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Abstract A wave-like equation based method for the numerical solution of the
Navier-Stokes equations modeling incompressible viscous flow was introduced
nearly twenty years ago. From its inception to nowadays it has been applied suc-
cessfully to the numerical solution of two and three dimensional flow problems for
incompressible Newtonian and non-Newtonian viscous fluids, in flow regions with
fixed or moving boundaries. The main goals of this article are: (i) To recall the
foundations of the wave-like equation methodology, and (ii) to review some typical
viscous flow problems where it has been applied successfully.

Keywords Incompressible viscous flow · Operator splitting time discretization
schemes · Wave-like equation method for the numerical treatment of the advection
step · Finite element approximations

1 Introduction

Some time ago, the authors of this article were asked to contribute to a volume ded-
icated to their colleagues and friendsW. Fitzgibbon, Y. Kuznetsov and O. Pironneau
on the occasion of their 70th anniversary. The authors decided to take advantage of
this special volume to celebrate another anniversary: Indeed, nearly twenty years
ago, they dropped the nonlinear least-squares methodology they have been using
for years for the numerical treatment of the advection operator, encountered in the
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Navier-Stokes equationsmodelling incompressible viscous flow, and started employ-
ing systematically a novel methodology based on a wave-like equation modelling
of the advection. From then to now, the wave-like equation method has been suc-
cessfully applied, by the authors and other people, to the numerical simulation of a
rather large variety of incompressible viscous flows, justifying in the authors opinion
a relatively detailed dedicated review publication. The content of this article is as
follows: In Sect. 2, we will describe the wave-like equation method when applied
to the numerical solution of the Navier-Stokes equations modelling incompressible
viscous flow, and take advantage of this section to provide related references. In
Sects. 3–5 we will describe and comment on several successful applications of the
wave-like equation based methodology; they concern Newtonian, visco-elastic and
particulate viscous flows.

2 The Wave-Like Equation Method for the Incompressible
Navier-Stokes Equations

Our starting point will be the Navier-Stokes equations modeling the flow of incom-
pressible Newtonian viscous fluids, namely

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ρ

[
∂u
∂t

+ (u · ∇)u
]

− μ∇2u + ∇p = f in Ω × (0,T ),

∇ · u = 0 in Ω × (0,T ),

u(0) = u0 with ∇ · u0 = 0,

u = uB on Γ × (0,T ) with
∫

Γ

uB(t) · n dΓ = 0 on (0,T ),

(1)

where:

• Ω (a sub-domain of Rd , d = 2 or 3) is the flow region, and 0 < T ≤ +∞. We
denote by Γ the boundary of Ω .

• u (resp., p) denotes the flow velocity (resp., pressure), and f a density of external
forces.

• ρ and μ are both > 0, and denote the fluid density and viscosity, respectively.
• φ(t) denotes the function x → φ(x, t) (with x = {xi}di=1).• n denotes the unit outward normal vector at Γ .

The numerical solution of problem (1) has generated a most abundant literature (see,
in particular, the related references provided by Google Scholar). Among the many
methods for the numerical solution of (1), wewill single out those based on operator-
splitting. Applying the Lie scheme (see, e.g., [20, 21, 25] for a general discussion of
that scheme), we obtain (among other possibilities) the following time-discretization
of problem (1) (with�t(>0) a time-discretization step and tn = n�t):

u0 = u0. (2)
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For n ≥ 0, un → {un+1/2, pn+1} → un+1 via the solution of

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ρ
un+1/2 − un

�t
− μ∇2un+1/2 + ∇pn+1 = fn+1 inΩ,

∇ · un+1/2 = 0 inΩ,

un+1/2 = uB(tn+1) onΓ,

(3)

and

⎧
⎪⎪⎨

⎪⎪⎩

∂w
∂t

+ (un+1/2 · ∇)w = 0 inΩ × (tn, tn+1),

w(tn) = un+1/2,

w(t) = un+1/2(= uB(tn+1)) onΓ n+1
− × (tn, tn+1),

(4.1)

un+1 = w(tn+1), (4.2)

with Γ n+1
− = {x | x ∈ Γ,uB(x, tn+1) · n(x) < 0}.

Remark 1 The time discretization of problem (1) by the Strang symmetrized scheme
(a more sophisticated variant of the Lie scheme) is discussed in [12, 20] (see also the
references therein). �

The solution of the (generalized) Stokes problem (3) being a well-documented
(and different) issue (see, e.g., [3, 20]), we will focus on the most controversial part
of scheme (2)–(4), namely the solution of the initial value problem (4.1). One can
easily show that in (4.1), each component ofw is solution of an initial-boundary value
problem of the following type:

⎧
⎪⎪⎨

⎪⎪⎩

∂φ

∂t
+ V · ∇φ = 0 inΩ × (t0, tf ),

φ(t0) = φ0,

φ = g onΓ− × (t0, tf ),

(5)

where ∂V
∂t = 0,∇ · V = 0, ∂g

∂t = 0, andΓ− = {x | x ∈ Γ, V(x) · n(x) < 0}.
The solution of first order problems such as (5) hasmotivated a very large literature

(see, e.g., [28] and the references therein). It seems thus that one has abundance of
methods to solve the problem (5); this is definitely true, but things get complicated
if one wishes to solve problem (4.1) using the same finite element velocity spaces
that one employs for the solution of the problem (3). A conceptually elegant way to
achieve that goal is to use the backward method of characteristics as done in, e.g.,
[52, 57, 58] via the so-called Lagrange-Galerkin methodology. Albeit conceptually
simple the practical implementation of the Lagrange-Galerkin methods requires a lot
of ‘savoir faire’ (see [58] for an evidence of the above statement). Fortunately, there
exists a very simple alternative to the method of characteristics, based on a wave-like
equation reformulation of the problem (5). We personally encountered this approach
when investigating the wavelet solution (see [24]) of
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⎧
⎪⎪⎨

⎪⎪⎩

∂u

∂t
+ a

∂u

∂x
= 0 in (0,L) × (0,T ),

u(0) = u0,

u(0, t) = g(t), t ∈ (0,T ),

(6)

with: 0 < L < +∞, a a positive number, and 0 < T ≤ +∞. If the functions u0 and g
are smooth enough, one can easily show (by time differentiation of the first equation
in (6); see [12, 20] for details) that problem (6) has a unique solution which is also the
unique solution of the following (genuine) wave equation problem:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂2u

∂t2
− a2

∂2u

∂x2
= 0 in (0,L) × (0,T ),

u(0) = u0,
∂u

∂t
(0) = −a

∂u0
∂x

,

u(0, t) = g(t),
∂u

∂t
(L, t) + a

∂u

∂x
(L, t) = 0, t ∈ (0,T );

(7)

the boundary condition at x = L can be viewed as a radiation condition. Assuming
that u is smooth enough, problem (7) has the following variational formulation:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

u(t) ∈ H 1(0,L), u(0, t) = g(t), t ∈ (0,T ),
∫ L

0

∂2u

∂t2
v dx + a2

∫ L

0

∂u

∂x
(t)

∂v
∂x

dx + a
∂u

∂t
(L, t)v(L) = 0,

∀v ∈ V0, t ∈ (0,T ),

u(0) = u0,
∂u

∂t
(0) = −a

∂u0
∂x

,

(8)

withV0 = {v | v ∈ H 1(0,L), v(0) = 0}. Thanks to variational formulation (8), prob-
lem (7), and therefore problem (6), can be solved by finite element methods of the
Lagrange-Galerkin type (including those based on the Courant element, that is piece-
wise affine, globally continuous approximations) or (as done in [24]) by wavelet-
Galerkinmethods.

