systemBhas indeed a definitemomen-
tum and a definite position co-ordinate. For if, upon freely choosing to do so […], I am able
to predict something, then this something must exist in reality.

(Einstein, letter to Popper 1935, reprinted in Popper, 2002, pp. 483–484)

This result makes the state description in quantummechanics appear to be incom-
plete, since quantummechanics can ascribe to a system only either a sharply defined
momentum, or a sharply defined position. This incompleteness suggests that the cor-
relations could be explained by introducing hidden variables; the authors, however,
do not take an explicit position on this point:
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While we have thus shown that the wave function does not provide a complete description
of the physical reality, we left open the question of whether or not such a description exists.
We believe, however, that such a theory is possible.

(Einstein, Podolsky and Rosen 1935, p. 780)

4.2.2 Analysis of the EPR Argument

The short EPR article (four pages in the journal Physical Review in 1935)—in par-
ticular its focus on an entangled wavefunction, the special proposed experimental
setup, certain definitions as well as its line of reasoning—produced a multiplicity
of reactions and discussions which are still continuing today. It belongs among the
most influential works on the philosophy of the quantum theory. In the following, we
consider the structure of this article in more detail, among other reasons because it
makes a good case study of themutual relations between themathematical formalism,
physical interpretations and philosophical principles.2

Viewed from today’s vantage point, the EPR argument is flawed, owing to at least
one false premise: the assumption of locality. The strategy of the argumentation is in
addition not very transparent. The premises, which are of different types (definitions,
elements of the mathematical formalism of quantum mechanics, and philosophical
assumptions), are not always clearly stated. The formal structure of the argument is
not very clear and appears to take unnecessary detours.

The conclusion of the argument is the assertion that quantummechanics is incom-
plete. This thesis is defended in two steps which constitute the two parts of the article.
The authors make it clear right from the beginning of the first part that only a com-
plete physical theory can, in their opinion, be considered satisfactory. They stipulate
that a complete theory must fulfil at least the following conditions:

(C) Condition of completeness: “[E]very element of the physical reality must
have a counterpart in the physical theory.”

(Einstein, Podolsky and Rosen 1935, p. 777)

In order to make this condition operational, there must be a criterion for when
it is allowable to speak of an element of physical reality, which then must have a
corresponding element in the physical theory. The authors formulate a sufficient
condition for the case that such an element of reality exists:

(R) Criterion of physical reality3: “If, without in any way disturbing a system,
we can predict with certainty (i.e. with probability equal to unity) the value of a
physical quantity, then there exists an element of physical reality corresponding
to this physical quantity.”

(Einstein, Podolsky and Rosen 1935, p. 777)

2A valuable aid to this study is provided by the material and the careful analyses in Kiefer (2015).
3This somewhat misleading term is due to Bohr (1935).
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Evidently, it is presumed here as amatter of course that there is an objective (mind-
independent) reality (“metaphysical realism”), and that physical theories should rep-
resent this reality in the most complete manner possible. (C) and (R) are statements
which refer to the relationship between theory and reality (“semantic assumptions”).
They make sense only in reference to a background of certain philosophical assump-
tions, and they reflect Einstein’s understanding of “realism”. Additional explicit
assumptions about “realism” are not given in the article.

By way of explanation, Einstein, Podolsky and Rosen consider quantum theory
and remind us that in the case of physical quantities whose operators do not commute,
like those of position and momentum, knowledge of the precise values of the one
quantity (e. g. the exact position of a particle) excludes precise knowledge of the exact
value of the other quantity. The usual opinion is that quantum theory is nevertheless
complete, since a precise knowledge of the position of a particle makes it impossible
to ascribe physical reality to any precise value of the momentum. This interpretation,
the majority opinion which was established by Niels Bohr in his Solvay talk in 1927,
is contradicted by the authors of the EPR article; they wish to show that a particle,
at least under certain conditions, indeed can simultaneously have a well-defined
position and a well-defined momentum.

The formal structure of the argument takes up this goal in a manner which is
initially not very obvious. Einstein, Podolsky and Rosen conclude in an intermediate
step that quantum mechanics and their semantic assumptions (C) and (R) entail for
quantities with non-commuting operators the following statement composed of two
partial statements (1) and (2):

(A1): “[E]ither (1) the description of physical reality given by the wavefunction
in quantum mechanics is not complete; or (2) these two quantities cannot have
simultaneous reality.”

(Einstein, Podolsky and Rosen 1935, p. 777)

If, indeed, both of the quantities were simultaneously elements of reality, then they
would have to have corresponding elements within a complete theory. The derivation
of (A1) presumes elements of quantum theory as well as semantic principles such as
(C) and (R), but no assumptions on the locality or non-locality of quantum theory.

In the second part of the article, the entangled wavefunction (4.3) for two particles
is used in order to demonstrate the incompleteness of quantum mechanics. The
authors describe their argument by the following structure in terms of propositional
logic (in the third-to-last section of the article, p. 780): The above statement (A1)
(either (1) or (2)) is the first premise. The second premise is statement (A2), which is
derived from a longer series of considerations and with additional assumptions from
the entangled wavefunction ((1) and (2) stand for the same statements as in (A1)):

(A2): From the negation of (1), the negation of (2) follows.

(A2) thus states that it follows from the completeness of the quantum-mechanical
description that two non-commuting physical quantitiesmust be considered as simul-
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taneous elements of reality. From (A1) and (A2), the conclusion (Cn) that statement
(1) is true then follows in a logically correct way4, i. e.:

(Cn): The quantum theory is not complete.

To be sure, it does not become really evidentwhy the authors believe that they have
derived the implication (A2). It is namely not clear at which point in the second part of
the article the assumption of the completeness of theories plays a role (cf. Fine 2013,
Sect. 1.2). In contrast, the assertion that by making use of (R), it was shown that (2) is
false (compare the central EPR argument sketched in the overview Sect. 4.2.1), and
that due to (A1), the statement (1) must be true (cf. Kiefer 2015, p. 40) would bemore
readily comprehensible—but EPR do not write this assertion. An explanation for the
lack of transparency of the argumentation could be differences between Einstein’s
actual intentions and Podolsky’s formulations, which the latter wrote down after
many discussions among the authors of the article (for reasons of language, as often
claimed; cf. Kiefer 2015, pp. 44–45, and Fine 2013, Sect. 1).

So much for the rough formal structure. Let us now look in more detail at the cen-
tral EPR argument, already sketched in the previous Sect. 4.2.1, which is allegedly
formalized by (A2). We have already shown that using the wave function (4.3) for
a system of two particles, it can be demonstrated how it is possible that through
measurements on particle 1, a certain value for a position measurement or a momen-
tum measurement on particle 2 can be predicted.5 Making use of quantum theory,
including the assumption that a measurement causes a discontinuous change of the
state vector (“collapse”, also referred to as the “reduction of the wavepacket” by
EPR, p. 779),6 the conclusion is derived that after the measurement, a product state
is present for the overall system and thus a well-defined state can be found for each
subsystem. Due to the entanglement of the original state vector (4.3), it follows that
depending on which measurement is carried out on the first particle, different state
vectors can be associated with the second particle; possibly even state vectors which
are eigenstates of non-commuting operators (p. 779).

Up to this point, EPR have used only assumptions which are in agreement with
quantum theory.7 On p. 779, however, a further premise is introduced, almost inci-
dentally: “[…] since at the time of measurement the two systems no longer interact,
no real change can take place in the second system in consequence of anything that

4Premise A1: Either (1) is true or (2) is true. Premise A2, reformulated by contraposition, yields:
(2) implies (1). The demonstration of the validity of this conclusion is a variant of the classical
dilemma: Either (1) (and thus Cn) is true. Or (2) is true, but in that case, the premise A2 requires
that (1) also be true.
5For details, cf. Kiefer (2015), pp. 37–39.
6This makes von Neumann’s theory of measurements important for EPR (cf. Kiefer 2015, pp. 23
and 38).
7Perhaps EPR understand this application of the quantum-theoretical state description to a single
system as a completeness assumption in the sense of the negation of (1). Einstein, for example,
presented his own statistical ensemble interpretation at the Solvay Congress in 1927 in opposition
to an interpretation (which is evidently attributable to Bohr) according to which the wavefunction
is a “complete theory of individual processes” (see Howard 1990, p. 92).
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may be done to the first system.” This is a locality assumption; it has underlying
physical and philosophical reasons, which we will discuss in more detail later in this
chapter. We shall see that from a contemporary point of view the locality assumption
is false and, hence, the EPR argument is deficient. This assumption is necessary for
arguing that the measurement on the one object does not disturb the state of the other
object. Only under this condition does EPR’s conclusion follow logically.

In a realistic reading, however, the description of states in the quantum theory
evidently contradicts this locality assumption, especially when one considers the
collapse of an entangled state vector at measurement. On the one hand, the authors
follow quantum theory when they compute the state vectors for the subsystems
after the measurement; on the other hand, they argue that the real state of one of
the subsystems (e. g. the second particle) is not affected by the measurement at
the other. The most plausible reading seems to be that the authors presuppose that
quantum theorymakes empirically correct predictions, but they donot assume that the
quantum-mechanical description of states should be understood realistically. Since
one can prepare several systems in the same entangled state, and can carry out a
variety of measurements on the first particle without changing the real state of the
second particle under the given premises, one arrives—under the assumptions of the
EPR article—at the conclusion that quantum theory describes the same real state
(viz. that of the second particle) by different wavefunctions (p. 779).8

Several authors have come to the conclusion as a result of their detailed studies
of the pre-history and the reception of the EPR argument that in the article of 1935,
Einstein’s intentions were not clearly stated, and that he later expressed those inten-
tions in a more clear-cut manner.9 Thus, Don Howard (1990) proposes the thesis
that for Einstein, even before 1935, the non-locality of quantum mechanics was the
main reason for his dissatisfaction with the theory. In later statements by Einstein,
the condition of completeness and the reality criterion of the EPR article were not
emphasized. Instead, Einstein stresses the central importance of the assumption that
the two subsystems must have their own states (because they are at some distance
from each other), and that the state of the one system cannot be changed by ameasure-
ment on the second system, if the two are at such a distance that physical interactions
are no longer possible (at least not in a certain time interval). Einstein’s principal
point was that the completeness of the quantum-mechanical state description and
the requirement of locality are not mutually compatible. Locality means for Einstein
here in particular the assumption of the independence of spatially separated objects
(especially also in view of the theory of relativity as a field theory). What we have
briefly and in a preliminary way termed “locality” will be more precisely formulated
in the following sections (especially in Sects. 4.3.1 and 4.4.5).

For Einstein, it was a question of a conflict between the fundamental assumption
of locality, which for himwas in no case to be doubted, and a particular interpretation
of quantum theory (which in the course of the argumentation and in the literal text of

8EPR thus do not need to argue counterfactually. They explicitly deny that the location and momen-
tum of the objects can be simultaneously predicted or measured (p. 780).
9See Fine 2013, Sect. 1.3; cf. also Held (2006), and Kiefer 2015, p. 50.
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the EPR article does not really become clear). The following developments were to
show that a more precise locality assumption is not compatible with the experimental
predictions of quantum theory.

To conclude, let us return once more to the EPR article. In its fourth-to-last para-
graph, a more stringent argumentation is foreshadowed. There, an example is used
to show that there are elements of reality (namely the simultaneous presence of a
well-defined position and a well-defined momentum for one of the particles of the
system), which according to quantum theory should not appear simultaneously (as
exemplified by Heisenberg’s uncertainty relations). Their simultaneous presence is
proven by the fact that the position and themomentum can be predictedwith certainty
without perturbing the system. From (C) and (R), the incompleteness of the quantum
theory then follows. This manner of argumentation, however, is misleading because
the non-commutativity of the quantities (and hence the violation of the uncertainty
relations) is not so much the significant point. In the same manner, one could namely
argue that one could associate different momentum values simultaneously to the sec-
ond particle if one makes suitable measurements on the first particle. Making use
of the structure of the EPR argument, one could then derive the absurd conclusion
that the second system in fact has arbitrary values of momentum. This consequence
shows that at least one premise is false, or that the set of premises is inconsistent.
Then however, one can no longer derive evidence from the argument that quantum
objects can have a sharply defined position and simultaneously a sharply defined
momentum.

Rational reconstruction of the EPR argument
As discussed in the main body of the text, EPR’s argument is complex,
at some points unclear, and—even apart from the very likely false locality
assumption—presumably not completely free of flaws. It does not become
clear in detail just how their argument should be understood. To be sure, one
can indeed make use of their assumptions and considerations to construct a
clear-cut argument (cf. Redhead 1987, pp. 78–81):
(P1) A perturbation of an object A cannot influence another, distant object B

faster than by speed of light. (locality)
(P2) If one can predict the value of a physical quantity of a system with

certainty without influencing that system in any way, then there is an
element within physical reality (a property) which corresponds to that
quantity. (criterion of physical reality)

(P3) In a complete physical theory, every element within physical realitymust
have its corresponding element in the theory.

(condition of completeness)
(P4) Quantum-mechanical formalism
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(C1) A measurement on object A of a (perfectly) entangled state permits the
outcome of measuring the same quantity on the distant object B to be
predicted with certainty. (from P4)

(C2) A measurement on object A of a (perfectly) entangled state does not
influence the distant object B (or at least, not before the measurement at
B has been completed). (from P1)

(C3) The value of the quantity measured on B corresponds to an element of
reality. (from P2, C1 and C2)

(C4) The element of reality at B must have already been present before the
measurement on A. (from P1 and C3)

(C5) According to quantum theory, before themeasurement onA, the property
of B is not yet determined. (from P4)

(C6) Therefore, quantum mechanics is not complete.
(from P3, C4 and C5)

This argument is valid (i. e. logically correct). It is in fact simpler than the
argument which EPR had in mind, because it requires measurements of only
a single quantity (on both A and B), instead of two quantities.

Since, due to Bell’s argument (see Sect. 4.3), we can today assume with
a great deal of certainty that the quantum world is non-local, at least one of
the premises of the EPR argument, namely (P1), is not true. The argument
does thus not succeed in providing a good reason for assuming its conclusion.
Of course, the failure of the argument does not imply that quantum theory is
complete. Whether this is the case is an open question (see the debate about
interpretations of quantum theory in Chaps. 2 and 5).

4.2.3 The Debate over the EPR Article and Its Aftermath

EPR’s article is a clear attack on the still-young quantum theory. Correspondingly,
the founders of the theory felt obligated to react quickly: Bohr writes a response to
the EPR argument in the same year (1935). His article takes up the question raised by
EPR—under the same title (“Can the quantum-mechanical description of physical
reality be considered complete?”)—and attempts to defend the theory on the basis
of his own special interpretation. He does not engage the mathematical part or the
entanglement, but instead concentrates on a correct understanding of the quantum-
mechanical state description. He disputes the assertion that two quantities such as
position and momentum can both be considered real at the same time. Nevertheless,
he holds the quantum-mechanical description not to be incomplete, since it does
not arbitrarily dispense with further information, but rather additional knowledge
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is excluded in principle. According to Bohr’s interpretation of quantum theory, a
unique description of quantum phenomena must categorically include a description
of the measurement apparatus used (“contextuality”). Under these assumptions, the
EPR argument in its original form is no longer conclusive. In this respect, Bohr’s
reply was successful.

Bohr’s answer, however, also contains some difficulties in itself. First of all, a
simplified EPR argument can get along with measurements of only one quantity
(see the grey box “Rational reconstruction of the EPR argument” in Sect. 4.2.2), and
Bohr’s answer would not shed light on that argument. Secondly, Bohr asserts that the
collapse is not a physical process (“no question of a mechanical disturbance”, Bohr
1935, p. 700), which in fact shows that he had not understood the central point of the
EPRargument. For if the collapse is not physical, then it follows immediately from the
thought experiment of EPR that quantum mechanics is incomplete (which, however,
Bohr intended to dispute). Thirdly, later discussions of the EPR correlations begin
with measurements and probabilities of measurement outcomes. Bohr, however, has
noplausible explanation for the strong correlations.His remark—that the possibilities
for description within quantum mechanics are limited in comparison to classical
mechanics because there are uncontrollable quantum-like interactions between an
atomic system and a measurement apparatus—does not help him further in the case
of the EPR situation, because for the realization of the measurement outcomes,
physical interactions between the distant measurements are not possible (cf. Hooker
1972, pp. 194ff., pp. 222ff.).

Erwin Schrödinger (1935b) also very quickly took up a position on the EPR article
and emphasized that according to the entangled state vector used there, the separated
systems cannot be associated individually with a state vector (for Schrödinger: with a
wavefunction). For that, the state of the overall systemwould have to be representable
as a product of the states of the individual systems. Schrödinger speaks here for the
first time of the “entanglement” (Verschränkung) of the systems, which can again
be broken up by a measurement, accompanied then by the typical correlations. He
does not follow Einstein’s assumption of the incompleteness of quantum mechanics,
but he finds that, evidently in contrast to Bohr, entanglement as a consequence of
the quantum-mechanical description of many-body systems is unsatisfactory. Alto-
gether, he treats the problems connected with entangled systems more from the point
of view of a mathematician and an instrumentalist.

In another article in the same year (Schrödinger 1935a), hemakes use of entangled
states—this time in a very intuitively clear manner—to demonstrate that superposi-
tions of microscopic objects can indeed have macroscopic consequences. To show
this, he constructs the “burlesque case” of a radioactive substance which, after some
time, is in a superposition of “no atomas yet decayed”, |↑〉1, and “one atomdecayed”,
|↓〉1. In his thought experiment, Schrödinger assumes that the decay of one atom—
via a “diabolic device”, i. e. via a Geiger counter which releases poison when it
detects a radioactive decay—can lead to the death of a cat. The overall system is
described by the state vector
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|ψ〉 = 1√
2

(
|↑〉1|↑〉2 + |↓〉1|↓〉2

)
, (4.4)

in which the cat is neither in the state “dead”, |↓〉2, nor in the state “alive”, |↑〉2. The
cat, like all systems which are part of an entangled composite system, has no clearly
defined state by itself as an individual. Only the state of the overall system consisting
of the cat and the radioactive substance is well-defined. Schrödinger asserts that the
maximal knowledge of the overall system, given by (4.4), does not include maximal
knowledge of the subsystems. With the example of the cat, Schrödinger especially
wants to show that this remains true even when one subsystem is macroscopic.
In Schrödinger’s thought experiment, the conflict with classical intuitions becomes
especially clear, since one can apparently have a precise conception of the cat’s state
of health during the whole course of the experiment.

TheEPRargument did not lead to abandoning the usual quantum-physical descrip-
tion. It was unclear just how a “complete” local theory with hidden variables might
look, and in spite of the puzzling correlations, the success and explanatory power of
quantum theory were too great to allow a thought experiment to shake confidence in
it. Physicists simply continued to develop the existing quantum theory further. Only
in the 1950s did new interest in theories with hidden variables arise (due to Bohm’s
theory, see Chap. 5), and in the ensuing discussions, the EPR argument took on a
new significance.

Since the 1950s, the EPR argument has no longer been discussed using the wave-
function of Einstein, Podolsky and Rosen, but instead with an entangled state which
was suggested by David Bohm in his textbook on quantum theory (1951, p. 616) and
with which we have already met up in Eq. (4.2). Measurements with a spatiotem-
poral setup like that of EPR, but using this simpler entangled quantum state, are
called “EPR/B experiments”. In the debates over the EPR argument, since Bohm’s
introduction of this mathematically much simpler entangled state (in comparison
to EPR’s original entangled state (4.3)), it is used exclusively for the discussions.
According to Bohm, this state vector describes the spin state of a system consisting
of two atoms (each with spin 1

2 ), which are initially bound in amolecule, and after the
breakup of the molecule, have taken on this special spin state. While such molecular
breakup processes are relatively difficult to observe experimentally, it has been found
that nature has provided numerous realizations of this mathematical structure. For
example, entangled polarization states of photons are today relatively easily acces-
sible to experiments and are therefore often used in contemporary experiments with
entangled systems. We will analyse such states in more detail in Sect. 4.2.4.

The entangled state (4.2) was also the starting point of the Irish physicist John
Stewart Bell, who gave the argument of Einstein, Podolsky and Rosen quite a new
twist. In a pioneering article from 1964, he argues, against EPR, that the correla-
tions from experiments with entangled states cannot be explained in terms of local
processes even if one assumes the existence of hidden variables: The assumption of
hidden variables is not sufficient to explain the strong correlations in a local manner.
In Sect. 4.3, we will encounter more details of this work.
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It follows fromBell’s proof that every correct theoryof themicroscopicworldmust
contain a certain kind of non-locality. Bell could show thiswithout limiting himself to
particular theories of the quantum world. His proof requires merely the correlations
between measurement outcomes, as they are found in EPR/B experiments, as well
as some general, plausible background assumptions and some probability theory.

If Bell’s theorem indeed shows that the quantum world is non-local (and not that
one of his background assumptions is false), then the locality premise in the EPR
argument is flawed and the truth of EPR’s conclusion cannot be maintained: Entan-
gled states do not speak compellingly for the incompleteness of quantum mechanics
(a realism with respect to fundamental properties), since the quantum world is non-
local. The most that one can then make out of the EPR argument is to no longer
presume locality and to reformulate the argument towards a disjunctive conclusion:
Quantummechanics is incomplete, or it is non-local. FromBell’s argument, we know
today with near certainty that non-locality is the correct alternative. Whether in addi-
tion quantum mechanics is complete (the topic of realism) is still an open question
(compare the various interpretations of quantum mechanics).

Because it contains a false premise, one has to consider the EPR argument to be a
failure in terms of its content. Conceptually, in contrast, considering the introduction
of entangled states, the measurement setup, the clarity of its principles and its chain
of thought, it has had enormous effects, as we have described here, and must be
considered to be one of the milestones in the history of science. This shows how
fertile false arguments can be when they are clearly thought out. Finally, it must
be considered as an irony of history that Einstein initiated a debate through his
considerations of entangled states—that had the goal of creating a local theory of
the microscopic world, following his local theory of gravitation—which, via Bell’s
demonstration of non-locality, finally refuted just this intuition.

Correspondingly, in modern discussions, EPR experiments are no longer consid-
ered to provide evidence for the incompleteness of quantum mechanics, but rather
as evidence that a large class of theories with hidden variables—namely the class
of local theories—can be excluded. The focus of the discussions has shifted from
the question as to whether or not the wavefunction contains all the features of real-
ity, towards the significance of the specific non-locality which shows itself in the
EPR correlations predicted by quantummechanics. This non-locality has become an
accepted property of quantum mechanics and requires further examination.

4.2.4 Analysis of the Singlet State

In this section, we want to formally investigate the paradigmatic entangled spin state
(4.2), usually called “singlet state”, in more detail and to work out its characteristics.
Those readers who are not friends of formal considerations can skip over this section
on a first reading.
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The spin state of the composite system is represented by a state vector in theHilbert
space of the tensor product H1 ⊗ H2, which is formed from the spin Hilbert spaces
of the subsystems. |↑z〉1 is the eigenvector of the operator Ŝz1 with the eigenvalue
+�/2 in the spin space of particle 1, and |↓z〉1 is the eigenvector with the eigenvalue
−�/2. Ŝz1 is the operator for the observables “spin projection along the z-direction”.
Likewise, for the second particle, |↑z〉2 is the eigenvector of the operator Ŝz2 with
the eigenvalue +�/2, and |↓z〉2 is the eigenvector with the eigenvalue −�/2. The
pairs of eigenvectors each form a complete set of basis vectors in the spin spaces of
the individual particles.

The vectors |↑z〉1|↑z〉2, |↑z〉1|↓z〉2, |↓z〉1|↑z〉2 and |↓z〉1|↓z〉2 form a complete
basis in the Hilbert space of the tensor product. Let us return to the state (4.2), the
much-quoted singlet state. This state vector is a common eigenvector of the spin
projection operators Ŝx , Ŝy , and Ŝz of the composite system.10 It can also be written
as

|ψ〉 = 1√
2

(
|↑x 〉1|↓x 〉2 − |↓x 〉1|↑x 〉2

)
. (4.5)

One can say intuitively that the singlet state is rotationally symmetric around the axis
along which the particles move apart.

The state (4.2) is at the same time an eigenvector of the total spin

Ŝ2 = (Ŝx1 + Ŝx2)
2 + (Ŝy1 + Ŝy2)

2 + (Ŝz1 + Ŝz2)
2 . (4.6)

Ŝz and Ŝ2 form a maximal system of commuting operators (cf. Sect. 1.2.3) for this
state; i. e. one can attribute to the system in this state at most the value (the property)
of the total spin (here 0) and at the same time the value (the property) of the spin
projection along the z-direction (here also 0). The state (4.2) is in fact not an eigenstate
of the operator Ŝz1 ⊗ I , which is defined over the whole spin space by the property
that Ŝz , like Ŝz1, acts on the first factor of the basis vectors in the product space and
the second factor remains unchanged. One thus cannot attribute an eigenvalue of the
operator Ŝz1 to the individual particles, and therefore no well-defined value of the
spin projection. Intuitively, this corresponds to the fact that the state vectors of the
individual particles cannot be characterized as pure states. From this mathematical
result, one can go in various directions. If one wants to maintain the concept that the
two particles in the singlet state should each be characterized by its own state, then
one can only resort to the statistical operator (density operator):

ρ̂ = 1

2
|↑〉〈↑| + 1

2
|↓〉〈↓| . (4.7)

It shows that the subsystems instantiate a so-called “mixed state” (cf. Sects. 1.2.4 and
2.3.1). From the so-called “reduced states” for each single particle that follow from
the density operator of the composite system (4.7), one cannot determine the corre-
lations between the measurement outcomes; therefore, it is said that the composite

10Although these operators are non-commuting; cf. Sect. 1.2.3.
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state is not determined by the states of the subsystems. The density operators for the
two particles are in this case indeed the same, so that some authors have arrived at the
conclusion that Leibniz’s Principle is violated here (cf. Sect. 3.2.3). Staying closer to
the implications of the mathematical formalism, it would appear that—in contrast to
states which can be written as products—in an entangled state like (4.2) one should
not speak at all of “states of the components” or of “properties of the components”.

In Bohm’s simplified version of the EPR thought experiment, it is assumed that a
measurement of the spin projection of each particle along the direction a is performed
at distant points in geometrical space. Quantummechanics predicts that the outcomes
of spin measurements by the measurement apparatuses 1 and 2, each along the a-
direction, will exhibit perfect anti-correlations. If onemeasures spin upwith device 1,
then device 2 must measure spin down (and vice versa). After the measurement, the
system either is in state |↑a〉1|↓a〉2, or in state |↓a〉1|↑a〉2.

These correlations can be found for the singlet state in measurements along arbi-
trary directions, owing to its rotational symmetry. The probability that device 1 will
measure, e. g. spin up is 1

2 ; the probability that device 2 will measure spin down is
also 1

2 . The probability that device 1 will measure spin up and device 2 will measure
spin down is also 1

2 , however. The conditional probability of measuring spin down
with device 2 when spin up has been measured by device 1 is 1. These correlations
were later confirmed by experiments.

In the states which are present after the measurement, one can again assign a
particular spin state to the individual particles. The states after a measurement by
apparatus 1 along the z-direction are eigenvectors of the operator Ŝz1 ⊗ I (with the
eigenvalues +�/2 or −�/2), and at the same time eigenvectors of the operator Ŝz
(with the eigenvalue 0). The states after the measurement are no longer entangled.
There are several equivalent criteria for this (compare the careful investigation in
Ghirardi etal. 2002, especially Sect. 4.1). For us, it is important that in non-entangled
systems (typically represented as product states in the tensor-product space), the
subsystems can be associated with pure states and they exhibit no non-classical
correlations like those that we have met up with in the example of the singlet state. In
non-entangled states, one can again speak of two particles with individual properties
(the complications in the case of indistinguishable particles will be considered next).
Sometimes one refers to non-entangled states as “separable”.

The criterion that states are not entangled if and only if they can be written as
product states can lead to difficulties in the case of indistinguishable particles (more
accurately: particles of the same kind), since in such systems even the appropriate
symmetry requirements necessarily lead to superpositions of product states.Whenwe
noted the possible states after themeasurement, we tacitly assumed thatmeasurement
apparatus 1 measures the state which belongs to H1, that is, it has the index 1. If,
however, the two particles are indistinguishable, the state following themeasurement
must be symmetric with respect to exchange of the indices 1 and 2, and the state after
symmetrization can no longer be represented as a product in the given basis. Indeed,
one cannot even determine for the spin measurements with apparatus 1 whether the
outcome spin up can be associated with particle 1 or with particle 2. To deal with this
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problem, there are various technical expedients (see Ghirardi et al. 2002; Ladyman
et al. 2013), which we cannot treat in detail here; above all since they yield no
essential new insights for our fundamental considerations. One of the suggestions
asserts that, considered intuitively, states which are superpositions of product states
are nevertheless not entangled if they were produced via a symmetrization of the
indices from a product state. Another method is described by Audretsch (2007,
p. 158) for the entanglement of the polarization states of photons. Here, as basis
states for the measurement outcomes, state vectors are defined from the beginning in
which no particle indices occur; instead, there are only specifications as to whether
the left-hand or the right-handmeasurement apparatuswas used for themeasurement,
and which polarization state was found there.

Our analysis of Bohm’s variant of the EPR situation up to now was simplified in
still another respect.We limited ourselves to spin space and neglected the propagation
of the particles in geometric space. This simplification has a certain justification,
since the correlations are determined by the state vector in spin space, and according
to the quantum theory, they must also be measurable at arbitrarily large distances
between the two measurement setups. On the other hand, a measurement outcome
spin up is found at a certain point in geometric space, and spin down at another
point, and this must be taken into account in the formulation of the state after the
measurements. Furthermore,with indistinguishable particles, the position space parts
of the state vectors have to be taken into account in the symmetrization following the
measurements. Details on this topic can be found in the comprehensive and precise
study by Ghirardi et al. 2002. In this case, also, one can gain a first impression of
the fundamental philosophical consequences without delving all too deeply into the
technical details.

The most important physical consequence of our considerations up to now is
the existence of non-classical correlations between the measurement outcomes. In
analogy to the original EPRargument, one can presume that through themeasurement
of the spin projection along the a-direction or along the b-direction on system 1, the
spin state of system 2 can be ‘steered into’ one of the states |↑a〉2 or |↓a〉2, or else into
one of the states |↑b〉2 or |↓b〉2, without there being a classical interaction between
the systems. In the following sections, we will try to investigate whether and how
this can be made understandable within a more general framework.

To conclude our considerations of entangled systems in the EPR context, we
want to cast a brief glance at possible implications for the ontology of quantum
theory. Given the entangled state before the measurement, it is not possible, as we
have seen, to ascribe particular eigenvalues and eigenvectors, and thus particular
properties, to the subsystems. That is only again possible with the states after the
measurement. Thus, it is not actually clear in what sense one can even speak of
subsystems. Possibly, there are reasons for the assumption of sub-objects which are
due to the background assumptions, e. g. the idea that some kind of objects emerge
from a source and propagate away from each other in opposite directions. There is
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an idea that in (4.2), each subsystem has its state only in relation to the other system.
If we look only at the type of state description, a more likely assumption is that in a
state such as (4.2), no components or parts exist at all. These parts are formed only
during a measurement, which separates the composite system described by a state
in the tensor-product space, so that one obtains components which can be associated
with state vectors such as |↑a〉1 or |↓b〉2 in the sub-spaces (cf. Friebe 2004, for a
defence of this viewpoint). However, quantummechanics gives no sort of indications
of what happens in detail during a measurement and why, after the measurement, we
can again speak of two individual systems. Quantum mechanics gives us only the
states before and after the measurement, and the probabilities for the occurrence of
particular measured values.

All of this makes it difficult to trace the ontological consequences of the EPR
situation. In Sect. 4.3, we will first choose a route which concentrates exclusively
on the measurement outcomes and their statistical relationships, and in Sect. 4.4 we
will once again discuss the implications for a holistic world view.

4.3 Bell’s Proof

In this section we shall take a closer look at Bell’s famous theorem from a system-
atic perspective. We will attempt to comprehend his argumentation, to work out his
implicit assumptions and premises, and to discuss the consequences of his theorem.
Even 50 years after its formulation, Bell’s theorem is still one of the most-discussed
topics in the philosophy of quantumphysics. In spite of its elegance and simplicity, its
correct interpretation is still controversially debated today. In a very immediate man-
ner, i.e. to a great extent independently of any particular interpretation, it addresses
a central issue of the quantum world: the problem of embedding quantum objects in
space and time.

The theorem shows that there is a contradiction between the phenomena of the
quantum world and the assumptions of a local, classical worldview. “Local” means
here that physical processes never propagate faster than light, as apparently implied
by the theory of relativity. The contradiction reveals in the fact that from a local
classical worldview, one can derive an upper limit for the strength of correlations
between distant events (“Bell’s inequality”), which, however, is violated by outcomes
of experiments with entangled quantum objects (“violation of Bell’s inequality”). At
the time of the formulation ofBell’s theorem (Bell 1964), it was at first not clearwhich
side of this contradiction should be considered to be false, because the outcomes of
the experiments in which the quantum phenomena that we have mentioned occur
were accessible only through quantum-mechanical predictions (thought experiments
based on quantum theory). In the ensuing decades, however, different variants of
real experiments were carried out, and they showed that the predictions of quantum
physicswere indeed correct. Thismade clear that it was the local, classical worldview
that contains at least one untenable assumption. Most authors thus argue that it is
the locality assumption which is violated in the quantum world. Since locality is
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apparently a fundament of our accepted relativistic theories of spacetime, Bell’s
theorem thus shakes the foundations of our understanding of space and time and the
causal processes which occur within them.

We first turn to the experiments, which are the empirical basis of the theorem.

4.3.1 Experimental Foundations

The experiments which are at the basis of Bell’s theorem are realizations of the
thought experiment suggested by Einstein et al. (1935) and simplified by Bohm
(1951); they are therefore termed “EPR/B experiments”. In their most modern vari-
ants, these experiments are performed using photons (light quanta). Such an experi-
ment is typically carried out as follows: A suitable source C is caused to emit a pair
of photons whose polarization states are entangled. The entangled polarization state,
which is structurally similar to the spin singlet state discussed in the previous section
(for the relation between the two, see the grey box “Bell states”), might for example
read:

|φ+〉 = 1√
2

(
|+z〉1|+z〉2 + |−z〉1|−z〉2

)
. (4.8)

Here, “|+z〉” stands for a polarization along the z-direction, while “|−z〉” represents
a polarization perpendicular to z. Analogously to the entangled states that we have
already encountered, the individual photons in this state have no unique polarization.
This description of the quantum state, however, serves here only as an explanation
of which kinds of states are required for the experiments; nothing in Bell’s argu-
ment depends upon this theoretical description; it depends only on the setup and the
outcomes of the experiments, which we now want to characterize more closely.

Bell states

The polarization state of two quantum objects can be written in general as

|ψ〉 = c1|+z〉1|+z〉2 + c2|+z〉1|−z〉2 + c3|−z〉1|+z〉2 + c4|−z〉1|−z〉2 ,
(4.9)

where the ci are complex coefficients with
∑

i |ci |2 = 1. In other words, the
product states |+z〉1|+z〉2, |+z〉1|−z〉2, |−z〉1|+z〉2 and |−z〉1|−z〉2 form an
orthonormal basis of the corresponding Hilbert space.

The four special cases
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|φ±〉 = 1√
2

(
|+z〉1|+z〉2 ± |−z〉1|−z〉2

)
, (4.10)

|ψ±〉 = 1√
2

(
|+z〉1|−z〉2 ± |−z〉1|+z〉2

)
(4.11)

are called “Bell states” and likewise form an orthonormal basis of the Hilbert
space. They violate a Bell inequality (presuming suitable measurements) in
the maximal possible way (and are called “maximally entangled”); therefore,
in typical EPR/B experiments for testing Bell’s theorem, such Bell states are
prepared. (All other entangled states are termed “partially entangled” and can
generate only weaker violations of a Bell inequality.)

Among the Bell states, only |φ+〉 and |ψ−〉 are rotationally symmetric. This
can also be seen from the probabilities for certain measurement outcomes α
and β (given certain measurement settings a and b and the preparation of one
of the Bell states), which for the two rotationally symmetric states mentioned
above depend only on the relative angle:

P(αβ|abφ±) = |〈αa,βb|φ±〉|2 = 1
2 cos

2(a ∓ b) , (4.12)

P(αβ|abψ±) = |〈αa,βb|ψ±〉|2 = 1
2 sin

2(a ± b) . (4.13)

(“|αa,βb〉” denote here the state in which photon 1 has the polarizationα along
the a-direction, and photon 2 has the polarization β along the b-direction.)

While the states |φ+〉 and |ψ+〉 are symmetric under exchange of indices,
the states |φ−〉 and |ψ−〉 are antisymmetric. Photons are bosons (spin = 1)
and must have a symmetric total wavefunction. Nevertheless, they can also
be found in antisymmetric Bell polarization states, since combined with an
antisymmetric position or momentum part of the wavefunction (not included
in the above equations) these still yield a symmetric total wavefunction.

Analogous facts hold for the spin states |φ±
s 〉 and |ψ±

s 〉 of quantum objects
with the notation |↑z〉 and |↓z〉 instead of |+z〉 and |−z〉, however, with one
important difference. Since the angles in spin space and in geometric space
are scaled differently, different angular dependencies are found for the proba-
bilities:

P(αβ|abφ±
s ) = 1

2 cos
2
[
1
2 (a ∓ b)

]
, (4.14)

P(αβ|abψ±
s ) = 1

2 sin
2 [

1
2 (a ± b)

]
. (4.15)

After emission from the source, the photons propagate in opposite directions
towards two polarization-measurement devices (see Fig. 4.1). Each of the two devices
A and B has a pointer that allows adjusting the direction a or b in which the polar-
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Fig. 4.1 Schematic setup of an EPR/B experiment

ization is to be measured.11 This measurement setting is chosen arbitrarily for each
measurement apparatus from one of three possible angles; for example, the pointer is
adjusted to an angle of 0◦, 30◦, or 60◦ with equal probabilities. In the most stringent
versions of the experiments, the choice and adjustment of the settings are carried out
while the photons are in flight (i.e. after their emission at the source and before their
arrival at the measurement devices). This is intended to guarantee that the choice of
the angle can have no influence on the state of the photons emitted by the source (we
will see below why this is important).

When a photon arrives at the measurement apparatus, the latter detects whether
the photon is polarized along the chosen direction (+) or perpendicular to it (−). At
each detector, there are thus two possible measurement outcomes, α = ± or β = ±,
respectively.According to this, a complete cycle of the experiment is characterized by
five variables: the preparation of the source (which determines the state of the photons
emitted by the source), the two measurement settings, and the two measurement
outcomes. A typical laboratory record for an experiment (with a fixed preparation
procedure for the photons, which is therefore not noted here) looks like the one shown
in Table 4.1.

These apparently innocuous columns of numbers in fact are the empirical basis
for shattering the local classical worldview that we are accustomed to: All of the far-
reaching consequences which can be drawn from the application of Bell’s theorem—
non-locality, non-separability, holism, etc.—are based on such simple data which can
be collected from EPR/B experiments. An initial indication of how special these data
are is obtained when one analyses them statistically. Three types of correlations are
found:

1. (Nearly) Perfect correlations: When the angles of the two apparatuses are the
same (cf. measurement cycles 1, 3, 8, 10, … in Table 4.1), the measurement out-
comes agree in approximately, but not exactly 100% of the cases. It is, however,
highly plausible to assume that these correlations are indeed perfect (as quantum
theory predicts) because one can explain the measured deviation from perfect-
ness by the fact that the detectors are not ideal measurement devices, but exhibit
inefficiencies.12

11According to the usual convention, the angles are indicated relative to the z-axis. In principle, any
other axis could be chosen as reference direction without the state |φ+〉 in (4.8) changing its basic
form, since |φ+〉 is rotationally symmetric.
12Another consequence of the detector inefficiencies is the detection loophole (see the end of this
section).
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Table 4.1 A typical laboratory record with measured values from an EPR/B experiment

a α b β

1 30◦ + 30◦ +
2 0◦ + 30◦ +
3 60◦ − 60◦ −
4 60◦ − 0◦ +
5 60◦ + 0◦ +
6 30◦ + 0◦ −
7 60◦ − 0◦ +
8 0◦ − 0◦ −
9 30◦ + 60◦ +
10 30◦ − 30◦ −
… … … … …

1000 0◦ − 30◦ +

2. Imperfect correlations 1: When the angles of the two apparatuses differ by 30◦
(cf. measurement cycles 2, 6, 9,…, 1000 in Table 4.1), themeasurement outcomes
agree in 75% of the cases.

3. Imperfect correlations 2: When the angles of the two apparatuses differ by 60◦
(cf. measurement cycles 4, 5, 7, … in Table 4.1), the measurement outcomes
agree in 25% of the cases.

These correlations of the measurement outcomes for each of the given measure-
ment settings demand explanation. A first observation is that they are unexpectedly
strong and depend only on the relative angle between the measurement settings. This
is surprising, since the experiment is indeed set up in such a way that possible cor-
relations are minimized: First of all, the measurement settings are chosen randomly
and independently of each other. Secondly, the spatial arrangement and the temporal
order of the experiments are chosen in such a way that many of the events in the
experiments cannot influence each other by normal standards. The underlying idea is
that, according to the theory of relativity, no influences between events are possible
when their spatiotemporal arrangement is such that they could be connected only by
processes propagating faster than the speed of light. In the given setup, there should
thus be no possible influences between the state of the photons at the source and
the measurement settings, since the latter are chosen only after the emission of the
photons (but before the photons’ arrival at the detectors). For the same reason, there
should be no interactions between the measurement events (settings and outcomes)
in one wing of the experiment (a,α) and those in the other wing (b,β).

Since these spatiotemporal considerations are of central importance for the inter-
pretation of Bell’s theorem, let us have a closer look at them. In the framework of the
theory of relativity, such spatiotemporal relationships are illustrated by spacetime
diagrams, in which one typically plots one of the three spatial dimensions on the
horizontal axis and the time dimension on the vertical axis. For each spacetime point
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P, the so-called light cone, the path taken by light beams towards P or away from P,
divides spacetime into three regions (see the picture in Fig. 4.2a):

• Interior of the light cone (“timelike”): Points in this region can be connected with
P by processes which propagate more slowly than light.

• Surface of the light cone (“lightlike”): Points in this region can be connected with
P by processes which propagate at the velocity of light.

• Exterior of the light cone (“spacelike”): Points in this region can be connected
with P only by processes which propagate faster than light.

One says that eventswhich are located onorwithin the light cone of P are “local to P”.
Spacelike-separated events, in contrast, are said to be “non-local to P”.

The crucial point for our considerations here is that, according to the standard
interpretation of the theory of relativity the following principle holds:

Global Einstein locality: There are no causal processes which propagate faster
than light.

A causal process is a chain of causes and effects, i. e. a succession of events in which
each event in the chain is an effect of the preceding event and a cause of the subsequent
event (e. g. a sequence of falling domino tiles). Equivalently to the principle, one also
says that according to the theory of relativity, only local processes can occur, or that
the theory of relativity is a local theory. If this principle holds, it is impossible that
spacelike-separated events can influence each other (see Fig. 4.2b). The region of
spacetime with events that can influence events at P is then given by the one half of
the light cone of P , the “past light cone” or the “causal past”; and the region with
events that can be influenced by events at P is given by the other half, the “future
light cone” or the “causal future”. (Note that the light cone includes its edge.)
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Fig. 4.3 Spacetime diagram of an EPR/B experiment

We now apply these considerations to the EPR/B experiment as described above.
In Fig. 4.3, we have sketched the spacetime diagram of the experiment (cf. Bell
1975). The surface of the future light cone of the entangled state at the source
ψ (heavy black lines) describes the path of the photons from the source to the
detectors. This makes it clear that the state at the source ψ can influence only the
measurement outcomes α and β, but not the measurement settings a and b, which lie
outside of this light cone (and, vice versa,ψ cannot be influenced by a or b). The past
light cones of the settings are depicted as dark grey areas, whereas the past light cones
of the measurement outcomes are shown as light grey areas (including the dark grey
regions). Thus, for example, the measurement outcome α can be influenced only by
events within the light grey area (including the enclosed dark grey area) which has
its apex at α, that is by the measurement settings in the same wing a and by the state
of the photons at the source ψ. In particular, it should not be influenced by the setting
b or the outcome β in the other wing! Correspondingly, according to the theory of
relativity, no sort of influence should be possible from the one measurement outcome
to the other, since such an influence would have to propagate faster than the speed
of light.

The remaining possible influences are shown in Fig. 4.4. In this diagram, causal
influences are indicated by arrows between variables. Variables represent properties
(of objects or events). Such diagrams, which represent a particular causal structure,
are called “causal graphs”.13 The causal structure shown here emerges from the fact
that only influences between events that are locally related to each other are permitted.
One can see especially that nodirect connections between the two spacelike-separated
measurements are allowed. The only connection between the measurement on the

13While for our considerations here, we initially require only an intuitive concept of causal influ-
ences; we will render this concept more precise in a formal way in Sect. 4.3.4 (see in particular the
causal Markov condition there).
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Fig. 4.4 Local causal relations in an EPR/B experiment

left and that on the right is the state of the photons emitted by the source, which is a
common cause of the measurement outcomes. In this sense, we wrote above that the
spatiotemporal arrangement of the experiment is intended to minimize correlations
between the two measurements.

In spite of all of these limiting conditions, the strong EPR/B correlations are in
fact observed, and we shall see in the next section that they are too strong to be
explained in any usual manner. In contrast to the usually accepted constraints of the
theory of relativity, it appears that there are influences between the two wings of
the measurement setup which do not obey the relativistic limitation to less-than-or-
equal-to the velocity of light.

Before we turn to possible explanations, we want to mention briefly that it was the
research group of Alain Aspect who were the first to carry out these experiments in
a convincing manner (Aspect, Dalibard and Roger 1982). Since the photons are very
fast, it is technically quite challenging to adjust the measurement settings within the
short time required by the photons to propagate from the source to the detectors, and
Aspect and his co-workers were the first to find a solution to this problem. Weihs
et al. 1998 then succeeded in addition in performing a choice of the settings by a
random-number generator within this very short time interval. These sophisticated
experimental setups, in which the measurement settings are chosen so late that they
are spacelike with respect to both the more distant measurement as well as to the
emission at the source, are intended to eliminate the possibility that the choice of a
setting can have a local influence on the distant measurement (which closes the so-
called “locality loophole”), as well as the possibility that a setting can influence the
state of the photons at the source (or vice versa; closing the so-called “independence
loophole” or “freedom-of-choice loophole”14).

14We do not accept the misleading interpretation suggested by the term “freedom-of-choice loop-
hole”, which is unfortunatelywidespread, that experimentersmust freely choose the settings. Rather,
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In the past 15 years, many new variations of this experiment have been performed.
In particular, the group of Anton Zeilinger hasmade outstanding achievements in this
field (Walther et al. 2006; Gröblacher et al. 2007; Paterek et al. 2007). For example,
the measurements have been carried out at greater and greater distances between
the detectors, and in the meantime, distances of over 100 km have become possible
(Ursin et al. 2007). Thus far, there is no indication that the correlations weaken with
increasing distance. Quantum theory also does not predict this, and correspondingly,
one assumes that entangled systems can produce the correlations over arbitrarily
great distances.

There is still another loophole in these experiments, which we have thus far not
mentioned. It is due to the fact that the detectors, even when they are very well
constructed, cannot register all of the quantum objects; i. e. every detector has a
less-than-perfect detection efficiency. In real EPR/B experiments, this yields runs
according to which only one of the detectors registers a photon, and such runs are
as a rule eliminated from the statistical analysis of the measurement record. If the
non-registration of a photon is a purely random event, this procedure will not falsify
the overall statistics of the experiment. If, however, the non-registration of a photon
depends in someway uponwhichmeasurement settings have been chosen, then it can
be shown that even in a completely local world, a Bell inequality could be ostensibly
violated, if in a suitable manner, i. e. only for certain combinations of settings the
detector would fail to register (Clauser and Horne 1974; Fine 1982). This fact is
referred to as the “detection loophole” or the “fair-sampling loophole”.

In order to maintain a genuine violation of the Bell inequality, one thus requires an
additional assumption, the “fair-sampling assumption”, i. e. the measurement runs in
which two photons are registered give a representative sample of all runs (including
those cycles inwhich one or even both of the photonswere not registered). The higher
the efficiency of the detectors, the more difficult it becomes to simulate a violation,
and there is a threshold value for the detector efficiency (81.8 %, see Maudlin 2011,
Chap. 6) above which such a simulation becomes impossible. In order to avoid
having to make the fair-sampling assumption, efforts have been made to increase the
detector efficiencies to above this threshold. In experiments in which this has been
achieved (the first were performed by Rowe et al. 2001), the Bell inequalities were
still consistently violated. Thus, the detection loophole has been closed just as the
locality loophole—however, in separate experiments. Recently, a research group has
had the great success of being able to close both loopholes in a single experiment
(Hensen 2015). The violation of the Bell inequalities by experimental data is a very
well confirmed fact.

it is simply a question of making the settings statistically independent of the state of the photons at
the source—freedom is not required.
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4.3.2 Bell’s Original Theorem

In his original article from Bell 1964, Bell took the experimental situation we have
described above as the basis for his considerations. The important question for him
waswhether or not quantummechanics canbe converted into a local anddeterministic
theory by the introduction of hidden variables. The result of his considerations was
that this is not possible. In the following, it will soon become clear that the reason for
this is not his assumption of determinism (this assumption can be dropped in more
stringent proofs), but rather the assumption of locality. Thus, no theory with hidden
variables which reproduces the predictions of quantum mechanics can be local, in
the sense that measurements on one system cannot be influenced by themeasurement
settings for another, distant system.

Wewill illustrate the fundamental ideas of Bell’s proof here since they can demon-
strate the physical core of Bell’s strategy without going deeply into the mathematics.
In the sections that follow, we will then treat Bell’s chain of reasoning in a more sys-
tematic way, and, making use of statistical considerations, we will analyse it more
precisely. Those who are not friends of mathematical formulae will find an approach
in the following Sect. 4.3.3 which almost entirely dispenses with formalism, so that
they can skip over the present Sect. 4.3.2 on a first reading.

Bell considers an experimental setup similar to that shown in Fig. 4.1, where,
however, the source does not emit photons, but instead spin- 12 particles, e. g. electrons,
and the detectors are the well-known Stern–Gerlach apparatus from Chap. 1. Let a
and b be the measurement directions in the left-hand and the right-hand detector,
respectively.15 The outcome of a measurement A(a) with the left-hand detector can
be spin up along the a-direction (with the measured value +1), or spin down along
the a-direction (with the measured value −1). The outcome of a measurement B(b)
with the right-hand detector can be spin up along the b-direction (with the measured
value +1), or spin down along the b-direction (with the measured value −1).

Bell now assumes that the measurement outcomes at the left or the right detector
are determined only by the respective measurement direction a or b, as well as by
a hidden variable λ; i. e. A(a,λ) = ±1 or B(b,λ) = ±1, respectively. The hidden
variable λ is not specified explicitly by Bell; for his proof, he requires no concrete
theory of a mechanism which would describe just how λ influences the outcomes
of the measurements. The only assumption about λ is a distribution function ρ(λ),
which determines the probabilities with which the various values of λ occur, and
which is normalized—as is usual for probabilities—to

∫
dλρ(λ) = 1.

The decisive point to note here is that Bell’s precondition that every measurement
outcome is a function of only the local measurement direction and the hidden vari-
able implicitly contains a locality assumption, since in this way the measurement
outcomes are functions of purely local quantities. (In particular, a measurement
outcome depends neither on the outcome at the distant detector, nor on its chosen

15In this section, we print the variables a and b in bold font in order to denote them, as Bell did, to
be vectors. In the other parts of this chapter, it suffices to regard a and b as scalar quantities which
describe the angles of the measurement settings (wherefore they are printed non-bold there).
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measurement direction.) This limitation to local dependencies is motivated by the
relativistic considerations suggested in Sect. 4.3.1, that only events which are locally
related can influence each other. This assumption implies that each individual parti-
cle carries locally all of the information necessary to determine the outcome of its
measurement.

