
223© Springer International Publishing AG, part of Springer Nature 2018 
V. P. Sülsen, V. S. Martino (eds.), Sesquiterpene Lactones, 
https://doi.org/10.1007/978-3-319-78274-4_10

Chapter 10
Mode of Action on Trypanosoma 
and Leishmania spp.

María E. Lombardo and Alcira Batlle

Abstract In this chapter, the most common molecular targets and mechanisms of 
action of anti-trypanosomatid drugs are described: biosynthesis of sterols, trypano-
thione pathway, purine salvage pathway, cysteine proteinases, trans-sialidase, 
metallocarboxypeptidases, tubulin, calcium homeostasis and pyrophosphate metab-
olism, heme uptake and degradation, glycolytic pathway, DNA interaction, oxida-
tive stress and apoptosis. Interaction of the sesquiterpene lactones with hemin, the 
induction of oxidative stress, the inhibition of enzymes as cruzipain and trypano-
thione reductase, the apoptosis induction and the ability of this type of compounds 
to inhibit sterol biosynthesis will be also discussed.
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10.1  Introduction

Among the pathogenic parasites which affect human, trypanosomatids, such as try-
panosomes and leishmanias, can be found. These parasites are the causative agents 
of American trypanosomiasis or Chagas’ disease (Trypanosoma cruzi), African try-
panosomiasis or sleeping sickness (Trypanosoma brucei) and leishmaniasis 
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(Leishmania spp.) The World Health Organization includes trypanosomiasis and 
leishmaniasis among the group of neglected tropical diseases. These diseases are 
more prevalent in poor populations, not representing an interesting market for the 
pharmaceutical industry; efficient vaccines have not been developed; chemotherapy 
is not always effective, as it presents serious side effects and drug resistance phe-
nomena often occur. Moreover, globalization and migratory currents have favoured 
the expansion of these diseases into nonendemic zones. Therefore, the need for new 
and efficient therapeutic and diagnostic alternatives has become evident.

The ideal anti-trypanosomatid drug must attack the parasite with the higher rate 
of selectivity as possible, due to the fact that not harming or interacting with the host 
is of great importance to minimize side effects. Molecular structures used as thera-
peutic agents should show differences with the corresponding analogues in the 
mammalian host. However, selectivity is not the only parameter that guarantees 
drug efficiency; it is also needed that the selected target be vital for the parasite. For 
a target to be validated as such, the drugs (either natural products or drugs designed 
and optimized in silico) that interact selectively with it must show high efficiency.

The knowledge acquired about the basic parasite biochemistry, the application of 
genetic engineering techniques and the development of bioinformatics and compu-
tational techniques are key elements for the identification of these targets. As to 
Leishmania spp. T. cruzi and T. brucei concern, their respective genomes are known. 
Therefore, with this information, a comparative genomic analysis with the human 
genome, or between them, is of great help at the moment of postulating possible 
therapeutic targets (Jiang and Zhou 2005; Katsila et al. 2016).

10.2  Molecular Targets

Herein, the most common molecular targets for anti-trypanosomatid drugs are 
described, together with possible mechanisms of action for sesquiterpene lactones 
(STLs).

10.2.1  Biosynthesis of Sterols

Unlike mammalian cells, which synthesize cholesterol, in trypanosomatids, fungi 
and yeasts, the sterol synthesis leads to the formation of ergosterol (Fig.  10.1). 
Sterols (mainly ergosterol and 24-methylsterols) are essential components of the 
cell membrane. These sterols are not supplied by neither the vector nor the host cell. 
The sterol biosynthetic route with its inhibitors is schematized in Fig. 10.1.

One of the enzymes on which inhibitors have been tested is squalene synthase 
(SQS) that catalyses the formation of squalene from two molecules of farnesyl 
pyrophosphate (FPP). This enzyme is inhibited by two synthetic derivatives of qui-
nuclidine, namely, ER-119884 and E5700 (Tsukuba Research Laboratories, Eisai 
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Co), for which a strong antiparasitic activity against T. cruzi (Urbina et al. 2004) and 
L. amazonensis (Fernandes Rodrigues et al. 2008) has been reported. Other impor-
tant inhibitors of this enzyme are the lipophilic bisphosphonates (Shang et al. 2014), 
which have also proved to have a considerable inhibitory effect on farnesyl pyro-
phosphate synthase (FPPS). The usefulness of lipophilic bisphosphonates has been 
discovered during the process of improving the inhibitory activity of nitrogen- 
containing bisphosphonate drugs, such as incadronate and ibandronate, which had 
been reported to be potent inhibitors of human FPPS and SQS (Amin et al. 1992). 
The nitrogen-containing biphosphonates have great disadvantages as antiparasitic 
agents. Firstly, these drugs have a strong binding capacity to human bone mineral 
(Kavanagh et al. 2006; Mukherjee et al. 2009), and secondly, they are highly polar 
molecules, which makes the crossing of the plasma membrane to enter the cell 
difficult.

