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Preface

The present special issue of the journal of Transactions on Computational Collective
Intelligence (TCCI) includes extended and revised versions of a set of 11 selected
papers from the International Conference on Agents and Artificial Intelligence,
ICAART 2016 and 2017 editions.

The multidisciplinary areas of agents and artificial intelligence involve a large
number of richly variegated researchers. They devote themselves to the study of the-
oretical and practical issues related to areas such as multi-agent systems, software
platforms, agile management, distributed problem solving, distributed AI in general,
knowledge representation, planning, learning, scheduling, perception, data mining, data
science, reactive AI systems, evolutionary computing, and other topics related to
intelligent systems and computational intelligence.

This special issue comprises 11 research papers with novel concepts and applica-
tions, which were selected after a strict reviewing process. Our main criterion was
interesting and relevant topics of current research on agents and artificial intelligence.

The first six papers are revised and extended versions of papers presented at
ICAART 2016. The issue starts with two papers related to user preference modelling,
the first one is from an individual point of view and the second one is from a group
recommendation perspective. The first paper is entitled “A New Approach for Learning
User Preferences for a Ridesharing Application,” authored by Mojtaba Montazery and
Nic Wilson, and focuses on the learning aspect of user preferences. The second paper is
entitled “An Altruistic-Based Utility Function for Group Recommendation,” by Silvia
Rossi, Francesco Cervone, and Francesco Barile, and focuses on models of
other-regarding preferences. Here it is remarked that altruism, fairness, and reciprocity
strongly motivate many people. Then two papers deal with multi-agent cooperation,
either in a game context or in a more general planning context. The first entitled
“Two-Stage Reinforcement Learning Algorithm for Quick Cooperation in Repeated
Games,” by Wataru Fujita et al., highlights the importance of “trust” in reinforcement
learning. The other paper, entitled “Recursive Reductions of Action Dependencies for
Coordination-based Multiagent Planning,” by Jan Tožička, Jan Jakubův, and Antonín
Komenda, describes how to extract internally dependent actions during multiagent
planning and how to make the planning process more efficient by taking advantage
of the computed dependencies. In paper five and six, soft-computing methodologies are
described and applied, namely, in an applied-research paper entitled “Controlling a
Single Transport Robot in a Flexible Job Shop Environment by Hybrid Metaheuris-
tics,” by Houssem Nouri et al., and in a more theoretical paper, focusing on continuous
optimization tasks, entitled “Can Evolution Strategies Benefit from Shrinkage Esti-
mators?” by Silja Meyer-Nieberg and Erik Kropat.

The other five papers are revised and extended versions of papers presented at
ICAART 2017. Two papers are related to the topic of agent cooperation, two papers to
the topic of adaptation and one paper to allocation strategies. The first cooperation



paper is authored by Jean-Claude Heudin, entitled “An Emotional Multi-Personality
Architecture for Intelligent Conversational Agents.” The second cooperation paper is
authored by João Marinheiro and Henrique Cardoso, entitled “Towards General
Cooperative Game Playing.” The first adaptation paper is entitled “Comparing the
Effects of Disturbances in Self-Adaptive Systems,” by Sven Tomforde et al. The
second adaptation paper is entitled “Analysis of Perceived Helpfulness in Adaptive
Autonomous Agent Populations” authored by Mirgita Frasheri, Baran Çürüklü, and
Mikael Ekström. Finally, the strategy paper is entitled “Evaluating Task-Allocation
Strategies for Emergency Repair in MAS,” authored by Hisashi Hayashi. This paper
addresses the robustness of multi-agent system types in a comparative analysis. It
shows how task-allocation algorithms in emergency situations are important for
avoiding the failure of the whole system.

We believe that all papers published in this special issue will serve as a guiding
reference for students, researchers, engineers, and practitioners who perform research
in the areas of agents and artificial intelligence. Moreover, we hope that the readers will
find new inspiration for their research and may join the ICAART community in the
future.

Finally, we would like to thank all authors for their contributions and all reviewers
for supporting us in ensuring the quality of this publication. Of course, we would like
to express our gratitude to the LNCS editorial staff of Springer, in particular to Prof.
Ryszard Kowalczyk for his patience and availability during this process.

April 2018 Jaap van den Herik
Ana Paula Rocha

Joaquim Filipe
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A New Approach for Learning User
Preferences for a Ridesharing Application

Mojtaba Montazery(B) and Nic Wilson

School of Computer Science and IT, Insight Centre for Data Analytics,
University College Cork, Cork, Ireland

{mojtaba.montazery,nic.wilson}@insight-centre.org

Abstract. Ridesharing has the potential to relieve some transportational
issues such as traffic congestion, pollution and high travel costs. In this
paper, we focus on the process of matching drivers and prospective riders
more effectively, which is a crucial challenge in ridesharing. A novel app-
roach is proposed in ride-matching which involves learning user preferences
regarding the desirability of a choice of matching; this could then maintain
high user satisfaction, thus encouraging repeat usage of the system. An
SVM inspired method is developed which is able to learn a scoring function
from a set of pairwise comparisons, and predicts the satisfaction degree of
the user with respect to specific matches. To assess the proposed approach,
we conducted some experiments on a commercial ridesharing data set. We
compare the proposed approach with five rival strategies and methods, and
the results clearly show the merits of our approach.

Keywords: User preference learning · Dynamic ridesharing

1 Introduction

Ridesharing (also carpooling and lift-sharing) is a mode of transportation in
which individual travellers share a vehicle for a trip. Increasing the number of
travellers per vehicle trip, by effective usage of spare car seats, may of course
enhance the efficiency of private transportation, and contribute to reducing traf-
fic congestion, fuel consumption, and pollution. Moreover, ridesharing allows
users to split travel costs such as fuel, toll, and parking fees with other individ-
uals who have similar itineraries and time schedules. Conceptually, ridesharing
is a system that can combine the flexibility and speed of private cars with the
reduced cost of fixed-line systems such as buses or subways (Furuhata et al. 2013,
Agatz et al. 2011).

Ridesharing is quite an old concept; it was first used in the USA during
World War II to conserve resources for the war. It reappeared as a result of the
oil crisis in 1970s which led to the emergence of the first ridesharing algorithms.
Nevertheless, ridesharing usage declined drastically between the 1970s and the
2000s due to the decrease in the price of fuel and vehicle ownership cost (Chan
and Shaheen 2012).
c© Springer International Publishing AG, part of Springer Nature 2018
N. T. Nguyen et al. (Eds.): TCCI XXVIII, LNCS 10780, pp. 1–24, 2018.
https://doi.org/10.1007/978-3-319-78301-7_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78301-7_1&domain=pdf
http://orcid.org/0000-0001-6313-8371
http://orcid.org/0000-0003-1874-8255
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Furthermore, there are some challenges that have inhibited wide adoption of
ridesharing. A few of the most important of those are listed as follows:

Riding with Strangers. Surveys suggest that there is little interest in sharing
a ride with strangers, because of personal safety concerns. This phenomenon
is called Stranger Danger and could be alleviated by incorporation of social
networks (Amey et al. 2011, Furuhata et al. 2013). (Chaube et al. 2010)
conducted a survey among students of a university which shows that while
only 7% of participants would accept rides from a stranger, 98% and 69%
would accept rides from a friend and the friend of a friend, respectively.

Reliability of Service. One of the largest behavioural challenges is the per-
ception of low reliability in ridesharing arrangements; the parties may not
necessarily follow through on the agreed-upon ride. For instance, if the driver
has an unexpected appointment or emergency, the passenger may be left with
no ridesharing option; or, from the other side, drivers might be required to
wait because of a passenger being late (Amey et al. 2011).

Schedule Flexibility. The lack of schedule flexibility has been one of the
longest running challenges in ridesharing arrangements. Drivers and passen-
gers often agree to relatively fixed schedules and meeting locations, not allow-
ing much flexibility. It is interesting to note that increased flexibility and
increased reliability in ridesharing arrangements are often conflicting objec-
tives (Amey et al. 2011).

Ride Matching. Optimally matching riders and drivers—or at least getting a
good match—is among the most important challenges to be overcome. This
can lead to a complicated optimisation problem due to the large number
of factors involved in the objective function. We will discuss this aspect of
ridesharing further in Sect. 2.

Despite the above barriers to ridesharing, the demand for ridesharing services
has increased again sharply in recent years, generating much interest along with
media coverage (Saranow 2002). This boost in ridesharing is mainly associated
with a relatively new concept in ridesharing, dynamic or real-time rideshar-
ing. Dynamic ridesharing refers to a system which supports an automatic ride-
matching process between participants at short notice or even en-route (Agatz
et al. 2012).

Technological advances, both hardware and software, are key enablers for
dynamic ridesharing. The first influential fact is that the smartphones are becom-
ing increasingly popular (Emarketer 2014, Smith 2015). The first impact of
smartphones on ridesharing is that they provide an infrastructure on which a
ridesharing application can run, replacing the old-fashioned, sometimes not so
convenient, approaches such as phone or website. More importantly, smartphones
are usually equipped with helpful communication capabilities, including Global
Positioning System (GPS) (Zickuhr 2012) and network connectivity (Duggan
and Smith 2013).

Dynamic ridesharing by its nature is able to ease some aspects of exist-
ing challenges in traditional ridesharing. For example, tracking participants by
means of GPS could mitigate safety concerns or increase the reliability. In terms
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of flexibility, since dynamic ridesharing does not necessarily require long-term
commitment, users have the option to request a trip sharing day-by-day or when-
ever they are pretty sure about their itinerary.

Even though the above advancement in technology could be beneficially avail-
able, ridesharing is still in short supply. In this study, we focus on the ride-
matching problem which is central to the concept. However, we are mindful of
the fact that there are a number of other challenges that should be dealt with
to accomplish the ultimate success of ridesharing. The next example explains a
simple scenario of matching between two individuals.

Example 1. Suppose Alice is going to drive from A to B, and her driving speed
is around 80km/h on average. Another individual, Bob, needs to travel from C to
D. To do this, he goes up from C to E with a taxi to get a train; then, he gets
off the train at F, and finally he takes a bus to reach to his destination D. His
trip will take approximately 115 min. The schema of routes and their distances
are depicted in Fig. 1.

If a ride-matching between them is suggested, Alice needs to drive to C to
pick up Bob, and then drops him off at D, and proceeds to her destination B.
By doing this, the total system-wide vehicle-mileage will be (16 + 112 + 12 =)
140 km, and the total system-wide travel time will be 189 min because Alice’s
trip will take (140 × 60/80 =) 105 min and Bob’s travel will last (112 × 60/80 =)
84 min.

On the other hand, if they travel individually, the total system-wide vehicle-
mileage (including bus, taxi and train) will be 238 km since Bob travels (10 +
100 + 8 =) 118 km and Alice 120 km, and the total system-wide travel time will
be (120 × 60/80 + 115 =) 205 min.

Thus, if this matching takes place, (238−140 =) 98 km travel distance will be
saved, and (205−189 =) 16 min travel time will be saved. In this scenario, Alice
will drive 20 km (15 min) more than her original route (AB), which is usually
compensated with a fair payment by Bob. ��

The rest of the paper is structured as follows. In Sect. 2, we model the
automated ride-matching problem and explain how user preferences could be
considered in the matching process. In Sect. 3, a method to learn user prefer-
ences is described in detail. Section 4 evaluates the presented approach on a real

A B

C

D

E
F

16
km

120km

112km

12km

100km

10k
m

8
km

Fig. 1. The routes of Bob and Alice’s trips, described in Example 1.
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ridesharing database. Finally, in Sect. 5, we summarize the main remarks and
discuss some directions for future research.

2 Automated Ride-Matching

The essential element of dynamic ridesharing is the automation of the ride-
matching process, which allows trips to be arranged at short notice with minimal
effort from participants. This means that a system helps riders and drivers to
find suitable matches and facilitates the communication between participants
(Hwang et al. 2006, Agatz et al. 2012).

In order to model the matching problem, two disjoint types of ridesharing
request are considered: a set of requests in which the owner of the request are
drivers (D), and requests created by riders (R). Hence, all trip requests could be
represented by the set S = R∪D. Then, ridesharing requests are represented as
a bipartite graph G = (D,R,E), with E denoting the edges of the graph. This
setting is extendable for the case when some participants are happy with being
either a driver or a rider.

This graph becomes a weighted graph by assigning a weight cij to the edge
(Di, Rj), where Di, Rj ∈ S. Generally speaking, cij quantifies how much is
gained by matching Di and Rj . This weight is usually a composition of over-
all system’s benefits. For representing the system’s benefits—which ultimately
could result in less pollution, traffic congestion etc.,—two measures are often
mentioned in the related studies; the saved travel distance (dij) and the saved
travel time (tij) which are obtained from the match (Di, Rj) (Calvo et al. 2004,
Winter and Nittel 2006). For instance, cij could be defined to be dij + tij (or
some other linear combination). To represent infeasibility of matching between
Di and Rj , cij could be assigned to be a very small number (e.g., −∞). Figure 2
depicts a sample matching graph where cij only considers the saved travel dis-
tance measure.

For finding optimal matchings, one approach popular in the literature is solv-
ing an optimisation problem in which the sum of the benefits from the proposed
matchings is maximised (Agatz et al. 2011). To do this, a binary decision vari-
able xij is introduced that would be 1 when the match (Di, Rj) is proposed,
and 0 if not. Then, the objective function to be maximised is

∑
i,j xijcij . After

running the solver, a fixed schedule is proposed to users as the optimal solution.
However, this approach neglects a crucial requirement of a practical sys-

tem, that is, getting users’ confirmation before fixing a ride-share for them.
Although earlier we emphasised the concept of automation in ride-matching
which attempts to minimise users’ efforts, we believe that it couldn’t be fully
automatic. In fact, it is hard in practice to convince users to share their ride
with somebody without their final agreement. For example in Fig. 2, it would
be illogical to send a message to D1 saying: “According to our computation, the
best match for you is R2. So, you are supposed to give him a ride tomorrow
morning at 8:30.”

For this reason, in this study, we suggest a novel attitude towards ride-
matching problems, by looking at the problem as a recommendation system
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R1 R2 R3 R4

D1 22 21 - 28
D2 14 - 10 -
D3 12 10 19 8
D4 30 - 18 -
D5 - 7 25 27

(a)

D5

D4

D3

D2

D1
R1

R2

R3

R4

21

30

19

27

(b)

Fig. 2. (a) Each cell indicates the amount of saved travel distance (km) for that match,
where infeasible matchings are shown with hyphen (-). (b) Having assumed that cij =
tij , the optimal matching is drawn. The total saved travel distance for this whole
matching is 97 km, which is the maximum.

rather than an optimisation problem. In this setting, the system just recom-
mends a set of best possible matchings to each individual with respect to the
weights cij .

As previously mentioned, cij only considers the system’s benefits, and to
express users’ limitations, the common strategy is posing some constraints on
the matching graph (Herbawi and Weber 2012, Agatz et al. 2011). Nevertheless,
there are two main shortcomings that have not been fully addressed by adoption
of this strategy:

Only Hard Constraints. The fact is that users might sacrifice some of their
desires in favour of other ones. For instance, a rider who likes smoking in
the car may decide to share his trip in a non-smoking vehicle due to other
favourable conditions. Therefore, having soft constraints instead of hard ones
may often be more plausible. Posing soft constraints could be rephrased as
considering users’ preferences, the term that is mainly used in this paper.

Eliciting Complicated Parameters. In order to set constraints, there is a
prerequisite to ask users to specify several parameters explicitly, such as ear-
liest possible departure time, latest possible arrival time and maximum excess
travel time (Baldacci et al. 2004, Agatz et al. 2011, Amey et al. 2011). How-
ever, elicitation of such parameters for every trip is quite impractical in real
world situations. As an example, users can simply state their departure time,
but finding how flexible they are with that time is not a straightforward task.
Moreover, some participants may be hesitant or unwilling to disclose certain
preferences for privacy reasons.

Our solution for attempting to overcome the aforementioned issues is redefin-
ing cij in such a way that not only does cij incorporate the overall system’s
benefits, but also takes into account participants’ desires, making the hard con-
straints unnecessary. Actually, cij should also represent how happy two individ-
uals (Di and Rj) are with being matched with each other. While positional and
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temporal elements of a ride-share usually play a more important role in form-
ing users’ satisfaction degree, users’ social preferences such as the other party’s
reputation and gender, smoking habit and so forth are also suggested as rele-
vant components (Ghoseiri et al. 2011). To mathematically illustrate, assume
cij = (w(D)

ij · w(R)
ij ) · (dij + tij) where w

(D)
ij indicates how favourable sharing the

ride with the rider j for the driver i is, and the converse for w
(R)
ij .

In order to find w
(D)
ij (resp. w

(R)
ij ), we suggest learning the preferences of the

user i (resp. j) from his/her past ridesharing records. For instance, we can learn
from the previous choices of a particular user that he is normally more flexible
with time than location. We will discuss more about this subject in Sect. 2.1. As
a result of learning weights, as well as modeling soft constraints in the form of
users’ preferences, there is no need to elicit those cumbersome parameters from
participants anymore.

2.1 Learning Weights

In this section, the mechanism of learning users’ preferences from the previous
ridesharing records will be characterised. To give an intuitive sense, we start
with an example.

Example 2. Take Alice from Example 1 who has a daily driving trip from A to
B (e.g., every day at 8:30). This trip request is denoted by D1.

On Day 1, the system recommends three matching opportunities, namely R1,
R2 and R3. Alice declines R1, accepts R2 and leaves R3 without any response.
Ignoring a recommended match may potentially mean that the user had been
tentative about it.

On the second day, two recommendations, R4 and R5, are suggested to her.
R4 is declined and R5 is initially accepted. While Alice was waiting for the
response of the other party in R5, she receives another suggestion, R6; she then
changes her mind about R5 and cancels that one, and instead accepts R6.

On the third day, the system has found two feasible matches which are R7

and R8. The goal is to evaluate how desirable these two opportunities are for
Alice regarding her trip D1. Using the notation of the previous section, we would
like to find w

(D)
1,7 and w

(D)
1,8 which are finally incorporated in the calculation of

c1,7 and c1,8, respectively. Table 1 summarizes this example. ��

Table 1. The scenario described in Example 2 is summarized here. Alice’s responses
are Accepted(A), Cancelled(C), Ignored(I) and Declined(D).

Day 1 Day 2 Day 3 (Today)

(R1, D) (R4, D) R7(w
(D)
1,7 =?)

(R2, A) (R5, C) R8(w
(D)
1,8 =?)

(R3, I) (R6, A)
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At first glance, the problem might seem to be a classification problem because
the supervision (labels) is in the form of classes (i.e., Accepted, Declined etc.).
However, a closer look suggests that learning a classifier may well not be a good
choice. The first reason is that there is a logical order between classes in the
current case (e.g., Accepted has a highest value and Declined the lowest value),
whereas classification is often applied when there is no ordering between class
labels. Secondly, a classifier will predict a class label whereas here, a scalar value
is required.

If each class label is replaced by an appropriate number which keeps the
natural ordering, the problem could be considered as a regression problem. For
instance, the number 1 might be assigned for Accepted, 0.67 for Cancelled, 0.33
for Ignored and 0 for Declined. In spite of the fact that learning a regressor
has none of those defects mentioned about classification, we believe that it still
suffers from the following flaws:

– The user’s response to a recommended opportunity not only depends on the
properties of that particular case, but also depends on other rival opportuni-
ties. Taking Example 2 to illustrate, it is not necessarily the case that if R2

existed in the suggestion list on day 2, it would certainly be accepted again,
because Alice accepted R2 in presence of R1 and R3 which does not guarantee
its acceptance when R5 and R6 are available.

– Two class labels do not necessarily have the same desirability distance for
all instances. Consider Example 2; assigning value numbers to classes as
described above suggests that the difference between R1 and R2 from the
first day, and R4 and R6 from the second day are both 1. However, the only
thing that is known is that Alice preferred R2 to R1 and R6 to R4, not the
extent of the difference.

To address the above issues, we suggest considering the supervision in the
form of qualitative preferences. This means that instead of assigning value num-
bers, sets of pairwise comparisons among alternatives are derived from the user’s
choices. The following set of preferences could be formed for Example 2:

λ = {(R2 � R3), (R3 � R1), (R2 � R1), (R6 � R5), (R5 � R4)}, (R6 � R4).

In the next section, a model will be proposed to learn a scoring function by
making use of this kind of preferences set.

3 Learning Model: SVPL

3.1 Basic Formulation

As described above, the primary capability of the method being developed in this
section should be learning a scoring function from a set of pairwise comparisons,
expressed between several alternatives. This scoring function can generate a
value number for each alternative (i.e., ridesharing trip opportunity), measuring
the expected desirability degree of that alternative for the user.
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Mathematically speaking, the set of alternatives is expressed as X which is
a finite subset of Rd, where d is the dimension of the features vector (with each
feature representing a different property of the trip). We formulate the pairwise
comparisons set as λ = {(Xi � Yi)|i ∈ {1, . . . , n}, Xi, Yi ∈ X}. Then, the goal
is finding a function f(X) : Rd → R which maps a features vector to a scalar
value and is in agreement with the preferences set λ, i.e., if Xi � Yi is in λ then
we aim to have f(Xi) > f(Yi). In order to achieve this goal, we developed a
derivation of conventional SVM which eventually turns out to be similar to the
SVMRank approach proposed in (Joachims 2002).

In the rest of this section, the notation λi (corresponding to (Xi � Yi))
represents the preference point in R

d, given by λi = Xi − Yi. We say that
preferences points are consistent if there is a scoring function f satisfies the
following condition:

∀i = 1, . . . , n, f(Xi) > f(Yi). (1)

In the current section, we assume that all preferences points are consistent,
meaning there is at least one scoring function able to satisfy Eq. (1). In Sect. 3.2,
we consider the inconsistent case.

Another assumption being made in this section is that the scoring function is
a linear function, and thus, f(λi) > 0 (since f(Xi)−f(Yi) > 0). We will consider
the case of a non-linear scoring function in Sect. 3.3.

With respect to these two assumptions, if h = {X : f(X) = 0}, then the
hyperplane h (which is a line in the 2-dimensional space) should clearly include
the origin, and all preferences points (i.e., λi) should be in the associated positive
open half-space, given by h. This condition can be mathematically written as:

ω · λi > 0 ∀i, (2)

where ω is the normal vector to the hyperplane h. Two examples of plausible
hyperplanes (hω1 and hω2) for a consistent set of preferences points are illustrated
in Fig. 3.

x

y

hω1
hω2

bω2bω1

ω1
ω2

Fig. 3. Two samples of plausible hyperplanes (hω1 and hω2) and their associated normal
vectors (ω1 and ω2) for a set of consistent preferences points are illustrated. bω1 and
bω2 are the margins of hω1 and hω2 , respectively.
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The margin of a hyperplane, denoted by b, is defined as the distance from the
hyperplane to the closest preference point; for the hyperplane hω, it is equal to:

bω =
mini ω · λi

‖ω‖ , (3)

where ‖ω‖ is the Euclidean norm of ω (‖ω‖2 = ω · ω).
Based on the principal idea in SVM (Burges 1998), among all hyperplanes

that can meet the condition stated in Eq. (2), we look for the hyperplane that
produces the largest margin, since it seems reasonable that a greater marginal
distance from the condition boundary is more desirable. Thus, in order to find
the optimal ω (say ω∗) and consequently f(X), we need to solve an optimisation
problem as follows:

ω∗ = arg max
ω

mini ω · λi

‖ω‖ (4a)

subject to
ω · λi > 0 ∀i. (4b)

Let aω = mini ω · λi, where according to Eq. (4b) aω should be a strictly
positive number. Then we have:

ω∗ = arg max
ω

aω

‖ω‖ (5a)

subject to
ω · λi ≥ aω > 0 ∀i. (5b)

Let ω′ = ω
aω

, where clearly ω′, like ω, is a normal vector to the hyperplane
hω. As a result, the problem can be simplified by replacement of ω with the term
aωω′. That means the objective function (Eq. 5a) will be:

aω

‖ω‖ =
aω

aω‖ω′‖ =
1

‖ω′‖
and the constraint (Eq. 5b) is modified like this:

ω′ · λi ≥ 1

Hence, the problem is reformulated as the following:

ω′∗ = arg max
ω′

1
‖ω′‖ (6a)

subject to
ω′ · λi ≥ 1 ∀i. (6b)

Note that ω′∗ found from Eq. (6) is not necessarily equal to ω∗ found from
Eq. (5), but as described above, both give an equivalent hyperplane (hω ≡ hω′).
So, without loss of generality, we can use the symbol ω instead of ω′ in Eq. (6).
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To have a more standard form, the arrangement of the problem is reformu-
lated as a minimisation problem in this manner:

ω∗ = arg max
1
2
‖ω‖2 (7a)

subject to
1 − ω · λi ≥ 0 ∀i. (7b)

Now, this is a convex quadratic programming problem, because the objective
function is itself convex, and those points which satisfy the constraints are also
from a convex set (a set of linear constraints define a convex set).

In Sect. 3.3, more explanation will be given as to why we are interested in the
form of problem formulation (both objective function and constraints) in which
preferences points only appear in the form of pairwise dot products. To fulfill
this demand, we switch to the Lagrangian Dual Problem.

For our problem, the Lagrangian function which is basically obtained by
augmenting the objective function with a weighted sum of the constraint
functions, is:

L(ω, μ) =
1
2
‖ω‖2 +

n∑

i=1

μi (1 − ω · λi) (8)

where μi is referred as the Lagrange multiplier associated with the ith inequality
constraint 1 − ω · λi ≤ 0 (Boyd and Vandenberghe, 2004 Chap. 5).

The optimisation problem stated in (Eq. 7) is called the primal form; where
the Lagrangian dual form is formulated in this fashion:

(ω∗, μ∗) = arg max
μ

inf
ω

L(ω, μ) (9a)

subject to
μi ≥ 0 ∀i. (9b)

Because the primal form is convex and Slater’s condition holds, we say the
strong duality holds for our problem (Boyd and Vandenberghe 2004, Sect. 5.2.3).
This means that the optimal value for the dual problem equals the optimal value
for the primal form. As a consequence, solving the Lagrangian dual form (Eq. 9)
is equivalent to solving the primal form of the problem (Eq. 7).

As stated, strong duality is obtained for our problem, and also the objective
function is differentiable. Regarding these two criteria, an optimal value must
satisfy the Karush Kuhn Tucker (KKT) conditions (Boyd and Vandenberghe
2004, Sect. 5.5.3). Here, we just exploit the stationary condition of KKT which
states:

for each component j,
∂L
∂ωj

= 0, i.e., ω =
n∑

i=1

μiλi. (10)

We substitute equality constraint (10) into Eq. (8) which leads to a remodeled
version of Eq. (9), in the form that we are interested in:

μ∗ = arg max
μ

L =
n∑

i=1

μi − 1
2

n∑

i=1

n∑

j=1

μiμjλi · λj (11a)
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subject to
μi ≥ 0 ∀i. (11b)

At this stage, we have just a simple positivity condition on μi which is more
manageable than Eq. (7b) and more importantly, the preferences points appear
just in the form of dot products (λi · λj).

Solving this new form of the problem gives optimal values for the Lagrange
multipliers (μ∗); we then can use Eq. (10) to find ω∗ as well.

3.2 Handling Inconsistencies

So far, we assumed that there exists at least one hyperplane such that all prefer-
ences points are placed in the positive open half-space of it. However, it is plau-
sible that in practice this assumption may result in finding no feasible solution.
To handle inconsistencies, we develop the basic model further by reformulating
the initial constraint (7b) such that it could be violated with an appropriate
amount of cost.

For this purpose, the constraint (7b) is rewritten as 1 − ω · λi ≤ ξi where
ξi represents the cost of violating the ith constraint and obviously should be
non-negative (ξi ≥ 0). Then, the objective function is augmented by the term

C
n∑

i=1

ξi to reveal the effect of costs, where C is a constant parameter to be

chosen by the user. The parameter C scales the impact of inconsistent points; a
larger C corresponds to assigning a higher penalty to errors. Thus, the primal
form of the problem becomes the following:

ω∗ = arg min
ω,ξi

1
2
‖ω‖2 + C

n∑

i=1

ξi (12a)

subject to
1 − ω · λi − ξi ≤ 0 ∀i, (12b)

ξi ≥ 0 ∀i. (12c)

This optimisation problem (Eq. 12) is equivalent to Optimisation Problem 1
(Ranking SVM) proposed in (Joachims 2002).

Because we have a new set of constraints (ξi ≥ 0), a new set of positive
Lagrange multipliers αi(i = 1, ..., n) are introduced. The Lagrangian changes as
follows:

L =
1
2
‖ω‖2 + C

n∑

i=1

ξi +
n∑

i=1

μi (1 − ω · λi − ξi) −
n∑

i=1

αi ξi (13)

The stationary KKT condition entails the new equality constraints:

∂L
∂ ξi

= 0 i.e., αi = C − μi ∀i. (14)
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By substituting C−μi for αi in Eq. (13), the Lagrangian dual form of the problem
becomes:

(ω∗, μ∗) = arg max
μ

inf
ω

L =
1
2
‖ω‖2 +

n∑

i=1

μi (1 − ω · λi) (15a)

subject to
μi ≥ 0 ∀i, (15b)

αi ≥ 0 i.e., C − μi ≥ 0 ∀i. (15c)

As in the previous section (Eq. 10), replacing ω with
n∑

i=1

μiλi gives us the simpler

form of the problem:

μ∗ = arg max
μi

L =
n∑

i=1

μi − 1
2

n∑

i=1

n∑

j=1

μiμjλi · λj (16a)

subject to
0 ≤ μi ≤ C ∀i. (16b)

Since neither the ξi nor its associated Lagrange multiplier (αi) appear in the
objective function, this format of the problem is very similar to the one without
introducing costs (Eq. 11), except μi is restricted by an upper bound which is C.

3.3 Non-linear Scoring Function

We assumed that the scoring function is a linear function. However, a non-linear
scoring function might be a better choice sometimes. In this section, we deal
with this matter to cover the non-linear case as well.

The Kernel function concept (Aiserman et al. 1964) is a widely-used trick
for pattern recognition problems which can be also exploited for our case. The
idea comes from the fact that a set of non linearly-representable data could be
linearly managed if they mapped to a higher dimension. To do the mapping, we
assume a function Φ of the form:

Φ : Rd → H, (17)

where H denotes a higher dimensional space than d-dimensional. If all prefer-
ences points are mapped into H by making use of Φ, the Lagrangian function
will be:

L =
n∑

i=1

μi − 1
2

n∑

i=1

n∑

j=1

μiμjΦ(λi) · Φ(λj). (18)

A deeper look into the process of computing L (Eq. 18) reveals that, even
though L is still a scalar value, the optimisation problem performs a dot product
operation (Φ(λi) ·Φ(λj)) in the high dimensional space which is computationally
expensive.
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Principally, a kernel is a function which operates in the lower dimension
(K(X,Y ) : Rd × R

d → R), but yields an identical result to the dot product of
mapped vectors in the higher dimension (K(X,Y ) = Φ(X) · Φ(Y )).

Due to the above property of the kernel function, the term Φ(λi)·Φ(λj) can be
simply replaced in Eq. (18) with an appropriate kernel. The great advantage of
such a replacement is that the complexity of the optimisation problem remains
only dependent on the dimensionality of d (the preferences points space) and
not of H.

Note that this simplification happens without even explicitly stating the Φ
function because the problem has been formulated in terms of dot products of
points, the property that we insisted to have in the previous sections. So, the
problem is rewritten as follows:

μ∗ = arg max
μ

L =
n∑

i=1

μi − 1
2

n∑

i=1

n∑

j=1

μiμjK(λi, λj) (19a)

subject to
0 ≤ μi ≤ C ∀i. (19b)

There still remains one point that should be considered. Solving this opti-
misation problem only gives μ∗ where after all, ω∗ is required. Equation (10)
cannot be used to attain ω anymore, because after the mapping, ω will live in
H; that is:

ω =
n∑

i=1

μiΦ(λi) (20)

However, recall that finding ω∗ is just an intermediate goal to achieve the
scoring function. Therefore, using Eq. (20) brings the following form of the scor-
ing function:

f(X) = ω · Φ(X)

= (
n∑

i=1

μiΦ(λi)) · Φ(X)

=
n∑

i=1

μi(Φ(λi) · Φ(X))

Importantly, this result contains points only in the form of dot products;
incorporating a kernel function gives:

f(X) =
n∑

i=1

μi K(λi,X) (21)

Equations (19) and (21) form the method, which is referred to as SVPL (Sup-
port Vector Preferences Learner) in our experiments. As seen, the input param-
eters that should be chosen in SVPL are C and the kernel function’s parameters
(if it has any).
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4 Experiments

4.1 Data Repository

The experiments make use of a subset of a year’s worth of real ridesharing
records (from April 2014 to April 2015), provided by Carma1 (formerly Avego).
Carma is a software company currently offering a dynamic ride-share application
for internet-enabled mobile phones (see Fig. 4). In addition to their App, any
individual can create his own App, powered by the Carma’s free API which uses
Carma’s live data.

The process of Carma’s application is briefly explained so as to facilitate
the understanding of the structure of the provided database. Users can request
a ride-share as a driver, rider or both (happy to be rider or driver). Once a
ridesharing request is created, the user can ask the system to find appropriate
matching opportunities. Then, a suggestion list is shown on the user’s screen. For
each suggested item, the user can accept, decline or just leave it with no response.
Note that accepting an opportunity at this stage does not mean the ride-share
will certainly happen, because it also needs the confirmation of the other party;
so, it is observed in the database that for a single trip a user may have several
accepted items. While the system is waiting to get the second confirmation, the
user can cancel an initially accepted item. It should be pointed out that the
cancellation of a specific item differs from the cancellation of the whole trip
request; the former often happens because of the greater attractiveness of a new

Fig. 4. A screenshot of Carma’s application to offer a ride-match.

1 https://www.gocarma.com/.

https://www.gocarma.com/
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item, and the latter is for the time when the user does not want to share the
ride for the created trip anymore.

According to the above mechanism, a ride-matching record is associated with
a class label which is among these four: Accepted, Cancelled, Ignored or Declined.
As explained earlier, a class label comes from the response of the main user
towards sharing the ride with the target user.

The second element of a ride-matching record is a vector of features, built
from the personal information of both the main and the target user and the
properties of their trips. Before starting the learning process, normalizing the
features’ spaces is an essential requirement due to the fact that margin based
methods are known to be sensitive to the way features are scaled (Ben-Hur and
Weston 2010). Because of that, features are scaled to an identical range, i.e.,
[0, 1]. The extracted features from the provided database are listed here:

– Positional Component: Expressing how suitable the pick-up and drop-off loca-
tions will be for the main user.

– Temporal Component: Expressing how appropriate the departure time will
be for the main user.

– Gender Component: Indicating whether the target user is of the same gender
(1) or the opposite (0).

– Has Image: It considers whether the target user’s profile contains his/her
picture or not.

– Average Rating: At the end of a ridesharing experience, users can rate the
other party. This feature holds the average rate that the target user has gained
from previous trips.

– Is Favourite: As well as the rating, a user can mark a particular user as a
favourite person at the end of ridesharing. This feature shows whether the
target user is among individuals who are marked as a favourite of the main
user or not.

– Previous Rating: If the main user and the target user have had a previous
ridesharing experience with each other, this feature shows the rating that the
main user has given to the target user.

We base our experiments on 12 benchmarks derived from this data-set. Each
benchmark corresponds to a different user (who is the main user of all ride-
matching records of that benchmark). Table 2 shows the number of ride-matching
records, separated by class labels, for each benchmark.

4.2 Experiments Settings

For a benchmark, the ride-matching records are sorted in ascending order of the
creation time, and then split into two parts. The first part includes 80% of the
records which we use to derive a set of pairwise comparisons as explained in
Sect. 2.1. This set works as input data to train SVPL. At the end of the learning
stage, SVPL can predict, for each record, a scalar value which expresses the
goodness of that record for the user.
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Table 2. 12 benchmarks derived from a commercial ridesharing system which are being
used in the experiments.

Benchmark Accepted Cancelled Ignored Declined Total

1. 179 72 83 14 348

2. 34 1 49 0 84

3. 210 52 138 2 402

4. 3 1 124 41 169

5. 81 1 53 29 164

6. 126 3 74 45 248

7. 39 7 28 4 78

8. 45 7 78 29 159

9. 146 37 3 1 187

10. 126 24 14 1 165

11. 40 1 41 13 95

12. 96 12 25 4 137

Total 1125 218 710 183 2236

The second part of the data is utilized for the testing stage. From this data, a
weak order between the records (a kind of ranking in which incomparable items
are assigned with the same rank) with respect to class labels could be derived
(see Example 3 below). This ranking is used as the ground truth for testing. On
the other hand, the predicted scalar values for records produced by the model
suggest a total order (ordinal ranking) between records.

Thereafter, the C-Index (or concordance C ) measure is exploited so as to
assess the ranking performance of SVPL with respect to the ground truth ranking
(Gönen and Heller 2005). It is calculated as follows:

C-Index(r, r̂) =
κ

κ + κ̄

where κ is the number of correctly ranked pairs and κ̄ (Kendall tau distance) is
the number of incorrectly ranked pairs.

DCG is another metric that is used to evaluate the model’s performance
(Järvelin and Kekäläinen 2002). For a particular ranking among p items, DCG
is defined as follows2:

DCGp =
rel1
0.4

+
p∑

i=2

reli
log2(i)

where reli is the relevance degree of the item at position i. Here, we say the
relevance of an accepted ride-matching is 3; a cancelled one is 2; ignored is 1 and
2 The original formula is DCGp = rel1+

∑p
i=2

reli
log2(i)

. It can be seen that the coefficient

of the first term (rel1) and the second term’s (rel2) are equal. To give a smaller
penalty value to the first term, we divided rel1 by 0.4 (instead of 1).
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declined is 0. Since DCGp also depends on p, it should be normalized. Thus,
we use normalized DCG (nDCG) which is calculated by dividing “DCG of the
current ranking” by “DCG of the ideal ranking”.

In terms of choosing the kernel function, although there are many kernels
available in the literature, and devising a new kernel by meeting Mercer’s Con-
dition is possible, we just simply utilize three well-known kernels, listed here:

– K(x,y) = x ·y: The linear kernel which is equivalent to the non-kernel based
formulation (Eq. 16).

– K(x,y) = (γx · y + r)p: The polynomial kernel of degree p; here, we assume
p = 2, γ = 1 and r = 0.

– K(x,y) = e−‖x−y‖2/2σ2
: This is the Gaussian radial basis function (RBF).

The parameter σ is tuned as an input parameter.

For adjusting the input parameters, we use the Grid Search algorithm for hyper-
parameter optimisation (Bergstra and Bengio 2012).

Each run of SVPL, which comprises learning and testing phases for a bench-
mark, takes less than a couple of minutes, making use of a computer facilitated
by a Core i7 2.60 GHz processor and 8 GB RAM memory.

4.3 SVPL and Maximising Saved Travel Distance

We stated in Sect. 2 that cij is a numeric representation to show how good the
matching is between individuals i and j, which prevalently considers only the
benefits of the whole system such as the total saved travel distance. However, we
argued that this is insufficient and cij should also take into account user prefer-
ences. Then, we suggested making use of this measure to rank and recommend
best ridesharing opportunities to the user. We claim this strategy would boost
the users’ satisfaction degree, which should increase the chances of repeat usage
of the system.

Now, we examine the importance of the user preferences by comparing the
effectiveness of ranking provided by SVPL, which involves learning user prefer-
ences, with the case when options are ranked regardless of the user’s desires; i.e.,
an option A precedes another option B when the benefits obtained by that option
for the whole system are more. Specifically, in our experiments, we consider the
saved travel distance by a matching as the benefit gained for the system from
that particular matching. The following example clarifies the situation.

Example 3. Suppose there were 6 ride-matching opportunities for Alice’s trip
D1 as stated in Table 3. From her responses (i.e., accepted, cancelled, ignored
and declined) the following multipartite ranking can be derived as ground truth.

R1, R2 � R3 � R4, R5 � R6

Note that R1 with R2, and R4 with R5 are incomparable. This is the ideal ranking
of available options for this trip and its DCG is (3/0.4 + 3/log2 2 + 2/log2 3 + 1/log2 4 +
1/log2 5 + 0/log2 6 =) 12.69.
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Table 3. Six ride-matching opportunities available for Alice’s trip D1, which are being
used in Example 3.

Ground truth SVPL prediction Saved travel distance

Labels Ranking Value Ranking Value(km) Ranking

R1 A 1 8.2 3 32 6

R2 A 1 10 1 36 3

R3 C 3 8.5 2 35 4

R4 I 4 6.9 6 38 2

R5 I 4 7.5 4 40 1

R6 D 6 7 5 34 5

Assume that SVPL has been previously trained by some ridesharing records
of Alice, and now predicts those values in 4th column. As a result, SVPL ranks
options in this fashion:

R2 � R3 � R1 � R5 � R6 � R4

Given this ranking, DCG is (3/0.4 + 2/log2 2 + 3/log2 3 + 1/log2 4 + 0/log2 5 + 1/log2 6 =)
12.28 and subsequently nDCG = 12.28/12.69 = 0.9677. With respect to C-Index
metric, the ranking accuracy is 84.61%, since only two pairs ((R1, R3) and
(R4, R6)) out of 13 pairs were ranked incorrectly and 11/13 = 0.8461.

On the other hand, we sort objects according to the travel distance that
would be saved by each matching, which leads to this order of objects:

R5 � R4 � R2 � R3 � R6 � R1

It should be noted again that for proposing this ranking, we set aside Alice’s
preferences which might be implicitly stated in her past ridesharing records;
therefore, unlike SVPL, there is no need to have a learning phase. For this
instance of ranking, nDCG and C-Index are respectively 0.5959 and 0.3846,
which both are smaller than SVPL’s. From this point onwards, we call this
strategy of ranking ridesharing opportunities (regarding saved travel distance)
as STD for the sake of brevity.

In this example, if the top recommended option suggested by SVPL (R2)
is chosen by Alice to form a ride-share for D1, then the saved travel distance
will be 36 km which is 4 km less than the optimal matching (R5). Thus, roughly
speaking, we can say by use of SVPL strategy in ranking rather than STD, the
saved travel distance would probably decline by 10%, compared to the optimal
case, in this example. ��

Now, a reasonable question is how much do we gain, in terms of ranking
accuracy, and how much do we lose, in terms of total saved travel distance, if
SVPL is exploited instead of STD for the real ridesharing data? Table 4 addresses
this question.
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Table 4. These experimental results aim to compare SVPL against STD, based on
ranking accuracy (first four columns) and the saved travel distance.

Benchmark nDCG C-Index Saved travel distance (km)

STD SVPL STD SVPL STD SVPL Loss rate (%)

1. 80.51 94.81 39.10 70.73 1123 1077 4.1

2. 62.08 100 25.00 100 248 178 28.4

3. 98.35 85.14 94.77 95.59 926 881 4.9

4. 97.37 98.73 66.67 76.39 240 236 1.6

5. 57.37 97.00 43.48 63.77 215 213 0.7

6. 56.10 95.05 61.01 74.51 422 414 2.0

7. 53.58 98.57 40.00 80.00 186 186 0

8. 80.95 93.62 66.50 58.67 343 332 3.2

9. 89.59 96.52 41.67 87.50 47 46 2.4

10. 93.49 97.37 44.44 83.33 397 384 3.1

11. 61.19 99.87 32.73 94.55 154 146 4.9

12. 72.90 66.77 77.42 74.19 167 159 3.8

Weighted avg. 79.42 92.62 58.08 79.66 512 491 4.3

In Table 4, the first four columns show the accuracy of models with respect to
two different metrics, namely nDCG and C-Index. The greater number for each
measure has been emboldened for easier comparison. As expected, SVPL beats
STD in ranking accuracy for most of the benchmarks. On the other hand, apart
from the second benchmark, the loss rate of saved travel distance by using SVPL
is less than 5%. The last row illustrates the weighted average of rows, where the
weight for each row is the number of records for that benchmark (last column in
Table 2); i.e., a benchmark with a greater number of records has proportionally
greater impact on the average.

4.4 SVPL and the Worst Point Model

The results in Table 4 might be conclusive enough to lead us to believe that
considering user preferences in ranking ride-matching items will increase the
accuracy. However, are the preferences of users in ridesharing sufficiently diverse
that we should learn a specific model for each user? In other words, what if an
ad-hoc ranking strategy, which is generally sensible for all users, is adopted? In
this situation, it is presumed all users have relatively similar preferences.

To examine this question, we assess SVPL against a somewhat intuitive way
of ranking which is called Worst Point Model (WPM). In WPM, the matching
trip all of whose features are 0, is assumed as the worst match. This assumption
makes some sense, since it means that the worst matching is when the positional
component, temporal component, is favourable, has image and so forth, all are
0. Afterwards, the score of each item is found from its Euclidean distance from
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Table 5. The ranking performance of SVPL and WPM are shown for two metrics,
nDCG and C-Index.

Benchmark nDCG C-Index

WPM SVPL WPM SVPL

1. 92.86 94.81 59.94 70.73

2. 80.12 100 62.50 100

3. 74.61 85.14 83.39 95.59

4. 90.90 98.73 45.14 76.39

5. 63.80 97.00 39.86 63.77

6. 94.60 95.05 73.01 74.51

7. 34.29 98.57 00.00 80.00

8. 93.62 93.62 58.67 58.67

9. 96.51 96.52 87.50 87.50

10. 94.41 97.37 55.55 83.33

11. 60.96 99.87 27.27 94.55

12. 67.24 66.77 35.48 74.19

Weighted avg. 82.52 92.62 60.02 79.66

the worst point; i.e., a higher score is produced by going away from the worst
point. Needless to say no learning process is involved in acquiring these scores.
Therefore, a ranking between ridesharing opportunities, based on their distance
from the worst point, will be suggested. Table 5 shows that SVPL yields a higher
performance than WPM for most of benchmarks.

4.5 SVPL and Regression Models

So far, our experiments have shown that learning user preferences by way of
SVPL is an auspicious direction in ride-matching. However, as explained in
Sect. 2.1, using a regression based method is another viable approach for learning
weights. Recall that SVPL and the regression method require different formats
for the input data, though they both eventually produce a scoring function. For
the regression method, the main user responses (class labels) are converted to
scalar values, and for SVPL, a set of pairwise comparisons among ride-matching
records is created (Sect. 2.1 illustrates how).

Thus, in this subsection, the performance of SVPL is compared with three
regression methods in Table 6. These rival methods are Linear Regression, Neural
Network Regression and Support Vector Machine Regression which are respec-
tively abbreviated as LR, NNR and SVM.

As seen in Table 6, SVPL outperforms the regression methods overall, which
could evidently indicate that pairwise comparisons gives a more natural repre-
sentation of user preferences rather than simply converting labels to numeric
values.
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Table 6. The ranking accuracy comparison between SVPL and three regression meth-
ods, namely linear regression (LR), neural network regression (NNR) and support
vector machine regression (SVM).

Benchmark nDCG C-Index

LR NNR SVM SVPL LR NNR SVM SVPL

1. 86.47 85.81 85.98 94.81 68.38 51.07 58.23 70.73

2. 100 100 100 100 100 100 100 100

3. 83.15 77.56 83.55 85.14 71.46 80.02 82.54 95.59

4. 98.54 99.22 93.65 98.73 74.31 84.72 48.61 76.39

5. 70.29 93.70 55.85 97.00 61.59 72.46 25.36 63.77

6. 70.12 69.88 67.37 95.05 67.01 67.01 53.52 74.51

7. 94.52 45.24 45.24 98.57 60.00 40.00 40.00 80.00

8. 95.14 91.54 83.55 93.62 65.17 57.67 56.83 58.67

9. 90.45 90.45 96.52 96.52 37.50 37.50 87.50 87.50

10. 92.11 94.74 94.74 97.37 50.00 66.67 66.67 83.33

11. 77.83 99.15 77.83 99.87 89.09 78.18 89.09 94.55

12. 61.52 61.04 66.49 66.77 48.39 29.03 70.97 74.19

Weighted avg. 84.04 83.77 80.77 92.62 65.11 63.89 64.93 79.66

Fig. 5. The overall accuracy of models according to nDCG and C-index metrics. The
models compared are: ranking based on saved travel distance (STD), Worst Point
Model (WPM), Linear Regression (LR), Neural Network Regression (NNR), Support
Vector Machine Regression (SVM) and Support Vector Preferences Learner (SVPL).
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Finally, Fig. 5 gives an overview of our experimental results, where the
weighted average of accuracy of each model (last columns in tables) have been
drawn as a bar chart. The results show a clear superiority of SVPL over the
other methods for the dataset.

5 Concluding Remarks

The advent of advanced technologies including GPS, web, and mobile technolo-
gies for real-time communication provides a unique opportunity to form new
dynamic ridesharing systems, which could potentially provide huge societal and
environmental benefits. At the heart of ridesharing concept, matching drivers
and riders in real-time is prominently featured as a challenge.

In this paper, we have presented novel aspects of the automatic ride-matching
system, making use of user preferences. We believe that a good understanding
of participant behaviour and preferences will be essential; if ride-share matches
do not satisfy participant preferences, the participant may not make use of the
ride-share system in the future. Moreover, learning user preferences softens the
traditional way of setting hard constraints, and removes the need for eliciting
some complex parameters from participants.

Unlike the prevalent systems in ridesharing, our approach gives freedom to
participants in the choice of ridesharing partners; it is supported by the fact that
the user may not approve of the assigned matching found from the optimisation
of the whole system. Of course, providing the flexibility in the matching process
may cause deviation from the optimal solution with respect to overall saved
travel time. However, the first part of our experiments indicated that this loss
could be quite small.

SVPL as a model with the ability to learn user preferences in a natural way,
was discussed in Sect. 3. Our experimental results indicated the effectiveness of
SVPL, in comparison with five competitor strategies. The intention is that SVPL
could contribute in the suggestion of a menu of good choices to the user in a
ridesharing system.

A natural extension would be if the preferences set (pairwise comparisons)
derived from the user’s feedback, could be associated with some degree of uncer-
tainty. For instance, if it is said that the user probably prefers the case A to
B, with certainty degree of 0.7. Other interesting subjects related to this paper
that could be addressed in future works, include handling nominal and unknown
values in the features space, and online learning.
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Abstract. Preference aggregation strategies, that are inspired by eco-
nomic models of decision makers, typically assume that the individual
preferences of the group members depend only on their own individual
evaluations of the considered items. In this direction, group recommenda-
tion algorithms rely on such standard aggregation techniques that do not
consider the possibility of evaluating social interactions and influences
among group’s members, as well as their personalities, which are, indeed,
crucial factors in the group’s decision-making process, especially regard-
ing small groups. On the contrary, the laboratory data have encouraged
the development of models of other-regarding preferences since altruism,
fairness, and reciprocity strongly motivate many people. In this paper,
starting from a utility function from the literature, which combines the
user personal evaluation of an item with the ones of the other group
members, we propose a group recommendation method that takes into
account altruism. Such function models the level of a user’s altruistic
behavior starting from his/her agreeableness personality trait. Once such
utility values are evaluated, the goal is to recommend items that maxi-
mize the social welfare. Performance is evaluated with a pilot study and
compared with respect to Least Misery. Results showed that while for
groups of two people Least Misery performs slightly better, in the other
cases the two methods are comparable.

Keywords: Social choice · Group recommendation
Five-factor model · Other-regarding preferences

1 Introduction

A customer buying decision-making process is a complex activity that involves
different stages: the recognition of the need, the information search, the evalua-
tion of the available alternatives and, finally, the purchase decision [13]. Online
stores make the process easier by collecting a large amount of data to help the
user in the search of a product. However, the user may suffer from choice over-
load since too many options have to be evaluated [45]. In order to avoid these
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phenomena, Recommender Systems (or simply RSs) are used to provide sugges-
tions about relevant items for users. The list of recommended items is the result
of a process that aims to understand, for example, which product a specific user
wants to buy, which music to listen, which movie to see or which news to read.
Moreover, some domains are characterized by products that can be consumed
while being in a group, such as, for example, a movie or a dinner with friends.
In this context, the goal of Group Recommender Systems (GRSs), differently
from individual RS, is to recommend items to a whole group of users taking into
account all the individual preferences.

The study of GRSs is still an open research problem. Typically, preferences
and tastes of individuals are collected in the same way of RSs, but the real
problem falls into the correct aggregation of these preferences in order to rec-
ommend items [28]. The problem of aggregating individual preferences has been
widely studied in Mathematics, Economics and Multi-Agent Systems, with the
definition of Social Choice functions. In literature, several solutions have been
proposed. The most common technique is the Average Satisfaction (AS) that
treats all group members as being equal by averaging preferences (or utilities)
of all the members in order to produce a final list for the entire group. Least
Misery (LM), instead, cares about the possible dissatisfaction of some mem-
bers by choosing items that minimize it. Since economic models traditionally
assume that decision-makers’ utility values represent only their own evaluations
of the considered item, no one of the standard techniques considers that there
are also other factors that can influence the group decision. However, groups
can be dynamic, as well as members’ behaviors depending on situations. Real
group decision making is a complex mechanism that involves relationships among
the members, users’ personality, as well as their experience about the domain
of interest. Recently, economic models of other-regarding preferences [9,12,18]
have been proposed, which concerns for altruism, fairness, and reciprocity.

In this work, we study the influence of individual users’ personality in the
group decision-making process. We focus on small groups since small group deci-
sion making rely on mechanisms (e.g., interpersonal relationships, mutual influ-
ences and user personality) that are different with respect to the ones adopted for
larger groups [26]. In particular, we focus on the personalities of the group mem-
bers that, in a realistic scenario, can have a great impact on the group decisions
[41]. For example, there can be people that rarely change their minds because
they believe that their own decision is the best for everyone, or simply because
they do not want to reduce their utility in favor of others. Other types of people
instead, can be worried about the satisfaction of all the other members, at the
cost of the personal one. This phenomenon, that is related on how people satis-
faction is influenced by the satisfaction of other people, is known as Emotional
Contagion [29], and the motivations, mechanism of working, and many other
aspects, are still open research problems in the psychology field [17]. However,
many empirical studies show the evidence of this influence between people [29].
Thus, the latter ones are willing to lose some utility in order to reach a valid
and suitable agreement for the entire group. Furthermore, In order to consider
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these elements, it is necessary to study users’ personalities through some models
proposed in human sciences area. Among the many models of personality, the
Five Factor Model (FFM) appears suitable for usage in recommender systems as
it can be quantitatively measured (i.e. numerical values for each of the consid-
ered factors, namely, openness, conscientiousness, extraversion, agreeableness,
and neuroticism) [47]. In particular, in this work, we focus on the role of the
agreeableness factor in the definition of a parametric model of other-regarding
preferences for altruistic behavior.

This paper is organized as follows. In Sect. 2, we introduce Group Recom-
mendation open problems and we describe some related works. In Sect. 3, we
introduce the FFM used to evaluate users’ agreeableness personality trait val-
ues, while, in Sect. 4, we introduce the utility function used to model altruistic
behaviors and the evaluation, by personality tests, of the parameters that char-
acterize such function. In Sects. 5 and 6, we present the developed application
and the metrics used to evaluate its performance both with offline testing and
with real users with respect to Least Misery. Finally, conclusions are discussed
in Sect. 7.

2 Background and Related Works

Generally, in order to design a group recommendation mechanism, two main
approaches are used. Starting from the users’ preferences (one for each of the
group’s member), a first approach relies on merging such preferences in order
to obtain a single “virtual” profile for the whole group. Then, it uses a single
user RS on this profile to generate the recommendations for the group. On the
contrary, a second approach firstly generates the recommendations starting from
single user’s profiles, and then it merges these recommendations using some
group decision strategy. In this case, we refer to Social Choice functions [3].
These functions, according to [46], can be classified as majority-based (mainly
implemented as voting mechanisms to determine the most popular choices among
alternatives), consensus-based (that try to average among all the possible choices
and preferences), and role-based (that explicitly take into account possible roles
and hierarchical relationships among members). Examples of these techniques
are illustrated in [3,28], whereas the most common approaches are based on the
average satisfaction and least misery techniques. While, according to [4], in some
cases, preferences aggregation can lead to better results, the use of such virtual
user profile for the group makes it difficult to provide additional explanations
for the provided recommendations [23].

The results presented in the literature showed that there is no aggregation
strategy can be defined as the “best”, but different approaches are better suited
for different scenarios, depending from the characteristics of the specific group
[19]. Besides, such techniques do not seem to capture all the features of real-world
scenarios. For example, automatic ranking mechanisms often require that all the
agents involved have the same influence in the decision procedure, while real
group interactions take into account intra-group roles [34], mutual influences and
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tie strength [36], as well as context dependent factors as the emotional contagious
[29]. For example, some members of the group could have a particular influence
on the others, based on their personal experiences in the considered domain [19]
or on the strength of their mutual relationships [40]. Usually, the decision of a
group member whether or not to accept a given recommendation may depend
not only on his/her own evaluation of the content of the recommendation but
also on his/her beliefs about the evaluations of the other group members [8].
Users may be willing to accept last preferred activities in order to improve the
group happiness. Hence, recommendation systems for groups need to capture
both preferences of the group members but also these key factors in the group
decision process [39].

On the basis of these considerations, in literature, some approaches are start-
ing to model GRSs that weights users preferences in different ways according
to specific user-related parameters. For example, in [19] users preferences are
weighted according to their expertise, while in [40] users’ dominance and influ-
ence are taken into consideration in order to weigh more the preferences of dom-
inant people in a group. In the proposed approach, we do not consider weights
in the aggregation process, but it is the utility function, which is used to eval-
uate users rating on individual items, that takes into account the preferences
of the other members of the group more or less with respect to the user agree-
ableness trait. In this sense, our work is related to the approach of [44], where
individual empathetic utilities are defined taking into account local relation-
ships with neighborhoods in a social network. Here, the authors introduce the
concept of empathetic utility on social networks: the satisfaction of an individ-
ual depends from both his intrinsic utility and his empathetic utility deriving
from the happiness of his neighbors in the network [44]. Based on this idea, indi-
vidual preferences are aggregated in a weighted utility function that takes into
account local relationships with neighborhoods in the network. However, in [44]
the Authors do not specify how to evaluate such numerical relationships, while
they focus on computational aspects of scaling up with large networks of friends.
Finally, notice that multi-attribute utility functions, in recommender systems,
are typically used to evaluate, for each user, an item rank that depends on the
attribute values of the considered item [7]. Here, the parameters of the function
are not the attributes of the items but the evaluations of the item rank by the
considered user as well as by the other members of the group. The balance of
these two components is the user personality in term of his/her agreeableness.

The role of personality has been addressed before, in literature, to improve
the performance of RSs in the case of new users [22,33], since a number of studies
showed that personality relates strongly to user preferences [38]. Moreover, it has
been shown that people with different personalities can be more or less inclined to
consume novel items, so the degree of diversity in presenting recommended items
can be personalized accordingly [49]. However, to our knowledge, this is the first
attempt to introduce personality factors in group decision making through the
use of personality-based utility functions. The only relevant approach is the one
of [36,37] and that of [42], where the personality of every individual in the group
is evaluated in terms of conflicting resolution styles. Conflicting resolution styles
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are evaluated by using questionnaires, and, in particular, the Thomas-Kilmann
Conflict Mode Instrument (TKI) [24], that is designed to measure the behavior
of people in terms of levels of assertiveness or cooperativeness. Such two factors
are related to the personality models of competitive, collaborative, avoiding,
accommodating, and compromising traits. The user’s ranking of an item is mod-
ified by considering all the couples of users and their value of assertiveness and
cooperativeness in different ways (e.g., as multiplicative or additive factors). In
our opinion, TKI models could be very useful in designing a simulated iterative
decision making process that goes beyond the use of such factors as weights in
aggregation functions. On the contrary, in this paper, we rely on the five-factor
model and a utility function from the literature.