Remark 2 The approach we just advocated for the solution contradicts the popular
approach which consists in writing second order in time differential equations as
systems of first order ones. �

Actually, the strategywe just described for problem (6) can be easily generalized to
problem (5) by observing that the properties ∇ · V = 0 and ∂V

∂t = 0 imply that, after
time differentiation, any smooth solution of problem (5) is solution of

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂2φ

∂t2
− ∇ · ((V · ∇φ)V) = 0, inΩ × (t0, tf ),

φ(t0) = φ0,
∂φ

∂t
(t0) = −V · ∇φ0,

φ = g onΓ− × (t0, tf ), (V · n)

(
∂φ

∂t
+ V · ∇φ

)

= 0 onΓ \ Γ− × (t0, tf ),

(9)
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a wave-like equation problem associated with the hypo-elliptic operator

φ → −∇ · ((V · ∇φ)V).

Let us define the space V0 by

V0 = {θ | θ ∈ H 1(Ω), θ = 0 onΓ−};

assumingthatproblem(9)hasasmoothenoughsolution,usingthedivergencetheorem,
one can easily show that the above problem has the following variational formulation
(with dx = dx1 . . . dxd ):

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

φ(t) ∈ H 1(Ω), φ(t)|Γ− = g, t ∈ (t0, tf ),∫

Ω

∂2φ

∂t2
θ dx +

∫

Ω

(V · ∇φ)(V · ∇θ) dx +
∫

Γ \Γ−
V · n∂φ

∂t
θ dΓ = 0,

∀θ ∈ V0, t ∈ (t0, tf ),

φ(t0) = φ0,
∂φ

∂t
(t0) = −V · ∇φ0.

(10)

From (10), one can easily show that if problem (9) has a solution, it is unique. For-
mulation (10) is ideally suited to Lagrange finite element approximations as shown
in, e.g., [12, 20], where it has been (successfully) applied in combination with the
finite element spaces used for the numerical solution of the Stokes-like problem (3).
Concerning the time-discretization of (10), we have been advocating the following
centered scheme (with τ = tf −t0

Q , the integerQ being>1):

φ0 = φ0, φ1 − φ−1 = 2τφ1. (11)

For q = 0, 1, . . . ,Q − 1, {φq−1, φq} → φq+1 as follows:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

φq+1 ∈ H 1(Ω), φq+1|Γ− = g,
∫

Ω

φq+1 + φq−1 − 2φq

τ 2
θ dx +

∫

Ω

(V · ∇φq)(V · ∇θ) dx

+
∫

Γ \Γ−
V · n

(
φq+1 − φq−1

2τ

)

θ dΓ = 0, ∀θ ∈ V0,

(12)

where, in (11), φ1 is solution of the following variational problem:

⎧
⎨

⎩

φ1 ∈ V0,∫

Ω

φ1θ dx = −
∫

Ω

V · ∇φ0θ dx, ∀θ ∈ V0.
(13)
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Strictly speaking, the infinite dimensional variational problems (12) and (13)make no
sense, ingeneral,unlike, fortunately, theirfinitedimensionalanalogues,obtainedfrom
(12) and (13) via appropriate finite element approximations (see [12, 20] for details).

Remark 3 Asexpected, thewave-likeequationmethoddescribedabove isnot a stand-
alone one for the numerical solution of advection problems such (5), as shown by the
numericalexperimentsreportedin[20].Thereasonforthatunfortunatesituationiseasy
tounderstand: thewave-likeequation in (9) isamodel forpropagation inboth theVand
−V directions; with appropriate initial and boundary conditions, there is no ‘signal’
propagatinginthe−Vdirection.Howevertheseidealcircumstancesdonotholdexactly
anymore after space-timediscretization, explaining the existence of a small (if�x and
�t are small) parasitic signal propagating in the−V direction. The good news are that
when using thewave-like equationmethod to solve the incompressibleNavier-Stokes
equations, theadvectionstep (4) iscombinedwith the incompressible-viscousstep (3),
the solver of the problem (3) filtering (at least partially) those unwanted oscillations
generated by the solver of the problem (9), (10).

Remark 4 Whenapplying thewave-like equationmethod to solve the incompressible
Navier equations via the Lie-scheme (2)–(4), we advocate taking τ = �t/Q, with
2 ≤ Q ≤ 5, in the fully discrete analogue of scheme (11), (12).

Remark 5 Tothebestofourknowledge,thewave-likeequationmethodforthesolution
of the incompressible Navier-Stokes equations has been introduced in [10]. Actually,
a related method was introduced in 1979 by Lynch and Gray for the solution of the
shallow water equations [44], the convergence of the method being discussed in [7,
8]. See also [60, 61] for the application of a closely related method to the solution of
multi-dimensional transport problems. �

Since its introduction in 1997 the wave-like equation/operator-splitting method
discussed above has been applied by the authors, their students, post-docs and other
collaborators and scientists to a large variety of viscous-flow problems, some more
complicated than problem (1). Let us mention among others: (i) The numerical sim-
ulation of particulate flow (see, e.g., [20, 26, 31]). (ii) The numerical solution of the
Boussinesq system coupling theNavier-Stokes andheat equations, andmodellingnat-
ural convection [20]. (iii) The simulation of visco-plastic flow [11, 20, 27]. (iv) The
simulation of visco-elastic flow (possiblywith particles) [20, 48, 49]. (v) The solution
of free boundary problems for incompressible viscous flow [22]. (vi) The numerical
solution of the system coupling the Cahn-Hilliard and Navier-Stokes equations and
modelling the flow of multiple immiscible incompressible viscous fluids [30]. The
references in the above publications are also worth consulting.

