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Falaises in Normandy, by Chantal Periaux



Preface

Great things are done by a series of small things brought together.

Vincent Van Gogh

The present volume celebrates the seventieth birthday of three close friends
Profs. William Fitzgibbon, Yuri Kuznetsov, and Olivier Pironneau. It is a com-
pendium of papers presented at two conferences on the applied and computational
mathematics. The first conference was a two-day event “Contributions to Partial
Differential Equations” honoring the Profs. William Fitzgibbon and Yuri
Kuznetsov, which was held in September 2015 at the Laboratoire Jacques-Louis
Lions of the Universite Pierre et Marie Curie (former Paris VI). The second con-
ference “Applied and Computational Mathematics,” a two-day event honoring Prof.
Olivier Pironneau, was held at the Department of Mathematics of University of
Houston in February 2016.

The volume is comprised of 20 scientific contributions from the invited speakers
of the two events and of the three career papers of the honorees. The contributors
are internationally recognized experts in the areas of partial differential equations,
applied mathematics, and computational mathematics. Profs. Fitzgibbon,
Kuznetsov, and Pironneau have a longstanding cooperation in the domains of
applied mathematics and computation. The fact that most speakers are close col-
leagues and/or have collaborated with honorees as well as the fact that many
individuals attended both events provides unity to the volume. Indeed, the two
events can be viewed as a single sequentially distributed event in two countries.

The papers are listed in alphabetical order by the name of the first listed author
(in not all cases the invited presenter). A variety of topics and areas are addressed in
this volume. These include modeling of computational fluid dynamics problems,
mathematical models for the spatiotemporal spread of infectious disease, numerical
tools for partial differential equations and scientific computing, reaction–diffusion
systems, nonlinear elasticity, risk analysis, mathematical physics, optimization
methods, and algorithms.
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The volume incorporates innovative and advanced applied mathematics,
sophisticated analysis, mathematical modeling with a high level of complexity and
efficient computer implementation. As such, it is a testimony to the scientific
endeavor and achievement of the honorees.

It has been the intention of the editors that the volume is of interest to researchers
and practitioners as well as advanced students or engineers in applied and compu-
tational mathematics. All contributions have been written at an advanced scientific
level with no effort made by the editors to make this volume self-contained. It is
assumed that the reader is a specialist already who knows the basis of his field of
research , has the capability of understanding and is appreciative of the latest
developments of this volume.

Many individuals contributed to the success of the Conference in Paris and the
International Workshop in Houston. Local arrangements for both events were
professionally undertaken by the local committees in each locale. In particular, the
following individuals should be recognized F. Hecht, Y. Maday, B. Perthame,
O. Pironneau in Paris, W. Fitzgibbon, J. He, Y. Kuznetsov, M. Nicole, M. Olshanskii
in Houston.

We acknowledge the thoroughly professional and diligent work done by Ms.
Marja-Leena Rantalainen of Jyväskylä University regarding the collection of con-
tributions and manuscript preparation. This volume could not have been produced
without her dedicated efforts.

We finally express our gratitude to Ms. Nathalie Jacobs, Senior Springer
Publishing Editor, for including the beautiful watercolor painting of the Normandy
cliffs by the late Chantal Periaux. The locale holds a special place in the memory of
all three individuals honored. In addition to Ms. Jacobs, we also recognize Prof.
E. Oñate, CIMNE Director and Editor of the Series Lectures Notes, in Numerical
Methods in Engineering and Sciences and thank both individuals for their support
of this volume.

Jyväskylä, Finland P. Neittaanmäki
July 2017 J. Periaux
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Three Faces of Fitz: Science,
Communication and Leadership

Jeff Morgan and Jacques Periaux

Abstract In what follows we provide a brief overview of the life and work of
Professor William Fitzgibbon ( University. of Houston)

People who know William Fitzgibbon bifurcate, with some calling him Fitz and
others calling him Bill. Because both authors know him as Fitz, we will refer to
him as Fitz. We suspect that this is his preferred appellation, since both his wife and
daughter in law call him Fitz, and indeed Fitz reflects his Irish lineage, an importance
aspect of the individual that we know.

Fitz is a complex person, and there are segments of his past that are best left to
the imagination. He is a serious scholar, an elegant cowboy, a university statesman,
a consummate gentleman, an athlete, somewhat of a rogue, and an unreconstructed
rebel. Fitz has been known to enjoy quiet scholarship, concert halls, ballet perfor-
mances, theaters, fine restaurants, sporting events, athletic activity, physical work, a
few drinks, duck blinds, deer stands, and Harry’s Bar in Paris. He is well-read, an
expert with a chain saw, a strong swimmer, and a frustrated baseball player.

Fitz grew up in an intellectual home in Birmingham, Alabama. His father was a
research chemist and Air Force officer, and his mother was both a high school teacher
and classics scholar. Both parents were accomplished musicians, and interestingly,
Fitz struggles to hum a tune. Fitz graduated from high school in 1963, and left Al-
abama to study at Vanderbilt University. His original intent was to study philosophy,
not mathematics. However, he rapidly progressed from classical philosophy to at
Vanderbilt to study Mathematical Logic. Shortly thereafter, Fitz became bored with
the formalism of logic, and became attracted and engaged by the innovative teaching
of Glenn F. Webb. He successfully defended his dissertation under the direction of
Professor Webb in 1972. The topic of nonlinear evolution equations and monotone

J. Morgan (B)
University of Houston, Houston, USA
e-mail: jmorgan@math.uh.edu

J. Periaux
University of Jyväskylä, Jyväskylä, Finland
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2 J. Morgan and J. Periaux

and accretive operator theory was a considerable distance from his starting point.
Interestingly, Fitz’s mathematical career has followed an intellectual arc similar to
his studies at Vanderbilt; namely from the abstract to the applied.

The America frontiersman Davy Crockett is reputed to have said,

You all may go to Hell, and I will go to Texas.

In 1972, Fitz accepted a position at the University of Houston and moved to Texas.
Many who have come to know view him as quintessentially Texan. Fitz has worked
very hard to teach Yuri Kuznetsov “Texas English”. Although he has enjoyed vis-
iting appointments at the University of California at San Diego, Argonne National
Laboratory, and the Universities of Bordeaux I and II, he has been a faculty member
at the University of Houston over the course of his entire career.

With no pun intended, the corpus of Fitz’s work shows continuous evolution.
Fitz soon began to apply his abstract work in the area of nonlinear semigroups and
evolution equations to study functional differential equations, integral and integro-
differential equations, approximations, and singular perturbations. His work on the
qualitative theory of semi-linear dissipative systems of partial differential equations
led in a natural way to the study of systems of reaction diffusion equations andmodels
of the spread of infectious disease, and creation and spread of atmospheric pollution.
Over the course of his career, Fitz has hadmany collaborators. Hismajor collaborator
has been J. J Morgan. Their collaboration began in the 1980s and continues to this
day. Their work on reaction diffusion systems produced a long term productive part-
nership on the spatio-temporal spread of infectious diseases with Michel Langlais
in Bordeaux. By virtue of his interest in infectious disease, Fitz established a col-
laboration with his former advisor, Glenn Webb, with whom, curiously enough, he
had not heretofore written a paper. Fitz also wrote several papers with Mary Parrott
on such topics as singular perturbations of Hodgkin Huxley models, linearization
techniques for partial functional differential equations and age dependent models for
the spatial spread of infectious disease. Michel Langlais is not Fitz’s only French
connection. Roland Glowinski introduced Fitz to Jacques Periaux in 1984, when
Roland was applying for a position at UH, and Jacques subsequently involved Fitz
in an international project of creating a computational database for hypersonic and
supersonic flows created by the atmospheric re-entry of space vehicles. This work
enabled Fitz to develop friendships and alliances with Olivier Pironneau, Pierre Per-
rier, and Antoine Desideri at INRIA Sophia Antipolis, as well as a deep appreciation
of the Auberge du Jarrier in the village Biot. These efforts also provided Fitz with an
introduction to his good friend and current colleague Yuri Kuznetsov. Other major
collaborators of Fitz include Sheila Waggoner, Youcheng You, and Selwyn Hollis.

Fitz has authored well over 120 research papers, plus numerous articles, reviews,
and reports. He has edited or co-edited eight volumes, and served on the editorial
boards of numerous scientific journals. In additional to his mathematical work, Fitz
has received accolades for publications in Technology. In this area, his co-authors
include Enrique Barbieri, Heidar Malki and Rupa Iyer. Fitz has lectured extensively
in North America, South America, Africa, Europe, and Asia. He has a history of
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funding–over the course of his career has received funding from a variety of agen-
cies, including the National Science Foundation, the Office of Naval Research, the
National Institute of Standards and Technology, the US Department of Education,
the Environmental Protection Agency, the US Department of Labor, the Texas Ad-
vanced Research Program, NASA, the Texas Workforce Commission, and the Texas
Education Agency.

Fitz played a pivotal role in transforming what was a myopic and mediocre de-
partment focused on pure mathematics, to an internationally recognized center of
applied and computational mathematics. He organized or co-organized a national
conference on nonlinear diffusion (with Homer Walker), a special year on partial
differential equations and dynamical systems, two international conferences on the
mathematics of hydrocarbon discovery and exploitation (with Mary Wheeler), and
seminars in both the mathematics of the oil and gas industry (with Peter Purcell)
and mathematical biology (with Marek Kimmel), and both a workshop and an in-
ternational conference in high speed flow fields (with an international network of
researchers created by Jacques Periaux), and computational databases as well as nu-
merous regional conferences and workshops in partial differential equations. In 1997
Fitz and Jacques Periaux organized and the signature conferenceComputational Sci-
ence of the 21st Century honoring the 60th birthday of Roland Glowinski, in Tours,
France. Although there is a tradition inmathematics of commemorating the birthdays
of prominent senior mathematicians, an event of this scale is rarely seen. It is also
notable that in his role as emcee of the banquet, Fitz spoke in French, despite the fact
that Fitz is well known by his French friends for butchering the language. Fitz and
Professor Periaux continue to collaborate on organizing events and research projects
in Transport applications in Europe, and also with Prof. Cliff Dacso in Molecular
and Cell Biology at Baylor College of Medicine in Houston.

In discussing his career it is important to emphasize the role of Fitz as an aca-
demic leader. Fitz served as President of the University of Houston Faculty Senate
from 1999 to 2000. The turn of the century was time of tumult at the University of
Houston, and Fitz assumed leadership of group of senior faculty members who laid
the groundwork for the transformation the University of Houston from a regional
doctoral institution to a nationally recognized comprehensive research university.
This effort required political and consensus building skills that are not frequently
demonstrated by mathematicians. On a more local level, Fitz served as Chair of
the Department of Mathematics from 1999 to 2003, and as Interim co-Head of the
Department of Computer Science from 2000 to 2001. Both the Mathematics De-
partment and the Department of Computer Science made major strides under Fitz’s
leadership. In 2003 Fitz assumed the role of Dean of the College of Technology.
This was indeed an unusual move, because Fitz became dean of a college that did
not include his own discipline. In the stove piped structure of American universities,
such moves are virtually unknown. His work had major impact. When Fitz took the
helm of Technology, it was a struggling entity with about 1400 students–when he
stepped down as Dean in 2016, the college enrolled over 6000 students, the graduate
program had flourished, faculty productivity had dramatically improved, and there
was a multifold increase in both external funding and private donations. It is fair
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to say that Fitz’s leadership saved the College of Technology. In his role as Dean,
Fitz became very involved with University of Houston Alumni and Athletics. He has
also became involved in the Houston arts community and engaged in a wide variety
of civic activities. Among other activities, he served on the Board of Directors of
Houston’s East End Chamber of Commerce, the Board of Trustees of the Houston
Maritime Museum and the Advisory Board of Directors of the Houston Technology
Center.

Fitz is an intrepid and inveterate traveler who has visited over 50 different coun-
tries. He always welcomed the opportunity to meet new people and immerse himself
in different cultures. In particular, four countries stand out. To begin we should recall
the line from the movie “Casablanca”

There will always be Paris.

In Fitz’s case we should probably adjoin Bordeaux, and perhaps the Cote d’Azur and
Normandy. Fitz has spent considerable time in France and has essentially traversed
the entire country. Despite his obvious linguistic challenges he has immersed in
and developed a deep appreciation for French culture. He relishes the time that he
spent in Bordeaux both from an academic and a cultural standpoint. Indeed he has
often said that he learned to appreciate good whiskey from his father and honed his
appreciation of fine wine and Armagnac with Michel Langlais. India also has been
one of his frequent destinations. Fitz recounts howhe and hiswifewere both surprised
by how immediately comfortable they felt upon landing in India. Fitz worked with
Dinesh Singh to put in place an innovative and often copied program to bring students
from India to Houston for graduate study in mathematics, and later computer science
and physics. Fitz has continued this work in India and is credited with opening the
doors of the University of Houston to India. In recent years Fitz has made numerous
trips to Africa. He is justifiably proud of his work in establishing the International
University of Grand Bassam in the Cote d’Ivoire. He serves on the Board of Directors
of the Institution and chairs the Academic Committee of the Board. He also chairs
the board of the US based foundation that supports the institution. Finally, there is
Finland. By virtue of his association with Pekka Neittaanmäki, Fitz has frequently
visited Jyväskylä and has been able to enjoy the quiet beauty of Finnish winters and
opportunity for Nordic skiing. However, he has yet to go caribou hunting.

Those who know Fitz well are aware of his wicked, and often politically incorrect
sense of humor. As a Dean, Fitz often had to suppress this. However, now that he has
relinquished his diaconal duties, we are pleased to see it reemerging. For many years
Fitz was a well-known Houston bon vivant and regularly held court at Houston’s
now defunct River Café. Indeed prior to the ubiquity of the cell phone, scientists
across the world learned to call for Fitz at the River Café if they could not reach him
in his office. Fitz was rarely home.

Family man might not be the first phrase that would come to mind in describing
Fitz, and yet, he is very proud and dedicated to his family. In 1999 Fitz married Jan
Brooks, settled down and turned the page of another chapter in his life-au revoir
River Café! Jan is a former ballet dancer and instructor who is known for her beauty,
grace and Southern charm, as well her infectious laugh. Their son and daughter in
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law and three grandsons live in Nashville, and we hope that the boys will not cause
as much trouble as Fitz did in his younger days.

Unlike Family Man, the word Friend is one that readily comes to mind, and Fitz
sets high standards for others in this arena. He is caring, honest and loyal. Fitz listens
well, he is sincere in his compassion, and the light of his spirit shines through in
the darkest hours. With all of his success in life, his human character is perhaps his
greatest strength. Mark Twain said

No man is a failure who has friends.

We believe he was speaking of Fitz, well before his time.



Career of Prof. Yuri Kuznetsov

Boris Chetverushkin, William Fitzgibbon and Jacques Periaux

Abstract In what follows we provide a brief overview of the life and work of
Professor Yuri Kuznetsov ( University of Houston)

As we sit down to trace the course of the career of our friend Prof. Yuri Kuznetsov
we are reminded of the words of one of his favorite authors, the American writer
Mark Twain:

Biographies are the clothes and buttons of the man. The biography of the man cannot be
written.

This being said we must admit that Yuri Kuznetsov had indeed an impressive tailor.
Yuri was born in small village Shuksha of the region Penza on August 7, 1945. He
graduated from high school in 1962 and in the same year commenced his studies
with the Faculty of Physics at the newly established Novosibirsk State University.
He graduated from the university in 1967 and successfully defended his Ph.D. thesis
in 1969 under the direction of the outstanding Russian applied mathematician, G.
Marchuk. In his thesis Yuri developed the theory of iterative methods in subspaces.
In particular this innovative work proposed and investigated the multi-step method
based on the minimization of quadratic functional which become commonly known
as the generalized minimum residual method. In 1971 Prof. J. -L. Lions invited Yuri
to visit France and give a lecture at IRIA (now INRIA). In 1983, Yuri reported his
results as invited speaker in Warsaw at the International Congress of Mathemati-
cians, Section of Numerical Analysis. Prof. Kuznetsov has held the MD Anderson
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8 B. Chetverushkin et al.

Professorship in Mathematics at the University of Houston since Fall 2000—a Chair
that has been held by Professor Roland Glowinski and Prof. Mary F. Wheeler among
others. Prof. Kuznetsov has played and continues to play a pivotal role in the de-
velopment of applied and computational mathematics at the University of Houston.
His seminal contributions to numerical analysis particularly numerical linear algebra
and domain decomposition are recognized worldwide. Of particular note is work in
iterative methods and solvers, preconditioned conjugate gradient methods, domain
decomposition, fictitious domain methods, and adaptive meshes. Over the course of
his career, Prof. Kuznetsov has authored or co-authored four books and well over
100 research papers. Yuri Kuznetsov is a great man—great for his achievements not
only in applied and computational mathematics but in life as well.

Yuri’s role as one of the founding editors of the East West Journal of Numerical
Mathematics, currently Journal of Numerical Mathematics, is symbolic of as well
as presages Yuri long effort of facilitating of East West understanding and scientific
cooperation. While some may articulate and perhaps fulminate, implementation re-
quires trailblazers possessing the vision, energy, and courage of Yuri Kuznetsov. In
the early 1970s,Yuriwas one of the keymembers of a delegation led byProf.Marchuk
and Prof. Yanenko visiting a French team at INRIA Rocquencourt. The leader of the
host team on the French side was Prof. J. -L. Lions with R. Glowinski and later O.
Pironneau being counterparts of Yuri in the French Russian scientific collaboration.
This visit was subsequently followed by a series of French-Russian workshops orga-
nized and successfully run inMoscow, Paris, Sophia Antipolis, Tashkent, Marseilles,
and Jyväskylä. Repetitive scientific exchanges between Russia and France INRIA
(then directed by Prof. A. Bensoussan) and the Lomonosov University of Moscow
resulted in the establishment of the Liapunov Center, a center for bilateral collabo-
rative projects in numerical mathematics, automation and computer sciences. Yuri
frequently visited Paris meeting with P. Bohn, P. Perrier and J. Periaux of Dassault
Aviation, and O. Pironneau of the University of Pierre et Marie Curie. Yuri could
apply his expertise inMaxwell’s Equations, linear algebra and preconditioningmeth-
ods to develop computational electromagnetics software. During the 1990s teams of
Russian scientists lead by Yuri and Prof. Boris Chetverushkin undertook extensive
interactions with their French counterparts. This effort resulted in major activity on
the modeling and simulation of the high speed flows for reentry problems around
space vehicles.

In 1980, Yuri moved from Novosibirsk. In Moscow he closely collaborated with
outstanding Russian numerical mathematicians N. Bakhvalov, V. Lebedev, and V.
Voevodin. During the 1980s Professor Kuznetsov became recognized as a leader in
effort to compute solutions to partial differential equations. Because the sophisti-
cation computational infrastructure available in former Soviet Union lagged behind
that available in Western Europe and the United States, his methods needed to be
more clever and efficient than those available in the West. Professor Kuznetsov as-
sembled an impressive team of young scientists who were capable of capitalizing on
his innovations and implementing his algorithms computationally on the machines
available at that time. Yuri and his team systematically visited centers of learning
in variety of European countries including Finland, Czechoslovakia, Germany, Italy,
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Austria and France. The importance of his research on fictitious domains and domain
decomposition was rapidly recognized by his European colleagues. During this time
period Prof. Kuznetsov met and be became friends with R. Glowinski, O. Pironneau,
J.A. Désidéri, M. Feistauer, P. Neittaanmäki, R. Rannacher, R. Hoppe, O. Axelsson,
F. Brezzi, and A. Quarteroni among many others scientists.

By the 1990s Yuri’s reputationwas established and the importance of his scientific
contributions were internationally recognized. Yuri worked with his European net-
work to host and initiate numerous scientific meetings. The Domain Decomposition
Methods Conferences were successfully launched in Paris in 1987. The 4th DDM
Conference was held in 1990 in Moscow, a pivot event linking Soviet scientists to
their counterparts organizing. His work in organizing the 4th DDM. Conference in
Moscow in 1990 led Yuri Kuznetsov to the conclusion that European computational
sciences conferences did not have a sufficiently strong mathematical component.
In response he organized together with a group of European colleagues the highly
successful ENUMATH series which also continues to this day.

In 1997, Yuri Kuznetsov made a major and courageous decision moving to the
United States and joining the faculty of the University of Houston as a professor of
mathematics. The path of Yuri Kuznetsov to Houston was lined with suitors runs
through Rome, Pavia, Paris, Prague, Tokyo, Nijmegen, Lyon Milano, Jyväskylä as
well as New York, Palo Alto, Augsburg, Los Angeles, Heidelberg, Sophia, Denver,
Austin, College Station, Laramie, and West Lafayette, Indeed our friend Yuri has
been a belle with many beaux. Although Yuri only became conversant in English
in mid 1980s, facility with English as opposed to French may have convinced Yuri
to choose Houston over Paris. Yuri (with W. Fitzgibbon as a mentor) has rapidly
become fluent in Texas English as well.

Prof. Kuznetsov’s activities in Houston mirror his work in Moscow. He has as-
sembled a team of young researchers and has lead the effort build strength in compu-
tational and applied mathematics in Houston. He expanded his network of scientific
collaborators and associates by connecting researchers in the United States with to
network he built in Russia and Europe. His expanded network included: D. Young,
M. Wheeler, R. Ewing, G. Golub, R. Varga, J. Douglas and R. Glowinski. As a con-
sequence, the University of Houston is now recognized as an international center
of scientific computation. He continues to build his legacy with superb Ph.D. grad-
uates. He continues to produce highly innovative work and has been successful in
attracting support from both federal agencies and the oil and gas industry, in partic-
ular Exxon/Mobil. Most recently he has focused on new discretization method for
diffusion equations in heterogeneous media with general polyhedral meshes, non-
conforming mixed finite element discretization on polyhedral meshes, monotone
discretizations for diffusion and convection diffusion equations and computational
basin modeling.

In a sense Yuri never left Russia but brought Russia to Houston. In 1998 Yuri led
a delegation of Houston scientists to Russia. The University of Houston now has a
sizeable Russian contingent and one frequently hears Russian along its corridors.
As a result of this visit a pioneering agreement of understanding and cooperation
was put between Lomonosov University and the University Houston was signed.
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The Department of Mathematics has profited from a steady stream of visitors from
Russia, in particular from a group of young researchers in the Institute of Numerical
Mathematics inMoscow led by a former Yuri’s student Yuri Vassilevski The Russian
language is commonly heard in the corridors of the mathematics building in Hous-
ton and more than one Houston scientist has referred to the University of Houston
Mathematics Department as “Moscow on the Bayou”.

In addition to being a great scientist, Yuri Kuznetsov is a great human being. His
friends and colleagues appreciate not his scientific achievement and professionalism
but also but also enjoy his human skills, his generosity, kindness and spontaneous
hospitality in Moscow, Houston and elsewhere. Professor Jeffrey Morgan, the pre-
vious Chair of the Mathematics Department of the University of Houston stated it
well when he said:

Kuznetsov is an amazing person, extremely hardworking, and totally passionate about his
work. He is also one of the most unselfish people I have met; you rarely meet people you
are so impressed with.

According to the recent book, Living the Good Long Life: A Practical Guide to
Caring for Yourself and Others the age 70 has become the new 50. By this new
standard Yuri has recently become middle aged and has just approached his prime.

Yuri your friends and colleagues still have high expectations and are looking
forward to following your itinerary around the world wherever it leads—Moscow,
Paris, Tokyo, Prague, Houston or any other destination. We would like to wish you,
your lovely wife Ludmila, your children and your grandchildren good health, and
prosperity as you continue life’s journey. In the words of Charles Darwin, a man’s
friends are the best measures of his worth. This makes you a truly wealthy man.



Olivier Pironneau Career Paper

William Fitzgibbon and Jacques Periaux

Abstract In what follows we provide a brief overview of the life and work of
Professor Olivier Pironneau Fitzgibbon ( LJLL Sorbonne Université)

The American Poet and Essayist Ralph Wald Emerson wrote

Do not go where the path may lead. Go instead where there is no path and leave a trail.

After completing his diploma at the prestigious Ecole Polytechnique in 1968 Olivier
followed a route not typically followed by France’s intellectual elite and sailed west
to the University of California, Berkeley. Berkeley in the 60s was the epicenter of
the counter culture revolution. Olivier chose. Although I am sure that Olivier was
not oblivious to all was happening, he did not succumb entirely the siren song of
Sex, Drugs and Rock and Roll. Instead he maintained his focus on what drew him to
Berkeley. Olivier was originally drawn to Berkeley by an interest in control systems
and electronics. These were halcyon days control systems and electronics. Much of
what is now called applied mathematics took place in the area of control systems.
Elijah Polak with his expertise in computer based optimization with applications to
electronic circuit design, control system design, and structural design, optimization
algorithms, and systems theory, was the Ph.D. mentor for Olivier.

Many students who complete Ph.D.’s at bellwether American universities under
the tutelage of well known advisors are content to follow the trail blazed by the
advisors to regarding careers. Not so with Olivier Pironneau. Olivier learned that the
legendary James Lighthill had an interest in possible applications of control theory
to fluid dynamics and aero acoustics. So Olivier with absolutely no prior knowledge
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of fluid mechanics went east this time to Cambridge University in the UK to work in
the Department of Applied Mathematics and Theoretical Physics as a Post Doctoral
Fellow working on optimal shape in Fluids. Olivier did indeed become well versed
in fluid mechanics through his work and talking to people and perhaps with no pun
intended osmosis. Olivier was now well positioned for a career in fluid mechanics
and aviation. However, another uncharted path awaited.

We now see electrical engineering, control theory and fluid mechanics in Olivier’s
back ground but where does mathematics come in? Back in France, Oliver had a
serendipitous chance meeting with the preeminent French Mathematician Jacques-
Louis Lions on a train. The mathematical work of J. Louis Lions is accurately
described by the title—which he chose—of his chair at the Collège de France:
“Analyse Mathématique des Systèmes et de leur Contrôle.” The systems he had
in mind are those described by linear and nonlinear partial differential equations;
by analysis he meant everything from the most abstract existence theorems along
with underpinning functional analysis and Sobolev Space theory, approximation and
numerical issues and to computer implementations. In retrospect Lions must have
been deeply impressed by what Olivier had. He asked Olivier for some papers and
subsequently offered him a research position at the Institut de Recherche en Informa-
tique et en Automatique. Lions continued to be impressed with Olivier and Olivier
soon defended his Thèse d’Etat at University Paris 6 [renamed Université Pierre et
Marie Curie (UPMC) in 1974].

There is still more to be told about the path of Olivier. J. -L. Lions urged Piron-
neau to pursue an academic career and Oliver soon accepted a position at Paris Nord.
A precondition for this position was to teach computer science. So Olivier strode
forward once again into unchartered territory in this case the theory of computer
science and compilation. One telling data point about Olivier is his statement that
best way to learn a subject is to teach it. His effort of learning computer science gave
birth to the idea of having a user-friendly language for people who work with Partial
Differential Equations; Free fem++ was born. Olivier transferred to the University
Paris 6. In order to teach a course on computer science tools for applied mathe-
matics. Olivier together with a colleague having a strong background in software
development rewrote together the MacFem, FreeFem in C++ and then gave it away
as open source. This was the first of this type of software which is popular now. You
can download it from www.freefem.org.Leadership on this project has been taken
over by Frederic Hecht with whom Olivier shares an office and have a marvelous
outcome.

So nowwe have a map of the areas through which Olivier has marked his trail. He
is one of the very few individuals if not unique who integrate knowledge of control
systems, fluid mechanics, modern partial differential equations, numerics, computer
science and software development. It is interesting that Oliver is now working in
the mathematics of finance. An interest in the role control theory could play in
mathematical economics lead him to Berkeley. I guess uncharted paths can lead us
home or as Andre Gide said

www.freefem.org.Leadership
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It’s only in adventure that some people succeed in knowing themselves—in finding them-
selves.

One who knows anything about Olivier knows that India and Indian thought is an
important component of his story. Olivier first became interested in India as a result
of yoga classes at Cambridge. This led to Olivier’s ongoing spiritual quest in India.
Olivier was introduced to the thought of Sri Aurobindo by his Indian mentor (more
properly “guru”) M. L. Parahsar. Sri Aurobindo was a celebrated Indian nationalist,
poet, philosopher, and spiritualist known for his philosophy on human evolution and
his development of Integral Yoga. In 1910 Sri Aurobindo retired from public life
and settled in Pondicherry where he dedicated himself to philosophical and spiritual
pursuits. Olivier maintains a residence in Pondicherry which he continues to visit
regularly as he follows his inner guide.

Olivier’s passions are not only of the spirit and intellect. He maintains his affinity
for rock music. He is an avid skier (both downhill and cross country). He is an alpine
hiker and mountain climber (he experienced life threatening hiking adventures with
his friend Claude Bardos!). Finally in the words of Shri Aurobindo,

Life is Yoga

Hehas a lovely companionAnnettewho shares his Indian spiritual life inPondicherry.
He takes great pleasure and pride in the growth and education of his son Gabriel.

Over the course of his career Olivier has authored or co-authored over 300 papers
and 8 books. He is a true scholar with deep scientific knowledge in a variety of
scientific areas including, partial differential equations, mechanics, physics, compu-
tational fluid dynamics, aeronautics, financial mathematics, computer science and
computation. His mastery of computer tools as a hobby both hardware and software
coupled with the right mathematics has given and continues to give him a remarkable
ability to solve outstanding problems in science and engineering. Indeed it is fair to
say that not only is Olivier the quintessential computation scientist but that he also
defined the term two decades before it became fashionable. Among the numerous
accolades bestowed on Olivier are: the Prix Blaise Pascal from the French Academy
of Science in 1983; the Ordre National du Merite also in 1983; and the Prix Marcel
Dassault awared to him in 2000 by the FrenchNationalAcademyof Sciences. In 2002
he was inducted into the French National Academy of Sciences and he became an
associate member of the Russian Academy of Sciences in 2004. The “Ordre National
de la Legion d’Honneur Grade de Chevalier” was bestowed upon him in 2006.

Countless students have been inspired by Olivier—from his lectures, classes and
from his research supervision. Ph.D. students to Olivier—he has had 30. Here as in
other matters Olivier follows a somewhat different path. Inspiration is two way street
for Olivier. Not only does he strive to inspire students, he seeks inspiration from his
students and gathers immense joy in the discovery of talent and genius in students.
The success of these students continues to create his legacy.

Professor Pironneau has served the scientific community in a variety of ways. In
France he served as a Deputy for external affairs of INRIA and as a Project leader
for Institut de Recherche en Informatique et en Automatique in the famous Bâtiment
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16 at Rocquencourt; from 1996 to 2006 he served as Member of the Commission
on Nuclear Safety: currently he serves as President the French National Strategic
Committee for Super Computing and he chaired the national association GAMNI
(Groupe pour l’Avancement des Methodes Numeriques de l’Ingenieur) in the late
1990s. Olivier played a crucial role in the creation and officially launched in 1993
of the European Association ECCOMAS (European Community for Computational
Methods in Applied Sciences) serving from 1992 to 2004, as a member of the Board.
helped to establish academic programs of study in Computing in India in the late
1990s. He organized in 1982 a Winter School at Bangalore on Applied Mathematics
opened by the French President, F. Mitterand and has been a regular visitor, as a
member of the Scientific Advisory board of IMS, 2008–2012 to the Institute for
Mathematical Sciences (IMS), National University of Singapore. In addition, he is
a member the editorial board of several journals including the Comptes Rendus de
l’Académie des Sciences.

The above achievements in Olivier’s career are not reported exhaustively: many
of them are missing and should be mentioned in the bio of an outstanding applied
mathematician.

It has been the good fortune of the second author, to meet Olivier in the 70’ at the
Golden Age of the CFD, so important during this period for the design of airplanes
at Dassault Aviation. Despite younger than him, Olivier provided him mentorship,
encouragement and also inspiration control on one side, computation of functional
numerical gradient in optimization on the other side. He was honored to chair with
him in the late 90’ the Pole Scientifique UPMC–Dassault Aviation, launched by Prof.
J. -L. Lions and is grateful for his warm friendship when he lost his life in 2008…

Olivier, throughout your scientific career as Professor and Researcher you have
built an international network of friends and colleagues all over the world (Houston,
Jyväskylä and Pondicherry, three frequently visited scientific hubs of the network
among many others…). There is no end to your unchartered paths in this network by
aging because to your high energy and “good spirit”.

Samuel Ullmann, in his poem “Youth”, says:

Youth is not a time of life; it is a state of mind; it is a matter of the will, a quality of the
imagination, a vigor of the emotions; youthmeans a temperamental predominance of courage
over timidity of the appetite, for adventure over the love of ease.

Olivier, this will undoubtedly follow you for many years to come along the multi
itineraries of your network with a continuous successful inspired research and excit-
ing computational activities!
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We wish you, Olivier, “good health”, “good luck” and “happiness” with Annette,
Gabriel and your friends.

Lord Krisna will guide you by his music…



Mean Field Games for Modeling Crowd
Motion

Yves Achdou and Jean-Michel Lasry

Some people go to priests; others to poetry; I to my friends.
Virginia Woolf (The waves)

Abstract We present a model for crowd motion based on the recent theory of mean
field games. The model takes congestion effects into account. A robust and efficient
numerical method is discussed. Numerical simulations are presented for two exam-
ples. The second example, in which all the agents share a common source of risk
and have incomplete information, is of particular interest, because it cannot be dealt
with without modeling rational anticipation.

1 Introduction

It is more and more important to forecast crowd motions, particularly in situations of
panic,sincethisaspect isnowtakenintoaccountforthecertificationofbuildingsandin-
frastructures,seeforexample[10].Thereisahugeliteratureonmodelsofhumancrowd
motions: some of them, inspired by classical Newtonian mechanics, see the agents
as particles and interactions as shocks between the particles, see for example [11] and
references therein. In suchmodels, the global tendency of the agents consists of reach-
ing some goal as fast as possible, but their dynamics at fine scale depends on their in-
teractions with their closest neighbors. Macroscopic descriptions can then be derived
by upscaling the previouslymentionedmicroscopicmodels, see, e.g., [13]. Arguably,

Y. Achdou (B)
Université Paris Diderot, Sorbonne Paris Cité, Laboratoire Jacques-Louis Lions, UMR 7598,
UPMC, CNRS, 75205 Paris, France
e-mail: achdou@ljll.univ-paris-diderot.fr

J.-M. Lasry
CEREMADE, Université de Paris-Dauphine, Paris, France
e-mail: 2007lasry@gmail.com

© Springer International Publishing AG, part of Springer Nature 2019
B. N. Chetverushkin et al. (eds.), Contributions to Partial Differential
Equations and Applications, Computational Methods in Applied Sciences 47,
https://doi.org/10.1007/978-3-319-78325-3_4

17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78325-3_4&domain=pdf


18 Y. Achdou and J.-M. Lasry

all these models do not contain any ingredient from game theory and therefore do not
really take rational anticipation into account.

In this paper, we propose to apply the recent theory of mean field games to crowd
motion; mean field type models describing the asymptotic behavior of stochastic
differential games (Nash equilibria) as the number of players tends to +∞ have
been introduced by J.-M. Lasry and P.-L. Lions in 2006, see [16–18]. In some cases,
they lead to systems of evolutive partial differential equations involving two unknown
scalar functions: the density of the agents in a given state x , namelym = m(t, x) and
the value function u = u(t, x). Since the present work is devoted to crowd motion,
we will assume that the dimension of the state space is d = 2.

The present work was finished and presented in several scientific meetings in
2013, but we did not write the report since then, for lack of time. Other papers have
dealt with mean field games for pedestrian flows, see, e.g., [9, 15], but some aspects
of our work are completely original. Indeed, we are going to address two topics
which are not treated in the existing literature:

• show the influence of the structure of information upon the motion of a crowd, see
point 3 below for more details;

• present efficient and reliable numerical methods which can be applied to mean
field games in which the noise affect macroscopic quantities and therefore all the
agents in the same way.

More precisely, we shall discuss

1. a special model for taking the effect of congestion into account, which was
introduced by P.-L. Lions, see [19];

2. a numerical scheme which keeps the structure of the system of PDEs and for
which convergence can be proved, see [1, 3, 7] for models without congestion;

3. an example of a situation which cannot be modeled without taking rational
anticipation into account.

In this example, the behavior of the agents depends on the incomplete information
that they have on their future: all the agents are affected by the same random events
(here the opening of a door at a given time), and they anticipate future having in-
complete information on the game (here everybody knows that one among several
doors will be opened but not which one). The structure of information has therefore
a crucial influence on the crowd behavior, and makes it impossible for mechanis-
tic models to predict the latter. The example, which will be described in Sect. 5.2,
was inspired by some models arising in the theory of economical growth, namely
the theory of Krussel-Smith in macro-economics, see [5, 14], in which random
shocks on macroscopic quantities affect the whole economy. Several examples of
PDEs and mean field games models in economics, including the Krussel-Smith
model, are described in [2].
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2 The Model

Let Ω be a bounded connected open subset of R2 with a polygonal boundary. The
boundary of Ω , i.e. ∂Ω is partitioned into ∂Ω = ΓN ∪ ΓD , where ΓN and ΓD are
two disjoint open subsets of ∂Ω .

The typical system of partial differential equations that will be considered is

∂u

∂t
(t, x) + νΔu(t, x) − H(x,m(t, x),∇u(t, x)) = −F(m(t, x)), (1)

∂m

∂t
(t, x) − νΔm(t, x) − div

(
m(t, ·)∂H

∂p
(·,m(t, ·),∇u(t, ·))

)
(x) = 0, (2)

in (0, T ) × Ω , with the initial and terminal conditions

u(T, x) = uT (x), m(0, x) = m0(x) in Ω (3)

given a terminal cost function uT and an initial probability density m0.
Here, we denote by ν a nonnegative constant and by Δ, ∇ and div, respectively,

the Laplace, the gradient and the divergence operator acting on the state variable x .
In the cost term F(m(t, x)), F is a C 1 regular function defined on R+.

The system also involves the scalar Hamiltonian H(x,m, p), which is assumed to
be convexwith respect to p andC 1 regularw.r.t. x ,m and p. The possible dependence
of the Hamiltonian on the density variablem allows for modeling congestion effects,
i.e. the fact that the cost of motion at x ∈ Ω is an increasing function of m(x). In
particular, we will focus on Hamiltonians of the form

H(x,m, p) = H (x) + |p|β
(c0 + c1m)α

(4)

with c0 > 0, c1 ≥ 0, β > 1 and 0 ≤ α < 4(β − 1)/β. The potential H (x) is a
smooth function of the state variable. The notation ∂H

∂p (x,m, q) is used for the gra-
dient of p �→ H(x,m, p) at p = q.

We have chosen to focus on the case when the cost u|t=T depends directly on x . In
some realistic situations, the final cost may depend on the distribution of the players,
i.e. u|t=T = ΦT [m|t=T ](x), where ΦT is an operator acting on probability densities,
which may be local or not. We will not discuss this aspect in the present work.

The system is complemented with Neumann boundary conditions

∂u

∂n
(t, x) = 0,

∂m

∂n
(t, x) = 0 (5)

in (0, T ) × ΓN , and Dirichlet boundary conditions

u(t, x) = uD(x) m(t, x) = 0 (6)

in (0, T ) × ΓD , where uD is a given exit cost.
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The Hamiltonian in (4) is of the form

H(x,m, p) − F(m) = sup
γ

[
γ · p − L(x,m, γ )

]
,

with

L(x,m, γ ) = (β − 1)(c0 + c1m)
α

β−1

( |γ |
β

) β

β−1

+ F(m) − H (x). (7)

Hence,DynamicProgrammingarguments, seeBardi-CapuzzoDolcetta [8], Fleming-
Soner [12], show that u is the value function of an optimal control problem for the
controlled dynamics defined on Ω by

dXs = −γs ds + √
2ν dWs

((Ws) is a Brownian motion reflected on the Neumann boundaries), running cost
density

L(Xs,m(s, Xs), γs)

and exit cost uD . The term−H (x) is the instantaneous cost for an agent to stand at x :
a positive and large value of−H (x)means that x is not a comfortable location. If F is
an increasing function, then the term F(m)models crowd aversion (or agoraphobia).
Simple models of panic may be constructed by choosingH with negative and large
values in Ω and F increasing and blowing up at +∞: the agents pay a high cost for
staying in Ω and this cost is made higher in crowded places.

The first term in (7) stands for the cost of motion: we see that the denser the
population is, the more expensive (or difficult) motion becomes. This is precisely
what we mean when we speak of congestion effects.

Existence and uniqueness have been studied by P.-L. Lions in his lectures (in
French) at Collège de France, see [19] for the videos: in particular, it was proved
that uniqueness of a classical solution holds if F is an increasing function and if
α ≤ 4 β−1

β
, at least in the simpler situation when ΓD = ∅.

3 Finite Difference Method

For the numerical simulations, we use a finite difference scheme proposed and tested
in [4] for a model with no congestion and periodic boundary conditions. We briefly
sketch the method.

3.1 Description of the Scheme

Let NT be a positive integer and Δt = T/NT , tn = nΔt , n = 0, . . . , NT . Let
Q = (0, d)2 be a square domain in R

2 containing Ω . Let Qh be a uniform grid
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on the square Q with mesh step h = d
Nh+1 and xi j denote a generic point in Qh , for

0 ≤ i, j ≤ Nh + 1. It is implicitly assumed that the index i stands for the x-axis and
the index j for the y-axis.

We assume that the boundary of Ω is made of straight line segments which are
parallel to the axes and coincide with some lines of nodes in Qh . The grid Ωh is
obtained as the restriction of Qh to Ω . For those indices such that xi, j ∈ Ωh , the
values of u and m at (xi, j , tn) are respectively approximated by uni, j and mn

i, j .
Let un (resp.mn) be the vector containing the values uni, j (resp.m

n
i, j ), for i, j such

that xi, j ∈ Ωh indexed in the lexicographic order. We may refer to such vectors as
grid functions.

3.1.1 Elementary Finite Difference Operators

First of all, we must make some conventions about indexing the nodes and the
unknowns in order to deal with the boundary conditions. To cope with Neumann type
conditions, we use a first order finite difference formula: for example, at a boundary
node xi, j for which xi+1, j ∈ ΓN , we impose that ui+1, j = ui, j . It would be possible
to require that ui+1, j = ui−1, j , which would lead to a higher order scheme for the
diffusion part of the operator, but this would not be very useful since the discrete
version of the Hamiltonian is first order only, and we would lose the monotone
character of the scheme.

In the simple case whenΩ = Q andΓN = ∂Ω , this technique can be summarized
by the following relations:

u0, j ≡ u1, j , uNh+1, j ≡ uNh , j , ui,0 ≡ ui,1, ui,Nh+1 ≡ ui,Nh .

The treatment of Dirichlet boundary condition is straightforward: if xi, j is a node on
ΓD , we set ui, j = uD(xi, j ).

We apply the finite difference scheme only at the nodes belonging to Ωh and use
the conventions above when the finite difference stencil involves nodes outside Ωh .

Using these conventions, the difference operators

(D+
1 u)i, j = ui+1, j − ui, j

h
and (D+

2 u)i, j = ui, j+1 − ui, j
h

can be defined at any point in Ωh . We define [Dhu]i, j as the collection of the four
possible one sided finite differences at xi, j :

[Dhu]i, j =
(
(D+

1 u)i, j , (D
+
1 u)i−1, j , (D

+
2 u)i, j , (D

+
2 u)i, j−1

)
∈ R

4.

We will also need the standard five point discrete Laplace operator

(Δhu)i, j = − 1

h2
(4ui, j − ui+1, j − ui−1, j − ui, j+1 − ui, j−1).
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3.1.2 Discrete Bellman Equation

Numerical Hamiltonian

In order to approximate the term H(x,m,∇u) in (1), we consider a numerical Hamil-
tonian g : Ω × R+ × R

4 → R, (x,m, q1, q2, q3, q4) �→ g(x,m, q1, q2, q3, q4) sat-
isfying the following conditions:

Monotonicity g is nonincreasing with respect to q1 and q3 and nondecreasing with
respect to q2 and q4.

Consistency g (x,m, q1, q1, q2, q2) = H(x,m, q), for all x ∈ Ω , for all q =
(q1, q2) ∈ R

2.
Differentiability g is of class C 1.

Convexity (q1, q2, q3, q4) �→ g (x,m, q1, q2, q3, q4) is convex.

We will approximate H(·,m,∇u)(xi, j ) by g(xi, j ,mi, j , [Dhu]i, j ). Standard exam-
ples of numerical Hamiltonians fulfilling these requirements are provided by Lax-
Friedrichs or Godunov type schemes, see [4].

If the Hamiltonian H is of the form (4), the conditions above are all fulfilled by
the discrete Hamiltonian given by

g(x,m, q) = H (x) + G(q−
1 , q+

2 , q−
3 , q+

4 )

(c1 + c2m)α
, (8)

where, for a real number r , r+ = max(r, 0) and r− = max(−r, 0) and where G :
(R+)4 → R+ is given by

G(p) = |p|β = (p21 + p22 + p23 + p24)
β

2 .

Note that g(x,m, q) is of classC 1 with respect to q ∈ (R+)4, because λ �→ λ
β

2 isC 1

on R+\{0}, q �→ (q−
1 )2, (q+

2 )2, (q−
3 )2, (q+

4 )2 are C 1 functions on R
4, and because

the differential of g(x,m, q)with respect to q tend to 0 as q → (0, 0, 0, 0) in (R+)4.

Discrete Bellman Equation

The discrete version of the Bellman equation is obtained by applying the following
semi-implicit Euler scheme:

un+1
i, j − uni, j

Δt
+ ν(Δhu

n)i, j − g(xi, j ,m
n+1
i, j , [Dhu

n]i, j ) = −F(mn+1
i, j ), (9)

for all points in Ωh and all n, 0 ≤ n < NT . Given (mn)n=1,...,NT , (9) and the terminal
condition uNT

i, j = uT (xi, j ) for all (i, j) completely characterizes (un)0≤n≤NT .
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3.1.3 Discrete Kolmogorov Equation

Discrete transport operator

In order to approximateEq. (2),wemultiply the nonlinear term in (2) by a test function
w vanishing on ΓD and integrate over Ω , as one would do when writing the weak

formulation of (2): this yields the integral
∫
Ω
div

(
m ∂H

∂p (·,m,∇u)
)

(x) w(x) dx , in

which m appears twice; we double the variable m in order to define the discrete
transport operator, i.e. we consider

I =
∫

Ω

div

(
m

∂H

∂p
(·, m̃,∇u)

)
(x) w(x) dx .

By integration by parts, we obtain

I = −
∫

Ω

m(x)
∂H

∂p
(x, m̃,∇u(x)) · ∇w(x) dx

+
∫

ΓN

m(x)
∂H

∂p
(x, m̃,∇u(x)) · n(x)w(x) ds. (10)

From the Neumann conditions, the last term in (10) vanishes if the Hamiltonian is
of the form (4). Indeed

∂H

∂p
(x, m̃,∇u(x)) · n(x) = β

(c0 + c1m̃)α
|∇u(x)|β−2∇u(x) · n(x) = 0,

even if ∇u = 0 since β > 1. Hence,

I = −
∫

Ω

m(x)
∂H

∂p
(x, m̃,∇u(x)) · ∇w(x),

which will be approximated by

−h2
∑
i, j

mi, j∇qg(xi, j , m̃i, j , [Dhu]i, j ) · [Dhw]i, j .

In consequence, we define the transport operator T by

h2
∑
i, j

Ti, j (u,m, m̃)wi, j = −h2
∑
i, j

mi, j∇qg(xi, j , m̃i, j , [Dhu]i, j ) · [Dhw]i, j .

This identity completely characterizes Ti, j (u,m, m̃): for example,
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• if xi, j is a strongly interior point, i.e. if the neighbors of xi, j all belong to Ωh , then

Ti, j (u,m, m̃) =

1

h

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
mi, j

∂g
∂q1

(xi, j , m̃i, j , [Dhu]i, j ) − mi−1, j
∂g
∂q1

(xi−1, j , m̃i−1, j , [Dhu]i−1, j )

+mi+1, j
∂g
∂q2

(xi+1, j , m̃i+1, j , [Dhu]i+1, j ) − mi, j
∂g
∂q2

(xi, j , m̃i, j , [Dhu]i, j )

)

+(
mi, j

∂g
∂q3

(xi, j , m̃i, j , [Dhu]i, j ) − mi, j−1
∂g
∂q3

(xi, j−1, m̃i, j−1, [Dhu]i, j−1)

+mi, j+1
∂g
∂q4

(xi, j+1, m̃i, j+1, [Dhu]i, j+1) − mi, j
∂g
∂q4

(xi, j , m̃i, j , [Dhu]i, j )

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

• if xi+1, j ∈ ΓN and xi, j±1 ∈ Ωh , then

Ti, j (u,m, m̃) =

1

h

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

(−mi−1, j
∂g
∂q1

(xi−1, j , m̃i−1, j , [Dhu]i−1, j )

−mi, j
∂g
∂q2

(xi, j , m̃i, j , [Dhu]i, j )

)

+(
mi, j

∂g
∂q3

(xi, j , m̃i, j , [Dhu]i, j ) − mi, j−1
∂g
∂q3

(xi, j−1, m̃i, j−1, [Dhu]i, j−1)

+mi, j+1
∂g
∂q4

(xi, j+1, m̃i, j+1, [Dhu]i, j+1) − mi, j
∂g
∂q4

(xi, j , m̃i, j , [Dhu]i, j )

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The Dirichlet conditions are imposed in a straightforward manner.

Discrete Kolmogorov Equation

With the conventions discussed above for the Neumann and Dirichlet conditions on
m, we obtain the discrete Kolmogorov equation:

mn+1
i, j − mn

i, j

Δt
− ν(Δhm

n+1)i, j − Ti, j (u
n,mn+1,mn+1) = 0. (11)

3.1.4 Summary

The fully discrete scheme for system (1), (2), (3) is therefore the following: for all
i, j such that xi, j ∈ Ωh and 0 ≤ n < NT

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

un+1
i, j − uni, j

Δt
+ ν(Δhu

n)i, j − g(xi, j ,m
n+1
i, j , [Dhu

n]i, j ) = −F(mn+1
i, j ),

mn+1
i, j − mn

i, j

Δt
− ν(Δhm

n+1)i, j − Ti, j (u
n,mn+1,mn+1) = 0,

(12)

with the the virtual points convention accounting for Neumann conditions and the
initial and terminal conditions
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m0
i, j = 1

h2

∫
|x−xi, j |∞≤h/2

m0(x)dx, uNT
i, j = uT (xi, j ). (13)

Mass Conservation or Decay

It can be proved that if ΓD = ∅, then the scheme (11) is conservative, i.e. it preserves
total mass over time.

If ΓD = ∅, then it can be proved that

∑
xi, j∈Ωh

(
−νΔhm

n+1
i, j − Ti, j (u

n,mn+1,mn+1)
)

≥ 0,

which shows that the total mass is a nonincreasing function of time. Indeed,

−h
∑

xi, j∈Ωh

Ti, j (u
n,mn+1,mn+1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
∑

xi+1, j∈ΓD

mn+1
i, j

∂g

∂q1
(xi, j ,m

n+1
i, j , [Dhu

n]i, j )

+
∑

xi−1, j∈ΓD

mn+1
i, j

∂g

∂q2
(xi, j ,m

n+1
i, j , [Dhu

n]i, j )

−
∑

xi, j+1∈ΓD

mn+1
i, j

∂g

∂q3
(xi, j ,m

n+1
i, j , [Dhu

n]i, j )

+
∑

xi, j−1∈ΓD

mn+1
i, j

∂g

∂q4
(xi, j ,m

n+1
i, j , [Dhu

n]i, j )

is nonnegative.
From these observations on the conservation/decay of the total mass, existence for

the discrete problem (12)–(13) is obtained by applying Brouwer fixed point theorem,
see, e.g., [4].

3.2 Fundamental Identity Leading to Uniqueness

3.2.1 Basic Lemma

Hereafter, when they are meaningful, the notations gq(x,m, q), gmq(x,m, q),
gqq(x,m, q), respectively, stand for the gradient of g with respect to q, its partial
derivative with respect to m, and the Hessian matrix of q �→ g(x,m, q).

Lemma 1 Let us introduce the diagonal matrix D = diag(−1, 1,−1, 1) ∈ R
4×4.

For all r ∈ R
4, we have

gq(x,m, q) · r = β|p|β−2

(c1 + c2m)α
p · Dr, (14)
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where p ∈ (R+)4 is given by

p = (q−
1 , q+

2 , q−
3 , q+

4 ). (15)

For all q ∈ R
4, r ∈ R

4, and p given by (15)

gm,q(x,m, q) · r = − c2αβ|p|β−2

(c1 + c2m)α+1
p · Dr, (16)

and

r · gqq(x,m, q)r = 1

(c1 + c2m)α

(
β(β − 2)|p|β−4(p · Dr)2 + β|p|β−2|Dr |2

)
.

(17)

Proof The identities (14), (16) and (17) follow from direct calculations, see [3]. For
example, (17) comes from the observation that for all p ∈ (R+)4,Gp(p) = β|p|β−2 p
and

Gpp(p) = β|p|β−2 I4 + β(β − 2)|p|β−4 p ⊗ p.

3.2.2 Nonlinear Functional E (m, u, m̃, ũ)

Let us define the nonlinear functional E acting on grid functions by

E (m, u, m̃, ũ) =
NT∑
n=1

∑
xi, j∈Ωh

E
(
xi, j ,m

n
i, j , [Dun−1]i, j , m̃n

i, j , [Dũn−1]i, j
)

where mn
i, j and m̃n

i, j are nonnegative and

E(x,m, q, m̃, q̃) = (m − m̃) (g(x, m̃, q̃) − g(x,m, q))

− (
mgq(x,m, q) − m̃gq(x, m̃, q̃)

) · (q̃ − q).

3.2.3 Fundamental Identity

In this paragraph, we discuss a key identity which leads to the stability of the finite
difference scheme under additional assumptions. Consider a perturbed system:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ũn+1
i, j − ũni, j

Δt
+ ν(Δhũ

n)i, j − g(xi, j , m̃
n+1
i, j , [Dhũ

n]i, j ) = −F(m̃n+1
i, j ) + an+1

i, j ,

m̃n+1
i, j − m̃n

i, j

Δt
− ν(Δhm̃

n)i, j − Ti, j (ũ
n+1, m̃n, m̃n) = bni, j ,

(18)



Mean Field Games for Modeling Crowd Motion 27

with the same boundary conditions as above.
Multiplying the first equations in (18) and (12) by mn+1

i, j − m̃n+1
i, j and subtracting,

then summing the results for all n = 0, . . . , NT − 1 and all (i, j), we obtain

NT∑
n=1

1

Δt
((un − ũn) − (un−1 − ũn−1), (mn − m̃n))2 + ν(Δh(u

n−1 − ũn−1),mn − m̃n)2

−
NT∑
n=1

∑
i, j

(g(xi, j ,m
n
i, j , [Dhu

n−1]i, j ) − g(xi, j , m̃
n
i, j , [Dhũ

n−1]i, j ))(mn
i, j − m̃n

i, j )

= −
NT∑
n=1

(
F(mn) − F(m̃n),mn − m̃n)

2 −
NT∑
n=1

(an,mn − m̃n)2, (19)

where (X,Y )2 = ∑
i, j Xi, j Yi, j . Similarly, subtracting the second equation in (18)

from the second equation in (12), multiplying the result by uni, j − ũni, j and summing
for all n = 0, . . . , NT − 1 and all (i, j) leads to

NT −1∑
n=0

1

Δ
t ((mn+1 − mn) − (m̃n+1 − m̃n), (un − ũn))2 − ν((mn+1 − m̃n+1),Δh(u

n − ũn))2

+
NT −1∑
n=0

∑
i, j

mn+1
i, j [Dh(u

n − ũn)]i, j · gq
(
xi, j ,m

n+1
i, j , [Dhu

n]i, j
)

−
NT −1∑
n=0

∑
i, j

m̃n+1
i, j [Dh(u

n − ũn)]i, j · gg
(
xi, j , m̃

n+1
i, j [Dhũ

n]i, j
)

= −
NT −1∑
n=0

(bn, un − ũn)2. (20)

Adding (19) and (20) leads to the fundamental identity

1

Δ
t (mNT − m̃NT ,uNT − ũNT )2 − 1

Δ
t (m0 − m̃0, u0 − ũ0)2

+E (m, u, m̃, ũ) +
NT∑
n=1

(F(mn) − F(m̃n),mn − m̃n)2

= −
NT∑
n=1

(an,mn − m̃n)2 −
NT −1∑
n=0

(bn, un − ũn)2.

(21)

3.2.4 Uniqueness for the Discrete Problem

Let (uni, j ,m
n
i, j ) and (ũni, j , m̃

n
i, j ) are two solutions of (12)–(13) with the same boundary

conditions on ΓD and ΓN . The fundamental identity (21) boils down to
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E (m, u, m̃, ũ) +
NT∑
n=1

(F(mn) − F(m̃n),mn − m̃n)2 = 0. (22)

Our goal is to show that this implies that un = ũn and that mn = m̃n .

Proposition 1 We have that

E(m, q, m̃, q̃) ≥ 0, ∀q ∈ R
4, ∀q̃ ∈ R

4, ∀m ≥ 0, ∀m̃ ≥ 0, (23)

if and only if

r · gqq(x,m, q)r + zgqm(x,m, q) · r − z2gm(x,m, q) ≥ 0, ∀z ∈ R, r ∈ R
4,

(24)
for all x ∈ Ωh, q ∈ R

4 and m ∈ R
+ such that (q−

1 , q+
2 , q−

3 , q+
4 ) = 0.

Proof (23) implies (24). Take q ∈ R
4 such that p = (q−

1 , q+
2 , q−

3 , q+
4 ) = 0. Take

also q̃ = q + εr and m̃ = m + εz in (23): dividing by ε2 and passing to the limit,
we get (24).

(24) implies (23). Consider q̃ = q + r , qt = q + tr , m̃ = m + z, mt = m + t z.
Assume first that p = (q−

1 , q+
2 , q−

3 , q+
4 ) = 0 and p̃ = (q̃−

1 , q̃+
2 , q̃−

3 , q̃+
4 ) = 0.

Consider an open subinterval J in [0, 1] such that pt = (q−
t,1, q

+
t,2, q

−
t,3, q

+
t,4) = 0

for all t ∈ J . The function h : t �→ E(m,q,mt ,qt )
t has a derivative on J :

dh

dt
(t) = (m + t z)r · gqq(x,mt , qt )r + (m + t z)zgqm(x,mt , qt ) · r

−z2gm(x,mt , qt ) ≥ 0.

Ontheotherhand,h isconstant in theintervals inwhich pt = (q−
t,1, q

+
t,2, q

−
t,3, q

+
t,4) = 0.

The observation above imply that h is nondecreasing on [0, 1]. Moreover,
limt→0+ h(t) = 0. Therefore E(m, q,mt , qt ) ≥ 0 for all t ∈ [0, 1], which implies
in particular that E(m, q, m̃, q̃) ≥ 0.

Proposition 2 Take m > 0 and q ∈ R
4 such that p = (q−

1 , q+
2 , q−

3 , q+
4 ) = 0. A suf-

ficient condition for (24) is that

α ≤ 4(β − 1)

β
. (25)

Proof Consider m > 0, and q ∈ R
4 such that p = (q−

1 , q+
2 , q−

3 , q+
4 ) = 0, (24) can

be written as

0 ≤ m

(c1 + c2m)α

(
β(β − 2)|p|β−4(p · Dr)2 + β|p|β−2|Dr |2

)

− z
c2αβm|p|β−2

(c1 + c2m)α+1
p · Dr + c2α

(c1 + c2m)α+1
|p|βz2.
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Taking r̃ = Dr , the inequality above is equivalent to

m
(
β(β − 2)|p|β−4(p · r̃)2 + β|p|β−2|r̃ |2

)
− z

c2αβm|p|β−2

c1 + c2m
p · r̃ + z2

c2α

c1 + c2m
|p|β ≥ 0.

A sufficient condition is that

(
c2αβm|p|β−2

c1 + c2m
p · r̃

)2

− 4
c2αm

c1 + c2m
|p|β

(
β(β − 2)|p|β−4(p · r̃)2 + β|p|β−2|r̃ |2

)
≤ 0,

which is equivalent to

(p · r̃)2
(

c2αβm

c1 + c2m
− 4(β − 2)

)
− 4|r̃ |2|p|2 ≤ 0.

The latter is a consequence of (25).

Corollary 1 If ν > 0, F is an increasing function and (25) holds, then the discrete
problem has at most a solution.

Proof From (22) and (23), we infer that mn
i, j = m̃n

i, j for all i, j, n. Then, uniqueness
for the discrete Bellman equation leads to uni, j = ũni, j for all i, j, n.

4 Strategy for Solving (12)–(13)

System (12)–(13) can be seen as a backward discrete Bellman equation for u with
a Cauchy condition at t = T coupled with a forward discrete Kolmogorov equa-
tion for m with a Cauchy condition at t = 0. This structure prohibits the use of a
straightforward time-marching solution procedure.

In this paragraph, we assume that H and g are respectively given by (4) and (8)
with β ≥ 2. We also assume that F is a C 1 and strictly increasing function. We
introduce two auxiliary unknowns λ and μ in (1)–(6):

λ(t, x) = F(m(t, x)) and μ(t, x) = (c1 + c2m(t, x))−α.

We consider the nonlinear map Ξ : (λ, μ) �→ (λ̃, μ̃), where

λ̃(t, x) = F(m(t, x)) and μ̃(t, x) = (c1 + c2m(t, x))−α

and (u,m) is the solution of the system of nonlinear equations

∂u

∂t
(t, x) + νΔu(t, x) − μ(t, x)|∇u(t, x)|β = −λ(t, x), (26)
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∂m

∂t
(t, x) − νΔm(t, x) − div

(
βm(t, ·)μ(t, ·)|∇u(t, ·)|β−2∇u(t, ·)))(x) = 0,

(27)

in (0, T ) × Ω , supplemented with (3), (5) and (6). Given λ and μ, the system (26)–
(27) with (3), (5) and (6) can be solved in a decoupled manner as follows:

1. The value function u is first obtained by solving the Bellman equation (26), with
the terminal condition u(T, ·) = uT (·) and the boundary conditions coming from
(5) and (6).

2. Once u is available, thenm is obtained by solving the Kolmogorov equation (27)
with the initial condition m(0, ·) = m0(·) and the boundary conditions coming
from (5) and (6).

The equilibrium is equivalent to the fixed point problem

(λ, μ) = Ξ(λ,μ).

Here we carry out the same program at the discrete level: we introduce the aux-
iliary unknowns (λn

i, j , μ
n
i, j )n,i, j which are bound to coincide with (F(mn

i, j ), (c1 +
c2mn

i, j )
−α)n,i, j for the solution (uni, j ,m

n
n,i, j )n,i, j of (12)–(13). It will be useful to

define
g̃(q) = ((q−

1 )2 + (q+
2 )2 + (q−

3 )2 + (q+
4 )2)

β

2 ,

and
T̃i, j (u,m, μ) =

1

h

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

(
mi, jμi, j

∂ g̃
∂q1

([Dhu]i, j ) − mi−1, jμi−1, j
∂ g̃
∂q1

([Dhu]i−1, j )

+mi+1, jμi+1, j
∂ g̃
∂q2

([Dhu]i+1, j ) − mi, jμi, j
∂ g̃
∂q2

([Dhu]i, j )

)

+(
mi, jμi, j

∂ g̃
∂q3

([Dhu]i, j ) − mi, j−1μi, j−1
∂ g̃
∂q3

([Dhu]i, j−1)

+mi, j+1μi, j+1
∂ g̃
∂q4

([Dhu]i, j+1) − mi, jμi, j
∂ g̃
∂q4

([Dhu]i, j )

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

We then introduce the discrete version Ξh of Ξ , namely Ξh : (λn
i, j , μ

n
i, j )n,i, j �→

(λ̃n
i, j , μ̃

n
i, j )n,i, j , where

λ̃n
i, j = F(mn

i, j ) and μ̃n
i, j = (c1 + c2m

n
i, j )

−α

and (uni, j ,m
n
i, j ) is the solution of the system of nonlinear equations

un+1
i, j − uni, j

Δt
+ ν(Δhu

n)i, j − μn+1
i, j g̃([Dhu

n]i, j ) = −λn+1
i, j − H (xi, j ), (28)

mn+1
i, j − mn

i, j

Δt
− ν(Δhm

n+1)i, j − T̃i, j (u
n,mn+1, μn+1) = 0, (29)
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with (13). The discrete equilibrium is equivalent to the fixed point problem

(λn
i, j , μ

n
i, j )n,i, j = Ξh(λ

n
i, j , μ

n
i, j )n,i, j . (30)

Given (λn
i, j , μ

n
i, j )n,i, j , the system (28), (29) and (13) can be solved in a decoupled

manner as follows:

1. The value function u is first obtained by solving the discrete Bellman equation
(28) with the terminal condition coming from (13), by marching backward in
time. At each time step, Newton iterations are used for solving the system of
nonlinear equation.

2. Once (uni, j )n,i, j is available, then (mn
i, j )n,i, j is obtained by solving the discrete

Kolmogorov equation (29)with the initial condition coming from (13), bymarch-
ing forward in time. At each time step, one has to solve a system of linear
equations. This is done by using the library UMFPACK [20] which contains an
Unsymmetric MultiFrontal method for solving linear systems.

The main advantage of working with the auxiliary unknowns λ andμ is that it allows
for using the power of Newton iterations for (30) (fast convergence if the initial guess
is not too far from the solution) and at the same time for preserving the positivity and
the total mass of the discrete function (mn

i, j )n,i, j . Newton iterations applied directly
to (12)–(13) with the unknowns (uni, j ,m

n
i, j )n,i, j , have been used in previous articles,

see, e.g., [6], but the positivity of (mn
i, j )n,i, j was not guaranteed.

Newton iterations require differentiating the map Ξh . For that, the main step
consists of computing the differential of (un,mn)n,i, j with respect to (λn

i, j )n,i, j and
(μn

i, j )n,i, j . This requires differentiating the discrete Bellman and Kolmogorov equa-
tion in (28)–(29): let us give some details:

Let N be the number of grid points in Ωh . Call U and M the vectors of
R

NT N such that (UnN , . . . ,U(n+1)N−1) coincide with the unknowns (un−1
i, j )i, j , and

(MnN , . . . ,M(n+1)N−1) coincide with the unknowns (mn
i, j )i, j ordered lexicographi-

cally, (recall that uNT
i, j andm

0
i, j are given). With the slight abuse of notation consisting

of writing λ and μ for the vectors containing (λn
i, j )n,i, j and (μn

i, j )n,i, j , the system
(28)–(29) can be written

FU (U , μ) = −λ, and FM(U ,M , μ) = 0,

with

• FU (U , μ) = −λ ⇔ (28) for all n, 0 ≤ n < NT and i, j such that xi, j ∈ Ωh ,
• FM(U ,M , μ) = 0 ⇔ (29) for all n, 0 ≤ n < NT and i, j such that xi, j ∈ Ωh .

We also use the following notation:

AU,U (U , μ) = DU FU (U , μ),

AM,U (U ,M , μ) = DU FM (U ,M , μ), AM,M (U ,M , μ) = DM FM (U ,M , μ),

BU,μ(U , μ) = DμFU (U , μ), BM,μ(U ,M , μ) = DμFM (U ,M , μ).

The matrix AUU (U , μ) has the form
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AUU =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

D1
1
Δ
t I 0 . . . 0

0 D2
. . .

. . .
...

...
. . .

. . .
. . . 0

...
. . .

. . . 1
Δ
t I

0 . . . . . . 0 DNT

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

The blocks of AUU (U , μ) are sparse matrices. The block Dn corresponds to the
discrete operator (zi, j ) �→ ( − 1

Δt zi, j + ν(Δhz)i, j − μn
i, j [Dhz]i, j · g̃q([Dhun−1]i, j )

)
coming from the linearization of the discrete Bellman equation. From the mono-
tonicity of the scheme, −Dn is a M-matrix, thus AUU is invertible. The matrices
AMM(U ,M , μ) and AMU (U ,M , μ) have the form

AMM = AT
UU , AMU =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

E1 0 . . . . . . 0

0 E2
. . .

...
...

. . .
. . .

. . .
...

...
. . . ENT −1 0

0 . . . . . . 0 ENT

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

The block AMM corresponds to a discrete linear transport equation. Note that

V T EnW =
∑
i, j

mn
i, jμ

n
i, j [Dhv]i, j · g̃q,q(xi, j , [Dhu

n−1]i, j )[Dhw]i, j .

From the convexity of g, we see that the block En is symmetric and positive semi-
definite if mn and μn are nonnegative grid functions. From this, we can differentiate
U and M with respect to λ and μ: we obtain, in particular, that

Dλ,μM · (λ̃, μ̃) = A−1
MM AMU A−1

UU λ̃ + A−1
MM

(
AMU A−1

UU BU,μ − BMμ

)
μ̃.

The latter allows for computing the differential ofΞh . Newton iterations require solv-
ing (at least approximatively) systems of linear equations involving the differential
of Ξh . For that, we use iterative methods, namely BiCGstab, see [21].

In Fig. 1, we plot the convergence of the Newton iterations for the example dis-
cussed in Sect. 5.1. The graph seems to indicate a quadratic convergence, i.e. that for
a positive constantC ,C‖r (n+1)‖ ≤ (

C‖r (n)‖)2, where ‖r (n)‖ is the quadratic norm of
the residual after n steps of the Newton method. In Fig. 2, we show the convergence
of the BiCGstab iterations for one of the linear systems arising in the Newton loop.

Remark 1 If there is no congestion, the same ideas can be used with only one addi-
tional unknown λ. Then the linear problems in the Newton method involves matrices
of the type
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Fig. 1 The convergence of the Newton iterations for the example discussed in Sect. 5.1

Fig. 2 A typical graph of
convergence of the BiCGstab
iterations for a linear system
arising in the Newton
method for the example
discussed in Sect. 5.1

D + A−1
MM AMU A−1

UU , (31)

where D is a diagonal matrix with diagonal entries 1
f ′(mn

i, j )
. The matrix in (31) is

symmetric and positive definite if f is a strictly increasing function.
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5 Examples

5.1 Exit from a Hall

5.1.1 Geometry and Parameters

The domainΩ is obtained by removing several rectangular closed sets from a square
with a 50m side, see Fig. 3. The rectangular subsets stand for obstacles into which
the crowd cannot penetrate. These regions can be rows of seats for example, or
forbidden zones where the pedestrians cannot seat or even go. Hence, the walls of
these obstacles are part ofΓN . There are two possible exits (which are closed at t = 0)
which are located at the two ends of the wider part of the domain: the possible exits
coincide with the straight line segments {0} × [0, 2.5] and {50} × [0, 2.5]. There is
no terminal cost, i.e. uT (x) = 0 for all x ∈ Ω and no exit cost, i.e. uD(x) = 0 for all
x ∈ ΓD .

The initial distribution of pedestrians m0 is piecewise constant and takes two
values 0 and 4: the pedestrians are gathered in some regions, in which the density
is 4 people/m2. Moreover,

∫
Ω
m0(x)dx ∼ 2900, which means that there are ∼ 2900

individuals in the room at the initial time (Fig. 4).
The parameters are

• ν = 1/3 ∼ 0.33

• H(x,m, p) = |p|2 (
25

1+6m

) 3
2

• F(m) = 5. 10−4m
• H (x) = −10−3

which leads to the following HJB equation

∂u

∂t
+ 1

3
Δu −

(
25

1 + 6m

) 3
2

|∇u|2 = −10−4 (5m + 10).

Fig. 3 The geometry of the
problem and the grid
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Fig. 4 The initial
distribution of pedestrians

5.1.2 Results

The horizon is T = 20 min. The two doors stay open from t = 0 to t = T . The
number of pedestrians in the room is plotted in Fig. 5: almost everybody has left the
room at t = T .

Some snapshots of the distribution of pedestrians at different times are plotted
in Fig. 6. In Fig. 7, three snapshots of the optimal feedback −γ = −Hp(x,m,∇u)

at different times are displayed. Since the initial distribution of pedestrians and the
geometry of themodel are symmetric with respect to the axis x = 25, the distribution
of pedestrians stays symmetric. The maximal velocity is of the order of 2 m/s, the
maximum being reached at the doors. The flow of the crowd has a complex structure
in the zones where two streams meet.

Fig. 5 The number of
pedestrians in the room
versus time
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Fig. 6 The distribution of pedestrians at t = 10 s, 5, 10, 15min. Note that the density scale varies
w.r.t. t

5.2 Exit from a Hall with Incomplete Information

5.2.1 Model

The horizon is T = 40 min. Before t = T/2, the doors are closed. The agents know
that one of the two doors will be opened at t = T/2 and will stay open until t = T ,
but they do not know which one. At T/2, the probability that a given door be opened
is 1/2.

Hence the model involves three pairs of unknown functions

• (uC ,mC) is defined on (0, T/2) × Ω and corresponds to the situation when the
room is closed.

• (uL ,mL) and (uR,mR) are defined on (T/2, T ) × Ω and correspond respectively
to the case when the left (resp. right) door is open.

The boundary value problem to be solved is

∂uC

∂t
(t, x) + νΔuC (t, x) − H(x,mC (t, x),∇uC (t, x)) = −F(mC(t, x)),

∂mC

∂t
(t, x) − νΔmC(t, x) − div

(
mC(t, ·)∂H

∂p
(·,mC(t, ·),∇uC (t, ·))

)
(x) = 0,

in (0, T/2) × Ω , with the boundary conditions
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Fig. 7 The optimal feedback
−γ at t = 5, 10, 15 min
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∂uC

∂n
= ∂mC

∂n
= 0 on

(
0,

T

2

)
× ∂Ω

and for j = L , R,

∂u j

∂t
(t, x) + νΔu j (t, x) − H(x,m j (t, x),∇u j (t, x)) = −F(m j (t, x)),

∂m j

∂t
(t, x) − νΔm j (t, x) − div

(
m j (t, ·)∂H

∂p
(·,m j (t, ·),∇u j (t, ·))

)
(x) = 0,

in (T/2, T ) × Ω , with the boundary conditions

∂u j

∂n
= ∂m j

∂n
= 0 on

(
T

2
, T

)
× Γ

j
N ,

u j = m j = 0 on

(
T

2
, T

)
× Γ

j
D

where Γ L
D = {0} × (0, 2.5), Γ R

D = {50} × (0, 2.5), and Γ
j
N = ∂Ω\Γ j

D , j = L , R.
These equations have to be supplemented with the initial and terminal conditions

mC(0, x) = m0(x), uL(T, x) = uR(T, x) = uT (x) in Ω,

and the transmission conditions at t = T/2:

mL

(
T

2
, x

)
= mR

(
T

2
, x

)
= mC

(
T

2
, x

)
in Ω,

uC
(
T

2
, x

)
= uL( T2 , x) + uR( T2 , x)

2
in Ω.

5.2.2 Results

Since the geometry, the initial distribution of pedestrians and the final cost are sym-
metric with respect to the axis x = 25, and since the left and right door have the
same probability to be opened at t = T/2, the distribution of pedestrians mL and
mR must be symmetric to each other, and mC must be symmetric with respect to the
axis x = 25. We have not used this remark in our numerical simulations, although it
would have been helpful in the present case.
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Fig. 8 The number of
pedestrians in the room
versus time

The number of pedestrians in the room is plotted in Fig. 8: we see that this number
remains constant for t < T/2 and decays for t > T/2. Almost everybody has left
the room at t = T .

We plot the fields corresponding to the case when the left door is opened at
t = T/2, i.e. m = mC for t ≤ T/2 and m = ML for t > T/2. Similarly, the optimal
feedback −γ (also named velocity below) is −γ = −Hp(x,mC ,∇uC ) for t ≤ T/2
and −γ = −Hp(x,mL ,∇uL) for t > T/2.

Snapshots of the distribution of pedestrians at different times are plotted on Fig. 9.
In Fig. 10, three snapshots of the optimal feedback −γ at different times are plotted.
We see that for t < T/2, the crowd moves toward the doors. As expected, the dis-
tribution stays symmetric with respect to the axis x = 25 for t ≤ T/2. For t < T/2,
the maximal velocity is of the order of 0.5 m/s. The regions near the ends of the inner
obstacles are interesting, because it is where two flows of pedestrians meet, the first
one walking in a direction parallel to the outer walls, the second one walking in a
direction parallel to the inner walls.

One sees from Fig. 9 that just before the door opening, the density increases in
front of the two doors, even though only one door is going to be opened. Just after
the left door opening, the symmetry is broken. The parameters have been chosen in
such a way the maximal velocity is of the order of 3 m/s for t > T/2.

Acknowledgements The first author would like to affectionately dedicate this work to Yuri
Kuznetsov andOlivier Pironneau for their seventieth birthdays. The first author was partially funded
by theANRprojectsANR-12-MONU-0013 andANR-12-BS01-0008-01.The twoauthors acknowl-
edge the support of the Chaire “Finance et développement durable”.
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Fig. 9 The distribution of pedestrians at t = 10 s, 5, 10, 15, 20, 25, 30, 35min. Note that the
density scale varies w.r.t. t
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Fig. 10 The optimal
feedback −γ at t = 15min,
20min 10s., 30min. We see
that the velocity is larger
when t is large, i.e. when the
room is less crowded. Note
the dissymmetry of the
velocity between the inner
obstacles just after the left
door opening, i.e. for
t > 20min
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Model Systems with Cross Diffusion
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Abstract One of the simplest deterministic mathematical model for the spread of an
epidemic disease is the so-called SI systemmade of two Ordinary Differential Equa-
tions. It exhibits simple dynamics: a bifurcation parameterT0 yielding persistence of
the disease when T0 > 1, else extinction occurs. A natural question is whether this
gentle dynamic can be disturbed by spatial diffusion. It is straightforward to check
it is not feasible for linear/nonlinear diffusions. When cross diffusion is introduced
for suitable choices of the parameter data set this persistent state of the ODE model
system becomes linearly unstable for the resulting initial and no-flux boundary value
problem. On the other hand “natural” weak solutions can be defined for this initial
and no-flux boundary value problem and proved to exist provided nonlinear and
cross diffusivities satisfy some constraints. These constraints are not fully met for
the parameter data set yielding instability. A remaining open question is: to which
solutions does this apply? Periodic behaviors are observed for a suitable range of
cross diffusivities.
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1 Introduction

This study is related to a well-known generic question: can diffusion destabilize
the otherwise globally asymptotically stable (GAS) stationary state of a system of
ordinary differential equations (ODE), a question usually referred to as Turing bifur-
cation cf. [26]. We are more specifically interested in basic planar systems modeling
the spread of an epidemic disease within a host population distributed over a spatial
habitat and dispersing there. A natural question is whether a spatial structure can
destabilize the spatially homogeneous endemic state yielding pattern formation.

There is a worldwide concern in Public Health Agencies about vector-borne dis-
eases related to dispersal of mosquitoes infected by viruses such as zika or dengue to
name a few or malaria parasites transmissible to Humans. Vector-borne diseases may
also affect wild ruminants and domestic cattle with high economic consequences.
The introduction in 2006 of the serotype 8 of the blue tongue virus—transmitted by
midges to cattle—in Europe resulted inmassive vaccination to control the disease, cf.
[8] and references therein. The occurrence of both local or regional epidemics driven
by spatiotemporal heterogeneities in distribution and abundance of host and vector
populations was not considered, nor livestock movements managed by farmers and
subsequent passive and active vector dispersal. A modeling approach was devised in
[8] to assess through numerical experiments of a Reaction-Diffusion system how het-
erogeneities and dispersal effects can impact local and regional BT epidemics using
various hypothetical scenarii illustrated in a real geographic area. It is observed there
that spatial structures and dispersal do have a strong impact on observed dynamics,
a mathematical analytical approach being beyond the scope of the study and likely
out of reach!

It is our goal in this work to shed some light on this coupling between a spa-
tial structure and population dispersal on the spread of an epidemic disease and the
occurrence of epidemic patterns, using a simple planar Reaction-Diffusion model
system and various dispersal fluxes, from linear to cross diffusion. A simple deter-
ministic mathematical model system for the spread of an epidemic disease within
an unstructured population is the SI system made of two ODEs, cf. [6, 7, 10] and
references therein. It exhibits simple dynamics: there is a bifurcation parameter T0

yielding extinction of the disease when T0 < 1 and persistence of the disease when
T0 > 1 inwhich case the SI-ODEsystemhas a unique andGASendemic or persistent
stationary state (with positive entries), cf. [11] for details.

Our question is whether this is modified for a spatially structured host population.
To this end one may devise Reaction-Diffusion model systems (RD), [15, 18, 22, 23,
25] and references therein, featuring linear, nonlinear or cross diffusions. For SI-RD
systems linear diffusion does not provide any instability, cf. [11, 12]. This carries
over in a straightforward fashion to nonlinear diffusion. It remains to consider cross
diffusion. Supplying (partial) answers to this point is the main goal of this study.

When nonlinear and cross diffusions are considered two questions arise at once for
the resulting initial and no-flux boundary value problem: (a) the motivating one that
is finding “linear” stability/instability conditions for the spatially constant stationary
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state of the ODE system, and, (b), defining and proving the existence of suitable
“weak solutions” to which this applies.

Looking at the linearized system about the persistent state of the ODE system and
following routine algebraic calculations, cf. [22], one finds that for some choices of
the parameter data set this persistent state may become unstable. This is illustrated
in Figs. 1 and 2 for Turing bifurcation and Figs. 3, 4 and 5 for pattern formations.
An endemic state is found in “algebraic” closed form only in two specific cases and
given the large number (15) of parameters we are not yet able to handle this stability
/ instability analysis through a formal calculation for the full system.

Following [2, 3] “naive” weak solutions are defined in the spirit of [19]. Existence
is proved when diffusivities satisfy a set of constraints, see Proposition 2. These
constraints are not fully satisfied for the parameter data set yielding instability so
that a further remaining open question is: to which type of weak solutions does
this bifurcation analysis apply? Classical solutions are found under quite restrictive
conditions, see Sect. 4.3, in which case instability is not possible, see Sect. 5.2. Turing
bifurcation in Lotka-Volterra population dynamic models with cross diffusion is the
scope of a large literature, cf. [4, 9, 15, 18, 25] and references therein.

In Sects. 2 and 3 we review known results for the SI-ODE system and the SI-RD
system with linear/nonlinear diffusion. In Sect. 4 we look at the existence of weak
solutions for the SI-RD initial and no-flux boundary conditions system with linear,
nonlinear and cross diffusions. Section5 is dedicated to stability/instability analysis
of the endemic state of the SI-ODE system for the SI-RD system. A Conclusion and
Perspective section completes this manuscript.

2 Underlying ODE Model System

Let us introduce a two component Ordinary Differential Equation system

S′ = −σ SI + bS + θbI I − (m + k P)S,

I ′ = σ SI − α I + (1 − θ)bI I − (m + k P)I
(1)

with P = S + I . System (1) is commonly referred to as a spatially unstructured SI
epidemic model system, cf. [6, 7, 10] and their references. The total host population
density, P , is split into susceptible, S, and infectious, I , individuals. Concerning vital
dynamics b is the fertility rate of susceptibles and bI that of infectious, a proportion
θ of offsprings born from infectious parents being susceptible at birth, m is the
natural mortality rate while k represents a density dependent pressure on mortality.
Concerning disease transmission σ is an aggregated transmission rate of the disease
from S to I and α is an additional mortality rate due to the disease.

Throughout this work one shall assume

(H1) σ > 0, b > m, k > 0 as well as α ≥ 0, 0 ≤ bI ≤ b and 0 < θ ≤ 1.
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The limiting case θ = 0 is left to the reader, cf. [11].
Given initial conditions satisfying S(0) ≥ 0, I (0) ≥ 0 with S(0) + I (0) > 0 the

system (1) has a unique componentwise nonnegative and bounded solution. Set

T0 = σ K

b + α − (1 − θ)bI
, K = b − m

k
. (2)

Then, cf. [11], T0 is a threshold parameter: provided S(0) + b0 > 0 and I (0) > 0
when

⎧
⎨

⎩

T0 < 1 the semi-trivial stationary state S = K , I = 0 is GAS;
T0 > 1 the semi-trivial stationary state S = K , I = 0 is unstable and there exists

a unique endemic or persistent state, S∗ > 0, I∗ > 0, that is GAS.

3 RD Model System with Linear/Nonlinear Diffusion

Let Ω be a bounded domain in RN with smooth boundary ∂Ω , Ω locally lying on
one side of ∂Ω . Assume host individuals disperse through their habitat by means of
the nonlinear Fickian diffusion, −du(U )∇U being the population flux for U = S, I .
Set

Du(U ) =
∫ U

0
du(υ) dυ.

A Reaction-Diffusion system can be devised: for x ∈ Ω and t > 0

∂t S = �[D1(S)] − σ SI + bS + θbI I − (m + k P)S,

∂t I = �[D2(I )] + σ SI − α I + (1 − θ)bI I − (m + k P)I
(3)

equipped with no flux boundary conditions

d1(S)(x, t)∇S(x, t) · η(x) = d2(I )(x, t)∇ I (x, t) · η(x) = 0, x ∈ ∂Ω, t > 0
(4)

η being a unit normal vector to Ω along ∂Ω , cf. [7, 13, 22, 23] and their references.
One still set P = S + I and assume the condition (H1) holds. One prescribes

0 < dmin ≤ d1(S), d2(I ); di ∈ C2([0,∞)), i = 1, 2. (5)

Given bounded initial conditions satisfying S(0, x) = S0(x) ≥ 0, I (0, x) =
I0(x) ≥ 0 with S0(x) + I0(x) 
≡ 0 the system (3)–(4) has a unique componentwise
nonnegative and bounded classical solution, cf. [11, 12, 14].
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Proposition 1 Assume T0 > 1. The unique endemic state, S∗ > 0, I ∗ > 0, of the
system (1) remains GAS for (3)–(4) for those nonnegative and bounded initial con-
ditions such that S0 
≡ 0 and I0 
≡ 0.

Proof Given positive u and v in C0(Ω̄) and positive numbers νS and νI set

L (u, v) = νS

∫

Ω

(
u(x) − S∗ − S∗ ln u(x)

S∗
)

dx + νI

∫

Ω

(
v(x) − I ∗ − I ∗ ln v(x)

I ∗
)

dx,

cf. [16]. Rather straightforward calculations, cf. [11, 12], lead to

d

dt
L (S(·, t), I (·, t)) ≤ 0, t > 0,

yieldingL is a Lyapunov functional. From the LaSalle invariance principle, cf. [17],
L is constant on the largest invariant subset of the ω-limit set of (3)–(4) in [C0(Ω̄)]2
and this ω-limit set reduces to (S∗, I ∗). �

4 A Prototypical RD Model System with Cross Diffusion 1

Let us now consider a prototypical model system involving nonlinear and cross
diffusion posed on the same Ω ⊂ R

N . For x ∈ Ω and t > 0 it reads

∂t S = �[(d1 + d11S + d12 I )S] − σ SI + bS + θbI I − (m + k P)S;
∂t I = �[(d2 + d21S + d22 I )I ] + σ SI − α I + (1 − θ)bI I − (m + k P)I

(6)

where one has set P = S + I , cf. [15, 18, 22, 23, 25] and their references. This also
reads for suitably smooth functions S and I

∂t S = div [(d1 + 2d11S + d12 I )∇S + d12S∇ I ] − σ SI + bS + θbI I − (m + k P)S;
∂t I = div [(d2 + d21S + 2d22 I )∇ I + d21 I∇S] + σ SI − α I + (1 − θ)bI I − (m + k P)I

(7)

equipped with initial conditions

S(x, 0) = S0(x) ≥ 0, I (x, 0) = I0(x) ≥ 0, x ∈ Ω (8)

and no flux boundary conditions for x ∈ ∂Ω and t > 0

[
(d1 + 2d11S + d12 I )∇S + d12S∇ I

]
(x, t) · η(x)

= [(d2 + d21S + 2d22 I )∇ I + d21 I∇S] (x, t) · η(x) = 0
(9)

η being a normal unit vector to Ω along ∂Ω . Conditions (9) are equivalent to a
linear system in the (∇S(x, t) · η(x),∇ I (x, t) · η(x)) variables. For nonnegative
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(S(x, t), I (x, t)) and (di j )i, j=1,2 and positive (di )i=1,2 this linear system is invertible
and conditions (9) are equivalent to the homogeneous Neumann boundary conditions

∇S(x, t) · η(x) = ∇ I (x, t) · η(x) = 0, x ∈ ∂Ω, t > 0. (10)

4.1 Towards Some Ellipticity Condition(s)

At several steps of our analysis given f (S) ≥ 0, f (I ) ≥ 0 we are to find the signum
of a quadratic form in the (∇S,∇ I ) ∈ (L2(Ω))2N variable

∫

Ω

[
2d11|∇S|2 + d12∇ I · ∇S + d21|∇ I |2

]
f (S) dx

+
∫

Ω

[
d12|∇S|2 + d21∇S · ∇ I + 2d22|∇ I |2] f (I ) dx .

(11)

A pointwise underlying 2N × 2N symmetrical matrix is a 2 × 2 block matrix

M(S, I ) =
⎛

⎜
⎝

(2d11 f (S) + d12 f (I ))I dN
1

2
(d12 f (S) + d21 f (I ))I dN

1

2
(d12 f (S) + d21 f (I ))I dN (2d22 f (I ) + d21 f (S))I dN

⎞

⎟
⎠

wherein I dN is the identity matrix inRN .

Lemma 1 Assume f (S) ≥ 0, f (I ) ≥ 0. When 8d11d21 ≥ d2
12 and 8d22d12 ≥ d2

21
then pointwise matrix M(S, I ) is nonnegative. It follows the quantity in (11) is
nonnegative. Else pointwise matrix M(S, I ) is nonnegative provided ( f (S), f (I ))
satisfy some set of pointwise additional constraints.

Proof Matrix M(S, I ) characteristic polynomial factors out

P(λ) = 1

4N

[
4λ2 − 4 (d21 f (S) + 2d11 f (S) + d12 f (I ) + 2d22 f (I )) λ + R

]N
.

Setting f (I ) = ρ f (S), ρ ≥ 0, one gets R = 4 f (S)2Q(ρ)

Q(ρ) = (8d11d21 − d2
12) + (16d11d22 + 2d12d21)ρ + (8d22d12 − d2

21)ρ
2.

Then Q(ρ) ≥ 0 for ρ ≥ 0 provided 8d11d21 ≥ d2
12 and 8d22d12 ≥ d2

21. �
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4.2 Main Existence Result (Weak Solutions)

Definition 1 Let T > 0 be fixed. A componentwise nonnegative weak solution to
the system (7), (9), (8) is a duet (S, I ) ∈ [L3((0, T ) × Ω)+ ∩ L∞(0, T ; L2(Ω))]2
such that

(∇S,∇ I ) ∈ (
L2((0, T ) × Ω)

)2N ;
(∂t S, ∂t I ) ∈ L

6
5

(
0, T ; [W 1,6(Ω)]′) × L

6
5

(
0, T ; [W 1,6(Ω)]′)

satisfying (8) and such that for any (ϕ, ψ) ∈ [L6(0, T ; W 1,6(Ω))]2 one has
∫

Ω

〈∂t S, ϕ〉 dx = −
∫

Ω

[(d1 + 2d11S + d12 I )∇S + d12S∇ I ] · ∇ϕ dx

+
∫

Ω

[θbI I + (b − m − k(S + I ))S − σ(S, I )]ϕ dx;
∫

Ω

〈∂t I, ψ〉 dx = −
∫

Ω

[(d2 + d21S + 2d22 I )∇ I + d21 I∇S] · ∇ψ dx

+
∫

Ω

[σ(S, I ) + ((1 − θ)bI − m − k(S + I ) − α)I ]ψ dx .

(12)
Herein 〈·, ·〉 is the duality pairing between W 1,6(Ω) and its dual space [W 1,6(Ω)]′.
Proposition 2 Let di > 0, i = 1, 2 and di j > 0, 1 ≤ i, j ≤ 2. Assume either uncou-
pled requirements for reactive and diffusive terms

(H2) Coefficients σ and k satisfy

0 < σ < 2(1 + √
2)k ⇐⇒ σ 2

4k(k + σ)
< 1;

(H3) Diffusivities satisfy 8d11d21 ≥ d2
12 and 8d22d12 ≥ d2

21;

or coupled requirements for diffusive and reactive terms

(H23) There exists a γ > σ 2

4k(k+σ)
such that 8d11d21 ≥ γ d2

12; 8γ d22d12 ≥ d2
21.

Given bounded and nonnegative initial conditions (S0, I0) satisfying S0(x) + I0(x) 
≡
0, for any T > 0 the system (7)–(9) has a componentwise nonnegative weak solution
according to Definition 1.

Remark 1 When either conditions (H3) or (H23) is strengthened into strict inequal-
ities one gets a componentwise nonnegative slightly modified weak solution, that is
a duet (S, I ) ∈ [L3((0, T ) × Ω)+ ∩ L∞(0, T ; L2(Ω))]2 such that
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(1 + √
X)‖∇Y‖ ∈ L2 ((0, T ) × Ω) , (X, Y ) ∈ {S, I };

(∂t S, ∂t I ) ∈ L
3
2

(
0, T ; [W 1,3(Ω)]′) × L

3
2

(
0, T ; [W 1,3(Ω)]′)

a solution to (12) for (ϕ, ψ) ∈ [L3(0, T ; W 1,3(Ω))]2.

4.3 Existence of Classical Solutions

Assume
d1 = d2 = d∗ > 0, di j = d∗∗ > 0, i, j = 1, 2 (13)

so that condition (H3) is obviously satisfied. In that case upon adding the equations
for S and I one gets a logistic-like inequality for the total population P = S + I

∂t P ≤ div
[
(d∗ + 2d∗∗ P)∇ P

] + bP − (m + k P)P

equipped with initial and no-flux boundary conditions. From this a uniform a-priori
spatio-temporal L∞ estimate follows at once yielding global existence of a classical
solution, starting from a local classical solution whose existence is found in [1, 27].

4.4 Sketch of the Proof of Proposition 2

Cf. [2, 3].

4.4.1 Approximating Scheme for Fixed ε > 0

Let X+ be the positive part of X , say X+ = X+|X |
2 . Set

fε(x) = x

1 + εx
, x ≥ 0; σε(x, y) = σ

xy

1 + ε(x + y)
, x ≥ 0, y ≥ 0.

One shall consider the following approximating scheme:

∂t S = div
[
(d1 + 2d11 fε(S+) + d12 fε(I +))∇S + d12 fε(S+)∇ I

]

+ θbI |I | + (b − m − k(|S| + |I |))S − σε(S+, I +);
∂t I = div

[
(d2 + d21 fε(S+) + 2d22 fε(I +))∇ I + d21 fε(I +)∇S

]

+ σε(S+, I +) + ((1 − θ)bI − m − k(|S| + |I |) − α)I

(14)

equipped with initial conditions (8) and no flux boundary conditions (10).
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Definition 2 Aweak solution to (14), (8), (10) over (0, T ) × Ω is a duet (S, I ) lying
in [L2((0, T ) × Ω) ∩ L2(0, T ; H 1(Ω))]2 with (∂t S, ∂t I ) ∈ [L2(0, T ; [H 1(Ω)]′)]2
satisfying (8) and such that for any (ϕ, ψ) ∈ [L2((0, T ) × Ω) ∩ L2(0, T ; H 1(Ω))]2

∫

Ω

〈∂t S, ϕ〉 dx =

−
∫

Ω

[(
d1 + 2d11 fε(S+) + d12 fε(I +)

) ∇S + d12 fε(S+)∇ I
] · ∇ϕ dx

+
∫

Ω

[
θbI |I | + (b − m − k(|S| + |I |)) S − σε(S+, I +)

]
ϕ dx;

∫

Ω

〈∂t I, ψ〉 dx =

−
∫

Ω

[(
d2 + d21 fε(S+) + 2d22 fε(I +)

) ∇ I + d21 fε(I +)∇S
] · ∇ψ dx

+
∫

Ω

[
σε(S+, I +) + ((1 − θ)bI − m − k(|S| + |I |) − α) I

]
ψ dx .

Herein 〈·, ·〉 is the duality pairing between H 1(Ω) and its dual space [H 1(Ω)]′.
Note that for fixed ε > 0 and nonnegative entries fε(x) is bounded while σε(x, y)

is sub-linear. A proof of the existence of a such a weak solution is found in [2, 3].

4.4.2 Nonnegativity of Components of (Sε, Iε)ε>0

For sake of simplicity let us drop subscript ε. Setting ϕ = −S− in Definition 2 yields

−
∫

Ω

∂t SS−(x, t) dx =
∫

Ω

[(
d1 + 2d11 fε(S+) + d12 fε(I +)

) ∇S · ∇S− + d12 fε(S+)∇ I · ∇S−]
dx

− θbI

∫

Ω

|I |S− dx −
∫

Ω

(b − m − k(|S| + |I |))SS−dx +
∫

Ω

σε(S+, I +)S− dx

that implies

1

2

d

dt

∫

Ω

(S−)2(x, t) dx ≤ (b − m)

∫

Ω

(S−)2(x, t) dx .

As a consequence of S(x, 0) ≥ 0 one finds S(x, t) ≥ 0 for x ∈ Ω and t > 0. Pro-
ceeding in a similar fashion, one finds I (x, t) ≥ 0 for x ∈ Ω and t > 0.
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4.4.3 Uniform Bounds for ε > 0

Let us again drop the index ε. One has a set of componentwise nonnegative weak
solutions to (14), (8), (10) according to Definition 2.

Setting ϕ = ψ = 1 in the equations for S and I from Definition 2 and adding the
resulting equations, non-negativity arguments yield for P = S + I

d

dt

∫

Ω

P(x, t) dx ≤
∫

Ω

(b − m − k P)P dx .

From Cauchy-Schwarz’s inequality it follows P is a solution to

d

dt

∫

Ω

P(x, t) dx ≤
∫

Ω

(b − m)P dx − k

|Ω|
(∫

Ω

P(x, t) dx

)2

and there exists a continuous function M2 : [0,+∞) → [0,+∞) such that

{
‖P(·, t)‖1,Ω ≤ max

(‖P(·, 0)‖1,Ω, b−m
k |Ω|) , t > 0;

‖P‖2,Ω×(0,T ) ≤ M2(T ), T > 0.

Setting ϕ = S in the equation for S from Definition 2, ψ = I in the equation for
I from Definition 2 and adding the resulting equations one gets

1

2

d

dt

∫

Ω

S2(x, t) dx + 1

2

d

dt

∫

Ω

I 2(x, t) dx + d1

∫

Ω

|∇S|2 dx + d2

∫

Ω

|∇ I |2 dx

+
∫

Ω

[
2d11|∇S|2 + d12∇ I · ∇S + d21|∇ I |2] fε(S) dx

+
∫

Ω

[
d12|∇S|2 + d21∇S · ∇ I + 2d22|∇ I |2] fε(I ) dx

≤ θbI

∫

Ω

I Sdx +
∫

Ω

(b − m − k(S + I ))S2 dx −
∫

Ω

σε(S, I )S dx

+
∫

Ω

σε(S, I )I dx +
∫

Ω

((1 − θ)bI − m − k(S + I ) − α) I 2 dx .

(15)
From Cauchy-Schwarz’s inequality one gets for ρ > 0

∫

Ω

σε(S, I )I dx ≤ σ 2

4k
(1 + ρ)

∫

Ω

1

1 + εP
S2 I dx + k

1 + ρ

∫

Ω

1

1 + εP
I 3 dx .

It follows from (15) and the condition (H3)
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1

2

d

dt

∫

Ω
S2(x, t) dx + 1

2

d

dt

∫

Ω
I 2(x, t) dx + d1

∫

Ω
|∇S|2 dx + d2

∫

Ω
|∇ I |2 dx

≤ θbI

∫

Ω
I S dx +

∫

Ω
(b − m)S2 dx +

∫

Ω
((1 − θ)bI − m − α)I 2 dx

−k
∫

Ω
S3 dx − ρ

1 + ρ
k

∫

Ω
I 3 dx −

∫

Ω

[

k(1 + εP) + σ − σ 2

4k
(1 + ρ)

]
S2 I

1 + εP
dx .

Using the condition (H2) or equivalently 4k(k + σ) − σ 2 > 0 for small enough
ρ > 0 there exists a continuous function M3 : [0,+∞) → [0,+∞) such that

max
0<t<T

‖P(·, t)‖2,Ω + ‖∇S‖2,Ω×(0,T ) + ‖∇ I‖2,Ω×(0,T ) + ‖P‖3,Ω×(0,T ) ≤ M3(T ).

(16)
From Hölder’s inequality one gets

‖ fε(Xε)∇Yε‖ 6
5 ,Ω×(0,T ) ≤ ‖Xε‖3,Ω×(0,T )‖∇Yε‖2,Ω×(0,T ), (X, Y ) ∈ {S, I }

‖σε(Sε, Iε)‖ 3
2 ,Ω×(0,T ) ≤ ‖σ Iε Sε‖ 3

2 ,Ω×(0,T ) ≤ σ‖Sε‖3,Ω×(0,T )‖Iε‖3,Ω×(0,T ).

The a priori estimate in (16) implies the existence of a continuous function M
′ :

[0,+∞) → [0,+∞) such that for each T > 0

‖∂t Sε‖L
6
5 (0,T ;[W 1,6(Ω)]′) + ‖∂t Iε‖L

6
5 (0,T ;[W 1,6(Ω)]′) ≤ M

′
(T ). (17)

4.4.4 Convergence as ε → 0

Above estimates show the sequence (Sε, Iε)ε>0 is bounded in
(
L2((0, T ); H 1(Ω))

)2

while the sequence (∂t Sε, ∂t Iε)ε>0 is bounded in
(

L
6
5 (0, T ; [W 1,6(Ω)]′)

)2
as ε → 0.

Aubin’s Lemma asserts that for each T > 0 the sequence (Sε, Iε)ε>0 lies in a compact
set of

(
L2(Ω) × (0, T )

)2 � (
L2((0, T ); L2(Ω))

)2
.

One may extract a subsequence still denoted (Sε, Iε)ε>0 converging to some non-
negative (S, I ) as ε → 0, strongly in

(
L2((0, T ); L2(Ω))

)2
, a.e. (x, t) ∈ Ω × (0, T )

andweakly in
(
L2((0, T ); H 1(Ω))

)2
. Onemay also assume (∂t Sε, ∂t Iε)ε>0 is weakly

converging to (∂t S, ∂t I ) in
(

L
6
5 (0, T ; [W 1,6(Ω)]′)

)2
as ε → 0.

Nonlinear terms such as ( fε(Iε)∇Sε)ε>0 are bounded in L
6
5 ((0, T ); L

6
5 (Ω)). Set

fε(Iε)∇Sε = [
fε(Iε) − I

]∇Sε + I∇Sε = �1
ε + �2

ε.

One has �1
ε → 0 strongly in L1((0, T ); L1(Ω)) as ε → 0 because

| fε(Iε) − I | × ‖∇Sε‖ ≤ [|Iε − I | + ε|I |] × ‖∇Sε‖



54 V. Anaya et al.

while �2
ε → I∇S weakly in L

6
5 ((0, T ); L

6
5 (Ω)) as ε → 0. Hence one may assume

( fε(Iε)∇Sε)ε>0 is weakly converging to I∇S in L
6
5 ((0, T ); L

6
5 (Ω)) as ε → 0.

Next (σε(Sε, Iε))ε>0 is bounded in L
6
5 ((0, T ); L

6
5 (Ω)). A mere splitting yields

|σε(Sε, Iε) − σ0(S, I )| ≤ σ |Sε − S| |I | + σ |I − Iε| |Sε| + εσ |Sε + I | |S|Sε|

and (σε(Sε, Iε))ε>0 converges to σ0(S, I ) strongly in L1((0, T ); L1(Ω)) as ε → 0,
and weakly in L

6
5 ((0, T ); L

6
5 (Ω)).

Classical arguments show one may extract a subsequence converging to a com-
ponentwise nonnegative weak solution to system (7), (9), (8).

4.4.5 Alternate Take wrt the Condition (H23)

Setting ϕ = γ S, ψ = I in the equations from Definition 2 and adding the resulting
equations similar computations yield a weak solution.

Remark 2 When condition (H3) is satisfied with strict inequalities, see Remark 1,
one may derive from (15) an additional a-priori estimate

∫ T

0

∫

Ω

(|∇Sε|2 + |∇ Iε|2
) (

fε(S+
ε ) + fε(I +

ε )
)
(x, t) dx dt ≤ M�

2(T ).

Our nonnegative weak solutions will now satisfy

∫ T

0

∫

Ω

(|∇S|2 + |∇ I |2)(S + I )(x, t) dx dt ≤ M�
2(T ).

5 Prototypical RD Model System with Cross Diffusion 2

WhenT0 > 1 a natural question to address is whether the unique endemic state of the
ODE system (1) remains stable for those nonnegative and bounded initial conditions
such that S0 
≡ 0 and I0 
≡ 0 for the RD system (6).

The linearized diffusion matrix from system (6) evaluated at (S∗, I ∗) is

D∗ =
(

d1 + 2d11S∗ + d12 I ∗ d12S∗
d21 I ∗ d2 + d21S∗ + 2d22 I ∗

)

from which one easily gets trace(D∗) > 0, det(D∗) > 0.
On the other hand let J ∗ be the Jacobian matrix for the ODE system (1) evaluated

at the endemic state (S∗, I ∗). When T0 > 1 one has trace(J ∗) < 0, det(J ∗) > 0.
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5.1 Linearized System Assuming T0 > 1

Linearizing system (6)–(9) about the persistent stationary state (S∗, I ∗) yields

∂t

(
u
v

)

= D∗�
(

u
v

)

+ J ∗
(

u
v

)

(18)

equipped with no flux boundary conditions (10).
Let (μ j ≥ 0, ϕ j ) j≥0 be the eigenvalues and eigenfunctions to the eigenvalue prob-

lem
− �ϕ(x) = μϕ(x), x ∈ Ω; ∇ϕ(x) · η(x) = 0, x ∈ ∂Ω. (19)

Looking for a solution to (18), (10) of the parametric form exp(λt)ϕ j (x)( u
v ) one gets

a familiar eigenvalue problem in R2, say (I d2 being the identity matrix in R
2)

(
λI d2 − [−μ j D∗ + J ∗])

(
u
v

)

=
(
0
0

)

.

The question now is whether λ can be positive that is whether instability can be
driven by cross diffusion. Setting

M0 = J ∗ − μ j D∗,

it follows trace(M0) < 0 so that instability is feasible if and only if det(M0) < 0.
A first calculation yields det(M0) is a quadratic function of μ j : for some linear

function Θ of diffusivities (di , di j ) one has

det(M0) = μ2
j det(D∗) + μ jΘ(d1, d2, d11, d12, d21, d22) + det(J ∗). (20)

A necessary condition for instability, that is det(M0) < 0, is to find a set of nonneg-
ative diffusivities implying Θ(d1, d2, d11, d12, d21, d22) < 0:

1. According to Sect. 3 this cannot come from linear or non-linear diffusion. Actu-
ally for d1 > 0, d2 > 0, d11 > 0 and d22 > 0 one finds

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Θ(d1, 0, 0, 0, 0, 0) = d1k I ∗ > 0;
Θ(0, d2, 0, 0, 0, 0) = d2

kS∗2 + θbI I ∗

S∗ > 0;
Θ(0, 0, d11, 0, 0, 0) = d112kS∗ I ∗ > 0;
Θ(0, 0, 0, 0, 0, d22) = d222

[

kS∗ I ∗ + θbI
I ∗

S∗ I ∗
]

> 0.

2. Looking at cross diffusivities leaves some hope to get a bifurcation. One gets
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{
Θ(0, 0, 0, d12, 0, 0) = −d12(kS∗ − k I ∗ − σ S∗)I ∗;
Θ(0, 0, 0, 0, d21, 0) = d21(kS∗2 − kS∗ I ∗ − σ S∗ I ∗ + 2θbI I ∗).

5.2 Some Negative Results

Proposition 3 Assume T0 > 1 and diffusivities are positive. Then the following
hold:

(i) det(M0) > 0 when diffusivities satisfy

k(2d11 + 2d22 − d12 − d21) + σ(d12 − d21) ≥ 0. (21)

When the condition (13) holds no Turing bifurcation can be expected.
(ii) When σ > k then Θ(0, 0, 0, d12, 0, 0) > 0 for d12 > 0.

(iii) When either bI = 0 or θ = 1 then Θ(0, 0, 0, d12, 0, 0) > 0 for d12 > 0.

Proof (i) It is enough to check that

Θ(0, 0, d11, d12, d21, d22) ≥ [k(2d11 + 2d22 − d12 − d21) + σ(d12 − d21)] S∗ I ∗.

When condition (13) holds true then condition (21) is hopefully satisfied.
(ii) When σ > k then kS∗ − k I ∗ − σ S∗ < 0 and the conclusion follows at once.
(iii) When either bI = 0 or θ = 1 then

T0 = σ K

b + α
> 1 ⇐⇒ σ

k

b − m

b + α
> 1 ⇒ σ > k.

�

This states that when T0 > 1 and condition (13) hold then the unique endemic
state of the ODE system (1) remains linearly stable for classical solutions of the
PDE system (6) emanating from nonnegative and bounded initial conditions such
that S0 
≡ 0 and I0 
≡ 0.

5.3 Algebraically Closed Form Endemic States

This occurs in two limiting cases. We shall repeatedly use

Θ(0, 0, 0, d12, 0, 0) = d12Θ(0, 0, 0, 1, 0, 0);
Θ(0, 0, 0, 0, d21, 0) = d21Θ(0, 0, 0, 0, 1, 0).

Case 1. bI = b and α = 0.
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One finds

T0 = σ

θb
K = σ

θb

b − m

k
, S∗ + I ∗ = K , S∗ = θb

σ
, and I ∗ = K − S∗.

First

Θ(0, 0, 0, 1, 0, 0) = 1

σ
[−2θbk + (b − m + θb)σ ] I ∗ = 1

σ
L(σ )I ∗.

Keeping in mind T0 > 1 after some algebra one gets Θ(0, 0, 0, 1, 0, 0) < 0 if and
only if σ lies in the range

(
θb

b−m k, 2θb
b−m+θb k

)
, this range being non-empty provided

b − m − θb > 0.
Second, one has

Θ(0, 0, 0, 0, 1, 0) = θb

σ 2

[
2θbk2 − k(b − m + θb)σ + (b − m)σ 2

] = 1

σ
Q1(σ )S∗

Q1 being a quadratic convex function. Keeping in mind T0 > 1 after some algebra
this implies Θ(0, 0, 0, 0, 1, 0) > 0 in the range θb

b−m k < σ < 2θb
b−m+θb k.