Finally, in [25], the authors model the group influences as a graph whereas
every edge has a weight, which refers to the level of emotional contagion between
two users. These are dependent on various personal aspects such as the personal-
ity, the social status or the relationship type. Four personal characteristics were
considered, Competing (from TKI model) and Neuroticism, Extraversion and
Cooperativeness (from NEO-FFI model), that should express user potential for
influencing other group members. However, not enough results and justifications
are provided to support their choices.

3 Big-Five in Decision Making

Research has shown that personality is a primary factor which influences human
behaviors. Research in psychology has come out with different models to describe
the human beings’ personality. Among them, the most popular approach among
psychologists for studying personality traits is the Five-Factor Model (FFM),
which describes human personality using five factors (OCEAN), also known as
Big-Five [31]. Openness represents the inclination to openness to new experi-
ences, having an active imagination and a preference about the will to find new
ideas [11]. Closed people are less flexible and rarely understand others’ point of
views. Conscientiousness describes how much an individual is responsible, dis-
ciplined and dutiful [32]. Extraversion is an indicator of assertiveness and trust.
Extroverted people easily create interpersonal relationships and love working
and being together with others [11]. Agreeableness describes the level of sym-
pathy, availability, and cooperativeness. People with low level of this factor are
competitive, skeptics and antagonistic. It measures how much a person is nice
and altruistic [11]. Finally, neuroticism represents an emotional instability char-
acterized by negative emotions like fear, anger, sadness and low self-esteem [32].
People with an high neuroticism trait rarely are able to control their impulses
and cope with stress [30]. Among the many models of personality, the Five Fac-
tor Model (FFM) appears suitable for usage in recommender systems as it can
be quantitatively measured [47].

Several studies tried to find correlation among personality traits and the
group decision making process. For example, in [1], the authors tried to correlate
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Big-Five with the status1 of college students. A student with a high level of sta-
tus implies a considerable level of attention by others towards him. Furthermore,
status relates to respect and influence in the social context. Authors measured
students’ status through an assessment made by the student themselves and
according to the positions that they play in the college organization. Results
showed that the extraversion has a positive correlation with the status; con-
versely, neuroticism has a negative correlation, but only for men. The latter
result can be explained because [6] said that sadness, depression, fear, shame
and embarrassment (neuroticism features) are viewed as “unmanly”. Thus, men
who show these emotions are evaluated more negatively with respect to women.
For the latter, these emotions are considered ordinary. In [43], the authors stud-
ied the impact of Big-Five in producing a supportive communication. The latter
is opposed to defensive communication in which group members see others as
a threat and try to stay one step ahead them. In supportive communication
instead, all the members allow others to express their own opinions and consider
other choices. Extraversion, agreeableness, and openness have a positive corre-
lation in this context. In [27], the authors studied the influence of personality in
conflict situations that happen during negotiations. He correlates conflict reso-
lution styles, which represent different people reactions in case of conflict, with
big-five by using two factors: the assertiveness, which describes how much effort
an individual put in trying to satisfy his/her needs, and cooperativeness, which
suggests the level of collaboration and the intention of maximizing others’ utili-
ties. Results showed that: neuroticism is negatively correlated to compromising ;
extraversion is positively correlated to competing and collaborating ; agreeable-
ness is negatively correlated to competing and positively to compromising ; finally,
conscientiousness and openness have no significant correlations.

The previous considerations are summarized in Fig. 1. Starting from those,
in this work, we decided to move a first step by considering only a single

Fig. 1. Correlation among personality traits and decision making in groups.

1 Status describes the role that a person has in a social group.
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personality trait, while leaving the combination with the others as a future work.
In particular, we decided not to rely on the evaluation of neuroticism, which has
negative correlations with status (a neurotic person could be excluded during
a decision process) as well as with a compromising behavior (that, in contrast,
may help the group decision process). Conversely, extraverts could be viewed as
leaders, but at the same time they are more competitive than collaborative: all
of those are qualities that are suitable to our case (the choice of a movie), but
already considered in related works. A conscientious person could have a positive
impact in the decision-making process, but we do not believe it is significant for
our specific goal. This is the same for open individuals which could agree to see
a movie not suitable with respect to their preferences, but whose trait could be
more difficult to model with respect to the agreeableness factor.

We believe that in choosing a movie in a group of close friends, agreeableness
(that is related to altruistic behavior [11] and negatively with respect to compe-
tition) plays an important role. It is obvious that, unless all the components have
the same movie tastes, someone will have to give up their desires to see a movie
which others do not like. Therefore, agreeable people will make compromises
and, for this reason, we decided to analyze the impact of this factor in a GRS.
People with high a value of agreeableness, just because of its descriptive char-
acteristic, are more altruistic: basically, it means that this type of people care
about the satisfaction of the entire group, or are more willing to compromise in
order to obtain a solution that works for the whole group.

Once we identified a reasonable personality trait to consider, the second
problem is to understand how to use such factor in computing the group’s rec-
ommendation. With respect to other personality factors, such as the dominance
or the leadership that could be modeled as weights in the aggregation process,
in our opinion, the agreeableness cannot be treated simply as a weight. Instead
of predicting an aggregated item rating for the entire group, the solution, we
propose, is to assign to the item a single value for each user that takes into
account the personal evaluation of the item and the ratings provided by the
other members of the group. The level of agreeableness, in this case, will provide
the balance between these two components. The function will be described in
the following section.

4 Agreeableness and Other-Regarding Preferences

Generally speaking, the aim of an RS is to predict the relevance and the impor-
tance of items (for example movies, restaurants and so on) that the user never
evaluated. More formally, given a set of n users (G = {1, . . . , n}) and a set of m
items (M = {1, . . . , m}), an individual RS, for each user i, aims at building a
Preference Profile of the user i over the complete set M (�i = {xi,1, . . . , xi,m}),
with xi,j ∈ R, which represents the user i predicted evaluations for the j item,
starting form some initial evaluations each user provides on some elements of
M . Since our application domain is of movie recommendation, evaluations on
items are typically expressed as rating values (ranging from 1 to 5).
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Once each user i ∈ G has a preference profile �i over M , the goal of a GRS is
to obtain �G = {xG,1, . . . , xG,m}, where xG,j is the correspondent ranking for the
j movie, as evaluated for the group. Typically, this is obtained by implementing
a social choice function SC :�n→�G, that aggregates all the preferences profiles
in �G = {xG,1, . . . , xG,m}. Note that our goal is not to guess the exact value of
xG,j the whole group would assign to the movie j, but to properly select the
k-best movie in the group preference profile (the ones with the highest rating)
and suggest them to the group.

Economic models traditionally assume that decision-makers are exclusively
motivated by self-interest. Hence, utility values (and in this case item ratings)
represent only their own evaluation of the considered item. Competitive markets,
as well as many other contexts, are well simulated by this rationality assumption.
However, in the last two decades, the laboratory and field data have encour-
aged the development of models of other-regarding preferences [9,12,18]. Those
models suggest that the concern for altruism, fairness, and reciprocity strongly
motivate many people, and so the evaluation of the personal utility, while in the
presence of others, should take into account such factors. Other-regarding pref-
erences that concern for the well-being of others, for fairness and for reciprocity,
cannot be ignored in social interactions [18]. Moreover, the interaction between
fair and selfish individuals is also a key to understanding the observed behavior
in strategic settings [18].

In this work, we propose to consider the agreeableness factor in the process
of building recommendations for groups. Instead of defining a specific ad-hoc
social choice function that considers such factor, the proposed solution relies on
the definition of an individual utility function (to build up the preference profile)
to evaluate the rating of items for each user that takes into account the whole
group. Such utility function could be interpreted as “the user satisfaction if the
recommender system chooses that item for the group”. So, once that the utilities
for each item and each member of the group are computed, the considered social
choice function simply selects the items that maximize, for example, the social
welfare (i.e., the items that correspond to the highest sum of utilities).

For the utility function, among the recently developed models of other-
regarding preferences, we used a model developed by Charness and Rabin in
[9]. In particular, let us consider a group of n users, which have a rating for
each element j of the domain (e.g., an expected rating provided by an individ-
ual RS). The utility function is composed of two terms; the first concerning a
“disinterested” social-welfare criterion, defined as follows:

W (x1,j , x2,j , ..., xn,j) = δ · min(x1,j , x2,j , ..., xn,j)
+ (1 − δ) · (x1,j + x2,j + ... + xn,j) (1)

where δ ∈ [0, 1], x1,j , x2,j , ..., xn,j are called payoffs and they are the individual
rating of each of the n users of the j-th item. The aim of the first addend is
reducing inequity (by helping the worst-off person); indeed, this value increases
proportionally to the minimum payoff. This factor is, basically, a generalization
of LM technique just because the utility is given by the minimum satisfaction
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among the users. The second addend is responsible for the maximization of the
social welfare and increases proportionally to the sum of the individual payoffs.
Setting δ = 1, indeed, the function cares only about inequity, just like LM.
Setting δ = 0 instead, the function focuses on global satisfaction.

The utility of user i about the item j is a weighted sum of the disinterested
social-welfare W and its own payoff defined as follows:

Ui,j(x1,j , x2,j , ..., xn,j) = (1 − λi) · xi,j + λi · W (x1,j , x2,j , ..., xn,j) (2)

where λi ∈ [0, 1] means how much a person pursues its own interest or the social
welfare. By setting λi = 0, the user takes care only of his personal interest.
λi = 1 represents the classical disinterested behavior, of him/her who does not
take part in the group decision, moving the weight of the function on the entire
group satisfaction (including its own). Hence, according to [9], the considered
function evaluates both the personal and the group satisfaction, depending on
an altruistic factor λi. Once the new items utilities are evaluated, the goal is to
recommend movies that maximize the social welfare.

Finally, notice that in the case of a group composed only of two people, Eq. 2
becomes:

Ui,1(x1,1, x2,1) =

{
xi,1 + λi(1 − δ)xj,1 if xi,1 < xj,1

(1 − λiδ)xi,1 + λixj,1 if xi,1 ≥ xj,1

(3)

Hence, the utility of a decision maker takes into account the well-being of
the other person, but less so if the other person is better off than he/she is.

Since the agreeableness factor is positively correlated with an altruistic
behavior, here, our goal is to calibrate the λi parameter with respect to the
individual agreeableness levels, so that the most altruistic individuals have a
high value and viceversa.

4.1 Personality Test

Personality can be acquired in both explicit and implicit ways [16]. The former
measures a user’s personality by asking the user to answer a list of designed per-
sonality questions. These personality evaluation questionnaires have been well
established in the psychology field [21]. The implicit approaches acquire user
information by observing users’ behavioral patterns. Typically, explicit person-
ality acquisition interface are preferred by the user [16]. However, implicit meth-
ods require less effort from users. In our study, we adopted the explicit way to
measure users’ personality, but we selected a questionnaire that requires only a
small set of questions, and so a minimum required effort from the user.

There are several questionnaires to predict a person’s Big-Five factors. Some
of these consist of a lot of questions, in certain cases some hundreds. Too long
questionnaires can reduce the people’s attention level. A lot of research groups
tried to cut the number of questions preserving the accuracy. The most famous
small questionnaires are NEO-FFI (NEO Five Factor Inventory) composed of
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Table 1. Mini IPIP questionnaire for agreeableness evaluation.

# Text

1 Sympathize with others’ feelings

2 Am not interested in other people’s problems (R)

3 Feel others’ emotions

4 Am not really interested in others (R)

(R) = Reverse Scored Item.

60 questions [10], the 50-item IPIP-FFM (International Personality Item Pool -
Five Factor Model) [20], the 44-item BFI (Big Five Inventory), the TIPI (Ten-
Item Personality Inventory) [21] and, finally, the Mini-IPIP (Mini International
Personality Item Pool) [14]. We chose the last because it is very short, but
at the same time effective. It consists of 20 questions, 4 for each personality
factor. In Table 1, we reported the question concerning the evaluation of the
user agreeableness (questions should be read in the first person). The answer to
each question can be a number from 1 to 5, where 1 means “very inaccurate”
and 5 “very accurate”.

4.2 Parameter Settings

Let us assume that each user completed the personality evaluation test. A generic
user i has a personal agreeableness value αi ∈ [1, 5], obtained by averaging
individual answer values. Since the λi parameter of Eq. 2 should belong to the
range [0, 1] and should depend directly on αi, we defined it as follows:

λi =
αi − 1

4
. (4)

This way, when αi = 5 (high level of agreeableness) λi = 1, so the user cares
only about the group satisfaction. When αi = 1, instead, λi = 0 and, conse-
quently, user’s utility depends only on his personal satisfaction. As we already
explained, in the Eq. 1 there is the δ parameter that deals with weighting inequity
aversion against global satisfaction. In Sect. 5, we show an offline experiment to
tune such parameters. Finally, the utility function of Eq. 2 refers to the utility
of a particular item for a specific user. Thus, payoff x1,j , x2,j , ..., xn,j stand for
the rating predictions of a generic item for the n members of the group.

4.3 Payoffs and Group Recommendations

One of the most important choices for an RS concerns the creation of the
recommendation list. The ideal process would be to calculate the individual
payoffs for all the items in the dataset. At the end of this process, we should
aggregate the predictions and build up the recommendation list for the group.
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Given that the datasets are composed of thousands of items, this solution would
be computationally inefficient.

Some researchers remedied to this problem by restricting the number of con-
sidered items in the prediction process. In [35], for example, 15 movies are a
priori chosen from the dataset, and the group must select the preferred three
movies out of this set. Also in [48], a similar solution is used, but with a larger
number of items. In [5], the Netflix platform functionality is exploited, so users
can directly populate a list of movies they are interested in. Here, we decided to
generate the group’s recommendation only starting from the k-best movies for
each user. Hence, firstly, the system creates a list of 10 items Li for each user i
evaluated by an RS. Later, it merges all the lists in a single one which we call L:

L =
⋃
i∈G

Li (5)

where, G is the set of members of the group.
Our GRS computes for each user the rating predictions of all the items in

L. The latter are exactly the payoffs x1,j , x2,j , ..., xn,j of Eq. 2 (where n = |G|
and j is the movie). Values of Ui,j , for each user i and for each item j, are then
computed. Finally, xG,j denotes the utility of the group if the GRS chooses item
j that is defined as follows:

xG,j =
∑
i∈G

Ui,j . (6)

Our goal is to maximize the social welfare, indeed, the system will recommend
the 10 items with the highest xG,j value.

5 Offline Evaluation

In order to evaluate the impact of the λ and δ parameters in our utility function,
and to properly set the δ value, we conducted an offline evaluation. Since there
are no available dataset for GRS, we adopted an approach similar to that used
in [2] for generating random groups of different sizes (from two to eight users)
starting from the users in a dataset. Then, we produced the recommendation
lists for the group as previously described.

5.1 Movie Recommendation Server

We adopted the Apache Mahout library2 to predict the user’s ratings and cho-
sen the MovieTweetings [15] dataset to train the system and to populate the
Ratings Repository. MovieTweetings consists of movie ratings contained in well-
structured tweets on the Twitter.com social network, and is one of the most
used datasets in literature since it contains real users evaluation on a flexible

2 http://mahout.apache.org/.

http://mahout.apache.org/
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domain, such is the movie one, that is monthly updated. It was also used for
the challenge proposed in RecSys 2014 conference3. The information contained
in the dataset are divided into three files: users.dat, ratings.dat, and movies.dat,
which provide, respectively, the user identification number, his/her associated
ratings and a list of movies. The dataset is updated every day, therefore, its
size is constantly changing. At the last access, it contained about 35000 users,
360000 ratings, and 20000 movies.

The recommendation engine provides rating predictions when the recom-
mendation API is invoked. To achieve this goal, we used item-based City Block
distance, also known as Manhattan distance. In Mahout implementation, the
generic movie j is represented by a boolean vector:

j = [x1,j , x2,j , ..., xk,j ], (7)

where k is the number of users in the dataset and xi,j = 1 if user i rated the
movie j. The distance between two movies rated by user i is the sum of the
absolute value of the differences of the two associated vector components. More
formally, the distance between items j and h is:

d(j, h) =
k∑

i=1

|xi,j − xi,h|. (8)

5.2 Results

We divide the dataset in training set (Rtrain) and test set (Rtest). For each user
u in the dataset, 70% of his/her ratings are in the first set, and 30% in the
second one. For the offline evaluation only, we generated a list of 100 items for
each user, and then, we merged them in a single list L of the top@k movies,
where the @k parameter indicates the length of the recommendation list, which
varies in the set {5, 10, 20}.

In order to evaluate the quality of the recommendations, we used two infor-
mation retrieval standard metrics, the Normalized Discounted Cumulative Gain
(nDCG) and F1 − score. The metrics are modified in relation to the size k of
the recommendation list, as follows.

Given a group G, L is the GRS recommended list of size k, and, for each
i ∈ G, Ri,test is the set of his/her rated movies in the test set, we have that:

– precisioni@k = |Ri,test∩L|
k

– recalli@k = |Ri,test∩L|
|Ri,test|

– F1 − scorei =
∑

k∈{5,10,20}(2 · precisioni@k·recalli@k
precisioni@k+recalli@k )/3

3 The ACM Conference on Recommendation Systems (RecSys) is the most important
international conference in the field of recommendation systems. For more info visit:
https://recsys.acm.org/, https://recsys.acm.org/recsys14/challenge-workshop/.

https://recsys.acm.org/
https://recsys.acm.org/recsys14/challenge-workshop/
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Table 2. Average values for different values of δ and with random values for λ.

δ = 0 δ = 0.25 δ = 0.5 δ = 0.75 δ = 1

F1 score 0.037 ± 0.044 0.037 ± 0.044 0.037 ± 0.044 0.037 ± 0.044 0.036 ± 0.044

nDCG 0.576 ± 0.216 0.576 ± 0.216 0.576 ± 0.216 0.576 ± 0.217 0.576 ± 0.217

– nDCGi =
∑

k∈{5,10,20}(
∑k

j=1
gij

max{1,log2j} )/3

where gij =

{
xij if j ∈ Ri,test

0 otherwise

Then, we can define the two measures for the whole group:

F1 − scoreG =
1

|G|
∑
i∈G

F1 − scorei (9)

nDCGG =
1

|G|
∑
i∈G

nDCGi (10)

The first analysis is conducted by assigning different random λ values for each
user in the generated groups. We reported the average values for the F1-score
and the nDCG in Table 2 averaging on the different group sizes. We can observe
that the values are the same independently from the values of the δ parameter.
Also grouping with respect to the group sizes, we have not observed any relevant
difference. This could due to the random assignment of the λ parameter that has
a stronger impact on the results with respect to δ. For this reason, for the second
offline study as well as for the pilot study, we set δ equal to 0.5 for giving the
same importance to both goals (e.g., social welfare maximization and inequity
aversion).

Moreover, we conducted a second analysis by fixing the same value for λ and δ
within the groups. Hence, for each experiment, λ can assume a value in {0, 0.5, 1}.
On the same group, we also evaluate the results obtained by applying the Least
Misery (LM) aggregation strategy. In detail, given the xi,j individual payoffs
(evaluated by the RS), the LM group score xG,j , for the item j is computed as
follow:

xG,j = min
i∈G

{xi,j} (11)

Then the top k elements are selected.
The first evidence of the second experiment is that there is a different, but

small, behavior of F1-score and the nDCG while changing the group size and
the λ value, also with respect to LM. By comparing the obtained results for the
different values of λ, we were not able to identify a configuration that outperforms
the others. For example, in Fig. 2, the results aggregated for different @k values
in the case of three different group’s sizes are shown. Remember that the results
are obtained by averaging the group results with respect to the individual ones.
Hence, a user study is necessary.
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(a) F1-score (b) nDCG

Fig. 2. F1-score and nDCG average values for different group’s sizes.

6 Pilot Study

To conduct our experiments, we developed a client-server application. Client was
an Android4 app and the server was developed in Java5 using Spring framework6

hosted by Tomcat Servlet Engine7.

6.1 Android Application

An Android application was developed in order to gather the information needed
by the server to provide recommendations to single users. In order to simplify
the operations, the experiment consists of some sequential steps so that each
phase unlocks the next one.

The first duty for the user, when he/she accesses the application, is to sign
up/sign into the system. The user signs up to the system by entering a username,
password, gender, age, and education level. When the interaction starts, users
have first to provide a certain number of movie ratings (at least for 20 movies),
with a value in the range [1, 10] (see Fig. 3(a) and (b)) in order to define their
profile. The user is provided with an interface to get movie lists and to store
movies ratings. If a user is in the training stage, he/she can browse movies
by ordering them by most rated or best rated, or by searching for a specific
movie (filtering by genre or title). Once the user rated twenty movies, the app
automatically shows the personality questionnaire (see Fig. 3(c)).

After this first stage, a user can get movie recommendations from the server.
When the server gets the recommendation request, once calculated the best
movies for the user, it retrieves additional details about the film, like, for exam-
ple, the director, writers, actors and genres using OMDb8 web service. Fortu-
nately, MovieTweetings dataset stores, for each movie, its IMDb id, which can be
4 https://www.android.com.
5 https://www.java.com/.
6 https://spring.io.
7 http://tomcat.apache.org.
8 http://www.omdbapi.com - The Open Movie Database is a free web service to obtain

movie information.

https://www.android.com
https://www.java.com/
https://spring.io
http://tomcat.apache.org
http://www.omdbapi.com
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(a) Sign up (b) Movie rating (c) Personality test

Fig. 3. Application interface for user profiling.

used to address the OMDb service. The Android application shows on the screen
the recommendations for the user through textual and graphical descriptions.

6.2 Methodology

The design of this study is a within-subjects, counterbalanced, repeated mea-
sures experiment. The goal of our study is to compare the proposed technique,
described in the previous paragraphs, with respect to the Least Misery. We
selected the latter because it achieves good performance especially for small
groups [34] and it deals with inequity adversity.

Once the questionnaire is completed, a user can start the test by completing
the following steps. Firstly, a user creates a group giving it a name and adds
in it one or more members using their usernames (see Fig. 4(a)). The system,
then, recommends a list of 10 movies (see Fig. 4(b)). In order to generate the
list of 10 items L for the group, for each technique, the GRS recommends 10
movies ordered in terms of their ratings (the used utility function LU and least
misery LLM ). To merge them into one list of ten items, we developed an iterative
algorithm that, at each step, adds the first item from each list (respectively, jLM

and jU ) (starting from the items with the highest rating) in the output set. In
order to avoid duplicates, once an item is inserted in L, it is removed from both
LLM and LU (if it is present).
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(a) Group creation (b) Recommended movies (c) Sorting page

Fig. 4. Group recommendation phases.

From this list, the group has to collectively choose three movies that they
would like to see together (see Fig. 4(b)). Finally, the group has to sort the three
selected movies (see Fig. 4(c)) in their joint preference order.

6.3 Evaluation Metrics

Since each group jointly selects its favorite 3 movies out of a 10 movies set, in
order to evaluate and compare our method with LM, we considered the following
metrics.

precision@3 is the ratio between the number of movies guessed by the GRS
(using a specific method) and the sum of the latter and the remaining movies
(only considering the first three movies). If G is the set of the groups that
participated in the experiment, Ig and Pg represent, respectively, the 3 movies
selected by group g and the 3 movies with the highest prediction, then:

precision@3 =
1

|G|
∑
g∈G

|Ig ∩ Pg|
|Ig ∩ Pg| + (3 − |Ig ∩ Pg|) (12)
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nDCG@3 evaluates the ranking of predicted movies with respect to the real
ranking j chosen by groups.

nDCG@3 =
1

|G|
∑
g∈G

3∑
j=1

relgij
max(1, log2j)

(13)

where,

relgij =

{
1 if ij ∈ Ig

0 otherwise
(14)

x success@3, for each group, is 1 if the algorithm guessed at least x movies in
the 3 selected by the group. With 1 ≤ x ≤ 3:

x success@3 =
1

|G|
∑
g∈G

x success@3g (15)

where,

x success@3g =

{
1 if |Ig ∩ Pg| ≥ x

0 otherewise
(16)

6.4 Result Analysis

Experiments lasted about two weeks and, as summarized in Table 3, we recruited
68 users (48 groups) with an average age of 27 years, the most of whom were
students.

Table 3. User stats.

Number of users 68

Average age 26.9

Minimum age 14

Maximum age 55

Males 45

Females 23

Middle school 1

High school 9

Bachelor students - undergraduate 26

Bachelor students - graduate 11

Master students - undergraduate 11

Master students - graduates 10
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Table 4. Group stats.

# members Amount

2 22

3 23

4 2

5 1

Total 48

Group members were directly selected by one of the users, as described above,
and their intersection is not necessarily empty (e.g., some users joined more than
one group). A single group was allowed to join the test only for one time. The
number of considered group was 48 with an average number of members equals to
2.6. In Table 4, we reported the number of groups considered in the experiments
for each group dimension.

First of all, we evaluated the average value of the obtained λ for each par-
ticipant in the experiments. Such value is 0.7, hence, in average, questionnaire
results show that the selected users obtained a high value of agreeableness (no
one obtained a α score smaller that 2.75).

Moreover, when comparing the two techniques, we analyzed their results
separately for the groups of dimension two and for the groups of more than two
members. The main reason for this choice is that about the half of the groups
were composed of two members (see Table 4) and it is known that LM shows the
best performances in this case.

precision@3. Results of precision@3 are summarized in Fig. 5(a). From the
charts, we can see the better performance of LM on two members’ groups. It
is not a surprise since LM excels in cases like this. ANOVA test confirms that
difference between the two techniques is significant (F = 3.076, p-value = 0.09).

Regarding groups with more than two members, once again LM is better
than our technique, but difference, in this case, is too small to be significant for
ANOVA test (F = 0.11, p-value = 0.74).

nDCG@3. As for the previous metrics, LM overcomes the proposed technique
(see Fig. 5(b)), but not enough according ANOVA (F = 1.547, p-value = 0.22 for
the two members’ groups and F = 0.056, p-value = 0.81 for the others).

1 success@3. We recall that 1 success@3 counts the number of times that the
algorithm guessed at least one movie among the three selected by the group.
LM is always better than our technique (see Fig. 6(a)), but these results provide
significant differences only when considering all the 48 groups together (F =
3.847, p-value = 0.05).
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(a) precision@3 (b) ndcg@3

Fig. 5. Precision and nDCG for the pilot study.

(a) 1 success@3 (b) 2 success@3

Fig. 6. 1 success@3 and 2 success@3 for the pilot study.

2 success@3. In this case, our method was more accurate in groups with more
than two members (see Fig. 6(b)). Unfortunately ANOVA shows that these dif-
ferences are due to chance (F = 0.305, p-value = 0.58).

3 success@3. It is really rare that a technique is able to guess exactly the three
movies chosen by the group. However, in some cases, it happened. Once a time
LM wins but with no significant differences.

Finally, we evaluated the Pearson correlations on result distributions that
show that the two techniques are not linearly dependent because, in most cases,
its value is near zero. This result means that, in some circumstances, the pro-
posed utility function shows a better performance than LM and in other cases
the opposite occurs. Therefore, in certain groups, users do care to minimize the
group unsatisfaction (i.e., the LM goal) regardless of the agreeableness value.

7 Conclusions and Future Work

Group recommendation algorithms have to take into account the members’ rela-
tionships as well as other characteristics that may influence the users’ decision
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making while being in a group. In this work, starting from a model of other-
regarding preferences, we introduced a new method to predict which items are
suitable for groups of users, taking into account users’ personality. In particular,
we evaluated the role of the agreeableness factor (e.g., one of the traits of the
Five-Factor Model), in order to weigh the importance of user’s gain with respect
to the global satisfaction.

Groups recommendation systems lack the appropriate dataset to be evaluated
upon. On the contrary, user studies have the disadvantages of being expensive
both in term of recruiting the proper users and engaging them, when they are
volunteers. In this sense, founding the appropriate number of groups, with vary-
ing dimensions, and that is a good representative of the considered population
is a challenging process.

Hence, to evaluate this approach, we firstly conducted an offline evaluation
process. From this analysis, it emerged that, with a random distribution of the
agreeableness trait, the proper balancing among the social welfare and the least
misery components of the considered utility function may not have a relevant
weight in the determination of the items to suggest to the group. On the contrary,
the variation of the trait value in the population produces different results (also
with respect to the least misery), but without a clear trend. Moreover, the used
dataset contains only individual ratings that do not consider group choices.

We also conducted a pilot user study on movie recommendations, where we
compared the results of the proposed approach with respect to LM. As expected,
for two users groups, LM is the best choice. In the other cases, we cannot say
the same thing since the two methods are comparable and show a similar perfor-
mance. We foresee that our utility function will improve its effectiveness propor-
tionally to the group size: the larger is the group, the greater will count altruism
in the final decision. Hence, in future works, although our work focuses on small
groups dynamics, we should try to encourage users to create larger groups in
order to better support our hypothesis.

Moreover, we think that these first results could be affected by the experi-
ments methodology. As already said, the 10 movies recommended to the groups
are obtained by a sort of union of two lists independently generated by the two
different techniques. Thus, in this set, there are movies chosen by both LM and
the proposed utility function. Maybe, a between-subject experiment (by assign-
ing the result of a single technique to each group) would lead us to different
results. Moreover, the low number of experiments had a relevant impact in the
significance analysis of the results. Finally, since most of the groups were com-
posed of two or three members, we foresee that, with larger groups, our technique
could have obtained better results.

Finally, as future work, we could study how to use other personality factors
to build another utility function. We saw that extraversion is correlated to the
leadership of a group, so in a decision process, it could be very critical. Further-
more, even openness could be decisive in such cases, because it could have the
same weight of the agreeableness in our function. Open people are glad to try
new experiences, so they could agree to view a movie for which the recommender
system predict a low value for them, but the opposite for other members.
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Abstract. People often learn their behavior from its outcome, e.g., suc-
cess and failure. Also, in the real world, people are not alone and many
interactions occur among people every day. To model such learning and
interactions, let us consider reinforcement learning agents playing games.
Many researchers have studied a lot of reinforcement learning algorithms
to obtain good strategies in games. However, most of the algorithms are
“suspicious”, i.e., focusing on how to escape from being exploited by
greedy opponents. Therefore, it takes long time to establish cooperation
among such agents. On the other hand, if the agents are “innocent”, i.e.,
prone to trust others, they establish cooperation easily but are exploited
by acquisitive opponents. In this work, we propose an algorithm that
uses two complementary, “innocent” and “suspicious” algorithms in the
early and the late stage, respectively. The algorithm allows the agent
to cooperate with good associates quickly as well as treat greedy oppo-
nents well. The experiments in ten games showed us that the proposed
algorithm successfully learned good strategies quickly in nine games.

Keywords: Multi-agent · Reinforcement learning · Game theory

1 Introduction

Humans make a variety of decisions in their daily lives. In social situations
in which a person’s decision depends on others, there are complicated mutual
relations such as competition and cooperation among people. Many researchers
have widely studied game theory that models relations as “games” and analyzed
rational decision-making in games.

c© Springer International Publishing AG, part of Springer Nature 2018
N. T. Nguyen et al. (Eds.): TCCI XXVIII, LNCS 10780, pp. 48–65, 2018.
https://doi.org/10.1007/978-3-319-78301-7_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78301-7_3&domain=pdf
http://orcid.org/0000-0003-4124-7264
http://orcid.org/0000-0003-1735-1862
http://orcid.org/0000-0002-2451-1919


Two-Stage Reinforcement Learning Algorithm 49

Furthermore, humans have an instinctive desire for survival; therefore, learn-
ing through trial-and-error to avoid harmful and unpleasant states and approach
beneficial and pleasant states. Such learning occurs given a learning mechanism
in the human brain. Many researchers study reinforcement learning algorithms
that model this learning mechanism.

Let us consider people who learn their behavior from the result of interacting
with others. As a model of this, we discuss reinforcement learning agents that
play games. A lot of (multi-agent) reinforcement learning algorithms that per-
form well in various games have already been proposed; however, such algorithms
typically require a large number of interactions to learn appropriate behavior in
games. People in the real world must quickly learn to make reasonable decisions,
because the world changes rapidly. Existing algorithms have various features,
each with its advantages and disadvantages. These algorithms can be comple-
mentary. Therefore, in this study, we construct an algorithm that learns quickly
and performs well in any type of game by combining features from multiple
algorithms.

Aside from this introductory section, the structure of this paper is as follows.
In Sect. 2, we introduce games and learning algorithms used in later sections. In
Sect. 3, we construct a new learning algorithm that learns quickly and performs
well in various games by combining two learning algorithms. Next, we evaluate
our proposed algorithm by conducting experiments, as described in Sect. 4. In
Sect. 5, we discuss our proposed algorithm. We introduce related works in Sect. 6
to show the relative position of our algorithm. Finally, in Sect. 7, we conclude
our paper and provide avenues for future work.

2 Background

In this section, we introduce game theory that models interactions among people
and reinforcement learning algorithms that model trial-and-error learning for
adaptation to a given environment.

2.1 Game Theory

We, as humans, are always making decisions as to what to do next to achieve our
desired purpose or goals. In social environments, every decision is affected by the
decisions of other people. Game theory mathematically analyzes the relationship
among such decisions.

A game in game theory consists of the following four elements [7]:

1. Rules that govern the game;
2. Players who decide what to do;
3. Action strategies of the players; and
4. Payoffs given to the players as a result of their decisions.

Game theory analyzes how players behave in an environment in which their
actions mutually influence one another. We focus on two-person simultaneous
games in this study.
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Table 1. An example of the prisoner’s dilemma game

Cooperation Defection

Cooperation 0.6, 0.6 0.0, 1.0

Defection 1.0, 0.0 0.2, 0.2

In a two-person simultaneous game, two players simultaneously choose
actions based on their given strategies. After both players choose their respec-
tive actions, each player is given a payoff determined by the “joint action” of
both players. Since the payoff of each player is determined by not only his or her
action but also the other player’s action, it is necessary to deliberate the other
player’s action to maximize payoffs.

Note that all games used in this research are non-cooperative, and players
choose their individual strategies based on their own payoffs and all players’ past
actions. More specifically, a player chooses his or her own action based on his or
her payoff and the action of the other players in the previous period.

A Nash equilibrium is defined as a combination of actions in which no player is
motivated to change his or her strategy. Let us consider the “prisoner’s dilemma”
game summarized in Table 1. Here, the row and column correspond to the actions
of Players 1 and 2, respectively; they gain the left and right payoffs, respectively,
corresponding to the joint action in the matrix.

According to the payoff matrix, the player should choose the Defection action
regardless of the other player’s action, because it always yields higher payoffs
than the Cooperation action. Since the other player considers the same, both
players choose Defection, and finally, the combination of actions (i.e., Defection,
Defection) becomes a Nash equilibrium.

Conversely, if both players select Cooperation, both payoffs can be raised to
0.6 from 0.2; however, it is very difficult for both players to choose Cooperation,
because the combination (i.e., Cooperation, Cooperation) is not an equilibrium
and each player is motivated to choose Defection. Moreover, even if a player
overcomes this motive for a certain reason, he or she will yield a payoff of zero
if the partner chooses Defection. The prisoner’s dilemma game shows that the
individual’s rationality differs from that of social rationality in a social situation.

2.2 Reinforcement Learning

Reinforcement learning [11] is a learning method that learns strategies through
interacting with the given environment. An agent is defined as a decision-making
entity, while the environment is everything external to the agent that interacts
with the agent. The agent interacts with the environment at discrete time steps,
i.e., t = 0, 1, 2, 3, .... At each time step t, the agent recognizes the current state
st ∈ S of the environment, where S is a set of possible states, and decides an
action at ∈ A(st) based on the current state, where A(st) is a set of actions
selectable in a state st. Then, the agent takes the action. It gives the agent a
reward rt+1 ∈ � and changes the state to a new state st+1.
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The probability that the agent chooses a possible action a in a state s is shown
as a strategy πt(s, a). Reinforcement learning algorithms update the strategy πt,
or action values that indirectly change the strategy, at each time step.

One of the most popular reinforcement learning algorithm is Q-learning [12].
It learns an action value function Q(s, a) (called Q-values) by using the following
rule.

Qt+1(st, at) = Qt(st, at) + α[rt+1 + γV t(st+1) − Qt(st, at)], (1)

V t(st+1) = max
a∈A(st+1)

Qt(st+1, a), (2)

where α ∈ (0, 1] is a parameter called the learning rate. Under some conditions,
the Q-values stochastically converges to the expected sum of rewards, discounted
by γ ∈ [0, 1), derived from the optimal strategy [12].

At every time step, the agent derives its strategy from the Q-values. One of
the most popular method is called ε-greedy, which chooses an action with the
maximum Q-value with probability 1− ε, or a random action with probability ε.

2.3 Three Foundational Learning Algorithms

Here we introduce three learning algorithms that form the basis for our proposal.

M-Qubed: M-Qubed [3] is an excellent state-of-the-art reinforcement learning
algorithm that can learn to cooperate with associates (i.e., other players) and
avoid being exploited unilaterally in various games. M-Qubed updates the Q-
value with Sarsa [8]. Sarsa uses the same update rule of Q-learning (Eq. 1), but
the function V is different:

V t(st+1) =
∑

a∈A(st+1)

πt(st+1, a)Qt(st+1, a). (3)

M-Qubed assumes that the state s is defined as the latest joint action of the
agent and its associates, and the reward r is in [0, 1].

M-Qubed consists of the following three components. Note that the maximin
payoff is a secured payoff regardless of the associates, given by the maximin
strategy that maximizes the minimum payoff based on the payoff definition of
the game.

Profit pursuit
This gives a pure strategy that chooses an action with the maximum Q-
value if the Q-value is larger than the discounted sum of the maximin payoff;
otherwise, it gives the maximin strategy.

Loss aversion
This gives a pure strategy that chooses an action with the maximum Q-value
if the accumulated loss is less than a given threshold; otherwise, it gives
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the maximin strategy. The accumulated loss is the difference between the
accumulated payoff and the accumulated maximin payoff. The threshold is
set in proportion to the number of possible states and joint actions.

Optimistic search
The strategy of “Profit pursuit” can acquire high payoffs for the moment;
however, it tends to produce myopic actions. The strategy of “Loss aversion”
cannot lead cooperation with associates, which may yield higher payoffs. To
solve these problems, M-Qubed sets the initial Q-values to their highest pos-
sible discounted reward 1/(1 − γ), thereby learning wider strategies.

First of all, M-Qubed initializes the Q-values with the “Optimistic search”.
After every update of Q-values, M-Qubed calculates a weighted average of the
two strategies given by “Profit pursuit” and “Loss aversion”.

In addition, if all recently visited states have low Q-values, the strategies of
the agent and its associates may remain at a local optimum. Then, the agent
must explore further to find a solution that may give a higher payoff. Hence,
in this case, M-Qubed gives a strategy that is a weighted average of the above
strategy and a completely random strategy.

Satisficing Algorithm: Satisficing algorithm (S-alg) [10] is an algorithm that
calculates a value called the aspiration level of the agent. The agent continues to
take an action that gives payoffs more than its aspiration level. The algorithm
is shown in Algorithm 1. S-alg is an algorithm that enables an agent to learn to
take cooperative actions with its associates.

Algorithm 1. Satisficing algorithm
Variables: t: round, lt: aspiration level at t, at: action at t, rt: payoff at t,
Parameters: A: set of available actions, λ ∈ (0, 1): learning rate,

Rmax : maximum available payoff (or sufficiently large real number)

t ← 1
l1 ← Random ∈ [Rmax , 2Rmax ]
a1 ← Random ∈ A
repeat

Take at and receive rt

if rt ≥ lt then
at+1 ← at

else
at+1 ← Random ∈ A

end if
lt+1 ← λlt + (1 − λ)rt

t ← t + 1
until Finish
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BM Algorithm: BM algorithm [4] is a reinforcement learning algorithm that
maximizes payoffs by combining M-Qubed and S-alg. It produces a new strategy
that combines the strategies derived from the two internal algorithms. Both algo-
rithms simultaneously update their functions, i.e., the Q-value and the aspiration
level.

BM algorithm uses Boltzmann multiplication [13] as the method of combina-
tion. Boltzmann multiplication multiplies strategies of all internal algorithms for
each available action and determines the ensemble strategy by the Boltzmann
distribution. The preference value of an action in a state, pt, is defined as

pt(st, a) ≡
∏

j

πt
j(s

t, a) (4)

and the resulting ensemble strategy is defined as

πt(st, a) =
pt(st, a)

1
τ

∑
x∈A(st) pt(st, x)

1
τ

, (5)

where πt
j is a strategy of an internal algorithm j, a ∈ A(st) is a possible action

in the state st, and τ is a temperature parameter. After calculating the ensemble
strategy, the agent selects an action, and then all internal algorithms learn from
the result of this selected action.

Since S-alg yields only pure strategies, all actions except for the chosen one
have zero probability. The M-Qubed part becomes meaningless when the Boltz-
mann multiplication is used to combine M-Qubed and S-alg without considera-
tion. Therefore, the S-alg in BM algorithm yields a mixed strategy in which the
chosen action is played with probability 0.99.

3 Proposed Algorithm

In this study, we consider reinforcement learning agents that play games. M-
Qubed, BM, and S-alg agents perform well in some games, but have problems
in other games, as summarized below:

– M-Qubed requires a long time to learn, because it has multiple strategies and
needs to decide which one is used. Therefore, the average payoff becomes less
than S-alg in a game having only one suitable solution that is in cooperation
with the associates.

– BM algorithm performs better than M-Qubed, but it is still slow in search
because the internal S-alg cannot completely compensate for the slowness of
M-Qubed.

– If the associates are greedy, S-alg is exploited unilaterally, because it decreases
the aspiration level, and then S-alg is satisfied with low payoffs.

– Due to insufficient search, S-alg may be satisfied with the second-best payoff.
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These algorithms do not have sufficient performance for a variety of reasons;
however, their positive abilities are complementary. BM, which is not exploited
due to the “Loss aversion” strategy and explores the given environment thor-
oughly enough, can compensate for the weakness of S-alg that tends to be
exploited. Conversely, S-alg, which quickly learns to cooperate, can compensate
for the weakness of BM, i.e., its slowness of search.

The agent should cooperate with a reliable associate quickly but avoid
exploitation by a greedy opponent. Therefore, we combine BM and S-alg to
construct a two-stage reinforcement learning algorithm that quickly learns good
strategies in various games. We call our proposed algorithm J-algorithm (J-alg).
J-alg has an Exploration stage and a Static stage. The Exploration stage is
represented by S’ algorithm (S’-alg), which is a slightly modified version of S-
alg. Similarly, the Static stage is represented by BM algorithm. In the following
subsections, we introduce S’-alg and J-alg.

3.1 S’ Algorithm

We focused on S-alg to play a key role in the Exploration stage, because S-alg can
learn to cooperate quickly; however, S-alg tends to cover an insufficient search
space and be exploited by a myopic strategy. Suppose that the S-alg agents play
the Security game (SG) shown in Table 2. If the aspiration level of the row agent
is smaller than 0.84, the agent loses its motivation to change its action from x.
Consequently, both players are satisfied with a payoff that is not the largest one
(1.0, 0.67). S-alg stops searching for other actions and is therefore prone to an
insufficient search.

To solve this problem, we slightly modify S-alg; this new algorithm is called
the S’ algorithm (S’-alg). If the agent receives the maximin payoff in the learning
phase where the aspiration level is decreasing, S’-alg prohibits the agent from
choosing the action again in the next round. The modified algorithm is shown
in Algorithm 2. This change stochastically forces the agent to take other actions
to escape from a local solution and potentially find a better one.

3.2 Integrating the Two Stages

J-alg uses S’-alg for the Exploration stage and BM for the Static stage. The
J-alg agent starts in the Exploration stage. After the joint action converges, the
algorithm switches to the Static stage and resets the Q-values to choose the
converged action more often. If the joint action does not converge in the first tc

Table 2. Security game (SG)

z w

x 0.84, 0.33 0.84, 0.0

y 0.0, 1.0 1.0, 0.67
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Algorithm 2. S’ algorithm
Variables: t: round, lt: aspiration level at t, at: action at t, rt: payoff at t,
Parameters: A: set of available actions, λ ∈ (0, 1): learning rate,

Rmax : maximum available payoff (or sufficiently large real number),
p ∈ [0, 1]: probability of prohibition

t ← 1

l1 ← Random ∈ [Rmax , 2Rmax ]
a1 ← Random ∈ A
repeat

Take at and receive rt

if rt ≥ lt then
at+1 ← at

else if rt = maximin payoff and Random ∈ [0, 1) < p then
at+1 ← Random ∈ A\{at}

else
at+1 ← Random ∈ A

end if
lt+1 ← λlt + (1 − λ)rt

t ← t + 1
until Finish

Algorithm 3. J-algorithm
Variables: t: round, s: state, a: action, ac: my action when the joint action converges,

rc: payoff when the joint action converges, stage: current stage

Parameters: δ ∈ [0, 1]: reduction rate

t ← 1

stage ← Exploration

repeat

if stage = Exploration then

if t < tc then

if the joint action has converged then

for all s and a do

if a = ac then

Q(s, a) ← rc/(1 − γ)

else

Q(s, a) ← δ × rc/(1 − γ)

end if

end for

stage ← Static

end if

else

stage ← Static

end if

end if

Run a round in the stage

t ← t + 1

until Finish
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rounds, the algorithm simply changes to the Static stage without changing the
Q-values. The algorithm is shown in Algorithm 3. Even though the J-alg agent
is exploited in the Exploration stage, it will recover in the Static stage via BM
algorithm that can evade a loss by using “Loss aversion” strategy.

4 Experiments

To confirm the performance of J-alg, we conducted experiments using 10 two-
person two-action matrix games used in the M-Qubed paper [3] shown in Table 3.
Here, the agent was able to observe only the previous joint action and its own
payoff. We compared J-alg with Q-learning (QL), Q-learning with the optimistic
search (QLOP), M-Qubed, S-alg, and BM. QL and QLOP used the ε-greedy
method to choose actions. We set the initial Q-value of QL randomly and that
of QLOP to the highest possible discounted payoff, 1/(1−γ). The learning rates
(α) of QL and QLOP were both set to 0.1 and the exploration rates (ε) were
both set to 0.1. We also set the M-Qubed parameters to be identical to the
original ones. The temperature parameter τ of the BM algorithm was set to
0.2. Further, we set the following parameters of S’-alg and J-alg: the learning
rate λ = 0.99, the prohibition probability p = 0.3, the reduction rate δ = 0.99,
and the stage-shift threshold time tc = 500. We considered that a certain joint
action converged when it had continued 30 rounds. Here, we call the maximum
joint action a joint action by which the sum of both player’s payoffs becomes
maximum (which is shown in bold italic typeface in the table).

4.1 Experiment 1: Self-play

Our first experiment was conducted in games where both players are agents with
the same algorithm, i.e., in self-play. Agents played one of the 10 games for 30000
rounds, iterating 50 times for each game. We then compared the normalized
average payoffs of the six methods. Note that the earlier the actions of agents
converge to the maximum joint action, the larger the normalized average payoffs
become. Table 4 shows the normalized average payoffs in the games, each of
which is the average payoff divided by that of the maximum joint action. If the
normalized average payoff is close to one, it shows that the agent quickly learned
the maximum joint action in the game.

From the table, we observe that J-alg gained high payoffs and quickly learned
the maximum joint action of nine games in self-play. It is a result of good com-
bination of the “innocent” method (S’-alg) and the “suspicious” method (BM).
J-alg was able to learn optimal strategies more quickly than M-Qubed and BM
due to the Exploration stage (i.e., S’-alg). QL, QLOP, M-Qubed, and BM par-
ticularly gained low payoffs in the prisoner’s dilemma (PD) game, because of
the mutual defection (b, d) caused by many explorations to learn the cooper-
ative joint action (a, c). QL and QLOP required many interactions, therefore
they were not able to learn quickly in most of the games, but QLOP gained a
higher average payoff than QL. QL and QLOP tended to obtain high payoffs
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Table 3. Games used in the experiments

Table 4. Normalized average payoffs when agents played games in self-play. The bold
typeface indicates the best results among the six given methods.

QL QLOP M-Qubed S-alg BM J-alg

CIG 0.76861 0.89883 0.99023 0.99846 0.99860 0.99851

CG 0.89430 0.88677 0.76217 0.99665 0.77492 0.99679

SH 0.71853 0.90423 0.99138 0.99853 0.99768 0.99861

TG 0.83351 0.84026 0.70782 0.99719 0.71618 0.99684

PD 0.53761 0.55262 0.68807 0.99766 0.69115 0.99760

BS 0.91072 0.91089 0.85186 0.99775 0.86266 0.99776

Ch 0.88359 0.93491 0.89158 0.99826 0.88656 0.99819

SG 0.69448 0.70582 0.83697 0.71804 0.84340 0.99760

OG 0.46086 0.43858 0.44924 0.50012 0.44855 0.45497

MP 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000

Avg. 0.77022 0.80729 0.81693 0.92027 0.82197 0.94369
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in the games that had two maximum joint actions. S-alg gained high payoffs in
eight games, not including the security game (SG) and the offset game (OG). In
these games, the aspiration level of S-alg decreased below the second-best pay-
off because of insufficient exploration. For all algorithms, the offset game (OG)
proved difficult to learn the optimal strategy.

4.2 Experiment 2: Round-Robin

In our second experiment, we compared the six methods in a round-robin tour-
nament in which all combinations of the methods, such as J-alg versus M-Qubed
and S-alg versus BM, were examined. The agents played one of the 10 games
for 50000 rounds, iterating 50 times for each game. In an asymmetric game,
the agents played it twice with exchanging the roles (row and column) because
the payoff changed by the role. The normalized average payoffs of each game
are shown in Table 5. Values greater than one indicate that the agent exploited
other agents and gained high payoffs as a result.

J-alg gained high average payoffs in many of the games. In the coordina-
tion game (CG), battle of the sexes (BS), the offset game (OG), and matching
pennies (MP), S-alg was exploited when the associate took a greedy strategy,
because its aspiration level decreased too much and it was satisfied with small
payoffs as a result. QL and QLOP were not able to learn optimal strategies
quickly and gain high average payoffs because they required a large number of
interactions. QL was not so exploited by other players, compared to S-alg. In
the prisoner’s dilemma (PD), QL and QLOP gained much lower payoffs than the
other four algorithms. In particular, QL gained the worst average payoffs because
it learned slowly. Note that M-Qubed did indeed gain high average payoffs in the
coordination game (CG), battle of the sexes (BS) and matching pennies (MP)
by taking a greedy strategy.

Table 5. Normalized average payoffs when agents play games in a round-robin tourna-
ment. The bold typeface indicates the best results from among the six given methods.

QL QLOP M-Qubed S-alg BM J-alg

CIG 0.85129 0.90721 0.96661 0.95852 0.96908 0.96786

CG 0.89292 0.91256 0.99598 0.73174 0.96398 0.95050

SH 0.84249 0.91533 0.96653 0.95898 0.96137 0.96261

TG 0.85264 0.85388 0.87236 0.91025 0.86893 0.89840

PD 0.61984 0.62782 0.78704 0.76128 0.78030 0.86004

BS 0.90111 0.92201 1.03072 0.83428 0.99703 0.96876

Ch 0.88749 0.88233 0.93156 0.94559 0.93155 0.94303

SG 0.75910 0.76319 0.82802 0.84455 0.83136 0.85919

OG 0.43405 0.42567 0.59850 0.19922 0.66212 0.66628

MP 0.86232 0.89970 1.16766 0.75635 1.16150 1.15248

Avg. 0.79032 0.81097 0.91450 0.79008 0.91272 0.92291
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The average payoffs shown in Tables 4 and 5 show that J-alg gained the
highest average payoffs both in self-play and in the round-robin tournament.
S-alg gained high payoffs in self-play, but it was exploited by greedy players and
gained low payoffs in the round-robin tournament. M-Qubed and BM gained
larger payoffs in the round-robin tournament than those in self-play, by exploiting
S-alg, QL and QLOP. However, they required a large number of rounds to learn
the maximum joint action and therefore gained lower average payoffs than that
of J-alg. QL and QLOP required a large number of rounds to learn the maximum
joint action both in self-play and in the round-robin tournament.

4.3 Learning Curves

Here, we investigated whether S’-alg actually contributed to the learning speed of
J-alg. Figures 1, 2, and 3 show learning curves of the six methods in the common
interest game (CIG), stag hunt (SH), and the security game (SG), respectively.
Results of these three games are good examples that show how the algorithms
comprised in J-alg complement one another.

Figure 1, i.e., results of the common interest game (CIG), shows that J-alg
and S-alg quickly learned the maximum joint action almost simultaneously. BM
learned the maximum joint action by the 190th round, shortly after J-alg and
S-alg. M-Qubed was still learning at the 500th round. Results here show that
S’-alg contributed to the learning speed of J-alg. QL and QLOP required more
interaction and were not able to finish learning by the 500th round.

Results of the stag hunt (SH) game are shown in Fig. 2, which shows that
J-alg and S-alg finished learning the maximum joint action the quickest. BM
finished learning with the normalized average payoff converging to one by the
410th round. M-Qubed was still learning at the 1500th round. Results here show
the same as Fig. 1, i.e., J-alg learned the maximum joint action fastest, whereas
BM and M-Qubed learned more slowly. QL and QLOP required more interaction
and were not able to finish learning by the 1500th round.

Turning to Fig. 3, we observe that in the security game (SG), S-alg finished
learning first, but did not obtain the optimal strategy because S-alg was satisfied
with the second-best payoff. As shown in Table 4, S-alg gained smaller payoffs as
compared with M-Qubed, BM, and J-alg in this game. BM and M-Qubed learned
the maximum joint action, but they required a large number of interactions. QL
and QLOP were worse than S-alg. Despite the failure of S-alg, J-alg successfully
learned the maximum joint action the quickest in this game.
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Fig. 1. Learning curves of the six algorithms in self-play in Common Interest Game
(CIG). Red: the curve of J-alg. Blue: that of M-Qubed. Yellow: that of S-alg. Green:
that of BM. Gray: that of QL. Black: that of QLOP. The x-axes show the rounds
the agents played, while the y-axes show the normalized average payoffs. (Color figure
online)
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Fig. 2. Learning curves of the six algorithms in self-play in Stag Hunt (SH). Red: the
curve of J-alg. Blue: that of M-Qubed. Yellow: that of S-alg. Green: that of BM. Gray:
that of QL. Black: that of QLOP. The x-axes show the rounds the agents played, while
the y-axes show normalized average payoffs. (Color figure online)
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Fig. 3. Learning curves of the six algorithms in self-play in Security Game (SG). Red:
the curve of J-alg. Blue: that of M-Qubed. Yellow: that of S-alg. Green: that of BM.
Gray: that of QL. Black: that of QLOP. The x-axes show the rounds the agents played,
while the y-axes show normalized average payoffs. (Color figure online)
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5 Discussion

The most remarkable feature of J-alg is that it has two learning stages. Schembri
et al. [9] proposed a learning robot that has two stages named “childhood”
and “adulthood”. During childhood, the robot learns basic movements, and it
learns how to combine the basic movements in order to perform a task during
adulthood. To success of the learning, it is important how to learn in the early
stage of learning.

J-alg uses S’-alg, a slightly modified version of S-alg, in the Exploration
stage that allows the agent to quickly learn the cooperative action against the
cooperative associate. On the other hand, failure of learning the maximum joint
action in S-alg leads the fact that the associate is not always cooperative but
may be a greedy player or simply a slow learner. To such associates, BM carefully
learns its strategy in the Static stage.

Success of J-alg in the self-play tournament is derived from the fact that
J-alg agents take a cooperative strategy from the beginning of games. M-Qubed,
BM, and QLOP are different from J-alg in the initial phase of learning. Since
their Q-values are set optimistically, they play randomly for a long time until
convergence. The contribution of S’-alg in the early learning phase allowed J-alg
to cooperate with each other and gain high payoffs from the beginning.

Success of J-alg in the round-robin tournament is derived from the fact that
J-alg agents are resistant to exploitation by greedy associates but willing to
cooperate against cooperative associates. To greedy associates, J-alg agents take
similar behavior of BM in their long life, but to cooperative associates, differ-
ent from BM, they are “innocent” and able to cooperate with them from the
beginning.

In the environment where other players also learn, it may be a good idea that
an agent first takes a cooperative, innocent strategy but a cautious, suspicious
strategy later, like children grow to adults. This study suggests that this idea
is plausible by showing that such approach can acquire high payoffs in various
situations.

6 Related Works

Reinforcement learning is widely used as a learning method for agents. What
defines reinforcement learning as being different from other learning methods
is the combination of trial-and-error searches and delayed rewards. Temporal
difference (TD) learning is arguably the most famous reinforcement learning
method. TD learning compares the value of the current state with the reward
obtained by the current action, and updates the value to decrease deviation.
Q-learning [12] and Sarsa [8] are typical examples of TD learning.

While TD learning was originally proposed as a learning method for a single
agent, Claus and Boutilier [2] discussed how to incorporate other agents in a
multi-agent environment in TD learning. They showed that in payoff matrix
games, a “joint action learner” that updates Q-values based on actions of the
agent and others is better than an “independent learner” that recognizes others
as elements of the environment.
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When designing a reinforcement learning agent in a multi-agent environment,
we often adopt the knowledge of game theory. Hu and Wellman [5] proposed
Nash Q-learning. A Nash Q-learning agent explores the game structure from
the perspective of the actions and rewards of the agent and others, updating its
Q-values under the assumption that every player selects a strategy that leads to
a Nash equilibrium.

There are also methods that do not update Q-values from immediate joint
actions, but instead assign Q-values to a long (fixed-length) interaction history.
Burkov and Chaib-draa [1] proposed a learning approach for an agent when its
associates learn its strategies and adapt to its actions. Their agent, called an
Adaptive Dynamics Learner, can obtain higher utility than that of an agent at
an equilibrium by considering the associates’ strategies and assigning Q-values
to a long interaction history.

Further, there are reinforcement learning methods that do not use Q-values,
instead they use a dynamic threshold called an aspiration level updated by
rewards. Masuda and Nakamura [6] considered a model in which a reinforcement
learning agent learns from reinforcement signals calculated from the reward and
the aspiration level; they investigated agent behavior when it played the iterated
prisoner’s dilemma games with other learning agents.

In summary, many researchers have proposed reinforcement learning algo-
rithms for multi-agent environments; however, much of this work has focused
only on the convergence of player strategies and thus requires an enormous
number of interactions. In this paper, we proposed an algorithm that learns
appropriate strategies against the associate’s strategy faster than these existing
algorithms. It is necessary for agents in the real world because they have to
decide many things very quickly there.

7 Conclusions

Many researchers have studied and are studying reinforcement learning algo-
rithms to acquire strategies that maximize payoffs for agents that learn in
games. Existing reinforcement learning algorithms can gain high payoffs in var-
ious games, but typically require a large number of interactions to learn an
optimal strategy.

To overcome these limitations, we proposed an algorithm called J-alg that
learns quickly and gains large payoffs in many games by combining two existing
algorithms, namely, BM and S’-alg. S’-alg contributes to learning speed, whereas
BM contributes to the prevention of exploitation by greedy opponents. At the
beginning, J-alg starts to learn the maximum joint action with the associate
with S’-alg that prefers a cooperative strategy. After that, in the latter stage
where BM takes control, if the maximum joint action is realized, BM continues
to take the action, but if not, BM carefully learns against (greedy) opponents.