Other examples and further references will be given in Sects. 3–5.
To conclude this introductory section we cannot resist mentioning the fact that

some of the results from [23], concerning operator-splitting/wave-like equation based
simulations of wall-driven incompressible viscous flows in a semi-circular cavity,
have beenused in [59] to validate aNURBS (forNonUniformRationalBézier Splines)
based Navier-Stokes solver.
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3 On theSimulation of 3-D IncompressibleViscous
Flow in aCubewith aMovingWall

3.1 Generalities

Starting with [18], the wall-driven square cavity flow problem has been for decades
themost popular problemused tovalidate andcompare incompressibleNavier-Stokes
solvers. No surprisingly, it has been used by the two authors and their collaborators to
validate the operator-splitting/wave like equationmethod briefly discussed in Sect. 1,
some of the results of the related simulations being reported in [12, 20]. Actually, one
hasalso reported in ([20],Chap. 9)and[47] the resultsof thesimulationofaNewtonian
incompressible viscous flow in a cubic cavity when one of the walls is sliding; the
maximal Reynolds number (Re) considered in [20, 47] is 103. More recently the
oscillatory instability of cubic lid-driven cavity flows has been studied in [1, 16, 41].
Numerically, FeldmanandGelfgat [16] obtained that the criticalReynolds number for
the transition from a steady flow to an oscillatory one (aHopf bifurcation) is at Recr =
1914. Anupindi et al. [1] reported that the critical Re they observed is Recr = 2300,
which was obtained using regularized boundary condition. Experimentally, Liberzon
et al. [41] reported that the critical Reynolds number is in the range [1700, 1970],
One of our goals in this section is to report on the results we obtained when taking Re
beyond 103, and to identify as accurately as possible the value of Re at which a Hopf
bifurcation does occur.

3.2 NumericalMethods

To speed up the numerical solution of the cubic lid-driven cavity flow problem, we
time-discretized the relatedproblem(1), usinga three stageoperator-splitting scheme,
namely: (i) using a L2-projection Stokes solver à la Uzawa to force the incompress-
ibility condition, (ii) an advection step similar to (4), and (iii) a diffusion step. The
resulting scheme reads as follows:

u0 = u0. (14)

For n ≥ 0, un → {un+1/3, pn+1} → un+2/3 → un+1 via the solution of:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ρ
un+1/3 − un

�t
+ ∇pn+1 = 0 inΩ,

∇ · un+1/3 = 0 inΩ,

un+1/3 · n = 0 onΓ,

(15)
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⎧
⎪⎪⎨

⎪⎪⎩

∂w
∂t

+ (un+1/3 · ∇)w = 0 inΩ × (tn, tn+1),

w(tn) = un+1/3,

w(t) = un+1/3(= uB(tn+1)) onΓ n+1
− × (tn, tn+1),

(16.1)

un+2/3 = w(tn+1), (16.2)

⎧
⎨

⎩

ρ
un+1 − un+2/3

�t
− μ∇2un+1 = fn+1 inΩ,

un+1 = uB(tn+1) onΓ.

(17)

Two simplifications take place for the lid-driven cavity flowproblem considered here:
namely, fn+1 = 0andΓ n+1

− = ∅.For thespacediscretization,wehaveused,as in ([20],
Chap. 5) and [3], a P1-iso-P2 (resp., P1) finite element method for the approximation
of the velocity field (resp., pressure), defined from uniform “tetrahedral” meshes Th

(resp.,T2h).Problem(15) is reminiscentof thoseencounteredwhenapplyingChorin’s
projectionmethod [9].

3.3 NumericalResults

For the lid-driven cavityflowproblem in a cube, consideredhere,we tookΩ = (0, 1)3

as computational domain and defined the Dirichlet data uB by

uB(x) =
{

(1, 0, 0)T on {x | x = (x1, x2, 1)T , 0 < x1, x2 < 1},
0 elsewhere onΓ.

(18)

We considered that the steady state has been reached when the change between two
consecutive time step in the simulation, ‖un

h − un−1
h ‖∞/�t, is less than 10−4, and then

took un
h as the steady state solution.

To validate the numerical methodology, we have considered for the velocity mesh
size the values h = 1/60 and 1/96 associated with the time step �t = 0.001. For
Re = 400 and 1000, the results reported in Fig. 1 show a very good agreement with
those obtained in [5, 17, 39]. The velocity vectors of the steady flows obtained for
Re = 400 and 1000 are shown in Fig. 2. Those velocity field vectors are projected
orthogonally to the three planes, x2 = 0.5, x1 = 0.5, and x3 = 0.5, and the length of
the vectors has been doubled in the two later planes to observe the flowmore clearly.

To study the transition from steady flow to oscillatory flow, we have analyzed the
history of the L2-norm ‖un

h‖ of the flow field for different values of Re and of the
mesh size h. For h = 1/60, the flow field evolves to a steady state for Re ≤ 1860 and
the amplitude of the oscillation of the flow field L2-norm decreases also in time. At
Re = 1865, thesteadystatecriterion isnotsatisfiedandtheamplitudeof theoscillation
increases in time as in Fig. 3. Thuswe conclude that the criticalReynolds numberRecr



Two Decades of Wave-Like Equation for the Numerical . . . 229

u1

-1 -0.5 0 0.5 1

u 3

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
present

Ku et al.

Fujima et al.

Chiang et al.

Graphs of u1 (0.5,0.5,.) and  u 3 (.,0.5,0.5) at Re=400

u1

-1 -0.5 0 0.5 1

u 3

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
present

Ku et al.

Fujima et al.

Chiang et al.

Graphs of u1 (0.5,0.5,.) and  u 3 (.,0.5,0.5) at Re=1000

u1

-1 -0.5 0 0.5 1

u 3

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
present

Ku et al.

Fujima et al.

Chiang et al.

Graphs of u1 (0.5,0.5,.) and  u 3 (.,0.5,0.5) at Re=400

u1

-1 -0.5 0 0.5 1

u 3

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
present

Ku et al.

Fujima et al.

Chiang et al.

Graphs of u1 (0.5,0.5,.) and  u 3 (.,0.5,0.5) at Re=1000

Fig. 1 Comparisons of the numerical results obtained for h = 1/60 (top) and 1/96 (bottom) at
Re = 400 (left) and 1000 (right)

for the occurrence of the transition is somewhere between 1860 and 1865. Applying a
similar analysis, we obtain that, for h = 1/96, Recr is in (1870, 1875), the histories of
the velocityL2-normbeing shown inFig. 3. The oscillation frequencies of the velocity
L2-norm obtained for h = 1/60 and �t = 1/1000 are about 0.5937 and 0.5941 for
Re = 1860 and 1865, respectively. Those obtained for h = 1/96 and �t = 1/1000
are about 0.5978 and 0.5973 for Re = 1870 and 1875, respectively.

A documented feature of three-dimensional lid-driven cavity flows, like those
considered in this section, is that theymay exhibit Taylor-Görtler-like (TGL) vortices
if Re is sufficiently large. Indeed, Iwatsu, Hyun andKuwahara reported (in [34]) such
vortices atRe = 2000 for cubic cavityflows similar to those considered in this section.
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Fig. 2 Steady flow velocity vector of steady flow for Re = 400 (top) and 1000 (bottom) projected
on the planes x2 = 0.5 (left), x1 = 0.5 (middle), and x3 = 0.5 (right)

t
0 200 400 600 800 1000 1200 1400 1600 1800

0.20650

0.20652

0.20654

0.20666

0.20668

0.20660

t
0 500 1000 1500 2000 2500

0.2019

0.202

0.2021

0.2022

0.2023

0.2024

0.2025

0.2026

0.2027

0.2028

0.2029

t

0 200 400 600 800 1000 1200 1400 1600
0.20635

0.20640

0.20645

0.20650

0.20655

t

0 500 1000 1500 2000 2500
0.20180

0.20185

0.20190

0.20195

0.20200

0.20205

0.20210

0.20215

0.20220

Fig. 3 Histories of the flow field L2-norm for h = 1/60 (left) and 1/96 (right): a Re = 1850 (top
left), Re = 1860 and 1865 (bottom left); b Re = 1850 and 1865 (top right), Re = 1870 and 1875
(bottom right)
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Also, as predicted in [16, 41] (and confirmed by our own simulations), a transition
from steady flow to oscillatory flow (Hopf bifurcation) occurs at Recr < 2000. On
the other hand, using a global linear stability analysis, Gianetti et al. [19] found that
cubic lid-driven cavity flowbecomes unstable forRe just above 2000.All these results
(ours in particular) lead us to suspect that theHopf bifurcation is connected to theTGL
vortices at Re slightly below 2000.