Based on these simple assumptions, Bell defines the central quantity for his proof,
the expectation value of the product of the two measurement outcomes:

E(a, b) =
∫

dλρ(λ)A(a,λ)B(b,λ) . (4.16)

It is essentially a sum over all the products, each weighted by ρ(λ). From the expec-
tation value E(a, b), one can read off whether and how the two measurements are
correlated.

With these premises, Bell can now carry out his proof. If we, like Bell, distinguish
three directions u, v, and w along which the spin components can be measured in
the two detectors, then the following inequality can be derived; it is the original Bell
inequality:

|E(u, v) − E(u,w)| ≤ 1 + E(v,w) . (4.17)

To derive this relation, Bell used only simple geometrical considerations and esti-
mates of the measurement outcomes and their expectation values.

In the next step, Bell shows that the expectation values which follow from quan-
tum mechanics for the typical EPR entangled state violate this inequality. For the
expectation value of the product of two spin measurements along the a-direction
for the left detector and along the b-direction for the right detector, one finds from
quantum mechanics:

EQM(a, b) = −a · b . (4.18)

Here, a · b is the scalar product of themeasurement directions, which is dependent on
cos(φ), i. e. on the angle φ between the two directions. If, for example, both detectors
measure along the same direction, the expectation value EQM(a, a) is equal to −1;
i. e. on one side, one finds spin down, and on the other side, spin up.

Making use of a special choice of the directions16 u, v, and w,

u = (v − w)/|v − w| and v perpendicular to w (i. e. v · w = 0 ), (4.19)

one can arrive at the condition that the corresponding expectation values yield a
contradiction when inserted into Bell’s inequality, namely

√
2 ≤ 1 . (4.20)

16See Jammer’s description of Bell’s proof (1974, p. 307).
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It follows from this that no theory which fulfils the locality condition for the
expectation values in (4.16), and therefore fulfils Bell’s inequality (4.17), can pre-
dict the expectation values (and thereby the correlations between the measurement
outcomes) which follow from quantummechanics. If now, as shown by the measure-
ments, the expectation values of quantummechanics prove to be empirically correct,
then every theory which contains the assumption (4.16) must contradict empirical
experience.

The presentation of the theorem in this section accommodates the expectations
that are natural from a physical point of view. In the next sections, we will analyse
the theorem once again on the basis of conditional probabilities for measurement
outcomes and statistical considerations. In that treatment, Bell’s theorem will be
generalized and derived from weaker assumptions; in particular, the assumption
that the hidden variables fix the outcome of the measurements in a deterministic
manner can be dropped. One can then derive a Bell inequality for the case that the
hidden variable λ, together with themeasurement directions chosen for the detectors,
determine only probabilities for the respective measurement outcomes.

4.3.3 Bell’s Theorem as a Strategy Game

With the simple statistical relations for distant measurements which we illustrated in
Sect. 4.3.1, one can show that theworld inwhich these relations aremeasuredmust be
non-local. One cannot see at first glance from the statistics how significant they are,
and Bell’s proof, which derives these far-reaching consequences from the data, is a
paradigm of simplicity and elegance in the development of scientific argumentation.

The principal result of Bell’s proof is that the experimentally measured statistics
cannot be explained if there are only local influences (and if the usual background
assumptions hold). In other words, if one assumes on the basis of the theory of
relativity that global causal Einstein locality holds, i. e. influences which propagate
faster than the velocity of light are excluded, then one obtains a contradiction with
the empirical data. Purely local theories cannot reproduce the correlations. If we
maintain the usual background assumptions (see Sect. 4.5), there must be non-local
influences in some sense. In Fig. 4.4, we showed the maximal set of causal relations
which can occur in the EPR/B situation under the assumption of global Einstein
locality. It is the result of Bell’s theorem that such structures cannot explain the
correlations and therefore, they do not adequately represent the real situation.

A decisive characteristic of Bell’s theorem is that one need not assume any special
theory with particular state descriptions or a certain dynamics. In particular, the theo-
rem does not refer to quantummechanics, the quantum-mechanical wavefunction, or
to any of its interpretations. It is based on the (for the most part) theory-independent
measurement outcomes from EPR/B experiments, and its arguments are carried out
on an abstract and general level. Therefore, its result is very strong: All those the-
ories which are limited to local action cannot be correct. This result holds even
when one allows that a photon at the source can carry an arbitrarily great amount
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Fig. 4.5 Local causal
structure with hidden
variables λ

ba

of information about the respective other photon. That assumption permits us to
go beyond the quantum-mechanical state description and thus to specify the state
of the photons more precisely by using so-called hidden variables. Critics of quan-
tum mechanics have expressed their hope again and again that there might be such
hidden variables which make the description of quantum objects in terms of their
quantum-mechanical state more precise, and finally show that the quantum world is
deterministic and local. Bell wanted to keep the door open for this possibility, and he
thus assumed that the state of the photons at the source could be described not only
by their quantum state, but also by an additional variable λ which is not empirically
accessible. Like the quantum-mechanical state ψ at the source, it can play only the
role of a common cause of the measurement outcomes in the causal structure since
global Einstein locality holds. The extended causal diagram with the latent common
cause λ is shown in Fig. 4.5 (we dispense here and in the following with drawing in
the light cone). Even this stronger local structure (with two common causes) cannot
explain the correlations, according to Bell’s theorem.

Before we present an analysis of Bell’s proof which is sound and clear by the stan-
dards of modern philosophy of science, we want in this section to first describe his
argument in an intuitive form. Tim Maudlin (2011, Chap.1) has found a penetrating
and illuminative analogy for Bell’s argument. He compares the situation of the pho-
tons in EPR/B experiments, which, after leaving their common source, can no longer
interact with each other (since they are spacelike-separated from that point onwards),
with a situation in which two persons are initially in the same room and are then put
separately into two different rooms.As long as they are together in one room, they can
come to agreements and adopt conventions as much as they like. (This corresponds
to the fact that the photons can possess arbitrary amounts of information about each
other due to their common origin in the photon source.) After their separation in dif-
ferent rooms, the persons can no longer communicate with each other. (This reflects
the experimental setup in which the photons move apart at the velocity of light and
therefore can no longer mutually interact). In the separate rooms, each of the persons
is then asked randomly one of three questions, which he or she must answer with
“yes” or “no”. (These questions correspond to the measurement settings of the setups
where the photons are detected, and the answers correspond to the behaviour of the
photons, which produces one of two possible measurement outcomes). For example,
one of the persons is asked the question “30◦?” and answers with “no”, while the
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Table 4.2 Possible strategies for perfect correlations

Strategy Answer to “0◦?” Answer to “30◦?” Answer to “60◦?”
1 Yes Yes Yes

2 Yes Yes No

3 Yes No Yes

4 No Yes yes

5 Yes No No

6 No Yes No

7 No No Yes

8 No No No

other person is asked the question “0◦?” and answers with “yes”. This procedure and
questioning are repeated many times over with different pairs of persons. The results
are shown in a table of a form which is analogous to the laboratory record of EPR/B
experiments (cf. Table 4.1; the only formal difference is “yes” instead of “+” and
“no” instead of “−”). The goal of the persons is to answer the questions in such a
way that the results of the questioning follow the same statistics as the measurements
of photons in an EPR/B experiment. That is, whenever the two persons are asked the
same question, their answers must agree, and when the questions differ by 30◦, the
answers must agree in 75% of the cases; and with a difference of 60◦ in the questions,
the answers must agree in 25% of the cases. Can they succeed in this task?

The difficulty consists in the fact that the persons who are answering know neither
the question being posed to the other person, nor that person’s answer. This means
that if they are to have any chance at all of reproducing the statistics, they must
agree upon a strategy before they leave the common room, regulating how they will
answer the later questions when they are separated (for the photons this corresponds
to hidden variables). Which strategy is the most promising? In order to fulfil the first
statistical requirement, answering perfectly similar questions with perfectly similar
answers with certainty, they must consent in advance what their answers will be to
each of the three possible questions (deterministic strategy). For each pair of test
persons, there are thus eight possible strategies, of which each determines a unique
answer to each of the questions (Table 4.2).

If each pair of test persons chooses one of these strategies, then it is certain that
they will produce perfect correlations when asked perfectly similar questions. Since
the answers to perfectly similar questions vary statistically between different cycles
of the experiment, it is furthermore clear that pairs of persons in different cycles must
choose different strategies. This would have to be done in such a clever way that the
two other correlations for differing questions would result. In what ratio would the
persons have to mix their strategies in order to yield the known statistics?

We will now show that there is no such mixture that can guarantee the correct
statistics. To that end, we consider the possible mixtures quite generally, i. e. without
making any particular assumptions, and denote the fraction of cases in which the
person chooses strategy 1 as f1, the fraction of cases in which strategy 2 is chosen
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as f2, etc. From these weights, one can then derive the resulting statistics with the
help of Table 4.2. For example, the probability that person A answers with “yes” and
person B with “no” when A is asked the question “0◦?” and B the question “60◦?” is
given by f2 + f5. To find this, we have simply added the weights of all the strategies
which yield these answers to the corresponding questions. We record this fact in the
usual notation as P(α = +,β = −|a = 0◦, b = 60◦) = f2 + f5. The probability for
the same answers to the questions “0◦?” and “30◦?” or to the questions “30◦?” and
“60◦?” is found fromTable 4.2 to be P(α = +,β = −|a = 0◦, b = 30◦) = f3 + f5,
or P(α = +,β = −|a = 30◦, b = 60◦) = f2 + f6, respectively. Since the weights
are all positive or 0, it is simple to see that these three probabilities must obey an
inequality:

f2 + f5 ≤ f3 + f5 + f2 + f6 , (4.21)

P(α = +,β = −|a = 0◦, b = 60◦) ≤ P(α = +,β = −|a = 0◦, b = 30◦)+
+ P(α = +,β = −|a = 30◦, b = 60◦) .

(4.22)

This last inequality is one of the so-called Wigner–Bell inequalities, a type in
the class of Bell inequalities. Now, the decisive point of the present argument is
that this inequality, which followed from the assumption of the strategies and their
weights, contradicts the measured statistics. The probability on the left-hand side
has the value 37.5%, according to the measured statistics (it corresponds to half the
value of 75% of measurement results which do not agree in the case of a difference
angle of 60◦; the other half are cases in which A answers with “no” and B with
“yes”). The probabilities on the right-hand side are each 12.5% (each half of the
non-agreement fraction of 25%). This yields 37.5% ≤ 12.5% + 12.5%, and that is
an obvious contradiction: The empirical statistics violates Bell’s inequality.

Since we have made no special assumptions about the weights, this contradiction
means that no distribution of weights, however constructed, would yield a strategy
which could reproduce themeasured statistics. The idea that persons could determine
a strategy for answering which would produce the observed statistics has proved to
be impossible. If the two persons do not yet know the questions when they agree
upon a strategy, and can no longer communicate when they know the questions, they
cannot give their answers in the peculiarly correlated manner that is observed in the
EPR/B experiments.

This result can be applied nearly unchanged to the situation of the photons: If
the photons do not yet ‘know’ the measurement settings when they are emitted from
the source, and after leaving the source cannot ‘communicate’ any longer, then it is
impossible that they can produce the given statistics. But we can observe empirically
that they do! Therefore, at least one of the assumptions made must be false. It is
most probable that they can indeed mutually ‘communicate’ after leaving the source
although they are arranged in such a way that such an influence could only occur at
a velocity faster than the speed of light. Influences which occur faster than light are
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called “non-local” in the context of the theory of relativity, and they are forbidden
according to the usual interpretation of that theory. To what extent this non-local
connection between entangled objects is compatible with the theory of relativity,
i. e. whether one can imagine that entangled objects are embedded in a relativistic
spacetime, is the central problem of entangled systems. We will discuss it further in
Sect. 4.4.

First, in the following Sect. 4.3, we want to bring the intuitive treatment of Bell’s
theorem as presented here into a clear form that meets usual standards in philosophy
of science. This means, on the one hand, that we eliminate the anthropomorphic
terminology of “strategies”, “communication” and “knowledge”, since all of these
are descriptive terms which do not apply to photons. Instead we will introduce con-
cepts such as “probabilistic dependencies”, “causal influences” and “hidden common
causes”. On the other hand, wewant to make the implicit assumptions in the situation
as described more transparent in order to gain an overview of what precisely is at
stake and which possible reactions to Bell’s theorem are indeed appropriate.

4.3.4 Bell’s Theorem, More Precisely

A precise treatment of Bell’s theorem, which we want to develop in this section,
does not correspond to Bell’s original article (1964) in two respects: Firstly, it has
become clear through the discussion over the course of years that the theorem can
also be derived from amuchweaker set of assumptions. Recognizing that some of the
original assumptions can be dropped has limited possible reactions to the theorem
and has rendered its significance more and more clearly. Clauser et al. (1969) derive
a Bell inequality without assuming perfect correlations, Bell (1971) demonstrates a
derivation without determinism. Here we base our discussion on the standard version
of Bell (1975), which dispenses with both of these original assumptions. Further
strengthenings of the theorem in recent times will be discussed below.

Secondly, we are giving here not a mere repetition of Bell’s arguments, but rather
a philosophical reconstruction. The latter differs from Bell’s treatment in particular
in our attempt to make all the implicit assumptions of content and method explic-
itly apparent. Only in this way can we guarantee a reliable interpretation of this
theorem with its far-reaching consequences. Bell’s proof is at its core a mathemati-
cal argument, which is formulated in its most stringent versions in the language of
conditional probabilities. In its mathematical precision lies its strength, on the one
hand (if its premises are correct, then its conclusion follows strictly); on the other
hand, the mathematical expressions naturally require an interpretation if we wish to
draw conclusions about our world—and this transition from formal expressions to
physical or metaphysical facts has proved to be the central problematic point of the
argument. While the formal facts are generally accepted, there is a not-insignificant
amount of dissent around the question of the appropriate interpretation and evalua-
tion of the premises and also of the conclusion. In the following treatment, we want
to pay special attention to these interpretational transitions.
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The task of the strategy game discussed above, to reproduce the measured photon
statistics, has a deeper reason. This concerns one of the central principles of scientific
inquiry, namely that correlations require explanation. If we find that two variables
are mutually correlated, for example that a head cold is associated in, say, 70% of
cases with a sore throat, then we attempt to explain this statistical connection. As a
rule, we do that by trying to establish a causal relationship; that is, we assume that
either one of the variables is the cause of the other, or that both have a common cause.
The explanation for the correlation of head colds and sore throats is, of course, that
cold viruses are their common cause.

In the case of the EPR/B experiments, we likewise have found correlations which
must be explained (perfect correlations of measurement outcomes when measure-
ment settings are parallel, and correspondingly weaker correlations when the settings
are rotated relative to each other). We have seen above that the theory of relativity
suggests, through its principle of global Einstein locality, that the correlations should
be explained in a local manner. When one makes the typical background assump-
tions, then the strongest structure which can be assumed for the explanation of the
correlations andwhich is consistent with global Einstein locality is the local common
cause structure as shown in Fig. 4.5.

Among the background assumptions are first of all the preconditions that causal
relations are always directed in the forward sense of time (“no backwards causa-
tion”), and secondly that the variables of the experiment which are controlled by the
experimenter, namely the choice of the measurement settings and of the quantum
state, are not effects of other variables within the setup (“intervention assumption”).
We also mention that the hidden variable λ is to be understood as describing all of
the possibly present hidden common causes of the measurement outcomes; that is,
above and beyond λ, there are no additional hidden common causes (this is, to be
sure, a part of the definition of λ, and not an assumption). Each of these two assump-
tions is very plausible and natural, but as we shall see, the discussion surrounding
Bell’s theorem is so tricky that even the most natural-appearing assumptions must
be treated as potentially doubtful (cf. Sect. 4.5).

One can understand Bell’s theorem as an argument which excludes the whole
class of local causal explanations of the EPR/B correlations. It does so in an indirect
manner: One assumes the strongest local structure, derives from it the statistical
consequences (namely a Bell inequality which sets an upper limit for the strength
of correlations resulting from such structures), and then shows that this inequality is
contradicted by the measured statistics (the measured correlations are stronger than
allowed by the Bell inequality). In order to derive statistical consequences from the
local causal structure, one requires a translation principle between causal structures
and statistical facts. The central translation principle between these two areas, which
we will count as the third background assumption of the theorem (Spirtes et al. 1993;
cf. also Pearl 2000), is called the

Causal Markov condition: Let X be a variable in a causal graph; Z denotes the
direct causes of X , and Y includes all the variables which are not effects of X .
Then X is statistically independent of Y given Z : P(X |Y Z) = P(X |Z).
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This condition needs some explanation: Direct causes of a variable X in a given
causal graph are all those variables from which an arrow leads to X (for example, in
Fig. 4.5, a, ψ and λ are direct causes of α). (The indirect causes of X , in contrast,
are those from which a path of at least two arrows leads to X .) The set of variables
which are not effects of a variable X consists of all the causes of X (direct and
indirect), and all those variables which are neither causes nor effects; i. e. variables
which are causally connected to X only via common effects or are not connected to
X at all. (For example, in Fig. 4.5, a, b and λ are not effects of ψ because they are
only connected to ψ via common effects: a via α, b via β and λ via both outcomes.)

P(X |Y Z) is the conditional probability of X , given Y and Z ; and P(X |Y Z) =
P(X |Z) is the definition of the statistical independence of X and Y , given Z . The
equation is meant to hold for all values of the variables X , Y and Z . Statistical
independence of X and Y , given Z , means that if information about the value of
Z is available, then knowing the value of Y yields no additional information about
which value X may take (since information about Y does not change the probability
of X ). With these elaborations of the concepts, we can now formulate the statement
of the Markov condition as follows: If one knows whether the direct causes Z of a
variable X have occurred, then knowledge of its indirect causes (some part of Y ) and
of the variables which are connected with X only via common effects or not at all
(the remaining part of Y ) can give no additional information on whether or not X
has occurred.

Evidently, the causalMarkov condition is a translation principle, which sets causal
factors in relation to statistical independencies. As such, it is the central bridge
principle between causal and statistical facts. The causal structures are as a rule
given in terms of causal graphs, in which the nodes are variables. Pairs of nodes can
be connected by arrows which symbolize causal relations. Furthermore, such graphs
must be acyclic, in the sense that arrows in them must not form circular structures.
We have already used such graphs in an intuitive manner (see e. g. Fig. 4.5).

The causal Markov condition can be applied to arbitrarily complex causal graphs,
but it is instructive to note that it implies statistical independencies in the following
three paradigmatic fundamental structures: (i) Variables which are causally con-
nected only through common effects, A → C ← B, are independent: P(A|B) =
P(A); (ii) Variables within a causal chain, A → C → B, are independent given
the middle variable, P(A|BC) = P(A|C); (iii) Variables which are connected only
through a commoncause, A ← C → B, are independent given the commoncause C ,
P(A|BC) = P(A|C).

The last case, (iii), makes it clear that the causal Markov condition contains
Reichenbach’s principle of the common cause (Reichenbach 1956) as a special case:
If two statistically correlated variables X and Y are not directly causally connected,
then there is a common cause Z which statistically screens off X and Y , whichmeans
that X and Y become statistically independent given Z : P(X |Y Z) = P(X |Z).While
Reichenbach’s principle allows the validation of their statistical independence only
in simple cases with common causes, the causal Markov condition goes beyond the
Reichenbach principle, in that it implies the independence for arbitrary structures (as
long as they are acyclic).
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Before we apply the causalMarkov condition as a translation principle to the local
causal structure, we should mention that the Markov condition is also a far-reaching
methodological principle. It states that all correlations are caused; i. e. there can be
no uncaused correlations. It is the probabilistic generalization of the classical prin-
ciple of causality, which maintains that every event has a sufficient cause. While the
classical formulation clearly fails when indeterminism holds or is useless when only
statistical data are given, the Markov condition is well suited for such cases. Thus,
the Markov condition is the methodological principle which forms the foundation of
scientific research into causes, as well as of our considerations in this chapter. This
methodological statement is not obvious in the above formulation of the Markov
condition, but one can show that the condition is equivalent to it. In its two functions
as a methodological requirement and as a bridging principle between causal and
statistical facts, the Markov condition is the central principle of causal explanations.

The prominent role played by the Markov condition in Bell’s proof can be seen
from the fact that it is required in order to translate the requirement for a local common
cause structure (Fig. 4.5) to conditional probabilities. This structure seems to be the
natural explanation of the EPR/B correlations, if one maintains the worldview of
classical physics, in which all processes are local and the normal methodological
principles of scientific practice remain valid. The genial insight of Bell was then to
see that such a structure cannot possibly explain the observed correlations. This can
be clearly seen by deriving the following statistical facts from the graph, making use
of the Markov condition17:

Local factorization (LF): P(αβ|abψλ) = P(α|aψλ)P(β|bψλ)

Measurement independence (MI): P(λ|abψ) = P(λ)

The factorization condition formalizes the fact that in the given structure, each of
the measurement outcomes is influenced directly only by its local measurement
setting, by the quantum state at the source, and by the hidden variables, but not by
the other measurement outcome or the distant measurement setting. Measurement
independence,18 in contrast, results from the fact that there are no influences between
the hidden variable λ on the one hand and the measurement settings as well as the
quantum state ψ on the other.

These two probabilistic conditions form the mathematical basis of Bell’s proof,
fromwhich he derived his inequalities. This derivation can dispensewith the assump-

17Measurement independence follows directly from the Markov condition. For the local factoriza-
tion condition, an additional intermediate step is necessary:

P(αβ|abψλ) = P(α|βabψλ)P(β|abψλ) = P(α|aψλ)P(β|bψλ) . (4.23)

The first step follows from the product rule of probability theory, and the second step follows from
the Markov condition for the causal graph.
18Sometimes the condition is also called “autonomy”, “no conspiracy” or “freedom-of-choice”.
Especially the latter two names already suggest a certain interpretation, which would require further
assumptions; for the sake of generality, we would like to avoid this here.
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tion of perfect correlations, whichwe had to use for the derivation of the Bell–Wigner
inequality (4.22) above. This is an important point, since it makes the set of assump-
tions weaker. For the explicit derivation, the reader interested in formal details is
referred to the grey box. The resulting inequality is noted there in (4.28). It belongs
among the technical details that this Bell inequality takes on a somewhat different
form from the Bell–Wigner inequality: The principal difference is that the former is
formulated in terms of expectation values (instead of conditional probabilities).

Derivation of a Bell inequality
Perhaps the most elegant derivation of a Bell inequality from the assumptions
of local factorization andmeasurement independence was given byAbner Shi-
mony (1990). He begins with the following lemma: If x, y, x ′, y′ are numbers
within the interval [−1, 1], then the inequality

− 2 ≤ xy + xy′ + x ′y − x ′y′ ≤ 2 (4.24)

holds. He then chooses x = ∑
α αP(α|aψλ), y = ∑

β βP(β|bψλ), x ′ =∑
α αP(α|a′ψλ), and y′ = ∑

β βP(β|b′ψλ), and applies the distributive law:

−2 ≤
∑
α,β

αβP(α|aψλ)P(β|bψλ) +
∑
α,β

αβP(α|aψλ)P(β|b′ψλ) +

+
∑
α,β

αβP(α|a′ψλ)P(β|bψλ) −
∑
α,β

αβP(α|a′ψλ)P(β|b′ψλ) ≤ 2 .

(4.25)

Now, in each summand, we can use the local factorization condition:

−2 ≤
∑
α,β

αβP(αβ|abψλ) +
∑
α,β

αβP(αβ|ab′ψλ)+

+
∑
α,β

αβP(αβ|a′bψλ) −
∑
α,β

αβP(αβ|a′b′ψλ) ≤ 2 .

(4.26)

This is an inequality for the common expectation value on the hidden level.
In order to obtain an empirically testable inequality, we must eliminate λ. We
multiply the inequality by P(λ), integrate overλ, and applymeasurement inde-
pendence in a suitable manner, so that λ is marginalized out. We demonstrate
this for the first summand:
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∫ ∑
α,β

αβP(αβ|abψλ)P(λ)dλ =
∑
α,β

αβ

∫
P(αβ|abψλ)P(λ|abψ)dλ =

=
∑
α,β

αβ

∫
P(αβλ|abψ)dλ =

∑
α,β

αβP(αβ|abψ) =: E(αβ|abψ) .

(4.27)

In the last step, we have introduced a notation for the common expectation
value of the measurement outcomes, given the measurement settings and the
quantum state. With this notation, the resulting inequality is given as:

− 2 ≤ E(αβ|abψ) + E(αβ|ab′ψ) + E(αβ|a′bψ) − E(αβ|a′b′ψ) ≤ 2 .
(4.28)

This is a Bell inequality. The present prominent form was first derived (but in
a different way than presented here) by Clauser et al. (1969) and is called the
“CHSH inequality”.

The decisive point for the argument, however, is that this new inequality is also
violated for some chosen measurement settings by the empirical statistics found
in experiments. There is thus a contradiction between the empirical statistics and
the theoretical assumptions which we made in a plausible way to explain them.
Among those assumptions, we can distinguish two levels. First, at least one of the
probabilistic assumptions, local factorization ormeasurement independence,must be
false. Second, at least one of the assumptionswhichweused to derive the probabilistic
assumptions, namely global Einstein locality or one of the background assumptions,
must be false. Here is the structure of the argument once more as an overview:

(P1) Global Einstein locality (GEL) and a set of classical background
assumptions (BA) imply measurement independence (MI) and local factor-
ization (LF): (GEL) ∧ (BA) → (MI) ∧ (LF)

(P2) Measurement independence and local factorization imply Bell
inequalities (BI): (MI) ∧ (LF) → (BI)

(P3) Bell inequalities are violated: ¬(BI)

(C1) Measurement independence or local factorization fails: ¬(MI) ∨ ¬(LF)
(from P2 and P3, modus tollens),

(C2) Global Einstein locality or at least one of the background assumptions are
invalid: ¬(GEL) ∨ ¬(BA) (from P1 and C1, modus tollens).

Bell’s argument thus has a negative result: It is a typical no-go theorem. It proves
that the EPR/B correlations cannot be explained under the assumptions which we
would normallymake. In this sense, it shows that the quantumworld is not compatible
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with a classical worldview. At least one of the prima facie plausible assumptions
which we have made must be false.

The explicit structure of the argument makes it once more clear that there is a
mathematical core to the argument, namely the conclusion of the argument from
(P2) and (P3) to (C1). (P1), which makes the conclusion (C2) possible, then takes
on the status of an interpretive premise that confers a causal interpretation on the
formal argument. In contrast to the impression which one could gain from articles
on the subject in the physics literature, it is this interpretive framework which gives
the formal argument its far-reaching significance. The mathematical core is for the
most part undisputed, but the interpretive framework is the subject of controversial
discussions: What exactly are the consequences of Bell’s theorem?

Before we seriously discuss those consequences, we should first lay aside one
‘consequence’ which is often alleged but which is in fact due to a misunderstanding.
Over and over, it has been and is still being claimed by some authors that Bell’s
theorem implies an anti-realism. For example, in 1979 in an article in Scientific
American, one could read that the doctrine that the world consists of objects which
are independent of human consciousness is not compatible with quantum mechan-
ics nor with experimentally confirmed facts (d’Espagnat 1979, p. 128). Similarly
as within the context of the EPR argument (see Sect. 4.2.1 for various meanings
of “realism”), “anti-realism” is understood here to be the hypothesis that physical
properties in the world are not independent of the knowledge or thinking of observers
(i.e. experimenters), which we have called “metaphysical anti-realismwith respect to
fundamental properties”. Only through measurements do the properties of quantum
systems obtain clearly defined values.

From our explicit reconstruction of Bell’s theorem which was presented above, it
should be clear, however, that conversely to this widespread opinion, anti-realism is
not a possible consequence of Bell’s theorem. For the conclusion of Bell’s theorem
(in a strong version, which we have presented here) is either non-locality or violation
of one of the background assumptions— i.e. anti-realism is not among the possi-
ble consequences. If one holds the background assumptions to be plausible, then
Bell’s theorem permits only the conclusion of non-locality—and of nothing else.
Anti-realism does not occur at all as a possible conclusion—the theorem is just tacit
about the matter. The reason for this is that realism (with respect to the fundamental
properties of quantum systems) is not required as an assumption for the derivation
of the Bell inequalities. The only realistic assumption which one requires is that we
are convinced of the independent existence of the involved measurement apparatuses
and their properties, since only then can the EPR correlations—and with them the
violation of the Bell inequality (P3)—obtain the status of objective facts, but this
assumption has thus far not been seriously called into question by anyone.

It is not quite clear how this far-reachingmisunderstanding came about. A possible
explanation is the following: An original motivation for opponents of the quantum
theory was to manifest the possibility of local, realistic theories, in contrast to the
quantum theory with its strange characteristics. The discussion around EPR and
Bell was originally based upon the question as to whether local realistic theories are
possible, but Bell’s theorem negates this possibility. This might suggest that one of
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its assumptions, either locality or realism, must be false.19 This inference, however,
forgets that the assumption of realism is not required for the derivation of the Bell
inequalities. One can derive a Bell inequality using only the assumption of locality
(plus background assumptions); i. e. the violation of theBI excludes all local theories,
the realistic as well as the anti-realistic theories. Thus, only non-local theories remain
possible—but Bell’s theorem makes no statement as to whether the former or the
latter are to be preferred. Bell’s theorem is neutral in regard to the realism question.

4.4 Non-locality

4.4.1 Locality Versus Background Assumptions

Which of the assumptions for the derivation of the Bell inequalities is invalid? We
distinguished two levels within the derivation, a probabilistic and a causal level, and
on each of them, at least one assumption must be false. It seems to be nearly impos-
sible to find an argument on the purely probabilistic level as to which assumption is
plausibly violated. Practically, all the authors who discuss this problem refer at least
implicitly to the causal level, even when they sometimes claim otherwise explicitly,
since only there can one find criteria for rejecting an assumption.

This will also be the path that we follow here: In this section, we first evaluate
the locality assumption, and in the following section the background assumptions,
both on the more substantial causal level. For one thing, we have to investigate
for every principle whether its infringement would in fact be able to explain the
violation of Bell’s inequality. The failure of at least one of the principles is indeed
only a necessary condition for the violation of the inequality. For another, we must
discuss for each of the principles for which this is the case whether it is plausible to
dispense with that principle, and what consequences doing that would have. Here,
we should not expect that we will arrive at a unique solution which is impervious
to all doubts. Gerd Graßhoff, in a lecture, compared the procedure in the debates
surrounding Bell’s inequalities to a detective story: There are various persons who
are under suspicion, and the task is to find out who is the murderer. Only in very rare
cases can the detective prove in a strict sense who committed the crime, but often,
we can be convinced by good evidence.

The great majority of authors interpret the violation of the Bell inequalities as a
sign of non-locality: There must be a connection of some sort between the two wings
of the experiment, which acts at a superluminal velocity. This hypothesis follows
from Bell’s argument, if one presupposes that those assumptions hold which we
have termed “background assumptions”. What are the reasons for abandoning the
locality assumption and not one of the background assumptions? In the evolution
of this position, it certainly plays a great role that two main positions advanced for

19This is also suggested by the article on Bell’s theorem on the English Wikipedia pages, https://
en.wikipedia.org/wiki/Bell’s_theorem (accessed on 21st Oct 2017).

https://en.wikipedia.org/wiki/Bell's_theorem
https://en.wikipedia.org/wiki/Bell's_theorem
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solving the quantum-mechanical measurement problem (see Sect. 2.3.1)— the GRW
theory (see Sect. 2.4) and the de Broglie–Bohm theory (see Sect. 5.1)—are explicitly
non-local. No matter how theory-independent Bell’s project may be in terms of its
assumptions, in the evaluation of the question as to which of the assumptions is false,
most authors seem to take existing theories into account. This, however, on the other
hand, also prevents the solution from being labelled as ad hoc.

In the following section, wewill therefore discuss what it wouldmean if one of the
background assumptions were to be abandoned, instead of the locality assumption.
Such proposals rather play the role of alternative solutions within the discussion.
The fact that they pertinaciously persist, however, shows that the suggestion of non-
locality is itself not without problematic consequences. In particular, the question
of compatibility with the theory of relativity, as we shall see, is still a serious topic.
Nevertheless, the assumption of non-locality is the widely accepted consequence of
Bell’s theorem. The fact that it will turn out that all the alternative suggestions for a
solution likewise exhibit great (if not even greater) problems is an additional reason
to seek the solution in a non-locality.

4.4.2 Areas of Conflict with Relativity

What precisely does it mean that the locality assumption is violated by the quantum
world? As we have already mentioned, non-locality means that there is an influence
between variables which are spacelike relative to one another so that this influence
must have propagated faster than light (see Sect. 4.3.1). In EPR/B experiments, the
detectors are arranged intentionally in such a way that eachmeasurement is spacelike
relative to the other measurement in order to exclude influences between the two
measurements. Our argumentation, however, seems to have brought us to a point at
which we have to abandon this assumption. It would appear that—in a way still to be
determined—an influence between the two wings of the experimentmust be present.
For such an influence, there are three prototypes (see Fig. 4.6): Either there is (a) a
direct influence from one measurement outcome on the other (which is labelled as
“outcome dependence” in the debate); or there is (b) a direct influence between one
of the measurement settings and the distant outcome (“parameter dependence”); or
else there is (c) an indirect influence from one measurement setting on the distant
outcome, mediated by the hidden common cause λ. (In the game of the persons this
would mean that, when asked the question, one of the persons has information about
(a) which answer the other person has given or (b) which question she has been
asked, or that (c) one of the questions was known when the strategy was chosen.)

Concerning this last case, we should mention that λ must no longer describe a
state at the source, owing to the abandonment of the locality assumption, and no
longer necessarily refers to hidden variables of the photons. From an abstract causal
point of view, λ was from the very beginning simply a hidden common cause of the
measurement outcomes and is otherwise a sort of ‘joker variable’ in the diagram. In a
local world, a common cause of the measurement outcomes must naturally lie within
a section of the past light cone of the measurement outcomes, and the most plausible
scenario is that λ is located at the source, and that it describes hidden variables of the
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ba

(a) Direct structure

ba

(b) Non-local common cause

ba

(c) Indirect structure

Fig. 4.6 Prototypes of non-local causal structures (important causal relations are shown here and
in many of the following figures in boldface to make the image clearer)

photons. In a non-local world, in contrast, the states which are described by λ need
not liewithin the past light cone of the outcomes; instead, they can be found anywhere
in the spacetime region between the measurement wings20 (and thus could also be
spacelike relative to the outcomes); and nevertheless, they could be the common
cause of those outcomes.

The principal problem of the non-local model is that it seems to be in serious
contradiction with the concepts of space and time which the theory of relativity
suggests.Wemade use above of the standard interpretation of the theory of relativity,
in which the principle of global Einstein locality holds (see Sect. 4.3.1). If, as claimed
by this interpretation, it is correct that the principle of global Einstein locality is
implied by the theory of relativity, then relativity is truly inconsistent with non-local
models. Supporting a non-local model for EPR/B experiments would then mean that

20Considered precisely, λ must not necessarily lie between the measurement wings, even though
this may seem most plausible; it must be located merely at some position outside the future light
cones of α and β.
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one would have to abandon the theory of relativity in a certain sense. Such a radical
consequence, however, is avoided by most authors. Their idea is that a solution can
be sought which on the one hand saves non-locality, in order to explain the EPR/B
correlations, but on the other does not violate the theory of relativity.

Such suggestions have to assume that the theory of relativity does not strictly
imply the principle of global Einstein locality. In a certain, limited sense, the theory of
relativitymust be compatible with the concept that there are influences that propagate
faster than light. In the following, we now want to test whether non-local models can
be brought into agreement with a relativistic concept of space and time. To this end,
we have to look more closely at the question as to what extent the principle of global
Einstein locality, which is violated by such models, is indeed founded on the theory
of relativity.

First of all, we should say that in classical, pre-relativistic concepts of space and
time (cf. Newton’s view), it represents no difficulty if things influence one another
at a velocity greater than the speed of light. As long as the velocity with which the
influences propagate is finite, there can always be a continuous process from the
cause to the effect. Influences between distant events which occur simultaneously,
however, exclude such continuous processes; these are examples of classical action
at-a-distance (such classical actions at-a-distance are also often called “non-local”;
but here, we do not wish to ‘water down’ our concept of “non-locality”). Whether
actions at-a-distance are admissible in classical physics has been under debate for a
long time.

This debate came to an end as a result of the formulation of the theory of relativity.
Firstly, in the theory of relativity, every action which propagates with a superluminal
velocity is non-local; and secondly, all such actions would appear to be forbidden
by the theory. The result is that the theory of relativity is a local theory through and
through.

We should explain these two points in somewhat more detail. Why, according to
relativity, are all superluminal influences considered to be non-local? According to
our definition, such influences are connected in a spacelike manner. The decisive
point is now that the temporal ordering of spacelike-separated events is no longer
an objective fact within the theory of relativity. Simultaneity becomes a concept
which is dependent on the frame of reference (or on the observer), and for every
pair of spacelike-separated events A and B, there are reference frames in which A
occurs before B, but also reference frames in which B occurs before A; and precisely
one reference frame in which the two events are simultaneous. Therefore, for every
action which proceeds at a velocity faster than the speed of light, there is precisely
one system inwhich its effect is simultaneous. This explains alsowhy such influences
within the theory of relativity are termed “non-local”.

Considering the second point, that the theory of relativity forbids all superluminal
causal influences (global Einstein locality), we should look somewhat more carefully
at the reasons why this is assumed to be the case:

1. According to the theory of relativity, the speed of light is an upper limiting velocity
for the motion of matter and energy. It is excluded that matter or energy transport
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can propagate faster than light. If, then, causal processes always involve matter
or energy transport, there can be no causal action that propagates faster than the
speed of light.

2. It is a consequence of the relativistic structure of spacetime that signals which
are sent faster than the speed of light could be used to produce a signal loop, and
such loops lead to paradoxes. If, therefore, a causal connection can be used for
sending signals, then it cannot exist between spacelike-separated events.

3. According to the theory of relativity, for spacelike-separated events A and B,
there are reference frames in which A occurs earlier than B, but also reference
frames in which B occurs earlier than A. Therefore, if a causal connection must
act forward in time in all reference frames, there can be no causal connections
between spacelike-separated events.

4. The principle of relativity requires that all frames of reference be equivalent.
Non-local connections, however, distinguish a particular frame of reference, in
which the two events occur simultaneously. Therefore, there can be no non-local
connections.

These are the reasons which speak against non-local causal connections in a
relativistic spacetime. If we wish to explain the violation of the Bell inequalities in
terms of such a non-locality, we must take a stand with respect to these arguments.
Either we must show that they are invalid, or we must show that the suggested
connection does not have the problematic properties.

It is clear that argument 1 is not conclusive: There could be causal connections
which are simply not based on the transport of matter or energy. Even though the
typical causal connections with which we are familiar are not of this type, many
authors seem to admit this possibility. This argument, however, hardly plays a role in
the debate, probably also because according to the theoretical descriptions which we
have in the quantum theory and in the de Broglie–Bohm theory, the relation between
the two wings of the measurements in an EPR/B experiment are not connected by
any transport of matter or energy.

4.4.3 Signals, Causality and Fine-Tuning

Argument 2 is considerably more influential in the debate. It forbids non-local con-
nections with which one could send signals. The belief that the theory of relativity
forbids superluminal signals is common sense, but not all authors make it clear just
why this should be so. The most strict reason, as emphasized by Arntzenius (1994),
is that superluminal signals in a relativistic spacetime would permit us to construct
self-contradictory signal loops—thus, such signals cannot be allowed. This can be
seen as follows (Fig. 4.7): Two observers A and B (heavy grey bars) move apart,
and each observer has an apparatus with which superluminal signals can be emitted
in her rest frame (a or b, resp.), and also a detector with which such signals can be
received (α or β, resp.). With the rules “A sends a signal if he receives a signal from
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Fig. 4.7 Signal loops due to superluminal signals

B” and “B sends a signal if she receives no signal from A”, we find a contradiction:
Assuming that A received a signal from B, then A also sends a signal to B, and then
B does not send a signal to A—contradicting our assumptions.

In order to avoid contradictions and paradoxes, superluminal signals must there-
fore be forbidden in relativistic spacetime. Since, according to certain theories
of causality, causal connections imply the possibility of exchanging signals (e. g.
Salmon’s theory of mark transmission 1984), or can even be identified with that
possibility, it can be argued that non-local connections in EPR/B experiments cannot
be causal. By the way, superluminal signals (i. e. signals which propagate faster than
light) are forbidden not only by the theory of relativity; it is also an empirical fact that
in EPR/B experiments, no signals can be sent at speeds greater than that of light.21

But if it is not a causal connection, then what is it? The characterizations of many
authors with respect to this question have to be understood as tentative attempts at
expressing something unusual, which is unknown to our daily experience. Somehow,
the connection is supposed to explain the observed correlations (that is, it should have
the explanatory virtues of a causal relation), but without being usable for transmitting
signals, and it should preferably also be symmetric. Shimony, for example, writes that
the connection between the wings of the EPR/B experiment, with which one cannot
send signals, is not to be considered to be an “action at-a-distance”, but rather to be a
“passion at-a-distance” (Shimony 1984, p. 224). Therefore, this type of non-locality
in EPR/B experiments can “peacefully coexist” with the theory of relativity. Other
authors support similar hypotheses, e. g. Jarrett (1984), or Redhead (1983, 1987).

21In order to be able to send superluminal signals, there would have to be a correlation between
a controllable variable in the one wing and a detectable variable in the other. This, however, is
not the case: On the one hand, the measurement outcomes are correlated, but neither of them is
controllable (each outcome varies statistically from one measurement cycle to the next). On the
other hand, the measurement settings can indeed be controlled, but there is no correlation between
the choice of a measurement setting in one wing and any variable in the other. In particular, the
choice is (marginally) independent of the distantmeasurement outcome. (Given a localmeasurement
outcome, there is to be sure a correlation between the choice of setting and the distant outcome, but
the local outcome cannot be controlled, so that one cannot make use of this conditional dependence
to send signals.)
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To be sure, it remains to a certain extent enigmatic just how such a special connec-
tion could explain the phenomena observed in EPR/B experiments. For one thing,
one would require clear, generally valid principles for a convincing explanation; they
should state under what circumstances such a connection implies which statistical
facts, quite analogously to what the causalMarkov condition accomplishes for causal
connections. Since this connection would appear to be unique to entangled states, it
is difficult to arrive at general principles which would not be immediately labelled
as ad hoc.

Furthermore, also for a non-causal connection (just as for a causal one) the central
problem remains that itwould, on the onehand, have to be able to produce correlations
in order to explain the strong observedEPR/B correlations (between themeasurement
outcomes), but on the other hand, it shouldnotproduce correlations (between a setting
and its distant outcome), in order to prevent the superluminal transmission of signals.
This dilemma thus occurs not only for causal connections but also for every type of
connection which claims to be able to explain the statistical facts. Appealing to
non-causal connections by no means eliminates this fundamental problem.

Since the statistical independencies that guarantee the impossibility of sending
superluminal signals are an empirical fact, the latter problem persists even if one
ignores the spatiotemporal limitations which follow from the theory of relativity.
Independently of spatiotemporal relations, we are dealing here in the first instance
with the question as to whether or not one can specify a structure from causal (or
non-causal) connections which, together with non-arbitrary principles, explains the
rather awkward observed statistics. This fundamental problem was only recently
formulated (Näger 2016; see also Wood and Spekkens 2015) and is referred to as
“the causal problem of entanglement” (in contrast to the classical spatiotemporal
problem of entanglement, which concerns the question of how to understand the
non-locality in accord with the theory of relativity).

The causal problem of entanglement can be very clearly stated by making use of
the theory of causal graphs. This theory is based on three axioms: (i) Causal graphs are
directed and acyclic (axiom of representation); (ii) causally unconnected variables22

are statistically independent (causal Markov condition); and (iii) causally connected
variables are statistically dependent (causal faithfulness condition). If these three
axioms hold, one can show that a contradiction results for the statistics of EPR/B
experiments: Either the strong EPR/B correlations cannot be explained, or else the
statistical independencies which make superluminal signals impossible cannot be
explained. At least one of the three assumptions thus cannot be correct. (We recall: A
similar problem is found also for non-causal connections when one tries to formulate
clear principles for the question under which circumstances such connections imply
correlations or independencies).

22Two variables A and B in a causal diagram are connected if and only if A is the cause of B, or B
is the cause of A, or if both have a common cause. In particular, A and B are not causally connected
if they have only a common effect.
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In this trilemma, it seems most plausible to abandon the causal faithfulness con-
dition (Näger 2016), for possible violations of this condition are well known.23 For
example, there is the case that two causal paths exist from the cause to the effect,
which, however, just mutually compensate each other (similarly to how the forces
in a tug-of-war can exactly compensate each other). This requires a precise balance
between the two paths, a fine-tuning of the so-called “causal parameters”.24

In such cases, there are causal connections, but no statistical dependencies between
cause and effect. Thus, manipulations of the cause do not modify the effect, so that
one can send no signals, although a causal connection is present. Such violations of
the faithfulness condition have precisely the properties which are required in order to
explain the statistics of EPR/B experiments. Indeed, one can show that the quantum-
mechanical formalism also contains a violation of the faithfulness condition.25

From this viewpoint, one need not introduce any new, mysterious non-causal
relations in order to explain the EPR/B phenomena. The clear concepts and principles
of an established causal theory are sufficient, if a certainfine-tuningof the causal paths
occurs. The appeal to a fine-tuning makes this explanation of the EPR/B phenomena
special, but not incomprehensible, even though an explanation of the fine-tuning itself
is still not at hand. In summary, one can say that since causality does not necessarily
imply the possibility of signal transmission, conflict point 2 does not prevent us from
presuming that a causal connection exists between the two wings of the experiment.

4.4.4 Outcome Dependence Versus Parameter Dependence

The debate over a possible signal transmission and the question of the essential char-
acter of the non-local relations is in most cases combined with a related discussion
in which one attempts to find out precisely which of the variables are non-locally
connected with one another. This debate is based on the probabilistic core of Bell’s
argument, for which J. Jarrett (1984) introduced a both famous and misleading anal-
ysis. Jarrett reasons from Bell’s theorem that on the probabilistic level, the local
factorizability condition must be violated; and he shows that its violation is math-

23Violations of the causal Markov condition have also been claimed (see e. g. van Fraassen 1982;
Cartwright 1988), but they are controversial (see e. g. Hausman andWoodward 1999). One can also
show that they would not be sufficient to explain the strong EPR/B correlations (Näger 2013; see
Sect. 4.5.1 below).
24In a typical causal system, every arrow in a causal diagram is associated with a causal parameter.
It describes, roughly speaking, how strongly the causal variable influences the effect variable.
25Normally, such fine-tunings are unstable with respect to external perturbations, because a per-
turbation as a rule affects only one of the two paths and thus destroys the balance between them.
Then, cause and effect become dependent and one could send signals. The quantum-mechanical
formalism, however, demonstrates how it is possible that such a fine-tuning can be stable with
respect to external perturbations: In quantum-mechanical non-faithfulness, the paths are so closely
interwoven that external perturbations always act on both paths, and the laws for these perturbations
guarantee that both paths are always perturbed in such a way that they remain in balance (Näger
2016).
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ematically equivalent to the disjunction of the assumption of a correlation between
the two measurement outcomes (“outcome dependence”) and the assumption of a
correlation between the measurement setting (“parameter”) on the one side and the
measurement outcome on the other (“parameter dependence”). These two corre-
lations are then stylized as the two grand alternatives: “Outcome dependence or
parameter dependence?” would then appear to be the decisive question, and a long
debate has resulted, which has continued up to the present, discussing which of these
dependencies is in fact relevant.

The definitions of outcome dependence and parameter dependence
Jarrett (1984) shows that the local factorization condition, which is a com-
plex statistical-independence condition, is equivalent to the conjunction of the
following pairwise statistical independencies:

Outcome independence:

P(α|βabψλ) = P(α|abψλ)

Parameter independence:

P(α|abψλ) = P(α|aψλ) and

P(β|abψλ) = P(β|bψλ)

(The names of the mathematical conditions are due to Shimony (1984). Jar-
rett’s original terms were “completeness” and “locality”; they were criticized
early on and were never generally accepted). Since Bell’s argument hinges
on the violation of the local factorization condition, the negation of at least
one of these independencies must hold (i. e. at least one set of values must
exist for which at least one of the three equations is invalid). These are called
correspondingly “outcome dependence” or “parameter dependence”.

Almost unanimously, many authors plead in favour of outcome dependence and
against parameter dependence; there are two principal arguments for this view. First,
a violation of parameter independence would cause a conflict with the theory of
relativity because parameter dependence would make possible in principle a signal
transmission at superluminal velocity. Outcome dependence, in contrast, should be
compatible with the theory of relativity, since it does not allow signal transmission
at superluminal velocity. Second, the standard interpretation of quantum mechanics
speaks for a violation of outcome independence, since it asserts that the photons can
occupy a pure state only together, and only through the measurement does this state
collapse (Butterfield 1989).

In this treatment, we can not penetrate more deeply into this very technical debate,
but we should keep in mind the following points: First of all, it is not true that with
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parameter dependence, one could in every case send signals. The correlation depends
on the hidden variableλ, and if one cannot control it, as for example in the deBroglie–
Bohm theory, then one cannot send signals with parameter dependence, not even in
principle (Maudlin 2011, 88).

Secondly, Jones and Clifton (1993) argue that it is wrong to choose outcome
dependence over parameter dependence on the basis of the criterion of possible signal
transmission. If one leaves aside the difficulties with control of the hidden variable
λ and takes the standpoint that parameter dependence would allow the transmission
of signals, then outcome dependence would also allow signal transmission, if in
addition one of the measurement outcomes depends on its local measurement setting
(which is the case for partially entangled states26). Then, the measurement outcome,
by itself uncontrollable, can be influenced by the choice of the local measurement
setting (that is, its probability can be varied), and thus one could also send signals
with outcome dependence. In other words: If one can send signals with the structure
shown in Fig. 4.6b, then just as well with the one shown in Fig. 4.6a (cf. also Glymour
2006). In the latter case, the signal does not propagate directly from b toα, but instead
indirectly via β.

Maudlin (2011, Chap. 6) and Näger (forthcoming a) criticize the still more funda-
mental point that the options uponwhich the debate is based, i. e. outcomedependence
or parameter dependence, are misleading, since one cannot avoid a certain depen-
dence on the distant measurement setting in any case. A dependence between the
measurement outcomes alone is tooweak to explain the violation of a Bell inequality.
At least one of the measurement outcomes must depend also on the distant measure-
ment setting. In particular, theories whose only non-local dependence is outcome
dependence are excluded by this argument. With the causal Markov condition as
bridging principle, these results can be transferred to the causal level (Näger 2013):
Direct causal structures (as in Fig. 4.6a), which assume an influence from one mea-
surement outcome to the other as the only connection between the wings of the
experiment, are excluded. What was considered for many years to be the standard
solution to the problem, a statistical dependence and the assumption of a quasi-causal
connection between the measurement outcomes, has proven to be untenable. In order
to violate a Bell inequality, at least one of the measurement outcomes must be an
effect of both of the chosen measurement settings, i. e. at least one of the measure-
ment settings must have an effect on the distant measurement outcome. This can
happen either directly (as in Fig. 4.6b), or indirectly via the hidden variable λ (as in
Fig. 4.6c), but not indirectly via the local measurement outcome (as in Fig. 4.6a).

Finally, from what we have said above, we can see that since quantum mechanics
violates Bell inequalities, it cannot have the structure shown in Fig. 4.6a, as is often
claimed. Indeed, an analysis of the quantum-mechanical formalism shows that it has
a variant of the indirect structure as in Fig. 4.6c (for the exact structure, see Fig. 4.8c).

26While for experimentswith the perfectly entangledBell states (see the box in Sect. 4.3.1), themea-
surement outcomes are independent of each local measurement setting, this apparent independence,
which results from symmetry, vanishes for partially entangled states.
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4.4.5 Causal Non-locality Versus Non-separability

Up to now, we have argued that the violation of the Bell inequality requires non-
locality in the general sense; i. e. there must be at least one causal process connect-
ing the spacelike-separated wings of the experiment. We have represented causal
processes in the diagrams by arrows, and in particular, non-local processes were
indicated by arrows between variables which describe spacelike-separated states.
We now wish to take a more detailed look at what these arrows represent and at what
varieties there are in our understanding of non-locality.