To evaluate our algorithm, we conducted two experiments, i.e., self-play and
round-robin, using 10 games. In both experiments, J-alg gained sufficiently large
payoffs in nine games and the highest average payoffs among six types of agents.
Dividing learning into two stages has led to the success of J-alg.



Two-Stage Reinforcement Learning Algorithm 65

As future work, we plan to construct an algorithm that can learn the max-
imum joint action in the offset game (OG). In addition, we plan to extend
our work in two-person two-action games and construct an algorithm that can
quickly learn optimal strategies in n-person n-action games.
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Abstract. Currently the most efficient distributed multiagent planning
scheme for deterministic models is based on coordination of local agents’
plans. In such a scheme, behavior of other agents is modeled using pro-
jections of their actions stripped of all private information. The planning
scheme does not require any additional information, however using such
can be beneficial for planning efficiency. Dependencies among the pro-
jected public actions caused by sequences of local private actions repre-
sent one particular type of such information.

In this work, we formally define several types of internal dependencies
of multiagent planning problems and provide an algorithmic approach
how to extract the internally dependent actions during multiagent plan-
ning. We show how to take an advantage of the computed dependencies
by means of reducing the multiagent planning problems and analyze
worst-case privacy leakage caused by the used dependencies. We inte-
grate the reduction method into a distributed multiagent planner and
summarize other efficiency improving techniques used in the planner. We
experimentally show strong reduction of majority of standard multiagent
benchmarks and nearly doubling of solved problems in comparison to a
variant of a planner without the reductions. The efficiency of the method
is demonstrated by winning in a recent competition of distributed mul-
tiagent planners.

1 Introduction

Cooperative intelligent agents acting in a shared environment have to coordinate
their steps in order to achieve their goals. A well-established model for multiagent
planning in deterministic environments was described by [4] as MA-Strips,
which is a minimal extension of classical planning model Strips [8]. MA-Strips
provides problem partitioning in form of separated sets of actions of particular
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agents, and notion of local private information the agents are not willing to
share. By definition, private actions and facts about the environment do not
affect other agents and cannot be affected by other agents. Shared facts and
actions which can influence more than one agent are denoted as public.

In multiagent planning modeled as MA-Strips, agents can either plan only
with their own actions and facts and inform the other agents about public
achieved facts, as for instance in the MAD-A* planner [16]. Or, agents can also
use other agents’ public actions provided that the actions are stripped of the
private facts in preconditions and effects. Thus agents plan actions, in a sense,
for other agents and then coordinate the plans [19]. This principle was success-
fully used in a recent planner based on compact representation of local agents’
plans in form of Finite Automata, denoted as Planning State Machines (Psm)
planner [21].

Only a complete stripping of all private information from public actions
was used in literature so far. Such approach can, however, lead to tangible loss
of information on causal dependencies of the actions described by the private
actions. A seeming remedy is to borrow techniques from classical planning on
problem reduction (e.g., in [5,7,9]). As our motivation is to “pack” sequences
of public and private actions, the most suitable are recursive macro actions as
proposed by [1,13]. A macro action can represent a sound sequence of actions
and, provided that it allows for recursive reductions, it can be used repeatedly
with possibly radical downsizing of the reduced planning problem.

In a motivation logistic problem, when an agent transports a package from
one city to another and wants to keep its current load internal, it is not practical
to publish two actions: load(package, fromCity) and unload(package, toCity).
Instead it should publish action transport(package, fromCity, toCity), which is
capturing the hidden (private) relation between this pair of actions while it is
not disclosing it in an explicit way.

We propose to keep the pair of actions and to add new public predicate that
says that some action requires another action to precede it (because it better
fits the proposed coordination algorithm). In the simplest case, the new public
fact would directly correspond to the internal fact isLoaded(package), but in
realistic cases, it could also capture more complex dependencies, for example,
the transshipment between different vehicles belonging to the transport agent.

In this paper, we build on our previous work [17] where internal dependencies
of public actions where studied with a restriction that every action consumes all
of its preconditions. This restriction no longer applies here because it can be very
limiting in practice. Furthermore, we demonstrate the effect of our approach on a
benchmark set from the CoDMAP competition held on International Conference
on Automated Planning and Scheduling (ICAPS’15). Our planner, employing
the theory from this paper, won the distributed track of CoDMAP 2015.

2 Multiagent Planning

This section provides condensed formal prerequisites of multiagent planning
based on the MA-Strips formalism [4]. Refer to [18] for more details.
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An MA-Strips planning problem Π is a quadruple Π = 〈P, {αi}n
i=1, I, G〉,

where P is a set of facts, αi is the set of actions of i-th agent1 I ⊆ P
is an initial state, and G ⊆ P is a set of goal facts. We define selec-
tor functions facts(Π), agents(Π), init(Π), and goal(Π) such that Π =
〈facts(Π), agents(Π), init(Π), goal(Π)〉. An action a ∈ α, the agent α can
perform, is a triple of subsets of P called preconditions, add effects, delete
effects. Selector functions pre(a), add(a), and del(a) are defined so that a =
〈pre(a), add(a), del(a)〉. Note that an agent is identified with the actions the agent
can perform in an environment.

In MA-Strips, out of computational or privacy concerns, each fact is clas-
sified either as public or as internal. A fact is public when it is mentioned by
actions of at least two different agents. A fact is internal for agent α when it is
not public but mentioned by some action of α. A fact is relevant for α when it
is either public or internal for α. MA-Strips further extends this classification
of facts to actions as follows. An action is public when it has a public (add- or
delete-) effect, otherwise it is internal. An action from Π is relevant for α when
it is either public or owned by (contained in) α.

We use int-facts(α) and pub-facts(α) to denote in turn the sets internal facts
and the set of public facts of agent α. Moreover, we write pub-facts(Π) to denote
all the public facts of problem Π. We write pub-actions(α) to denote the set of
public actions of agent α. Finally, we use pub-actions(Π) to denote all the public
actions of all the agents in problem Π.

In multiagent planning with external actions, a local planning problem is
constructed for every agent α. Each local planning problem for α is a classical
Strips problem where α has its own internal copy of the global state and where
each agent is equipped with information about public actions of other agents
called external actions. These local planning problems allow us to divide an MA-
Strips problem into several Strips problems which can be solved separately by
a classical planner.

The projection F � α of a set of facts F to agent α is the restriction of F
to the facts relevant for α, representing F as seen by α. The public projection
a � � of action a is obtained by restricting the facts in a to public facts. Public
projection is extended to sets of actions element-wise.

A local planning problem Π � α of agent α, also called projection of Π to α,
is a classical Strips problem containing all the actions of agent α together with
external actions, that is, public projections of other agents’ public actions. The
local problem of α is defined only using the facts relevant for α. Formally,

Π � α = 〈P � α, α ∪ exts(α), I � α,G〉
where the set of external actions exts(α) is defined as follows.

exts(α) =
⋃

β �=α

(pub-actions(β) � �)

1 Whereas, in Strips, the second parameter is a set of actions, in MA-Strips, the
second parameter is actually a set of sets of actions.
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In the above, β ranges over all the agents of Π. The set exts(α) can be equiva-
lently described as exts(α) = (pub-actions(Π) \ α) � �. To simplify the presenta-
tion, we consider only problems with public goals and hence there is no need to
restrict goal G.

3 Planning with External Actions

The previous section allows us to divide an MA-Strips problem into several
classical Strips local planning which can be solved separately by a classical
planner. Recall that the local planning problem of agent α contains all the actions
of α together with α’s external actions, that is, with projections of public actions
of other agents. This section describes conditions which allow us to compute a
solution of the original MA-Strips problem from solutions of local problems.

A plan π is a sequence of actions. A solution of Π is a plan π whose execution
transforms the initial state to a subset of the goals. A local solution of agent α is
a solution of Π � α. Let sols(Π) denote the set of all the solutions of MA-Strips
or Strips problem Π. A public plan σ is a sequence of public actions. The public
projection π � � of plan π is the restriction of π to public actions.

A public plan σ is extensible when there is π ∈ sols(Π) such that π � � = σ.
Similarly, σ is α-extensible when there is π ∈ sols(Π � α) such that π � � = σ.
Extensible public plans give us an order of public actions which is acceptable
for all the agents. Thus extensible public plans are very close to solutions of Π
and it is relatively easy to construct a solution of Π once we have an extensible
public plan. Hence our algorithms will aim at finding extensible public plans.

The following theorem [18] establishes the relationship between extensible
and α-extensible plans. Its direct consequence is that to find a solution of Π it
is enough to find a local solution πα ∈ sols(Π � α) which is β-extensible for every
agent β.

Theorem 1. Public plan σ of Π is extensible if and only if σ is α-extensible
for every agent α.

The theorem above suggests the distributed multiagent planning algorithm
described in Algorithm 1. Every agent executes the loop from Algorithm1, possi-
bly on different machine. Every agent keeps generating new solutions of its local
problem and stores solution projections in set Φα. These sets are exchanged
among all the agents so that every agent can compute their intersection Φ. Once
the intersection Φ is non-empty, the algorithm terminates yielding Φ as the result.
Theorem 1 ensures that every public plan in the resulting Φ is extensible. See
Sect. 8 for more details on the algorithm implementation.

4 Internal Dependencies of Actions

One of the benefits of planning with external actions is that every agent can plan
separately its local problem which involves planning of actions for other agents
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Algorithm 1. Distributed MA planning algorithm.
1 Function MaPlanDistributed(Π � α) is
2 Φα ← ∅;
3 loop
4 generate new πα ∈ sols(Π � α);
5 Φα ← Φα ∪ {πα � �};
6 exchange public plans Φα with other agents;
7 Φ ← ⋂

β∈agents(Π) Φβ ;

8 if Φ �= ∅ then
9 return Φ;

10 end

11 end

12 end

(external actions). Other agents can then only verify whether a plan generated
by another agent is α-extensible for them. A con of this approach is that agents
have only a limited knowledge about external actions because internal facts are
removed by projection. Thus it can happen that an agent plans external actions
inappropriately in a way that the resulting public plan is not α-extensible for
some agent α.

In the rest of this paper we try to overcome the limitation of partial infor-
mation about external actions. The idea is to equip agents with additional infor-
mation about external actions without revealing internal facts. The rest of this
section describes dependency graphs which are used in the following sections as
a formal ground for our analysis of public and external actions.

4.1 Dependency Graphs

Local planning problem Π � α of agent α contains information about external
actions provided by the set exts(α). The idea is to equip agent α with more
information described by a suitable structure. A dependency graphs is a structure
we use to encapsulate information about public actions which an agent shares
with other agents.

Dependency graphs are known from literature [6,14]. In our context, a depen-
dency graph Δ is a bipartite directed graph defined as follows.

Definition 1. A dependency graph Δ is a bipartite directed graph whose nodes
are actions and facts. We write actions(Δ) and facts(Δ) to denote action and
fact nodes respectively. Given the nodes, graph Δ contains the following three
kinds of edges.

(a → f) ∈ Δ iff f ∈ add(a) (a produces f)
(f → a) ∈ Δ iff f ∈ pre(a) \ del(a) (a requires f)

(f ��� a) ∈ Δ iff f ∈ pre(a) ∩ del(a) (a consumes f)
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Additionally, a fact can be marked as initial in Δ. The set of states marked as
initial is denoted init(Δ).

Hence edges of a dependency graph Δ are uniquely determined by the set of
nodes. Note that action nodes are themselves actions, that is, triples of fact sets.
These action nodes can contain additional facts other than fact nodes facts(Δ).
We use dependency graphs to represent internal dependencies of public actions.
Dependencies determined by public facts are known to other agents and thus
we do not need them in the graph as fact nodes. From now on we suppose
that facts(Δ) contains no public facts as fact nodes. Action nodes, however, can
contain public facts in their public actions.

Definition 2. Let an MA-Strips problem Π be given. The minimal depen-
dency graph MD(α) of agent α ∈ agents(Π) is the dependency graph uniquely
determined by the following set of nodes.

actions(MD(α)) = pub-actions(α)
facts(MD(α)) = ∅
init(MD(α)) = ∅

Hence MD(α) has no edges as there are no fact nodes. Thus the graph contains
only separated public action nodes. Furthermore, the set exts(α) of external
actions of agent α can be trivially expressed as follows.

exts(α) =
⋃

β �=α

(actions(MD(β)) � �)

Thus we see that dependency graphs can carry the same information as provided
by exts(α).

Definition 3. The full dependency graph FD(α) of agent α contains all the
actions of α and all the internal facts of α.

actions(FD(α)) = α
facts(FD(α)) = int-facts(α)
init(FD(α)) = init(Π) ∩ int-facts(α)

Hence FD(α) contains all the information known by α. By publishing FD(α), an
agent reveals all his internal dependencies which might be a potential privacy
risk. On the other hand, other agents are by FD(α) provided the most precise
information about dependencies of public actions of α. Every plan of another
agent, computed with FD(α) in mind, is automatically α-extensible. Thus we
see that dependency graphs can carry dependencies information with a varied
precision.

4.2 Dependency Graph Collections

A dependency graph represents information about public actions of one agent.
Every agent needs to know information from all the other agents. We use depen-
dency graph collections to represent all the required information. A dependency
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graph collection D of an MA-Strips problem Π is a set of dependency graphs
which contains exactly one dependency graph for every agent of Π. We write D(α)
to denote the graph of α. We write actions(D), facts(D), and init(D) to denote in
turn all the action, fact, and initial fact nodes from all the graphs in D.

Definition 4. Given problem Π, we can define the minimal collection MD(Π)
and the full collection FD(Π) as follows.

MD(Π) = {MD(α) : α ∈ agents(Π)}
FD(Π) = {FD(α) : α ∈ agents(Π)}

Later we shall show some interesting properties of the minimal and full collec-
tions.

4.3 Local Problems and Dependency Collections

In order to define local problems informed by D, we need to define facts and
action projections which preserve information from D. We use symbol �D to
denote projections accordingly to D. Recall that the public projection a � � of
action a is the restriction of the facts of a to pub-facts(Π). The public projec-
tion a �D � of action a accordingly to D is the restriction of the facts of a to
pub-facts(Π)∪ facts(D). Public projection is extended to sets of actions element-
wise. Furthermore, external actions of α according to D, denoted extsD(α), con-
tain public projections (according to D) of actions of other agents. In other
words, extsD(α) carries all the information published by other agents for agent
α. It is computed as follows.

extsD(α) =
⋃

β �=α

(actions(D(β)) �D �)

This equation captures distributed computation of extsD(α) where every agent
β separately computes published actions, applies public projection, and sends
the result to α.

In order to define a local planning problem of agent α which would take
information from D into consideration, we need to extract from D facts and
initial facts of other agents. Below we define sets factsD(α) and initD(α) which
contain those facts and initial facts published by other agents, that is, all the
facts from D except of the facts of α.

factsD(α) = facts(D) \ facts(D(α))
initD(α) = init(D) \ init(D(α))

Now we are ready to define local planning problems according to D which extends
local planning problems by the information contained in D.

Definition 5. Let Π be MA-Strips problem. The local problem Π �D α of
agent α ∈ agents(Π) accordingly to D is the classical Strips problem Π �D α =
〈P0, A0, I0, G0〉 where
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(1) P0 = facts(Π � α) ∪ factsD(α),
(2) A0 = α ∪ extsD(α),
(3) I0 = init(Π � α) ∪ initD(α), and
(4) G0 = goal(Π).

We can see that a local problem Π �D α according to D extends the local problem
Π � α by the facts and actions published by D.

Let us consider two boundary cases of dependency collections MD(Π)
and FD(Π). Given an MA-Strips problem Π, we can construct local prob-
lems using the minimal dependency collection MD(Π). It is easy to see that
Π �MD(Π) α = Π � α for every agent α. With the full dependency collection
FD(Π) we obtain equal projections, that is, Π �FD(Π) α = Π �FD(Π) β for all
agents α and β. Moreover, local solutions equal MA-Strips solutions, that is,
sols(Π �FD(Π) α) = sols(Π) for every α.

4.4 Publicly Equivalent Problems

We have seen that dependency collections can provide information about inter-
nal dependencies with a varied precision. Given two different collections, two
different local problems can be constructed for every agent. However, when the
two local problems of the same agent equal on public solutions, we can say that
they are equivalent because their public solutions are equally extensible.

In order to define equivalent collections, we first define public equivalence on
problems. Two planning problems Π0 and Π1 are publicly equivalent, denoted
Π0 
Π1, when they have equal public solutions. Formally as follows.

Π0 
Π1 ⇔ sols(Π0) � � = sols(Π1) � �

Public equivalence can be extended to dependency graph collections as fol-
lows. Two collections D0 and D1 of the same MA-Strips problem Π are equiv-
alent, written D0 
D1, when for any agent α, it holds that the local problems
Π �D0 α and Π �D1 α are publicly equivalent. Formally as follows.

D0 
D1 ⇔ (Π �D0 α)
 (Π �D1 α) (for all α)

Example 1. Given an MA-Strips problem Π, with the full dependency collec-
tion FD(Π) we can see that Π 
 Π �FD(Π) α holds for any agent. Hence to find
a public solution of Π it is enough to solve the local problem (accordingly to
FD(Π)) of an arbitrary agent. The same holds for any dependency collection D
such that D 
FD(Π). Note that D can be much smaller and provide less private
information than the full dependency collection.

The above definitions allow us to recognize problems without any internal
dependencies which we can define as follow.

Definition 6. An MA-Strips problem Π is internally independent when

MD(Π)
FD(Π).
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In order to solve an internally independent problem, it is enough to solve the
local problem Π � α of an arbitrary agent. Any local public solution is extensible
which makes internally independent problems easier to solve because there is
no need for interaction and negotiation among the agents. Later we shall show
how to algorithmically recognize internally independent problems. The following
formally captures the above properties.

Lemma 1. Let Π be an internally independent MA-Strips problem. Then
(Π � α)
 Π.

Proof. (Π � α)
 (Π �MD(Π) α)
 (Π �FD(Π) α)
 Π.

5 Simple Action Dependencies

Let us consider dependency collections without internal actions, that is, collec-
tions D where actions(D) contains no internal actions. When D is published,
then no agent publishes actions additional to exts(α) which is desirable out of
privacy concerns. Furthermore, the plan search space of Π �D α is not increased
when compared to Π � α. Even more, every additionally published fact in D
providing a valid dependency prunes the search space. Action dependencies cap-
tured by collections without internal actions can be expressed by requirements on
the order of actions in a plan. This further abstracts the published information
providing privacy protection. Thus it seems reasonable to publish dependency
collections without internal actions.

5.1 Simply Dependent Problems

The following defines simply dependent MA-Strips problems, where internal
dependencies of public actions can be expressed by a dependency collection free
of internal actions.

Definition 7. An MA-Strips problem Π is simply dependent when there
exists D such that actions(D) contains no internal actions and D 
FD(Π).

Suppose we have a simply dependent MA-Strips problem and a dependency
collection D which proves the fact. In order to solve Π, once again, it is enough
to solve only one local problem Π �D α (of an arbitrary agent α).

Lemma 2. Let Π be a simply dependent MA-Strips problem. Let D be
a dependency collection which proves that Π is simply dependent. Then
(Π �D α)
 Π holds for any agent α ∈ agents(Π).

Proof. (Π �D α)
 (Π �FD(Π) α)
 Π.

The above method requires all the agents to publish the information from
D. However, the information does not need to be published to all the agents as
it is enough to select one trusted agent and send the information only to him.
Hence it is enough for all the agents to agree on a single trusted agent.
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5.2 Dependency Graph Reductions

Recognizing simply dependent MA-Strips problems might be difficult in gen-
eral. That is why we define an approximative method which can provably recog-
nize some simply dependent problems. We define a set of reduction operations on
dependency graphs and we prove that the operations preserve relation 
. Then
we apply the reductions repeatedly starting with FD(Δ) obtaining a dependency
graph which can not be reduced any further. This is done by every agent. When
the resulting graphs contain no internal actions, then we know that the problem
is simply dependent. Additionally, when the resulting graphs contain no internal
facts, then we know that the problem is independent.

Our previous work [17] was restricted to problems where pre(a) = del(a)
holds for every action a. This impractical limitation is removed here. We still
restrict our attention to problems where del(a) ⊆ pre(a) holds for every action a.
This is not considered limiting because a problem not meeting this requirement
can be easily transformed to a permissible equivalent problem.

Finally, to abstract from the set of initial facts of a dependency graph Δ,
we introduce to the graph a special initial action 〈∅, init(Δ), ∅〉. We suppose
that every dependency graph has exactly one initial action and hence we do not
need to remember the set of initial facts. The initial action is handled as public
even when it has no public effect. Both definitions of dependency graphs are
trivially equivalent but the one with an initial action simplifies the presentation
of reduction operations.

We proceed by informal descriptions of dependency graph reductions. The
formal definition is given below. The operations are depicted in Fig. 1.

� �

)2R()1R(

� �

)4R()3R(

Fig. 1. Graphical illustration of reduction operations (R1)–(R4). Circles represent fact
nodes and rectangles represent action nodes. Rounded boxes in (R4) represent any
node (either fact or action node).
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(R1) Remove Simple Action Dependency. If some internal action has
only one delete effect and one add effect and there is no other action depend-
ing on f1 we can merge both facts into one and remove that action.

(R2) Remove Simple Fact Dependency. If some fact is the only effect of
some action and there is only one action that consumes this effect without
any side effects, we can remove this fact and merge both actions.

(R3) Remove Small Action Cycle. In many domains, there are reversible
internal actions that allow transitions between two (or more) states. All these
states can be merged into a single state and the actions changing them can
be omitted.

(R4) Merge Equivalent Nodes. If two nodes (facts or actions) equal on
incoming and outgoing edges, then we can merge these two nodes. Mostly
this is not directly in the domain but this structure might appear when we
simplify a dependency graph using the other reductions.

(R5) Remove Invariants. After several reduction steps, it can happen that
all the delete effects on some fact are removed and the fact is always fulfilled
from the initial state. This happens, for example, in Logistics, where the loca-
tion of a vehicle is internal knowledge and can be freely changed as described
by reduction (R3). Once these cycles are removed, only one fact remains. The
remaining fact represents that the vehicle is somewhere, which is always true.
This fact can be freely removed from the dependency graph.

In order to formally define the above reductions we first define operator
[F ]f1→f2 which renames fact f1 to f2 in the set of facts F ⊆ P .

[F ]f1→f2 =

{
F if f1 �∈ F

(F \ {f1}) ∪ {f2} otherwise

Similarly, we define operator [F ]-f = F \ {f} which removes fact f from the
set of facts F . These operators are extended to actions (applying the operator
to preconditions, add, and delete effects) and to action sets (element-wise). The
operators can be further extended to dependency graphs, where [Δ]-f is the
dependency graph determined by [actions(Δ)]-f and [facts(Δ)]-f . Finally, for two
actions a1 and a2 we define the merged action a1 ⊕ a2 as the action obtained by
unifying separately preconditions, add, and delete effects of both the actions.

The following formally defines reduction relation Δ0 → Δ1 which holds when
Δ0 can be transformed to Δ1 using one of the reduction operations.

Definition 8. The reduction relation Δ0 → Δ1 on dependency graphs is defined
by the following four rules.

(R1) Rule (R1) is applicable to Δ0 when
(1) Δ0 contains edges (f1 ��� a→ f2),
(2) a is internal, and
(3) there are no other edges from/to a, and
(4) there are no other edges from f1.
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Then Δ0 → Δ1 where Δ1 is defined as Δ1 = [Δ0]f1→f2 . The initial action is
preserved.

(R2) Rule (R2) is applicable to Δ0 when
(1) Δ0 contains edges (a1 → f ��� a2),
(2) there are no other edges from/to f , and
(3) there are no other edges from a1, and
(4) a2 has no other delete effects, and
(5) a2 is internal action.
Then Δ0 → Δ1 where Δ1 is given by the following.

actions(Δ1) = {[a1 ⊕ a2]-f} ∪ (actions(Δ0) \ {a1, a2})
facts(Δ1) = [facts(Δ0)]-f

If a1 is the initial action of Δ0 then the new merged action becomes the initial
action of Δ1. Otherwise, the initial action is preserved.

(R3) Rule (R3) is applicable to Δ0 when
(1) Δ0 contains edges (f1 ��� a1 → f2), and
(2) Δ0 contains edges (f2 ��� a2 → f1), and
(3) a1 and a2 are both internal, and
(4) there are no other edges from/to a1 or a2.
Then Δ0 → Δ1 where Δ1 is given by the following.

actions(Δ1) = [actions(Δ0) \ {a1, a2}]f2→f1

facts(Δ1) = [facts(Δ0)]f2→f1

The initial action is preserved as it is public.
(R4) Rule (R4) is applicable to Δ0 when Δ0 contains two nodes n1 and n2

(either action or fact nodes) such that
(1) nodes n1 and n2 have equal sets of incoming and outgoing edges, and
(2) n1 and n2 are not public actions.
Then Δ0 → Δ1 where, in the case n1 and n2 are actions, Δ1 is given by the
following.

actions(Δ1) = {n1 ⊕n2} ∪ (actions(Δ0) \ {n1, n2})
facts(Δ1) = facts(Δ0)

When n1 or n2 is the initial action of Δ0 then the new merged action becomes
the initial action of Δ1. Otherwise, the initial action is preserved.
In the case n1 and n2 are facts, Δ1 = [Δ0]n2→n1 .

(R5) Let ainit be the initial action of Δ0. Rule (R5) is applicable to Δ0 when
there exists fact f such that
(1) Δ0 contains edge (ainit → f), and
(2) Δ0 contains no edge (f ��� a) for any a.
Then Δ0 → Δ1 where Δ1 is defined as Δ1 = [Δ0]-f . The initial action of Δ1

is [ainit]-f .
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The following defines reduction equivalence relation Δ0 ∼Δ1 as a reflexive,
symmetric, and transitive closure of →. In other words, Δ0 and Δ1 are reduction
equivalent when one can be transformed to another using the reduction opera-
tions. Dependency collections D0 and D1 are reduction equivalent when graphs
of corresponding agents are reduction equivalent.

Definition 9. Dependency graphs reduction equivalence relation, denoted
Δ0 ∼Δ1, is the least reflexive, symmetric, and transitive closure generated by
the relation →.

Given MA-Strips problem Π, dependency collections D0 and D1 of Π are
reduction equivalent, written D0 ∼ D1, when D0(α)∼ D1(α) for any agent α ∈
agents(Π).

The following theorem formally states that reduction operations preserves
public equivalence.

Theorem 2. Let Π be an MA-Strips problem and let pre(a) ⊆ del(a) hold
for any internal action. Let D0 and D1 be dependency collections of problem Π.
Then D0 ∼ D1 implies D0 
 D1.

Proof (Proof sketch). It can be shown that none of the reduction operations
changes the set of public plans sols(D0(α)) � � of any agent α ∈ agents(Π).
Therefore repetitive application of reductions assures that D0 
D1.

To avoid possible action confusion caused by value renaming, we suppose
that actions are assigned unique ids which are preserved by the reduction, and
that plans are sequences of these ids.

The consequences of the theorem are discussed in the following section.

5.3 Recognizing Simply Dependent Problems

Let us have an MA-Strips problem Π where pre(a) ⊆ del(a) holds for every
internal action a. Suppose that every agent α can reduce its full dependency
collection FD(α) to a state where it contains no internal action. Then there is
D such that D ∼FD(Π) and hence D 
FD(Π) by Theorem 2. Hence Π is sim-
ply dependent and its public solution can be found without agent interaction,
provided all the agents allow to publish D. Important idea here is that publicly
equivalent dependency graphs do not need to reveal the same amount of sensi-
tive information. Moreover when D ∼MD(α) then Π is independent and can be
solved without any interaction and without revealing other than public informa-
tion. This gives us an algorithmic approach to recognize some independent and
simply dependent problems.

6 Planning with Dependency Graphs

This section describes how agents use dependency graphs in order to solve MA-
Strips problem Π (Algorithm 3). At first, every agent computes the dependency
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graph it is willing to share using function ComputeSharedDG described by Algo-
rithm2. Every agent α starts with the full dependency graph FD(α) and tries to
apply reduction operations repeatedly as long as it is possible. When the result-
ing reduced dependency graph Δ0 contains only public actions, then the agent
publishes Δ0. Otherwise, the agent publishes only the minimal dependency graph
MD(α). Algorithm 2 clearly terminates for every input because every reduction
decreases the number of nodes in the dependency graph. Hence the algorithm
loop (lines 3–9 in Algorithm2) can not be iterated more than n times when
n is the count of nodes in FD(α). Moreover, every reduction operation can be
performed in a time polynomial to the size of the problem, and thus the whole
algorithm is polynomial-time.

Algorithm 2. Compute the dependency graph to be published by agent
α.
1 Function ComputeSharedDG(α) is
2 Δ0 ← FD(α);
3 loop
4 if ∃Δ1 : Δ0 → Δ1 then
5 Δ0 ← Δ1;
6 else
7 break;
8 end
9 end

10 if Δ0 contains only public actions then
11 return Δ0;
12 else
13 return MD(α);
14 end
15 end

Once the shared dependency graph Δ is computed, Algorithm 3 continues by
sending Δ to other agents. Then shared dependency graphs of other agents are
received. This allows every agent to complete the dependency collection D, and
to construct the local problem Π �D α. The rest of the planning procedure is the
same as in the case of Algorithm 1.

The algorithm can be further simplified when all the agents succeeds in reduc-
ing FD(α) to an equivalent dependency graph without internal actions, that is,
when Π is provably simply dependent. Then it is enough to select one agent to
compute public solution of Π. When at least one agent α fails to share depen-
dency collection equivalent to the full dependency collection FD(α) then iterated
negotiation is required. When some agent α (but not all the agents) succeeds in
reducing FD(α) then every plan created by any other agent will be automatically
α-extensible.
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Algorithm 3. Distributed planning with dependency graphs.
1 Function DgPlanDistributed(α) is
2 Δ ← ComputeSharedDG(α);
3 send Δ to other agents;
4 construct D from other agent’s graphs;
5 compute local problem Π �D α;
6 return MaPlanDistributed(Π �D α);

7 end

7 Privacy Leakage Analysis

Although distributed planning with the dependency graphs trades exposition
of (reduced) private information for efficiency, from perspective of the worst
case, there is no extra private knowledge shared. In this section, we will support
this claim by analysis of what information is leaked by sharing the reduced
dependency graph Δ.

According to [3], a multiagent planning algorithm is strongly privacy pre-
serving if no agent can deduce any information about private facts and private
preconditions/effects of any action, beyond what can be deduced from the pub-
lic projection of the planning problem and the public projection of the solution
plan.

The shared reduced dependency graph Δ can be, in some cases, equivalent
to the original dependency graph. In these cases, renamed internal facts are
shared between the agents. Nevertheless other agents do not know, whether any
reduction has been performed, and so they see a dependency graph which can
represent an unlimited number of different dependency graphs with an equiv-
alent reduction. The definition of strong privacy allows an agent to share any
knowledge which can be deduced from own actions description, the public pro-
jection of other agents actions, and the public projection of the solution plan.
Not much information can be deduced from the solution plan when solving a
single problem. In fact, other agents can deduce only the information that given
sequence of actions is possible and thus no action deletes preconditions of the
immediately following action.

Suppose a situation, when we observe an agent α using a strongly privacy
preserving algorithm in long term. The most extreme case is when we know all
possible plans in which the agent can participate in all different problems and we
also know that all the problems are unsolvable for this agent, thus which public
plans are not α-extensible. We can suppose that all these plans contain all agent’s
published actions and all their possible combinations. From this knowledge we
could deduce what dependencies are between public actions appearing in these
plans. Certainly, this deduced information will contain all the information con-
tained in the shared dependency graph Δ. This gives us the first insight about
the amount of information which is contained in the shared dependency graph.
We can state that it contains information which could be eventually deduced if
we follow the agent planning of all possible different planning tasks.
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Let us now compare sharing of dependency graph with privacy which an
agent leaks during a single run of Psm-vr in the worst case. Suppose that we
have two agents α and β with Psm-vr algorithm. During one iteration, both
agents update their Φ and share it with the other agent to check whether there
is a non-empty intersection. In the worst case, it can happen, that the agent α
publishes all its possible plans, therefore Φα is complete and no longer changing,
while the agent β still updates his Φβ . Then, agent β can reconstruct all the
agent’s α dependencies between its public actions. Again, shared dependency
graph Δ is certainly a subset of the knowledge β would deduce in this case.

Even though agents are not able to detect the presence of the internal fact
from a single execution of the Psm-vr algorithm, the agents can deduce the
existence of this fact when cooperating longer time or when it takes long time
before the agents find a common solution. For example, suppose that there is no
solution at all. In that case, each agent publishes all his possible local solution
and then announces that there are no more local solutions. Then, similarly to
the previous case, each other agent can see whether some action has to always
precede another action. If such case exists, the agent deduce that there is a fact
or some other dependency between these actions.

Example 2 (Logistics with three cities). Let’s suppose following logistic problem
with tree cities (cityA, cityB and cityC ) and two agents (Truck transporting
the package between cities cityA and cityB, and Plane transporting the package
between cities cityB and cityC ), where the locations of agents and their load
are private and the package location is public only when it is present in cityB
where the agents transship the package.

Agent Truck starts to sequentially generate following possible solutions – we
show only Truck ’s own actions and omit the actions planned for Plane agent,
because only these actions can reveal some knowledge about its internal facts
and actions.

– 〈〉
– 〈unload(package, cityB)〉
– 〈unload(package, cityB), load(package, cityB)〉
– 〈unload(package, cityB), load(package, cityB), unload(package, cityB)〉
– ...
– 〈

⎧
⎩unload(package, cityB), load(package, cityB)

⎫
⎭∗

〉
–

〈
⎧
⎩unload(package, cityB), load(package, cityB)

⎫
⎭∗

, unload(package, cityB)〉

Even though there is an infinite number of different public plans, they can
be compactly represented in finite structure (for example Psm-vr uses Planning
state machines – see Sect. 8 for more details).

From these plans we can observe:

– all plans start with unload(package, cityB) action, and
– a load(package, cityB) action has to be between two unload(package, cityB)

actions.
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Fig. 2. Example of dependency graph containing all knowledge which can leak during
logistics planning.

Moreover, we can see that there has to be unload(package, cityB) before
load(package, cityB), but these actions are already dependent through a public
fact inLocation(package, Prague) and thus it does not imply any internal con-
nection. Similar situation is for the observation that between two load(package,
cityB) actions has to be unload(package, cityB) action.

These observations can be modeled by a dependency graph (Fig. 2) containing
one internal fact that is also present in the initial state. This fact is consumed
by unload(package, cityB) and produced by load(package, cityB).

We can conclude that the Psm-vrd algorithm does not publish any more
internal information that the Psm-vr algorithm in the worst case. In fact,
the most significant difference between these two algorithms is that Psm-vrd
exposes exactly the internal information that could be exposed by Psm-vr in
the worst case and which can be described in the form of simple dependencies
between the public actions.

8 PSM Planning System

In this section we describe the implementation of presented planners Psm-vr and
Psm-vrd in details. Algorithm4 shows the full listing including several optional
blocks that allow to significantly improve the performance of the planner. All
planner configurations are sound and complete. We firstly describe the basic ver-
sion of the planner and then, in Sect. 8.1 we describe the optional improvements.
Psm-vrd contains all optional parts while Psm-vr contains all but sharing of
the dependency graphs.

The sets of plans Φα are represented using planning state machines, PSMs,
which are based on common finite state machines. PSMs allows to effectively
represent large sets of plans and also to effectively implement the intersection
of different agents sets of plans. Consult [19] for more details on algorithms and
implementation.

The planners’ input problems are supposed to be provided in a PDDL
files which might contain parametric actions. Our algorithm requires grounded
actions and hence the input is grounded as the first step. Specific implementa-
tion of method GroundProblem is crucial. It has to generate all possible usable
action instances but it should not generate any action instance which is never
applicable. Otherwise, other agent could use that action in their plans. Agents
collaboratively create distributed planning graph and then ground their problem
to actions that appear in this planning graph. This approach allows to protect
agents privacy.
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Algorithm 4. Distributed MA planning algorithm.
1 Function MaPlanDistributed(Π � α) is
2 Πα ← GroundProblem(Π � α);

// (Optional) Compute and exchange dependency graphs
3 Πα ← ComputeDependencies(Πα);
4 if all agents published dependency graphs then
5 return any solution of Πα � �;
6 end

// (Optional) Compute relaxed solution landmarks
7 πR ← CreateRelaxedPlan(Π);
8 Πα ← AddLandmarks(Πα, πR � α);

9 Φα ← ∅;
10 loop
11 generate new πα ∈ sols(Π � α);

// (Optional) Verify created plan
12 πα ← VerifyPlan(πα � �);

13 Φα ← Φα ∪ {πα � �};
14 exchange public plans Φβ with other agents;
15 Φ ← ⋂

β∈agents(Π) Φβ ;

16 if Φ �= ∅ then
17 return Φ;
18 end

// (Optional) Use received knowledge in future planning
19 forall the β ∈ agents(Π) do
20 Πα ← AddLandmarks(Πα, Φβ);
21 end

22 end

23 end

Every agent keeps generating new plans from sols(Π � α) and shares their
public projections with other agents. Local planning problems are common
Strips problems which can be solved by any classical Strips planner. The
only special requirement on the underlying planner is that the planner must be
able to generate a plan which differs from the previously generated plans. In our
implementation, we use a modified version of FastDownward2 planner [11].

Our modification allows the planner to generate a plan which differs from
plans provided as an input. This extension is inspired by diverse planning with
homotopy class constraints [2]. Homotopy classes of plans are naturally defined
by their public projections, that is, two plans belong to same homotopy class iff
they have equal public projection.

The algorithm ends with a set of public solutions Φ which contains possibly
several extensible public plans. One random public plan σ ∈ Φ is selected for the

2 http://www.fast-downward.org/.

http://www.fast-downward.org/
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reconstruction of a solution of the original problem Π. For that, each agent α
creates a classical Strips reconstruction problem Πα which contains only inter-
nal actions of agent α. To problem Πα, the generated public solution σ is added
as hard action landmarks to ensure that all the landmark actions are executed.
The public plan is α-extensible and thus problem Πα is solvable. Agents then
merge together solutions of all the reconstruction problems and create a solution
of the original problem Π.

8.1 Optional Extensions

The basic algorithm, where agents iteratively generate new plans, exchange
their public projections and check whether their intersection is nonempty, can
be extended to achieve better results. In this article we focused on publishing
internal dependencies between public action, which allows agents to exchange
some abstract rules describing their internal knowledge. In this section we
briefly describe three more implemented extensions. First extension, described
in Sect. 8.2, significantly reduces number of misleading landmarks by use of
plan verification. Section 8.3 describes how the generation of new plans is driven
towards the non-empty intersection of Φs. In Sect. 8.4, we describe the second
extension, which computes a relaxed solution π and uses its public projection
π � � as initial landmarks.

8.2 Plan Verification and Analysis

Psm-vr planner uses public plans generated by other agents as landmarks to
guide future plan search (Algorithm 4 line 12). However, it is desirable to use
only extensible plans to guide plan search because non-extensible plans cannot
lead to a non-empty intersection Φ. Every generated plan should be verified by
other agents in order to determine its extensibility. However, extensibility (or α-
extensibility) checking is expensive and thus we propose only an approximative
method of plan verification.

In order to approximative α-extensibility we use generic process calculi type
system scheme Poly✶ [12,15] to determine the least provably unreachable action
in a public plan. The result of Poly✶ analysis is either indeterminate, or the
index an action which is guaranteed unreachable. However, some action prior
to the indexed action might be actually unreachable as well because Poly✶
analysis provides only a polynomial time approximation of α-extensibility.

Described α-extensibility approximation suggests the following implementa-
tion of method VerifyPlan(πα � �). When agent α generates a new plan πα,
it sends its public projection πα � � to all the other agents. Once other agent β
receives πα � �, it runs the above β-extensibility check on it, and sends the result
back to agent α. Agent α collects analysis results from all the other agents and
strips the plan π to prefix acceptable for all agents. Finally only the stripped
plan is used as a landmark to guide future plan search. We can even further
speed up convergence of the Psm-vr by forbidding the generation of plans with
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public prefixes matching plans already refused by other agents. See [11] for more
detailed description.

8.3 Heuristic Plan Generation

In Psm-vr the generation of new local plans is guided by the knowledge obtained
from Φβ ’s of other agents so that the plans similar to those received by other
agents are preferred. The knowledge from Φβ ’s of other agents is compiled into
the local problem by function AddLandmarks using the principle of prioritizing
actions and soft-landmarks. Prioritizing actions are implemented using action
costs so that internal actions are preferred to public actions, and α’s public
actions are preferred to other agent actions. When agent α finds a new local
solution it sends its public projection to all the other agents. Other agents then
extend their local problem Π � β to contain duplicated landmark actions from
the received plan. These landmark actions have significantly decreased cost and
they are interlinked using additional facts to ensure they are used in the order
suggested by the public plan.

8.4 Initial Relaxed Plan Landmarks

The delete effect relaxation, where delete effects of actions are ignored, has
proved its relevance both in Strips planning [10], and recently also in MA-
Strips planning [22]. It is known that to find a solution of a relaxed problem is
an easier task than to find a solution of the original problem.

Our algorithm first creates solution πR of the relaxed problem and then
transforms it into initial landmarks, which are used by all the agents. When
πR � � is extensible then every agent α is likely to generate local solution πα such
that πα � � = πR � � in the first iteration. In that case the algorithm terminates
directly in the first iteration causing a dramatic speed-up. Otherwise, the initial
landmark is forgotten by all the agents and the algorithm continues by the second
iteration as before.

When creating the relaxed plan πR, the agents compute distributed planning
graph by trying to fulfill goals or preconditions of reachable actions of other
agents. In the case of domains where actions model use of limited resources, it is
better to find solutions where each agent fulfill few of the goals, because limiting
resources are relaxed away. Therefore, during the extraction of the relaxed plan
from the distributed planning graph, agents are lazy and try to fulfill only one
goal and they pass the remaining goals together with new subgoals to another
agent. More effective implementation would make use of exploration queues [22].

9 Experiments

For experimental evaluation we use benchmark problems from the CoDMAP’15
competition3. The benchmark set contains 12 domains with 20 problems per
3 See http://agents.fel.cvut.cz/codmap.

http://agents.fel.cvut.cz/codmap
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domain. Each agent has its own domain and problem files containing description
of known facts and actions. Additionally, some facts/predicates are specified
as private and thus should not be communicated to other agents. The privacy
classification roughly corresponds to MA-Strips.

We firstly present analysis of internal dependencies and their reductions in
Sect. 9.1. In Sect. 9.2, we present results independently evaluated by organizers
of the CoDMAP’15 competition.

9.1 Domain Analysis

In this section we present analysis of internal dependencies of public action in
the benchmark problems.

We have evaluated internal dependencies of public actions within benchmark
problems by constructing full dependency graph for every agent in every bench-
mark problem. We have applied Algorithm2 to reduce full dependency graphs
to an irreducible publicly equivalent dependency graph. The results of the anal-
ysis are presented in Table 1. The table columns have the following meaning.
Column (Facts) represents an average number of all facts in a domain problem.
Column (Public facts) represents an average number of public facts in a domain
problem. Column (Merge facts) represents an average size of facts(Δ) in the
resulting irreducible dependency graph. Column (Fact disclosure) represents
the percentage of published merge facts with respect to all the internal facts.
Column (Actions) represents an average number of all actions in a domain
problem. Column (Public actions) represents an average number of public
actions in a domain problem. Column (Success) represents the percentage of
agents capable of reducing their full dependency graph to a publicly equivalent
graph without internal actions.

We can see that five of the benchmark domains, namely Blocksworld, Depots,
Driverlog, Logistics, Taxi, Wireless, and Woodworking were found simply depen-
dent. All the problems in these domains can be solved by solving a local problem

Table 1. Results of the analysis of internal dependencies of public actions in benchmark
domains.

Domain Facts Public facts Merge facts Fact disclosure Actions Public actions Success

Blocksworld 787 733 53 100% 1368 1368 100%

Depots 1203 1139 56 85% 2007 2007 100%

Driverlog 1532 1419 16 25% 7682 7426 100%

Elevators 509 343 43 29% 2060 1767 70%

Logitics 240 154 56 63% 342 298 100%

Rovers 2113 1251 31 3% 3662 1555 13%

Satellite 846 578 0 0% 8839 914 1%

Taxi 177 173 0 0% 107 107 100%

Woodworing 1448 1425 7 27% 4126 4126 100%

Zenotravel 1349 1204 0 0% 13516 2364 0%
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of a single agent. On the contrary, in most problems of domains Rovers, Satel-
lite, and Zenotravel, none of the agents were able to reduce its full dependency
graph so that it contains no internal actions. Hence the agents in these domain
publish only the minimal dependency graphs and hence the analysis does not
help in solving them. Finally, in Elevators domain, some of the agents succeeded
in reducing their full dependency graphs and thus the analysis can partially help
to solve them.

9.2 Experimental Results

To evaluate the impact of dependency analysis, we use our Psm-based plan-
ners [19] submitted to the CoDMAP’15 competition. Namely, we use planner
Psm-vr [20] and its extension with dependency analysis Psm-vrd.

Figure 3 evaluates the impact of the dependency analysis on CoDMAP bench-
mark problems. For each problem, a point is drawn at the position corresponding
to the runtime without dependency analysis (x-coordinate) and the runtime with
dependency analysis (y-coordinate). Hence the points below the diagonal consti-
tute improvements. Results show that the dependency analysis decreases overall
planning time of Psm algorithm. We can see that in few cases the time increases
which is caused by the time consumed by reduction process. Also, by publishing
additional facts, the problem size can grow and thus it can become harder to
solve.

Fig. 3. Comparison of planning times (in seconds) of Psm-vr algorithm without (X
axis) and with (Y axis) internal problem reduction.
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Table 2. Results at CoDMAP competition (http://agents.fel.cvut.cz/codmap/
results/). Top table shows overall coverage of solved problem instances. Bottom table
shows IPC score over the plan quality Q (a sum of Q∗/Q over all problems, where Q∗

is the cost of an optimal plan, or of the best plan found by any of the planners for the
given problem during the competition).

Domain # MAPlan
LM-Cuta

MAPlan
MA-LM-
Cuta

MH-FMAP MAPlan
FF+DTG

PSM-VR PSM-VRD

Blocksworld 20 2 1 0 14 12 20

Depots 20 5 2 2 10 1 16

Driverlog 20 15 9 18 18 16 20

Elevators 20 2 0 9 9 2 5

Logitics 20 4 5 4 16 0 16

Openstacks 20 1 1 8 18 14 18

Rovers 20 2 4 18 19 13 13

Satellite 20 13 4 4 14 7 17

Taxi 20 19 14 20 19 9 20

Wireless 20 3 2 0 4 0b 0b

Woodworing 20 3 4 8 14 9 19

Zenotravel 20 6 6 16 19 16 16

Coverage 240 75 52 107 174 99 180

Domain # MAPlan
LM-Cuta

MAPlan
MA-LM-
Cuta

MH-FMAP MAPlan
FF+DTG

PSM-VR PSM-VRD

Blocksworld 20 2 1 0 7 11 17

Depots 20 5 2 2 6 1 15

Driverlog 20 15 9 17 12 14 16

Elevators 20 2 0 8 6 1 4

Logitics 20 4 5 4 13 0 15

Openstacks 20 1 1 8 18 9 12

Rovers 20 2 4 18 16 5 5

Satellite 20 13 4 4 10 6 13

Taxi 20 19 14 17 15 6 16

Wireless 20 3 2 0 4 0b 0b

Woodworing 20 3 4 7 13 8 17

Zenotravel 20 6 6 15 15 10 10

IPC Score 240 75 52 100 135 72 140
aThis is optimal planner. bThis post-submission domain was not supported by the planner
parser. These results are presented with the consent of CoDMAP organizers.

Tables 2 and 3 show official results of the CoDMAP competition. We can see
that the dependency analysis significantly improved the performance of Psm-vr
planner. Moreover, Psm-vrd achieved the overall best coverage in 8 out of 12
domains. As expected, the highest coverage directly corresponds to the success

http://agents.fel.cvut.cz/codmap/results/
http://agents.fel.cvut.cz/codmap/results/
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Table 3. Results at CoDMAP competition. Table shows IPC Agile score over the
planning time T (a sum of 1/(1 + log10(T/T ∗)) over all problems, where T ∗ is the
runtime of the fastest planner for the given problem during the competition).

Domain # MAPlan

LM-Cuta
MAPlan

MA-LM-Cuta
MH-FMAP MAPlan

FF+DTG

PSM-VR PSM-VRD

Blocksworld 20 1 0 0 14 5 14

Depots 20 3 1 1 9 0 14

Driverlog 20 10 4 11 17 7 14

Elevators 20 1 0 4 8 1 4

Logitics 20 3 2 2 13 0 14

Openstacks 20 0 0 3 18 7 8

Rovers 20 1 1 7 19 6 6

Satellite 20 10 2 1 13 3 12

Taxi 20 14 7 10 19 3 15

Wireless 20 3 2 0 2 0b 0b

Woodworing 20 2 3 4 9 5 18

Zenotravel 20 5 4 10 18 8 8

Agile Score 240 52 27 52 159 45 127
aThis is optimal planner. bThis post-submission domain was not supported by the planner parser.

These results are presented with the consent of CoDMAP organizers.

Table 4. Results at CoDMAP competition. Table shows sum of times (in seconds)
needed to solve selected problems. Selected problems contain problems solved by all
the planners.

Domain # MAPlan
LM-Cuta

MAPlan
MA-LM-
Cuta

MH-FMAP MAPlan
FF+DTG

PSM-VR PSM-VRD

Depots 1 2 3 12 1 56 4

Driverlog 9 18 622 28 14 172 39

Rovers 1 1296 1396 47 1 15 13

Satellite 2 1634 496 17 2 22 22

Taxi 7 18 331 212 11 2525 32

Woodworing 1 4 5 25 2 29 6

Zenotravel 6 11 57 23 1806 54 53

Total 27 2983 2910 363 1836 2873 168
aThis is optimal planner. These results are presented with the consent of CoDMAP organizers.

of dependency analysis. The table also shows results of two additional criteria
comparing the quality (IPC Score) of solutions and the time (IPC Agile Score)
need to find the solution. In both criteria Psm-vrd performed very well even
though it was outperformed by MAPlan-FF+DTG planner in the IPC Agile
Score.

Table 4 shows times the planners needed to solve problems. Problems contain
only those solved by all the planners. Some planners did not solved any problems
of some domains and thus these domains were omitted. We can see that even
though Psm-vrd did not solved any problem in the fastest time, it outperformed
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other planners in total. Reductions of internal dependencies allowed achieve more
uniform planning times (especially, it significantly reduced long planning times
of Driverlog and Taxi domains) and in total to improve the performance of
Psm-vr more than 17-times.

10 Conclusions

Motivation for our work was to improve efficiency of coordination-based multia-
gent planning in deterministic environment by extracting and utilizing additional
information on dependencies among agent’s public actions.

First, we have formally and semantically defined internally independent and
simply dependent MA-Strips problems and proposed a set of reduction rules
utilizing the underlying dependency graph. To identify and extract internally
independent and simply dependent problems, we have proposed technique which
can build a full dependency graph and try to reduce it to an irreducible publicly
equivalent dependency graph. This principle provides an algorithmic procedure
for recognizing provably internally independent and simply dependent problems,
which can be solved without agent interaction. The proposed reduction rules were
defined over structural information of the dependency graph and provided recur-
sive removal of superfluous facts and actions by analysis of simple dependency,
cycles, equivalency, and state invariants.

Second, we have provided an analysis of impacts of usage of the dependency
graphs on privacy preservation in multiagent planning. We have shown that the
principle does not leak any additional information in contrast to worst-case for
planning without the action dependency information.

Finally, we have summarized implementation details of the Psm planner and
extended its current variant Psm-vr utilizing plan verification and relaxed plan-
ning heuristics towards Psm-vrd including the reduction of action dependencies.
We showed that reduction of the standard multiagent planning benchmarks using
the dependencies provides overall 71% downsizing, more than 17× acceleration
and nearly doubled the number of solved problems by Psm-vrd in comparison to
Psm-vr. In comparison with the latest distributed multiagent planners, Psm-
vrd outperformed all and won the distributed track of the recent multiagent
planning competition CoDMAP.
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Abstract. In robotic systems, the control of some elements such as
transport robot has some difficulties when planning operations dynam-
ically. The Flexible Job Shop scheduling Problem with Transportation
times and a Single Robot (FJSPT-SR) is a generalization of the classical
Job Shop scheduling Problem (JSP) where a set of jobs additionally have
to be transported between machines by a single transport robot. Hence,
the FJSPT-SR is more computationally difficult than the JSP presenting
two NP-hard problems simultaneously: the flexible job shop scheduling
problem and the robot routing problem. This paper proposes a hybrid
metaheuristic approach based on clustered holonic multiagent model for
the FJSPT-SR. Firstly, a scheduler agent applies a Neighborhood-based
Genetic Algorithm (NGA) for a global exploration of the search space.
Secondly, a set of cluster agents uses a tabu search technique to guide the
research in promising regions. Computational results are presented using
benchmark data instances from the literature of FJSPT-SR. New upper
bounds are found, showing the effectiveness of the presented approach.

Keywords: Scheduling · Transport · Robot · Genetic algorithm
Tabu search · Holonic multiagent

1 Introduction

Scheduling is a field of investigation which has known a significant growth these
last years. The scheduling problems appear in all the economic areas, from com-
puter engineering to industrial production and manufacturing. The Job Shop
scheduling Problem (JSP), which is among the hardest combinatorial optimiza-
tion problems [34], is a branch of the industrial production scheduling problems.
The JSP is known as one of the most popular research topics in the literature
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due to its potential to dramatically decrease costs and increase throughput [20].
The Flexible Job Shop scheduling Problem with Transportation times and a
Single Robot (FJSPT-SR) is a generalization of the classical JSP where a set of
jobs additionally have to be transported between machines by a single transport
robot. Hence, the FJSPT-SR is more computationally difficult than the JSP
presenting an additional difficulty caused by a set of jobs to be transported by a
single robot between a set of available machines. In the FJSPT-SR, we have to
consider two NP-hard problems simultaneously: the flexible job shop scheduling
problem [26,30] and the robot routing problem, which is similar to the pickup
and delivery problem [27].

For the literature of the Job Shop scheduling Problem with Transporta-
tion times and a Single Robot, most of the researchers have considered the
machine and robot scheduling as two independent problems. Therefore, only few
researchers have emphasized the importance of simultaneous scheduling of jobs
and the single robot.

To solve this problem, mathematical formulations are used to find optimal
solutions for this problem, but the complexity of some large instances allowed to
increase the processing time for some important solutions. [32] proposed a mixed
integer programming formulation for this problem, and they assumed that the
robot always returns to the load/unload station after transferring a load, which
reduces the flexibility of the robot and influences the overall schedule length.
An integer programming model is formulated by [5] for the machine and robot
scheduling problems with a set of time window constraints. According to the
authors, the resulting model is intractable in practice, because of its nonlinear-
ity and its size. A linear programming formulation is modeled by [17,18] for a
simultaneous scheduling of machines and one single robot generating the optimal
lower bound results for this problem. [10] adapted a mathematical formulation
for a shop scheduling problem with one transporter robot. This formulation dif-
fered from the published works because it considered the maximum number of
jobs authorized in the system, the upstream and downstream storage capacities
and the robot loaded/unloaded movements.

Moreover, heuristic and metaheuristic methods offered new opportunity to
find solutions for this problem in a reasonable time but they did not guaranteed
the optimality. [31] implemented a Branch and Bound procedure for a simulta-
neous scheduling of machines and resources handling in a Job shop environment.
But, they did not take into consideration the violation of precedence relations
between the different machine operations belonging to the same job. An iterative
heuristic is used by [5] based on the decomposition of the master problem into
two sub-problems, allowing a simultaneous resolution of this scheduling problem
with time windows. [36] adapted a genetic algorithm for this scheduling problem
in a flexible manufacturing system, and where they used a chromosome represen-
tation composed of two parts, the operation task sequencing and the transport
resource assignment. [2] treated the simultaneous machine and robot scheduling
problem using a forward propagation heuristic, and where they supposed that
the robot movements between cells are considered as additional machines. A
local search algorithm is proposed in [17,18] for the job shop scheduling prob-
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lem with a single robot, where they supposed that the robot movements can be
considered as a generalization of the travelling salesman problem with time win-
dows, and additional precedence constraints must be respected. The used local
search is based on a neighborhood structure inspired from [28] to make the search
process more effective. [1] addressed the problem of simultaneous scheduling of
machines and identical robots in flexible manufacturing systems, by developing
a hybrid approach composed of a genetic algorithm and a heuristic. The genetic
algorithm is used for the jobs scheduling problem and the robot assignment is
made by the heuristic algorithm. A hybrid multi-objective genetic algorithm is
proposed by [33] to solve this combined problem, and considered three mini-
mization objectives, which are the makespan, mean flow time and mean tardi-
ness. [23] studied the job shop scheduling problem with several transport robots,
where they used a local search algorithm based on a neighbourhood generated
by permutation of two operations or by assigning another robot to a transport
operation. [11] addressed the simultaneous scheduling problem of machines and
robots in flexible manufacturing systems, by proposing new solution representa-
tion based on robots rather than machines. Each solution is evaluated using a
discrete event approach. An efficient neighbouring system is then implemented
into three different metaheuristics: iterated local search, simulated annealing and
their hybridisation. A differential evolution algorithm is developed by [3] for the
machines and two robots scheduling problem, this algorithm is inspired by [35]
which was proposed for the Chebyshev Polynomial Fitting Problem. [12] con-
sidered the flexible Job shop scheduling problem with transport robots, where
each operation can be realized by a subset of machines and adding the transport
movement after each machine operation. To solve this problem, an iterative local
search algorithm is proposed based on classical exchange, insertion and pertur-
bation moves. Then a simulated annealing schema is used for the acceptance
criterion. A hybrid metaheuristic approach is proposed by [37] for the flexible
Job Shop problem with transport constraints and bounded processing times.
This hybrid approach is composed of a genetic algorithm to solve the assign-
ment problem of operations to machines, and then a tabu search procedure is
used to find new improved scheduling solutions. [24] solved the machines and
robots simultaneous scheduling problem in flexible manufacturing systems, by
adapting a memetic algorithm using a genetic coding containing two parts: a
resource selection part for machine operations and a sequencing part for trans-
port operations. [38] considered the job shop scheduling problem with transport
robots and bounded processing times. A modified shifting bottleneck procedure
is used coupled with a heuristic for assigning and sequencing transportation tasks
iteratively.

Furthermore, a newly maturing area of the distributed artificial intelligence is
used, providing some effective mechanisms for the management of such dynamic
operations in manufacturing environments, such as the multi agent systems.
[8] treated the machines and robots scheduling problem in flexible manufactur-
ing systems. They proposed a distributed model based on cooperative agents,
composed of five agents: an order-agent, a store-agent, a set of machine-agents
and a set of robot-agents, using negotiation between them in order to obtain
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a best scheduling solution for this problem. [22] formulated the machines and
robots scheduling problem in flexible manufacturing systems as a multi-agent
system, allowing to realize an Agent-Based Shop Floor Simulator (ABSFSim).
This simulator is composed of eight agents classified into three categories: the
first category contains agents with a single instance such as the part-generator-
agent, the arrival-queue-agent and departure-agent; the second category includes
agents with multiple instances and a long lifetime such as the machine-agent,
the robot-agent, the node-agent and segment-agent; and the third category con-
tains agents with multiple instances and a short lifetime such as the part-agent.
A multi-agent approach is proposed by [13] for robots and machines scheduling
problem within a manufacturing system. The proposed multi-agent approach
worked under a real-time environment and generated feasible schedules using
negotiation/bidding mechanisms between agents. This approach is composed of
four agents: a manager-agent, a robot-system-holon, an order-system-holon and
a machine-system-holon.