As a conclusionwhenT0 > 1Θ(0, 0, 0, d12, 0, 0) andΘ(0, 0, 0, 0, d21, 0) cannot
be both negative within the same range of the parameter data set.

The case of classical solutions driven by (13)
Let us still assume bI = b and α = 0 as well as d1 = d2 = d∗ > 0, di j = d∗∗ > 0,
i, j = 1, 2. One gets a logistic-like equation for P

∂t P = div
[
(d∗ + 2d∗∗ P)∇ P

] + bP − (m + k P)P

equipped with initial and no-flux boundary conditions. This implies P(t, ·) → K =
b−m

k as t → +∞ in any reasonably strong norm wrt building some ω-limit-set.
Substituting this back in the equation for I one finds a further logistic PDE for I

∂t I = div
[
(d∗ + d∗∗K )∇ I

] + [(σ K − θb) − σ I ] I

equipped with initial and no-flux boundary conditions. This implies I (t, ·) → K −
θb
σ
as t → +∞. Thus when bI = b, α = 0 and (13) holds the unique endemic state

of the ODE system (1) is GAS for those nonnegative and bounded initial conditions
such that S0 
≡ 0 and I0 
≡ 0 for classical solutions of the PDE system (6).
Case 2. bI = 0 and α = 0.

One finds

T0 = σ

b
K = σ

b

b − m

k
, S∗ + I ∗ = b

σ
, and S∗ = mσ + kb

σ 2
.

First T0 > 1 implies Θ(0, 0, 0, d12, 0, 0) > 0 for d12 > 0 by Proposition 3.
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Second, one has

Θ(0, 0, 0, 0, 1, 0) = mσ + bk

σ 4

[
2kmσ + 2bk2 − bσ 2 + mσ 2

] = 1

σ 2
Q2(σ )S∗

Q2 being a quadratic concave function achieving its maximum value at σ = m
b−m k.

Now T0 > 1 ⇒ σ > b
b−m k while

Q2(σ ) = 0 and σ > 0 ⇐⇒ σ = m + √
2b2 − 2mb + m2

b − m
k >

b

b − m
k.

Thus when T0 > 1 and σ < 2(1 + √
2)k are both satisfied Θ(0, 0, 0, 0, d12, 0) < 0

in the range m+√
2b2−2mb+m2

b−m k < σ < 2(1 + √
2)k provided b > 24+3

√
2

5+4
√
2

m.

Example 1 The data set is

b = 2, bI = 2, θ = 0.3, m = 1, α = 0.2, k = 0.2, σ = 1.6,

d1 = d2 = 0.05, d11 = d22 = d21 = 0.

We selected d12 andμ as bifurcation parameters for analyzing the signum of det(M0)

in Fig. 1: it is negative within the red curve and positive outside.
Choosing Ω = (0, 4) × (0, 4) the first two positive eigenvalues of the spectral

problem (19) are 2
16π

2 and 5
16π

2. The first mode is destabilized upon increasing d12.

Fig. 1 Numerical
illustrations for Example 1.
The red curve depicts the
level set det(M0) = 0 as a
function of d12 and μ,
det(M0) being negative
above this red curve. Black
vertical lines represents
μ = 2

16π2 and μ = 5
16π2 the

first two positive eigenvalues
of the spectral problem (19)
in Ω = (0, 4) × (0, 4)
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Fig. 2 Numerical
illustrations for Example 2.
The red curve depicts the
level set det(M0) = 0 as a
function of d21 and μ,
det(M0) being negative
above this red curve. Black
vertical lines represents
μ = 2π2 and μ = 5π2 the
first two positive eigenvalues
of the spectral problem (19)
in Ω = (0, 1) × (0, 1). The
brown horizontal line is
d21 = 0.33

Example 2 The data set is:

b = 2, bI = 0, θ = 0.3, m = 0.01, α = 0, k = 0.4, σ = 1.6,

d1 = 0.02, d2 = 0.01, d11 = 0.025, d22 = 0.04, d12 = 0.01.

We selected d21 andμ as bifurcation parameters for analyzing the signum of det(M0)

in Fig. 2: it is negative within the red curve and positive outside.
Choosing Ω = (0, 1) × (0, 1) the first two positive eigenvalues of the spectral

problem (19) are 2π2 and 5π2. The numerical procedure used in the computations is
found in [2, 3], based on finite element volumes. The “numerical” initial conditions
are S0(x) = b−m

k and I0(x) = 1 at the bottom left volume of Ω and 0 elsewhere.
The endemic state (S∗, I ∗) of the underlyingODE system becomes unstable along

the vertical line μ = 2π2 while crossing the level set det(M0) = 0. As d21 increases
spatial densities of S and I first reach spatially heterogeneous stable (in time) profiles
(d21 = 0.5 in Fig. 3 and d21 = 5 in Fig. 4) to become periodic in time (d21 = 100 in
Fig. 5).

6 Conclusion and Perspectives

We introduced a planar ODE system that arises in modeling the transmission of an
epidemic disease within a host population or SI model, see (1). From a dynamical
point of view the main feature is a threshold parameter, T0, such that when T0 > 1
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Fig. 3 Numerical illustrations for Example 2 with d21 = 0.5. The endemic state of the ODE system
becomes unstable: spatial average densities (left column), spatial densities of S and I (center and
right columns) at times t = 100, 200 and 300 or steps 2000, 4000 and 6000

there exists a unique endemic or persistent stationary state that is GAS for solutions
emanating from positive initial data and no endemic state when T0 < 1.

Then we introduced a spatial structure allowing individuals to disperse through
their preferred habitat and built several planar Reaction-Diffusion systems featuring
linear, nonlinear and cross diffusions, cf. [18, 22, 23]. The goal was to analyze
whether the endemic state of the underlying ODE system remains stable for these
RD systems. Results in [11, 12] tell us that linear diffusion cannot destabilize this
endemic state. This remains true for nonlinear diffusion, see Proposition 1. Then we
looked at a prototypical planar system with quadratic nonlinear and cross diffusions.
Previous numerical suggested that destabilization of the endemic state and pattern
formations occur resulting in a Turing bifurcation.

To support our study, we defined weak solutions according to [2, 3], cf. [19].
This is consistent with our numerical procedures. Some constraints on diffusivi-
ties are required to get existence of a weak solution, see (H2)–(H3) or (H23) in
Proposition 2—as well as convergence of the approximating scheme, cf. [2, 3].
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Fig. 4 Numerical illustrations for Example 2 with d21 = 5. The endemic state of the ODE system
becomes unstable: spatial average densities (left column), spatial densities of S and I (center and
right columns) at times t = 100, 200 and 300 or steps 2000, 4000 and 6000

It turns out from the stability analysis this may not be an optimal approach to
defining a weak solution: either weaker solutions without L2(Ω) gradient control
must be considered, cf. [4], or L∞(Ω) estimates must be a priori established, see
Morgan [20, 21] and Pierre [24] or for special cases of the parameter data set. This
is beyond the scope of this note. Classical solutions may exist, see Sect. 4.3 and the
condition (13), in which case the endemic state remains at least linearly stable, see
Proposition 3 and Case 1 in Sect. 5.3 for nonlinear stability.

Thenwe focused on linear stability / instability of the endemic state whenT0 > 1,
following routine procedures, see [22]. Algebraic calculations lead to checking the
sign a determinant, det(M0), given explicitly in (20) as a function of the endemic state,
the parameter data set and the eigenvalue to be destabilized. To contrast with similar
problems for Lotka-Volterra like population dynamicsmodel systems involving cross
diffusion with algebraically closed form endemic states, see [15, 18] or [25], this
sign remains much more complex to find.

In the two cases wherein an algebraically closed form endemic state exists, see
Sect. 5.3, one may check that cross diffusivities d12 and d21 are “pushing” the sign of
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Fig. 5 Numerical illustrations for Example 2with d21 = 100. The endemic state of theODE system
becomes unstable: spatial average densities (left column), spatial densities of S and I (center and
right columns) at times t = 100, 200 and 300 or steps 2000, 4000 and 6000

det(M0) either toward the + sign yielding linear stability or in opposite directions.
Thus numerical experiments become handy.

In Example 1 we numerically check that upon increasing d12 det(M0) can pass
from positive to negative, see Fig. 1. As a result the first mode of (19) becomes
unstable. Other nonlinear and cross diffusivities are set to 0 so that unfortunately (or
not) constraints to get a weak solutions are not met!

Example 2 is more comprehensive. In Fig. 2 we numerically check that upon
increasing d21 det(M0) can pass from positive to negative destabilizing the first
mode of (19). For d21 small enough yielding det(M0) > 0 the set of constraints to
get a weak solutions are met while this is not true anymore upon increasing d21 to
get det(M0) < 0!

We supply three data sets numerically exhibiting various patterns observed upon
increasing d21. In the first two data sets “stable” heterogeneous spatial profiles are
found, see Figs. 3 and 4. In the last one a time periodic heterogeneous spatial profile
is achieved, see Fig. 5, suggesting a further bifurcation takes place. Instability occurs
after a more or less long transient stage: see the component L1 norms.



Remarks About Spatially Structured SI Model … 63

Periodic outbreaks of epidemic diseases is a known phenomenon, cf. [5] for
measles epidemics. Spatial heterogeneities in host abundance and patterns of contact
between individuals, similar to those used in [8] for BTV, is one out of many expla-
nations for periodicity. Figure5 suggests that cross diffusion yields an analogous
epidemic behavior when increasing d21, that is increasing the weight of susceptible
density in the flux of infectious.

Onemay conclude that existence of weak solutions and bifurcation of the spatially
homogeneous persistent state require more analytical and numerical efforts.
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Automatic Clustering in Large Sets
of Time Series

Robert Azencott, Viktoria Muravina, Rasoul Hekmati,
Wei Zhang and Michael Paldino

Abstract To study large sets of interacting time series, we combine spectral analysis
of graph Laplacians with simulated annealing to automatically generate optimized
clustering of time series, by minimization of cost functions characterizing clustering
quality. We apply these techniques to evaluation of connectivity between cortex
regions, via analysis of cortex activity recordings by sequences of 3-dimensional
fMRI images.

Keywords Time series clustering · Graph Laplacians · Spectral clustering
Mutual information · Simulated annealing · kernel k-means

1 Large Sets of Interacting Time Series

The fast increasing availability of massive data sets has boosted up the use of sophis-
ticated machine learning algorithms and automated clustering techniques to analyze
large sets of interactive time series, such as time indexed recordings of brain activity,
atmospheric and oceanic evolutions, intraday stock prices, etc. In such contexts, one
is confronted to a dynamic system Sys(N , T ) concretely described by N observed
time series X1(t) . . . XN (t) indexed by discretized times t = 1, . . . , T .

For each j the observations X j (t) can either all be real valued or take values in
some fixed finite set. For concrete applications N can range from 100 to 5000, and T
can range from a few hundreds to tens of thousands. Interactivity between time series
is generally unknown, and dynamic models of such systems are often non existent,
or involve very large numbers of unknown parameters to be fitted to the data.

To roughly characterize interactivity without explicit dynamics modelling, one
interesting strategy is to define and compute a symmetric matrix S of “affinity” or
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“similarity” coefficient, where S(i, j) ≥ 0 roughly quantifies the “interaction level”
between time series Xi and X j .

One can then consider the set of “nodes” G = {1, . . . N } as a weighted graph
where the edge (i, j) has “weight” S(i, j) = S( j, i). A first natural goal is then to
partition the set G into k disjoint clusters C1, . . . ,Ck , where affinities are “high”
within each cluster, and “weak” between distinct clusters.

“Spectral Clustering” techniques have been developed to generate “good” clus-
terings within weighted graphs, and are based on the spectral analysis of the graph
Laplacian, as recalled below. These so-called relaxation methods, however, do not
fully solve the clustering problem and in this paper we propose to further optimize
the results of spectral clustering by stochastic gradient descent, via implementable
simulated annealing optimization schemes.

We illustrate our methodology by an ongoing study of fMRI recordings of cortex
activity for epileptic children, in collaboration with Michael Paldino (MD), Neuro-
Radiology, Texas Children Hospital (TCH).

2 Quantifying Affinities Between Time Series

Given two real valued time series X and Y , one can explicitly eliminate low fre-
quencies by many classical linear filters, such as substraction of a suitable moving
average. This type of “detrending” generally improves rough second order stationar-
ity, and one may then characterize “affinity” between X and Y by the absolute value
abscor(X,Y ) ≤ 1 of their correlation after detrending. High values of abscor then
indicate approximate affine relations between the detrended X and Y .

Detecting non linear relations between X and Y is better achieved by entropy
based mutual information mut(X,Y ). When X and Y take values in two finite sets,
mut(X,Y ) is given by

mut(X,Y ) = H(X) + H(Y ) − H(X,Y )

where entropies such as H(X) are computed by

H(X) = −
∑

p(x) log p(x)

with p(x) = Pty(X = x).
The relative mutual information

rmut(X,Y ) = mut(X,Y )/min(H(X), H(Y ))

lies in [0, 1] and rmut(X,Y ) equals 1 iff there is an invertible deterministic between
X and Y .

For the more generic case where X,Y are real valued time series, automated
analysis of empirical histograms based on T observations X (t) and Y (t) provides
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finitely discretized approximations X̂ , Ŷ of X and Y , and one can define an “Entropy
Based Affinity” coefficient between X and Y by rmut(X̂ , Ŷ ).

For N real valued time series X j (t)with j = 1 . . . N and t = 1, . . . , T the preced-
ing approaches generate symmetric N × N affinitymatrices A(i, j) = rmut(X̂i , X̂ j ).
Note that A depends on the discretizations implemented on the time series X j . Nat-
ural variants of these techniques can produce other matrices S(i, j) of affinities.

3 Laplacian of a Weighted Graph

Given an observed dynamic system Sys(N , T ) of N time series X j (t), select and fix
an N × N symmetric matrix S of non negative affinities, as indicated above. Call
G the set of N “nodes” {1, . . . , N }, and define G as a weighted graph by assigning
to each edge (i, j) the weight S(i, j). Two nodes i, j are called “connected” if they
can be linked by a finite sequence of edges of with positive weights. Define the
N × N diagonal matrix D by D( j, j) = ∑N

m=1 S( j,m), and call the degree of node
j . Assume that all nodes j have positive “degree” D( j, j).

Then all the rows of Q = D−1S have sum 1, and Q is the transition matrix of a
Markov Chain n → Zn with finite state space G. Let I be the N × N identity matrix.
For any initial line vectorw0 ∈ RN of nodes “activity levels” or “energies”, stochastic
transmission of “activity” via the Markov chain Zn yields the average evolution
wn = wn−1Q, which is classically controlled by the second highest eigenvalue of Q.

The discrete “infinitesimal generator” Δ = I − Q of the Markov semi-group
n → Qn is called the Laplacian operator of the graph G, and is the discrete analogue
of the Laplace-Beltrami operator on a Riemannian manifold.

The eigenvalues ofΔ are the same as those of the so called “normalizedLaplacian”

L = I − D−1/2SD−1/2 = D−1/2ΔD−1/2

L is always symmetric and semi-positive definite, with eigenvalues 0 ≤ λ1 ≤ . . . ≤
λN . The multiplicity of eigenvalue 0 is the number of connected components in the
weighted graph G. The lowest positive eigenvalue of Δ (and hence of L) is (1 − λ)

where λ is the 2nd eigenvalue of the highest eigenvalue of Q, and hence controls the
speed of stationarization for the randomwalk Zn .We now indicate how the clustering
of nodes in G can be linked to the graph Laplacian Δ.

4 Spectral Clustering and Graph Laplacian

Given the set of nodes G with edges (i, j) endowed with weights or affinities
S(i, j) ≥ 0, one main goal is to find a partition PAR = C(1), . . . ,C(k) of G into k
disjoint clusters. Define the k × k matrix U of cluster affinities by



68 R. Azencott et al.

U (m, r) =
∑

i∈C(m), j∈C(r)

S(i, j).

Define the “volume” vol(m) ofC(m) and the cost cut(m) of the “cut” betweenC(m)

and its complement by

cut(m) =
∑

r �=m

U (m, r) and vol(m) = U (m,m) + cut(m).

Good clusterings should decrease the cost cut(m) while increasing the self-affinities
U (m,m). These requirements can be implemented by minimization of the following
cost function

COST(PAR) =
k∑

m=1

cut(m)

vol(m)
=

k∑

m=1

g(
cut(m)

U (m,m)
), (1)

where g is the increasing function g(x) = x
1+x .

Each clusterCr defines a column vector fr in RN by fr (n) = 1/ vol(r)1/2 for n in
Cr and fr (n) = 0 otherwise. The matrix F = [ f1, . . . , fk] and the normalized graph
Laplacian L then verifies

F ∗ DF = I, fr ∗ L fr = cut(r)/ vol(r) for each r

and hence
COST(PAR) = trace(F ∗ LF).

Minimizing COST(PAR) is then equivalent to finding an N × k matrix F verifying
F ∗ DF = I and minimizing trace(F ∗ LF), under the “combinatorial constraint”
that within each column of F , the coefficients take only two values.

If one relaxes the constraints on F by eliminating the combinatorial constraint,
then one simply has to minimize trace(F ∗ LF) under the constraint F ∗ DF = I .
As is easily proved (see [6, 7]), the relaxed solution F̂ is given by the k eigenvectors
gr associated to the k lowest eigenvalues of the graph Laplacian Δ = I − D−1S.

Since the coordinates of each gr take much more than two values, one still needs
to associate an actual clustering to g1, . . . , gk . A classical approach is to identify
each node n with a standard basis vector e(n) in RN and to compute the projection
v(n) of e(n) onto the k-dimensional subspace of RN generated by the gr .

One then partitions the cloud of N vectors v(n) ∈ Rk by the well-known K-
means algorithm (see [2]) which generates a partition of Rk into k polyhedral cells.
The replacement of K-means by their Hilbert space analog “kernel K-means” often
improves the geometric quality of final clusterings, since kernel K-means based on
polynomial or Gaussian kernels do partition Rk into k cells separated by hyper-
surfaces.
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However, K-means or kernel K-means algorithms are not specifically designed to
minimize the cost function (1). So a terminal partition par of G generated by kernel
K-means is not necessarily a minimizer of COST(PAR).

We now outline how to improve further the minimization of COST(PAR).

5 Clustering Optimization by Stochastic Descent

Minimizing COST(PAR) over all partitions PAR of G into k clusters is an NP-hard
combinatorial problem which can, however, be reasonably attacked by stochastic
gradient descent algorithms such as simulated annealing (see [1]). Indeed given a
current partition PAR = {C(1), . . . ,C(k)}, one canmodify it by one of the following
basic movesMOV(n,m), indexed by n = 1, . . . N andm = 1, . . . , k which removes
the node n from the cluster C( j (n)) to which it currently belongs, and then inserts
n into the cluster C(m). Of course if m = j (n) this move does not modify PAR.
But form �= j (n) the current partition PAR becomes a new partition newPAR where
only the two clusters C( j (n)) and C(m) have been modified. The change in cost

dCOST(n,m) = COST(newPAR) − COST(PAR)

is then easily computed by an elementary formula.
We now indicate how to implement a stochastic descent by simulated annealing

in this context.
Select a decreasing sequence of “virtual temperatures” temp(s) > 0 converging

slowly to 0 as s → ∞. Ideally one should require
∑

s temp(s) = +∞. But practical
implementations usually select temp(s) = as for some 0 < a < 1 with a very close
to 1, such as a = 0.99.

Fix an infinite periodic sequence of nodes s → ns visiting successively all nodes in
G with periodicity N . Start from any initial partition PAR0. At each step s, wemodify
the current partition PARs = Cs(1), . . . ,Cs(k) as follows to generate PARs+1.

Let j = js be the index of the cluster Cs( j) currently containing ns .
For each m in 1, . . . , k, apply the basic move MOV(ns,m) to PARs to gen-

erate a new partition newPAR(s,m) and compute the associated change in cost
dCOST(ns,m). Select a cluster index ms minimizing over m the cost changes
m → dCOST(ns,m), and let

dc(s) = dCOST(ns,ms) = min
m=1...k

dCOST(ns,m).

If dc(s) < 0 define PARs+1 = newPAR(s,ms).
If dc(s) ≥ 0, pick a random number B equal to 1 or 0 with

Pty(B = 1) = e− dc(s)/ temp(s).
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Then define PARs+1 = newPAR(ms) if B = 1 and PARs+1 = PARs if B = 0.
As has been proved in more generic contexts (see [1]), when the series of tem-

peratures temp(s) diverges, the stochastic sequence of costs COST(PARs) converge
with probability 1 to an absolute minimum of the cost function COST(PAR) over all
partitions PAR of G into k clusters.

6 A Study of Cortex Activity for Epileptic Children

6.1 fMRI Recordings

At TCHNeuroRadiology, an ongoing study led by DrMichael Paldino (MD) gathers
sequences of functional Magnetic Resonance Images in 3D to record cortex activity
for selected young epileptic children (see [3–5]). Each full recording is a sequence
of fMRI images Jt , with t = 1, . . . , T = 295, acquired at intervals ≈ 2.5 s between
Jt and Jt+1.

Each 3D image (≈55,000 voxels located on the patient’s cortex) is then al-
gorithmically registered at TCH onto a standard pre-segmented cortex atlas, and
thus partitioned into 148 anatomically well-identified “cortex regions” Reg(m) with
m = 1, . . . , 148, see Figs. 1 and 2.

Each Reg(m) is pre-segmented into smaller “parcels” with surfaces ≈ 150 mm2,
yielding a total of roughly N = 1700 disjoint cortex parcels CPi . The average voxel
intensity within CPi at time t is denoted Yi (t).

The fMRI recording of brain activity for each epileptic patient can thus be viewed
as an array Sys(N , T ) of N time series Yi (t) with i = 1 . . . N and discrete time
t = 1, . . . , T . To evaluate and compare “crude scale” cortex connectivity in a group
of 32 young patients, we have begun applying the spectral clustering techniques
outlined above to each one of these fMRI recordings.

6.2 Pairwise Mutual Information Between fMRI Time Series

Each recorded time series Yi oscillates around a mean value Mi which is essentially
linked to mean levels of blood irrigation in cortex parcel CPi . Within CPi we expect
neural activity at time t to be roughly reflected by the normalized oscillations Zi (t) =
(Yi (t) − Mi )/Mi .

So we have first quantified affinity between Yi and Y j by the relative mutual infor-
mation A(i, j) = rmut(Zi , Z j ).

We then characterize for each patient Pr with r = 1, . . . , 22 the probabil-
ity distribution μr of the N 2 numbers A(i, j) by its vector of quantiles qr =
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Fig. 1 TCHneuro-radiology,M. Paldino (MD) and collaborators: 3D-image segmentation of cortex
into 148 anatomically identified cortex regions

Fig. 2 Voxel level details of 3D-image cortex segmentation
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Fig. 3 Quantiles of absolute values of 289,000 pairwise mutual informations between 1700 cortex
parcels

[q(10%), . . . , q(90%)], where extreme quantiles are not retained because they are
of course less accurately estimated.

We have displayed these quantile curves for several patients in Fig. 3. This es-
sentially ranks patients in terms of overall connectivity, since whenever the quantile
curve qr is above qs , the ≈ 28,900 pairwise affinities of patient Pr are stochastically
larger than those of patient Ps .

6.3 Interactivities Between Cortex Regions

Since mutual information coefficients with low absolute values have poor statistical
significance, we select for each patient Pr a truncation level qr (75%) for its affinity
matrix A, and we replace A by a truncated version Â with Â(i, j) = A(i, j) when
A(i, j) > qr (75%) and Â(i, j) = 0 otherwise.

The interactivity S(m, n) ≥ 0 between two cortex regions Reg(m) and Reg(n)

is then defined by the sum S(m, n) of all the Â(i, j) such that CPi ⊂ Reg(m) and
CP j ⊂ Reg(n). For patient Pr this defines a symmetric 148 × 148 matrix Sr of
affinities between cortex regions.

6.4 Laplacian Spectrum for Cortex Regions Affinities

For each patient Pr the affinity matrix Sr defines as in Sect. 3 the degree Dr (m,m) =∑148
n=1 Sr (m, n) of regionm and the transitionmatrix Qr (m, n) = Sr (m,n)

Dr (m,m)
of a random

walk on the weighted graph Greg = {1, . . . , 148} of cortex regions.
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Fig. 4 Spectra of graph Laplacians for cortex regions connectivity graphs

We then compute as indicated above the Laplace operator Δr = I − Qr of the
randomwalk, and its spectrum SPr = (λ j )with j = 1 . . . 148, listing the eigenvalues
of Δr in increasing order, with λ1 = 0. Recall that as explained above the important
eigenvalues of the Laplacian Δr are the lowest ones.

For the 32 patients already studied, the eigenvalues λ j ofΔr become very close to
1 as soon as j >= 13, as displayed in Fig. 4. The first five positive eigenvalues of the
spectra (see Fig. 5) provide a five-dimensional vector of patient features which we
will use (among other features) at a later stage to implement quantitative comparisons
between patients.

6.5 Automatic Clustering of Cortex Regions

We have begun applying the automatic clustering techniques presented above to our
group of fMRI recordings, at the level of cortex regions.

The first computational clustering level is currently based on spectral clustering
into five clusters after projection on the first 5 eigenvectors of the graph Laplacian,
and is actually implementable at rather fast computational speed. Further optimiza-
tion of this first clustering via simulated annealing is a heavier but still reasonable
computational task for each patient.

Here we only illustrate the simpler spectral clustering approach in Fig. 6 where the
148 cortex regions of one patient have been projected on the first three eigenvectors of
the graph Laplacian, and then automatically segmented into three clusters of cortex
regions.

The neuro-radiology experts in our team will still have to anatomically interpret
the optimized clustering results, a time consuming task dedicated to qualitatively link
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Fig. 5 First 10 lowest eigenvalues of Laplacians for cortex regions connectivity graphs

Fig. 6 Partition of 148 cortex regions into three disjoint subsets by spectral clustering. This example
is computed by spectral clustering in 3D for cortex regions activities recorded on one patient

cortex regions interactivity to the epileptic focus diagnosed for each patient. Inter-
active software tools are currently developed to facilitate this medical interpretation
task.
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7 Meta-similarities Between Weighted Graphs

A natural further goal in the contexts described above is to efficiently define and
quantify “meta-similarities” metsim(r, s) between pairs of observed dynamic sys-
tems Sysr (N , T ) and Syss(N , T ).

In brain activity recordings by EEG helmets of N sensors, or by fMRI sequences
of 3D images with N voxels, the recorded N time series change from subject to
subject, or from experiment to experiment. Automated comparisons of brain activity
recordings across medium sized groups of subjects or patients Pr can be facilitated
by the algorithmic use of adequate meta-similarities.

We propose to formally compare dynamic systems Sysr (N , T ) with r = 1...p by
first associating to each dynamic system a weighted graph G with an affinity matrix
Sr of non-negative weights, and then computing the associated normalized graph
Laplacian Lr .

Since the Lr belong to the manifold POS(M) of symmetric semi-positive def-
inite matrices of fixed size M × M , which is the closure of a well known Rieman-
nian symmetric space, one can specify mathematically various computable positive
definite kernels K (W1,W2) defines for all pairs W1,W2 in POS(M). The meta-
similarity between patients r and s will then be quantified by the scalar product
K (Lr , Ls) = 〈Lr , Ls〉H , where H is the self-reproducing Hilbert space defined by
the kernel K .

The advantage of positive definite kernels to define meta-similarities is that they
provide efficient computational tools for automatic non-linear clustering of patients
into disjoint patients groups. One can then also use the very efficient Support Vector
Machines associated to the kernel K to implement machine learning focused on
generating automatic classification of subjects into pre-assigned target groups.

In future work we intend to apply this meta-similarities approach to the data base
of fMRI image sequences recorded on epileptic patients at TCH NeuroRadiology.
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Zero Viscosity Boundary Effect Limit
and Turbulence

Claude Bardos

Abstract This contribution is based on a theorem of Kato which relates for time
dependent problems the appearance of turbulence with the anomalous energy dis-
sipation, giving for the Cauchy problem an avatar of a basic idea of the statistical
theory of turbulence. Some variant of this theorem are given and then it is shown how
this point of view is in full agreement with several issues of fluid mechanic ranging
from Prandtl’s problem to Kutta-Jukowsky’s equations.

1 Introduction

After a convenient scaling i.e. put in a-dimensional form the incompressible Navier-
Stokes equations

∂tuν + uν · ∇uν − 1

R
Δuν + ∇pν = 0; ∇ · uν = 0 in Ω × R

+
t (1)

involve only the parameter R which is the Reynolds number supposed to be large.
Then ν = R−1 is the rescaled viscosity and the incompressible Euler-equations cor-
respond to the limit caseR = ∞ or ν = 0.

Moreover when the problem is considered in a domain Ω �= R
d boundary con-

ditions are prescribed. For ν = 0 the equation (1) become the Euler equations and
the corresponding solution (for instance, with the same initial data) is denoted by u.
The most natural choice for the boundary condition is the impermeability condition:
u · n = 0 where n denotes the outward normal boundary condition. For the Navier-
Stokes equations a larger class of boundary conditions can be given but in the present
contribution emphasizes is put on theDirichlet (or no slip boundary) boundary condi-
tion uν = 0 on ∂Ω . This is not because it seems to be the simplest but rather because
it corresponds to the situation where the obstacle exercises the strongest effect on the
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behavior of the fluid, in particular for ν → 0. With such boundary conditions one
has (at least for smooth solutions) for uν solution of the Navier-Stokes and u solution
of the Euler equation, the energy balance equation:

d

dt

|uν |2L2(Ω)

2
+ ν

∫
Ω

|∇uν |2dx = 0 and
d

dt

|u|2L2(Ω)

2
= 0, (2)

With given initial data u(x, 0) = u0(x) ∈ L2(Ω) one deduces that the solutions of
the Navier-Stokes equations and of the Euler equation are uniformly bounded in
L∞(R+

t ;L2(Ω)) and that the expression u · ∇u which appears in both equations is
well defined in the sense of distributions according to the relation:

〈u∇u, φ〉 = −〈u ⊗ u : ∇φ〉.

This seems to indicate that, when ν goes to 0, the solution of the Navier-Stokes
converges to the solutions of the Euler (with the same initial data) while the energy
dissipation ν

∫
Ω

|∇uν |2dx goes to zero because at the limit the Euler dynamic is an
hamiltonian systemwhich conserves the energy. This iswhat happens if one considers
a problem in the whole space or in a periodic box, assuming that the Euler equation
supports a smooth solution (With smooth initial data this fact is well established
in dimension 2 and at least for a finite time in dimension 3 (cf. [3] and classical
references therein).

On the other hand, in the presence of boundary effects, evenwith a smooth solution
of the Euler equation having the same initial data, the behavior of limν→0 uν is a
widely open problem. Only the normal component of the velocity on the boundary
may remain equal to 0 and since there is no control on the tangential component of the
velocity on this boundary a singularity in the behavior of the tangent component of
the velocity may appear. Moreover since the Navier-Stokes equations are non linear
such singularity may (and will in most physical cases) propagate inside de domain
and may generate a turbulent wake.

From the relation (2) one deduces the existence of a weak (modulo extraction of
subsequence) limit u of solutions of the Navier-Stokes equation equations. However,
for such weak limit one may have

ε = lim
ν→0

ν

∫ t

0

∫
Ω

|∇uν |2dxds > 0. (3)

This implies that if u is a weak solution it satisfies the relation |u(t)|2L2(Ω)
<

|u(0)|2L2(Ω)
. In other words, the formula

∫
Ω

u · ∇u · udx =
∫

Ω

∇ · (u ⊗ u) · udx = 0,
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which for smooth solutions, with Green formula, follows from the relation∇ · u = 0
and from the boundary condition u · n = 0, may fail to be valid for u.

As it is well known these issues have been approached byKolmogorov in the spirit
of statistical theory of turbulence where average of flows are considered. According
toKolmogorov (cf. [12, 15], and references therein) turbulent flows are characterized
by the relation:

ε = lim
ν→0

ν〈|∇uν |2〉 > 0

which is the statistical counterpart of the assertion (3). Then under this hypothesis,
by a scaling argument, follows the relation:

lim
ν→0

〈|uν(x + l, t) − uν(x, t)|〉 
 ε
1
3 〈|l| 1

3 〉

which indicates for “turbulent” flowanHölder type regularity of order 1
3 . In particular,

for flow more regular one should have:

∫
Ω

∇ · (u ⊗ u) · udx = 0

which would hint at the conservation of energy.
The deterministic counter part of this observation was made by Onsager [19]; in

1949 he proved that any weak solution of the Euler equation u(x, t) which satisfies
the relation

|u(x + l, t) − u(x, t)| ≤ C|l|α with α >
1

3

conserves the energy. Onsager did not provide a full proof in the sense of mathe-
matical rigor. However, such full proof was later obtained by Constantin and Titi
[8] giving rise to a series of refined versions (cf., for instance, [7]). As observed by
Shvydkoy [25] all the proofs rely on the same intuitive Onsager argument which
goes as follows: In the expression

∫
Ω

∇(u ⊗ u) · udx = 0 (4)

one should distribute the derivative on the three argument leading to a formal expres-
sion ∫

Ω

(
∇ 1

3 u ⊗ ∇ 1
3 u ⊗ ∇ 1

3 u
)
dx.

Then if ∇ 1
3 u is bounded say in Lp with 3 ≤ p ≤ ∞ it could be approximated by

regular functions in such a way that the relation (4) should be obtained by a limit
process.
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On the other hand, in (1993) and (1997) Scheffer and Shnirleman (cf. [23, 24])
gave examples of functions u ∈ L∞(Rt;L2(R2)) weak solutions (in the sense of
distributions):

∂tu + ∇(u ⊗ u) + ∇p = 0, ∇ · u = 0

of the Euler equations with space and time compact support. Of course such solutions
are not physical otherwise they would represent a fluid starting from rest and later
returning to rest with no external force. As coined by Villani “The existence of these
solutions would solve the energy crisis”. More recently starting in 2009 with a series
of breathtaking contributions De Lellis and Székelyhidi introduced in the subject the
tools of Functional Integration (cf. [11]). Eventually after several other contributions
Buckmaster, De Lellis and Székelyhidi (cf. [6] and references therein) proved the
existence of weak solutions

u ∈ L1t
(
C

1
3−ε
x

)

which support energy decay hence almost completing the Onsager conjecture.
These contributions underline the validity of a deterministic approach for prob-

lems related to turbulence. With a theorem of T. Kato (1984) [14], recalled and
extended in the next section, one shows that it is in presence of boundary effect that
in this approach the relation between anomalous energy dissipation and turbulence
is the most natural.

It was shown in [4] for some specific examples and conjectured in more general
cases that the small viscosity limit be a selection principle to discard the unphysical
solutions of the Euler equations. Moreover the importance of these boundary effects
was already foreboded by d’Alembert.Working on a 1749Prize Problemof theBerlin
Academy on flow drag, he concluded: “It seems tome that the theory (potential flow),
developed in all possible rigor, gives, at least in several cases, a strictly vanishing
resistance, a singular paradox which I leave to future Geometers to elucidate” and
this became the famous d’Alembert paradox, most probably the origin of the theory
of Navier-Stokes equations. Eventually (cf. Sect. 3) one can in a natural way relate
the anomalous energy dissipation due to viscosity effects on the boundary with the
force exerted on the body (for instance, the lift on a wing).

2 Energy Estimate, Weak Convergence,
and the Kato Criteria

In a domain Ω × [0,T ] ⊂ R
d
x × R

+
t , with d = 2 or 3 we assume the existence of

smooth solutions both for the Navier-Stokes equations and of the Euler equations
with the same initial data:

(uν, u) ∈ C1(Ω × [0,T ]); uν(x, 0) = u(x, 0) = u0(x); (5a)
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∂tuν + uν · ∇uν − νΔuν + ∇pν = 0, ∇ · u = 0 in Ω × [0,T ]
uν = 0 on ∂Ω × [0,T ]; (5b)

∂tu + u · ∇u + ∇p = 0, ∇ · u = 0 in Ω × [0,T ],
n · u = 0 on ∂Ω × [0,T ]. (5c)

Hence for the Navier-Stokes equation one has the energy balance relation

1

2

d

dt

∫
Ω

|uν(x, τ )|2dx dτ + ν

∫
Ω

|∇uν |2dx = 0 or

∫
Ω

|uν(x, t)|2
2

dx + ν

∫ t

0

∫
Ω

|∇uν(x, s)|2dx ds =
∫

Ω

|u(x, 0)|2
2

dx

(6)

and for the Euler equation the conservation of energy:

∀t ∈ [0,T ]
∫

Ω

|uν(x, t)|2
2

dx =
∫

Ω

|u(x, 0)|2
2

dx.

From (6) one deduces that the family uν is uniformly bounded in L∞([0,T ];L2(Ω))

and, therefore,modulo extraction of a subsequence it converges inL∞([0,T ];L2(Ω))

weak star to a function u satisfying.

∂tu + ∇x(u ⊗ u) + ∇p + ∇x(u ⊗ u − (u ⊗ u)) = 0

with u ⊗ u denoting the weak limit of the sequence uν ⊗ uν . Here the notion of weak
limit plays the role of the ensemble average and

R = u ⊗ u − u ⊗ u

is a non negative tensor which has no reason to be equal to 0 and which is the avatar
of the Reynolds stress tensor in the statistical theory of turbulence.

Remark 1 Moreover it was observed in [5] that the vanishing of R may not be a
sufficient condition for the absence of anomalous dissipation.

On the other hand, since u is smooth one can introduce the stress tensor:

S(u) = ∇u + ∇ tu

2

and, from the equations (5b) and (5c), obtain (by substraction, multiplication by
(u − uν) and use of the Green formula) the relation:
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d

dt

1

2
|uν − u|2L2(Ω) + ν

∫
Ω

|∇uν |2dx ≤ |(uν − u, S(u)(uν − u))|

−ν

∫
Ω

(∇uν · ∇u)dx + ν

∫
∂Ω

∂nuν · udσ. (7)

The term

ν

∫
∂Ω

∂nuν · udσ

plays a crucial role in the analysis below. In the absence of boundary (in a periodic
domain or in the whole space) one deduces that (recalling that we have assumed the
existence of a smooth solution of the Euler equation), for ν → 0 the solution of (5b)
converges in L∞([0,T ];L2(Ω)) to the solution of (5c). However, in the presence
of no slip boundary effects and in such a general setting the only result is the Kato
Theorem which reads as follow:

Theorem 1 In the presence of a smooth solution of the Euler equation with the same
initial data, the following facts are equivalent:

uν(t) → u(t) in L2(Ω) uniformly in t ∈ [0,T ], (8)

uν(t) → u(t) weakly in L2(Ω) for each t ∈ [0,T ], (9)

lim
ν→0

ν

∫ T

0

∫
Ω

|∇uν(x, t)|2dx dt = 0, (10)

lim
ν→0

ν

∫ T

0

∫
Ω∩{d(x,∂Ω)<ν}

|∇uν(x, t)|2dx dt = 0. (11)

and eventually the fact that for all tangent to the boundary vector field w(x, t) ∈
D((0,T ) × ∂Ω) one has:

lim
ν→0

ν

∫ T

0

∫
∂Ω

∂uν

∂n
(σ, t)w(σ, t)dσ dt = 0. (12)

The implications (8) ⇒ (9) ⇒ (10) are direct consequences of the energy dissi-
pation for the Navier-Stokes equation and energy conservation for smooth solutions
of the Euler equation. The fact that (11) implies (8) is the essential contribution of
Kato [14]. It is done with a well adapted construction of a boundary layer corrector.

The fact that (11) ⇒ (12) was done in [3]. There, following the construction of
Kato one introduces a convenient family wν of extensions in Ω of any given smooth
vector field w(σ, t) tangent to ∂Ω . These wν(x, t) are supported in the region

{(x, t)} ⊂ {x ∈ Ω | d(x, ∂Ω) < ν} × ]0,T [ .



Zero Viscosity Boundary Effect Limit and Turbulence 83

Then one multiplies the Navier-Stokes equations by wν and from the relation

ν

∫
∂Ω

∂uν

∂n
(σ, t)w(σ, t)dσ

=ν(∇uν,∇wν)L2(Ω) − (uν ⊗ uν,∇wν)L2(Ω) + (∂tuν,wν)L2(Ω)

one deduces (12). Eventually (12) ⇒ (8) follows from (7).

2.1 Equivalent Form of the Kato Criteria

Caseswhere theKato criteria do not apply seem to be, as discussed below, the general
situation rather than the exception.They correspond to real or numerical observations.
They are the most commonway of generating turbulence even homogenous isotropic
turbulence, for instance when a grid is used to generate such turbulence (cf. [12]
Fig 1.11 page 9). On the other hand, the appearance of such situations depends on
many unrelated parameters. Therefore it is interesting, (recalling that we assume for
the same initial data the existence in Ω × [0,T ] of a smooth solution u(x, t) of the
Euler Equation), to quote several other fully equivalent criteria which where recently
derived and which relate to the fact that at the limit ν → 0 the energy dissipation
does not go to 0 with the non convergence uν to this smooth solution. The relation

lim inf
ν→0

ν

∫ T

0

∫
Ω

|∇uν(x, t)|2dx dt = ε > 0 (13)

implies among others the following facts.
In [5] it is proven that (13) implies the existence of at least one point

pturb = (xturb, tturb) ∈ ∂Ω × [0,T ]

such that for any neighborhood U of this point and any n one has:

sup
ν→0

||uν ||C0, 1n (U )
= ∞.

On the other hand, this condition can be even refined following [9]. There, in 2d ,
one shows that the existence for some ν0 > 0 of a constant C such that (with uτ

ν and
unν denoting the tangent and the normal component of the flow near ∂Ω)

∫ T

0

∫
Ω∩d(x,∂Ω)<ν0

|uτ
ν (x, t)u

n
ν(x, t)|dx dt ≤ Cν

rules out the anomalous dissipation of energy (i.e. in (13) ε = 0).
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Also in 2d cf. [10] one has no anomalous energy dissipation if:

lim
ν→0

ν

∫ T

0

∫
∂Ω

| inf(0,∇ ∧ uν)(x, t)|dσ dt = 0

Eventually in [9] other criteria and corresponding references are given.

Remark 2 As it is well known most of the solutions of time dependent compress-
ible Euler equation, even starting from smooth initial data, become singular after a
finite time (formation of shocks). However, it was observed in [2] that most of the
above results can be adapted to the compressible case as long as the solution of the
compressible Euler equations, with the same initial data remains smooth.

2.2 Comparison with the Prandtl Equations
and the Triple Deck Ansatz

In (1904) Prandtl [21] proposed to represent the solution near the boundary by a
parabolic boundary layer

uν 
 Uτ

(
d(x, ∂Ω)√

ν
, xτ , t

)
+ √

νUn

(
d(x, ∂Ω)√

ν
, xτ , t

)
,

where d(x, ∂Ω) denotes the distance to the boundary while the indices τ and n refer
to tangent and normal components of the space variable x and of the fluid velocity
U (x, t).

Inserting this ansatz in the Navier-Stokes equation and discarding terms of order
ν Prandtl obtained the equations that carry his name. Such system has been used with
success over the years to compute the air around an airfoil but only in region with
no recirculation. Since, in general, the flow does not remain parallel to the boundary
one expect the appearance of a series of pathologies which would be first related to
phenomena of detachment and recirculation. This justify the reason for the Prandtl
equations to be an ill posed problem and this has already been observed long time
ago. In the most recent contribution [13] one finds a convenient list of references
and a series of sufficient condition (which prevent the appearance of detachment)
and insure the well posed-ness of the system. In particular, as observed by Asano [1]
and Caflisch and Sammartino [22], with analytic initial data and during a short time
(a very non physical and stringent condition) the solution of the Prandtl equations
exists and provides a good approximation of the viscous solution.

Remark 3 The following remark seems important: If for some time interval the
Prandtl equation have a smooth solution and provide an approximation for ν → 0 of
the solution of the Navier-Stokes equations then the Kato criteria is satisfied. This is
not surprising. Otherwise that would lead to a contradiction because the Kato criteria
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involves a boundary layer of size O(ν) while the Prandtl ansazt contains oscillations
of order

√
ν. Eventually this follows from the estimate:

ν

∫ T

0

∫
Ω∩d(x,∂Ω)<ν

|∇uν(x, t)|2dx dt


 ν

∫ T

0

∫
Ω∩d(x,∂Ω)<ν

∣∣∣∣∇
(
Uτ

(
d(x, ∂Ω)√

ν
, xτ , t

)
+ √

νUn

(
d(x, ∂Ω)√

ν
, xτ , t

))∣∣∣∣
2

dx dt

≤ C
∫ T

0

∫
Ω∩d(x,∂Ω)<ν

dx dt → 0.

However, the fact that the existence of a smooth solution (whenever it exists) provides
a uniform (for ν → 0) approximation of the Navier-Stokes equation, is except in the
case considered in [1, 22], and in full generality, an open problem.

On the other hand, Kato criteria may hold in cases where the validity of Prandtl
ansatz fails because such ansatz requires the absence of recirculation in a layer of
size O(

√
ν) while the Kato criteria requires only some regularity in a much smaller

region of the order of ν.
In fact, some ansatz that would allow recirculation in a region of order ν have been

proposed. The most classical being the triple deck ansatz proposed by Stewartson in
1974, cf. [26], which introduces three layers according to the formula:

1. In theUpperDeck {x\√ν < d(x, ∂Ω)} ∩ Ω the solution is described by the Euler
flow.

2. In the Lower Deck {x\0 < d(x, ∂Ω) < ν
5
8 } ∩ Ω the solution is described by the

above Prandtl boundary layer ansatz.
3. In the Middle Deck {ν 5

8 < d(x, ∂Ω) <
√

ν} ∩ Ω which connects the two above
regions the following scaling is proposed.

uν(x, t) 
 (ν
1
8Uτ (

d(x, ∂Ω)

ν
5
8

,
xτ

ν
3
8

, t), ν
3
8Un(

d(x, ∂Ω)

ν
5
8

,
xτ

ν
3
8

, t)). (14)

Once again one observes that if the above formulas provide in the region
0 ≤ d(x, ∂Ω) ≤ √

ν an uniform approximation of the solution of the Navier-Stokes
equation with no slip boundary condition then, the Kato criteria is satisfied.

2.3 Kato Criteria and Turbulent Layer

As already said above cases where the energy dissipation does not vanish with ν → 0
and hence where the Kato criteria is not satisfied seem to be rather the general cases
than the exception. And in such general case turbulence generation in a region of size
ν is the basic cause of the phenomena. In spite of the absence of any type of proof I
think that it may be useful to compare this issue with the rule for turbulence at the
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boundary. Since convergence in a strong norm is not expected, a turbulent boundary
layer for uν should be present, in general, around some part of the boundary.

To the best of my knowledge, the only practical thing available is a description
based on experiment, numerical analysis and dimension analysis, the Von Karman-
Prandtl turbulent layer (1932). It provides an ansatz for the tangential component of
the velocity uτ (xn, xτ , t) in the layer

Bturbulent = {x, d(x,Ω) < ν} ∩ W

with W denoting a neighborhood of a part of the boundary.
On ∂Ω ∩ W the quantity

u∗ = √
ν∂nuτ (15)

which has the dimension of a velocity, is assumed to be of the order of unity.
Then in Bturbulent one has:

uτ (xn, xτ ) = u∗Uτ (s), s = u∗ xn
ν

(16)

withUτ (s) an intrinsic function of the “number” s.With phenomenological argument
this function is almost linear for 0 < s < 20 and given by a Prandtl-VonKarmanwall
law

Uτ (s) = κ log s + β for 20 < s < 100. (17)

However, either with (15) which implies that

ν∂n(uτ )|∂Ω ≥ α > 0

or with (16) which implies

ν

∫
{x∈Ω\d(x,∂Ω)<ν

1
2 }

|∇uν(x, t)|2dx ≥ ε > 0 (18)

one observes that the existence of such boundary layer is consistent with the fact that
uν does not converge to the smooth solution u and (for instance) is not in C0,α (for
any α) uniformly with respect to ν in some neighborhood of a part of the boundary
which is necessary for the appearance of a turbulent wake.

3 The d’Alembert Paradox, the Wake Behind an Obstacle,
and the Kutta-Jukowski Condition

In this section the case whereΩ ⊂ R
d with d = 2, 3 is the complement of a bounded

obstacle (or body) is considered and the fluid u ∈ L∞(Ω × Rt) is assumed to satisfy:
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∇ · u = 0 and ∇ ∧ u = 0 in Ω; u · n = 0 on ∂Ω,

lim|x|→∞ u(x) = u∞ = (0, u∞) for d = 2 or u∞ = (0, 0, u∞) for d = 3

then u is a potential flow. Moreover, with the relation:

u · ∇u =
∑
1≤j≤d

uj∂xj ui = u · ∇u =
∑
1≤j≤d

uj∂xj uj = 1

2
∇x|u|2

u is a stationary solution and for any R > 0 with the Green formula one has

F =
∫

∂Ω

pndσ =
∫

∂Ω

(pn + (n · u)u)dσ

=
∫

Ω∩{|x|<R}
(∇p + u · ∇u)dx −

∫
|x|=R

(
x
|x|p +

(
x
|x| · u

)
u

)
dσ

= −
∫

|x|=R

(
x
|x|p +

(
x
|x| · u

)
u

)
dσ. (19)

LettingR → ∞ and using the properties of bounded harmonic functions one deduces
from (19) the two following theorems:

Theorem 2 (D’Alembert paradox) In 3 space variables, a potential flow with
bounded velocity produces no force on the obstacle.

Theorem 3 (Kutta-Joukowski theorem) In two space variables the lift F+ produced
by a potential flow with constant horizontal velocity at ∞

lim|x|→∞ u(x) = (u∞ > 0, 0)

is given, in term of the circulation of the fluid around the obstacle by the Kutta-
Joukowsky formula:

F+ = −u∞
∫

∂Ω

u ∧ ndσ.

The proofs of these classical theorems can be found in [15] and for a more mod-
ern presentation in [17]. As an illustration of this discussion one observes that the
d’Alembert paradox can be lifted if instead of considering the above potential flow
one considers the limit for ν → 0 of a solution of Navier-Stokes equation with no
slip boundary condition. In general, this solution may not be (and will not be in most
cases) a regular solution of the Euler equation. Therefore the Kato criteria shows how
the appearance of a force on the body is related to the anomalous energy dissipation.
This may contribute to understand how this energy dissipation through viscosity
effect creates forces and in particular lift on the body.

Behind an obstacle the physical solution exhibits a wake. When the cross section
of the obstacle is very elongated, with a width (or span) large in comparison with
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the other dimensions and in particular with a sharp trailing edge the thickness of
the wake is very small. In such cases one shows (cf. [15][Chapter III, § 37]) that
the Kutta-Jukowski relation remains valid (both in dimension 2 and with a natural
extension in dimension 3). The ultimate approximation consists in identifying this
wake with a line in 2 space variables and a plane in 3 spaces variables, called the
Trefftz line or Trefftz plane Γ .

In the complementary of this line (resp. plane) the fluid is irrotational hence
potential u = ∇φ. On Γ with the relation ∇ · u = 0 the normal component of the
velocity is continuouswhile the tangential component has a jump leading to formulas:

[∇φ] · n = 0, ∇ ∧ u = [uτ ] ⊗ δΓ (t) = [∇φ] ⊗ δΓ (t), (20a)

∂tu + ∇u ⊗ u + ∇p = 0, ∇ · u = 0. (20b)

In the article of Périaux [20] there are several examples showing that such ansazt is
well adapted to finite elements discretization. This confirms also the pertinence of
the model.

However, one should keep in mind that even if the Trefftz plane is a good model
for computations, it does not provides a description of what happens in the wake. The
surface (Γ (t), t) ⊂ R

d
x × R

+
t do not exist, in general. The reason is that solutions

of (20) with a C2 surface leads to an ill posed problems. This has been already
observed by Kelvin and Helmholtz and therefore such instability carry the name of
Kelvin Helmholtz. In the last century this was also the object of many contributions.
Basically it was shown that if a solution of (20) exists with a vorticity supported by
a C2 surface then in fact the surface is analytic (cf. [16, 27]). A contrario that means
that what happens in the wake cannot, in general, be described by a “smooth surface”
But once again that does not prevent the models like the Trefftz plane to be efficient
for computations.

4 Conclusion

This contribution contains both some reviews of already published results and some
new considerations. It is based on a theorem of T. Kato which concerns the zero vis-
cosity limit of solutions of Navier-Stokes equations with no slip boundary condition.
The first observation was that this is the simplest and may the only (to the best of my
knowledge) case where there is a natural explicit relation between the anomalous
dissipation of energy and the appearance of turbulence.

One drawback of this presentation is the fact that it is based on a finite time
evolution (this theory of partial differential equation carries the name of Cauchy
problem) while most practical problems concern stationary (or stationary in the
average) regimes. However, the similarity between these two regimes (even in the
absence of complete proofs) is striking enough to be underlined and eventually rules
derived from the stationary regimes are applied in time dependent contributions. A
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good example being the Prandtl-Von Karman law. As explained above it is compat-
ible with the appearance of turbulence and is used in simulations as explained in
Mohammadi and Pironneau [18, p. 15].
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Parabolic Equations with Quadratic
Growth in R

n

Alain Bensoussan, Jens Frehse, Shige Peng and Sheung Chi Phillip Yam

Abstract We study here quasi-linear parabolic equations with quadratic growth in
R

n . These parabolic equations are at the core of the theory of PDE; see Friedman
(Partial differential equations of parabolic type. Prentice-Hall, Englewood Cliffs,
1964) [6], Ladyzhenskaya et al. (Translations of Mathematical Monographs. AMS,
1968) [4] for details. However, for the applications to physics and mechanics, one
deals mostly with boundary value problems. The boundary is often taken to be
bounded and the solution is bounded. This brings an important simplification. On
the other hand, stochastic control theory leads mostly to problems in Rn . Moreover,
the functions are unbounded and the Hamiltonian may have quadratic growth. There
may be conflicts which prevent solutions to exist. In stochastic control theory, a
very important development deals with BSDE (Backward Stochastic Differential
Equations). There is a huge interaction with parabolic PDE in R

n . This is why,
although we do not deal with BSDE in this paper, we use many ideas from Briand
and Hu (Probab Theory Relat Fields 141(3–4):543–567, 2008) [1], Da Lio and Ley
(SIAM J Control Optim 45(1):74–106, 2006) [2], Karoui et al. (Backward stochastic
differential equations and applications, Princeton BSDE Lecture Notes, 2009) [3],
Kobylanski (Ann Probab 28(2):558–602, 2000) [5]. Our presentation provided here
is slightly innovative.
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1 Presentation of the Problem

1.1 General Framework

We are considering the following problem:

⎧
⎨

⎩

−∂u

∂t
− 1

2
�u = H(x, u, Du),

u(x, T ) = h(x).
(1)

We have taken − 1
2�u instead of a general coercive operator A, to simplify calcu-

lations. The argument, space variable, is x ∈ R
n . The Hamiltonian H(x, y, z) is a

measurable function on R
n × R × R

n such that

y, z →H(x, y, z) is continuous, for each x ∈ R
n, (2)

|H(x, y, z)| ≤ λ(x) + k|y| + γ

2
|z|2. (3)

The functions λ(x) and |h(x)| are not bounded, but cannot have a growth more than
quadratic, with limited growth rates, depending on the size of T . If T is sufficiently
small, general quadratic growth is possible. We shall make this assumption more
precise in the next section. The key difficulty is that there is a conflict between the
growth of the functions λ(x), |h(x)| and the quadratic growth of the Hamiltonian in
z. When the Hamiltonian has a growth lower than quadratic, things become much
easier. We shall prove existence of a solution of (1), in a convenient functional space
to be introduced. More conditions are required to obtain uniqueness.

1.2 Discussion on Growth

To understand the issue of growth, we apply the inequality (3) to Eq. (1) to obtain:

−∂u

∂t
− 1

2
�u ≤ λ(x) + k|u| + γ

2
|Du|2.

This leads to introducing the PDE:

⎧
⎨

⎩

−∂ ū

∂t
− 1

2
�ū − kū − γ

2
|Dū|2 = λ(x),

ū(x, T ) = |h(x)|,
(4)

and we expect that
|u(x, t)| ≤ ū(x, t).
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The issue is that the PDE (4) may fail to have a solution. The growth conditions
guarantee the solvability of this equation. In fact, by simple calculations the function
v̄(x, t) := exp(γ ū(x, t) exp(kt)) satisfies the inequality

⎧
⎨

⎩

−∂ v̄

∂t
− 1

2
�v̄ ≤ γ λ(x) exp(kt) v̄,

v̄(x, T ) = exp(γ |h(x)| exp(kT )).

(5)

This introduces naturally the linear equation

⎧
⎨

⎩

−∂v∗

∂t
− 1

2
�v∗ = γ λ(x) exp(kt) v∗,

v∗(x, T ) = exp(γ |h(x)| exp(kT ))

(6)

and ū(x, t) ≤ 1

γ
exp(−kt) log v∗(x, t). The problem reduces to the solvability of

(6), which is not warranted, in spite of the linearity. One good way to capture the
solvability issue is to use the probabilistic interpretation of v∗(x, t). We have, by a
formal application of Feymann-Kac’s,

v∗(x, t) = E

(

exp

(

γ

(

|h|(wxt (T )) exp(kT ) +
∫ T

t
λ(wxt (s)) exp(ks) ds

)))

,

(7)
in which wxt (s) = x + w(s) − w(t), where w(s) is a standard Wiener process inRn .
It is clear that the expectation of the right-hand side of (7) can be +∞, unless the
growth of λ and |h| is restricted.

1.3 Sufficient Condition

We introduce a function ζ(x) such that

⎧
⎨

⎩

(μ − k)ζ − 1

2
�ζ − γ

2
|Dζ |2 ≥ λ(x) exp(μT ),

ζ(x) ≥ |h(x)| exp(μT )

(8)

for a suitable choice of μ > k. We have the first bounding result:

Lemma 1 It holds
ū(x, t) ≤ ζ(x). (9)
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Proof Let ζ̄ (x, t) = exp (γ ζ(x) exp(−(μ − k)t)). We get

−∂ζ̄

∂t
− 1

2
�ζ̄ = γ ζ̄ exp(−(μ − k)t)

[

(μ − k)ζ − 1

2
�ζ − γ

2
exp(−(μ − k)t) |Dζ |2

]

≥ γ ζ̄λ(x) exp(kt) exp(μ(T − t))

≥ γ λ(x) exp(kt) ζ̄ ,

and ζ̄ (x, T ) ≥ exp(γ |h(x)|) exp(kT ). Comparing with the inequalities (5), by the
maximumprinciple,weseethat ζ̄ (x, t) ≥ v̄(x, t)henceexp

[
γ ζ(x) exp kt exp(−μt)

]

≥ exp((γ ū(x, t)) exp(kt), which implies immediately the result (9).

Therefore, a sufficient condition for the solvability of (4) is to find a function ζ(x)
satisfying (8). We can then state that:

Lemma 2 We assume that λ(x), |h(x)| satisfy the following respective growth con-
ditions:

λ(x) ≤ |x |2 exp(−(2 + kT ))

2γ T 2
+ C, (10)

|h(x)| ≤ |x |2 exp(−(2 + kT ))

2γ T 2
+ C.

Then the function

ζ(x) = |x |2
2γ T

+ B,

and μ − k = 2

T
satisfy (8), for a sufficiently large, in comparison with C, constant

B > 0.

Proof The result is obtainedbydirect calculation.Wemust take, sinceμT = 2 + kT ,

B ≥ (C exp(2 + kT )) ∨
(

n

4γ
+ CT

2
exp(2 + kT )

)

.

1.4 Main Result

We then state the main theorem in this article:

Theorem 1 We assume (2), (3) and (10). Then there exists a solution of (1).

The proof will be given in the next section. We can give a uniqueness result under
some additional assumptions; indeed, if we assume further that
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|H(x, y, z) − H(x, y′, z)| ≤ k|y − y′|, (11)

z �→ H(x, y, z) is convex, for each (x, y), (12)

we then have

Theorem 2 With the assumptions of Theorem 1, (11), (12), and the growth condition
(23) stated below, the solution of (1) is unique.

2 Methodology

In this section, we aim to prove Theorems 1 and 2. We proceed by first making
more assumptions, which will permit to construct an approximation. We begin by
the standard case: the Lipschitz case.

Proposition 1 We assume that, for any (x, y, z) and (x ′, y′, z′), for some C > 0,

|H(x, y, z) − H(x, y′, z′)| ≤ C(|y − y′| + |z − z′|), (13)

|H(x, y, z)| ≤ λ(x) + k(|y| + |z|), (14)

with λ(x), |h(x)| being of polynomial growth. There exists one and only one solution
of (1) in a Sobolev space with a weight – a positive function Φm(x) := 1

(1 + |x |2) m
2

for x ∈ R
n, for some suitable choice of m ∈ Z

+.

Proof To simplify the notation, if there is no cause of ambiguity, we may skip the
subscriptm in Φm in the rest of this proof. We see that |DΦ(x)| ≤ c0Φ(x), for some
C0 depending onm. The growth assumption on λ(x) and |h|(x), together with a large
enough m, can warrant that

∫

Rn

λ2(x)Φ2(x)dx < +∞,

∫

Rn

h2(x)Φ2(x)dx < +∞, (15)

and we say that λ, h ∈ L2
Φ(Rn). We next define the Sobolev space:

H 1
Φ(Rn) :=

{

v |
∫

Rn

v2(x)Φ2(x)dx < +∞ and
∫

Rn

|Dv|2(x)Φ2(x)dx < +∞
}

,

and we also consider the space H := L2(0, T ; H 1
Φ(Rn)) with the norm, for any

v ∈ H ,

‖v‖2 :=
∫ T

0

∫

Rn

(|v|2 + |Dv|2)Φ2(x) exp(μt) dx dt,

in which μ is a positive constant to be determined later. We shall obtain the solution
as the fixed point of a contraction map Θ . For v ∈ H , we define the map Θ(v) = u
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as the solution of ⎧
⎨

⎩

−∂u

∂t
− 1

2
�u = H(x, v, Dv),

u(x, T ) = h(x),

which is feasible as |DΦ(x)| ≤ c0Φ(x). Note that
∂u

∂t
∈ L2(0, T ; (H 1

Φ(Rn))′),

where (H 1
Φ(Rn))′ is the dual space of H 1

Φ(Rn). Besides, u(·, T ) is defined as an
element of L2

Φ(Rn). Thanks to the assumption (14) and condition (15) we see easily
that themapΘ is well-defined, andmapsH into itself. To prove that for some choice
of μ that the map Θ is a contraction, consider two functions v1, v2 and the images
Θ(v1) = u1 and Θ(v2) = u2. We also set ṽ = v1 − v2, ũ = u1 − u2. We have

−∂ ũ

∂t
− 1

2
�ũ = H(x, v1, Dv1) − H(x, v2, Dv2),

ũ(x, T ) = 0.

Testing this equation with ũΦ2 and integrating we obtain

1

2

∫

Rn

ũ2(x, 0)Φ2(x)dx + μ

2

∫ T

0

∫

Rn

ũ2Φ2 expμt dx dt

+1

2

∫ T

0

∫

Rn

|Dũ|2Φ2 expμt dx dt+
∫ T

0

∫

Rn

Dũ · DΦũΦ expμt dx dt

≤ C
∫ T

0

∫

Rn

(|ṽ| + |Dṽ|)|ũ|Φ2 expμt dx dt.

Using the condition on |DΦ|, it implies

μ

2

∫ T

0

∫

Rn
ũ2Φ2 expμt dx dt + 1

2

∫ T

0

∫

Rn
|Dũ|2Φ2 expμt dx dt

≤ c0

∫ T

0

∫

Rn
|Dũ||ũ|Φ2 expμt dx dt + C

∫ T

0

∫

Rn
(|ṽ| + |Dṽ|)|ũ|Φ2 expμt dx dt.

By easy majorations we obtain

1

4

∫ T

0

∫

Rn
|Dũ|2Φ2 expμt dx dt +

(μ

2
− 4C2 − c20

) ∫ T

0

∫

Rn
ũ2Φ2 expμt dx dt ≤ 1

8
‖ṽ‖2.

Choosingμ such that
μ

2
− 4C2 − c20 ≥ 1

4
, it follows

1

4
‖ũ‖2 ≤ 1

8
‖ṽ‖2, which proves

that Θ is a contraction. This completes the proof. �
We next state an important comparison result. Consider another Hamiltonian

H ′(x, y, z) and another initial condition h′. We assume that

H ′(x, y, z) ≥ H(x, y, z), h′(x) ≥ h(x).
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We do not make on H ′(x, y, z) the same assumptions as for H(x, y, z). However,
we assume that there exists a solution u′(x, t) of the equation

−∂u′

∂t
− 1

2
�u′ = H(x, u′, Du′),

u′(x, T ) = h′(x)

in the space H . We state

Proposition 2 We have the comparison property u′(x, t) ≥ u(x, t).

Proof Setting ũ = u′ − u then

−∂ ũ

∂t
− 1

2
�ũ = H ′(x, u′, Du′) − H(x, u, Du)

≥ H(x, u′, Du′) − H(x, u, Du)

and ũ(x, T ) ≥ 0, and ũ belongs to H .We test the inequality with (ũ)−Φ2 expμt .
We note that

(H(x, u′, Du′) − H(x, u, Du))(ũ)− ≥ −C(|(ũ)−|2 + (ũ)−|D(ũ)−|).

After integration we get easily

(μ

2
− C

) ∫ T

0

∫

Rn

|(ũ)−|2Φ2 expμt dx dt + 1

2

∫ T

0

∫

Rn

|D(ũ)−|2Φ2 expμt dx dt

≤ (C + c0)
∫ T

0

∫

Rn

|D(ũ)−||(ũ)−|Φ2 expμt dx dt

and from the choice of μ, we necessarily have (ũ)− = 0, hence the result. �

2.1 Continuous Hamiltonian

The objective is to relax the assumption that the Hamiltonian is Lipschitz. We
still assume (14) but we replace (13) by (2), with the same growth conditions on
λ(x), |h(x)|. We then have

Proposition 3 We assume (2), (14) and λ(x), |h(x)| have polynomial growth. Then
the set of solutions of (1) in H is not empty and has a minimum and a maximum
solution.

Proof We first check that the solutions, if they exist, lie in an interval. We define
indeed the unique solution ū(x, t) of
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−∂ ū

∂t
− 1

2
�ū = λ(x) + k(|ū| + |Dū|),

ū(x, T ) = |h(x)|.

The existence and uniqueness of ū in the Hilbert spaceH is a simple application of
Proposition 1. The next step is to prove that if u is a solution of (1) in the HilbertH
then we have

|u(x, t)| ≤ ū(x, t). (16)

Let us consider ũ(x, t) = u(x, t) + ū(x, t) and let us prove that it is positive. Indeed,
ũ satisfies

−∂ ũ

∂t
− 1

2
�ũ = λ(x) + k(|ū| + |Dū|) + H(x, u, Du)

≥ k(|ū| + |Dū|) − k(|u| + |Du|)
≥ −k|ũ| − k|Dũ|,

ũ(x, T ) ≥ 0.

We test with (ũ)−Φ2 expμt . After integration and already seen majorations we can
write

0 ≥ (
μ

2
− k)

∫ T

0

∫

Rn
|(ũ)−|2 Φ2 expμt dx dt + 1

2

∫ T

0

∫

Rn
|D(ũ)−|2Φ2 expμt dx dt

− (c0 + k)
∫ T

0

∫

Rn
|D(ũ)−||(ũ)−|Φ2 expμt dx dt

and for a convenient choice ofμ, we obtain (ũ)− = 0. Therefore u(x, t) ≥ −ū(x, t).
Similarly, we prove u(x, t) ≤ ū(x, t). Hence the result (16) is proven. We now con-
struct a minimum solution. We define the sequence of Hamiltonians

HN (x, y, z) = inf
ξ,η

(H(x, ξ, η) + N (|ξ − x | + |η − y|))

and N will tend to +∞.We have HN (x, y, z) ≤ H(x, y, z). Also

H(x, ξ, η) + N (|ξ − x | + |η − y|) ≥ −λ(x) − k|ξ | − k|η| + N (|ξ − x | + |η − y|)
≥ −λ(x) − k|x | − k|y| + (N − k)(|ξ − x | + |η − y|).

So for N > k, it goes to +∞, as |ξ |, |η| → +∞. Therefore, since H(x, ξ, η) is
continuous in ξ, η the infimum is attained at a point ξN , ηN . Also

H(x, y, z) ≥ −λ(x) − k|x | − k|y| + (N − k)(|ξN − x | + |ηN − y|).

This implies ξN → x , ηN → y, as N → +∞. Now

HN (x, y, z) ≥ H(x, ξN , ηN )
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and lim inf HN (x, y, z) ≥ H(x, y, z). Therefore

HN (x, y, z) ↑ H(x, y, z). (17)

Since also from above, HN (x, y, z) ≥ −λ(x) − k|x | − k|y|, we have the estimate

|HN (x, y, z)| ≤ λ(x) + k(|y| + |z|).

On the other hand,

|HN (x, y, z) − HN (x, y′, z′)| ≤ N (|y − y′| + |z − z′|)

so HN is Lipschitz. Therefore, from Proposition 1, there exists a unique solution
uN (x, t) of the equation

−∂uN

∂t
− 1

2
�uN = HN (x, uN , DuN ),

uN (x, T ) = h(x)

in the spaceH . Although we should take a norm inH depending on N , we can see
easily that we can take a norm not depending on N . Indeed, testing with uNΦ2 expμt
we obtain the inequality

(
μ

2
− k)

∫ T

0

∫

Rn
(uN )2Φ2 expμt dx dt + 1

2

∫ T

0

∫

Rn
|DuN |2Φ2 expμt dx dt

≤ (c0 + k)
∫ T

0

∫

Rn
|uN ||DuN |Φ2 expμt dx dt +

∫ T

0

∫

Rn
λ(x)|uN |Φ2 expμt dx dt

+ expμT
∫

Rn
h2(x)Φ2(x)dx

and we see that we can take the norm inH independent of N . We have also

|uN (x, t)| ≤ ū(x, t), ‖uN‖H ≤ C

and since HN (x, y, z) is monotone increasing in N , we can assert from the compari-
son property, Proposition 2, uN (x, t) ≤ uN+1(x, t). Therefore the sequence uN (x, t)
converges pointwise to u(x, t) ≤ ū(x, t). Also from the estimate inH we can assert
for a subsequence

uN ⇀ u, weakly inH .

We want to prove that uN converges strongly in H . Let M > N . We are going to
let M tend to +∞,for fixed N . Set ũM = uM − uN . We have
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−∂ ũM

∂t
− 1

2
�ũM = HM(x, uM , DuM) − HN (x, uN , DuN ),

ũM(x, T ) = 0.

We shall use the inequality

|HM (x, uM , DuM ) − HN (x, uN , DuN )| ≤ k|ũM | + k|DũM | + 2λ(x) + k(|uN | + |DuN |).

We test the equation with ũMΦ2 expμt , and after integration and already seen
majorations we obtain

(μ

2
− k

) ∫ T

0

∫

Rn

(ũM)2Φ2 expμt dx dt + 1

2

∫ T

0

∫

Rn

|DũM |2Φ2 expμt dx dt

≤ (c0 + k)
∫ T

0

∫

Rn

|ũM ||DũM |Φ2 expμt dx dt

+ 2
∫ T

0

∫

Rn

(λ(x) + k(|uN | + |DuN |)|ũM |Φ2 expμt dx dt

and for μ fixed, sufficiently large, it follows

1

4

∫ T

0

∫

Rn
|DũM |2Φ2 expμt dx dt ≤ 2

∫ T

0

∫

Rn
(λ(x) + k(|uN | + |DuN |)|ũM |Φ2 expμt dx dt.

We now let M → +∞. From the weak convergence in H , the weak lower semi-
continuity of the norm and the strong pointwise convergence, we can assert that

1

4

∫ T

0

∫

Rn

|D(u−uN )|2Φ2 expμt dx dt

≤ 2
∫ T

0

∫

Rn

(λ(x) + k(|uN | + |DuN |)|u − uN |Φ2 expμt dx dt.

As N → +∞, the right-hand side goes to 0. This proves that uN → u inH strongly.
We can then extract a subsequence, also noted uN such that DuN (x, t) →

Du(x, t) a.e. From this subsequence we can also extract a new one such that

∫ T

0

∫

Rn

sup
N

|DuN |2Φ2dx dt < +∞ (18)

This is a classical result. It comes from the fact that DuN is also a Cauchy sequence
in L2(0, T ; L2

Φ(Rn)). Therefore, we can find a subsequence DuNj such that

(∫ T

0

∫

Rn

|DuNj+1 − DuNj |2Φ2dx dt

) 1
2

≤ 1

2 j
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and, consequently, the function

g = |DuN0 | +
+∞∑

j=0

|DuNj+1 − DuNj |

is in L2(0, T ; L2
Φ(Rn)), and |DuNj | ≤ g, for all j . Thus sup j |DuNj | ≤ g and (18)

follows, for this subsequence. The next claim is, for this subsequence, still denoted
uN , that

HN (x, uN , DuN ) → H(x, u, Du) a.e. (19)

This is done in a way very similar to (17), together with the pointwise convergence
of uN , DuN . Also

sup
N

|HN (x, uN , DuN )| ≤ λ(x) + kū(x, t) + k sup
N

|DuN (x, t)|

and the right-hand side belongs to L2(0, T ; L2
Φ(Rn)). Therefore, we can apply

Lebesgue’s theorem, to conclude, from (19)

∫ T

0

∫

Rn

|HN (x, uN , DuN )|2Φ2dx dt →
∫ T

0

∫

Rn

|H(x, u, Du)|2Φ2dx dt.

This implies that HN (x, uN , DuN ) → H(x, u, Du) in L2(0, T ; L2
Φ(Rn)). This

proves that u is a solution of (1). This solution is the minimum one. Indeed, if
we have another one in H , called u∗,then

−∂u∗

∂t
− 1

2
�u∗ = H(x, u∗, Du∗),

u ∗ (x, T ) = h(x).

But H(x, u∗, Du∗) ≥ HN (x, u∗, Du∗) and from the comparison result, Proposition
2, we conclude that u∗ ≥ uN . Therefore, also u∗ ≥ u. This proves the assertion.

The maximum solution is constructed, by considering the approximation

HN (x, y, z) = sup
ξ,η

(H(x, ξ, η) − N (|ξ − x | + |η − y|))

and the proof has been completed. �

We can also give a comparison result. Consider two Hamiltonians H(x, y, z),
H ′(x, y, z) satisfying

H(x, y, z), H ′(x, y, z) are continuous in y, z

|H(x, y, z)|, |H ′(x, y, z)| ≤ λ(x) + k(|y| + |z|)
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and
H(x, y, z) ≥ H ′(x, y, z), h(x) ≥ h′(x).

We state

Proposition 4 Let u, u′ be the minimum (or the maximum) solution of

−∂u

∂t
− 1

2
�u = H(x, u, Du),

u(x, T ) = h(x)

and

−∂u′

∂t
− 1

2
�u′ = H(x, u′, Du′),

u′(x, T ) = h(x).

Then we have u ≥ u′.

Proof Considering the approximations HN (x, y, z) and H ′
N (x, y, z), we have

HN (x, y, z) ≥ H ′
N (x, y, z). Therefore, the corresponding solutions uN (x, t) and

u′
N (x, t) satisfy uN ≥ u′

N . Hence for the limit, u ≥ u′. This implies the result. �

2.2 Proof of Theorem 1

We construct an approximation of H as follows:

Hεη(x, y, z) = H+(x, y, z)

1 + ε|z|2 − H−(x, y, z)

1 + η|z|2 .

Clearly

|Hεη(x, y, z)| ≤ λ(x) + k|y| + γ

2
|z|2,

Hεη(x, y, z) is decreasing in ε and increasing in η,

− λ(x) − k|y| − γ

2η
≤ Hεη(x, y, z) ≤ λ(x) + k|y| + γ

2ε
.

To simplify notation we set ρ = (ε, η). The Hamiltonian Hρ(x, y, z) satisfies the
assumptions of Proposition 3. So considering the problem

−∂uρ

∂t
− 1

2
uρ = Hρ(x, uρ, Duρ),

uρ(x, T ) = h(x),
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there exists a minimum solution in the space H . Consider now Eq. (4). From the
growth conditions, we can assert that

|uρ(x, t)| ≤ ū(x, t) ≤ ζ(x).

Indeed,

Hρ(x, y, z) ≤ λ(x) + k|y| + γ

2

|z|2
1 + ε|z|2

and by the comparison property we get uρ(x, t) ≤ ūε(x, t) solution of

−∂ ūε

∂t
− 1

2
ūε = λ(x) + k|ūε| + γ

2

|Dūε|2
1 + ε|Dūε|2 ,

ūε(x, T ) = |h(x)|.

The solution is unique and positive, so we do not need the absolute value. We then
see that ūε(x, t) ≤ ū(x, t). Similarly, we check that uρ(x, t) ≥ −ū(x, t).

Because of the quadratic growth of the Hamiltonian, we cannot use the same
Hilbert space H as before. We shall need to use a weight function which goes fast
to 0 at infinity. Let δ > 0, to be chosen later. We take the weight

Φ(x) = exp− δ

2
ζ 2(x).

The property |DΦ| ≤ c0Φ does not hold, but we have |Dζ | ≤ c1ζ , since ζ is
quadratic. We can assert that

∫

Rn

λ2(x)Φ2(x) exp
δ

2
ζ 2(x)dx < +∞,

∫

Rn

ζ 2(x)Φ2(x) exp
δ

2
ζ 2(x)dx < +∞,

∫

Rn

|DΦ|2 exp δ

2
ζ 2(x)dx < +∞.

(20)
To save notation, we still denote L2

Φ(Rn) = {v | ∫

Rn v2(x)Φ2(x)dx} and the Sobolev
space H 1

Φ(Rn) = {v | v ∈ L2
Φ(Rn), Dv ∈ (L2

Φ(Rn))n}. We now test (2.2) with

uρΦ
2 exp

δ

2
(uρ)

2. We obtain

1

2

∫ T

0

∫

Rn
|Duρ |2(1 + δu2ρ)Φ2 exp

δ

2
(uρ)2dx dt +

∫ T

0

∫

Rn
Duρ · DΦuρΦ exp

δ

2
(uρ)2dx dt

≤
∫ T

0

∫

Rn

(
λ(x) + k|uρ | + γ

2
|Duρ |2

)
|uρ |Φ2 exp

δ

2
(uρ)2dx dt + 1

δ

∫

Rn
Φ2 exp

δ

2
h2dx .
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For any β > 0, we can then write

1

2

∫ T

0

∫

Rn
|Duρ |2(1 + (δ − β)u2ρ − γ |uρ |)Φ2 exp

δ

2
(uρ)2dx dt

≤ 1

2β

∫ T

0

∫

Rn
|DΦ|2 exp δ

2
(uρ)2dx dt +

∫ T

0

∫

Rn
(λ(x) + k|uρ |)|uρ |Φ2 exp

δ

2
(uρ)2dx dt

+1

δ

∫

Rn
Φ2 exp

δ

2
h2dx .

Since |uρ | ≤ ζ , we majorize the right-hand side, by replacing uρ by ζ . We next

choose β and δ such that δ > 2β + γ 2

4
. Defining a0 = min(β, 1 − γ 2

4(δ − 2β)
), we

finally obtain the inequality

a0
2

∫ T

0

∫

Rn

|Duρ |2(1 + u2ρ)Φ
2 exp

δ

2
(uρ)

2dx dt ≤T

2

∫

Rn

λ2Φ2 exp
δ

2
ζ 2(x)dx

+T

(

k + 1

2

) ∫

Rn

Φ2ζ 2 exp
δ

2
ζ 2dx + T

2β

∫

Rn

|DΦ|2 exp δ

2
ζ 2dx

+ 1

δ

∫

Rn

Φ2 exp
δ

2
h2dx . (21)

Thanks to (20) the right-hand side is bounded, and therefore uρremains in a bounded
set of L2(0, T ; H 1

Φ(Rn)).
Next, we proceed in two steps. In ρ = (ε, η), we fix η and we let ε → 0. To

simplify notation, we simply write ρ = ε. We have the following properties:

Hε(x, y, z) ↑ H+(x, y, z) − H−(x, y, z)

1 + η|z|2 .

From the comparison property, we can assert that

uε ↑ u ≤ ζ

and from the bound (21) we get also, for a subsequence

Duε ⇀ Du, in L2(0, T ; L2
Φ(Rn)) weakly.

We are going to show the strong convergence. However, we shall need to use a weight
� more stringent than Φ. Let ε′ < ε, we test (2.2) with (uε − uε′)�2 exp δ

2 (uε −
uε′)2. Remember that ρ has been replaced with ε (η is fixed). After integration and
rearrangements, we can state the inequality
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1

2

∫ T

0

∫

Rn
|D(uε − uε′ )|2[1 − β + δ(uε − uε′ )2 − γ |uε − uε′ |]�2 exp

δ

2
(uε − uε′ )2dx dt

≤ 1

2β

∫ T

0

∫

Rn
|D�|2(uε − uε′ )2 exp

δ

2
(uε − uε′ )2dx dt

+
∫ T

0

∫

Rn
[2λ+2kζ + 3γ |Duε − Du|2 + 3γ |Du|2]|uε − uε′ |�2 exp

δ

2
(uε − uε′ )2dx dt.

We choose β < 1
2 , δ >

γ 2

2( 1
2 −β)

, then the preceding inequality implies

1

4

∫ T

0

∫

Rn
|D(uε − uε′ )|2[1 + δ(uε − uε′ )2]�2 exp

δ

2
(uε − uε′ )2dx dt

≤ 1

2β

∫ T

0

∫

Rn
|D�|2(uε − uε′ )2 exp

δ

2
(uε − uε′ )2dx dt

+
∫ T

0

∫

Rn
[2λ + 2kζ + 3γ |Duε − Du|2 + 3γ |Du|2]|uε − uε′ |�2 exp

δ

2
(uε − uε′ )2dx dt.

(22)

We want to let ε′ tend to 0, while ε remains fixed. Recalling that |uε|, |uε′ | ≤ ζ ,
and calling

Fε′ =
[ |D�|2

2β
(uε − uε′)2 + [2λ + 2kζ

+ 3γ |Duε − Du|2 + 3γ |Du|2]|uε − uε′ |�2

]

exp
δ

2
(uε − uε′)2,

we see that

Fε′ →
[ |D�|2

2β
(uε − u)2 + [2λ + 2kζ

+ 3γ |Duε − Du|2 + 3γ |Du|2]|uε − u|�2

]

exp
δ

2
(uε − u)2

pointwise. Also

Fε′ ≤ 2
|D�|2

β
ζ 2 exp 2δζ 2 + 2[2λ + 2kζ

+ 3γ |Duε − Du|2 + 3γ |Du|2]�2ζ exp 2δζ 2.

So if we choose �(x) = exp−2δζ 2(x), then we get

Fε′ ≤ 32δ2

β
ζ 2|Dζ |2 exp−2δζ 2(x) + 2[2λ + 2kζ

+3γ |Duε − Du|2 + 3γ |Du|2]ζ exp−2δζ 2(x)
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whichisafunctionindependentofε′, integrablesince
∫ T
0

∫

Rn |Duε|2 exp−δζ 2dx dt <

+∞,
∫ T
0

∫

Rn |Du|2 exp−δζ 2dx dt < +∞. Sowe can go to the limit in the right-hand
side of (22). For the left-hand side we first consider

Xε′α = D(uε − uε′)
[1 + δ(uε − uε′)2] 1

2 exp
δ

4
(uε − uε′)2

1 + α(1 + 2
√

δζ ) exp δζ 2
.

Since |uε|, |uε′ | ≤ ζ , the quantity
[1 + δ(uε − uε′)2] 1

2 exp δ
4 (uε − uε′)2

1 + α(1 + 2
√

δζ ) exp δζ 2
is bounded

by
1

α
and converges pointwise as ε′ → 0 to

[1 + δ(uε − u)2] 1
2 exp δ

4 (uε − u)2

1 + α(1 + 2
√

δζ ) exp δζ 2
. Since

D(uε − uε′) converges weakly to D(uε − u) in L2(0, T ; L2
Φ(Rn)), the same is true

for Xε′α . Therefore

∫ T

0

∫

Rn

|D(uε − u)|2
[1 + δ(uε − u)2] exp δ

2
(uε − u)2

[1 + α(1 + 2
√

δζ ) exp δζ 2]2 �2dx dt

≤ lim inf
ε′→0

∫ T

0

∫

Rn

|D(uε − uε′)|2
[1 + δ(uε − uε′)2] exp δ

2
(uε − uε′)2

[1 + α(1 + 2
√

δζ ) exp δζ 2]2 �2dx dt

≤ lim inf
ε′→0

∫ T

0

∫

Rn

|D(uε − uε′)|2[1 + δ(uε − uε′)2] exp δ

2
(uε − uε′)2�2dx dt

and from the above considerations regarding Fε′ , we can state

≤ 2

β

∫ T

0

∫

Rn
|D�|2(uε − u)2 exp

δ

2
(uε − u)2dx dt+

+ 4
∫ T

0

∫

Rn
[2λ + 2kζ + 3γ |Duε − Du|2 + 3γ |Du|2]|uε − u|�2 exp

δ

2
(uε − u)2dx dt.

Letting α → 0, we conclude

∫ T

0

∫

Rn
|D(uε − u)|2[1 + δ(uε − u)2] exp δ

2
(uε − u)2�2dx dt

≤ 2

β

∫ T

0

∫

Rn
|D�|2(uε − u)2 exp

δ

2
(uε − u)2dx dt

+4
∫ T

0

∫

Rn
[2λ + 2kζ + 3γ |Duε − Du|2 + 3γ |Du|2]|uε − u|�2 exp

δ

2
(uε − u)2dx dt.
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So, also

∫ T

0

∫

Rn

|D(uε − u)|2[1 + δ(uε − u)2 − 12γ |uε − u|] exp δ

2
(uε − u)2�2dx dt

≤ 2

β

∫ T

0

∫

Rn

|D�|2(uε − u)2 exp
δ

2
(uε − u)2dx dt

+4
∫ T

0

∫

Rn

[2λ + 2kζ + 3γ |Du|2]|uε − u|�2 exp
δ

2
(uε − u)2dx dt.

We remember that β and δ were chosen so that

β <
1

2
, δ >

γ 2

2( 12 − β)
.

By picking β >
1

2
− 1

288
, we can insure that δ > 144γ 2, so that

1

2
+ δ

2
(uε − u)2 −

12γ |uε − u| ≥ 0. Therefore

1

2

∫ T

0

∫

Rn

|D(uε − u)|2[1 + δ(uε − u)2] exp δ

2
(uε − u)2�2dx dt

≤ 2

β

∫ T

0

∫

Rn

|D�|2(uε − u)2 exp
δ

2
(uε − u)2dx dt

+ 8
∫ T

0

∫

Rn

(λ + kζ )|uε − u|�2 exp
δ

2
(uε − u)2dx dt.

The right-hand side tends to 0, as ε → 0. Therefore uε → u, in L2(0, T ; H 1
�(Rn))

strongly. We can choose a subsequence such that

uε ↑ u, Duε → Du, a.e. ,
∫ T

0

∫

Rn

sup
ε

|Duε|2�2dx dt < +∞.

One easily checks that

Hε(x, uε, Duε) → H+(x, u, Du) − H−(x, u, Du)

1 + η|Du|2 , a.e.

and in L1(0, T ; L1
�(Rn)). Therefore u is a solution of

−∂u

∂t
− 1

2
�u = H+(x, u, Du) − H−(x, u, Du)

1 + η|Du|2 ,

u(x, T ) = h(x).
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Of course, this solution depends on η, called uη (not to be mistaken with uε, with
was a short for uρ) and we have the property uη is monotone increasing in η. This
is because uε,η1(x, t) ≤ uε,η2(x, t) if η1 < η2, with fixed ε. We can then let η tend to
0,monotonically, and operate in a way similar to that for ε. This leads to a solution
of (1). This concludes the proof of Theorem 1.

2.3 Formal Proof of Theorem 2

We turn now to the uniqueness property. We make the assumptions (11), (12). We
use a trick introduced by Da Lio-Ley [2], which takes advantage of the convexity
assumption. Suppose we have 2 solutions u1, u2, in L2(0, T ; H 1

�(Rn)). In fact, we
are going to assume sufficient smoothness of these functions. This is the formal
aspect. For 0 < θ < 1, we consider ũ = u1 − θu2. Eventually θ will tend to 1. We
have

−∂ ũ

∂t
− 1

2
�ũ = H(x, u1, Du1) − θH(x, u2, Du2),

ũ(x, T ) = (1 − θ)h(x).

From the convexity assumption we have

H(x, u2, Du1) = H

(

x, u2, θDu2 + (1 − θ)
Du1 − θDu2

1 − θ

)

≤ θH(x, u2, Du2) + (1 − θ)H

(

x, u2,
Dũ

1 − θ

)

.

Hence

H(x, u1, Du1) − θH(x, u2, Du2)

≤ H(x, u1, Du1) − H(x, u2, Du1) + (1 − θ)H

(

x, u2,
Dũ

1 − θ

)

.

Also

H(x, u1, Du1) − H(x, u2, Du1) ≤ k|u1 − u2| ≤ k|ũ| + k(1 − θ)|u2|.

Collecting estimates, one obtains

−∂ ũ

∂t
− 1

2
�ũ − k|ũ| − γ

2(1 − θ)
|Dũ|2 ≤ (1 − θ)(λ(x) + 2k|u2|)

ũ(x, T ) ≤ (1 − θ)|h(x)|.
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But then ṽ = ũ

1 − θ
satisfies

−∂ ṽ

∂t
− 1

2
�ṽ − k|ṽ| − γ

2
|Dṽ|2 ≤ λ(x) + 2k|u2|,

ṽ(x, T ) ≤ |h(x)|

and (ṽ)+(x, t) ≤ z(x, t), solution of

−∂z

∂t
− 1

2
�z − kz − γ

2
|Dz|2 exp kt = λ(x) + 2kζ(x),

z(x, T ) = |h(x)|.

Here we make the growth condition (announced in the statement of the theorem):

The function z(x, t) is well defined. (23)

The inequality can be seen as follows. Define χ(x, t) = exp(γ (ṽ)+(x, t) exp kt) and
ζ(x, t) = exp(γ z(x, t) exp kt). It suffices to show that χ(x, t) ≤ ζ(x, t). Note first
that ζ is the solution of the linear equation

−∂ζ

∂t
−1

2
�ζ − ζγ exp kt (λ(x) + 2kζ(x)) = 0,

ζ(x, T ) = exp(γ |h(x)| exp kT ).

When (ṽ)+(x, t) = 0, we have χ(x, t) = 1 ≤ ζ(x, t), since z(x, t) ≥ 0. Also
χ(x, T ) ≤ exp(γ |h(x)| exp kT ) = ζ(x, T ). Here comes the formal argument: On
the domain (ṽ)+(x, t) > 0, ṽ(x, t) satisfies the inequality

−∂ ṽ

∂t
− 1

2
�ṽ − kṽ − γ

2
|Dṽ|2 ≤ λ(x) + 2kζ

and χ(x, t) = exp(γ ṽ(x, t) exp kt) satisfies

−∂χ

∂t
− 1

2
�χ − χγ exp kt (λ(x) + 2kζ ) ≤ 0.

The formal aspect lies in the definition of the domain (ṽ)+(x, t) > 0, which requires
some smoothness of the solutions u1, u2. To conclude, we note that we have proven
that (ũ)+(x, t) ≤ (1 − θ)z(x, t), or (u1 − θu2)+(x, t) ≤ (1 − θ)z(x, t). But z(x, t)
is a fixed function, not depending on θ . So, we can let θ → 1, which leads to u1 −
u2 ≤ 0. Reversing the roles of u1, u2 we obtain the opposite inequality, hence u1 =
u2, and the uniqueness of the solution. This concludes the proof. �
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On the Sensitivity to the Filtering Radius
in Leray Models of Incompressible Flow

Luca Bertagna, Annalisa Quaini, Leo G. Rebholz
and Alessandro Veneziani

Abstract One critical aspect of Leray models for the Large Eddy Simulation (LES)
of incompressible flows at moderately large Reynolds number (in the range of few
thousands) is the selection of the filter radius. This drives the effective regularization
of the filtering procedure, and its selection is a trade-off between stability (the larger,
the better) and accuracy (the smaller, the better). In this paper, we consider the
classical Leray-α and a recently introduced (by one of the authors) Leray model
with a deconvolution-based indicator function, calledLeray-α-NL.We investigate the
sensitivity of the solutions to the filter radius by introducing the sensitivity systems,
analyzing them at the continuous and discrete levels, and numerically testing them
on two benchmark problems.

1 Introduction

TheDirect Numerical Simulation (DNS) of the Navier-Stokes equations (NSE) com-
putes the evolution of all the significant flow structures by resolving them with a
properly refined mesh. Unfortunately, when convection dominates the dynamics –
which happens in many practical applications – this requires very fine meshes, mak-
ing DNS computationally unaffordable for practical purposes. A possible way to
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limit the computational costs associated with DNS without sacrificing accuracy is to
solve for the flow average, and model properly the effects of the (not directly solved
for) small scales on the (resolved) larger scales.

The Leray-α model (1)–(4) has emerged as a useful model for turbulent flow
predictions, thanks to the seminal work of Guerts, Holm, Titi and co-workers [11,
13–15] in the early-mid 2000s. The name of the model was given by Titi to honor
Leray, who used a similar model in 1934 as a theoretical tool to help in understanding
thewell-posedness problemof theNSE [31]. TheLeray-αmodel in [31] describes the
small scale effects by a set of equations to be added to the discrete NSE formulated on
the under-refined mesh. It was shown in [11, 13–15] that the Leray-α model is well-
posed, it can accurately predict turbulent flow on the large scales, where it preserves
Kolmogorov’s-5/3 law. Moreover, the model can accurately predict the boundary
layer. Over the last decade, much more theoretical and computational work has been
done to the Leray-α model and several variations of it [2, 7, 10, 16, 18, 19, 23, 29,
32, 33, 39], most of which gives further evidence of the usefulness of the model as
an effective tool for coarse-mesh predictions of higher Reynolds number flow.

The filtering radius α plays a central role in the Leray-α model, and Leray type
models in general, since it determines the amount of regularization to apply. In
particular, larger values lead to more regularized solutions, while for α = 0, the
models reduce to the NSE; see (1)–(4). Our interest herein is to understand how
solutions of the classical Leray-α model and one possible generalization, called
Leray-α-NL, depend onα. Parameter sensitivity investigations in fluid flowproblems
are critical in understanding the reliability of computed solutions [1, 3–5, 17, 21,
34, 36–38]. However, it is often prohibitively costly to identify the appropriate value
by running many computations with different choices, especially when the flow
problems require fine meshes. An attractive alternative is the sensitivity equation
method that computes explicitly the derivative of the solution with respect to the
parameter. This system can then be solved simultaneously with the model at each
time step of the simulation. Depending on the specific model, the solution of the
sensitivity system may be challenging, and its analysis and efficient discretization
design require specific investigation. This is exactly the purpose of this paper for the
two models of choice.

The outline of the paper is as follows. In Sect. 2 we introduce the continuous
Leray-α and Leray-α-NLmodels and derive the corresponding sensitivity equations.
In Sect. 3 we propose efficient and stable numerical schemes for the approximation
of both models and their sensitivity systems. Finally, in Sect. 4 we test the pro-
posed numerical schemes against two benchmark problems. Conclusions are drawn
in Sect. 5.

2 Problem Definition

We consider a spacial domain Ω ⊂ R
d (d = 2 or 3) and time interval (0, T ), with

T > 0. The classical Leray-α model takes the form:
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ut + u · ∇u + ∇ p − νΔu = f in Ω × (0, T ), (1)

∇ · u = 0 in Ω × (0, T ), (2)

∇λ − α2Δu + u = u in Ω × (0, T ), (3)

∇ · u = 0 in Ω × (0, T ), (4)

endowed with suitable boundary conditions, e.g.,

u = u = uin on Γin × (0, T ), (5)

u = u = 0 on Γwall × (0, T ), (6)

(ν∇u − pI ) · n = (α2∇u − λI ) · n = 0 on Γout × (0, T ), (7)

and initial condition u = u0 in Ω × {0}. In (1)–(7), u represents the fluid velocity
(which is considered “averaged” in some sense), p the fluid pressure, ν > 0 the
kinematic viscosity, f a body force, and uin and u0 are given. The equations (3), (4)
represent the α-filter applied to u, where u is the resulting filtered variable and α > 0
is the filtering radius. This is the radius of the neighborhood where the filter extracts
information from the unresolved scales. The Lagrange multiplier λ is necessary
to enforce a solenoidal u in non-periodic flows. The inlet and outlet sections are
denoted by Γin and Γout, while Γwall is the rest of the boundary. We note that the
correct boundary conditions for u on solid walls is unsettled in the LES community,
although the computational experience of the authors is that a no-slip condition
generally produces good results.

We also consider also the following generalized version of the Leray-α model,
proposed in [8]:

ut + ũ · ∇u + ∇ p − νΔu = f in Ω × (0, T ), (8)

∇ · u = 0 in Ω × (0, T ), (9)

∇λ − α2∇ · (a(u)∇ ũ) + ũ = u in Ω × (0, T ), (10)

∇ · ũ = 0 in Ω × (0, T ), (11)

endowed with boundary conditions

u = ũ = uin on Γin × (0, T ), (12)

u = ũ = 0 on Γwall × (0, T ), (13)

(ν∇u − pI ) · n = (α2a(u)∇ ũ − λI ) · n = 0 on Γout × (0, T ). (14)

The scalar function a(u), called the indicator function, is crucial for the success of
model (8)–(11), and satisfies:

a(u) � 0 where the velocity u does not need regularization,

a(u) � 1 where the velocity u does need regularization,



114 L. Bertagna et al.

so to detect the regions of the domain where regularization is needed. Notice that the
choice a(u) = 1 in (10), (11) corresponds to system (3), (4). In fact, in this way the
operator in the filter equations is linear and constant in time. However, its effectivity
is rather limited, since it introduces the same amount of regularization in every region
of the domain, hence causing overdiffusion in those region where the flow is already
smooth.

Different choices of a(·) have been proposed and compared in [7, 8, 28, 30].
Here, we focus on a class of deconvolution-based indicator functions:

a(u) = aD(u) = |u − D(F(u))|2 , (15)

where F is a linear filter (an invertible, self-adjoint, compact operator from a Hilbert
space to itself) and D is a bounded regularized approximation of F−1. A popular
choice for D is the Van Cittert deconvolution operator DN , defined as

DN =
N

∑

n=0

(I − F)n.

The evaluation of aD with D = DN (deconvolution of order N ) requires then to apply
the filter F a total of N + 1 times. Since F−1 is not bounded, in practice N is chosen
to be small, as the result of a trade-off between accuracy (for a regular solution) and
filtering (for a non-regular one). In this paper, we consider N = 0, corresponding to
D0 = I . Numerical tests for N = 1 are considered for instance in [2].

We select F to be the linear Helmholtz filter operator FH defined by

F = FH = (

I − α2Δ
)−1

.

It is possible to prove [12] that

u − DN (FH (u)) = (−1)N+1δ2N+2ΔN+1FN+1
H u.

Therefore, aDN (u) is close to zero in the regions of the domain where u is smooth.
Let us set û = FH (u). With D = D0 and F = FH , the indicator function (15) reads

aD0(u) = ∣

∣u − û
∣

∣

2
. (16)

System (8)–(11)with indicator function given by (16) iswhatwe call Leray-α-NL.

2.1 Sensitivity Equation for Leray-α

Let us define
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s := ∂u
∂α

, r := ∂u
∂α

, φ := ∂p

∂α
, ψ := ∂λ

∂α
.

We develop the Leray-α sensitivity equation by differentiating model (1)–(4) with
respect to α:

st + r · ∇u + u · ∇s + ∇φ − νΔs = 0 in Ω × (0, T ), (17)

∇ · s = 0 in Ω × (0, T ), (18)

∇ψ − α2Δr + r − s = 2αΔu in Ω × (0, T ), (19)

∇ · r = 0 in Ω × (0, T ). (20)

System (17)–(20) is supplemented with boundary conditions:

s = r = 0 on Γin ∪ Γwall × (0, T ), (21)

(ν∇s − φ I ) · n = 0 on Γout × (0, T ), (22)

(α2∇r − ψ I ) · n = −2α∇u on Γout × (0, T ), (23)

and initial condition s = 0 inΩ × {0}. It is important to note that s �= r , i.e. filtering
does not commute with differentiation in α. In addition, for both s and r we have
homogeneous Dirichlet conditions at the inlet section and on the walls.

Sensitivity system (17)–(20) is a new system of partial differential equations, and
thus it is important to consider its well-posedness. Its similarity to NSE and Leray
models limits our well-posedness study to the case of periodic boundary conditions.
Although this setting is typically not physically meaningful, we argue that a lack
of well posedness for (17)–(20) with periodic boundary conditions would prevent a
successful analysis for physical conditions such as (21)–(23).

The following result is promptly deduced from [11].

Lemma 1 Suppose α > 0, f ∈ L2(0, T ; L2(Ω)d) and u0 ∈ H 1(Ω)d . Then the
Leray-α model (1)–(4) equipped with periodic boundary conditions has a unique
weak solution with u ∈ L∞(0, T ; H 1(Ω)d) ∩ L2(0, T ; H 2(Ω)d).

Using this lemma, we can prove that system (17)–(20) with periodic boundary con-
ditions is well-posed.

Theorem 1 Under the assumptions of Lemma 1, the system (17)–(20) has a unique
weak solution satisfying s, r ∈ L∞(0, T ; H 1(Ω)d) ∩ L2(0, T ; H 2(Ω)d).

Proof The proof of this theorem follows standard arguments, since the sensitivity
system is linear, and the smoothness assumptions of the data yield a sufficiently
smooth velocity u and filtered velocity u. �
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2.2 Sensitivity Equation for Leray-α-NL

We define

s := ∂u
∂α

, r := ∂ ũ
∂α

, w := ∂ û
∂α

, φ := ∂p

∂α
, ψ := ∂λ

∂α
.

By differentiating the model (8)–(11) [with indicator function given by (16)] with
respect to α, we obtain:

st + r · ∇u + ũ · ∇s + ∇φ − νΔs = 0 in Ω × (0, T ), (24)

∇ · s = 0 in Ω × (0, T ), (25)

∇ψ − α2∇ · [(2(u − û) · (s − w))∇ ũ + |u − û|2∇r] + r − s

= 2α∇ · |u − û|2∇ ũ in Ω × (0, T ), (26)

∇ · r = 0 in Ω × (0, T ), (27)

−α2Δw + w − s = 2αΔû in Ω × (0, T ). (28)

The latter equation follows from the fact that û = FH (u) ⇒ û − α2Δû = u. System
(24)–(28) is supplemented with boundary conditions

s = r = w = 0 on Γin ∪ Γwall × (0, T ),

(ν∇s − φ I ) · n = (α2∇w) · n = 0 on Γout × (0, T ),

(α2[(2(u − û) · (s − w))∇ ũ + |u − û|2∇r] − ψ I ) · n
= −2α∇ · |u − û|2∇ ũ on Γout × (0, T ),

and initial condition s = 0 in Ω × {0}.
For the Leray-α-NL sensitivity system (24)–(28), we are not able to establish a

well-posedness result. This is due to the fact that the well-posedness of Leray-α-NL
has not been proven yet. The major difficulty is the nonlinear filter, which would
not provide the extra regularity of ũ from the regularity of u, since u − û could be
zero. Hence we would need to apply different techniques from the ones used for
the classical Leray-α model. We leave this study for a separate work. For now, we
conjecture that Leray-α-NL, and its associated sensitivity system, is well-posed for
sufficiently smooth data.
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3 Discrete Schemes for the Leray-α and Leray-α-NL
Models and Associated Sensitivity Systems

LetΔt > 0, tn = nΔt , with n = 0, ..., M and T = MΔt .Moreover, we denote by yn

the approximation of a generic quantity y at the time tn . For the time discretization,
we adopt Backward Differentiation Formula of order 2 (BDF2, see, e.g., [35]).

We assume Th to be a regular, conforming triangulation (tetrahedralization),
with maximum element diameter h. The velocity and pressure finite element spaces
(Xh, Qh) ⊂ (H 1(Ω)d , L2(Ω)) are assumed to be LBB stable, i.e. it holds that

inf
qh∈Qh

sup
vh∈Xh

(∇ · vh, qh)
‖∇vh‖‖qh‖ ≥ β,

with β independent of h. Taylor-Hood elements (Pk, Pk−1) with k ≥ 2 on triangles
and tetrahedra are popular examples of LBB stable pairs [9, 26]. The usual modi-
fications of these spaces can be made when non-homogeneous Dirichlet boundary
conditions are imposed on the velocity.

Finally, we introduce the skew-symmetric form of the nonlinear term in the NSE
is given by

b∗(u, v,w) := 1

2
(u · ∇v,w) − 1

2
(u · ∇w, v), with u, v,w ∈ H 1(Ω)d .

If ∇ · u = 0, then b∗(u, v,w) = (u · ∇v,w). An important property of this operator
is that b∗(u, v, v) = 0 even if ∇ · u �= 0, which can occur in discretizations.

For simplicity, when analyzing the discrete schemes we will consider wall-
bounded flows, i.e. homogeneous Dirichlet conditions on all the boundary. The anal-
yses that follow can be promptly adapted to fit the case of other boundary conditions.

Remark 1 The use of the skew-symmetric form of the nonlinearity is for analysis
purposes only, and in our computations we use the usual convective formulation. In
general, on sufficiently fine discretizations, very little difference between solutions
from these formulations is observed. In practice, particularly in the case of zero
traction outflow boundary conditions, the usual convective form is much more com-
monly used (since the skew-symmetric form requires a nonlinear boundary integral
be incorporated into the formulation).

3.1 Discrete Scheme for Leray-α

Given T,Δt, α > 0, f ∈ L∞(0, T ; H−1(Ω)d), and u0
h, u

1
h ∈ Xh , we propose the

following decoupled finite element discretization for the Leray-α model (1)–(4) with
an implicit-explicit (also called semi-implicit) treatment of the nonlinear term:
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Algorithm 1
For n = 1, . . . , M − 1, given unh, u

n−1
h , unh, u

n−1
h ∈ Xh find un+1

h , un+1
h ∈ Xh and pn+1

h , λn+1
h ∈

Qh satisfying:

1

2Δt

(

3un+1
h − 4unh + un−1

h , vh
)

+ b∗(2unh − un−1
h , un+1

h , vh)

−
(

pn+1
h ,∇ · vh

)

+ ν
(

∇un+1
h ,∇vh

)

= ( f (tn+1), vh), (29)
(

∇ · un+1
h , qh

)

= 0, (30)

−(λh,∇ · zh) + α2(∇un+1
h ,∇ zh) + (un+1

h , zh) = (un+1
h , zh), (31)

(∇ · un+1
h , ηh) = 0, (32)

for every vh, zh ∈ Xh and qh, ηh ∈ ×Qh .

Algorithm1decouplesthefilteringfromthemass/momentumsystem.Itisastraight-
forward extension of the analysis in [6] (for a linearized Crank-Nicolson temporal
discretization with inf-sup stable finite elements) to prove that Algorithm 1 is uncon-
ditionally stable with respect to the time step size:

‖uM
h ‖2 + νΔt

M
∑

n=2

‖∇un
h‖2 ≤ C(u0

h, u
1
h, ν

−1, f ,Ω).

Moreover, it converges optimally (under the usual smoothness assumptions) to the
Leray-α solution in the following sense: if Taylor-Hood elements are used, then

‖u(T ) − uM
h ‖2 + νΔt

M
∑

n=2

‖∇(u(tn) − un
h)‖2 ≤ C(Δt4 + h2k). (33)

We propose an analogous algorithm for the sensitivity system. At each time step,
after solving the Leray-α discrete system we approximate the solution of sensitivity
equation (17)–(20) as follows. We take s0h = s1h = 0. For n = 1, . . . , M − 1, given
snh , s

n−1
h , rnh , rn−1

h ∈ Xh we find sn+1
h , rn+1

h ∈ Xh and φn+1
h , ψn+1

h ∈ Qh satisfying

1

2Δt
(3sn+1

h − 4snh + sn−1
h , vh) + b∗(2un

h − un−1
h ,sn+1

h , vh)

− (

φn+1
h ,∇ · vh

) + ν
(∇sn+1

h ,∇vh
) = −b∗(2rnh − rn−1

h , un+1
h , vh),

(34)
(∇ · sn+1

h , qh
) = 0, (35)

−(ψn+1
h ,∇ · zh) + α2

(∇rn+1
h ,∇ zh

) + (

rn+1
h , zh

) = (sn+1
h , zh) − 2α(∇un+1

h ,∇ zh),
(36)

(∇ · rn+1
h , ηh

) = 0, (37)
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for all vh, zh ∈ Xh and qh, ηh ∈ ×Qh .

Remark 2 The discrete sensitivity system (34)–(37) can be solved efficiently. In fact,
system (34), (35) is decoupled from (36), (37). Furthermore, at each time step the
linear system arising from (34)–(37) has exactly the samematrix as system (29)–(32)
allowing for the reusing of the preconditioner.

The following lemma proves that the discrete sensitivity system for the Leray-α
model is stable with respect to the time step size under a mild restriction on the mesh
size relative to the time step.

Lemma 2 The discrete sensitivity system (34)–(37) with (Xh, Qh) = (Pk, Pk−1) is
stable provided the mesh size h and time step Δt are chosen to satisfy Δt3 ≤ ch ≤
Δt

1
2k−2 . Then we have

‖sMh ‖2 + νΔt
M

∑

n=2

‖∇sn+1
h ‖2 ≤ C,

where C depends only on the problem data.

Proof We take vh = sn+1
h and qh = φn+1

h in (34)–(35) and get that

1
2Δt

(‖sn+1
h ‖2 − ‖snh‖2 + ‖2sn+1

h − snh‖2 − ‖2snh − sn−1
h ‖2 + ‖sn+1

h − 2snh + sn−1
h ‖2)

+ν‖∇sn+1
h ‖2 = −b∗(2rnh − rn−1

h , un+1
h , sn+1

h ).