However, the capacity of lipophilic bisphosphonates to inhibit the synthesis of 
ergosterol (SQS and FPPS) in more than one point makes them attractive candidates 
to be evaluated as anti-trypanosomatids drugs. The crystallographic study of T. cruzi 
SQS has allowed not only to carry out a comparative study with human SQS but 
also to superimpose the molecular structure of ER-119884, E5700 and four repre-
sentative lipophilic bisphosphonates (BPH-1218, BPH-1237, BPH-1325, 

Fig. 10.1 Sterol biosynthetic pathway in trypanosomatids. Reaction steps and the enzymes 
involved (indicating inhibitory drugs) in ergosterol biosynthesis are depicted. HMG-CoA 
3-hydroxy-3-methyl-glutaryl-CoA, PP- pyrophosphate
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 BPG- 1344) with that of the enzyme, thus elucidating the structural requirements for 
these inhibitors to block the active site of SQS (Shang et al. 2014).

Another enzyme belonging to the sterol biosynthetic pathway, for which inhibi-
tors have been tested, is the squalene epoxidase, which converts squalene into 
2,3-oxidosqualene. Allylamines, such as terbinafine, are known inhibitors of the 
enzyme. Antiproliferative effects and ultrastructural alterations induced in vitro by 
terbinafine on L. amazonensis promastigotes and intracellular amastigotes have 
been reported (Vannier-Santos et al. 1995). The drug is not capable of eradicating 
the infection by itself, but its activity increases when combined with other inhibitors 
of the ergosterol pathway. The inhibition of this pathway can also be achieved at the 
C14α-sterol demethylase level by azoles, such as ketoconazole or itraconazole, 
which are effective for the treatment of superficial and systematic mycoses (Buckner 
2008; McCall et al. 2015). These commercially available compounds have not been 
efficient neither in patients nor in animal models of T. cruzi infection (McCabe 
1988; Moreira et al. 1992; Brener et al. 1993); however, when combined with other 
drugs, their efficiency could be enhanced. The combination terbinafine with keto-
conazole increases almost a hundredfold the activity of terbinafine alone (Vannier- 
Santos et al. 1995). Moreover, benznidazole, when combined with itraconazole, is 
more efficient than benznidazole alone in eliminating parasites from the blood. The 
combination, thus, allows reducing the benznidazole dosage notably (Assíria Fontes 
Martins et al. 2015). Amiodarone and itraconazole have also shown a synergistic 
activity (Paniz-Mondolfi et  al. 2009). Likewise for azoles, which interact at the 
C14α-sterol demethylase level, a series of triazole derivatives have shown great 
antiparasitic potency. The latter group of drugs includes posaconazole (SCG56592), 
ravuconazole (BMS 207, 147) and TAK-187, among others (Urbina 2001; Buckner 
2008). These compounds are capable of inducing radical parasitological cure both 
during acute and chronic infections caused by T. cruzi. Besides, these drugs are 
active orally, and they exert little or no toxic effects in mammal cells and are active 
against nitrofuran- and nitroimidazole-resistant T. cruzi strains (Urbina 2010). In 
humans, posaconazole has shown a considerable synergistic effect with quinucli-
dine E5700 (Shang et al. 2014), amiodarone (Veiga-Santos et al. 2012) and with 
benznidazole. Two clinical trials, CHAGASAZOL and E1224, were carried out to 
analyse the effect of posaconazole and ravuconazole, respectively. In both cases 
these drugs were compared to benznidazole. These trials demonstrated that azoles 
are not effective as monotherapy for the treatment of patients in the indeterminate 
phase of Chagas’ disease, unlike benznidazole, which proved to be an efficacious 
drug to maintain sustained clearance of the parasite even 1 year later (Chatelain 
2015).

