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Abstract. Evolution strategies are evolutionary algorithms usually
applied for solving continuous optimization tasks. As they rely on muta-
tion as one of the main search operators, the control and the adaptation
of this process is of high importance. This paper discusses the covari-
ance matrix adaptation in evolution strategies, a central and essential
mechanism for the search. The current form bases the estimation of the
covariance matrix on small samples sizes compared to the search space
dimension which is known to be problematic. This leads to the ques-
tion, whether the performance of the evolutionary algorithms could be
improved if other estimators were utilized. In statistics, several alter-
native approaches have been considered. Up to now, they have only
been seldom applied in evolutionary computation. The paper investi-
gates whether evolution strategies may benefit from linear shrinkage
estimators. Several shrinkage targets are considered, integrated in the
so-called CMSA-ES, and analyzed experimentally with a special focus
on the shrinkage intensity.

1 Introduction

Evolutionary algorithms (EAs) are metaheuristics which are based on the princi-
ples of natural evolution. As such, they use recombination and mutation to create
new search points and perform selection in order to determine which points may
pass on their characteristics to succeeding generations. Research in EAs has a
long tradition: The first evolutionary algorithms have been introduced in the
1960 s. Today, they represent one of the major classes in natural computation.
Five main groups exist: genetic algorithms, genetic programming, evolutionary
programming, differential evolution, and evolution strategies. The present arti-
cle focuses on the last class, evolution strategies (ESs), which date back to the
70 s and are – at least today – mainly applied for continuous optimization. In
this area, they have been established as well-performing black-box optimization
methods, see e.g. [15]. Their main search operator is mutation in contrast to
genetic algorithms which favor recombination.

Evolution strategies, see for example [1,3,32] for an introduction, operate
with a multivariate normal distribution to generate new search points. The main
parameters of the search distribution, the mean m and the covariance matrix
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σ2C, must be adapted during the run of an evolution strategy. If they remain
constant, the ES may exhibit either only a slow convergence behavior or it may
fail in its optimization task entirely. In order to ensure that the mutation control
parameters are suited to the current fitness landscape of the function to be opti-
mized, the scale as well as the directions of the mutations must be adapted. For
this reason, research in evolution strategies often centers on control techniques
for the mutation process with a strong focus on the covariance matrix. Nearly
all approaches estimate the current covariance based on the sample. Relying on
the sample covariance matrix leads to an ill-posed estimation task in the case
of evolution strategies, however: Due to efficiency, the sample size is typically
small w.r.t. the search space dimension. This results in a well-known problem in
statistics: The estimate may differ considerably from the underlying true covari-
ance [35,36]. This may be the reason why nearly all current techniques introduce
additional correction or regularization terms for example by falling back to the
previous covariance matrix and/or by strengthening certain promising direc-
tions. Interestingly, these procedures are reminiscent of shrinkage estimation in
statistics which represents one technique to cope with a poor sample covariance
estimate. These similarities lead to the research question of the present paper:
If evolution strategies perform a kind of implicit shrinkage, can they profit from
the introduction of explicit shrinkage operators?

So far, shrinkage and other covariance matrix estimators have been applied
remarkably seldom in the area of evolutionary computation. A literature review
resulted in only two papers aside from our previous approaches: The first by
Dong and Yao explored an application in the case of Gaussian estimation of
distribution algorithms [8]. They faced the problem that the learning of the
covariance matrix during the run lead to non positive definite matrices. For this
reason, a shrinkage procedure was applied to “repair” the covariance matrix. The
approach was similar to in [20] with the exception of an adaptable shrinkage
intensity. More recently, Kramer considered a Ledoit-Wolf-estimator based on
[19] for an evolution strategy which does not follow a population-based approach
but uses a variant of the single-point elistist (1+ 1)−ES. For this reason, the
covariance matrix adaptation has to consider past search points and corrects
the estimate with shrinkage [17].

The current analysis extends the work carried out in [27,28] and augments
the investigation conducted in [25,29] for the case of thresholding estimators.
[27,28] presented the first approaches to apply Ledoit-Wolf shrinkage estimators
in evolution strategies. In a proof of concept, the shrinkage estimators were com-
bined with an approach stemming from a maximum entropy covariance selection
principle. Here, the work is extended by considering several mixture matrices,
targets, and choices for the shrinkage intensity which are compared to the orig-
inal version of the underlying ES variant, the CMSA-ES [5], for noise-free and
for noisy optimization.

The paper is structured as follows: First, a brief introduction into evo-
lution strategies with covariance matrix adaptation is provided. Afterwards,
we focus on the problem of estimating high-dimensional covariance matrices.
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Several shrinkage targets are introduced and their integration into evolution
strategies is described. The strategies are assessed and compared to the original
ES version in the experimental sections. The paper ends with the conclusions
and an outlook regarding open research points.

2 Evolution Strategies: A Short Introduction

Let f : RN → R be a continuous function that allows only the evaluation of
the function itself but not the derivation of higher order information. This is the
area of black-box optimization, where metaheuristics as evolution strategies and
similar approaches are often applied. Evolution strategies (ESs) are stochastic
optimization methods that usually operate with a sample or population of search
points also called candidate solutions. They distinguish between a population of
μ parents and λ offspring. In many applications in continuous search spaces, the
parent population is discarded after the offspring have been created. Therefore,
λ > μ is required. Evolution strategies use a multivariate normal distribution
with mean m(g) and covariance matrix

(
σ(g)

)2
C(g) to create new search points.