Causal graphs are a simplified representation of actual processes. Every arrow
stands for a causal process, but the graph tells us nothing more. In fact, a causal
process from A to B is in general a series of states which are causally related to one
another (A → C1 → C2 → · · · → Cn → B); and the graph represents the interme-
diate states Ci only implicitly through the arrow between A and B. For example,
in a chain of 100 dominos, the toppling of the first domino (A) is the cause of the
toppling of the last domino (B), and could be indicated in the diagram by A → B.
But of course the causal process between A and B could be more exactly described
by the toppling of all the dominos in between. Leaving out the intermediate states
in causal processes is permitted, because the conclusions which one can draw from
the graphs regarding the statistics remain correct even when the intermediate steps
are left out,27 and this is important, because the complexity of real processes often
makes it difficult to know the processes in detail or to represent them in complete
form.

In the case of the non-local arrows in causal graphs, it is worth taking a closer
look at how the underlying causal processes could be implemented. To this end, we
have to take a step back and introduce some new concepts. We pointed out above
that a local worldview requires that all causal processes take place more slowly—or
just as fast—as the propagation of light (the principle of global Einstein locality).
This principle is fundamental for a local worldview, as expressed in the theory of
relativity and the relativistic field theories. Einstein (1948) shows that this principle is
fulfilled if and only if the two conditions—which we will soon explain—of (causal)
locality and separability are valid. The idea here is that both components of causal
processes—states and the causal relations which connect them—must be local; only
if this is the case is global Einstein locality fulfilled. Let us look more closely at this
assertion. The following is meant by the condition of (causal) locality:

Causal Einstein locality: There are no fundamental causal relations between
spacelike-separated events.

The difference with respect to the global Einstein locality, which we defined earlier,
is not easy to recognize. It is signalled by the word “fundamental”: A and B are
connected by a fundamental causal relation if there is no chain of other states which

27One must not, however, leave out any state which is a common cause (“causal sufficiency”).
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transmit the causal influence fromA to B, i. e. if A acts immediately on B.28 The prin-
ciple of causal Einstein locality thus guarantees that the basic dynamics of physical
systems is local—while global Einstein locality guarantees that physical processes
are local as a whole. This terminology is somewhat unfortunate, in that the concept
of “locality” stands both for the limitation of fundamental causal relations and also
for the limitation of causal processes as a whole. Therefore, we qualify these differ-
ent statements about locality throughout this text by adding the adjectives “causal”
or “global”. We note for the reader that this is not done in all texts relating to the
debate: “locality” or “Einstein locality” can stand sometimes for the one condition,
but sometimes for the other.

Einstein makes it clear that causal Einstein locality is not sufficient in order that
a world could be considered to be local. One must also require that the states be
localized in the following sense (cf. Howard 1989):

(Spatiotemporal) separability: For every pair of non-overlapping spacetime
regions A and B, it holds that:

1. Each of the regions has its own separate state,
and

2. the joint state, i. e. the state of the overall regionA∪B, is determined by the state
of A and the state of B, and the spatiotemporal relations between the regions.

Since this is supposed to hold for every pair of spacetime regions, this principle
in the end means that each point in spacetime has its own state, with its intrin-
sic properties (in contrast to relational properties), and that the states of extended
spacetime regions are determined by the states of their point-like constituents and
the spatiotemporal relations between them. One can also say that the state of an
extended spacetime region “supervenes” on those of the points and their relations
(which means approximately that the latter states determine the former, but not vice
versa).29 This principle is realized in classical field theory, according to which, for
example, the electric and the magnetic fields have well-defined values at every point
in space, and the electromagnetic field is determined by the values at all the individual
points. Einstein attributes a deep methodological significance to this principle:

Without the assumption of such an independence of the existence (of the “being-thus”) of
entities spatially distant from each other, which initially originates in everyday life, physical
thinking in the usual sense would not be possible. One cannot see how physical laws could
be formulated and tested without such a clear-cut separation. (Einstein 1948, p. 321, transl.
by the authors)

28“Fundamental” is not supposed to mean here that the causal relation could not be analysed in
terms of non-causal concepts.
29The rather technical concept of supervenience originated in the philosophy of mind and in meta-
ethics. Cleland (1984) introduced a variant of the original concept into the debate over space and
time, and it is this variant which is used in the debate on entangled quantum systems (cf. for example,
French 1989, or Esfeld 2004). The definition is: A dyadic relation R supervenes over a determinable,
non-relational property P if and only if (i) each of the relata of R instantiates the property P in a
determined manner, and (ii) the instantiations of the property P determine the relation R. A simple
example: The more-massive-than relation supervenes over the masses of physical objects.
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From the philosophical viewpoint, also, this principle is an attractive requirement,
since its validity would imply that one can ontologically reduce all the physical states
of extended regions to the intrinsic properties of their spacetime points. This would
conform to the principle of ontological parsimony, which is generally considered to
be an attractive characteristic. David Lewis introduced a similar principle under the
label of “Humean supervenience” into the philosophical literature:30

Humean supervenience is named in honour of the great denier of necessary connections.
It is the doctrine that all there is to the world is a vast mosaic of local matter of particular
facts, just one little thing and then another. […] We have geometry: a system of external
relations of spatiotemporal distance between points.Maybe points of spacetime itself, maybe
point-sized bits of matter or aether or fields, maybe both. And at those points we have local
qualities: perfect natural intrinsic properties which need nothing bigger than a point at which
to be instantiated. For short: we have an arrangement of qualities. And that is all. There is
no difference without difference in the arrangement of qualities. All else supervenes on that.

(Lewis 1986, pp. ix–x)

So much for the meaning of the separability principle.
If one has been convinced by Bell’s argument that there must be non-locality at a

fundamental level, it is then an interesting and important question as to whether or
not this non-locality comes about through a fundamental non-local causal relation
(violation of the principle of causal locality), or else through a non-local state (vio-
lation of the principle of separability). The former corresponds to what we have thus
far tacitly presumed, that the states, i. e. the variables in the causal diagrams, are in
fact localized; they thus occupy well-defined, limited spacetime regions. (Insofar as
they are macroscopic variables which extend over a finite region of spacetime, one
must presume that they supervene on the states of their sub-regions). In such a case,
separability would be valid, and it would be some of the causal relations which would
have a non-local extension. For example, the boldface arrows in Fig. 4.6 might be
taken to represent causal relations as fundamental, non-local relations.

The second suggestion, in contrast, would lead to a case that we have so far
not discussed, namely that all of the causal relations are purely local, but some of
the variables in the causal structure are not localized. This would mean that there
are states which extend over a large region of spacetime, but are not describable
in terms of the states of their sub-regions. Such states are called “spatiotemporally
non-separable”.

The prototypes of non-local causal explanations which involve a non-separability
are illustrated in Fig. 4.8. In Fig. 4.8a and b, we have introduced an intermediate

30Although they are similar, these two principles do not completely overlap. Humean supervenience
is, on the one hand, stronger than the principle of non-separability, since it requires that everything
supervenes on the states of spacetime points, and thus not only the states of extended spacetime
regions, but also entities which must not necessarily be located in space and time, such as, for
example, mental states or numbers. Humean supervenience is, on the other hand, also weaker than
non-separability, since, in contrast to the latter, it does not require that the supervenience be local.
The question as to whether or not for example an event in region A causes another event in region B
is determined according to Lewis not by the state of the corresponding spacetime regions, but instead
by the total state of all spacetimes in all possible worlds.
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Fig. 4.8 Prototypes of non-separable causal structures

variable μ, which has a non-local extension. As we saw above, according to the
formal rules of causal graphs, it is always possible to insert an additional variable
into a causal path, since causal graphs do not need to list all the intermediate variables
along a causal path (and as a rule do not do so). Nevertheless, from the physical point
of view, the question remains as to which physical state is actually supposed to
be represented by μ. Furthermore, the structure in Fig. 4.8a, as we explained in
Sect. 4.4.4, is not possible because it is too weak to violate Bell inequalities. The
most plausible among these structures would thus seem to be the indirect structure
in Fig. 4.8c. The hidden common cause λ here no longer plays the role of a hidden
variable at the source, but instead that of a non-local state which develops from the
stateψ at the source (correspondingly, we have introduced someminor modifications
to the prototypical indirect structure in Fig. 4.6c:ψ no longer influences the outcomes
directly, but rather, mediated through λ, the two settings influence the outcomes only
indirectly via λ).

Should we now understand the non-locality of the quantum world mainly as
a result of non-local causal relations, or as a result of non-separability? In fact,
most authors who participate in the debate presume that we are dealing with non-
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separability, and many suggest that this can be derived from Bell’s theorem. It is,
however, difficult to justify this view in a convincing manner from the result of Bell’s
argument. Bell’s argument is, as we have shown, an argument about which variables
depend on which others; thus, finally, it is a causal argument. That there must be
a dependence between spacelike-separated variables tells us nothing about whether
this dependence comes about through a violation of locality or through a violation
of separability. In Bell’s argument itself, one can thus find no justification for either
viewpoint.

Some authors have attempted to argue that it must be a case of non-separability,
because it is an empirical fact that one cannot send signals via the connection. This,
however, is a misunderstanding, for the question of whether or not one can send sig-
nals depends (aswe have argued in Sect. 4.4.3) onwhether the (causal) parameters are
fine-tuned; that, however, has nothing to do with the present question of which type
the non-local relations along these paths are. For example, with the non-separable
causal structure in Fig. 4.8b, one could just as well send signals if there were no
fine-tuning of the causal parameters as with the corresponding non-local structure in
Fig. 4.6b. In particular, a considerationwhich often stands behind such arguments has
proven to be dubious, namely that an explanation of the EPR/B correlations which
involves a non-separability (and not on causal non-locality) would itself represent
a non-causal explanation. The question of whether a causal non-locality or a non-
separability occurs is relevant only to the spatiotemporal realization of the processes
considered; whether such a process is causal in general is completely independent
of this question. It is in fact the case that a non-separable state which is part of an
otherwise causal process as a variable changes nothing in the overall causal nature
of the process (it would, to be sure, be a causal process with unusual spatiotemporal
properties).

On an abstract level, it appears that in the end, only one argument that favours
non-separability remains, namely the conflict with the theory of relativity mentioned
above under Point 3. It warns that a non-local causal connection would propagate
forward in time in some reference frames, but backwards in others. This conflict
with the asymmetry of causality seems to suggest that the non-local relation should
be symmetric, and thus not causal. Non-separability, in contrast, can be a perfectly
symmetric relation and thus avoids this point of conflict.

This plausible but not completely convincing argument obtains support from a
different train of thought, which calls on the quantum theory. Here, we leave the level
of Bell’s theory-independent, abstract proof and refer explicitly to a specific theory.
Indeed, it seems to be true that some of the authors who have maintained that they
can derive non-separability from Bell’s argument have had the quantum theory in
mind all along and have let themselves be guided by it in their deliberations about
the abstract topics of Bell’s argument.

According to the quantum theory, the entangled quantum state in Eq. (4.8) extends
between the two wings of the experiment (and on out to infinity). This can be seen
from the fact that a measurement on either of the two wings can change the state (it
then collapses to one of the terms in the superposition); i. e. the quantum state as a
whole can be locally influenced from any point within its extension. If we denote



4.4 Non-locality 157

the spacetime region around the left-hand wing as “A”, and the region around the
right-hand wing as “B”, then the quantum theory clearly violates the first condition
of the principle of separability: It is not the case that A and B have their own separate
states, because there is a state, namely that of the entangled pair of photons, which
extends over both regions. (Aviolation of the first condition, incidentally, also implies
a violation of the second condition for logical reasons: If the regions do not have
separated, independent states, one cannot say that their overall state supervenes over
the separate states.) Stated briefly:Non-local states violate separability; thus, the non-
local quantum state represents a non-separability. One can show that the quantum-
mechanical formalism has a causal structure like that shown in Fig. 4.8c. All the
causal relations are local, and it is the non-local quantum state which mediates the
action from one wing to the other.

It has sometimes been claimed that an explanation of the EPR/B correlations
that makes use of such a non-separability would mean dispensing with a causal
explanation. Our considerations, however, show that this is not the case: The non-
separable variable is embedded within a causal structure in a clear manner, like
every other variable. That is, on the level of the abstract causal structure, there is
no difference to usual variables. Its special feature is due to its peculiar and unusual
spatiotemporal embedding—this, however, is not a causal property. In this respect,
non-separability does not represent a break with causal principles, but instead a
break with spatiotemporal assumptions, namely that variables or states must always
be localized.

If, then, quantum mechanics is the correct theory of our world, there is non-
separability. For this insight, we would not, however, have required Bell’s theorem in
particular—a solid interpretation of the quantum-mechanical formalism would have
been sufficient. If one wishes to base one’s discussion solely on Bell’s argument
and not to give preference to any particular theory, then in contrast one cannot say
reliably which type the resulting non-locality must be: A different theory of the
microscopic world from quantum theory might possibly implement the unavoidable
non-locality via non-local causal relations. This is, for example, the case in some
interpretations of the de Broglie–Bohm theory (namely if one does not ascribe reality
to the non-separable quantum potential).

4.4.6 Holism

The spatiotemporal non-separability of quantum theory is often mentioned together
with another of its characteristics, which is termed “holism”. Holism can likewise
be derived from the consequences of Bell’s argument only with considerable diffi-
culties. Instead, it is—like non-separability—based on an analysis of the quantum-
mechanical formalism. Roughly speaking, holism is the hypothesis that a whole is
more than the sum of its parts. Sometimes the concept of “holism” is used simply as
a synonym for “non-separability”. This is insofar reasonable, in that a non-separable
state does imply a type of spatiotemporal holism: A non-localized state extends over
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a whole spacetime region, so that the states of all the sub-regions depend upon the
state of the whole region.

More frequently, however, “holism” is used to denote a related but not identical
hypothesis which refers not to spacetime regions, but instead to physical systems.
Analogously to separability, one can define the opposite of holism as follows (cf.
Teller 1989):

Particularism: For each pair of different physical objects S and T, it holds that:

1. Each one has its own, separate state,
and

2. the state of the overall system is determined by the state of S and the state of T,
and their spatiotemporal relations.

This definition of “particularism” is quite analogous to the definition of “separa-
bility”, except that the things considered are not spacetime regions, but instead they
are physical systems. Therefore, instead of “particularism”, one could also speak of
“system separability” (in contrast to “spatiotemporal separability”). The two con-
cepts are differentiated in that the various systems need not be located in different
spacetime regions. Particularism leads to the view that the world consists of indi-
viduals with intrinsic properties, and all the relations between individuals (except
for the spatiotemporal relations) supervene on those intrinsic properties. Notably,
particularism also states that individuals do not depend on each other, and (insofar
as they are parts of a system) also not on the overall system of which they are a part.

Holism would then imply a violation of one of those conditions which define
particularism, and according to quantum theory, indeed both conditions are violated.
One can best see this by considering an entangled state, for example, the singlet state
(4.2), which we note here again:

|ψ−〉 = 1√
2

(
|↑z〉1|↓z〉2 − |↓z〉1|↑z〉2

)
. (4.29)

According to this state, neither of the objects has its own intrinsic spin state. Rather, it
is only the entangled state of the overall system that describes the expected behaviour
which would result from spin measurements.

One can interpret such entangled states ontologically in two ways. The first possi-
bility is to assume that the subsystems do not actually exist when the entangled state
is present. An entangled state would then be a whole without parts, which has the dis-
position to disintegrate into several subsystems when measured. These dispositions
are represented by the specific combination of state vectors for the subsystems. Then,
these combinations of state vectors may not be understood as describing properties
that the system actually realizes (“categorical properties”), but instead, it should be
seen as describing potential properties which are only realized when certain condi-
tions are fulfilled (e. g. a suitable measurement).

The standard view, in contrast, is that, secondly, this construction out of subsys-
tems is to be taken seriously in the ontological sense; that is, one presumes that the
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entangled system does in fact consist of parts. Since these parts or subsystems do
not have their own spin states, according to the description of the state in (4.29), this
implies the remarkable situation that the overall system has a well-defined state, but
the subsystems do not. The individual subsystems can be described only in terms
of the state of the overall system, and in this sense, there is an ontological depen-
dence of the parts on the whole. This is a clear-cut violation of the first condition for
particularism and represents the special feature of quantum holism according to the
standard interpretation (Esfeld 2004).

Furthermore, a violation of the first condition naturally also implies a violation
of the second condition for particularism: Where there are no independent states of
the individual systems, the state of the overall system cannot supervene on them.
Many authors consider the entangled state as a relation between the subsystems.
Teller (1986, 1989) writes in this sense of a “relational holism”, Esfeld (2004) of
a “metaphysics of relations”. Others consider the state, on the contrary, to be an
intrinsic property of the overall system (Healey 1991). Thus or so, it is clearly a non-
supervenient property. In the quantum world, systems have properties on a higher
level, which cannot be derived from their subsystems; i. e. a reduction of the overall
system to its parts at a given instant (“synchronic microreduction”) is in general not
possible (Hüttemann 2005).

Since entanglement is an omnipresent phenomenon in the quantum world, one
must presume that our world is holistically structured through and through on a
fundamental level. The older picture of the world, successful for a long time, which
held that it is constructed of very small particles that exist independently of each
other and only are connected by interactions, is thus very probably incorrect. In the
quantum world, the objects are woven into a whole which cannot be reduced to its
components. It is important to emphasize that the holism of the quantumworld is not
some sort of “everything-depends-on-everything-else” assertion, but—as shown—
it is conceptually readily comprehended and obeys clear mathematical rules. From
this new viewpoint, it remains a serious question as to why we have the impression
that the mesoscopic objects which we perceive in everyday life exist so relatively
independently of one another.

4.4.7 Non-locality and the Relativity Principle

Thus far, everything has fit together quite smoothly. We were able to show that
three of the four points of conflict with the theory of relativity could be avoided if
we assume that: (1.) Non-locality does not require any transport of matter or energy;
(2.) it also does not permit the transmission of signals at superluminal velocities,
since the causal parameters can be correspondingly fine-tuned; and (3.) non-locality
is realized in terms of a symmetric non-separability (instead of an asymmetric causal
relation). Furthermore, such a non-separability is suggested by quantum theory (in
a realistic interpretation such as GRW theory).
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Now, however, we must turn to the fourth point of conflict with the theory of
relativity, which deals with the fact that non-locality, on the one hand, has a tendency
to prefer a particular frame of reference, the one in which it is simultaneous; and
on the other, the principle of relativity requires that all reference frames must be
equivalent. For this conflict to arise, it is unimportant whether we are dealing with a
non-local causal relation or with non-separability; the conflict occurs for both types
of non-locality. This conflict remains the greatest challenge for supporters of non-
locality. Until today, there has been no generally accepted solution to it, and it is not
clear whether the conflict can ever be resolved in a convincing manner. We will see
that it goes so deep that it has been seriously suggested to abandon the principle of
relativity on the fundamental level.

Before we go into the details of this topic, we should mention two things. First,
there is already a conflict between non-locality and the special theory of relativity, so
that in the following, we can concentrate on that theory (and leave aside the general
theory of relativity).31 Second, the tension between non-locality and the (special)
relativity principle has its roots in an even deeper conflict: Non-locality violates
the fundamental symmetry of the special theory of relativity, that is the Lorentz
invariance of the laws of physics. Lorentz invariance is a stronger requirement than
the principle of relativity, and Lorentz invariance is also the essential requirement of
the (special) theory of relativity, its core. (For a theory is fully relativistic if and only
if the laws that it involves are Lorentz invariant.) Lorentz invariance, however, is a
very mathematical requirement, and we cannot delve into such technical questions
here. Fortunately, the central idea of the conflict can also be illustrated using the
weaker (and only necessary, not sufficient) condition of the principle of relativity.
Now and then, where necessary, we shall refer to the stronger requirement of Lorentz
invariance.

Let us now return to the conflict between non-locality and the principle of relativ-
ity. The fact that non-locality prefers a particular frame of reference can be exempli-
fied with the help of spacetime diagrams. For purposes of illustration, let us assume
that the quantum-mechanical description is correct and that its non-locality consists
in a spatiotemporally non-separable quantum state λ. In Fig. 4.9, we show three (of
infinitely many) possibilities of how such a non-separable state can be embedded
in spacetime. The state is non-locally extended, and one can say that it lies along a
spacelike hyperplane (“spacelike”, since the points along this plane are spacelike-
separated from each other, and “hyper-”, since it is a plane within four-dimensional
spacetime). For every non-local state λ, there is just one corresponding frame of ref-
erence whose simultaneity planes32 all lie parallel to it; i. e. in this frame of reference,

31While in the general theory of relativity, all frames of reference are considered to be equivalent,
this holds in the special theory of relativity only for inertial frames, i e. non-accelerated frames (the
principle of special relativity).
32A simultaneity plane of a frame of reference through a point P is the set of all spacetime points
which are simultaneous with P in this frame of reference. Simultaneity in the theory of relativity is,
in contrast to its role in classical theories, not an absolute, objective fact, but rather it depends upon
the frame of reference. Every inertial frame of reference can be uniquely determined by specifying
one of its simultaneity planes.
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Fig. 4.9 Various orientations of a non-local state
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all changes of the non-local state propagate instantaneously. It is this frame which is
distinguished by the corresponding state. Distinguishing such a frame of reference
now contradicts one of the two axioms of the theory of relativity, i. e. the principle
of relativity, which states that all frames of reference are equivalent. This principle
means that physical processes can be described from all frames of reference by the
same physical laws. Therefore, there can be no facts which nullify the equivalence
of all frames of reference— and non-local states would seem to be precisely such
facts.

A resolution of this central point of conflict betweenquantum theory and the theory
of relativity could now consist in specifying along which hyperplane the non-local
quantum states can lie without violating the relativity principle. T. Maudlin (2011)
discusses this topic in detail, and we give here a brief summary of his line of thinking.
If one were to say that all non-local states lie along a family of parallel hyperplanes,
then the corresponding frame of reference would be distinguished—this possibility
can thus be eliminated. A natural suggestion would be that the hyperplane could be
chosen at random. If every hyperplane would have exactly the same probability of
being chosen for every entangled system which was being formed, a ‘democracy of
reference frames’ would be guaranteed. Unfortunately, however, as Maudlin proves,
there is no Lorentz invariant possibility for attributing a measure of probability to
hyperplanes—so that this possibility must also be eliminated.

Finally, there remains only the possibility of determining the hyperplane on the
basis of the distribution of matter. The particular matter distribution in a certain
spacetime region is not governed by physical law, but is rather a contingent fact, and
since the relativity principle refers specifically to laws, it would not be threatened if
one were to make use of the matter distribution in order to choose a hyperplane. One
suggestion could then be to determine the hyperplane via the matter distribution of
the entire universe. For example, the centre of gravity of all the matter in the universe
could determine a hyperplane. The problem with this suggestion is that the centre of
gravity is the result of an averaging process over themass distribution at a given time.
In order to find the centre of gravity, one would thus require an objective concept of
simultaneity—but according to the theory of relativity, precisely such a simultaneity
does not exist. And for the same reason, choosing a frame of reference via any other
quantity averaged over the whole universe would also fail.

Among the various possibilities which Maudlin discusses, and which are all
rejected, we will pick out just one more, which at first glance appears quite nat-
ural: One could think that the hyperplane could be determined by the state of motion
of the source of the entangled system. It corresponds to the plane of simultaneity
in the rest system of the source. The problem with this suggestion is that there is
empirical evidence that even photons which are emitted by different sources can still
violate Bell inequalities. If these sources are moving relative to each other, it is then
completely unclear which of the corresponding hyperplanes should be chosen for
the entangled photon state. Maudlin concludes that there is no imaginable possibility
of choosing exactly one hyperplane for each entangled system without violating the
relativity principle.
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If we wish to maintain consistency with the theory of relativity, according to
Maudlin there are finally only two possibilities, which both demand a heavy price,
however: hyperplane dependence or aGRW theorywith a flash ontology. Hyperplane
dependence is a suggestion which originated with G. Fleming (1986, 1989 jointly
with Bennett), in his attempt to obtain a fully Lorentz invariant quantum theory.
The background was the observation that quantum field theory (cf. Chap. 6), which
is often presented as the relativistic generalization of quantum mechanics, is not a
Lorentz invariant theory of all microscopic events. The Lorentz invariance of quan-
tumfield theory is limited to processes betweenmeasurements, but the collapse of the
wavefunction due to measurements, and with it the non-locality of the microscopic
world, remains excluded. Fleming wanted to find a Lorentz invariant theory which
included the measurement process. From our considerations above, it is clear that
it will be difficult to find a criterion for choosing the one hyperplane along which a
given quantum state lies. Fleming therefore takes a different path. His answer to the
question of along which hyperplane an entangled quantum state lies is: along all of
them! A quantum state becomes an object which is defined only relative to hyper-
planes (thus “hyperplane dependent”). A given entangled quantum system then has
a certain quantum state relative to each hyperplane. Depending on the hyperplane
along which one considers the system, it exhibits a different quantum state at every
given spacetime point.

While Fleming’s theory represents a technically clean solution to the problem
(the theory is fully Lorentz invariant and yields correct predictions), it is clear that
this theory is highly counter-intuitive. From the philosophical perspective, one has
to say that the number of entities has grown boundlessly (infinitely many quantum
states for each quantum system). We are not exactly dealing with an ontologically
parsimonious position. To be fair, however, one must also say that the explosion of
entities does not occur without reason: We are searching for the resolution of a very
deep conflict. Is the price paid by this theory too high?Manywould indeed say “yes”.

In the past few years, the theory of hyperplane dependence is no longer without
alternatives. There is now another theory which describes all quantum processes in
a fully Lorentz invariant manner, and in particular therefore does not distinguish a
special frame of reference: the GRW theory with a flash ontology (for short: GRWf;
Tumulka 2006a, b). We introduced this theory in Sect. 2.4 and already noted there
that it has two decisive disadvantages: Firstly, at present it has been formulated
only for non-interacting particles, and it is not certain whether there will ever be an
extended version with interactions. Therefore, in contrast to the theory of hyperplane
dependence, we can so far speak only of the first step towards a Lorentz invariant
theory. Secondly, this theory buys its Lorentz invariance at a high ontological price:
The suggested ontology consists in the evolution of the quantum state within the
many-dimensional configuration space, and only now and then, when a collapse
occurs according to the stochastic GRW dynamics, do events manifest themselves
as so-called flashes in our normal four-dimensional spacetime. Between the flashes,
there exists in spacetime—nothing! Normal things like tables and rabbits are then not
spatiotemporally continuous objects, but in reality only a galaxy of flashes, which,
however, occur so rapidly in sequence that we believe we are seeing continuous
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objects. The time resolution of our perceptions is simply too poor. If one is willing
to pay this ontological price, then one is on a track that might not be completely
hopeless. Many authors, however, consider this price also to be too high.

If one is not willing to condone the counter-intuitive ontologies which follow
from hyperplane dependence or the GRW-flash theory, then from today’s viewpoint,
there remains only the possibility which is described byMaudlin as perhaps even the
most plausible way out, namely to assume that there is in fact a preferred frame of
reference in the structure of spacetime. This would mean assuming that in addition
to the relativistic structure of spacetime, there is also the structure of a preferred
foliation, which determines planes of simultaneity globally. It would, however, not
require that we explain relativistic effects in terms of a Lorentzian ether wind or some
such exotic mechanism. The relativistic effects could be explained in the usual way;
it would merely be the case that spacetime would contain an additional structure,
which would allow quantum systems to generate the empirical results of EPR/B
experiments without resorting to an extravagant ontology. The disadvantage of this
suggestion is that the elegant relativistic symmetry and structures would be broken
by this additional structure. Furthermore, the assumption of an additional structure
is rather strong, and it would also have the character of an ad hoc assumption, if it
were found not to contribute to the solutions of some other problems.

In the end, we can only emphasize that all three suggestions— hyperplane depen-
dence, GRW-flashes, and a preferred frame of reference—all are bought at a high
cost. Given that it is not obvious which should be considered the most plausible
solution, it is indeed acceptable to argue in favour of each of these three positions.
But it is not particularly surprising that no one of the three solutions has as yet been
generally accepted. Only one thing is certain: The discussion of the compatibility
between the theory of relativity and quantum-non-locality will continue.

4.5 Alternative Solutions

Since none of the possible solutions to the compatibility of the theory of relativity
with non-locality has been generally accepted, some authors have taken a quite
different route: They argue that instead of the locality assumption, one of the other
assumptions which are required to derive Bell’s theorem, and which we called the
“background assumptions”, is violated. Here, almost every conceivable position has
been adopted, which makes the debate complex and confusing. In the following,
we will briefly sketch for each background assumption what abandoning it would
imply, whether abandoning it can explain the violation of Bell’s inequalities, and if
it is plausible to abandon it.
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4.5.1 The Causal Markov Condition

The causalMarkov condition played a central role in the derivation of Bell’s theorem.
On the one hand, it was the bridge principle which allowed us to infer statistical
facts from causal structures; on the other, it was the methodological principle which
demanded that all correlations must have a causal explanation.

Could the Markov condition be violated? There has been a notable discussion
about the validity of Reichenbach’s principle of the common cause, in which possi-
ble counter-examples have been suggested and discussed. Since this principle, as we
have already noted above, represents a special case of the causal Markov condition,
it is clear that counter-examples opposing Reichenbach’s principle would also be
arguments against the Markov condition. We cannot discuss all the alleged counter-
examples against Reichenbach’s principle here (for a more detailed discussion, see
e. g. Arntzenius 2010), but the decisive point is that one type of the counter-examples
has good prospects of success (which, however, is also controversial; see Hausman
and Woodward 1999). The examples in question are common causes in indetermin-
istic worlds which do not screen off their effects (van Fraassen 1982; Cartwright
1988), i. e. conditionalizing on the common cause does not make its effects statisti-
cally independent.

The example given by Cartwright is a molecule which breaks apart into two
equal-sized fragments (smaller molecules or atoms), which move off in opposite
directions owing to the conservation of linear momentum. In such a case, the state
of the molecule before its indeterministic decay does not screen off the motion of its
fragments afterwards, although it is the commoncauseof theirmotion (and, according
to the Markov condition, common causes must screen off their effects statistically).
If there are no hidden variables, then the entangled quantum-mechanical state (4.8)
of the photons at the source is also a common cause which does not screen off its
effects (“interactive common cause” as opposed to a usual “conjunctive common
cause”, see the grey box). In other words, if quantum mechanics is complete, then
Reichenbach’s principle and the Markov condition are violated. In Fig. 4.10, we
have illustrated the local structure which the quantum state obtains as an interactive
common cause (symbolized by the arc between the two emerging arrows). But could
such a structure with a quantum state that does not screen off explain the EPR/B
correlations?

The answer is no. Interactive common causes alone cannot violate Bell inequali-
ties. One can show that the correlations which are produced by an interactive com-
mon cause have only a similar strength to those of two usual common causes which
together screen off their effects (Näger 2013). Since in the latter situation, however,
Bell inequalities are implied, a violation of the causal Markov condition by an inter-
active common cause is not sufficient to explain the observed EPR/B correlations.

Quantum mechanics, for example, violates the causal Markov condition in the
sense mentioned, and it furthermore violates the locality assumption. We have seen
that the structure of quantum mechanics is that shown in Fig. 4.8c (and thus not
that given in Fig. 4.10). According to quantum mechanics, the non-local quantum
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Fig. 4.10 Local structure
with an interactive common
cause

ba

state λ before the collapse does not screen off the correlations, and, to be correct, this
should also be noted in the diagram (e. g. by an arc analogous to the one in Fig. 4.10).
However, the decisive reason why the quantum-mechanical structure can violate a
Bell inequality is the fact that the common cause λ is influenced by the measurement
settings, so that there is a causal path from at least one of the settings to the distant
outcome. Since such a path is not present in the structure shown in Fig. 4.10, the fact
that the common cause does not screen off its effects is not sufficient to guarantee a
violation of Bell inequalities.

We should emphasize that such a violation of the causal Markov condition must
not necessarily imply a break with the implicit methodological principle that all
correlations must have a cause. Instead, one can formulate a generalized causal
Markov condition which takes into account such interactive common causes and
maintains the methodological principle (Näger 2014). Insofar, the violation of the
causal Markov condition discussed here is only a kind of weak violation. It does not
contradict the basic idea of the principle.

Common causes and statistics

Screening off: A variable Z screens off two variables X and Y statisti-
cally from each other if the latter are only marginally statistically dependent
(P(X1|Y1) �= P(X1) for at least one pair of values X1,Y1), but are independent
given Z (P(X |Y Z) = P(X |Z), i.e. for all values of the variables).

Conjunctive common cause: A common cause Z of X and Y , X ← Z → Y ,
is conjunctive, when the statistical pattern of screening off holds. This is the
typical case of common causes, for which the Markov condition holds.
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Interactive common cause: A common cause Z of X and Y is interactive,
when it does not screen off its effects. Such cases violate the causal Markov
condition.

Decaying molecule: Let S be the state of the molecule before its decay, and
assume that the molecule decays with equal probability

P(p,−p|S) = 1

2
= P(p′,−p′|S) (4.30)

along one of two directions, where p,−p or p′,−p′ are the states (here:
momenta) of the fragments after the decay. That is, the states of the fragments
after the decay are perfectly anti-correlated, but the state of the molecule S
does not screen off the correlation:

P(p,−p|S) = 1

2
�= P(p|S) · P(−p|S) = 1

2
· 1
2

= 1

4
. (4.31)

Hence, S is an interactive common cause.

Entangled quantum state: Very similar to the decaying molecule, entan-
gled quantum states are interactive common causes of their measurement out-
comes. For instance, when measured along the same direction z, the entangled
state |φ+〉 from Eq. (4.8) decays with the probability 1

2 either into the state
|+z〉1|+z〉2 or into the state |−z〉1|−z〉2. Mutatis mutandis, Eq. (4.31) holds
(replace p by |+z〉1, −p by |+z〉2, p′ by |−z〉1, −p′ by |−z〉2, and S by |φ+〉).

We could, however, imagine stronger violations which would lead us to accept the
EPR/B correlations as causally unexplained correlations. While Butterfield (1989)
holds this to be a mysterious but unavoidable fact, Fine (1989) argues that our ideal
of an explanation, that is to explain all the correlations, is obsolete. One can also
accept causally unexplained basal correlations, and theEPR/B correlations are a good
candidate for such a case. Given that it is the central methodological assumption of
all empirical sciences that correlations require explanation, accepting unexplained
correlations would be a rather radical consequence. (In the game of the persons, this
would mean that there are correlations which are stronger than one could get by
prior agreement on a strategy, but nevertheless one would assume that this fact does
not require explanation.) Thus, such a conclusion should probably be seen as a last
resort, to be adopted only when all the other suggested solutions have proved to be
untenable.
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4.5.2 The Intervention Assumption

In the causal structures which we have thus far examined, the choice of measurement
settings and of the quantum state exhibited only outgoing arrows, never incoming
arrows; i. e. they were only causes, but never effects of the other variables. Such vari-
ables are called “exogenous”. The justification for the exogeneity of these variables is
that their values were determined through external interventions by the experimenter
independently of each other and of other variables. “Intervention” is a technical term
here and means that we are dealing with a variable which is (i) the direct cause of
precisely one variable (and of no others); which (ii) determines the value of that vari-
able; and which (iii) itself is not an effect of any of the variables considered (Spirtes
et al. 1993, Sect. 3.7.2; Pearl 2000, Sect. 3.2).

If the actions of the experimenter who prepares the quantum state and chooses the
measurement settings are interventions, then this means that due to (ii), the settings
and the quantum state cannot be direct effects of any other variable. For if the exper-
imenter, for example, determined the setting, then that setting cannot be influenced
directly by any other of the variables of the experiment; determination prevents a
direct influence through other factors. The variables which are controlled by the
experimenter could then at most be indirectly influenced by other variables, namely
if a variable of the experiment influences the intervention of the experimenter—but
that is excluded by (iii). Therefore, the controlled variables must be exogenous if the
actions of the experimenter are indeed interventions.

But are the actions of the experimenter in fact interventions? The following prin-
ciple formulates the usual view:

Intervention assumption: The experimenter (or a machine which is set up and
programmed by the experimenter) can control the settings of a macroscopic appa-
ratus by means of an intervention.

This assumption is a part of the everyday scientific methodology of controlled ex-
periments. If an experimenter carries out a measurement and in the process controls
certain variables of the involved measurement apparatuses whose values he chooses
independently, then he naturally assumes that these variables are exogenous. There
is no particular reason to assume that this principle should not hold for quantum-
mechanical experiments: The measurement devices in such experiments are quite
normal macroscopic setups, whose settings are controlled by the experimenter.33

Nevertheless, the possibility that this principle is violated in EPR/B experiments
has been seriously raised. The reason is that abandoning this principle seems to
be the only possibility of providing a causal explanation that is straightforwardly
compatible with a relativistic space-time: It would appear to be the only possibility

33Note that also the preparation of the quantum state is controlled by an experimental apparatus,
which, if it is correctly constructed, can be started by a corresponding macroscopic mechanism
(e. g. a pushbutton, a laser beam, an electrical pulse)—and thus falls within the area of validity of
the intervention assumption.
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Fig. 4.11 Hidden common
cause of the measurement
settings (violation of the
intervention assumption)

ba

of giving a local causal explanation of the correlations which acts forward in time.
On a probabilistic level, such models violate measurement independence.

The basic model is the one shown in Fig. 4.11 (cf. e. g. Suppes and Zanotti 1981).
Here, there is an additional hidden variable μwhich is a common cause of the hidden
variable of the quantum state λ and of the measurement settings; indirectly, namely
via λ, μ is also a common cause of the measurement outcomes. (In the game of
the persons this would mean that, e. g. the scientist conducting the experiment both
assigns a strategy to the test persons and predetermines the questions of the enquirers.
It is clear that by suitably adjusting questions and strategy, one can generate stronger
correlations than in the case that questions and strategy are chosen independently.)
To keep the influence of μ on the settings local, μ must lie within the common past
cone of the settings; that is, temporally before the emission of the photons by the
source. μ could then not be a property of the photons, since they do not yet exist
at this time; instead, it would have to be considered as a hidden property of the
source (or even as property of another object, if the source does not yet exist at this
point in time; the extreme case would be that μ is a property of the Big Bang). It
would seem extremely strange to assume that before the emission (possibly even
before the preparation of the photons) a causal process emerges from the source
which can influence the distant measurement settings, but we do not wish to discuss
this assumption further here. More importantly, we need to ask what it might mean
that μ can influence the measurement settings, given that they are determined by the
experimenter. It can mean only that the experimenter is herself influenced by μ to
choose a certain setting. According to this model, the experimenters could not make
a (libertarian) free decision about which setting to choose.

Most authors assess this solution of the problem to be rather implausible. For
one thing, it is ad hoc and improbable that the actions of experimenters can be
crucially influenced or even determined by hidden states of, e. g. a source of quantum
objects. The suggestion sounds more like a bizarre fantasy world than a serious,
scientifically well-founded explanation. Indeed, it has been noted that this approach
would amount to a “cosmic conspiracy”. For it would be not only the scientists
who must be influenced by the quantum states; everything, whatever determines the
measurement settings—in modern experiments for example an optical switch or a
computer programme which operates on the basis of a random-number generator—
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would have to be correspondingly influenced by the hidden state. Such an influence,
which acts in an undifferentiated manner on whatever determines the measurement
settings, would seem to be highly implausible.

Finally, we should also note that science, as we know it and have evidently prac-
ticed it with some success, would no longer be possible for such quantum systems:
It is one of the basic principles of the scientific method that the question of what is
to be measured can be decided or varied independently of which state the system to
be measured is in. If, however, the system itself dictates the questions which can be
asked of it, then it is impossible to investigate it in a deeper sense. Large parts of its
properties might then remain undiscovered, and normal causal conclusions would
no longer be possible for such systems.

4.5.3 Backwards Causation

Finally, we made a further implicit assumption in the derivation of Bell’s theorem:
Namely, that causal relations between timelike-separated events are always directed
forward in time (“no backwards causation”). Only by excluding backwards causation
and with the locality assumption can we be certain that none of the variables of the
one wing of the experiment could influence a variable of the other wing. For if such
an influence were possible, one could have, for example, an influence of b on α,
which could be mediated in their common past by some variable μ (see Fig. 4.12).
For the derivation of Bell’s theorem, we therefore had to assume:

No backwards causation: Effects do not occur earlier than their (timelike-
separated) causes.

If one allows backwards causation, it is then possible to generate the same causal
structures as by abandoning the locality assumption, except that the causal paths
would have a different embedding in spacetime. In other words, each of the non-
local causal graphs described above could be produced just as well by replacing the
non-local causal relations that they contain by an action which first goes backward
in time and then forward. For this reason, such scenarios are also called “zigzag
causation“.

In principle, every influence between the wings can thus be generated by paths
involving backwards causation, but naturally not all of them are equally plausible.
The structure shown in Fig. 4.13 is one of the typical proposals for explaining the
correlations by backwards causation. Here, the chosen measurement setting influ-
ences the hidden variable λ of the photons at the source. To ensure that this is indeed
backwards causation (and not a non-local effect), the influence must occur only at
the moment when the photon arrives at the detector. Price (1994) suggested such
a model and has developed his approach further in recent years (e. g. Price 2012).
Cramer (1980, 1986) has even given a detailed mathematical description of such a
theory, according to which the detector sends a confirmation wave back to the source
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Fig. 4.12 The causal
connection between the two
wings via backwards
causation

ba

Fig. 4.13 A typical structure
with backwards causation

ba

at the moment when the quantum-mechanical wavefunction arrives. In this way, it
is guaranteed that the source will emit objects in an appropriate state so that they
produce the corresponding correlations in the measurements. In the strategy game
with two players (see Sect. 4.3.3), this would mean that the players already know
the question that will be asked while they are still in the same room, so that they
can agree on an appropriate strategy in advance. Under these circumstances, it is
obviously simple to produce the correlations. Models with backwards causation can
produce the observed EPR/B correlations. But are they also convincing?

The great advantage of models with backwards causation is that they do not
contradict the theory of relativity. The theory of relativity would appear to have
a certain conflict with non-local relations, but not with causal actions which act
backwards in time. Independently of its compatibility with the theory of relativity,
backwards causation has been strongly criticized, however. Some authors claim that
backwards causation is conceptually impossible (i. e. it is self-contradictory). Among
them are the supporters of a dynamic theory of time, according to which the state of
the world just now produces the immediately following future state. Such concepts of
time are incompatible with backwards causation, since the past no longer exists, and
can therefore not be influenced by the present. Only assuming a static theory of time
is a concept such as backwards causation conceivable at all. Causal explanations are
then not metaphysical explanations of how the correlations come about, but instead
are epistemic histories which merely concern the explanation of the correlations.
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But even given a static theory of time, there are serious objections to backwards
causation. For example, also supporters of a causal theory of time—who assume that
the direction of time is determined by the direction of causality—hold backwards
causation to be a conceptual impossibility. Others admit its conceptual possibility,
but assert that backwards causation leads to paradoxical causal loops (A at t1 causes
B at t2 causes not-A at t1), and thus cannot be realized in the real world (Mellor
1981). T. Maudlin (2011, Chap. 7), for example, argues that Cramer’s model of the
EPR/B correlations is inconsistent in this latter sense.

All these arguments, however, do not exclude explanations making use of back-
wards causation under certain circumstances. If there are limitations on what can
influence what, then there could nevertheless be consistent theories with backwards
causation. The decisive point, however, is that we have no sort of indications that
backwards causation might exist in fact. On the one hand, the experimental data
give no evidence for backwards causation. With normal causality, there are as a rule
asymmetries in the statistics which favour a particular direction, and backwards cau-
sation should show similar asymmetries, but simply in the reversed direction. But
neither in the statistics of EPR/B experiments, nor in any other kind of statistics, have
such asymmetries ever been observed. A supporter of backwards causation in the
EPR/B case could respond that the alleged backwards causation acts via the hidden
variable λ and therefore leaves none of the usual tracks in the statistics. As we have
already noted: possible, but not particularly convincing.

In the end, still more important for most authors is the fact that there are also no
theoretical indications of backwards causation. All known theories which consider
the observed probabilities to be objective, and thus in particular the GRW theory and
the de Broglie–Bohm theory, contain a non-locality. In sum, the impression remains
that backwards causation rather is an ad hoc explanation for the violation of Bell’s
inequalities.

4.5.4 Conclusion: Alternative Suggestions

The alternatives to the locality condition discussed in this section were born out
of desperation in view of the problems that arise from the incompatibility between
the theory of relativity and non-locality. The existing compatibility suggestions are
not convincing, at least not on first view. In contrast to the state of the discussions
around 30 years ago, however, it would appear that compatibility between non-
locality and the theory of relativity is no longer considered to be impossible. The
current state of desperation is thus not quite as acute as it was previously, and it is
questionable whether in view of that background, any of the alternative solutions
will have sufficient persuasive power to be considered seriously.
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4.6 Résumé

This chapter tells the story of fascinating insights, great surprises and disappointed
hopes. Albert Einstein and his co-authors wanted to show that quantum mechanics
is incomplete. They did not attain that goal, but their pioneering article raised a
new problem—unintentionally— which contradicted Einstein’s intuitions still more
intensely than accepting the completeness of quantum mechanics would have done:
The quantum world is non-local.

It was J.S. Bell who drew the right conclusions from the EPR article and devel-
oped a new approach with his inequality, which made the non-locality in the special
EPR/B correlations apparent. The empirical confirmation of those correlations is cur-
rently carried out with experimental setups which are essentially the same as the one
suggested by the EPR thought experiment. These experiments have confirmed that
the predictions of quantummechanics are correct. Measurements on the components
of a system that is described by an entangled state exhibit strong correlations which
are still observable even when the detectors are set up at a considerable distance from
each other.

The results of J.S. Bell have also destroyed hopes based on the idea that the
quantum-mechanical state is incomplete and must be characterized more precisely.
Even theories with hidden variables cannot explain the predicted and observed cor-
relations unless they are non-local. The generality of his proof eliminates the possi-
bility that we will find a new solution through technical refinements of the quantum-
mechanical formalism.

Dowe have an explanation for the empirical phenomena of entangled systems?On
the one hand, quantum mechanics explains the correlations which occur in the sense
that they can be correctly derived from its formalism. On the other hand, Günther
Ludwig writes about the question of how the correlations come about: “The answer,
being disappointing perhaps, is that quantum mechanics can say nothing about it”
(Ludwig 1971, p. 312), and he evidently means that quantum mechanics provides
no mechanism (for example, in the sense of Machamer et al. 2000) which could
explain the occurrence of the correlations and thus could lead to an intuitively clear
understanding. The best that one can do in the spirit of the mechanistic programme is
to indicate a causal structure which would relate the entangled quantum state to the
measurement settings and the measurement outcomes, but the entangled quantum
state itself cannot be further disassembled into interacting parts. Furthermore, one
can hardly imagine a simple and intuitive spatiotemporal description of such a mech-
anism which would be unproblematically compatible with the theory of relativity.
Here, two hopes have been destroyed: The idea that we could carry out a thorough
spatiotemporal analysis of the microworld, and the expectation that familiar mecha-
nistic ideals of explanation should always be applicable in fundamental physics. The
particular value of these insights is comparable to the benefits gained when one is
forced to give up one’s illusions: Thereafter, the remaining problems can be attacked
in a less biased manner.
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Bell’s proof shows that at least one of the plausible methodological and meta-
physical assumptions which have proved themselves in classical physics must be
abandoned. While the discussion during the more than four decades since Bell’s
discovery has achieved ever deeper insights into the preconditions, scope and con-
sequences of Bell’s proof, it has not yet led to a generally accepted and readily
comprehensible result; in particular not with respect to the question of how the non-
locality of quantum mechanics could be reconciled with relativistic spacetime. This
remains the central question in the debates surrounding entangled states.

Exercises

1. In the EPR article, there is an assumption of major significance which we have
called the “locality assumption”: “Since at the time of measurement, the two
systems no longer interact, no real change can take place in the second system
in consequence of anything that may be done to the first system”. How does
this assumption relate to the other concepts of locality which we introduced in
Sect. 4.4.5: Does it imply global and causal Einstein locality as well as spatiotem-
poral separability?

2. Assume that an EPR/B experiment were correctly described by a local causal
structure with hidden variables λ (see Fig. 4.5). One can then show that the
existence of perfect correlations implies that measurements must proceed deter-
ministically. Try to formulate a suitable argument.

3. List the minimal set of assumptions which are required to derive a Bell inequality
and sketch out what they state.

4. Apply the causal Markov condition to the local causal structure in Fig. 4.5 and
note the resulting statistical independencies.

5. Outline the four fields of conflict of a non-local theorywith the theory of relativity.
6. Discuss the two known possibilities for non-locality which are not in conflict

with the principle of relativity. Take into account both physical and ontological
consequences.
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Chapter 5
No-Collapse Interpretations of Quantum
Theory

Oliver Passon

In Sect. 2.3.1, the measurement problem was formulated in the form of a trilemma.
In this view, either (i) the wavefunction is not a complete description; or (ii) the time
evolution is not a continuous unitary process; or (iii) measurements do not lead to
well-defined results. The GRW theory described in Sect. 2.3.1 chooses alternative
(ii); it adds a nonlinear term to the Schrödinger equation, which models a physical
mechanism for the “actual” collapse of the wavefunction. The Copenhagen inter-
pretation also denies a continuous time evolution which follows the Schrödinger
equation; in contrast to the GRW theory, this process is however not given a realistic
interpretation.

In this chapter, we treat the most prominent advocates of those strategies which
either deny the completeness of the wavefunction (de Broglie–Bohm theory), or
question the uniqueness of the measurement results (Everett’s or the many-worlds
interpretation). In these theories, the state vector is thus subject to a continuous
unitary time evolution. Their common feature is dispensing with the “collapse” of
the wavefunction; only the appearance of this non-unitary change of state needs to
be justified in these interpretations. Thus, the name no-collapse interpretations has
become common as a generic label for these theories.

5.1 The de Broglie–Bohm Theory

Within the debates over the interpretation of the quantum theory—especially in view
of the measurement problem—the question of whether or not quantum mechanics
in its present form is simply incomplete is immediately raised. The statistical inter-
pretation of quantum mechanics suggests that it must be based on an additional
structure, whose elucidation would give the interpretation of the theory a completely
new direction. Since this additional structure is unknown in the present version of
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quantum mechanics, this research programme was originally called “the search for
‘hidden’ variables”.

In 1952, David Bohm published his article “A Suggested Interpretation of the
Quantum Theory in Terms of ‘Hidden’ Variables” (Bohm 1952). At the time, he was
unaware that Louis de Broglie had introduced a mathematically equivalent formula-
tion of this theory already in 1927 at the 5th SolvayConference (deBroglie 1927). For
this reason, we refer to this interpretation as the “de Broglie–Bohm theory” (DBB
theory).1 de Broglie himself referred to the interpretation as the “theory of pilot
waves” (l’onde pilote). The conference proceedings of the 5th Solvay Conference
have been accessible in English only since 2009 (Bacciagaluppi and Valentini 2009).
Antony Valentini and Guido Bacciagaluppi not only undertook the translation, but
also, in their knowledgeable commentary, they discuss the role of this conference
for the interpretation of the quantum theory in general. According to their analy-
sis, it is misleading to reduce the significance of the 5th Solvay Conference to the
(unquestionably important) debates between Bohr and Einstein. Bacciagaluppi and
Valentini argue in favour of a re-evaluation of the role of de Broglie within the early
interpretation debates, and in that connection, they state:

Today, pilot-wave theory is often characterized as simply adding particle trajectories to the
Schrödinger equation. An understanding of de Broglie’s thought from 1923 to 1927, and of
the role it played in Schrödinger’s work, shows the gross inaccuracy of this characterization:
after all, it was actually Schrödinger who removed the trajectories from de Broglie’s theory
(Bacciagaluppi and Valentini 2009, p. 78).