Let en+1
u := un+1

h − u(tn+1). The right-hand side term is handled by first adding and
subtracting the true solution u(tn+1) to un+1

h , then using Holder’s inequality, and
Sobolev embeddings to obtain

|b∗(2rnh − rn−1
h , un+1

h , sn+1
h )|

≤ |b∗(2rnh − rn−1
h , u(tn+1), sn+1

h )| + |b∗(2rnh − rn−1
h , en+1

u , sn+1
h )|

≤ C‖2rnh − rn−1
h ‖ (‖u(tn+1)‖L∞ + ‖∇u(tn+1)‖L3

) ‖∇sn+1
h ‖

+ C‖2rnh − rn−1
h ‖ (‖en+1

u ‖L∞ + ‖∇en+1
u ‖L3

) ‖∇sn+1
h ‖.

By the assumed smoothness of the true solution, the first term is bounded by

C‖2rnh − rn−1
h ‖ (‖u(tn+1)‖L∞ + ‖∇u(tn+1)‖L3

) ‖∇sn+1
h ‖

≤ ν

2
‖∇sn+1

h ‖2 + Cν−1‖2rnh − rn−1
h ‖2.

Thanks to the generalized inverse inequality (see, e.g. [9]), and well-known interpo-
lation theory, we bound the second term as
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C‖2rnh − rn−1
h ‖

(

‖en+1
u ‖L∞ + ‖∇en+1

u ‖L3

)

‖∇sn+1
h ‖

≤ ν

2
‖∇sn+1

h ‖2 + Cν−1h−1‖∇en+1
u ‖2‖2rnh − rn−1

h ‖2.

Combining the bounds and summing over n yields

‖sMh ‖2 + ‖2sMh − sM−1
h ‖2 + νΔt

M
∑

n=2

‖∇sn+1
h ‖2

≤ Cν−1Δt
M−1
∑

n=2

‖2rnh − rn−1
h ‖2 (

1 + h−1‖∇en+1
u ‖2) .

(38)

Next, we use Eqs. (36) and (37) alongwithCauchy-Schwarz andYoung’s inequalities
to reveal

α2‖∇(2rnh − rn−1
h )‖2 + ‖2rnh − rn−1

h ‖2 ≤ ‖2snh − sn−1
h ‖2 + 4‖∇ (

2un
h − un−1

h

) ‖2.

Combining this with (38) gives

‖sMh ‖2 + ‖2sMh − sM−1
h ‖2 + νΔt

M
∑

n=2

‖∇sn+1
h ‖2

≤ Cν−1Δt
M−1
∑

n=2

‖2snh − sn−1
h ‖2 (

1 + h−1‖∇en+1
u ‖2)

+ Cν−1Δt
M−1
∑

n=2

‖∇ (

2un
h − un−1

h

) ‖2 (

1 + h−1‖∇en+1
u ‖2) . (39)

Using the convergence result (33), we have that

h−1‖∇en+1
u ‖2 ≤ CΔt−1h−1

(

Δt4 + h2k
) = C

(

Δt3

h
+ h2k−1

Δt

)

.

Inserting this bound into (39) and applying the discrete Gronwall inequality (see e.g.
[24]) gives the stated result. We note that there is no sMh on the right-hand side. Thus
there is no time step restriction associated with the discrete Gronwall inequality. �
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3.2 Discrete Scheme for Leray-α-NL

Given T,Δt, α > 0, f ∈ L∞(0, T ; H−1(Ω)d), and u0
h, u

1
h ∈ Xh , we propose the

following decoupled finite element discretization for the Leray-α-NL model (8)–
(11) with indicator function given by (16) and an implicit-explicit treatment of the
nonlinear term:

Algorithm 2
For n = 1, . . . , M − 1 find unh, ũ

n
h, û

n
h ∈ Xh and pnh , λ

n
h ∈ Qh satisfying:

1

2Δt

(

3un+1
h − 4unh + un−1

h , vh
)

+ b∗(2ũnh − ũn−1
h , un+1

h , vh)

−
(

pn+1
h ,∇ · vh

)

+ ν
(

∇un+1
h ,∇vh

)

= ( f (tn+1), vh), (40)
(

∇ · un+1
h , qh

)

= 0, (41)

−(λh,∇ · zh) + α2(|un+1
h − ûn+1

h |2∇ ũn+1
h ,∇ zh) + (ũn+1

h , zh) = (un+1
h , zh), (42)

(∇ · ũn+1
h , ηh) = 0, (43)

α2(∇ ûn+1
h ,∇ yh) + (ûn+1

h , yh) = (un+1
h , yh), (44)

for every vh, zh, yh ∈ Xh and qh, ηh ∈ Qh .

Note that the ûn
h, ũn

h velocities for n = 0, 1 can be determined from Eqs. (42)–
(44), since u0

h and u1
h are given.

Algorithm 2 efficiently decouples the mass/momentum system from the two fil-
ters. First, system (40), (41) is solved for un+1

h , pn+1
h , then Eq. (44) is solved for ûn+1

h ,
and finally Eqs. (42)–(43) are solved for ũn+1

h , λn+1
h .

Algorithm 2 was studied in [7] with the only difference that the |un+1
h − ûn+1

h | in
(42) term was not squared. This change does not affect the stability result proven in
[7], which states

‖uM
h ‖2 + νΔt

M
∑

n=2

‖∇un
h‖2 ≤ C(u0

h, u
1
h, ν

−1, f,Ω),

‖ûn
h‖ ≤‖un

h‖, ‖∇ ûn
h‖ ≤ ‖∇un

h‖, ‖ũn
h‖ ≤ ‖un

h‖ for 0 ≤ n ≤ M.

It is known from [6, 8] that the scheme (40)–(44) converges to a smooth Navier-
Stokes solution uNSE as h, Δt, and α tends to 0. If Taylor-Hood elements are used,
we have

‖uNSE (T ) − uM
h ‖2 + νΔt

M
∑

n=2

‖∇(uNSE (tn) − un
h)‖2 ≤ C(Δt4 + h2k + α4).
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At each time step, after solving the Leray-α-NL discrete system we approximate
the solution of sensitivity equation (24)–(27) as follows. We take s0h = s1h = 0. For
n = 1, . . . , M − 1, given snh , s

n−1
h , rnh , rn−1

h ∈ Xh wefind s
n+1
h , rn+1

h ,wn+1
h ∈ Xh and

φn+1
h , ψn+1

h ∈ Qh satisfying:

1

2Δt
(3sn+1

h − 4snh + sn−1
h , vh) + b∗(2ũn

h − ũn−1
h , sn+1

h , vh) − (

φn+1
h ,∇ · vh

)

+ ν
(∇sn+1

h ,∇vh
) = −b∗(2rnh − rn−1

h , un+1
h , vh), (45)

(∇ · sn+1
h , qh

) = 0, (46)

α2
(|un+1

h − ûn+1
h |2∇rn+1

h ,∇ zh
) − (ψn+1

h ,∇ · zh) + (

rn+1
h , zh

)

= −2α2
((

(un+1
h − ûn+1

h ) · (sn+1
h − wn+1

h )
) ∇ ũn+1

h ,∇ zh
)

+ (sn+1
h , zh) − 2α(|un+1

h − ûn+1
h |2∇ ũn+1

h ,∇ zh), (47)
(∇ · rn+1

h , ηh
) = 0, (48)

α2(∇wn+1
h ,∇ yh) + (wn+1

h , yh) = (sn+1
h , yh), (49)

for all vh, zh, yh ∈ Xh and qh, ηh ∈ Qh .
This scheme can also be efficiently computed. In fact, system (45), (46) is com-

puted first, followed by system (49) and (47), (48). Moreover, the matrices for the
linear systems are exactly the same as for (40)–(44).

Theorem 2 The discrete sensitivity scheme is stable (45)–(49): for all Δt > 0 we
have

‖sMh ‖2 + νΔt
M

∑

n=1

‖∇snh‖2 ≤ C(u, ν−1, T ),

and for any n
2α2‖∇wn

h‖2 + ‖wn
h‖2 ≤ ‖snh‖2, ‖rnh ‖ ≤ ‖snh‖.

Proof By taking vh = sn+1
h in (45) and qh = φn+1

h in (46) along with Holder’s
inequality and Sobolev embedding theorems, we get

1

4Δt

(‖sn+1
h ‖2 − ‖snh‖2 + ‖2sn+1

h − snh‖2 − ‖2snh − sn−1
h ‖2 + ‖sn+1

h − 2snh + sn−1
h ‖2)

≤ +ν‖∇sn+1
h ‖2C‖2rnh − rn−1

h ‖(‖∇un+1
h ‖L3 + ‖un+1

h ‖L∞)‖∇sn+1
h ‖.

Young’s inequality and the assumption of uh converging sufficiently fast yield:

1

2Δt
(‖sn+1

h ‖2 − ‖snh‖2 + ‖2sn+1
h − snh‖2 − ‖2snh − sn−1

h ‖2 + ‖sn+1
h − 2snh + sn−1

h ‖2)
≤ +ν‖∇sn+1

h ‖2Cν−1‖2rnh − rn−1
h ‖2.

(50)
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Next, taking yh = wn+1
h in (49) and zh = rn+1

h in (47) provides

2α2‖∇wn+1
h ‖2 + ‖wn+1

h ‖2 ≤ ‖sn+1
h ‖2, (51)

and

α2
∥

∥|un+1
h − ûn+1

h |∇rn+1
h

∥

∥

2 + ‖rn+1
h ‖2

= (sn+1
h , rn+1

h ) − 2α2
(

(

(un+1
h − ûn+1

h ) · (sn+1
h − wn+1

h )
)∇ ũn+1

h ,∇rn+1
h

)

− 2α(|un+1
h − ûn+1

h |2∇ ũn+1
h ,∇rn+1

h ).

Cauchy-Schwarz and Young’s inequalities applied to each term on the right-hand
side give the estimate

α2‖|un+1
h − ûn+1

h |∇rn+1
h ‖2 + ‖rn+1

h ‖2
≤ ‖sn+1

h ‖2 + 8α2‖|sn+1
h − wn+1

h |∇ ũn+1
h ‖2 + 8‖|un+1

h − ûn+1
h |∇ ũn+1

h ‖2.

Assuming uh converges and using (51), we have that

‖rn+1
h ‖2 ≤ ‖sn+1

h ‖2 + C + Cα2‖|sn+1
h − wn+1

h ‖2 ≤ C(1 + ‖sn+1
h ‖2). (52)

Inequalities (52) in (50) yield:

1
2Δt (‖sn+1

h ‖2 − ‖snh‖2 + ‖2sn+1
h − snh‖2 − ‖2snh − sn−1

h ‖2 + ‖sn+1
h − 2snh + sn−1

h ‖2)
+ν‖∇sn+1

h ‖2 ≤ Cν−1
(‖snh‖2 + ‖sn−1

h ‖2) .

To complete the proof we sum over n and apply Gronwall’s inequality. There is no
time step restriction since the power of sh on the right-hand side is less than n + 1
[24]. �

4 Numerical Testing

In this section we compute solutions to the Leray-α and Leray-α-NL models, and
associated sensitivities for two test problems. For both tests, we use Taylor-Hood
elements, i.e. P2 elements for velocities and relative sensitivities, and P1 elements
for pressures and Lagrange multipliers. The computations were performed using
Freefem software [22].
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4.1 Channel Flow Past a Forward-Backward Step

We consider the two dimensional channel flow past a forward-backward step. The
domain is a 40 × 10 rectangle, with a 1 × 1 step placed five units in, see Fig. 1. We
impose boundary conditions (5)–(7) for the Leray-α model and (12)–(14) for the
Leray-α-NL model with uin = (y(10 − y)/25, 0)T . The boundary conditions for
the sensitivity systems are as reported in Sect. 2. We set f = 0 and ν = 1/600. The
correct physical behavior for a NSE solution is a smooth velocity profile, with eddies
forming and detaching behind the step; see, e.g., [20, 27].

We consider a Delaunay triangulated mesh (shown in Fig. 1), with a total of 2,575
total degrees of freedom. The time step is set toΔt = 0.1. We let the simulations run
until T = 40. We show in Fig. 2 the streamlines over velocity magnitude contours
given by the Leray-α model with α = 0.25 and α = 0.1 at time T = 40. We observe
the solutions are similar away from the step, but behind the step they exhibit very
different behavior: for α = 0.25 there is no eddy separation, while for α = 0.1 the
correct transient behavior of eddy shedding is predicted. This sensitivity to α near
the step and lack of sensitivity away from the step are predicted in the plot of the
velocity sensitivity magnitude |sh| for α = 0.25 reported in Fig. 3.

The same test was run with the Leray-α-NL model. Figure4 displays the stream-
lines over velocity magnitude contours given by the Leray-α-NL model with
α = 0.25 and α = 0.1 at time T = 40. Here we observe that both solutions cor-
rectly predict eddy shedding behind the step. Moreover, we observe that the velocity
sensitivity magnitude for α = 0.25 shown in Fig. 5 is quite small. In fact even though
|sh| is largest behind the step, just as in the Leray-α case, for the nonlinear model
the magnitude of sensitivity is almost 2 orders of magnitude smaller: at T = 40

Fig. 1 Mesh used
for the computations
of the channel flow past a
forward-backward step
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Fig. 2 Streamlines over velocity magnitude contours given by the Leray-α model with α = 0.25
(left) and α = 0.1 (right) at time T = 40
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Fig. 3 Velocity sensitivity magnitude |sh | for the Leray-α model with α = 0.25 at time T = 40
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Fig. 4 Streamlines over velocity magnitude contours given by the Leray-α-NL model with α =
0.25 (left) and α = 0.1 (right) at time T = 40
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Fig. 5 Velocity sensitivity magnitude |sh | (left) and indicator function a(uh) = |uh − ûh |2 (right)
for the Leray-α-NL model with α = 0.25 at time T = 40

‖sh‖L∞ ≈ 0.01 for the Leray-α-NL model, while ‖sh‖L∞ ≈ 0.80 for the Leray-α
model. Hence the Leray-α-NL correctly predicts the physical behavior with both
choices of α, and is much less sensitive to the parameter choice than the classical
Leray-α model. Figure5 reports also the indicator function a(uh) = |uh − ûh|2 for
the Leray-α-NL model with α = 0.25 at time T = 40. We see that the indicator
function takes larger values in the region behind the step, as expected.

4.2 Channel Flow with a Contraction and Two Outlets

The second numerical test is taken from Heywood et al. [25]: channel flow with a
contraction, one inlet on the left side, and outlets at the top and right. We impose
boundary conditions (5)–(7) for the Leray-α model and (12)–(14) for the Leray-α-
NL model with uin = (4y(1 − y), 0)T . The boundary conditions for the sensitivity
systems are as reported in Sect. 2. We set f = 0, ν = 0.001, and u0 = 0. We let
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the simulations run until T = 4. The Navier-Stokes velocity magnitude on a fully
resolved mesh is shown in Fig. 7 for T = 4. This solution was obtained using a
fully implicit Crank-Nicolson temporal discretization with time step of Δt = 0.005
and (P3, P2) grad-div stabilized Taylor-Hood elements on the triangular mesh with
260,378 total degrees of freedom.

We consider a coarse Delaunay generated triangulation (shown in Fig. 6), with
a total of 24,553 total degrees of freedom, that is one order of magnitude less than
a fully resolved mesh. Figure8 shows the velocity magnitude contours given by
the Leray-α model with α = 0.16 and α = 0.14 at time T = 4. First of all, we
note these solutions do not match well the solution given by DNS shown in Fig. 7.
Comparing to each other, the solutions for α = 0.16 and α = 0.14 in Fig. 8 appear
similar on the left half of the channel, but on the right-hand side the ‘jet’ for α = 0.14
extends slightly farther. Also there are discrepancies near the top outlet; see zoomed-
in views in Fig. 8. These differences are predicted by the velocity sensitivity solution
for α = 0.16 reported in Fig. 9.

The same testwas runwithLeray-α-NL.Figure10displays the velocitymagnitude
contours given by the Leray-α-NLmodel withα = 0.16 andα = 0.14 at time T = 4.
These solutions match each other well and match the general pattern of the solution
given by DNS shown in Fig. 7. Examining the sensitivity solution for α = 0.16 in
Fig. 11 we see greater sensitivity near the top outlet. However, the velocity sensitivity
magnitude |sh | is smaller than for the classical Leray-α model; compare Fig. 11 with
Fig. 9. Also for this second test, the Leray-α-NL correctly predicts the physical
behavior with both choices of α, and is less sensitive to the parameter choice than the
classical Leray-α model. Finally, Fig. 11 reports also the indicator function a(uh) =
|uh − ûh|2 for the Leray-α-NLmodel with α = 0.16 at time T = 4. Figure11 shows
that it is a suitable indicator function since it correctly selects the regions of the
domain where the velocity does need regularization.

Fig. 6 Mesh used for the
computations of the channel
flow with a contraction and
two outlets
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Fig. 7 Velocity magnitude
contours given by DNS
(NSE on a fully resolved
mesh) at time T = 4
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Fig. 8 Velocity magnitude contours given by the Leray-α model with α = 0.16 (top left) and
α = 0.14 (top right) at time T = 4 and respective zoomed in views (bottom)

Fig. 9 Velocity sensitivity
magnitude |sh | for the
Leray-α model with
α = 0.16 at time T = 4s
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Fig. 10 Velocity magnitude contours given by the Leray-α-NL model with α = 0.16 (left) and
α = 0.14 (right) at time T = 4
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5 Conclusions

In this paper, we applied the sensitivity equationmethod to study the sensitivity to the
filtering radius α of the classical Leray-α and a Leray model with a deconvolution-
based indicator function, calledLeray-α-NL.Weproposed efficient and stable numer-
ical schemes for the approximation of both models and their respective sensitivity
systems, and we tested them on two benchmark problems.We showed that the veloc-
ity sensitivity magnitude correctly identifies the region of the domain where the
velocity is sensitive to variations of α. Moreover, we showed that the Leray-α-NL
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model correctly predicts the physical solution for different values of α, and is much
less sensitive to the parameter choice than the classical Leray-α model.

This is a preliminary work aiming at assessing numerical schemes for the sensi-
tivity equations. Clearly, we expect to use the sensitivity results to perform specific
strategies for the selection of the filter radius. This will be based on the following
steps: (1) Compute the LES solution and the sensitivity with a conservative choice
of the radius (α = α0 “large”); (2) Rapidly recompute the solution for smaller values
of α according to the expansion

u(α) ≈ u(α0) + s(α0)(α − α0).

The definition of the appropriate criteria for the identification of the most appropriate
radius is expected to be largely problem-dependent andwill be subject of forthcoming
works.
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Model Order Reduction for Problems
with Large Convection Effects

Nicolas Cagniart, Yvon Maday and Benjamin Stamm

Abstract The reduced basis method allows to propose accurate approximations
for many parameter dependent partial differential equations, almost in real time, at
least if the Kolmogorov n-width of the set of all solutions, under variation of the
parameters, is small. The idea is that any solutions may be well approximated by the
linear combination of some well chosen solutions that are computed offline once and
for all (by another, more expensive, discretization) for some well chosen parameter
values. In some cases, however, such as problems with large convection effects, the
linear representation is not sufficient and, as a consequence, the set of solutions
needs to be transformed/twisted so that the combination of the proper twist and
the appropriate linear combination recovers an accurate approximation. This paper
presents a simple approach towards this direction, preliminary simulations support
this approach.
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1 Introduction

Fast reliable solutions to many queries parametric Partial Differential Equations
(PDE) have many applications among which real time systems, optimization prob-
lems and optimal control. Many different methods for reducing the complexity of
the computations when such many queries are required have blossomed for answer-
ing this specific need. One of the approaches that have emerged is reduced order
modeling (ROM). Methods in this category have been developed and are now well
understood and set on firmgrounds, both for steady cases or time dependent problems
where time can be considered as another parameter.

The reduced basis method, which is the method that we focus on in this paper,
enters in this frame and consists in, (1) defining a sequence of low dimensional
spaces for the approximation of the whole set of the solutions to the parametric
PDE when the parameters vary (called hereafter the solution manifold associated
to our problem); (2) once such a sequence of low dimensional spaces (known as
reduced basis spaces) is determined, an approximate solution is sought in such a
chosen reduced space to the PDE for the values of the parameter we are interested in.
The approximation is often based on a Galerkin formulation. For such reduced basis
methods, both the variety of applications and the theory are now quite sound. For
instance, reliable algorithms with a priori estimates and certified a posteriori errors
have been developed for elliptic and parabolic problems, with or without so-called
affine parameter dependence, see e.g. the two recent books on the subject [12, 20]
and, of course, the publications therein.

Reduced basis methods, classically, consider the solution manifold associated to
the parametrized problem as outlined above and are appropriate if this manifold
can be approximated accurately by a sequence of finite dimensional spaces. The
mathematical frame for this is inherently linked to the notion of Kolmogorov width
of solution manifolds, i.e. on how well the solution manifold can be approached by
a finite dimensional linear space. More precisely, letM be a manifold embedded in
some normed linear space X . The Kolmogorov n-width of M is defined as:

dn(M ,X ) = inf
En

sup
f ∈M

inf
g∈En

‖f − g‖X .

The first infimum being taken over all linear subspaces En of dimension n embedded
in X .

Even if, from the practical point of view, there are various ways for checking that
M can be approximated by a series of reduced spaced with small dimension, the first
natural mathematical question is to provide an estimation of the Kolmogorov n-width
ofM . Second, the question of an applied mathematician is if one can actually build
an optimal, or close to optimal sequence of basis sets for these spaces?

Of course, in the vast majority of real cases, there is no analytical expression
for this dimension but there are some papers giving bounds for some restricted
classes of problems in the literature. For instance, in [17] bounds on dn are found
for solution manifolds corresponding to regular elliptic problems and where the
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parameter dependence is on the forcing term. More general cases can be handled
using the results in [8]. The hypothesis therein is on the regularity of the solution with
respect to the parameter dependence, it is proven that, under analyticity assumptionon
the behavior of the parameters in the PDE, the smallness Kolmogorov n-width of the
manifold of parameters C (≤ cn−t , t > 1) implies the smallness of the Kolmogorov
n-width of the associated solutions manifold MC (≤ cn−s, s ≤ t − 1).

In practice, instead of the “optimal” linear subspace of dimension n in the sense
described earlier, we build a “good” linear subspace. In the literature, the two most
classical algorithms are the greedymethod based on a certified (or at least fair enough)
a posteriori estimator, and the Proper Orthogonal Decomposition (POD).We proceed
assuming that the chosen algorithm has given a “good” basis “close” to the optimal
one, that is, we assume that our reduced family of spaces {Xn}n satisfies:

dn(M ,X ) ≈ sup
f ∈M

inf
g∈Xn

‖f − g‖X .

A first paper on this subject is [16], where the authors derived error bounds on
the error for the Reduced Basis Method (RBM) approximation in case of a single
parameter dependent elliptic PDE. More general results have been obtained more
recently for the greedy approach of the RBM [3, 10]. The optimality considered in
the case of POD is slightly different. The POD focuses on minimizing the average
error (parameter wise), in some norm. More precisely, we have the well known
relation ∫

C
‖u(μ) − ΠPODu(μ)‖2 dμ =

∑
i>NPOD

λi,

where ΠPOD is the orthogonal projection onto the POD reduced space of dimension
NPOD and the λi are the eigenvalues of the associated correlation operator, in de-
creasing order. The faster the decay of the eigenvalues, the fewer modes are needed
for a good (in average) reconstruction of the solution manifold.

Up to now, most of the literature on the subject, deals with problems where
one can expect/check/prove/ or hope, that the solution manifold MC has a small
Kolmogorov n-width. There are, however, cases where the plain approach does not
work and some transformation ofMC needs to be done. An example is for instance
the use of the Piola transform in the processing of the velocity field when the PDE
is the Stokes or Navier-Stokes problem and the parameter includes the geometry of
the computational problem (see, e.g., [14]). The choice of the Piola transform indeed
provides better reduction than a simple change of variables.

The most classical and simple example illustrating limitations of reduced models
due to large Kolmogorov n-width is the pure transport equation, with constant speed
c > 0. Formally, we consider the following parametric PDE over the domain Ω =
(a, b) ⊂ R
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⎧⎪⎨
⎪⎩

∂tu(x, t) + c∂xu(x, t) = 0, in Ω × ]0,T [ ,

u(x, 0) = u0(x), in Ω,

c ∈ C := [cmin, cmax].
(1)

The analytic solution is given by

u(x, t; c) = u0(x − ct).

We can consider two solution manifolds. Either the space time solution manifold

M x,t
C = {u(·, ·; c), c ∈ C } ,

or a more natural solution manifold in our context is the snapshot solution manifold

M x
C = {u(·, t; c), t ∈ [0,T ], c ∈ C } . (2)

We will first give an illustrative idea of dn(M x
c ), i.e. for a fixed convection param-

eter. Thus, the only “parameter” left is time and dn(M x
c ) is, of course, smaller than

dn(M x
C ).

Suppose now that our initial solution is compactly supported and let � denote
the Lebesgue measure of its support. Let us assume in addition that its support
is included in ]a, a + �[. Then, there are at least (b − a)/� snapshots {u(·, tk; c)}k
obtained for tk = k�/c that are two by two orthogonal proving that a lower bound
of the Kolmogorov n-width is (b − a)/�. For a given accuracy, reducing �, we can
make the size of the reduced basis needed arbitrarily large. Another example of badly
behaved manifold space can also be found in [21].

The objective here is to give a proper framework and to introduce notations gen-
eralizing the following observation: apart from translation, the solution manifold
for the whole time simulation can be represented by a unique basis. However, let
us stress that this translation is not a linear process hence the Kolmogorov process
cannot capture it. An additional ingredient to existing reduced order methods has
thus to be added so as to capture this very simple problem structure.

Most of the works in the reduced order modeling community on convection dom-
inated problem have been done on the stabilization issue, and not on the reduction
of the Kolmogorov n-wdith. For instance, the authors in [9] have proven that using,
as usual, the residual of the PDE as a surrogate for the true error, is not adapted
if convection is dominating as the relative a posteriori estimator is not fair enough.
Their method involves other norms than the natural ones, and increases the stability
at each iteration by enriching the trial space. Once again, their method improves the
stability of the construction of a reduced basis, but does not handle the fact that the
solution manifold can have a large Kolmogorov n-width.

In the samedirection let us quote the papers related to the so calledGNATapproach
[6, 7] where the authors propose also an alternative reduction approach for these type
of problems.
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In [1], the authors address the stability issue in another direction. They give ideas
and shownumerical examples illustrating the fact that usingL1-minimisation, instead
of the — more classical — L2-minimisation (corresponding to a Galerkin scheme,
which is natural in the reduced modeling context), does a better job for handling
shocks (as appears in non linear convection problems) and provides more stable
results. However, this approach does not cure the problem that we have indicated
above related to the large dimension of the solution manifold.

Let us also mention at this level, as an intermediate approach, the paper [5]. As
standard reduced order modeling fails, the author chooses, in a preprocessing step, to
“chop off” the reduced basis functions resulting in a kind of adaptive coarse enriched
finite element method.

Very few papers take the n-width issue directly. In [21], the authors propose a
method that is the first attempt to use shock fitting related ideas in the context of
reduced order modeling. The idea is to decompose the spatial domain into zones
separated by shocks. In each zone, classical reduced order modeling is performed,
and the shocks dynamic is handled using another equation. For them, it is given by
Rankine-Hugoniot conditions. This method, just as any other shock fitting method,
is somehow limited to one dimensional problems.

In [11], the authors develop a method where the POD basis is reconstructed at
each time step to follow the propagation of the phenomenon. More precisely, by
referring to Lax–pairs, they choose as reduced basis the modes of the Schrödinger
operator where the potential is taken as the solution at the previous time step. Even
if no theoretical proof of this ansatz is presented, the numerical results presented
in that paper illustrate the interest of the approach for selecting the reduced space
and adding stability to the process without curing, however, the large increase of the
dimension of the reduced space when the accuracy requirement increases.

The method presented in [13] is similar to our work in many aspects, in particular
in looking for a change of variable for better representing the solutionmanifold. Their
approach relies on the existence of a main mode u0 that, by convection, represents
most of the solution. The proper change of variable (written as a sum of advection
modes) is fitted by evaluating Wasserstein distances between the snapshots in M x

C ,
with modes being obtained by solving Monge-Kantorovich optimal transport prob-
lems w.r.t. the reference mode u0. Various numerical results illustrate the approach,
however, only in cases where the solution exhibits indeed such amainmode u0 which
is doubtful in nonlinear processes. We will come back on their ideas in the following
sections.

The last approach in this direction developed in [2] and in [19] uses the same initial
idea. Their formal and general presentation is quite interesting and enlightening,
however, the restrictions imposed on the formulation of the transformed equations
seems to be somehow too stringent for many reduction processes.

This paper is the first of a series where we develop our approach in different situa-
tions.We start here by presenting the general framework and notations.We introduce
the notion of “preconditioning” of a solutionmanifold based on our knowledge of the
process(differingheresomehowfromtheoptimal transportproblemapproachin[13]).
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We thenapplyourmethod to the specificproblemof theonedimensional unsteadyvis-
cousBurger equation andwe then present some numerical simulations confirming the
feasibility of themethod. The end of the paper states some perspectives.

2 Formal Presentation

Let us consider a general time dependent parametric PDE in some physical space
Ω ⊂ R

d , d = 1, 2, 3,

⎧⎪⎨
⎪⎩
ut + L (u;μ) = 0 in [0,T ] × Ω,

u(·, t = 0;μ) = u0(·, μ) in Ω,

B(u;μ) = 0 on ∂Ω,

(3)

where μ varies in some compact parameter space C . Our approach considers the
corresponding snapshot solution manifoldM x

C as defined in (2) that is embedded in
X , that, for the sake of conveniency, we choose equal to L2(Ω).

Let us assume that the solution manifold has a simple structure, not reflected
though by the Kolmogorov n-width but hidden by a transformation of the solution
manifold. As stated in the introduction, we can think of the transport equation as
being the simplest example for which this is occurring. The objective is to find,
through a “preconditioning” step, how to recover the simple structure of the solution
manifold.

In this “preconditioning” step, we target a family of (smooth) invertible mappings

FC = {
F : Ω �→ Ω

}

in which there exists well chosen applications

[0,T ] × C → FC ,

(t, μ) �→ Ft;μ

such that the corresponding preconditioned solution manifold, defined as:

M x
F ,C :=

{
u(F−1

t;μ(·), t;μ), μ ∈ C , t ∈ [0,T ]
}

(4)

has a smaller Kolmogorov n-width than MC . The definition of the set FC is based
on a priori expertise on the behavior of the solution. We aim to conceive and design
it during a preprocessing step (generally called “offline” in the RBM community).

In what follows, we explain how we use this preconditioned solution manifold
and how we pick the correct application Ft;μ, in a computationally efficient way.
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2.1 Algorithm

For simplicity, let us assume that we are using an explicit Euler scheme for the
time discretization. Extensions to implicit, higher order time discretization, or more
involved conservative numerical scheme, is straightforward and will be reported in
a future paper.1 Our semi-discretized PDE then becomes

⎧⎪⎪⎨
⎪⎪⎩

un+1 − un

dt
+ L (un;μ) = 0 in Ω,

u(·, t = 0;μ) = u0(·, μ) in Ω,

B(un;μ) = 0 on ∂Ω.

(5)

Here, as is classical, dt denotes the time step, and un an approximation for the solution
to (3) at time ndt.

Assume thatwe have a basis {φi} such that span{φi} approaches the preconditioned
solution manifoldM x

F ,C defined in (4) to a given accuracy. SinceM x
F ,C is assumed

to be of small Kolmogorov n-width, we expect that we can find such a basis of
moderate size. At each time step, we look for coordinates (αn+1

i )i on the reduced
basis and an application Fn+1 ∈ FC such that u(·, tn+1;μ) is well approximated by:

un+1 :=
M∑
i=1

αn+1
i φi ◦ Fn+1.

In order to expect the search for Fn+1 be computationally tractable, let us assume
that our family FC can be parametrized by a few parameters: that is

∀Ft;μ ∈ FC , ∃(γj)j, such that Ft;μ = F
[
γ1(t;μ), . . . , γm(t;μ)

]
.

In the discrete setting, the search for Fn+1 then reduces to the search for (γ n+1
j )j, and

we set Fn+1 = F
[
γ n+1
1 , . . . , γ n+1

m

]
.

We are thus simultaneously looking for an appropriate reduced space (defined
as the span of the (φi ◦ Fn+1)i) and for coordinates on this reduced space. We have
chosen to derive our solution from some minimization problem of the form

(γ n+1
j , αn+1

i ) = argmin
(γj,αi)

∥∥∥∥∥
∑
i

αi φi ◦ F([γj]j) − un + dtL (un;μ)

∥∥∥∥∥ (6)

for some appropriate norm ‖ · ‖ on X .

1Note that, of course, this choice of an explicit scheme involves a limitation on the time step due
to a CFL condition that can be severe for an accurate finite element or finite difference scheme but
reveals to be moderate in the reduced basis framework.
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Remark 1 It is interesting to note that our approach, in this context, may be pre-
sented as a shock fitting method, and thus one may fear that it will suffer from the
classical drawback of this class of approach, especially the difficulty to generalize
to multidimensional framework. One reassuring element is that the position of the
fitting Fn is not defined through the Rankine-Hugoniot conditions but through the
minimization process (6), and the evolution in time can be chosen to follow any
appropriate conservative numerical scheme. [This does not mean, however, that the
extension to two dimensional problems does not lead to some difficulties! This is
under investigation and will be presented in a future paper (see also [4]).]

Several choices are possible for the sense in which we will minimize this quantity.
One example will be given in the next section. We propose the following generic
algorithm.

Algorithm 3
Step 1. Initialize αi and γj:

(α
n+1,0
i , γ

n+1,0
j ) = (αini

i , γ ini
j )

αini
i and γ ini

j will depend on the previous timesteps, namely on (αk
i )i and (γ k

j )j for k ≤ n.

Then, assuming that (α
n+1,q
i , γ

n+1,q
j ) are known for some internal iteration q ≥ 0, we

proceed
Step 2. Fit the αi given [γ n+1,q

j ]j: Find (α
n+1,q+1
i )i that minimizes the following quantity (in some

sense): ∑
i

α
n+1,q+1
i φi ◦ F

(
[γ n+1,q

j ]j
)

− un + dt ∗ L (un; μ)

Step 3. Fit the γj given (α
n+1,q+1
i )i: Find (γ

n+1,q+1
j )j that minimizes the following quantity (in

some sense):

∑
i

α
n+1,q+1
i φi ◦ F

(
[γ n+1,q+1

j ]j
)

− un + dt ∗ L (un; μ)

until convergence (for which, say q = q∗). Then, we set

(αn+1
i , γ n+1

j ) = (α
n+1,q∗+1
i , γ

n+1,q∗+1
j ).

2.2 Discussion

The two closest methods to ours are first the one developed in [2, 19], second the
one presented in [13].

In the formermethod, there is also the search for a phase component:F(t;μ) and a
shape component: v := u(·, t;μ) ◦ F(t;μ) that they name the “calibrated solution”.
They present the approach in the frame of Lie group action and thus introduce the
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notion of equivariance with respect to the group action for the calibrated solution.
Hence, instead of best fitting these two objects from the discrete equation (5) by
solving the optimal problem (6), the idea is to find an equation satisfied by the
calibrated solution, i.e. an operator L̃ such that v is solution to the following equation

vt + L̃ (v;μ) = 0 in [0,T ] × Ω.

To close the system, they need to add a well chosen equation on F(t;μ). Well chosen
here means that the calibrated equation has to be well posed, and the dynamics of
the shape component should be much simpler than those of the original solution.

The second paper [13] differs on two points. There is a unique reference mode u0
that allows to characterize the mapping, obtained from an optimal transport problem.
The interest is that there is no need to have an expertise on what is the set FC —
the Monge-Kantorovich optimal transport problem doing the job —, the drawback
is that the problem should have a unique natural reference mode.

3 Illustration on the Viscous Burger’s Equation
in One Dimension

The viscous Burger’s equation has already received some attention in the reduced
modeling context. We mention [22] for the stationary case and when the solution
manifolds can be well represented by a small finite dimensional linear space, without
any preconditioning.

We considerΩ = (−1, 1), and solve for the time dependent viscous Burger equa-
tion with no forcing term and periodic boundary conditions (we will see later why
these are important in our analysis):

⎧⎪⎨
⎪⎩
ut + νuux − εuxx = 0 in [0,T ] × Ω,

u|t=0 = u0,

u periodic.

(7)

The extension to non periodic boundary conditions is under control and will be
presented in a future paper (see also [4]).

The parameters of this problem are the triplets:μ = (u0, ν, ε). We want to choose
a parameter domain C in order that the problem is

• convection dominated so that the solution manifold has a large Kolmogorov n-
width

• not too stiff so as not to be bothered by stabilization issues as mentioned in the
introduction, hence, we shall only consider the cases ε ≥ ε0 > 0 (see the recent
paper [15] that tackles this problem).
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We have chosen the following:

C =

⎧⎪⎨
⎪⎩

λ ∈ [0.5, 1.3],
ν ∈ [4., 6.],
ε ∈ [0.04, 0.2].

3.1 Variational Formulation and Truth Approximation

For the truth approximation to the solution of problem (7), let us consider a semi
implicit scheme (so as not to be bothered by a two stringent stability constraint) with
time step dttruth. Let

X = H 1
per(Ω)

and let us denote by 〈·, ·〉 and ‖ · ‖ the usual L2 inner product and norm. For each
μ = (u0, ν, ε) ∈ C , for the semi-discrete (in time) truth problem, we are looking for
un+1 ∈ X (approximation of u(·, (n + 1)dttruth, μ)) such that: ∀v ∈ X

〈un+1(μ), v〉 + dttruthεa(u
n+1(μ), v) = 〈un(μ), v〉 − dttruthνc(u

n(μ), un(μ), v)

where

c(w, z, v) =
∫

Ω

w zx v and a(w, v) =
∫

Ω

wx vx.

This semi-discretized problem is trivially well posed. In order to finalize the dis-
cretization, let us introduce an appropriate finite element discretization, the truth
approximation space, XN . We pick it fine enough so that, with the chosen time
step dttruth, it is able to represent well our solution manifold. From now on, we will
consider that the exact solution u(·, t;μ) and the “truth” solution uN (·, t, μ) cannot
be distinguished.

3.2 Model Order Reduction — Offline Stage

As mentioned earlier, the first question we need to answer is: does our solution
manifold M x

C (in practice represented by M x,truth
C ) have a large Kolmogorov n-

width? And if so, can we find better behaved “calibrated” manifold solution? Fig. 1
shows some snapshots

{
u(·, tk;μ), k ∈ 1 . . .K

}
taken inM x

C for some parameters.
From basic expertise on the Burger’s equation, we choose the mapping family

F = {
Ft;μ

}
, where Ft;μ are defined as translation operators:

Ft;μ : Ω �→ Ω, x �→ x − γ (t;μ)
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Fig. 1 Snapshots of the
solution to the unsteady
viscous Burger equation with
u0 = λ + sin(x), λ = 1.3,
ν = 4, ε = 0.04

with γ (t;μ) ∈ R.With this choice, our family ofmappings is a one parameter family,
i.e.:

F = {F(γ ) | γ ∈ R} .

Unlike in the pure translation problem of the introduction (1), our parameter γ is
not constant (it is a function of μ and time) and has no analytical expression. Our
calibrated solution manifold is then

M x
F ,C = {u(· − γ (t;μ), t;μ), t in [0,T ], μ ∈ C },

that is represented in Fig. 2 where we understand that the Kolmogorov n-width of
M x

F ,C is smaller than the original one represented in Fig. 1.

Fig. 2 Calibrated set of the
above snapshots for
u0 = λ + sin(x), ν = 4,
ε = 0.04
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Fig. 3 Eigenvalues of the POD decomposition of the original set of snapshots (in red) and of the
calibrated set of snapshots (in green)

Fig. 4 3rd (left) and 6th (right) PODmodes for the calibrated (green) and original (red) simulations

This is confirmed in Fig. 3 which presents the decay of the POD eigenvalues in
logarithmic scale forM x

C andM x
F ,C . As we could have expected, to achieve a fixed

accuracy, the number of POD modes needed to represent the calibrated manifold is
much smaller than the number of modes needed for the original solution set.

To confirm this, we present in Fig. 4 the 3rd and 6th POD modes of the calibrated
and non calibrated simulations. As we can see, in the calibrated case, with just 3
modes, our L2-projection focuses on reproducing the shock, whereas in the non-
calibrated case, the modes desperately try to represent shocks centered anywhere in
Ω . We mention again the fact that, even in the calibrated case, Algorithm 3 could be
improved using L1-minimization.

We present in Fig. 5 the projection of one of the snapshot on the first three POD
modes. With 10 POD modes in the uncalibrated case, the projection shown on Fig. 5
exhibit the oscillatory behaviour as described in [1].
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Fig. 5 Projection of a snapshot (blue): on 3 POD modes in the calibrated case (left figure), on 3
PODmodes in the non calibrated case (central figure), on 10 PODmodes in the non calibrated case
(right figure)

At this stage, we suppose that we have found a “calibrated” solution manifold,
with nice Kolmogorov n-width decay. That is, we have calibrated an original dataset,
and obtained a reduced orthonormal basis:

span {φi, i = 1 . . .M } ⊂ X (8)

that approximates well the calibrated solution manifoldM x
F ,C .

We now need to explicit Algorithm 3. The biggest question is: How do we pick
the F ∈ F at each time step?

3.3 Model Order Reduction — Online Stage

As was introduced in the previous section [see (5)], for the time semi-discretization
of the RBM approach, we use a forward Euler discretization with a time step dt that
may be different from dttruth. At each time step we are looking for the solution to the
elliptic problem2

un+1 = un − dtνununx + dtεunxx

with periodic boundary conditions over (−1, 1). This leads to the following varia-
tional formulation that will be used to provide the Galerkin formulation of the RBM:
Knowing un, compute un+1 ∈ X such that

∀v ∈ X , 〈un+1(μ), v〉 = 〈un(μ), v〉 − dtνc(un(μ), un(μ), v) − dtεa(un(μ), v).

One could fear that a problem with this discretization is the stringent CFL con-
dition on the time-step. Our reduced basis formulation will allow for very fast com-
putation, which will mitigate this issue on which we shall dwell upon later. As
said already, we could also consider an implicit Euler scheme. We refer to [22]
(stationary) and [18] (non-stationary), for the development of reduced order model
in that case.

2Indeed there is no reason why using the same discretization in time for the truth solution and for
the reduced basis scheme.
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The full RBM discretization starts from the knowledge of the (supposedly accu-
rate) approximation of un as an expansion

un :=
M∑
i=1

αn
i φi ◦ Fn, (9)

where the {φi}i are the reduced basis elements of the good approximation of the
calibrated solution manifold that have been introduced in (8) as a result of the offline
process.Fn is hereF(γ n)where γ n is the current translation value. In order to deduce
the next approximation,

un+1 :=
M∑
i=1

αn+1
i φi ◦ Fn+1, where Fn+1 = F(γn+1)

as described in the previous section, we iterate between the search for the reduced
coordinates (αn+1

i )i and for the mapping Fn+1 i.e. for the translation parameter γ n+1.
We initialize these quantities as follows:

α
n+1,0
i = αn

i

γ n+1,0 = γ n + (
γ n − γ n−1

)
.

In thefirst part of the iterative step indexedbyq, assumingweknow ((α
n+1,q
i )i, γ

n+1,q)

we fit the αi for a fixed translation parameter γ , i.e.we are looking for (α
n+1,q+1
i )i

that satisfy

{αn+1,q+1
i } = argmin

(αi)i∈RN

∥∥∥∥∥
∑
i

αiφi ◦ F(γ n+1,q) − un − dtνununx + dtεunxx

∥∥∥∥∥
2

2

.

The nice feature with the chosen norm is that we pick our reduced coordinates such
that our residual is orthogonal to the translated reduced space, the space spanned
by the {φi ◦ F(γ n+1,q)}i. Using un’s expansion on its reduced basis, the coefficients
{αn+1,q+1

i }i are given by the first-order optimality condition:

α
n+1,q+1
i =

∑
j

αn
j 〈φj ◦ F(γ n), φi ◦ F(γ n+1,q)〉

− dtν
∑
j

∑
p

αn
j α

n
p〈φj ◦ F(γ n)

(
φp ◦ F(γ n)

)
x , φi ◦ F(γ n+1,q)〉

− dtε
∑
j

αn
j 〈

(
φj ◦ F(γ n)

)
x ,

(
φi ◦ F(γ n+1,q)

)
x〉.

In order to evaluate this expression, we need to compute the following integrals:
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⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∀i, j,
∫

Ω

φj ◦ F(γ n)(x)φi ◦ F(γ n+1,q)(x)

∀i, j, p,
∫

Ω

φj ◦ F(γ n)(x)
(
φp ◦ F(γ n)

)
x (x)φi ◦ F(γ n+1,q)(x)

∀i, j,
∫

Ω

φj ◦ F(γ n)x(x)φi ◦ F(γ n+1,q)x(x)

(10)

We will see in the next subsection how to achieve efficient offline/online decompo-
sition for these quantities.

Once this is done, we fit the γ . Let us define first the residual function r(γ ):

r(γ ) =
∥∥∥∥∥
∑
i

α
n+1,q+1
i φi ◦ Fγ − un − dtνununx + dtεunxx

∥∥∥∥∥
2

2

,

thenwe choose γ n+1,q+1 as the “best”, i.e. residualminimizing, translation parameter.
It is given by:

γ n+1,q+1 = argmin
γ

r(γ )

Next we develop r(γ ):

r(γ ) =
∥∥∥∥∥
∑
i

α
n+1,q+1
i φi ◦ F(γ )

∥∥∥∥∥
2

2

+ ∥∥un − dtνununx + dtεunxx
∥∥2
2

− 2〈
∑
i

α
n+1,q+1
i φi ◦ F(γ ), un − dtνununx + dtεunxx〉.

The second term is independent of γ . The first one, using periodicity, happens also to
be independent of γ . We can thus replace the minimization of r by the minimisation
of the following quantity r̃:

r̃(γ ) = −〈
∑
i

α
n+1,q+1
i φi ◦ F(γ ), un − dtνununx + dtεunxx〉. (11)

Here again, we need to evaluate the quantities

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∀i, j,
∫

Ω

φj ◦ F(γ n)(x)φi ◦ F(γ )(x)

∀i, j, p,
∫

Ω

φj ◦ F(γ n)(x)
(
φp ◦ F(γ n)

)
x (x)φi ◦ F(γ )(x)

∀i, j,
∫

Ω

φj ◦ F(γ n)x(x)φi ◦ F(γ )x(x)

for various values of γ in order to derive the value of γ that minimizes r (or r̃).
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3.4 Offline/Online Decomposition of the Expressions
Depending on γ

In both the search for γ [see (11)] and (αi)i [see (10)], we need to compute scalar
products of the form

〈ψi ◦ F(γ n), ψj ◦ F(γ )〉, (12)

where ψ can be one of the POD basis or one of its x-derivatives. γ n and γ can take
any value inΩ . Our key ingredient here is that, due to translation invariance (because
we are in a periodic settings), we can replace the previous terms by

〈ψi ◦ F(γ n − γ ), ψj〉 = 〈ψi ◦ F(Δγ ), ψj〉. (13)

We have plotted in Fig. 6 these quantities (after rescaling) as a function of Δγ for
some pairs of chosen ψ’s and we notice that, as can be expected because we are
essentially using a primitive function of the integrant, these are regular functions of
Δγ .

For a sufficiently small time step, we expect Δγ to be of order dt ∗ c where c is
some local characteristic velocity. We have chosen the following method:

• Precompute the scalar products for a predefined set of values of Δγ ;
• Using some regularity hypothesis, use spline interpolation to get approximated
values for all γ in [−dt ∗ cmax, dt ∗ cmax], where cmax is the maximum expected
shock speed during the simulation.

Remark 2 For the optimization of r̃ we have also tested to linearize our problem
around γ n which leads to a doable method but does not work better that the above.

Remark 3 A common comment about this method is about mesh interpolation. In-
deed, would such a mesh interpolation be required in the online process, this would

Fig. 6 A few values of the
quantities (12) as a function
of Δγ . The x axis is scaled
to multiples of c ∗ Δt
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preclude any extension to 2D or 3D problems. Fortunately this is not the case. In the
offline part, we have indeed to interpolate between meshes. As the computational
time is not much an issue, these can be done as precisely as required. For the online
now, the only thing that is required (and leads to mastered errors) is the interpolation
between the discrete quantities computed in (13). This error can be quantified offline.
See Fig. 6 for an idea of the quantities that we are interpolating.

4 Numerical Results

4.1 About the CFL Condition

We represent in Fig. 7 the value of the CFL condition of our reduced scheme using
the space calibrated M x

F ,C as a function of the dimension M of the discrete space
expressed in the equation (9). Of course, the bigger the reduced basis, the smaller the
time step required for stability. We remark that there is a plateau for large values of
M that is above the CFL-condition for the truth solver. More importantly, forM = 5,
we can use a discrete time step 3, 000 times bigger than the one of the fine (finite
element) scheme (that was dttruth ≤ 10−6).

4.2 Convergence Illustration

In Fig. 8, we have plotted the L2-error of the solution of (6) in case of problem (7)
as a function of time for different values of the reduced basis for dt = 2.5 10−4. The
different colors represent various values of M used in (9) (Note that on the same

Fig. 7 A few values of the
quantities (12) as a function
of Δγ . The x axis is scaled
to multiples of c ∗ Δt
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Fig. 8 Relative L2-error of
the solution as a function of
time for different values of
the reduced basis. The three
curves close to the x-axis
(almost overlapping at this
scale) are the associated best
approximation errors

figure, the plots close the x axis represent the projection errors (best approximation)
of the solution onto the setM x

F ,C with the exact value of the translation γ ). We see
that our numerical scheme is convergent, as a function of M . The final accuracy is
somehow difficult to grasp since it is a function of Δt and the number of degrees
of freedom used in the spatial direction (here M ) as for any discretization of an
evolution problem. It is also a function of the way the value of γ is found as each
time step as a solution of the full minimization problem (6).

5 Conclusion

This paper is the first of a series that explain how to correct the impossibility of
the standard reduced basis method (or actually most model reduction methods) to
approximate well convection dominated phenomenon. The additional ingredient is
to propose a change of variable, that should also be represented by few coefficients,
that are updated thanks to the numerical scheme that is used classically for the
discretization of the convection dominated problem. This simple approach can be
implemented in an online/offline paradigm that allows online to contribute with a
complexity that, at each time step, is a function of the number of reduced basis that
are used for the approximation. This paper that allows to set the scene of this new
approach deals with a problem with periodic boundary conditions to focus on the
main feature of the approach.

The reduced basis here, is composed of snapshots of the solution. Note that we
could also use the gradient of these snapshots in order to diminish the effect of the
mismatched of the correct value of γ in the iterative process used to solve (6). In the
toy problem used here this does not improve the accuracy but in multidimensional
situations it may be useful, more tests on this are under investigations.
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Parametric Optimization of Pulsating
Jets in Unsteady Flow
by Multiple-Gradient Descent
Algorithm (MGDA)

Jean-Antoine Désidéri and Régis Duvigneau

Abstract Two numerical methodologies are combined to optimize six design char-
acteristics of a system of pulsating jets acting on a laminar boundary layer gov-
erned by the compressible Navier-Stokes equations in a time-periodic regime. The
flow is simulated by second-order in time and space finite-volumes, and the simu-
lation provides the drag as a function of time. Simultaneously, the sensitivity equa-
tions, obtained by differentiating the governing equations w.r.t. the six parameters
are also marched in time, and this provides the six-component parametric gradient
of drag. When the periodic regime is reached numerically, one thus disposes of an
objective-function, drag, to be minimized, and its parametric gradient, at all times
of a period. Second, the parametric optimization is conducted as a multi-point prob-
lem by the Multiple-Gradient Descent Algorithm (MGDA) which permits to reduce
the objective-function at all times simultaneously, and not simply in the sense of a
weighted average.

Keywords Active-flow control · Time-dependent Navier-Stokes equations
Finite-volume schemes · Sensitivity equations · Multi-objective differentiable
optimization · Descent methods · Robust design

1 Introduction: Active Flow Control Issues

This article aims at providing a numerical technique for optimizing parameters in
the context of time-dependent problems. We are considering a test-case in which
a time-periodic flowgoverned by the compressible Navier-Stokes equations in the
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laminar regime includes pulsating jets as a device of active-flow control [10] in the
perspective of drag reduction.

In this context, a major difficulty is related to the choice of actuation parame-
ters, such as excitation frequency, amplitude, location, to obtain the expected flow
response. In cases implying a single isolated actuator, it is relatively easy to carry out
an experimental or numerical study to determine efficient control parameters. How-
ever, in the perspective of industrial applications involving hundreds of actuators,
this task is far from being straightforward and the use of an automated optimization
strategy is thus proposed, in the spirit of previous works [7–9].

The application of an optimization procedure to such problems is faced to the
following difficulties: first, the choice of the optimization algorithm is conditioned
by the huge computational time of the unsteady-flow simulation, and second, it is
necessary to consider several objectives concurrently. Typically, the improvement of
the single time-averaged performance is usually not satisfactory for realistic applica-
tions. Secondly, sensitivity analysis is tedious in the context of unsteady flows, due
to the backward integration of the adjoint equation, which requires the storage, or
partial storage / partial re-computation, of the unsteady solution.

The proposed work is based on two methodological ingredients to overcome the
difficulties described above: the Sensitivity Equation Method (SEM) for unsteady
flows on one side, which allows to compute the gradient of a cost-functional with
respect to (w.r.t.) control parameters at any time using a forward time-integration,
and the Multiple Gradient Descent Algorithm (MGDA) on the other side, which
is an extension of the classical steepest-descent method to multiobjective problems
and permits to compute a descent direction common to a possibly-large set of cost-
functions. In this way, the optimization acts at all time and not simply by the control
of time-averages.

2 Problem Description: Optimization of Pulsating Jets

We consider as a model problem the two dimensional compressible flow over a flat
plate equipped with three periodically oscillating jets (see Fig. 1). The Reynolds
number based on the length h is R = 103 and the flow is laminar, while the Mach
number is M = 10−1. For the three jets, the crosswise velocity is imposed as:

vk(x, t) = Ak sin(2πNkt + ϕk)ζ(x) k = 1, 2, 3, (1)

where ζ(x) corresponds to a squared sine distribution. The jet frequencies are set to
the fixed values N1 = N∞, N2 = 2N∞ and N3 = 1/2N∞, with N∞ = u∞/h. The
jet amplitudes and phases are considered as control parameters x = {A1, A2, A3, ϕ1,

ϕ2, ϕ3}. Initial values are chosen somewhat arbitrarily as x0 = {u∞, 3/2 u∞, 2 u∞, 0,
π/4, 3π/4}.
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Fig. 1 Problem description

Fig. 2 Computational mesh

The grid employed in this study counts 111 161 nodes (see Fig. 2). The initial
solution corresponds to uniform flow based on inlet conditions. The time step is set
to Δt = 1/(400N∞). The unsteady flow tends rapidly to a periodic regime, whose
period corresponds to the lowest actuation frequency 1/2N∞ and is thus described
by 800 time-steps. As transient effects have vanished, one period is defined as the
observation interval (see Fig. 3). Instantaneous velocity fields are shown in Figs. 4
and 5 as illustration.

We consider a set of objective-functions { f j (x)} j=1,...,m , defined as the values
of the drag J , estimated at discrete times {t j } j=1,...,m , chosen in the observation
interval:

f j (x) = J (W j ) with W j = W(x, t j ) ∀ j ∈ {1, · · · ,m}, (2)

where x ∈ R
n represents the vector of the n = 6 control parameters and W the

flow variables. The objective of this work is to reduce simultaneously these m cost-
functions. The following sections describe how the gradient ∇x f j of f j w.r.t. x is
evaluated, and the optimization algorithm proposed to conduct the simultaneous
optimization of these functions.



154 J.-A. Désidéri and R. Duvigneau

0 5 10 15 20
time

0

0.1

0.2

0.3

0.4

0.5

dr
ag

Fig. 3 History of drag for initial parameters and observation area

Fig. 4 Snapshot of the streamwise velocity field

Fig. 5 Snapshot of the crosswise velocity field
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3 Sensitivity Analysis for Unsteady Flow

3.1 Method

The governing flow equations are written in conservative form as follows:

∂W
∂t

+ ∇ · F = ∇ · G , (3)

where W = (ρ, ρu, ρv, ρe) is the vector of conservative mean-flow variables, ρ is
density, u and v are the velocity components, and e the total energy per unit mass;
F = (Fx (W), Fy(W)) and G = (Gx (W), Gy(W)) are the vectors of convective and
diffusive fluxes respectively. Here∇ stands for the gradient w.r.t. the spatial Cartesian
coordinates x and y, and (∇·) for the divergence operator. The pressure p is obtained
from the perfect-gas state equation:

p = ρ(γ − 1)(e − u2 + v2

2
) = ρ(γ − 1)ei (4)

where γ = 7
5 is the ratio of the specific heats for diatomic gas, and ei the internal

energy.
The inviscid fluxes are given by:

Fx (W) =

⎛
⎜⎜⎝

ρu
ρu2 + p

ρuv
ρu(e + p

ρ
)

⎞
⎟⎟⎠ Fy(W) =

⎛
⎜⎜⎝

ρv
ρvu

ρv2 + p
ρv(e + p

ρ
)

⎞
⎟⎟⎠ . (5)

The viscous fluxes are written as:

Gx (W) =

⎛
⎜⎜⎝

0
τxx
τyx

uτxx + vτyx − qx

⎞
⎟⎟⎠ Gy(W) =

⎛
⎜⎜⎝

0
τxy
τyy

uτxy + vτyy − qy

⎞
⎟⎟⎠ , (6)

where ¯̄τ is the symmetric viscous stress tensor and q the heat flux.
We can now introduce the sensitivity field W′, which is defined as the derivative

of the flow solution W w.r.t. a given control parameter a, component of x:

W′ = ∂W
∂a

. (7)

The equations governing the sensitivity field can be obtained by differentiating (3)
w.r.t. a:
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∂

∂a

(
∂W
∂t

)
+ ∂

∂a
(∇ · F ) = ∂

∂a
(∇ · G ) . (8)

By switching the derivatives w.r.t. a and those w.r.t time or space coordinates, one
obtains:

∂

∂t

(
∂W
∂a

)
+ ∇ ·

(
∂F

∂a

)
= ∇ ·

(
∂G

∂a

)
, (9)

or:
∂W′

∂t
+ ∇ · F ′ = ∇ · G ′, (10)

which is formally similar to (3), by introducing the sensitivity of the convective
flux F ′ = (F′

x (W, W′), F′
y(W, W′)) and the sensitivity of the diffusive flux G ′ =

(G′
x (W, W′), G′

y(W, W′)). The sensitivity of the convective fluxes can be expressed
as:

F′
x (W, W′) =

⎛
⎜⎜⎝

(ρu)′
(ρu)′u + (ρu)u′ + p′

(ρu)′v + (ρu)v′
(ρu)′(e + p

ρ
) + (ρu)(e′ + (

p
ρ
)′)

⎞
⎟⎟⎠ (11)

F′
y(W, W′) =

⎛
⎜⎜⎝

(ρv)′
(ρv)′u + (ρv)u′

(ρv)′v + (ρv)v′ + p′
(ρv)′(e + p

ρ
) + (ρv)(e′ + (

p
ρ
)′)

⎞
⎟⎟⎠ . (12)

The sensitivity of the diffusive fluxes reads:

G′
x (W, W′) =

⎛
⎜⎜⎝

0
τ ′
xx

τ ′
yx

u′τxx + v′τyx + uτ ′
xx + vτ ′

yx − q ′
x

⎞
⎟⎟⎠ (13)

G′
y(W, W′) =

⎛
⎜⎜⎝

0
τ ′
xy

τ ′
yy

u′τxy + v′τyy + uτ ′
xy + vτ ′

yy − q ′
y

⎞
⎟⎟⎠ , (14)

where ¯̄τ ′ is the sensitivity of the viscous stress tensor and q′ the sensitivity of the
heat flux. The boundary conditions for the sensitivity equations are obtained by
differentiating the boundary conditions applied to the flow.

Since the flow and sensitivity equations are formally similar, both are solved
using the same finite-volume approach [6], based on a second-order vertex-centered
discretization scheme. Temporal integration relies on a second-order implicit back-
ward method, with a dual time-stepping technique. Note that the implicit part of the
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scheme is the same for the flow and sensitivity equations, since both involve the same
Jacobian matrix.

The sensitivity equation depends on the parameter a, component of x of interest.
Therefore, six sensitivity equations have to be solved, possibly in parallel, to estimate
the components of the gradient for all m cost-functions:

∇a f j = ∂WJ (W j ) · W′(t j ) ∀ j ∈ {1, · · · ,m}. (15)

We emphasize that if m is large, the solution of six sensitivity equations is far more
cost-efficient than solving m adjoint equations backward in time. Additionally, the
memory-storage requirement remains moderate.

3.2 Verification

To verify the implementation of the sensitivity equations, we compute a neighboring
solution according to a first-order extrapolation W(a) + W′δa and compare it with
the solution W(a + δa). This exercise is conducted in a simplified case including a
single jet, a being the jet amplitude A1. Figures6 and 7 provide illustrations for the
flow fields at selected times and Fig. 8 for the resulting drag history, for a perturbation
of the jet amplitude δA1 = A1/4. A similar exercise has been achieved for the phase,
to fully verify the gradient estimation.

4 Multiobjective Descent Algorithm MGDA

Equipped with procedures for calculating the objective-functions and their gradients,
we now turn to the issue of constructing the multi-objective optimization method.

The Multiple-Gradient Descent Algorithm (MGDA) was originally introduced in
[1, 2] to solve generalmulti-objective optimization problems involving differentiable
cost-functions. Variants were proposed in [3], but more recently the algorithm was
slightly revised in [4] to apply to cases where the number m of objective-functions
exceeds the dimension n of the working design space. We recall here the basic
definition of the revised version and provide some details about the application to
the present parametric optimization.

4.1 Multi-objective Problem Statement

Let m and n be two arbitrary integers, and consider the multi-objective optimiza-
tion problem consisting in minimizing m differentiable objective-functions { f j (x)}
in some open admissible domain Ωa ⊆ R

n ( j = 1, . . . ,m; f j ∈ C1(Ωa)). Given a
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Fig. 6 Linear extrapolation of streamwise velocity field u w.r.t. jet amplitude A1 for blowing (top)
and suction (bottom) phases: reference state u(A1) in green, extrapolated state u(A1) + u′δA1 in
red, non-linear perturbed state u(A1 + δA1) in blue, for δA1 = A1/4

Fig. 7 Linear extrapolation of pressure field p w.r.t. jet amplitude A1 for blowing (top) and suction
(bottom) phases: reference state p(A1) in green, extrapolated state p(A1) + p′δA1 in red, non-linear
perturbed state p(A1 + δA1) in blue, for δA1 = A1/4
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1.5 1.55 1.6 1.65 1.7
time

0.3
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0.31

0.315

dr
ag

drag(V)
drag(V) + drag' dV
drag (V + dV)

Fig. 8 Linear extrapolation of the drag w.r.t. jet amplitude A1: reference drag J (A1) in green,
extrapolated drag J (A1) + J ′δA1 in red, non-linear perturbed drag J (A1 + δA1) in blue, for
δA1 = A1/4

starting point x0 ∈ Ωa and a vector d ∈ R
n , one forms the directional derivatives

f ′
j = [∇x f j (x0)

]t
d (16)

where ∇x is the symbol for the gradient w.r.t. x and the superscript t stands for
transposition. One seeks for a vector d such that

f ′
j > 0 (∀ j). (17)

If such a vector d exists, the direction of vector (−d) is said to be a local descent
direction common to all objective-functions. Then evidently, infinitely-many other
such directions also exist, and our algorithm permits to identify at least one.

4.2 Convex Hull, Two Lemmas and Basic MGDA

We recall the following:

Definition 1 The convex hull of a family ofm vectors {u j } ( j = 1, . . . ,m;u j ∈ R
n),

is the set of all their convex combinations:

U =
⎧⎨
⎩ u ∈ R

n such that u =
m∑
j=1

α ju j ; α j ∈ R+;
m∑
j=1

α j = 1

⎫⎬
⎭ . (18)
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Then, we have:

Lemma 1 Given an n × n real-symmetric positive-definite matrix An, the associ-
ated scalar product (

u, v
) = utAnv (u, v ∈ R

n), (19)

and Euclidean norm
‖u‖ = √

utAnu, (20)

the convex hull U admits a unique element ω of minimum norm.

Proof Existence: U is closed and ‖·‖ is a continuous function.
Uniqueness: Suppose that ω1 and ω2 are two realizations of the minimum μ =

argminu∈U ‖u‖ so that μ = ‖ω1‖ = ‖ω2‖ and let

ωs = 1

2
(ω2 + ω1) , ωd = 1

2
(ω2 − ω1) ,

so that:

(
ωs, ωd) = 1

4

(
ω2 + ω1, ω2 − ω1

) = 1

4

(‖ω2‖2 − ‖ω1‖2
) = 0.

Hence ωs ⊥ ωd , and since ωs ∈ U, ‖ωs‖ ≥ μ, and:

μ2 = ‖ω2‖2 = ‖ωs + ωd‖2 = ‖ωs‖2 + ‖ωd‖2 ≥ μ2 + ‖ωd‖2 =⇒ ωd = 0. �

Lemma 2 The minimum-norm element ω defined in Lemma 1 satisfies:

∀u ∈ U,
(
u, ω

) ≥ ‖ω‖2 . (21)

Proof Let u ∈ U, arbitrary. Let δ = u − ω; by convexity of U:

∀ε ∈ [0, 1], (1 − ε)ω + εu = ω + εδ ∈ U,

and by definition of ω, ‖ω + εδ‖ ≥ ‖ω‖, that is:
(
ω + εδ, ω + εδ

) − (
ω,ω

) = 2ε
(
ω, δ) + ε2 ‖δ‖2 ≥ 0,

and this requires that the coefficient of ε be non-negative. �

Then consider the case where

u j = ∇x f j (x0) (∀ j). (22)

If the vector ω defined in Lemma 1 is nonzero, the vector



Parametric Optimization of Pulsating Jets … 161

d = Anω (23)

is also nonzero, and is a solution to the problem stated in (16)-(17) since by virtue
of Lemma 2: (

u j , ω
) = ut

jAnω = ut
jd ≥ ‖ω‖2 > 0. (24)

The situation in which ω = 0, or equivalently,

∃α = {α j } ∈ R +m such that
m∑
j=1

α j∇ f j (x0) = 0 and
m∑
j=1

α j = 1, (25)

is said to be one of “Pareto-stationarity”. The relationship between Pareto-optimality
and Pareto-stationarity was made precise by the following [3, 4]:

Theorem 1 If the objective-functions are differentiable and convex in some open
ball B ⊆ Ωa about x0, and if x0 is Pareto-optimal, then the Pareto-stationarity
condition is satisfied at x0.

Hence, the Pareto-stationarity condition generalizes to the multi-objective context,
the classical stationarity condition expressing that an unconstrained differentiable
function is extremal.

We now return to the non-trivial case of a point x0 that is not Pareto-stationary
and we suppose that the vectors ω and d (ω = 0; d = 0) have been identified (see
next subsection). Then we define MGDA as the iteration which transforms x0 in

x1 = x0 − ρd (26)

where ρ > 0 is some appropriate step-size. ThusMGDA is an extension to the multi-
objective context of the classical steepest-descent method, in which the direction of
search is taken to be the vector d defined above. At convergence, the limiting point
is Pareto-stationary.

We now examine how can the vector d be computed in practice.

4.3 QP Formulation and Hierarchical Gram-Schmidt
Orthogonalization

By letting

ω =
m∑
j=1

α ju j = Uα (27)

where u j = ∇ f j (x0), U is the n × m matrix whose j th column contains the n com-
ponents of vector u j , the identification of vector ω can be made by solving the
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following Quadratic-Programming (QP) problem for the unknown vector of coeffi-
cients α = {α j }:

ω = arg min
α∈Rm

1

2
αtHα (28)

subject to:

α j ≥ 0 (∀ j),
m∑
j=1

α j = 1, (29)

where H = UtAnU. Note that if vector ω is unique, vector α may not be.
If the family of gradients is linearly-independent, which requires in particular that

m ≤ n, it is possible to choose the scalar product, through the definition of matrix
An , in such a way that these gradients form an orthogonal basis of their span. Then
vector ω is explicitly determined by the orthogonal projection of 0 onto the convex
hull U:

α j = 1∥∥u j

∥∥2 ∑m
k=1

1
‖uk‖2

(30)

In the inverse case wherem > n (and evenm � n), focus of interest presently, let
r ≤ n < m be the rank of the family of gradients. Using first the standard Euclidean
scalar product (An = In), the Gram-Schmidt orthogonalization process stops in r
steps and produces an orthogonal basis (in the usual sense) {v j } ( j = 1, . . . , r), that
span a subspace G of dimension r. The orthogonal vectors, {v j }, are calculated from
a subfamily of the original vectors, {u j }, j ∈ J , where J is a subfamily of r indices
from 1 to m. In this process, a hierarchical principle was introduced in [4] to select
these indices in such a way that the cone bounded by the reduced family {u j } ( j ∈ J )
be as large as possible to contain the directions, in the most favorable situation, of all
the other gradients, unused in the Gram-Schmidt process by redundancy. When this
occurs, the subfamily {u j } ( j ∈ J ) not only is a basis of the subspace G , but also,
its convex hull contains all the directions of interest. In the more general case where
the directions of some gradients among the unused vectors {u j } ( j /∈ J ) are not in
the cone, we resort to the QP-formulation, but expressed after changing the basis to
become {u j } ( j ∈ J ) and by choosing a new scalar product to make this subfamily
orthogonal. The technical steps are the following [4]:

• Once then × mmatrixU is formedwith the components of the given gradients {u j }
(u j ∈ R

n , j = 1, . . . ,m), these gradients, or column-vectors aremade (physically)
dimensionless, by component-wise normalization to form the initial matrix G:

∀i ∈ 1, . . . , n : si = max
j

∣∣ui, j

∣∣ , S = Diag
(
si

)
, G = S−1U. (31)

This normalization is essential to make the subsequent calculations of scalar prod-
ucts physically meaningful and computationally well-balanced.
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• Throughout the Gram-Schmidt process, columns of the G matrix are permuted by
the hierarchical selection of basis vectors. Upon exit, the actually used gradients
are placed in the first r columns. The corresponding n × r leftmost block of the final
matrix G is then denoted G. Note that in the present version of the Gram-Schmidt
process, the computed orthogonal vectors {v j } are not normalized to unity, but in
a special way for which r directional derivatives are equal [4]. Let these vectors
be stored in matrix V, and define the following diagonal matrix:

Δ = Diag
(
vt
jv j

)
. (32)

Then:
An = WtW + (I − Π)2, W = (

GtG
)−1

GtVΔ−1Vt , (33)

where Π = VΔ−1Vt is the projection matrix onto subspace G [4].

In this way, the QP-formulation is well-conditioned and easily solved by a library
procedure. We have used the procedure qpsolve from the Scilab library which is
equivalent to the quadprog procedure from the MATLAB library. As a result of this,
exactly r directional derivatives { f ′

j } are equal, and by experience, the remaining
ones differ only slightly.

5 Results

For each control parameter, component of x = {A1, A2, A3, ϕ1, ϕ2, ϕ3}, the SEM is
applied to obtain sensitivity fields. We provide as illustration (see Figs. 9 and 10)
instantaneous sensitivity fields of the velocity w.r.t. the amplitude for the first jet.
The derivatives of the drag w.r.t. the control parameters are then computed at all time-
steps, yielding 800 values of cost-function and gradient for the whole observation
period, as illustrated in Fig. 11.

We aim now at determining the vector of parameters x = {A1, A2, A3, ϕ1, ϕ2, ϕ3}
that reduces simultaneously the 800 cost-functions associated with the observation

Fig. 9 Sensitivity of streamwise velocity w.r.t. first jet amplitude
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Fig. 10 Sensitivity of crosswise velocity w.r.t. first jet amplitude
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Fig. 11 Gradient components for the 800 cost-functionals

period. To reduce somewhat the computational complexity without altering greatly
the transient behavior, the MGDA approach is applied to onlym = 20 homogenized
gradients, obtained by averaging the gradients by time-intervals of 40 time-steps.
As a result, one disposes of a common descent direction associated with vector d
satisfying (17).

Once the vector d is determined, a practical step-size ρ must be estimated. For
this, we first note that a natural scale for the variations of a time-dependent objective-
function is given by its standard deviation, σ̄ , amore significant value than its average
which can be 0. Then if δx = −ρ̄d, the variation of the objective-function average
can be estimated as −ρ̄ ḡ · d where ḡ is the average gradient. Thus, a meaningful
reference step-size can be defined by the condition:

ρ̄ ḡ · d = σ̄ (34)
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Fig. 12 Evolution of the drag history w.r.t. optimization iterations: case of MGDA approach (blue:
initial, red: final, black: intermediate iterations)

where σ̄ =
√

1
m

∑m
j=1

(
f j − f̄

)2
, f̄ = 1

m

∑m
j=1 f j , and ḡ = 1

m

∑m
j=1 ∇ f j (x0). This

gives:

ρ̄ = σ̄

ḡ · d
. (35)

In practice, in the present experiments, we have used the step-size ρ = 1
10 ρ̄ to update

the control parameters by the descent method, and this resulted in a successful iter-
ation, stable and effective.

The history of the drag in the observation period is represented in Fig. 12, from
the baseline flow to full convergence of the optimization approach. As expected,
each update of the design vector has resulted in a diminished drag over the entire
observation period. As it can be noticed, some points in time are more critical than
others. In contrast, when one applies, more classically, the steepest-descent method
to the time-averaged cost-functionJ , by setting the search direction to the average
gradient, an increase of the drag can be observed at some times, as illustrated in
Fig. 13. Finally, also note that actuation permits a significant drag reduction w.r.t. the
case without suction/blowing for which the value of drag is indicated on the figure
by a dotted horizontal line.

Finally, a second exercise is conducted: the drag values computed over the last
40% of the observation period only are considered as optimization criteria in the
MGDA approach (in this interval, the drag is especially high for the baseline flow).
The history of the drag in the observation period is represented in Fig. 14, for the first
16 iterations of the optimization algorithm. As expected, a more significant decrease
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Fig. 13 Evolution of the drag history w.r.t. optimization iterations: case of a mean direction descent
(blue: initial, red: after 2 iterations, black: intermediate iteration)
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Fig. 14 Evolution of the drag history w.r.t. optimization iterations: case of MGDA approach based
on the last 40% of the observation period (blue: initial, red: after 7 iterations, black: intermediate
iterations)

is achieved during the last 40% of the observation period, whereas the drag is free
to vary in the first 60%, and in fact, increases.

Remark 1 In the present test-case, the flow is periodic in time. However, the periodic
boundary conditions are not all known. The simulated flow relaxes towards the time-
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periodic solution. In practice, due to the small time-step used in this simulation in
relation with the pulsating jets frequencies, it takes an integration interval of about
12 periods for the numerical solution to be almost exactly periodic. The solution over
a time-interval of 11 periods is simply discarded, and the gradients are calculated
only over the following time-interval of one period. Then, the jets parameters are
updated, and a new integration is carried out over 12 periods of time, and so on. We
proceeded in this way to produce verified results, and clear conclusions. However,
in the future, for greater efficiency, the optimization update and the time integration
should be performed simultaneously, in a “one-shot” type method.

Remark 2 In the present jet-optimization problem, increasing the number m of
accounted gradients is not necessarily a cause of worse-conditioning, if it is com-
bined with an appropriate homogenization of the gradients in which only average
gradients are used to compute the descent direction. Here the objective-functions
are in large number because they are discrete realizations of a function that evolves
with time, in fact rather smoothly. Thus, the critical issue is to account sufficiently
accurately for the unsteady features of the time-dependent phenomenon. When this
is achieved, increasing m has little or no effect on the convex hull and thus, on the
descent direction. For example, in the above experiment, at iteration 6, after com-
puting a new descent direction based on 20 average gradients, the corresponding
directional derivatives associated with the 800 initially-available gradients were all
observed a posteriori to be positive with an acceptable dispersion (standard deviation
of about 56 % of the average). This observation confirmed that considering only 20
averages was adequate. However, we have not studied the efficacy and stability of
the MATLAB procedure in case of a very large redundant set of input gradients.

Remark 3 When approaching convergence, ω → 0, and the descent step becomes
ineffective. In the above experiment, this was observed after some ten iterations.
From the numerical viewpoint, the determination of ω involves a Gram-Schmidt
process, a basis change and a call to the MATLAB procedure quadprog. If round-off
errors lead to a small but erroneous ω, and a departure from the neighborhood of the
Pareto-front, the next MGDA iteration involves a new ω of larger norm, thus more
accurately identified, and a step back to the front. Therefore, if the step-size is well
controlled, the risk of instability is small.

Remark 4 As mentioned above, when approaching convergence, ‖ω‖ → 0. In the
limit, the Pareto-stationarity condition is satisfied:

m∑
j=1

α j∇ f j (x�) = 0 (36)

at some limit point x� and for some coefficients {α j }. These elements depend on the
convergence path, hence to some extent, on the initial point, and are numerically
known. If the Pareto front, or a portion of it, is to be determined more completely,
the trivial possibility exists to restart the MGDA iteration from a broad set of starting
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points from scratch, preferably by exploiting parallel computing resources. However,
alternately, one can also exploit the fact that a point on the Pareto set has been
identified already. At x = x�, the auxiliary objective-function

f A(x) =
m∑
j=1

α j f j (x) (37)

is stationary in the usual sense. One way to obtain other neighboring points of the
Pareto front, is to alternateMGDAwith a virtual Nash game. TheNash game involves
two players, A and B. Player A’s strategy attempts to maintain the Pareto-stationarity
condition by iterations directed to minimize f A(x). Player B’s strategy consists of
minimization iterations of an alternate and conflicting criterion JB . In the jets prob-
lem, the objective-function fB(x) could be the average drag over all time-steps, or
over a relevant zone of interest. It has been established [5], that by an appropriate
split of territory, in which the design space is split into two well-defined supplemen-
tary subspaces related to the diagonalization of the Hessian of f A, possibly under
equality constraints, a continuum of points in the neighborhood of x� can be obtained
in this way, producing a path in function-space tangent to the Pareto front. Then, by
alternatingMGDAwith the Nash game, a portion of the Pareto-front in the neighbor-
hood of x� can be identified piecewise by zig-zag paths. This technique was applied
successfully in problems of optimum-shape design in aerodynamics, in [12] in a
case of optimization of the simplified fuselage-wing configuration of a supersonic
business jet with respect to wave drag reduction under lift constraint versus sonic-
boom reduction, and in [11] in a case of optimization of an helicopter rotor blade
with respect to figure of merit in hover conditions versus mechanical power to be
developed to permit forward motion.

6 Conclusion

In this work, we solved for demonstration an exercise of active-flow control in which
drag over a flat plate has been reduced by three pulsating jets acting on the bound-
ary layer. The flow, governed by the time-dependent compressible Navier-Stokes
equations, has been simulated numerically by second-order in time and space finite-
volumes, yielding, when the periodic regime is achieved, drag as a function of time.
The simultaneous solution of the sensitivity equations has provided additionally the
six-component gradient of drag w.r.t. the design characteristics of the jets. The accu-
racy of these gradients has been verified by comparison with finite-differences via
fine-mesh computations.

By the Multiple-Gradient Descent Algorithm (MGDA), a direction of search has
been identified permitting to reduce drag at all times of the period, or a selected
segment of it. The process was repeated iteratively, and at all intermediate steps of
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the optimization process as well as at convergence, the drag was effectively reduced
over the entire observation time-interval.

Hence, we dispose of a numerical optimization tool whose efficacy is demon-
strated uniformly, that is, over a possibly-large range of operational conditions, here
different discretization times. This contrasts withmore classical approaches in which
a single functional, usually defined as a somewhat arbitraryweighted average, ismin-
imized at the risk of a degradation of certain elements composing the average.

This method is currently being extended to solve more general robust design
problems.
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Abstract We analyse and discretize a mixed formulation for a linearized lubri-
cation fracture model in a poro-elastic medium. The displacement of the medium
is expressed in primary variables while the flows in the medium and fracture are
written in mixed form, with an additional unknown for the pressure in the fracture.
The fracture is treated as a non-planar surface or curve according to the dimension,
and the lubrication equation for the flow in the fracture is linearized. The resulting
equations are discretized by finite elements adapted to primal variables for the dis-
placement and mixed variables for the flow. Stability and a priori error estimates are
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1 Introduction

The injection of large volumes of fluids in the subsurface such as during carbon
sequestration or during hydraulic fracturing operations can cause geomechanical
deformation of the rockmass in the vicinity of the injectionwell. In addition, recovery
predictions from a fractured reservoir are essential for long term production in shale
oil and gas fields. Understanding interactions between in-situ stresses, injection fluid
pressure and fracture is a difficult and challenging issue because of the complexity
of rock properties and physical aspects of rock failure and fracture. In this work, we
consider a simplified model for the coupled reservoir-fracture flow which accounts
for varying reservoir geometries and complexities including non-planar fractures of
small width. Here we utilize different flowmodels such as Darcy flow and Reynolds’
lubrication equation for fractures and reservoir respectively to closely capture the
physics.

Furthermore, the geomechanics effects have been included by considering Biot’s
model. An accurate modeling of solid deformations necessitates a better estimation
of fluid pressure inside fractures. We model the fractures and reservoirs explicitly,
which allows us to capture the flow details and impact of fractures more accurately.
The small width assumption allows modeling fractures geometrically as curves in
two dimensions or surfaces in three dimensions, while their variable widths are taken
into account by jumps in the displacements along the fractures. Numerically, this
model has the advantage of avoiding the mesh of the very narrow regions occupied
by fractures. The approach presented here is in contrast with existing averaging
approaches such as dual and discrete dual porosity models where the effects of
fractures are averaged out.

1.1 Problem Setting

The coupled reservoir-fracture flow problem is discretized by a mixed finite element
method, because this method is locally mass conservative and the flux values are
continuous, see Ingram et al. [19] and Wheeler et al. [27]. The pressure degrees of
freedom are defined at the grid cell centers, similar to the finite difference scheme
widely used in petroleum reservoir simulations.Moreover, ourmotivation in applying
amixed formulation is that in realistic engineering settings, it is necessary to transport
proppant; thus local conservation is essential. The coupled flow and geomechanics
model developed, for fractured porous medium, has the following advantages:

1. The fracture flow problem is resolved explicitly resulting in an accurate fracture
pressure used as a traction boundary condition for reservoir geomechanics.

2. A physically accurate formulation of fractures and reservoir flow problems is
achieved by using different constitutive equations and capillary pressure curves
for each of the two domains in the case of multiphase flow.

3. Non-planar fractures can be captured using a coarser mesh (lower computational
cost) due to non-planar faces of the general hexahedral elements inherent to the
discretization.
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In this work, we prove existence and uniqueness of the solution of a coupled
linearized systemwith one fracture under fairlyweak assumptions on the data. To this
date, the analysis of the couplednon-linear system is still an openproblem.Our results
here represent an extension of a previous article, see [18], in which a continuous
Galerkin method for flow was analyzed. In the present situation, switching from a
continuous Galerkin scheme to a mixed scheme is not completely straightforward,
because the discontinuous approximation of the pressure in the fracture (such as
piecewise constants in each element) requires a special analysis in coupling the flow
in the fracture with that in the reservoir. This coupling requires the derivation of
an inf-sup condition in a norm that is weaker than that used in the mixed form
of the exact problem, compare (47) and (27). Such discrepancy in the norms, that
arises from the discontinuity of the pressure, complicates the numerical analysis.
The resulting system is then solved by a fixed stress splitting algorithm introduced
and analyzed by Mikelić andWheeler in [23] for a Biot system without fracture, and
in Girault et al. [14] with a fracture. Of course, the numerical experiment reported
in this work is applied to the fully non-linear system, where the permeability in the
fracture is related to its width.

The Biot system without fracture has been analyzed by a number of authors who
established existence, uniqueness, and regularity, see Showalter [26] and references
therein, Phillips and Wheeler [24], Girault et al. [15]. Several articles by Mikelić
et al. (see, for instance, [4, 11]) treat homogenization of flows through fractured
porous media. Another approach consists in treating a fracture as a thin domain in
the framework of domain decomposition. We refer the reader to the extensive work
of Jaffré, Roberts and co-authors on Darcy flow, see [1, 22].

After this introduction, the paper is organized as follows. The modeling equations
are described in Sect. 2. In Sect. 3, the equations are linearized and set into variational
formulations. Existence and uniqueness of solutions of the linearized formulation
are established in Sect. 4. In Sect. 5, we propose and analyze a fully discrete scheme:
backward Euler in time, continuous Galerkin for elasticity and mixed finite elements
for flow, more precisely RTk on simplices and enhanced BDM on quadrilaterals
or hexahedra. The enhanced BDM elements are necessary to guarantee sufficient
accuracy in the case of quadrilaterals or hexahedra, which cannot be achieved by RTk
elements. In Sect. 6 we present a fixed-stress method as a decoupling computational
algorithm. Numerical results are presented in Sect. 7.

1.2 Notation

Let Ω be a bounded domain (open and connected) of Rd , where the dimension
d = 2 or 3, with a Lipschitz continuous boundary ∂Ω , and let Γ be an open subset
of ∂Ω with positive measure. When d = 3, we assume that the boundary of Γ is
also Lipschitz continuous. LetD(Ω) be the space of all functions that are infinitely
differentiable andwith compact support inΩ and letD′(Ω) be its dual space, i.e., the
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space of distributions in Ω . As usual, for 1 ≤ p < ∞, we define the Banach space
W 1,p(Ω) by

W 1,p(Ω) = {v ∈ Lp(Ω) | ∇ v ∈ Lp(Ω)d },

normed by

|v|W 1,p(Ω) = ‖∇ v‖Lp(Ω), ‖v‖W 1,p(Ω) = (‖v‖pLp(Ω) + |v|pW 1,p(Ω)

) 1
p ,

with the usual modification when p = ∞. When p = 2, W 1,2(Ω) is the classical
Hilbert Sobolev space H 1(Ω). The space of traces of functions of H 1(Ω) on Γ (or
on any Lipschitz curvewhen d = 2, or surfacewhen d = 3, inΩ) isH

1
2 (Γ ), which is

a proper subspace of L2(Γ ). Its dual space is denoted byH− 1
2 (Γ ). Several equivalent

norms can be used on this space. Here, it is convenient to use the semi-norm and
norm, see, for example, [21]:

|v|
H

1
2 (Γ )

=
(∫

Γ

∫

Γ

|v(x) − v(y)|2
|x − y|d dx dy

) 1
2

, ‖v‖
H

1
2 (Γ )

= (‖v‖2L2(Γ ) + |v|2
H

1
2 (Γ )

) 1
2 .

Then we define
H 1

0 (Ω) = {v ∈ H 1(Ω) ; v|∂Ω = 0},

and more generally
H 1

0,Γ (Ω) = {v ∈ H 1(Ω) ; v|Γ = 0}.

For a vector v in Rd , recall the strain (or symmetric gradient) tensor ε(v):

ε(v) = 1

2

(∇ v + (∇ v)T
)
. (1)

In the sequel we shall use Poincaré’s, Korn’s, and some trace inequalities. Poincaré’s
inequality in H 1

0,Γ (Ω) reads: There exists a constant PΓ depending only on Ω and
Γ such that

∀v ∈ H 1
0,Γ (Ω), ‖v‖L2(Ω) ≤ PΓ |v|H 1(Ω). (2)

Next, recall Korn’s first inequality inH 1
0,Γ (Ω)d : There exists a constantCκ depending

only on Ω and Γ such that

∀v ∈ H 1
0,Γ (Ω)d , |v|H 1(Ω) ≤ Cκ‖ε(v)‖L2(Ω). (3)

We shall use the following trace inequality in H 1(Ω): There exists a constant Cτ

depending only on Ω and Γ such that

∀ε > 0, ∀v ∈ H 1(Ω), ‖v‖L2(Γ ) ≤ ε‖∇ v‖L2(Ω) +
(
Cτ

ε
+ ε

)
‖v‖L2(Ω). (4)
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This inequality follows, for instance, from the interpolation inequality (see Brenner
and Scott [5])

∀v ∈ H 1(Ω), ‖v‖L2(Γ ) ≤ C‖v‖ 1
2

L2(Ω)
‖v‖ 1

2

H 1(Ω)
,

andYoung’s inequality. Besides (4), by combining (2) and (3), we immediately derive
the alternate trace inequality, with a constant CD depending only on Ω and Γ :

∀v ∈ H 1
0,Γ (Ω)d , ‖v‖L2(Γ ) ≤ CD‖ε(v)‖L2(Ω).

As far as the divergence operator is concerned, we shall use the space

H (div;Ω) = {v ∈ L2(Ω)d | ∇ · v ∈ L2(Ω)},

equipped with the norm

‖v‖H (div;Ω) = (‖v‖2L2(Ω) + ‖∇ · v‖2L2(Ω)

) 1
2 .

As usual, for handling time-dependent problems, it is convenient to consider
functions defined on a time interval ]a, b[ with values in a functional space, say X
(cf. [21]). More precisely, let ‖ · ‖X denote the norm of X ; then for any number r,
1 ≤ r ≤ ∞, we define

Lr(a, b;X ) =
{
f measurable in ]a, b[ |

∫ b

a
‖ f (t)‖rX dt < ∞

}
,

equipped with the norm

‖ f ‖Lr(a,b;X ) =
(∫ b

a
‖ f (t)‖rX dt

) 1
r

,

with the usual modification if r = ∞. This space is a Banach space if X is a Banach
space, and for r = 2, it is a Hilbert space if X is a Hilbert space. To simplify, we
sometimes denote derivatives with respect to time with a prime and we define for
any r, 1 ≤ r ≤ ∞,

W 1,r(a, b;X ) = { f ∈ Lr(a, b;X ) | f ′ ∈ Lr(a, b;X )}.

For any r ≥ 1, as the functions ofW 1,r(a, b;X ) are continuous with respect to time,
we define

W 1,r
0 (a, b;X ) = { f ∈ W 1,r(a, b;X ) | f (a) = f (b) = 0},

and we denote by W−1,r(a, b;X ) the dual space of W 1,r′
0 (a, b;X ), where r′ is the

dual exponent of r, 1
r′ + 1

r = 1.
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2 Domain and Model Formulations

Let the reservoirΩ be a bounded domain ofRd , d = 2 or 3, with a piecewise smooth
Lipschitz boundary ∂Ω and exterior normal n. Let the fracture C � Ω be a simple
closed piecewise smooth curve with endpoints γ 1 and γ 2 when d = 2 or a simple
closed piecewise smooth surface with piecewise smooth Lipschitz boundary ∂C
when d = 3, see Fig. 1. The reservoir contains both the matrix and the fractures; thus
the reservoir matrix is Ω \ C .

Sections2.1, 2.2, and 2.3 present a very succinct mechanical derivation of the
model. Then in Sect. 3, the problem is set in a mixed variational formulation.

2.1 Equations in Ω \ C

The displacement of the solid is modeled inΩ \ C by the quasi-static Biot equations
for a linear elastic, homogeneous, isotropic, porous solid saturated with a slightly
compressible viscous fluid (see [3]). The constitutive equation for the Cauchy stress
tensor σ por is

σ por(u, p) = σ (u) − α p I, (5)

where I is the identity tensor, u is the solid’s displacement, p is the fluid pressure, σ
is the effective linear elastic stress tensor:

σ (u) = λ(∇ · u)I + 2Gε(u),

see (1) for the definition of ε(u). Here λ > 0 and G > 0 are the Lamé constants and
α > 0 is the dimensionless Biot coefficient. Then the balance of linear momentum
in the solid reads

− div σ por(u, p) = f inΩ \ C , (6)

where f is a body force, i.e., a gravity loading term. For the fluid, we use a linearized
slightly compressible single-phase model. Let pr be a reference pressure, ρ f > 0 the
fluid phase density, ρ f,r > 0 a constant reference density relative to pr , and c f the
fluid compressibility. We consider the simplified case when ρ f is a linear function
of pressure:

Fig. 1 Diagram of domain,
fracture, and boundaries Γ+

Γ

Γ−

Ω+

Ω− n+
C
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ρ f = ρ f,r
(
1 + c f (p − pr)

)
. (7)

Next, letϕ∗ denote the fluid content (or reservoir fluid fraction) of themediumdefined
by

ϕ∗ = ϕ(1 + ∇ · u),

where ϕ is the porosity of the medium. For a poroelastic material with small defor-
mation, ϕ∗ can be approximated by

ϕ∗ = ϕ0 + α∇ · u + 1

M
p, (8)

where ϕ0 is the initial porosity and M a Biot constant. The velocity of the fluid vD

in Ω \ C obeys Darcy’s Law:

vD = − 1

μ f
K
(∇ p − ρ f g∇ η

)
, (9)

where K is the absolute permeability tensor, assumed to be symmetric, bounded,
uniformly positive definite in space and constant in time, μ f > 0 is the constant
fluid viscosity, g is the gravitation constant, and η is a signed distance in the vertical
direction, variable in space, but constant in time. The fluid mass balance in Ω \ C
reads

∂

∂t

(
ρ f ϕ

∗) + ∇ · (ρ f vD) = q, (10)

where q is a mass source or sink term taking into account injection into or extrac-
tion from the reservoir. Let us neglect small quantities by means of the following
approximations:

1

M
(1 + c f (p − pr)) ≈ 1

M
,

c f

(
ϕ0 + α∇ · u + 1

M
p

)
≈ c f ϕ0,

ρ f,r(1 + c f (p − pr))α ≈ ρ f,rα,

ρ f,r(1 + c f (p − pr))vD ≈ ρ f,rvD,

ρ f,r(1 + c f (p − pr))g∇ η ≈ ρ f,rg∇ η.

Then by substituting (7), (8), and (9) into (10), and setting q̃ = q
ρ f,r

, we obtain

∂

∂t

((
1

M
+ c f ϕ0

)
p + α∇ · u

)
− ∇ ·

(
1

μ f
K
(∇ p − ρ f,rg∇ η

)
)

= q̃. (11)

Thus the poro-elastic system we are considering for modeling the displacement u
and pressure p in Ω \ C is governed by (5), (6) and (11).
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2.2 Equation in C

Recall that in our model, since the fracture is assumed to be very narrow, it is approx-
imated geometrically by a single curve when d = 2 or a single surface when d = 3.
For the moment, we assume that the fluid pressure p belongs at least to H 1(Ω);
therefore it has a well defined trace on C , say pc. We denote by ∇ the surface gra-
dient operator on C . It is the tangential trace of the gradient, that is well defined
for functions in H 1(Ω), cf., for example, [16]. The physical width of the fracture
is represented by a non-negative function w defined on C ; it is the jump of the dis-
placement u in the normal direction. Since the medium is elastic and the energy is
finite, w must be bounded and must vanish on the boundary of the fracture. Then the
volumetric flow rate Q on C satisfies

Q = − w3

12μ f

(∇ pc − ρ f g∇ η
)
,

and the conservation of mass in the fracture reads

∂

∂t
(ρ f w) = −∇ · (ρ fQ) + qW − qL,

where qW is a known injection term into the fracture and qL is an unknown leakage
term from the fracture into the reservoir matrix that guarantees the conservation of
mass in the system. This cubic model is fairly standard (see, e.g., [28]), and is a
form of Reynolds’ lubrication equation obtained by averaging Stokes model in the
vertical direction of a given fracture. This model, designed for narrow fractures,
approximates geometrically the fractures by regions in d − 1 dimensions, i.e., with
nowidth. It assumes sufficient permeability in the vertical direction so that, as a result
of averaging, the pressure remains continuous across the fracture. This explains why
the pressure p is assumed to be globally in H 1(Ω). Then neglecting again small
quantities and setting q̃W = qW

ρ f,r
, q̃L = qL

ρ f,r
, we derive the lubrication equation in C :

∂

∂t
w − ∇ ·

(
w3

12μ f
(∇ pc − ρ f,rg∇ η)

)
= q̃W − q̃L. (12)

In order to specify the relation between the displacement u of the medium and
the width w of the fracture, let us distinguish the two sides (or faces) of C by the
superscripts + and −; a specific choice must be selected but is arbitrary. To simplify
the discussion, we use a superscript  to denote either+ or−. LetΩ denote the part
of Ω adjacent to C  and let n denote the unit normal vector to C exterior to Ω,
 = +,−. As the fracture is represented by two geometrically coincident surfaces,
the normal vectors are related by n− = −n+. For any function f defined in Ω \ C
that has a trace, let f  denote the trace of f on C ,  = +,−. Then we define the
jump of f on C in the direction of n+ by
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[ f ]C = f + − f −.

The width w is the jump of u · n− on C :

w = −[u]C · n+. (13)

Therefore the only unknown in (12) is the leakage term q̃L.
Summarizing, the equations in Ω \ C are (6) and (11), and the equation in C is

(12); the corresponding unknowns areu, p and q̃L. These equations are complemented
in the next section by interface, boundary and initial conditions.

2.3 Interface, Boundary, and Initial Conditions

Let τ 
j , 1 ≤ j ≤ d − 1, be a set of orthonormal tangent vectors onC ,  = +,−. The

balance of the normal traction vector and the conservation of mass yield the interface
conditions on each side (or face) of C :

(σ por(u, p))n = −pcn,  = +,−. (14)

Then the continuity of p through C yields

[σ por(u, p)]C n = 0.

Formula (14) also implies

σ por(u, p)n · n = −pc, σ por(u, p)n · τ  = 0.

With the above approximations, the conservation of mass at the interface is ex-
pressed as

1

μ f
[K(∇ p − ρ f,rg∇ η)]C · n+ = q̃L. (15)

General conditions on the exterior boundary ∂Ω of Ω can be prescribed for the
poro-elastic system, but to simplify our analysis, we assume that the displacement u
vanishes as well as the flux K(∇ p − ρ f,rg∇ η) · n. According to the above hypothe-
ses on the energy andmedium,we assume thatw is bounded inC and vanishes on ∂C .
Finally, considering that the time derivative in (11) acts on ( 1

M + c f ϕ0)p + α∇ · u,
we prescribe at initial time (see [26]):

((
1

M
+ c f ϕ0

)
p + α∇ · u

)
(0) =

(
1

M
+ c f ϕ0

)
p0 + α∇ · u0, (16)
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where p0 is measured and all other initial data are deduced from it: u0 is the dis-
placement associated with p0 by (6) at initial time, the trace of p0 on C is denoted by
p0c , and the initial value of w is deduced from the normal jump of u0 on C . Strictly
speaking, the pressure does not have sufficient regularity in time to define its initial
value; therefore p0 in (16) cannot be related to p(0). However, for practical purposes,
we shall assume that p is sufficiently smooth, so that p(0) is indeed p0.

Therefore the complete problem statement is

Problem 1 Find u, p, and q̃L satisfying (5), (6), (11) in Ω \ C and (12) in C , for all
time t ∈ ]0,T [, with the interface conditions (14) and (15) onC and initial condition
(16):

− div σ por(u, p) = f , in Ω \ C , (P1.1)

σ por(u, p) = σ (u) − α p I, in Ω \ C , (P1.2)

∂

∂t

((
1

M
+ c f ϕ0

)
p + α∇ · u

)
− ∇ ·

(
1

μ f
K∇(p − ρ f,rgη)

)
= q̃, in Ω \ C ,

(P1.3)

∂

∂t
w − ∇ ·

(
w3

12μ f
∇(p − ρ f,rgη)

)
= q̃W − q̃L, in C , (P1.4)

(σ por(u, p))n = −p|C n,  = +,− on C , (P1.5)

1

μ f
[K∇(p − ρ f,rgη)]C · n+ = q̃L, on C , (P1.6)

where
w = −[u]C · n+, (P1.7)

with the boundary conditions

u = 0, K∇(p − ρ f,rgη) · n = 0 on ∂Ω, (P1.8)

and the initial condition at time t = 0,

((
1

M
+ c f ϕ0

)
p + α∇ · u

)
(0) =

(
1

M
+ c f ϕ0

)
p0 + α∇ · u0.
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3 Variational Formulation

Here, we use amixed formulation for the flow because it leads to locally conservative
schemes.

3.1 Spaces

We shall see below that the width function w acts as a weight on the flow velocity
in the fracture. For the practical applications we have in mind, w has the following
properties when d = 3; the statement easily extends to d = 2:

Hypothesis 1 The non-negative function w is H 1 in time and is smooth in space
away from the fracture’s front, i.e., the boundary ∂C . It vanishes on ∂C and in a
neighborhood of any point of ∂C , w is asymptotically of the form:

w(x, y) � x
1
2 +ε f (y), with small ε > 0, (17)

where y is locally parallel to the fracture’s front, x is the distance to ∂C , and f is
smooth.

The Assumption (17) is motivated by the stress intensity factor modelling the
stress near the crack-tip and is widely used in fracture mechanics, see, for instance,
[10]. The stress near the crack-tip varies as the square root’s inverse of the distance
from the crack-tip and so the assumption on the width assumes that the displacement
is nearly the square-root of the distance from the crack-tip.

The spaces for our unknowns are described below. To simplify the notation, the
spaces related to C are written L2(C ), H

1
2 (C ), etc., although they are defined in

the interior of C . Regarding x, it is convenient (but not fundamental) to introduce
an auxiliary partition of Ω into two non-overlapping subdomains Ω+ and Ω− with
Lipschitz interface Γ containingC ,Ω being adjacent toC ,  = +,−. The precise
shape of Γ is not important as long as Ω+ and Ω− are both Lipschitz. Let Γ  =
∂Ω \ Γ . For any function f defined in Ω , we extend the star notation to Ω and
set f  = f|Ω ,  = +,−. Let W = H 1(Ω+ ∪ Ω−) with norm

‖v‖W =
(
‖v+‖2H 1(Ω+) + ‖v−‖2H 1(Ω−)

) 1
2
.

The space for the displacement is L∞(0,T ;V), where V a closed subspace of
H 1(Ω \ C )d :

V = {v ∈ Wd | [v]Γ \C = 0, v
|Γ  = 0,  = +,−},
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with the norm of Wd :

‖v‖V =
(

d∑

i=1

‖vi‖2W
) 1

2

.

As stated previously, the pressure p is essentially in H 1(Ω) (see more precisely
(21)), but to set the problem in mixed form, we reduce the regularity of p and take
p in L∞(0,T ;L2(Ω)). As the functions of L2(Ω) have no trace, we introduce an
auxiliary variable pc in the space L2(0,T ;H 1

2 (C )) that is treated as an unknown
variable and is intended to represent the pressure’s trace on C .

We associate with the pressure in Ω \ C an auxiliary velocity z defined by

z = −K∇(p − ρ f,rgη), (18)

and we associate with the pressure in C , a surface velocity ζ defined by

ζ = −w
3
2 ∇(pc − ρ f,rgη). (19)

The space for the reservoir matrix velocity is L2(0,T ;Z), where

Z = {q ∈ H (div;Ω+ ∪ Ω−) | [q] · n+ = 0 on Γ \ C , q · n = 0 on ∂Ω}, (20)

normed by

‖q‖Z = (‖q‖2H (div;Ω+) + ‖q‖2H (div;Ω−)

) 1
2 .

Strictly speaking, in (20) we should write [q · n+] = 0 on Γ \ C . However, since n+
does not jump, we abuse the notation and write it as [q] · n+ = 0. Let nΩ be the unit
normal to ∂Ω, exterior toΩ. The trace properties ofH (div;Ω) imply that q · nΩ

belongs to H− 1
2 (∂Ω) which is defined globally (see, for example, [16]). However,

as q · n vanishes on ∂Ω , following the work of Galvis and Sarkis in [12], we can
prove first that the jump [q] · n+ belongs toH− 1

2 (Γ ), and since it vanishes on Γ \ C
then it is well-defined in H− 1

2 (C ) with continuous dependence on ‖q‖Z. Therefore
Z is a closed subspace of H (div;Ω+ ∪ Ω−) and of H (div;Ω \ C ).

The space for the velocity in the fracture is L2(0,T ;ZC ), where

ZC = {qc ∈ L2(C )d−1 | ∇ · (w
3
2 qc) ∈ H− 1

2 (C )},

equipped with the graph norm

‖qc‖ZC = (‖qc‖2L2(C ) + ‖∇ · (w
3
2 qc)‖2H− 1

2 (C )

) 1
2 .

This space is closely related to the pressure’s space in the fracture introduced in [18]):

H 1
w(C ) = {z ∈ H

1
2 (C ) | w 3

2 ∇ z ∈ L2(C )d−1},
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equipped with the norm

‖z‖H 1
w(C ) = (‖z‖2

H
1
2 (C )

+ ‖w 3
2 ∇ z‖2L2(C )

) 1
2 ,

so that p belongs to
Q = {q ∈ H 1(Ω) | q|C ∈ H 1

w(C )}. (21)

Remark 1 Strictly speaking, the space ZC does not correspond to a standard mixed
space for the velocity in the fracture since the divergence of its functions is inH− 1

2 (C )

instead of L2(C ).We cannot prescribe this last regularity because the leakage term q̃L
is not a data: it is the jump in the normal fluxes, which in general cannot be expected
to be in L2(C ). Thus the pressure pc in the fracture must be taken in H

1
2 (C ). This

extra regularity will be relaxed in the numerical applications because the discrete
jump in the normal fluxes is always in L2(C ). �

To simplify, we denote the scalar products in space by parentheses; if the domain
of integration is not indicated, then it is understood that the integrals are taken over
Ω+ ∪ Ω−. All dualities are denoted by chevrons, eg. the notation 〈·, ·〉C stands for
a duality pairing on C .

Recall the properties of H 1
w(C ) established in [18]:

Theorem 1 Under Hypothesis 1, H 1
w(C ) is a separable Hilbert space, W 1,∞(C ) is

dense in H 1
w(C ), and the following Green formula holds for all θ in H 1

w(C ) such that
∇ · (w3∇ θ) belongs to H− 1

2 (C ):

∀λ ∈ H 1
w(C ), −〈∇ · (w3∇ θ), λ〉C = (w

3
2 ∇ θ,w

3
2 ∇ λ)C .

With this result, we can prove that ZC has the following properties.

Proposition 1 Let w belong to L∞(C ). ThenZC is a separable Hilbert space.More-
over, if w satisfies Hypothesis 1, the following Green formula holds for all θc in
H 1

w(C ):

∀qc ∈ ZC , −(w
3
2 ∇ θc, qc)C = 〈θc,∇ · (w

3
2 qc)〉C . (22)

Proof To show that ZC is a Hilbert space, it suffices to prove that it is complete. Let
(zn)n≥1 be a Cauchy sequence of functions in ZC . Then there exists a function z in
L2(C )d−1 and a function v ∈ H− 1

2 (C ) such that

lim
n→∞ zn = z in L2(C )d−1, lim

n→∞ ∇ · (w
3
2 zn) = v in H− 1

2 (C ).

In order to prove that v = ∇ · (w
3
2 z), we take any ϕ in H 1

0 (C ). Then

〈∇ · (w
3
2 zn), ϕ〉C = −(

w
3
2 zn,∇ ϕ

)
C

= −(
zn, (w

3
2 ∇ ϕ)

)
C

.
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Passing to the limit in the first and last term, we obtain

〈v, ϕ〉C = −(
z, (w

3
2 ∇ ϕ)

)
C

= 〈∇ · (w
3
2 z), ϕ〉C ,

whence v = ∇ · (w
3
2 z).

Proving the separability of ZC is fairly classical. Let E = L2(C )d−1 × H− 1
2 (C )

normed by

‖v‖E = (‖v1‖2L2(C ) + ‖v2‖H− 1
2 (C )

) 1
2 ,

where v = (v1, v2); exceptionally the parentheses denote pairs, and let Φ be the
mapping: ZC �→ E defined by

∀z ∈ ZC , Φ(z) = (
z,∇ · (w

3
2 z)

)
.

Then Φ is an isometry and the argument of the completeness proof above yields that
the range of Φ, R(Φ), is closed in E. Since E is separable, so is R(Φ). Then the
separability of ZC follows from the fact that it is isometrically isomorphic toR(Φ).

To prove Green’s formula (22), we use the density ofW 1,∞(C ) intoH 1
w(C ) stated

in Theorem 1: Let (pn)n≥1 be a sequence of functions of W 1,∞(C ) that tend to θc in
H 1

w(C ). Then

∀qc ∈ ZC , −(
w

3
2 ∇ pn, qc

)
C

= −(∇(w
3
2 pn), qc

)
C

+ (
pn∇(w

3
2 ), qc

)
C

.

Since w
3
2 pn belongs to H 1

0 (C ), we can write

−(∇(w
3
2 pn), qc

)
C

= 〈w 3
2 pn,∇ · qc〉C = 〈pn,w 3

2 ∇ · qc〉C .

Hence

−(
w

3
2 ∇ pn, qc

)
C

= 〈pn,w 3
2 ∇ · qc + ∇(w

3
2 ) · qc〉C = 〈pn,∇ · (w

3
2 qc)〉C ,

and (22) follows by letting n tend to infinity in the first and last term above. �

Finally, in view of the jump and boundary conditions of Problem 1, we see that z
must satisfy the essential jump condition:

1

μ f
[z]C · n+ = −q̃L, on C . (23)

Consequently, the leakage term is in L2(0,T ;H− 1
2 (C )) and can be eliminated by

substituting (23) into the lubrication equation (12).
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3.2 Mixed Formulation

The mixed variational formulation of Problem 1 reads:

Problem 2 For given f ∈ L2 ((Ω \ C ) × ]0,T [)d , q̃ ∈ L2(Ω × ]0,T [), and q̃W ∈
L2(0,T ;H− 1

2 (C )), find u ∈ L∞(0,T ;V), p ∈ L∞(0,T ;L2(Ω)), pc ∈
L2(0,T ;H− 1

2 (C )), z ∈ L2(0,T ;Z), and ζ ∈ L2(0,T ;ZC ) such that

∀v ∈ V, 2G
(
ε(u), ε(v)

) + λ
(∇ · u,∇ · v) − α

(
p,∇ · v) + (

pc, [v]C · n+)
C

= (
f , v

)
,

(P2.1)

∀θ ∈ L2(Ω),

(
∂

∂t

((
1

M
+ c f ϕ0

)
p + α∇ · u

)
, θ

)
+ 1

μ f

(∇ · z, θ) = (
q̃, θ

)
,

(P2.2)

∀θc ∈ H
1
2 (C ), −

〈
∂

∂t
[u]C · n+, θc

〉

C

+ 1

12μ f
〈∇ · (w

3
2 ζ ), θc〉C (P2.3)

− 1

μ f
〈[z]C · n+, θc〉C = 〈q̃W , θc〉C ,

∀q ∈ Z,
(
K−1z, q

) = (p,∇ · q) − 〈pc, [q]C · n+〉C + (∇(ρ f,rgη), q), (P2.4)

∀qc ∈ ZC ,
(
ζ , qc

)
C

= 〈pc,∇ · (w
3
2 qc)〉C + (

w
3
2 ∇(ρ f,rgη), qc

)
C

, (P2.5)

subject to the initial condition (16):

((
1

M
+ c f ϕ0

)
p + α∇ · u

)
(0) =

(
1

M
+ c f ϕ0

)
p0 + α∇ · u0.