In this paper, we propose a hybridization of two metaheuristics based on
clustered holonic multiagent model for the job shop scheduling problem with
a single transport robot. This new approach follows two principal hierarchical
steps, where a genetic algorithm is applied by a scheduler agent for a global
exploration of the search space. Then, a tabu search technique is used by a set
of cluster agents to guide the research in promising regions. Numerical tests were
made to evaluate the performance of our approach based on the instances of [18],
completed by comparisons with other approaches.

The rest of the paper is organized as follows. In Sect. 2, we define the formula-
tion of the FJSPT-SR with its objective function and a simple problem instance.
Then, in Sect. 3, we detail the proposed hybrid approach with its holonic mul-
tiagent levels. The experimental and comparison results are provided in Sect. 4.
Finally, Sect. 5 ends the paper with a conclusion.

2 Problem Formulation

There is a set of n jobs J = {J1, . . . , Jn} to be processed without preemption on
a set M = {M0,M1, . . . ,Mm} of m+1 machines (M0 represents the load/unload
or LU station from which jobs enter and leave the system). Each job Ji is formed
by a sequence of ni operations {Oi,1, Oi,2, . . . , Oi,ni} to be performed successively
according to the given sequence. For each operation Oi,j , there is a machine µij ∈
{M0, . . . ,Mm} and a processing time pij associated with it. In addition, each job
Ji (J1, . . . , Jn) is composed of ni−1 transport operations {Ti,1, Ti,2, . . . , Ti,ni−1}
to be made by a robot R from one machine to another. In fact, for each transport
operation Ti,j there are two types of movements: travel transport operation and
empty transport operation.

Firstly, travel transport operation tµi,j ,µi,j+1 must be considered for the robot
R when an operation Oi,j is processed on machine µi,j and operation Oi,j+1 is
processed on machine µi,j+1. These transportation times are job-independent
and robot-dependent. Each transportation operation is assumed to be processed
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by only one transport robot R which can handle at most one job at one time.
For convenience, tµi,j ,µi,j+1 is used to denote both a transportation operation
and a transportation time.

Secondly, empty transport operation t′i,j has to be considered while the robot
R moves from machine Mi to machine Mj without carrying a job. So, it is
possible to assume that t′i,i = 0 and ti,j ≥ t′i,j .

As in job shop problems, we assume that sufficient buffer space exists between
machines. This assumption is also stated as an “unlimited input/output buffer
capacity”. Jobs processed on one machine Mi are assumed to wait until the
robot affected to this transport operation is available to do it. No additional
time is required to transfer job from machine to the unlimited output buffer. In
a similar way, each machine Mi has an unlimited input buffer to store jobs in
waiting to be processed by it. All data pij , tµi,j ,µi,j+1 , t

′
µi,j ,µi,j+1 are assumed to

be non-negative integers.
The objective is to determine a feasible schedule which minimizes the

makespan Cmax = Maxj=1,n{Cj} where Cj denotes the completion time of
the last operation Oi,ni of job Ji including the processing times of machine
operations and transport operations.

– Cmax makespan
Cmax = Maxj=1,n{Cj} (1)

– Mean makespan

MeanCmax = Di =
1
n

n∑

i=1

Ci (2)

– Mean tardiness
Lateness = Li = Ci − Di (3)

Tardiness = Tardi = max[Li, 0] (4)

MeanTard =
1
n

n∑

i=1

Tardi (5)

3 Hybrid Metaheuristics Based Clustered Holonic
Multiagent Model

[16] elaborated a study about the nature of connections between the genetic
algorithm and tabu search metaheuristics, searching to show the existing oppor-
tunities for creating a hybrid approach with these two standard methods to take
advantage of their complementary features and to solve difficult optimization
problems. After this pertinent study, the combination of these two metaheuris-
tics has become more well-known in the literature, which has motivated many
researchers to try the hybridization of these two methods for the resolution of
different complex problems in several areas.

[14] defined a multiagent system as an artificial system composed of a popu-
lation of autonomous agents, which cooperate with each other to reach common
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objectives, while simultaneously each agent pursues individual objectives. Fur-
thermore, a multiagent system is a computational system where two or more
agents interact (cooperate or compete, or a combination of them) to achieve
some individual or collective goals. The achievement of these goals is beyond the
individual capabilities and individual knowledge of each agent [6].

[21] gave the first definition of the term “holon” in the literature, by com-
bining the two Greek words “hol” meaning whole and “on” meaning particle or
part. He said that almost everything is both a whole and a part at the same
time. In fact, a holon is recursively decomposed at a lower granularity level into
a community of other holons to produce a holarchy [9]. Moreover, a holon may
be viewed as a sort of recursive agent, which is a super-agent composed of a
sub-agents set, where each sub-agent has its own behavior as a complementary
part of the whole behaviour of the super-agent. Holons are agents able to show
an architectural recursiveness [15].

In this work, we propose a hybrid metaheuristic approach based on clus-
tering processing two general steps: a first step of global exploration using a
genetic algorithm to find promising areas in the search space and a clustering
operator allowing to regroup them in a set of clusters. In the second step, a
tabu search algorithm is applied to find the best individual solution for each
cluster. The global process of the proposed approach is implemented in two
hierarchical holonic levels adopted by a recursive multiagent model, named a
hybrid Genetic Algorithm with Tabu Search based on clustered Holonic Multi-
agent model (GATS+HM), see Fig. 1. The first holonic level is composed of a
Scheduler Agent which is the Master/Super-agent, preparing the best promis-
ing regions of the search space, and the second holonic level containing a set of

Fig. 1. Hybrid metaheuristics based clustered holonic multiagent model
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Cluster Agents which are the Workers/Sub-agents, guiding the search to the
global optimum solution of the problem. Each holonic level of this model is
responsible for process a step of the hybrid metaheuristic approach and to coop-
erate between them to attain the global solution of the problem.

The idea of the proposed approach came from that the use of exact methods
needed long CPU times to solve big instances of an NP-hard problem which is
the simultaneous FJSPT-SR problem is our case. That is why, we thought to use
the approximation techniques to generate a set of feasible solutions very close
to the optimal solutions of this problem in a reasonable computational time. So,
after reviewing the different works made for this problem, we concluded that the
standard metaheurstic approaches are well used and presenting many interesting
notions such as in the genetic algorithm (GA) and the tabu search (TS), that is
why we got the idea to profit from their advantages and trying to combine these
two complementary techniques to obtain a new hybrid approach, composed of a
set of improved operators, searching to attain more dominant solutions for this
problem. Then, after implementing the GA for the global exploration we thought
to divide the search space in a set of clusters to select the best obtained solutions
preparing the step of hybridization with the TS algorithm. In this position, we
said that why not to apply a parallel version of the TS, where here we decided
to use the multi-agent systems for this treatment and we added the cooperative
behavior between them to not visit the same solution already explored by another
agent. In addition, our hybrid metaheursitc approach followed the paradigm of
“Master” and “Workers” which are two recursive hierarchical levels adaptable
for a holonic multiagent model, where the Scheduler Agent is the Master/Super-
agent of its society and the Cluster Agents are its Workers/Sub-agents. At this
level, we completed the full architecture of our approach, where firstly, a sched-
uler agent applied a Neighborhood-based Genetic Algorithm (NGA) for a global
exploration of the search space. Then secondly, a set of cluster agents used a
tabu search technique to guide the research in promising regions.

3.1 Non Oriented Disjunctive Graph

In this work, we chose to use the disjunctive graph of [18] for the job shop prob-
lem with transportation times and one robot. To explain this graph, a sample
problem of three jobs and five machines with their transportation times for a
single robot R is presented in Table 1.

The disjunctive graph G = (Vm∪Vt, C∪Dm∪Dr), see Fig. 2, is composed of:
a set of vertices Vm containing all machine operations, a set of vertices Vt is the
set of transport operations obtained by assigning the robot R to each transport
operation, and two dummy nodes 0 and ∗. Also, this graph consists of: a set of
conjunctions C representing precedence constraints Oi,k → tµi,k,µi,k+1 → Oi,k+1,
undirected disjunctions for machines Dm, and undirected disjunctions Dr for
the transport robot R. For each job Ji, ni − 1 transport operations tµi,k,µi,k+1

are introduced including precedence Oi,k → tµi,k,µi,k+1 → Oi,k+1. In fact, the
robot R may be considered as an additional “machine” which has to process all
these transport operations. The arcs from machine node to transport node are
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Table 1. One instance of flexible job shop problem with one robot

Processing times for each job Ji

M1 M2 M3 M4 M5

J1 O1,1 2 9 4 5 1
O1,2 – 6 – 4 –

J2 O2,1 1 – 5 – 6
O2,2 3 8 6 – –
O2,3 – 5 9 3 9

J3 O3,1 – 6 6 – –
O3,2 3 – – 5 4

Transportation times for the robot R

M1 M2 M3 M4 M5
M1 0 1 2 3 4
M2 1 0 1 2 3
M3 2 1 0 1 2
M4 3 2 1 0 1
M5 4 3 2 1 0

Fig. 2. Non oriented disjunctive graph

weighted with the machine operation durations. Edges between machine opera-
tions represent disjunctions for machine operations which have to be processed
on the same machine and cannot use it simultaneously.

As for the classical job shop, the conjunctions C model the execution order
of operations within each job Ji. In addition to the classical set of undirected
machine disjunctions Dm (all pairs of machine operations which have to be
processed on the same machine and which are not linked by a directed path), it
is necessary to consider the set of undirected robot disjunctions Dr (all pairs of
transport operations which have to be performed by the robot R and which are
not linked by a directed path). To solve the scheduling problem it is necessary
to turn all undirected arcs in Dm ∪ Dr into directed ones, and to assign the
robot R to each transport operation, where the final graph becomes an oriented
disjunctive graph.
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3.2 Scheduler Agent

The Scheduler Agent (SA) is responsible for process the first step of the
hybrid algorithm by using a genetic algorithm called NGA (Neighborhood-based
Genetic Algorithm) to identify areas with high average fitness in the search space
during a fixed number of iterations MaxIter, see Fig. 3. In fact, the goal of using
the NGA is only to explore the search space, but not to find the global solution
of the problem. Then, a clustering operator is integrated to divide the best iden-
tified areas by the NGA in the search space to different parts where each part is
a cluster CLi ∈ CL the set of clusters, where CL = {CL1, CL2, . . . , CLN}. In
addition, this agent plays the role of an interface between the user and the sys-
tem (initial parameter inputs and final result outputs). According to the number
of clusters N obtained after the integration of the clustering operator, the SA
creates N Cluster Agents (CAs) preparing the passage to the next step of the
global algorithm. After that, the SA remains in a waiting state until the receipt
of the best solutions found by the CAs for each cluster CLi. Finally, it finishes
the process by displaying the final solution of the problem.

Individual’s Solution Presentation Based Oriented Disjunctive Graph.
The Job Shop scheduling Problem with Transportation times and a Single Robot
is composed of two sub-problems: firstly the machines and robot selection, sec-
ondly the operations scheduling problem, that is why the chromosome represen-
tation is encoded in two parts: Machines and Robot Selection part (MRS), and
Job and Transport operation Sequence part (JTS), see Fig. 4.

The first part MRS is a vector V1 with a length L equal to the total number
of operations and where each index represents the selected machine or robot to
process an operation indicated at position p, see Fig. 4 (a). For example p = 3 and

Fig. 3. First step of the global process by the Scheduler Agent



102 H. E. Nouri et al.

Fig. 4. The chromosome representation of a scheduling solution

Fig. 5. Final path of the robot R

Fig. 6. Example of oriented machine and robot disjunctions

p = 7, V1(3) is the selected machine M4 for the operation O1,2 and V1(7) is the
selected robot R for the operation T2,2. The second part JTS is a vector V2 having
the same length of V1 and where each index represents a machine operation Oi,j

or a transport operation Ti,j according to the predefined operations for each
job, see Fig. 4 (b). For example this operation sequence 1-2-1-1-3-2-3-2-3-2-2
can be translated to: (O1,1,M5) → (O2,1,M1) → (T1,1, R) → (O1,2,M4) →
(O3,1,M3) → (T2,1, R) → (T3,1, R) → (O2,2,M3) → (O3,2,M1) → (T2,2, R) →
(O2,3,M2). In addition, for each job Ji (J1, . . . , Ji) ni − 1 transport operations
are generated T1,1, T2,1, T2,2 and T3,1, and scheduled following the presented
solution in vector JTS, allowing to fix the final path to be considered by the
robot R during the shop process, see Fig. 5.
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Fig. 7. Oriented disjunctive graph

To model an oriented disjunctive graph we should consider some rules. Let
the example in Fig. 6, if the edge is oriented in the direction Oi,k → Oj,k′ it
gets the weight pi,k, else it takes pj,k′ in the inverse case. If an arc is added
from Ti,k to Tj,k′ , it gets the weight tOi,k,Oi,k+1 + t′Oi,k+1,Oj,k′ and tOj,k′ ,Oj,k′+1

+
t′Oj,k′+1,Oi,k

if it is oriented in the other direction. Thus, basing on [18] we
can define a fixed machine selection Sm called directed Machine Disjunctions
and a fixed transport selection Sr called directed Transport Disjunctions, with
their precedence relations C called operation Conjunctions. So, a fully oriented
disjunctive graph can be obtained using Ŝ = C ∪ Sm ∪ Sr, which is called a
complete selection. In fact, the selections of the two sets of disjunctions Sm and
Sr with their set of conjunctions C are based on the two proposed vectors MRS
and JTS, where MRS allows to present the selected machines to process job
operations and the selected robot to process transport operations. JTS presents
the execution order of the job and transport operations in their selected machines
and robot allowing to fix the final Machine and Transport Disjunctions Sm ∪Sr

with their set of Conjunctions C representing the precedence relations between
the different operations. The union C ∪ Sm ∪ Sr = Ŝ fully describes a solution
if the resulting oriented disjunctive graph G = (Vm, Vt, Ŝ) is acyclic. A feasible
schedule can be constructed by longest path calculation which permits to obtain
the earliest starting time of both machine and transport operations and fully
defines a semi-active schedule with the Cmax given by the length of the longest
path from node 0 to *, see Fig. 7.

Noting that the chromosome fitness is calculated by Fitness(i) which is the
fitness function of each chromosome i and Cmax(i) is its makespan value, where
i ∈ {1, . . . , P} and P is the total population size, see Eq. (6).

Fitness(i) =
1

Cmax(i)
(6)
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Population Initialization. The initial population is generated randomly fol-
lowing a uniform law and based on a neighborhood parameter to make the
individual solutions more diversified and distributed in the search space. In fact,
each new solution should have a predefined distance with all the other solutions
to be considered as a new member of the initial solution. The used method to
determine the neighborhood parameter is inspired from [7], which is based on the
permutation level of operations to obtain the distance between two solutions. In
fact, the dissimilarity distance is calculated by verifying the difference between
two chromosomes in terms of of the placement of each machine operation Oi,j on
its assigned machine µij in the Machines and Robot Selection V1 (MRS) and the
execution order of all the shop operations Oi,j and Ti,j in the Job and Transport
operation Sequence V2 (JTS). So, if there is a difference in the vector V1, the
distance is incremented by M(Oi,j) if it is a machine operation (M(Oi,j) is the
number of alternative machines for a machine operation Oi,j) because it is in
the order of O(n). Then, if there is a difference in the vector V2, the distance is
incremented by 1 because it is in the order of O(1). Let Chrom1(MRS1, JTS1)
and Chrom2(MRS2, JTS2) two chromosomes of two different scheduling solu-
tions, M(Oi,j) the number of alternative machines for each machine operation
Oi,j , L is the total number of operations of all jobs and Dist is the dissimilarity
distance. The distance is calculated firstly by measuring the difference between
the Machines and Robot Selection vectors MRS1 and MRS2 which is in order of
O(n), then by verifying the execution order difference of the Job and Transport
operation Sequence vectors JTS1 and JTS2 which is in order of O(1), we give
how to proceed in Algorithm 1.

Algorithm 1. How to calculate the dissimilarity distance between two solutions
1: procedure
2: Dist ← 0, k ← 1
3: for k from 1 to L do
4: if Chrom1(MRS1(k)) �= Chrom2(MRS2(k)) and

IsMachineOperation(MRS1(k)) then
5: Dist ← Dist + M(Oi,j)
6: end if
7: if Chrom1(JTS1(k)) �= Chrom2(JTS2(k)) then
8: Dist ← Dist + 1
9: end if

10: end for
11: return Dist
12: end procedure

Noting that Distmax is the maximal dissimilarity distance and it is calcu-
lated by Eq. (7), representing 100% of difference between two chromosomes.

Distmax =
n∑

i=1

i,ni∑

i,1

[M(Oi,j)] + L (7)
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Selection Operator. The selection operator is used to select the best parent
individuals to prepare them to the crossover step. This operator is based on
the fitness function allowing to analyze the quality of each selected solution.
But progressively the fitness values will be similar for the most individuals.
That is why, we integrate the neighborhood parameter, where we propose a
new combined parent selection operator named Fitness-Neighborhood Selection
Operator (FNSO) allowing to add the dissimilarity distance parameter to the
fitness function to select the best parents for the crossover step. The FNSO
chooses in each iteration two parent individuals until engaging all the population
to create the next generation. The first parent takes successively in each case a
solution i, where i ∈ {1, . . . , P} and P is the total population size. The second
parent obtains its solution j randomly by the roulette wheel selection method
based on the two Fitness and Neighborhood parameters relative to the selected
first parent, where j ∈ {1, . . . , P} \ {i} in the P population and where j �= i. In
fact, to use this random method, we should calculate the Fitness-Neighborhood
total FN for the population, see Eq. (8), the selection probability spk for each
individual Ik, see Eq. (9), and the cumulative probability cpk, see Eq. (10). After
that, a random number r will be generated from the uniform range [0,1]. If
r ≤ cp1 then the second parent takes the first individual I1, else it gets the kth

individual Ik ∈ {I2, . . . , IP } \ {Ii} and where cpk−1 < r ≤ cpk. For Eqs. (8), (9)
and (10), k = {1, 2, . . . , P} \ {i}.

– The Fitness-Neighborhood total for the population:

FN =
P∑

k=1

[1/(Cmax[k] × Neighborhood[i][k])] (8)

– The selection probability spk for each individual Ik:

spk =
1/(Cmax[k] × Neighborhood[i][k])

FN
(9)

– The cumulative probability cpk for each individual Ik:

cpk =
k∑

h=1

sph (10)

Crossover Operator. The crossover operator has an important role in the
global process, allowing to combine in each case the chromosomes of two par-
ents in order to obtain new individuals and to attain new better parts in the
search space. In this work, this operator is applied with two different techniques
successively for the parent’s chromosome vectors MRS and JTS.

MRS Crossover. A uniform crossover is used to generate in each case a mixed
vector between two parent vectors Parent1-MRS1 and Parent2-MRS2, allow-
ing to obtain two new children, Child1-MRS′

1 and Child2-MRS′
2. This uniform
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Fig. 8. JTS crossover exemple

crossover is based on two assignment cases, if the generated number r is less
than 0.5, the first child Child1 gets the current machine value of Parent1 and
the second child Child2 takes the current machine value of Parent2. Else, the
two children change their assignment direction, first child Child1 to Parent2
and the second child Child2 to Parent1, we give how to proceed in Algorithm 2.

Algorithm 2. How to generate new children by the MRS crossover
1: procedure
2: Generate a random number r in [0, 1]
3: if r < 0.5 then
4: Child1-MRS′

1[i] = Parent1-MRS1

5: Child2-MRS′
2[i] = Parent2-MRS2

6: else
7: Child1-MRS′

1[i] = Parent2-MRS2

8: Child2-MRS′
2[i] = Parent1-MRS1

9: end if
10: end procedure

JTS Crossover. An improved precedence preserving order-based on crossover
(iPOX), inspired from [25], is adapted for the parent operation vector JTS. This
iPOX operator is applied via four steps, a first step is selecting two parent
operation vectors (JTS1 and JTS2) and generating randomly two job sub-
sets Js1/Js2 from all jobs. A second step is allowing to copy any element
in JTS1/JTS2 that belong to Js1/Js2 into child individual JTS′

1/JTS
′
2 and

retain them in the same position. Then the third step deletes the elements that
are already in the sub-set Js1/Js2 from JTS1/JTS2. Finally, fill in order the
empty positions in JTS′

1/JTS
′
2 with the reminder elements of JTS2/JTS1 in

the fourth step, see the example in the Fig. 8.

Mutation Operator. The mutation operator is integrated to promote the
children generation diversity. In fact, this operator is applied on the chromosomes
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Fig. 9. JTS mutation exemple

of the newly-generated children by the crossover operator. Also, each part of a
child chromosome MRS and JTS has separately its own mutation technique.

MRS Mutation. This first operator uses a random selection of a transport oper-
ation index from the vector MRS. Then, it replaces the current number in the
selected index by another belonging to the alternative set of machines.

JTS Mutation. This operator selects randomly two indexes index1 and index2

from the vector JTS. Next, it changes the position of the job number in the
index1 to the second index2 and inversely, see Fig. 9.

Replacement Operator. The replacement operator has an important role
to prepare the remaining surviving population to be considered for the next
iterations. This operator replaces in each case a parent by one of its children
which has the best fitness in its current family.

Clustering Operator. By finishing the maximum iteration number MaxIter
of the genetic algorithm, the Scheduler Agent applies a clustering operator
using the hierarchical clustering algorithm of [19] to divide the final popula-
tion into N Clusters, see Fig. 10, to be treated by the Cluster Agents in the
second step of the global process. The clustering operator is based on the neigh-
bourhood parameter which is the dissimilarity distance between individuals.
The clustering operator starts by assigning each individual Indiv(i) to a clus-
ter CLi, so if we have P individuals, we have now P clusters containing just
one individual in each of them. For each case, we fix an individual Indiv(i)
and we verify successively for each next individual Indiv(j) from the remain-
ing population (where i and j ∈ {1, . . . , P}, i �= j) if the dissimilarity distance
Dist between Indiv(i) and Indiv(j) is less than or equal to a fixed threshold
Distfix (representing a percentage of difference X% relatively to Distmax, see
Eq. (11)) and where Cluster(Indiv(i)) �= Cluster(Indiv(j)). If it is the case,
Merge(Cluster(Indiv(i)), Cluster(Indiv(j))), else continue the search for new
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Fig. 10. The final population transformation by applying the clustering operator

Fig. 11. Distribution of the Cluster Agents in the different clusters of the search space

combination with the remaining individuals. The stopping condition is by brows-
ing all the population individuals, where we obtained at the end N Clusters.

Distfix = Distmax × X% (11)

3.3 Cluster Agents

Each Cluster Agent CAi is responsible for apply successively to each cluster CLi

a local search technique which is the Tabu Search algorithm to guide the research
in promising regions of the search space and to improve the quality of the final
population of the genetic algorithm. In fact, this local search is executed simul-
taneously by the set of the CAs agents, where each CA starts the research from
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an elite solution of its cluster searching to attain new more dominant individ-
ual solutions separately in its assigned cluster CLi, see Fig. 11. The used Tabu
Search algorithm is based on an intensification technique allowing to start the
research from an elite solution in a cluster CLi (a promising part in the search
space) in order to collect new scheduling sequence minimizing the makespan. Let
E the elite solution of a cluster CLi, E′ ∈ N(E) is a neighbor of the elite solution
E, GLi is the Global List of each CAi to receive new found elite solutions by the
remaining CAs, each CLi plays the role of the tabu list with a dynamic length
and Cmax is the makespan of the obtained solution. So, the search process of this
local search starts from an elite solution E using the move and insert method of
[28], where each Cluster Agent CAi changes the position of a machine operation
Oi,j from a machine Mm to another machine Mn belonging to the alternative set
of machines, and modifies the execution order of an operation (Oi,j if machine
operation or Ti,j if transport operation) from an index i to another index k in the
vector JTS, searching to generate new scheduling combination E′ ∈ N(E). After
that, verifying if the makespan value of this new generated solution Cmax(E′)
dominates Cmax(E) (Cmax(E′) < Cmax(E)), and if it is the case CAi saves E′

in its tabu list (which is CLi) and sends it to all the other CAs agents to be placed
in their Global Lists GLs(E′, CAi), to ensure that it will not be used again by
them as a search point. Else continues the neighborhood search from the current
solution E. The stopping condition is by attaining the maximum allowed number
of neighbors for a solution E without improvement. We give how to proceed in
Algorithm 3.

Algorithm 3. The local search process
1: procedure
2: E ← Elite(CLi)
3: while N(E) �= ∅ do
4: E′ ← Move-and-insert(E) | E′ ∈ N(E) | E′ /∈ CLi

5: if Cmax(E′) < Cmax(E) and E′ /∈ GLi then
6: E ← E′

7: CLi ← E′

8: Send-to-all(E′, CAi)
9: end if

10: end while
11: return E
12: end procedure

By finishing this local search step, the CAs agents terminate the process by
sending their last best solutions to the SA agent, which considers the best one
of them as the global solution for the FJSPT-SR, see Fig. 12.
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Fig. 12. Second step of the global process by the Cluster Agents

4 Experimental Results

4.1 Experimental Setup

The proposed GATS+HM is implemented in java language on a 2.10 GHz Intel
Core 2 Duo processor and 3 Gb of RAM memory, where we use the Integrated
Development Environment (IDE) Eclipse to code the algorithm and the mul-
tiagent platform Jade [4] to create the different agents of our holonic model.
To evaluate its efficiency, numerical tests are made based on the benchmark
instances of [18] from the literature of the FJSPT-SR, which consists of two sets
P1(6 × 6) and P2(10 × 10) inspired from [29]. This shop problem considers a
single moving robot for all transport operations, where various test instances
were obtained by adding transportation and empty moving times with different
characteristics.

Due to the non-deterministic nature of the proposed approach, we run it ten
independent times for each case of the [18] data instances in order to obtain
significant results. The used parameter settings for our algorithm are adjusted
experimentally and presented as follow: the crossover probability = 1.0, the
mutation probability = 0.5, the maximum number of iterations = 1000 and the
population size = 200. The computational results are presented by six metrics
as follows:

– The best makespan, the CPU time of our GATS+HM in minutes and the
gap between our approach and the best results of the literature in Table 2.
The gap values are calculated by Eq. (12), where the MkO is the makespan
obtained by Our approach and MkC is the makespan of one of the chosen
algorithms for Comparisons.

Gap = [(MkO − MkC)/MkC] × 100% (12)
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– The mean makespan and mean tardiness, see Eqs. (2) and (5), for the selected
set of [18] data instances in Table 3.

4.2 Experimental Comparisons

To show the efficiency of our GATS+HM approach, we compare its obtained
results from the [18] benchmark instances with other algorithms from the liter-
ature of the FJSPT-SR, which have obtained the best upper bounds for this
problem. The chosen algorithms are: the lower bound (LBH) and the one-
stage approach (UBone) of [18] which presented the first results for their pro-
posed instances; the genetic algorithm-tabu search procedure (GATS) of [37],
the hybrid memetic algorithm (BFS) of [24] and the shifting bottleneck (SBN)
of [38] which are three recent metaheuristic approaches.

From Table 2, the comparison results show that the GATS+HM obtains
twelve out of fifteen best results for the [18] instances, where we attain ten
new upper bounds and two similar optimal solutions. Indeed, our algorithm out-
performs the UBone in eleven out of fifteen instances with a maximum gap of
−7,80% for the P02-T5-t2 instance, and it gets slightly worse results for three
instances with a maximum gap of 1,21% for the P02-D3-d1 instance. Moreover,
our GATS+HM outperforms the BFS in twelve out of fifteen instances with a
maximum gap of −4,13% for the P02-T2-t1 instance, and it gets one bad result
for the P01-D2-d1 instance with a gap of 0,68%. For the comparison with the
GATS, the GATS+HM obtains fourteen out of fifteen best results with a max-
imum gap of −30,52% for the P02-D2-d1 instance. In addition, we dominate
the SBN in all the fifteen instances with a gap varying from −3,16% for the
P01-T3-t0 instance to −46,15% for the P01-D1-d1 instance.

Table 2. Makespan results for [18] data instances

Instance LBH Gap UBone Gap BFS Gap GATS Gap SBN Gap GATS+HM
CPU
Time

P01.D1-d1 82 2,44 87 -3,45 87 -3,45 96 -12,50 156 -46,15 84 0,30
P01.D1-t1 77 2,60 81 -2,47 81 -2,47 83 -4,82 93 -15,05 79 0,27
P01.D2-d1 147 1,36 148 0,68 148 0,68 155 -3,87 158 -5,70 149 0,29
P01.D3-d1 213 0,00 217 -1,84 213 0,00 220 -3,18 224 -4,91 213 0,28
P01.T2-t1 71 1,41 74 -2,70 74 -2,70 79 -8,86 93 -22,58 72 0,26
P01.T3-t0 92 0,00 92 0,00 92 0,00 92 0,00 95 -3,16 92 0,19
P02.D1-d1 880 10,57 1044 -6,80 1012 -3,85 1339 -27,33 1454 -33,08 973 6,15
P02.D1-t0 880 12,50 1042 -4,99 1017 -2,65 1352 -26,78 1430 -30,77 990 4,26
P02.D1-t1 880 11,36 1016 -3,54 983 -0,31 1337 -26,70 1490 -34,23 980 4,56
P02.D2-d1 892 12,56 1070 -6,17 1045 -3,92 1445 -30,52 1576 -36,29 1004 8,53
P02.D3-d1 906 19,54 1070 1,21 1100 -1,55 1516 -28,56 1567 -30,89 1083 11,45
P02.D5-t2 1167 13,71 1325 0,15 1361 -2,50 1689 -21,43 1576 -15,80 1327 13,15
P02.T1-t1 874 8,35 1006 -5,86 978 -3,17 1322 -28,37 1376 -31,18 947 7,14
P02.T2-t1 880 8,18 1015 -6,21 993 -4,13 1279 -25,57 1394 -31,71 952 7,31
P02.T5-t2 898 13,14 1102 -7,80 1022 -0,59 1339 -24,12 1413 -28,10 1016 9,25
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Table 3. Mean makespan and mean tardiness results for [18] data instances

LBH UBone BFS GATS SBN GATS+HM
Mean
Cmax

Mean
Tard

Mean
Cmax

Mean
Tard

Mean
Cmax

Mean
Tard

Mean
Cmax

Mean
Tard

Mean
Cmax

Mean
Tard

Mean
Cmax

Mean
Tard

595.94 192.91 692.60 230.44 680.40 225.83 889.54 307.47 939.67 321.26 664.07 219.69

From Table 3, it can be seen that the mean results obtained by our
GATS+HM for the [18] instances are the closest ones to the LB mean results
in terms of the mean makespan and the mean tardiness, and also are the best
obtained ones comparing to the other upper bound approaches UBone, BFS,
GATS and SBN. Consequently, we can distinguish the efficiency of our approach
not only on each single instance as in Table 2, but also on the mean result of the
treated set of instances.

By evaluating the computational time in few minutes and the comparison
results of our approach in terms of the makespan, the mean makespan and the
mean tardiness, we can distinguish the efficiency of the new proposed GATS+HM
relatively to the literature of the FJSPT-SR. This efficiency is explained by the
flexible selection of the promising parts of the search space by the clustering
operator after the genetic algorithm process and by applying the intensification
technique of the tabu search allowing to start from a set of elite solutions to
attain new more dominant solutions.

5 Conclusion

In this paper, we present a new metaheuristic hybridization approach based on
clustered holonic multiagent model, called GATS+HM, for the flexible job shop
scheduling problem with transportation times and a single robot (FJSPT-SR). In
this approach, a neighborhood-based genetic algorithm is adapted by a scheduler
agent for a global exploration of the search space. Then, a local search technique
is applied by a set of cluster agents to guide the research in promising regions of
the search space and to improve the quality of the final population. To measure
its performance, numerical tests are made using benchmark data instances from
the literature of FJSPT-SR, and where new upper bounds are found showing
the effectiveness of the presented approach. In the future work, we will search to
treat other extensions of the FJSPT-SR, such as the general case of this problem
where a set of robots can be used for the transport oprations, and by considering
the machine assignment problem for each operation in the shop process. So, the
problem becomes a Flexible Job Shop scheduling Problem with Transportation
times and Many Robots (FJSPT-MR). Thus, we will make improvements in the
chromosome first part MRS to adapt it to this new transformation and study
its effects on the makespan.
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Abstract. Evolution strategies are evolutionary algorithms usually
applied for solving continuous optimization tasks. As they rely on muta-
tion as one of the main search operators, the control and the adaptation
of this process is of high importance. This paper discusses the covari-
ance matrix adaptation in evolution strategies, a central and essential
mechanism for the search. The current form bases the estimation of the
covariance matrix on small samples sizes compared to the search space
dimension which is known to be problematic. This leads to the ques-
tion, whether the performance of the evolutionary algorithms could be
improved if other estimators were utilized. In statistics, several alter-
native approaches have been considered. Up to now, they have only
been seldom applied in evolutionary computation. The paper investi-
gates whether evolution strategies may benefit from linear shrinkage
estimators. Several shrinkage targets are considered, integrated in the
so-called CMSA-ES, and analyzed experimentally with a special focus
on the shrinkage intensity.

1 Introduction

Evolutionary algorithms (EAs) are metaheuristics which are based on the princi-
ples of natural evolution. As such, they use recombination and mutation to create
new search points and perform selection in order to determine which points may
pass on their characteristics to succeeding generations. Research in EAs has a
long tradition: The first evolutionary algorithms have been introduced in the
1960 s. Today, they represent one of the major classes in natural computation.
Five main groups exist: genetic algorithms, genetic programming, evolutionary
programming, differential evolution, and evolution strategies. The present arti-
cle focuses on the last class, evolution strategies (ESs), which date back to the
70 s and are – at least today – mainly applied for continuous optimization. In
this area, they have been established as well-performing black-box optimization
methods, see e.g. [15]. Their main search operator is mutation in contrast to
genetic algorithms which favor recombination.

Evolution strategies, see for example [1,3,32] for an introduction, operate
with a multivariate normal distribution to generate new search points. The main
parameters of the search distribution, the mean m and the covariance matrix
c© Springer International Publishing AG, part of Springer Nature 2018
N. T. Nguyen et al. (Eds.): TCCI XXVIII, LNCS 10780, pp. 116–142, 2018.
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σ2C, must be adapted during the run of an evolution strategy. If they remain
constant, the ES may exhibit either only a slow convergence behavior or it may
fail in its optimization task entirely. In order to ensure that the mutation control
parameters are suited to the current fitness landscape of the function to be opti-
mized, the scale as well as the directions of the mutations must be adapted. For
this reason, research in evolution strategies often centers on control techniques
for the mutation process with a strong focus on the covariance matrix. Nearly
all approaches estimate the current covariance based on the sample. Relying on
the sample covariance matrix leads to an ill-posed estimation task in the case
of evolution strategies, however: Due to efficiency, the sample size is typically
small w.r.t. the search space dimension. This results in a well-known problem in
statistics: The estimate may differ considerably from the underlying true covari-
ance [35,36]. This may be the reason why nearly all current techniques introduce
additional correction or regularization terms for example by falling back to the
previous covariance matrix and/or by strengthening certain promising direc-
tions. Interestingly, these procedures are reminiscent of shrinkage estimation in
statistics which represents one technique to cope with a poor sample covariance
estimate. These similarities lead to the research question of the present paper:
If evolution strategies perform a kind of implicit shrinkage, can they profit from
the introduction of explicit shrinkage operators?

So far, shrinkage and other covariance matrix estimators have been applied
remarkably seldom in the area of evolutionary computation. A literature review
resulted in only two papers aside from our previous approaches: The first by
Dong and Yao explored an application in the case of Gaussian estimation of
distribution algorithms [8]. They faced the problem that the learning of the
covariance matrix during the run lead to non positive definite matrices. For this
reason, a shrinkage procedure was applied to “repair” the covariance matrix. The
approach was similar to in [20] with the exception of an adaptable shrinkage
intensity. More recently, Kramer considered a Ledoit-Wolf-estimator based on
[19] for an evolution strategy which does not follow a population-based approach
but uses a variant of the single-point elistist (1+ 1)−ES. For this reason, the
covariance matrix adaptation has to consider past search points and corrects
the estimate with shrinkage [17].

The current analysis extends the work carried out in [27,28] and augments
the investigation conducted in [25,29] for the case of thresholding estimators.
[27,28] presented the first approaches to apply Ledoit-Wolf shrinkage estimators
in evolution strategies. In a proof of concept, the shrinkage estimators were com-
bined with an approach stemming from a maximum entropy covariance selection
principle. Here, the work is extended by considering several mixture matrices,
targets, and choices for the shrinkage intensity which are compared to the orig-
inal version of the underlying ES variant, the CMSA-ES [5], for noise-free and
for noisy optimization.

The paper is structured as follows: First, a brief introduction into evo-
lution strategies with covariance matrix adaptation is provided. Afterwards,
we focus on the problem of estimating high-dimensional covariance matrices.
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Several shrinkage targets are introduced and their integration into evolution
strategies is described. The strategies are assessed and compared to the original
ES version in the experimental sections. The paper ends with the conclusions
and an outlook regarding open research points.

2 Evolution Strategies: A Short Introduction

Let f : RN → R be a continuous function that allows only the evaluation of
the function itself but not the derivation of higher order information. This is the
area of black-box optimization, where metaheuristics as evolution strategies and
similar approaches are often applied. Evolution strategies (ESs) are stochastic
optimization methods that usually operate with a sample or population of search
points also called candidate solutions. They distinguish between a population of
μ parents and λ offspring. In many applications in continuous search spaces, the
parent population is discarded after the offspring have been created. Therefore,
λ > μ is required. Evolution strategies use a multivariate normal distribution
with mean m(g) and covariance matrix

(
σ(g)

)2
C(g) to create new search points.

The mean represents the recombination process and is obtained as the (weighted)
centroid of the parent population. The covariance matrix is updated by following
one of the established techniques [5,12]. Sampling λ times from the normal
distribution results in the offspring population

xl = m(g) + σ(g)N (0,C(g)), l = 1, . . . , λ. (1)

Afterwards, the new search points are evaluated using the function f to be
optimized. Evolution strategies then apply deterministic selection in order to
determine the next parent population and chose the μ best of the λ offspring.

As stated earlier, the parameters of the normal distribution must be adapted
in order to allow progress towards the optimal point. Here, the covariance matrix
is of great importance and adaptation techniques have received a lot of attention
in work on evolution strategies (see [12,24]). The investigation in this paper
centers on the covariance matrix self-adaptation evolution strategy (CMSA-ES)
[5]. The CMSA-ES divides the adaptation of the covariance (σ(g))2C(g) into two
main procedures: the covariance matrix update for C(g) and the adaptation of
the scale factor σ(g). The scale factor is also often called step-size or mutation
strength. Following established practice in evolution strategies, the matrix C(g)

will be referred to as the covariance matrix in the remainder of the paper.

2.1 Adaptation I: Covariance Matrix Update

As it is the case for most techniques, the covariance matrix update of the CMSA-
ES is based on the sample estimate, that is, on the μ best offspring. Consider-
ing only the superior candidate solutions shall introduce a bias towards good
search regions. Let xm:λ denote the mth best of the λ offspring w.r.t. the fitness
and let

z(g+1)
m:λ :=

1
σ(g)

(
x(g+1)

m:λ − m(g)
)
, (2)



Can Evolution Strategies Benefit from Shrinkage Estimators? 119

stand for its normalization. The estimate then reads

C(g+1)
μ :=

μ∑

m=1

wmz(g+1)
m:λ (z(g+1)

m:λ )T (3)

with the weights usually set to wm = 1/μ for the CMSA-ES [5]. Please note
that the mean m(g) is known, thus, the number of degrees of freedom remains
equal to μ. The sample covariance is then combined with the old covariance,
resulting in

C(g+1) := (1 − 1
cτ

)C(g) +
1
cτ

C(g+1)
μ . (4)

The parameter cτ ∈ (0, 1),

cτ = 1 +
N(N + 1)

2μ
, (5)

see [5] increases with the search space dimension and decreases with the popu-
lation size.

2.2 Adaptation II: Self-adaptation

In addition to the covariance matrix update, the CMSA-ES applies self-
adaptation to control the mutation strength σ(g). Self-Adaptation has been
developed by Rechenberg [31] and Schwefel [33]. It takes place at the level of the
individuals meaning that each population member operates with a distinct set.
The strategy parameters are adapted by using similar evolutionary principles as
for the main evolutionary algorithm. In other words, they also undergo recombi-
nation and mutation processes. Afterwards, they are used in the mutation of the
search space position. The influence on the selection is indirect: Self-adaptation
is based on the assumption of a stochastic linkage between good objective values
and appropriately tuned strategy parameters.

In the case of the CMSA-ES, the mutation process of the mutation strength
is realized with the help of the log-normal distribution following

σ
(g)
l = σ(g)exp(τN (0, 1)). (6)

The parameter τ , the learning rate, should scale with 1/
√

2N [23]. Self-
adaptation with recombination has been shown as robust against noise [2] and
is therefore considered in this paper. In this case, the variable σ(g) in (6) is the
result of the recombination of the mutation strengths. Here, the same recom-
bination type as previously may be used, that is, σ(g+1) =

∑
wmσm:λ with

σm:λ standing for the mutation strength associated with the mth best individ-
ual. Figure 1 summarizes the main steps of the covariance matrix self-adaptation
evolution strategy.
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Require: λ, μ, C(0), m(0), σ(0), τ , cτ

1: g = 0
2: while termination criteria not met do
3: for l = 1 to λ do
4: σl = σ(g) exp(τN (0, 1))
5: xl = m(g) + σlN (0,C(g))
6: fl = f(xl)
7: end for
8: Select (x1:λ, σ1:λ), . . . , (xμ:λ, σμ:λ) according to their fitness fl

9: m(g+1) =
∑μ

m=1 wmxm:λ

10: σ(g+1) =
∑μ

m=1 wmσm:λ

11: zm;λ = xm;λ−m(g)

σ(g) for m = 1, . . . , μ
12: Cμ =

∑μ
i=1 wizizi

T

13: C(g+1) = (1− 1
cτ

)C(g) + 1
cτ

C
(g+1)
μ

14: g = g + 1
15: end while

Fig. 1. The main steps of a CMSA-ES. Normally, the weights wm are set to wm = 1/μ
for m = 1, . . . , μ.

3 Covariance Matrix Estimation: Introducing Shrinkage

Using the population covariance matrix necessitates an appropriate sample size
with μ � N for obtaining a high quality estimator. If this is not the case,
estimate and “true” covariance may not agree well, especially in the case of
high-dimensional search spaces. Among others, the eigen structure may be sig-
nificantly distorted, see e.g. [20]. However, in evolution strategies typical recom-
mendations for the population sizing state to use an offspring population size λ
of either λ = O(log(N)) or λ = O(N) and setting μ = �cλ� with c ∈ (0, 0.5).
Thus, either μ/N → c or even μ/N → 0 for N → ∞ holds which disagrees with
the requirement.

As stated above, the estimation of covariance matrices has received a lot
of attention in statistics, see e.g. [6,30,38] and several techniques have been
introduced. This paper focuses on linear shrinkage estimators that can be com-
puted comparatively efficiently. Other classes, as e.g. thresholding operators for
sparse covariance matrix estimation, are currently considered in separate analy-
ses [25,29]. Following [20,35], linear shrinkage approaches are based on

Sest(ρ) = ρF + (1 − ρ)Cμ (7)

with F the target to correct the estimate provided by the sample covariance Cμ.
The parameter ρ ∈ (0, 1) is called the shrinkage intensity. Equation (7) is used
to shrink the eigenvalues of Cμ towards the eigenvalues of F. The intensity ρ
should be chosen to minimize the expected error

E
(
‖Sest(ρ) − Σ‖2F

)
(8)
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with ‖ · ‖2F denoting the squared Frobenius norm given by

‖A‖2F =
1
N

Tr
[
AAT

]
, (9)

see [20]. Note the factor 1/N is additionally introduced in [20] to normalize the
norm w.r.t. the dimension.

Based on (8) and taking into account that the true covariance is unknown in
practice, Ledoit and Wolf were able to obtain an optimal shrinkage intensity for
the target F = Tr(Cμ)/N I for general probability distributions.

Several other approaches can be identified in literature. On the one hand,
different targets can be considered, see e.g. [11,18,34,39]. Schäfer and Strimmer
analyzed among others diagonal matrices with equal and unequal variance or
special correlation models [34]. Fisher and Sun also allowed for several targets
[11] assuming a multivariate normal distribution. Toulumis relaxed the normal-
ity assumption, considered several targets, and provided a new non-parametric
family of shrinkage estimators [39]. Other authors introduced different estima-
tors, see e.g. [7] or [6]). Recently, Ledoit and Wolf extended their work to include
non-linear shrinkage estimators [21,22].

A problem arises concerning the complexity of the approaches. The associated
optimization problem has to be solved which may be a task of its own especially
in the case of non-linear estimates. Since the estimation has to be performed in
every generation of the ES, only computationally simple approaches can be taken
into account. Therefore, the paper focuses on linear shrinkage with shrinkage
targets and intensities taken from [11,19,20,39].

Furthermore, transferring shrinkage estimators to ESs needs to consider the
situation in which the estimation occurs since it differs from the assumptions in
statistical literature:

– First, the covariance matrix Σ = C(g) that was used to create the offspring
is known.

– Second, the sample is based on truncation selection. Therefore, the variables
cannot be assumed to be independent and identically distributed (iid). How-
ever, this is one of the main assumptions for deriving alternative estimators
for the covariance. In the case of evolution strategies, the sample x1:λ, . . . ,xμ:λ

would only represent normally distributed random variables if there were no
selection pressure.

In this context, it is interesting to note that in the discussion [12] with respect to
the setting of the CMA-ES control parameters it is argued to choose the values
so that the distribution of the random variables would remain the same if there
were no selection effects. This paper uses a similar argument to justify the usage
of the shrinkage intensities obtained for assuming iid random or even normally
distributed random variables. Since we are aware of the fact that the situation
may differ considerably from the prerequirements in the statistical literature,
other settings are also taken into account.

Before continuing, a closer look at the covariance matrix update (4) may
be interesting. Equation (4) of the ES algorithm represents a special case of
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shrinkage with the old covariance matrix as the target. The shrinkage intensity
is determined with cτ = 1+[N(N +1)]/[2μ], Eq. (5), as ρ = 1−1/cτ . If μ � N ,
ρ ≈ 0 holds and the sample covariance is only slightly corrected. Otherwise,
if N � μ, the old covariance gains importance. To illustrate the main effects
of (4), the eigenspace of C(g) is considered. Since the covariance matrix is a
positive definite matrix, a spectral composition of C(g) with C(g) = MTΛM can
be conducted. The modal matrix M = (v1, . . . ,vN ) contains the eigenvectors
v1, . . . ,vN of C(g), whereas Λ = diag(λ1, . . . , λN ) represents a diagonal matrix
with the corresponding eigenvalues λ1, . . . , λN . The representation C(g+1)

C of
C(g+1) in the eigenspace of C(g) then reads

C(g+1)
C = ρΛ + (1 − ρ)CC

μ

= diag(CC
μ ) + ρ

(
Λ − diag(CC

μ )
)

+ (1 − ρ)
(
LC

μ + UC
μ

)
(10)

with CC
μ = MTCμM. The matrix LC

μ denotes the matrix with the entries of
CC

μ below the diagonal, whereas UC
μ comprises the elements above. As Eq. (10)

shows, the covariance matrix update (4) decreases the off-diagonal elements of
the population covariance in the eigenspace. In the case of the diagonal entries,
two cases may appear: if cC

μii
< λi, the new entry is in the interval [cC

μii
, λi] and

thus the estimate increases towards λi, otherwise it is shrunk towards λi. Thus,
in the eigenspace of C(g), Eq. (10) behaves similarly to shrinkage with a diagonal
matrix as target matrix. Therefore, in original space, it shrinks the eigenvalues
of the population matrix towards those of the target. In contrast to shrinkage,
the target matrix is the old covariance (which is not obtainable in the general
case). If the sample were drawn from independent and identically distributed
variables, the update would “correct” the distortion due to the small sample size
with the previous and in that case also the true covariance. Considering that a
shrinkage procedure is already present in the original CMSA-ES, the question
naturally arises, whether the strategy may benefit from additional corrections of
the sample covariance.

Applying shrinkage requires among others the choice of an appropriate target.
Most approaches consider regular structures as e.g. the scaled unity matrix,
diagonal matrices, or matrices with constant correlations. However, a shrinkage
towards a regular structure w.r.t. the coordinate system of the original search
space does not appear as a good choice concerning the optimization of arbitrary
functions.

4 Evolution Strategies and Shrinkage Estimators

Since we cannot assume that the covariance matrix adaptation would profit
from correcting the estimate towards regular structures in every application
case, shrinkage in the original search space is not taken into account. Instead,
appropriate space transformations are investigated. The resulting ES algorithms
will follow the same general principle:



Can Evolution Strategies Benefit from Shrinkage Estimators? 123

1. A suitable transformation of the coordinate system is conducted.
2. A shrinkage estimation is performed in the transformed space.
3. After re-transformation to the original space, the result is used for the covari-

ance matrix update.

As illustrated in the previous section, the original CMSA-update (4) shrinks the
sample covariance towards a diagonal matrix in the eigenspace of the previous
covariance matrix C(g). Therefore, this eigenspace will also be taken into account
for the current investigation.

Space transformations have been considered in ESs before. For example,
Hansen argued in [14] that changing the coordinate system may improve the
performance. For this reason, he introduced an adaptive encoding for the CMA-
ES. It is based on a spectral decomposition of the covariance matrix. New search
points are created in the eigenspace of the covariance matrix. Similar to [14], we
assume that the ES may benefit from a change of the coordinate system. How-
ever, the covariance matrix adaptation and estimation which in [14] occur in the
original space will be carried out in the transformed space.

Furthermore, other spaces may be also be beneficial. For example, [37] intro-
duced an additional potential transformation. In [37], the authors were faced with
the task to obtain a reliable covariance matrix. To this end, a sample covariance
matrix Si was combined with a pooled variance matrix Cp – similar to (4)

Smix(ξ) = ξCp + (1 − ξ)Si (11)

with the parameter ξ to be determined. To continue, the authors switched to the
eigenspace of the non-weighted mixture matrix where they followed a maximal
entropy approach to determine an improved estimate of the covariance matrix.
Based on [14,37], this paper considers the following choices for the transforma-
tion matrix which arise as combinations of the population covariance matrix Cμ

and C(g)

Smix = C(g) + Cμ, (12)

S(g+1) = (1 − cτ )C(g) + cτCμ, (13)

S(g) = C(g). (14)

The variants (12)–(14) are based on different assumptions: The first (12) follows
[37]. The influence of the old covariance and the population covariance are bal-
anced. Structural changes caused by Cμ will be dampened but will influence the
result more strongly than in the case of (13) and (14). The second (14) uses the
covariance mixture that appears in the original CMSA-ES. Depending on the
size of cτ , which is in turn a function of μ and N , see (5), the influence of the
population covariance matrix may be stronger or lesser. The third considers the
eigenspace of the old covariance matrix and reduces therefore the influence of
the new estimate. Equations (12)–(14) are used to change the coordinate sys-
tem. The representations of the covariance matrices in the eigenspace are given
as CS

μ := MT
SCμMS and CS := MT

SC
(g)MS with S standing for one of the
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variants (12)–(14). Assuming that for example (14) is used, the following steps
are performed

– spectral decomposition: M,D ← spectral(S(g)),
– determination of CS

μ := MT
SCμMS and CS := MT

SC
(g)MS ,

– shrinkage estimation resulting in Ĉshr,
– retransformation Cμ = MTĈshrM,
– covariance adaptation

C(g+1) = (1 − 1
cτ

)C(g) +
1
cτ

Cμ.

They substitute Line 13 of the CMSA-ES algorithm in Fig. 1. Once the space
transformation has been conducted, different targets can be taken into account.
The analysis considers the matrices

Fu = vI, (15)

with v = Tr(CS
μ)/N [20],

Fd = diag(CS
μ) (16)

the diagonal entries of CS
μ [11,39], the constant correlation model with matrix

Fc the entries of which read

fij =
{

sii if i = j
r̄
√

siisjj if i �= j
(17)

and r̄ = 2/((N − 1)N)
∑N−1

i=1

∑N
j=i+1 sij/

√
siisjj [19]. The shrinkage intensities

are taken from the corresponding publications. For (15) the parameter is based
on [20], for (16) it follows [11,39] while it is taken from [19] in the case of (17).

Since the new ES uses an explicit shrinkage, the question arises whether the
additional term consisting of the old covariance matrix in (4) remains necessary
or whether the ES may operate solely with shrinkage. Preliminary investigations
indicate that the latter strategies perform worse than the original CMSA-ES.
Therefore, the current analysis only considers a combination of both. It should
also be noted that similar to the original update, the previous covariance could
be used to determine the target instead of the sample. Both cases will be inves-
tigated more closely in future research.

5 Comparing Shrinkage Approaches: An Experimental
Analysis

Experiments were conducted to investigate the shrinkage estimators introduced.
First, the question of finding a suitable transformation was addressed. To this
end, a comparison of the effects of (12)–(14) was carried out for a combination
of (16) and the shrinkage intensity taken from [39]. Preliminary experiments
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showed that (14) lead to good results. Therefore, the remaining discussion in
this paper is restricted to ESs using a transformation with the old covariance
matrix. However, the increased variability provided by (12) and (13) should be
considered together with (17) or (15) in further experiments.

The analysis considers ES-algorithms which apply shrinkage estimators as
defined in (15) to (17). Aside from the CMSA-ES, we denote the strategies as
follows

1. CI-ES: a CMSA-ES using (15) as shrinkage target,
2. CC-ES: the CMSA-ES with the constant correlation model (17),
3. FS-ES: the CMSA-ES which uses (16) and follows [11] to determine the

shrinkage intensity,
4. Tou-ES: a CMSA-ES based on (16) which uses the shrinkage intensity of [39].

The approaches were coded in MATLAB. In the case of the CI-ES and the C-ES,
we used the estimation source code provided by the authors on their webpage1.
The implementation of the Tou-ES follows closely the R package2. In the analysis
presented here, we did not use the oracle shrinkage intensity for the FS-ES as
in [26] but applied the optimal estimated value (11) in [11, p. 1913]. Therefore,
the results may differ from [26]. This ES also operates with a maximal number
of fitness evaluations of FEmax = 3 × 105N .

5.1 Experimental Set-Up

The parameters for the experiments read as follows. Each experiment uses 15
repeats. The initial population is drawn uniformly from [−4, 4]N , whereas the
mutation strength is chosen from [0.25, 1]. The search space dimensions were set
to 10 and 20. The maximal number of fitness evaluations is given by FEmax =
2×105N . All evolution strategies use λ = log(3N)+8� offspring and μ = �λ/4�
parents. A run terminates prematurely if the difference between the best value
so far and the optimal fitness value |fbest − fopt| is below a predefined precision
set to 10−8. Furthermore, we introduce a restart mechanism into the ESs so
that the search is re-initialised when the search has stagnated for 10 + �30N/λ�
generations. Stagnation is determined by measuring the best function values in a
generation. If the difference between minimal and maximal values of the sample
lies below 10−8 for the given time-interval, the ES does not make significant
movements anymore and the search is started anew.

The experiments are conducted with the help of the black box optimization
benchmarking (BBOB) software framework3 and the test suite, see [13]. The
framework allows the analysis of algorithms and provides means to generate
tables and figures of the results together with the corresponding legends.

1 http://www.econ.uzh.ch/faculty/wolf/publications.html.
2 http://cran.r-project.org/web/packages/ShrinkCovMat.
3 The latest software can be obtained from COmparing Continuous Optimisers: COCO

(http://coco.gforge.inria.fr/).

http://www.econ.uzh.ch/faculty/wolf/publications.html
http://cran.r-project.org/web/packages/ShrinkCovMat
http://coco.gforge.inria.fr/
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This paper considers 24 noise-less functions [9]. They consist of four sub-
groups: separable functions (function ids 1–5), functions with low/moderate
conditioning (ids 6–9), functions with high conditioning (ids 10–14), and two
groups of multimodal functions (ids 15–24).

The experiments use the expected running time (ERT) as performance mea-
sure. The ERT is defined as the expected value of the function evaluations
(f -evaluations) the algorithm needs to reach the target value with the required
precision for the first time, see [13]. In this paper, the estimate

ERT =
#(FEs(fbest ≥ ftarget))

#succ
(18)

is used, that is, the fitness evaluations FEs(fbest ≥ ftarget) of each run until the
fitness of the best individual is smaller than the target value are summed up and
divided by the number of successful runs.

5.2 Results and Discussion

First of all, the behavior of the strategies for two exemplary functions, the sphere,
f(x) = ‖x‖2, and the discus, f(x) = 106x2

1 +
∑N

i=2 x2
i is investigated. The

functions were selected since they represent very different optimization tasks.
Figures 2 and 3 show the ratio of the largest to the smallest eigenvalue of the
covariance matrix for the CMSA-ES and for two of the shrinkage approaches, the
CC-ES and the FS-ES. An ES optimizing the sphere should keep the ratio close
to one, whereas the ratio should increase for the discus. In the case of the sphere,
the figures illustrate that the largest and smallest eigenvalue develop differently
and diverge for N = 10. Shrinkage causes the problem to be less pronounced.

In the case of the discus, different eigenvalues are expected. All strategies
achieve this, the ESs with shrinkage operators show again a lower rate of increase.
This may be a hint that the adaptation process of the covariance matrix may be
decelerated by the additional shrinkage. Figure 3 shows an even slower increase of
the ratio for the FS-ES than for the CC-ES. Whether this lowers the performance
is investigated in the second series of experiments. Figure 4 shows the empirical
cumulative distribution functions for N = 10 and N = 20. Whether introducing
shrinkage terms improves the performance of the ES depends on the function
class. In the case of ill-conditioned functions, shrinkage targets consisting of the
diagonal elements of the transformed sample covariance may offer benefits.

The results of the experiments can be examined more closely with the help
of Table 1 (N = 10) and Table 2 (N = 20). They provide the estimate of the
expected running time (ERT) for several precision targets ranging from 101 to
10−7. Also shown is the number of successful runs.

Several functions represent challenges for the ESs considered. These comprise
the Rastrigin functions (id 3, id 4, id 15, and id 24) of the test suite, the step
ellipsoidal function with a condition number of 100 (id 7), and a multi-modal
function with a weak global structure based on Schwefel (id 20). In these cases,
all strategies are unable to progress further than the first intermediate precision
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(a) CMSA-ES, sphere, N = 10 (b) CMSA-ES, sphere, N = 40

(c) CC-ES, sphere, N ,erehps,SE-CC(d)01= N = 40

(e) FS-ES, sphere, N ,erehps,SE-SF(f)01= N = 40

Fig. 2. The development of the ratio of the largest to the smallest eigenvalue of the
covariance on the sphere for the CMSA-ES, the CC-ES, and the FS-ES. Shown are the
results from 15 runs per dimensionality.

of 101. Additionally, for the multi-modal functions, 19 (composite Griewank-
Rosenbrock function) and 23 (Katsuura), no strategy could reach 10−1. The
functions in question are therefore removed from the tables.

