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2.1	 �Intrinsic Aging

Intrinsic aging is the process of senescence that 
affects all body organs, and the skin clearly 
shows the action of time and is transformed by it 
[1]. In 1990, there were more than 300 theories of 
aging. Today, the situation is even more compli-
cated [2].

Intrinsic skin aging or chronologic aging is 
characterized by physiological changes geneti-
cally determined and includes structural, bio-
chemical, and functional alterations [3, 4]. These 
changes are complex, and there are many theo-
ries of skin pathophysiology, like shortening of 
telomeres, reduction of cellular DNA repair 
capacity [5], cellular senescence, and decreased 
proliferative ability [6] mutations of extranuclear 
mitochondrial DNA [7]. Some of them are 
highlighted.

2.1.1	 �Shortening of Telomeres

Telomeres are sequences of repeating nucleo-
peptides present at the end of chromosomes 
(Fig. 2.1) [8]. Because DNA polymerase cannot 
transcribe the final sequence of bases present in 
the DNA ribbon during replication, the telomeric 
size is reduced at each mitotic cycle [9]. This 
telomere reduction is associated with cellular 
aging [10–13]. This mechanism contributes to 
the regulation of growth arrest in senescent 
human cell cultures the same way as stress or 
aberrant signaling-induced senescence (STASIS) 
[14]. Telomeres themselves are regarded as pos-
sible biomarkers of biological aging and cellular 
senescence. Other possible biomarkers are the 
free radicals [15].
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Fig. 2.1  Representation of a telomere, highlighted
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2.1.2	 �Free Radicals 
and Antioxidizing Ability

In 1956, Denham Harman proposed a theory that 
free radicals are also involved in this aging pro-
cess: they would cause cellular damage, which 
would accumulate over the course of life and 
result in acceleration of dysfunctions [16]. Later, 
Yu and Yang described that not only the overex-
pressed production of reactive oxygen species 
(ROS) but also other oxidants, such as the reac-
tive nitrogen species and reactive lipid species, 
cause oxidative damage [17].

In other studies, the degradation of oxidized 
products was unraveled. The body can neutral-
ize ROS through the production of antioxidant 
enzymes, such as superoxide dismutase, catalase, 
and glutathione peroxidase, by an innate anti-
oxidant defense system [18, 19]. This function is 
exerted by proteasome (multicatalyctic protease), 
whose activity seems to diminish over the course 
of life. With this, an incomplete degradation of oxi-
dized proteins, increased protein aggregates, and 
the acceleration of cell dysfunction are observed, 
which, ultimately, lead to cellular aging [16, 20].

2.1.3	 �Cellular Senescence

The theory of cellular senescence has been demon-
strated in keratinocytes, fibroblasts, and melano-
cytes [21]. There is a reduction in the proliferative 
potential of cells after a certain amount of division 
[22–24]. Senescent cells can also produce several 
cytokines, chemokines, growth factors, proteases, 
and matrix metalloproteases, a phenomenon 
described as senescence-associated secretory phe-
notype (SASP) [25]. A hallmark of skin aging is 
the degradation of collagen and other extracellular 
matrix components in the dermal connective tissue 
and can be induced through chronic MMPs secre-
tion by senescent cells [26].

2.2	 �Intrinsic Factors

2.2.1	 �Genetic Characteristics

Many studies correlated genomes with the aging 
process [27, 28]. According to one of them, of all 

genes studied, 39 were regulated overlappingly 
in both sexes. They could serve as gender-
independent biomarkers of endogenous skin 
aging. On the other hand, Wnt signaling pathway 
showed to be significantly downregulated in aged 
skin with decreased gene and protein expression 
for males and females [29].

Genic expression studies from aged sun-
protected skins showed differential expression, 
possibly responsible for dysregulation of the 
insulin and STAT3 signaling pathway, the extra-
cellular matrix (PI3, S100A2, A7, A9, SPRR2B), 
and the cell cycle (CDKs, GOS2). There was also 
evidence of a high regulation of proapoptotic 
genes, in part by a dysregulation of FOXO1. An 
under-expression of the JUN and FOS family 
members and cytoskeleton genes (KRT2A, 
KRT6A, and KRT16A) is also affected by intrin-
sic aging [30].