The mean represents the recombination process and is obtained as the (weighted)
centroid of the parent population. The covariance matrix is updated by following
one of the established techniques [5,12]. Sampling λ times from the normal
distribution results in the offspring population

xl = m(g) + σ(g)N (0,C(g)), l = 1, . . . , λ. (1)

Afterwards, the new search points are evaluated using the function f to be
optimized. Evolution strategies then apply deterministic selection in order to
determine the next parent population and chose the μ best of the λ offspring.

As stated earlier, the parameters of the normal distribution must be adapted
in order to allow progress towards the optimal point. Here, the covariance matrix
is of great importance and adaptation techniques have received a lot of attention
in work on evolution strategies (see [12,24]). The investigation in this paper
centers on the covariance matrix self-adaptation evolution strategy (CMSA-ES)
[5]. The CMSA-ES divides the adaptation of the covariance (σ(g))2C(g) into two
main procedures: the covariance matrix update for C(g) and the adaptation of
the scale factor σ(g). The scale factor is also often called step-size or mutation
strength. Following established practice in evolution strategies, the matrix C(g)

will be referred to as the covariance matrix in the remainder of the paper.

2.1 Adaptation I: Covariance Matrix Update

As it is the case for most techniques, the covariance matrix update of the CMSA-
ES is based on the sample estimate, that is, on the μ best offspring. Consider-
ing only the superior candidate solutions shall introduce a bias towards good
search regions. Let xm:λ denote the mth best of the λ offspring w.r.t. the fitness
and let

z(g+1)
m:λ :=

1
σ(g)

(
x(g+1)

m:λ − m(g)
)
, (2)
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stand for its normalization. The estimate then reads

C(g+1)
μ :=

μ∑

m=1

wmz(g+1)
m:λ (z(g+1)

m:λ )T (3)

with the weights usually set to wm = 1/μ for the CMSA-ES [5]. Please note
that the mean m(g) is known, thus, the number of degrees of freedom remains
equal to μ. The sample covariance is then combined with the old covariance,
resulting in

C(g+1) := (1 − 1
cτ

)C(g) +
1
cτ

C(g+1)
μ . (4)

The parameter cτ ∈ (0, 1),

cτ = 1 +
N(N + 1)

2μ
, (5)

see [5] increases with the search space dimension and decreases with the popu-
lation size.

2.2 Adaptation II: Self-adaptation

In addition to the covariance matrix update, the CMSA-ES applies self-
adaptation to control the mutation strength σ(g). Self-Adaptation has been
developed by Rechenberg [31] and Schwefel [33]. It takes place at the level of the
individuals meaning that each population member operates with a distinct set.
The strategy parameters are adapted by using similar evolutionary principles as
for the main evolutionary algorithm. In other words, they also undergo recombi-
nation and mutation processes. Afterwards, they are used in the mutation of the
search space position. The influence on the selection is indirect: Self-adaptation
is based on the assumption of a stochastic linkage between good objective values
and appropriately tuned strategy parameters.

In the case of the CMSA-ES, the mutation process of the mutation strength
is realized with the help of the log-normal distribution following

σ
(g)
l = σ(g)exp(τN (0, 1)). (6)

The parameter τ , the learning rate, should scale with 1/
√

2N [23]. Self-
adaptation with recombination has been shown as robust against noise [2] and
is therefore considered in this paper. In this case, the variable σ(g) in (6) is the
result of the recombination of the mutation strengths. Here, the same recom-
bination type as previously may be used, that is, σ(g+1) =

∑
wmσm:λ with

σm:λ standing for the mutation strength associated with the mth best individ-
ual. Figure 1 summarizes the main steps of the covariance matrix self-adaptation
evolution strategy.
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Require: λ, μ, C(0), m(0), σ(0), τ , cτ

1: g = 0
2: while termination criteria not met do
3: for l = 1 to λ do
4: σl = σ(g) exp(τN (0, 1))
5: xl = m(g) + σlN (0,C(g))
6: fl = f(xl)
7: end for
8: Select (x1:λ, σ1:λ), . . . , (xμ:λ, σμ:λ) according to their fitness fl

9: m(g+1) =
∑μ

m=1 wmxm:λ

10: σ(g+1) =
∑μ

m=1 wmσm:λ

11: zm;λ = xm;λ−m(g)

σ(g) for m = 1, . . . , μ
12: Cμ =

∑μ
i=1 wizizi

T

13: C(g+1) = (1− 1
cτ

)C(g) + 1
cτ

C
(g+1)
μ

14: g = g + 1
15: end while

Fig. 1. The main steps of a CMSA-ES. Normally, the weights wm are set to wm = 1/μ
for m = 1, . . . , μ.

3 Covariance Matrix Estimation: Introducing Shrinkage

Using the population covariance matrix necessitates an appropriate sample size
with μ � N for obtaining a high quality estimator. If this is not the case,
estimate and “true” covariance may not agree well, especially in the case of
high-dimensional search spaces. Among others, the eigen structure may be sig-
nificantly distorted, see e.g. [20]. However, in evolution strategies typical recom-
mendations for the population sizing state to use an offspring population size λ
of either λ = O(log(N)) or λ = O(N) and setting μ = �cλ� with c ∈ (0, 0.5).
Thus, either μ/N → c or even μ/N → 0 for N → ∞ holds which disagrees with
the requirement.