From the assumptions on the data and the choice of spaces for the solution we
infer that

∂

∂t

((
1

M
+ c f ϕ0

)
p + α∇ · u

)
∈ L2((Ω \ C )×]0,T [),

∂

∂t

([u]C · n+) ∈ L2(0,T ;H− 1
2 (C )).

(24)

Thus, the first part of (24) implies that the initial condition (16) is meaningful.
We have the following equivalence result.
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Theorem 2 Let f ∈ L2 ((Ω \ C ) × ]0,T [)d , q̃ ∈ L2(Ω × ]0,T [), q̃W ∈
L2(0,T ;H− 1

2 (C )) and assume Hypothesis 1 holds. Suppose that Problem 1 has
a solution with the following regularity:

p ∈ L∞(0,T ;Q), u ∈ L∞(0,T ;V), q̃L ∈ L2(0,T ;H− 1
2 (C )),

and such that (24) holds. Then by defining z and ζ through (18) and (19) respectively,
and by setting pc the trace of p on C , this solution also satisfies (P2.1)–(P2.5) and
(16). Conversely, any solution of the mixed formulation (P2.1)–(P2.5) and (16) with
w and q̃L defined respectively by (13) and (23), also solves Problem 1.

Proof Consider first the flow equations in Problem 1. We set pc = p|C and we have
in particular pc ∈ L2(0,T ;H 1

w(C )). From the assumptions on the time derivative of
p and u and the regularity of q̃, we infer from the definition (18) of z and (P1.3)
that z belongs to H (div;Ω \ C ), and thus z ∈ L2(0,T ;Z), owing to the boundary
conditions (P1.8). Then (P1.3) gives (P2.2). Similarly, the definition of w and the
assumption (24) on its time derivative, the assumption on q̃W and q̃L and its formula
(23), and (P1.4) and (P1.7) imply that ∇ · (w3∇ pc) belongs to L2(0,T ;H− 1

2 (C )).
Then we infer from the trace space H 1

w(C ) for p on C and the definition (19) of ζ

that ζ belongs to L2(0,T ;ZC ) and (P1.4), (P1.6), and (P1.7) yield (P2.3).
Next, we turn to the elasticity equation. The assumptions on f , u and p imply

that each row of σ por(u, p) belongs to L2(0,T ;H (div;Ω)), thus implying that the
normal trace of σ por(u, p) on ∂Ω is well defined,  = +,−. Thus we can take
the scalar product of (P1.1) with v in V, apply Green’s formula in Ω, see, for
instance, [16], and it remains to recover the boundary term in (P2.1). We know that
the normal trace of σ por(u, p) is continuous through Γ \ C . More precisely, each
row of σ por(u, p) belongs to L2(0,T ; Vdiv), where

Vdiv = {v ∈ L2(Ω)d | ∇ · v ∈ L2(Ω),  = +,−, [v]Γ \C · n+ = 0}.

Hence (P1.5) is meaningful. Furthermore, since pc belongs to L2(0,T ;H 1
2 (C )), the

product pcn is inL2(0,T ;Lr(C )d ) for any real r ≥ 1when d = 2 and r ∈ [1, 4]when
d = 3. Therefore σ por(u, p)n|C belongs to L2(0,T ;Lr(C )d ), and consequently the
boundary term in (P2.1) reduces to an integral on C , as v vanishes on Γ . This
justifies the derivation of (P2.1). Finally, we consider the velocity equations. An
application of the usual Green formula in (18) yields (P2.4), and (P2.5) follows from
(19) and (22).

Conversely, consider a solution of (P2.1)–(P2.5) starting from (16). By choosing
q ∈ D(Ω)d in (P2.4),  = +,−, we obtain

z = −K∇(p − ρ f,rgη) in Ω,  = +,−, (25)

which implies that p belongs to H 1(Ω). Next, by taking the scalar product of (25)
with q ∈ H 1

0 (Ω)d and applying the usual Green formula, we derive
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∀q ∈ H 1
0 (Ω)d , (K−1z, q) = (p,∇ · q) − ([p]Γ , q · n+)

Γ
+ (∇(ρ f,rgη), q). (26)

Then comparing with (P2.4), we infer that

∀q ∈ H 1
0 (Ω)d ,

([p]Γ , q · n+)
Γ

= 0,

whence [p]Γ = 0, therefore p ∈ H 1(Ω) and (26) reduces to

∀q ∈ H 1
0 (Ω)d , (K−1z, q) = −(∇(p − ρ f,rgη), q),

thus implying (18). Then, by substituting (18) into (P2.2), we recover (P1.3). Next,
by taking the scalar product of (25) with q ∈ H 1(Ω)d ,  = +,−, q = 0 on ∂Ω ,
applying Green’s formula and comparing with (P2.4), we obtain

(
p, [q]C · n+)

C
= (

pc, [q]C · n+)
C

.

Hence pc = p|C . Now, from (P2.1), we derive as above (P1.1) and (P1.2) inΩ. The
essential homogeneous Dirichlet boundary condition is included in the space V. To
recover the interface condition, take the scalar product of (P1.1) with v ∈ V such
that v− = 0, v sufficiently smooth in Ω+, not zero on C , and apply Green’s formula.
Comparing with (P2.1), this gives

〈σ por(u+, p)n+, v+〉C = −(
pc,n+ · v+)

C
.

With the same argument in Ω−, we recover on one hand (P1.5) and on the other
hand (P1.1) and (P1.2) in Ω \ C . Finally, we define q̃L by (15) and w by (13). Then
(P2.5) yields (19) in the sense of distributions on C and (P2.3) implies (P1.4). �

In the sequel, we suppose that the assumptions of Theorem 2 hold.

4 Stability and Existence of the Mixed
Formulation’s Solution

From now on we restrict our study to a linearized version of the mixed problem
where the factor w

3
2 in (P2.3) and (P2.5) is assumed to be known. This would be the

case in a time-stepping algorithm, where w is taken at the previous time step.
Proving existence of solutions of the mixed formulation in the above spaces is not

trivial because it requires sufficiently smooth solutions. This is the price to pay when
switching to a mixed form, and here it is aggravated by the time dependence and the
presence of the fracture. Our purpose in this section is to give sufficient conditions
on the data and the width w for establishing existence. One of them is restrictive, see
Hypothesis 2, but by-passing it is an open question.
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We start with a priori estimates; a priori in the sense that they are obtained under
the assumption that the mixed problem has a solution. The geometrical setting is the
one described in Sect. 2.

4.1 First Set of a Priori Estimates

We derive here a set of a priori estimates under basic regularity assumptions on the
solution. Albeit basic, these estimates cannot be derived without an inf-sup condition
on the pressure pc in the fracture.

4.1.1 Inf-sup Condition for pc

Lemma 1 There exists a constant β > 0 such that

∀pc ∈ H
1
2 (C ), sup

q∈Z
〈pc, [q]C · n+〉C

‖q‖Z ≥ β‖pc‖H 1
2 (C )

. (27)

Proof By duality we write:

‖pc‖H 1
2 (C )

= sup
g∈H− 1

2 (C )

〈pc, g〉C
‖g‖

H− 1
2 (C )

,

and the proof relies on relating g to a suitable function q in Z. We proceed in two
steps:

1. We propose to extend g by zero to ∂Ω+. For this, let E(g) be defined by

∀ϕ ∈ H
1
2 (∂Ω+), 〈E(g), ϕ〉∂Ω+ = 〈g, ϕ〉C .

Then

|〈E(g), ϕ〉∂Ω+| ≤ ‖g‖
H− 1

2 (C )
‖ϕ‖

H
1
2 (C )

≤ ‖g‖
H− 1

2 (C )
‖ϕ‖

H
1
2 (∂Ω+)

.

Thus E(g) ∈ H− 1
2 (∂Ω+) and

‖E(g)‖
H− 1

2 (∂Ω+)
≤ ‖g‖

H− 1
2 (C )

.

Moreover, for all ϕ ∈ H
1
2 (∂Ω+) that vanish on C (i.e. ϕ ∈ H

1
2
00(∂Ω+ \ C ), we

have 〈E(g), ϕ〉∂Ω+ = 0. This means that E(g) = 0 on ∂Ω+ \ C . Finally, for all

ϕ ∈ H
1
2
00(C ), we have
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〈E(g), ϕ〉C = 〈E(g), ϕ〉∂Ω+ = 〈g, ϕ〉C .

Hence E(g) is the desired extension.
2. As E(g) belongs toH− 1

2 (∂Ω+), there exists q+ inH (div;Ω+) such that (see, for
instance, [16])

q+ · n+ = E(g) on ∂Ω+,

and, with a constant C that depends only on Ω+ and C

‖q+‖H (div;Ω+) ≤ C‖E(g)‖
H− 1

2 (∂Ω+)
≤ C‖g‖

H− 1
2 (C )

.

Furthermore
q+ · n+ = 0 on ∂Ω+ \ C .

Now, we choose q− = 0 in Ω−. Then q is in Z,

[q] · n+ = g on C ,

and
‖q‖Z ≤ C‖g‖

H− 1
2 (C )

.

Thus

‖pc‖H 1
2 (C )

= sup
g∈H− 1

2 (C )

〈pc,E(g)〉C
‖g‖

H− 1
2 (C )

= sup
g∈H− 1

2 (C )

〈pc, [q]C · n+〉C
‖g‖

H− 1
2 (C )

≤ C sup
q∈Z

〈pc, [q]C · n+〉C
‖q‖Z ,

and this yields (27), with β = 1
C . �

Note that the bilinear form 〈pc, [q]C · n+〉C is continuous on the product space
H

1
2 (C ) × Z. We associate with this form the operator B and its dual operator B′

defined by

∀q ∈ Z, ∀pc ∈ H
1
2 (C ), 〈B q, pc〉 = 〈pc, [q]C · n+〉C = 〈q,B′pc〉.

The kernel of B in Z is the space

H0(div;Ω) = {q ∈ H (div;Ω) | q · n = 0 on ∂Ω}.

Indeed, B q = 0 is equivalent to [q]C · n+ = 0, which means that q · n+ does not
jump on C . Then the inf-sup condition (27) has the following consequence.
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Corollary 1 Let z ∈ Z and p ∈ L2(Ω) be such that

∀q ∈ H0(div;Ω), (p,∇ · q) − (
K−1z, q

) + (∇(ρ f,rgη), q) = 0. (28)

Then there exists a unique pc in H
1
2 (C ) such that pc, p, and z satisfy (P2.4) and

‖pc‖H 1
2 (C )

≤ 1

β

((‖p‖2L2(Ω) + |ρ f,rgη|2H 1(Ω\C )

) 1
2 + ‖K−1z‖L2(Ω\C )

)
, (29)

where β is the constant of (27).

Proof It stems from (27) and Babus̆ka-Brezzi’s theory (see, for instance, [2, 6]
or [16]) that the mapping B′ is an isomorphism fromH

1
2 (C ) onto the subspace of Z′:

{� ∈ Z′ | ∀w ∈ H0(div;Ω), 〈�,w〉 = 0}.

Now, for given z ∈ Z and p ∈ L2(Ω) satisfying (28), let � denote the mapping

∀q ∈ Z, 〈�, q〉 = (p,∇ · q) − (
K−1z, q

) + (∇(ρ f,rgη), q).

Clearly, � belongs toZ′ and by assumption � vanishes onH0(div;Ω). Therefore there
exists a unique pc in H

1
2 (C ) such that

∀q ∈ Z, 〈B′pc, q〉 = 〈�, q〉,

i.e.

〈pc, [q]C · n+〉C = (p,∇ · q) − (
K−1z, q

) + (∇(ρ f,rgη), q),

and the estimate (29) follows easily from this and (27). �

4.1.2 Stability Estimates

As specified at the beginning of this section, we assume that the mixed problem has
a sufficiently smooth solution p, u, pc, z, and ζ ; its precise regularity will be stated
further on. A preliminary stability equality is derived by testing (P2.2) with θ = p,
(P2.1) with v = u′, (P2.3) with θc = pc, (P2.4) with q = z and (P2.5) with qc = ζ .
Recall that scalar products in space are denoted by parentheses and if the domain
of integration is not indicated, then it is understood that the integrals are taken over
Ω+ ∪ Ω−. Thus we obtain the five equalities:
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1
2

(
1
M + c f ϕ0

)
d
dt ‖p(t)‖2L2(Ω)

+ α(∇ · u′(t), p(t)) + 1
μ f

(∇ · z(t), p(t)) = (q̃(t), p(t)),

G d
dt ‖ε(u(t))‖2L2(Ω\C )

+ λ
2
d
dt ‖∇ · u(t)‖2L2(Ω\C )

− α(p(t),∇ · u′(t))
+〈pc(t), [u′(t)]C · n+〉C = ( f (t),u′(t)),

−〈[u′(t)]C · n+, pc(t)〉C + 1
12μ f

〈∇ · (w
3
2 (t)ζ (t)), pc(t)〉C − 1

μ f
〈[z]C · n+, pc(t)〉C

= 〈q̃W (t), pc(t)〉C ,
1

μ f
‖K− 1

2 z(t)‖2L2(Ω\C )
= 1

μ f
(p(t),∇ · z(t)) − 1

μ f
〈[z(t)]C · n+, pc(t)〉C

+ 1
μ f

(∇(ρ f,rgη), z(t)),
1

12μ f
‖ζ (t)‖2L2(C )

= 1
12μ f

〈∇ · (w
3
2 (t)ζ (t)), pc(t)〉C + 1

12μ f

(
w

3
2 (t)∇(ρ f,rgη), ζ (t)

)
C

.

(30)

The second equation is problematic because we have no information on the time
derivative of u that appears in its right-hand side. Therefore, supposing f is differ-
entiable in time, we write

( f (t),u′(t)) = d

dt
( f (t),u(t)) − ( f ′(t),u(t))

and use instead

G
d

dt
‖ε(u(t))‖2L2(Ω\C ) + λ

2

d

dt
‖∇ · u(t)‖2L2(Ω\C ) − α(p(t),∇ · u′(t))

+ 〈pc(t), [u′(t)]C · n+〉C = d

dt
( f (t),u(t)) − ( f ′(t),u(t)).

In addition, for the sake of convenience, we rewrite the last two equations as

1

μ f
‖K− 1

2 z(t)‖2L2(Ω\C ) − 1

μ f
(p(t),∇ · z(t)) + 1

μ f
〈[z(t)]C · n+, pc(t)〉C

= 1

μ f
(∇(ρ f,rgη), z(t)), (31)

1

12μ f
‖ζ (t)‖2L2(C ) − 1

12μ f
〈∇ · (w

3
2 (t)ζ (t)), pc(t)〉C

= 1

12μ f

(
w

3
2 (t)∇(ρ f,rgη), ζ (t)

)
C

. (32)

When adding the five equations (30) through (32), we find the following stability
equality:



192 V. Girault et al.

1

2

(
1

M
+ c f ϕ0

)
d

dt
‖p(t)‖2L2(Ω) + G

d

dt
‖ε(u(t))‖2L2(Ω\C ) + λ

2

d

dt
‖∇ · u(t)‖2L2(Ω\C )

+ 1

μ f
‖K− 1

2 z(t)‖2L2(Ω\C ) + 1

12μ f
‖ζ (t)‖2L2(C )

= (q̃(t),p(t)) + d

dt
( f (t),u(t)) − ( f ′(t),u(t)) + 〈q̃W (t), pc(t)〉C

+ 1

μ f
(∇(ρ f,rgη), z(t)) + 1

12μ f

(
w

3
2 (t)∇(ρ f,rgη), ζ (t)

)
C

. (33)

Corollary 1 will be used to control the pressure pc in the fracture; it appears in the
fourth term of the right-hand side of (33), but cannot be absorbed by any term of the
left-hand side.

Theorem 3 Let the data satisfy f ∈ H 1(0,T ;L2(Ω \ C )d ), q̃ ∈ L2(Ω × ]0,T [),
q̃W ∈ L2(0,T ;H− 1

2 (C )), and suppose thatw verifiesHypothesis 1 andρ f,rgη is inde-
pendent of time and belongs both toH 1(Ω \ C ) andH 1(C ). If p ∈ H 1(0,T ;L2(Ω)),
u ∈ H 1(0,T ;H 1(Ω \ C )d ), pc ∈ L2(0,T ;H 1

2 (C )), z ∈ L2(0,T ;Z) and ζ ∈
L2(0,T ;ZC ) is a solution of the mixed problem (P2.1)–(P2.5) and (16), then it
satisfies the following a priori bound almost everywhere in ]0,T [:

(
1
M + c f ϕ0

) ‖p(t)‖2L2(Ω)
+ G‖ε(u(t))‖2L2(Ω\C )

+ λ‖∇ · u(t)‖2L2(Ω\C )

+ 1
μ f

‖K− 1
2 z‖2L2((Ω\C )×]0,t[) + 1

12μ f
‖ζ‖2L2(C ×]0,t[)

≤ C

[(
1
M + c f ϕ0

)‖p(0)‖2L2(Ω)
+ G‖ε(u(0))‖2L2(Ω\C )

+ λ‖∇ · u(0)‖2L2(Ω\C )

+‖u(0)‖2L2(Ω\C )
+ ‖ f (0)‖2L2(Ω\C )

+ ‖q̃‖2L2((Ω\C )×]0,t[) + ‖ f ‖2H 1(0,t;L2(Ω\C )d )

+‖q̃W‖2
L2(0,t;H− 1

2 (C ))
+ t|ρ f,rgη|2H 1(Ω\C )

+ 1
12μ f

‖w 3
2 ∇(ρ f,rgη)‖2L2(C ×]0,t[)

]
exp(t),

(34)

‖pc‖
L2(0,t;H 1

2 (C ))
≤

√
2

β

(
‖p‖2L2(Ω×]0,t[) + ‖K−1z‖2L2((Ω\C )×]0,t[) + t|ρ f,rgη|2H1(Ω\C )

) 1
2
,

(35)

with the constant β of (27) and a constant C that depends on α, ‖K− 1
2 ‖L∞(Ω\C ),

‖K 1
2 ‖L∞(Ω\C ), 1/( 1

M + c f ϕ0), and 1/μ f , but is independent of t.

Proof Deriving a bound from the stability equality (33) and the pressure bound
(29) is straightforward. Of course (35) is an immediate consequence of (29), and it
suffices to derive (34). We integrate (33) over ]0, t[, t > 0 and bound the terms in the
right-hand side with positive constants δi that will be adjusted at the end. The first
term is bounded by
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∣∣∣∣

∫ t

0
(q̃(s), p(s)) ds

∣∣∣∣ ≤ 1

2

(
δ1

(
1

M
+ c f ϕ0

)
‖p‖2L2(Ω×]0,t[)

+ 1

δ1

1
1
M + c f ϕ0

‖q̃‖2L2((Ω\C )×]0,t[)

)
.

For the second term, we use Poincaré’s and Korn’s inequalities (2) and (3):

∣∣
∣∣

∫ t

0

d

ds
( f (s),u(s))ds

∣∣
∣∣ ≤ 1

2

(
δ2G‖ε(u(t))‖2L2(Ω\C ) + C2 1

δ2

1

G
‖ f (t)‖2L2(Ω\C )

+ ‖u(0)‖2L2(Ω\C ) + ‖ f (0)‖2L2(Ω\C )

)
,

where C is the product of the constants in (2) and (3). Similarly, the third term has
the bound

∣∣∣
∫ t

0
( f ′(s),u(s))ds

∣∣∣ ≤ 1

2

(
δ3G‖ε(u)‖2L2((Ω\C )×]0,t[) + C2 1

δ3

1

G
‖ f ′‖2L2((Ω\C )×]0,t[)

)
.

For the fourth term, applying (29), we write

∣
∣∣〈q̃W (t), pc(t)〉C

∣
∣∣ ≤ 1

β
‖q̃W (t)‖

H− 1
2 (C )

((‖p(t)‖2L2(Ω) + |ρ f,rgη|2H 1(Ω\C )

) 1
2

+ ‖K− 1
2 ‖L∞(Ω\C )‖K− 1

2 z(t)‖L2(Ω\C )

)

≤ δ4

2

( 1

M
+ c f ϕ0

)(‖p(t)‖2L2(Ω) + |ρ f,rgη|2H 1(Ω\C )

) + δ5

2μ f
‖K− 1

2 z(t)‖2L2(Ω\C )

+ 1

2β2

( 1

δ4

1
1
M + c f ϕ0

+ μ f

δ5
‖K− 1

2 ‖2L∞(Ω\C )

)
‖q̃W (t)‖2

H− 1
2 (C )

.

Hence
∣∣∣∣

∫ t

0
〈q̃W (s), pc(s)〉C ds

∣∣∣∣ ≤ δ4

2

(
1

M
+ c f ϕ0

)
(‖p‖2L2(Ω×]0,t[) + t|ρ f,rgη|2H 1(Ω\C )

)

+ δ5

2μ f
‖K− 1

2 z‖2L2((Ω\C )×]0,t[)

+ 1

2β2

(
1

δ4

1
1
M + c f ϕ0

+ μ f

δ5
‖K− 1

2 ‖2L∞(Ω\C )

)
‖q̃W‖2

L2(0,t;H− 1
2 (C ))

.
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The fifth term has the bound
∣∣∣∣

∫ t

0

1

μ f
(∇(ρ f,rgη), z(s))ds

∣∣∣∣ ≤ 1

2

δ6

μ f
‖K− 1

2 z‖2L2((Ω\C )×]0,t[)

+ 1

2

t

μ f

1

δ6
‖K 1

2 ‖2L∞(Ω\C )|ρ f,rgη|2H 1(Ω\C ).

Finally, we have for the last term

∣∣∣∣

∫ t

0

1

12μ f

(
w

3
2 (s)∇(ρ f,rgη), ζ (s)

)
C
ds

∣∣∣∣ ≤ δ7

24μ f
‖ζ‖2L2(C ×]0,t[)

+ 1

δ7

1

24μ f
‖w 3

2 ∇(ρ f,rgη)‖2L2(C ×]0,t[).

With a suitable choice of positive parameters δi, 1 ≤ i ≤ 7, all terms in the above
right-hand sides that involve the solution can be absorbed by the corresponding
terms in the left-hand side of (33). This yields (34). In view of Corollary 1, (35) is
immediate. �

4.2 Additional a Priori Estimates

Theorem 3 gives no information on the divergence of z or on the surface divergence
of w

3
2 ζ on C . As is usual, a bound for these quantities requires an estimate on the

time derivative of p and u, and this will also yield a bound for the leakage term q̃L.
In order to estimate these time derivatives, we test (P2.2) with p′ and (P2.3) with

p′
c, then we differentiate (P2.1), (P2.4), and (P2.5) in time, and test them respectively
with u′, z, and ζ . By summing these five equations we obtain

(
1
M + c f ϕ0

) ‖p′(t)‖2L2(Ω)
+ 2G‖ε(u′(t))‖2L2(Ω\C )

+ λ‖∇ · (u′(t))‖2L2(Ω\C )

+ 1
2μ f

d
dt ‖K− 1

2 z(t)‖2L2(Ω\C )
+ 1

24μ f

d
dt ‖ζ (t)‖2L2(C )

− 1
12μ f

〈pc(t),∇ · ((w
3
2 )′(t)ζ (t))〉C − 1

12μ f
((w

3
2 )′(t)∇(ρ f,rgη), ζ (t))C

= (q̃(t), p′(t)) + ( f ′(t),u′(t)) − 〈q̃′
W (t), pc(t)〉C + d

dt 〈q̃W (t), pc(t)〉C ,

(36)

where we have passed the time derivative to the first factor in 〈q̃W (t), p′
c(t)〉C . The

term involving the time derivative of w
3
2 is written as follows:

∇ · ((w
3
2 )′(t)ζ (t)) = (w

3
2 )′

w
3
2

(t)∇ · (w
3
2 (t)ζ (t)) + w

3
2 (t)ζ (t) · ∇

(
(w

3
2 )′

w
3
2

(t)

)

, (37)

and the factor (w
3
2 )′

w
3
2

is controlled via the following assumption, that complements

Hypothesis 1.
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Hypothesis 2 The width function is the product of two positive functions

∀(x, t) ∈ C × ]0,T [ , w(x, t) = ϕ(x)ψ(t), (38)

and there exists a constant C such that

∀t ∈ [0,T ], |ψ
′(t)

ψ(t)
| ≤ C. (39)

Under this assumption, we have sharper a priori estimates. To simplify, we do not
specify the constant below.

Theorem 4 We retain the assumptions of Theorem 3 and, in addition, suppose that w
satisfiesHypothesis 2, the data satisfy q̃W ∈ H 1(0,T ;H− 1

2 (C )), z(0) ∈ L2(Ω \ C )d ,
ζ (0) ∈ L2(C )d−1, and pc(0) ∈ H

1
2 (C ). Then this solution satisfies the following a

priori bound almost everywhere in ]0,T [:

(
1

M
+ c f ϕ0

)
‖p′‖2L2(Ω×]0,t[) + 2G‖ε(u′)‖2L2((Ω\C )×]0,t[) + λ‖∇ · (u′)‖2L2((Ω\C )×]0,t[)

+ 1

2μ f
‖K− 1

2 z(t)‖2L2(Ω\C )
+ 1

24μ f
‖ζ (t)‖2L2(C )

≤ C(K, f , q̃, q̃W , p(0), pc(0), z(0), ζ (0), ρ f,rgη, t). (40)

Proof Owing to the decomposition (38), we have

(w
3
2 )′

w
3
2

(x, t) = (ψ
3
2 (t))′

ψ
3
2 (t)

,

that does not depend on x. Consequently, on one hand, the product of this factor
with pc belongs to H

1
2 (C ), and, on the other hand, the second term in (37) vanishes.

Hence, after an application of (39), (36) implies

(
1

M
+ c f ϕ0

)
‖p′(t)‖2L2(Ω) + 2G‖ε(u′)(t)‖2L2(Ω\C ) + λ‖∇ · (u′)(t)‖2L2(Ω\C )

+ 1

2μ f

d

dt
‖K− 1

2 z(t)‖2L2(Ω\C ) + 1

24μ f

d

dt
‖ζ (t)‖2L2(C )

≤ C

12μ f
|〈pc(t),∇ · (w

3
2 (t)ζ (t))〉C | + C

12μ f
‖w 3

2 (t)∇(ρ f,rgη)‖L2(C )‖ζ (t)‖L2(C )

+‖q̃(t)‖L2(Ω\C )‖p′(t)‖L2(Ω) + ‖ f ′(t)‖L2(Ω\C )‖u′(t)‖L2(Ω\C )

+‖q̃′
W (t)‖

H− 1
2 (C )

‖pc(t)‖H 1
2 (C )

+ d

dt
〈q̃W (t), pc(t)〉C =

6∑

i=1

Ti. (41)

Indeed,
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∣∣
∣∣∣
〈pc(t), (w

3
2 )′

w
3
2

(t)∇ · (w
3
2 (t)ζ (t))〉C

∣∣
∣∣∣
=

∣∣
∣∣∣

〈

pc(t),
(ψ

3
2 )′

ψ
3
2

(t)∇ · (w
3
2 (t)ζ (t))

〉

C

∣∣
∣∣∣

=
∣∣∣∣∣
(ψ

3
2 )′

ψ
3
2

(t)〈pc(t),∇ · (w
3
2 (t)ζ (t))〉C

∣∣∣∣∣
.

Regarding T1, we immediately derive from (32) that

C

12μ f

∣∣
∣
〈
pc(t),∇ · (w 3

2 (t)ζ (t)
)〉

C

∣∣
∣

≤ C

12μ f

(
‖ζ (t)‖2L2(C ) + ‖w 3

2 (t)∇(ρ f,rgη)‖L2(C )‖ζ (t)‖L2(C )

)

≤ 1

12μ f

(
C‖ζ (t)‖2L2(C ) + δ1

2
‖ζ (t)‖2L2(C ) + C2

2δ1
‖w 3

2 (t)∇(ρ f,rgη)‖2L2C )

)
.

The bounds for Ti, 2 ≤ i ≤ 5, are straightforward, with positive constants δj,
2 ≤ j ≤ 5:

T2 ≤ 1

24μ f

(
δ2‖ζ (t)‖2L2(C ) + C2

δ2
‖w 3

2 (t)∇(ρ f,rgη)‖2L2C
)

,

T3 ≤ 1

2

(

δ3
( 1

M
+ c f ϕ0

)‖p′(t)‖2L2(Ω) + 1

δ3

1
1
M + c f ϕ0

‖q̃(t)‖2L2(Ω\C )

)

,

T4 ≤ 1

2

(
2Gδ4‖ε(u′)(t)‖2L2(Ω\C ) + C2

2Gδ4
‖ f ′(t)‖2L2(Ω\C )

)
,

T5 ≤ 1

2

(
δ5‖pc(t)‖2

H
1
2 (C )

+ 1

δ5
‖q̃′

W (t)‖2
H− 1

2 (C )

)
.

We shall bound T6 after an integration over ]0, t[:

∣
∣∣∣

∫ t

0

d

ds
〈q̃W (s),pc(s)〉C ds

∣
∣∣∣ ≤ |〈q̃W (t), pc(t)〉C | + |〈q̃W (0), pc(0)〉C |

≤ ‖q̃W (t)‖
H− 1

2 (C )
‖pc(t)‖H 1

2 (C )
+ ‖q̃W (0)‖

H− 1
2 (C )

‖pc(0)‖H 1
2 (C )

.

For the first term, we use formula (29) at time t. Thus

‖q̃W (t)‖
H− 1

2 (C )
‖pc(t)‖H 1

2 (C )

≤ 1

2

(
δ6‖K− 1

2 z(t)‖2L2(Ω\C ) + 1

δ6β2
‖K− 1

2 ‖2L∞(Ω\C )‖q̃W (t)‖2
H− 1

2 (C )

)

+ 1

2

(
δ7

β

(‖p(t)‖2L2(Ω) + |ρ f,rgη|2H 1(Ω\C )

) + 1

δ7β
‖q̃W (t)‖2

H− 1
2 (C )

)
.
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Finally, we substitute the bounds for Ti, 1 ≤ i ≤ 5, into (41), we integrate on time
over ]0, t[, and we substitute the bound for T6. A suitable choice of constants δi,
i = 3, 4, 6 allows to absorb the terms involving u′, p′, and z into the left-hand side
of (41). This yields (40), considering that all other terms are either data or terms that
have been bounded by Theorem 3. �

The next corollary complements the bounds on z and ζ of Theorem 4.

Corollary 2 Under the assumptions of Theorem 4, we have

‖∇ · z‖L2((Ω\C )×]0,T [) ≤ μ f

[(
1

M
+ c f ϕ0

)
‖p′‖L2((Ω\C )×]0,T [)

+ α‖∇ · u′‖L2((Ω\C )×]0,T [) + ‖q̃‖L2((Ω\C )×]0,T [)

]
,

(42)

‖∇ · (w
3
2 ζ )‖

L2(0,T ;H− 1
2 (C ))

≤ 12μ f

[
C‖u′‖L2(0,T ;Z) + C

μ f
‖z‖L2(0,T ;Z)

+ ‖q̃W‖
L2(0,T ;H− 1

2 (C ))

]
, (43)

where C is the constant of the trace inequality

∀q ∈ Z, ‖[q]C · n+‖
H− 1

2 (C )
≤ C‖q‖Z. (44)

Proof Formula (42) follows directly from (P2.2), and (43) follows from (P2.3) and
(44). �

Remark 2 The bounds (44) and (42) lead to an immediate a priori estimate for the
leakage term:

‖q̃L‖L2(0,T ;H− 1
2 (C ))

= 1

μ f
‖[z]C · n+‖

L2(0,T ;H− 1
2 (C ))

≤ C

[
‖z‖L2((Ω\C )×]0,T [) +

(
1

M
+ c f ϕ0

)
‖p′‖L2((Ω\C )×]0,T [)

+α‖∇ · u′‖L2((Ω\C )×]0,T [) + ‖q̃‖L2((Ω\C )×]0,T [)
]
.

�

The Assumption 2 on the fracture width’s growth in time is restrictive because
it does not allow the fracture to propagate in time, i.e., the fracture must already be
present and its width can grow, but it cannot open at points where it is closed. This is
only a theoretical sufficient condition for the existence theorem and we do not know
if it is necessary. Of course, these two parts on a priori estimates might have been
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by-passed and replaced by the assumption that Problem 1 has a sufficiently smooth
solution, since this implies existence of a solution of the mixed problem, but deriving
a priori estimates always gives worthwhile information.

4.3 Existence and Uniqueness of Solutions

The above estimates show that if the problem (P2.1)–(P2.5) and (16) has a solution
with the regularity stated in Theorem 4, then this solution is unique.

Regarding existence, rather than directly constructing a solution for the mixed
formulation, let us use known existence results for Problem 1 and the equiv-
alence Theorem 2, even though the assumptions may not be optimal. For in-
stance, if f ∈ H 2(0,T ;L2(Ω \ C )d ), q̃ ∈ L2(Ω×]0,T [), q̃W ∈ H 1(0,T ;L2(C )),
p0 ∈ Q, and w satisfies Hypotheses 1 and 2, then the solution of Problem 1 satisfies
p ∈ H 1(0,T ;L2(Ω \ C )) ∩ L∞(0,T ;Q), u ∈ H 1(0,T ;V), q̃L ∈ L2(0,T ;H 1

w(C )′)
and is unique in these spaces, see [17]. Once this is known, additional regularity can
be derived from the equations of Problem 1. In particular, with the definition (18) of
z, (P1.3) implies that z is in L2(0,T ;Z). In view of (P1.6), this means that q̃L belongs
to L2(0,T ;H− 1

2 (C )). Then (P1.4), (P1.7), and the definition (19) of ζ imply that ζ
is in L2(0,T ;ZC ). Hence we are in the setting of Theorem 2, which yields existence
of a solution of (P2.1)–(P2.5), (16), (13), and (23) with the above regularity. This is
summarized in the next theorem.

Theorem 5 Let the data f , q̃, q̃W and p0 be given in H 2(0,T ;L2(Ω \ C )d ),
L2(Ω×]0,T [), H 1(0,T ;L2(C )), and Q, respectively, and let w satisfy Hypotheses 1
and 2. Then the mixed problem (P2.1)–(P2.5), (16), (13), and (23) has one and only
one solution p, u, q̃L, z, and ζ , respectively, in H 1(0,T ;L2(Ω \ C )) ∩ L∞(0,T ;Q),
H 1(0,T ;V), L2(0,T ;H− 1

2 (C )), L2(0,T ;Z), and L2(0,T ;ZC ).

5 Discretization

In this section, we study a space–time discretization of the linearized mixed problem
(P2.1)–(P2.5) and (16), with a backward Euler scheme in time and finite elements in
space that are conforming for the displacement u and velocity variables z and ζ . In
order to avoid handling curved elements or analyzing the approximation of curved
surfaces that raises additional technicalities, we assume that both ∂Ω and the fracture
C are polygonal or polyhedral surfaces.
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5.1 General Discrete Spaces

Let Th be a regular family of conforming meshes of Ω , made of triangles or convex
quadrilaterals in 2D and tetrahedra or convex hexahedra in 3D. To simplify, we
assume that Th meshes Ω+ and Ω−, i.e., C does not cross the elements of Th. Let
N ≥ 1 be a fixed integer, Δt = T/N the time step, and ti = iΔt, 0 ≤ i ≤ N , the
discrete time points.

In each element, if the element is a simplex, the functions are approximated by
polynomials Pk of total degree k, and if the element is a quadrilateral or hexahedron,
the functions are approximated by images of tensor product polynomialsQk of degree
k in each variable. The displacement, velocity and pressure finite element spaces on
any physical element E are defined, respectively, via the vector transformation

v ↔ v̂ : v = v̂ ◦ F−1
E ,

via the Piola transformation

z ↔ ẑ : z = 1

JE
DFE ẑ ◦ F−1

E ,

and via the scalar transformation

w ↔ ŵ : w = ŵ ◦ F−1
E ,

where FE denotes a mapping from the reference element Ê, unit square or cube
according to the dimension, to the physical element E, DFE is the Jacobian of FE ,
and JE is its determinant. The advantage of the Piola transformation is that it preserves
the divergence and the normal components of the velocity vectors on the sides or
faces [16, Ch. III, 4.4] in the following sense:

(∇ · v,w)E = (∇̂ · v̂, ŵ)Ê and (v · ne,w)e = (v̂ · n̂ê, ŵ)ê.

This is used in constructing the H (div;Ω)-conforming velocity space Zh defined
below. On Th, the finite element spaces Vh for the displacement uh, Zh for the
velocity zh, and Qh for the pressure ph are given by

Vh =
{
v ∈ V | v|E = v̂ ◦ F−1

E , v̂ ∈ V̂(Ê), ∀E ∈ Th

}
,

Zh =
{
z ∈ Z | z|E = 1

JE
DFE ẑ ◦ F−1

E , ẑ ∈ Ẑ(Ê), ∀E ∈ Th

}
,

Qh =
{
q ∈ L2(Ω) | q|E = q̂ ◦ F−1

E , q̂ ∈ Q̂(Ê), ∀E ∈ Th

}
,

where V̂(Ê), Ẑ(Ê) and Q̂(Ê) are suitable finite element spaces on the reference
element Ê. In particular, we suppose that Ẑ(Ê) and Q̂(Ê) are compatible pairs such
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as the Raviart-Thomas pairs of elements on simplices or enhanced BDM pairs of
elements on quadrilaterals and hexahedra. The enhanced BDM pairs are used on
quadrilaterals and hexahedra as described in Sect. 5.3.

By definition, the functions of Vh and Zh are conforming in V and Z respectively.
Moreover, we assume that the conformity holds also on the boundary of C , i.e., the
functions of Vh as well as the normal components of functions of Zh have no jump
on ∂C .

5.2 Discretization in the Fracture

LetCh denote the trace ofTh onC . SinceC is assumed to be polygonal or polyhedral,
we can map each line segment or plane face of C onto a segment in the x1 line (when
d = 2) or a polygon in the x1 − x2 plane (when d = 3) by a rigid-body motion that
preserves both surface gradient and divergence, maps the normal n+ into a unit vector
along x3, for example,−e3, and whose Jacobian is one. After this change in variable,
all operations on this line segment or plane face can be treated as the same operations
on the x1 axis or x1 − x2 plane. To simplify, we do not use a particular notation for
this change in variable, and work as if the line segments or plane faces of C lie on
the x1 line or x1 − x2 plane. Let Si, 1 ≤ i ≤ I , denote the line segments or plane
faces of C ; to simplify, we drop the index i. Again, to simplify the analysis, we take
the trace of Th onS , say TS ,h as partition ofS . Let e denote a generic element of
TS ,h, with reference element ê, and let the scalar and Piola transforms be defined
by the same formula as above, but with respect to e instead of E. Then we define the
finite element spaces on C by:

ZC ,h = {
μ ∈ ZC | μ|S i ∈ ZS i,h, 1 ≤ i ≤ I

}
,

ΘC ,h = {
q ∈ L2(C ) | q|S i ∈ ΘS i,h, 1 ≤ i ≤ I

}
,

with
ZS ,h =

{
μ ∈ ZC | μ|e ↔ μ̂, μ̂ ∈ ẐC (ê), ∀e ∈ TS ,h

}
,

ΘS ,h =
{
q ∈ L2(C ) | q|e ↔ q̂, q̂ ∈ Θ̂C (ê), ∀e ∈ TS ,h

}
,

where ẐC (ê) and Θ̂C (ê) are finite element spaces on the reference element ê. Again,
we assume that they are compatible pairs like the Raviart-Thomas pairs on triangles
or enhanced BDMpairs on quadrilaterals. This implies that the functions qc,h ofZS ,h

belong globally to H (div;S ) ∩ L∞(S )d−1. By expanding ∇ · (w
3
2 qc,h) and using

the assumption (17) on w, we easily derive that ∇ · (w
3
2 qc,h) belongs to L

2(S ). This

allows to take the discrete pressure pc,h in L2(C ) instead of H
1
2 (C ).
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5.3 Elements on Convex Quadrilaterals and Hexahedra

In the case of convex quadrilaterals, Ê is the unit square with vertices r̂1 = (0, 0)T ,
r̂2 = (1, 0)T , r̂3 = (1, 1)T , and r̂4 = (0, 1)T . Denote by ri, 1 ≤ i ≤ 4, the correspond-
ing vertices of E. In this case, FE is the bilinear mapping given as

FE(x̂, ŷ) = r1(1 − x̂)(1 − ŷ) + r2x̂(1 − ŷ) + r3x̂ŷ + r4(1 − x̂)ŷ;

the space for the displacement is

V̂(Ê) = Q1(Ê)2,

and the space for the flow is the lowest order BDM1 space [8]

Ẑ(Ê) = P1(Ê)2 + r curl(x̂2ŷ) + s curl(x̂ŷ2) , Q̂(Ê) = P0(Ê),

where r and s are real constants.
In the case of hexahedra, Ê is the unit cube but the element E can have non-

planar faces. The vertices of Ê are r̂1 = (0, 0, 0)T , r̂2 = (1, 0, 0)T , r̂3 = (1, 1, 0)T ,
r̂4 = (0, 1, 0)T , r̂5 = (0, 0, 1)T , r̂6 = (1, 0, 1)T , r̂7 = (1, 1, 1)T , and r̂8 = (0, 1, 1)T .
Denote by ri = (xi, yi, zi)T , 1 ≤ i ≤ 8, the eight corresponding vertices of E. In this
case FE is a trilinear mapping given by

FE(x̂,ŷ, ẑ) = r1(1 − x̂)(1 − ŷ)(1 − ẑ) + r2x̂(1 − ŷ)(1 − ẑ) + r3x̂ŷ(1 − ẑ)

+ r4(1 − x̂)ŷ(1 − ẑ) + r5(1 − x̂)(1 − ŷ)ẑ + r6x̂(1 − ŷ)ẑ + r7x̂ŷẑ + r8(1 − x̂)ŷẑ,

the space for the displacement is defined by

V̂(Ê) = Q1(Ê)3,

the space for the flow is an enhanced BDDF1 space [19]:

Ẑ(Ê) = BDDF1(Ê) + s2 curl(0, 0, x̂2ẑ)T + s3 curl(0, 0, x̂2ŷẑ)T + t2 curl(x̂ŷ2, 0, 0)T

+ t3 curl(x̂ŷ2ẑ, 0, 0)T + w2 curl(0, ŷẑ2, 0)T + w3 curl(0, x̂ŷẑ2, 0)T ,

Q̂(Ê) = P0(Ê),

where the BDDF1(Ê) space is defined as [7]:

BDDF1(Ê) = P1(Ê)3 + s0 curl(0, 0, x̂ŷẑ)T + s1 curl(0, 0, x̂ŷ2)T + t0 curl(x̂ŷẑ, 0, 0)T

+ t1 curl(ŷẑ2, 0, 0)T + w0 curl(0, x̂ŷẑ, 0)T + w1 curl(0, x̂2ẑ, 0)T .

In the above equations, si, ti,wi, 0 ≤ i ≤ 3, are real constants. In all cases the degrees
of freedom (DOF) for the displacements are chosen as Lagrangian nodal point values.
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The velocity DOF are chosen to be the normal components at the d vertices on each
face. The dimension of the space is dnv, where d = 2, 3 is the dimension and nv is the
number of vertices in E. Note that, although the original BDDF1 spaces have only
three DOF on square faces, these spaces have been enhanced in [19] to have four
DOF on square faces. This special choice is needed in the reduction to a cell-centered
pressure stencil in a pure Darcy flow problem as described later in this section.

5.4 Fully Discrete Equations

The assumptions on the data are:

f ∈ H 1(0,T ;L2(Ω \ C )d ), q̃ ∈ C 0([0,T ];L2(Ω \ C )),

q̃W ∈ H 1(0,T ;H− 1
2 (C )), p(0) = p0 ∈ Q

with pc(0) the trace of p0 on C , and in addition to Hypothesis 1, w is continuous in
time.

For each n and for almost every x ∈ Ω+ ∪ Ω− or Ω , we set

f n(x) = f (x, tn), q̃n(x) = q̃(x, tn),

and for almost every s ∈ C

wn(s) = w(s, tn), q̃nW (s) = q̃W (s, tn).

To simplify, we denote the first backward difference in time of any function v (con-
tinuous in time) as follows,

δvn = vn − vn−1.

We propose the following fully discrete implicit coupled mixed scheme. It is
assumed that the finite element functions are sufficiently smooth to give meaning to
all integrals below.

Problem 3 At time t = 0, let p0h = rh(p0), where rh is the local L2 projection on
each element E of Th, with values in Qh. By assumption p0 ∈ Q and therefore pc,0,
its trace on C , belongs to H 1

w(C ) ⊂ H
1
2 (C ). We take p0c,h = rC ,h(pc,0), where rC ,h

is the local L2 projection on each element e of Ch, with values in ΘC ,h.
Once p0h and p0c,h are known, u(p0h) is approximated by discretizing the elasticity

equation (P2.1) in Ω \ C : Find u0h ∈ Vh solution of

∀vh ∈ Vh, 2G
(
ε(u0h),ε(vh)

) + λ
(∇ · u0h,∇ · vh

)
(P3.1)

= α
(
p0h,∇ · vh

) − (
p0c,h, [vh]C · n+)

C
+ (

f 0, vh
)
.
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Similarly, z0h and ζ 0
h are approximated by discretizing respectively (P2.4) and (P2.5):

∀qh ∈ Zh,
(
K−1z0h, qh

) = (p0h,∇ · qh) − (
p0c,h, [qh]C · n+)

C
+ (∇(ρ f,rgη), qh),

(P3.2)

∀qc,h ∈ ZC ,h,
(
ζ 0
h, qc,h

)
C

= (
p0c,h,∇ · ((w0)

3
2 qc,h

))
C

+ (
(w0)

3
2 ∇(ρ f,rgη), qc,h

)
C

.

(P3.3)

For any n, 1 ≤ n ≤ N , unh, p
n
h, p

n
c,h, z

n
h, and ζ n

h are approximated by discretizing
(P2.1)–(P2.5): Knowing un−1

h , pn−1
h , find unh ∈ Vh, pnh ∈ Qh, pnc,h ∈ ΘC ,h, znh ∈ Zh, and

ζ n
h ∈ ZC ,h solutions of

∀vh ∈ Vh, 2G
(
ε(unh), ε(vh)

) + λ
(∇ · unh,∇ · vh

) − α
(
pnh,∇ · vh

)
(P3.4)

+ (
pnc,h, [vh]C · n+)

C
= (

f n, vh
)
,

∀θh ∈ Qh,

(( 1

M
+ c f ϕ0

) 1

Δt
δpnh + α

Δt
∇ · δunh, θh

)
+ 1

μ f

(∇ · znh, θh
) = (

q̃n, θh
)
,

(P3.5)

∀θc,h ∈ ΘC ,h, − 1

Δt

(
δ([unh]C ) · n+, θc,h

)
C

+ 1

12μ f

(∇ · ((wn)
3
2 ζ n

h), θc,h
)
C

(P3.6)

− 1

μ f

([znh]C · n+, θc,h
)
C

= 〈q̃nW , θc,h〉C ,

∀qh ∈ Zh,
(
K−1znh, qh

) = (pnh,∇ · qh) − (
pnc,h, [qh]C · n+)

C
+ (∇(ρ f,rgη), qh),

(P3.7)

∀qc,h ∈ ZC ,h,
(
ζ n
h, qc,h

)
C

= (
pnc,h,∇ · ((wn)

3
2 qc,h)

)
C

+ (
(wn)

3
2 ∇(ρ f,rgη), qc,h

)
C

.

(P3.8)

Problem 3 is a square system of linear equations in finite dimension. Therefore,
to show existence of a solution, it suffices to prove that, at each time step, if all data
are zero (including the values at the preceding step) then the only solution is the zero
solution. Existence and uniqueness of pnh, u

n
h, z

n
h, and ζ n

h follow immediately from
the following stability equality, obtained by testing (P3.5) with pnh, (P3.6) with pnc,h,
(P3.7) with znh, (P3.8) with ζ n

h, (P3.4) with δunh, multiplying everything by Δ t, and
combining the resulting equations:
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1

2

(
1

M
+ c f ϕ0

)(
δ
(‖pnh‖2L2(Ω)

) + ‖δ pnh‖2L2(Ω)

)

+G
(
δ
(‖ε(unh)‖2L2(Ω\C )

)+‖δ ε(unh)‖2L2(Ω\C )

)

+λ

2

(
δ
(‖∇ · unh‖2L2(Ω\C )

)+‖δ(∇ · unh)‖2L2(Ω\C )

)

+Δ t

μ f
‖K− 1

2 znh‖2L2(Ω\C )+
Δ t

12μ f
‖ζ n

h‖2L2(C )

= Δ t(q̃n, pnh)Ω + ( f n, δ unh) + Δ t〈q̃nW , pnc,h〉C + Δ t

μ f
(∇(ρ f,rgη), znh)

+ Δ t

12μ f

(
(wn)

3
2 ∇(ρ f,rgη), ζ n

h

)
C

.

From here, existence and uniqueness of pnc,h will be a consequence of the discrete
inf-sup condition established in the next section.

5.5 Discrete Inf-sup Condition for pc,h

As in the exact problem, we need an inf-sup condition to control the discrete surface
pressure pc,h on C . However, the argument used in deriving Lemma 1 does not carry
over to the discrete case because the Raviart-Thomas interpolant Rh, which is the
most obvious candidate for discretizing q, is not defined in H (div;Ω). We shall use
instead an interior argument that creates a smoother function. In addition, we suppose
the following compatibility condition on the finite element spaces.

Hypothesis 3 There exists an approximation operator Rh ∈ L (Z ∩ Hs(Ω+ ∪
Ω−)d ;Zh) for s > 0, such that for all q ∈ Z ∩ Hs(Ω+ ∪ Ω−)d ,

∀E ⊂ Ω,  = +, ∀θh ∈ Qh,
(
θh,∇ · (q − Rh(q))

)
E = 0,

∀e ⊂ C , ∀θc,h ∈ ΘC ,h, 〈θc,h, [q − Rh(q))]C · n+〉e = 0,
(45)

and there exists a constant C independent of h such that for all element E of Th

∀q ∈ Hs(E)d , ‖q − Rh(q)‖L2(E) ≤ C hs|q|Hs(E),

∀q ∈ H (div;E) ∩ Hs(E)d , ‖ div(q − Rh(q))‖L2(E) ≤ ‖ div q‖L2(E).
(46)

These assumptions are satisfied by the Raviart-Thomas RTk finite elements pairs of
degree k ≥ 0, i.e., H (div) velocity with incomplete degree k + 1 and discontinuous
pressure with degree k. They are also satisfied, for instance, by the enhanced BDM1

elements pairs described in Sect. 5.3, associated with piecewise constant pressures.
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In view of the first part of (45), the compatibility between Qh and Zh implies that
∇ · Rh(q) is the projection of ∇ · q onto Qh.

Lemma 2 Under Hypothesis 3, there exists a constant β∗
1 > 0, independent of h,

such that

∀θc,h ∈ ΘC ,h, sup
qh∈Zh

(
θc,h, [qh]C · n+)

C

‖qh‖Z
≥ β∗

1‖θc,h‖L2(C ). (47)

Proof The idea is to construct an adequately smooth function q in Z whose normal
jump on C coincides with θc,h, and to which Rh can be applied. We proceed in two
steps:

1. Asweonly consider theL2 norm,we extend θc,h by zero to ∂Ω+ (without changing
its notation) and we consider the unique solution ϕ+ ∈ H 1(Ω+) of the following
Laplace equation with Neumann boundary conditions:

−Δϕ+ = − 1

|Ω+|
(
θc,h, 1

)
C

in Ω+,

∂

∂n
ϕ+ = θc,h on ∂Ω+.

Note that the interior and boundary data are compatible; therefore this problem
has a unique solution ϕ+ such that

‖ϕ+‖H 1(Ω+) ≤ C‖θc,h‖L2(C ), (48)

with a constant C that depends only on Ω+ and C .
Thenwe choose q+ = ∇ ϕ+ inΩ+ and q− = 0 inΩ−. By construction, q belongs
to H (div;Ω+ ∪ Ω−),

∇ · q =
⎧
⎨

⎩

1

|Ω+| (θc,h, 1)C in Ω+,

0 in Ω−,

and
[q · n+]C = θc,h, [q · n+]Γ \C = 0, q · n|∂Ω = 0,

so that q belongs to Z. Since the extended function θc,h belongs to L2(∂Ω+),
the regularity of the Laplace equation with Neumann boundary conditions imply
that ϕ+ is in H

3
2 (Ω+) (cf. [20]) with continuous dependence on θc,h. Therefore

q ∈ H
1
2 (Ω+ ∪ Ω−)d and there exists a constant C depending only on Ω , Γ and

C such that
‖q‖

H
1
2 (Ω+∪Ω−)

≤ C‖θc,h‖L2(C ). (49)
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2. The regularity (49) of q and Hypothesis 3 allow to define qh = Rh(q). As ∇ · q is
constant in each subdomain, and Qh contains at least the constant functions, the
first part of (45) implies trivially that ∇ · Rh(q) = ∇ · q. Thus

‖Rh(q)‖Z ≤ ‖Rh(q) − q‖Z + ‖q‖Z ≤ ‖Rh(q) − q‖L2(Ω+) + ‖q‖Z.

In view of the first part of (46) with s = 1
2 , and (49),

‖Rh(q) − q‖L2(Ω+) ≤ C1h
1
2 |q|

H
1
2 (Ω+)

≤ C2C1h
1
2 ‖θc,h‖L2(C ),

where C1 and C2 are the constants of (46) and (49) respectively. Similarly,

‖q‖Z ≤
(
‖q‖2L2(Ω) + |C |

|Ω+|‖θc,h‖
2
L2(C )

) 1
2 ≤

(
C2
3 + |C |

|Ω+|
) 1

2 ‖θc,h‖L2(C ),

where C3 is the constant of (48). Combining these two inequalities, we have, on
one hand,

‖Rh(q)‖Z ≤ C4‖θc,h‖L2(C ). (50)

On the other hand, the second part of (45) yields for all e in C

(
θc,h, [Rh(q)]C · n+)

e = 〈θc,h, [q]C · n+〉e = (
θc,h, θc,h

)
e = ‖θc,h‖2L2(e). (51)

Then (50) and (51) imply

1

‖Rh(q)‖Z
(
θc,h, [Rh(q)]C · n+)

C
≥ 1

C4
‖θc,h‖L2(C ),

whence (47) with β∗
1 = 1

C4
. �

Then we have the analogue of Corollary 1 with the same proof. The operator B is
replaced by Bh defined on Zh as

∀θc,h ∈ ΘC ,h, 〈Bhqh, θc,h〉 = (
θc,h, [qh]C · n+)

C
.

The operator Bh is linear and since we are in finite dimension where all norms are
equivalent, Bh is continuous on Zh (albeit the continuity constant is not expected to
be bounded as h tends to zero). The kernel of Bh in Zh is:

Ker(Bh) = {qh ∈ Zh ; ∀θc,h ∈ ΘC ,h,
(
θc,h, [qh]C · n+)

C
= 0}.

Corollary 3 Let zh ∈ Zh and ph ∈ Qh be such that

∀qh ∈ Ker(Bh), (ph,∇ · qh) − (
K−1zh, qh

) + (∇(ρ f,rgη), qh) = 0.
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Then there exists a unique pc,h ∈ ΘC ,h such that pc,h, ph, and zh satisfy (P3.7), and

‖pc,h‖L2(C ) ≤ 1

β∗
1

((‖ph‖2L2(Ω) + |ρ f,rgη|2H 1(Ω\C )

) 1
2 + ‖K−1zh‖L2(Ω\C )

)
,

where β∗
1 is the constant of (47).

5.6 Error Estimates

Here we assume that the solution and data are sufficiently smooth in time and space,
as needed. It is convenient to split the scheme’s error into a time consistency error
and a spatial discretization error.

5.6.1 Time Consistency Error

The time consistency error measures the difference between the divided difference in
time and the time derivative. More precisely, for θh ∈ Qh and θc,h ∈ ΘC ,h, we define

En(θh, θc,h) =
(

1

M
+ c f ϕ0

)(
1

Δ t
δp(tn) − p′(tn), θh

)

+
(

α∇ ·
(

1

Δ t
δu(tn) − u′(tn)

)
, θh

)
−

([
1

Δ t
δu(tn) − u′(tn)

]

C

· n+, θc,h

)

C

.

(52)

In view of the Taylor expansion valid for all functions v in W 2,1(tn−1, tn):

1

Δ t
δv(tn) = v′(tn) − 1

Δ t

∫ tn

tn−1

(s − tn−1)v
′′(s)ds,

the expression for En(θh, θc,h) becomes:

En(θh, θc,h) = −
(

1

M
+ c f ϕ0

)
1

Δ t

(∫ tn

tn−1

(s − tn−1)p
′′(s)ds, θh

)

− α

Δ t

(∫ tn

tn−1

(s − tn−1)∇ · u′′(s)ds, θh
)

+ 1

Δ t

(∫ tn

tn−1

(s − tn−1)([u′′(s)]C · n+)ds, θc,h

)

C

.
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5.6.2 Full Discretization Error

Formulas (52), (P3.5), and (P3.6) lead to the following error equality:

1

Δ t

((
1

M
+ c f ϕ0

)
δ(pnh − p(tn)) + α∇ · δ(unh − u(tn)), θh

)

− 1

Δ t

([δ(unh − u(tn))]C · n+, θc,h
)
C

+ 1

μ f

(∇ · (znh−z(tn)), θh
)

+ 1

12μ f

〈∇ · ((wn)
3
2 (ζ n

h − ζ (tn))), θc,h
〉
C

− 1

μ f
〈[znh − z(tn)]C · n+, θc,h〉C

= −En(θh, θc,h).

In addition to rh, Rh, and rC ,h, we need an approximation operator from V into
Vh, such as a Scott–Zhang approximation operator [25] or a Lagrange interpolation
operator [9], and an approximation operator RC ,h from ZC ∩ Hs(C )d−1 into ZC ,h

for some s > 0. Then by adding and subtracting Ih(u), rh(p), rC ,h(pc), Rh(z), and
RC ,h(ζ ), and by denoting the discretization errors and interpolation errors, respec-
tively, by

enp = pnh − rh(p(tn)), enc,p = pnc,h − rC ,h(pc(tn)), enu = unh − Ih(u(tn)),
enz = znh − Rh(z(tn)), enζ = ζ n

h − RC ,h(ζ (tn)),
anp = rh(p(tn)) − p(tn), anc,p = rC ,h(pc(tn)) − pc(tn), anu = Ih(u(tn)) − u(tn),

anz = Rh(z(tn)) − z(tn), anζ = RC ,h(ζ (tn)) − ζ (tn),

we derive the pressure error equation for any θh ∈ Qh and θc,h ∈ ΘC ,h:

(
1
M + c f ϕ0

)
1

Δ t

(
δ(enp), θh

) + α
Δ t

(∇ · δ(enu), θh
)

+ 1
μ f

(∇ · enz , θh
) − 1

Δ t

([δ(enu)]C · n+, θc,h
)
C

+ 1
12μ f

(∇ · ((wn)
3
2 enζ ), θc,h

)
C

− 1
μ f

([enz ]C · n+, θc,h
)
C

= − (
1
M + c f ϕ0

)
1

Δ t

(
δ(anp), θh

) − α
Δ t

(∇ · δ(anu), θh
)

− 1
μ f

(∇ · anz , θh
) + 1

Δ t

([δ(anu)]C · n+, θc,h
)
C

− 1
12μ f

〈∇ · ((wn)
3
2 anζ ), θc,h〉C + 1

μ f
〈[anz ]C · n+, θc,h〉C − En(θh, θc,h).

(53)

Note that the above right-hand side simplifies because both
(∇ · anz , θh

)
and 〈[anz ]C ·

n+, θc,h〉C vanish owing to (45). Likewise, the poro-elastic displacement error equa-
tions are, for all vh ∈ Vh:

2G
(
ε(enu), ε(vh)

) + λ
(∇ · enu,∇ · vh

) − α
(
enp,∇ · vh) + (

enc,p, [vh]C · n+)
C

= −2G
(
ε(anu), ε(vh)

) − λ
(∇ · anu,∇ · vh

) + α
(
anp,∇ · vh

) − (
anc,p, [vh]C · n+)

C
.

(54)
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The fluid velocity error equations in the reservoir reduce to

∀qh ∈ Zh,
(
K−1enz , qh

) − (
enp,∇ · qh

) + (
enc,p, [qh]C · n+)

C
= −(

K−1anz , qh
)
,

(55)

because the choice of rh and rC ,h (local L2 projections) and the compatibility between
the spaces imply that

(
anp,∇ · qh

) = 0 ,
(
anc,p, [qh]C · n+)

C
= 0.

In the fracture, the fluid velocity error equations read

∀qc,h ∈ ZC ,h,
(
enζ , qc,h

)
C

−(
enc,p,∇ · ((wn)

3
2 qc,h)

)
C

= −(
anζ , qc,h

)
C

+ (
anc,p,∇ · ((wn)

3
2 qc,h)

)
C

. (56)

On one hand, (55) and the inf-sup condition (47) imply the estimate

‖enc,p‖L2(C ) ≤ 1

β
1

En
p,z, (57)

where

En
p,z = (‖enp‖2L2(Ω\C ) + ‖K−1enz‖2L2(Ω\C )

) 1
2 + ‖K−1anz ‖L2(Ω\C ). (58)

On the other hand, by testing (53) with θh = enp and θc,h = enc,p, (54) with vh =
δ(enu), (55) with qh = enz , and (56) with qc,h = enζ , multiplying everything byΔ t, and
summing the resulting equations, we derive:

1

2

(
1

M
+ c f ϕ0

)(
δ
(‖enp‖2L2(Ω)

) + ‖δenp‖2L2(Ω)

)

+ G
(
δ
(‖ε(enu)‖2L2(Ω\C )

) + ‖ε(δenu)‖2L2(Ω\C )

)

+ λ

2

(
δ
(‖∇ · enu‖2L2(Ω\C )

) + ‖∇ · δenu‖2L2(Ω\C )

)

+ Δ t

μ f
‖K− 1

2 enz‖2L2(Ω\C ) + Δ t

12μ f
‖enζ ‖2L2(C )

= −Δ t En(e
n
p,e

n
c,p) − An

u,p − An
u + An

δ,u + Δ t

μ f

(
− An

p,z,ζ − An
z,ζ + 1

12
An

ζ

)
,



210 V. Girault et al.

where

An
u,p =

(
1

M
+ c f ϕ0

) (
δ(anp), e

n
p

) + α
(∇ · δ(anu), e

n
p

)
,

An
p,z,ζ = (

K−1anz , e
n
z

) + 1

12

(
anζ , e

n
ζ

)
,

An
u = 2G

(
ε(anu), ε(δ(enu))

) + λ
(∇ · anu,∇ · (δenu)

)

− α
(
anp,∇ · δ(enu)

) + (
anc,p, [δ(enu)]C · n+)

C
,

An
δ,u = (

enc,p, [δ(anu)]C · n+)
C

,

An
z,ζ = 1

12
〈∇ · ((wn)

3
2 anζ

)
, enc,p〉C ,

An
ζ = (∇ · ((wn)

3
2 enζ

)
, anc,p

)
C

.

Therefore, we must derive bounds for these six quantities. First, An
p,z,ζ has a straight-

forward bound:

Δ t

μ f
|An

p,z,ζ | ≤ Δ t

μ f

[
‖K− 1

2 enz‖L2(Ω\C )‖K− 1
2 anz ‖L2(Ω\C ) + 1

12
‖enζ ‖L2(C )‖anζ ‖L2(C )

]
.

Next, considering that for example

‖δ(rh(p(tn)) − p(tn))‖L2(Ω) ≤ √
Δ t‖rh(p′) − p′‖L2(Ω×]tn−1,tn[),

we find a straightforward bound for An
u,p:

|An
u,p| ≤ √

Δ t‖enp‖L2(Ω)

[(
1

M
+ c f ϕ0

)
‖rh(p′) − p′‖L2(Ω×]tn−1,tn[)

+ α‖∇ · (Ih(u′) − u′)‖L2((Ω\C )×]tn−1,tn[)
]
.

Similarly, applying (57), the trace inequality (44), and (58), An
δ,u is bounded by

|An
δ,u| ≤

√
Δ t

β
1

C
[(‖enp‖2L2(Ω\C )+‖K−1enz‖2L2(Ω\C )

) 1
2

+ ‖K−1anz ‖L2(Ω\C )

]
‖Ih(u′) − u′‖L2(tn−1,tn;V),

with the constant C of (44). Now we proceed with An
u. As it involves factors of the

form δ(enu) that cannot be absorbed by the left-hand side, and considering that the
whole expression needs to be summed over n, we use a summation by parts that
switches the difference to the first factor:

n∑

m=1

am(δbm) = −
n−1∑

m=1

(δam+1)bm + anbn − a1b0.
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This gives

∣∣
∣∣∣

n∑

m=1

Am
u

∣∣
∣∣∣
≤

n−1∑

m=1

[
2G‖ε(δ(am+1

u ))‖L2(Ω\C )‖ε(emu )‖L2(Ω\C )

+ λ‖∇ · δ(am+1
u )‖L2(Ω\C )‖∇ · emu ‖L2(Ω\C )

+ α‖δ(am+1
p )‖L2(Ω\C )‖∇ · emu ‖L2(Ω\C ) + C‖δ(am+1

c,p )‖L2(C )‖emu ‖V
]

+ 2G‖ε(anu)‖L2(Ω\C )‖ε(enu)‖L2(Ω\C ) + λ‖∇ · anu‖L2(Ω\C )‖∇ · enu‖L2(Ω\C )

+ α‖anp‖L2(Ω\C )‖∇ · enu‖L2(Ω\C ) + C‖anc,p‖L2(C )‖enu‖V
+ 2G‖ε(a1u)‖L2(Ω\C )‖ε(e0u)‖L2(Ω\C ) + λ‖∇ · a1u‖L2(Ω\C )‖∇ · e0u‖L2(Ω\C )

+ α‖a1p‖L2(Ω\C )‖∇ · e0u‖L2(Ω\C ) + C‖a1c,p‖L2(C )‖e0u‖V.

There remains to examine An
z,ζ and An

ζ . Let us start with An
ζ ; it involves a factor that

cannot be absorbed by the left-hand side. We cannot use directly the compatibility
properties of the spaces on C and the projection properties because of the variable
factor (wn)

3
2 . By expanding the divergence, we write

An
ζ = (

(wn)
3
2 ∇ · enζ , anc,p

)
C

+ (∇ (wn)
3
2 · enζ , anc,p

)
C

. (59)

Now, let π0(wn)
3
2 denote the average of (wn)

3
2 in each e:

π0(w
n)

3
2 = 1

|e|
∫

e
(wn)

3
2 .

Then the projection property of rC ,h and the fact that π0(wn)
3
2 is a constant in each

e yield

(
(wn)

3
2 ∇ · enζ , anc,p

)
C = (∇ · enζ ,

(
(wn)

3
2 − π0(w

n)
3
2
)
anc,p

)
C + (∇ · enζ , π0(w

n)
3
2 anc,p

)
C

= (∇ · enζ ,
(
(wn)

3
2 − π0(w

n)
3
2
)
anc,p

)
C .

Moreover,

‖(wn)
3
2 − π0(w

n)
3
2 ‖L4(e) ≤ Che‖∇((wn)

3
2 )‖L4(e).

Therefore, by applying a local inverse inequality in each e, we deduce that

∣∣(∇ · enζ ,
(
(wn)

3
2 − π0(w

n)
3
2
)
anc,p

)
e

∣∣ ≤ C‖∇((wn)
3
2 )‖L4(e)‖enζ ‖L2(e)‖anc,p‖L4(e).
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Hence summing over all e in Ch, we obtain

∣∣(∇ · enζ ,
(
(wn)

3
2 − π0(w

n)
3
2
)
anc,p

)
C

∣∣ ≤ C‖∇((wn)
3
2 )‖L4(C )‖enζ ‖L2(C )‖anc,p‖L4(C ),

where the first factor is bounded in view of (17). We can easily check that the second
term in (59) has the same bound. Therefore

Δ t

12μ f
|An

ζ | ≤ Δ t

12μ f
C|(wn)

3
2 |W 1,4(C )‖enζ ‖L2(C )‖anc,p‖L4(C ).

A similar argument can be applied to An
z,ζ . Indeed, considering the compatibility of

the finite element spaces on C , we have:

(∇ · anζ , π0(w
n)

3
2 enc,p

)
C

= 0.

Therefore, by writing

An
z,ζ = 1

12

[(
(wn)

3
2 − π0(w

n)
3
2 )∇ · anζ , enc,p

)
C

+ (∇((wn)
3
2 ) · anζ , enc,p

)
C

]
,

we obtain

∣∣An
z,ζ | ≤ 1

12
‖enc,p‖L2(C )|(wn)

3
2 |W 1,4(C )

(
‖anζ ‖L4(C ) + Ch‖∇ · anζ‖L4(C )

)
.

Then by substituting (57) and (58) in the above inequality, we derive

Δ t

μ f
|An

z,ζ | ≤ Δ t

μ f

1

12β
1

[(‖enp‖2L2(Ω\C ) + ‖K−1enz‖2L2(Ω\C )

) 1
2 + ‖K−1anz ‖L2(Ω\C )

]

×|(wn)
3
2 |W 1,4(C )

(
‖anζ ‖L4(C ) + Ch‖∇ · anζ‖L4(C )

)
.

The next theorem collects these results and concludes with a basic error bound.
The proof is skipped, as it is a straightforward consequence of repeated applications
of Young’s inequality with suitable coefficients and a discrete Gronwall’s Lemma.

Theorem 6 Let the data f , q̃, q̃W and p(0) be sufficiently smooth and let Hypotheses
1 and 3 hold. Suppose that problem (P2.1)–(P2.5) and (16) has a sufficiently smooth
solution. Then the sequence of solutions (unh, p

n
h, p

n
c,h, z

n
h, ζ

n
h) of (P3.4)–(P3.8) with

starting values (p0h, p
0
c,h,u

0
h, z

0
h, ζ

0
h), u

0
h, z

0
h, ζ

0
h being computed respectively by (P3.1),

(P3.2), (P3.3), satisfies the following error bounds for any integer n, 1 ≤ n ≤ N:
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(
1

M
+ c f ϕ0

)(

‖enp‖2L2(Ω) +
n∑

m=1

‖δemp ‖2L2(Ω)

)

+ 2G

(

‖ε(enu)‖2L2(Ω\C ) +
n∑

m=1

‖ε(δemu )‖2L2(Ω\C )

)

+ λ

(

‖∇ · enu‖2L2(Ω\C ) +
n∑

m=1

‖∇ · δemu ‖2L2(Ω\C )

)

+ 1

μ f

n∑

m=1

Δ t

(
‖K− 1

2 emz ‖2L2(Ω\C ) + 1

12
‖emζ ‖2L2(C )

)

≤ C
[
(Δ t)2

(‖p′′‖2L2(Ω×]0,tn[) + ‖u′′‖2L2(0,tn;V)

) + ‖e0u‖2V
+ ‖Ih(u) − u‖2H 1(0,tn;V) + ‖rh(p) − p‖2H 1(0,tn;L2(Ω\C ))

+ ‖rC ,h(pc) − pc‖2H 1(0,tn;L2(C )) + ‖Rh(z) − z‖2C 0(0,tn;L2(Ω\C )d )

+ ‖w 3
2 ‖C 0(0,tn;W 1,4(C ))

(‖rC ,h(pc) − pc‖2C 0(0,tn;L4(C ))

+ ‖RC ,h(ζ ) − ζ‖2C 0(0,tn;L4(C )d−1)
+ h‖∇ · (RC ,h(ζ ) − ζ )‖2C 0(0,tn;L4(C ))

)]
exp(tn),

with a constant C independent of n, h, and Δt, and

n∑

m=1

Δt‖emc,p‖2L2(C ) ≤ 2

(β
1)

2

n∑

m=1

Δt
(
‖emp ‖2L2(Ω) + ‖K−1emz ‖2L2(Ω\C )

+ ‖K−1(Rh(z(tm)) − z(tm))‖2L2(Ω\C )

)
,

with the constant β
1 of (47).

Remark 3 Further error bounds, in the spirit of the estimates derived in Sect. 4.2,
are more delicate. On one hand, Hypothesis 2 is quite restrictive, and, on the other
hand, the choice of the fracture’s discrete spaces in (P3.1)–(P3.8) is not consistent
with the theoretical setting because the relevant space for the fracture’s pressure pc
should be H

1
2 (C ) instead of L2(C ). We use L2 pressures because they are locally

mass conservative and by taking advantage of the finite dimension, they lead to the
basic estimates of Sect. 5.6, but it is not clear that they lead to additional satisfactory
estimates and in particular to a useful bound for the discrete leakage term. If we
want complete estimates, we can modify the scheme so that it matches the setting
of (P2.1)–(P2.5), and in particular uses continuous pressures in the fracture. For
instance, we can choose

ΘC ,h = {
q ∈ C 0(C ) | q|S i ∈ ΘS i,h, 1 ≤ i ≤ I

}
,

with
ΘS ,h =

{
q ∈ C 0(S ) | q|e ↔ q̂, q̂ ∈ Θ̂C (ê), ∀e ∈ TS ,h

}
,
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without changing the other spaces. We can prove that pc,h satisfies an inf-sup con-
dition in H

1
2 (C ) by exploiting the fact that if the functions of ΘC ,h are continuous

and piecewise polynomials, then they belong to H 1(C ). The proof is more complex
than that of Lemma 2, but it still requires (46). This hypothesis holds if we raise the
degree of the polynomials, which may not be desirable. �

6 Fixed Stress Splitting

We shall use the following fixed stress splitting algorithm for decoupling the compu-
tation of the mechanics from that of the flow. To simplify, we describe it at the exact
level and we denote the time derivative by ∂t . It proceeds in two steps. First the flow
problem in the reservoir and fracture is solved in a monolithic manner:

Step a. Given un, we solve for pn+1, zn+1, pn+1
c , ζ n+1 such that

(
1

M
+ c f ϕ0 + α2

λ

)
∂tp

n+1 + 1

μ f
∇ · zn+1 = α2

λ
∂tp

n − α∇ · ∂tun + q̃ in Ω \ C , (60)

zn+1 = −K∇(
pn+1 − ρ f,rgη

)
,

γc∂tp
n+1
c + ∂tw

n + 1

12μ f
∇ · ((wn)

3
2 ζ n+1) = γc∂tp

n
c + q̃W + 1

μ f
[zn+1]C · n+ in C ,

(61)

ζ n+1 = − (wn)
3
2 ∇(

pn+1
c − ρ f,rgη

)
,

wn = −[un]C · n+.

Once the flow is computed, we update the displacement solution.
Step b. Given pn+1, zn+1, pn+1

c , ζ n+1, we solve for un+1 satisfying

− div σ por(un+1, pn+1) = f in Ω \ C , (62)

(σ por(un+1, pn+1))n = −pn+1
c n,  = +,− on C , (63)

where
σ por(un+1, pn+1) = σ (un+1) − α pn+1 I in Ω \ C .

The stabilizing terms α2

λ
∂tpn+1 and γc∂tpn+1

c are added to the left-hand sides of (60)
and (61) respectively, with similar terms on the right-hand sides of the equations for
the sake of consistency. The first term is a standard addition in fixed stress splitting,
see [23]. Motivated by this, we add a similar term to the fracture equation with an
adjustable coefficient γc.

The following definition of the volumetric mean stress:

σv = σv,0 + λ∇ · u − α(p − p0),

where σv,0 denotes the initial volumetric stress, justifies the name of the algorithm.
Indeed, as σv,0 and p0 are constant in time, we have
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− α

λ
∂tσ

n
v = α2

λ
∂tp

n − α∇ · ∂tun, (64)

and we recognize the first two terms in the right-hand side of (60).
The variational form of the algorithm reads as follows:

Step a. Findpn+1 ∈ L∞(0,T ;L2(Ω)),pn+1
c ∈ L2(0,T ;H 1

2 (C )), zn+1 ∈ L2(0,T ;Z),
and ζ n+1 ∈ L2(0,T ;ZC ) such that for all t ∈ ]0,T [

∀θ ∈ L2(Ω),
((

1
M + c f ϕ0 + α2

λ

)
∂tpn+1, θ

)
+ 1

μ f

(∇ · zn+1, θ
)

=
(

− α
λ
∂tσ

n
v , θ

)
+ (

q̃, θ
)
,

∀θc ∈ H
1
2 (C ), γc

(
∂tpn+1

c , θc
)
C

+ 1
12μ f

(∇ · ((wn)
3
2 ζ n+1), θc

)
C

− 1
μ f

([zn+1]C · n+, θc
)
C

=
(
γc∂tpnc , θc

)

C
+ (

∂t[un]C · n+, θc
)
C

+ (
q̃W , θc

)
C

,

∀q ∈ Z,
(
K−1zn+1, q

) = (pn+1,∇ · q) − (
pn+1
c , [q]C · n+)

C
+ (∇(ρ f,rgη), q),

∀qc ∈ ZC ,
(
ζ n+1, qc

)
C

= (
pn+1
c ,∇ · ((wn)

3
2 qc)

)
C

+ (
(wn)

3
2 ∇(ρ f,rgη), qc

)
C

,

(65)

with the initial condition, independent of n,

pn+1(0) = p0 , pn+1
c (0) = p0|C .

Step b. Given pn+1, zn+1, pn+1
c , ζ n+1, find un+1 ∈ L∞(0,T ;V) such that for all t ∈

]0,T [,

∀v ∈ V, 2G
(
ε(un+1), ε(v)

) + λ
(∇ · un+1,∇ · v) − α

(
pn+1,∇ · v)

+ (
pn+1
c , [v]C · n+)

C
= (

f , v
)
. (66)

We have seen that (66) defines un+1(0) in terms of p0 and p0c , and in turn w
n+1(0) =

−[un+1(0)]C · n+, all quantities being independent of n. To begin the iteration, for
n = 0, we assign as initial condition p0 = p0, p0c = p0|C , u0 is computed from p0

and p0c by (P2.1) at time t = 0, and w0 = −[u0]C · n+. More specific details can be
found in Ganis et al. [13].

Notice that in (65), the right-hand side has been re-written in terms of the volumet-
ric mean total stress as defined in (64). As such, the convergence of this algorithm
is an open problem. With a suitable choice of parameter γc in terms of the mate-
rial parameters, constants of the trace and the Korn’s inequalities, convergence of a
simplified version is established in Girault et al. [14].

A flowchart for a fixed stress splitting scheme is provided in Fig. 2. Here we iterate
between the flow solution assuming a fixed stress field and the mechanics solution
assuming fixed pressure and saturation fields. For mechanics we apply a Galerkin
finite element with continuous piecewise linears and for flow a mixed finite element
(MFMFE) is used as described in Sect. 5.3. The simulations were performed using
the coupled flow and geomechanics reservoir simulator IPARS (Integrated Parallel
Accurate Reservoir Simulator). IPARS is capable of handling complex subsurface
flow descriptions such as two-phase, black oil and compositional flow along with
chemical equilibrium and kinetic type reactions.
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Fig. 2 Flowchart for
iteratively coupled flow and
poroelasticity in IPARS

7 Numerical Results

In this numerical experiment, we show the stress and displacement fields in a poroe-
lastic domain with two orthogonal fractures. Figure3 shows a schematic of the prob-
lem along with boundary conditions and location of the fractures. A square domain
Ω = (0, 250 ft) × (0, 250 ft) is considered with two orthogonal fractures along the
axes {y = 125} ft and {z = 150} ft, each 50 ft in length with one end point at (125,
62.5 ft) and (100, 150 ft), respectively. A no flow (z = 0) boundary condition is spec-
ified on all the edges allowing the pressure in the domain to rise with time. A zero
displacement (u = 0) boundary condition is specified for the left and bottom edges
whereas normal stresses (σ porn) of (−6300, 0) psi and (−6400, 0) psi are specified
at the right and top edges, respectively as shown in Fig. 3. Further, an initial condition
of 500 psi for pressure is specified both in the poroelastic domain (Ω) and on the
fracture (C ). Fluid is injected into the middle of each fracture at 5000 psi.

Fig. 3 Problem schematic
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Fig. 4 Pressure profiles at T = 0.0, 0.05 and 0.1 day
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Fig. 8 Z-direction displacement profiles at T = 0.0, 0.05 and 0.1 day

A homogeneous porosity value of 0.2 and homogeneous and isotropic permeabil-
ity tensor of 50 mD is assumed. The fluid is assumed to be slightly compressible with
density 62.4 lbm/ft3 and compressibility 1 × 10−6 psi−1. The Young’s modulus and
Poisson’s ratio of the poroelastic medium are 7.3 × 106 psi and 0.2, respectively.

The domain is discretized into 80 × 80 structured hexahedral elements with a
uniform mesh width of 3.125 ft in both y and z directions. Figures4, 5, 6, 7 and 8
show the pressure, stress and displacement profiles in y and z directions, respectively,
at T = 0.0, 0.05 and 0.1 days.
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23. Mikelić A, Wheeler MF (2013) Convergence of iterative coupling for coupled flow and ge-
omechanics. Comput Geosci 17(3):455–461

24. Phillips PJ, Wheeler MF (2007) A coupling of mixed and continuous Galerkin finite element
methods for poroelasticity. I. The continuous in time case. Comput Geosci 11(2):131–144

25. Scott LR, Zhang S (1990) Finite element interpolation of nonsmooth functions satisfying
boundary conditions. Math Comp 54(190):483–493

26. Showalter RE (2000) Diffusion in poro-elastic media. J Math Anal Appl 251(1):310–340
27. Wheeler MF, Xue G, Yotov I (2014) Coupling multipoint flux mixed finite element methods

with continuous Galerkin methods for poroelasticity. Comput Geosci 18(1):57–75
28. Witherspoon PA, Wang JSY, Iwai K, Gale JE (1980) Validity of cubic law for fluid flow in a

deformable rock fracture. Water Resour Res 16(6):1016–1024



Two Decades of Wave-Like Equation
for the Numerical Simulation
of Incompressible Viscous Flow:
A Review

Roland Glowinski and Tsorng-Whay Pan

Abstract A wave-like equation based method for the numerical solution of the
Navier-Stokes equations modeling incompressible viscous flow was introduced
nearly twenty years ago. From its inception to nowadays it has been applied suc-
cessfully to the numerical solution of two and three dimensional flow problems for
incompressible Newtonian and non-Newtonian viscous fluids, in flow regions with
fixed or moving boundaries. The main goals of this article are: (i) To recall the
foundations of the wave-like equation methodology, and (ii) to review some typical
viscous flow problems where it has been applied successfully.

Keywords Incompressible viscous flow · Operator splitting time discretization
schemes · Wave-like equation method for the numerical treatment of the advection
step · Finite element approximations

1 Introduction

Some time ago, the authors of this article were asked to contribute to a volume ded-
icated to their colleagues and friendsW. Fitzgibbon, Y. Kuznetsov and O. Pironneau
on the occasion of their 70th anniversary. The authors decided to take advantage of
this special volume to celebrate another anniversary: Indeed, nearly twenty years
ago, they dropped the nonlinear least-squares methodology they have been using
for years for the numerical treatment of the advection operator, encountered in the
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Navier-Stokes equationsmodelling incompressible viscous flow, and started employ-
ing systematically a novel methodology based on a wave-like equation modelling
of the advection. From then to now, the wave-like equation method has been suc-
cessfully applied, by the authors and other people, to the numerical simulation of a
rather large variety of incompressible viscous flows, justifying in the authors opinion
a relatively detailed dedicated review publication. The content of this article is as
follows: In Sect. 2, we will describe the wave-like equation method when applied
to the numerical solution of the Navier-Stokes equations modelling incompressible
viscous flow, and take advantage of this section to provide related references. In
Sects. 3–5 we will describe and comment on several successful applications of the
wave-like equation based methodology; they concern Newtonian, visco-elastic and
particulate viscous flows.

2 The Wave-Like Equation Method for the Incompressible
Navier-Stokes Equations

Our starting point will be the Navier-Stokes equations modeling the flow of incom-
pressible Newtonian viscous fluids, namely

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ρ

[
∂u
∂t

+ (u · ∇)u
]

− μ∇2u + ∇p = f in Ω × (0,T ),

∇ · u = 0 in Ω × (0,T ),

u(0) = u0 with ∇ · u0 = 0,

u = uB on Γ × (0,T ) with
∫

Γ

uB(t) · n dΓ = 0 on (0,T ),

(1)

where:

• Ω (a sub-domain of Rd , d = 2 or 3) is the flow region, and 0 < T ≤ +∞. We
denote by Γ the boundary of Ω .

• u (resp., p) denotes the flow velocity (resp., pressure), and f a density of external
forces.

• ρ and μ are both > 0, and denote the fluid density and viscosity, respectively.
• φ(t) denotes the function x → φ(x, t) (with x = {xi}di=1).• n denotes the unit outward normal vector at Γ .

The numerical solution of problem (1) has generated a most abundant literature (see,
in particular, the related references provided by Google Scholar). Among the many
methods for the numerical solution of (1), wewill single out those based on operator-
splitting. Applying the Lie scheme (see, e.g., [20, 21, 25] for a general discussion of
that scheme), we obtain (among other possibilities) the following time-discretization
of problem (1) (with�t(>0) a time-discretization step and tn = n�t):

u0 = u0. (2)
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For n ≥ 0, un → {un+1/2, pn+1} → un+1 via the solution of

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ρ
un+1/2 − un

�t
− μ∇2un+1/2 + ∇pn+1 = fn+1 inΩ,

∇ · un+1/2 = 0 inΩ,

un+1/2 = uB(tn+1) onΓ,

(3)

and

⎧
⎪⎪⎨

⎪⎪⎩

∂w
∂t

+ (un+1/2 · ∇)w = 0 inΩ × (tn, tn+1),

w(tn) = un+1/2,

w(t) = un+1/2(= uB(tn+1)) onΓ n+1
− × (tn, tn+1),

(4.1)

un+1 = w(tn+1), (4.2)

with Γ n+1
− = {x | x ∈ Γ,uB(x, tn+1) · n(x) < 0}.

Remark 1 The time discretization of problem (1) by the Strang symmetrized scheme
(a more sophisticated variant of the Lie scheme) is discussed in [12, 20] (see also the
references therein). �

The solution of the (generalized) Stokes problem (3) being a well-documented
(and different) issue (see, e.g., [3, 20]), we will focus on the most controversial part
of scheme (2)–(4), namely the solution of the initial value problem (4.1). One can
easily show that in (4.1), each component ofw is solution of an initial-boundary value
problem of the following type:

⎧
⎪⎪⎨

⎪⎪⎩

∂φ

∂t
+ V · ∇φ = 0 inΩ × (t0, tf ),

φ(t0) = φ0,

φ = g onΓ− × (t0, tf ),

(5)

where ∂V
∂t = 0,∇ · V = 0, ∂g

∂t = 0, andΓ− = {x | x ∈ Γ, V(x) · n(x) < 0}.
The solution of first order problems such as (5) hasmotivated a very large literature

(see, e.g., [28] and the references therein). It seems thus that one has abundance of
methods to solve the problem (5); this is definitely true, but things get complicated
if one wishes to solve problem (4.1) using the same finite element velocity spaces
that one employs for the solution of the problem (3). A conceptually elegant way to
achieve that goal is to use the backward method of characteristics as done in, e.g.,
[52, 57, 58] via the so-called Lagrange-Galerkin methodology. Albeit conceptually
simple the practical implementation of the Lagrange-Galerkin methods requires a lot
of ‘savoir faire’ (see [58] for an evidence of the above statement). Fortunately, there
exists a very simple alternative to the method of characteristics, based on a wave-like
equation reformulation of the problem (5). We personally encountered this approach
when investigating the wavelet solution (see [24]) of



224 R. Glowinski and T.-W. Pan

⎧
⎪⎪⎨

⎪⎪⎩

∂u

∂t
+ a

∂u

∂x
= 0 in (0,L) × (0,T ),

u(0) = u0,

u(0, t) = g(t), t ∈ (0,T ),

(6)

with: 0 < L < +∞, a a positive number, and 0 < T ≤ +∞. If the functions u0 and g
are smooth enough, one can easily show (by time differentiation of the first equation
in (6); see [12, 20] for details) that problem (6) has a unique solution which is also the
unique solution of the following (genuine) wave equation problem:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂2u

∂t2
− a2

∂2u

∂x2
= 0 in (0,L) × (0,T ),

u(0) = u0,
∂u

∂t
(0) = −a

∂u0
∂x

,

u(0, t) = g(t),
∂u

∂t
(L, t) + a

∂u

∂x
(L, t) = 0, t ∈ (0,T );

(7)

the boundary condition at x = L can be viewed as a radiation condition. Assuming
that u is smooth enough, problem (7) has the following variational formulation:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

u(t) ∈ H 1(0,L), u(0, t) = g(t), t ∈ (0,T ),
∫ L

0

∂2u

∂t2
v dx + a2

∫ L

0

∂u

∂x
(t)

∂v
∂x

dx + a
∂u

∂t
(L, t)v(L) = 0,

∀v ∈ V0, t ∈ (0,T ),

u(0) = u0,
∂u

∂t
(0) = −a

∂u0
∂x

,

(8)

withV0 = {v | v ∈ H 1(0,L), v(0) = 0}. Thanks to variational formulation (8), prob-
lem (7), and therefore problem (6), can be solved by finite element methods of the
Lagrange-Galerkin type (including those based on the Courant element, that is piece-
wise affine, globally continuous approximations) or (as done in [24]) by wavelet-
Galerkinmethods.

Remark 2 The approach we just advocated for the solution contradicts the popular
approach which consists in writing second order in time differential equations as
systems of first order ones. �

Actually, the strategywe just described for problem (6) can be easily generalized to
problem (5) by observing that the properties ∇ · V = 0 and ∂V

∂t = 0 imply that, after
time differentiation, any smooth solution of problem (5) is solution of

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂2φ

∂t2
− ∇ · ((V · ∇φ)V) = 0, inΩ × (t0, tf ),

φ(t0) = φ0,
∂φ

∂t
(t0) = −V · ∇φ0,

φ = g onΓ− × (t0, tf ), (V · n)

(
∂φ

∂t
+ V · ∇φ

)

= 0 onΓ \ Γ− × (t0, tf ),

(9)



Two Decades of Wave-Like Equation for the Numerical . . . 225

a wave-like equation problem associated with the hypo-elliptic operator

φ → −∇ · ((V · ∇φ)V).

Let us define the space V0 by

V0 = {θ | θ ∈ H 1(Ω), θ = 0 onΓ−};

assumingthatproblem(9)hasasmoothenoughsolution,usingthedivergencetheorem,
one can easily show that the above problem has the following variational formulation
(with dx = dx1 . . . dxd ):

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

φ(t) ∈ H 1(Ω), φ(t)|Γ− = g, t ∈ (t0, tf ),∫

Ω

∂2φ

∂t2
θ dx +

∫

Ω

(V · ∇φ)(V · ∇θ) dx +
∫

Γ \Γ−
V · n∂φ

∂t
θ dΓ = 0,

∀θ ∈ V0, t ∈ (t0, tf ),

φ(t0) = φ0,
∂φ

∂t
(t0) = −V · ∇φ0.

(10)

From (10), one can easily show that if problem (9) has a solution, it is unique. For-
mulation (10) is ideally suited to Lagrange finite element approximations as shown
in, e.g., [12, 20], where it has been (successfully) applied in combination with the
finite element spaces used for the numerical solution of the Stokes-like problem (3).
Concerning the time-discretization of (10), we have been advocating the following
centered scheme (with τ = tf −t0

Q , the integerQ being>1):

φ0 = φ0, φ1 − φ−1 = 2τφ1. (11)

For q = 0, 1, . . . ,Q − 1, {φq−1, φq} → φq+1 as follows:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

φq+1 ∈ H 1(Ω), φq+1|Γ− = g,
∫

Ω

φq+1 + φq−1 − 2φq

τ 2
θ dx +

∫

Ω

(V · ∇φq)(V · ∇θ) dx

+
∫

Γ \Γ−
V · n

(
φq+1 − φq−1

2τ

)

θ dΓ = 0, ∀θ ∈ V0,

(12)

where, in (11), φ1 is solution of the following variational problem:

⎧
⎨

⎩

φ1 ∈ V0,∫

Ω

φ1θ dx = −
∫

Ω

V · ∇φ0θ dx, ∀θ ∈ V0.
(13)
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Strictly speaking, the infinite dimensional variational problems (12) and (13)make no
sense, ingeneral,unlike, fortunately, theirfinitedimensionalanalogues,obtainedfrom
(12) and (13) via appropriate finite element approximations (see [12, 20] for details).

Remark 3 Asexpected, thewave-likeequationmethoddescribedabove isnot a stand-
alone one for the numerical solution of advection problems such (5), as shown by the
numericalexperimentsreportedin[20].Thereasonforthatunfortunatesituationiseasy
tounderstand: thewave-likeequation in (9) isamodel forpropagation inboth theVand
−V directions; with appropriate initial and boundary conditions, there is no ‘signal’
propagatinginthe−Vdirection.Howevertheseidealcircumstancesdonotholdexactly
anymore after space-timediscretization, explaining the existence of a small (if�x and
�t are small) parasitic signal propagating in the−V direction. The good news are that
when using thewave-like equationmethod to solve the incompressibleNavier-Stokes
equations, theadvectionstep (4) iscombinedwith the incompressible-viscousstep (3),
the solver of the problem (3) filtering (at least partially) those unwanted oscillations
generated by the solver of the problem (9), (10).

Remark 4 Whenapplying thewave-like equationmethod to solve the incompressible
Navier equations via the Lie-scheme (2)–(4), we advocate taking τ = �t/Q, with
2 ≤ Q ≤ 5, in the fully discrete analogue of scheme (11), (12).

Remark 5 Tothebestofourknowledge,thewave-likeequationmethodforthesolution
of the incompressible Navier-Stokes equations has been introduced in [10]. Actually,
a related method was introduced in 1979 by Lynch and Gray for the solution of the
shallow water equations [44], the convergence of the method being discussed in [7,
8]. See also [60, 61] for the application of a closely related method to the solution of
multi-dimensional transport problems. �

Since its introduction in 1997 the wave-like equation/operator-splitting method
discussed above has been applied by the authors, their students, post-docs and other
collaborators and scientists to a large variety of viscous-flow problems, some more
complicated than problem (1). Let us mention among others: (i) The numerical sim-
ulation of particulate flow (see, e.g., [20, 26, 31]). (ii) The numerical solution of the
Boussinesq system coupling theNavier-Stokes andheat equations, andmodellingnat-
ural convection [20]. (iii) The simulation of visco-plastic flow [11, 20, 27]. (iv) The
simulation of visco-elastic flow (possiblywith particles) [20, 48, 49]. (v) The solution
of free boundary problems for incompressible viscous flow [22]. (vi) The numerical
solution of the system coupling the Cahn-Hilliard and Navier-Stokes equations and
modelling the flow of multiple immiscible incompressible viscous fluids [30]. The
references in the above publications are also worth consulting.

Other examples and further references will be given in Sects. 3–5.
To conclude this introductory section we cannot resist mentioning the fact that

some of the results from [23], concerning operator-splitting/wave-like equation based
simulations of wall-driven incompressible viscous flows in a semi-circular cavity,
have beenused in [59] to validate aNURBS (forNonUniformRationalBézier Splines)
based Navier-Stokes solver.
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3 On theSimulation of 3-D IncompressibleViscous
Flow in aCubewith aMovingWall

3.1 Generalities

Starting with [18], the wall-driven square cavity flow problem has been for decades
themost popular problemused tovalidate andcompare incompressibleNavier-Stokes
solvers. No surprisingly, it has been used by the two authors and their collaborators to
validate the operator-splitting/wave like equationmethod briefly discussed in Sect. 1,
some of the results of the related simulations being reported in [12, 20]. Actually, one
hasalso reported in ([20],Chap. 9)and[47] the resultsof thesimulationofaNewtonian
incompressible viscous flow in a cubic cavity when one of the walls is sliding; the
maximal Reynolds number (Re) considered in [20, 47] is 103. More recently the
oscillatory instability of cubic lid-driven cavity flows has been studied in [1, 16, 41].
Numerically, FeldmanandGelfgat [16] obtained that the criticalReynolds number for
the transition from a steady flow to an oscillatory one (aHopf bifurcation) is at Recr =
1914. Anupindi et al. [1] reported that the critical Re they observed is Recr = 2300,
which was obtained using regularized boundary condition. Experimentally, Liberzon
et al. [41] reported that the critical Reynolds number is in the range [1700, 1970],
One of our goals in this section is to report on the results we obtained when taking Re
beyond 103, and to identify as accurately as possible the value of Re at which a Hopf
bifurcation does occur.

3.2 NumericalMethods

To speed up the numerical solution of the cubic lid-driven cavity flow problem, we
time-discretized the relatedproblem(1), usinga three stageoperator-splitting scheme,
namely: (i) using a L2-projection Stokes solver à la Uzawa to force the incompress-
ibility condition, (ii) an advection step similar to (4), and (iii) a diffusion step. The
resulting scheme reads as follows:

u0 = u0. (14)

For n ≥ 0, un → {un+1/3, pn+1} → un+2/3 → un+1 via the solution of:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ρ
un+1/3 − un

�t
+ ∇pn+1 = 0 inΩ,

∇ · un+1/3 = 0 inΩ,

un+1/3 · n = 0 onΓ,

(15)
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⎧
⎪⎪⎨

⎪⎪⎩

∂w
∂t

+ (un+1/3 · ∇)w = 0 inΩ × (tn, tn+1),

w(tn) = un+1/3,

w(t) = un+1/3(= uB(tn+1)) onΓ n+1
− × (tn, tn+1),

(16.1)

un+2/3 = w(tn+1), (16.2)

⎧
⎨

⎩

ρ
un+1 − un+2/3

�t
− μ∇2un+1 = fn+1 inΩ,

un+1 = uB(tn+1) onΓ.

(17)

Two simplifications take place for the lid-driven cavity flowproblem considered here:
namely, fn+1 = 0andΓ n+1

− = ∅.For thespacediscretization,wehaveused,as in ([20],
Chap. 5) and [3], a P1-iso-P2 (resp., P1) finite element method for the approximation
of the velocity field (resp., pressure), defined from uniform “tetrahedral” meshes Th

(resp.,T2h).Problem(15) is reminiscentof thoseencounteredwhenapplyingChorin’s
projectionmethod [9].

3.3 NumericalResults

For the lid-driven cavityflowproblem in a cube, consideredhere,we tookΩ = (0, 1)3

as computational domain and defined the Dirichlet data uB by

uB(x) =
{

(1, 0, 0)T on {x | x = (x1, x2, 1)T , 0 < x1, x2 < 1},
0 elsewhere onΓ.

(18)

We considered that the steady state has been reached when the change between two
consecutive time step in the simulation, ‖un

h − un−1
h ‖∞/�t, is less than 10−4, and then

took un
h as the steady state solution.

To validate the numerical methodology, we have considered for the velocity mesh
size the values h = 1/60 and 1/96 associated with the time step �t = 0.001. For
Re = 400 and 1000, the results reported in Fig. 1 show a very good agreement with
those obtained in [5, 17, 39]. The velocity vectors of the steady flows obtained for
Re = 400 and 1000 are shown in Fig. 2. Those velocity field vectors are projected
orthogonally to the three planes, x2 = 0.5, x1 = 0.5, and x3 = 0.5, and the length of
the vectors has been doubled in the two later planes to observe the flowmore clearly.

To study the transition from steady flow to oscillatory flow, we have analyzed the
history of the L2-norm ‖un

h‖ of the flow field for different values of Re and of the
mesh size h. For h = 1/60, the flow field evolves to a steady state for Re ≤ 1860 and
the amplitude of the oscillation of the flow field L2-norm decreases also in time. At
Re = 1865, thesteadystatecriterion isnotsatisfiedandtheamplitudeof theoscillation
increases in time as in Fig. 3. Thuswe conclude that the criticalReynolds numberRecr
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Fig. 1 Comparisons of the numerical results obtained for h = 1/60 (top) and 1/96 (bottom) at
Re = 400 (left) and 1000 (right)

for the occurrence of the transition is somewhere between 1860 and 1865. Applying a
similar analysis, we obtain that, for h = 1/96, Recr is in (1870, 1875), the histories of
the velocityL2-normbeing shown inFig. 3. The oscillation frequencies of the velocity
L2-norm obtained for h = 1/60 and �t = 1/1000 are about 0.5937 and 0.5941 for
Re = 1860 and 1865, respectively. Those obtained for h = 1/96 and �t = 1/1000
are about 0.5978 and 0.5973 for Re = 1870 and 1875, respectively.

A documented feature of three-dimensional lid-driven cavity flows, like those
considered in this section, is that theymay exhibit Taylor-Görtler-like (TGL) vortices
if Re is sufficiently large. Indeed, Iwatsu, Hyun andKuwahara reported (in [34]) such
vortices atRe = 2000 for cubic cavityflows similar to those considered in this section.
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Fig. 2 Steady flow velocity vector of steady flow for Re = 400 (top) and 1000 (bottom) projected
on the planes x2 = 0.5 (left), x1 = 0.5 (middle), and x3 = 0.5 (right)
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left), Re = 1860 and 1865 (bottom left); b Re = 1850 and 1865 (top right), Re = 1870 and 1875
(bottom right)
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Also, as predicted in [16, 41] (and confirmed by our own simulations), a transition
from steady flow to oscillatory flow (Hopf bifurcation) occurs at Recr < 2000. On
the other hand, using a global linear stability analysis, Gianetti et al. [19] found that
cubic lid-driven cavity flowbecomes unstable forRe just above 2000.All these results
(ours in particular) lead us to suspect that theHopf bifurcation is connected to theTGL
vortices at Re slightly below 2000.

The bottom left picture of Fig. 3 shows oscillatory regimes atRe = 1860 and 1865,
for the flow computed with h = 1/60. In order to study the computed flow distortion
we have visualized in Figs. 4 (for Re = 1860) and 5 (for Re = 1865) the velocity
fields associatedwith the peak andbottomof the velocityfieldL2-norm, and the vector
field obtained by difference of the above two velocity fields. The top (resp., bottom)
pictures have been obtained by projection of the vector fields on the plane x1 = 34/60
(resp., x3 = 1/2). Figures4 and 5 show no evidence of TGL vortices for the velocity
fields computed with h = 1/60 at Re = 1860 and 1865; however, the pictures on the
right of Figs. 4 and 5, obtained by the vector field difference detailed above, show a
pair of vortices reminiscent of the GTL ones, but with much smaller magnitude since
the vector fields have been amplified by a factor of 200 (resp., 50) for Re = 1860

X

X2

3

  X1= 34/60

X

X

2

1

 X3= 0.5

Fig. 4 Left and middle: Projections (at Re = 1860) of the cavity flow velocity vector fields
associated with the peak (left) and bottom (middle) of the velocity L2-norm during an oscillation.
Right: Projections (at Re = 1860) of the vector field obtained by difference of the velocity vector
fields associatedwith the peak and bottom of the velocityL2-norm.All the vector fields are projected
on the planes x1 = 34/60 (top) and x3 = 0.5 (bottom). The vector scale for the field obtained by
difference (right) is 200 times that of the actual one, while the scale for the two other fields (left and
middle) is twice that of the actual one
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Fig. 5 Left and middle: Projections (at Re = 1865) of the cavity flow velocity vector fields
associated with the peak (left) and bottom (middle) of the velocity L2-norm during an oscillation.
Right: Projections (at Re = 1865) of the vector field obtained by difference of the velocity vector
fields associatedwith the peak and bottom of the velocityL2-norm.All the vector fields are projected
on the planes x1 = 34/60 (top) and x3 = 0.5 (bottom). The vector scale for the field obtained by
difference (right) is 50 times that of the actual one, while the scale for the two other fields (left and
middle) is twice that of the actual one

(resp., 1865) in order tomake them visible. On the other hand, at Re = 1875, a pair of
TGL vortices becomes visible as shown by Fig. 6 where we have visualized (using a
nonlinear scaling to enhance visibility) several snap-shots of the velocity field during
an oscillation time period. This pair of TGL vortices is not stationary, however, it
remains symmetric with respect to the the mid-plane x2 = 1/2. Figure 6 shows that
two tertiary vortices are formed on the left and right parts of the bottomwall, near the
large corner vortices at t = 1526, 1527 and 1528; next, these tertiary vortices move
toward the symmetry plane x2 = 0.5 at t = 1529, a pair of TGLvortices being formed
in the time interval [1531, 1533]; finally, theTGLvortices disappear after t = 1533, to
reappear during the next time-period.We have reported on Fig. 7 the projection on the
planex1 = 33/60of thevectorfieldobtainedbydifferenceof thevelocityflowfieldsat
t = 1525 and t = 1527. The vortex pair we observe is reminiscent of those visualized
on the right of Figs. 4 and 5. This vortex pair keeps hiding there and becomes stronger
as Re increases. These results suggest that the TGL vortices observed for Re slightly
below 2000 are related to the onset of an oscillatory flow.
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t =1524.0 t =1530.0

t =1525.0 t =1531.0

t =1526.0 t =1532.0
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t =1528.0 t =1534.0

t =1529.0 t =1534.5

Fig. 6 Projected velocity vector field of the cavity flow at Re = 1875 on the plane x1 = 33/60 at
different instants of time during one oscillation of the flow field L2-norm from t = 1524 to 1534.575
[for enhancing the visibility of the TGL vortices we proceeded as follows: (i) for those projected
vectors of length≤0.02 the vector scale is 15 times that of the actual one and (ii) for those projected
vectors of length >0.02, the length is reduced to 0.02 first and then plotted as in (i)]

4 ParticulateFlow:TheOrientation of aNeutrallyBuoyant
ProlateEllipsoid in aThree-DimensionalPoiseuille Flow

4.1 Generalities

The distributed Lagrange multiplier/fictitious domain (DLM/FD) formulation for
particulate flow, and its associated numerical methodologies based on the Lie scheme
havebeendeveloped in thepast 20years (see, e.g., [20],Chaps. 8and9, [22, 25, 26]). It
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Fig. 7 Projected velocity
vector field of the difference
of the velocity fields at
t = 1525 and t = 1527 on
the plane x1 = 33/60 for
Re = 1875. The vector scale
is 20 times that of the actual
one
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is the (necessarilybiased)opinionof theauthorsof this article that thedirect numerical
simulation of particulate flow has been one of the success stories of the wave-like
equation-basedmethodology.

Themotion of particles in a channel is relevant to a variety of applications inmany
chemical engineering and biological processes, such as suspension process, sedimen-
tation, blood flow, and flowcytometry.Understanding this kind ofmotion has become
even more important with the recent advent of microfluidic devices used for many
cell-based assays (see, e.g., [33]). The studyof themotionof non-spherical particles in
viscous fluids has a long history. Jeffery [35] solved the motion of a free ellipsoid for
various types of unbounded shear flow under Stokes flow conditions. He concluded
that the final state of a spheroid depends on its initial orientation and corresponds to
the minimal energy dissipation. The experiments of Segré and Silberberg [54, 55]
have had a large influence on fluidmechanics studies ofmigration and lift of particles.
These autohrs studied themigrationof dilute suspensionsof neutrallybuoyant spheres
in a tube flow. The particles migrate away from the wall and centerline and accumu-
late at about 0.6 of the tube radius from the centerline. Karnis et al. [37] verified the
same phenomenon and observed, in contrary to Jeffery’s theory, that the inertial effect
migrates non-spherical particles to a final equilibriumdistance in the tube atwhich the
long axis of a rod-like particle rotateswithin the plane passing through the central axis
of the tube and themass center of the particle; but a disk-like particle will rotates with
its short axis perpendicular to the plane passing through the central axis of the tube
and themass center of the disk. In [46], similarmigration and rotational behaviors of a
neutrally buoyant ellipsoid were obtained at particle Reynolds numbers up to 52; and
it was also found that this ellipsoid rotation exhibits distinctive states depending on
the Reynolds number range and on the particle shape. In this section, we have further
studied the orientation of a prolate ellipsoid in a three-dimensional Poiseuille flow.
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4.2 AFictitiousDomainFormulation of theModel Problem

All the fluid-solid interactions to be considered in this article concern the flowof fluid-
solid particlemixtures in a cylindrical tube (denoted byT in the sequel)with a circular
cross-section. In order to take a full advantage of the fictitious domain approach we
will embed T in a cylindrical tube (denoted byΩ) with a square cross-section whose
edge length is slightly larger than the diameter of theT cross-section.