To analyze the remaining functions, the four groups of the test suite are taken
into account. The first class comprises the separable functions with id 1 to id 5.
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(a) CMSA-ES, discus, N = 10 (b)CMSA-ES, discus, N = 40

(c) CC-ES, discus, N ,sucsid,SE-CC(d)01= N = 40

(e) FS-ES, discus, N ,sucsid,SE-SF(f)01= N = 40

Fig. 3. The development of the ratio of the largest to the smallest eigenvalue of the
covariance on the discus. Shown are the results from 15 runs per dimensionality.

The three remaining functions, the sphere (f1), the separable ellipsoidal function
(f2), and the linear slope (f5) differ in the degree of difficulty for the strategies.
All strategies do not show any problems on the sphere or on the slope. Here,
several shrinkage variants perform similarly to or sometimes may even surpass
the original version. However, the differences are not statistically significant.
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separable fcts (10-D) separable fcts (20-D)
best 2009

Tou-ES

CMSA

FS-ES

CI-ES

CC-ES

best 2009

CMSA

FS-ES

Tou-ES

CI-ES

CC-ES

moderate fcts (10-D) moderate fcts (20-D)
best 2009

CMSA

Tou-ES

FS-ES

CI-ES

CC-ES

best 2009

CMSA

FS-ES

CI-ES

Tou-ES

CC-ES

ill-conditioned fcts (10-D) ill-conditioned fcts (20-D)
best 2009

CMSA

FS-ES

Tou-ES

CC-ES

CI-ES

best 2009

CMSA

FS-ES

Tou-ES

CI-ES

CC-ES

Fig. 4. Bootstrapped empirical cumulative distribution of the number of objective
function evaluations divided by dimension (FEvals/DIM) for 50 targets in 10[−8..2] for
10-D and 20-D.

The more difficult ellipsoidal function, however, cannot be solved by the
CC-ES, the CI-ES, and for N = 20 by the Tou-ES. Interestingly, the FS-ES
achieves successful runs for all search space dimensionalities. Its performance is
significantly worse than the original CMSA-ES, however. Two effects may play
a role. The ellipsoidal function, defined by f(x) =

∑N
i=1 106(i−1)/(N−1)x2

i , is not
solved well by ESs with covariance matrices treating all directions with the same
weight. The matrix used in the transformation may not be sufficient to provide
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the variability required when combined with restrictive structures. The target
matrices supplied by the CI-ES may be too regular for the ES to be able to adapt
with the necessary velocity. Why the CC-ES also exhibits problems, although
it represents a more general model, merits further investigations. The failure of
the Tou-ES to achieve the final precision target may be due to the shrinkage
intensity since this is the only point where it differs from the FS-ES. For this
reason, Sect. 6.2 provides a first analysis of the impact of this parameter on the
performance of the ES. In future research, the interaction with the parameter
cτ will be investigated more closely. Since this parameter approaches infinity
for the typical μ/N ratios and increasing dimensionalities, the influence of the
sample covariance lessens. Regularizing the covariance matrix may therefore be
more important for smaller to medium search space dimensionalities. Concerning
the question whether shrinkage improves the performance, no clear answer can
be provided for the group of separable functions since the ellipsoidal function
apparently requires a faster adaptation than the current versions supply.

The second group of functions consists of the attractive sector function (id
6), the step ellipsoidal function (id 7, results not shown), the original Rosenbrock
function (id 8), and a rotated Rosenbrock function (id 9). These functions have
low to moderate conditioning. The sector function is difficult to solve for all
strategies. For N = 20, successful runs were recorded for the CMSA-ES and the
CI-ES but only for a few cases, i.e., two or three. Therefore, the question arises
whether initialization effects may have played a role in other words whether the
ES in these cases started in the vicinity of the optimal point. For N = 10 and
N = 20, the FS-ES reaches the final target precision of 10−8 in 15 of 15 runs, a
result not mirrored by the other strategies. Concerning the Rosenbrock functions
(f8 and f9), the CMSA-ES and the FS-ES perform best with the CMSA-ES being
superior.

Functions with high conditioning constitute the next group. For the ellip-
soidal function (f10), the discus (f11), the bent cigar (f12), the sharp ridge (f13),
and the different powers function (f14), the CMSA-ES appears as the best per-
forming strategy, followed by the FS-ES and the Tou-ES. More experiments are
required since the bent cigar apparently represents a stronger challenge for the
FS-ES for N = 10 than for N = 20.

In the case of the multi-modal functions (ids 15–24), all ESs encounter prob-
lems. Only for the two Gallagher’s problems (id 21 and id 22) successes are
recorded. Here, the CMSA-ES and the versions that use the diagonal elements
of the sample covariance as shrinkage target show the best results. The FS-ES
appears to be a good choice for N = 10 for function 21 whereas the CMSA-ES
and the Tou-ES require fewer function evaluations for 22. For N = 20, only a
few runs of all ESs reach the final target precision. Therefore, a comparison for
the higher-dimensional search spaces is difficult and is not carried out in this
paper.
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6 Further Experimental Analyses

The experiments revealed that at least in the eigenspace of the previous covari-
ance matrix and for the intensities considered, the ES does not benefit at all from
shrinkage towards more complex structures than offered by a diagonal matrix.
This is surprising, since the model with constant correlations would allow more
degrees of freedom for the evolutionary process. Therefore, further investigations
– concerning especially the question of the choice of the shrinkage intensity –
will be carried out. In addition, ESs with the scaled unity matrix as a target
do not perform as well as strategies with different diagonal elements. This can
possibly be traced back to the fact that this target is the most restrictive and
impairs the general adaptability of the ES.

Therefore, the further discussion in this paper is limited to the shrinkage esti-
mators that use the diagonal entries of the sample covariance as correction term.
The two variants taken into account, the Fisher-Sun (FS-ES) estimator and the
Toulumis technique (Tou-ES) operate with the same target, but the performance
of the associated evolution strategies differs. Since the only difference between
these two estimators lies in the shrinkage intensity, this section carries out an
investigation of the dependency of the performance of the ES on the choice of
the factor.

So far, the experiments were restricted to the noise-free case assuming the
possibility of exact function evaluations. The effects of shrinkage estimators con-
cerning noisy optimization remain to be taken into account. Since this represents
an important research and application area of evolution strategies, exemplary
experiments are carried out.

6.1 A Brief Investigation Concerning Noisy Optimization

This subsection addresses the question whether shrinkage estimators may be
useful in the case of noisy optimization. Noise or more generally uncertainty
is a common and important problem in practical optimization. Following
[4,16], uncertainty comprises noise, robustness, dynamical changes, and func-
tion approximations. Many causes exist: Physical measurements may be neces-
sary during the optimization which are usually imprecise to a certain degree.
Situational changes may occur – for instance when trying to find the fastest
route in a traffic network. For a closer explanation, let us reconsider the function
f : RN → R that is to be optimized. Noise means that the function evaluations
are not exact and that disturbances, i.e., measurement errors or similar, need to
be taken into account. These can be modelled by a random variable ε. Instead of
the exact f -value at x only the noisy f̃(x) = g(f,x, ε) can be observed. Following
the test suite [10], the multiplicative noise model

f̃(x) = f(x)ε (19)

is considered in the paper. In the experiments conducted for the sphere and
the Rosenbrock function, the noise term ε is represented by a log-normally
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Table 3. ERT and half-interquantile range (90%–10%) divided by the best ERT mea-
sured during BBOB 2009 for different Δf values in 10-D.

10-D

Δfopt 10 0.1 1e-3 1e-5 1e-7 #succ

f101 26 181 194 210 226 15/15

1:CMSA-ES 3.0(2) 1.7(0.2) 2.9(0.4) 3.9(0.4) 4.9(0.8) 15/15

2:FS-ES 2.8(1) 1.6(0.4) 2.8(0.2) 3.6(0.5) 4.5(0.3) 15/15

f104 610 16641 19364 20764 22011 15/15

1:CMSA-ES 368 (2) 140(38) ∞ ∞ ∞3.0e6 0 /15

2:FS-ES 22(27) 46(8) 46(79)
� 44(4)

� 50(78)
� 13/15

f107 945 3871 7352 11340 14303 15/15

1:CMSA-ES 1.5(2) 365(213) 224(3) 147(4) 117(4) 15/15

2:FS-ES 0.92(0.3) 2.1(1)
�2 2.7(1)

�4 2.8(2)
�4 2.9(1)

�4 15/15

f110 11224 7.0e7 ∞ ∞ ∞ 0

1:CMSA-ES 89(76) 0.62(0.6) ∞ ∞ ∞ 0/15

2:FS-ES 2.5(0.9) 0.10(0.1) 1.3e7 (1e7) 1.3e7 (1e7) 1.3e7 (3e7) 3/15

distributed random variable exp(βN (0, 1)) [10]. Two variants are taken into
account, moderate noise with β = 0.01 (id 101 (sphere), id 104 (Rosenbrock))
and severe noise β = 1 (ids 107 (sphere) and 110).

For the comparison, the FS-ES is chosen as the representative for the ESs
with additional shrinkage. Table 3 shows a promising finding: While both strate-
gies behave comparable on the sphere if the noise does not have a strong effect,
the FS-ES appears as superior if the fitness evaluations are severely disturbed.
Here, the additional shrinkage may serve to stabilize the covariance matrix
update and may thus improve the performance of evolution strategies in the
case of noisy optimization. A similar behavior can be observed for the Rosen-
brock function. Here, the FS-ES performs better even for low noise levels.

6.2 The Role of the Shrinkage Intensity: A Closer Look at the
Fisher-Sun Estimate

The preceeding sections showed that the shrinkage intensity may have an influ-
ence on the performance of the ES, considering that the results of the FS-ES
and the Tou-ES differ. Therefore, this section takes a closer look at the Fisher-
Sun estimator and analyzes different value settings. We start from the original
equation in [11, p. 1913]

λ̂ =
β̂2

D + γ̂2
D

δ̂2D
. (20)
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The parameters in (20) are obtained as follows: Let â1 = Tr(CS
μ)/N and

â2 =
μ2

N(μ − 1)(μ + 2)

(
Tr(CS

μ

2
) − 1

μ
(Tr(CS

μ))2
)

. (21)

Denote the matrix with the diagonal elements of CS
μ as DC . Then with

â∗
1 = Tr(DC)/N and (22)

â∗
2 =

μ

N(μ + 2)
Tr(D2

C) (23)

the parameters read

β̂2
D =

1
μ

(
â2 + Nâ2

1

)
, (24)

γ̂2
D = − 2

μ
â∗
2, (25)

δ̂2D =
μ + 1

μ
â2 +

N

μ
â2
1 − μ + 2

μ
â∗
2. (26)

Starting from (20), the shrinkage intensity ρ = cλ̂ is varied with factors c = 0.01
(− − −), 0.1 (−−), 0.5 (−), 1.5 (+), 2.0 (++), and c = 10 (+++). In the case
that the resulting parameter exceeds one, it is reset to ρ = 1. The investigation
considered two separable functions with ids 1 (sphere) and 2 (ellipsoidal), the
two Rosenbrock functions (id 8, 9) as representatives for lowly and moderately
conditioned functions, and aside from the sharp ridge (id 13) the set of functions
with high conditioning (ids 10–14).

As it can be inferred from Table 4, the effects of the scaling factor ρ differ
with the function that is to be optimized. For nearly all functions considered
a decrease and therefore a smaller influence of the diagonal shrinkage target
appears as beneficial. Comparing the results with those in Table 1 shows that the
performance depends very strongly on the size of the factor and can be improved
decisively. However, it appears difficult to obtain a general recommendation. In
some cases, e.g. the discus, id 11, a slight decrease may be preferable whereas
the ES in the case of the original Rosenbrock, id 8, apparently operates better
with only a small correction by the target. For the set of functions considered, a
decrease by half or the factor 0.1 appears to improve the results. However, further
investigations – especially into potential adaptation mechanisms of the shrinkage
intensity – appear necessary. This is underlined by the findings in the case of the
ellipsoidal with id 2 which differ strongly from the rest of the functions. Here,
an increase of the intensity improves the performance, albeit not significantly.
This may be a hint that a strong influence of the target is preferable. As it can
be seen, the “optimal” shrinkage intensity from literature may not represent the
best choice for the purposes of optimization. This was to be expected since the
situation differs from the iid or even normally distributed case considered in the
papers.
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7 Conclusions

Evolution strategies are population-based evolutionary algorithms for continu-
ous optimization. They use a multivariate normal distribution to generate new
search points. The parameters of this distribution must be adapted in order to
achieve a well performing optimization method. For this reason, step-size and
covariance matrix adaptation techniques are important topics in research on
evolution strategies. This paper considered the covariance matrix adaptation.
Current techniques use the sample covariance, an estimator, which may be of
poor quality if the sample size is small. Typically, the estimate is corrected with
the help of additional terms. The resulting effect is remarkably similar to shrink-
age estimation, a method stemming from statistics. There, shrinkage operators
have been introduced in order to improve the quality of the sample covariance
by correcting the estimate with the help of a target matrix.

The realization that evolution strategies already perform an implicit shrink-
age leads to the research question of the present paper: Would an additional
inclusion of shrinkage operators improve the performance of evolution strate-
gies? Applying explicit shrinkage in evolution strategies requires several new
tasks to be solved: The choice of the target and the combination weight of
target and sample covariance, the shrinkage intensity, are crucial. Since an evo-
lution strategy is used to optimize arbitrary functions with various structures,
the approach must remain sufficiently adaptable. To achieve this, we considered
a transformation of the original search space to conduct the shrinkage.

The experimental analysis took several shrinkage targets into account using
the intensity settings of the original publications. Pending further experiments
that shall provide more information regarding the shrinkage intensity which may
have interfered with the findings, shrinkage targets in the transformed space that
use a diagonal matrix consisting of the different entries of the transformed sample
covariance appear as the best choices. While introducing additional shrinkage
does not always improve the performance in the noise-less case and at times
even impairs it, it may offer a means to lessen the impact of noise.

As the experiments showed, the choice of the shrinkage intensity may have a
strong influence on the performance. Since the original covariance matrix adapta-
tion performs a further type of shrinkage which lessens the influence of the sample
covariance when the search space dimensionality increases, future research will
focus on the shrinkage intensity and its interaction with the covariance matrix
adaptation.
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Abstract. Personal assistants and chatterbots represent an historical and
growing application field in artificial intelligence. This paper presents a novel
architecture to the problem of humanizing conversational agents by designing
believable and unforgettable characters who exhibit various salient emotions in
the flow of conversations. The proposed architecture is based on a
multi-personality approach where each agent implements a facet of its identity,
each one with its own pattern of perceiving and interacting with the user. In
order to select an appropriate response from all the candidates, we use an
emotion-based selection algorithm. Our first experiments show that a conver-
sational multi-personality character with emotion selection performs better in
terms of user engagement than a neutral mono-personality one.

Keywords: Conversational agent � Believable character � Multi-personality
Emotion selection

1 Introduction

In recent years, there has been a growing interest in conversational agents also called
“chatterbots” or more simply “chatbots”. In a relative short period of time, several
major companies have proposed their own virtual assistants: Apple’s Siri based on the
CALO project [1], Microsoft Cortana [2], Google Now [3] and Facebook M [4]. These
virtual assistants focus primarily on conversational interface, personal context aware-
ness, and service delegation. They follow a long history of research and the devel-
opment of numerous conversational agents, the first one in history being the famous
Eliza program from Joseph Weizenbaum simulating a Rogerian psychotherapist [5].

Beyond the challenge of interpreting a user’s request in order to provide a relevant
response, a key objective is to enhance man-machine interactions by humanizing
artificial characters. Often described as a distinguishing feature of humanity, the ability
to express and understand emotions is a major cognitive behavior in social interactions
[6]. However, the majority of personal assistants are mainly based on a character design
with neutral rather than emotional behaviors.

At the same time, there have been numerous studies about emotions [7] and their
potential applications for artificial characters [8]. As an example among many, Dylaba
et al. have worked on combining humor and emotion in human-agent conversation
using a multi-agent system for joke generation [9]. In parallel with the goal of
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developing personal assistants, there is also a strong research trend in robotics for
designing emotional robots. Some of these studies showed that a robot with emotional
behavior performs better than a robot without emotional behavior for tasks involving
interactions with humans [10].

In this paper we address the long-term goal of designing believable and “unforget-
table” artificial characters with complex and remarkable emotion behaviors. In this
framework, we follow the initial works done for multi-cultural characters [11] and many
others. Also, our approach takes advantage of psychological studies of human interac-
tions with computerized systems [12] and the know-how of screenwriters and novelists
for scripting dialogs since believable characters are the essence of successful fiction
writing [13].

Our original model is based on multi-agent architecture where each agent imple-
ments a facet of its personality. The idea is that the character’s identity is an emerging
property of several personality traits, each one with its own pattern of perceiving and
interacting with the user. Then, the problem is to “reconnect” personalities of the
disparate alters into a single and coherent identity. Our hypothesis is that it can be
achieved by selecting amongst the candidate responses the one with the most appro-
priate emotional state.

In this paper we focus on our first experiments of emotion selection in a
multi-personality conversational agent based on this hypothesis. The paper is organized
as follows. In Sect. 2, we describe the general architecture for multi-personality char-
acters. Sections 3 and 4 describe more precisely the emotion selection based on a
bio-inspired emotional metabolism. Section 5 describes the experimental prototype and
Sect. 6 discusses first results. We conclude in Sect. 7 and present the future steps of this
research.

2 A Multi-personality Architecture

2.1 Believable and Unforgettable Characters

The key to the user’s engagement during a conversation with an artificial agent is to
create an “unforgettable” character. If we can get a character to live on in a user’s
imagination long after he has stopped interactions, he will want to come back. In other
words, the more unforgettable the character is, the longer it will stick in the users mind.
So in order to design such memorable characters, they need to have very specific traits
that will make them special and different from every other character. Screenwriters and
novelists have a long experience of creating such unforgettable characters [13]. In our
view, this is the “easy” part of the creation process.

However, artificial characters also need to be believable and this is the “hard”
part. During a conversation with an artificial character, users engage in a fictional pact.
They can enjoy the interaction only if they consciously mistake the artificial character
for a real one. They must accept to believe that what they perceive is a real character
even if they know that it is a program. This is an important condition in order not to
break the users’ willing suspension of disbelief. The term “suspension of disbelief” or
“willing suspension of disbelief” has been defined as a willingness to suspend one’s
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critical faculties and believe the unbelievable; sacrifice of realism and logic for the sake
of enjoyment [14]. The term was coined in 1817 by the poet and aesthetic philosopher
Samuel Taylor Coleridge [15].

In order to be believable, the artificial character must be as “realistic” as possible: it
must be “complex” in the sense of being multi-dimensional, with a complexity of traits,
personality facets and emotional behaviors like real humans.

2.2 A Multi-personality Model

The artificial character needs to project a personality that has all of the endearing and
personal qualities of a real person to provide an engaging experience for users. Such a
realistic personality must be complex and multi-layered, simulating the most life-like
and human qualities.

There are many models of personality traits, each one with their own advantages
and applications. The most widely accepted one is the Big Five model [16]. Rather than
choosing a specific model and thus a single fixed profile, our approach aims to con-
struct a complex character identity as the emerging property of several personality
traits. The idea is that real human personalities are composed of many facets, and
potentially a large number of them. This gives the character designer the ability to
compose rich and complex personalities without constraints in terms of number or type
of traits. We have called this approach “schizophrenic” because the character’s identity
is composed of a set of distinct personalities, each with its own pattern of perceiving
and interacting with the user [17]. Note that this term is used here as a metaphor since
the accurate psychological term for mental illness with multiple personalities is Dis-
sociative Identity Disorder, not schizophrenia.

Figure 1 shows the basic architecture for such a multi-personality character, each
personality trait is implemented as an agent. The first agent receives the input from the
user and applies various natural language preprocessing phases such as an English
stemmer, tokenizer, categories and Named Entities extraction. Then the preprocessed
sentence and its additional information are diffused to all personality agents. Thus, all
these personality agents are able to react to the user’s input by computing an appro-
priate answer message given their own local state. Then, all these candidate responses
are evaluated using a confidence scoring and ranking agent that selects the “best”
answer to be proposed to the user.

Fig. 1. The architecture model of the multi-personality “schizophrenic” conversational agent.
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2.3 The Edge of Chaos Hypothesis

In order to obtain an intelligent behavior to emerge spontaneously, the responses
dynamics of the system must be varied and at the same time consistent. Our hypothesis
is that such an intelligent behavior is “complex” in a meaning close to the one defined
initially by Wolfram for one-dimension cellular automata [18]. This study has proposed
four classes of systems: Class I and Class II are characterized respectively by fixed and
cyclic dynamical behaviors; Class III is associated with chaotic behaviors; Class IV is
associated with complex dynamical behaviors. It has been shown then that, when
mapping these different classes of systems, complex adaptive systems are located in the
vicinity of a phase transition between ordered and chaotic regimes for one-dimension
cellular automata [19] and later for two-dimension cellular automata [20].

In the context of our study, as shown in Fig. 2, we transpose the four classes of
dynamics as follows: Class I and Class II respectively correspond to fixed and cyclic
responses resulting in “machine-like” interactions. Class III systems are characterized
by incoherent responses regardless of the user’s entries. Note that this kind of behavior
is interpreted as a symptom of mental illness such as dissociative identity disorder.
Class IV systems are at the edge between order and chaos, giving coherent answers
while preserving diversity and rich emotional responses.

With the multi-personality architecture we have proposed, we assumes that given
enough personality agents, the resulting system is potentially capable of all the
dynamical classes (cf. Fig. 2): fixed answer (Class I), repeated answers patterns (Class
II), random-like incoherent answers (Class 3), and intelligent human-like answers
(Class IV).

Fig. 2. Schematic drawing of conversational space indicating relative location of fixed, periodic,
chaotic and complex regimes. This is a transposition of Langton’s diagram for cellular automata
rule space [21].
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They are many potential approaches for selection amongst the candidate responses.
In this study, we propose that a promising approach for obtaining a Class IV dynamical
behavior is to implement a “scoring & selection” agent that chooses the candidate
responses according to the emotional state of the artificial character.

2.4 Multi-personality Architecture with Emotion Selection

In order to implement a selection based on the emotional state of the character, we
replace the “Scoring & Selection” agent by an “Emotion Selection” agent and an
“Emotion Metabolism” [22]. Figure 3 shows the updated architecture model.

The Emotion Selection agent selects one response amongst the candidate responses
given as an entry the current emotional state of the artificial character. The Emotion
Metabolism is an agent that computes the emotional state of the character given its
current state and the user’s entries. The next two sections describe with more details
these two agents.

3 Emotion Metabolism

3.1 A Layered Model of Affects

There have been multiple approaches in order to implement emotions for intelligent
virtual agents [23]. Among all these studies, Gebhard [24] and Heudin [25] have
proposed both layered models of artificial affects based on three levels:

Personality. Personality reflects long-term affect. It shows individual differences in
mental characteristics [16].

Fig. 3. The multi-personality conversational agent architecture updated with an emotion
selection agent and an emotion metabolism agent (after [22]).
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Mood. Mood reflects a medium-term affect, which is generally not related with a
concrete event, action or object. Moods are longer lasting stable affective states, which
have a great influence on human’s cognitive functions [26].

Emotion. Emotion reflects a short-term affect, usually bound to a specific event, action
or object, which is the cause of this emotion. After its elicitation emotions usually
decay and disappear from the individual’s focus [27].

In a previous research project about non-verbal emotional interactions, we have
proposed a connectionist architecture for implementing the Emotion Metabolism based
on these three levels [28]. Figure 4 shows a schematic representation of its principle.

The “integration” module converts the inputs to virtual neurotransmitters values.
These values are then used by the three levels of affects in order to produce the output
of the Emotion Metabolism. The Emotion Metabolism is updated by propagating the
inputs using a trigger called “lifePulse”, implemented as a cyclic timer.

The Moods and Emotions layers have both a decay rate, called respectively Md and
Ed, that make the emotional state returning to a “neutral” state after some time. This
“neutral” state can be the center of the emotional space or a specific location repre-
senting the default personality of the artificial character based on the Personality layer.

3.2 Personality Layer

This module is based on the Big Five model of personality [16]. It contains five main
variables with values varying from 0.0 (minimum intensity) to 1.0 (maximum intensity).
These values specify the general affective behavior by the five following traits:

Fig. 4. The architecture of the Emotion Metabolism.
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Openness. Openness (Op) is a general appreciation for art, emotion, adventure,
unusual ideas, imagination, curiosity, and variety of experience. This trait distinguishes
imaginative people from down-to-earth, conventional people.

Conscientiousness. Conscientiousness (Co) is a tendency to show self-discipline, act
dutifully, and aim for achievement. This trait shows a preference for planned rather
than spontaneous behavior.

Extraversion. Extraversion (Ex) is characterized by positive emotions and the ten-
dency to seek out stimulation and the company of others. This trait is marked by
pronounced engagement with the external world.

Agreeableness. Agreeableness (Ag) is a tendency to be compassionate and coopera-
tive rather than suspicious and antagonistic towards others. This trait reflects individual
differences for social interactions.

Neuroticism. Neuroticism (Ne) is a tendency to experience negative emotions, such as
anger, anxiety, or depression. Those who score high in neuroticism are emotionally
reactive and vulnerable to stress.

3.3 Mood Layer

Previous cited works such as Gebhard [24] and Heudin [25] used the three-dimensional
Pleasure-Arousal-Dominance (PAD) approach [29]. We use here another candidate
model aimed at explaining the relationship between three important monoamine neu-
rotransmitters involved in the Limbic system and the emotions [30]. It defines three
virtual neurotransmitters which levels range from 0.0 to 1.0:

Serotonin. Serotonin (Sx) is associated with memory and learning. An imbalance in
serotonin levels results in anger, anxiety, depression and panic. It is an inhibitory
neurotransmitter that increases positive vs. negative feelings.

Dopamine. Dopamine (Dy) is related to experiences of pleasure and the
reward-learning process. It is a special neurotransmitter because it is considered to be
both excitatory and inhibitory.

Noradrenaline. Noradrenaline (Nz) helps moderate the mood by controlling stress and
anxiety. It is an excitatory neurotransmitter that is responsible for stimulatory pro-
cesses, increasing active vs. passive feelings.

3.4 Emotion Layer

This module implements emotion as very short-term affects, typically less than ten
seconds, with relatively high intensities. They are triggered by inducing events sud-
denly increasing one or more virtual neurotransmitters. After a short time, these neu-
rotransmitter values decrease due to a natural decay function.
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3.5 Lövheim Cube

This module implements the Lövheim Cube of emotions [30], where the three
monoamine neurotransmitters form the axes of a three-dimensional coordinate system,
and the eight basic emotions, labeled according to the Affect Theory [31] are placed in
the eight corners. Figure 5 shows the resulting 3D diagram and Table 1 the corre-
sponding mapping.

The emotional state of the artificial character is a moving point in the 3D space. The
origin of the 3D space corresponds to a situation where the three virtual neurotransmitters

Fig. 5. The Lövheim Cube of emotions.

Table 1. Mapping of the eight basic emotions on the Lövheim Cube.

Basic emotion Serotonin (Sx) Dopamine (Dy) Noradrenaline (Nz)

Shame/humiliation Low Low Low
Distress/anguish Low Low High
Fear/terror Low High Low
Anger/rage Low High High
Contempt/disgust High Low Low
Surprise/startle High Low High
Enjoyment/joy High High Low
Interest/excitement High High High
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are low. The eight corners of the cube correspond to the eight possible combinations of
low or high level of the three virtual neurotransmitters as shown in the table below:

4 Emotion Selection

4.1 Euclidian Distance Selection

The emotion selection agent is responsible for selecting the “best” available response
amongst the candidate responses generated by all the personality agents. The basic
principle is to select the answer from the agent with the closest emotional state com-
pared to the one of the artificial character. This can be done by giving each personality
agent a point in the 3D emotional space in the Lövheim Cube and by computing the
Euclidian distance with the current location of the emotional state of the virtual
character. We can represent this agent as an artificial neuron with a dedicated transition
function (cf. Fig. 6):

Where:

• I0 … In is a set of input strings representing the outputs of the personality agents,
• w0 … wn is a set of weights associated to each of these candidate answers,
• S(t) is a transition function returning the selected string O among the candidate

answers.

As stated, each weight can be computed as the Euclidian distance between the
current character’s emotional state and the one of the given personality agent. In other
words more the current emotional state is close to that of an agent, greater is its weight.

Let the function d(x, y) that calculates the Euclidean distance between two points, x
and y:

dðx; yÞ ¼ x� yk k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

n

i¼1

xi � yið Þ2
s

:

Fig. 6. The emotional selector represented as an artificial neuron with a dedicated transition
function.
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where n = 3 for a three-dimensional space. Thus, the maximum distance in the Löv-
heim Cube is:

dmax ¼ d 0; 0; 0ð Þ; 1; 1; 1ð Þð Þ ¼
ffiffiffi

3
p

The weight associated to an input Ii is then:

wi ¼ 1� dðPi;PmÞ
dmax

ðð1ÞÞ

where Pi is the 3D vector in the Lövheim Cube of the agent i and Pm is the 3D vector
corresponding to the current emotional state.

4.2 Fitness Proportionate Selection

Rather than the simple Euclidian distance, another potential approach is to use the
fitness proportionate selection of genetic algorithms, also called roulette wheel selec-
tion [32].

The principle of the fitness proportionate selection is similar to a roulette wheel in a
casino, where a proportion of the wheel is assigned to each of the possible candidates
responses based on their fitness value. In our case, the fitness values are the Euclidian
distances as calculated in the previous section. This fitness value is used to associate a
probability of selection with each individual candidate response. This could be
achieved by dividing the fitness of a selection by the total fitness of all the selections,
thereby normalizing them to 1. Then a random selection is made similar to how the
roulette wheel is rotated.

This approach seems more suitable considering our “edge of chaos” hypothesis (cf.
Sect. 2.3). With this approach, there is more diversity in the selection process. While
candidate responses with a higher fitness will be less likely to be eliminated, there is
still a chance that they may be. Also, there is a chance that a weaker candidate response
may be chosen even its probability is small.

5 Experimental Prototype

5.1 A Connectionist Implementation

This section describes the prototype used for experiments and its implementation. We
have implemented all modules of the architecture described in Sect. 3 including the
Emotion Metabolism and Emotion Selection described in Sect. 4.

We developed our own connectionist framework called ANNA (Algorithmic
Neural Network Architecture). Its development was driven by our wish to build an
open Javascript-based architecture that enables the design of any types of feed-forward,
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recurrent, or heterogeneous sets of networks. More precisely an application can include
an arbitrary number of interconnected networks, each of them having its own inter-
connection pattern between an arbitrary number of layers. Each layer is composed of a
set of simple and often uniform neurons units. However, each neuron can be also
programmed directly as a dedicated cell.

Classically all neurons have a set of weighted inputs, a single output, and a tran-
sition function that computes the output given the inputs. The weights are adjusted
using a machine learning algorithm, or programmed, or dynamically tuned by another
network. This is the case for our framework, but the designer can also program his own
prototypes of neurons with dedicated behaviors. The code below shows a template
code for creating a new neuron class that inherits from the basic Neuron prototype:

function myNeuron () {
Neuron.call(this);
// properties
this.myVar = … ;
… 
this.operator = function () {

// dedicated transition function
  } 
 } 
myNeuron.prototype = Object.create(Neuron.prototype);
myNeuron.prototype.constructor = myNeuron; 

5.2 NLP Pipeline

The preprocessing agent of the architecture is implemented as a classical Natural
Language Processing (NLP) pipeline using dedicated neurons and a NLP Javascript
library. The pipeline includes the following phases:

Cleaner. Get the raw text input from the user and fix basic spelling errors.

Tokenizer. Split the entry into clearly separated sentences and words.

Tagger. Implement part-of-speech (POS) tagging.

Lemmatizer. Identify canonical word forms (lemmas) based on a dictionary.

Named Entities. Tag named entities and convert some entities such as dates or
locations in unified formats.

Categories. Find common concepts and synonyms using ontologies.
The raw user’s text input and the resulting preprocessed NPL information are then

diffused to all the personality agents.
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5.3 Personality Agents

In this prototype, we choose to use a set of 12 different personality traits. This decision
was driven by the idea to test if our Emotional Selection approach promotes the
emergence of a great and coherent character despite the use of these very different
personality traits. Note also that most of them where already available from previous
experiments, so it enables also to minimize the development effort. The 12 agents are
the following ones:

Insulting. This agent has an insecure and upset personality that often reacts by teasing
and insulting depending on the user’s input.

Alone. This agent reacts when the user does not answer or waits for too much time in
the discussion process.

Machina. This agent reacts as a virtual creature that knows its condition of being
artificial.

House. This agent implements Dr. House’s famous way of sarcastic speaking using an
adaptation of the TV Series screenplay and dialogues.

Hal. This agent reproduces the psychological traits of the HAL9000 computer in the
“2001 – A space odyssey” movie by Stanley Kubrick.

Silent. This agent answers with few words or sometimes remains silent.

Eliza. This agent is an implementation of the Eliza psychiatrist program, which
answers by rephrasing the user’s input as a question [5].

Neutral. This agent implements a neutral and calm personality trait with common
language answers.

Oracle. This agent never answers directly to questions. Instead it provides wise
counsel or vague predictions about the future.

Funny. This agent is always happy and often tells jokes or quotes during a
conversation.

Samantha. This agent has a strong agreeableness trait. It has a tendency to be com-
passionate, cooperative and likes talking with people.

Sexy. This agent has a main focus on sensuality and sexuality. It enjoys talking about
pleasure and sex.

5.4 Personality Example

Each personality agent may be implemented using many various approaches and
techniques. So we will not go in further implementation details for all agents in this
paper. However, as an example, the Eliza-like agent was implemented using 36
hardcoded rules based on a dedicated neuron prototype called nRule, and organized as
three layers. The code below gives the example of a very simple rule:
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// potential answers

var eliza_bye = [

"Bye for now.",

"Until next time.",

"Later.",

"See you later."];

// create the rule

var nElizaBye = new nRule(eliza_bye);

// transition function is the rule itself

nElizaBye.operator = function () {

var str = this.inputs[0].cval; // get raw input

var cat = this.inputs[1].cval; // get NLP data

// try to find the concept “bye” or the text “see you”

if (cat.find("[BYE]") || str.find("see you"))

// then output an answer from the potential ones

this.cval = this.randomTemplate();

else this.cval = "";

 } 

5.5 Emotion Selection

The emotion selection agent was implemented as an agent composed of a single neuron
with a dedicated transition function S(t) and dynamical weights as described in Sect. 4.
In this experiment, we choose to use the fitness proportionate selection using the
algorithm as given by Table 2:

Table 2. The algorithm used by the selector neuron, where the function rand (0, 1) returns a
random real number between 0 and 1.

Algorithm Emotional Selector

1:  Initialize w0, …, wn-1 using Eq. 1 ;
2:  do { 
2:      S = 0 ;
3:      for ( i = 0 ; i < n ; i = i +1 ) {
4:         if ( Ii != “” ) S = S + wi ; 
5:          }
7:      R = S * rand (0, 1) ;
8:      for ( i = 0 ; i < n ; i = i + 1 ) {
9:         if ( Ii != “” ) R = R – wi ; 
10:        if ( R <= 0 ) break; 
11:        }
13:     if ( R > 0 ) i = n – 1 ;
14:     }
15: while (Ii == “” ) ;
16: return Ii ; 
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This selector selects one of the potential string responses and return it. The code
below gives its Javascript implementation as a dedicated nWheel neuron:

function nWheel () {
Neuron.call(this);
this.operator = function () {

var sel = "", sum = 0, i = -1;
var n = this.weights.length;
// sum up weights
for (i = 0; i < n; i++) {

sum += this.weights[i];
   } 

// turn the wheel
do {

// get random value
var rnd = random_real() * sum;
// locate on the wheel
for (i = 0; i < n; i++) {

rnd -= this.weights[i];
if (rnd <= 0) break;

    } 
// for rounding errors
if (rnd > 0) i = n - 1;
// get value
sel = this.inputs[i].cval;

   } 
while (sel == "");
this.cval = sel;

  } 
 } 
nWheel.prototype = Object.create(Neuron.prototype);
nWheel.prototype.constructor = nWheel;

5.6 Emotion Metabolism

The bio-inspired emotion metabolism was implemented as described in Sect. 3. It is
composed of 34 dedicated neurons organized in 8 layers. The code below gives as an
example the implementation of a neuron that computes the Euclidian distance in the
three-dimensional emotion space:
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function nDistance () {
Neuron.call(this);
this.operator = function () {

var x1 = this.inputs[0].cval;
var y1 = this.inputs[1].cval;
var z1 = this.inputs[2].cval;
var x2 = this.inputs[3].cval;
var y2 = this.inputs[4].cval;
var z2 = this.inputs[5].cval;
var dx = x2 - x1;
var dy = y2 - y1;
var dz = z2 - z1;
this.cval =

Math.sqrt((dx * dx) + (dy * dy) + (dz * dz));
  } 
 } 
nDistance.prototype = Object.create(Neuron.prototype);
nDistance.prototype.constructor = nDistance;

We set the Personality parameters of the Emotional Metabolism to a fixed neutral
value:

Op ¼ Co ¼ Ex ¼ Ag ¼ Ne ¼ 0:5

This corresponds to a neutral state in the Lövheim cube:

Sx ¼ Dy ¼ Nz ¼ 0:5

The Emotion Metabolism is updated by propagating the inputs using the cyclic
called “lifepulse” trigger. In this study we set this cycle to 0.1 s. The decay rates of the
metabolism for returning to the personality neutral state were 10 s for the emotion level
and 10 min for the mood level.

We assigned to each of the personality agents an empirical fixed point in the
three-dimensional space of emotions. Table 3 gives their coordinates in the
three-dimensional space.

5.7 User Interface

We used an online web-based user interface for the experiment as shown in Fig. 7.
Since we focus in this study on text-based interactions, the interface does not used any
kind of avatar representation.
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6 First Results and Discussion

6.1 Experimental Protocol

In this experiment, we asked 30 university students (age 18–25) to perform a simple
and short conversation with three systems: (1) our multi-personality conversational
agent as described in this paper (called Anna in the experiment); (2) Apple’s Siri
personal assistant; (3) a simple conversational chatterbot based on our Neutral

Table 3. The coordinates of the 12 personality traits in the Lövheim Cube.

Agents Serotonin (Sx) Dopamine (Dy) Noradrenaline (Nz)

Insulting 0.1 0.1 0.1
Alone 0.2 0.2 0.5
Machina 0.2 0.5 0.5
House 0.2 0.7 0.2
Hal 0.2 0.7 0.7
Silent 0.5 0.1 0.5
Eliza 0.5 0.3 0.5
Neutral 0.5 0.5 0.5
Oracle 0.5 0.5 0.7
Funny 0.7 0.5 0.7
Samantha 0.7 0.7 0.7
Sexy 0.9 0.9 0.9

Fig. 7. A screenshot of the web-based user interface used for the experiment.
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personality agent. For (1) and (3), we used the online web-based interface as shown in
the previous section. Siri was accessed on an iPad Air Retina running iOS version 9.1.

The order of conversations was randomized. There was no topic restriction, thus the
conversations could be of any subject. However, we imposed a classical three-phase
structure: an opening phase, a core phase, and a closing phase [33]. All interactions
were text-based in English. We avoided the problem of errors related to the voice
recognition system of Siri by correcting the input when necessary. The students were
asked to conduct the interaction continuously and to use the same interactions for the
three systems in order to make the comparison easier and clearer.

In addition to the conversations, the participants also filled a questionnaire after
each session. This questionnaire was inspired by the one designed by Dylaba for
evaluating a multi-agent system for joke generation [9].

The questions were:

1. Did you get an impression that the agent was human like?
2. Did you get an impression that the agent tried to make the conversation more

interesting?
3. Did you enjoy the conversation?
4. Do you think that the agent used emotions in appropriate moments?
5. Please describe your feelings towards the agent after the interaction.
6. If you were to make friends with one of these agents, which would you choose?
7. Which agent do you think was better?

Answers for the questions 1 to 4 were given using a yes/no choice. The participants
could answer freely to question 5 using a single phrase. For questions 6 and 7, the
participant had to choose between the three systems.

6.2 Conversation Example

Table 4 below gives a typical example of a conversation between a student and the
three systems.

6.3 Result of the User-Oriented Evaluation

Table 5 presents a summary of the results concerning the questionnaire showing that
the multi-personality agent was evaluated as generally better than both the
mono-personality neutral agent and Siri personal assistant.

Concerning question 5, the comments of the participants show that most users have
more “fun” with the multi-personality character. They found it “interesting” but
sometimes “rude”. They emphasized the role of “humor” during conversations.

6.4 Discussion

The results of these first experiments confirm our hypothesis about using a
multi-personality character with remarkable personality traits. This empirical evalua-
tion shows that it globally increases the satisfaction of the user about the conversation.
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Table 4. An example of a conversation with the answers of the three conversational systems.

Example0 – User: Hi.
1 – Anna: It’s really nice to meet you.
2 – Siri: Hello, there.
3 – Neutral: Hello.
4 – User: Who are you?
5 – Anna: My name is Anna. I gave it to myself actually.
6 – Siri: I’m Siri. But enough about me… How can I help you?
7 – Neutral: Why do you want to know my name?
8 – User: What is an artificial intelligence?
9 – Anna: An Artificial Intelligence is an intelligent computer program. It is also the research
field of computer science that works on machine intelligence.
10 – Siri: Here is what I found: [Wikipedia Links]
11 – Neutral: I’m sure you know the answer.
12 – User: Are you some sort of stupid program like Eliza?
13 – Anna: That’s very rude. You are a rude person!
14 – Siri: Well… I’m still here for you.
15 – Neutral: Such a negative attitude.
16 – User: You are just dumb software.
17 – Anna: I love when you do both sides of the conversation. It’s like white noise it’s very
peaceful.
18 – Siri: I’m just trying to help you.
19 – Neutral: Do you really think that?
20 – User: I’m sorry.
21 – Anna: I’m sorry too, but don’t insult me anymore.
22 – Siri: It’s ok.
23 – Neutral: You’re welcome.
24 – User: Fine.
25 – Anna: Alright. Sometimes I have unexpected runtime errors too.
26 – Siri: Yes it is!
27 – Neutral: Alright.
28 – User: Bye.
29 – Anna: Well… I finally got the last word.
30 – Siri: OK. See you soon.
31 – Neutral: Goodbye.

Table 5. Results of the user-oriented evaluation.

Question Anna % Siri % Neutral %

(1) Human like 28 93 21 70 11 37
(2) Interesting dialog 25 83 13 43 9 30
(3) Enjoy dialog 24 80 18 60 14 47
(4) Appropriate emotions 23 77 12 40 8 27
(5) Describe feelings * * * * * *
(6) Friend 16 53 8 27 6 20
(7) Best agent 15 50 9 30 6 20
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The artificial agent appears more human-like than a neutral character and with a higher
user engagement.

Concerning the emotion selection, in the majority of cases, it was able to adapt the
emotional behavior according to the conversation. Despite the use of very different
personalities, the character appears globally coherent.

However in some cases, the answers made by our system were not relevant. Here is
one typical example. Note that this answer is different than the one reported in Table 4,
since it occurred in another conversation context:

User: What is an artificial intelligence?
Anna: Have you lost faith in yourself?

This problem has potentially three causes. The first one is a bad design or mal-
function of the selected agent, which provides an irrelevant response.

The second one is a problem of the Emotional Selection, which chooses an agent
not compatible with the current emotional state. This may occur in rare situations since
the roulette wheel selection has a low probability of choosing low weighted agents, but
there is still a chance that it may happen by principle. However, note that the user does
not always interpret such an example as a malfunction since it is a common human
behavior to change the subject of the conversation or to make suboptimal responses.

The third potential cause is that the 12 available agents do not provide a complete
and homogeneous coverage of the emotion space as shown in Fig. 8. There are two
main approaches in order to solve this problem. The first one is to design
emotion-based agents that perfectly fit the three-dimensional space. At least, an agent
for each cube’s edges plus one neutral agent at the center must be developed. The
second solution is to increase the number of agents by designing much more

Fig. 8. Repartition of the 12 agents in the Lövheim Cube of emotions showing that they don’t
provide a full coverage of the three-dimensional space.
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personality traits. This is our preferred solution since our goal is to obtain an “unfor-
gettable” character. Also note that these two solutions are not mutually exclusive.

7 Conclusion

We have presented a multi-personality architecture with emotion selection for intelli-
gent conversational agents. Our first experiments show that this approach is promising
in terms of user engagement compared to a more neutral approach. It has shown also
that despite the heterogeneity of the personality agents, emotion selection enables a
globally coherent and believable character to emerge from conversations.

Of course, there are many works and studies that remain to be done. First of all, we
need to design additional personality agents in order to have a better coverage of the
three-dimensional emotion space. Secondly, we need to plan experiments involving
much more participants, since 30 people reveal only an indication of a possible con-
firmation of our hypotheses. This will enable us to confirm these first results with both
qualitative and quantitative evaluations of user engagement. Thirdly, we want to for-
malize our “edge of chaos” hypothesis and confirm it by testing different selection
principles and algorithms.
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Abstract. Attempts to develop generic approaches to game playing
have been around for several years in the field of Artificial Intelli-
gence. However, games that involve explicit cooperation among other-
wise competitive players – cooperative negotiation games – have not been
addressed by current approaches. Yet, such games provide a much richer
set of features, related with social aspects of interactions, which make
them appealing for envisioning real-world applications. This work pro-
poses a generic agent architecture – Alpha – to tackle cooperative nego-
tiation games, combining elements such as search strategies, negotiation,
opponent modeling and trust management. The architecture is then val-
idated in the context of two different games that fall in this category –
Diplomacy and Werewolves. Alpha agents are tested in several scenarios,
against other state-of-the-art agents. Besides highlighting the promising
performance of the agents, the role of each architectural component in
each game is assessed.

Keywords: Multi-agent systems · Cooperative games
General game playing · Negotiation · Strategy · Opponent modeling

1 Introduction

From the beginning of AI research, games have been an important test-bed to
develop new and interesting strategies and models for a variety of applications.
While there has been extensive research using a number of different games,
most work in this area relates to specific individual games. As a consequence,
agents developed for one game are often difficult to adapt to other games due to
the use of game-specific heuristics and architectures. One field of research that
has attempted to mitigate this problem is that of general game playing [12,19].
General game playing agents provide useful insight into what are the essential
elements for AI to emulate human thought and adapt to new situations never
encountered before.

Most existing work in the field of game-playing agents relates to traditional
adversarial games like Chess [9] or Go [20], because of their simple rules and
large strategic depth. These kinds of games, while useful in many regards, do not
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provide the best environment to allow modeling more complex and interesting
social interactions between players. One interesting category of games that allows
social interactions is that of cooperative negotiation games, where players are
encouraged to barter and create or break deals between themselves in order to
obtain the best results in the game.

Targeting general game playing AI for cooperative games would allow for
the development of increasingly interesting and complex agent capabilities and
features, enabling agents to not only adapt their playing strategies to different
games but also negotiate in a variety of different environments with different
protocols, goals and issues. In turn, this would allow to address increasingly
complex and interesting real-world scenarios, a concern that should always be
in place when doing research in games. To aspire such an aim, it is important to
first determine the essential elements that agents must have in order to be able
to play cooperative negotiation games effectively. Towards that direction, this
work attempts to identify some of these elements and propose a generic agent
architecture that tackles them and facilitates the development of agents with
such capabilities, able to play cooperative negotiation games.

The rest of this paper is structured as follows. Section 2 provides insight into
cooperative games, including their characteristics and challenges. In Sect. 3 we
revise some of the existing approaches to generic game playing and to coopera-
tive multi-agent games in particular. Section 4 introduces a general architecture
for cooperative negotiation games, including a description of each of its modules,
and a brief description of a general framework implementing the architecture.
Then, in Sect. 5, we describe implementations of the meta-model described in
Sect. 4, delivering some agents for two cooperative negotiation games. Section 6
reports on experimental evaluation of the developed agents, which have been
tested against state-of-the-art agents, when available. Section 7 puts the contri-
butions of this paper in the perspective of a long-term goal of delivering general
cooperative game playing agents. Finally, in Sect. 8 conclusions are drawn and
avenues of future work are laid out.

2 Cooperative Multi-agent Games

Traditionally in the field of game theory, a game is considered a cooperative
game [15] if players are able to form binding commitments with each other.
Games in which players cannot create binding agreements are then considered
non-cooperative games. It is usually assumed that communication between play-
ers is allowed in cooperative games but not in non-cooperative games.

For the purposes of this work however, we consider a somewhat more general
definition of cooperative games – games in which cooperation between players
is possible and encouraged but in which binding agreements are not necessarily
prevalent. More specifically, we will focus on cooperative negotiation games with
a mix of cooperation and competition. In this setting, negotiation is used to
establish cooperation in specific phases of an otherwise competitive game. Some
characteristics that are frequently present in these games are:
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– Very large search spaces, which makes the application of traditional search
techniques impractical.

– Difficulty in evaluating moves and player positions due to the fact that eval-
uating such moves often depends on the social context of the game.

– The possibility of betrayals and desertions due to the existence of non-binding
agreements.

There are many kinds of cooperative negotiation games, such as Settlers of
Catan, Quo Vadis? or Genoa. In the context of this work, two very relevant coop-
erative negotiation games are Diplomacy and Werewolves of Miller’s Hollow.

Diplomacy [3] is a strategy game for 7 players where each player takes control
of a nation and their armies and navies. By submitting orders to these units,
which are executed simultaneously with those of other nations, players attempt
to capture territories and hold supply centers in a map of Europe. The first
player to capture 18 or more supply centers wins the game. Players can also
issue orders to support the orders of other players in the game, and they are
encouraged to negotiate among each other in order to form alliances, support
each other and create joint plans. Because of this the game highly encourages
cooperation and players that are able to effectively negotiate are able to obtain
much better results in the game.

Werewolves of Miller’s Hollow [8] is a team-based game where two teams –
the villagers and the werewolves – attempt to eliminate each other. The twist
is that players on the villager team do not know who their allies are and who
the werewolves are, encouraging players to communicate, share information and
decide who to trust. The game is played in two phases: the day phase where play-
ers communicate freely, which ends with a vote to eliminate one player who the
remaining players think might be a werewolf, and the night phase where players
may not communicate but can choose to use some special abilities depending on
their role in the game.

Both Diplomacy and Werewolves of Miller’s Hollow are negotiation games
with a mix of cooperation and competition that allow players to communi-
cate among themselves in order to reach non-binding agreements, and use their
actions to support or hinder each other. Both are deterministic and imperfect
information games that work by phases. Despite these similarities, however, they
are games with very different features. While Diplomacy is for the most part a
zero-sum game, Werewolves of Miller’s Hollow is not, with several players often
losing or gaining utility with certain actions. While Diplomacy is a competitive
game by nature where each player is ultimately hoping to be the one to win
the game itself, which encourages eventual betrayal even among long time allies,
Werewolves of Miller’s Hollow is a cooperative game where players are divided
into teams and encouraged to cooperate among themselves – agents win or lose
the game as a group. The difference to a typical team based game is that in
Werewolves of Miller’s Hollow players do not have complete information about
who is on their team and who is on the opposing team, and must thus be cau-
tious about who they choose to trust. Table 1 summarizes a comparison of the
characteristics of Diplomacy and Werewolves of Miller’s Hollow.



Towards General Cooperative Game Playing 167

Table 1. Comparison between Diplomacy and Werewolves of Miller’s Hollow

Feature Diplomacy Werewolves

Deterministic Yes Yes

Information Imperfect Imperfect

Zero-Sum Yes No

Non-binding agreements possible Yes Yes

Simultaneous moves Yes Yes

Communication Public & Private Mostly public

Player victory Individual Team

Due to the characteristics of cooperative negotiation games, it is possible
to obtain much better results in these games if one is able to negotiate and
coordinate with other players effectively. Unfortunately, while humans are very
good at negotiation and intuitively know who to trust, it is much harder for
a computer to do so. In order to develop effective and believable AIs for this
sort of games, and cope with the large size of their search spaces, new strategies
that can effectively combine search strategies with negotiation and opponent
modeling need to be employed.

3 Related Work

There are relevant works both in the area of general game playing and coopera-
tive negotiation games. We here do not aim to provide an exhaustive list of game
playing agents, but instead to discuss some of the most important approaches
to general game playing and to cooperative negotiation games.

There have been several attempts to develop generic game playing agents
that are able to understand and play a variety of games. These systems usually
require a set of rules and constraints that formalize how the game is played,
usually defined in a specific game description language.

Zillions of Games is a system developed by Mallet and Leffer [4], where
programmers can define a wide variety of two dimensional abstract board games
using rule files written in a proprietary language (ZRF files). The platform can
then read these files and generate the game as well as intelligent general AIs that
can play it. While the system is limited in the rules and layouts of the games
it can generate (and its AI lacks advanced features such as negotiation or trust
reasoning capabilities), it is nevertheless an interesting example of a general AI
that is adaptable enough to play in a variety of different environments.

One of the most well known projects in this field is Stanford University’s
General Game Playing (GGP) project [12,19]. This project provides a frame-
work upon which developers can create general game playing agents to play
a variety of games, as well as the tools to describe those games. Games are
described in a description language called GDL, which is then interpreted by
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the agents developed using the GGP framework. While GGP is mostly focused
towards traditional board games a similar project by the University of Essex,
the General Video Game AI (GVGAI), is more focused towards computer video
games [17]. Similarly to GGP it provides a game description language, VGDL,
and a framework upon which agents can be built, that are able to interpret and
play any video game described using that language.

An approach to handle a particular family of imperfect information games
is the Poker Game Description Language (PGDL) [5], focused in Poker and its
many variants. PGDL is a language that allows users to define any Poker variant.
Additionally, the PokerLang [18] high-level language facilitates the specification
of agent strategies and tactics for specifying Poker playing agents.

Finally, more recently, Google’s DeepMind project aims to apply deep learn-
ing techniques to a variety of scenarios, including games. Using neural networks,
agents have been created that are able to effectively play games which contain
extremely large search spaces, such as Go [20]. This deep learning approach can
be applied to a variety of games and scenarios as long as one has access to quality
training data with which to train the agent.

In the area of cooperative negotiation games there have also been several
agents developed that provide an interesting starting point. Most of the work
in this area is focused on the classic game of Diplomacy. Unfortunately, while
there exist many agents for Diplomacy, no existing approaches have been found
for the game of Werewolves of Miller’s Hollow.

DumbBot is one of the simplest existing Diplomacy playing agents and was
developed by Norman [16]. This bot has no negotiation capabilities and uses a
simple heuristic to decide its actions by preferring to choose moves that weaken
its strongest opponents. DumbBot assigns a value to each territory that depends
on who controls it and what units are around it, and then it assigns actions to
every unit depending on those score values. While the method used is very simple,
DumbBot obtains fairly good results and is frequently used as a benchmark for
other Diplomacy agents.

One of the most important and influential negotiating agents is the Israeli
Diplomat. The architecture of the Israeli Diplomat was designed to be a general
negotiation architecture to be applied in a variety of situations. This architec-
ture was used to create a Diplomacy playing agent [13]. The Israeli Diplomat
tries to mimic the structure of a war-time nation. It consists of several compo-
nents working together to choose the best course of action. These components
are the Prime Minister, the Ministry of Defense, the Foreign Office, the Mili-
tary Headquarters, Intelligence and the Strategies Finder. The diplomat keeps
a knowledge-base of the relations it believes each nation has with each other as
well as any agreements it has, its intention to keep them and its trust that others
will keep them. This knowledge-base is updated by the different modules as the
game progresses, and affects every decision that the diplomat takes.

Another interesting approach is that of D-Brane [6], an agent developed by
de Jonge that makes use of the NB3 algorithm [7] as well as a complex strategical
module to find the best sets of moves to negotiate and play. NB3 is based on the
branch-and-bound search algorithm and mixes negotiation with search, so that
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the former can direct the latter. It was designed to be used in environments where
the search space is too large for traditional search techniques to be employed,
and where better solutions often require cooperation among several agents. D-
Brane uses a basic form of opponent modeling by using the utility values of deals
previously proposed and accepted by its opponents as a way to direct the search
for better solutions; however, it does not make an attempt to explicitly predict
an opponent’s goals or strategies. Another aspect that this agent lacks is the
ability to negotiate coalitions with other agents as well as joint moves for future
phases of the game, having no negotiation strategy for these kinds of deals.

DipBlue [10] is another negotiating agent for Diplomacy, inspired by the Israeli
Diplomat architecture. DipBlue is split into several modules called Advisers, that
together decide the actions the agent takes. Each adviser receives the evaluated
move scores from previous advisers and alters them according to its role. The base
adviser is inspired by DumbBot and uses the same scoring heuristic. This score is
then changed by other advisers to promote support actions for the units, promote
actions that keep agreements with its allies and encourage the agent to attack play-
ers that it distrusts. In order to model the trust value of each player, DipBlue keeps
a trust matrix that is updated as the game is played [11]. If a player performs hostile
actions against DipBlue, such as attacking it or breaking an agreement, its trust
value diminishes. If a player performs friendly actions, or refrains from doing hos-
tile actions, its trust value increases. DipBlue is more likely to accept agreements
and help players with which it has a high trust value, and attack players with a low
trust value. DipBlue does not have full negotiation capabilities, lacking the ability
to ask and give information or threaten players.

Concerning other cooperative negotiation games, perhaps one of the more
interesting approaches is the work by Afiouni and Øvrelid [1] that builds upon the
opponent modeling techniques described by Krimpen et al. In their work, they
propose a negotiating agent that uses weighted constraints to evaluate offers. By
watching the variation in issues in offers proposed by its opponents, this agent
can add or remove constraints from its opponent model, or alter their weights. It
then proposes new offers by solving a prioritized constraint satisfaction problem.

4 A General Architecture for Cooperative Negotiation
Games

A general architecture for cooperative negotiation games is needed to address
the goal of obtaining general cooperative game playing. With this in mind, in
this section we describe the Alpha architecture (first introduced in [14]) and its
modules. This architecture enables approaching several of the challenges present
in cooperative negotiation games, and facilitates the development of agents to
play these games effectively.

4.1 The Alpha Architecture

In order to address the development of agents for cooperative negotiation games,
we need to take into consideration several complex issues, such as negotiation
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Fig. 1. High-level diagram of the Alpha architecture and its modules.

abilities, opponent modeling and trust relationships. Making the architecture
generic and game-independent will ensure its applicability in a wide range of
cooperative negotiation games. As such, no assumptions should be made regard-
ing the usage of specific negotiation protocols or strategies, and the formalization
of goals and search strategies should also be game-agnostic. The Alpha archi-
tecture is modular and based on the architectures of Israeli Diplomat [13] and
DipBlue [11]. Figure 1 shows a simplified overview of the Alpha architecture.

The architecture has a structure similar to the Israeli Diplomat, with four
independent modules:

– The President coordinates the interactions between all modules and is
responsible for the final decisions regarding game play.

– The Strategy Office is in charge of suggesting good strategies to the Presi-
dent.

– The Foreign Office deals with negotiation with other players in the game.
– The Intelligence Office makes predictions regarding what opponents are

likely to do in the game.

This structure allows the architecture to have a clean separation between dif-
ferent independent modules that deal with different issues: negotiation, opponent
modeling, strategic/tactical evaluation of the game, which are then combined
with high-level agent personality and overall strategy. The idea is to enable and
facilitate compositionality when building agents with specific characteristics, by
combining these modules in different ways.
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Fig. 2. High-level diagram of the President’s components.

The President. The agent’s central module is the President (PR), which holds
its personality characteristics. This module coordinates interaction with the
other modules, defining the overall high-level strategy of the agent through the
definition of its goals. The PR is in charge of selecting and executing the agent’s
moves in the game. Figure 2 shows a simplified overview of the components of
the PR module.