As stated above, the estimation of covariance matrices has received a lot
of attention in statistics, see e.g. [6,30,38] and several techniques have been
introduced. This paper focuses on linear shrinkage estimators that can be com-
puted comparatively efficiently. Other classes, as e.g. thresholding operators for
sparse covariance matrix estimation, are currently considered in separate analy-
ses [25,29]. Following [20,35], linear shrinkage approaches are based on

Sest(ρ) = ρF + (1 − ρ)Cμ (7)

with F the target to correct the estimate provided by the sample covariance Cμ.
The parameter ρ ∈ (0, 1) is called the shrinkage intensity. Equation (7) is used
to shrink the eigenvalues of Cμ towards the eigenvalues of F. The intensity ρ
should be chosen to minimize the expected error

E
(
‖Sest(ρ) − Σ‖2F

)
(8)



Can Evolution Strategies Benefit from Shrinkage Estimators? 121

with ‖ · ‖2F denoting the squared Frobenius norm given by

‖A‖2F =
1
N

Tr
[
AAT

]
, (9)

see [20]. Note the factor 1/N is additionally introduced in [20] to normalize the
norm w.r.t. the dimension.

Based on (8) and taking into account that the true covariance is unknown in
practice, Ledoit and Wolf were able to obtain an optimal shrinkage intensity for
the target F = Tr(Cμ)/N I for general probability distributions.

Several other approaches can be identified in literature. On the one hand,
different targets can be considered, see e.g. [11,18,34,39]. Schäfer and Strimmer
analyzed among others diagonal matrices with equal and unequal variance or
special correlation models [34]. Fisher and Sun also allowed for several targets
[11] assuming a multivariate normal distribution. Toulumis relaxed the normal-
ity assumption, considered several targets, and provided a new non-parametric
family of shrinkage estimators [39]. Other authors introduced different estima-
tors, see e.g. [7] or [6]). Recently, Ledoit and Wolf extended their work to include
non-linear shrinkage estimators [21,22].

A problem arises concerning the complexity of the approaches. The associated
optimization problem has to be solved which may be a task of its own especially
in the case of non-linear estimates. Since the estimation has to be performed in
every generation of the ES, only computationally simple approaches can be taken
into account. Therefore, the paper focuses on linear shrinkage with shrinkage
targets and intensities taken from [11,19,20,39].

Furthermore, transferring shrinkage estimators to ESs needs to consider the
situation in which the estimation occurs since it differs from the assumptions in
statistical literature:

– First, the covariance matrix Σ = C(g) that was used to create the offspring
is known.

– Second, the sample is based on truncation selection. Therefore, the variables
cannot be assumed to be independent and identically distributed (iid). How-
ever, this is one of the main assumptions for deriving alternative estimators
for the covariance. In the case of evolution strategies, the sample x1:λ, . . . ,xμ:λ

would only represent normally distributed random variables if there were no
selection pressure.

In this context, it is interesting to note that in the discussion [12] with respect to
the setting of the CMA-ES control parameters it is argued to choose the values
so that the distribution of the random variables would remain the same if there
were no selection effects. This paper uses a similar argument to justify the usage
of the shrinkage intensities obtained for assuming iid random or even normally
distributed random variables. Since we are aware of the fact that the situation
may differ considerably from the prerequirements in the statistical literature,
other settings are also taken into account.

Before continuing, a closer look at the covariance matrix update (4) may
be interesting. Equation (4) of the ES algorithm represents a special case of
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shrinkage with the old covariance matrix as the target. The shrinkage intensity
is determined with cτ = 1+[N(N +1)]/[2μ], Eq. (5), as ρ = 1−1/cτ . If μ � N ,
ρ ≈ 0 holds and the sample covariance is only slightly corrected. Otherwise,
if N � μ, the old covariance gains importance. To illustrate the main effects
of (4), the eigenspace of C(g) is considered. Since the covariance matrix is a
positive definite matrix, a spectral composition of C(g) with C(g) = MTΛM can
be conducted. The modal matrix M = (v1, . . . ,vN ) contains the eigenvectors
v1, . . . ,vN of C(g), whereas Λ = diag(λ1, . . . , λN ) represents a diagonal matrix
with the corresponding eigenvalues λ1, . . . , λN . The representation C(g+1)

C of
C(g+1) in the eigenspace of C(g) then reads

C(g+1)
C = ρΛ + (1 − ρ)CC

μ

= diag(CC
μ ) + ρ

(
Λ − diag(CC

μ )
)

+ (1 − ρ)
(
LC

μ + UC
μ

)
(10)

with CC
μ = MTCμM. The matrix LC

μ denotes the matrix with the entries of
CC

μ below the diagonal, whereas UC
μ comprises the elements above. As Eq. (10)

shows, the covariance matrix update (4) decreases the off-diagonal elements of
the population covariance in the eigenspace. In the case of the diagonal entries,
two cases may appear: if cC

μii
< λi, the new entry is in the interval [cC

μii
, λi] and

thus the estimate increases towards λi, otherwise it is shrunk towards λi. Thus,
in the eigenspace of C(g), Eq. (10) behaves similarly to shrinkage with a diagonal
matrix as target matrix. Therefore, in original space, it shrinks the eigenvalues
of the population matrix towards those of the target. In contrast to shrinkage,
the target matrix is the old covariance (which is not obtainable in the general
case). If the sample were drawn from independent and identically distributed
variables, the update would “correct” the distortion due to the small sample size
with the previous and in that case also the true covariance. Considering that a
shrinkage procedure is already present in the original CMSA-ES, the question
naturally arises, whether the strategy may benefit from additional corrections of
the sample covariance.