We will start our discussion with a one particle situation. Therefore, let Ω ⊂
R

3 be a rectangular parallelepiped. We suppose that Ω is filled with a Newtonian
incompressible viscous fluid (of density ρf and viscosity μf ) and that it contains a
moving neutrally buoyant rigid particle B centered at G = {G1,G2,G3}t of density
ρf , as shown inFig. 8,which showsalso the inclusion inΩ of the cylinderTmentioned
above; we suppose that the central axis of both cylinders is parallel to the x3-axis. The
flow ismodeled by theNavier-Stokes equationswhile the particlemotion is described
by the Euler-Newton equations. We introduce (with dx = dx1dx2dx3) the following
functional spaces:

W0,P = {v | v ∈ (H 1(Ω))3, v = 0 on the top, bottom, front, and back of Ω and

v is periodic in the x3 direction},
L20 = {q | q ∈ L2(Ω),

∫

Ω

q dx = 0},

Λ0(t) = {μ | μ ∈ (H 1(B(t)))3, 〈μ, ei〉B(t) = 0, 〈μ, ei ×
−→
Gx〉B(t) = 0, i= 1, 2, 3},

ΛT = {μ | μ ∈ (H 1(Ω \ T))3, μ is periodic in the x3 direction},

where e1 = {1, 0, 0}t , e2 = {0, 1, 0}t , e3 = {0, 0, 1}t , and 〈·, ·〉B(t) (resp., 〈·, ·〉T ) is an
inner product on Λ0(t) (resp., ΛT ) (see [26], Sect. 5 and [20], Chap. 8) for further
information on the choice of 〈·, ·〉B(t)). Above, and from now on, periodicity in the x3
direction means periodicity of period L, L being the common length of the truncated
cylindersΩ andT. Then, the distributed Lagrange multiplier based fictitious domain

Fig. 8 An example of
three-dimensional flow
region with one rigid body

x 2

x 3

x 1

B

T

Ω
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formulation for the flow around a freely moving neutrally buoyant particle of general
shape inside a cylindrical tube reads as follows (see [20, 50] for a detailed discussion
of the non-neutrally buoyant case):

For a.e. t > 0, find u(t) ∈ W0,P , p(t) ∈ L20, VG(t) ∈ R
3, G(t) ∈ R

3, ω(t) ∈ R
3,

λ(t) ∈ Λ0(t), λT ∈ ΛT such that

⎧
⎪⎨

⎪⎩

ρf

∫

Ω

[
∂u
∂t

+ (u · ∇)u
]

· v dx + 2μf

∫

Ω

D(u) : D(v) dx −
∫

Ω

p∇ · v dx
−〈λ, v〉B(t) − 〈λT , v〉T = ρf

∫

Ω

g · v dx +
∫

Ω

f · v dx, ∀v ∈ W0,P,

(19)
∫

Ω

q∇ · u(t)dx = 0, ∀q ∈ L2(Ω), (20)

〈μ,u(t)〉B(t) = 0, ∀μ ∈ Λ0(t), (21)

〈μT ,u(t)〉T = 0, ∀μT ∈ ΛT , (22)

dG
dt

= VG, (23)

dxi
dt

= VG + ω × −→
Gx i, i = 1, 2, (24)

VG(0) = V0
G, ω(0) = ω0, G(0) = G0 = {G0

1,G
0
2,G

0
3}t, xi(0) = x0i , i = 1, 2,

(25)

u(x, 0) = u0(x) =
{
u0(x), ∀x ∈ Ω \ B(0),

V0
G + ω0 × −−→

G0x, ∀x ∈ B(0).
(26)

In (19)–(26) u and p denote velocity and pressure, respectively, λ is a Lagrange
multiplier associated with relation (21) (from (21) the fluid has a rigid bodymotion in
the region occupied byB(t)),λT is aLagrangemultiplier associatedwith relation (22)
(from(22), thefluidvelocity is0 inΩ̄ \ T),D(v) = 1

2 (∇v + (∇v)t),gdenotesgravity,
f is an imposed pressure gradient pointing in the x3-direction inside the cylinder T,
VG is the translation velocity of the particle B, and ω is the angular velocity of B. We
suppose that the no-slip condition holds on ∂B. We also use, if necessary, the notation
φ(t) for the function x → φ(x, t).

Remark 6 The hydrodynamical forces and torque imposed on the rigid body by the
fluid are built in (19)–(26) implicitly (see [26] for details), thus we do not need to
compute them explicitly in the simulation. Since in (19)–(26) the flow field is defined
on the entire domainΩ , it can be computed with a simple structured grid.
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Remark 7 In (21), the rigid body motion in the region occupied by the particle is
enforced via Lagrangemultipliersλ. To recover the translation velocityVG(t) and the
angular velocityω(t) from u(t) satisfying (21), we solve the following equations:

⎧
⎪⎪⎨

⎪⎪⎩

〈ei,u(t) − VG(t) − ω(t) × −→
Gx〉B(t) = 0, for i = 1, 2, 3,

〈ei ×
−→
Gx ,u(t) − VG(t) − ω(t) × −→

Gx〉B(t) = 0, for i = 1, 2, 3.

(27)

Remark 8 In (24), we have to track the motion of two extra points attached to any
particle of general shape so that we can determine the region occupied by the particle
via its center of mass, the translation velocity of the center of mass and the angular
velocity of the particle. In practice we shall track two orthogonal normalized vectors
rigidly attached to the bodyB from the center of massG.

Remark 9 In (19), 2
∫

Ω
D(u) : D(v) dx can be replaced by

∫

Ω
∇u : ∇v dx since u is

divergence free and inW0,P . This changecanmake the computation simpler and faster.
Also the gravity g in (19) can be absorbed into the pressure term.

Remark 10 The details of numerical methodologies for simulating the motion of
prolate andoblate spheroids are given in [46].ApplyingLie’s scheme to (19)–(26),we
have a six stage operator-splitting scheme, namely: (i) using a L2-projection Stokes
solverà laUzawatoforce the incompressibilitycondition, (ii) anadvectionstepsimilar
to (4), (iii) a diffusion step with the body force f and the enforcement of zero velocity
outside the cylinder T, (iv) a step to predict the particle position and its orientation,
(v) a step to enforce the rigid bodymotion inside the particle and to obtain its updated
translation and angular velocity, and (vi) a step to correct the particle position and its
orientation.For the spacediscretization,wehave still usedaP1-iso-P2 (resp.,P1)finite
element approximation of the velocity field (resp., pressure) defined from uniform
“tetrahedral” meshes Th (resp., T2h). For the enforcement of the rigid body motion
and zero velocity outside the cylinder, we have applied a collocationmethod (see [46]
for details).

4.3 NumericalResults

For the first series of test problems, we have considered the simulation of a neutrally
buoyant prolate ellipsoid moving in a fluid filled cylinder (see Fig. 8). We take Ω =
(0, 1 + 4h) × (0, 1 + 4h) × (0, 2) as computational domainwith h as the spacemesh
size to construct the flow velocity spaces. The radius R of the cylinderT is 0.5 and its
length is 2. The semi-long axis of the prolate ellipsoid is 0.195 and its two semi-short
axesare0.065,while thecommonvalueof thedensitiesof thefluidandparticle is1.The
viscosity of the fluid isμf = 0.5, 0.1, or 0.05. The force f in (19) is a constant vector,
positively oriented in the Ox3 direction; ‖f‖ has been chosen so that the maximum
velocity of the correspondingPoiseuille flow (without particle) is 10.We suppose that
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the prolate ellipsoid is at rest initially and that the initial fluid velocity corresponds
to the one of a fully developed Poiseuille flow of maximal velocity 10. Thus the
Reynolds numbers based on the diameter of the cylinder are Re = 10/μf = 20, 100,
and 200, respectively. The initialmass centerG(0)of the ellipsoid is vertically located
below the cylinder axis at a distance 0.4 to this axis and the long-axis of the ellipsoid
lies on the plane parallel to the x1x3-coordinate plane. The initial angle between the
long axis and the direction of the x1-axis has been chosen as 0◦, 30◦, 60◦, or 90◦.
The one in Fig. 8 corresponds to the case of 90◦. We have used uniform tetrahedral
meshes to approximate velocity and pressure. The velocity (resp., pressure)mesh size
is h = 1/80 (resp., hp = 2h), while the time discretization step is�t = 0.001.

For all the cases withμf = 0.5, the prolate ellipsoid has a tumbling behavior after
migrating away from the wall of the cylindrical tube and reaching its equilibrium
distance to thecentral axisof the tube. Its longaxis rotateson theplanepassing through
thecylinderaxisanditsmasscenter(e.g.,seeFig. 9).Theaverageequilibriumdistances
of themass center to the central axis of the tube are 0.5368R, 0.5396R, 0.5398R, and
0.5352R for the initial angles0◦, 30◦, 60◦, and90◦, respectively.TheparticleReynolds

x 1

t=0.49t=0.37t=0.3t=0.25t=0.2t=0.15

x 3

t=0.1t=0.05

x 2

x 1

t=10.63t=10.54t=10.45t=10.36t=10.27t=10.18t=10.09

x 3

t=10x 2

t=120.29

x 1

t=120.25t=120.21t=120.16t=120.12t=120.08t=120.04

x 3

t=120x 2

Fig. 9 Visualization of the prolate orientation change from its initial orientation to the rotation with
respect to the short axis (tumbling) while reaching its equilibrium distance to the cylinder central
axis (μf = 0.5, initial angle = 60◦)
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numbers based on the length of the long axis and the average translation velocity are
about 5.4. For all four different initial orientations, the long axis tumbles after it has
reached theequilibriumdistance to the tubecentral axiswhile thecenterofmassmoves
along a straight line parallel to the x3-axis. This behavior is similar to the experimental
results of the rod-like particle moving and rotating in the Poiseuille flow reported in
[37].

For thecasesofμf = 0.1, theprolateellipsoidhastwodifferentrotationalbehaviors
after reaching its equilibrium distance to the tube central axis. With the initial angle
of 0◦, 30◦ and 60◦, the prolate ellipsoid is rotating with respect to its long axis, which
is perpendicular to the plane passing through the central axis of the tube and its mass
center (see Fig. 10). This motion was not reported in the 1964 paper by Karnis et al.
[37], but since this behavior persists after decreasing h and �t, the authors strongly
believe that it is not a numerical artifact. The average distances of the mass center to
the central axis of the tube for both initial angles 0◦, 30◦ and 60◦ are about 0.519R for
290 ≤ t ≤ 300. Once the center of mass has reached the equilibrium distance to the
tubecentral axis, theellipsoiddoesnot tumblebut rotateswith respect to its longaxisas

x 1

t=0.49t=0.37t=0.3t=0.25t=0.2t=0.15

x 3

t=0.1t=0.05

x 2

x 1

t=2.63t=2.54t=2.45t=2.36t=2.27t=2.18

x 3

t=2.09t=2x 2

x 1

t=300t=200t=150t=120t=90t=60

x 3

t=30t=10x 2

Fig. 10 Visualization of the prolate orientation change from its initial orientation to the rotationwith
respect to the long axis while reaching its equilibrium distance to the cylinder central axis (μf = 0.1,
initial angle = 60◦)
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shown in Fig. 10. The particle Reynolds numbers based on the length of the long-axis
and the average translation velocity for 290 ≤ t ≤ 300 are about 26.23. For the case
of the initial angle equal to 90◦ (as in Fig. 8), the prolate ellipsoid tumbles just like it
does when μf = 0.5. For 215 ≤ t ≤ 225, the average distance of the mass center to
the central axis of the tube is 0.5456R and the particle Reynolds number is 26.25. The
co-existence of two different rotating behaviors at about the same range of Reynolds
number is quite unusual. For the two initial angles of 0◦ and 90◦, we have also placed
the initial mass center vertically below the cylinder axis at a distance 0.252 to this
axis, which is much closer to the cylinder central axis. In both situations, the prolate
spheroid migrates away from the cylinder central axis and the rotational motions are
eventually the same as those one obtainswhen the ellipsoid is placed initially closer to
the tube boundary.

When decreasing the viscosity to 0.05 and keeping all other parameters the same,
wehaveobtained that, after reaching itsequilibriumdistance, theprolatespheroiddoes
not tumble but rotate with respect to its long axis for all four different initial angles.
But the ellipsoid placed vertically below the cylinder axis at a distance 0.252 to this
axis with the initial angles 0◦ and 90◦ behaves like it does whenμf = 0.1.

Thus besides the Reynolds number, the initial distance to the cylinder central axis
doesmatter too. In the near future,wewill further study the effect of the initial position
and the range of Reynolds number leading to two rotational behaviors.

5 Visco-Elastic ParticulateFlow

Themotionof particles in non-Newtonianfluids is not only of fundamental theoretical
interest,but isalsoof importanceinmanyapplicationstoindustrialprocesses involving
particle-laden materials (see, e.g., [4, 45]). For example, during the hydraulic frac-
turing operation used in oil and gas wells, suspensions of solid particles in polymeric
solutions are pumped into hydraulically-induced fractures. The particles must prop
these channels open to enhance the rate of oil recovery [13].

Although numerical methods for simulating particulate flows in Newtonian fluids
have been very successful, numerically simulating particulate flows in viscoelastic
fluids is much more complicated and challenging. One of the difficulties (e.g., see
[2, 38]) for simulating viscoelastic flows is the breakdown of the numerical methods.
It has been widely believed that the lack of positive definiteness preserving property
of the conformation tensor at the discrete level during the entire time integration is
one of the reasons for the breakdown. To preserve the positive definiteness property
of the conformation tensor, several methodologies have been proposed recently, as in
[14, 15, 40, 43]. Lozinski and Owens [43] factored the conformation tensor to get
σ = AAT and then they wrote down the equations for A approximately at the discrete
level.Hence, thepositivedefinitenessof theconformation tensor is forcedwithsuchan
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Fig. 11 Visualization of the change of orientation of the prolate ellipsoid: From its initial orientation
to its rotation around its long axis, while reaching an equilibrium distance to the axis of the cylinder
(μf = 0.05, initial angle = 90◦)

approach.Themethodologiesdevelopedin[43]havebeenappliedin[29] togetherwith
the FD/DLMmethod through operator splitting techniques for simulating particulate
flows in Oldroyd-B fluid. We have generalized these computational methodologies
to viscoelastic fluids of the FENE-CR type, which is a more “realistic” model when
compared with the Oldroyd-B model as advocated in [53]. We have compared the
particle sedimenting in a vertical two-dimensional channel filled with viscoelastic
fluid of either Oldroyd-B or FENE-CR type to find out the effect of the maximum
extension of the immersed polymer coils on the chaining (Fig. 11).

5.1 MathematicalFormulations

Following the work developed in [29], we will first address in the following the
models and computational methodologies combined with the Lozinski and Owens’
factorization approach.LetΩ be aboundeddomain inRd (d = 2or 3) and letΓ be the
boundaryofΩ .Wesuppose thatΩ isfilledwithaviscoelasticfluidofeitherOldroyd-B
or FENE-CR type of densityρf and that it containsN moving rigid particles of density
ρs (see Fig. 12).



242 R. Glowinski and T.-W. Pan

Fig. 12 An example of a
two-dimensional flow region
with four circular particles
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Β

Β
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LetB(t) = ∪N
i=1Bi(t)whereBi(t) is the ithrigidparticleinthefluidfor i = 1, . . . ,N .

We denote by ∂Bi(t) the boundary of Bi(t) for i = 1, . . . ,N . For some T > 0, the
governing equations for the fluid-particle system are

ρf

(
∂u
∂t

+ (u · ∇)u
)

= ρf g − ∇p + 2μ∇ · D(u) + ∇ · σ p inΩ \ B(t), t ∈ (0,T ),

(28)

∇ · u = 0 inΩ \ B(t), t ∈ (0,T ), (29)

u(x, 0) = u0(x), ∀x ∈ Ω \ B(0), with∇ · u0 = 0, (30)

u = g0 onΓ × (0,T ), with
∫

Γ

g0 · n dΓ = 0, (31)

u = Vp,i + ωi×
−→
Gix, ∀x ∈ ∂Bi(t), i = 1, . . . ,N , (32)

∂C
∂t

+ (u · ∇)C − (∇u)C − C(∇u)t = − f (C)

λ1
(C − I) inΩ \ B(t), t ∈ (0,T ),

(33)

C(x, 0) = C0(x), x ∈ Ω \ B(0), (34)

C = CL, onΓ −, (35)

where u is the flow velocity, p is the pressure, g is the gravity, μ = η1λ2/λ1 is the
Newtonian viscosity of the fluid, η = η1 − μ is the elastic viscosity of the fluid, η1
is the fluid viscosity, λ1 is the relaxation time of the fluid, λ2 is the retardation time
of the fluid, n is the outer normal unit vector at Γ, Γ − is the upstream portion of Γ .
The polymeric stress tensor σ p in (28) is given by σ p = η

λ1
f (C)(C − I), where the

conformation tensorC is symmetric andpositivedefinite (see [36]) and I is the identity
matrix. Setting f equal to unity corresponds to the Oldroyd-Bmodel while

f (C) = L2

L2 − tr(C)
(36)
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corresponds to the FENE-CRmodel [6], where tr(C) is the trace of the conformation
tensorC and L is themaximum extension of the immersed polymer coils and referred
to as the extensibility of the immersed polymer coils. The Oldroyd-B model then is a
special case associated with infinite extensibility.

In (32), the no-slip condition holds on the boundary of the ith particle, Vp,i is the
translation velocity,ωi is the angular velocity andGi is the center ofmass. Themotion
of the particles is modeled byNewton’s laws:

Mp,i
dVp,i

dt
= Mp,ig + Fi + Fr

i , (37)

d(Ip,iωi)

dt
= Ft

i, (38)

dGi

dt
= Vp,i, (39)

Gi(0) = G0
i , Vp,i(0) = V0

p,i, ωi(0) = ω0
i , (40)

for i = 1, . . . ,N ,where in(37)–(40),Mp,i andIp,i are the themassandthe inertia tensor
of the ith particle, respectively, Fr

i is a short range repulsion force imposed on the ith
particle by other particles and the wall to prevent particle/particle and particle/wall
penetration (see [26] for details), andFi andFt

i denote the hydrodynamic force and the
associated torque imposed on the ith particle by the fluid, respectively.

Toavoid the frequent remeshingand thedifficultyof themeshgeneration fora time-
varying domain in which the rigid particles can be very close to each other, especially
for three dimensional particulate flow, we have extended the governing equations to
the entire domain Ω (a fictitious domain). For a fictitious-domain-based variational
formulation of the governing equations of the particulate flow, we consider only one
rigid particleB(t) (either a disk in 2Dor aball in 3D) in thefluiddomainwithout losing
generality. Let us define first the following functional spaces

Vg0(t) = {v | v ∈ (H 1(Ω))d , v = g0(t) onΓ },
L20(Ω) = {q | q ∈ L2(Ω),

∫

Ω

q dx = 0},
VCL(t) = {C | C ∈ (H 1(Ω))d×d , C = CL(t) onΓ −},
VC0 = {C | C ∈ (H 1(Ω))d×d , C = 0 onΓ −},
Λ(t) = H 1(B(t))

d
.

Following the methodologies developed in [26, 56], a fictitious domain formulation
of the governing Eqs. (28)–(40) reads as follows:
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For a.e. t > 0, find u(t) ∈ Vg0(t), p(t) ∈ L20(Ω), C(t) ∈ VCL(t), V(t) ∈ R
d ,

G(t) ∈ R
d ,ω(t) ∈ R

d , λ(t) ∈ Λ(t) such that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρf

∫

Ω

[
∂u
∂t

+ (u · ∇)u
]

· v dx + 2μ
∫

Ω

D(u) : D(v) dx −
∫

Ω

p∇ · v dx

−
∫

Ω

v · (∇ · σ p) dx + (1 − ρf /ρs)

{

Mp
dV
dt

· Y + Ip
dω

dt
· θ

}

−〈λ, v − Y − θ × −→
Gx〉B(t) − Fr · Y

= ρf

∫

Ω

g · vdx + (1 − ρf /ρs)Mpg · Y,

∀{v,Y, θ} ∈ (H 1
0 (Ω))d × R

d × R
d ,

(41)

∫

Ω

q∇ · u(t) dx = 0,∀q ∈ L2(Ω), (42)

〈μ,u(x, t) − V(t) − ω(t) × −→
G(t)x〉B(t) = 0, ∀μ ∈ Λ(t), (43)

∫

Ω

(
∂C
∂t

+ (u · ∇)C − (∇u)C − C(∇u)t
)

: s dx (44)

= −
∫

Ω

f (C)

λ1
(C − I) : s dx, ∀s ∈ VC0 , withC = I in B(t),

dG
dt

= V, (45)

C(x, 0) = C0(x), ∀x ∈ Ω, withC0 = I in B(0), (46)

G(0) = G0, V(0) = V0, ω(0) = ω0, B(0) = B0, (47)

u(x, 0) =
{
u0(x), ∀x ∈ Ω \ B0,

V0 + ω0 × −→
G0x, ∀x ∈ B0.

(48)

In (41) the Lagrange multiplier λ defined overB can be viewed as an extra body force
maintaining the rigidbodymotion insideB. Theconformation tensorC inside the rigid
particle is extended as the identity tensor I as in (44) since the polymeric stress tensor
is zero inside the rigid particle. In Eq. (41), since u is divergence free and satisfies
the Dirichlet boundary conditions on Γ, we have 2

∫

Ω
D(u) : D(v)dx = ∫

Ω
∇u :

∇vdx, ∀v ∈ (H 1
0 (Ω))d . This is a substantial simplification from the computational

point of view, which is another advantage of the fictitious domain approach. With
this simplification, we can use, as shown in the following section, fast solvers for the
elliptic problems in order to speed up computations. Also the gravity term g in (41)
can be absorbed in the pressure term.
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5.2 NumericalResults

Thedetailsofnumericalmethodologiesforsimulatingthemotionofdiskssedimenting
in Oldroyd-B fluid in a vertical two-dimensional channel are given in [29]. Applying
Lie’sschemeto(41)–(48),wehaveusedasix-stageoperator-splittingscheme,namely:

Stage 1 We use aNeumann preconditionedUzawa/conjugate gradient algorithm to
force (in a L2 sense) the incompressibility condition of u.

Stage 2 We combine two advection steps similar to (4): one for u and one forC.
Stage 3 We combine a diffusion step for u with a step taking into account the

remaining operator in the evolution equation verified byC.
Stage 4 We update the position ofG.
Stage 5 We force the rigid bodymotion of the particle, updateV andω, and impose

the conditionC = I inside the particle.
Stage 6 This is a diffusion step for the velocity, driven by the updated polymeric

stress tensor.

Wepresentheretheresultsoftwonumericalexperimentsconcerningthesedimentation
of circular particles in a two-dimensional channel filled with an Oldroyd-B fluid. For
the space discretization, we have still used a P1-iso-P2 (resp., P1) finite element for
the approximationof velocityfield (resp., pressure) defined fromuniform“triangular”
meshes Th (resp., T2h). For the finite element approximation of each entry in the
conformation tensor,P1 finite element spaces defined fromuniform triangularmeshes
Th have been used. For the enforcement of the rigid body motion, we have applied a
collocationmethod (see [26] for details).

The numerical results concern six circular particles of diameter D = 0.25 sedi-
menting in a channel filledwith anOldroyd-B fluid. The channel is infinitely long and
has a width of 1. The computational domain isΩ = (0, 1) × (0, 7) initially and then
moves down with the mass center of the lowest of the six particles. It is known that
when the elasticity number E = De/Re is larger than the critical value (O(1)) and the
Mach number M = √

DeRe < 1, the particles in this case will form chains that are
parallel to the flow [32, 42]. In our simulations, all six particles are lined up along the
flowdirection, agreeing thus theknownobservationsandexperiments.Figure13gives
the snapshots at various moments of time of the particles lining up phenomenon.

We can see that, after drafting, kissing and chaining, the six particles form approx-
imately a straight line at t = 20; at t = 30, the trailing particle has been separated
from the leading five particles. This observation agrees with experiments showing
that, sometimes, the last particle in the chain gets detached as discussed in [51]. It
is known that a long chain falls faster than a single particle in the fluid. This long
body effect tends to detach the last particle from the chain. The average terminal
velocity is 0.1535 for26 ≤ t ≤ 30, theReynoldsnumber isRe = 0.1476, theDeborah
number is De = 0.7981, the elasticity number is E = 5.408 and the Mach number
is M = 0.3432. With the same parameters as in the case of Oldroyd-B fluid, we just
changed to the FENE-CR model with L = 5 for the polymer extension limit. Since
the viscoelastic fluid has a shorter polymer extension limit, it cannot hold all six disks
together as shown in Fig. 14. For this case, the average terminal velocity is 0.1317 for
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Fig. 13 Snapshots at t = 2, 10, 12, 14, 16, 18, 20, 24, 26, 28, and 30 of the positions of six particles
lining up in an Oldroyd-B fluid (h = 1/96 and �t = 0.0004)

Fig. 14 Snapshots at t = 2, 4, 6, 8, 10, 18, 20, 24, 26, and 30 of the positions of six particles lining
up in an FENE-CR fluid with L = 5 (h = 1/96 and �t = 0.0004)
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Fig. 15 Snapshots at t = 2, 4, 6, 8, 10, 18, 20, 24, 26, and 30 of the positions of six particles lining
up in an FENE-CR fluid with L = 10 (h = 1/96 and �t = 0.0004)

26 ≤ t ≤ 30, and the associated numbers are Re = 0.1266, De = 0.6847, E = 5.408
andM = 0.2944.But for the caseL = 10, the chaining shown inFig. 15 ismuchcloser
to the one obtained for the Oldroyd-B fluid since in (36), f (C) is close to 1 (i.e., the
FENE-CRmodelhasalmost recovered theOldroyd-Bmodel).The terminalvelocity is
0.1490 for 26 ≤ t ≤ 30, and the associated numbers are Re = 0.1433, De = 0.7750,
E = 5.408 andM = 0.3333.

6 Conclusion

Thewave-like equationbasedmethodwe introduced twentyyears ago, for thenumeri-
cal simulation of incompressible viscous flow (as an alternative to Lagrange-Galerkin
methods) hasbeen further discussed in this article.Thismethod,whichallowsapurely
variational treatmentof theadvection (well-suited to simplefinite element approxima-
tions), has been briefly described in Sect. 2 of this article, and applied in Sects. 3–5 to
thesimulationofNewtonianandnon-Newtonianviscousflowsin twoandthreedimen-
sions, possibly involving rigid solid particles. Through the methodology discussed in
this article we have been able to reproduce accurately documented phenomena from
the physics of fluids, andmore importantly to discover new ones, as shown in Sects. 4
and 5. The results reported in this article suggest that, despite being twenty years old,
the methodology we discussed in this article is far from being obsolete and should be
still helpful in the future.
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Abstract We present a conservative Arbitrary Lagrangian Eulerian method for
solving nonlinear hyperbolic systems. The key characteristics of the method is that it
preserves all the convex invariants of the hyperbolic system in question. The method
is explicit in time, uses continuous finite elements and is first-order accurate in space
and high-order in time. The stability of the method is obtained by introducing an
artificial viscosity that is unambiguously defined irrespective of the mesh geome-
try/anisotropy and does not depend on any ad hoc parameter.

1 Introduction

This paper is the expanded version of a talk given at the University of Houston
in February 2016 at a workshop honoring the 70th birthday of Olivier Pironneau
and his long lasting contributions to Numerical Analysis and Scientific Computing
[19]. The topic of paper is in the continuation of the groundbreaking work done by
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transport equation [18]. More specifically, our objective is to build a finite element
approximation to the entropy solution of the following hyperbolic system written in
conservative form:{

∂tu + ∇ · f (u) = 0, for (x, t) ∈ R
d × R+,

u(x, 0) = u0(x), for x ∈ R
d ,

(1)

where the dependent variable u is Rm-valued and the flux f is Rm×d -valued. We
investigate in this paper an approximation technique using an Arbitrary Lagrangian
Eulerian (ALE) formulation with continuous finite elements and explicit time step-
ping on non-uniform meshes.

The paper is organized as follows. We introduce some notation and recall impor-
tant properties about the one-dimensional Riemann problem in Sect. 2. We introduce
notation relative to mesh motion and Lagrangian mappings in Sect. 3. The results
established in Sects. 2 and 3 are standard and will be invoked in Sects. 4 and 5. It
is proved in Sect. 5 that under the appropriate CFL condition the algorithm is con-
servative, satisfies a local entropy inequality for every admissible entropy pair and
preserves invariant domains. The main results of this section are Theorem 1 and
Theorem 2. The SSP RK3 extension of the method is tested numerically in Sect. 6 on
scalar conservation equations and on the compressible Euler equations. The paper
essentially reproduces the arguments developed in [13]. We refer the reader to [13]
for details, proofs and extensions of the material presented herein.

2 Riemann Problem and Invariant Domain

We recall in this section elementary properties of Riemann problems that will be
used in the paper.

2.1 Notation and Boundary Conditions

The dependent variable u in (1) is considered as a column vector u = (u1, . . . , um)T.
The flux is a matrix with entries fi j (u), 1 ≤ i ≤ m, 1 ≤ j ≤ d. We denote by f i the
row vector ( fi1, . . . , fid), i ∈ {1:m}. We denote by ∇ · f the column vector with
entries

(∇ · f )i =
∑

1≤ j≤d

∂x j fi j .

For any n = (n1 . . . , nd)T ∈ R
d , we denote f (u) · n the column vector with entries



Arbitrary Lagrangian-Eulerian Finite Element Method Preserving … 253

f i (u) · n =
∑
1≤l≤d

nl fil(u), i ∈ {1:m}.

Given two vector fields, say u ∈ R
m and v ∈ R

d , we define u ⊗ v to be the m × d
matrix with entries uiv j , i ∈ {1:m}, j ∈ {1:d}. We also define ∇ · (u ⊗ v) to be the
column vector with entries

∇ · (u ⊗ v)i =
d∑
j=1

∂ j (uiv j ).

The unit sphere in Rd centered at 0 is denoted by Sd−1(0, 1).
To simplify questions regarding boundary conditions, we assume that either the

initial data is constant outside a compact set and we solve the Cauchy problem inRd

or we use periodic boundary conditions.

2.2 One-Dimensional Riemann Problem

We are not going to try to define weak solutions to (1), but instead we assume that
there is a clear notion for the solution of the Riemann problem. To stay general
we introduce a generic hyperbolic flux h and we say that (η, q) is an entropy pair
associated with the flux h if η is convex and the following identity holds:

∂vk (q(v) · n) =
m∑
i=1

∂vi η(v)∂vk (hi (v) · n), ∀k ∈ {1:m}, ∀n ∈ Sd−1(0, 1).

We refer to [4, Sect. 2] for more details on convex entropies and symmetrization. In
the rest of the paper we assume that there exists a nonempty admissible setAh ⊂ R

m

such that the following one-dimensional Riemann problem

∂tu + ∂x (h(u) · n) = 0, (x, t) ∈ R × R+, u(x, 0) =
{
uL , if x < 0

uR, if x > 0,
(2)

has a unique entropy satisfying solution for any pair of states (uL , uR) ∈ Ah × Ah

and any unit vector n ∈ Sd−1(0, 1).We henceforth denote the solution to this problem
by u(h, n, uL , uR). We also say that u is an entropy satisfying solution of (2) if the
following holds in the distribution sense for any entropy pair (η, q):

∂tη(u) + ∂x (q(u) · n) ≤ 0.

Since it is unrealistic to expect a general theory of the Riemann problem (2) for
arbitrary nonlinear hyperbolic systemswith large data,we insteadmake the following
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assumption: The unique solution of (2) has a finite speed of propagation for any n
and any (uL , uR) ∈ Ah × Ah, i.e., there are λL(h, n, uL , uR) ≤ λR(h, n, uL , uR)

s.t.

u(x, t) =
{
uL , if x ≤ tλL(h, n, uL , uR)

uR, if x ≥ tλR(h, n, uL , uR).
(3)

This assumption is known to hold for small datawhen the system is strictly hyperbolic
with smooth flux and all the characteristic fields are either genuinely nonlinear or
linearly degenerate, see, e.g., [6, Thm. 9.5.1]. The sector λL t < x < λRt , 0 < t , is
henceforth referred to as the Riemann fan. Themaximumwave speed in the Riemann
fan is λmax := λmax(h, n, uL , uR) := max(|λL |, |λR|).

2.3 Invariant Sets and Domains

The following elementary result is a well-known and important consequence of the
Riemann fan assumption (3):

Lemma 1 Let h be a hyperbolic flux over the admissible set Ah and satisfying
the finite wave speed assumption (3). Let v(h, n, vL , vR) be the unique solution to
the problem ∂tv + ∂x (h(v) · n) = 0 with initial data vL , vR ∈ Ah. Let (η, q) be an
entropy pair associated with the flux h. Assume that t λmax(h, n, vL , vR) ≤ 1

2 and let

v(t, h, n, vL , vR) :=
∫ 1

2

− 1
2

v(h, n, vL , vR)(x, t)dx.

Then

v(t, h, n, vL , vR) = 1
2 (vL + vR) − t

(
h(vR) · n − h(vL) · n)

. (4)

η(v(t, h, n, vL , vR)) ≤ 1
2 (η(vL) + η(vR)) − t (q(vR) · n − q(vL) · n). (5)

We now introduce notions of invariant sets that are slightly different from what is
usually done in the literature (see, e.g., [5, 9, 15]).

Definition 1 (Invariant set) Let h be ahyperbolicfluxover the admissible setAh and
satisfying the finite wave speed assumption (3). A convex set A ⊂ Ah ⊂ R

m is said
to be invariant for the problem ∂tv + ∇ · h(v) = 0 if for any pair (vL , vR) ∈ A × A,
any unit vector n ∈ Sd−1(0, 1), the average of the entropy solution of the Riemann
problem

∂tv + ∇ · (h(v) · n) = 0

over the Riemann fan
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1

t (λR − λL)

∫ λRt

λL t
v(h, n, vL , vR)(x, t) dx,

remains in A for all t > 0.

Remark 1 The above definition implies that

1

I

∫
I
v(h, n, vL , vR)(x, t) dx ∈ A

for any t > 0 and any interval I such that (λL t, λRt) ⊂ I .

Lemma 2 (Translation) Let W ∈ R
d and let g(v) := f (v) − v ⊗ W.

(i) The two problems: ∂tu + ∇ · f (u) = 0 and ∂tv + ∇ · g(v) = 0 have the same
admissible sets and the same invariant sets.

(ii) (η(u), q(u)) is an entropy pair for the flux f if and only if (η(v), q(v) − η(v)W)

is an entropy pair for the flux g.

3 Geometric Preliminaries

In this section we introduce some notation and recall well known results about
Lagrangian mappings. The key results, which will be invoked in Sects. 4 and 5,
are Lemmas 3 and 4. The reader who is familiar with these notions is invited to skip
this section and to go directly to Sect. 4.

3.1 Jacobian of the Coordinate Transformation

LetΦ : Rd × R+ −→ R
d be a uniformlyLipschitzmapping, and assume that there is

t∗ > 0 such that the mapping Φ t : Rd � ξ �−→ Φ t (ξ) := Φ(ξ , t) ∈ R
d is invertible

for all t ∈ [0, t∗]. Let vA : Rd × [0, t∗] −→ R
d be the vector field implicitly defined

by
vA(Φ(ξ , t), t) := ∂tΦ(ξ , t), ∀(ξ , t) ∈ R × [0, t∗]. (6)

This definition makes sense owing to the inversibility assumption on the mapping
Φ t ; actually (6) is equivalent to vA(x, t) := ∂tΦ(Φ−1

t (x), t) for any t ∈ [0, t∗].
Lemma 3 (Liouville’s formula) Let J(ξ , t) = ∇ξΦ(ξ , t) be the Jacobian matrix of
Φ, then

∂t det(J(ξ , t)) = (∇ · vA)(Φ(ξ , t), t) det(J(ξ , t)). (7)

Note that the expression (∇ · vA)(Φ(ξ , t), t) in (7) should not be confused with
∇ · (vA(Φ(ξ , t), t)).
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3.2 Arbitrary Lagrangian Eulerian Formulation

The following result is the main motivation for the arbitrary Lagrangian Eulerian
formulation that we are going to use in the paper.

Lemma 4 The following identity holds in the distribution sense (in time) over
the interval [0, t∗] for every function ψ ∈ C0

0 (R
d;R) (with the notation ϕ(x, t) :=

ψ(Φ−1
t (x))):

∂t

∫
Rd

u(x, t)ϕ(x, t) dx =
∫
Rd

∇ · (u ⊗ vA − f (u))ϕ(x, t) dx. (8)

Proof Using the chain rule and Lemma 3, we have

∂t

∫
Rd

u(x, t)ϕ(x, t) dx = ∂t

∫
Rd

u(Φ t (ξ), t) det(J(ξ , t))ψ(ξ) dξ

=
∫
Rd

{
∂t (u(Φ t (ξ), t)) det(J(ξ , t)) + u(Φ t (ξ), t)∂t (det(J(ξ , t)))

}
ψ(ξ) dξ

=
∫
Rd

{
(∂tu)(Φ t (ξ), t) + ∂tΦ(ξ , t) · (∇u)(Φ t (ξ), t)

}
det(J(ξ , t))ψ(ξ) dξ

+
∫
Rd

u(Φ t (ξ), t)(∇ · vA)(Φ t (ξ), t) det(J(ξ , t))ψ(ξ) dξ .

Then using (1) and the definition of the vector field vA yields

∂t

∫
Rd

u(x, t)ϕ(x, t) dx =
∫
Rd

−∇ · f (u)(Φ t (ξ), t)ψ(ξ) det(J(ξ , t)) dξ

+
∫
Rd

{
vA(Φ t (ξ), t) · (∇u)(Φ t (ξ), t)

+ (∇ · vA)(Φ t (ξ), t)u(Φ t (ξ), t)
}
ψ(ξ) det(J(ξ , t)) dξ

=
∫
Rd

{− ∇ · f (u)(Φ t (ξ), t) + ∇ · (u ⊗ vA)(Φ t (ξ), t)
}
ψ(ξ) det(J(ξ , t)) dξ .

We conclude by making the change of variable x = Φ(ξ , t). �

We now state a result regarding the notion of entropy solution in the ALE frame-
work. The proof of this result is similar to that of Lemma 4.

Lemma 5 Let (η, q) be an entropy pair for (1). The following inequality holds in the
distribution sense (in time) over the interval [0, t∗] for every non-negative function
ψ ∈ C0

0 (R
d;R+) (with the notation ϕ(x, t) := ψ(Φ−1

t (x))):

∂t

∫
Rd

η(u(x, t))ϕ(x, t) dx ≤
∫
Rd

∇ · (η(u)vA − q(u))ϕ(x, t) dx.
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4 Arbitrary Lagrangian Eulerian Algorithm

We describe in this section the ALE algorithm to approximate the solution of (1).
We use continuous finite elements and explicit time stepping. We use two different
discrete settings: one for the mesh motion and one for the approximation of (1).

4.1 Geometric Finite Elements and Mesh

Let (T 0
h )h>0 be a shape-regular sequence of matching meshes. The symbol 0 in T 0

h
refers to the initial configuration of the meshes. The meshes will deform over time,
in a way that has yet to be defined, and we are going to use the symbol n to say
that T n

h is the mesh at time tn for a given h > 0. We assume that the elements in
the mesh cells are generated from a finite number of reference elements denoted
K̂1, . . . , K̂� . For instance,T 0

h could be composed of a combination of triangles and
parallelograms in two space dimensions (� = 2 in this case); the mesh T 0

h could
also be composed of a combination of tetrahedra, parallelepipeds, and triangular
prisms in three space dimensions (� = 3 in this case). The diffeomorphismmapping
K̂r to an arbitrary element K ∈ T n

h is denoted T n
K : K̂r −→ K and its Jacobian

matrix is denoted J
n
K , 1 ≤ r ≤ � . We now introduce a set of reference Lagrange

finite elements {(K̂r , P̂
geo
r , Σ̂

geo
r )}1≤r≤� (the index r ∈ {1:� } will be omitted in the

rest of the paper to alleviate the notation). Letting ngeosh := dim P̂geo, we denote by
{̂ai }i∈{1:ngeosh } and {θ̂geo

i }i∈{1:ngeosh } the Lagrange nodes of K̂ and the associated Lagrange
shape functions.

The unique purpose of the geometric reference element {(K̂ , P̂geo, Σ̂geo) is to
construct the geometric transformation T n

K . Let {ani }i∈{1: I geo} be the collection of all the
Lagrange nodes in themeshT n

h . The Lagrange nodes are organized in cells bymeans
of the geometric connectivity array jgeo : T n

h × {1:ngeosh } −→ {1: I geo} (assumed to
be independent of the time index n). Given a mesh cell K ∈ T n

h , the connectivity
array is defined such that {anjgeo(i,K )

}i∈{1:ngeosh } is the set of theLagrange nodes describing
Kn . More precisely, upon defining the geometric transformation T n

K : K̂ −→ K at
time tn by

T n
K (̂x) =

∑
i∈{1:ngeosh }

anjgeo(i,K )θ̂
geo
i (̂x) (9)

we have K := T n
K (K̂ ). In other words the geometric transformation is fully described

by the motion of geometric Lagrange nodes. Recall that constructing the Jacobian
matrix JnK from (9) is an elementary operation for any finite element code.

4.2 Approximating Finite Elements

We now introduce a set of reference finite elements {(K̂r , P̂r , Σ̂r )}1≤r≤� which we
are going to use to construct an approximate solution to (1) (the index r ∈ {1:� }will
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be omitted in the rest of the paper to alleviate the notation). The shape functions on
the reference element are denoted {θ̂i }i∈{1:nsh}. We assume that the basis {θ̂i }i∈{1:nsh}
has the following key properties:

θ̂i (x) ≥ 0,
∑

i∈{1:nsh}
θ̂i (̂x) = 1, ∀x̂ ∈ K̂ . (10)

These properties hold true for linear Lagrange elements and for Bernstein-Bezier
finite elements, see, e.g., [16, Chap.2], [1].

Given the mesh T n
h , we denote by Dn the computational domain generated by

T n
h and we define the scalar-valued space

P(T n
h ) := {v ∈ C 0(Dn;R) | v|K◦T n

K ∈ P̂, ∀K ∈ T n
h }.

We also introduce the vector-valued spaces

Pd(T
n
h ) := [P(T n

h )]d , and Pm(T n
h ) := [P(T n

h )]m .

We are going to approximate the ALE velocity in Pd(T
n
h ) and the solution of (1) in

Pm(T n
h ). The global shape functions in P(T n

h ) are denoted by {ψn
i }i∈{1: I }. Recall

that these functions form a basis of P(T n
h ). Let j : T n

h × {1:nsh} −→ {1: I } be the
connectivity array, assumed to be independent of n. This array is defined such that

ψn
j(i,K )(x) = θ̂i ((T

n
K )−1(x)), ∀i ∈ {1:nsh}, ∀K ∈ T n

h .

This definition together with (10) implies that

ψn
i (x) ≥ 0,

∑
i∈{1: I }

ψn
i (x) = 1, ∀x ∈ R

d .

We denote by Sni the support of ψn
i and by |Sni | the measure of Si , i ∈ {1: I }. We

also define Sni j := Sni ∩ Snj the intersection of the two supports Sni and Snj . Let E be
a union of cells in T n

h ; we define I (E) := { j ∈ {1: I } | |Snj ∩ E | �= 0} the set that
contains the indices of all the shape functions whose support on E is of nonzero
measure. Note that the index set I (E) does not depend on the time index n since
we have assumed that the connectivity of the degrees of freedom is fixed once for
all. We are going to regularly invoke I (K ) and I (Sni ) and the partition of unity
property:

∑
i∈I (K ) ψn

i (x) = 1 for all x ∈ K .

Lemma 6 For all K ∈ T n
h , all x ∈ K, and all vh := ∑

i∈{1: I } Viψ
n
i ∈ Pm(T n

h ),
vh(x) is in the convex hull of (Vi )i∈I (K ) (henceforth denoted conv(Vi )i∈I (K )). More-
over for any convex set A in R

m, we have

(
(Vi )i∈I (K ) ∈ A

) ⇒ (vh(x) ∈ A, ∀x ∈ K ) . (11)
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4.3 ALE Algorithm

Let T 0
h be the mesh at the initial time t = 0. Let (m0

i )i∈{1: I } be the approximations
of the mass of the shape functions at time t0 defined by m0

i = m0
i := ∫

Rd ψ0
i (x) dx.

Let uh0 := ∑
i∈{1: I } U

0
i ψ

0
i ∈ Pm(T 0

h ) be a reasonable approximation of the initial
data u0 (we shall make a more precise statement later).

Let T n
h be the mesh at time tn , (mn

i )1≤i≤I be the approximations of the mass of
the shape functions at time tn , and un

h := ∑
i∈{1: I } U

n
i ψ

n
i ∈ Pm(T n

h ) be the approx-
imation of u at time tn . We denote by ML ,n the approximate lumped matrix, i.e.,
ML ,n

i j = mn
i δi j . We now make the assumption that the given ALE velocity field is

a member of Pd(T
n
h ), i.e., Wn = ∑

i∈{1: I } W
n
i ψ

n
i ∈ Pd(T

n
h ). Then the Lagrange

nodes of the mesh are moved by using the following rule:

an+1
i = ani + τWn(ani ). (12)

This fully defines the mesh T n+1
h as explained at the end of Sect. 4.1. Upon

introducing ψ
geo
jgeo(i,K )

(ξ) := θ̂i ((T n
K )−1(ξ)) and ai (t) = ani + (t − tn)Wn(ani ) for t ∈

[tn, tn + τ ], this also defines the ALE mapping

Φ t |K (ξ) =
∑

i∈{1:ngeosh }
ajgeo(i,K )(t)ψ

geo
jgeo(i,K )

(ξ), ∀ξ ∈ K , ∀K ∈ T n
h . (13)

We now estimate the mass of the shape function ψn+1
i := ψn

i ◦ Φ tn+1 . Of course
we could use mn+1

i = ∫
Rd ψn+1

i (x) dx. This option leads to many difficulties that
are explored in [13]; in particular, extending the method to high-order in time with
this definition is problematic. To have a method that is compatible with higher-
order strong stability preserving (SSP) time stepping techniques, we definemn+1

i by
approximating the following identity with a first-order quadrature rule:

∫
Rd

ψn+1(x) dx −
∫
Rd

ψn(ξ) dξ =
∫
Rd

ψn(ξ)

[∫ tn+1

tn
∂ζ det(J(ξ , ζ )) dζ

]
dξ .

Note that det(J(ξ , ζ )) is a polynomial function of ζ of degree d. The first-order
approximation of the integral with respect to ζ in the above expression gives:

mn+1
i = mn

i + τ

∫
Sni

ψn
i (x)∇ · Wn(x) dx. (14)

Taking inspiration from (8), we propose to compute un+1
h as follows:
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mn+1
i Un+1

i − mn
i U

n
i

τ
−

∑
j∈I (Sni )

dn
i jU

n
j

+
∫
Rd

∇ ·
( ∑

j∈{1: I }
( f (Un

j ) − Un
j ⊗ Wn

j )ψ
n
j (x)

)
ψn
i (x) dx = 0, (15)

where un+1
h := ∑

i∈{1: I } U
n+1
i ψn+1

i ∈ Pm(T n+1
h ). Notice that we have replaced the

consistent mass matrix by an approximation of the lumped mass matrix to approx-
imate the time derivative. The coefficient dn

i j is an artificial viscosity for the pair
of degrees of freedom (i, j) that will be identified by proceeding as in [12]. We
henceforth assume that dn

i j = 0 if j /∈ I (Sni ) and

dn
i j ≥ 0, if i �= j, dn

i j = dn
ji , and dii :=

∑
i �= j∈I (Sni )

−dn
ji . (16)

The entire process is described in Algorithm 4.
Let us reformulate (15) in a form that is more suitable for computations. Let us

introduce the vector-valued coefficients

cni j :=
∫
Sni

∇ψn
j (x)ψn

i (x) dx. (17)

We define the unit vector nn
i j := cni j

‖cni j‖2
. Then we rewrite (15) as follows:

mn+1
i Un+1

i − mn
i U

n
i

τ
+

∑
j∈I (Sni )

( f (Un
j ) − Un

j ⊗ Wn
j ) · cni j − dn

i jU
n
j = 0. (18)

It will be shown in the proof of Theorem 1 that an admissible choice for dn
i j is

dn
i j = max(λmax(gnj , n

n
i j ,U

n
i ,U

n
j )‖cni j‖2 , λmax(gni , n

n
ji ,U

n
j ,U

n
i )‖cnji‖2). (19)

whereλmax(gnj , n
n
i j ,U

n
i ,U

n
j )isthelargestwavespeedinthefollowingone-dimensional

Riemann problemwith the flux gnj (v) := f (v) − v ⊗ Wn
j :

∂tv + ∂x (gnj (v) · nn
i j ) = 0, (x, t) ∈ R × R+, v(x, 0) =

{
Un

i if x < 0

Un
j if x > 0.

(20)

Remark 2 (Fastest wave speed) The fastest wave speed in (20) can be obtained by
estimating the fastest wave speed in the Riemann problem (2) with the flux f (v) · nn

i j
and the initial data (Un

i ,U
n
j ). Let λL( f , nn

i j ,U
n
i ,U

n
j ) and λR( f , nn

i j ,U
n
i ,U

n
j ) be the

speed of the leftmost and the rightmost waves in (2), respectively. Then
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λmax(gnj , n
n
i j ,U

n
i ,U

n
j ) = max(|λL( f , nn

i j ,U
n
i ,U

n
j ) − Wn

j · nn
i j |,

|λR( f , nn
i j ,U

n
i ,U

n
j ) − Wn

j · nn
i j |).
(21)

A fast algorithm to compute λL( f , nn
i j ,U

n
i ,U

n
j ) and λR( f , nn

i j ,U
n
i ,U

n
j ) for the com-

pressible Euler equations is given in [11]; see also [20].

Algorithm 4
Require: u0h andML ,0

1: while tn < T do
2: Use CFL condition to estimate τ .
3: if tn + τ > T then
4: τ ← T − tn

5: end if
6: Estimate/choose Wn and make sure that the transformation Φ t defined in (13) is invertible

over the interval [tn, tn+1].
7: Move mesh from tn to tn+1 using (12).
8: Compute mn+1

i , see (14). Check mn+1
i > 0; otherwise, go to step 6, reduce τ .

9: Compute cni j as in (17).
10: Compute dni j , see (19) and (16).
11: Check 1 − ∑

i �= j∈I (Sni ) 2d
n
i j

τ

mn+1
i

positive. Otherwise, go to step 6 and reduce τ .

12: Compute un+1
h by using (18).

13: tn ← tn + τ

14: end while

Since it is important to compare Un+1
j and Un

j to establish the invariant domain
property, we rewrite the scheme in a form that is more suitable for this purpose.

Lemma 7 (Non-conservative form) The scheme (15) is equivalent to

mn+1
i

U n+1
i − U n

i

τ
=

∑
j∈I (S n

i )

((U n
j − U n

i ) ⊗ W n
j − f (U n

j )) · cni j + d n
i jU

n
j , (22)

Proof We rewrite (18) as follows:

mn+1
i

Un+1
i − Un

i

τ
+ mn+1

i − mn
i

τ
Un

i =
∑

j∈I (Sni )

(Un
j ⊗ Wn

j − f (Un
j )) · cni j + dn

i jU
n
j ,

Then, recalling the expression Wn = ∑
i∈{1: I } W

n
i ψ

n
i , and using (14), we infer that

mn+1
i = mn

i + τ
∑

j∈I (Sni ) W
n
j · cni j , which in turn implies that

(mn+1
i − mn

i )U
n
i = τUn

i

∑
j∈I (Sni )

Wn
j · cni j = τ

∑
j∈I (Sni )

(Un
i ⊗ Wn

j ) · cni j .

�
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Remark 3 (Other discretizations) The method for computing the artificial diffusion
is quite generic, i.e., it is not specific to continuous finite elements. The abovemethod
can be applied to any type of discretization that can be put into the form (18).

4.4 SSP Extension

Retaining the invariant domain property (see Sect. 5.1) and increasing the time accu-
racy can be done by using so-called Strong Stability Preserving (SSP) time discretiza-
tion methods. The key is to achieve higher-order accuracy in time by making convex
combination of solutions of forward Euler sub-steps. More precisely each time step
of a SSP method is decomposed into substeps that are all forward Euler solutions,
and the end of step solution is a convex combination of the intermediate solutions;
see [8, 10, 14] for reviews on SPP techniques. Algorithm 5 illustrates one Euler step
of the scheme. SSP techniques are useful when combined with reasonable limitation
strategies since the resulting methods are high-order, both in time and space, and
invariant domain preserving.

Algorithm 5 Euler step
Require: T 0

h , u
0
h , (m

0 or m0),W0, τ
1: Compute ã1i = a0i + τW0, (m̃1 or m̃1), ũ1h , and build new mesh T̃ 1

h
2: return T̃ 1

h , ũ
1
h , (m̃

1 or m̃1)

As an illustration we describe the SSP RK3 implementation of the scheme in
Algorithm 6. Generalizations to other SSP techniques are left to the reader.

Algorithm 6 SPP RK3
Require: T 0

h , u
0
h , m

0, t0

1: Define the ALE velocityW0 at t0

2: Call Euler step(T 0
h , u

0
h , m

0, W0, τ , T 1
h , u

1
h , m

1)
3: Define the ALE velocityW1 at t0 + τ

4: Call Euler step(T 1
h , u

1
h , m

1,W1, τ , T̃ 2
h , ũ

2
h , m̃

2)

5: Set a2 = 3
4 a

0 + 1
4 ã

2, m2 = 3
4m

0 + 1
4 m̃

2, build mesh T 2
h , u

2
h = 3

4
m0

m2 u
0
h + 1

4
m̃2

m2 ũ
2
h

6: Define the ALE velocityW2 at t0 + 1
2 τ

7: Call Euler step(T 2
h , u

2
h , m

2,W2, τ , T̃ 3
h , ũ

3
h , m̃

3)

8: Set a3 = 1
3 a

0 + 2
3 ã

3, m3 = 1
3m

0 + 2
3 m̃

3, build mesh T 3
h , u

3
h = 1

3
m0

m3 u
0
h + 2

3
m̃3

m3 ũ
3
h

9: return T 3
h , u

3
h , m

3, t1 = t0 + dt
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Note that u2
h is a convex combination of u0

h and ũ2
h since 1 = 3

4
m0

i

m2
i
+ 1

4
m̃2

i

m2
i
. The

same observation holds true for u3
h , i.e., u

3
h is a convex combination of u0

h and ũ3
h

since 1 = 1
3
m0

i

m3
i
+ 2

3
m̃3

i

m3
i
, for any i ∈ {1: I }.

5 Stability Analysis

We establish the conservation and the invariant domain property of the scheme (15).

5.1 Invariant Domain Property

We first discuss the conservation properties of the scheme.

Lemma 8 For the scheme (15), the quantity
∑

i∈{1: I } m
n
i U

n
i is independent of n, i.e.,

the total mass is conserved.

Wecan nowprove a result somewhat similar in spirit to Thm5.1 from [7], although
the present result is more general since it applies to any hyperbolic system.We define
the local minimum mesh size hni j associated with an ordered pair of shape functions
(ψn

i , ψn
j ) as follows:

hni j := 1

‖‖∇ϕ j‖2‖L∞(Sni j )
,

where Sni j = Sni ∩ Snj . We then define a local mesh size and a local mesh structure
parameter κn

i by setting

hni = min
j∈I (Sni )

hni j , κn
i :=

∑
i �= j∈I (Sni )

∫
Sni j

ψn
i (x) dx∫

Sni
ψn
i (x) dx

.

Note that the upper estimate κn
i ≤ max j∈{1: I } card(I (Sj (0))) − 1 implies that κn

i is
uniformly bounded with respect to n and i .

Theorem 1 (Local invariance) Let n ≥ 0, and i ∈ {1: I }. Assume the CFL condition

2τ
λn
i,max

hni
κn
i

mn
i

mn+1
i

≤ 1, (23)

where λn
i,max := max j∈I (Sni )(λmax(gnj , n

n
i j ,U

n
i ,U n

j ), λmax(gni , n
n
ji ,U

n
j ,U n

i )). Let B
⊂ A f be a convex invariant set for the flux f . If {U n

j | j ∈ I (Sni )} ⊂ B, then

U n+1
i ∈ B.
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Proof Let i ∈ {1: I } and invoke (22) from Lemma 7 to express Un+1
i as follows:

Un+1
i = Un

i + τ

mn+1
i

∑
j∈I (Sni )

((Un
j − Un

i ) ⊗ Wn
j − f (Un

j )) · cni j + dn
i jU

n
j .

Since the partition of unity property implies that
∑

j∈I (Sni ) c
n
i j = 0 and we have∑

j∈I (Sni ) d
n
i j = 0 from (16), we can rewrite the above equation as follows:

Un+1
i = Un

i +
∑

j∈I (Sni )

dn
i j (U

n
i + Un

j )

+ τ

mn+1
i

∑
j∈I (Sni )

((Un
j − Un

i ) ⊗ Wn
j + f (Un

i ) − f (Un
j )) · cni j

= Un
i

(
1 + 2dn

ii

τ

mn+1
i

)
+

∑
i �= j∈I (Sni )

dn
i j (U

n
i + Un

j )

+ τ

mn+1
i

∑
i �= j∈I (Sni )

((Un
j − Un

i ) ⊗ Wn
j + f (Un

i ) − f (Un
j )) · cni j .

Let us introduced the auxiliary state U
n+1
i j defined by

U
n+1
i j = ( f (Un

i ) − f (Un
j ) − (Un

i − Un
j ) ⊗ Wn

j ) · nn
i j

‖cni j‖2

2dn
i j

+ 1

2
(Un

i + Un
j ),

where nn
i j := cni j/‖cni j‖2 . Then, provided we establish that

1 −
∑

i �= j∈I (Sni )

2dn
i j

τ

mn+1
i

≥ 0,

we have proved that Un+1
i is a convex combination of Un

i and (U
n+1
i j )i �= j∈I (Sni ):

Un+1
i = Un

i

(
1 −

∑
i �= j∈I (Sni )

2dn
i j

τ

mn+1
i

)
+ τ

mn+1
i

∑
i �= j∈I (Sni )

2dn
i jU

n+1
i j . (24)

Let us now consider theRiemann problem (20). Let v(gnj , n
n
i j ,U

n
i ,U

n
j ) be the solution

to (20) with gnj (v) := f (v) − v ⊗ Wn
j . Let λmax(gnj , n

n
i j ,U

n
i ,U

n
j ) be the fastest wave

speed in (20), see (21). Using the notation of Lemma 1, we then observe thatU
n+1
i j =

v(t, gnj , n
n
i j ,U

n
i ,U

n
j )with t = ‖cni j‖2

2dn
i j

, provided tλmax(gnj , n
n
i j ,U

n
i ,U

n
j ) ≤ 1

2 . Note that

the definition of dn
i j , (19), implies that the condition tλmax(gnj , n

n
i j ,U

n
i ,U

n
i ) ≤ 1

2 is
satisfied. Since B is an invariant set for the flux f , by Lemma 2, B is also an invariant
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set for the flux gnj . Since, in addition, B contains the data (Un
i ,U

n
j ), we conclude

thatU
n+1
i j = v(t, gnj , n

n
i j ,U

n
i ,U

n
j ) ∈ B; see Remark 1. In conclusion,Un+1

i ∈ B since

Un+1
i is a convex combination of objects in B. The rest of the proof consists of

verifying that (23) indeed implies

1 −
∑

i �= j∈I (Sni )

2dn
i j

τ

mn+1
i

≥ 0.

�

Corollary 1 Let n ∈ N. Assume that τ is small enough so that the CFL condition
(23) holds for all i ∈ {1: I }. Let B ⊂ A f be a convex invariant set. Assume that
{U n

i | i ∈ {1: I }} ⊂ B. Then (i) {U n+1
i | i ∈ {1: I }} ⊂ B; (ii) un

h ∈ B and un+1
h ∈ B.

Proof The statement (i) is a direct consequence of Theorem 1. The statement (ii) is
a consequence of (11) from Lemma 6. �

Corollary 2 Let B ⊂ A f be a convex invariant set containing the initial data u0.
Assume that {U0

i | i ∈ {1: I }} ⊂ B. Let N ∈ N. Assume that τ is small enough so
that the CFL condition (23) holds for all i ∈ {1: I } and all n ∈ {0:N }. Then {Un

i |
i ∈ {1: I }} ⊂ B and un

h ∈ B for all n ∈ {0:N + 1}.
Remark 4 (Construction of u0

h) Let B ⊂ A f be a convex invariant set containing the
initial data u0. If Pm(T 0

h ) is composedof piecewiseLagrange elements, thendefining
u0
h to be the Lagrange interpolant of u0, we have {U0

i | i ∈ {1: I }} ⊂ B. Similarly if
Pm(T 0

h ) is composed of Bernstein finite elements of degree two and higher, then
defining u0

h to be the Bernstein interpolant of u0 we have {U0
i | i ∈ {1: I }} ⊂ B; see

[16, Eq. (2.72)]. In both cases the assumptions of Corollary 2 hold true.

5.2 Discrete Geometric Conservation Law

The ALE scheme (15) preserves constant states. This property is known in the liter-
ature as the Discrete Geometric Conservation Law (DGCL).

Corollary 3 (DGCL) The scheme (15) preserves constant states. In particular if
U n

j = U n
i for all j ∈ I (Sni ), then U n+1

i = U n
i .

Proof The partition of unity property implies that
∑

j∈I (Sni ) c
n
i j = 0. Moreover, the

definition dn
i j implies that

∑
j∈I (Sni ) d

n
i j = 0 (see (16)). Since Lemma 7 implies that

Un+1
i = Un

i + dni j (U
n
j − Un

i ) + τ

mn+1
i

∑
j∈I (Sni )

((Un
j − Un

i ) ⊗ Wn
j + f (Un

i ) − f (Un
j )) · cni j ,

it is now clear that if Un
j = Un

i for all j ∈ I (Sni ), then Un+1
i = Un

i . �
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Remark 5 (DGCL)Note that although theDGCLseems to be given some importance
in the literature, Corollary 3 has no particular significance. It is a direct consequence
of the definition of the mass update (14) which is invoked to rewrite the scheme
(15) from the conservative form to the equivalent nonconservative form (22). This
equivalence is essential to prove the invariant domain property. In other words, the
DGCL is just a consequence of the equivalence of the discrete conservative and
nonconservative formulations.

5.3 Discrete Entropy Inequality

In this section we prove a discrete entropy inequality which is consistent with the
inequality stated in Lemma 5.

Theorem 2 Let (η, q) be an entropy pair for (1). Let n ∈ N and i ∈ {1: I }. Assume
that all the assumptions of Theorem 1 hold. Then the following discrete entropy
inequality holds:

1

τ

(
mn+1

i η(U n+1
i ) − mn

i η(U n
i )

) ≤ −
∑

j∈I (Sni )

d n
i jη(U n

j )

−
∫
Rd

∇ ·
( ∑

j∈I (Sni )

(q(U n
j ) − η(U n

j )W
n
j )ψ

n
j (x)

)
ψ n
i (x) dx. (25)

Proof Let (η, q) be an entropy pair for the hyperbolic system (1). Let i ∈ {1: I } and
let n ∈ N. Then using (24), the CFL condition and the convexity of η, we have

η(Un+1
i ) ≤ η(Un

i )

(
1 −

∑
i �= j∈I (Sni )

2dn
i j

τ

mn+1
i

)
+ τ

mn+1
i

∑
i �= j∈I (Sni )

2dn
i jη(U

n+1
i j ).

This can also be rewritten as follows:

mn+1
i

τ

(
η(Un+1

i ) − η(Un
i )

) ≤
∑

i �= j∈I (Sni )

2dn
i j (η(U

n+1
i j ) − η(Un

i )).

Owing to (5) from Lemma 1, and recalling that the entropy flux of the Riemann
problem (20) is (q(v) − η(v)Wn

j ) · nn
i j we infer that

η(U
n+1
i j ) ≤ 1

2 (η(Un
i ) + η(Un

j )) − t
(
q(Un

j ) − η(Un
j )W

n
j − q(Un

i ) + η(Un
i )W

n
j

) · nn
i j

with t = ‖cni j‖2/2dn
i j . Inserting this inequality in the first one, we have



Arbitrary Lagrangian-Eulerian Finite Element Method Preserving … 267

mn+1
i

τ

(
η(Un+1

i ) − η(Un
i )

) ≤
∑

j∈I (Sni )

dn
i j (η(Un

j ) − η(Un
i ))

−
∑

j∈I (Sni )

‖cni j‖2
(
q(Un

j ) − q(Un
i ) − (η(Un

j ) − η(Un
i ))W

n
j

) · nn
i j .

By proceeding as in the proof of Lemma 7, we observe that

mn+1
i − mn

i

τ
=

∑
j∈I (Sni )

Wn
j · cni j .

Then using that ‖cni j‖2nn
i j = cni j , we obtain (25). This concludes the proof. �

6 Numerical Tests

In this section, we numerically illustrate the performance of the proposed method
using SSP RK3. All the tests have been done with two different codes. One code is
written in F95 and uses P1 Lagrange elements on triangles. The other code is based
on deal.ii [2], is written in C++ and uses Q1 Lagrange elements on quadrangles.
The mesh composed of triangles is obtained by dividing all the quadrangles into two
triangles. The same numbers of degrees of freedom are used for both codes.

6.1 Analytical Scalar-Valued Solution

To test the convergence property of the SSP RK3 version of the method, as described
in Algorithm 6, we solve the linear transport equation in the domain D0 = (0, 1)2:

∂t u + ∇ · (βu) = 0, u0(x) = x1 + x2, (26)

where β = (sin(πx1) cos(πx2) cos(2π t),− cos(πx1) sin(πx2) cos(2π t))T. In both
codes the ALE velocity is chosen by setting Wn

i = β(ani ), i.e., W
n
h is the Lagrange

interpolant of β on T n
h . Notice that there is no issue with boundary condition since

β · n|∂D0 = 0.
We first test the accuracy in time of the algorithm by setting dn

i j = 0, i.e., the
viscosity is removed. The computations are donewithCFL = 1. The errormeasured
in the L1-norm at time t = 0.5 is reported in the left part of Table1. The third-order
convergence in time is confirmed.Note that there is no space error due to the particular
choice for the ALE velocity and the initial data.

In the second test we put back the viscosity dn
i j . Notice that the particular choice

of the ALE velocity implies that λmax(gnj , n
n
i j ,U

n
i ,U

n
j ) = |(βn

i − βn
j ) · nn

i j |; hence
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Table 1 Rotation problem (26) with Lagrangian formulation, CFL=1.0

#dofs Without viscosity With viscosity

Q1, L1-norm P1,L1-norm Q1, L1-norm P1, L1-norm

81 6.46E–04 − 1.76E–03 − 1.31E–02 − 1.13E–02 −
289 1.16E–04 2.48 2.46E–04 2.85 4.28E–03 1.61 3.63E–03 1.64

1089 1.41E–05 3.03 3.23E–05 2.93 1.23E–03 1.80 1.04E–03 1.80

4225 1.76E–06 3.01 4.20E–06 2.94 3.29E–04 1.90 2.78E–04 1.90

16641 2.26E–07 2.96 5.76E–07 2.87 8.50E–05 1.95 7.19E–05 1.95

66049 2.82E–08 3.00 9.57E–08 2.59 2.16E–05 1.97 1.83E–05 1.98

the viscosity is second-order in space instead of being first-order. This phenomenon
makes the algorithm second-order in space (in addition to being conservative and
maximum principle preserving). The error in the L1-norm at time t = 0.5 is shown
in the right part of Table1.

6.2 Nonlinear Scalar Conservation Equations

We now test the method on nonlinear scalar conservation equations.

6.2.1 Definition of the ALE Velocity

In nonlinear conservation equations, solutions may develop shocks in finite time. In
this case, using the purely Lagrangian velocity leads to a breakdown of the method in
finite time which manifests itself by a time step that goes to zero as the current time
approaches the time of formation of the shock. One way to avoid this breakdown is
to use an ALE velocity that is a modified version of the Lagrangian velocity.

We now propose an algorithm to compute an ALE velocity based on [17]. The
only purpose of this algorithm is to be able to run the nonlinear simulations past the
time of formation of shocks. We refer the reader to the abundant ALE literature to
design other ALE velocities that better suit the reader’s goals.

We first deform the mesh by using the Lagrangian motion, i.e., we set

an+1
i,Lg = ani + τ∇u f (U

n
i );

we recall that Un
i ∈ R and ∇u f (U

n
i ) ∈ R

d for scalar equations. Then, given L ∈
N \ {0},wedefine a smoothversionof theLagrangianmeshby smoothing theposition
of the geometric Lagrange nodes as follows:
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⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

an+1,0
i := an+1

i,Lg , i ∈ {1: I }(
an+1,l
i := 1

|I (Si )| − 1

∑
i �= j∈I (S i )

an+1,l−1
j , i ∈ {1: I }

)
, l ∈ {1:L}

an+1
i,Sm := an+1,L

i , i ∈ {1: I }.

(27)

Finally, the actual ALE motion is defined by

an+1
i = ωan+1

i,Lg + (1 − ω)an+1
i,Sm, i ∈ {1: I },

where ω is a user-defined constant. In all our computations, we useω = 0.9 and L =
2. As mentioned in [17], a more advanced method consists of choosing ω pointwise
by using the right Cauchy-Green strain tensor. We have not implemented this version
of the method since the purpose of the tests in the next sections is just to show that
the present method works as advertised for any reasonable ALE velocity.

6.2.2 Burgers Equation

We consider the inviscid Burgers equation in two space dimensions

∂t u + ∇ · ( 12u
2β) = 0, u0(x) = 1{‖x‖2 },

where β = (1, 1)T and 1E denotes the characteristic function of the set E ⊂ R
d .

The solution to this problem at time t > 0 and at x = (x1, x2) is given as follows.
Assume first that x2 ≤ x1, then define α = x1 − x2 and let α0 = 1 − t

2 . There are
three cases:

1. If α > 1, then u(x1, x2, t) = 0.
2. If α ≤ α0, then

u(x1, x2, t) =

⎧⎪⎪⎨
⎪⎪⎩
x2
t

if 0 ≤ x2 < t

1 if t ≤ x2 < t
2 + 1 − α

0 otherwise.

3. If α0 < α ≤ 1, then

u(x1, x2, t) =
{ x2

t
if 0 ≤ x2 <

√
2t (1 − α)

0 otherwise.

If x2 > x1, then u(x1, x2, t) := u(x2, x1, t). The computation are done up to T = 1
in the initial computational domain D0 = (−0.25, 1.75)2. The boundary of Dn does
not move in the time interval (0, 1), i.e., ∂D0 = ∂Dn for any n ≥ 0. The results of the
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Table 2 Burgers equation, convergence tests, CFL = 0.1

# dofs Q1 P1

L2-error L1-error L2-error L1-error

81 5.79E–01 − 6.00E–01 − 5.80E–01 − 6.17E–01 −
289 4.20E–01 0.46 3.88E–01 0.63 4.43E–01 0.39 4.68E–01 0.40

1089 2.96E–01 0.51 2.32E–01 0.74 3.12E–01 0.51 2.86E–01 0.71

4225 2.14E–01 0.47 1.32E–01 0.82 2.17E–01 0.53 1.55E–01 0.88

16641 1.56E–02 0.45 7.40E–02 0.83 1.23E–01 0.82 7.57E–02 1.04

Fig. 1 Burgers equation. Left:Q1 FEMwith 25 contours; Center left: FinalQ1 mesh; Center right:
P1 FEM with 25 contours; Right: Final P1 mesh

convergence tests are reported in Table2. The solution is computed on a 128 × 128
mesh. The Q1 and P1 meshes at T = 1 are shown in Fig. 1.

6.3 Compressible Euler Equations

We finish the series of tests by solving the compressible Euler equations in R2

⎧⎪⎨
⎪⎩

∂tρ + ∇ · (ρu) = 0,

∂t (ρu) + ∇ · (ρu ⊗ u + pI) = 0,

∂t E + ∇ · (u(E + p)) = 0,

with the ideal gas equation of state, p = (γ − 1)(E − 1
2ρ‖u‖2

2
) where γ > 1, and

appropriate initial and boundary conditions. The motion of the mesh is done as
described in (27)with an+1

i,Lg = ani + τun
h(a

n
i )where u

n
h is the approximate fluid veloc-

ity.
We consider the so-called Noh problem, see, e.g., [3, Sect. 5]. The computational

domain at the initial time is D0 = (−1, 1)2 and the initial data is

ρ0(x) = 1.0, u0(x) = − x
‖x‖2

, p0(x) = 10−15.
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Table 3 Noh problem, convergence test, T = 0.6, CFL = 0.2

# dofs Q1 P1

L2-norm L1-norm L2-norm L1-norm

961 2.60 − 1.44 − 2.89 − 1.71 −
3721 1.81 0.52 8.45E–01 0.77 2.21 0.39 1.09 0.64

14641 1.16 0.64 4.21E–01 1.01 1.42 0.64 5.15E–01 1.08

58081 7.66E–01 0.60 2.10E–01 0.99 9.39E–01 0.59 2.60E–01 0.99

231361 5.21E–01 0.56 1.06E–01 0.98 6.33E–01 0.57 1.28E–01 1.02

A Dirichlet boundary condition is enforced on all the dependent variables at the
boundary of the domain. We use γ = 5

3 . The ALE velocity at the boundary of the
computational domain is prescribed to be equal to the fluid velocity, i.e., the boundary
moves inwards in the radial direction with speed 1. The final time is chosen to be
T = 0.6 in order to avoid that the shockwave collides with the moving boundary of
the computational domain which happens at t = 3

4 since the shock moves radially
outwards with speed 1

3 .
The solution to this problem is known. We show in Table3 the L1- and the L2-

norm of the error on the density for various meshes which are uniform at t = 0:
30 × 30, 60 × 60, etc.

7 Concluding Remarks

In this paper we have developed a framework for constructing ALE algorithms using
continuous finite elements. Themethod is invariant domain preserving on anymesh in
arbitrary space dimension. Themethodology applies to any hyperbolic systemwhich
has such intrinsic property. If the system at hand has an entropy pair, then the method
also satisfies a discrete entropy inequality. The time accuracy of the method can be
increased by using SSP time discretization techniques. The equivalence between the
conservative and non-conservative formulations implies the that DGCL condition
holds (preservation of constant states). The new methods have been tested on a
series of benchmark problems and the observed convergence orders and numerical
performance are compatible with what is reported in the literature.
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Dual-Primal Isogeometric Tearing
and Interconnecting Methods

Christoph Hofer and Ulrich Langer

Abstract This paper generalizes the Dual-Primal Finite Element Tearing and Inter-
connecting (FETI-DP) method, that is well established as parallel solver for large-
scale systems of finite element equations, to linear algebraic systems arising from
the Isogemetric Analysis of elliptic diffusion problems with heterogeneous diffusion
coefficients in two- and three-dimensional multipatch domains with C0 smoothness
across the patch interfaces. We consider different scalings, and derive the expected
polylogarithmic bound for the condition number of the preconditioned systems. The
numerical results confirm these theoretical bounds, and show incredibly robustness
with respect to large jumps in the diffusion coefficient across the interfaces.

1 Introduction

Isogeometric Analysis (IgA) is a relatively newmethodology for the numerical solu-
tion of partial differential equations (PDEs). IgA was introduced by Hughes, Cottrell
and Bazilevs in [20], and has become a very active field of research, see also [2] for
the first results on the numerical analysis of IgA, the monograph [10] for a compre-
hensive presentation of the IgA, and the recent survey article [3] on the mathematical
analysis of variational isogeometric methods. In IgA, the basis functions, which are
used for the representation of the geometry in computer aided design (CAD) models
anyway, are also employed for approximating the solution of the PDE or the sys-
tem of PDEs describing the physical phenomenon which we are going to simulate.
The typical choice for such basis functions are B-Splines or Non-Uniform Rational
Basis Spline (NURBS). One advantage of the IgA over the more traditional finite
element method (FEM) is certainly the fact that there is no need for decomposing the
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computational domain into finite elements. Hence, one gets rid of this geometrical
error source, at least, in the class of computational domains that are produced by a
CAD system. Moreover, it is much easier to build up Cl, l ≥ 1, conforming basis
functions in IgA than in the finite element (FE) case. The major drawback is the fact
that the basis functions are not nodal and have a larger support. However, it is still
possible to associate basis functions to the interior, the boundary and the vertices of
the subdomains (patches), which is crucial for the dual-primal isogeometric tearing
and interconnecting (IETI-DP) method, which was introduced in [23]. The IETI-DP
method is an extension of the dual-primal finite element tearing and interconnecting
method (FETI-DP) to IgA. The FETI-DP was introduced by Farhat, Lesoinne, Le
Tellec, Pierson, andRixen in [15] as a faster alternative to the classical two-level FETI
method that was earlier proposed for the parallel solution of large-scale finite element
systems by Farhat and Roux in [16]. A comprehensive presentation of different FETI
algorithms, including versions nowadays called balanced domain decomposition by
constraints (BDDC), and their analysis as well as the corresponding references to
the original papers can be found in the monographs [30] and [28]. The analysis of
BDDC preconditioners for IgA matrices, which has been done in [6], also applies to
the IETI-DP method due to the same spectrum (with the exception of at most two
eigenvalues), see [27]. The so-called deluxe scaling, that was introduced in [12] for
improving the robustness of BDDC preconditioners of finite element stiffness matri-
ces, has recently been also generalized to IgAmatrices [8]. We here also mention the
recent developments of other IgA domain decomposition (DD) techniques. In par-
ticular, we refer to [5], [7] and [9] for isogeometric overlapping Schwarz methods,
[18] for isogeometric mortaring discretizations, and [1] for comparison of different
domain decomposition methods.

The aim of this paper is to extend the condition number estimates for BDDC pre-
conditioners, presented in [6], to multipatch domains composed of non-overlapping
patches which are images of the parameter domain by several different geometrical
mappings. Moreover, we present the derivation of an improved bound for the condi-
tion number for the so-called stiffness scaling in the simplified case ofC0 smoothness
across patch interfaces. For simplicity, we consider a diffusion problem with a het-
erogeneous diffusion coefficient α as model problem, the weak formulation of which
reads as follows: find u ∈ VD = {u ∈ H 1(Ω) : u = 0 on ΓD} such that

a(u, v) = 〈F, v〉 ∀v ∈ VD, (1)

where the bilinear form a(·, ·) : VD × VD → R and the linear form 〈F, · 〉 : VD → R

are given by the expressions

a(u, v) =
∫

Ω

α(x)∇u(x) · ∇v(x) dx and 〈F, v〉 =
∫

Ω

f (x)v(x) dx +
∫

ΓN

gN (x)v(x) ds,

respectively. We assume that the computational (physical) domain Ω is a bounded
Lipschitz domain in Rd with d ∈ {2, 3} that can be represented by a multipatch IgA
map from the parameter domain Ω̂ = (0, 1)d . The boundary Γ = ∂Ω of Ω consists
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of a non-empty Dirichlet part ΓD and a Neumann part ΓN . Furthermore, we assume
that the Dirichlet boundary ΓD is always a union of complete domain sides which
are uniquely defined in IgA. Without loss of generality, we assume homogeneous
Dirichlet conditions. The given data f , gN and α are assumed to be sufficiently
smooth, where the diffusion coefficient α is assumed to be positive and patchwise
constant.

The rest of the paper is organized as follows. In Sect. 2, we recall the basic defi-
nitions and properties of B-Splines as well as the main principles of IgA. The IETI-
DP and the corresponding BDDC methods are explained and analysed in Sect. 3.
Section 4 is devoted to the implementation of the IETI-DP method. The numerical
examples confirming the theory are presented in Sect. 5. Finally, in Sect. 6, we draw
some conclusions and discuss further issues concerning generalizations tomultipatch
discontinuous Galerkin IgA schemes as constructed and analysed in [24, 25].

2 Some Preliminaries on Multipatch Isogeometric Analysis

B-Splines and NURBS play an important role in computer aided design and com-
puter graphics. Here we will use these splines for building our trial and test spaces
for the Galerkin approximations to (1), as proposed in [20]. This section provides
the definition of B-Splines in one dimension as well as in higher dimensions via a
tensor product structure.Wewill give an overview of isogeometric discretization and
summarize the approximation properties of these B-Splines and NURBS spaces. We
refer the reader to [2, 3, 10, 20] for a comprehensive presentation of the IgA basics.

2.1 B-Splines and Multipatch Geometries

Let the vector � = {ξ1 = 0, ξ2, . . . , ξm = 1} with non-decreasing real values ξi be a
partition of the unit interval [0, 1]. The vector � is called knot vector. Given a knot
vector �, p ∈ N and M = m − p − 1, we can define the B-Spline function via the
Cox-de Boor formulas:

Ni,0(ξ) =
{
1 if ξi ≤ ξ ≤ ξi+1,

0 otherwise,
(2)

Ni,p(ξ) = ξ − ξi

ξi+p − ξi
Ni,p−1(ξ) + ξi+p+1 − ξ

ξi+p+1 − ξi+1
Ni+1,p−1(ξ), (3)

where i = 1, . . . ,M and p is called degree. From this recursion, we can observe that
Ni,p is a piecewise polynomial of degree p. Furthermore, we only consider open knot
vectors, i.e., the first and the last node is repeated p times.
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Since we are considering d -dimensional problems, we need to extend the concept
of B-Splines to the d -dimensional space, which is done via the tensor product. Let
(p1, . . . , pd ) ∈ N

d , and let, for all ι = 1, . . . , d , �ι be a knot vector. Furthermore,
we denote the iι univariate B-Spline defined on the knot vector �ι by N ι

iι,p(ξ
ι). Then

the d -dimensional tensor product B-Spline (TB-Spline) is defined by

N(i1,...,id ),(p1,...,pd )(ξ) =
d∏

ι=1

N ι
iι,pι (ξ

ι). (4)

In order to avoid cumbersome notations, we will again denote the tensor product
B-Spline by Ni,p and interpret i and p as multi-indices. Additionally, we define the
set of multi-indices I by I := {(i1, . . . , id ) : iι ∈ {1, . . . ,Mι}}, where Mι are the
number of B-Spline basis function for dimension ι.

Now we are in a position to describe our computational domain, called physical
domain,Ω = G((0, 1)d ) bymeans of the geometrical mapping G : Ω̂ = (0, 1)d →
R

d defined byG(ξ) := ∑
i∈I Pi Ni,p(ξ), wherePi are the given control points. Since

the knot vector� provides a partition of Ω̂ , called parameter domain in the following,
it introduces a mesh Q̂, and we will denote a mesh element by Q̂, called cell. By
means of the geometrical mapping, we receive a partition of the physical domain in
cells Qi as well, where Qi = G(Q̂i), Q̂i ∈ Q̂. If we collect all these cells, we get a
meshQh for the physical domainQh := {Q = G(Q̂)| Q̂ ∈ Q̂}. For the remainder of
the paper, we only consider quasi-uniform meshes {Qh}, defined as follows:

Definition 1 A family of meshes {Qh}, is called quasi uniform, if there exists
a constant θ ≥ 1 for all {Qh}, such that θ−1 ≤ diam(Q)/ diam(Q′) ≤ θ for all
Q,Q′ ∈ Qh.

In many practical applications, it is not possible to describe the physical compu-
tational domain Ω just with one geometrical mapping G. Therefore, we represent
the physical domain Ω by N non-overlapping domains Ω(k), called patches. Each
Ω(k) is the image of an associated geometrical mapping G(k), defined on the parame-

ter domain Ω̂ , i.e.,Ω(k) = G(k)(Ω̂) for k = 1, . . . ,N , andΩ = ⋃N
k=1 Ω

(k)
.Clearly,

each patch has a mesh Q(k)
h in the physical domain and a mesh Q̂(k) in the param-

eter domain, consisting of cells Q(k) and Q̂(k). We denote the interface between
the two patches Ω(k) and Ω(l) by Γ (k,l), and the collection of all interfaces by Γ ,

i.e., Γ (k,l) = Ω
(k) ∩ Ω

(l)
and Γ := ⋃

l>k Γ (k,l). Furthermore, the boundary of the
domain is denoted by ∂Ω . This interface Γ is sometimes called skeleton.

2.2 Isogeometric Discretization

The key point in isogeometric analysis is the use of the same functions for repre-
senting the geometry as well as for constructing the solution and test spaces in the
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Galerkin method. This motives the definition of the basis functions in the physi-
cal domain via the push-forward of the basis functions in the parameter domain,
i.e., Ňi,p := Ni,p ◦ G−1. Thus, we define our finite-dimensional IgA space Vh by
Vh = span{Ňi,p}i∈I ⊂ H 1(Ω). The function uh from the IgA space Vh can therefore
be represented in the form uh(x) = ∑

i∈I uiŇi,p(x). Hence, each function uh(x) is
associated with the vector u = (ui)i∈I . This map is known as Ritz isomorphism.
One usually writes this relation as uh ↔ u, and we will use it in the following with-
out further comments. Additionally, we define Sh = span{Ni,p}i∈I ⊂ H 1(Ω̂). If we
consider a single patch Ω(k) of a multipatch domain Ω , we will use the notation
V (k)
h ,S(k)

h , Ň (k)
i,p ,N (k)

i,p and G(k) with the analogous definitions. The discrete func-
tion spaces for the whole multipatch domain is then given by Vh := {v| v|Ω(k) ∈
V (k)
h } ∩ H 1(Ω). Based on the work in [6], we can find an important splitting of the

space Vh. Since we are using open knot vectors, we can identify basis function on
the interface Γ and in the interior of each patch. Let us define the spaces

VΓ,h := span{Ňi,p| i ∈ IB} ⊂ H 1(Ω) and V (k)
I ,h := V (k)

h ∩ H 1
0 (Ω(k)), (5)

whereIB denotes all indices of basis functions having support onΓ . This leads to the
decomposition Vh = ∏N

k=1 V
(k)
I ,h ⊕ H (VΓ,h), whereH : VΓ,h → Vh is the discrete

NURBS harmonic extension defined by

⎧⎪⎨
⎪⎩
Find H vB ∈ Vh :
a(H vB, v(k)) = 0 ∀v(k) ∈ V (k)

I ,h , 1 ≤ k ≤ N ,

H vB|∂Ω(k) = vB|∂Ω(k) 1 ≤ k ≤ N .

(6)

See [6, 29] for a more sophisticated discussion.

2.2.1 Continuous Galerkin IgA Schemes

We look for the Galerkin approximate uh from the finite dimensional subspace VD,h

of VD, where VD,h is the set of all functions from Vh which vanish on the Dirichlet
boundary ΓD. The Galerkin IgA scheme reads as follows: find uh ∈ VD,h such that

a(uh, vh) = 〈F, vh〉 ∀vh ∈ VD,h. (7)

There exists a unique IgA solution uh ∈ VD,h of (7) that converges to the solution u ∈
VD of (1) for h tends to 0. Due to Cea’s lemma, the usual discretization error estimates
in theH 1-norm follow from the corresponding approximation error estimates, see [2]
or [3]. A basis for this space is given by the B-Spline functions {Ňi,p}i∈I0 , whereI0

contains all indices of I which do not have a support on ΓD. Hence, the Galerkin
IgA scheme (7) is equivalent to the linear system of algebraic equations Ku = f ,
where K = (Ki,j)i,j∈I0 and f = (fi)i∈I0 denote the stiffness matrix and the load
vector, respectively, with Ki,j = a(Ňj,p, Ňi,p) and fi = 〈F, Ňi,p〉, and u is the vector
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representation of uh given by the IgA isomorphism. In order to keep the notation
simple, we will reuse the symbol I for the set I0 in the following.

2.2.2 Schur Complement System

Introducing the bilinear form s : VΓ,h × VΓ,h → R; s(wB, vB) = a(H wB,H vB),
one can show that the interface component uB of the solution to the IgA scheme
(7) satisfies the variational identity

s(uB, vB) = 〈g, vB〉 ∀vB ∈ VΓ,h, (8)

where g ∈ V ∗
Γ,h is a suitable functional. By choosing the B-Spline basis for VΓ,h, the

variational identity (8) is equivalent to the linear system SuB = g. The matrix S is
the Schur complement matrix of K with respect to the interface dofs. Suppose, we
reorder the entries of the stiffness matrix K and the load vector f , such that the dofs
corresponding to the interface come first, i.e.,

K =
[
KBB KBI

KIB KII

]
and f =

[
fB
fI

]
,

then it is easy to see that S and g are given by S = KBB − KBI (KII )
−1KIB and g =

fB − KBI (KII )
−1fI , respectively. Once uB is calculated, we obtain uI as the solution

of the system KIIuI = fI − KBIuB. Instead of the Schur complement matrix S we
will mostly use its operator representation: S : VΓ,h → V ∗

Γ,h; 〈Sv,w〉 = (Sv,w).

3 IETI-DP Methods and Their Analysis

The IETI-DP method, that was introduced in [23], is nothing but the adaption of the
FETI-DP method (see, e.g., [28, 30]) to isogeometric analysis. According to [27]
based on algebraic arguments, the BDDC preconditioner and the FETI-DP method
possess the same spectrum up to zeros and ones. Hence a condition number bound
for BDDC implies a bound for FETI-DP and vice versa. Since the proof is based on
algebraic arguments, it also holds for the IETI-DP method.

3.1 Local Spaces and Jump Operator

Analogously to the splitting introduced inSect. 2.2,wedefine the local interface space
W (k) := span{Ňi,p | supp{Ňi,p} ∩ (∂Ω(k) ∩ Γ ) �= ∅, i ∈ I },which is the restriction
of VΓ,h to Ω(k). In the following, in order to avoid cumbersome notation, we define
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the patch boundary to be just the interface part, i.e. ∂Ω(k) := ∂Ω(k) ∩ Γ . Hence, we
have V (k)

h = W (k) ⊕ V (k)
I ,h , where V

(k)
I ,h is defined as in (5). Furthermore, we define the

space of functions, which are locally in W (k), by W := ∏N
k=1 W

(k). Similar to the
definition of the global discrete NURBS harmonic extension H in (6), we define
the local patch version H (k) : W (k) → V (k)

h .
In order to obtain continuous functions, we introduce additional constraints which

will enforce the continuity. LetB(k, l) be the set of all coupled indices betweenΩ(k)

and Ω(l), then we enforce the following constraints:

w(k)
i − w(l)

j = 0 ∀(i, j) ∈ B(k, l), k > l. (9)

The operatorB : W → U ∗ := R

, which realizes constraints (9) in the formBw = 0,

is called jump operator. The space of all functions in W which belong to the kernel
of B is denoted by Ŵ , and can be identified with VΓ,h.

3.1.1 Saddle Point Formulation

Due to the multipatch structure of our physical domain, we can decompose the
bilinear form and the right-hand side functional as follows:

a(uh, vh) =
N∑

k=1

a(k)(u(k)
h , v(k)

h ) and 〈F, vh〉 =
N∑

k=1

〈F (k), v(k)
h 〉,

where uh, vh ∈ Vh and u(k)
h , v(k)

h denote its restriction to Ω(k). The Galerkin IgA
scheme (7) can be reformulated as a constrained minimization problem

uB,h = argmin
w∈W, Bw=0

1

2
〈Sw,w〉 − 〈g,w〉 , (10)

on the skeleton, where 〈Sv,w〉 := ∑N
k=1〈S(k)v(k),w(k)〉 and 〈g,w〉 :=∑N

k=1〈g(k),w(k)〉 for v,w ∈ W .
In the following, wewill only workwith the Schur complement system and hence,

to simplify the notation, we will use u instead of uB,h, when we consider functions in
VΓ,h. If there has to be made a distinction between uh, uB,h and uI ,h, we will write the
subscripts again.

3.1.2 Intermediate Space and Primal Constraints

In order to guarantee the positive definiteness of S, we are looking for an
intermediate space W̃ in the sense Ŵ ⊂ W̃ ⊂ W such that S restricted to
W̃ is SPD. Let Ψ ⊂ V ∗

Γ,h be a set of linearly independent primal variables.
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Then we define the spaces W̃ := {w ∈ W : ∀ψ ∈ Ψ : ψ(w(k)) = ψ(w(l)),∀k > l}
and WΔ := ∏N

k=1 W
(k)
Δ , where W (k)

Δ := {w(k) ∈ W (k) : ∀ψ ∈ Ψ : ψ(w(k)) = 0}.
Moreover, we introduce the spaceWΠ ⊂ Ŵ , such that W̃ = WΠ ⊕ WΔ. We callWΠ

primal space and WΔ dual space. In the literature, there are the following typical
choices forψ :

• Vertex evaluation:ψV (v) = v(V ),
• Edge averages:ψE (v) = 1

|E |
∫
E v ds,

• Face averages:ψF (v) = 1
|F |

∫
F v ds.

The typical choices forΨ are usually called AlgorithmA–C:

• AlgorithmA:Ψ = {ψV },
• AlgorithmB:Ψ = {ψV } ∪ {ψE } ∪ {ψF },
• AlgorithmC:Ψ = {ψV } ∪ {ψE }.
Moreover, one finds references to two further choices for Ψ , commonly referred to
Algorithm D and E, which are aiming for a reduced set of primal variables, see, e.g.,
Algorithm 6.28 and 6.29 in [30]. These algorithms address the issue of the rapidly
increasing number of primal variables.

Remark 1 For domains Ω ⊂ R
2, Algorithm A will provide a quasi optimal method

for the Poisson problem. By choosing additional primal variables, the coarse problem
will grow. Hence, it becomes computationally more demanding. However, it brings
benefits in the condition number. For three-dimensional domains, one can show that
just choosing vertex evaluation does not lead to a quasi optimal method. In such
cases, additional primal variables have to be chosen, see, e.g. Remark 6.39 in [30].

3.2 IETI–DP

Since W̃ ⊂ W , there is a natural embedding Ĩ : W̃ → W . Let the jump operator
restricted to W̃ be B̃ := B̃I : W̃ → U ∗. Then we can formulate the saddle point
problem in W̃ as follows: find (u, λ) ∈ W̃ ×U such that

[
S̃ B̃T

B̃ 0

] [
u
λ

]
=

[
g̃
0

]
, (11)

where g̃ := Ĩ T g, and B̃T = Ĩ T BT . Here, Ĩ T : W ∗ → W̃ ∗ denotes the adjoint of Ĩ .
By construction, S̃ is SPD on W̃ . Hence, we can define the Schur complement

F and the corresponding right-hand side of equation (11) as F := B̃S̃−1B̃T and
d := B̃S̃−1g̃. Hence, the saddle point system (11) is equivalent to solving:

find λ ∈ U : Fλ = d . (12)
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By means of Brezzi’s theorem we obtain that (12) has a unique solution up to adding
elements from ker(̃BT ) to λ, and u = S̃−1(g̃ − B̃Tλ) ∈ Ŵ is the unique solution
of (10).

We note that F is SPSD onU . If we restrict F to Ũ := R (̃B), then F |Ũ is SPD, cf.,
e.g., [28]. Hence, we can solve (12) bymeans of the PCG.

3.2.1 Preconditioning

In order to receive robustness with respect to the diffusion coefficient α, we use the so
called scaled Dirichlet preconditioner. The scaling is incorporated in the application
of the jump operator. We define the scaled jump operator BD such that the operator
enforces the constraints: δ

†(l)
j w(k)

i − δ
†(k)
i w(l)

j = 0 for (i, j) ∈ B(k, l), k > l, where

δ
†(k)
i := ρ

(k)
i /

∑
l ρ

(l)
jl

and, jl is the corresponding coefficient index on the neighboring
patchΩ(l). The scaled Dirichlet preconditioner has the following form:

M−1
sD = BDSB

T
D. (13)

Typical choices for ρ(k)
i are

• Multiplicity Scaling: ρ(k)
i = 1,

• Coefficient Scaling: If α(x)|Ω(k) = α(k), choose ρ
(k)
i = α(k),

• Stiffness Scaling: ρ(k)
i = K(k)

i,i .

Theorem 1 Let H (k) be the diameter and h(k) the local mesh size ofΩ(k) and letM−1
sD

be the scaled Dirichlet preconditioner. Then, under suitable assumptions imposed on
the mesh, we have

κ(M−1
sD FŨ ) ≤ Cmax

k

(
1 + log

(
H (k)/h(k)

))2
,

where the positive constant C is independent of h andH.

In the case of IgA, a more general proof in the sense, that not only C0 smoothness
across patch interfaces is allowed but also Cl, l ≥ 0 smoothness, can be found
in [6]. However, the proof is restricted to the case of a domain decomposition,
which is obtained by subdividing a single patch, i.e. performing a decomposition
of the parameter domain. Hence, always the same geometrical mapping G is used.
Furthermore, due to the Cl, l ≥ 0, smoothness across interfaces, only a condition
number bound ofO ((1 + logH/h)H/h) could be proven for stiffness scaling. In the
proceeding section, we will extend the proof given in [6] to multipatch domains,
which consists of different geometrical mappings G(k) for each patch. Additionally,
for l = 0, we again obtain quasi-optimal condition number bounds also for stiffness
scaling.
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3.3 Analysis of BDDC Preconditioner

In this section we rephrase the results and notations established in [6], and extend
them to multipatch domains, consisting of a different geometrical mapping G(k) for
each patch. However, we only allow C0 smoothness across the patch interfaces and
restrict the analysis to the 2D case of AlgorithmA.

3.3.1 General Results

Let ž be a function from Vh. Its restriction to a patch Ω(k) belongs to V (k)
h , and can

be written as ž(k) := ž|Ω(k) = ∑
i∈I (k) c

(k)
i Ň (k)

i,p , where in I (k) all indices, where the
basis functions have a support on the Dirichlet boundary in the physical space Ω(k),
are excluded. The corresponding spline function in the parameter space is denoted by
z(k) ∈ S(k)

h . It is important to note that the geometrical map G and its inverse G−1

are independent of h, since it is fixed on a coarse discretization. When the domain
becomes refined, G stays the same. Clearly, the same applies for the gradients and it
can be assumed, that G(k) ∈ W 1,∞((0, 1)d ) for all k ∈ {1, . . . ,N }. The analysis of
themethod in the physical space is based on the fact that

‖ž(k)‖L2(Ω(k)) ≈ ‖z(k)‖L2((0,1)d ) and |ž(k)|H 1(Ω(k)) ≈ |z(k)|H 1((0,1)d ),

where the hidden constants only depend on G, see Lemma 3.2 in [2]. We note that,
as in [2], equivalence is only stated for the full Hm-norm, with m ≥ 0. However,
it follows from the proof that the L2 term is not needed for m > 0, and is only
incorporated for giving a unified presentation for allm ≥ 0.

Wewill now define a local discrete seminorm based on the control points ci, where
we refer to [6] for a motivation and a more sophisticated discussion. Moreover, we
denote the coefficient corresponding to basis function N(i1,...,iι−j,...,id ),p by ci,iι−j,
cf. (4).

Definition 2 Let ž ∈ V (k)
h , andz its counterpart in theparameterdomain.Then |z|2∇ :=∑d

ι=1 |z|2ξ ι defines a discrete seminorm, where |z|2ξ ι := ∑
i∈I (k)

ι
|c(k)

i,iι − c(k)
i,iι−1|2. The

setIι contains the admissible indices such that each summand is well defined.

Proposition 1 Let ž ∈ V (k)
h and z its counterpart in the parameter domain. Then

|z|2∇ ≈ |z|2H 1((0,1)2) ≈ ∣∣ž∣∣2H 1(Ω(k))
holds, where the hidden constants are independent of

h andH.

Proof The proof follows from the equivalence of the norms in the parameter and
physical domain, see Lemma 3.5 [2], and from Proposition 5.2 in [6].

The second step is to provide properties in the local index spaces. Since we
consider only the two dimensional problem, we can interpret the control points
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(ci)i∈I as entries of a matrix C = (ci)
M1,M2
i=1 . Before doing that we will provide

abstract results for an arbitrarymatrix.We define the seminorm

‖|C‖|2∇ :=
2∑

ι=1

Mι∑
i=1
iι=2

|ci,iι − ci,iι−1|2

for a real valuedM1 × M2 matrixC = (ci)
M1,M2
i=1 ∈ R

M1×M2 . The entries of the matrix
C can be interpreted as values on a uniformgridT . Thismotivates the definition of an
operator (·)I : C([0, 1]2) → R

M1×M2 , which evaluates a continuous function on the
grid points (xi) = (xi1i2), and an operatorχ : RM1×M2 → Q1(T ) ⊂ H 1((0, 1)2), that
provides a piecewise bilinear interpolation of the given grid values, whereQ1(T ) is
the space of piecewise bilinear functions onT .

Furthermore, given values on an edge e on [0, 1]2, we need to define its
linear interpolation and a discrete harmonic extension to the interior. In order
to do so, let us denote all indices of grid points xi associated to e by I (e).
Additionally, letP1(T |e) be the space of piecewise linear spline functions on T |e.
We define the interpolation of values on I (e) by the restriction of the operator
χ to e, denoted by χe : RMι → H 1(e) with an analogous definition. In a similar
way, we define the interpolation operator for the whole boundary ∂ , denoted by
χ∂ : R|I (∂)| → H 1(∂[0, 1]2), whereI (∂) := {i : xi ∈ ∂[0, 1]2}.

This leads to a definition of a seminorm for grid points on an edge e via the
interpolation to functions fromP1(T |e):
Definition 3 Let e be an edge of [0, 1]2 along dimension ι, and let v be a vector in
R

Mι . Then we define the seminorm ‖|v‖|e := |χe(v)|H 1/2(e) for all v ∈ R
Mι .

Remark 2 For the interpolation operator χe defined on an edge e, it is easy to see that
χ(C)|e = χe(C|e) and ‖|C|e‖|e = |χe(C|e)|H 1/2(e) = |χ(C)|e)|H 1/2(e) hold.

Finally, we are able to define the discrete harmonic extension inRM1×M2 .

Definition 4 LetHQ 1 be the standard discrete harmonic extension into the piecewise
bilinear spaceQ1. This defines the lifting operatorH : R|I (∂)| → R

M1×M2 by

b �→ H(b) := (HQ 1 (χ∂(b)))I .

Theorem 2 Let e be a particular side on the boundary of [0, 1]2 and the constant
β ∈ R

+ such that β−1M2 ≤ M1 ≤ βM2. Then the following statements hold:

• For all b ∈ R
2M1+2M2−4 that vanish on the four components corresponding to the

four corners, the estimate ‖|H(b)‖|2∇ ≤ c(1 + log2 M1)
∑

e∈∂[0,1]2 ‖|b|e‖|2e , holds,
where the constant c depends only on β.

• The estimate ‖|C‖|∇ ≥ c ‖|C|e‖|e is valid for all C ∈ R
M1×M2 , where the constant c

depends only on β.

Proof See [6]. �
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3.3.2 Condition Number Estimate

The goal of this section to establish a condition number bound for P = M−1
BDDCŜ.

Following [6], we assume that the mesh is quasi-uniform on each subdomain and
the diffusion coefficient is globally constant. We focus now on a single patch Ω(k),
k ∈ {1, . . . ,N }. For notational simplicity, we assume that the considered patch Ω(k)

does not touch the boundary ∂Ω .
We define the four edges of the parameter domain [0, 1]2 by Er , and their images

by Ě(k)
r = G(k)(Er), r = 1, 2, 3, 4. Moreover, we denote by I (Ě(k)

r ) the coefficient
indices corresponding to the basis functions on Ě(k)

r and by I (Γ (k)) the indices
corresponding to the whole boundary.

Let ž(k) ∈ V (k)
h , then ž(k) is determined by its coefficients czi = (czi1,i2)

M (k)
1 ,M (k)

2

i1,i2=1 ,

which can be interpreted as a M (k)
1 × M (k)

2 matrix Cz. In a similar way, we can
identify functions on the trace spaceW (k).

Finally, let W (k)
Δ ⊂ W (k) be the space of spline functions which vanish on the

primal variables, i.e., in the corner points. The following theoremprovides an abstract
estimate of the condition number using the coefficient scaling:

Theorem 3 Let the counting function δ†
(k)

be chosen accordingly to the coefficient
scaling strategy. Assume that there exist two positive constants c∗, c∗ and a boundary
seminorm | · |W (k) on W (k), k = 1, . . . ,N, such that

|w̌(k)|2W (k) ≤ c∗s(k)(w̌(k), w̌(k)) ∀w̌(k) ∈ W (k), (14)

|w̌(k)|2W (k) ≥ c∗s(k)(w̌(k), w̌(k)) ∀w̌(k) ∈ W (k)
Δ , (15)

|w̌(k)|2W (k) =
4∑

r=1

|w̌(k)|Ě(k)
r

|W (k)
r

∀w̌(k) ∈ W (k), (16)

where |·W (k)
r
is a seminorm associated to the edge spaces W (k)|Ě(k)

r
, with r = 1, 2, 3, 4.

Then the condition number of the preconditioned BDDC operator P satisfies the
bound

κ(M−1
BDDCŜ) ≤ C(1 + c−1

∗ c∗),

where the constant C is independent of h andH.

Proof See [6] or [4]. �
Using this abstract framework, we obtain the following condition number estimate

for the BDDC preconditioner.

Theorem 4 There exists a boundary seminorm such that the constants c∗ and c∗ of
Theorem 3 are bounded by

c∗ ≤ C1 and c−1
∗ ≤ C2 max

1≤k≤N

(
1 + log2

(
H (k)/h(k)

))
,
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where the constants C1 and C2 are independent of H and h. Therefore, the condition
number of the isogeometric preconditioned BDDC operator is bounded by

κ(M−1
BDDCŜ) ≤ C max

1≤k≤N

(
1 + log2

(
H (k)/h(k)

))
,

where the constant C is independent of H and h.

Proof The proof essentially follows the lines of the proof given in [6] with a minor
modification due to the different geometrical mappings G(k). We note that we only
consider C0 continuity across the patch interfaces, which makes the proof less
technical.

The first step is to appropriately define the seminorm |w̌(k)|2W (k) inW (k):

|w̌(k)|2W (k) :=
4∑

r=1

|w̌(k)|Ě(k)
r

|2
W (k)

r
,

|w̌(k)|Ě(k)
1

|2
W (k)

1
:= ‖|w̌(k)|Ě(k)

1
‖|2
Ě(k)
1

+
M2

(k)−1∑
i2=1

|cw(1,i2+1) − cw(1,i2)|2,

|w̌(k)|Ě(k)
2

|2
W (k)

2
:= ‖|w̌(k)|Ě(k)

2
‖|2
Ě(k)
2

+
M2

(k)−1∑
i2=1

|cw(M1,i2+1) − cw(M1,i2)
|2,

|w̌(k)|Ě(k)
3

|2
W (k)

3
:= ‖|w̌(k)|Ě(k)

3
‖|2
Ě(k)
3

+
M1

(k)−1∑
i1=1

|cw(i1+1,1) − cw(i1,1)|2,

|w̌(k)|Ě(k)
4

|2
W (k)

4
:= ‖|w̌(k)|Ě(k)

4
‖|2
Ě(k)
4

+
M1

(k)−1∑
i1=1

|cw(i1+1,M2)
− cw(i1,M2)

|2,

(17)

where M (k)
ι denotes the number of basis functions on patch k in direction ι.

Furthermore, we define ‖|w̌(k)|Ě(k)
r

‖|Ě(k)
r

:= ‖|v‖|Er , where v are the values (cwi )i∈I (Ě(k)
r )

written as a vector.
Let ž(k) ∈ V (k)

h be the NURBS harmonic extension of w(k) = {cwi } ∈ W (k), and
z(k) its representation in the parameter domain. Additionally, let e be any edge of
the parameter domain of Ω(k). Due to the fact that cwi = czi for i ∈ I (Γ (k)), and
denotingC(k) = (czi )i∈I (k) , we obtain ‖|w̌(k)|e‖|2e = ‖|C(k)|e‖|2e ≤ c‖|C(k)‖|2∇ by means
of Theorem 2. From the definition of ‖|C(k)‖|2∇ and the definition of |w̌(k)|Ě(k)

r
|2
W (k)

r
, we

get |w̌(k)|e|2W (k)
r

≤ c‖|C(k)‖|2∇ . Furthermore, we have

|w̌(k)|e|2W (k)
r

≤ c‖|C(k)‖|2∇ ≤ c|z(k)|2∇ ≤ c|z(k)|2H 1((0,1)d ) ≤ c|ž(k)|2H 1(Ω(k))
.

Since |ž(k)|2H 1(Ω(k))
= |H (k)(w̌(k))|2H 1(Ω(k))

= s(k)(w̌(k), w̌(k)), we arrive at the estimate

|w̌(k)|e|2W (k)
r

≤ c s(k)(w̌(k), w̌(k)). These estimates hold for all edges of Ω(k). Hence, it
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follows that |w̌(k)|2W (k) ≤ c∗s(k)(w̌(k), w̌(k)) for w̌ ∈ W (k), where the constant does not
depend on h andH . This proves the upper bound, i.e., estimate (14).

Let be w̌(k) ∈ W (k)
Δ , w(k) its representation in the parameter domain, and

(cwi )i∈I (Γ (k)) its coefficient representation. We apply the lifting operator H(k) to

(cwi )i∈I (Γ (k)), and obtain a matrixH(k)(w(k)) with entries (cHi
(k)

)i∈I (k) . These entries

define a spline function z(k) := ∑
i∈I (k) cHi

(k)
N (k)
i,p . It follows the estimate

∥∥∣∣H(k)(w(k))
∥∥∣∣2∇ = |z(k)|2∇ ≥ c|z(k)|2H 1((0,1)d ) ≥ c|ž(k)|2H 1(Ω(k))

≥ c|H (w̌(k))|2H 1(Ω(k))
,

where the last inequality holds due to the fact that the discrete NURBS harmonic
extension minimizes the energy among functions with given boundary data w̌. The
constant c does not depend on h orH .

Recalling the definition of |w̌(k)|2W (k) and using Theorem 2, we arrive at the
estimates

∥∥∣∣H(k)(w(k))
∥∥∣∣2∇ ≤ c(1 + log2 M (k))

∑
e∈∂[0,1]2

‖|w|(k)e ‖|2e ≤ c(1 + log2 M (k))|w̌(k)|2W (k) .

Due to themesh regularity, we haveM (k) ≈ H (k)/h(k), and, hence, we obtain

s(k)(w̌(k), w̌(k)) = |H (ž(k))|2H 1(Ω(k))
≤ c(1 + log2(H (k)/h(k)))|w̌(k)|2W (k) ,

which provides the desired estimate for c−1∗ . �

The next theorem provides the corresponding estimates for the stiffness scaling.

Theorem 5 Let the counting functions be chosen according to the stiffness scaling
strategy. Assume that there exist two positive constants c∗, c∗ and a boundary
seminorm | · |W (k) on W (k), k = 1, . . . ,N, such that the three conditions of Theorem 3
hold. Moreover, we assume that it exits a constant c∗

STIFF such that

|w̌(k)|W (k) ≤ c∗
STIFFs(δw̌

(k), δw̌(k)) ∀w̌(k) ∈ W (k)
Δ , (18)

where the coefficients of δw̌(k) are given by c(k)
i δ

(k)
i . Then the condition number of the

preconditioned BDDC operatorM−1
BDDCŜ satisfies the bound

κ(M−1
BDDCŜ) ≤ c(1 + c−1

∗ c∗ + c−1
∗ c∗

STIFF)

for some constant c which is independent of h andH.

Proof See [6]. �

According to [6], we apply a modified version of the stiffness scaling where we
use one representative of the values δ

(k)
i . This is reasonable, since these values are
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very similar on one patch δ
(k)
i ≈ δ

(k)
j , which arises from the tensor product structure

of B-Splines and the constant material value on a patch.

Lemma 1 The bound (18) holds with c∗
STIFF ≤ C1, where C1 is the constant

appearing in Theorem 4. Hence, the condition number of the BDDC preconditioned
system in the case of stiffness scaling is bounded by

κ(M−1
BDDCŜ) ≤ C max

1≤k≤N

(
1 + log2

(
H (k)/h(k)

))
,

where the constant C is independent of H and h.

Proof The inequality |w̌(k)|2W (k) ≤ c∗
STIFFs(δw̌

(k), δw̌(k)) is equivalent to

|δ†w̌(k)|2W (k) ≤ c∗
STIFFs(w̌

(k), w̌(k)) for w̌ ∈ W (k)
Δ .