Another alteration observed in skin aging is 
the reduced expression of type I collagen due to 
downregulation of the transcription growth factor 
(TGF) β-1 and the connective tissue growth fac-
tor (CTGF). This reduced collagen expression is 
even associated with increased nuclear factor-κB 
(NF-κB) activity and increased expression of 
matrix metalloproteinase (MMP)-1 [31, 32].

An interesting discovery is that DNA methyla-
tion measures the cumulative effect of an epigen-
etic maintenance system, like a “clock of aging,” 
and can determine the individual age with an 
error of less than 3.6 years. This additional infor-
mation can be used to address a host of questions 
in developmental biology, cancer, and aging 
research [33].

2.2.2	 �Sexual Hormones

With aging, the functional reserves of the endo-
crine system are reduced. As a result, the levels of 
sexual hormones decline. In females, hormonal 
changes are well documented. Women have a 
rapid decline of estrogen during menopause [34]. 
Estrogen is related to the stimulus of keratinocyte 
proliferation, which leads to the thickening of the 
epidermis, avoiding its atrophy [35]. In the der-
mis, the stimulus is of blood vessels and fibroblast 
production, thereby preserving collagen, elastic 
fibers, and glycosaminoglycans [36, 37]. With the 
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reduction of this hormone, the maintenance of 
these processes would be compromised.

The characterization of hormonal changes in 
males is a challenge, as there is not a remarkable 
hormonal decrease when compared with females. 
During the aging process, most men show a grad-
ual reduction of circulating testosterone—some-
thing around 1% a year after 30  years of age. 
However, this number substantially varies among 
men [38]. Testosterone reduction is related to 
intrinsic aging because it broadly interacts with 
the skin, the whole body, and the male behavior 
itself [39].

2.3	 �Extrinsic Aging

Extrinsic aging results from the exposure to envi-
ronmental factors—critical for the final result of 
the process [35]. Sun exposure intensifies skin 
aging due to ultraviolet radiation, a process 
referred to as photoaging [40]. Factors such as 
smoking and pollution may also lead to aging 
[41]. All these factors can lead to ROS genera-
tion, reducing collagen synthesis and increasing 
its degradation, contributing to premature skin 
aging (Fig. 2.2).

2.4	 �Extrinsic Factors

2.4.1	 �Air Pollution

The World Health Organization defines air pollu-
tion as contamination of the indoor or outdoor 
environment by any chemical, physical, or biologi-
cal agent that modifies the natural characteristics of 
the atmosphere [42]. The skin acts as a physical, 
chemical, and immunological barrier against the 
environmental factors. This barrier can fail when 
the exposure to stressors is prolonged and repeti-
tive, leading to the development of various skin 
diseases [43]. Major air pollutants which affect the 
skin are solar ultraviolet radiation, polycyclic aro-
matic hydrocarbons, volatile organic compounds, 
nitrogen oxides, particulate matter, cigarette 
smoke, heavy metals, and arsenic [44]. Air pollut-
ants damage the skin by inducing oxidative stress 
and can lead to aging of the skin [41, 44].

Some pollutants stand out, such as ozone, par-
ticulate matter (PM), and polycyclic aromatic 
hydrocarbons. Ozone can affect the integrity of the 
skin on murine cutaneous tissue, can act as a strong 
oxidative agent, and can induce the expression of 
MMP-9, indicating a role in matrix remodeling 
[45, 46]. Oxidation of epidermal lipids and dis-
turbed activity of matrix metalloproteinases con-
tribute to wrinkling and extrinsic skin aging [47].

Particulate matter in the air consists of com-
plex and varying mixtures of different sizes and 
composition. After penetrating the skin either 
through hair follicles or transdermally, PM exerts 
its detrimental effects through the generation of 
oxidative stress, contributing to extrinsic skin 
aging, characterized particularly by pigment 
spots on the face and nasolabial folds and less so 
by coarse wrinkles, solar elastosis, and telangiec-
tasia [48–50]. Furthermore, particles can serve as 
carriers for organic chemicals and metals that are 
capable of localizing in mitochondria and gener-
ating ROS directly in mitochondria [51], leading 
to skin aging by mitochondrial damage [41].