A discussion of the priorities in the early development of wave mechanics can and
should not be carried out here. We have cited this thought-provoking passage mainly
because it expresses the basic idea of the de Broglie–Bohm theory in such a simple
and clear-cut manner. This is a theory which alleges the incompleteness of the usual
quantum mechanics and adds “particles” in the literal sense to the wavefunction. As
we have already indicated above, the term “hidden variables” has been adopted for
these additional determining quantities. This term is, to be sure, somewhat mislead-
ing, since even the harshest critics cannot deny that particles, and their locations in
particular, are directly observable (and thus in this sense not at all hidden). Instead,
it is simply the wavefunction which is not susceptible to direct observation.2

For reasons which of course must be explained in more detail in the following,
the de Broglie–Bohm theory succeeds in this way in describing the measurement
process as a normal interaction which leads to a uniquely defined final state. At the
same time, it is (in the technical sense) a deterministic theory—while in addition, it
can also reproduce all the predictions of the quantum theory. However, this theory

1Bohm’s lack of knowledge of the earlier work is understandable if one is aware that de Broglie
himself did not develop his theory further, but instead became a supporter of the “conventional”
quantum theory. Only after reading Bohm’s publication of 1952 was his interest in these questions
again aroused.
2We shall see that the lack of knowledge (and control) of the precise initial conditions plays an
important role in the DBB theory. This aspect of the additional variables can indeed be considered
to be “hidden”. Furthermore, the concept of “hidden variables” also refers to the fact that they do
not occur in the standard interpretation.
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makes no new predictions which deviate from those of the quantum theory, so that
experimentally, there is no way to decide between the two.3

In Bohm’s formulation of 1952, we are dealing with an extension of non-
relativistic quantum theory. We will take up the question of a relativistic general-
ization in Sect. 5.1.7. The following description of the theory makes use at various
points of a comparison with the “standard interpretation” or the “usual textbook ver-
sion” of quantum mechanics. These concepts are naturally not strictly defined, and
the reader can think here of the Copenhagen interpretation or a textbook description
of quantum mechanics, which do not deal with the problems treated in this book.

5.1.1 Mathematical Description

The de Broglie–Bohm theory is an extension of the standard quantum theory.
Among the relations which define the theory mathematically, we thus find the usual
Schrödinger equation:

i�
∂ψ

∂t
= −

(
�
2

2m

)
∇2ψ + V (r)ψ . (5.1)

Here, V refers to the potential which characterizes the corresponding system (see
also Eq. (1.39) in Sect. 1.2.4; there, the Schrödinger equation was introduced for only
one spatial dimension). We have chosen the positional representation not by chance,
since it is, as we shall see, in fact distinguished within the de Broglie–Bohm theory.
In the standard interpretation, ψ is presumed to contain the complete description of
the system, and from its absolute square |ψ|2, the probability of observing a particle
by a measurement within a particular spatial region can be obtained. In the standard
interpretation, one however cannot speak of a particle’s trajectory or orbit, i.e. that
which brought it to the position where it was observed.

In the de Broglie–Bohm theory, the concept of “particle” is taken so seriously
that at each moment in time (i.e. even without measurements), it is associated
with a well-defined position. A quantum-mechanical N -particle system is thus no
longer described by the wavefunction alone, but rather by the pair consisting of
the wavefunction and the position coordinates of the particles: (ψ, Q(t)). Here,
Q(t) = (Q1(t), · · · , QN (t)), where Qi : t → R

3 denotes the trajectory of the i th
particle. Q(t) ∈ R

3N is called the configuration of the system, and R
3N is its so-

called configuration space.4

3This statement holds strictly under the so-called quantum equilibrium hypothesis (see Sect. 5.1.2).
Without that assumption, predictions which differ from the ordinary quantum theory may result
(cf. Cushing 1995 and Valentini 2004).
4Configuration space is of central importance even in conventional quantum theory, because the
wavefunction is likewise defined on this space.
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For the particle positions Q(t), one must specify an equation of motion, i.e. a (dif-
ferential) equation which describes the temporal and spatial evolution of the particle
positions under the influence of the given external conditions. This prescription must
reproduce—on average—the statistical predictions of quantum theory. There have
been various suggestions for the motivation of this equation of motion (cf. Passon
2010, pp. 32–36). In the following, we will make use of the analogy between quan-
tum theory and hydrodynamics, which was pointed out as early as 1926 by Erwin
Madelung (cf. Madelung 1926). Let us therefore briefly consider a liquid (or a gas)
with a mass density of ρm . Under the assumption that the mass is a conserved quan-
tity, the mass density within a certain region in space can then change its magnitude
only if fluid flows out of or into that region. In order to describe the flow of the
fluid, we define the “current-density vector” or, for short, the “current density”, as
the product of the mass density and the flow velocity of the fluid: jm = ρmv. The
x component of jm denotes the amount of fluid which flows per unit time through
a unit surface element (perpendicular to the x-axis) and correspondingly for the y
and z components. Then the conservation of mass is represented by the following
mathematical expression:

∂ρm

∂t︸︷︷︸
time rate of change

= −∇ · jm︸ ︷︷ ︸
spatial rate of change

. (5.2)

Here, the symbol “∇” denotes the divergence, i.e. the sum of the spatial changes over
all three directions. This equation of continuity from hydrodynamics expresses—as
explained—the conservation of the fluid mass.

We now turn back to quantum theory, in which likewise an equation of continuity
holds—but now for the “probability density” ρ = |ψ|2. This equation is formally
identical5 to the hydrodynamic equation:

∂ρ

∂t
+ ∇ · j = 0 . (5.3)

At this point, naturally, the mathematical details should not be so much the subject of
our considerations as the structural relations. The decisive point is that this equation
can be derived from the Schrödinger equation, and for the probability current density,
we find the following (somewhat complicated) expression:

j = �

2mi

[
ψ∗(∇ψ) − (∇ψ)ψ∗] . (5.4)

5There is, however, a decisive difference with respect to the hydrodynamic equation of continuity:
While the mass density ρm is defined on real position space, the probability density ρ = |ψ|2 is a
function on configuration space. A naive identification of |ψ|2 with a matter density thus appears
to be impossible.
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In the usual textbook descriptions of quantum theory, the equation of continuity (5.3)
is interpreted as an expression of the “conservation of probability”. Probability (like
mass within hydrodynamics) can be neither “created” nor “destroyed”.

In the de Broglie–Bohm theory, one takes a step further, since the goal is finally
to arrive at an equation of motion for the “Bohmian particles”. The expression ρ in
quantum theory is interpreted as the probability density of the real particle configu-
ration, and we recall that in hydrodynamics, the relation j = ρv holds. If we put in
the corresponding quantum-mechanical expressions for ρ and j (and use the “polar
representation” ψ = Re

i
�

S for the wavefunction), we find, after a simple computa-
tion, the equation of motion for the particle positions Q(t) that we were seeking (for
its velocity, we have of course v = d Q

dt ):

v = j

ρ

d Q

dt
= ∇S

m
. (5.5)

This Eq. (5.5) is called the guidance equation of the de Broglie–Bohm theory. Pic-
torially speaking, the particle trajectories are thus guided by the wavefunction (or
rather by its phase S). Treating a physical problem with the help of the DBB theory
thus means first of all solving the Schrödinger equation (as in the usual quantum
mechanics). In Sect. 5.1.4, we will discuss concrete applications.6

The validity of the equation of continuity (5.3) has still another important conse-
quence for the de Broglie–Bohm theory. It follows from this equation namely that a
configuration once distributed according to |ψ|2 retains this property under Bohmian
dynamics. This observation is the key to the fact that the de Broglie–Bohm theory
reproduces all the predictions of the usual quantum theory, since naturally a differen-
tial equation fixes the motion only through its boundary and initial conditions. If one
now chooses the initial configuration Q(t0) at random according to the probability
distribution |ψt0 |2 for a system that is described by the wavefunction ψ, then the
configuration Q(t)will remain distributed according to |ψt |2 at each later moment in
time, t . In other words, according to Born’s rule, all the predictions of the usual quan-
tum theory will be reproduced.7 This condition is called the “quantum equilibrium
hypothesis”, and we will take a closer look at it in Sect. 5.1.2.

The three relations which define the de Broglie–Bohm theory mathematically are
thus

1. The Schrödinger equation: i� ∂ψ
∂t = −

(
�
2

2m

)
∇2ψ + V (r)ψ

2. The guidance equation: d Q
dt = ∇S

m

6In fact, the condition of being able to reproduce the statistical predictions of quantum mechanics
does not fix the dynamics uniquely. In this sense, there are indeed infinitely many “de Broglie–
Bohm-like” theories. In these theories, the individual trajectories do not follow Eq. (5.5), but they
however reproduce the same statistics (Deotto and Ghirardi 1998).
7The equivalence to quantum mechanics presumes that all predictions can be uniquely described
in terms of position coordinates—e.g. by “pointer positions” of a measurement apparatus.
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3. The quantum equilibrium hypothesis: The position distribution ρ of states with
the wavefunction ψ is given by the probability density ρ = |ψ|2.

The second and the third relations deserve a more careful consideration, since they
signal the differences relative to conventional quantum theory.

5.1.2 The Quantum Equilibrium Hypothesis

According to the quantum equilibrium hypothesis, the positions of the particles of
a state which is described by the wavefunction ψ are distributed in accord with the
probability density |ψ|2. The occupation probability within a spatial region V is
calculated by integration,

∫
V |ψ|2dV ′.

If this initial condition is fulfilled at one time, it follows from the equation of
continuity (5.3) that Born’s rule will remain valid at all later times. Furthermore,
the quantum equilibrium hypothesis guarantees that the particle positions cannot be
more precisely controlled. Bell writes on this topic:

Note that the only use of probability here is, as in classical statistical mechanics, to take
account of uncertainty in initial conditions (Bell 1980, p. 156).

If thus follows that the Heisenberg uncertainty relations can also not be violated
within the de Broglie–Bohm theory! At the same time, one might be tempted to
call the “determinism” of the de Broglie–Bohm theory “fictitious”. In its descriptive
content, the de Broglie–Bohm theory does not differ from the standard interpretation
of quantum mechanics, and it likewise can make only statistical predictions. The
quote from Bell however indicates a conceptual difference. Within the de Broglie–
Bohm theory, the statistical character of the predictions is attributable to our lack
of knowledge and is thus epistemic in nature. Within the standard interpretation of
quantum mechanics, the ignorance interpretation of the probability is not possible;
it is thus an ontic probability.

Let us now turn to the question of how this equilibrium distribution can be justi-
fied. The first attempt dates back to Bohm (cf. Bohm 1953), who gave a dynamical
explanation of the |ψ|2 distribution. His approach was developed further by Valentini
(1991). In Valentini and Westman (2005), one finds for example numerical simula-
tions of systems which, under the dynamics of the guidance equation, lead from a
non-equilibrium distribution to the quantum equilibrium distribution. In the frame-
work of this approach, it would seem reasonable to consider systems in “quantum
non-equilibrium”—together with all possible deviations of the predictions between
conventional quantum mechanics and the de Broglie–Bohm theory (cf. Valentini
2004). Another strategy—for which Bell seems to express support at various times—
consists in simply postulating the quantum equilibrium hypothesis. This would give
it the status of a fundamental law.

In contrast, Dürr et al. (1992) argue that neither postulating the quantum equilib-
rium condition, nor its dynamic justification is reasonable or convincing. At the core,
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the question is namely how—within a deterministic theory—probability statements
can occur at all. This problem is naturally much older than the de Broglie–Bohm
theory, and it has dominated the discussion on the relation between (Newtonian)
statistical mechanics and classical thermodynamics since the nineteenth century. In
their justification of the quantum equilibrium distribution, Dürr et al. therefore hark
back to a concept introduced by Ludwig Boltzmann (1844–1906), namely that of
“being typical” for a physical event. “Being typical” has a terminological meaning
here, namely the appropriateness for the “overwhelming majority” (as defined by
measure theory) of initial configurations (Dürr 2001, pp. 49ff).

The application of this concept to de Broglie–Bohm theory is now carried out in
two steps. First, the authors clarify the question of underwhich conditions subsystems
can be associated with a wavefunction at all. This can naturally not be expected of
arbitrary subsystems, owing to interactions with their environment. In principle, the
de Broglie–Bohm theory thus holds for the wavefunction of the universe, �. The
concept of the “wavefunction of the universe” sounds presumptuous. In fact, it does
not mean that the de Broglie–Bohm theory claims universal validity. Rather, it is the
wavefunction of a system in which probability statements can no longer be explained
in termsof an “external influence”, i.e. by the existenceof a still larger system inwhich
the system considered is embedded. For the fundamental justification of probability
statements, this standpoint thus must be adopted.

For the wavefunction of the universe, however, the assertion that its position
coordinates are distributed according to ρ = |�|2 appears problematic. After all,
there is only one universe,8 and a test of this probability statement by measurements
of relative frequencies of occurrence is impossible. For the wavefunction of the
universe, one cannot ascribe the meaning of a probability density to the expression
|�|2, at least not in an operational sense. Instead, Dürr et al. suggest that we see in it a
measure of what a “typical” initial condition (in Boltzmann’s sense) for the universe
would be like. They justify their choice with the “equivariance” of the distribution,
i.e. with the fact already mentioned that a configuration which at one moment is
distributed according to |ψ|2 will retain this property. The choice of any other (non-
equivariant) distribution as themeasure of “typical” initial configurations would have
to distinguish a particular moment in time, and the moment at which precisely that
distribution was present in an unnatural way.

In addition, there is a class of subsystems which can be described by using “effec-
tive wavefunctions”. This means that the particle dynamics of these subsystems are
almost completely determined by that effective wavefunction.9

8Speculations about “multiverses” change nothing in this situation—for there, also, as a rule any
contact to the other “universes” is forbidden.
9The effective wavefunction ψ(x) of a subsystem with the variables x on configuration space,
which belongs to the overall system �(x, y), is defined as a part of the following decomposition:
�(x, y) = ψ(x)�(y) + �⊥(x, y). Here,� and�⊥ have disjunct carriers, and the configuration of
the environment (Y ) lies in the carrier of �. For the overall system, one could think for example of
subsystem + environment or, concretely, subsystem + measurement apparatus. The above decom-
position occurs namely during a measurement interaction: If the configuration of the measurement
setup corresponds to Y (this could be a particular “pointer position” of the measurement apparatus),
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Finally, Dürr et al. can prove that subsystems with an effective wavefunction ψ
within a “typical” universe fulfil the quantum equilibrium hypothesis. In this sense,
the deterministic de Broglie–Bohm theory obtains the appearance of randomness,
and the empirical distributions correspond to the quantum-mechanical predictions.
If one accepts this “Boltzmann argument”, then the quantum equilibrium condition
becomes even a theorem of the de Broglie–Bohm theory.10

5.1.3 The Guidance Equation

Thus far, we have considered only the single-particle case. The general form of the
guidance equation for an N -particle system is given by11:

d Qi

dt
= �

mi
�∇iψ

ψ
= ∇i S

mi
. (5.6)

Here, mi denotes the mass of the i th particle, � the imaginary part of the following
expression and ∇i is the gradient with respect to the spatial coordinates of the i th
particle. In case the wavefunction is a spinor, i.e. ψ : R

3N → C
2N , the probability

current is changed, so that one obtains the following guidance equation:

d Qi

dt
= �

mi
�ψ∗∇iψ

ψ∗ψ
, (5.7)

whereψ∗ψ is the scalar product onC
2. The latter equation is mentioned here not only

for completeness, but also because it will be used in the treatment of themeasurement
problem in Sect. 5.1.5.

The existence and uniqueness of the solutions of the guidance equation for all the
relevant types of potentials have been demonstrated (see Teufel and Tumulka 2005).
Two points should be emphasized: First, the order of the guidance equation (as well
as the resulting general properties of its solutions); second, its so-called non-locality.
The next two subsections are devoted to these two issues.

the x system is guided by the wavefunction ψ(x). The remaining parts of � are then irrelevant for
the particle dynamics, and in this way, an “effective collapse” is described (cf. Sect. 5.1.5).
10Our treatment here could of course only roughly sketch the train of reasoning, and it suppresses
many mathematical details. Thus, an impression of circularity may have (falsely) arisen: One pos-
tulates the |�|2 distribution of the universe and obtains the |ψ|2 distribution of subsystems. See
Dürr (2001, p. 201) for more on this topic.
11The following is naturally difficult to understand for those readers who are not well versed in
mathematics. The decisive point is that the position (and velocity) of the Bohmian particles are
mathematically determined by the wavefunction.
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General Properties of the Trajectories

Since the guidance equation is a differential equation of first order, one initial con-
dition Q(t0) already determines the trajectories uniquely. In configuration space, the
paths are thus not overlapping. It follows for the single-particle case, in which posi-
tion space and configuration space are identical, that the trajectories within the DBB
theory do not intersect each other. If they are in fact identical at one point, then they
must be identical at all points. In many cases, this information alone allows us to
visualize a qualitative picture of the trajectories.

Non-locality

The guidance equation determines the trajectory of the i th particle essentially by
taking the derivative of the wavefunction (more precisely: by taking its gradient).
The wavefunction is however defined on configuration space and is evaluated at
the position Q(t). In other words, the change of position of each particle at the
time t depends on the positions of all the other particles at the same moment in
time. Since these influences do not propagate through space in the sense of a short-
range interaction, one speaks of a non-local influence, or of the non-locality of the de
Broglie–Bohm theory. However, it is precisely this non-locality which permits the de
Broglie–Bohm theory to violate theBell inequalities (in agreementwith experiments;
see Chap. 4). At the same time, the quantum equilibrium hypothesis guarantees that
this non-locality cannot be used for the transmission of signals, since it is in the end
a question of stochastic events. The evident problem of the relativistic generalization
of this theory will be addressed in Sect. 5.1.7.

5.1.4 Applications of the de Broglie–Bohm Theory

We now turn our attention to the obvious question of which form the particle tra-
jectories take, whose existence distinguishes the de Broglie–Bohm theory from the
usual quantum theory. The guidance equation has in fact been solved numerically for
various problems. For those who favour this theory, the existence of these trajecto-
ries is notably more important than their concrete characteristics or their numerical
simulation. Dürr writes on the question of whether Bohmian trajectories should be
calculated at all:

Roughly speaking, no! Sometimes, however, the asymptotic behaviour of the trajectory –
essentially that of free particles – can be quite useful. [...] All that we learn from the trajecto-
ries is indeed only that at every time t , particles are present whose positions are distributed
according to the quantum equilibrium hypothesis as |ψ(q, t)|2 (Dürr 2001, p. 142).

In the following,we nevertheless consider explicit Bohmian trajectories for the tunnel
effect, for interference from gratings (and from the double slit), as well as for the
hydrogen atom; thus for several examples of quantum phenomenawhich, in the usual
understanding, can not possibly be explained in terms of continuous trajectories.
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The Tunnel Effect

A spectacular prediction of quantum theory is the “tunnel effect”. It consists in
the fact that quantum-mechanically described particles can overcome a potential
barrier, although the energy height of the barrier is greater than the energy of the
particles. Radioactive α decay, as well as nuclear fusion in the interior of the Sun, is
understandable only in terms of the tunnel effect.12 Pictorially speaking, the particles
pass below the barrier—they thus “tunnel” beneath it.13 In an orthodox manner
of speaking, there is a finite probability that the particles will be detected on the
other side of the barrier. Within the de Broglie–Bohm theory, a continuous particle
trajectory must naturally lead from inside the potential barrier to a position outside
the barrier.

Figure 5.1 shows the paths taken by some of these trajectories. The y-axis corre-
sponds to the position coordinate (in arbitrary position units) and the x-axis to the
time coordinate. A Gaussian wave packet ψ was assumed as initial condition, and it
approaches the barrier from below in the figure. This potential barrier is located at
0.72 ≤ y ≤ 0.78, and it is twice as high as the average energy of the wave packet.14

Then the Schrödinger equation is solved numerically and input into the guidance
equation. In this way, the course of the trajectories can be computed. One can first
recognize how all the particles are braked within the barrier (the slopes of the trajec-
tories in Fig. 5.1 correspond to the particles’ velocities). The tunnel effect occurs for
those particles which reach the barrier first, while those arriving later are reflected
earlier and earlier. If this were not the case, the particles’ trajectories could intersect.
Thus, the property of being intersection-free determines the shape of the trajectories
already qualitatively.

This description of the tunnel effect notably opens up the possibility of calculat-
ing the “tunnelling time”. The obvious question of the time required by a particle
in order to overcome the tunnel barrier cannot even be reasonably asked of conven-
tional quantum theory, since time is not an observable. Cushing (1995) discusses the
possibility of an experimental test of the de Broglie–Bohm theory on this basis.

Two-Slit Interference

Diffraction and interference of an electron beam by a double slit and the pattern
of the typical interference fringes (see Fig. 5.2, left) were successfully observed by
Claus Jönsson in 1959 (see Möllenstedt and Jönsson 1959). Particularly impressive

12In the case of α decay, helium nuclei overcome the potential barrier at the surface of the decaying
nucleus, although their energies, considered classically, are too small to permit this. In the case of
nuclear fusion in the interior of the sun, hydrogen atoms combine to form helium. Here again—
considered classically—the pressure and temperature are too low to overcome the repulsion of the
positively charged hydrogen nuclei.
13This manner of speaking, “tunnelling” or “passing beneath”, is naturally to be understood as
metaphorical, since the “height” of the potential barrier is not a spatial quantity, but rather an
energy.
14The wavefunction is Gaussian, with its centre initially at 0.5 and a width (variance) of 0.05. The
density of the trajectories between 0.66 and 0.68 was increased in order to be able to study the
oscillatory behaviour within the barrier more precisely (see Dewdney and Hiley 1982).
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Fig. 5.1 A numerical simulation of some trajectories in the 1-dimensional tunnel effect (from
Dewdney and Hiley 1982, reprinted with kind permission of the Springer Verlag). The x-axis
corresponds to the time coordinate and the y-axis to the position coordinate

are the experiments in which the particle beam has such a low intensity that the
formation of the interference pattern can be observed over a longer period of time.
Then, point-like detected particles on the detection screen are seen to gradually build
up the interference pattern.

This experiment would appear to illustrate with unusual clarity that the concept
of particle trajectories is not applicable in quantum theory. If—thus runs the usual
argument—the particle trajectories pass through the upper or the lower slit, it should
be irrelevant whether at that moment the other slit were opened or closed. The result
should be that the distribution, after passing through a double slit, should correspond
to the sum of those from each of two single slits.

However, the observed pattern is evidently quite different. Popularizations occa-
sionally claim that the particle has passed “through both slits”. This paradoxical
formulation is apparently intended to suggest that particle trajectories in the classi-
cal sense can no longer be considered to exist.

Within the de Broglie Bohm theory, this problem is resolved in a simple manner.
The particle trajectories naturally each pass through only one of the openings of the
double slit (or of the grating). The trajectories are however led by the wavefunction,
according to the guidance equation. The wavefunction encodes the information on
the slit geometry and steers the trajectories correspondingly towards the interfer-
ence maxima. Here, it becomes clear how within the de Broglie–Bohm theory, the
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Fig. 5.2 Left:Measurement of the interference fringes of electrons from amultiple-slit arrangement
(from Möllenstedt and Jönsson 1959). Right: A numerical simulation of some of the trajectories
through a double slit (from Philippidis et al. 1979). Both of these images are reprinted with the
kind permission of the Springer Verlag

wavefunction no longer represents a “probability wave”, but instead a real physical
effect.15 Every reference to wave–particle dualism thus becomes superfluous.

If the initial values of the particle are distributed according to the quantum equi-
librium hypothesis, the DBB theory exactly reproduces the occurrence frequency
distribution of quantum theory. A numerical simulation of some of the correspond-
ing trajectories can be seen on the right in Fig. 5.2. Again, it can be clearly discerned
that the trajectories do not intersect. At the same time, they exhibit a completely “non-
classical” behaviour, in that they show abrupt changes of direction (in—classically—
“field-free” regions). Here, one can already see that momentum or energy conser-
vation do not hold on the level of individual particles, since they obey Bohmian
mechanics and not Newtonian mechanics. In Sect. 5.1.5 (see also Footnote 19), this
aspect is explained in more detail.

The Hydrogen Atom

The discrete and characteristic spectra of excited atoms provided important impulses
to the early development of the quantum theory. The successful description of the
discrete energy levels of the hydrogen atom belongs among its early triumphs.

The solution of the Schrödinger equation for this problem (i.e. for the potential
V = − e2

r ) is mathematically rather involved and will not be repeated here. The
decisive point is that one is led to eigenstates of the energy forwhich thewavefunction
is a product of a real function and the expression ei(mφ−Et/�). In the ground state,
m (the “magnetic” or “directional” quantum number) is zero, so that the phase is
given by S = −Et . Inserting this expression into the guidance equation (5.5), we
obtain for the velocity field of course everywhere zero; we have computed the spatial

15On the status of the wavefunction; see however Sect. 5.1.7, and also Dürr et al. (1996).
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derivative of an expression which has no spatial dependence. In other words, the
particle in the ground state is at rest, at positions which are distributed according to
the quantum equilibrium condition for the associated wavefunction. One might call
this result counter-intuitive—but it must be admitted that no one has an “intuition”
of the processes within an atom.16

5.1.5 The Solution of the Measurement Problem

At its core, the measurement problem consists in the fact that following a measure-
ment, the measurement apparatus indeed shows a result. After the measurement, the
apparatus should (considered quantum-theoretically) thus be in an eigenstate of the
corresponding operator.

In general, the microscopic state (on which the measurement is carried out) is
described as a superposition of various components, which each correspond to a
different “pointer position” of the measurement apparatus. Under the dynamics of
the linear Schrödinger equation, the measurement apparatus should also take on
a superposition state and not an eigenstate. In reality, however, a superposition of
macroscopic states is neither readily imaginable, nor has one ever been observed.17

The solution of the measurement problem by the de Broglie–Bohm theory can be
illustrated in a completely non-technical and nevertheless appropriate way. It is based
on the idea that it is only the pair consisting of thewavefunction and the configuration
which makes up the complete description of a system and not just the wavefunction
alone. Due to the definite particle positions, every system is in a well-defined state at
every time. This therefore holds also for the measurement apparatus after a measure-
ment has taken place. The different pointer positions of the measurement apparatus
are in the end none other than different configurations, Q(t). In other words, in the
de Broglie–Bohm theory, the “wavefunction of the measurement apparatus” will in
general be in a superposition state. The configuration however indicates the result
of the measurement which is actually realized. That part of the wavefunction which
“guides” the particle(s) can be reasonably termed the effective wavefunction. All the
remaining parts can be ignored, since they are irrelevant for the particle dynamics.
As a result of decoherence effects (see Sect. 5.2.4), the probability that they will
produce interference effects with the effective wavefunction is vanishingly small. In

16In the excited states, where m 
= 0, the azimuthal-angle φ is time-dependent, and the Bohmian
particle orbits around an axis (see Passon 2010, pp. 87f ). Note that also this motion does not
correspond to Bohr’s atomic model, which is well known (and rebutted) in school physics.
17Formally speaking, we are considering here the superposition of several states of the overall
system, consisting of a measurement object (ψ = ∑

ci ψi ) and a measurement apparatus (�i ). In
the case that the measurement apparatus is initially at the position �0, during the measurement
interaction it undergoes a time evolution ψ ⊗ �0 → ∑

ci ψi ⊗ �i . Here, �i denotes the state of
the apparatus after the measurement, on measuring the property which is associated with the state
ψi .
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this sense, the de Broglie–Bohm theory describes an “effective collapse” (see also
Footnote 9). In the words of Dürr:

This ‘collapse’ is not a physical process, but rather an act of convenience. It takes place only
through the choice of description [...] because the price of forgetting about the other, non-
effective parts of the wavefunction is extremely low, since future interferences are practically
excluded (Dürr 2001, p. 160).

This solution of the measurement problem makes an additional tacit assumption:
All the results of measurements must be uniquely characterizable in terms of posi-
tion coordinates. Think for example of the “pointer positions”, or of the positions
of inked pixels on a sheet of paper.18 This however does not mean that only the
measurement of particle positions can be described by the de Broglie–Bohm theory.
Naturally, this solution of the measurement problem applies also to spin, momentum
or the measurement of any other “observable”. Their status is however drastically
re-interpreted in this theory, as is described by the keyword “contextuality”.

Contextuality

Already in Sect. 1.1.1, we dealt with the Stern–Gerlach experiment for the measure-
ment of the spin component of an electron. A beam of silver atoms is passed through
an inhomogeneous magnetic field, so that the spins of their outer electrons lead to a
splitting of the beam.

Here, also, we are dealing with a measurement whose definite result is described
by the de Broglie–Bohm theory. The discussion is made more complicated by the
fact that the Schrödinger equation cannot describe particles with spin. Instead, one
has to resort to the so-called Pauli equation. This modification of the Schrödinger
equation describes spin- 12 particles using a 2-component wavefunction. A guidance
equation for the particles is found analogously to the case of the Schrödinger equation
(this procedure was already described in Sect. 5.1.3, Eq. 5.7). This however yields
no conceptional differences relative to the above discussion. Figure 5.3 gives a naive
representation of how the results of the measurements are determined in the de
Broglie–Bohm theory. If the particle coordinate is above the plane of symmetry
(like the small black dot under the magnifying glass in the figure), a deflection
into the upper branch of the wavefunction occurs (“spin up”), and vice versa. It is
thus the particle’s location which determines the result of a spin measurement! The
property “spin” is not attributed to the particle itself, but instead, it is a property of
the wavefunction.19

18At this point, it again becomes clear that the term “hidden variables” for the particle positions is
misleading. It is just their un-hiddenness which qualifies them to describe the observable results of
a measurement!
19The same is true of all other physical quantities. The particles in the de Broglie–Bohm theory have
no properties besides their positions and their velocities. Even mass, momentum or charge cannot
reasonably be attributed to the particles; think for example of quantum-mechanical interference
experiments in which the influence of gravity or an electromagnetic interaction can (in principle)
modify the wavefunction. Therefore, we have thus far avoided referring to the “Bohmian particles”
as “electrons”, “atoms”, etc. However, in Holland (1993) as well as in Bohm and Hiley (1993), a
possible spin variable is discussed. Our treatment here follows Bell (2001, pp. 5ff) and Dürr (2001).
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Fig. 5.3 Deflection of silver atoms in an atomic beam by an inhomogeneous magnetic field (Stern–
Gerlach experiment). The initial position (indicated by the small dot under the magnifying glass)
is decisive for the result of the spin (-component) measurement in the de Broglie–Bohm theory

We could argue in a similar way about the measurement of energy, momentum
or other observables. For all of these quantities, the de Broglie–Bohm theory thus
introduces no additional “hidden variables” which would describe their actual val-
ues. Instead, their values are determined by the wavefunction, the particle position
and the particular implementation of the measurement. Taking the example of the
Stern–Gerlach experiment, we can illustrate the influence of the particular mea-
surement setup in an intuitively clear manner: If the orientation of the magnetic
field in Fig. 5.3 were reversed, we would measure the opposite spin for the same
particles! The de Broglie–Bohm theory thereby composes a picture in which only
position measurements yield a value that was already present within the system
before the measurement and is thus a property of the particle in the narrow sense.
All other measurements owe their outcomes to the “context” of the implementation
of the measurement. The terms “measurement” and “observable” are rather mislead-
ing here. This property of the de Broglie–Bohm theory is called “contextuality”.
Indeed, this concept has a somewhat more extended meaning in the discussions and
includes thosemutual influences which occur in combinedmeasurements of different
quantities.

The relations treated here can be formulated rather concisely bymaking use of the
terminology which has been developed in philosophy for the description of various
types of properties. The spin, or all other properties aside from the position, are
not categorial properties within the de Broglie–Bohm theory, but rather they are
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dispositions.20 The contextuality of dispositions is however not remarkable; it is
simply a part of their definition (cf. Pagonis and Clifton 1995).

Proofs of the Impossibility of Hidden Variables

This contextuality of the de Broglie–Bohm theory explains why the numerous “no-
go” theorems or “proofs of impossibility” relating to theories with hidden variables
do not apply to it. The best known of these theorems is due to von Neumann. A
generalization was formulated by Kochen and Specker; see Mermin (1990) and the
references there. These theorems are based on the intuition that hidden variables fully
encode the (only apparently) statistical outcome of the measurements. The proofs
demonstrate the impossibility of a mapping which ascribes to every state a unique
value in regard to every possible measurement—indeed, without taking the context
into account. The de Broglie–Bohm theory does not claim even the existence of
actual values in regard to every physical quantity which can be measured; for only
the position is a categorial property of this theory. Think again of the example given
above of the measurement of the spin component: The particle is not associated with
any fixed orientation of its spin, independently of a concrete “measurement”; when
the direction of the magnetic field is changed, the spin can even take on the reversed
value. According to Daumer et al. (1996), the understanding of measurements which
is based for example on such no-go theorems reveals a “naive realism” in relation to
the role of operators. These authors understand this as the usual identification between
operators and observables, bound up with the widespread manner of speaking that
“operators can be measured”. This expression is however highly misleading, since
the influence of the experimental context on a measurement as described above is
not taken into account.

5.1.6 The Schools of the de Broglie–Bohm Theory

TheCompendium of Quantum Physics (Greenberger et al. 2009) contains two entries
on the subject of this chapter. One of them is entitled the “Bohm Interpretation of
Quantum Mechanics”, while the other is called simply “Bohmian Mechanics”. One
is left with the suspicion that “Bohmian mechanics” is not identical to “Bohm’s
interpretation of quantum theory”. This impression is correct and deserves a closer
look—even if only to facilitate the orientation of the reader in studying the relevant
literature.

The article on “Bohmian Mechanics” was written by Detlef Dürr, Sheldon
Goldstein, Roderich Tumulka and Nino Zanghì. This group supports a version of
the theory which was formulated by John Bell, beginning in the 1960s. Our own
treatment is closely related to this version. At its centre stand the guidance equation
and the re-interpretation of the concept of observables (keyword: “contextuality”).

20While categorial properties are associated with an object without any reference to its environment
(e.g. “being round”), dispositions describe those properties which manifest themselves only in
certain special contexts (e.g. “being fragile”).
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The author of the article “Bohm Interpretation of Quantum Mechanics” is Basil
Hiley. He was a colleague and close coworker of David Bohm at Birkbeck Col-
lege; and together with Chris Dewdney, Chris Philippidis and others, this “English
group” strongly supports Bohm’s formulation of the theory from 1952. Bohm and his
coworkers referred (or refer) to this theory notably as an “ontological” or a “causal”
interpretation of the quantum theory. In this variant of the theory, the concept of
the “quantum potential” plays a central role. Let us consider the derivation of the
guidance equation in this respect, as it was given by David Bohm in 1952. He chose a
path for the derivation which invokes an analogy to the Hamilton–Jacobi equation of
classical mechanics. In the classical case, the Hamilton–Jacobi theory contains the
relation p = ∇S (with the momentum p = mv and the action S). Bohm could show
in his work that a similar relation holds in quantum theory, if the action is replaced
by the phase S of the wavefunction. This then led him to the well-known guidance
equation, v = d Q

dt = ∇S
m . Indeed, this theory can then be represented in such a way

that it appears to be a modification of Newtonian mechanics:

m
d2Q(t)

dt2
= −∇(V + Uquant) (5.8)

with the classical potential V and the additional quantum potential

Uquant = −�
2∇2|ψ|
2m|ψ| . (5.9)

Note, however, that in contrast to Newtonian physics, the velocity is already fixed
via the guidance equation. The representation in terms of a second-order differential
equation is thus misleading, since it suggests that position and momentum may be
chosen independently.

In fact, the quantum potential has completely non-classical properties, which
allow the adherents of this “causal viewpoint” to justify the uniqueness of quantum
phenomena. They find for example that wavefunctions which differ only through a
complex factor lead to the same quantum potential, since in Uquant, the wavefunction
enters both into the denominator and the numerator. Here, Bohm and Hiley (1993,
p. 31) introduce the concept of “active information”, and theyfind in it the justification
for a new kind of “holism” (see also Hiley 1999).

Although these two readings of the de Broglie–Bohm theory are mathematically
equivalent, and the real contradiction between the usual quantum theory and these
variants of the DBB theory holds for both of them, the rivalry of these schools is
considerable. Hiley writes:

It should be noted that the views expressed in our book (Bohm and Hiley 1993) differ very
substantially from those of Dürr et al. (1992), who have developed an alternative theory. It
was very unfortunately that they chose the term ‘Bohmianmechanics’ to describe their work.
When Bohm first saw the term he remarked, ‘Why do they call it ‘Bohmian mechanics’?
Have they not understood a thing that I havewritten’?Hewas referring [...] to a footnote in his
book Quantum Theory, in which he writes, ‘This means that the term ‘quantum mechanics’
is a misnomer. It should, perhaps, be better called quantum nonmechanics.’ It would have
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been far better if Dürr et al. had chosen the term ‘Bell mechanics’. That would have reflected
the actual situation far more accurately. (Hiley 1999, p. 119)

The acrimony in this dispute is essentially due to the fact that the “ontological inter-
pretation” associates far-reaching natural-philosophical speculations to its concept
of the quantum potential, while supporters of “Bohmian mechanics” see the strength
of the theory in its being able to eliminate philosophical speculations from the formu-
lation of the theory. Characteristically, the title of an article by Dürr and Lazarovici
(2012) is “Quantum physics without quantum philosophy”.

5.1.7 Criticism of the de Broglie–Bohm Theory

John Bell, who, beginning in the 1960s contributed to the popularization of the de
Broglie–Bohm theory with a number of articles, writes concerning the topic of this
section:

It is easy to find good reasons for disliking the de Broglie–Bohm picture. Neither de Broglie
nor Bohm liked it very much; for both of them, it was only a point of departure. Einstein
also did not like it very much. He found it ‘too cheap’, although, as Born remarked, ‘it was
quite in line with his own ideas’. But like it or lump it, it is perfectly conclusive as a counter
example to the idea that vagueness, subjectivity, or indeterminism are forced on us by the
experimental facts covered by nonrelativistic quantum mechanics (Bell 2001, p. 152).

According to Bell, all the counter arguments cannot reduce the importance of the
theory in principle. Nevertheless, in the following we will take a closer look at some
of those arguments. Heisenberg expresses the opinion that the identical descriptive
content of the theory (relative to standard quantum mechanics) disqualifies it as an
independent theory. He writes (Heisenberg 1959, p. 106):

From a strictly positivistic point of view, one could even say that we are dealing here not
with an alternative suggestion to the Copenhagen interpretation, but instead with an exact
repetition of it, only with different terminology.

In the face of the conceptional differences between the de Broglie–Bohm theory and
the usual quantum theory, this statement would seem to be overly strong. Further-
more, Heisenberg naturally presumes here that the Copenhagen interpretation offers
a convincing solution to the measurement problem. Closely related are references to
“Ockham’s razor”. According to the prevailing opinion, when two theories are equiv-
alent, the onewhich requires the lesser number of premises should be preferred. Does
Ockham’s razor thus “cut off” the guidance equation as superfluous ballast from a
theory which offers no additional predictions? This demand fails to notice that the
additional equation in the de Broglie–Bohm theory renders unnecessary all of the
postulates concerning the outcome of a measurement and the interpretation of the
wavefunction.

While the previous arguments take the considerable similarity of the DBB theory
to the quantum theory as an object of criticism, others see the reason to repudiate the
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DBB theory in their radical dissimilarity. They find fault with the explicit distinction
of the position, and the lack of symmetry between, e.g., the position and the momen-
tum spaces (see the objection of Pauli in Myrvold 2003). In the DBB theory, with
its first-order equation of motion, momentum and energy at the level of individual
particles are however no longer conserved quantities. The justification of the demand
for symmetry between position and momentum can thus be reasonably questioned.

Still other critics are bothered by the (double) role of the wavefunction: It fixes
the particle dynamics and is at the same time (i.e. its absolute square) a measure for
the equilibrium distribution. In addition, it acts upon the particle’s motion without
any back-reaction effects. Another point of criticism refers to the fact that according
to the de Broglie–Bohm theory, the world is populated by innumerable “empty”
wavefunctions. This is indeed somewhat inelegant.

The role or the status of the wavefunction is also the object of a discussion among
those scientists who work with the DBB theory. Originally, the wavefunction was
taken to represent a real, physical field. Dürr et al. (1996) suggest, in contrast, that
it should play a “nomological” role (i.e. with a law-like character). The wavefunc-
tion would then more closely correspond to, e.g., the Hamilton function in classical
mechanics than to the usual type of physical field. This could reduce the weight
of the criticisms of the lack of reaction effects and of the “empty” wavefunctions.
While the interested reader can find a more detailed discussion of the criticisms of
the DBB theory in Passon (Passon 2010, pp. 117ff), we will now turn to the principal
objection against it: The question of the possibility of a relativistic generalization of
the theory.

The particle dynamics of the de Broglie–Bohm theory connects positions at arbi-
trary distances. This non-locality would appear to violate Einstein’s postulate of the
speed of light as an upper limiting velocity. However, the DBB theory discussed so
far is an extension of non-relativistic quantummechanics. The allusion to the fact that
it is not compatible with the requirements of the special theory of relativity is thus
not really a criticism, but rather simply a statement of fact. This rejoinder is however
too superficial, since it is indeed just the non-local dynamics which allows the de
Broglie–Bohm theory to explain the violation of the Bell inequalities (cf. Chap. 4,
and there in particular Sect. 4.4).

As a rule, the criticism of the non-locality of the DBB theory is primarily associ-
ated with doubts as to whether or not the theory can be relativistically generalized.
At the same time, there is an orthodox relativistic quantum theory (the Dirac theory)
and a relativistic quantum field theory (see Chap. 6), so that the final (and nega-
tive) judgment about the DBB theory seems to be passed. However, this argument
would be significantly more convincing if those (orthodox) relativistic theories had
no measurement problem. But there, also, e.g. the question of definite measurement
outcomes is controversially debated.

Thus, the development of a “Bohm-like” relativistic quantum theory (and quantum
field theory) without the foundational problems of the conventional formulation is
part of the current research program of scientists who work in this field. Some of the
approaches discussed there apply notably not particle ontologies, but instead field
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ontologies. Furthermore, some of the relativistic generalizations dispense even with
a deterministic description.21

It turns out that not only the dynamics of a generalized guidance equation pose a
problem for a relativistic generalization, but also the (generalized) quantum equilib-
rium distribution. This requirement distinguishes a frame of reference, namely that
in which the distribution is determined. The equivalence of all inertial systems is,
however, at the very core of special relativity, according to the usual understanding.
There are some approaches in which the “distinguished” frame of reference has no
experimentally accessible influence and which can reproduce all the predictions of
relativistic quantum theory. A new evaluation of the relationship between quantum
theory and relativity is however certainly bound up in such approaches. The support-
ers of theDBB theory recall in this connection quite rightly that (asmentioned above)
it is precisely this non-locality, as expressed in the violation of the Bell inequalities,
which is also a part of conventional quantum mechanics and quantum field theory.
Therefore, from the viewpoint of many adherents of the DBB theory, the conven-
tional interpretations of quantum mechanics and quantum field theory likewise have
this same problem, but they mask it by their vague formulations (cf. also Bricmont
2016, pp. 169–173) for more on this topic).

We shall now leave the de Broglie–Bohm theory for a while and turn to Everett’s
work, another controversially discussed interpretationof quantum theory. InSect. 5.3,
we will then come back to the DBB theory within the framework of a comparison
between various interpretation approaches.

5.2 Everett’s Interpretation

In 1957, the American physicist Hugh Everett III (1930–1982) published his “rel-
ative state” formulation of quantum mechanics (see Everett 1957). It contains the
results of his doctoral thesis, mentored by John A. Wheeler at Princeton University.
Its goal was a re-formulation of the theory, in which the discontinuous change of
state (“collapse”) would be superfluous, and instead, a unitary time evolution of the
wavefunction would hold throughout. In contrast to the de Broglie–Bohm theory,
however, the completeness of the quantum-mechanical description is asserted, and
thus the third statement ofMaudlin’s trilemma (Sect. 2.3.1) is denied: Measurements
appear to have only one definite outcome in Everett’s approach, although in fact the
wavefunction (with its superposition states) contains a complete description.

Everett’s guiding concept was to derive the interpretation from the mathematical
formalism.22 He was motivated explicitly by the measurement problem, or by the
distinction of an external observer in the usual formulation:

21The existing approaches and attempts to find a Lorentz-invariant generalization of the DBB theory
are discussed in Passon (2006) and in Tumulka (2007).
22Everett himself writes of his methodology: “The wavefunction is taken as the basic physical
entity with no a priori interpretation. Interpretation comes only after an investigation of the logical
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No way is evident to apply the conventional formulation of quantum mechanics to a system
that is not subject to external observation. The whole interpretive scheme of that formalism
rests upon the notion of external observation (Everett 1957, p. 455).

But at the latest when considering cosmological problems, the standpoint of an
external observer can no longer be reasonably assumed, and the applicability of the
quantum theory would appear to be frustrated by that fact.

Along with the justification for how—in view of the superposition states—the
appearance of definitemeasurement outcomes is produced, Everettmust furthermore
explain how and why the statistics of those measurement results follows Born’s rule
(i.e. |ci |2 corresponds to the probability of occurrence of the given outcome). Now,
Everett’s work has itself become the object of an interpretation debate. Jeffrey Barrett
writes on this subject:

The fact that most no-collapse theories have at one time or another been attributed to Everett
shows how much the no-collapse tradition owes to him, but it also shows how hard it is to
say what he actually had in mind (Barrett 1999, pp. 90f).

In the following, we will trace roughly how the open technical and conceptional
questions relating to the 1957 article have led to the development of variants and
modifications. We begin however with a description of Everett’s basic idea.

5.2.1 The Basic Idea

Everett’s re-interpretation of the measurement problem is just as surprising as it is
brilliant. This problem results, as is well known, from the application of the quantum
theory to the measurement process. In general, a superposition state results from this
process, consisting of, e.g., different “pointer states”, while our experience tells us
that measurements lead to unique results. Superposition states appear under these
circumstances not to give an appropriate description of the physical situation. The
drastic consequences which result (“either the Schrödinger equation is false or it is
not complete” (Bell 2001, p. 173)) are avoided byEverett with the aid of the following
consideration: Under the premise that the quantum theory is applicable also to the
observation process, the observer must therefore also enter into a “superposition
state”—and this superposition undermines the reliability of the judgement that caused
us to doubt the appropriateness of superposition states as a description in the first
place! Instead, Everett suggests that we identify every term of the superposition with
an (equally weighted) state of the observer.23 The evolution of measurements (or
observations) can then be described as follows:

structure of the theory. Here as always the theory itself sets the framework for its interpretation”
(Everett 1957, p. 455).
23He models the “observer” by a physical system, in the concrete case a machine which has access
to sensors and storage media.
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We thus arrive at the following picture: Throughout all of a sequence of observation processes
there is only one physical system representing the observer, yet there is no single unique
state of the observer (...). Nevertheless, there is a representation in terms of a superposition,
each element of which contains a definite observer state and a corresponding system state.
Thus with each succeeding observation (or interaction), the observer state ‘branches’ into a
number of different states. (...) All branches exist simultaneously in the superposition after
any given sequence of observations (Everett 1957, p. 459).

In which sense Everett can still consider just one observer (“one physical system
representing the observer”), who is simultaneously in the multiplicity of states as
described, is initially unclear. The various different answers to this question lead
essentially to the different variants of theEverett interpretationwhichwerementioned
in the above quote from Barrett.

5.2.2 The Many-Worlds Interpretation

Bryce DeWitt and Neil Graham (1973) popularized the Everett theory through their
anthology “The Many-Worlds Interpretation of Quantum Mechanics” and coined
the catchy name with their choice for its title. They interpret the branching of the
wavefunction mentioned in the Everett quote above in a completely realistic manner,
as a real splitting into different “worlds”, and write24:

The universe is constantly splitting into a stupendous number of branches, all resulting
from the measurement-like interactions between its myriads of components. Moreover, any
quantum transition taking place on every star, in every galaxy, in every remote corner of the
universe is splitting our local world on earth into myriads of copies of itself (DeWitt and
Graham 1973, p. 161).

“World” means here the totality of all the (macroscopic) objects, and the human
observer likewise is subject to this splitting into a manifold of “copies”.

DavidWallace (Wallace 2010, p. 4) illustrates this astounding idea bymeans of an
analogy with classical electrodynamics. Imagine an electromagnetic configuration
F1(r, t) which describes a pulse of light that is propagating from the Earth to the
Moon. A second configuration F2(r, t) could describe a light pulse underway from
Venus to Mars. How, asks Wallace, should one now interpret the configuration

24It is very questionable as to what extent this suggestion corresponds to Everett’s own under-
standing of the theory. Since Everett worked in the strategic planning department of the Pentagon
after finishing his doctorate, and published no more work on quantum theory, this question can
be answered only by consulting his sporadic correspondence and papers from his estate. These
sources give the impression that Everett did not have a splitting up into different “worlds” in mind,
whose definition would seem to make a connection with classical concepts. In some respects, the
current version of the many-worlds interpretation, which we will discuss more detail in the fol-
lowing sections, appears to be more similar to Everett’s original conception. However, he did not
categorically reject the language of DeWitt—especially since he was very grateful to the latter for
the popularization of his ideas. See Barrett (2011), and the essay by Peter Byrne in Saunders et al.
(2010), for more on this subject.
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F(r, t) = 1

2
· F1(r, t) + 1

2
· F2(r, t) ? (5.10)

Does it describe a light pulse which is moving simultaneously between the Earth and
theMoon as well as betweenVenus andMars, since it occurs as a superposition? This
is of course nonsense; instead, Eq. (5.10) does not describe a “strange” light pulse
in a superposition state, but rather two “ordinary” light pulses at different locations.
Wallace continues:

And this, in a nutshell, is what the Everett interpretation claims about macroscopic quantum
superpositions: they are just states of the world in which more than one macroscopically def-
inite thing is happening at once. Macroscopic superpositions do not describe indefiniteness,
they describe multiplicity (Wallace 2010, p. 5).

Here, however, we are not dealing with a spatial separation (as in the example from
electrodynamics), but instead—asWallace expresses it—with a dynamic separation.
This means that the parallel worlds have no mutual interactions, i.e. described picto-
rially, they are “transparent” to one another. The innumerable “worlds” are located
unperturbed in the same, single spacetime region.25

The interpretation of Everett’s construction given by DeWitt and Graham has
entered into the popular-scientific literature and has since ignited the fantasy of
(not only) laypersons interested in physics and science fiction authors. In an obvi-
ous sense, the measurement problem is resolved by this construction, since in each
“world”, an eigenstate of the measurement apparatus in fact exists. Whether this
condition suffices for a complete resolution of the measurement problem is how-
ever questioned by Maudlin (2010). In Sect. 5.2.6, we will discuss this criticism
of Everett’s interpretation. The situation regarding the question of non-locality is
similar: While Bacciagaluppi (2002) supports the view that the violation of Bell’s
inequality (see Chap. 4) can be explained here without action at-a-distance, Allori
et al. (2011) argue that the many-worlds interpretation produces this appearance of
locality only because of its imprecise formulation. In Allori et al. (2011), a modifica-
tion of the many-worlds interpretation is suggested, which likewise contains action
at-a-distance (cf. Sect. 5.2.6).

In the version that we have thus far sketched, the theory however does not appear
to be complete. Leslie Ballentine has pointed out that the meaning of probability
statements within the Everett interpretation is unclear. Finally, all possible events
do actually occur (see Ballentine 1971, pp. 233–235). Furthermore, the branching
is subject to an ambiguity with respect to the choice of basis. This problem of the
“preferred” basis will be discussed first, in the following section.

25This spacetime is subject to splitting only when the many-worlds idea is applied to theories of
quantum gravitation.



202 5 No-Collapse Interpretations of Quantum Theory

5.2.3 The Problem of the Preferred Basis

Let us consider a typical example of the superposition of various spin states (e.g. those
of a silver atom): |�〉 = 1√

2
(| ↑x 〉 + | ↓x 〉). If one wishes to determine the orien-

tation of the spin along the x direction, one would investigate this state using a
correspondingly oriented Stern–Gerlach magnet. At the end of the measurement, the
state

|�〉 = 1√
2

(| ↑x 〉|M↑x 〉 + | ↓x 〉|M↓x 〉
)

(5.11)

is present. This state thus describes—according to the many-worlds interpretation—
two “worlds”, in which the x component of the spin is either ↑x or ↓x . The decom-
position into basis vectors is however in general not unique and could be just as well
carried out with eigenvectors with respect to some other measurable quantity. For
example, the following linear combination could be considered26:

| ↑z〉 = 1√
2
(| ↑x 〉 + | ↓x 〉) | ↓z〉 = 1√

2
(| ↑x 〉 − | ↓x 〉)

|M↑z 〉 = 1√
2
(|M↑x 〉 + |M↓x 〉) |M↓z 〉 = 1√

2
(|M↑x 〉 − |M↓x 〉) .