We have already proven that |w̌(k)|2W (k) ≤ c∗s(w̌(k), w̌(k)) for w̌ ∈ W (k)
Δ ⊂ W (k).

Hence, it is enough to show the inequality |δ†w̌(k)|2W (k) ≤ ch,H |w̌(k)|2W (k) for w̌ ∈ W (k)
Δ ,

where the constant ch,H may depend on h(k) and H (k). Recalling the definition of
|δ†w̌(k)|2W (k) as the sum of |δ†w̌(k)|2

Ě(k)
r

|W (k)
r
, r = 1, 2, 3, 4, see (17), we have only to

estimate the parts, e.g., |w̌(k)|Ě(k)
1

|W (k)
1
. The other three terms follow analogously. From

the fact that δ
†(k)
i ≤ 1 and δ

†(k)
i = δ

†(k)
i+1 for all k ∈ {1, . . . ,N } and i ∈ I (Ě(k)

1 ), c.f.
Sect. 6.2. in [6], it follows that

‖|δ†w̌(k)|Ě(k)
1

‖|Ě(k)
1

= δ†‖|w̌(k)|Ě(k)
1

‖|Ě(k)
1

≤ ‖|w̌(k)|Ě(k)
1

‖|Ě(k)
1

and

M2
(k)−1∑

i2=1

|δ†
(1,i2+1)c

w
(1,i2+1) − δ

†
(1,i2)c

w
(1,i2)|2 =

M2
(k)−1∑

i2=1

δ
†
i |cw(1,i2+1) − cw(1,i2)|2

≤
M (k)

2 −1∑
i2=1

|cw(1,i2+1) − cw(1,i2)|2.

These estimates provide the inequalities |δ†w̌(k)|Ě(k)
1

|W (k)
1

≤ |w̌(k)|Ě(k)
1

|W (k)
1

, and, finally,

|δ†w̌(k)|W (k) ≤ |w̌(k)|W (k) . This concludes the proof with c∗
STIFF ≤ c∗, and the desired

condition number bound. �

4 Implementation

Since F is symmetric and at least positive semi definite and positive definite on Ũ , we
can solve the linear system Fλ = d of the algebraic equations by means of the PCG
algorithm, where we useM−1

sD as preconditioner. Since it is very expensive to build up
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the matrices F andM−1
sD , we use a matrix-free version of the PCG, which only needs

the functional procedure of the application of a matrix to a vector. The challenging
part is the application of S̃−1, which is part of F . The idea is to split the space W̃ into
W̃Π ⊕ ∏

W̃ (k)
Δ , such that W̃ (k)

Δ ⊥S W̃Π for all k.

4.1 Choosing a Basis for ˜WΠ

The first step is to provide an appropriate space W̃Π and a local basis {φ̃j}nΠ

j , where
nΠ is the number of primal vari ables.We request from the basis that it has to be nodal
with respect to the primal variables, i.e., ψi(φ̃j) = δi,j, for i, j ∈ {1, . . . , nΠ }. There
are many choices for the subspace W̃Π . Following the approach presented in [28], we
will choose that onewhich is orthogonal to W̃Δ with respect toS.Hence,we candefine
W̃Π := W̃⊥S

Δ . This choice, which will simplify the application of S̃−1 significantly, is
known as energy minimizing primal subspace in the literature, cf., [11, 28].

In order to construct a nodal basis, we introduce the constraint matrix
C(k) : W (k) → R

n(k)
Π for each patch Ω(k) which realizes the primal variables, i.e.,

(C(k)v)j = ψi(k,j)(v) for v ∈ W and j ∈ {1, . . . , n(k)
Π }, where n(k)

Π is the number of
primal variables associated with Ω(k) and i(k, j) the global index of the j-th primal
variable onΩ(k).

⎡
⎣K (k)

BB K (k)
BI C(k)T

K (k)
IB K (k)

II 0
C(k) 0 0

⎤
⎦

⎡
⎢⎣

φ̃
(k)
j

·
μ̃

(k)
j

⎤
⎥⎦ =

⎡
⎣ 0

0
e(k)
j

⎤
⎦ , (19)

where e(k)
j ∈ R

n(k)
Π is the j-th unit vector. Here we use an equivalent formulation with

the systemmatrix instead of S(k). For each patch k, the LU factorization of this matrix
is computed and stored.

4.2 Application of ˜S−1

Assume that f := {fΠ, {f (k)
Δ }} ∈ W̃ ∗ is already given. We are now looking for

w := {wΔ, {w(k)
Δ }} ∈ W̃ with w = S̃−1f . Let SΠΠ, SΔΠ, SΠΔ and SΔΔ be the

restrictions of S̃ to the corresponding subspaces with SΔΠ = ST
ΠΔ. We note that SΔΔ

can be seen as a block diagonal operator, i.e., SΔΔ = diag(S(k)
ΔΔ). Due to our special

choice W̃Π := W̃⊥S
Δ , we have SΔΠ = SΠΔ = 0. Based on this splitting, we have the

block forms

S̃ =
[
SΠΠ 0
0 SΔΔ

]
and S̃−1 =

[
S−1

ΠΠ 0
0 S−1

ΔΔ

]
.
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Therefore, the application of S̃−1 reduces to an application of one global coarse

problem involving S−1
ΠΠ andN local problems involving S(k)

ΔΔ

−1
.

Application of S(k)−1

ΔΔ : The application of S(k)−1

ΔΔ corresponds to solving a local
Neumann problem in the space W̃Δ, i.e., S(k)w(k) = f (k)

Δ with the constraint
C(k)w(k) = 0. This problem can be rewritten as a saddle point problem in the form

⎡
⎣K (k)

BB K (k)
BI C(k)T

K (k)
IB K (k)

II 0
C(k) 0 0

⎤
⎦

⎡
⎣w(k)

·
·

⎤
⎦ =

⎡
⎣f (k)

Δ

0
0

⎤
⎦ .

From (19), the LU factorization of thematrix is already available.
Application of S(k)−1

ΠΠ : The matrix SΠΠ can be assembled from the patch local

matrices S(k)
ΠΠ . Let {φ̃(k)

j }n(k)
Π

j=1 be the basis of W̃
(k)
Π . The construction of {φ̃(k)

j }n(k)
Π

j=1 in (19)
provides

(
S(k)

ΠΠ

)
i,j

=
〈
S(k)φ̃

(k)
i , φ̃

(k)
j

〉
= −

〈
C(k)T μ̃

(k)
i , φ̃

(k)
j

〉
= −

〈
μ̃

(k)
i ,C(k)φ̃

(k)
j

〉

= −
〈
μ̃

(k)
i , e(k)

j

〉
= −

(
μ̃

(k)
i

)
j
,

where i, j ∈ {1, . . . , n(k)
Π }. Therefore, we can reuse the Lagrange multipliers μ̃

(k)
i

obtained in (19), and can assemble S(k)
ΠΠ from them. Once SΠΠ is assembled, the LU

factorization can be calculated and stored.

4.3 Summary of the Algorithm for F = ˜BS−1
˜BT and M−1

sD

The application of F andM−1
sD is summarized in Algorithm 7. Let us mention that the

implementation of the embedding operator Ĩ and assembling operator Ĩ T is explained
in detail in [28] and is omitted here.

5 NumericalExamples

We test the implemented IETI-DP algorithm for solving large scale systems arising
from the IgA discretization of (1) on the so-calledYETI-footprint domains illustrated
in Fig. 1. The computational domain consists of 21 subdomains in both 2D and 3D. In
both cases, one side of a patch boundary has inhomogeneous Dirichlet conditions,
whereas all other sides have homogeneous Neumann conditions. Each subdomain
has a diameter of H and an associated mesh size of h. The degree of the B-Splines
is chosen as p = 4. In order to solve the linear system (12), a PCG algorithm with
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Fig. 1 The domain Ω in 2D (left) and 3D (middle), and the coefficient pattern (right)

Algorithm 7Algorithm for calculating ν = Fλ and ν = M−1
sD λ for given λ ∈ U

procedure F(λ)
Application of BT : {f (k)}Nk=1 = BTλ

Application of Ĩ T : {fΠ, {f (k)
Δ }Nk=1} = Ĩ T

({f (k)}Nk=1

)
Application of S−1 :
Begin

wΔ = S−1
ΠΠ fΠ

w(k)
Δ = S(k)

ΔΔ

−1
f (k)
Δ ∀k = 1, . . . ,N

End
Application of Ĩ : {w(k)}Nk=1 = Ĩ

(
{wΔ, {w(k)

Δ }Nk=1}
)

Application of B : ν = B
({w(k)}Nk=1

)
end procedure
procedureM−1

sD (λ)
Application of BT

D : {w(k)}Nk=1 = BT
Dλ

Application of S :
Begin

Solve K (k)
II x(k) = −K (k)

IB w(k) ∀k = 1, . . . ,N

v(k) = K (k)
BB w

(k) + K (k)
BI x

(k). ∀k = 1, . . . ,N
End
Application of BD : ν = BD

({v(k)}Nk=1

)
end procedure

the scaled Dirichlet preconditioner (13) is performed. We use zero initial guess,
and a reduction of the initial residual by a factor of 10−6 as stopping criterion.
The numerical examples illustrate the dependence of the condition number of the
IETI-DP preconditioned system on jumps in the diffusion coefficient α, patch sizeH ,
mesh size h and the degree p. We use the C++ library G+Smo for describing the
geometry and performing the numerical tests, see also [17, 21].
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5.1 Homogeneous Diffusion Coefficients

We present numerical tests for problem (1) with a globally constant diffusion
coefficient α = 1. The 2D results are summarized in Table 1, whereas the 3D results
are presented in Table 2. The results confirm that the preconditioned systems with
coefficient scaling as well as stiffness scaling provide a quasi optimal condition
number bound according to Theorems 4 and 5.

5.2 Jumping Diffusion Coefficients

We investigate numerical examples with patchwise constant diffusion coefficient α,
the jumping pattern of which is shown in Fig. 1 (right). The values of α are 10−3

(blue) and 103 (red). The 2D results are summarized in Table 3, whereas the 3D
results are shown in Table 4. We again observe a quasi optimal condition number
bound which is clearly independent of the diffusion coefficient and its jumps across
the subdomain interfaces.

Table 1 2D example with homogeneous diffusion coefficient and p = 4. Choice of primal
variables: vertex evaluation (Alg. A), vertex evaluation and edge averages (Alg. C)

Alg.A Unprec. F Coeff. scal Stiff. scal. Alg.C Unprec. F Coeff. scal Stiff. scal.

#dofs H/h κ It. κ It. κ It. H/h κ It. κ It. κ It.

2364 9 45 50 9 21 9 20 9 28 44 1.8 11 1.8 11

4728 13 73 46 11 22 11 22 13 22 39 2 12 2 12

11856 21 133 57 15 24 14 24 21 18 39 2.4 14 2.4 14

352712 37 265 68 18 25 18 25 37 17 38 2.8 15 2.8 15

Table 2 3D example with homogeneous diffusion coefficient and p = 4. Choice of primal
variables: vertex evaluation (Alg. A), vertex evaluation, edge averages and face averages (Alg. C)

Alg.A Unprec. F Coeff. scal Stiff. scal. Alg.B Unprec. F Coeff. scal Stiff. scal.

#dofs H/h κ It. κ It. κ It. H/h κ It. κ It. κ It.

7548 5 3254 393 63 33 63 33 5 2751 341 1.6 10 1.6 10

14368 7 3059 356 86 37 86 37 7 2860 397 1.7 11 1.7 11

38100 10 2170 317 196 45 196 46 10 1697 333 2.0 12 2.3 13

142732 16 7218 397 467 64 468 65 16 1261 333 2.3 13 3.1 16
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Table 3 2D example with jumping diffusion coefficient and p = 4. Choice of primal variables:
vertex evaluation (Alg. A), vertex evaluation and edge averages (p = 4)

Alg. A Unprec. F Coeff. scal Stiff. scal. Alg. C Unprec. F Coeff. scal Stiff. scal

#dofs H/h κ It. κ It. κ It. H/h κ It. κ It. κ It.

2364 9 1.4e07 317 5.6 13 5.3 13 9 1.5e07 261 1.8 7 1.7 7

4728 13 1.5e07 297 7.0 13 6.4 13 13 1.1e07 267 2.2 8 2 7

11856 21 2.4e07 397 8.7 15 7.8 13 21 9.8e06 291 2.6 8 2.3 8

35712 37 4.0e07 434 10.6 16 9.3 14 37 9.0e06 310 3.0 10 2.7 10

Table 4 3D example with jumping diffusion coefficient and p = 4. Choice of primal variables:
vertex evaluation (Alg. A), vertex evaluation and edge averages and face averages (Alg. B)

Alg. A Unprec. F Coeff. scal Stiff. scal Alg.B Unprec. F Coeff. scal Stiff. scal

#dofs H/h κ It. κ It. κ It. H/h κ It. κ It. κ It.

7548 5 ≥1.e16 ≥500 47 20 47 18 5 ≥1.e16 ≥500 1.7 7 1.6 7

14368 7 ≥1.e16 ≥500 69 20 65 19 7 ≥1.e16 ≥500 1.8 7 1.7 7

38100 10 ≥1.e16 ≥500 165 32 152 29 10 ≥1.e16 ≥500 2.1 8 2.3 8

142732 16 ≥1.e16 ≥500 405 38 368 34 16 ≥1.e16 ≥500 4.4 9 3.2 11

5.3 Dependence on the Degree p

We want to examine the dependence of the condition number on the B-Spline
degree p, although the theory presented in Sect. 3.3 does not cover the dependence
of IETI-DP preconditioned systems on p. We note that, in our implementation, the
degree elevation yields an increase in the multiplicity of the knots within each step,
resulting inC1 smoothness on each patch. The computational domainΩ is chosen as
the 2D YETI-footprint presented in Fig. 1. The diffusion coefficient α is chosen to
be equal to 1. The results are summarized in Table 5, where we observe a possibly
logarithmic dependence of the condition number on the polynomial degree p in case
of the coefficient scaling as well as of the special version of the stiffness scaling
mentioned above. The numerical experiments depict a linear dependence in case of
the regular stiffness scaling, see Fig. 2.

5.4 Performance

The algorithm was tested on a Desktop PC with an Intel(R) Xeon(R) CPU E5-1650
v2 @ 3.50GHz and 16GB main memory. As already mentioned at the beginning of
this section, we used the open source library G+Smo for the materialization of the
code with the Sparse-LU factorization of the open source library “Eigen”, see [14],
for the local solvers. The timings presented in Table 6 are obtained from a sequential
implementation of the code. We choose the same setting as presented in Table 3 with
Algorithm C. However, we do one more refinement steps and obtain 121824 total
degrees of freedom, 1692 Lagrange multipliers, and on each patch approximate 4900
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Table 5 2D example with homogeneous diffusion coefficient and fixed initial mesh. Choice of
primal variables: vertex evaluation and edge averages (Alg. C)

Alg. C Unprec. F Coeff. scal Stiff. scal. Stiff. scal. modif.

#dofs Degree κ It. κ It. κ It. κ It.

800 2 3.24 16 1.65 8 1.64 8 1.63 8

2364 3 8.08 28 1.71 10 1.69 10 1.7 10

4728 4 24.2 51 1.83 11 1.88 12 1.83 11

7892 5 82.8 86 2.03 13 2.16 12 2.01 12

11856 6 296 140 2.23 13 2.42 14 2.18 13

16620 7 1082 230 2.41 14 2.66 14 2.34 14

22184 8 4021 371 2.57 15 2.88 15 2.49 15

28548 9 15034 594 2.72 15 3.09 16 2.63 15

35712 10 56773 968 2.87 16 3.28 16 2.75 15

Fig. 2 2D example with
homogeneous diffusion
coefficient and fixed initial
mesh. Condition number κ as
a function of polynomial
degree p. Choice of primal
variables: vertex evaluation
and edge averages (Alg. C)
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local degrees of freedom. We select a run with coefficient scaling and obtain a
condition number of κ = 3.53 and 11 iterations.

We remark that about 90% of the total runtime is used for the assembling part
of the program including the Schur complement computations, where a majority is
spent for calculating the LU-factorizations of the local matrices. This indicates the
importance of replacing the direct solver with inexact solvers on each patch, see, e.g.,
[22, 26] for the finite element case. Furthermore, we note that, especially in 3D, an
additional bottleneck is thememory demand of the direct solvers.
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Table 6 2D example: Timings of Algorithm C with coefficient scaling

#dofs=121824 Wall-clock time (s) Relative time in %

Preparing the bookkeeping 0.011 0.03

Assembling all patch local K (k) 6.2 15.42

Partitioning w.r.t. B and I 0.087 0.22

Assembling C 0.016 s 0.04

Calculating LU-fact. of KII 15 37.31

Calculating LU-fact. of (19) 15 s 37.31

Assembling and LU-fact of SΠΠ 0.46 1.14

Assemble rhs. 0.094 0.23

Total assembling 37 92.04

One PCG iteration 0.22 –

Solving the system 2.5 6.22

Calculating the solution u 0.5 1.24

Total spent time 40.2 100.00

6 Conclusions

We have derived condition number estimates for the IETI-DP method and extended
the existent theory to domains which cannot be represented by a single geometrical
mapping. Due to the fact that we only considered open knot vectors, we could
identify basis function on the interface and on the interior. This assumption implies
that the discrete solution is only C0 smooth across patch interfaces. However, under
this assumption, we were able to find an improved condition number bound of the
IETI-DPmethod using the Dirichlet preconditioner with stiffness scaling. Numerical
examples with two and three dimensional domains, different choices of primal
variables and different scaling methods confirmed the theoretical results presented
in Sect. 3. Moreover, the numerical results indicate the robustness with respect to
jumping diffusion coefficients across the interfaces. In [19], we have obtained similar
numerical results for solving multipatch discontinuous Galerkin (dG) IgA schemes,
proposed and investigated in [25], by means of IETI-DP methods following the
approach developed by [13] for composite finite element and dGmethods.
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C0-Interior Penalty Discontinuous
Galerkin Approximation of a
Sixth-Order Cahn-Hilliard Equation
Modeling Microemulsification Processes

Ronald H. W. Hoppe and Christopher Linsenmann

Abstract Microemulsions can bemodeled by an initial-boundary value problem for
a sixth orderCahn-Hilliard equation. Introducing the chemical potential as a dual vari-
able, a Ciarlet-Raviart type mixed formulation yields a system consisting of a linear
second order evolutionary equation and a nonlinear fourth order equation. The spa-
tial discretization is done by a C0 Interior Penalty Discontinuous Galerkin (C0IPDG)
approximation with respect to a geometrically conforming simplicial triangulation
of the computational domain. The DG trial spaces are constructed by C0 conform-
ing Lagrangian finite elements of polynomial degree p ≥ 2. For the semidiscretized
problem we derive quasi-optimal a priori error estimates for the global discretization
error in a mesh-dependent C0IPDG norm. The semidiscretized problem represents
an index 1 Differential Algebraic Equation (DAE) which is further discretized in
time by an s-stage Diagonally Implicit Runge-Kutta (DIRK) method of order q ≥ 2.
Numerical results show the formation of microemulsions in an oil/water system and
confirm the theoretically derived convergence rates.

1 Introduction

Microemulsions are thermodynamically stable colloidal dispersions of an oil/water
system that typically occur as oil-in-water, water-in-oil, or water/oil droplets with
a diameter up to 200nm. They are thus considerably smaller than ordinary emul-
sions (macroemulsions). Moreover, in contrast to macroemulsions whose generation
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requires strong shear forces, microemulsions can be created by simple mixing. Due
to their efficient drug solubilization capacity and bioavailability, microemulsions
have significant applications in pharmacology as drug carriers for the delivery of
hydrophilic as well as lipophilic drugs. Other applications include cleaning and pol-
ishing processes, food processing, and cutting oils (cf. [14, 21–23, 26, 27]).

As far as the mathematical modeling is concerned, for ternary oil-water-
microemulsions Gompper et al. [15–18] have considered a second order Ginzburg-
Landau free energy so that the dynamics of the microemulsification process can be
described by an initial-boundary value problem for a sixth order Cahn-Hilliard equa-
tion. The existence and uniqueness of strong andweak solutions has been investigated
analytically by Pawlow et al. [24, 25, 28].

For the numerical simulation of the microemulsification process, we introduce
the chemical potential as a dual variable and consider a Ciarlet-Raviart type mixed
formulation as a system consisting of a linear second order evolutionary equation and
a nonlinear fourth order elliptic equation. The spatial discretization is taken care of by
aC0-Interior PenaltyDiscontinuousGalerkin (C0-IPDG) approximationwith respect
to a geometrically conforming simplicial triangulation of the computational domain.
The DG trial spaces are constructed by C0 conforming Lagrangian finite elements of
polynomial degree p ≥ 2. We note that IPDG methods for the standard fourth order
Cahn-Hilliard equation have been studied in [31] based on IPDG approximations of
fourth order problems including the biharmonic equation considered in [5, 10] (cf.
also [3, 11–13]). The semidiscretized problem represents an initial value problem
for an index 1 Differential Algebraic Equation (DAE) which is discretized in time
by an s-stage Diagonally Implicit Runge-Kutta method of order q ≥ 2 with respect
to a partitioning of the time interval (cf., e.g., [1, 7, 19]). The resulting parameter
dependent nonlinear algebraic system is numerically solved by a predictor-corrector
continuation strategy with the time step size as the continuation parameter featuring
constant continuation as a predictor and Newton’s method as corrector.

The paper is organized as follows: After some notations and preliminaries in
Sect. 2, in Sect. 3 we present the initial-boundary value problem for the sixth order
Cahn-Hilliard equation based on a Ginzburg-Landau free energy and introduce a
Ciarlet-Raviart type mixed formulation as a system consisting of a linear second
order evolutionary equation and a nonlinear fourth order elliptic equation. Then,
Sect. 4 is devoted to the semidiscretization in space by the C0IPDG method. Quasi-
optimal a priori error estimates for the global discretization error both in the primal
and in the dual variable are derived in Sect. 5. In Sect. 6, very briefly we discuss
the discretization in time by an s-stage DIRK method of order q and the numeri-
cal solution of the resulting parameter dependent nonlinear algebraic system by a
predictor-corrector continuation strategy. In the final Sect. 7, we present numerical
results which show the formation of water-in-oil and oil-in-water droplets in a ternary
water-oil-microemulsion system and confirm to some extent the theoretically derived
convergence rates.
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2 Notations and Preliminaries

We use standard notation fromLebesgue and Sobolev space theory (cf., e.g., [29]). In
particular, for a bounded domain Ω ⊂ R

d , d ∈ N, we refer to L p(Ω), 1 ≤ p < ∞,
as the Banach space of p-th power Lebesgue integrable functions on Ω with norm
‖ · ‖0,p,Ω and to L∞(Ω) as the Banach space of essentially bounded functions on
Ω with norm ‖ · ‖0,∞,Ω . For functions vi ∈ L pi (Ω), 1 ≤ i ≤ 3, where pi ∈ R+,∑3

i=1 1/pi = 1, the generalized Hölder inequality

∫

Ω

3∏

i=1

|vi | dx ≤
3∏

i=1

‖vi‖0,pi ,Ω (1)

holds true. Further, we denote byWs,p(Ω), s ∈ R+, 1 ≤ p ≤ ∞, the Sobolev spaces
with norms ‖ · ‖s,p,Ω . We note that for p = 2 the spaces L2(Ω) and Ws,2(Ω) =
Hs(Ω) are Hilbert spaces with inner products (·, ·)0,2,Ω and (·, ·)s,2,Ω . In the sequel,
we will suppress the subindex 2 and write (·, ·)0,Ω , (·, ·)s,Ω and ‖ · ‖0,Ω , ‖ · ‖s,Ω
instead of (·, ·)0,2,Ω , (·, ·)s,2,Ω and ‖ · ‖0,2,Ω , ‖ · ‖s,2,Ω .

For T > 0 and a Banach space V with norm ‖ · ‖V the space L p((0, T ), V ),
1 ≤ p ≤ ∞, refers to the Banach space of all functions v such that v(t) ∈ V for
almost all t ∈ (0, T ) with norm

‖v‖L p((0,T ),V ) :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎛

⎝

T∫

0

‖v(t)‖p
V dt

⎞

⎠

1/p

, 1 ≤ p < ∞,

ess sup
t∈(0,T )

‖v(t)‖V , p = ∞.

The spaces Ws,p((0, T ), V ), s ∈ R+, 1 ≤ p ≤ ∞, are defined analogously. Finally,
C([0, T ], V ) denotes the Banach space of functions v such that v(t) ∈ V for all
t ∈ [0, T ] with norm

‖v‖C([0,T ],V ) := max
t∈[0,T ] ‖v(t)‖V .

3 Sixth Order Cahn-Hilliard Equation

Given a bounded domain Ω ⊂ R
2 with boundary Γ = ∂Ω and exterior unit normal

vector nΓ , denoting by T > 0 the final time, and setting Q := Ω × (0, T ), Σ =
Γ × (0, T ), we consider the following sixth order Cahn-Hilliard equation

σ
∂c

∂t
− MΔ

(
κΔ2c − a(c)Δc − 1

2
a′(c)|∇c|2 + f0(c)

)
= 0 in Q (2a)
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with the boundary conditions

nΓ · ∇c = nΓ · ∇μ(c) = nΓ · ∇Δc = 0 on Σ (2b)

and the initial condition

c(·, 0) = c0 in Ω. (2c)

Here, σ is a surface energy density, M stands for the mobility which in the sequel
will be assumed to be a positive constant, κ is a positive constant as well, and the
coefficient function a(c) is assumed to be of the form

a(c) = a0 + a2c
2, a0 ∈ R, a2 > 0. (3)

The function f0(c) = δF0(c)/δc is the variational derivative of the multiwell free
energy

F0(c) =
∫

Ω

β

2
(c + 1)2(c2 + h0)(c − 1)2, h0 ∈ R,

whereβ is another surface energy density and h0 ∈ Rmeasures the deviation from the
oil-water-microemulsion coexistence.Moreover,μ(c) denotes the chemical potential
which is the variational derivative

μ(c) = δF(c)

δc

of the total free energy

F(c) = F0(c) +
∫

Ω

(1

2
a(c)|∇c|2 + 1

2
κ|Δc|2

)
dx, (4)

and c0 is a given initial condition.

Remark 1 The initial-boundary value problem (2a)–(2c) describes the dynamics of
ternary oil-water-microemulsion systems where the solution c is an order parameter
representing the local difference between the oil and water concentrations. We note
that the Ginzburg-Landau free energy (4) for such systems has been suggested in
[15–18].

For bounded convex domains with boundary Γ of classC6 and initial data c0 such
that c0 ∈ H 5(Ω) with spatial mean

cm := 1

|Ω|
∫

Ω

c0 dx

satisfying the compatibility conditions
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nΓ · ∇c0 = nΓ · ∇Δc0 = 0 on Γ, (5)

it has been shown in [24] that the initial-boundary value problem for the sixth order
Cahn-Hilliard equation (2a)–(2c) has a unique solution global in time such that

c ∈ L2((0, T ), H 6(Ω)) ∩ H 1((0, T ), H 4(Ω)),

c(·, 0) = c0,
1

|Ω|
∫

Ω

c(t) dx = cm for all t ∈ R+.

Introducing the chemical potentialμ(c) as an additional unknown w := μ(c), the
sixth order Cahn-Hilliard equation (2a) can be equivalently formulated as a system
of a linear second order evolutionary equation and a nonlinear fourth order elliptic
equation in (c,w) according to

σ
∂c

∂t
− MΔw = 0 in Q, (6a)

κΔ2c − a(c)Δc − a2c|∇c|2 + f0(c) − w = 0 in Q (6b)

with the boundary conditions

nΓ · ∇c = nΓ · ∇w = nΓ · ∇Δc = 0 on Σ (6c)

and the initial condition

c(·, 0) = c0 in Ω. (6d)

We set

V := H 1(Ω), Z := {z ∈ H 2(Ω) | nΓ · ∇z = 0 on Γ }. (7)

Observing
∇ · (a(c)∇c) = a(c)Δc + 2a2|∇c|2,

we define

(g(c), v)0,Ω := −(a(c)Δc, v)0,Ω − (a2c|∇c|2, v)0,Ω + ( f0(c), v)0,Ω, v ∈ Z .

(8)

A pair (c,w) is said to be a weak solution of (6a)–(6d), if for all v ∈ V and z ∈ Z it
holds
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σ

〈
∂c

∂t
, v

〉

V ∗,V
+ M(∇w,∇v)0,Ω = 0, (9a)

κ(Δc,Δz)0,Ω + (g(c), z)0,Ω − (w, z)0,Ω = 0, (9b)

and if the initial condition

c(·, 0) = c0. (9c)

is satisfied.

Remark 2 The existence and uniqueness of a weak solution satisfying

c ∈ H 1((0, T ), V ∗) ∩ L∞((0, T ), Z) ∩ L2((0, T ), H 3(Ω)),

w ∈ L2((0, T ), V )

has been shown in [28].

4 C0-Interior Penalty Discontinuous Galerkin
Approximation

For semidiscretization in space of the coupled system (6a)–(6d) we will use the
C0IPDG method with respect to a simplicial triangulation of the computational
domain. Due to the convexity of the computational domain, we can use the Ciarlet-
Raviart mixed formulation of (6b) by introducing z = Δc as an additional unknown
so that (6b) can be written as the following system of two second order equations

z = Δc, (10a)

κΔz − a(c)Δc − a2c|∇c|2 + f0(c) = w. (10b)

Multiplying (10a) by a test function ϕ ∈ H 1(Ω) and (10b) by a test function ψ ∈
H 2(Ω) and integrating over Ω , integration by parts and observing (6c), (8) yields
the weak formulation

(z, ϕ)0,Ω = −(∇c,∇ϕ)0,Ω, (11a)

(κz,Δψ)0,Ω − (κz, n · ∇ψ)0,Γ + (g(c), ψ)0,Ω = (w, ψ)0,Ω . (11b)

We assume Th(Ω) to be a shape-regular simplicial triangulation of Ω . For D ⊆ Ω ,
we denote by Eh(D) the sets of nodal points of Th in D. For K ∈ Th(Ω) and
E ∈ Eh(Ω̄) we further refer to hK and hE as the diameter of K and the length
of E . We set h := max{hK | K ∈ Th(Ω)}. For two quantities A, B ∈ R+ we use
the notation A � B, if there exists a constant C > 0, independent of h, such that
A ≤ CB.
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Denoting by Pp(K ), p ∈ N, the linear space of polynomials of degree ≤ p on K ,
for p ≥ 2 we set

Q(p)
h := {vh ∈ L2(Ω) | vh |K ∈ Pp(T ), K ∈ Th}

and refer to
V (p)
h := Q(p)

h ∩ H 1(Ω)

as the finite element space of Lagrangian finite elements of type p (cf., e.g., [4, 8]).
We refer to Nh(Ω) as the set of nodal points such that any vh ∈ V (p)

h is uniquely
determined by its degrees of freedom vh(a), a ∈ Nh(Ω) and to Ih : Hs(Ω) → V (p)

h ,

s ≥ 2, as the nodal interpolation operator.
In the sequel, we will use the inverse inequalities [30]

‖∇vh‖0,K ≤ C (1)
Inv p

2 h−1 ‖vh‖0,K , vh ∈ V (p)
h , (12a)

‖Δvh‖0,K ≤ C (2)
Inv(p − 1)2 h−1 ‖∇vh‖0,K , vh ∈ V (p)

h , (12b)

and the trace inequality [30]

‖vh‖0,∂K ≤ CTr p h−1/2 ‖vh‖0,K , vh ∈ V (p)
h . (12c)

We note that V (p)
h �⊂ H 2(Ω) and hence, V (p)

h is a nonconforming finite element space
for the approximation of the fourth order equation (6b). In particular, for a function
zh on Ω that is elementwise polynomial, we define averages and jumps according to

{zh}E :=
{

1
2 (zh|E∩T+ + zh |E∩T−), E ∈ Eh(Ω),

zh|E , E ∈ Eh(Γ ),

[zh]E :=
{
zh|E∩T+ − zh|E∩T− , E ∈ Eh(Ω),

zh|E E ∈ Eh(Γ ).

The general C0DG approximation of (11a), (11b) reads: Given wh ∈ V (p)
h , find

(ch, zh) ∈ V (p)
h × Q(p)

h such that for all (ϕh, vh) ∈ Q(p)
h × V (p)

h it holds

∑

K∈T h (Ω)

(
(zh, ϕh)0,K + (∇ch,∇ϕh)0,K

)
−

∑

E∈E h (Ω̄)

(nE · ĉE , ϕh)0,∂K = 0, (13a)

∑

K∈T h (Ω)

(
(κzh,Δvh)0,T + (g(ch), vh)0,K

)
−

∑

E∈E h (Ω̄)

(
( ẑE ,∇vh)0,E − (wh, vh)0,K

)
= 0,

(13b)

where ĉE and ẑE are suitably chosen numerical flux functions that determine the type
of C0DG approximation. In particular, for the C0IPDG approximation we choose
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ĉE :=
{

{∇ch}E , E ∈ Eh(Ω),

0, E ∈ Eh(Γ ),
(13c)

ẑE :=
(

{Δch}E − α

hE

[
∂ch
∂n

]

E

)

nE , E ∈ Eh(Ω̄), (13d)

where α > 0 is a penalization parameter. The choice (13c), (13d) has the advantage
that for ϕh = κΔvh in (13a) we may eliminate the dual variable zh from the sys-
tem and thus arrive at the following primal variational formulation of the C0IPDG
approximation: Find ch ∈ V (p)

h such that for all vh ∈ V (p)
h it holds

aDG
h (ch, vh) +

∑

K∈T h(Ω)

(g(ch), vh)0,K = (wh, vh)0,Ω,

where aDG
h (·, ·) : V (p)

h × V (p)
h → R stands for the C0IPDG bilinear form

aDG
h (ch , vh) :=

∑

K∈Th(Ω)

(κΔch , Δvh)0,K −
∑

E∈Eh(Ω)

(
(κnE · {∇ch}E , [Δvh]E )0,E

+ (κ[Δch]E , nE · {∇vh}E )0,E

)
+

∑

E∈Eh(Ω)

α

hE
(nE · [∇ch]E , nE · [∇vh]E )0,E .

We note that the C0IPDG bilinear form is not well-defined for functions c ∈ Z , since
Δc|E , E ∈ Eh(Ω̄ , does not live in L2(E). This can be cured by means of a lifting
operator

L : V (p)
h + Z → V (p)

h

which is defined according to

∫

Ω

L(c) vh dx = −
∑

E∈Eh(Ω̄)

∫

E

nE · [∇c]E vh ds.

We define an extension ãDG
h (·, ·) : (V (p)

h + Z) × (V (p)
h + Z) → R as follows:

ãDG
h (c, v) :=

∑

K∈T h(Ω)

∫

K

(
Δc Δv + L(c) Δv + Δc L(v)

)
dx

+
∑

E∈Eh(Ω̄)

α

hE
nE · [∇c]E nE · [∇v]E ds.

On V (p)
h + Z we introduce the mesh-dependent IPDG semi-norm
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|c|2,h,Ω :=
⎛

⎝
∑

K∈T h(Ω)

‖Δc‖20,K +
∑

E∈Eh(Ω̄)

α

hE
‖nE · [∇c]E‖20,E

⎞

⎠

1/2

and the mesh-dependent IPDG norm

‖c‖2,h,Ω :=
(
|c|22,h,Ω + ‖c‖20,Ω

)1/2
.

From the Poincaré-Friedrichs inequality for piecewise H2 functions (cf., e.g., [6])
we deduce that there exists a constant CPF > 0 such that

‖∇v‖20,Ω ≤ CPF|v|22,h,Ω, v ∈ V (p)
h + Z . (14)

It is not difficult to show that for sufficiently large penalty parameter α there exist
constants γ > 0 and β > 0 such that the C0IPDG bilinear form ãDG

h satisfies the
Gårding-type inequality

ãDG
h (c, c) ≥ γ ‖c‖22,h,Ω − β‖c‖20,Ω, c ∈ V (p)

h + Z . (15)

Moreover, there exists a constant Γ > 0 such that

|ãDG
h (c, v)| ≤ Γ ‖c‖2,h,Ω‖v‖2,h,Ω, c, v ∈ V (p)

h + Z . (16)

TheC0IPDGmethod for the nonlinear fourth order elliptic equation has the advantage
that we may approximate the dual variable w in the linear second order evolutionary
equation by a function in V (p)

h as well. Hence, the C0IPDG approximation of the
initial-boundary value problem (6a)–(6d) for the sixth order Cahn-Hilliard equation
reads:

Find (ch,wh) ∈ H 1((0, T ), V (p)
h ) × L2((0, T ), V (p)

h ) such that for all vh ∈ V (p)
h

it holds
(

σ
∂ch
∂t

, vh

)

0,Ω

− M(∇wh,∇vh)0,Ω = 0, (17a)

aDG
h (ch, vh) +

∑

K∈T h(Ω)

(g(ch), vh)0,K − (wh, vh)0,Ω = 0, (17b)

ch(·, 0) = Ihc0. (17c)

Remark 3 (i) The unique solvability of (17a)–(17c) can be shown by similar argu-
ments as in [28].

(ii) The C0IPDG approximation (17a)–(17c) is consistent with the weak formulation
(9a)–(9c) of the initial-boundary value problem (6a)–(6d) in the sense that for
all vh ∈ V (p)

h it holds (cf., e.g., [5])
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〈

σ
∂c

∂t
, vh

〉

V,V ∗
− M (∇w,∇vh)0,Ω = 0,

ãDG
h (c, vh) +

∑

K∈T h(Ω)

(g(c), vh)0,K − (w, vh)0,Ω = 0.

5 Quasi-Optimal a Priori Error Estimates

We suppose that for some r ≥ 5 the domain Ω has a boundary Γ of class Cr+1, the
initial data satisfy c0 ∈ Hr (Ω) as well as the compatibility condition (5) and that the
unique solution (c,w) of (9a)–(9c) satisfies the regularity assumptions

c ∈ L2((0, T ), Hr+1(Ω)) ∩ H 1((0, T ), Hr−1(Ω)) ∩ H 2((0, T ), Hr−3(Ω)),

(18a)

w ∈ L2((0, T ), Hr−1(Ω)) ∩ H 1((0, T ), Hr−3(Ω)) ∩ H 2((0, T ), Hr−5(Ω)).

(18b)

Remark 4 It follows from (18a), (18b) that the pair (c,w) satisfies

c ∈ C([0, T ], Hr (Ω)) ∩ C1([0, T ], Hr−2(Ω)), (19a)

w ∈ C([0, T ], Hr−2(Ω)) ∩ C1([0, T ], Hr−4(Ω)). (19b)

The regularity assumptions (18a), (18b) imply the following interpolation esti-
mates (cf., e.g., [4, 8])

t∫

0

‖c − Ihc‖2m,Ω dτ � h2(min(p+1,r+1)−m)

t∫

0

|c|2min(p+1,r+1),Ω ds, (20a)

t∫

0

∥
∥
∥
∥
∂c

∂s
− Ih

∂c

∂s

∥
∥
∥
∥

2

0,Ω

ds � h2min(p+1,r−1)

t∫

0

∣
∣
∣
∣
∂c

∂s

∣
∣
∣
∣

2

min(p+1,r−1),Ω

ds, (20b)

‖(c − Ihc)(·, t)‖2m,Ω � h2(min(p+1,r)−m)|c(·, t)|2min(p+1,r),Ω, (20c)
t∫

0

‖w − Ihw‖2m,Ω ds � h2(min(p+1,r−1)−m)

t∫

0

|w|2min(p+1,r−1),Ω ds, (20d)

t∫

0

∥
∥
∥
∥
∂w

∂s
− Ih

∂w

∂s

∥
∥
∥
∥

2

0,Ω

ds � h2min(p+1,r−3)

t∫

0

∣
∣
∣
∣
∂w

∂s

∣
∣
∣
∣

2

min(p+1,r−3),Ω

ds, (20e)

‖(w − Ihw)(·, t)‖2m,Ω � h2(min(p+1,r−2)−m)|w(·, t)|2min(p+1,r−2),Ω . (20f)
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For the interpolation error in the mesh-dependent IPDG-norm it follows from (20)
that

t∫

0

‖c − Ihc‖22,h,Ω dτ � h2(min(p+1,r+1)−2)

t∫

0

|c|2min(p+1,r+1),Ω dτ, (21a)

‖(c − Ihc)(·, t)‖22,h,Ω � h2(min(p+1,r)−2) |c(·, t)|2min(p+1,r),Ω . (21b)

Theorem 1 Let (c,w) and (ch,wh) be the solutions of (9a)–(9c) and (17a)–(17c).
Under the regularity assumptions (18a), (18b), and (19a), (19b) there exists a con-
stant C > 0, independent of h, such that for all 0 < t ≤ T it holds

‖(c − ch)(·, t)‖22,h,Ω +
t∫

0

‖c − ch‖22,h,Ω ds +
t∫

0

‖∇(w − wh)‖20,Ω ds

� h2(pr+1−2)

t∫

0

|c|2pr+1,Ω
ds + h2(pr−1−2)

t∫

0

∣
∣
∣
∣
∂c

∂s

∣
∣
∣
∣

2

pr−1,Ω

ds

+ h2(pr−1−1)

t∫

0

|w|2pr−1,Ω
ds + h2pr−3

t∫

0

∣
∣
∣
∣
∂w

∂s

∣
∣
∣
∣

2

min(p+1,r−3),Ω

ds

+ h2(pr−2)|c0|2min(p+1,r),Ω + h2pr−2 |w0|2pr−2,Ω
, (22)

where p� := min(p + 1, �).

The proof of Theorem 1 will be given by a series of lemmas and propositions.
First of all, recalling that ãDG

h (·, ·) satisfies the Gårding-type inequality (15), we
perform a scaling of the primal variable c and the dual variable w according to

c(x, t) := exp(τ t)ĉ(x, t), w(x, t) := exp(τ t)ŵ(x, t), τ > 0. (23)

In the new variables (ĉ, ŵ), the system (6a)–(6d) reads

σ
∂ ĉ

∂t
+ στ ĉ − MΔŵ = 0 in Q, (24a)

κΔ2ĉ + ĝ(ĉ) − ŵ = 0 in Q, (24b)

with the boundary conditions

n · ∇ ĉ = n · ∇ŵ = n · ∇Δĉ = 0 on Σ, (24c)

and the initial condition
ĉ(·, 0) = c0 in Ω, (24d)
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where

ĝ(ĉ) := −â(ĉ)Δĉ − a2 exp(2τ t)ĉ|∇ ĉ|2 + f̂0(ĉ), (24e)

â(ĉ) := a0 + a2 exp(2τ t)ĉ
2, (24f)

f̂0(ĉ) := β(exp(τ t)ĉ + 1)(exp(τ t)ĉ − 1)(exp(2τ t)ĉ3 − (1 − 2h0)ĉ). (24g)

A pair (c,w) is said to be a weak solution of (6a)–(6d), if for all v ∈ Z it holds

σ

〈
∂ ĉ

∂t
, v

〉

V ∗,V
+ στ(ĉ, v)0,Ω + M(∇ŵ,∇v)0,Ω = 0,

κ(Δĉ,Δv)0,Ω + (ĝ(ĉ), v)0,Ω − (ŵ, v)0,Ω = 0,

and if the initial condition
ĉ(·, 0) = c0.

is satisfied. The semidiscrete variables (ch,wh) are scaled in the sameway and hence,
the semidiscrete approximation requires the computation of (ĉh, ŵh) ∈ V (p)

h × V (p)
h

such that for all vh ∈ V (p)
h it holds

(

σ
∂ ĉh
∂t

, vh

)

0,Ω

+ στ(ĉh, vh)0,Ω − M(∇ŵh,∇vh)0,Ω = 0, (25a)

aDG
h (ĉh, vh) +

∑

K∈T h(Ω)

(ĝ(ĉh), vh)0,K − (ŵh, vh)0,Ω = 0, (25b)

ĉh(·, 0) = ch,0. (25c)

Remark 5 If the regularity assumptions (18a), (18b) hold true for (c,w), they also
apply to (ĉ, ŵ) and the interpolation estimates (20) are satisfied for (ĉ, ŵ) as well.

We will prove Theorem 1 based on an implicit time discretization of (24a)–
(24d) and (25a)–(25c) by the backward Euler scheme with respect to an equidistant
partition {tm = mΔt | 0 ≤ m ≤ M}, M ∈ N, of the time interval [0, T ] with step
size Δt = T/M . Denoting by (ĉm, ŵm) and (ĉmh , ŵm

h ) approximations of (ĉ, ŵ) and
(ĉh, ŵh) at time tm , 0 ≤ m ≤ M , with ĉ0 = ĉ0 and ĉ0h = ch,0, the backward Euler
scheme for (24a)–(24d) reads:

Find (ĉm, ŵm) such that for all v ∈ Z it holds

σ(ĉm, v)0,Ω + στΔt (ĉm, v)0,Ω + Δt (∇ŵm,∇v)0,Ω − σ(ĉm−1, v)0,Ω = 0, (26a)

aDG
h (ĉm, v) + (ĝ(ĉm, v)0,Ω − (ŵm, v)0,Ω = 0. (26b)

The unique solvability of (26a), (26b) follows in the same way as that of (9a)–(9c).
Likewise, the backward Euler scheme for (25a)–(25c) is given by:
Find (ĉmh , ŵm

h ) such that for all vh ∈ V (p)
h it holds
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σ (ĉmh − ĉm−1
h , vh)0,Ω + στΔt (ĉmh , vh)0,Ω + Δt (∇ŵm

h ,∇vh)0,Ω = 0, (27a)

aDG
h (ĉmh , vh) +

∑

K∈T h(Ω)

(ĝ(ĉmh , vh)0,K − (ŵm
h , vh)0,Ω = 0. (27b)

Again, the unique solvability of (27a), (27b) follows in the same way as that of
(17a)–(17c).

Remark 6 (i) The C0IPDG approximation (27a), (27b) is consistent with (26a),
(26b) in the sense that for all vh ∈ V (p)

h it holds

σ (ĉm − ĉm−1, vh)0,Ω + στΔt (ĉm, vh)0,Ω + Δt (∇ŵm,∇vh)0,Ω = 0,

ãDG
h (ĉm, vh) +

∑

K∈T h(Ω)

(ĝ(ĉm, vh)0,K − (ŵm, vh)0,Ω = 0.

(ii) Using similar arguments as in [25, 28] it can be shown that ĉmh is bounded in the
C0IPDG norm uniformly in h, i.e., there exists a constant C (1)

B > 0, independent
of h, such that

‖ĉmh ‖2,h,Ω ≤ C (1)
B , 0 ≤ m ≤ M. (28)

Since V (p)
h is continuously embedded in C(Ω̄ , there exists another constant

C (2)
B > 0, independent of h, such that

max
x∈Ω̄

|ĉmh (x)| ≤ C (2)
B , 0 ≤ m ≤ M. (29)

Lemma 1 Let ĝ be given by (24e). Then there exists a constant C1, independent of
h, such that for ĉm ∈ Hr (Ω), r ≥ 5, 0 ≤ m ≤ M, and ĉmh , vh ∈ V (p)

h , p ≥ 2, it holds

|(ĝ(ĉm) − ĝ(ĉmh ), vh)0,Ω | ≤ C1 ‖ĉm − ĉmh ‖2,h,Ω ‖vh‖0,Ω . (30)

Proof Observing (24e) we have

∑

K∈T h(Ω)

(ĝ(ĉm) − ĝ(ĉmh ), vh)0,K = −
∑

K∈T h(Ω)

(â(ĉm)Δĉm − â(ĉmh )Δĉmh , vh)0,K

−
∑

K∈T h(Ω)

a2 exp(2τ t)(ĉ
m |∇ ĉm |2 − ĉmh |∇ ĉmh |2, vh)0,K + ( f̂0(ĉ

m) − f̂0(ĉ
m
h ), vh)0,Ω .

(31)

In view of (3)

â(ĉmh )Δĉmh − â(ĉm)Δĉm = (â(ĉm) − â(ĉmh ))Δĉm + â(ĉmh )(Δĉm − Δĉmh )

= a2 exp(2τ t)(ĉ
m + ĉmh )(ĉm − ĉmh )Δĉm + â(ĉmh )(Δĉm − Δĉmh ).
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Then the first term on the right-hand side of (31) can be estimated according to

∣
∣
∣
∣
∣
∣

∑

K∈T h(Ω)

(â(ĉm)Δĉm − â(ĉmh )Δĉmh , vh)0,K

∣
∣
∣
∣
∣
∣

≤ D1

∑

K∈T h(Ω)

‖ĉm − ĉmh ‖0,K ‖vh‖0,K + D2

∑

K∈T h(Ω)

‖Δĉm − Δĉmh ‖0,K‖vh‖0,K ,

(32)

where the constants Di , 1 ≤ i ≤ 2, are given by

D1 := max
x∈Ω̄

|(ĉm + ĉmh )(x)Δĉm(x)|, D2 := max
x∈Ω̄

|a0 + a2 exp(2τT )(ĉmh (x))2|.

We note that ĉm,Δĉm ∈ C(Ω̄), since for r ≥ 5 the spaces Z ∩ Hr (Ω) and Hr−2(Ω)

are continuously embedded in C(Ω̄). Moreover, due to (29) ĉmh is bounded in C(Ω̄)

uniformly in h. Hence, the constants Di , 1 ≤ i ≤ 2, are well defined and bounded
from above independent of h.

For the second term on the right-hand side of (31) we split

a2 exp(2τ t)(ĉ
m |∇ ĉm |2 − ĉmh |∇ ĉmh |2, vh)0,K , K ∈ Th(Ω),

by means of

(a2 exp(2τ t)(ĉ
m |∇ ĉm |2 − ĉmh |∇ ĉmh |2, vh)0,K

= a2 exp(2τ t)((ĉ
m − ĉmh )|∇ ĉm |2, vh)0,K + a2 exp(2τ t)(ĉ

m
h ∇ ĉm · (∇ ĉm − ∇ ĉmh ), vh)0,K

+ a2 exp(2τ t)(ĉ
m
h ∇ ĉmh · (∇ ĉm − ∇ ĉmh ), vh)0,K . (33)

For the first term on the right-hand side of (33) we obtain

∣
∣
∣
∣
∣
∣

∑

K∈T h(Ω)

a2 exp(2τ t)((ĉ
m − ĉmh )|∇ ĉm |2, vh)0,K

∣
∣
∣
∣
∣
∣

≤ D3

∑

K∈T h(Ω)

‖ĉm − ĉmh ‖0,K‖vh‖0,K , (34)

where
D3 := a2 exp(2τT )max

x∈Ω̄

|∇ ĉm(x)|2

which is well defined, since ∇ ĉm ∈ C(Ω̄)2.
Likewise, observing (14), the second term on the right-hand side of (33) can be

estimated from above as follows:
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∣
∣
∣
∣
∣
∣

∑

K∈T h(Ω)

a2 exp(2τ t)(ĉ
m
h ∇ ĉm · (∇ ĉm − ∇ ĉmh ), vh)0,K

∣
∣
∣
∣
∣
∣

≤ D4

∑

K∈T h(Ω)

‖∇ ĉm − ∇ ĉmh ‖0,K ‖vh‖0,K ≤ D4‖∇(ĉm − ĉmh )‖0,Ω‖vh‖0,Ω

≤ CPFD4|ĉm − ĉmh |2,h,Ω‖vh‖0,Ω, (35)

where due to (29)

D4 := a2 exp(2τT )max
x∈Ω̄

|ĉmh (x)∇ ĉm(x)| ≤ a2 exp(2τT )C (2)
B max

x∈Ω̄

|∇ ĉm(x)|.

Since ∇ ĉm ∈ C(Ω̄)2, we note that D4 is well defined and independent of h.
For the third term on the right-hand side of (33) we use the generalized Hölder

inequality (1) with v1 = ∇ ĉmh , v2 = ∇ ĉm − ∇ ĉmh , v3 = vh , and p1 = 4/(1 + 2ε),
p2 = 4/(1 − 2ε), 0 < ε � 1, and p3 = 2.

|
∑

K∈T h(Ω)

a2 exp(2τ t)(ĉ
m
h ∇ ĉmh · (∇ ĉm − ∇ ĉmh ), vh)0,K |

≤ D5

∑

K∈T h(Ω)

∫

K

|∇ ĉmh | |∇ ĉm − ∇ ĉmh | |vh | dx

≤ D5

∑

K∈T h(Ω)

‖ĉmh ‖1,4/(1+2ε),K‖ĉm − ĉmh ‖1,4/(1−2ε),K‖vh‖0,K

≤ D5‖ĉmh ‖1,4/(1+2ε),Ω

∑

K∈T h(Ω)

‖ĉm − ĉmh ‖1,4/(1−2ε),K‖vh‖0,K , (36)

where
D5 := a2 exp(2τT ) max

x∈Ω̄

|ĉmh (x)| ≤ a2 exp(2τT )C (2)
B .

Since H 3/2−ε(Ω) is continuously embedded in W 1,4/(1+2ε)(Ω) and V (p)
h is contin-

uously embedded in H 3/2−ε(Ω) (cf., e.g., [5]), there exists a constant D6 > 0 such
that

‖ĉmh ‖1,4/(1+2ε),Ω ≤ D6 ‖ĉmh ‖2,h,Ω . (37)

Moreover, H 2(K ) is continuously embedded in W 1,4/(1−2ε)(K ) and hence, there
exists a constant D7 > 0, which can be chosen independent of h, such that for all
K ∈ Th(Ω) it holds

‖ĉm − ĉmh ‖1,4/(1−2ε),K ≤ D7‖ĉm − ĉmh ‖2,K . (38)

Using (37) and (38) in (36), it follows that
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∣
∣
∣
∣
∣
∣

∑

K∈T h(Ω)

a2 exp(2τ t)(ĉ
m
h ∇ ĉmh · (∇ ĉm − ∇ ĉmh ), vh)0,K

∣
∣
∣
∣
∣
∣

≤ D8

∑

K∈T h(Ω)

‖ĉm − ĉmh ‖2,K‖vh‖0,K ,

(39)

where due to (28)

D8 := D5 D6 D7 ‖ĉmh ‖2,h,Ω ≤ D5 D6 D7 C
(1)
B .

Finally, for the third term on the right-hand side of (31) we use that

f̂0(ĉ
m) − f̂0(ĉ

m
h ) =

1∫

0

f̂ ′
0(ĉ

m + s (ĉmh − ĉm)) ds (ĉm − ĉmh )

to obtain

|( f̂0(ĉm) − f̂0(ĉ
m
h ), vh)0,Ω | ≤ D9

∑

K∈T h(Ω)

‖ĉm − ĉmh ‖0,K‖vh‖20,K , (40)

where

D9 := max
x∈Ω̄

1∫

0

| f̂ ′
0(ĉ

m + s (ĉmh − ĉm))| ds.

Now, (30) is a direct consequence of (32), (34), (35), (39), and (40).

Corollary 1 Under the assumptions of Lemma 1 there exists a constant C2 > 0,
independent of h, such that for 0 ≤ m ≤ M it holds

‖Ihŵm − ŵm
h ‖0,Ω ≤ C2 h

−2 ‖ĉm − ĉmh ‖2,h,Ω + ‖ŵm − Ihŵ
m‖0,Ω .

Proof Obviously, we have

‖Ihŵm − ŵm
h ‖0,Ω = sup

vh∈V (p)
h

|(Ihŵm − ŵm
h , vh)0,Ω |

‖vh‖0,Ω .

Using (6b) and (17b) we find

(Ihŵ
m − ŵm

h , vh)0,Ω = (Ihŵ
m − ŵm, vh)0,Ω + (ŵm − ŵm

h , vh)0,Ω = (41)

(Ihŵ
m − ŵm, vh)0,Ω + aDG

h (ĉm − ĉmh , vh) + (ĝ(ĉm) − ĝ(ĉmh ), vh)0,Ω .
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In view of (16), for the second term on the right-hand side of (41) we obtain

|aDG
h (ĉm − ĉmh , vh)| ≤ Γ ‖ĉm − ĉmh ‖2,h,Ω ‖vh‖2,h,Ω . (42)

On the other hand, using (30) from Lemma 1 we find

|aDG
h (ĉm − ĉmh , vh) + (ĝ(ĉm) − ĝ(ĉmh ), vh)0,Ω | ≤ C1 ‖ĉm − ĉmh ‖2,h,Ω ‖vh‖2,h,Ω .

(43)

The inverse inequalities (12a) and (12b) and the trace inequality (12c) imply the
existence of a constant D10 > 0, independent of h, such that

‖vh‖2,h,Ω ≤ D11 h
−2 ‖vh‖0,Ω . (44)

Using (43) and (44) in (41) gives the assertion.

We introduce the interpolation errors:

e(1)int (ĉ
�) := Δt ‖ĉ� − Ih ĉ

�‖20,Ω , e(2)int (ĉ
�) := Δt ‖∇(ĉ� − Ih ĉ

�)‖20,Ω , 0 ≤ � ≤ m,

e(3)int (ĉ
�) := Δt ‖ ĉ

� − ĉ�−1

Δt
− Ih(

ĉ� − ĉ�−1

Δt
)‖20,Ω , 1 ≤ � ≤ m,

e(4)int (ĉ
�) := Δt ‖ĉ� − Ih ĉ

�‖22,h,Ω , 0 ≤ � ≤ m, (45)

e(5)int (ĉ
�) := Δt ‖ ĉ

� − ĉ�−1

Δt
− Ih(

ĉ� − ĉ�−1

Δt
)‖22,h,Ω , 1 ≤ � ≤ m,

e(1)int (ŵ
�) := Δt ‖ŵ� − Ihŵ

�‖20,Ω, e(2)int (ŵ
�) := Δt ‖∇(ŵ� − Ihŵ

�)‖20,Ω, 0 ≤ � ≤ m,

e(3)int (ŵ
�) := Δt ‖ ŵ

� − ŵ�−1

Δt
− Ih(

ŵ� − ŵ�−1

Δt
)‖20,Ω, 1 ≤ � ≤ m.

Lemma 2 Under the assumptions of Theorem 1, for η, ξ > 0 there exists a constant
C3 > 0, independent of h, such that it holds

1

2
ησ ‖ĉm − ĉmh ‖20,Ω + 1

2
τησΔt ‖ĉm − ĉmh ‖20,Ω ≤

3

2
ηξ−1MCPFΔt ‖ĉm − ĉmh ‖22,h,Ω + 1

3
ηξMΔt ‖∇(ŵm − ŵm

h )‖20,Ω +

C3

(
(1 + Δt) ‖ĉm−1 − ĉm−1

h ‖20,Ω + ‖ĉm−1 − Ih ĉ
m−1‖20,Ω +

3∑

i=1

e(i)
int (ĉ

m)
)
. (46)
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Proof We have

ησ ‖ĉm − ĉmh ‖20,Ω + τησΔt ‖ĉm − ĉmh ‖20,Ω =
ησ (ĉm − ĉmh , ĉm − Ih ĉ

m)0,Ω + τησΔt (ĉm − ĉmh , ĉm − Ih ĉ
m)0,Ω +

ησ (ĉm − ĉmh , Ih ĉ
m − ĉmh )0,Ω + τησΔt (ĉm − ĉmh , Ih ĉ

m − ĉmh )0,Ω . (47)

By Young’s inequality with ε = 1/4 the first two terms on the right-hand side of (47)
can be estimated from above according to

ησ |(ĉm − ĉmh , ĉm − Ih ĉ
m)0,Ω | ≤ ησ ‖ĉm − ĉmh ‖0,Ω ‖ĉm − Ih ĉ

m‖0,Ω ≤ (48a)

ησ ‖ĉm − ĉmh ‖0,Ω
(
Δt ‖ ĉ

m − ĉm−1

Δt
− Ih(

ĉm − ĉm−1

Δt
)‖0,Ω + ‖ĉm−1 − Ih ĉ

m−1‖0,Ω
)

≤ 1

4
ησ(1 + τΔt) ‖ĉm − ĉmh ‖20,Ω + ησ ‖ĉm−1 − Ih ĉ

m−1‖20,Ω + ηστ−1 e(3)
int (ĉ

m),

τησΔt |(ĉm − ĉmh , ĉm − Ih ĉ
m)0,Ω | ≤ 1

4
τησΔt ‖ĉm − ĉmh ‖20,Ω + τησ e(1)

int (ĉ
m).

(48b)

In view of (26a) and (27a), for the last two terms on the right-hand side of (47) we
find

ησ (ĉm − ĉmh , Ih ĉ
m − ĉmh )0,Ω + τησΔt (ĉm − ĉmh , Ih ĉ

m − ĉmh )0,Ω =
ησ (ĉm−1 − ĉm−1

h , Ih ĉ
m − ĉmh )0,Ω − ηMΔt (∇(ŵm − ŵm

h ),∇(Ih ĉ
m − ĉmh ))0,Ω .

(49)

The first term on the right-hand side of (49) can be estimated from above as follows:

ησ |(ĉm−1 − ĉm−1
h , Ih ĉ

m − ĉmh )0,Ω | ≤
ησ |(ĉm−1 − ĉm−1

h , Ih ĉ
m − ĉm)0,Ω | + ησ |(ĉm−1 − ĉm−1

h , ĉm − ĉmh )0,Ω |. (50)

As in (48a), for the first term on the right-hand side of (50) Young’s inequality with
ε = 1/4 yields

ησ |(ĉm−1 − ĉm−1
h , ĉm − Ih ĉ

m)0,Ω | ≤
1

4
ησ(1 + τΔt) ‖ĉm−1 − ĉm−1

h ‖20,Ω + ησ‖ĉm−1 − Ih ĉ
m−1‖20,Ω + τ−1ησ e(3)

int (ĉ
m).

(51)

For the second term on the right-hand side of (50) we obtain

ησ |(ĉm−1 − ĉm−1
h , ĉm − ĉmh )0,Ω | ≤ ησ

(1

4
‖ĉm − ĉmh ‖20,Ω + ‖ĉm−1 − ĉm−1

h ‖20,Ω
)
.

(52)
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For the second term on the right-hand side of (49) Young’s inequality with ε = 1/6
and the Poincaré-Friedrichs inequality (14) yield

ηMΔt |(∇(ŵm − ŵm
h ),∇(Ih ĉ

m − ĉmh ))0,Ω | ≤
ηMΔt

(
|(∇(ŵm − ŵm

h ),∇(Ih ĉ
m − ĉm))0,Ω | + |(∇(ŵm − ŵm

h ),∇(ĉm − ĉmh ))0,Ω |
)

≤

ηMΔt
(1

3
ξ ‖∇(ŵm − ŵm

h )‖20,Ω + 3

2
ξ−1CPF ‖ĉm − ĉmh ‖22,h,Ω + 3

2
ηξ−1M e(2)int (ĉ

m).

(53)

The assertion follows from (47)–(53).

Lemma 3 Under the assumptions of Theorem 1, for λ > 0 there exist constants
Ci > 0, 4 ≤ i ≤ 6, independent of h, such that it holds

5

6
λMΔt ‖∇(ŵm − ŵm

h )‖20,Ω + 1

2
λσγ (1 + Δt) ‖ĉm − ĉmh ‖22,h,Ω ≤

λσ(C4 + τC5Δt) ‖ĉm − ĉmh ‖20,Ω + C6

(
(1 + Δt) ‖ĉm−1 − ĉm−1

h ‖20,Ω +
‖ĉm−1 − ĉm−1

h ‖22,h,Ω + (1 + h−4)(‖ĉm−1 − Ih ĉ
m−1‖20,Ω + ‖ĉm−1 − Ih ĉ

m−1‖22,h,Ω) +
‖ŵm−1 − Ihŵ

m−1‖20,Ω + (1 + h−4)(e(1)
int (ĉ

m) + e(3)
int (ĉ

m)) + e(4)
int (ĉ

m) + e(5)
int (ĉ

m) +
e(1)
int (ŵ

m) + e(2)
int (ŵ

m) + e(1)
int (ĉ

m−1) + e(1)
int (ŵ

m−1)
)
. (54)

Proof We have

λMΔt ‖∇(ŵm − ŵm
h )‖20,Ω = λMΔt (∇(ŵm − ŵm

h ),∇(ŵm − Ihŵ
m)0,Ω +

λMΔt (∇(ŵm − ŵm
h ),∇(Ihŵ

m − ŵm
h ))0,Ω . (55)

For the first term on the right-hand side of (55) Young’s inequality with ε = 1/6
yields

λMΔt |(∇(ŵm − ŵm
h ),∇(ŵm − Ihŵ

m))0,Ω | ≤
1

6
λMΔt ‖∇(ŵm − ŵm

h )‖20,Ω + 3

2
λM e(2)

int (ŵ
m). (56)

Taking advantage of (26a) and (27a), for the second term on the right-hand side of
(55) it follows that

λMΔt (∇(ŵm − ŵm
h ),∇(Ihŵ

m − ŵm
h ))0,Ω = λσ (ĉm−1 − ĉm−1

h , Ihŵ
m − ŵm

h )0,Ω

− τλσΔt (ĉm − ĉmh , Ihŵ
m − ŵm

h )0,Ω − λσ (ĉm − ĉmh , Ihŵ
m − ŵm

h )0,Ω =
λσ (ĉm−1 − ĉm−1

h , Ihŵ
m − ŵm)0,Ω − τλσΔt (ĉm − ĉmh , Ihŵ

m − ŵm)0,Ω

− λσ (ĉm − ĉmh , Ihŵ
m − ŵm)0,Ω + λσ (ĉm−1 − ĉm−1

h , ŵm − ŵm
h )0,Ω

− τλσΔt (ĉm − ĉmh , ŵm − ŵm
h )0,Ω − λσ (ĉm − ĉmh , ŵm − ŵm

h )0,Ω . (57)
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The first and the third term on the right-hand side of (57) can be estimated from
above as the corresponding terms in Lemma 2 using Young’s inequality with ε = 1
and ε = 1/6:

λσ |(ĉm−1 − ĉm−1
h , Ihŵ

m − ŵm)0,Ω | ≤ λσ(1 + Δt) ‖ĉm−1 − ĉm−1
h ‖20,Ω + (58a)

1

4
λσ‖ŵm−1 − Ihŵ

m−1‖20,Ω + 1

4
λσ e(3)

int (ŵ
m),

λσ |(ĉm − ĉmh , Ihŵ
m − ŵm)0,Ω | ≤ λσ(1 + 1

6
Δt) ‖ĉm − ĉmh ‖20,Ω + (58b)

1

4
λσ ‖ŵm−1 − Ihŵ

m−1‖20,Ω + 3

2
λσ e(3)

int (ŵ
m).

For the second term on the right-hand side of (57) Young’s inequality with ε = 1
implies

τλσΔt |(ĉm − ĉmh , Ihŵ
m − ŵm)0,Ω | ≤ τλσ

(
Δt ‖ĉm − ĉmh ‖20,Ω + 1

4
e(1)
int (ŵ

m)
)
.

(59)

For the last three terms on the right-hand side of (57) we obtain

λσ (ĉm−1 − ĉm−1
h , ŵm − ŵm

h )0,Ω − τλσΔt (ĉm − ĉmh , ŵm − ŵm
h )0,Ω (60)

− λσ (ĉm − ĉmh , ŵm − ŵm
h )0,Ω = λσ (ĉm−1 − Ih ĉ

m−1, ŵm − ŵm
h )0,Ω

− τλσΔt (ĉm − Ih ĉ
m, ŵm − ŵm

h )0,Ω − λσ (ĉm − Ih ĉ
m, ŵm − ŵm

h )0,Ω

+ λσ (Ih ĉ
m−1 − ĉm−1

h , ŵm − ŵm
h )0,Ω − τλσΔt (Ih ĉ

m − ĉmh , ŵm − ŵm
h )0,Ω

− λσ (Ih ĉ
m − ĉmh , ŵm − ŵm

h )0,Ω .

Using Corollary (1) and Young’s inequality with ε = 1/18 and ε = 1/2, the first
term on the right-hand side of (60) can be estimated from above as follows:

λσ |(ĉm−1 − Ih ĉ
m−1, ŵm − ŵm

h )0,Ω | ≤ (61)

λσ ‖ĉm−1 − Ih ĉ
m−1‖0,Ω

(
‖ŵm − Ihŵ

m‖0,Ω + ‖Ihŵm − ŵm
h ‖0,Ω

)
≤

λσ ‖ĉm−1 − Ih ĉ
m−1‖0,Ω

(
2 ‖ŵm − Ihŵ

m‖0,Ω + C2h
−2 ‖ĉm − ĉmh ‖2,h,Ω

)
≤

λσ ‖ĉm−1 − Ih ĉ
m−1‖0,Ω

(
2Δt ‖ ŵ

m − ŵm−1

Δt
− Ih(

ŵm − ŵm−1

Δt
)‖0,Ω +

2 ‖ŵm−1 − Ihŵ
m−1‖0,Ω + C2h

−2 ‖ĉm − ĉmh ‖2,h,Ω

)
≤

1

18
λσ ‖ĉm − ĉmh ‖22,h,Ω + 9

2
λσC2

2h
−4 ‖ĉm−1 − Ih ĉ

m−1‖20,Ω +
λσ

(
‖ĉm−1 − Ih ĉ

m−1‖20,Ω + ‖ŵm−1 − Ihŵ
m−1‖20,Ω + e(1)

int (ĉ
m−1) + e(3)

int (ŵ
m)

)
.
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Likewise, by Young’s inequality with ε = 1/14, ε = 1/18, and ε = 1/2 and observ-
ing Δt ≤ T , for the third term on the right-hand side of (60) we get

λσ |(ĉm − Ih ĉ
m, ŵm − ŵm

h )0,Ω | ≤ (62)

λσ
(
Δt ‖ ĉ

m − ĉm−1

Δt
− Ih(

ĉm − ĉm−1

Δt
)‖0,Ω + ‖ĉm−1 − Ih ĉ

m−1‖0,Ω
)

·
(
2Δt ‖ ŵ

m − ŵm−1

Δt
− Ih(

ŵm − ŵm−1

Δt
)‖0,Ω + 2 ‖ŵm−1 − Ihŵ

m−1‖0,Ω
+ C2h

−2 ‖ĉm − ĉmh ‖2,h,Ω

)
≤

1

14
λσΔt ‖ĉm − ĉmh ‖22,h,Ω + λσ

(
(
7

2
C2
2h

−4 + T ) e(3)
int (ĉ

m) + T e(3)
int (ŵ

m)
)

+
λσ

(
e(3)
int (ĉ

m) + e(1)
int (ŵ

m) + e(3)
int (ŵ

m) + e(1)
int (ĉ

m−1)
)

+
1

18
λσC3 ‖ĉm − ĉmh ‖22,h,Ω + 9

2
λσC2

2h
−4 ‖ĉm−1 − Ih ĉ

m−1‖20,Ω +
λσ ‖ĉm−1 − Ih ĉ

m−1‖20,Ω + λσ‖ŵm−1 − Ihŵ
m−1‖20,Ω .

Finally, for the second term on the right-hand side of (60) Young’s inequality with
ε = 1/14 and ε = 1/2 gives

τλσΔt |(ĉm − Ih ĉ
m, ŵm − ŵm

h )0,Ω | ≤ (63)

τλσΔt ‖ĉm − Ih ĉ
m‖0,Ω

(
‖ŵm − Ihŵ

m‖0,Ω + ‖Ihŵm − ŵm
h ‖0,Ω

)
≤

τλσΔt ‖ĉm − Ih ĉ
m‖0,Ω

(
2 ‖ŵm − Ihŵ

m‖0,Ω + C2 h
−2 ‖ĉm − ĉmh ‖2,h,Ω

)
≤

1

14
τλσγΔt ‖ĉm − ĉmh ‖22,h,Ω + 7

2
τλσ

(
1 + γ −1C2

2h
−4

)
e(1)
int (ĉ

m) + τλσ e(1)
int (ŵ

m).

Using (26b) and (27b), for the first of the last three terms on the right-hand side of
(60) we obtain

λσ (Ih ĉ
m−1 − ĉm−1

h , ŵm − ŵm
h )0,Ω = (64a)

λσ
(
aDG
h (ĉm − ĉmh , Ih ĉ

m−1 − ĉm−1
h ) + (ĝ(ĉm) − ĝ(ĉmh ), Ih ĉ

m−1 − ĉm−1
h )0,Ω

)
=

λσ
(
aDG
h (ĉm − ĉmh , Ih ĉ

m−1 − ĉm−1) + aDG
h (ĉm − ĉmh , ĉm−1 − ĉm−1

h )
)

+
λσ

(
(ĝ(ĉm) − ĝ(ĉmh ), Ih ĉ

m−1 − ĉm−1) + (ĝ(ĉm) − ĝ(ĉmh ), ĉm−1 − ĉm−1
h )0,Ω

)
.
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Similarly, for the second term we get

τλσΔt (Ih ĉ
m − ĉmh , ŵm − ŵm

h )0,Ω = (64b)

τλσΔt
(
aDG
h (ĉm − ĉmh , Ih ĉ

m − ĉm) + aDG
h (ĉm − ĉmh , ĉm − ĉmh )

)
+

τλσΔt
(
(ĝ(ĉm) − ĝ(ĉmh ), Ih ĉ

m − ĉm) + (ĝ(ĉm) − ĝ(ĉmh ), ĉm − ĉmh )0,Ω

)
,

whereas for the third term we obtain

− λσ (Ih ĉ
m − ĉmh , ŵm − ŵm

h )0,Ω = (64c)

− λσ
(
ãDG
h (ĉm − ĉmh , Ih ĉ

m − ĉm) + ãDG
h (ĉm − ĉmh , ĉm − ĉmh )

)

− λσ
(
(ĝ(ĉm) − ĝ(ĉmh ), Ih ĉ

m − ĉm)0,Ω + (ĝ(ĉm) − ĝ(ĉmh ), ĉm − ĉmh )0,Ω

)
.

Taking advantage of (16) and (30) from Lemma 1 and using Young’s inequality with
ε = 1/18, for (64a) we can establish the upper bound

λσ |(Ih ĉm−1 − ĉm−1
h , ŵm − ŵm

h )0,Ω | ≤ 2

9
λσ ‖ĉm − ĉmh ‖22,h,Ω + (65)

9

2
λσ(Γ 2 + C2

1 ) ‖ĉm−1 − ĉm−1
h ‖22,h,Ω + 9

2
λσ(Γ 2 + C2

1 ) ‖ĉm−1 − Ih ĉ
m−1
h ‖22,h,Ω .

Similarly, for (64b) Gårding’s inequality (15) and Young’s inequality with ε = 1/14
yield

− τλσΔt (Ih ĉ
m − ĉmh , ŵm − ŵm

h )0,Ω ≤ −τλσγΔt ‖ĉm − ĉmh ‖22,h,Ω + (66)

τλσβΔt ‖ĉm − ĉmh ‖20,Ω + 3

14
τλσΔt ‖ĉm − ĉmh ‖22,h,Ω +

7

2
τλσγ −1

(
C2
1Δt ‖ĉm − ĉmh ‖20,Ω +

(
C2
1 e(1)

int (ĉ
m) + Γ 2 e(4)

int (ĉ
m)

))
.

Finally, for (64c) another application of Gårding’s inequality (15) and Young’s
inequality with ε = 1/14 and ε = 1/18 we obtain

− λσ (Ih ĉ
m − ĉmh , ŵm − ŵm

h )0,Ω ≤ λσ
(

− γ ‖ĉm − ĉmh ‖22,h,Ω + β ‖ĉm − ĉmh ‖20,Ω
)

+
3

18
λσ ‖ĉm − ĉmh ‖22,h,Ω + 1

7
λσΔt ‖ĉm − ĉmh ‖22,h,Ω + 9

2
λσC2

1 ‖ĉm − ĉmh ‖20,Ω +
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9

2
λσ

(
C2
1 ‖‖ĉm−1 − Ih ĉ

m−1‖20,Ω + Γ 2 ‖ĉm−1 − Ih ĉ
m−1‖22,h,Ω

)
+

7

2
λσ

(
C2
1 e(3)

int (ĉ
m) + Γ 2 e(5)

int (ĉ
m)

)
. (67)

The assertion follows from (55)–(67).

Proposition 1 Under the assumptions of Theorem 1 there exists a constant C7 > 0,
independent of h, such that it holds

‖ĉm − ĉmh ‖20,Ω + τΔt ‖ĉm − ĉmh ‖20,Ω + 1

2
λσγ

(
‖ĉm − ĉmh ‖22,h,Ω (68)

+ Δt ‖ĉm − ĉmh ‖22,h,Ω

)
+ MΔt ‖∇(ŵm − ŵm

h )‖20,Ω ≤
C7

(
‖ĉm−1 − ĉm−1

h ‖20,Ω + ‖ĉm−1 − ĉm−1
h ‖22,h,Ω + h−4 ‖ĉm−1 − Ih ĉ

m−1‖20,Ω +
‖ĉm−1 − Ih ĉ

m−1‖22,h,Ω + ‖ŵm−1 − Ihŵ
m−1‖20,Ω + h−4(e(1)

int (ĉ
m) + e(3)

int (ĉ
m)) +

5∑

i=4

e(i)
int (ĉ

m) +
3∑

i=1

e(i)
int (ŵ

m) + e(1)
int (ĉ

m−1) + e(1)
int (ŵ

m−1)
)
.

Proof The estimates (46) fromLemma 2 and (54) fromLemma 3 imply the existence
of a constant D10 > 0, independent of h, such that

σ(η − 3

2
λC6) ‖ĉm − ĉmh ‖20,Ω + τσ (η − 1

2
λC7)Δt ‖ĉm − ĉmh ‖20,Ω + (69)

1

2
λσγ ‖ĉm − ĉmh ‖22,h,Ω + 1

2
λσ(τγ − 3

2
ηξ−1CPF )Δt‖ĉm − ĉmh ‖22,h,Ω +

M(
5

6
λ − 1

3
ηξ)Δt ‖∇(ŵm − ŵm

h )‖20,Ω ≤ D10

(
(1 + Δt) ‖ĉm−1 − ĉm−1

h ‖20,Ω +
+ ‖ĉm−1 − ĉm−1

h ‖22,h,Ω + (1 + h−4)(‖ĉm−1 − Ih ĉ
m−1‖20,Ω + ‖ĉm−1 − Ih ĉ

m−1‖22,h,Ω)

+ ‖ŵm−1 − Ihŵ
m−1‖20,Ω + (1 + h−4)(e(1)int (ĉ

m) + e(3)int (ĉ
m)) + e(2)int (ĉ

m) +
5∑

i=4

e(i)int (ĉ
m) +

3∑

i=1

e(i)int (ŵ
m) + e(1)int (ĉ

m−1) + e(1)int (ŵ
m−1)

)
.

We choose 6
5 < λ < 2 and η > 0 such that

η − max(
3

2
C6,

1

2
C7)λ ≥ σ−1.

Then, we choose ξ > 0 by means of

5

6
λ − 1

3
ηξ ≥ 1 ⇐⇒ ξ ≤ 5λ − 6

2η
.
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Finally, we choose τ > 0 according to

γ τ − 3

2
ηξ−1CPF ≥ γ ⇐⇒ τ ≥ 2ξγ + 3ηCPF

2ξγ
.

For this choice of λ, η, ξ , and τ , the assertion follows from (69) observing that
e(1)
int (ĉ

m) ≤ e(4)
int (ĉ

m), e(2)
int (ĉ

m) ≤ C2
PFe

(4)
int (ĉ

m), e(3)
int (ĉ

m) ≤ e(5)
int (ĉ

m), and ‖v‖0,Ω ≤
‖v‖2,h,Ω, v ∈ V (p)

h + Z .

Proposition 2 Under the assumptions of Theorem 1 there exists a constant C8 > 0,
independent of h, such that it holds

‖ĉm − ĉmh ‖22,h,Ω + Δt
m∑

�=1

‖ĉ� − ĉ�
h‖22,h,Ω + Δt

m∑

�=1

‖∇(ŵ� − ŵ�
h)‖20,Ω ≤ (70)

C8

(
h−4

m∑

�=1

(e(1)
int (ĉ

�) + e(3)
int (ĉ

�)) +
5∑

i=4

m∑

�=1

e(i)
int (ĉ

�) +
3∑

i=1

m∑

�=1

e(i)
int (ŵ

�) +

h−4 ‖c0 − Ihc0‖20,Ω + (1 + h−4) ‖c0 − Ihc0‖22,h,Ω + ‖w0 − Ihw0‖20,Ω
)
,

where w0 by (9b) with c = c0 and w = w0.

Proof The proof is by induction on m. For m = 1 the assertion follows from (68)
taking into account that ĉ0 = c0 and ŵ0 = w0. Let us assume that (70) holds true for
m − 1. Observing

‖ĉm−1 − Ih ĉ
m−1‖0,Ω ≤ Δt

m−1∑

�=1

‖ ĉ
� − ĉ�−1

Δt
− Ih

ĉ� − ĉ�−1

Δt
‖0,Ω + ‖c0 − Ihc0‖0,Ω

and the same for ‖ĉm−1 − Ih ĉm−1‖2,h,Ω and ‖ŵm−1 − Ihŵm−1‖0,Ω , it follows from
(68) that (70) is satisfied for m as well.

Proof (Theorem 1) We have tm → t as Δt → 0. Due to the regularity assumptions
(18a), (18b) for Δt → 0 the left-hand side of (70) converges to

‖(ĉ − ĉh)(·, t)‖22,h,Ω +
t∫

0

‖ĉ − ĉh‖22,h,Ω ds +
t∫

0

‖∇(ŵ − ŵh)‖20,Ω ds.

On the other hand, for the sum of the interpolation errors (45) it holds

m∑

�=1

e(1)
int (ẑ

�) →
t∫

0

‖ẑ − Ih ẑ‖20,Ω ds, ẑ = ĉ and ẑ = ŵ,
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m∑

�=1

e(3)
int (ẑ

�) →
t∫

0

‖∂ ẑ

∂s
− Ih

∂ ẑ

∂s
‖20,Ω ds, ẑ = ĉ and ẑ = ŵ,

m∑

�=1

e(4)
int (ĉ

�) →
t∫

0

‖ĉ − Ih ĉ‖22,h,Ω ds,

m∑

�=1

e(5)
int (ĉ

�) →
t∫

0

‖∂ ĉ

∂s
− Ih

∂ ĉ

∂s
‖22,h,Ω ds,

m∑

�=1

e(2)
int (ŵ

�) →
t∫

0

‖∇(ŵ − Ihŵ)‖20,Ω ds.

Hence, taking (20),(21) into account, (22) holds true for c = ĉ. Finally, backtrans-
formation according to (23) allows to conclude. �

6 Discretization in Time by Singly Diagonally Implicit
Runge-Kutta Methods

For the discretization in time of the C0IPDG approximation (17a)–(17c) we use
(s, q) Singly Diagonally Implicit Runge-Kutta (SDIRK) methods of stage s and
order q with respect to a partitioning of the time interval [0, T ] into subintervals
[tm−1, tm] of length τm := tm − tm−1, 1 ≤ m ≤ M (cf., e.g., [1, 7, 19]). In particular,
for polynomial order p = 2 of the C0IPDG approximation we use a (2, 2) SDIRK
method with coefficients given by the Butcher scheme in Table1. If the polynomial
degree is p = 3, we use a (3, 3) SDIRK method with Butcher scheme given by
Table2, and for p = 4 we use a (3, 4) SDIRK method with Butcher scheme given
by Table3.

The fully discrete approximation represents a parameter dependent nonlinear
algebraic systemwith the time-step size as a parameterwhich is solved by a predictor-
corrector continuation strategy with constant continuation as a predictor and New-
ton’s method as a corrector [9, 20]. The predictor-corrector continuation strategy
features an adaptive choice of the continuation parameter. For details we refer to [2].

Table 1 Butcher scheme of a 2-stage SDIRK method of order q = 2

κ κ 0

1 1 − κ κ

1 − κ κ

κ = 1 ± 1
2

√
2
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Table 2 Butcher scheme of a 3-stage SDIRK method of order q = 3 (cf. [1])

α α 0 0
1 + α

2

1 − α

2
α 0

1 b0 b1 α

b0 b1 α

α ≈ 0.44 is the root of p(x) = x3 − 3x2 + 3

2
x − 1

6
,

b0 = −6α2 − 16α + 1

4
,

b1 = 6α2 − 20α + 5

4
.

Table 3 Butcher scheme of a 3-stage SDIRK method of order q = 4

(1 + κ)/2 (1 + κ)/2 0 0
1

2
−κ/2 (1 + κ)/2 0

(1 − κ)/2 1 + κ −(1 + 2κ) (1 + κ)/2

1/(6κ2) 1 − 1/(3κ2) 1/(6κ2)

κ = 2 cos(π/18)/
√
3

7 Numerical Results

We consider the initial-boundary value problem (2a)–(2c) in Q := Ω × (0, T ] with
Ω := (0, L)2, L := 1.0 × 10−4 m, and T := 1.0 × 10−1 s. The physical parameters
β, κ , σ , and a0, a2, h0, M are given in Table4 in their physical units. We use the
reference quantities

L ref := 1.0 × 10−5 m, Tref := 1.0 × 10−2 s, σref := 1.0 Jm−2 (71)

and scale all independent variables and parameters to dimensionless form. Hence,
the scaled domain and the scaled time interval becomeΩ = (0, 10)2 and [0, 10]. The
values of the parameters in dimensionless form are also listed in Table4. The initial
concentration c0 has been chosen as a smooth function c0 ∈ C∞(Ω) satisfying the
compatibility conditions (5).

Table 4 Physical parameters in the sixth order Cahn-Hilliard equation

Symbol Value Unit Dimensionless v alue

σ 1.0 Jm−2 1.0

β 5.0 Jm−2 5.0

h0 5.0 × 10−1 1 5.0 × 10−1

M 1.0 × 10−13 m2s−1 1.0 × 10−3

κ 1.0 × 10−25 Jm2 1.0 × 10−1

a0 −4.0 × 10−12 J −4.0

a2 1.0 × 10−12 J 1.0
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Fig. 1 Formation of oil-in-water and water-in-oil droplets at time instants t = 0.60 (left) and
t = 3.86 (right). C0IPDG approximation with p = 2 on a 128 × 128 grid and 2-stage SDIRK with
q = 2 (from [2])

Figure1 shows a visualization of the microemulsification process obtained by the
numerical solution of the sixth order Cahn-Hilliard equation using aC0IPDG approx-
imation with p = 2 and penalization parameter α = 25.0 and a 2-stage SDIRK with
q = 2 at time instants t = 0.60 (left) and t = 3.86 (right). The pure water phase
(c = 1) is depicted in dark blue, the pure oil phase (c = −1) in dark red, and the
microemulsion phase (c = 0) in light green. In Fig. 1 (right), the formation of oil-in-
water and water-in-oil droplets is clearly visible.

The underlying finite element mesh is a geometrically conforming, simplicial
triangulation Th(Ω) of mesh size h. For h = 1/24, 1/48 and at t = 2.5 we have
computed the convergence rates in the mesh dependent C0IPDG-norm. Obviously,
the domain Ω does not have a boundary Γ of class Cr+1, r ≥ 5, and hence, we
cannot expect quasi-optimal convergence rates. Therefore, we also computed the
convergence rates for a patch Ω of elements around the midpoint mΩ of Ω given by

ω :=
⋃

{K ∈ T2h(Ω) | mΩ ∈ N2h(K )},

whereN2h(K ) is the set of nodal points in K . The convergence rates are as follows

errω(t) := log2
‖uh(·, t) − u2h(·, t)‖2,h/2,ω

‖uh/2(·, t) − uh(·, t)‖2,h/2,ω
,

errΩ(t) := log2
‖uh(·, t) − u2h(·, t)‖2,h/2,Ω

‖uh/2(·, t) − uh(·, t)‖2,h/2,Ω
.

In each case the time-step size has been chosen sufficiently small so that the error
due to discretization in time do not affect the error due to spatial discretization. The
convergence rates are shown in Table5.

For domains Ω with boundary Γ of class Cr+1, r ≥ 5, the quasi-optimal con-
vergence rates are 1.0 for p = 2, 2.0 for p = 3, and 3.0 for p = 4 (cf. Theorem 5).
We see that we get almost quasi-optimal convergence rates on the patch ω in the
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Table 5 Patchwise and global convergence rates for the semidiscrete C0IPDG approximation with
p = 2, 3, 4

p = 2 p = 3 p = 4

errω(2.5) errΩ(2.5) errω(2.5) errΩ(2.5) errω(2.5) errΩ(2.5)

h = 1/24 1.06 0.66 1.83 1.68 2.83 2.56

h = 1/48 1.02 0.91 1.91 1.79 2.90 2.67

‖ · ‖2,2h,ω-norm, but as expected not quite as good convergence rates on the entire
domain Ω in the ‖ · ‖2,2h,Ω -norm.

Acknowledgements Ronald H. W. Hoppe acknowledges support by the NSF grants DMS-
1115658, DMS-1216857, DMS-1520886 and by the German National Science Foundation DFG
within the Priority Program SPP 1506.

References

1. Alexander R (1977) Diagonally implicit Runge-Kutta methods for stiff o.d.e’.s. SIAM JNumer
Anal 14(6):1006–1021

2. Boyarkin O, Hoppe RHW, Linsenmann C (2015) High order approximations in space and time
of a sixth order Cahn-Hilliard equation. Russ J Numer Anal Math Model 30(6):313–328

3. Brenner SC,Gudi T, SungL-Y (2010)An a posteriori error estimator for a quadraticC0-interior
penalty method for the biharmonic problem. IMA J Numer Anal 30(3):777–798

4. Brenner SC, Scott LR (2008) The mathematical theory of finite element methods, 3rd edn.
Springer, New York

5. Brenner SC, Sung L-Y (2005) c0 interior penalty methods for fourth order elliptic boundary
value problems on polygonal domains. J Sci Comput 22(23):83–118

6. Brenner SC, Wang K, Zhao J (2004) Poincaré-Friedrichs inequalities for piecewise H2 func-
tions. Numer Funct Anal Optim 25(5–6):463–478

7. Butcher JC (2008) Numerical methods for ordinary differential equations, 2nd edn. Wiley,
Chichester

8. Ciarlet PG (2002) The finite element method for elliptic problems. SIAM, Philadelphia, PA
9. Deuflhard P (2004) Newton methods for nonlinear problems: affine invariance and adaptive

algorithms. Springer, Berlin
10. Engel G, Garikipati K, Hughes TJR, Larson MG, Mazzei L, Taylor RL (2002) Continu-

ous/discontinuous finite element approximations of fourth-order elliptic problems in struc-
tural and continuum mechanics with applications to thin beams and plates, and strain gradient
elasticity. Comput Methods Appl Mech Eng 191(34):3669–3750

11. Fraunholz T, Hoppe RHW, PeterM (2015) Convergence analysis of an adaptive interior penalty
discontinuous Galerkin method for the biharmonic problem. J Numer Math 23(4):317–330

12. Georgoulis EH, Houston P (2009) Discontinuous Galerkin methods for the biharmonic prob-
lem. IMA J Numer Anal 29(3):573–594

13. Georgoulis EH, Houston P, Virtanen J (2011) An a posteriori error indicator for discontinuous
Galerkin approximations of fourth order elliptic problems. IMA J Numer Anal 31(1):281–298

14. Ghosh PK, Murthy RS (2006) Microemulsions: a potential drug delivery system. Curr Drug
Deliv 3(2):167–180

15. Gompper G, Goos J (1994) Fluctuating interfaces in microemulsion and sponge phases. Phys.
Rev. E 50(2):1325–1335



C0-Interior Penalty Discontinuous Galerkin Approximation . . . 325

16. Gompper G, KrausM (1993) Ginzburg-Landau theory of ternary amphiphilic systems. I. Gaus-
sian interface fluctuations. Phys Rev E 47(6):4289–4300

17. Gompper G, Kraus M (1993) Ginzburg-Landau theory of ternary amphiphilic systems. II.
Monte Carlo simulations. Phys Rev E 47(6):4301–4312

18. Gompper G, Zschocke S (1992) Ginzburg-Landau theory of oil-water-surfactant mixtures.
Phys Rev A 46(8):4836–4851

19. Hairer E, Wanner G (1996) Solving ordinary differential equations. II: stiff and differential-
algebraic problems, 2nd edn. Springer, Berlin

20. Hoppe RHW, Linsenmann C (2012) An adaptive Newton continuation strategy for the fully
implicit finite element immersed boundary method. J Comput Phys 231(14):4676–4693

21. Jha SK, Karki R, Venkatesh DP, Geethalakshami A (2011) Formulation development and
characterization of microemulsion drug delivery systems containing antiulcer drug. Int J Drug
Dev Res 3(4):336–343

22. Mehta SK, Kaur G (2011) Microemulsions: thermodynamics and dynamic properties. In:
Tadashi M (ed) Thermodynamics. InTech, pp 381–406. http://www.intechopen.com/books/
thermodynamics/microemulsions-thermodynamic-and-dynamic-properties

23. Moulik SP, Rakshit AK (2006) Physiochemistry and applications of micro-emulsions. J Surf
Sci Tech 22(3–4):159–186

24. Pawlow I, Zajaczkowski WM (2011) A sixth order Cahn-Hilliard type equation arising in
oil-water-surfactant mixtures. Commun Pure Appl Anal 10(6):1823–1847

25. Pawlow I, Zajaczkowski WM (2013) On a class of sixth order viscous Cahn-Hilliard type
equations. Discrete Contin Dyn Syst Ser S 6(2):517–546

26. Prince LM (1977) Microemulsions: theory and practice. Academic Press, New York
27. Rosano HL, Clausse M (eds) (1987) Microemulsion systems. Marcel Dekker, New York
28. Schimperna G, Pawlow I (2013) On a class of Cahn-Hilliard models with nonlinear diffusion.

SIAM J Math Anal 45(1):31–63
29. Tartar L (2007) Introduction to Sobolev spaces and interpolation spaces. UMI, Bologna,

Springer, Berlin
30. Warburton T, Hesthaven JS (2003) On the constants in hp-finite element trace inverse inequal-

ities. Comput Methods Appl Mech Eng 192(25):2765–2773
31. Wells GN, Kuhl E, Garikipati K (2006) A discontinuous Galerkin method for the Cahn-Hilliard

equation. J Comput Phys 218(2):860–877

http://www.intechopen.com/books/thermodynamics/microemulsions-thermodynamic-and-dynamic-properties
http://www.intechopen.com/books/thermodynamics/microemulsions-thermodynamic-and-dynamic-properties


On Existence “In the Large” of a Solution
to Modified Navier-Stokes Equations

George Kobelkov

Abstract The problem on existence “in the large” of a solution to the 3D Navier-
Stokes equations is open up to now. Nevertheless, for some modifications of the
Navier-Stokes equations describing practical problems this problem has been suc-
cessfully solved. For instance, for the system of Primitive equations describing
large-scale ocean dynamics, existence and uniqueness of a strong solution for any
time interval and arbitrary initial conditions and viscosity coefficient was proved
(Kobelkov J Math Fluid Mech 9(4):588–610, 2007) [1]. O.A. Ladyzhenskaya pro-
posed (Trudy MIAN SSSR 102:85–104, 1967) [2] a modification of the Navier-
Stokes equations allowing to prove existence of a solution “in the large”, but this
modification was not “physical”. Here we improve the Ladyzhenskaya result mod-
ifying not all the three motion equations, but only two of them and only in two
(horizontal) variables (not three). Such kind of problems arises in ocean dynamics
models. We also consider the case when the viscosity coefficients in vertical and
horizontal directions are different. For all these cases existence “in the large” of a
solution is proved. Unfortunately, these results cannot be extended to the case of 3D
Navier-Stokes equations as well as in the case of Ladyzhenskaya modification.

1 Case of Different Viscosity Coefficients

Let Ω be a bounded Lipshitz domain in R
3. We denote independent variables by

x = (x1, x2, x3) or x, y, z if it does not lead to misunderstandings. In the space of
vector functions we shall use the norms and operators:
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‖f‖2 =
2∑

i=1

∫

Ω

f 2i (x)dx =
∫

Ω

|f |2 dx, ‖fx‖2 =
2∑

i=1

3∑

j=1

∫

Ω

(
∂ fi
∂x j

)2

dx,

Δ = ∂2

∂x21
+ ∂2

∂x22
, ∂xi = ∂

∂xi
, ‖ · ‖q = ‖ · ‖Lq ,

∇ = (∂x , ∂y), div f = ∂x f1 + ∂y f2, |∇f |2 =
2∑

i, j=1

(
∂ fi
∂x j

)2

,

f q
q,Ex

=
∞∫

−∞
| f |q dx, f q

q,Exy
=

∞∫

−∞

∞∫

−∞
| f |q dx dy.

In what follows, we assume summation over repeating indices in products. By
c with and without indices we denote constants in inequalities not depending on
the functions entering these inequalities but depending in general on initial data of
the problem (a domain shape, constants from the embedding theorems, norms of the
right-hand sides of equations, time interval, etc.).

The system of Navier-Stokes equations describing dynamics of incompressible
viscous flow is of the form (see, e.g., [3, 4])

ut − νΔu − ν∂2
z u + ∇ p + (u · ∇)u + wuz = f,

wt − νΔw − ν∂2
z w + pz + (u · ∇)w + wwz = g,

divu + wz = 0,

(u,w)(x, 0) = (u0,w0)(x), div u0 + ∂zw0 = 0, (u,w)

∣∣∣
∂Ω×[0,T ]

= 0.

(1)

In practice, there are problems when viscosity coefficients in vertical and hor-
izontal directions are different. For instance, it takes place in simulation of ocean
dynamics. So, it is natural to consider the case when the viscosity coefficient in hor-
izontal direction equals ν, while in the vertical direction z it equals μ ≥ ν. In this
case Eq. (1) take the form

ut − νΔu − μ∂2
z u + ∇ p + (u · ∇)u + wuz = f,

wt − νΔw − μ∂2
z w + pz + (u · ∇)w + wwz = g,

div u + wz = 0,

(u,w)(x, 0) = (u0,w0)(x), divu0 + ∂zw0 = 0, (u,w)

∣∣∣
∂Ω×[0,T ]

= (0, 0).

(2)

For simplicity of consideration, put f = 0, g = 0.
Let us study the solvability “in the large” of problem (2). The following theorem

holds:

Theorem 1 For any initial condition u0 ∈ H2
0, w0 ∈ H 2

0 , any ν > 0 and arbitrary
time interval [0, T ] there is μ > 0 such that there exists a solution to (2) “in the
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large”, i.e. there exist u ∈ H1(QT ), w ∈ H 1(QT ) satisfying (2) in a weak sense and
the norm ‖ux‖ + ‖wx‖ is continuous in time on [0, T ]. Moreover, in this case the
following inequality holds

‖ut (t)‖2 + ‖wt (t)‖2 ≤ ‖ut (0)‖2 + ‖wt (0)‖2 ∀t > 0.

Proof In what follows we shall use the technique proposed in [3]. To prove the
theorem we need the Ladyzhenskaya inequality

‖ f ‖44 ≤ c1‖ fx1‖ ‖ fx2‖ ‖ fx3‖ ‖ f ‖ (3)

being valid for any f ∈ H 1
0 (Ω); here the constant c1 does not depend on Ω .

Take scalar product in L2 of the first equation of (2) and u and the second equation
of (2) and w in L2. Adding results, we have

1

2

d

dt

(‖u‖2 + ‖w‖2) + ν(‖∇u‖2 + ‖∇w‖2) + μ(‖uz‖2 + ‖wz‖2) = 0; (4)

integration of (4) in time gives

‖u(t)‖2 + ‖w(t)‖2 ≤ ‖u0‖2 + ‖w0‖2 ≡ M2. (5)

From (4) and (5) one gets

ν(‖∇u‖2 + ‖∇w‖2) + μ(‖uz‖2 + ‖wz‖2) ≤ M(‖ut‖ + ‖wt‖). (6)

Differentiate (2) in t :

ut t − νΔut − μ∂2
z ut + ∇ pt + (ut · ∇)u + wtuz + (u · ∇)ut + wtut z = 0,

wtt − νΔwt − μ∂2
z wt + ptz + (ut · ∇)w + wtwz + (u · ∇)wt + wwtz = 0,

divut + wtz = 0.

(7)

Take now a scalar product of the first two equations of (7) and (ut ,wt ):

1

2

d

dt
(‖ut‖2 + ‖wt‖2) + ν(‖∇ut‖2 + ‖∇wt‖2) + μ(‖ut z‖2 + ‖wtz‖2)

+ ((ut · ∇)u + wtuz, ut ) + ((ut · ∇)w + wtwz,wt ) = 0.
(8)

Estimate the scalar products of (8). Integration by parts gives

|((ut · ∇)u + wtuz, ut ) + ((ut · ∇)w + wtwz,wt )|
= |(u jtu, ∂x j ut ) + (wtu, ut z) + (u jtw, ∂x j wt ) + (wtw,wtz)|.
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Estimate now each of these scalar products separately using the Hölder inequality
and estimates (3), (5) and (6). We have

|(u jtu, ∂x j ut )| ≤ ‖ut x‖ ‖ut‖4‖u‖4 ≤ c‖ut x‖7/4‖ut‖1/4‖∇u‖1/2‖uz‖1/4

≤ ε‖ut x‖2 + c

ε7
‖∇u‖4‖uz‖2‖ut‖2 ≤ ε‖ut x‖2 + c

ε7ν2μ
(‖ut‖2 + ‖wt‖2)5/2.

All other scalar products are estimated in the sameway. Choosing proper ε, we finally
obtain

|((ut · ∇)u + wtuz, ut )+((ut · ∇)w + wtwz,wt )|
≤ ν

2
(‖ut x‖2 + ‖wtx‖2) + c

ν9μ
(‖u2

t ‖ + ‖wt‖2)5/2. (9)

Substituting (9) into (8), one gets

d

dt
(‖ut‖2 + ‖wt‖2) + ν(‖∇ut‖2 + ‖∇wt‖2)

+ μ(‖ut z‖2 + ‖wtz‖2) − c

ν9μ
(‖ut‖2 + ‖wt‖2)5/2 ≤ 0,

from what follows

d

dt

(
‖ut‖2 + ‖wt‖2

)
+ ν

(
‖ut x‖2 + ‖wtx‖2

)

+
(

μ − c

ν9μ
(‖ut‖2 + ‖wt‖2)3/2

)
(‖ut z‖2 + ‖wtz‖2) ≤ 0.

(10)

It is obvious that ‖ut (0)‖2 + ‖wt (0)‖2 can be estimated from above by some
expression depending on the norm ‖(u0,w0)‖H2 only. Now, from (10) it follows
that for any ν > 0 and arbitrary ‖ut (0)‖ + ‖wt (0)‖ depending on the norm of initial
condition ‖u0‖H2 + ‖w0‖H 2 there exists μ > 0 such that

μ − c

ν9μ

(‖ut (0)‖2 + ‖wt (0)‖2
)3/2 ≥ 0.

Then from (10) we conclude that the norm ‖ut (t)‖2 + ‖wt (t)‖2 satisfies the inequal-
ity

‖ut (t)‖2 + ‖wt (t)‖2 ≤ ‖ut (0)‖2 + ‖wt (0)‖2 ∀t > 0. (11)

Existence and uniqueness of a solution “in the large” may be obtained with the help
of estimate (11) in the same way as in [3]. The proof is completed.
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2 Improvement of the Ladyzhenskaya Modification

Consider now another modification of the Navier-Stokes equations, when the vis-
cosity coefficient is the same in all directions, but the elliptic operator is changed.
O.A. Ladyzhenskaya proposed (see, e.g., [2]) a modification of the Navier-Stokes
equations allowing to prove existence of a strong solution to (1) “in the large”:

ut − νΔu − ν∂2
z u − νε

[
div (D(u,w)∇u) + ∂z (D(u,w)∂zu)

]

+ ∇ p + (u · ∇)u + wuz = f,

wt − νΔw − ν∂2
z w − νε

[
div (D(u,w)∇w) + ∂z (D(u,w)∂zw)

]

+ pz + (u · ∇)w + wwz = g,

div u + wz = 0,

(u,w)(x, 0) = (u0,w0)(x), div u0 + ∂zw0 = 0, (u,w)

∣∣∣
∂Ω×[0,T ]

= 0;

(12)

here
D(u,w) = |∇u|2 + |∂zu|2. (13)

(As a matter of fact, Ladyzhenskaya used another form of D, but here, for simplicity,
we use this form. For both forms of D all considerations are absolutely the same.)

Consider another modification of the Navier-Stokes equations arising in ocean
dynamics, which may be considered as strengthening of the Ladyzhenskaya results.
Namely,we consider (12) asmodification of (1), but instead of (13)weuse D(u,w) =
|∇u|2, remove the term ∂z (D(u,w)∂zu) from the first equation of (12), and do not
change the equation for w. So, we consider the problem

ut − νΔu − ν∂2
z u − νεdiv

(|∇u|2∇u
) + ∇ p + (u · ∇)u + wuz = f,

wt − νΔw − ν∂2
z w + pz + (u · ∇)w + wwz = g,

divu + wz = 0,

(u,w)(x, 0) = (u0,w0)(x), divu0 + ∂zw0 = 0, (u,w)

∣∣∣
∂Ω×[0,T ]

= 0.

(14)

To study solvability of (14) “in the large”, we need the following lemmas.

Lemma 1 Let v ∈ H 1
0 [0, l]. Then the following estimate holds:

max
x

v2(x) ≤ 2‖vx‖ ‖v‖.

Proof Extend v onto the whole axes by zero. Then

v2(x) = 2

x∫

−∞
vx (x)v(x) dx ≤ 2‖vx‖ ‖v‖.
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Q.E.D.

Lemma 2 Let f ∈ H 1
0 (Ω), fx , fy ∈ L4(Ω), Ω ∈ R

3, then

‖ f ‖55 ≤ 25

2
‖ fx‖4‖ fy‖4‖ fz‖ ‖ f ‖2. (15)

Proof Extend by zero the function f onto the whole space R3. Then

| f (x, y, z)|5 = 25

4

x∫

−∞

√| f (x, y, z)| f (x, y, z) fx (x, y, z) dx

×
y∫

−∞

√| f (x, y, z)| f (x, y, z) fy(x, y, z) dy.

Using the Hölder inequality, from the previous expression we have

| f (x, y, z)|5 ≤ 25

4
f 3/2

Ex
fx 4,Ex f 3/2

Ey
fy 4,Ey .

Integration over R3 and further implementation of the Hölder inequality give

∫

Ez

∫

Exy

| f |5dx dy dz ≤ 25

4

∫

Ez

⎡

⎢⎣
∫

Ey

f 3/2
Ex

fx 4,Ex dy
∫

Ex

f 3/2
Ey

fy 4,Ey dx

⎤

⎥⎦ dz

≤ 25

4

∫

Ez

f 3
Exy

fx 4,Exy fy 4,Exy dz

≤ 25

4
max
z

f 2
Exy

∫

Ez

f Exy fx 4,Exy fy 4,Exy dz (due to Lemma 1)

≤ 25

2
‖ fx‖4 ‖ fy‖4 ‖ fz‖ ‖ f ‖2dz.

Q.E.D.

Corollary 1 Since abc ≤ 0.5a2b2 + 0.5c2 ≤ 0.25(a4 + b4) + 0.5c2, a, b, c ≥ 0,
then from (15) it follows

‖ f ‖55 ≤ 25

8
(‖ fx‖44 + ‖ fy‖44 + 2‖ fz‖2)‖ f ‖2. (16)

Let us obtain a proper a priori estimate for a solution to (14). Take a scalar product
of (14) and (u,w):

1

2

d

dt

(‖u‖2 + ‖w‖2) + ν
(‖ux‖2 + ‖wx‖2

) + εν‖∇u‖44 = (f, u) + (g,w). (17)
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Obvious estimation of the right-hand side of (17) and further integration in t from 0
to T give

max
0≤t≤T

(‖u(t)‖2 + ‖w(t)‖2) + ν

T∫

0

(‖ux‖2 + ‖wx‖2 + ε‖∇u‖44
)
dt

≤ c1

⎛

⎝‖u0‖2 + ‖w0‖2 + 1

ν

T∫

0

(‖f‖2−1 + ‖g‖2−1

)
dt

⎞

⎠ ≡ c2.

(18)

Rewrite (17) in another form:

ν
(‖ux‖2 + ‖wx‖2

) + εν‖∇u‖44 = (f, u) + (g,w) − (ut , u) − (wt ,w).

Estimating the right-hand side and using (18), we get

‖ux‖2 + ‖wx‖2 + ε‖∇u‖44 ≤ c3(‖ut‖ + ‖wt‖ + ‖f‖2−1 + ‖g‖2−1).

Now, differentiate (14) in t :

ut t − νdiv
(
(1 + ε|∇u|2)∇ut

) − νεdiv
([|∇u|2]t∇u

) − ν∂2
z ut

+∇ pt + (u · ∇)ut + (ut · ∇)u + wut z + wtuz = ft ,

wtt−νΔwt − ν∂2
z wt + ptz + (u · ∇)wt

+ (ut · ∇)w + wwtz + wtwz = gt ,

divut + wtz = 0, (ut ,wt )

∣∣∣
∂Ω×[0,T ]

= (0, 0).

(19)

Taking scalar product of (19) and (ut ,wt ), one obtains

1

2

d

dt
‖ut‖2 + 1

2

d

dt
‖wt‖2 + ν‖ut x‖2 + ν‖wtx‖2

+εν

∫

Ω

(∇u)2(∇ut )
2dx + εν

2
‖[(∇u)2]t‖2 + (uktuxk , ut )

+ (wtuz, ut ) + (uktwxk ,wt ) + (wtwz,wt ) = (ft , ut ) + (gt ,wt ).

(20)

To estimate scalar products of (20) we need the following inequalities (see, e.g.,
[3])

‖v‖10/3 ≤ (48)1/10‖vx‖3/5‖v‖2/5,
‖v‖3 ≤ (48)1/2‖vx‖1/2 ‖v‖1/2,

‖v‖8/3 ≤ (48)1/16‖vx‖3/8 ‖v‖5/8,
(21)
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being valid for functions from the Sobolev space H 1
0 (Ω), Ω ∈ R

3. Then we have

|I1| = |(uktuxk , ut )| ≤ c‖∇u‖3‖ut‖23 ≤ c‖∇u‖4‖ut x‖‖ut‖
≤ δ‖ut x‖2 + c

δ
‖∇u‖24‖ut‖2.

Estimate now the second scalar product. Integration by parts and the use of the
incompressibility equation give

I2 = (wtuz, ut ) = (div utu, ut ) − (wtu, ut z) = I ′
2 + I ′′

2 .