The enzyme ∆24,25-sterol methyltransferase is involved in the last steps of the 
biosynthetic ergosterol pathway. This enzyme is present in trypanosomatids but not 
in the mammalian host, which renders it a potential therapeutic target. Although 
azasterols are inhibitors of this enzyme, it has been demonstrated that, though these 
compounds have suppressor effect, they are ineffective to cure and to prevent dis-
ease progression (Urbina 2010).
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The interference with the synthesis of sterols is a very interesting therapeutic 
target. The interaction of drugs with ergosterol can be detrimental to the parasite, 
since this interaction brings about an alteration of cell membrane permeability, 
causing the loss of small ions, mainly K+ and cell death. This mechanism of action 
would account for the antileishmanial effect of amphotericin B. Miltefosine would 
exert its effects by interacting with phospholipids and membrane sterols (Silva- 
Jardim et al. 2014).

10.2.2  Trypanothione Pathway

The trypanothione (N1,N8-bis(glutathionyl)-spermidine) is the main low molecular 
weight thiol that is exclusively present in trypanosomatids. This thiol in an equilib-
rium between its oxidized and reduced forms, TS2 and T(SH)2, respectively, plays a 
key role in maintaining the intracellular redox state (Manta et al. 2013). Being the 
trypanosomatids’ aerobic organisms, they are exposed to oxidative and nitrosative 
stress originated from the host and parasite cellular metabolisms. The trypanothione 
thiol groups play a key role in the parasite’s antioxidative defence system. The 
trypanothione- based redox metabolism provides the reduction equivalents for both 
detoxification of peroxides by the tryparedoxin peroxidase and ascorbate peroxi-
dase and for the biosynthesis of deoxyribonucleotides by the ribonucleotide reduc-
tase (Leroux and Krauth-Siegel 2016). The intracellular levels of TS2 and T(SH)2 
are regulated by the activity of two enzymes, the trypanothione synthetase (Try-S), 
which is the enzyme that catalyses the synthesis of trypanothione disulphide (TS2), 
and the trypanothione reductase (Try-R), which catalyses the NADPH-dependent 
reduction of TS2 to T(SH)2. In kinetoplastids, the trypanothione/Try-R system per-
forms functions that are equivalent to the glutathione/glutathione reductase system 
in mammals. Since both Try-S and Try-R are specific for trypanosomatids and 
essential for their multiplication, they are promising targets for the development of 
selective inhibitors.

Kinetic studies performed on Try-S from different trypanosomatids, along with 
data obtained from structural analyses, have shown the low specificity of the enzyme 
to spermidine. This finding allows postulating the use of polyamines, which are 
analogous to spermidine, as inhibitors of this enzyme (Leroux and Krauth-Siegel 
2016). Regarding the identification of potential inhibitors, the use of the high- 
throughput screening techniques has allowed to analyse compound libraries with 
the purpose of developing lead molecules targeting Try-S (Leroux and Krauth- 
Siegel 2016).

As for Try-R, three kinds of inhibitors have been considered: competitive inhibi-
tors, irreversible inhibitors and subversive substrates. The tridimensional structure 
of this enzyme in its three stages (free enzyme and enzyme-substrate and enzyme- 
inhibitor complexes) is known and has allowed the rational design of drugs which 
behave as Try-R inhibitors. In addition, the differences existing between the active 
sites of Try-R and glutathione reductase allow the design of inhibitors that are 
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 specific for one of them (Steenkamp 2002). Many non-structurally related com-
pounds have shown inhibitory activity, i.e. polyamine derivatives, tricyclic aromatic 
compounds, amino diphenyl sulphides, peptidic derivatives and (terpyridine) plati-
num (II) complexes (Leroux and Krauth-Siegel 2016; Steenkamp 2002; Chawla and 
Madhubala 2010; Sueth-Santiago et al. 2017). Even if these compounds act as pos-
sible Try-R inhibitors, the antiparasitic activity that they have displayed correlated 
poorly with the inhibitory potency against Try-R. This phenomenon could be due 
either to the parasite being able to survive with only 10% of the enzyme activity, to 
limited uptake of the drug into the parasite, or to the fact that, in vivo, the inhibitor 
showed affinity for another target, rather than Try-R (Leroux and Krauth-Siegel 
2016).

Finally, Try-S and Try-R are not the only trypanothione pathway targets; the 
enzymes involved in the synthesis of spermidine such as ornithine decarboxylase 
(ODC) and S-adenosylmethionine decarboxylase (AdoMetDC) are also considered 
interesting for the development of new drugs against trypanosomiasis and leish-
maniasis (Heby et al. 2007).