With respect to this basis, the state (5.11) now has the following representation:

|�〉 = 1√
2

(| ↑z〉|M↑z 〉 + | ↓z〉|M↓z 〉
)

. (5.12)

If the two “worlds” branch in terms of these basis vectors, the spin along the x
direction would not have a well-defined value, and instead, its z component27 would
be well defined. The choice of a basis within the quantum theory is to be sure purely
conventional and should have no physical relevance. A factual difference between the
representations in (5.11) and (5.12) must therefore be separately justified. In other
words, the choice of a “preferred basis” is necessary. One might object at this point
that the choice of a specific measurement setup leads to precisely such a distinction
of the pointer basis (5.11). In the other basis (5.12), in contrast, in every term there
is a superposition of the various states of the x measurement apparatus. The non-
occurrence (or rather the non-observability) of superpositions of macroscopically
different states was however just what we were trying to explain with the Everett
interpretation—it should thus not be a precondition of the investigation. Furthermore,
such a distinction of a particular basis for the measurement process contradicts the

26The ambiguity of the representation is the subject of the “biorthogonal decomposition theorem”
(cf. Bub 1997, p. 151). The decomposition is unique if and only if all the components have different
and nonzero coefficients.
27Note that there are no common eigenvectors of σx and σz .
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spirit of an interpretation which merely wishes to let the formalism remain valid and
in which the observation plays no fundamental role.28

In today’s view, the suggestions for solving this problem fall into two classes:
The older ones, which do not refer to decoherence, and those which make use of
the mechanism of decoherence. A brief treatment of those Everett variants which
are currently considered to be obsolete since the advent of the approaches based on
decoherence is desirable with a view to the discussion of the concept of probability
(Sect. 5.2.5). We will therefore first cast a brief glance at these older approaches
before considering the role of decoherence theory in Sect. 5.2.4.

David Deutsch’s Variant of Everett’s Interpretation

David Deutsch, in his early works, suggested a mechanism for distinguishing a basis
(cf. Deutsch 1985).29 He extends the quantum-theoretical formalism in terms of an
algorithm which produces the corresponding basis. This depends (without going
into the details here) only on the corresponding physical state and its dynamics.
The choice is limited by the requirement that in the case of “measurements”, the
relevant basis in fact corresponds to the “pointer basis”. This guarantees that after a
measurement, a unique result is in fact obtained (Deutsch 1985, pp. 22f).

Wallace (2010, p. 7) calls this variant of the Everett interpretation the “many-
exact-worlds” interpretation. In Sect. 5.2.4, we will see that in the meantime, there
are more promising candidates for the solution of the problem of the preferred basis,
and David Deutsch himself has also rejected this interpretation since the end of the
1990s. First, however, we will consider yet another variant.

The Many-Minds Interpretation

The many-worlds interpretation includes the act of observation within the physical
description. This apparently presumes thatmental states are also a part of the physical
world and are subject to the laws of quantum theory.30

In this sense, a many-worlds interpretation appears to always imply a theory of
branching consciousness states (the exception will be discussed below). This evident
significance is however notmeant when one speaks of themany-minds interpretation.

28The problem treated here thus occurs in other interpretations of quantum mechanics as well, and
it shows that the measurement problem actually consists of two sub-problems: (i) The problem of
the preferred basis and (ii) the problem of the definite outcome of a measurement. Within, e.g.,
the Copenhagen interpretation, however, (i) can be resolved by specifying the measurement setup
(choice of direction).
29Deutsch mentions here (on p. 2) that he has taken up an idea of Everett’s, based on private
conversations with him.
30This position is called “physicalism”. Physicalism (expressed in simplified form) asserts the
metaphysical hypothesis that everything which exists is physical. It can be understood as a further
development ofmaterialism. In particular, it rejects any kind of dualismbetween physical andmental
(“mind”) states. The relation between physical and mental states is not necessarily an identity,
however. In the philosophy of the mind, the viewpoint is widespread that these two property areas
are connected through a “supervenience relation”. The supervenience of A over B is understood to
mean that (in “slogan” form) “no change in A is possible without a change in B”. This also permits
speculations on a possibly non-reductionistic physicalism.
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A prominent suggestion of this variant is due to Albert and Loewer (1988). They
were motivated by the problem of the preferred basis, as well as the difficulty of
understanding the significance of probability statements within the many-worlds
interpretation (this problem will be treated in more detail in Sect. 5.2.5).

The point of departure of the many-minds interpretation is the statement that
mental states can never be in superpositions, according to our introspective experi-
ence. Loewer and Albert reason from this that mental states (i.e. beliefs, intentions,
memories, etc.) are not physical.31

They then postulate that every observer is outfitted with an infinite number of
“minds”. While in the case of a measurement or an interaction, the physical brain
states take on a superposition state, a probabilistic time evolution leads to a state in
which a certain portion of these minds corresponds in each case to the perception of
one single outcome for the experiment. This process takes place within one world.

Now, how does this interpretation deal with the problem of the “preferred basis”?
In an evident sense, the choice of basis vectors for the evolution of a state has no
physical significance, since in themany-minds interpretation, there is only oneworld.
An ambiguity with respect to the splitting into “many worlds” thus cannot arise here.
However, Barrett (1999, p. 195) has pointed out that the “basis” of the consciousness
states plays a comparable role.32

Both in the many-minds interpretation and also in the interpretation of Deutsch
(1985), a preferred basis must thus be postulated. This common strategy is accom-
panied by a common difficulty: All attempts to introduce a preferred basis ad hoc
must postulate properties which should in fact be explained in a fundamental theory
(cf. Wallace 2010, p. 8). In the next section, we will treat the theory of decoherence.
With it, one associates the hope that a convincing solution of the problem of the
preferred basis can be found, since it does without such ad hoc assumptions.

5.2.4 The Role of Decoherence Theory

As a rule, physics investigates “isolated systems”, i.e. it considers the influence
of the “environment” to be a negligible perturbation and, above all, an unneces-
sary complication. We now find that within the quantum theory, precisely the inclu-
sion of the interactions with the environment can lead to conceptional progress in
describing measurements, as well as the classical limits of the theory. The research
which has been accomplished since the early 1970s in this field has not been asso-
ciated with any particular interpretation of quantum theory and makes use simply
of the mathematical properties of the standard formalism. Pioneers in this field of

31One may consider the astute self-observation on which this conclusion is based not to be a
particularly powerful tool for philosophical reflection. But for questions involving our conscious
minds, it is however our only tool!
32Just how Barrett means this for a non-physicalistic conception of the mind remains unclear.
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“decoherence”33 were Zeh (1970) and Zurek (1981). Already in Sect. 2.3, we have
discussed the decoherence programme. We make use here of the concepts intro-
duced there, amplify them, and codify the results within the context of the Everett
interpretation.

In Sect. 5.2.3, we have already explained how the decomposition of a state into
its basis vectors can be ambiguous. The decompositions (5.11) and (5.12) are math-
ematically equivalent—their physical differences must therefore be justified.

The first step towards the resolution of this problem can now be accomplished
through a purely mathematical consideration: If we look at the entanglement with
a third system E (the environment, in our example likewise represented by a two-
dimensional Hilbert space with states |ei 〉), we will be led to a state of the form

|�〉 = 1√
2
| ↑x 〉|M↑x 〉|e↑x 〉 + 1√

2
| ↓x 〉|M↓x 〉|e↓x 〉 . (5.13)

Andrew Elby and Jeffrey Bub (1994) were able to show that this decomposition
into orthogonal states on a triple product space is unique.34 It thus eliminates the
ambiguity in the choice of a basis, in a formal sense (and also that of the associated
physical measurand). Naturally, this purely mathematical argument as yet yields
no indication of which basis is to be distinguished—especially since the extremely
detailed states of the environment are unobservable. In this situation, physical criteria
for the identification of this unique (“preferred”) basis must still be developed, as
Schlosshauer mentions:

The decoherence programme has attempted to define such a criterion based on the interac-
tion with the environment and the idea of robustness and preservation of correlations. The
environment thus plays a double role in suggesting a solution to the preferred-basis problem:
it selects a preferred pointer basis, and it guarantees its uniqueness via the tridecompositional
uniqueness theorem (Schlosshauer 2005, p. 1279).

These criteria were thus not postulated, but rather they follow from the quantum-
theoretical investigation of the dynamic influence of the environment. For this pur-
pose, one treats complicated models of the environment. The interactions between
it and the measurement apparatus take place as a rule via force laws which contain
powers of the spatial distance (e.g. the Coulomb force ∝ r−2). It follows that the
unique decomposition as a rule distinguishes the basis of positional space, and in
the case of a measurement, the “pointer basis” is the relevant basis. Schlosshauer
summarizes this approach, called environment-induced superselection, as follows:

33The adjective “coherent” in the general vocabulary means “connected”. The physical-
terminological expression “coherent” is usually applied to optics, and it describes, roughly speaking,
the precondition that must be fulfilled by different wavetrains in order that they may be able to inter-
fere with each other. Expressed non-technically, the decoherence program thus attempts to clarify
the conditions and preconditions under which quantum states lose this “non-classical” property.
34This tridecompositional uniqueness theorem is valid under rather general conditions. The exis-
tence of the decomposition is by the way not guaranteed. The proof of this theorem can also be
found in (Bub 1997, Sect. 5.5).
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The clear merit of the approach of environment-induced superselection lies in the fact that
the preferred basis is not chosen in an ad hoc manner simply to make our measurement
records determinate or to match our experience of which physical quantities are usually per-
ceived as determinate (for example, position). Instead the selection is motivated on physical,
observer-free grounds, that is, through the system-environment interaction Hamiltonian. The
vast space of possible quantum-mechanical superpositions is reduced so much because the
laws governing physical interactions depend only on a few physical quantities (position,
momentum, charge, and the like), and the fact that precisely these are the properties that
appear determinate to us is explained by the dependence of the preferred basis on the form
of the interaction. The appearance of classicality is therefore grounded in the structure of the
physical laws – certainly a highly satisfying and reasonable approach (Schlosshauer 2005,
pp. 14f).

This quote once again emphasizes that the results of decoherence are not tied to any
particular interpretation of the quantum theory, i.e. that they can be applied within
every interpretation.35

Since the interaction with the environment is described quantum-mechanically
(i.e. via a unitary time evolution), the combination of the [object + measurement
apparatus + environment] remains in a so-called pure state. This overall state will
in general contain both a superposition of various “pointer positions” and also inter-
ference terms. The exact state of the environment is not only not susceptible to
influences, but as a rule also not to observation. If one computes the predictions
for the real observables in the subsystem [object + measurement apparatus], one
obtains a result in which there are practically no more interference terms.36 This part
of the programme is termed the environment-induced decoherence and consists—in
summary—in the fact that from a coherent superposition (a “pure state”), an inco-
herent (or “decoherent”—thus the name) superposition with respect to a uniquely
defined basis emerges. Due to an apparent reason, this process alone does not consti-
tute a solution to themeasurement problem, for it still cannot explainwhich branch of
this now decoherent superposition corresponds to the outcome of the measurement.
In Footnote 28, the measurement problem was divided up into two sub-problems: (i)
“Preferred basis” and (ii) “definite outcome”. The decoherence theory thus merely
solves the first sub-problem.

For the Everett interpretation, this question is naturally not relevant: In its context,
the basis which is preferred in this manner defines the splitting into independent
“worlds”. These are however not “exact” (as, e.g., in the suggestion ofDeutsch 1985),
but are rather merely approximations. In the end, the preferred basis is approximately
distinguished by a dynamic process.

According to David Wallace (2010, p. 11), since the mid-1990s there has been a
broad consensus among physicists that the problem of the preferred basis has been
solved by environment-induced decoherence. Only in some areas of the philosophy
of science is there still criticism of the fact that the approximate dynamic process of

35For the adherents of the de Broglie–Bohm theory, the results of decoherence, for example, permit
a more exact justification of the so-called effective collapse of the wavefunction (cf. Sect. 5.1.5).
36Expressed technically, one takes the trace of the density matrix over the degrees of freedom of
the environment. This makes it (in the preferred basis) approximately diagonal. The off-diagonal
elements are however just what give rise to the interference effects.
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decoherence is used to define objects which one then “takes seriously in the ontolog-
ical sense”. In Wallace’s opinion, the quasi-classical branches of the wavefunction
are “emergent structures”, whose ontological status corresponds, for example, to
that of the temperature in statistical mechanics (see the essay byWallace in Saunders
et al. 2010, p. 53).

The Everett interpretation has experienced a considerable revival through these
results, since the decoherence-based modification is ontologically certainly less
extravagant than the versions of DeWitt and Graham (1973), Deutsch (1985) or
Albert andLoewer (1988).37 The definition of the“worlds” is based here on a dynamic
process which can be analysed using the methods of the standard formalism. Fur-
thermore, this approach can be relativistically generalized in a manifest way. The
significant open questionwhich remains is that of the status of probability statements,
to which we will now turn our attention.

5.2.5 Probability in Everett’s Interpretation

Within the Copenhagen interpretation, if we consider a state |�〉 = ∑
i ci |ψi 〉, the

square of the amplitude |ci |2 denotes the probability of obtaining the state |ψi 〉 as
the result of a measurement of the corresponding observable on the system |�〉. In
the de Broglie–Bohm theory, the same is true – but there, on the grounds that the
configuration of the particle selects out this part of the wavefunction. In the GRW
theory, finally, this is the probability that the dynamic collapse of the wavefunction
of the measurement apparatus will lead to this state. In all of these cases, there are
two preconditions for the practicable application of the probability concept: Various
possible outcomes and the lack of knowledge of the actual result. Within the many-
worlds interpretation, however, all of the results will occur with certainty. It thus
initially appears unclear just what the probability statements could refer to in this
connection (the “incoherence problem”)—not to mention why these probabilities
should correspond to |ci |2 (the “quantitative problem”). Precisely these two aspects
(which are however closely related) are singled out in the discussion of the probability
problem.

The status of probability statements within the Everett interpretation has led to
a technically and conceptionally highly complex debate. Some of the important
contributions to this discussion will be treated in the following. Here, again, it is
seen that the advent of the decoherence theory marked a division point within the
overall debate.

The Incoherence Problem

Naturally, the square of the amplitude |ci |2 still retains the mathematical properties
within the Everett interpretation that qualified it to be a measure of probability (over

37Now and then at scientific conferences, surveys are conducted (not always with complete seri-
ousness) about which interpretation of quantum theory is favoured by the conference attendees.
Tegmark (1998) reports the result of such a survey at a workshop on quantum theory; it found that
the Everett interpretation was the preferred alternative to the Copenhagen interpretation.
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the set of all branchings). However, the ci are just “branching amplitudes”, and every
branch claims the same reality in this interpretation. Both Everett, as well as later
DeWitt and Graham, appear to have appreciated this difference insufficiently, since
they claimed that they could even derive Born’s rule:

The conventional probability interpretation of quantum mechanics thus emerges from the
formalism itself (DeWitt and Graham 1973, p. 163).

This claim is supported by DeWitt and Graham on the basis of the following math-
ematical result38: If one considers a series of N measurements of a superposition
state with coefficients ci , then in the limit N → ∞, the state of the overall sys-
tem (= N measurement apparatus + N systems) converges towards an eigenstate
of the so-called relative frequency operator for the measured value i . This operator
measures—as its name implies—just the relative frequency with which the experi-
ment yields the outcome i . The associated eigenvalue is then indeed given by |ci |2.
However, to see a proof of Born’s rule in this fact is a failure to recognize that in
real experiments, the value of N must always remain finite, and therefore, branches
occur with statistical deviations. Now, one can justifiably expect that their squared
amplitudes remain “small”. The assertion that these events thus also occur with small
probabilities is however correct only if the squares of the branching amplitudes are
indeed identifiable with probabilities. This however renders the argument circular,
for just this identification is what was supposed to be justified (cf. Barrett 1999,
p. 163; Deutsch 1985, p. 20; or Ballentine 1971, p. 234).

A genuine solution to the incoherence problem was suggested by David Deutsch
in the same article in which he also treated the question of the preferred basis. It
is based on the intuition that the most probable outcome should also be the most
frequent. While with DeWitt, individual worlds branch off, Deutsch postulates an
(uncountable) infinity of identical copies of the same world (see Axiom 8 in Deutsch
1985, p. 20). In the case of a measurement (with i possible measured values), a
relative fraction pi branches off into worlds with the corresponding experimental
outcome. This fraction then corresponds to the probability of occurrence of the event
i (in “my” world). Deutsch thus solves the incoherence problem by means of an
extension of the “ontology” of the theory.

The many-minds interpretation of Albert and Loewer (1988) proceeds identically
in a structural sense. As we have seen, there also, each observer state is associated
with infinitely many minds. In the case of a measurement (with i possible measured
values), these are supposed to assume the “consciousness content” that “the event
has occurred”, likewise with the fractional weight pi .

If we now set this fraction pi of the minds or the worlds (Deutsch), respectively,
equal to the squared amplitude |ci |2, we also obtain an (ad hoc) solution to the
quantitative problem.39

38This theorem was discovered by Neil Graham in 1970, during his doctoral work which was
mentored by DeWitt. Already in 1968, James Hartle had proved an equivalent result (Hartle 1968).
39The many-minds interpretation buys the solution to the probability problem at the price of a
substance dualism, which is accepted in modern philosophy of the mind by only a small minority
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These two suggestions are of course based on special solutions of the problem of
the preferred basis (cf. Sect. 5.2.3), which at latest since the advent of decoherence-
based approaches is regarded as obsolete. We thus find here the curious situation
that precisely the most convincing solution (in the eyes of many physicists) to the
problem of the preferred basis leads to the result that the concept of probability once
again appears to be a “foreign body” within the Everett interpretation.

Now, there exist various approaches which—as escape routes out of this
dilemma—attempt to justify a concept of “uncertainty” or “indeterminacy” within
the Everett interpretation. This concept appears to many authors to be a necessary
condition for making it possible that probability statements can reasonably be made
at all.

Vaidman (1998) undertook such an attempt. He considers a measurement whose
possible outcomes are denoted as A and B. It is true, maintains Vaidman, that in
the world A, the probability for the occurrence of the outcome could be trivially
A = 1; however, it could also be that an experimenter in the world A might have no
knowledge of this circumstance—for example as long as that observer in world A
had not yet read off the result from the measurement apparatus. See also Vaidman
et al. (2008)

Whether this type of “lack of knowledge” suffices to give the concepts of “prob-
ability” and “chance” a reasonable meaning however remains unclear. David Albert
(see Albert 2010, pp. 367f) objects that this uncertainty is on the one-hand avoidable,
and on the other, it occurs only after the experiment has been carried out.

Simon Saunders has developed a stronger version of this “subjective indetermi-
nacy”, which according to its claims can also be applied to situations before a mea-
surement has been carried out. He argues that the branching into different worlds
occurs in a way that is subjectively indeterministic. On the basis of a specific defi-
nition of “personal identity”, Saunders sees in every “copy” of the observer a future
self of the original observer. In this sense, the person should experience uncertainty
before a measurement as to which person he or she will become after the measure-
ment (cf. Saunders 1998). Another justification of subjective indeterminacy in the
Everett interpretation is due to DavidWallace, who makes the semantics of probabil-
ity statements his starting point (cf. Wallace 2005). These results however remain the
objects of a controversial debate (see, e.g., Greaves 2004 for a criticism of these posi-
tions). At the end of the next subsection, we will meet up with one more suggestion
for treating the incoherence problem.

The Quantitative Problem

Let us postpone for the moment the incoherence problem and turn to the question
of why probability statements within the Everett interpretation should obey Born’s
rule in particular. The thought offers itself that when a splitting into N worlds has
occurred, each branch should be associated with the same probability, 1

N . After all,

of philosophers. This problem motivated Lockwood (1996) to suggest a variant of the many-minds
interpretation, which dispenses with dualism and a probabilistic dynamics. Ironically, it is however
controversial as to whether or not Lockwood’s theory permits a plausible probability interpretation
at all (see Barrett 1999, pp. 206–211).
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their “reality” is alleged to be equivalent. This strategy is however not allowed in
the decoherence-based Everett interpretation, since no counting arguments can be
utilized for the dynamically and only approximately defined worlds.

Some authors however challenge the justification of demanding a positive sub-
stantiation of Born’s rule in the Everett interpretation (see Saunders 1998, p. 384, as
well as the contribution by Papineau in Saunders et al. 2010). Born’s rule should be
able to be postulated here just as in conventional quantum theory (and like analogous
propositions in other theories)—the status of probability statements would then be
just as secure (or insecure) as in other areas of physics.

A completely new twist was given to this discussion by the publication of Deutsch
(1999) (later, his approach was rendered more precise by Wallace (2003)). In this
article, David Deutsch transferred the methods and results of decision theory to a
quantum-theoretical context, and even claimed that he could derive Born’s rule.

The (classical) decision theory models decision processes which are carried out
by “rational agents” in uncertain situations. Probabilities are thus construed here as
functional, namely as factors which guide behaviour. The fundamental concepts of
this theory are “states of the world” (si ∈ S), “actions” (A, B, . . .), their “conse-
quences” (C), as well as “preferences”, which an agent ascribes to possible actions.
These preferences define an ordering within the set of actions: A ≥ B ≥ C · · · (in
words: “action A is preferred relative to B; both are preferred over C , etc.”).

Formally, actions are mappings between the states of the world and the conse-
quences (A(s) ∈ C). The agent considered has only incomplete knowledge of the
actual state of the world—and therefore of the consequences of his or her actions.
Decision theory can now prove the so-called representation theorem: If the prefer-
ences for actions are subject to so-called rationality conditions,40 those preferences
can be expressed in terms of a unique utility function U for the consequences, as
well as a probability measure p for the states:

EU (A) =
∑
si ∈S

p(si ) · U (A(si )) . (5.14)

In this expression, EU (A) stands for the expected utility of the action, and the
preference of action A over action B as chosen by the agent is translated into the
condition EU (A) > EU (B). Greaves summarizes this relation as follows:

This result guarantees an operational role for subjective probability: any rational agent will
(at least) act as if she ismaximizing expected utility with respect to some probabilitymeasure
(Greaves 2007, p. 113).

These relations are often illustrated in an economic context, for example, as the
rational behaviour for choosing how to bet a sum of money in a wager.

40The concept of “rationality” is used here in a very narrow or weak sense. Decision theory inves-
tigates logical limitations of the preferences and makes no claim to determine them with regard to
content. A typical rationality requirement is the transitivity of preferences: If I prefer action A over
action B, and B over C , then A must be preferred over C .
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David Deutsch and David Wallace were able to prove an analogous result for
the Everett interpretation by utilizing the following correspondences: “states of the
world” correspond to the number of branchings after carrying out a particular mea-
surement; “actions” correspond to the wagers on particular measurement outcomes
(in a “quantum game”); and “consequences” correspond to the winnings (or losses)
in the case that a certain single event occurs. Making use of analogous “rational-
ity conditions”, it was then possible to prove a representation theorem like that in
Eq. (5.14). For the probability measure, one finds just the squares of the ampli-
tudes, pi = |ci |2. The rational agent will thus behave in such a way as if the multiple
branchings represented alternatives whose occurrence frequency is given by Born’s
probability rule.41

In the eyes of the supporters of this position, the probability concept is even better
accommodated within the Everett interpretation than in all other physical theories.
Instead of posing a special problem, the role of probability would now even represent
a strong argument in favour of the many-worlds interpretation.

This result however by nomeans ended the discussion, since there is no unanimity
over the question of how conclusively the premises for the proof can be justified.
Some authors doubt that in fact only non-probabilistic parts of decision and quantum
theories enter into the proof. That would of course invalidate the alleged proof of the
probability rule (cf. Hemmo and Pitowsky 2007).

Likewise problematic is the fact that decision theory investigates actions “in uncer-
tain situations”. Its applicability thus depends again on the question of whether
“uncertainty” is present or not in the Everett interpretation (or whether its subjective
appearance can be conclusively justified). This is at its core of course simply once
again the incoherence problem of the previous section. Here, Hilary Greaves now
takes a radical position: She admits freely that genuine probability and subjective
uncertainty indeed have no place within the Everett interpretation. She adopts the
position (Greaves 2004) that in the framework of the decision-theoretical programme,
this is not at all necessary, and she argues that the rationality conditions can also be
justified in the context of (deterministically) branching worlds. The associated mea-
sure p(si ) cannot however be reasonably called “probability” here. Greaves suggests
instead the term caring measure and describes its meaning as follows:

We might instead call it the agent’s ‘caring measure’, since the measure quantifies the extent
to which (for decision-making purposes) the agent cares about what happens on any given
branch (Greaves 2007, p. 118).

The rational agent thus behaves in such a way that the expected utility is maximized
over all the branches of the wavefunction with respect to the |ci |2 measure, because
he or she knows that all the results will in fact occur.

A further objection to the decision-theoretical justification of probability relates to
the fact that this programme presupposes that the rational agent accepts the validity

41Therefore, the Everett variant of the representation theorem makes an even stronger statement
than its counterpart in classical decision theory. The latter determines the probability measure only
relative to the corresponding preferences of the agent. There are however several such preferences
which fulfil the rationality conditions!
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of the Everett interpretation. Which arguments speak for it? This question refers to
the so-called evidence problem of the Everett interpretation, that is, the question of
how a verification of this theory could be obtained from measurements. Within the
Everett interpretation, a series of measurements leads to a splitting into branches of
the wavefunction which correspond to every arbitrary statistical distribution of the
measured values. The occurrence of a distribution which deviates strongly from the
Born prediction would thus not represent a reason for doubting the quantum theory;
instead, it would be rather expected. A suggestion for solving this problemwas made
by Greaves and Myrvold (see Saunders et al. 2010, pp. 264ff). According to those
authors, the decision-theoretically justified “branching weights”42 would likewise
play a confirmation-theoretical role.

5.2.6 Criticism of Everett’s Interpretation

The problematic status of probability statementswithin the Everett interpretationwas
already discussed in the previous section. Let us now turn directly to another obvious
objection to the interpretation, namely its extravagance. David Wallace notes at the
end of his essay on the Everett interpretation:

I have left undiscussed the often-unspoken, often-felt objection to the Everett interpretation:
that it is simply unbelievable. This is because there is little to discuss: that a scientific theory
is wildly unintuitive is no argument at all against it, as twentieth century physics proved time
and again (Wallace 2010, p. 23).

Against this succinct remark, we could answer that the Everett interpretation carries
its application of “scientific realism” further than other theories in modern physics.
The scientific realist supports the view that the success of a scientific theory can
best be explained by assuming that the objects and properties that it postulates do
in fact exist (cf. Bartels 2007). This hypothesis thus refers expressly to not-directly-
observable objects such as quarks or black holes.43 The adherents of the Everett
interpretation reason in precisely the sense that the branching of the wavefunction
implies the existence of parallel worlds. This circumstance is described with notable
accuracy by Ballentine:

Rather than deny that a state vector can be a complete model of the real world, Everett and
DeWitt choose to redefine ‘the real world’ so that a state vector [...] can be a model of it
(Ballentine 1971, p. 232).

Themodern (decoherence-based) approaches would seem however to havemarkedly
improved the ontological status of the many-worlds interpretation. The almost arbi-
trary and unlimited multiplication of universes (or minds) within the earlier variant

42The concept of “probability” is thus again avoided here.
43In fact, variants of scientific realism are also possible which attribute a valid claim of truthfulness
to certain theories, while the entities in question are not considered to be realistic (see Russell’s
position in Hacking 1983, p. 27).



5.2 Everett’s Interpretation 213

of David Deutsch, or the many-minds interpretation of Albert and Loewer, become
superfluous in these newer approaches.

The solution of the measurement problem in the many-worlds interpretation is
based on an additional strong metaphysical assumption: In order to eliminate an
“external observer”, the measurements and observations are referred to the worlds
which are continually branching off. This presumes that the mental states of the
observer can likewise be described quantum-theoretically.44 This physicalism is
indeed a widespread position, but it is controversial within the philosophy of the
mind as to whether it provides a solid basis for explaining the qualia problem or
the typical intentionality of mental states. Tying the solution of the measurement
problem to this precondition would seem to be maladroit, at the very least.

A still much more fundamental criticism was expressed by Tim Maudlin
(cf. Maudlin 2010). He doubts that the Everett interpretation in fact offers a solution
to the measurement problem. According to the usual view (e.g. according toMaudlin
1995!), the measurement problem consists essentially in interpreting the superpo-
sition of macroscopically different states (i.e. different pointer positions, living and
dead cats, etc). From this reading, a measurement on an eigenstate would be unprob-
lematic. Let |M0〉 be the state of a measurement apparatus before the measurement,
and |ψ1〉 the eigenstate of a system relative to the quantity which is to be measured
by M . Then after its measurement, the overall state |M1〉|ψ1〉 is found. Maudlin now
expresses doubt as to the alleged simplicity of this special case and poses the question
of in which sense a state (e.g. |M1〉) in a high-dimensional vector space can at all
represent the well-defined spatial state of a measurement apparatus, e.g. “pointer at
the position 1”. He criticizes the usual manner of speaking, according to which the
wavefunction is defined on the configuration space, since the “spatial configuration”
of all the parts that are represented by a point within this configuration space is not
at all a component of all the interpretations of the quantum theory. While the spatial
configuration of all the parts on R

3 is an explicit component of the description in
the de Broglie–Bohm theory, in a “wavefunction-monistic” theory, in contrast, this
concept can not even be referred to (see Maudlin 2010, pp. 126f). The adherents of
the Everett interpretation (and the same applies to some variants of the GRW theory)
thus, according to Maudlin, lack the resources that would be required to establish a
connection to the localized objects of our four-dimensional spacetime:

For if the result of a measurement consists in, say, a pointer pointing a certain way, and if
a pointer is made of particles, then if there are no particles there is no pointer and hence no
outcome. All of this talk of a wavepacket ‘representing’ an outcome is unfortunate: what
the wavefunction monist has to defend is that the outcome just is the wavefunction taking a
certain form (in some high-dimensional space) (Maudlin 2010, p. 130).

According to Maudlin, the technical discussions about the concept of probability
within the Everett interpretation thus obscure a decisive point: The probabilities
sought after must not only be probabilities for the occurrence of physical events,
but also of the right physical events. “Right” refers here of course to the ability

44Albert and Loewer (1988) formulate, in contrast, a dualistic position in their many-minds inter-
pretation.
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to establish a connection to elements of our everyday physical world in the sense
described above.

In fact, the work of Allori et al. (2011) provides a variant of the many-worlds
interpretation which takes Maudlin’s objection into account (although, curiously,
Maudlin’s work has not been cited). As we shall however see, this modification dis-
penses with the fundamental assumption of previous many-worlds interpretations
that a physical system is to be described by the wavefunction alone. But since it is
this formal simplicity which is emphasized by the supporters of the many-worlds
interpretation as its principal distinctive characteristic, the Allori suggestion is nat-
urally not considered from their perspective to be an alternative which can be taken
seriously.45

Let us take a brief look at this work, which also makes use of an interesting
scientific-historical allusion. At the beginning of the work of Allori et al. (2011), the
original suggestion of Schrödinger (1926) of interpreting the wavefunction “real-
istically” is namely analysed. In that view, in the single-electron case, the charge
density is given by the expression e · |ψ|2. For the many-electron case, Schrödinger
formulates a prescription which involves integration over the additional coordinates
in configuration space. Then, as is well known, the dynamics of the Schrödinger
equation leads in general to a spreading of this charge density over a large region of
space within a short time. This is also the reason why Schrödinger rapidly discarded
this interpretation of the wavefunction.46 Allori et al. however apparently find this
step to have been premature, for while Schrödinger’s idea indeed stands in contra-
diction to point-like charges within a “one-world” theory, it can be re-interpreted
in an evident way in terms of a many-worlds theory. Instead of the charge density,
Allori et al. notably make use of the mass density m(x, z) for technical reasons (see
Footnote 1 on p. 4 in their article):

m(x, t) =
N∑

i=1

mi

∫
d3x1 · · · d3xN δ(x − xi )|ψ(x1, · · · , xN )|2 . (5.15)

The mass density at a point x is thus obtained by integrating the probability density
|ψ|2 over all of the rest of the configuration space (this is quite analogous to the
prescription of Schrödinger 1926). The many-worlds character of this theory is now
obvious: If, for example, the wavefunction of Schrödinger’s cat branches into the
disjunctive parts ψalive and ψdead, then (5.15) will lead to interaction-free mass den-
sities malive and mdead. The objects described by these mass densities can, pictorially
speaking, be considered to be “reciprocally transparent” (Allori et al. 2011, p. 7).

Allori et al. refer to the additionally introduced mass density m(x, t) (in compar-
ison to the usual many-worlds interpretation) as the primitive ontology (PO) of their

45Thus, we have here a conceptional similarity to the de Broglie–Bohm theory, which is not sur-
prising if one casts a glance at the list of authors: with Valia Allori, Sheldon Goldstein, Roderich
Tumulka and Nino Zanghì, we find here several prominent supporters of Bohmian mechanics.
46This difficulty was pointed out to Schrödinger by Hendrik Antoon Lorentz in a letter fromMarch,
1926 (Jammer 1974, p. 31).
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theory. They point out the necessity of such a structure, in order (as in Maudlin’s
argument) to describe material objects in real space via a physical theory.47 As men-
tioned at the outset, the guiding idea of Everett’s, of working with the wavefunction
alone, is intentionally disregarded in this theory. While thus Maudlin’s criticism of
the many-worlds interpretation is formally invalidated by this variant, it aims in its
content at the converse, for there is now no reason to prefer this interpretation over
the de Broglie–Bohm theory.

5.3 The Relation Between the Various Interpretations

We conclude this chapter with a brief summary, which in particular establishes some
relations among Bohm, Everett, and the interpretations introduced in Chap. 2 (the
ensemble and the Copenhagen interpretations).

Both the de Broglie–Bohm theory and the Everett interpretation of quantum
mechanics dispense with a discontinuous change of state (“collapse”) of the wave-
function. Both interpretations thus in fact contain all the branches of the wavefunc-
tion which accumulate through splitting off as a result of every interaction. The
non-observability of superpositions of macroscopically different states (e.g. during
the act of measurement—but a measurement is of course a typical example of an
interaction with a macroscopic object) must be explained in both interpretations.
They however choose different strategies for solving this problem.

The “Bohmian solution” of the measurement problem consists in the fact that the
additional spatial configuration of the “Bohmian particle” distinguishes precisely that
part of the wavefunction which corresponds to the output of the measurement appa-
ratus.48 There can thus be no ambiguity in the “pointer position”, since each state of a
measurement apparatus is characterized by a unique configuration of these Bohmian
particles. Applying suitable initial conditions, this allows the theory to reproduce all
of the statistical predictions of quantum mechanics. In this sense, the de Broglie–
Bohm theory complements the ensemble interpretation of quantum mechanics by a
mechanism which describes the behaviour of the members of the ensemble.

With the exception of position measurements, however, one finds here no prop-
erties of the quantum objects which were already present before the measurement.
In a way, this form of contextuality could be seen as the detailed development of a
remark of Bohr’s, which can be found for example within the following quote: “The
procedure of measurement has an essential influence on the conditions on which the

47In Sect. 5.2.2, we have already mentioned that this variant of the many-worlds interpretation is
non-local. The problem of the preferred basis and the role of probability statements can likewise be
treated differently in this theory.
48The description of the “effective collapse” of the wavefunction in addition profits from the results
of the work on decoherence.
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very definition of the physical quantities in question rests” (Bohr 1935, p. 1025).49

The “production” or “establishment” of the result through and in the act of measur-
ing is likewise part of the Copenhagen interpretation. In contrast to the Copenhagen
interpretation, the de Broglie–Bohm theory however offers a physical mechanism
which explains this process realistically. That naturally says nothing yet about the
plausibility of this mechanism.

On a quite different level, we can establish a parallel between the de Broglie–
Bohm theory and the Copenhagen interpretation: A characteristic of the de Broglie–
Bohm theory is its description of physical reality in terms of the pair consist-
ing of the wavefunction and the configuration (formally: (ψ, Q)). As we have
mentioned in Sect. 2.2.2, the Copenhagen interpretation claims that there is an
“indissoluble connection” between the microscopic system and the measurement
apparatus (i.e. the macroworld). In this sense, the Copenhagen interpretation thus
also describes the physical world in terms of a pair—expressed formally, for exam-
ple, as (ψ, ‘macroworld’).50 In the de Broglie–Bohm theory, the second element of
this pair is therefore replaced by the objects which according to this theory represent
the constituents of the macroscopic world.

In the case of the Everett interpretation, all the possible outcomes of a measure-
ment are realized in fact. This however is not subject to observations, since each
observer is likewise subject to the splitting up of the worlds. The integration of a
plausible concept of probability and the justification of Born’s rule (i.e. the observ-
able relative frequencies of occurrence) remain problematic, as we have discussed in
Sect. 5.2.5.However, the results of decoherence theory havemade it plausible how the
pointer basis of ameasurement apparatus is in fact distinguished. This “decoherence-
based” version of the many-worlds interpretation thus dispenses with a good deal of
ontological ballast which had been held against its earlier formulations.

The splitting into infinitely many worlds of course still appears radical and eccen-
tric. With this background, one may tend to prefer the de Broglie–Bohm theory, at
least with reference to the solution of the measurement problem. Numerous authors
have however pointed out that the latter likewise contains all of the branches of the
wavefunction which split off with every interaction. A more plausible resolution of
the measurement problem is thus only then possible within the de Broglie–Bohm
theory if it defines the ontological status of the wavefunction in a correspondingman-
ner. In Brown and Wallace (2005), the question is discussed as to which difficulties
are faced by this strategy. The suggestion of Dürr et al. (1996), already mentioned
in Sect. 5.1.7, that the wavefunction should be seen as nomological, is criticized

49Bohr however saw no sort of causal relationship here; instead, he compared the influence of amea-
surement on its outcome with the connection between the frame of reference and the observations
within the special theory of relativity.
50This “pairing” is intended to illustrate that even within the Copenhagen interpretation, a complete
description of the physical world with reference to the wavefunction alone is not possible. The
classic textbook of Landau and Lifschitz formulates this relation in a particularly pointed way:
“Quantum mechanics thus occupies a rather remarkable position among physical theories: It con-
tains classical mechanics as a limiting case, and at the same time, it requires this limiting case for
its own justification” (Landau and Lifschitz 2011, p. 3).
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for depending in a speculative manner on cosmological considerations. According
to Brown and Wallace, the “empty wavefunctions” in the de Broglie–Bohm theory
likewise correspond to real worlds—the solution of the measurement problem in the
de Broglie–Bohm theory therefore must (and can) make no decisive reference at all
to the particle and is congruent with that in the many-worlds interpretation. Brown
and Wallace thereby emphasize the dictum of David Deutsch, who characterizes the
guidance-field theories as “parallel-universe theories in a state of chronical denial”
(Deutsch 1996, p. 225). A reply to this accusation is to be found, for example, in
Maudlin (2010). In the section on criticisms of the Everett interpretation (Sect. 5.2.6),
we have already cited this work, which casts doubt on the possibility of finding a
solution to the measurement problem at all, as long as the spatial configuration is
not taken into account. This points out an important and still open problem for the
de Broglie–Bohm theory: The status of the wavefunction is not completely clarified
in that theory either, and this signals a further line of separation between various
schools within the de Broglie–Bohm theory (cf. Sect. 5.1.6).

Exercises

1. The de Broglie–Bohm theory is frequently called a theory of “hidden variables”.
This term implies the criticism that the theory introduces in principle unobservable
quantities into its description. Write a brief dialogue between an advocate of
the de Broglie–Bohm theory and a supporter of the Copenhagen interpretation,
in which the former defends the theory against this criticism and accuses the
“Copenhagen” advocate of actually making this error herself. In the course of
this debate, additional arguments pro and contra could be introduced!

2. Explain why within the de Broglie–Bohm theory, the uncertainty relation �x ·
�p ≥ �

2 is not violated!
3. Compare the solutions to the measurement problem in the de Broglie–Bohm and

theEverett interpretations.Give examples of structural similarities anddifferences
between them.
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Chapter 6
Quantum Field Theory

Meinard Kuhlmann and Manfred Stöckler

Quantumfield theory (QFT) sharesmany of its philosophical problemswith quantum
mechanics. This applies in particular to the quantum measurement process and the
connected interpretive problems, to which QFT contributes hardly any new aspects,
let alone solutions. The question as to how the objects described by the theory are
spatially embedded was already also discussed for quantum mechanics. However,
the new mathematical structure of QFT promises new answers, which renders the
spatiotemporal interpretation of QFT the pivotal question. In this chapter, we sketch
the mathematical characteristics of QFT and show that a particle as well as a field
interpretation breaks down. Eventually, we discuss alternative ways for interpreting
QFT.

6.1 Characterization of Quantum Field Theory

Quantum field theory (QFT) shares many of its philosophical problems with quan-
tum mechanics. Among these are the problem of the measurement process and the
interpretation problems which are related to it, to which QFT can make no new con-
tributions. The question of how the objects described by the theory are embedded
in spacetime is also discussed in quantum mechanics. The new mathematical struc-
tures of QFT lead us to expect new answers, however, so that the spatiotemporal
interpretation of the theory has become an important topic. QFT would appear also
to open up a new view on the questions of indistinguishability and identity of the
quantum objects and on the applicability of Leibniz’s principle (cf. Chap. 3), which
extends beyond that of quantum mechanics. The question of which kinds of objects
and properties are addressed by QFT is especially significant for classical topics of
natural philosophy, since as a fundamental theory, QFT is particularly relevant to
ontology. For the philosophy of science, QFT is appealing because it is a theory
whose development has not yet been completed, and whose provisional character is
muchmore typical of how physicists actually work than are the textbook descriptions
which often form the basis for philosophical analyses.
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QFT is the mathematical and conceptual framework in which the physics of ele-
mentary particles is formulated. This is the starting point for those who are investi-
gating which picture of matter best conforms to the view of contemporary physics.
However, the answers to such questions cannot be simply read out of the mathemat-
ical formalism. Neither within physics nor in philosophy is there a consensus as to
what types of entities are in fact dealt with by this theory. This question stands at
the centre of current philosophical debates on QFT, and it is also at the focus of the
present chapter.

From a mathematical point of view, one can arrive at QFT by applying the same
heuristic procedures onto classical field theories, which led from classical particle
mechanics to the Schrödinger equation. In this view, QFT is a quantum theory of
systems with infinitely many degrees of freedom. Degrees of freedom refer here to
modes of motion which are generally independent of one another. Thus, for exam-
ple, the three degrees of freedom of a point-like particle are associated with its three
independent position coordinates. The number of degrees of freedom determines the
number of quantities which are required in order to characterize the state of a sys-
tem. For a single classical particle, specifying the three components of its position
(vector) and the three components of its momentum will suffice. For the characteri-
zation of a field, one requires at every location the field amplitude and an associated
field momentum. With respect to mathematics, a field is thus similar to a system of
infinitely many particles which are distinguished by their spatial coordinates. For
many purposes, the relation between quantum mechanics and QFT can in this sense
be seen as the transition from a finite number to an infinite number of degrees of
freedom.

This transition is in fact already necessary if one makes use of the Schrödinger
equation to compute atomic spectra. The reason is that quantummechanics is incom-
plete in a characteristic manner: the interaction of electromagnetic radiations and
matter—which indeed makes a test of the theory possible in the first place—is either
excluded completely or is taken into account in a semi-classical manner. Already in
the 1920s, Max Born, Werner Heisenberg and Pascual Jordan, as well as Paul Dirac,
were working on approaches to a quantum theory of the electromagnetic field and
its interactions with matter, i.e. a “field quantization”. It soon became evident that in
QFT, matter (such as electrons) and radiation (such as light) can be described in a
mathematically quite similar way. They combined within the framework of QFT ear-
lier, mostly heuristic models of the particle character (which, for instance, light can
exhibit under certain circumstances) and the wave character (which matter exhibits
under certain circumstances) into a unified mathematical formalism. At the same
time, it became clear that the old division of matter as spatially localized particles
and radiation as spatially continuously distributed fieldswould have to be abandoned.
It is particularly notable that QFT can also describe systems and processes with vari-
able particle numbers, i.e. processes in which particles are created or annihilated.
There is no possibility of such a description within quantum mechanics.

In the following Sect. 6.2, we will first, in preparation, have a look at how classical
physics describes the spatiotemporal embedding of the fundamental objects, i.e. of
particles and fields,mathematically.We shall seewhy these classical concepts are just
as unsuited to the mathematical structure of QFT as to that of quantum mechanics.
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To this end, we must take a more precise look at QFT in its different alternative
forms. Then, we will be able to analyse and evaluate various suggestions for the
interpretation of QFT.

6.2 The Spatiotemporal Description of Processes

Before we analyse the spatiotemporal embedding of processes in QFT, we provide
a summary of how classical physics deals with natural processes in the framework
of space and time. We will begin by concentrating on their placement within space.
One can distinguish two types of spatial placement, which are associated with two
concepts of the objects considered, thus leading to different ontologies: The particle
ontology and the field ontology—or, alternatively, the particle picture and the field
picture.

The assumption of a particulate structure of matter lies in the tradition of mecha-
nistic thinking, and this assumption has proven to be very successful both on a large
scale (e.g. for the description of the orbits of the planets) and on a small scale (e.g. in
the kinetic theory of heat). In the investigation of the newly discovered electron, it was
quickly recognized that electrons follow paths and that their masses and charges are
always multiples of an elementary mass and an elementary charge. Thus, electrons
were classified as particles.

In classical mechanics, the fundamental objects are particles whose spatial exten-
sion is vanishingly small in the ideal case. The state of such a point particle is
determined when one specifies its three position coordinates and the three compo-
nents of its momentum. The particles (corpuscles) are localized at all times, and their
locations in space follow a continuous path over time. Such a path (trajectory) can
be described by a function x(t) which specifies the location x of the particle at each
time t . This path also permits the rediscovery and identification of the same particle
at a later time. It thus becomes possible to distinguish particles and to follow their
motions as “individuals”. Insofar as these are not composite particles, they are inde-
structible. Within the mathematical formalism of classical mechanics, the creation
or annihilation of a particle cannot be described.

In the nineteenth century, it became clear that not all phenomena in nature can be
encompassed within a corpuscular world view. Thus, alongside the particle model, a
second, fundamentally differentwayof describing processes developed:field physics.
In field physics, the state of a physical system is determined by specifying the field
strength (or more precisely, the suitably defined field quantity and its associated
field momentum) at every point in spacetime. Here, there are no individuals that
would be analogous to the point particles in mechanics, which are the carriers of
properties and events. In a certain sense, space itself becomes the carrier of properties.
Whereas, for example, in hydrodynamics one assumes, in spite of its field description,
a discontinuous particle substructure, the electromagnetic field is a standard example
of a fundamental field. In the theory of electric fields, every point in spacetime (x, t)
is associated with a field strength E(x, t) which specifies which force would act on
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a test charge at that point (x, t). In the debates about the nature of light, the wave or
field picture had become accepted, because it successfully explains interference and
diffraction phenomena. While according to classical ideas, two particles can never
occupy the same spacetime point, and the energy of a particle is always concentrated
at its spatial location, fields can be superposed, as the case requires, and can even
cancel each other out in certain spatial regions due to interference. Their continuously
distributed energy can thus be diluted over a large region of space.

The particle and the field ontologies are in a certain sense the descendants of
older ideas from natural philosophy, namely on the one hand atomistic concepts
and on the other continuum notions. Towards the end of the nineteenth century, the
contention between these two pictures of the world appeared to have been reconciled:
The particle ontology describes matter, and the field ontology the forces, for example
the electromagnetic field. Although at first glance particles and fields appear to be
essentially different, there are nevertheless common features in their mathematical
descriptions. In this framework, one can regard a classical field as the limiting case of
a mechanical system with infinitely many degrees of freedom, whereby the position
function x in the field quantity �(x, t) formally takes on the role of particle indices
i for the coordinates qi (t).

With the transition from classical mechanics to quantum mechanics, the diffi-
culties with the spatial embedding of the objects described by physics began. The
spatial aspects of the interpretation of quantum theory were initially discussed under
the heading “wave-particle duality”. The empirical starting point was the problems
raised by considering interactions of radiation with matter. Einstein (1905) showed
that at low intensities, radiation (light) behaves in a thermodynamic sense as if it con-
sisted of independent energy quanta hν, and that this picture also permits an elegant
explanation of the photoelectric effect. Thus, the idea became established that both
matter and the electromagnetic field behave under some conditions as though they
are composed of particles, and under other conditions as though they are fields. Early
on, physicists also asked the question as to whether or not a spatiotemporal descrip-
tion of processes in microphysics had generally reached its limits (cf. Jammer 1966,
p. 326). For Niels Bohr, the applicability of causal and spatiotemporal descriptions
had become mutually exclusive. In his view, processes cannot simultaneously fulfil
dynamic conservation laws and be integrated into a spatiotemporal framework.1

In the framework of “classical” quantum mechanics, neither the wave–particle
duality nor the spatial embedding of quantum objects could be truly clarified. Such
questions played an important heuristic role in the development of QFT, however.
In this situation, most physicists adopted an instrumentalist conception of physical
theories, which was very elegantly formulated by Hans Reichenbach: “…, and if
you ask of him (the physicist) whether it is really a question of material particles,
he will reply that this is a delicate question, which he would rather not answer. That
means that more philosophy belongs to this question than the physicist requires for
his technical investigations” (Reichenbach 1955, p. 84).

1See, e.g. the 1925 Como lecture of Bohr (1961), in particular p. 54.
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From the philosophical point of view, the questions thus remain as to whether
QFT deals with objects in space and time at all, whether its mathematical apparatus
(although it is nominally a field theory) is closer to a particle or to a field ontology,
or whether yet other ontological models should be considered. How can one find
answers to such questions? The evident way is to investigate whether the mathemat-
ical structure of QFT (or of one of its formulations) is still one of a particle theory, or
rather that of a field theory. The implementation of this project shows that one can
find some properties of QFT which can be associated with aspects of the classical
characteristics of particles, as well as some which belong to the characteristics of
fields. In order to obtain an insight into the current discussions on the spatiotem-
poral interpretation of QFT, we must therefore first take a more detailed look at its
mathematical apparatus.

6.3 The Mathematical Structure of Quantum Field Theory

The two pillars of the formalism of quantum physics, that is of quantum mechanics
as well as of QFT, are states and observables. In classical point particle mechan-
ics, the state of a particle is determined at every moment in time by specifying its
position and its momentum. While the concept of state in classical mechanics is not
problematic and is seldom a topic of discussion, the role of states in quantum physics
is more complicated: (pure) states contain the maximum possible information about
the time-varying properties of the system considered—i.e. apart from its permanent
properties, which define the type of system, e.g. an electron or a photon. In contrast to
classical mechanics, this does not mean that for each dynamic observable a particular
value is specified, however. The uncertainty relations say that there are limits for the
simultaneous attribution of incompatible properties, such as in particular position
and momentum (cf. Sect. 1.2.4, especially Eq. 1.37). This fact is expressed with
special clarity by the commutation relations of quantum physics (cf. Sect. 1.2.2,
Eq. 1.16). Indeed, the commutation relations are so fundamental that with their help,
the corresponding observables can be “mathematically defined” in a certain sense.
In the present chapter, we shall see that commutation relations also play a central
role in QFT. Moreover, as in quantummechanics, the representation of properties by
operators leads to difficulties of interpretation. The field quantities are themselves
operators in QFT, which determine the value of the associated properties of a system
only after their application to a state vector (cf. Sect. 1.2.2).