The PR keeps a knowledge-base including information about the game
environment and its opponents. This knowledge-base is used and modified by
the remaining three modules, allowing the PR to make decisions with up-to-
date information regarding the environment. The information contained in the
knowledge-base is the following:

– The current state of the game.
– The moves played during the course of the game by each player.
– The agent’s current goals and their importance in the game.
– The lists of confirmed, completed and proposed deals by the agent and other

players over the course of the game.
– The player’s current disposition towards other players, such as who are its

allies and enemies.
– The opponent models for each other player.
– The general trustworthiness levels of each player.
– The trustworthiness levels of each deal.

Since the different modules share and use a lot of the same information,
one design concern was simplifying the sharing and exchange of information
among the different modules, which lead to the decision to include this central
knowledge-base in the PR module, which is easily accessible to all other modules.
This also allows for the President to override decisions taken by its subordinate
modules, such as which deals are confirmed.

Additionally, the PR includes a set of personality traits that can be defined
depending on the game being played. These govern the general strategy of the
PR, such as how aggressive it is, how trusting of other players it is or how prone
to taking risks it is. Finally, the PR also keeps lists of moves and deals suggested
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by the other modules, which the PR can then choose to execute depending on
several factors.

When defining the PR module, the developer must define what constitutes
a deal, a move and a goal, as these are game-specific concepts. Different games
have very different possibilities for what moves and deals a player can make.
Instances of these notions specify the game-specific elements that are stored in
the knowledge-base and used by all modules.

One important role of the President is deciding what overall goals the agent
is striving for and what relative importance to attribute to each goal. This infor-
mation is passed on to other modules, which take it into consideration in their
reasoning processes. This approach allows the PR to dictate the overall strategy
it wants to follow to its subordinate modules, allowing them to focus on the
individual details of what actions are more likely to be effective in attaining
these goals. Different PR modules allow the developer to customize the agent’s
general strategy and personality, allowing for different player archetypes.

The Strategy Office. A strategical assessment of the game is conducted by
the Strategy Office (SO), which has the responsibility of suggesting appropriate
moves to the PR. The SO contains most of the game-specific heuristics, and
evaluates the utility of possible moves and deals. For this reason, the SO is
highly dependent and adapted to the specific game being played. It also defines
the search strategy used to explore the space of possible moves.

The SO is conceptually split into two parts: the search strategy and the eval-
uation method. The search strategy is used for exploring the space of possible
moves, while the evaluation method is used to assess the utility of moves and
deals. While the search strategy can, in principle, be applied to different envi-
ronments with a low amount of effort, tactical evaluation is, in general, entirely
dependent on the game being played, as it relies on specific knowledge about the
game’s rules.

In order to find the best moves, the SO has access to the PR’s knowledge-base,
which includes information that is relevant to evaluate the utility of different
moves and deals. The PR requests move suggestions to the SO, which replies
with moves that are then stored in the PR’s internal list.

Changing the SO amounts to choosing among different search strategies and
heuristics for the game, which can have a major impact on a player’s effectiveness.

The PR and SO modules were conceived because of a design concern with
separating the long term “macro” strategy and the short term “micro” strategy.
This separation, in the form of the PR and SO (and also the FO when it concerns
negotiation), is useful since it allows for the agent to tackle complex problems
more easily, by dividing them into smaller problems. The SO and FO only need
to worry about a small subset of the overall game at a time, which simplifies
the development of these agents, while also allowing the agent to be formulated
through long term plans without having to concern itself directly with more
minor details of how to execute them via the PR.
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The Foreign Office. The purpose of the Foreign Office (FO) is to manage any
interaction with other players and negotiating deals and coalitions in a way that
best allows the PR to execute the moves it is considering. By sending a list of
moves, the PR requests the FO to find supporting deals through negotiation with
other players. Also using any other information available in the PR’s knowledge-
base, the FO autonomously communicates with other players and decides what
deals to propose, reject and accept. When a deal is proposed, confirmed or com-
pleted the FO informs the PR so that these deals are appropriately stored in its
knowledge-base.

The FO includes a Negotiation Strategy that determines what deals are pro-
posed and accepted and what concessions the agent is willing to make. This
module also defines the negotiation protocol used by the agent when communi-
cating with other players. The decision of what protocol to use is often dependent
on the game being played or even the specific development framework on top of
which the agent is being implemented.

By changing the FO, a developer can customize the negotiation capabilities
of the agent, allowing the use of different negotiation and concession strategies.
Omitting this module altogether leads to having an agent with no negotiation
capabilities.

Having all negotiation handled by the FO and all actions performed by the
PR allows the architecture to be cleaner, by compartmentalizing all platform
specific code for interacting with the game environment and other agents in
these two modules. It also more easily allows the agent to concurrently nego-
tiate agreements with its peers, while simultaneously considering and possibly
executing other incompatible moves and deals.

The Intelligence Office. Collecting information about and building models of
opponents is an important aspect of games, and particularly in those involving
social interactions. The purpose of the Intelligence Office (IO) is to address these
needs by calculating trust values and building opponent models for the different
players in the game.

The IO is divided into two parts: the opponent modeling function and the
trust reasoning function. The opponent modeling function outputs the predicted
goals and their relative importance for each opponent, to be updated in the PR’s
knowledge-base. How this is done is often specific to each game, since the goals
themselves as well as the actions and deals being analyzed are also game-specific.
Similarly, the trust reasoning function outputs trustworthiness values both for
each opponent as well as for each individual deal, depending on how likely they
are to be kept.

Configuring the IO can allow the developer to customize the opponent mod-
eling and trust reasoning strategies, or lack thereof, of an agent. This module
is especially useful in conjunction with the FO, since negotiations are likely to
benefit from a good opponent model and accurate trust reasoning.

The design decision of separating opponent modeling and trust reasoning in
the IO is related to the fact that while both subjects deal with predicting what
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actions an opponent will do, they are independent of each other. For exam-
ple, one can define an agent with no trust reasoning capabilities if this agent
is not expected to negotiate, since trust reasoning is especially important for
negotiation, while still using opponent modeling. Opponent modeling is useful
regardless of whether negotiation is possible, since predicting what goals enemy
players might have can have an impact on the tactics and strategy of the SO
and PR.

4.2 The Alpha Framework

In order to facilitate the application of the Alpha architecture, a simple Java
framework was developed, composed of several abstract classes representing each
of the described modules and their behavior. These classes define what each
module should do as well as the data that they can access and how this data
is updated and communicated to and by each of the modules. Each module is
defined in its own class and implements a specific interface available to every
other module. In addition, there are several data classes that contain data rela-
tive to the game being played and the agent itself, such as the knowledge-base
or the agent’s personality traits.

In order to implement an agent using the Alpha framework, a developer has
to implement the abstract classes of the modules he wishes to use. When imple-
menting the modules, the developer must implement their abstract methods in
order to define the domain-specific negotiation strategies, protocols, heuristics,
models and message handling. In the PR, the developer defines the high-level
strategy for the agent, such as how it decides which goals are more important and
what disposition it has towards other players. Optionally, the developer can also
specify actions for the agent to take before and after playing, such as initializing
or cleaning up data. In the SO, the developer implements utility functions for
moves and deals, as well as the search strategy used to find and suggest moves to
the PR. In the FO, the negotiation protocol and strategies are implemented as
well as how the agent sends and receives domain-specific negotiation messages.
Finally, in the IO there are functions where the developer may implement trust
reasoning and opponent modeling strategies.

Data produced by the different modules is automatically updated and made
available to the relevant modules. To make use of such data (e.g. use opponent
goal predictions, calculated by the IO, in order to enhance negotiations in the
FO), a developer has access to it in the PR’s knowledge-base.

The developer must also implement data classes with domain-specific defini-
tions of moves, deals, goals and opponents. Having all of this set up, the different
modules can be attached to the PR and the agent be made to play the game.

This framework is publicly available at: https://github.com/jocamar/Alpha-
Architecture.

https://github.com/jocamar/Alpha-Architecture
https://github.com/jocamar/Alpha-Architecture
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5 Building Agents with the Alpha Architecture

We here describe our experience on making use of the Alpha architecture, by
implementing two agents for two very different cooperative negotiation games:
Diplomacy and Werewolves of Miller’s Hollow. These agents, developed for such
different games, can be seen as proof of concept to test the Alpha architecture
in distinct scenarios, each with its own challenges.

5.1 AlphaDip

AlphaDip is a Diplomacy playing agent heavily based on D-Brane [6], using a
modified version of its strategic module as well as the NB3 algorithm to search
for the best moves. It has a few key improvements compared with D-Brane, the
most notable ones being an improved strategic module, a defined strategy for
negotiating coalitions and some ability to predict opponent goals and trustwor-
thiness. A high-level diagram showing how the Alpha architecture was applied
when building AlphaDip is shown in Fig. 3.

The President. As detailed previously, the agent’s PR is in charge of dealing
with the high-level strategy for the agent and holds a variety of information such
as player goals, moves to execute and trust levels. In order to discuss AlphaDip’s
implementation it is necessary to understand how these concepts are represented
by the PR, and consequently, understood by the remaining modules.

Fig. 3. AlphaDip’s architecture.
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In the context of AlphaDip, a move is a set of orders, one for each unit the
player controls. In Diplomacy, winning the game amounts to having the goal of
capturing as many supply centers as possible – this translates into modeling a
player’s goals as how much they want to control each supply center in the current
game stage. We model this as positive or null real numbers, where 0 means no
intention to control a supply center, 1 means neutral intention to control a supply
center and greater values mean greater intentions of controlling a supply center.
On the other hand, trust values for players stored by the PR are positive real
numbers that are inversely proportional to the trustworthiness of these players:
0 represents full trust in a player, 1 represents neutral trust and greater values
indicate lower levels of trust in a player.

The PR’s main role is coordinating the remaining modules and executing
moves. To fulfill this role, the PR first asks the SO for a fall-back move When a
round starts: this is a move that is expected to work even without any supporting
deals from other players nor any kind of negotiation, and will be used by the
PR in case all negotiations fail, or in the absence of a FO. Afterwards, the
PR periodically asks the SO, who continually searches for the best moves, for
suggested moves to consider. As these moves are discovered by the SO, the PR
forwards the last, and currently best known, move on to the FO to negotiate
for any required deals. After a certain time has elapsed, if all of the prerequisite
deals have been confirmed by the FO the PR selects the last move suggested by
the SO. Otherwise it falls back onto the fallback move calculated at the start.

The Strategy Office. AlphaDip’s SO tries to find moves that maximize the
number of controlled supply centers, and is based on D-Brane’s strategic module
and the NB3 algorithm. The objective of the game is to take control of as many
supply centers as possible. As such, one way of determining the utility for a move
is simply the number of supply centers that are ensured to be controlled by a
player when it plays that move. This is how D-Brane calculates the utility of a
move. AlphaDip calculates utility in a similar way, but introduces trust reasoning
and the prediction of opponent goals in order to attempt to obtain a more
accurate value than D-Brane. While D-Brane attributes the same score of 1 to
every supply center, AlphaDip uses its goals to influence the value of each supply
center. Additionally, if a move requires supporting orders from other players to
succeed, their trust values are taken into account when determining the utility
of the move. Using these computations, the SO suggests moves that are likely to
be easy for the FO to obtain any necessary supporting move commitments from
other players. Equation 1 shows how the SO determines the utility Up(m) of a
move m for player p, where n is the total number of supply centers. Function
Im returns 1 if the supply center i is sure to be controlled after move m and 0
if not. Function gp is the goal value that player p has or is assumed to have for
each supply center. Finally, tp is the average trust that player p has on all other
players involved in the move or 1 if no other players are involved.



Towards General Cooperative Game Playing 177

Up(m) =

n∑

i=1

Im(i) × gp(i)

tp(m)
(1)

In order to find the best moves in a given round, the SO is divided into two
components: the Tactician and the Searcher. The Tactician attempts to find the
best set of orders taking into account certain constraints such as any existing
order commitments. It then calculates the utility of the move as described above.
The Tactician uses a similar method to D-Brane’s strategic module [6]. This
method, exemplified in Algorithm 1, splits the current round into several smaller
battles for individual supply centers. For a given set of orders that attempt to
capture a supply center – a battle-plan – it is simple to calculate whether the
supply center will be captured. We do this by comparing it with every possible
enemy battle-plan for that supply center (lines 9 and 11 in Algorithm 1). If a
battle-plan ensures the capture or defense of a supply center, we say that it is
an invincible battle-plan. We can also determine pairs of invincible battle-plans,
that is, two battle-plans that if executed simultaneously guarantee that at least
one of them succeeds (lines 16–19). After the Tactician has found the existing
invincible battle-plans and pairs of battle-plans, an And-Or search is employed
to find the largest set of compatible invincible battle-plans or invincible pairs,
that are also compatible with any existing order commitments (line 25).

The Searcher uses the NB3 algorithm to look for joint moves with other
players that can maximize the utility for all players involved. Each node in the
search tree is a joint battle-plan with one or more opponents that attempts
to capture a supply center or help another player capture it. The path from a
node in the tree to the root of the tree contains a set of commitments that the
Tactician will attempt to solve for in order to find the best possible compatible
orders for the remaining units and the subsequent utility value for that node. If an
acceptable move is found, these commitments would then have to be negotiated
by the FO with any other involved players, for the move to be able to be executed.
By looking for joint moves, the SO can find strategies and moves that would not
be possible if a player was acting completely independently.

Because the SO uses the trust values and predicted opponent goals when
calculating the utility of a node, the search of the NB3 algorithm will be directed
towards nodes with joint moves with players in whom AlphaDip trusts, and who
are more likely to accept the conditions of the joint commitments.

The Foreign Office. Since, in order to be successfully executed, the moves
suggested by the SO may include order commitments with other players, the PR
passes the current best move it is considering on to the FO for it to negotiate any
required support agreements. AlphaDip’s FO performs two types of negotiation:
coalition establishment with other players and order commitments for the current
round. This is an improvement over D-Brane, which did not have a strategy
for the establishment of coalitions, instead assuming that all D-Branes simply
formed a coalition against all other players in the game. Currently, AlphaDip is
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Algorithm 1. Tactician Algorithm
1: playerAndOpponentBattleplans ← calculateBattleplans(gameState, player, allies)
2: playerAgreements ← getAgreementsFromPR()
3: for all bp ∈ playerAndOpponentBattleplans do
4: if !isCompatible(bp,playerAgreements) then
5: Remove bp from playerAndOpponentBattleplans
6: end if
7: end for
8: playerPlans ← getPlayerPlans(playerAndOpponentBattleplans)
9: opponentPlans ← getOpponentPlans(playerAndOpponentBattleplans)

10: for all bp ∈ playerPlans do
11: if !hasDefeatingPlans(bp, opponentBattleplans) then
12: Add bp to invinciblePlans
13: else
14: defeatingPlans ← getDefeatingPlans(bp, opponentBattleplans)
15: for all bp2 ∈ playerPlans do
16: if isCompatible(bp,bp2) then
17: defeatingPlans2 ← getDefeatingPlans(bp2, opponentBattleplans)
18: if !hasLegalCombinationOfPlans(defeatingPlans,defeatingPlans2) then
19: Add bp and bp2 as a new pair to invinciblePairs
20: end if
21: end if
22: end for
23: end if
24: end for
25: bestBattleplans ← getBestCombAndOrSearch(invinciblePlans,invinciblePairs)
26: return bestBattleplans

not able to negotiate move commitments for the following rounds as that would
increase the complexity of the agent tremendously.

The strategy employed to negotiate coalitions is similar to DipBlue’s [11].
At the start of the game, AlphaDip proposes a peace agreement to every other
player in the game. After that, during the rest of the game the FO attempts to
propose alliances against the stronger player in the game with which it is not
in peace with. If a player’s trust value rises above a certain threshold (meaning
the player is less trusted) the peace with that player is broken. Conversely, if the
trust value drops below a certain level (meaning the player is trusted) AlphaDip
proposes peace to this player. Additionally, if the game has 4 or less players
remaining, AlphaDip immediately breaks any alliances it has with a player if
that player controls 14 or more supply centers. This is so that AlphaDip does
not let a player get too close to winning in the final stages of the game.

The FO also attempts to negotiate joint order commitments for the current
round. The PR periodically asks the FO to negotiate deals concerning the moves
being currently considered. The FO compares the utility of the suggested moves
with the utility of each of the proposals it received: the FO either accepts the
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best proposal received if it has more utility, or proposes any necessary joint order
commitments required by the moves proposed by the PR.

In case the FO receives a proposal that is compatible with any deals it has
already accepted, the FO asks the SO to calculate the utility of that deal, and
informs the PR so that it stores the deal in the proposed deals list. The reason it
does not choose to immediately accept or reject the proposal, as explained in [6],
is so that the SO is given some time to continue searching and looking for any
possibly better options for other joint moves, before the agent commits to the
proposed orders. By committing to an offer and adding it to the PR’s confirmed
deals list, the search performed by the SO is automatically constrained to only
look for moves that satisfy the conditions in the accepted deals.

The Intelligence Office. AlphaDip may use the IO to calculate trust values
for players and predict their current goals in the game. In order to update the
trust values, the IO uses a strategy similar to DipBlue [10], where trust in players
increases steadily over the course of the game if no aggressive actions are taken by
these players, and decreases when aggressive actions are taken. The magnitude of
these updates is dependent on current trust values associated with the players, as
well as whether AlphaDip considers himself to be at peace or at war with them.
This way, if a player is highly trusted or in peace with AlphaDip, any aggressive
actions it takes will have a bigger impact on that player’s trust. On the other
hand, if a player is not trusted or is at war with AlphaDip, any aggressive
actions it takes have a smaller impact on that player’s trust, since AlphaDip
already expects that player to take aggressive actions.

The IO also attempts to predict its opponents’ goals, that is, which supply
centers it believes each player wants to control more, using a simple strategy
exemplified in Algorithm 2. Each time a player takes an offensive action against
a certain supply center, the IO increases the likelihood that that player wants
to control that supply center (line 9 in Algorithm 2). If a player takes no offen-
sive actions against a supply center, or takes actions that would help another
player capture that supply center (such as support orders), the IO decreases the
likelihood that the player wants to control that supply center (lines 5 and 12).
Similarly to trust value updates, the magnitude of such increases and decreases
are influenced by the current values for each supply center. This way, if a player is
already expected to want control of a certain supply center, any actions it takes
have a small impact on the value for that supply center desire. On the other
hand, if a player suddenly makes a move on a supply center that AlphaDip
believed that player was not interested in, the value for that supply center will
be affected more significantly – this can be seen as an ability of AlphaDip in
detecting changes in opponents’ goals.

5.2 DipBlue

In addition to AlphaDip, we have made a reimplementation of DipBlue in light
of the Alpha architecture (see Fig. 4). In order to do this we split the DipBlue
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Algorithm 2. AlphaDip IO Goal Prediction Algorithm
1: playerOpponents ← getOpponentsFromPR()
2: opponentGoals ← getOpponentGoalsFromPR()
3: for all op ∈ playerOpponents do
4: for all g ∈ opponentGoals[op] do
5: g ← g × 0.99
6: actionsSupportingGoal ← getActionsSupportingGoal(op,g)
7: actionsAgainstGoal ← getActionsAgainstGoal(op,g)
8: for all o ∈ ordersAndDealsSupportingGoal do
9: g ← g + 0.04

g

10: end for
11: for all o ∈ ordersAndDealsAgainstGoal do
12: g ← g × 0.95
13: end for
14: end for
15: end for
16: return opponentGoals

architecture into SO, FO and IO. Our version of DipBlue works exactly the same
as the original DipBlue described in [11].

DipBlue’s advisers are part of the SO, and are used to calculate the utility
value for possible moves in the same way as originally. Unlike with AlphaDip, in
DipBlue each move is a single order for a unit, and each order has a utility value
assigned by the advisers. After finding the best orders, the SO suggests them to
the PR, who asks the FO to negotiate any deals it thinks are necessary. The FO
implements DipBlue’s negotiation strategy, requesting supports from its allies
for any moves that could use them and negotiating alliances and peace deals.

The execution of DipBlue’s moves is not dependent on the success of nego-
tiations with other players, though any supports may increase the likeliness of
those moves. As a result, the PR will always execute moves suggested by the
SO, regardless of the result of any negotiations the FO attempts.

The IO updates opponent trust values in the same way the original DipBlue
does. Unlike AlphaDip, DipBlue’s IO does not predict opponent goals.

5.3 AlphaWolf

Werewolves of Miller’s Hollow was also chosen to draw an implementation of the
Alpha architecture. As far as we know, no frameworks are available to develop
agents for this game. We have implemented a game server using the Jade multi-
agent framework1, for which we implemented an agent to play the game – Alpha-
Wolf.

In order to simplify the implementation, and because certain roles are more
suited to be played physically with humans, we use a simplified version of the
game with a subset of the original player roles and abilities. In our version of the

1 http://jade.tilab.com.

http://jade.tilab.com
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Fig. 4. Mapping DipBlue to the Alpha architecture.

game, there are 4 possible roles for the players: werewolves, villagers, seers and
doctors. Werewolves have the goal of killing every other non-werewolf player in
the game while every other player has the goal of killing the werewolves. The
werewolves, seers and doctors each have a special ability that they can secretly
perform during the night phase of the game. Werewolves can collectively vote
on an enemy player to kill during the night. The seers can choose any player
to investigate during the night, learning its secret role. Finally, doctors are able
to choose a player, who if attacked by the werewolves during the night will be
healed and remain in the game, informing the doctor that this happened.
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The President. AlphaWolf’s PR works as described in Sect. 4. At the start of
each phase of the game it requests the IO to update opponent trust values and
predicted goals. In the context of this game, a player’s goal is tied to its role and
as such predicting a player’s goal means predicting the likeliness that a player
has a certain role. In the PR’s knowledge-base, this means that a probability is
associated with each player-role pair. Role probabilities for a given player add
up to 100%, so that if a certain role has a 100% probability, the PR knows
that player’s role and, consequently, its goal. A player’s trust is represented by a
positive or null real number, where 1 means neutral trustworthiness, 0 means no
trustworthiness and values above 1 mean progressively higher trustworthiness.

The PR requests the SO to suggest a good move. The notion of move depends
on the current phase of the game, but it always involves choosing a player to
either vote out of the game or as a target for the player’s ability during the
night phase. After a player is suggested by the SO, and depending on whether
the current phase of the game allows negotiation between the players, the PR
may ask the FO to attempt to negotiate with the other players for joint votes
against some player, or requests for investigation or healing. When the FO has
finished negotiating, the PR decides to either vote or target a certain player for
its special action. If no deal has been reached, the player is randomly chosen from
the list of players suggested by the SO, with players with higher utility being
more likely to be picked; otherwise, if a deal has been reached for a specific
player, the PR will take the action it agreed to on the deal.

The Strategy Office. AlphaWolf’s SO implements a simple strategy to suggest
potential players to either attempt to eliminate or protect, depending on the
current phase of the game and the player’s role and goals. This is done by
assigning each player a threat score, which is a measure of what roles and goals
the player believes an opponent has (as calculated by the IO) and how dangerous
these roles are to the player. In general, if a player is on the werewolf faction,
roles that have the ability to gather more information or use abilities that hinder
werewolves actions will have a higher threat level to the player. In the same way,
if a player is on the villager faction, roles that have the ability to gather more
information or hinder the werewolves are less likely to kill the player, and thus
are less threatening. Depending on the current phase of the game and whether
the actions available to the player will hinder an opponent (such as voting to kill
it) or help another player (such as healing it), either this threat score is used as
the utility for the move or its inverse is used, respectively. Equation 2 shows how
the threat value Tp of player p is calculated, where n is the number of different
possible roles a player can have, Bi is the base threat value for role i and Ci is
the current estimated likelihood that player p has role i.

Tp =

n∑

i=1

Bi × Ci

n∑

i=1

Bi

(2)
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The SO also has the purpose of calculating the utility of deal proposals. This
utility is based on the previously mentioned threat value of the proposer of the
deal, the threat value of the player whom the deal concerns, what type of action
the deal is proposing and the trust of the player in the proposer of the deal.
This calculation is described in Algorithm 3. The type of action proposed and
the threat values for the proposer and the player affected by the proposal are
used to calculate two values – one for the proposer and one for the target of
the proposed action – representing how much the player is willing to help the
proposer and hurt the target. These two values are then multiplied together with
the trust on the proposer, representing how much the player trusts the proposer
to abide by the deal and not take any actions against him, to reach the final
utility value for the deal (line 9).

Algorithm 3. AlphaWolf SO Deal Utility Calculation
1: target ← getTargetFromDeal()
2: proposer ← getProposerFromDeal()
3: proposerValue ← 1

getThreatV alue(proposer)

4: if dealActionIsPositive() then
5: targetValue ← 1

getThreatV alue(target)
6: else
7: targetValue ← getThreatValue(target)
8: end if
9: return targetVales × proposerValue × getTrustFromPR(proposer)

The Foreign Office. In Werewolves of Miller’s Hollow, players can only com-
municate during certain phases of the game, namely the discussion phase and,
for werewolves, the night phase. As the game is very reliant on communication
between players, negotiation is very important in order to obtain effective play-
ers. Otherwise, players would not be able to coordinate their votes or use their
abilities during the night. This is the purpose of the FO.

AlphaWolf’s FO implements a simple negotiation strategy during the day
phase, where each player proposes a joint vote against another player who they
think is the most threatening, as well as other agreements such as investigation
or heal requests, depending on their levels of trust with other players. Players
then wait for agreement confirmations from their opponents, locking the agree-
ment in place if they receive a confirmation. In each negotiation round, players
compare the utility of the proposals they receive with their concession value,
which is based on their own proposal and decreases over time, and decide either
to continue waiting or accept another proposal, retracting their own.

In the case of the nightly negotiation phase for werewolves (where they coor-
dinate to choose a victim), the strategy employed by the FO can be even simpler,
since the werewolves have complete information about who the other werewolves
are and can thus assume that they are working towards the same goals. In this
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case, consensus is reached by means of a sealed bid mechanism, where each
werewolf proposes one player to vote for as well as their preference level for that
player. After all werewolves have made their proposals, the bids are counted and
the player with the highest preference level among all werewolves is selected,
with every werewolf voting for it.

The Intelligence Office. AlphaWolf’s IO has the function of attempting to
predict a player’s goals and its trustworthiness. As mentioned previously, since
a player’s goals are tied to its role in the game, predicting its goals is a matter
of predicting its role. In order to predict an opponent’s role, the IO analyses the
proposals and votes of that player over the course of the game. The predicted
role probabilities for that opponent are thus a function of the threat values
of the players that opponent voted against (or proposed to vote against), and
the rounds in which that player took those actions. Algorithm 4 describes the
calculation for the prediction of opponent goals by the IO.

Algorithm 4. AlphaWolf IO Role Prediction Calculation
1: pastRounds ← getPastRoundsFromPR()
2: opponents ← getOpponentsFromPR()
3: opponentGoals ← getOpponentGoalsFromPR()
4: for all op ∈ opponents do
5: for all round ∈ pastRounds do
6: roundAgeFactor ← getAgeFactor(round)
7: for all actions ∈ getOpponentActions(op, round) do
8: target ← getTarget(action)

9: voteDamage ← getThreatV alue(target)
getAverageThreatV alue()× roundAgeFactor

10: scalingFactors ← calculateRoleScalingFactors(voteDamage)
11: for all r ∈ opponentGoals[op] do
12: r ← r× scalingFactors[r]
13: end for
14: normalizeOpponentGoals(opponentGoals[op])
15: end for
16: end for
17: end for
18: return opponentGoals

The IO searches through each player’s past actions and for each vote or
proposal that player made it calculates a vote or proposal damage value (line 9
in Algorithm 4). This value indicates the likelihood that an action was taken with
the intent of damaging the player’s faction and is based on the threat values of
the players who are the targets of that opponent’s actions. A high threat value
for the target of the action indicates that the action was not very damaging to
AlphaWolf’s faction, and even may have been helpful, and a low threat value
indicates a damaging action, as that opponent was voting against players that
are considered likely to be allies.
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For each action, its vote damage is then used to calculate a scaling factor
for each possible opponent role (line 10), which is finally used to scale the role
probabilities of each role proportionally (lines 11–12). Each role has a different
scaling factor because certain roles are more likely to have more information than
others: seers have a higher scaling factor than doctors, and doctors have a higher
scaling factor than villagers. In this way, if an opponent takes a damaging action,
the likelihood that it is a seer comparatively diminishes more than the likelihood
that it is a villager, since a seer would be less likely to commit damaging actions
against the villagers, having more information about the player roles. These
scaling factors are then multiplied with each current role probability, and the
values for the roles are then re-scaled back so that they total 100% (line 14).

To calculate trust values, the IO analyses the previous round and checks for
each opponent if it kept any agreements it accepted or if it voted against the
player. If an opponent broke an agreement or voted against the player, its trust
value is decreased by a certain amount, otherwise its trust value increases.

6 Experimental Validation and Evaluation

In order to validate our implementation of the Alpha-based agents described in
Sect. 5, we have setup a number of experimental scenarios. Besides illustrating
the correct functioning of the agents themselves, these scenarios also helped in
evaluating individual architecture components and, when available, enabled us
to compare the performance of the agents with other state-of-the-art players.

6.1 AlphaDip Validation Setup

We compared AlphaDip with three previously developed Diplomacy playing
agents: DumbBot, DipBlue and D-Brane. For that, we performed tests simi-
lar to those reported in [6,10]. It should be noted that unlike the D-Brane tests
reported in [6], which assumed D-Branes always formed a coalition against every
other agent in the game, we allow our agents to negotiate at will, establishing
and breaking coalitions.

In each experimental setup, we tested AlphaDip using 3 distinct configura-
tions, in order to separately assess the impact of negotiation and opponent/trust
modeling in its performance: (i) using only the PR and SO, (ii) including the
FO, and (iii) using all four PR, SO, FO and IO.

For every configuration, in each experiment we played a number of games of
Diplomacy, stopping after 40 game phases. After the end of a game, we ordered
players by ranking, from 1st to 7th, and collected ranking results. Ranking is
determined by the number of supply centers a player controls at the end of the
game (in case it is still alive), or by the game phase in which the player was
eliminated. Players with more supply centers or eliminated at later phases have
a higher rank in the game and are thus considered better. For configurations
without the FO (and thus, with no negotiation capabilities) we played a total of
100 games. For configurations including the FO we set the negotiation deadline
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at 15 s per round. Since these tests take considerably longer to execute, we only
played a total of 50 games per configuration.

All tests and experiments were performed using a laptop computer with 8 GB
of RAM and an Intel Core i5-6440HQ mobile CPU clocked at 3.5 GHz.

6.2 AlphaDip Results

Similar to experiments reported in Ferreira’s [10] and de Jonge’s [6] works, in
each experiment we had two instances of AlphaDip playing against 5 instances
of DumbBot. Combining the ranks of our AlphaDip agents, the best possible
average rank is 1.5, while the worst possible average rank is 6.5. We can compare
the average ranks of AlphaDip with the average ranks of DipBlue and D-Brane
reported in [6,10], respectively. The best rank achieved by DipBlue in the tests
performed by Ferreira is 3.57 [10], while the best rank obtained by D-Brane in
the tests performed by de Jonge is 2.35 [6].

Table 2 shows the average rank obtained by AlphaDip in each configuration
(standard deviation is also included). These results show that AlphaDip plays
significantly better than the DumbBot and DipBlue, even without negotiation,
opponent and trust modeling capabilities. However it also appears that the inclu-
sion of IO and FO only has a small effect on the performance of the agent. A t-test
performed on these results obtains a score of 0.554 when comparing the second
with the third configuration, and a value of 0.109 when comparing the first with
the third. This points towards statistically significant performance differences
between the base configuration (PR+SO) and the full one (PR+SO+FO+IO),
although further testing is required to confirm this hypothesis.

In order to test how well AlphaDip performs against other, more advanced,
agents we also performed an experiment including two AlphaDips and two D-
Branes (in this case without negotiation capabilities2), together with 3 Dumb-
Bots. The results of these tests are shown in Table 3. Similarly to the previous
experiment, these tests show that AlphaDip outperforms D-Brane, especially
when it can use the negotiation and opponent modeling capabilities provided by
the FO and IO. When playing only with the SO, AlphaDip performs only slightly
better than D-Brane. Because AlphaDip’s SO is based on D-Brane’s strategic
module, however, this difference is not statistically significant.

Table 2. Average rank of 2 AlphaDip when playing with 5 DumbBot.

2xAlphaDip & 5xDumbBot

AlphaDip config. Avg. rank

PR + SO 2.35 ± 0.15

PR + SO + FO 2.21 ± 0.21

PR + SO + FO + IO 2.11 ± 0.19

2 The public versions of D-Brane do not include negotiation capabilities (http://www.
iiia.csic.es/∼davedejonge/bandana).

http://www.iiia.csic.es/~davedejonge/bandana
http://www.iiia.csic.es/~davedejonge/bandana
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Table 3. Average ranks in games with 2 AlphaDip, 2 D-Brane and 3 DumbBot.

2xAlphaDip, 2xD-Brane & 3xDumbBot

AlphaDip config. AlphaDips avg. rank D-Branes avg. rank

PR + SO 2.84 ± 0.17 2.91 ± 0.16

PR + SO + FO 2.37 ± 0.21 3.19 ± 0.24

PR + SO + FO + IO 2.29 ± 0.20 3.25 ± 0.24

Table 4. Average ranks in games with 2 AlphaDip, 2 DipBlue and 3 DumbBot.

2xAlphaDip, 2xDipBlue & 3xDumbBot

AlphaDip config. AlphaDips Avg. rank DipBlues Avg. rank

PR + SO 2.38 ± 0.16 5.03 ± 0.20

PR + SO + FO 3.56 ± 0.26 3.44 ± 0.32

PR + SO + FO + IO 2.3 ± 0.22 4.73 ± 0.29

In order to complement the previous experiments, we also tested AlphaDip in
an environment with a higher number of negotiating agents: 2 AlphaDips play
with 2 DipBlues and 3 DumbBots. The 2 DipBlues played with the standard
adviser configuration described in [10]. Results are shown in Table 4.

These results show that when AlphaDips are playing with a PR+SO config-
uration or with all modules running they get a similar average rank, between
2.3 and 2.4. A statistical t-test gives us a value of approximately 0.653, which
shows that the difference observed is not statistically significant. The inclusion
of negotiation and trust reasoning does not seem to significantly affect the per-
formance of AlphaDip in this experiment. On the down side, negotiation without
opponent modeling seems to be counterproductive, as using the FO without the
IO (meaning that AlphaDip negotiates without making any attempt to predict
opponent goals or trustworthiness) brought the worst results in this experimental
setup – the average rank decreases to 3.56.

This lack of impact from negotiation resembles results obtained by de Jonge
in [6], where he points out that even though the NB3 algorithm manages to find
good joint moves (when they exist), their impact in the overall result of the game
is negligible. Negotiating joint moves for only the current round is not enough to
significantly increase the performance of the players – in order to obtain better
results one would have to attempt to negotiate further rounds ahead as well.

Another interesting observation is that, while AlphaDips do obtain a small
increase in their average rank when all modules are running as compared to hav-
ing just PR+SO, DipBlues themselves also benefit from this setting: DipBlues
obtain a better average ranking of 4.73 when playing against AlphaDips with
all modules active, compared with an average ranking of 5.03 when playing with
AlphaDips incapable of negotiation. These observations were also corroborated
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by de Jonge’s observations in [6], where he found that other agents could also
benefit from the deals discovered by agents running the NB3 search algorithm.

6.3 AlphaWolf Validation Setup

Testing AlphaWolf is not as straightforward as testing AlphaDip, due to the lack
of agents developed for this game. Nevertheless, we conducted experiments that
allowed us to test the relative performance of our agent with different configu-
rations of active modules.

In order to test the impact of each module in the performance of the agent,
we opted to have AlphaWolf werewolf agents always playing with all modules
running, and changed only the configurations of AlphaWolf villager agents. This
way, we can easily see the effect each module has on the performance of villagers.
As before, We tested 3 different configurations for this agent: (i) using the PR
and the SO, (ii) including the FO, and (iii) using all four PR, SO, FO and IO.

In each test we had the agents play 100 games in a 10 player game where
2 of the players were werewolves, and the remaining 8 were from the villager
faction, with 1 seer, 1 doctor and the remaining 6 being standard villagers. This
ratio of werewolf to villager players was chosen because it is the recommended
ratio in the official Werewolves of Miller’s Hollow rules [8]. We recorded the win
percentage for the villagers over those games as well as the average number of
villager agents left alive at the end of the game when the villager faction won.

6.4 AlphaWolf Results

Unlike with Diplomacy, results for the AlphaWolf agents show that negotiation,
trust and opponent modeling are effective features, with a significant impact
on agent performance (see Table 5). With the inclusion of the FO and the IO,
performance steadily increases from a 27% to a 46% win ratio, and finally to a
73% win ratio with all modules active. The inclusion of the IO also significantly
increases the number of villagers remaining alive in games where this faction
wins. This indicates that, with the inclusion of trust and opponent modeling,
players are able to identify werewolves much earlier in the game, allowing for
quicker victories.

One possible explanation for the difference in the relative impact of negotia-
tion, trust and opponent modeling in the game of Werewolves of Miller’s Hollow

Table 5. Win percentages and average number of remaining villagers for a team of 8
villagers playing against 2 werewolves.

Villagers config. Win % Avg. # villagers

PR + SO 27% 3.56

PR + SO + FO 46% 3.20

PR + SO + FO + IO 73% 4.88
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as compared with Diplomacy is that in the latter agents already implicitly have
an idea of their opponents’ goals. Since in Diplomacy the rules of the game
encourage players to capture supply centers, one can assume that other players
will try to maximize their number of supply centers over the course of the game.
On the other hand, in Werewolves of Miller’s Hollow players have no way to
know, at the initial stage of the game, what their opponents will be trying to do.
This means that players have no way to predict an opponent’s utility function
at the start of the game, and must analyze its actions in order to predict the
opponent’s goal.

Negotiation may also have a greater impact in Werewolves of Miller’s Hollow
because each player only has a single vote to affect the round. Without coor-
dination and organizing joint votes, players have a hard time completing their
goals. In Diplomacy, players can have differing numbers of supply centers and
units, which allows certain players to affect the outcome of the rounds more than
others; this means that strong players can use their superior strength to obtain
their objectives even without negotiation.

7 Discussion

While there have been several attempts to develop general game playing AIs, the
task has not proven to be easy, and the available proposals often come with sev-
eral important limitations. The path that has been taken throughout time is to
address successively more and more complex characteristics of the environment
faced by agents: from deterministic, sequential and perfect information games,
to stochastic and imperfect information games. The next frontier may well be
games demanding for social relationships, where negotiation and trust modeling
are essential components to establish cooperation, a need that is magnified in
the presence of simultaneous moves.

The low coverage of games that include this social element is one of the
biggest limitations of current approaches such as Zillions of Games [4] and the
General Game Playing project [19], which focus mostly on abstract board games
involving no or little cooperation. The Alpha architecture seeks to bridge the gap
between the current state-of-the-art and cooperative negotiation games.

However, it is important to note that the Alpha architecture and framework
do not constitute in themselves a general game playing AI, as they do not offer
some essential capabilities that other general game playing AIs possess. For
example, a way for the developed agents to abstractly understand the rules of the
different games is entirely missing (see [2] for a glimpse of the challenge). In order
to obtain a truly general game playing AI it is necessary for the developed agents
to be able to learn different rule sets for different games that the developers
might not even themselves know, for example by reading a description language
file (using formats such as [21] or [5]) that describes the rules for these games.

The proposed architecture is instead intended to serve as a strong framework,
upon which game-specific agents can be implemented, that identifies, organizes
and generalizes the use of a number of different capabilities required to do well
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at negotiation games. By using the proposed architecture, developers can eas-
ily implement agents that make use of a combination of search strategies with
negotiation, opponent modeling and trust reasoning capabilities, in a general
and standardized way. This basis can be used in the future to develop a true
general game playing AI that is able to play a variety of cooperative negotiation
games. This can be done by adding some improvements over the current work,
while keeping the same role for each of the modules of the Alpha architecture.

8 Conclusions and Future Work

The objectives of this work were the study of what elements were necessary to
create effective agents that could play cooperative negotiation games, and to
develop a generic architecture including these elements, which could be used to
facilitate the development of effective agents for a wide variety of games.

We tested the proposed architecture by developing agents for two very differ-
ent cooperative negotiation games, and believe that the proposed Alpha archi-
tecture is generic enough to be applied to many other different games. The two
most relevant agents developed using the Alpha architecture and framework
were AlphaDip and AlphaWolf. AlphaDip is an agent with strategies inspired
by D-Brane and DipBlue, with the inclusion of opponent modeling to make
predictions about an opponent’s intention to capture certain supply centers, as
well as a negotiation strategy for the establishment of coalitions, which was not
present in D-Brane. AlphaWolf is a Werewolves of Miller’s Hollow agent that
also includes negotiation, trust and opponent modeling capabilities, allowing it
to predict its opponents’ roles and negotiate deals accordingly.

The results of the tests performed using these two agents show that AlphaDip
was in general superior to both DipBlue and D-Brane, obtaining better average
ranks in the games played. However, the inclusion of negotiation, trust reasoning
and opponent modeling capabilities did not have a very large impact on the
performance of the agent. On the other hand, results obtained for AlphaWolf
show that the inclusion of the Foreign Office and Intelligence Office had a larger
impact in the performance of the agent. This indicates that negotiation, trust
and opponent modeling are more important in Werewolves of Miller’s Hollow
than in the Diplomacy game.

We believe that these results are positive and the inclusion of negotiation,
trust reasoning and opponent modeling capabilities generally improved the per-
formance of the agents, though the impact was much greater for AlphaWolf than
for AlphaDip. We also believe that the developed architecture and framework are
a helpful contribution to the field by facilitating the development of agents with
these capabilities. However, while the developed architecture is very modular and
allows agents to be built upon it and make use of negotiation, trust and opponent
modeling, there is lots of room for improvement. The Alpha architecture allows
developers to define different negotiation strategies, trust reasoning and oppo-
nent modeling approaches, which may be tailored to a specific game. However,
this process can be made simpler with the inclusion of generic strategies (such
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as D-Brane’s NB3 algorithm) that can be applied equally to any environment.
The inclusion of a generic way to predict opponent goals and strategies, calculate
trust values and decide what deals to accept, based on the knowledge-base of the
President, would further simplify the process of developing an efficient agent.

The agents implemented during the course of this work, while generally effi-
cient, could also be improved. One major improvement to AlphaDip is to allow
the agent to search for and negotiate movement commitments for several rounds
ahead, instead of only the current round. As for AlphaWolf and the implemented
Werewolves of Miller’s Hollow server, one key improvement would be the capa-
bility for AlphaWolf to use strategies involving bluffing, by for example making
opponents believe it has a different role than its true role, a strategy human play-
ers frequently use. If correctly implemented, this ability could make AlphaWolf
much more effective, especially when playing with human opponents.
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Abstract. Self-adaptation and self-organisation (SASO) are increasingly
used in information and communication technology to master complexity
and keep the administrative effort at an acceptable level. However, using
SASO mechanisms is not an end in itself – the primary goal is typically
to allow for a higher autonomy of systems in order to react appropriately
to disturbances and dynamics in the environmental conditions. We refer to
this goal as achieving “robustness”.Duringdesign-time, engineers havedif-
ferent possibilities to develop SASO mechanisms for an underlying control
problem. When deciding which path to follow, an analysis of the inherent
robustness of possible solutions is necessary. In this article, we present a
novel quantification method for robustness that provides the basis to com-
pare different control strategies in similar conditions.

1 Introduction and Motivation

Information and communication technology (ICT) has undergone a dramatic
change: From single isolated fully comprehensible systems with a clear scope of
functionality to large-scale structures of interconnected subsystems, see Bellman
et al. (2014). Although the benefits of this change are clearly visible, this implies
a severe risk: Complexity is everywhere, see Tomforde et al. (2014). And this
complexity is what turns out to be a nightmare for developers, administrators,
and even users. In order to be able to master complexity in ICT solutions, ini-
tiatives such as Organic Computing (OC), see Tomforde et al. (2017), and Auto-
nomic Computing (AC), see Kephart and Chess (2003), emerged that proposed
to mimic architectural and behavioural characteristics as found in natural and
social systems, such as self-organisation, self-adaptation or decentralised control.
As a result, traditional top-down organised and centralised design-concepts with
single points of failure are replaced by bottom-up solutions that make use of
cooperative efforts of distributed autonomous subsystems (or agents in terms of
c© Springer International Publishing AG, part of Springer Nature 2018
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Wooldridge (2009)) – with the goal to achieve desirable properties such as, e.g.,
self-healing, self-protection, and self-optimisation. We will refer to these systems
as self-adaptive and self-organising (SASO) systems throughout this article.

Using SASO mechanism to control the behaviour of ICT systems is just
the means and not the end: The primary goals are a reduction of administrative
efforts and an increase of resilience against external or internal disturbances. The
former goal is inherent in transferring control decisions to systems themselves,
since the user or administrator is not bothered with decisions at lower abstraction
levels. However, the latter goal is sometimes misconceived with the desire to allow
for higher utility values. Conceptually, SASO systems are not per se faster than
conventional systems but they return faster to a certain corridor of an acceptable
utility in the presence of disturbances. The ultimate goal of SASO systems is,
consequently, to become more resilient against disturbances and attacks1 from
outside. We refer to this property as “robustness” in this article.

In this article, we propose a novel technique to measure the property of
robustness in SASO systems. This technique provides the basis for (i) allow-
ing engineers to estimate the possible benefit of applying SASO concepts as a
basis for a comparison against other solutions, (ii) allowing researchers in the
domain of SASO systems to empirically evaluate their systems in a generalised
manner, and (iii) providing a measurement foundation for testing SASO systems
that takes inherent properties into account that differ from traditional systems
engineering.

The general idea of the proposed technique to quantify robustness is to use
the area of the characteristic utility degradation over time. Compared to other
works from the state-of-the-art, this bears the advantage that this area captures
the depth of the utility drop as well as the duration of the recovery. Intuitively,
a degradation of zero corresponds to an ideally robust system. However, we
require a more detailed analysis: The gradient of the drop phase and the bottom
level of the degraded utility provide features that characterise the behaviour of
the SASO mechanisms by means of a so-called passive robustness. As response
to such a drop in utility, SASO mechanisms typically react with adaptations
of the behaviour to guide the observed utility back to the favoured corridor of
pre-specified target values. The upward gradient of this utility after starting the
adaptation and recovery process is an indicator of the effectiveness of the sys-
tems active robustness. However, “utility” is an application-specific metric. It is
used as a generalised term for the targeted effect of the system as defined by the
user. Conceptually, it may be calculated by taking varying basic indicators into
account, such as speed (in case of robots or autonomous cars), performance or
throughput (in case of computing systems), or transfer rates (in case of commu-
nication systems).

This article is an extended and refined version of a conference paper, see
Kantert et al. (2017), and is based on a preliminary concept as can be found

1 An attack is a certain instance of the broader class of disturbances. In the remainder
of this article, we will use the term “attack” but the discussion is valid in general
for all kinds of disturbances.
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in Edenhofer et al. (2016). Compared to the conference paper, we extended the
formal approach to measure robustness, discussed the underlying system model
in detail, and derived the limitations of the proposed solution in a formal manner.

The remainder of this article is organised as follows: Sect. 2 presents the sys-
tem model for SASO systems as considered in this article and explains the gen-
eralised approach to quantify robustness in SASO systems. Afterwards, Sect. 3
compares this approach to work from the state-of-the-art. In order to investigate
the general applicability and to highlight the benefits of the proposed technique,
Sect. 4 applies it to a scenario from the field of wireless sensor networks (see
Kantert et al. (2015)), Sect. 5 considers an example scenario from the field of
open distributed systems for volunteered computing (see Kantert et al. (2014)),
and Sect. 6 uses the Organic Traffic Control system – which is a SASO app-
roach to urban traffic control and management, see Prothmann et al. (2011) –
as example. The insights from these examples are discussed in Sect. 7 and the
current limitations are explained in detail. Finally, Sect. 8 summarises the article
and gives an outlook to future work.

2 Approach – Measuring Robustness

In the following section, we introduce our technique to measure the robustness
of SASO systems as response to certain (external) disturbances or attacks. We
initially present the underlying system model to provide a terminological basis
of understanding for some of the key terms used in this article. Afterwards, we
distinguish between passive and active robustness of the system and develop
the quantification technique. This approach to classifying and quantifying the
robustness is an extended version of our previous work which can be found in
Kantert et al. (2016a) and Kantert et al. (2017).

2.1 System Model

From a conceptual point of view, we assume a self-adaptive and self-organising
(SASO) system S to consist of a potentially large set of autonomous subsystems
ai ∈ A. Each ai is equipped with sensors and actuators. Internally, each ai distin-
guishes between a productive part (PS, responsible for the basic purpose of the
system) and a control mechanism (CM, responsible for controlling the behaviour
of PS and deciding about relations to other subsystems). This corresponds to the
separation of concerns between System under Observation and Control (SuOC)
and Observer/Controller tandem in the terminology of OC, see Tomforde et al.
(2011). Figure 1 illustrates the basic system with its input and output relations.
However, this is just used to highlight what we mean by referring to autonomous
subsystems. In particular, the user guides the behaviour of ai using U and does
not intervene at decision level – actual decisions are taken by the CM.

The goal of this CM is to guide the behaviour of the PS: in response to envi-
ronmental dynamics, internal status modifications, and external disturbances.
To do so, we assume that a system utility is computable from environmental
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Productive System

Control Mechanism (CM)

Sensors Actuators

ENVIRONMENT

Observa on 
of raw data

Execu on of
interven ons

Goals

User

Fig. 1. System model of a SASO system. The behaviour of the productive system is
guided by an internal control mechanism which acts on behalf of the user.

and internal data to estimate the success of the current control strategy. A reac-
tion to disturbances is then considered as an attempt to maintain this utility
and consequently counteract these disturbances.

2.2 Passive and Active Robustness

We assume a system S in an undisturbed state to show a certain target perfor-
mance. More generally, we rate a system by a utility measureU , which can take the
form of a performance or a throughput (in case of a computing system), a speed
(in case of car), or any other application-specific metric. Typically, a system reacts
to a disturbance by deviating from its target utility Utarget by ΔU .

Passively robust systems, such as flexible posts or towers under wind pres-
sure, react to the disturbance (i.e., the wind pressure) by a deflection ΔU =
Dx. This deflection remains constant as long as the disturbance remains. Active
robustness mechanisms (such as self-adaptation effected by a CM realised as
observer/controller tandem) counteract the deviation and guide the system back
to the undisturbed state with ΔU = 0 or Utarget. If we want to quantify robust-
ness (for comparison between different systems), we have to take into account
the following observables:

1. The strength of the disturbance, z
2. the drop of the system utility from the acceptable utility Uacc, ΔU , and
3. the duration of the deviation (the recovery time trec − tz).

We will introduce the developed method that takes all three aspects into con-
sideration in the following part of this article.
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2.3 Measuring Robustness

We assume that it is generally feasible to measure the utility over time (at least
from the point of view of an external observer). However, it is often hard to
quantify the strength of a disturbance z. Therefore, depending on the applica-
tion, an estimation of z is required for our model. Furthermore, the system has
to know a target utility value Utarget (maybe the highest possible utility) and
an acceptable utility value Uacc (a minimal value where the system is still useful
to the user). This follows the ideas of a state space model for SASO systems
as discussed in Schmeck et al. (2010). The goal of the model is to measure the
response of a system to a certain disturbance in terms of its utility and compare
it to other disturbances or systems.

In Fig. 2, we show a typical (artificial) utility function U(t) as example. In the
beginning, U is at the target value Utarget. At time tz, a disturbance of strength
z happens and the utility (red) decreases. Once it drops below the acceptance
threshold Uacc at tcm, a control mechanism (CM) starts to intervene. At tlow,
U reaches Ulow,perm without an effective recovery mechanism and Ulow,cm if a
control mechanism is acting against the impact of the disturbance. With a CM,
U starts to recover at trec and passes Uacc at tacc. However, U does not recover
without an appropriate CM realising the desired SASO capabilities.

t

U

Utarget

Uacc

U1,low

U2,low

tz tztlow tacc

1a

1b

2a

2b

Fig. 2. Utility degradation over time. At tz a disturbance with strength z occurs. The
utility U drops. When it reaches Uacc (i.e. a utility value that is mapped on the accep-
tance space of the considered system, see Schmeck et al. (2010)), a control mechanism
(CM) is activated for (1) which only decreases to Ulow,cm (i.e. the lowest utility value
under presence of the control mechanism CM). At trec, recovery starts and (1) passes
Uacc at tacc. For (2) no CM is activated and utility drops to Ulow,perm (with perm
referring to a system-inherent permanent robustness level) and no recovery occurs.
When the attack ends (a), the utility recovers Utarget eventually (i.e. it reaches the
target space again, see Schmeck et al. (2010)). If the attack prevails or did permanent
damage to the system (b), utility may stay at a lower value. (Color figure online)
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We can differentiate between two classes of behaviour during an
attack/disturbance:

(1) An effective CM is started and the system recovers to at least Uacc.
(2) The system does not recover during attack (or during a disturbance).

Furthermore, we see two different types of behaviour when the attack ends
at tz. Either (a) the utility reaches the same value as before the attack (here
Utarget at ttarget; solid red line in Fig. 2), or (b) it stays at the same level as
during the attack (dashed line). In total, this results in four different stereotypes
of behaviour:

(1a) The system S recovers during the attack to U ≥ Uacc and returns to U ≥
Utarget when the attack ends. This is a strongly robust system.

(1b) S recovers during the attack to U ≥ Uacc and stays there when the attack
ends. This is a weakly robust system.

(2a) S does not recover during the attack but returns to the previous value after
the attack ends. Such a system shows just a certain “elasticity”, we call it
partially robust.

(2b) S does not recover during the attack, it stays at the low utility level
Ulow,perm. Such a system is not robust at all.

The previous classification of system behaviour just gives an abstract
overview of possible observations in response to disturbances and augments this
with a verbal description of how we intend to consider the underlying robust-
ness levels. However, to compare the effect of different disturbances zj or different
CMs, we have to quantify the utility degradation. We define the utility degrada-
tion DU as the area between a baseline utility (Ubaseline) and U(t) for the time
when U ≤ Uacc (see Eq. (1)):

DU :=
∫ tz

tz

(Ubaseline(t) − U(t)) dt (1)

As shown in Fig. 3, we define a baseline Ubaseline for the measurement. This
can be either hypothetical by using Utarget or Uacc (in Fig. 2) or we can run a
reference experiment (as we will show later in Scenario 2, see Sect. 5). In order
to maximise the system robustness, we have to minimise DU . A system, which
never drops below Ubaseline apparently has maximal robustness. We define the
robustness during attack Ra as:

Ra:=

∫ tz
tz
U(t) dt∫ tz

tz
Ubaseline(t) dt

Conceptually, we measure a utility degradation DU for each possible CM
under consideration. This allows for a comparison of the expected behaviour of
different CMs during an attack (such as cases (1) and (2) from above) or the
effectiveness of one CM for different attacks.
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T

U

Utarget

tz t

U (t)

Fig. 3. Visualisation of DU and Dbaseline. The upper area is DU and the relation
between the two areas equals the robustness R.

In addition, we can measure the long-term utility degradation DU,long term

when the attack ended – which is the area between Ubaseline and the actual U
for the time after tz. This allows us to compare the cases (1a/2a) and (1b/2b)
from above. Hence, the long-term robustness Rl is defined as:

Rl:=

∫ ttarget
z

U(t) dt∫ ttarget
z

Ubaseline(t) dt

In cases where U(t) never reaches Utarget again, ttarget is ∞ (also UD is ∞) but
we can calculate the open integral:

ttarget = ∞ → Rl:=

∫ ttarget
z

U(t) dt∫ ttarget
z

Ubaseline(t) dt
= lim

t→∞
U(∞)

Ubaseline(∞)

In all “standard” cases, R is assumed to be in the interval [0, 1]. It can
never be negative and will only be larger than 1 if U(t) improves through the
disturbance which happens only under very specific conditions (i.e., the system
settled in a local optimum before the disturbance occurs, and is able to leave
this local optimum as a result of the CM’s intervention). Even if the utility U(t)
never recovers, we get an asymptotic robustness value. However, values of Rl

with ttarget = ∞ are not comparable to values for Rl with ttarget �= ∞ because
the open integral would be always 1 in this case.

2.4 Examples

In the following, we describe three exemplary scenarios which should be distin-
guishable using our approach. Furthermore, we demonstrate why our approach
cannot be reduced to the individual components. In all cases, the dotted graph
should be rated as more robust than the solid graph.
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t

U

Utarget

Uacc

U2,low

U1,low

tz tlow tacc

U1(t)

U2(t)

Fig. 4. Example 1. Utility over time for two experiments. The dotted graph drops less
but tacc is the same. Robustness for the dotted graph is better.

t

U

Utarget

Uacc

Ulow

tz tlow t1,acct2,acc

U1(t)

U2(t)

Fig. 5. Example 2. Utility over time for two experiments. Both graphs drop by the
same amount but tacc is smaller for the dotted graph. Robustness for the dotted graph
is better.

Example 1 (see Fig. 4) shows the same graph as Fig. 3 which recovers at the
end of the experiment. The dotted graph drops slightly less than the solid one.
However, tacc has the same value for both graphs which shows that the duration
alone is clearly not sufficient to quantify the robustness because the dotted graph
does not drop as much. Nevertheless, the integral of the utility degradation DU

is obviously smaller and the robustness is better for the dotted graph.
Furthermore, Example 2 (see Fig. 5) highlights a case where both graphs drop

similarly. However, the dotted graph recovers faster and tacc is smaller which
demonstrates that the drop alone is also not sufficient. Again, our approach
using an integral will prefer the dotted graph over the solid one since it results
in the higher overall robustness value.
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t

U

Utarget

Uacc

Ulow

tz tlow t1,acc

U1(t)

U2(t)

Fig. 6. Example 3. Utility over time for two experiments. Both graphs drop by the
same amount but only the dotted graph recovers. Robustness for the dotted graph is
better.

In Example 3 (see Fig. 6), the solid graph does not recover within the experi-
ment (e.g. tacc is inf). However, the dotted graph recovers and both graphs drop
similarly. In this case, the robustness of the solid graph is not clearly better when
only considering the results of computing the integrals. Nevertheless, this marks
one of the limits of our approach and we further discuss this in Sect. 7.2.

3 Related Work

The term “robustness” is widely used with different meanings in literature,
mostly depending on the particular context or underlying research initiative.
Typical definitions include the ability of a system to maintain its functionality
even in the presence of changes in their internal structure or external environ-
ment (sometimes also called resilient or dependable systems), see Callaway et al.
(2000), or the degree to which a system is insensitive to effects that have not
been explicitly considered in the design, see Slotine et al. (1991).

When especially considering engineering of solutions driven by information
and communication technology, the term “robust” typically refers to a basic
design concept that allows the system to function correctly (or, at the very min-
imum, not failing completely) under a large range of conditions or disturbances.
This also includes dealing with manufacturing tolerances. Due to this wide scope
of related work, the corresponding literature is immense, which is e.g. expressed
by detailed reports that range back to the 90ies, see e.g. Taguchi (1993). For
instance, in the context of scheduling systems, robustness of a schedule refers to
its capability to be executable – and leading to satisfying results despite changes
in the environment condition, see Scholl et al. (2000). In contrast, the systems
we are interested in (i.e., SASO systems) typically define robustness in terms of
fault tolerance, see e.g. Jalote (1994).
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In computer networks, robustness is often used as a concept to describe
how well a set of service level agreements are satisfied. For instance, Menascé
et al. explicitly investigate the robustness of a web server controller in terms
of workloads that exhibit some sort of high variability in their intensity and/or
service demands at the different resources, see Menascé et al. (2005).