The bottom left picture of Fig. 3 shows oscillatory regimes atRe = 1860 and 1865,
for the flow computed with h = 1/60. In order to study the computed flow distortion
we have visualized in Figs. 4 (for Re = 1860) and 5 (for Re = 1865) the velocity
fields associatedwith the peak andbottomof the velocityfieldL2-norm, and the vector
field obtained by difference of the above two velocity fields. The top (resp., bottom)
pictures have been obtained by projection of the vector fields on the plane x1 = 34/60
(resp., x3 = 1/2). Figures4 and 5 show no evidence of TGL vortices for the velocity
fields computed with h = 1/60 at Re = 1860 and 1865; however, the pictures on the
right of Figs. 4 and 5, obtained by the vector field difference detailed above, show a
pair of vortices reminiscent of the GTL ones, but with much smaller magnitude since
the vector fields have been amplified by a factor of 200 (resp., 50) for Re = 1860

X

X2

3

  X1= 34/60

X

X

2

1

 X3= 0.5

Fig. 4 Left and middle: Projections (at Re = 1860) of the cavity flow velocity vector fields
associated with the peak (left) and bottom (middle) of the velocity L2-norm during an oscillation.
Right: Projections (at Re = 1860) of the vector field obtained by difference of the velocity vector
fields associatedwith the peak and bottom of the velocityL2-norm.All the vector fields are projected
on the planes x1 = 34/60 (top) and x3 = 0.5 (bottom). The vector scale for the field obtained by
difference (right) is 200 times that of the actual one, while the scale for the two other fields (left and
middle) is twice that of the actual one
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Fig. 5 Left and middle: Projections (at Re = 1865) of the cavity flow velocity vector fields
associated with the peak (left) and bottom (middle) of the velocity L2-norm during an oscillation.
Right: Projections (at Re = 1865) of the vector field obtained by difference of the velocity vector
fields associatedwith the peak and bottom of the velocityL2-norm.All the vector fields are projected
on the planes x1 = 34/60 (top) and x3 = 0.5 (bottom). The vector scale for the field obtained by
difference (right) is 50 times that of the actual one, while the scale for the two other fields (left and
middle) is twice that of the actual one

(resp., 1865) in order tomake them visible. On the other hand, at Re = 1875, a pair of
TGL vortices becomes visible as shown by Fig. 6 where we have visualized (using a
nonlinear scaling to enhance visibility) several snap-shots of the velocity field during
an oscillation time period. This pair of TGL vortices is not stationary, however, it
remains symmetric with respect to the the mid-plane x2 = 1/2. Figure 6 shows that
two tertiary vortices are formed on the left and right parts of the bottomwall, near the
large corner vortices at t = 1526, 1527 and 1528; next, these tertiary vortices move
toward the symmetry plane x2 = 0.5 at t = 1529, a pair of TGLvortices being formed
in the time interval [1531, 1533]; finally, theTGLvortices disappear after t = 1533, to
reappear during the next time-period.We have reported on Fig. 7 the projection on the
planex1 = 33/60of thevectorfieldobtainedbydifferenceof thevelocityflowfieldsat
t = 1525 and t = 1527. The vortex pair we observe is reminiscent of those visualized
on the right of Figs. 4 and 5. This vortex pair keeps hiding there and becomes stronger
as Re increases. These results suggest that the TGL vortices observed for Re slightly
below 2000 are related to the onset of an oscillatory flow.
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t =1524.0 t =1530.0

t =1525.0 t =1531.0

t =1526.0 t =1532.0

t =1527.0 t =1533.0

t =1528.0 t =1534.0

t =1529.0 t =1534.5

Fig. 6 Projected velocity vector field of the cavity flow at Re = 1875 on the plane x1 = 33/60 at
different instants of time during one oscillation of the flow field L2-norm from t = 1524 to 1534.575
[for enhancing the visibility of the TGL vortices we proceeded as follows: (i) for those projected
vectors of length≤0.02 the vector scale is 15 times that of the actual one and (ii) for those projected
vectors of length >0.02, the length is reduced to 0.02 first and then plotted as in (i)]

4 ParticulateFlow:TheOrientation of aNeutrallyBuoyant
ProlateEllipsoid in aThree-DimensionalPoiseuille Flow

4.1 Generalities

The distributed Lagrange multiplier/fictitious domain (DLM/FD) formulation for
particulate flow, and its associated numerical methodologies based on the Lie scheme
havebeendeveloped in thepast 20years (see, e.g., [20],Chaps. 8and9, [22, 25, 26]). It
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Fig. 7 Projected velocity
vector field of the difference
of the velocity fields at
t = 1525 and t = 1527 on
the plane x1 = 33/60 for
Re = 1875. The vector scale
is 20 times that of the actual
one

X

X2

3

  X1= 33/60

is the (necessarilybiased)opinionof theauthorsof this article that thedirect numerical
simulation of particulate flow has been one of the success stories of the wave-like
equation-basedmethodology.

Themotion of particles in a channel is relevant to a variety of applications inmany
chemical engineering and biological processes, such as suspension process, sedimen-
tation, blood flow, and flowcytometry.Understanding this kind ofmotion has become
even more important with the recent advent of microfluidic devices used for many
cell-based assays (see, e.g., [33]). The studyof themotionof non-spherical particles in
viscous fluids has a long history. Jeffery [35] solved the motion of a free ellipsoid for
various types of unbounded shear flow under Stokes flow conditions. He concluded
that the final state of a spheroid depends on its initial orientation and corresponds to
the minimal energy dissipation. The experiments of Segré and Silberberg [54, 55]
have had a large influence on fluidmechanics studies ofmigration and lift of particles.
These autohrs studied themigrationof dilute suspensionsof neutrallybuoyant spheres
in a tube flow. The particles migrate away from the wall and centerline and accumu-
late at about 0.6 of the tube radius from the centerline. Karnis et al. [37] verified the
same phenomenon and observed, in contrary to Jeffery’s theory, that the inertial effect
migrates non-spherical particles to a final equilibriumdistance in the tube atwhich the
long axis of a rod-like particle rotateswithin the plane passing through the central axis
of the tube and themass center of the particle; but a disk-like particle will rotates with
its short axis perpendicular to the plane passing through the central axis of the tube
and themass center of the disk. In [46], similarmigration and rotational behaviors of a
neutrally buoyant ellipsoid were obtained at particle Reynolds numbers up to 52; and
it was also found that this ellipsoid rotation exhibits distinctive states depending on
the Reynolds number range and on the particle shape. In this section, we have further
studied the orientation of a prolate ellipsoid in a three-dimensional Poiseuille flow.
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4.2 AFictitiousDomainFormulation of theModel Problem

All the fluid-solid interactions to be considered in this article concern the flowof fluid-
solid particlemixtures in a cylindrical tube (denoted byT in the sequel)with a circular
cross-section. In order to take a full advantage of the fictitious domain approach we
will embed T in a cylindrical tube (denoted byΩ) with a square cross-section whose
edge length is slightly larger than the diameter of theT cross-section.