In order to make an understanding of QFT as accessible as possible, we will begin
from an historical or heuristic viewpoint, and thereby introduce some essential ele-
ments of conventional QFT, insofar as their interpretation can be discussed in a more
or less well-founded manner. The conventional formulations of QFT, which suffice
in practice for computations, are not entirely satisfactory from a strict mathematical
viewpoint, however. For this reason, there have been various attempts to produce a
more exact formulation. We will take up one of these attempts: In Sect. 6.3.5, we
give a brief introduction to the conceptually most important axiomatically oriented
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reformulation, namely algebraicQFT.At first, however, in Sect. 6.3.1,we treat funda-
mental questions of the so-called quantization, and in Sect. 6.3.2, a concrete example
of the quantization of a theory will be introduced, along with the space of states of
QFT, which will then be more precisely analysed in Sect. 6.3.3. In Sect. 6.3.4, we
investigate how operators and states are related to measurable quantities. Then, we
will have collected all the preliminaries we will need in order to discuss various
interpretations of QFT in Sect. 6.4.

6.3.1 The Quantization of Fields

In this section, we want to give a more detailed treatment of the heuristic programme
which carries out the transition from classical fields to quantum fields, in a manner
analogous to the earlier transition from classical mechanics to quantum mechanics.
Seen from this point of view, themost important difference is that quantummechanics
and classical particle mechanics apply to systems with a finite number of degrees
of freedom (i.e. to the properties of a finite number of particles), whereas QFT and
classical field theories treat systems with an infinite number of degrees of freedom.
As already mentioned, in both cases, the transition from the classical theory to the
corresponding quantum theory has the consequence that the fundamental physical
quantities are no longer represented by “normal” numerical values, but rather by
operators, that is by unsaturatedmathematical expressionswhichmust act on another
expression in order to yield definite values (cf. Sect. 1.2.2).

The formal transition froma classical theory of point particles to quantummechan-
ics can be described in such away that the classical quantities position andmomentum
are subject to certain commutation relations.More precisely, this means that, e.g., the
operators which represent the position and the momentum of a particle must satisfy
the commutation relations

[qm, pn] ≡ qm pn − pnqm = i�δm,n

[qm, qn] = [pm, pn] = 0
(6.1)

(compare Eq.1.16, Sect. 1.2.2). The lower equations mean that the commutator of
the position operators and the commutator of the momentum operators for different
particles are always equal to zero (the corresponding measurements can thus simul-
taneously yield well-defined values). The upper equation means that the commutator
between the position and the momentum operator for the same particle (m = n) is
equal to 1 (here times i�), but for different particles (m �= n), it is equal to 0. In
this process of quantization of a classical theory, elements of the classical theory
(e.g. mathematical expressions representing position, momentum and energy) are
taken over into quantum physics, but there, they play new roles. The term quanti-
zation is due to the fact that the quantum-physical operators frequently do not have
arbitrary eigenvalues; thus, for example, hydrogen atoms can take on only discrete
values of the eigenvalues of their energy or angular-momentum operators, according
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to quantum mechanics. This is new as compared to classical mechanics, where all
the dynamic quantities can in principle take on arbitrary, continuous values.

The following considerations are directed primarily at readers who already have
a somewhat better knowledge of physics. They introduce a special formulation of
mechanics, called the “Lagrange formalism”, which permits the field quantization to
be presented in an especially transparent manner. Equation6.1, the so-called canoni-
cal commutation relations, already belong to a formulation of mechanics that makes
use of the generalized coordinates q and the corresponding “conjugate” momenta p.
Thegeneral concept of a “conjugate” or “canonical”momentum is defined as p = ∂L

∂q̇ ,
where L is the Lagrange function L = T − V , with the kinetic energy T and the
potential V ; the dot above q indicates the time derivative. Just why the momentum is
defined in this way can be understood if we consider the special case of a Lagrange
function for which the potential V depends only on the position, so that (in Cartesian
coordinates)

∂L

∂ ẋ
= ∂

∂ ẋ

(
1

2
mẋ2

)
= mẋ = px .

In this case, the generalizedmomentum is identical to the usualmomentumofNewto-
nianmechanics. The Lagrange function L characterizes the system being considered,
so that, for example, a torsion pendulum and a simple (mass and string) pendulum
would have different Lagrange functions. If one knows the Lagrange function, within
classical physics and with given boundary conditions it is possible to calculate all
relevant quantities and their time evolution. Lagrange functions can be applied to
mechanical systems, but also to fields. In the latter case, one uses Lagrangian den-
sities, i.e. functions defined on real space from which one can obtain the Lagrange
function by means of integration over the whole volume of space.

Within the framework of the Lagrange theory of classical fields one associates,
corresponding to the generalized coordinates q and momenta p in mechanics, with
every field φ a conjugate field (the “field momentum”)

π = ∂L
∂φ̇

, (6.2)

which is defined by a partial derivative of the Lagrangian density L.
This Lagrange formulation now permits us, in complete analogy to the quantiza-

tion of classical mechanics, to quantize classical fields also in accord with (6.1), so
that the canonical commutation relations

[
φ(x, t),π(y, t)

] = i�δ3(x − y) and[
φ(x, t),φ(y, t)

] = [
π(x, t),π(y, t)

] = 0
(6.3)

are fulfilled, but now for the field φ and its corresponding conjugate field π. The delta
function δ means that φ and π commute when they are taken at different positions
x and y (their commutator is then 0). The commutation relations refer in each case
to fixed times t. We recall here once more that this is an heuristic procedure, whose
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results must be checked in each individual case. The essence of quantum fields can
therefore not consist of the quantization of classical fields, since for many quantum
fields, there is no classical analogue.2

In QFT, the “field values” φ(x, t) associated with spacetime points (x, t) are
operators. This means, thus, that the “field values” are no longer be determinate
properties, such as electromagnetic field strengths. In order to arrive at definite mea-
surable quantities, the operator-valued quantum fields must act on states. In quantum
mechanics, too, one requires operators and states in order to arrive at measurable
values or probabilities for their occurrence. In Sects. 6.3.2 and 6.3.3, we will learn
more about the nature of field states and in Sect. 6.3.4 about their relation to experi-
ments. The classical field concept loses its meaning in QFT in any case, due to the
operator-valuedness of quantum fields: The field operators do not attribute determi-
nate physical properties to the points in spacetime. The question of whether or not a
quantum field itself has any ontological status at all will be taken up in Sect. 6.4.3.

The structure and the interpretation of QFT are essentially determined by their
manifold relations to classical precursor theories. Figure6.1 gives an overview of the
common aspects and differences along the path from classical point mechanics to a
relativistic QFT. Essential structural differences lie in the two steps from above to
below, i.e. in the transition to infinitely many degrees of freedom (N → ∞) and in
taking account of the invariance requirements of special relativity theory (& SRT).
The transitions from left to right stand for the “quantization” steps which we have
just encountered.

Figure6.1 describes possible formal and heuristic relations between theories. It
does not reflect the historical path to QFT, along which the possibility of a non-
relativistic QFT played no role, for example. In classical electrodynamics, a rela-
tivistic theory was already available as the starting point for the quantization.

6.3.2 The Simplest Example of a Quantum Field Theory

Early in the first phase of development of quantummechanics, it had become obvious
that the relativistically invariant theory of the electromagnetic field does not fit into
the framework of (non-relativistic) quantum mechanics.3 Although quantum objects

2A note for more advanced readers: A manifestly relativistically invariant notation is also possible.
Furthermore, we should also mention that the commutation relations (6.3) are valid for bosonic
fields only, such as the electromagnetic field in particular. In the framework of QFT, however,
one can in addition to these interaction fields also describe material “particles”, with half-integer
spin, in terms of fields. For such fermionic fields, e.g. the Dirac field for electrons, one requires
anti-commutation relations instead of Eq.6.3. In the following, we also make use of the so-called
Heisenberg picture, i.e. we will be working with time-dependent operators.
3The Schrödinger equation violates the requirement of special relativity which states that the laws
of nature must maintain their form when one goes via Lorentz transformations from the inertial
frame of reference of one observer to that of another. The Maxwell equations, for example, fulfil
this requirement: light, in particular, has the same velocity c in vacuum for all these observers.



6.3 The Mathematical Structure of Quantum Field Theory 229

Fig. 6.1 In terms of the requirements of quantization, the transition to infinitely many degrees of
freedom, and relativistic invariance, one can characterize structural relationships between various
theories (SRT = Special Relativity Theory)

could take up and release energy only in the form of quanta even in Bohr’s first
atomic model, the electromagnetic radiation field itself was treated by simply using
the classical theory. During the early development of quantum theory, there was a
search, on the one hand, for a relativistic version of the Schrödinger equation, and
on the other hand, for a quantum-physical analogue of the electromagnetic field.
Both were found to be unexpectedly difficult to achieve, since the apparently direct
methods ran afoul of deep-seated problems which could not be solved by simply
modifying the known framework of the theory. Finally, this led to the development
of QFT. In the following, we will review briefly the most important milestones along
the path from quantum mechanics to the simplest example of a QFT.

One approach to combining special relativity and quantum mechanics together
into a relativistically invariant wave equation consists in employing the relativistic
energy-momentum relation

E2 = p2c2 + m2c4 (6.4)

for a particle of mass m, to construct an operator equation which can act upon the
wavefunction φ(x, t). Replacing the energy and the momentum by operators using
the standard rules of quantummechanics, Ê = i� ∂

∂t and p̂ = −i�∇ (see Sect. 1.2.4),
where the vectorial “Nabla operator” ∇ ≡ ( ∂

∂x ,
∂
∂y ,

∂
∂z ) is used, one directly obtains

the relativistic wave equation

[
1

c2
∂2

∂t2
− ∇2 + m2c2

�2

]
φ(x, t) = 0 . (6.5)
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This is the well-known Klein–Gordon equation (for the case of no interactions, since
all possible interactions with other objects or fields have been neglected here4).
One can see the relativistic invariance of this equation still more clearly if it is
written more compactly by using the wave operator � ≡ ∂μ∂μ = 1

c2
∂2

∂t2 − ∇2 (the
“d’Alembert operator”), as well as the abbreviated four-dimensional notation x =
(x, t) and the choice of units common in particle physics (which simplifies many
formulas), i.e. � = 1 and c = 1:

(� + m2)φ(x) = 0 . (6.6)

This free Klein–Gordon equation is a wave equation for the field φ. In contrast to the
Schrödinger equation, it fulfils the requirements of special relativity. It is the simplest
example of an equation for relativistic quantummechanics, because it transforms like
a scalar under the Lorentz transformations, since only absolute squares of the four
vectors and intrinsically scalar quantities occur in it. The Klein–Gordon equation
could thus describe “scalar particles”, e.g. massive bosons with spin 0, such as pions.
However, it is obvious then that it is not suitable for describing fermions, in particular
electrons. They obey the Dirac equation, which is the second famous result of the
search for a relativistic generalization of the Schrödinger equation.

This heuristic derivation of the Klein–Gordon equation was originally called “first
quantization”. The reason for this term is the circumstance that the Klein–Gordon
equation could not be interpreted as a relativistic (quantum-mechanical) wave equa-
tion for one particle (the electron), as originally hoped.5 As away out of this dilemma,
Eq. (6.5) is no longer considered to be the dynamical equation for a wavefunction
(and m is correspondingly not taken to represent a particle mass), but rather of a
classical scalar field, for which a “second quantization” according to the procedure
described in Sect. 6.3.1 should be carried out. There, φ(x) is made into an operator by
imposing the canonical commutation relations for fields. This procedure was finally
found to be successful, leading to a physically reasonable and in fact realized result.

The concept of a “second quantization” is misleading, however, in that it sug-
gests that for the transition to QFT two quantizations are necessary.6 Historically,
or heuristically, it is in a certain sense true in the special case of the Klein–Gordon
field, but it is not in fact necessary. The “first quantization” was a failure in the sense
intended, but considered ex post facto, it yielded the simplest example of a classical

4As usual in QFT, we will call it the “free theory” in the following.
5In particular, there are solutions with negative energies, which would lead to endless cascades
towards energetically more favourable states at lower energies. In retrospect, one can argue that
it cannot be expected that relativistic processes could be described by a single-particle theory,
since the energy-mass equivalence E = mc2 in special relativity permits the formation of particle-
antiparticle pairs (Peskin and Schroeder 1995, Chap. 2). An additional problem consists in the fact
that the normalization of the states determined by the Klein–Gordon equation is no longer time-
independent, which undermines their interpretation as probability densities. The Klein–Gordon
equation indeed fulfils the requirements of special relativity, but not those of quantum mechanics
(Srednicki 2007, Chap. 1).
6Peskin and Schroeder (1995), Footnote on p. 19, and Redhead (1988).
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field which could be quantized using the prescription described above. In modern
treatments, one therefore often begins directly with the Lagrangian density

LKG = 1

2
∂μφ ∂μφ − 1

2
m2φ2 (6.7)

for the classical Klein–Gordon field, from which (by insertion into the Euler–
Lagrange equation) one obtains the field equation directly, i.e. here theKlein–Gordon
equation (6.5).7 Without the heuristic derivation of the Klein–Gordon equation given
above, the Lagrangian density (6.7) would of course seem to fall from the heavens.
However, it can at least be motivated independently of the desired result, and it is a
paradigm for the construction of other quantum field theories.

A particular solution of the Klein–Gordon equation (6.5) yields plane waves eip·x,
which propagate in the direction of the momentum p, where p can be chosen arbi-
trarily. The general (real) solution of the Klein–Gordon equation is given by

φ(x, t) =
∫

d3 p

f (ωp)

[
a(p)eip·x−iωt + a†(p)e−ip·x+iωt

]
(6.8)

with the corresponding wave amplitudes a(p) and a†(p), and a factor f (ωp), which
depends upon the normalization and which we will not discuss further here (Peskin
and Schroeder 1995, pp. 20–22).8 The solution (6.8) is a decomposition of φ(x, t) in
terms of plane waves, or, physically speaking, a superposition of plane waves with a
continuum of different frequencies (a so-called Fourier integral) .

Let us now carry out the quantization procedure for the field described by the
Klein–Gordon equation (6.5), or (6.6). We thus assume that we are dealing with a
classical field,where the quantitym at this point is simply an uninterpreted parameter.
For the quantization, φ and its corresponding conjugate field π are considered to be
operators which obey the commutation relations (6.3). An important consequence is
that the factors a(p) and a†(p) introduced for the general solution likewise become
operators, which fulfil the following commutation relations:

[a(p), a†(p′)] = f (ωp)δ
3(p − p′)

[a(p), a(p′)] = [a†(p), a†(p′)] = 0 (6.9)

containing the factor f (ωp) as above, which we will not evaluate explicitly.

7In the Lagrange formalism, the relevant equation of motion (for fields the field equation) can be
derived by subjecting the Lagrangian density to a variation procedure which is expressed by the
Euler–Lagrange equation (or more precisely: which leads to that equation). Thus, for example,
inserting the Lagrangian density of electrodynamics into the Euler–Lagrange equation permits one
to derive the Maxwell equations.
8The frequency ω = 2πν is connected with the momentum via �ωp = √|p|2c2 + m2c4. In many
textbooks on QFT, the solutions of the Klein–Gordon equation are not formulated in terms of the
momenta p, but rather using the wavevectors k, which are related via p = �k (and, if we use the
above-mentioned unit convention � = 1, are in fact identical).
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The operators in (6.9) and their commutation relations are decisive for the char-
acterization of the space of states for the field. The structure of these commutation
relations is already known from the quantum-mechanical theory of the harmonic
oscillator. One can show that the operator

N (p) = a†(p)a(p)

has discrete whole integers n(p) = 0, 1, 2, . . . as its eigenvalues. Furthermore, one
can also show that there must be a state |0〉 (the “vacuum state”) for which

a(p)|0〉 = 0

holds (this guarantees that the norm of the eigenstates |n(p)〉 cannot become nega-
tive).9 The discrete eigenvalues of the operator N (p) = a†(p)a(p) belong to eigen-
states which are obtained when the operator a†(p) is applied as many times to the
vacuum state |0〉 as the integer eigenvalue belonging to that eigenstate, i.e.

[a†(p)]n(p)|0〉 = |n(p)〉 , (6.10)

where we have ignored the normalization.10 Thus, for example,

a†(p)|0〉 = |1〉

and
a†(p)|1〉 = [a†(p)]2|0〉 = |2〉 .

Repeated application of the operator a†(p) to the vacuum state thus creates new states
in integral steps; they are the eigenstates of the operator N (p)with the eigenvalues 0,
1, 2,…Therefore, these operators are also called creation operators. As we shall see
in the following section, the states thus “created” form a basis of the space of states,
i.e. one can produce all the state vectors within the space by multiple applications of
various creation operators and composing suitable linear combinations. Conversely,
the application of the operator a(p) leads to a reduction of the integer eigenvalue by
1, that is, for example,

a(p)|4〉 = |3〉.

Therefore, these are called annihilation operators. Making use of the creation and
annihilation operators, one can describe the creation and annihilation of particles in
the processes of particle physics. The operator N (p) is called the particle-number

9The “0” on the right-hand side denotes the null vector, which should not be confused with the
vacuum state |0〉!
10In fact, at this point we are already working with the so-called Fock space representation of the
commutation relations, which we will introduce systematically in the next Sect. 6.3.3.
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operator (or simply “number operator”), owing to its integer eigenvalues and for
reasons which will be discussed below.11

For amore precise characterization of the field states, we first consider the vacuum
state |0〉, which is physically and philosophically interesting and important. In Brown
and Harré (1988), some of these aspects are discussed. Classically, the vacuum is
simply an empty space in which neither matter nor energy is present. In quantum
mechanics, the harmonic oscillator has an energy ground state (i.e. the state with the
lowest possible energy) whose energy eigenvalue is not equal to 0, and for related
reasons, the vacuumofQFT is not simply a state inwhichnothing is present.However,
due to the particle-number operator introduced above, it is a state with the particle
number 0. Another remarkable property of the vacuum of QFT is that it depends on
the frame of reference, i.e. different observers will find different vacua.

In order to further illustrate the significance of the operators a(p) and a†(p)—and
thus of the field operators—we will investigate the energy eigenvalues of the Klein–
Gordon field in more detail. Because the Klein–Gordon field φ is operator-valued,
the Hamiltonian H (or “Hamilton operator”) which describes its energy is likewise
operator-valued, since φ enters into it. For this Hamiltonian, we obtain:

HKG =
∫

d3p ωp a
†(p)a(p). (6.11)

In this relation, one can find a superposition of infinitely many harmonic oscilla-
tors, each with a different frequency—due to the already-mentioned analogy of the
commutation relations to corresponding operators which play a central role in the
quantum-mechanical theory of the harmonic oscillator. These harmonic oscillators
are themselves well known in quantum mechanics (see also Footnote 11). The cre-
ation operator a†(p) adds energy quanta to a given oscillator in integer steps �ωp.
It is quite common to say that these results complete “the justification for interpret-
ing N (k) as the number operator, and hence for the particle interpretation of the
quantized theory” (Ryder 1996, p. 131). In this view, a†(p) is a creation operator for
“particles” (i.e. bosons with spin 0; see below), which have momentum p = �k and
energy �ωk. This can be seen from the fact that the single-particle states a†(p)|0〉
as well as the many-particle states [a†(p)]n(p)|0〉 are eigenstates of the Hamiltonian
(which represents the energy). The associated eigenvalues are just the relativistic
energies for one or many non-interacting particles (see also Fraser 2008, pp. 845f).

In Sect. 6.4.2, we will discuss in detail the admissibility of this standard interpre-
tation. Before we do that, we will ourselves use it provisionally in the following, in
order to keep the treatment as simple as possible and to employ the usual terminol-
ogy. Whenever the term “particle” appears, it should therefore be understood as a
provisional manner of speaking.

Furthermore, the Klein–Gordon equation would not describe a single particle of
course, as was originally intended. Equation (6.10) wouldmean that wewould obtain

11For the relationship between commutation relations and the space of states, cf. Mandl and Shaw
(2010), Sects. 1.2.2 and 3.1.
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a state with n(p) spin 0 bosons, each of which would have a momentum p = �k and
an energy �ωk, if we allow the creation operator a†(p) to act n(p) times on the
vacuum state |0〉. Correspondingly, one could interpret N (p) in a literal sense as the
operator for the particle number and n(p) as the occupation number for bosons with
momentum p, and analogously a(p) as their annihilation operator.

6.3.3 Occupation-Number Representation

In single-particle quantum mechanics (Chap. 1) as well as in many-particle quantum
mechanics (Chap. 3), we have so far always dealt with a fixed number of quantum
objects. In particle physics,which deals in particularwith processes inwhich particles
collide at such high energies that they can be annihilated and other, new particles
can be formed, the framework of many-particle quantum mechanics is evidently no
longer sufficient. We need a description that allows us to describe an infinite number
of degrees of freedom and treat variable particle numbers.12

We have seen in the previous section how one can obtain the quantum-mechanical
analogue of a classical relativistic field (without interactions) by field quantization.
Solving the resulting field equation, we could write the operator-valued quantum
field as an infinite sum of terms which itself contained expressions with remarkable
properties. In particular, we found creation operators which produce new states in
integer steps by repeated application to a unique ground state |0〉, the vacuum state.
Their energies and momenta are related to each other as expected for relativistic
particles. Furthermore, we saw that the states thus generated are eigenstates of an
operator which can be interpreted as a particle-number operator, in the sense that
its eigenvalues reproduce exactly the number of times that the creation operator
must be applied in order to obtain the corresponding eigenstate. These results can be
employed to construct an especially useful representation of the space of states of
the quantized free Klein–Gordon field. It is due to a special choice of the basis in the
space of the field states, which we have in fact already used in the previous section.

First, the basis of single-particle states is generated. It contains all states which are
produced by a single application of the creation operators corresponding to the differ-
ent values of momentum. Thus, for example, the creation operator a†(pi ) produces
the basis state

|φi 〉 ≡ a†(pi )|0〉 = |0, 0, . . . , 1i , . . .〉 ,

12The possibility of describing variable numbers of particles does not entail that fundamental inter-
actions themselves are described. We will continue to work with the so-called free theory from the
previous section. Creation and annihilation operators do not describe dynamic processes in that
theory. In fact, Haag’s theorem even says that the description of interactions is generally excluded
within the framework of this theory. This limitation to a free theory has important consequences
for its interpretation (see Sect. 6.4.2). For the actual treatment of scattering processes, this is not
as important as it might seem, since there we are mainly dealing with asymptotically free states,
i.e. far from the scattering process, and this “far from the scattering process” is attained almost
immediately following the interaction.



6.3 The Mathematical Structure of Quantum Field Theory 235

where |0, 0, . . . , 1i , . . .〉means that there is a 1 at the i th position and otherwise only
zeroes (with the abbreviation |0〉 ≡ |0, 0, . . .〉, which we in fact used above already).
Physically, this is commonly interpreted as a state in which there is precisely one
particle (a boson), which has the i th momentum pi—or alternatively, as a field which
is excited in its i th mode.13

The basis of the two-particle state is formed by applying a creation operator
twice to the 0-particle state |0〉. Here we have two variants, namely applying two
creation operators for two different momentum values, or a twofold application of
an operator for the same momentum value. In this manner, basis vectors of the type
|0, 0, . . . , 1, . . . , 1, . . .〉 or |0, 2, . . . , 0, . . .〉 are generated, for which the sum of the
occupation numbers is 2. In general, the basis vectors in this “occupation-number
representation” (also called the “Fock space representation”) are given by

|n1, n2, ...ni , . . .〉 ,

which expresses the fact that n1 particles are in the state |φ1〉, n2 particles in the state
|φ2〉, etc. These states are created bymultiple applications of the creation operators to
the vacuum state. Thus, the basis states of an n-particle system consist of all the states
created in this way with

∑
ni = n. As we have already mentioned at the beginning,

one essential goal of the Fock space representation is to describe states with varying
particle numbers. This goal is achieved now by combining the n-particle state spaces
for all n ∈ (0, 1, 2, . . .) into the overall state space of a bosonic Klein–Gordon field,
represented mathematically by the direct sum

Fbos. =
∞⊕
n=0

{
|n1, n2, . . .〉, �ni = n

}
, (6.12)

where the first index indicates that this Fock space is the state space of a bosonic
field. In contrast to an n-particle Hilbert space, in a Fock space, it is thus possible
to describe states with different particle numbers. In addition, the direct sum of
n-particle state spaces includes linear superpositions ofn-particle stateswith different
n, so that one also has states with an undefined particle number.

Now, how does this description of many-particle systems in a Fock space fit
together with the description that we encountered and used in Chaps. 3 and 4? There,
particles were initially always labelled by an index, and the indistinguishability of
particles of the same type was implemented by the symmetrization requirement for
the allowed states (see Sect. 3.1.3). In the occupation-number representation which
we are introducing here, indices for the particles are, in contrast, no longer used.
The only index that we use here refers to the discrete series of momentum eigen-
states which are each ni -fold occupied. This index-free (often called “unlabelled”)

13This alternative means that the ontological significance of the states created is here not (yet)
determined.
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representation automatically obeys the symmetrization requirement, since it is not
even possible to specify that particle ‘a’ has the momentum value pi and particle ‘b’
the momentum value p j ; i.e.

|φ〉 = |φa
i 〉 ⊗ |φb

j 〉 . (6.13)

The symmetric two-particle state

1√
2

(
|φa

i 〉 ⊗ |φb
j 〉 + |φb

i 〉 ⊗ |φa
j 〉

)
(6.14)

of the labelled Hilbert-space formulation is simply expressed in terms of the state

|0, 0, . . . , 1i , . . . , 1 j , . . .〉 (6.15)

in the occupation-number representation (for bosons).14 Here, one particle is in state
φi and one particle in state φ j . The indistinguishability of quantum-mechanical par-
ticles of the same type—including the relevant symmetrization requirement—is thus
automatically anchored within the occupation-number representation, which natu-
rally results from the field quantization. As we shall see in Sect. 6.4.2, this obser-
vation is an essential foundation of the so-called quanta interpretation. However, in
the discussion of that interpretation, we will also see that although the Fock space
representation is a useful choice of basis for many purposes in the space of the field
states, we cannot derive any good arguments for a particular interpretation of QFT
from it.

For an appropriate discussion of the quanta interpretation, we still require a deeper
investigation into the relation between the Fock space representation (which we have
just introduced) and the representation in terms of the labelled tensor product, many-
particle formalism which we encountered in Sect. 3.1.2. In the latter representation,
we can generate the space of states of an n-particle system in terms of the n-fold
tensor product of single-particle Hilbert spaces H; that is,

Hn = H1 ⊗ H2 ⊗ . . . ⊗ Hn =
n⊗

i=1

Hi , (6.16)

where the lower index n enumerates the single-particle state spaces. Correspondingly,
the simplest basis states ψ ∈ Hn of an n-particle Hilbert space can be written as

|ψ〉 = |ψ1〉 ⊗ |ψ2〉 ⊗ . . . ⊗ |ψn〉, |ψi 〉 ∈ Hi .

14Since, according to Eq.6.9, a†(p) and a†(p′) commute, the two-particle state a†(p)a†(p′)|0〉 is
identical to the state a†(p′)a†(p)|0〉 with exchanged creation operators. Many-particle states are
thus symmetric under permutations of the creation operators. Furthermore, arbitrarilymany “Klein–
Gordon particles” can be created with the same momentum or in the same field mode p. As we have
seen in Chap. 3, this means that “Klein–Gordon particles” must be bosons.
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We have also seen that the tensor-product space (6.16) is characteristic of quantum
mechanics, since its elements also include superpositions of several product states.
In contrast, in the many-particle state spaces of classical mechanics, the states of
the particles are completely independent of each other and are simply summed (see
Sect. 3.1.2).We also saw, however, that the tensor-product space is so full of structure
that in many important cases states can be described as distinct, even though nothing
distinct in nature corresponds to them. Concretely, this occurred for many-particle
states which differed only through permutations of particles of the same type. The
result was that depending on the relevant type of particles—bosons or fermions—
only symmetric or antisymmetric states are allowed, while the tensor-product space
also contains non-symmetric states which do not occur in nature.

Since, in the case of our field system discussed above—with bosonic commutation
relations (6.9)—we are also dealing with indistinguishable particles of the same
type, Hn here also contains states that are not allowed, due to symmetry reasons.15

In the framework of the labelled Hilbert-space description, it is possible now to
reduceHn to such a degree that the non-symmetric states are excluded and only the
symmetric states (for bosons) or the antisymmetric states (for fermions) remain. For
our purposes, we construct the symmetric subspace of the n-particle Hilbert space
in Eq. (6.16) by means of

Hn
sym = H1 ⊗s H2 ⊗s . . . =

n⊗
i=0

SHi , (6.17)

where ⊗s denotes the tensor product that allows only symmetric states.16

In order to obtain all of the states for the case of the Klein–Gordon field, this
is no longer sufficient, however. There, bosonic particles with arbitrary values of
momentum can occur, or alternatively speaking, arbitrarily many field modes can
be excited. The state space must therefore be extended to include variable particle
numbers, by summing over all possible n-particle Hilbert spaces. Then, the Fock
space introduced in Eq. (6.12) can also be constructed within the labelled tensor-
product many-particle formalism as

HF,boson =
∞⊕
n=0

Hn
sym , (6.18)

where the vacuum state is written simply as H0 for computational reasons, anal-
ogously to the n-particle Hilbert spaces. The Fock space can thus be written out
as

15Of course there are also systems in quantum physics with distinguishable particles, namelymany-
particle systems with different types of particles. These are also described by the Hilbert-space
formalism and therefore also permit the typical superpositions.
16We use here h1 ⊗s h2 ≡ h1 ⊗ h2 + h2 ⊗ h1.
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HF,boson =
∞⊕
n=0

(
n⊗

i=0

SHi

)
. (6.19)

Here, corresponding to (6.12), the direct sumof all the symmetrized n-particleHilbert
spaces is taken. In Sect. 6.4.2, the equivalence of the Fock space representation and
the corresponding symmetrized representation in the labelled tensor product, many-
particle formalismwill play an important role in evaluating the quanta interpretation.

6.3.4 Quantum Field Theory and Experiments

The presentation of the mathematical structure of QFT given thus far has not yet
shown explicitly how this theory is to be interpreted in a spatiotemporal sense. In a
general treatmentmuch remains initially unspecified, for example the question of how
the states on which the field operators act are to be constructed. For the application
of the theory, the connection between its mathematical expressions and the results
of measurements must be clarified. Such results are obtained from measurement
apparatus which register events at a particular location, e.g. in the form of “particle
tracks”. At the latest for applications to experiments, it must therefore be possible to
interpret QFT spatiotemporally; at least to the extent that the results of experiments
can be compared with predictions of the theory.

In the following, we will sketch a typical application, namely the analysis of
a scattering process. When QFT is applied to particle physics, it is almost always
employed to calculate scattering processes and their experimental verification. In a
typical scattering experiment, quantum objects are prepared in a particle accelerator
so that they all have the same momentum. In an intuitively clear and popular manner
of speaking, which is also used in experimental physics, one could say that particles
are accelerated which all move in the same direction with the same energy. This
“beam of particles” is, e.g., directed at a target (scattering centre) which consists
of other quantum objects. An alternative scenario is that two such particle beams
are caused to collide. Usually, one cannot observe the processes in the immediate
interaction zone. Using detectors, however, one can register how the momenta of
the quantum objects have changed and which particles have been produced in the
collisions. By evaluating the data obtained from the different detectors, one can
determine properties such as the mass, charge and energy (or momentum) of the
quantum objects which emerge from the interaction centre. These quantities can be
compared with the calculations of the theory, which predict, for example, how many
particles should be detectable in various directions and in particular energy intervals.

The usual calculations presume that at the beginning and the end of the scattering
process, only widely separated, non-interacting (“free”) quantum objects are found
(compare Fig. 6.2); this corresponds to the experimental situation. A scattering oper-
ator S is introduced—it describes how the initial state is modified, i.e. which field
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Fig. 6.2 Scheme of a scattering experiment

state will evolve from the prepared initial state (the latter describes, e.g., themomenta
and energies of the particles that are going to collide).

The goal of such a calculation is to determine the probability

Wab = |Sab|2 (6.20)

that a certain initial state |a〉 will be transformed into a certain final state |b〉. This
expression plays a similar role for scattering processes as doesBorn’s rule in quantum
mechanics. Here, the Sab are the elements of the scattering matrix

Sab = 〈a | S | b〉. (6.21)

The basis for the calculation of the elements of the scatteringmatrix is an equation for
the time evolution of the states, which takes into account only the evolution arising
from interactions, and for which a kind of Schrödinger equation holds, whose Hamil-
tonian HInt(t) contains only those elements of the Lagrange operator (‘Lagrangian’)
that describe the interaction between the various quantum fields:

i�
∂

∂t
|ψ(t)〉 = HInt(t) |ψ(t)〉. (6.22)

The operator HInt(t) is thus system specific and contains descriptions of the cor-
responding types of interactions (e.g. the interaction of a photon with an electron)
in terms of field operators. Newly discovered types of particles (or quantum fields)
would thus lead to additional terms in HInt(t). For the calculation of the scattering
operator S, there is a path to a solution which is determined by the operator HInt(t).
S can be calculated stepwise with successively improving approximations. One
obtains the value of an element of the scattering matrix as the sum of contribu-
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Fig. 6.3 Results of a scattering experiment

tions which become smaller and smaller (i.e. as a series expansion in the sense of
perturbation theory).

The transition probabilities Wab permit a test of the theory, since from them, it
follows, for example, how many events are to be expected in a certain detector, or
how many particles will emerge in a particular direction and with which momenta
(Fig. 6.3). In order to relate the theory to a concrete experiment, one must not only
know something about the field operators which enter into S, but also about the field
states |a〉 and |b〉. With regard to experiments, it suggests itself to describe the states
of ingoing particles and the products of interaction processes in terms of eigenstates
of the momentum operators of the field. The analogy with classical fields leads to the
idea that a description in terms of plane waves propagating in a direction determined
by the momentum and with corresponding wavelengths is appropriate. Since these
states are eigenstates of the momentum operator, one could also speak intuitively
of a picture in which the field states describe a certain number of particles with a
particular momentum. A typical process is then that, as a result of the interaction, the
directions of the incoming particles can be changed. That is seen in the Fock space
representation by the “annihilation” of a state with a certain momentum from the
initial state, while in the final state, a new state is “created” with its momentum in a
different direction. Initial and final states thus differ in their occupation numbers for
the states of the relevant momenta.

The computation of the scattering-matrix elements 〈a | S| b〉 is rather tedious and
leads to a large number of individual contributions (cf. Peskin and Schroeder 1995,
Chap. 4). One obtains these elements as sums of expressions in which combina-
tions of creation and annihilation operators occur and act on the vacuum state |0〉.
The individual expressions can be associated with numerical values or integrals,
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Fig. 6.4 Feynman diagram
of a contribution to
electron–electron scattering

whose sum then yields the value of the scattering-matrix element. An important and
exceedingly helpfulmethod here are the so-called Feynman diagrams. The individual
components of a diagram (see e.g. Fig. 6.4) correspond to mathematical expressions,
so that the intuitively clear diagrams aid in maintaining an overview while carrying
out the computations.

Although Feynman diagrams are frequently used to help visualize elementary
processes, within the theory they do not have the task of imaging spatiotemporal
processes. They cannot play that role for reasons of principle. They are merely a
graphic aid to the perturbation-theoretical evaluation of the scattering matrix.17

In Fig. 6.4, the lines representing electrons have open ends. They stand for math-
ematical expressions which can be associated with incoming and with outgoing
particles. In contrast, the wavy line in between, which represents operators for the
electromagnetic field, has a starting point and an endpoint within the diagram. Intu-
itively speaking, one often says that it describes a photon which is created at one
point (vertex) and annihilated at another. Feynman already (in 1949) called such
particles “virtual”, because they do not appear in the initial or the final states. In fact,
this still common manner of speaking is misleading. As mentioned, the diagrams
are only illustrations of mathematical expressions, so that the internal lines do not
describe the trajectories of any sorts of particles, whether virtual or real. Thus, there
is no particular type of “virtual” particles, which exhibit a special mode of existence.

Figures such as Fig. 6.4 have also led to another popular misunderstanding,
because it looks as though a photon is forcing the two electrons apart. It thus seems
appropriate to say that the exchange of photons mediates the electromagnetic inter-
action between charged particles. However, a more careful look at the mathematical
formulation of QFT shows that electrons, protons and photons are all represented in a
similar manner by quantum fields. Interactions between such fields are described by
their own terms within the Lagrangian, whose action can then be seen in the elements
of the scattering matrix. The intuitively attractive picture of “particle exchange”
occurs only in the Feynman graphs for perturbation calculations, and must not be
understood as the description of a spatial process. Even when one interprets QFT as

17For a discussion of the significance of Feynman diagrams, seeKuhlmann (2010), Sects. 10.3–10.4,
and Wüthrich (2012).



242 6 Quantum Field Theory

a theory of particles, the image of particle exchange remains a metaphor. And even
on the metaphorical level, it is not intuitively clear how the exchange of particles
could lead to attractive and repulsive forces.

Since the field states |a〉 and |b〉 are generated from the vacuum state |0〉 by the
action of momentum operators, one can trace back the scattering-matrix elements to
vacuumexpectation values 〈0 | A | 0〉, where the operator A is composed of field oper-
ators or of creation and annihilation operators. The field states are no longer explicitly
visible in this expression. Nevertheless, they affect which creation and annihilation
operators are chosen to characterize |a〉 and |b〉, with which one in turn determines
the directions where outgoing particles can be detected. Already from this rough
sketch, it is clear that in applying QFT, a scattering process cannot be completely
reconstructed as a spatiotemporal event. Since we are interested only in transition
matrix elements of the type Sab = 〈a | S| b〉, the answer to the question as to whether
it is actually the field operators or the field stateswhich evolve over timemust remain
open. Both variants lead to the same transition probabilities. The whole scattering
process is treated as a “stationary” problem. The dynamics of the interaction is math-
ematically analysed only with reference to a current of incoming and outgoing free
quantum objects. Since only transition probabilities follow from the theory in such
an application, it also remains open which of the possible measurement outcomes
will in fact occur. Thus in QFT, too, the problem of the measurement process remains
unclarified, which itself also has an aspect of spatiotemporal discontinuity.

6.3.5 Problems of Conventional Quantum Field Theory

This section treats some of the difficulties with the established formalism of QFT
(as introduced here). These problems form the background of various attempts to
reformulate QFT axiomatically. Here, the general assumption is that the deficiencies
of conventional QFT are due to its evolved theoretical structure, and that they could
be eliminated by a conceptually clearer and mathematically more precise new for-
mulation. At the end of this section, we will briefly introduce the approach that is
most fruitful for the interpretation of QFT, namely “algebraic QFT” (AQFT).

Aswe have already brieflymentioned in Sects. 1.2 and 1.2.4, for quantummechan-
ics there is a certain freedom in the choice of formalism, especially in the way in
which observables (and states) are represented mathematically. As we have seen,
within quantummechanics the fundamental canonical commutation relations, e.g. for
position and momentum, can be fulfilled only by operators. In general, observables
are represented by linear operators on the vector space of states (the Hilbert space).
The canonical commutation relations determine the corresponding operators to a
considerable extent, but there remains a certain freedom in the choice of the vector
space of the states, which determines the mathematical form of the operators. This
fixes a representation of the algebraic structure which is determined by the commuta-
tion relations. All the representations in the various spaces of states have a common
feature: The corresponding operators exhibit the same algebraic relations to each
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other. For instance, the same commutation relations hold. This fact makes them into
different representations of the same commutation relations.

In the Schrödinger version of quantum mechanics—i.e. wave mechanics—which
works with a position basis, the position observables are represented by a mul-
tiplication operator, and the momentum by a differential operator. In Sect. 1.2.4,
we wrote these operators out explicitly.18 Another possibility is given by making
the transition to a momentum representation. A further, still different alternative is
matrix mechanics, due in particular to Heisenberg (see also Chap. 7)—also called
the “energy representation”—in which observables are represented as matrices. As
pointed out by Stone and von Neumann already in the early 1930s, wave mechanics
and matrix mechanics are equivalent, because they can be converted into one another
by certain (“unitary”) transformations.19 Stated more precisely, they are two equiv-
alent representations of the more abstract Hilbert-space formalism, which at that
time was just being formulated by von Neumann. Physically, (unitary) equivalence
of different representations means that observables are represented differently while
leading to the same measurable expectation values.

With which version of quantum mechanics—i.e. in which representation—one
works usually depends on the pragmatic goal of making computations as easy as
possible. Since all (irreducible)20 representations of the commutation relations by
operators on the respective Hilbert space are equivalent, the choice of representation
has no physical relevance at all. This is fundamentally different in QFT, however,
since there the commutation relations permit inequivalent representations.The reason
for this difference is that fields are systems with an infinite number of degrees of
freedom, which has the consequence that there are also infinitely many commutation
relations (6.3), namely a set of relations for every point in spacetime. Usually, in
QFT a certain Hilbert-space representation of the commutation relations is chosen
without further justification. This pragmatic attitude finds a certain vindication in
the fact that most of the inequivalent representations which were ignored have no
physical meaning (because they violate basic physical requirements). Nevertheless,
there are still various physically reasonable inequivalent representations left over.21

In particular for the interpretation of QFT, it must therefore be emphasized that— in

18Since most operators are differential operators in Schrödinger’s version of quantum mechanics,
we called this approach the “calculus approach”.
19In the following, some still-unexplained concepts will occasionally appear in the text, and they
will be placed in quotation marks or parentheses, either to ensure that the statements made are not
incorrect, and/or to guarantee to readers who wish to pursue their interests further in the literature
that they will be able to follow the concepts employed there. In a first reading of this chapter, these
concepts can be ignored, however.
20See Sect. 3.1.4.
21One notorious example for the significance of inequivalent representations is the so-called Unruh
effect, according to which what appears to be a vacuum for one observer takes the form of a thermal
bath of particles for another, accelerated observer. The deeper reason for this apparent paradox
is that different inequivalent representations are associated with the two observers, which means
among other things that they experience different vacuum states. In fact, different inequivalent
representations are even systematically related to different vacuum states. This is the basis of
the so-called GNS construction, which plays an important role in the relation between AQFT and
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contrast to quantum mechanics—the choice of the representation is not a harmless,
merely pragmatic matter.22

From the existence of different physically reasonable inequivalent representations
of the commutation relations two questions arise: (i) Is it possible to either avoid
choosing a particular representation or to justify the choice? (ii) Does this have an
effect on the interpretation of QFT, in particular concerning ontological questions?
Question (ii) will be treated in the following Sect. 6.4. An answer to question (i) is
attempted within the framework of a reformulation of QFT, to which we now turn.

As we have seen, quantum field theory was first developed with the aid of analo-
gies to classical field theory and to single-particle quantum mechanics. Due to the
infinite number of degrees of freedom dealt with by QFT, particular mathematical
difficulties arose again and again. Since the 1950’s, there have been attempts to refor-
mulate QFT in a systematic, preferably axiomatic manner so that these deficits could
be avoided from the beginning. Arguably the most successful approach turned out to
be algebraic quantum field theory23 (AQFT). The central idea of AQFT is, in con-
trast to conventional QFT, not to choose a particular representation of the canonical
commutation relations in terms of operators on a Hilbert space. Instead, the starting
point for the formulation of AQFT is the level of the algebraic relations expressed by
the commutation relations. Thus, abstract observable algebras such as those deter-
mined by the commutation relations stand at the centre of the theory. At this level,
then—at least this was the original idea—various physical requirements are imposed
in an axiomatic manner, for instance referring to the relativistic nature of the theory.
It is thus required, e.g., that observables associated with spacelike-related regions
must commute with each other, since measurements in causally separated spacetime
regions must not influence each other, according to special relativity theory.24

Unfortunately, it has proven to be unexpectedly difficult to find realistic models
for AQFT, especially for quantum field theories with interactions. This means that
one cannot useAQFT in high-energy physics for computing scattering cross sections,
since it cannot (yet?) deliver a satisfactory connection to experiments. In spite of this
substantial limitation, it is nevertheless possible to obtain some fundamental results
within the framework of AQFT, which are highly significant for the interpretation of
QFT. On this background, it is not surprising that this approach forms the basis of
many, possibly evenmost, philosophical investigations ofQFTsince the 1990s.25 One
prominent example are insights concerning the non-localizability of quantumobjects,
which yield decisive arguments against a particle interpretation (see Sect. 6.4.2).

conventional QFT—because, beginningwith observable algebras, different operator representations
lead to different vacuum states.
22Ruetsche (2003) discusses the philosophical consequences of this in detail.
23Haag (1996) offers a complete treatment of AQFT. Buchholz (2000) emphasizes the basic fea-
tures of AQFT. Halvorson and Müger (2007) give a medium-long introduction, which is directed
especially to philosophers of physics.
24This requirement does not contradict the possibility of non-local EPR correlations (see Chap. 4).
25See e.g. Redhead (1995), Halvorson and Clifton (2002), Earman und Fraser (2006), Baker (2009),
Kuhlmann (2010), and Ruetsche (2011).
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Furthermore, AQFT is crucial for some of the most recent interpretative approaches
(see Sect. 6.5).

Conventional QFT has an additional problem, which explains the desire to refor-
mulate it in amathematically rigorousway. In Sect. 6.3.4,we sketched how in conven-
tional QFT the connection to experiments is obtained through stepwise calculation
of the scattering-matrix elements Sab. In carrying out these approximate calculations,
one encounters mathematical problems that cause doubts as to whether conventional
QFT is even a consistent theory in a strict mathematical sense. Nearly all contri-
butions that should approach a particular (“correct”) value on summing are in fact
infinite. That is, the calculation of the associated elements in the scattering matrix
leads to infinite values (the corresponding integrals diverge). Computations of tran-
sition probabilities in perturbation theory thus result in series expansions which in
the first few orders give excellent agreement with experimental results, but at higher
orders (i.e. on adding more correction terms) diverge again.

Various pragmatic methods have been developed to avoid these difficulties. One
possibility is to add additional terms to the Lagrangian, so that the scattering-matrix
elements become finite again. In certain quantumfield theories (i.e. with Lagrangians
leading to so-called renormalizable theories), it is possible to obtain a finite result
for all the relevant matrix elements by adding a limited number of additional terms.
These pragmatic procedures can be justified in a certain sense, by re-interpreting the
parameters which occur in the Lagrangian, such asmass and charge. One can assume,
for example, that the observed mass of an electron consists of its “bare” mass plus a
contribution that can be attributed to the interaction of the electron with other fields.
The value of the observable mass cannot then be calculated by the theory; it must be
determined experimentally.

This renormalization programme, which we have only briefly sketched here, thus
makes it possible to avoid the divergences (infinite quantities) and to predict experi-
mental effects with remarkable precision. The mathematical procedures applied for
the renormalization of mass and charge suggest that the effects of processes occur-
ring at very high energies can be taken into account by adjusting parameters such as
mass and charge. This idea was extended during the 1970s into the concept of effec-
tive field theories (see Kuhlmann 2012, Sect. 2.4). Effective field theories describe
only those interactions which are characteristic of a certain energy range. The precise
form of the Lagrangian function thus depends on the energy range being investigated
(e.g. on the energies of the particles that can be produced in a particular accelerator).
Certain types of particles can be produced only at correspondingly high energies.
The processes in the various energy ranges are to a large extent decoupled from each
other. The effects of processes at very high energies can be taken into account by
adjusting a few parameters, which are themselves energy dependent.WhileNewton’s
theory of gravitation holds equally well for the Moon and for the apple falling from
a tree, in high-energy physics, according to this view, one is dealing with a whole
series of quantum field theories (which differ in their Lagrangians), each of which is
valid only within a certain energy range, and evidently must not be understood as an
“ultimate” theory. If this picture is correct, there are no pressing reasons to assume
that a fundamental theory in the strict sense exists at all. Therefore, ontological con-
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siderations should begin now with the general theoretical framework of QFT and
should not wait for a fundamental theory to be developed.

A further deficit of conventional QFT is that the concept of a field operator at
a spacetime point is not mathematically well-defined.26 These various problems,
which we have sketched only briefly here, certainly make the desire for an improved
mathematical reformulation ofQFTunderstandable.However, since such approaches
have been of little practical value so far, the only recourse remains to continue to
work within the framework of conventional QFT for the present. As long as there
is no improved version, “dirty physics” is unavoidable. Such a pragmatic approach
is not unusual in modern physics. Philosophy of science, however, has dealt mainly
with mature theories up to now. Nevertheless, there are good reasons to analyse
the methods of “preliminary physics” more carefully and thus to contribute to an
improved understanding of the current theories (compare Audretsch 1989).

The pragmatic approach within the framework of a preliminary physics is cer-
tainly quite reasonable for research in practice, in order to find a practically useful
theoretical formulation under the given circumstances, even if it is not ideal. How-
ever, from a philosophical point of view, one could say that such “unfinished” theories
should rather not be interpreted realistically. This would recommend deferring the
clarification of the ontology of the theory until mathematically more stable versions
are available. Nevertheless, in the next section, we will turn to such questions and
will also explain why it is reasonable to do so.

6.4 Interpretations of Quantum Field Theory

6.4.1 Preliminary Remark

Perhaps the philosophical concerns regarding a realistic interpretation of preliminary
physics are the reason why it took until about the year 2000 for interpretations of
QFT to develop into an important subfield within the philosophy of physics (for an
overview, see Kuhlmann 2012). There are a number of reasons for not waiting with
semantic and ontological investigations until QFT has attained the degree of maturity
of, for example, classical electrodynamics: For one thing, working with provisional
theories is a rewarding topic in itself for the philosophy of science. Furthermore,
one cannot know how long QFT will remain in its current state, and perhaps there
are already some indications of the ontology of the microscopic world to be found
within its present formulations. In addition, the heuristic role of ontological intuitions
for the further development of theories is not to be underestimated. In this case, it
would be good if the intuitions could be focused by the results of current analytical
ontology.

26A compact treatment of the various deficits of conventional QFT can be found in Kuhlmann
(2012), Sect. 4.1.
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In classical physics, it is possible to interpret theories in a straightforward spa-
tiotemporal manner. That is considerably more difficult for QFT, however, with its
much richer mathematical structure. Asking for the ontology of QFT presupposes
that the theory is understood not only as an instrument for predicting experimental
results, but rather, at least to some extent, that it can be interpreted realistically. Under
this precondition, one must state how QFT relates to the world also in those areas
which are not accessible to experiment. In this chapter, we investigate in particular
whether and how QFT describes processes and events in space and time.

There is no simple rule for determining the ontology of a theory, that is, for
finding out with which objects a theory deals (in the broadest sense). For theories
about our solar system or about the range of Darwin finches, the matter would seem
to be relatively simple, since one already knows quite a lot about their objects,
independently of the particular theory. In the search for an ontology of QFT, the
following methods have been utilized: One refers to an intuitive understanding of the
phenomena which become apparent in relevant experiments (i.e. in a certain sense, to
pre-theoretical knowledge). One continues to rely upon analogies to classical theories
and to interpretations of the quantum theory of “single-particle systems” and thus
evaluates the heuristics which led to the newer theory. Above all, one analyses the
various possibilities of giving a physical significance to the mathematical formalism
of QFT. A famous philosophical view is that one can find the elements of the theory
which carry its meaning, and thereby the entities about which it speaks, by looking
at the quantities over which the theory quantizes in axiomatic formulations, i.e. by
looking at the quantities on which the axioms impose their requirements. This route
has proved to be impassable, however, at least in the current situation, due to the
complicated mathematical structure of QFT.

The discussions around various interpretations of quantum mechanics suggest
that quantum objects can neither be classical particles nor classical fields. Neverthe-
less, even the newer contributions to the interpretation of QFT usually begin with
an examination of the classical particle and field concepts. This may be due to the
fact that many physicists believe that one may find a way back to a particle pic-
ture, perhaps somewhat modified, via QFT. Or they are seeking new possibilities
within the framework of QFT for connecting classical concepts in some way or
another, since alternative models for the spatial embedding of quantum objects are
not available. We will therefore likewise investigate whether or not QFT deals with
particles (Sect. 6.4.2) or with fields (Sect. 6.4.3), and then we will analyse alternative
suggestions for an ontology of QFT.27

6.4.2 The Particle Interpretation

Let us first consider in more detail the advantages and the difficulties of a particle
interpretation of QFT. Experimental particle physics appears to favour a particle

27An overview of the various interpretations of QFT can be found in Kuhlmann 2012, Sect. 5.1.2.
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ontology. “Particle accelerators” are constructed, detectors register “particle tracks”
or make it possible to reconstruct “particle trajectories” in complicated counters,
and in the end, there are Nobel prizes for the discovery of new “elementary parti-
cles”. However, one must look more closely at what exactly is understood in such
formulations by the term “particle”. Evidently, objects are not meant that behave
in every respect like classical particles. The problems of a particle interpretation of
QFT become obvious when one investigates which features of the classical particle
concept would have to be dispensed with in QFT.