Polycyclic aromatic hydrocarbons (PAHs) are 
adsorbed on the surface of suspended PM in the 
air of urban areas [52] and are converted into qui-
nines, redox-cycling chemicals that produce 
reactive oxygen species [53]. They are associated 
with extrinsic skin aging, pigmentation, cancers, 
and acneiform eruption [52].

Collagen 

Generation of ROS

Premature Skin Aging

Synthesis

Degrading

Fig. 2.2  Air pollution, smoking, and sun exposure lead-
ing to ROS generation, reducing collagen synthesis and 
increasing its degradation, contributing to premature aging
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2.4.2	 �Smoking

In 1969 it was recognized that smokers look older 
than non-smokers [54]. Later, smoking was 
found to be an independent risk factor for prema-
ture facial wrinkling even after controlling for 
sun exposure, age, sex, and skin pigmentation 
[55]. A dose–response relationship between 
wrinkling and smoking has been identified, with 
smoking being a greater contributor to facial 
wrinkling than sun exposure [56].

Reactive oxidants and free radicals from ciga-
rette smoke cause oxidative stress or secondary 
oxidative events and inhibition of antioxidant 
mechanisms [57–59]. Components of cigarette 
smoke increase transepidermal water loss, degen-
eration of connective tissue in the skin, and upreg-
ulation of matrix metalloproteinases-1 and -3 
which degrade collagen and elastic fibers, which 
causes skin to become less elastic [43, 60, 61].

2.4.3	 �Ultraviolet Radiation 
and Photoaging

Photoaging is a cumulative process that is depen-
dent on sun exposure degree and skin pigmen-
tation level. Clinical presentation of sun-aged 

skin includes dryness of the skin; yellowish, 
wrinkled, atrophic, irregular pigmentation; tel-
angiectasias; and pre-malignant lesions [62, 63]. 
Histologically there is thinning of the stratum 
spinosum, increased thickness of granular cell 
layer, flattening of the dermoepidermal junction, 
and an increased number of hypertrophic dopa-
positive melanocytes [62, 64].

In aging process it is observed that keratino-
cytes become resistant to apoptosis and suscepti-
ble to DNA mutations. The number of 
melanocytes is also reduced, and the melanocytic 
density is altered. Langerhans cells also decrease 
in number with aging, resulting in loss of anti-
genic ability [62].

The immediate effect of sun exposure on the 
skin is cutaneous hyperpigmentation with delay in 
the formation of new melanin, which is reversible. 
The prolonged, recurrent sun exposure implies 
definitive changes in the quantity and distribution 
of melanin in the skin. The deposition of amor-
phous material in the papillary dermis, in place of 
conjunctive tissue, is the main element in differen-
tiating chronologic aging and photoaging [62].

The morphological changes resulting from pho-
toaging are, essentially, different from those 
observed in intrinsic aging. A parallel between 
such changes is shown in Table 2.1 [62, 40, 64, 65].

Table 2.1  Skin changes caused by intrinsic and extrinsic aging

Intrinsic aging
(chronologic)

Extrinsic aging
(environmental factors)

Wrinkles Thin Deep
Stratum corneum Unchanged Tapered
Dysplastic cells Few Many
Collagen fibers Slight change in size and 

organization
Great change in size and organization

Elastic fibers Reorganized ↓ production and ↑ degeneration
Capillary follicle ↓ number and thinning ↓ number and structure: hair loss
Melanocytes Normal ↓ number and melanin
Sebaceous and sweat 
glands

↓ number ↓ number: dry skin

Dermoepidermal junction Slight flattening Major flattening
Microvasculature Reduced area Telangiectasias, ecchymoses, inflammatory 

perivascular infiltrate.
Benign changes Seborrheic keratosis Seborrheic keratosis
Pre-malignant changes _ Actinic keratosis
Malignant changes _ Basal cell carcinoma

Spindle cell carcinoma

Reprinted with permission from Montagner and Costa [65]
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The ultraviolet (UV) B (290–320 nm) and A 
(320–400 nm) fractions [66] as well as the infra-
red (IR) A (770–1400 nm) fraction [67–69] can 
induce the extrinsic skin aging process [41].