Applying shrinkage requires among others the choice of an appropriate target.
Most approaches consider regular structures as e.g. the scaled unity matrix,
diagonal matrices, or matrices with constant correlations. However, a shrinkage
towards a regular structure w.r.t. the coordinate system of the original search
space does not appear as a good choice concerning the optimization of arbitrary
functions.

4 Evolution Strategies and Shrinkage Estimators

Since we cannot assume that the covariance matrix adaptation would profit
from correcting the estimate towards regular structures in every application
case, shrinkage in the original search space is not taken into account. Instead,
appropriate space transformations are investigated. The resulting ES algorithms
will follow the same general principle:
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1. A suitable transformation of the coordinate system is conducted.
2. A shrinkage estimation is performed in the transformed space.
3. After re-transformation to the original space, the result is used for the covari-

ance matrix update.

As illustrated in the previous section, the original CMSA-update (4) shrinks the
sample covariance towards a diagonal matrix in the eigenspace of the previous
covariance matrix C(g). Therefore, this eigenspace will also be taken into account
for the current investigation.

Space transformations have been considered in ESs before. For example,
Hansen argued in [14] that changing the coordinate system may improve the
performance. For this reason, he introduced an adaptive encoding for the CMA-
ES. It is based on a spectral decomposition of the covariance matrix. New search
points are created in the eigenspace of the covariance matrix. Similar to [14], we
assume that the ES may benefit from a change of the coordinate system. How-
ever, the covariance matrix adaptation and estimation which in [14] occur in the
original space will be carried out in the transformed space.

Furthermore, other spaces may be also be beneficial. For example, [37] intro-
duced an additional potential transformation. In [37], the authors were faced with
the task to obtain a reliable covariance matrix. To this end, a sample covariance
matrix Si was combined with a pooled variance matrix Cp – similar to (4)

Smix(ξ) = ξCp + (1 − ξ)Si (11)

with the parameter ξ to be determined. To continue, the authors switched to the
eigenspace of the non-weighted mixture matrix where they followed a maximal
entropy approach to determine an improved estimate of the covariance matrix.
Based on [14,37], this paper considers the following choices for the transforma-
tion matrix which arise as combinations of the population covariance matrix Cμ

and C(g)

Smix = C(g) + Cμ, (12)

S(g+1) = (1 − cτ )C(g) + cτCμ, (13)

S(g) = C(g). (14)

The variants (12)–(14) are based on different assumptions: The first (12) follows
[37]. The influence of the old covariance and the population covariance are bal-
anced. Structural changes caused by Cμ will be dampened but will influence the
result more strongly than in the case of (13) and (14). The second (14) uses the
covariance mixture that appears in the original CMSA-ES. Depending on the
size of cτ , which is in turn a function of μ and N , see (5), the influence of the
population covariance matrix may be stronger or lesser. The third considers the
eigenspace of the old covariance matrix and reduces therefore the influence of
the new estimate. Equations (12)–(14) are used to change the coordinate sys-
tem. The representations of the covariance matrices in the eigenspace are given
as CS

μ := MT
SCμMS and CS := MT

SC
(g)MS with S standing for one of the
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variants (12)–(14). Assuming that for example (14) is used, the following steps
are performed

– spectral decomposition: M,D ← spectral(S(g)),
– determination of CS

μ := MT
SCμMS and CS := MT

SC
(g)MS ,

– shrinkage estimation resulting in Ĉshr,
– retransformation Cμ = MTĈshrM,
– covariance adaptation

C(g+1) = (1 − 1
cτ

)C(g) +
1
cτ

Cμ.

They substitute Line 13 of the CMSA-ES algorithm in Fig. 1. Once the space
transformation has been conducted, different targets can be taken into account.
The analysis considers the matrices

Fu = vI, (15)

with v = Tr(CS
μ)/N [20],

Fd = diag(CS
μ) (16)

the diagonal entries of CS
μ [11,39], the constant correlation model with matrix

Fc the entries of which read

fij =
{

sii if i = j
r̄
√

siisjj if i �= j
(17)

and r̄ = 2/((N − 1)N)
∑N−1

i=1

∑N
j=i+1 sij/

√
siisjj [19]. The shrinkage intensities

are taken from the corresponding publications. For (15) the parameter is based
on [20], for (16) it follows [11,39] while it is taken from [19] in the case of (17).

Since the new ES uses an explicit shrinkage, the question arises whether the
additional term consisting of the old covariance matrix in (4) remains necessary
or whether the ES may operate solely with shrinkage. Preliminary investigations
indicate that the latter strategies perform worse than the original CMSA-ES.
Therefore, the current analysis only considers a combination of both. It should
also be noted that similar to the original update, the previous covariance could
be used to determine the target instead of the sample. Both cases will be inves-
tigated more closely in future research.