The Classical Particle Concept

There is no canonical definition of what exactly a classical particle is.28 In order
to make the following discussion more transparent, we will work with the sugges-
tion that classical particles are discrete, sharply localized, massive29 objects with
synchronic and diachronic identities. Discreteness means that one can specify their
number. This is not the case when we specify the amount of a continuous quantity
such as the field strength of a classical electric field. Localization distinguishes parti-
cles from fields, which extend over large regions of space. Synchronic identitymeans
that particles are individuals at a given moment in time. This distinguishes them, for
instance, from 100 Euros in a bank account. Discrete entities with synchronic iden-
tities are not only cardinally, but also ordinally countable.30

We can thus say “this is the first and that is the second particle”, and this statement
has an ontological significance. It refers to a real difference in the world.Diachronic
identity, finally, means that particles as individuals can be followed along their time
evolution. In classical mechanics, the diachronic identity of particles is guaranteed
by the existence of their trajectories, i.e. their spatiotemporal paths, which cannot
cross each other. Therefore, classical particles are also mutually impenetrable. This
is not the case with two wave crests, for example, which can approach each other,
meet, superpose, and finally move apart again.

As we shall see in the following, all of the characteristics of particles listed above
are lost in QFT, depending upon the context. In part, this is already the case in quan-
tum mechanics. QFT gives additional reasons for the inapplicability of the classical
particle concept, however.

Discreteness

In Sect. 6.3.2, we saw that there are some features in the formalism of QFT which
support the claim that QFT deals with particles. The application of the creation
operator a†(p) to the vacuum vector generates states with some properties that would

28Wigner’s group-theoretical classification of the elementary particles (Wigner 1939) also gives no
definition of the particle concept, in contrast to what is often assumed. What Wigner defines instead
is “elementarity” (see Kuhlmann 2010, Sect. 8.1.2). This can be seen already by the fact that spatial
localizability plays no role in Wigner’s definition.
29Relativistic classical particles must obey the energy condition expressed by Eq. (6.4), owing to
the equivalence of mass and energy.
30Instead of “ordinally countable” sometimes one simply says “countable” and contrasts it with
“aggregable” (here: “cardinally countable”). Teller (1995) in particular uses alternative terminology.
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also be exhibited by particles, for example integer eigenvalues of the particle-number
operator. Thus, we are dealing with something that occurs in the form of discrete
portions, where the summed energy and momentum values stand in the correct ratio
for relativistic particles.31 The latter result is surely less surprising than the integer
eigenvalues of the particle number operator, since we obtained Eq. (6.5) on the
basis of the relativistic energy-momentum relation (6.4). However, we used this
latter relation to “derive” a single-particle theory, and then interpreted the result
as a classical field. Therefore, it is not self-evident that this connection can also
be transferred to the resulting theory, which deals with (possibly) many particles.
All together, we have found two non-trivial and for relativistic particles essential
properties: their discreteness and the validity of the relativistic energy condition.
This is non-trivial because we imposed the commutation relations in Sect. 6.3.2 as
referring to a classical relativistic field theory and not a particle theory. The resulting
discreteness as well as the fact that these objects, which occur in discrete portions,
fulfil the relativistic energy condition, are thus remarkable results.

Nevertheless, even the most clear-cut particle properties in QFT, i.e. discreteness
and cardinal countability, are not exhibited without limitations. The first of these
consists in the fact that the eigenstates of the particle-number operator are only a
certain subset of the state vectors. As we saw above, the Fock space in Eq. (6.12) or
in Eq. (6.19) written as a direct sum of n-particle state spaces also contains linear
combinations of n-particle states with different particle numbers. Thus, there are also
states with indeterminate particle numbers. This distinguishes QFT essentially from
quantum mechanics, where we always have a fixed particle number. If particles are
supposed to be the fundamental objects of the ontology of QFT, it would seem hardly
acceptable, however, that we cannot even determine how many fundamental objects
there are at a given moment in time.32

A second problem for the discreteness, or cardinal countability, of our potential
particles may be the Unruh effect. An observer who is undergoing constant accel-
eration sees a thermal bath of particles, the so-called Rindler quanta, where another
observer (‘at rest’) sees simply the vacuum (cf. also Footnote 21). A mere change
of reference frame should not lead to the creation of many new particles, however,
if particles are the fundamental entities of our ontology. Both points appear to be
incompatible with an interpretation that takes the particle concept seriously.33

Often, however, a classical particle interpretation is not defended at all, but instead
only a weaker position. Teller’s so-called quanta interpretation is the approach which

31Fraser (2008) expresses this as follows: The countability and energy conditions are fulfilled.
However, since countability is often understood in the ordinal sense—-for example byTeller—but in
the present connectionwe are concernedwith the cardinal sense, we speak instead of “discreteness”.
32Baker (2013, p. 267) argues conversely that the situation could be similar to that of atoms in
superposition states, which nevertheless does not cause us to doubt the existence of atoms.
33Teller (1995) argues in opposition to this view that probabilistic statements are a generic feature
of quantum physics, and that both problems can be resolved with a propensity interpretation of
quantum-mechanical probabilities (see Sect.2.2.2). Teller (1995) discusses the first problem on
pp. 31–33 and the second one on pp. 110–112. An accessible treatment and critical discussion of
Teller’s arguments is given by Huggett and Weingard (1996).
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has beenmost discussed. Themain difference is that quanta—in contrast to (classical)
particles—are not individuals, which brings us to their next characteristic.

Synchronic Identity

As we saw in Chap.3 on many-particle quantum mechanics, according to the stan-
dard view, quantum objects can violate Leibniz’s principle: There are many-particle
systems with quantum objects of the same type (namely various kinds of bosons or
fermions) that differ in none of their permanent properties and in none of their time-
dependent properties, without being numerically identical, as required by Leibniz’s
principle. If one subscribes to this standard view and argues that quantum objects
are thus not individuals (in the sense of Leibniz’s principle), then one can continue
to argue – as does Teller (1995)—that it is unfavourable to work with a formalism
which (apparently) enumerates particles and thus creates the impression that one is
dealing with different individuals.34 Exactly this is the case for the labelled tensor-
product many-particle formalism of quantum mechanics, which we encountered in
Chap. 3. Teller (1995) argues that this formalism contains so-called surplus struc-
ture, and that it would be a positive step to have a formalism in which states like
that in Eq. (6.13), which correspond to nothing in nature, would no longer occur
at all. Precisely such a formalism without surplus structure, says Teller, is the Fock
space formalism in symmetrized form that is used in QFT (see Sect. 6.3.3). This is
because with its description of states in the occupation-number representation, as for
example in (6.15), it reflects in a quite natural way what is closest to being a particle
in the quantum world: “quanta” as Teller calls them. They can indeed aggregate, but
cannot be enumerated like the individual particles of classical physics.

Furthermore, the existence of the Fock space representation demonstrates, says
Teller, that it is possible (and indeed is the only possibility) to describe infinitelymany
degrees of freedom and countable entities within the same framework—where there
is also a relativistically invariant state containing precisely zero such entities, i.e. a
vacuum. A field theory (with infinitely many degrees of freedom) thus appears to be
compatible with the existence of countable particles. And, indeed, this is an essential
feature of the formalism that we have encountered in Sect. 6.3.1: the equivalence of
many-particle and field descriptions.

Teller has been strongly criticized for his viewpoint. Huggett andWeingard (1996)
argue that the Fock space formalism is equivalent to the labelled tensor-product
many-particle formalism. In particular, it was for just this reason that we described
in such detail in Sect. 6.3.3 that the Fock space representation of the commutation
relations for the Klein–Gordon field is equivalent to the corresponding symmetrized
representation in the labelled tensor-product many-particle formalism. If these two
formalisms are in fact equivalent, it is not comprehensible why the one formalism
should be more relevant to ontological questions than the other. There are two more
still “harder” arguments against Teller’s choice of the Fock space representation as the

34Note that Teller presumes that it is not reasonable to assume quantum objects to be primitively
individuated. However, as we have seen from the discussion on the possibility of weak distinguisha-
bility in Sect. 3.2.3, this presumption has been frequently criticized, especially in recent years.
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basis of his ontological investigation of QFT. As we saw in Sect. 6.3.5, in quantum
field theory, due to the infinite number of degrees of freedom, there are infinitely
many different, inequivalent representations, of which the Fock space representation
is only one example.35 Therefore, Huggett and Weingard (1996) reason:

...the quantum field is richer than any single Fock space description, but this point is obscured
by presenting the field in terms of a particular Fock space [p. 306]. […] Thus Teller’s attempt
to establish the quanta representation as the appropriate way to view QFT obscures some of
the most crucial and startling aspects of that theory [p. 307].

Nowone could object that it is questionablewhether those infinitelymany inequiv-
alent representations have any physical significance at all. And indeed, this is the case
for the vast majority of them. In any case, however, the Fock space representation
is only valid for the free theory, according to Haag’s theorem (see Fraser 2008). It
thus cannot be the correct state space for theories which include interactions.36 Thus,
there is no unitary operator which leads from the free to the interacting represen-
tation. However, since the free theory is an idealization, it is highly problematic to
draw ontological conclusions from a special representation which exists only for the
free theory (see Fraser 2008).37

From the preceding considerations, we can extract two consequences. First, a par-
ticle interpretation is untenable, even in the sense of a “weak quanta” version (“weak”
because it dispenses with synchronic identity). This is because the countability of
discrete entities depends on the Fock space representation, which—as we have just
seen—itself has only a very limited validity. A second consequence, based on the
first, could be drawn in reference to our debate over Leibniz’s principle. If QFT per-
mits neither a particle nor a quanta interpretation, the symmetrization requirements
of quantum physics would not refer to permutations of actual objects of any kind, but
instead merely to the order in which creation operators are applied to field states.38

We will treat this idea in more detail below.
As was shown in Sect. 3.1.2 (on many-particle tensor products), the indistin-

guishability postulate is fulfilled when the exchange of two of the indices (which
enumerate the n factors of the tensor product of n single-particle Hilbert spaces)
leads to states which are are physically indistinguishable; see Eqs. (3.3) and (3.4).
This symmetry requirement is obeyed for bosonic and fermionic fields as a result of
the commutation relations of the corresponding field operators.

The question of whether and in which sense QFT deals with indistinguishable
quantumobjects, andwhether Leibniz’s principle is fulfilledwithin quantumphysics,
is more difficult. The fundamental problem here is to identify mathematical elements

35A simple example can be found in Huggett and Weingard (1996 p. 306). Furthermore, in QFT on
curved spacetimes, there are also infinitely many different inequivalent Fock space representations
(Baker 2013).
36This holds in spite of the fact that the Fock space is used in perturbation-theoretical calculations
within conventional quantum mechanics.
37Bain (2011) has formulated an alternative quanta interpretation for the asymptotically free theory.
38According to Baker (2013), the permutations refer to the order in which the charges are added
(to “algebraic states”).
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of the theorywhich represent quantumobjects. For two-particle systems such as those
that we encountered in Chap. 4 (EPR), there are good reasons for speaking of “two
photons” or of “two protons” as objects. These reasons are related among other things
to the corresponding experimental setups for the production and detection of such
systems. In experimental particle physics, also, one can speak of the fact that a detec-
tor has registered a certain particle, since a state has been measured which emerged
from the interaction zone with a particular momentum and a particular charge. Here,
again, one initiallymakes statements only about the results of ameasurement process.

It thus remains an open question as to how quantum objects for which one could
formulate a Leibniz principle can occur within the formalism of QFT. On closer
examination, one must even ask whether the so-called quanta, whose existence is
suggested by the occupation-number representation, can themselves in fact be seen
as possible candidates for quantum objects. The manner of speaking that a certain
state “is n-fold occupied” makes a statement about the eigenvalues of eigenstates of
the so-called particle-number operator, but it fails to clarify what it is that “occu-
pies” the state n times, and whether the search for it is meaningful at all. The idea
that creation operators describe the production of particles or of quanta is sugges-
tive, but it could lead us astray. A competing idea is that they describe transitions
between different excitation states of a field, excitation states which are commonly
not associated with any object-like characteristics. The state description of QFT does
not associate objects in the world with states in any simple manner. “Instead, states
simply characterize propensities for what will be manifested with what probability
under various activating conditions”. So says Teller (1995, p. 105), who then con-
tinues, “Among the items for which there can be propensities for manifestations is
the occurrence of various numbers of quanta exhibiting various properties”. One can
certainly follow Teller insofar as there are experimental situations in which states
occur fromwhich it follows that a certain number of outgoing particles with a certain
momentum can be measured. If one considers the mathematical structure of QFT in
general, however, one simply finds no elements that could be considered to represent
objects in any reasonable sense. And therefore, one cannot reasonably ask whether
they fulfil Leibniz’s principle.

In a similar vein, Baker (2013) thus draws the conclusion:

…there is no analogue of the existing debate in interacting or curved-space-time QFTs. So
puzzles about the statistical behaviour of quantum particles would seem not to bear on the
question of whether the actual world is made up of individuals. According to the QFTs
that offer the best available approximation to reality, there are no quantum particles, and
we have no particular reason to expect that they will be reintroduced by some later more
fundamental theory. […]SinceQFT is probably best understood as describing the assignment
of fundamental quantities to regions of space-time […], it is plausible that the best candidates
for the “individuals” posited by the theory are space-time points, or space-time regions. For
this reason […] space-time theories, and not basic QM, should be the locus of philosophical
debate about the nature of identity and individuality in modern physics (Baker 2013, p. 284).

Diachronic Identity and Localizability

Whoever still finds a particle interpretation of QFT attractive should begin to brood
at the latest on reading the following results. The arguments against a particle inter-
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pretation which are generally held to be strongest are namely those related to the
non-localizability of “quantum objects”, which turns out to be still more radical in
QFT than in quantum mechanics. Even in the heuristic derivation of the operators
a†(p) (see Eq.6.8), one can already see that the states generated by their application
are eigenstates of the momentum operator; that is, they are more similar to plane
waves than to particles, and even simply due to Heisenberg’s uncertainty relation,
they cannot occupy a precisely-defined location. Moreover, in the light of QFT, it
becomes clear that in the explanation of the photoelectric effect it is the conservation
of momentum and energy that matters and not the idea of localized photons.39

In addition to these considerations, which relate to the conventional formulation
of QFT, there are quite fundamental arguments which show that in the framework
of a relativistic QFT no localized objects can occur. These mathematical indications
demonstrate that no theory which fulfils certain general principles can yield localized
states, that is states in which putative particles can be found with certainty within
a limited region of space. In a much-noted theorem, for example, David Malament
(1996) showed, making use in particular of relativistic considerations, that particle
theories which fulfil a small number of not-too-limiting and plausible conditions
lead to the result that the probability of finding a particle in some finite spatial region
is equal to zero. That is an absurd result, however, so that a reductio ad absurdum
points to the conclusion that quantum objects cannot be particles if their localizability
is considered to be an indispensable characteristic.40 Correspondingly, in QFT one
cannot even meaningfully define a position operator.

Conclusions for the Particle Interpretation

The assumption that QFT deals with classical particles or with entities which are
similar to classical particles thus runs up against great difficulties. If “particles” are
often mentioned in textbooks and in everyday research practice, then this is due to
the fact that the concept of “particles” has been almost arbitrarily extended, and
the different meanings are related only through a family resemblance. There is no
characteristic left that all the various usages of “particle” would have in common
(cf. Falkenburg 2012).

6.4.3 The Field Interpretation

If the objects of QFT are not particles, then from the viewpoint of classical physics,
the only option remaining is the assumption that QFT deals with fields. It seems to
fit this interpretation that the quantum fields �(x, t) have the spacetime manifold

39This was formulated somewhat more cautiously than in many other textbooks by Peskin and
Schroeder (1995, p. 22): “It is quite natural to call these excitations particles, since they are discrete
entities that have the proper relativistic energy-momentum relation. (By a particle, we do not mean
something that must be localized in space; a†p creates particles in momentum eigenstates)”.
40For this topic and other proofs, cf. Halvorson and Clifton (2002), Kuhlmann (2010), Chap.8, and
Kuhlmann (2012), Sect. 5.3.



254 6 Quantum Field Theory

as their argument, so that to every spacetime point a quantity is assigned, thereby
exhibiting the central characteristic of a field.41 However, �(x, t) is an operator,
so that the spacetime points are not directly associated with any definite physical
properties, in contrast to the case of the electromagnetic field for example. The field
operators are important for the dynamics of the states, but only togetherwith the states
can they be associated with a spatiotemporal interpretation of definite properties.

Only when one combines the field operators �(x, t) with the states |ψ〉 of the
system on which the field operators or combinations f (�(x, t)) of them act, can
one assign concrete values of physical quantities to spacetime points via expectation
values of the form

〈ψ| f (�(x, t))|ψ〉 .

This approach has a series of difficulties, however. First, it is not at all clear just what
one knows as a result of calculating the expectation values 〈ψ| f (�(x, t))|ψ〉. If we
analyse the role of the field operators in their application, we find that they char-
acterize possible types of interactions and observations, but not particular systems.
The field operators appear, when one tries to make use of them for explanations, to
belong rather to the level of laws than to that of boundary conditions which contain
the changing properties of the system. In practical applications, the expectation val-
ues mentioned above play only an indirect role. The field operators are important
when one asks the question of how large the probability is that a field state |a〉 will
make a transition into another field state |b〉. This function of the field operators has
itself no field-like character, however, and it provides no argument in favour of a field
interpretation of QFT.

A similar difficulty with the practical application of QFT arises for an inter-
pretation in which the field operators lead to the probabilities for finding classical
field configurations. Huggett (2000) calls this the “wave–functional interpretation”:
Analogously to the way in which one can understand the wavefunction in quantum
mechanics as assigning probabilities for detecting a quantum object in given regions
of space, one could claim that in QFT, field configurations (which are themselves
functions) are associated with probabilities for observing the corresponding configu-
ration. (While functions map numbers onto numbers, functionalsmap functions onto
numbers).

Nevertheless, a field interpretation would also have to make it clear just how it
happens that, for instance, the complete charge and energy of an extended electron
field can be localized within a detector “at one point”. The field operators (“quantum
fields”) thus appear not to be interpretable as physical fields, but also the state vectors
|ψ〉 are not fields in the classical sense, and furthermore can provide no information
without the operators.Moreover, no othermathematical structures are apparentwhich

41In the mathematically correct algebraic formulation of QFT (see Sect. 6.3.5), the quantities are
not associated with points, but rather with finite regions of spacetime; furthermore, they are not
associated with individual operators, but with algebras of operators. For the following arguments,
this makes no essential difference, however.
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could be interpreted unproblematically as fields.42 Thus, the proposal to interpret
QFT in terms of a field ontology, too, does not seem to promise much success.

Conclusions for the Field Interpretation

The current, very lively discussions about the proper ontology for QFT have thus far
not led to a result which could find wide acceptance. The least controversial point
is the assessment that a particle interpretation of QFT is not tenable, in view of the
multitude of problems that it encounters. The situation with regard to a field inter-
pretation looks somewhat different. Since the discussion so far has been focused on
particle interpretations, while a field interpretation was often viewed without further
discussion as the only remaining alternative, there are too few careful considerations
about just what a field interpretation should actually look like. It is clear that one
cannot expect a classical field theory here. It needs to be spelled out in which way it
would be a field theory in a physical sense, and not simply the assignment of certain
mathematical expressions to certain points in spacetime. Furthermore, it has been
investigated too little how far the arguments against a particle interpretation also
count against a field interpretation. In summary, one can say that the overwhelming
arguments against a particle interpretation, along with the open question of just how
QFT should be understood to describe physical fields, suggest looking for new possi-
bilities of interpretingQFT. Two alternative interpretive approacheswill be discussed
in the following section.

6.5 New Paths to an Interpretation

6.5.1 Ontic Structural Realism

Some philosophers believe that not things such as electrons, but rather structures or
relations are the fundamental elements of the world. This is ontic structural realism
in its strongest variant, so-called “eliminative” structural realism (Ladyman 1998). In
the non-eliminative variant of ontic structural realism, which is prevalent at present,
structures or relations are ontologically on at least the same level as things. This
is true in the sense that not only must things exist, in order for the relations to
be realized, but also that the corresponding things themselves are determined only
through certain structures. The assertion is thus that there are structures or relations
which enter the world not just through an arrangement of the previously existing
things, but are themselves constitutive for those things. Concerning physics, the
ontologically fundamental structures are mostly claimed to be symmetries (Lyre
2012). In QFT, these are primarily symmetries that are decisive for the classification
of elementary systems (in particular elementary particles). In Sect. 3.1.4, we have
seen, for example, that elementary particles can be divided into two main groups

42Baker (2009) has analysed some additional difficulties of a field interpretation.
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according to their symmetry behaviour under permutations: bosons (symmetric) and
fermions (antisymmetric).

InQFT, ontic structural realism obtains at least a certain initial plausibility through
the fact that symmetry considerations were crucial when the theory was first formu-
lated. Moreover, the fundamental symmetry structures were sometimes established
before the elementary particles which obey them were discovered (Cao 2010, esp.
Chaps. 1 and 9). In any case, symmetry considerations play such a fundamental role
in modern physics that the question is justified whether this should not be reflected
in its ontology.

A physical theory is said to be invariant under a particular symmetry transfor-
mation if its laws do not change their form when the corresponding transformation
is carried out. This can be either a spatiotemporal transformation (e.g. a rotation,
or time reversal) or a non-spatiotemporal transformation (e.g. a permutation, or a
“gauge transformation” of potential fields). According to a pathbreaking article by
EugeneWigner (1939), the analysis of spatiotemporal symmetry groups yields a clas-
sification of elementary physical systems, such as elementary particles. Supporters
of ontic structural realism interpret this as an indication that symmetries characterize
elementary particles and in this sense are constitutive for them.

One important background for ontic structural realism is the ontological debate
aroundmany-particle systemswith indistinguishable particles (seeChap. 3). In quan-
tum mechanics, it seems possible that “particles” can match exactly in all their prop-
erties, both their permanent properties (such as charge and mass) as well as their
time-dependent properties (such as their probability-density distributions), and nev-
ertheless not be numerically identical. But thenwhat is the basis for saying that we are
dealing with two objects and not with one, when both of these objects match exactly
in every property? The structural realist has the following answer (Esfeld and Lam
2011): The two electrons indeed have the same monadic properties (i.e. properties
which refer only to themselves alone). However, the decisive relational properties
with respect to their entanglement inmany-particle systemswere completely ignored
up to now. These can be of the form that, for example, spin measurements on two
electrons always show spin components in opposite directions, “spin up” and “spin
down” (see Chap. 4). This irreflexive relation of properties can exist only for two dif-
ferent electrons, however.Ergo, the numerical diversity of the electrons is guaranteed
by relational and not by monadic properties. The entanglement structure of the two-
electron system is constitutive for the two electrons as distinct entities. Therefore,
this structure is not produced by the “arrangement” of already existing electrons, but
has at least the same ontological significance as the electrons themselves.

Building on the considerations of permutation invariance of many-particle wave-
functions, there are some further arguments in favour of ontic structural realism.
Stachel (2002) suggests the following generalization: If permutations of putative
individuals, whether they be spacetime points or particles, have no kind of observ-
able effects, then Ockham’s razor advises us that individual spacetime points or
particles should not be regarded as fundamental, but instead the relevant symmetry
structures—for example the metric structure of spacetime—or the symmetry-group
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structure for the description of matter. In Sect. 3.1.4, we encountered several exam-
ples of such symmetry groups, which can be directly extended to QFT.

Whether or not there are arguments in favour of ontic structural realism which
are specific to QFT and do not already hold for quantum mechanics, or even quite
generally, is thus far not clear. Independently of this question, however, it could be
the case that ontic structural realism can solve some problems which have arisen in
the interpretation of QFT. An especially obstinate problemwas that of the occurrence
of different inequivalent representations in theories of systems with infinitely many
degrees of freedom, such as are treated by QFT (see Sect. 6.3.5). The problem of
choosing one of these inequivalent representations would be eliminated, however,
if we had a justification for classifying the level of the algebraic structure of the
commutation relations as ontologically fundamental. Ontic structural realism could
deliver the general basis for precisely this justification.

Various objections have been raised against ontic structural realism. The principal
argument against the strong eliminative variant of ontic structural realism is that
assuming relations without relata is a contradiction in terms. For the weaker non-
eliminative variant of ontic structural realism, which we have just discussed, the
main problem is to spell out how exactly objects should be understood as being
“structurally characterized”. More traditional ontologies do not deny that there are
relations or structures, and neither do they deny that they play a decisive role in the
formulation of theories, in particular of QFT. The question is, however, whether or
not it is reasonable to say that structures are ontologically primary, or at least stand
on the same level as objects. If the advocate of ontic structural realismmerely asserts
that there are structures and that they are important, then no new ontology has been
established.

6.5.2 A Trope-Ontological Interpretation

The fundamental idea of ontic structural realism consists in countering the problems
of traditional interpretations by asserting that “things” (or “substances”) such as
electrons are not to be taken as fundamental elements of the ontology, but that some-
thing else should rather be considered to be primary. This characterization applies
also to the so-called trope-ontological interpretation of QFT.43 While ontic structural
realism sees relations as fundamental, in trope ontology, properties are the basic ele-
ments of the ontology—where properties are understood in a non-standard way and
are called “tropes” to mark this new understanding.

Trope ontology developed independently of the considerations of modern physics
and has been the subject of active discussions in recent years.44 In the philosophical
discipline ontology, the term “trope” refers to single occurrences of properties. With
recourse to Aristotle, we can offer the following analogy: An individual occurrence

43Wayne (2008), Morganti (2009), and Kuhlmann (2010).
44Maurin (2013) gives an up-to-date overview.
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of white is related to the universal property of being white in the same way as a
single human is related to the natural species of humanity. According to the point of
view of “trope ontology” (in its standard form), tropes are in fact the fundamental
category of being, to which everything else can be reduced. This standard version
of trope ontology is therefore a single-category theory. “Things” (or “substances”)
such as the eraser which is lying in front of me on my desk are analysed as bundles of
tropes, i.e. this individual occurrence of white, this rubbery consistence, this blunted
cuboid shape, etc.

The tropes or properties of a bundle are evidently not to be regarded as spatiotem-
poral parts, but insofar as things are composed of them, they are indeed parts. The
decisive point is now that tropes or properties are not individuated via the things
whose properties they are, but their particularity is instead seen as primitive. The
particularity of the tropes is the basis of the individuality of the object which they
constitute. Consequently, the properties to which the objects are reduced in trope
ontology cannot be universalia, i.e. multiply realizable entities. Otherwise, partic-
ular substantive objects—being nothing but bundles of tropes—could occur more
than once, which would be a contradiction in terms.

The examples of tropes mentioned so far are only usable as illustrations of the
basic idea, however. Precisely speaking, the things around us are themselves bundles
of bundles, since otherwise there would be numerous problems.45 Genuine tropes
are to be found only on the fundamental level, and precisely for that reason, it is very
important for philosophical trope ontology to consider what modern physics has to
say about the basic elements of our material world.

How can we now spell out trope ontology in the case of quantum physics? The
first suggestion is due to Simons (1994), where the background is the debate over
many-particle systems once again (see Chap. 3 and Sect. 6.5.1). If properties are not
considered to be universalia, but rather particular things, i.e. tropes, then the conflict
with Leibniz’s principle does not even arise: Two electrons which have precisely
similar charge tropes, i.e. both carry a negative elementary charge, are two different
things, since they are not identical in their properties after all—in the sense of tropes.
According to trope ontology, properties are particulars46 and as a result, things are
also particulars, since they are nothing but bundles of tropes.

Now, what would a trope-ontological interpretation of QFT look like? Morganti
(2009) connects his approach to the “Standard Model” of particle physics, in which
the particles are classified according to various properties. Another variant, called
“dispositional trope ontology”47, is supported in particular by the algebraic formula-
tion of QFT, i.e. AQFT (cf. Sect. 6.3.5). An essential point here is also the problem of
inequivalent representations. Similarly to ontic structural realism, dispositional trope

45One concern is the boundary problem (Campbell 1990): Consider a blue sheet of paper that you
tear apart. Are there suddenly two blue tropes now? Or were they “in” the original sheet already.
If yes, then we have acquired a general problem: where does one colour trope end and another one
begin on a macroscopic level?.
46The term “particular” is less misleading here than “individual thing”, since single tropes are
precisely not things.
47Kuhlmann (2010), Chaps. 11–15.
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ontology also holds algebraic structures to be ontologically fundamental and avoids
deriving fundamental ontologies (prematurely) from special representations. In con-
trast to ontic structural realism, however, dispositional trope ontology maintains that
it is not possible to capture the ontology of the material world with (abstract) struc-
tures. For this reason, concrete representations which refer to the empirical world
play a primary role in dispositional trope ontology.48 A further important point is
that in AQFT, it is not individual observables which are at the basis of the formu-
lation, but rather nets of observable algebras. In other words, the central items are
neither individual observables nor single observable algebras, but rather the manner
in which observable algebras are related to each other with respect to different space-
time regions. According to dispositional trope ontology, this aspect is best captured
by a bundle theory of properties.

There are a number of other reasons why it is advantageous not to consider either
(quantum) fields or elementary particles as fundamental, but instead dispositional
tropes, which in bundles correspond to the objects we know, e.g. electrons. In the
following,we sketch three arguments in favour of a trope-ontological interpretation of
QFT.Here is the first one: There are conservation laws for diverse physical quantities,
in particular for various types of charges. There is, however, no conservation law for
the particle number. Such a conservation law would contradict empirical results of
high-energy physics, where millions of particles are annihilated and other types of
particles are formed in scattering experiments. The trope-bundle theory can describe
this fact very naturally, since particles have no fundamental status here, but rather
are formed and can decay continually through new bundlings, in particular of charge
tropes.A second topicwhere dispositional trope ontology is found to be advantageous
is the vacuumofQFT. In a particle interpretation, it is incomprehensible that detectors
produce signals even in a vacuum, although the vacuum is the “zero-particle” state. In
contrast, dispositional trope ontology can make sense of the seething QFT vacuum:
Dispositional tropes are also present in the vacuum and can lead to particle-like
detection events. Finally, the non-localizability problems, which haunt the particle
interpretation, disappear in a trope-ontological reading of QFT, since elementary
particles are no longer fundamental objects. Therefore, it raises no difficulties that
particle-like aspects can be observed only under certain conditions.

6.5.3 Conclusions for the Ontology of Quantum Field Theory

Philosophical discussions about the ontology of QFT are still relatively new. Cor-
respondingly, especially the more recent alternative approaches have not yet been
sufficiently worked out. A particular challenge for any interpretation that takes QFT
seriously is the question of how to deal with the existence of different inequivalent

48Rossanese (2013) argues that the idea that the Unruh effect undermines the particle interpretation
is not only transferable to the field interpretation (as asserted by Baker 2009), but may also be raised
against a trope-ontological interpretation.
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representations. How should we ontologically account for the fact that free and inter-
acting theories, resting and accelerated observers, observers in a flat and in a curved
spacetime experience such radically different pictures?49 The open questions with
respect to the ontology of QFT lead to the conclusion that we can say little about
the spatiotemporal embedding of quantum objects. As we have seen, in conventional
QFT there are procedures that permit at least spatial statements in connection with
experiments. We can thus work successfully with QFT as a physical theory. Con-
cerning the philosophical questions about QFT, however, there is still much to be
done.

Exercises

1. Gather information about theories of light from the history of physics. Why was
Newton’s theory of light not considered satisfactory? Compare the mathematical
descriptions of particles and of waves. What is, in your opinion, the principal
difference?

2. Is there anything in classical physics which is neither a particle nor a field?
3. State two arguments which in your opinion provide the strongest support for

considering quantum field theory to be a theory of particles. What objections can
be raised against these arguments?

4. Would it be helpful in your opinion to extend the concepts of “particles” and
“fields”, i.e. by referring not only to those entities as “particles” or “fields” which
exhibit all the characteristics of classical particles or classical fields?
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Chapter 7
Chronology and Outlook

Cord Friebe, Meinard Kuhlmann and Holger Lyre

The following chronology places emphasis on the basics and on interpretations of
quantum physics; it should not be considered to be a history of quantum physics
as a whole. In particular, the special developments within quantum field theory,
and the advances in particle physics which grew out of them, are not included.
However, along with the interpretations which were given a detailed treatment in
earlier chapters (Copenhagen, GRW, Everett, Bohm), a number of other approaches
are briefly mentioned here. They could not be treated in detail in the rest of the book.
These include

• Consciousness-Causes-Collapse Interpretation (from 1939)
• Modal Interpretations (from 1972)
• Consistent Histories (from 1984)
• Transactional Interpretation (1986)
• Relational Quantum Mechanics (from 1994)
• Epistemic Interpretations and the Quantum-Bayesian Interpretation (from 2000)
• Information-based interpretations (from 2003).

All together the development of quantum physics can be roughly divided into
three phases: In the early phase, no complete theory was available. Instead, there
was a mixture of models which combined new elements with classical results. This
early phase began in 1900 with Planck’s quantum hypothesis and ended around
1925. Thereafter, a phase of breakthroughs and the establishment of a consistent new
theory began. This was quantummechanics in themodern sense, and a corresponding
mathematical formalism was developed in parallel. This phase ended around 1935
with Bohr’s answer to the challenge presented by the EPR thought experiment. This
marked also the tentative end of the philosophical interpretation debate around the
newly developed theory, which had continued since the middle of the 1920s, after
the Copenhagen interpretation, propagated by Bohr, Heisenberg, and other leading
quantum physicists, was accepted by the majority of physicists—at least for the time
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being, but in fact continuing up to the present. Since the end of the 1930s, or at the
latest in the course of the 1940s, the evolution of quantum mechanics began a third
phase. It is characterized, on the one hand, by newer theoretical developments such
as relativistic quantummechanics, quantum field theory and quantum gravity, but on
the other, also by important experimental verifications of the basic assumptions of
quantummechanics, by the development of innovativemodernfields such as quantum
information theory, and finally by the establishment of alternative approaches to the
interpretation of quantum mechanics.

7.1 The Early Period of Quantum Physics

1900: Planck’s Quantum Hypothesis. In order to describe the thermal radiation
spectrum of a black body, Max Planck suggests a formula which is based—as we
now understand it—on the assumption that a body emits radiation energy only in
small portions, as so-called quanta. The full implications of this assumption were
recognized only some years later, by Einstein. Planck’s work however led to the
introduction of the energy quantum hν, containing the new universal constant which
he had suggested already in 1899, “Planck’s constant” or “Planck’s quantum of
action” h.

1905: Einstein’s Light-Quantum Hypothesis. During his annus mirabilis, Albert
Einstein established not only his theory of special relativity and his microscopic
theory of diffusion. Based on the assumption that light energy (i. e. the energy of
electromagnetic radiation) can be transported only in small portions (quanta), he
was able to explain the experimental findings of the photoelectric effect. In 1921, he
received the Nobel Prize in physics for this work. It would be misleading, however,
to identify the “light quanta” of 1905 with the photons of quantum electrodynamics
(QED), which was developed only decades later.

1911–13: Bohr’s Model of the Atom. In 1911, Ernest Rutherford discovered exper-
imentally that atoms consist of a positively charged nucleus (small but massive) and
outer “shells” of electrons. According to the laws of classical physics, the electrons
circling the nucleus would emit radiation, and as a result, atoms would necessarily
be unstable. Niels Bohr “solved” this problem in 1913 with his ad hoc assumption of
quantization of the energies of the electrons and the postulate of the corresponding
“allowed” orbits on which they can circle the nucleus without emitting radiation.
When the electrons release or take up radiant energy, they can jump between the
allowed orbits, whose energy differences correspond to the observed spectral lines
of the emitted or absorbed radiation. The model can explain much of the observed
experimental data for hydrogen, but it contains an unexplained conflict with classical
electrodynamics, and it cannot be applied to more complex atoms.

1916: The Need for Quantum Corrections to the Theory of Gravitation. One
year after the publication of his General Relativity Theory (GRT) Einstein points out
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the need to modify it in order to take quantum effects into account. Up to the present,
gravitation is the only one of the four fundamental forces for which there is no
accepted quantum theory. The unification of General Relativity Theory and quantum
physics, still not accomplished today, is the greatest gap remaining in contemporary
physics (compare the entries for 1949–57 and 1967).

1922–23: The Compton Effect and its Explanation. In 1922, the American physi-
cist Arthur H. Compton discovers that X-rays which have scattered from electrons
suffer a change in their wavelengths. In the following year, he explains this effect
using energy andmomentumconservation in a collision between the radiation quanta,
acting as particles, and the electrons. Thiswas received as a confirmation of Einstein’s
light-quantum hypothesis.

1922–25: The Discovery of the Electron’s Spin. In 1922, Otto Stern and Walther
Gerlach pass silver atoms through an inhomogeneous magnetic field and observe a
splitting of the atomic beam. In order to explain this effect (and other spectroscopic
data aswell as theEinstein–deHaas effect), SamuelGoudsmit andGeorgeUhlenbeck
postulate, in 1925, a completely new property of electrons, which has no classical
analogue: the (electronic) spin.

1923: De Broglie’s Matter Waves. The radiationless orbital motion of the electrons
within atoms remains mysterious. In general, it is questionable whether quantum
particles can move on classical orbits at all. In his dissertation, Louis de Broglie
suggests that (bound) electrons and other particles can be understood as standing
waves with discrete frequencies. Thus, not only do waves have particle character,
but also particles have wave character.

1924: Bose–Einstein Statistics. Satyendranath Bose and Albert Einstein introduce
a probability distribution for the quantum statistics of bosons which differs from
classical particle statistics (cf. Sect. 3.1.3).

7.2 Establishing Standard Quantum Mechanics

1925: Heisenberg’s Matrix Mechanics. Werner Heisenberg finds an algebraic
approach to quantum mechanics in which measurable quantities such as position
and momentum can be represented as matrices (mathematical objects whose mul-
tiplication is non-commutative). Because of this transition to a new “kinematics”,
classical concepts such as “position” and “particle trajectory” become obsolete.

1925: Pauli’s Exclusion Principle. Wolfgang Pauli states the requirement that no
two electrons within an atom can have the same values of all four of their quantum
numbers. The structure of the periodic table becomes much more transparent due to
this rule (cf. Sect. 3.1.3).

1926: Schrödinger’s Wave Mechanics. Erwin Schrödinger establishes the funda-
mental equation of quantum mechanics: a linear, deterministic and time-reversible
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wave equation for the wavefunction �(x, t). The interpretation of this equation as
the time evolution of a delocalized matter field is unsuccessful, however, since the
function for N particles is defined in a 3N -dimensional configuration space and not
in position space.

1926: Quantum Hydrodynamics. Erwin Madelung reformulates Schrödinger’s
wave mechanics in a hydrodynamic form, putting a pair of quantum Euler equations
at its centre instead of the Schrödinger equation. Bohm’s quantum theory, developed
later, has some similarities to this approach (cf. Sect. 5.1).

1926: Born’s Probability Interpretation. Max Born interprets Schrödinger’s wave-
function in a new, apparently anti-realistic manner. According to his interpretation,
�(x, t) does not represent anymaterial quantity, but rather it simply allows probabil-
ity statements to be made. In the generalization suggested by Pauli in the same year,
the absolute square

∫
X dx |�(x, t)|2 expresses the probability of finding the particle

within a particular region X . “Born’s rule” becomes a basic element for the practical
application of quantum theory (cf. Sect. 2.1).

1927: Heisenberg’s Uncertainty Relations. Heisenberg demonstrates in the frame-
work of his uncertainty or indeterminacy relations that, simultaneously, canonically
conjugate quantities (i. e. position and momentum) are not sharply measurable in
quantum mechanics.

1927: The Solvay Conference of 1927. 1927 is considered to be a key year for
the establishment of the Copenhagen interpretation of quantum mechanics. With
knowledge of the equivalence of wave and matrix mechanics—and thus a theory
which had been freed of inconsistencies—a confrontation between Einstein and
Bohr takes place during the 5th Solvay Conference, and is settled in favour of Bohr,
in the opinion of the majority of physicists.

From 1927: Beginnings of Quantum Field Theory (QFT). In the late 1920s and
early 1930s, Jordan, Heisenberg and Pauli as well as Dirac carry out pioneering work
on the emerging question of the quantization of fields.

1928: Dirac’s Relativistic Equation. Paul A.M. Dirac formulates a relativistic ver-
sion of the Schrödinger equation for spin- 12 particles: amilestone along theway to the
generalization of quantum mechanics which also leads to the successful prediction
of antimatter (positrons).

From 1928: Statistical or Ensemble Interpretations. Here, we are dealing with a
whole cluster of interpretative approaches, whose precise authorship and chronol-
ogy are difficult to reconstruct. At its centre stands the viewpoint that the quantum-
mechanical formalism should not be applied to single systems, but only to ensembles
in the sense of a statistical theory (which obeysBorn’s rule). Einstein andSchrödinger
are early proponents of this direction. Karl Popper’s Propensity Approach, interpret-
ing probabilities as “realization tendencies”, can be roughly attributed to this group of
interpretations, as can the school of collectivistic interpretations of quantummechan-
ics inspired byMarxist thought and represented by Dimitri Blochinzev starting in the
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late 1940s. Beginning in the 1950s, works by Günther Ludwig, and from the 1970s
by Leslie E. Ballentine, each led to their own ensemble-theoretical programmes.

1929: Weyl’s Gauge Principle. In 1929, Hermann Weyl shows in an article, in
which he introduces tetrads and Weyl spinors, that the freedom in the choice of
the local phase of the wavefunction, which he called “gauge freedom”, leads to a
term in the free Schrödinger equation which can be seen as a coupling term to the
electromagnetic field. Invariance under local gauge symmetry thus leads to aminimal
coupling.

1932: von Neumann’s Standard Formalism. Johann von Neumann publishes his
book Mathematische Grundlagen der Quantummechanik (Mathematical Founda-
tions of QuantumMechanics). It is generally recognized that the development of the
new quantum mechanics attained, for the time being, its theoretical and mathemati-
cal completion with this publication. Von Neumann’s book also contains the remark
that there are two temporal processes for the wavefunction in quantum mechanics,
namely, on the one hand, a continuous and deterministic evolution as a result of the
Schrödinger dynamics and, on the other, a discontinuous collapse. He also derives
a no-go-theorem which is intended to identify quantum mechanics as a complete
theory and thus denies the possibility of a theory with “hidden variables”. Later,
John Bell in particular was able to show that the preconditions for this theorem are
too specific for such a general conclusion.

1935: Schrödinger’s Cat. The new paradigm has stubborn opponents: In 1935,
Schrödinger publishes an essay in which he attacks the Copenhagen interpretation.
If the decay of a single radioactive atom is coupled to a macroscopic trigger, then
the microscopic superposition is transferred to the macroscopic realm. A cat could
then for example be in a superposition state of “dead” and ’alive’, a scenario that
Schrödinger called “burlesque”.

1935: The EPR Argument. Albert Einstein also remains an opponent of quantum
mechanics. Together with Boris Podolsky and Nathan Rosen, he publishes a thought
experiment which directs attention to compound systems and is intended to cast
doubt on the completeness of quantum mechanics (Compare Sect. 4.2).

7.3 Confirmation and New Challenges

From 1936: Quantum Logic. Garrett Birkhoff and John vonNeumann show that the
logical structure of quantummechanics does not correspond to that of classical logic.
While the set of statements from classical two-valued logic forms a (distributive)
Boolean lattice, the set of projectors or subspaces of the Hilbert space is a non-
distributive lattice which is in particular characterized by the property that within it,
tertium non datur is not valid. The work of Birkhoff and von Neumann is deemed to
be the birthplace of quantum logic.
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From 1936: Algebraic Quantum Mechanics (AQM). Von Neumann and, in the
1940s, also Gelfand, Neumark and Segal develop AQM. It represents a third mathe-
matical formulation of quantum mechanics, in addition to the standard formulation
in Hilbert space and quantum logic. It is not very useful in practice, however. Its
basic idea is that a quantum system can be characterized in principle by the set of
its observables and thus by an observable algebra. Physical states can be defined as
linear functionals on the algebra. The so-called GNS construction guarantees that
each state functional permits a representation of the algebra in the form of operators
on the Hilbert space. Later, AQFT is based upon these fundamental ideas (compare
the entry for 1956: AQFT).

From 1939: Consciousness-Causes-Collapse Interpretation. In von Neumann’s
theory of the measurement process (compare the entry for 1932), the measurement
apparatus, too, is described quantummechanically. This gives rise to the problem that
the appearance of a unique measured value requires a discontinuous change of state
(the “collapse” of the wavefunction). Von Neumann leaves open the possibility that
this change of state occurs only through the perception of the observer, i.e. through the
observer’s consciousness. Fritz London and Edmund Bauer develop this concept into
a theory of measurements, according to which the collapse occurs via the interaction
of the physical system with the observer who is gifted with consciousness, since he
or she has the special ability to uniquely determine his/her own state. Their position
is influenced by philosophical tenets which originate with a substantive dualism of
mind and matter. In a similar manner, Eugene Wigner also attributes a special role to
the consciousness of the observer in the collapse of the state during a measurement
(compare the entry for 1961). In more recent times, Henry Stapp has suggested a
role for mental states (brain states). These approaches have received little resonance
from the scientific and philosophical communities, however. One reason is that their
basic assumptions on the relation of matter and consciousness are philosophically
problematic, and the characterizations of the measurement process based on them
have little explanatory value and appear to be rather ad hoc in nature.

From 1940: Quantum Electrodynamics (QED). In the 1940s, Richard Feynman,
Julian Schwinger and Shinichiro Tomonaga develop quantum electrodynamics
(QED), a quantum field theory which can be formulated gauge-theoretically and
relativistically (compare the entries for 1964: QCD; and 1967: GSW).

1948: Feynman’s Path-Integral Method. In the canonical formulation of QFT
(compare Sect. 6.3.1), fields are described quite analogously to the usual quantum
mechanics by non-commuting operators and are “quantized” in this manner. Richard
Feynman finds a different transition from classical physics to quantum theory, and
thus a formulation which dispenses with operators and the Hilbert space. In his
formulation, integral expressions occupy a central position; they can be understood
as integrals over all the possible particle trajectories. This path-integral method is
also called the sum over paths or the sum over histories approach. Although classical
particle trajectories may have played an heuristic role in the construction of the
theory, Feynman’s path-integral method cannot be considered a return to a particle
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ontology, however. Feynman himself understood his approach to be primarily a
mathematical instrument. It yields the same results for the transition matrix elements
(e.g. in scattering theory) as the standard formulation. The two variants of the theory
are thus equivalent on the level of observations. Path integrals have advantages for
taking relativistic considerations into account explicitly (compare the entry for 1949–
57) and for semi-classical approximations. In many applications of the path-integral
method, Feynman diagrams play an important role (compare the entry for 1949) in
the calculation of transition probabilities. In principle, however, these represent two
separate methods.

1949: Feynman Diagrams. Feynman introduces within the framework of his path-
integral approach (compare the entry for 1948) a highly effectivemethod for ordering
the probabilities with which particular initial states in scattering processes transform
into particular final states: Feynman diagrams are a type of “graphical stenography”
which relates individual elements to expressions that can be computed in a pertur-
bation calculation. They are a graphical aid for finding all the relevant perturbation-
theoretical contributions and for their calculation. Their function is not, however, to
make fundamental processes intuitively understandable, as asserted by a widespread
misunderstanding. Although Feynman diagrams were introduced in connection with
the path-integral approach, they are not limited to this original application. They can
serve the same purpose also in scattering theory within the standard formulation of
QFT. (Compare Sect. 6.3.4.)

1949–57: First Theories of Quantum Gravity. Following diverse preliminarywork
in the 1930’s and 1940’s, approaches for a quantum theory of gravitation were for-
mulated that are still the most important ones. The challenge for theories of quantum
gravitation consists in the fact that gravitation within General Relativity Theory
(GRT) is not a force within space and time, but rather the curvature of space and
time themselves. A quantization of gravitation might thus imply a quantization of
space and time, and it is not clear just what that would mean. In principle, there are
four different methods of combining GRT and QFT: (i) GRT is quantized; (ii) QFT
is “generally relativized”; (iii) one of the theories is a limiting case of the other; or
(iv) both GRT and QFT are limiting cases of a fundamentally new theory. It is usual
to refer to (i) as the canonical approach (due to the canonical quantization (compare
Sect. 6.3.1), and to (ii) as the covariant approach (since the covariance of GRT is its
starting point). These terms are somewhat misleading, however, and the categories
are not always clearly distinguished. A further important approach, also formulated
during this period, is the application of Feynman’s path-integral method of quanti-
zation to gravitation; it is also known as the sum over histories approach (compare
the entry for 1948). Today, the most important canonical approach is quantum loop
gravity (compare the entry for 1986). The covariant approach converged for the most
part with string theory in the end (compare the entry for 1987).

1952: Bohm’s Deterministic Quantum Mechanics (de Broglie–Bohm Theory
or Bohm’s Mechanics). David Bohm develops a deterministic theory, competing
with standard quantum mechanics, in which particles move along trajectories again,
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“led” by the wavefunction � which forms a guidance field. The French physicist de
Broglie had formulated a similar theory already in the 1920’s (which was not known
to Bohm, however, when he developed his theory) (compare Sect. 5.1).

1954: Yang–Mills Theories. ChenNingYang andRobert L.Mills extend the concept
of gauge theories (compare the entry for 1929:Weyl) to non-Abelian unitary symme-
try groups. The later electro-weak unification and QCD (quantum chromodynamics)
fall in this category (compare the entries for 1964: QCD; and 1967: GSW).

From 1956: Axiomatic and Algebraic Quantum Field Theory (AQFT). Partly
due to the difficulties concerning infinities in the conventional formulation of QFT,
various programmes start for reformulating QFT axiomatically in a mathematically
rigorous and transparent manner. Following Wightman’s axiomatics from the early
1950s, Daniel Kastler, Huzihiro Araki and, most enduringly, Rudolf Haag intro-
duce the most successful axiomatically oriented approach, known as “AQFT”. From
the 1980s onwards, it was elaborated by, among others, Klaus Fredenhagen and
Detlev Buchholz. While it proved that the original intention of a purely axiomatic
formulation could not be carried out, AQFT remains particularly useful when one is
considering fundamental questions such as the compatibility of localizability and rel-
ativistic invariance, or the significance of non-equivalent representations of systems
with infinitely many degrees of freedom (see Chap. 6).

1957: Everett’s Many-Worlds Interpretation. Hugh Everett III introduces his
Relative-state formulation of quantum mechanics, which is popularized as the
“Many-Worlds Interpretation”. The latter considers a pure Schrödinger dynamics
and dispenses with any sort of collapse (compare Sect. 5.2).

1959: The Aharonov–Bohm Effect. Yakir Aharonov and David Bohm discover a
non-local effect which implies that the electromagnetic vector potential is more than
just an ancillary mathematical construction. More precisely: The loop integral of the
potential yields the experimentally observable shift of an interference pattern.

1961: “Wigner’s Friend”. In a thought experiment, Eugene Wigner attempts to
show that the introduction of a second observer (“Wigner’s friend”) demonstrates
that the standard formulation cannot specify where the “Heisenberg cut” between
the observer and the object of the measurement is located, and thus when and where
the collapse occurs. For example, his friend could have carried out a Schrödinger’s
cat experiment in the laboratory and have already found a particular result. Outside
the laboratory, however, Wigner must consider the quantum-mechanical superposi-
tion of two states of the combined system “friend + cat”. Since Wigner holds it to
be obvious that his friend has already found the cat to be either dead or alive, he
argues that this difficulty can be solved only if we assume, in accordance with a
consciousness-causes-collapse interpretation (compare the entry for 1939), that the
human consciousness gives rise to the collapse.

1964: Bell’s Theorem and Bell’s Inequalities. John S. Bell demonstrates the non-
local character of quantum theory through a general consideration of the correlations
observed in EPR-style experiments. Under the precondition that a local explanation
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is possible, the probability distributions for this measurement must fulfil a certain
inequality.Within quantum theory, however, this inequality is violated, and this could
be confirmed experimentally (compare the entry for 1982; see also Sect. 4.3).