Estimate eachof these scalar products separately using theHölder andYoung inequal-
ities. We get

|I ′
2| = |(divutu, ut )| (use the Hölder inequality with the powers 2, 5, 10/3)

≤ ‖ut x‖‖u‖5‖ut‖10/3 (due to (21))

≤ (48)1/10‖ut x‖8/5‖u‖5‖ut‖2/5 (due to the Young inequality)

≤ δ‖ut x‖2 + cδ‖u‖55‖ut‖2 (due to (16))

≤ δ‖ut x‖2 + cδ(‖∇u‖44 + ‖uz‖2)‖ut‖2.

In the same way one gets

|I ′′
2 | = |(wtu, ut z)| (use the Hölder inequality with the powers 10/3, 5, 2)

≤ c‖ut z‖‖u‖5‖wt‖10/3 (due to (21))

≤ c‖ut z‖‖u‖5‖wtx‖3/5‖wt‖2/5
≤ δ‖ut z‖2 + cδ‖u‖25‖wtx‖6/5‖wt‖4/5 (due to the Young inequality

with the powers 5/3, 5/2)

≤ δ‖ut z‖2 + δ‖wtx‖2 + cδ‖u‖55‖wt‖2 (due to (16))

≤ δ‖ut z‖2 + δ‖wtx‖2 + cδ(‖∇u‖44 + ‖uz‖2)‖wt‖2.

For estimation the two other scalar products, we need the following:

Lemma 3 The estimate
max

z
w 4,Exy ≤ c‖∇u‖4

holds.

Proof As before, extend w and u onto the wholeR3 by zero and denote the obtained
functions by the same letters. Then, we get
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w 4,Exy =
⎛

⎝
∞∫

−∞

∞∫

−∞

⎛

⎝
z∫

−∞
divudz

⎞

⎠
4

dxdy

⎞

⎠

1/4

≤
∞∫

−∞
∇u 4,Exy dz ≤ c‖∇u‖4.

The statement of the lemma follows directly from the last inequality. Q.E.D.

Estimate now the scalar product I3:

I3 = (uktwxk ,wt ) = −(divutw,wt ) − (uktw,wtxk )

= (wtzw,wt ) − (uktw,wtxk ) = I ′
3 + I ′′

3 .

Obtain estimates for I ′
3 and I ′′

3 separately. One has

|I ′′
3 | = |(uktw,wtxk )| ≤

∞∫

−∞

⎛

⎝
∞∫

−∞

∞∫

−∞
|uktw,wtxk | dx dy

⎞

⎠ dz

≤ c‖∇u‖4
∞∫

−∞
ut 4,Exy wtx 2,Exy dz

≤ c‖∇u‖4
∞∫

−∞
∇ut

1/2
2,Exy

ut
1/2
2,Exy

wtx 2,Exy dz

≤ c‖∇u‖4‖∇ut‖1/2‖ut‖1/2‖wtx‖ ≤ δ‖wtx‖2 + cδ‖∇u‖24‖∇ut‖‖ut‖
≤ δ‖wtx‖2 + δ‖∇ut‖2 + cδ‖∇u‖44‖ut‖2,

|I ′
3| = |(wt ,wz,wt )| = |(divu,w2

t )| ≤ ‖∇u‖4‖wt‖28/3
≤ c‖∇u‖4‖wtx‖3/4‖wt‖5/4 ≤ δ‖wtx‖2 + cδ‖∇u‖8/54 ‖wt‖2.

Finally, I4 = I ′
3, so I4 is estimated from above as I ′

3. Substituting the above
inequalities into (20) with appropriate δ and estimating the right-hand side of (20)
in the obvious way, we get

d

dt
(‖ut‖2 + ‖wt‖2) + ν‖ut x‖2 + ν‖wtx‖2 + εν

∫

Ω

(∇u)2(∇ut )2dx + εν

2
‖[(∇u)2]t‖2

≤ c
(
‖ft‖2−1 + ‖gt‖2−1 + (‖∇u‖44 + ‖wx‖2)(‖ut‖2 + ‖wt‖2)

)
. (22)

Using the Gronwall inequality and (18), from (22) one obtains
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max
0≤t≤T

(‖ut (t)‖2 + ‖wt (t)‖2) +
T∫

0

(‖ut x‖2 + ‖wtx‖2)dt

≤
⎛

⎝‖ut (0)‖2 + ‖wt (0)‖2 +
T∫

0

(‖ft‖2−1 + ‖gt‖2−1)dt

⎞

⎠

× exp

⎛

⎝c

T∫

0

(‖∇u‖44 + ‖wx‖2)dt
⎞

⎠

≤ c4

⎛

⎝‖ut (0)‖2 + ‖wt (0)‖2 +
T∫

0

(‖ft‖2−1 + ‖gt‖2−1)dt

⎞

⎠ .

Introduce the space V being the closure of divergence free vector functions (u,w)

vanishing on ∂Ω × [0, T ] in the norm

‖(u,w)‖V =
⎛

⎝
T∫

0

(‖ux‖2 + ‖wx‖2 + ‖ut‖2 + ‖wt‖2
)
dt

⎞

⎠
1/2

+
⎛

⎝
T∫

0

‖∇u‖44dt
⎞

⎠
1/4

and define a solution to (14) as a vector function (u,w) ∈ V being equal to (u0,w0)

for t = 0 and satisfying the following identity:

T∫

0

(
(ut , v) + ν(ux , vx ) + νε(|∇u|2∇u,∇v) + ν(wx , hx ) + ((u · ∇)u, v)

+ ((u · ∇)w, h) + (wwz, h) − (f, v) − (g, h)
)
dt = 0 ∀(v, h) ∈ V.

(23)

Using the Galerkin method, estimate (26) and technique of [3, 4], it is not difficult
to prove that a solution to (23) exists and is unique and the norm ‖ux‖ + ‖wx‖ is
continuous in time.

Thus, we have proved the following:

Theorem 2 Let (u0,w0) ∈ H2
0 and

T∫

0

(‖ft‖2−1 + ‖gt‖2−1)dt < ∞.

Then forany ε > 0, ν > 0, andarbitrary time interval T there exists a unique solution
to (14) satisfying (23), and the norm ‖ux‖ + ‖wx‖ is continuous in time on [0, T ].
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An Algebraic Solver for the Oseen
Problem with Application to
Hemodynamics

Igor N. Konshin, Maxim A. Olshanskii and Yuri V. Vassilevski

Abstract The paper studies an iterative method for algebraic problems arising in
numerical simulation of blood flows. Here we focus on a numerical solver for the
fluid part of otherwise coupled fluid-structure system of equations which models the
hemodynamics in vessels. Application of the finite elementmethod and semi-implicit
time discretization leads to the discrete Oseen problem at every time step of the sim-
ulation. The problem challenges numerical methods by anisotropic geometry, open
boundary conditions, small time steps and transient flow regimes. We review known
theoretical results and study the performance of recently proposed preconditioners
based on two-parameter threshold ILU factorization of non-symmetric saddle point
problems. The preconditioner is applied to the linearized Navier–Stokes equations
discretized by the stabilized Petrov–Galerkin finite element (FE) method. Careful
consideration is given to the dependence of the solver on the stabilization parameters
of the FE method. We model the blood flow in the digitally reconstructed right coro-
nary artery under realistic physiological regimes. The paper discusses what is special
in such flows for the iterative algebraic solvers, and shows how the two-parameter
ILU preconditioner is able to meet these specifics.
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1 Introduction

Numerical simulations play an increasing role in visualization, understanding and
predictive modelling of many biological flows, including blood flow in arteries and
the heart. The efficiency of a numerical approach depends on the right choice of
mathematical model, its discretization and the algebraic solvers used to compute
the solution to a discrete model. For the blood flow simulations, state-of-the-art
methods are built on afluid-structure interaction (FSI)modelwhich typically includes
equations describing the motion of Newtonian viscous fluid, equations for an elastic
structure and coupling conditions [5]. In the process of numerical integration of the
FSI system, however, one often decouples the fluid equations from the elasticity
equations on every time step and hence applies segregated algebraic solvers for
each of the decoupled problem, see, e.g., [12]. Furthermore, for the reason of time-
sensitivity of simulations or the ambiguity of the information regarding the properties
of the structure, hemodynamic simulations are often performed in a fixed geometries,
i.e. the vessels wall is assumed to be rigid rather than elastic. In both cases, one is
interested in an efficient numerical solve for the Navier–Stokes equations describing
the motion of incompressible Newtonian fluids in a bounded domain Ω ⊂ R

3 and
time interval [0, T ]:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂u
∂t

− νΔu + (u · ∇)u + ∇ p = f in Ω × (0, T ],
divu = 0 in Ω × [0, T ],

u = g on Γ0 × [0, T ],
−ν(∇u) · n + pn = h on ΓN × [0, T ],

u(x, 0) = u0(x) in Ω.

(1)

The unknowns are the velocity vector field u = u(x, t) and the pressure field p =
p(x, t). The volume forces f , boundary and initial values g, h and u0 are given.
Parameter ν is the kinematic viscosity; the boundary of the domain is decomposed
as ∂Ω = Γ 0 ∪ Γ N with Dirichlet part Γ0 �= ∅ and Neumann part ΓN. An important
parameter of the flow is the dimensionless Reynolds number Re = UL/ν, where U
and L are characteristic velocity and linear dimension.

The Navier–Stokes equations (1) are fundamental equations of fluid mechanics
and are central for modelling of many physical phenomena. In hemodynamic appli-
cations, one may point to several special features of otherwise general fluid flow
problem in (1):

(i) Anisotropic geometry. The domainΩ typically represents a blood vessel, which
is a stretched branching object;

(ii) Open boundaries of mixed type. The computational domain has artificial (open)
boundaries, where the vessel is cut. Depending on the stage of cardiac cycle, for-
ward and reverse flows may happen through the same part of the open boundary,
leading to the boundary changing type outflow/inflow;
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(iii) Different flow regimes. Variable blood flux generated over one heartbeat may
produce flows with varying Reynolds numbers from laminar to transitional;

(iv) Finite element method prevails. Due to complex geometry and coupling to elas-
ticity equations, finite element method is the very common choice for discretiza-
tion of (1) in hemodynamic applications. A regularization (in the form of least-
square terms or a sub-grid model) is often added to stabilize the FE method for
higher Reynolds numbers;

(v) Small time steps. The physics of the problem dictates small time steps of order
10−3 × cardiac cycle time for the numerical integration of (1).

Semi-implicit time discretization or an implicit one combined with the lineariza-
tion of the Navier–Stokes system (1) by Picard fixed-point iteration result in a
sequence of Oseen problems of the form

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

αu − νΔu + (w · ∇)u + ∇ p = f̂ in Ω,

divu = ĝ in Ω,

u = 0 on Γ0,

−ν(∇u) · n + pn = 0 on ΓN,

(2)

wherew is a known velocity field from a previous iteration or time step and α is pro-
portional to the reciprocal of the time step. Non-homogeneous boundary conditions
in the nonlinear problem are accounted in the right-hand side of (2). A finite element
spatial discretization of (2) produces large sparse systems of the form

(
A B̃T

B −C

) (
u
p

)

=
(
f
g

)

, (3)

where u and p represent the discrete velocity and pressure, respectively; A ∈ R
n×n

is the discretization of the diffusion, convection, and time-dependent terms. The
matrix A accounts also for certain stabilization terms. Matrices B and B̃T ∈ R

n×m

are (negative) discrete divergence and gradient. Thesematricesmay also be perturbed
due to stabilization. It is typical for the stabilized methods that B �= B̃, while for a
plain Galerkin method these two matrices are the same. Matrix C ∈ R

m×m results
from possible pressure stabilization terms, and f and g contain forcing and boundary
terms. For the LBB stable finite elements, no pressure stabilization is required and
so C = 0 holds. If the LBB condition is not satisfied, the stabilization matrix C �= 0
is typically symmetric and positive semidefinite. For B = B̃ of the full rank and
positive definite A = AT the solution to (3) is a saddle point.

Considerable work has been done in developing efficient preconditioners for
Krylov subspace methods applied to system (3) with B̃ = B; see the comprehen-
sive studies in [4, 8, 19] of the preconditioning exploiting the block structure of the
system. Several algebraic solvers were specifically designed or numerically tested
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for solving (3) resulting from hemodynamic applications. This includes incomplete
block LU factorizationsmimicking pressure correction splittingmethods on the alge-
braic level [20], block-triangular preconditioners based on approximation of pressure
advection–diffusion operator [18], additive Schwartz preconditioner [7], relaxed
dimensional factorization block preconditioner [3], see also [7] for the numerical
comparison of several preconditioners for the hemodynamic simulations.

The special features of blood flow problems discussed above impact the algebraic
properties of the discrete system (3), and ideally, an efficient solver accounts for
them. Thus, the inf-sup stability constants of velocity–pressure elements strongly
depend on the anisotropy of domain Ω , see [6]. This may lead to poor performance
of preconditioners based on pressure Schur complement approximations. Reversed
flows through the open boundary is an energy increasing and de-stabilizing phe-
nomenon, potentially resulting in the lost of ellipticity by the A block of (3). Next,
different flow regimes require a robust preconditioner with respect to the variation
of the Reynolds numbers. Finite element method leads, in general, to matrices with
higher fill-in comparing to finite volumes or finite differences schemes. We note that
hierarchical tetrahedral grids are rarely used to reconstruct blood vessels. This reduce
the applicability of geometricmultigridmethods. Furthermore,we shall see that addi-
tional terms added to stabilize finite element method for convection dominated flows
often make algebraic problem harder to solve. Finally, small time steps suggest that
reusable preconditioners and those benefiting from the diagonal dominance in the
A-block should be preferred.

In the paperwe study the properties of an algebraic solver for (3) based on aKrylov
subspace iterative method and a two-parameter ILU preconditioner. The precondi-
tioner results from a special incomplete elementwise LU factorization suggested and
studied in [14] for symmetric positive definite matrices and further extended to non-
symmetric saddle-point systems in [16, 17]. Here we review the available analysis
and discuss how this algebraic solver addresses the challenges posed by hemody-
namics applications. Further we simulate the blood flow in the digitally reconstructed
part of the right coronary artery. Here we experiment with various grids, Reynolds
numbers and finite element method stabilization parameters to assess the numerical
properties for the iterative method.

The remainder of the paper is organized as follows. In Sect. 2 we give necessary
details of the finite element method. Section3 reviews known stability of the exact
LU factorizations for (3). These results are formulated in terms of the properties
of the (1,1)-block A, auxiliary Schur complement matrix BA−1BT + C , and the
perturbation matrix B − B̃. In Sect. 4, we formulate the properties of these matrices
in terms of problem coefficients and parameters of the FE method. In Sect. 5, we
briefly discuss the implication of these results on the stability of a two-parameter
variant of the threshold ILU factorization for non-symmetric non-definite problems.
In Sect. 6 we study the numerical performance of the method on the sequence of
linear systems appearing in simulation of a blood flow in a right coronary artery.
Conclusions are collected in the final Sect. 7.
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2 Finite Element Method

We assume Th to be a collection of tetrahedra forming a consistent subdivision of
Ω . We also assume for Th the shape-regularity condition,

max
τ∈Th

diam(τ )/ρ(τ) ≤ CT , (4)

where ρ(τ) is the diameter of the inscribed ball in the tetrahedron τ . A con-
stant CT measures the maximum anisotropy ratio for Th . Further we denote hτ =
diam(τ ), hmin = minτ∈Th hτ . Given conforming FE spaces Vh ⊂ (H 1

Γ0
(Ω))3 and

Qh ⊂ L2(Ω), the Galerkin FE discretization of (2) is based on the weak formu-
lation: Find {uh, ph} ∈ Vh × Qh such that

L (uh , ph; vh , qh) = (f̂, vh) + (ĝ, qh) ∀ vh ∈ Vh , qh ∈ Qh, (5)

L (u, p; v, q) : = α(u, v) + ν(∇u, ∇v) + ((w · ∇) u, v) − (p, divv) + (q, div u),

where (·, ·) denotes the L2(Ω) inner product.
In experiments we use P2-P1 Taylor–Hood FE pair, which satisfies the LBB

compatibility condition for Vh and Qh [9] and hence ensures well-posedness and
full approximation order for the FE linear problem.

The finite element method (5) needs stabilization or additional subgrid scale mod-
elling if convection terms dominate over the diffusion. We consider one commonly
used SUPG stabilization, while more details on the family of SUPG methods can be
found in, e.g., [21]. Using (5) as the starting point, a weighted residual for the FE
solution multiplied by an ‘advection’-depending test function is added:

L (uh, ph; vh, qh) +
∑

τ∈Th
στ (αuh − νΔuh + w · ∇uh + ∇ ph − f ,w · ∇vh)τ

= ( f , vh) + (ĝ, qh) ∀vh ∈ Vh, qh ∈ Qh, (6)

with ( f, g)τ := ∫

τ
f g dx . The second term in (6) is evaluated element-wise for each

element τ ∈ Th . Parameters στ are element- and problem-dependent. To define the
parameters, we introduce mesh Reynolds numbers Reτ := ‖w‖L∞(τ )hw/ν for all τ ∈
Th , where hw is the diameter of τ in direction w. Several recipes for the particular
choice of the stabilization parameters can be found in the literature, see, e.g., [21].

We set

στ =
{

σ̄ hw
2‖w‖L∞(τ )

(
1 − 1

Reτ

)
, if Reτ > 1,

0, if Reτ ≤ 1,
with 0 ≤ σ̄ < 1. (7)

Obviously, σ̄ = 0means that no stabilization is added. The choice of στ in (7) implies
the following estimate which we need later in Sect. 6:
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στ = σ̄
hw

2‖w‖L∞(τ )

(

1 − 1

Reτ

)

≤ σ̄
hw

2‖w‖L∞(τ )

Reτ = σ̄
h2w
2ν

≤ σ̄
h2τ
2ν

. (8)

If one enumerates velocity unknowns first and pressure unknowns next, then the
resulting discrete system has the 2 × 2-block form (3) with C = 0. The stabilization
alters the (1,2)-block of the matrix making the latter not equal to the transpose of the
(2,1)-block B. From the available analysis and results of numerical experiments we
shall see that the perturbation of A caused by (6) affects the algebraic properties of (3).

3 Some Properties of LU Factorization for (3)

One can think about ILU factorization as a perturbation of exact LU factorization.
Hence, it is instructive to have a first look at stability properties of the latter for
non-symmetric saddle-point matrices as in (3). The results in this section summarize
the analysis in [16, 17], where the reader can find full proofs and further details. The
2 × 2-block matrix from (3) is in general indefinite and if C = 0, its diagonal has
zero entries. An LU factorization of suchmatrices often requires pivoting for stability
reasons. However, exploiting the block structure and the properties of blocks A and
C , one readily verifies that the LU factorization

A =
(
A B̃T

B −C

)

=
(
L11 0
L21 L22

)(
U11 U12

0 −U22

)

(9)

with lower (upper) triangle matrices L11, L22 (U11,U22) exists without pivoting, once
det(A) �= 0 and there exist LU factorizations for the (1,1)-block

A = L11U11

and the Schur complement matrix S̃ := BA−1 B̃T + C is factorized as

S̃ = L22U22.

Decomposition (9) then holds with U12 = L−1
11 B̃

T and L21 = BU−1
11 .

Assume A is positive definite. Then the LU factorization of A exists without
pivoting. Its numerical stability (the relative size of entries in factors L11 andU11)may
depend on how large is the skew-symmetric part of A comparing to the symmetric
part. More precisely, the following bound on the size of elements of L11 and U11

holds (see, e.g., (3.2) in [16]):

‖|L11||U11|‖F

‖A‖ ≤ n
(
1 + C2

A

)
, (10)

where CA := ‖A− 1
2

S ANA
− 1

2
S ‖, AS = 1

2 (A + AT ), AN = A − AS. Here and further,
‖ · ‖ and ‖ · ‖F denote thematrix spectral norm and the Frobenius norm, respectively,
and |M | denotes the matrix of absolute values of M-entries.
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If C is positive semi-definite, B̃ = B, and matrix BT has the full column rank,
then the positive definiteness of A implies that the Schur complement matrix S :=
BA−1BT + C is also positive definite. However, this is not the case for a general
block B̃ �= B. The stabilization terms in the finite element method (6) produce the
(1,2)-block B̃T which is a perturbation of BT . The positive definiteness of S̃ :=
BA−1 B̃T + C and the stability of its LU factorization is guaranteed if the perturbation
E = B̃ − B is not too large [17]. In particular, S̃ is positive definite if the perturbation
matrix E is sufficiently small such that it holds

κ := (1 + CA)εEc
− 1

2
S < 1, (11)

where εE := ‖A− 1
2

S ET ‖, cS := 1
2λmin(S + ST ). Moreover, if S̃ is positive definite,

the factorization S̃ = L22U22 satisfies the stability bound similar to (10).
The following result about stability of LU factorization of (3) holds.

Theorem 1 Assume matrix A is positive definite, C is positive semidefinite, and the

inequality (11) holds with εE = ‖A− 1
2

S (B̃ − B)T ‖, CA = ‖A− 1
2

S ANA
− 1

2
S ‖, and cS =

1
2λmin(S + ST ), then the LU factorization (9) exists without pivoting. The entries of
the block factors satisfy (10) and the following bounds

‖|L22||U22|‖F

‖S̃‖ ≤ m

⎛

⎝1 + (1 + εEc
− 1

2
S )CA

1 − κ

⎞

⎠ ,

‖U12‖F + ‖L21‖F

‖U11‖‖B̃‖F + ‖L11‖‖B‖F
≤ m(1 + CA)

cA

with cA := λmin(AS) and κ from (11).

The above analysis indicates that the LU factorization for (3) exists if the (1,1)
block A is positive definite and the perturbation of the (1,2)-block is sufficiently
small. The stability bounds depend on the constant CA which measures the ratio of
skew-symmetry for A, the ellipticity constant cA, the perturbation measure εE and
the minimal eigenvalue of the symmetric part of the unperturbed Schur complement
matrix S. In Sect. 4, we show estimates of all these values for the finite element Oseen
problem.

4 Properties of Matrices A and ˜S

The dependence of the critical constants cA, CA, εE and cS from Theorem 1 on the
problem and discretization parameters can be given explicitly. The analysis exploits
the SUPG-FE origin of matrix A (matrix C is zero in the inf-sup FE method). Let
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{ϕi }1≤i≤n and {ψ j }1≤ j≤m be bases of Vh and Qh , respectively. From the definition of
matrix A and for arbitrary v ∈ R

n and corresponding vh = ∑n
i=1 viϕi , one gets the

following identity:

〈Av, v〉 = α‖vh‖2 + ν‖∇vh‖2 +
∑

τ∈Th
στ‖w · ∇vh‖2τ + 1

2

∫

ΓN

(w · n)|vh |2 ds

− 1

2

∑

τ∈Th
((divw)vh, vh)τ +

∑

τ∈Th
στ (αvh − νΔvh,w · ∇vh)τ ,

(12)

where n is the outward normal on ΓN. For a detailed discussion of the role each term
from (12) plays in determining properties of matrix A, we refer to [16, 17]. Here
we dwell on the last term in (12) due to the SUPG stabilization. The ν-dependent
part of it vanishes for P1 finite element velocities, but not for most of inf-sup stable
pressure–velocity pairs. Both analysis and numerical experiments below show that
this term may significantly affect the properties of the matrix A, leading to unsta-
ble behavior of incomplete LU factorization unless the stabilization parameters are
chosen sufficiently small.

The estimates for ellipticity and stability constants for A and S̃ are summarized
in Theorem 2. In order to formulate the theorem, we recall several well-known
estimates. First, recall the Sobolev trace inequality

∫

ΓN

|v|2 ds ≤ C0‖∇v‖2 ∀ v ∈ H 1(Ω), v = 0 on ∂Ω \ ΓN. (13)

For any tetrahedron τ ∈ Th and arbitrary vh ∈ Vh , the following FE trace and inverse
inequalities hold

∫

∂τ

v2h ds ≤ Ctrh
−1
τ ‖vh‖2τ , ‖∇vh‖τ ≤ Cinh

−1
τ ‖vh‖τ , ‖Δvh‖τ ≤ C̄inh

−1
τ ‖∇vh‖τ ,

(14)
where the constants Ctr , Cin, C̄in depend only on the polynomial degree k and the
shape regularity constant CT from (4). In addition, denote by Cf the constant from
the Friedrichs inequality:

‖vh‖ ≤ Cf‖∇vh‖ ∀vh ∈ Vh, (15)

and let Cw := ‖(w · n)−‖L∞(ΓN). We introduce the velocity mass and stiffness matri-
ces M and K : Mi j = (ϕi , ϕ j ), Ki j = (∇ϕi ,∇ϕ j ) and the pressure mass matrix Mp:
(Mp)i j = (ψi , ψ j ).

Theorem 2 Assume that w ∈ L∞(Ω), problem and discretization parameters sat-
isfy
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⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

CwCtrh
−1
min ≤ α

4
or CwC0 ≤ ν

4
,

‖divw‖L∞(Ω) ≤ 1

4
max{α, νC−1

f },

στ ≤ h2τ
2νC̄2

in

(

1 + αh2τ
νC2

in

)

and στ ≤ hτ

4‖w‖L∞(τ )Cin
∀τ ∈ Th,

(16)

with constants defined in (13)–(15). Then the matrix A is positive definite and the
constants cA, CA, cS and εE can be estimated as follows:

cA ≥ 1

4
λmin(αM + νK ),

CA ≤ c

(

1 + ‖w‖L∞(Ω)√
να + ν + hminα

)

,

cS ≥ c λmin(Mp)

(ν + α + ‖w‖L∞(Ω) + ‖divw‖L∞(Ω))(1 + C2
A)

,

εE ≤
(

σ̄

2ν
λmax(Mp)

) 1
2

,

(17)

where c is a generic constant independent of problem and discretization parameters.

Theorem 2 shows that matrices A and S̃ are positive definite if conditions (16) on
the parameters of the finite element method are satisfied. In this case, the matrix in
(3) admits LU factorization without pivoting. The first condition in (16) is trivially
satisfied with Cw = 0 if ΓN = ∅ or the entire ΓN is outflow boundary. However, we
know that this is often not the case for the hemodynamics problems (see item (ii)
in the introduction). On the other hand, small time step results in a large value of α

which eases the first condition. The second condition is specific for finite element
approximations. The given w approximates velocity field of an incompressible fluid
and hence one intuitively expects ‖divw‖L∞(Ω) decreases for a refined grid (a rigorous
proof may not be straightforward for lower order finite elements). However, the
w-divergence norm depends on fluid velocity field and may be large for ν small
enough. Fortunately, for small Δt the second condition holds due to α ∼ (Δt)−1.
The third condition in (16) appears due to the stabilization included in the finite
element formulation (6). The same or a similar condition on stabilization parameters
appears in the literature on the analysis of SUPG stabilizedmethods for the linearized
Navier–Stokes equations, see, e.g., [21]. The reason is that the positive definiteness
of A is equivalent to the coercivity of the velocity part of the bilinear form from
(6), which is crucial for deriving finite element method error estimates. Therefore,
stabilizationparameter design suggested in the literature typically satisfiesστ � h2τ /ν
and στ � hτ /‖w‖L∞(τ ) asymptotically, i.e. up to a scaling factor independent of
discretization parameters. As follows from (8), the conditions (16) on the SUPG
stabilization parameters (7) are valid if σ̄ ≤ min{C̄−2

in , 1
2C

−1
in }. Moreover, the value

of the σ̄ parameter from the SUPG term is crucial for the bound on εE whichmeasures
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the discrepancy between B and B̃. Thanks to (11) and Theorem 1 we see that εE has
to be small enough to guarantee the stability of the factorization. Numerical results
will support this observation. This puts additional implicit restrictions on σ̄ .

The domain anisotropy, see item (i) in the introduction, affects the lower bound for
cS in Theorem 2. The generic constant c in this bound depends on the inf-sup constant
for Vh − Qh pair. Nevertheless, we shall see from experiments that the incomplete
LU preconditioning in practice remains stable and efficient for stretched domains.
Numerical experiments also show that the preconditioner has remarkable adaptivity
properties with respect to different flow regimes, see item (iii) in the introduction.
The bounds in Theorem 2 depend on w and ν, and hence on the Reynolds number.
We observed in practice that the preconditioning remains stable over the range of
Reynolds number and the fill-in adaptively increases or decreases in such a way that
the number of iterations remains nearly the same.

5 Two-Parameter Threshold ILU Factorization

Incomplete LU factorizations of (3) can be written in the form A = LU − E with an
error matrix E . How small is the matrix E can be ruled by the choice of a threshold
parameter τ > 0. The errormatrix E is responsible for the quality of preconditioning,
see, for example, [15] for estimates on GMRESmethod convergence written in terms
of ‖E‖ and subject to a proper pre-scaling of A and the diagonalizability assumption.
In general, the analysis of ILU factorization is based on the following arguments. For
positive definite matrices A one can choose such a small τ that the product LU of its
incomplete triangular factors L andU is also positive definite and so estimates from
[11] can be applied to assess the numerical stability of the incomplete factorization:
for cA = λmin(AS), the sufficient condition is τ < cAn−1. In practice, however, larger
τ are used.

Theorem 2 shows that for certain flow regimes and for the choice of stabilization
parameters the ellipticity constants cA and cS for A and S, respectively, approach
zero. This may imply that the ILU factorization of (3) becomes unstable if possi-
ble at all. To ameliorate the performance of the preconditioning, we consider the
two-parameter Tismenetsky–Kaporin variant of the threshold ILU factorization. The
factorization was introduced and first studied in [14, 23, 24] for symmetric positive
definite matrices and recently for non-symmetric matrices in [16, 17].

Given a matrix A ∈ R
n×n , the two-parameter factorization can be written as

A = LU + LRu + R�U − E, (18)

where Ru and R� are strictly upper and lower triangular matrices, while U and L
are upper and lower triangular matrices, respectively. Given two small parameters
0 < τ2 ≤ τ1 the off-diagonal elements of U and L are either zero or have absolute
values greater than τ1, the absolute values of R� and Ru entries are either zero or
belong to (τ2, τ1]; entries of the error matrix are of order O(τ2). We refer to (18)
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as the ILU(τ1, τ2) factorization of A. In the particular case of τ1 = τ2, factorization
ILU(τ1,τ2) is equivalent to the well-known ILUT(p, τ ) dual parameter incomplete
factorization [22] with p = n (all elements passing the threshold criterion are kept
in the factors). If no small pivots modification is done, the only differences between
the algorithms (for τ1 = τ2 and p = n) are different scaling of pivots and row depen-
dent scaling of threshold values. The two-parameter ILU factorization goes over a
ILUT(n, τ ) factorization: the fill-in of L andU is ruled by the first threshold param-
eter τ1, while the quality of the resulting preconditioner is mainly defined by τ2,
once τ 2

1 � τ2 holds. In other words, the choice τ2 = τ 2
1 := τ 2 may provide the fill-in

of ILU(τ1, τ2) to be similar to that of ILUT(n, τ ), while the convergence of pre-
conditioned Krylov subspace method is better and asymptotically (for τ → 0) can
be comparable to the one with ILUT(n, τ 2) preconditioner. For symmetric positive
definite matrices this empirical advantages of ILU(τ1, τ2) are rigorously explained
in [14], where estimates on the eigenvalues and K-condition number of L−1AU−1

were derived with LT = U and RT
� = Ru . The price one pays is that computing L ,

U factors for ILU(τ1, τ2) is computationally more costly than for ILUT(n, τ1), since
intermediate calculations involve the entries of Ru . However, this factorization phase
of ILU(τ1, τ2) is still less expensive than that of ILUT(n, τ2). A pseudo-code of the
row-wise ILU(τ1, τ2) factorization can be found in [16].

Analysis of the decomposition (18) of a general non-symmetric matrix is limited
to simple estimate (2.5) from [10] applied to the matrix (L + R�)(U + Ru) = A +
R�Ru + E . The lower bound for the pivots of the (18) factorization is the following:

|LiiUii | ≥ min
v∈Rn

〈(A + R�Ru + E)v, v〉
‖v‖2 ≥ cA − ‖R�Ru‖ − ‖E‖, (19)

with the ellipticity constant cA and the norms ‖R�Ru‖ and ‖E‖ proportional to
τ 2
1 and τ2, respectively. Hence, we may conclude that the numerical stability of
computing for L−1x and U−1x is ruled by the second parameter and the square of
the first parameter, while the fill-in in both factors is defined by τ1 rather than τ 2

1 . The
Oseen problem setup may be such that the estimates from Theorem 2 predict that
the coercivity constant cA and the ellipticity constant cS are small. This increases the
probability of the breakdown of ILUT(n, τ ) factorization of the saddle-point matrix
A , and demonstrates the benefits of ILU(τ1, τ2) factorization.

The final important remark in this section is that in all computations we use the
simple preprocessing of matrix A by the two-side scaling as described in [16].

6 Numerical Results

The model hemodynamic problem of interest is a blood flow in a right coronary
artery. To set up the problem, we use the geometry recovered from a real patient
coronary CT angiography. The 3D vessel is branching and is cut to embed in the box
6.5 cm × 6.8 cm × 5 cm, see Fig. 1. The diameter of the inlet cross-section is about
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Fig. 1 The coarse (63k, left) and fine (120k, right) grids in the right coronary artery. The bottom
figures zoom a part of the domain

0.27cm.We generate two tetrahedral meshes using ANI3D package [2]. The meshes
shown in Fig. 1 consist of 63k and 120k tetrahedra. The Navier–Stokes system (1)
is integrated in time using a semi-implicit second order method with Δt = 0.005.
This and the discretization with Taylor–Hood (P2-P1) finite elements result in a
sequence of discrete Oseen problems (3). The algebraic systems have nearly 300k
and 600k unknowns for the coarse and the fine meshes, respectively. Other model
parameters are ν = 0.04 cm2/s, ρ = 1 g/cm. We integrate the system over one car-
diac cycle, which is 0.735 s. The inlet velocity waveform [13] shown in Fig. 2 defines
the Poiseuille flow rate through the inflow cross-section. The figure shows the inte-
gral average of the normal velocity component over the inflow boundary. The vessel
walls were treated as rigid and homogeneous Dirichlet boundary conditions for the
velocity are imposed on the vessel walls. On all outflow boundaries we set the normal
component of the stress tensor equal to zero. For the suitable choice of stabilization
parameters, cf. below, the computed FE solutions are physically meaningful, see
Fig. 3.

We study the performance of the ILU(τ ) factorization for different values of
discretization, stabilization, and threshold parameters. For numerical test we use the
implementation of ILU(τ1, τ2) available in the open source software [1, 2]. The values
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Fig. 2 The averaged velocity waveform on the inflow as a function of time in the right coronary
artery

Fig. 3 The pressure distribution in the right coronary artery at time 0.15 s

of ILU thresholds τ1 = 0.03, τ2 = 7τ 2
1 are taken from [16]. In that paper this design

of threshold parameters was found to be close to optimal for a range of problems
and fluid parameters. In all experiments we use BiCGstab method with the right
preconditioner defined by the ILU(τ1,τ2) factorization.

Table1 shows the total number of the preconditioned BiCGstab iterations #it,
the total number of modifications of nearly zero pivots #pmod, the fill-in ratio and
the CPU times (factorization time Tbuild, iteration time Tit , total solution CPU time
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Table 1 The performance of ILU (τ1 = 0.03, τ2 = 7τ 21 ) for right coronary artery. The number of
iterations and pivot modifications and the solution stages times accumulated for 147 time steps

Mesh σ̄ fillLU pmod #it Tbuild Tit TCPU

63k 0 Min 0.711 0 131 2.64 13.59 16.55

Average 0.854 0 142.2 3.82 15.42 19.24

Max 1.009 0 164 5.16 17.47 22.11

Total – 0 20908 562 2267 2829

63k 1/12 Min 0.711 0 125 2.63 13.03 16.10

Average 0.838 0 138.0 3.65 14.84 18.49

Max 0.980 0 156 4.85 22.62 26.42

Total – 0 20292 537 2182 2719

120k 0 Min 0.738 0 163 6.32 36.96 43.93

Average 0.846 0 178.2 8.46 42.09 50.56

Max 0.985 0 220 11.17 61.61 71.34

Total – 0 26209 1244 6188 7432

120k 1/12 Min 0.738 0 158 6.27 35.88 42.35

Average 0.832 1 179.9 8.11 41.71 49.83

Max 0.959 18 357 10.51 87.58 97.94

Total – 21 26446 1192 6132 7325

TCPU = Tbuild + Tit) needed to perform 147 time steps. The fill-in ratio is defined
by fillLU = (nz(L) + nz(U ))/nz(A), where nz(A) = ∑

i j sign|Ai j |. On every time
step, the Krylov subspace iterations are done until the initial residual is reduced by
10 orders of magnitude. The initial guess in the solver is the extrapolated solution
from the previous time step. We generate sequences of the discrete Oseen problems
(2) with (σ̄ = 1/12) and without (σ̄ = 0) SUPG-stabilization. In both cases, the
‘quasi-optimal’ choice of parameters τ1, τ2 leads to stable computations over the
whole cardiac cycle. The total number of iterations depends on the mesh and appears
to be very similar for both examples with and without stabilization. The total num-
ber of iterations is 20% larger for the fine grid, which should be expected for the
preconditioner based on an incomplete factorization.

The time history of the statistics from Table1 is shown in Figs. 4 and 5. It is inter-
esting to note that the graph of the fill-in ratio for the LU-factors and the graph of the
ILU factorization time repeat surprisingly well the waveform of the inflow velocity,
see the two top plots in Figs. 4 and 5. This explains the rather modest variation of
the iteration counts and CPU times per linear solve over the cardiac cycle, see the
two bottom plots in Figs. 4 and 5. Note that the fill-in ratio fillLU < 1 means that the
number of non-zero elements in factors is less then in ILU(0), the commonly used
ILU factorization by position. The fact that fill-in of the L and U blocks decreases
or increases depending on the Reynolds number is the remarkable adaptive property
of the two-parameter ILU preconditioner which makes it very competitive to other
state-of-the-art preconditioners. The difference in otherwise similar performance of
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Fig. 4 Right coronary artery, computations on grid 63k (left) and grid 120k (right) without SUPG-
stabilization and τ1 = 0.03: The plots (from top to bottom) show the density of the preconditioner
(fill-in ratio), the time of ILU factorization, the number of BiCGStab iterations, the total CPU time
of the linear system solution at each time step

linear solvers for the cases σ̄ = 1/12 and σ̄ = 0 is the following: For σ̄ = 1/12,
when the maximum flow rate on the inlet is achieved, the number of iterations and
times needed to build preconditioner increase essentially (approximately twice as
much as average). This happens over a few time steps. In these cases when factor-
ization is performed several small pivots occur and their modification is performed
during the incomplete factorization.

In the second series of experiments, we demonstrate practical importance of
restrictions (16) on στ . The Theorems 1 and 2 state that the existence of exact
stable LU factorization of A (almost) without pivoting is guaranteed for στ small
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Fig. 5 Right coronary artery, computations on grid 63k (left) and grid 120k (right), SUPG-
stabilization with σ̄ = 1/12 and τ1 = 0.03: The plots (from top to bottom) show the density of
the preconditioner (fill-in ratio), the time of ILU factorization, the number of BiCGStab iterations,
the total CPU time of the linear system solution at each time step

enough. The estimate (8) explains why στ from (7) with σ̄ ≤ min{C̄−2
in , 1

2C
−1
in } satis-

fies (16). The previous series of experiments show that for the stabilization parameter
σ̄ = 1/12 the factorization is done on both meshes without pivot modifications even
for the relatively large value of the threshold, τ1 = 0.03. Now we increase the value
of the stabilization parameter and take σ̄ = 1/6. Table2 reports on the performance
of ILU(τ1, τ2 = 7τ 2

1 ) preconditioner for the sequence of the SUPG-stabilized Oseen
systems generated on the coarse grid with σ̄ = 1/6. The choice of the threshold
as small as τ1 = 10−4 produces the factorization close to the exact one. Hence, the
average number of BiCGstab iterations is only 8. Although no pivot modifications
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Table 2 The performance of ILU (τ1, τ2 = 7τ 21 ) for right coronary artery, σ̄ = 1/6, coarse mesh
63k

τ1 fillLU pmod #it

0.0003 Min 5.978 0 7

Average 8.466 1 12.2

Max 11.206 12 135

Total – 16 1806

0.0001 Min 8.716 0 5

Average 12.557 0 8.1

Max 16.742 0 100

Total – 0 1198

Table 3 The performance of ILU (τ1, τ2 = 7τ 21 ) for right coronary artery with different viscosities
ν. The table shows values of τ1 which allow to run the simulation for the complete cardiac cycle for
different parameters σ̄ . ‘�’ means finite element solution blow-up, ‘–’ means intractable systems
for any possible τ1

ν, \σ̄
(cm2/s)

0 1/96 1/48 1/24 1/12 1/6 1/3

0.040 0.03 0.03 0.03 0.03 0.03 0.03 0.003

0.025 � 0.03 0.03 0.03 0.03 0.003 –

occurred, the fill-in ratio is unacceptably large and on some time steps the number
of iterations may be large either. The observation that two-parameter ILU needs no
pivoting with τ1 = 10−4 suggests that the exact factorization is stable. For larger val-
ues of the threshold parameter, τ1 = 3 × 10−4, the fill-in ratio naturally decreases
and the average number of BiCGstab iterations increases. Now, on two time steps
the algorithm has to make 12 and 4 modifications of nearly zero pivots in order to
avoid the breakdown. The pivot modifications causes the convergence slowdown,
the maximum number of iterations in the Krylov subspace solver grows up to 135
iterations. Furthermore, on the finer grid certain Oseen systems with σ̄ = 1/6 can
not be solved by the ILU-preconditioned BiCGstab iterations with any values of the
threshold parameter which we tried.

We repeat the same simulations on the coarse grid, but for a smaller value of
the viscosity coefficient, ν = 0.025 cm2/s. For this viscosity, the simulation without
SUPG stabilization fails (solution blows up at t = 0.23 s). Stabilization is necessary
and adding it allows to obtain physiologically meaningful solution. At the same time,
for larger parameter σ̄ the linear systems are harder to solve. Indeed, σ̄ = 1/6 requires
smaller threshold parameter τ1, whereas σ̄ = 1/3 generates unsolvable systems, see
Table3. This experiment confirms that restrictions on σ̄ come both from stability
of the FE method and algebraic stability of the LU factorization. Both restrictions
have to be taken into account when one decides about the choice of stabilization
parameters.
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Table 4 The performance of plain ILU (τ1, τ2) preconditioning versus reusing the same precondi-
tioner over two time steps

#it Tbuild Tit TCPU

Building preconditioner each time step 138 4.2 14.8 18.9

Building preconditioner every second time step 139 2.1 15.1 17.2

We also experiment with reusing ILU preconditioner over several time steps. This
looks like a reasonable thing to try, since the time step is small and the system may
not change too much from one time step to another one. Numerical results, however,
show that the time cost of the setup phase of the preconditioner is small compared
to the time needed by the Krylov subspace method to converge. Hence this strategy
gives some time saving, but a moderate one. To illustrate this, we show in Table4
the averaged data for the number of iterations per time step, the setup time needed to
compute L and U factors, the time required by the Krylov subspace solver, and the
total time, which is the sum of those two. The data is shown for the flow in the artery
with the 63K grid, ν = 0.04, σ̄ = 1/12, τ1 = 0.03, τ2 = 7τ 2

1 .We see that reusing the
same preconditioner over two time steps saves about 10% of the total computational
time.

7 Conclusions

In this paper we studied the preconditioner based on elementwise incomplete two-
parameter threshold ILU factorization of non-symmetric saddle-point matrices. The
Krylov subspace solver with the preconditioner was used to simulate a blood flow in a
right coronary artery reconstructed from a real patient coronary CT angiography. We
tested the method for a range of physiological and discretization parameters. Several
conclusions can be made: The solver efficiently handles typical features of hemody-
namic applications such as geometrically stretched domains, variable flow regimes,
and open boundary conditions with possible reversed flows. The preconditioner ben-
efits from smaller time increments. One can reuse the preconditioner over several
time steps, although for this particular application the benefit of doing this is modest,
since the setup phase of the preconditioning is cheap compared to the time cost of
iterations. A sequential version of the preconditioner is straightforward to implement
for any type of finite elements and other discretizations once the matrix entries are
available. For parallel computations it is natural to combine the ILU preconditioner
with the additive Schwarz method. This is a subject of our further research.
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Martin’s Problem for Volume-Surface
Reaction-Diffusion Systems

Jeff Morgan and Vandana Sharma

Abstract We consider a question of global existence for two component volume-
surface reaction-diffusion systems. The first of the components diffuses in a region,
and then reacts on the boundary with the second component, which diffuses on the
boundary.We show that if the first component is bounded a priori on any time interval,
and the kinetic terms satisfy a generalized balancing condition, then both solutions
exist globally. We also pose an open question in the opposite direction, and give
some a priori estimates for associated m component systems.

Keywords Reaction-diffusion · Volume-surface · Systems · Global existence · A
priori estimates

1 Introduction

We assume n ≥ 2 and Ω is a bounded domain in Rn with smooth boundary M , such
thatΩ lies locally on one side ofM .We denote η as the unit outward normal vector to
Ω at points on M . Our initial interest is a volume-surface reaction-diffusion system
having the form
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ut = d�u on Ω × (0, T ),

d
∂u

∂η
= f (u, v) on M × (0, T ),

vt = e�Mv + g(u, v) on M × (0, T ),

u = u0 on Ω × {0}
v = v0 on M × {0},

(1)

where d, e > 0, �M is the Laplace Beltrami operator, f, g : R2 → R2 are smooth,
and u0 and v0 are smooth, non negative and satisfy the compatibility condition

d
∂u0
∂η

= f (u0, v0).

Systems of this type have appeared recently in the literature as so-called volume-
surface reaction-diffusion systems (cf. [1, 2, 5, 8, 12]).

Throughout this work, we assume f and g are smooth and satisfy the quasi
positivity condition f (0, z), g(z, 0) ≥ 0 for all z ≥ 0. We have recently considered
systems of this form in [9]. In that work, we obtained some estimates for solutions of
linear scalar equations, and used them to prove thatm component analogs of (1) have
a unique, maximal, component-wise non negative solution, such that if the solution
does not blow up in the sup norm in finite time, then the solution is a global solution.
That is, T = ∞. We state this result below.

Theorem 1 If f and g are smooth and satisfy the quasi positivity condition, then
(1) has a unique, component-wise non negative, classical, maximal solution (u, v),
and (u, v) is a global solution if u and v do not blow up in the sup-norm in finite
time.

Our primary interest in this work is a question that is analogous to a problem posed
by Martin [3, 7] (referred to below). To this end, in additional to the smoothness and
quasi positivity assumed above, we assume there are constants a > 0, b ≥ 0, L ∈ R
and a natural number k so that

f (y, z), g(y, z) ≤ L(y + z + 1)k (2)

and
a f (y, z) + g(y, z) ≤ L(y + z) + b (3)

for all y, z ≥ 0. We refer to the former condition as a polynomial growth condition,
and the latter condition as a balancing condition. We place no restrictions on the
magnitude of L , k or b.

R. H. Martin posed a question for two component reaction-diffusion systems on
bounded domains. The systems considered had the form
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ut = d�u + f (u, v) on Ω × (0, T ),

vt = e�v + g(u, v) on Ω × (0, T ),

∂u

∂η
= ∂v

∂η
= 0 on M × (0, T ),

u = u0 on Ω × {0},
v = v0 on Ω × {0}.

(4)

In this setting, the initial data is only assumed to be bounded and non negative.
But, the same assumptions are made on f and g as above. Martin asked whether
solutions of (4) exist globally. Early work of Hollis et al. [3] proved that if (2) and (3)
are satisfied, and one of the components of (4) is a priori sup norm bounded on finite
time intervals, then the solution to (4) exists globally. This result made it a simple
matter to obtain global existence results for a wealth of two component systems.

For example, consider the system

ut = d�u + αv2 − uv4 on Ω × (0, T ),

vt = e�v + βu + uv4 − αv2 on Ω × (0, T ),

∂u

∂η
= ∂v

∂η
= 0 on M × (0, T ),

u = u0 on Ω × {0},
v = v0 on Ω × {0},

(5)

where α, β ≥ 0 and m ≥ 2, with d, e > 0 and u0, v0 are bounded and non negative.
Well known local existence results (cf. [3]) imply the existence of a unique, maximal,
component-wise non negative solution to (5). If we multiply the ut equation by u,
and note that αz − z2 ≤ α2

4 for all z ≥ 0, then

∂u2

∂t
≤ d�u2 + α2

4
on Ω × (0, T ),

∂u2

∂η
= 0 on M × (0, T ),

u2 = (u0)
2 on Ω × {0}.

Therefore, from the comparison principle, u is bounded a priori in the sup norm on
any finite time interval. In addition, it is a simple matter to see that f and g satisfy
(2) and (3). Therefore, the results in [3] imply the solution to (5) exists globally.

A wonderful survey article of Pierre [7] outlines the development of a wealth of
global existence work on systems of the form (4), under the assumptions of quasi
positivity and (3), as well as analogous systems with more than two components.

Our results for (1) are somewhat different than those in [3], in that we can only
obtain global existence for (1) when we know u is a priori sup norm bounded on any
finite time interval, whereas the results in [3] can be applied with a priori sup norm
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bounds for either u or v. It our setting, it remains an open question whether a similar
result can be obtained when we know v is a priori sup norm bounded on any finite
time interval.

Our global existence result is given below.

Theorem 2 Suppose f and g are smooth, quasi positive, and satisfy (2) and (3).
If u is a priori sup norm bounded on any finite time interval, then (1) has a global
solution.

It is also possible to prove a boundedness result.

Theorem 3 Suppose f and g satisfy the conditions of Theorem 2. If there exists
J > 0 so that

‖u(·, τ )‖∞,Ω, ‖v‖1,M×(τ,τ+1) ≤ J for all τ > 0,

then (1) has a global solution, and v is sup norm bounded on M × (0,∞).

The proof of Theorem 2 is given in Sect. 2. The proof of Theorem 3 involves
straight forward bootstrapping, and is similar in nature to the proof of Theorem 2.
Similar arguments are given in [11], and we omit the proof in this work. Simple a
priori estimates are give for m component systems in Sect. 3, and some examples
and concluding remarks are given in Sect. 4. We extend the m component a priori
estimates in Sect. 3 to global existence results in forthcoming work [6, 10].

2 Proof of Theorem 2

Thework in [3] employed a duality argument, as does the work in [9, 11]. The duality
arguments in [9, 11] involve the scalar boundary value problem

φt = −d�φ − θ, on Ω × (0, T ),

φt = −e�Mφ − θ̂ , on M × (0, T ),

φ = 0 on Ω × {T },
(6)

where d, e, T > 0 are given in the previous section, and θ ∈ L p(Ω × (0, T )) and
θ̂ ∈ L p(M × (0, T )), with p > 1 and θ, θ̂ ≥ 0. The following lemma is proved in
[9] by utilizing fundamental results in [4], and is instrumental to our proof below.

Lemma 1 Equation (6) has a unique, non-negative solution φ such that φ ∈
W 2,1

p (Ω × (0, T )) and φ ∈ W 2,1
p (M × (0, T )). Furthermore, there exists a con-

stant Cp,T > 0, independent of θ and θ̂ , such that ‖φ‖p,2,1,Ω×(0,T ), ‖φ‖p,2,1,M×(0,T ),
‖ ∂φ

∂η
‖p,M×(0,T ), ‖φ(·, 0)‖p,Ω and ‖φ(·, 0)‖p,M are all bounded by

Cp,T

[
‖θ‖p,Ω×(0,T ) + ‖θ̂‖p,M×(0,T )

]
.
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Admittedly, much better estimates can be given for ∂φ

∂η
and φ(·, 0), and those for

∂φ

∂η
can be found in [9]. However, the lemma above suffices for our purposes. We

note that Cp,T is non decreasing in T .

Lemma 2 Suppose f and g satisfy quasi positivity conditions, (3), and 0 < τ1 < τ2
so that the solution to (1) is defined for t < τ2. If u is a priori sup norm bounded on
Ω × (τ1, τ2), p > 1, ‖θ‖p,Ω×(0,T ), ‖θ̂‖p,M×(0,T ) = 1, and φ is the unique solution
of (6), then there is a constant N > 0 dependent on the sup norm bound for u on
Ω × (τ1, τ2), and p, a, τ2 − τ1, L and b, so that

∫

M
v(·, t)φ(·, t) ≤ N

(∫

M
v(·, τ1)φ(·, τ1) + 1

)

for all τ1 < t < τ2.

Proof Recall that φ, θ, θ̂,u, v ≥ 0. Also,

d

dt

∫

Ω

uφ =
∫

Ω

(utφ + uφt ) =
∫

Ω

(φd�u + u(−d�φ − θ))

=
∫

M
φd

∂u

∂η
−

∫

M
ud

∂φ

∂η
−

∫

Ω

uθ

=
∫

M
φ f (u, v) −

∫

M
ud

∂φ

∂η
−

∫

Ω

uθ.

Similarly,

d

dt

∫

M
vφ =

∫

Ω

(vtφ + vφt ) =
∫

M
(φ(e�Mv + g(u, v)) + v(−e�Mφ − θ̂ ))

=
∫

M
φg(u, v) −

∫

M
vθ̂ .

As a result,

∫

Ω

auθ +
∫

M
vθ̂ + d

dt

(∫

Ω

auφ +
∫

M
vφ

)

=
∫

M
φ(a f (u, v) + g(u, v)) − a

∫

M
ud

∂φ

∂η

≤
∫

M
φ [L(u + v) + b] − ad

∫

M
u

∂φ

∂η

≤ L

(∫

Ω

auφ +
∫

M
vφ

)
+

∫

M
u

(
Lφ − ad

∂φ

∂η

)
+ b

∫

M
φ.

Consequently, there is an L̂ > 0, dependent on the sup norm of u, L , d, b, a and
Cp,T so that
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d

dt

(∫

Ω

auφ +
∫

M
vφ

)
≤ L

(∫

Ω

auφ +
∫

M
vφ

)
+ L̂.

The result follows from Gronwall’s inequality.

Now we are in a good position to prove Theorem 2.

Proof (of Theorem 2) From Theorem 1, (1) has a unique, maximal, component-wise
non negative solution, such that if both components of the the solution do not blow
up in the sup norm in finite time, then the solution is a global solution. Let T > 0 so
that the solution of (1) exists. From our hypothesis, we know u is sup norm bounded
on Ω × (0, T ), so we will focus on showing that v is sup norm bounded.

We start by obtaining an L1(M) estimate for v. If we integrate and sum the first
and third equations in (1), we obtain

d

dt

(∫

Ω

au(·, t) +
∫

M
v(·, t)

)
=

∫

M
(L(u(·, t) + v(·, t)) + b)

≤ K1 + L

(∫

Ω

au(·, t) +
∫

M
v(·, t)

)

for 0 < t < T , where K1 > 0 depends upon the sup norm bound for u, and the values
L , b and |M |. As a result, Gronwall’s inequality implies

‖v(·, t)‖1,M ≤ −K1

L
+

(
K1

L
+

∫

Ω

au0 +
∫

M
v0

)
eLt . (7)

Now we use duality to obtain Lq(M × (0, T )) bounds on v, for q > 1. To this
end, let p > 1, θ ∈ L p(Ω × (0, T )) and θ̂ ∈ L p(M × (0, T )), with θ, θ̂ ≥ 0, such
that ‖θ‖p,Ω×(0,T ), ‖θ̂‖p,M×(0,T ) = 1. If φ is the unique solution of (6) guaranteed by
Lemma 1, and a, L and b are given in (3), then

∫ T

0

∫

Ω

auθ +
∫ T

0

∫

M
vθ̂ =

∫ T

0

∫

Ω

au(−φt − d�φ) +
∫ T

0

∫

M
v(−φt − e�Mφ)

=
∫

Ω

au0φ(·, 0) − d
∫ T

0

∫

M
au

∂φ

∂η
+

∫

M
v0φ(·, 0)

+
∫ T

0

∫

M
φ(a f (u, v) + g(u, v))

≤ K2Cp,T +
∫ T

0

∫

M
φ [L(u + v) + b]

≤ K3Cp,T + L
∫ T

0

∫

M
φv

≤ K3Cp,T + LTN

(∫

Ω

v0φ(·, 0) + 1

)
,
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where K2, K3 > 0 depend upon a, d, T , |M |, |Ω|, L , b and the sup norm bounds
for u, u0 and v0, Cp,T is given in Lemma 1, and N is given in Lemma 2. (Note, if T
represents the upper bound for the maximal interval of existence, then the inequality
above can also be obtained by working on (0, τ ), with 0 < τ < T , and taking a limit
as τ → T−.) Therefore, from the non negativity of u and θ , we have

∫ T

0

∫

M
vθ̂ ≤ K3Cp,T + LTN

(∫

Ω

v0φ(·, 0) + 1

)
. (8)

Consequently, if we note that v, θ̂ ≥ 0, θ̂ is arbitrary, and ‖θ̂‖p,M×(0,T ) = 1, then
duality and the inequality above imply

‖v‖ p
p−1 ,M×(0,T ) ≤ K3Cp,T + LTN

(∫

M
v0φ(·, 0) + 1

)
.

Since this inequality holds for every p > 1, we have a bound for ‖v‖q,M×(0,T ) for
each q > 1.

To finish, we use the polynomial bound on g(u, v) to extend this estimate to a sup
norm estimate for v. Since u is bounded, v is in every Lq space, and g(u, v) satisfies
(2), it follows that g(u, v) is bounded aboveby a function in L p(M × (0, T )) for every
p > 1. Consequently, we can conclude from the comparison principle and Lemma 1
that v is bounded above by a function that lives inW 2,1

p (M × (0, T )) for every p > 1.
By choosing p sufficiently large, and applying the Sobolev embedding theorem, we
obtain a sup norm bound for v onM × (0, T ). Therefore, (1) has a global solution.

3 m-Component Systems

In this section, we consider an m component version of (1), along with a generaliza-
tion of the quasi positivity and balancing conditions given in Sect. 1. Let Rm+ denote
the non negative orthant in Rm , and assume K ,L ⊆ {1, . . . ,m} such that
1. Either K = ∅ or there exists iJ ∈ 1, . . . ,m so that K = {1, . . . , iJ };
2. K ∪ L = {1, . . . ,m};
3. K ∩ L = ∅.
We consider the system

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ui
∂t

= di�ui , Ω × (0, T ), i ∈ K ,

di
∂ui
∂η

= Fi (u), M × (0, T ), i ∈ K ,

∂ui
∂t

= di�Mui + Fi (u), M × (0, T ), i ∈ L ,

ui = u0i , Ω × {0}, i ∈ K ,

ui = u0i , M × {0}, i ∈ L ,

(9)
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where F : Rm → Rm is smooth, and satisfies the quasi positivity condition

Fi (z) ≥ 0 for all z ∈ Rm
+ with zi = 0. (10)

In addition, we assume di > 0 for all i , and the initial data u0 is smooth, component
wise non negative, and satisfies the compatibility condition

di
∂u0i
∂η

= Fi (u0) on M for i ∈ K .

Finally, we assume a generalization of the balancing condition in (3). More specifi-
cally, we assume there are scalars ci > 0 for i = 1, . . . ,m, and α, β > 0 such that

m∑
j=1

ci Fi (z) ≤ α

m∑
j=1

zi + β for all z ∈ Rm
+ . (11)

Note that (9) can take different forms, depending upon the sets K and L . For
example, if K = ∅, then (9) takes the form of a standard reaction diffusion system
set on a manifold without boundary. In this setting, nearly all of the results in [7] for
the case of homogeneous Neumann boundary conditions can be proved for (9). If
L = ∅, then (9) is a mass transport type system.We are currently completing global
existence results for systems of this type in [10].

The result below is a consequence of our earlier work in [9], and only depends
upon the quasi positivity condition (10).

Theorem 4 If F is smooth and satisfies the quasi positivity condition (10), then (9)
has a unique, componentwise nonnegative, classical, maximal solution u, and u is a
global solution if u does not blow up in the sup-norm in finite time.

In this section, we obtain L1 a priori bounds for solutions of (9) under the assump-
tion of quasi positivity and (11). In the remainder of this section, we assume Tmax > 0
is the maximal time of existence of solutions of (9). Of course, it is possible that
Tmax = ∞.

Lemma 3 There is a function C1 ∈ C(R+, R+) such that the unique maximal solu-
tion u of (9) satisfies

‖ui‖1,Ω×(0,τ ), ‖u j‖1,M×(0,τ ) ≤ C1(τ )

for all i ∈ K , j ∈ {1, . . . ,m} and 0 ≤ τ < Tmax .

Proof For ease of exposition, we assume ci = 1 for all i ∈ 1, . . . ,m. As a result,
from (11), we have

m∑
i=1

Fi (z) ≤ α

m∑
i=1

zi + β
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for all z ∈ Rm+ . Let 0 ≤ τ < Tmax . It is a simple matter to show that (9) and (11)
imply there exists L > 0 dependent on the integral of the initial data, |Ω|, |M | and
β, and independent of t , such that

∑
i∈K

∫

Ω

ui (·, t) +
∑
i∈L

∫

M
ui (·, t) ≤ α

∫ (∑
i∈K

∫

Ω

ui +
m∑
i=1

∫

M
ui

)
+ L (12)

for all 0 < t < Tmax. In order to get our result from Eq. (12), we need an estimate for
‖ui‖1,M×(0,t) for i ∈ K . To this end, let σ > d1α

di
for all i ∈ K , let φ0 be smooth and

positive on Ω such that d1
∂φ0

∂η
= 1 + σφ0, and let φ be the unique smooth positive

solution to
φt = −d1�φ, on Ω × (0, τ ),

d1
∂φ

∂η
= 1 + σφ, on M × (0, τ ),

φ = φ0, on Ω × τ.

(13)

Define
θi = φt + di�φ on Ω × (0, τ ) for i ∈ K

and
θ̃ j = φt + di�Mφ on M × (0, τ ) for j ∈ L .

Note that θ1 ≡ 0, and θi and θ̃ j are not necessarily non negative. However, they are
sup norm bounded. Straightforward (but tedious) integration leads to

∑
i∈K

∫ τ

0

∫

Ω

uiθi +
∑
i∈L

∫ τ

0

∫

M
u j θ̃ j ≤ I + I I,

where

I =
m∑
i=1

∫ τ

0

∫

M
(αui + β) φ

and

I I = −
∑
i∈K

∫ τ

0

∫

M
ui

di
d1

(1 + σφ) .

Applying the boundedness of θi and θ̃i , and the choice of σ , we conclude there exists
γ > 0 such that

∑
i∈K

∫ τ

0

∫

M
ui ≤ γ

⎛
⎝∑

i∈K

∫ τ

0

∫

Ω

ui +
∑
j∈L

∫ τ

0

∫

M
ui + 1

⎞
⎠ . (14)
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Combining this with (12) gives the existence of γ̃ > 0 such that

∑
i∈K

∫

Ω

ui (·, t) +
∑
i∈L

∫

M
ui (·, t) ≤ a

∫ t

0

(∑
i∈K

∫

Ω

ui +
∑
i∈L

∫

M
ui

)
+ L .

Applying Gronwall’s inequality guarantees

∫ t

0

(∑
i∈K

∫

Ω

ui +
∑
i∈L

∫

M
ui

)

is bounded by a continuous function of t . Combining this information with (14) gives
the result.

4 Examples and Concluding Remarks

We start with a very elementary example. To this end, consider the system

ut = d�u on Ω × (0, T ),

d
∂u

∂η
= −uvk on M × (0, T ),

vt = e�Mv + uvk on M × (0, T ),

u = u0 on Ω × {0},
v = v0 on M × {0},

(15)

where k is a natural number, and d, e > 0. It is a simple matter to see that the system
satisfies the conditions of Theorem 2. Furthermore, u is easily a priori sup norm
bounded on any finite time interval. Consequently, it follows that solutions to (15)
exist globally.

Interestingly, if the situation is changed only slightly, then there are no known
results. To this end, consider the system

ut = d�u on Ω × (0, T ),

d
∂u

∂η
= ukv on M × (0, T ),

vt = e�Mv − ukv on M × (0, T ),

u = u0 on Ω × {0},
v = v0 on M × {0}.

(16)
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This time, we can see that the hypothesis of Theorem 2 is satisfied, but there is no
apparent a priori sup norm bound for u. It is a simple matter to show that v is a priori
bounded in the sup norm on any finite time interval, but there does not seem to be a
way use this to obtain a sup norm bound for u, and global existence.

A natural question is whether there are nontrivial systems which satisfy the
hypothesis of Theorem 2. One such example is the system

ut = d�u on Ω × (0, T ),

d
∂u

∂η
= αv2 − uv4 on M × (0, T ),

vt = e�Mv + βu + uv4 − αv2 on M × (0, T ),

u = u0 on Ω × {0},
v = v0 on M × {0}.

(17)

This is similar to (5) given in the introduction. Note that w = u2 satisfies

wt ≤ d�w on Ω × (0, T ),

d
∂w

∂η
≤ α2

4
on M × (0, T ),

w = (u0)
2 on Ω × (0, T ).

As a result, u is a priori sup norm bounded on any finite time interval. Therefore,
global existence follows from Theorem 2.
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A Posteriori Error Estimates
for the Electric Field Integral
Equation on Polyhedra

Ricardo H. Nochetto and Benjamin Stamm

Abstract We present a residual-based a posteriori error estimate for the Electric
Field Integral Equation (EFIE) on a bounded polyhedron Ω with boundary Γ . The
EFIE is a variational equation formulated in H−1/2

div (Γ ). We express the estimate in
terms of L2-computable quantities and derive global lower and upper bounds (up to
oscillation terms).

Keywords Electric field integral equation · A posteriori error estimation

1 Introduction

The Electric Field Integral Equation (EFIE) describes the scattering of electromag-
netic waves on a perfectly conducting obstacle Ω with surface Γ , in our case a
polyhedron. Assuming a time-harmonic dependence, the Stratton-Chu representa-
tion formula expresses the electric field E in terms of a surface potential as

E(x) = Einc(x) +
∫

Γ

(
Gk(x, y)u(y) + 1

k2
gradΓ,x Gk(x, y) div u(y)

)
dσ(y),

where k denotes the wave-number, Einc(x) is the given incident wave that is scattered
on Γ and Gk(x, y) denotes the fundamental solution of the Helmholtz operator. We
assume that the wave-number is real, of moderate size (relative to the length of the
scatterer Ω) and does not coincide with an interior eigenvalue. Then, invoking the
boundary condition that the tangential component of the total electric fieldE vanishes
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on the surface Γ , as corresponds to Ω being perfectly conducting, the EFIE consists

of seeking the surface current u ∈ H
− 1

2
div (Γ ) such that for all x ∈ Γ

∫
Γ

(
Gk(x, y)u(y) + 1

k2
gradΓ,x Gk(x, y) div u(y)

)
dσ(y) = −γ ‖(E

inc)(x),

where H
− 1

2
div (Γ ) is the space of traces of H(curl,Ω) functions that are rotated by a

right angle on the surface and γ ‖ denotes the tangential trace onto Γ .
The Combined Field Integral Equation (CFIE) (see, e.g., [5, 13, 26, 38, 43]) can

be used if the wave-number corresponds to an interior eigenvalue; the functional
analysis is, however, not fully developed in this case so that a rigorous a posteriori
error analysis is not possible for this formulation. Therefore, Regularized Combined
Field Integral Equations have been proposed by [10, 11] which embed a robust
formulation with respect to the wave-number in a well defined functional analysis
setting. To keep things as simple as possible, we start with considering the EFIE
formulation.

Computing approximations of the EFIE by means of the Boundary Element
Method (BEM), namely using a Galerkin approach based on the variational for-
mulation of the EFIE, is expensive due to the dense matrix structure of the ensuing
linear system. Despite the existence of fast solvers for the Galerkin system such as
the fast multipole method, see, e.g., [33, 34, 45], and the cluster methods by [35,
36, 42, 46], it is still crucial to locate the degrees of freedom efficiently, namely in
regions of low regularity of the solution u.

Since u ∈ H
− 1

2
div (Γ ), u exhibits in general rather low regularity and, as a conse-

quence, a priori estimates show extremely low convergence rates for quasi-uniform
mesh refinements; see [24, 37]. In contrast, adaptive refinement techniques, based
on a posteriori error estimates, exploit much weaker regularity of u in a nonlinear
Sobolev scale and allow for optimal error decay in terms of degrees of freedom in
situations where quasi-uniform meshes are suboptimal. The design and analysis of a
posteriori error estimators is, however, problem dependent; we refer to [22, 40] for
an account of the theory of adaptive finite element methods in the energy norm for
linear second order elliptic partial differential equations in polyhedra.

The a posteriori error analysis for BEM started in 1995 [21] and has been devel-
oped ever since [14–19, 28, 41]. The corresponding theory of adaptivity is much
more recent [2, 20, 30–32]. Contributions in the framework of FEM-BEM coupling
can be found in [39, 48]. It seems that this paper presents the first a posteriori error
analysis for electromagnetic scattering problems via EFIE.

For integral equations, additional difficulties arise since the residual typically lies
in a Sobolev spacewith fractional index that is possibly also negative, as in the present
case. Since such norms are difficult to compute in practice, this imposes additional
challenges to the residual based approach of a posteriori error estimates.

In this paper we develop nevertheless a residual based a posteriori error estimator
for the EFIE on polyhedra, and prove upper and lower global bounds. Residual
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based estimators are especially attractive due to their simplicity of derivation and
computation, but they involve interpolation constants which can at best be estimated.
Alternative estimators have been proposed, mostly for elliptic problems defined in
Ω , at the expense of their simplicity; we believe that our approach can be extended to
those estimators as well. We derive computable L2-integrable quantities to estimate

the error of the BEM measured in the H
− 1

2
div (Γ ) norm, which is the natural norm for

EFIE. We therefore avoid evaluating fractional Sobolev norms.
For proving well-posedness of the exact solution and developing a priori error

estimates it is important to decompose both the exact solution and test function using
a Helmholtz decomposition as has been shown in [12, 37]. In contrast, to derive a
posteriori error estimates, it is crucial to decompose the test function according to
a regular decomposition which extends the Helmholtz decomposition; see [23] for
H (div;Ω). It is also worth mentioning that the idea of splitting the test function
according to a Helmholtz decomposition goes back to [1] for mixed FEM and [3]
for eddy current computations in H (curl;Ω).

This paper is organized as follows. In Sect. 2 we recall the necessary functional
analysis from [6, 7, 9, 12] in order to derive a posteriori error estimates for the EFIE.
We also present and study a Clément type interpolation operator for the Raviart-
Thomas space, based on ideas from [4]. We discuss the EFIE integral equation in
Sect. 3, and derive global upper and lower a posteriori error estimates in Sect. 4.
Section5 is finally left for conclusions.

2 Functional Spaces and Differential Operators

The functional analysis frameworkdeveloped in [6, 7]will be used in thiswork. In this
sectionwe give a short introduction to the functional spaces and differential operators
used in the following sections. However, for a detailed and thorough overview we
refer to [6, 7, 9, 12]. Let us note that references [9, 12] deal with non-smooth
Lipschitz surfaces, thus the theory is also valid for polyhedra, and covers therefore
a more general framework. However, we restrict our theory to polyhedral surfaces.

2.1 Spaces, Norms and Trace Operators

LetΩ be a bounded polyhedron inR3, and denote its boundary by Γ and its different
faces by Γj, j = 1, . . . ,NF . The exterior part Ω+ is defined by Ω+ = R

3 \ Ω . Let
n(x),x ∈ Γ , denote theouter unit normal to the surfaceΓ ,which ispiecewise constant
on Γ . We also indicate by eij = ∂Γi ∩ ∂Γj the edges of Γ and by τ ij the unit vectors
parallel to eij, with its orientation fixed but arbitrary. If ni = n|Γi , we further define

τ i = τ ij × ni, τ j = τ ij × nj
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Fig. 1 Local coordinate
systems around an edge
eij = ∂Γi ∩ ∂Γj n j

Γj

Γi

ni

τ i j

τ j

τ iei j

tobeunitvectorslyingonthesupportingplanesofΓi andΓj;seeFig. 1foranillustration.
OnΓ , we define the space of square integrable tangential fields

L2
t (Γ ) = {v ∈ [L2(Γ )]3 | v · n = 0 a.e.}.

Moreover,weletHs(Γ )andHs(Γ ) = [Hs(Γ )]3,withs ∈ [−1, 1],denotethestandard
Sobolevspacesofcomplex-valuedscalarandvector-valuedfunctionsonΓ anddenote
their norms by ‖ · ‖Hs(Γ ) and ‖ · ‖Hs(Γ ), respectively; for negative Sobolev indices the
norms are defined by duality. Furthermore, for s ∈ (0, 1), we denote by

γ : Hs+ 1
2 (Ω) → Hs(Γ ), γ : [Hs+ 1

2 (Ω)]3 → Hs(Γ )

the standard continuous trace operators, and by Rγ and Rγ their continuous right
inverses.

For complex-valued vector functions we introduce the facewiseH
1
2 -broken space

H
1
2−(Γ ) = {v ∈ L2

t (Γ ) | v|Γi ∈ H
1
2 (Γi), 1 ≤ i ≤ NF }.

with corresponding norm

‖v‖2
H

1
2− (Γ )

=
NF∑
j=1

‖v‖2
H

1
2 (Γj)

.

Moreover, we define the spaces

H
1
2
‖ (Γ ) =

{
v ∈ H

1
2−(Γ )

∣∣∣∣ v|Γi · τ ij
1/2= v|Γj · τ ij, for every edge eij

}
,

H
1
2
⊥(Γ ) =

{
v ∈ H

1
2−(Γ )

∣∣∣∣ v|Γi · τ i
1/2= v|Γj · τ j, for every edge eij

}
,

(1)
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where the relation
1/2= is understood in the sense that

vi
1/2= vj ⇔

∫
Γi

∫
Γj

|vi(x) − vj(y)|2
‖x − y‖3 dσ(x)dσ(y) < ∞. (2)

We further define

N ‖
ij (v) :=

∫
Γi

∫
Γj

|(v|Γi · τ ij)(x) − (v|Γj · τ ij)(y)|2
‖x − y‖3 dσ(x)dσ(y),

N ⊥
ij (v) :=

∫
Γi

∫
Γj

|(v|Γi · τ i)(x) − (v|Γj · τ j)(y)|2
‖x − y‖3 dσ(x)dσ(y),

for each edge eij of the polyhedron and denote byIj the set of indices i such that Γj

andΓi have a common edge eij.

Proposition 1 ([6, Prop. 2.6]) The spaces H
1
2
‖ (Γ ) and H

1
2
⊥(Γ ) are Hilbert spaces

when endowed with the norms

‖v‖2
H

1
2‖ (Γ )

:= ‖v‖2
H

1
2− (Γ )

+
NF∑
j=1

∑
i∈I j

N ‖
ij (v), (3)

‖v‖2
H

1
2⊥ (Γ )

:= ‖v‖2
H

1
2− (Γ )

+
NF∑
j=1

∑
i∈I j

N ⊥
ij (v). (4)

In other words, v ∈ H
1
2
‖ (Γ ),H

1
2
⊥(Γ ) satisfies v ∈ H

1
2 (Γi) on the faces Γi of Γ , and

the parallel resp. orthogonal component of the function v to edges eij of Γ are “H
1
2 -

continuous” in the sense of (2); see [6] for further details.

We denote by H
− 1

2
‖ (Γ ), H

− 1
2

⊥ (Γ ) the dual spaces of H
1
2
‖ (Γ ), H

1
2
⊥(Γ ) with pivot

space L2
t (Γ ). The corresponding duality pairing is denoted by 〈·, ·〉‖,Γ resp. 〈·, ·〉⊥,Γ .

The norms ‖ · ‖
H

− 1
2‖ (Γ )

and ‖ · ‖
H

− 1
2⊥ (Γ )

are defined by duality.

For complex-valued functions v ∈ [C∞(Ω)]3 the tangential traces are defined by

γ ‖(v) := n × (v × n)|Γ , γ ⊥(v) := (v × n)|Γ . (5)

We point out that γ ‖(v) = v − (v · n)n gives the component of v tangential to Γ ,
whereas γ ⊥(v) provides a tangent vector field perpendicular to γ ‖(v). Since Γ is a
polyhedron, for any edge eij of Γ the components of γ ‖(v) and γ ⊥(v) tangential and
normal to eij are continuous, namely,

γ ‖(v)|Γi · τ ij − γ ‖(v)|Γj · τ ij = 0, γ ⊥(v)|Γi · τ i − γ ⊥(v)|Γj · τ j = 0. (6)
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This means that both operators γ ‖ and γ ⊥ can be viewed as face-by-face projections;

see [6, p. 36]. Combining this observation with definitions (1), we realize thatH
1
2
‖ (Γ )

and H
1
2
⊥(Γ ) are the trace spaces of γ ‖, γ ⊥ acting on H1(Ω). This is stated in the

following proposition.

Proposition 2 ([6, Prop. 2.7]) The trace operators

γ ‖ : H1(Ω) → H
1
2
‖ (Γ ), γ ⊥ : H1(Ω) → H

1
2
⊥(Γ )

are linear, surjective and continuous operators. In addition, there exists continuous

right inverse mapsR‖ : H 1
2
‖ (Γ ) → H1(Ω) andR⊥ : H 1

2
⊥(Γ ) → H1(Ω).

We can now establish a critical result for the upcoming analysis. Note thatH
1
2
⊥(Γ )

consists of tangential vector fields whereasH
1
2 (Γ ) does not.

Lemma 1 There exists a continuous map t⊥ : H 1
2 (Γ ) → H

1
2
⊥(Γ ) with right inverse

t−1
⊥ : H 1

2
⊥(Γ ) → H

1
2 (Γ ).

Proof We define t⊥ : H 1
2 (Γ ) → H

1
2
⊥(Γ ) and t−1

⊥ : H 1
2
⊥(Γ ) → H

1
2 (Γ ) by

t⊥(w) = γ ⊥(Rγ (w)), ∀w ∈ H
1
2 (Γ ),

t−1
⊥ (v) = γ (R⊥(v)), ∀ v ∈ H

1
2
⊥(Γ )

whereγ andRγ are the trace and its right inverse,whereas γ⊥ andR⊥ are the operators
ofProposition2.The continuity of these operators implies the continuity of t⊥ and t−1

⊥ .
To prove that t−1

⊥ is the right inverse of t⊥, we observe that

t⊥(t−1
⊥ (v)) = γ ⊥(Rγ (γ (R⊥(v)))), ∀v ∈ H

1
2
⊥(Γ ),

and that γ ⊥ projects face by face on Γ , see [6, page 36]. If w = t−1
⊥ (v) ∈ H

1
2 (Γ )

and g = Rγw ∈ H1(Ω), thenw = γ (R⊥(v)) and t⊥(w) = γ ⊥(g). Since γ ⊥(g)|Γi =
γ (g)|Γi × n for each faceΓi ofΓ , we obtain onΓi

t⊥(t−1
⊥ (v)) = t⊥(w) = γ ⊥(g) = γ (g) × n

= γ (Rγw) × n = w × n = γ (R⊥(v)) × n = γ ⊥(R⊥(v)) = v.

Thus, t−1
⊥ is indeed the right inverse of t⊥.
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2.2 TangentialDifferentialOperators

WesetH
3
2 (Γ ) := γ (H 2(Ω)), and define the tangential operatorsgradΓ : H 3

2 (Γ ) →
H

1
2
‖ (Γ ) and curlΓ : H 3

2 (Γ ) → H
1
2
⊥(Γ ) by

gradΓ φ := γ ‖(grad φ) curlΓ φ := γ ⊥(grad φ) ∀φ ∈ H 2(Ω), (7)

wheregrad denotes the standardgradient inR3.According todefinitions (5),gradΓ φ

is theorthogonalprojectionofgradφ oneachfaceΓi ofΓ ,whereascurlΓ φ isobtained
from the former by aπ/2 rotation. It can be shown that themaps gradΓ and curlΓ are
linear and continuous.

Theadjointoperatorsdiv : H− 1
2

‖ (Γ ) → H− 3
2 (Γ )andcurlΓ : H− 1

2
⊥ (Γ ) → H− 3

2 (Γ )

can be defined as follows:

〈div v, φ〉 3
2 ,Γ = −〈v, gradΓ φ〉‖,Γ ,

〈curlΓ w, φ〉 3
2 ,Γ = 〈w, curlΓ φ〉⊥,Γ ,

for all φ ∈ H
3
2 (Γ ), v ∈ H

− 1
2

‖ (Γ ) andw ∈ H
− 1

2
⊥ (Γ ).

In view of these definitions we now introduce the spaces

H
− 1

2
div (Γ ) :=

{
v ∈ H

− 1
2

‖ (Γ )

∣∣∣∣ div v ∈ H− 1
2 (Γ )

}
,

H
− 1

2
curl(Γ ) :=

{
v ∈ H

− 1
2

⊥ (Γ )

∣∣∣∣ curlΓ v ∈ H− 1
2 (Γ )

}
,

which will play a crucial role for the upcoming analysis and are endowed with the
graph norms

‖v‖2
H

− 1
2

div (Γ )

:= ‖v‖2
H

− 1
2‖ (Γ )

+ ‖ div v‖2
H− 1

2 (Γ )
,

‖v‖2
H

− 1
2

curl (Γ )

:= ‖v‖2
H

− 1
2⊥ (Γ )

+ ‖ curlΓ v‖2
H− 1

2 (Γ )
.

Let the natural solution space ofMaxwell’s equations be denoted by

H(curl,Ω) =
{
v ∈ L2(Ω)

∣∣∣∣ curl v ∈ L2(Ω)

}
.

Theorem 1 ([7,Theorem4.6])Themappingsγ ‖ andγ ⊥ admit linearandcontinuous
extensions

γ ‖ : H(curl,Ω) → H
− 1

2
curl(Γ ), γ ⊥ : H(curl,Ω) → H

− 1
2

div (Γ ).

Moreover, the following integration by parts formula holds:
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∫
Ω

(
curl v · u − curl u · v

)
dΩ = 〈γ ⊥u, γ ‖v〉‖,Γ , ∀u ∈ H(curl,Ω), v ∈ H1(Ω).

Furthermore, a duality pairing⊥〈·, ·〉‖ between H
− 1

2
div (Γ ) and H

− 1
2

curl(Γ ) can be es-
tablished by using an orthogonal decomposition of those spaces so that the following
integration by parts formula still holds

∫
Ω

(
curl v · u − curl u · v

)
dΩ =⊥〈γ ⊥u, γ ‖v〉‖, ∀u, v ∈ H(curl,Ω).

Formore details, we refer to [7].
The differential operators gradΓ and curlΓ can be further extended as follows.

Proposition 3 ([7, p. 39]) The tangential gradient and curl operators introduced in
(7) can be extended to linear and continuous operators defined onH

1
2 (Γ )

gradΓ : H 1
2 (Γ ) → H

− 1
2

⊥ (Γ ), curlΓ : H 1
2 (Γ ) → H

− 1
2

‖ (Γ ).

Moreover their formalL2
t (Γ )-adjoints

div : H 1
2
⊥(Γ ) → H− 1

2 (Γ ) and curlΓ : H 1
2
‖ (Γ ) → H− 1

2 (Γ )

can be defined by
〈div v, φ〉 1

2 ,Γ = −〈v, gradΓ φ〉⊥,Γ ,

〈curlΓ w, φ〉 1
2 ,Γ = 〈w, curlΓ φ〉‖,Γ ,

(8)

for all φ ∈ H
1
2 (Γ ), v ∈ H

1
2
⊥(Γ ) andw ∈ H

1
2
‖ (Γ ).

2.3 Potentials

Let Gk denote the fundamental solution of the Helmholtz operator Δ + k2, which is
given by

Gk(x, y) := exp(ik|x − y|)
4π |x − y| .

The scalar and vector single layer potential are then defined respectively by

Ψ V
k : H− 1

2 (Γ ) → H 1
loc(R

3), Ψ V
k (v)(x) :=

∫
Γ

Gk(x, y)v(y)dσ(y),

Ψ A
k : H− 1

2
‖ (Γ ) → H1

loc(R
3), Ψ A

k (v)(x) :=
∫

Γ

Gk(x, y)v(y)dσ(y).
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These potentials are known to be continuous, see [12, Theorem3.8]. Finally the scalar
and vector single layer boundary operators are defined by

Vk : H− 1
2 (Γ ) → H

1
2 (Γ ), Vk := γ ◦ Ψ V

k ,

Ak : H− 1
2

‖ (Γ ) → H
1
2
‖ (Γ ), Ak := γ ‖ ◦ Ψ A

k .

The simultaneous continuityof the traceoperatorsγ ,γ ‖ and the single layer potentials
yield then the continuity of the single layer boundary operators, namely,

‖Vkv‖H 1
2 (Γ )

� ‖v‖
H− 1

2 (Γ )
, ‖Akv‖

H
1
2‖ (Γ )

� ‖v‖
H

− 1
2‖ (Γ )

, (9)

for all v ∈ H− 1
2 (Γ ) and v ∈ H

− 1
2

‖ (Γ ). In particular, the range of Vk lies inH 1(Γ ) if it

is restricted to L2(Γ ) ⊂ H− 1
2 (Γ ) (see [12, Theorem 3.8]), i.e.,

Im(Vk(L
2(Γ )) ⊂ H 1(Γ ). (10)

Likewise, for the vector case the corresponding result reads

Im(Ak(L2
t (Γ )) ⊂ H1(Γ ), (11)

see [8, Prop. 2].

2.4 Interpolation ofWeightedSpaces

In the following section we will be confronted with interpolation of weighted L2-
spaces. We thus recall in this section some basic results taken from [47], which are
valid without regularity on the weights.

LetT bea familyof shape-regular triangulationsdecomposingΓ intoflat triangles
such that the surface coveredby the triangles coincideswithΓ .Denote the set of edges
of themesh by ET . For a fixed triangulation let hT denote the diameter of any element
T ∈ T and let h be the piecewise constant function such that h|T = hT .

Throughouttheentirepaper,weusethenotationa � bwhichneedstobeunderstood
in the sense that there exists a constant C > 0 being independent of the meshT such
that a ≤ Cb.

Lemma 2 ([47, Lemma 22.3, p. 110]) If A is linear from E0 + E1 into F0 + F1 and
maps E0 into F0 with ‖Ax‖F0 ≤ M0‖x‖E0 for all x ∈ E0, and maps E1 into F1 with
‖Ax‖F1 ≤ M1‖x‖E1 for all x ∈ E1, then A is linear continuous from (E0,E1)θ,p into
(F0,F1)θ,p for all 0 < θ < 1 and 1 ≤ p ≤ ∞ (or for θ = 0, 1 with p = ∞). For
0 < θ < 1 one has
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‖Aa‖(F0,F1)θ,p ≤ M 1−θ
0 M θ

1 ‖a‖(E0,E1)θ,p for all a ∈ (E0,E1)θ,p.

The space (E0,E1)θ,p denotes the interpolation space betweenE0 andE1 based on the
Lp-norm using the K-method, see [47, Definition 22.1, p. 109].

Lemma 3 ([47, Lemma 23.1, p. 115])For ameasurable positive functionw onΓ , let

E(w) =
{
u

∣∣∣∣
∫

Γ

|u(x)|2w(x) dx < ∞
}

with ‖u‖w =
(∫

Γ

|u(x)|2w(x) dx

) 1
2

.

If w0,w1 are two such functions, then for 0 < θ < 1 one has

(E(w0),E(w1))θ,2 = E(wθ ), where wθ = w1−θ
0 wθ

1 ,

with equivalent norms

π

2 sin(πθ)
‖u‖(E(w0),E(w1))θ,2 ≤ ‖u‖wθ

≤ π√
2 sin(πθ)

‖u‖(E(w0),E(w1))θ,2 .

Remark 1 The equivalence constants are not explicitly given in [47, Lemma 23.1,
p. 115], but they follow from the proof. Notice further that the equivalence constants
are independent of the weight functions.

Corollary 1 Let0 < s < 1bearbitrary.LetAbea linearcontinuousmap fromL2(Γ )

into L2(Γ ) and fromH 1(Γ ) into L2(Γ )with

‖Av‖L2(Γ ) ≤ M0‖v‖L2(Γ ) for all v ∈ L2(Γ ),

‖h−1Av‖L2(Γ ) ≤ M1‖v‖H 1(Γ ) for all v ∈ H 1(Γ ).

Then A is a linear map fromHs(Γ ) = (H 1(Γ ),L2(Γ ))s,2 into L2(Γ )with

‖h−sAv‖L2(Γ ) ≤ π√
2 sin(π/2)

M 1−s
0 Ms

1‖v‖Hs(Γ ) for all v ∈ H
1
2 (Γ ).

Proof Combine Lemmas2with 3.

2.5 Discrete Spaces and Interpolation

Let RT0(T ) denote the local Raviart-Thomas space of complex-valued functions on
T ∈ T defined by (see [44] or an overview in the book by [29])

RT0(T ) :=
{
v(x) = α + βx

∣∣∣∣α ∈ C
2, β ∈ C

}
.
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The globalRaviart-Thomas space is defined by

RT0 :=
{
v ∈ H0

div(Γ )

∣∣∣∣ v|T ∈ RT0(T ) ∀T ∈ T

}
,

whereH0
div(Γ ) is defined in a standardmanner

H0
div(Γ ) :=

{
v ∈ L2

t (Γ )

∣∣∣∣ div v ∈ L2(Γ )

}
.

Further denote byV(T ) the spaceof scalar complex-valued continuous functions that
are piecewise linear, namely

V(T ) =
{
v ∈ H 1(Γ )

∣∣∣∣ v|T ∈ P1(T )

}
, (12)

where P1(T ) denotes the space of affine polynomials on T . LetN (T ) denote the set
of all nodes ν ofT and {ϕν}ν∈N (T ) be the family of nodal bases ofV(T ).

Definition 1 Let the Clément type interpolation operator IT : L2() → V(T ) be

IT v :=
∑

ν∈N (T )

φν(v)ϕν ∀v ∈ L2(),

whereΓν = supp(ϕν) and the degrees of freedom are given by

φν(v) := 3

|Γν |
∫

Γν

v(x)ϕν(x) dx.

Proposition 4 If v ∈ Hs(Γ )with 0 < s < 1, then the interpolation operator IT sat-
isfies the following interpolation properties:

‖h−s(v − IT v)‖L2() � ‖v‖Hs() for all v ∈ Hs(). (13)

Remark 2 A similar result has been developed in [48].

Proof This interpolation operator IT is also used in [27, (2.2.29)] and the following
result is proven

‖h−1(v − φν(v))‖L2(Γν) � ‖ gradΓ v‖L2(Γν)

forv ∈ H 1(Γ )undertheassumptionofshape-regularity.(Notethatinourcasethemesh
matches the surface and, therefore, the Eq. (2.2.29) can be simplified.). Following the
arguments of the original paper of [25, Proof of Theorem 1], it is now straightforward
to prove that

‖h−1(v − IT v)‖L2(T) �
∑

ν∈N (T)

‖ grad v‖L2(ν )
,
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where N (T ) denotes the set of nodes of the element T . Now, summing over all
elements of the mesh T and using that the number of elements sharing a node is
bounded, as a consequence of shape regularity ofT , we get

‖h−1(v − IT v)‖L2() � |v|H1().

Furthermore, the operator can also be shown to be L2-stable, see [27, (2.2.33)].
Therefore, the linear continuous operatorAT = Id − IT : L2() �→ L2() satisfies

‖h−1(v − IT v)‖L2() � ‖v‖H 1(Γ ),

‖v − IT v‖L2() � ‖v‖L2(Γ ).

The asserted estimate (13) follows fromCorollary 1.

Besides this for s = 1/2, we will also need a Raviart-Thomas type interpolation

operator for functions in v ∈ H
1
2
⊥(Γ ). Since div v /∈ L2(Γ ), the standard degrees of

freedomarenolongerwell-defined.Therefore,wewillutilizeaninterpolationoperator
similar to that introduced in [4] for the first type Nédélec elements.

Foranyedgee ∈ ET of themeshweassociateanarbitrarybutfixedelementTe such
that e ⊂ ∂Te. On Te we denote by π e the L2(Te)-projection onto constant functions.
Welet {ψe}e∈ET be thestandardRaviart-Thomasbasisof lowestorder, sometimesalso
referred to as the Rao-Wilton-Glisson (RWG) basis in this context of electromagnetic
scattering, such that

∫
e
ψe · νeds = 1 and

∫
e
ψe′ · νeds = 0

for any e′ ∈ ET such that e �= e′ and where νe denotes the outer unit normal of Te at
the edge ewhich is coplanar with Te; see Fig. 2.

Definition 2 Let theClément type interpolation operator IT : L2
t (Γ ) → RT0 for the

Raviart-Thomas element of lowest order be given by

IT v :=
∑
e∈ET

αe(v)ψe

Fig. 2 Illustration of the
normals on an element Te

n

Te

ν e e
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where the degrees of freedom are defined by

αe(v) :=
∫
e
π e(v) · νeds.

Remark 3 Note that IT does not satisfy the usual commutative property

div(IT v) �= P0(div v),

where P0 denotes the element-wise L2-projection of degree 0. This is important in the
a priori analysis but not in the upcoming a posteriori error analysis.

Lemma 4 The degrees of freedom of the interpolation operator IT : L2
t (Γ ) → RT0

are well-defined and IT satisfies the local L2-stability bound

‖IT v‖L2(T ) � ‖v‖L2(ΔT ) for all T ∈ T ,

whereΔT denotes the set of elements that share at least one edge with T .

Proof The argument is similar as in [4]. If T ∈ T is any element and E (T ) denotes
the three edges of T , then

‖IT v‖L2(T ) = ‖
∑

e∈E (T )

αeψe‖L2(T ) ≤
∑

e∈E (T )

|αe| ‖ψe‖L2(T ).

Invoking the Piola transformation, it can be shown that

‖ψe‖L2(T ) � ‖ψ̂ ê‖L2(T̂ ) � 1

since the basis functions ψ̂ ê on the reference element T̂ are bounded. Moreover,
applying the Cauchy-Schwarz inequality, we get

|αe| =
∣∣∣∣
∫
e
π e(v) · νeds

∣∣∣∣ � h
1
2
T ‖π ev‖L2(e) � hT‖π̂ ev̂‖L2(ê)

where π̂ e denotes the L2(T̂ )-projection onto constant functions on the reference ele-
ment T̂ . Note that π̂ ev̂ is defined via the affine transformation from Te (and not T ) to
T̂ . Norm equivalence of polynomials (constant functions in this case), the L2-stability
of π̂ e and a scaling argument yield

|αe| � hT‖π̂ ev̂‖L2(T̂ ) � hT‖v̂‖L2(T̂ ) � ‖v‖L2(Te). (14)

Combining the above estimates implies the asserted stability bound of IT .

To explore the accuracy of the interpolant IT , we need the following lemmas.
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Lemma 5 (Local approximability) The following estimate holds:

‖v − IT v‖L2(T ) � inf
c∈R3

‖v − γ ⊥c‖L2(ΔT ), for all T ∈ T .

Proof Let v̄ = γ ⊥c for any c ∈ R
3 which, in view of (5), is piecewise constant inT .

According to (6) the normal component of v̄ is continuous across all edges of themesh,
including those of the polyhedronΓ , whence v̄ ∈ RT0.

We first observe that IT v̄ = v̄ becauseπ ev|Te = v|Te for any edge e ⊂ ∂T and

αe(v) =
∫
e
π ev · νeds =

∫
e
v · νeds.

Since these three local degrees of freedomonT ∈ T are unisolvent and they coincide
for both IT v̄|T and v̄|T , we deduce IT v|T = v|T . Consequently

‖v − IT v‖L2(T ) ≤ ‖v − v‖L2(T ) + ‖IT (v − v)‖L2(T ).

By the localL2-stability of Lemma 4we conclude that

‖v − IT v‖L2(T ) � ‖v − v‖L2(ΔT ),

as asserted.

Lemma 6 If v ∈ H
1
2
⊥(Γ ), then there exists w ∈ H

1
2 (Γ ) such that t⊥(w) = v and

‖w‖
H

1
2 (Γ )

� ‖v‖
H

1
2⊥ (Γ )

.

Proof Simply setw = t−1
⊥ (v), where t−1

⊥ is defined in Lemma 1, and use the facts that
t−1
⊥ is the right inverse of t⊥ and the continuity of t−1

⊥ .

Lemma 7 Ifw ∈ H
1
2 (Γ ), then ‖t⊥(w)‖L2(ΔT ) � ‖w‖L2(ΔT ).

Proof As in the proof of Lemma 1, let g ∈ H1(Ω) be the function such that g = Rγw
and t⊥(w) = γ ⊥(g). Therefore

γ ⊥(g)|T = γ (g)|T × n, for a.e. x ∈ T , for all T ∈ T ,

whence

‖t⊥(w)‖2L2(ΔT )
=

∑
T⊂ΔT

‖t⊥(w)‖2L2(T )
=

∑
T⊂ΔT

‖γ (g) × n‖2L2(T )

�
∑
T⊂ΔT

‖γ (g)‖2L2(T )
= ‖γ (g)‖2L2(ΔT )

= ‖w‖2L2(ΔT )

becauseRγ is the right inverse of γ and thus γ (g) = w.
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Proposition 5 (Global approximability) If v ∈ H
1
2
⊥(Γ ), then the interpolation oper-

ator IT satisfies the following global error estimate

‖h− 1
2 (v − IT v)‖L2(Γ ) � ‖v‖

H
1
2⊥ (Γ )

for all v ∈ H
1
2
⊥(Γ ). (15)

Proof Given v ∈ H
1
2
⊥(Γ ), there exists w ∈ H

1
2 (Γ ) so that t⊥(w) = v according to

Lemma 6. For each T ∈ T , we define wT = ∫
ΔT

w(x)dx ∈ R
3 and vT = t⊥(wT ) ∈

H
1
2
⊥(Γ ). Since the estimate of Lemma 5 is local, we have

‖hα(v − IT v)‖2L2(Γ )
=

∑
T∈T

‖hα(v − IT v)‖2L2(T )
�

∑
T∈T

‖hα
T (v − vT )‖2L2(ΔT )

for α = −1, 0. Using Lemma 7 yields

‖v − vT‖L2(ΔT ) = ‖t⊥(w − wT )‖L2(ΔT ) � ‖w − wT‖L2(ΔT )

and stability of the L2-projection together with the definition ofwT implies

‖w − wT‖L2(ΔT ) � ‖w‖L2(ΔT ),

‖h−1
T (w − wT )‖L2(ΔT ) � ‖w‖H1(ΔT ),

whence
‖v − IT v‖2L2(Γ )

�
∑
T∈T

‖w‖2L2(ΔT )
� ‖w‖2L2(Γ )

,

‖h−1(v − IT v)‖2L2(Γ )
�

∑
T∈T

‖w‖2H1(ΔT )
� ‖w‖2H1(Γ )

.

Applying Corollary 1 to vector-valued functions, we obtain

‖h− 1
2 (v − IT v)‖L2(Γ ) � ‖w‖

H
1
2 (Γ )

� ‖v‖
H

1
2⊥ (Γ )

,

where the last inequality results fromLemma 6. This concludes the proof.

3 ProblemSetting

The variational formulation of the Electric Field Integral Equation (EFIE), also called

Rumsey principle, consists of seeking u ∈ H
− 1

2
div (Γ ) such that

a(u, v) =⊥〈f , v〉‖ for all v ∈ H
− 1

2
div (Γ ) (16)
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where f ∈ H
− 1

2
curl(Γ ), the sesquilinear form a(·, ·) is given by

a(u, v) := 〈Vk div u, div v〉 1
2 ,Γ − k2〈Aku, v〉‖,Γ ,

⊥〈·, ·〉‖ is the duality pairing between H
− 1

2
curl(Γ ) and H

− 1
2

div (Γ ), 〈·, ·〉 1
2 ,Γ is the duality

pairingH
1
2 (Γ ) − H− 1

2 (Γ ), 〈·, ·〉‖,Γ is the duality pairingH
1
2
‖ (Γ ) − H

− 1
2

‖ (Γ ), and the
integral operators Vk ,Ak have been defined in Sect. 2.3.

The discrete formulation reads: findU ∈ RT0 such that

a(U, V ) =⊥〈f , V 〉‖ for all V ∈ RT0. (17)

Theproblemiswell-posed for a sufficientlyfinemesh, see [37].Aswewant toquantify
the approximation error a posteriori, we need to assume that U was computed, thus
that themesh satisfies the previous condition.

The continuous Eq. (16), on the other hand, is well-posed under the assumption
that the wave number k does not correspond to an interior eigenmode of theMaxwell
problem on Γ . As a consequence, the following continuous inf-sup condition holds
(see also [37]):

‖u‖
H

− 1
2

div (Γ )
� sup

v∈H− 1
2

div (Γ )

a(u, v)
‖v‖

H
− 1

2
div (Γ )

for all u ∈ H
− 1

2
div (Γ ). (18)

Since the boundary element discretization is conforming, i.e. RT0 ⊂ H
− 1

2
div (Γ ), the

following Galerkin orthogonality holds: If u ∈ H
− 1

2
div (Γ ) is the solution of (16) and

U ∈ RT0 is the solution of (17), then

a(u − U, V ) = 0 for all V ∈ RT0. (19)

In addition, as a direct consequence of the Cauchy-Schwarz inequality and the
continuity (9) of the single layer boundary operators, the form a(·, ·) is continuous:

a(v,w) � ‖v‖
H

− 1
2

div (Γ )
‖w‖

H
− 1

2
div (Γ )

for all v,w ∈ H
− 1

2
div (Γ ). (20)

4 APosterioriErrorAnalysis

As is customary in the theory of a posteriori error estimation, one has to assume a
higher regularity of the right-hand side than it is needed forwell-posedness in order to
derive computable error bounds. Therefore we assume in this section that
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f ∈ H
1
2
‖ (Γ ) ∩ H0

curl(Γ ) (21)

withH
1
2
‖ (Γ )given inProposition 1 andH 0

curl(Γ ) =
{
v ∈ L2(Γ )

∣∣∣∣ curlΓ v ∈ L2
t (Γ )

}
.

We proceed as in [23] for flat domains. To this end, we start with some auxiliary
results that will be useful for our analysis later.

Lemma 8 (Regular decomposition [9, Theorem 5.5]) The decomposition

H
− 1

2
div (Γ ) = curlΓ (H

1
2 (Γ )/C) + H

1
2
⊥(Γ )

is valid and is stable, i.e. for any v ∈ H
− 1

2
div (Γ ), there exists Ψ ∈ H

1
2
⊥(Γ ) and α ∈

H
1
2 (Γ ) \ C such that v = Ψ + curlΓ α and

‖Ψ ‖
H

1
2⊥ (Γ )

+ ‖α‖
H

1
2 (Γ )

� ‖v‖
H

− 1
2

div (Γ )
(22)

holds.

Lemma 9 ForV(T ) given by (12) there holds curlΓ (V(T )) ⊂ RT0.

Proof By [9, Corollary 5.3] we have

ker(div) ∩ L2
t (Γ ) = curlΓ (H 1(Γ )).

Thus for allα ∈ V(T ) ⊂ H 1(Γ )we infer thatcurlΓ α ∈ L2
t (Γ ) is piecewiseconstant

and that div curlΓ α ≡ 0 ∈ L2(Γ ). This implies that curlΓ α ∈ H0
div(Γ ).

4.1 UpperBound

Let u ∈ H
− 1

2
div (Γ ) be the exact solution of (16) and U ∈ RT0 be its approximation

defined by (17). By the Galerkin orthogonality we observe that

a(u − U, v) = a(u − U, v − V ) for all v ∈ H
− 1

2
div (Γ ), V ∈ RT0.

Decompose v as v = Ψ + curlΓ α, according to Lemma 8, and define

δΨ := Ψ − Ψ T , δα := α − αT

where Ψ T ∈ RT0 and αT ∈ V(T ) can be arbitrarily chosen. Thus we can write
v − V = δΨ + curlΓ δα and
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a(u − U, v − V ) =⊥〈f , δΨ + curlΓ δα〉‖ − a(U, δΨ + curlΓ δα)

=⊥〈f , δΨ 〉‖ + 〈k2AkU, δΨ 〉‖,Γ︸ ︷︷ ︸
=I1

+⊥〈f , curlΓ δα〉‖ + 〈k2AkU, curlΓ δα〉‖,Γ︸ ︷︷ ︸
=I2

−〈Vk divU, div δΨ 〉 1
2 ,Γ︸ ︷︷ ︸

=I3

for any v ∈ H
− 1

2
div (Γ ),Ψ T ∈ RT0 and αT ∈ V(T ). We proceed in four steps:

Step 1 We note that f ∈ L2
t (Γ ), k2AkU ∈ H

1
2
‖ (Γ ) ⊂ L2

t (Γ ) and thatΨ ∈ H
1
2
⊥(Γ ) ⊂

L2
t (Γ ) due to enhanced regularity of Ψ asserted in Lemma 8. Since Ψ T ∈

RT0 ⊂ L2
t (Γ ),we can replace the duality pairing inI1 by an integral and thus

write

I1 =
∫

Γ

(f + k2AkU) · δΨ dσ. (23)

Step 2 Since f ∈ H
1
2
‖ (Γ ) the duality pairing⊥〈·, ·〉‖ can be interpreted as

⊥〈f , curlΓ δα〉‖ = 〈f , curlΓ δα〉‖,Γ ,

namely as a duality pairing inH
1
2
‖ (Γ ). The definition (8) of curlΓ now yields

I2 = 〈f + k2AkU, curlΓ δα〉‖,Γ = 〈curlΓ (f + k2AkU), δα〉 1
2 ,Γ .

Sinceδα ∈ H
1
2 (Γ )andcurlΓ (f + k2AkU) ∈ L2(Γ )becauseof (11)and (21),

we can also writeI2 as an integral

I2 =
∫

Γ

curlΓ (f + k2AkU) δαdσ. (24)

Step 3 For the last termI3, we integrate by parts according to (8), whence

I3 = −〈gradΓ (Vk divU), δΨ 〉⊥,Γ .

Since div(RT0) ⊂ L2(Γ ) we infer that gradΓ (Vk divU) ∈ L2
t (Γ ) in light of

(10). This implies thatI3 is also an integral

I3 = −
∫

Γ

gradΓ (Vk divU) · δΨ dσ. (25)

Step 4 Inserting (23)–(25) back into the sesquilinear form a yields

a(u − U, v) =
∫

Γ

R · δΨ dσ +
∫

Γ

r δαdσ for all v ∈ H
− 1

2
div (Γ ), (26)
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whereR ∈ L2
t (Γ ) and r ∈ L2(Γ ) are given element-by-element by

R|T := f + k2AkU + gradΓ (Vk divU) for all T ∈ T ,

r|T := curlΓ (f + k2AkU) for all T ∈ T .
(27)

We now choose αT = IT α and Ψ T = IT Ψ where IT and IT are the in-
terpolation operators of Definitions 1 and 2. Applying the Cauchy-Schwarz
inequality and the interpolation estimates (13) and (15) yields

a(u − U, v) ≤ ‖h 1
2R‖L2(Γ )‖h− 1

2 δΨ ‖L2(Γ ) + ‖h 1
2 r‖L2(Γ )‖h− 1

2 δα‖L2(Γ )

� ‖h 1
2R‖L2(Γ )‖Ψ ‖

H
1
2⊥ (Γ )

+ ‖h 1
2 r‖L2(Γ )‖α‖

H
1
2 (Γ )

,

which together with the stability (22) of the regular decomposition leads to

a(u − U, v) �
(
‖h 1

2R‖L2(Γ ) + ‖h 1
2 r‖L2(Γ )

)
‖v‖

H
− 1

2
div (Γ )

.

Combining this with the inf-sup condition (18) finally implies

‖u − U‖
H

− 1
2

div (Γ )
� sup

v∈H− 1
2

div (Γ )

a(u − U, v)
‖v‖

H
− 1

2
div (Γ )

� ‖h 1
2R‖Γ + ‖h 1

2 r‖Γ .

We summarize this derivation in the following theorem.

Theorem 2 (Upper bound) Let f ∈ H
1
2
‖ (Γ ) ∩ H0

curl(Γ ), u ∈ H
− 1

2
div (Γ ) be the exact

solution of (16) andU ∈ RT0 be its approximation defined by (17). Then, there exists
a constant C1 > 0 depending on shape regularity ofT such that the following bound
holds

‖u − U‖2
H

− 1
2

div (Γ )

≤ C1

∑
T∈T

η2
T (T )

where the element indicators ηT (T ) are defined as follows in terms of the residuals
R ∈ L2

t (Γ ) and r ∈ L2(Γ ) given in (27)

η2
T (T ) := hT‖R‖2L2(T )

+ hT‖r‖2L2(T ).

Remark 4 (Trace regularity of an incident plane wave) If the right-hand side f is the
tangential traceof aplanewaveEinc, thenweconclude fromtheanalyticityof theplane
wave and of all its derivatives that

f = γ ‖(Einc) ∈ H
1
2
‖ (Γ ), γ ‖(∂xiEinc) ∈ H

1
2
‖ (Γ )

for i = 1, 2, 3. Therefore, f satisfies the stated regularity assumption (21).
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4.2 LowerBound

We next show global lower bounds for the error indicators η2
T (T ). Since R ∈ L2

t (Γ )

and r ∈ L2(Γ )we define the local constants

RT =
∫
T
R(x)dσ(x), rT =

∫
T
r(x)dσ(x), for all T ∈ T ,

and their global piecewise constant counterpartsR0|T = RT and r0|T = rT .

Theorem 3 (Global lower bound for the residual) Let u ∈ H
− 1

2
div (Γ ) be the exact

solution of (16) andU ∈ RT0 be its approximation defined by (17). Then, there exists
a constant C2 > 0, only depending on shape regularity ofT , such that the following
bound holds

C2‖h 1
2R‖L2(Γ ) ≤ ‖u − U‖

H
− 1

2
div (Γ )

+ ‖h 1
2 (R − R0)‖L2(Γ ).

Proof The proof is based on the bubble-technique which was introduced by [49]. Let
bT : Γ → R be a bubble function, namely a Lipschitz function so that

supp bT ⊂ T ,

∫
T
bT dx = |T | ≈

∫
T
b2T dx,

for a given T ∈ T . Such a function can be given by a polynomial of degree three on T
consistingof theproduct of all threebarycentric coordinates times a real scaling factor.
In consequence there holds

∫
T
div(σ T bT )dσ =

∫
∂T

bTσ T · nTds = 0, (28)

for any σ T ∈ C
2. LetΨ T = hTRT bT and note that

∫
T
RT · Ψ T dx = hT‖RT‖2L2(T )

and
‖Ψ T‖L2(T ) � hT‖RT‖L2(T ) � ‖Ψ T‖L2(T ).