5 Comparing Shrinkage Approaches: An Experimental
Analysis

Experiments were conducted to investigate the shrinkage estimators introduced.
First, the question of finding a suitable transformation was addressed. To this
end, a comparison of the effects of (12)–(14) was carried out for a combination
of (16) and the shrinkage intensity taken from [39]. Preliminary experiments
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showed that (14) lead to good results. Therefore, the remaining discussion in
this paper is restricted to ESs using a transformation with the old covariance
matrix. However, the increased variability provided by (12) and (13) should be
considered together with (17) or (15) in further experiments.

The analysis considers ES-algorithms which apply shrinkage estimators as
defined in (15) to (17). Aside from the CMSA-ES, we denote the strategies as
follows

1. CI-ES: a CMSA-ES using (15) as shrinkage target,
2. CC-ES: the CMSA-ES with the constant correlation model (17),
3. FS-ES: the CMSA-ES which uses (16) and follows [11] to determine the

shrinkage intensity,
4. Tou-ES: a CMSA-ES based on (16) which uses the shrinkage intensity of [39].

The approaches were coded in MATLAB. In the case of the CI-ES and the C-ES,
we used the estimation source code provided by the authors on their webpage1.
The implementation of the Tou-ES follows closely the R package2. In the analysis
presented here, we did not use the oracle shrinkage intensity for the FS-ES as
in [26] but applied the optimal estimated value (11) in [11, p. 1913]. Therefore,
the results may differ from [26]. This ES also operates with a maximal number
of fitness evaluations of FEmax = 3 × 105N .

5.1 Experimental Set-Up

The parameters for the experiments read as follows. Each experiment uses 15
repeats. The initial population is drawn uniformly from [−4, 4]N , whereas the
mutation strength is chosen from [0.25, 1]. The search space dimensions were set
to 10 and 20. The maximal number of fitness evaluations is given by FEmax =
2×105N . All evolution strategies use λ = 
log(3N)+8� offspring and μ = �λ/4�
parents. A run terminates prematurely if the difference between the best value
so far and the optimal fitness value |fbest − fopt| is below a predefined precision
set to 10−8. Furthermore, we introduce a restart mechanism into the ESs so
that the search is re-initialised when the search has stagnated for 10 + �30N/λ�
generations. Stagnation is determined by measuring the best function values in a
generation. If the difference between minimal and maximal values of the sample
lies below 10−8 for the given time-interval, the ES does not make significant
movements anymore and the search is started anew.

The experiments are conducted with the help of the black box optimization
benchmarking (BBOB) software framework3 and the test suite, see [13]. The
framework allows the analysis of algorithms and provides means to generate
tables and figures of the results together with the corresponding legends.

1 http://www.econ.uzh.ch/faculty/wolf/publications.html.
2 http://cran.r-project.org/web/packages/ShrinkCovMat.
3 The latest software can be obtained from COmparing Continuous Optimisers: COCO

(http://coco.gforge.inria.fr/).

http://www.econ.uzh.ch/faculty/wolf/publications.html
http://cran.r-project.org/web/packages/ShrinkCovMat
http://coco.gforge.inria.fr/
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This paper considers 24 noise-less functions [9]. They consist of four sub-
groups: separable functions (function ids 1–5), functions with low/moderate
conditioning (ids 6–9), functions with high conditioning (ids 10–14), and two
groups of multimodal functions (ids 15–24).

The experiments use the expected running time (ERT) as performance mea-
sure. The ERT is defined as the expected value of the function evaluations
(f -evaluations) the algorithm needs to reach the target value with the required
precision for the first time, see [13]. In this paper, the estimate

ERT =
#(FEs(fbest ≥ ftarget))

#succ
(18)

is used, that is, the fitness evaluations FEs(fbest ≥ ftarget) of each run until the
fitness of the best individual is smaller than the target value are summed up and
divided by the number of successful runs.

5.2 Results and Discussion

First of all, the behavior of the strategies for two exemplary functions, the sphere,
f(x) = ‖x‖2, and the discus, f(x) = 106x2

1 +
∑N

i=2 x2
i is investigated. The

functions were selected since they represent very different optimization tasks.
Figures 2 and 3 show the ratio of the largest to the smallest eigenvalue of the
covariance matrix for the CMSA-ES and for two of the shrinkage approaches, the
CC-ES and the FS-ES. An ES optimizing the sphere should keep the ratio close
to one, whereas the ratio should increase for the discus. In the case of the sphere,
the figures illustrate that the largest and smallest eigenvalue develop differently
and diverge for N = 10. Shrinkage causes the problem to be less pronounced.

In the case of the discus, different eigenvalues are expected. All strategies
achieve this, the ESs with shrinkage operators show again a lower rate of increase.
This may be a hint that the adaptation process of the covariance matrix may be
decelerated by the additional shrinkage. Figure 3 shows an even slower increase of
the ratio for the FS-ES than for the CC-ES. Whether this lowers the performance
is investigated in the second series of experiments. Figure 4 shows the empirical
cumulative distribution functions for N = 10 and N = 20. Whether introducing
shrinkage terms improves the performance of the ES depends on the function
class. In the case of ill-conditioned functions, shrinkage targets consisting of the
diagonal elements of the transformed sample covariance may offer benefits.