We will start our discussion with a one particle situation. Therefore, let Ω ⊂
R

3 be a rectangular parallelepiped. We suppose that Ω is filled with a Newtonian
incompressible viscous fluid (of density ρf and viscosity μf ) and that it contains a
moving neutrally buoyant rigid particle B centered at G = {G1,G2,G3}t of density
ρf , as shown inFig. 8,which showsalso the inclusion inΩ of the cylinderTmentioned
above; we suppose that the central axis of both cylinders is parallel to the x3-axis. The
flow ismodeled by theNavier-Stokes equationswhile the particlemotion is described
by the Euler-Newton equations. We introduce (with dx = dx1dx2dx3) the following
functional spaces:

W0,P = {v | v ∈ (H 1(Ω))3, v = 0 on the top, bottom, front, and back of Ω and

v is periodic in the x3 direction},
L20 = {q | q ∈ L2(Ω),

∫

Ω

q dx = 0},

Λ0(t) = {μ | μ ∈ (H 1(B(t)))3, 〈μ, ei〉B(t) = 0, 〈μ, ei ×
−→
Gx〉B(t) = 0, i= 1, 2, 3},

ΛT = {μ | μ ∈ (H 1(Ω \ T))3, μ is periodic in the x3 direction},

where e1 = {1, 0, 0}t , e2 = {0, 1, 0}t , e3 = {0, 0, 1}t , and 〈·, ·〉B(t) (resp., 〈·, ·〉T ) is an
inner product on Λ0(t) (resp., ΛT ) (see [26], Sect. 5 and [20], Chap. 8) for further
information on the choice of 〈·, ·〉B(t)). Above, and from now on, periodicity in the x3
direction means periodicity of period L, L being the common length of the truncated
cylindersΩ andT. Then, the distributed Lagrange multiplier based fictitious domain

Fig. 8 An example of
three-dimensional flow
region with one rigid body

x 2

x 3

x 1

B

T

Ω



236 R. Glowinski and T.-W. Pan

formulation for the flow around a freely moving neutrally buoyant particle of general
shape inside a cylindrical tube reads as follows (see [20, 50] for a detailed discussion
of the non-neutrally buoyant case):

For a.e. t > 0, find u(t) ∈ W0,P , p(t) ∈ L20, VG(t) ∈ R
3, G(t) ∈ R

3, ω(t) ∈ R
3,

λ(t) ∈ Λ0(t), λT ∈ ΛT such that

⎧
⎪⎨

⎪⎩

ρf

∫

Ω

[
∂u
∂t

+ (u · ∇)u
]

· v dx + 2μf

∫

Ω

D(u) : D(v) dx −
∫

Ω

p∇ · v dx
−〈λ, v〉B(t) − 〈λT , v〉T = ρf

∫

Ω

g · v dx +
∫

Ω

f · v dx, ∀v ∈ W0,P,

(19)
∫

Ω

q∇ · u(t)dx = 0, ∀q ∈ L2(Ω), (20)

〈μ,u(t)〉B(t) = 0, ∀μ ∈ Λ0(t), (21)

〈μT ,u(t)〉T = 0, ∀μT ∈ ΛT , (22)

dG
dt

= VG, (23)

dxi
dt

= VG + ω × −→
Gx i, i = 1, 2, (24)

VG(0) = V0
G, ω(0) = ω0, G(0) = G0 = {G0

1,G
0
2,G

0
3}t, xi(0) = x0i , i = 1, 2,

(25)

u(x, 0) = u0(x) =
{
u0(x), ∀x ∈ Ω \ B(0),

V0
G + ω0 × −−→

G0x, ∀x ∈ B(0).
(26)

In (19)–(26) u and p denote velocity and pressure, respectively, λ is a Lagrange
multiplier associated with relation (21) (from (21) the fluid has a rigid bodymotion in
the region occupied byB(t)),λT is aLagrangemultiplier associatedwith relation (22)
(from(22), thefluidvelocity is0 inΩ̄ \ T),D(v) = 1

2 (∇v + (∇v)t),gdenotesgravity,
f is an imposed pressure gradient pointing in the x3-direction inside the cylinder T,
VG is the translation velocity of the particle B, and ω is the angular velocity of B. We
suppose that the no-slip condition holds on ∂B. We also use, if necessary, the notation
φ(t) for the function x → φ(x, t).

Remark 6 The hydrodynamical forces and torque imposed on the rigid body by the
fluid are built in (19)–(26) implicitly (see [26] for details), thus we do not need to
compute them explicitly in the simulation. Since in (19)–(26) the flow field is defined
on the entire domainΩ , it can be computed with a simple structured grid.
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Remark 7 In (21), the rigid body motion in the region occupied by the particle is
enforced via Lagrangemultipliersλ. To recover the translation velocityVG(t) and the
angular velocityω(t) from u(t) satisfying (21), we solve the following equations:

⎧
⎪⎪⎨

⎪⎪⎩

〈ei,u(t) − VG(t) − ω(t) × −→
Gx〉B(t) = 0, for i = 1, 2, 3,

〈ei ×
−→
Gx ,u(t) − VG(t) − ω(t) × −→

Gx〉B(t) = 0, for i = 1, 2, 3.

(27)

Remark 8 In (24), we have to track the motion of two extra points attached to any
particle of general shape so that we can determine the region occupied by the particle
via its center of mass, the translation velocity of the center of mass and the angular
velocity of the particle. In practice we shall track two orthogonal normalized vectors
rigidly attached to the bodyB from the center of massG.

Remark 9 In (19), 2
∫

Ω
D(u) : D(v) dx can be replaced by

∫

Ω
∇u : ∇v dx since u is

divergence free and inW0,P . This changecanmake the computation simpler and faster.
Also the gravity g in (19) can be absorbed into the pressure term.

Remark 10 The details of numerical methodologies for simulating the motion of
prolate andoblate spheroids are given in [46].ApplyingLie’s scheme to (19)–(26),we
have a six stage operator-splitting scheme, namely: (i) using a L2-projection Stokes
solverà laUzawatoforce the incompressibilitycondition, (ii) anadvectionstepsimilar
to (4), (iii) a diffusion step with the body force f and the enforcement of zero velocity
outside the cylinder T, (iv) a step to predict the particle position and its orientation,
(v) a step to enforce the rigid bodymotion inside the particle and to obtain its updated
translation and angular velocity, and (vi) a step to correct the particle position and its
orientation.For the spacediscretization,wehave still usedaP1-iso-P2 (resp.,P1)finite
element approximation of the velocity field (resp., pressure) defined from uniform
“tetrahedral” meshes Th (resp., T2h). For the enforcement of the rigid body motion
and zero velocity outside the cylinder, we have applied a collocationmethod (see [46]
for details).