10.2.3  Purine Salvage Pathway

Trypanosomatid parasites lack the enzymes necessary for the de novo synthesis of 
purines; therefore, they depend on the salvage pathway of purines to synthesize 
purine nucleotides from purine bases from the mammalian host (Fig. 10.2). In this 
sense, both the transport mechanisms of purine bases into the parasite cell and the 
enzymes of the salvage route become attractive targets to kill the parasite. Although 
the transporters of both the bases and their nucleosides are different from those of 
the host in terms of specificity, the multiplicity of transporters present in trypanoso-
matids (Chawla and Madhubala 2010) makes it difficult to efficiently block them to 
cause parasite death. As for the enzymes involved in the purine salvage pathway 

Fig. 10.2 Enzymes 
involved in the purine 
salvage pathway. PRPP 
phosphoribosyl 
pyrophosphate
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(Fig. 10.2), they have been identified and found to differ significantly from those of 
the host, basically as specificity towards the substrate concerns. Allopurinol (hypo-
xanthine analogue) is an inhibitor of the hypoxanthine-guanine phosphoribosyl 
transferase (HGPRT) which has shown antiparasitic activity against Leishmania 
and T. cruzi (Maya et al. 2007; Raviolo et al. 2013). Allopurinol is phosphorylated 
by the HGPRT to be incorporated into the nucleic acids as a nonphysiological 
nucleotide, thus disrupting the synthesis of nucleic acids and the synthesis of pro-
teins, leading to parasite death. Phthalic anhydride derivatives and phthalimide can 
also be used as structural analogues of purine bases. As trypanosomatids have many 
alternative pathways for the salvage of purines, the enzymes involved in this process 
are not essential for parasite survival; therefore, either the simultaneous blockade of 
more than one enzyme or the combined treatment with other antiparasitic drugs 
could be effective as therapeutic alternative.

10.2.4  Cysteine Proteinases

In trypanosomatids, the cysteine proteinases, which are homologous to mammalian 
cathepsins, are the most characterized enzymes. They have become an interesting 
therapeutic target not only because they are structurally different from their homo-
logues in mammals but also for their role in the host-parasite interaction as putative 
virulence factors.

Cruzipain is a cathepsin L cysteine proteinase present in T. cruzi. This enzyme is 
encoded by a gene whose expression is under different regulatory mechanisms in 
the different parasite stages suggesting specific functions for the regulation in each 
stage (Alvarez et al. 2012). Furthermore, the location of this enzyme varies with the 
stage, being located in reservosomes, lysosomes and the cell surface and in epimas-
tigotes, trypomastigotes and amastigotes, respectively (Sueth-Santiago et al. 2017; 
Alvarez et al. 2012). The first designed inhibitors were peptides capable of binding 
irreversibly to the enzyme, such as diazomethylketone, vinyl sulfone and fluoro-
methylketone derivatives (Kerr et al. 2009). Non-peptidic inhibitors have also been 
developed, such as cyclic thiosemicarbazones, nitrile-based inhibitors, benidipine 
and clofazimine (Ferreira et al. 2010; Caputto et al. 2011; Sbaraglini et al. 2016; 
Burtoloso et al. 2017). Cruzipain inhibitors have been used in murine models of 
chronic and acute infections, obtaining parasitological cure with minimum toxicity; 
however, high doses were required due to their short half-life.

An analysis of the Leishmania major genome has shown the presence of about 
65 cysteine proteinases, some of which are of the cathepsin L type and others of the 
cathepsin B type, which are involved in the host-parasite interaction (Chawla and 
Madhubala 2010). Moreover, a natural inhibitor of cysteine proteinases from L. 
mexicana has been characterized and has proved to be a potent inhibitor of cathep-
sin B cysteine proteinase. BALB/c mice infected with mutants overexpressing such 
inhibitors were able to resolve the infection faster than the control group infected 
with wild-type parasites (Bryson et al. 2009).
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In T. brucei-infected mice treated with carbobenzoxy-phenylalanyl-alanine 
diazomethylketone, (Z-Phe-Ala-CHN2), which is a cathepsin B-cysteine proteinase 
inhibitor, it is observed that this inhibition depletes the parasite of essential nutrients 
necessary for DNA synthesis, preventing the progression of the cell cycle (Scory 
et al. 2007). This T. brucei cysteine proteinase has been demonstrated to have differ-
ences with its mammalian counterpart, thus being a promissory target for drug 
design (Kerr et al. 2010).