Let Ψ denote the function that is defined element-wise by Ψ |T = Ψ T for all T ∈ T .

WeclaimthatΨ ∈ H
1
2
⊥(Γ )because it ismadeofpiecewisepolynomialswithvanishing

normal component on the interelement boundaries of T . In view of Lemma 8, such
aΨ is an admissible test function in (26) and, together with the choicesΨ T = 0 and
α = αT = 0, yields
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a(u − U,Ψ ) =
∫

Γ

R · Ψ dσ =
∫

Γ

(R − R0) · Ψ dσ + ‖h 1
2R0‖2L2(Γ )

.

By the continuity of the sesquilinear form a(·, ·), we have

‖h 1
2R0‖2L2(Γ )

= a(u − U,Ψ ) −
∫

Γ

(R − R0) · Ψ dx

� ‖u − U‖
H

− 1
2

div (Γ )
‖Ψ ‖

H
− 1

2
div (Γ )

+ ‖h 1
2 (R − R0)‖L2(Γ )‖h

1
2R0‖L2(Γ ).

(29)

It remains to estimate ‖Ψ ‖
H

− 1
2

div (Γ )
. For ϕ ∈ H

1
2 (Γ ), let ϕ0 denote the elementwise

average of ϕ. Applying Corollary 1 yields the interpolation estimate

‖h− 1
2 (ϕ − ϕ0)‖L2(Γ ) � |ϕ|

H
1
2 (Γ )

.

This, in conjunction with (28), implies

〈divΨ T , ϕ〉 1
2 ,Γ =

∫
Γ

divΨ (ϕ − ϕ0) dx � ‖h 1
2 divΨ ‖L2(Γ )|ϕ|

H
1
2 (Γ )

� ‖h− 1
2 Ψ ‖L2(Γ )|ϕ|

H
1
2 (Γ )

� ‖h 1
2R0‖L2(Γ )|ϕ|

H
1
2 (Γ )

because of the norm equivalence for the discrete functionΨ . Now, by definition

‖ divΨ ‖
H− 1

2 (Γ )
= sup

ϕ∈H 1
2 (Γ )

〈divΨ , ϕ〉 1
2 ,Γ

|ϕ|
H

1
2 (Γ )

� ‖h 1
2R0‖L2(Γ ),

and
‖Ψ ‖

H
− 1

2‖ (Γ )
≤ ‖Ψ ‖L2(Γ ) � ‖hR0‖L2(Γ ).

Consequently
‖Ψ ‖

H
− 1

2
div (Γ )

� ‖h 1
2R0‖L2(Γ )

which together with (29) implies that

‖h 1
2R0‖L2(Γ ) � ‖u − U‖

H
− 1

2
div (Γ )

+ ‖h 1
2 (R − R0)‖L2(Γ ).

Invoking the triangle inequality finally finishes the proof.

It is important to realize the global nature of the above lower bound. This is due to
the presence of integral operators Vk ,Ak in the sesquilinear form a(·, ·)which lead to
a global norm for the error in (29) regardless of the support ofΨ .

In a very similar fashion, the following theorem can also be proven.
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Theorem 4 (Global lower bound for the curl residual) Let u ∈ H
− 1

2
div (Γ ) be the exact

solution of (16) andU ∈ RT0 be its approximation defined by (17). Then, there exists
a constant C3 > 0, only depending on shape regularity ofT , such that the following
bound holds

C3‖h 1
2 r‖L2(Γ ) ≤ ‖u − U‖

H
− 1

2
div (Γ )

+ ‖h 1
2 (r − r0)‖L2(Γ ).

5 Conclusions

In this paper we develop the first a posteriori error estimates for the electric field inte-
gral equation on polyhedra. We choose, for simplicity, to derive residual based error
estimates but believe that our theory extends to other non-residual estimators.We also
choose to develop the theory for polyhedra, the most interesting and useful case in
practice,butweexpect theresults toextendtosmoothsurfaces.Forscatteringproblems
on polyhedra, the solution u of the integral equation, or surface current, is not smooth
whereas the regularity of the right-hand side f is dictated by the surfaceΓ because the
incidentwaveisalwayssmooth.Thisjustifiesouradditionalregularityassumption(21)
which,coupledwith thepropertiesgradΓ (Vk divU) ∈ L2(Γ ), curlΓ (AkU) ∈ L2(Γ ),
allows us to evaluate the residuals R, r of (27) in L2(Γ ) and thus avoid dealing with
fractional Sobolev norms. We derive computable global upper and lower a posteriori
bounds for the estimator (up to oscillation terms). In contrast to PDE, the estimator is
global due to the presence of the potentials Vk ,Ak in the definition of the sesquilinear
form. However, the residuals R, r being evaluated in L2(Γ ) can be split elementwise
and used to drive an adaptive boundary element method (ABEM). The actual imple-
mentationofABEMforEFIE is ratherdelicate and isnotpart of thecurrentdiscussion,
which focusses on the derivation and properties of the estimators.
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On Some Weighted Stokes Problems:
Applications on Smagorinsky Models

Jacques Rappaz and Jonathan Rochat

Abstract In this paperwe study existence anduniqueness ofweak solutions for some
non-linear weighted Stokes problems using convex analysis. The characterization of
these equations is the viscosity, which depends on the strain rate of the velocity field
and in some cases is related with a weight being the distance to the boundary of the
domain. Such non-linear relations can be seen as a first approach of mixing-length
eddy viscosity from turbulent modeling. A well known model is von Karman’s on
which the viscosity depends on the square of the distance to the boundary of the
domain. Numerical experiments conclude the work and show properties from the
theory.

Keywords Stokes equations · Weighted Sobolev spaces · Finite element method

Mathematical Subject Classification 46E35 · 76F55 · 65N05

1 Introduction

Turbulent flows have an importance in many domains, including technology and
industry. While measurements are sometimes difficult to make, the use of numerical
simulations of such flows in industries can be very useful to optimize activities and
reduce the cost of products and process development. The Navier-Stokes equations
offer an accurate description of these flows, whose Reynolds number is large. The
resolution of these equations is then challenging as the mesh required to obtain most
of the structure of these flows should be very thin.

To overcome these difficulties, many turbulent models appear such as Large Eddy
Simulation (LES),mainly described in [18], that assumes that the inertial scales of the
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flow have been captured by an sufficiently thin grid using low-pass filtering. Another
simpler approach we consider here is the Reynold Averaged Navier-Stokes (RANS).
This kind ofmodel computes a time-averagedmean value for velocity field,which has
a significantly larger period than the turbulent fluctuations.A type of simplemodeling
often used by engineering is a mixing-length model called “SmagorinskyModeling”
(see [18]). In practice, these models consist in changing the initial viscosity of the
fluid by a turbulent viscosity depending of the velocity, transforming the initial linear
elliptic term in the Navier-Stokes equations by a non-linear one.

If u and p are the velocity and the pressure of a stationary incompressible fluid
of density ρ, submitted to a force f, flowing in a cavity Ω ⊂ R

n , n = 2, 3, with a
Lipschitz boundary ∂Ω , stationary Navier-Stokes equations on Ω take on the form

{
− div(2με(u)) + ∇ p = F(u) in Ω,

div u = 0 in Ω,
(1)

with u = 0 on ∂Ω , ε(u) = 1

2

(∇u + ∇uT
)
and F(u) = f − ρ(u · ∇)u. In this paper

we will treat Smagorinsky models in which the viscosity depends on |ε(u)| and takes
the form

μ(|ε(u)|) = μL + καρl2−αdα
∂Ω |ε(u)| (2)

where μL > 0 corresponds to a laminar viscosity, κ = 0.41 is the von Karman con-
stant, l > 0 is a characteristic length of the domain, α ≥ 0 is a real number, d∂Ω(x)
is the distance of a point x ∈ Ω to the boundary ∂Ω and |ε(u)| = (

∑
i, j εi j (u)2)

1
2 .

The cases with α = 0 can be treated in usual Sobolev spaces and their analysis
can be found in several papers [2, 20]. At the opposite, the cases with α > 0 have to
be studied in weighted Sobolev spaces and present several difficulties. In particular,
we will give some comments on a very popular model for a fluid flow in between to
close plates (von Karman model) in which α = 2.

We proceed in this paper to an analysis of the problem (1) with a viscosity given
by (2) and α < 2. To do it, we have to start by considering the simpler Stokes problem
with a givenF function. By using several known results concerningweighted Sobolev
spaces [4, 14, 16, 17], we establish some theoretical results on the existence and
uniqueness of a velocity field of Eq. (1) when F is given. We show how is important
the role of the laminar viscosity μL when Von Karman model is used and its impact
on numerical results when we use a finite element method to discretize Problem (1).
The uniqueness of the pressure is sometimes an open question.

2 Main Existence Theorem

In this section we prove that the problem (1) for a given F function has a unique
solution related to velocity in a space with free divergence. Let Ω be an bounded
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open subset of Rn , n = 2, 3, with a Lipschitz boundary ∂Ω . We first introduce some
adequate weighted functional spaces onΩ to define a weak problem from the Eq. (1)
concerning the velocity. We then prove by convex analysis the existence of such a
velocity field. The section finishes with some results concerning the pressure.

2.1 Suitable Functional Spaces

Let d∂Ω(x) = dist(x, ∂Ω) = miny∈∂Ω |x − y| the distance between x ∈ Ω and ∂Ω .
For 1 ≤ p < ∞ and α > 0, we denote the weighted Sobolev space of order one as

W 1,p(Ω, dα
∂Ω) =

{
v ∈ L p(Ω, dα

∂Ω) | ∂v

∂xi
∈ L p(Ω, dα

∂Ω), ∀i = 1, . . . , n

}

where L p(Ω, dα
∂Ω) = {

v : Ω → R | ∫
Ω

|v|pdα
∂Ωdx < ∞}

provided with norm

‖v‖L p(Ω,dα
∂Ω ) := (∫

Ω
|v|pdα

∂Ωdx
) 1

p . We thus endowed W 1,p(Ω, dα
∂Ω) with the norm

‖v‖W 1,p(Ω,dα
∂Ω ) :=

(∫
Ω

|v|pdα
∂Ωdx +

∫
Ω

|∇v|pdα
∂Ωdx

) 1
p

. (3)

Lemma 1 For all 1 < p < ∞ and α ≥ 0, W 1,p(Ω, dα
∂Ω) endowed with the norm

(3) is a reflexive Banach space.

Proof The properties of spaces W 1,p(Ω, dα
∂Ω) are deduced from the ones of the

spaces L p(Ω, dα
∂Ω) (see [16] or Theorem 1.3 in [10]). The reflexivity is due to the

uniform convexity of these spaces [3, Theorem III.29].

For arbitrary weight ω, the books [10, 16] give a well overview of these spaces
that found applications in a large scale of problems such as p−Laplacian [7] or
degenerated elliptic problem [6]. Generally, the chosen weight ω belongs to the
Muckenhoupt class Ap (see [1, 5]). For weights which are a positive power of the
distance to the boundary, they belong to the Muckenhoupt class if 0 ≤ α < p − 1
(see [6]). Publications on the space generated with such weights are less frequent but
some papers and books treat many properties of these spaces, see for example [4, 6,
17]. One of the important property is that the embedding

W 1,p(Ω, dα
∂Ω) ↪→ L p(Ω, dα

∂Ω) (4)

is continuous and compact, as it is shown in [17, Theorem 3.8].
Another characterization is that we can define a continuous and bounded trace

operator Tr : W 1,p(Ω, dα
∂Ω) → L p(∂Ω) if 1 < p < ∞ and 0 ≤ α < p − 1 (see [16,

Theorem 9.15]). In that case, the space W 1,p
0 (Ω, dα

∂Ω) (the closure of C∞
0 (Ω) in

W 1,p(Ω, dα
∂Ω)) for the norm (3)) can be identified with the space of functions in

W 1,p(Ω, dα
∂Ω) vanishing on the boundary:
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W 1,p
0 (Ω, dα

∂Ω) = {v ∈ W 1,p(Ω, dα
∂Ω) | Tr(v) = 0}.

Moreover, as the problem (1) involves vector fields u : Ω → R
n , u = (u1, . . . , un),

we denote the following norms for u ∈ [W 1,p
0 (Ω, dα

∂Ω)]n:

‖u‖W 1,p
0 (Ω,dα

∂Ω )
:=

(
n∑

i=1

‖ui‖p

W 1,p
0 (Ω,dα

∂Ω )

) 1
p

,

‖∇u‖L p(Ω,dα
∂Ω ) :=

⎛
⎝ n∑

i, j=1

‖ ∂ui
∂x j

‖p
L p(Ω,dα

∂Ω )

⎞
⎠

1
p

, and

‖ε(u)‖L p(Ω,dα
∂Ω ) :=

⎛
⎝ n∑

i, j=1

‖εi j (u)‖p
L p(Ω,dα

∂Ω )

⎞
⎠

1
p

.

These definitions and characterizations allow us to prove an important result:

Proposition 1 (Korn Inequality)Let 0 ≤ α < p − 1. There exists a generic constant
C > 0 such that

‖∇u‖L p(Ω,dα
∂Ω ) ≤ C‖ε(u)‖L p(Ω,dα

∂Ω ), ∀u ∈ [W 1,p
0 (Ω, dα

∂Ω)]n. (5)

Proof The structure of the proof follows mainly the procedure developed in [15].
First of all, Theorem 6 in [14] states for −1 ≤ α < p − 1 the existence of a constant
C > 0 such that

‖∇u‖L p(Ω,dα
∂Ω ) ≤ C

{‖u‖L p(Ω,dα
∂Ω ) + ‖ε(u)‖L p(Ω,dα

∂Ω )

}
, ∀u ∈ [W 1,p(Ω, dα

∂Ω)]n.
(6)

Consequently, it remains to prove that there exists a generic constant C > 0 such
that

‖u‖L p(Ω,dα
∂Ω ) ≤ C‖ε(u)‖L p(Ω,dα

∂Ω ), ∀u ∈ [W 1,p(Ω, dα
∂Ω)]n.

By contradiction, we assume that there exists a sequence (ul)∞l=1 ∈ [W 1,p
0 (Ω, dα

∂Ω)]n
satisfying

‖ul‖L p(Ω,dα
∂Ω ) = 1 and lim

l→∞ ‖ε(ul)‖L p(Ω,dα
∂Ω ) = 0. (7)

By using (6) and (7), the sequence {ul}∞l is bounded in [W 1,p
0 (Ω, dα

∂Ω)]n and by
compacity (4), it is not restrictive to assume there exists u ∈ [W 1,p

0 (Ω, dα
∂Ω)]n such

that

lim
l→∞ ‖ul − u‖L p(Ω,dα

∂Ω ) = 0 and ul ⇀ u weakly in [W 1,p
0 (Ω, dα

∂Ω)]n. (8)
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Relations (7) and (8) imply ε(u) = 0. Then from [15], the function u belongs to a
class of polynomial of degree one. Since u is vanishing on the boundary, then u ≡ 0.
This contradicts the fact that ‖u‖L p(Ω,dα

∂Ω ) = 1.

Remark 1 In order to study Stokes problem (1) with viscosity (2), we will see below
that we need to work with weighted Sobolev spaces of order p = 3. In this particular
case, inequality (5) takes the following form: for 0 ≤ α < 2, there exists a generic
constant C > 0 such that

‖∇u‖L3(Ω,dα
∂Ω ) ≤ C‖ε(u)‖L3(Ω,dα

∂Ω ), ∀u ∈ [W 1,3
0 (Ω, dα

∂Ω)]n.

In the following we consider 0 ≤ α < 2. The problem (1) involves homogeneous
Dirichlet conditions and takes into account two viscosity terms div(2μ0ε(u)) and
div(2καρl2−αdα

∂Ω |ε(u)|ε(u)), see (2). Consequently, when we will consider a weak
formulation of the problem (1) (see Sect. 2.2) we have to work in the two following
Banach spaces H 1

0 (Ω) and W 1,3
0 (Ω, dα

∂Ω). Let us remark that there exists α0 with
0 ≤ α0 < 2 such that W 1,3

0 (Ω, dα
∂Ω) ⊂ H 1

0 (Ω) when 0 ≤ α < α0 (see [16]) but it is
not the case when α is close to 2. Thus, if we want to analyse von Karman model
corresponding to α = 2, we have to define the space

Xα = H 1
0 (Ω) ∩ W 1,3

0 (Ω, dα
∂Ω)

endowed with the following norm ‖v‖Xα
= ‖v‖H 1(Ω) + ‖v‖W 1,3(Ω,dα

∂Ω ).

Lemma 2 The normed space (Xα, ‖ · ‖Xα
) is a reflexive Banach space.

Proof The proof is a consequence of the compact embedding

H 1
0 (Ω) ↪→ L3(Ω) ⊂ L3(Ω, dα

∂Ω)

and (4). In particular, we prove that each bounded sequence in Xα has a weakly
convergent subsequence in Xα .

Lemma 3 The space Xα endowed with the semi-norm

|v|Xα
:= ‖∇v‖L2(Ω) + ‖∇v‖L3(Ω,dα

∂Ω )

is a reflexive Banach space.

Proof The proof is a consequence of Lemma 2 and from the equivalence of the norm
‖ · ‖Xα

and the semi-norm | · |Xα
since H 1

0 (Ω) ↪→ L3(Ω, dα
∂Ω) and by Poincaré’s

inequality.
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2.2 On the Velocity of Stokes Problem

In this section we consider the non-linear Stokes problem (1) with viscosity (2) in
which F ∈ [L 4

3 (Ω)]n does not depend on u. The index α verifies 0 ≤ α < 2.
As in the problem (1) we are looking for a free divergence velocity field, we take

now the space
Xα,div = {v ∈ Xn

α | div v = 0}

endowed with the norm |v|Xα,div = ‖∇v‖L2(Ω) + ‖∇v‖L3(Ω,dα
∂Ω ). By multiplying the

Stokes equation in problem (1) by a test velocity field v ∈ Xα,div and integrating by
part, we obtain a weak formulation of the problem (1)–(2) for the velocity:

Find u ∈ Xα,div such that

∫
Ω

(2μ(|ε(u)|)ε(u) : ε(v))dx =
∫

Ω

(F · v)dx, ∀v ∈ Xα,div. (9)

We use convex arguments to show existence and uniqueness of a solution to (9). Let
us define the functional J : Xα,div → R by:

J (u) =
∫

Ω

[2A(x, |ε(u(x))|) − F(x) · u(x)]dx,

where A : (x, s) ∈ Ω × R → A(x, s) ∈ R is given by

A(x, s) = μL

2
s2 + 1

3
καρl2−αdα

∂Ω(x)s3.

Lemma 4 The functional J is Gâteaux-differentiable and its derivative at u in the
direction v is

DJu(v) =
∫

Ω

(2μ(|ε(u)|)ε(u) : ε(v))dx −
∫

Ω

F · v dx .

Proof It is easy to verify that for β ≥ 2:

lim
t→0

|ε(u + tv)|β − |ε(u)|β
t

= β|ε(u)|β−2ε(u) : ε(v).

Taking in account that

∂

∂s
A(x, s) = μLs + καρl2−αdα

∂Ωs2,

we obtain
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lim
t→0

J (u + tv) − J (u)

t
=

∫
Ω

[2ε(u) : ε(v) + 2καρl2−αdα
∂Ω |ε(u)|ε(u) : ε(v)]dx

−
∫

Ω

F · v dx .

In the following we are going to prove that the functional J is continuous, strictly
convex and coercive. Existence and uniqueness of a velocity field of the problem (9)
will then follow from results in [9].

Lemma 5 Let f, g ∈ Lr (Ω, dα
∂Ω) with 1 ≤ r < ∞. Then

∫
Ω

|dα
∂Ω(| f |r − |g|r )|dx ≤ r‖| f | + |g|‖r−1

Lr (Ω,dα
∂Ω )‖ f − g‖Lr (Ω,dα

∂Ω ).

Proof The proof is similar fromLemma 4 in [8]. Generalization with weighted space
is done using Holder inequality for weighted Lebesgue space: if p, q are such that
1
p + 1

q = 1 and if h ∈ L p(Ω, dα
∂Ω), l ∈ Lq(Ω, dα

∂Ω), then we have

∫
Ω

dα
∂Ωhl dx ≤ ‖h‖L p(Ω,dα

∂Ω )‖l‖Lq (Ω,dα
∂Ω ).

Lemma 6 The functional J is continuous for the norm | · |Xα,div .

Proof Taking v ∈ Xα,div in a neighbourhood of a fixed u ∈ Xα,div and using Lemma 5
with respectively r = 2, α = 0 and r = 3, α > 0, we have the existence of a constant
C > 0 (depending of u) such that

∫
Ω
2|A(|ε(u)|) − A(|ε(v)|)|dx

=
∫
Ω
2

∣∣∣∣∣μL

2
(|ε(u)|2 − |ε(v)|2) + καρl2−αdα

∂Ω

3
(|ε(u)|3 − |ε(v)|3)

∣∣∣∣∣ dx ≤ C |u − v|Xα
.

Since F ∈ [L 4
3 (Ω)]n and by Poincaré inequality, we have the existence of a constant

C f > 0 such that

|J (u) − J (v)| =
∣∣∣∣
∫

Ω

2|A(|ε(u)|) − A(|ε(v)|)|dx −
∫

Ω

F · (u − v)dx

∣∣∣∣
≤ C |u − v|Xα

+ ‖F‖
L

4
3
Cp‖∇(u − v)‖L2 ≤ C f |u − v|Xα

,

where C f = (C + ‖F‖
L

4
3
Cp). If u ∈ Xα,div, then we have

lim
v∈Xα,div,v→u

J (v) = J (u),

which finishes the proof.
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Lemma 7 The functional J is strictly convex on Xα,div.

Proof For x ∈ Ω , the function A(x, s) is strictly convex on R
+ in s variable since

∂2

∂s2
A(x, s) ≥ μL > 0 when s > 0.

For 0 < η < 1 and ξ = ν ∈ R
n×n , we have using triangle inequality

|ηξ + (1 − η)ν| ≤ η|ξ | + (1 − η)|ν|.

Since A(x, s) is strictly convex and monotone in s variable,

A(x, |ηξ + (1 − η)ν|) ≤ A(x, η|ξ | + (1 − η)|ν|) < ηA(x, |ξ |) + (1 − η)A(x, |ν|)
which proves that A(x, | · |) is strictly convex. Let u, v ∈ Xα such that u = v and
0 < η < 1. Thus ε(u) = ε(v) since ε(u) − ε(v) = ε(u − v) = 0, see [15]. More-
over,∫

Ω

A(x, η|ε(u)| + (1 − η)|ε(v)|)dx < η

∫
Ω

A(x, |ε(u)|)dx + (1 − η)

∫
Ω

A(x, |ε(v)|)dx .

It follows that J is strictly convex on Xα,div.

Lemma 8 For 0 ≤ α < 2, the functional J is coercive on Xα,div in the following
sense:

lim
u∈Xα,div;|u|Xα,div→∞

J (u)

|u|Xα,div

→ ∞.

Proof We have by definition of the function A and by Remark 1 the existence of
C1,C2 > 0 such that

∫
Ω

A(x, |ε(u)|)dx =
∫

Ω

(
μL

2
|ε(u)|2 + ρκαl2−αdα

∂Ω(x)

3
|ε(u)|3

)
dx

≥ C1‖∇u‖2L2(Ω) + C2‖∇u‖3L3(Ω,dα
∂Ω ).

Since F ∈ [L 4
3 (Ω)]n , there exits C3 > 0 such that∫

Ω

|F · u|dx ≤ ‖F‖
L

4
3
‖u‖L4 ≤ C3‖F‖

L
4
3
‖u‖H 1 ≤ C3‖F‖

L
4
3
‖∇u‖L2 .

Consequently, we have

J (u) :=
∫

Ω

2A(|ε(u)|)dx −
∫

Ω

F · u dx ≥ C̃1‖∇u‖2L2(Ω)
+ C̃2‖∇u‖3L3(Ω,dα

∂Ω )
− D‖∇u‖L2 ,

where C̃1, C̃2, D are constants independent of u. Finally we easily obtain
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lim
u∈Xα,div;|u|Xα,div→∞

J (u)

|u|Xα,div

→ ∞.

Proposition 2 There exists a unique u ∈ Xα,div such that

J (u) = inf{J (v) : v ∈ Xα,div}.

Moroever, u is the unique solution of the problem (9).

Proof Corollary III.8 in [3] shows that the functional J is weakly lowest semi-
continuous. The proof then follows from [9] using the reflexivity of Xα,div and Lem-
mas 6, 7, and 8. In particular, uniqueness comes from the strict convexity of J .

2.3 On the Pressure of Stokes Problem

In the previous section we focus on the existence of a divergence free velocity field
u. As the problem (1) involves the pressure, we study now existence of a solution of
the mixed problem: find (u, p) ∈ Xα × Yα such that

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∫
Ω

2(μL + καρl2−αdα
∂Ω |ε(u)|)ε(u) : ε(v))dx −

∫
Ω

p div(v) =
∫

Ω

(F · v)dx,
∀v ∈ Xα,∫

Ω

q div(u) = 0 ∀q ∈ Yα,

(10)
with 0 ≤ α < 2 and where Yα is a space that should be defined. In particular, we
investigate the existence of a pressure field p ∈ Yα with Yα an adequate functional
space related to the velocity space Xα that gives a sense of

∫
Ω

p div v dx, ∀v ∈ Xα.

We start with some useful results:

Proposition 3 The dual of the space L p(Ω, dα
∂Ω) can be identified with

Lq(Ω, d−αq/p
∂Ω ), for 1 < p, q < ∞ satisfying 1

p + 1
q = 1.

Proof Take a function g ∈ L p(Ω, dα
∂Ω) and define g̃(x) = g(x)d

α
p

∂Ω(x). Then g̃ is in
L p(Ω). We consider

B : L p(Ω, dα
∂Ω) → L p(Ω) given by: B(g) = g̃.

The operator B is linear and invertible, with B−1(g̃) = g̃d− α
p . Suppose that K is in

L p(Ω, dα
∂Ω)′ (the dual space of L p(Ω, dα

∂Ω)).We consider K̃ : L p(Ω) → R given by
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K̃ (g̃) = K (g) for all g ∈ L p(Ω, dα
∂Ω).We easily see that K̃ is a linear and continuous

functional and thus there exists a unique ũ ∈ Lq(Ω) with 1
p + 1

q = 1 such that

∫
Ω

ũv dx = K̃ (v), ∀v ∈ L p(Ω).

If we define u = ũd
α
p

∂Ω , it means that u ∈ Lq(Ω, d−αq/p
∂Ω ) and we have

K (g) = K̃ (g̃) =
∫

Ω

ũg̃ dx =
∫

Ω

ug dx, ∀g ∈ L p(Ω, dα
∂Ω).

We have shown that for each K in L p(Ω, dα
∂Ω)′, there exists u ∈ Lq(Ω, d−αq/p

∂Ω )

unique such that ∫
Ω

ug dx = K (g), ∀g ∈ L p(Ω, dα
∂Ω).

Consequently K : L p(Ω, dα
∂Ω)′ → Lq(Ω, d

− αq
p

∂Ω ) given by K (K ) = u is an iso-
morphism and L p(Ω, dα

∂Ω)′ can be identified with Lq(Ω, d−αq/p
∂Ω ) within the “L2

scalar product”.

Definition 1 For all α ≥ 0 and 1 < p, q < ∞, we denote

Lq
0(Ω, d−αq/p

∂Ω ) :=
{
q ∈ Lq(Ω, d−αq/p

∂Ω ) |
∫

Ω

q = 0

}
.

Lemma 9 The spaces [W 1,p
0 (Ω, dα

∂Ω)]n and L p
0 (Ω, dα

∂Ω)′ := Lq
0(Ω, d−αq/p

∂Ω ) satisfy
the inf-sup condition: there exists C̃ > 0 such that

inf
q∈Lq

0 (Ω,d−αq/p
∂Ω )

sup
v∈[W 1,p

0 (Ω,dα
∂Ω )]n

∫
Ω
q div(v)dx

‖q‖Lq

d−αq/p
‖v‖W 1,p

dα

> C̃ .

Proof From Theorem 3.1 in [11], given f ∈ L p
0 (Ω, dα

∂Ω), there exists a vector field
v : Ω → R such that ⎧⎪⎨

⎪⎩
v ∈ [W 1,p

0 (Ω, dα
∂Ω)]n,

div v = f,

‖∇v‖W 1,p
0 (Ω,dα

∂Ω )
≤ c‖ f ‖L p

0 (Ω,dα
∂Ω ).

In other words, this show that the operator div : [W 1,p
0 (Ω, dα

∂Ω)]n → L p
0 (Ω, dα

∂Ω) is
surjective. Lemma A.42 in [12] and Proposition 3 conclude the proof.

We consider now the unique velocity field
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u ∈ Xα,div := {v ∈ [H 1
0 (Ω) ∩ W 1,3

0 (Ω, dα
∂Ω)]n | div u = 0}

that solves∫
Ω

(2μL + καρl2−αdα
∂Ω |ε(u)|)ε(u) : ε(v))dx =

∫
Ω

(F · v)dx, ∀v ∈ Xα,div

(see Proposition 2). Since the inf-sup conditions is satisfied for the couple of spaces
[H 1

0 (Ω)]n, L2
0(Ω), there exists a unique function p1 ∈ L2

0(Ω) such that

∫
Ω

p1 div(v) =
∫

Ω

2μLε(u) : ε(v))dx −
∫

Ω

(F · v)dx, ∀v ∈ [H 1
0 (Ω)]n.

On the other hand, using Lemma 9 with p = 3 and q = 3
2 , we can also obtain a

unique function p2 ∈ L
3
2
0 (Ω, d

− α
2

∂Ω ) such that

∫
Ω

p2 div(v) =
∫

Ω

2καρl2−αdα
∂Ω |ε(u)|)ε(u) : ε(v))dx, ∀v ∈ [W 1,3

0 (Ω, dα
∂Ω)]n.

Given now Xα = [H 1
0 (Ω) ∩ W 1,3

0 (Ω, dα
∂Ω)]n and Yα := L2

0(Ω) ⊕ L
3
2
0 (Ω, d

− α
2

∂Ω ), we
immediately deduce the following result for the problem (10):

Theorem 1 There exists (u, p = p1 + p2) ∈ Xα × Yα such that the relations (10)
are satisfied.

Remark 2 In Theorem 1, the pressure p ∈ Yα is not necessary unique. In fact the
second equation in (10) can be written as

∫
Ω

q div(u) = 0 ∀q ∈ L2
0(Ω),∫

Ω

q div(u) = 0 ∀q ∈ L
3
2
0 (Ω, d

− α
2

∂Ω ).

These two relations imply div(u) = 0 a.e. in Ω and are redundant. Thus as we are
looking for p under the form p1 + p2 ∈ Yα , the decomposition could not be unique

since in general L2
0(Ω) is not included in L

3
2
0 (Ω, d

− α
2

∂Ω ).

Nevertheless, uniqueness of the pressure is sometimes available. We start with a
remark:

Remark 3 Consider  = [0, 1] and the weight dist(x, {0}) = x . Thus if we take
g ∈ L3(, dα

{0}) then we have:

∫ 1

0
|g|2dx =

∫ 1

0
(|g|2x 2α

3 )x− 2α
3 dx ≤

(∫ 1

0
|g|3xαdx

) 2
3
(∫ 1

0
x−2αdx

) 1
3

.
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The second integral
(∫ 1

0 x−2αdx
) 1

3
is bounded if 0 ≤ α < 1

2 . When α ≥ 1
2 , this

integral diverge. We then have ‖g‖L2() ≤ C‖g‖L3
dα{0}

if 0 ≤ α < 1
2 .

Remark 3 shows that if 0 ≤ α ≤ 1
2 , we have then L3(, dα

{0}) ⊂ L2(). More
generally, and using the proposition 6.5 in [16], we can show that there exists a
number α0 ≤ 1

2 such that

W 1,p(Ω, dα
∂Ω) ⊂ W 1,p(Ω)

with continuous injection for 0 ≤ α < α0. It means in particular that L2(Ω) ⊂
L

3
2 (Ω, d

− α
2

∂Ω ) and thus Yα := L2
0(Ω) ⊕ L

3
2
0 (Ω, d

− α
2

∂Ω ) becomes Yα := L
3
2
0 (Ω, d

− α
2

∂Ω ).
Consequently, we can obtain the following result when F belongs to the dual space
of [W 1,3

0 (Ω, dα
∂Ω)]n:

Theorem 2 There exists 0 < α0 ≤ 1
2 such that for all 0 ≤ α < α0, the problem

(10) possesses a unique solution (u, p) ∈ Xα × Yα , withXα = [W 1,3
0 (Ω, dα

∂Ω)]n and
Yα := L

3
2
0 (Ω, d

− α
2

∂Ω ).

3 Some Comments on the von Karman Model

The turbulent viscosity of the popular von Karman model (α = 2) for a fluid flow
between to close plates [18] is given by:

μ = μL + κ2d2
∂Ω |ε(u)|.

In fact, the weight dα
∂Ω does not belong to the Muckenhoupt class A3 when α = 2

[1, 5]. This has two major consequences:

1. The spaceW 1,3(Ω, d2
∂Ω)has in fact no trace on the boundary (an example is given

in one dimension by g(x) = ln(| ln(x)|), x ∈ (0, 1
2 ), with dist(x, 0) = d∂Ω).

Recall that in [16] a trace operator Tr : W 1,p(Ω, dα
∂Ω) → L p(∂Ω) is defined

if 1 < p < ∞ and 0 ≤ α < p − 1. In that case, the space W 1,p
0 (Ω, dα

∂Ω) (the
closure ofC∞

0 (Ω) for the norm (3)) can be identified with the space of functions
inW 1,p(Ω, dα

∂Ω) whose Tr(u) is vanishing on the boundary. For α ≥ p − 1, the
trace operator cannot be defined and for α > p − 1 the closure of C∞

0 (Ω) in
W 1,p(Ω, dα

∂Ω) is the space itself.
Nevertheless, the spaceW 1,3(Ω, d2

∂Ω) does not correspond to any of these cases
and its characterization is more complicated (see [16, Sect. 8]).

2. The second Korn inequality in [14] is valid only for u ∈ [W 1,3(Ω, dα
∂Ω)]n with

−1 ≤ α < 2. This is an open question when α = 2 and thus we cannot prove
the first Korn inequality. Counterexample is expected in that case.
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The direct consequence of these remarks is that whenμL = 0, the vonKarmanmodel
is ill-posed. In this case the boundary condition u = 0 on ∂Ω has no meaning.

Amain consequence is when a numerical method is used for obtaining an approxi-
mation of vonKarmanmodel withμL small (with respect to the numerical viscosity),
the obtained results depend strongly on the mesh of the method as shown in the fol-
lowing section.

4 Numerical Experiments

In this section, we provide some numerical experiments of the problem (1) with
viscosity (2) using different values of α and μL . The following benchmark example
in three dimensional case is considered: letΩ ⊂ R

3 be the rectangular parallelepiped
with characteristic length l = 0.1 given by

Ω = [0; 1] × [0; 1] × [0; 0.1].

For N ∈ N we discretize Ω by splitting each side of that rectangular parallelepiped
with N nodes. It gives N 3 hexahedron, all of which are subdivided into five tetrahe-
dron. We obtain then a triangulation Th of Ω composed of 5N 3 tetrahedron K with
h = 1

N being the reference mesh size.
LetP1(K ) be the space of polynomial of degree one on K .We define the following

finite dimensional spaces:

χh = {v ∈ C0(ΩR)3 | v|K ∈ (P1(K ) ⊕ BK )3 and v|∂ΩR = 0},
ϒh =

{
q ∈ C0(ΩR) | q|K ∈ P

1(K ) and
∫

Ω

q dx = 0

}
.

Here BK denote the Bubble function on K . A renormalized version of the Prob-
lem (1)–(2) is discretized with this Galerkin approximation to obtain approximate
solutions (uh, ph) ∈ χh × ϒh . In particular we set ν = μ

ρ
, with renormalized p and

f divided by ρ (p := p/ρ, f := f/ρ). In that case the turbulent kinematic viscosity
is given by

ν = νL + καl2−αdα
∂Ω |ε(u)|.

The renormalized relation (1)–(2) is a non-linear problem which is solved by a
Newton method based on the work [13]. The method is iterated to reach a velocity
field uh with a precision of TolNew = 1e−8.

Each iteration of that Newton method leads to solve a linear system given by the
Galerkinmatrix of the Stokes problem. This system is solvedwithGMRES algorithm
[19] with ILU(2) preconditioner and a tolerance of TolGMRES = 1e−8.
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In all the following computations, we consider the following force field which
generates a velocity field composed of two axial symmetric vortex:

F(x, y, z) =
⎛
⎝ 0.3 ∗ (y − 0.5)2

0.3 ∗ (−x + 0.5)2

0

⎞
⎠ .

In Table1, we display for different values of α and νL the maximum of the Euclidian
norm of the velocity field umax, the numerical kinematic viscosity νL (the numerical
value of l2−ακαdα

∂Ω |ε(umax)|) and the resulting Reynolds number ReT = umaxl
νT

. The
domain is a rectangular parallelepiped Ω = [0, 1] × [0, 1] × [0, 0.1] with N nodes
on each side for a total of 5N 3 tetrahedra. The force is given by f = (0.3 ∗ (y −
0.5)2, 0.3 ∗ (x − 0.5)2, 0) and we set l = 0.1.

The main observations are the following:

• For α = 0 and different values of νL , the maximum value of the velocity converges
as the mesh decreases and does not depend of νL .

• When α ∈ {1, 2} the convergence is more difficult to obtain, especially in the
case α = 2. We observe that when N is increasing, the maximum value of the
velocity increases too. Consequently, when the laminar viscosity νL is small with
respect to the numerical viscosity νT , the obtained results depend strongly on the
mesh. The same behavior is observed for the stationary Navier-Stokes equations
corresponding to (1)–(2).

Acknowledgements The authors would like to thank Rio-Tinto Alcan Company for their financial
support and Agnieska Kalamaskya for her input on Korn’s Inequalities.
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Poincaré Type Inequalities for Vector
Functions with Zero Mean Normal
Traces on the Boundary and Applications
to Interpolation Methods

Sergey Repin

Abstract We consider inequalities of the Poincaré–Steklov type for subspaces of
H 1-functions defined in a bounded domain Ω ∈ R

d with Lipschitz boundary ∂Ω .
For scalar valued functions, the subspaces are defined by zero mean condition on
∂Ω or on a part of ∂Ω having positive d − 1 measure. For vector valued functions,
zero mean conditions are applied to normal components on plane faces of ∂Ω (or
to averaged normal components on curvilinear faces). We find explicit and sim-
ply computable bounds of constants in the respective Poincaré type inequalities for
domains typically used in finite element methods (triangles, quadrilaterals, tetrahe-
drons, prisms, pyramids, and domains composed of them). The second part of the
paper discusses applications of the estimates to interpolation of scalar and vector val-
ued functions on macrocells and on meshes with non-overlapping and overlapping
cells.

Keywords Poincaré type inequalities · Interpolation of functions · Estimates of
constants in functional inequalities

1 Introduction

1.1 Classical Poincaré Inequality

Poincaré [29] proved that L2 norms of functions with zeromean defined in a bounded
domain Ω with smooth boundary ∂Ω are uniformly bounded by the L2 norm of the
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gradient, i.e.,
‖w‖2,Ω ≤ CP(Ω)‖∇w‖2,Ω, ∀w ∈ ˜H 1(Ω), (1)

where

˜H 1(Ω) :=
⎧

⎨

⎩

w ∈ H 1(Ω) | {|0|} wΩ := 1

|Ω|
∫

Ω

w dx = 0

⎫

⎬

⎭

.

Poincaré also deduced the very first estimates of CP:

CP(Ω) ≤ 3

4
dΩ, dΩ := diamΩ for d = 3, (2)

CP(Ω) ≤
√

7

24
dΩ ≈ 0.5401dΩ for d = 2. (3)

For piecewise smooth domains the inequality (1) (and a similar inequality for func-
tions vanishing on the boundary) was independently established by Steklov [34],
who proved that CP(Ω) = λ− 1

2 , where λ is the smallest positive eigenvalue of the
problem

−Δu = λu in Ω,

∂nu = 0 on ∂Ω.

Easily computable estimates of CP(Ω) are known for convex domains in Rd . An
upper bound

CP(Ω) ≤ dΩ

π
≈ 0.3183 dΩ (4)

was established by Payne andWeinberger [28] (notice that for d = 2 the upper bound
(3) is not far from (4)).

A lower bound of CP(Ω) was derived by Cheng [8] (for d = 2):

CP(Ω) ≥ dΩ

2 j0,1
≈ 0.2079 dΩ. (5)

Here j0,1 ≈ 2.4048 is the smallest positive root of the Bessel function J0.
For isosceles triangles an improvement of the upper bound (4) is presented in

[23]

CP(Ω) ≤ dΩ

j1,1
,

where j1,1 ≈ 3.8317 is the smallest positive root of the Bessel function J1. Poincaré
type inequalities also hold for Lq norms if 1 ≤ q < +∞. Acosta and Durán [1] have
shown that for convex domains the constant in L1 Poincaré type inequality satisfies
the estimate
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inf
c∈R

‖w − c‖L1 ≤ dΩ

2
‖∇w‖L1 . (6)

Estimates of the constant for other q can be found in Chua and Wheeden [9, 10]
(also for convex domains).

1.2 Boundary Poincaré Inequalities for Functions with Zero
Mean Boundary Traces

Inequalities similar to (1) also hold for functions with zero mean traces on the bound-
ary (or on a measurable part Γ ⊂ ∂Ω) such that |Γ | := meas(d−1) Γ > 0. For any

w ∈ ˜H 1
Γ (Ω) =

⎧

⎨

⎩

w ∈ H 1(Ω)

∣

∣

∣ {|0|} wΓ := 1

|Γ |
∫

Γ

w ds = 0

⎫

⎬

⎭

,

we have two estimates for the L2(Ω) norm of w

‖w‖2,Ω ≤ CΓ (Ω)‖∇w‖2,Ω (7)

and for its trace on Γ

‖w‖2,Γ ≤ CTr
Γ (Ω)‖∇w‖2,Ω . (8)

Existence of positive constants CΓ (Ω) and CTr
Γ (Ω) is proved by standard compact-

ness arguments. Inequality (7) arises in analysis of certain physical phenomena (the
so-called “sloshing” frequencies, see [11, 15, 16] and references therein). In the
paper by Babuška and Aziz [4] it was used in proving sufficiency of the maximal
angle condition for finite element meshes with triangular elements. Inequalities (7)
and (8) can be useful in many other cases, e.g., for nonconforming approximations, a
posteriori error estimates (see [24, 25, 30, 31]), and advanced interpolation methods
for scalar and vector valued functions. In this paper, we are mainly interested in the
inequality (7) for functions with zero mean on Γ . For the sake of brevity, we will
call it the boundary Poincaré inequality.

Exact constants CΓ and CTr
Γ are known only for a restricted number of “simple”

domains. Table1 summarizes some of the results presented in [27], which are related
to such domains as

Rectangle Πh1×h2 := (0, h1) × (0, h2),

Parallelepiped Πh1×h2×h3 := (0, h1) × (0, h2) × (0, h3),

Right triangle T h := conv{(0, 0), (h, 0), (0, h)}.

These results were used in [26], where sharp constants in Poincaré type inequalities
were found for simplicial domains using the affine mappings technique.
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Table 1 Sharp constants

d Ω Γ CΓ (Ω)

2 Πh1×h2 Face x1 = 0 c1 max{2h1; h2}, c1 = 1/π

2 Πh1×h2 ∂Ω c1 max{h1; h2}
3 Πh1×h2×h3 Face x1 = 0 c1 max{2h1; h2; h3}
2 Th Leg c2h, c2 = 1/ζ , ζ ≈ 2.02876

2 Th Two legs c1h

2 Th Hypothenuse
√
2c2h

In Sect. 2 we deduce easily computable majorants of CΓ for triangles, rectangles,
tetrahedrons, polyhedrons, pyramides and prismatic type domains. These results
yield interpolation estimates (and respective constants) for interpolation of scalar
valued functions on macrocells based on mean values on faces. As a result, we can
deduce interpolation estimates for functions definedonmesheswith very complicated
(e.g., non-convex) cells.

Section3 is concernedwith boundary Poincaré inequalities for vector valued func-
tions. Certainly, (7) admits a straightforward extension to vector fields. We consider
more sophisticated forms where zero mean conditions are imposed on mean values
of different components of a vector valued function v on different d − 1-dimensional
manifolds (which are assumed to be sufficiently regular). In particular, it suffices to
impose zero mean conditions on normal components of v on d Lipschitz manifolds
(e.g., on d faces lying on ∂Ω). Then,

‖v‖Ω ≤ C(Ω, Γ1, . . . , Γd)‖∇v‖Ω. (9)

Theorem 1 proves (9) by compactness arguments. After that, we consider the case
where the conditions are imposed on normal components of a vector field on d
different faces of polygonal domains in R

d and deduce (9) directly by applying (7)
to normal components of the vector field. This method also yields easily computable
majorants of the constant C.

The last part of the paper is devoted to interpolation of functions defined in a
bounded Lipschitz domain Ω ∈ R

d , which are based on mean values of the function
(or of mean values of normal components) on some set Γ ∈ R

d−1. It should be noted
that interpolation methods based on normal components of vector fields defined
on edges of finite elements are widely used in numerical analysis of PDEs (see,
e.g., [6, 33]). Raviart–Thomas (RT) type interpolation operators and their properties
for approximations on polyhedral meshes has been deeply studied in the papers
[2, 3, 5] and other publications. The respective interpolations belong to the space
H(Ω, div). Approximations of this type are often used in mixed and hybrid finite
element methods (see, e.g., [6, 12, 33]).

This paper is concerned with coarser interpolation methods, which provide
L2 approximation of fluxes (and H−1 approximation for the divergence what
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is sufficient for treating the balance equation in aweak sense!). Interpolationmethods
of such a type could be useful for numerical analysis of PDEs on highly irregular (dis-
torted) meshes. For many years, this challenging problem has been studying by Yu.
Kuznetsov and coauthors (see [17–22] and other publications cited therein). Smooth
(high order) methods are probably too difficult for the interpolation of vector valued
functions on distorted meshes. Moreover, in many cases smooth interpolations seem
to be not really natural because exact solutions often have a very restricted regu-
larity and because efficient numerical procedures (offered, e.g., by dual mixed and
hybridmethods) operate with low order approximations for fluxes. If meshes are very
irregular, then it is convenient to apply approximations of the lowest possible order
and respective numerical methods with minimal regularity requirements. Boundary
Poincaré inequalities for functions with zero mean conditions on manifolds of the
dimension d − 1 yield interpolations of exactly this type.

In Sect. 4, it is proved that the difference between u and its interpolation is con-
trolled by the norm of ∇u. The respective interpolation constant is computable and
depends on the maximal diameter of the cell (due to results of previous sections,
realistic estimates of interpolation constants are known for “typical"cells). Finally,
we shortly discuss interpolation on meshes. In this case, a (global) domain Ω is
decomposed into a collection of local subdomains (cells) Ωi . Using cell interpola-
tion operators, we define the global interpolation operator IT h and prove the respec-
tive interpolation estimates for scalar and vector valued functions with explicitly
computable constants. The interpolation method operates with minimal amount of
interpolation parameters related to mean values on a certain amount of faces and
preserves mean values on faces (for scalar valued functions) and mean values of
normal components (for vector valued functions).

2 Estimates of CΓ for Typical Mesh Cells

2.1 Triangles

Consider a non-degenerated triangle ABC (Fig. 1 left) where Γ coincides with the
side AC.

2.1.1 Majorant of CΓ

Our analysis is based upon the estimate

C2
Γ ≤ C2

P + |Ω|
|Γ |2 inf

τ∈Q(Ω)
‖τ‖22,Ω, (10)
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Fig. 1 Triangle and quadrilateral

which is a special form of the upper bound of CΓ derived in [32]. Here Q(Ω) is a
subset of H(Ω, div) containing vector functions such that div τ = |Γ |

|Ω| , τ · n = 1 on
Γ , and τ · n = 0 on ∂Ω \ Γ . We set τ as an affine field with values at the nodes A,
B, and C (− cot α,−1), (0, 0), and (cot β,−1), respectively. In this case,

‖τ‖22,Ω = 1

3
|Ω|

(

3

2
+ 1

4
cot2 α + 1

4
cot2 β + 1

4
(cot β − cot α)2

)

= |Ω|
6

Σαβ,

where
Σαβ = cot2 α + cot2 β − cot α cot β + 3.

Since |Ω| = 1
2h|Γ |, we see that |Ω|2

|Γ |2 = h2

4 . In view of (4), the constantCP is bounded

from above by dΩ

π
, where dΩ = max{|AB|, |BC |, |C D|}, and we deduce an easily

computable bound

C2
Γ ≤ C2

P + h2Σαβ

24
≤ d2Ω

π2
+ h2Σαβ

24
. (11)

We can represent Σαβ in a somewhat different form

Σαβ = |AB|2 + |BC |2+ →
AB · →

BC

h2
,

which yields the estimate

C2
Γ ≤ d2Ω

π2
+ |AB|2 + |BC |2+ →

B A · →
BC

24
. (12)

Example 1 If α = π
2 , then d2Ω = h2 + |Γ |2, |Γ | = h cot β, d2Ω = h2(1 + cot2 β)

and we obtain

CΓ ≤ h

√

1

π2
+ 1

8
+ cot2 β

(

1

π2
+ 1

24

)

≈ 0.4757 h
√

1 + 0.6354 cot2 β.
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In particular, for β = π
4 , we obtain CΓ ≤ 0.6083h (exact constant for the right tri-

angle is 0.4929h).

2.1.2 Minorant of CΓ

A lower bound for CΓ follows from (5) and relations between CP(Ω) and CΓ (Ω).
Any function in ˜H 1

Γ (Ω) can be represented as w − {|0|} wΓ , where w ∈ H 1(Ω).
Hence,

(CΓ (Ω))−2 = inf
w∈H 1(Ω)

∫

Ω
|∇w|2 dx

∫

Ω
|w − {|0|} wΓ |2 dx

and the constant CΓ (Ω) can be defined as maximum of ‖w − {|0|} wΓ ‖2,Ω for all
w ∈ H 1(Ω) such that ‖∇w‖2,Ω = 1. Analogously, CP can be defined as maximum
of ‖w − {|0|} wΩ‖2,Ω over the same set of functions. Since

‖w − {|0|} wΓ ‖2,Ω ≥ inf
c∈R

‖w − c‖2,Ω = ‖w − {|0|} wΩ‖2,Ω,

we conclude that for any selection of Γ

CP(Ω) ≤ CΓ (Ω). (13)

From (5) and (13), it follows that CΓ ≥ 1
2
dΩ

j0,1
. In particular, for α = π

2 we have

CΓ ≥ 0.2079 h
√

1 + cot2 β.

2.2 Quadrilaterals

Using previous results, we deduce an estimate ofCΩ for a quadrilateral ABCD (Fig. 1
right). On Ω1 we set the same field τ as in the previous case and set τ = 0 on Ω2.
Let κ2 = |Ω2|

|Ω1| . Then,

C2
Γ ≤ C2

P +
(

κCP + Σ
1/2
αβ |Ω|√
6 |Γ |

)2

. (14)

Note that (14) also holds for more general cases in which Ω2 is a bounded Lipschitz
domain having only one common boundary with Ω1, which is BC .
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Fig. 2 Tetrahedron, pyramid, and prism

2.3 Tetrahedrons

Consider a tetrahedron OABC (Fig. 2 left), where Γ is the triangle ABC which lies

in the plane Ox1x2. Let
→

O A = η,
→

O B = ζ , and
→

OC = σ . At vertexes A, B, and C,
we define three vectors

τ̂ A = η

|η| sin α
, τ̂ A = ζ

|ζ | sin β
, and τ̂ A = σ

|σ | sin γ
.

The vector field τ (x1, x2, x3) is the affine field in Ω with zero value at the vertex
O. We compute

∫

Ω

|τ |2 dx =
h
∫

0

⎛

⎜

⎝

∫

ω(x3)

|τ(x1, x2, x3)|2dx1dx2

⎞

⎟

⎠
dx3.

Notice that the horizontal cross section ω(x3) associated with the height x3 has the
measure |ω(x3)| = (

1 − x3
h

)2 |Γ | and at the respective point A′ on O A (which third
coordinate is x3) by linear proportion we have τ A′ = (

1 − x3
h

)

τ̂ A. Similar relations
hold for the points B ′ and C ′ associated with the cross section on the height x3. For
the internal integral we apply the Gaussian quadrature for |τ |2 = τ 2

1 + τ 2
2 + τ 3

3 and
obtain

C2
Γ ≤ d2Ω

π2
+ |η|2 + |ζ |2 + |σ |2 + η · ζ + η · σ + ζ · σ

90
. (15)

In particular, for the equilateral tetrahedron with all edges equal to h we have

η · ζ = η · σ = ζ · σ = 1

2
h2, dΩ = h,

and, therefore, CΓ ≤ h
√

1
π2 + 1

20 ≈ 0.39h.
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For the right tetrahedron with nodes (0, 0, 0), (h, 0, 0), (0, h, 0), (0, 0, h) and
face Γ = {x ∈ Ω, x3 = 0}, we have dΩ = h

√
2, |η| = h, |ζ | = |σ | = h

√
2, scalar

products are equal to h2 and (15) yieldsCΓ ≤ h
√

2
π2 + 4

45 ≈ 0.54 h. Sharp constants
CΓ for triangle and tetrahedrons has been recently evaluated in [26]. For the right
tetrahedron, the constant computed in [26] is CΓ ≈ 0.3756 h.

2.4 Pyramid

We can apply (15) in order to evaluate CΓ for a pyramid OABCD, which can be
divided into two tetrahedrons OABC and OACD (Fig. 2 middle, view from above).
Assume that the triangles ABC and ACD have equal areas and Γ is the pyramid
basement ABCD. Then, we can use (10) with τ defined in each tetrahedron as in 2.3.
We obtain

C2
Γ ≤ d2Ω

π2
+ 2|η|2 + |ζ |2 + 2|σ |2 + |χ |2 + 2η · σ + (η + σ ) · (χ + ζ )

180
. (16)

2.5 Prismatic Cells

Consider a prismatic type domain (Fig. 2 right)

Ω = {x ∈ R
3 | (x1, x2) ∈ Γ, 0 ≤ x3 ≤ H(x1, x2), H(x1, x2) ≥ Hmin}.

By the same method as in 2.1 we find that

C2
Γ ≤ C

2
Γ := C2

P +
( {|0|} HΓ√

3
+ CP κ

)2

. (17)

where κ =
(

{|0|}HΓ

Hmin
− 1

)1/2
characterizes variations of the mean height.

In particular, if H = const (so that κ = 0) and Γ is a convex domain in R
d−1,

then

C2
Γ ≤ d2Γ + H 2

π2
+ H 2

3
= 1

π2

(

d2Γ +
(

1 + π2

3

)

H 2

)

. (18)

For a parallelepiped with Γ = (0, a) × (0, b), we know that the exact value of CΓ

is 1
π
max{2H, a, b}. In this case d2Γ = a2 + b2 and we can compare it with the upper

bound that follows from (17):

CΓ

CΓ

=
√

a2 + b2 + 4.29H 2

max{2H, a, b} ≥ 1. (19)
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For the cases where one dimension of Ω dominates, CΓ is a good approximation of
C2

Γ . If a = b = H (cube), then we have CΓ

CΓ
=

√
6.29
2 ≈ 1.25. The largest ratio is for

a = b = 2H (≈ 1.75).

3 Boundary Poincaré Inequalities for Vector
Valued Functions

Estimates (7) and (8) yield analogous estimates for vector valued functions in
H 1(Ω,Rd). Let Ω ∈ R

d (d ≥ 1) be a connected domain with N plane faces
Γi ∈ R

d−1. Assume that we have d unit vectors n(k), (associated with some faces)
that form a linearly independent system in Rd , i.e.,

det N �= 0, N :=
{

n(i)
j

}

∈ M
d×d , i, j = 1, 2, . . . , d, (20)

where n(i)
j = n(i) · e j and ei denote the Cartesian basis. Then, v ∈ H 1(Ω,Rd) satis-

fies a Poincaré type estimate provided that it satisfies zero mean conditions (21).

Theorem 1 If (20) holds and

{|0|} v · n(i)
Γi = 0 i = 1, 2, . . . , d, (21)

then
‖v‖Ω ≤ C(Ω, Γ1, . . . , Γd)‖∇v‖Ω, (22)

where C > 0 depends only on geometrical properties of the cell.

Proof Assume the opposite. Then, there exists a sequence {vk} such that {|0|} vk · n(i)

Γi = 0 and
‖vk‖ ≥ k‖∇vk‖. (23)

Without a loss of generality we can operate with a sequence of normalized functions,
so that

‖vk‖ = 1. (24)

Hence,

‖∇vk‖ ≤ 1

k
→ 0 as k → +∞. (25)

We conclude that there exists a subsequence (for simplicity we omit additional
subindexes and keep the notation {vk}) such that

vk ⇀ w in H 1(Ω,Rd), (26)

vk → w in L2(Ω,Rd). (27)
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In view of (26),
0 = lim inf

k→+∞ ‖∇vk‖ ≥ ‖∇w‖,

we see that w ∈ P0(Ω,Rd). For any face Γi we have (in view of the trace theorem)

‖vk − w‖2,Γi ≤ C
(‖vk − w‖2,Ω + ‖∇vk‖2,Ω

)

. (28)

We recall (25) and (27) and conclude that the traces of vk on Γi converge to the trace
of w. Since vk · n(i) have zero means,

w · ni |Γi | =
∫

Γi

w · ni dΓ = 0 (29)

andw is orthogonal to d linearly independent vectors, i.e.,w = 0. On the other hand,
‖w‖ = 1. We obtain a contradiction, which shows that the assumption is not true.

We notice that conditions of the Theoremare very flexiblewith respect to choosing
Γi and vectors n(i) entering the integral type conditions (21). Probably the most
interesting case is where n(i) are defined as unit outward normals to faces Γs . If
d = 2, then we can also define n(i) as unit tangential vectors. Moreover, in the
proof it is not essential that n(i) is strictly related to one face Γi (only the condition
(20) is essential). For example, if d = 3 then we can define two vectors as two
mutually orthogonal tangential vectors of one face and the third one as a normal
vector to another face. Theorem holds for this case as well. Henceforth, for the sake
of definiteness we assume that n(i) are normal vectors or mean normal vectors (for
curvilinear faces) associated with faces Γi , i = 1, 2, . . . , d. Possible modifications
of the results to other cases are rather obvious.

3.1 Value of the Interpolation Constant for d = 2

Estimates of the constant C(Ω, Γ1, Γ2) follow from (7) and depend on the constants
CΓi (Ω). Below we deduce explicit and easily computable bounds of C(Ω, Γ1, Γ2).

First, we consider a special, but important case where Ω is a polygonal domain
in R2. Let Γ1 and Γ2 be two faces selected for the interpolation of v. The respective
normals n(1) = (n(1)

1 , n(1)
2 ) and n(2) = (n(2)

1 , n(2)
2 ) must satisfy the condition (20),

which means that
∠(n(1),n(2)) = β ∈ (0, π).

Let the conditions (21) hold. Then

‖n(1)
1 v1 + n(1)

2 v2‖2 ≤ C2
Γ1

(Ω)‖n(1)
1 ∇v1 + n(1)

2 ∇v2‖2, (30)

‖n(2)
1 v1 + n(2)

2 v2‖2 ≤ C2
Γ2

(Ω)‖n(2)
1 ∇v1 + n(2)

2 ∇v2‖2. (31)
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Introduce the matrix

T := n(1) ⊗ n(1) + n(2) ⊗ n(2) =
(

(n(1)
1 )2 + (n(2)

1 )2 n(1)
1 n(1)

2 + n(2)
1 n(2)

2

n(1)
1 n(1)

2 + n(2)
1 n(2)

2 (n(1)
2 )2 + (n(2)

2 )2

)

.

Here and later on ⊗ denotes the diadic product of vectors. Summation of (30) and
(31) yields

∫

Ω

Tv · vdx1dx2 ≤ C2
∫

Ω

(T11|∇v1|2 + 2T12∇v1 · ∇v2 + T22|∇v2|2)dx1dx2, (32)

where
C = max{CΓ1(Ω); CΓ2(Ω)}.

It is easy to see that T is a positive definite matrix. Indeed,

det(T − λE) = ((n(1)
1 )2 + (n(2)

1 )2 − λ)((n(1)
2 )2 + (n(2)

2 )2 − λ) − (

n(1)
1 n(1)

2 + n(2)
1 n(2)

2

)2

= λ2 − 2λ + (

n(1)
1 n(2)

2 − n(2)
1 n(1)

2

)2 = λ2 − 2λ + (det N)2 ,

where

N :=
(

n(1)

n(2)

)

.

Hence for any vector b, we have λ1|b|2 ≤ Tb · b ≤ λ2|b|2, and

λ1,2 = 1 ∓
√

1 − (det N)2.

If n(1) and n(1) are orthogonal, then det N = 1 and the unique eigenvalue of N is
λ = 1. In this case, the left hand side of (32) coincides with ‖v‖2. In all other cases
det N < 1 and λ1 < λ2.

We can always select the coordinate system such that

n(1)
1 = 1, n(1)

2 = 0, n(2)
1 = − cosβ, n(2)

2 = sin β.

Then,
T11 = 1 + cos2 β, T22 = 1 − cos2 β, T12 = − sin β cosβ,

and the matrix is

N :=
(

1 0
− cosβ sin β

)

.

We see that det N = sin β, and λ1 = 1 − | cosβ|.
Consider the right-hand side of (32). It is bounded from above by the quantity
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I (v) := C2
∫

Ω

(

(T11 + γ |T12|)|∇v1|2 + (T22 + γ −1|T12|)|∇v2|2
)

dx,

where γ is any positive number. We define γ by means of the relation T11 − T22 =
(γ −1 − γ )|T12|, which yields γ = 1−| cosβ|

sin β
. Then,

I (v) ≤ (1 + | cosβ|)‖∇v‖2. (33)

From (32) and (33), we find that

‖v‖ ≤ max
i=1,2

{

CΓi (Ω)
}

√

1 + | cosβ|
1 − | cosβ| ‖∇v‖. (34)

This is the Poincaré type inequality for the vector valued function v with zero mean
normal traces on Γ1 and Γ2. It is worth noting that for small β (and for β close to
π ) the constant blows up. Therefore, interpolation operators (considered in Sect. 4)
should avoid such situations.

3.2 Value of the Interpolation Constant for d ≥ 3

Now we are concerned with the general case and deduce the estimate valid for any
dimension d. In view of (21) we have

d
∑

k=1

‖n(k) · v‖22,Ω ≤ C2
d
∑

k=1

∫

Ω

(

d
∑

i=1

n(k)
i ∇vi

)2

dx, (35)

where
C = max

k=1,2,...,d

{

CΓk (Ω)
}

.

In view of the relation

(n(k) ⊗ n(k))v · v = (n(k)(n(k) · v)) · v = (n(k) · v)2,

the left-hand side of (35) is
∫

Ω

Tv · v, where

T :=
d
∑

k=1

n(k) ⊗ n(k). (36)
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Ifn(k) form a linearly independent system, then T is a positive definitematrix. Indeed,
Tb · b = ∑d

k=1(n
(k) · b)2. Hence, Tb · b = 0 if and only if b has zero projections to

d linearly independent vectors n(k), i.e., Tb · b = 0 if and only if b = 0. Therefore,

λ1 ‖v‖2 ≤
∫

Ω

Tv · v dx, (37)

where λ1 > 0 is the minimal eigenvalue of T .
Consider the right hand side of (35). We have

∫

Ω

(

d
∑

i=1

n(k)
i ∇vi

)2

dx =
∫

Ω

d
∑

i, j=1

n(k)
i n(k)

j ∇vi · ∇v j dx

=
d
∑

i, j=1

n(k)
i n(k)

j

∫

Ω

∇vi · ∇v j dx = n(k) ⊗ n(k) : G,

where

G(v) := {Gi j }, Gi j (v) =
∫

Ω

∇vi · ∇v j dx.

Hence,
d
∑

k=1

∫

Ω

(

d
∑

i=1

n(k)
i ∇vi

)2

dx = T : G(v) ≤ |T | |G(v)|. (38)

Now (35), (36), (37), and (38) yield the estimate

‖v‖2 ≤ C2 1

λ1
|T | |G(v)| ≤ C2 d

λ1
|G(v)|.

Since |G(v)| ≤ ‖∇v‖2, for any v ∈ H 1(Ω,Rd) satisfying (21) we have

‖v‖ ≤ C

√

d

λ1
‖∇v‖. (39)

In other words, the constant in (39) can be defined as follows:

C(Ω, Γ1, Γ2, . . . , Γd) = max
k=1,2,...,d

{CΓk (Ω)}
√

d

λ1
,

where λ1 is the minimal eigenvalue of T .
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For d = 2 this estimate exposes a slightly worse constant than (34) with the factor
√

2
1−| cosβ| instead of

√

1+| cosβ|
1−| cosβ| .

4 Interpolation of Functions

The classical Poincaré inequality (1) yields a simple interpolation operator IΩ :
H 1(Ω) → P0(Ω) defined by the relation IΩw := {|0|} wΩ . In view of (1), we know
that

‖w − IΩw‖2,Ω ≤ CP(Ω)‖∇w‖2,Ω,

which means that the interpolation operator is stable and CP(Ω) is the respective
constant.

Above discussed estimates for functions with zero mean traces yield somewhat
different interpolation operators for scalar and vector valued functions. For a scalar
valued functionw ∈ H 1(Ω), we set IΓ (w) := {|0|} wΓ , i.e., the interpolation operator
uses mean values of w a d − 1-dimensional set Γ . Since {|0|} w − IΓ wΓ = 0, we use
(7) and obtain the interpolation estimate

‖w − IΓ w‖2,Ω ≤ CΓ (Ω)‖∇w‖2,Ω,

where the constant CΓ appears as the interpolation constant. Analogously, (8) yields
an interpolation estimate for the boundary trace

‖w − IΓ w‖2,Γ ≤ CTr
Γ ‖∇w‖2,Ω .

Applying these estimates to cells of meshes we obtain analogous interpolation esti-
mates for mesh interpolation of scalar functions with explicit constants depending
on character diameter of cells.

For the interpolation of vector valued functions we use (39) and generalise this
idea.

4.1 Cells with Plane Faces

Define the operator

IΓ1,Γ2,...,Γd : H 1(Ω,Rd) → P0(Ω,Rd)

that performs zero order interpolation of a vector valued function v usingmean values
of normal components on the faces Γi , i = 1, 2, . . . , d. In this case, we set
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∫

Γi

(

IΓ1,Γ2,...,Γdv
) · n(i) dΓ =

∫

Γi

v · n(i) dΓ i = 1, 2, . . . , d. (40)

This condition means that the interpolation must preserve integral values of normal
fluxes on d selected faces. In general, we may define several different operators
associatedwith different collections of faces.However, once the set ofΓ1, Γ2, . . . , Γd

satisfying (20) has been defined, the operator IΓ1,Γ2,...,Γd uniquely defines the vector
IΓ1,Γ2,...,Γd v. In view of (40) and the identity

(

IΓ1,Γ2,...,Γdv
) · n(i) = (IΓ1,Γ2,...,Γdv) je j · n(i),

we conclude that the components of the interpolated field are uniquely defined by
the system

d
∑

j=1

n(i)
j (IΓ1,Γ2,...,Γd v) j = 1

|Γi |
∫

Γi

v · n(i) dΓ i = 1, 2, . . . , d.

Define w := v − IΓ1,Γ2,...,Γsv. From (40), it follows that

{|0|}w · n(i)
Γi = 0 i = 1, 2, . . . , d.

Therefore, we can apply Theorem 1 to w and find that

‖w‖Ω ≤ C(Ω, Γ1, . . . , Γd)‖∇w‖Ω. (41)

Since ∇w = ∇v, (41) yields the estimate

‖v − IΓ1,Γ2,...,Γdv‖Ω ≤ C(Ω, Γ1, . . . , Γd)‖∇v‖Ω, (42)

where C(Ω, Γ1, . . . , Γd) depends on the constants CΓi (see Sect. 3.2).

4.2 Cells with Curvilinear Faces

Let Ω be a Lipschitz domain with a piecewise smooth boundary consisting of faces
Γ1,Γ2,…,ΓN (see Fig. 3). In order to avoid complicated topological structures (which
may lead to difficulties with definitions of “mean normals”), we assume that all the
faces are such that normal vectors are defined at all points and impose an additional
condition

ni (x (1)) · ni (x (2)) > 0 ∀x (1), x (2) ∈ Γi , i = 1, 2, . . . , d.
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Fig. 3 Cells with curvilinear
faces in 2D and 3D

Then, we can define the mean normal vector associated with Γi :

n̂(i) :=
⎧

⎨

⎩

1

|Γi |
∫

Γi

n(i)
1 dΓ,

1

|Γi |
∫

Γi

n(i)
2 dΓ, . . . ,

1

|Γi |
∫

Γi

n(i)
d dΓ

⎫

⎬

⎭

.

It is not difficult to verify that Theorem 1 holds if N is replaced by ̂N formed by
mean normal vectors, i.e.,

det ̂N �= 0, where n̂(i)
j := n̂(i) · e j , (43)

and (21) is replaced by the condition

{|0|} v · n̂(i)
Γi = 0 i = 1, 2, . . . , d.

In other words, for cells with curvilinear faces the necessary interpolation condition
reads as follows: mean values of normal vectors averaged on faces must form a
linearly independent system satisfying (43).

The operator IΓ1,Γ2,...,Γd v is defined by modifying the condition (40). Since

∫

Γi

IΓ1,Γ2,...,Γdv · n(i) dΓ = IΓ1,Γ2,...,Γdv · n̂(i)
∣

∣Γi

∣

∣,

the function IΓ1,Γ2,...,Γd v is defined by the system

d
∑

j=1

n̂(i)
j (IΓ1,Γ2,...,Γd v) j = 1

|Γi |
∫

Γi

v · n(i) dΓ i = 1, 2, . . . , d.

By repeating the same arguments, we obtain the estimate (42) for the function
IΓ1,Γ2,...,Γdv.
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4.3 Comparison of Interpolation Constants for IΩ and IΓ

4.3.1 Triangles

First, we compare five different interpolation operators for the right triangle with
equal legs (see Fig. 4). For the interpolation operator IΩ (Fig. 4a) we have (6), where
(4) yields the upper bound of the respective interpolation constant

CP(Ω) ≤ √
2

h

π
≈ 0.4502h.

Four different operators IΓ are generated by setting zero mean values on one leg
(Fig. 4b), two legs (Fig. 4c), median (Fig. 4d), and hypothenuse (Fig. 4e)

‖w − IΓ (w)‖2,Ω ≤ CΓ (Ω)h‖∇w‖2,Ω .

The respective constants follow from Table1. For Fig. 4b, CΓ (Ω) = h
ζ

≈ 0.4929h,

for Fig. 4c CΓ (Ω) = h
π

≈ 0.3183h, for Fig. 4d, e CΓ (Ω) = h
ζ
√
2

≈ 0.3485h.
We can use these data and compare the efficiency of IΓ and IΩ for uniform

meshes which cells are right equilateral triangles (Fig. 4f). For a mesh with 2nm
cells, the operator IΩ uses 2nm parameters (mean values on triangles) and provides
interpolation with the constant CP. The operator IΓ using mean values on diagonals
(see Fig. 4e) has almost the same constant but needs only nm parameters.

4.3.2 Squares

Similar results hold for square cells. For the interpolation operator IΩ (Fig. 5a) we
have the exact constant CP = π

h . The constants for IΓ are as follows. For Fig. 5b,

Fig. 4 Triangular cells
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Fig. 5 Square cells

CΓ = h
π
, for Fig. 5c, dCΓ = 2h

π
, and for Fig. 5eCΓ = h

2.869 .We see that for a uniform
mesh with square cells IΓ and IΩ have the same efficiency if Γ is selected as on
Fig. 5d or e.

4.4 Interpolation on Macrocells

Advanced numerical methods and respective computer programs often operate with
macrocells (see, e.g., [6, 7, 13, 14, 17, 20, 22] and references cited therein). Let
Ω be a macrocell consisting of N simple subdomains ωi (e.g., simplexes). Let the
boundary Γ consist of faces Γi (each Γi is a part of some subdomain boundary ∂ωi ).
For w ∈ H 1(Ω) we define IΓ w as a piecewise constant function that satisfies the
conditions

{|0|} w − IΓ wΓi
= 0 i = 1, 2, . . . , N .

Then, we can apply interpolation operators Iγi to any subdomain ωi and find that for
the whole cell

‖w − IΓ w‖22,Ω =
N
∑

i=1

‖w − IΓ w‖22,ωi
≤

N
∑

i=1

C2
γi
‖∇w‖22,ωi

≤ C2
Γ ‖∇w‖22,Ω, (44)

where CΓ = maxi {CΓi }.
Estimates for vector valued functions are derived quite similarly. For example, let

d = 2 and Ω be a polygonal domain with N faces. If N is an odd number, then we
form out of Γi a set of K pairs {Γ (l)

1 , Γ
(l)
2 }, l = 1, 2, . . . , K such that the respective

subdomains cover Ω and for each pair n(l)
1 and n(l)

2 satisfy (20). Then, IΓ v can
be defined as a piecewise constant field in each pair of subdomains ω

(l)
1 ∪ ω

(l)
2 that

satisfies
{|0|} (v − IΓ v) · ni Γi

= 0 i = 1, 2, . . . , N .
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Analogously to (44), we obtain

‖v − IΓ v‖2,Ω ≤ C‖∇v‖2,Ω v ∈ H 1(Ω,R2), (45)

where C = max
l=1,2,...,K

C
Γ

(l)
1 ,Γ

(l)
2

(ω
(l)
1 ∪ ω

(l)
2 ).

4.5 Interpolation on Meshes

Finally, we shortly discuss applications to mesh interpolation. It is clear that analo-
gous operators IΓ can be constructed for scalar and vector valued functions defined
in a bounded Lipschitz domain Ω , which is covered by a mesh Th with sells Ωi ,
i = 1, 2, . . . , Mh .

Let Ωi be Lipschitz domains such that Ωi ∪ Ω j = ∅ if i �= j and

Ω =
Mh
⋃

i=1

Ω i .

We assume that c1h ≤ diamΩi ≤ c2h for all i = 1, 2, . . . Mh , where c2 ≥ c1 > 0
and h is a small parameter. The intersection of Ω i and Ω j is either empty or a face
Γi j (which is a Lipschitz domain in R

d−1). By Eh we denote the collection of all
faces in Th .

It is easy to see that a function w ∈ H 1(D) can be interpolated by a piecewise
constant function on cells of Th if we set

ITh (w)(x) = IΓi w(x) = {|0|} wΓi if x ∈ Ωi .

Here Γi is a face of Ωi selected for the local interpolation operator. Then,

‖w − ITh (w)‖2,Ω ≤ C(Th) ‖∇w‖2,Ω, (46)

where C(Th) is the maximal constant in inequalities (7) associated with Ωi , i =
1, 2, . . . , Mh . We note that the amount of parameters used in such type interpolation
is essentially smaller than the amount of faces in Th .

If ITh is constructed by means of averaging on each face Γi j then (46) holds with
a better constant and ITh w possesses an important property: it preserves mean values
of w.

Similar consideration is valid for vector valued functions. If we define the inter-
polation operator ITh (v)(x) on Th by the conditions

IThv · ni j = {|0|} v · ni j Γi j
∀Γi j ∈ Eh,
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then
‖v − IThv‖2,Ω ≤ C(Th) ‖∇v‖2,Ω,

where C(Th) is the maximal constant in the inequalities (45) used for Ωi , i =
1, 2, . . . , N (Th). The function IThv possesses an important property: it preserves
mean values of v · ni j on all the faces of Th .
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Ensemble Interpretation of Quantum
Mechanics and the Two-Slit Experiment

Glenn F. Webb

Abstract An evolution equation model is provided for the two-slit experiment of
quantum mechanics. The state variable of the equation is the probability density
function of particle positions. The equation has a local diffusion term corresponding
to stochastic variation of particles, and a nonlocal dispersion term corresponding
to oscillation of particles in the transverse direction perpendicular to their forward
motion. The model supports the ensemble interpretation of quantum mechanics and
gives descriptive agreement with the Schrödinger equation model of the experiment.

1 Introduction

In the two-slit experiment of quantum mechanics electrons or other quantum par-
ticles are randomly directed toward two slits one at a time, and then detected on a
screen downstream. If only one slit is open, a roughly Gaussian pattern is observed
corresponding to the width of the slit. But, if both slits are open, an interference pat-
tern of regularly spaced intensities is observed, which is not the sum of the patterns
observed for the slits separately [3, 6, 19, 21, 26, 37–39]. A detailed description of
the two-slit experiment in given in [10]. Feynman [14] observed that the interference
pattern arising from the two-slit experiment is

... impossible, absolutely impossible to explain in any classical way, and has in it the heart
of quantum mechanics.

It is possible to formulate this experiment in terms of the time-dependent complex-
valued non-relativistic Schrödinger equation, which is the foundational model of
quantum mechanics:
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∂

∂t
ψ(x, t) = i

�

2m

∂2

∂x2
ψ(x, t), t > 0, ψ(x, 0) = ψ0(x), −∞ < x < ∞. (1)

Here � is the reduced Planck’s constant and m is the particle mass, which without
loss of generality can be assumed to satisfy �

m = 1. The interpretation of the solution
is that

∫ x2
x1

ρ(x, t)dx is the probability of finding the particle in the interval (x1, x2) at
time t , where ρ(x, t) = |ψ(x, t)|2, and ρ(x, 0) = |ψ0(x)|2 is normalized so that 1 =∫ ∞
−∞ ρ(x, 0)dx . This formulation, however, is ambiguous in its interpretation of the
state variable ψ , time t , and the initial condition ψ0. What do the real and imaginary
parts of ψ represent? What is time t in an experiment with randomly separated
independent temporal events? What does the initial condition ψ0 correspond to for
single particles emitted one at a time?

In current paradigms of quantum mechanics this ambiguity is answered by spec-
ifying the Schrödinger equation solutions to individual particle behavior, rather than
to aggregate multi-particle behavior. Although it is always possible to apply a proba-
bilistic population model to a single individual, these paradigms extend their proba-
bilistic interpretation to an assumption of multi-state existences of single individuals.
In these interpretations a single particlemayexist in indefinite super-positionedmulti-
states simultaneously, traverse all possible paths from source to detection, collapse to
one state with detection by a conscious observer, and bifurcate to separate existences
in parallel universes. An alternative to these metaphysical interpretations of quan-
tum mechanics is the statistical or ensemble interpretation of quantum mechanics
advanced by Einstein [13, 31], Born [8], Popper [29], Lande [22, 23], and Ballen-
tine [4, 5]. In this view of quantum mechanics, the Schrödinger equation is only a
mathematical probabilistic description of ensemble behavior. In the view of Einstein
[31]

The attempt to conceive the quantum-theoretical description as the complete description of
the individual systems leads to unnatural theoretical interpretations, which become imme-
diately unnecessary if one accepts the interpretation that the description refers to ensembles
of systems and not to individual.

Our objective here is to support the ensemble interpretation of quantummechanics
by providing an alternative differential equation model for the two-slit experiment,
which has an evident ensemble probabilistic interpretation, and which gives descrip-
tive agreement with the Schrödinger equation model.

2 Schrödinger Equation for the Two-Slit Experiment

We interpret the initial condition of the Schrödinger equation as a probabilistic distri-
bution of possible starting points of individual particles in relation to their arrival at
the two slits. We first consider the initial condition ψ(x, 0) = Reψ(x, 0) in (1) cor-
responding to ρ(x, 0, s) as a single Gaussian distribution with mean s and standard
deviation a:
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ψ(x, 0, s) =
exp

(
− (s−x)2

4a2

)

(2π)
1
4
√
a

, ρ(x, 0, s) =
exp

(
− (s−x)2

2a2

)

√
2πa

. (2)

In this case the solution of (1) for the single slit is given by the formulas

ψ(x, t, s) =
2

1
4
√
a exp

(
− (s−x)2

2(2a2+i t)

)

π
1
4

√
2a2 + i t

, ρ(x, t, s) =
√
2a exp

(

− (
√
2a(s−x))

2

4a4+t2

)

√
π

√
4a2 + t2

(3)
For the case of two slits the initial dataψ(x, 0) = Reψ(x, 0) in (1) corresponds to

ρ(x, 0) as two Gaussian distributions, both with standard deviation a, and means at
±s from the origin. We note that by scaling with respect to s, we can assume without
loss of generality that s = 1. We assume that the standard deviation parameter a is
very much less than the slit separation distance 2s = 2. Let

ψ(x, 0) =
exp

(
−(1+x)2

2a2

) (
1 + exp( 2xa2 )

)

π
1
4

√
2a

,

ρ(x, 0) =
exp

(
−(1+x)2

a2

) (
1 + exp( 2xa2 )

)2

√
π2a

.

(4)

Then ψ(x, t) and ρ(x, t) = |ψ(x, t)|2 for the two-slit case satisfy (1), where

ψ(x, t) =
√
a exp

(
− (1+x2)

a2+i t

) (
exp

(
(x−1)2

2(a2+i t)

)
+ exp

(
(x+1)2

2(a2+i t)

))

√
2π

1
4

√
a2 + i t

ρ(x, t) =
a exp

(
− a2+a2x2

a4+t2

) (
cosh

(
2a2x
a4+t2

)
+ cos

(
2t x

a4+t2
))

√
π

√
a4 + t2

(
e− 1

a2 + 1
)

(5)

(these formulas are found in [24, 25, 40]). The initial data (4) for the two-slit case is
illustrated in Fig. 1.

The solutions of (1) exhibit a two phase pattern as time advances. In the first phase
the initial information ρ0(x) evolves to an established pattern and in the second phase
the pattern established in the first phase undergoes a space-time dilation [35, 40].
The first phase of ρ(x, t) (Fig. 2) exhibits an extremely elaborate transition from the
initial condition ρ0(x) to the formed interference pattern completed at time t ≈ 1/π
for a sufficiently small. The established pattern has the property that the bottom
peaks touch-down (approximately) to the x-axis.

In the second phase the pattern established in the first phase undergoes a space-
time dilation. Specifically, the probability amplitude ρ(x, t) satisfies as T increases
and t ≥ 1
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(a) (b)

Fig. 1 Initial data for the two-slit experiment corresponding to two Gaussian distributions as in
(4), with a = 0.1. a ψ(x, 0) = Reψ(x, 0); b the initial probability amplitude ρ(x, 0) = |ψ(x, 0)|2.
The imaginary part of ψ(x, 0) is 0

(a) (b)

(c) (d)

Fig. 2 The first phase of ρ(x, t) and ψ(x, t) with initial condition as in Fig. 1 with a = 0.1 at
four different times. ρ(x, t) (blue), Reψ(x, t) (green), Imψ(x, t) (red). a t = 0.05; b t = 0.08; c
t = 0.15; d t = 1.0/π . The first phase is completed at time ≈ 1.0/π for a sufficiently small

ρ(x, tT ) ≈ 1

t
ρ

( x

t
, T

)
. (6)

In the second phase of ρ(x, t) the information in ρ(x, t) is (essentially) unchang-
ing in time ad infinitum. Indeed, the profiles of ρ(x, tT ) and 1

t ρ( xt , T ) become
almost indistinguishable as T increases (Fig. 3). In the second phase the peaks of
the wave profile ρ(x, t) propagated in the traverse x-direction at constant velocity
x/π , provided a is sufficiently small. That is, the first right peak occurs at t at time
t/π , the second right peak is at 2t/π at time t/π , etc. In [40] it is proved that for
general initial data ψ0 ∈ L1(((−∞,∞);C), y2dy) ∩ L2((−∞,∞);C) in (1) the
probability distribution ρ(x, t) satisfies the asymptotic space-time dilation property:
for x ∈ (−∞,∞), T > 0, t ≥ 1
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Fig. 3 The second phase of ρ(x, t) with initial condition as in Fig. 1 with a = 0.1 at four different
times. a ρ(x, 1.0/π); b ρ(x, 5.0/π); c ρ(x, 10.0/π); d ρ(x, 100.0/π)

∣
∣
∣
∣ρ(x, tT ) − 1

t
ρ

( x

t
, T

)∣
∣
∣
∣ ≤

√
2

π tT 2

(∫ ∞

−∞
y2|ψ0(y)|dy

) (∫ ∞

−∞
|ψ0(y)|dy

)

. (7)

In [40] it is proved that the relationship of u(x, tT ) and 1
t u( xt , T ) is an exact

equality for the solution of the partial differential equation

∂

∂t
u(x, t) = −1

t

∂

∂x
(xu(x, t)) , u(x, 1) = u1(x), u1 ∈ L1(−∞,∞), x ∈ (−∞,∞), t > 1,

(8)
where u(x, t) = 1

t u1(
x
t ), with u1(x) sufficiently smooth.

3 Ensemble Equation for the Two-Slit Experiment

3.1 First Phase of the Ensemble Equation

The ensemble equation for the two-slit experiment has as independent variables the
transverse directionparallel to the slit openings and the detectionplate (x-coordinate),
and the forward direction perpendicular to the slit openings and detection plate (z-
coordinate). It is assumed that particle positions vary relative to the experimental
apparatus and are not uniformly absolute with respect to any reference point. For
simplicity, it is assumed that the position of particles is independent of the vertical
height of the slit openings.

The dependent variableω(x, z) in the ensemble equation is the probability density
function for the distribution of particle positions at the detection distance z. Time in
the ensemble model of the two-slit experiment has no role, since quantum particles
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are sent toward the slits independently in time. The time variable t in the Schrödinger
Equation (1) can be correlated to the downstreamdistance z in the ensemble equation.
The ensemble equation is a phenomenological model for aggregate macro-behavior
of particle movement, rather than a mechanistic model for individual micro-behavior
of particle movement.

The ensemble equation incorporates a local diffusion term (with parameter α) and
a nonlocal dispersion term (with parameter β). The local diffusion term represents
stochastic variation in the x-coordinate. The nonlocal dispersion term represents
environmental signaling in an x-coordinate signaling range. The nonlocal dispersion
termcorresponds to an x-directionmovement through an environmentwith outermost
reach equal to the discrete slit separation constant s. The equations of the model are

∂

∂z
ω(x, z) = α

∂2

∂x2
ω(x, z) + β

∂

∂x

(∫ s

−s
ω(x + x̂, z)

x̂

|x̂ |dx̂
)

,

= α
∂2

∂x2
ω(x, z) + β (ω(x + s, z) − 2ω(x, z) + ω(x − s, z)) ,

z > 0, −∞ < x < ∞,

ω(x, 0) = ω0(x), ω0 ∈ L1
+(−∞,∞),

∫ ∞

−∞
ω0(x)dx = 1.

(9)

The solutionof (9) has theproperties thatω(x, z) ≥ 0, z ≥ 0, and
∫ ∞
−∞ ω(x, z)dx =

1 for z ≥ 0, and may thus be viewed as probability density functions. The nonlocal
term in (9) is similar to models of biological cell movement in which individual
cells have a sensing radius for reaction to their environment [2, 12, 27, 32]. Such
terms model aggregate cell population behavior, such as contact-mediated disper-
sal, cell-cell adhesion, and self-organization of spatial patterning. The simulations
of cell population patterns in such models bear a remarkable similarity to quantum
interference patterns [27, 32].

As with the solutions of the Schrödinger Equation (1), the solutions ω(x, z) of
(9), with initial data corresponding to the two-slit experiment, have a two-phase
behavior—the first phase in which the initial data ω(x, 0) = ρ(x, 0) as in (5) is
transitioned in the z coordinate to an interference pattern in the x coordinate, and
the second phase in which the bottom peaks of ω(x, z) undergo (approximately) a
lift-off from the x-axis. We illustrate the first phase in Fig. 4 with the initial condition
ρ(x, 0) as in Fig. 1 (a = 0.1). The diffusion parameter is α = 1/8π and the nonlocal
dispersion parameter is β = 1/(4a)2. The initial data transitions to the formed inter-
ference pattern in a simple way. As with the solutions of (1), where the first phase
is completed at time t ≈ 1/π , the first phase of the solutions of (9) are completed
in the z-direction at z ≈ 1/π (a sufficiently small). The choice of the parameters α

and β assures that ρ(x, t) and ω(x, z) align (approximately) at the end of the first
phase, with peak spacing at x ≈ 0,±1,±2, . . ., independently of a, for a sufficiently
small. In Fig. 5 we compare ρ(x, t) and ω(x, z) at the end of the first phase for four
different values of the slit parameter a.
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Fig. 4 The first phase ofω(x, t) (red) and ρ(x, t) (blue) with initial condition ρ(x, 0) as in Fig. 1 at
four different times. a t = 0.05; b t = 0.08; c t = 0.15; d t = 1/π . The parameters are α = 1/(8π),
β = 1.0/(4.0a)2, a = 0.1. The areas under all the graphs are ≈ 1.0

Fig. 5 ρ(x, 1/π) (blue) and ω(x, 1/π) (red) at the end of the first phase with initial condition
ρ(x, 0) as in (5) with four different values of the standard deviation parameter a. The parameters
areα = 1/(8π),β = 1.0/(4.0a)2. a a = 0.1;b a = 0.04; c a = 0.08;d a = 0.12. The peak spacing
occurs at x ≈ 0,±1,±2, . . ., independently of a, for a sufficiently small
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3.2 Second Phase of the Ensemble Equation

In the second phase of the ensemble equation, after the interference pattern is estab-
lished, the solutions of the Schrödinger Equation (1) and the ensemble Equation
(5) are very different. The solutions ρ(x, t)) = |ψ(x, t)|2 of the Schrödinger Equa-
tion (1) undergo space-time dilation in the traverse x-direction. In the Appendix we
prove that the solutions ω(x, z) of the ensemble Equation (9), for any initial condi-

tion ω0, are asymptotic as z → ∞ to the Gaussian distribution exp
(
− x2

2σ 2

)
/
√
2πσ

with mean 0 and standard deviation σ = √
2.0(α + β)z. The information in the

Schrödinger equation is conserved for all time,whereas the information in the ensem-
ble equation is dispersed over increasing distance from the plane of the 2-slits.
In a letter from H. A. Lorentz to Schrödinger, May 27, 1926, Lorentz questioned
Schrödinger’s recently proposed wave equation as a model of a moving wave packet
for a representation of a particle [30]:

…But a wave packet can never stay together and remain confined to a small volume in
the long run. The slightest dispersion in the medium will pull it apart in the direction of
propagation, and even without that dispersion it will always spread more and more in the
transverse direction. Because of this unavoidable blurring a wave packet does not seem to
be very suitable for representing things to which we want to ascribe a rather permanent
individual existence ….

In Fig. 6 we illustrate the dispersion of solutions of the ensemble equation in
the second phase. In Fig. 7 we compare the Schrödinger equation solutions and the
ensemble equation solutions in the second phase.

4 Schrödinger and Ensemble Equations with 1-Slit

The Schrödinger equation and the ensemble equation are comparable if only one
slit is open. We take as the initial condition for the Schrödinger equation ψ(x, 0, s)
with s = 1 as in (2), which corresponds to a single slit on the right-hand side one
spatial unit distance from the origin. We take as the initial condition for the ensemble
equation ρ(x, 0, 1) as in (2). We note that the integral of ρ(x, 0, 1) from−∞ to+∞
is 1.

We take as the ensemble equation for this one slit case equation (9) with α =
3/(4a)2 and β = 1/(4a)2. Since this value of α is different from the value of α for
the two-slit ensemble Equations (9), the solution of the ensemble equation for two
slits is not the sum of the solutions of the ensemble equation for the right-hand slit
and the left-hand slit.

There is again a two-phase behavior of the probability amplitudesρ(x, t). The first
phase of ρ(x, t) is completed at time t ≈ 2.0 for s = 1.0 and a sufficiently small, and
in the second phase, ρ(x, t) undergoes a space-time dilation as in Eq. 7 (Fig. 8). In
Fig. 9 both ρ(x, t) and ω(x, z) are graphed at t = z = 2.0 (the end of the first phase
of ρ(x, t)) for different values of the parameter a, where it is seen that the two graphs
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Fig. 6 The second phase of the solutions ω(x, t) of the ensemble Equation (9) (red graphs)
with initial condition ω(x, 0) = ρ0(x) as in Fig. 1 at four different values of the propagation
coordinate z = t . a ω(x, 1.0/π); b ω(x, 2.0/π); c ω(x, 4.0/π); d ω(x, 6.0/π). The parame-
ters are α = 1/(8π), β = 1.0/(4.0a)2, a = 0.1. The green graphs are the Gaussian distributions

exp
(
− x2

2σ 2

)
/
√
2πσ with σ = √

2.0(α + β)z = √
2.0(α + β)t
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Fig. 7 The second phase of the solutions ρ(x, t) of the Schrödinger equation (blue) and the ensem-
ble equation ω(x, t) (red) with initial condition ρ(x, 0) = ω(x, 0) = ρ0(x) as in Fig. 1 at four
different values of the propagation coordinate z = t . a ω(x, 1.0/π); b ω(x, 2.0/π); c ω(x, 4.0/π),
d ω(x, 6.0/π). The parameters are α = 1/(8π), β = 1.0/(4.0a)2, a = 0.1. The green graphs are
the Gaussian distributions as in Fig. 6
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Fig. 8 The probability amplitudes ρ(x, t) of the Schrödinger equation with only the right slit open
at various times. The green graphs are ρ(x, tT ) and the blue graphs are ρ(x/t, T )/t . a T = 0.1,
t = 1, 2, 3; b T = 0.5, t = 1, 2, 3; c T = 2.0, t = 1, 2, 3. The solutions exhibit space-time dilation
for T > 2.0. The standard deviation parameter is a = 0.1

(a) (b)

(c)

Fig. 9 The graphs of ρ(x, 2.0) (blue) and ω(x, 2.0) (red) for a a = 0.1; b a = 0.15; c a = 0.05.
The parameters in (9) are α = 3/(4a)2 and β = 1 (4a2). The graphs are almost identical. The
parameters for the ensemble Equation (9) are a = 0.1, α = 3/(4a)2, and β = 1/(4a)2
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(a) (b)

(c)

Fig. 10 The graphs of ρ(x, t) (blue) and ω(x, z) (red) for a t = z = 0.1; b t = z = 1.0; c
t = z = 10.0. The parameter a = 0.1. The parameters for the ensemble Equation (9) are α =
3/(4a)2, and β = 1/(4a)2. The green graphs are Gaussians with mean 0 and standard deviation
σ = √

2.0(α + β)z = √
z/2/a. The graphs of ρ(x, t) disperse much faster than the graphs of

ω(x, z) as t = z → ∞

essentially agree. The behavior of ρ(x, t) and ω(x, z) as z = t → ∞ is illustrated
in Fig. 10, where it is seen that ρ(x, t) disperses in the transverse x-direction much
faster than ω(x, z) as t = z → ∞.

5 Asymptotic Behavior of the Schrödinger and Ensemble
Equations

For arbitrary initial data ψ0 the probability amplitude ρ(x, t) of the Schrödinger
Equation (1) satisfies [18, 20]

ρ(x, t) = 1

2π t

∣
∣
∣
∣

∫ ∞

−∞
ei(

y2−2xy
2t )ψ0(y)dy

∣
∣
∣
∣

2

, −∞ < x < ∞, t > 0,

which implies for x ∈ bounded intervals of (−∞,∞)

lim
t→∞ tρ(x, t) = 1

2π

∣
∣
∣
∣

∫ ∞

−∞
ψ0(y)dy

∣
∣
∣
∣

2

.
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For arbitrary initial data ρ0 the solutionω(x, z) of the ensemble Equation (9) satisfies
(see Appendix)

lim
t→∞

√
zω(x, z) = 1

2
√

α + β
uniformly in bounded intervals of x .

For the one slit and the two slit examples, the asymptotic behavior of ρ(x, t) and
ω(x, z) as t = z → ∞ is as follows: For one slit initial dataψ(x, 0, 1) and ρ(x, 0, 1)
as in (2), (3) implies

lim
t→∞ tρ(x, t) = a

√
2/π.

For one slit and initial data ω(x, 0) = ρ(x, 0, 1) as in (2), α = 3.0/(4.0a)2, β =
1.0/(4.0a)2 as in (9)

lim
z→∞

√
zω(x, z) = 1

2
√

π(α + β)
= 2a2√

π
.

For two slits and initial data ψ(x, 0, 1) and ρ(x, 0, 1) as in (3), (5) implies

lim
t→∞ tρ(x, t) = 2a√

π
(1 + e−1/a2) ≈ 2a√

π
, for a sufficiently small.

For two slits and initial data ω(x, 0) = ρ(x, 0, 1) as in (3), α = 1.0/(8.0π), β =
1.0/(4.0a)2 in (9)

lim
z→∞

√
zω(x, z) = 1

2
√

π(α + β)
= 2a√

π + a2
≈ 2a√

π
for a sufficiently small.

These asymptotic behaviors are illustrated in Fig. 11.
The probability amplitude ρ(x, t) of the Schrödinger equation possesses another

asymptotic behavior in addition to space-time dilation, namely asymptotic sym-
metrization of the initial data. For arbitrary initial data ψ0(x, 0) in (1), with the
imaginary part Imψ0(x, 0) = 0, ρ(x, t) becomes symmetric about the origin as
t → ∞ no matter how asymmetric Reψ0(x, 0) is at time 0. In [40] the following
property of the solutions of (1) is proved:

|ρ(x, t) − ρ(−x, t)| ≤ 1

π t2

(∫ ∞

−∞
y2|ψ0(y)|dy

) (∫ ∞

−∞
|ψ0(y)|dy

)

. (10)

The solutions ω(x, z) of Eq. (9) are also asymptotically symmetric for arbitrary
initial data, since they are asymptotic as z → ∞ to Gaussian distributions with mean
0 (Appendix). An illustration of asymmetric initial data symmetrizing for both the
Schrödinger equation and the ensemble equation is illustrated in Fig. 12, where the
initial data is
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(a) (b)

(c) (d)

Fig. 11 The graphs of tρ(0, t) (blue) and
√
zω(0, z) (red) for a one slit, limt→∞ tρ(0, t) ≈

0.798; b one slit, limz→∞
√
zω(0, z) ≈ 0.565; c two slits, limt→∞ tρ(0, t) ≈ 0.1128. d two slits,

limz→∞
√
zω(0, z) ≈ 0.1125 The parameter a = 0.1. The green lines are the limiting values

(a) (b)

(c) (d)

Fig. 12 The graphs of the solution ρ(x, t) of (1) (blue) and the solution ω(x, z) (red) of (9) for a
t = z = 0.05; b t = z = 1.0/π ; c t = z = 2.0/π ; d t = z = 4.0/π . The initial conditions are as in
(11). The parameters are α = 1/(8π), β = 1.0/(2.0a1 × 2.0a2), a1 = 0.1, a2 = 0.06. The green

graphs are the Gaussian distributions exp
(
− x2

2σ 2

)
/
√
2πσ with σ = √

2.0(α + β)z
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ψ(x, 0) =
√

a1a2
(a1 + a2)

√
π

(
1

a1
exp

(

− (x − 1)2

2a12

)

+ 1

a2
exp

(

− (x + 1)2

2a22

))

,

ρ(x, 0) =
exp

(
− (x−1)2

a21
− (x+1)2

a22

)

a1a2(a1 + a2)
√

π

(

a1 exp

(
(x − 1)2

2a21

)

+ a2 exp

(
(x + 1)2

2a22

))2

,

(11)
ω(x, 0) = ρ(x, 0), and the probability amplitude is

ρ(x, t) = a1a2
(a1 + a2)

√
π

⎛

⎝
exp

(
− a21 (x−1)2

a41+t2

)

√
a41 + t2

+
exp

(
− a22 (x+1)2

a42+t2

)

√
a42 + t2

⎞

⎠

+ 2
exp

(
− a21 (x−1)2

2(a41+t2)
− a22 (x+1)2

2(a42+t2)

)

(a41 + t2)1/4(a42 + t2)1/4
cos

[
1

2

(
t (x − 1)2

a41 + t2
− t (x + 1)2

a42 + t2

− arctan

(
1

a21

)

− arctan

(
1

a22

) )]

. (12)

6 Discussion

Ensemble and statistical models of quantum mechanics have many formulations
(reviews may be found in [1, 7, 9, 11, 33]). Nonlocal terms in models of quantum
mechanics also have many formulations, such as Wigner phase-space distributions
[34], dynamic and kinematic nonlocalities [36], and quantum balance Equations
[11]. Diffusion terms as models of stochastic behavior in quantum mechanics have
many formulations, as well [17, 28]. Such termsmodel quantum decoherence, which
accounts for the dissipation of formed patterns generated by nonlocal terms and are
relevant for quantum teleportation and quantum computing [15].

We have developed a model for the two-slit experiment based on a partial dif-
ferential equation for the probability density function of ensemble particle behavior.
The solutions of this equation align with the probability amplitude function obtained
from the Schrödinger equation for this experiment in the formation of characteris-
tic interference patterns. The equation is deterministic, but time irreversible. This
equation contains a local diffusion term, which accounts for stochastic variation in
the movement of particles. The equation contains a nonlocal term that accounts for
the transverse movements of particles in the direction perpendicular to their forward
motion. The term nonlocal is used in the convention of differential equations, namely,
a rate of change dependent on a translated independent variable.

The interpretation of time in the nonlocal diffusion equation can be exchanged for
the downstream distance from the plane of the slits. Thus, there is no ambiguity in the
meaning of time for particles emitted randomly, separately, and independently one-
at-a-time. Although the solutions of this equation align very well with the solutions
obtained from the Schrödinger equation in the formed interference pattern, their
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behavior is very different before and after the interference pattern is established. The
transition from the initial data is very simple for the nonlocal diffusion equation, but
extremely complex for the Schrödinger equation. After the interference pattern is
established, the Schrödinger equation solution preserves the pattern almost perfectly
in a space-time dilation that propagates in the transverse directionwith constant speed
at each point x . The solution of the nonlocal diffusion equation, in contrast, disperses
the interference pattern in the transverse direction by a typical diffusion process. The
ensemble equation provides an aggregate behavioral model for the description of
quantum particle interference phenomena.

Acknowledgements This work is dedicated to William Fitzgibbon and Yuri Kuznetsov in honor
of their most valuable contributions to mathematical research and the community of mathematical
researchers.

Appendix

Let X = C[−∞,∞], the space of bounded uniformly continuous functions on
(−∞,∞) with norm ‖ f ‖ = sup−∞<x<∞ | f (x)|. For σ > 0 let

(Tσ (t) f )(x) =
1

2
√

σ t

∫ ∞

−∞
exp

(

− (x − y)2

4σ t

)

f (y) dy, f ∈ X, t > 0, −∞ < x < ∞.

(13)

Then Tσ (t), t ≥ 0 is a strongly continuous holomorphic semigroup of positive linear
operators in X with infinitesimal generator (Aσ f )(x) = σd2 f (x)/dx2 satisfying
|Tσ (t)| ≤ 1, t ≥ 0 [41, Chap. IX]. For t > 0, AσTσ (t) is bounded in X , and there
exists Mσ > 0 such that |AσTσ (t)| ≤ Mσ /t, t > 0 [16, Part 2]. Further, (Tσ (t) f )(x)
is the strong solution in X to the diffusion equation

∂

∂x
u(x, t) = σ

∂2

∂x2
u(x, t), u(x, 0) = f (x), t > 0, −∞ < x < ∞, f ∈ X.

(14)
For β > 0 define the bounded linear operator B in X by

(B f )(x) = β ( f (x + 1) − 2 f (x) + f (x − 1)) , f ∈ X, −∞ < x < ∞.

Define

(exp(t B) f )(x) =
( ∞∑

n=0

(t B)n

n! f

)

(x) = e−2tβ
∞∑

n=0

∞∑

m=0

(tβ)n+m

n!m! f (x + m − n)

(15)
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for f ∈ X , t ≥ 0, −∞ < x < ∞. Then exp(t B), t ≥ 0, is a group of positive linear
operators in X with infinitesimal generator B satisfying | exp(t B)| ≤ 1, t ≥ 0 (see
[41, p. 244]).

Theorem 1 Let β > 0, s = 1, f ∈ X ∩ L1+(−∞,∞), and let
∫ ∞
−∞ f (x)dx = 1.

Then for t ≥ 0, ∫ ∞

−∞
(exp(t B) f )(x)dx =

∫ ∞

−∞
f (x)dx = 1. (16)

If also, x2 f (x) ∈ L1(−∞,∞), then the mean of exp(t B) f = the mean of f and the
variance of exp(t B) f = the variance of f + 2tβ.

Proof From (15), we obtain (16), since for t ≥ 0

∫ ∞

−∞
(exp(t B) f )(x)dx =

∫ ∞

−∞
e−2tβ

∞∑

n=0

∞∑

m=0

(tβ)n+m

n!m! f (x + m − n)dx

= e−2tβ
∞∑

n=0

∞∑

m=0

(tβ)n+m

n!m!
∫ ∞

−∞
f (x)dx =

∫ ∞

−∞
f (x)dx .

Let μ f be the mean of f and μexp(t B) f the mean of exp(t B) f . Then

μexp(t B) f =
∫ ∞

−∞
x(exp(t B) f )(x)dx

=
∫ ∞

−∞
e−2tβ

∞∑

n=0

∞∑

m=0

(tβ)n+m

n!m! x f (x + m − n)dx

= e−2tβ
∞∑

n=0

∞∑

m=0

(tβ)n+m

n!m!
∫ ∞

−∞
(x + m − n) f (x)dx

= e−2tβ
∞∑

n=0

∞∑

m=0

(tβ)n+m

n!m!
(∫ ∞

−∞
x f (x)dx +

∫ ∞

−∞
(m − n) f (x)dx

)

= μ f + e−2tβ

( ∞∑

n=0

∞∑

m=0

(tβ)n+m

n!m! m −
∞∑

n=0

∞∑

m=0

(tβ)n+m

n!m! n

)

= μ f + e−2tβ

( ∞∑

n=0

∞∑

m=1

(tβ)n+m

n!(m − 1)! −
∞∑

n=1

∞∑

m=0

(tβ)n+m

(n − 1)!m!

)

= μ f . (17)

Let ν f be the variance of f and νexp(t B) f the variance of exp(t B) f . A calculation
similar to (17) yields
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νexp(t B) f =
∫ ∞

−∞
x2(exp(t B) f )(x)dx

=
∫ ∞

−∞
e−2tβ

∞∑

n=0

∞∑

m=0

(tβ)n+m

n!m! x2 f (x + m − n)dx

= e−2tβ
∞∑

n=0

∞∑

m=0

(tβ)n+m

n!m!
∫ ∞

−∞
(x + m − n)2 f (x)dx

= e−2tβ
∞∑

n=0

∞∑

m=0

(tβ)n+m

n!m!
(∫ ∞

−∞
x2 f (x)dx + 2(m − n)

∫ ∞

−∞
x f (x)dx + (m − n)2

)

= ν f + e−2tβ
∞∑

n=0

∞∑

m=0

(tβ)n+m

n!m!
(
2(m − n)μ f + (m − n)2

)

= ν f + e−2tβ
∞∑

n=0

∞∑

m=0

(tβ)n+m

n!m! (m2 − 2mn + n2) = ν f + 2tβ, (18)

since

e−2tβ
∞∑

n=0

∞∑

m=0

(tβ)n+m

n!m! m2 = βt (1 + βt), e−2tβ
∞∑

n=0

∞∑

m=0

(tβ)n+m

n!m! 2mn = 2(βt)2.

�

Theorem 2 Let α > 0, β > 0, and s = 1. For ω0 ∈ X ∩ L1+(−∞,∞) such that∫ ∞
−∞ ω0(x)dx = 1, the unique solution ω(x, z) = ω(x, t) of (9) is

(Tα(t) exp(t B)ω0)(x), t > 0, −∞ < x < ∞,

(where we have identified z = t in (9)). Further, there exists a constant C such that

|ω(x, t) − (Tα+β(t)ω0)(x)| ≤ C

t
‖ω0‖, t > Mα, −∞ < x < ∞. (19)

Remark 1 If ω0 also has compact support, then (19) implies that uniformly on
bounded sets of x ∈ (−∞,∞)

lim
t→∞

√
tω(x, t) = 1

2
√

α + β
, since lim

t→∞
√
t(Tα+β(t)ω0)(x) = 1

2
√

α + β
.

Proof Since Aσ and B commute, Tσ (t) and exp(t B) commute for t ≥ 0, and
Tσ (t) exp(t B), t ≥ 0 is the semigroup of operators for the solutions of (9). Since
Tα(t), t ≥ 0 is a holomorphic semigroup in X, Tα(t) exp(t B)ω0 is the unique strong
solution of (9) in X for t > 0, ω0 ∈ X . If f ∈ X is analytic, then
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f (x ± 1) = f (x) +
∞∑

n=1

(±1)n

n! f (n)(x)

and

f (x + 1) − 2 f (x) + f (x − 1) = f (2)(x) + 2
∞∑

n=2

1

(2n)! f
(2n)(x).

For g ∈ X , t > 0, Tα(t)g is analytic, and so

BTα(t)g = βA1Tα(t)g + 2β
∞∑

n=2

1

(2n)! A
n
1Tα(t)g

Then,

d

dt
Tα(t) exp(t B)ω0 = (Aα + B)Tα(t) exp(t B)ω0

= (α + β)A1Tα(t) exp(t B)ω0 + 2β
∞∑

n=2

1

(2n)! A
n
1Tα(t) exp(t B)ω0.

From [20, Chap. 9] the solution of this nonhomogeneous equation satisfies

Tα(t) exp(t B)ω0

= Tα+β(t)ω0 + 2β
∫ t

0
Tα+β(s)

∞∑

n=2

1

(2n)! A
n
1Tα(t − s) exp((t − s)B)ω0ds

= Tα+β(t)ω0 + 2β
∫ t

0
Tβ(s)

∞∑

n=2

1

(2n)!αn
An

αTα(t) exp((t − s)B)ω0ds.

Thus, (19) follows, since for t ≥ Mα ,

‖Tα(t) exp(t B)ω0 − Tα+β(t)ω0‖ ≤ 2βt
∞∑

n=2

(Mα/(αt))n

(2n!) ‖ω0‖

= 2βt
(
cosh(

√
Mα/(αt)) − 1 − Mα/(2αt)

)
‖ω0‖

and by L’Hospital’s Rule

lim
t→∞

cosh(
√
Mα/(αt)) − 1 − Mα/(2αt)

(Mα/(αt))2
= 1

4! .

�
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