4.3 NumericalResults

For the first series of test problems, we have considered the simulation of a neutrally
buoyant prolate ellipsoid moving in a fluid filled cylinder (see Fig. 8). We take Ω =
(0, 1 + 4h) × (0, 1 + 4h) × (0, 2) as computational domainwith h as the spacemesh
size to construct the flow velocity spaces. The radius R of the cylinderT is 0.5 and its
length is 2. The semi-long axis of the prolate ellipsoid is 0.195 and its two semi-short
axesare0.065,while thecommonvalueof thedensitiesof thefluidandparticle is1.The
viscosity of the fluid isμf = 0.5, 0.1, or 0.05. The force f in (19) is a constant vector,
positively oriented in the Ox3 direction; ‖f‖ has been chosen so that the maximum
velocity of the correspondingPoiseuille flow (without particle) is 10.We suppose that
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the prolate ellipsoid is at rest initially and that the initial fluid velocity corresponds
to the one of a fully developed Poiseuille flow of maximal velocity 10. Thus the
Reynolds numbers based on the diameter of the cylinder are Re = 10/μf = 20, 100,
and 200, respectively. The initialmass centerG(0)of the ellipsoid is vertically located
below the cylinder axis at a distance 0.4 to this axis and the long-axis of the ellipsoid
lies on the plane parallel to the x1x3-coordinate plane. The initial angle between the
long axis and the direction of the x1-axis has been chosen as 0◦, 30◦, 60◦, or 90◦.
The one in Fig. 8 corresponds to the case of 90◦. We have used uniform tetrahedral
meshes to approximate velocity and pressure. The velocity (resp., pressure)mesh size
is h = 1/80 (resp., hp = 2h), while the time discretization step is�t = 0.001.

For all the cases withμf = 0.5, the prolate ellipsoid has a tumbling behavior after
migrating away from the wall of the cylindrical tube and reaching its equilibrium
distance to thecentral axisof the tube. Its longaxis rotateson theplanepassing through
thecylinderaxisanditsmasscenter(e.g.,seeFig. 9).Theaverageequilibriumdistances
of themass center to the central axis of the tube are 0.5368R, 0.5396R, 0.5398R, and
0.5352R for the initial angles0◦, 30◦, 60◦, and90◦, respectively.TheparticleReynolds

x 1

t=0.49t=0.37t=0.3t=0.25t=0.2t=0.15

x 3

t=0.1t=0.05

x 2

x 1

t=10.63t=10.54t=10.45t=10.36t=10.27t=10.18t=10.09

x 3

t=10x 2

t=120.29

x 1

t=120.25t=120.21t=120.16t=120.12t=120.08t=120.04

x 3

t=120x 2

Fig. 9 Visualization of the prolate orientation change from its initial orientation to the rotation with
respect to the short axis (tumbling) while reaching its equilibrium distance to the cylinder central
axis (μf = 0.5, initial angle = 60◦)
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numbers based on the length of the long axis and the average translation velocity are
about 5.4. For all four different initial orientations, the long axis tumbles after it has
reached theequilibriumdistance to the tubecentral axiswhile thecenterofmassmoves
along a straight line parallel to the x3-axis. This behavior is similar to the experimental
results of the rod-like particle moving and rotating in the Poiseuille flow reported in
[37].

For thecasesofμf = 0.1, theprolateellipsoidhastwodifferentrotationalbehaviors
after reaching its equilibrium distance to the tube central axis. With the initial angle
of 0◦, 30◦ and 60◦, the prolate ellipsoid is rotating with respect to its long axis, which
is perpendicular to the plane passing through the central axis of the tube and its mass
center (see Fig. 10). This motion was not reported in the 1964 paper by Karnis et al.
[37], but since this behavior persists after decreasing h and �t, the authors strongly
believe that it is not a numerical artifact. The average distances of the mass center to
the central axis of the tube for both initial angles 0◦, 30◦ and 60◦ are about 0.519R for
290 ≤ t ≤ 300. Once the center of mass has reached the equilibrium distance to the
tubecentral axis, theellipsoiddoesnot tumblebut rotateswith respect to its longaxisas

x 1

t=0.49t=0.37t=0.3t=0.25t=0.2t=0.15

x 3

t=0.1t=0.05

x 2

x 1

t=2.63t=2.54t=2.45t=2.36t=2.27t=2.18

x 3

t=2.09t=2x 2

x 1

t=300t=200t=150t=120t=90t=60

x 3

t=30t=10x 2

Fig. 10 Visualization of the prolate orientation change from its initial orientation to the rotationwith
respect to the long axis while reaching its equilibrium distance to the cylinder central axis (μf = 0.1,
initial angle = 60◦)
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shown in Fig. 10. The particle Reynolds numbers based on the length of the long-axis
and the average translation velocity for 290 ≤ t ≤ 300 are about 26.23. For the case
of the initial angle equal to 90◦ (as in Fig. 8), the prolate ellipsoid tumbles just like it
does when μf = 0.5. For 215 ≤ t ≤ 225, the average distance of the mass center to
the central axis of the tube is 0.5456R and the particle Reynolds number is 26.25. The
co-existence of two different rotating behaviors at about the same range of Reynolds
number is quite unusual. For the two initial angles of 0◦ and 90◦, we have also placed
the initial mass center vertically below the cylinder axis at a distance 0.252 to this
axis, which is much closer to the cylinder central axis. In both situations, the prolate
spheroid migrates away from the cylinder central axis and the rotational motions are
eventually the same as those one obtainswhen the ellipsoid is placed initially closer to
the tube boundary.

When decreasing the viscosity to 0.05 and keeping all other parameters the same,
wehaveobtained that, after reaching itsequilibriumdistance, theprolatespheroiddoes
not tumble but rotate with respect to its long axis for all four different initial angles.
But the ellipsoid placed vertically below the cylinder axis at a distance 0.252 to this
axis with the initial angles 0◦ and 90◦ behaves like it does whenμf = 0.1.

Thus besides the Reynolds number, the initial distance to the cylinder central axis
doesmatter too. In the near future,wewill further study the effect of the initial position
and the range of Reynolds number leading to two rotational behaviors.

5 Visco-Elastic ParticulateFlow

Themotionof particles in non-Newtonianfluids is not only of fundamental theoretical
interest,but isalsoof importanceinmanyapplicationstoindustrialprocesses involving
particle-laden materials (see, e.g., [4, 45]). For example, during the hydraulic frac-
turing operation used in oil and gas wells, suspensions of solid particles in polymeric
solutions are pumped into hydraulically-induced fractures. The particles must prop
these channels open to enhance the rate of oil recovery [13].