10.2.5  Trans-sialidase

Trans-sialidase (TS) was identified in T. cruzi three decades ago. This enzyme is 
expressed in the trypomastigote form; it is located on the external surface of the 
parasite and is anchored as a non-integral membrane protein to glycosylphosphati-
dylinositol, which promotes its secretion to the extracellular environment to act on 
specific phospholipases. Unlike classic sialidases that hydrolyse sialic acid residues 
of glycoproteins and/or glycolipids, the TS catalyses the transference of sialic acid 
residues between glycoconjugates. Sialic acid is not produced by the parasite, and it 
is one of the most important sugars in the parasite recognition of the mammalian 
cell. In trypomastigotes, TS allows the parasite to transfer sialic acid from the host 
cell to its own. In this way, the parasite is no longer recognized as a foreign agent 
and can then infect host cells without triggering the immune response (Dc-Rubin 
and Schenkman 2012; Miller and Roitberg 2013). It is known that decreased levels 
of TS expression could contribute to the loss of T. cruzi trypomastigote virulence 
(San Francisco et al. 2017). Since this enzyme plays a crucial role in parasite sur-
vival, a large number of genes encoding highly related but enzymatically inactive 
proteins are present in the parasite’s genome. These proteins, which are expressed 
simultaneously, would serve to neutralize both antibodies and inhibitors directed to 
TS. This fact, added to the multiple roles that TS plays in both the biology of the 
parasite and in the development of Chagas’ disease, renders TS difficult to inhibit. 
The inhibitors tested so far have proved to be weak and non-specific, with high 
inhibition constants that were in the millimolar order. Inhibitors of the enzymes that 
hydrolyse sialic acid (sialidase), sialic acid derivatives (compounds that covalently 
bind to Tyr342 present in the active site of the enzyme), sugar derivatives (such as 
lactitol, which competes with sialic acid) and sialic acid analogues capable of inhib-
iting their transfer were tested as inhibitors, but none of them have shown good 
activity (Sueth-Santiago et al. 2017). Currently, research works are still ongoing to 
find new chemical scaffolds to inhibit TS.
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10.2.6  Tubulin

Tubulin is a protein that forms microtubules, which are cytoskeletal filaments that 
are responsible for maintaining the main functions of eukaryotic cells. Such func-
tions include the segregation of chromosomes during cell division, the transport of 
intracellular components and the maintenance of the cell shape, cell motility and 
distribution of plasma membrane components (Sueth-Santiago et al. 2017). Tubulin 
is present in two isoforms, namely, α- and β-tubulin, which polymerize to form a 
filamentous cylindrical structure called protofilament. The microtubule, which is 
formed from a protofilament grouping, is a dynamic structure in which polymeriza-
tion/depolymerization phenomena coexist in equilibrium. Thus, the microtubule 
size can change to adapt to different situations, such as those arising during the cell 
cycle. Cell division and parasite motility are highly dependent on the polymeriza-
tion/depolymerization equilibrium of tubulin and are essential for infection mainte-
nance. In spite of the structural similarity between the tubulins of the different 
species, different inhibitors have shown a selective recognition. This behaviour 
would indicate that the small differences existing between tubulins would function 
as recognition sites for the different inhibitors. Since the parasite proliferation kinet-
ics is comparable to the cancer cell and certain antineoplastic compounds bind to 
tubulin, they are also expected to display antiparasitic activity. Thus, anti-T. cruzi 
activity has been reported for taxol, curcumin and natural amidepiperins (Baum 
et  al. 1981; Chakraborti et  al. 2011; Sueth-Santiago et  al. 2016; Freire-de-Lima 
et al. 2011).