The results of the experiments can be examined more closely with the help
of Table 1 (N = 10) and Table 2 (N = 20). They provide the estimate of the
expected running time (ERT) for several precision targets ranging from 101 to
10−7. Also shown is the number of successful runs.

Several functions represent challenges for the ESs considered. These comprise
the Rastrigin functions (id 3, id 4, id 15, and id 24) of the test suite, the step
ellipsoidal function with a condition number of 100 (id 7), and a multi-modal
function with a weak global structure based on Schwefel (id 20). In these cases,
all strategies are unable to progress further than the first intermediate precision
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(a) CMSA-ES, sphere, N = 10 (b) CMSA-ES, sphere, N = 40

(c) CC-ES, sphere, N ,erehps,SE-CC(d)01= N = 40

(e) FS-ES, sphere, N ,erehps,SE-SF(f)01= N = 40

Fig. 2. The development of the ratio of the largest to the smallest eigenvalue of the
covariance on the sphere for the CMSA-ES, the CC-ES, and the FS-ES. Shown are the
results from 15 runs per dimensionality.

of 101. Additionally, for the multi-modal functions, 19 (composite Griewank-
Rosenbrock function) and 23 (Katsuura), no strategy could reach 10−1. The
functions in question are therefore removed from the tables.

To analyze the remaining functions, the four groups of the test suite are taken
into account. The first class comprises the separable functions with id 1 to id 5.
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(a) CMSA-ES, discus, N = 10 (b)CMSA-ES, discus, N = 40

(c) CC-ES, discus, N ,sucsid,SE-CC(d)01= N = 40

(e) FS-ES, discus, N ,sucsid,SE-SF(f)01= N = 40

Fig. 3. The development of the ratio of the largest to the smallest eigenvalue of the
covariance on the discus. Shown are the results from 15 runs per dimensionality.

The three remaining functions, the sphere (f1), the separable ellipsoidal function
(f2), and the linear slope (f5) differ in the degree of difficulty for the strategies.
All strategies do not show any problems on the sphere or on the slope. Here,
several shrinkage variants perform similarly to or sometimes may even surpass
the original version. However, the differences are not statistically significant.
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separable fcts (10-D) separable fcts (20-D)
best 2009

Tou-ES

CMSA

FS-ES

CI-ES

CC-ES

best 2009

CMSA

FS-ES

Tou-ES

CI-ES

CC-ES

moderate fcts (10-D) moderate fcts (20-D)
best 2009

CMSA

Tou-ES

FS-ES

CI-ES

CC-ES

best 2009

CMSA

FS-ES

CI-ES

Tou-ES

CC-ES

ill-conditioned fcts (10-D) ill-conditioned fcts (20-D)
best 2009

CMSA

FS-ES

Tou-ES

CC-ES

CI-ES

best 2009

CMSA

FS-ES

Tou-ES

CI-ES

CC-ES

Fig. 4. Bootstrapped empirical cumulative distribution of the number of objective
function evaluations divided by dimension (FEvals/DIM) for 50 targets in 10[−8..2] for
10-D and 20-D.

The more difficult ellipsoidal function, however, cannot be solved by the
CC-ES, the CI-ES, and for N = 20 by the Tou-ES. Interestingly, the FS-ES
achieves successful runs for all search space dimensionalities. Its performance is
significantly worse than the original CMSA-ES, however. Two effects may play
a role. The ellipsoidal function, defined by f(x) =

∑N
i=1 106(i−1)/(N−1)x2

i , is not
solved well by ESs with covariance matrices treating all directions with the same
weight. The matrix used in the transformation may not be sufficient to provide
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the variability required when combined with restrictive structures. The target
matrices supplied by the CI-ES may be too regular for the ES to be able to adapt
with the necessary velocity. Why the CC-ES also exhibits problems, although
it represents a more general model, merits further investigations. The failure of
the Tou-ES to achieve the final precision target may be due to the shrinkage
intensity since this is the only point where it differs from the FS-ES. For this
reason, Sect. 6.2 provides a first analysis of the impact of this parameter on the
performance of the ES. In future research, the interaction with the parameter
cτ will be investigated more closely. Since this parameter approaches infinity
for the typical μ/N ratios and increasing dimensionalities, the influence of the
sample covariance lessens. Regularizing the covariance matrix may therefore be
more important for smaller to medium search space dimensionalities. Concerning
the question whether shrinkage improves the performance, no clear answer can
be provided for the group of separable functions since the ellipsoidal function
apparently requires a faster adaptation than the current versions supply.

The second group of functions consists of the attractive sector function (id
6), the step ellipsoidal function (id 7, results not shown), the original Rosenbrock
function (id 8), and a rotated Rosenbrock function (id 9). These functions have
low to moderate conditioning. The sector function is difficult to solve for all
strategies. For N = 20, successful runs were recorded for the CMSA-ES and the
CI-ES but only for a few cases, i.e., two or three. Therefore, the question arises
whether initialization effects may have played a role in other words whether the
ES in these cases started in the vicinity of the optimal point. For N = 10 and
N = 20, the FS-ES reaches the final target precision of 10−8 in 15 of 15 runs, a
result not mirrored by the other strategies. Concerning the Rosenbrock functions
(f8 and f9), the CMSA-ES and the FS-ES perform best with the CMSA-ES being
superior.