Although numerical methods for simulating particulate flows in Newtonian fluids
have been very successful, numerically simulating particulate flows in viscoelastic
fluids is much more complicated and challenging. One of the difficulties (e.g., see
[2, 38]) for simulating viscoelastic flows is the breakdown of the numerical methods.
It has been widely believed that the lack of positive definiteness preserving property
of the conformation tensor at the discrete level during the entire time integration is
one of the reasons for the breakdown. To preserve the positive definiteness property
of the conformation tensor, several methodologies have been proposed recently, as in
[14, 15, 40, 43]. Lozinski and Owens [43] factored the conformation tensor to get
σ = AAT and then they wrote down the equations for A approximately at the discrete
level.Hence, thepositivedefinitenessof theconformation tensor is forcedwithsuchan
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Fig. 11 Visualization of the change of orientation of the prolate ellipsoid: From its initial orientation
to its rotation around its long axis, while reaching an equilibrium distance to the axis of the cylinder
(μf = 0.05, initial angle = 90◦)

approach.Themethodologiesdevelopedin[43]havebeenappliedin[29] togetherwith
the FD/DLMmethod through operator splitting techniques for simulating particulate
flows in Oldroyd-B fluid. We have generalized these computational methodologies
to viscoelastic fluids of the FENE-CR type, which is a more “realistic” model when
compared with the Oldroyd-B model as advocated in [53]. We have compared the
particle sedimenting in a vertical two-dimensional channel filled with viscoelastic
fluid of either Oldroyd-B or FENE-CR type to find out the effect of the maximum
extension of the immersed polymer coils on the chaining (Fig. 11).

5.1 MathematicalFormulations

Following the work developed in [29], we will first address in the following the
models and computational methodologies combined with the Lozinski and Owens’
factorization approach.LetΩ be aboundeddomain inRd (d = 2or 3) and letΓ be the
boundaryofΩ .Wesuppose thatΩ isfilledwithaviscoelasticfluidofeitherOldroyd-B
or FENE-CR type of densityρf and that it containsN moving rigid particles of density
ρs (see Fig. 12).
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Fig. 12 An example of a
two-dimensional flow region
with four circular particles
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LetB(t) = ∪N
i=1Bi(t)whereBi(t) is the ithrigidparticleinthefluidfor i = 1, . . . ,N .

We denote by ∂Bi(t) the boundary of Bi(t) for i = 1, . . . ,N . For some T > 0, the
governing equations for the fluid-particle system are

ρf

(
∂u
∂t

+ (u · ∇)u
)

= ρf g − ∇p + 2μ∇ · D(u) + ∇ · σ p inΩ \ B(t), t ∈ (0,T ),

(28)

∇ · u = 0 inΩ \ B(t), t ∈ (0,T ), (29)

u(x, 0) = u0(x), ∀x ∈ Ω \ B(0), with∇ · u0 = 0, (30)

u = g0 onΓ × (0,T ), with
∫

Γ

g0 · n dΓ = 0, (31)

u = Vp,i + ωi×
−→
Gix, ∀x ∈ ∂Bi(t), i = 1, . . . ,N , (32)

∂C
∂t

+ (u · ∇)C − (∇u)C − C(∇u)t = − f (C)

λ1
(C − I) inΩ \ B(t), t ∈ (0,T ),

(33)

C(x, 0) = C0(x), x ∈ Ω \ B(0), (34)

C = CL, onΓ −, (35)

where u is the flow velocity, p is the pressure, g is the gravity, μ = η1λ2/λ1 is the
Newtonian viscosity of the fluid, η = η1 − μ is the elastic viscosity of the fluid, η1
is the fluid viscosity, λ1 is the relaxation time of the fluid, λ2 is the retardation time
of the fluid, n is the outer normal unit vector at Γ, Γ − is the upstream portion of Γ .
The polymeric stress tensor σ p in (28) is given by σ p = η

λ1
f (C)(C − I), where the

conformation tensorC is symmetric andpositivedefinite (see [36]) and I is the identity
matrix. Setting f equal to unity corresponds to the Oldroyd-Bmodel while

f (C) = L2

L2 − tr(C)
(36)
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corresponds to the FENE-CRmodel [6], where tr(C) is the trace of the conformation
tensorC and L is themaximum extension of the immersed polymer coils and referred
to as the extensibility of the immersed polymer coils. The Oldroyd-B model then is a
special case associated with infinite extensibility.

In (32), the no-slip condition holds on the boundary of the ith particle, Vp,i is the
translation velocity,ωi is the angular velocity andGi is the center ofmass. Themotion
of the particles is modeled byNewton’s laws:

Mp,i
dVp,i

dt
= Mp,ig + Fi + Fr

i , (37)

d(Ip,iωi)

dt
= Ft

i, (38)

dGi

dt
= Vp,i, (39)

Gi(0) = G0
i , Vp,i(0) = V0

p,i, ωi(0) = ω0
i , (40)

for i = 1, . . . ,N ,where in(37)–(40),Mp,i andIp,i are the themassandthe inertia tensor
of the ith particle, respectively, Fr

i is a short range repulsion force imposed on the ith
particle by other particles and the wall to prevent particle/particle and particle/wall
penetration (see [26] for details), andFi andFt

i denote the hydrodynamic force and the
associated torque imposed on the ith particle by the fluid, respectively.

Toavoid the frequent remeshingand thedifficultyof themeshgeneration fora time-
varying domain in which the rigid particles can be very close to each other, especially
for three dimensional particulate flow, we have extended the governing equations to
the entire domain Ω (a fictitious domain). For a fictitious-domain-based variational
formulation of the governing equations of the particulate flow, we consider only one
rigid particleB(t) (either a disk in 2Dor aball in 3D) in thefluiddomainwithout losing
generality. Let us define first the following functional spaces

Vg0(t) = {v | v ∈ (H 1(Ω))d , v = g0(t) onΓ },
L20(Ω) = {q | q ∈ L2(Ω),

∫

Ω

q dx = 0},
VCL(t) = {C | C ∈ (H 1(Ω))d×d , C = CL(t) onΓ −},
VC0 = {C | C ∈ (H 1(Ω))d×d , C = 0 onΓ −},
Λ(t) = H 1(B(t))

d
.