10.2.7  Homeostasis of Calcium and Pyrophosphate 
Metabolism

In trypanosomatids, Ca2+ plays an important role in different cellular functions, such 
as flagellar movement, differentiation, depolarization of microtubules, host cell 
invasion and immune response evasion mechanisms, such as antigenic variation 
(Benaim and Garcia 2011). As in other eukaryotic cells, in trypanosomatids, the 
disruption of Ca2+ homeostasis leads to cell death by apoptosis or necrosis. As 
regards the intracellular regulation of Ca2+, trypanosomatids possess a single mito-
chondrion that occupies 12% of the total volume of the parasite. In this mitochon-
drion large amounts of Ca2+ are accumulated. In addition, an endoplasmic reticulum 
Ca2+-ATPase, a plasma membrane Ca2+-ATPase and large amounts of calmodulin 
are also involved in the regulation of Ca2+ levels. Trypanosomatids also have acido-
calcisomes, which are organelles that play a role in the bioenergetics of these para-
sites, acting as the main reservoir of Ca2+ ions together with polyphosphates (mostly 
pyrophosphate). Within the parasite, the pyrophosphate is hydrolysed by pyrophos-
phatases, constituting an alternative mechanism to the hydrolysis of ATP to obtain 
energy. Both the hydrolysis of pyrophosphate and the homeostasis of Ca2+ are vital 
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for the parasite and therefore attractive therapeutic targets. Examples of inhibitors 
of these events are the bisphosphonates (non-metabolizable analogues of pyrophos-
phate) that inhibit pyrophosphatases and reactions involving pyrophosphate (Galaka 
et al. 2017), crystal violet and pentamidine that inhibit the plasma membrane Ca2+-
ATPase and antiarrhythmic drugs (amiodarone, dronedarone) that destabilize the 
intracellular Ca2+ homeostasis by altering the mitochondrial electrochemical poten-
tial and by alkalinizing acidocalcisomes (Serrano-Martín et al. 2009; Benaim et al. 
2012; Benaim and Paniz Mondolfi 2012; Benaim et al. 2014).

10.2.8  Uptake and Degradation of Heme

Heme is a fundamental molecule for parasite survival that must be acquired from 
both vertebrate and invertebrate hosts, for the parasite cannot biosynthesize it 
(Ciccarelli et al. 2007; Tripodi et al. 2011); however, an excessive amount of free 
heme is known to be toxic for the parasite. Therefore, an efficient control of its 
uptake, transport and degradation is required in order to avoid the generation of 
intracellular oxidative stress. Since both excessive and deficient heme levels lead to 
parasite death, this molecule becomes an important target for the development of 
antiparasitic drugs.

In trypanosomatids, several proteins involved in the heme uptake and transport 
have been identified. Although the mechanism involved in heme transport across 
biological membranes is not fully understood, experimental data indicate the par-
ticipation of ATP-binding cassette (ABC) transporters in this process (Cupello et al. 
2011; Campos-Salinas et al. 2011). In Leishmania amazonensis, LHR1, which is a 
transmembrane protein that mediates the transport of extracellular heme inside the 
cell, has been identified (Huynh et al. 2012). Syntenic genes with high-sequence 
identity to LHR1 have been recognized in the genome of several Leishmania spe-
cies, T. cruzi and T. brucei (Huynh et al. 2012). Merli et al. (2016) have identified 
and characterized a T. cruzi protein (TcHTE) with 55% of sequence homology to 
LHR1. TcHTE has been found to be located in the flagellar pocket, where the trans-
port of nutrients occurs. As mentioned above, the degradation of heme is also an 
important event to avoid its cytotoxic effects. In this regard, both Leishmania spp. 
and T. cruzi have been demonstrated to have heme oxygenase activity, which trans-
forms the heme into biliverdin, thus accomplishing heme detoxification (Ciccarelli 
et al. 2007; Cupello et al. 2011; Lechuga et al. 2016).

It is expected that both, heme structural analogues (which compete with heme for 
its uptake and/or use) and drugs that act as heme-drug complexes (which may 
inhibit heme degradation), would then display trypanocidal activity. Thus, vitamin 
B12 (cyanocobalamin) has shown marked antiparasitic activity against the three 
stages of T. cruzi in  vitro and on an acute murine model of Chagas’ disease 
(Ciccarelli et  al. 2012). Likewise hemin and vitamin B12 would exert its anti-T. 
cruzi effect through the generation of reactive oxygen species.
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Other targets considered for the search of new anti-trypanosomatid drugs are 
summarized in Table 10.1.

10.3  Oxidative Stress and Apoptosis

Oxidative stress and programmed cell death (PCD) arise as consequences of the 
interaction of drugs with their therapeutic targets.