Functions with high conditioning constitute the next group. For the ellip-
soidal function (f10), the discus (f11), the bent cigar (f12), the sharp ridge (f13),
and the different powers function (f14), the CMSA-ES appears as the best per-
forming strategy, followed by the FS-ES and the Tou-ES. More experiments are
required since the bent cigar apparently represents a stronger challenge for the
FS-ES for N = 10 than for N = 20.

In the case of the multi-modal functions (ids 15–24), all ESs encounter prob-
lems. Only for the two Gallagher’s problems (id 21 and id 22) successes are
recorded. Here, the CMSA-ES and the versions that use the diagonal elements
of the sample covariance as shrinkage target show the best results. The FS-ES
appears to be a good choice for N = 10 for function 21 whereas the CMSA-ES
and the Tou-ES require fewer function evaluations for 22. For N = 20, only a
few runs of all ESs reach the final target precision. Therefore, a comparison for
the higher-dimensional search spaces is difficult and is not carried out in this
paper.
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6 Further Experimental Analyses

The experiments revealed that at least in the eigenspace of the previous covari-
ance matrix and for the intensities considered, the ES does not benefit at all from
shrinkage towards more complex structures than offered by a diagonal matrix.
This is surprising, since the model with constant correlations would allow more
degrees of freedom for the evolutionary process. Therefore, further investigations
– concerning especially the question of the choice of the shrinkage intensity –
will be carried out. In addition, ESs with the scaled unity matrix as a target
do not perform as well as strategies with different diagonal elements. This can
possibly be traced back to the fact that this target is the most restrictive and
impairs the general adaptability of the ES.

Therefore, the further discussion in this paper is limited to the shrinkage esti-
mators that use the diagonal entries of the sample covariance as correction term.
The two variants taken into account, the Fisher-Sun (FS-ES) estimator and the
Toulumis technique (Tou-ES) operate with the same target, but the performance
of the associated evolution strategies differs. Since the only difference between
these two estimators lies in the shrinkage intensity, this section carries out an
investigation of the dependency of the performance of the ES on the choice of
the factor.

So far, the experiments were restricted to the noise-free case assuming the
possibility of exact function evaluations. The effects of shrinkage estimators con-
cerning noisy optimization remain to be taken into account. Since this represents
an important research and application area of evolution strategies, exemplary
experiments are carried out.

6.1 A Brief Investigation Concerning Noisy Optimization

This subsection addresses the question whether shrinkage estimators may be
useful in the case of noisy optimization. Noise or more generally uncertainty
is a common and important problem in practical optimization. Following
[4,16], uncertainty comprises noise, robustness, dynamical changes, and func-
tion approximations. Many causes exist: Physical measurements may be neces-
sary during the optimization which are usually imprecise to a certain degree.
Situational changes may occur – for instance when trying to find the fastest
route in a traffic network. For a closer explanation, let us reconsider the function
f : RN → R that is to be optimized. Noise means that the function evaluations
are not exact and that disturbances, i.e., measurement errors or similar, need to
be taken into account. These can be modelled by a random variable ε. Instead of
the exact f -value at x only the noisy f̃(x) = g(f,x, ε) can be observed. Following
the test suite [10], the multiplicative noise model

f̃(x) = f(x)ε (19)

is considered in the paper. In the experiments conducted for the sphere and
the Rosenbrock function, the noise term ε is represented by a log-normally
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Table 3. ERT and half-interquantile range (90%–10%) divided by the best ERT mea-
sured during BBOB 2009 for different Δf values in 10-D.

10-D

Δfopt 10 0.1 1e-3 1e-5 1e-7 #succ

f101 26 181 194 210 226 15/15

1:CMSA-ES 3.0(2) 1.7(0.2) 2.9(0.4) 3.9(0.4) 4.9(0.8) 15/15

2:FS-ES 2.8(1) 1.6(0.4) 2.8(0.2) 3.6(0.5) 4.5(0.3) 15/15

f104 610 16641 19364 20764 22011 15/15

1:CMSA-ES 368 (2) 140(38) ∞ ∞ ∞3.0e6 0 /15

2:FS-ES 22(27) 46(8) 46(79)
� 44(4)

� 50(78)
� 13/15

f107 945 3871 7352 11340 14303 15/15

1:CMSA-ES 1.5(2) 365(213) 224(3) 147(4) 117(4) 15/15

2:FS-ES 0.92(0.3) 2.1(1)
�2 2.7(1)

�4 2.8(2)
�4 2.9(1)

�4 15/15

f110 11224 7.0e7 ∞ ∞ ∞ 0

1:CMSA-ES 89(76) 0.62(0.6) ∞ ∞ ∞ 0/15

2:FS-ES 2.5(0.9) 0.10(0.1) 1.3e7 (1e7) 1.3e7 (1e7) 1.3e7 (3e7) 3/15

distributed random variable exp(βN (0, 1)) [10]. Two variants are taken into
account, moderate noise with β = 0.01 (id 101 (sphere), id 104 (Rosenbrock))
and severe noise β = 1 (ids 107 (sphere) and 110).

For the comparison, the FS-ES is chosen as the representative for the ESs
with additional shrinkage. Table 3 shows a promising finding: While both strate-
gies behave comparable on the sphere if the noise does not have a strong effect,
the FS-ES appears as superior if the fitness evaluations are severely disturbed.
Here, the additional shrinkage may serve to stabilize the covariance matrix
update and may thus improve the performance of evolution strategies in the
case of noisy optimization. A similar behavior can be observed for the Rosen-
brock function. Here, the FS-ES performs better even for low noise levels.