1964: Quarks and Quantum Chromodynamics (QCD). Murray Gell-Mann intro-
duces theQuarkModel in 1964; it makes an essential contribution to the development
of QCD, a gauge-theoretical quantum field theory of the strong nuclear force.

1967: The Glashow–Salam–Weinberg Theory (GSW). The electro-weak theory of
GSW accomplishes the unification of the electromagnetic and the weak interactions
within the framework of a gauge-theoretical quantum field theory (compare the entry
for 1954: Yang–Mills).

1967: The Wheeler–DeWitt Equation. Amilestone for attempts to achieve a canon-
ical quantization of General Relativity Theory (compare the entry for 1949–57) is the
Wheeler–DeWitt equation, which was originally called the “Einstein–Schrödinger
equation”. It expresses a condition thatmust be fulfilled by all wavefunctions, namely
the equivalence of all possible coordinate systems.

1967: The Kochen–Specker Theorem. Simon Kochen and Ernst Specker present
an argument in favour of the completeness of standard quantum mechanics—thus, a
no-go-theorem for hidden variables. According to this result, quantum systems must
possess certain properties such as spin in a manner which is not context independent,
i.e. not independent of how a measurement is carried out.

1970: Decoherence. H. Dieter Zeh gives the impetus to a project which is successful
only in the 1990s, however. The basic idea of decoherence is that taking its envi-
ronment into account, the state of a system which is comprised of a measurement
apparatus and a microscopic object will pass from the unwanted superposition to
a mixed state that no longer contains interference terms (and is thus “decoherent”)
(compare Sect. 2.3.2).

From 1972: Modal Interpretations. Bas van Fraassen suggests an interpretation of
quantum mechanics which he continues to develop up to 1991. The principal goal
of this approach is to solve the problems that occur in particular in connection with
the quantum-mechanical measurement process. Modal interpretations, like Bohm’s
quantum mechanics and the Many-Worlds interpretation, assume that there is no
collapse of the wavefunction. The projection postulate, according to which the state
of the measured object collapses suddenly into the (eigen-) state corresponding to the
measured value, is thus rejected. A crucial idea of van Fraassen’s modal approach is
distinguishing between the “dynamic state” and the “value state”.While the dynamic
state describes what could be measured, the value state determines what is in fact the
case, that is: which physical properties are obtained sharply. The dynamic state is the
usual Hilbert-space state of quantummechanics, which evolves always in agreement
with the Schrödinger equation. A decisive idea of this modal interpretation is now
that the physical properties of a system can have sharp values without the dynamic
state being an eigenstate of the corresponding observables. In the following decades,
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a series of alternative modal interpretations were formulated, in particular by Simon
Kochen, Dennis Dieks and Richard Healey.

1974 and 1976: Hawking Radiation and the Unruh Effect. In 1974, Stephen
Hawking calculates the radiation emitted by black holes in the framework of QFT
in curved spaces. Since, due to the extremely high mass density of black holes,
spacetime attains an infinite curvature (a singularity), his work also has a strong
influence on the development of theories of quantum gravitation, where there is hope
that the singularities of GRT can be avoided or removed. Hawking further develops
Feynman’s “sum over histories” approach and uses it for his calculations (compare
the entry for 1948). At the same time, with his work he opens up a rather fruitful new
field: the thermodynamics of black holes. Within this framework, in 1976 William
Unruh discovers what will later be called the “Unruh effect”, and which seems to
undermine a particle interpretation of QFT (cf. Sects. 6.3.5, 6.4.2 and 6.5.2).

1977: The Quantum Zeno Effect. Misra and Sudarshan predict an effect in which
the decay rate of a quantum system can be drastically reduced through continuous
measurements. Thus, the system can be almost “frozen” (in analogy to Zeno’smotion
paradoxes).

1978: Delayed Choice Experiments. John A. Wheeler sharpens the double-slit
paradox by “delayed choice”, in which the experimenter can decide only after a
particle has passed through the double slit (in a classical sense) whether and what
will be measured. In 1984, a corresponding experiment is carried out, and it confirms
the quantum-mechanical predictions.

From 1980: Quantum Computing. Driven by the early theoretical publications of
Yuri Manin, Richard P. Feynman, Charles H. Bennett, Paul A. Benioff and David
Deutsch, during the 1980s the concepts of quantum information and quantum com-
puting become mature, along with the resulting possibilities for specialized quantum
computations. Beginning in the 1990’s, quantum information theory and quantum
computer science continue to develop, increasingly in terms of experiments as well
as theory.

1982: The Aspect Experiment. Alain Aspect et al. for the first time show experi-
mentally that Bell’s inequality is violated (compare the entry for 1964).

1982: The No-cloning Theorem. Wootters and Zurek, as well as Dieks, are able to
show that quantum states cannot be copied or “cloned”.

From 1984: Consistent-Histories Interpretation. An interpretation which is often
considered to be similar to the Copenhagen interpretation of quantum mechanics is
the consistent-histories interpretation. It was introduced in 1984 by Robert Griffiths
and in the following years was developed further by him as well as by Roland
Omnés, Murray Gell-Mann and Jim Hartle. The basic idea is somewhat similar
to Feynman’s “sum over histories” approach (compare the entry for 1948), in that
the dynamics of physical systems is traced back to “consistent histories”. Here,
histories are temporally ordered series of events which are associated in a consistent
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manner to certain probabilities, i. e. in particular without coming into conflict with
the Schrödinger equation. The requirement of (essentially) interference-free histories
leads to the so-called decoherent histories. The consistent-histories interpretation
dispenses both with a collapse of the state and with any kind of description of the
quantum-mechanical measurement process. Today, this interpretation plays a role
especially in quantum cosmology.

1984: Berry’s Geometrical Phase. Michael Berry discovers a geometrical aspect of
the quantum-mechanical wavefunction. It has the effect that a quantum systemwhich
experiences a cyclic evolution in the state space due to its dynamics also exhibits an
observable holonomy in the phase of its wavefunction.

1984: Quantum Cryptography. Charles H. Bennett and Gilles Brassard introduce
a protocol for the exchange of quantum keys. According to them, quantum theory
leads to encoding techniques which are in principle tap-proof.

From 1986: GRW: Spontaneous Collapse Theory. Giancarlo Ghirardi, Alberto
Rimini and Tullio Weber replace the Schrödinger equation by a nonlinear, non-
deterministic and temporally irreversible equation, which implies a real, spontaneous
collapse mechanism for the wavefunction (compare Sect. 2.4).

1986: Transaction Interpretation. According to John Cramer, the quantum-
mechanical wavefunction is a real, physical wave which obeys relativistic quantum
mechanics and propagates both in the form of outbound, “retarded” waves towards
the future, and in the formof incident, “advanced”waves towards the past. This brings
about transactions (“handshakes”) which then constitute quantum events. Cramer’s
interpretation is based on theWheeler–Feynmann absorber theory of electromagnetic
radiation (1945).

From 1986: Loop Quantum Gravity. Loop quantum gravity becomes the most
important canonical approach to a theory of quantum gravitation (compare the entry
for 1949–57) and remains today the principal competitor of string theory (compare
the entry for 1987). The Indian physicist Abhay Ashtekar makes an important con-
tribution towards establishing loop quantum gravity in 1986 through a new choice
of variables. With this method, Lee Smolin and others soon discover the so-called
Wilson loops as exact solutions to the Wheeler–DeWitt equation (compare the entry
for 1967). An essential assumption of loop quantum gravity is the so-called back-
ground independence, which asserts that spacetime is not simply a background, but
rather, on the microscopic scale, itself a dynamic entity. Spacetime is thus not pre-
supposed, but instead it emerges in a certain manner. In contrast, string theory is not
(manifestly) background independent, since it works within a given spacetime.

From 1987: String Theory. String theory, already proposed in the 1960s in con-
nection with QCD, experiences a strongly increased interest in the late 1980s as a
candidate for a unified theory ofQFT and gravitation. String theory becomes themost
important covariant approach to a theory of quantum gravitation (compare the entry
for 1949–57), whereby among others perturbation calculations of certain scattering
amplitudes lead to a breakthrough. The basic idea of string theory is that not particles,
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but rather small vibrating one-dimensional “strings” or filaments are assumed to be
the most fundamental objects. A decisive advantage of this approach is that strings
do not have point-like interactions with each other, so that certain infinities can be
avoided, which cause problems already for conventional QFT and even more so for
the attempted unification with gravitation. In 1995, Edward Witten suggests a more
comprehensive theory, the so-called M theory, to which the existing string theories
are only approximations.

1993: Quantum Teleportation. Bennett et al. show in 1993 that quantum states
can be transported to distant locations. Along with a quantum channel based on an
entangled system (e.g. an EPR pair), a classical channel of information transmission
is also required. In 1997, Zeilinger et al. implement the corresponding experiments
using photons for the first time.

From 1994: Relational Quantum Mechanics. According to Carlo Rovelli’s rela-
tional interpretation, the states of a quantum system have no absolute significance;
they are important only in relation to another system (analogous to the frame depen-
dence in relativity theory).

1994: The Shor Algorithm. Peter Shor develops a quantum algorithm for decom-
posing prime factors in polynomial time (compare the entry for 1980). His work has
an enormously stimulating effect on further developments, especially on the exper-
imental aspects of the newly established field of quantum computing, beginning
around the year 2000.

From 2000: Epistemic Interpretations and Quantum-Bayesian Interpretations.
The Quantum-Bayesian interpretation (most energetically advanced by Christopher
Fuchs) formulates an explicitly subjectivist or epistemological interpretation, accord-
ing to which the quantum-mechanical probabilities are due not to an objective
indeterminacy in the world, but instead to our limited knowledge. The associated
probabilities are not arbitrary, but rather they fulfil the minimal conditions of the
subjectivist concept of probability developed by Thomas Bayes. According to the
quantum-Bayesian interpretation, the collapse of the wavefunction does not describe
a physical process of the object considered. Instead, it indicates the updating of our
knowledge. Further important epistemological interpretations of quantummechanics
are due to David Mermin and Richard Healey, among others.

From 2003: The CBH Theorem and the Information-Based Interpretation.
Robert Clifton, JeffreyBub andHansHalvorson show in the now so-called CBH the-
orem that the algebraic structure of quantummechanics (compare the entry for 1936:
AQM) can be derived from three information-theoretical assumptions concerning
the impossibility of superluminal transmission of information, the copying of an
unknown state and a special transfer protocol. In the opinion of Bub, one should
therefore interpret quantum mechanics as a theory of the manipulation of informa-
tion, which is considered as the physically fundamental quantity.



Appendix A
Example Solutions for the Exercises

Chapter 1

1. Niels Bohr introduced the concept of “complementarity” into the interpretation
of quantum mechanics. Distinguish two readings of how it is to be understood.

Concepts which are mutually exclusive in classical physics complement each
other in quantummechanics (wave/particle dualism) versus quantitieswhich com-
plement each other classically but are mutually exclusive in a precise sense in
quantummechanics (non-commuting observables such as position/momentum or
spins along different directions).

2. In sequential spin measurements, we apparently distinguished finally between two
effects which could be reversed by mixing the particles. Describe these two osten-
sible effects and explain why they are in fact only a single effect. What can we
deduce from this?

In Fig. 1.5, particles with a well-defined spin value along the y direction pass
into the apparatus. When they go through the (first) Ŝx filter (a Stern–Gerlach
magnet), on the one hand, a definite spin value along the x direction is evidently
produced; on the other hand, the definite spin value along the y direction is
destroyed. Both effects could be verified by spin measurements along the paths
of the particles, if one were to carry them out. The apparently two effects, how-
ever, cannot be separately reversed: Surprisingly, all the particles that leave the
apparatus again have their original spin values. From this, one deduces a principle
which states that (referring to the present example) “The state of a particle with a
definite spin value along a particular direction is none other than the superposition
of opposite spin values along other directions”.

3. Consider the expectation values of operators in regard to whether the physical
system is represented by an eigenvector of the given operator or not. Compute the
expectation values of the spin operators discussed earlier, relative to the various
vectors described there. Explain the results by referring to the figures showing a
repeated and a destructive measurement.

Example: Spin operator (1.8): Let the state correspond initially to one of its
eigenvectors (1.11). The expectation value (1.18) of a repeated measurement
(compare Fig. 1.2) is then identical to the associated eigenvalue, and the vari-

© Springer International Publishing AG, part of Springer Nature 2018
C. Friebe et al., The Philosophy of Quantum Physics,
https://doi.org/10.1007/978-3-319-78356-7

275



276 Appendix A: Example Solutions for the Exercises

ance around that value is 0. Here is the calculation (it is analogous for the other
eigenvector):
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Now, we represent the state in terms of one of the basis vectors from Fig. 1.11.
The expectation value is now no longer identical to one of the eigenvalues, and
the variance is also no longer 0. This process or measurement from which the
new state emerged has destroyed the previously definite spin value (cf. Fig. 1.3).
Calculation (analogously for the other basis vector):
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4. What does von Neumann’s projection postulate state? Explain in particular to
what extent this postulate goes beyond what we have considered to be well estab-
lished in connection with expectation values.

It is uncontested thatwhen the quantum-mechanical system is in a statewhich is
representedby aparticular eigenvector, then the associated eigenvaluewill bemea-
sured with certainty. The converse, however, is controversial: When a particular
eigenvalue has been measured, is the quantum-mechanical system (immediately
after the measurement) in a state which is represented by the (or a) correspond-
ing eigenvector? This eigenvalue–eigenvector connection is demanded by von
Neumann’s projection postulate; it implies the problem of wavefunction collapse.

5. In contrast to the general opinion of many philosophical schools of thought and
also of some alternative physical interpretations (e.g. GRW, Bohm), (intuitive or
physical) space is not at the centre of standard quantum mechanics. Discuss this
hypothesis, first informally and then by referring to the particular mathematical
characteristics of the position operator.

This is an open question related to Sect. 1.2.4.

Chapter 2

1. Distinguish between two readings of Born’s rule, depending upon whether the
reference to a measurement in it is essential or not.

If the reference to a measurement is relevant, the properties which correspond
to the measured values are not already present before the measurement. Stan-
dard quantum mechanics would then be complete, and we would have to explain
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the problem of what in fact happens during such a measurement. If the refer-
ence to the measurement is however irrelevant, the standard formalism would
be incomplete, since then properties would be objectively present which could
not be predicted with certainty. We must, however, take into account that due to
EPR/Bell (cf. Chap.4), such local properties are in no case present and that the
de Broglie–Bohm theory (cf. Chap.5) adds only positional properties.

2. According to the Copenhagen interpretation (in Heisenberg’s version), there are
two temporal dynamics of the state vector. Describe them in your own words. How
is the second dynamics related to Born’s rule and to von Neumann’s projection
postulate? What is problematic about it?

The first dynamic obeys the linear Schrödinger equation and is continuous,
deterministic and reversible. It occurs between successive measurements. During
a measurement, according to this interpretation, a second dynamic occurs, and it
is discontinuous, non-deterministic and irreversible. Correspondingly, for Born’s
rule, the essential point is the reference to a measurement; the second dynamic is
required by von Neumann’s projection postulate. This is particularly problematic
since there is no physical criterion for deciding where to place the boundary
(“Heisenberg cut”) between the observer and the observed.

3. The interpretation problem in quantum mechanics may be regarded as a trilemma.
Explain the three statements and show that they are inconsistent when taken
together. What is the advantage of this description as compared to the conventional
one, which is guided by Born’s rule?

The three assertions are:

(a) All objectively present properties are determined by the state vector (com-
pleteness of the standard formalism).

(b) The temporal evolution of the state vector conforms to the linear dynamics
(Schrödinger equation).

(c) Measurements always yield definite measured values.

The conjunction of these three assertions is inconsistent, whichwas already shown
by the spin measurements described in the introductory chapter. The advantage
of this representation of the interpretation problem consists in the fact that in this
way, all the available options (plus their variants) lie open on the table: Bohm’s
mechanics as the negation of the first assertion; “Copenhagen” and GRW as the
negation of the second assertion; and Everett as the negation of the third.

4. The decoherence programme is an essential step forward. Highlight the ways in
which all the interpretation variants could profit from it. Why, however, can the
programme not solve the measurement problem in the end?

The decisive progress made by the decoherence programme lies in the fact
that a basis—the pointer basis (as a rule position space)—is distinguished phys-
ically dynamically; this solves one part of the interpretation problem, which is
advantageous to all the options. Furthermore, it can be shown that the interference
terms vanish locally, which corresponds to our perceptions. Globally, however,
the interference is even amplified. Even if one would wish to accept this, decoher-
enceproduces at best a (classically understandable) either-or and thus a continuing
form of indeterminacy rather than a definite measured value.
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5. Formulate in your own words what is accomplished by the GRW theory in the
opinion of its supporters. Defend the standard view of physics against it.

The GRW theory supports a unified (nonlinear) dynamics without mysteri-
ous measurements. It prefers spatiotemporal descriptions, which corresponds to
our experience. (Its objective indeterminacy could offer further advantages, for
example in the discussion about the arrow of time.) The new universal constants,
however, are chosen in an extremely arbitrary way, precisely such that the results
of measurements are reproduced, without an independent empirical confirmation.
Ordinary quantum mechanics can furthermore be modified in a well-established
manner so that it is compatible with the special theory of relativity (compare
Chap.6)—in contrast, a (generally accepted) Lorentz-invariant GRW theory is
not (yet) known.

Chapter 3

1. Construct the fully symmetrized basis functions in the state space of three similar
objects a, b, and c (Hint: As presented inSect. 3.1.4, these are the one-dimensional
irreducible representations of S3).

S3 has the dimensionality 3! = 6. The 6 permutations of three objects a, b, c
are abc, bac, cba, acb, cab and bca. They are generated from abc by application
of the 6 permutation operators (elements of S3): 1, P̂12, P̂13, P̂23, P̂13 P̂12 and
P̂12 P̂13. Just as the fully symmetric state (3.9) of two objects a and b results from
application of the symmetrization operator Ŝ2 = 1 + P̂12 of the two elements of
S2, the symmetrization operator of S3 is:

Ŝ3 = 1 + P̂12 + P̂13 + P̂23 + P̂13 P̂12 + P̂12 P̂13.

The fully symmetric basis function of S3 follows from it and is given by

�S = 1√
6

(
ψaψbψc + ψbψaψc + ψcψbψa + ψaψcψb + ψcψaψb + ψbψcψa

)
.

In a fully antisymmetric state, the permutation or exchange of two objects causes a
change of sign of thewavefunction. In the case of S2, the antisymmetrization oper-
ator Â2 = 1 − P̂12 gives the function (3.7). To construct the fully antisymmetric
basis function of S3, one requires an analogous antisymmetrization operator Â3,
which is obtained from Ŝ3 by reversing the signs of all the P̂i j ; it leads finally to
the fully antisymmetric basis function

�A = 1√
6

(
ψaψbψc − ψbψaψc − ψcψbψa − ψaψcψb + ψcψaψb + ψbψcψa

)
.

2. What is the content of the Leibniz PII in the contrapositive formulation?
No two objects share all their properties.

3. To what extent is a bundle ontology naturally associated with PII?
Leibniz individuation is individuation via properties. In the case that objects
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are bundles of properties, there is nothing available for the individuation of objects
besides properties; therefore, bundle ontology is most naturally associated with
Leibniz’s PII.

4. What do the concepts of “synchronic” and “diachronic identity” refer to?
“Synchronic identity” refers to the identity (or distinguishability) of objects

at a particular moment in time, while “diachronic identity” refers to persistence
through time.

5. Define the three types of discernability according to Quine.
Difference in terms of at least one . . .

– monadic property (“absolute discernability”);
– ordering relation (“relative discernability”);
– irreflexive relation (“weak discernability”).

6. Discuss to what extent both the weak PII and structural realism lead to related
object conceptions.

This is an open question related to Sect. 3.2.4.

Chapter 4

1. In the EPR article, there is an assumption of major significance which we have
called “locality assumption”: “Since at the time of measurement, the two systems
no longer interact, no real change can take place in the second system in conse-
quence of anything that may be done to the first system”. How does this assumption
relate to the other concepts of locality which we introduced in Sect. 4.4.5: Does it
imply global and causal Einstein locality as well as spatiotemporal separability?

The ability to distinguish between the first system and the second system indi-
cates that Einstein requires separability. The exclusion of interactions implies
causal Einstein locality. From separability and causal Einstein locality, global
Einstein locality then follows.

2. Assume that an EPR/B experiment was correctly described by a local causal struc-
ture with hidden variables λ (see Fig. 4.5). One can then show that the existence
of perfect correlations implies that measurements must proceed deterministically.
Try to formulate a suitable argument.

Perfect correlations denote the fact that when the measurement direction is
the same on both sides, the measurement results agree with certainty (50%
α = +,β = + and 50% α = −,β = −). A local structure claims that the mea-
surement outcome on one side depends only on the state of the local photon and
the local measurement setting.

Assume that a measurement of a photon at A with the setting a = 0◦ gave the
result α = + and at B the measurement direction is likewise b = 0◦. Then, the
photon at B must also yield β = +. Since, according to the local causal structure,
the outcome at B depends only on the local setting and the state of the photon at B,
according to the assumed causal structure, these two factors must determine the
result. This then holds even if in fact a different setting is chosen at A (i. e. one that
is not parallel to that at B), or if the measurement result is different. An analogous
argument holds in reverse for the photon at A when the result at B is known.



280 Appendix A: Example Solutions for the Exercises

Therefore, for each photon, only its state together with the given measurement
setting determines the outcome of the measurement, and these outcomes must
agree when the settings do. (See also Table 4.2, where possible determination
schemes are given, corresponding in each case to different photon states.)

3. List the minimal set of assumptions which are required to derive a Bell inequality
and sketch out what they state.

An overview of the required assumptions from Sect. 4.3.4:

– Global Einstein locality: There are no causal processes faster than light (see
Sect. 4.3.1).

– No backwards causation: Effects cannot occur earlier than their (timelike-
related) causes (see Sect. 4.5.3).

– Intervention assumption: The experimenter (or a device constructed by the
experimenter) can control the setting of a macroscopic apparatus through an
intervention (see Sect. 4.5.2).

– Causal Markov condition: Given its direct causes Z , a variable X is statisti-
cally independent of all variables Y which are not effects of X : P(X |Y Z) =
P(X |Z) (see Sect. 4.3.4).

4. Apply the causal Markov condition to the local causal structure in Fig. 4.5 and
note the resulting statistical independencies.

The Markov condition states that given its direct causes, a variable becomes
independent of its non-effects. That is, if x is the variable under consideration,
then P(x |direct causes of x, non-effects of x) = P(x |direct causes of x). If we
apply this rule to every variable in the graph, we obtain:

P(λ|abψ) = P(λ) , P(ψ|abλ) = P(ψ) , P(a|bψλ) = P(a) ,

P(b|aψλ) = P(b) , P(α|βabψλ) = P(α|aψλ) , P(β|αabψλ) = P(β|bψλ) .

5. Outline the four fields of conflict between a non-local theory and the theory of
relativity.

See Sect. 4.4.2. (and the following sections for details): In a relativistic space-
time . . .

– . . . transport of matter or energy faster than the speed of light is not possible.
– . . . signals transmitted at superluminal velocities could lead to paradoxical
loops.

– . . . fundamental spacelike causal connections contradict the temporal asym-
metry of causality.

– . . . non-local connections prefer frames of reference and thereby violate the
principle of relativity.

6. Discuss the two known kinds of non-locality which are not in conflict with the prin-
ciple of relativity. Take into account both physical and ontological consequences.
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See Sect. 4.4.7:
Hyperplane dependence:

– A completely Lorentz-invariant theory (including interactions);
– States are defined only relative to hyperplanes; i. e., at every point in spacetime,
there are infinitely many states for a quantum system, namely one for each hyper-
plane:

∗ ontologically extravagant
∗ highly counterintuitive
∗ What is it supposed to mean that an object can have different states at a single
point in spacetime?

GRW Flash:

– At present, a Lorentz-invariant theory is available only for particles without inter-
actions.

∗ It is possible that a theory with interactions will not be Lorentz invariant; then,
this would not be an appropriate solution.

– Objects are not continuously present within spacetime, but instead are represented
by a rapid series of “flashes”.

∗ This is likewise counterintuitive!
∗ Objects in spacetime are epiphenomena: A flash at time 1 does not cause the
flash at time 2. (The quantum state in Hilbert space at time 1 causes both the
flash in spacetime at time 1 and also the quantum state at time 2; the latter causes
the flash at time 2.)

– The fundamental space is not four-dimensional spacetime, but instead the (possi-
bly) infinite-dimensional Hilbert space of a quantum system.

∗ How do spacetime and the Hilbert space behave? How might one conceive
of the fact that objects from the latter can act within the former (but not vice
versa)?
∗ Does spacetime supervene on the Hilbert space? If so, then how exactly?

Chapter 5

1. Describe an argument between an advocate of the deBroglie–Bohm theory and a
supporter of the Copenhagen interpretation about the status of hidden variables.

The advocate of the DBB theory could point out that it is thewavefunction (and
not the position) that is not directly observable. Only the statistical predictions
which can be derived from it are possible subjects of experimental tests. The
wavefunction of a single quantum object can in principle not be determined. In
contrast, the positions of the particles are the quantities that can bemeasured (even
in single-particle systems)—consider, for example, the experimentswith electrons
and a double slit. The supporter of the Copenhagen interpretation can interject
here that the quantum equilibrium condition (Sect. 5.1.2) limits our knowledge of
the positions, again in principle—in this sense, they are therefore “hidden”. At
this point, the DBB supporter can reply that the status of probability statements
is still problematic, even within the Copenhagen interpretation. According to this
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view, they in fact do not refer to the properties themselves, but rather only to their
measurement.

2. Explain why within the deBroglie–Bohm theory, the uncertainty relation �x ·
�p ≥ �

2 is not violated!
Here, one can argue on several levels: (i) Fundamentally, the quantum equi-

librium hypothesis guarantees that the deBroglie–Bohm theory fulfils all of the
(as a rule statistical) predictions of quantum theory; compare Sect. 5.1.2. The
Heisenberg uncertainty relations provide a connection between the variances of
the measured values of these predictions, and they are therefore also valid within
the DBB theory. (ii) The momentum p (in contrast to the position x) indeed does
not have a definite value at all times within the DBB theory; instead, it is a “con-
textual property” (cf. Sect. 5.1.5). In this sense, there is no reason at all to assume
that the position and the momentum should have well-defined values at all times
within the DBB theory. See also Bricmont (2016, 159–161).

3. Compare the solutions to the measurement problem in the deBroglie–Bohm and
the Everett interpretations. Give examples of structural similarities and differ-
ences between them.

Both dispense with the discontinuous changes of state of the wavefunction
(“wavefunction collapse”). In both cases, all the branches of a superposition state
of thewavefunction are thus present at all times. In order to nevertheless guarantee
that measurements yield a definite result, the deBroglie–Bohm theory introduces
additional determining quantities which are necessary to define a state uniquely:
the positions of the particles. They characterize that part of the wavefunction
which corresponds to the factual result. In the Everett interpretation, only the
appearance of definite measurement results is explained. All the possible results
in fact do occur—to be sure in “different worlds”. In both interpretations, effects
of the so-called decoherence (cf. Sect. 5.2.4) play a central role. They guaran-
tee that the branches, once they have separated, can no longer interfere with one
another. Without this property, the “empty” branches of the wavefunction could
not be effectively neglected in the DBB theory. Within the Everett interpretation,
a lack of decoherence would in principle endanger the closure of the different
“worlds” as well as the existence of a “preferred basis” (Sect. 5.2.4).

Chapter 6

1. Gather information about theories of light from the history of physics. Why was
Newton’s theory of light not considered satisfactory? Compare the mathematical
descriptions of particles and of waves. What is, in your opinion, the principal
difference?

Newton, among others, advocated a corpuscular theory of the nature of light.
Field theories could, however, offer a better explanation of the various diffraction
and refraction effects observed, by attributing them to the interference of waves.
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The state of a particle is defined by its position and its momentum; it follows a
trajectory as a function of time. Waves occur in fields. To characterize a field, one
must specify, e. g., its field strength at every point in spacetime.

2. Is there anything in classical physics which is neither a particle nor a field?
In classical physics, mechanical processes are described in terms of particles

and electromagnetic processes in terms of fields. There are thus no objects within
classical physics which are neither particles nor fields. However, classical physics
involves numbers, which are neither particles nor waves and thus are not objects
embedded in spacetime at all.

3. State two arguments which in your opinion provide the strongest support for
considering quantum field theory to be a theory of particles. What objections can
be raised against these arguments?

In experiments, mainly particle properties are detected; this can be seen, e. g.,
in the name “particle physics” (cf. Sect. 6.3.4). However, for the calculation of
scattering cross sections, for example, the field aspects of quantum field theory
are also needed. A particle interpretation seems to be supported in particular by
the occupation-number representation (Sect. 6.3.2). But we should keep in mind
that what is created by creation operators (or whose creation is described by them)
does not have the properties of classical particles. For example, there are states in
quantum field theory with an undefined particle number, which could not occur
in a purely particle theory.

4. Would it be helpful in your opinion to extend the concepts of “particles” and
“fields”, i. e. by referring not only to those entities as “particles” or “fields”
which exhibit all the characteristics of classical particles or classical fields?

There is nothing to prevent the objects which are described by quantum field
theory from being called “particles” or “fields” in everyday laboratory jargon,
especially when they have the properties of particles or of fields in the given
situation. In considering the questions of what is the nature of the fundamental
objects of the world, and how they are embedded in spacetime, one should, how-
ever, keep in mind that quantum field theory does not refer to classical particles
nor to classical fields. What we choose to denote, e. g., as “particles” is in the end
a matter of language conventions. This, however, sheds no light on the problem
of how quantum objects are embedded in spacetime.



Index

A
Action at-a-distance, 145, 147
Aggregable, 248–250
Aharonov–Bohm effect, 270
Algebraic Quantum Field Theory (AQFT),

242–245, 254, 258, 268
Algebraic QuantumMechanics (AQM), 268
Annihilation operator, 232, 242
Anti-realism, see Realism
Aspect, Alain, 127
Aspect experiment, 272

B
Backwards causation, 136, 170–172, 280
Bain, Jonathan, 251
Baker, David J., 249, 251, 252, 255, 259
Basis

of a vector space, 17, 201
problem of preferred, 62, 202, 206

Being typical, 185
Bell inequalities, 130, 134, 140, 270

derivation of, 138–140
violation of, 130–131, 134, 140

Bell, John, 68, 104, 115, 120–141, 270
Bell states, 121–122
Bell’s theorem, 115–116, 120–141, 270
Black’s spheres, 89
Bohm, David, 115, 121, 180
Bohmian mechanics, see de Broglie–Bohm

theory
Bohr–Einstein debates, 105–114
Bohr, Niels, 105, 113–114, 263, 264
Bohr’s atomic model, 264
Born, Max, 222
Born’s rule, 42, 207, 239, 266
Bose–Einstein statistics, 77, 265

Bose, Satyendranath, 77
Boson, 79, 81, 92, 95, 96, 237, 256
Bricmont, Jean, 198
Bundle ontology, 7, 88, 257–259

C
Cardinality, 89, 93, 99, 248
Cartwright, Nancy, 165
Cassirer, Ernst, 92
Causal explanations, 136–138, 148–149,

165–167
Causal faithfulness condition, see Causal

explanations
Causal graphs, 126, 137, 138, 155
Causality

and correlations, seeCausal explanations
and interventions, see Intervention
assumption

and signals, 146–149
and time, see Backwards causation
in spacetime, see Einstein locality; non-
locality

Causal Markov condition, see Causal expla-
nations

Cause, common, see Common cause
CBH theorem, 274
Classification of the elementary particles,

group-theoretical, 248, 255, 256
Collapse

effective, 186
of the wavefunction, 40, 49, 54, 215

Common cause
hidden, 143
interactive, 165–166
non-screening-off, see Common cause,
interactive

© Springer International Publishing AG, part of Springer Nature 2018
C. Friebe et al., The Philosophy of Quantum Physics,
https://doi.org/10.1007/978-3-319-78356-7

285



286 Index

Communication, 132
Commutation relations, 225, 226
Commutative, 24
Commutator, 24, 225, 226
Commuting operators, 28
Complementarity, 2, 3, 25, 38, 97, 275
Completeness, 108
Compton, Arthur, 265
Compton effect, 265
Configuration space, 36, 43, 52, 68, 181, 182,

187, 213, 214
Conjugate, 227
Consciousness-causes-collapse interpreta-

tion, 268
Consciousness interpretation, 203
Consistent-histories interpretation, 272
Contextuality, 192, 194, 215
Copenhagen interpretation, 39, 49, 55, 216,

263
Correlations

and causal explanations, see Causal
explanations

in EPR experiments, see EPR correla-
tions

Countability
cardinal, 248–250
ordinal, 248–250

Cramer, John, 273
Creation operator, 231, 232, 253

D
deBroglie–Bohm theory, 179, 187, 193, 195,

270
relativistic generalization, 197
schools of, 194

de Broglie, Louis, 180
Decision theory, 210
Decoherence, 60, 204, 271
Degrees of freedom, 222, 224, 226, 228, 229,

234, 243, 244, 250, 251, 257, 270
Delayed choice, 272
Density matrix, 31, 206
Determinism, 3, 7, 8, 10, 34, 45, 51, 54, 64,

129, 135, 165, 180, 184, 211, 265,
269, 277

DeWitt, Bryce, 208
Diachronic identity, see Identity, diachronic
Dirac equation, 230, 266
Dirac, Paul Adrien Maurice, 222, 266
Dirac theory, 197
Discernability, 95

absolute, 95

relative, 95
weak, 95

Discreteness, 248, 250
Distinguishability, 235, 236
Double-slit experiment, 3, 188, 272
Dynamics, 52

E
Earman, John, 244
Effective wavefunction, 185, 191
Eigenstate, 58
Eigenvalue, 19, 21, 30

equation, 42
multiple, 26, 117
problem, 21

Eigenvector, 21
Einstein, Albert, 77, 104–112, 121, 152–

154, 267
Einstein locality, see Locality
Elementarity, 248
Energy condition, 248
Energy quanta, 224, 233
Ensemble interpretation, 39, 44, 47, 215, 266
Entangled state, see Entanglement
Entangled systems, see Entanglement
Entanglement, 52, 61, 103, 104, 115, 121,

128, 156–159, 167
causal problem of, 147–149

Entropy, 73
Environment, 204
Environment-induced decoherence, 61, 206
Environment-induced superselection, 205
Epistemic interpretations, 274
EPR argument, 105–112, 267
EPR/B experiment, 115–118, 121–128
EPR correlations, 104, 117–119, 123–124
EPR paradox, see EPR argument
EPR thought experiment, 106–107
Equivalence of mass and energy, 248
Esfeld, Michael, 159, 256
Event, 125
Everett, Hugh III, 198
Everett’s interpretation, see Many-Worlds

interpretation
Expectation value, 25, 30, 38, 42, 60, 242,

254, 275
Explanations, causal, see Causal explana-

tions

F
Factorizability, 138
Falkenburg, Brigitte, 253



Index 287

Fermi–Dirac statistics, 78
Fermion, 78, 81, 92, 94, 96, 237, 256
Fermi pressure, 80
Feynman diagrams, 240–242, 269
Feynman, Richard, 79, 268, 269
Field

operator, 246, 254
classical, 226
conjugate, 227
interpretation, 253–255
momentum, 227
ontology, 198, 223, 253–255
quantities, 225
quantization, 227
quantum-mechanical, 226
state, 239, 254
theory, 225

Fine tuning, 149
Fock space, 73, 232, 240, 249–251
Frame of reference, 145–146, 160–164

preferred, 164
Fraser, Doreen, 233, 249, 251
French, Steven, 93
Frequencies

relative, 47

G
Gauge bosons, 97
Gauge principle, 267
Gauge transformations, 256
General relativity theory, 264
Geometrical phase, 273
Ghirardi, Rimini, Weber (GRW), 56
Gibbs correction factor, 74
Gibbs paradox, 74
Glashow–Salam–Weinberg theory, 271
Goudsmit, Samuel, 265
Group

permutation, 77
symmetric, 77

GRW theory, 40, 56, 57
with flash ontology, 163–164

Guidance equation
for N particles, 186
for spin- 12 particles, 186

Guidance field, see Guidance equation

H
Haag, Rudolf, 244, 270
Haag’s theorem, 234
Hacking, Ian, 87

Haecceitism, 88, 89
Hamiltonian = Hamilton operator, 81, 233,

239
Hamilton’s equations of motion, 41
Hawking radiation, 272
Heisenberg commutation relations, 97
Heisenberg cut, 53
Heisenberg’s uncertainty, 46, 266

in the DBB theory, 184
Heisenberg, Werner, 222, 243, 263, 265
Hermitian operator, 21, 42
Hidden variables, 106, 107, 115–116, 129–

132
proof of their impossibility, 194

Higgs boson, 97
Hilbert space, 25
Holism, 157–159, 195
Huggett, Nick, 249–251, 254
Humean supervenience, see Supervenience,

Humean
Hume, David, 1
Hydrogen atom, 27, 187
Hyperplane dependence, 163–164
Hyperplane, spacelike, 160–163

I
Identity, 83–85, 89, 91, 97, 221

diachronic, 73, 84, 90, 91, 99, 248, 252,
253, 279

synchronic, 73, 90, 91, 99, 248, 250, 252,
279

Ignorance, 33, 45, 60, 61, 184
Impenetrability, 84, 90, 248
Incommensurability, 23, 59
Incompleteness, 8, 45, 47, 55, 63, 104, 172,

173, 179, 222, 277
Indeterminism, 8, 9, 47, 51, 165, 196, 209,

266, 274, 277
Indistinguishability postulate, 75, 251
Individuality, 83–85, 90, 97
Information-based interpretation, 274
Inner product, 16, 33
Interference, 33, 60, 62, 187, 191, 206, 224,

270, 273, 277, 282
Intervention assumption, 136, 168–170, 280
Irreversibility, 11, 46

J
Jordan, Pascual, 222, 266



288 Index

K
Kant, Immanuel, 84
Klein–Gordon equation, 230
Klein–Gordon field, 230
Kochen–Specker theorem, 194, 271

L
Ladyman, James, 255
Lagrange function, 227
Lagrange theory, 227
Lagrangian density, 231
Leibniz, Gottfried Wilhelm, 85
Leibniz’s principle, 83–99, 221, 250–252,

258
relative, 96
strong, 96
weak, 96

Lewis, David, 83, 154
Light cone, 125–126
Lightlike, 125
Light-quantum hypothesis, 264
Linear combination, 14, 17, 41, 202, 249
Locality, 125–127

non-, see Non-locality
relativistic justification of, 145–146

Localizability, 248, 252
Loophole, 127

detection, 127
fair-sampling, see Loophole, detection
freedom-of-choice, see Loophole, inde-
pendence, 127

locality, 127
Loop quantum gravity, 273
Lorentz invariance, 160–164

M
Madelung, Erwin, 182, 266
Malament, David, 253
Many-Minds interpretation, 203
Many-particle quantum mechanics, 234
Many-particle state, 78
Many-particle systems, 30
Many-Worlds interpretation, 63, 198, 200,

270
and decision theory, 210
variant of Deutsch (1985), 203

Matrix, 20
Matrix mechanics, 265
Matter waves, 265
Maudlin, Tim, 57, 132, 151, 162, 164, 213
Maudlin trilemma, 56, 63, 179, 198
Maxwell–Boltzmann statistics, 77

Measurement, 11, 50
Measurement apparatus, 50
Measurement outcomes, 18
Measurement problem

and decoherence, 60, 206
and the ensemble interpretation, 48
Bohm’s solution, 191
in QFT, 221
in QM, 34, 56, 57
solution of by Everett, 213
solution of, GRW, 64

Measurement process, 42
Minimal interpretation, 39, 40
Modal interpretations, 271
Momentum operator, 35, 46, 226, 240, 253
Morganti, Matteo, 257
Muller, Fred, 96
Multiplet, 81

N
Neumann, Johann von, 194, 267, 268
No-cloning theorem, 272
No-collapse interpretations, 179
No-go theorem, 140, 194
Non-locality, 125, 142–164

and Lorentz invariance, 159–164
and signals, see Signal, superluminal
areas of conflict with relativity theory,
146

statistical, see Outcome dependence;
Parameter dependence

Non-separability, 152–157, 159–160

O
Observable algebra, 242, 244, 257, 259, 268
Observer, 40, 45, 47, 49, 56, 62, 67, 90, 198,

204, 209, 213, 228, 233, 243, 249,
260, 268, 277

Occupation number, 234
Occupation-number representation, 234,

235, 238
Ontology, 82, 119, 163, 164, 246, 260

bundle, 88, 257–259
field, 198, 223, 253–255
of QFT, 246–260
particle, 198, 223, 247–253
trope, 88, 257–259
universalia, 88

Operator, 19
and naive realism, 194
annihilation, 232, 242
creation, 231, 232, 253



Index 289

density, 117, 118
field, 246, 254
Hamilton = Hamiltonian, 81, 233, 239
Hermitian, 21, 41, 42
in QFT, 225
linear, 19
momentum, 35
nabla, 229
particle number, 234
permutation, 82
position, 35
rotation, 20
self-adjoint, 21
time evolution, 33
unitary, 33

Orbital model, 27
Orthonormal basis, 17, 22
Oscillator

harmonic, 233
Outcome dependence, 143, 149–151

P
Parameter dependence, 143, 149–151
Parastatistics, 79
Particle,

virtual, 241
Particle concept, 248
Particle interpretation, 247–253
Particle-number operator, 233, 234, 249
Particle ontology, 198, 223, 247–253
Particle physics, 230, 232, 234, 247, 252, 258
Particle tracks, 238
Particularism, 158–159
Path integrals, 268
Pauli equation, 192
Pauli exclusion principle, 78, 265

Leibniz-Pauli exclusion principle, 91
Pauli, Wolfgang, 78, 94, 265
Permutation invariance, 97

of bosonic states, 77
of many-particle states, 256
of wavefunctions states, 77

Permutation operator, 82
Phase space, 39, 41, 75
Photoelectric effect, 264
Physicalism, 203
Planck’s constant, 34, 73, 264
Planck’s quantum of action, 264
Plane waves, 36, 231, 240, 253
Podolsky, Boris, 104–112, 121, 267
Point mechanics, 228
Position operator, 35, 38, 46, 68, 226, 276

Principle of relativity, 146, 174, 280
Principle of sufficient reason, 89
Probability, 18

in Everett’s interpretation, 207, 212
transition, 240

Probability density, 43
Product state, 118
Projection operators, 30
Projection postulate, 25, 55
Propensities, 53
Propensity interpretation, 249
Properties, 45, 51, 85, 257, 271

categorial, 69, 193
dispositional, 193
incompatible, 225
monadic, 256
permanent, 225
relational, 256
time-dependent, 225

Q
Quanta interpretation, 236–252
Quantization, 226

first, 230
second, 230

Quantum Bayesian interpretations, 274
Quantum chromodynamics, 271
Quantum computing, 272
Quantum cryptography, 273
Quantum electrodynamics, 268
Quantum equilibrium hypothesis, 184
Quantum field theory, 221, 260

algebraic, 226, 242–245, 254, 258
axiomatic and algebraic, 270
conventional, 242
relativistic, 253

Quantum gravitation, 269
Quantum hydrodynamics, 266
Quantum information, 272
Quantum logic, 267
Quantum mechanics

algebraic, 268
Quantum potential, 195
Quantum statistics, 77
Quantum teleportation, 274
Quantum Zeno effect, 272
Quine, Willard V.O., 83, 95

R
Realism, 106, 141–142

epistemic, 106



290 Index

in relation to operators, 194
local, 106, 141
metaphysical, 106, 141
scientific, 106, 212
structural, see Structural realism

Reality, see Realism
Reality criterion, 108
Redhead, Michael, 94, 244
Reichenbach, Hans, 224
Reichenbach’s principle of the common

cause, 137, 165
Relational quantum mechanics, 274
Relations, 257
Relative-state interpretation, 198
Relativity, see Theory of relativity
Relativity principle, 159–164
Renormalization, 245
Repeated measurement, 6
Representation

of a group, 81, 82
of a vector, 17

Representations, inequivalent, 243–244
Rindler quanta, 249
Rosen, Nathan, 104–112, 121, 267
Rotation operator, 20
Ruetsche, Laura, 244, 260

S
Saunders, Simon, 95, 96, 209
Scattering experiments, 238, 242
Scattering matrix, 240
Scattering process, 238
Schrödinger equation, 34, 179, 181, 222,

228, 230, 239, 266, 267, 271, 273,
277

Schrödinger, Erwin, 104, 114–115, 214
Schrödinger’s cat, 53, 114–115, 267
Selection rule, 81
Separability, 154

non-, see Non-separability
Shor algorithm, 274
Signal, superluminal, 146, 151, 156
Simons, Peter M., 258
Simultaneity, 145–146, 160–162
Singlet state, 82, 117, 158
Solvay Conference (1927), 180, 266
Spacelike, 125, 143–146, 160
Spacetime, 125, 126, 163–164

curved, 251, 252, 260
Spacetime conventionalism, 87
Spacetime diagram, 124–126
Speed of light, 124–125, 143–147, 150

Spin, 5, 192
Spin-statistics theorem, 79
Spontaneous collapse theory, 273
Stachel, John, 98, 256
State, 25
Statistical operators, 31
Statistics

Bose–Einstein, 77
Fermi–Dirac, 78
Maxwell–Boltzmann, 77

Stern–Gerlach experiment, 4, 202, 265
in the DBB theory, 192

String theory, 273
Structural realism, 98–99, 255–257

eliminative, 255
non-eliminative, 255
ontic, 255–257

Structure
surplus, 250

Subspace, 27, 31, 76, 80, 237, 267
Superluminal velocity, see Speed of light
Superposition, 14, 26

and entanglement, 103, 114, 118–119
Superselection, 205
Superselection rules, 16, 80, 81
Supervenience, 153–159

Humean, 154
Symmetric group, 77
Symmetrization postulate, 80
Symmetry requirement, 251
Synchronic identity, see Identity, synchronic

T
Teller, Paul, 248–252
Tensor product, 75, 116–117, 237
Theory of relativity, 124–127, 142–150,

159–163, 228–230, 244
Time-evolution operator, 33
Timelike, 125
Trajectories, 223, 238

of Bohmian particles, 187, 191
Transaction interpretation, 273
Triplet state, 82
Trope ontology, 88, 257–259
Trope-ontological interpretation of QFT,

258–259
Tunnel effect, 188

U
Uhlenbeck, George, 265
Uncertainty relations, see Heisenberg’s

uncertainty



Index 291

Unitary operators, 33
Universalia, 84, 258
Universalia ontology, 88
Unruh effect, 243, 249, 259, 272

V
Vacuum state, 232, 233, 237, 242, 243, 249,

250, 259
Vector, 15
Vector space, 14

basis of, 17
dimension of, 17
Euclidian, 16
representation of a group, 81

W
Wallace, David, 200, 203, 206, 210
Wavefunction, 65

collapse of, 40, 49, 54
effective, 185, 191

empty, 217
many-particle, 78
of the universe, 185

Wavefunction ontology, 70
Wave mechanics, 265
Waves

plane, 231
Wayne, Andrew, 257
Weingard, Robert, 249–251
Weyl, Hermann, 90–94, 267
Wheeler–DeWitt equation, 271
Wigner, Eugene, 256, 270
Wigner’s friend, 53, 270

Y
Yang–Mills theories, 270

Z
Zeilinger, Anton, 128, 274


	Preface
	Preface to the English and Second German Edition
	Contents
	About the Authors
	1 Physical and Mathematical Foundations
	1.1 Spin and Superposition
	1.1.1 The Stern–Gerlach Experiment
	1.1.2 Sequential Spin Measurements
	1.1.3 The Superposition Principle

	1.2 The Mathematical Formalism of Quantum Mechanics
	1.2.1 Vectors and Their Representation
	1.2.2 Operators and Their Eigenvalues
	1.2.3 The Problem of Multiple Eigenvalues
	1.2.4 Special Operators and the Position Space Representation

	References

	2 The Measurement Problem. Minimal  and Collapse Interpretations
	2.1 The Minimal Interpretation
	2.2 The Ensemble Interpretation and the Copenhagen Interpretation
	2.2.1 The Ensemble Interpretation
	2.2.2 The Copenhagen Interpretation(s)

	2.3 The Measurement Problem and Decoherence
	2.3.1 The Quantum-Mechanical Measurement Problem
	2.3.2 The Decoherence Programme

	2.4 The Realistic Collapse Interpretation: GRW
	2.4.1 Nonlinear Dynamics
	2.4.2 GRW Ontologies and Their Criticisms

	References

	3 Quantum Identity and Indistinguishability
	3.1 The Quantum Theory of Similar Objects
	3.1.1 Statistical Mechanics
	3.1.2 Many-Particle Tensor Products
	3.1.3 Quantum Statistics
	3.1.4 Symmetric Group

	3.2 Ontology of Quantum Theory
	3.2.1 Identity and Leibniz's Principle
	3.2.2 Leibniz's Principle and Quantum Theory
	3.2.3 Weak Discernability
	3.2.4 Outlook

	References

	4 Entanglement and Non-locality: EPR, Bell and Their Consequences
	4.1 Introduction and Overview
	4.2 The EPR Argument and Its Consequences
	4.2.1 The EPR Argument: An Overview
	4.2.2 Analysis of the EPR Argument
	4.2.3 The Debate over the EPR Article and Its Aftermath
	4.2.4 Analysis of the Singlet State

	4.3 Bell's Proof
	4.3.1 Experimental Foundations
	4.3.2 Bell's Original Theorem
	4.3.3 Bell's Theorem as a Strategy Game
	4.3.4 Bell's Theorem, More Precisely

	4.4 Non-locality
	4.4.1 Locality Versus Background Assumptions
	4.4.2 Areas of Conflict with Relativity
	4.4.3 Signals, Causality and Fine-Tuning
	4.4.4 Outcome Dependence Versus Parameter Dependence
	4.4.5 Causal Non-locality Versus Non-separability
	4.4.6 Holism
	4.4.7 Non-locality and the Relativity Principle

	4.5 Alternative Solutions
	4.5.1 The Causal Markov Condition
	4.5.2 The Intervention Assumption
	4.5.3 Backwards Causation
	4.5.4 Conclusion: Alternative Suggestions

	4.6 Résumé
	References

	5 No-Collapse Interpretations of Quantum Theory
	5.1 The de Broglie–Bohm Theory
	5.1.1 Mathematical Description
	5.1.2 The Quantum Equilibrium Hypothesis 
	5.1.3 The Guidance Equation
	5.1.4 Applications of the de Broglie–Bohm Theory  
	5.1.5 The Solution of the Measurement Problem
	5.1.6 The Schools of the de Broglie–Bohm Theory
	5.1.7 Criticism of the de Broglie–Bohm Theory

	5.2 Everett's Interpretation
	5.2.1 The Basic Idea
	5.2.2 The Many-Worlds Interpretation
	5.2.3 The Problem of the Preferred Basis
	5.2.4 The Role of Decoherence Theory
	5.2.5 Probability in Everett's Interpretation
	5.2.6 Criticism of Everett's Interpretation 

	5.3 The Relation Between the Various Interpretations
	References

	6 Quantum Field Theory
	6.1 Characterization of Quantum Field Theory
	6.2 The Spatiotemporal Description of Processes
	6.3 The Mathematical Structure of Quantum Field Theory
	6.3.1 The Quantization of Fields
	6.3.2 The Simplest Example of a Quantum Field Theory
	6.3.3 Occupation-Number Representation
	6.3.4 Quantum Field Theory and Experiments
	6.3.5 Problems of Conventional Quantum Field Theory

	6.4 Interpretations of Quantum Field Theory
	6.4.1 Preliminary Remark
	6.4.2 The Particle Interpretation
	6.4.3 The Field Interpretation

	6.5 New Paths to an Interpretation
	6.5.1 Ontic Structural Realism
	6.5.2 A Trope-Ontological Interpretation
	6.5.3 Conclusions for the Ontology of Quantum Field Theory

	References

	7 Chronology and Outlook
	7.1 The Early Period of Quantum Physics
	7.2 Establishing Standard Quantum Mechanics
	7.3 Confirmation and New Challenges

	A Example Solutions for the Exercises
	Index