Oxidative stress emerges from biologic oxidations that generate oxygen- 
reduction products such as O2

−, H2O2 and/or OH., which are known as reactive oxy-
gen species (ROS). These products cause an oxidative damage that the cellular 
antioxidant defence system must counteract. Trypanosomatids have an antioxidant 
defence system (Turrens 2004) which differs notably from that of the host cell 
(Fig. 10.3). In the parasite, trypanothione behaves in a similar way to glutathione in 
the host cell. Both cell types possess superoxide dismutase, but trypanosomatids 
lack catalase, the role of which is replaced by peroxidases. These differences render 
the parasite more sensitive to the action of ROS, in comparison to the host cell. In 
conclusion, oxidative stress is produced as a response to a redox unbalance that the 
antioxidant defence system of the parasite cannot compensate. The imbalance 
caused by an antiparasitic drug could be the result of its intracellular reduction fol-
lowed by autoxidation (yielding ROS), its interaction with the heme or with other 
molecules that generate ROS that the parasite cannot metabolize, or acting as a 
Try-R or Try-S inhibitor, which would decrease the efficacy of the antioxidant 
defence system.

Different types of cell death may occur in trypanosomatids, such as apoptosis or 
PCD (Proto et al. 2013). Although the apoptotic pathway in trypanosomatids has 
very similar features to that of mammalian cells, such as lipid peroxidation, increase 
in cytosolic Ca2+ levels, changes in mitochondrial membrane potential, the release 
of cytochrome C from the mitochondrion to the cytoplasm and induction of prote-
ases and DNA fragmentation, trypanosomatids lack their classical effectors or regu-
lators like the TNF-related family of receptors, Bcl-2 family members and caspases. 
However, they possess an endogenous basic machinery constituted by proteins that 

Table 10.1 Other possible targets to consider for the design of new anti-trypanosomatid drugs

Targets Mechanism of action Reference

Glycolytic pathway Inhibition of glycolytic enzymes: 
phosphofructokinase, pyruvate kinase and 
glyceraldehyde 3-phosphate dehydrogenase

Rodenko et al. 
(2007), Nowicki 
et al. (2008), Benaim 
et al. (2014)

DNA topoisomerases I 
and II

Inhibits of kinetoplast DNA replication Babokhov et al. 
(2013)

Metallocarboxypeptidases Inhibition of metallocarboxypeptidases of 
the M32 family

Alvarez et al. (2012), 
Frasch et al. (2012), 
Alvarez et al. (2013)
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control both the cycle and cell differentiation, such as proto-oncogenes, cyclin and 
cyclin-dependent kinases, which lead to death in a regulated manner. Cell cycle 
deregulation, heat shock, antiparasitic drugs, nutrient deprivation and ROS are some 
of the stimuli that can lead to apoptosis in trypanosomatids (Smirlis et al. 2010). 
Induction of PCD is a particularly important characteristic of antichagasic drugs, 
due to the fact that apoptosis suppresses the inflammatory response. Taking into 
consideration that the major cause of myocarditis in chagasic chronic patients is the 
maintenance of a pro-inflammatory response (Vieira et al. 2012), an antiparasitic 
drug that induces PCD would not only kill the parasite but also would have a benefi-
cial effect on the host.

10.4  Natural Sesquiterpene Lactones: Parasitic Effects 
and Probable Targets in Trypanosomatids

Although there are a significant number of reports that describe the anti- 
trypanosomatid activity of different natural sesquiterpene lactones (Brengio et al. 
2000; Schmidt et al. 2002; Jimenez-Ortiz et al. 2005; Saúde-Guimarães et al. 2007; 

Fig. 10.3 Antioxidant defence enzymatic system in mammalian cells (a) and trypanosomatids (b) 
GSH glutathione, GSSG oxidized glutathione, Try trypanothione, (ox) oxidized state, (red) 
reduced state, Asc ascorbate, DhAsc dehydroascorbate, (1) spontaneous reaction, SOD superoxide 
dismutase, GSH-Px glutathione peroxidase, GSH glutathione reductase, Asc-Px ascorbate peroxi-
dase, Tpx-Px tryparedoxin peroxidase, Try-R trypanothione reductase
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Sülsen et al. 2008; Karioti et al. 2009; Sülsen et al. 2011; Barrera et al. 2013; Sülsen 
et al. 2013; Jimenez et al. 2014; Sülsen et al. 2016), little is known about neither 
their mechanisms of action nor the molecular targets. The mechanisms of action of 
STLs are summarized in Table 10.2.

Brengio et al. (2000) have demonstrated that the anti-T. cruzi effect of dehydro-
leucodine (DhL) could be blocked by the presence of reducing substrates such as 
glutathione or dithiothreitol. However, these agents were not able to reverse the 
effect of DhL if they were added 2 days after the beginning of drug exposure. Based 
on these results, an intracellular redox imbalance has been proposed to explain the 
antiparasitic effect of DhL.