Ultraviolet radiation penetrates the skin, and 
in accordance with the wavelength, it interacts 
with the different cells located in the different 
strata. Shortwave radiation (UVB) is more 
absorbed in the epidermis and predominantly 
affects keratinocytes but is also able to cross this 
layer and reach the papillary dermis [70]. Longer 
waves (UVA) penetrate more deeply and hit 
epidermal keratinocytes and dermal fibroblasts 
[71, 72]. IRA is able to penetrate through all 
three layers of the skin: the epidermis, dermis, 
and subcutis [41].

The UV-induced skin aging process is com-
plex and can occur by various pathways includ-
ing receptor-initiated signaling, mitochondrial 
damage, protein oxidation, DNA damage, and 
arylhydrocarbon receptor (AhR) signaling [41]. 
Table  2.2 compares the main mechanisms of 
intrinsic and extrinsic aging.

2.4.4	 �Receptor-Initiated Signaling 
Pathway

The reactive oxygen species produced by ultra-
violet radiation activate cell surface receptors of 
cytokines and growth factors in keratinocytes and 
fibroblasts, which activate kinases, that induce 
expression and transcription factors such as 
nuclear κB transcription factor (NF-κB) and pro-
tein 1 (AP-1) [41, 63].

The activated NFkB stimulates the transcrip-
tion of inflammatory cytokines (IL1, IL6, TNFa), 
attracting neutrophils and collagenases, associ-
ated in collagen degrading [73].

Increased AP-1, in turn, decreases the gene 
expression of dermal collagens I and III in fibro-
blasts, reducing collagen synthesis. Besides that, 
AP-1 stimulates the transcription of genes of 
matrix-disintegrating enzymes, such as metallo-
proteins (MMP-1, MMP-3, MMP-9), degrading 
mature dermal collagen [74, 75]. The radiation is 
not only related to collagen degradation but also 
contributes to reducing its synthesis. UVA ray 
exposure triggers two factors related to photoag-
ing: induction of matrix metalloproteinases 
(MMPs) and mitochondrial mutation [72, 76, 77].

2.4.5	 �Mitochondrial Damage

Actually, mitochondrial DNA damages are likely 
to be mediated through ROS.  Mitochondria 
contain multiple DNA copies and generate ROS 
during energy production (adenosine triphos-
phate—ATP), by consuming oxygen via the 
respiratory chain. ROS can easily damage lipids, 
proteins, and even the mtDNA itself [78, 79]. The 
mitochondrial DNA shows a high mutation rate 
due to its histone deficiency, limited capacity  
of base excision repair, and proximity to ROS 
[79, 80].

UVA exposure can further increase ROS gen-
eration and induce mutations at the mitochon-
drial DNA [72, 81], like deletion of 4977  bp 
(base pair), the most often found mutation in 
aged tissues [63, 82–87]. While this genic change 
can be detected in tissues that are non-susceptible 
to solar rays [83], mtDNA mutations can be ten-
fold more frequent in photoaged skin in compari-
son to sun-protected skin [64, 78, 79, 88–92].

2.4.6	 �DNA Damage

Sunlight-induced DNA damage is considered the 
main cause for the genetic changes leading to 
skin lesions and carcinogenesis including malig-
nant melanoma [93]. DNA, the main intracellular 

Table 2.2  Main mechanisms involved in aging

Intrinsic aging
 � Shortening of telomeres
 � Reduction of cellular DNA repair capacity
 � Cellular senescence and decreased proliferative 

ability
 � Mutations of extranuclear mitochondrial DNA
Extrinsic aging
 � Receptor-initiated signaling
 � Mitochondrial damage
 � Protein oxidation
 � DNA damage
 � Arylhydrocarbon receptor signaling
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chromophore for UVB [70], absorbs photons 
from UVB. This interaction increases ROS pro-
duction and creates dimeric photoproducts, such 
as pyrimidines, which may be related to pre-
malignant skin lesions [94, 95]. The DNA photo-
products that are induced by UVA are potentially 
more mutagenic than those induced by UVB, 
although UVB induces more cyclobutane pyrimi-
dine dimers than UVA [96].