6.2 The Role of the Shrinkage Intensity: A Closer Look at the
Fisher-Sun Estimate

The preceeding sections showed that the shrinkage intensity may have an influ-
ence on the performance of the ES, considering that the results of the FS-ES
and the Tou-ES differ. Therefore, this section takes a closer look at the Fisher-
Sun estimator and analyzes different value settings. We start from the original
equation in [11, p. 1913]

λ̂ =
β̂2

D + γ̂2
D

δ̂2D
. (20)



Can Evolution Strategies Benefit from Shrinkage Estimators? 137

The parameters in (20) are obtained as follows: Let â1 = Tr(CS
μ)/N and

â2 =
μ2

N(μ − 1)(μ + 2)

(
Tr(CS

μ

2
) − 1

μ
(Tr(CS

μ))2
)

. (21)

Denote the matrix with the diagonal elements of CS
μ as DC . Then with

â∗
1 = Tr(DC)/N and (22)

â∗
2 =

μ

N(μ + 2)
Tr(D2

C) (23)

the parameters read

β̂2
D =

1
μ

(
â2 + Nâ2

1

)
, (24)

γ̂2
D = − 2

μ
â∗
2, (25)

δ̂2D =
μ + 1

μ
â2 +

N

μ
â2
1 − μ + 2

μ
â∗
2. (26)

Starting from (20), the shrinkage intensity ρ = cλ̂ is varied with factors c = 0.01
(− − −), 0.1 (−−), 0.5 (−), 1.5 (+), 2.0 (++), and c = 10 (+++). In the case
that the resulting parameter exceeds one, it is reset to ρ = 1. The investigation
considered two separable functions with ids 1 (sphere) and 2 (ellipsoidal), the
two Rosenbrock functions (id 8, 9) as representatives for lowly and moderately
conditioned functions, and aside from the sharp ridge (id 13) the set of functions
with high conditioning (ids 10–14).

As it can be inferred from Table 4, the effects of the scaling factor ρ differ
with the function that is to be optimized. For nearly all functions considered
a decrease and therefore a smaller influence of the diagonal shrinkage target
appears as beneficial. Comparing the results with those in Table 1 shows that the
performance depends very strongly on the size of the factor and can be improved
decisively. However, it appears difficult to obtain a general recommendation. In
some cases, e.g. the discus, id 11, a slight decrease may be preferable whereas
the ES in the case of the original Rosenbrock, id 8, apparently operates better
with only a small correction by the target. For the set of functions considered, a
decrease by half or the factor 0.1 appears to improve the results. However, further
investigations – especially into potential adaptation mechanisms of the shrinkage
intensity – appear necessary. This is underlined by the findings in the case of the
ellipsoidal with id 2 which differ strongly from the rest of the functions. Here,
an increase of the intensity improves the performance, albeit not significantly.
This may be a hint that a strong influence of the target is preferable. As it can
be seen, the “optimal” shrinkage intensity from literature may not represent the
best choice for the purposes of optimization. This was to be expected since the
situation differs from the iid or even normally distributed case considered in the
papers.
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7 Conclusions

Evolution strategies are population-based evolutionary algorithms for continu-
ous optimization. They use a multivariate normal distribution to generate new
search points. The parameters of this distribution must be adapted in order to
achieve a well performing optimization method. For this reason, step-size and
covariance matrix adaptation techniques are important topics in research on
evolution strategies. This paper considered the covariance matrix adaptation.
Current techniques use the sample covariance, an estimator, which may be of
poor quality if the sample size is small. Typically, the estimate is corrected with
the help of additional terms. The resulting effect is remarkably similar to shrink-
age estimation, a method stemming from statistics. There, shrinkage operators
have been introduced in order to improve the quality of the sample covariance
by correcting the estimate with the help of a target matrix.

The realization that evolution strategies already perform an implicit shrink-
age leads to the research question of the present paper: Would an additional
inclusion of shrinkage operators improve the performance of evolution strate-
gies? Applying explicit shrinkage in evolution strategies requires several new
tasks to be solved: The choice of the target and the combination weight of
target and sample covariance, the shrinkage intensity, are crucial. Since an evo-
lution strategy is used to optimize arbitrary functions with various structures,
the approach must remain sufficiently adaptable. To achieve this, we considered
a transformation of the original search space to conduct the shrinkage.

The experimental analysis took several shrinkage targets into account using
the intensity settings of the original publications. Pending further experiments
that shall provide more information regarding the shrinkage intensity which may
have interfered with the findings, shrinkage targets in the transformed space that
use a diagonal matrix consisting of the different entries of the transformed sample
covariance appear as the best choices. While introducing additional shrinkage
does not always improve the performance in the noise-less case and at times
even impairs it, it may offer a means to lessen the impact of noise.

As the experiments showed, the choice of the shrinkage intensity may have a
strong influence on the performance. Since the original covariance matrix adapta-
tion performs a further type of shrinkage which lessens the influence of the sample
covariance when the search space dimensionality increases, future research will
focus on the shrinkage intensity and its interaction with the covariance matrix
adaptation.
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