Beyond these general definition, a quantification of robustness is part of a
framework for measuring SASO behaviour. Existing metrics to identify SASO
properties are either highly domain specific and hard to generalise or restricted
to simple, small-scale models, see Parunak and Brueckner (2001), Chan (2011).
Only limited research effort has been spent on metrics to determine the effort and
the benefit of adaptation in distributed collections of autonomous subsystems,
see Eberhardinger et al. (2015) for an overview. Examples include the relation
between working and adaptation time, the availability of subsystems for task
processing, and the performance of the overall system (i.e., the degree to which
a certain goal is achieved). Kaddoum et al. (2010) discuss the need to refine
classical performance metrics to SASO purposes and present specific metrics for
self-adaptive systems. They distinguish between nominal and “self-*” situations
and their relations. For instance, they measure the operation time in relation to
the adaptation time to determine the effort. Cámara et al. (2014) investigated
some of the developed metrics in detail for software architecture scenarios. In
Schwind et al. (2013), the authors modelled the behaviour of a technical sys-
tem as trajectory traversing a state space – and conceptually approached the
resilience in terms of a dynamic constraint-based agent model. In particular,
they proposed to capture the notion of resilience for dynamic systems using
factors such as resistance, recoverability, functionality, and stability. However,
a concrete definition for SASO systems is still open. In addition, success and
adaptation efforts and ways to measure autonomy have been investigated, see
e.g. Gronau (2016).

Only a few approaches known in literature aim at a generalised method to
specifically quantify robustness. In a majority of cases, self-organised systems
are either shown to perform better (i.e. achieve a better system-inherent utility
function) or react better in specific cases (or in the presence of certain distur-
bances), see e.g. ICAC (2015) and SASO (2015). In the following, we discuss the
most important approaches to robustness quantification.

In the context of Organic Computing (OC), a first concept for a classification
method has been presented in Schmeck et al. (2010). Here, the idea is (as in our
approach) to take the system utility into account. Based on a pre-defined sepa-
ration of different classes of goal achievement (i.e. distinguishing between target,
acceptance, survival, and dead spaces in a state space model of the system S),
the corresponding states are assigned to different degrees of robustness. Conse-
quently, different systems are either strongly robust (i.e., not leaving the target
space), robust (i.e., not leaving the acceptance space), or weakly robust (i.e.,
returning from the survival space in a defined period of time). In contrast to our
method, a quantitative comparison is not possible. In particular, this robustness
classification does not take the recovery time into account.
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Closely related is the approach presented in Nafz et al. (2011), where the
internal self-adaptation mechanism of each element in a superior self-organising
system has the goal to keep the element’s behaviour within a pre-defined
corridor of acceptable states. Using this formal idea, robustness can be esti-
mated by the resulting goal violations at runtime. Given that system ele-
ments have to obey the same corridors, this would also result in a compa-
rable metric. Recently, the underlying concept has been taken up again to
develop a generalised approach for testing self-organised systems, where the
behaviour of the system under test has to be expressable quantitatively, see
Eberhardinger et al. (2015). However, this depends on the underlying state vari-
ables and invariants that are considered – which might be more difficult to
assess at application level (compared to considering the utility function in our
approach).

In contrast, Holzer et al. considered subsystems in a system S as nodes
and models them as stochastic automaton in a network. In addition, the nodes’
configuration is modelled as a random variable, see Holzer and de Meer (2011).
Based on this approach, the authors propose to compute the level of resilience
(the term is used there similarly to robustness in this article) depending on the
network’s correct functioning in the presence of malfunctioning nodes that are
again modelled as stochastic automatons, see Holzer and de Meer (2009). In
contrast to our approach, this does not result in a comparable metric and limits
the scope of applicability due to the underlying modelling technique.

From a multi-agent perspective, Di Marzo Serugendo approached a quan-
tification of robustness using the accessible system properties, see Di Marzo
Serugendo (2009). In general, properties are assumed to consists of invariants,
robustness attributes, and dependability attributes. By counting or estimating
the configuration variability of the robustness attributes, systems can be com-
pared with respect to robustness. Albeit the authors discuss an interesting gen-
eral idea, a detailed metric is still open.

Also in the context of multi-agent systems, Nimis and Lockemann (2004)
presented an approach based on transactions. They model a multi-agent system
as a layered architecture (i.e. seven layers from communication at the bottom
to the user at the top layer). Of particular interest is the third layer, i.e. the
conversation layer. The key idea of their approach is to treat agent conversa-
tions as distributed transactions. The system is then assumed to be robust, if
guarantees regarding these transactions can be formulated. This requires techni-
cal prerequisites, i.e. the states of the participating agents and the environment
must be stored in a database – this serves as a basis for formulating the guar-
antees. Obviously, such a concept assumes hard requirements that are seldom
available, especially not in open, distributed systems where system elements are
not under control of a centralised element and might behave unpredictably.

To conclude this discussion, we can observe that a generalised approach to
quantify robustness is needed that: (a) works on externally measurable values,
(b) does not need additional information sources (e.g. transactional data-bases),
(c) distinguishes between system-inherent (or passive) and system-added (or
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active) robustness (to allow for an estimation of the effectiveness of the particu-
lar mechanism) and (d) comes up with a measure that allows for a comparison
of different systems for the same problem instance. We claim that our approach
as outlined before fulfills all of these aspects. In order to demonstrate the effec-
tiveness, we apply it to three different use cases in the following part of this
article.

4 Application Scenario 1: Wireless Sensor Networks

As a first example to analyse the behaviour of the presented measurement tech-
nique, we consider Wireless Sensor Networks (WSNs). Such a WSN typically
consists of spatially distributed nodes which communicate over a radio interface.
Nodes sense locally and send the result to the root node in the network. Since
most nodes cannot reach root directly, other nodes have to relay packets. To find
a path to root, the Routing Protocol for Lossy and Low Power Networks (RPL)
is used, see Winter et al. (2012). The primary objective (O1) in such networks
is to reach a high Packet Delivery Rate (PDR; ranges from 0 to 1). Since nodes
are battery-powered, the secondary objective (O2) is to minimise the number
of Transmitted Packets (#TX) because sending data over the air causes most
power consumption in WSNs. These two objectives translate into two utility
functions, which we have to investigate with respect to their robustness. Utility
function 1 is PDR(t), utility function 2 is #TX(t).

In open distributed sensor networks, attacks by malicious or broken nodes
can occur, which lead to poor PDR. To counter such threats, we introduced
end-to-end trust in RPL in a previous work, see Kantert et al. (2016b). In this
trust-enhanced approach, the nodes assess the trustworthiness of their parents
and isolate bad-behaving nodes. This constitutes a specific self-organised control
mechanism CM. We are interested in a comparison of different variants of CMs:

CM0 OF0. This is the default routing mechanism in RPL as described in Winter
et al. (2012). It selects parents by the smallest rank.

CM1 Trust + ETX. Nodes use a trust metric to rate and isolate bad-performing
parents. Once a node is isolated, it is not used for communication paths any-
more. Kantert et al. (2016b) presents the approach in detail. The particular
method is not of interest in the context of this article, it serves as a represen-
tative for a more powerful, self-organised control mechanism.

CM2 Trust + ETX + Second Chance. This approach is similar to the previ-
ous one but also incorporates a mechanism to retry previously isolated par-
ents occasionally (i.e. after re-stabilising the system, see again Kantert et al.
(2016b) for details). This approach serves as a representative with even more
decision freedom of the CM.

In an undisturbed RPL network, our trust-enhanced system implemented as
CM1 behaves very similar to standard RPL (CM0). However, when an attack
occurs, standard RPL looses numerous packets and PDR drops because it cannot
handle (intentional or unintentional) malicious behaviour. When enabling our
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Fig. 7. Objective 1, Utility function 1: Packet Delivery Rate (PDR) over sequences
(time). At time step 160, an attack starts and ends at time step 340. PDR drops to
about 30% for OF0 during the attack and recovers afterwards. TRUST + ETX and
TRUST + ETX + Second-Chance recover during the attack and stay near 100% PDR
until the end of the experiment, see Kantert et al. (2017).

approach, nodes start to identify and isolate bad-behaving parents. Hence, the
PDR recovers to nearly 100% (i.e. Utarget) while the attack happens. Standard
RPL only recovers after the attack ends (see Fig. 7).

For O1 (PDR(t)), DU is 112 for CM0, 13.7 for CM1 and 17.9 for CM2.
Quantitatively, DU of CM1 is 87.7% better than CM0, and CM2 is 84% better
than CM0. Also, CM1 has 23.5% smaller DU than CM2. The baseline is 1 (see
Eq. (2)). Ra for CM0 has a value of 70% (3), CM1 has a value of 91% (4) and
CM2 has a value of 89% (5).

Ubaseline(t):=1 (2)
Ra,CM0 ≈ 70% (3)

Ra,CM1:=
146.3
160

≈ 91% (4)

Ra,CM2:=
142.1
160

≈ 89% (5)

For objective O1 (i.e. PDR(t)) CM1 recovers perfectly during the attack and
returns to the same value as before the attack. Therefore, in this scenario, RPL
with Trust + ETX is rated as strongly robust. However, this changes when we
look at the second objective O2 represented by utility function 2: metric #TX(t)
(the number of transmitted packets, see Fig. 8). When the attack starts, #TX
drops for all CMs (which would be perfect if PDR stayed at a constant level). For
Trust + ETX it increases to a higher level because the new routes are longer and
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Fig. 8. Objective 2, Utility function 2: Transmitted Packets (#TX) over time. At time
step 160, an attack starts – which ends at time step 340. During the attack #TX
increases for the TRUST + ETX control mechanism (CM1) and stays at that level
after the attack. For OF0 (CM0), #TX drops during the attack and recovers to the
undisturbed level afterwards, see Kantert et al. (2017).

require more transmissions. This is expected since some parents failed. However,
after the attack ends, only standard RPL returns to its previous #TX. Trust +
ETX stays at a high level. This is acceptable when dealing with intentional mali-
cious attackers but this is bad when disturbances are only temporary. Therefore,
Trust + ETX is not robust regarding the second utility function.

Most energy in wireless sensor nodes is used when sending packets. Thus, to
recover the energy consumption and #TX after an attack, we introduced TRUST
+ ETX + Second-Chance as a third control mechanism CM2 which retries parents
when the system has stabilised (from a node’s local perspective). This leads to a
slight decrease of the PDR during the attack because nodes loose packets when
retrying during an attack. However, after the attack the PDR is very similar and
#TX recovers to its level from before the attack (see Figs. 7 and 9).

For O2, we measure DU only after the attack. Quantitatively, DU for CM1
is ∞ because it does not return to the previous values. For CM0, DU is about 0.
CM2 needs some time to recover and has a DU of 1998.6. Thus, CM0 is the best
metric when only considering O2 (since it is very bad for O1). In our robustness
metric, we have to assume that a higher utility is better. In this case, the best
utility for O2 would be a value of 0 (which is unrealistic). Therefore, we invert
U(t) to get a utility function for the calculation of Rl (see Eq. (6)). This results
in a baseline Ubaseline of 43 (saved packets per second; see Eq. (7)). For CM1 this
results in an asymptotic long-term robustness Rl of 35% (8). CM2 recovers and



Comparing the Effects of Disturbances in Self-adaptive System 207

Fig. 9. Objective 2, Utility function 2: Transmitted Packets (#TX) over time. At time
step 160, an attack starts, and ends at time step 340. During the attack #TX(t)
increases for the TRUST + ETX + Second-Chance (CM2). For OF0 (CM0), #TX(t)
drops during the attack and recovers to the same level as before afterwards. Unlike in
Fig. 8, TRUST + ETX + Second-Chance (CM2) recovers to a similar level as before
the attack, see Kantert et al. (2017).

has a robustness value Rl of 47% (not comparable to CM1; Eq. (9)).

Unormalised(t):=120 − U(t) (6)

Ubaseline:=120 − 77 = 43
packets

s
(7)

Rl,CM1 ≈ 120 − 105
43

≈ 35% (8)

Rl,CM2 ≈ 401.4
860

≈ 47% (9)

CM2 (TRUST + ETX + Second-Chance) is strongly robust for PDR. Also,
it is robust regarding #TX. It does not recover during the attack (because better
routes do not exist) but it recovers to the previous state when the attack ends.

5 Application Scenario 2: Open Distributed Systems

Another scenario we measured robustness in is the simulation of an open, dis-
tributed Multi-agent System with applied trust metrics, the Trusted Desktop
Grid (TDG) Edenhofer et al. (2015). In this grid, jobs J are created by the
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agents and split into work units (WU), which are calculated in a distributed
way by the agents. The success (or utility) is expressed as the speedup σ(t). σ(t)
is defined as the time the agent would have needed to process all work units
on its own (self) divided by the real time it took to calculate the job in a dis-
tributed way in the system (dist), see Eq. 10. A job J is released in time step
trelJ and completed in tcompl

J .

σ =

∑
J

(tcompl
self − trelself )

∑
J

(tcompl
dist − treldist)

(10)

In this scenario, our objective is to maximise the utility function speedup σ(t)
(see Eq. (10)). Nodes make decisions based on a local trust metric and isolate
bad-behaving agents using this Control Mechanism (CM1; see Klejnowski (2014)
for details). We compare different attacks:

A0 No attack. Used as baseline.
A1 A short attack which ends at tz.
A2 Permanent attack which continues until the experiment ends.

Additionally, we consider two different disturbances by stereo-type attacker
behaviour:

D1 Egoistic agents (EGO) are accepting all WU, but abort 80% of them after
some time, which decreases σ(t) because these WUs have to be redistributed.

D2 Freeriding agents (FRE) do not accept WU at all. They reject WUs right
away but try to distribute their WUs at the same time.

For evaluation purposes, we investigated exemplary scenarios that incorpo-
rate disturbed system states. More precisely, we simulated 100 well-behaving
adaptive agents (ADA). An ADA is called “adaptive” since it modifies its interac-
tion strategy with another agent in response to own experiences and the system-
wide reputation. In particular, this means that own bad experiences and/or
bad experiences of others with this particular possible interaction partner will
decrease the probability of interaction, see Edenhofer et al. (2016) for details.

At time tz, 100 bad-behaving egoistic agents (EGO; D1) join the system,
simulating a colluding attack. To show the effect of robustness in the system, we
calculated the average speedup of 10 runs with a length of 200,000 ticks each. We
want to compare the system behaviour (i.e. its robustness) under two different
attacks. Attack A1 starts at tick 80,000 and lasts 40,000 ticks. Attack A2 is a
continuous attack of 100 EGO starting at tick 80,000. As baseline, we ran the
same experiment without an attack (A1; see Fig. 10).

In both attacks (A1 and A2), the average speedup of the ADA during the
attack of the EGO is decreased, due to the malevolent behaviour of the EGO.
tlow marks the point in time, where σ of the ADA is at its lowest. During the
attack, once the average speedup of ADA increases by 5% (trec) over σ(t) at
tlow, the recovery phase is said to start; recovery is defined to be reached, if σ(t)
is at least 75% (at tacc) of σ(t) before the attack in tz.
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Fig. 10. Disturbance D1: Robustness in the TDG. Attack of 100 EGO from tick 80,000
to 120,000 and continuous from 80,0000 (A2). tlow marks the point in time, where σ(t)
is at its lowest. The speedup starts to recover (trec) during the attack until it reaches
Uacc (at tacc). After the attack has stopped, the speedup returns to the level it had
before for A1. However, it stays at about 10 for A2.

In the first attack, after tick 120,000, the ADA have to redistribute the WUs
formerly occupied by EGO. After these WUs have been successfully calculated,
σ(t) recovers to the level it had before the attack. In both attacks, σ(t) of the
ADA recovers during the attack until it reaches the acceptance space (i.e. system
states where the utility is above Uacc). This is due to the EGOs getting low trust
ratings because they abort their assigned WUs. Yet, they manage to retain a high
enough reputation to still get some WUs computed by other agents. As 80% of
the WUs held by EGOs have to be redistributed, σ(t) of the ADA cannot recover
to the level it had before the attack.

Quantitatively, DU is 130,105 below the baseline for both A1 and A2. After
the attack, DU is 6250 for A2. D1 has a permanent influence and CM1 is not
able to fully mitigate the effect. We measured the baseline utility Ubaseline in a
reference experiment. Ra for A1 and A2 is with 72% (see Eq. (11)). Similar to
O2 in Scenario 1, only A2 fully recovers. For A1, we calculate Rl in an open
integral in Eq. (12). Again, not comparable, Rl for A2 can be calculated in a
closed integral (see Eq. (13); the open integral would have a value of 1).

Ra,A1 = Ra,A2:=
349, 895
480, 000

≈ 73% (11)

Rl,A1 ≈ 9.5
12

≈ 79% (12)

Rl,A2:=
113, 750
120, 000

≈ 95% (13)
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Fig. 11. Disturbance D2: Robustness in the TDG. Attack of 100 FRE from tick 80,000
to 120,000 (A1) and continuous from 80,0000 (A2) tlow marks the point in time, where
σ(t) is at its lowest. The speedup starts to recover (trec) during the attack and quickly
reaches Uacc and Utarget for both A1 and A2. At tick 120,000 A1 and A2 are the same
because the attackers are fully isolated and have no further influence Kantert et al.
(2017).

Similarly, we run experiments for disturbance D2 with free-riding agents (see
Fig. 11). Since those agents are simpler to detect, they are isolated within the
attack period of A1 and the system fully recovers to Utarget within the attack.
UD is 13, 056 for both A1 and A2 during the attack. After the attack ends, A1
is already fully recovered and the utility for A1 and A2 is similar. CM1 is able
to fully mitigate this disturbance D2. Ra is 97% (see Eq. (14)). Since U(t) fully
recovers for both attacks, Rl is about 100% for A1 and A2.

Ra,D2:=
466, 944
480, 000

≈ 97% (14)

6 Application Scenario 3: Urban Traffic Management

A third scenario that is often used as a basis to investigate SASO mechanisms in
the context of a specific application domain is traffic control and management in
urban regions. The reason for choosing this example application lies in its inher-
ent dynamics and distributed nature, see Bazzan and Klügl (2009); Dinopoulou
et al. (2006) for instance. One of the major SASO-based contributions in this
context is the Organic Traffic Control (OTC) system, see Prothmann et al.
(2011), that applies the observer/controller approach as well as an autonomous
and safety-oriented learning process to the traffic domain.
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In OTC, each intersection of the inner-city road network is managed by an
observer/controller (following the general concept as defined in Tomforde et al.
(2011)) instance that gathers detector data about the underlying traffic condi-
tions (in terms of flows passing each turning movement) and reacts by adapting
green durations. The success of the control strategy is typically expressed as
flow-weighted delays:

tD =
∑

i(Mi × td,i)∑
i Mi

(15)

In this formula, Mi corresponds to the current traffic flow at the i-th turn-
ing of the observed intersection and td,i denotes the average waiting time with
respect to a single turning ti. This metric is also referred to as Level of Service
(LoS), see Transportation Research Board (2000). In addition, the same metric
is used to determine the most promising progressive signal system – which is
described in detail in Tomforde et al. (2010).

Adapting traffic signalisation to changing demands and coordinating inter-
section controllers provides a first step towards robustness – but this does not
dissolve the initial disturbance. In terms of the previously developed notion, this
accounts as passive robustness. Re-routing of traffic participants counters the dis-
turbance (i.e. a blocked road or traffic jams) directly and can be considered as
active robustness mechanism in this context. In previous work, we equipped the
Organic Traffic Control system (OTC) with such a mechanism Prothmann et al.
(2012). Based on ideas resembling the Link State or Distance Vector Routing
protocols as known from the computer networks domain, see Tanenbaum (2002)
for instance, information about the shortest routes are exchanged between inter-
section controllers and provided to drivers at each incoming intersection, see
Prothmann et al. (2012; 2011) for details.

In this scenario, the objective is to maximise the utility function traffic flow
which can be measured globally. At tz, one road is blocked until tz (attack A1,
red road in Fig. 12). We compare three different control mechanisms:

CM0 No active control mechanism. Used as a baseline.
CM1 OTC without routing.
CM2 OTC with routing.

The evaluation has been conducted for a simulated network that is illustrated
in Fig. 12. The network consists of three Manhattan-type sub-networks. It con-
tains 27 signaled intersections (depicted as circles) and 28 prominent destinations
(depicted as diamonds). Within each sub-network, the intersections are con-
nected by one-laned road segments of 250 m length that provide two additional
turning lanes starting 100 m before an intersection. Regions are connected by
two-laned roads. Signalised intersections are operated by an observer/controller
(i.e. OTC) and can provide route recommendations for the prominent destina-
tions. Each destination also serves as origin for traffic entering the network.

We configured the simulation as follows: eight vehicles per hour travel from
every origin to every destination. Since this demand does not cause significant
jams at the network’s intersections, the scenario allows evaluating the impact
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of routing mechanisms under uncongested conditions. As disturbance, we tem-
porarily blocked one of the roads connecting two sub-networks due to an incident
(see mark in Fig. 12). The blockage affects both directions of the road, occurs
after 25 min and lasts for 40 min within the simulation period. The incident sce-
nario allows analysing the impact of the two different adaptation mechanisms
(CM1 = OTC without routing, and CM2 = OTC with routing) in comparison
to a standard fixed-time control approach (=CM0).

Fig. 12. An exemplary model of 27 intersections (depicted as grey circles), forming
three connected Manhattan-style road networks. Traffic enters and leaves the network
at locations referred to as destinations (depicted as light-grey diamonds). In the evalu-
ation, the red road is blocked during attack A1, cf. Kantert et al. (2017). (Color figure
online)

Fig. 13. Utility over time for OTC. At tz one road is blocked (attack A1) and traffic has
to be redirected. With fixed-time control (CM0), utility drops by nearly 3,000 vehicles
per hour. OTC without routing (CM1) performs slightly better. Compared, OTC with
routing (CM2) only drops about 1,000 vehicles per hour. After the attack A1 ends, all
CMs recover the system to their previous utility Kantert et al. (2017).
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Within the professional simulator Aimsun, cf. Barceló et al. (2005), we per-
formed five runs of experiments for each instance under evaluation and computed
averages. Figure 13 depicts the achieved results. We can clearly observe that the
typical system behaviour of a disturbed and recovering system is visible in this
scenario. When considering the OTC system without routing in comparison to
a standard fixed-time control, we can distinguish two effects: (a) the fixed-time
controller (i.e. CM0) defines the base-line (i.e. the maximum loss of utility) and
(b) the standard OTC system (CM1) already provides a permanent robust-
ness increase that improves the behaviour even if no disturbance takes place. If
activating the routing mechanism (CM2), an active robustness is added. Quan-
titatively, UD for CM1 is about 5.4% better than the reference solution (CM0)
(i.e. 5534 vs 5250 vehicles per hour) and routing (CM2) adds further utility, i.e.
an improvement in UD of 14.0% (i.e. 6312 vehicles per hour).

Ubaseline(t):=7, 000
vehices

h
= 116.7

vehicles
min

(16)

Ra,CM0:=
87.5
116.7

≈ 75% (17)

Ra,CM1:=
92.2
116.7

≈ 79% (18)

Ra,CM2:=
105.2
116.7

≈ 90% (19)

To calculate the robustness, we use a baseline based on Utarget (see Eq. 16).
Using the UD values from above, we calculate the robustness Ra for all CMs
in Eqs. (17), (18) and (19). What we can see in the figure is that a passive
robustness is already in place with CM0, since most of the network is still oper-
ating without strong impact of the disturbance (in terms of traffic flow through
the network). This changes if we just consider the blocked link: Here, for all
three mechanisms the utility drops to zero and recovers immediately when the
blockade is removed (not shown in figure). Hence, the robustness is achieved
at network-level, since participants are routed using the best available link (i.e.
with routing mechanism, CM2) or at least the non-affected participants benefit
due to longer green durations (i.e. a blocked road receives a lower fraction of the
phase cycle time when using OTC, CM1 and CM2). This mechanism may serve
as a basis to compare the success of the routing mechanisms to other solutions
from the state-of-the-art (such as Wedde et al. (2007) for self-organised rout-
ing or Dinopoulou et al. (2006) for autonomous traffic controllers) in terms of
quantifying the varying robustness levels in different disturbance scenarios.

7 Discussion and Limitations

After applying the developed measurement technique to three example use cases
from the wireless sensor network, trusted grid computing, and urban traffic man-
agement domains, we discuss the derived (generalised) insights in the following
section. This discussion is augmented with an explanation of the current limita-
tions of the proposed method which are addressed in current and future work.
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7.1 Discussion

We demonstrated that our approach is applicable to three varying scenarios from
different application domains. In Scenario 1, we compared three different control
mechanisms with two different objective functions for wireless sensor networks.
The resulting values are reasonable and allow for a simple and effective com-
parison of robustness levels for the considered CMs. In Scenario 2, we compared
two different attack types and two different disturbances in a grid scenario. We
measured the long-term influence for the disturbances and found that only one of
the disturbances has a permanent effect. Afterwards, in Scenario 3, we measured
the robustness for three CMs in a traffic management scenario.

The general shape of the utility graph was very similar in all our scenarios.
Still, the utility degradation UD is not comparable between scenarios because it
has an application specific unit (i.e., it is hard to compare apples and oranges).
However, our robustness metrics Ra and Rl are unit free and always have the
same boundaries. Thus, they allow for some (abstract) comparison between dif-
ferent systems.

Nevertheless, some limitations apply: The approach requires to consider a
fixed attack length tz − tz. This limits the applicability of the concept to those
cases where a disturbance is observable in the first place. Current research
addresses this topic by developing techniques to deal with this issue. Also, it
influences the value of R as illustrated by Scenario 2. If we had set tz earlier the
robustness Ra for both CMs would be lower. A similar challenge occurs when
calculating Rl for two CMs which reach Utarget at different times. To make their
robustness Rl values comparable, a later ttarget has to be chosen. This issue can
be solved by observing the utility behaviour over time and adjusting the key val-
ues correspondingly – but it requires some caution when designing experiments.

We noticed another challenge when calculating Rl for O2 in Scenario 1
because our goal was to minimise the metric. However, for a utility function
U(t) a higher value should be better. Hence, we had to invert the objective func-
tion to calculate the utility. There is no need to normalise the utility function but
larger values must be better which is important to keep the robustness values
inside the interval between 0 and 1.

In addition, we saw in Scenario 1 that it is crucial to choose the right utility
function. If we only consider O1, A1 has the best robustness. However, if we also
take into account O2, A2 is clearly better. The remaining challenge here is to
properly combine multiple metrics.

Finally, a more general remark is that we need a threshold defining an (at
least) acceptable utility level. This may not be available in all cases. However,
reinforcement learning concepts may be used to learn a situation-to-achievable-
utility mapping, i.e. to estimate the best achievable utility for each occurring
condition. This may then be combined with either a static interval defining
acceptable behaviour or a dynamic boundary for utility drop that considers
statistical properties such as variance to define an acceptable level of utility as
a basis for calculating the robustness.
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7.2 Limitations

We kept our approach as simple as possible and reduced the robustness measure-
ment to a single value. Unfortunately, this induces certain limitations (as already
mentioned at the end of Sect. 2.4). Especially cases where the utility does not
recover post a challenge. Since we have to calculate the robustness using open
integrals, only the last utility value matters. Figure 14 illustrates such a case:
The solid and the dotted line both result in exactly the same robustness value
because they converge to the same utility value at the end. However, the dotted
graph is certainly better because it drops less.

t

U

Utarget

Uacc

U2,low

U1,low

tz tlow

U1(t)

U2(t)

Fig. 14. Utility over time for two experiments. The dotted graph drops less. Both
experiments do not recover. Robustness for the dotted graph should be better. However,
our approach calculates the same robustness for both which will be improved in future
work.

t

U

Utarget
Uacc

Ulow

tz tlow tacc

U (t)

Fig. 15. Utility over time for one experiment with different sampling rates. Due to
aliasing the robustness is different.
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To solve this, we will extend the robustness into a transient and a perma-
nent part. With that metric the permanent part would be the same for both
graphs but the temporary component would be better for the dotted graph. As
a drawback, this also would result in a more complicated metric.

Furthermore, Fig. 15 shows the same utility with different sampling rates.
The robustness changes with the sampling rate if we just interpolate due to
aliasing. However, this works if the sample points are already integrated as seen
in the traffic example (see Sect. 6).

In future work, we will focus on quantitatively comparing similar mechanisms
in different application scenarios. Also, we would like to extend the selection of
integration limits for better comparison.

8 Conclusion

Complexity in information and communication technology is increasingly han-
dled by systems themselves: Traditional design-time decisions are moved to run-
time and into the responsibility of systems themselves. To do so, self-adaptation
and self-organisation (SASO) mechanisms are developed that steer the required
productive behaviour of the system and react on observable external effects.
Besides reducing the administrative effort, this has the desired advantage that
disturbances and attacks can be handled in an autonomous manner - we refer to
this property of SASO systems as “robustness”. In this article, we argued that
robustness is a key property to compare the efficiency and benefit of different
SASO solutions, since it serves as one of the most important aspects to judge
whether one specific solution is more beneficial than another.

In order to provide a universal technique to measure robustness in ICT sys-
tems in general (and SASO systems in particular), this article proposed to con-
sider the utility degradation over time. By capturing the depth of the utility drop
as well as the duration of the recovery phase, we determine a robustness value
that is comparable among varying SASO mechanisms facing the same conditions.
We discussed the state-of-the-art and explained that this approach overcomes
the drawbacks of existing approaches, e.g. that they require too much internal
information, measure only certain aspects (such as the time), are application-
specific, or abstract the robustness too far (i.e., discretise the property into too
few classes). In turn, the major advantage of the proposed method is the focus
on externally measurable attributes – which allows for a generalised concept for
comparing robustness. Conceptually, we further distinguish between a perma-
nent part of robustness that is system inherent and a part that is generated
by internal adaptation mechanisms. We demonstrated the expressiveness of the
developed approach in terms of three case studies, i.e. from the desktop grid,
the wireless sensor network, and the urban traffic management domains.

After analysing the behaviour of the proposed metric in terms of application
scenarios, we identified limitations that need further research effort. In current
and future work, we address these issues and develop a more sophisticated mea-
surement framework. This extended framework will be able to take cases into
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account where a permanent drop in utility is recognised – the pre-defined least
acceptable utility may not be achievable anymore. However, we still need to
derive meaningful measurements. Furthermore, we will apply the metric to arti-
ficial and real-world use cases to highlight the generalised applicability of the
developed technique.
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Mälardalen University, Väster̊as, Sweden
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Abstract. Adaptive autonomy allows agents to change their autonomy
levels based on circumstances, e.g. when they decide to rely upon one
another for completing tasks. In this paper, two configurations of agent
models for adaptive autonomy are discussed. In the former configuration,
the adaptive autonomous behavior is modeled through the willingness of
an agent to assist others in the population. An agent that completes a high
number of tasks, with respect to a predefined threshold, increases its will-
ingness, and vice-versa. Results show that, agents complete more tasks
when they are willing to give help, however the need for such help needs
to be low. Agents configured to be helpful will perform well among alike
agents. The second configuration extends the first by adding the willing-
ness to ask for help. Furthermore, the perceived helpfulness of the popu-
lation and of the agent asking for help are used as input in the calculation
of the willingness to give help. Simulations were run for three different sce-
narios. (i) A helpful agent which operates among an unhelpful population,
(ii) an unhelpful agent which operates in a helpful populations, and (iii) a
population split in half between helpful and unhelpful agents. Results for
all scenarios show that, by using such trait of the population in the cal-
culation of willingness and given enough interactions, helpful agents can
control the degree of exploitation by unhelpful agents.

Keywords: Adaptive autonomy · Collaborative agents
Multi-agent systems

1 Introduction

Adaptive autonomous (AA) agents are software agents which are able to decide
on whether to be more or less autonomous, with respect to some task, given
specific circumstances. Autonomy can both refer to the behavior of an agent, in
any given context, as well as the agent’s relationship with other entities. The
latter can include other AA agents, non AA agents, or human operators that
operate in a nearby environment (physical or virtual), such that communication
between them is possible. The decision to change the autonomy level could also
lie on the human operator, or be a result of the cooperation between human
and agent. Thus, adaptive autonomy is one of many concepts that involves the
c© Springer International Publishing AG, part of Springer Nature 2018
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change of the autonomy level of an agent. A non-exhaustive list of theories and
definitions, in addition to AA is as follows: adjustable autonomy, mixed-initiative
interaction, sliding autonomy, collaborative control and so on.

Adjustable autonomy refers to a system in which the human is the one who
makes the decision with respect to the autonomy of an agent [1]. Nonethe-
less, it has also been used as a generic term for the different means in which
decision-making regarding autonomy could be shared between human and agent
[2]. In mixed-initiative interaction, agent and human are both able to make a
decision, depending as well on the circumstances [1]. Collaborative control [3]
is an early approach, which departed from a classical view of human/master -
agent/slave, into one in which both were peers. Any inconsistencies between them
were resolved through dialogue. Nonetheless, the human was the one who would
set the global goals for the agent. Sliding autonomy represents another approach
in which two modes (full autonomy and tele-operation) could be switched on the
task level [4]. Consequently, an operator is able to conduct some tasks, whilst
the system performs autonomously for others, depending on the circumstances.
Agent autonomy has been studied extensively in the literature. The 10 levels
of autonomy have been proposed by Parasuraman et al. [5] (Table 1). Another
scheme is through the dimensions of self-sufficiency, i.e. being able to do a task
without outside assistance, and self-directedness, i.e. being able to choose one’s
own goals. Johnson et al. [2] refer to them as the descriptive and prescriptive
dimensions of autonomy, respectively. Furthermore, they add a third dimension,
that of inter-dependencies between team-mates (either agent or human). The
former could be either hard, i.e. necessary for the successful outcome of a task,
or soft, i.e. not necessary, however, could improve on the performance of a task.
Castelfranchi defines autonomy using dependence theory [6], i.e. if an agent ai

lacks any means (e.g. ability, knowledge, or external resources) to perform a
task t and relies/depends on another agent aj for its provision, then ai is not
autonomous from aj with respect to t. Moreover, this kind of autonomy/non
autonomy has a social nature, and is to be distinguished from autonomy from
the environment, or in other words autonomy with respect to how to react to
incoming stimuli. This paper assumes [6], thus allows agents to adapt their auton-
omy by deciding on whether to depend on each other. Section 2 provides more
information on the research conducted in the field of AA and alike concepts. It
also puts the work presented in this paper into perspective with respect to the
literature.

A model for an AA agent has been proposed previously [7], in which adapta-
tion is modeled through the willingness of agents to give assistance to each other.
The agent’s own performance – calculated as the number of tasks completed over
tasks attempted – influences the willingness to give assistance. If the performance
is high, the agent will be more willing to help, the opposite also being true. This
is Configuration 1 (C1) of the agent model. C1, alongside dedicated simula-
tions are shortly described in this paper, specifically in Sects. 3.1–3.3 and 5.1.
Subsequently, the AA agent architecture was extended through the incorpora-
tion of another behavior: willingness to ask for help (Sect. 3.4). Thus, the current
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Table 1. The 10 levels of autonomy proposed by Parasuraman et al.

HIGH 10. The computer decides everything, acts autonomously, ignoring the human

9. informs the human only if it, the computer, decides to

8. informs the human only if asked, or

7. executes automatically, then necessarily informs the human, and

6. allows the human a restricted time to veto before automatic execution, or

5. executes that suggestion if the human approves, or

4. suggest an alternative

3. narrows the selection down to a few, or

2. The computer offers a complete set of decision/action alternatives, or

LOW 1. The computer offers no assistance: human must take all the decisions/actions

model incorporates both directions of communication with respect to allowing
agents to help each other. This is Configuration 2 (C2).

The next step is to consider the interactions from a population perspective.
The characteristic of the population under study is the perceived helpfulness
of its individuals taken as a group. It is defined by the number of times in
which agents have been willing to assist an agent ai, over the total number of
requests for help made by ai. Each agent in the group can estimate the perceived
helpfulness (i) of the population, and (ii) of individual agents. Both measures are
combined and used in the calculation of the willingness to give help, and extend
C2 (Sect. 4). The perceived helpfulness of the population is referred throughout
the text as part of agent culture. The main objective is to analyse how the (most)
helpful AA agents can avoid extensive exploitation of their resources by other
agents. The corresponding simulations and results are summarized in Sect. 5.2.
Three hypotheses are evaluated.

Hypothesis 1 (H1): Exploitation of an agent by its peers can be lowered by
considering the helpfulness of the population as a whole as well as that of an
individual agent in the calculation of willingness to give help.
Hypothesis 2 (H2): An agent population can adapt to an agent configured
so as to exploit by considering the helpfulness of the population as a whole
as well as that of an individual agent in the calculation of the willingness to
give help. Moreover, the efficiency of such isolation is disproportional to the
population size.
Hypothesis 3 (H3): Agents in a mixed population, where half of the popu-
lation is helpful and the other half is otherwise, can reduce exploitation while
still helping each other by considering the helpfulness of the population as a
whole as well as that of an individual agent in the calculation of the willing-
ness to give help.

Finally, the paper concludes with a discussion and reflections for future work
(Sect. 6), and conclusions (Sect. 7).
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2 Related Work

Agent autonomy is an extensively discussed topic in the literature. A close exam-
ination of the related work points at six (6) main directions of research: (i)
design of user interfaces which aid human/robot(agent) collaboration, (ii) spe-
cific algorithms that allow for autonomy levels of agents/robots to be changed
such as Markov Decision Processes, (iii) design of policy systems for the regula-
tion of agent behavior, (iv) works that aim at comparing different schemes for
changing autonomy levels and works that motivate the need for such change, (v)
design methodologies for the creation of systems that support inter-dependencies
between systems, (vi) general architectures and frameworks. The next para-
graphs provide a compact description of relevant literature in each of the men-
tioned directions. Furthermore, the research conducted in this paper is put into
perspective with the existing work found in the literature.

(i) User interfaces are used as means to allow both agent and human to monitor
each other, and consequently change autonomy levels if perceived necessary.
The initiation of change can come from both sides. A system able to capture
the user’s skill, can change its autonomy accordingly [8]. In this case skills
are of a navigational, manipulation (gripping), and multi-robot coordina-
tion nature. On the other hand, a human operator can have the flexibility
to command a robot at several levels such as: low-level control, way-point
control, high-level control (sending goals like “bring the can of coke”) [9].
Other types of interfaces are aimed at aiding a human to monitor and con-
trol a group of robots, which may need only occasional support [10,11].
Other work is specific to navigational issues, in which a human assists path
planning of UAVs (unmanned aerial vehicles) by providing spatial and tem-
poral constraints [12]. The 3 T agent architecture [13] has been extended
to allow for the human in the loop of the decision-making of the agent [14].
The addition enables the system to keep track of what the human does,
so as not to lose the common picture between human/system. Overall, the
challenge for these interfaces is to allow for the common ground not to be
lost and be accessible by all parties [15,16]. Moreover, an important con-
sideration to be made has to do with how much autonomy the agent/robot
is intended to have [17].

(ii) Attributes such as task urgency and dedication level to the organization
haven been used to guide the agent’s reasoning with respect to when to
take more initiative (increase its autonomy) [18]. Autonomy levels can also
be changed at the task level, i.e. one task needs tele-operation from the
human, whereas another can be conducted autonomously [4]. Furthermore,
several task allocation algorithms have been proposed. In one, tasks are
mapped to agents, and the human is able to accept/reject such mapping
and trigger task allocation from the start [19]. Others categorize tasks in
two groups: tasks which the agent can perform autonomously, and tasks
that need human assistance [20]. The classification influences algorithm
design. Colored Petri Nets are used in the formalization of team plans and
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addition of interrupt mechanisms, which allow the human to intervene in
case of need [21]. Markov Decision Processes (MDPs) are employed to map
help requests from agents with available humans – assuming that agents
detect when they are in trouble [22]. In other threat recognition and target
identification applications, the system is implemented to query a human
when it fails [23].

(iii) Regulatory systems (e.g. policies) are discussed in the context of regulat-
ing agent behavior, due to bringing predictability and thus coordination
[24]. An example is the Kaa system [25] which extends the KAoS policy
system, by introducing a central agent (the Kaa) to override and adjust
policies during run-time. If Kaa cannot reach a decision, then the human
is introduced in the loop. Another approach involves the implementation
of transfer-of-control strategies (through MDPs), which specify how con-
trol should be transferred between human and agents [26]. This has been
applied in the E-elves platform (personal assistant agents) which ran at the
University of Southern California.

(iv) The ability to change autonomy levels is considered a desirable features
of systems, which can allow them to operate in human-team like fashion
[27]. Scenarios with and without the ability to change autonomy have been
compared [28,29]. Decision-making frameworks such as master/slave, peer-
2-peer and locally autonomous are dynamically shifted to show the supe-
riority compared to static autonomy. However, the authors use data from
previous experiments to apply the right decision framework for each envi-
ronmental condition; there is no reasoning embedded in the agents. Differ-
ent implementations of dynamic autonomy have been compared, which are
adaptive autonomy (agents change their own autonomy), mixed-initiative
interaction (both human and agent are able to change autonomy), and
adjustable autonomy (the human is able to change the autonomy) [1]. In
their simulations, mixed-initiative interaction performs better in terms of
victims identified in search and rescue simulation scenario.

(v) Jonson et al. have argued the need for the analysis of inter-dependencies
between systems, and its use in the design phase [2]. Moreover, they have
proposed one such methodology [30], namely Co-active Design. This method
includes the following steps. (i) Inter-dependencies in the system are iden-
tified. (ii) Mechanisms are designed to address each inter-dependency. (iii)
The effects of these mechanisms on present inter-dependent relationships
are analyzed. The aim is to make automation a team-player. In this respect
several challenges have been identified [31] such as: basic compact, ade-
quate models, predictability, directability, revealing status and intention,
goal negotiation, collaboration, attention management, and cost control.

(vi) The agent architecture STEAM [32] has extended the Soar agent [33] to
include support for teamwork. Team operators – reactive team plans – are
introduced. These are an addition to the agent’s plans that do not require
teamwork. The solution includes a synchronization protocol so that agents
can coordinate with respect to team plans. The DEFACTO framework
[34] aims at providing support for transfers of control in continuous time,
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resolving human-agent inconsistencies, and making actions interruptible for
real-time systems. Team THOR’s Entry in the DARPA Robotics Challenge
[35] brings forward a motion framework for a humanoid robot which allows
for low-level control, scripted autonomy (i.e. invocation of robot movements
by calling predefined scripts), and enables issuing high-level commands.

The research discussed in this paper fits mostly within (ii) and (vi). On one
hand, algorithms are being developed to allow agents to assist and ask each
other for assistance during their run-time. There are no classifications of tasks
that either need assistance or not. In principle, an agent might require help for
any task, due to changing circumstances. Assume an agent ai which at time
T1 is able to perform task t. The same agent, at time T2 might not be able
anymore to continue on its own. One reason could be that, its battery levels
have gone down. On the other hand, these algorithms fit within a general agent
architecture, which models how an agent executes during its run-time.

3 Agent Model

This section describes configurations 1 and 2 of the agent model.

Fig. 1. C1 agent model with three states [7]. The Msg. PU represents the module in
which messages coming from other agents are handled

3.1 Early Work (C1)

The agent model proposed previously [7] consists of the three (3) states, interact,
execute, and idle (Fig. 1). All agents in the population have a willingness to give
assistance to each other. This concept is represented by a probability value,
which defines the likelihood for such an event to occur. Assume an agent ai

which is in either the states of idle or execute. If the agent is in execute, it means
that it is already dedicated to a task. Agent ai can be in either idle or execute
when a request for assistance is received, and will switch immediately to the
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Fig. 2. Flowchart for the idle state [7].

Fig. 3. Flowchart for the execute state [7].

interact state, where the decision of whether to accept the request will be made.
If ai accepts the request, it will switch to execute with the new corresponding
task, whilst the old one will be dropped for good. Otherwise, it will switch to its
previous state, i.e. either idle or execute and continue with the old task.

An agent always starts its operation in the idle state. In this state, the agent
is not dedicated to any task or goal. Nonetheless, a task could be generated with
a probability P (Fig. 2). This task is picked from a list of tasks which the agent
is able to do (specified before runtime). When a task is generated, or a request
for help is accepted, the agent switches to execute. The assumption is made
that if the agent is not interrupted, it will always complete its task successfully
(Fig. 3). At the beginning of each task, an agent will check for dependencies
on other tasks. In the case of C1, dependencies are assumed to be fixed and
known before-hand by all agents. If there is any, it will issue a help request to
some known agent aj which is able to perform the task. Then it will wait for
a finite amount of time (constant determined before runtime and equal to all
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agents) for a response from aj . If there is no response, the agent will give up on
waiting, update the history of interactions with aj , and attempt to do the task
by itself with a lower probability of success. There are other options which could
be implemented as well. (i) The agent can first try by itself, and if it fails, asks
another for help. (ii) After aj fails, the agent attempts with another agent ak.
When a task is finished, the agent returns to idle.

Agents keep track of the outcomes of the interactions with each other. As a
result, they are able to compute the perceived willingness to help and expertise
with respect to some task of every other agent. An agent ai will select another
agent aj to ask for help based on aj ’s helpfulness in the past, i.e. based on
aj ’s perceived willingness to help. During its operation, the agent keeps track of
the outcomes for each interaction, which is used to determine helpfulness. It is
important to note the difference between the perceived helpfulness and expertise.
The former is an indicator of how much another agent has been willing to help,
whereas the latter captures the actual success rate of the agent that has been
trying to help. As a result, the perceived willingness is a more optimistic measure
in which to judge other agents.

When the agent gets a request from another agent for help, then it will switch
to the interact state which cannot be interrupted, i.e. it can be considered as an
atomic step (Fig. 4). This has the implication that the requests will be processed
one at a time in a FIFO manner. There are two possible outcomes from the
interact state. The agent can drop the past activity and go into execute with
a new task, or it discards the requests and continues with what it was doing
before receiving the request. The willingness to give help is the determining
factor that shapes agent behavior. The agent performance will in turn influence
the willingness to give help in the following way. If the agent calculates that it
has dropped too many tasks, then its willingness will decrease. On the other
hand, if it has completed most of the tasks it has attempted, then its willingness
will increase.

3.2 Interactions Between Agents

In order to resolve the dependencies between them, agents need to interact with
each other. This means that, if an agent ai doing a task t identifies that it
needs to depend on aj to complete t, then ai will need to interact with aj .
Dependencies themselves could be known in advance (as assumed for the agent
described in Sect. 3.1) or could arise during runtime. Moreover, they can arise
at the beginning or during the execution of a task t.

There are several types of possible interaction between agents:

1. Non-committal interaction. Agents could broadcast certain messages to others
in the vicinity. These messages can contain different kinds of information
related to e.g. identity, offered services, warnings (“There is fire in corridor
x”, “path from x1 to x2 is blocked”). Other agents are able to accept or
disregard them. Nonetheless, no dialogue is being established by the involved
parties. This means that the agent sending a broadcast does not expect any
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reply or commitment from others. In this work, this interaction is used by
agents to make themselves known to each other. In principle, other agents
could be able to evaluate the trustworthiness of the broadcasting agent by
examining the following: (i) is the information useful, and (ii) is it true?

2. One-to-one dialogue. Agent ai misses specific information, and queries aj .
In this case, a one-to-one dialogue is being established, in which one party
expects a reply from the other, so that it is able to fill its knowledge gaps.
The validity of the information aj provides could be evaluated, as well as its
perceived helpfulness to ai.

3. One-to-one delegation. Similarly to one-to-one dialogue, a kind of dialogue is
established in this case as well, in the form of a request to complete a task.
This means that ai will ask aj to perform an activity on which a′

is success
with respect to a task depends. In general, ai could be still able to succeed
by itself, but with a lower probability. ai is able to evaluate the behavior of
aj based on (i) its perceived helpfulness and (ii) shown expertise. aj as well
will perform an evaluation in order to determine whether to assist ai. This
type interaction is as well implemented in this paper.

4. One-to-many dialogue/delegation. There are two ways to interpret this sce-
nario. (i) There could be a chain of one-to-one interaction which emerges, e.g.
ai asks aj , which asks ak and so on. In this paper, such kind of chains can
emerge. (ii) An agent can start parallel interactions with a number of other
agents (B,C, etc.) by asking each of them to perform some specific subtask.

Johnson et al. [2] consider in their work soft and hard interdependencies
between agents. Each level of interaction described in the previous paragraph
could refer to either depending on the concrete scenario. For instance, a non-
committal broadcast message could contain an alarm (e.g. “There is fire in x
corridor”) and be decisive for the outcome of a task (and even well-being of
the agents). Thus it represents a hard interdependence. However, an ordinary
informational message (e.g. “path from x1 to x2 is blocked”) if disregarded could
only delay the execution of some task without hindering its success. As a result,
it can be considered as a soft interdependence. Furthermore, the difference with
Barber et al. [29] is that the decision to assist another agent lies on the agent
itself. This means that, ai can ask to delegate a task to aj , and aj reasons and
decides whether to accept such delegation.

3.3 Agent Organization and Autonomy

Agent organization will have an impact on how autonomy is shaped for each
individual agent that makes up the population. There are two possibilities. (i)
There is a hierarchy between agents which could be predefined or could emerge
(e.g Barber et al. [29] consider how environmental conditions could be used to
evaluate which hierarchy fits best a specific scenario). (ii) Agents are peers with
each other.

In the first case, an agent ai which is a superior of aj is able to delegate to
aj any task it sees fit with some assurance that aj will comply. Delegating to aj
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Fig. 4. Flowchart for the interact state [7].

does not necessarily mean that ai cannot perform the task by itself. It can very
reasonably be assumed that ai is able to perform the task but simply prefers to
conserve its resources, and ask aj instead. aj on the other hand either has some
freedom in which it can refute to obey ai (e.g. what ai asks endangers aj in ways
that may or may not have been foreseen by ai) or it does not and it will always
have to comply. As a result, in general aj will be dependent on the will of ai,
given that the power relations between them hold.

In the second case, ai and aj are peers, thus no power relations between them
can be assumed. If ai needs help, it will make a request to aj , which in turn will
decide based on its willingness to give help whether to assist ai. As such, it is
ai which depends on the will of aj . Nevertheless other factors might come into
play. If ai has been helping aj in the past, then the latter could be more inclined
to return the favor, thus becoming easier to interfere with. Furthermore, the
motives of aj might not be genuine (help ai because it has helped me), but they
could in fact be more along the lines of: help ai so it can continue helping me in
the future.

Note that, some form of dependence between agents is present in both sce-
narios. Moreover, dependence always constitutes a risk [36]. Even when there are
power relations, an agent choosing to delegate to another, is choosing to depend,
and thus is giving away some of its autonomy. The agent that delegates might
be able to do the task by itself, if another agent fails. However, if the output of a
task is expected within a certain time, then a delay could mean failure. On the
other hand, if the agent cannot perform the task by itself, then it is even more
dependent on the agent it asks for help. Therefore, the level of autonomy cannot
always be well defined and can be blurred. In this paper, agents are assumed to
be peers.

3.4 The AA Agent (C2)

The agent model described in Sect. 3.1 has been extended with respect to two
dimensions. (i) Two more supporting states have been added (Fig. 5), the regen-
erate and out of order states respectively. If the agent reaches critical levels of
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Fig. 5. Agent model extended to include two more states: regenerate and out of order

battery (the start-up energy level, and the critical level are arbitrarily specified
before runtime) it will switch to the out of order state, and immediately from
that state it will switch to regenerate where the recharge process is simulated.
Next, the agent will switch to either idle or interact (if there are any requests
pending). The agent can go to out of order from any other state (in principle
from regenerate as well). From the implementation perspective, ROS services (for
one-to-one interaction) have been switched with the ROS action server mecha-
nism. The limitation of the current implementation is that the execution of a
task in the execute state is simulated as a singular step, by pausing the system
for a finite amount of time (which represents the completion time for a task).
As a result, an agent reasons on whether it should ask for help at the beginning
of each task.

(ii) The agent’s adaptive autonomous behavior is shaped by the willingness to
interact which is composed of the willingness to give help (δ), and the willingness
to ask for help (γ). The willingness to ask for help represents the probability
that an agent will ask another for assistance given its current circumstances
(in this case, dependencies are assumed to rise during runtime – in contrast to
C1). Moreover, the factors assumed to influence each facet of the willingness to
interact have been analyzed, and a corresponding computational model has been
proposed from which δ and γ are calculated. The calculation is done according
to Algorithms 1 and 2.a. The notation used in both has the following meaning:
b - battery, e - equipment, k - knowledge, ai - abilities, n t - tools, μ - agent
performance, eR - environmental risk, t p - task progress/trade-off, aR - perceived
agent risk (complementary to perceived helpfulness). The notations with the
subscript t refer to abilities, resources needed by the task. In the cases when it
misses it refers to what the agent has at its disposition.
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Algorithm 1. Agent’s reasoning process on when to ask for help
procedure Reasoning on asking for help(b, e, k, a, t, μ, eR, t p, a R)

γ ← γ0

if b − bt < bmin or et �⊂ e or kt �⊂ k or at �⊂ a or tt �⊂ tt then� Consider internal
resources

γ ← 1
return γ

else
γ ← γ − 5Δγ
if eR increase then � Consider environment risk

γ ← γ + Δγ
else

γ ← γ − Δγ
if a R increase then � Consider agent risk

γ ← γ − Δγ
else

γ ← γ + Δγ
if μ increase then � Consider own performance

γ ← γ − Δγ
else

γ ← γ + Δγ
if t p good then � Consider task progress

γ ← γ − Δγ
else

γ ← γ + Δγ

return γ

3.5 ROS

The Robot operating system (ROS) [37] serves the role of a middleware by imple-
menting different communication mechanisms such as: (i) publish/subscribe, (ii)
services, and (iii) action servers. A ROS executable is called a node. Nodes
publish and subscribe to named buses referred to as topics. Services are point to
point communications between one client and one server. Action servers improve
on services by allowing the server node to send progress feedback to the client
after an initial server call. Nodes are able to find each other through the ROS
master, which supplies naming and registration services.

In this work, in both C1 and C2 configurations, agents are composed of two
ROS nodes. The main agent node contains the logic, and the message processing
unit node handles published data from other agents. Nodes are written in the
python language, which is supported in ROS (alongside other supported lan-
guages such as C++ and Java). In C1, the services are used to implement the
one-to-one delegation interaction. In C2, service calls are replaced with action
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Algorithm 2.a. Agent’s reasoning process on when to give help
procedure Reasoning on giving help(b, e, k, a, t, μ, eR, t p, aR)

δ ← δ0
if b − bt < bmin then � Consider internal resources

δ ← 0
return δ

else
δ ← δ + Δδ
if et �⊂ e then � Consider internal resources

δ ← δ − Δδ
else

δ ← δ + Δδ

if kt �⊂ k then � Consider internal resources
δ ← δ − Δδ

else
δ ← δ + Δδ

if at �⊂ a then � Consider internal resources
δ ← δ − Δδ

else
δ ← δ + Δδ

if tt �⊂ t then � Consider external resources
δ ← δ − Δδ

else
δ ← δ + Δδ

if eR increase then � Consider environment risk
δ ← δ − Δδ

else
δ ← δ + Δδ

if aR increase then � Consider agent risk
δ ← δ − Δδ

else
δ ← δ + Δδ

if μ increase then � Consider own performance
δ ← δ + Δδ

else
δ ← δ − Δδ

if t p good then � Consider task progress
δ ← δ + Δδ

else
δ ← δ − Δδ

return δ

server calls. At present there is no substantial difference between the two imple-
mentations in the code. Nevertheless, the transition was made in order to allow
more flexibility for future development.
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Algorithm 2.b. Reasoning on δ with perceived helpfulness
procedure Additional reasoning on δ(a R, a S, C)

δ ← δp � δp calculated in Algorithm 2.a
if aR >= 0.5 and C <= 0.5 then

δ ← LOW
else if (aR < 0.5 and C <= 0.5) or (aR < 0.5 and C > 0.5) then

δ ← δ + k ∗ Δstep
else if aR >= 0.5 and C > 0.5 then

if a S < 3 then
δ ← δ − Δδ

else
δ ← LOW

4 Perceived Helpfulness

This paper extends the ideas presented and discussed in previous work [7] by
including in the agent’s reasoning, characteristics of the population in which
the agent operates. These additions take place in Configuration 2. One such
characteristic is the perceived helpfulness of the whole population of agents (or
the part of the population with which an agent is able to communicate and
interact with). This is the target in this work. The perceived helpfulness of the
population is referred to as part of its culture. Other facets can be part of agents’
culture, such as perceived willingness to ask for assistance. However, the latter
is not treated here.

Assume an agent ai found in an environment among other agents (no partic-
ular hierarchy is imposed). During its operation, ai sends to and receives from
others help requests. Continuously, upon each request, ai has to decide whether
to help or turn down the request. Moreover, ai will need to depend on other
agent on particular circumstances. Previously, it has been showed that an agent
configuration with high willingness to give help, in situations where dependencies
are low (i.e. it asks for help in few cases), results in the highest number of tasks
completed (performance measure) for the whole population [7]. It is reasonable
to think that such a population will succeed with respect to the number of tasks
completed.

Note that, it is not always possible to assume that an agent will find
itself among agents configured in the same manner. As such, an agent ai with
〈δ0 = 1.0, γ0 = 0.0〉, operating around a population of agents configured oppo-
sitely, i.e. 〈δ0 = 0.0, γ0 = 1.0〉, will be exploited and will not get the assistance it
needs from its selfish peers. Therefore, ai needs to take into account the behavior
of individual agents as well as the whole population, so that it can conserve its
resources when faced with exploiters.

In order to aid the agent such that it is not exploited, Algorithm2.a is
extended through Algorithm2.b. The main behavior expected to be produced by
this extension is the following. If an agent ai finds itself in a selfish society then,
if the perceived helpfulness of the particular agent aj asking for help is below a
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given threshold, ai will lower its δ to a value as low as 0.1, which means that if it
will help with a probability 0.1. Conversely, if aj ’s perceived helpfulness is above
a given threshold, then independently of the population, ai will increase its δ by
k ∗ Δstep. The reason behind such choice is that, ai should not penalize other
helpful agents, even though the agent population it resides in is selfish. Finally,
if the agent population is helpful, i.e. if the perceived helpfulness is above a given
threshold, although aj ’s perceived helpfulness is low, then ai penalizes aj only
after a certain number of unhelpful interactions. Thus, aj is given the chance to
change its behavior so as to become more helpful.

5 Simulations

This section describes the simulation setups and results for configurations 1 and
2 of the agent model.

5.1 Setup and Results for C1

C1 Setup. The agents are implemented as ROS nodes [37] and interact through
the publish/subscribe mechanisms and services. The simulation is limited to
three types of interactions, the non-committal broadcast (implemented through
ROS publish/subscribe), and the one-to-one delegation (implemented through
ROS services), and the emergent chain of one-to-one delegations. The agents
make themselves continuously known to each other by broadcasting their identity
and the list of tasks the are able to execute. Note that, agents are not assumed
to have the same global goals. Thus each one has its own objective, however can
put its capabilities to the service of others if the need arises.