Ultraviolet radiation also alters RNA and 
implies the formation of dysfunction-causing 
proteins. A blockade in RNA transcription by 
a DNA photoproduct allows p53 activation, 
thereby inducing the apoptosis of irradiated kera-
tinocytes [94].

These events activate multiple important sig-
naling pathways related to cell growth, differen-
tiation, senescence, DNA damage repair, 
connective tissue degradation, and inflammation 
[97]. This is followed by an irreversible blocking 
of cell cycle progression to prevent further DNA 
damage and increase the expression of senes-
cence-associated genes [97, 98].

2.4.7	 �Arylhydrocarbon Receptor 
Signaling

It is known that UVB also generates ROS species 
[99] initiating DNA damage, in the nucleus, once 
DNA is chromophore of UVB [100]. But, in the 
recent years, arylhydrocarbon receptor (AhR) 
was demonstrated to integrate part of the UVB 
stress response associated with photoaging.

This DNA damage-independent pathway is 
initiated outside the nucleus by the cluster ring 
and the internalization of cell membrane-bound 
growth factor receptors, such as the epidermal 
growth factor receptor (EGFR) [101]. AhR is 
activated in human epidermal keratinocytes upon 
exposure to UVB radiation, producing a series of 
photoproducts from tryptophan, which is free in 
the cytoplasm. These photoproducts are ligands 
of the AhR and activate it. This process leads to 
regulation of inflammation-associated genes, 
such as cyclooxygenase2 (COX2), that increase 
the expression of matrix metalloproteinases such 
as MMP-1 and MMP-3, among other proteases 

[102–105], melanocyte proliferation, and mela-
nin synthesis [58, 106]. In this scenario, the 
molecular response to solar aggression is evident. 
These mechanisms are briefly illustrated in 
Fig. 2.3.

2.4.8	 �Infrared Radiation

IRA irradiation is mainly absorbed by mitochon-
dria, where copper could serve as a chromo-
phore [107], and increases intra-mitochondrial 
production of ROS [108, 109]. ROS can increase 
intra-cytoplasmic calcium levels, activate the 
MAP kinases signaling pathway, and lead to 
elevated MMP-1 expression. Approximately 600 
genes are IRA responsive [110], and thus IRA 
radiation might further induce the extrinsic skin 
aging process through various other pathways. 
Important functions of the human skin which are 
characteristic for photoaging, such as angiogen-
esis [111] and production of mast cells [54], can 
be induced by IRA. Though IR does not induce 
tumorigenesis in the skin to the same extent as 
UVB, it is associated with a more aggressive 
tumor growth [112].

2.5	 �Conclusion

Ultimately, simply put, aging results from the 
modulation imbalance of collagen (with higher 
degradation and reduction of its synthesis) caused 
by excessive free radicals. Exposure to certain 
environmental factors, such as ultraviolet radia-
tion, smoking, and air pollution, induces or 
enhances this process, thereby leading to prema-
ture or exogenous aging.

Even with all biomolecular advances, preven-
tion is still the best way to fight aging and its con-
sequences, by avoiding the exposure to 
well-known exogenous factors. Endogenous and 
exogenous aging are objects of many research 
studies involving diet components in order to 
avoid or minimize the signs of time; however, 
there is still a lot to be proven. The advance in the 
knowledge of its pathogenesis is expected to cor-
roborate with new therapeutic findings.
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Fig. 2.3  Cellular effects of ultraviolet radiation. AhR sig-
naling pathway. UVB forming photoproducts that lead to 
pre-malignant lesions. UVA/UVB action on p53, produc-
ing cancer cells. Deletion of mitochondrial 4977 bp and 

ROS production by UVA radiation, ultimately, resulting 
in photoaging. (Adapted with permission from Montagner 
and Costa [65])
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