Following the methodologies developed in [26, 56], a fictitious domain formulation
of the governing Eqs. (28)–(40) reads as follows:
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For a.e. t > 0, find u(t) ∈ Vg0(t), p(t) ∈ L20(Ω), C(t) ∈ VCL(t), V(t) ∈ R
d ,

G(t) ∈ R
d ,ω(t) ∈ R

d , λ(t) ∈ Λ(t) such that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρf

∫

Ω

[
∂u
∂t

+ (u · ∇)u
]

· v dx + 2μ
∫

Ω

D(u) : D(v) dx −
∫

Ω

p∇ · v dx

−
∫

Ω

v · (∇ · σ p) dx + (1 − ρf /ρs)

{

Mp
dV
dt

· Y + Ip
dω

dt
· θ

}

−〈λ, v − Y − θ × −→
Gx〉B(t) − Fr · Y

= ρf

∫

Ω

g · vdx + (1 − ρf /ρs)Mpg · Y,

∀{v,Y, θ} ∈ (H 1
0 (Ω))d × R

d × R
d ,

(41)

∫

Ω

q∇ · u(t) dx = 0,∀q ∈ L2(Ω), (42)

〈μ,u(x, t) − V(t) − ω(t) × −→
G(t)x〉B(t) = 0, ∀μ ∈ Λ(t), (43)

∫

Ω

(
∂C
∂t

+ (u · ∇)C − (∇u)C − C(∇u)t
)

: s dx (44)

= −
∫

Ω

f (C)

λ1
(C − I) : s dx, ∀s ∈ VC0 , withC = I in B(t),

dG
dt

= V, (45)

C(x, 0) = C0(x), ∀x ∈ Ω, withC0 = I in B(0), (46)

G(0) = G0, V(0) = V0, ω(0) = ω0, B(0) = B0, (47)

u(x, 0) =
{
u0(x), ∀x ∈ Ω \ B0,

V0 + ω0 × −→
G0x, ∀x ∈ B0.

(48)

In (41) the Lagrange multiplier λ defined overB can be viewed as an extra body force
maintaining the rigidbodymotion insideB. Theconformation tensorC inside the rigid
particle is extended as the identity tensor I as in (44) since the polymeric stress tensor
is zero inside the rigid particle. In Eq. (41), since u is divergence free and satisfies
the Dirichlet boundary conditions on Γ, we have 2

∫

Ω
D(u) : D(v)dx = ∫

Ω
∇u :

∇vdx, ∀v ∈ (H 1
0 (Ω))d . This is a substantial simplification from the computational

point of view, which is another advantage of the fictitious domain approach. With
this simplification, we can use, as shown in the following section, fast solvers for the
elliptic problems in order to speed up computations. Also the gravity term g in (41)
can be absorbed in the pressure term.
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5.2 NumericalResults

Thedetailsofnumericalmethodologiesforsimulatingthemotionofdiskssedimenting
in Oldroyd-B fluid in a vertical two-dimensional channel are given in [29]. Applying
Lie’sschemeto(41)–(48),wehaveusedasix-stageoperator-splittingscheme,namely:

Stage 1 We use aNeumann preconditionedUzawa/conjugate gradient algorithm to
force (in a L2 sense) the incompressibility condition of u.

Stage 2 We combine two advection steps similar to (4): one for u and one forC.
Stage 3 We combine a diffusion step for u with a step taking into account the

remaining operator in the evolution equation verified byC.
Stage 4 We update the position ofG.
Stage 5 We force the rigid bodymotion of the particle, updateV andω, and impose

the conditionC = I inside the particle.
Stage 6 This is a diffusion step for the velocity, driven by the updated polymeric

stress tensor.

Wepresentheretheresultsoftwonumericalexperimentsconcerningthesedimentation
of circular particles in a two-dimensional channel filled with an Oldroyd-B fluid. For
the space discretization, we have still used a P1-iso-P2 (resp., P1) finite element for
the approximationof velocityfield (resp., pressure) defined fromuniform“triangular”
meshes Th (resp., T2h). For the finite element approximation of each entry in the
conformation tensor,P1 finite element spaces defined fromuniform triangularmeshes
Th have been used. For the enforcement of the rigid body motion, we have applied a
collocationmethod (see [26] for details).

The numerical results concern six circular particles of diameter D = 0.25 sedi-
menting in a channel filledwith anOldroyd-B fluid. The channel is infinitely long and
has a width of 1. The computational domain isΩ = (0, 1) × (0, 7) initially and then
moves down with the mass center of the lowest of the six particles. It is known that
when the elasticity number E = De/Re is larger than the critical value (O(1)) and the
Mach number M = √

DeRe < 1, the particles in this case will form chains that are
parallel to the flow [32, 42]. In our simulations, all six particles are lined up along the
flowdirection, agreeing thus theknownobservationsandexperiments.Figure13gives
the snapshots at various moments of time of the particles lining up phenomenon.

We can see that, after drafting, kissing and chaining, the six particles form approx-
imately a straight line at t = 20; at t = 30, the trailing particle has been separated
from the leading five particles. This observation agrees with experiments showing
that, sometimes, the last particle in the chain gets detached as discussed in [51]. It
is known that a long chain falls faster than a single particle in the fluid. This long
body effect tends to detach the last particle from the chain. The average terminal
velocity is 0.1535 for26 ≤ t ≤ 30, theReynoldsnumber isRe = 0.1476, theDeborah
number is De = 0.7981, the elasticity number is E = 5.408 and the Mach number
is M = 0.3432. With the same parameters as in the case of Oldroyd-B fluid, we just
changed to the FENE-CR model with L = 5 for the polymer extension limit. Since
the viscoelastic fluid has a shorter polymer extension limit, it cannot hold all six disks
together as shown in Fig. 14. For this case, the average terminal velocity is 0.1317 for
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Fig. 13 Snapshots at t = 2, 10, 12, 14, 16, 18, 20, 24, 26, 28, and 30 of the positions of six particles
lining up in an Oldroyd-B fluid (h = 1/96 and �t = 0.0004)

Fig. 14 Snapshots at t = 2, 4, 6, 8, 10, 18, 20, 24, 26, and 30 of the positions of six particles lining
up in an FENE-CR fluid with L = 5 (h = 1/96 and �t = 0.0004)
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Fig. 15 Snapshots at t = 2, 4, 6, 8, 10, 18, 20, 24, 26, and 30 of the positions of six particles lining
up in an FENE-CR fluid with L = 10 (h = 1/96 and �t = 0.0004)

26 ≤ t ≤ 30, and the associated numbers are Re = 0.1266, De = 0.6847, E = 5.408
andM = 0.2944.But for the caseL = 10, the chaining shown inFig. 15 ismuchcloser
to the one obtained for the Oldroyd-B fluid since in (36), f (C) is close to 1 (i.e., the
FENE-CRmodelhasalmost recovered theOldroyd-Bmodel).The terminalvelocity is
0.1490 for 26 ≤ t ≤ 30, and the associated numbers are Re = 0.1433, De = 0.7750,
E = 5.408 andM = 0.3333.

6 Conclusion

Thewave-like equationbasedmethodwe introduced twentyyears ago, for thenumeri-
cal simulation of incompressible viscous flow (as an alternative to Lagrange-Galerkin
methods) hasbeen further discussed in this article.Thismethod,whichallowsapurely
variational treatmentof theadvection (well-suited to simplefinite element approxima-
tions), has been briefly described in Sect. 2 of this article, and applied in Sects. 3–5 to
thesimulationofNewtonianandnon-Newtonianviscousflowsin twoandthreedimen-
sions, possibly involving rigid solid particles. Through the methodology discussed in
this article we have been able to reproduce accurately documented phenomena from
the physics of fluids, andmore importantly to discover new ones, as shown in Sects. 4
and 5. The results reported in this article suggest that, despite being twenty years old,
the methodology we discussed in this article is far from being obsolete and should be
still helpful in the future.
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