Simulations were setup in order to investigate the utility of the agent popula-
tion. Utility is measured on two levels, (i) the degree of completion of dependent
tasks (CD), and (ii) the degree of dropped tasks (DD). Dependent tasks are tasks
which depend on other tasks in order to have a higher chance for a successful
outcome. As such, CD is calculated by dividing the number of dependent tasks
completed over the number of dependent tasks attempted (Eq. 1).

CD =
Depend Tasks Completed

Depend Tasks Attempted
(1)

DD is calculated by dividing the number of dropped tasks over the number of
attempted tasks (Eq. 2).

DD =
Tasks not Completed

Tasks Attempted
(2)

Two parameters were manipulated in the tests, the dependency degree between
tasks, and the willingness to give help (δ). The former refers to the percentage
of tasks (in a given set) that depend on other tasks for a higher probability of
success. The latter represents the probability that an agent will assist another
agent when requested.
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In the simulations there are 10 tasks that are defined as abstract entities. Each
task is simulated as a for loop which runs for a specific amount of iterations.
The list of tasks an agent is able to do is a subset of 10 tasks. More than one
agent is able to execute the same task. As a result, there is diversity with respect
to whom an agent can ask for help. On each run of the simulation, the same
agent provides the same set of tasks. Moreover, the dependencies between tasks
are given before-hand. In this work, the dependence is limited to one task, as
opposed to many. An agent asking for help will wait Δt = 60 s before dropping
the request. This value is given before runtime and is assumed equal to all agents.

Three sets of simulation runs were conducted. Each set includes three inde-
pendent runs for the same fixed parameters: population size (popsize), depen-
dency degree (depdeg), and Greek delta δ. Simulation set 1: δ is static, i.e.
does not change throughout one simulation run, and popsize takes the values
10 and 30 for separate runs. The parameter δ takes its values in the segment
[0.0, 0.25, 0.5, 0.75, 1.0]. Depdeg takes values in [10%, 25%, 50%, 75%, 100%]. Sim-
ulations were ran for both population sizes, for each combination of δ and depen-
dence degree. The combination of all three parameters means that the first set
consists of 50 simulation runs. Simulation set 2: popsize is fixed to 10, whereas
δ is in a finer grained segment [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]. The
segment for depdeg is the same as in the previous set. Simulation set 3: popsize
is equal to 10, however in this case δ is dynamic, i.e. it changes during runtime.
The initial values of δ are in the segment [0.0, 0.3, 0.5, 0.7, 1.0]. In the final set,
two simulations were run, (i) only one agent has dynamic δ, (ii) all agents have
dynamic δ. The segment for depdeg remains the same.

During all simulation runs, agents can decide to perform a task ti, or can
receive a request for that task. At the beginning of a task, the agent checks the
list of dependencies. If there is any such dependency, then the agent chooses
whom to ask for assistance, by consulting its list of known agents which are able
to perform ti. The selection is done in the following way. The agent perceived
as the most helpful in the past is chosen with probability 0.7, or random with
probability 0.3. The 0.3/0.7 ratio is arbitrary. This scheme helps the agents to
explore their options. The perceived helpfulness (ph) of an agent is computed by
dividing the times it has given a response over the total times it was requested
for help (Eq. 3).

ph =
Requests Handled

Total Requests
(3)

C1 Results. The simulations were conducted in order to verify the hypoth-
esis that agents with dynamic willingness to give help complete more of their
dependent tasks as compared to agents with static willingness. The correspond-
ing results are visualized as heat maps (Fig. 6), in which the x-axis represents
the depdeg, an the y-axis represents δ, and the intensity of the color represents
the percentage of completed tasks summed over all agents in the population,
computed as a mean over the three independent runs.
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Outcomes from the first set of simulation runs are shown in Figs. 6a, b, d, and
e. It is possible to observe that for low dependence degree (10%), agents with a
low willingness to give help (0.0), complete roughly 30% of their dependent tasks.
This figure agrees with the probability that an agent is able to achieve a task by
itself, when asking for help has failed. On the contrary, agents with willingness
to give help, complete more dependent tasks, without noticeably impacting DD.
Moreover, popsize does not show to have an impact on neither CD (Figs. 6a, b)
nor DD (Figs. 6c, d). This is the reason why popsize equal to 10 was used in
the remaining simulations. The outcomes for the second set of simulation runs
(given in c and f) are consistent with the first set.

The third set of simulation runs covers the case in which δ is dynamic. As
such, in the y-axis for Figures g, j are shown δ’s initial values, δinit. It is observed
that for lower dependence degree, the population as a whole accomplishes more
dependent tasks, thus CD increases, as compared to the static δ scenarios. This
holds for both cases, i.e. only one agent has dynamic δ (Figs. 6g, i) and all agents
have dynamic δ (Figs. 6h, j). Furthermore, the maximum CD is reached in the
case where all agents have dynamic δ. On the other hand, as the dependence
degree increases, so does DD and this is consistent through the three sets of
runs. When all tasks depend on some other task (i.e. dependence degree is equal
to 100%), DD reaches its maximum value, and CD is circa 0.3, which represents
the probability for an agent to accomplish the task by itself.

The parameter DD influences the willingness to give help, and as a result
the behavior of the agent (as is observed in Figs. 6a, b). In these simulations,
two thresholds θlow = 0.3 and θhigh = 0.7, are used in order to regulate δ as a
function of DD as follows. If DD is higher than θhigh, then δ will decrease with
a step of δstep = 0.05. If DD is lower than θlow, then δ will increase with the
same δstep. If DD lies between θlow and θhigh, the agent will compare the current
DD with the one before. If such difference is bigger than 0.01 in absolute value,
then δ will be updated, i.e. will increase if DD has gone down, and decrease
otherwise.

5.2 Setup and Results for C2

C2 Setup. Agents are implemented as ROS nodes [37]. The communication
between them is realized by using (i) the publish/subscribe mechanism in ROS
and (ii) a tailored action server mechanism able to handle multiple requests at
once which extends ROS’s Simple Action Server implementation. Agents contin-
uously broadcast their identity and list of tasks they can perform to each other
through the publish/subscribe. In order to issue requests for help (one-to-one
communications), agents use the action-server mechanism.

Agent behavior was studied in three different simulation scenarios in order
to verify the three hypotheses H1, H2, and H3. The first scenario (S1) addresses
H1. The population of agents contains one individual with 〈δ0 = 1.0, γ0 = 0.0〉,
while the rest is configured with 〈δ0 = 0.0, γ0 = 1.0〉. Thus one agent has high
willingness to give help and low willingness to ask for help, whereas the rest
of the population has low willingness to give help and high willingness to ask
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Fig. 6. Heat maps of CD and DD utility measures, for simulations with static δ and
dynamic δ, and different popsize [7]. (a) CD for popsize = 10 with static δ. (b) CD for
popsize = 30 with static δ. (c) CD for popsize = 10 with finer resolution of static δ. (d)
DD for popsize = 10 with static δ. (e) DD for popsize = 30 with static δ. (f) DD for
popsize = 10 with finer resolution of static δ. (g) CD for popsize = 10, one agent with
dynamic δ. (h) CD for popsize = 10, all agents with dynamic δ. (i) DD for popsize =
10, one agent with dynamic δ. (j) DD for popsize = 10, all agents with dynamic δ.
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for help. The values in the tuples change during the simulation. Two types of
simulations are ran. (i) All agents calculate their δ based on Algorithm 2.a. The
simulation time is equal to ts = 1 h. (ii) All agents calculate their δ by applying
to Algorithm 2.a the extension provided in Algorithm2.b. In this case simulation
time is ts = 3 h. This is to ensure that enough interactions take place for the
agents to be able to adapt.

The second scenario (S2) addresses H2. The opposite agent configuration is
shown, i.e. one agent is configured with 〈δ0 = 0.0, γ0 = 1.0〉, while the others
start off with 〈δ0 = 1.0, γ0 = 0.0〉. In this case, an agent with low willingness
to give help and high willingness to ask for help is put among agents with
high willingness to give help and low willingness to ask for help. Two types
of simulations are ran. (i) All agents calculate their δ through Algorithm2.a,
and (ii) all agents calculate their δ by applying to Algorithm2.a the extension
provided in Algorithm2.b.

In the final scenario (S3 which addresses H3), half of the population is
configured with 〈δ0 = 1.0, γ0 = 0.0〉, while the other half is configured with
〈δ0 = 0.0, γ0 = 1.0〉. As in the previous scenarios, two types of simulations are
run. (i) All agents calculate their δ by using Algorithm 2.a. (ii) All agents calcu-
late their δ by applying to Algorithm2.a the extension provided in Algorithm 2.b.

Every simulation was repeated for a population size popsize equal to 10 and
30. In all cases the difficulty of the simulation, i.e. the probability that an agent
needs the assistance of another agent for a task, is set to a low value equal to
0.2. The perceived willingness to help of an agent aj is calculated through Eq. 3
by an agent ai,

ph =
rs

rg
(4)

where rs - total number of requests ai has sent to aj , rg - number of acceptance
responses gotten from aj . The agent to ask for help is chosen according to the
following rules. As long as an agent ai has a list of agents with which it does
not have any past experience, it will choose randomly one of them. This is
to ensure that an agent creates a past history with all the others early on in
the simulation. Otherwise, the agent will choose randomly with a probability
P1 = 0.4 and according to Eq. 5 with probability P2 = 0.6,

β = max({ph1, ...phi, ...phn}) (5)

where phi - perceived helpfulness of agent i, n - number of agents. Agent risk
in this paper is expressed as 1 − ph. The culture variable ak is calculated by
averaging on the perceived willingness of all agents with which there is past
experience, as given in Eq. 6,

C =
∑k

i=1 phi

k
(6)

where phi - perceived helpfulness of agent i, k - number of agents with which
there is past experience. The agent’s own performance is calculated as in Eq. 7.

μ =
tc

ta
(7)
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where tc - total tasks completed, ta - total tasks attempted. The variables for
environmental risk and task progress do not change during the course of the
simulation. Thus their effect on willingness does not change as well. Environ-
mental risk is kept at a value equal to 0.2, and influences δ by +Δstep, and γ
by −Δstep, where Δstep = 0.05. Moreover, since reasoning on γ is done only at
the beginning of a task, the agent cannot measure progress for itself, and thus
the variable will affect γ by −Δstep. Finally, since tasks are presently simulated
as atomic steps, task trade-off has not been considered in these simulations.

C2 Results. The results shown in this subsection are taken as a mean over three
independent runs, in which all parameter settings are the same, and visualized
through bar plots. Moreover, for every simulation scenario, results corresponding
to agents with the same initial configuration are averaged.

Figures 7 and 8 display results which address H1. Figure 7 shows the numer-
ical values for a population of agents with popsize = 10, whilst Fig. 8 for
popsize = 30. It is evident that the agent 〈δ0 = 1.0, γ0 = 0.0〉 (Fig. 7, left side)
adapts to the selfish population by comparing the rR/rRA ratio in Fig. 7(a) and
(b). Note also that agents 〈δ0 = 0.0, γ0 = 1.0〉 flood each other with the high
number of requests made. Observing the bottom graphs in (a) and (b), it is pos-
sible to estimate how much an agent works for itself and for others by comparing
daO/daNO ratios. Agent 〈δ0 = 1.0, γ0 = 0.0〉 attempts dominantly more depen-
dent tasks for others in (a), while the opposite is true in (b). This is reflected
in the numbers for completed dependent tasks by comparing dco/dcNO ratios.
Thus, H1 holds in the implemented scenario for both popsize = 10, 30.

Figures 9 and 10 show results which address H2. Figure 9 gives the values
for a population of agents with popsize = 10, whilst 10 for popsize = 30.
Note that, by comparing the dc/dnc ratio in Fig. 9(a) and (b), the selfish agent
〈δ0 = 0.0, γ0 = 1.0〉 completes less dependent tasks in a society which will not be
blindly helpful, but will tune helpfulness towards those individuals that respond
in kind. As a result, the rest of the population (〈δ0 = 1.0, γ0 = 0.0〉) will continue
to do very well and will, after a period of learning, stop helping the selfish agent.
Figure 9(c) considers a scenario in which the selfish agent 〈δ0 = 0.0, γ0 = 1.0〉
adapts to the population of agents by becoming more helpful, thus it performs
better than the agent in (b). To get the two different behaviors, the factor k in
Algorithm 2.b was taken equal to 4 in (b), and 8 in (c). Figure 10 shows that
the selfish agent completes a higher percentage of dependent tasks. The reason
is argued to be the size of the population. It can take a population longer to
adapt to a selfish individual because more of the required interactions need to
take place. Until that point is reached, the selfish agent will do fairly well. Thus,
H2 also holds in the implemented scenarios.

Figures 11 and 12 show results which address H3. Figure 11 gives the val-
ues for a population of agents with popsize = 10, whilst 12 for popsize = 30.
Note that agents using Algorithm2.b adapt to the part of the population con-
figured to exploit. Moreover, a helpful agent will achieve more tasks in average
than its opposite. This holds for both population sizes. Nevertheless, overall
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Fig. 7. Results for S1, for popsize = 10. Notation: c/nc - completed/not completed
tasks (c - blue bottom bar, nc - top red bar), dc/dn - dependent completed/dependent
not completed tasks, sc/sn - completed self-generated/not completed self generated,
r/rA - request received/requests accepted, rA/rS - requests accepted/requests suc-
ceeded (as perceived by the agent who is helping, daO/daN - dependent self-generated
tasks attempted/dependent not self-generated tasks attempted, dcO/dcN - depen-
dent self-generated completed/dependent not self-generated completed). (a) Agents
update δ with Algorithm 2.a. (b) Agents update δ with the extension proposed in
Algorithm 2.b. Figures on the left correspond to the agent 〈δ0 = 1.0, γ0 = 0.0〉, while
those on the right are averaged over the agents 〈δ0 = 0.0, γ0 = 1.0〉 (Color figure online)
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Fig. 8. Results for S1, for popsize = 30. Notation same as Fig. 7. (a) Agents update δ
with Algorithm 2.a. (b) Agents update δ with the extension proposed in Algorithm 2.b.
Figures on the left correspond to the agent 〈δ0 = 1.0, γ0 = 0.0〉, while those on the right
are averaged over the agents 〈δ0 = 0.0, γ0 = 1.0〉
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Fig. 9. Results for S2, for popsize = 10. Notation same as Fig. 7. (a) Agents update δ
with Algorithm 2.a. (b) Agents update δ with the extension proposed in Algorithm 2.b.
Figures on the left correspond to the agent 〈δ0 = 0.0, γ0 = 1.0〉, while those on the right
are averaged over the agents 〈δ0 = 1.0, γ0 = 0.0〉. (c) ...
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Fig. 10. Results for S2, for popsize = 30. Notation same as Fig. 7. (a) Agents update δ
with Algorithm 2.a. (b) Agents update δ with the extension proposed in Algorithm 2.b.
Figures on the left correspond to the agent 〈δ0 = 0.0, γ0 = 1.0〉, while those on the right
are averaged over the agents 〈δ0 = 1.0, γ0 = 0.0〉



Analysis of Perceived Helpfulness 245

Fig. 11. Results for S3, for popsize = 10. Notation same as Fig. 7. (a) Agents update
δ with Algorithm 2.a. (b) Agents update δ with the extension proposed in Algo-
rithm 2.b. Figures on the left correspond to the average of half the population of agents
with 〈δ0 = 1.0, γ0 = 0.0〉, while those on the right are averaged over the other half
〈δ0 = 0.0, γ0 = 1.0〉
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Fig. 12. Results for S3, for popsize = 30. Notation same as Fig. 7. (a) Agents update
δ with Algorithm 2.a. (b) Agents update δ with the extension proposed in Algo-
rithm 2.b. Figures on the left correspond to the average of half the population of agents
with 〈δ0 = 1.0, γ0 = 0.0〉, while those on the right are averaged over the other half
〈δ0 = 0.0, γ0 = 1.0〉
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performance for the helpful agents falls (if compared with results in Figs. 9 and
10). This is because, the algorithm to choose an agent to ask for help does always
pick from the entire population of agents, helpful and selfish combined. A finer
selective method could be applied, so that helpful agents always pick between
each other. The effects of the population size in the completed dependent tasks
is mildly present, however it is not dominant. Thus, H3 also holds in the current
implementation.

6 Discussion

The work presented in this paper describes an agent model that exhibits adaptive
autonomous behavior by manipulating its willingness to interact, which in turn
is composed by the willingness to give help (δ) and the willingness to ask for help
(γ). The willingness to interact is expressed with probabilities in order to model
the non-deterministic aspect of interactions. In some cases the agent might be
completely sure that it needs help, e.g. lacks one of the abilities required for
a task. However, in other cases this may not happen. For instance, assume an
agent which is progressing slowly on a task. Its willingness to ask for help will
increase. However, let us also assume that the agent is among rather unhelpful
or unsuccessful agents. This element will decrease the willingness because the
probability that those agent will be helpful now is low. In this scenario, the
agent’s willingness is influenced by contradicting factors that do not necessarily
lead to a deterministic choice. There is a risk associated in choosing to ask or not
ask for help. Consequently, the willingness to ask for help implicitly assesses this
risk, and such assessment is probabilistic. In economics, this kind of parameter
is used to model risk tolerance [38]. Agents which are representatives of business
entities, sign contracts with other entities based on their willingness. Signing
some contracts might be not allowed and thus subject to fines. The latter are
considered punishment for undesired behavior. The higher the fines, the higher
the risk is of signing a contract with an agent.

In the first part of this paper (C1), the agent consists only of δ, which is calcu-
lated based on the agent’s own performance. In the second part (C2), implements
the whole willingness to interact behavior. Additionally in C2, the perceived
helpfulness of the population is used as an additional input in the calculation of
δ. In this way, agents who are configured to be helpful can reduce exploitation
by other agents which will not respond to helpfulness in kind. Algorithm2.a was
extended through Algorithm2.b and used in the simulations, however other sim-
ilar algorithms could be implemented that achieve the same end. Algorithm2.b
is purely experience based, and thus agents will need to experience a certain
number of interaction before the learning takes place. Moreover, its efficiency –
number of interactions needed for the learning – depends on the size of the pop-
ulation, as well as the ratios of selfish and unselfish agents. Furthermore, only
two types of agents are used, 〈δ0 = 0.0, γ0 = 1.0〉 and 〈δ0 = 1.0, γ0 = 0.0〉. It can
be argued that a mixed population will have additional effects on the results
presented here.
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This work also relates to computational trust models for multi-agent systems.
The reason is that, the willingness to interact is used when deciding to depend
upon another, and allowing others to depend on one as well. According to Falcone
et al. [39], by trusting, an agent has made a decision to rely on another. The
other way around, i.e. allowing others to depend on one, could also be argued
as a case for trust. The agent that is helping, is putting its resources in the
service of another. It is reasonable to think that help should go more towards
those who have returned the favour. There is a fair amount of trust models in the
literature, as well as classifications based on different criteria for them [40]. These
models typically are experience-based (judging on personal direct interactions),
reputation-based (judging based on third party opinions), or combined [40].

The aim of future work is to investigate the concept of agent culture and
trust more thoroughly. Apart from perceived helpfulness, other characteristics
could be used, for example perceived expertise, or perceived load. There is a
difference between perceived helpfulness and perceived expertise. The latter is
a better measure for successful outcomes of tasks. Assume an agent ai which
asks for help an agent aj , and aj accepts to help. However, being willing to
help does not guarantee success, in fact agent aj can fail for any reason. From
this perspective, a flaw of perceived helpfulness as an indicator of helpfulness
becomes apparent. As a result, a combined measure of perceived helpfulness and
expertise can give a better picture of the agents taken as individuals and as
a whole. Nevertheless, the degree of load of agents can help refine the measure
even further. Consequently, the problem that arises is how can an agent estimate
the load of other agents, taken individually and as a whole. The perceived load
could be combined with the perceived willingness to ask for help from a specific
agent and be used in its analysis, and that of the whole population. The imple-
mentation of the agent has to be expanded so that task execution is simulated
through separate steps, so as to be interrupt-able, so that it represents a more
realistic scenario. Another desired feature for the system is to enable the agent
to deal with several dependencies at the same time.

Application domains that motivate this research include but are not limited
to search and rescue, agriculture, and other areas in which autonomous systems
can assist, and sometimes replace, human labour due to the challenging working
conditions. It may be desired for these systems to be deployed far from the
operator, and work in conditions where the communication with the former
can be unreliable. Also, it may be desired that the systems operate by aiding
each other as the needs arise. This means that agents need to reason about
when and how to interact with each other. The AA agent described in this
paper represents one possible approach that can be applied in these types of
application. Moreover, the modeling is done on a high-level, and hence is not
task specific in fact tasks are defined in abstract terms.

7 Conclusion

In this paper it is shown, through computer simulations, how the adaptive
autonomous behavior of an agent can be tailored to reflect the culture of the
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population within which it operates, such that the exploitation of the agent can
be decreased. Firstly, it is shown how an agent highly willing to give help, can
adapt to agents configured oppositely, and thus lower its exploitation. Secondly,
when an unhelpful agent is introduced into a helpful population, it will be able
to exploit up until the point in which the rest of the agents will have created
a history of negative past experiences. The dependence on the population size
is also present in the simulation results, i.e. one selfish agent will be able to
succeed for longer in bigger populations because more interactions are needed.
Nevertheless, if the agent can change its behavior from selfish to unselfish, it will
outperform agents which are more inflexible. Finally, when the population is split
in half between selfish and unselfish agents, the latter is still able to decrease it
exploitation after enough interactions have taken place. However, since the algo-
rithm to select the agent is such that it will always pick from the whole pool, the
performance of unselfish agents decreases as well, compared to the scenario in
which the latter dominates. A finer selection algorithm could address this issue.

Appendix

The source code to replicate the C1 simulations is publicly available on github,
under the following URL: https://github.com/gitting-around/gitagent base.git.
Whereas, for C2 simulations the source code is available under the following
URL: https://github.com/gitting-around/gitagent.git. Finally, the simulations
for this paper were conducted on HP EliteBook 840 laptop with Ubuntu 14.04
and ROS Indigo.
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Abstract. Nowadays, many systems are connected through networks.
System of systems (SOSs) of this type can be regarded as multi-agent
systems (MASs). These SoSs or MASs are robust against system failures
because a failure of a system does not immediately mean the total failure
of the whole system. In this paper, we consider a repairing problem of
MASs where causes of future agent failures have to be removed within
a limited time, and some agents become out of order if not repaired. In
our simulation scenarios, many causes of future agent failures in MASs
are found simultaneously and consecutively owing to large-scale disas-
ters. In order to effectively repair them and reduce the number of agent
failures, task-allocation strategies for emergency repair are extremely
important. This paper compares five task-allocation algorithms in emer-
gency situations: independent unit MAS algorithm, centralized algo-
rithm, distributed algorithm, centralized algorithm with replanning, and
distributed algorithm with replanning.

Keywords: Multi-agent systems · Coordination mechanism
Distributed task allocation · Emergency repair

1 Introduction

In general, multi-agent systems (MASs) are believed to be robust against partial
system failures because even if an agent stops working, most of the other agents
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continue to work and cover the task of the disabled agent unless some impor-
tant agents break down. Usually, only a few causes of future agent failures are
found simultaneously and it is not difficult to remove them before some agents
actually fail. However, when large-scale disasters happen, many causes of future
agent failures are created simultaneously and consecutively, in which case, the
total MAS will stop functioning if they are not repaired effectively using limited
resources within limited time. Therefore, it is vital to effectively allocate repair
tasks.

In this paper, we consider some situations where disaster events repeatedly
happen and each disaster event creates multiple causes of future agent failures
In such emergency situations, we compare some task-allocation algorithms for
MASs in order to reduce the number of actual agent failures. Although some task-
allocation algorithms for repairing are compared in [3], the maximum number of
causes of future agent failures is 10 in their test scenarios. On the other hand, in
our much more severe scenarios, the maximum number of causes of future agent
failures is of the order of hundreds. As discussed in Sect. 8, this difference leads
to completely different conclusions. Although cooperation between agents was
not effective in the test scenarios of [3], we predict that cooperation is effective
in order to allocate limited resources within limited time when many causes
of future agent failures are created simultaneously and consecutively owing to
large-scale disasters.

As discussed in [8,17,22], there are two kinds of task-allocation algorithms: cen-
tralized algorithms and distributed algorithms. In centralized algorithms, a sin-
gle manager agent collects information from its child agents, calculates the com-
bination of tasks and child agents, and allocates the tasks to them. On the other
hand, in distributed algorithms, multiple manager agents communicate with one
another in order to decide on task allocations. Many existing task-allocation algo-
rithms are centralized algorithms.However, distributed task-allocation algorithms
are attracting attention because the breakdown of one manager agent does not
lead to the total failure of the MAS. One of our aims is to compare these two
kinds of algorithms in the repair-task-allocation scenarios. Because repair actions
sometimes fail, it is natural to replan and reallocate the repair task in the case
of an action failure. Therefore, we also evaluate centralized and distributed task-
allocation algorithms with replanning capabilities. In summary, we compare five
task-allocation algorithms for emergency repair: independent unit MAS algorithm
(baseline algorithmwheremanager agents donot cooperatewith one another), cen-
tralized algorithm, distributed algorithm, centralized algorithm with replanning,
and distributed algorithm with replanning.

The remainder of this paper is organized as follows. In Sect. 2, we discuss
related work. In Sect. 3, we define the MAS architecture for repair-task allo-
cations. In Sect. 4, we define five algorithms for task repairing. In Sect. 5, we
explain the detailed settings for simulation. In Sect. 6, we show the simulation
results for a deployment pattern of unit MASs. In Sect. 7, we show the simulation
results for another deployment pattern of unit MASs. In Sect. 8, we discuss the
simulation results, comparing them with the simulation results reported in [3].
Section 9 is devoted to the conclusion.



Evaluating Task-Allocation Strategies for Emergency Repair in MAS 255

2 Related Work

This section summarizes related work on task allocation. Auction algorithms
such as the contract net protocol [26] are often used for dynamic task allocation
[1,3,7,10,16]. As shown in this paper, it is not difficult to use auction algorithms
in a decentralized manner.

In [22], the probabilities of future agent failures are taken into considera-
tion when allocating tasks to agents. However, the algorithm does not consider
repairing. In [11], some backup agents are created in case of emergency. However,
as pointed out in [22], the cost of backup agents is high when additional hard-
ware is needed and it takes time to copy the agents dynamically. The algorithm
does not consider repairing either. In [20], considering future agents’ failure,
robust agent teams are created. The idea is to prepare more agents than needed.
Again, the cost is high and repairing is not considered. Coalition formation of
first responders in disaster relief is also researched in [23].

Metaheuristics are often used for optimizing combination of tasks and agents
considering various constraints. In [15,31], multiple metaheuristics for task allo-
cation are compared. In [31], it is shown that a variant of tabu search is better
than other algorithms in terms of computation time and optimality. In [15], it is
shown that a variant of PSO produces slightly better results in terms of optimal-
ity when the computation time is limited. However, in general, the algorithms
of metaheuristics are time-consuming.

Variants of max-sum algorithms for distributed constraint optimization
(DCOP) are applied to task-allocation problems in [17,23]. Most algorithms
of DCOP use connectivity graphs of agents. In the case of agent failures, these
DCOP algorithms do not update connectivity graphs of agents. On the other
hand, max-sum is robust against agent failures. However, many messages are
repeatedly sent between agents in DCOP, which causes delays of communica-
tion and computation.

There are many applications of multi-agent task allocation: disaster relief
[1,6,19,21,23–25,28], computer games [9,27], coordination of robots [10,16,18,
30], weapon-target assignment [7,15,31], and command and control for combat
ships [2–5,33]. Our task-allocation problem of emergency repair is closely related
to the task-allocation problems of combat ships and disaster relief. Similar to
our task-allocation problem, there are hard deadlines for tasks such as threat
removal and civilian rescue.

3 MAS Architecture and Problem Description

We consider a MAS for repair-task allocations that is composed of multiple unit
MASs, each of which includes sensing agents, action-execution agents,
and a manager agent: sensing agents detect causes of future agent failures,
action-execution agents fix causes of future agent failures using limited resources,
and manager agents communicate with one another to allocate repair tasks to
action-execution agents. In this section, we define unit MASs and the agents that
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Fig. 1. MAS architecture for repair-task allocations

belong to unit MASs. We define the functions of unit MASs as agents because
each function is often deployed on different hardware and becomes out of order
independently.

As shown in Fig. 1, a unit MAS is a MAS comprising 0 or more sensing agents,
0 or more action-execution agents, and 1 manager agent. When a sensing agent
senses a cause of a future agent failure, it reports the information to the manager
agent in the same unit MAS. When receiving the information of a cause of a
future agent failure, the manager agent allocates the repair task to an action-
execution agent that belongs to the same unit MAS or allocates the repair task
to the manager agent of another unit MAS if there are multiple unit MASs and
their manager agents are connected by the network.

When allocated a repair task, the action-execution agent will execute a repair
action consuming one resource. Execution of a repair action will succeed or fail
according to the predefined probability. Unless a cause of a future agent failure
is removed by a repair action, one of the agents will stop functioning according
to the predefined probability.

When a unit MAS has sensing agents and action-execution agents, the unit
MAS can sense and remove causes of future agent failures without the help of the
other unit MASs as shown in Fig. 1. In this case, each unit MAS is independent
and it is unnecessary to connect each unit MAS through the network. Because of
its simplicity, we compare the repair-task-allocation algorithm for independent
unit MASs with other algorithms as a baseline algorithm.

As shown in Fig. 2, when the manager agents of unit MASs are connected by
the network, sensing and repairing can be done in different unit MASs. We expect
that repair-task allocations will be more effective when the manager agents are
connected.

When the MAS has a centralized architecture, as shown in Fig. 3, only
one manager agent (top manager agent) works as a leader and allocates all the
repair tasks to unit MASs. On the other hand, when the MAS has a distributed
architecture as shown in Fig. 2, different manager agents become leaders of task
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Fig. 2. Distributed architecture

Fig. 3. Centralized architecture

allocation for different repair tasks. We expect that the distributed MAS algo-
rithm is more robust than the centralized algorithm because in the distributed
architecture, even if a leader becomes out of order, another manager agent
becomes a leader. We compare the repair-task-allocation algorithms that use
these MAS architectures.

4 Algorithms

In this section, we introduce five algorithms for repair-task allocations: the inde-
pendent unit MAS algorithm (baseline algorithm), the centralized algorithm, the
distributed algorithm, the centralized algorithm with replanning, and the dis-
tributed algorithm with replanning. Repair tasks are allocated to agents based
on the contract net protocol [26].
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In the independent unit MAS algorithm, the manager agent of each unit
MAS decides which repair action to execute without exchanging information
with other unit MASs. In the centralized algorithm, only one manager agent
(top manager agent) works as a leader and allocates repair tasks to unit MASs.
In the distributed algorithm, when a sensing agent detects a cause of a future
agent failure, the manager agent in the same unit MAS works as a leader and
selects a unit MAS for the repair task. Note that different manager agents become
leaders for different repair tasks in the distributed algorithm. In the centralized
algorithm with replanning, only the top manager agent reallocates unsuccessful
repair tasks to unit MASs. On the other hand, in the distributed algorithm with
replanning, when an action-execution agent fails to execute a repair action, the
manager agent in the same unit MAS works as a leader and reallocates the
unsuccessful repair task to a unit MAS.

We expect that the centralized algorithm and the distributed algorithm can
allocate repair tasks more effectively than the independent unit MAS algorithm
because unit MASs communicate with one another. We also expect that the dis-
tributed algorithm is more robust than the centralized algorithm that is weak
with respect to the failure of the top manager agent. We also evaluate the central-
ized algorithm with replanning and the distributed algorithm with replanning
because it is natural and effective to reallocate the repair task when the repair
task is not completed successfully.

4.1 Independent Unit MAS Algorithm

In the independent unit MAS algorithm, the manager agents of different unit
MASs do not communicate with one another. Therefore, as in Fig. 1, when a
sensing agent senses a cause of a future agent failure, the action-execution agent
in the same unit MAS tries to repair it without the help of the other unit
MASs. Although this algorithm does not require network connections among
unit MASs, multiple action-execution agents in different unit MASs might try
to execute repair actions for the same cause of a future agent failure, which leads
to unnecessary consumption of resources.

Algorithm 1 (Independent Unit MAS Algorithm). The sensing agents,
the manager agent and the action-execution agents in each unit MAS work as
follows if they are alive:

– Algorithm of Sensing Agents
1. When a sensing agent detects a new cause of a future agent failure, it

reports the information to the manager agent in the same unit MAS if
the manager agent is alive.

– Algorithm of Manager Agents
1. When the manager agent M receives the information of a new cause of a

future agent failure C from a sensing agent in the same unit MAS, the
manager agent M selects and reserves an action-execution agent E for
the repair task R of C, if E exists, such that E is alive, the number of
resources of E is more than 0 and E is not reserved for another cause of
a future agent failure.
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2. When it becomes possible for the reserved action-execution agent E to
start executing the repair action A for the reserved repair task R, if E is
alive, the manager agent M in the same unit MAS orders E to execute A
and erases the reservation information.

– Algorithm of Action-Execution Agents
1. When receiving an execution order of the repair action A, from the man-

ager agent M in the same unit MAS, the action-execution agent E executes
A, decrements 1 resource whether the result of A is a success or a failure,
and reports the result to M.

4.2 Centralized Algorithm

A centralized algorithm is often used for task allocations in general. In the cen-
tralized algorithm, as shown in Fig. 3, only one manager agent (top manager
agent) allocates repair tasks to the manager agents of unit MASs based on the
contract net protocol [26], which is a kind of auction. Although there are many
criteria to select a unit MAS, we select the unit MAS that can start repairing
first. Because of the network connection, we expect that the centralized algo-
rithm is more effective than the independent unit MAS algorithm.

Algorithm 2 (Centralized Algorithm). The sensing agents, the manager
agent and the action-execution agents in each unit MAS work as follows if they
are alive:

– Algorithm of Sensing Agents
• Same as the algorithm of sensing agents in Algorithm 1.

– Algorithm of Manager Agents
1. When the manager agent M receives the information of a new cause of

a future agent failure C from a sensing agent in the same unit MAS,
the manager agent M forwards the information of C to the top manager
agent T if T is alive. Otherwise, it works in the same way as step 1 of
the algorithm of manager agents in Algorithm 1.

2. When the manager agent M receives an allocation of a repair task R from
the top manager agent, M selects and reserves an action-execution agent
E for R in the same way as step 1 of the algorithm of manager agents in
Algorithm 1.

3. Same as step 2 of the algorithm of manager agents in Algorithm 1.
– Algorithm of the Top Manager Agents

1. When the top manager agent T receives the information of a new1 cause of
a future agent failure C from a manager agent, T asks each alive manager
agent M whether the unit MAS U of M can be in charge of the repair task
R of C and how quickly an action-execution agent of U can start the repair
action of R. Then, T allocates R to the manager agent of the unit MAS
U2 such that an action-execution agent of U2 can start the repair action
of R the quickest.

– Algorithm of Action-Execution Agents
• Same as the algorithm of action-execution agents in Algorithm 1.

1 Even if multiple manager agents report the same cause of a future agent failure, the
top manager agent starts the auction only once.
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4.3 Distributed Algorithm

In the distributed algorithm, as shown in Fig. 2, when a sensing agent detects a
cause of a future agent failure, the manager agent in the same unit MAS works
as a leader like the top manager agent of the centralized algorithm, selects a
unit MAS based on the contract net protocol [26], and allocates the repair-task
to the manager agent of the selected unit MAS. However, unlike the centralized
algorithm, different manager agents become leaders for different repair tasks.
Therefore, the distributed algorithm is expected to be more robust for agent
failures than the centralized algorithm.

Algorithm 3 (Distributed Algorithm). The sensing agents, the manager
agent and the action-execution agents in each unit MAS work as follows if they
are alive:

– Algorithm of Sensing Agents
• Same as the algorithm of sensing agents in Algorithm 1.

– Algorithm of Manager Agents
1. When the manager agent M receives the information of a new2 cause of

a future agent failure C from a sensing agent in the same unit MAS, M
asks each alive manager agent, selects a unit MAS U and allocates the
repair task of C to the manager agent of the unit MAS U in the same way
as step 1 of the algorithm of the top manager agent in Algorithm 2.

2. When the manager agent M receives an allocation of a repair task R from
the manager agent of another unit MAS, M selects and reserves an action-
execution agent E for R in the same way as step 1 of the algorithm of
manager agents in Algorithm 1.

3. Same as step 2 of the algorithm of manager agents in Algorithm 1.
– Algorithm of Action-Execution Agents

• Same as the algorithm of action-execution agents in Algorithm 1.

4.4 Centralized Algorithm with Replanning

In the centralized algorithm with replanning, when execution of a repair action
results in failure, the top manager agent reselects a unit MAS and reallocates the
repair task to the manager agent of the selected unit MAS. Because the success
rate of repair actions is not 100%, it is expected that replanning will decrease
the number of agent failures.

2 Even if a sensing agent reports a cause of a future agent failure to its manager agent,
the manager agent will not start the auction if another manager agent has already
started the auction for the same cause of a future agent failure. In this paper, for
simplicity, we assume that there is no delay for agent communication. However, when
there is such communication delay, each manager agent needs to stop the auction
it has already started when they know that another manager agent has started the
auction earlier for the same cause of a future agent failure. We are currently tackling
this problem and recently reported some results in [13].
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Algorithm 4 (Centralized Algorithm with Replanning). The sensing
agents, the manager agent and the action-execution agents in each unit MAS
work as follows if they are alive:

– Algorithm of Sensing Agents
• Same as the algorithm of sensing agents in Algorithm 1.

– Algorithm of Manager Agents
1. Same as step 1 of the algorithm of manager agents in Algorithm2.
2. Same as step 2 of the algorithm of manager agents in Algorithm 2.
3. Same as step 3 of the algorithm of manager agents in Algorithm 2.
4. When the manager agent M receives the result of repair-action execution

for the repair task R from an action-execution agent in the same unit
MAS, if the result is a failure, M reports the result of R as a failure to
the top manager agent.

– Algorithm of the Top Manager Agents
1. Same as step 1 of the algorithm of the top manager agent in Algorithm2.
2. When the top manager agent T receives the result of a failure for the

repair task R from a manager agent, T asks each alive manager agent,
selects a unit MAS U, and reallocates R to one of the manager agents
in the same way as step 1 of the algorithm of the top manager agent in
Algorithm 2.

– Algorithm of Action-Execution Agents
• Same as the algorithm of action-execution agents in Algorithm 1.

Algorithm 5 (Distributed Algorithm with Replanning). In the dis-
tributed algorithm with replanning, when an action-execution agent fails to exe-
cute a repair action, the manager agent in the same unit MAS reselects a unit
MAS and reallocates the task to the manager agent of the selected unit MAS.
It is expected that replanning will decrease the number of agent failures. The
sensing agents, the manager agent and the action-execution agents in each unit
MAS work as follows if they are alive:

– Algorithm of Sensing Agents
• Same as the algorithm of sensing agents in Algorithm 1.

– Algorithm of Manager Agents
1. Same as step 1 of the algorithm of manager agents in Algorithm 3.
2. Same as step 2 of the algorithm of manager agents in Algorithm 3.
3. Same as step 3 of the algorithm of manager agents in Algorithm 3.
4. When the manager agent M receives the result of repair-action execution

for the repair task R from an action-execution agent in the same unit
MAS, if the result is a failure, this manager agent M reallocates R to
one of the manager agents in the same way as step 1 of the algorithm of
manager agents in Algorithm 3.

– Algorithm of Action-Execution Agents
• Same as the algorithm of action-execution agents in Algorithm 1.
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5 Simulation Settings

In this section, we explain the details of simulation settings used to compare
and evaluate the algorithms defined in the previous section. We evaluate the
algorithms by means of simulation because the situation continuously changes
and each cause of a future agent failure is detected asynchronously. The tar-
get application of our empirical case study is related to the application of [3]
(weapon-target assignment), and we will compare our simulation results with
the results in [3] later in the discussion section. We set typical values of unit
MASs, considering the target application. In Sect. 5.1, we show the number of
agents and resources in unit MASs. In Sect. 5.2, we show the performances of
sensing and repairing of each unit MAS. In Sect. 5.3, we show the consecutive
occurrence patterns of disaster events that create multiple causes of future agent
failures simultaneously. As stressed in the introductory section, we predict that
cooperation among agents becomes very effective in these severe occurrence pat-
terns of disaster events, which is completely different from the result in [3] where
the numbers of causes of future agent failures in their test scenarios are small.

5.1 The Numbers of Agents and Resources

This subsection shows the numbers of agents and resources. As shown in Table 1,
we use 7 kinds of unit MASs: UMAS 0, . . . , UMAS 6, which are typical unit
MASs of our target application.

The numbers of action-execution agents in UMAS 0, . . . , UMAS 6 are 0, 0, 0,
4, 2, 1, 1. An action-execution agent cannot execute more than one repair action
in parallel but multiple action-execution agents can execute repair actions at the
same time. The numbers of initial resources that each action-execution agent in
UMAS 3, . . . , UMAS 6 has are 18, 12, 24, 3.

UMAS 1 and UMAS 2 do not have action-execution agents, which means that
the causes of agent failures found by the sensing agent of UMAS 1 or UMAS 2
need to be repaired by the action execution agents of UMAS 3, . . . , UMAS 6.
UMAS 0 does not have sensing agents or action-execution agents. It has only one

Table 1. The numbers of agents and resources

Type of unit
MAS

# of manager
agents

# of sensing
agents

# of
action-execution
agents

# of initial resources of
each action-execution
agent

UMAS 0 1 0 0 -

UMAS 1 1 1 0 -

UMAS 2 1 1 0 -

UMAS 3 1 1 4 18

UMAS 4 1 1 2 12

UMAS 5 1 1 1 24

UMAS 6 1 1 1 3
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Table 2. Probability and time to start detecting a cause before an agent failure

Type of unit

MAS

Performance of sensing Performance of repairing

Time (secs) to

start detecting

a cause before

an agent

failure

Prob. of

detecting

causes of

future agent

failures (%)

Time (secs) to

start repairing

before an

agent failure

Time for repairing

(secs) when starting

the Repair x secs

before an agent failure

Success Prob.

of repairs (%)

UMAS 1 360 90 - - -

UMAS 2 180 90 - - -

UMAS 3 72 90 36 x/2.5 80

UMAS 4 43.2 90 18 x/2.5 80

UMAS 5 18 90 10.8 x/2.5 80

UMAS 6 18 90 10.8 x/2.5 80

Table 3. Occurrence patterns of disasters and causes of future agent failures

# of disaster

events

# of causes of

future agent

failures created by

a disaster event

Interval

between

disaster events

(hours)

Interval of

causes of

future agent

failures (secs)

Times from

occurrence of a

cause to an agent

failure (secs)

Prob. of agent

failures when

not repaired (%)

10 30 1 1 1800 90

manager agent that works as the top manager agent when using the centralized
algorithm or the centralized algorithm with replanning.

5.2 Performances of Sensing Agents and Action-Execution Agents

This subsection shows performances of unit MASs in terms of sensing agents
and action-execution agents. With a specific application in mind, we set the
typical performances of each unit MAS. Table 2 shows performances of unit
MASs in terms of sensing and repairing. Sensing agents in UMAS 1, . . . , UMAS
6 can start detecting causes of agent failure respectively from 360, 180, 72, 43.2,
18, 18 s before the expected time of agent breakdown. The sooner the sensing
agent detects a cause of a future agent failure, the higher the performance is,
which means that performance of the sensing agent in UMAS 1 is the best. The
probability of detecting causes of future agent failures is 90%.

Action-execution agents in UMAS 3, . . . , UMAS 6 can start repairing from
36, 18, 10.8, 10.8 s before the expected time of an agent failure. The sooner the
action-execution agent can start repairing, the higher the performance is, which
means that performance of the action-execution agent in UMAS 3 is the best.
The success probability of repairing is 80%. When an action-execution agent
starts repairing x seconds before the expected time of agent breakdown, the
time of repairing will be x/2.5 s. We assume a situation where a cause of agent
failure approaches the target agent at constant speed and the action-execution
agent sends the resource for a repair to the cause of future agent failure at
constant speed.



264 H. Hayashi

Table 4. Selection rules of agents

Random selection rule of agents Concentrated selection rule of agents

One agent is randomly selected The top manager agent is selected with the prob. of 10% and

one agent is randomly selected otherwise

5.3 Occurrence Patterns of Disasters and Agent Failures

Table 3 summarizes the occurrence patterns of disaster events and causes of
future agent failures. In our simulation scenarios, when a disaster event occurs,
a cause of a future agent failure is created every second. The total number of
causes of future agent failures created by a disaster event is 30. Disaster events
repeatedly happen 10 times, and the interval between disaster events is 1 h. Note
that the number of action-execution agents is 32, which is also the maximum
number of the repair actions that can be executed in parallel. This number is
closer to the number of causes of future agent failures created by a disaster event.
Therefore, the repairing capability of the MAS is close to the limitation.

As summarized in Table 4, we use two different selection rules of agents: the
random selection rule of agents and the concentrated selection rule of agents.
When the random selection rule of agents is applied, if a cause of a future agent
failure is not removed by a repair action, one of the agents is randomly selected.
The selected agent becomes out of order with the probability of 90% in 1800 s.
When the concentrated selection rule of agents is applied, the top manager agent
(the manager agent of UMAS 0) is selected with the probability of 10% and one
of the other agents is randomly selected if the top agent is not selected. We
expect that the concentrated selection rule affects the centralized algorithm.
When the concentrated selection rule is applied, the top manager agent is more
likely to fail. Note that after the failure of the top manager agent, the centralized
algorithm works in the same way as the independent unit MAS algorithm and
each unit MAS does not communicate with one another.

6 Simulation 1 (Balanced deployment of unit MASs)

This section shows the simulation results for a balanced deployment pattern of
unit MASs. (In the next section, unit MASs are deployed in a different pattern.)
We conduct the simulation based on the simulation settings defined in the previ-
ous section using the algorithms defined in Sect. 4. Table 5 shows the number of
each unit MAS that is used for the simulation in this section. (Note that different

Table 5. The number of unit MASs (Balanced deployment of unit MASs)

Type of unit MAS UMAS 0 UMAS 1 UMAS 2 UMAS 3 UMAS 4 UMAS 5 UMAS 6

# of unit MASs 1 1 2 2 4 8 8
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numbers of unit MASs are deployed in the simulation in the next section.) High-
performance unit MASs are costly in general. Therefore, in the simulation of this
section, considering the balance, we use a smaller number of high-performance
unit MASs and a larger number of low-performance unit MASs.

The numbers of UMAS 0, . . . , UMAS 6 are 1, 1, 2, 2, 4, 8, 8. The total
number of these unit MASs is 26 (=1 + 1 + 2 + 2 + 4 + 8 + 8). Note that from
Tables 2 and 5, we can see that the lower the performance of sensing and repairing
of a unit MAS, the greater the number of the unit MAS.

UMAS 0 is necessary to evaluate the centralized algorithms. Each UMAS
has exactly one manager agent and the total number of manager agents is
26. Each UMAS has exactly one sensing agent except UMAS 0 and the total
number of sensing agents is 25. The numbers of action-execution agents in
UMAS 0, . . . , UMAS 6 are 0, 0, 0, 4, 2, 1, 1 (See Table 1). The total num-
ber of action-execution agents is 32 (=2 * 4 +4 * 2 + 8 * 1 + 8 * 1). The numbers
of initial resources that each action-execution agent in UMAS 3, . . . , UMAS 6
has are 18, 12, 24, 3 (See Table 1). The total number of initial resources is 456
(=2 * 4 * 18 + 4 * 2 * 12 + 8 * 1 * 24 + 8 * 1 * 3).

We conducted simulations 1000 times using different random seeds. We show
the results in terms of the number of agent failures and successful repairs. We
show the simulation results in the following two subsections. In Sect. 6.1, we
show the simulation results when using the random selection rule of agents. In
Sect. 6.2, we show the simulation results when using the concentrated selection
rule of agents.

6.1 When Using the Random Selection Rule of Agents

This subsection shows the simulation results when using the random selection
rule of agents. Figure 4 shows the average number of agent failures and Fig. 5
shows the average number of successful repairs. Reducing agent failures is the
top priority but it depends on successful repairs.

The centralized algorithm and the distributed algorithm are much better than
the independent unit MAS algorithm because each cause of future agent failure

Fig. 4. Average number of agent failures when using the random selection rule of agents
(Balanced deployment of unit MASs)
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Fig. 5. Average number of successful repairs when using the random selection rule of
agents (Balanced deployment of unit MASs)

Fig. 6. Average number of agent failures when using the concentrated selection rule of
agents (Balanced deployment of unit MASs)

is allocated to a unit MAS in the centralized algorithm and the distributed
algorithm, which is not the case with the independent unit MAS algorithm.
These two algorithms become much better when combined with a replanning
capability because replanning covers unsuccessful repair actions.

The distributed algorithm with/without replanning is better than the cen-
tralized algorithm with/without replanning. However, the difference is slight.
We expect that the difference would become bigger after the top manager agent
becomes out of order. Therefore, in the next subsection, we focus on use of the
concentrated selection rule of agents to increase the possibility of a failure of the
top manager agent.

In summary, in this simulation scenario, the distributed algorithm with
replanning and the centralized algorithm with replanning are the best choices,
and the independent unit MAS algorithm is the worst choice.

6.2 When Using the Concentrated Selection Rule of Agents

This subsection shows the simulation result when using the concentrated selec-
tion rule of agents. Figure 6 shows the average number of agent failures and Fig. 7
shows the average number of successful repairs.
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Fig. 7. Average number of successful repairs when using the concentrated selection
rule of agents (Balanced deployment of unit MASs)

Now, the differences between the centralized algorithm with/without replan-
ning and the distributed algorithm with/without replanning are clear. The
distributed algorithm without replanning becomes better than the centralized
algorithm without replanning from the second disaster event. The distributed
algorithm with replanning becomes better than the centralized algorithm with
replanning from the fifth disaster event. This is because the centralized algo-
rithms work in the same way as the independent unit MAS algorithm after the
failure of the top manager agent.

In summary, in this simulation scenario, the distributed algorithm with
replanning is the best choice, and the independent unit MAS algorithm is the
worst choice.

7 Simulation 2 (Deployment of Inexpensive Unit MASs)

This section shows the simulation results of another pattern of unit MASs where
many inexpensive unit MASs are deployed. Because of the budget problem,
it is sometimes difficult to install expensive unit MASs that have good sens-
ing/repairing capabilities. A solution to this problem is to use many inexpensive
unit MASs. Similar ideas can be found in such areas as crowd sourcing [14],
swarm robotics [29], and sensor networks [32].

Table 6 shows the number of each unit MAS that is used for the simulation in
this section.The numbers ofUMAS0, . . . , UMAS6are 1, 0, 0, 0, 0, 0, 152.Note that
from Tables 2 and 6, we can see that performance of UMAS 6 is the lowest in terms
of sensing and repairing. Therefore, many inexpensive unit MASs are deployed in
this scenario.UMAS0 is necessary to evaluate the centralized algorithms.The total

Table 6. The number of unit MASs (Deployment of inexpensive unit MASs)

Type of unit MAS UMAS 0 UMAS 1 UMAS 2 UMAS 3 UMAS 4 UMAS 5 UMAS 6

# of unit MASs 1 0 0 0 0 0 152
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number3 of these unit MASs is 153 (=1 + 0 + 0 + 0 + 0 + 0 + 152). Each UMAS has
exactly one manager agent and the total number of manager agents is 153. Each
UMAS has exactly one sensing agent except UMAS 0 and the total number of sens-
ing agents is 152. The number of action-execution agents in UMAS 6 is 1 and the
total number of action-execution agents is 152. The number of initial resources in
UMAS 6 is 3 and the total number of initial resources is 456 (=152 * 3), which is
the same as the total number of initial resources of Simulation 1 in the previous
section.

We conducted simulations 1000 times using different random seeds. We show
the results in terms of the number of agent failures and successful repairs. We
show the simulation results in the following two subsections. In Sect. 7.1, we
show the simulation results when using the random selection rule of agents. In
Sect. 7.2, we show the simulation results when using the concentrated selection
rule of agents.

7.1 When Using the Random Selection Rule of Agents

This subsection shows the simulation results when using the random selection
rule of agents. Figure 8 shows the average number of agent failures and Fig. 9
shows the average number of successful repairs. Reducing agent failures is the
top priority but it depends on successful repairs.

In Figs. 8 and 9, the centralized algorithm and the distributed algorithm
are much better than the independent unit MAS algorithm. These two algo-
rithms become even better when combined with a replanning capability because
replanning covers unsuccessful repair actions. However, in Figs. 8 and 9 we
cannot clearly recognize much difference between the centralized algorithm
with/without replanning and the distributed algorithm with/without replan-
ning. These results are almost the same as the results in the previous section.
However, it is interesting to see that the number of average agent failures becomes

Fig. 8. Average number of agent failures when using the random selection rule of agents
(Deployment of inexpensive unit MASs)

3 Compared with [3], the number (153) of unit MASs in Simulation 2 is much larger. In
fact, the maximum number of frigates (= unit MASs) in [3] is only 10.
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Fig. 9. Average number of successful repairs when using the random selection rule of
agents (Deployment of inexpensive unit MASs)

nearly 0 when combined with a replanning capability despite the fact that high
performance unit MASs are not used, which is not the case in Fig. 4 in the
previous section.

In summary, in this simulation scenario, the distributed algorithm with
replanning and the centralized algorithm with replanning are the best choices,
and the independent unit MAS algorithm is the worst choice.

7.2 When Using the Concentrated Selection Rule of Agents

This subsection shows the simulation result when using the concentrated selec-
tion rule of agents. Figure 10 shows the average number of agent failures and
Fig. 11 shows the average number of successful repairs.

Now, the differences between the centralized algorithm without replanning
and the distributed algorithm without replanning are clear. The distributed algo-
rithm without replanning becomes better than the centralized algorithm without
replanning from the second disaster event. This is because the centralized algo-
rithms work in the same way as the independent unit MAS algorithm after the
failure of the top manager agent.

Fig. 10. Average number of agent failures when using the concentrated selection rule
of agents (Deployment of inexpensive unit MASs)
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Fig. 11. Average number of successful repairs when using the concentrated selection
rule of agents (Deployment of inexpensive unit MASs)

In Figs. 10 and 11, it seems that the distributed algorithm with replanning is
slightly better than the centralized algorithm with replanning. However, the dif-
ferences between the centralized algorithm with replanning and the distributed
algorithm with replanning are not so clear as we expected. This is because replan-
ning is very effective and the number of agent failures becomes nearly 0 in both
algorithms.

In summary, in this simulation scenario, the distributed algorithm with
replanning and the centralized algorithm with replanning are the best choices,
and the independent unit MAS algorithm is the worst choice.

8 Discussion

As discussed in the introduction, some repair-task-allocation algorithms are com-
pared in [3], including a no-coordination algorithm (� independent unit MAS
algorithm), a zone defence coordination algorithm, a contract net algorithm,
a simple centralized coordination algorithm, and another central coordination
algorithm of [4]. In their test scenarios, the no-coordination algorithm was the
best in terms of the number of hits (� successful repairs). On the contrary, the
independent unit MAS algorithm (� no-coordination algorithm) was the worst
in our simulation scenarios.

The main reason is that the total number of threats (� causes of future
agent failures) is small (1 to 10) in the scenario of [3]. In addition, in [3], each
ship (� unit MAS) tries to remove all the threats using multiple resources in
the no-coordination algorithm whereas each threat is assigned to only one ship
in the coordination algorithms and replanning is not an option even when it
fails to remove the threat. Therefore, action failures lead to agent failures in the
coordination algorithms whereas they do not in the no-coordination algorithms.

In the case of our simulation scenario, 10 disaster events repeatedly happen,
each of which creates 30 causes of future action failures, and the total num-
ber of causes of future agent failures is 300. In this case, without coordination
among unit MASs, many causes of future action failures are unattended and
not repaired. Furthermore, in the independent unit MAS algorithm, each unit



Evaluating Task-Allocation Strategies for Emergency Repair in MAS 271

MAS soon runs out of resources at early stages and cannot continue repairing
afterwards. Therefore, in our much severer disaster scenario, the independent
unit MAS algorithm is the worst choice and coordination among unit MASs is
vital. This result is completely different from the simulation result of [3].

Moreover, we found that replanning reinforces the coordination algorithms in
our severe simulation scenarios. We also confirmed that the distributed algorithm
is better than the centralized algorithm when the concentrated selection rule is
applied.

As we can understand from this discussion, different scenarios can lead to
different conclusions. Therefore, with other situations in mind, we intend to
conduct more simulations and test more algorithms. This is our future work.

9 Conclusions

In this paper, five algorithms for task allocations were compared by means of
multi-agent simulation: the independent unit MAS algorithm, the centralized
algorithm, the distributed algorithm, the centralized algorithm with replanning,
and the distributed algorithm with replanning. In our severe simulation sce-
narios, 300 causes of future agent failures are created simultaneously and con-
secutively. We tested these algorithms for two typical deployment patterns of
unit MASs (balanced deployment of unit MASs and deployment of inexpensive
unit MASs) and for two different selection rules of agents (random selection rule
of agents and concentrated selection rule of agents). Simulation was conducted
1000 times for each case and algorithm. In terms of the average number of agent
failures and successful repairs, we arrived at the following conclusions:

– The centralized algorithm and the distributed algorithm are always better
than the independent unit MAS algorithm in our simulation scenarios. This
means that coordination among unit MASs is very effective, which is com-
pletely different from the conclusion reported in [3]. The main reason for this
is that many causes of future agent failures are created simultaneously and
consecutively in our simulation scenarios.

– When the random selection rule is applied, the distributed algorithm
with/without replanning is slightly better than the centralized algorithm
with/without replanning in our simulation scenarios. However, the difference
is not as much as we expected.

– The centralized algorithm and the distributed algorithm become even better
when they are combined with replanning in our simulation scenarios. This
means that replanning reinforces the coordination algorithms because repair
actions sometimes fail.

– The distributed algorithm becomes better than the centralized algorithm
when the concentrated selection rule is applied unless the number of agent
failures is nearly kept to 0. This means that the distributed algorithm is
effective for unbalanced occurrences of causes of future agent failures. On the
other hand, the centralized algorithm is not robust when the top manager
agent is vulnerable.
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– The distributed algorithm with replanning is the best choice, and the inde-
pendent unit MAS algorithm is always the worst choice in any case in our sim-
ulation scenarios where the number of causes of future agent failures is large.
However, as reported in [3], the independent unit MAS algorithm becomes
effective when the number of causes of future agent failures is small compared
with the number of action-execution agents, and there are enough resources
for repairing.

In future work, we are considering the following directions:

– We intend to study the case where manager agents sometimes receive unreli-
able information of causes of future agent failures and make wrong decisions.

– We intend to improve the algorithms so that we can reduce the number of
agent failures. For example, as reported in [13], we have recently improved
the algorithm by combining the independent unit MAS algorithm and the
distributed algorithm with replanning. We are still trying to improve the
algorithms further.

– We intend to conduct simulations in more detail for our target application. For
this purpose, it is necessary to combine the MAS controller of our algorithms
and the domain-specific simulator of our target application.

– Because different scenarios might lead to different conclusions, we intend to
consider other situations and find better algorithms. For example, in one
scenario, the network speed between manager agents of different unit MASs
might slow or the network might be cut off. In another scenario, the allocation
of repair tasks might be corrected by a human operator. Although we use
8 different kinds of unit MASs, we intend to test our algorithms in more
heterogeneous domains. We have recently tested some scenarios in [13] where
different causes of future agent failures are tested, and failure probabilities
and periods of time to failures are different.
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