The STLs, mexicanin I (Mxn) and helenalin (Hln), have been reported to be 
equally active against the trypomastigote and epimastigote forms of T. cruzi 
(Schmidt et al. 2002; Jimenez-Ortiz et al. 2005). Since the reducing agents dithioth-
reitol and beta-mercaptoethanol were not able to reverse the trypanocidal effect of 
both compounds, it was concluded that Mxn I and Hln are deleterious for T. cruzi 
epimastigotes and that their mode of action would be different than that of the 
related STL DhL.

To explain the antiproliferative effect of Mxn, DhL and psilostachyin (Psi) on 
Leishmania mexicana promastigotes, Barrera et al. (2013) postulated a direct inter-
action of the drugs with intracellular sulfhydryl groups. This interaction would alter 
the non-enzymatic antioxidant defence system, which generates an oxidative stress 
leading to parasite death. After a short-time treatment (3 h), the induction of oxida-
tive stress would be at least one of the mechanisms of action of DhL, Mxn and Psi, 
but not for psilostachyin C (PsiC) that would act through another mechanism 
(Barrera et al. 2013).

Jimenez et al. (2014) have postulated PCD as a possible new therapeutic target. 
In this sense, they have investigated the induction of PCD in T. cruzi by DhL and 
Hln in comparison with the two conventional drugs, benznidazole and nifurtimox. 
Both STLs induced PCD in epimastigotes and trypomastigotes, while the conven-
tional drugs did not. This fact could indicate that STLs could act trough a different 

Table 10.2 Mechanism of action reported for anti-trypanosomatid sesquiterpene lactones

Sesquiterpene 
lactones Mechanism Parasite tested References

Dehydroleucodine Intracellular redox imbalance Trypanosoma 
cruzi

Brengio et al. 
(2000)

Mexicanin
Helenalin

Intracellular redox imbalance 
different from dehydroleucodine

Trypanosoma 
cruzi

Jimenez-Ortiz 
et al. (2005)

Mexicanin I
Dehydroleucodine
Psilostachyin

Oxidative stress induction Leishmania 
mexicana

Barrera et al. 
(2013)

Dehydroleucodine
Helenalin

Programmed cell death Induction Trypanosoma 
cruzi

Jimenez et al. 
(2014)

Psilostachyin
Psilostachyin C

Hemin interaction
Ergosterol biosynthesis inhibition

Trypanosoma 
cruzi

Sülsen et al. 
(2016)
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mechanism of action to kill the parasite. When combined with either benznidazole 
or nifurtimox, DhL displayed an increased trypanocidal activity. Therefore, the use 
of both DhL and Hln alone or combined with conventional drugs may be proposed 
as a potential new therapeutic schedule for the treatment of Chagas’ disease.

Artemisinin is an STL that is used as an antimalarial drug, which exerts its activ-
ity through heme binding (Schmidt et al. 2012). Taking this phenomenon into con-
sideration, Psi and PsiC, two STLs isolated from plants of the genus Ambrosia, have 
been tested for hemin binding (Sülsen et al. 2016). The results obtained by Sülsen 
et al. (2016) have shown that both STLs were capable of interacting with hemin, 
with this interaction leading to an inhibition of heme detoxification and the genera-
tion of oxidative stress within the parasite. After a 4-h treatment of T. cruzi, Psi 
induced a fivefold increase in ROS levels. Conversely, PsiC induced a 1.5-fold 
increase in ROS levels. These results are in agreement with those obtained by 
Barrera et al. (2013) in experiments performed on Leishmania mexicana in which 
Psi, but not PsiC, in short-time treatment, increased the generation of ROS inside 
the parasites. Only PsiC was able to inhibit ergosterol biosynthesis, causing an 
accumulation of squalene upon inhibition of squalene epoxidase. Neither Psi nor 
PsiC (up to 50 μM) inhibited cruzipain and Try-R. It can be concluded that despite 
their structural similarity, both STLs exerted their anti-T. cruzi activity through the 
interaction with different targets. Psi accomplished its antiparasitic effect by inter-
acting with hemin, while PsiC interfered with sterol synthesis. Both STLs induced 
parasite death by apoptosis. The same type of cell death was observed by Jimenez 
et al. (2014) for epimastigotes and trypomastigotes of T. cruzi treated with DhL or 
Hln.

Further studies need to be performed in order to characterize the mechanism of 
action that accounts for the antiprotozoal activity of STLs.
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